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Preface

Chapter 1 reviews the fundamental aspects of modelling and introduces sensitiv­

ity and uncertainty issues.

Chapter 2 first introduces and reviews the theory of linear, time-invariant com- 

partmental models, then describes a number of methods used to solve model 

state equations analytically and numerically in order to make predictions. This 
chapter also describes the methodology of numerous sensitivity analysis methods.

In Chapter 3, application of various sensitivity analysis techniques to two 8- 

compartment global carbon cycle models is presented. For ease of comparison, a 

measure of similarity between the sensitivity conclusions from different methods 

is defined based on the top 10 ranked input factors according to each method for 

each output variable (i.e. for each compartment at chosen time points).

Chapter 4 presents the results of the application of various sensitivity analysis 

methods including non-parametric methods to a more complex 25-compartment 

global carbon cycle model.

An overall informal comparison indicates that the 8-compartment global carbon 

cycle models used in Chapters 3 and 4 are optimal with respect to efficiency (i.e. 

both are simple and model codes are not very time-consuming to run), but in 

return do not have a high degree of stability and reliability since they do not



adopt biological and chemical processes. As for the 25-compartment model, it is 

more complex and more costly to run. These chapters review the applicability of 

the sensitivity analysis methods to these models which has steady-state constrain.

Chapter 5 explores various sources of uncertainty and presents results of uncer­
tainty analysis applied to the three global carbon cycle models that are used in 

Chapters 3 and 4. Here, we partition the overall prediction uncertainty of an 

output variable into different components of uncertainty.

Finally, Chapter 6 presents conclusions and main findings of the thesis.
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C hapter 1

Introduction: M odelling, 

C om partm ental M odelling, 

S ensitiv ity  and U ncertainty

1.1 Introduction

Why model? We need models to mathematically and simply represent reality, 

to understand, test and explain observed behaviours, and to make predictions of 

future behaviours. Many studies of systems and processes begin with the con­

struction of a model. Models serve as tools for formalizing how we think a system 
or a process is working. They function as investigative tools and play an impor­
tant role in many disciplines of modern science. In science, many processes dealt 

with are so complex that physical experimentation is too costly, too time consum­

ing or even impossible. In such cases, investigators often turn to mathematical 

or computational models [97]. Such models are used to describe the relationships 

between the system variables in terms of mathematical expressions which can 

then be used for the system’s future predictions. Mathematical models may be 
characterised as linear or nonlinear, deterministic or stochastic, time dependent 

or time independent, continuous or discrete, etc., and they are extensively used in

1
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many fields of science, such as engineering, biology, economy, chemistry, ecology, 

and physics. From a statistical point of view, we use models to make predictions, 

test hypotheses, manage and make decisions about a system under investigation.
In the modelling process, some details about the system being modelled are 

lost, but the model is still expected to preserve the essential features, be simple, 

realistic, efficient, reliable, accurate and precise, in short, be a “good” model. 

Modellers have been using mathematical and statistical tools to check those ex­

pectations about their models, and Sensitivity and Uncertainty Analyses are two 

of the most important tools used. Consider the diagram presented in Figure 1.1. 

The problems which scientists aim to solve exist in the physical world. In reality, 

we do not know all the properties of this world. First, this complicated physical 

world is simplified and a model world is created. A model is developed for a spe­

cific problem. Then, by using relevant mathematical and statistical techniques 

and tools, the model is analysed. Next, the model is tested to see if it is a good 

model, i.e., provides an answer to the problem and behaves as expected. If this 

is the case, then it is used in the physical world, otherwise the modelling process

Physical
World Not OK:

Revise
OK: Use it!

Model

Model
Testing

SA & UA
and other 
analysis

Model

World

F igu re  1.1. A diagram of Modelling World
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is revised.

1.1.1 C onceptual, M ath em atica l and C om p u tation al 

M od els

Conceptual Models
Conceptual models can simply be defined as the extraction of the essence. Con­
struction of a conceptual model is a way of determining how best to sort, group, 
and annotate the information contained in a system.

A conceptual model refers to concepts that offer a range of suggestions which 

concentrate on the examination of structures and their function. Using concep­

tual models, a system can be presented visually to the users. Also the ease of use 

and understanding of the system can be optimized with a conceptual model.

Mathematical Models
Often, a conceptual model which is a simplified model of the variables and in­

teractions present in the system is formulated to develop a mathematical model 

that can be used to examine the system behaviour. In a mathematical model the 

content, relation, structure and decision factors/variables all appear in equations.

Computational Models
Computer models (often refered to as computer codes) that implement the math­

ematical models are widely used in science as well as in industry. Common 

characteristics of these computer codes are:

- many input variables (often numbered in hundreds),

- the values and distribution functions of these variables are frequently not 

well known,

- the relationships among the variables are usually complex, modeled only by 
systems of differential equations which are not mathematically tractable.
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Computational models are computer implementations of mathematical mod­

els. They are important tools in science as well as in practical life. The terminol­

ogy ‘computational model’ is used to refer to representations of physical or other 

systems of interest that are first expressed in mathematical terms often as large 
and/or complicated systems of differential equations, and then implemented in 
the form of computer programs. Consider a system which is modeled by means 

of a compartmental model. Provided that the computer implementation of the 

model is described, the transport of material in the system can be simulated, and 

the outputs of interest which result from given inputs can be evaluated.
Suppose y is an output of a computational model, and it is a function of 

k inputs denoted by aq, a?2 , • ■ •, a?*- For a given ^-element input vector x, the 
model can be used to evaluate y  without error; that is, replicate evaluations of y 

obtained running the model’s computer code with the same x  will be identical. In 

other words, the model is deterministic [64]. Here to simplify notation we assume 

that the model produces only one output, but later in the thesis we deal with 
several dependent output variables. A computational experiment will consist of 

n model runs; the ith row of n x k dimensional sample matrix X  corresponds 

to the set of input values x* for the zth model run. After n  model runs, the 

experiment will result in a model output vector Y  =  [yi, y 2 , . ■ •, yn]T- Then, to 
investigate the model behaviour, sensitivity and uncertainty analyses are carried 
out on the results. Since in this analysis we are taking into consideration not only 

model parameters but also initial conditions, input variables, physical conditions, 

etc.j as do Campolongo & Saltelli [1 2 ], we use the statistical design terminology 

1 factor’ to refer to all conditions and variables unless stated specifically. Thus, a 
factor can be defined as a quantity that can be changed in the specification of 

the model prior to its run.

The model result while all parameters are held constant at their reference 

values, which are gathered from the literature and often called ‘nominal values’, 

is refered to as the ''base-line case’.
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1.1.2 S en sitiv ities  in M odelling  W orld

The basic idea of sensitivity theory is based on the evaluation of model perfor­

mance resulting from the changes in model parameters. Eslami defines sensitivity 
as behavioral study of system performance under parametric variations, and cer­

tain unwanted exogenous input acting on the system [34].
Sensitivity Analysis (SA) was originally created to deal with uncertainties 

in the input variables and model parameters. SA of models has been advanced 

and is commonly employed in the modelling world to increase the confidence in 

the model and its predictions by providing an understanding of how the model 

response variables respond to changes in the inputs, data used to calibrate it, 

model structures, or factors, i.e. model independent variables [97].

1.1.3 U n certa in ties in M odelling  W orld

Uncertainty exists because models are imperfect mimics of reality [55]. Often, 

it is not possible to know many parameters that are required for the solution of 

problems with great accuracy, that is, there is always uncertainty involved in the 

system being studied. As Saltelli [97] puts it “Models and uncertainty go hand 

in hand” .
SA is closely linked to Uncertainty Analysis (UA) which aims to quantify the 

overall uncertainty associated with the response as a result of uncertainties in the 

model input parameter (often addressed as parametric uncertainty) and model 
structure itself (model structural uncertainty) [97]. Parametric uncertainty is 

quantified in a distribution of parameter values. Model uncertainty becomes an 

issue when more than one model can adequately reproduce the observed data. 
Another source of uncertainty is scenario uncertainty which reflects uncertainty 

on future conditions particularly when dealing with future predictions.

The use of systematic sensitivity and uncertainty analysis on large, complex com­

putational models plays an important role in science. As complex numerical 

models are being increasingly applied for problem solving in many application
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areas, such as atmospheric science, combustion physics and engineering, biolog­
ical systems, etc., the need for sensitivity and uncertainty analysis is becoming 

more and more apparent. Saltelli [97] considers SA as a prerequisite for model 

building in any discipline where models are used, and since sensitivity questions 

arise when uncertainty is present, UA can also be considered as a prerequisite in 

the modelling process.
Below we give basic definitions for sensitivity and uncertainty analysis to 

summarize what has been said above:

Sensitiv ity  A nalysis is a procedure of determining and quantifying the change 
in model behaviour as model factors change.

U n certa in ty  A nalysis is an assessment/quantification of the uncertainties as­

sociated with the factors, the data and the model structure and their effect 

on the model output.

1.2 M odelling C om partm ental System s

In order to evaluate an experimental investigation concerning transport of mate­

rial in a system of the real world, an appropriate model of the observed system 

is considered in the model world. The most common type of model used for that 

purpose is a compartmental model.

Compartmental models are used to approximate the systems of real world phe­
nomena. They have been widely used to model systems in biomedicine, biology, 

pharmacokinetics, ecology, chemistry and engineering ([21], [38], [6 6 ], [82]). The 

books by Jacquez (1985), and by Godfrey (1983) (see [6 6 ], [38]) describe both the 

theory and the application of compartmental models. Articles by Brown (1980) 
and Zierler (1981) are excellent reviews of compartmental analysis. Brown lists 

around 140, and Zierler more than 50 further references on this topic (see [6 ] and
[110]). According to Zierler, the origin of compartmental analysis may go as far 

back as 1822, when Fourier conjectured that heat flow may be proportional to a
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temperature gradient. Godfrey, in his book, notes that because many first-order 

differential equations are compartmental without necessarily being described as 
such, this makes tracing the exact origins of compartmental models difficult. He 
also gives a date as early as 1923, when radioactive tracers were first applied to 

biological systems. Mulholland & Keener also trace the origins of the application 

of compartmental analysis to biological systems back to 1923 with the work of 

Hevesey, and to ecological systems back to the work of Kostitzin (1935) [8 8 ].

A compartmental system is a system divided into a finite number of subsys­
tems called ‘compartments5, and it is assumed that each of these compartments 

is homogeneous and well-mixed. Furthermore, it is assumed that the ‘material’ 
under study is neither destroyed nor synthesized in any compartment. The com­

partments of a system interact with each other and with the environment by 

exchanging material.

The rate at which the quantity of material changes in the ith  compartment 

can be written as the difference between the sum of all inputs into and the sum 

all outputs from that compartment as follows:

» \  / „  \dXi V—A V-A
QiO +  Qij — 2__J Qji (U i

V  ? ; !  /
T -  =  Xidt j=i /\  i/t /

( i . i )

0  < t < oo, a^(0 ) i =  l , 2 , ...,n

where Xi is the state variable associated with compartment i\ Xi is the derivative 

of Xi with respect to time t\ x° is the initial value of q is the rate with which

material is transfered and with the subscript ij  read as ‘into compartment i from

compartment j \  and subscript 0 refers to outside the system. If there is no 

material leaving the system (i.e., =  0 , 4  =  1 , 2 , ...,n), then the system is said

to be ‘dosed or blind’, otherwise it is an ‘open’ system.
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A general two-compartment model is shown in Figure 1.2.

20

■ 21

12

'02

Compartment 1 Compartment 2

F igure 1.2. Two-compartment model diagram

Depending on the nature of the system being modelled, compartmental models 
can have different characteristics. However, the majority of the compartmental 

analysis literature is on linear, time-invariant compartmental systems [38]. In 

spite of the basic simplicity, there is no doubt that this type of model appears to 

be the most important and commonly considered model in practice as well as in 

the literature [77]. Hallstadius emphasizes that the most usual type of compart­
mental modelling in studies on the transport of material in physical or biological 
systems is linear [44]. In a paper by O’Neill, which is a review of linear com­

partmental analysis in ecosystem modelling, it is noted that linear time-invariant 

compartmental modelling has played an important role in the development of 

systems ecology since the inception of the area in the late 1950s, and linear 
compartmental models continue to find a significant number of applications in 
ecology [91]. In this review O’Neill also provides a long list of references available 
in the literature on this class of compartmental models. Because our attention 

in this thesis is confined to linear, time-invariant ecosystem models, applied to 

global carbon cycle models in particular, the dynamics of linear time-invariant 

compartmental systems is introduced in more detail in the next chapter.
Like any modelling techniques, in compartmental modelling the output from
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the model is the item of interest. The knowledge we have about the model 

parameters, coefficients, and so on, is not perfect. As a result, there always exists 

some degree of uncertainty about the model inputs which is reflected in the model 
response(s). This, as it is expressed by Helton & Davis, leads us to two closely 
related questions: (1) ‘What is the uncertainty in the model response given the 
uncertainty in the model inputs?’, and (2 ) ‘How sensitive is the model response 

to the uncertainty in each model input?’ [48]. These two questions highlight the 

important role of ‘sensitivity’ and ‘uncertainty’ concepts in the modelling process 

very well.

1.3 A im s and O bjectives o f th is thesis

The aims and objectives of this thesis are:

(i) review and testing of different sensitivity analysis approaches,

(ii) application/modification of sensitivity analysis techniques to compartmen­

tal models with steady-state constraint,

(iii) presenting various graphical methods used as visualization tools to support 

sensitivity and uncertainty analyses,

(iv) uncertainty analysis - model comparability and benchmarking,

(v) validation in environmental radioactivity.

The previous sections have emphasised the relevance of sensitivity and uncer­
tainty analyses as modelling tools. In particular, we illustrate and develop such 

methods as are required in a common applied class of models, namely radioac­

tivity modelling. Such models have been used in the field of global carbon cycle 

modelling and climate change predictions.
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M ethodology: Linear, 

Tim e-Invariant C om partm ental 

System s; Sensitiv ity  and  

U ncertainty A nalyses

2.1 Introduction

One of the commonest types of model used in the study of the transport of 
material in a system is a compartmental model. Even though compartmental 

models are often good approximations to many systems, no compartmental model 

is ever exact [6 6 ]. There are always discrepancies between the actual system and 

its mathematical model. The reasons for these discrepancies, noted by Frank 

[36], are as follows:

• restricted accuracy of the measuring devices or methods,

• the behaviour of any real system changes with time due to some natural, 

economic or man-made effects,

• mathematical models are often simplified or idealised intentionally so that

10
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the mathematical problem can be made simpler or even soluble.

Because of these reasons the results of mathematical syntheses need not necessar­
ily be practicable. The appropriateness of any mathematical model is judged by 

how closely it reproduces and predicts the observed behaviour of the actual sys­
tem. The results produced by the mathematical model may not be satisfactory; 

they may even be very poor. For instance, there may be a considerable amount of 

parameter deviation between the actual system and the mathematical model; the 

solution may be very sensitive to the parameters; or the output may not lie in an 
acceptable bound. Therefore, sensitivity consideration of models and assessment 
of uncertainties become important issues. Since it is often unclear which one of 
the many model parameters is going to change and when this change will occur, it 

is important to develop techniques that enable us anticipate changes that might 

occur in the system due to changes in any model parameter. It is also essential 

to develop techniques that allow us to obtain certain specific bounds on model 
parameters in order to hold the model output within certain bounds. Hence, in 

order to respond to such important demands, sensitivity and uncertainty analysis 
techniques have been developed and are commonly employed.

One of the main objectives of sensitivity and uncertainty analyses is to cope 

with discrepancies between the actual system and its mathematical model, and 

ensure that the model is reliable.
Sensitivity analysis(SA) studies the effects of the variations in model param­

eters on the behaviour of the model. SA is typically applied to initial conditions, 
time-invariant or time-variant coefficients, sampling interval, sampling instant, 

characteristic frequencies, input frequency, temperature effect, delay, etc. [105]. 
As we have noted in Chapter 1 , we use the terminology ‘input factor’ to refer to 

all these characteristic elements (parameters, variables, coefficients, etc.).
Uncertainty Analysis(UA) studies the effect of uncertainties inherent in model 

factors, model structure, scenarios, etc. on the model output and aims to quantify 
its uncertainty with a view to evaluating confidence and prediction ranges.
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Both of these analyses play an important role in the overall study of modelling 

systems.

In this chapter, we next introduce and review the theory of linear, time-invariant 

compartmental models, then give a description of methods used to solve the 

model equations analytically and numerically. Sensitivity theory and calculation 

of the sensitivity matrix as applied to compartmental modelling is explained. 
We then introduce and identify the steps in performing a sampling based SA. 
This is followed by a description of the methodology of numerous SA methods. 

Finally we conclude the chapter with a critical review of the advantages and 

disadvantages of the different approaches.

2.2 Linear, Tim e-Invariant C om partm ental 

System  Theory

For compartmental systems the basic equations can be developed either in terms 
of concentrations or in terms of total amounts in each compartment9,. Such 

quantities are called the state variables of the system and typically denoted by 

a:i, £2 , x n- In Chapter 1 we have introduced the most general form of compart­

mental equations for a system consisting of n compartments as

dx n n
=  qio +  qii ~ q3i -  Qoi >  ̂=  1 : 2 ,..., n. (2 .1 )

j=i j=i

Now, suppose we have a linear compartmental system modelled by an n-compart- 
ment model. Changes in such systems are represented by differential equations 

which describe how the rate of change of one state variable depends on the current 
values of each of the state variables. Hence, the equation for Xi might be written

aSometimes quantity in each compartment considered in terms of concentration rather than 
absolute amount of material. In such cases, the concentration is defined as the amount of 
material in compartment i  at time t  divided by the volume of compartment i, i.e. c; =
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as

d x i _  .

^  j ^2) ■■■) ^n)-

For a system being modelled using a linear compartmental model it is assumed 

that the amount of material transfered between compartments follows linear ki­

netics, so that at any time point the rate at which the material leaves a source(or 
donor) compartment is a linear function of the amount present in the compart­

ment. Hence, the possible flow of material from compartment j  to compartment 

i which is indicated by q^ in Equation (2.1) is defined as

qij = kijXj(t), i =  0 , 1 , n, j  = 1 , 2 ,..., n, j ^ i

where kij is the proportionality parameter which characterizes the rate of transfer 
from compartment j  to compartment i, and we use terminology ‘transfer coeffi­
cient’ to refer to the k ^s .  As the name implies, the kffis are constants, they are 

not time dependent, and when the transfer of material can be described by a fixed 

set of transfer coefficients, the system is said to be time-invariant. Hence, the 

set of n differential equations, which represents an n-compartment model given 
as Equation (2 .1 ) takes the form

dx n n
= Xi(t) -  ^ 2  kij zjM  -  5 3  “  koi Xi W +

J=1 3=13=£i
(2 .2)

0  < t < oo, Xi(t — 0 ) =  x°, z =  l , 2 , ...,n

where ui(t) is used instead of <^0 to conform with the change of notation.

The state variable representation of a linear, time-invariant multicompartment 
model with n  states, m  inputs and p (p < n) outputs in matrix notation is
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described by

x(t) =  Ax(t) +  Bu(t), 

x(£0) =  x°

and the model output vector by

y(£) =  Cx(£) (2.4)

where x is a n-dimensional vector and represents the state of the system with 

the initial state x(£0) =  x°; u is a m-dimensional input vector; A, B and C 
are system matrices. These time-invariant matrices show distinct and particular 

characteristics.

The order n of matrix A is basically the number of compartments, and its 

entries are defined as follows:

o>ij =  k-ij, i 7^ j

Q>ii — ( d- ^0*J=1

Important characteristics of A can be summarised as: (i) its elements are all 

real; (ii) the elements on the main diagonal are negative; (in) the off-diagonal 

elements are positive, and (iv) the column sums are negative.

Matrix B is of dimension n  x m  where (m < n). If the inputs enter com­

partments - ..jib say, the [fry] can take value 1 or 0  subject to the following 

condition:

y > = i v , - ; £ > , = { *  - ; = ; 1 *
i= 1 j - l  I, d , l  7= %i, . . . ,  If).

Matrix C is of dimension p x n with (p < n ) . If the outputs leave from com­

partments jij j 2 , j c say, the [cjj] can take value 1 or 0  subject to the following
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condition:

n

3 = 1

P 1 ) 3 Jl} j  Jc

0 ) 3 7̂  i l j  jc<

Equation 2.3 will be refered to as the state equation and Equation 2.4 as the 
observation equation of the system. Note that Equation 2.4 is simply an algebraic

partmental system, we know that A, B , C matrices are time independent, and 
the state variables x  and the input u are time dependent. For the sake of sim­

plicity in notation, we drop the time element (t) from the state and observation 

equations.

Having defined the state equations of an n-compartment model, we now can 
introduce methods for solving these model equations analytically and numerically.

2.3 A nalytical Solution of S tate E quations

There are various ways to solve the set of n  state equations analytically. The 

book by Jacquez [6 6 ] provides a useful reference to solutions in many books and 

articles (for example, the book by Godfrey [38], the articles by Matis & Wherly 
[82], O’Neill [91], Zierler [110]). We will discuss two of these methods which are 

found to be more appropriate when linear compartmental models are concerned.

2.3.1 C lassical A pproach

The well-known general solution of equation (2.3) is given by

input has been applied. This solution requires the calculation of an exponential

equation not a differential equation. Having defined a linear, time-invariant com-

to

where A is a time variable ranging over the time interval over which the model
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of the parameter matrix which can be a very time consuming task, and also the 

accuracy of this calculation can be questionable because the matrix eAt which is 

called the transition matrix is the sum of the infinite series

A t x a ( A ^)2 ( A t )3eA( =  I +  A t  + +  p p  +  ' ' '  ■

This requires calculation of the powers of A and there is uncertainty about how 

many terms need to be computed for acceptable accuracy [38].

2.3.2 Laplace Transform ation A pproach

Much of the literature on compartmental analysis and especially on linear systems 

uses a particular type of linear transformation called the Laplace transformation 

to solve the model equations [6 6 ], In comparison to the general solution approach, 

the Laplace transformation method provides simpler and more accurate results 

[38].
Taking Laplace transforms on both sides of Equations (2.3) and (2.4), and 

assuming that the system is not empty at time t =  0 , gives

s ' X(s) — x° =  AX(s) +  BU(s) (2.5)

Y(s) =  CX(s) (2.6)

where X, Y  and U  are the Laplace transforms of x, y and u, respectively; s 
is the transformation domain variable; x° represents the state of the system 

immediately before any input enters the system.

Rearranging Equation (2.5) gives

( s I -A )X (s )  -  x °+ B U (s )

X(s) -  (si -  A )_1x° +  (si -  A )_1BU (s). (2.7)
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Taking inverse Laplace transformation results in

x C-'K sI  -  A )_1x°] +  C -^ is I  -  A J^B U W ] (2 .8)

which is then substituted into Equation (2.4) to obtain the model output vector 

y. Alternatively, substituting Equation (2.7) into Equation (2.6) yields

and then the inverse transformation gives the following model output vector:

y  — C x =  A )“ 1x°] +  z:-1 [ ( s l - A ) - 1B U (5)]}. (2.10)

For more complicated models, using an analytical method to solve the state equa­

tions may be impractical and computationally very expensive, it may not even 

be possible. In such situations, numerical methods are prefered over analytical

2.4 N um erical Solution o f S tate Equations

Numerical methods are alternative approaches to solving differential equations 

and with the use of these methods we aim to obtain an accurate approximation 

to the solution of the state equations. The main idea of numerical methods is 

that starting with the initial condition, time is incremented in small steps and 

the changes in model output are calculated for each step. In general, the smaller 
the time increment, the more accurate the approximate solution becomes.

There is a large literature on the numerical solution of differential equations. 
The methods used to solve systems of first-order ordinary differential equations 

from initial conditions (also refered to as ‘first-order initial value problem’ in nu­

merical analysis and differential equations terminology) can be found in every 

extensive numerical analysis and differential equations book, and routines which

Y(s) =  C[(sl — A )_1x° +  (si — A )- i BU(s)] (2.9)

methods.
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can be used to carry out these standard numerical analysis procedures are avail­

able in the open literature. As Zwillinger comments in his book, numerical codes 

are available for solving nearly any type of ordinary differential equations, and 

one should use prepared software packages whenever possible [1 1 1 ].

The particular methods used in this thesis are the fourth-order Runge-Kutta 
method and Adams methods. Runge-Kutta methods are called single-step (or 

one-step) methods since they use only the information from the previous step. 
They have the ability to perform the next step with a different step size and are 

ideal for beginning the solution when only the initial conditions are available. 

Adams Methods, on the other hand, are multi-step methods because they make 

use of some of the information obtained at a few points beyond the initial point 
by utilizing the past values of the function and its derivative to construct an inter­
polating polynomial that approximates the derivative function, and extrapolate 
this into the next interval. Runge-Kutta method of order four which is the most 

popular Runge-Kutta method has been used to solve the state equations of the 

two 8 -compartment global carbon cycle models, and Adams PECE method has 

been used in the computer implementation of the 25-compartment global carbon 

cycle model (see Chapter 3) used in this thesis.

In the following two sections we describe how these two methods are derived.

2.4.1 R u n g e-K u tta  M eth od

Suppose we have a single compartment model with the state variable denoted by 
x } and its initial condition by x° (for a multi-compartment model the solution 

can readily be obtained for each state equation). The mathematical model of the 

system is then given by the first-order differential equation

x(t) =  f ( t ,x ( t) )  with the initial condition x(t0) =  x°. (2 .1 1 )

As with all numerical methods, the Runge-Kutta method also involves finding 

approximate solutions at to» •••> where the difference between any two successive
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t-values is a constant, h\ that is, tn+i ~ t n = h, (n =  0,1, 2,...). The approximate 

solution at tn will be designated by x(tn). Note that once x(tn) is known, Equation 

(2 .1 1 ) can be used to obtain x(tn) as

&{tn) “  /(^n? ^(^n))■

The classic fourth-order Runge-Kutta method (often referred to simply as the 
Runge-Kutta method) is based on a weighted average of values of f ( t tx) at 
different points in the interval tn < t  < in+i. It is given by

=  x(tn) + — (Fi + 2F2 + 2 T 3  +  F 4 ) ,

where

*i =  /(*», s(t»))
E2 — f  {tn + x{tn) + |  h Fi)
F3 = f ( t n + ±h,x(tn) H- \ h F 2)
F4. = f{ tn + /i, #(in) + hFs).

Different orders of Runge-Kutta methods can be found in many differential 

equations and numerical analysis books including [18], [8 6 ] and [111]. FORTRAN 

code for the fourth-order Runge-Kutta algorithm is given in [94].

2.4.2 A dam s M eth od s

Any solution of the initial value differential equation given in Equation (2.11) can 

be written as

T̂i+l £n+l

The main idea of the Adams methods is to approximate this solution by replacing 

f{ t ,x ( t))  with a polynomial interpolating to computed derivative values, /*, and
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then integrating the polynomial. Note that we denote f(t i ,x (ti))  by /* for an 

integer i.
The Adams-Bashforth formula of order c at tn uses a polynomial Pc,n{t) in­

terpolating the computed derivatives at the c preceding points, i.e.

P c , n ) f n + l —j i  j  L  2 , • C.

These derivatives and x(tn) have to be stored from the preceding step. Then, an 

approximation to the solution at tn + 1  is obtained as

x(tn+1 ) =  x(tn) +  J  PC)Tl{t) dt. (2 .1 2 )
tn

In more general terms, an approximation can be obtained for all t near tn using

t
x(t) «  rc(tn) + J  Pc,n{t) dt.

Several ways of representing the interpolating polynomial, Pc,n(£), given in the 
above equations exist. Here we only give the Lagrangian form, and the other 

forms of Pc,n(t) (for example, divided difference form) can be found in Ref. [1 0 1 ]. 

Lagrange’s form of the interpolating polynomial is as follows

c

Pc.tiOO =  fn+l-i
1

where

hit) = n  /  ~  , < = 1 , 2  c.
j= i L i + l - i  T 'n + l- j
ĵ ii
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Substituting into Equation (2.12) yields the following Adams-Bashforth formula

tn+1

^ ( ^ n + l )  — *e(A i) T ^  ^  f n + l —i I d t .
i= 1 /

&JT,

which is usually written as

c

2 ( ^ + 1 ) =  z ( t n ) +  f n + 1 - i ,  (2-13)
1

where h is a constant step size and

tn+l
a c,i -  -  J  k ( t ) d t

A variation on the derivation of the Adams-Bashforth formulae gives another 
set of formulae called the Adams-Moulton formulae. These formulae of order c 

at tn use a polynomial P^n(t) that also interpolates to c derivative values given 

below:

Pc,n( fn+1— j )  f n + l —j i  j  B  2 ,  . . . ,  C 1 ,

C^+l) =  f{^n+l}x {tn+l))- 

Hence, the approximate solution is given by

x ( t n + 1) =  x ( t n) + J  P c >n( t )  d t .  (2.14)

By following the same procedure as in the Adams-Bashforth method, one can 

find the Lagrangian form of the Adams-Moulton equation as

c—1

*E (^ n+l) =  %(fn)  4 “ ^  ^   ̂ ^c,i f n + l —i  (2.15)
i= 0
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where

7̂1 + 1

/ dt
•n

with

j = 0 t n + l - j

As noted by Boyce & DiPrima [5] the Adams-Bashforth formulae are explicit 

and faster, and the Adams-Moulton formulae on the other hand are more accurate 

but implicit and slower. To achieve both simplicity and accuracy, numerical

Corrector Method. Once x(tn), x(tn- i ) , ... are known we can calculate / n, / n_ i , ..., 
and then use the Adams-Bashforth (predictor) formula (2.13) to obtain a value 

for #(£n+i). Then / n+i is computed and using the Adams-Moulton (corrector) 

formula (2.15) an improved value of x(tn+i) is obtained. This predictor-corrector 

procedure is called Adams PECE method. The acronym P E C E  is derived from 

the description of how the computation is done. This is described above but in 

summary: we Predict x(tn+1), Evaluate f n+i, Correct to get £(£n+i)) and Evaluate 
f n + 1 to complete the step.

The book by Shampine & Gordon [101] completely explain Adams methods 

(see Ch. 3), and they also provide computer codes (written in FORTRAN) for 

these methods.

Before proceeding further, in the context of this thesis, the matrix C of the 

observation equations (see Equation (2.4)) is considered to be the p x n  dimension 
identity matrix I. In other words, the model output from the ith  compartment is 

taken to be the amount of material present in that compartment {yi =  Xi) . Taking 

that into account, in the following sections the notation x  (n vector of x^s) is 

dropped and the notation y (n  vector of yi s) used to denote both compartmental

analysts have combined the two types of formulae in the so-called Predictor-
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contents and compartmental outputs, and refered to simply as the vector of model 

outputs or (in statistical terminology) the vector of response variables.

2.5 Sensitiv ity  A nalysis

The basic idea of sensitivity is to calculate the change in the system behavior due 
to the factor variations.

As suggested by Saltelli [97] and Campolongo et al [14] sensitivity analysis 

techniques may be grouped into the following three main categories:

Local SA m eth o d s which concentrate on the local impact of the model input 

factors on the model response;

G lobal S A m ethods which concentrate mainly on apportioning the model out­

put uncertainty to the uncertainty in the input factors; and

Screening m ethods which are used to identify the most influential factors on 

the model output.

In the following sections we describe the methodology of various SA tech­

niques, but the above classification is further extended for the purpose of giving 

an ordered presentation of the techniques. First, graphical methods for sensitiv­

ity and uncertainty analysis are presented. Second, a differential analysis based 

method and a number of numerical methods for the calculation of local sensitivi­

ties are described. Then, before including the methodology of global SA methods 
some fundamental elements of these methods, design of the computer experiment 

for instance, is introduced. Finally, the factor screening procedure is explained.

2.5.1 G raphical S en sitiv ity  and U n certa in ty  M eth od s

A literature search had recently been done by Cooke & van Noortwijk [23] which 

shows very little theoretical development for graphical methods in sensitivity and 

uncertainty analysis. There exist reference books in the literature, for example
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[20] and [28], which study visualizing univariate, and multivariate data. As Cooke 
& van Noortwijk mention, when graphical methods are used in sensitivity and 
uncertainty analysis the focus is not visualizing data as it is in the general sense, 
but rather visualization to support SA and UA.

A number of graphical tools which may have an application in sensitivity and 

uncertainty analysis techniques have been presented below.

2.5.1.1 Scatter P lots

A useful non-quantitative screening technique is a sequence of scatterplots in 

which each response variable (model prediction) appear on the vertical axis and 

each explanatory variable (model input factor) appear in turn on the horizontal 

axis. In SA and UA, scatterplots of the input-output relationships are used as 

a guide to better understanding of the model behaviour. If the relationship is 

strong this indicates that the considered model input has significant effect on the 

model output.

A scatterplot matrix (often called matrix plot) can also be produced. This 
type of plot displays the main features of the 2D relationships between each pair 

of variables without reference to the other variables. However as the number of 

variables increases, it becomes harder to interpret the set of plots and obtain an 

overall sense of the data configuration.
There is no doubt that generating scatterplots is the simplest SA method. 

One disadvantage of this technique is that it requires drawing and inspecting a 
large number of plots, at least one plot for each model input factor. Considering 

that we may need to analyse several model outputs which may also be time 

dependent, then the number of plots we need to generate becomes quite large.

2.5.1.2 Star P lots

Star plots are used for representing multivariate data in two dimensions. Star 
representations of the data can be obtained by utilising the ‘stars’ function of S- 

PLUS programme package. Stars represent the several measurements of a case on
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equally spaced radii extending from the centre of a circle. Then the measurements 

are linked to form a star. The values of the measurements occupy a circle, and the 

fact that the starting points correspond to the end points facilitates comparison 
between cases. We use star plots to visualize different sensitivity measurements 

of the model response(s) to the uncertainties about the model inputs. Figure 2.1 

shows an example of a single star plot.

However if the number of cases presented in a star plot is very large, star 

representations may not provide a clear illustration.

Figure 2.1. An example of a star plot showing Republican votes for New York 
between 1856 and 1976. (This plot is produced using the dataset votes.repub 
available in S-PLUS).

2.5.1.3 P ie Charts

In a pie chart, each of the values in the range is represented by a slice of the pie. 
A pie chart is used to compare parts to the whole. The wedges of the pie are 

labeled and often coloured. For single diagrams the use of pie charts is desirable, 

but when the comparison involves different times or scenarios, the change in size 

of the pie charts (radius proportional to the square root of total amount) may 
not be easily comprehended. In such cases, bar charts may be more preferable 
since the change in the length of the bar charts, which is directly proportional to 

total amount, may be more easily visualized.
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2.5.1.4 Other Graphical M ethods

There are other graphical techniques, such as tornado graphs, radar plots and 

cobweb plots used for uncertainty and sensitivity analysis, which are more com­
plex and less familiar than other techniques discussed above. They are described 
in detail by Cooke & van Noortwijk in Part 11-11 of Ref. [98]. Here we give a 

brief description of these methods and refer the interested reader to Ref. [98].

Tornado graphs are basically bar graphs of any global sensitivity measures (for 

example, rank correlation coefficients) arranged in decreasing order of absolute 

value.
Radar plots are similar to star plots. Each variable is represented by a ray in 

a radar plot, it shows x-axis values as imaginary lines radiating from a common 

centre, like ‘spokes of a wheel5, y-axis values are plotted on each of the spokes. 

The variable with the highest sensitivity measure is plotted furthest from the 
centre and the variable with the lowest sensitivity measure is plotted closest to 
the centre. Radar graphs can highlight trends, depending on the shapes drawn 

by the plot lines.
Cobweb plots are used in identifying local probabilistically important factors. 

These plots give a picture of the joint distribution of the percentiles of up to 20 
variables. Each parallel vertical line in a cobweb plot represent one variable, and 
the possible values of these variables are given on these lines. Then each set of 
values are marked on the vertical lines and connected by a jagged line.

Other than the graphical methods described above, histograms, bar charts, dot 

plots are also used for sensitivity and uncertainty analysis.

2.5.2 Local SA  M eth od s

Local SA methods focus on input factors which are varied within a small interval 

around a specified value. Local sensitivities provide the slope of the model output 

in the input space for a given set of factors [107]. Local sensitivities are exactly 
defined, and they depend neither on chosen distributions for input factors nor
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any choice of a calculation method.
The evaluation of the sensitivity function and the sensitivity matrix (this 

method is often called ‘differential analysis’), and the use of numerical methods 
for the calculation of local sensitivities are discussed in the following subsections. 

A recent review written by Turanyi & Rabitz [107] discusses both analytical and 

numerical local SA methods and their applications. They also provide further 

references to local methods. In this review, they point out several advantages 
and disadvantages of local sensitivities which include:

- when dealing with large models, local sensitivities can provide useful infor­

mation on the performance of the model near the nominal values of model 

factors, but calculation of global sensitivities, which are based on studying 

the model in a wide range of factors, is computationally prohibitive;

- calculation of local sensitivities are much faster than that of global sensi­

tivities;

- when the uncertainty about the model factors is very high, local sensitivities 
are totally incapable of providing information on the effect of significant 

factor changes, i.e. changing factors within a wide uncertainty range can 

give a qualitatively different model and this may result in a completely 

different sensitivity pattern; and

- local sensitivities are really local, and the information they provide is related 

to a single point in the input space.

2.5.2.1 The Sensitivity Function /  M atrix

The sensitivity function is one of the main concepts in sensitivity theory. If the 
sensitivity function is known, then it is simple to calculate the change in model 

behaviour with respect to a given model factor. The sensitivity function is ob­

tained by solving differential equation (2.3), evaluating the algebraic observation
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function (2.4) and taking the partial derivative of the solution with respect to 

the factor which is then evaluated at a given time and condition.

Consider a single compartment, multi-factor model whose output function 

is y = y(t]9). Here 6 is the k-vector of model factors, and associated with a 

reference value (often called nominal value) 0°, and the corresponding output 
function has a nominal value y° = y(t\ 9°) which is often refered to as ‘base-case’ 
or ‘base-case scenario \ Now, suppose that 9 changes from 9° to 0O+ A 0. Using 

sensitivity analysis we aim to find out what happens to y when 9° -» 0°+A 0. 

The first derivative of y with respect to the factor 0*, dyjdOi, provides a measure 

of sensitivity, that is, it is a local sensitivity index measuring the effect on y of 

perturbing $i around nominal value 9°. We can expand y(i;0°+A 0) around 0° 
by a Taylor series expansion as follows:

y ~ v° + X) J§7 0OM; + 1 X) X) 0O A ®3 —  • (2-16)
Z  J z

The expression in Equation (2.16) is typically truncated after the first or second 
order derivatives. In general, the first and second order derivatives are of more 

interest to the system or process investigators than any other higher order deriva­

tives [62]. The partial derivatives dy/dBi are called first-order local sensitivities, 

and d^j/dQj dOi second-order local sensitivities.
Now, suppose we have a multi-output, multi-input model which is represented 

by the following system of time-dependent ordinary differential equations

J =  (2-17)

where y  may be thought of as an n-vector (ŷ ) and 0 as a vector of k model 
input factors. The solutions of Equation (2.17) may be thought of as functions 

of two variables, t  and 0; that is, y(t, 0). The initial conditions are also treated 
henceforth as factors, 0, in y(t, 0).

Having defined the model equations, we now want to calculate the first-order 
local sensitivity of the ith  component of the model response y, y^ in terms of the
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rth  component of the model factor 6 , 6r. dyi/dOr gives the sensitivity function 

of yi in terms of 9r which is then evaluated at a given nominal condition 0° and 

at a given time t.

In the case where there are n model responses y=[2/i,y 2 , ■■■,yn]T and k factors 
9=[9i , 02, ...■)9f:]T, the first-order local sensitivities form the n  x k dimensional 

sensitivity matrix S as given below:

S =

dyi §yi 
Q6\ d&2

dyn dyn 
d0\ 902

dyi
dek

®Vn
dek

(2.18)

Each column of matrix S is called the vector-sensitivity function of y  with respect 

to 0J, (.7 =  1,
Differential analysis techniques have been widely used in uncertainty and sen­

sitivity analyses and introductory theory can be found in Refs. [34], [36], [107], 

[105]. Examples of the use of differential sensitivity analysis are given by Iman h  

Helton [63], and Hamby [46], As noted by Iman & Helton [63] the Taylor series 
approximation given in Equation (2.16) is the starting point for uncertainty and 

sensitivity analysis techniques based on differentiation. The first step in such an 

analysis is generating the partial derivatives required in the series. When the 

model function given in Equation (2.16) is a relatively simple function it may 

be possible to generate the required derivatives analytically or by simple differ­

encing schemes, but more complicated models often require complex numerical 

procedures.

2.5.2.2 N um erical M ethods for C alculating  Local Sensitiv ities

When the analytical solution of the model equations given in Equation (2.17) is 

known, then sensitivity functions may easily be found by direct differentiation. In 

some cases, however, it is easier to solve the sensitivity equations directly by using 

numerical methods, such as indirect method, direct method, the green function
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method, etc.. Here we give a brief discription of these three most commonly 

employed methods.

In d irec t M eth o d  also called brute force method or finite difference approxima­
tion is the simplest numerical method to calculate local sensitivities. It is 

based on changing one input factor at a time and rerunning the model code 

with the new set of input factors. Then, the elements of the sensitivity 

matrix are approximated by the following equation:

d y  y ( 9i  +  A 0i)  -  y (%) ,■ , h
W s -------------a ^  3 ~ 1........k

where A0j denotes the change in factor 0j. For the calculation of local

sensitivities using this method k +  X model runs are required, but if central 

differences are used then the number of simulations required is 2k. The 
main advantage of this method is that it is easy to implement and no 

extensive modification to the original model code is needed. On the other 

hand, compared to more advanced methods, this method is slower and less 

accurate [107].

D irec t M eth o d  In the direct method, in addition to the system of n differential 

equations, for each factor n additional differential equations which describe 

the sensitivity of the original system with respect to the chosen factor are 

defined. This second set of equations called sensitivity differential equations 

are obtained by differentiating both sides of Equation (2.17) with respect 

to a chosen factor, say 9r:

± d L = d ^  3 d y
dt d6r 30r d6r { ' }

or in matrix notation

S = F + J S

where F is a vector of length n whose components are dfi/dOr , and J  is
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an n  x n matrix recognized as Jacobian and its elements are dfi/dyi with 

i — 1, 2 , n; I = 1, 2, ...,n.

Direct methods are based on numerical solution of Equation (2.19) which 
requires knowledge of the values of matrices F  and J at each step of the 

solution. In order to evaluate these values, we have to know the actual val­
ues of system variables. This can be achieved by a simultaneous solution of 

Equation (2.17). Turanyi & Rabitz [107] note that in the early realizations 

of the direct method, the system of original model equations and the sys­

tem of sensitivity equations, i.e. Equations (2.17) and (2.19), were solved 
independently but simultaneously and the solution of Equation (2.17) was 
used to set up Equation (2.19). They also note that direct methods based 

on this algorithm were relatively slow.

Another algorithm called decoupled direct method (DDM'), which is based 

on a special relation between Equations (2.17) and (2.19) that allows a 
numerical shortcut, was first introduced by Dunker [29]. Dunker shows 
that Equation (2.17) and Equation (2.19) have the same Jacobian matrix 

and therefore the spectrum of time steps on which the elements of y change 

will be the same as the spectrum of time steps on which the elements of 

y  change. In Dunker’s method the matrix J  is evaluated only once, and 
then at each time-step Equation (2.17) is solved and then Equation (2.19) 
is solved with all factors one after the other. Because the evaluation of 
the Jacobian matrix, which is the most time consuming part of solution, is 

reduced considerably with this method, computational cost for calculating 

sensitivities using the DDM method is relatively low. According to Dunker, 

the DDM  method is a very efficient form of direct method especially for 
models based on complicated equations [29].

G reen ’s F unction  M eth o d  In the Green’s function method, we first differen­

tiate Equation (2.17) with respect to the initial values y° which gives

l K ( i , i i )  =  J(i)K(f,f1), (2.20)
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where t and t\ are the observation and perturbation times, respectively, 
and K  is the initial value sensitivity matrix with K (£, £1 ) =  dci(t)/ddj(ti) 

and K (ti,ti)  =  I, t > A. The linear non-homogeneous system of differen­

tial equations given in Equation (2.19) can be solved by first determining 

the homogeneous part given in Equation (2.20) and then calculating the 

following particular solution:

*2
S(ti, t2) =  J  K (h, s) F(s) ds. (2.21)

ii

Here K  is called the Green’s function (or kernel) , and the method based on 

the solution of Equation (2.21) is known as Green’s function method [107]. 

Dougherty et al. have applied the Green’s function method to atmospheric 

chemical reaction models and compared this method with the direct method 
for the same type of models. They concluded that Green’s function method 

should be more efficient than the direct method if the number of factors of 

interest is greater than the number of variables [25].

When the model under investigation is a linear and relatively simple model, 

local sensitivities can be obtained easily, and can provide information about the 

effect of changes in the input factors on the model output (s). On the other hand, 

if the model is known to be non-linear, and the input factors are affected by large 

uncertainties, the appropriateness of local methods is questionable, and in such 

cases, as Campolongo et al. [14] suggest, a global method should be used instead. 

Global SA methods are discussed in Section 2.5.3. As complex large models are 
increasingly applied for problem solving in many areas which include atmospheric 

science, engineering, biological systems, the need for global sensitivity analysis 

methods are becoming increasingly apparent.
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2.5.3 Sam pling based G lobal SA M eth od s

The procedures followed for global SA of large computational models which are 
described in the following sections may be summarized as a two-step procedures; 

the generation or sampling of input factor values, and the statistical analysis of 

the resulting output(s).
The SA and UA methods based on sampling are widely used in the analysis of 

large complex computational models, and they involve generation and exploration 

of mappings from model inputs to model predictions. In these sampling-based 

SA and UA methods after the values for input factors are obtained using a chosen 

sampling scheme, the model is run for a specified number of times A, and one 

or more output variables for each run are recorded. This input-output process is 

illustrated in Figure 2.2 for a hypothetical 3-inputs, 2-outputs model.

Following this process, appropriate statistical analyses are performed on the 

output variables as dependent variables and the input factors as independent 
variables to assess the input-output relationship and the effect of the uncertainties 

in inputs on the output variables.

Output Y\
MODEL

Output Y2 

Input X 3

Figure 2.2. A hypothetical model with three input factors (A1? A2, A3) and two 
output variables (Ti, Y2).
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These processes summarized above are broken into more steps in the following 
section to give a clearer and more detailed explanation of these essential steps.

2.5 .4  S teps in P erform ing S en sitiv ity  and U ncerta in ty  

A nalyses

The basic steps in conducting a SA process can be identified as follows:

1. defining the model and determining which of the inputs and outputs of 
the model need to be included in the sensitivity analysis, in other words 

designing the experiment,

2. assigning probability density functions and variability ranges to each of the 
identified factors,

3. generating an input matrix using an appropriate sampling technique,

4. evaluating the model and obtaining the model response(s), and

5. analysing the relationship between the induced output distribution and the 
input sets to assess the effect and relative importance of each input factor 

on the output (s) of the model.

In Ref. [98] Saltelli provides a diagram to illustrate these steps (see Figure 1.2 

in given reference).

2.5.4.1 Designing the Computer Experiment

As the first step, the model investigator defines the model, its response (model 
output(s)) and explanatory (input factors) variables. This step also involves de­

ciding which factors are to be used in the analysis and which output variable(s) 
are to be considered. The selection of inputs at which to carry out a physical 

experiment or to run a computer implemented model code is a design of exper­

iment problem. According to Campolongo & Saltelli [13], design of experiment 

can be considered as one of the forefathers of sensitivity analysis.
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In a computer experiment, input(s) are obtained by a sampling procedure 

which can be done either systematically (factorial design, fractional factorial de­

sign) or randomly (Monte Carlo simulation). In this section we give general de­

scriptions of factorial and fractional factorial designs, and three types of random 

sampling are described in Section 2.5.4.3.
Factorial design can be used to obtain a given number of samples for each 

input factor and running the model code for all combinations of the samples. 

The model output obtained in this fashion is then used to estimate the effects of 

each factor on the model response. When input factors are considered at several 

values, the number of factors play an important role. If we want to investigate 

k factors, and factor i{i =  1,2,...,&) has ii levels, then the number of possible 

combinations is £i x l 2 x ... x -4- Even for a small number of factors this number 
of combinations can be quite high. For instance, if we have only k =10 factors 
and each factor has a minimum number of levels, i.e. ti — 2 (high and low) 

then the number of combinations we have is 210 =  1024! As the number of input 

factors increases, the number of factor combinations rapidly increases. In such 

cases, fractional factorial design proves to be a useful alternative.

Fractional factorial design is based on the idea of assuming some of the higher 
order interactions are unimportant. Again, considering the simplest case, two 

levels for each of the k factors, a fractional factorial design involves running the 

model only a fraction (1/2 to some power s) of the total possible runs 2 k~s.

2.5.4.2 Assigning p d f ’s to  each input factor

In order to find the effect of a factor on the model output, this factor has to 
be varied from a specified probability distribution, or considered at several levels 

within a known range.

As Haimes & Lambert [42] point out the question ‘How can we specify, gener­

ate, and use more appropriate probability distributions for model input?’ still re­
mains important for the scientific community especially from the risk assessment 

point of view where examinations of health and environmental effects, economic
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impacts, energy impacts, technical feasibility etc. are concerned.
In an article, Hoffman & Kaplan [55] suggest how probability assessments can 

best be representations of the full state of knowledge of uncertain inputs. They 
provide three approaches for obtaining distributions for uncertain inputs, and the 

classification of these methods is based on the availability of the resources. These 

three approaches and their descriptions given by the authors are as follows:

• Classical statistical method. This is appropriate if there is a large data set 
obtained using an appropriate sampling scheme and the data are sufficiently 
relevant for addressing the assessment endpoint. Then, using statistical 

methods, empirical distributions are obtained. With this method, two an­

alysts using the same data sets and the same statistical techniques should 

produce the same results.

•  Analyst judgement using all sources of information. This approach is taken 

when there is no data available or data exist but it is only partially rel­
evant to the assessment endpoint. This is the method most commonly 

employed. In this case, summarizing the state of knowledge and specifying 

the subjective probability distribution depend on the analyst and his fellow 

reviewers. Because individual interpretation of the evidence is involved in 

this approach, it is very likely that two different analysts given the same 

assessment will describe the present knowledge differently and produce two 

different probability distributions.

• Formal expert elicitation. In this approach the analyst is required to iden­

tify the individuals known as “experts” in the area of concern, and bring 

these experts together. After the analyst describes the assessment prob­

lem to the experts, and provides them with all relevant information and 

data, the experts are asked to formalize and document their rationales. 
The experts are then interviewed and asked to defend their rationales be­
fore committing any specific probability distribution. The experts specify 

their own subjective probability distributions by estimating quantiles. This
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method is considered to be a strong approach, but time and finance-wise it 
can be very expensive. With this approach it is also likely to get different 

answers from two or more independent analysts or two or more different 

expert groups involved in the assessment.

Because of the lack of information about the distributions followed by the model 
input factors, in many works related to the sensitivity analysis experiments in­

put factors are assumed to be uniformly/loguniformly distributed. For example, 

Campolongo & Saltelli consider a uniform distribution for all 32 model input 

factors of a well known model for the production of a key sulphur bearing com­

pound from algal biota [12]. Another example, in the application of several SA 

techniques to the MACCS model of the early health effect associated with a se­

vere accident at a nuclear power station, Helton et al [52] assign uniform and 

loguniform distributions to the 34 imprecisely known input factors. White [108] 
suggests that in the case of minimum knowledge a uniform distribution over the 
maximum conceivable range can be considered for the input factors. Campolongo 

et al [15] also note that when the knowledge of the input factors is quite poor, 

assuming a uniform distribution for each input factor is acceptable.

As for the ranges of variability, if no such information exists in the literature, 
then different criteria are adopted to obtain variability ranges for the model 

factors. For instance, Campolongo & Saltelli [12] use =f20% of the nominal value 
to derive a range of variability for some of the model input factors they consider in 

their work. In the same article they also mention another criterion for calculating 

variability ranges, which is (l/2iCo; 2K 0), where K q is described as the nominal 

value of the input factor. In this study, the former criterion is used in the analysis 
where no reference values for the variability ranges are available. In another 

article by Reed et al the nominal values of the 15 model parameters are taken as 

the mean values, and by assuming 10% coefficient of variation about those mean 

values they calculated the standard deviations for the parameters [95],
Different distributional assumptions on the model input factors may have a 

(significant) effect on the distribution of the model predictions, and therefore on



CHAPTER 2. FUNDAMENTAL ASPECTS 38

the outcomes of the uncertainty and sensitivity analyses. The effect of changing 

the distribution of the input factors on the model predictions will be discussed 

in Chapter 5.

After assigning a range and an appropriate probability distribution to each input 
factor we then need to generate a sample. In the following section three ways of 

producing input samples are described.

2.5.4.3 Generating the design matrix

In the sensitivity and uncertainty analyses framework, simple random sampling, 

Latin hypercube sampling and importance sampling appear to be the most com­
monly used sampling techniques used to generate the input matrix. The purpose 

of all sampling techniques is the same: to obtain a better coverage of the sample 

space of the input factors. Comparison of these sampling methods, and their

effect on the results have been discussed by Helton & Davis in [49].

2.5.4.3.1 Simple Random Sampling

Simple random sampling (SRS), sometimes also called random sampling, is the 

simplest and most widely used random sampling method. In SRS each member of 

the population has an equal probability of being included in the sample, and each 

selection is independent of the previous drawings. By applying this procedure to 

each of the k input factors the following random sample input matrix is obtained:

* 1 2  * 1* "

*22 ‘ ‘ ■ *2k

* / V 2  1 * ' *JV fc

where N  is the sample size and k is the number of input factors.

This sampling technique gives unbiased estimates of the means, variances, and

*

* n

* 2 1

* N1
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distribution functions of the output variables. Therefore, whenever the computer 
resources are not limited, random sampling is the best technique to use [56].

For notational convenience, we shall use

X  = [Xl tX 2,. . . ,Xk] 

to represent the model input factors under consideration, and 

X i = [Xi u X i2l...iX ik], i = 1,2,..., N  

to represent the observations.

2.5.4.3.2 Im portance Sampling

Unlike simple random sampling, importance sampling can assure that sampled 
values do not fall very close together in the sample space. In importance sampling 
the sample space, say is divided into a number of subregions (often called 

strata) flj, j  — 1,2, ...,l which typically have unequal probabilities, and assure 

inclusion of specific regions of sample space in the analysis. After dividing the 

sample space into strata, we then sample lj values for X  from strata Qj using 

random sampling. Hence, the following vectors form a sample obtained using 

importance sampling

i
X<i [AA, Xi2 3 ■ ■ ■ j AA], i 1, 2 , . . . ,  ^   ̂ l j .

3= 1

If one value is sampled from each strata, then the sample has the form 

X i  —  [ X i i ,  Xi2, ..., A^], i  — 1,2,..., N.

In importance sampling, the partition of the sample space is based on how 
important the X ’s contained in each set are to the final result of the analysis. 

This sampling technique is often used to assure the inclusion in an analysis of
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AT’s that have high consequences but low probabilities, that is the probabilities 

p{Llj) are small for the Dj which contain such X ’s. Helton & Davis give several 

examples of importance sampling in [49]. These examples consider both equal 

and unequal strata probabilities.

2.5.4.3.3 Latin H ypercube Sampling

The Latin Hypercube Sampling (LHS) technique, which was originally introduced 

in 1979 by McKay et al [84], has the objective of space covering sampling, and 

is sought in order to reduce the number of model runs N.
Iman & Shortencarier [65] and Stein [102] define LHS as a particular case of 

stratified sampling. In stratified sampling, the aim is to obtain a better coverage 

of the sample space by dividing the sample space into various subintervals such 
that units within each subinterval are as homogeneous as possible. Thus the 

sample space of the input vector X  =  [ATi, X 2 , . . . ,  Wt] is divided into I non­

overlapping strata Oi, H2j - . . ,  D-i of sizes Ah, N 2, . . . ,  Np such that N  =
If I =  1, the result is a simple random sample over the entire sample space.

In LHS, to generate a sample of size N  from k input factors X i, X 2 , . . . ,  A&, 

first the range of each uncertain input factor is divided into N  non-overlapping 
intervals on the basis of equal marginal probability 1/N. Then one value from 
each interval is selected at random with respect to the probability density in the 

interval. The N  values obtained for the first variable X i  are paired with the 

N  values of X 2 randomly. Then, these N  pairs are randomly combined with 

the N  values of X 3 to form N  triplets, and so on, until finally N  k—tuplets are 

obtained. Thus, for a given sample size(Ar) and number of input factors(ft), there 
is (N \)*-1 possible interval combinations for a Latin hypercube sample. With this 

method, we gain the advantage of making sure that all portions of each factor’s 

distribution is represented in the sample. An example of a LHS with N  = 5 

sample size, and k = 2 inputs X  = [X i ,X 2] with a known probability density 
function is given in Figure 2.3. The left-hand side of the figure shows a random 
pairing of each element of X \  and X 2 , and the corresponding output variable,
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whereas the right-hand side of the figure shows the cartesian coordinates of the 

randomly matched pairs. Note that in the cartesian coordinates presentation 

which consists of N k = 52 =  25 cells there is only one observation in each row 

and column.
As in SRS, introducing unwanted pairwise correlations between some or all 

of the input factors is also possible in LHS because of the random pairing of 

intervals in the process. This is more likely to occur if the sample size is small. 

A method introduced by Iman & Conover [61] can be used to avoid unwanted 
correlations between factors, it can also be used to induce known correlations 
between input variables. This method often referred to as ‘restricted pairing 

technique’ is based on the rank correlation structure of the input variables, and 

its desirable properties are: it is distribution free (i.e. it may be used on all 

types of input distribution functions); is simple to use, does not require unusual 

mathematical techniques; it can be applied to any sampling technique for which
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correlation of input variables is a meaningful concept, while preserving intention 
of the sampling technique; and it preserves the exact marginal distributions. This 

restricted pairing technique is discussed at length in [61], and examples are also 

given.
Iman & Conover’s restricted pairing technique is implemented in the computer 

program written by Iman &; Shortencarier to generate Latin hypercube and ran­

dom samples (see [65]). Using this program one can generate random samples, 
random samples with restricted pairing, simple LHS, and LHS with restricted 

pairing.
If the sample size is small, SRS may produce clusters of observations anywhere 

in the range of the input factors but LHS produces observations which are spread 
over the entire range of each input factor. More detailed description of these two 

techniques with their properties may also be found in [48], [60], [65] and [84],
LHS has been proven to work well to considerably reduce the computer cost 

required to obtain a complete analysis of the model. LHS design appears as the 

most promising design as far as sensitivity analysis is concerned [63], [100]. A 

discussion on the advantages of LHS, along with a comparison of other sensitivity 

and uncertainty analysis methods can be found in [63]. A comparison of SRS and 

LHS techniques used for selecting values of input factors in the analysis of model 
output variables is presented in Chapter 5.

In cases where a large number of factors are involved, based on the computational 

cost we may decide to concentrate on the most important factors that control 

most of the output variability. To determine which factors among the many 

(potentially) important factors really are important ‘screening methods’ presented 
in the following section are used.

2.5.5 Screen ing M eth od s

The term ‘screening design’ is used to indicate any preliminary activity which 

aims to find out which of the model input factors are important [11]. Screening
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designs are organised to deal with models containing hundreds of input factors. 

Therefore, they should be economical. They provide information about the sen­
sitivity of the model to its inputs, while keeping computational cost of the exper­
iment low. Sensitivities obtained from screening methods are qualitative, that 

is, screening methods rank the input factors in order of importance but do not 

quantify how much a given factor is more important than another one.
Screening methods are used for physical experiments as well as computer ex­

periments. In this thesis, we focus on screening methods developed in the context 

of computer experiments which include standard One-at-A-Time (OAT) design 

and Morris’s OAT design. Cotter’s design, Andres’s iterated fractional factorial 

design and Bettonvil’s sequential bifurcation design are also among the screening 
techniques used in SA. Detailed description of these methods are presented by 

Campolongo & Kleijnen in Ref. [11]. Here, we discuss standard OAT which is 

computationally not expensive but provides only local information, and Morris 

OAT design which is more expensive but the information it provides is considered 

global.

2.5.5.1 O ne-at-A-Tim e Designs

In a standard OAT (sometimes also called elementary OAT) design, each input 

factor is changed one at a time and SA is performed to quantify the change in the 

model output. The literature value of each factor (often called ‘nominal value’), 
and a specified range in which the nominal value is normally between the two 
extremes are used in a standard OAT approach. This standard strategy is not 

the only one followed when an OAT design is conducted. Campolongo & Kleijnen 

list the five categories of OAT designs given by Daniel (1973), and they are as 

follows:

• Standard OAT designs where each factor is varied from a standard condi­

tion,

•  Strict OAT designs where each factor is varied from the condition of the
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last preceding experimental run,

• Paired OAT designs where two observations are produced and one simple 

comparison is made at a time,

• Free OAT designs where each new run is made under new conditions,

• Curved OAT designs in which a subset of results is produced by varying 

only one easy-to-vary factor (see [11]).

Since this type of analysis only addresses sensitivity relative to the point estimates 

chosen it is considered as a ‘local’ sensitivity experiment [13], [45].

According to Campolongo & Saltelli [13], neither an elementary OAT nor 

a derivative based SA (discussed in Section 2.5.2) should be used to determine 

which input factors are more influential on the model output(s) than others, 
unless the model is known to be linear or the range of variation is small. Another 

OAT design, introduced by Max D. Morris in 1991, has advantages over standard 
OAT design and is described below. This design is recommended for use instead 

of standard OAT design by Campolongo & Saltelli (see [13]).

2.5.5.2 Morris Design

This method is basically an individually randomized one-factor-at-a-time design 
in the input factors. Using this method, the effect of changing the value of each 

factor is evaluated in turn. The guiding philosophy of this method proposed by 

Morris (see [87]), is that a major role of a preliminary experiment is to determine, 

within reasonable uncertainty, which model input factors may be considered to 

have effects which are (a) negligible, (6) linear and additive, (c) nonlinear or in­

volved in interactions with other inputs. Since Morris’s experiment covers the 
entire input space over which the factors may vary (unlike a local experiment 

in which the factors vary only around their nominal values), Campolongo & Klei­

jnen [11] consider this design as a ‘global’sensitivity experiment, and considering 

Daniel’s terminology, they categorize the Morris design as a strict OAT design.
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The two main advantages that this design provides are: (z) it is ‘economic in 
terms of number of model evaluations needed; (ii) no simplifying assumptions 

regarding the form of the model are needed [87].

