Application of Sensitivity and
Uncertainty Analyses to
Linear Time-Invariant
Compartmental Models

Suzan Gazioglu

A dissertation submitted to the
Unwversity of Glasgow
for the degree of

Doctor of Philosophy

UNIVERSITY

of
GLASGOW

Department of Statistics
April 2002

© S. Gazioglu, 2002




ProQuest Number: 13834184

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 13834184

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346



GLASGOW )
LIBRARY: |

Tresis 1213 - Cory 2




wn memory of my Mother




Preface

Chapter 1 reviews the fundamental aspects of modelling and introduces sensitiv-

ity and uncertainty issues.

Chapter 2 first introduces and reviews the theory of linear, time-invariant com-
partmental models, then describes a number of methods used to solve model
state equations analytically and numerically in order to make predictions. This

chapter also describes the methodology of numerous sensitivity analysis methods.

In Chapter 3, application of various sensitivity analysis techniques to two 8-
compartment global carbon cycle models is presented. For ease of comparison, a
measure of similarity between the sensitivity conclusions from different methods
is defined based on the top 10 ranked input factors according to each method for

each output variable (i.e. for each compartment at chosen time points).

Chapter 4 presents the results of the application of various sensitivity analysis
methods including non-parametric methods to a more complex 25-compartment

global carbon cycle model.

An overall informal comparison indicates that the 8-compartment global carbon
cycle models used in Chapters 3 and 4 are optimal with respect to efficiency (i.e.
both are simple and model codes are not very time-consuming to run), but in

return do not have a high degree of stability and reliability since they do not




adopt biological and chemical processes. As for the 25-compartment model, it is
more complex and more costly to run. These chapters review the applicability of

the sensitivity analysis methods to these models which has steady-state constrain.

Chapter 5 explores various sources of uncertainty and presents results of uncer-
tainty analysis applied to the three global carbon cycle models that are used in
Chapters 3 and 4. Here, we partition the overall prediction uncertainty of an

output variable into different components of uncertainty.

Finally, Chapter 6 presents conclusions and main findings of the thesis.
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Chapter 1

Introduction: Modelling,
Compartmental Modelling,

Sensitivity and Uncertainty

1.1 Introduction

Why model? We need models to mathematically and simply represent reality,
to understand, test and explain observed behaviours, and to make predictions of
future behaviours. Many studies of systems and processes begin with the con-
struction of a model. Models serve as tools for formalizing how we think a system
or a process is working. They function as investigative tools and play an impor-
tant role in many disciplines of modern science. In science, many processes dealt
with are so complex that physical experimentation is too costly, too time consum-
ing or even impossible. In such cases, investigators often turn to mathematical
or computational models [97]. Such models are used to describe the relationships
between the system variables in terms of mathematical expressions which can
then be used for the system’s future predictions. Mathematical models may be
characterised as linear or nonlinear, deterministic or stochastic, time dependent

or time independent, continuous or discrete, etc., and they are extensively used in
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many fields of science, such as engineering, biology, economy, chemistry, ecology,
and physics. From a statistical point of view, we use models to make predictions,
test hypotheses, manage and make decisions about a system under investigation.

In the modelling process, some details about the system being modelled are
lost, but the model is still expected to preserve the essential features, be simple,
realistic, efficient, reliable, accurate and precise, in short, be a “good” model.
Modellers have been using mathematical and statistical tools to check those ex-
pectations about their models, and Sensitivity and Uncertainty Analyses are two
of the most important tools used. Consider the diagram presented in Figure 1.1.
The problems which scientists aim to solve exist in the physical world. In reality,
we do not know all the properties of this world. First, this complicated physical
world is simplified and a model world is created. A model is developed for a spe-
cific problem. Then, by using relevant mathematical and statistical techniques
and tools, the model is analysed. Next, the model is tested to see if it is a good
model, i.e., provides an answer to the problem and behaves as expected. If this

is the case, then it is used in the physical world, otherwise the modelling process

Model
World

Physical

World Model | Not OK:

OK: Use jt! | Testing Revise

SA & UA L Model

and gther
analysis

Figure 1.1. A diagram of Modelling World




CHAPTER 1. INTRODUCTION 3

is revised.

1.1.1 Conceptual, Mathematical and Computational
Models

Conceptual Models
Conceptual models can simply be defined as the extraction of the essence. Con-
struction of a conceptual model is a way of determining how best to sort, group,
and annotate the information contained in a system.

A conceptual model refers to concepts that offer a range of suggestions which
concentrate on the examination of structures and their function. Using concep-
tual models, a system can be presented visually to the users. Also the ease of use

and understanding of the system can be optimized with a conceptual model.

Mathematical Models

Often, a conceptual model which is a simplified model of the variables and in-
teractions present in the system is formulated to develop a mathematical model
that can be used to examine the system behaviour. In a mathematical model the

content, relation, structure and decision factors/variables all appear in equations.

Computational Models
Computer models (often refered to as computer codes) that implement the math-
ematical models are widely used in science as well as in industry. Common

characteristics of these computer codes are:
- many input variables (often numbered in hundreds),

- the values and distribution functions of these variables are frequently not

well known,

- the relationships among the variables are usually complex, modeled only by

systems of differential equations which are not mathematically tractable.
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Computational models are computer implementations of mathematical mod-
els. They are important tools in science as well as in practical life. The terminol-
ogy ‘computational model’is used to refer to representations of physical or other
systems of interest that are first expressed in mathematical terms often as large
and/or complicated systems of differential equations, and then implemented in
the form of computer programs. Consider a system which is modeled by means
of a compartmental model. Provided that the computer implementation of the
model is described, the transport of material in the system can be simulated, and
the outputs of interest which result from given inputs can be evaluated.

Suppose y is an output of a computational model, and it is a function of
k inputs denoted by zi,s,...,%r. For a given k-element input vector x, the
model can be used to evaluate y without error; that is, replicate evaluations of y
obtained running the model’s computer code with the same x will be identical. In
other words, the model is deterministic [64]. Here to simplify notation we assume
that the model produces only one output, but later in the thesis we deal with
several dependent output variables. A computational experiment will consist of
n model runs; the ith row of n x k dimensional sample matrix X corresponds
to the set of input values x; for the ith model run. After n model runs, the
experiment will result in a model output vector Y = [y1, ¥2,..., ¥a|®. Then, to
investigate the model behaviour, sensitivity and uncertainty analyses are carried
out on the results. Since in this analysis we are taking into consideration not only
model parameters but also initial conditions, input variables, physical conditions,
etc., as do Campolongo & Saltelli [12], we use the statistical design terminology
‘factor’ to refer to all conditions and variables unless stated specifically. Thus, a
factor can be defined as a quantity that can be changed in the specification of
the model prior to its run.

The model result while all parameters are held constant at their reference
values, which are gathered from the literature and often called ‘nominal values’,

is refered to as the ‘base-line case’.
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1.1.2 Sensitivities in Modelling World

The basic idea of sensitivity theory is based on the evaluation of model perfor-
mance resulting from the changes in model parameters. Eslami defines sensitivity
as behavioral study of system performance under parametric variations, and cer-
tain unwanted exogenous input acting on the system [34].

Sensitivity Analysis (SA) was originally created to deal with uncertainties
in the input variables and model parameters. SA of models has been advanced
and is commonly employed in the modelling world to increase the confidence in
the model and its predictions by providing an understanding of how the model
response variables respond to changes in the inputs, data used to calibrate it,

model structures, or factors, i.e. model independent variables [97].

1.1.3 Uncertainties in Modelling World

Uncertainty exists because models are imperfect mimics of reality [55]. Often,
it is not possible to know many parameters that are required for the solution of
problems with great accuracy, that is, there is always uncertainty involved in the
system being studied. As Saltelli [97] puts it “Models and uncertainty go hand
in hand”.

SA is closely linked to Uncertainty Analysis (UA) which aims to quantify the
overall uncertainty associated with the response as a result of uncertainties in the
model input parameter (often addressed as parametric uncertainty) and model
structure itself (model structural uncertainty) [97]. Parametric uncertainty is
quantified in a distribution of parameter values. Model uncertainty becomes an
issue when more than one model can adequately reproduce the observed data.
Another source of uncertainty is scenario uncertainty which reflects uncertainty

on future conditions particularly when dealing with future predictions.

The use of systematic sensitivity and uncertainty analysis on large, complex com-
putational models plays an important role in science. As complex numerical

models are being increasingly applied for problem solving in many application
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areas, such as atmospheric science, combustion physics and engineering, biolog-
ical systems, etc., the need for sensitivity and uncertainty analysis is becoming
more and more apparent. Saltelli [97] considers SA as a prerequisite for model
building in any discipline where models are used, and since sensitivity questions
arise when uncertainty is present, UA can also be considered as a prerequisite in
the modelling process.

Below we give basic definitions for sensitivity and uncertainty analysis to

summarize what has been said above:

Sensitivity Analysis is a procedure of determining and quantifying the change

in model behaviour as model factors change.

Uncertainty Analysis is an assessment/quantification of the uncertainties as-
sociated with the factors, the data and the model structure and their effect

on the model output.

1.2 Modelling Compartmental Systems

In order to evaluate an experimental investigation concerning transport of mate-
rial in a system of the real world, an appropriate model of the observed system
is considered in the model world. The most common type of model used for that
purpose is a compartmental model.

Compartmental models are used to approximate the systems of real world phe-
nomena. They have been widely used to model systems in biomedicine, biology,
pharmacokinetics, ecology, chemistry and engineering ([21], [38], [66], [82]). The
books by Jacquez (1985), and by Godfrey (1983) (see [66], [38]) describe both the
theory and the application of compartmental models. Articles by Brown (1980)
and Zierler (1981) are excellent reviews of compartmental analysis. Brown lists
around 140, and Zierler more than 50 further references on this topic (see [6] and
[110]). According to Zierler, the origin of compartmental analysis may go as far

back as 1822, when Fourier conjectured that heat flow may be proportional to a
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temperature gradient. Godfrey, in his book, notes that because many first-order
differential equations are compartmental without necessarily being described as
such, this makes tracing the exact origins of compartmental models difficult. He
also gives a date as early as 1923, when radioactive tracers were first applied to
biological systems. Mulholland & Keener also trace the origins of the application
of compartmental analysis to biological systems back to 1923 with the work of
Hevesey, and to ecological systems back to the work of Kostitzin (1935) {88].

A compartmental system is a system divided into a finite number of subsys-
tems called ‘compartments’, and it is assumed that each of these compartments
is homogeneous and well-mixed. Furthermore, it is assumed that the ‘material’
under study is neither destroyed nor synthesized in any compartment. The com-
partments of & system interact with each other and with the environment by
exchanging material.

The rate at which the quantity of material changes in the ith compartment
can be written as the difference between the sum of all inputs into and the sum

all outputs from that compartment as follows:

dm' - n n
_d}i =2 = | Got Z i | — Zsz‘ +qoi | »
i g

(1.1)

0<t<oo, (0)=g;, i=1,2,..,n

where z; is the state variable associated with compartment ¢; 2; is the derivative
of z; with respect to time ¢; 7 is the initial value of z;; ¢ is the rate with which
material is transfered and with the subscript j read as ‘into compartment ¢ from
compartment j’, and subscript O refers to outside the system. If there is no
material leaving the system (i.e., go; = 0,7 = 1,2, ...,n), then the system is said

to be ‘closed or blind’, otherwise it is an ‘open’ system.
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A general two-compartment model is shown in Figure 1.2.

' o
4y
Compartment 1 B - Compartment 2
-« ”
9 Qo2

Figure 1.2. Two-compartment model diagram

Depending on the nature of the system being modelled, compartmental models
can have different characteristics. However, the majority of the compartmental
analysis literature is on linear, time-invariant compartmental systems [38]. In
spite of the basic simplicity, there is no doubt that this type of model appears to
be the most important and commonly considered model in practice as well as in
the literature [77]. Hallstadius emphasizes that the most usual type of compart-
mental modelling in studies on the transport of material in physical or biological
systems is linear [44]. In a paper by O’Neill, which is a review of linear com-
partmental analysis in ecosystem modelling, it is noted that linear time-invariant
compartmental modelling has played an important role in the development of
systems ecology since the inception of the area in the late 1950s, and linear
compartmental models continue to find a significant number of applications in
ecology [91]. In this review O’Neill also provides a long list of references available
in the literature on this class of compartmental models. Because our attention
in this thesis is confined to linear, time-invariant ecosystem models, applied to
global carbon cycle models in particular, the dynamics of linear time-invariant
compartmental systems is introduced in more detail in the next chapter.

Like any modelling techniques, in compartmental modelling the output from
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the model is the item of interest. The knowledge we have about the model
parameters, coefficients, and so on, is not perfect. As a result, there always exists
some degree of uncertainty about the model inputs which is reflected in the model
response(s). This, as it is expressed by Helton & Davis, leads us to two closely
related questions: (1) ‘What is the uncertainty in the model response given the
uncertainty in the model inputs?’, and (2) ‘How sensitive is the model response
to the uncertainty in each model input?’ [48]. These two questions highlight the
important role of ‘sensitivity’ and ‘uncertainty’ concepts in the modelling process

very well.

1.3 Aims and Objectives of this thesis

The aims and objectives of this thesis are:

(i) review and testing of different sensitivity analysis approaches,

(ii) application/modification of sensitivity analysis techniques to compartmen-

tal models with steady-state constraint,

(iii) presenting various graphical methods used as visualization tools to support

sensitivity and uncertainty analyses,
(iv) uncertainty analysis - model comparability and benchmarking,

(v) validation in environmental radioactivity.

The previous sections have emphasised the relevance of sensitivity and uncer-
tainty analyses as modelling tools. In particular, we illustrate and develop such
methods as are required in a common applied class of models, namely radioac-
tivity modelling. Such models have been used in the field of global carbon cycle

modelling and climate change predictions.




Chapter 2

Methodology: Linear,
Time-Invariant Compartmental
Systems; Sensitivity and

Uncertainty Analyses

2.1 Introduction

One of the commonest types of model used in the study of the transport of
material in a system is a compartmental model. Even though compartmental
models are often good approximations to many systems, no compartmental model
is ever exact [66]. There are always discrepancies between the actual system and
its mathematical model. The reasons for these discrepancies, noted by Frank

[36], are as follows:
e restricted accuracy of the measuring devices or methods,

e the behaviour of any real system changes with time due to some natural,

economic or man-made effects,
e mathematical models are often simplified or idealised intentionally so that

10
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the mathematical problem can be made simpler or even soluble.

Because of these reasons the results of mathematical syntheses need not necessar-
ily be practicable. The appropriateness of any mathematical model is judged by
how closely it reproduces and predicts the observed behaviour of the actual sys-
tem. The results produced by the mathematical model may not be satisfactory;
they may even be very poor. For instance, there may be a considerable amount of
parameter deviation between the actual system and the mathematical model; the
solution may be very sensitive to the parameters; or the output may not lie in an
acceptable bound. Therefore, sensitivity consideration of models and assessment
of uncertainties become important issues. Since it is often unclear which one of
the many model parameters is going to change and when this change will occur, it
is important to develop techniques that enable us anticipate changes that might
occur in the system due to changes in any model parameter. It is also essential
to develop techniques that allow us to obtain certain specific bounds on model
parameters in order to hold the model output within certain bounds. Hence, in
order to respond to such important demands, sensitivity and uncertainty analysis
techniques have been developed and are commonly employed.

One of the main objectives of sensitivity and uncertainty analyses is to cope
with discrepancies between the actual system and its mathematical model, and
ensure that the model is reliable.

Sensitivity analysis(SA) studies the effects of the variations in model param-
eters on the behaviour of the model. SA is typically applied to initial conditions,
time-invariant or time-variant coefficients, sampling interval, sampling instant,
characteristic frequencies, input frequency, temperature effect, delay, etc. [105].
As we have noted in Chapter 1, we use the terminology ‘input factor’ to refer to
all these characteristic elements (parameters, variables, coefficients, etc.).

Uncertainty Analysis(UA) studies the effect of uncertainties inherent in model
factors, model structure, scenarios, etc. on the model output and aims to quantify

its uncertainty with a view to evaluating confidence and prediction ranges.
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Both of these analyses play an important role in the overall study of modelling

systems.

In this chapter, we next introduce and review the theory of linear, time-invariant
compartmental models, then give a description of methods used to solve the
model equations analytically and numerically. Sensitivity theory and calculation
of the sensitivity matrix as applied to compartmental modelling is explained.
We then introduce and identify the steps in performing a sampling based SA.
This is followed by a description of the methodology of numerous SA methods.
Finally we conclude the chapter with a critical review of the advantages and

disadvantages of the different approaches.

2.2 Linear, Time-Invariant Compartmental

System Theory

For compartmental systems the basic equations can be developed either in terms
of concentrations or in terms of total amounts in each compartment®. Such
quantities are called the state variables of the system and typically denoted by
T1, %o, ..., Tp. In Chapter 1 we have introduced the most general form of compart-

mental equations for a system consisting of n compartments as

da:i n n '
EZQi0+j;Qij—;jS_QOia 1=1,2,...,m. (2.1)
i L
Now, suppose we have a linear compartmental system modelled by an n-compart-
ment model. Changes in such systems are represented by differential equations

which describe how the rate of change of one state variable depends on the current

values of each of the state variables. Hence, the equation for x; might be written

2Sometimes quantity in each compartment considered in terms of concentration rather than
absolute amount of material. In such cases, the concentration is defined as the amount of
material in compartment ¢ at time ¢ divided by the volume of compartment i, i.e. ¢; = z;(¢)/v;.
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as

dﬂl‘i
dt

- fi($1:x27 7$TL)

For a system being modelled using a linear compartmental model it is assumed
that the amount of material transfered between compartments follows linear ki-
netics, so that at any time point the rate at which the material leaves a source(or
donor) compartment is a linear function of the amount present in the compart-
ment. Hence, the possible flow of material from compartment j to compartment

i which is indicated by ¢;; in Equation (2.1) is defined as
G = kiyz;(t), 1=0,1,..,m, 7=1,2,.,n, j#i

where k;; is the proportionality parameter which characterizes the rate of transfer
from compartment j to compartment %, and we use terminology ‘“transfer coeffi-
cient’ to refer to the k;;’s. As the name implies, the k;;’s are constants, they are
not time dependent, and when the transfer of material can be described by a fixed
set of transfer coefficients, the system is said to be time-invariant. Hence, the
set of n differential equations, which represents an n-compartment model given

as Equation (2.1) takes the form

diL',; . i -

pr zi(t) = Z kij x;(t) — Z kji () — koi 24 (t) + us(t),
Jj=1 =1
it i

(2.2)

0<t<oo, z(t=0)=2;, i=1,2,..,n

where u;(t) is used instead of ¢;o to conform with the change of notation.
The state variable representation of a linear, time-invariant multicompartment

model with n states, m inputs and p(p < n) outputs in matrix notation is
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described by

x(t) = Ax(t)+ Bu(t),

X(to) = x°

and the model output vector by
y(t) = Cx(?) (2.4)

where x is a n-dimensional vector and represents the state of the system with
the initial state x(t) = x°; u is a m-dimensional input vector; A, B and C
are system matrices. These time-invariant matrices show distinct and particular
characteristics.

The order n of matrix A is basically the number of compartments, and its

entries are defined as follows:

aij = ki, i1#]

ai = — ékji-i-km
Important characteristics of A can be summarised as: (i) its elements are all
real; (44) the elements on the main diagonal are negative; (i72) the off-diagonal
elements are positive, and (iv) the column sums are negative.
Matrix B is of dimension n X m where (m < n). If the inputs enter com-
partments %y, %2, ..., 9 say, the [b;;] can take value 1 or 0 subject to the following

condition:

I

j=1

i=1 0 ai#il:'“)ib'

Matrix C is of dimension p x n with (p < n). If the outputs leave from com-

partments ji, jz, ..., je 54y, the [c;;] can take value 1 or 0 subject to the following
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condition:

& R I, 7=017e
Zcijzl vi; Zcz’j:{ o, .
j=1 g=1 0,7 F# 5 de
Equation 2.3 will be refered to as the state equation and Equation 2.4 as the
observation equation of the system. Note that Equation 2.4 is simply an algebraic
equation not a differential equation. Having defined a linear, time-invariant com-
partmental system, we know that A, B, C matrices are time independent, and
the state variables X and the input u are time dependent. For the sake of sim-
plicity in notation, we drop the time element (¢) from the state and observation
equations.
Having defined the state equations of an n-compartment model, we now can

introduce methods for solving these model equations analytically and numerically.

2.3 Analytical Solution of State Equations

There are various ways to solve the set of n state equations analytically. The
book by Jacquez [66] provides a useful reference to solutions in many books and
articles (for example, the book by Godfrey [38], the articles by Matis & Wherly
[82], O’Neill {91], Zierler [110]). We will discuss two of these methods which are

found to be more appropriate when linear compartmental models are concerned.

2.3.1 Classical Approach

The well-known general solution of equation (2.3) is given by

:
x = efx° + / eMENBu(N)dA

to

where ) is a time variable ranging over the time interval over which the model

input has been applied. This solution requires the calculation of an exponential
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of the parameter matrix which can be a very time consuming task, and also the
accuracy of this calculation can be questionable because the matrix e which is
called the transition matriz is the sum of the infinite series

(AP (A°

At _
e =1+ At+ o1 3

This requires calculation of the powers of A and there is uncertainty about how

many terms need to be computed for acceptable accuracy [38].

2.3.2 Laplace Transformation Approach

Much of the literature on compartmental analysis and especially on linear systems
uses a particular type of linear transformation called the Laplace transformation
to solve the model equations [66]. In comparison to the general solution approach,
the Laplace transformation method provides simpler and more accurate results
[38].

Taking Laplace transforms on both sides of Equations (2.3) and (2.4), and

assuming that the system is not empty at time ¢ = 0, gives

s-X(s) —x* = AX(s)+BU(s) (2.5)
Y(s) = CX(s) (2.6)

where X, Y and U are the Laplace transforms of x, y and u, respectively; s
is the transformation domain variable; x° represents the state of the system

immediately before any input enters the system.

Rearranging Equation (2.5) gives

(sI - A)X(s) = x°+BU(s)
X(s) = (sI—A)"'x°+ (sI— A)"'BU(s). (2.7)
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Taking inverse Laplace transformation results in
x = L7Y(sI—A)"x°] + L7Y(sI — A)~*BU(s)] (2.8)

which is then substituted into Equation (2.4) to obtain the model output vector
y. Alternatively, substituting Equation (2.7) into Equation (2.6) yields

Y(s) = C[(sI—A)"x°+ (sI— A)"IBU(s)], (2.9)
and then the inverse transformation gives the following model output vector:
y = Cx = C{L(sI-A)"x] +L7(sI - A)"BU(s)}.  (210)

For more complicated models, using an analytical method to solve the state equa-
tions may be impractical and computationally very expensive, it may not even
be possible. In such situations, numerical methods are prefered over analytical

methods.

2.4 Numerical Solution of State Equations

Numerical methods are alternative approaches to solving differential equations
and with the use of these methods we aim to obtain an accurate approximation
to the solution of the state equations. The main idea of numerical methods is
that starting with the initial condition, time is incremented in small steps and
the changes in model output are calculated for each step. In general, the smaller
the time increment, the more accurate the approximate solution becomes.
There is a large literature on the numerical solution of differential equations.
The methods used to solve systems of first-order ordinary differential equations
from initial conditions (also refered to as ‘first-order initial value problem’ in nu-
merical analysis and differential equations terminology) can be found in every

extensive numerical analysis and differential equations book, and routines which
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can be used to carry out these standard numerical analysis procedures are avail-
able in the open literature. As Zwillinger comments in his book, numerical codes
are available for solving nearly any type of ordinary differential equations, and
one should use prepared software packages whenever possible [111].

The particular methods used in this thesis are the fourth-order Runge-Kutta
method and Adams methods. Runge-Kutta methods are called single-step (or
one-step) methods since they use only the information from the previous step.
They have the ability to perform the next step with a different step size and are
ideal for beginning the solution when only the initial conditions are available.
Adams Methods, on the other hand, are multi-step methods because they make
use of some of the information obtained at a few points beyond the initial point
by utilizing the past values of the function and its derivative to construct an inter-
polating polynomial that approximates the derivative function, and extrapolate
this into the next interval. Runge-Kutta method of order four which is the most
popular Runge-Kutta method has been used to solve the state equations of the
two 8-compartment global carbon cycle models, and Adams PECE method has
been used in the computer implementation of the 25-compartment global carbon
cycle model (see Chapter 3) used in this thesis.

In the following two sections we describe how these two methods are derived.

2.4.1 Runge-Kutta Method

Suppose we have a single compartment model with the state variable denoted by
z, and its initial condition by z° (for a multi-compartment model the solution
can readily be obtained for each state equation). The mathematical model of the

system is then given by the first-order differential equation
#(t) = f(t,x(¢)) with the initial condition z(¢y) = z°. (2.11)

As with all numerical methods, the Runge-Kutta method also involves finding

approximate solutions at ¢y, t1, ..., where the difference between any two successive
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t-values is a constant, h; that is, o1 —t, = h, (n=0,1,2,...). The approximate
solution at ¢, will be designated by x(t,). Note that once x(¢,) is known, Equation
(2.11) can be used to obtain i(t,) as

E(tn) = f(tn, z(tn))-

The classic fourth-order Runge-Kutta method (often referred to simply as the
Runge-Kutta method) is based on a weighted average of values of f(¢,z) at

different points in the interval £, <t < #,4;. It is given by
h
2lt) = 3ltn) + ¢ (Fi+2Fy + 2 Fy + F),

where

Fi = f(tn, %(t))

Fy = f(tn+ 3h,a(tn) + 1 A F1)
Fy = f(tn + 3h,x(ts) + § h Fo)
Fy = f(tn + h,z(t,) + h F3).

Different orders of Runge-Kutta methods can be found in many differential
equations and numerical analysis books including [18], [86] and [111]. FORTRAN
code for the fourth-order Runge-Kutta algorithm is given in [94].

2.4.2 Adams Methods
Any solution of the initial value differential equation given in Equation (2.11) can

be written as

(tasr) — B(ty) = f () dt — / F(t,2(2) dt.

tn ln

The main idea of the Adams methods is to approximate this solution by replacing

f(t,z(¢)) with a polynomial interpolating to computed derivative values, f;, and
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then integrating the polynomial. Note that we denote f(¢;,z(¢;)) by fi for an
integer 1.
The Adams-Bashforth formula of order ¢ at i, uses a polynomial P, ,(t) in-

terpolating the computed derivatives at the ¢ preceding points, i.e.
Pc,'n,(tn+1—j) = fn-l—l—j) .7 =12,..,c

These derivatives and z(¢,,) have to be stored from the preceding step. Then, an

approximation to the solution at ¢,; is obtained as

st = (k) + / Pun(t) dt. (2.12)

tn
In more general terms, an approximation can be obtained for all ¢ near ¢, using

t

z(t) = z(ty) -l-/ P, . (t) dt.

tn

Several ways of representing the interpolating polynomial, P, (), given in the
above equations exist. Here we only give the Lagrangian form, and the other
forms of P, ,(t) (for example, divided difference form) can be found in Ref. [101].

Lagrange’s form of the interpolating polynomial is as follows

Pon(t) =Y Uit) fat1-i
=1

where

C

t— b1y
L) =] - mhe 5 =1,2,..c

n ?
j=1 mAl—i T badtl—y

ik
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Substituting into Equation (2.12) yields the following Adams-Bashforth formula

tn+1

m(tn+1) = m(tn) + Z fn+1_«g / lz(t) dt.

f=1 tn

which is usually written as
c
T(tas1) = 2(tn) + b Z CQleyi for1—iy (2.13)
i=1

where h is a constant step size and

tn+1
o = = / (8) dt

t'll

A variation on the derivation of the Adams-Bashforth formulae gives another
set of formulae called the Adams-Moulton formulae. These formulae of order ¢
at i, use a polynomial P, ,(t) that also interpolates to c derivative values given

below:

Pé,n(tn+1—j) = fn+1—j7 i=L12,..,,c— 1,
Pé,n(tn‘l"l) = f(tn+1: -r(tn+l))

Hence, the approximate solution is given by

2(bnsr) = o(ta) + / P (1) d. (2.14)

in

By following the same procedure as in the Adams-Bashforth method, one can

find the Lagrangian form of the Adams-Moulton equation as

c—1

S(tnsr) = x(tn) +h D 0 a1 (2.15)

=0
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where

with

c—1 it )
L) = et R
(0 :J[‘!: bppr—i = bnyi—j
i

As noted by Boyce & DiPrima [5] the Adams-Bashforth formulae are explicit
and faster, and the Adams-Moulton formulae on the other hand are more accurate
but implicit and slower. To achieve both simplicity and accuracy, numerical
analysts have combined the two types of formulae in the so-called Predictor-
Corrector Method. Once z(t,), z(tn—1), ... ave known we can calculate f,, frn-1,...,
and then use the Adams-Bashforth (predictor) formula (2.13) to obtain a value
for z(ty+1). Then fui1 is computed and using the Adams-Moulton (corrector)
formula (2.15) an improved value of z(¢,.,) is obtained. This predictor-corrector
procedure is called Adams PECE method. The acronym PECE is derived from
the description of how the computation is done. This is described above but in
summary: we Predict ©(t,+1), Evaluate fny1, Correct to get (tny1), and Evaluate
fn+1 to complete the step.

The book by Shampine & Gordon [101] completely explain Adams methods
(see Ch. 3), and they also provide computer codes (written in FORTRAN) for

these methods.

Before proceeding further, in the context of this thesis, the matrix C of the
observation equations (see Equation (2.4)) is considered to be the pxn dimension
identity matrix I. In other words, the model output from the ith compartment is
taken to be the amount of material present in that compartment (y; = ;). Taking
that into account, in the following sections the notation x (n vector of z;’s) is

dropped and the notation y (n vector of ¥;’s) used to denote both compartmental
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contents and compartmental outputs, and refered to simply as the vector of model

outputs or (in statistical terminology) the vector of response variables.

2.5 Sensitivity Analysis

The basic idea of sensitivity is to calculate the change in the system behavior due
to the factor variations.
As suggested by Saltelli [97] and Campolongo et al. [14] sensitivity analysis

techniques may be grouped into the following three main categories:

Local SA methods which concentrate on the local impact of the model input

factors on the model response;

Global SA methods which concentrate mainly on apportioning the model out-

put uncertainty to the uncertainty in the input factors; and

Screening methods which are used to identify the most influential factors on

the model output.

In the following sections we describe the methodology of various SA tech-
niques, but the above classification is further extended for the purpose of giving
an ordered presentation of the techniques. First, graphical methods for sensitiv-
ity and uncertainty analysis are presented. Second, a differential analysis based
method and a number of numerical methods for the calculation of local sensitivi-
ties are described. Then, before including the methodology of global SA methods
some fundamental elements of these methods, design of the computer experiment

for instance, is introduced. Finally, the factor screening procedure is explained.

2.5.1 Graphical Sensitivity and Uncertainty Methods

A literature search had recently been done by Cooke & van Noortwijk [23] which
shows very little theoretical development for graphical methods in sensitivity and

uncertainty analysis. There exist reference books in the literature, for example
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[20] and [28], which study visualizing univariate, and multivariate data. As Cooke
& van Noortwijk mention, when graphical methods are used in sensitivity and
uncertainty analysis the focus is not visualizing data as it is in the general sense,
but rather visualization to support SA and UA.

A number of graphical tools which may have an application in sensitivity and

uncertainty analysis techniques have been presented below.

2.5.1.1 Scatter Plots

A useful non-quantitative screening technique is a sequence of scatterplots in
which each response variable (model prediction) appear on the vertical axis and
each explanatory variable (model input factor) appear in turn on the horizontal
axis. In SA and UA, scatterplots of the input-output relationships are used as
a guide to better understanding of the model behaviour. If the relationship is
strong this indicates that the considered model input has significant effect on the
model output.

A scatterplot matrix (often called matrix plot) can also be produced. This
type of plot displays the main features of the 2D relationships between each pair
of variables without reference to the other variables. However as the number of
variables increases, it becomes harder to interpret the set of plots and obtain an
overall sense of the data configuration.

There is no doubt that generating scatterplots is the simplest SA method.
One disadvantage of this technique is that it requires drawing and inspecting a
large number of plots, at least one plot for each model input factor. Considering
that we may need to analyse several model outputs which may also be time

dependent, then the number of plots we need to generate becomes quite large.

2.5.1.2 Star Plots

Star plots are used for representing multivariate data in two dimensions. Star
representations of the data can be obtained by utilising the ‘stars’ function of S-

PLUS programme package. Stars represent the several measurements of a case on
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equally spaced radii extending from the centre of a circle. Then the measurements
are linked to form a star. The values of the measurements occupy a circle, and the
fact that the starting points correspond to the end points facilitates comparison
between cases. We use star plots to visualize different sensitivity measurements
of the model response(s) to the uncertainties about the model inputs. Figure 2.1
shows an example of a single star plot.

However if the number of cases presented in a star plot is very large, star

representations may not provide a clear illustration.

Figure 2.1. An example of a star plot showing Republican votes for New York
between 1856 and 1976. (This plot is produced using the dataset votes.repub
available in S-PLUS).

2.5.1.3 Pie Charts

In a pie chart, each of the values in the range is represented by a slice of the pie.
A pie chart is used to compare parts to the whole. The wedges of the pie are
labeled and often coloured. For single diagrams the use of pie charts is desirable,
but when the comparison involves different times or scenarios, the change in size
of the pie charts (radius proportional to the square root of total amount) may
not be easily comprehended. In such cases, bar charts may be more preferable
since the change in the length of the bar charts, which is directly proportional to

total amount, may be more easily visualized.
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2.5.1.4 Other Graphical Methods

There are other graphical techniques, such as tornado graphs, radar plots and
cobweb plots used for uncertainty and sensitivity analysis, which are more com-
plex and less familiar than other techniques discussed above. They are described
in detail by Cooke & van Noortwijk in Part 1I-11 of Ref. [98]. Here we give a
brief description of these methods and refer the interested reader to Ref. [98].

Tornado graphs are basically bar graphs of any global sensitivity measures (for
example, rank correlation coefficients) arranged in decreasing order of absolute
value.

Radar plots are similar to star plots. Fach variable is represented by a ray in
a radar plot, it shows x-axis values as imaginary lines radiating from a common
centre, like ‘spokes of a wheel’. y-axis values are plotted on each of the spokes.
The variable with the highest sensitivity measure is plotted furthest from the
centre and the variable with the lowest sensitivity measure is plotted closest to
the centre. Radar graphs can highlight trends, depending on the shapes drawn
by the plot lines.

Cobweb plots are used in identifying local probabilistically important factors.
These plots give a picture of the joint distribution of the percentiles of up to 20
variables. Each parallel vertical line in a cobweb plot represent one variable, and
the possible values of these variables are given on these lines. Then each set of

values are marked on the vertical lines and connected by a jagged line.

Other than the graphical methods described above, histograms, bar charts, dot

plots are also used for sensitivity and uncertainty analysis.

2.5.2 Local SA Methods

Local SA methods focus on input factors which are varied within a small interval
around a specified value. Local sensitivities provide the slope of the model output
in the input space for a given set of factors [107]. Local sensitivities are exactly

defined, and they depend neither on chosen distributions for input factors nor
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any choice of a calculation method.