Morris estimated the main effect of a factor by first evaluating a number, 

say r(r 6 {4, . . . ,  10}), of local measures, at different points x 1}. . .  ,x r in the 
experimental region, and then taking their average. By taking the average he 

reduces the dependence on the specific point that a local experiment has. For 
a given number of levels, say p, for each of the k factors, the input space Q is 

a ^-dimensional p-level grid, where each component of the (1 x /c)-dimensional 

input vector x, x^  may take values in the set {0, l/(p - l) , 2/(p-l), . . .  , 1}. In 

practical applications, the values sampled from are first scaled to a suitable 

input vector for the model as follows

Xi —  Ai  - } -  X{(Ci Aij

where Ai and C* are the extreme values of the variability range of x^  For a given 

value of x, Morris defines the elementary effect of the ith  input as

di(x) = [y{xu x 2j. -. +  A ,x i+i , . . . t x k) -  y(x)]/A (2.22)

where x G such that the perturbed point (x+A) is still in O and A is a 

predetermined multiple of l /(p - l) .  A finite distribution of p(k“^\p  — A (p — 1)] 

elementary effects for the zth input factor, which is denoted by F), is estimated 

by sampling x from Q,. Analysis of the distribution F) through its mean fj, and 

standard deviation a gives us useful information regarding the relative importance 
of the ith input factor. A large mean value indicates a factor with a high overall 

influence on the output; a high standard deviation indicates an input factor which 
is interacting with other factors or whose effect is non-linear [12]. In the simplest 

case, the total computational cost for obtaining a random sample of r values 

from distribution F) is n =  2rk computer runs, that is, each elementary effect 

requires two model runs: one at the selected values aq, . . . ,  a;*,; and one after Xi
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is increased by the quantity A, aq, . . . ,  Xi-1 , Xi +  A, aq+i,. . . , x^.
Morris defines the economy of a design as the number of elementary effects 

it produces divided by the number of experimental runs. So the economy of the 

Morris design under the assumption that all rk observed elementary effects are 
independently drawn is rk/2rk — 1/2. As Campolongo & Kleijnen point out, the 
larger the economy for a particular design, the better it is in terms of providing 

information for sensitivity and uncertainty analysis [11].

The main idea of Morris design is based on construction of a sampling matrix 

which is called the ‘Orientation Matrix* and denoted by B*. This (k +  1) x k 
dimensional B* matrix has the property that for every column i — 1,2, . . . ,  fc, 
there are two rows of B* that differ only in their zth entries. With this particular 

property, (k + 1) rows of B* produce (& +  1) output values for the model, allowing 

the calculation of k elementary effects, one for each input factor, from (k +  

1) runs. If r is the size selected for the sample of the elementary effects, the 

experiment requires construction of r orientation matrices. Therefore, the total 
computational cost for the experiment is n — r(k + 1) model runs.

The first step in constructing an orientation matrix B* is to select a (k + l ) x k  

matrix B with elements of 0’s and 1’s, such that for every column i = 1,2, . . . ,  k 

there are two rows of B that differ only in their ith. entries; for example, B may 

be chosen to be a lower triangular matrix of l ’s as given below

"  0 0 0 • 0
1 0 0 •• • 0

B = 1 1 0 • 0

1 1 1 .. • 1

Then, the matrix B ' is given by

B' =  Jfc+lj*x* +  AB
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where Jjb+i,i is a (k +  1) x 1 matrix of l ’s; x* is a randomly chosen starting 
vector of x; and A is the selected increment for the components of x. Morris 

also introduces the possibility of using AB as a design matrix for which the 

corresponding experiment would provide k elementary effects, one for each input, 

based on only (k + 1) model runs, but as he points out these would not be random 
selections from the Fi s. In order to obtain random selections, a randomized 
version of the sampling matrix B*, which is called £a random orientation of B ’, 
is employed for the design, and it is given by the following equation:

B* = (Jfc+1,ix* + (A/2)[(2B -  J*;+i,fc)D* + J*+i,*])P*

where D* is a ^-dimensional diagonal matrix in which each diagonal element is 

either -1 or +1 with equal probability; Jk+i,k is a (k +  1) x k matrix of l ’s; and 
F* is a k x k  matrix obtained by randomly permuting columns of a k x  k identity 

matrix, where each such matrix has an equal probability of selection. If a sample 

of r effects is required from each distribution Fi, then r different orientation 

matrices B* have to be selected for the design matrix of the entire experiment

B I
B *

_ b ;

Over the entire design X, r elementary effects can be produced for each input 

factor, and total computational cost would then be n  =  r(k +  1) model runs.
Morris also compares his OAT design and the Latin hypercube design in the 

input screening context, and shows that the Morris design may prove to have 
more advantage over the Latin hypercube design [87].

Since both 8-compartment global carbon cycle models considered later in this 

thesis are linear models with reasonably small number of factors (less than 20 in



CHAPTER 2. FUNDAMENTAL ASPECTS 48

each model), we have used both the standard OAT design and Morris design as 

well as other local and global sensitivity analyses techniques to present similarities 

and dissimilarities of results obtained following different approaches.

2.5.6 M eth o d s o f A nalysis

These design methods are basically Monte Carlo based methods. In the global 

sense, all model input factors are varied simultaneously and the sensitivity is 

measured over the entire range of each factor. These methods are based on 
performing multiple model evaluations with randomly selected input factors by 

using an appropriate sampling technique.
It should be noted that when we describe the methods in the following sections, 
by the term ‘explanatory variable’ we mean model input factors, i.e., initial condi­

tions, transfer coefficients etc., and by the term ‘response variable’ we mean model 

predictions, i.e. model output variables. Now, let us concentrate on a model with 

a single output variable, say Y } and k input factors X j (j =  1 , 2 If there 

are several outputs considered, the techniques described in the following sections 
can easily be applied per output.

2.5.6.1 Correlation Measures

Input factors can be ranked in order of importance based on the value of the 
correlation coefficient between the output variable and each input factor. This 
ranking assumes that the greater the correlation coefficient, the more controlling 

influence that input factor has on the model behaviour [95].

Here, it is important to emphasize that the Pearson product-moment correla­

tion coefficient only picks up linear association, and it may miss more complicated 

relationships where the input and output are related in a non-linear fashion.
When dealing with non-linear models, utilizing the Pearson correlation coef­

ficients for sensitivity ranking is not appropriate. In such cases, the Spearman 

rank correlation coefficient is used.
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The Pearson moment-correlation coefficient and the Spearman rank correla­

tion coefficient are often utilized for sensitivity studies (for example, see [74], [75], 

[96]).

2.5.6.2 Regression Analysis

Regression anaysis is a more formal investigation of the relationship between the 

input factors Xij and the output Yi (j  = 1 , fc, % =  1 , N ).
The use of regression technique allows the sensitivity ranking to be determined 

based on the relative magnitude of the regression coefficients. This is discussed 

further in Section 2.5.6.5.

2.5.6.3 Stepwise Regression

When a model involving a large number of input factors is under consideration, 

constructing a regression model with all input factors may not be appropriate due 
to reasons such as the possibility of overfitting of the model, or only small number 

of input factors having a significant effect. In such cases, stepwise regression which 
creates a model by selecting the ‘best’ input factors from all original independent 

variables one at each step, may be used.
Helton & Davis note three aspects of stepwise regression analysis that give 

us insights on the importance of the individual input factors [49]. One of these 
aspects is the order in which the factors are selected in the stepvise procedure. 

The most important input factor is selected first, the next most important factor 

is selected second, and so on. Another aspect is the R 2 values at successive steps 

of the analysis that provide a measure of input importance by showing how much 

of the uncertainty in the output variable is accounted by all input factors selected 

at each step of the analysis. A third aspect of this analysis mentioned by Helton &; 
Davis is the absolute values of the standardized regression coefficients (SRCs) in 

the individual regression models which can provide an indication about the input 
factor importance. Examples of the stepwise regression analysis in sampling- 

based sensitivity analysis can be found in various articles by Helton et a l for
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example [51], [52], [53] and [49].

2.5.6.4 Rank Transformation

The rank transformation is a simple procedure where the raw data is simply 

replaced with their ranks, i.e., if there are N  observations of the model output, 

Y, these observations are replaced by their corresponding ranks 1 to N,  where 

R(Yi) is the rank assigned to the ith value of Y. Similarly, each of the model 
input factors is replaced with its corresponding ranks 1 to N.  For ties the average 

ranks are assigned.

If the model output is a monotonic function of the input factors, then the rank 

transformation is used to linearize relationships and also to reduce the effects of 
extreme values. In Section 2.5.6.1, we have already mentioned the use of rank­
ing technique for calculating a correlation between ranked variables, and in the 
following sections we provide other statistics based on the rank transformation.

2.5.6.5 SRC and SRRC

The estimated coefficients of a linear regression model show the effect of one 
unit change in each X j  on the model predictions assuming that the other input 
factors are held constant. If the input factors are not in equivalent units, which 

is often the case, then the estimated regression coefficients, which depend on the 

units in which Xj ' s and Y  are expressed, do not provide a useful indication of 

model input factor importance, unless the effect of scale is removed. For linear 
regression, this involves standardizing the X,*’s and Y  to mean 0 and standard 

deviation 1. The size of the standardized regression coefficients (SRCs) then 

provide a more meaningful indication of input factor importance.
The standardized rank regression coefficients (SRRCs) are simply the SRCs 

calculated on ranks.
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2.5.6.6 PC C  and PRCC

In some cases, the correlation between an input factor and an output variable, 

say Xi  and Y,  may be partially due to the correlations of other input factors, say 
X2 , with both X i  and Y.  In such a case, we may want to find out what

the correlation between X \  and Y  would be if the effect of X2,...,Xfc on each 

of X\  and Y  were eliminated. This measure of correlation is called the partial 

correlation, and the correlation coefficient between Xi  and Y  after the linear 

effect of X 2, on both Xi  and Y  has been eliminated is called the partial
correlation coefficient (PCC) [41].

As described by Kleijnen & Helton [74] PCCs can be calculated using a se­

quence of regression models. To calculate PCC between Xj  and Y  first the 

following two regression equations are constructed to correct for the linear effects 

of other variables

k k

Xj  — eg T ^   ̂ Cp Xp , T" — 60 T ^   ̂ bp Np)
p—i  p= 1p?y

then the sample correlation on the residuals (Xj — Xj )  and (Y  — Y)  is calculated.

The PCCs performed on the ranks instead of the raw data provide partial 

rank correlation coefficients (PRCCs). The PCCs provide a ranking of the input 
factors by indicating the strength of the linear relationship between Xj  and Y,  

and with the PRCC’s the linear relationship between the ranks of Xj  and Y  is 

measured.
According to Saltelli & Homa (see [99]) non-parametric statistics based on ranks, 

such as the SRRCs and PRCCs appear to be among the most robust and reliable 

SA methods.
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2.6 N on-param etric SA M ethods

Because of our limited knowledge of the input factors and their associated distri­

butions it is often desirable to use some nonparametric statistical tests.

The application of these three tests to SA comes from the idea of partitioning 

the sample of an input factor under consideration into two sub-samples according 
to the quantiles of the output distribution. If the distributions of the input factor 
in the two sub-samples can be proven to be different then the input is identified as 

an influential input. Using the test statistics as a sensitivity measure, the relative 

importance of the input factors for each output variable can be obtained (i.e., 

the higher the test statistic calculated between an input factor and an output 
variable, the more influential the input is on that output variable).

2.6.1 Sm irnov Test

The Smirnov test is used to test if two different samples belong to the same 

population. In order to be able to carry out a Smirnov test, the two samples 

must satisfy the assumptions of: 1) the samples are random samples; 2) the two 

samples are mutually independent; 3) the measurement scale is at least ordinal; 

and 4) the random variables are continuous.
In the context of sensitivity analysis, the sample of a model input factor, say 

X , is partitioned into two sub-samples, say Xi  and Xj ,  according to the quantiles 

of the distribution of the model output, say Y.  Let Xi  be size Ni  and Xj  size 

iV2, and Si(x)  and S2(x) be the empirical distribution functions of these two sub­

samples, respectively. The greatest vertical distance between the two empirical 

distribution functions gives us the Smirnov test statistic denoted by Ts, that is,

Ts =  sup S^x)  -  S2(x)

This test statistic can be used to rank the model input factors, the higher the Ts 

value the more influential the input factor on the model output.
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For hypothesis testing, if this test statistic exceeds its 1 — a quantile obtained 

from the available tables (see [22]), the hypothesis of ‘the two sub-samples belong 

to the same population’ is rejected at significance level a . When the test results 

show that the distributions of the two sub-samples are different, it can be said 

that the investigated model input factor is an influential factor on the model 

output.

2.6.2 C ram er-von M ises Test

Like the Smirnov test the Cramer-von Mises test is also used to determine whether 

two empirical distributions are statistically identical. The assumptions for this 
test are: 1) the samples are independent random samples; 2) the measurement 

scale is at least ordinal; and 3) the random variables are continuous. The Cramer- 

von Mises test statistic Tqm is defined as

AT AT /  ^5 N i -\-N2 \

Tcm = (jy1 + ji,)i(^[5lW _ 52W)]2 + f+1 " 52(̂ 2)
where Ah is the size of the first sub-sample, Ah is the size of the second sub­
sample, and the squared differences in the summation is computed at each Xi 
and at each Xj.

The Cramer-von Mises and Smirnov tests are very similar; however the cal­

culation of the test statistic for the former is slightly more difficult since it makes 
more effective use of the data. According to Conover [22] there is little difference 

in power between the two tests. Saltelli & Marivoet [100] note that because the 

Cramer-von Mises statistic depends upon the total area between the two empir­

ical distributions, it may be more appropriate for SA when the model output 

function is a non-monotonic function.
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2.6 .3  M an n -W h itn ey  Test

This non-parametric test is also based on two samples. The assumptions must be 
satisfied by the two samples under consideration are: 1) both samples are random 
samples; 2) the two samples are mutually independent; 3) two populations from 

which the two samples are taken have the same shape, hence the same variance; 

4) the measurement scale is at least ordinal.
The Mann-Whitney test essentially looks at the difference between the means 

of ranks of the X  values in the two sub-samples. The values of one of the two sub­
samples, say are first ordered and ranks are assigned based on the ordering. 

Then, the ranks i?(X;)’s are used to compute the test statistic Tmw  as

Ni
Tmw  —  ^ 2  R(Xi)

i=1

where the summation is extended to the elements of one sub-sample only.

2.7 Im plications on SA M ethods

This chapter has described the important features of various SA methods, and 

discussed their strengths and weaknesses.
It is important to note that there is no one “perfect” method which could give 

a comprehensive indication of sensitivity, and as Helton et at note in Ref. [50] it 

is not possible to rate one method of SA as superior to another. To decide which 

method(s) to use will depend on both the model being studied and the type of 

information desired. If possible one should consider using a number of methods 

to maximize confidence in the analysis results.

In the two chapters which follow, various SA techniques are applied to three differ­

ent compartmental models of the global carbon cycle. First, a general background 
on the carbon cycle, which is useful in helping to understand different aspects of 

the cycle, is given. That is followed by details about the observed (historic) and



CHAPTER 2. FUNDAMENTAL ASPECTS 55

predicted (future) atmospheric CO2 emissions resulting from fossil fuel burning 

and deforestation. Then, a description of the model is given. After that, local 

and global SA techniques are presented. In the last section, the results and the 

discussions are summarized.



C hapter 3

A pplication  of Sensitiv ity  

A nalysis Techniques to  

C om partm ental M odels w ith  

Specific A pplication to  

G lobal Carbon C ycle M odels

3.1 Introduction

Sensitivity Analysis (SA) of the model response to the variations in its input 

factors is an essential element for improving both the understanding of the model 

and its performance. As noted by Hora, SA is the first stage of a cycle of investi­

gation [57], and in this chapter various methods of SA for exploring the influence 

of input factors on the outputs of models will be discussed.

The two test models used in this chapter are linear, time-invariant compart­
mental models and originate from the context of modelling the global carbon 
cycle (GCC). These models, compared to some other GCC models available in 
the scientific literature (for instance, GLOCO model in [40], ANU-BACE model

56
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in [103]), are not very complex. In the next chapter of this thesis, we use one 

of these more complex models as a test model and investigate effect of model 

complexity on SA.
Uncertainty analysis (UA), the next stage of investigation cycle, is covered in 

Chapter 5.
The aims and objectives of this chapter are to (a) compare and contrast SA 

techniques; (b) extend the techniques to deal with mass balanced GCC models, a 

special case of constrained systems; and (c) identify which set(s) of model input 

factors are more influential on the model outputs.

3.2 T he Global Carbon Cycle

Why is carbon important? The carbon atom is the basic building block of living 

matter, therefore it is of prime importance to life. Living organisms circulate 

carbon by simply existing.
The carbon cycle is the biological circulation of carbon from the atmosphere 

into living organisms and after their death back again. The carbon cycle is 
mostly the carbon dioxide cycle. Carbon dioxide, which plays an essential part 

in metabolism and an intrinsic role in planetary energy, is released by respira­
tion, soil processes, combustion of carbon compounds, oceanic evaporation and 

volcanic eruptions. It is dissolved in the oceans and consumed via photosyn­

thesis. The two main fluxes of the global carbon cycle, which are nearly equal, 

are between the atmosphere and terrestrial systems, and the atmosphere and 

the oceans. The terrestrial and aquatic systems are usually considered virtually 

independent because production balances consumption of CO2 in both [76].
The carbon cycle was historically considered to be in equilibrium. However, 

human actions and the industrial revolution have resulted in a significant imbal­

ance. According to Neftel et al. since 1750 there has been a steady increase in the 

atmospheric carbon dioxide level, and human activities are largely responsible for 

the observed increase [89]. Fossil fuel burning is the most important source of
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CO2 and fossil fuels have been injected into the atmosphere at a steadily increas­

ing rate since the beginning of the industrial revolution, around 1860 [68], [79], 

[81]. Keeling & Whorf (see [70]) have recorded an approximately 25% increase in 

the atmospheric C 0 2 levels from 1800 to 1985 mainly due to human influences 

first from deforestation and now primarily from fossil fuel burning. They have 
also noted that the huge increase in fuel combustion since 1950 has led the C 0 2 
content in the atmosphere to increase gradually from 280 parts per million (ppm) 

to more than 350 ppm. Currently, there are 369.40 parts per million by volume 

(ppmv) of C 0 2 in the atmosphere [71].
Although the carbon cycle is a highly complex cycle it can be summarized in 

terms of a few major reservoirs of carbon and the carbon fluxes between them. 
Figure 3.1 shows a typical global carbon cycle adapted from Krebs [76]. The 
amounts of carbon are given in units of Gigatons of carbon (1 Gt C =  1 billion 

metric tons of carbon) and all fluxes in units of Gigatons of carbon per year (Gt 

C/yr). It shows that the oceanic reservoir contains by far the largest amount 

of carbon, and the atmosphere is the smallest in terms of carbon storage but it 

plays an important role in the cycle. The atmosphere exchanges C 0 2 with the 
ocean’s surface, and much of the carbon in the oceans is in the deeper waters. 

Oceanographers believe that about 40% of the C 0 2 from fossil fuels enters the 

oceans each year [76], The amount of C 0 2 in the oceans is fifty times that of C 02 

in the atmosphere, suggesting that the oceans can absorb most of the additional 
C 0 2 injected into the atmosphere. However, uptake of C 0 2 into the surface 
waters of the oceans is relatively slow (half-life 1.3 years), and in addition, the 
surface waters of the ocean (0 to ~100 m depth) mix with the deep waters even 

more slowly (half-life 35 years) [7].

In 1938, G. S. Callendar presented the first data showing the increasing C 0 2 

concentration in the atmosphere and suggested that this increase might affect the 

Earth’s climate. In 1956, G. N. Plass outlined theories to explain the relationship 
between atmospheric C 0 2 and climate. Soon after that R. Revelle and H. Suess 

described the relationship between C 0 2 in the atmosphere and in the oceans, and
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Figure 3.1. A schematic diagram of the Global Carbon Cycle

Kaplan enlarged upon the role of CO2 in the atmosphere in terms of the global 

heat balance [106].
In the 1970’s, recognition of a growing world population, the rising per capita 

use of energy, and the accompanying growth in the rates of fossil fuel CO2 emis­
sions drew many scientists’ attention to the atmospheric CO2 increase. Despite 

international action to control the emission of some greenhouse gases, as we can 

see in Figure 3.2 CO2 levels are still rising. CO2 emission in 1751 was estimated 

to be 0.003 Gt C, and in the next 100 years it only increased to 0.054 Gt C. Car­
bon emissions from fossil fuel burning are estimated to have increased at a rate 
near 4.3 percent per year from 1860 until 1973 with the exception of brief periods 

during the great depression and the world wars. Following the 1973 oil embargo 

and a decline induced by sharp oil price increases in the early 1980’s, the amount
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of carbon entering the atmosphere began increasing again in the mid-1980’s and 

reached 6.52 Gt C in 1996 [80].

In 1977, a leading group of scientists assembled in Florida to discuss the cur­

rent understanding of the dynamics of carbon exchanges within the atmosphere, 
oceans and terrestrial biota that determine the atmospheric CO2 concentration. 
Since then extensive research has been carried out by the international scientific 

communities [106]. The importance of such research activities and measurements 

obtained has become more widely recognised in the past two decades.

A dramatic increase in greenhouse gases, particularly CO2 , in the atmosphere 

is one of the many disasters that the 20th century has witnessed. There is growing 

concern that the resulting increased heat in the atmosphere known as ‘greenhouse 
effect’ will affect climates around the world in the 215* century and beyond [3],
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Figure 3.2. CO2 emissions from fossil fuels (for pre-industrial time see inset of 
period from 1750 to 1850).
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and the resulting increased heat in the atmosphere will have a serious impact on 

the environment, climate, ocean levels and agriculture.

Projections of future CO2 concentrations are needed to assess the likelihood 
of significant global and regional change as a consequence of the continuing use 

of fossil fuels and to determine if alternative scenarios of future energy use can 

significantly change this likelihood [73].

Global carbon cycle models are needed to estimate the future change of CO2 

concentrations for specified CO2 emission scenarios. SA of these models is re­

quired to investigate the effects of changes in the inputs on the model outputs.

3.2.1 O bserved A tm ospheric CO2 since 1744

Precise measurements of atmospheric carbon dioxide concentrations have been 

obtained since March 1958 when Dr. Charles D. Keeling of the Scripps Institu­

tion of Oceanography, initiated a monitoring program at Mauna Loa Observatory 
(MLO) in Hawaii. The site of MLO is one of the most favourable locations for 

measuring undisturbed air and minimises the possible influences of human ac­

tivities and vegetation on atmospheric CO2 concentrations. Air samples have 

been continuously collected at MLO and analysed by infrared spectroscopy for 

CO2 concentrations. Data are averaged to give monthly and annual atmospheric 

CO2 concentrations [69]. These measurements, widely recognised as the ‘Keeling 
Curve’, constitute the largest, continuous record of atmospheric CO2 concentra­

tions available in the world. The annual averages of the data collected at MLO 

have shown a steady rise in annual average concentration from 316 ppmv in 1959 

to 369.40 ppmv in 2000 [71].
Also, it has been found that long-term records of atmospheric CO2 concentra­

tions can be obtained from ice cores. Air is trapped by snow as it is transformed 

into glacial ice, and by taking ice cores one can sample the atmosphere back in 

time. For example, in the Soviet Antarctic Expedition at Vostok, Antarctica the 

scientists collected a 2083 meter long ice core which spans 160,000 years [4].

Observed atmospheric CO2 concentrations from Mauna Loa, South Pole and
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Siple ice cores during the period 1744 through 2000 are presented in Figure 3.3. 
What we can see in this figure is that concentration level did not change much 
until 1850, when it was around 280 ppmv, after 1850’s the amount of carbon 

dioxide in the atmosphere can be seen to be increasing year after year. This 

exponential growth shows that the sources and sinks of atmospheric CO2 are not 
exactly in balance, with the rate of increase in the 1980’s a little less than 0.5% 

annually.
Measurements made at other locations all over the world also demonstrate 

the increase in the atmospheric C 0 2 level. South Pole and Siple Station ice core 

measurements for recent years shows agreement with the Mauna Loa data.
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Figure 3.3. The annual atmospheric C 0 2 concentrations from Mauna Loa Ob­
servatory, Hawaii: 1958-2000 (Keeling & Whorf, 2001 [71]); South Pole: 1973- 
1993 (Keeling & Whorf, 1994 [69]); Siple Station: 1744-1953 (Friedli et al., 1986 
[37]).
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3.2 .2  IP C C  and E m ission  Scenarios

The Intergovernmental Panel on Climate Change (IPCC) was jointly established 

by the World Meteorological Organisation (WMO) and the United Nations Envi­

ronmental Programme (UNEP) in 1988. The primary objectives of IPCC’s three 

Working Groups are:

- to assess the available information on climate change,

- to assess the environmental and socio-economic impacts of climate change,

- and to formulate response strategies.

Despite trends which favour considerable increase in net greenhouse gas emis­
sions over the next century, the IPCC says that “significant reductions ... are 

technically possible and can be economically feasible” . In 1992, they developed 

six alternative emission scenarios based on different assumptions regarding the 

factors wjiich could have major influences on future levels of CO2 emissions. 
Population and economic growth, structural changes in economies, energy prices, 
technological advance and fossil fuel supplies are among factors considered [58]. 

These scenarios are referred to as the IS92a to f scenarios, they extend to the 

year 2100, and they include emissions of other greenhouse-related gases as well 

as CO2 . The projection of future CO2 emissions associated with these scenarios 
are given in Table 3.1, and three of these six scenarios used as input scenarios in 

this thesis are illustrated in Figure 3.4 with the historic record of CO2 emissions.

Scenario IS92a represents a middle-of-the range scenario due to modest and 

largely offsetting changes in the underlying assumptions. Scenario IS92c has 

a CO2 emissions path that eventually falls below its starting value. For this 

scenario a decline in the population by the middle of the next century, a low eco­

nomic growth, and severe constraints on fossil fuel supply are assumed. Scenario 

IS92e has the highest greenhouse gas emissions. It assumes moderate popula­

tion growth, high economic growth, high fossil fuel availability and eventually 
hypothetical phase-out of nuclear power [58].



A
nn

ua
l 

N
et

 
Fl

ux
 

of 
C

ar
bo

n 
D

io
xi

de
 

to 
th

e 
A

tm
os

ph
er

e 
(G

t 
C

)
CHAPTER 3. SEN SITIVITY ANALYSIS

Table 3.1. IPCC 1992 CO2 Emission Scenario Results

Scenario

Year IS92a IS92b IS92c IS92d IS92e IS92f

1990 7.40 7.40 7.41 7.33 7.40 7.41
1995 7.93 7.93 7.23 7.27 8.16 7.97
2000 8.44 8.24 7.46 7.49 9.10 8.77
2005 9.16 8.82 7.75 7.81 10.17 9.70
2010 9.89 9.45 8.05 8.17 11.40 10.77
2015 10.64 10.19 8.31 8.54 12.63 11.95
2020 11.38 10.95 8.49 8.78 13.74 13.13
2025 12.23 11.81 8.79 9.29 15.08 14.37
2050 14.52 13.80 7.51 9.02 20.10 17.25
2075 16.31 15.41 5.58 9.27 26.96 21.19
2100 20.28 19.11 4.61 10.33 35.84 26.59
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Figure 3.4. Historic and future CO2 emissions.



CHAPTER 3. SEN SITIVITY ANALYSIS 65

3.2 .3  CO2 In pu ts

Global annual CO2 emissions from the combination of fossil fuels combustion and 

deforestation from Enting et al. [33] are used as input to the models. These data 
are for the period 1765-1990. Pre-1765 values for total carbon flux were set to
0.2 Gt C, the total 1765 values from deforestation and fossil fuel emissions. As 

future emissions, the IPCC’s three IS92 scenario estimates of CO2 emissions from 

fossil fuel combustion and forest clearing are used for the period 1990-2100.

3.3 M odelling the Global Carbon C ycle

Modelling complex processes, such as the global carbon cycle (GCC), is not an 
easy task. The difficulty lies not only in having limited observational data but 
also in a lack of understanding of the complex characteristics of the system. To 
investigate the rate of atmospheric CO2 increase it is essential to understand the 

GCC linking the atmosphere, oceans and terrestrial systems, and to describe it 

by mathematical models on the basis of ecology and engineering [39].

Many studies have been carried out to estimate current and future patterns 
of atmospheric, oceanic, and terrestrial carbon storage. For that purpose usually 
dynamic linear compartmental models are used.

There is a wide range of mathematical models describing the local and global 

carbon cycle. The former usually describes the transport of carbon in a spe­

cific area or for a particular species. The latter models however usually focus 
on analysing the GCC. Many GCC models, ranging from a single compartment 
model to a 25-compartment model have been developed and are available in the 
scientific literature. As noted by Iman and Conover [59], although the model is the 

most important link in the study of a physical systems, the proper development 

and verification of the model is the responsibility of geologists, physicists, engi­

neers and other experts. From a statistician’s point of view the model is viewed 
as a ‘black-box’ with many inputs and one or more output variables. Taking this 

into account, we treat the GCC models used in this thesis as black-box models.
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Now, in the following section we give a description of two of the three GCC models 
(both are 8-compartment models) utilised in this thesis (the third GCC model 

which is a larger and more complex model is described and used in Chapter 4). 

Then, the results and discussions on the application of various SA methods to 

one of the 8-compartment models is given in detail. In order to construct a base 

for the UA covered in Chapter 5, the same SA methods have been applied to the 

second 8-compartment model and the results are summarized in Appendix B.

3.3.1 T he Tw o 8-C om partm ent G CC M od els

The CO2 distribution between atmosphere and oceans, atmosphere and terres­
trial systems, and the responses of these reservoirs to the input resulting from 

fossil fuel burning and deforestation have been quantitatively described by using 

two different compartmental models each consisting of eight compartments but 

different structures. Here, we assume that each of these 8-compartment models 
constitutes an adequate representation of the GCC.

The release of fossil fuel CO2 and forest clearing are viewed in the context 

of this model as perturbations to an initial steady-state condition, and all other 

inputs to the model are assumed to be zero.

3.3.1.1 Description of M odel I

The compartmental diagram of the first model adapted from Emanuel et al. 
(1984) is given in Figure 3.5. The model consists of eight well-mixed compart­

ments and 15 transfer coefficients.

Two compartments represent carbon in the ‘surface ocean’ and ‘deep ocean’. 
Carbon in living plants is divided between ‘tree’ and ‘ground vegetation’ com­
partments. The ‘tree’ compartment is separated into two separate compartments, 
namely ‘nonwoody parts of trees’ and ‘woody parts of trees’. To represent carbon 

in dead parts of the terrestrial systems and their decomposers, two compartments 
are used. The ‘detritus/decomposers’ compartment corresponds to litter and its
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F igure  3.5. Compartment diagram of Global Carbon Cycle Model I (adapted 
from Emanuel et al (1984) [31]).

decomposers at the soil surface. Carbon input to this reservoir comes from death 

of aboveground parts of vegetation. The ‘active soil carbon’ compartment consists 

of carbon in soils and its decomposers. Carbon from death and initial decompo­

sition of below-ground parts of vegetation and transport of decomposed material 
from the actively decaying litter layer is transferred into this compartment [30].

The flow of CO2 between the compartments is described by a set of eight first- 

order, linear differential equations which contain 23 uncertain model input factors 

(15 transfer coefficients and 8 initial conditions). To define the model sensitivity 

to variations in these uncertain input factors, we treat them as random variables.

The nominal values of the initial compartment contents, and the transfer 
coefficients which satisfy the assumed initial steady-state condition are given in



CHAPTER 3. SEN SITIVITY ANALYSIS 68

Table 3.2 and Table 3.3, respectively.
The C 0 2 emissions due to fossil fuel burning and forest clearing enter the 

system through the atmosphere compartment.

The following are the model state equations of Model I:

— kl2%2 +  k i j X j  +  k i 8X8 — ( k 2 1 +  &41 +  &51 +  ^ 6 l ) ^ l  +  ^ 1  0 0

X2 — k 2 l X i  +  k 23X3 — ( k i 2 +  k 32) x 2

x 3 =  k32x2 -  k23x3 
X 4  — k 4  \X~\_ k*f 4 ^ 4

£ 5  =  ^51^1 “  (&75 +  k33)x3 (Q
x 6 — kftiXi — [k̂ Q +  fosgjrcg 
X 7 — k j 4x 4 +  ^ 7 5 ^ 5  +  kjQXQ — ( k u  +  k 3i ) x 7

x8 = &85̂ 5 +  ^86^6 +  ^87^7 — ^18^8
with t(time) in years from 1750 to 2100, and 

the initial states Xi(t = 1750) =  rcj, i =  1 ,2 , . . . ,  8

and the model outputs:

2/i(i) =  xi(t), y2 (t) = x 2 (t), y3 (t) = x 3 (t), y4 (t) = x 4 {t),

2/s 00 =  2*00, 2/6 00 =  aieW, Vi (0  =  £700, 2/8 (0 =  £s(0-
(3.2)
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Table 3.2. Model I reference case initial compartment contents (in units of Gt C).
Description 

(Initial Conditions) Input Factor Nominal
Value Range

Atmosphere 622.40 497.92 - 746.88
Surface ocean ^2 667.37 533.90 - 800.84
Deep ocean. x 3 37542.00 30033.60 - 45050.40
Nonwoody parts of trees x\ 38.21 30.57 - 45.85
Woody parts of trees x °5 634.47 507.58 - 761.36
Ground vegetation xl 59.32 47.46 - 71.18
Detritus /  decomposers Xj 108.22 86.58 -129.86
Active soil carbon X% 1131.39 905.11 1357.67

Table 3.3. Model I reference case transfer coefficients (in units of yr x) for
carbon transfer among compartments.

Description 
(Transfer Coefficients)

Input
Factor

Nominal
Value Range

Atmosphere Surface Ocean &21 0.1582 0.1266 0.1898
Atmosphere -> Nonwoody parts of trees &41 0.0354 0.0283 0.0425
Atmosphere —> Woody parts of trees h i 0.0408 0.0326 0.0490
Atmosphere -» Ground vegetation h i 0.0241 0.0193 0.0289
Surface ocean Atmosphere ki2 0.1476 0.1181 0.1771
Surface Ocean —> Deep ocean h 2 0.0473 0.0378 0.0568
Deep ocean —> Surface ocean &23 0.0008 0.0006 0.0010
Nonwoody parts of trees —> Detritus/decomposers h i 0.5758 0.4606 0.6910
Woody parts of trees —> Detritus/decomposers h s 0.0353 0.0282 0.0424
Woody parts of trees -> Active soil carbon h s 0.0047 0.0038 0.0056
Ground vegetation ~> Detritus/decomposers he 0.1667 0.1334 0.2000
Ground vegetation —> Active soil carbon 0.0862 0.0690 0.1034
Detritus/decomposers Atmosphere h i 0.4688 0.3750 0.5626
Detritus/decomposers —> Active soil carbon h7 0.0328 0.0262 0.0394
Active soil carbon —̂ Atmosphere h s 0.0103 0.0082 0.0124
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3.3.1.2 D escrip tion  of M odel II

This model originally developed by Kelly et al. (1975) is identical to that utilised 

by McCartney [78] and Bush et al. [8]. It is based on the global carbon cycle, 
and was mostly used to predict the possible effects of 14 C discharges from the 

nuclear fuel cycle. The structure of the model, consisting of 8 compartments and 

18 transfer coefficients, is given in Figure 3.6. The model is basically that of 

a four-compartment model separated into northern and southern hemispheres. 
The main 4 reservoirs are the ‘circulating carbon’, ‘surface ocean’, ‘deep ocean’, 

and the ‘humus’ compartments.

Northern Hemisphere Southern Hemisphere

Fossil Fossil
. Fuel 
Emissions

Fuel _ 
Emissions

Circulating
Carbon

Surface
Ocean

Circulating
Carbon

Surface
Ocean

Deep
Ocean

Deep
Ocean

HumusHumus

F igure 3.6. Compartment diagram of Global Carbon Cycle Model II (adopted 
from McCartney (1987) [78]).
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Since 14C,s primary atmospheric form is gaseous as CO2 and it is closely 

involved in many physical and biological processes notably photosynthesis and 

exchange within the carbon cycle, we consider the same nominal values of pa­
rameters as those used by the model developers. The initial content of each com­

partment and the transfer coefficients are provided in Table 3.4 and Table 3.5, 

respectively. The input into the circulating carbon compartments is assumed 

to be distributed in the same proportion between Northern and Southern hemi­
spheres as the present-day population distribution, i.e. 80% in the North and 

20% in the South [78].

The set of differential equations representing Model II are as follows:

=  k\2%2 T  ^ 1 4 ^ 4  +  ^ 15^ 5  — (&21 +  &41 +  k,§i)X\  +  u l { t )

3̂ 2 ”  ^21^1 +  &23^3 +  2̂6^6 — (&12 +  &32 +  ke2)x 2

X 3 =  ks2 %2  +  & 37^7 — (&23 +  ^ 7 s ) x S 

X ^  —  k ^ \ X \  ™

x 5 — ^ 51^ 1 +  &56x 6 +  ^5 8 x 8 ~  (&15 +  &65 +  ^ 85)^5  +  u 5 ( t )  ^  ^

x 6 —  & 62^2  +  ^ 65^5  +  k § 7 x 7 ~  (^26  +  &56 +  ^ 76)^6

£ 7  = ^732X3 +  k̂ QXQ — (^ 3 7  +  ^67)3X7 

3̂8 =  '̂853'5 “  &58̂ 8
with t(time) in years from 1750 to 2100, and 

the initial states X{(t — 1750) — x?} i =  1 ,2 , . . . ,  8

and the model outputs:

2/iCO =  3?i(t), y2 (t) = x 2 {t), yB(t) =  x 3 (t), yA(t) =  x A(t)t 

2/5(*) =  3:5 (£), 2/eW =  3?6W, 2/7W =  3;7(t), yB(t) =  x 8 (t).
(3.4)
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Table 3.4. Model II reference case initial compartment contents (in units of Gt C).

Description 
(Initial Conditions) Input Factor Nominal

Value Range

Circulating carbon-(NH)a x\ 325.21 260.17 - 390.25
Surface ocean-(NH) x °2 448.31 358.65 - 537.97
Deep ocean-(NH) xl 12,426.00 9940.80 14911.20
Humus-(NH) x\ 1042.30 833.84 1250.76
Circulating carbon- (SH)b x °5 291.59 233.27 - 349.91
Surface ocean-(SH) x% 677.54 542.03 - 813.05
Deep ocean-(SH) X7 21,983.00 17,586.40 - 26,379.60
Humus-(SH) xl 356.21 284,97 - 427.45

“Northern Hemisphere 
^Southern Hemisphere

Table 3.5. Model II reference case transfer coefficients (in units of yr for 
carbon transfer among compartments.__________________________________

Description 
(Transfer Coefficients)

Input
Factor

Nominal
Value Range

Circulating carbon (NH) —>■ Surface Ocean (NH) &21 0.1400 0.1120 - 0.1680
Circulating carbon (NH) Humus (NH) k±i 0.0160 0.0128 0.0192
Circulating carbon (NH) -> Circulating carbon (SH) k 51 0.5000 0.4000 0.6000
Surface ocean (NH) —> Circulating carbon (NH) kl2 0.1000 0.0800 0.1200
Surface ocean (NH) —> Deep ocean (NH) &32 0.0900 0.0720 0.1080
Surface ocean (NH) —> Surface ocean (SH) &62 0.1000 0.0800 0.1200
Deep ocean (NH) Surface ocean (NH) &23 0.0032 0.0026 0.0038
Deep ocean (NH) —>■ Deep ocean (SH) ^73 0.0050 0.0040 0.0060
Humus (NH) -> Circulating carbon (NH) &14 0.0050 0.0040 0.0060
Circulating carbon (SH) Circulating carbon (NH) &15 0.5600 0.4480 0.6720
Circulating carbon (SH) —¥ Surface ocean (SH) km 0.2300 0.1840 0.2760
Circulating carbon (SH) —> Humus (SH) &85 0.0061 0.0049 0.0073
Surface ocean (SH) —> Surface ocean (NH) &26 0.0660 0.0528 0.0792
Surface ocean (SH) — $■ Circulating carbon (SH) km 0.1000 0.0800 0.1200
Surface ocean (SH) —> Deep ocean (SH) &76 0.0900 0.0720 0.1080
Deep ocean (SH) —y Deep ocean (NH) &37 0.0028 0.0022 0.0034
Deep ocean (SH) —> Surface ocean (SH) &67 0.0028 0.0022 0.0034
Humus (SH) -» Circulating carbon (SH) km 0.0050 0.0040 - 0.0060
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3.4 E xtension  and A pplication of SA  to  
GCC M odel I

In this study, various SA methods grouped under three main settings are used. 

First, local SA which is based on the derivation of the differential equations 
describing a complete sensitivity matrix for each output variable with respect to 
each input factor is applied to the model.

Second, individually randomised one-factor-at-a-time (OAT) design is dis­

cussed, and data analysis based on the resulting random sample of observed 

elementary effects is presented. This standard OAT design and Morris’s design 

described in Section 2.5.5 are used for screening purpose.
Third, global SA methods which are based on Monte Carlo simulations are 

carried out by following these three steps:

1. selection of random, independent sets of values for model input factors,

2. initialisation of the carbon cycle model, and

3. simulation of GCC dynamics between years 1750 and 2100.

Initialisation of the carbon cycle model involves a calibration step in which 

parameter values and initial conditions are calculated, consistent with an assumed 

steady-state for atmosphere, ocean and terrestrial biota CO2 .
To assess the effect of any one input on the model output one can either ignore 

the other inputs, i.e. fix them at their nominal values, or adjust them using some 

assumed condition. Since it is known that long before the industrial revolution 

the GCC was in balance, the latter situation must be taken into consideration 
when the two 8-compartment models are considered. Hence, as the first step 

of the analysis, models are set up such that steady-state is maintained, i.e. the 

flux of CO2 leaving compartment i is equal to the flux of CO2 coming into that 

compartment, before we start perturbing the system with any input. In other 

words, we assume that dxi/dt = 0 in year 1750 when model simulations are 

started.
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Because the model codes of the two 8-compartment models are not supple­
mented with a calibration routine we have to find a computational way to ensure 
initial steady-state which is an important modelling assumption. Two different 

procedures are developed to maintain steady-state condition when we are con­

cerned with the sensitivities of compartment contents to the uncertainties about 

the initial conditions, and about the transfer coefficients. In both procedures 
the main idea is to adjust the initial compartment contents and the transfer 
coefficients so that steady-state condition is satisfied.

For the initial conditions, when the model code is run for a long period of 

time without any perturbations to the cycle, the model eventually reaches a 

steady-state at which point fossil-fuel and forest clearing emissions are introduced 

into the model through the atmosphere compartment and the model output is 
calculated. This procedure was followed for every model run. Although, for 

the base-line case, the compartmental contents did not vary much from their 

original values, this process puts the system in balance. Thus, we can assume 

that preindustrial emissions were low and relatively constant over a long time 

period prior to the initial simulation date.
The procedure followed when the transfer coefficients are concerned is based 

on solving the homogeneous system of equations using the method of Gauss- 

Jordan elimination. Considering Model I, we have 8 linear equations in 15 un­

knowns (transfer coefficients), and for Model II we have 8 linear equations in 18 
unknowns. Before we go further, we shall introduce notation that makes it easier 

to explain the steps in the procedure. The nominal values of the compartmental 

contents are considered as entries of a matrix X which will be referred to as the 

coefficient matrix of the system. The vector of the transfer coefficients denoted 

by k is the vector of unknowns. Hence, the model equations in matrix notation 
can be written as X k =  0.
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To find the solution of Xk =  0, first the elementary row operations0 are 

applied to the rows of X until the matrix is in reduced row echelon form. In a 

matrix in reduced row echelon form, the non-zero rows come first and the first 
non-zero entry in those rows are the pivots. The unknowns (transfer coefficients), 

which are the elements of k, are separated into two groups. One group is made up 

of the basic variables, those that correspond to columns with pivots. The other 

group is made up of the free variables, corresponding to columns without pivots. 
After reaching reduced row echelon form and identifying the basic and the free 

variables, the next step involves solving the simplified system of equations for 
the basic variables in terms of free variables. In this process the system is solved 

in reverse order, from the last equation to the first, by substituting each newly 

computed value into the previous equation. This process called back substitution 

continues until all basic variables are computed. As an illustration, the solution 
of the homogeneous system of equations of Model I is given below. Note that 

in the matrix notation of the system of equations the symbols of the elements 

of the coefficient matrix X are used instead of their actual numerical values to 

make the row operations easier.

After applying elementary row operations to the coefficient matrix given in 

Equation 3.5, the matrix becomes

(
0 
0 
0 
0 
0 
0

\  0

x\ - x °2 0 0 0 0 0 0 0 — X j 0 —  X

0 0 0 0 -x% 0 0 0 0 0 0 0
0 0 0 0 0 — x 5 ~ x 5 0 0 0 0 0

x°i 0 0 0 0 0 0 1 0)0 - x l 0 0 0
0 0 3?°2 - x l 0 0 0 0 0 0 0 0
0 0 0 0 4 xl 0 xl 0 — x% — X7 0
0 0 0 0 0 0 xl 0 xl 0 - x
0 0 0 0 0 0 0 0 0 0 0 0

cElementary row operations are arithmetic operations applied to a matrix representation of 
a system of equations: 1. Multiplying (or dividing) one row by a non-zero number, 2. Adding 
a multiple of one row to another row, 3. Interchanging two rows.



CHAPTER 3. SEN SITIVITY ANALYSIS 77

In this echelon matrix, the first, second, third, fourth, sixth, eighth and tenth 

columns contain the pivots (given in boxes), so the corresponding elements of 

k vector, i.e. the transfer coefficients k2i, &4 1 , &5i, kGi, k82, &7 4? &85 are the 
basic variables. The elements of the free variables group are the transfer coef­
ficients corresponding to the columns of the above matrix without pivots , i.e. 

&i2 > &2 3 j &7 53 &7 6> &86j &1 73 &8 7> &18 are the free variables. Having identified the free 
and the basic variables, now we can determine the basic variables in terms of the 

free variables by back-substitution. Proceeding upward,

xl k85 +  £g k8G +  xl k87 -  x% h s  = 0 
yields A:85 =  [ -x l  k86 -  x? k87 +  xl /s18]/rrg

x\ ku  +  x °5 k75 +  k7Q -  x l (k17 +  k87) = 0 

yields ku  =  [~xl k75 -  Zg k76 +  xl ( h 7 +  k87)]/xl

xl k82 ~  xl k28 = 0 

yields k32 =  [Eg A;23]/^S

#1 &61 “  ^6 (̂ 76 +  &8g) — 0
yields /c61 =  [icg (k7G +  k8G)]/xl (3’6)

^ 1  & 51  —  (& 7 5  +  ^ 8 5 )  =  0

yields k5i =  [a  ̂k75 ~~ mg k8G -  x l k87 +  x °8 ki8]/xl

xl k±i — xl  &74 =  0
yields k±i = [-rcg k75 -  xl k7G +  xl (k17 + k87)]/xl

x \  (Â2 i +  &41 +  ^51 +  kGi) — xl k \ 2 — xl k \ 7 — ajg k78 = 0 

yields k21 =  [x\ k12]/xl
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replacing x°, (i =  1 , 2 , 8 ) ’s with their actual values gives

k i5  =  [-59.32 k m  -  108.22 k a7 +  1131.39 fc18]/634.47 

k n  =  [—634.47k 7& -  59.32 k n  +  108.22 ( k u  +  fc87)]/38.21 
k 32 =  [37542.00 fc23]/667.37 

ft61 =  [59.32 (fc76 +  A;86)]/622.40
k 51 =  [634.47 ft75 -  59.32 7c86 -  108.22 fc8r +  1131.39 fels]/622.40 
k u  =  [-634.47 fc75 -  59.32 k n  +  108.22 ( k 17 +  fc87)]/622.40 
k 21 =  [667.37 /c12]/622.40.

Thus the solution to X k =  0 , after carrying out the arithmetic in the above 

equations, can now be written as

h i
h i

h i
&12

h 2

h z
h i
hb
h5

he  

he  

h r  
h r  

y h s  j

( 1.07fci2
—1 . 0 2  hb  — 0.10 he  “I- 0.17 [hr +  ^3 7]

1.02 he  ~~ 0.10 he  — 0.17 /087 1-82

0 . 1 0  [he +  he]

k \2

56.25 h z  

h z
16.60 he  — 1-55 he  2.83 [/ui7 4- ^87] 

hb
-0.09 h e -  0.17 /c87 +  1.78 ku  

he  

he  
h  7 

h r  

he

\

(3.7)
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When the transfer coefficients of Model II is considered in the initialisation 

process, the solution to X k =  0, by following the same procedure above, is found 

as

*21 ^
&41

&51

k \2

&32 

&62 

&23 

&73

ku
kl5 

&65 

&85 

&2G

k§6

kiQ 

ktf
&67 

Y &58 j

1.38 k \2  — 0.90 A)65 T  2.08 k§§
3.21 ku

0,90 (fci5 +  /cgs) — 2.08 fcgg 

&12
27.72 A)23 ~ 1.51 kjQ +  49.04 /C07 

—0.65 5 +  1.51 (/C26 +  &50 +  ^7 0) — 49.04 &67

2̂3
0.05 &76 +  1.77 (^ 3 7  +  ^0 7)

614

6 1 5  

& 65

1.22 &58 

&26 
k§Q 

&76 

&37 

&67 

&58

(3.8)

with the basic variables being /C2 1 , &4 1 , A;51, £j32 , ^0 2 , ^7 3 , /css ? and the free variables 

being &1 2 , ^2 3 , &i4 , &1 5> &6 5 > &2 65 &5 6 > &7 6 i &3 7> ^67 and /css-
In the beginning of each model run, first the free variables are randomly- 

generated from uniform distribution over the specified ranges given in Table 3.3 

(for Model I) and in Table 3.5 (for Model II). Then, using Equations (3.7) when
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Model I and Equations (3.8) when Model II is under consideration, the values for 

the basic variables are calculated.
After the initialisation process which puts the system in steady-state, the an­

thropogenic release of CO2 from the combustion of fossil fuels and changes in 

the land-use mainly from deforestation are introduced into the model through 

the atmosphere compartment and then global carbon cycle dynamics are simu­

lated using the two linear, time-invariant compartmental models introduced in 

Section 3.3.1. Each of the model runs is initialised in 1750 and integrated for 

350 years to the year 2100. The quantities of carbon stored in each compartment 

are calculated at annual time intervals. Simple random sampling was used to 

generate the input matrix. To assess if the sample size considered in the model 

simulations has any impact on the sensitivities of model outputs we consider two 

different sample sizes N=100 and N=5,000 in the simulations. In the sensitivity 
analysis of the model outputs, historical input data (see Section 3.2.1) and IPCC’s 

future emission scenario IS92a, which is based on plausible assumptions about 
future population and economic growths and energy supplies (see Section 3.2.2), 

are considered as the model input.

3.5 R esu lts and D iscussion on 8-C om partm ent 

GCC M odel I

3.5.1 Screen ing M eth od s

3.5.1.1 Standard OAT Design on Initial Conditions

First, the initial condition of each compartment (a;J, x%, ..., rcjj) is considered in 

the analysis. These model input factors are listed in Table 3.2 together with their 

nominal values and ranges. Given the lack of information about the distributions 

of these initial conditions the sensitivity analysis experiments have been carried 
out assuming all the initial conditions follow a uniform distribution.
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Figure 3.7 illustrates the variation in time dependent behaviour of the at­
mosphere compartment due to the variation about each initial condition. The 
variation in the time dependent behaviour of compartmental CO2 contents of the 
other seven compartments are presented in Appendix A (see Figures A .l - A.7). 

Each dashed-line curve in these graphs corresponds to the prediction associated 

with one of the 100 Monte Carlo sample vectors, and the solid line curve in each 

of these graphs is based on the nominal values of the input factors.
Each graph of Figure 3.7 shows the predictions resulting from varying the 

initial CO2 content of each compartment (a;f, ...jicjj) one-at-a-time while holding 
the others at their nominal values, and the initial condition which is varied is 

specified at the top-left corner of each graph. It is clear from this figure that the 

variability in the initial condition of deep ocean compartment £ 3  has a dramatic 

effect on the output of the atmosphere compartment during the whole time pe­
riod. Even though it is not as obvious as the effect of £3 , the variation in icjj, x% 
and xl also seem to be affecting the output. The atmospheric output does not 

seem to be very sensitive to the rest of the input factors, all 1 0 0  prediction curves 

lie roughly on the base-line curve.

The output of the other seven compartments also appear to be influenced 

by the variation in £ 3  the most. Because there is much more carbon in the 
deep ocean than in any other compartment, it is apparent that the amount of 

CO2 in all compartments is being controlled to a considerable extent by the 
initial condition of the deep ocean compartment. The output of both ocean 

compartments especially the deep ocean compartment are least affected by the 

variation in x ^ x l  and Xy. These ocean compartments also seem to be sensitive 

to the variation in xl,xl,x%  and x\. The sensitivity of the active soil carbon 

compartment output to these four initial conditions is more obvious. We can 

also see that except in the deep ocean and active soil carbon compartments CO2 

content of each compartment is increasing rapidly starting around 1980s. Because 
these two carbon reservoirs are distinguished from those of other carbon reservoirs 

in their functions as long-term carbon sinks, the change in the carbon content of
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F igure 3.7. Atmospheric CO2 predictions resulting from varying initial com- 
partmental content x° of compartment i (i = 1, 2,..., 8) OAT (given at top-left 
corner of each graph - see Table 3.2 for description of these input factors). N=100 
model simulations, IS92a emission scenario is considered. In each graph solid line 
represents the base-line case and dashed lines represent the predictions.
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these compartments is not as rapid, especially in the deep ocean compartment 
since transport and mixing processes in this reservoir is very slow. The initial 

conditions of the terrestrial compartments, except the active soil carbon com­

partment, do not influence CO2 levels in any of the compartments much.

Very qualitatively, such pictures allow the analyst to investigate the effect of each 

input factor (varied OAT) on a given output. They also show which outputs 

affected by which inputs in the sense of variation in the outputs.

S ensitiv ity  Index  The sensitivity index (SI) was introduced by Hoffman & 

Gardner [54] and it is simply calculated by substituting the minimum and max­
imum (from Table 3.2) for the nominal value of the jfch input factor (the j th  

initial condition, in this case), while holding all other initial conditions at their 

nominal values, to produce a maximum and minimum value of the compartment 

2 (yV}ax: y™n). Sly accounts for all possible values when determining input factor 

sensitivities.
Because the compartmental outputs are time dependent functions of initial 

conditions, to determine whether their importance changes through time we ex­

amine the results from years 1900, 2000 and 2100. Each Sly is derived using

s i a =  i - [ » 5 fa(i)/»5“ (i)].

For example, raising the nominal value of from 622.40 to its maximum of 
746.88 produces ylj[ax(t =  2100) =  895.37 Gt C. Lowering the value of xl to its 

minimum value 497.92 produces y%in(t = 2100) =  891.30 Gt C. The surface ocean 

SI21 for initial condition xl  is therefore SI21 =  1 - (891.30/895.37) =  0.0045.

A sensitivity index can take values between 0 and 1. A Sly of 1.0 indicates 
that the ith model output has maximal variation to changes in values of the j th  
input factor, whereas a Sly of less than 0.01 on the other hand indicates that 
the ith output is not very sensitive to the changes in the j th input factor. The 

calculated Sis are presented graphically in Figure 3.8. The sensitivity of the eight
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compartments5 output to the range of each initial condition at three years are 
plotted in each graph, with lines joining the SI of each compartmental output. It 
is clear from these line plots that the sensitivity of each compartment’s content 

to changes in the range of all initial conditions decreases with time. The decrease 

in the sensitivities of the outputs of the deep ocean and the active soil carbon 

compartments is less compared to the decrease for the other compartments. It is 

evident in this figure that for all eight compartmental contents in all three years, 
uncertainties in model predictions will mainly be dominated by changes in the 
initial condition £ 3  (see top-right graph in Figure 3.8) as it is the only initial 

condition that gives SI of greater than 0.01.

To determine the order of importance of the change in the initial conditions on 

each compartment in years 1900, 2000 and 2100, the Sis are ranked and given in 

Table 3.6. The ranking within each compartment in years 1900 and 2100 does not 
change, whereas for all compartmental outputs the ranking in year 2 0 0 0  changes 

slightly. All model outputs, i.e. all compartmental contents in three chosen years, 

seem to be influenced by the variation in £ 3  followed by £g and
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Figure 3.8. Sensitivity indices of compartmental outputs to the range of initial 
conditions. (The results given are calculated using Model I, and IS92a emission 
scenario).
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Table 3.6. Rankings of Model I compartmental output sensitivities to the range 
of the initial conditions based on SI calculated in years 1900, 2000 and 2100.

C o m p a r t m e n t a l

O u t p u t

I n p u t

F a c t o r

S e n s i t i v i t y  I n d e x  ( S I )

Y r  1 9 0 0 Y r  2 0 0 0 Y r  2 1 0 0

“ 1 5 6 5

to ̂ 3 3 3

m3 1 1 1

®4 8 8 8
A t m o s p h e r e

“ 5 4 4.5 4
mg 7 7 7
mg 6 4.5 6

mg 2 2 2

mg 5 6 5
mg 3 3 3
mg 1 1 1

S u r f a c e “ 4 8 8 8

O c e a n “ 8 4 4.5 4

mo 7 7 7
mg 6 4.5 6

mg 2 2 2

ml 5 6 5
mg 3 3 3

mg 1 1 1

D e e p ” 4 8 8 8
O c e a n 4 4.5 4

mg 7 7 7

” 7 6 4.5 6

mg 2 2 2

N o n w o o d y  

p a r t s  o f  

T V ees

“ 1

“ a

“ a

» 8

m6

« ?
“ s

5

3  

1 

8
4 

7

6 

2

6
3

1

8
4.5 

7

4.5 

2

5
3  

1

8
4 

7

6 

2

C o m p a r t m e n t a l I n p u t S e n s i t i v i t y  I n d e x  ( S I )

O u t p u t F a c t o r
Y r  1 9 0 0 Y r  2 0 0 0 Y r  2 1 0 0

mg 5 6 5

mg 3 3 3

mg 1 1 1

W o o d y  p a r t s “ 4 8 8 8

o f  T r e e s « 8 4 4.5 4

m0 7 7 7

mg 6 4 .5 6

mg 2 2 2

mg 5 6 5

mg 3 3 3

mg 1 1 1

G r o u n d » s 8 8 8

V e g e t a t i o n _,o
5 4 4 .5 4

O30 7 7 7

6 4 .5 6

®a 2 2 2

» s 5 6 5

mg S 3 3

®*3 1 1 1

D e t r i t u s / 03° 8 8 8

D e c o m p o s e r s “ 5 4 4 .5 4

» § 7 7 7

mg 6 4 .5 6

mg 2 2 2

mg 5 6 5

m2 3 3 3

mg 1 1 1

A c t i v e  S o i l 8 8 8

C a r b o n 5 4 4 .5 4

“ e 7 7 7

mg G 4 .5 6

mg 2 2 2

The SI only addresses input factor sensitivity relative to the point estimates of 

an input factor. Next, using another sensitivity measure we examine sensitivities 

with regard to the entire input factor distributions.
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S tan d ard ised  R ange This statistic was calculated using predictions from the 
standard OAT design. First, the range of each compartmental content (say, 
compartment i) resulting from varying each input factor (say, initial condition j) 

over its range while leaving all other initial conditions at their nominal values,

i.e. Vijax — Vijin is calculated at year t. Then, this output range of compartment i 
is standardised by the nominal value of the corresponding compartment’s initial 

content. To assess the effect of the number of model runs on the results N=100 

and N=5,000 model simulations are considered.
The standardised ranges (SRs) of compartments due to varying each initial 

condition OAT are demonstrated as dot charts in Figures 3.9 and 3.10. These 

figures allow us to judge how compartmental contents differ in terms of SRs 

within the same year and also between the years. In each frame of these figures, 

we have superimposed the SRs computed on the predictions of the model outputs 

based on N=100 and N=5,000 model runs, so that the influence of the number 

of model runs on the SRs can easily be visualized.
Even though the range of SR values are not the same, the degree of sensitivity 

of each compartment to the uncertainty in the initial conditions of atmosphere 

(xl) and both ocean compartments (x% and ajjj) does not appear to be changing, 

that is, the variation in all these three initial conditions influences the ground 

vegetation compartment the most, the nonwoody parts of trees compartment the 
second most, and these compartments are followed by the active soil carbon, 
atmosphere and the detritus/decomposers compartments (see Figure 3.9). The 

surface ocean, deep ocean and the woody parts of trees compartments are the 

least influenced by these three initial conditions.

Compared to the SR results on arSJ, the SRs of all the compartments due to 

variation in the other seven initial conditions are much smaller (lower than 0.1), 

especially the results due to uncertainty about x\  and x°Q (see the lower-right 

frame in Figure 3.9 and the upper-right frame in Figure 3.10). Considering how 

small the ranges of SRs are it is difficult to say that change in x\  and x jj are 

effective on any of the compartments at all.
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As Figures 3.9 and 3.10 show the SRs hardly change from year to year no 
matter which N is used. The highest SR values result from the OAT design 

conducted on arj, which are in the range of 0.361 and 0.3708 when N=100, and 

between 0.367 and 0.3765 when N=5,000 (see lower-left frame in Figure 3.9).

As with x\, x% and the variation in the initial conditions of the woody 
parts of trees (jcJ) and active soil carbon (rcg) compartments appear to influence 

the ground vegetation, nonwoody parts of trees, active soil carbon, atmosphere 
and detritus/decomposers compartments more (in descending order of sensitivity 

in terms of SRs) (see Figure 3.10). The effect of £ 5  and x§ on the two ocean and 

the woody parts of trees is relatively low.