The evaluation of the sensitivity function and the sensitivity matrix (this
method is often called ‘differential analysis’), and the use of numerical methods
for the calculation of local sensitivities are discussed in the following subsections.
A recent review written by Turdnyi & Rabitz [107] discusses both analytical and
numerical local SA methods and their applications. They also provide further
references to local methods. In this review, they point out several advantages

and disadvantages of local sensitivities which include:

- when dealing with large models, local sensitivities can provide useful infor-
mation on the performance of the model near the nominal values of model
factors, but calculation of global sensitivities, which are based on studying

the model in a wide range of factors, is computationally prohibitive;

- calculation of local sensitivities are much faster than that of global sensi-

tivities;

- when the uncertainty about the model factors is very high, local sensitivities
are totally incapable of providing information on the effect of significant
factor changes, i.e. changing factors within a wide uncertainty range can
give a qualitatively different model and this may result in a completely

different sensitivity pattern; and

- local sensitivities are really local, and the information they provide is related

to a single point in the input space.

2.5.2.1 The Sensitivity Function / Matrix

The sensitivity function is one of the main concepts in sensitivity theory. If the
sensitivity function is known, then it is simple to calculate the change in model
behaviour with respect to a given model factor. The sensitivity function is ob-

tained by solving differential equation (2.3), evaluating the algebraic observation
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function (2.4) and taking the partial derivative of the solution with respect to
the factor which is then evaluated at a given time and condition.

Consider a single compartment, multi-factor model whose output function
is y = y(t;0). Here @ is the k-vector of model factors, and associated with a
reference value (often called nominal value) 8°, and the corresponding output
function has a nominal value y° = y(¢; 6°) which is often refered to as ‘base-case’
or ‘base-case scenario’. Now, suppose that @ changes from 6° to 8°+A8. Using
sensitivity analysis we aim to find out what happens to y when 6° — °+A0.
The first derivative of y with respect to the factor 6;, dy/98;, provides a measure
of sensitivity, that is, it is a local sensitivity index measuring the effect on y of
perturbing 6; around nominal value 8°. We can expand y(t;0°+A8) around 6°
by a Taylor series expansion as follows:

ymy°+zi:a—§”;aoA6’i+%§J:;W‘z?g—9;QOAQJ-A@-—}—---. (2.16)

The expression in Equation (2.16) is typically truncated after the first or second
order derivatives. In general, the first and second order derivatives are of more
interest to the system or process investigators than any other higher order deriva-
tives [62]. The partial derivatives 0y/00; are called first-order local sensitivities,
and 0% /00, 80; second-order local sensitivities.

Now, suppose we have a multi-output, multi-input model which is represented
by the following system of time-dependent ordinary differential equations

dy

= = £(y,t,0) (2.17)

where y may be thought of as an n-vector (y;) and @ as a vector of & model
input factors. The solutions of Equation (2.17) may be thought of as functions
of two variables, ¢ and ; that is, y(¢, #). The initial conditions are also treated
henceforth as factors, 0, in y(¢, 6).

Having defined the model equations, we now want to calculate the first-order

local sensitivity of the ith component of the model response y, ¥;, in terms of the
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rth component of the model factor 8, 0,. dy;/00, gives the sensitivity function
of y; in terms of 6, which is then evaluated at a given nominal condition 6° and

at a given time f.

In the case where there are n model responses y=[y1, s, ..., ¥»]? and k factors
0=[01,0,, ...,6,])7, the first-order local sensitivities form the n x k dimensional

sensitivity matrix S as given below:

O . ., n
861 H6s 80y,
S = : : : (2.18)
Qun Gyn ... O
501 60, 80,

Each column of matrix S is called the vector-sensitivity function of y with respect
to 6, (7 =1,..., k).

Differential analysis techniques have been widely used in uncertainty and sen-
sitivity analyses and introductory theory can be found in Refs. [34], [36], [107],
[105]. Examples of the use of differential sensitivity analysis are given by Iman &
Helton [63], and Hamby [46]. As noted by Iman & Helton [63} the Taylor series
approximation given in Equation (2.16) is the starting point for uncertainty and
sensitivity analysis techniques based on differentiation. The first step in such an
analysis is generating the partial derivatives required in the series. When the
model function given in Equation (2.16) is a relatively simple function it may
be possible to generate the required derivatives analytically or by simple differ-
encing schemes, but more complicated models often require complex numerical

procedures.

2.5.2.2 Numerical Methods for Calculating Local Sensitivities

When the analytical solution of the model equations given in Equation (2.17) is
known, then sensitivity functions may easily be found by direct differentiation. In
some cases, however, it is easier to solve the sensitivity equations directly by using

numerical methods, such as indirect method, direct method, the green function
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method, etc.. Here we give a brief discription of these three most commonly

employed methods.

Indirect Method also called brute force method or finite difference approzima-
tion is the simplest numerical method to calculate local sensitivities. It is
based on changing one input factor at a time and rerunning the model code
with the new set of input factors. Then, the elements of the sensitivity
matrix are approximated by the following equation:

Oy y(0; + Ab;) —y(6))
26; A9

j=1,....k

where Af; denotes the change in factor #;. For the calculation of local
sensitivities using this method & + 1 model runs are required, but if central
differences are used then the number of simulations required is 2k. The
main advantage of this method is that it is easy to implement and no
extensive modification to the original model code is needed. On the other
hand, compared to more advanced methods, this method is slower and less
accurate [107].

Direct Method In the direct method, in addition to the system of n differential
equations, for each factor n additional differential equations which describe
the sensitivity of the original system with respect to the chosen factor are
defined. This second set of equations called sensitivity differential equations
are obtained by differentiating both sides of Equation (2.17) with respect
to a chosen factor, say 6,:

doy of oy
g a0, = s0, T an

(2.19)

or in matrix notation

S=F+JS

where F is a vector of length n whose components are 8f;/96,, and J is
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an n X n matrix recognized as Jacobian and its elements are Jf;/0y, with

1=1,2,...,m;0l=12,..,n.

Direct methods are based on numerical solution of Equation (2.19) which
requires knowledge of the values of matrices F and J at each step of the
solution. In order to evaluate these values, we have to know the actual val-
ues of system variables. This can be achieved by a simultaneous solution of
Equation (2.17). Turdnyi & Rabitz [107] note that in the early realizations
of the direct method, the system of original model equations and the sys-
tem of sensitivity equations, i.e. Equations (2.17) and (2.19), were solved
independently but simultaneously and the solution of Equation (2.17) was
used to set up Equation (2.19). They also note that direct methods based

on this algorithm were relatively slow.

Another algorithm called decoupled direct method (DDM), which is based
on a special relation between Equations (2.17) and (2.19) that allows a
numerical shortcut, was first introduced by Dunker [29]. Dunker shows
that Equation (2.17) and Equation (2.19) have the same Jacobian matrix
and therefore the spectrum of time steps on which the elements of y change
will be the same as the spectrum of time steps on which the elements of
y change. In Dunker’s method the matrix J is evaluated only once, and
then at each time-step Equation (2.17) is solved and then Equation (2.19)
is solved with all factors one after the other. Because the evaluation of
the Jacobian matrix, which is the most time consuming part of solution, is
reduced considerably with this method, computational cost for calculating
sensitivities using the DDM method is relatively low. According to Dunker,
the DDM method is a very efficient form of direct method especially for

models based on complicated equations [29].

Green’s Function Method In the Green’s function method, we first differen-

tiate Equation (2.17) with respect to the initial values y° which gives

d
= K(tt) =IO K(L ), (2.20)
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where ¢ and ¢; are the observation and perturbation times, respectively,
and K is the initial value sensitivity matrix with K(¢, 1) = 9¢;(t)/9c(t1)
and K(t1,¢1) = I, ¢ > ;. The linear non-homogeneous system of differen-
tial equations given in Equation (2.19) can be solved by first determining
the homogeneous part given in Equation (2.20) and then calculating the

following particular solution:
2
S(t1, 43) = / K(ty, s) F(s) ds. (2.21)
t1

Here K is called the Green’s function (or kernel), and the method based on
the solution of Equation (2.21) is known as Green’s function method [107].
Dougherty et al. have applied the Green’s function method to atmospheric
chemical reaction models and compared this method with the direct method
for the same type of models. They concluded that Green’s function method
should be more efficient than the direct method if the number of factors of

interest is greater than the number of variables [25].

When the model under investigation is a linear and relatively simple model,
local sensitivities can be obtained easily, and can provide information about the
effect of changes in the input factors on the model output(s). On the other hand,
if the model is known to be non-linear, and the input factors are affected by large
uncertainties, the appropriateness of local methods is questionable, and in such
cases, as Campolongo et al. [14] suggest, a global method should be used instead.
Global SA methods are discussed in Section 2.5.3. As complex large models are
increasingly applied for problem solving in many areas which include atmospheric
science, engineering, biological systems, the need for global sensitivity analysis

methods are becoming increasingly apparent.
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2.5.3 Sampling based Global SA Methods

The procedures followed for global SA of large computational models which are
described in the following sections may be summarized as a two-step procedures;
the generation or sampling of input factor values, and the statistical analysis of
the resulting output(s).

The SA and UA methods based on sampling are widely used in the analysis of
large complex computational models, and they involve generation and exploration
of mappings from model inputs to model predictions. In these sampling-based
SA and UA methods after the values for input factors are obtained using a chosen
sampling scheme, the model is run for a specified number of times A, and one
or more output variables for each run are recorded. This input-output process is
illustrated in Figure 2.2 for a hypothetical 3-inputs, 2-outputs model.

Following this process, appropriate statistical analyses are performed on the
output variables as dependent variables and the input factors as independent
variables to assess the input-output relationship and the effect of the uncertainties

in inputs on the output variables.

Output 1|
MODEL

Output Y2

Input X3

Figure 2.2. A hypothetical model with three input factors (A1?A2,A3) and two
output variables (Ti, Y2).
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These processes summarized above are broken into more steps in the following

section to give a clearer and more detailed explanation of these essential steps.

2.5.4 Steps in Performing Sensitivity and Uncertainty
Analyses

The basic steps in conducting a SA process can be identified as follows:

1. defining the model and determining which of the inputs and outputs of
the model need to be included in the sensitivity analysis, in other words

designing the experiment,

2. assigning probability density functions and variability ranges to each of the

identified factors,
3. generating an input matrix using an appropriate sampling technique,
4. evaluating the model and obtaining the model response(s), and

5. analysing the relationship between the induced output distribution and the
input sets to assess the effect and relative importance of each input factor

on the output(s) of the model.

In Ref. [98] Saltelli provides a diagram to illustrate these steps (see Figure 1.2

in given reference).

. 2.5.4.1 Designing the Computer Experiment

As the first step, the model investigator defines the model, its response (model
output(s)) and explanatory (input factors) variables. This step also involves de-
ciding which factors are to be used in the analysis and which output variable(s)
are to be considered. The selection of inputs at which to carry out a physical
experiment or to run a computer implemented model code is a design of exper-
iment problem. According to Campolongo & Saltelli [13], design of experiment

can be considered as one of the forefathers of sensitivity analysis.
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In a computer experiment, input(s) are obtained by a sampling procedure
which can be done either systematically (factorial design, fractional factorial de-
sign) or randomly(Monte Carlo simulation). In this section we give general de-
scriptions of factorial and fractional factorial designs, and three types of random
sampling are described in Section 2.5.4.3.

Factorial design can be used to obtain a given number of samples for each
input factor and running the model code for all combinations of the samples.
The model output obtained in this fashion is then used to estimate the effects of
each factor on the model response. When input factors are considered at several
values, the number of factors play an important role. If we want to investigate
k factors, and factor (¢ = 1,2, ...,k) has £; levels, then the number of possible
combinations is £; X £3 X ... x ;. Even for a small number of factors this number
of combinations can be quite high. For instance, if we have only & =10 factors
and each factor has a minimum number of levels, i.e. ¢ = 2 (high and low)
then the number of combinations we have is 2'° = 1024! As the number of input
factors increases, the number of factor combinations rapidly increases. In such
cases, fractional factorial design proves to be a useful alternative.

Fractional factorial design is based on the idea of assuming some of the higher
order interactions are unimportant. Again, considering the simplest case, two
levels for each of the & factors, a fractional factorial design involves running the

model only a fraction (1/2 to some power s) of the total possible runs 2572,

2.5.4.2 Assigning pdf’s to each input factor

In order to find the effect of a factor on the model output, this factor has to
be varied from a specified probability distribution, or considered at several levels
within a known range.

As Haimes & Lambert [42] point out the question ‘How can we specify, gener-
ate, and use more appropriate probability distributions for model input?’ still re-
mains important for the scientific community especially from the risk assessment

point of view where examinations of health and environmental effects, economic
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impacts, energy impacts, technical feasibility etc. are concerned.

In an article, Hoffman & Kaplan [55] suggest how probability assessments can
best be representations of the full state of knowledge of uncertain inputs. They
provide three approaches for obtaining distributions for uncertain inputs, and the
classification of these methods is based on the availability of the resources. These

three approaches and their descriptions given by the authors are as follows:

o Classical statistical method. This is appropriate if there is a large data set
obtained using an appropriate sampling scheme and the data are sufficiently
relevant for addressing the assessment endpoint. Then, using statistical
methods, empirical distributions are obtained. With this method, two an-
alysts using the same data sets and the same statistical techniques should

produce the same results.

e Analyst judgement using all sources of information. This approach is taken
when there is no data available or data exist but it is only partially rel-
evant to the assessment endpoint. This is the method most commonly
employed. In this case, summarizing the state of knowledge and specifying
the subjective probability distribution depend on the analyst and his fellow
reviewers. Because individual interpretation of the evidence is involved in
this approach, it is very likely that two different analysts given the same
assessment will describe the present knowledge differently and produce two

different probability distributions.

o Formal expert elicitation. In this approach the analyst is required to iden-
tify the individuals known as “experts” in the area of concern, and bring
these experts together. After the analyst describes the assessment prob-
lem to the experts, and provides them with all relevant information and
data, the experts are asked to formalize and document their rationales.
The experts are then interviewed and asked to defend their rationales be-
fore committing any specific probability distribution. The experts specify

their own subjective probability distributions by estimating quantiles. This
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method is considered to be a strong approach, but time and finance-wise it
can be very expensive. With this approach it is also likely to get different
answers from two or more independent analysts or two or more different

expert groups involved in the assessment.

Because of the lack of information about the distributions followed by the model
input factors, in many works related to the sensitivity analysis experiments in-
put factors are assumed to be uniformly/loguniformly distributed. For example,
Campolongo & Saltelli consider a uniform distribution for all 32 model input
factors of a well known model for the production of a key sulphur bearing com-
pound from algal biota [12]. Another example, in the application of several SA
techniques to the MACCS model of the early health effect associated with a se-
vere accident at a nuclear power station, Helton et al. [52] assign uniform and
loguniform distributions to the 34 imprecisely known input factors. White [108]
suggests that in the case of minimum knowledge a uniform distribution over the
maximum conceivable range can be considered for the input factors. Campolongo
et al. [15] also note that when the knowledge of the input factors is quite poor,
assuming a uniform distribution for each input factor is acceptable.

As for the ranges of variability, if no such information exists in the literature,
then different criteria are adopted to obtain variability ranges for the model
factors. For instance, Campolongo & Saltelli [12] use F20% of the nominal value
to derive a range of variability for some of the model input factors they consider in
their work. In the same article they also mention another criterion for calculating
variability ranges, which is (1/2Kp; 2Ky), where K is described as the nominal
value of the input factor. In this study, the former criterion is used in the analysis
where no reference values for the variability ranges are available. In another
article by Reed et al. the nominal values of the 15 model parameters are taken as
the mean values, and by assuming 10% coefficient of variation about those mean
values they calculated the standard deviations for the parameters [95].

Different distributional assumptions on the model input factors may have a

(significant) effect on the distribution of the model predictions, and therefore on
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the outcomes of the uncertainty and sensitivity analyses. The effect of changing
the distribution of the input factors on the model predictions will be discussed
in Chapter 5.

After assigning a range and an appropriate probability distribution to each input
factor we then need to generate a sample. In the following section three ways of

producing input samples are described.

2.5.4.3 Generating the design matrix

In the sensitivity and uncertainty analyses framework, simple random sampling,
Latin hypercube sampling and importance sampling appear to be the most com-
monly used sampling techniques used to generate the input matrix. The purpose
of all sampling techniques is the same: to obtain a better coverage of the sample
space of the input factors. Comparison of these sampling methods, and their

effect on the results have been discussed by Helton & Davis in [49].

2.5.4.3.1 Simple Random Sampling

Simple random sampling (SRS), sometimes also called random sampling, is the
simplest and most widely used random sampling method. In SRS each member of
the population has an equal probability of being included in the sample, and each
selection is independent of the previous drawings. By applying this procedure to

each of the k input factors the following random sample input matrix is obtained:

X X oo X
x - X.21 X'zz X.%
| Xv1 Xz o0 Xyg |

where N is the sample size and & is the number of input factors.

This sampling technique gives unbiased estimates of the means, variances, and




CHAPTER 2. FUNDAMENTAL ASPECTS 39

distribution functions of the output variables. Therefore, whenever the computer
resources are not limited, random sampling is the best technique to use [56].

For notational convenience, we shall use
X = [X, Xo, o, X
to represent the model input factors under consideration, and
X=X, Xy, Xuir], 1=1,2,..,N
to represent the observations.

2.5.4.3.2 Importance Sampling

Unlike simple random sampling, importance sampling can assure that sampled
values do not fall very close together in the sample space. In importance sampling
the sample space, say €, is divided into a number of subregions (often called
strata) Q;, 7 = 1,2, ...,1 which typically have unequal probabilities, and assure
inclusion of specific regions of sample space in the analysis. After dividing the
sample space into strata, we then sample [; values for X from strata {; using
random sampling. Hence, the following vectors form a sample obtained using

importance sampling

X, = [Xﬂ,Xig, --';Xik], 1=1,2, ,Z lj-

If one value is sampled from each strata, then the sample has the form
Xi = [Xils-/ iy vy sz], 1= 1, 2, ceay N.
In importance sampling, the partition of the sample space is based on how

important the X’s contained in each set are to the final result of the analysis.

This sampling technique is often used to assure the inclusion in an analysis of
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X’s that have high consequences but low probabilities, that is the probabilities
p(§2;) are small for the §2; which contain such X’s. Helton & Davis give several
examples of importance sampling in [49]. These examples consider both equal

and unequal strata probabilities.

2.5.4.3.3 Latin Hypercube Sampling

The Latin Hypercube Sampling (LHS) technique, which was originally introduced
in 1979 by McKay et al. [84], has the objective of space covering sampling, and
is sought in order to reduce the number of model runs N.

Iman & Shortencarier [65] and Stein [102] define LHS as a particular case of
stratified sampling. In stratified sampling, the aim is to obtain a better coverage
of the sample space by dividing the sample space into various subintervals such
that units within each subinterval are as homogeneous as possible. Thus the
sample space of the input vector X = [X1, Xy, ..., X}] is divided into { non-
overlapping strata Qi, s, ..., of sizes N1, Ny, ..., V;; such that N = ZLI N;.
If ] = 1, the result is a simple random sample over the entire sample space.

In LHS, to generate a sample of size N from & input factors X7, X, ..., X,
first the range of each uncertain input factor is divided into N non-overlapping
intervals on the basis of equal marginal probability 1/N. Then one value from
each interval is selected at random with respect to the probability density in the
interval. The IV values obtained for the first variable X; are paired with the
N values of X5 randomly. Then, these N pairs are randomly combined with
the N values of X3 to form N triplets, and so on, until finally N k—tuplets are
obtained. Thus, for a given sample size(/N) and number of input factors(k), there
is (N1)*¥~1 possible interval combinations for a Latin hypercube sample. With this
method, we gain the advantage of making sure that all portions of each factor’s
distribution is represented in the sample. An example of a LHS with N = 5
sample size, and k = 2 inputs X = [X;, Xp] with a known probability density
function is given in Figure 2.3. The left-hand side of the figure shows a random

pairing of each element of X; and X5, and the corresponding output variable,
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whereas the right-hand side of the figure shows the cartesian coordinates of the
randomly matched pairs. Note that in the cartesian coordinates presentation
which consists of Nk = 52 = 25 cells there is only one observation in each row
and column.

As in SRS, introducing unwanted pairwise correlations between some or all
of the input factors is also possible in LHS because of the random pairing of
intervals in the process. This is more likely to occur if the sample size is small.
A method introduced by Iman & Conover [61] can be used to avoid unwanted
correlations between factors, it can also be used to induce known correlations
between input variables. This method often referred to as ‘restricted pairing
technique’ is based on the rank correlation structure of the input variables, and
its desirable properties are: it is distribution free (i.e. it may be used on all
types of input distribution functions); is simple to use, does not require unusual

mathematical techniques; it can be applied to any sampling technique for which
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Figure 2.3. An illustration of an of size N = 5 from a two-dimensional

input space.
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correlation of input variables is a meaningful concept, while preserving intention
of the sampling technique; and it preserves the exact marginal distributions. This
restricted pairing technique is discussed at length in [61], and examples are also
given.

Iman & Conover’s restricted pairing technique is implemented in the computer
program written by Iman & Shortencarier to generate Latin hypercube and ran-
dom samples (see [65]). Using this program one can generate random samples,
random samples with restricted pairing, simple LHS, and LHS with restricted
pairing.

If the sample size is small, SRS may produce clusters of observations anywhere
in the range of the input factors but LHS produces observations which are spread
over the entire range of each input factor. More detailed description of these two
techniques with their properties may also be found in [48], [60], [65] and [84].

LHS has been proven to work well to considerably reduce the computer cost
required to obtain a complete analysis of the model. LHS design appears as the
most promising design as far as sensitivity analysis is concerned [63], {100]. A
discussion on the advantages of LHS, along with a comparison of other sensitivity
and uncertainty analysis methods can be found in [63]. A comparison of SRS and
LHS techniques used for selecting values of input factors in the analysis of model

output variables is presented in Chapter 5.

In cases where a large number of factors are involved, based on the computational
cost we may decide to concentrate on the most important factors that control
most of the output variability. To determine which factors among the many
(potentially) important factors really are important ‘screening methods’ presented

in the following section are used.

2.5.5 Screening Methods

The term ‘screening design’ is used to indicate any preliminary activity which

aims to find out which of the model input factors are important [11]. Screening
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designs are organised to deal with models containing hundreds of input factors.
Therefore, they should be economical. They provide information about the sen-
sitivity of the model to its inputs, while keeping computational cost of the exper-
iment low. Sensitivities obtained from screening methods are qualitative, that
is, screening methods rank the input factors in order of importance but do not
quantify how much a given factor is more important than another one.
Secreening methods are used for physical experiments as well as computer ex-
periments. In this thesis, we focus on screening methods developed in the context
of computer experiments which include standard One-at-A-Time (OAT) design
and Morris’s OAT design. Cotter’s design, Andres’s iterated fractional factorial
design and Bettonvil’s sequential bifurcation design are also among the screening
techniques used in SA. Detailed description of these methods are presented by
Campolongo & Kleijnen in Ref. [11]. Here, we discuss standard OAT which is
computationally not expensive but provides only local information, and Morris
OAT design which is more expensive but the information it provides is considered

global.

2.5.5.1 One-at-A-Time Designs

In a standard OAT (sometimes also called elementary OAT) design, each input
factor is changed one at a time and SA is performed to quantify the change in the
model output. The literature value of each factor (often called ‘nominal value’),
and a specified range in which the nominal value is normally between the two
extremes are used in a standard OAT approach. This standard strategy is not
the only one followed when an OAT design is conducted. Campolongo & Kleijnen
list the five categories of OAT designs given by Daniel (1973), and they are as

follows:

e Standard OAT designs where each factor is varied from a standard condi-

tion,

o Strict OAT designs where each factor is varied from the condition of the
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last preceding experimental run,

e Paired QAT designs where two observations are produced and one simple

comparison is made at a time,
e Free OAT designs where each new run is made under new conditions,

e Curved OAT designs in which a subset of results is produced by varying

only one easy-to-vary factor (see [11]).

Since this type of analysis only addresses sensitivity relative to the point estimates
chosen it is considered as a ‘local’ sensitivity experiment [13], [45].

According to Campolongo & Saltelli [13], neither an elementary OAT nor
a derivative based SA (discussed in Section 2.5.2) should be used to determine
which input factors are more influential on the model output(s) than others,
unless the mode! is known to be linear or the range of variation is small. Another
OAT design, introduced by Max D. Morris in 1991, has advantages over standard
OAT design and is described below. This design is recommended for use instead
of standard OAT design by Campolongo & Saltelli (see [13]).

2.5.5.2 Morris Design

This method is basically an individually randomized one-factor-at-a-time design
in the input factors. Using this method, the effect of changing the value of each
factor is evaluated in turn. The guiding philosophy of this method proposed by
Morris (see [87]), is that a major role of a preliminary experiment is to determine,
within reasonable uncertainty, which model input factors may be considered to
have effects which are (a) negligible, (b) linear and additive, (c¢) nonlinear or in-
volved in interactions with other inputs. Since Morris’s experiment covers the
entire input space 2, over which the factors may vary (unlike a local experiment
in which the factors vary only around their nominal values), Campolongo & Klei-
jnen {11] consider this design as a ‘global’ sensitivity experiment, and considering

Daniel’s terminology, they categorize the Morris design as a strict OAT design.
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The two main advantages that this design provides are: (i) it is ‘economic’ in
terms of number of model evaluations needed; (i7) no simplifying assumptions
regarding the form of the model are needed [87].

Morris estimated the main effect of a factor by first evaluating a number,
say r(r € {4,...,10}), of local measures, at different points xq,...,X, in the
experimental region, and then taking their average. By taking the average he
reduces the dependence on the specific point that a local experiment has. For
a given number of levels, say p, for each of the &k factors, the input space {2 is
a k-dimensional p-level grid, where each component of the (1 x k)-dimensional
input vector x, x;, may take values in the set {0, 1/(p-1), 2/(p-1), ..., 1}. In
practical applications, the values sampled from ) are first scaled to a suitable

input vector for the model as follows
z; = Ai + 2:(C; — Ay)

where A; and C; are the extreme values of the variability range of 2;. For a given

value of x, Morris defines the elementary effect of the ith input as

di(x) = [y(21, %2, - -, Tir, Ti + A, Tig, -, ) — y(X)]/A (2.22)

where x € § such that the perturbed point (x+A) is still in £ and A is a
predetermined multiple of 1/(p-1). A finite distribution of p(*~1p — A(p — 1)]
elementary effects for the ¢th input factor, which is denoted by F}, is estimated
by sampling x from 2. Analysis of the distribution F; through its mean p and
standard deviation o gives us useful information regarding the relative importance
of the ith input factor. A large mean value indicates a factor with a high overall
influence on the output; a high standard deviation indicates an input factor which
is interacting with other factors or whose effect is non-linear [12]. In the simplest
case, the total computational cost for obtaining a random sample of r values
from distribution F; is n = 2rk computer runs, that is, each elementary effect

requires two model runs: one at the selected values i, ..., zy; and one after x;
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is increased by the quantity A, z1,...,%i—1,Z; + A, Tip1, - -, Tk

Morris defines the economy of a design as the number of elementary effects
it produces divided by the number of experimental runs. So the economy of the
Morris design under the assumption that all 7k observed elementary effects are
independently drawn is 7k/2rk = 1/2. As Campolongo & Kleijnen point out, the
larger the economy for a particular design, the better it is in terms of providing
information for sensitivity and uncertainty analysis [11].

The main idea of Morris design is based on construction of a sampling matrix
which is called the ‘Orientation Matriz’ and denoted by B*. This (k+ 1) x k
dimensional B* matrix has the property that for every column ¢z = 1,2,...,k,
there are two rows of B* that differ only in their sth entries. With this particular
property, (k-+1) rows of B* produce (k+1) output values for the model, allowing
the calculation of k elementary effects, one for each input factor, from (k +
1) runs. If r is the size selected for the sample of the elementary effects, the
experiment requires construction of r orientation matrices. Therefore, the total
computational cost for the experiment is n = r(k + 1) model runs.

The first step in constructing an orientation matrix B* is to select a (k+1) xk
matrix B with elements of 0’s and 1’s, such that for every column ¢ =1,2,...,k
there are two rows of B that differ only in their ith entries; for example, B may

be chosen to be a lower triangular matrix of 1’s as given below

000 0
B=|1
111 1]

Then, the matrix B’ is given by

BI = Jk+1,1x* -+ AB
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where Jyi1,1 1s a (£ + 1) x 1 matrix of 1’s; x* is a randomly chosen starting
vector of x; and A is the selected increment for the components of x. Morris
also introduces the possibility of using AB as a design matrix for which the
corresponding experiment would provide % elementary effects, one for each input,
based on only (k-+1) model runs, but as he points out these would not be random
selections from the Fy’s. In order to obtain random selections, a randomized
version of the sampling matrix B*, which is called ‘a random orientation of B’,

is employed for the design, and it is given by the following equation:
B* = (Jp410%" + (A/2)[(2B — Jps1,6)D* + Jep14]) P

where D* is a k-dimensional diagonal matrix in which each diagonal element is
either -1 or +1 with equal probability; Ji1 4 is a (k+ 1) X k matrix of 1’s; and
P* is a k x k matrix obtained by randomly permuting columns of a & x k identity
matrix, where each such matrix has an equal probability of selection. If a sample
of r effects is required from each distribution Fj, then 7 different orientation

matrices B* have to be selected for the design matrix of the entire experiment

%
1

B3

B;

Over the entire design X, r elementary effects can be produced for each input

factor, and total computational cost would then be n = 7(k + 1) model runs.
Morris also compares his OAT design and the Latin hypercube design in the

input screening context, and shows that the Morris design may prove to have

more advantage over the Latin hypercube design [87].

Since both 8-compartment global carbon cycle models considered later in this

thesis are linear models with reasonably small number of factors (less than 20 in
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each model), we have used both the standard OAT design and Morris design as
well as other local and global sensitivity analyses techniques to present similarities

and dissimilarities of results obtained following different approaches.

2.5.6 Methods of Analysis

These design methods are basically Monte Carlo based methods. In the global
sense, all model input factors are varied simultaneously and the sensitivity is
measured over the entire range of each factor. These methods are based on
performing multiple model evaluations with randomly selected input factors by
using an appropriate sampling technique.

It should be noted that when we describe the methods in the following sections,
by the term ‘explanatory variable’ we mean model input factors, i.e., initial condi-
tions, transfer coefficients etc., and by the term ‘response variable’ we mean model
predictions, i.e. model output variables. Now, let us concentrate on a model with
a single output variable, say Y, and & input factors X; (5 = 1,2, ..., k). If there
are several outputs considered, the techniques described in the following sections

can easily be applied per output.

2.5.6.1 Correlation Measures

Input factors can be ranked in order of importance based on the value of the
correlation coeflicient between the output variable and each input factor. This
ranking assumes that the greater the correlation coefficient, the more controlling
influence that input factor has on the model behaviour {95].

Here, it is important to emphasize that the Pearson product-moment correla-
tion coefficient only picks up linear association, and it may miss more complicated
relationships where the input and output are related in a non-linear fashion.

When dealing with non-linear models, utilizing the Pearson correlation coef-
ficients for sensitivity ranking is not appropriate. In such cases, the Spearman

rank correlation coefficient is used.
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The Pearson moment-correlation coefficient and the Spearman rank correla-

tion coefficient are often utilized for sensitivity studies (for example, see [74], [75],

[96]).

2.5.6.2 Regression Analysis

Regression anaysis is a more formal investigation of the relationship between the
input factors X;; and the output ¥; (j =1, ..., k, i =1, ..., N).

The use of regression technique allows the sensitivity ranking to be determined
based on the relative magnitude of the regression coefficients. This is discussed
further in Section 2.5.6.5.

2.5.6.3 Stepwise Regression

When a model involving a large number of input factors is under consideration,
constructing a regression model with all input factors may not be appropriate due
to reasons such as the possibility of overfitting of the model, or only small number
of input factors having a significant effect. In such cases, stepwise regression which
creates a model by selecting the ‘best’ input factors from all original independent
variables one at each step, may be used.

Helton & Davis note three aspects of stepwise regression analysis that give
us insights on the importance of the individual input factors [49]. One of these
aspects is the order in which the factors are selected in the stepvise procedure.
The most important input factor is selected first, the next most important factor
is selected second, and so on. Another aspect is the R? values at successive steps
of the analysis that provide a measure of input importance by showing how much
of the uncertainty in the output variable is accounted by all input factors selected
at each step of the analysis. A third aspect of this analysis mentioned by Helton &
Davis is the absolute values of the standardized regression coefficients (SRCs) in
the individual regression models which can provide an indication about the input
factor importance. Examples of the stepwise regression analysis in sampling-

based sensitivity analysis can be found in various articles by Helton et al., for
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example [51], [52], [63] and [49].

2.5.6.4 Rank Transformation

The rank transformation is a simple procedure where the raw data is simply
replaced with their ranks, i.e., if there are N observations of the model output,
Y, these observations are replaced by their corresponding ranks 1 to N, where
R(Y;) is the rank assigned to the s¢th value of Y. Similarly, each of the model
input factors is replaced with its corresponding ranks 1 to N. For ties the average
ranks are assigned.

If the model output is a monotonic function of the input factors, then the rank
transformation is used to linearize relationships and also to reduce the effects of
extreme values. In Section 2.5.6.1, we have already mentioned the use of rank-
ing technique for calculating a correlation between ranked variables, and in the

following sections we provide other statistics based on the rank transformation.

2.5.6.5 SRC and SRRC

The estimated coefficients of a linear regression model show the effect of one
unit change in each X; on the model predictions assuming that the other input
factors are held constant. If the input factors are not in equivalent units, which
is often the case, then the estimated regression coefficients, which depend on the
units in which X;’s and Y are expressed, do not provide a useful indication of
model input factor importance, unless the effect of scale is removed. For linear
regression, this involves standardizing the X,’s and Y to mean 0 and standard
deviation 1. The size of the standardized regression coeflicients (SRCs) then
provide a more meaningful indication of input factor importance.

The standardized rank regression coeflicients (SRRCs) are simply the SRCs

calculated on ranks.
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2.5.6.6 PCC and PRCC

In some cases, the correlation between an input factor and an output variable,
say X; and Y, may be partially due to the correlations of other input factors, say
Xo, ..., Xi, with both X; and Y. In such a case, we may want to find out what
the correlation between X; and Y would be if the effect of X, ..., X on each
of Xy and Y were eliminated. This measure of correlation is called the partial
correlation, and the correlation coefficient between X; and Y after the linear
effect of X5, ..., X on both X; and Y has been eliminated is called the partial
correlation coefficient (PCC) [41].

As described by Kleijnen & Helton [74] PCCs can be calculated using a se-
quence of regression models. To calculate PCC between X; and Y first the
following two regression equations are constructed to correct for the linear effects

of other variables

k k
ijﬂo+z CPXIU! Y=bo+prXp,
vi b

then the sample correlation on the residuals (X; — X;) and (Y — V) is calculated.
The PCCs performed on the ranks instead of the raw data provide partial
rank correlation coefficients (PRCCs). The PCCs provide a ranking of the input
factors by indicating the strength of the linear relationship between X; and Y,
and with the PRCC’s the linear relationship between the ranks of X; and Y is
measured.
According to Saltelli & Homa (see [99]) non-parametric statistics based on ranks,
such as the SRRCs and PRCCs appear to be among the most robust and reliable
SA methods.
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2.6 Non-parametric SA Methods

Because of our limited knowledge of the input factors and their associated distri-
butions it is often desirable to use some nonparametric statistical tests.

The application of these three tests to SA comes from the idea of partitioning
the sample of an input factor under consideration into two sub-samples according
to the quantiles of the output distribution. If the distributions of the input factor
in the two sub-samples can be proven to be different then the input is identified as
an influential input. Using the test statistics as a sensitivity measure, the relative
importance of the input factors for each output variable can be obtained (i.e.,
the higher the test statistic calculated between an input factor and an output

variable, the more influential the input is on that output variable).

2.6.1 Smirnov Test

The Smirnov test is used to test if two different samples belong to the same
population. In order to be able to carry out a Smirnov test, the two samples
must satisfy the assumptions of: 1) the samples are random samples; 2) the two
samples are mutually independent; 3) the measurement scale is at least ordinal;
and 4) the random variables are continuous.

In the context of sensitivity analysis, the sample of a model input factor, say
X, is partitioned into two sub-samples, say X; and X, according to the quantiles
of the distribution of the model output, say Y. Let X; be size IN; and X; size
Ny, and S;(z) and Sa(z) be the empirical distribution functions of these two sub-
samples, respectively. The greatest vertical distance between the two empirical

distribution functions gives us the Smirnov test statistic denoted by T, that is,
Ts = sup |S1(z) — Sa(z)|.
&

This test statistic can be used to rank the model input factors, the higher the T

value the more infiuential the input factor on the model output.
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For hypothesis testing, if this test statistic exceeds its 1 — o quantile obtained
from the available tables (see [22]), the hypothesis of ‘the two sub-samples belong
to the same population’ is rejected at significance level . When the test results
show that the distributions of the two sub-samples are different, it can be said
that the investigated model input factor is an influential factor on the model

output.

2.6.2 Cramér-von Mises Test

Like the Smirnov test the Cramér-von Mises test is also used to determine whether
two empirical distributions are statistically identical. The assumptions for this
test are: 1) the samples are independent random samples; 2) the measurement
scale is at least ordinal; and 3) the random variables are continuous. The Cramér-

von Mises test statistic Tops is defined as

NN, Ny ) Ni+Ng .
Tem = LAY AL ( ; [S1(X;) — Sa(X3)] +j=%1:+1 [S1(X;) — Sa(X;)] )

where N is the size of the first sub-sample, N, is the size of the second sub-
sample, and the squared differences in the summation is computed at each X;
and at each Xj.

The Cramér-von Mises and Smirnov tests are very similar; however the cal-
culation of the test statistic for the former is slightly more difficult since it makes
more effective use of the data. According to Conover [22] there is little difference
in power between the two tests. Saltelli & Marivoet [100] note that because the
Cramér-von Mises statistic depends upon the total area between the two empir-
ical distributions, it may be more appropriate for SA when the model output

function is a non-monotonic function.
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2.6.3 Mann-Whitney Test

This non-parametric test is also based on two samples. The assumptions must be
satisfied by the two samples under consideration are: 1) both samples are random
samples; 2) the two samples are mutually independent; 3) two populations from
which the two samples are taken have the same shape, hence the same variance;
4) the measurement scale is at least ordinal.

The Mann-Whitney test essentially looks at the difference between the means
of ranks of the X values in the two sub-samples. The values of one of the two sub-
samples, say X;, are first ordered and ranks are assigned based on the ordering.

Then, the ranks R(X;)’s are used to compute the test statistic Thsw as
]

Ny
Tuw =Y, R(X;)
=1

where the summation is extended to the elements of one sub-sample only.

2.7 Implications on SA Methods

This chapter has described the important features of various SA methods, and
discussed their strengths and weaknesses.

It is important to note that there is no one “perfect” method which could give
a comprehensive indication of sensitivity, and as Helton et al. note in Ref. [50] it
is not possible to rate one method of SA as superior to another. To decide which
method(s) to use will depend on both the model being studied and the type of
information desired. If possible one should consider using a number of methods

to maximize confidence in the analysis results.

In the two chapters which follow, various SA techniques are applied to three differ-
ent compartmental models of the global carbon cycle. First, a general background
on the carbon cycle, which is useful in helping to understand different aspects of

the cycle, is given. That is followed by details about the observed(historic) and
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predicted(future) atmospheric CO, emissions resulting from fossil fuel burning
and deforestation. Then, a description of the model is given. After that, local
and global SA techniques are presented. In the last section, the results and the

discussions are summarized.




Chapter 3

Application of Sensitivity
Analysis Techniques to
Compartmental Models with

Specific Application to
Global Carbon Cycle Models

3.1 Introduction

Sensitivity Analysis (SA) of the model response to the variations in its input
factors is an essential element for improving both the understanding of the model
and its performance. As noted by Hora, SA is the first stage of a cycle of investi-
gation [57], and in this chapter various methods of SA for exploring the influence
of input factors on the outputs of models will be discussed.

The two test models used in this chapter are linear, time-invariant compart-
mental models and originate from the context of modelling the global carbon
cycle (GCC). These models, compared to some other GCC models available in
the scientific literature (for instance, GLOCO model in [40], ANU-BACE model

56
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in [103]), are not very complex. In the next chapter of this thesis, we use one
of these more complex models as a test model and investigate effect of model
complexity on SA.

Uncertainty analysis (UA), the next stage of investigation cycle, is covered in
Chapter 5.

The aims and objectives of this chapter are to (a) compare and contrast SA
techniques; (b) extend the techniques to deal with mass balanced GCC models, a
special case of constrained systems; and (¢) identify which set(s) of model input

factors are more influential on the model outputs.

3.2 The Global Carbon Cycle

Why is carbon important? The carbon atom is the basic building block of living
matter, therefore it is of prime importance to life. Living organisms circulate
carbon by simply existing.

The carbon cycle is the biological circulation of carbon from the atmosphere
into living organisms and after their death back again. The carbon cycle is
mostly the carbon dioxide cycle. Carbon dioxide, which plays an essential part
in metabolism and an intrinsic role in planetary energy, is released by respira-
tion, soil processes, combustion of carbon compounds, oceanic evaporation and
volcanic eruptions. It is dissolved in the oceans and consumed via photosyn-
thesis. The two main fluxes of the global carbon cycle, which are nearly equal,
are between the atmosphere and terrestrial systems, and the atmosphere and
the oceans. The terrestrial and aquatic systems are usually considered virtually
independent because production balances consumption of CO3 in both [76].

The carbon cycle was historically considered to be in equilibrium. However,
human actions and the industrial revolution have resulted in a significant imbal-
ance. According to Neftel et al. since 1750 there has been a steady increase in the
atmospheric carbon dioxide level, and human activities are largely responsible for

the observed increase [89]. Fossil fuel burning is the most important source of
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CO4 and fossil fuels have been injected into the atmosphere at a steadily increas-
ing rate since the beginning of the industrial revolution, around 1860 [68], [79],
[81). Keeling & Whorf (see [70]) have recorded an approximately 25% increase in
the atmospheric CO, levels from 1800 to 1985 mainly due to human influences
first from deforestation and now primarily from fossil fuel burning. They have
also noted that the huge increase in fuel combustion since 1950 has led the COq
content in the atmosphere to increase gradually from 280 parts per million (ppm)
to more than 350 ppm. Currently, there are 369.40 parts per million by volume
(ppmv) of COq in the atmosphere [71].

Although the carbon cycle is a highly complex cycle it can be summarized in
terms of a few major reservoirs of carbon and the carbon fluxes between them.
Figure 3.1 shows a typical global carbon cycle adapted from Krebs [76]. The
amounts of carbon are given in units of Gigatons of carbon (1 Gt C = 1 billion
metric tons of carbon) and all fluxes in units of Gigatons of carbon per year (Gt
C/yr). It shows that the oceanic reservoir contains by far the largest amount
of carbon, and the atmosphere is the smallest in terms of carbon storage but it
plays an important role in the cycle. The atmosphere exchanges CO, with the
ocean’s surface, and much of the carbon in the oceans is in the deeper waters.
Oceanographers believe that about 40% of the CO, from fossil fuels enters the
oceans each year [76]. The amount of CO5 in the oceans is fifty times that of COq
in the atmosphere, suggesting that the oceans can absorb most of the additional
CO, injected into the atmosphere. However, uptake of COy into the surface
waters of the oceans is relatively slow (half-life 1.3 years), and in addition, the
surface waters of the ocean (0 to ~100 m depth) mix with the deep waters even
more slowly (half-life 35 years) [7].

In 1938, G. S. Callendar presented the first data showing the increasing COq
concentration in the atmosphere and suggested that this increase might affect the
Earth’s climate. In 1956, G. N. Plass outlined theories to explain the relationship
between atmospheric CO, and climate. Soon after that R. Revelle and H. Suess

described the relationship between COq in the atmosphere and in the oceans, and
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Figure 3.1. A schematic diagram of the Global Carbon Cycle

Kaplan enlarged upon the role of CO:z in the atmosphere in terms of the global
heat balance [106].

In the 1970’, recognition of a growing world population, the rising per capita
use of energy, and the accompanying growth in the rates of fossil fuel CO2 emis-
sions drew many scientists’ attention to the atmospheric CO2 increase. Despite
international action to control the emission of some greenhouse gases, as we can
see in Figure 3.2 CO: levels are still rising. CO2 emission in 1751 was estimated
to be 0.003 Gt C, and in the next 100 years it only increased to 0.054 Gt C. Car-
bon emissions from fossil fuel burning are estimated to have increased at a rate
near 4.3 percent per year from 1860 until 1973 with the exception of brief periods
during the great depression and the world wars. Following the 1973 oil embargo

and a decline induced by sharp oil price increases in the early 1980’s, the amount
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of carbon entering the atmosphere began increasing again in the mid-1980’s and
reached 6.52 Gt C in 1996 [80].

In 1977, a leading group of scientists assembled in Florida to discuss the cur-
rent understanding of the dynamics of carbon exchanges within the atmosphere,
oceans and terrestrial biota that determine the atmospheric CO2 concentration.
Since then extensive research has been carried out by the international scientific
communities [106]. The importance of such research activities and measurements
obtained has become more widely recognised in the past two decades.

A dramatic increase in greenhouse gases, particularly COz, in the atmosphere
is one of the many disasters that the 20t century has witnessed. There is growing
concern that the resulting increased heat in the atmosphere known as ‘greenhouse

effect’ will affect climates around the world in the 215% century and beyond [3],
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Figure 3.2. CO2 emissions from fossil fuels (for pre-industrial time see inset of
period from 1750 to 1850).
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and the resulting increased heat in the atmosphere will have a serious impact on
the environment, climate, ocean levels and agriculture.

Projections of future CO, concentrations are needed to assess the likelihood
of significant global and regional change as a consequence of the continuing use
of fossil fuels and to determine if alternative scenarios of future energy use can
significantly change this likelihood [73].

Global carbon cycle models are needed to estimate the future change of COq
concentrations for specified COy emission scenarios. SA of these models is re-

quired to investigate the effects of changes in the inputs on the model outputs.

3.2.1 Observed Atmospheric CO; since 1744

Precise measurements of atmospheric carbon dioxide concentrations have been
obtained since March 1958 when Dr. Charles D. Keeling of the Scripps Institu-
tion of Oceanography, initiated a monitoring program at Mauna Loa Observatory
(MLO) in Hawaii. The site of MLO is one of the most favourable locations for
measuring undisturbed air and minimises the possible influences of human ac-
tivities and vegetation on atmospheric CO, concentrations. Air samples have
been continuously collected at MLO and analysed by infrared spectroscopy for
CO, concentrations. Data are averaged to give monthly and annual atmospheric
COq concentrations [69]. These measurements, widely recognised as the ‘Keeling
Curve’, constitute the largest, continuous record of atmospheric CO5 concentra-
tions available in the world. The annual averages of the data collected at MLO
have shown a steady rise in annual average concentration from 316 ppmv in 1959
t0 369.40 ppmv in 2000 [71].

Also, it has been found that long-term records of atmospheric CO4 concentra-
tions can be obtained from ice cores. Air is trapped by snow as it is transformed
into glacial ice, and by taking ice cores one can sample the atmosphere back in
time. For example, in the Soviet Antarctic Expedition at Vostok, Antarctica the
scientists collected a 2083 meter long ice core which spans 160,000 years [4].

Observed atmospheric COs concentrations from Mauna Loa, South Pole and
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Siple ice cores during the period 1744 through 2000 are presented in Figure 3.3.
What we can see in this figure is that concentration level did not change much
until 1850, when it was around 280 ppmv, after 1850’s the amount of carbon
dioxide in the atmosphere can be seen to be increasing year after year. This
exponential growth shows that the sources and sinks of atmospheric CO:z are not
exactly in balance, with the rate of increase in the 1980’s a little less than 0.5%
annually.

Measurements made at other locations all over the world also demonstrate
the increase in the atmospheric C02 level. South Pole and Siple Station ice core

measurements for recent years shows agreement with the Mauna Loa data.
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Figure 3.3. The annual atmospheric C02 concentrations from Mauna Loa Ob-
servatory, Hawaii: 1958-2000 (Keeling & Whorf, 2001 [71]); South Pole: 1973-
1993 (Keeling & Whorf, 1994 [69]); Siple Station: 1744-1953 (Friedli et al., 1986

[37.
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3.2.2 TPCC and Emission Scenarios

The Intergovernmental Panel on Climate Change (IPCC) was jointly established
by the World Meteorological Organisation (WMO) and the United Nations Envi-
ronmental Programme (UNEP) in 1988. The primary objectives of IPCC’s three

Working Groups are:
- to assess the available information on climate change,
- to assess the environmental and socio-economic impacts of climate change,
- and to formulate response strategies.

Despite trends which favour considerable increase in net greenhouse gas emis-
sions over the next century, the IPCC says that “significant reductions ... are
technically possible and can be economically feasible”. In 1992, they developed
six alternative emission scenarios based on different assumptions regarding the
factors which could have major influences on future levels of COs emissions.
Population and economic growth, structural changes in economies, energy prices,
technological advance and fossil fuel supplies are among factors considered [58].
These scenarios are referred to as the I392a to f scenarios, they extend to the
year 2100, and they include emissions of other greenhouse-related gases as well
as CO,. The projection of future CO, emissions associated with these scenarios
are given in Table 3.1, and three of these six scenarios used as input scenarios in
this thesis are illustrated in Figure 3.4 with the historic record of CO. emissions.

Scenario 1592a represents a middle-of-the range scenario due to modest and
largely offsetting changes in the underlying assumptions. Scenario IS92c¢ has
a CO, emissions path that eventually falls below its starting value. For this
scenario a decline in the population by the middle of the next century, a low eco-
nomic growth, and severe constraints on fossil fuel supply are assumed. Scenario
1S92e has the highest greenhouse gas emissions. It assumes moderate popula-
tion growth, high economic growth, high fossil fuel availability and eventually

hypothetical phase-out of nuclear power {58].
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Table 3.1. IPCC 1992 CO2 Emission Scenario Results

Year

1990
1995
2000
2005
2010
2015
2020
2025
2050
2075
2100

1S92a

7.40
7.93
8.4
9.16
9.89
10.64
11.38
12.23
14.52
16.31
20.28

1S92b

7.40
7.93
8.24
8.82
9.45
10.19
10.95
11.81
13.80
15.41
19.11

Scenario
1S92¢ 1S92d
741 7.33
723 7.27
7.46 7.49
7.75 7.81
8.05 8.17
8.31 8.54
8.49 8.78
8.79 9.29
7.51 9.02
5.58 9.27
4.61 10.33

HISTORIC RECORD

Total Emissions

ee Combustion of Fossil Fuels

B

Forest Clearing

Year

1S92e 1S92f
7.40 741
8.16 7.97
9.10 8.77
10.17 9.70
11.40 10.77
12.63 11.95
13.74 13.13
15.08 14.37
20.10 17.25
2696 21.19
35.84 26.59
FUTURE
PREDICTIONS
1S92-C
[0)
8 B

Figure 3.4. Historic and future CO2 emissions.

1S92-e

1S92-a
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3.2.3 COs Inputs

Global annual CO, emissions from the combination of fossil fuels combustion and
deforestation from Enting et al. [33] are used as input to the models. These data
are for the period 1765-1990. Pre-1765 values for total carbon flux were set to
0.2 Gt C, the total 1765 values from deforestation and fossil fuel emissions. As
future emissions, the IPCC’s three IS92 scenario estimates of CO, emissions from

fossil fuel combustion and forest clearing are used for the period 1990-2100.

3.3 Modelling the Global Carbon Cycle

Modelling complex processes, such as the global carbon cycle (GCC), is not an
easy task. The difficulty lies not only in having limited observational data but
also in a lack of understanding of the complex characteristics of the system. To
investigate the rate of atmospheric CO, increase it is essential to understand the
GCC linking the atmosphere, oceans and terrestrial systems, and to describe it
by mathematical models on the basis of ecology and engineering [39].

Many studies have been carried out to estimate current and future patterns
of atmospheric, oceanic, and terrestrial carbon storage. For that purpose usually
dynamic linear compartmental models are used.

There is a wide range of mathematical models describing the local and global
carbon cycle. The former usually describes the transport of carbon in a spe-
cific area or for a particular species. The latter models however usually focus
on analysing the GCC. Many GCC models, ranging from a single compartment
model to a 25-compartment model have been developed and are available in the
scientific literature. As noted by Iman and Conover [59], although the model is the
most important link in the study of a physical systems, the proper development
and verification of the model is the responsibility of geologists, physicists, engi-
neers and other experts. From a statistician’s point of view the model is viewed
as a ‘black-box’ with many inputs and one or more output variables. Taking this

into account, we treat the GCC models used in this thesis as black-box models.
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Now, in the following section we give a description of two of the three GCC models
(both are 8-compartment models) utilised in this thesis (the third GCC model
which is a larger and more complex model is described and used in Chapter 4).
Then, the results and discussions on the application of various SA methods to
one of the 8-compartment models is given in detail. In order to construct a base
for the UA covered in Chapter 5, the same SA methods have been applied to the

second 8-compartment model and the results are summarized in Appendix B.

3.3.1 The Two 8-Compartment GCC Models

The CO, distribution between atmosphere and oceans, atmosphere and terres-
trial systems, and the responses of these reservoirs to the input resulting from
fossil fuel burning and deforestation have been quantitatively described by using
two different compartmental models each consisting of eight compartments but
different structures. Here, we assume that each of these 8-compartment models
constitutes an adequate representation of the GCC.

The release of fossil fuel CO, and forest clearing are viewed in the context
of this model as perturbations to an initial steady-state condition, and all other

inputs to the model are assumed to be zero.

3.3.1.1 Description of Model I

The compartmental diagram of the first model adapted from Emanuel et al.
(1984) is given in Figure 3.5. The model consists of eight well-mixed compart-
ments and 15 transfer coefficients.

Two compartments represent carbon in the ‘surface ocean’ and ‘deep ocean’.
Carbon in living plants is divided between ‘tree’ and ‘ground vegetation’ com-
partments. The ‘tree’ compartment is separated into two separate compartments,
namely ‘nonwoody parts of trees’ and ‘woody parts of trees’. To represent carbon
in dead parts of the terrestrial systems and their decomposers, two compartments

are used. The ‘detritus/decomposers’ compartment corresponds to litter and its
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Figure 3.5. Compartment diagram of Global Carbon Cycle Model I (adapted
from Emanuel et al. (1984) [31]).

decomposers at the soil surface. Carbon input to this reservoir comes from death
of aboveground parts of vegetation. The ‘active soil carbon’ compartment consists
of carbon in soils and its decomposers. Carbon from death and initial decompo-
sition of below-ground parts of vegetation and transport of decomposed material
from the actively decaying litter layer is transferred into this compartment [30].

The flow of COq between the compartments is described by a set of eight first-
order, linear differential equations which contain 23 uncertain model input factors
(15 transfer coefficients and 8 initial conditions). To define the model sensitivity
to variations in these uncertain input factors, we treat them as random variables.

The nominal values of the initial compartment contents, and the transfer

coefficients which satisfy the assumed initial steady-state condition are given in
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Table 3.2 and Table 3.3, respectively.
The CO; emissions due to fossil fuel burning and forest clearing enter the

system through the atmosphere compartment.

The following are the model state equations of Model I:
T, = k1aa + b7y + k1s®s — (ko1 + kar + kst + ke1)z1 + va (%)
Lo = kn®1 + koszs — (k12 + ka2)To
T3 = kapZy — kasts
T4 = ka1®1 — kraTa

Ts = ks121 — (krs + kss)Zs

. (3.1)
Eg = ke1zy — (kg + ks) e
T7 = knaa + krsxs + krewe — (ki + ksr)xr
Ty = kgsTs + kseTe + ksrxr — K13Ts
with t(time) in years from 1750 to 2100, and
the initial states z;(t = 1750) = 2§, =1,2,...,8
and the model outputs:
y1(t) = 21(t), y2(t) = 22(2), ya(t) = w3(t), va(t) = za(t), (3.2)

Ys(t) = @5(t), ve(t) = w6(t), yr(t) = (1), ys(t) = ws(2).
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Table 3.2. Model I reference case initial compartment contents (in units of Gt C).

Description Nominal
(Initial Conditions) Input Factor Value Range

Atmosphere ] 622.40 497.92 - 746.88
Surface ocean x5 667.37 533.90 - 800.84
Deep ocean x5 37542.00 | 30033.60 - 45050.40
Nonwoody parts of trees Ty 38.21 30.57 - 45.85
Woody parts of trees T3 634.47 507.58 - 761.36
Ground vegetation xg 59.32 47.46 - 71.18
Detritus / decomposers x5 108.22 86.58 -129.86
Active soil carbon zg 1131.39 | 905.11 - 1357.67

Table 3.3. Model I reference case transfer coefficients (in units of yr~!) for

carbon transfer among compartments.

Description Input | Nominal Range
(Transfer Coefficients) Factor | Value
Atmosphere — Surface Ocean kay 0.1582 | 0.1266 - 0.1898
Atmosphere — Nonwoody parts of trees ka1 0.0354 | 0.0283 - 0.0425
Atmosphere — Woody parts of trees kst 0.0408 | 0.0326 - 0.0490
Atmosphere — Ground vegetation kg1 0.0241 | 0.0193 - 0.0289
Surface ocean — Atmosphere k19 0.1476 | 0.1181 - 0.1771
Surface Ocean — Deep ocean k3o 0.0473 | 0.0378 - 0.0568
Deep ocean — Surface ocean ko 0.0008 | 0.0006 - 0.0010
Nonwoody parts of trees — Detritus/decomposers kg 0.5758 | 0.4606 - 0.6910
Woody parts of trees — Detritus/decomposers ks 0.0353 | 0.0282 - 0.0424
Woody parts of trees = Active soil carbon kss 0.0047 | 0.0038 - 0.0056
Ground vegetation — Detritus/decomposers kg 0.1667 | 0.1334 -~ 0.2000
Ground vegetation — Active soil carbon kss 0.0862 | 0.0690 - 0.1034
Detritus/decomposers — Atmosphere kv 0.4688 | 0.3750 - 0.5626
Detritus/decomposers — Active soil carbon kgt 0.0328 | 0.0262 - 0.0394
Active soil carbon — Atmosphere kis 0.0103 | 0.0082 - 0.0124
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3.3.1.2 Description of Model II

This model originally developed by Kelly et al. (1975) is identical to that utilised
by McCartney [78] and Bush ef al. [8]. It is based on the global carbon cycle,
and was mostly used to predict the possible effects of 4C discharges from the
nuclear fuel cycle. The structure of the model, consisting of 8 compartments and
18 transfer coefficients, is given in Figure 3.6. The model is basically that of
a four-compartment model separated into northern and southern hemispheres.
The main 4 reservoirs are the ‘circulating carbon’, ‘surface ocean’, ‘deep ocean’,

and the ‘humus’ compartments.

Northern Hemisphere

Southern Hemisphere

Fossil Fossil
Fuel Fuel
Emissions Emissions
Circulating Circulating
Carbon Carbon
Humus Humus
Surface Surface
Ocean Ocean
Deep Deep
Ocean Ocean

Figure 3.6. Compartment diagram of Global Carbon Cycle Model II (adopted

from McCartney (1987) [78]).
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Since *C’s primary atmospheric form is gaseous as CO, and it is closely
involved in many physical and biological processes notably photosynthesis and
exchange within the carbon cycle, we consider the same nominal values of pa-
rameters as those used by the model developers. The initial content of each com-
partment and the transfer coefficients are provided in Table 3.4 and Table 3.5,
respectively. The input into the circulating carbon compartments is assumed
to be distributed in the same proportion between Northern and Southern hemi-
spheres as the present-day population distribution, i.e. 80% in the North and
20% in the South [78].

The set of differential equations representing Model II are as follows:

&1 = kio®g + k1a%a + k155 — (ko1 + kar + ksi) 1 + v ()
Ty = ko1®1 + kos®s + kas®s — (k1o + kaz + ke2) 22

T3 = k3g®2 + karmr — (koz + ke3) 3

T4 = ka1 — k14%4

d?5 = k51$1 + k56$6 - k53$3 —_ (kls + kes + kg5)$5 + ’I,L5(t)

. (3.3)
Te = kea®a + kesxs + kerzr — (Ko + kss + Kve)Ts
&7 = kraxs + krewe — (kar + ker)zv
Tg = kgsTs — kssTs
with t(time) in years from 1750 to 2100, and
the initial states ;(t = 1750) = %,i=1,2,...,8
and the model outputs:
Y1 (8) = 21(t), ya(t) = @a(t), ys(t) = x3(2), yalt) = z4(2), (3.4)
ys(t) = z5(t), ye(t) = z6(t), y2(t) = m7(t), ys(t) = ws(t).
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Description Nominal
(Initial Conditions) | Pt FaCt | " orue Range

Circulating carbon-(NH)® z3 325.21 260.17 - 390.25
Surface ocean-(NH) z5 448.31 358.65 - 537.97
Deep ocean-(NH) z§ 12,426.00 | 9940.80 - 14911.20
Humus-(NH) 3 1042.30 |  833.84 - 1250.76
Circulating carbon-(SH)? 3 291.59 233.27 - 349.91
Surface ocean-(SH) Tg 677.54 542.03 - 813.05
Deep ocean-(SH) x5 21,983.00 | 17,586.40 - 26,379.60
Humus-(SH) 2 356.21 |  284.97 - 427.45

*Northern Hemisphere
®Southern Hemisphere

Table 3.5. Model II reference case transfer coefficients (in units of yr~') for

carbon transfer among compartments.

Description Input |Nominal Range
(Transfer Coefficients) Factor| Value g
Circulating carbon (NH) — Surface Ocean (NH) ko1 0.1400 | 0.1120 - 0.1680
Circulating carbon (NH) — Humus (NH) ka 0.0160 [ 0.0128 - 0.0192
Circulating carbon (NH) — Circulating carbon (SH)| &s1 0.5000 | 0.4000 - 0.6000
Surface ocean (NH) — Circulating carbon (NH) k12 0.1000 { 0.0800 - 0.1200
Surface ocean (NH) — Deep ocean (NH) k3o 0.0900 | 0.0720 - 0.1080
Surface ocean (NH) — Surface ocean (SH) ks 0.1000 { 0.0800 - 0.1200
Deep ocean (NH) — Surface ocean (NH) ka3 0.0032 | 0.0026 - 0.0038
Deep ocean (NH) — Deep ocean (SH) k73 0.0050 | 0.0040 - 0.0060
Humus (NH) — Circulating carbon (NH) k14 0.0050 | 0.0040 - 0.0060
Circulating carbon (SH) — Circulating carbon (NH) | k15 0.5600 | 0.4480 - 0.6720
Circulating carbon (SH) — Surface ocean (SH) kes 0.2300 | 0.1840 - 0.2760
Circulating carbon (SH) — Humus (SH) kss 0.0061 | 0.0049 - 0.0073
Surface ocean (SH) — Surface ocean (NH) ko 0.0660 | 0.0528 - 0.0792
Surface ocean (SH) -+ Circulating carbon (SH) ks 0.1000 | 0.0800 - 0.1200
Surface ocean (SH) — Deep ocean (SH) k76 0.0900 | 0.0720 - 0.1080
Deep ocean (SH) — Deep ocean (NH) k37 0.0028 | 0.0022 - 0.0034
Deep ocean (SH) — Surface ocean (SH) kg7 0.0028 10.0022 - 0.0034
Humus (SH) — Circulating carbon (SH) ksg 0.0050 |0.0040 - 0.0060
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3.4 Extension and Application of SA to
GCC Model I

In this study, various SA methods grouped under three main settings are used.
First, local SA which is based on the derivation of the differential equations
describing a complete sensitivity matrix for each output variable with respect to
each input factor is applied to the model.

Second, individually randomised one-factor-at-a-time (OAT) design is dis-
cussed, and data analysis based on the resulting random sample of observed
elementary effects is presented. This standard OAT design and Morris’s design
described in Section 2.5.5 are used for screening purpose.

Third, global SA methods which are based on Monte Carlo simulations are

carried out by following these three steps:
1. selection of random, independent sets of values for model input factors,
2. initialisation of the carbon cycle model, and
3. simulation of GCC dynamics between years 1750 and 2100.

Initialisation of the carbon cycle model involves a calibration step in which
parameter values and initial conditions are calculated, consistent with an assumed
steady-state for atmosphere, ocean and terrestrial biota COsq.

To assess the effect of any one input on the model output one can either ignore
the other inputs, i.e. fix them at their nominal values, or adjust them using some
assumed condition. Since it is known that long before the industrial revolution
the GCC was in balance, the latter situation must be taken into consideration
when the two 8-compartment models are considered. Hence, as the first step
of the analysis, models are set up such that steady-state is maintained, i.e. the
flux of CO, leaving compartment 7 is equal to the flux of COy coming into that
compartment, before we start perturbing the system with any input. In other
words, we assume that dz;/dt = 0 in year 1750 when model simulations are
started.
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Because the model codes of the two 8-compartment models are not supple-
mented with a calibration routine we have to find a computational way to ensure
initial steady-state which is an important modelling assumption. Two different
procedures are developed to maintain steady-state condition when we are con-
cerned with the sensitivities of compartment contents to the uncertainties about
the initial conditions, and about the transfer coefficients. In both procedures
the main idea is to adjust the initial compartment contents and the transfer
coefficients so that steady-state condition is satisfied.

For the initial conditions, when the model code is run for a long period of
time without any perturbations to the cycle, the model eventually reaches a
steady-state at which point fossil-fuel and forest clearing emissions are introduced
into the model through the atmosphere compartment and the model output is
calculated. This procedure was followed for every model run. Although, for
the base-line case, the compartmental contents did not vary much from their
original values, this process puts the system in balance. Thus, we can assume
that preindustrial emissions were low and relatively constant over a long time
period prior to the initial simulation date.

The procedure followed when the transfer coefficients are concerned is based
on solving the homogeneous system of equations using the method of Gauss-
Jordan elimination. Considering Model I, we have 8 linear equations in 15 un-
knowns (transfer coefficients), and for Model II we have 8 linear equations in 18
unknowns. Before we go further, we shall introduce notation that makes it easier
to explain the steps in the procedure. The nominal values of the compartmental
contents are considered as entries of a matrix X which will be referred to as the
coefficient matrix of the system. The vector of the transfer coefficients denoted
by k is the vector of unknowns. Hence, the model equations in matrix notation

can be written as Xk = 0.
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To find the solution of Xk = 0, first the elementary row operations( are
applied to the rows of X until the matrix is in reduced row echelon form. In a
matrix in reduced row echelon form, the non-zero rows come first and the first
non-zero entry in those rows are the pivots. The unknowns (transfer coefficients),
which are the elements ofk, are separated into two groups. One group is made up
of the basic variables, those that correspond to columns with pivots. The other
group is made up of the free variables, corresponding to columns without pivots.
After reaching reduced row echelon form and identifying the basic and the free
variables, the next step involves solving the simplified system of equations for
the basic variables in terms of free variables. In this process the system is solved
in reverse order, from the last equation to the first, by substituting each newly
computed value into the previous equation. This process called back substitution
continues until all basic variables are computed. As an illustration, the solution
of the homogeneous system of equations of Model I is given below. Note that
in the matrix notation of the system of equations the symbols of the elements
of the coefficient matrix X are used instead of their actual numerical values to

make the row operations easier.

After applying elementary row operations to the coefficient matrix given in

Equation 3.5, the matrix becomes

Xl -cx2 0 0 0 0 0 0 0 — 0
0 0O 0 0 0 =% 0 0 0 0 0 0 0
0 0O 0 0 0 0 s s 0 0 0 0 0
0 XX 0 0 0 0 0 0 —= -xI 0 0 0
0 O 0 383 -x2 0 0 0 0 0 O 0 0
0 0 0 0 0 , x» 0 x 0 —%-X 0
0 0O 0 0 0 0 0 . 0 x 0 x
0 o 0 0 0 0O O O O 0 0 0 O

cElementary row operations are arithmetic operations applied to a matrix representation of
a system of equations: 1. Multiplying (or dividing) one row by a non-zero number, 2. Adding
a multiple of one row to another row, 3. Interchanging two rows.



CHAPTER 3. SENSITIVITY ANALYSIS 7

In this echelon matrix, the first, second, third, fourth, sixth, eighth and tenth
columns contain the pivots (given in boxes), so the corresponding elements of
k vector, i.e. the transfer coefficients kg1, k41, ks1, Ke1, K32, kra, kss are the
basic variables. The elements of the free variables group are the transfer coef-
ficients corresponding to the columns of the above matrix without pivots , i.e.
k1o, ks, ks, ke, ksg, k17, kg7, k1g are the free variables. Having identified the free
and the basic variables, now we can determine the basic variables in terms of the

free variables by back-substitution. Proceeding upward,

:Eg ]{235 +£Eg kga +LE$ ]1137 — LE; klg =0

yields kg5 = {—x§ kg — 7 kgr + x§ k1s|/ 25

272 ]{:74 -+ mg ]1’;75 + -’17(05 k’?G - 33; (kl'? + k87) =0
yields kzy = [~ krs — 23 kre + x5 (kiy + ks7)] /24

T3 kg — x5 kos = 0
yields k‘gg = [$§ k23]/m(2)

:13({ k61 - a:fs’ (km + kgs) =0
yields ke = [£3 (kre + kao)]/23 (3.6)

x3 kg1 — T (k75 -+ k35) =0

yields ks; = [25 krs — x§ kse — 25 ker + 23 Kkus) /23

LL“{ khu - xz k74 =0

yields ]i}41 = [—'-.’Eg k75 - .’Eg ]1}76 + .’L'? (lﬁl'{' -+ k37)]/{17i

.’II; (klgl + [{241 + k}51 -+ kﬁl) - 1173 ku - w$ k17 — .'Eg ]1}13 =0
yields kgl = [3}; ]ﬁlg]/ﬂji
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replacing z¢, (1 = 1,2, ...,8)’s with their actual values gives

kigs = [—59.32 ksg — 108.22 kgy + 1131.39 kyg)/634.47

kg = [—634.47 ks — 59.32 kg + 108.22 (kyr + ksr)]/38.21

kigy = [37542.00 k3] /667.37

kg1 = [59.32 (kg + kss)]/622.40

ks = [634.47 kzs — 59.32 kg — 108.22 ksy + 1131.39 ky3]/622.40
kqy = [—634.47 kzs — 59.32 krg + 108.22 (k7 + ksr)]/622.40

ka1 = [667.37 k15]/622.40.