In the dotplot showing the SRs obtained from the analysis where only x 7 

was varied over its entire range, we see that with the results based on N=100 
model runs the variation in x 7 is equally and most effective on non-woody parts 

of trees and ground vegetation compartments followed closely by atmosphere, 

detritus/decomposers and active soil carbon compartments; and the ocean and 

woody parts of trees compartments are the least influenced by Xj. When 5,000 

model runs are considered, there is no change in the SR of four of the compart­
ments, namely nonwoody parts of trees, atmosphere, detritus/decomposers and 

active soil carbon compartments. For the other three compartments the SRs 

increase but only by 0 .0 0 0 0 1 .
Again using the SRs of compartmental contents at three chosen years, we can 

also assess how the order of importance of the initial conditions change within 

the same compartment, i.e. which input factors are more influential on a com­

partmental content than others. It is clear from the dotcharts of the SRs given 

in Figures 3.9 and 3.10 that £ 3  is the most influential initial condition on all 

compartmental outputs and it is followed by x%, eJ, rcjj, rcj, Xj, x% and £ 4  in this 

given order. This order of relative importance based on the SR values does not 
change with the number of model runs and time.
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F igure 3.9. Dotcharts showing how each compartmental output of Model I 
in years 1900, 2000 and 2100 is effected by the variation in the xl-x4 initial 
conditions in terms of Standardised Ranges. In each frame (o) show results from 
N=100 and (•) from N=5,000 model runs.
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Figure 3.10. Dotcharts showing how each compartmental output of Model I 
in years 1900, 2000 and 2100 is effected by the variation in the x5-x8 initial 
conditions in terms of Standardised Ranges. In each frame (o) show results from 
N=100 and (•) from N=5,000 model runs.
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3.5.1.2 Morris Design on Initial Conditions

Now, we continue our screening analysis by applying the Morris design to Model

I. Here we are first taking into consideration the initial conditions as model input 
factors. Due to our lack of knowledge regarding the distribution of each input 
factor, in the analyses we assume that the distribution followed by each factor is 

uniform. In the application of Morris method, such an assumption is beneficial,

i.e. since the levels of the experiment are obtained by dividing in equal parts 

the interval in which each factor varies, the statistical information contained in 

the distribution functions will not be lost. As noted by Campolongo et al [15], 
all the examples of application of this screening design available in the literature 
are based on the assumption that the input factors follow a uniform distribution 

(examples can be found in Refs. [9], [12] and [87]). They also note that sensitivity 

measures provided by the Morris method are only qualitative, i.e. measures 

capable of ranking the input factors in order of importance.
As described in Section 2.5.5, in this screening test data analysis is based on 

examination of the finite distributions of elementary effects. In order to estimate 

the mean and standard deviation of the distribution, from each Fi we collected a 

random sample of size r =  1 0  by using ten independently generated orientation 

matrices. These orientation matrices were generated using p =  4. In comparison 
to the standard OAT screening the Morris method is less expensive and laborious. 
Based on the n — 90 computed values of each output variable, a random sample 

of ten elementary effects was observed for each of the 8  input factors. Then, the 

sample mean and standard deviation which are unbiased estimators of the mean 

and standard deviation of the distribution of Fi for input factor i are calculated.
The analysis was carried out on all eight compartmental outputs in years 

1900, 2000 and 2 1 0 0 . The estimated Morris mean p, and standard deviation a 
values for the 8  initial conditions are reported in Table A .l (see Appendix A). In 

order to establish a general order of relative importance for the initial conditions 

within each compartment at a specific year we used a sensitivity measure, the 

Euclidean distance from the origin, introduced by Campolongo & Gabric [10].
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The higher the distance, the more important the initial condition is. Here we 

give the results of the Morris screening exercise on the atmosphere compartment 
at three chosen years in Figure 3.11. In this figure the eight initial conditions

...jiCg are labeled as xlO, x80. Similarly, figures displaying the results of 
Morris design on the other seven compartments have been produced but since the 

pattern in those figures is almost the same as the one shown in Figure 3.11, we 

have not included all these figures here but the results on all eight model outputs 

are summarised in Table 3.7 in terms of importance ranking.

As seen in Figure 3.11, input factor £ 3  is clearly separated from the cluster 

of the remaining initial conditions. Hence, considering both means and standard 

deviations together, we can conclude that the deep ocean compartment being the 
largest compartment of the model its initial condition £ 3  dominate the results 

and £ 3  appear to be the most important initial condition for the atmosphere 

compartment at all three years. This is also the case with the other compart­

mental outputs. In Figure 3.11, we first draw the plots with all initial conditions, 

and because of effect of the high mean values for zcj, it is difficult to visualize the 

relative importance of the other seven factors. Therefore, we redraw the plots in 
the absence of £ 3 .

The ranking of the initial conditions according to the Morris mean, which 

is identical to the ranking of the Euclidean distance from the origin, for each 

compartmental output is given in Table 3.7. Note that because the ranking of 

the estimated mean values for the same compartment do not change from year 

to year, in the table we do not give the rankings from all three chosen years. 

Table 3.7 shows that the order of importance between the initial conditions is the 

same for all compartments.
As seen in Figure 3.11 for the atmosphere compartment and summarized 

in Table 3.7, in terms of ranks, for all compartments after £ 3  the second most 

important initial condition appears to be x% which is followed by x 5 and x\.
None of the compartments appears to be sensitive to a;J, x$ and Xj which have 

estimated morris mean and standard deviations close to zero.
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F igure 3.11. Morris screening results on Atmosphere compartment of Model 
I in years 1900, 2000  and 2100. Mean and standard deviations are associated 
with the initial conditions considered in the analysis. The panels on the right 
of the figure display the results excluding the point corresponding to x 3 .
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Table 3.7. Results of Morris experiment on Model I. Initial conditions are ranked 
in order of importance according to the SA measures of Morris mean fi.

C om partm ental Input M orris
O utput Factor Flank

*! 5
3
1

W oody parts 8
o f Trees 4

7
X ° 6

2
5

x° 3
* 3 1

Ground ^4 8
V egetation *5 4

7
X y 6
x l 2
x t 5
®S 3
* 3 1

D e tr itu s / *4 8
D ecom posers *5 4

7
X y 6
*8 2
X ° 5

3
1

A ctive Soil x l 8
Carbon 4

ccg 7
x% 6
x l 2

C om partm ental
O utput

Input
Factor

M orris
R ank

A tm osphere

*1
*2
* 3
x l

x l
x%
x%

5
3 
1 
8
4 
7
6 
2

x t 5
x 2 3
x% 1

Surface ®4 8
Ocean 4

x l 7
X y 6
x  I 2
x f 5
®2 3
* 3 1

D eep 8
Ocean ^ 5 4

x 6 7
X y 6
x l 2

5
x l 3
® 3 1

N onw oody parts ® 4 8
o f Trees * 5 4

x l 7
X y 6
x l 2

3.5.1.3 S tan d a rd  OAT D esign on Transfer Coefficients

The specific form of Model I we consider now is based on fixing the initial con­

ditions of each compartment at their nominal values and treating the transfer 

coefficients as the uncertain model input factors. Using standard OAT design 

on the model transfer coefficients, we now want to assess the degree of influence 
they have on the compartmental outputs. Because of the lack of knowledge about 
the distribution the transfer coefficients follow, we assume that each of these fif­
teen transfer coefficients follow uniform distribution over their ranges given in 

Table 3.3 with their description.
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The simple random sampling regime and two different number of model runs, 

N=100 and N=5,000, are considered in the analysis. Having performed the re­

quired number of model runs using the model and the input data, which is ob­

tained by randomly varying each transfer coefficients OAT over its entire range 
while keeping the rest at their nominal values, we then determine the influence of 
each transfer coefficient on the model outputs from the eight compartments both 

quantitavily and qualitatively. To study if the sensitivity of each compartment 

to the transfer coefficient changes with time we analyze the outputs from years 

1900, 2000 and 2100. Here we shall use the notation kij when we refer to the 

transfer coefficients.

Figure 3.12 shows the simulated time dependent behaviour of the atmosphere 
compartment over the period 1750 - 2100 obtained with N=100 Monte Carlo 

simulations by varying each transfer coefficient OAT. At the top-left corner of 
each graph the varied input factor is specified. In each graph, the 100 prediction 

curves are presented along with the base-line curves. In order to see the effect 

of variation in each k^  the scale on the y-axis kept the same. It is clear from 

this figure that the variation in k2s and k^2 influence the atmospheric content the 
most. /c2 i, k \2  and k&i also appear to be potentially important transfer coefficients 
for the atmosphere compartment. The sensitivity of atmospheric output to these 

transfer coefficients seem to increase with time.

The time dependent behaviour of the other seven compartments due to vary­

ing the transfer coefficients OAT also simulated and the predictions are plotted 
in Figures A.8  - A.14 (see Appendix A for these figures). As with the atmo­
sphere compartment, all the other compartments except the active soil carbon 
compartment are influenced by the variation in /c32 and k2s the most (Figures A . 8  

- A.13), the effect of the changes in /c2i, h i  and k \ 2 on these seven compartments 

is also evident. While it does not show any significant effect on the other com­

partments, &i7 appears to be having some influence on the detritus/decomposers 

compartment. Figure A.14 shows that the active soil compartment is sensitive to 
the variation in all % s but with different degrees. The most influential transfer
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F igure 3.12. Atmospheric CO2 predictions resulting from varying transfer coeffi­
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these input factors). N= 1 0 0  model simulations, IS92a emission scenario is considered. 
In each graph solid line represents the base-line case and dashed lines represent the 
predictions.
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coefficient for this compartment is k5i which is followed by ki&, &6i> &3 2 > &2 33 &75 

and k u . The other transfer coefficients do not appear to have significant effect 

on the output of the active soil carbon compartment.

Even though the sensitivity of all compartments to the variation in the transfer 

coefficients appear to be changing with time, for each compartment the order of 
importance of the transfer coefficients does not seem to be changing through 

time. The change of input factor influence on each compartment with time will 
be examined further with some numerical sensitivity measures.

Sensitiv ity  Index  Considering all compartmental contents in 1900, 2000 and 

2100 the results of Sis performed on the ranges of the 15 transfer coefficients 

when each of them was varied OAT are presented in Figure 3.13. In each graph 

of this figure, we give the sensitivities of all compartmental contents of the three 

years to one of the %s. The SI of each compartment from the three years 
are connected using a different line type each representing one compartment. 

Unlike the sensitivities of the compartments to the initial conditions, here the 

sensitivities tend to increase with time for most of the compartments.
In 1900, no compartment is sensitive to the change in any of the %s. In 

2 0 0 0 , even though all the Sis show some degree of increase, sensitivity of most 
of the compartments to any of the transfer coefficients is still not very large, but 

SI of some compartments in this year is >0.01. The sensitivity of the active 

soil carbon compartment to k5 1 is 0.015 and increases to 0.062 in 2100. The Sis 

of atmosphere, surface ocean, non-woody parts of trees and ground vegetation 

compartments due to the change in &51 in 2 1 0 0  are also above 0 .0 1 .

In 2000, the atmosphere, surface ocean, non-woody parts of trees, ground 
vegetation and detritus/decomposers compartments have SI values for £ 2 3  and £ 3 2  

greater than 0.01, and they increase in 2100. The active soil carbon compartment 

has a low SI in 2000 but it becomes sensitive to both ^ 2 3  and ks2 in 2100.

The results of the OAT designs on fc21 and k i2  show that in 2100 all the 
compartments except deep ocean are sensitive to the ranges of these two transfer
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coefficients. The change in ksi shows an effect on active soil carbon and woody 
parts of trees compartments in 2 1 0 0 . Only woody parts of trees compartment 
content in 2100 is sensitive to the change in k7 4 . The changes in £ 7 5  and k\& 

seem to be having an effect on only active soil carbon compartment in 2100. The 

results due to change in kn  show that only ground vegetation compartment is 

sensitive to this transfer coefficient and this sensitivity is significant only in 2 1 0 0 .
None of the compartmental contents is sensitive to the ranges of the transfer 

coefficients &4 1 , /c85 , /c76, /c86 and k$7 at any of the three chosen years.

In Figure 3.13, we have shown how the range of each kij is influencing all 8  

compartments. Now, by using the same SI calculations we want to summarize 

the results in a different way to show if the order of importance between the 
kijS changes for each compartment at different years. Considering all SI values 
which are <0.07 as indicating low sensitivity and in the interest of shortening 

the discussion, we list the most important three ranked as first(1 ), second(2 ) 

and third(3) in Table 3.8.
Except for the active soil carbon compartment at all three years and woody 

parts of trees compartment in 2 0 0 0 , the most influential transfer coefficients on 

the other seven compartments are k23 and /c32, respectively. £ 5 1  appears to be in­

fluencing the active soil carbon compartment the most in all three years whereas 

it is ranked as the third most influential transfer coefficient on atmosphere com­

partment (in 1900 and 2 0 0 0 ), on both ocean compartments (in all three years) 
on non-woody parts of trees and ground vegetation compartments (in 1900 and 

2000). In year 2100, the influence of k21 and ku  ranked as third for atmosphere 

compartment exceedes the influence of on this compartment, and this is the 

case with non-woody parts of trees compartment as well. For ground vegetation 
compartment in 2 1 0 0  k±2 is ranked as the third important transfer coefficient. 

The sensitivity of woody parts of trees compartment content to the change in /c74 

is ranked as third in 1900 but it became more sensitive to this transfer coefficient 

in 2 0 0 0  where ft74 was ranked as the second and k$2 as the third most important 

factor. In 2100, however, the influence of k74 on this compartment became less



CHAPTER 3. SEN SITIVITY ANALYSIS 100

Table 3.8. Three most effective transfer coefficients from SI - Transfer Coeffi­
cients of Model I are varied OAT.

C om partm ental Input S ensitiv ity  Index (SI)

O utput Factor Year 1900 Year 2000 Year 2100

1 *23 *23 *23

A tm osphere 2 *  32 *32 *32

3 *51 *51 * 2 1 i* 1 2

1 *23 *23 *23

Ocean
2 *32 *32 *32

*513 *51 *51

D eep
1 *23 *23 *23

2 *32 *32 *32
O cean 3 *51 *51 *51

1 *23 *23 * 23
N onw ood y parts 2 *32 *32 *32

o f Trees 3 *51 *51 * 2 1 , *12

W oody parts
1 *23 *23 *23

2 *32 *74 * 32o f Trees
* 2 1 ,* 1 23 *74 *32

G round
1 *23 *23 *23

2 *32

CNCO
■5* * 32

V egetation 3 *51 *51 *12

D e tr itu s /
1 *23 *23 *23

2 *32 *32 *32
D ecom posers 3 *17 *17 *12

A ctive  Soil
1 *51 *51 *51

C arbon
2 * 18 *18 *18

3 *61 *61 *23

significant than the influence of k23 , &3 2} &21 and ki2.
After &23 and k3 2 , the third most important transfer coefficient for detri­

tus/decomposers compartment is k\7 (in 1900 and 2000) but k \ 2 in 2100.

The rankings from years 1900 and 2000 for active soil carbon compartment 

is the same: &51 being the first, ki& the second and &6 i the third most important 

transfer coefficients, but in 2 1 0 0 , k23 becomes the third most influential factor 

after &51 and ki%.

S tan d ard ised  R ange We use the output obtained from performing standard 

OAT design on the 15 transfer coefficients with 100 and 5,000 model evaluations
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to calculate standardised rankings which provide another sensitivity measure. 

The results given in Figures 3.14-3.15 show how the SR of each compartment is 

affected by the change in the 15 Zĉ -s at the three years and by the sample sizes 
considered in the simulations. In each dotchart of these figures we focus on one 
compartment. As the (o) represent the SRs from N=100 and (•) from N=5,000 

model runs overlap, we point out that there is no noticable change in the results 

when we consider different number of model iterations in the analysis, however, 

the results show some change with time for some of the kijS.
The SRs of each compartment in 1900 due to the changes in all the transfer 

coefficients hardly differs one from the other. They are very close or equal to 

zero, and this seems to be the case with all compartments. Year 2000 results for 

atmosphere and nonwoody parts of trees compartments (see the corresponding 

dotcharts in Figure 3.14) show a small increase in SR values due to , &3 2 , &5i> &21 

and &i2 * The increase with the same transfer coefficients is even higher in 2100. 

&i8 also has some degree of influence on these two compartments in 2100. The 
effect of the other Zĉ -s have on the SR values in 2 0 0 0  and 2 1 0 0  is not significant.

As examination of the surface ocean and deep ocean dotcharts given in Fig­

ure 3.14 show both of these compartments present the same picture with different 

range of SR values. &23 and £ 3 2  are the transfer coefficients effecting the SR of 
these ocean compartments the most, and their influence on these two compart­

ments is even higher in 2100. The effect of Zcgi, ZC2 1 , &12 and ki$ on the SR values 

in 2 1 0 0  should also be noted.

As seen in the first frame of Figure 3,15, the SR of woody parts of trees 

compartment is increased a little by the effect of &2 3 , £7 4 , &32, &6 i> &5i> &21 and Zc12 

(in the given order) in 2000. In 2100, however, the influence of these Zĉ -s on 
the results becomes more obvious but in a slightly different importance order; 

£ 2 3  being the most important followed by £3 2 , &2i, &1 2 , £ 7 4  and k$ 1 . The dotchart 
of ground vegetation compartment given in Figure 3.15 presents a quite similar 

picture to what we see in the figures corresponding to the ocean compartments
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(see Figure 3.14). The scale for the SR values is different here but the influence of 

&2 3> &3 25 &5 1 , &2i, &21 and &18 on the SR of this compartment, specially when year 
2 1 0 0  is considered, is clear.

The detritus/decomposers compartment results presented in Figure 3.15 show 

that /u23 and fc32 are again the most influential transfer coefficients, and their effect 

on 2100 results is even higher. For this compartment, ku  is also among the most 

important input factors along with &21 and k\2 . Unlike the other compartments, 
the SR of active soil carbon compartment is influenced by &51 the most, and its 
influence on the results increases with time. We should also note the reasonably 

high effect of ^ 3 , &32 and Â i (in this order) on the SR of this compartment.

From the dotcharts of the SRs, we can easily obtain an importance ranking 

between the transfer coefficients within each compartment at all three years.

3.5.1.4 Morris Design on Transfer Coefficients

Here, the Morris design has been performed considering eight of the 15 transfer 

coefficients as input factors and eight compartmental contents in years 1900, 2000 

and 2100 as the model output variables of Model I.

The set of 8  transfer coefficients (&1 2 , £2 3 , ^7 5 , &S6 , M7 , k ^ ,  &is) taken into
consideration here is the set obtained from Gauss-Jordan elimination procedure 

that we developed to maintain the steady-state condition for the model (see 

Section 3.4). In the Morris experiment a sample size r ~  10 is used. Each of the 
8  transfer coefficients is assumed to follow a uniform distribution over its assigned 

uncertainty range (given in Table 3.3). In the design, each transfer coefficient is 

varied across I =  4 levels. A total number of IV =  90 model evaluations is 

performed.

The values of the Morris mean and standard deviations, for each of the 8  

output variables at the three chosen years, are shown in Table A.2 (given in 

Appendix A), and these values are displayed in Figures 3.16 - 3.18. Since the 
plots for the surface and deep ocean compartments show a very similar pattern 

as the plot of the atmosphere compartment given in Figure 3.16, we have not
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included those plots here. In order to be able to compare the results from the 
three years for each of the compartments, we present them in the same figure. 

The plotted values in all these figures are examined relative to each other to see 

which transfer coefficients are the most important factors for each compartmen- 

tal output, and if the order of importance changes from year to year. In the 
examination of these plots, as a criterion we use the Euclidean distance from the 

origin in the ( / a, a) plane.
The transfer coefficients are ranked according to the Morris sensitivity mea­

sure (i (reported in Table A.2). These rankings are given in Table 3.9 for all eight 

compartments in the three chosen years, and they confirm what we have found 

by examining the plots.
As Figures 3.16 - 3.18 and Table 3.9 reveal, factor k2̂  is the most influen­

tial on all compartments except the active soil carbon compartment. For this 

compartment ki8 is the most important input factor and k2s is the second most 

important factor.
The relative importance of the factors for atmosphere, surface and deep ocean 

compartments in all three years is in complete agreement. The most significant 

factor ft23 is followed by &i2, ki$ and then by Ay5. The other four factors have esti­

mated /a and a values around zero which indicates that these factors do not have 

a large influence on the output of these compartments. For the non-woody parts 
of trees compartment, after the first two most important factors (k2̂  followed by 
&12), the order of importance between the other 6  factors changes slightly between 

the years.

As seen in the left-panels of Figure 3.17, which present the results on woody 

parts of trees compartment, the top three most important factors are k2s, k75 and 
k\2 (in this order), and this order does not seem to change with time. As for the 

rest of the transfer coefficients, the order of importance changes a little from year 

to year (see Table 3.9). The transfer coefficients &235& 12 &nd k±& appear to be 
the three most important factors for the ground vegetation compartment in all 
three years (see the right-panels of Figure 3.17). As Table 3.9 shows, the relative
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Table 3.9. Results of Morris experiment on the transfer coefficients of Model I. 
Input factors ( 8  transfer coefficients) are ranked in order of importance according 
to the SA measure of Morris mean /i.

C o m p a r t .

O u t p u t

I n p u t

F a c t o r

M o r r i s  R a n k s

Y r  1 9 0 0 Y r  2 0 0 0 Y r  2 1 0 0

fc l2 2 2 2

**23 1 1 1

*>75 4 4 4

**76 7 7 7
A t m o s p h e r e

*>86 6 6 6

*>17 5 5 5

*>87 8 8 8

*=18 3 3 3

*>12 2 2 2

*>23 1 1 1

*>75 4 4 4
S u r f a c e **76 7 7 7
O c e a n **se 6 6 6

*>17 5 5 5

*>87 8 8 8

**is 3 3 3

*>12 2 2 2

*>23 1 1 1

*>75 4 4 4
D e e p hre 7 7 7

O c e a n **88 6 6 6
fc l7 5 5 5

*>87 8 8 8

*>18 3 3 3

fo l2 2 2 2

*>23 1 1 1
N o n w o o d y *>75 4 3 4

p a r t s  o f *>70 6 6 6
T r e e s *>88 8 8 7

fe l7 5 5 5

fee 7 7 7 8

*>18 3 4 3

C o m p a r t .

O u t p u t

I n p u t

F a c t o r

M o r r i s  R a n k s

Y r  1 9 0 0 Y r  2 0 0 0 Y r  2 1 0 0

*>12 3 3 3

**23 1 1 1

**75 2 2 2
W o o d y  p a r t s *>76 8 8 8

o f  T r e e s **86 4 5 4

*>17 7 7 7

*>87 6 6 5

*>18 5 4 6

h 1 2 2 2 2

*>23 1 1 1

*>75 4 4 4
G r o u n d **7Q 5 5 5

V e g e t a t i o n *>80 6 6 6

*>17 7 7 7

*>87 8 8 8

*>18 3 3 3

**12 3 3 2

**23 1 1 1

**75 4 4 4
D e t r i t u s / **76 7 7 7

D e c o m p o s e r s **86 6 6 6

**17 2 2 3

*>87 8 8 8

**18 5 5 5

**12 3 3 3

*>23 2 2 2

*>75 7 7 7
A c t i v e  S o i l *>76 8 8 8

C a r b o n *>86 4 4 4

**17 5 5 5

**87 6 6 6

**18 1 1 1

importance of the transfer coefficients does not change with time.

The influence of the transfer coefficients &2 3> &1 7> &12 and ^ 75 on the detri­
tus/decomposers compartment is higher than the influence of the rest of the 

factors, but the order of importance changes from year 2 0 0 0  to 2 1 0 0  between the 

second and third most important transfer coefficients. That is, kw appears to be 
the second and &12 the third most influential factors on this compartment in years 

1900 and 2000, but in 2100 ku  becomes more important than kn.  For the other 

transfer coefficients the order of importance in the three years do not change.
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For the active soil carbon compartment the most influential factors are ki$ 

and then &2 3 . As shown in both Figure 3.18 and Table 3.9 the importance order 

between the transfer coefficients stays the same all three years.

3.5.2 Local SA

As described in Section 2.5.2 of the previous chapter, differential sensitivity anal­

ysis is used to provide local information about the behaviour of the model due 

to small perturbations about a point which is considered to be the base-case 

scenario, i.e. all input factors set equal to their nominal values.

This SA method based on partial differentiation is computationally efficient 
[50]. However, depending on complexity of the model equations the implementa­
tion of the method can be quite intensive, and in such cases complex numerical 

procedures are often required [63], Here we present the results from differential 

analysis applied to Model I. First, the input going into the atmosphere (denoted 

by ui(t) in Equation 3.1 on page 6 8 ) from 1750 to 2100 is estimated by the 

function

Ul(t) = 0.1265 e0-01513̂ 1750)

where ui(t) is the annual emission (Gt C/yr) and t is the year. Then, using the 

Laplace transformation approach described in Section 2.3.2 the model equations 

were solved analytically. Next, a base-case vector consisting of the nominal val­

ues of the independent variables was defined and the required first-order partial 
derivatives of the dependent variables of interest, with respect to the indepen­
dent variables, were calculated at the corresponding base-case values and the 

three chosen time points.
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3.5.2.1 Local SA on Initial Conditions

The sensitivity coefficient for a particular independent variable, i.e. an initial 
condition in this case, is calculated from the partial derivative of each depen­
dent variable (i.e. compartmental output, yi(t) , ..., y&(t)) with respect to the 

independent variable. Partial derivatives of Model I equations describing the 

compartmental CO2 contents were calculated for each initial condition, that is 

the sensitivity matrix

S(t) =

dyi dyi dyi dyi dyi dyi dyi dyi
dxi dxl dx% dxl 8xk Bxr dx% dxi
dyi dyi dyi dyi dyi dyi dyi dyi
dx? dx% dx?. dx°A dx% dxp dx$ dxi

dy& dy& dy& dy8 dy8 dy8 dy8 dy8
8x° dx g dx|  c?o;| etog t?a;| dx£ Sa:|

which is evaluated at the nominal conditions x° = (aij,..., ajg) and at year t is 

constructed. Let yp represent the output of the pth compartment (p = 1,..., 8 ) 

and x° the initial content of the ith compartment (i — 1 , 2 ,..., 8 ), and t the year 
at which we evaluate the sensitivities. Each row of this sensitivity matrix shows 

how sensitive a specific compartmental content at a given time is to the initial 

conditions of the eight compartments.
In order to remove the magnitude of unit effect from the sensitivity coefficients 

the numerical results are standardised by multiplying the partial derivatives by 

Xi/y°(t)y where x° and y°(t) correspond to the base-case result of the model. For 

example, the partial derivative dyi/dx% is standardised as (dyi/dxl) {x\/ylit))  . 
This coefficient then indicates the effect on the dependent variable (yi) of equiva­

lent fractional change of base-case values for the individual independent variable 

(rcg). As noted by Iman and Helton [63] such coefficients are often referred to as 

normalized or standardized sensitivity coefficients. We shall call them standard­

ized sensitivity coefficients.
The rankings of the absolute value of the standardized sensitivity coefficients 

within each compartment are given in Table 3.10. The ranking starts with the
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Table 3.10. Rankings of the initial conditions to Model I based on standardised 
sensitivity coefficients evaluated in years 1900, 2000 and 2100.

C o m p a r t .

O u t p u t

L o c a l

S e n s i t i v i t y
Y r  1 9 0 0 Y r  2 0 0 0 Y r  2 1 0 0

0 y s 4 4 4

Oya 0 * ° 5 5 5
W o o d y  p a r t s Oya On  I 1 1 1

o f  t r e e s 0 y s o*Z 8 8 8

Oy a On  | 3 3 3

(y s ) Oya 7 7 7

Oya 0tn? 6 6 6

Oya 2 2 2

Ov a 0ni° 4 4 4

Oy a 0 a: 5 5 5
G r o u n d O y a On  | 1 1 1

v e g e t a t i o n O v a Ooig 8 8 8

O y  a 001° 3 3 3

( v e ) O y a 0 o ,§ 7 7 7

O y  a 0(0 ? 6 6 6

Oya On % 2 2 2

O y  7 Oml 4 4 4

O y  7 003° 5 5 5
D e t r i t u s / Ovt 0 a ,° 1 1 1

d e c o m p o s e r s O y  7 0 0 ,4 8 8 8

O y  7 On  g 3 3 3

(W 7) O y j On ° 7 7 7

O y r 0OJ? 6 6 6

O y  7 001° 2 2 2

O y a 0 0 , ; 4 4 4

O y a 001° 5 5 5
A c t i v e  s o i l O y a 0a>° 1 1 1

c a r b o n Oya 0 m ° 8 8 8

Oya 0<o° 3 3 3

( v s ) Oy a 0 0 ,° 7 7 7

Oy a 0 m ? 6 6 6

Oy a 001° 2 2 2

C o m p a r t .

O u t p u t

L o c a l

S e n s i t i v i t y
Y r  1 9 0 0 Y r  2 0 0 0 Y r  2 1 0 0

O y  1 /  S o ,; 4 4 4

0 y i /  0 ® a 5 5 5

A t m o s p h e r e
0 y i /  0 “>3 1 1 1

0 y i /  0 ® 4 8 8 8

( y i )
0 y i /  S a js 3 3 3

0 y i / 7 7 7

0 y i /  0 a , ; 6 6 6

0 y i / 2 2 2

0 y  2 /  0 a ,? 4 4 4
0 y a /  0a>2 5 5 3

S u r f a c e O y  2 /  0 ® g 1 1 1
o c e a n 0 y  2 /  0 a ,£ 8 8 8

0 y a / e « i 3 3 3

( y a ) 0 y a / 7 7 7

0 y a /  001° 6 6 6

01 /2 / 2 2 2

0 y 3 /  0 ,1 ° 4 4 4

Oya /  0 * 2 2 3 3
D e e p Oy a / 1 1 1
o c e a n O y  3 / 0®S 8 8 8

0 y 3 /  S “ B 5 5 5

( y a ) 0 y 3 / 7 7 7

Oya /  003? 6 6 6

Oya / 3 2 2

O y  4 / 0 m ° 4 4 4

0 V 4 /  0a>g 5 5 5
N o n w o o d y 0 y 4 / 1 1 1

p a r t s  o f  t r e e s 0 y 4 /  eiD4 8 8 8

0 y 4 / 3 3 3

( y 4 ) 0 y 4 /  a « g 7 7 7
0 y 4 / 0°*7 6 6 6

0 V 4 / 0 ® 8 2 2 2

highest coefficient taking rank 1 , the second highest taking rank 2 , and so on.

Within Table 3.10, except for y3 the order of all compartmental outputs agree, 

and this order does not change within the three years. The disagreement between 

the ranking for y$ and the ranking for all the other dependent variables is mod­
erate. For all seven compartmental outputs appears to be the third most 
effective input factor, but it is ranked as the fifth most influential factor for y3 . 

rrg is ranked as the second most effective input factor for all compartments in­

cluding 2/3 in years 2 0 0 0  and 2 1 0 0  but it is ranked as the third most influential 

input factor in year 1900. All eight compartmental outputs at all three years
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appears to be the least influenced by x\.

3.5.2.2 Local SA on T ransfer Coefficients

Again using the analytical solutions of Model I equations, the partial derivatives 

of yp s with respect to each transfer coefficient are obtained (see Table 3.3 for 
the description of the transfer coefficients). Then using these partial derivatives, 

given in the following sensitivity matrix, the sensitivity coefficients are calculated 

about the vector of base-case values for the transfer coefficients

k =  (&21? &41j &51) &61) &12? &32) &23) &74> &75> &85j 7̂6j &8G: &17> &87> &is) &nd &t t =1900, 
2000 , 2100

dyi dyi dyi dyi dyi dyi dyi dyi dyi dyi dyi dyi dyi dyi dyi
dk2i dkn dkm dkgi dkn dk82 dk2a dk74 Ofcrs dk35 dk̂ Q dk8g dkn dks7 dkis
dy2 dy2 dy2 dy2 dy2 dy2 dy2 dy2 dy2 dy2 dy2 dy2 dy2 dy2 dy2

G   dk2i dkn dksi dkg 1 dk 12 dk32 dk23 0/1:74 dk75 dkas dk75 dkas dki7 dk87 dk%s
° 0 0  —

dya dya dya dya dya dya dy8 dy& dya dya dys dya dya dys dya
dk2i dkn dkgi dkgi dki2 dk82 dk2a 0/074 0&75 dkas 0̂ 76 dkae dkn dk87 dkia

The rankings of the absolute values of these sensitivity coefficients within each 
compartment are given in Table 3.11.

The ranking of the sensitivity coefficients for the transfer coefficients (as indi­

cated in Table 3.11) changes slightly from year to year. At all three years, &23 is 

ranked as the most important input factor for all compartmental outputs. The 
first three most influential transfer coefficients on the output of the atmosphere 

(■yi) and the surface ocean (7/2 ) compartments appear to be the same, /c2 3 ,&3 2 , 
and &1 8 . Except for 7/4, ^74 is the least important transfer coefficient for all com­

partmental outputs in all three years. For 7/4, ku  is ranked as the least important 

input factor. The second and third most important transfer coefficients for the 
deep ocean compartment are Aqg and A3 2 , respectively. ku  is the second most 
important input factor for 7/4, and it becomes the third most effective transfer 

coefficient for 7/7 by 2100, but for the other compartmental outputs it is ranked 

as one of the least important input factors.
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We now move from local SA methods, used to evaluate the relative importance of 
model input factors in a qualitative manner, to global SA methods which provide 

a more quantitative assessment of the relative influence of the input factors.

3.5.3 G lobal SA  M eth od s A pplied  to  In itia l C onditions

In order to identify the model input factors to which model behaviour is most 
sensitive, we now consider various global SA techniques and analyses, including 
correlation coefficients, standardized regression coefficients, partial correlation 

coefficients.

In the Monte Carlo model simulations the steady-state restriction is preserved 

by following the procedures explained in Section 3.4. In the analyses, N=100 and 

N=5,000 model runs are considered.
Because, in global methods, we vary the input factors simultaneously, the 

Monte Carlo iterations might not provide estimates that are compatible with the 

historic records of atmospheric CO2 . With the 8 -compartment model this situ­

ation arises when we vary the initial conditions simultaneously. In such cases,

‘ windowing analysis* can be conducted on the model predictions to obtain a sam­
ple of model predictions that are in broad agreement with the observed pattern. 

Now, we shall describe briefly how this analysis is performed.

3.5.3.1 W indowing Analysis

This analysis has been used by King & Sale (1990) of CDIAC (Carbon Dioxide 

Information Analysis Center) in a technical report for the U. S. Department of 

Energy (see [73]). In this report, they introduced windowing analysis as one of 

the steps in a procedure for uncertainty analysis of atmospheric CO2 , in which 
sensitivity analysis is considered as another step. Because according to them, 

sensitivity analysis is based on the estimation of changes in model output in 
response to very small (1 % coefficient of variation on all model parameters) or 

local changes in model parameters, windowing analysis, on the other hand, is
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based on model parameters with wide uncertainty ranges (±50% of their nominal 
values) and assuming that they all follow uniform distribution, they consider 
windowing and sensitivity analysis as two separate analyses.

In more recent work done by Grieb et al. [40] windowing is used in the analysis 

of a global carbon cycle model (called GLOCO) in order to adjust the values 
of model input parameters to achieve an acceptable match between observed 

and predicted model conditions. In this paper, after they obtain the GLOCO 

parameter space using windowing, they then demonstrate a new tree-structured 

density estimation technique to explore parameter interaction in the terrestrial 

ecosystem module of the model. The terminology “windowing” we adopted from 
King & Sale is not used by Grieb et al. but the procedure followed is essentially 
the same. Grieb et al. define a set of performance criteria by giving acceptable 

ranges of values that three model output variables take in year 1970 (the end of the 

historical period considered), and compared the model output, at the conclusion 

of each historical simulation, with these criteria. Then, the model predictions 
that meet the performance criteria referred to as “passes” or “behaviours” are 

taken into account in the analysis.
Windowing analysis can help to reduce the concerns about the validity of 

predictions made by simulation models, especially global carbon cycle models for 

which incompleteness of scientific understanding always exists.
Windowing also helps to improve our understanding about the model input 

factors, and a better understanding of model inputs will also lead to better model 

predictions, hence the credibility of the model can be improved.

In this thesis, we consider windowing as a step to sensitivity analysis; first by 

conducting windowing analysis we filter model predictions through a window 

defined by the variance around the Mauna Loa records of historic atmospheric 
CO2 from the period 1958-2000; then by considering only the predictions which 

pass wholly through the filter, i.e. lie within the defined window, we apply 

sensitivity analysis to the resulting input and output sets. The input sets that 

result in model predictions which meet the windowing criteria are referred to
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as ‘good’ and the others as ‘bad’ sets. Windowing can then be described as a 

screening or filtering algorithm.

W indowing Analysis w ith the Initial Conditions of M odel I The specific 

input factors subject to windowing analysis are the 8  initial conditions. In the 

figure below (Figure 3.19) an illustration of windowing analysis on N=100 Monte 

Carlo simulations of atmospheric CO2 is presented. Out of 100 model predictions 
54 runs that met the window criterion described above were obtained.

Any point within the eight dimensional input space can be identified as leading

i i i i a aa i i i iM i i a i i i
iiiiiisJi»iss»iJii

i i i i i a a ia a i i i i i i i i itiiiiiiiiiitiiisii!

o
0
ca>
coo

C\JOOo

1800 1900
Year

2000 2100

Figure 3.19. Illustration of windowing N=100 atmospheric CO2 predictions re­
sulted from varying Model I initial conditions (xj, ..., rcg) simultaneously. The 
dotted curves are the model predictions for atmosphere compartment. The win­
dow obtained using the observed historical data (from Mauna Loa observatory; 
1958-2000) is indicated by a dark grey shaded region. The set of the prediction 
curves that met the windowing criteria (54 out of 100 model simulations) are 
highlighted with a light grey shaded area.
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to a good or bad simulation by running the model with the corresponding input 

vector and applying the windowing criteria to the output. The good sets and 

their corresponding model predictions are then used in the global SA methods 
applied. But before proceeding with the application of these methods, we want 

to take a step back and find out what is happening in the input space as a result 

of windowing analysis. In other words, we wish to identify specific regions of the 

input space where the likelihood of obtaining good model runs is high, and also 

investigate how input factors contribute to the separation of good and bad runs. 
For this purpose, discriminant analysis and classification is used.

Using discriminant analysis we aim to find out how well it is possible to sep­

arate good and bad model runs. Several methods for discriminant analysis have 

been developed and these methods can be found in many multivariate analysis 
books (see [67], [35]). Differences between methods arise because of the variety of 
the assumptions made about the variables describing each observation to be clas­

sified. Here we first consider Fisher’s linear discriminant analysis method. This 

method is one of the most widely used discrimination methods, and it is based 

on the assumption that the within-group covariances are the same. Because this 
method involves knowledge of the population covariance matrices and of course 

we do not have such knowledge, we can either assume that our groups have the 

same covariance matrix and carry out Fisher’s linear method or use quadratic 

discriminant analysis method which does not require this assumption.
The performance of both Fisher’s linear method and quadratic method applied 

on the original and cross validated data are presented in Tables 3.12(a) and (b) 
respectively. In both methods, we assume that the prior probabilities for the two 

groups are equal.

The classification results in Table 3.12(a) show that 73% of good and 63% 

of bad cases are correctly classified, and the overall classification rate is nearly 
6 8 %. The cross-validation routine, which takes approximately four times longer 
in computation time but provides more realistic misclassification rate, estimates 

the overall correct classification rate to be 63%.
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Table 3.12. Classification performance on (a) Fisher’s discriminant method and 
(b) Quadratic discriminant method assessed on the original and cross-validated 
sample where 100 good and 116 bad sets of model initial conditions are involved.

(a) F ish e r ’s d iscr im in an t m eth od :

P red ic ted  G roup

A c tu a l G roup good bad T ota l N N  C orrect P ro p o rtio n

good 73 27 100 73 0.730
O riginal bad 43 73 116 73 0.629

N  =  216 ; N  C orrect =  146 ; P ro p o r tio n  C orrect = 0.676

C ross
V alid a ted

good 65 35 100 65 0.650
bad 45 71 116 71 0.612

N  =  216 ; N  C orrect =  136 ; P ro p o r tio n  C orrect = 0 .630

(b) Q u ad ratic  d iscr im in an t m eth od :

P red ic ted  G roup

A ctu a l G roup good bad T ota l N N  C orrect P ro p o rtio n

good 89 11 100 89 0.890
O riginal bad 5 111 116 111 0.957

N  =  216 ; N  C orrect =  200 ; P ro p o r tio n  C orrect = 0 .926

C ross
V a lid a ted

good 71 29 100 71 0.710
bad 17 99 116 99 0.853

N  =  216 ; N  C orrect =  170 ; P ro p o r tio n  C orrect = 0 .787

Table 3.12(b) shows the number of observations in the original and cross­

validated samples correctly and incorrectly classified using a quadratic discrimi­

nation method. Compared to the linear method this method gives higher overall 

classification rates, about 93% with original data and about 79% with cross- 
validation. The quadratic approach proves to be deriving a better decision rule 

for classifying good and bad model runs.
So far we have interpreted the results of standard discrimination analysis in 

terms of the linear and quadratic combinations of all eight input factors which 

separate two groups from each other. Next, we carry out discriminant analysis in 

a stepwise manner to find out if there is a subset of input factors which maximizes
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the discriminating power. With this approach variables (initial conditions x?) are 

added to the discriminant function one by one until it is found that adding 

extra variables does not provide significantly better discrimination. There are 
many different criteria which can be used for entering and removing variables. 
Stepwise method is available in SPSS, and different criteria used for this method 
are explained in SPSS User’s Guide (see [90]). Application of stepwise analysis 
to our data show that except for cc|, all initial conditions are dropped and the 

analysis has only one step. The classification results of this analysis based on 

Fisher’s linear method (see Table 3.13(a)) indicates that with only £ 3  considered 

as predictor 69% of the data is correctly classified using either original or cross­

validated grouped cases. As the results in Table 3.13(b) show, the quadratic 
method leads to higher proportion of cases to be correctly classified, 91.2% when 

original and 90.7% when cross-validated data were used.

The stepwise analysis results shows that all initial conditions except x\  are 

not important as predictors considering the data in hand.
Next, we consider a completely different approach called classification trees. 

This new method, which is an exploratory technique for revealing structure in 

data, developed in 1980s is gaining widespread popularity [16]. Using this method 

we aim to obtain more accurate classifiers. Given a set of variables which might 

be useful discriminators, this method picks out the best variables and then a 

binary split is performed using this variable which provides the smallest number 

of misclassifications for the data. By repeating this process, futher binary splits 

are made in order to reduce the misclassification error on the data. The split­

ting process continues until we reach a suitable stopping point. This procedure 
is diagrammed as a tree referred to as classification tree. S-PLUS has built-in 
software for this method (see Chapter 9 of Ref. [16] for a detailed description of 

the method). The branches of such trees correspond to divisions in the sample 

space. Nodes which are labelled by class labels are represented by ellipses (inte­

rior nodes) and rectangles (terminal nodes). The misclassification error rates are 

given under each terminal node.
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Table 3.13. Classification performance on (a) Fisher’s linear discriminant 
method and (b) Quadratic discriminant method used for stepwise discriminant 
function analysis where only £ 3  found to be a significant discriminator.

(a) F ish e r ’s linear d iscr im in an t m eth od :

P red ic ted  G roup

A c tu a l G roup good bad T ota l N N  C orrect P ro p o rtio n

good 73 27 100 73 0.730
O riginal bad 40 76 116 76 0.655

N  =  216 ; N  C orrect =  149 ; P ro p o r tio n  C orrect == 0 .690

C ross
V alid ated

good 73 27 100 73 0.730
bad 40 76 116 76 0.655

N  =  216 ; N  C orrect -  149 ; P ro p o r tio n  C orrect == 0 .690

(b) Q u ad ratic  d iscr im in an t m eth od :

P r e d ic te d  G roup

A c tu a l G roup good bad T ota l N N  C orrect P ro p o rtio n

good 88 12 100 88 0.880
O riginal bad 7 109 116 109 0.940

N  — 216 ; N  C orrect =  197 ; P ro p o r tio n  C orrect -= 0 .912

C ross
V alid a ted

good 87 13 100 87 0.870
bad 7 109 116 109 0.940

N  =  216 ; N  C orrect =  196 ; P ro p o r tio n  C orrect == 0 .907

Figure 3.20 presents a display of a classification tree grown to the windowing 
data. In this tree only £ 3  is used. At the first step all observations are classified as 
bad predictors with 100 misclassifications. The first split is on £ 3 , the model runs 

resulted from input sets which have £ 3  value of less than 35173.2 are classified 

as ‘bad5 with an error rate of 0/74, and those with an £ 3  value of more than

35173.2 are classified as ‘good’ model runs with an error rate of 42/142. The 
‘good’ node undergoes further splits using again £3 . When takes values of less 
than 42418.9 the corresponding model predictions are classified as ‘good’ with 

an error rate of 3/103 and when the values of £ 3  are greater than 42418.9 the 

predictions are classified as ‘bad’ with an error rate of 0/39.
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100/216
x30<35173.2

42/1420/74
x30<42418.9

0/393/103
x30<35794.7

x30>35794.7

1/982/5
x30<41965.2

x30>41965.2

0/93 1/5

F igure 3.20. Classification tree showing the performance of the windowing data. 
The class of the predicted response variable (g-for ‘good’, b-for ‘bad’) is centered 
in the node. The number underneath each terminal node is the misclassification 
error rate.

The third split is on a ‘good’ node but as we can see from the tree an over- 

fitting has occurred here. In such cases, a pruning procedure can be used. Now 
using ten-fold cross-validation within S-PLUS we prune the classification tree 
shown in Figure 3.20. The pruned tree is displayed in Figure 3.21. Applying 

cross-validation suggests that a tree with 3 terminal nodes is suitable and that a 

more realistic estimate of the likely misclassification rate with new input sets is 

54/216 =  25%.
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x30<35173.2
/ x30>35173.2

b
0/74

x30<42418.9
/ x30>42418.9

A
g

3/103 0/39

F igure 3.21. A pruned version of the classification tree given in Figure 3.20.

Having found N=100 input sets which we know result in atmospheric CO2 pre­
dictions that match with the Mauna Loa obervations reasonably well, we then 
perform the model calculation for all eight compartments. The same proce­

dure was repeated using N=5,000 good input sets obtained through windowing 

analysis. The time-dependent behavior of each compartmental output following 

windowing analysis are presented in Figure 3.22 for N=100.
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F igure 3.22. Dependent variables predicted by Model I following windowing anal­
ysis: CO2 content of (a) Atmosphere, (b) Surface ocean, (c) Deep ocean, (d) Non­
woody parts of trees, (e) Woody parts of trees, (f) Ground vegetation, (g) Detri­
tus/decomposers, and (h) Active soil carbon compartments as a result of varying 
all input factors (x°s) simultaneously. Emission scenario IS92a is considered in the 
model calculations.
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As we have done in screening procedures (Section 3.5.1) and local SA (Section 

3 .5 .2 ), in the application of global SA methods we consider N=100 and N=5,000 

samples, and study the compartmental contents in years 1900, 2000 and 2100.

We now start the analyses with the generation of scatterplots which are known 

to be a good starting point in a sensitivity study.

3.5.3.2 Exam ination of Scatterplots

A scatterplot of each response variable (i.e. the predicted CO2 content of each 

compartment at a chosen year) against each predictor (i.e. initial condition of 
each compartment) enables us to investigate the relationship between the model 
outcome and each of the model inputs.

The scatterplots for the atmosphere compartment are given in Figure 3.23 

for N=100. The plots on each row of this multiple plot represent the results 

from each of the years considered. In this figure, it is clear that patterns in the 

scatterplots corresponding to the same response and explanatory variables do 

not change between the three years. Within the same compartment the scat­
terplots for £ 3  display a clear linear pattern, but for the other initial conditions 
the points are widely scattered. There is no evidence to suggest any linear or 

non-linear relationship between these explanatory variables and any of the re­

sponse variables. Since we assume that the input factors are independent in this 

sample-based study and generate an independent sample for the model inputs, 

the explanatory variables are not correlated. The scatterplots for the other seven 
compartments with N=100 and for all eight compartments with N=5,000 are also 
produced but due to space limitations these scatterplots are not given in this the­
sis. However, these scatterplots present patterns very similar to the patterns we 

see in Figure 3.23; a very strong linear association between £ 3  and the individual 

compartmental outputs and hardly any relationship between the other predictors 

and the dependent variables.
Examination of these scatterplots has provided us with a good indication
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F igure 3.23. Scatterplots of predicted Atmospheric CO2 content in years 1900, 
2000 and 2100 versus each compartment’s initial condition (x°). To calculate 
these N=100 model predictions Model I with IS92a emission scenario is used.

about £ 3  being the only initial condition dominating variation in all compart­

mental outputs. Hence, we do not expect the further analysis to reveal differ­
ent results, but to see if the degree of influence the other inputs have becomes 
more/less apparent with different methods we carry out some other SA proce­

dures on the data.

Next, some numerical measures are calculated to distinguish between the 

input factors that appear to have a significant effect on a predicted compartmental 

output and the input factors which appear to have little or no effect. Since there 
is an apparent linear relationship between £ 3  and all yiS (i.e. all compartmental 
outputs) we have calculated the Pearson correlation coefficients on the input and 

output values. Then on the basis of their correlation coefficients we have ranked 

the input factors. We note that the calculated Pearson correlation coefficients 

hardly change between the three chosen years, that is, the contribution of the



CHAPTER 3. SEN SITIVITY ANALYSIS 127

input factors to prediction uncertainty is the same in 1900, 2000 and 2100.
The calculations based on both N=100 and N=5,000 show that £ 3  with a 

correlation coefficient of about 0.994 (ranked 1) has a substantial effect on all 

predicted compartmental contents at all three years. With N=100 simulations 

(with correlation coefficient of around 0.153, ranked 2) and x% (with correlation 

coefficient of 0.132, ranked 3) seem to have some small effect on the dependent 
variables, with N=5,000 however except for £ 3  none of the other initial conditions, 
which have correlation coefficients varying between 0.027 and 0.00007, seem to 

have any effect on the model predictions of any compartment.

3.5.3.3 Regression M ethods

The multiple regression of each model prediction (y*,i =  1,..., 8 ) on all the input 

factors (27?, i = 1 ,..., 8 ) simultaneously estimates all the initial condition sensitiv­

ities. However, based on our diagnostics of the scatter plots and the correlation 

coefficients given in the previous section, it is clear that only (the initial condi­

tion of the deep ocean compartment) is a useful explanatory variable in explaning 

the variability of each of the response variables, and because the relationship be­

tween each response and x°z appear to be linear, we use linear regression to explore 

the dependence of each compartmental output at chosen times on £3 .

Considering each model prediction in 1900, 2OO0and 2100 as the dependent 
variables and £ 3  as the independent variable, the construction of regression 

models with N=100 model iterations give us R 2 =  98.9% when the predictions 

yi(t = 1900) and yi(t =  2000); and R 2 =  98.7% when yi(t = 2100) are considered. 

When N=5,000 the coefficient of determination R 2 =  99.2% is the same for all 

compartmental predictions at all three times. In short, these very high R 2 values 

indicate that the regression models of each yi on £ 3  are accounting for most of 
the uncertainty in the corresponding yim The contribution of the remaining initial 

conditions to R 2 is about 1 % only.
In SA based on regression procedure the standardized regression coefficients



CHAPTER 3. SEN SITIVITY ANALYSIS 128

(SRCs) are used as a measure of variable importance. As an example, the re­

gression model, including all eight explanatories in it, for N= 1 0 0  atmospheric 

predictions in 2100 with the SRCs is

yx(t = 2100) =  0.0364+[ +  0 .0 3 9 1 4 +  1.0018 ^  +  0 .0022^ +  0.0369^

+  0.0035 xl  +  0.0063 x? +  0.0659 xl

where yi(t — 2 1 0 0 ) and a;?, (i = 1 ,..., 8 ) have been standardized to mean zero and 

standard deviation one. The SRCs in this equation provide a characterization of 
input factor importance. For instance, for perturbations equal to a fixed fraction 

of their standard deviation, the impact of £ 3  is approximately 1420% larger than 
the impact of xl  (i.e., (1.0018 - 0.0659)/0.0659 =  14.20). The situation with
the other response variables at all three times and with different N is not any

different.

For the purpose of comparing the sensitivity rankings of the input factors we 

obtain from various SA methods, here we also provide the absolute ranking of 

the SRCs: xl  (rank: 5), x\  (rank: 3), £ 3  (rank: 1), £ 4  (rank: 8 ), £ 5  (rank: 4), xl 
(rank: 7), (rank: 6 ) and Zg (rank: 2). We shall note that this ranking does 
not change with the sample size N and the model prediction y*.

3.5.3.4 Stepwise Regression

In this analysis, a variable was required to be significant at an a-value of 0.01 
to enter a regression model and to remain significant at an o:-value of 0.05 to be 
kept in a regression model, although no variable was entered and then dropped 

from a model.

As expected, based on the results we presented in the two previous subsec­

tions, in the first step of the stepwise regression procedure £ 3  is entered into the 

least squares multiple regression models for all response variables calculated at 

three years with N—100 and N=5,000 model runs (see Table 3.14). The analyses 

with £ 3  in the model yields a very high R2-value of 98.94% in 1900 and 2000; and
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Table 3.14. Stepwise regression analyses for output variable y\ of Model I in 
years 1900, 2000 and 2100; based on N=100 and N=5,000 model runs; and IS92a 
emission scenario.

y i p  = 1900) y±{t = 2000) V iP  = 2100)

S tep V ariable R 2 V ariable R 2 V ariab le R 2

1 0.9894 * 3 0.9894 # 3 0.9868
2 x l 0.9954 X °8 0.9954 * 8 0.9934

0 3 X°5 0.9972 *5 0.9972 0.9954
II 4 X° 0.9986 X° 0.9986 0.9966II 5 x l 0.9999 x l 0.9999 X° 0.9976

6 X° 1.0000 x °r 1.0000
7 x° 1.0000 x°6 1.0000
1 0.9915 * 3 0.9915 x l 0.9915

CS
0 2 x°8 0.9957 *8 0.9957 X% 0.9957
in' 3 X° 0.9972 *2 0.9972 X°2 0.9972
II 4 X° 0.9986 mox 5 0.9986 x% 0.9986

£ 5 x l 0.9999 0.9999 x l 0.9999
6 X7 1.0000 1.0000 X7 1.0000
7 X°6 1.0000 x° 1.0000 x l 1.0000

98.68% when year 2100 predictions are used. The coefficient of multiple determi­

nation calculated for all y* with N=5,000 model iterations is slightly higher (i.e., 

99.15% with all three years’ predictions). In the following steps of the analyses, 

other initial conditions with significant p-values were also added to the models, 
but after allowing for the effect of x 3 in the model their contribution to R 2 is 
very small. The results for each compartmental prediction (y )̂ are very similar 

in the sense that the same variables were selected with R 2-values that are quite 

similar and the order of variable selection did not change. Here we include the 

results for only the atmosphere compartment.

As mentioned in Section 2.5.6 when there is non-linear monotonic relationship be­
tween the variables the rank transformation often is an effective way of improving 

the resolution of regression based SA, however, in this case with the initial con­

ditions where we have no monotonic relationships applying rank transformation 
on the data is not appropriate.
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3.5 .4  G lobal SA  M eth od s A pplied  to  Transfer C oefficients

In this section, we wish to explore the mapping from the uncertain transfer co­

efficients kij listed in Table 3.3 to the corresponding uncertain model outcomes 
~  t =  1900,2000,2100. First, we illustrate the time dependent

behaviour of the outcome of all eight compartments resulting from N=100 model 

runs in Figure 3.24. Each curve in these plots is calculated conditional on the 

steady-state restriction explained in Section 3.4. The variability in all compart­

mental predictions increases with time. Now, using a number of global SA pro­

cedures we wish to determine the effects of individual input factors on the model 
outcomes. As in the SA involving the initial conditions we again start the analysis 

by examining the scatterplots.
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Figure 3.24. Dependent variables predicted using Model I: CO2 content of 
(a) Atmosphere, (b) Surface ocean, (c) Deep ocean, (d) Nonwoody parts of trees, (e) 
Woody parts of trees, (f) Ground vegetation, (g) Detritus/decomposers, and (h) Active 
soil carbon compartments as a result of varying selected 8 transfer coefficients (kijs) 
simultaneously. Emission scenario IS92a is considered in the model calculations.
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3.5.4.1 Exam ination of Scatterplots

The scatterplots that show the relationships between the sampled transfer co­

efficients (see Table 3.3 for the description of these kij) and the predicted CO2 

content of the atmosphere compartment (i.e., y\) in 1900, 2000 and 2100 are given 

in Figure 3.25. The plots of y\ in the three years versus each transfer coefficient 
present quite similar pictures. This is also true for all the other compartments. 
At this point we shall note that to preserve space the scatterplots for the rest 
of the responses (y2, ■•■̂ ys) at the three chosen years (1900, 2000 and 2100) with 

both N=100 and N=5,000 model runs are not included in this thesis.

Here, we give the scatterplot matrix of yi(t = 2100) and the (see Fig­

ure 3.26) considering the results from N= 1 0 0  model runs. In this scatterplot 

matrix, we can examine the relationships between the ouput variable and each 
of the input factors as well as the relationships among the input factors.

The correlation structure between the sets of free and basic transfer coeffi­

cients, which are obtained using Gauss-Jordan approach to maintain the steady- 

state condition (see Section 3.4, Equation 3.7), is revealed in this matrix plot (see 
Figure 3.26). As given in Equation 3.7, k2 1 is directly proportional to ki2, k%2 

to k2$ and Aq 1 to ^7 4 . So each of these pairs of transfer coefficients are perfectly 

correlated. The associations between k±i and A4 7 ; &51 and A7 5 ; &61 and A:76; A/74 

and A;i7 ; Â5  and Aqg are very strong. Since each of the basic transfer coefficients 

(k2i, &4 1 , A5 1 , kei, AJ3 2 5 AJ74 and £5 5) is highly correlated with at least one of the 

free variables (Aq2, A;23 , A/75, kre, A^, A4 7 , A^, k\s) that are independent in the 
further analysis we take into consideration only the eight free kij as model input 

factors.
If we scan across the first row of the scatterplot matrix given in Figure 3.26, 

it is no surprise to see the same nature of a relationship between yi(t — 2 1 0 0 ) 

and both /c32 and A;23; and also with both k2i and Aq2. It is clear that the high 

yi(t = 2100) values are those with low A;23 (or k32). It is less obvious (with 

N=100) but also clear (with N=5,000) that as Aq2 (or k2i) increases, less C 0 2 is 

transfered into the atmosphere compartment in year 2 1 0 0  and yi(t =  2 1 0 0 ) falls.
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Overall, there is a strong linear association between yi(t) and both k23 and ki2} 
but no particular association with the rest of the free input factors.

The rankings of the absolute correlations (i.e., the largest CC is given rank 1, 
the next largest CC is given rank 2 , and so on) of the free transfer coefficients with 
all the response variables are given in Table 3.15. As the table of the absolute CC 
values (given in Table A.3 in Appendix A) reveals most of the CC values based on 

N=100 model runs are slightly higher than the CCs obtained from N=5,000 model 

runs, and also the order of importance between the transfer coefficients for the 

same compartment at a certain year changes with N (see Table 3.15). Because of 
the high dimension of the input space (eight, in this case), and because compared 
to N= 1 0 0  sample size, N=5,000 provides a better coverage of the sample space of 
the input factors, and hence more reliable SA results, we have decided to present 

and discuss the results from the global SA methods based on N=5,000 model 

evaluations in the remainder of this chapter.

The importance rankings in Table 3.15 indicates that the top three most influ­
ential transfer coefficients on the atmosphere, surface and deep ocean, nonwoody 

parts of trees, and ground vegetation compartments are k25i k \ 2 and k\§ in this 
order. Even though the corresponding CC values change with time, the order of 

importance stays the same. k23 appears to be the most influential transfer coef­

ficient on all compartmental outputs except the active soil carbon compartment. 

The calculated CCs between k2$ and all seven compartmental outputs at all three 
chosen years are quite high; in absolute value they vary between 0.69 and 0.97. 

&23 is particularly highly correlated with the ocean compartments; CC with the 
surface ocean compartment is around -0.96 in year 1900, decreases to about -0.94 

in year 2000 and increases to around -0.98 in year 2100. As for the CCs between 

the output of the deep ocean compartment and £2 3 , if is about 0.97 in all three 

years (see Table A.3 in Appendix A).
For the woody parts of trees compartment, following k2$ the second and the 

third most important transfer coefficients appear to be ^ 75 and &1 2 , respectively, 
and this importance order does not change from year to year. The CC with k75
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Table 3.15. Rankings of absolute Pearson correlation coefficients (CC) for the 
outputs of Model I. The outputs from years 1900, 2000 and 2100 based on N=100 
and N=5,000 model runs are considered. The eight free transfer coefficients 
are ranked in order of importance, and the rankings based on N=5,000 model 
evaluations are highlighted.

C o m p a r t m e n t a l

O u t p u t

I n p u t

F a c t o r

CC Ranks

Y r 1 9 0 0 Y r 2 0 0 0 Y r 2 1 0 0

N = 1 0 0 N = 5 , 0 0 0 N = 100 N = 5 , 0 0 0 N = 1 0 0 N = 5 , 0 0 0

k 1 2 2 2 2 2 2 2
*“23 1 1 1 1 1 1
**t b 4 4 4 4 4 4

A t m o s p h e r e
fere 8 7 8 7 8 7

(hi \ fese 7 8 6 8 7 8\yif felT 6 5 7 5 6 5
*» 87 5 6 5 6 5 6
*“18 3 3 3 3 3 3
fe ia 3 2 3 2 3 2
fcaa 1 1 1 1 1 1

S u r f a c e *>75 5 4 5 4 5 4
o c e a n *“70 7 7 6 7 8 7

*“86 8 6 8 0 7 0
(W2> *“17 6 5 7 5 6 5

*“87 4 8 4 8 4 8
*“18 2 3 2 3 2 3
*“12 2 2 2 2 2 2
*“23 1 1 1 1 1 1Deep *“75 6 4 6 4 6 4

o c e a n *“76 8 7 7 7 8 7
*“86 5 5 5 5 5 5

( l / 3 ) *=17 4 8 4 8 4 8
*“87 3 6 3 6 3 0
*“18 7 3 8 3 7 3
*“12 2 2 2 2 2 2
*“23 1 1 1 1 1 1

N o o n w o o d y  p a r t s *“76 3 4 3 4 4 4
o f  t r e e s *“70 7 7 7 7 8 8

*“80 8 8 8 8 7 7
(j/4 > *“17 5 5 5 5 5 5

*“87 e 6 6 6 6 6
*=18 4 3 4 3 3 3
*“12 3 3 3 3 2 3
*“23 1 1 1 1 1 1

W o o d y  p a r t s *“75 2 2 2 2 3 2
o f  t r e e s *“70 6 8 6 8 6 8

*“86 4 5 5 5 4 4
(WB) *“17 7 7 7 7 5 7

*“87 8 6 8 0 7 6
*“18 5 4 4 4 8 5
*“12 2 2 2 2 2 2
*“23 1 1 1 1 1 1

G r o u n d *“75 4 5 4 4 4 5
v e g e t a t i o n *“76 6 4 6 5 7 4

*“80 8 6 7 6 8 6
(ye) *=17 7 7 8 7 6 7

*“87 S 8 5 8 5 8
*“18 3 3 3 3 3 3
*“12 3 3 3 3 2 2
*“23 1 1 1 1 1 1

D e t r i t u s / *“75 4 4 4 4 4 5
d e c o m p o s e r s *“70 8 8 8 8 8 8

*“80 7 0 5 6 7 0
( yr ) *“17 2 2 2 2 3 3

*“87 6 7 6 7 6 7
*“18 5 5 7 5 5 4
*“12 3 3 3 3 3 3
*“23 2 2 2 2 2 2

A c t i v e  s o i l *=75 8 7 8 8 8 6
c a r b o n *“76 6 8 7 7 6 8

*“86 7 4 6 4 7 4
(ya) *“17 4 6 4 0 4 7

*“87 5 5 5 5 5 5
*=18 1 1 1 1 1 1
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is high; about 0.53 in year 1900, 0.63 in 2 0 0 0  and 0.36 in 2 1 0 0 . The CC with &i2  

given rank 3 is about -0.35 in all three years.
The second most important transfer coefficient for the detritus/decomposers 

compartment, after &23 > is ki? in years 1900 and 2000, but k \2  in year 2100. The 
CC with k n  is moderately high, around 0.41 in year 1900 and about 0.52 in 

2100. ki2 which takes rank 2  in 2 1 0 0  has an associated CC around -0.35. The 
correlation between &12 and the output of this compartment in years 1900 and 
2000 (ranked as third) is around -0.38 which is still high compared to the CCs 

with the other transfer coefficients.

For the active soil carbon compartment the most important transfer coefficient 

appears to be ki$ having CC around 0.78 in year 1900, and decreasing slightly with 

time. /C23 is the second most important transfer coefficient for this compartment 
with a CC value of around -0.52 in years 1900 and 2 0 0 0 , and about -0.60 in year 

2 1 0 0 . ku  is the third most influential transfer coefficient on this compartment 

with the CC value of around -0.25 at all three time points.

3.5.4.2 Regression M ethods

Considering the C 0 2 content of each compartment in years 1900, 2000 and 2100 

as the response variables, and the free transfer coefficients (i.e., independent input 

factors) as the explanatory variables, we now apply multiple regression method 
on the results of N=5,000 Monte Carlo iterations to investigate the effect of the 

transfer coefficients on the compartmental outputs. In a SA without any priori 
knowledge about the degree of influence the input factors have on the outputs, we 

have to construct a regression model with all explanatories. For illustration pur­

pose a summary of the regression model involving the predicted 5,000 atmospheric 

C 0 2 content in year 2 1 0 0  (i.e., yi(t = 2100)) as the response variable is given in 

Table 3.16. Seven of the eight transfer coefficients (i.e., fc12, &2 3 > &7 5 j &7 6 j &86j &17 

and &i8) with p-values less than 0.01 appear to effect y\(t =  2100).

Since we know from the matrix plot and the correlation measures that there 

is either a linear or no association between the variables, we have used linear
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Table 3.16. Summary of regression analysis with Model I output variable 
yx(t =  2100) (Atmospheric CO2 content at year 2100) and input factors
&12) &23> &75 j &76 j &86) &17j &87 a n d  Aqg.

V ariable
R eg ressio n
C oefficien t

S td . Error  
o f  C oeff.

T -te s t
va lu e  p.■value

ki2 -299.199 0.959 -311.95 0.000

^23 -117528.000 140.000 -836.69 0.000
&75 -167.267 3.998 -41.84 0.000
&76 -3.200 0.855 -3.74 0.000
&86 -16.564 1.635 -10.13 0.000
&17 -4.091 0.300 -13.62 0.000
ks7 6.571 4.311 1.52 0.128
k is -1982.95 13.380 -148.25 0.000

R -S q u ared =  99.4% In tercep t =  1085.00

S ource
S u m  o f  M ea n  Su m  

D F  Squares o f  Squares F -s ta t is t ic p -value

Regression 8 1095506 136938 103231.78 0.000
Residual 4991 6621 1
Total 4999 1102126

regression approach. However, it is important to note that a regression analysis, 

specially if it is based on identifying a linear relationship when there are other 

types of relationships between the variables, can fail to show that a variable has 

an effect on the response.
As we have done in Table 3.16, to present regression analyses results for all 

response variables evaluated at three different years is rather cumbersome and 

such tables also involve variables that appear to have no significant effect on the 

response. Stepwise regression analysis is a more informative and less cumbersome 

way of contructing and displaying regression models, and we will be presenting 

the results from this procedure in Section 3.5.4.4.

Because of the effects of units and distributional assumptions, it is difficult to ob­

tain input factor importance from the regression coefficients. As we shall shortly
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see in the following section, input factor importance is more clearly assessed by 

using standardized regression coefficients.

3.5.4.3 SRC and PCC

From the SA point of view, to obtain a measure of relative importance of the 
transfer coefficients we have calculated the standardized regression coefficients 

(SRCs). As another measure of input factor importance, we have also computed 
the partial correlation coefficients (PCCs) for all eight compartmental output 

variables.

When using SRC, it is also important to consider the coefficient of determi­

nation R 2 of the linear regression models fitted to the data. The R 2 values for all 
regression models constructed from the output of the 2-th compartment at time t 
(yi(t)j i=l,...,8) and the eight independent transfer coefficients are all very high, 

they lie between 98.4% and 99.6%. Note that the calculations here are based on 

N=5,000 model evaluations.

We do not list the SRC and the PCC values here, but instead we present the 

time dependent behaviour of these coefficient estimates for the whole time period 

from 1750 to 2100 graphically (see Figure 3.27 for SRC, and Figure 3.28 for PCC 
plots). This is a useful way of presenting sensitivity results for output variables 

that are functions of time, like in our case. The SRC and PCC values associated 
with each transfer coefficient for a certain compartment and at a certain year can 

easily be read from these figures.

Each frame in Figures 3.27 and 3.28 shows results for each output variable, 

and each curve in these frames displays, respectively, the SRC & PCC values 
relating the corresponding output variable to one input factor as a function of 

time. According to what we see in both of these figures, based on the SRCs and 
PCCs, the sensitivity of some compartments to some of the transfer coefficients 

changes over time, but within the same compartment the order of importance 

between the input factors hardly changes with time. The most influential factor 

is /c23 for all compartments except for active soil carbon compartment for which
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Figure 3.27. Standardized regression coefficients (SRCs) for the eight independent 
transfer coefficients, with the predicted CO2 concentrations in each compartment (i.e, 
with the dependent variables t/sM), N=5,000.
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Figure 3.28. P a r t ia l  c o r r e la t io n  c o e f f ic ie n t s  ( P C C s )  fo r  t h e  e ig h t  in d e p e n d e n t  t r a n s fe r  

c o e f f ic ie n t s ,  w i t h  t h e  p r e d ic t e d  C O 2 c o n c e n t r a t io n s  in  e a c h  c o m p a r t m e n t  ( i .e ,  w i t h  t h e  

d e p e n d e n t  v a r ia b le s  3/i(t),2/s(^))> N=5,000.
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appears to be the first and k23 the second most important input factors. 

Except for k23 , the influence of all transfer coefficients on all compartmental 
outputs tend to decrease over time. This decrease with ki2 for all outputs and 
with kis for the output of active soil carbon compartment is much slower than 

with the other transfer coefficients.
In Table 3.17, we give the ranking of the absolute value of the SRCs and 

PCCs for each model output evaluated at the three years. With both SRCs and 

PCCs, a comparison of the rankings within the same compartment but at different 

years reveal that -for the surface ocean, nonwoody parts of trees and the woody 
parts of trees compartments when SRCs are concerned, and the woody parts of 

trees compartment when the PCCs are concerned- the importance ordering of 

the input factors changes from year to year, but not dramatically. For instance, 

ranking with the PCCs for the woody parts of trees compartment shows that 

&86 is the fourth and ki& the fifth most important factors in 1900, then in 2000 

k8Q becomes the fifth and fc18 the fourth. Considering the most important three 
transfer coefficients (highlighted in Table 3.17) we can see that the same transfer 

coefficients identified as the three most influential ones by using CCs (based on 
the data from N=5,000 model evaluations) are picked out by this method of SA 

as well: in descending order of importance, the top three most important input 

factors for the atmosphere, surface and deep ocean, nonwoody parts of trees and 

ground vegetation compartments are k2̂ , ki2 and ki%\ for the woody parts of trees 

compartment k23 , k \ 2 and A7 5 ; for the detritus decomposers compartment k2$, ki7 

and ki2 \ and lastly for the active soil carbon compartment kis, k2z and ki2.
In comparison to the SRCs (given in Figure 3.27), the PCC estimates (given 

in Figure 3.28) are higher, but the rankings of transfer coefficient importance 

obtained from the PCCs are almost identical to the rankings from the SRCs. 

In ideal circumstances, when the sampled input factor values are independent, 
the use of CCs, SRCs and PCCs will produce identical rankings of input factor 
importance [49], but if even small correlations exist between the input factors in 

the sample this can result in the importance rankings not being identical. In our
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Table 3.17. Rankings of absolute Standardized Regression Coefficients (SRC) 
and Partial Correlation Coefficients (PCC) for the outputs of Model I. The out­
puts from years 1900, 2000 and 2100 based on N=5,000 model runs are considered. 
The eight free transfer coefficients are ranked in order of importance, and the 3 
most important factors are highlighted.

C o m p a r t .

O u t p u t

I n p u t

F a c t o r

SRC Ranks

Y r  1 9 0 0 Y r  2 0 0 0 Y r  2 1 0 0

A t m o s p h e r e

(yi)

*>12
*>23
*>7B
*>76
**80
**17
*>87
*>is

2
1
4
7 
6
5
8 
3

2
1
4
7 
6
5
8 
3

2
1
4
7 
6
5
8 
3

*>12 2 2 2
*>23 1 1 1

S u r f a c e *>76 4 4 4
o c e a n *>70 8 8 8

* *8 0 6 7 6
(ya) fclT 5 5 5

*>87 7 6 7
**1B 3 3 3
*>12 2 2 2
*>23 1 1 1

D e e p **75 4 4 4
o c e a n **70 7 7 7

*>86 6 6 6
(vs) **17 5 5 5

**87 8 8 8
*>18 3 3 3
*>12 2 2 2
*>23 1 1 1

N o n w o o d y *>75 4 4 4
p a r t s  o f 6 6 6

t r e e s *>80 8 8 7
5 5 5

(W 4) *>87 7 7 8
*>18 3 3 3
*>12 3 3 3
*>23 1 1 1

W o o d y  p a r t s *> 75 2 2 2
o f  t r e e s *>70 8 8 8

*> 88 4 5 4
( v b ) *>17 7 7 7

*>87 e 6 5
*>18 5 4 6
fcl2 2 2 2
*>23 1 1 1

G r o u n d *>75 4 4 4
v e g e t a t i o n *>76 5 5 5

*>86 6 6 6
(Vo) *>17 7 7 7

*>87 8 8 8
**18 3 3 3
*>12 3 3 3
h a s 1 1 1

D e t r i t u s / *>7B 4 4 4
d e c o m p o s e r s *>70 7 7 7

*>80 6 6 6
(V7> *>17 2 2 2

*>87 8 8 8
*>is 5 5 5
*>12 3 3 3
*®23 2 2 2

A c t i v e  s o i l *>7E 8 8 8
c a r b o n **70 7 7 7

*=86 4 4 4
(ys) fc17 5 5 5

*>87 6 6 6
*>1B 1 1 1

C o m p a r t .

O u t p u t

I n p u t

F a c t o r

PCC Ranks

Y r  1 9 0 0 Y r  2 0 0 0 Y r  2 1 0 0

A t m o s p h e r e

(yi)

k 1 2  

*=23 
k 7B 
k 76  
*>80 
*> 17  
k&7 
kl8

2
1
4 
6
7
5
8 
3

2
1
4 
6
7
5
8 
3

2
1
4 
6
7
5
8 
3

*>12 2 2 2
*>23 1 1 1

S u r f a c e *>75 4 4 4
o c e a n *>76 5 5 5

*>80 8 8 8
( y 2 ) *>17 6 6 6

*>87 7 7 7
*>18 3 3 3
*>12 2 2 2
**23 1 1 1

D e e p **75 4 4 4
o c e a n *>70 7 7 7

*>80 6 6 6
( y 3 ) *>17 5 5 5

*>87 8 8 8
**18 3 3 3
**12 2 2 2
*>23 1 1 1

N o n w o o d y *>75 4 4 4
p a r t s  o f *®70 6 6 6

t r e e s **80 8 8 8
**17 5 S 5

( y 4 ) *>87 7 7 7
**18 3 3 3
**12 3 3 3
*>23 1 1 1

W o o d y  p a r t s **75 2 2 2
o f  t r e e s *>70 8 8 8

*>80 4 5 4
(ys) **17 7 7 7

**87 6 6 5
*>18 5 4 6
*>12 2 2 2
*>23 1 1 1

G r o u n d *>75 4 4 4
v e g e t a t i o n *>70 5 5 5

*>86 6 6 6
ive) **17 7 7 7

*>87 8 8 8
**18 3 3 3
*>12 3 3 3
**23 1 1 1

D e t r i t u s / **7B 4 4 4
d e c o m p o s e r s *>70 7 7 7

*>80 6 6 6
(V7) *>17 2 2 2

**87 8 8 8
**18 5 5 5
*>12 3 3 3
*>23 2 2 2

A c t i v e  s o i l *>75 8 8 8
c a r b o n #*70 7 7 7

**86 4 4 4
(ys) **17 5 5 5

*>87 6 6 6
*>18 1 1 1
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case, as shown in Tables 3.17 (for SRCs and PCCs) and 3.15 (for CCs) there 

are slight changes in the importance order of the input factors but this is the 

case with the least important transfer coefficients given ranks between 4 and 8. 

For the most important three input factors, all three methods provide the same 
rankings.

3.5.4.4 Stepwise Regression

Considering an a-value of 0.01 to add an input factor to a regression model and 

an o;-value of 0.05 to drop a factor from the model, we have carried out stepwise 
procedure on the data. The order in which the inputs are added to the model at 
each step provides the order of importance between the transfer coefficients that 

are included in the final model.

In Table 3.18, the results of the stepwise regression for the output of atmo­

sphere compartment in 1900, 2000 and 2100 are given. All analyses results seem 

effective with very high Revalues. The results, based on N=5,000 model runs, 

show that seven of the eight transfer coefficients (i.e., &2 3 , fci2 , &i8> &7 55 &17j &86 
and &7 6 , in this order) are included in the final model, no matter the output in 

which year is considered. The R 2-values over 99% indicate that these regressions 
are successful in accounting for the observed variability in yi at the selected years.

Considering the changes in the R 2-values that occur as additional inputs are 

added to the regression models, we see that having included &2 3 , &12 and &18 in all 
of these three models, the contribution to the % variation explained in the output 

variable due to the other input factors is very small (less than 5%). For example, 

let us consider the model for yi(t  =  1900). The R2-value of 77% indicates that £2 3  

accounts for 77% of the variability in the output, while k23 and fc12 taken together 

account for 93.60%, and k23 , k \ 2 and /c18 account for 98.28% of the variability. 

The rest of the input factors all together account for 99.44% - 98.28% =  1.14% 

of the variability in y\(t  =  1900). One might even argue that only ^ 23 and k \ 2 

have large impact on the output.

Stepwise regression is a valuable tool for selecting the most important input
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Table 3.18. Summary of stepwise regression analyses for Atmospheric CO2 

content (i.e., output variable y{) of Model I in years 1900, 2000 and 2100; based 
on N=5,000 model runs; and IS92a emission scenario.

2/i (* = 1900) 2/i (t = 2000) 2/i (t = 2100)

S tep V ariab le R 2 V ariable R 2 V ariab le R 2

1 &23 0.7700 &23 0.7137 &23 0,8462
2 &12 0.9360 &12 0.9105 &12 0.9646
3 &18 0.9828 1̂8 0.9704 &18 0.9915
4 &75 0.9932 &75 0.9925 &75 0.9936
5 &17 0.9942 fcl7 0.9941 fel7 0.9939
6 &86 0.9943 &86 0.9943 &8 e 0.9940
7 &76 0.9944 &76 0.9944 &76 0.9940

factors and providing an order of importance among these factors, but often with 

models involving large number of explanatory variables there is possibility of 

overfitting the data. So, it is important to check if the fitted regression model is 
a reasonable one. For this purpose, as suggested by Helton k. Davis (see [49]), 
predicted error sum of squares (PRESS) can be used. To calculate PRESS values 
for a regression model with p variables (i.e. transfer coefficients in this case), the 

following procedure is used. For n = 1, 2, ..., N, the nth observation is deleted 

from the original set of N observations and then a regression model containing the 

original p variables is obtained from the remaining N-l observations. Based on 

this new regression model, the value yp(n) is estimated for the deleted observation 
yn. PRESS value is then defined using the preceding predictions and the N 

original observations as

N

P R E S S p =  £  (»„ -  fe("))2 •
n = l

Most statistical packages, such as Minitab, can be used to easily compute 
PRESS values. Table 3.19 reports the PRESS values for the regression models 

summarized in Table 3.18. As shown by the decreasing PRESS values in Ta­

ble 3.19, the regression models in these analyses are probably not overfitting the
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Table 3.19. Predicted error sum of squares (PRESS) values for the regression 
models summarized in Table 3.18.

Vi(t  = 1900) Vi{t  = 2000) Vi(t  - 2100)

S tep V ariable P R E S S V ariable P R E S S V ariab le P R E S S

1 &23 369.598 &23 17636.700 &23 169629.000
2 &12 102.839 fcl2 5512.000 fcl2 39040.900
3 &18 27.615 kis 1824.960 kis 9393.180
4 &75 /  10.958 &75 462.853 &75 7032.160
5 fcl7 9.346 kir 361.149 fcl7 6792.710
6 &86 9.133 &86 353.058 kse 6662.710
7 &76 9.042 &76 346.872 kre 6646.860

data from which they were constructed.
Resulting from stepwise regression analyses that are found to be successful in 

the sense that they have quite high R2-values, the order of importance between 
the top three transfer coefficients (i.e., the order in which they are added to 

the corresponding regression model) and the i?2-values obtained for successive 

models are shown in Table 3.20. As examination of this table shows the top 

three input factors account for most of the variation in all the outputs considered 
in the analyses. The contribution to the variability in the outputs due to the 
other input factors which were also added to the regression models is very small. 

The complete order of importance for all output variables and the corresponding 

Revalues are given in Table A.4, Appendix A.

Except for the active soil carbon compartment in all three years, k23 appears 

to be having the most significant influence on all compartments in all three years. 

The same three most influential input factors k2z, &12 and k\s (in decending order 

of importance) are selected in the analyses of atmosphere, both ocean and ground 

vegetation compartments. This order of input factor selection is almost the same 

for nonwoody parts of trees compartment with a minor change in 2 0 0 0  (^ 7 5  is 

added to the regression model before k\8).
The analyses for the woody parts of trees compartment show that following 

&2 3 > &75 is the second and ki2 the third most effective inputs on this compartment
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Table 3.20. Three most important transfer coefficients identified by stepwise 
regression procedure on Model I. The importance ranking based on the order at 
which the transfer coefficients were added to the corresponding model and the 
i£2-values for the regression models at each step are given. In the analysis, the 
outputs in years 1900, 2000 and 2100 are considered.

C om p a rtm en ta l Yr 1900 Yr 2000 Yr 2100

O u tp u t
S tep

In p u t R 2 Input R 2 In p u t R 2

1 &23 0.770 I>23 0.714 ^23 0.846
A tm o sp h ere 2 &12 0.936 &12 0.911 kl2 0.965

3 &18 0.983 kis 0.970 h s 0.992
1 &23 0.919 2̂3 0.892 2̂3 0.955

O cean 2 k\2 0.974 kl2 0.967 kl2 0.982
3 &18 0.991 kis 0.987 kl8 0.994

D eep
O cean

1 &23 0.932 2̂3 0.931 &23 0.935
2 &12 0.977 kn 0.979 kl2 0.976
3 &18 0.992 kis 0.992 kis 0.992

N o n w o o d y  p arts  
o f  T rees

1
2

&23 0.715
0.875

2̂3
&12

0.636
0.822

2̂3
kl2

0.830
0.948

3 &18 0.920 &75 0.889 ki8 0.976

W o o d y  p arts  
o f  T rees

1
2

&23
&75

0.547
0.823

&23
&75

0.399
0.790

k23
k78

0.735
0.864

3 &12 0.941 kl2 0.904 ki2 0.973
1 &23 0.760 &23 0.693 2̂3 0.843

V eg e ta tio n 2
3

&12
&18

0.925
0.972

kl2
kis

0.892
0.951

ki2
kis

0.961
0.989

D e tr itu s /
D eco m p o sers

1
2
3

&23
&17
&12

0.612
0.798
0.934

2̂3
k n
kl2

0.469
0.752
0.894

k23
ki2
k n

0.801
0.920
0.975

A c tiv e  S oil 1 &18 0.606 kis 0.579 kis 0.536

C arbon 2 &23 0.881 2̂3 0.853 ^23 0,902
3 kl2 0.946 kl2 0.924 &12 0.968

at the chosen three years. For the detritus/decomposers compartment, the anal­

yses define ft23 as the most important input factor at all three years. This factor 

is followed by ki7 and then &12 in 1900 and 2000, but by /ci2  first and then k\j in 
2 1 0 0 , The analyses with active soil carbon compartment data have identified the 
top three most important input factors to be k\% as the first, fc23 the second and 

k \2  the third.
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3.5.5 D iscu ssion  on th e  R esu lts

Considering the simplicity of the state equations, i.e. mathematical representa­
tion of the model and the magnitude of the uncertainties in the values for the 
initial conditions, it is expected that the initial conditions with larger uncertainty 

ranges would dominate the sensitivity results and appear to be the most influen­

tial factors on model outputs. A sensitive model input factor with a given large 

uncertainty range will contribute more to the uncertainty in model output.
Taking into consideration the fact that the mathematical structure of the 

model has been kept as simple as possible, and the magnitude of the uncertainty 

allowed about each of the input factors (20% of their literature values), the factors 

with high nominal values and wider uncertainty ranges, therefore are dominant 

on output sensitivity results.
Even though OAT sensitivity analysis approach produces some benefits, it is 

not a very efficient way of performing a sensitivity analysis and it is limited in 

application to models which are not very expensive to run and have small number 

of input factors [64].

Since we have relatively small models with relatively small number of input 

factors and the model codes are very fast running, we have used OAT design 
to obtain a sensitivity ranking. If the number of input factors considered is not 

small and the model runs slow, this design is very time consuming and not very 

practical. Even with the relatively small number of inputs we have in our model(8 

initial conditions and 15 transfer coefficients for Model I, and 8 initial conditions 

and 18 transfer coefficients for Model II) the application of this design was quite 
impractical. A very important disadvantage of OAT design is that it has an 
underlying assumption frequently not valid for the models which can result in a 

confused picture of how input factors affect model behaviour. This is the case 

with GCC models for which we have to take into account the fact that the system 

has to be in steady-state before introducing any perturbations to the system. So 

to retain this condition, when one input factor is varied over its entire range at 
least one other input factor has to be changed to initialize the GCC model. As
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a result, carbon content of each compartment change during a simulation as a 

function of not only the factor varied but also the one(s) that are calculated, 

of course in addition to the time-dependent releases of carbon from fossil fuel 

emmissions and forest clearing.
In the local analysis methods based on sampling we considered a small N=100 

and a large N=5,000 sample size to investigate the effect of sample size on the 

results. It was shown that even though there was some variation in the importance 

ranking of the input factors as a result of different sample size, that was not the 

case with the most important factors, that is, sample size N= 1 0 0  was large enough 
to identify the factors that have large effects on the model outputs. With global 

SA methods, considering the large dimension of the input space the sample size 

of N=5000 was considered. As a rule of thumb, about 100 runs for each input 

factor are usually performed [24]. Based on this argument we believe 5000 runs 
are sufficiently large to cover the whole input space.

In this chapter, we have found out that the variability associated with a sensi­
tive input factor is transferred through the model resulting in a large contribution 

to the overall output variability. We also found out that model results can be 

highly correlated with an input factor so that small changes in the input value 

result in significant changes in the output.
The techniques used in this chapter, such as correlations, regression coeffi­

cients, partial correlation coefficients are optimal choices for the input selection 

since the output variables appear to behave in a linear fashion. Because, there is 

no nonlinear relationships present between the output variables and the inputs, 
the analysis was not performed on the ranks of the data.

Because model outputs are time dependent function of input factors, individ­

ual input factors have been examined at various time points. As a result we have 

found out that their importance changes through time. We also found out that 
different model input factors are important for different model compartments.

An important question is the extent to which the different techniques agree
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in their identification of important input factors. As the results for both 8 - 

compartment models utilised in this chapter reveal (see Appendix B for the results 

of Model II), even though there are small variations in the input factor importance 

order with the different SA methods, the overall results are quite similar.



C hapter 4

S ensitiv ity  A nalysis Techniques 

A pplied  to  a 25-C om partm ent 

GCC M odel

4.1 Introduction

In the previous chapter, various sensitivity analysis (SA) techniques were applied 

to two 8 -compartment global carbon cycle (GCC) models. In this chapter we con­

sider a more complex, 25-compartment, GCC model. To study the performance 

of this more complex compartmental model, we analyse the model sensitivity to 

the input factors by employing various SA techniques defined in Chapter 2  and 
already applied to the 8 -compartment GCC models in Chapter 3, which include 

sensitivity indices, standardized ranges, Morris screening, regression methods, 
standardized regression coefficient (SRC), partial correlation coefficient (PCC), 

SRC and PCC on ranks (i.e. SRRC and PRCC). The Pearson coefficient (CC), 

Spearman coefficient (RCC) and the Smirnov test are also considered, together 

with a few other non-parametric tests. By using these SA methods we aim to 
analyse the relative performance of the different SA techniques employed as well 

as the model performance.

151
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A description of the linear, time-invariant 25-compartment GCC model under 
consideration here is given in Section 4.2, together with the characteristics of 
the model input factors selected for SA. In Section 4.3 we report the results of 
standard OAT and Morris designs. Then in Section 4.4 analyses results from 

global SA techniques are presented. Discussion and conclusions are given in 

Section 4.5.

4.2 T he M odel

Compared to the two 8 -compartment GCC models, the 25-compartment model 

has a more detailed formulation of the dynamics of the carbon cycle.

The model and its computer implementation are adapted from a technical re­

port (see [31]) prepared for the United States Department of Energy by Emanuel 
et at. (1984). It was originally developed for the purpose of predicting the future 
extent of the greenhouse effect. The model represents three major components 
-the atmosphere, oceans, and terrestrial systems- of the cycle with 25 compart­

ments. The atmosphere is represented by a single compartment and the oceans 

by 19 globally averaged layers with depth. The terrestrial systems component 

of the model is described by 5 compartments. The Figure 4.1 illustrates the 

model structure. The ocean component takes into account the dependence of the 
ocean’s horizontal cross-sectional area and the carbon concentration on depth. 
In this component, ‘surface ocean’ corresponds to waters above 75 m., and the 

‘deep ocean’, which is divided into 18 horizontal layers, corresponds to waters in 

75-4500 m. depth. The surface ocean compartment exchanges carbon with the 

atmosphere and the deep ocean exchanges carbon only with the surface ocean. 
The terrestrial component of the model allocates carbon among 5 compartments, 

namely ‘nonwoody parts of trees’, ‘woody parts of trees’, ‘ground vegetation’, ‘de­
tritus/decomposers’ and ‘active soil carbon’. A detailed description of the model 

is contained in [31]. In this model, CO2 is released to the atmosphere by fossil fuel
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combustion. Deforestation also results in a direct transfer of carbon to the atmo­

sphere from ‘tree’ compartments as well as a transfer to ‘detritus/decomposers’. 
The relative magnitudes of transfers from the atmosphere to ‘tree’ and ‘ground 
vegetation’ are altered as a result of land-use change.

Carbon in the atmosphere, the inorganic carbon in the oceans, and carbon 

storage in the terrestrial systems are calculated. The primary dynamic variables 

(state variables) of this model are the masses of total carbon in each compartment. 
Beginning from a preindustrial steady-state, model results at annual time scales 

are considered. Substantial alterations had been made to the computer code of 

the model in order to implement it for sensitivity and uncertainty analysis. The 

historical and the future fossil fuel combustion and land-use change data given in 
the code have been updated. For historical fossil fuel CO2 emissions, estimates 
given by Marland et al. (1999) (see [80]); for historical land-use change, data 

given by Enting et al. (1994) (see [32]); and for the future predictions of fossil 

fuel combustion and deforestation IPCC scenarios (see [58]) are used. The masses 

of CO2 are expressed in Gigatons (= 1 0 15 g), time in years, and the concentration 

of CO2 in the atmosphere in parts per million by volume (ppmv).
Inspection of the relationships between the model input factors and outputs 

led to the selection of 30 independent input factors that are subject to uncertainty. 
The description of the model input factors, their nominal values, variability ranges 

and units are given in Table 4.1. The first six input factors describe the initial 

conditions of the atmosphere and the terrestrial biota compartments. The next 

seven describe land-use practices. These are followed by the inputs related to the 
chemical and physical parameters of the oceans. The remaining input factors are 

used to calculate the coefficients that control the fluxes between the terrestrial 
components of the model. Due to the lack of information about the distribution 

of these input factors, we assume that they all follow uniform distributions over 

their assigned ranges. For the dynamic equations of the model considered by 

Emanuel et al see Table 4.2.
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Table 4.1. Model input factors selected for sensitivity analysis

D escr ip tio n Factor® V alue R a n g e  j U n it

In itia l co n d itio n s
Atmosphere C1 (CAO) 548,80 510 .7 - 596.0 Gt C

Nonwoody parts of trees C21 (CFO) 38.20 30.0 - 46.0 Gt C

Woody parts of trees c22 (CWO) 634.50 507.0 - 762.0 Gt C

Ground vegetation C23 (CGO) 59.30 47.0 - 72.0 Gt C

D etritus /  decomposers C24 (CDO) 108.20 86.0 - 130.0 Gt C

Active soil carbon c25 (OSLO) 1131.00 905.0 - 1348.0 Gt C

F orest c learin g
Fraction of forest clearing carbon 
transfered to atmosphere

<Pa (PHIA) 0.5 0.4 - 0.6

Fraction of forest clearing carbon 
transfered to detrit./decomp.

<Pd (PHID) 0.5 0.4 - 0.6 „

Ratio of soil to detrit,/decomp, 
flux to forest clearing flux

(PSIS) 0.1 0.08 - 0.12 —

Fraction of forest clearing release (SXIT) 0.5 0.4 - 0.6 —
that serves to decrease capacity
for carbon storage in trees

R efo resta tio n
Rate of re-establishment of (T jji (SIG) 1.0E-6 0.8E-6 - 1.2E-6 yr_1
tree compartments

Rate coefficient controlling 
the time required for trees

(SS) 0.2 0.16 - 0.24 y r -1

to dominate ground vegetation

Fraction of the change in e (EPS) 0.5 0.4 - 0.6 —
capacity for carbon storage 
in trees that causes a change
in capacity for storage in 
ground vegetation

C h em ica l ocea n
Total boron concentration in (SIGB) 4.1E-4 3.27E-4 - 4.90E-4 mol/L
surface ocean

Initial temperature of surface To (TEMPO) 292.75 290.75 - 294.75 IC
ocean

Chlorinity of surface water Cl (CL) 19.24 15.0 - 23.0 mL"1

Relative humidity in 
atmosphere

RH (RELHUM) 0.75 0.6 - 0.9 '-- ‘

aletters in parentheses indicate the FORTRAN names of the input factors and 
they will be used in the text.
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Table 4.1. c o n t .

D escr ip tio n Factor V alue R an ge U n it

P h y sica l o cea n
Depth of surface ocean HM (HM) 75.0 60.0 - 90.0 m

Area of surface ocean AREA (AREA) 3.61E+14 2.88E+14 - 4.33E+14 m2

Temperature change in 
surface ocean as a result

DT (DELTP) 3.0 1.5 - 4.5 K

of doubling atmospheric 
carbon content

T errestria l tu rn over tim es
Nonwoody parts of trees 2̂1 (TF) 1.75 1 .4 - 2.1 yr

Woody parts of trees 2̂2 (TW) 25.00 20.0 - 30.0 yr
Ground vegetation 2̂3 (TG) 4.00 3.2 - 4.8 yr
Detritus/decomposers 7~24 (TD) 2.00 1.6 - 2.4 yr

Active soil carbon r25 (TSL) 100.00 80.0 - 120.0 yr
S o il-form in g  fraction s

Woody parts of trees ^2 (THW) 0.1180 0.094 - 0.14 —

Ground vegetation 023 (THG) 0.3330 0.26 - 0.40 —

Detritus/decomposers 024 (THD) 0.0625 0.05 - 0.075 _
In tr in sic  recovery  t im e s

Nonwoody parts of trees (TT2) 20.0 16.0 - 24.0 yr
Ground vegetation Vv (TV2) 4.0 3.2 - 4.8 yr
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Table 4,2. Dynamic equations of 25-compartment global carbon cycle model6

C o m p a rtm en t

(1) Atmosphere

Cl =  ~kASCi + k3Ac£{PS{c2 )/Ps(cZ)) -  (#1 ,21  (021) +  ^1 ,22  ( c 2 l )  +  ^ 1,23 f e ) )  

+  a24,lC24 +  025,1^25 +  Fp(t)  -f ¥bt#n(^)

(2) Surface ocean

C2 =  kASC! -  kSAC5(Ps(c2) / P s ( c 2 ) )  -  /C23C2 +  k32C3 

(3-20) Deep ocean

Ci — ki— 1 (̂ *i,i—1 “1“ “I- 1,■£C-i-J-1) i — 35 4 ( 19

C20 =  ^19,20̂ 19 — &20,19̂ 20

(21) Nonwoody parts of trees

C21 =  #1,21(021) — 0:21,24021 “  #b(t)c2i/(^21 +  C22) 
where #£21(021) =  vT c2i  -  prcli

PT — —<JTpT +  ~ 021,24)

+ [ P t / ( ut  ~  02 1 ,2 4 )] £ r # B ( t ) [ c 2 1 /(0 2 1  +  022)]

(22) Woody parts of trees

C22 =  -̂ 1°,22 (021) — (022,24 +  022,25)022 “  Eg W C22/(C21 +  C22)

where #£22(021) =  (^Tc2i -  Pt <$i ) (#i,22/#£21)

(23) Ground vegetation

C23 =  # 1 ,2 3 (0 2 3 )  — (023 ,24  +  023 ,25)023  

where # £ 23(023) =  ^ c 23 -  Pv<?22
PV =  V&T — €0J t{vT  — 0 21 ,2 4 ) /  P t

-pr[(l + £r(e -  l))#g (̂ 021/(021 + c22)
+ks‘n]/(yr ~  o 2i,2 4 )}p v

■f) =  - K S r) +  (1  -  £ t ) # b ( * ) < W ( C 21 +  C22)

(24) Detritus/decomposers

C24 =  021,24021 +  0 2 2 ,24^22 +  O23,24023 _  ( 024 ,25  +  0 2 4 ,l)C 24 

+<pDFb{t) + il>sF%(t)
(25) Active soil carbon

C25 =  022,25^22 +  023,25^23 +  024,25024 — 025,lC25 ~  1psFg(t)

^symbols not appearing in Table 4.1 are described in the following page
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In the equations given in Table 4.2 :

Cj =  mass of carbon in the ith  compartment,

ka s? ksA — rate coefficients for surface ocean invasion and evasion,

Ps =  partial pressure of dissolved CO2 in the surface ocean

compartment,

Fij — flux from compartment i to compartment j ,

onij = rate coefficient in the terrestrial component of the model

corresponding to the flux Fy,

kij — rate coefficient in the ocean component of the model
corresponding to the transfer from compartment i to 

compartment j,

FB(t) = release at time t from ‘nonwoody parts of trees’ and

‘woody parts of trees’ due to forest clearing,

Fp(t) = release at time t from ‘nonwoody parts of trees’ and

‘woody parts of trees’ due to fossil fuel burning,

lut  — parameter that controls the ultimate level in the equi­

librium value of carbon storage in ‘woody parts of trees’ 

that can be forced by re-establishment,

71 =  dynamic variable to incorporate a delay in the domi­

nance of trees over ‘ground vegetation’,

— over a variable indicates steady-state value.

For this model, the steady-state condition is satisfied within the model cali­

bration process. Random sampling has been used, and for each model run, the
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CO2 content of each compartment is calculated as a function of inputs resulting 

from fossil-fuel combustion and forest clearing. These time-dependent releases of 

carbon are described as model input for the years 1750 through 2 1 0 0  consisting of 
the historical data (1750 - 1990) and the IPCC’s IS92a scenario future projections 

(1990 - 2100) (see Sections 3.2.1 - 3.2.3 in the previous chapter).

4.3 R esu lts from Screening M ethods  

4.3.1 Standard OAT D esign

First, we have applied a standard OAT design on the 30 model input factors listed 
in Table 4.1 and their corresponding outputs. As described in Chapter 3, in this 

design we vary one input factor at a time over its entire range while keeping the 

others at their nominal values, and exploring how sensitive the model outputs 

are to these local changes.
As an illustration, the time-dependent behaviour of the atmosphere compart­

ment resulting from varying some of the input factors OAT is shown in Figures 4.2 
- 4.4. Each dotted-line curve in these figures corresponds to the prediction as­

sociated with one of the 1 0 0  input sample vectors, and solid line curves are the 

base-line curves.
The atmosphere compartment appears to be sensitive to the initial conditions 

of the atmosphere, detritus/decomposers and active soil carbon compartments, 

i.e. CA0, CD0 and OSLO (see Figure 4.2). The forest clearing and reforestation 

input factors do not seem to be having any significant effect on the atmosphere 

compartment (see Figure 4.3). Among the ocean related input factors, HM, 
AREA, SIGB, TEMPO and CL influence the atmosphere compartment the most 

(see Figure 4.4). The effect of the variability in the terrestrial input factors (i.e, 

TF, TW, TG, TD, TSL, THW, THG, THD, TT2 and TV2) on the atmosphere 

compartment were found to be relatively unimportant.
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F igure 4.2. Atmospheric CO2 predictions resulting from varying the initial con­
ditions OAT (given at top-left corner of each graph - see Table 4.1 for description 
of these input factors). N=100 model simulations, IS92a emission scenario is 
considered. In each graph the solid line represents the base-line case and dashed 
lines represent the predictions.
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Figure 4.3. Atmospheric CO2 predictions resulting from varying the forest clear­
ing and the reforestation input factors OAT (given at top-left corner of each graph 
- see Table 4.1 for description of these input factors). N=100 model simulations, 
IS92a emission scenario is considered. In each graph the solid line represents the 
base-line case and dashed lines represent the predictions.
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IS92a emission scenario is considered. In each graph the solid line represents the 
base-line case and dashed lines represent the predictions.
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4.3.1.1 Sensitivity Index

In this section, we present the results from a local SA method namely the Sensi­

tivity Index (SI).
The Sis of all 25 compartmental outputs at three chosen years (1900, 2000 and 

2100) to the ranges of the 30 input factors are calculated and results presented 

graphically in Figures 4.5 - 4.8. Each plot in these figures shows the sensitivities 

of all compartments to one of the model inputs. In Figure 4.5, it is apparent 
that except for the sensitivity of the atmosphere compartment to CA0, CD0 and 
CSL0 , which decreases over time, the other Sis hardly change with time. Only 

the atmosphere compartment seems to be effected by the variation in CA0. None 

of the ocean compartments are sensitive to CFO, CW0 and CG0.

The variation in CD0 and CSL0 seem to be effecting some of the ocean com­
partments but not much since their corresponding SI values are all less than 0 . 0 1  

which indicates that the output of these compartments is not very sensitive to 
the changes in CD0 and CSL0. The variation in CFO appears to be effecting 

the nonwoody parts of trees compartment the most. The detritus/decomposers 

and active soil compartments also show sensitivity to CFO. All five terrestrial 

compartments show some degree of sensitivity to the input factor CW0 ; in the 
order the woody parts of trees, detritus/decomposers, active soil carbon, and fi­
nally the nonwoody parts of trees and the ground vegetation compartments. The 

variation in CG0 appears to be influencing the ground vegetation most, and its 

influence on the active soil carbon and the detritus/decomposers compartments 

is also important. The initial conditions CD0  and CSL0 seem to affect the at­

mosphere compartment only. In early years, the active soil carbon compartment 

also shows some sensitivity to these two input factors (SI of 0.027 with CD0 and 

0.084 with CSL0  in 1900), but later (see the results from 2100) these sensitivities 

become insignificant with SI values below 0.01.
The Sis of all compartmental outputs due to the range of the forest clear­

ing and the reforestation input factors are shown in Figure 4.6. Except for the 

atmosphere compartment, none of the other compartments show any sensitivity



50 
0 

*00 
COO

CHAPTER 4. SENSITIVITY ANALYSIS cant. 164

CAO CFO

S
o

oo

o

1900 2000 2100

CDO

CWO
o

o

b

o
b

o
o

8O

8
o

so
8
o

p
o

2000 21001S00

CGO

CSL0

n
o

o

8
o

od
1 9 0 0 21002000

A tm o sp h e re  
S  O c e a n  
D O c e a n l  
D O c e a n 2  
D O c e a n  3 
D O c e a n 4  
D O c e a n S  
D O c e a n 6  
D O c e a n 7  
D O c e a n S  
D O c e a n 9  
D O c e a n lO  
D O c e a n 1 1  
D O c e a n 1 2  
D .O c e a n 1 3  
D .O c e a n 1 4  
D O c e a n 1 5  
D O c e a n 1 6  
D O c e a n 1 7  
D O c e a n I B  
N .W oody T re e s  
W o ody  T re e s  
G r V e g e ta tio n  
D et ./D ec o m p  
Act S oil C artx in

Figure 4.5. Sensitivity Indices of compartmental outputs due to the range of the 
initial conditions (CAO, CFO, CWO, CGO, CDO, CSLO).

to the variation in PHIA and PHID. The sensitivity of the atmosphere to these 

two input factors is low in 1900, then it becomes more significant in 2000 but de­
creases again in 2100. The detritus/decomposers compartment also shows some 

sensitivity to PHID but it is very small as the Sis at all three years are very low.
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Figure 4.6. Sensitivity Indices of compartmental outputs due to the range of the 
forest clearing input factors (PHIA, PHID, PSIS, SXIT) and the reforestation input 
factors (SIG, SS, EPS).
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Even though the graph for PSIS shows that three of the compartments are sensi­
tive to this input factor, the range of PSIS is not influencing these compartments 

very much since the SI values are very low, below 0.003. The SXIT appears 

to be influential on the nonwoody parts of trees, woody parts of trees, detri­

tus/decomposers, ground vegetation and the atmosphere compartments (in this 
order, from most to least influenced). The Sis corresponding to these compart­
ments tend to increase with time.

None of the ocean compartments is sensitive to the reforestation input factors 

SIG, SS and EPS. Hardly any of the other compartments show any sensitivity 

to the range of SIG, i.e. all Sis are very close to zero. With time the SI values 

corresponding to the terrestrial compartments show some increase but not to a 
very high value. As for the sensitivities due to the range of SS, compared to 

the other compartmental outputs the Sis for the ground vegetation, active soil 

carbon, atmosphere and the detritus/decomposers compartments appear to be 
slightly higher, especially in year 2000. However, considering the SI values, it 

is apparent that none of the compartments is very sensitive to SS. The ground 

vegetation, active soil carbon and detritus/decomposers terrestrial compartments 

and atmosphere compartment seem to be influenced by the range of EPS, and 
the sensitivity of these compartments to EPS increases with time.

As shown in Figure 4.7, the ranges of the chemical and physical ocean input 

factors do not appear to be having any influence on the terrestrial compartments. 

The atmosphere compartment seems to be the only compartment that is effected 

by the chemical ocean inputs SIGB, TEMPO, CL and RELHUM. The sensitivity 

of the atmosphere compartment to these inputs decreases with time. The input 
factors SIGB, TEMPO, CL and RELHUM also influence the ocean compartments 
but not very much. The Sis for the atmosphere compartment decreases as the 

Sis for the ocean compartments increase with time. But the decrease in the SI 

values of the atmosphere is more rapid.

The sensitivity of the atmosphere compartment to the range of physical ocean 
input factors HM and AREA is very high (SI values of around 0.89 in 1900, 0.87
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Figure 4.7. Sensitivity Indices of compartmental outputs due to the range of the 
chemical ocean input factors (SIGB, TEMPO, CL, RELHUM) and the physical ocean 
input factors (HM, AREA, DELTP).
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in 2 0 0 0  and 0.79 in 2 1 0 0  for both factors). As the plots of HM and AREA show, 

the SI related to the atmosphere compartment decreases with time, whereas 

the Sis of the ocean compartments increase with time. After the atmosphere 

compartment, the most sensitive compartments to the range of HM and AREA 

are the surface ocean, deep ocean-layer 1 , deep ocean-layer 2 , and so on, in the 

given order. The compartmental Sis due to DELTP show that this input factor 

influences the atmosphere compartment the most. The ocean compartments also 
show some sensitivity to this input factor but it is not very high. Especially for 

the atmosphere, the SI values increase quite rapidly with time.
In Figure 4.8, we show the Sis related to the terrestrial input factors TF, TW, 

TG, TD, TSL (the terrestrial turnover times in, respectively, nonwoody parts of 

trees, woody parts of trees, ground vegetation, detritus/decomposers and ac­

tive soil carbon compartments); THW, THG, THD (the soil-forming fractions 
in woody parts of trees, ground vegetation and detritus/decomposers compart­
ments); and TT2, TV2 (the intrinsic recovery times in nonwoody parts of trees 

and ground vegetation compartments). The ocean compartments do not seem 

to be sensitive to any of these input factors. First, considering the terrestrial 

turnover times input factors, the TF, TW and TG appear to have significant in­
fluence only on the detritus/decomposers and the active soil carbon; TD only on 
the detritus/decomposers; and TSL only on the active soil carbon compartment.

The Sis of the active soil carbon and detritus/decomposers compartments due 

to the ranges of THW and THG are high. THD, on the other hand, shows an 

effect only on the active soil carbon compartment. The atmosphere compartment 

also seems to be effected by these three inputs but not very much.
Except for the ground vegetation compartment, all terrestrial compartments 

and the atmosphere compartment appear to be sensitive to TT2, but SI values 

are quite small (below 0.01). The plot for TV2 shows that the ground vegetation 

compartment is the most sensitive compartment to the range of TV2 in years 

1900 and 2000 but becomes the second most sensitive in year 2100 after active soil 

carbon compartment. Again, very small SI values indicate that the compartments
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Figure 4.8. Sensitivity Indices of compartmental outputs due to the range of the 
terrestrial turnover times input factors (TF, TW, TG, TD, TSL), the soil-forming 
fractions input factors (THW, THG, THD) and the intrinsic recovery times input 
factors (TT2, TV2 ).
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is in-sensitive to this input factor. Next, by ranking the calculated SI values we 
obtain the relative order of importance of the input factors for each compartmen­

tal output evaluated in years 1900, 2000 and 2100. See Table 4.3 for the rankings 

of the 1 0  most important input factors (rank 1  indicating the most influential 

factor, 2  the second most influential factor, and so on). Since the rankings do 
not change significantly for the 18 deep ocean compartments, we include only 

the rankings of the deep ocean layer-5 and layer-13 (i.e. compartments 7 and 15 

in Figure 4.1) in the table. Except for the two or three most influential factors, 
the rankings of the other factors change with time. For example, for the surface 
ocean compartment, CDO is the fourth most important input factor in 1900, but 

in 2100 it becomes the eight most important input. The input factor rankings for 

the atmosphere, surface ocean, deep ocean-5 and deep ocean-13 compartments, 

show a quite good agreement. For these four compartments the area of the sur­

face ocean (AREA) appears to be the most, and the depth of the surface ocean 
(HM) the second most influential input factors.

The nonwoody parts of trees, woody parts of trees and ground vegetation 

compartments are mostly effected by their initial conditions CFO, CWO and CGO, 

respectively. For the nonwoody parts of trees compartment the second most 

important input seems to be CWO and it is followed by SXIT. SXIT is the second 
most influential factor for the woody parts of trees compartment but it is less 
influential on the ground vegetation compartment (ranked as the 4th). TD, 
CWO and CFO are the three most important input factors (in descending order 

of importance) for detritus/decomposers compartment. The top three inputs on 

the active soil carbon compartment are identified as TSL then CGO and TG.
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4.3.1.2 Standardised Range

Another OAT sensitivity measure, the standardised ranges (SRs) of each com­
partmental output resulted from varying each input factor over its range OAT 
are calculated. Here we consider two different sample sizes, N—100 and N^SOOO, 
to find out if the number of model runs has any effect on the results.

The SRs of all compartments due to varying each input factor are demon­

strated in Figures 4.9-4.12 as bar charts. Each graph in these figures shows the 

influence of one input factor on all compartmental outputs at three chosen years 

and with two different sample sizes. Examination of these bar plots shows that 

except for the SRs resulting from varying SIG (see Figure 4.10), there does not 

seem to be any apparent difference between the SRs based on the two different 

number of model runs. However, the SR values do change with time.
The same compartments, which were identified as the most influenced com­

partments using the sensitivity indices, are also identified as the most effected 

outputs by the SRs. The only difference we see between the graphical presenta­

tions of the Sis and the SRs is that the sensitivities of the compartments show 
either a continuing increase or decrease over time when the SRs are considered, 

but the results of the Sis show that the sensitivity of some compartments can 

increase from a small SI in 1900 to a larger value in 2000 and then decrease again 

in 2100. Because our aim in using these two local screening methods is mainly 

to identify the most important input factors for each compartmental output at a 

given time, as with the Sis we use the calculated SRs to rank the inputs in order 
of their importance.

The ranking of the top 10 most important inputs for each model output 
considered at three different years are given in Table 4.4. The order of impor­

tance between the most important 1 0  factors for the atmosphere, surface ocean, 
deep ocean layers 5 and 13, and active soil carbon compartments are in com­

plete agreement with the rankings obtained with the Sis. Apart from the detri­

tus/decomposers compartment the top five inputs for the other compartments 

are also the same as the inputs identified by the Sis (see Table 4.3). Using the
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SRs, TW is ranked as the third and CFO as the fourth influential factors on the 
detritus/decomposers compartment, while the other local screening method SI 

identified these factors in reverse order, i.e. CFO as the third and TW as the 
fourth important factor. The ranks of the other input factors on this compart­

ment are the same as the ranks obtained from the Sis.
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Figure 4.10. Bar charts showing how each compartmental output in years 1900, 
2000 and 2100 is effected by the variation in the forest clearing input factors (PHIA, 
PHID, PSIS, SXIT) and the reforestation input factors (SIG, SS, EPS) in terms of 
standardized ranges. The results from both N=100 and N=5,000 are also compared.
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Figure 4.11. Bar charts showing how each compartmental output in years 1900, 
2000 and 2100 is effected by the variation in the chemical ocean input factors (SIGB, 
TEMPO, CL, RELHUM) and the physical ocean input factors (HM, AREA, DELTP) 
in terms of standardised ranges. The results from both N=100 and N=5,000 are 
also compared.
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Figure 4.13. Bar charts showing how each corapartmental output in years 1900, 
2000 and 2100 is effected by the variation in the soil-forming fractions input factors 
(THW, THG, THD) and the intrinsic recovery times input factors (TT2, TV2) in 
terms of standardized ranges. The results from both N=100 and N=5,000 are also 
compared.
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4.3.2 M orris D esign

We next present the results of SA performed using the Morris method described 
in Chapter 2 Section 2.5.5.2. For each input factor, the absolute value of the 

estimated Morris mean and standard deviation, which are considered as two sen­
sitivity measures that respectively indicate the factor’s influence on the model 

output and the influence due to interactions with other input factors and/or 

nonlinear effects, are calculated. Because of the vast amount of results that our 

model produces, we decided not to report the estimated means and standard devi­

ations numerically here, instead we display the results graphically in Figures 4.14 
- 4.16. In these figures, the input factors are labelled using their FORTRAN 

names. A general order of importance between the input factors can be obtained 
considering the Euclidean distance from the origin, the larger the distance the 

more influential the factor is.

The screening results on each output from the three years are overlaid on 
the same figure to show how the influence of the inputs change between these 
three years. For instance, on the atmosphere, surface ocean and the two deep 

ocean compartments (see Figure 4.14 and the top frame of Figure 4.15), AREA 

appears to be the most and HM the second most important factor, and this does 

not change from year to year. For these compartments, the influence of the inputs 
AREA and HM increases over time.

By ranking the estimated Morris means we establish a relative importance of 

the inputs in terms of their overall influence on the outputs. The rankings of the 

most important ten factors for each compartmental output considered at three 

different years are given in Table 4.5. These rankings confirm what the morris 
plots show. As Table 4.5 reveals, for each compartment the ranking of the most 

important 10 input factors do not change considerably in the three years. We 

discuss the results here by comparing them with the results we have obtained 

from the two standard OAT methods - the Sis and SRs - since the results from 

these three screening methods present strong similarities and dissimilarities in 

terms of the importance rankings they provide.
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Unlike the SI and SR methods, the Morris method identifies some of the 
terrestrial component related inputs (namely TW, TG, TSL, THG and THD) 

among the most important ten input factors for the atmosphere and the three 

ocean compartments. However, for the same compartments, the input factors 

CAO, CDO, PHIA, SIGB and DELTP which are identified among the top 10 

most important inputs by the SI and SR methods are not so identified by the 
Morris method.

For the atmosphere, surface ocean and the two selected deep ocean (layers 5 

and 13) compartments the two most influential inputs (first AREA then HM) are 

the same with all three screening methods. As the Morris plots of the atmosphere 

and the three ocean compartments (see Figure 4.14 and the top frame of Figure
4.15) show except for the inputs AREA and HM, the other input factors are not 
as important for these compartments.

CFO, CWO, SXIT, TT2, TW and TF (in this order from most to less impor­

tant) are the six most influential input factors for the nonwoody parts of trees 

compartment. This order of importance is the same with the SI, SR and Morris 
methods. As the plot showing the results from the Morris method (given in the 
middle frame of Figure 4.15) reveal, except for the most influential six inputs, 

the other input factors have almost no influence on this compartment.

For the woody parts of trees compartment, comparison of the input factors’ 

rankings obtained from the three screening results show that the relative impor­

tance between the most important six input factors are in complete agreement: 

CWO being the most influential factor followed by SXIT, TW, CFO, TT2 and 
TF. The rest of the inputs have estimated Morris means and standard deviations 

around zero which indicates that these inputs do not have a large influence on 

this compartment (see the bottom frame of Figure 4.15).

Even though the rankings change slightly between the three years, the most 
important five input factors, namely CGO, CWO, EPS, SXIT and SS, identified by 

the Morris method are the same inputs identified by the SI and SR measurements, 

for the ground vegetation compartment. For this compartment, the rankings of
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the top ten inputs from the Morris and SR methods appear to be in agreement. 

According to the Morris method results (presented in the top frame of Figure
4.16) except for the five inputs listed above, the other input factors are not 
influential on the ground vegetation compartment.

For the detritus/decomposers compartment, the three screening methods iden­

tified the same input factors as the most influential ten input factors but the order 

of importance between these inputs change slightly, for instance, TG is identified 

as the sixth most important input by the Morris method, but by SI and SR it 

is ranked as the seventh most important input. It appears that the inputs TD, 

CFO, CWO, TW, TF, TG, CGO, THG, SXIT and THW have influence on this 

compartment. See the middle frame of Figure 4.16 for the graphical presentation 

of the Morris results on this compartment.

The most important ten input factors identified by the Morris method are the 
same inputs that SI and SR methods picked out as most important ten inputs 

for the active soil carbon compartment. The order of importance between these 

inputs is almost identical except with the Morris method THG is ranked 3 and 

TG ranked 4 where as with the SI and SR measurements this ranking is reversed. 
Based on the Morris results, the ranking of the inputs, in decreasing importance, 

is TSL, CGO, THG, TG, TW, CWO, THD, THW, CFO and TF, and as the Morris 

plot of this compartment show (see the bottom panel of Figure 4.16) all these 

inputs have some degree of influence on this compartmental output.
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Figure 4.14. Morris screening results on Atmosphere, Surface ocean and Deep 
ocean (layer 5) compartments in years 1900, 2000 and 2100. Mean and standard 
deviations are associated with the 30 input factors considered in the analysis.
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Figure 4.15. Morris screening results on Deep ocean (layer 13), Nonwoody parts 
of trees and Woody parts of trees compartments in years 1900, 2000 and 2100. 
Mean and standard deviations are associated with the 30 input factors considered 
in the analysis.
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Figure 4.16. Morris screening results on Ground vegetation, Detri­
tus/decomposers and Active soil carbon compartments in years 1900, 2000 and 
2100. Mean and standard deviations are associated with the 30 input factors 
considered in the analysis.
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4.4 Global SA M ethods

In the previous section (Section 4.3), three different screening exercises have been 
considered. These methods only provide sensitivity measures that are qualitative 

and can be used to rank the model inputs in order of their importance. In 

order to obtain quantitative sensitivity measures, however, global SA methods 

are required, and in this section we investigate the sensitivity of the model outputs 
to the model input factors using various global techniques.

All 30 input factors that are subject to uncertainties and are varied simulta­
neously in the analyses are assumed to follow uniform distributions with upper 

and lower bounds based on ±20% of their nominal values (see Table 4.1).

As the emission scenario, the IPCC’s IS92a scenario (also known as the 

Business-as-Usual scenario) is adopted. As sampling technique simple random 

sampling is considered to obtain a multivariate input sample. The N simulations 
of the model were performed with the randomly generated input factors. For each 

random set of inputs, the steady-state conditions in year 1750 are calculated in 

the model initialization process. Then the system is run to year 2100 to obtain 

the time-dependent behaviour of CO2 in each model compartment.

First of all, we show in Figure 4.17 the time-dependent behaviour of the 
atmosphere (model compartment 1), surface ocean (2), layers 5 and 13 of deep 

ocean (7 and 15), and the terrestrial biota (21-25) compartments as a result 
of input uncertainties and the anthropogenic inputs. Each plot in this figure 
corresponds to one of the compartments under consideration and each line curve 

in each of these plots corresponds to the prediction associated with one of the 

N—100 sample vectors.

As the plot in Figure 4.17 shows, the CO2 content of the atmosphere increases 

over time. To achieve a steady-state condition for year 1750, once the initial value 
for the atmospheric CO2 content is chosen, the initail condition of the surface 

ocean compartment has to be adjusted. Thus, this process results in a large 
initial variability for the surface ocean and the upper layers of the deep ocean. 

As a result of forest clearing, reforestation and vegetation of cleared land, the
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behaviour of the terrestrial compartments are shown in the same figure. For 

instance, due to forest clearing the carbon present in the nonwoody and woody 
parts of trees compartments is released into the atmosphere. On the other hand, 

the time-dependent pattern of reforestation and vegetation results in an eventual 
increase in the flux of carbon to the ground vegetation compartment. These 

land-use changes also effect the detritus/decomposers and the active soil carbon 

compartments.

In the analyses, the amount of CO2 stored in the nine chosen compartments in 
years 1900, 2000 and 2100 are considered as model outputs. To gain as much 

information as possible from the model runs, input values that completely cover 

the input space must be selected. Here considering the high dimension of the 

input space to ensure that the input space is scanned as much as possible we use 
a sample size of N=5,000.

4.4 .1  E xam ination  o f S catterp lots

We start the analyses by first producing scatterplots of model inputs versus out­

puts and also calculating correlation coefficients to examine the relationships 
between each input factor and each output variable. To conserve space we did 

not include the scatterplots for all model outputs that were calculated at three 

chosen years, instead we only present the scatterplots of some model outputs (es­

timated in 2100) versus each of the 30 input factors (see Figures 4.18 - 4.24). The 

scatterplots of the model inputs versus model outputs evaluated in the other two 

years (1900 and 2000) display very similar patterns that we see in the scatterplots 

present here. It should be noted that the scatterplots given in these figures are 

produced from the model simulations based on N=1,000 model runs to show a 

clearer picture of the patterns in the plots, but all the quantitative sensitivity 

measures (including the correlation coefficients) reported in the remainder of this 
chapter are based on N=T,000 model evaluations. For convenience, we use no­

tations like yAtm(t) (for Atmosphere), yso{t) (for Surface Ocean) and so on to
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denote a model output evaluated at time t.
From examination of Figure 4.18 which shows the relationships between yAtm (t = 

2100) and each input factor, it is clear that there is a strong negative associa­
tion between this model output and both HM and AREA. The relationship with 

these two inputs appears to be near linear, but one might argue that it is rather 

a nonlinear but monotonic relationship. In such cases, using rank-transformed 

data in regression and correlation analyses provide more reliable results. In the 
other plots in this figure, the vast majority of the points lie close to the abscissa 
but there is no particularly strong patterns in any of these plots.

Since the scatterplots for the yso(t =  2100),yDO&(t — 2100) and yDOls(t = 

2100) were very similar, here we give the scatterplots of the deep ocean-layer 

13 only (see Figure 4.19). Again the HM and AREA plots display well defined 

patterns. In the other plots corresponding to the other 28 input factors there is 
no obvious pattern indicating that there may be no relationship between these 
input factors and the output variable.

Scatterplots for the yNWPT(t — 2100) (see Figure 4.20) show that there is a 

perfect linear association between this output variable and the factor CFO. There 

also seems to be a detectable linear association with SXIT and CWO, and there 

is hardly any relationship with the rest of the input factors.
Figure 4.21 shows that there is a positive strong association between the 

V w p t — 2100) and this compartment’s initial condition (i.e., CWO). Among the 
remaining input factors, SXIT also seems to have a linear relationship with this 

output variable.

As for the output variable yGV(t = 2100), the scatterplot with the input CGO 

displays a very strong linear association. The input factors EPS, CWO and SXIT 
also appear to have a linear but not very strong relationship with this output 
variable (see Figure 4.22).
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Figure 4 .19. Scatterplots of predicted Deep Ocean (layer 13) CO2 content in year
2100 (i.e., yDQ13{t = 2100)) versus each input factor (listed in Table 4.1).



CHAPTER 4. SEN SITIVITY ANALYSIS cont. 193

& sM

8*10A-7 10*-6 1.2*10*-6 0.16 0.18 0.20 0.22 0.24
SIG (1/yr) SS (1/yr)

900 1000 1100 1200 1300 
CSLO(GtC)

W m m .
0.10 0.12 0.14 0.30 0.35 0.40 0.05 0.06 0.07 16 18 20 22 24 3.5 4.0 4.5

THW THG THD TT2 (yr) TV2 (yr)

Figure 4.20. Scatterplots of predicted Nonwoody parts of Trees CO2 content in
year 2100 (i.e., yNWPT(t = 2100)) versus each input factor (listed in Table 4.1).
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Figure 4.21. Scatterplots of predicted W oody parts of Trees CO 2 content in year
2100 (i.e., yWPT{t = 2100)) versus each input factor (listed in Table 4.1).