Thus the solution to Xk = 0, after carrying out the arithmetic in the above

equations, can now be written as

ka \ 1.07 k1o

ka —1.02 k75 — 0.10 k76 + 0.17 [k17 + ksr]
ks1 1.02 kys — 0.10 kgg — 0.17 kg7 + 1.82 kg
ket 0.10 [k7 + kse)

k1o K1z

k3o 56.25 kos

ko3 kos

ko | = | 16.60 ks — 1.55ks + 2.83 [kir + ksz] | - (3.7)
ks ks

kss —0.09 kgg — 0.17 kg7 + 1.78 kg

kg krg

ks kss

k17 Ky

kgr kg7

Uy /
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When the transfer coefficients of Model II is considered in the initialisation
process, the solution to Xk = 0, by following the same procedure above, is found

as

ko ) 1.38 15 — 0.90 s + 2.08 kg \
kay 3.21 kg
st 0.90 (ks + kos) — 2.08 kss
k12 kg
ks 9772 kgg — 1.51 kro + 49.04 kigr
ke —0.65 kes + 1.51 (kog + kse + kre) — 49.04 ker
ka3 ka3
- ~0.05 kg + 177 (ksz + ker)
ki | _ k14 (3.8)
k15 ks
kes kes
kg5 1.22 ksg
kag kag
kse ks
ke ke
kaz ks
ker ker
\ kss \ kss /

with the basic variables being ko1, k41, k51, k32, Kea, k73, kss, and the free variables
being ki, ka3, k14, k15, kes, Kas, kse, k6, k37, ez and kss.

In the beginning of each model run, first the free variables are randomly
generated from uniform distribution over the specified ranges given in Table 3.3
(for Model I) and in Table 3.5 (for Model IT). Then, using Equations (3.7) when
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Model I and Equations (3.8) when Model II is under consideration, the values for
the basic variables are calculated.

After the initialisation process which puts the system in steady-state, the an-
thropogenic release of COq from the combustion of fossil fuels and changes in
the land-use mainly from deforestation are introduced into the model through
the atmosphere compartment and then global carbon cycle dynamics are simu-
lated using the two linear, time-invariant compartmental models introduced in
Section 3.3.1. Each of the model runs is initialised in 1750 and integrated for
350 years to the year 2100. The quantities of carbon stored in each compartment
are calculated at annual time intervals. Simple random sampling was used to
generate the input matrix. To assess if the sample size considered in the model
simulations has any impact on the sensitivities of model outputs we consider two
different sample sizes N=100 and N=5,000 in the simulations. In the sensitivity
analysis of the model outputs, historical input data (see Section 3.2.1) and IPCC’s
future emission scenario IS92a, which is based on plausible assumptions about
future population and economic growths and energy supplies (see Section 3.2.2),

are considered as the model input.

3.5 Results and Discussion on 8-Compartment

GCC Model 1

3.5.1 Screening Methods
3.5.1.1 Standard OAT Design on Initial Conditions

First, the initial condition of each compartment (9, z3, ..., 23) is considered in
the analysis. These model input factors are listed in Table 3.2 together with their
nominal values and ranges. Given the lack of information about the distributions
of these initial conditions the sensitivity analysis experiments have been\ carried

out assuming all the initial conditions follow a uniform distribution.
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Figure 3.7 illustrates the variation in time dependent behaviour of the at-
mosphere compartment due to the variation about each initial condition. The
variation in the time dependent behaviour of compartmental CO4 contents of the
other seven compartments are presented in Appendix A (see Figures A.1 - A.7).
Each dashed-line curve in these graphs corresponds to the prediction associated
with one of the 100 Monte Carlo sample vectors, and the solid line curve in each
of these graphs is based on the nominal values of the input factors.

Each graph of Figure 3.7 shows the predictions resulting from varying the
initial COz content of each compartment (%, ..., z3) one-at-a-~time while holding
the others at their nominal values, and the initial condition which is varied is
specified at the top-left corner of each graph. It is clear from this figure that the
variability in the initial condition of deep ocean compartment x§ has a dramatic
effect on the output of the atmosphere compartment during the whole time pe-
riod. Even though it is not as obvious as the effect of z5, the variation in zg, x5
and z7 also seem to be affecting the output. The atmospheric output does not
seem to be very sensitive to the rest of the input factors, all 100 prediction curves
lie roughly on the base-line curve.

The output of the other seven compartments also appear to be influenced
by the variation in z§ the most. Because there is much more carbon in the
deep ocean than in any other compartment, it is apparent that the amount of
COq in all compartments is being controlled to a considerable extent by the
initial condition of the deep ocean compartment. The output of both ocean
compartments especially the deep ocean compartment are least affected by the
variation in z3, zg and 27. These ocean compartments also seem to be sensitive
to the variation in 23, 2%, x5 and zj. The sensitivity of the active soil carbon
compartment output to these four initial conditions is more obvious. We can
also see that except in the deep ocean and active soil carbon compartments COq
content of each compartment is increasing rapidly starting around 1980s. Because
these two carbon reservoirs are distinguished from those of other carbon reservoirs

in their functions as long-term carbon sinks, the change in the carbon content of
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Figure 3.7. Atmospheric CO2 predictions resulting from varying initial com-
partmental content x° of compartment i (i = 1,2,..., 8) OAT (given at top-left
corner of each graph - see Table 3.2 for description of these input factors). N=100
model simulations, IS92a emission scenario is considered. In each graph solid line
represents the base-line case and dashed lines represent the predictions.
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these compartments is not as rapid, especially in the deep ocean compartment
since transport and mixing processes in this reservoir is very slow. The initial
conditions of the terrestrial compartments, except the active soil carbon com-

partment, do not influence CO5 levels in any of the compartments much.

Very qualitatively, such pictures allow the analyst to investigate the effect of each
input factor (varied OAT) on a given output. They also show which outputs

affected by which inputs in the sense of variation in the outputs.

Sensitivity Index The sensitivity index (SI) was introduced by Hoffman &
Gardner [54] and it is simply calculated by substituting the minimum and max-
imum (from Table 3.2) for the nominal value of the jth input factor (the jth
initial condition, in this case), while holding all other initial conditions at their

nominal values, to produce a maximum and minimum value of the compartment

mes  ,,min

¢ (yij 1 Yij
sensitivities.

). SI;; accounts for all possible values when determining input factor

Because the compartmental outputs are time dependent functions of initial
conditions, to determine whether their importance changes through time we ex-

amine the results from years 1900, 2000 and 2100. Each SI;; is derived using

SLy =1 = [yl (&) /v (1)].

For example, raising the nominal value of z] from 622.40 to its maximum of
746.88 produces y5i**(t = 2100) = 895.37 Gt C. Lowering the value of x5 to its
minimum value 497.92 produces 357" (t = 2100) = 891.30 Gt C. The surface ocean
Sy, for initial condition z3 is therefore SIy; = 1 - (891.30/895.37) = 0.0045.

A sensitivity index can take values between 0 and 1. A SI;; of 1.0 indicates
that the ¢th model output has maximal variation to changes in values of the jth
input factor, whereas a SI;; of less than 0.01 on the other hand indicates that
the 7th output is not very sensitive to the changes in the jth input factor. The
calculated SIs are presented graphically in Figure 3.8. The sensitivity of the eight
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compartments’ output to the range of each initial condition at three years are
plotted in each graph, with lines joining the SI of each compartmental output. It
is clear from these line plots that the sensitivity of each compartment’s content
to changes in the range of all initial conditions decreases with time. The decrease
in the sensitivities of the outputs of the deep ocean and the active soil carbon
compartments is less compared to the decrease for the other compartments. It is
evident in this figure that for all eight compartmental contents in all three years,
uncertainties in model predictions will mainly be dominated by changes in the
initial condition z§ (see top-right graph in Figure 3.8) as it is the only initial
condition that gives SI of greater than 0.01.

To determine the order of importance of the change in the initial conditions on
each compartment in years 1900, 2000 and 2100, the SIs are ranked and given in
Table 3.6. The ranking within each compartment in years 1900 and 2100 does not
change, whereas for all compartmental outputs the ranking in year 2000 changes
slightly. All model outputs, i.e. all compartmental contents in three chosen years,

seem to be influenced by the variation in z3 followed by 3 and 5.
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Figure 3.8. Sensitivity indices of compartmental outputs to the range of initial

conditions. (The results given are calculated using Model I, and 1S92a emission
scenario).
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Table 3.6. Rankings of Model I compartmental output sensitivities to the range
of the initial conditions based on SI calculated in years 1900, 2000 and 2100.

Compartmental | Input Sensitivity Index (SI) Compartmental | Input Sensitivity Index (SI)
Output Factor || v 1900 | vr 2000 | v+ 2100 Output Factor | vy 1900 | vr 2000 | Yr 2100

of 5 6 5 9 5 6 5

o3 8 3 3 @3 3 3 3

®f 1 1 1 @3 1 1 1

@3 8 8 8 Woody parts ) 8 8 8

Atmosphere @p 4 4.5 4 of Trees @2 4 4.5 4

mg 7 7 7 wg ke 7 7

o 6 4.5 6 «f 6 4.5 6

wf 2 2 2 o 2 2 2

«f 5 6 5 of 5 6 5

mg 3 3 3 mg 3 3 3

] 1 1 1 ©§ 1 1 1

Surface of 8 8 8 Ground =g 8 8 8

Ocean of 4 4.5 4 Vegetation LY 4 4.5 4

wg 7 7 7 «g K 7 7

3 6 4.5 6 2§ ] 4.5 6

L 2 2 2 og 2 2 2

of 5 6 5 =f 5 6 5

™3 3 8 3 @ 38 8 3

=g 1 1 1 w§ 1 1 1

Deep wg 8 8 8 Detritus/ mg 8 8 8

Qeean o 4 4.5 4 Decomposers wg 4 4.5 4

@ 7 7 7 wg 7 7 7

wf 6 4.5 6 o 6 4.5 6

w©g 2 2 2 g 2 2 2

©f 5 6 5 ®f 5 6 5

@9 3 s 3 wd 3 3 3
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The SI only addresses input factor sensitivity relative to the point estimates of

an input factor. Next, using another sensitivity measure we examine sensitivities

with regard to the entire input factor distributions.
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Standardised Range This statistic was calculated using predictions from the
standard OAT design. First, the range of each compartmental content (say,
compartment ) resulting from varying each input factor (say, initial condition j)
over its range while leaving all other initial conditions at their nominal values,
le. ym® —y;f;”:" is calculated at year t. Then, this output range of compartment ¢
is standardised by the nominal value of the corresponding compartment’s initial
content. To assess the effect of the number of model runs on the results N=100
and N=5,000 model simulations are considered.

The standardised ranges (SRs) of compartments due to varying each initial
condition OAT are demonstrated as dot charts in Figures 3.9 and 3.10. These
figures allow us to judge how compartmental contents differ in terms of SRs
within the same year and also between the years. In each frame of these figures,
we have superimposed the SRs computed on the predictions of the model outputs
based on N=100 and N=5,000 model runs, so that the influence of the number
of model runs on the SRs can easily be visualized.

Even though the range of SR values are not the same, the degree of sensitivity
of each compartment to the uncertainty in the initial conditions of atmosphere
(z$) and both ocean compartments (x5 and z3) does not appear to be changing,
that is, the variation in all these three initial conditions influences the ground
vegetation compartment the most, the nonwoody parts of trees compartment the
second most, and these compartments are followed by the active soil carbon,
atmosphere and the detritus/decomposers compartments (see Figure 3.9). The
surface ocean, deep ocean and the woody parts of trees compartments are the
least influenced by these three initial conditions.

Compared to the SR results on x3, the SRs of all the compartments due to
variation in the other seven initial conditions are much smaller (lower than 0.1),
especially the results due to uncertainty about z§ and zg (see the lower-right
frame in Figure 3.9 and the upper-right frame in Figure 3.10). Considering how
small the ranges of SRs are it is difficult to say that change in zj and zg are

effective on any of the compartments at all.
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As Figures 3.9 and 3.10 show the SRs hardly change from year to year no
matter which N is used. The highest SR values result from the OAT design
conducted on z§, which are in the range of 0.361 and 0.3708 when N=100, and
between 0.367 and 0.3765 when N=5,000 (see lower-left frame in Figure 3.9).

As with z$, 25 and z3, the variation in the initial conditions of the woody
parts of trees (zg) and active soil carbon (z§) compartments appear to influence
the ground vegetation, nonwoody parts of trees, active soil carbon, atmosphere
and detritus/decomposers compartments more (in descending order of sensitivity
in terms of SRs) (see Figure 3.10). The effect of 27 and z§ on the two ocean and
the woody parts of trees is relatively low.

In the dotplot showing the SRs obtained from the analysis where only %
was varied over its entire range, we see that with the results based on N=100
model runs the variation in z?9 is equally and most effective on non-woody parts
of trees and ground vegetation compartments followed closely by atmosphere,
detritus/decomposers and active soil carbon compartments; and the ocean and
woody parts of trees compartments are the least influenced by z7. When 5,000
model runs are considered, there is no change in the SR of four of the compart-
ments, namely nonwoody parts of trees, atmosphere, detritus/decomposers and
active soil carbon compartments. For the other three compartments the SRs
increase but only by 0.00001.

Again using the SRs of compartmental contents at three chosen years, we can
also assess how the order of importance of the initial conditions change within
the same compartment, i.e. which input factors are more influential on a com-
partmental content than others. It is clear from the dotcharts of the SRs given
in Figures 3.9 and 3.10 that 2§ is the most influential initial condition on all
compartmental outputs and it is followed by zg, x5, =2, 23, ©7, xg and =] in this
given order. This order of relative importance based on the SR values does not

change with the number of model runs and time.
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Figure 3.9. Dotcharts showing how each compartmental output of Model I
in years 1900, 2000 and 2100 is effected by the variation in the x1-x4 initial
conditions in terms of Standardised Ranges. In each frame (o) show results from
N=100 and (e) from N=>5,000 model runs.
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Figure 3.10. Dotcharts showing how each compartmental output of Model I
in years 1900, 2000 and 2100 is effected by the variation in the x5-x8 initial
conditions in terms of Standardised Ranges. In each frame (o) show results from
N=100 and (*) from N=5,000 model runs.
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3.5.1.2 Morris Design on Initial Conditions

Now, we continue our screening analysis by applying the Morris design to Model
1. Here we are first taking into consideration the initial conditions as model input
factors. Due to our lack of knowledge regarding the distribution of each input
factor, in the analyses we assume that the distribution followed by each factor is
uniform. In the application of Morris method, such an assumption is beneficial,
i.e. since the levels of the experiment are obtained by dividing in equal parts
the interval in which each factor varies, the statistical information contained in
the distribution functions will not be lost. As noted by Campolongo et al. [15],
all the examples of application of this screening design available in the literature
are based on the assumption that the input factors follow a uniform distribution
(examples can be found in Refs. [9], [12] and [87]). They also note that sensitivity
measures provided by the Morris method are only qualitative, i.e. measures
capable of ranking the input factors in order of importance.

As described in Section 2.5.5, in this screening test data analysis is based on
examination of the finite distributions of elementary effects. In order to estimate
the mean and standard deviation of the distribution, from each F; we collected a
random sample of size 7 = 10 by using ten independently generated orientation
matrices. These orientation matrices were generated using p = 4. In comparison
to the standard QAT screening the Morris method is less expensive and laborious.
Based on the n = 90 computed values of each output variable, a random sample
of ten elementary effects was observed for each of the 8 input factors. Then, the
sample mean and standard deviation which are unbiased estimators of the mean
and standard deviation of the distribution of F; for input factor ¢ are calculated.

The analysis was carried out on all eight compartmental outputs in years
1900, 2000 and 2100. The estimated Morris mean u and standard deviation o
values for the 8 initial conditions are reported in Table A.1 (see Appendix A). In
order to establish a general order of relative importance for the initial conditions
within each compartment at a specific year we used a sensitivity measure, the

Euclidean distance from the origin, introduced by Campolongo & Gabric [10].
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The higher the distance, the more important the initial condition is. Here we
give the results of the Morris screening exercise on the atmosphere compartment
at three chosen years in Figure 3.11. In this figure the eight initial conditions
z%, ..., x5 are labeled as x10, ..., x80. Similarly, figures displaying the results of
Morris design on the other seven compartments have been produced but since the
pattern in those figures is almost the same as the one shown in Figure 3.11, we
have not included all these figures here but the results on all eight model outputs
are summarised in Table 3.7 in terms of importance ranking,.

As seen in Figure 3.11, input factor z§ is clearly separated from the cluster
of the remaining initial conditions. Hence, considering both means and standard
deviations together, we can conclude that the deep ocean compartment being the
largest compartment of the model its initial condition 2§ dominate the results
and z3 appear to be the most important initial condition for the atmosphere
compartment at all three years. This is also the case with the other compart-
mental outputs. In Figure 3.11, we first draw the plots with all initial conditions,
and because of effect of the high mean values for z3, it is difficult to visualize the
relative importance of the other seven factors. Therefore, we redraw the plots in
the absence of z3.

The ranking of the initial conditions according to the Morris mean, which
is identical to the ranking of the Euclidean distance from the origin, for each
compartmental output is given in Table 3.7. Note that because the ranking of
the estimated mean values for the same compartment do not change from year
to year, in the table we do not give the rankings from all three chosen years.
Table 3.7 shows that the order of importance between the initial conditions is the
same for all compartments.

As seen in Figure 3.11 for the atmosphere compartment and summarized
in Table 3.7, in terms of ranks, for all compartments after x5 the second most
important initial condition appears to be z§ which is followed by =3, ¢ and z73.
None of the compartments appears to be sensitive to z3, g and z7 which have

estimated morris mean and standard deviations close to zero.
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Figure 3.11. Morris screening results on Atmosphere compartment of Model
I in years 1900, 2000 and 2100. Mean and standard deviations are associated
with the initial conditions considered in the analysis. The panels on the right

of the figure display the results excluding the point corresponding to x3.
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Table 3.7. Results of Morris experiment on Model I. Initial conditions are ranked
in order of importance according to the SA measures of Morris mean p.

Compartmental Input Morris Compartmental { Input Morris
Output Factor Rank Qutput Factor Rank
xf 5 @] 5
® 3 ®3 3
©3 1 3 1
g 8 Woody parts 5 8
Atmosphere .'1:§ 4 of Trees :1:§ 4
xg 7 g 7
Ty 6 x? 6
©g 2 @y 2
a:(i‘] 5 x$ 5
fri 2 3 o3 3
«§ 1 ©g 1
Surface o 8 Ground 3 8
Ocean i 4 Vegetation @y 4
g 7 xg 7
Fit 6 xp 6
o 2 g 2
x$ 5 Ty 5
w3 3 g 3
@y 1 xg 1
Deep 3 8 Detritus/ x§ 8
Ocean g 4 Decomposers 2 4
a:‘g’ 7 w§ 7
a:.g 6 arz 6
mg 2 mg 2
a:% 5 oty 5
-3 3 @5 3
o§ 1 g 1
Nonwoody parts g 8 Active Soil g 8
of Trees g 4 Carbon fus 4
@ 7 xg 7
Ty 6 9 6
zg 2 g 2

3.5.1.3 Standard OAT Design on Transfer Coefficients

The specific form of Model I we consider now is based on fixing the initial con-
ditions of each compartment at their nominal values and treating the transfer
coefficients as the uncertain model input factors. Using standard OAT design
on the model transfer coeflicients, we now want to assess the degree of influence
they have on the compartmental outputs. Because of the lack of knowledge about
the distribution the transfer coeflicients follow, we assume that each of these fif-
teen transfer coefficients follow uniform distribution over their ranges given in
Table 3.3 with their description.
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The simple random sampling regime and two different number of model runs,
N=100 and N=5,000, are considered in the analysis. Having performed the re-
quired number of model runs using the model and the input data, which is ob-
tained by randomly varying each transfer coefficients OAT over its entire range
while keeping the rest at their nominal values, we then determine the influence of
each transfer coefficient on the model outputs from the eight compartments both
quantitavily and qualitatively. To study if the sensitivity of each compartment
to the transfer coefficient changes with time we analyze the outputs from years
1900, 2000 and 2100. Here we shall use the notation k;; when we refer to the
transfer coefficients.

Figure 3.12 shows the simulated time dependent behaviour of the atmosphere
compartment over the period 1750 - 2100 obtained with N=100 Monte Carlo
simulations by varying each transfer coefficient OAT. At the top-left corner of
each graph the varied input factor is specified. In each graph, the 100 prediction
curves are presented along with the base-line curves. In order to see the effect
of variation in each %;; the scale on the y-axis kept the same. It is clear from
this figure that the variation in ko3 and k3o influence the atmospheric content the
most. ko1, k12 and ks, also appear to be potentially important transfer coefficients
for the atmosphere compartment. The sensitivity of atmospheric output to these
transfer coeflicients seem to increase with time.

The time dependent behaviour of the other seven compartments due to vary-
ing the transfer coefficients OAT also simulated and the predictions are plotted
in Figures A.8 - A.14 (see Appendix A for these figures). As with the atmo-
sphere compartment, all the other compartments except the active soil carbon
compartment are influenced by the variation in %3z and ko3 the most (Figures A.8
- A.13), the effect of the changes in ko, k51 and k15 on these seven compartments
is also evident. While it does not show any significant effect on the other com-
partments, k17 appears to be having some influence on the detritus/decomposers
compartment. Figure A.14 shows that the active soil compartment is sensitive to

the variation in all &;;s but with different degrees. The most influential transfer
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coefficient for this compartment is ks; which is followed by ks, ke1, ka2, k23, k75
and kiz. The other transfer coefficients do not appear to have significant effect
on the output of the active soil carbon compartment.

Even though the sensitivity of all compartments to the variation in the transfer
coefficients appear to be changing with time, for each compartment the order of
importance of the transfer coefficients does not seem to be changing through
time. The change of input factor influence on each compartment with time will

be examined further with some numerical sensitivity measures.

Sensitivity Index Considering all compartmental contents in 1900, 2000 and
2100 the results of SIs performed on the ranges of the 15 transfer coefficients
when each of them was varied OAT are presented in Figure 3.13. In each graph
of this figure, we give the sensitivities of all compartmental contents of the three
years to one of the k;;3. The SI of each compartment from the three years
are connected using a different line type each representing one compartment.
Unlike the sensitivities of the compartments to the initial conditions, here the
sensitivities tend to increase with time for most of the compartments.

In 1900, no compartment is sensitive to the change in any of the k;;s. In
2000, even though all the SIs show some degree of increase, sensitivity of most
of the compartments to any of the transfer coefficients is still not very large, but
SI of some compartments in this year is >0.01. The sensitivity of the active
soil carbon compartment to ks; is 0.015 and increases to 0.062 in 2100. The Sis
of atmosphere, surface ocean, non-woody parts of trees and ground vegetation
compartments due to the change in ks in 2100 are also above 0.01.

In 2000, the atmosphere, surface ocean, non-woody parts of trees, ground
vegetation and detritus/decomposers compartments have SI values for ko3 and k3o
greater than 0.01, and they increase in 2100. The active soil carbon compartment
has a low SI in 2000 but it becomes sensitive to both kg3 and k32 in 2100.

The results of the OAT designs on ky; and kjs show that in 2100 all the

compartments except deep ocean are sensitive to the ranges of these two transfer
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coefficients. The change in kg; shows an effect on active soil carbon and woody
parts of trees compartments in 2100. Only woody parts of trees compartment
content in 2100 is sensitive to the change in kz4. The changes in k75 and kig
seem to be having an effect on only active soil carbon compartment in 2100. The
results due to change in k7 show that only ground vegetation compartment is
sensitive to this transfer coefficient and this sensitivity is significant only in 2100.

None of the compartmental contents is sensitive to the ranges of the transfer
coefficients k41, kgs, k76, kgs and kg7 at any of the three chosen years.

In Figure 3.13, we have shown how the range of each k;; is influencing all 8
compartments. Now, by using the same SI calculations we want to summarize
the results in a different way to show if the order of importance between the
ki;js changes for each compartment at different years. Considering all SI values
which are < 0.07 as indicating low sensitivity and in the interest of shortening
the discussion, we list the most important three k;;s ranked as first(1), second(2)
and third(3) in Table 3.8.

Except for the active soil carbon compartment at all three years and woody
parts of trees compartment in 2000, the most influential transfer coefficients on
the other seven compartments are ko3 and ksp, respectively. ks; appears to be in-
fluencing the active soil carbon compartment the most in all three years whereas
it is ranked as the third most influential transfer coefficient on atmosphere com-
partment (in 1900 and 2000), on both ocean compartments (in all three years)
on non-woody parts of trees and ground vegetation compartments (in 1900 and
2000). In year 2100, the influence of ky; and £;5 ranked as third for atmosphere
compartment exceedes the influence of ks; on this compartment, and this is the
case with non-woody parts of trees compartment as well. For ground vegetation
compartment in 2100 k5 is ranked as the third important transfer coefficient.
The sensitivity of woody parts of trees compartment content to the change in k74
is ranked as third in 1900 but it became more sensitive to this transfer coeflicient
in 2000 where k74 was ranked as the second and k39 as the third most important

factor. In 2100, however, the influence of k74 on this compartment became less
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Table 3.8. Three most effective transfer coefficients from SI - Transfer Coeffi-
cients of Model I are varied OAT.

Compartmental | Input Sensitivity Index (SI)
Output Factor |} vear 1900 | Year 2000 | Year 2100
1 kas ka3 ka3
Atmosphere 2 k3o k3o .
3 ks1 k51 ko1, k12
1 k k k
Surface 28 23 23
Qcean 2 k‘?‘z k32 kag
3 kﬁl kﬁl IG51
Dee 1 kaa k23 k23
Oce:n 2 kg2 ka2 kaa
3 ks1 ks1 ks1
1 k k k
Nonwoody parts 2 23 23
of Trees 2 ks> ka2 ka2
3 ks1 k51 ka1, k12
1 k k k:
Woody parts 3 23 23
of Trees 2 k32 k4 kaz
3 kg k32 ko1, k12
1 k k: k
Ground 28 23 23
Vegetation 2 ka2 kg2 k32
. 3 ks1 ks1 k12
1 ka3 kaa ka3
Detrit
De(:t:»rj::1 lcl)zérs 2 kaa k2 kaa
P 3 k17 k17 kiz
1 k; k k
Active Soil 51 51 51
Carbon 2 kg ks k18
3 ke ke1 kas

significant than the influence of ko3, k32, k21 and kqo.

After ko3 and kazp, the third most important transfer coefficient for detri-
tus/decomposers compartment is k7 (in 1900 and 2000) but k5 in 2100.

The rankings from years 1900 and 2000 for active soil carbon compartment
is the same: ks, being the first, kg the second and kg; the third most important
transfer coefficients, but in 2100, kg3 becomes the third most influential factor

after k}m and klg.

Standardised Range We use the output obtained from performing standard
OAT design on the 15 transfer coefficients with 100 and 5,000 model evaluations
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to calculate standardised rankings which provide another sensitivity measure.
The results given in Figures 3.14 - 3.15 show how the SR of each compartment is
affected by the change in the 15 k;;s at the three years and by the sample sizes
considered in the simulations. In each dotchart of these figures we focus on one
compartment. As the (o) represent the SRs from N=100 and (e) from N=5,000
model runs overlap, we point out that there is no noticable change in the results
when we consider different number of model iterations in the analysis, however,
the results show some change with time for some of the k;;s.

The SRs of each compartment in 1900 due to the changes in all the transfer
coefficients hardly differs one from the other. They are very close or equal to
zero, and this seems to be the case with all compartments. Year 2000 results for
atmosphere and nonwoody parts of trees compartments (see the corresponding
dotcharts in Figure 3.14) show a small increase in SR values due to kes, k32, k51, ko1
and k3. The increase with the same transfer coefficients is even higher in 2100.
k1s also has some degree of influence on these two compartments in 2100. The
effect of the other &;;s have on the SR values in 2000 and 2100 is not significant.

As examination of the surface ocean and deep ocean dotcharts given in Fig-
ure 3.14 show both of these compartments present the same picture with different
range of SR values. ko3 and ksp are the transfer coefficients effecting the SR of
these ocean compartments the most, and their influence on these two compart-
ments is even higher in 2100. The effect of k51, ko1, k12 and kg on the SR values
in 2100 should also be noted.

As seen in the first frame of Figure 3.15, the SR of woody parts of trees
compartment is increased a little by the effect of kos, k74, k3o, ks1, K51, k21 and Ko
(in the given order) in 2000. In 2100, however, the influence of these k;;s on
the results becomes more obvious but in a slightly different importance order;
ko3 being the most important followed by kss, ka1, k12, k74 and kg;. The dotchart
of ground vegetation compartment given in Figure 3.15 presents a quite similar

picture to what we see in the figures corresponding to the ocean compartments
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(see Figure 3.14). The scale for the SR values is different here but the influence of
ks, k3o, ki1, ko1, ka1 and kig on the SR of this compartment, specially when year
2100 is considered, is clear.

The detritus/decomposers compartment results presented in Figure 3.15 show
that ko3 and kio are again the most influential transfer coefficients, and their effect
on 2100 results is even higher. For this compartment, k7 is also among the most
important input factors along with k9; and k1. Unlike the other compartments,
the SR of active soil carbon compartment is influenced by ks; the most, and its
influence on the results increases with time. We should also note the reasonably
high effect of kyg, ko3, k32 and kg (in this order) on the SR of this compartment.

From the dotcharts of the SRs, we can easily obtain an importance ranking

between the transfer coefficients within each compartment at all three years.

3.5.1.4 Morris Design on Transfer Coeflicients

Here, the Morris design has been performed considering eight of the 15 transfer
coefficients as input factors and eight compartmental contents in years 1900, 2000
and 2100 as the model output variables of Model I.

The set of 8 transfer coefficients (ki2, ko3, ks, kve, ks, K17, ka7, k1s) taken into
consideration here is the set obtained from Gauss-Jordan elimination procedure
that we developed to maintain the steady-state condition for the model (see
Section 3.4). In the Morris experiment a sample size 7 = 10 is used. Each of the
8 transfer coeflicients is assumed to follow a uniform distribution over its assigned
uncertainty range (given in Table 3.3). In the design, each transfer coeflicient is
varied across [ = 4 levels. A total number of N = 90 model evaluations is
performed.

The values of the Morris mean and standard deviations, for each of the 8
output variables at the three chosen years, are shown in Table A.2 (given in
Appendix A), and these values are displayed in Figures 3.16 - 3.18. Since the
plots for the surface and deep ocean compartments show a very similar pattern

as the plot of the atmosphere compartment given in Figure 3.16, we have not
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CHAPTER 3. SENSITIVITY ANALYSIS 108

included those plots here. In order to be able to compare the results from the
three years for each of the compartments, we present them in the same figure.
The plotted values in all these figures are examined relative to each other to see
which transfer coefficients are the most important factors for each compartmen-
tal output, and if the order of importance changes from year to year. In the
examination of these plots, as a criterion we use the Euclidean distance from the
origin in the (u, o) plane.

The transfer coefficients are ranked according to the Morris sensitivity mea-
sure u (reported in Table A.2). These rankings are given in Table 3.9 for all eight
compartments in the three chosen years, and they confirm what we have found
by examining the plots.

As Figures 3.16 - 3.18 and Table 3.9 reveal, factor ko3 is the most influen-
tial on all compartments except the active soil carbon compartment. For this
compartment kg is the most important input factor and ko3 is the second most
important factor.

The relative importance of the factors for atmosphere, surface and deep ocean
compartments in all three years is in complete agreement. The most significant
factor kos is followed by k12, k13 and then by kvs. The other four factors have esti-
mated u and o values around zero which indicates that these factors do not have
a large influence on the output of these compartments. For the non-woody parts
of trees compartment, after the first two most important factors (kg3 followed by
ki2), the order of importance between the other 6 factors changes slightly between
the years.

As seen in the left-panels of Figure 3.17, which present the results on woody
parts of trees compartment, the top three most important factors are ko3, k75 and
k1o (in this order), and this order does not seem to change with time. As for the
rest of the transfer coeflicients, the order of importance changes a little from year
to year (see Table 3.9). The transfer coefficients ko3, k12 and ki appear to be
the three most important factors for the ground vegetation compartment in all

three years (see the right-panels of Figure 3.17). As Table 3.9 shows, the relative




CHAPTER 3. SENSITIVITY ANALYSIS 109

Table 3.9. Results of Morris experiment on the transfer coefficients of Model 1.
Input factors (8 transfer coeflicients) are ranked in order of importance according
to the SA measure of Morris mean .

Compart. Input Morris Ranks Compart. Input Morris Ranks

Output | Factor ||y, 1900 |vr 2000 | vr 2100 Output | Factor ||y 1900 |vr 2000 | ¥r 2200

kia 2 2 2 kig 3 3 3

kas 1 1 1 kag 1 1 1

k7p 4 4 4 L76 2 2 2

krg 7 7 7 Woody parts | hyg 8 8 8

Atmosphere | 6 6 6 of Trees kso 4 5 4

ki 5 5 5 k17 T T 7

kar 8 8 8 kar 6 6 5

kia 8 3 3 kig 5 4 6

kia 2 2 2 kiz 2 2 2

kaz 1 1 1 kas 1 1 1

ks 4 4 4 ks 4 4 4

Surface kre T 7 7 Ground kg i3 5 5

Ocean kas [} 6 [¢] Vegetation ks 6 6 6

k17 5 5 5 kit 7 7 7

kgr 8 8 8 kg7 8 8 8

kis 3 3 3 kis 3 3 3

kig 2 2 2 ki 3 3 2

k2s 1 1 1 kas 1 1 1

kg 4 4 4 k7 4 4 4

Deep ke 7 7 7 Detritus/ kre 7 7 T

Ocean kge 6 6 6 Decomposers kge 6 L} 6

k17 5 5 5 kig 2 2 3

kg7 8 8 8 kg7 8 8 8

kis 3 3 3 kg 5 5 5

ki 2 2 2 k12 3 3 3

kag 1 1 1 kaa 2 2 2

Nonwoody ks 4 3 4 kvs 7 7 7

parts of kvg 6 6 6 Active Soil kre 8 8 8

Trees kgg 8 8 7 Carbon kg 4 4 4

k17 5 5 5 bz 5 5 5

kgt T T 8 ket 6 6 6

kis 3 4 3 kg 1 1 1

importance of the transfer coefficients does not change with time.

The influence of the transfer coefficients kg3, k17, k12 and krzs on the detri-
tus/decomposers compartment is higher than the influence of the rest of the
factors, but the order of importance changes from year 2000 to 2100 between the
second and third most important transfer coefficients. That is, k7 appears to be
the second and k15 the third most influential factors on this compartment in years
1900 and 2000, but in 2100 k;2 becomes more important than %17. For the other

transfer coeflicients the order of importance in the three years do not change.
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For the active soil carbon compartment the most influential factors are kg
and then k3. As shown in both Figure 3.18 and Table 3.9 the importance order

between the transfer coefficients stays the same all three years.

3.5.2 Local SA

As described in Section 2.5.2 of the previous chapter, differential sensitivity anal-
ysis is used to provide local information about the behaviour of the model due
to small perturbations about a point which is considered to be the base-case
scenario, i.e. all input factors set equal to their nominal values.

This SA method based on partial differentiation is computationally efficient
[50]. However, depending on complexity of the model equations the implementa-
tion of the method can be quite intensive, and in such cases complex numerical
procedures are often required [63]. Here we present the results from differential
analysis applied to Model 1. First, the input going into the atmosphere (denoted
by w1(t) in Equation 3.1 on page 68) from 1750 to 2100 is estimated by the

function
U (t) =0.1265 60.01513 (t-1750)

where u;(¢) is the annual emission (Gt C/yr) and ¢ is the year. Then, using the
Laplace transformation approach described in Section 2.3.2 the model equations
were solved analytically. Next, a base-case vector consisting of the nominal val-
ues of the independent variables was defined and the required first-order partial
derivatives of the dependent variables of interest, with respect to the indepen-

dent variables, were calculated at the corresponding base-case values and the

three chosen time points.
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3.5.2.1 Local SA on Initial Conditions

The sensitivity coefficient for a particular independent variable, i.e. an initial
condition in this case, is calculated from the partial derivative of each depen-
dent variable (i.e. compartmental output, yi(%),...,ys(t)) with respect to the
independent variable. Partial derivatives of Model I equations describing the
compartmental COqy contents were calculated for each initial condition, that is

the sensitivity matrix

S =

.......................................

which is evaluated at the nominal conditions z° = (3, ...,23) and at year ¢ is
constructed. Let y, represent the output of the pth compartment (p = 1,...,8)
and x? the initial content of the ith compartment (i = 1,2, ...,8), and ¢ the year
at which we evaluate the sensitivities. Each row of this sensitivity matrix shows
how sensitive a specific compartmental content at a given time is to the initial
conditions of the eight compartments.

In order to remove the magnitude of unit effect from the sensitivity coefficients
the numerical results are standardised by multiplying the partial derivatives by
73 [y (t), where z and y; (%) correspond to the base-case result of the model. For
example, the partial derivative 8y, /0x is standardised as (Oy1/0z3) (z5/y5(t)) .
This coefficient then indicates the effect on the dependent variable (y;) of equiva-
lent fractional change of base-case values for the individual independent variable
(zg). As noted by Iman and Helton [63] such coeflicients are often referred to as
normalized or standardized sensitivity coefficients. We shall call them standard-
ized sensitivity coefficients.

The rankings of the absolute value of the standardized sensitivity coefficients

within each compartment are given in Table 3.10. The ranking starts with the




CHAPTER 3. SENSITIVITY ANALYSIS

112

Table 3.10. Rankings of the initial conditions to Model I based on standardised
sensitivity coefficients evaluated in years 1900, 2000 and 2100.

Compart. Local Compart. Local

Output Sensitivity Yr 1900(Yr 2000(Yr 2100 Qutput Sensitivity Yy 1900 Yr 2000 |Yr 2100

8yy [ O=f 4 4 4 8yg [ B=§ 4 4 4

8y [ Bwl 5 5 B 8yg [ =] 5 5 5

8y1 [ Bwf 1 1 1 Woody parts | 8ys / 8=3 1 1 1

Atmosphere 8y1 / 8= 8 8 8 of trees dyg [ =] 8 8 8

8y1 / Bw? 3 3 3 dyg [/ 8w 3 3 3

(v1) oy /8 || 7 7 7 (vs) oys /82 || 7 7 7

8y1 / B=f 6 6 6 dyg / wf [ 6 &

Sy1 / 8 2 2 2 yg / Omf 2 2 2

Byz / 829 1 1 4 Byg / Bl 1 1 4

8yg / 8w 5 5 3 Syg / B=l 5 5 5

Surface 8ya / Bm§ 1 1 1 Ground Sys / Bwg 1 1 1

ocean 8ya / B 8 8 8 vegetation | Oye / Buwl 8 8 8

Byz / B 3 3 3 Byg / Bl 3 3 3

(v2) 8y [ 6wl 7 7 7 (ve) Byg [/ Owg 7 7 7

fya / Bof 6 6 6 ye / OmY 6 6 6

8yz [/ 8w 2 2 2 Byg [/ Bud 2 2 2

dyg / Bm3 4 4 4 8yr [ 8f 4 4 4

8ys / Bwf 2 3 3 8yr [ 8w 5 5 5

Deep 8ys / 8o§ 1 1 1 Detritus/ 8yr / Haf 1 1 1

ocean 9ys / Om} 8 8 8 decomposers | 8y7 / 8w} 8 8 8

8ys / Hm? 5 5 5 8y | 8wf 3 3 3

(v3) 8ya / O 7 7 7 ) Byr [ 8w 7 7 7

8ys [/ Bmf 6 8 6 8yr [/ 0% 6 6 6

8ysz [ =g 3 2 2 8y7 / 8] 2 2 2

Bys [ Bl 4 4 4 8ys [ Bwf 4 4 4

Byg [ O3 5 5 5 Byg / =Y 5 5 [

Nonwoody |8ys / O=f 1 1 1 Active soil | 8yg / Bmg 1 1 1

parts of trees| 8ya [/ 8=} 8 8 8 carbon Byg / Hmf 8 8 8

Oya / O=? 3 3 3 Byg / Bl 3 3 3

(va) By / 8w 7 7 T (us) 8ys / 8=f v 7 7

Gyq [/ Om$ 6 6 6 ys / Ouf 6 6 6

8yq / Bl 2 2 2 8yg / O3 2 2 2

highest coefficient taking rank 1, the second highest taking rank 2, and so on.

Within Table 3.10, except for ys the order of all compartmental outputs agree,

and this order does not change within the three years. The disagreement between

the ranking for y3 and the ranking for all the other dependent variables is mod-

erate. For all seven compartmental outputs xf appears to be the third most

effective input factor, but it is ranked as the fifth most influential factor for ys.

xg is ranked as the second most effective input factor for all compartments in-

cluding ys in years 2000 and 2100 but it is ranked as the third most influential

input factor in year 1900. All eight compartmental outputs at all three years
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appears to be the least influenced by zj.

3.5.2.2 Local SA on Transfer Coefficients

Again using the analytical solutions of Model I equations, the partial derivatives
of y,'s with respect to each transfer coefficient are obtained (see Table 3.3 for
the description of the transfer coefficients). Then using these partial derivatives,
given in the following sensitivity matrix, the sensitivity coefficients are calculated
about the vector of base-case values for the transfer coefficients

k = (ko1, ka1, ks1, Ker, k12, ks, ko3, kg, kus, kss, kre, ks, k17, ksr, kis) and at £ =1900,
2000, 2100

S Oy Oy By Oy Oy Gy Oy Bm Byn By Oy By Oy
Oka1 Okay Oksy Oksy Okis Oksy Okes Okry Okrs Okss Okve Okss Okir Oksr Okis
Oyy Oys Oyys Oy OByz Oys Oys Oy Oyz Oys Byz Oys Oy Oy Oya
Okg1 Ok41 Oksy Okgt Okiz Oksa Okas Okvs Okrs Okas Okre Okse Oki17 Oksy Okis

3

Si) =

.....................................................................

Oko1 Oka1 Oks1 Oker Okiea Okse Okas Okvra Okrs Okgs Okve Okss Okiv (9’;87 Oki1g

The rankings of the absolute values of these sensitivity coefficients within each
compartment are given in Table 3.11.

The ranking of the sensitivity coefficients for the transfer coefficients (as indi-
cated in Table 3.11) changes slightly from year to year. At all three years, ko3 is
ranked as the most important input factor for all compartmental outputs. The
first three most influential transfer coefficients on the output of the atmosphere
(y1) and the surface ocean (y;) compartments appear to be the same, ko, k3o,
and kig3. Except for y4, k74 is the least important transfer coefficient for all com-
partmental outputs in all three years. For y4, k17 is ranked as the least important
input factor. The second and third most important transfer coefficients for the
deep ocean compartment are kg and k3o, respectively. kg is the second most
important input factor for y4, and it becomes the third most effective transfer
coefficient for y7 by 2100, but for the other compartmental outputs it is ranked

as one of the least important input factors.
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We now move from local SA methods, used to evaluate the relative importance of
model input factors in a qualitative manner, to global SA methods which provide

a more quantitative assessment of the relative influence of the input factors.

3.5.3 Global SA Methods Applied to Initial Conditions

In order to identify the model input factors to which model behaviour is most
sensitive, we now consider various global SA techniques and analyses, including
correlation coefficients, standardized regression coefficients, partial correlation
coeflicients.

In the Monte Carlo model simulations the steady-state restriction is preserved
by following the procedures explained in Section 3.4. In the analyses, N=100 and
N=5,000 model runs are considered.

Because, in global methods, we vary the input factors simultaneously, the
Monte Carlo iterations might not provide estimates that are compatible with the
historic records of atmospheric CO;. With the 8-compartment model this situ-
ation arises when we vary the initial conditions simultaneously. In such cases,
‘windowing analysis’ can be conducted on the model predictions to obtain a sam-
ple of model predictions that are in broad agreement with the observed pattern.

Now, we shall describe briefly how this analysis is performed.

3.5.3.1 Windowing Analysis

This analysis has been used by King & Sale (1990) of CDIAC (Carbon Dioxide
Information Analysis Center) in a technical report for the U. S. Department of
Energy (see [73]). In this report, they introduced windowing analysis as one of
the steps in a procedure for uncertainty analysis of atmospheric COg, in which
sensitivity analysis is considered as another step. Because according to them,
sensitivity analysis is based on the estimation of changes in model output in
response to very small (1% coefficient of variation on all model parameters) or

local changes in model parameters, windowing analysis, on the other hand, is
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based on model parameters with wide uncertainty ranges (=50% of their nominal
values) and assuming that they all follow uniform distribution, they consider
windowing and sensitivity analysis as two separate analyses.

In more recent work done by Grieb et al. [40] windowing is used in the analysis
of a global carbon cycle model (called GLOCO) in order to adjust the values
of model input parameters to achieve an acceptable match between observed
and predicted model conditions. In this paper, after they obtain the GLOCO
parameter space using windowing, they then demonstrate a new tree-structured
density estimation technique to explore parameter interaction in the terrestrial
ecosystem module of the model. The terminology “windowing” we adopted from
King & Sale is not used by Grieb et al. but the procedure followed is essentially
the same. Grieb et al. define a set of performance criteria by giving acceptable
ranges of values that three model output variables take in year 1970 (the end of the
historical period considered), and compared the model output, at the conclusion
of each historical simulation, with these criteria. Then, the model predictions
that meet the performance criteria referred to as “passes” or “behaviours” are
taken into account in the analysis.

Windowing analysis can help to reduce the concerns about the validity of
predictions made by simulation models, especially global carbon cycle models for
which incompleteness of scientific understanding always exists.

Windowing also helps to improve our understanding about the model input
factors, and a better understanding of model inputs will also lead to better model
predictions, hence the credibility of the model can be improved.

In this thesis, we consider windowing as a step to sensitivity analysis; first by
conducting windowing analysis we filter model predictions through a window
defined by the variance around the Mauna Loa records of historic atmospheric
COs from the period 1958-2000; then by considering only the predictions which
pass wholly through the filter, i.e. lie Withiﬁ the defined window, we apply
sensitivity analysis to the resulting input and output sets. The input sets that

result in model predictions which meet the windowing criteria are referred to
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as good’and the others as bad’sets. Windowing can then be described as a

screening or filtering algorithm.

Windowing Analysis with the Initial Conditions of Model I The specific
input factors subject to windowing analysis are the s initial conditions. In the
figure below (Figure 3.19) an illustration of windowing analysis on N=100 Monte
Carlo simulations of atmospheric CO2 is presented. Out of 100 model predictions
54 runs that met the window criterion described above were obtained.

Any point within the eight dimensional input space can be identified as leading

oQCE coogp O @

TSR iiesivisor i
1800 1900 2000 2100
Year
Figure 3.19. Illustration of windowing N=100 atmospheric COz2 predictions re-
sulted from varying Model I initial conditions (Xj, ..., rcg) simultaneously. The

dotted curves are the model predictions for atmosphere compartment. The win-
dow obtained using the observed historical data (from Mauna Loa observatory;
1958-2000) is indicated by a dark grey shaded region. The set of the prediction
curves that met the windowing criteria (54 out of 100 model simulations) are
highlighted with a light grey shaded area.
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to a good or bad simulation by running the model with the corresponding input
vector and applying the windowing criteria to the output. The good sets and
their corresponding model predictions are then used in the global SA methods
applied. But before proceeding with the application of these methods, we want
to take a step back and find out what is happening in the input space as a result
of windowing analysis. In other words, we wish to identify specific regions of the
input space where the likelihood of obtaining good model runs is high, and also
investigate how input factors contribute to the separation of good and bad runs.
For this purpose, discriminant analysis and classification is used.

Using discriminant analysis we aim to find out how well it is possible to sep-
arate good and bad model runs. Several methods for discriminant analysis have
been developed and these methods can be found in many multivariate analysis
books (see [67], [35]). Differences between methods arise because of the variety of
the assumptions made about the variables describing each observation to be clas-
sified. Here we first consider Fisher’s linear discriminant analysis method. This
method is one of the most widely used discrimination methods, and it is based
on the assumption that the within-group covariances are the same. Because this
method involves knowledge of the population covariance matrices and of course
we do not have such knowledge, we can either assume that our groups have the
same covariance matrix and carry out Fisher’s linear method or use quadratic
discriminant analysis method which does not require this assumption.

The performance of both Fisher’s linear method and quadratic method applied
on the original and cross validated data are presented in Tables 3.12(a) and (b)
respectively. In both methods, we assume that the prior probabilities for the two
groups are equal.

The classification results in Table 3.12(a) show that 73% of good and 63%
of bad cases are correctly classified, and the overall classification rate is nearly
68%. The cross-validation routine, which takes approximately four times longer
in computation time but provides more realistic misclassification rate, estimates

the overall correct classification rate to be 63%.
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Table 3.12. Classification performance on (a) Fisher’s discriminant method and
(b) Quadratic discriminant method assessed on the original and cross-validated
sample where 100 good and 116 bad sets of model initial conditions are involved.

(a) Fisher’s discriminant method:

Predicted Group

Actual Group | good bad Total N | N Correct | Proportion

good 73 27 100 73 0.730

Original bad 43 73 116 73 0.629
N =216 ; N Correct = 146 ; Proportion Correct = 0.676

Cross good 65 35 100 65 0.650

Validated bad 45 71 116 71 0.612
N =216 ; N Correct = 136 ; Proportion Correct = 0.630

(b) Quadratic discriminant method:

Predicted Group

Actual Group good bad Total N | N Correct | Proportion

good 89 11 100 89 0.890

Original bad 5 111 116 111 0.957
N =216; N Correct = 200 ; Proportion Correct = 0.926

Cross good 71 29 100 71 0.710
N =216 ; N Correct = 170; Proportion Correct = 0.787

Table 3.12(b) shows the number of observations in the original and cross-

validated samples correctly and incorrectly classified using a quadratic discrimi-

nation method. Compared to the linear method this method gives higher overall

classification rates, about 93% with original data and about 79% with cross-

validation. The quadratic approach proves to be deriving a better decision rule

for classifying good and bad model runs.

So far we have interpreted the results of standard discrimination analysis in

terms of the linear and quadratic combinations of all eight input factors which

separate two groups from each other. Next, we carry out discriminant analysis in

a stepwise manner to find out if there is a subset of input factors which maximizes
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the discriminating power. With this approach variables(initial conditions z7) are
added to the discriminant function one by one until it is found that adding
extra variables does not provide significantly better discrimination. There are
many different criteria which can be used for entering and removing variables.
Stepwise method is available in SPSS, and different criteria used for this method
are explained in SPSS User’s Guide (see {90]). Application of stepwise analysis
to our data show that except for z3, all initial conditions are dropped and the
analysis has only one step. The classification results of this analysis based on
Fisher’s linear method (see Table 3.13(a)) indicates that with only 2§ considered
as predictor 69% of the data is correctly classified using either original or cross-
validated grouped cases. As the results in Table 3.13(b) show, the quadratic
method leads to higher proportion of cases to be correctly classified, 91.2% when
original and 90.7% when cross-validated data were used.

The stepwise analysis results shows that all initial conditions except z3 are
not important as predictors considering the data in hand.

Next, we consider a completely different approach called classification trees.
This new method, which is an exploratory technique for revealing structure in
data, developed in 1980s is gaining widespread popularity [16]. Using this method
we aim to obtain more accurate classifiers. Given a set of variables which might
be useful discriminators, this method picks out the best variables and then a
binary split is performed using this variable which provides the smallest number
of misclassifications for the data. By repeating this process, futher binary splits
are made in order to reduce the misclassification error on the data. The split-
ting process continues until we reach a suitable stopping point. This procedure
is diagrammed as a tree referred to as classification tree. S-PLUS has built-in
software for this method (see Chapter 9 of Ref. [16] for a detailed description of
the method). The branches of such trees correspond to divisions in the sample
space. Nodes which are labelled by class labels are represented by ellipses (inte-
rior nodes) and rectangles (terminal nodes). The misclassification error rates are

given under each terminal node.
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Classification performance on (a) Fisher’s linear discriminant

method and (b) Quadratic discriminant method used for stepwise discriminant
function analysis where only z§ found to be a significant discriminator.

(a) Fisher’s linear discriminant method:

Predicted Group
Actual Group || good bad Total N | N Correct | Proportion
good 73 27 100 73 0.730
Original bad 40 76 116 76 0.655
N =216 ; N Correct = 149 ; Proportion Correct = 0.690
Cross good 73 27 100 73 0.730
Validated bad 40 76 116 76 0.655
N = 216 ; N Correct = 149 ; Proportion Correct = 0.690
(b) Quadratic discriminant method:
Predicted Group
Actual Group | good bad Total N | N Correct | Proportion
good 88 12 100 88 0.880
Original bad 7 109 116 109 0.940
N =216 ; N Correct = 197 ; Proportion Correct = 0.912
Cross good 87 13 100 87 0.870
Validated bad 7 109 116 109 0.940
N =216 ; N Correct = 196 ; Proportion Correct = 0.907

Figure 3.20 presents a display of a classification tree grown to the windowing

data. In this tree only z3 is used. At the first step all observations are classified as
bad predictors with 100 misclassifications. The first split is on z§, the model runs
resulted from input sets which have z§ value of less than 35173.2 are classified
as ‘bad’ with an error rate of 0/74, and those with an z§ value of more than
35173.2 are classified as ‘good’ model runs with an error rate of 42/142. The
‘¢ood’ node undergoes further splits using again §. When z3 takes values of less
than 42418.9 the corresponding model predictions are classified as ‘good’ with
an error rate of 3/103 and when the values of 25 are greater than 42418.9 the

predictions are classified as ‘bad’ with an error rate of 0/39.
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Figure 3.20. Classification tree showing the performance of the windowing data.
The class of the predicted response variable (g-for ‘good’, b-for ‘bad’) is centered
in the node. The number underneath each terminal node is the misclassification

error rate.

The third split is on a ‘good’ node but as we can see from the tree an over-

fitting has occurred here. In such cases, a pruning procedure can be used. Now

using ten-fold cross-validation within S-PLUS we prune the classification tree

shown in Figure 3.20. The pruned tree is displayed in Figure 3.21. Applying

cross-validation suggests that a tree with 3 terminal nodes is suitable and that a

more realistic estimate of the likely misclassification rate with new input sets is

54/216 = 25%.
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Figure 3.21. A pruned version of the classification tree given in Figure 3.20.

Having found N=100 input sets which we know result in atmospheric CO; pre-
dictions that match with the Mauna Loa obervations reasonably well, we then
perform the model calculation for all eight compartments. The same proce-
dure was repeated using N=>5,000 good input sets obtained through windowing
analysis. The time-dependent behavior of each compartmental output following

windowing analysis are presented in Figure 3.22 for N=100.
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Figure 3.22. Dependent variables predicted by Model I following windowing anal-
ysis: CO:z content of (a) Atmosphere, (b) Surface ocean, (c) Deep ocean, (d) Non-
woody parts of trees, (¢) Woody parts of trees, (f) Ground vegetation, (g) Detri-
tus/decomposers, and (h) Active soil carbon compartments as a result of varying
all input factors (x°s) simultaneously. Emission scenario 1S92a is considered in the
model calculations.
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As we have done in screening procedures (Section 3.5.1) and local SA (Section
3.5.2), in the application of global SA methods we consider N=100 and N=5,000
samples, and study the compartmental contents in years 1900, 2000 and 2100.

We now start the analyses with the generation of scatterplots which are known

to be a good starting point in a sensitivity study.

3.5.3.2 Examination of Scatterplots

A scatterplot of each response variable (i.e. the predicted CO; content of each
compartment at a chosen year) against each predictor (i.e. initial condition of
each compartment) enables us to investigate the relationship between the model
outcome and each of the model inputs.

The scatterplots for the atmosphere compartment are given in Figure 3.23
for N=100. The plots on each row of this multiple plot represent the results
from each of the years considered. In this figure, it is clear that patterns in the
scatterplots corresponding to the same response and explanatory variables do
not change between the three years. Within the same compartment the scat-
terplots for x3 display a clear linear pattern, but for the other initial conditions
the points are widely scattered. There is no evidence to suggest any linear or
non-linear relationship between these explanatory variables and any of the re-
sponse variables. Since we assume that the input factors are independent in this
sample-based study and generate an independent sample for the model inputs,
the explanatory variables are not correlated. The scatterplots for the other seven
compartments with N=100 and for all eight compartments with N=5,000 are also
produced but due to space limitations these scatterplots are not given in this the-
sis. However, these scatterplots present patterns very similar to the patterns we
see in Figure 3.23; a very strong linear association between z3 and the individual
compartmental outputs and hardly any relationship between the other predictors
and the dependent variables.

Examination of these scatterplots has provided us with a good indication
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Figure 3.23. Scatterplots of predicted Atmospheric CO4 content in years 1900,
2000 and 2100 versus each compartment’s initial condition (z7). To calculate
these N=100 model predictions Model I with IS92a emission scenario is used.

about z3 being the only initial condition dominating variation in all compart-
mental outputs. Hence, we do not expect the further analysis to reveal differ-
ent results, but to see if the degree of influence the other inputs have becomes
more/less apparent with different methods we carry out some other SA proce-
dures on the data.

Next, some numerical measures are calculated to distinguish between the
input factors that appear to have a significant effect on a predicted compartmental
output and the input factors which appear to have little or no effect. Since there
is an apparent linear relationship between z§ and all y;s (i.e. all compartmental
outputs) we have calculated the Pearson correlation coefficients on the input and
output values. Then on the basis of their correlation coefficients we have ranked
the input factors. We note that the calculated Pearson correlation coefficients

hardly change between the three chosen years, that is, the contribution of the
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input factors to prediction uncertainty is the same in 1900, 2000 and 2100.

The calculations based on both N=100 and N=5,000 show that z§ with a
correlation coefficient of about 0.994 (ranked 1) has a substantial effect on all
predicted compartmental contents at all three years. With N=100 simulations zg
(with correlation coefficient of around 0.153, ranked 2) and z§ (with correlation
coefficient of 0.132, ranked 3) seem to have some small effect on the dependent
variables, with N=5,000 however except for z3 none of the other initial conditions,
which have correlation coefficients varying between 0.027 and 0.00007, seem to

have any effect on the model predictions of any compartment.

3.5.3.3 Regression Methods

The multiple regression of each model prediction (y;,% = 1, ...,8) on all the input
factors (z9,¢ = 1, ..., 8) simultaneously estimates all the initial condition sensitiv-
ities. However, based on our diagnostics of the scatter plots and the correlation
coefficients given in the previous section, it is clear that only z§ (the initial condi-
tion of the deep ocean compartment) is a useful explanatory variable in explaning
the variability of each of the response variables, and because the relationship be-
tween each response and z3 appear to be linear, we use linear regression to explore
the dependence of each compartmental output at chosen times on 5.

Considering each model prediction in 1900, 2000and 2100 as the dependent
variables and 2§ as the independent variable, the construction of regression
models with N=100 model iterations give us R = 98.9% when the predictions
y;(t = 1900) and y;(t = 2000); and R? = 98.7% when y;(¢ = 2100) are considered.
When N=5,000 the coefficient of determination R? = 99.2% is the same for all
compartmental predictions at all three times. In short, these very high R? values
indicate that the regression models of each y; on z§ are accounting for most of
the uncertainty in the corresponding y;. The contribution of the remaining initial
conditions to R? is about 1% only.

In SA based on regression procedure the standardized regression coefficients




CHAPTER 3. SENSITIVITY ANALYSIS 128

(SRCs) are used as a measure of variable importance. As an example, the re-
gression model, including all eight explanatories in it, for N=100 atmospheric
predictions in 2100 with the SRCs is

y(t = 2100) = 0.03642 + 0.0391 25 + 1.0018 25 + 0.0022 25 -+ 0.0369 7
+ 0.0035 25 + 0.0063 23 4 0.0659 73

where y; (¢ = 2100) and 2%, (i = 1, ..., 8) have been standardized to mean zero and
standard deviation one. The SRCs in this equation provide a characterization of
input factor importance. For instance, for perturbations equal to a fixed fraction
of their standard deviation, the impact of 3 is approximately 1420% larger than
the impact of zg (i.e., (1.0018 - 0.0659)/0.0659 = 14.20). The situation with
the other response variables at all three times and with different N is not any
different.

For the purpose of comparing the sensitivity rankings of the input factors we
obtain from various SA methods, here we also provide the absolute ranking of
the SRCs: = (rank: 5), z§ (rank: 3), z§ (rank: 1), z§ (rank: 8), z2 (rank: 4), zg
(rank: 7), 27 (rank: 6) and 23 (rank: 2). We shall note that this ranking does

not change with the sample size N and the model prediction y;.

3.5.3.4 Stepwise Regression

In this analysis, a variable was required to be significant at an a-value of 0.01
to enter a regression model and to remain significant at an a-value of 0.05 to be
kept in a regression model, although no variable was entered and then dropped
from a model.

As expected, based on the results we presented in the two previous subsec-
tions, in the first step of the stepwise regression procedure x§ is entered into the
least squares multiple regression models for all response variables calculated at
three years with N=100 and N=>5,000 model runs (see Table 3.14). The analyses
with z§ in the model yields a very high R?-value of 98.94% in 1900 and 2000; and
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Table 3.14. Stepwise regression analyses for output variable y; of Model I in
years 1900, 2000 and 2100; based on N=100 and N=5,000 model runs; and I592a
emission scenario.

y1(t = 1900) y1(t = 2000) y1(t = 2100)

Step Variable R? Variable R? Variable RZ

1 x5 009894 | a5 09894 | =g  0.9868
- 2 xy 09954 | ad 09954 | aY  0.9934
= 3 zg 09972 | =g 09972 | @  0.9954
) 4 xS 0998 | w3 0998 | =  0.9966
o 5 ze 09999 | =2 09999 | @  0.9976

6 £ 1.0000 | &S 1.0000

7 xg 10000 | &g  1.0000 |

1 @ 098915 |  wg 09915 | =3 0.9915
8 2 x3 09957 | &S 09957 | aj 0.9957
= | 3 g 0.9972 | & 09972 | a§ 09972
I 4 € 0998 | a2l 09986 | a2  0.9986
> 5 @S 09999 | &S 09999 | 2%  0.9999

6 €2 10000 | 2  1.0000| @  1.0000

7 ®g 10000 | g  1.0000| @  1.0000

98.68% when year 2100 predictions are used. The coefficient of multiple determi-
nation calculated for all y; with N=>5,000 model iterations is slightly higher (i.e.,
99.15% with all three years’ predictions). In the following steps of the analyses,
other initial conditions with significant p-values were also added to the models,
but after allowing for the effect of z3 in the model their contribution to R? is
very small. The results for each compartmental prediction (y;) are very similar
in the sense that the same variables were selected with R2-values that are quite
similar and the order of variable selection did not change. Here we include the

results for only the atmosphere compartment.

As mentioned in Section 2.5.6 when there is non-linear monotonic relationship be-
tween the variables the rank transformation often is an effective way of improving
the resolution of regression based SA, however, in this case with the initial con-
ditions where we have no monotonic relationships applying rank transformation

on the data is not appropriate.
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3.5.4 Global SA Methods Applied to Transfer Coefficients

In this section, we wish to explore the mapping from the uncertain transfer co-
efficients k;; listed in Table 3.3 to the corresponding uncertain model outcomes
yi(t),1 = 1,...,8; ¢ = 1900,2000,2100. First, we illustrate the time dependent
behaviour of the outcome of all eight compartments resulting from N=100 model
runs in Figure 3.24. Kach curve in these plots is calculated conditional on the
steady-state restriction explained in Section 3.4. The variability in all compart-
mental predictions increases with time. Now, using a number of global SA pro-
cedures we wish to determine the effects of individual input factors on the model
outcomes. As in the SA involving the initial conditions we again start the analysis

by examining the scatterplots.
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simultaneously. Emission scenario [1S92a is considered in the model calculations.
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3.5.4.1 Examination of Scatterplots

The scatterplots that show the relationships between the sampled transfer co-
efficients (see Table 3.3 for the description of these k;;) and the predicted CO
content of the atmosphere compartment (i.e., y;) in 1900, 2000 and 2100 are given
in Figure 3.25. The plots of y; in the three years versus each transfer coefficient
present quite similar pictures. This is also true for all the other compartments.
At this point we shall note that to preserve space the scatterplots for the rest
of the responses (yg, ..., ys) at the three chosen years (1900, 2000 and 2100) with
both N=100 and N=5,000 model runs are not included in this thesis.

Here, we give the scatterplot matrix of y;(¢ = 2100) and the k;; (see Fig-
ure 3.26) considering the results from N=100 model runs. In this scatterplot
matrix, we can examine the relationships between the ouput variable and each
of the input factors as well as the relationships among the input factors.

The correlation structure between the sets of free and basic transfer coeffi-
cients, which are obtained using Gauss-Jordan approach to maintain the steady-
state condition (see Section 3.4, Equation 3.7), is revealed in this matrix plot (see
Figure 3.26). As given in Equation 3.7, ko is directly proportional to kia, k3o
t0 kg3 and k41 to krys. So each of these pairs of transfer coeflicients are perfectly
correlated. The associations between k4 and ki7; ks1 and kys; kg1 and kye; kra
and ky7; kgs and kg are very strong. Since each of the basic transfer coefficients
(k21, ka1, ks1, Ke1, ks, kra and kgs) is highly correlated with at least one of the
free variables (K12, kos, krs, kve, kss, K17, ksr, ki) that are independent in the
further analysis we take into consideration only the eight free &;; as model input
factors.

If we scan across the first row of the scatterplot matrix given in Figure 3.26,
it is no surprise to see the same nature of a relationship between y; (¢t = 2100)
and both ks» and kys; and also with both ky; and kip. It is clear that the high
y1(t = 2100) values are those with low kes (or kss). It is less obvious (with
N=100) but also clear (with N=5,000) that as k12 (or ko;) increases, less CO; is
transfered into the atmosphere compartment in year 2100 and y; (¢ = 2100) falls.
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Figure 3.25. Scatterplots of predicted Atmospheric CO, content in years 1900, 2000 and 2100 versus each transfer

coefficient %;; (given in Table 3.3). To calculate these N=100 model predictions, Model I with 1S92a em

used.

133

1S5101 Scenario 1s




134

CHAPTER 3. SENSITIVITY ANALYSIS

dlqeL %)

80000200

010 ZOO

590 06000 8WO

820QD200

200

C10°0600°0

‘POSN 9 OLBUDS UOISSIUD BZAS] M | [OPO]N ‘suonorpaid [opowr (QJ=N 953y oje[nofed o ‘(€€
JUSIOIJO0D IQJSUBl) Yo P ([ U JUouod ) ouoydsouny papipaid p xmew jojdioness ‘9z¢  an3ig

ssoofro

‘oo

2Wos200 @

1000

S00‘0 ZPOSIo

810010

S0 0F°0 SI°0VI°0 8€0°0870°0 100°0 9’0 Tro S€0°0 LT°OET0



CHAPTER 3. SENSITIVITY ANALYSIS 135

Overall, there is a strong linear association between y;(t) and both kez and ko,
but no particular association with the rest of the free input factors.

The rankings of the absolute correlations (i.e., the largest CC is given rank 1,
the next largest CC is given rank 2, and so on)} of the free transfer coefficients with
all the response variables are given in Table 3.15. As the table of the absolute CC
values (given in Table A.3 in Appendix A) reveals most of the CC values based on
N=100 model runs are slightly higher than the CCs obtained from N=>5,000 model
runs, and also the order of importance between the transfer coefficients for the
same compartment at a certain year changes with N (see Table 3.15). Because of
the high dimension of the input space (eight, in this case), and because compared
to N=100 sample size, N=>5,000 provides a better coverage of the sample space of
the input factors, and hence more reliable SA results, we have decided to present
and discuss the results from the global SA methods based on N=5,000 model
evaluations in the remainder of this chapter.

The importance rankings in Table 3.15 indicates that the top three most influ-
ential transfer coefficients on the atmosphere, surface and deep ocean, nonwoody
parts of trees, and ground vegetation compartments are kas, k12 and kg in this
order. Even though the corresponding CC values change with time, the order of
importance stays the same. kg3 appears to be the most influential transfer coef-
ficient on all compartmental outputs except the active soil carbon compartment.
The calculated CCs between ko3 and all seven compartmental outputs at all three
chosen years are quite high; in absolute value they vary between 0.69 and 0.97.
ko3 is particularly highly correlated with the ocean compartments; CC with the
surface ocean compartment is around -0.96 in year 1900, decreases to about -0.94
in year 2000 and increases to around -0.98 in year 2100. As for the CCs between
the output of the deep ocean compartment and k3, it is about 0.97 in all three
years (see Table A.3 in Appendix A).

For the woody parts of trees compartment, following ks3 the second and the
third most important transfer coefficients appear to be k75 and k;q, respectively,

and this importance order does not change from year to year. The CC with kv
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Table 3.15. Rankings of absolute Pearson correlation coefficients (CC) for the
outputs of Model 1. The outputs from years 1900, 2000 and 2100 based on N=100
and N=5,000 model runs are considered. The eight free transfer coeflicients
are ranked in order of importance, and the rankings based on N=5,000 model
evaluations are highlighted.