CHAPTER 4. SEN SITIVITY ANALYSIS cont. 195

520 540 560 580 
CAO(GtC)

35 40 45
CFO (Gt C)

500 550 600 650 700 750 
CWO (Gt C)

50 55 60 65 70 
CGO (Gt C)

90 100 110 120 130 
CDO(GtC)

og

0
O S

0os 0os

f t
0 Q

0.40 0.45 0.50 0.55 0.60 
PHIA

900 1000 1100 1200 1300 
CSLO(GtC)

8‘ 10*-7 10*-6 1.2'10A-6 0.16 0.18 0.20 0 22 0.24
SIG (1/yr) SS (1/yr)

0.08 0.09 0.10 0.11 
PSIS

I f ®
0.12 0.40 0.45 0.50 0.55 0.60 

SXfT

1.5 2.0 2.5 3.0 3.5 4.0 4.5 
DELTP (K)

0.40 0.45 0.50 0.55 0.60 
EPS

0.00035 0.00040 0.00045 
SIGB (mol/L)

291 292 293 294
TEMPO (K)

16 18 20 22 
CL (1/mL)

0.7 0.8
RELHUM

3*10*14 3.5*10*14 4*10*14 
AREA (m*2)

« S
• fI**

Figure 4.22. Scatterplots of predicted Ground Vegetation CO 2 content in year
2100 (i.e., yGV{t = 2100)) versus each input factor (listed in Table 4.1).
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The scatterplots of yDD(t — 2100) presented in Figure 4.23 show many well- 
defined patterns involving the input factors like TD, TF, TW, TG, CWO, CFO, 

CGO and THG. As seen in Figure 4.24, there are detectable patterns in the plots 
of yASC(t = 2100) versus the input factors TSL, TG, TW, CGO, CWO, THG and 
THD.

The Pearson correlation coefficients (CCs) are calculated on the model input 
factors and output variables along with their p-values for the selected nine com- 

partmental contents evaluated in years 1900, 2000 and 2100. We do not report 

the CC values here but we obtain importance ranking of the ten most impor­
tant input factors for each dependent variable and these rankings are given in 
Table 4.6.

In terms of the strength of the linear relationship with the output variables, 

some input factors become more(or less) influential over time. The CC between 

AREA and yAtm(t), which appears to be the strongest relationship with rank 1, 

is around -0.66. The CC with HM is just slightly smaller (about -0.65). All the 

other CC values corresponding to the rest of the inputs are quite low (<0.1) in 
absolute value.

The CC values computed with the input factors and the outputs of all three 
ocean compartments are fairly similar. As with atmospheric output, AREA and 

HM are the two factors having the strongest linear relationship with the outputs 

of the surface and the two deep ocean compartments.

The CC between the output yNWPT(t) and the inputs CFO, CWO, SXIT, CSL0 
and SIGB are found to be significant with p-values less than 0.1. The CC with 
CFO is the strongest (0.998 in year 1900, 0.983 in 2000 and 0.965 in 2100), and 
the CCs with the other four factors mentioned above are less than 0.2.

For the woody parts of trees compartment, the CC with this compartment’s 

initial condition CWO is the strongest (0.999 in 1900 and decreasing just slightly 

to 0.987 in 2100). Compared to this CC, the absolute CCs related to the other 

inputs identified as significant (with p-values less than 0.1) are quite low, varying 
between 0.2 (with SXIT in 2100) and 0.02 (with AREA in 2100).
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Figure 4.23. Scatterplots of predicted D etritus/D ecom posers CO 2 content in year
2100 (i.e., yDD{t = 2100)) versus each input factor (listed in Table 4.1).
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Figure 4.24. Scatterplots of predicted Active Soil Carbon CO 2 content in year
2100 (i.e., yASC(t =  2100)) versus each input factor (listed in Table 4.1).
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As the scatterplot in Figure 4.22 reveals for 2100, the output variable yGV(t) 
and the input CGO are highly correlated at all three chosen years. The CCs 
between this output variable and the inputs CWO, EPS, SXIT and CFO are also 
relatively high. Apart from the CC related to CGO which shows a small decrease 

over time, the CCs with the other inputs listed above are increasing over time.
The most highly correlated input factors with the output yDD (t) are TD (with 

CC of 0.75 in year 1900), CWO (0.34), CFO (0.32), TW (-0.31), TF (-0.29), TG 

(-0.15), CGO (0.14), THG (-0.08), CA0 (-0.03). The CC values reported here 
with the output at year 1900. Over time, the absolute CCs corresponding to 
the factors TD, CFO, TW and TF are decreasing, whereas the absolute CCs 
corresponding to the inputs CWO, TG, CGO, THG and CA0 are increasing.

For the output yASO(t), TSL appears to be the most highly correlated input 

with a CC of about 0.66 in all three years. The correlations between this output 

variable and the inputs TG, CGO, THG, CWO, TW and THD are also relatively 
high (varying between 0.20 and 0.36 in absolute value).
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4.4.2 R egression  M eth od s

For quantifying the relative importance of the input factors to the model outputs, 

we now consider regression methods. As an illustration, we have constructed a 

regression model to investigate the effects of all 30 input factors on the dependent 

variable yMm{t = 2100) (i.e., the predicted carbon content of the atmosphere 
compartment in 2100). The outcome of this regression model is summarized in 

Table 4.7. According to the p-values for each of the 30 input factors, it seems 

that out of the 30 inputs, 17 (given in bold-italic in the table) have p-values less 

than 0.02 and hence we can say that these input factors, namely CFO, CW0, 
CG0, CSL0, PHIA, PHID, PSIS, SIGB, TEMPO, CL, HM, AREA, TW, TG, 
TSL, THG and THD, appear to influence the response variable.

The regression coefficients in a linear regression model, which can provide 

rankings of all inputs, depend on their units. If the input factors included in a 

regression model have different units which is the case with our input factors here, 

then it is difficult to obtain a meaningful ranking of the input variables based 

directly on the regression coefficients. Therefore, it is necassary to standardise to 
remove the unit effects on the final coefficients. These standardised coefficients 
(SRCs) have been calculated on this model and the results are presented in the 

following section (Section 4.4.3) along with the partial correlation coefficients 
(PCCs).

As an alternative to constructing a regression model, which contains all input 
factors, for each output variable and presenting vast amount of analysis results, 
we have performed stepwise regression analysis using the predictions from the 
5,000 model runs and the results are given in Section 4.4.4.
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Table 4.7. Summary of regression analysis for yAtm(t — 2100) (Atmospheric 
CO2 content at year 2100) and input factors CA0, CFO, CW0, CG0, CD0, CSL0, 
PHIA, PHID, PSIS, SXIT, SIG, SS, EPS, SIGB, TEMPO, CL, RELHUM, HM, 
AREA, DELTP, TF, TW, TG, TD, TSL, THW, THG, THD, TT2 and TV2 (see 
Table 4.1 for description of these inputs).

Variable
R egression
Coefficient

Std. Error 
of Coeff. T -tes t p —value

CA0 3.280000e-01 1.610000e-01 2.036700e+00 0.0417
CFO -2.082400e+00 8.590000e-01 -2.424200e+00 0.0154
C W O -1.8720008-01 5.400000e-02 -3.466200e+00 0.0005
CGO -4.376700e+00 5.551000e-01 -7.885200e+00 0.0000
CDO 6.064000e-01 3.120000e-01 1.944000e+00 0.0520
CSLO 4.238000e-01 3.090000e-02 1.371680e+01 0.0000
P H I A 1.729196e+02 6.951790e+01 2.487400e+00 0.0129
P H I D 1.689955e+02 6.913010e+01 2.444600e+00 0.0145
P S I S -8.895654e+02 3.452463e+02 -2.576600e+00 0.0100
SXIT 1.508464e+02 6.920080e+01 2.179800e+00 0.0293
SIG 4.969968e+06 3.465408e+07 1.434000e-01 0.8860
ss -6.150850e+01 1.732762e+02 -3.550000e-01 0.7226
EPS -8.934900e+01 6.934510e+01 -1.2885000+00 0.1976
S I G B 2.882116e+05 8.498279e+04 3.391400e+00 0.0007
T E M P O 1.395650e+01 3.454400e+00 4.040100e+00 0.0001
C L 8.120200e+00 1.716300e+00 4.731100e+00 0.0000
RELHUM -1.289150e+01 4.579230e+01 -2.815000e-01 0.7783
H M -8.647960e+01 4.600000e-01 -1.8798720+02 0.0000
A R E A 0.000000e+00 0.000000e+00 -1.894515e+02 0.0000
DELTP -2.464400e+00 4.585500e+00 -5.374000e-01 0.5910
TF 2.754300e+01 1.959520e+01 1.405600e+00 0.1599
T W 5.550500e+00 1.380700e+00 4.020000e+00 0.0001
T G 6.492810e+01 8.541700e+00 7.601300e+00 0.0000
TD 4.147000e-01 1.723220e+01 2.410000e-02 0.9808
T S L -4.555600e+00 3.410000e-01 -1.336040e+01 0.0000
THW -5.437331e+02 2.968994e+02 -1.83l400e+00 0.0671
T H G -6.446091e+02 9.867310e+01 ~6.532800e+00 0.0000
T H D -2.048286e+03 5.493671e+02 -3.728400e+00 0.0002
TT2 -1.7673000+00 1.719200e+00 -1.028000e+00 0.3040
TV2 -3.449500e+00 8.577800e+00 -4.021000e-01 0.6876

R-Squared =  93.46% Intercept =  10696.55

Source DF
Sum  o f M ean Sum
Squares o f Squares F -sta tis tic p —value

Regression 30 5594310605 186477020 2368.48 0.000
Residual 4969 391223410 78733
Total 4999 5985534015
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4.4 .3  SRC and P C C

Using the results of N=5,000 model runs, for each input and output combination 
of interest, we have calculated the SRCs and PGCs which provide measures of 

the relative contribution of each of the inputs to the observed output variations.

When using the SRCs it is also important to consider the model coefficient of 
determination R 2. The R 2-values we have obtained from the regression models in 
which the nine compartmental contents in 1900, 2000 and 2100 are the response 
variables and the 30 input factors are the explanatory variables vary between 

85.5% and 100%. These high Revalues indicate that the SRCs are valid as a 

measure of sensitivity.

Since our response variables are functions of time, we have calculated the 
SRCs and PCCs at each time point and presented these sensitivity results with 
plots, thus indicating the importance of each input on an output over time. The 

time-dependent behaviour of these estimated coefficients for eight input factors 

having the highest values are shown in Figures 4.25 and 4.26 for the SRCs, and 

Figures 4.27 and 4.28 for the PCCs. For both sets of SRC and PCC curves 
given in these figures, the dependent variables are the nine compartmental CO2 

contents and each curve displays the values of the SRCs and PCCs relating these 
compartmental contents to a single input factor as a function of time. Note that 

in these figures we show the time-dependent behaviour of the SRCs and PCCs 

associated with the eight most important input factors only.

Figures 4.25 and 4.27 show that the input factors AREA and HM seem to 
have a large influence on the atmosphere, surface ocean and the two deep ocean 

(layer5 and layerl3) compartments (i.e., yMm{t), yso{t), yDm(t) and yDom(t), 
respectively), and they are almost equally important. As seen in the top-left 

frames of these two figures, CA0 has the SRC and PCC values of 1 at the starting 

year 1750 but this value decreases very rapidly and this input does not appear 

to have any significant effect on the output variable yAtm (t ). Although the input 
factors included in these two figures are the factors that are associated with higher 

values of SRCs and PCCs (see legends of Figures 4.25 and 4.27), compared to
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AREA and HM the other inputs do not seem to be as influential on these four 
compartments.

The sensitivity of the surface ocean and the deep ocean-layer5 compartments 
to the other input factors (TSL, CSLO, CGO, TG, CWO and TW) shown in the 
figures seems to be increasing for the first 100-150 years and then decreasing grad­

ually over time. As the results for deep ocean-layer 13 reveals it takes longer for
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Figure 4.25. Time-dependent behaviour of the SRCs for the atmosphere and 
three ocean compartments considered.
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CO2 to move into the deeper layers of the ocean, so the sensitivities of these com­

partments to the model input factors in terms of the time-dependent behaviour 

of their SRC and PCC values show much slower change over 350 years.

The SRC and PCC curves computed on the sampled input factors and the 

terrestrial compartments are given in Figures 4.26 and 4.28. The nonwoody parts 

of trees compartment is most sensitive to its initial condition CFO which has both 

SRC and PCC of 1 in 1750 and decreases only slightly over the whole time period. 
By looking at the SRC curves of the most important 8 inputs for yNWPT{t), we 
can see that except for CFO, CWO and SXIT the rest of the inputs do not seem to 

be having any influence on this compartment. In terms of the PCC curves, CFO, 

CWO, SXIT and TT2 appear to be having significant influence on the nonwoody 

parts of trees compartment. The influence of the other inputs is insignificant. The 

PCC values associated with CFO and CWO are about 1 which indicates that the 
output variable yNWPT(t) and these two inputs increase together while the PCC 
value associated with SXIT, which is about -1, implies that yNWPT{t) decreases 

as SXIT increases. The sensitivity of yNWPT(t) to TT2 decreases with time, and 

by 2100 the influence of this factor becomes insignificant.

The sensitivity of the output variable yWPT{t) to CWO is the highest and 
this does not seem to change over the years. As shown in the corresponding 
SRC graph of Figure 4.26, this compartment is also sensitive to SXIT but shows 

hardly any sensitivity to the rest of the inputs presented in this graph and hence 

to the rest of the other inputs included in the analysis (since only the top 8 inputs 

having the highest SRC values are included in the figure).

The graph with the PCC curves for yWPT(t) show that CWO, SXIT and TW 

are almost equally influential on this model output. The influence of CFO is also 

very high over the whole time period. The sensitivity of yWPT(t) to TT2 and TF 

is also relatively high but decreasing over time, especially after year 2050.

As for the ground vegetation compartment, the influence of CGO on yGV(t), 
in terms of the SRCs, is very high (see the left frame in the second row of 
Figure 4.26). CGO’s SRC value is decreasing over time but only slightly. The
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Figure 4.26. Time-dependent behaviour of the SRCs for the terrestrial com­
partments.

sensitivity of yGV(t) to CWO, EPS and SXIT is also relatively high, and increasing 
over time. The SRCs related to the other inputs included in this figure are 
around zero. The PCC curves provided in Figure 4.28 for the ground vegetation
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compartment show that CGO and CWO are the most influential inputs on this 
output variable, and they are followed by EPS and SXIT having very high PCC 
values. The time-dependent behaviour of the PCC of SXIT present an interesting 

picture. Its PCC value is -0.0157 for the first 15 years, then it increases quite fast 

in the next three years, reaching to -0.7895 in 1768. Later, it starts decreasing 
until year 1775 (taking an SRC value of -0.0788) and then increasing rapidly in 
the following 10-15 years in the positive direction. Its SRC value in 1800 is about 

0.91, and continues increasing and reaches an SRC value of 0.951 in 2100. The 

input factor SS also seems to be important for this compartment especially in 
the early years, but its influence is diminishing fast and becoming insignificant 

by 2100. The PCC curve associated with CFO shows that yGV (t) is also sensitive 

to this input. The degree of sensitivity to this input decreases slightly over the 

years. The PCC curve of TV2 presents a decreasing influence on this output 
variable whereas the influence of PSIS which is not very high does not change 
with time.

Even though the PCCs are higher than the SRCs, the corresponding graphs 

for the detritus/decomposers compartment (i.e., yDD{t)), which display two sets 

of curves, present very similar pictures (see the right frames in the second rows 

of Figures 4.26 and 4.28). The time-dependent behaviour of the SRCs and PCCs 
of the eight most important input factors show small changes over time. Both 
estimated coefficients of the inputs CWO, CGO and TG increase whereas the SRCs 
and PCCs of TD, CFO, TW, TF and CD0 decrease over time but very slowly.

In terms of both SRCs and PCCs, the sensitivity of the active soil carbon com­

partment to CSLO is highest in the early years but over the years the influence of 

this input on yASC{t) decreases (see the corresponding graphs in Figures 4.26 and 
4.28). The SRC curves of the other seven input factors show that the sensitivity 

of yASO{t) to these inputs keeps increasing gradually in the first 100 years, then 

do not seem to be changing much in the next 250 years. With the PCCs, the 

time-dependent behaviour of the input factors, except for CSLO which shows a 

decrease, does not appear to be changing significantly over the whole time period.
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Figure 4.27. Time-dependent behaviour of the PCCs for the atmosphere and 
the three ocean compartments considered.

The SRCs and PCCs provide related but not identical measures of input 

factor importance. From Figures 4.25 - 4.28, we see that the PCCs tend to be 

larger than the SRCs, but because the input factors under consideration here are 
independent, the rankings of input importance based on the absolute SRCs and 
PCCs are identical. The rankings of the most important ten input factors for the 

nine model outputs fixed at three years are given in Table 4.8.
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Figure 4.28. Time-dependent behaviour of the PCCs for the terrestrial com­
partments.

The rankings for each output variable evaluated at the three chosen years do 

not appear to differ much from year to year. The input factor rankings for the 

atmosphere, surface ocean and the two deep ocean compartments are in quite
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a good agreement. For the nonwoody and woody parts of trees compartments, 

almost the same input factors are identified among the ten most influential inputs 

with slightly different ranks. Most of the ten inputs picked out as important for 

the tree compartments are also influential on the ground vegetation compartment. 

In the table, the importance rankings for the detritus/decomposers and the active 

soil carbon compartments show that most of the ten inputs which are important 

for one of these compartments are also important for the other but with different 
order of importance.
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4.4 .4  S tepw ise R egression

In this section, we present results from the stepwise regression analysis. The 

stepwise regression procedure was performed using the results from the N—5,000 

model runs associated with the carbon content of nine selected compartments as 

the response variables and the 30 input factors as the explanatory variables. As 

often done in sensitivity studies, an a-value of 0.01 is used to add a variable to 
each regression model, and an a-value of 0.05 is considered to drop a variable 

from the model. The results are shown in Table 4.9 (for the atmosphere and the 

three ocean compartments) and in Table 4.10 (for the terrestrial compartments) 

in terms of the order in which the input factors are selected (the most important 

input factor is selected first, the next most important factor is selected second, 
and so on), the R 2 and the PRESS (predicted error sum of squares) values at 

successive steps of the analysis are reported.

We first examine the adequacy of the regression models by looking at the 
PRESS values reported in Tables 4.9 and 4.10. The PRESS values computed for 

each regression model obtained at each step of the analysis appear to decrease 

in size as additional input variables are added to the corresponding regression 

model, which indicates that the regression models are not overfitting the data.

In Table 4.9, which presents the analysis results for 2/Atm(£), y so (t), y DO5(t) and 

2/coisW (where £=1900, 2000, 2100), we see that under each response variable 
the input factor AREA is selected at the first step of the analysis indicating 

that this input factor has the greatest impact on these twelve output variables. 

The R2-values computed with only AREA in each regression model vary between 

0.4041 and 0.4796. That is, AREA accounts for approximately 40-48% of the 
uncertainty in the output variables under consideration here.

In the second step of the analysis, HM is identified as the second most influen­
tial input on all twelve output variables. Including HM in the regression models, 

in addition to the input factor AREA, increases R 2 values significantly. Thus, 

AREA and HM together account for approximately 80-97% of the uncertainty in 

the output variables. With the addition of 5 more inputs which are identified as
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having impact on the response variables the effectiveness of the regression models 

are further improved. In each of the regression models summarised in Table 4.9, 
seven out of 30 inputs are selected. The seven inputs identified as influential on 

a compartment at three chosen years are the same, but the order in which they 
were added to the model changes slightly from year to year. For instance, for 

yso(t =  1900) and yso{t =  2000), CGO is added to the regression model on the 
fifth step, but when yso(t = 2100) is considered CGO is added to the model on 

the sixth step of the analysis.

The input factors AREA, HM, TSL, CSLO and TG are all selected in the 

regression analyses for all response variables yAtm(£), 2/soOO> 2/dob W anc  ̂Vdoiz^)'  
THG which is among the influential inputs for the atmosphere compartment is 
not identified as influential for the three ocean compartments. CWO, on the other 
hand, is selected in the regression analyses on the three ocean compartments, but 

not in the analyses for yAtm{t). Unlike the regression models on yDQ13{t =  2000) 

and yDQ13(t = 2100), the regression model for yDQli(t =  1900) includes TW and 
excludes CGO.

The analyses in Table 4.10 for the response variables related to the terrestrial 
compartments appear to be very effective with R2-values over 0.91. Under each 

response variable, a decreasing sequence of PRESS values implies that the regres­

sion models are not overfitting the data which they are based on. The regression 

on y NWPT(t) selects the input factors CFO, CWO, SXIT and TT2 when £=1900. In 
addition to these four input factors, in 2000, TW is also included in the regression 

model. Later in 2100, TT2 is dropped from the regression model, and the order 
of the selection of the second and third inputs is reversed. However, including 

TT2 and TW in the regression models for yNWPT{t), in addition to CFO, CWO 

and SXIT, does not improve the effectiveness of these models.

For yWPT(t), seven of the inputs involved in the analyses (i.e., CWO, SXIT, 
TW, CFO, TT2, TF and PHID -in this order) are identified in the regression 

analyses when the outputs from years 1900 and 2100 are considered. The analysis 

on yWPT(t = 2000), however, does not include PHID in the final regression model.
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The order of input selection does not change from year to year.
The input factors CGO, CWO, EPS and SXIT are selected by the regression 

analysis on yGV(t) in all three years. In addition to these four input factors, SS 

and TV2 in year 1900, SS and PSIS in 2000, and PSIS and TW in 2100 are 

included in the regression models for yGV{t). The orders in which these inputs 

are added to the models can be seen in Table 4.10.

Considering the regression analyses results for yNWPT{t), yWPT(t) and yGV(t), we 
see that even though the analyses identify a number of inputs as influential, 
including only the first inputs selected at the first step of the analyses in the

Table 4.9. Summary of stepwise regression analyses for the C 0 2 content 
of the atmosphere and the three ocean compartments (i.e., output variables 
yAtm^VsoiVDos and Vvois) in 1900, 2000 and 2100; based on N=5,000 model runs 
and IS92a emission scenario.

C om p. =  1900) 11 to o o o y i ( t  =  2100)

O utput Step V ariable R 2 P R E SS Variable R 2 P R E SS V ariable R 2 PR E SS

1 A R E A 0.4287 9.51x10“ A R E A 0.4298 15.90x10“ A R E A 0.4565 32.60x10“
2 H M 0.8694 2.18x10s H M 0.8703 3 .63x10“ H M 0.9260 4.44x10s
3 TSL 0.8745 2.09 x10s TSL 0.8737 3 .54x10“ CSLO 0.9283 4.30x10“
4 CSLO 0.8795 2.01x10s CSLO 0.8772 3.44x10“ TSL 0.9306 4.16x10“
5 T G 0.8809 1.99x10“ TG 0.8783 3 .41x10“ CGO 0.9314 4.12x10“
6 CGO 0.8823 1.96x10“ CGO 0.8793 3 .38x10“ T G 0.9322 4.07x10“
7 T H G 0.8832 1.95x10“ TH G 0.8800 3 .36x10“ T H G 0.9328 4.04X10®
1 A R E A 0.4041 4.25x10“ A R E A 0.4328 5 .20x10“ A R E A 0.4796 11.38x10“
2 H M 0.7982 1.44x10“ H M 0.8608 1.28x10“ H M 0.9662 0.74x10“
3 TSL 0.8144 1.32x10“ TSL 0.8688 1.20x10“ TSL 0.9674 0.71x10“

V s o 4 CSLO 0.8286 1.22x10“ CSLO 0.8758 1.14x10“ CSLO 0.9684 0.69x10“
5 CGO 0.8340 1.19X10“ CGO 0.8788 1.11x10“ TG 0.9688 0.68x10“
6 TG 0.8391 1.15x10“ T G 0.8815 1.09X10“ CGO 0.9692 0.67X10“
7 CWO 0.8436 1.12x10“ CWO 0.8838 1.07x10“ CWO 0.9696 0.66x10“
1 A R E A 0.4171 4.09X10° A R E A 0.4229 5 .12x10“ A R E A 0.4689 10.03X10“
2 H M 0.8268 1.22X10“ H M 0.8391 1.43x10“ H M 0.9401 1.13X10“
3 TSL 0.8401 1.13X10“ TSL 0.8496 1.34x10“ TSL 0.9428 1.08x10“

3 / d o b 4 CSLO 0.8518 1.04x10“ CSLO 0.8588 1.26x10“ CSLO 0.9451 1.04x10“
5 CGO 0.8562 1.01x10“ CGO 0.8625 1.22x10“ CGO 0.9462 1.02x10“
6 T G 0.8604 0 .98x10“ TG 0.8660 1 .19x10“ T G 0.9471 1.00X10“
7 CWO 0.8644 0 .96x10“ CWO 0.8690 1.17x10“ CWO 0.9479 0.98x10“
1 A R E A 0.4494 2.35x10° A R E A 0.4328 8.74x10° A R E A 0.4330 17.98x10°
2 H M 0.8971 0.44x10“ H M 0.8598 2.16x10“ H M 0.8587 4.49x10“
3 TSL 0.9017 0.42x10“ TSL 0.8691 2.02X10“ TSL 0.8678 4.20x10“

V d O  13 4 CSLO 0.9057 0.40x10“ CSLO 0.8772 1.90x10“ CSLO 0.8757 3.95x10“
5 T G 0.9075 0.39x10“ CGO 0.8803 1.85x10“ CGO 0.8789 3.85x10“
6 T W 0.9092 0.38x10“ CWO 0.8833 1.80x10“ T G 0.8818 3.76x10“
7 CWO 0.9109 0.37x10“ TG 0.8862 1.76x10“ CWO 0.8847 3.67x10“



CHAPTER 4. SEN SITIVITY ANALYSIS cont 215

Table 4.10. Summary of stepwise regression analyses for the CO2 content of 
the terrestrial ecosystem compartments (i.e., output variables y NWPT, VWPT-> y GV, 
yDD and y ASC) in years 1900, 2000 and 2100; based on N=5,000 model runs and 
IS92a emission scenario.

C om p. y i ( t  =  1900) y i ( t  =  2000) y i { t =  2100)

O utput Step V ariable R 2 PR E SS Variable R 2 P R E SS V ariable R 2 PR E SS

1 CFO 0 .9 9 6 4 355 .27 CFO 0 .9668 28 3 8 .0 0 CFO 0 .9 3 0 7 5600 .99
2 CWO 0 .9983 162 .37 CWO 0 .9845 1 3 2 2 .70 SX IT 0 .9 6 4 8 2844 .21

2/nw pt 3 SX IT 0 .9999 13 .47 SX IT 0 .9991 7 5 .58 CWO 0 .9 9 8 3 136.28
4 T T 2 0 .9999 12 .34 T T 2 0 .9992 70 .61 T W 0 .9983 135.98
5 T W 0 .9992 70 .53

1 CWO 0 .9990 2 6033 .20 CWO 0 .9 9 1 2 2 3 8 3 3 1 .0 0 CWO 0 .9 7 3 8 720820 .00
2 SX IT 0 .9999 3 1 05 .15 SXIT 0 .9995 1430 2 .0 0 SX IT 0 .9 9 9 7 9336 .42
3 T W 1.0000 1024 .08 T W 0 .9999 40 1 7 .4 0 T W 0 .9 9 9 9 3881 .73

yw P T 4 CFO 1.0000 697 .62 CFO 0 .9999 1 7 6 4 .59 CFO 1.0000 716.48
5 T T 2 1.0000 4 73 .43 T T 2 1.0000 7 2 0 .1 4 T T 2 1.0000 621 .28
6 TF 1.0000 4 55 .53 T F 1.0000 64 0 .6 6 T F 1.0000 610 .36
7 PH ID 1.0000 45 5 .0 9 P H ID 1.0000 609 .60

1 CGO 0 .9 9 8 7 364 .18 CGO 0 .9875 3 7 4 2 .6 2 CGO 0 .9 7 2 8 8677 .02
2 CWO 0 .9992 224 .32 CWO 0 .9 9 2 2 23 2 4 .2 9 SX IT 0 .9 8 2 0 57 4 6 .5 7
3 EPS 0 .9996 112 .15 E PS 0 .9 9 5 9 1224 .79 CWO 0 .9909 2910 .39

y gv 4 SX IT 0 .9999 17.66 SX IT 0 .9995 147 .28 E PS 0 .9989 338 .52
5 SS 0 .9999 16.03 SS 0 .9 9 9 5 138 .51 CFO 0 .9990 324 .38
6 CFO 0 .9999 15.28 CFO 0 .9 9 9 6 13 1 .3 4 P SIS 0 .9990 323 .85
7 T V 2 0 .9999 15 .24 PSIS 0 .9 9 9 6 131 .16 T W 0 .9990 323 .39

1 T D 0 .5591 6 .1 7 x 1 0 s TD 0.5451 5 .8 1 x 1 0 s T D 0 .5258 5 .7 1 x 1 0 s
2 CWO 0 .6 6 9 2 4 .63  x 1 0 s CWO 0 .6 7 6 8 4 .1 3 x 1 0 s CWO 0 .6719 3 .9 5 x 1 0 s
3 CFO 0 .7621 3 .3 3 x 1 0 s CFO 0 .7633 3 .0 2 x 1 0 s CFO 0 .7549 2 .9 6 x 1 0 s
4 T W 0 .8 5 4 2 2 .0 4 x 1 0 s T W 0 .8 4 8 4 1 .9 4 x 1 0 s T W 0 .8390 1 .9 4 x 1 0 s
5 TF 0 .9379 0 .8 7 x 1 0 s T F 0 .9250 0 .9 6 x 1 0 s T F 0 .9122 1 .0 6 x 1 0 s
6 TG 0 .9 5 9 4 0 .5 7 x 1 0 s CGO 0 .9 5 0 9 0 .6 3 x 1 0 s CGO 0 .9410 0 .7 1 x 1 0 s
7 CGO 0 .9 8 1 2 0 .2 6 X 1 0 5 T G 0 .9 7 6 9 0 .2 9 x 1 0 s T G 0 .9700 0 .3 6 x 1 0 s

1 TSL 0 .4304 6 9 .8 9 x 1 0 s TSL 0.4381 9 2 .3 6 x 1 0 ° TSL 0 .4301 1 0 4 .0 0 x 1 0 s
2 CGO 0 .5458 5 5 . 7 5 x l 0 6 CGO 0 .5655 7 1 .4 5 x 1 0 s CGO 0 .5688 7 8 .5 8 x 1 0 s
3 TG 0 .6595 4 1 .8 1 X 1 0 6 TG 0 .6904 5 0 .9 3  x 1 0 s T G 0 .7 0 4 4 5 3 .9 0 x 1 0 s

Vasc 4 TH G 0 .7416 3 1 .7 4 X 1 0 6 TH G 0 .7796 3 6 .2 7 x 1 0 s T H G 0 .8005 3 6 .3 8 x 1 0 s
5 CWO 0 .8159 2 2 .62  x 1 0 s CWO 0.8511 2 4 .5 1 x 1 0 s CWO 0 .8666 24 .34  x 1 0 s
6 T W 0 .8792 1 4 .8 5 x 1 0 s T W 0 .9108 14 .69  x 1 0 s T W 0 .9192 14 .75  x 1 0 s
7 T H D 0 .9178 1 0 .1 1 x 1 0 s TH D 0 .9479 8 .5 9 x 1 0 s T H D 0 .9529 8 .6 1 x 1 0 s

regression models gives very high R 2 values indicating that most of the variabil­

ities (changing between 93% and 99.9%, in this case) in the predictions of these 

three compartments are explained by their dependence on the first selected input 

factors (i.e., CFO for J/W P r(i), CWO for yWPT{t) and CGO for yav(t)).
The stepwise procedures for yDD(t) at three chosen years selected the same 

seven input factors, namely TD, CWO, CFO, TW, TF, TG and CGO, with only
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one minor variation in the order of selection of the last two inputs in the regression 

model for yDD(t — 1900). With the addition of each input factor to the model 

the J?2-value increases gradually.
The three regression analyses for yASO(t) identified the same input factors 

TSL, CGO, TG, THG, CWO, TW and THD as significant inputs. The order of 
input selection is the same at all three years. The addition of each input to these 

three regression models appears to increase the R 2-values.

4.4.5 R ank Transform ation

Since regression and correlation analyses are based on developing linear relation­
ships between variables, regression and correlation based sensitivity analyses can 

perform poorly, if the relationships between the input and the output variables 

are non-linear but monotonic. In such cases, by using rank transformation the 

performance of these analyses can be improved and hence more reliable results 
can be obtained.

As seen in the two dimensional scatterplots, out of 30 input factors most of 

them have no relationship with the output variables and only a small number 

of them have a detectable linear association with the outputs. However, for the 

atmosphere and the three ocean compartments the relationships with AREA and 

HM may be identified as monotonic rather than linear (see Figures 4.18 and 

4.19). As an example, we present in Figure 4.29 the scatterplots of yAtm{t =  

2100) versus AREA with both raw and rank-transformed data. Both AREA and 
HM show a slightly stronger linear relationship with yAtm (t ) and similarly with 

V s o 2 / j > o 5  W  a n d  V d o i s ( t )  a k e r  ! h e  rank transformation, as it is revealed by both 
the examination of scatterplots and the computed Spearman’s rank correlation 

coefficients (RCCs).

In Table 4.11, we present the analyses results for yAtm(t = 2100), yso(t — 

2100), yDO&{t = 2100) and yDOX&(t =  2100) with CCs, SRCs and PCCs calculated 
with both raw and rank-transformed data. The five input factors with the largest 

CC values are included in the table, and the inputs are ordered by p -values for
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CCs. For yMm(t = 2100), the two analyses differ slightly in the importance or­
der assigned to AREA and HM, but this difference appears to be with the CCs 

(calculated on both raw and rank-transformed data) only. The analysis with 

rank-transformed data identifies HM as the most important input with a RCC of 

-0.6887; on the other hand the analysis with raw data identifies HM as the second 
most important input with a CC of -0.6724. The rank-transformation does not 
appear to improve the results because a RCC of -0.6887 implies that HM can 

account for 47.4% of the uncertainty in yAtm{t = 2100) in the rank-transformed 

space while a CC of -0.6724 implies that HM can account for 45.2% of the vari­

ability in yAtm(t = 2100) in the non-transformed original space. Considering how 

close the CC, SRC, PCC, RCC, SRRC and PRCC values of AREA and HM are, 

it is reasonable to think that this difference in the importance ranking of these 

two input factors can simply be due to random sampling, and both of these inputs 
seem to be equally important for the atmosphere compartment.

The results on the use of raw and rank-transformed data in the analyses of

Y e a r :  2 1 0 0 ;  R a w  D a ta Y e a r :  2 1 0 0 ;  R a n k - T r a n s f o r m e d  D a ta

CC— 0.6757182

A  .
.  -

v : -£*

3.5*10A14
AREA (mA2)

2000 3000
AREA (mA2)

Figure 4.29. Scatterplot for the CO 2 content of Atm osphere compartment at
year 2100 versus AREA with raw and rank transformed data.
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yso(t — 2100), yDQ5{t = 2100) and yDCn3(t =  2100) are quite similar in terms of 
estimated coefficients. Furthermore, the use of both raw and rank-transformed 

data in the analyses appear to lead to the same importance order between the 

most important input factors (see Table 4.11). As for the other response variables 

related to the terrestrial compartments, because there is either no relationship 
between the response variables and the input factors or the relationship is linear, 

use of raw and rank-transformed data produces almost identical results.

An additional perspective on the use of raw and rank-transformed data can 

be obtained by examining the results of stepwise regression analyses. Table 4.12 

shows the analyses results for the output variables y Atrn, y so, y DOh and y DQ13 in 
2100. In this table, the input factors are listed in order of selection in the analyses, 
the SRCs and SRRCs in final regression models, and the cumulative R 2-values 

with entry of each input into the regression models are given.

As seen in this table, the use of rank-transformed data leads to a regression 

model for yAim(t =  2100) with 7 input factors and an I?2-value of 97.02%; in 
contrast, the use of raw data leads to a regression model also with 7 inputs and 
an i?2-value of 93.28%. Thus, the use of rank-transformed data is resulting in an 

analysis that can account for slightly more of the variation in yAtm{t =  2100) than 

can be accounted for in an analysis with raw data, but the difference is trivial. 

Similarly, for the other three output variables, the use of rank-transformed data 

does little to improve the quality of the analyses.
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Table 4.12. Comparison of Stepwise Regression Analyses with Raw and Rank- 
Transformed Data for yAtm, yso, yDQ5 and yDQls in year 2100.

C om part, R aw D ata R ank-T ransform ed D ata

O utput Step Input Factor SRC R-squared Input Factor SR R C R -squared

1 A R E A -0.6892 0.4565 H M -0.6999 0.4743
2 H M -0.6834 0.9260 A R E A -0.6997 0.9634
3 CSLO 0.0484 0.9283 CSLO 0.0468 0.9656

yAtm 4 TSL -0.0487 0.9306 TSL -0.0471 0.9677
5 CGO -0.0284 0.9314 CGO -0.0322 0.9687
6 TG 0.0280 0.9322 TG 0.0288 0.9695
7 T H G -0.0237 0.9328 CL 0.0266 0.9702
1 A R E A 0.7048 0.4796 A R E A 0.7033 0.4782
2 HM 0.6994 0.9662 HM 0.7004 0.9660
3 TSL -0.0340 0.9674 TSL -0.0356 0.9673

Vso 4 CSLO 0.0320 0.9684 CSLO 0.0331 0.9684
5 TG 0.0212 0.9688 TG 0.0224 0.9686
6 CGO -0.0210 0.9692 CL -0.0216 0.9693
7 CWO -0.0186 0.9696 CGO -0.0196 0.9697
1 A R E A 0.6963 0.4689 A R E A 0.6991 0.4733
2 HM 0.6893 0.9401 H M 0.6958 0.9533
3 TSL -0.0520 0.9428 TSL -0.0588 0.9567

Vd OB 4 CSLO 0.0493 0.9451 CSLO 0.0555 0.9596
5 CGO -0.0324 0.9462 T G 0.0358 0.9609
6 T G 0.0313 0.9471 CGO -0.0335 0.9620
7 CWO -0.0282 0.9479 CWO -0.0293 0.9629
1 A R E A 0.6679 0.4330 A R E A 0.6755 0.4442
2 H M 0.6574 0.8587 H M 0.6692 0.8836
3 TSL -0.0962 0.8678 TSL -0.1258 0.8991

J /.D 0 1 3 4 CSLO 0.0904 0.8757 CSLO 0.1171 0.9124
5 CGO -0.0567 0.8789 T G 0.0718 0.9175
6 T G 0.0544 0.8818 CGO -0.0699 0.9224
7 CWO -0.0533 0.8847 CWO -0.0657 0.9267

4.4 .6  T w o-sam ple N onparam etric T ests

As described in Section 2.6 of Chapter 2, two-sample test statistics of the Smirnov 

test and Cramer-von Mises test have been used as measures of sensitivity. In the 

following subsections we present the SA results based on these two tests.
The test statistics and the sensitivity rankings based on these statistics can 

vary considerably depending on the choice of the quantile for splitting the sam­
ples. In order to fully study whether an input factor has more influence on the
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median (indicating a general input importance) or on the 90th quantile (indicat­

ing a greater influence on the extremes), we have considered both the median 

and the 90th quantiles of each output distribution when partitioning each input 
factor under consideration into two samples.

4.4.6.1 Smirnov Test

Considering the random sample of 5,000 runs, the sensitivities of the nine chosen 

compartments in years 1900, 2000 and 2100 based on the Smirnov test statistic 
are calculated and their corresponding ranks are presented in Table 4.13 (where 
rank 1 is assigned to the most important input factor, rank 2 to the second most 

important one, and so on). Only the top 10 most important inputs are spec­

ified in Table 4.13. For the sake of comparing rankings from both test results 

(with the two choices of quantiles), we present the rankings in the same table 
with the ranks for the 90th quantiles given in parentheses. As seen in this table, 

for each compartment, the order of importance between the input factors show 

some variation from year to year. For the same output variable, the rankings 

based on the two partitioned distribution methods also differ considerably for 

all compartments except for the detritus/decomposers and the active soil car­
bon compartments for which there is a reasonably good agreement between the 
rankings resulting from the two partitioned distribution methods.
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4.4.6.2 Cramer-von Mises Test

Using the same simulation of 5,000 runs the test statistics are calculated. The 
order of importance obtained using this method is in reasonably good agreement 
with the results based on the Smirnov test. As noted in Section 2.6 of Chapter 2, 

the Cramer-von Mises and Smirnov statistics resemble each other very closely; 

however, the test statistic for the Cramer-von Mises scans the total area enclosed 

by the two cumulative distributions where as the Smirnov statistic is defined as 

the maximum vertical distance between the two curves. If the output variable is 

a non-monotonic function of the input, then the rankings provided by the two 
methods can be quite different, but in such cases the use of the Cramer-von Mises 

statistic as a sensitivity measure is more appropriate. In our case both of these 

methods seem to give reasonably consistent results.

Here, instead of ranking the Cramer-von Mises test statistics, we present the 

results (from only year 2100) graphically using star plots (Figures 4.30 and 4.31) 
which allow us to compare the influences of the input factors on each compart­
mental output. The radius of the stars extending from the centre of a circle 
represent a test statistic value computed on an input and an output variable. 

A long radius indicates that the corresponding input factor is important for the 

output variable under consideration. This graphical display proves to be a good 

way of picking out the most important input factors at a glance.
In Figure 4.30, which shows the influence of the 30 input factors on the out­

puts of the atmosphere and the three ocean compartments in 2100 in terms of 
the Cramer-von Mises test statistic based on both the 50th and the 90th quantile 

partitioning, it is clear that the input factors AREA and HM have quite a signif­

icant influence on these four compartments. Although the degree of importance 

of these two inputs is very close, the relative importance between these two most 
important inputs change with the two quantiles considered. For instance, for the 
surface ocean compartment with the 50th quantile partitioning AREA appears 
to be the most important and HM the second important input, but with the 90th 

quantile partitioning this order is the other way around.
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Compared to AREA and HM, the rest of the input factors do not appear to 

have much influence on the atmosphere and the three chosen ocean compartments 

(especially when the partitioning is based on the median). Figure 4.30(a) shows 
that based on the 50th quantile partitioning the input factors TSL is the third 
and SIGB the fourth most influential inputs; and based on the 90th quantile 
partitioning TF is the third and TG the fourth most influential inputs, following 

AREA and HM. Similarly, an importance ranking of the input factors for the 

other output variables related to the other compartments can be obtained by 
examining their star plots.
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4.5 D iscussion on th e R esults

When the models under study are computationally expensive to run and have 

a large number of input factors, the choice of the SA method is restricted to 

the techniques that require a relatively small number of model runs, i.e. are 
computationally not very expensive. As noted by Campolongo et al. (see [15]), 
the computational cost is determined by the number of model evaluations which is 
a function of the number of input factors considered, the number of model outputs 

examined and the complexity of the model. In addition, there is the number of 

input scenarios, and also output times to be taken into account when model 

outputs are time-dependent. In this chapter, with the model under consideration 

the number of model outputs (i.e. the number of compartments) is 25, the number 

of time points is 350 years (from 1750 to 2100), only one of the IPCC emission 
scenarios (IS92a) is considered, the number of input factors is 30, and N=5,000 
runs is considered.

We started the analysis with the simplest parametric approach, standard OAT 

design, that proceeds by varying only one input factor at a time while holding all 
other factors fixed at some nominal value. Two different standard OAT methods 

(Sis and SRs) are applied to the model. Both of these methods are local SA 

methods and like any local SA technique the information they provide is limited. 
Neither of these local methods is computationally very cheap. The calculation 

of the Sis were based on 2k model evaluations where k is the number of inputs. 

For the calculation of SRs, the computational cost is more expensive; it requires 

k x  N model evaluations, where N is the sample size considered in the analysis. 

Both N~100 and N=5,000 is used for the calculation of SRs, and even though the 

graphical summaries showed that the results hardly change, the ranking of the 
inputs changed considerably. Therefore, we have presented the results based on 

N=5,000 model evaluations which assures a better coverage of the input space.

The Morris method, which again changes one factor at a time but is considered 

as a global method because it explores the entire input factor space, was also used 
to assess the sensitivity of the model outputs. Compared to the standard OAT
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techniques, the information produced by the Morris method is more general. The 

computational cost with this method is r x (k +  1), where k again is the number 

of inputs and r is the number of orientation matrices which was taken to be 10.

Note that all three screening exercises used here only provide sensitivity mea­

sures that are qualitative and were used to rank the inputs in order of their 

importance. In practice, a screening method allows us to identify a subset of 

the most important model input factors. Afterwards, we can apply a quantita­

tive method to the subset of preselected inputs. By doing so, we can sometimes 

reduce the computational cost of the experiment considerably, especially when 
only a few of the input factors have a significant effect on the model output(s). 

Since the number of uncertain input factors of this GCC model under considera­
tion in this chapter is relatively small, we have decided not to exclude the input 

factors, which were identified as unimportant by the three screening designs, in 

the application of the global SA methods.

The results from the sensitivity measurements based on the three screening de­

signs (Sis, SRs and Morris) show that all these screening methods reveal the same 
subset of the most important input factors for the same output variable, with mi­

nor differences in their importance rankings when the detritus/decomposers and 

the active soil carbon compartments are concerned.

Although the global SA methods require higher number of model evaluations, 

they have been used in order to obtain quantitative sensitivity measures, and 
their use is recommended by researchers like Saltelli, Campolongo, Iman, Helton 
and Conover (see [47] for a review).

As the first global SA method we produced and examined scatterplots of the 

model predictions, in order to assess the nature of the relationship between each 

model output variable and each input factor. These scatterplots did not show any 
complex patterns. However, because the dimension of the input factor space is 
quite high (30), we have to keep in mind that these scatterplots can be misleading 
since the structure present in the original 30-dimensional space is not necessarily
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reflected by the individual structures present in the scatterplots of pairs of input- 
output variables. On the other hand, if a small number of input factors play a 

relatively dominant role compared to the other inputs (like in our case especially 
with the atmosphere and the ocean compartments) the corresponding scatterplots 

can be of value.

Other global SA measures such as CCs, SRCs, PCCs; and also non-parametric 
measures such as SRRCs, PRCCs (which are based upon the ranks of the input 
and output values) were calculated, and the absolute value of these estimates 

were used to rank the factors in order of influence on the outputs. Using stepwise 

regression approach for each compartment in three chosen years, the most impor­

tant input factor sets were obtained and model coefficient of determination (R 2) 
values were calculated. These high Revalues suggested that the output variables 
under consideration are reproduced by the linear regression models very well.

We shall emphasize that less than 10 out of the 30 input factors were found 

to have sizeable influence on the output variables under consideration. In this 

discussion section, we summarize the results by focussing on the inputs that were 

identified as important by the stepwise regression model, but when we presented 
the results earlier in the chapter - although it is an arbitrary choice - we assessed 

the influence of the top 10 input factors on the outputs in order not to fail to 
identify a factor which is important.

The subset of the most important input factors, which account for at least 

5% of the variability in the output variable, consists of

- AREA and HM for the atmosphere and the three ocean compartments in 
the three chosen years;

- CFO for the nonwoody parts of trees compartment in all three years;

- CWO for the woody parts of trees compartment in all three years;

- CGO for the ground vegetation compartment in all three years;
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- TD, CWO, CFO, TW and TF for the detritus/decomposers compartment 

in all three years;

- TSL, CGO, THG, TG, TW and CWO for the active soil carbon compartment 

in all three chosen year.

Note that the order of importance between these important input factors 
changes slightly from year to year and from method to method; however, all SA 

techniques considered here have identified these input factors. There is some 

variation in the importance order of the rest of the input factors under different 

methods, but these factors appear to have small effects on the total uncertainty 

in the output variables under consideration.
Because of monotonic but slightly non-linear relationship detected in the scat­

terplots of AREA versus each of the output variables related to the atmosphere 

and the three ocean compartments (similar relationship also found between the 

same output variables and HM), rank transformation is considered. The results 

of the analysis with rank-transformed data indicated that since the use of rank 
transformation improved the performance of the analysis very little, this approach 
is not really worth being pursued for the model under consideration here.

Input factor importance for each compartment found to be time dependent.

Because of the random sampling, different rankings can be obtained from 

different simulations. In this chapter, we have used the same set of input and 
output values in the calculations of different global SA measures so that the 
rankings provided by these methods can be comparable. For a future study, 

different simulations (the seed used for the random number generation is changed 

each time) can be taken into account to compare the variances of the SA estimator 

prediction over the various simulations.
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U ncertainty A nalysis

5.1 Introduction

The real-world system is precise but complex; a model, which is a simplified rep­

resentation of this system, may be imprecise but simple. This trade-off between 
precision and simplicity is the main essence of the modelling process. The effec­

tiveness of a model lies in its simplicity of use, as well as an understanding of the 

level of imprecision [92]. Because of the imprecision in the model, uncertainties 
exist in the conclusions derived from the model.

Perincherry et al. [92] point out that “Handling uncertainty is perhaps the 

most pervasive and the most difficult aspect in the analysis of systems”. Some 

investigators may have a tendency to ignore the uncertainties since it simplifies 

the decision making process, but ignoring uncertainties may be disastrous. It 

is a duty of the researchers to highlight the uncertainties associated with the 
inferences that they make.

In practice there is a wide variety of sources of uncertainty involved in the 

modelling process, and some of the important ones arising in climate models are 

shown in Figure 5.1. Uncertainty analysis (UA) plays an important role in esti­

mating the reliability of climate model projections [43]. In this chapter, focusing

231
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on the three main sources of uncertainty - namely input factor, model and sce­

nario uncertainty - and using computer simulation we apply this framework to 

global carbon cycle (GCC) models. The application of UA to GCC models can 

make significant contribution to the understanding of the GCC and its role in 
determining future atmospheric C 0 2 concentrations.

Another important source of uncertainty is the modeller. Different modellers 

can draw different conclusions from the same output, depending on the context of 

the problem and the attitude of the modeller. Therefore, the resulting model can 

depend largely upon a modeller. We refer to this type of uncertainty as ‘modeller 
uncertainty\  This aspect of uncertainty is also illustrated in this chapter with a 
case study.

Real System

Analyst or 
Modeller

A Model o f  the 
System

Uncertainty types and their relations to real systems 
Modelling Uncertainty

Conflict and confusion in information
Lack o f  k n o w le d g e

Vaguely defined factors, relations 
and measurements 

Human and organizational error
Future observables Historlcoi d a ta

Scenario Uncertainty 
Unknown aspects of the system

Environmental impact of projects 

Other human factors Physical randomness

F igure  5.1. A diagram of sources of uncertainty.
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To determine the effect the sources of uncertainty have on model results, 
sensitivity analysis (SA) is used. In the previous two chapters (see Chapters 3 

and 4), to assess how sensitive the output of a model can be to variation in 

one or a set of model input factors, various SA methods have been applied to 

the three GCC models under specific settings. Those settings being: within each 
model each input factor is assumed to follow a uniform distribution; IPCC’s IS92a 

emission scenario is used for forecasting CO2 content of each compartment; as 
sampling method simple random sampling is used.

At the SA stage of this study, for the three GCC models under consideration, 
we have determined which of the input factors are important and hence which 

cannot be ignored in future investigations. It should be noted that in the SA 

chapters we focused only on uncertainties in the model input factors and assessed 

their influence on model outputs within each model.

As pointed out by McKay, it is necessary to validate a model before predic­
tion uncertainty can be evaluated sensibly [83]. Hence, in this chapter, we first in 
Section 5.2 do model intercomparison and model validation, that is compare the 

historical atmospheric C 0 2 predictions of the three GCC models with each other 

and with the historical C 0 2 record, to determine the uncertainty in the results. 

Then in Section 5.3, we talk about type of uncertainties involved in GCC models. 

In Section 5.4 three main sources of uncertainty we focus on in this chapter are 
explained. These sources of uncertainties: input factor uncertainty, scenario un­
certainty and model structure uncertainty are investigated in Sections 5.5 through 

5.7, respectively. In Section 5.8, partitioning the uncertainty in model predictions 

between the sources of uncertainty is discussed. Section 5.9 introduces modeller 

uncertainty and presents results from a case study in environmental radiactivity.
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5.2 M odel Inter com parison and M odel 

V alidation

Model intercomparison and model validation are essential components in the 
modelling process for establishing the reliability of models, because until the 
disagreements can be identified, nobody will know which model, if any, can be 
believed [43]. However, the disagreement among the predictions of different mod­

els and the degree of agreement with available observations is an important aspect 

of determining the uncertainty in the results.

Due to different assumptions, simplifications, aproximations etc. made in de­

veloping different models, there can be -and usually there are- disagreements 
between model predictions. The process of analysing the disagreements among 

the results of different models is called model intercomparison. As Hall notes 

in Ref. [43], model intercomparison has an important role because it is essen­

tial to reconcile the disagreements between different models before we can have 

confidence in them, but it is UA that provides the basis for a meaningful model 
comparison.

The process of comparing model predictions with observational data to eval­
uate their accuracy is called model validation. Even though validation against 

observations provides one of the most convincing indications of the reliability of 

a model, it is important to emphasize that: 1. there is always some degree of 

uncertainty in the observed data; 2. a model can perform well with the past data 

but this does not necessarily mean that its future projections would be reliable 
as well.

The three GCC models simulated atmospheric CO2 over the historical period 
1750-2000, using the input factor values listed in Tables 3.2 - 3.5 in Chapter 3 

and Table 4.1 in Chapter 4. These yearly atmospheric CO2 predictions are shown 

in Figure 5.2 along with the historical measurements of atmospheric CO2 con­

centrations from the Mauna Loa Observatory for the period 1958-2000 and from 
an ice core taken at Siple Station in Antarctica for the period 1744-1953.
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Figure 5.2. Comparison of historical simulations of atmospheric CO2 from three 
GCC models under the base-case scenario and the measured atmospheric CO2 

concentrations from Mauna Loa Observatory: 1958-2000 (Keeling & Whorf, 2001 
[71]); and Siple Station: 1744-1953 (Friedli et al., 1986 [37]).

The predictions of the 8-compartment models (Model I and Model II) bear 

strong similarities to each other. This is due largely to the similarity in the 

mathematical structure of these two models. The estimates from these two models 
compared to the 25-compartment model agrees rather well with the observed data 
in the first 200-220 years. Both of these models overestimate the Siple ice core 

data; Model I until around early 1900s and Model II until around 1870. Then, 

both fall below the historical data. Among the three models, Model II produces 

predictions closest to the observed data for the first 150 years, between years 
1900 and 1970 Model I performs best, and for the most recent three decades the 
25-compartment model predictions appear to be closest to the Mauna Loa data. 

The model predictions from the 25-compartment model fall below the historical
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data and the other model estimates until around 1960s, and in the early 1970s 

this model’s prediction rises above the other two models and agrees quite well 
with the Mauna Loa record.

For the 25-compartment model, the greatest deviation from the observed data 

occurs in 1843 for which the historical prediction underestimates the Siple ice core 

record by 25.5 ppm. As for the 8-compartment models, a maximum deviation of 

35 ppm for Model I and 41.7 ppm for Model II occurs in year 2000.

From the comparison of model predictions with each other and with the ob­
served data, it is clear that there is considerable uncertainty due to modelling and 
parametrization within model. Both of these sources of uncertainty are defined 

in Section 5.4.

Comparison of the model predictions with each other and with historical data 

is instructive and by doing so models can be tuned to simulate observed data 
well, but this does not necessarily mean that they will be capable of producing 

future projections well since the consequences of climate change are not known. 

The uncertainty in the future projections is discussed later in the chapter under 

scenario uncertainty.

Because our aim in this chapter is neither removing the disagreement between 
the models nor tuning the models so that they can simulate available data well, 

we only used model intercomparison and validation approach to show that there 

are uncertainties attached to the model results.

5.3 U ncertainties in GCC M odels

The inherent uncertainty associated with most environmental and climatic sys­

tems is often acknowledged [109]. There is considerable uncertainty about the 

future role of the terrestrial and oceanic systems in the global carbon cycle. 

Concerning the terrestrial system, there is still considerable disagreement among 

scientists as to whether terrestrial vegetation is a source or a sink for CO2 . Even
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the amount of carbon stored in terrestrial system is not certain. Carbon esti­

mated in plants range widely between 420 and 830 Gigatons (lG t =  1012 An/), 

depending on the methods used.

The oceans have a very high CO2 storage capacity, but lack of knowledge of 
the overall effect on the ocean environment and uncertainty about the injected 
CO2 into the oceans still exist.

UA of GCC models can identify carbon cycle components and processes with 

the greatest sensitivities and uncertainties. This information can then be used to 

determine which uncertainties have the greatest influence on future atmospheric 
CO2 concentrations and where further research and data collection could be most 

effectively applied to reduce uncertainties. Information gathered from UA can 
also be used in future model development.

5.4 M ain Sources o f U ncertainty

In a general sense, Draper identifies three main sources of uncertainty in any 

problem to be: (?) predictive uncertainty which is conditional on the scenario 
and model; (??) scenario uncertainty about the inputs to the models; and (???) 

model uncertainty (conditional on the scenario) about how to translate the inputs 
into forecasts (see [26]).

In another article Draper et al [27] note that sources of uncertainty in com­

plex prediction problems involve six ingredients: past data, future observables, 

scenarios, model (or structural), parametric, and predictive uncertainty.

Uncertainties in computer models can arise from a variety of different sources 
and attention has been devoted to examining the magnitude of uncertainty asso­
ciated with model behavior. According to Chatfield [17], as modern computing 

power allows us to consider and compare increasingly large number of models, the 

problem of dealing with uncertainties in models is becoming increasingly serious. 

This issue is also emphasized by Kennedy &; O’Hagan in Ref. [72]. They note 
that the widespread application of computer models brings together a widespread
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concern about quantifying uncertainties attached to the model results. They de­
fine various sources of uncertainty in computer models which include parameter 

uncertainty, model inadequacy, residual variability, parametric variability, code 
uncertainty and observation error.

In the context of climate models, three main sources of uncertainty stated by 

King & Sale [73] are:

1. uncertainties in future energy and land-use emissions (i.e. scenario uncer­
tainty) ;

2. uncertainties about the GCC reflected in the structural and conceptual 
differences between models (i.e. model uncertainty)] and

3. measurement error and uncertainty in the parameters and variables within 

a particular model (i.e. input factor uncertainty).

In this chapter, our aim is to evaluate uncertainty in model predictions arising 
from these three main sources of uncertainty. First, we shall briefly describe these 

sources of uncertainty in the context of GCC modelling:

In p u t F acto r U n certa in ty  can be defined as measurement error and uncer­

tainty in the parameters and variables within a particular model.

Scenario U n certa in ty  can be defined as the uncertainties in future energy and 
land-use emissions.

M odel U n certa in ty  can be defined as the uncertainties about the GCC re­

flected in the structural and conceptual differences between models.

5.5 Input Factor U ncertainty

In any model, the output from the model is the item of interest. The knowledge we 
have about the model input factors driving the model equations is not perfect. 

As a result, these input factors are described as being uncertain. Because of
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uncertainties inherent in the input there are uncertainties attached to the output. 
As stated by Helton & Davis [49], uncertainty analysis can be defined as attempts 

to answer the question of “What is the uncertainty in the model response given 

the uncertainty in the input factors?” .

The values of model input factors can only be determined from the real world 

system to a certain extent, that is, there is always some degree of uncertainty 
about those values.

This type of uncertainty is quantified in a distribution of input factor values. 

Reducing uncertainty in influential factor(s) of a model, which can be identified 

through SA, can lead to significant reduction of uncertainty in model predictions. 

In Figure 5.3 we present an example showing how reduction in an influential input 
factor uncertainty yields a reduction in prediction uncertainty. This example is 
based on the atmosphere compartment of the 25-compartment model used in 
Chapter 4. In that chapter, we found that the area of the surface ocean (i.e. 

the input factor AREA) is the most important input factor for the atmosphere 

compartment. Figure 5.3 shows the substantial effect of reducing the uncertainty

All 30 input factors vary One input (AREA) is fixed at nominal

1750 1800 1850 1900 1950 2000 2050 2100 

Year

1750 1800 1850 1900 1950 2000 2050 2100 

Year

Figure 5.3. A simple example of prediction uncertainty bands.
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in AREA (i.e. setting it to its best estimate) on the uncertainty in the predicted 

CO2 content of the atmosphere.
This type of uncertainty is of major interest in Chapters 3 and 4. In these 

chapters we examined sensitivity of model outputs to the uncertainties inherent 

in the model input factors. In this chapter, we investigate two different aspects 
of input factor uncertainty. First, the effect of sample size, and the sampling 

technique used to obtain input vectors, on model predictions. Then, the effect of 

different input factor distributions on model predictions.

5.5.1 Effect o f Sam ple Size and Sam pling Technique on  

M od el P red ictions

In uncertainty studies of computer models, it is often necessary to use a limited 
number of model runs, especially when dealing with complex models and/or 

models with large number of input factors and output variables. For this purpose, 

different sampling techniques have been developed and used.

In this subsection we investigate the effect of sample size and sampling tech­
nique on the model predictions. The sampling techniques considered here are 
simple random sampling (SRS) and Latin hypercube sampling (LHS). First, to 

illustrate the effect of sample size on the variability in model predictions, consid­

ering SRS we generate 10 input samples of size N=10 and N=100 for the initial 

conditions of Model I under the assumption that they follow a uniform distribu­
tion on their assigned ranges given in Table 3.2 (see Chapter 3). For examining 
such effects we use cumulative distribution functions (CDFs). The CDFs for the 

atmospheric CO2 predictions in 2100 (i.e. the output variable yAtm(t =  2100)) are 

shown in Figure 5.4. Examination of this figure shows that with increased sample 

size, it is reasonable to expect improvement in the results, that is, as the sample 

size increases the estimated CDF converges to the true CDF. Helton & Davis [48] 
use the term ‘stability’ to refer to the amount of variation between results ob­

tained with different samples generated by a particular sampling technique under
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Figure 5.4. Example CDFs for yAtm(t) from Model I estimated with random 
samples of size 10 and 100 under the assumption that the initial conditions of the 
compartments are uniformly distributed on their assigned ranges (see Table 3.2).

consideration. We shall adapt their terminology here.