CC Ranks
Compartmental Input Yr 1900 Yr 2000 Yr 2100

Output Factor || N=100 | N=5,000 || N=100 | N=5,000 || N=100 | N=5,000

k12 2 2 2 2 2 2

kag 1 1 1 1 1 1

krs 4 4 4 4 4 4

Atmosphere kv 8 - N ’ 8 .

kgg 7 8 6 8 v 8

(w1} k17 6 5 7 5 6 5

kar 5 8 5 6 5 6

kis 3 3 a 3 3 3

kia 3 2 3 2 3 2

kag 1 1 1 1 1 1

Surface kv 5 4 5 4 5 4

ocean ke 7 7 6 7 8 T

kgg 8 6 8 8 T 6

(v2) ki 6 5 7 5 [} 5

kg 4 8 4 8 4 8

kig 2 3 2 3 2 3

kyia 2 2 2 2 2 2

kga 1 1 1 1 1 1

Deep k7s 6 4 6 4 6 4

ocean krs 8 7 7 T 8 T

kgs 5 5 5 5 5 5

(v3) k17 4 8 4 8 4 8

kgt 3 8 3 6 3 i)

[T 7 3 8 3 7 3

kiz 2 2 2 2 2 2

kas 1 1 1 1 1 1

Noonwoody parts k75 3 4 3 4 4 4

of trees hra 7 7 T 7 8 8

kg B 8 8 8 7 7

(ya) kit 5 5 5 5 5 5

kgt § [} 6 6 6 ]

kig 4 3 4 3 3 3

k12 3 8 3 3 2 3

kag 1 1 1 1 1 1

‘Woaody parts k7g 2 2 2 2 3 2

of trees kra 6 8 6 8 6 8

kse 4 5 5 5 4 4

(ys) kaiy T 7 7 7 5 T

kgt 8 8 8 8 7 6

kis 5 4 4 4 8 5

kig 2 2 2 2 2 2

kasg 1 1 1 1 1 1

Ground krg 4 b5 4 4 4 b5

vegetation ke 6 4 6 5 7 4

kag 8 ] T 6 8 6

(ve) k17 7 7 8 T 6 7

kst 5 8 5 8 ) 8

kis 3 3 3 3 3 8

kig 3 3 3 3 2 2

kag 1 1 1 1 1 1

Detritus/ k75 4 4 4 4 4 5

decomposers k7a 8 8 8 8 8 8

kae 7 a 5 6 7 6

(y7) ka7 2 2 2 2 3 3

kgt 6 7 6 7 6 7

kig 5 b T 5 5 4

B1a 3 3 3 3 3 3

kaa 2 2 2 2 2 2

Active soil kg 8 T 8 8 8 8

carbon kra 6 8 7 T 6 B

kgs 7 4 6 4 7 4

(us) kT 4 é 4 6 4 7

ka7 5 5 5 5 b 5

kig 1 1 1 1 1 1
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is high; about 0.53 in year 1900, 0.63 in 2000 and 0.36 in 2100. The CC with ki3
given rank 3 is about -0.35 in all three years.

The second most important transfer coefficient for the detritus/decomposers
compartment, after kg3, is k17 in years 1900 and 2000, but k;2 in year 2100. The
CC with k17 is moderately high, around 0.41 in year 1900 and about 0.52 in
2100. ki which takes rank 2 in 2100 has an associated CC around -0.35. The
correlation between ko and the output of this compartment in years 1900 and
2000 (ranked as third) is around -0.38 which is still high compared to the CCs
with the other transfer coefficients.

For the active soil carbon compartment the most important transfer coefficient
appears to be kg having CC around 0.78 in year 1900, and decreasing slightly with
time. ko3 is the second most important transfer coefficient for this compartment
with a CC value of around -0.52 in years 1900 and 2000, and about -0.60 in year
2100. kqo is the third most influential transfer coefficient on this compartment

with the CC value of around -0.25 at all three time points.

3.5.4.2 Regression Methods

Considering the COy content of each compartment in years 1900, 2000 and 2100
as the response variables, and the free transfer coefficients (i.e., independent input
factors) as the explanatory variables, we now apply multiple regression method
on the results of N=5,000 Monte Carlo iterations to investigate the effect of the
transfer coeflicients on the compartmental outputs. In a SA without any priori
knowledge about the degree of influence the input factors have on the outputs, we
have to construct a regression model with all explanatories. For illustration pur-
pose a summary of the regression model involving the predicted 5,000 atmospheric
CO, content in year 2100 (i.e., y1(¢ = 2100)) as the response variable is given in
Table 3.16. Seven of the eight transfer coefficients (i.e., k12, ks, k75, kvs, kss, K17
and ki) with p-values less than 0.01 appear to effect y; (¢ = 2100).

Since we know from the matrix plot and the correlation measures that there

is either a linear or no association between the variables, we have used linear
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Table 3.16. Summary of regression analysis with Model I output variable
y1(t = 2100) (Atmospheric CO, content at year 2100) and input factors
k12, ko3, kvs, ke, kse, k17, ksr and kis.

Regression Std. Error T-test

Variable Coeflicient of Coeff. value p-value
K12 -299.199 0.959 -311.95 0.000
kos ~-117528.000 140.000 -836.69 0.000
ks -167.267 3.998 -41.84 0.000
kre -3.200 0.855 -3.74 0.000
kse -16.564 1.635 -10.13 0.000
k17 -4.091 0.300 -13.62 0.000
ksr 6.571 4,311 1.52 0.128
k1s -1982.95 13.380 -148.25 0.000

R-Squared = 99.4% Intercept = 1085.00

Sum of Mean Sum

Source DF Squares of Squares F-statistic p-value
Regression 8 1095506 136938 103231.78 0.000
Residual 4991 6621 1

Total 4999 1102126

regression approach. However, it is important to note that a regression analysis,
specially if it is based on identifying a linear relationship when there are other
types of relationships between the variables, can fail to show that a variable has
an effect on the response.

As we have done in Table 3.16, to present regression analyses results for all
response variables evaluated at three different years is rather cumbersome and
such tables also involve variables that appear to have no significant effect on the
response. Stepwise regression analysis is a more informative and less cumbersome
way of contructing and displaying regression models, and we will be presenting

the results from this procedure in Section 3.5.4.4.

Because of the effects of units and distributional assumptions, it is difficult to ob-

tain input factor importance from the regression coeflicients. As we shall shortly
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see in the following section, input factor importance is more clearly assessed by

using standardized regression coefficients.

3.5.4.3 SRC and PCC

From the SA point of view, to obtain a measure of relative importance of the
transfer coefficients we have calculated the standardized regression coefficients
(SRCs). As another measure of input factor importance, we have also computed
the partial correlation coefficients (PCCs) for all eight compartmental output
variables.

When using SRC, it is also important to consider the coefficient of determi-
nation R? of the linear regression models fitted to the data. The R? values for all
regression models constructed from the output of the i-th compartment at time ¢
(y:(t), i=1,...,8) and the eight independent transfer coefficients are all very high,
they lie between 98.4% and 99.6%. Note that the calculations here are based on
N=5,000 model evaluations.

We do not list the SRC and the PCC values here, but instead we present the
time dependent behaviour of these coefficient estimates for the whole time period
from 1750 to 2100 graphically (see Figure 3.27 for SRC, and Figure 3.28 for PCC
plots). This is a useful way of presenting sensitivity results for output variables
that are functions of time, like in our case. The SRC and PCC values associated
with each transfer coefficient for a certain compartment and at a certain year can
easily be read from these figures.

Each frame in Figures 3.27 and 3.28 shows results for each output variable,
and each curve in these frames displays, respectively, the SRC & PCC values
relating the corresponding output variable to one input factor as a function of
time. According to what we see in both of these figures, based on the SRCs and
PCCs, the sensitivity of some compartments to some of the transfer coefficients
changes over time, but within the same compartment the order of importance
between the input factors hardly changes with time. The most influential factor

is ko3 for all compartments except for active soil carbon compartment for which
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Figure 3.27. Standardized regression coefficients (SRCs) for the eight independent
transfer coefficients, with the predicted CO:2 concentrations in each compartment (i.e,

with the dependent variables

t/sM), N=5,000.
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kis appears to be the first and kg3 the second most important input factors.
Except for kps, the influence of all transfer coefficients on all compartmental
outputs tend to decrease over time. This decrease with ki for all outputs and
with kg for the output of active soil carbon compartment is much slower than
with the other transfer coefficients.

In Table 3.17, we give the ranking of the absolute value of the SRCs and
PCCs for each model output evaluated at the three years. With both SRCs and
PCCs, a comparison of the rankings within the same compartment but at different
years reveal that -for the surface ocean, nonwoody parts of trees and the woody
parts of trees compartments when SRCs are concerned, and the woody parts of
trees compartment when the PCCs are concerned- the importance ordering of
the input factors changes from year to year, but not dramatically. For instance,
ranking with the PCCs for the woody parts of trees compartment shows that
ksg is the fourth and kig the fifth most important factors in 1900, then in 2000
kgs becomes the fifth and kg the fourth. Considering the most important three
transfer coefficients (highlighted in Table 3.17) we can see that the same transfer
coefficients identified as the three most influential ones by using CCs (based on
the data from N=5,000 model evaluations) are picked out by this method of SA
as well: in descending order of importance, the top three most important input
factors for the atmosphere, surface and deep ocean, nonwoody parts of trees and
ground vegetation compartments are kg3, k12 and kig; for the woody parts of trees
compartment ko3, k12 and kys; for the detritus decomposers compartment ko3, k17
and kio; and lastly for the active soil carbon compartment ks, ko3 and kie.

In comparison to the SRCs (given in Figure 3.27), the PCC estimates (given
in Figure 3.28) are higher, but the rankings of transfer coeflicient importance
obtained from the PCCs are almost identical to the rankings from the SRCs.
In ideal circumstances, when the sampled input factor values are independent,
the use of CCs, SRCs and PCCs will produce identical rankings of input factor
importance [49], but if even small correlations exist between the input factors in

the sample this can result in the importance rankings not being identical. In our
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Table 3.17. Rankings of absolute Standardized Regression Coefficients (SRC)
and Partial Correlation Coefficients (PCC) for the outputs of Model I. The out-
puts from years 1900, 2000 and 2100 based on N=5,000 model runs are considered.
The eight free transfer coefficients are ranked in order of importance, and the 3

most important factors are highlighted.

Compart.

Output

Input

Factor

SRC Ranks

Yr 1900

Yr 2000

Yr 2100

Compart.

Output

Input

Factor

PCC Ranks

Xr 1900

Atmosphere

(u1)

k12
k23
krg
k7e
kag
kar
kgt
kig

¥r 2000

Yr 2100

Surface
ocean

(va)

k1z
k23
kg
kre
kag
kit
kg7
kis

Atmosphere

(v1)

kig
kas
k7s
kvg
kge
k1t
kgt
kig

Deep
ocean

(vs)

ka2
kas
kg
ke
kge
k17
kg7
kig

Surface
ocean

(v2)

kia
kas
k75
k7a
kgg
kit
kgt
k1g

Nonwoody
parts of
trees

(wa)

k12
kas
k75
k7a
kae
kit
kg7
kis

Deep
ocean

(va)

ki3
kag
k7g
k7e
kge
ka7
kgr
kis

Woody parts
of trees

(vs)

k12
kag
k75
kreg
kgg
kit
kgt
kis

Nonwoody
parts of
trees

(ya)

k12
kag
ks
k7g
kaa
k17
kar
LY}

Ground
vegetation

(vs)

k12
kag
k7
k7
kgs
ka7
kgt
ki1s

Woody parts
of trees

(us)

k12
k23
k75
kre
kag
k17
kg7
kig

Detritus/
decomposers

(u7)

kiz
kag
[
k78
kge
ka7
kgt
kig

Ground
vegetation

{vs)

kia
kas
krp
kve
ksga
k17
kgt
kg

Active soil
carbon

(vs)

kig
kas
kg
k7g
kgg
kyy
kg7
kig
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case, as shown in Tables 3.17 (for SRCs and PCCs) and 3.15 (for CCs) there
are slight changes in the importance order of the input factors but this is the
case with the least important transfer coefficients given ranks between 4 and 8.
For the most important three input factors, all three methods provide the same

rankings.

3.5.4.4 Stepwise Regression

Considering an a-value of 0.01 to add an input factor to a regression model and
an c-value of 0.05 to drop a factor from the model, we have carried out stepwise
procedure on the data. The order in which the inputs are added to the model at
each step provides the order of importance between the transfer coefficients that
are included in the final model.

In Table 3.18, the results of the stepwise regression for the output of atmo-
sphere compartment in 1900, 2000 and 2100 are given. All analyses results seem
effective with very high R2-values. The results, based on N==5,000 model runs,
show that seven of the eight transfer coefficients (i.e., kas, k12, kis, ks, k17, Kse
and kv, in this order) are included in the final model, no matter the output in
which year is considered. The R?-values over 99% indicate that these regressions
are successful in accounting for the observed variability in y; at the selected years.

Considering the changes in the R?-values that occur as additional inputs are
added to the regression models, we see that having included kg3, k12 and k15 in all
of these three models, the contribution to the % variation explained in the output
variable due to the other input factors is very small (less than 5%). For example,
let us consider the model for y; (¢ = 1900). The R2-value of 77% indicates that ko3
accounts for 77% of the variability in the output, while ko3 and ki taken together
account for 93.60%, and ko3, k12 and ki3 account for 98.28% of the variability.
The rest of the input factors all together account for 99.44% - 98.28% = 1.14%
of the variability in y;(¢ = 1900). One might even argue that only ko3 and ki
have large impact on the output.

Stepwise regression is a valuable tool for selecting the most important input
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Table 3.18. Summary of stepwise regression analyses for Atmospheric COq
content (i.e., output variable y;) of Model I in years 1900, 2000 and 2100; based
on N=5,000 model runs; and IS92a emission scenario.

y1(t = 1900) y1(t = 2000) y1(t = 2100)

Step | Variable @ R? | Variable R? | Variable R2

kas 0.7700 kos 0.7137 ka3 0.8462
k12 0.9360 k12 0.9105 k12 0.9646
k1s 0.9828 kig 0.9704 kis 0.9915
ks 0.9932 kvs 0.9925 krs 0.9936
kyir 0.9942 kir 0.9941 k17 0.9939
kgs 0.9943 kse 0.9943 kse 0.9940
krg 0.9944 krg 0.9944 kg 0.9940

< @ x A Qo 2o

factors and providing an order of importance among these factors, but often with
models involving large number of explanatory variables there is possibility of
overfitting the data. So, it is important to check if the fitted regression model is
a reasonable one. For this purpose, as suggested by Helton & Davis (see [49]),
predicted error sum of squares (PRESS) can be used. To calculate PRESS values
for a regression model with p variables (i.e. transfer coeflicients in this case), the
following procedure is used. For n =1, 2, ..., N, the nth observation is deleted
from the original set of N observations and then a regression model containing the
original p variables is obtained from the remaining N-1 observations. Based on
this new regression model, the value §,(n) is estimated for the deleted observation
Yn. PRESS value is then defined using the preceding predictions and the N

original observations as

N
PRESS, =Y (yn — p(n))*.
n=1
Most statistical packages, such as Minitab, can be used to easily compute
PRESS values. Table 3.19 reports the PRESS values for the regression models
summarized in Table 3.18. As shown by the decreasing PRESS values in Ta-

ble 3.19, the regression models in these analyses are probably not overfitting the
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Table 3.19. Predicted error sum of squares (PRESS) values for the regression
models summarized in Table 3.18.

1. (¢ = 1900) y1(t = 2000) y1(t = 2100)
Step | Variable PRESS | Variable PRESS | Variable PRESS
1 kog 369.598 kos 17636.700 ka3 169629.000
2 k12 102.839 k12 5512.000 k12 39040.900
3 kis 27.615 ks 1824.960 kis 9393.180
4 k75 e 10.958 k75 462.853 k75 7032.160
5 ki 9.346 k17 361.149 ki 6792.710
6 kse 9.133 kse 353.058 kss 6662.710
7 kre 9.042 kg 346.872 ke 6646.860

data from which they were constructed.

Resulting from stepwise regression analyses that are found to be successful in
the sense that they have quite high R2-values, the order of importance between
the top three transfer coefficients (i.e., the order in which they are added to
the corresponding regression model) and the R?-values obtained for successive
models are shown in Table 3.20. As examination of this table shows the top
three input factors account for most of the variation in all the outputs considered
in the analyses. The contribution to the variability in the outputs due to the
other input factors which were also added to the regression models is very small.
The complete order of importance for all output variables and the corresponding
R2-values are given in Table A.4, Appendix A.

Except for the active soil carbon compartment in all three years, ko3 appears
to be having the most significant influence on all compartments in all three years.
The same three most influential input factors kg3, k12 and ks (in decending order
of importance) are selected in the analyses of atmosphere, both ocean and ground
vegetation compartments. This order of input factor selection is almost the same
for nonwoody parts of trees compartment with a minor change in 2000 (k75 is
added to the regression model before k13).

The analyses for the woody parts of trees compartment show that following

ko3, ks is the second and k;5 the third most effective inputs on this compartment
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Table 3.20. Three most important transfer coefficients identified by stepwise
regression procedure on Model I. The importance ranking based on the order at
which the transfer coefficients were added to the corresponding model and the
R?-values for the regression models at each step are given. In the analysis, the
outputs in years 1900, 2000 and 2100 are considered.

Compartmental Yr 1900 Yr 2000 Yr 2100
Output Step Input R? |Input R?|Input R?
kas 0.770 | ko3 0.714 | ko3 0.846
Atmosphere k1o 0.936 | k12 0.911 | k12 0.965
kis 0.983 | ks 0.970 | ks 0.992
kos 0.919 | ko3 0.892 | kog 0.955
S(‘)‘::z‘f ko 0974 |k 0967 | kiz  0.982
kis 0.991 | kis 0.987 | ks 0.994
kas 0.932 | ko3 0.931 § ko3 0.935
Dee
Onnty ks 0977 |k 0979 |k  0.976

kg 0.992 | kis 0.992 | kis 0.992
ka3 0.715 | ko3 0.636 | ko3 0.830
k1o 0.875 | k12 0.822 | kyo 0.948

Nonwoody parts

of Trees Eis 0.920 | krs 0.889 | kig 0.976
kag 0.547 | ko3 0.399 | ko3 0.735
d ¢
WZ‘; ,lﬁ'r:f; S Ers 0.823 | krs 0.790 | ks 0.864
ki 0941 |k 0.904 | ks 0.973
k 0.760 | 0.603 | & 0.843
d 23 23 23
Vfg‘:l‘,;?ion k1o 0.925 | kyo 0.892 | k12 0.961
ki 0972 | ki 0.951 | kys 0.989
. Fins 0612 | gz 0.460 | kzs _ 0.801
Detritus/
Docomposers kw0798 | ki 0752 | ks 0.920

k12 0.934 | k1o 0.894 | k17 0.975
kg 0.606 | k1s 0.579 | ks 0.536
ka3 0.881 | k23 0.853 | ko3 0.902
k12 0.946 | k1o 0.924 | k1o 0.968

Active Soil
Carbon

Co D haf Qo 2 M| Ca 20 M |Co 1O | 20 M o B2 k| Qo D9 M| W B M~

at the chosen three years. For the detritus/decomposers compartment, the anal-
yses define ko3 as the most important input factor at all three years. This factor
is followed by k;7 and then ki3 in 1900 and 2000, but by ki first and then k;7 in
2100. The analyses with active soil carbon compartment data have identified the

top three most important input factors to be ki as the first, ko3 the second and
k1o the third.
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3.5.5 Discussion on the Results

Considering the simplicity of the state equations, i.e. mathematical representa-
tion of the model and the magnitude of the uncertainties in the values for the
initial conditions, it is expected that the initial conditions with larger uncertainty
ranges would dominate the sensitivity results and appear to be the most influen-
tial factors on model outputs. A sensitive model input factor with a given large
uncertainty range will contribute more to the uncertainty in model output.

Taking into consideration the fact that the mathematical structure of the
model has been kept as simple as possible, and the magnitude of the uncertainty
allowed about each of the input factors (20% of their literature values), the factors
with high nominal values and wider uncertainty ranges, therefore are dominant
on output sensitivity results.

Even though OAT sensitivity analysis approach produces some benefits, it is
not a very efficient way of performing a sensitivity analysis and it is limited in
application to models which are not very expensive to run and have small number
of input factors [64].

Since we have relatively small models with relatively small number of input
factors and the model codes are very fast running, we have used OAT design
to obtain a sensitivity ranking. If the number of input factors considered is not
small and the model runs slow, this design is very time consuming and not very
practical. Even with the relatively small number of inputs we have in our model(8
initial conditions and 15 transfer coefficients for Model I, and 8 initial conditions
and 18 transfer coefficients for Model II) the application of this design was quite
impractical. A very important disadvantage of OAT design is that it has an
underlying assumption frequently not valid for the models which can result in a
confused picture of how input factors affect model behaviour. This is the case
with GCC models for which we have to take into account the fact that the system
has to be in steady-state before introducing any perturbations to the system. So
to retain this condition, when one input factor is varied over its entire range at

least one other input factor has to be changed to initialize the GCC model. As
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a result, carbon content of each compartment change during a simulation as a
function of not only the factor varied but also the one(s) that are calculated,
of course in addition to the time-dependent releases of carbon from fossil fuel
emmissions and forest clearing.

In the local analysis methods based on sampling we considered a small N=100
and a large N=>5,000 sample size to investigate the effect of Sample size on the
results. It was shown that even though there was some variation in the importance
ranking of the input factors as a result of different sample size, that was not the
case with the most important factors, that is, sample size N=100 was large enough
to identify the factors that have large effects on the model outputs. With global
SA methods, considering the large dimension of the input space the sample size
of N=b000 was considered. As a rule of thumb, about 100 runs for each input
factor are usually performed [24]. Based on this argument we believe 5000 runs
are sufficiently large to cover the whole input space.

In this chapter, we have found out that the variability associated with a sensi-
tive input factor is transferred through the model resulting in a large contribution
to the overall output variability. We also found out that model results can be
highly correlated with an input factor so that small changes in the input value
result in significant changes in the output.

The techniques used in this chapter, such as correlations, regression coeffi-
cients, partial correlation coefficients are optimal choices for the input selection
since the output variables appear to behave in a linear fashion. Because, there is
no nonlinear relationships present between the output variables and the inputs,
the analysis was not performed on the ranks of the data.

Because model outputs are time dependent function of input factors, individ-
ual input factors have been examined at various time points. As a result we have
found out that their importance changes through time. We also found out that
different model input factors are important for different model compartments.

An important question is the extent to which the different techniques agree
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in their identification of important input factors. As the results for both 8-
compartment models utilised in this chapter reveal (see Appendix B for the results
of Model IT), even though there are small variations in the input factor importance

order with the different SA methods, the overall results are quite similar.




Chapter 4

Sensitivity Analysis Techniques

Applied to a 25-Compartment
GCC Model

4.1 Introduction

In the previous chapter, various sensitivity analysis (SA) techniques were applied
to two 8-compartment global carbon cycle (GCC) models. In this chapter we con-
sider a more complex, 25-compartment, GCC model. To study the performance
of this more complex compartmental model, we analyse the model sensitivity to
the input factors by employing various SA techniques defined in Chapter 2 and
already applied to the 8-compartment GCC models in Chapter 3, which include
sensitivity indices, standardized ranges, Morris screening, regression methods,
standardized regression coefficient (SRC), partial correlation coefficient (PCC),
SRC and PCC on ranks (i.e. SRRC and PRCC). The Pearson coefficient (CC),
Spearman coefficient (RCC) and the Smirnov test are also considered, together
with a few other non-parametric tests. By using these SA methods we aim to
analyse the relative performance of the different SA techniques employed as well

as the model performance.
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A description of the linear, time-invariant 25-compartment GCC model under
consideration here is given in Section 4.2, together with the characteristics of
the model input factors selected for SA. In Section 4.3 we report the results of
standard OAT and Morris designs. Then in Section 4.4 analyses results from
global SA techniques are presented. Discussion and conclusions are given in
Section 4.5.

4.2 The Model

Compared to the two 8-compartment GCC models, the 25-compartment model
has a more detailed formulation of the dynamics of the carbon cycle.

The model and its computer implementation are adapted from a technical re-
port (see [31]) prepared for the United States Department of Energy by Emanuel
et al. (1984). It was originally developed for the purpose of predicting the future
extent of the greenhouse effect. The model represents three major components
-the atmosphere, oceans, and terrestrial systems- of the cycle with 25 compart-
ments. The atmosphere is represented by a single compartment and the oceans
by 19 globally averaged layers with depth. The terrestrial systems component
of the model is described by 5 compartments. The Figure 4.1 illustrates the
model structure. The ocean component takes into account the dependence of the
ocean’s horizontal cross-sectional area and the carbon concentration on depth.
In this component, ‘surface ocean’ corresponds to waters above 75 m., and the
‘deep ocean’, which is divided into 18 horizontal layers, corresponds to waters in
75-4500 m. depth. The surface ocean compartment exchanges carbon with the
atmosphere and the deep ocean exchanges carbon only with the surface ocean.
The terrestrial component of the model allocates carbon among 5 compartments,
namely ‘nonwoody parts of trees’, ‘woody parts of trees’, ‘ground vegetation’, ‘de-
tritus/decomposers’ and ‘active soil carbon’. A detailed description of the model

is contained in [31]. In this model, CO; is released to the atmosphere by fossil fuel
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combustion. Deforestation also results in a direct transfer of carbon to the atmo-
sphere from ‘tree’ compartments as well as a transfer to ‘detritus/decomposers’.
The relative magnitudes of transfers from the atmosphere to ‘tree’ and ‘ground
vegetation’ are altered as a result of land-use change.

Carbon in the atmosphere, the inorganic carbon in the oceans, and carbon
storage in the terrestrial systems are calculated. The primary dynamic variables
(state variables) of this model are the masses of total carbon in each compartment.
Beginning from a preindustrial steady-state, model results at annual time scales
are considered. Substantial alterations had been made to the computer code of
the model in order to implement it for sensitivity and uncertainty analysis. The
historical and the future fossil fuel combustion and land-use change data given in
the code have been updated. For historical fossil fuel CO, emissions, estimates
given by Marland et al. (1999) (see [80]); for historical land-use change, data
given by Enting et al. (1994) (see [32]); and for the future predictions of fossil
fuel combustion and deforestation IPCC scenarios (see [58]) are used. The masses
of CO, are expressed in Gigatons (=10'° g), time in years, and the concentration
of CO, in the atmosphere in parts per million by volume (ppmv).

Inspection of the relationships between the model input factors and outputs
led to the selection of 30 independent input factors that are subject to uncertainty.
The description of the model input factors, their nominal values, variability ranges
and units are given in Table 4.1. The first six input factors describe the initial
conditions of the atmosphere and the terrestrial biota compartments. The next
seven describe land-use practices. These are followed by the inputs related to the
chemical and physical parameters of the oceans. The remaining input factors are
used to calculate the coefficients that control the fluxes between the terrestrial
components of the model. Due to the lack of information about the distribution
of these input factors, we assume that they all follow uniform distributions over
their assigned ranges. For the dynamic equations of the model considered by

Emanuel et al. see Table 4.2.
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Table 4.1. Model input factors selected for sensitivity analysis
Description Factor® Value Range Unit
Initial conditions
Atmosphere c (CAQ) | 548.80 510.7 - 596.0 Gt C
Nonwoody parts of trees e (CF0) 38.20 30.0 - 46.0 Gt C
Woody parts of trees C5q (CW0) | 634.50 507.0 - 762.0 Gt C
Ground vegetation 54 (CGO) 59.30 47.0-72.0 Gt C
Detritus/decomposers 54 (CDO) | 108.20 86.0 - 130.0 Gt C
Active soil carbon 3 (CSL0) | 1131.00 | 905.0 - 1348.0 Gt C
Forest clearing
Fraction of forest clearing carbon | ¢, (PHIA) 0.5 04-06 ——
transfered to atmosphere
Fraction of forest clearing carbon | ¢, (PHID) 0.5 04-0.86 —_—
transfered to detrit./decomp.
Ratio of soil to detrit./decomp. P (PSIS) 0.1 0.08 - 0.12 —_—
flux to forest clearing flux
Fraction of forest clearing release | &, (SXIT) 0.5 0.4-0.6 —
that serves to decrease capacity
for carbon storage in trees
Reforestation
Rate of re-establishment of O (SIG) | 1.0E-6| 0.8E-6-12E6 | yr!
tree compartments
Rate coefficient controlling Kg (8S) 0.2 0.16 - 0.24 yrt
the time required for trees
to dominate ground vegetation
Fraction of the change in € (EPS) 0.5 0.4-0.6 —
capacity for carbon storage
in trees that causes a change
in capacity for storage in
ground vegetation
Chemical ocean
Total boron concentration in B (SIGB) | 4.1E-4 | 3.27E-4 - 4.90E-4 | mol/L
surface ocean
Initial temperature of surface To (TEMPO) | 292.75 | 290.75 - 294.75 K
ocean
Chlorinity of surface water Cl (CL) 19.24 15.0 - 23.0 mL~!
Relative humidity in RH (RELHUM) 0.75 0.6-0.9 —
atmosphere

%letters in parentheses indicate the FORTRAN names of the input factors and

they will be used in the text.
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Table 4.1. cont.

Description Factor Value Range Unit
Physical ocean
Depth of surface ocean HM (HM) 75.0 60.0 - 90.0 m
Area of surface ocean AREA  (AREA) | 3.61E+14 | 2.88E+14 - 4.33E+14 | m?
Temperature change in DT (DELTP) 3.0 1.5-45 K

surface ocean as a result
of doubling atmospheric
carbon content

Terrestrial turnover times

Nonwoody parts of trees Tay (TF) 1.75 14-21 yr
Woody parts of trees Taa (TW) 25.00 20.0 - 30.0 yr
Ground vegetation Tag (TG) 4.00 32-48 yr
Detritus/decomposers Toa (TD) 2.00 1.6-24 yr
Active soil carbon Tas (TSL) 100.00 80.0 - 120.0 yr
Soil-forming fractions
Woody parts of trees 8,, (THW) 0.1180 0.094 - 0.14 —
Ground vegetation 0,4 (THG) 0.3330 0.26 - 0.40 —
Detritus/decomposers 6., (THD) 0.0625 0.05 - 0.075 —

Intrinsic recovery times
Nonwoody parts of trees vy (TT2) 20.0 16.0 - 24.0 yr

Ground vegetation v, (TV2) 4.0 32-48 yr




CHAPTER 4. SENSITIVITY ANALYSIS cont.

157

Table 4.2. Dynamic equations of 25-compartment global carbon cycle model®

Compartment

(1)

@)

(3-20)

(21)

(22)

(23)

(24)

(25)

Atmosphere

é1 = —k,gc1 + kg, Ca(Ps(ca)/Ps(T2)) — (Ff g1 (ca1) + FY ga(c21) + FY g5(c23))

+ 0i24,1C04 + Q25,1¢05 + F§(E) + 0, F5(1)
Surface ocean
éa =k, .01 — kg, C2(Ps{ca)/Ps(a)) — kasca + kasca
Deep ocean
¢ = ki—1,icic1 — (Kijim1 + kiaga)es + kipaciva, 1= 3,4,..,19
oo = k19,20C19 — k20,19C20
Nonwoody parts of trees
a1 = F¥ g (ca1) — 01,2401 — Fg(t)ear /(can + c20)
where Ff o (co1) = vpeor — pred,
pr = —orpr +wr (VT — 021,24)
ot/ (vr — a21,20)) Er Fg(H)[ear / (car + c22)]
Woody parts of trees
Can = F{ go(ca1) — (22,24 + Qan,25)can — F& (t)caz /(a1 + caz)
where FY 99 (co1) = (vpeo1 — PTcgl)(Ff,zz/Ff,m)
Ground vegetation
¢a3 = F{ 53(ca3) — (ras,24 + Cr23,25)ca3
where FY93(cos) = vveas — pvcds
pv = {eor — ewr(vr — an1,24)/ pr
—pr(1 + &r(e — 1)) Fg(t)car/(can + ca2)
+ksnl/(vr =~ a21,20) }pv
7= —ksn + (1 — &r)F§(t)car/(ca1 + c22)
Detritus/decomposers
C24 = Ou21,24C1 + Qt92,24C22 + (23,24C23 — (Qa4,25 + Qr24,1)C24
+ep Fy(t) + s Fg(t)
Active soil carbon

o5 = (r99,25Ca2 + (123,25C23 + Qla4,25C24 — Ct5,1Co5 — Y FH(1)

bsymbols not appearing in Table 4.1 are described in the following page
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In the equations given in Table 4.2 :

e
kas,ksa

Pg

wr

mass of carbon in the ith compartment,
rate coefficients for surface ocean invasion and evasion,

partial pressure of dissolved COs in the surface ocean

compartment,
flux from compartment % to compartment 7,

rate coefficient in the terrestrial component of the model

corresponding to the flux Fj;,

rate coefficient in the ocean component of the model
corresponding to the transfer from compartment ¢ to

compartment 7,

release at time ¢ from ‘nonwoody parts of trees’ and

‘woody parts of trees’ due to forest clearing,

release at time t from ‘nonwoody parts of trees’ and

‘woody parts of trees’ due to fossil fuel burning,

parameter that controls the ultimate level in the equi-
librium value of carbon storage in ‘woody parts of trees’

that can be forced by re-establishment,

dynamic variable to incorporate a delay in the domi-

nance of trees over ‘ground vegetation’,

over a variable indicates steady-state value.

158

For this model, the steady-state condition is satisfied within the model cali-

bration process. Random sampling has been used, and for each model run, the
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CO, content of each compartment is calculated as a function of inputs resulting
from fossil-fuel combustion and forest clearing. These time-dependent releases of
carbon are described as model input for the years 1750 through 2100 consisting of
the historical data (1750 - 1990) and the IPCC’s IS92a, scenario future projections
(1990 - 2100) (see Sections 3.2.1 - 3.2.3 in the previous chapter).

4.3 Results from Screening Methods

4.3.1 Standard OAT Design

First, we have applied a standard OAT design on the 30 model input factors listed
in Table 4.1 and their corresponding outputs. As described in Chapter 3, in this
design we vary one input factor at a time over its entire range while keeping the
others at their nominal values, and exploring how sensitive the model outputs
are to these local changes.

As an illustration, the time-dependent behaviour of the atmosphere compart-
ment resulting from varying some of the input factors OAT is shown in Figures 4.2
- 4.4, Bach dotted-line curve in these figures corresponds to the prediction as-
sociated with one of the 100 input sample vectors, and solid line curves are the
base-line curves.

The atmosphere compartment appears to be sensitive to the initial conditions
of the atmosphere, detritus/decomposers and active soil carbon compartments,
i.e. CAO, CDO and CSLO (see Figure 4.2). The forest clearing and reforestation

input factors do not seem to be having any significant effect on the atmosphere

compartment (see Figure 4.3). Among the ocean related input factors, HM,
AREA, SIGB, TEMPO and CL influence the atmosphere compartment the most
(see Figure 4.4). The effect of the variability in the terrestrial input factors (i.e,
TF, TW, TG, TD, TSL, THW, THG, THD, TT2 and TV2) on the atmosphere

compartment were found to be relatively unimportant.
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Figure 4.2. Atmospheric CO: predictions resulting from varying the initial con-
ditions OAT (given at top-left corner of each graph - see Table 4.1 for description
of these input factors). N=100 model simulations, [S92a emission scenario is
considered. In each graph the solid line represents the base-line case and dashed
lines represent the predictions.
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Figure 4.3. Atmospheric COz2 predictions resulting from varying the forest clear-
ing and the reforestation input factors OAT (given at top-left corner of each graph
- see Table 4.1 for description of these input factors). N=100 model simulations,
IS92a emission scenario is considered. In each graph the solid line represents the
base-line case and dashed lines represent the predictions.



SIGB | TEMPO

8
0
0
o
8
8
o
.......... «H HTTTH TH T >W
1750 1800 1850 1900 1950 2000 2050 2100 1750 1800 1850 1900 1950 2000 2050 2100
0
8
9
S
[0}
8
1750 1800 1850 1900 1950 2000 2050 2100 1750 1800 1850 1900 1950 2000 2050 2100
8
8
1750 1800 1850 1900 1950 2000 2050 2100 1750 1800 1850 1900 1950 2000 2050 2100
Year

1750 1800 1850 1900 1950 2000 2050 2100

Figure 4.4. Atmospheric C0: predictions resulting from varying the chemical
and the physical ocean input factors OAT (given at top-left corner of each graph
- see Table 4.1 for description of these input factors). N=100 model simulations,
[S92a emission scenario is considered. In each graph the solid line represents the
base-line case and dashed lines represent the predictions.
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4.3.1.1 Sensitivity Index

In this section, we present the results from a local SA method namely the Sensi-
tivity Index (SI).

The Sls of all 25 compartmental outputs at three chosen years (1900, 2000 and
2100) to the ranges of the 30 input factors are calculated and results presented
graphically in Figures 4.5 - 4.8. Each plot in these figures shows the sensitivities
of all compartments to one of the model inputs. In Figure 4.5, it is apparent
that except for the sensitivity of the atmosphere compartment to CA0, CDO0 and
CSLO0, which decreases over time, the other SIs hardly change with time. Only
the atmosphere compartment seems to be effected by the variation in CA0. None
of the ocean compartments are sensitive to CF0, CW0 and CGO.

The variation in CD0 and CSLO seem to be effecting some of the ocean com-
partments but not much since their corresponding SI values are all less than 0.01
which indicates that the output of these compartments is not very sensitive to
the changes in CD0O and CSL0O. The variation in CFQ appears to be effecting
the nonwoody parts of trees compartment the most. The detritus/decomposers
and active soil compartments also show sensitivity to CF0. All five terrestrial
compartments show some degree of sensitivity to the input factor CW0; in the
order the woody parts of trees, detritus/decomposers, active soil carbon, and fi-
nally the nonwoody parts of trees and the ground vegetation compartments. The
variation in CGO appears to be influencing the ground vegetation most, and its
influence on the active soil carbon and the detritus/decomposers compartments
is also important. The initial conditions CDO and CSLO seem to affect the at-
mosphere compartment only. In early years, the active soil carbon compartment
also shows some sensitivity to these two input factors (SI of 0.027 with CDO and
0.084 with CSLO in 1900), but later (see the results from 2100) these sensitivities
become insignificant with SI values below 0.01.

The SIs of all compartmental outputs due to the range of the forest clear-
ing and the reforestation input factors are shown in Figure 4.6. Except for the

atmosphere compartment, none of the other compartments show any sensitivity
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Figure 4.5. Sensitivity Indices of compartmental outputs due to the range of the
initial conditions (CAO, CFO, CWO, CGO, CDO, CSLO).
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to the variation in PHIA and PHID. The sensitivity of the atmosphere to these

two input factors is low in 1900, then it becomes more significant in 2000 but de-

creases again in 2100. The detritus/decomposers compartment also shows some

sensitivity to PHID but it is very small as the Sis at all three years are very low.
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Figure 4.6. Sensitivity Indices of compartmental outputs due to the range of the
forest clearing input factors (PHIA, PHID, PSIS, SXIT) and the reforestation input
factors (SIG, SS, EPS).
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Even though the graph for PSIS shows that three of the compartments are sensi-
tive to this input factor, the range of PSIS is not influencing these compartments
very much since the SI values are very low, below 0.003. The SXIT appears
to be influential on the nonwoody parts of trees, woody parts of trees, detri-
tus/decomposers, ground vegetation and the atmosphere compartments (in this
order, from most to least influenced). The SlIs corresponding to these compart-
ments tend to increase with time.

None of the ocean compartments is sensitive to the reforestation input factors
SIG, SS and EPS. Hardly any of the other compartments show any sensitivity
to the range of SIG, i.e. all SIs are very close to zero. With time the SI values
corresponding to the terrestrial compartments show some increase but not to a
very high value. As for the sensitivities due to the range of SS, compared to
the other compartmental outputs the Sls for the ground vegetation, active soil
carbon, atmosphere and the detritus/decomposers compartments appear to be
slightly higher, especially in year 2000. However, considering the SI values, it
is apparent that none of the compartments is very sensitive to SS. The ground
vegetation, active soil carbon and detritus/decomposers terrestrial compartments
and atmosphere compartment seem to be influenced by the range of EPS, and
the sensitivity of these compartments to EPS increases with time.

As shown in Figure 4.7, the ranges of the chemical and physical ocean input
factors do not appear to be having any influence on the terrestrial compartments.
The atmosphere compartment seems to be the only compartment that is effected
by the chemical ocean inputs SIGB, TEMPO0, CL and RELHUM. The sensitivity
of the atmosphere compartment to these inputs decreases with time. The input
factors SIGB, TEMPO, CL and RELHUM also influence the ocean compartments
but not very much. The SIs for the atmosphere compartment decreases as the
SIs for the ocean compartments increase with time. But the decrease in the SI
values of the atmosphere is more rapid.

The sensitivity of the atmosphere compartment to the range of physical ocean
input factors HM and AREA is very high (SI values of around 0.89 in 1900, 0.87




CHAPTER 4. SENSITIVITY ANALYSIS cant. 167

SIGB TEMPO
S
»
a n
1900 2100
RELHUM
2000 1900 2000 2100
AREA
[0
P
1900 2000 2100
0.0 ceon2
D.Ocoan3
D.Ocecanb
D.Ocoan0O
8 D Ocean/
- D OceanB
D Ocoan9
DO ¢ 12
D.O ¢ 13
D Oc 14
D .0 15
D.O coan 10
D.Oceanl?
D.Oceanl8
N.Woody T 1
W oody Troo
1900 2000 2100 Qr.Vegetatio
Dot./Deccom p
Act.Soil Carb

Figure 4.7. Sensitivity Indices of compartmental outputs due to the range of the
chemical ocean input factors (SIGB, TEMPO, CL, RELHUM) and the physical ocean
input factors (HM, AREA, DELTP).
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in 2000 and 0.79 in 2100 for both factors). As the plots of HM and AREA show,
the SI related to the atmosphere compartment decreases with time, whereas
the SIs of the ocean compartments increase with time. After the atmosphere
compartment, the most sensitive compartments to the range of HM and AREA
are the surface ocean, deep ocean-layer 1, deep ocean-layer 2, and so on, in the
given order. The compartmental SIs due to DELTP show that this input factor
influences the atmosphere compartment the most. The ocean compartments also
show some sensitivity to this input factor but it is not very high. Especially for
the atmosphere, the SI values increase quite rapidly with time.

In Figure 4.8, we show the SIs related to the terrestrial input factors TF, TW,
TG, TD, TSL (the terrestrial turnover times in, respectively, nonwoody parts of
trees, woody parts of trees, ground vegetation, detritus/decomposers and ac-
tive soil carbon compartments); THW, THG, THD (the soil-forming fractions
in woody parts of trees, ground vegetation and detritus/decomposers compart-
ments); and TT2, TV2 (the intrinsic recovery times in nonwoody parts of trees
and ground vegetation compartments). The ocean compartments do not seem
to be sensitive to any of these input factors. First, considering the terrestrial
turnover times input factors, the TF, TW and TG appear to have significant in-
fluence only on the detritus/decomposers and the active soil carbon; TD only on
the detritus/decomposers; and TSL only on the active soil carbon compartment.

The SIs of the active soil carbon and detritus/decomposers compartments due
to the ranges of THW and THG are high. THD, on the other hand, shows an
effect only on the active soil carbon compartment. The atmosphere compartment
also seems to be effected by these three inputs but not very much.

Except for the ground vegetation compartment, all terrestrial compartments
and the atmosphere compartment appear to be sensitive to TT2, but SI values
are quite small (below 0.01). The plot for TV2 shows that the ground vegetation
compartment is the most sensitive compartment to the range of TV2 in years
1900 and 2000 but becomes the second most sensitive in year 2100 after active soil

carbon compartment. Again, very small SI values indicate that the compartments
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Figure 4.8. Sensitivity Indices of compartmental outputs due to the range of the
terrestrial turnover times input factors (TF, TW, TG, TD, TSL), the soil-forming
fractions input factors (THW, THG, THD) and the intrinsic recovery times input
factors (TT2, TV2).
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is in-sensitive to this input factor. Next, by ranking the calculated SI values we
obtain the relative order of importance of the input factors for each compartmen-
tal output evaluated in years 1900, 2000 and 2100. See Table 4.3 for the rankings
of the 10 most important input factors (rank 1 indicating the most influential
factor, 2 the second most influential factor, and so on). Since the rankings do
not change significantly for the 18 deep ocean compartments, we include only
the rankings of the deep ocean layer-5 and layer-13 (i.e. compartments 7 and 15
in Figure 4.1) in the table. Except for the two or three most influential factors,
the rankings of the other factors change with time. For example, for the surface
ocean compartment, CDO is the fourth most important input factor in 1900, but
in 2100 it becomes the eight most important input. The input factor rankings for
the atmosphere, surface ocean, deep ocean-5 and deep ocean-13 compartments,
show a quite good agreement. For these four compartments the area of the sur-
face ocean (AREA) appears to be the most, and the depth of the surface ocean
(HM) the second most influential input factors.

The nonwoody parts of trees, woody parts of trees and ground vegetation
compartments are mostly effected by their initial conditions CF0, CW0 and CGO,
respectively. For the nonwoody parts of trees compartment the second most
important input seems to be CWO0 and it is followed by SXIT. SXIT is the second
most influential factor for the woody parts of trees compartment but it is less
influential on the ground vegetation compartment (ranked as the 4th). TD,
CWO0 and CFO0 are the three most important input factors (in descending order
of importance) for detritus/decomposers compartment. The top three inputs on

the active soil carbon compartment are identified as TSL then CGO and TG.




2 L 9 CAL

6 6 8 g g g g ¥ ¥ (AN

dHL

DHL

0T 0t 6 MHL

TSI

i J0O |<H |k~

™~ [cO |} b~

i oot b
=]
]
©

arL

L

m|
o
o

¢ ML

I

o

o

1=3
W == [
0 == |
LeR Al Il Ll

w0

0w

™~

0t 01T

o0
o0
[=>]
(=23 K=} L1r]
©
=]
[o2 B =R A
[er 3 N~ In]
=]

0T )8 2 L 6 ¥ 6 € € 6 8 6 dLTHA

VAEYV

—
—
—
L]
—
—
—
—
—

(4 4 [4 [4 [4 4 4 4 Z WH

WNNHTEY

10

OdWHLL

=3
o~
©
[is)
I~
©
o~
r~
0
n
~

@
I~
(-]
o0
o0
(=)
¥
10
© b= =0y [N
w
W
1=}
0
0
Vo)
<t
<
<H

8 L 9 L 8 ¢ 2 9 9 gaDIs

4 £ € 6 Sdd

9 g g Ss8

01 [1]3 Z 8 01 2 L 01 DIS

8 6 01 g ¥ ¥ [4 (4 4 € £ £ 6 6 [1]§ LIXS

SIsd

01 01 0T diHad

01 [1]8 01 or | 01 01 1) VIHd

07ISD

=]
o
= [ |
o«
o
e
=t |
~H
A
o
=)
o
T=N [an J f=)

oao

(4 14 4 9 9 9 1 1 I 09D

oMD

Te]
[Te]
w
™
o~
™
o
™~
™
—
—
—
(2]
™~
N

6 6 0T g € € ¥ 4 ¥ T T 1 04D

8 8 8 0T 8 8 6 8 6 8 3 ovD

00TZ | D00T | 006T || 00TZ | 000Z | OO6T || DOLZ | 0O0Z | OO6T || 0OIZ | OOOZ | OOBT || OOLZ | OO0Z | OO6T || OOTZ | 00OZ | OOGT || OOTZ | D00Z | OO6T || OOTZ | 000Z | O06T (| 00TZ | 0O0Z | DOGT

aesk | xesk | avsh || amak | avok | aesk || avok | yeak | awak || awak | aeef | awok || aeak | xeok | avek {| aeok | awak | avek || avak | aak | xeok || aeeL | avak | aeah || aeak | awak | Jesk s1033eq

nduy

‘qaep) 110§ *19V || "dwose/12q || uolyerafep ‘15 || seesy, Apoops || seexy, Apoom:p] || gI-ueeo( des(y || g-uesd() des(q || ueen(y sdeymg || szeydsomiry

"(oLren90s WOISSTd
93 € ©gSI PUR [PPOW DN juetpredwioo-G7 U0 Paseq oIe UIALS S)NSeI oY) V() Son[eA UIWI PUR XeW IBY) J8 s1090e} jndul [ppowt
o1} Suryenyeas woly SunnsaI OQTg PUB 0007 ‘0061 SIeas ur sindino Jejustriiedurod o) Jo S8OTPU] AMATIISULS JO SSuD[ueRy ‘g% S[EL




CHAPTER 4. SENSITIVITY ANALYSIS cont. 172

4.3.1.2 Standardised Range

Another OAT sensitivity measure, the standardised ranges (SRs) of each com-
partmental output resulted from varying each input factor over its range OAT
are calculated. Here we consider two different sample sizes, N=100 and N=5000,
to find out if the number of model runs has any effect on the results.

The SRs of all compartments due to varying each input factor are demon-
strated in Figures 4.9-4.12 as bar charts. Each graph in these figures shows the
influence of one input factor on all compartmental outputs at three chosen years
and with two different sample sizes. Examination of these bar plots shows that
except for the SRs resulting from varying SIG (see Figure 4.10), there does not
seem to be any apparent difference between the SRs based on the two different
number of model runs. However, the SR values do change with time.

The same compartments, which were identified as the most influenced com-
partments using the sensitivity indices, are also identified as the most effected
outputs by the SRs. The only difference we see between the graphical presenta-
tions of the SIs and the SRs is that the sensitivities of the compartments show
either a continuing increase or decrease over time when the SRs are considered,
but the results of the SIs show that the sensitivity of some compartments can
increase from a small SI in 1900 to a larger value in 2000 and then decrease again
in 2100. Because our aim in using these two local screening methods is mainly
to identify the most important input factors for each compartmental output at a
given time, as with the SIs we use the calculated SRs to rank the inputs in order
of their importance.

The ranking of the top 10 most important inputs for each model output
considered at three different years are given in Table 4.4. The order of impor-
tance between the most important 10 factors for the atmosphere, surface ocean,
deep ocean layers 5 and 13, and active soil carbon compartments are in com-
plete agreement with the rankings obtained with the SIs. Apart from the detri-
tus/decomposers compartment the top five inputs for the other compartments
are also the same as the inputs identified by the SIs (see Table 4.3). Using the




CHAPTER 4. SENSITIVITY ANALYSIS cont. 173

SRs, TW is ranked as the third and CF0 as the fourth influential factors on the
detritus/decomposers compartment, while the other local screening method SI
identified these factors in reverse order, i.e. CF0 as the third and TW as the
fourth important factor. The ranks of the other input factors on this compart-

ment are the same as the ranks obtained from the Sls.
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Figure 4.10. Bar charts showing how each compartmental output in years 1900,
2000 and 2100 is effected by the variation in the forest clearing input factors (PHIA,
PHID, PSIS, SXIT) and the reforestation input factors (SIG, SS, EPS) in terms of
standardized ranges. The results from both N=100 and N=5,000 are also compared.
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Figure 4.11. Bar charts showing how each compartmental output in years 1900,
2000 and 2100 is effected by the variation in the chemical ocean input factors (SIGB,
TEMPO, CL, RELHUM) and the physical ocean input factors (HM, AREA, DELTP)
in terms of standardised ranges. The results from both N=100 and N=5,000 are
also compared.
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Figure 4.13. Bar charts showing how each corapartmental output in years 1900,
2000 and 2100 is effected by the variation in the soil-forming fractions input factors
(THW, THG, THD) and the intrinsic recovery times input factors (TT2, TV2) in
terms of standardized ranges. The results from both N=100 and N=5,000 are also
compared.
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4.3.2 Morris Design

We next present the results of SA performed using the Morris method described
in Chapter 2 Section 2.5.5.2. For each input factor, the absolute value of the
estimated Morris mean and standard deviation, which are considered as two sen-
sitivity measures that respectively indicate the factor’s influence on the model
output and the influence due to interactions with other input factors and/or
nonlinear effects, are calculated. Because of the vast amount of results that our
model produces, we decided not to report the estimated means and standard devi-
ations numerically here, instead we display the results graphically in Figures 4.14
- 4.16. In these figures, the input factors are labelled using their FORTRAN
names. A general order of importance between the input factors can be obtained
considering the Euclidean distance from the origin, the larger the distance the
more influential the factor is.

The screening results on each output from the three years are overlaid on
the same figure to show how the influence of the inputs change between these
three years. For instance, on the atmosphere, surface ocean and the two deep
ocean compartments (see Figure 4.14 and the top frame of Figure 4.15), AREA
appears to be the most and HM the second most important factor, and this does
not change from year to year. For these compartments, the influence of the inputs
AREA and HM increases over time.

By ranking the estimated Morris means we establish a relative importance of
the inputs in terms of their overall influence on the outputs. The rankings of the
most important ten factors for each compartmental output considered at three
different years are given in Table 4.5. These rankings confirm what the morris
plots show. As Table 4.5 reveals, for each compartment the ranking of the most
important 10 input factors do not change considerably in the three years. We
discuss the results here by comparing them with the results we have obtained
from the two standard OAT methods - the SIs and SRs - since the results from

these three screening methods present strong similarities and dissimilarities in

terms of the importance rankings they provide.




CHAPTER 4. SENSITIVITY ANALYSIS cont. 181

Unlike the SI and SR methods, the Morris method identifies some of the
terrestrial component related inputs (namely TW, TG, TSL, THG and THD)
among the most important ten input factors for the atmosphere and the three
ocean compartments. However, for the same compartments, the input factors
CA0, CDO0, PHIA, SIGB and DELTP which are identified among the top 10
most important inputs by the SI and SR methods are not so identified by the
Morris method.

For the atmosphere, surface ocean and the two selected deep ocean (layers 5
and 13) compartments the two most influential inputs (first AREA then HM) are
the same with all three screening methods. As the Morris plots of the atmosphere
and the three ocean compartments (see Figure 4.14 and the top frame of Figure
4.15) show except for the inputs AREA and HM, the other input factors are not
as important for these compartments.

CF0, CW0, SXIT, TT2, TW and TT (in this order from most to less impor-
tant) are the six most influential input factors for the nonwoody parts of trees
compartment. This order of importance is the same with the SI, SR and Morris
methods. As the plot showing the results from the Morris method (given in the
middle frame of Figure 4.15) reveal, except for the most influential six inputs,
the other input factors have almost no influence on this compartment.

For the woody parts of trees compartment, comparison of the input factors’
rankings obtained from the three screening results show that the relative impor-
tance between the most important six input factors are in complete agreement:
CWO being the most influential factor followed by SXIT, TW, CF0, TT2 and
TF. The rest of the inputs have estimated Morris means and standard deviations
around zero which indicates that these inputs do not have a large influence on
this compartment (see the bottom frame of Figure 4.15).

Even though the rankings change slightly between the three years, the most
important five input factors, namely CG0, CW0, EPS, SXIT and SS, identified by
the Morris method are the same inputs identified by the SI and SR measurements,

for the ground vegetation compartment. For this compartment, the rankings of
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the top ten inputs from the Morris and SR methods appear to be in agreement.
According to the Morris method results (presented in the top frame of Figure
4.16) except for the five inputs listed above, the other input factors are not
influential on the ground vegetation compartment.

For the detritus/decomposers compartment, the three screening methods iden-
tified the same input factors as the most influential ten input factors but the order
of importance between these inputs change slightly, for instance, TG is identified
as the sixth most important input by the Morris method, but by SI and SR it
is ranked as the seventh most important input. It appears that the inputs TD,
CFo0, CW0, TW, TF, TG, CG0, THG, SXIT and THW have influence on this
compartment. See the middle frame of Figure 4.16 for the graphical presentation
of the Morris results on this compartment.

The most important ten input factors identified by the Morris method are the
same inputs that SI and SR, methods picked out as most important ten inputs
for the active soil carbon compartment. The order of importance between these
inputs is almost identical except with the Morris method THG is ranked 3 and
TG ranked 4 where as with the SI and SR measurements this ranking is reversed.
Based on the Morris results, the ranking of the inputs, in decreasing importance,
is TSL, CG0, THG, TG, TW, CW0, THD, THW, CF0 and TF, and as the Morris
plot of this compartment show (see the bottom panel of Figure 4.16) all these

inputs have some degree of influence on this compartmental output.
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Figure 4.14. Morris screening results on Atmosphere, Surface ocean and Deep
ocean (layer 5) compartments in years 1900, 2000 and 2100. Mean and standard
deviations are associated with the 30 input factors considered in the analysis.
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Figure 4.15. Morris screening results on Deep ocean (layer 13), Nonwoody parts
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in the analysis.
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Figure 4.16. Morris screening results on Ground vegetation, Detri-
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2100. Mean and standard deviations are associated with the 30 input factors
considered in the analysis.
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4.4 Global SA Methods

In the previous section (Section 4.3), three different screening exercises have been
considered. These methods only provide sensitivity measures that are qualitative
and can be used to rank the model inputs in order of their importance. In
order to obtain quantitative sensitivity measures, however, global SA methods
are required, and in this section we investigate the sensitivity of the model outputs
to the model input factors using various global techniques.

All 30 input factors that are subject to uncertainties and are varied simulta-
neously in the analyses are assumed to follow uniform distributions with upper
and lower bounds based on +:20% of their nominal values (see Table 4.1).

As the emission scenario, the IPCC’s IS92a scenario (also known as the
Business-as-Usual scenario) is adopted. As sampling technique simple random
sampling is considered to obtain a multivariate input sample. The N simulations
of the model were performed with the randomly generated input factors. For each
random set of inputs, the steady-state conditions in year 1750 are calculated in
the model initialization process. Then the system is run to year 2100 to obtain
the time-dependent behaviour of CO5 in each model compartment.

First of all, we show in Figure 4.17 the time-dependent behaviour of the
atmosphere (model compartment 1), surface ocean (2), layers 5 and 13 of deep
ocean (7 and 15), and the terrestrial biota (21-25) compartments as a result
of input uncertainties and the anthropogenic inputs. Each plot in this figure
corresponds to one of the compartments under consideration and each line curve
in each of these plots corresponds to the prediction associated with one of the
N=100 sample vectors.

As the plot in Figure 4.17 shows, the CO; content of the atmosphere increases
over time. To achieve a steady-state condition for year 1750, once the initial value
for the atmospheric CO4 content is chosen, the initail condition of the surface
ocean compartment has to be adjusted. Thus, this process results in a large
initial variability for the surface ocean and the upper layers of the deep ocean.

As a result of forest clearing, reforestation and vegetation of cleared land, the
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Figure 4.17. Time dependent behaviour of the nine dependent variables - CO2 con-
tent of Atmosphere, Surface Ocean, Deep Ocean-5, Deep Ocean-13, Nonwoody Parts of
Trees, Woody Parts of Trees, Ground Vegetation, Detritus/Decomposers and Active Soil
Carbon compartments - predicted using 25-compartment model as a result of varying
all 30 input factors simultaneously.
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behaviour of the terrestrial compartments are shown in the same figure. For
instance, due to forest clearing the carbon present in the nonwoody and woody
parts of trees compartments is released into the atmosphere. On the other hand,
the time-dependent pattern of reforestation and vegetation results in an eventual
increase in the flux of carbon to the ground vegetation compartment. These
land-use changes also effect the detritus/decomposers and the active soil carbon

compartments.

In the analyses, the amount of COs stored in the nine chosen compartments in
years 1900, 2000 and 2100 are considered as model outputs. To gain as much
information as possible from the model runs, input values that completely cover
the input space must be selected. Here considering the high dimension of the
input space to ensure that the input space is scanned as much as possible we use

a sample size of N=5,000.

4.4.1 Examination of Scatterplots

We start the analyses by first producing scatterplots of model inputs versus out-
puts and also calculating correlation coefficients to examine the relationships
between each input factor and each output variable. To conserve space we did
not include the scatterplots for all model outputs that were calculated at three
chosen years, instead we only present the scatterplots of some model outputs (es-
timated in 2100) versus each of the 30 input factors (see Figures 4.18 - 4.24). The
scatterplots of the model inputs versus model outputs evaluated in the other two
years (1900 and 2000) display very similar patterns that we see in the scatterplots
present here. It should be noted that the scatterplots given in these figures are
produced from the model simulations based on N=1,000 model runs to show a
clearer picture of the patterns in the plots, but all the quantitative sensitivity
measures (including the correlation coefficients) reported in the remainder of this
chapter are based on N=5,000 model evaluations. For convenience, we use no-

tations like y,, (¢) (for Atmosphere), y,,(t) (for Surface Ocean) and so on to
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denote a model output evaluated at time .

From examination of Figure 4.18 which shows the relationships between y,, (¢t =
2100) and each input factor, it is clear that there is a strong negative associa-
tion between this model output and both HM and AREA. The relationship with
these two inputs appears to be near linear, but one might argue that it is rather
a nonlinear but monotonic relationship. In such cases, using rank-transformed
data in regression and correlation analyses provide more reliable results. In the
other plots in this figure, the vast majority of the points lie close to the abscissa
but there is no particularly strong patterns in any of these plots.

Since the scatterplots for the y,, (¢t = 2100),y,,,(t = 2100) and y,,,,(t =
2100) were very similar, here we give the scatterplots of the deep ocean-layer
13 only (see Figure 4.19). Again the HM and AREA plots display well defined
patterns. In the other plots corresponding to the other 28 input factors there is
no obvious pattern indicating that there may be no relationship between these
input factors and the output variable.

Scatterplots for the y,,, ,.(t = 2100) (see Figure 4.20) show that there is a
perfect linear association between this output variable and the factor CF0. There
also seems to be a detectable linear association with SXIT and CWO0, and there
is hardly any relationship with the rest of the input factors.

Figure 4.21 shows that there is a positive strong association between the
Ywpr (t = 2100) and this compartment’s initial condition (i.e., CW0). Among the
- remaining input factors, SXIT also seems to have a linear relationship with this
output variable.

As for the output variable y,,, (¢ = 2100), the scatterplot with the input CGO
displays a very strong linear association. The input factors EPS, CW0 and SXIT

also appear to have a linear but not very strong relationship with this output

variable (see Figure 4.22).
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Figure 4.18. Scatterplots of predicted Atmosphere CO: content in year 2100 (i.e.,
yAtm = 2100)) versus each input factor (listed in Table 4.1).
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Figure 4.20. Scatterplots of predicted Nonwoody parts of Trees CO2 content in
year 2100 (i.e., yNWPI(t = 2100)) versus each input factor (listed in Table 4.1).
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Figure 4.21. Scatterplots of predicted Woody parts of Trees CO2 content in year
2100 (i.e., yWPT{t = 2100)) versus each input factor (listed in Table 4.1).
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Figure 4.22. Scatterplots of predicted Ground Vegetation CO: content in year
2100 (i.e., yGV{t = 2100)) versus each input factor (listed in Table 4.1).
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The scatterplots of y,, (¢ = 2100) presented in Figure 4.23 show many well-
defined patterns involving the input factors like TD, TF, TW, TG, CW0, CF0,
CGO and THG. As seen in Figure 4.24, there are detectable patterns in the plots
of y,4.(t = 2100) versus the input factors TSL, TG, TW, CG0, CW0, THG and
THD.

The Pearson correlation coefficients (CCs) are calculated on the model input
factors and output variables along with their p-values for the selected nine com-
partmental contents evaluated in years 1900, 2000 and 2100. We do not report
the CC values here but we obtain importance ranking of the ten most impor-
tant input factors for each dependent variable and these rankings are given in
Table 4.6.

In terms of the strength of the linear relationship with the output variables,
some input factors become more(or less) influential over time. The CC between
AREA and y,, (t), which appears to be the strongest relationship with rank 1,
is around -0.66. The CC with HM is just slightly smaller (about -0.65). All the
other CC values corresponding to the rest of the inputs are quite low (<0.1) in
absolute value.

The CC values computed with the input factors and the outputs of all three
ocean compartments are fairly similar. As with atmospheric output, AREA and
HM are the two factors having the strongest linear relationship with the outputs
of the surface and the two deep ocean compartments.

The CC between the output y,,, - (¢) and the inputs CF0, CW0, SXIT, CSLO
and SIGB are found to be significant with p-values less than 0.1. The CC with
CFO is the strongest (0.998 in year 1900, 0.983 in 2000 and 0.965 in 2100), and
the CCs with the other four factors mentioned above are less than 0.2.

For the woody parts of trees compartment, the CC with this compartment’s
initial condition CWO is the strongest (0.999 in 1900 and decreasing just slightly
to 0.987 in 2100). Compared to this CC, the absolute CCs related to the other
inputs identified as significant (with p-values less than 0.1) are quite low, varying
between 0.2 (with SXIT in 2100) and 0.02 (with AREA in 2100).
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Figure 4.23. Scatterplots of predicted Detritus/Decomposers CO:2 content in year
2100 (i.e., yDD{t = 2100)) versus each input factor (listed in Table 4.1).



CHAPTER 4. SENSITIVITY ANALYSIS cont.

520 540 560 580
CAO(GIC)

900 1000 1100 1200 1300
CSLO(GLC)

1.2*10*-6

0
R

14 16 18
TF(yr)

2

0
5§

reil*V*s s .

§§

0.10 0.12

THW

0.14

Figure 4.24.

CFO(GLO)

016 018 020 022 024

S8 (14yr)

RELHUM

20 2 24 26 28 B
TWn)

Scatterplots of predicted Active Soil Carbon CO:

Gt o
00

1

<o 2conltent
1000

500 550 600 650 700 750
ONO(GLC)

35 40 45
TG n)

0.00035 0.00040 0.00045
SIGB (mollL)

31014 351014 4*10"14
AREA (m'2)

<o 2cont w o
000 &

16 18 20 22 24
TD(yr)

16 18 20 22 24
TT2(yr)

9 100 110 120 130
CDO(GLC)

201 202 203 204
TEMPO (K)

15 20 25 30 35 40 45
DELTP(K)

80 €0 100

TSL (yr)

110 120

35 40 45
V2 ()

content in year

2100 (i.e., yASC{t = 2100)) versus each input factor (listed in Table 4.1).



CHAPTER 4. SENSITIVITY ANALYSIS cont. 199

As the scatterplot in Figure 4.22 reveals for 2100, the output variable y,,, (¢)
and the input CGO are highly correlated at all three chosen years. The CCs
between this output variable and the inputs CW0, EPS, SXIT and CF0 are also
relatively high. Apart from the CC related to CGO which shows a small decrease
over time, the CCs with the other inputs listed above are increasing over time.

The most highly correlated input factors with the output y,,, (¢) are TD (with
CC of 0.75 in year 1900), CWO0 (0.34), CF0 (0.32), TW (-0.31), TF (-0.29), TG
(-0.15), CGO (0.14), THG (-0.08), CA0 (-0.03). The CC values reported here
with the output at year 1900. Over time, the absolute CCs corresponding to
the factors TD, CF0, TW and TF are decreasing, whereas the absolute CCs
corresponding to the inputs CW0, TG, CG0, THG and CAOQ are increasing.

For the output y,4,(t), TSL appears to be the most highly correlated input
with a CC of about 0.66 in all three years. The correlations between this output
variable and the inputs TG, CG0O, THG, CW0, TW and THD are also relatively
high (varying between 0.20 and 0.36 in absolute value).
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4.4.2 Regression Methods

For quantifying the relative importance of the input factors to the model outputs,
we now consider regression methods. As an illustration, we have constructed a
regression model to investigate the effects of all 30 input factors on the dependent
variable y,, (¢ = 2100) (i.e., the predicted carbon content of the afmoéphere
compartment in 2100). The outcome of this regression model is summarized in
Table 4.7. According to the p-values for each of the 30 input factors, it seems
that out of the 30 inputs, 17 (given in bold-italic in the table) have p-values less
than 0.02 and hence we can say that these input factors, namely CF0, CWO,
CGO, CSLO, PHIA, PHID, PSIS, SIGB, TEMP0, CL, HM, AREA, TW, TG,
TSL, THG and THD, appear to influence the response variable.

The regression coefficients in a linear regression model, which can provide
rankings of all inputs, depend on their units. If the input factors included in a
regression model have different units which is the case with our input factors here,
then it is difficult to obtain a meaningful ranking of the input variables based
directly on the regression coefficients. Therefore, it is necassary to standardise to
remove the unit effects on the final coefficients. These standardised coefficients
(SRCs) have been calculated on this model and the results are presented in the
following section (Section 4.4.3) along with the partial correlation coefficients
(PCCs).

As an alternative to constructing a regression model, which contains all input
factors, for each output variable and presenting vast amount of analysis results,
we have performed stepwise regression analysis using the predictions from the

5,000 model runs and the results are given in Section 4.4.4.
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Table 4.7. Summary of regression analysis for yam(t = 2100) (Atmospheric
CO4 content at year 2100) and input factors CA0, CF0, CW0, CG0, CD0, CSLO,
PHIA, PHID, PSIS, SXIT, SIG, SS, EPS, SIGB, TEMP0, CL, RELHUM, HM,
AREA, DELTP, TF, TW, TG, TD, TSL, THW, THG, THD, TT2 and TV2 (see

Table 4.1 for description of these inputs).