For one of the 8-compartment models, Model I, and the 25-compartment 
model, using both SRS and LHS we present plots similar to those in Figure 5.4 
for N=100. Because showing them all on the same figure is not very informative, 
we have summarised the distributions of the CDFs with mean and percentile 

curves. For a given probability value, the mean and the 5th, 50th and 95th 

percentiles of the corresponding yAtm{t = 2100) were calculated. The results are 

given in Figures 5.5 and 5.6. The location of the percentile curves shows how 

stable the estimates of the CDFs are. This analysis is repeated three times to 

give three estimates of the mean and percentile curves. It is clear in Figures 5.5 

and 5.6 that LHS is producing CDF estimates that are more stable than those 
produced with SRS.
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Figure 5.5. Summary of distribution of CDFs for Atmospheric CO2 predictions 
in 2100 from one of the 8-compartment GCC model (Model I) estimated with 3 
replications of 100 simple random samples and 3 replications of 100 Latin hyper­
cube samples of size 10 and 100 under the assumption that the initial conditions 
are uniformly distributed on their assigned uncertainty ranges (for the initial 
conditions and their assigned ranges see Table 3.2).
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compartment GCC model estimated with 3 replications of 100 simple random 
samples and 3 replications of 100 Latin hypercube samples of size 10 and 100 
under the assumption that the model input factors are uniformly distributed on 
their assigned uncertainty ranges (for the input factors and their assigned ranges 
see Table 4.1).
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In SA chapters, because the three model codes are not computationally ex­
pensive to evaluate, and because SRS is .easy to implement and easy to explain 
we have considered this sampling technique. Depending on the dimension of the 

input space (i.e. the number of input factors), to obtain a better coverage of the 

input space one can either use SRS with a sufficiently large sample size when 
large samples are computationally practicable or use LHS with a smaller sample 
size when large samples are not computationally practicable.

Having seen that LHS is producing CDF estimates that are more stable than 
those produced by SRS, it is of interest now to find out what sample size through 

the use of LHS would be needed to draw the same conclusion obtained through 

the use of SRS, and also to see if this changes from model to model. Considering 
SRS and LHS with various sample sizes we ran the model codes and calculated 

the output variable yAtm{t = 2100). The results from one of the 8-compartment 
models (Model I) are shown in Figure 5.7 (a) and (b) under the assumption that 

the initial conditions and the transfer coefficients follow uniform distribution in 

their specified ranges, respectively. As for the 25-compartment model the results 

are presented in Figure 5.8 under the assumption that all input factors follow 
uniform distribution in their assigned ranges. Appearing in the left panels of 

Figure 5.7 and Figure 5.8 are CDF estimates of yAtm{t = 2100) obtained by 

running the model on: a SRS with N=10,000, with N=5000 and with N—100; 

LHS with N—10,000, with N=100, with N=500 and with N=1000. The estimates 
based on N=10,000 sample size result in a reasonably smooth curve - no matter 

which sampling scheme is used as their estimates are in great agreement - the 

estimated CDF of the output obtained through SRS with N=10,000 is used as the 

“true” distribution function for purpose of examining the effect of using different 
sample sizes and sampling schemes.

The results of the previous two chapters were all based on SRS with N=5,000. 
As shown in left panels of Figures 5.7 and 5.8, the predictions based on SRS with 

N=5,000 turned out to be in perfectly good agreement with the “true” CDF. 

Therefore, it is reasonable to treat the CDF obtained through SRS with N=5,000
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see Table 4.1).

as “true” CDF.

As indicated in the left frames of Figure 5.7, the predictions based on SRS 
with N=100 are consistently higher than the “true” estimates. With the 25- 

compartment model, the estimates based on both SRS and LHS with N=100 are 

lower than the “true” estimates (see left frame in Figure 5.8). The same plots also 

show that compared to the estimates based on SRS with N=100, the estimates 
based on LHS with N=100 are much closer to the “true” estimates. In the right 

panels of Figures 5.7 and 5.8, we compare the “true” CDF with CDFs based on 
LHS with sample sizes 100, 500 and 1,000 to investigate which sample size is 

required if LHS is considered in the analysis. It is clear from these figures that 

there is a slight but define improvement in the quality of estimates as the sample 

size increases, but there appears to be no dramatic change in the CDFs based on
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LHS with the three sample sizes.
As a further investigation, using partial correlation coefficient (PCC) as a 

diagnostic tool, we have shown how the importance order of the input factors 

change with the sample sizes in Figure 5.9. The output yAtm{t = 2100) from 

Model I and the transfer coefficients as input factors are considered, ft appears 
that LHS with N=500 gives the importance order which agrees with the results 

obtained from SRS with N=5,000. The same is true when the initial conditions 
of the model are used in the analysis. As for the 25-compartment model the 

required sample size for LHS appears to be N=1000. Hereafter in the analyses 

we use LHS as the sampling scheme, and N=500 (when 8-compartment models 

are concerned) and N=1000 (when 25-compartment model is concerned) as the 

sample size.
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Figure 5.9. Comparison of PCC values based on different sampling technique 
and sample sizes. The output variable considered here is yAtm{t = 2100) calcu­
lated from Model I with the input factors (here the transfer coefficients) varied 
simultaneously under the condition that all factors follow uniform distribution 
on their assigned ranges.
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We should emphasize that the results presented in this subsection apply to 
the GCC models considered in this thesis, and these results may not apply to just 

any model. As the results on the two different underlying models have shown, 
sample size requirement is a function of model complexity and the number of 

model input factors.

5.5.2 Effect o f  Input Factor D istr ib u tion  on M od el 

P red iction s

In sampling based sensitivity/uncertainty studies, assumptions regarding the 
probability distributions of model input factors especially the ones that are very 
influential on the output variable(s) require careful consideration. There are 

various options avaliable for probability distributions of the input factors; for 

example, uniform, lognormal, loguniform, triangular distributions. These proba­

bility distributions are often found to provide good representations for physical 
quantities. On the other hand, for many quantities such as concentrations, some 
probability distributions, like the normal distribution are theoretically inappro­

priate because negative values are allowed. For the models adapted in this thesis, 

there are no input distributions specified by the model developers. Since the uni­

form distribution’s use is appropriate when we are able and willing to identify a 

range of possible values, but unable to decide which values within this range are 
more likely to occur than others, in the previous two chapters we have considered 
this distribution for all model input factors. A range for each factor is obtained 

by ±20% of its nominal value gathered from the scientific literature.

In this section, to assess the effect of input factor distribution on the model 

output uncertainty, we consider uniform, lognormal, and triangular distributions 
for the input factors of Model I and the 25-compartment model. While the as­

sumptions regarding the probability distributions of the input factors are changed, 

the range of each input factor indicated in earlier chapters are kept the same.
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For purposes of illustration, we consider yAim{t =  2100) as model output vari­

able; IS92a as the emmission scenario. Using LHS of size N=500 for Model I and 
N=1000 for the 25-compartment model input vectors are obtained and using the 

model codes yAtm(t = 2100) from both models are calculated.

For Model I, for which we do not have a built-in calibration process in the 

model code and we have to maintain the steady-state condition, the effect of 

assumed probability distributions of initial conditions and of the transfer coeffi­
cients on the distributions of model outputs are assessed separately. Figures 5.10 

(a) and (b) show the CDFs of yMm{t =  2100) from Model I, when the initial 

conditions and the transfer coefficients follow the three selected probability dis­

tributions. The results for the 25-compartment model are shown in Figure 5.11. 

In these figures, the solid line represents the CDF for yAtm{t =  2100) predic­

tions when input factors are assumed to follow uniform, the dotted line when 
factors are assumed to follow lognormal and the dashed lines when factors are 
assumed to follow triangular distributions on the same ranges assigned to each of
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F igure 5.10. CDFs showing the effect of input factor - (a) Initial conditions, (b) 
Transfer coefficients - distributions on the estimated distribution of the output 
variable yAtm{t = 2100) from Model I,



CHAPTER 5. UNCERTAINTY ANALYSIS 250

oo
o

3
LL
Co

coo

wb 0) * 
°

CO
3
E
3o —  Uniform

—  Lognormal 
- - -  Triangular

CVIo

oo 1000 2000 3000 4000 5000
Atmospheric C02 in 2100 (Gt C)

F igure 5.11. CDFs showing the effect of input factor distribution on the esti­
mated distribution of the output variable yMm(t = 2100) from 25-compartment 
model.

the factors. Examination of these figures clearly indicates that the distribution 

associated with model input factors can have a significant effect on the distribu­

tion of model predictions. How much the output distribution function changes 

depends on the degree of change in the input factor distribution and the strength 

of the association between each output and each input factor. It can be seen 

that with both models under consideration here the change in the distribution is 
considerable, which indicates the importance of being as accurate as possible in 
specifying the input distributions.

For specified assumptions on input factor distributions, CDFs can be used 

to obtain cumulative probability estimates on model predictions. For example, 
with the assumption that all input factors follow the uniform distribution in their 

specified ranges, from Figure 5.11, the probability that atmospheric CO2 in 2100 
will be less than approximately 3500 Gt C is approximately 0.9. However such 
estimates are dependent on the ranges and distributions assumed for the input
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factors.

In SA chapters, under the assumption that all input factors are uniformly dis­

tributed, we have identified the factors that are influential on the model output 
variables under consideration. As noted above, assumptions regarding the distri­
butions of those factors require careful consideration. On the other hand, for any 

input factors that show little or no influence on the output variable, assumptions 

regarding their distributions are not as critical.

Next, we want to find out if input factor importance changes as a result of 
different distributional assumptions on the model input factors. Here we use 

an uncertainty importance measure introduced by Chun et at [19], which is 

based on metric distance between two CDFs. This uncertainty measure is a 

useful tool to express the measure of uncertainty importance in terms of the 

relative impact of distributional changes of inputs on the output distribution. The 

authors evaluated this metric distance measure for both analytical and empirical 

distributions.

The form of the metric distance appropriate for our case where we have an 

empirical distribution generated by Monte Carlo simulation is as follows:

\  j N  [vhjN ~  Vn/N\2

n= 1

where M D (i  : o) is the normalized metric distance measure in terms of quantiles 

between the base case and its sensitivity case, y°jN is the (n/lV)th quantile of a 

CDF for the base case (0 < n < JV), y ^ N is the (n /N )th quantile of a CDF for its 
sensitivity case, and N  is the number of simulations. Here, the base case refers to 

the case where an output distribution is obtained with all input distributions set 

to their assigned distribution, whereas the sensitivity case refers to the case where 

an output distribution is obtained with the ith input factor set to its nominal 

value while the other factors are varied. Normalization is caried out to make the
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metric distance measure a dimensionless quantity.
Considering the output variable yAtm{t = 2100) of the 25-compartment model 

we want to assess an importance order between the input factors based on the 

metric distance measure under three different distributional changes of the input 

factors. An example is given in Figure 5.12 showing the characteristics of this 
uncertainty measure graphically. The shaded area in this figure indicates the 
metric distance measure for the input factor AREA of the 25-compartment model 

and its relative impact on the distribution of the output variable yAtm{t = 2100) 

when input distributions are taken to be lognormal.

The metric distance (M D ) measure for each 30 input factors have been cal­

culated and their relative impacts on the distribution of the output variable have 
been ranked according to the magnitude of normalized M D  measure obtained 

for each input factor. The ranked ten input factors are listed in Table 5.1 under

AREA set to its nominal value 
while others varied

co
d

c
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3
^  CO 
§ ° All 30 input factors varied
=3
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Atmospheric C 02 in 2100 (Gt C)

4000

Figure 5.12. An example showing the metric distance measure between two 
CDFs. In this example the shaded area indicates the metric distance measure 
for the input factor AREA of the 25-compartment model and its relative impact 
on the distribution of the output variable yAtm(t =  2100). Simulations are based 
on LHS with 1000; emission scenario IS92a; and lognormally distributed input 
factors.
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Table 5.1. Uncertainty importance rankings obtained by metric distance mea­
sure. The output variable yAtm{t =  2100) from the 25-compartment model, three 
different input factor distributions; LHS with N=1000; and emission scenario 
IS92a are considered in the calculations.

Rank Uniform Lognormal Triangular

1 AREA AREA AREA
2 HM HM HM
3 TG CSLO TG
4 CSLO TG TSL
5 TSL CWO THG
6 CGO TSL CAO
7 CWO TEMPO CSLO
8 THG THG CWO
9 CL CL DELTP

10 TEMPO CGO CGO

the three input distributions. The importance order of input factors varies with 
different distributional assumptions. However, the M D  values associated with 
AREA and HM factors are much higher than the M Ds  associated with the rest 

of the input factors, and no matter which input distribution is taken these two 

factors have been identified as the most important input factors for the output 

variable under consideration.
A desirable property of this measure is that it does not depend on assumptions 

about the form of the relationship (like, linearity) between model inputs and 
predictions. This measure can also be used as a screening tool. Even though it is 

easy to calculate, with a complex model involving a large number of input factors 

it can be quite laborious.

5.6 Scenario U ncertainty

Another important source of uncertainty in GCC models is introduced by lack 

of knowledge or inability to predict the future conditions exactly. For example,
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population growth, structural changes in economies, energy prices, fossil-fuel sup­
plies, income are among the factors which could have a major influence on future 
levels of CO2 emissions, and there is substantial uncertainty in all these factors. 
Scientists have been developing scenarios of future emissions reflecting different 

views of the future. These scenarios provide inputs to climate models.

The three of the six emission scenarios developed by the Intergovernmental 

Panel on Climate Change (IPCC) in 1992 are considered in this thesis. These 
scenarios are IS92a (also known as the ‘Business-as-usual’ scenario), IS92c(‘low’ 

emission scenario) and IS92e (‘high’ emission scenario). A brief description of 
these three scenarios is given in Chapter 3 (see Section 3.2.2), and details of 

these scenarios can be found in Ref. [58].

In this section, we investigate how the uncertainty in the emission scenarios 

under consideration influence the uncertainty in model predictions.
First, within each model, assuming zero uncertainty for the input factors, i.e. 

setting them to their nominal values, we have calculated the baseline CO2 pre­

dictions for each compartment of the three models with the three IS92 scenarios. 

These baseline predictions are presented in Figures 5.13-5.15. Since the scenarios 
IS92c and IS92e are the two extreme IPCC-1992 scenarios the uncertainty ranges 
we see in these figures is for all IPCC-1992 scenarios. As seen in Figures 5.13 
and 5.14 showing results for the 8-compartment models, Model I and Model II, 

respectively, the IS92e scenario yields a high estimate, the IS92a a median and 

the IS92c a low estimate of all compartmental CO2 contents over the whole time 

period (from 1995 to 2100). However, for the 25-compartment model this is the 
case with the atmosphere and ocean compartments only. W ith the ground veg­

etation compartment the IS92a and IS92e give a high estimate and the IS92c a 

low estimate, and as for the other terrestrial compartments the IS92c yields a 

high estimate and the scenarios IS92a and IS92e a low estimate. The impact of 

different emission scenarios on the deeper layers of the ocean and the terrestrial 

ecosystem is not as rapid as it is on the atmosphere, surface layer and the upper 
layers of the ocean.
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F igure 5.13. The range of CO2 baseline predictions of each compartment of Model I, 
based on IPCC-IS92a,c,e emission scenarios. These calculations are based on a model 
simulation in which all model input factors are set to their nominal values.
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Figure 5.14. The range of C 0 2 baseline predictions of each compartment of Model II, 
based on IPCC-IS92a,c,e emission scenarios. These calculations are based on a model 
simulation in which all model input factors are set to their nominal values.



CHAPTER 5. UNCERTAINTY ANALYSIS 257

A tm osphere S urface ocean Deep ocean-layer5

OJ C\J

2000 2020 2040 2060 2080 2100
Year

2000 2020 2040 2060 2080 2100
Year

2000 2020 2040 2060 2080 2100
Year

D ee p  oce a n -la y er1 3 N onw oody parts of trees W o ody  parts of trees

O  CM

0 o
O  c\i O o

2000 2020 2040 2060 2080 2100 2000 2020 2040 2060 2080 2100 2000 2020 2040 2060 2080 2100
Year Year Year

G round vegetation D etritus/decom posers Active soil carbon
o
o

O
S O o

GOO)C5£ ° c
8

CM0o

2000 2020 2040 2060 2080 2100 2000 2020 2040 2060 2080 2100 2000 2020 2040 2060 2080 2100
Year Year Year

Figure 5.15. The range of CO2 baseline predictions of the nine compartments of the 
25-compartment model, based 011 IPCC-IS92a,c,e emission scenarios. These calcula­
tions are based on a model simulation in which all model input factors are set to their 
nominal values.
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Next, taking the input factor uncertainty into account and varying them over 

their assigned ranges from uniform distribution, within each model, we want to 

investigate the results obtained considering the three emission scenarios. In the 

simulations the same set of input factor values is used with each scenario to 

enable a direct comparison among scenarios. The compartmental predictions are 

evaluated in the year 2100. A compact summary of the distributions of the output 

variables is provided by the boxplots in Figures 5.16 - 5.18 for the three models. 
The horizontal lines in these figures are the baseline values for the associated 

compartment in year 2100 under each scenario (dotted line: IS92a; solid line: 

IS92c; and dashed line: IS92e). The estimated mean values are also indicated in 

the boxplots by solid circles.
As examination of Figures 5.16 and 5.17 shows, there is some overlap between 

the boxplots (very much for the deep ocean and active soil carbon; and moderate 

for the other compartments) when the uncertainty in the initial conditions is 

considered. This indicates that on the basis of the overall output uncertainties 

no discrimination between the predictions for the three scenarios can be made. 

On the other hand, when the uncertainty in the transfer coefficients is considered 
there appears to be some overlap between the boxplots of the deep ocean and 

active soil carbon (humus compartments for Model II) compartments, but not 

for the others. The boxplots not overlapping indicate that on the basis of the 

overall output uncertainties discrimination between the predictions for the three 
scenarios can be made.

The boxplots for the 25-compartment model given in Figure 5.18 show that 
the boxplots of each compartment overlap quite a lot. For the deep ocean-layerl3 

compartment and all five terrestrial compartments the distributions of the out­

puts appear to behave almost identically no matter which emission scenario is 

used.
The contribution of the input factor uncertainties to the prediction uncer­

tainties appears to be very high within each model. In Table 5.2, along with the 

baseline values of each compartment’s year 2100 predictions under the three
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Figure 5.16. Boxplots showing the distribution of CO2 predictions in year 2100 
from Model I considering considering the three of the IPCC emission scenarios. 500 
simulations of data generated using LHS and all input factors ((a) Initial conditions, 
(b) Transfer coefficients) considered to follow uniform distribution over their assigned 
ranges (see Tables 3.2 and 3.3). The horizontal lines show the baseline CO2 content
of each compartment in 2100 under each scenario: • • -IS92a; —IS92c; IS92e. The
means are indicated by solid circles.
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F igure 5.17. Boxplots showing the distribution of CO2 predictions in year 2100 
from Model II considering considering the three of the IPCC emission scenarios. 500 
simulations of data generated using LHS and all input factors ((a) Initial conditions, 
(b) Transfer coefficients) considered to follow uniform distribution over their assigned 
ranges (see Tables 3.4 and 3.5). The horizontal lines show the baseline C 0 2 content
of each compartment in 2100 under each scenario: • • -IS92a; —IS92c; IS92e. The
means are indicated by solid circles.
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Figure 5.18. Boxplots showing the distribution of C 0 2 predictions in year 2100 from 
the 25-compartment model considering the three of the IPCC emission scenarios. 1000 
simulations of data generated using LHS and all input factors considered to follow 
uniform distribution over their assigned ranges (see Table 4.1). The horizontal lines 
show the baseline C 0 2 content of each compartment in 2100 under each scenario: 
• • • IS92a; —IS92c; IS92e. The means are indicated by solid circles.

76



CHAPTER 5. UNCERTAINTY ANALYSIS 262

scenarios, we give the uncertainty ranges due to only scenario uncertainty, and 
due to both scenario and input factor uncertainties.

As seen in this table by introducing input factor uncertainties in addition to 

scenario uncertainty overall uncertainty ranges increase dramatically for the

Table 5.2. Scenario baseline values in 2100; uncertainty ranges of compartmental 
predictions from 2100 as a result of scenario uncertainty; and uncertainty ranges 
of compartmental predictions from 2100 as a result of both scenario and input 
factor uncertainties.

C o m p a rtm e n t IS 9 2 a IS 92c IS 92e
S c e .“ 

U n . R a n g e

S ee . In.B^actor 

U n . R a n g e

Atmosphere 746.7 910.51 1067.97 321.27 560.31 (394.12)c
Surface ocean 771.80 894.42 1011.44 239.64 488.65 (319.35)

1—1 
.-—4 Deep ocean 38130.16 38342.57 38527.41 397.25 14445.26 (610.21)
0) N.woody parts trees 45.87 55.63 64.99 19.13 34.05 (23.32)
O Woody parts trees 763.19 874.18 976.54 213.35 449.04 (276.76)

Ground vegetation 71.26 85.85 99.80 28.54 51.86 (35.25)
Detritus/decomposers 130.09 153.10 174.80 44.71 86.12 (56.38)
Active soil carbon 1285.88 1357.38 1420.06 134.19 561.41 (211.11)
Circulating carbon-(NH) 364.43 441.26 516.85 152.42 263.44 (179.61)

I—i Surface Ocean-(NH) 482.58 535.00 586.07 103.49 256.56 (140.96)
1—1 Deep ocean-(NH) 12773.49 12940.26 13087.97 314.49 4557.71 (708.90)
CD

Fd Humus-(NH) 1115.79 1160.47 1200.78 84.99 440.27 (136.59)
o Circulating carbon-(SH) 323.85 384.00 443.10 119.25 218.80 (147.42)

Surface Ocean-(SH) 726.43 798.86 869.32 142.90 374.23 (188.18)
Deep ocean-(SH) 22526.45 22768.65 22981.94 455.49 7961.98 (785.91)
Humus-(SH) 378.71 391.91 403.76 25.04 146.50 (43.86)
Atmosphere 1109.99 1674.90 2238.98 1128.99 6212.12

Id Surface ocean 700.44 723.01 737.92 37.48 361.94
0fl Deep ocean 931.13 944.70 953.98 22.85 324.50
R Deep ocean 4201.45 4202.53 4203.30 1.85 410.52

+5
IS

N.woody parts trees 31.97 31.72 31.72 0.25 16.96
ft Woody parts trees 528,82 523.55 523.55 5.28 291.39
S
0 Ground vegetation 64.79 65.05 65.05 0.26 33.40
01 Detritus/decomposers 95.13 94.68 94.68 0.46 88.48

iM Active soil carbon 1089.23 1088.24 1088.24 0.99 1283.69

“Uncertainty ranges as a result of scenario uncertainty 
Uncertainty ranges as a result of scenario and input factor uncertainties 
“Uncertainty ranges given in brackets obtained when uncertainties in transfer coefficients 

are considered.
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25-compartment model with minimum increase being in the atmosphere com­

partment which is over 450%. For the 8-compartment models change in the 
uncertainty ranges is also high especially when the initial conditions are taken as 
the input factors. In the table the uncertainty ranges given in brackets are based 
on the predictions when the uncertainty in the transfer coefficients are taken into 
account.

It is also of interest to investigate if the importance order of uncertain input 

factors changes depending on the emission scenario used. A quick examination of 

scatterplots (not included) showed that the relationship between the considered 

output variables (the compartmental CO2 contents in 2100) and the input factors 

is either linear or there is no relationship. A stepwise regression analysis is used 
for the investigation. The analysis results revealed that even though there is slight 

change in the order in which the input factors are entered the regression models, 

the same set of important input factors are obtained under the three emission 

scenarios. For illustration purposes, we show the results from the analysis on one 
output variable from each model in Table 5.3,
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Table 5.3. Comparison of Stepwise Regression Analyses with the IS92a,c,e IPCC 
emission scenarios for various output variables calculated from the three GCC 
models in year 2100 under the assumption that all input factors follow uniform 
distribution on their assigned ranges. The order at which the input factors were 
added to the corresponding model and the R2-values for the regression models at 
each step are given.

C o m p a rtm e n t S te p

IS 9 2 a IS 9 2 c IS 92e

In p u t R 2 In p u t R 2 In p u t R2

M
od

el
 

I

N o n w o o d y  p a rts  
o f  tr e e s

1
2
3
4
5
6 
7

* 2 3

* 7 5

* 1 2

*86
* 8 7

* 1 8

* 1 7

0.7331
0.8588
0.9710
0.9829
0.9887
0.9911
0.9915

* 2 3  

* 1 2  

A; 7 5  

kis 
k 86
&87

0.8961
0.9768
0.9857
0.9907
0.9920
0.9926

* 2 3

* 7 5

* 1 2

*86
* 1 8

* 8 7

* 1 7

0.6021
0.8285
0.9483
0.9682
0.9810
0.9903
0.9909

1 * 1 4 0.7925 fc l4 0.7345 * 1 4 0,8154

1—< 2 * 6 7 0.8517 k&7 0.8227 * 5 6 0.8690
HH 3 * 5 6 0.9104 /C56 0.8912 * 1 2 0.9210

H u m u s-N H 4 * 1 2 0.9647 f c l2 0.9519 * 6 7 0.9696

S 5 *  23 0.9882 &23 0.9864 * 2 3 0.9888
6 * 1 5 0.9933 &15 0.9914 * 1 5 0.9940
7 *  65 0.9941 * 6 5 0.9922 * 6 5 0.9948

'o 1 TSL 0.4294 TSL 0.4288 TSL 0.4294
T>
0 2 CGO 0.5724 CGO 0.5716 CGO 0.5724
G 3 TG 0.6985 TG 0.6971 TG 0.6985

A c t iv e  so il+i
a 4 THG 0.8000 THG 0.7989 THG 0.8000
G 5 CWO 0.8599 CWO 0.8591 CWO 0.8599
Ui 6 TW 0.9173 THD 0.9169 TW 0.9173

7 THD 0.9534 TW 0.9531 THD 0.9534

5.7 M odel U ncertainty

As Kennedy and O’Hagan [72] put it “No model is perfect” . Even if there is no 

input factor uncertainty, i.e. we know the true values of all the factors required 
to make a particular prediction of a process being modelled, the predicted value 

will not be equal to the value of the process. The authors call this discrepancy 
‘model inadequacy5.

There is uncertainty due to model structure since there is no unique way
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to abstract the real system into a few variables and equations. Many different 
sources of uncertainty in GCC models exist, for example, uncertainties can arise 

from making physical assumptions, or even entirely neglecting physical processes 

[43]. Despite the fact that these GCC models are attempting to represent the 

same system, there can be and there usually are disagreements between the results 
of the models because of uncertainties in model assumptions, initial conditions, 
model structure, etc.

With model uncertainty we simply want to examine and compare three GCC 

models. Simply the size of model uncertainties can be estimated by comparison 

with observations. However, as mentioned earlier in the chapter, we should keep 

in mind that observations can also introduce an important source of uncertainty. 
In Figure 5.19 the atmospheric CO2 predictions of the three GCC models are 
plotted and compared with the Mouna Loa (MLO) observations over the period 
of the MLO record, from 1959 to 2000.

Figure 5.19 shows that all three GCC models underestimate the observed 

data. The MLO measurement show that the atmospheric CO2 concentration has 

increased from 315.98 ppm in 1959 to 369.40 ppm in 2000 [71]. Model I predicts 
the atmospheric CO2 to be 308.16 ppm in 1959 and 334.30 ppm in 2000. In 

these respective years, Model II predicts these concentrations as 302.27 ppm and 
324.68 ppm. With both of these 8-compartment model the deviation from the 
observed data increases rapidly, even though they perform better than the 25- 
compartment model in the early years. The predictions with the 25-compartment 

model are 295.12 ppm in 1959 and 365.58 ppm in 2000.

The change in CO2 concentration corresponds to an increase of approximately 
84.43 Gt C in the mass of carbon in the atmosphere, approximately 59% of the 
release of carbon by fossil fuel combustion and land-use change between 1959 and 
1991 [33]. The increase in CO2 concentration is approximately 42.00 Gt C with 

Model I and 38.10 Gt C with Model II, and this corresponds to approximately 29% 

and 26%, respectively, of the carbon released. With the 25-compartment model 

the change in atmospheric CO2 concentration is about 109.00 Gt G increase and
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Figure 5.19. Comparison of predicted atmospheric CO2 concentrations from the 
three GCC models under the base-case scenario and the measured atmospheric 
CO2 concentrations from Mauna Loa Observatory: 1959-2000 (Keeling & Whorf, 
2001 [71]).

this is approximately 76% of the carbon released into the atmosphere.

The observed increase in the carbon content of the atmosphere is less than 

the release by fossil fuel combustion and land-use change because atmosphere ex­
changes carbon with other reservoirs. With the 8-compartment models because 
of their highly linear mathematical structure, all model compartments take up 
carbon from the atmosphere quite rapidly. As a result we see a low rate of in­

crease in the atmosheric CO2 predicted by these models. The 8-compartment 

models utilized in this thesis are contructed using the linear, time-invariant com­

partmental modelling formulation while physical processes of GCC are entirely 
neglected, and these models found to be involving a large amount of uncertainty. 

The 25-compartment model, however, is a more realistic representation of carbon 
cycle processes. For example, it takes into account the turnover mechanism of 

carbon in the oceans, the storage of non-labile carbon in the terrestrial biota, the
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depth distribution of 14 C, etc..
As noted by Draper [26] model uncertainty is conditional on scenarios and in­

put factors. Now, assuming zero uncertainty for model input factors, i.e. setting 
them to their nominal values, and concentrating on the future projections we have 

calculated compartmental CO2 predictions for each model, under the three emis­

sion scenarios. The compartments of the three models are aggregated after the 

Monte Carlo simulations into: Atmosphere, Ocean, and Terrestrial Ecosystem. 
The time dependent behaviour of the predictions for these model components 
between the years 2000 and 2100 is presented in Figure 5.20.

For the atmosphere component, considering the emission scenario IS92a, Model 

I and Model II do not yield substantially different results. With Model I the at­

mospheric CO2 content reaches to 910.50 Gt C by the year 2100 (about 28% 

increase from 2000 to 2100), and with Model II it reaches to 825.27 Gt C by 
2100 (about 20% increase). However the 25-compartment model predicts the at­
mospheric CO2 content to be much higher, 1674.90 Gt C by 2100 (about 114% 
increase from 2000 to 2100).

The predictions of C 0 2 content of the ocean component obtained from Model
I and the 25-compartment model appears to be closer together where as Model

II predictions are much lower. All three models predict the CO2 content of 

ocean to increase with time, but the rate of increase varies with model, Model II 
predictions indicating a more rapid increase.

The baseline curve associated with the 25-compartment model show the amount 

of C 0 2 in the terrestrial ecosystem to decrease (from 1839.96 Gt C in 2000 to 

1803.24 Gt C in 2100), but both 8-compartment models predict CO2 content of 

this reservoir to increase with time. This increase with Model I is more rapid 
than it is with Model II.

Although the predicted CO2 contents of the three reservoirs change with the 
emission scenarios, the tendency in model behaviour does not change.

Model uncertainty range appears to be increasing when the atmosphere and 

the terrestrial ecosystem components are concerned, and decreasing slightly when
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Figure 5.20. Baseline predictions from the three GCC models with the IS92a,c,e 
emission scenarios for the time period 2000-2100. These calculations are based on a 
model simulation in which all model input factors are set to their nominal values.
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the ocean component is concerned, and this is the case with all three emission 

scenarios.
Next, by allowing for input factor uncertainty and focusing on the year 2100 

predictions from the three models under the three emission scenarions we calcu­
late mean and coefficient of variation (CV) of the three model components. The 

results are presented in Table 5.4. When the two 8-compartment models are con­

cerned the uncertainties in the initial conditions and in the transfer coefficients 

are taken into account separately in the anaysis. In Table 5.4, the statistics cal­
culated from the simulations in which transfer coefficient uncertainties taken into 
account are given in brackets. Because of differences in modelling assumptions, 

initial conditions and model structure the estimated average CO2 content of the 

three reservoirs of the three models are different. Since there are some similar­

ities between the 8-compartment models it may be reasonable to compare the 
estimated means and the CVs associated with these models. The average CO2 

content of all components in 2100 appears to be higher with Model I compared to 
Model II in both analysis based on initial condition and transfer coefficient uncer­

tainties. The CV for each model component is also high with Model I compared 
to Model II.

Now, focusing on Model I and Model II when the uncertainty in the initial 

conditions is concerned we compare the CV for each component of the three 

models. This comparison shows that for the atmosphere component the 25- 
compartment model is the most variable (a CV of about 58% with IS92a, 71% 

with IS92c, and 49% with IS92e) where as Model II is the least variable (CVs of 
about 5-7% with all scenarios). When the ocean component is concerned the 25- 

compartment model is the least variable with a CV of around 3% with all three 

emission scenarios, where as Model I is the most variable with a CV of about 

10% under all three scenarios. As for the terrestrial component, the variability 

is highest with the 25-compartment model (around 13% with all scenarios) and 
lowest with Model II (around 7% with all scenarios).
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Table 5.4. Comparison of models in terms of estimated mean and coefficient of 
variation (CV) values based on year 2100 CO2 contents of Atmosphere, Ocean and 
Terrestrial Ecosystem components calculated using the three GCC models with 
the three IPCC-1992 scenarios. The calculations are based on N=1000 model 
simulations with all input factors assumed to follow uniform distribution over 
their assigned ranges.

M odel

C om ponent

8-com partm ent M odel Ia 8-com partm ent M od el II 25-com p, m odel

M ean CV M ean CV M ean CV

n)
iM
01CO>-(

Atmosphere
Ocean
Terr. Ecosys.

920.89 (916.83) 
39212.26 (39220.85) 

2540.40 ( 2535.96)

7.29 (1.61) 
10.38 (0.11) 
8.33 (1.12)

825.25 (826.01) 
37043.26 (37039.95) 

1551.92 (1554.45)

5.86 (1.18) 
7.53 (0.05) 
7.06 (0.76)

1926.86
38628.22

1813.54

57.69
2.89

12.64

u
NaCO
M

Atmosphere
Ocean
Terr. Ecosys.

755.42 (750.61) 
38878.15 (38890.56) 

2311.30 (2303.77)

8.88 (1.19) 
10.46 (0.07) 
9.16 (0.85)

688.26 (688.62) 
36509.43 (36506.64) 

1494.04 (1496.46)

7.03 (0.52) 
7.64 (0.03) 
7.33 (0.47)

1402.77
38418.11

1820.23

70.94
2.61

12.60
(D
N
01COw

Atmosphere
Ocean
Terr. Ecosys.

1079.93 (1076.47) 
39513.22 (39518.55) 

2749.78 (2747.99)

6.21 (1.88) 
10.30 (0.13) 
7.70 (1.32)

959.93 (961.08) 
37525.79 (37522.00) 

1604.07 (1606.71)

5.04 (1.63) 
7.43 (0.07) 
6.83 (1.00)

2455.73
38778.30

1813.54

48.78
3.10

12.64

“With the two 8-compartment models, the statistics in brackets are from the simulations 

where only the uncertainty in the transfer coefficients are concerned.

5.8 P artition ing U ncertainty

The discrepancies between the observed data and simulated atmospheric CO2 

content indicates that some of the sources of uncertainty must be large enough 
to be causing the discrepancies, but which sources of uncertainty are to blame 
for this?

In order to reduce the uncertainty in the model predictions an analysis of the 

contribution of the individual sources of uncertainty is of great interest. Once 

the main sources of uncertainty are identified, futher research can be done in a 
way that the output uncertainties can be reduced.

First, assuming that there is no input factor uncertainty and focusing on the 

atmosphere compartment we calculate predictions using the three GCC models 

with the three emission scenarios to obtain an overall uncertainty range over 
time. In Figure 5.21 the shaded area indicates the maximum uncertainty range
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(MUR*) of atmosperic CO2 content over the period 1995-2100.

The MUR2100 which involves both model and scenario uncertainties in 2100 

(pointed out in Figure 5.21) is 2238.99 - 688.28 = 1550.71 obtained by subtracting 

the maximum and minimum curves in year 2100. The uncertainty range (UR() 

can be calculated when not all models and/or scenarios is considered. The re­

duced UR2100 when the 25-compartment model is not in operation is calculated 
and it appears that this model contributes 76% to the MUR21005 without this 

model the MUR2100 goes down to 379.68. Since Model I is the ‘median’ model 

the MUR2100 do not change with this model not being in operation. The contri­

bution of Model II to the MUR2100 is only 4%. Now, focusing on the scenarios, it
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Figure 5.21. Maximum uncertainty range of the Atmospheric CO2 predictions 
based on the three GCC models with the IS92a,c,e emission scenarios for the period 
1995-2100. These calculations are based on model simulations in which all model 
input factors are set to their nominal values.
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is easily seen that IS92e is contributing the most to the MUR21 0 0  (about 36%) and 
the contribution of IS92c is 9%. Without scenario IS92a which is the ‘median’ 

scenario the MUR2100 do not change.
In the previous sections we have discussed and investigated input factor un­

certainty within model and scenario, scenario uncertainty within model, model 

uncertainty within scenario. Now, it is of interest to find out how much of the 

overall uncertainty about an output variable is attributable to the three sources 
of uncertainty.

First, focusing on scenario and input factor uncertainty, we wish to investigate 
whether differences in the predictions are attributable primarily to scenario or 

the input factors, for a given model. As the output variable the C 0 2 content of 

atmosphere in the year 2100 (i.e., yAim(t = 2100), for convenience we will use y 

to refer to this output variable in this section) is considered. Using an approach 
introduced by Draper (see [26]) and refered to as model uncertainty audit, we 
partition the overall predictive uncertainty about y into ‘between scenario’ and 

‘due to input factors within scenario’ components, the second of which represents 
the component of uncertainty arising from lack of knowledge about the input 

factors.

With y as the output variable, and scenario i occuring with probability Pi 
and leading to estimated mean (/h) and standard deviation (ch) of y , the overall 
mean and variance of the output variable are calculated using

s

(5.1)

and

<72 =  Vs[E(y\S)] +  Es \y(y\S)}
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respectively, where S  stands for scenario and s — 3 (three emission scenarios: 
IS92a, IS92c and IS92e). For each of the three models the scenario-specific means 

and standard deviation (SD) estimates are given in Table 5.5, together with two 

possible vectors of scenario probabilities. The first of these vectors (Case 1) gives 

a probability of 0.9 to the IS92a (Business-as-Usual scenario), and 0.05 to each 

of the IS92c and IS92e scenarios. We also consider another case (Case 2) where 

all three scenarios are equally probable. For the purpose of sensitivity analysis 
we have chosen these two cases but in reality for deciding on possible vectors of 

scenario probabilities expert opinion should be sought.

The calculation of the estimates given in Table 5.5 are based on N=1000 

model simulations in which all model input factors are assumed to follow uniform 

distribution over their assigned ranges. For the two 8-compartment models the 

uncertainties about the initial conditions are considered.
Then, considering each of the two cases, and applying Equations (5.1) and

(5.2) with the estimates given in Table 5.5 we obtain the results summarised in 

Table 5.6. For the 25-compartment model, it can be seen that the percentage of

Table 5.5. Estimated scenario-specific means and standard deviations of At­
mospheric CO2 content in 2100 from all three models, together with two sets of 
scenario probabilities.

Model Scenario Mean (/q) SD (<7i )

Scenario prob. (p i ) 

Case 1 Case 2

IS92a 1926.9 1111.7 0.90 1/3
25-compartment IS92c 1402.9 995.3 0.05 1/3

model IS92e 2455.6 1198.0 0.05 1/3
IS92a 920.9 67.0 0.90 1/3

8-compartment IS92c 755.4 67.0 0.05 1/3
Model I IS92e 1079.9 67.0 0.05 1/3

IS92a 825.2 48.1 0.90 1/3
8-compartment IS92c 688.3 48.1 0.05 1/3

Model II IS92e 959.9 48.1 0.05 1/3
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variance arising from scenario uncertainty is quite small in both cases of scenario 

probabilities, about 2% in Case 1 and 13% in Case 2. This confirms what we 

had already seen in Figure 5.18, where there was actually very little variation 

between the prediction uncertainty due to different scenarios, for this particular 

model. As for the two 8-compartment models, Table 5.6 shows that in Case 1 the 
contributions of scenario and input factor uncertainties to the overall uncertainty 

are about the same with input factor uncertainty contributing slightly more, but 

when the scenarios assumed to have equal probability of occurrence (Case 2) 

the situation is the other way around, that is the percentage of variance arising

Table 5.6. Results from partitioning the total uncertainty in predicted Atmo­
spheric CO2 content in 2100 into ‘between scenarios’ and ‘due to input factors 
within scenarios’ components as a function of scenario probabilities. The results 
are given for all three models.

M o d e l S u m m ary  o f  th e  R esu lts

R e su lts  w ith  
S cen ario  p rob ab ilities

C ase  1 C ase 2

25-compart.
model

Overall mean (p)
Overall variance (d2)
Between-scenario variance (d2s )
Within-scenario variance (d2,5)
% of variance between scenarios 
% of variance due to input factors within scenarios

1927.14 1928.47
1261285.00 1405265.00 

27704.93 184697.40
1233581.00 1220568.00 

2.0 13.0
98.0 87.0

8-compart. 
Model I

Overall mean (ft)
Overall variance (d2)
Between-scenario variance (d2s )
Within-scenario variance (d ^ s )
% of variance between scenarios 
% of variance due to input factors within scenarios

920.58 918.73
7122.46 22041.39
2633.46 17552.39 
4489.00 4489.00

37.0 79.6
63.0 20.4

8-compart. 
Model II

Overall mean (ft)
Overall variance (d2)
Between-scenario variance (d2s )
Within-scenario variance
% of variance between scenarios
% of variance due to input factors within scenarios

825.09 824.47 
4157.88 14608.31 
1844.27 12294.7 
2313.61 2313.61 

44.4 84.2 
55.6 15.8



CHAPTER 5. UNCERTAINTY ANALYSIS 275

from scenario uncertainty is much higher, about 80% with Model I and 84% with 
Model II.

Above we have partitioned the prediction uncertainty between scenario and 

input factors within scenario, for each particular model, now we wish to go a 

step further and partition the prediction uncertainty between scenarios, between 

models within scenarios, and between input factors within models and scenar­

ios, again following Draper’s model uncertainty audit approach (see [26]). In 
this case, where we want to partition the overall uncertainty about y into three 
components, the situation is slightly more complicated.

There are s =  3 scenarios, m =  3 models and the models are given equal 

weights (wi1W2 iWs) — (1/3,1/3,1/3). With i indexing scenarios and j  models, 

the nine values of atmospheric CO2 content in year 2100 (i.e., $#) are calculated. 

Table 5.7 gives the scenario-specific means pi =  ]CJLi WjVij and standard devi­

ations &i — [Y^jLiwi(yij ~  Ai)2]1//2 computed using these predictions, together 
with the probability assessments {pi,P2 ,P3) for the three scenarios. As before the 
two cases with different sets of scenario probabilities is investigated here.

With y as the atmospheric CO2 content in 2100, x  as the means and standard 

deviations given in Table 5.7 and as the predictive variance conditional on 

the scenario and model, which are assumed to be independent, the overall mean 

and variance equations in this case are as follows:

s

p =  Es[EM{E(y\x,  M, S)}} =  (5.3)
* = i

and

a 2 =  Vs [EM{E(y\x . M,  5)}] +  Es [VM{E(y\x, M, 5)}] +  Es [EM{V(y\x, M , 5)}]

(5.s s s m
=  E f t ( A i  -  A)2 +  E Pi°! +  E E PiWjOij =  +  &l mws +  ^Ipwms

i = l  i — 1  i = l  j = ^ l

respectively, where S  standing for scenario and M  standing for model.
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Table 5.7. Estimated scenario-specific means and standard deviations of Atmo­
spheric CO2 content in 2100, together with two sets of scenario probabilities.

Scenario % M ean (/ij) SD (ft)
Scenario probability (pi) 

Case 1 Case 2

IS92a 1136.90 382.02 0.90 1/3
IS92c 848.32 186.56 0.05 1/3
IS92e 1422.30 579.17 0.05 1/3

As the results in Table 5.8 reveal in both cases, with different set of proba­

bilities given to the three scenarios, what is determining the overall uncertainty 

appears to be the input factors within model. The input factor uncertainty at­

tribute about 72% in Case 1 and 64% in Case 2 of the overall uncertainty. The 
least contribution to the overall uncertainty is due to scenarios, less than 2% in 

Case 1 and about 9% in Case 2. The uncertainty contribution of models to overall 

prediction uncertainty is moderate when we assume that they are equally likely.

Table 5.8. Results from partitioning the total uncertainty in predicted At­
mospheric CO2 content in 2100 into ‘between scenarios {B S ) \  ‘between models 
within scenarios (B M W S )’ and ‘between predictions within models and scenarios 
( B P W M S ) 1 components as a function of scenario probabilities.

S u m m ary  o f  th e  R esu lts

R e su lts  w ith  
S cen ario  p rob ab ilities

C ase 1 C ase 2

Overall mean (fi)
Overall variance (a2)
Between scenario variance (o^s )

Between models within-scenario variance (a2,
'  B M W S '

Between predictions within models Sz scenarios variance J

% of variance between scenarios 

% of variance between models within scenarios 

% of variance between predictions within models & scenarios

1136.74 1135.84

571549.17 636087.42

8236.55 54909.41

149854.78 172057.81

413457.84 409120.20

1.44 8.63

26.22 27.05

72.34 64.32
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The results revealed that with equal weights given to the three models, no 

matter which of the two sets of scenario probabilities is taken, the uncertainty 

about the input factors within each model is the major source of uncertainty in 
the predictions. The contribution of model uncertainty to the overall uncertainty 
is reasonably high, while the contribution of scenario uncertainty on the overall 

prediction uncertainty is quite low.

5.9 M odeller U ncertainty

In this section, we identify another important source of uncertainty: modeller 

uncertainty. Firstly, we shall note that by the terminology ‘modeller’ we do not 

mean model developer, we mean model user. Uncertainty due to modeller is not 

usually taken into account in uncertainty analysis, and the potential importance 

of modeller interpretation rarely seems to be recognised [2],

Uncertainty may arise because: different modellers’ interpretation of both 

the model and the scenario can vary; modeller’s limited experience of modelling 

concepts, and with incomplete knowledge of the situation to be modelled can 
contribute significantly to the model predictions.

We look at this aspect of uncertainty in the context of environmental radioac­
tivity modelling, using real world data from Chernobyl accident. In this section, 

first a brief background of the accident and its consequence is included, then 

desription of the study and data is given. Following that, the predictions made 

by different modellers are analysed using some statistical tools for addressing 
modeller uncertainty.

5.9.1 G eneral B ackground

In 1986, a major accident occurred at the former Soviet Union’s Chernobyl nu­

clear power station when two explosions destroyed the core of Unit 4 and the 

reactor building, and large amounts of radioactive substances were released to 

the atmosphere. The radioactive isotopes of iodine (131I) and cesium (137Cs) were
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two of the radiologically most important isotopes widely dispersed and eventually 
deposited onto the surface of the earth over the ensuing ten days or so.

Radioactive material released from Chernobyl was distributed throughout the 

northern hemisphere, mainly across Europe and deposited by the actions of wind 

and rain. These substances were available for uptake by plants and animals, 

hence to foodstuffs and ultimately into man.

The radionuclide composition of the release and of the subsequent deposi­
tion on the ground also varied considerably during the accident due to variation 

in temperature and other parameters during the release. 137Cs was selected to 
characterise the magnitude of the ground deposition because: (1) it is easily mea­

surable, and (2) it was the main contributor to the radiation doses received by 

the population once the short-lived 131I had decayed [85],

5.9.2 D escrip tion  o f th e  S tu d y  and D ata

Researchers, regulatory agencies such as IAEA (International Atomic Energy 

Agency), NEA (Nuclear Energy Agency) and WHO (World Health Organization), 

environmental assessment groups within the programms like VAMP (Validation of 

Environmental Model Predictions) and BIOMOVS (Biospheric Model Validation 
Study) have been using various kinds of computer codes to predict the movement 
and the level of radioactive material in various parts of the biota, over time.

These models are used mainly to evaluate situations in which only limited 

measurements are available. They can also be used to reconstruct past situations 

given the existence of partial or incomplete information. When decisions of major 

economic or social importance are based on model results, it is essential, for the 
sake of scientific and public credibility, to establish a degree of confidence in these 
results [104].

Three terrestrial food chain codes called CHERPAC, RUINS, and CLRP were 

obtained and run by modellers for several scenarios (such as BREMEN and FORT 

COLLINS) involving the transfer of radionuclides 131I and 137Cs from air to pas­

ture and milk. The detailed descriptions of the scenarios and the manual for the
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computer models can be found in Ref.[l]. In this exercise, we report on the results 

of the BREMEN scenario, and the CHERPAC computer code. The radionuclide 

considered here is 137Cs, a long-lived radionuclide deposited in the environment 
after the accident at Chernobyl.

A brief description of the BREMEN scenario and the CHERPAC computer code 
adopted for this study is as follows:

The BREMEN scenario is based on the data collected for the 

pasture-cow-milk pathway in Bremen/Germany after the Chernobyl 
accident.

CHERPAC (CHalk River Environmental Research Pathways Anal­
ysis Code) was developed by Peterson in 1994. It is a time-dependent 
stochastic code, and calculates output from a short-term release. Out­

put can be calculated daily (for up to 60 days) concentrations o f137Cs 

in some foodstuffs (on fresh-weight pasture and in milk) or averaged 
monthly concentrations in others [93].

In September 1994, the CHERPAC code and description of the BREMEN 

scenario were sent out to the interested modellers. Ten participants submitted 

results from this code. The modellers involved in the experiment were provided 

with information about the accident, the particular region, Bremen, the effect 

of the accident on this particular region, and background information regarding 
the diet and pasture rotation for the one cow from which milk samples were 

taken. The participants were also given manuals explaining how to run the code 

and how to implement changes in input parameters for the model. These man­

uals did not have any information about the formulation of the code or how it 

was implemented numerically. Each modeller was provided with the same basic 
information.

The driving data for the CHERPAC code were concentrations of 137Cs aerosols 
on pasture and in milk at Bremen. The considered time periods for CHERPAC 
code are May 5 - June 27, 1986 for concentrations on pasture and May 14 - June 
27, 1986 for concentrations in milk.
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The participants were to use the same assumptions about the scenario in the 

code. Most of the modellers involved in this exercise were familiar with general 
modelling concepts, and models for the environmental transport of radioactivity. 
Modellers were encouraged to seek opinion and advice from experts who did not 

participate in the experiment, but were not allowed to discuss the exercise with 

participants. Questions asked by modellers regarding the code and the scenario 

were answered and the answers distributed to the participants unless answering 
those questions would have an effect on assumptions. Each modeller’s results is 
labeled by a letter, A through J.

This test exercise was carried out as a so called “blind test” , i. e. the modellers 

received a scenario description (input data), and after they had completed the 

calculations and submitted the results to the co-ordinator, they were provided 

with the observed data (test data) that matched the endpoints asked for in the 

scenario description. 137Cs concentrations in pasture (Bq A;#-1) were measured 

in the time period May 5 - June 28, 1986 (at 20 time points).

It is well known that evaluation of the impact of radionuclide releases on hu­

mans and on the environment is important. Computer codes and the predictions 

made with them help us to assess the potential routes and the levels of those 

radionuclide releases. The fundamental purpose of this section is to investigate 
the uncertainty in the predictions due to modellers who used the same computer 

model, within BREMEN scenario to make predictions. For convenience, we shall 

use ‘modeller prediction’ terminology instead of ‘model prediction made by mod­

ellers’. The steps followed here are: (i) intercomparison of modeller predictions; 

(ii) comparison of modeller predictions with the observed data; (m) finding out 

if there is any apparent grouping amongst modeller predictions, and measured 
data.

5.9.3 T esting  M odeller P red ictions

In order to compare the modeller predictions, first of all we assume that the 

model is being used by the different modellers with the same purpose. It is also
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assumed that the modellers are independent of each other. Several graphical and 
statistical techniques have been used to make comparisons.

5.9.3.1 E x p lo ra to ry  D a ta  A nalysis

Predictions of daily concentrations on pasture are shown in Figure 5.22. The fig­

ure shows that there is a considerable decrease in concentrations for all modeller 
predictions and observed 137Cs concentrations. The potential influence of the 
modeller on model results can easily be seen. The uncertainty in the predictions 

due to modeller appears to be quite high. The modeller predictions especially E 

and F; B and D; A, G and J seem to give quite similar results. Modeller predic­

tions H, I, E and F appear to be the ones closest to the observed concentrations. 

Some of the modellers, especially A, G and J, show a tendency for overestimating 
137Cs activity in pasture compared to the observed data.

10 20 30 40 50
Time(Days)

F igure 5.22. Measured concentrations, and model predictions calculated with 
C H E R P A C  on daily concentrations of 137Cs on Pasture from May 5 - June 27, 
1986. The measured data are indicated by stars.
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5.9.3.2 M odelling th e  M odeller Response

Now we perform a more quantitative analysis. The least squares method has 

been used to estimate the trend using the same model form for each modeller 
prediction. The main reason for modelling the changes in concentration is to 
provide summaries of the parameters, slopes and intercepts, to provide some 

idea about the variation in slopes or the intercepts across a group of modeller 

predictions. A simple linear relationship of log-transformed concentration against 

time is found to be sufficient to fit all ten modeller predictions, and the measured 

data. See Figure 5.23 for the plot of the log-transformed data. The model 
fitted to the predictions provided by each modeller, and the measurement data 
is: log(Concentratiorii) = a  + P • Dayi -I- e*, where e* ~  N(0, a2).

We can note that the logarithmic transformation on concentrations has led to 
a linear regression relation. The lowest R 2 value of 99% shows that the regression 

equations explain almost all the variation in concentration for all the ten modeller

00 ,

x  J J

l & ' S S s s a i s s i s j ............

l  . . . . . . . .
I  CCCCcc c c c c c ,S  c c c c c c c .
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10 20 30 40 50
Time(Days)

F igure 5.23. Log-transformed measured concentrations, and modeller predic­
tions calculated with C H E R P A C  on daily concentrations of 137Cs on Pasture. 
The measured data are indicated by stars.
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predictions of PASTURE data. For the observed data R 2 value is found to be 
95% which is reasonably high.

The parameters of these linear relationships, the slopes and intercepts, are 

plotted in Figure 5.24. Each point in the figure is labeled by the corresponding 

modeller. In terms of the intercepts, we can see that there is quite a lot of vari­

ability. The intercepts are varying between 3.7 (associated with log-transformed 

modeller C predictions) and 7.6 (associated with log-transformed modeller A pre­

dictions). The mean and the standard deviation of the intercepts from the ten 

modellers predictions are 6.1 and 1.3, respectively, and the intercept of the log- 
transformed observations is 6.3. Comparison of the intercepts associated with 

the ten modellers’ predictions and the observed data show that modellers H, E 
and F provided predictions which are closer to the observed data.

9- o

Obsv.

Intercept

F igure 5.24. Scatterplots of estimated model parameters (Intercepts vs. Slopes) 
of log-transformed data.

In terms of the slopes, it is clear from Figure 5.24 that the slopes associated 

with the modellers appears to be close together and slightly higher than the 

slope of the observations. The mean and the standard deviation of the slopes 
from the modellers’ predictions are -0.052 and 0.004, respectively. The slope of 
the observed data is -0.076.
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5.9.3.3 C lustering

A cluster analysis is carried out to find the natural groupings, if any, of the ten 
modeller predictions. In order to carry out a cluster analysis first the similarity 
(or dissimilarity) of every pair of modeller predictions are measured. There are 

many ways of doing this. Standardized Euclidean distance is one of the most com­

mon measures of dissimilarity and it is used here. On the calculated distances, 

complete-linkage clustering has been used resulting in a plot of a clustering tree 
(often called a dendrogram), has been created for log-transformed data (See Fig­
ure 5.25).

In this dendrogram, we see a simple group structure, and a measure of “close­

ness” or “similarity” of the modeller predictions and the measurements.

CD
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F igure 5.25. Dendrogram of log-transformed measured concentrations and mod­
eller predictions of daily 137Cs concentrations on Pasture.
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5.10 D iscussion

Uncertainty in predictions of models arises from, among other sources, the model 

structure representing the real world system, the scenario reflecting different views 
of the future, the uncertainty in the model input factors, the assumptions made 
by the model users. In this chapter we have looked at scenario uncertainty, model 
uncertainty and input factor uncertainty within the framework of the three GCC 
models. We also explored modeller uncertainty with a case study.

Within a model and a scenario, the prediction uncertainty can be partitioned 

between input factors, using methods like stepwise regression. But as McKay 

emphasizes [83] one should avoid using statements like “30% of the uncertainty 

in a dependent variable (say y) is due to an input parameter (say aq)” which pre­

supposes a quantitative measure and can be quite misleading, depending on how 
well the probability distribution of y is summarised by the model. An example 

of a more precise statement would be “On average, the variance of y is 30% less 

when xi  is fixed than when it is varied; average is with respect to the distribution 

of Xin.

Prediction uncertainty due to input factors uncertainty was investigated in 
Chapters 3 and 4 in detail. In this chapter we have assessed the effect of sampling 
technique, sample size and distributional assumptions for the input factors on 
model predictions. First, with a graphical presentation we have demonstrated 

that holding an important input factor (or a set of important factors) at its best 

estimate value leads to a substantial reduction in prediction uncertainty. It is 

also shown that there is tendency for increasing uncertainty in the predictions 
with time.

To assure the full coverage of the input space it is important to use a suffi­
ciently large number of runs in model simulations. It is shown in Section 5.5.1 

that the Latin hypercube sampling produces more stable cumulative distribution 

function estimates of model output variables than those produced by the simple 

random sampling. It is also shown that increasing the sample size improves the 
quality of the estimate and hence the reliability of the results. The number of



CHAPTER 5. UNCERTAINTY ANALYSIS 286

model runs needed in the analysis depends on the complexity of the model and 

the number of model input factors.

Different distributional assumptions can have a dramatic effect on model out­

put distribution, and also on input factor selection. Therefore, it is important to 

recognise this effect on analysis results and investigate its occurrence. An input 

factor may be identified as important when sampled on a specified range with 

one distribution and identified as relatively less important or even unimportant 

when sampled on the same range with a different distribution.

When investigating scenario uncertainty we only assessed the uncertainty 
caused by changing fossil fuel and land-use emissions and uncertainty in each 
model compartment as a result of those emissions. It would be of interest to 

assess the scenario uncertainty arising from scenario specific parameters as well.

When input factor uncertainty was taken into account, it was seen that for 

the 8-compartment models, on the basis of overall uncertainties discrimination 

between the predictions for the three scenarios can be made for most of the output 
variables considered in the analysis, but as for the 25-compartment model no 

discrimination between the predictions for the three scenarios can be made.

Uncertainty in the predictions due to model was found to be much higher 

with the 8-compartment models, due to the fact that they are quite simple, 

highly linear and do not capture physical processes we see in real world.

In order to reduce the uncertainty in model predictions, we need to know which 
source of uncertainty is determining the overall uncertainty. Such information can 

help to set priorities for future research, model and scenario improvements and 
developments.

First, focusing on uncertainty in the predictions resulting from scenario and 

input factor uncertainties, we have partitioned the uncertainty in yAtm(t =  2100) 

between these two sources of uncertainty, within a particular model. For this 

we have considered two possible vectors of scenario probabilities. The results of 
this partitioning confirmed what we have found out when investigating scenario 

uncertainty. That is, for the 25-compartment model, the contribution of input
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factor uncertainty to the prediction uncertainty is significantly high no matter 

which vector of scenario probabilities is considered. As for the 8-compartment 
models, we have seen that the contributions of input factor and scenario un­

certainties to the prediction uncertainty changes with different cases of scenario 

probabilities. When the scenarios are given equal probability the uncertainty 

about the scenarios influences the prediction uncertainty much more. Again this 
confirms what we have seen in the scenario uncertainty section.

A further attempt involved the partitioning of the overall uncertainty into 

three components: between scenario, between models within scenarios, and be­

tween predictions within models and scenarios. Results of this investigation re­
vealed that, for the particular models and scenarios under consideration, when 

equal weights given to the three models and with the chosen two sets of scenario 

probabilities the model input factors are dominating the prediction uncertain­

ties, whereas the contribution of model uncertainty on the overall uncertainty is 

reasonable but the contribution of scenario uncertainty is very small.
With a case study we assessed the ten modellers’ influence on model predic­

tions by comparing differences in the predictions obtained by different modellers 

even though they used the same model and the same scenario description. We 

have seen that the potential influence of modeller’s interpretation of model and 
scenario on the model results can be quite significant and should be taken into 
account.



Chapter 6

Conclusions

As Chapter 1 indicates our knowledge about the real world is always incomplete, 
and to understand the real world phenomena we need models. But the models, at 

best, are only approximations of the system being modeled, and thus are inher­

ently uncertain. While quantifying the uncertainty associated with the process 

of building a model is not possible, there are ways of reducing, and perhaps more 
importantly, highlighting areas of uncertainty. Among many other sources of un­
certainty, the key sources of uncertainties which we have explored in this thesis 
are: (i) structural uncertainty resulting from incomplete/improper mathematical 

formulation of conceptual models; (n) scenario uncertainty resulting from lack 

of knowledge or inability to predict the future conditions; and (in) input factor 

uncertainty resulting from vaguely defined, estimated input factors.
An important step towards reducing the uncertainty in model predictions and 

hence increasing the reliability of a model is to obtain more accurate information 

on the main sources of uncertainty. For this purpose it is necessary to carry out 

sensitivity and uncertainty analyses. These important modelling tools can lead 

to improved understanding of the fundamental processes being modeled.

Sensitivity analysis (SA) methods are broadly classified into three categories: 
screening methods, local SA methods and global SA methods. When dealing 
with a very complex, computationally expensive model with hundreds of input

288
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parameters, screening methods can be used to identify the most important input 

factors which control most of the output uncertainty. Local SA methods provide 
information on the local impact of the input factors on the output variables. 
They are based on taking partial derivatives of the output functions with respect 

to the input factors at selected points in the parameter space. Even though 

local methods have the disadvantage of providing only local measures, they also 

have an important advantage of not being dependent on chosen distributions 
for input factors. Global SA methods which are widely used in the analysis of 
large complex computational models require information about the distributions, 
minimum and maximum values for the input factors as well as mean values and 

standard deviations.

In this thesis we have used sensitivity and uncertainty analysis tools with a 

view to understanding the uncertainty issues related to compartmental models, 
in particular some compartmental models which have been used for global carbon 
cycle (GCC) modelling.

We have considered three GCC models in this thesis, two of which are quite 

simple providing no detailed biological and chemical information on complex 

carbon cycle process. The third model consists of 25 compartments is a more 

complex model and believed to be a more realistic representation of carbon cycle 
processes. The application of sensitivity and uncertainty analyses techniques to 

these models revealed the following benefits and limitations:

- Even though a one-factor-at-a time (OAT) approach produces some bene­
fits, it is a very inefficient way of performing a SA and is limited in appli­

cation to models that are not computationally expensive and have a small 

number of input factors. Compared to computer models available in sci­

entific literature with hundreds of input factors, the models we utilize in 

this thesis are relatively small. Even so, the application of OAT design was 
quite impractical.

- A very important disadvantage of OAT design is that it varies only one input 

factor at a time while fixing the others at their nominal values - frequently
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not valid for the models in which the input factors are related and can result 

in a confused picture of how input factors affect model behaviour. This is 

the case with the two GCC models for which we have to take into account 

the fact that the system has to be in steady-state before introducing any 

perturbations to the system. So to maintain this steady-state condition, 

when one input factor is varied over its entire range at least one other 

input factor has to be changed to initialize the GCC model. As a result, 
the carbon content of each compartment changes during a simulation as a 

function of not only the factor varied but also the one(s) that are calculated, 

of course in addition to the time-dependent releases of carbon from fossil 

fuel emissions and land-use change.

- The use of an efficient screening design can help to avoid high computational 

and financial costs, as well as physical and human resources. The Morris 
design, we have applied to the three global carbon cycle models, is an 

OAT design but because it covers the entire space over which the input 

factors vary it is considered as a global screening design. It is also an 

economical screening design and should be prefered to the other screening 
designs discussed in this thesis.

- Even though the global SA methods require a higher number of model 

evaluations, they provide quantitative sensitivity measures, and should be 
prefered over local SA methods.

- When global SA methods were applied to the two 8-compartment models, 

in order to maintain a steady-state condition in the system, a subset of 
transfer coefficients were treated as uncertain input factors while others 

are used in the model calibration process. For this last setting, we have 

approached the necessary constraint from the linear algebra point of view 

using Gauss-Jordan elimination.

- Windowing analysis was performed on the 8-compartment models since
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large uncertainty in model initial conditions was causing the model output 
to deviate from an acceptable trajectory. Although this problem was re­

solved by discarding ‘unsatisfactory’ simulations, a large number of model 

runs were needed to obtain an adequate sample of simulations. Windowing 

analysis is also being used in order to adjust the values of model input pa­
rameters to achieve an acceptable match between observed and predicted 

model conditions (for an example see [40]). According to King & Sale [73], 

windowing can also provide a correlation structure between the input fac­
tors as well as estimates of input factor ranges.

- A major objective in the SA of a model is to obtain a ranking of the input 

factors. SA techniques including sensitivity indices, standardised ranges, 

Morris method, derivative based method, regression based methods, corre­

lation coefficients, non-parametric tests on partitioned data sets. It appears 
that the results we have from these techniques all very broadly agree. The 
rankings obtained from these techniques do not always agree but the subset 
of potentially important input factors that account for most of the variation 

in model output variables are identified by all the techniques considered. 

Thus, it is reasonable to conclude that most of the techniques would be 

appropriate for SA for the type of models considered in this thesis.

- Using stepwise regression technique or some other regression technique, rel­

ative input factor importance can readily be determined. In the application 

of such techniques, a criterion such as PRESS should be used to protect 

against overfitting the data. The standardized regression coefficients (SRC) 

and partial correlation coefficients (PCC) are used as a measure of input 

factor importance. The estimated coefficients proved to be a useful way of 

presenting sensitivity results for output variables which were functions of 

time. The sign of these coefficients indicates whether the output variable 
increases or decreases as the associated output variable increases. In this 
study, regression based global SA methods proved to perform well due to
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the fact that the output variables under consideration were linear function 
of the input factors. However, when there is no linear relationship between 

the variables, the nonparametric equivalent of these methods should be 

used.

- In a time-dependent multi-output model a single ranking of model input 
factors is not possible. Uncertainty contributions of model input factors 
differ for various outputs and at different time points. In SA individual in­

put factors were examined to determine whether their importance changes 

through time. We have found that different sets of input factors are impor­

tant for different model outputs and also for different model output times. 

For instance, the uncertainty contribution of TSL (the terrestrial turnover 

time in the active soil compartment of the 25-compartment model) was 
found to be much higher when the output of the active soil compartment 

was considered (see Chapter 4).

- In this thesis, we also extended the use of some of the modern types of 

graphical techniques, such as star plots and dotplots, to present analysis 

results. These graphical tools prove to be good ways of picking out the most 

important input factors identified by the sensitivity measure at a glance.

- In Chapters 3 and 4 we have assumed that all model inputs follow a uniform 

distributions on uncertainty ranges obtained by applying ±20% of their 

reference values. Such an assumption is usually made when knowledge 

about the input factor is poor. However, it should be recognised that 

changes in distributions and in uncertainty ranges may cause substantial 
changes in sensitivity analysis results. When needed and possible, expert 
elicitation should be used to construct the probability density functions for 
the uncertain model parameters.

As emphasized by Iman et al [64] selection of uncertainty ranges and 

probability distributions for model input factors is an important issue and 

it is an area of sensitivity analysis where interaction among experts in the
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process being modeled, model developers and those conducting SA is very 

important.

- The type of probability density function of the output variable depends 
on the mathematical structure of the model. In Chapter 5 we have shown 

that because of the highly linear and simple structure of the 8-compartment 

models the probability distribution of the output variables is not different 

from that of the input factors when all input factors are assigned the same 

probability distribution. On the other hand, with the 25-compartment 

model which has a more complex structure, we have seen that although 

the same probability distribution is assigned to all 30 input factors of the 

model, an output variable can follow a different probability distribution.

- The effect of sampling technique and sample size on the model predictions 

was investigated and it was shown that LHS gives more stable cumulative 

distribution functions of the output variables and requires fewer model eval­

uations. The number of model runs needed in the analysis is shown to be 
a function of model complexity and the number of model input factors.

There are many different sources of uncertainty and in the computer experi­

ments that we have done we have been able to look at scenario uncertainty, model 

uncertainty and input factor uncertainty within the framework of the three GCC 

models. We also explored modeller uncertainty with a case study based on ra­
dioactivity modelling.

- We know that no model is right. When model uncertainty was investi­

gated using the three GCC models it was found that there was consider­

able amounts of model uncertainty in the 8-compartment models and this 

is believed to be mostly related to the fact that the real world processes are 

not being reflected in the mathematical structure of the models.

- In the scenario uncertainty we explored the amount of uncertainty in the
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predictions due to three emission scenarios both with and without input fac­

tor uncertainty included. The results showed that for the 25-compartment 

model the uncertainty in the predictions were not determined by the sce­
nario uncertainty, but for the 8-compartment models, the uncertainty in 

the predictions was highly influenced by scenario uncertainty.

- The total prediction uncertainty of a model output variable (a compart­

mental CO2 content at a certain time, in our case) is a combination of 

uncertainties from different sources like scenario, model structure, input 

factors within a particular model. It was the main interest of Chapter 5 to 
find out the relative contribution of these three main sorces of uncertain­

ties to the overall uncertainty. First, focusing on scenario and input factor 

within each model, we have partitioned the prediction uncertainty between 

scenario and input factors. The results of this analysis confirmed what we 
have found out from the analysis of scenario uncertainty.

- The overall uncertainty due to model structure, scenario and input factor 

uncertainty was partitioned between these three sources of uncertainty. The 

analysis results showed that, for the particular models and scenarios under 
consideration in this investigation, when equal weights are given to the 

three models and with the chosen two sets of scenario probabilities the 
model input factors dominate the overall prediction uncertainties, whereas 

the contribution of model uncertainty on the overall uncertainty was found 

to be reasonably high but the contribution of scenario uncertainty to be 

very small.

- Another source of uncertainty which is often ignored is modeller uncertainty. 

A comparison between the measured data and the ten sets of predictions 

made by ten modellers who used the same model and the same scenario 
description to make their predictions showed that there can be large dis­
crepancies in the model results due to the modeller’s interpretation of the 

model and scenario. This case study revealed how significant this source of
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uncertainty can be.

We believe that sensitivity and uncertainty analysis is an essential tool box for 
every modeller. With the use of sensitivity and uncertainty analysis we can obtain 

valuable information which can help us in deciding which processes included in 

our model will benefit most from improvement. Thus, spending a large amount 

of effort in improving/characterizing aspects of the model which have very little 

influence on the predictions can be avoided.
Furthermore, there is no method of sensitivity and uncertainty analysis that 

we can rate as superior to another method, but different methods have both 

strengths and weaknesses. How to decide which technique to use depends on the 

model under consideration and the type of information is needed. However it is 

advisable to use more than one method and compare the results.



Bibliography

[1] Qualitative and quantitative guidelines for the comparison of environmental 

model predictions. Technical Report No 7, BIOMOVS II, Swedish Radia­
tion Protection Ins., Sweden, 1995.

[2] An overview of the BIOMOVS II study and its findings. Technical Report 

No 17, BIOMOVS II, Swedish Radiation Protection Ins., Sweden, 1996.

[3] C. Baird. Environmental Chemistry. W. H. Freeman and Company, New 
York, 1995.

[4] J. M. Barnola, D. Raynaud, Y. S. Korotkevich, and C. Lorius. Vostok ice 

core provides 160,000-year record of atmospheric CO2 . Nature, 329(1):408- 
414, 1987.

[5] W. E. Boyce and R. C. DiPrima. Elemantary Differential Equations. John 
Wiley & Sons, New York, USA, 6th edition, 1997.

[6] R. F. Brown. Compartmental system analysis: State of the art. IEEE 

Transactions on Biomedical Engineering, BME-27(1):1-11, 1980.

[7] N. J. Bunce. Introduction to Environmental Chemistry. Weurz Pub., Win­

nipeg, Canada, 1993.

[8] R. P. Bush, G. M. Smith, and I. F. White. Carbon-14 waste management. 

Technical Report EUR 8749EN, Commission of the European Communities, 
Brussels, Luxembourg, 1984.

296



BIBLIOGRAPHY 297

[9] F. Campolongo and R. Braddock. The use of graph theory in the sensitivity 
analysis of the model output: A second order screening method. Reliability 

Engineering and System Safety, 64:1-12, 1999.

[10] F. Campolongo and A. Gabric. The parametric sensitivity of dimethyl- 

sulfi.de flux in the southern ocean. J. Stat. Comput. SimuL, 57:337-352, 

1997.

[11] F. Campolongo and J. P. C. Kleijnen. Screening methods. In A. Saltelli, 

K. Chan, and E. M. Scott, editors, Sensitivity Analysis, Probability and 

Statistics series. John Wiley & Sons, 2000.

[12] F. Campolongo and A, Saltelli. Sensitivity analysis of an environmental 

model: An application of different analysis methods. Reliability Engineering 
and System Safety, 57:49-69, 1997.

[13] F. Campolongo and A. Saltelli. Comparing different SA methods on a 
chemical reactions model. In A. Saltelli, K. Chan, and E. M. Scott, editors, 

Sensitivity Analysis, Probability and Statistics series. John Wiley & Sons, 

2000 .

[14] F. Campolongo, A. Saltelli, T. S0rensen, and S. Tarantola. Hitchhiker’s 
guide to sensitivity analysis. In A. Saltelli, K. Chan, and E. M. Scott, 
editors, Sensitivity Analysis, Probability and Statistics series. John Wiley 
& Sons, 2000.

[15] F. Campolongo, S. Tarantola, and A. Saltelli. Tackling quantitatively large 

dimensionality problems. Comp. Phy. Communications, 117:75-85, 1999.

[16] J. M, Chambers and T. J. Hastie, editors. Statistical Models in S. Chapman 
& Hall, London, 1993. AT&T Bell Laboratories.

[17] C. Chatfield. Model uncertainty, data mining and statistical inference. J. 
R. Statist. Soc. A, 158(3):419-466, 1995.



BIBLIOGRAPHY 298

[18] W. Cheney and D. Kincaid. Numerical Mathematics and Computing. 
Brooks /  Cole Publishing Company, California, 2nd edition, 1985.

[19] M.H. Chun, S.J. Han, and N.I. Tak. An uncertainty importance measure 
using a distance metric for the change in a cumulative distribution function. 

Reliability Engineering and System Safety, 70:313-321, 2000.

[20] W. S. Cleveland. Visualizing data. Hobart Press, Murray Hill, N.J., 1993.

[21] C. Cobelli and G. Romanin-Jacur. Controllability, observability and struc­

tural identifiability of multi input and multi output biological compart­

mental systems. IEEE Transactions on Biomedical Engineering, BME- 
23(2):93-100, 1976.

[22] W. J. Conover. Practical Nonparametric Statistics. John Wiley & Sons, 

New York, 1980.

[23] R. M. Cooke and J. M. van Noortwijk. Graphical methods. In A. Saltelli, 
K. Chan, and E. M. Scott, editors, Sensitivity Analysis, Probability and 
Statistics series. John Wiley & Sons, 2000.

[24] M. Crosetto, S. Tarantola, and A. Saltelli. Sensitivity and uncertainty in 

spatial modelling based on GIS. Agriculture, Ecosystems and Environment, 
81:71-79, 2000.

[25] E. P. Dougherty, J. T. Hwang, and Rabitz H. Further developments and ap­
plications of the Green’s function method of sensitivity analysis in chemical 

kinetics. Journal of Chemical Physics, 71:1794-1808, 1979.

[26] D. Draper. Assessment and propagation of model uncertainty. Journal of 

The Royal Statistical Society, 57-B(l):45-97, 1995.

[27] D. Draper, A. Pereira, P. Prado, A. Saltelli, R. Cheal, S. Eguilior, 

B. Mendes, and S. Tarantola. Scenario and parametric uncertainty in



BIBLIOGRAPHY 299

GESAMAC: A methodological study in nuclear waste disposal risk assess­

ment. Computer Physics Communications, 117:142-155, 1999.

[28] S. H. C. du Toit, A. G. W. Steyn, and R. H. Stumpf. Graphical Exploratory 
Data Analysis. Springer-Verlag, New York, 1986.

[29] A. M. Dunker, Efficient calculation of sensitivity coefficients for complex 

atmospheric models. Atmospheric Environment, 15(7):1155-1161, 1981.

[30] W. R. Emanuel, G. G. Killough, W. M. Post, and H. H. Shugart. Model­

ing terrestrial ecosystems in the global carbon cycle with shifts in carbon 

storage capacity by land-use change. Ecology, 65(3):970-983, 1984.

[31] W. R. Emanuel, G. G. Killough, W. M. Post, H. H. Shugart, and M. P. 

Stevenson. Computer implementation of a globally averaged model of the 
world carbon cycle. Technical Report TR010, DOE/NBB-0062, U. S. De­

partment of Energy, Oak Ridge National Laboratory, Oak Ridge, TN, 1984.

[32] I. G. Enting, T. M. L. Wigley, and M. Heimann. Future Emissions and 

Concentrations of Carbon Dioxide: Key Ocean/Atmosphere/Land Analy­

ses. Technical Report No. 31, CSIRO Division of Atmospheric Research 
Technical Paper, 1994.

[33] I. G. Enting, T. M. L. Wigley, and M. Heimann. Intergov­
ernmental Panel on Climate Change (IPCC), Working Group 1, 

1994: Modelling Results Relating Future Atmospheric CO2 Concen­

trations to Industrial Emissions. Technical Report DB1009, CDIAC, 

http://cdiac.esd.ornl.gov/ndps/dbl009.html, 1995.

[34] M. Eslami. Theory of Sensitivity in Dynamic System: An Introduction. 
Springer-Verlag, Berlin Heidelberg, 1994.

[35] B. S. Everitt and G. Dunn. Applied Multivariate Data Analysis. Edward 
Arnold, London, 1991.

http://cdiac.esd.ornl.gov/ndps/dbl009.html


BIBLIOGRAPHY 300

[36] P. M. Prank. Introduction to System Theory. Academic Press, New York, 
London, 1978.

[37] H. Friedli, H. Lotscher, H. Oeschger, U. Siegenthaler, and B. Stauffer. Ice 

core records of the 13C /12C ratio of atmospheric CO2 in the past two cen­

turies. Nature, 324(20):237-238, 1986.

[38] K. Godfrey. Compartmental Models and Their Application. Academic 
Press, London, 1983.

[39] N. Goto, A. Sakoda, and M. Suzuki. Modeling of soil carbon dynamics 

as a part of carbon-cycle in terrestrial ecosystems. Ecological Modelling, 

74(3-4): 183-204, 1994.

[40] T. M. Grieb, R. J. M. Hudson, N. Shang, R. C. Spear, S. A. Gherini, 
and R. A. Goldstein. Examination of model uncertainty and parameter 
interaction in a global carbon cycling model (GLOCO). Environment In­
ternational, 25(6/7):787-803, 1999.

[41] S. C. Gupta and V. K. Kapoor. Fundamentals of Mathematical statistics. 
Sultan Chand h  Sons, New Delhi, 9th edition, 1994.

[42] Y. Y. Haimes and J. H. Lambert. When and how can you specify a probabil­

ity distribution when you don’t know much? II. Risk Analysis, 19(l):43-46, 

1999.

[43] M. C. G. Hall. Estimating the reliability of climate model projections - 

steps toward a solution. In M. C. MacCracken and F. M. Luther, edi­
tors, Projecting the Climatic Effects of Increasing Carbon Dioxide, number 

DOE/ER-0237, pages 337-364. U. S. Department of Energy, Washington,
D.C., 1985.

[44] L. Hallstadius. Compartment modelling in nuclear medicine: A new pro­

gram for the determination of transfer coefficients. Nuclear Medicine Com­
munications, 7(6):405-414, 1986.



BIBLIOGRAPHY 301

[45] D. M. Hamby. A review of techniques for parameter sensitivity analysis of 

environmental models. Environmental Monitoring and Assessment, 32:135— 
154, 1994.

[46] D. M. Hamby. A comparison of sensitivity analysis techniques. Health 

Phys., 68(2): 195-204, 1995.

[47] J. C. Helton. Uncertainty and sensitivity analysis techniques for use in per­

formance assessment for radioactive waste disposal. Reliability Engineering 

and System Safety, 42:327-367, 1993.

[48] J. C. Helton and F. J. Davis. Sampling-based methods. In A. Saltelli, 
K. Chan, and E. M. Scott, editors, Sensitivity Analysis, Probability and 

Statistics series. John Wiley k  Sons, 2000.

[49] J. C. Helton and F. J. Davis. Sampling-based methods for uncertainty 

and sensitivity analysis. Technical Report SAND99-2240, Sandia National 
Laboratories, New Mexico, USA, 2000.

[50] J. C. Helton, R. L. Iman, and J. B. Brown. Sensitivity analysis of the asymp­

totic behavior of a model for the environmental movement of radionuclides. 

Ecological Modelling, 28:243-278, 1985.

[51] J. C. Helton, R. L. Iman, J. D. Johnson, and C. D. Leigh. Uncertainty and 

sensitivity analysis of a dry containment test problem for the MAEROS 
aerosol model. Nuclear Science and Engineering, 102(1):22-42, 1989.

[52] J. C. Helton, J. D. Johnson, M. D. McKay, A. W. Shiver, and J. L, Sprung. 

Robustness of an uncertainty and sensitivity analysis of early exposure re­

sults with the maccs reactor accident consequence model. Reliability Engi­
neering and System Safety, 48(2):129-148, 1995a.

[53] J. C. Helton, J. D. Johnson, A. W. Shiver, and J. L. Sprung. Uncertainty 

and sensitivity analysis of early exposure results with the MACCS reactor



BIBLIOGRAPHY 302

accident consequence model. Reliability Engineering and System Safety, 

48(2):91-127, 1995b.

[54] F. O. Hoffman and R. H. Gardner. Evaluation of uncertainties in radiolog­

ical assessment models. In J. E. Till and H. R. Meyer, editors, Radiologi­
cal Assessment: A Textbook on Environmental Dose Assessment., number 
NUREG/CR-3332, pages 11.1-11.55. U. S. Nuclear Regulatory Commis­
sion, 1983.

[55] F. O. Hoffman and S. Kaplan. Beyond the domain of direct observation: 

How to specify a probability distribution that represents the “State of 

Knowledge” about uncertain inputs. Risk Analysis, 19(1) :131—134, 1999.

[56] T. Homma and A. Saltelli. LISA Package User Guide, Part 1 : PREP 
(Statistical PREProcessor). Preparation of input sample for Monte Carlo 

simulations. Program description and User guide, 1991.

[57] S. C. Hora. Sensitivity, uncertainty, and decision analyses in the priori­

tization of research. Journal of Statistical Computation and Simulation, 

57(1-4):175-196, 1996.

[58] J. T. Houghton, B. A. Callander, and S. K. Varney, editors. Climate Change 
1992. The Supplementary Report to the IPCC Scientific Assessment, Brack­

nell,UK, 1992. International Panel on Climate Change, WMO/UNEP.

[59] R. L. Iman and W. J. Conover. Sensitivity analysis techniques: Self­

teaching curriculum. Technical Report NUREG/CR-2350, SAND81-1978, 

SANDIA, USA, 1978.

[60] R. L. Iman and W. J. Conover. Small sample sensitivity analysis techniques 
for computer models, with an application to risk assessment. Communica­
tions in Statistics, Part A-Theory and Methods, 9(17):1749—1842, 1980.



BIBLIOGRAPHY 303

[61] R. L. Iman and W. J. Conover. A distribution-free approach to inducing 
rank correlation among input variables. Commun. Statist.-Simula. Com- 
puta., 11 (3) :311-334, 1982.

[62] R. L. Iman and J. C. Helton. A comparison of uncertainty and sensitivity 

analysis techniques for computer models. Technical Report NUREG/CR- 
3904, SAND84-1461, U. S. Department of Energy, Washington, DC, 1985.

[63] R. L. Iman and J. C. Helton. An investigation of uncertainty and sensitivity 

analysis techniques for computer models. Risk Analysis, 8(l):71-90, 1988.

[64] R. L. Iman, J. C. Helton, and J. E. Campbell. An approach to sensitivity 
analysis of computer models: Part I -  introduction, input variable selec­

tion and preliminary variable assessment. Journal of Quality Technology, 
13(3) :1T4—183, 1981.

[65] R. L. Iman and M. J. Shortencarier. A FORTRAN 77 Program and User’s 

Guide for The Generation of Latin Hypercube and Random Samples for Use 
With Computer Models. Technical Report NUREG/CR-3624, SAND83- 
2365, U. S. Department of Energy, Washington, DC, 1984.

[66] J. A. Jacquez. Compartmental Analysis in Biology and Medicine. Michigan 

Press, Ann Arbor, Michigan, 2nd edition, 1985.

[67] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Anal­
ysis. Prentice Hall, Inc., Englewood Cliffs, New Jersey, 3rd edition, 1992.

[68] C. D. Keeling. Global historical CO2 emissions. In T. A. Boden, D. P. 

Kaiser, R. J. Sepanski, and F. W. Stoss, editors, Trends ’93: A Com­
pendium of Data on Global Change, number ORNL/CDIAC-65, pages 501- 

504. Carbon Dioxide Information Center, Oak Ridge National Laboratory, 
Oak Ridge, USA, 1994.

[69] C. D. Keeling and T. P. Whorf. Atmospheric CO2 records from sites in the 

SIO Air Sampling Network. In T. A. Boden, D. P. Kaiser, R. J. Sepanski,



BIBLIOGRAPHY 304

and F. W. Stoss, editors, Trends *93: A Compendium of Data on Global 
Change, number ORNL/CDIAC-65, pages 18-19. Carbon Dioxide Informa­
tion Center, Oak Ridge National Laboratory, Oak Ridge, USA, 1994.

[70] C. D. Keeling and T. P. Whorf. Atmospheric CO2 Concentrations -  Mauna 

Loa Observatory, Hawaii, 1958-1997 (revised August 1998). Technical Re­

port NDP-001, Carbon Dioxide Information Center, Oak Ridge National 
Laboratory, Oak Ridge, USA, 1997.

[71] C. D. Keeling and T. P. Whorf. Atmospheric CO2 concentrations (ppmv) 

air samples collected at Mauna Loa Observatory, Hawaii, 1958-2000. 

http://cdiac.esd.ornl.gov/ftp/ndp001/maunaloa.co2, 2001.

[72] M. C. Kennedy and A. O’Hagan. Bayesian calibration of computer models. 

J. R. Statist. Soc.-B, 63:1-25, 2001.

[73] A. W. King and M. J. Sale. A plan for intermodel comparison of at­
mospheric CO2 projections with uncertainty analysis. Technical Report 
ORNL/CDIAC-32, Carbon Dioxide Information Center, Oak Ridge Na­
tional Laboratory, Oak Ridge, TN, 1990.

[74] J. P. C. Kleijnen and J. C. Helton. Statistical analyses of scatterplots to 

identify important factors in large-scale simulations, 1: Review and compar­

ison of techniques. Reliability Engineering and System Safety, 65:147-185,
1999.

[75] J. P. C. Kleijnen and J. C. Helton. Statistical analyses of scatterplots 

to identify important factors in large-scale simulations, 2: Robustness of 

techniques. Reliability Engineering and System Safety, 65:187-197, 1999.

[76] C. J. Krebs. Ecology: The Experimental Analysis of Distribution and Abun­
dance. Harper Collins College Publishers, New York, USA, 4th edition,
1994.

http://cdiac.esd.ornl.gov/ftp/ndp001/maunaloa.co2


BIBLIOGRAPHY 305

[77] L. Ljung. System Identification - Theory for the User. Prentice Hall Ptr., 

Upper Saddle River, NJ, 2nd edition, 1999.

[78] McCartney M. Global and Local Effects o f 14 C Discharges from the Nuclear 
Fuel Cycle. PhD thesis, Department of Chemistry, University of Glasgow, 
1987.

[79] G. Marland, R. J. Andres, and T. A. Boden. Global, regional, and national 

CO2 emissions. In T. A. Boden, D. P. Kaiser, R. J, Sepanski, and F. W. 

Stoss, editors, Trends ’93: A Compendium of Data on Global Change, num­

ber ORNL/CDIAC-65, pages 505-584. Carbon Dioxide Information Center, 

Oak Ridge National Laboratory, Oak Ridge, USA, 1994.

[80] G. Marland, R. J. Andres, T. A. Boden, C. A. Johnston, and 
A. L. Brenkert. Global, regional, and national CO2 emission esti­

mates from fossil fuel burning, cement production, and gas flaring: 

1751-1996 (revised March 1999). Technical Report NDP-030, CDIAC, 

htt p : /  /  cdiac. esd. ornl. gov/ndps/ndp030. html, 1999.

[81] G. Marland and R. M. Rotty. Carbon dioxide emissions from fossil fuels: 
a procedure for estimation of results for 1950-82. Tellus} 36(b):232-261, 
1984.

[82] J. H. Matis and T. E. Wehrly. Stochastic models of compartmental systems. 

Biometrics, 35:199-220, 1979.

[83] M. D. McKay. Evaluating prediction uncertainty. Technical Report 

NUREG/CR-6311, U.S. Nuclear Regulatory Commission and Los Alamos 
National Laboratory, Washington, DC, 1995.

[84] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three 

methods for selecting values of input variables in the analysis of output 

from a computer code. Technometrics, 21(2):239-245, 1979. (published 

again in 2000, Technometrics 42(l):55-61).



BIBLIOGRAPHY 306

[85] H. Metivier, P. Jacop, G. Souchkevitch, et al., editors. CHERNOBYL 

Ten Years On Radiological and Health Impact, Paris, Prance, November

1995. Nuclear Energy Agency, Organisation for Economic Co-Operation 
and Development (OECD).

[86] J. LI. Morris. Computational methods in elementary numerical analysis. 
John Wiley & Sons, Chichester, 1983.

[87] M. D. Morris. Factorial sampling plans for preliminary computational ex­
periments. Technometrics, 33(2):161-174, 1991.

[88] R. J. Mulholland and M. S. Keener. Analysis of linear compartmental 

models for ecosystems. Journal of Theor. Biol, 44:105-116, 1974.

[89] A. Neftel, E. Moor, H. Oeschger, and B. Stauffer. Evidence from polar ice 

cores for the increase in atmospheric CO2 in the past two centuries. Nature, 
315:45-47, 1985.

[90] M. J. Norusis. SPSSS Advanced Statistics Guide. McGraw-Hill Book Com­

pany, Chicago, Illinois, 1985.

[91] R. V. O’Neill. A review of linear compartmental analysis in ecosystem 

science. In J. H. Matis, B. C. Patten, and G. C. White, editors, Compart­
mental Analysis of Ecosystem Models, volume 10 (whole part) of Statistical 
Ecology, pages 3-28, 1979.

[92] V. Perincherry, S. Kikuchi, and Y. Hamamatsu. Uncertainties in the anal­

ysis of large-scale systems. In B. M. Ayyub and M. M. Gupta, editors, 

Uncertainty Modelling and Analysis: Theory and Applications, volume 17 

of Machine Intelligence and Pattern Recognition, pages 73-96. Elsevier, 
1994.

[93] S. R. Peterson and S. Chouhan. CHERPAC: User’s Mini-Manual, June 
1994.



BIBLIOGRAPHY 307

[94] W. H. Press, B. P. Flannery, S. A. Teukolsky, and Vetterling W. T. Numeri­
cal recipes: the art of scientific computing (FORTRAN version). Cambridge 

University Press, Cambridge, 1989,

[95] K. L. Reed, K. A. Rose, and R. C. Whitemore. Latin hyper cube analy­
sis of parameter sensitivity in large model of outdoor recreation demand. 
Ecological Modelling, 24:159-169, 1984.

[96] K. A. Rose. A simulation comparison and evaluation of parameter sen­

sitivity methods applicable to large models. In The Third International 
Conference on State-of-the-Art in Ecological Modeling, pages 129-140. Col­
orado State University, 1982.

[97] A. Saltelli. W hat is sensitivity analysis. In A. Saltelli, K. Chan, and E. M. 

Scott, editors, Sensitivity Analysis, Probability and Statistics series. John 
Wiley & Sons, 2000.

[98] A. Saltelli, K. Chan, and E. M. Scott, editors. Sensitivity Analysis. Prob­

ability and Statistics series. John Wiley & Sons, West Sussex, England,
2000 .

[99] A. Saltelli and T. Homma. Sensitivity analysis for model output - 

performance of black box techniques on three international benchmark ex­

ercises. Computational Statistics Ik Data Analysis, 13:73-94, 1992.

[100] A. Saltelli and J. Marivoet. Nonparametric statistics in sensitivity anal­

ysis for model output: A comparison of selected techniques. Reliability 

Engineering and System Safety, 28(2):229-253, 1990.

[101] L. F. Shampine and M. K. Gordon. Computer solution of ordinary differ­
ential equations: the initial value problem. W. H. Freeman and Company, 

San Francisco, 1975.

[102] W. Stein. Large sample properties of simulations using Latin hypercube 

sampling. Technometrics, 29(2):143-151, 1987.



BIBLIOGRAPHY 308

[103] J. A. Taylor. Fossil fuel emissions required to achieve atmospheric CO2 

stabilisation using anu-bace: A box-diffusion carbon cycle model. Ecological 
Modelling, 86:195-199, 1996.

[104] K. M. Thiessen, F. O. Hoffman, A. Rantavaara, and S. Hossain. Environ­
mental models undergo international test the science and art of exposure 
assessment modeling were tested using real-world data from the Chernobyl 

accident. Env. Sci. & Technology /  News, 31(8):358-363, 1997.

[105] R. Tomovic and M. Vukobratovic. General Sensitivity Theory. American 

Elsevier Publishing Company, Inc., New York, 1972.

[106] J. R. Trabalka, editor. Atmospheric carbon dioxide and the global car­

bon cycle. Technical Report DOE/ER-0239, U. S. Department of Energy, 
Washington, D.C., 1985.

[107] T. Turanyi and H. Rabitz. Local methods. In A. Saltelli, K. Chan, and

E. M. Scott, editors, Sensitivity Analysis, Probability and Statistics series. 

John Wiley & Sons, 2000.

[108] R. K. White. Evaluating the reliability of predictions made using envi­

ronmental transfer models. Technical Report Safety Series No. 10, IAEA, 
Vienna, 1991.

[109] P. Young. Data-based mechanistic modelling, generalised sensitivity and 

dominant mode analysis. Comp. Phy. Communications, 117:113-129, 1999.

[110] K. Zierler. A critique of compartmental analysis. Ann. Rev. Biophys. 
Bioeng., 10:563-592, 1981.

[111] D. Zwillinger. Handbook of Differential Equations. Academic Press, Lon­

don, 2nd edition, 1992.



A ppendix  A

Sim ulation R esults o f M odel I 

Sum m arised in C hapter 3



APPENDIX A

A .l  M odel I Initial Conditions
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Figure A .I. Surface ocean CO2 predictions resulting from varying initial com­
partmental content of compartment i (i = 1,2,..., 8) OAT (given in top-left 
corner of each graph - see Table 3.2 for description of these input factors). N=100 
model runs, IS92a emission scenario is considered.
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Figure A .2. Deep ocean CO2 predictions resulting from varying initial compart­
mental content x° of compartment i (i = 1, 2 , 8 )  OAT (given in top-left corner 
of each graph - see Table 3.2 for description of these input factors). N=100 model 
runs, IS92a emission scenario is considered.
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F igure A .3. Nonwoody parts of trees CO2 predictions resulting from varying 
initial compartmental content x° of compartment i (i = 1, 2 , 8 )  OAT (given in 
top-left corner of each graph - see Table 3.2 for description of these input factors). 
N=100 model runs, IS92a emission scenario is considered.
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Figure A .4. Woody parts of trees CO2 predictions resulting from varying initial 
compartmental content x° of compartment i (i = 1,2, ...,8) OAT (given in top- 
left corner of each graph - see Table 3.2 for description of these input factors). 
N=100 model runs, IS92a emission scenario is considered.
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F igure A .5. Ground vegetation C 0 2 predictions resulting from varying initial 
compartmental content x° of compartment i (i =  1,2, ...,8) OAT (given in top- 
left corner of each graph - see Table 3.2 for description of these input factors). 
N=100 model runs, IS92a emission scenario is considered.
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F igure A .6. Detritus/decomposers CO2 predictions resulting from varying ini­
tial compartmental content x° of compartment i (i = 1,2,..., 8) OAT (given in 
top-left corner of each graph - see Table 3.2 for description of these input factors). 
N=100 model runs, IS92a emission scenario is considered.
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Figure A .7. Active soil carbon CO2 predictions resulting from varying initial 
compartmental content x° of compartment i (i = 1,2, ...,8) OAT (given in top- 
left corner of each graph - see Table 3.2 for description of these input factors). 
N=100 model runs, IS92a emission scenario is considered.



A .2 R esu lts o f M orris D esign on M odel I Initial

C onditions
Table A .I. Morris estimated means and standard deviations associated with
the initial conditions of Model I. (IS92a emission scenario considered).

C o m p a r t m e n t a l I n p u t Y e a r  1 9 0 0 Y e a r  2 0 0 0 Y e a r  2 1 0 0

O u t p u t F a c t o r
m e a n s t . d e v . m e a n s t . d e v . m e a n s t . d e v .

1 .7 0 7 6 3 E + 0 0 2 .1 0 8 3 5 E -0 6 1 .7 0 7 6 1 E + 0 0 2 .81Q 91E -05 1 .7 0 7 6 0 E + 0 0 2 .1 0 8 5 0 E -0 6

ra2 1 .8 3 1 0 1 E + 0 0 3 .4 4 2 4 7 E -0 6 1 .8 3 0 9 9 E + 0 0 2 .1 0 8 1 8 E -0 5 1 .8 3 0 9 9 E + 0 0 2 .8 1 0 5 8 E -0 6
O Jg 1 .0 2 9 9 9 E + 0 2 1 .0 4 2 3 7 E -0 5 1 .0 2 9 9 9 E + 0 2 3 .4 4 2 1 6 E -0 5 1 .0 2 9 9 9 E + 0 2 1 .0 9 0 8 8 E -0 5

A t m o s p h e r e
®5

1 .0 4 8 3 5 E -0 1
1 .7 4 0 7 7 E + 0 0

2 .8 1 0 9 1 E -0 6
3 .2 2 0 1 7 E -0 6

1 .0 4 8 4 0 E -0 1
1 .7 4 0 7 5 E + 0 0

3 .4 4 2 6 5 E -0 5
2 .8 1 0 9 2 E -0 5

1 .0 4 8 3 3 E -0 1
1 .7 4 0 7 3 E + 0 0

2 .1 0 8 1 8 E -0 6
3 .2 2 0 2 7 E -0 6

CDq 1 .6 2 7 S 5 E -0 1 2 .8 1 0 9 1 E -0 6 1 .6 2 7 6 7 E -0 1 3 .5 1 3 6 4 E -0 5 1 .6 2 7 5 3 E -0 1 2 .1 0 8 1 9 E -0 6
2 .9 6 9 1 8 E -0 1 3 .2 2 0 3 1 E -0 6 2 .9 6 9 1 3 E -0 1 3 .2 2 0 3 1 E -0 5 2 .9 6 9 1 3 E -0 1 2 .1 0 8 1 9 E -0 6

3 .1 0 4 2 I E + 0 0 2 .8 1 0 4 6 E -0 6 3 .1 0 4 1 4 E + 0 0 2 .1 0 8 1 9 E -0 5 3 .1 0 4 1 0 E + 0 0 2 .1 0 8 6 5 E -0 6

® 1 1 .8 0 8 0 5 E + 0 0 3 .2 2 0 3 1 E -0 5 1 .8 0 8 0 4 E + 0 0 3 .2 2 0 3 7 E -0 6 1 .8 0 8 0 4 E + 0 0 3 .2 2 0 4 7 E -0 6
1 .9 3 8 7 2 E + 0 0 2 .8 1 0 9 1 E -0 5 1 .9 3 8 6 9 E + 0 0 3 .4 4 2 5 6 E -0 6 1 .9 3 8 6 8 E + 0 0 3 .5 1 3 3 8 E -0 6

Q5g 1 .0 9 0 5 7 E + 0 2 3 .2 2 4 8 7 E -0 5 1 .0 9 0 5 7 E + 0 2 1 .0 5 4 7 1 E -0 5 1 .0 9 0 5 7 E + 0 2 1 .0 4 2 3 7 E -0 5
S u r f a c e » s 1 .1 1 0 0 0 E -0 1 1 .5 7 0 7 2 E -0 9 1 .1 0 9 9 9 E -0 1 2.81091E -Q 6 1 .1 1 0 0 0 E -0 1 O.OOOOOE+OO
O c e a n mg 1 .8 4 3 1 4 E + 0 0 2 .1 0 8 1 9 E -0 5 1 .8 4 3 1 3 E + 0 0 3 .5 5 4 1 3 E -0 8 1 .8 4 3 U E + 0 0 2 .1 0 8 3 5 E -0 6

1 .7 2 3 1 3 E -0 1 3 .2 2 0 3 1 E -0 5 1 .7 2 3 2 3 E -0 1 3 .5 1 3 6 4 E -0 6 1 .7 2 3 2 3 E -0 1 3 .5 1 3 6 4 E -0 6
3 .1 4 3 8 0 E -0 1 3 .2 2 0 3 1 E -0 5 3 .1 4 3 7 7 E -0 1 3 .5 1 3 6 4 E -0 6 3 .1 4 3 7 5 E -0 1 3 .2 2 0 3 0 E -0 6

3 .2 8 6 7 5 E + 0 0 3 .2 2 0 3 0 E -0 5 3 .2 8 6 7 0 E + 0 0 7 .1 0 8 2 7 E -0 8 3 .2 8 6 6 7 E + 0 0 0 .0 0 0 0 0 E + 0 0

« s 1 .0 1 7 4 4 E + 0 2 3 .2 1 8 8 5 E -0 5 1 .0 1 7 4 4 E + 0 2 2 .1 0 3 2 8 E -0 5 1 .0 1 7 4 4 E + 0 2 3 .5 9 6 5 3 E -0 6
mg 1 .0 9 0 9 6 E + 0 2 1 .6 0 8 4 2 E -0 6 1 .0 9 0 9 6 E + 0 2 3 .2 1 2 8 1 E -0 5 1 .0 9 0 9 7 E + 0 2 3 .5 9 6 5 3 E -0 6
mg 6 .1 3 7 0 8 E + 0 3 5 .9 1 3 3 8 E -0 4 6 .1 3 7 0 8 E + 0 3 5 .9 5 8 0 1 E -0 4 6 .1 3 7 0 8 E + 0 3 6 .0 8 9 9 4 E -0 4

D e e p » s 6 .2 4 6 2 2 E + 0 0 3 .2 2 0 3 1 E -0 5 6 .2 4 6 2 4 E + 0 0 3 .4 4 2 6 6 E -0 5 6 .2 4 6 2 5 E + 0 0 7 .1 0 8 2 7 E -0 8
O c e a n ®5 1 .0 3 7 1 8 E + 0 2 3 .4 3 4 6 4 E -0 5 1 .0 3 7 1 8 E + 0 2 3 .5 1 6 5 2 E -0 5 1 .0 3 7 1 8 E + 0 2 3 .2 1 6 8 4 E -0 6

QJq 9 .6 9 7 1 5 E + 0 0 2 .8 1 0 8 5 E -0 5 9 .6 9 7 1 7 E + 0 0 3 .5 1 3 5 8 E -0 5 9 .6 9 7 1 8 E + 0 0 1 .4 2 1 6 5 E -0 7
m7 1 .7 6 9 0 9 E + 0 1 2 .8 1 U 4 E -0 5 1 .7 6 9 1 0 E + 0 1 3 .2 2 0 5 4 E -0 5 1 .7 6 9 1 0 E + 0 1 2 .0 6 9 9 6 E -0 6
m8 1 .8 4 9 5 0 E + 0 2 3 .2 3 2 8 8 E -0 5 1 .8 4 9 5 0 E + 0 2 4 .7 2 7 7 6 E -0 5 1 .8 4 9 5 0 E + 0 2 3 .2 7 2 6 5 E -0 5

“ S 1 .0S 6 3 8 E -0 1 3 .2 2 0 3 1 E -0 6 1 .0 5 6 4 0 E -0 1 3 .4 4 2 6 5 E -0 5 1 .0 5 6 3 3 E -0 1 3 .5 1 3 6 4 E -0 5
to 2 1 .1 3 2 7 1 E -0 1 3 .2 2 0 3 1 E -0 6 1 .1 3 2 7 3 E -0 1 2 .1 0 8 1 9 E -0 5 1 .1 3 2 7 3 E -0 1 2 .1 0 8 1 9 E -0 5
mg 6 .3 7 1 7 4 E + 0 0 2 .1 0 7 4 5 E -0 6 6 .3 7 1 7 5 E + 0 0 3 .2 2 0 3 3 E -0 5 6 .3 7 1 7 5 E + 0 0 3 .2 2 0 3 1 E -0 5

N o n w o o d y  p a r t s “ 4 6 .4 8 5 3 3 E -0 3 2 .8 1 0 9 1 E -0 6 6 .4 8 6 6 7 E -0 3 3 .2 2 0 3 1 E -0 5 6 .4 8 0 0 0 E -0 3 2 .8 1 0 9 1 E -0 5
o f  T r e e s “ B 1 .0 7 6 8 7 E -0 1 2 .1 0 S 1 8 E -0 6 1 .0 7 6 7 3 E -0 1 2 .1 0 8 1 9 E -0 5 1 .0 7 6 7 3 E -0 1 2 .1 0 8 1 9 E -0 5

6 1 .0 0 6 7 3 E -0 2 2 .1 0 8 1 9 E -0 6 1 .0 0 6 6 7 E -0 2 O.OOOOOE+OO 1 .0 0 6 6 7 E -0 2 1 .3 8 8 3 3 E -1 0
m ° 1 .8 3 6 6 7 E -0 2 2 .7 7 6 6 7 E -I0 1 .8 3 7 3 3 E -0 2 3 .4 4 2 6 5 E -0 5 1 .8 3 6 6 7 E -0 2 3 .5 1 3 6 4 E -0 5
mg 1.9 2 0 3 3 E -0 1 O.OOOOOE+OO 1 .9 2 0 3 3 E -0 1 3 .5 1 3 6 4 E -0 5 1 .9 2 0 3 3 E -0 1 3 .5 1 3 6 4 E -0 5
m° 1 .7 1 4 8 9 E + 0 0 3 .5 1 3 4 7 E -0 6 1 .7 1 4 8 7 E + 0 0 3 .2 2 0 5 6 E -0 6 1 .7 1 4 8 6 E + 0 0 3 .4 4 2 6 5 E -0 6
mg 1 .8 3 8 8 0 E + 0 0 3 .4 4 2 7 4 E -0 6 1 .8 3 8 7 8 E + 0 0 2 .8 1 0 9 1 E -0 6 1 .8 3 8 7 7 E + 0 0 3 .2 2 0 1 7 E -0 6
mg 1 .0 3 4 3 6 E + 0 2 1 .2 2 4 9 3 E -0 5 1 .0 3 4 3 7 E + 0 2 1 .0 2 9 8 9 E -05 1 .0 3 4 3 7 E + 0 2 9 .7 8 3 6 2 E -0 6

W o o d y  p a r t s 1 .0 5 2 8 1 E -0 1 2 .1 0 8 1 9 E -0 6 1 .0 5 2 7 9 E -0 1 2 .1 0 8 1 9 E -0 6 1 .0 5 2 7 9 E -0 1 2 .8 I0 9 1 E -0 6
o f  T r e e s « g 1 .7 4 8 1 8 E + 0 0 2 .8 1 0 9 1 E -0 S 1 .7 4 8 1 5 E + 0 0 3 .4 4 2 7 4 E -0 6 1 .7 4 8 1 3 E + 0 0 3 .5 5 4 1 3 E -0 8

mg 1.6 3 4 4 7 E -0 1 2 .2 2 1 3 3 E -0 9 1 .6 3 4 4 3 E -0 1 3 .5 1 3 6 4 E -0 6 1 .6 3 4 4 2 E -0 1 3 .2 2 0 3 0 E -0 6
m° 2 .9 8 1 8 0 E -0 1 4 .4 4 2 6 7 E -0 9 2 .9 8 1 7 6 E -0 1 3 .4 4 2 6 5 E -0 6 2 .9 8 1 7 4 E -0 1 2 .1 0 8 1 9 E -0 6
mg 3 .1 1 7 4 3 E + 0 0 2 .8 1 1 1 4 E -0 6 3 .1 1 7 3 5 E + 0 0 3 .2 2 0 5 6 E -0 6 3 .1 1 7 3 0 E + 0 0 2 .8 1 1 1 4 E -0 6
mg 1 .6 4 6 1 6 E -0 1 3 .4 4 2 6 5 E -0 6 1 .6 4 6 1 4 E -0 1 2 .1 0 8 1 8 E -0 6 1 .6 4 6 0 0 E -0 1 2 .2 2 1 3 3 E -0 9
mg 1 .7 6 5 0 9 E -0 1 3 .2 2 0 3 1 E -0 6 1 .7 6 5 0 9 E -0 1 3 .4 4 2 6 5 E -0 6 1 .7 6 5 2 0 E -0 1 2 .8 1 0 9 1 E -0 5

9 .9 2 9 0 7 E + 0 0 2 .1 0 8 6 5 E -0 6 9 .9 2 9 0 9 E + 0 0 2 .1 0 8 6 5 E -0 6 9 .9 2 9 0 9 E + 0 0 3 .4 4 2 7 2 E -0 5
G r o u n d < 1 .0 1 0 6 7 E -0 2 1 .3 8 8 3 3 E -1 0 1 .0 1 0 6 7 E -0 2 O.OOOOOE+OO 1 .0 1 2 0 0 E -0 2 2 .8 1 0 9 1 E -0 5

V e g e t a t i o n “ fi 1 .8 7 8 0 9 E -0 1 3 .4 4 2 6 5 E -0 6 1 .6 7 8 0 7 E -0 1 2 .1 0 8 1 9 E -0 6 1 .6 7 8 0 7 E -0 1 2 .1 0 8 1 9 E -0 5
mg 1 .5 6 8 9 3 E -02 3 .4 4 2 6 5 E -0 6 1 .5 6 8 8 0 E -0 2 2 .8 1 0 9 1 E -0 6 1 .5 7 0 0 0 E -0 2 3 .5 1 3 6 4 E -0 5
mg 2 .8 6 2 4 0 E -0 2 3 .4 4 2 6 5 E -0 6 2 .8 6 2 2 7 E -0 2 3 .4 4 2 6 5 E -0 6 2 .8 6 2 6 7 E -0 2 3 .4 4 2 6 5 E -0 5
mg 2 .9 9 2 4 7 E -0 1 O.OOOOOE+OO 2 .9 9 2 3 9 E -0 1 2 .1 0 8 1 9 E -0 6 2 .9 9 2 3 3 E -0 1 3 .5 1 3 6 4 E -0 5

“ l 2 .9 6 6 3 9 E -0 1 2 .8 1 0 9 1 E -0 6 2 .9 6 6 3 5 E -0 1 3 .2 2 0 3 0 E -0 6 2 .9 6 6 3 3 E -0 1 3 .5 1 3 6 4 E -0 5

m2 3.1 8 0 7 3 E -0 1 2 .1 0 8 2 0 E -0 6 3 .1 8 0 7 0 E -0 1 3 .5 1 3 6 4 E -0 6 3 .1 8 0 7 3 E -0 1 2 .1 0 8 1 9 E -0 5

m3 1 7 .8 9 2 3 0 E + 0 0 3 .4 1 7 8 9 E -0 6 1 7 .8 9 2 3 3 E + 0 0 2 .1 0 8 6 5 E -0 6 1 7 .8 9 2 3 6 E + 0 0 3 .4 4 2 6 9 E -0 5
D e t r i t u s / ®4 0 .1 8 2 1 3 E -0 1 2 .1 0 8 1 9 E -0 6 0 .1 8 2 1 1 E -0 1 3 .4 4 2 6 5 E -0 6 0 .1 8 2 2 0 E -0 1 3 .2 2 0 3 1 E -0 5

D e c o m p o s e r s 3 .0 2 3 9 9 E -0 1 2 .1 0 8 1 9 E -0 6 3 .0 2 3 9 3 E -0 1 2 .1 0 8 1 9 E -0 6 3 .0 2 3 8 7 E -0 1 2 .8 1 0 9 1 E -0 5
“ 6 0 .2 8 2 7 3 E -0 1 3 .9 2 6 8 0 E -1 0 0 .2 8 2 7 1 E -0 1 3 .4 4 2 6 5 E -0 6 0 .2 8 2 7 3 E -0 1 2 .1 0 8 1 9 E -0 5
®7 0 .5 1 5 7 9 E -0 1 2 .8 1 0 9 1 E -0 6 0 .5 1 5 7 8 E -0 1 3 .2 2 0 3 1 E -0 6 0 .5 1 5 6 7 E -0 1 3 .5 1 3 6 4 E -0 5
05g 5 .3 9 2 4 7 E -0 1 2 .1 0 8 1 9 E -0 6 5 .3 9 2 3 3 E -0 1 6 .2 8 2 8 8 E -0 9 5 .3 9 2 2 0 E -0 1 3 .2 2 0 3 1 E -0 5
mg 3 .1 0 6 5 5 E + 0 0 3 .4 4 2 0 1 E -0 6 3 .1 0 6 4 7 E + 0 0 3 .5 5 4 1 3 E -0 8 3 .1 0 6 5 3 E + 0 0 2 .8 1 0 9 1 E -0 4
* § 3 .3 3 0 9 9 E 4 -0 0 2 .1 0 7 4 5 E -0 6 3 .3 3 0 9 2 E + 0 0 3 .2 I9 9 8 E -0 6 3 .3 3 1 0 0 E + 0 0 3 .5 1 3 6 4 E -0 4
mg 1 8 7 .3 7 0 1 6 E + 0 0 2 .0 4 7 1 8 E -0 5 1 8 7 .3 7 0 7 8 E + 0 0 1 .9 3 0 1 0 E -0 5 1 8 7 .3 7 1 2 7 E + 0 0 2 .1 0 7 9 5 E -0 4

A c t i v e  S o i l “ 4 0 .1 9 0 7 1 9 E + 0 0 2 .8 1 0 9 1 E -0 6 0 .1 9 0 7 1 E + 0 0 3 .5 1 3 6 4 E -0 6 0 .1 9 0 8 0 E + 0 0 2 .8 1 0 9 1 E -0 4
C a r b o n mg 3 .1 6 6 9 0 E + 0 0 O.OOOOOE+OO 3 .1 6 6 7 8 E + 0 0 3 .4 4 2 7 4 E -0 6 3 .1 6 6 8 0 E + 0 0 2 .8 1 0 9 1 E -0 4

mg 0 .2 9 6 0 9 E + 0 0 3 .2 2 0 3 1 E -0 6 0 .2 9 6 0 8 E + 0 0 3 .4 4 2 6 5 E -0 6 0 .2 9 6 0 7 E + 0 0 2 .1 0 8 1 9 E -0 4
m° 0.54016E -t-00 8 .8 8 5 3 4 E -0 9 0 .5 4 0 1 4 E + 0 0 3 .2 2 0 2 9 E -0 6 0 .5 4 0 3 3 E + 0 0 3 .5 1 3 6 4 E -0 4

5 .6 4 7 5 1 E + 0 0 2 .8 0 7 5 4 E -0 6 5 .6 4 7 1 9 E + 0 0 2 .8 1 0 2 4 E -0 6 5 .6 4 7 1 3 E + 0 0 3 .2 2 0 3 1 E -0 4
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A .3 M odel I Transfer Coefficients
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F ig u r e  A .8 . Surface ocean CO 2 predictions resulting from varying transfer coefficients
kij OAT (given in top-left corner of each graph - see Table 3.3 for description of these
input factors). N =100  m odel runs, IS92a emission scenario is considered.
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Figure A .9. Deep ocean CO 2 predictions resulting from varying transfer coefficients
kij OAT (given in top-left corner of each graph - see Table 3.3 for description of these
input factors). N = 100  model runs, IS92a emission scenario is considered.
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F igure A. 10. Non-woody parts of trees CO2 predictions resulting from varying trans­
fer coefficients kij OAT (given in top-left corner of each graph - see Table 3.3 for 
description of these input factors). N—100 model runs, IS92a emission scenario is 
considered.
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Figure A . l l .  W oody parts of trees CO 2 predictions resulting from varying transfer
coefficients kij OAT (given in top-left corner of each graph - see Table 3.3 for description
of these input factors). N =100 model runs, IS92a emission scenario is considered.
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Figure A. 12. Ground vegetation CO 2 predictions resulting from varying transfer
coefficients kij OAT (given in top-left corner of each graph - see Table 3.3 for description
of these input factors). N =100 model runs, IS92a emission scenario is considered.
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Figure A . 13. D etritus/decom posers CO 2 predictions resulting from varying transfer
coefficients k^ OAT (given in top-left corner of each graph - see Table 3.3 for description
of these input factors). N =100 model runs, IS92a emission scenario is considered.
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F ig u r e  A . 14 . Active soil carbon CO 2 predictions resulting from varying transfer
coefficients kij OAT (given in top-left corner of each graph - see Table 3.3 for description
of these input factors). N =100 m odel runs, IS92a emission scenario is considered.
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A .4 R esu lts o f M orris D esign on M odel I 

Transfer Coefficients

Table A .2. Morris estimated means and standard deviations associated with 
the selected transfer coefficients of Model I. (IS92a emission scenario considered).

C o m p a r t  m e n t a l  

O u t p u t

I n p u t  

F a c t  o r

Y e a r  1 9 0 0 Y e a r  2 0 0 0 Y e a r 2 1 0 0

m e a n s t . d e v . m e a n s t . d e v . m e a n s t . d e v .

A t m o s p h e r e

*>12
*>23
*> 7 5

*>76
*> 8 0
*i17
*> 8 7

*> 1 8

0.3 5 0 1
0 .8 6 7 0
0 .0 9 2 5
0 .0 0 6 0
0 .0 1 1 8
0 .0 2 9 0
0 .0 0 4 0
0 .1 9 3 5

0 .0 7 2 6
0 .0 7 3 6
0 .0 1 8 8
0 .0 0 1 4
0 .0 0 5 7
0 .0 0 8 6
0 .0 0 2 3
0 .0 2 6 3

2 .3 6 8 3
5 .1 6 6 7
0 .8 2 7 1
0 .0 5 0 1
0 .0 7 0 1
0 .2 2 8 9
0 .0 4 4 3
1 .3 3 5 9

0 .4 8 8 4
0 .4 3 9 7
0 .1 5 1 8
0 .0 1 1 3
0 .0 3 2 3
0 .0 6 7 8
0 .0 1 8 5
0 .1 5 4 3

7 .7 0 4 5
2 3 .8 6 5 2

1 .1 5 2 1
0 .0 7 5 9
0 .2 9 6 9
0 .3 6 9 8
0 .0 4 6 0
3 .9 2 3 4

1 .6 2 9 6
2 .0 5 7 3
0 .3 3 3 0
0 .0 2 0 3
0 .1 4 4 7
0 .1 2 6 7
0.0421
0 .6 6 2 8

*>12 0.2 5 3 1 0 .0 2 9 9 1 .8 6 0 0 0 .2 2 2 8 4 .5 3 3 7 0 .5 4 3 5
*>23 1.1 8 6 5 0 .0 8 6 7 7 .3 5 2 5 0 .5 0 8 6 3 0 .8 6 3 2 2 .4 6 0 7
*> 7 5 0 .0 7 1 9 0 .0 1 6 2 0 .6 3 7 3 0 .1 2 6 1 0 .9 7 8 8 0 .3 1 2 6

S u r f a c e fo 76 0 .0 0 4 8 0 .0 0 1 2 0 .0 4 0 7 0 .0 1 0 4 0 .0 6 3 0 0 .0 1 8 5
O c e a n #>B0 0 .0 0 9 5 0 .0 0 4 8 0 .0 5 1 7 0 .0 2 5 8 0 .2 5 3 7 0 .1 2 7 2

fe 17 0 .0 2 3 4 0 .0 0 7 0 0 .1 9 3 8 0 .0 5 5 9 0 .3 0 6 4 0 .1 0 6 8
*> 8 7 0 .0 0 3 3 0 .0 0 1 8 0 .0 3 5 9 0 .0 1 4 2 0 .0 3 9 0 0 .0 3 6 1
*>18 0 .1 5 2 5 0 .0 2 6 0 1 .0215 0 .1 4 9 5 3 .2 5 5 4 0 .6 6 0 9
*>12 0 .6 4 6 3 0 .1 5 8 9 3 .9 5 5 3 0 .9 6 6 1 1 7 .5 0 4 0 4 .1 6 8 3
*>23 3 .4 0 7 6 0 .2 4 1 2 20 .1411 1 .4 1 3 8 9 6 .8 6 5 5 7 .2 2 7 6
*> 7 5 0 .1 8 1 6 0 .0 2 2 3 1.0 5 8 3 0 .1 2 4 5 4 .7 0 8 1 0 .6 0 4 1

D e e p *>70 0 .0 1 1 1 0 .0 0 2 3 0 .0 6 9 5 0 .0 1 5 1 0 .2 7 8 9 0 .0 4 4 0
O c e a n *> 8 0 0 .0 2 1 3 0 .0 0 7 9 0 .1 0 2 3 0 .0 4 1 7 0 .6 6 6 0 0 .2 4 8 9

*> 1 7 0 .0 5 4 9 0 .0 1 3 4 0 .3 4 8 9 0 ,0 8 4 7 1 .3 0 1 7 0 .3 3 6 0
*> 8 7 0 .0 0 7 9 0 .0 0 4 5 0 .0 5 3 4 0 .0 2 8 4 0 .1 8 5 5 0 .0 9 9 8
*> 1 8 0 .3 4 9 5 0 .0 2 5 8 1 .9 2 1 9 0 .1 4 1 0 1 0 .2 6 8 3 0 .6 3 5 2
*>12 0 .0 2 0 9 0 .0 0 4 3 0 .1 4 1 7 0 .0 2 8 5 0 .4 6 5 0 0 .0 9 7 2
*>23 0 .0 5 1 8 0 .0 0 4 9 0 .3 0 5 9 0 .0 3 0 3 1 .4 4 0 1 0 .1 3 3 5
*> 7 5 0 ,0 1 1 4 0 .0 0 4 0 0 .0 9 3 5 0 .0 3 1 7 0 .1 4 7 0 0 .0 5 5 6

N o n w o o d y  p a r t s *> 7 0 0 .0 0 3 6 0 .0 0 4 3 0 .0 2 7 4 0 .0 3 4 7 0 .0 4 6 3 0 .0 5 6 8
o f  T r e e s *> 8 0 0 .0 0 0 7 0 .0 0 0 3 0 .0 0 4 2 0 .0 0 1 8 0 .0 1 8 3 0 .0 0 8 8

* > 1 7 0 .0 0 9 5 0 .0 0 8 6 0 .0 6 9 7 0 .0 6 7 8 0 .1 2 4 3 0 .1 1 3 9
*> 8 7 0 .0 0 1 2 0 .0 0 1 3 0 .0 0 9 9 0 .0 1 0 0 0 .0 1 2 6 0 .0 1 6 4
*> 1 8 0 .0 1 1 5 0 .0 0 1 6 0 .0 7 8 7 0 .0 0 9 4 0 .2 3 7 9 0 .0 4 0 0
*>12 0 .2 4 6 7 0 .0 4 6 5 1 .5 7 3 2 0 .2 7 9 3 6 .1 7 8 3 1 .2 2 5 0
*>23 0 .6 1 0 2 0 .0 4 1 2 3 .3 7 6 3 0 .2 3 6 0 1 8 .4 4 4 4 1 .2 5 3 6
*> 7 5 0 .3 9 1 7 0 .0 8 8 6 2.9931 0 .6 0 1 4 7 .0 4 2 0 1 .9 4 9 2

W o o d y  p a r t s *> 7 6 0 .0 0 4 2 0 .0 0 0 9 0 .0 3 3 5 0 .0 0 7 1 0 .0 7 0 2 0 .0 1 7 5
o f  T r e e s *> 8 0 0 .1 1 7 7 0 .0 3 0 8 0 .8 6 8 7 0 .1 9 5 0 2 .2 4 5 1 0 .7 2 3 8

*> 1 7 0 .0 2 1 3 0 .0 0 6 5 0 .1 7 1 5 0 .0 5 0 7 0 .3 3 2 2 0 .1 1 4 7
*> B 7 0 .0 7 1 5 0 .0 2 3 0 0 .5 3 5 1 0 .1 5 0 2 1 .3 3 5 8 0 .5 2 7 7
*> 1 8 0 .1 0 1 7 0 .0 6 3 6 1 .0086 0 .4 3 3 2 1 .1 8 9 5 1 .2 3 0 6
*>12 0 .0 3 1 4 0 .0 0 6 5 0 .2 1 2 2 0 .0 4 3 1 0 .7 0 5 2 0 .1 4 9 5
*>23 0 .0 7 7 4 0 .0 0 6 4 0 .4 5 1 8 0 .0 3 7 2 2 .1 8 1 8 0 .1 8 4 1
*> 7 6 0 .0 0 8 2 0 .0 0 1 7 0 .0 7 3 6 0 .0 1 3 2 0 .1 0 8 3 0 .0 3 1 8

G r o u n d *> 7 0 0 .0 0 8 1 0 .0 0 1 2 0 .0 6 2 7 0 .0 1 0 0 0 .1 0 4 5 0 .0 1 6 9
V e g e t a t i o n *> 8 0 0 .0 0 3 8 0 .0 0 1 1 0 .0 3 2 2 0 .0 0 9 0 0 .0 3 5 5 0 .0 1 7 3

*> 1 7 0 .0 0 2 6 0 ,0 0 0 8 0 .0 2 1 8 0 .0 0 6 4 0 .0 3 4 1 0 .0 1 1 9
*> 8 7 0 .0 0 0 4 0 .0 0 0 2 0 .0 0 4 1 0 .0 0 1 6 0 .0 0 4 2 0 .0 0 3 9
*> 1 8 0 .0 1 7 4 0 .0 0 2 4 0 .1 1 7 7 0 .0 1 3 7 0 .3 6 5 3 0 .0 6 1 3
*>12 0 .0 5 1 1 0 .0 1 0 3 0 .3 3 9 7 0 .0 6 6 5 1 .1 9 3 6 0 .2 4 6 9
*>23 0 .1 2 6 3 0 .0 1 2 5 0 .7 2 4 2 0 .0 7 6 4 3 .6 4 9 7 0 .3 4 5 2
*> 7 5 0 .0 3 2 8 0 .0 0 5 5 0 .2 8 8 0 0 .0 4 8 2 0 .3 6 2 3 0 .0 8 0 8

D e t r i t u s / *> 7 0 0 .0 0 2 5 0 .0 0 0 4 0 .0 1 9 4 0 .0 0 2 8 0 .0 3 4 2 0 .0 0 6 2
D e c o m p o s e r s *> 8 0 0 .0 0 7 4 0 .0 0 2 6 0 .0 5 1 2 0 .0 1 6 7 0 ,1 6 0 9 0 .0 6 1 1

*>17 0 .0 5 9 2 0 .0 1 0 0 0 .4 7 3 7 0 .0 8 1 6 0 .8 5 2 1 0 .1 5 3 6
*> 8 7 0 .0 0 1 0 0 .0 0 0 8 0 .0 0 8 1 0 .0 0 6 8 0 .0 2 7 4 0 .0 2 4 8
*> 1 8 0 .0 1 1 7 0 .0 0 4 2 0 .0 5 6 2 0 .0 3 2 4 0 .3 2 1 8 0 .0 8 7 1
*>12 0 .1 9 9 3 0 ,0 3 7 4 1 .1 8 0 0 0 .2 1 2 9 5 .7 9 1 2 1 .0 9 8 3
*>23 0 .4 8 8 4 0 .0 5 4 4 2 .7 6 3 6 0 .3 0 0 1 1 6 .4 2 1 1 1 .7 4 2 9
*> 7 5 0 .0 3 7 2 0 .0 1 4 2 0 .2 1 9 0 0 .1 0 8 0 0 .9 4 3 7 0 .4 2 0 2

A c t i v e  S o i l *>70 0 .0 2 4 2 0 .0 0 2 7 0 .1 7 8 3 0 .0 1 7 2 0 .4 6 4 2 0 .0 6 7 2
C a r b o n *> 8 0 0 .1 6 4 5 0 .0 4 7 3 1 .1 1 5 7 0 .2 7 6 8 3 .6 0 5 4 1 .2 1 3 3

*> 1 7 0 .0 6 2 3 0 .0 1 9 3 0 .4 2 1 4 0 .1 2 5 7 1 .3 6 7 7 0 .4 5 1 3
*>87 0 .0 5 5 7 0 ,0 3 2 0 0 .3 8 2 0 0 .1 9 9 8 1 .2 0 4 4 0 .7 7 4 1
*> 1 8 0 .6 3 4 2 0 .0 5 8 4 3 .5 2 3 4 0 .3 3 7 0 1 7 .3 5 0 5 1 .6 0 9 7



APPENDIX A 18

Table A .3. Pearson correlation coefficients (CC) for the outputs of Model I. The 
outputs from years 1900, 2000 and 2100 based on N=100 and N=5000 model runs 
are considered.

C o m p a r t  m e n t a l  

O u t p u t

I n p u t

F a c t o r

Correlation Coefficients (CC)

Y e a r  1 9 0 0 Y e a r  2 0 0 0 Y e a r  2 1 0 0

N = 1 0 0 N = 5 0 0 0 N = 1 0 0 N = 5 0 0 0 N — 1 0 0 N = 5 0 0 0

* 1 2 -0 .4 2 6 4 -0 .4 0 9 6 -0 ,4 5 9 9 -0 .4 4 5 7 -0 .3 6 6 3 -0 .3 4 6 3
*2 3 -0 .8 S 9 S -0 .8 7 7 5 -0 .8 6 0 5 -0 .8 4 4 8 -0 .9 2 8 2 -0 .9 1 9 9
* 7 5 -0 .2 3 8 4 -0 .1 0 2 8 -0 .2 8 4 2 -0 .1 5 0 1 -0 .1 7 9 5 -0 .0 4 6 4

A t m o s p h e r e * 7 6 -0 .0 2 0 1 0 .0 1 3 6 -0 .0 1 7 7 0 .0 1 1 5 -0 .0 2 1 9 0 .0 1 6 3
* 8 6 -0 .0 3 3 6 0 .0 1 0 9 -0 .0 2 7 4 0 .0 1 0 1 -0 .0 4 3 1 0 .0 1 2 5
* 1 7 0 .0 3 5 2 -0 .0 4 7 4 0 .0 1 9 9 -0 .0 5 6 2 0 .0 6 1 8 -0 .0 3 1 3
* 8 7 0 .1 3 4 7 0 .0 1 9 9 0 .1 2 9 1 0 .0 2 2 6 0 .1 4 3 9 0 .0 1 6 7
*1 8 -0 .2 7 1 8 -0 .2 2 4 9 -0 .2 9 3 7 -0 .2 5 3 6 -0 .2 2 9 9 -0 .1 7 1 6
*12 0 .2 0 8 6 0 .2 3 2 4 0 .2 4 6 2 0 .2 7 2 1 0 .1 8 6 8 0 .1 6 2 6
*2 3 -0 .9 5 5 7 -0 .9 5 8 6 -0 ,9 4 1 6 -0 .9 4 4 4 -0 .9 7 4 7 -0 .9 7 7 1
*7 5 -0 .1 4 4 2 -0 .0 6 7 3 -0 .1 6 6 7 -0 .0 9 4 7 -0 .1 1 9 9 -0 .0 3 5 6

S u r f a c e *7 6 0 .0 5 8 5 0 .0 1 4 2 0 .0 6 8 3 0 .0 1 2 7 0 .0 4 2 8 0 .0 1 6 1
O c e a n *8 6 -0 .0 5 2 7 0 .0 1 7 0 -0 .0 4 9 9 0 .0 1 7 4 -0 .0 5 6 5 0 .0 1 7 2

* 1 7 0 .0 6 1 8 -0 .0 4 5 6 0 .0 5 1 5 -0 .0 5 3 0 0 .0 7 7 3 -0 .0 3 4 4
* 8 7 0 .1 8 9 0 0.0 0 9 1 0 .1 9 0 5 0 .0 0 9 9 0 .1 4 0 7 0 .0 0 9 1
* 1 8 -0 .2 5 1 6 -0 .1 3 1 1 -0 .2 6 5 4 -0 .1 4 1 3 -0 .2 2 3 7 -0 .1 0 8 5
*12 0 .2 5 7 4 0 .2 1 4 9 0 .2 6 4 3 0 .2 2 2 3 0 .2 4 7 1 0 .2 0 5 6
*2 3 0 .9 6 3 5 0 .9 6 5 4 0 .9 6 3 0 0 .9 6 4 8 0 .9 6 5 4 0 .9 6 6 9
*7 5 0 .0 4 4 2 -0 .0 6 5 7 0 .0 4 5 8 -0 .0 6 5 2 0 .0 4 8 1 -0 .0 6 0 4

O e e p * 7 6 0 .0 3 1 3 -0 .0 1 7 0 0 .0 3 1 2 -0 .0 1 7 4 0 .0 3 0 7 -0 .0 1 6 4
o f  T r e e s * 8 6 0 .0 7 3 2 -0 .0 3 1 9 0 .0 7 3 6 -0 .0 3 0 4 0 .0 7 2 2 -0 .0 3 2 7

* 1 7 -0 .1 2 4 9 0 .0 0 0 3 -0 .1 2 5 6 -0 .0 0 1 5 -0 .1 2 2 7 0 .0 0 4 0
* 8 7 -0 .1 6 8 5 -0 .0 1 8 0 -0 .1 6 7 2 -0 .0 1 7 4 -0 .1 7 0 0 -0 .0 1 8 7
* 1 8 -0 .0 3 1 8 -0 .1 1 4 6 -0 .0 2 4 3 -0 .1 0 6 0 -0 .0 3 3 3 -0 .1 1 8 2
*12 -0 .4 1 4 0 -0 .4 0 1 0 -0 .4 4 3 5 -0 .4 3 3 3 -0 .3 6 3 4 -0 .3 4 5 7
* 2 3 -0 .8 7 0 9 -0 .8 4 5 8 -0 .8 3 3 1 -0 .7 9 7 4 -0 .9 2 3 0 -0 .9 1 1 3
* 7 5 -0 .3 0 4 2 -0 .1 9 0 5 -0 .3 5 8 7 -0 .2 4 6 7 -0 .2 1 6 0 -0 .0 9 1 6

N o n w o o d y  p a r t s * 7 6 -0 .0 4 2 0 -0 .0 2 7 6 -0 .0 4 2 0 -0 .0 3 7 7 -0 .0 3 2 4 -0 .0 0 4 1
o f  T r e e s * 8 6 -0 .0 3 9 6 0 .0 1 0 7 -0 .0 3 3 4 0 .0 1 0 1 -0 .0 4 5 9 0 .0 1 2 3

* 1 7 0 .2 1 5 1 0 .1 5 2 3 0 .2 2 8 6 0 .1 7 8 8 0 .1 5 2 6 0 .0 6 7 7
* 8 7 0 .1 3 1 6 0 .0 3 5 2 0 .1 2 4 8 0 .0 4 0 9 0 .1 4 3 0 0 .0 2 4 5
* 1 8 -0 .2 5 9 6 -0 .2 2 2 0 -0 .2 7 7 8 -0 .2 5 2 3 -0 .2 2 7 9 -0 .1 7 3 6
*12 -0 .3 7 3 0 -0 .3 5 1 1 -0 .3 6 0 7 -0 .3 4 6 8 -0 .3 6 4 1 -0 .3 3 6 9
* 2 3 -0 .6 9 9 5 -0 .7 3 9 7 -0 .5 7 3 1 -0 .6 3 1 8 -0 .8 4 5 6 -0 .8 5 7
* 7 5 0 .4 5 6 7 0 .5 2 6 0 0 .5 6 8 6 0 .6 2 5 4 0 .2 5 9 3 0 .3 6 0 0

W o o d y  p a r t s * 7 6 -0 .1 3 1 3 0 .0 0 6 8 -0 .1 5 4 0 0 .0 0 2 3 -0 .0 9 3 7 0 .0121
o f  T r e e s * 8 6 -0 .2 3 0 6 -0 .1 2 9 5 -0 .2 5 6 9 -0 .1 5 6 1 -0 .1 8 0 2 -0 .0 8 4

*17 0 .0 9 4 5 -0 .0 2 8 3 0 .0 8 6 2 -0 .0 3 1 6 0 .1 0 1 9 -0 .0 2 2 7
* 8 7 0 .0 3 8 7 -0 .0 6 5 2 0 .0 0 6 0 -0 .0 8 0 1 0 .0 8 3 9 -0 .0 3 9 9
* 1 8 0 .1 6 2 2 0 .1 4 3 1 0 .2 6 1 6 0 .2 2 0 5 0 .0 3 7 8 0 .0 5 3 6
*12 -0 .4 1 4 5 -0 ,4 0 7 8 -0 .4 5 0 2 -0 .4 4 8 4 -0 .3 6 1 1 -0 .3 4 6 0
* 2 3 -0 .8 8 5 6 -0 .8 7 1 8 -0 .8 4 9 1 -0 .8 3 2 2 -0 .9 2 7 8 -0 .9 1 8 1
* 7 5 -0 .2 4 9 6 -0 .1 0 2 0 -0 .3 0 1 3 -0 .1 5 0 6 -0 .1 8 7 1 -0 .0 4 7 8

G r o u n d * 7 6 0 .0 7 4 0 0 .1 1 7 3 0 .0 9 9 5 0 .1 4 3 9 0 .0 2 3 4 0 .0 6 6 4
V e g e t a t i o n * 8 6 0 .0 1 7 7 0 .0 6 2 7 0 .0 3 8 5 0 .0 7 7 0 -0 .0 1 8 5 0.0371

* 1 7 0 .0 2 2 1 -0 .0 4 8 0 0 .0 0 0 9 -0 .0 5 9 2 0 .0 5 5 8 -0 .0 3 1 5
* 8 7 0 .1 5 7 0 0 .0 2 1 3 0 .1 5 5 7 0 .0 2 5 1 0 .1 5 4 7 0 .0 1 7 4
* 1 8 -0 .2 8 5 1 -0 .2 2 5 8 -0 .3 0 8 3 -0 .2 5 3 1 -0 .2 3 8 8 -0 .1 7 5 0
*12 -0 .3 9 6 2 -0 ,3 7 6 9 -0 .4 0 5 6 -0 .3 8 4 5 -0 .3 6 8 2 -0 .3 4 7 1
* 2 3 -0 .8 2 1 7 -0 .7 8 2 4 -0 .7 4 7 0 -0 .6 8 4 6 -0 .9 0 9 2 -0 .8 9 4 8
* 7 5 -0 .3 0 7 9 -0 .2 0 7 1 -0 .3 6 9 5 -0 .2 8 4 1 -0 .2 0 2 8 -0 .0 8 3 6

D e t r i t u s / * 7 6 -0 .0 4 5 1 0 .0 0 2 7 -0 .0 4 5 8 -0 .0 0 1 5 -0 .0 4 0 5 0 .0 1 0 8
D e c o m p o s e r s * 8 6 -0 .1 0 7 4 -0 ,0 3 5 5 -0 .1 1 4 4 -0 .0 4 4 0 -0 .0 9 5 5 -0 .0 2 1 9

* 1 7 0 .4 5 0 7 0 .4 1 2 7 0 .5 3 2 0 0 .5 1 6 6 0 .2 9 6 3 0 .2 1 9 9
* 8 7 0 .1 0 7 5 0 .0 1 8 5 0 .0 9 3 0 0 .0 2 1 7 0 .1 2 6 9 0 .0 1 1 8
* 1 8 -0 .1 1 0 5 -0 ,0 9 7 4 -0 .0 8 2 1 -0 .0 8 0 -0 .1 3 4 2 -0 .0 9 8 1
*12 -0 .3 3 5 1 -0 .2 4 5 3 -0 .3 4 4 0 -0 .2 5 6 6 -0 .3 3 5 0 -0 .2 4 6 1
* 2 3 -0 .4 9 0 2 -0 .5 2 1 8 -0 .4 9 5 2 -0 .5 2 1 3 -0 .5 7 6 7 -0 .6 0 3 4
* 7 5 0 .0 0 1 0 0 ,0 3 2 3 -0 .0 1 7 1 0 .0 1 9 4 0 .0 0 1 5 0 .0 4 1 2

A c t i v e  S o i l * 7 6 -0 .0 6 1 1 0 .0 1 4 9 -0 .0 5 2 9 0 .0 2 2 4 -0 .0 6 6 3 0 .0 0 9 2
C a r b o n * 8 6 0 .0 5 5 3 0 ,2 0 4 4 0 .1 0 0 8 0 .2 4 4 4 0 .0 0 4 2 0 .1 5 7 4

*17 0 .1 8 0 5 0 .0 6 0 7 0 .1 9 1 4 0 .0 7 5 9 0 .1 6 9 2 0 .0 4 0 2
* 8 7 0 .1 6 5 3 0 .0 8 6 9 0 .1 7 5 2 0 .1 0 1 0 0 .1 6 5 2 0 .0 7 0 5
* 1 8 0 .7 3 6 1 0 .7 7 8 6 0 .7 1 2 7 0 .7 6 0 6 0 .6 8 2 9 0 .7 3 1 8
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Table A .4. Order of importance between the independent transfer coefficients 
resulted from stepwise regression on Model I. .Revalues obtained with the entry 
of listed transfer coefficients into the regression model are also given. The outputs 
from years 1900, 2000 and 2100 based on N=5000 model runs are considered.

C om part m ental 

O utput Step Yr 1900 Yr 2000 Yr 2100

1 *  23 * 2 3 * 2 3
2 * 1 2 * 1 2 * 1 2
3 * 1 8 * 1 8 * 1 8

A tm osphere 4 * 7 5 * 7 5 * 7 5
5 * 1 7 * 1 7 * 1 76 * 8 6 * 8 6 * 8 6
7 * 7 6

R2 =0.9944
* 7 6

R2 =0.9944
* 7 6

R2=0.9940
1 *  23 * 2 3 * 2 3
2 * 1 2 * 1 2 * 1 2
3 * 1 8 * 1 8 * 1 8

Surface 4 * 7 5 * 7 5 * 7 5
Ocean 5 * 1 7 * 1 7 * 1 7

6
7

* 8 6
* 8 7

R2=0.9956

* 8 7
* 8 6

R2=0.9960

* 8 6

R2 =0.9947
1 * 2 3 * 2 3 * 2 3
2 * 1 2 * 1 2 * 1 2

D eep
3 * 1 8 * 1 8 * 1 8
4 * 7 5 * 7 5 * 7 5

O cean 5 * 1 7 * 1 7 * 1 7
6 * 8 6 * 8 6 * 8 6
7 * 7 6

R2=0.9956
* 7 6

R2 =0.9957
* 7 6

R2 =0.9949
1 * 2 3 * 2 3 * 2 3
2 * 1 2 * 1 2 * 1 2
3 * 1 8 * 7 5 * 1 8

N onw ood y parts 4 * 7 5 * 1 8 * 7 5
o f Trees 5 * 1 7 * 1 7 * 1 7

6 * 7 6 * 7 6 * 7 6
7 * 8 7  

R2 =0.9878
* 8 7

R2=0.9844
* 8 6  

R2 =0.9922
1 * 2 3 * 2 3 * 2 3
2 * 7 5 * 7 5 * 7 5
3 kl2 * 1 2 * 1 2

W oody parts 4 * 8 6 * 1 8 * 8 6
o f Trees 5 k i s * 8 6 * 8 7

6 * 8 7 * 8 7 * 1 8
7 k 1 7  

R2=0.9907
* 1 7

.R2—0.9907
* 1 7

R2=0.9912
1 * 2 3 * 2 3 * 2 3
2 * 1 2 * 1 2 * 1 2

G round
3 * 1 8 * 1 8 * 1 8
4 * 7 5 * 7 5 * 7 5

V egetation 5 * 7 6 * 7 6 * 7 6
6 * 8 6 * 8 6 * 8 6
7 * 1 7

R 2 =0.9944
* 1 7

R2 =0.9943
* 1 7

R2=0.9940
1 * 2 3 * 2 3 * 2 3
2 * 1 7 * 1 7 * 1 2
3 * 1 2 * 1 2 * 1 7

D e tr itu s / 4 * 7 5 * 7 5 * 7 5
D ecom posers 5 * 1 8 * 1 8 * 1 8

6 * 8 6 * 8 6 * 8 6
7 * 7 6

R2=0.9930
* 7 6

R2=0.9920
* 7 6

R2 =0.9935
T * 1 8 * 1 8 * 1 8
2 * 2 3 * 2 3 * 2 3
3 * 1 2 * 1 2 * 1 2

A ctive  Soil 4 * 8 6 * 8 6 * 8 6
C arbon 5 * 1 7 * 1 7 * 1 7

6 * 8 7 * 8 7 * 8 7
7 * 7 6  

R2= 0.9942
* 7 6

R2=0.9936
* 7 6  

R2=0.9940
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B .l  Screening M ethods  

B . l . l  In itia l C onditions
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Figure B . l .  Circulating carbon-(NH) CO2 predictions resulting from varying 
initial condition x° of compartment i (i =  1 , 2 , 8 )  OAT (given in top-left corner 
of each graph - see Table 3.4 in Chapter 3 for description of these factors). N=100 
model runs, IS92a input scenario is considered. In each graph solid line represents 
the base-line case and dashed lines represent the predictions.
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Figure B.2. Surface ocean-(NH) C 0 2 predictions resulting from varying initial 
condition x° of compartment i (i =  1 , 2 , 8 )  OAT (given in top-left corner of 
each graph - see Table 3.4 for description of these factors). N=100 model runs, 
IS92a input scenario is considered. In each graph solid line represents the base­
line case and dashed lines represent the predictions.
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F igure B.3. Deep ocean-(NH) CO2 predictions resulting from varying initial 
condition x° of compartment i (i = 1,2,..., 8) OAT (given in top-left corner of 
each graph - see Table 3.4 for description of these factors). N=100 model runs, 
IS92a input scenario is considered. In each graph solid line represents the base­
line case and dashed lines represent the predictions.
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F igure B.4. Humus-(NH) CO2 predictions resulting from varying initial condi­
tion x° of compartment i (i = 1,2, ...,8) OAT (given in top-left corner of each 
graph - see Table 3.4 for description of these factors). N=100 model runs, IS92a 
input scenario is considered. In each graph solid line represents the base-line case 
and dashed lines represent the predictions.
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Figure B.5. Circulating carbon-(SH) CO2 predictions resulting from varying 
initial condition x° of compartment i (i = 1 , 2 , 8 )  OAT (given in top-left corner 
of each graph - see Table 3.4 for description of these factors). N=100 model runs, 
IS92a input scenario is considered. In each graph solid line represents the base­
line case and dashed lines represent the predictions.
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Figure B.6. Surface ocean-(SH) C 0 2 predictions resulting from varying initial 
condition x°{ of compartment i (i =  1,2,..., 8) OAT (given in top-left corner of 
each graph - see Table 3.4 for description of these factors). N=100 model runs, 
IS92a input scenario is considered. In each graph solid line represents the base­
line case and dashed lines represent the predictions.
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F igure B.7. Deep ocean-(SH) CO2 predictions resulting from varying initial 
condition x° of compartment i {i =  1,2, ...,8) OAT (given in top-left corner of 
each graph - see Table 3.4 for description of these factors). N=100 model runs, 
IS92a input scenario is considered. In each graph solid line represents the base­
line case and dashed lines represent the predictions.
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Figure B.8. Humus-(SH) CO2 predictions resulting from varying initial condi­
tion x° of compartment i (i = 1 , 2 , 8 )  OAT (given in top-left corner of each 
graph - see Table 3.4 for description of these factors). N=100 model runs, IS92a 
input scenario is considered. In each graph solid line represents the base-line case 
and dashed lines represent the predictions.
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Table B .l .  Sensitivity Rankings from SI - Model II initial conditions are 
varied OAT.

S e n s i t i v i t y  I n d e x  ( S I )

C o m p o r t m e n t a l I n p u t Y e a r  1 9 0 0 Y e a r  2 0 0 0 Y e a r  2 1 0 0

O u t p u t F a c t o r
N = 1 0 0 N =100 N = 5 0 0 0 N = 1 0 0

7.5

7 .5

7 .5

7 .5

7.5

7.5

H u m u s - ( N H )
7 .5

7 .5

C i r c u la t i n g
C a r b o n - ( S H ) 7.5

7 .5

7.5

7.5

D e e p
O c e a n - ( S H ) 7 .5

7 .5

7 .5

7 .5
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Table B.2. Sensitivity Rankings from SR - Model II initial conditions are 
varied OAT.

C o m p  a r t  m e n t a l  

O u t p u t

I n p u t
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S e n s i t i v i t y  I n d e x  (S R .)

Y e a r  1 9 0 0

N  =  5 0 0 0

Y e a r  2 0 0 0 Y e a r  2 1 0 0

C i r c u la t i n g
C a r b o n . ( N H ) '

6
4 1 2

7.5 
3

7.5
5

S u r f a c e
O c e a n - ( N H )

6
4 1 2

7.5 
3

7.5
5

D e e p
O c e a n - ( N H )

6
4 1 
2

7.5 
3

7.5
5

H u m u s - ( N H )

4 
1 
2

7.5 
3

7.5
5

C i r c u la t i n g  
C a r  b o n - ( S H ) ^

4 1 
2

7.5 
3

7.5
5

S u r f a c e
O c e a n - ( S H )

4 1 2
7.5 
3

7.5
5

D e e p
O c e a n - ( S H )

H u m u s - ( S H ) ot6

6
4 1 
2

7.5
3

7.5
5
6
4 1 2

7.5 
3

7.5
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Figure B.9. Morris screening results on Circulating carbon-(NH), Surface ocean- 
(NH), Deep ocean-(NH) and Humus-(NH) compartments of Model II in 1900, 
2000 and 2100. Mean and standard deviations are associated with the initial 
conditions considered in the analysis.
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ocean-(SH), Deep ocean-(SH) and Humus-(SH) compartments of Model II in 
1900, 2000 and 2100. Mean and standard deviations are associated with the 
initial conditions considered in the analysis.



APPENDIX B 33

Table B.3. Results of Morris experiment on Model II. Initial conditions are 
ranked in order of importance according to the SA measures of Morris mean jj,. 

Rankings given here are the same for the three chosen years - 1900, 2000 and 
2100.

C om partm ental Input M orris
O utput Factor Rank

x i 7

C irculating
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33 8  

* 4
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3
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x 6 4
!b£
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x ° 7
x 2 5

Surface A
2

3
O cean-(N H ) X5 8

XQ

X 7

4
1

XS 6

X? 7
x 2 5
£Cg 2

D eep X l 3
O cean-(N H ) ^ 5 8

r° 4

® 7 1
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3
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* 6 4
1

x% 6

x° 7
x °2 5
®3 2

D eep x l 3
O cean-(SH ) x 5 8

x 6 4
X ° 1

x l 6

H um us-(SH )

x °

x 2
x l

^ 5

x l

x 7
x l

7
5 
2

3
8

4 
1

6



C
02

 
C

on
te

n
t 

(G
t 

C
) 

0
0

2
 

C
on

te
n

t 
(G

t 
C

) 
C

02
 

C
on

te
n

t 
(G

t 
C)

 
C

02
 

C
on

te
n

t 
(G

t 
C

) 
C

02
 

C
on

te
n

t 
(G

t 
C

) 
C

02
 

C
on

te
n

t 
(G

t 
C

) 
35

0 
40

0 
45

0 
35

0 
40

0 
45

0 
35

0 
40

0 
45

0 
35

0 
40

0 
45

0 
35

0 
40

0 
45

0 
35

0 
40

0 
4

5
0

APPENDIX B 34

B . l . 2 Transfer C oefficients
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Figure B . l l .  Circulating carbon-(NH) CO 2 predictions resulting from varying transfer
coefficients kij OAT (given in top-left corner of each graph - see Table 3.5 for description
of these factors). N = 100  m odel runs, IS92a input scenario is considered.
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F ig u r e  B .1 2 . Surface Ocean-(NH) CO 2 predictions resulting from varying transfer coef­
ficients kij OAT (given in top-left corner of each graph - see Table 3.5 for description of
these factors). N —100 m odel runs, IS92a input scenario is considered.
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Figure B .13 . Deep Ocean-(NH) CO 2 predictions resulting from varying transfer coeffi­
cients kij OAT (given in top-left corner of each graph - see Table 3.5 for description of
these factors). N = 100  model runs, IS92a input scenario is considered.
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F ig u r e  B .1 4 . Humus-(NH) CO2 predictions resulting from varying transfer coefficients
kij OAT (given in top-left corner of each graph - see Table 3.5 for description of these
factors). N —100 m odel runs, IS92a input scenario is considered.
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F ig u r e  B .1 5 . Circulating Carbon-(SH) CO2 predictions resulting from varying transfer
coefficients kij OAT (given in top-left corner of each graph - see Table 3.5 for description
of these factors). N = 100  m odel runs, IS92a input scenario is considered.
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F ig u r e  B .1 6 . Surface Ocean-(SH) CO 2 predictions resulting from varying transfer coef­
ficients kij OAT (given in top-left corner of each graph - see Table 3.5 for description of
these factors). N = 100  m odel runs, IS92a input scenario is considered.
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F ig u r e  B . l 7 . Deep Ocean-(SH) CO 2 predictions resulting from varying transfer coeffi­
cients OAT (given in top-left corner of each graph - see Table 3.5 for description of
these factors). N = 100  m odel runs, IS92a input scenario is considered.
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Table B.4. Sensitivity Rankings from SI - Model II transfer coefficients h* are 
varied OAT.
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3E3 *>15 10 1 0 .5 10 10 .5 10 10

*>65 9 9 9 9 9 9

B *> 8 5 2 2 2 2 2 2
*>20 1 5 .5 1 5 .5 16 15.5 16 15.5
*>50 3 3 3 3 3 3
*>70 14 14 14 14 14 14
*>37 1 7 .5 1 7 .5 17 .5 17.5 17 17.5
*>07 4 4 4 4 4 4
*>58 1 1 1 1 1 1
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Table B.5. Sensitivity Rankings from SR - Model II transfer coefficients ka are 
varied OAT.

c b S tan d ard ized  R an ge (SR )
0

E ■fci0

a
ftflfa Yr: 1 9 0 0 Yr: 2 0 0 0 Yr: 2 1 0 0

a
5

*W3 O O F O
o fa o © O o o a
U & o o o o o oh* rH 10 H w iH 10

II II II II II II
2 z Z Z Z Z

* 2 i 2 2 2 2 2 2
K
£

* 4 1 10 9.5 10 9.5 10 10
* 6 1 8 7.5 8 8 8 8
* 1 2 3 3 3,5 3 3 3

i * 3 2 5 5 6 5 5 5
* 6 2 15.5 15.5 15 15.5 15 15.5hd *> 2 3 6 6 3.5 6 6 6

U *> 7 3 18 18 18 18 18 18
bo *> 1 4 9 9.5 9 9.5 9 9
.5 * 1 5 7 7.5 7 7 7 7
15 * 6 5 11 11 11 11 11 11
3 * 8 5 12 12 12 12 12 12
0

* 2 6 15.5 15.5 16 15.5 16 15.5*5 * 5 6 1 1 1 1 1 1
* 7 6 13 13 13 13 13 13
* 3 7 17 17 17 17 17 17
* 6 7 4 4 5 4 4 4
* 5 8 14 14 14 14 14 14
* 2 1 6 6 5 6 6 6
* 4 1 9 8 9 9 9 8.5
*51 11 10.5 11 11 12 12

H * 1 2 7 7 6.5 7 7 7
2 * 3 2 2 2 2 2 1 1
V * 0 2 12 12.5 12 12 13 13c
d *23 4 4 6.5 4 3 3
O)
y * 7 3 18 17.5 18 17.5 18 18

O * 1 4 8 9 8 8 8 8.5
© *15 10 10.5 10 10 11 11
U

* 6 5 1 1 1 1 2 2tM
*85 16 15.5 15 15 16 16

0
V) * 2 6 13 12.5 13 13 14 14

* 5 6 3 3 3 3 4 4
* 7 6 14 14 16 16 10 10
* 3 7 17 17.5 17 17.5 17 17
* 6 7 5 5 4 5 5 5
* 5 8 15 15.5 14 14 15 15
* 2 1 7 7 6 7 7 7
* 4 1 10 9.5 10 10 10 10
* 5 1 14 14 14 14 14 14
* 1 2 8 8 7.5 8 8 8

B * 32 3 3 3 3 3 3
2 * 6 2 15 15 15 15 15 15

* 2 3 4 4 7.5 4 4 4ftnJ * 7 3 12 12 12 12 12 12
HI * 1 4 9 9.5 9 9 9 9
0 * 1 5 13 13 13 13 13 13
a *66 5 5 4 5 5 50) * 8 5 18 18 18 18 IS 18
0 * 2 6 16 16 16 16 16 16

*58 6 6 5 6 6 6
* 7 6 1 1 1 1 1 1
* 3 7 11 11 11 11 11 11
* 6 7 2 2 2 2 2 2
*58 17 17 17 17 17 17
* 2 1 4 4 4 4 5 5
* 4 1 2 2 2 2 2 2
*51 10 9.5 10 10 10 10
*12 5 5 5.5 5 6 6
* 3 2 7 7 8 7 7 7
* 6 2 15 15.5 15 15.5 15 15.5

X *23 8 8 5.5 8 8 8
iE, * 7 3 18 17.5 18 17.5 18 18
w * 1 4 1 1 1 1 1 1P
Eg

*15 9 9.5 9 9 9 9
* 6 5 11 11 11 11 11 11

K *85 13 12.5 13 13 13 13
* 2 6 16 15.5 16 15.5 16 15.5
* 5 6 3 3 3 3 3 3
* 7 6 14 14 14 14 14 14
* 3 7 17 17.5 17 17.5 17 17
* 0 7 6 6 7 6 4 4
*58 12 12.5 12 12 12 12

"5 tt S ta n d a rd ized  R an ge  (SR )
9) 00 •w0

JAfa1 Y r: 1 9 0 0 Y r: 2000 Y r : 2 1 0 00,
S

+>
3 ©■..... o ©

o fa o o o o o o0 E3 o o o o o o*“l >0 H © H ©II II II II II II
Z Z Z Z z Z

*21 3 3 3 3 3 3
*41 11 10.5 11 11 11 10.5ffi

C/3 *51 9 9 9 9 9 9*12 4 4 4.5 4 4 4
a *32 5 5 6 5 5 5

43 *62 15 15.5 15 15.5 15 15.5
h
f l *23 6 6 4.5 6 6 6

o *73 17.5 17.5 18 17.5 18 17.5
bO *14 10 10.5 10 10 10 10.5
B *15 8 8 8 8 8 8

JS *65 7 7 7 7 7 7
3 *85 14 14 14 14 14 14
u
h *20 16 15.5 16 15.5 16 15.5
0 *50 1 1 1 1 1 1

*76 12 12 12 12 12 12
*37 17.5 17.5 17 17.5 17 17.5
*07 2 2 2 2 2 2
*58 13 13 13 13 13 13
*31 7 7 6 7 7 7
*41 10 9.5 10 10 10 10
*51 12 12 12 12 12 12

S' *12 8 8 7.5 8 8 8
to *32 3 3 3 3 3 3Y *02 13 13.5 13 13 13 13B0 * 23 4 4 7.5 4 4 4<11u * 73 18 17.5 18 17.5 18 180 * 14 9 9.5 9 9 9 901 * 1 5 11 11 11 11 11 11u
$ *65 2 2 2 2 2 2inh *86 16 16 16 16 16 16
3

W *26 14 13.5 14 14 14 14
*56 5 5 4 5 5 5
*76 6 6 5 6 6 6
* 3 7 17 17.5 17 17.5 17 17
*6 7 1 1 1 1 1 1
*58 15 15 15 15 15 15
*21 11 11 10 11 9 9
*41 8 8 7 8 8 8
*51 10 10 9 10 13 12*12 12 12 11.5 12 10 10

S'
C/3

*32 4 4 4 4 4 4
*62 17 17.5 17 17 17 17■ *23 5 5 11.5 5 5 5R0 *73 14 14 14 14 14 14111 *14 7 7 6 7 7 7

0 *15 9 9 S 9 12 11
a *05 3 3 3 3 3 30) *85 16 16 16 16 16 16
D *26 18 17.5 18 18 18 18

*50 6 '  6 5 6 6 6
*70 1 1 1 1 1 1
*37 13 13 13 13 11 13
*67 2 2 2 2 2 2
* 5 8 15 15 15 15 15 15
*21 5 5 5 5 5 5
*41 13 12.5 13 12.5 13 12
*51 11 10.5 11 10.5 11 11
*12 6 6 6.5 6 6 6
*32 7 7 8 7 7 7
*62 15.5 15.5 15 15.5 15 15.5

S' *23 8 8 6.5 8 8 8
C/3 *73 17.5 17.5 17.5 17.5 18 17.5
M *14 12 12.5 12 12.5 12 13s
0
3

*15 10 10.5 10 10.5 10 10
*65 9 9 9 9 9 9

K *85 2 2 2 2 2 2
*26 15.5 15.5 16 15.5 16 15.5
*56 3 3 3 3 3 3
*70 14 14 14 14 14 14
*37 17.5 17.5 17.5 17.5 17 17.5
*67 4 4 4 4 4 4
*58 1 1 1 1 1 1
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Figure B.19. Morris screening results on Circulating carbon-(NH), Surface 
ocean-(NH), Deep ocean-(NH) and Humus-(NH) compartments of Model II in 
1900, 2000 and 2100. Mean and standard deviations are associated with the 
transfer coefficients considered in the analysis.
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Figure B.20. Morris screening results on Circulating carbon-(SH), Surface 
ocean-(SH), Deep ocean-(SH) and Humus-(SH) compartments of Model II in 
1900, 2000 and 2100. Mean and standard deviations are associated with the 
transfer coefficients considered in the analysis.
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Table B.6. Results of Morris experiment on Model II. Initial conditions are 
ranked in order of importance according to the SA measures of Morris mean /n 
Rankings are the same for the three chosen years - 1900, 2000 and 2100.

C om partm ental
O utput

Input
Factor

M orris
R ank

* 1 2 2
* 2 3 4
* 1 4 5
*15 11

C irculating *65 6
Q

C arbon-(N H ) *26

* 5 6

y

i
*76 7
*37 10
* 6 7 3
*58 8
* 1 2 5
* 2 3 3
*14 7
*15 11

Surface * 6 5 1

Ocean- (N H ) *26

* 5 6

8
2

*76 6
*37 10
* 6 7 4
*58 9
*12 6
* 2 3 3
*14 7
*15 11

D eep  
O cean-(N H )

* 6 5

*26

* 5 6

4 
9
5

* 7 6 1
*37 8
* 6 7 2
*58 10

H um us-(N H )

* 1 2

* 2 3

* 1 4

*15

*65

*26

* 5 6

*76

*37

* 6 7

*58

3
5 
1 
11
6

9 
2
7
10
4
8

C om partm ental Input M orris
O utput Factor Rank

*12 3
* 2 3 4
*14 6
*15 11

C irculating * 6 5

*26

* 5 6

5
9
1Carbon- (SH)

*76 7
*37 10
* 6 7 2
*58 8
*12 6
* 2 3 3
*14 7
*15 11

Surface * 6 5 2

O cean-(SH ) *26

* 5 6

8
4

* 7 6 5
*37 10
* 6 7 1
*58 9
*12 9
* 2 3 4
*14 6
*15 11

D eep  
O cean-(SH )

* 6 5

*26

* 5 6

3
8
5

* 7 6 1
*37 7
* 6 7 2
*58 10
*12 4
* 2 3 5
*14 7
*15 11
*65 6

H um us-(SH ) *26 9
* 5 6 2
*76 8
*37 10
* 6 7 3
* 5 8 1
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B .2 Local SA

B .2 .1  In itia l C onditions

Table B.7. Rankings of the transfer coefficients of Model II based on standard­
ised sensitivity coefficients evaluated in 1900, 2 0 0 0  and 2 1 0 0 .

C o m p a r t .

O u tp u t

L o c a l

S e n s i t iv it y Y r 1 9 0 0 Y r 2 0 0 0 Y r 2 1 0 0

0 y i 0m ° 7 7 7

0 y i 6 6 6
C ir c u la t in g Qy i d*% 2 2 2

C a r b o u - (N H ) d y i SajJ 3 3 3
d y s 8 b ° 8 8 8

(V I ) 0 y i 0a>g 4.5 4 4

Qy i 0m? 1 1 1

B y i em g 4.5 5 5

d y s 9a i° 7 7 7

dy a 5 5 5
S u r fa c e dy a 0m ° 2 2 2

O c o a n - (N H ) &ya d<n% 3 3 3

dy a 0mg 8 8 8

( l/2 ) dy a 0mg 4 4 4

dy a 00)? 1 1 1

dy a 6 6 6

dV3 0a>° 6 6 6

dV3 0m ° 5 5 5
D e e p d y s 1 2 2

O c e a n - (N H ) d y s Omg 4 3 3

d y s 0m g 7 7 7

( l/3 ) d y s 0m g 3 4 4

d y s 0t0 ° 2 1 1

d y s 0m ° 8 8 8

dy& 0m? 5 5 7
dyA 0m ° 6 6 5

dVA 0m ° 3 3 2
H u m u s - (N H ) d y i 8“ ° 1 2 3

d y  4 0mg 7 8 8

( V 4 ) S y 4 0m g 4 4 4

© V 4 00,? 2 1 1

9V4 0m ° 8 7 6

C o m p a r t .

O u tp u t

L o c a l

S e n s i t iv i t y Y r  1 9 0 0 Y r 2 0 0 0 Y r 2 1 0 0

d y s 00)° 7 7 7

d y s 0a, g 6 G 6
C ir c u la t in g d y s 0 0 ,° 2 2 2

C a r b o n -(S H ) d y s ©mg 3 3 3

d y s 0mg 8 8 8

( v s ) d y s 0m g 5 4 4

d y s 0m ° 1 1 1

d y s 0m ° 4 5 5

d y e 0m? 7 7 7

d y e 00 ,° 6 5 5

S u r fa ce d y e 0mg 2 2 2
O c e a n -(S H ) d y e d n l 3 3 3

d y e 0mg 8 8 8

( y e ) d y e 0m g 4 4 4

d y e 0 m ? 1 1 1

d y e 0mg 5 6 6

d y  r 0m? 6 6 6

d y T 0m ° 5 5 5

D e e p d y 7 0m ° 2 2 2
O c e a n - (S H ) d y 7 © m g 4 4 3

0 y r 0mg 7 7 7

( V 7 ) d y 7 0a,g 3 3 4

d y 7 00,? 1 1 1

d y 7 0 0 ,° 8 8 8

d y a 0m? 6 7 7

d y a 0m ° 8 6 6

d y a 0 m ° 3 3 2
H u m u s-(S H )

d y a 0m £ 4 4 4

d y a 0mg 7 8 8

( v s ) d y a 0mg 5 5 5

d y a 0a,? 2 1 1

d y a 0m ° 1 2 3

B .2 .2 Transfer C oefficients
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B .3 G lobal SA

B .3 .1  In itia l C onditions
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Figure B . 2 1 . Classification tree showing the performance of the windowing data. 
The class of the predicted response variable (g-for ‘good5, b-for ‘bad5) is centered 
in the node. The number underneath each terminal node is the misclassification 
error rate.
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Figure B.22. A pruned version of the classification tree given in Figure B.21.
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Figure B.23. Time dependent behaviour of all output variables predicted by Model 
II following windowing analysis as a result of varying all input factors (x°, i =  1 , ...8 ) 
simultaneously. Emission scenario IS92a is considered in the model calculations.
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Table B.9. Rankings of absolute Pearson correlation coefficients (CC) for the 
outputs of Model II. The outputs from years 1900, 2000 and 2100 based on 
N=5,000 model runs are considered. The eight initial conditions are ranked in 
order of importance, and the rankings associated with the initial conditions for 
which CC with each output variable have p-values less than 0 . 1  are highlighted.

C o m p a r t .

O u t p u t

I n p u t

F a c t o r Y r  1 9 0 0 Y r  2 0 0 0 Y r  2 1 0 0

“ 1 6 6 6

*C2 3 3 3

3 2 2 2

C i r c u la t i n g “ 4 4 4 4
C a r b o n - ( N H ) “ I 7 7 7

“ e 5 5 5

i
1 1 1

x | 8 8 8

X? 6 6 6

*2 3 3 3

m3 2 2 2
S u r f a c e *4 4 4 4

o c e a n - ( N H ) ^5 7 7 7

E<3 5 5 5

mr 1 1 1

a,8 8 8 8
Xi 6 6 6

3 3 3

ffi3 2 2 2
D e e p *4 4 4 4

o c e a n - ( N H ) *5 7 7 7
5 5 5

r 1 1 1

»g 8 8 8

®i 6 6 6

®2 3 3 3

m3 2 2 2
H u m u s - ( N H )

^4 4 4 4

^5 7 7 7

Xg 5 5 5

4 1 1 1
xg 8 8 8

C o m p a r t .

O u t p u t

I n p u t

F a c t o r
Y r  1 9 0 0 Y r  2 0 0 0 Y r  2 1 0 0

®1 6 6 6
3 3 3

03 s 2 2 2
C i r c u la t i n g “ 4 4 4 4

C a r b o n - ( S H ) “ 5 7 7 7
xg S 5 5

<d7 1 1 1

*1 8 8 8
x f 6 6 6
x g 3 3 3
OJg 2 2 2

S u r f a c e x | 4 4 4
o c e a n - ( S H ) “ 5 7 7 7

Xg 5 5 5
m° 1 1 1
x g 8 8 8
t °Xi 6 6 6
x 2 3 3 3

“ 3 2 2 2
D e e p ^4 4 4 4

o c e a n - ( S H ) x 5 7 7 7
xg 5 5 5

°>? 1 1 1
Xg 8 8 8
x f 6 6 6
x g 3 3 3
(Dg 2 2 2

H u m u s - ( S H )
x | 4 4 4

“ 5 7 7 7
X§ 5 5 5

4 1 1 1
xg 8 8 8

The most important input factor for all compartments in all three years is xf 
with a CC value of about 0.636 and the second most important factor is £ 3  with 

a CC value of about 0.357. The absolute CC values associated with the other 
input factors and the output variables vary between 0.007 and 0.044.
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Table B . 1 0 . Rankings of absolute Standardized Regression Coefficients (SRC) 
for the outputs of Model II. The outputs from years 1900, 2000 and 2100 based 
on N=5,000 model runs are considered. The initial conditions are ranked in order 
of importance, and the most important factors with SRC values greater than 0.1 
are highlighted.

C o m p a r t .

O u t p u t

I n p u t

F a c t o r

SRC Ranks

Y r  1 9 0 0 Y r  2 0 0 0 Y r  2 1 0 0

“ 1 7 7 7

*2 5 5 5
tOg 2 2 2

C i r c u la t i n g * 4 3 3 3
C a r b o n - ( N H )

1
8 8 8

^6 4 4 4
1 1 1

„ 0 
X B 6 6 6

X 1 7 7 7

K§ 5 5 5

®8 2 2 2
S u r f a c e * 4 3 3 3

o c e a n - ( N H ) 8 8 8
fflg 4 4 4
tn° 1 1 1
Kg 6 6 6

E1 7 7 7
5 5 5
2 2 2

D e e p =4 3 3 3
o c e a n - ( N H ) “ 5 8 8 8

Kg 4 4 4

» ? 1 1 1
6 6 6

7 7 7

3=2 5 5 5
tDg 2 2 2

H u m u s - ( N H ) — O 
x 4 3 3 3

*1 8 8 8
Kg 4 4 4

»? 1 1 1

33 § 6 6 6

C o m p a r t .

O u t p u t

I n p u t

F a c t o r

SRC Ranks

Y r  1900 Y r  2000 Y r  2100

* 1 7 7 7
“ 2 5 5 5
m3 2 2 2

C i r c u la t i n g *4 3 3 3
C a r b o n - ( S H ) *5 8 8 8

Kg 4 4 4
”7 1 1 1

Kg 6 6 6

k J 7 7 7
3=2 5 5 5

®3 2 2 2

S u r f a c e x 4 3 3 3
o c e a n - ( S H ) XB 8 8 8

x 6 4 4 4
i 1 1 1
Kg 6 6 6

k J 7 7 7
® 2 5 5 5
05 3 2 2 2

D e e p *4 3 3 3
o c e a n - ( S H ) 8 8 8

Kg 4 4 4
OBy 1 1 1

Kg 6 6 6

* 1 7 7 7
2 5 5 5

OJg 2 2 2
H u m u s - ( S H ) Xl 3 3 3

3=5 8 8 8

Kg 4 4 4
®7 1 1 1

Kg 6 6 6

The most important input factor for all compartments in all three years is Xj 
with an SRC of about 0.98 and the second most important factor is £ 3  with an 

SRC of about 0 .8 8 . The absolute SRC values associated with the other input 
factors and the output variables are quite small, between 0.021 and 0.078.

The absolute PCCs produce identical rankings of input factor importance, 
and as with the SRCs, except for Xj and x 3  the other initial conditions under 
consideration have very small PCCs, below 0.025.
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Table B .11. Stepwise regression analyses for output variable yi(t) (i.e. Circulat­
ing carbon-(NH) compartment) of Model II in 1900, 2000 and 2100. Calculations 
are based on N=5,000 model runs and IS92a emission scenario.

C ircu la tin g ca rb o n -(N H )

y i ( t  =  1900) y i ( t  =  2000) y i ( t  =  2100)

Step V ariable R 2 P R E SS V ariable R 2 PR E SS V ariable R 2 PR E SS

1 ®7 0.4038 533678.00 ®7 0.4037 533679.00 x° 0.4038 533680.00
2

* 3 0.9882 10571.60 X% 0.9884 10571.00 x% 0.9883 10570.60
3 x t 0.9944 5004.83 0.9944 5004.76 x % 0.9944 5004.71

4 *6 0.9972 2603.49 ®6 0.9971 2603.43 x% 0.9971 2603.39
5 X° 0.9983 1555.74 0.9982 1555.69 ® 2 0.9982 1555.65
6 *8 0.9990 927.21 £ E g 0.9990 927.20 ®8 0.9990 927.19
7 . £E° 0.9995 417.02 ®1 0.9995 417.02 0.9995 417.02

The analysis results for the other seven compartments are very similar to the 

results presented in the above table for the circulating carbon-(NH) compartment, 

in the sense that the same variables were selected with i?2-values that are quite 

similar and the order of variable selection does not change.
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B .3 .2  Transfer C oefficients
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Figure B.26. Time dependent behaviour of all output variables predicted by Model 
II as a result of varying selected 11 free transfer coefficients simultaneously. Emission 
scenario IS92a is considered in the model calculations.
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Figure B.27. Scatterplots of predicted CO2  content of Circulating carbon-(NH), 
Surface ocean-(NH), Deep ocean-(NH) and Humus-(NH) compartments in 2100 
versus each free transfer coefficient. N=100 model runs, and IS92a emission 
scenario is considered.
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Figure B.28. Scatterplots of predicted CO2  content of Circulating carbon- 
(SH), Surface ocean-(SH), Deep ocean-(SH) and Humus-(SH) compartments in 
2100 versus each free transfer coefficient. N—100 model runs, and IS92a emission 
scenario is considered.
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Table B . 1 2 . Rankings of absolute Pearson correlation coefficients (CC) for the 
outputs of Model II. The outputs from years 1900, 2000 and 2100 based on 
N=5,000 model runs are considered. The eleven free input factors are ranked in 
order of importance, and the rankings associated with the input factors for which 
CC with each output variable have p-values less than 0 . 1  are highlighted.

C o m p a r t .

O u t p u t

I n p u t

F a c t o r

CC Ranks

Y r  1 9 0 0 Y r  2 0 0 0 Y r  2 1 0 0

* 1 2 2 2 3

* 2 3 4 4 4
fel4 6 G 6

* i s 5 5 5
C i r c u la t i n g * 0 6 7 7 7

c a r b o n - ( N H ) *20 10 10 10

* 5 0 1 1 2
fc76 8 8 9

*37 11 11 11

* 6 7 3 3 1

* 5 8 9 9 8

*12 S 5 5

* 2 3 3 3 3
*14 6 6 6

* 1 5 7 7 8
S u r f a c e fees 1 1 1

o c e a n - ( N H ) *20 8 8 9

*50 2 2 2

*7G 9 10 7

*37 11 11 11

* 6 7 4 4 4

*58 10 9 10

* 1 2 6 6 6

* 2 3 3 3 3
* 1 4 7 7 7

*15 11 11 11
D e e p * 0 5 5 5 5

o c e a n - ( N H ) *26 8 8 8
* 5 0 4 4 4

* 7 0 1 1 1

* 37 9 9 10

* 0 7 2 2 2

*58 10 10 9

* 1 2 3 3 4
* 2 3 5 5 5

* 1 4 1 1 1

* 1 5 6 6 6

* 0 5 7 7 7
H u m u s - ( N H ) *26 9 9 9

* 6 0 2 2 2

*70 11 11 11

* 3 7 8 8 8

* 0 7 4 4 3

*58 10 10 10

C o m p a r t .

O u t p u t

I n p u t

F a c t o r

CC Ranks

Y r  1 9 0 0 Y r  2 0 0 0 Y r  2 1 0 0

* 1 2 3 3 3

* 2 3 4 4 4

* 1 4 7 7 7

* 1 6 6 6 6
C ir c u la t i n g * 8 6 5 5 5

c a r b o n - ( S H ) *26 11 11 11

* 6 6 1 1 1

* 7 6 8 8 8

*37 10 10 10

* 6 7 2 2 2

* 5 8 9 9 9

* 1 2 5 5 5

* 2 3 3 3 3

* 1 4 7 7 7

* 1 5 8 8 9
S u r f a c e * 0 5 2 2 2

o c e a n - ( S H ) *25 11 11 11

* 5 0 4 4 4

* 7 6 6 6 6

*37 10 10 10

* 0 7 1 1 1

* 5 8 9 9 8

* 1 2 8 8 8

* 2 3 4 4 4

* 1 4 6 6 6

* 1 5 9 9 9
D e e p * 0 5 3 3 3

o c e a n . ( S H ) *26 10 10 10

* 5 0 8 5 5

* 7 0 1 1 1

*37 11 11 11

* 0 7 2 2 2

* 5 8 7 7 7

* 1 2 4 4 4

* 2 3 5 5 5

* 1 4 8 8 8

* 1 5 7 7 7

* 0 5 6 6 6
H u m u s - ( S H ) *26 10 11 10

* 5 0 2 2 2

*76 11 9 11

*37 9 10 9

* 8 7 3 3 3

* 5 8 1 1 1
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Table B.13. Rankings of absolute Standardized Regression Coefficients (SRC) 
for the outputs of Model II. The outputs from years 1900, 2000 and 2100 based 
on N=5,000 model runs are considered. The input factors (Transfer Coefficients) 
are ranked in order of importance, and the most important factors with SRC 
values greater than 0 . 1  are highlighted.

C o m p a r t . I n p u t SRC Ranks
O u t p u t F a c t o r

Y r  1 9 0 0 Y r  2 0 0 0 Y r  2 1 0 0

* 1 2 2 2 3

* 2 3 4 4 4

* 1 4 0 6 6

* 1 5 5 5 5
C i r c u la t i n g * 0 5 7 7 7

c a r b o n - ( N H ) *26 10 10 10

* 5 6 1 1 2

* 7 0 9 9 9

*37 11 11 11

* 6 7 3 3 1

* 5 8 8 8 8

* 1 2 5 5 5

* 2 3 3 3 3

* 1 4 6 6 6

* 1 5 7 7 8
S u r f a c e * 6 5 1 1 1

o c e a n - ( N H ) * 2 0 9 8 9

* 5 0 2 2 2

* 7 0 8 9 7

*37 11 11 11

* 0 7 4 4 4

*58 10 10 10

* 1 2 6 6 6

* 2 3 3 3 3

* 1 4 7 7 7

*15 9 9 9
D e e p * 6 5 4 4 4

o c e a n - ( N H ) *26 11 11 11

* 6 0 5 5 5

* 7 6 1 1 1

*37 8 8 8

* 6 7 2 2 2

*58 10 10 10

* 1 2 3 3 4

* 2 3 5 5 5

* 1 4 1 1 1

* 1 5 6 6 6

* 6 5 7 7 7
H u m u s - ( N H ) *26 10 10 10

* 5 6 2 2 2

*76 9 9 9

* 3 7 11 11 11

* 6 7 4 4 3

*58 8 8 8

C o m p a r t . I n p u t SRC Ranks
O u t p u t F a c t o r Y r  1 9 0 0 Y r  2 0 0 0 Y r  2 1 0 0

* 1 2 3 3 3

* 2 3 4 4 4

* 1 4 7 7 7

* 1 5 6 6 6
C i r c u la t i n g * 6 5 5 5 5

c a r b o n - ( S H ) *26 11 11 11

* 5 0 1 1 1

* 7 6 9 9 9

*37 10 10 10

* 6 7 2 2 2

* 5 8 8 8 8

* 1 2 5 5 5

* 2 3 3 3 3

* 1 4 7 7 7

* 1 5 8 8 8
S u r f a c e * 0 5 2 2 2

o c e a n - ( S H ) *26 10 10 10

* 5 0 4 4 4

* 7 0 6 6 6

*37 11 11 11

* 0 7 1 1 1

* 5 8 9 9 9

* 1 2 8 8 7

* 2 3 4 4 4

* 1 4 6 6 6

* 1 6 7 7 8
D e e p * 6 5 3 3 3

o c e a n - ( S H ) *26 11 11 11

* 5 0 5 5 5

* 7 0 1 1 1

*37 9 9 9

* 0 7 2 2 2

* 5 8 10 10 10

* 1 2 4 4 4

* 2 3 5 5 5

* 1 4 8 8 8

* 1 5 7 7 7

* 0 5 6 6 6
H u m u s - ( S H ) *26 11 11 11

* 5 0 2 2 2

*76 9 9 9

*37 10 10 10

* 0 7 3 3 3

* 5 8 1 1 1

The PCCs have also been calculated. Even though the PCCs tend to be larger 

than the SRCs, the rankings of input factor importance provided by both of these 
statistics are identical.
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Table B .14. Stepwise regression analyses for all compartments of Model II in 
1900, 2000 and 2100. Calculations are based on N=5,000 model runs and IS92a 
emission scenario.

C om part. Yr 1900 Yr 2000 Yr 2100

O utput Step V ariable R? Variable R 2 V ariable R 2

1 * 5 6 0.3157 * 5 6 0.3308 * 6 7 0.2964
2 *1 2 0.6103 *12 0.6396 * 5 6 0.5806

C irculating 3 * 6 7 0.8391 * 6 7 0.8430 *12 0.8312
carbon-(N H ) 4 * 2 3 0.9328 * 2 3 0.9283 * 2 3 0.9447

5 * 1 5 0.9597 * 1 5 0.9564 * 1 5 0.9648
6 * 1 4 0.9792 * 1 4 0.9790 * 1 4 0.9790
7 * 6 5 0.9827 * 6 5 0.9829 * 6 5 0.9818
1 * 6 5 0.3194 * 6 5 0.3269 * 6 5 0.2925
2 * 5 6 0.5611 * 5 6 0.5801 * 2 3 0.5303

Surface 3 * 2 3 0.7699 * 2 3 0.7793 * 5 6 0.7424
ocean-(N H ) 4 * 6 7 0.8817 * 6 7 0.8783 * 6 7 0.8914

5 *12 0.9648 *12 0.9656 *12 0.9612
6 * 1 4 0.9696 * 1 4 0.9705 * 1 4 0.9659
7 * 1 5 0.9712 * 1 5 0.9722 * 7 6 0.9683
1 *  7 6 0.4487 * 7 6 0.4375 * 7 6 0.4607
2 * G 7 0.8222 * 6 7 0.8141 * 6 7 0.8300

D eep 3 * 2 3 0.8901 * 2 3 0.8842 * 2 3 0.8958
ocean-(N H ) 4 fees 0.9330 * 6 5 0.9296 * 6 5 0.9357

5 * 5 6 0.9710 * 5 6 0.9709 * 5 6 0.9702
6 * 1 2 0.9834 *12 0.9844 *12 0.9813
7 * 1 4 0.9846 * 1 4 0.9854 * 1 4 0.9826
1 * 1 4 0.8203 * 1 4 0.8344 * 1 4 0.7883
2 * 5 6 0.8776 * 5 6 0.8893 * 5 6 0.8522
3 *12 0.9310 *12 0.9415 *12 0.9106

H u m u s-(N H ) 4 * 6 7 0.9722 * 6 7 0.9752 * 6 7 0.9660
5 * 2 3 0.9892 * 2 3 0.9893 * 2 3 0.9884
6 * 1 5 0.9945 * 1 5 0.9949 * 1 5 0.9935
7 * 6 5 0.9951 * 6 5 0.9956 * 6 5 0.9942
1 * 5 6 0.5394 * 5 6 0.5612 * 5 6 0.4837
2 * 6 7 0.7536 * 6 7 0.7527 * 6 7 0.7555

C ircu lating 3 *12 0.8672 *12 0.8699 *12 0.8627
carbon-(SH ) 4 * 2 3 0.9201 * 2 3 0.9165 * 2 3 0.9315

5 * 6 5 0.9611 * 6 5 0.9597 * 6 5 0.9655
6 * 1 5 0.9762 * 1 5 0.9753 * 1 5 0.9769
7 * 1 4 0.9852 * 1 4 0.9753 * 1 4 0.9769
1 * 6 7 0.6931 * 6 7 0.6811 * 6 7 0.7192
2 * 6 5 0.8493 * 6 5 0.8525 * 6 5 0.8424

S urface 3 * 2 3 0.9140 * 2 3 0.9120 * 2 3 0.9174
ocean-(SH ) 4 * 5 6 0.9507 * 5 6 0.9495 * 5 6 0.9529

5 *12 0.9588 *12 0.9575 *12 0.9615
6 * 7 6 0.9659 * 7 6 0.9642 * 7 6 0.9691
7 * 1 4 0.9703 * 1 4 0.9689 * 1 4 0.9729
1 * 7 6 0.7069 * 7 6 0.7204 * 7 6 0.6924
2 * 6 7 0.8947 * 6 7 0.8943 * 6 7 0.8937

D eep 3 * 6 5 0.9507 * 6 5 0.9553 * 6 5 0.9444
ocean-(SH ) 4 * 2 3 0.9668 * 2 3 0.9690 * 2 3 0.9631

5 * 5 6 0.9744 * 5 6 0.9763 * 5 6 0.97086 * 1 4 0.9786 * 1 4 0.9800 * 1 4 0.9756
7 * 1 5 0.9797 * 1 5 0.9812 *12 0.9766
1 * 5 8 0.7290 * 5 8 0.7408 * 5 8 0.6977
2 * 5 6 0.8735 * 5 6 0.8855 * 5 6 0.8493
3 * 6 7 0.9308 * 6 7 0.9339 * 6 7 0.9233

H um us-(SH ) 4 *12 0.9618 *12 0.9641 *12 0.9570
5 * 2 3 0.9759 * 2 3 0.9758 * 2 3 0.9754
6 * 6 5 0.9869 * 6 5 0.9872 * 6 5 0.9864
7 * 1 5 0.9910 * 1 5 0.9917 * 1 5 0.9902
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