Regression Std. Error
Variable Coefficient of Coeff. T-test p—value
CAQ 3.280000e—-01 1.610000e - 01 2.036700e4-00 0.0417
CFO -2.082400e+00 8.580000e - 01 -2.424200e+-00 0.0154
CWO -1.872000e-01 5.400000e-02 -3.466200e+-00 0.0005
CGO -4.376700e+-00 5.551000e-01 -7.885200e4-00 0.0000
CDo 6.064000e—01 3.120000e-01 1.944000e+-00 0.0520
CSLO 4.238000e—-01 3.090000e —-02 1.371680e--01 0.0000
PHIA 1.729196e+4-02 6.951790e+-01 2.487400e4-00 0.0129
PHID 1.689955e+4-02 6.913010e+01 2.444600e4-00 0.0145
PSIS -8.895654e-02 3.452463e+02 -2.576600e+-00 0.0100
SXIT 1.508464e+02 6.920080e+4-01 2.179800e+-00 0.0293
SIG 4.969968e--06 3.465408e+-07 1.434000e - 01 0.8860
S8 -6.150850e-4-01 1.732762e+02 -3.550000e-01 0.7226
EPS -8.934900e+4-01 6.934510e+01 -1.288500e+00 0.1976
SIGB 2.882116e+05 8.498279e+-04 3.391400e+00 0.0007
TEMPO 1.395650e--01 3.454400e--00 4.040100e--00 0.0001
CL 8.120200e+-00 1.716300e+00 4.731100e4-00 0.0000
RELHUM -1.289150e+-01 4.579230e401 ~2.815000e-01 0.7783
HM -8.647960e+-01 4.600000e - 01 -1.879872e+402 0.0000
AREA 0.000000e+-00 0.000000e+-00 -1.894515e+4-02 0.0000
DELTP -2.464400e+00 4.585500e+00 -5.374000e-01 0.5910
TF 2.754300e+-01 1.959520e+-01 1.405600e+00 0.1599
Tw 5.550500e+-00 1.380700e-+00 4.020000e-+00 0.0001
TG 6.492810e+-01 8.541700e--00 7.601300e4-00 0.0000
TD 4.147000e-01 1.723220e+4-01 2.410000e-02 0.9808
TSL -4.555600e+-00 3.410000e-01 -1.336040e+-01 0.0000
THW -5.437331e+-02 2.968994e--02 -1.831400e+-00 0.0671
THG -6,446091e+-02 9.867310e--01 -6.532800e+-00 0.0000
THD -2.048286e+4-03 5.493671e+02 -3.728400e+00 0.0002
TT2 -1.767300e4-00 1.719200e-+00 -1.028000e4-00 0.3040
TV2 -3.449500e4-00 8.577800e4-00 -4.021000e—-01 0.6876
R-Squared = 93.46% Intercept = 10696.55
Sum of Mean Sum
Source DE Squares of Squares F-statistic p-value
Regression 30 5594310605 186477020 2368.48 0.000
Residual 4969 391223410 78733
Total 4999 5985534015




CHAPTER 4. SENSITIVITY ANALYSIS cont. 203

4.4.3 SRC and PCC

Using the results of N=5,000 model runs, for each input and output combination
of interest, we have calculated the SRCs and PCCs which provide measures of
the relative contribution of each of the inputs to the observed output variations.

When using the SRCs it is also important to consider the model coefficient of
determination R2. The R?-values we have obtained from the regression models in
which the nine compartmental contents in 1900, 2000 and 2100 are the response
variables and the 30 input factors are the explanatory variables vary between
85.5% and 100%. These high R2-values indicate that the SRCs are valid as a
measure of sensitivity.

Since our response variables are functions of time, we have calculated the
SRCs and PCCs at each time point and presented these sensitivity results with
plots, thus indicating the importance of each input on an output over time. The
time-dependent behaviour of these estimated coefficients for eight input factors
having the highest values are shown in Figures 4.25 and 4.26 for the SRCs, and
Figures 4.27 and 4.28 for the PCCs. For both sets of SRC and PCC curves
given in these figures, the dependent variables are the nine compartmental CO,
contents and each curve displays the values of the SRCs and PCCs relating these
compartmental contents to a single input factor as a function of time. Note that
in these figures we show the time-dependent behaviour of the SRCs and PCCs
associated with the eight most important input factors only.

Figures 4.25 and 4.27 show that the input factors AREA and HM seem to
have a large influence on the atmosphere, surface ocean and the two deep ocean
(layer5 and layerl3) compartments (i.e., ¥,, (£), ¥so(t), Upos(t) and y,,..(t),
respectively), and they are almost equally important. As seen in the top-left
frames of these two figures, CA0O has the SRC and PCC values of 1 at the starting
year 1750 but this value decreases very rapidly and this input does not appear
to have any significant effect on the output variable Yaem (£). Although the input
factors included in these two figures are the factors that are associated with higher
values of SRCs and PCCs (see legends of Figures 4.25 and 4.27), compared to
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AREA and HM the other inputs do not seem to be as influential on these four
compartments.

The sensitivity of the surface ocean and the deep ocean-layer5 compartments
to the other input factors (TSL, CSLO, CGO, TG, CWO and TW) shown in the
figures seems to be increasing for the first 100-150 years and then decreasing grad-

ually over time. As the results for deep ocean-layer 13 reveals it takes longer for

Atmosphere Surface Ocean

1750 1800 1850 1900 1950 2000 2050 2100 1750 1800 1850 1900 1950 2000 2050 2100

Year Year

Deep Ocean-5 Deep Ocean-13

1750 1800 1850 1900 1950 2000 2050 2100 1750 1800 1850 1900 1950 2000 2050 2100

Year Year

Figure 4.25. Time-dependent behaviour of the SRCs for the atmosphere and
three ocean compartments considered.
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COs to move into the deeper layers of the ocean, so the sensitivities of these com-
partments to the model input factors in terms of the time-dependent behaviour
of their SRC and PCC values show much slower change over 350 years.

The SRC and PCC curves computed on the sampled input factors and the
terrestrial compartments are given in Figures 4.26 and 4.28. The nonwoody parts
of trees compartment is most sensitive to its initial condition CF0 which has both
SRC and PCC of 1 in 1750 and decreases only slightly over the whole time period.
By looking at the SRC curves of the most important 8 inputs for y,,, . (f), we
can see that except for CF0, CW0 and SXIT the rest of the inputs do not seem to
be having any influence on this compartment. In terms of the PCC curves, CF0,
CWO, SXIT and TT2 appear to be having significant influence on the nonwoody
parts of trees compartment. The influence of the other inputs is insignificant. The
PCC values associated with CF0 and CWO0 are about 1 which indicates that the
output variable ¥, »r(t) and these two inputs increase together while the PCC
value associated with SXIT, which is about -1, implies that ¥, »r.(¢) decreases
as SXIT increases. The sensitivity of yy, »o(t) to TT2 decreases with time, and
by 2100 the influence of this factor becomes insignificant.

The sensitivity of the output variable y,, ,.(f) to CWO0 is the highest and
this does not seem to change over the years. As shown in the corresponding
SRC graph of Figure 4.26, this compartment is also sensitive to SXIT but shows
hardly any sensitivity to the rest of the inputs presented in this graph and hence
to the rest of the other inputs included in the analysis (since only the top 8 inputs
having the highest SRC values are included in the figure).

The graph with the PCC curves for y,, ...(¢t) show that CWO0, SXIT and TW
are almost equally influential on this model output. The influence of CF0 is also
very high over the whole time period. The sensitivity of y,, ..(¢) to T'T2 and TF
is also relatively high but decreasing over time, especially after year 2050.

As for the ground vegetation compartment, the influence of CGO on y,,, (¢),
in terms of the SRCs, is very high (see the left frame in the second row of

Figure 4.26). CGO0’s SRC value is decreasing over time but only slightly. The
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Nonwoody parts of Trees Woody parts of Trees

HM 0
1750 1800 1850 1900 1950 2000 2050 2100 1750 1800 1850 1900 1950 2000 2050 2100
Year Year
Ground Vegetation Detritus/Decomposers
1S o°

1750 1800 1850 1900 1950 2000 2050 2100 1750 1800 1850 1900 1950 2000 2050 2100
Year Year

Active Soil Carbon

Co

-TSL -CWO
uCGO -TW
-TG -THD

O -THG =CSLO

1750 1800 1850 1900 1950 2000 2050 2100
Year

Figure 4.26. Time-dependent behaviour of the SRCs for the terrestrial com-
partments.

sensitivity of yGI{(t) to CWO, EPS and SXIT is also relatively high, and increasing
over time. The SRCs related to the other inputs included in this figure are

around zero. The PCC curves provided in Figure 4.28 for the ground vegetation
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compartment show that CG0 and CW0 are the most influential inputs on this
output variable, and they are followed by EPS and SXIT having very high PCC
values. The time-dependent, behaviour of the PCC of SXIT present an interesting
picture. Its PCC value is -0.0157 for the first 15 years, then it increases quite fast
in the next three years, reaching to -0.7895 in 1768. Later, it starts decreasing
until year 1775 (taking an SRC value of -0.0788) and then increasing rapidly in
the following 10-15 years in the positive direction. Its SRC value in 1800 is about
0.91, and continues increasing and reaches an SRC value of 0.951 in 2100. The
input factor SS also seems to be important for this compartment especially in
the early years, but its influence is diminishing fast and becoming insignificant
by 2100. The PCC curve associated with CF0 shows that y,,, () is also sensitive
to this input. The degree of sensitivity to this input decreases slightly over the
years. The PCC curve of TV2 presents a decreasing influence on this output
variable whereas the influence of PSIS which is not very high does not change
with time.

Even though the PCCs are higher than the SRCs, the corresponding graphs
for the detritus/decomposers compartment (i.e., y,,(¢)), which display two sets
of curves, present very similar pictures (see the right frames in the second rows
of Figures 4.26 and 4.28). The time-dependent behaviour of the SRCs and PCCs
of the eight most important input factors show small changes over time. Both
estimated coefficients of the inputs CW0, CG0 and TG increase whereas the SRCs
and PCCs of TD, CF0, TW, TF and CDO0 decrease over time but very slowly.

In terms of both SRCs and PCCs, the sensitivity of the active soil carbon com-
partment to CSLO is highest in the early years but over the years the influence of
this input on y, . (t) decreases (see the corresponding graphs in Figures 4.26 and
4.28). The SRC curves of the other seven input factors show that the sensitivity
of ¥,4.(t) to these inputs keeps increasing gradually in the first 100 years, then
do not seem to be changing much in the next 250 years. With the PCCs, the
time-dependent behaviour of the input factors, except for CSLO which shows a

decrease, does not appear to be changing significantly over the whole time period.
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Figure 4.27. Time-dependent behaviour of the PCCs for the atmosphere and
the three ocean compartments considered.

The SRCs and PCCs provide related but not identical measures of input
factor importance. From Figures 4.25 - 4.28, we see that the PCCs tend to be
larger than the SRCs, but because the input factors under consideration here are
independent, the rankings of input importance based on the absolute SRCs and
PCCs are identical. The rankings of the most important ten input factors for the

nine model outputs fixed at three years are given in Table 4.8.
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Figure 4.28. Time-dependent behaviour of the PCCs for the terrestrial com-

partments.

The rankings for each output variable evaluated at the three chosen years do

not appear to differ much from year to year. The input factor rankings for the

atmosphere, surface ocean and the two deep ocean compartments are in quite
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a good agreement. For the nonwoody and woody parts of trees compartments,
almost the same input factors are identified among the ten most influential inputs
with slightly different ranks. Most of the ten inputs picked out as important for
the tree compartments are also influential on the ground vegetation compartment.
In the table, the importance rankings for the detritus/decomposers and the active
soil carbon compartments show that most of the ten inputs which are important
for one of these compartments are also important for the other but with different

order of importance.
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4.4.4 Stepwise Regression

In this section, we present results from the stepwise regression analysis. The
stepwise regression procedure was performed using the results from the N=>5,000
model runs associated with the carbon content of nine selected compartments as
the response variables and the 30 input factors as the explanatory variables. As
often done in sensitivity studies, an a-value of 0.01 is used to add a variable to
each regression model, and an a-value of 0.05 is considered to drop a variable
from the model. The results are shown in Table 4.9 (for the atmosphere and the
three ocean compartments) and in Table 4.10 (for the terrestrial compartments)
in terms of the order in which the input factors are selected (the most important
input factor is selected first, the next most important factor is selected second,
and so on), the R* and the PRESS (predicted error sum of squares) values at
successive steps of the analysis are reported.

We first examine the adequacy of the regression models by looking at the
PRESS values reported in Tables 4.9 and 4.10. The PRESS values computed for
each regression model obtained at each step of the analysis appear to decrease
in size as additional input variables are added to the corresponding regression
model, which indicates that the regression models are not overfitting the data.

In Table 4.9, which presents the analysis results for y,, (), ¥ (%), Ypos(t) and
Ypows(t) (where t=1900, 2000, 2100), we see that under each response variable
the input factor AREA is selected at the first step of the analysis indicating
that this input factor has the greatest impact on these twelve output variables.
The R?-values computed with only ARFA in each regression model vary between
0.4041 and 0.4796. That is, AREA accounts for approximately 40-48% of the
uncertainty in the output variables under consideration here.

In the second step of the analysis, HM is identified as the second most influen-
tial input on all twelve output variables. Including HM in the regression models,
in addition to the input factor AREA, increases R? values significantly. Thus,
AREA and HM together account for approximately 80-97% of the uncertainty in

the output variables. With the addition of 5 more inputs which are identified as
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having impact on the response variables the effectiveness of the regression models
are further improved. In each of the regression models summarised in Table 4.9,
seven out of 30 inputs are selected. The seven inputs identified as influential on
a compartment at three chosen years are the same, but the order in which they
were added to the model changes slightly from year to year. For instance, for
Yso(t = 1900) and y,, (t = 2000), CGO is added to the regression model on the
fifth step, but when y,, (¢t = 2100) is considered CGO is added to the model on
the sixth step of the analysis.

The input factors AREA, HM, TSL, CSL0O and TG are all selected in the
regression analyses for all response variables y,, (%), Yso (£), Ypos () and ¥, (E).
THG which is among the influential inputs for the atmosphere compartment is
not identified as influential for the three ocean compartments. CWO0, on the other
hand, is selected in the regression analyses on the three ocean compartments, but
not in the analyses for y,, (). Unlike the regression models on y,,,, (¢t = 2000)
and y,,,,(t = 2100), the regression model for y,,,,(t = 1900) includes TW and
excludes CGO.

‘The analyses in Table 4.10 for the response variables related to the terrestrial
compartments appear to be very effective with R2-values over 0.91. Under each
response variable, a decreasing sequence of PRESS values implies that the regres-
sion models are not overfitting the data which they are based on. The regression
ON Y pr (£) selects the input factors CFO, CW0, SXIT and TT2 when #=1900. In
addition to these four input factors, in 2000, TW is also included in the regression
model. Later in 2100, TT2 is dropped from the regression model, and the order
of the selection of the second and third inputs is reversed. However, including
TT2 and TW in the regression models for y,, »»(t), in addition to CF0, CW0
and SXIT, does not improve the effectiveness of these models.

For y,, ..(t), seven of the inputs involved in the analyses (i.e., CW0, SXIT,
TW, CF0, TT2, TF and PHID -in this order) are identified in the regression
analyses when the outputs from years 1900 and 2100 are considered. The analysis

on Yy, pr(t = 2000), however, does not include PHID in the final regression model.
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The order of input selection does not change from year to year.

The input factors CGO, CWO0, EPS and SXIT are selected by the regression
analysis on y,, (¢) in all three years. In addition to these four input factors, SS
and TV2 in year 1900, SS and PSIS in 2000, and PSIS and TW in 2100 are
included in the regression models for y,, (). The orders in which these inputs
are added to the models can be seen in Table 4.10.

Considering the regression analyses results for Y, pr (), Ywper(£) and y,, (£), we
see that even though the analyses identify a number of inputs as influential,

including only the first inputs selected at the first step of the analyses in the

Table 4.9. Summary of stepwise regression analyses for the COs content
of the atmosphere and the three ocean compartments (i.e., output variables
Yaems Ysosr Ynos 30d Ypors) 0 1900, 2000 and 2100; based on N=5,000 model runs
and IS92a emission scenario.

Comp. y: (¢ = 1900) yi (t = 2000) y:(t = 2100)
Output St . o . 2 N 2
ep | Variable R PRESS | Variable R PRESS | Variable R PRESS
1 TAREA 0.4287 95Ix10° [AREA  0.4298 15.90x10° [ AREA  0.4565 32.60x10%
2 |HM 0.8694 2.18x10% | HM 0.8703 3.63x10% | HM 0.9260 4.44x108
3 |TsL 0.8745 2.09x10% | TSL 0.8737 3.54x10% | CSLO 0.9283 4.30x108
Yasm { |CSLo 0.8795 2.01x10% | CSL.O 0.8772 3.44x10% | TSL 0.9306 4.16x108
5 | TG 0.8809 1.99x10% | TG 0.8783 3.41x10% [ CGoO 0.9314 4.12x108
6 |CGO 0.8823 1.96x10% [ CGO 0.8793 3.38x10% | TG 0.9322 4.07x108
7 | THG 0.8832 1.95x10% | THG 0.8800 3.36x10% | THG 0.9328  4.04x108
1 [AREA  0.4041 4.25x10° [ AREA 04328 5.20x10° | AREA  0.4796 11.38x10°
2 |HM 0.7982 1.44x10% | HM 0.8608 1.28x10°% | HM 0.9662 0.74x108
3 | TSL 0.8144 1.32x108 | TSL 0.8688 1.20%10°% | TSL 0.9674 0.71x 108
Yso 4 |CsLe 0.8286 1.22x10° | CSLO 0.8758 1.14x10% [ CSLO 0.9684 0.69x10°
5 |lceo 0.8340 1.19x106 | CGoO 0.8788 1.11x10° | TG 0.9688 0.68x108
§ | TG 0.8391 1.15x108 | T'G 0.8815 1.09%10° | CGO 0.9692 0.67x10°
7 | CWO 0.8436 1.12x10°% | CWO 0.8838 1.07x10° | CWO 0.9696 0.66x10°8
1 JAREA 04171 4.09x10° JAREA 04229 5.12x10°[AREA  0.4689 10.03x10°
2 |HM 0.8268 1.22x10°% | HM 0.8391 1.43x10% [HM 0.9401 1.13x108
3 |TSL 0.8401 1.13x10% | TSL 0.8496 1.34x10% | TSL 0.9428 1.08x10%
Ypos 4 | CSLo 0.8518 1.04x10% | CSLO 0.8588 1.26x10% | CSLO 0.9451 1.04x106
5 | CGo 0.8562 1.01x10% | CGO 0.8625 1.22x10% | CGO 0.9462  1.02x 106
6 | TG 0.8604 0.98x10% | TG 0.8660 1.19x10% | TG 0.9471 1.00%10°
7 |CWo 0.8644 0.96x10% | CWO 0.8690 1.17x10% ! CWO 0.9479  0.98x10°
1 [AREA 0.4494 2.35x10° [ AREA  0.4328 8.74x10° [AREA  0.4330 17.98x10°
2 |HM 0.8971 0.44x10% | HM 0.8598 2.16x10° | HM 0.8587 4.49x10°
3 |TSL 0.9017 0.42x10°¢ | TSL 0.8691 2.02x10°% | TSI, 0.8678 4.20x106
Ypows | 4 |CSLO 09057 0.40x10° | CSLO 0.8772 1.90x10° | CSLO 0.8757  3.95x10°
5 |TG 0.9075 0.39x10¢ | CGO 0.8803 1.85x10° [ CGoO 0.8789 3.85x10°
6 |TW 0.9092 0.38x10% | CWO 0.8833 1.80x10° [ TG 0.8818 3.76x10°
7 |Cwo 0.9109 0.37x10° | TG 0.8862 1.76x10° | CWO 0.8847 3.67x10°
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Table 4.10. Summary of stepwise regression analyses for the COq content of
the terrestrial ecosystem compartments (i.e., output variables ¥, prs Yiwprs Yov
Ypp and ¥,¢.) in years 1900, 2000 and 2100; based on N=>5,000 model runs and
[S92a emission scenario.

Comp. yi(t = 1900) yi (t = 2000) y:(t = 2100)
Output St . 2 . 2 . 2
ep | Variable R PRESS | Variable R PRESS | Variable R PRESS
1 | CFo 0.9964 355.27 | CFO 0.9668 2838.00 | CFO 0.9307 5600.99
2 |cwo 0.9983 162.37 | CW0 0.9845 1322.70 | SXIT 0.9648 2844.21
Ynwer | 9§ | SXIT 0.9999 13.47 | SXIT 0.9991 75.58 | CWO 0.9983 136.28
4 | TT2 0.9999 12.34 | TT2 0.9992 70.61 | TW 0.9983 135.98
5 TW 0.9992 70.53
1 [CWO 0.9990  26033.20 [ CWO 0.9912 238331.00 | CWO 09738 720820.00
2 | SXIT 0.9999 3105.15 | SXIT 0.9995  14302.00 | SXIT 0.9997 9336.42
3 |T™w 1.0000 1024.08 | TW 0.9999 4017.40 | TW 0.9999 3881.73
Yw pr 4 | CFo 1.0000 697.62 | CFO 0.9999 1764.59 | CF0 1.0000 716.48
5 | TT2 1.0000 473.43 | TT2 1.0000 720.14 | TT2 1.0000 621.28
& |TR 1.0000 455.53 | TF 1.0000 640.66 | TF 1.0000 610.36
7 | PHID 1.0000 455.09 PHID 1.0000 609.60
i |CGo 0.9987 364.18 [ CGO 0.9875 3742.62 | CGO 0.9728 8677.02
2 |CWoO 0.9992 224.32 | CWO 0.9922 2324.29 | SXIT 0.9820 5746.57
3 | EPS 0.9996 112.15 | EPS 0.9959 1224.79 | CWO0 0.9909 2910.39
Yav 4 | SXIT 0.9999 17.66 | SXIT 0.9995 147.28 | EPS 0.9989 338.52
5 |ss 0.9999 16.03 | SS 0.9995 138.51 | CFO 0.9990 324.38
¢ |CFo 0.9999 15.28 | CF0 0.9996 131.34 | PSIS 0.9990 323.85
7 |TV2 0.9999 15.24 | PSIS 0.9996 131.16 | TW 0.9990 323.39
i [TD 0.5501 6.17x10° | TD 0.5451 5.81x10° [TD 0.5258  5.71x10°
2 [CWO 0.6692 4.63x10% | CWO 0.6768 4.13x10% | CWO 0.6719  3.95x105
3 |cFo 0.7621 3.33x10% | CF0 0.7633 3.02x10° | CFO 0.7549  2.96x10°
Yoo 4 |T™W 0.8542 2.04x105 | TW 0.8484 1.94x10% | TW 0.8390  1.94x10°
5 |TF 0.9379 0.87x10% | TF 0.9250 0.96x10% | TF 0.9122  1.06x105
6 |TG 0.9594 0.57x10% | CGO 0.9509 0.63x105 | CGO 0.9410  0.71x10°
7 |CcGo 0.9812 0.26x10% | TG 0.9769 0.29x10° | TG 0.9700  0.36x10°
1 [TSL 0.4304 69.89%10% [ TSL 0.4381 92.36x10% [ TSL 0.4301 104.00x10°
2 1CGO 0.5458 55.75x108 | CGO 0.5655 71.45x10% | CGO 0.5688 78.58x 108
3 |TG 0.6595 41.81x10% | TG 0.6904 50.93x10° | TG 0.7044 53.90x 108
Yasc 4 |THG 0.7416 31.74x100 | THG 0.7796 36.27x106 | THG 0.8005 36.38x10°
5 |CWOo 0.8159 22.62x10% | CWO 0.8511 24.51x10% | CWO 0.8666 24.34x10°
6 |TW 0.8792 14.85x10% | TW 0.9108 14.69x10% | TW 0.9192 14.75x108
7 | THD 0.9178 10.11x10% | THD 0.9479 8.59x10% | THD 0.9529  8.61x108

regression models gives very high R? values indicating that most of the variabil-
ities (changing between 93% and 99.9%, in this case) in the predictions of these
three compartments are explained by their dependence on the first selected input
factors (i.e., CFO for yy,, »p(t), CWO for y,, ,.(t) and CGO for y,, (2)).

The stepwise procedures for y,,(¢) at three chosen years selected the same
seven input factors, namely TD, CW0, CF0, TW, TF, TG and CGO0, with only
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one minor variation in the order of selection of the last two inputs in the regression
model for y,,(t = 1900). With the addition of each input factor to the model
the R2-value increases gradually.

The three regression analyses for y,.(¢) identified the same input factors
TSL, CGO, TG, THG, CW0, TW and THD as significant inputs. The order of
input selection is the same at all three years. The addition of each input to these

three regression models appears to increase the R2-values.

4.4.5 Rank Transformation

Since regression and correlation analyses are based on developing linear relation-
ships between variables, regression and correlation based sensitivity analyses can
perform poorly, if the relationships between the input and the output variables
are non-linear but monotonic. In such cases, by using rank transformation the
performance of these analyses can be improved and hence more reliable results
can be obtained.

As seen in the two dimensional scatterplots, out of 30 input factors most of
them have no relationship with the output variables and only a small number
of them have a detectable linear association with the outputs. However, for the
atmosphere and the three ocean compartments the relationships with AREA and
HM may be identified as monotonic rather than linear (see Figures 4.18 and
4.19). As an example, we present in Figure 4.29 the scatterplots of y,, (t =
2100) versus AREA with both raw and rank-transformed data. Both AREA and
HM show a slightly stronger linear relationship with y,, (¢) and similarly with
Yso (1), Ypos (t) and y, ., (t) after the rank transformation, as it is revealed by both
the examination of scatterplots and the computed Spearman’s rank correlation
coefficients (RCCs).

In Table 4.11, we present the analyses results for y,, (¢ = 2100), yg, (¢t =
2100), Y05 (t = 2100) and y,,,,,(t = 2100) with CCs, SRCs and PCCs calculated
with both raw and rank-transformed data. The five input factors with the largest

CC values are included in the table, and the inputs are ordered by p-values for
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CCs. For yMm(t = 2100), the two analyses differ slightly in the importance or-
der assigned to AREA and HM, but this difference appears to be with the CCs
(calculated on both raw and rank-transformed data) only. The analysis with
rank-transformed data identifies HM as the most important input with a RCC of
-0.6887; on the other hand the analysis with raw data identifies HM as the second
most important input with a CC of -0.6724. The rank-transformation does not
appear to improve the results because a RCC of -0.6887 implies that HM can
account for 47.4% of the uncertainty in yArmft = 2100) in the rank-transformed
space while a CC of -0.6724 implies that HM can account for 45.2% of the vari-
ability in yAtm(t = 2100) in the non-transformed original space. Considering how
close the CC, SRC, PCC, RCC, SRRC and PRCC values of AREA and HM are,
it is reasonable to think that this difference in the importance ranking of these
two input factors can simply be due to random sampling, and both of these inputs
seem to be equally important for the atmosphere compartment.

The results on the use of raw and rank-transformed data in the analyses of

Year: 2100; Raw D ata Year: 2100; Rank-Transformed Data

CC—0.6757182

3.5*10A14 2000 3000
AREA (mA&2) AREA (mA2)

Figure 4.29. Scatterplot for the CO2 content of Atmosphere compartment at
year 2100 versus AREA with raw and rank transformed data.
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Yso (t = 2100), Yy, (t = 2100) and y,,,,(t = 2100) are quite similar in terms of
estimated coefficients. Furthermore, the use of both raw and rank-transformed
data in the analyses appear to lead to the same importance order between the
most important input factors (see Table 4.11). As for the other response variables
related to the terrestrial compartments, because there is either no relationship
between the response variables and the input factors or the relationship is linear,
use of raw and rank-transformed data produces almost identical results.

An additional perspective on the use of raw and rank-transformed data can
be obtained by examining the results of stepwise regression analyses. Table 4.12
shows the analyses results for the output variables y,,, ,¥Ys0, Ypos a0d Ypoys iR
2100. In this table, the input factors are listed in order of selection in the analyses,
the SRCs and SRRCs in final regression models, and the cumulative R2-values
with entry of each input into the regression models are given.

As seen in this table, the use of rank-transformed data leads to a regression
model for y,, (t = 2100) with 7 input factors and an R2Z-value of 97.02%; in
contrast, the use of raw data leads to a regression model also with 7 inputs and
an R2-value of 93.28%. Thus, the use of rank-transformed data is resulting in an
analysis that can account for slightly more of the variationin y,, (¢ = 2100) than
can be accounted for in an analysis with raw data, but the difference is trivial.
Similarly, for the other three output variables, the use of rank-transformed data

does little to improve the quality of the analyses.
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Table 4.12. Comparison of Stepwise Regression Analyses with Raw and Rank-
Transformed Data for y,, ., ¥sos Ypos 30d Upeps in year 2100,

Compart., Raw Data Rank-Transformed Data
Output Step | Input Factor | SRC | R-squared || Input Factor | SRRC | R-squared
1 AREA -0.6892 0.4565 HM -0.6999 0.4743
2 HM -0.6834 0.9260 AREA -0.6997 0.9634
2 CSLO 0.0484 0.9283 CSLO 0.0468 0.9656
Yaem 4 TSL -0.0487 0.9306 TSL -0.0471 0.9677
5 CGOo -0.0284 0.9314 CGo -0.0322 0.9687
6 TG 0.0280 0.9322 TG 0.0288 0.9695
7 THG -0.0237 0.9328 CL 0.0266 0.9702
1 AREA 0.7048 0.4796 AREA 0.7033 0.4782
2 HM 0.6994 0.9662 HM 0.7004 0.9660
' 3 TSL -0.0340 0.9674 TSL -0.0356 0.9673
Yso 4 | csto 0.0320 |  0.9684 CSLo 0.0331 |  0.9684
5 TG 0.0212 0.9688 TG 0.0224 0.9686
6 CGo -0.0210 0.9692 CL -0.0216 0.9693
7 CWO0 -0.0186 0.9696 CGo -0.0196 0.9697
1 AREA 0.6963 0.4689 AREA 0.6991 0.4733
2 HM 0.6893 0.9401 HM 0.6958 0.9533
3 TSL -0.0520 0.9428 TSL -0.0588 0.9567
Ynos 4 | csro 0.0493 |  0.9451 CSLO 0.0555 |  0.9596
5 CGo -0.0324 0.9462 TG 0.0358 0.9609
6 TG 0.0313 0.9471 CGo -0.0335 0.9620
7 CWOo -0.0282 0.9479 CWwWo -0.0293 0.9629
1 AREA 0.6679 0.4330 AREA 0.6755 0.4442
2 HM 0.6574 0.8587 HM 0.6692 0.8836
2 TSL -0.0962 0.8678 TSL -0.1258 0.8991
Yoo 4 | csno 0.0904 | 08757 | csLo 0.1171 |  0.9124
& CGo -0.0567 0.8789 TG 0.0718 0.9175
6 TG 0.0544 0.8818 CGo -0.0699 0.9224
7 CWo -0.0533 0.8847 CWo -0.0657 0.9267
4.4.6 Two-sample Nonparametric Tests

As described in Section 2.6 of Chapter 2, two-sample test statistics of the Smirnov
test and Cramér-von Mises test have been used as measures of sensitivity. In the
following subsections we present the SA results based on these two tests.

The test statistics and the sensitivity rankings based on these statistics can
vary considerably depending on the choice of the quantile for splitting the sam-

ples. In order to fully study whether an input factor has more influence on the
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median (indicating a general input importance) or on the 90th quantile (indicat-
ing a greater influence on the extremes), we have considered both the median
and the 90th quantiles of each output distribution when partitioning each input

factor under consideration into two samples.

4.4.6.1 Smirnov Test

Considering the random sample of 5,000 runs, the sensitivities of the nine chosen
compartments in years 1900, 2000 and 2100 based on the Smirnov test statistic
are calculated and their corresponding ranks are presented in Table 4.13 (where
rank 1 is assigned to the most important input factor, rank 2 to the second most
important one, and so on). Only the top 10 most important inputs are spec-
ified in Table 4.13. For the sake of comparing rankings from both test results
(with the two choices of quantiles), we present the rankings in the same table
with the ranks for the 90th quantiles given in parentheses. As seen in this table,
for each compartment, the order of importance between the input factors show
some variation from year to year. For the same output variable, the rankings
based on the two partitioned distribution methods also differ considerably for
all compartments except for the detritus/decomposers and the active soil car-
bon compartments for which there is a reasonably good agreement between the

rankings resulting from the two partitioned distribution methods.




=
N

‘(sojqeurea ndino ap p somuenb ypg ap Suuopisuoo pauonnied eEp AP Suisn  pauIRIqO AR S)AORIq
ur uAld syuer pognsnl ySu ap pue suelpowl Ap Suwuopisuod pauonnied eEp Ap Suisn  paure)qo ae syuer  pagnsnl Yo AP ‘Uwn[od  yped
u]) poyads ar siopej juepodwr jsow (f AP pe ‘Qouepodwr P IOpIo U payuel Ae  sI0ey ndur AU, PAIOPISUOD AR SUNI  [dPOW

000°S=N ™ poseq (O[c P® (00C ‘0061 S®A uny s;ndino oy “sindino [opowr Ap Xy sonsHEIs Is3) Aounmug P sSubuey €Iy AqEL



CHAPTER 4. SENSITIVITY ANALYSIS cont. 223

4.4.6.2 Cramér-von Mises Test

Using the same simulation of 5,000 runs the test statistics are calculated. The
order of importance obtained using this method is in reasonably good agreement
with the results based on the Smirnov test. As noted in Section 2.6 of Chapter 2,
the Cramér-von Mises and Smirnov statistics resemble each other very closely;
however, the test statistic for the Cramér-von Mises scans the total area enclosed
by the two cumulative distributions where as the Smirnov statistic is defined as
the maximum vertical distance between the two curves. If the output variable is
a non-monotonic function of the input, then the rankings provided by the two
methods can be quite different, but in such cases the use of the Cramér-von Mises
statistic as a sensitivity measure is more appropriate. In our case both of these
methods seem to give reasonably consistent results.

Here, instead of ranking the Cramér-von Mises test statistics, we present the
results (from only year 2100) graphically using star plots (Figures 4.30 and 4.31)
which allow us to compare the influences of the input factors on each compart-
mental output. The radius of the stars extending from the centre of a circle
represent a test statistic value computed on an input and an output variable.
A long radius indicates that the corresponding input factor is important for the
output variable under consideration. This graphical display proves to be a good
way of picking out the most important input factors at a glance.

In Figure 4.30, which shows the influence of the 30 input factors on the out-
puts of the atmosphere and the three ocean compartments in 2100 in terms of
the Cramér-von Mises test statistic based on both the 50th and the 90th quantile
partitioning, it is clear that the input factors AREA and HM have quite a signif-
icant influence on these four compartments. Although the degree of importance
of these two inputs is very close, the relative importance between these two most
important inputs change with the two quantiles considered. For instance, for the
surface ocean compartment with the 50th quantile partitioning AREA appears
to be the most important and HM the second important input, but with the 90th

quantile partitioning this order is the other way around.
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Compared to AREA and HM, the rest of the input factors do not appear to
have much influence on the atmosphere and the three chosen ocean compartments
(especially when the partitioning is based on the median). Figure 4.30(a) shows
that based on the 50th quantile partitioning the input factors TSL is the third
and SIGB the fourth most influential inputs; and based on the 90th quantile
partitioning TF is the third and TG the fourth most influential inputs, following
AREA and HM. Similarly, an importance ranking of the input factors for the
other output variables related to the other compartments can be obtained by

examining their star plots.
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4.5 Discussion on the Results

When the models under study are computationally expensive to run and have
a large number of input factors, the choice of the SA method is restricted to
the techniques that require a relatively small number of model runs, i.e. are
computationally not very expensive. As noted by Campolongo et al. (see [15]),
the computational cost is determined by the number of model evaluations which is
a function of the number of input factors considered, the number of model outputs
examined and the complexity of the model. In addition, there is the number of
input scenarios, and also output times to be taken into account when model
outputs are time-dependent. In this chapter, with the model under consideration
the number of model outputs (i.e. the number of compartments) is 25, the number
of time points is 350 years (from 1750 to 2100), only one of the IPCC emission
scenarios (IS92a) is considered, the number of input factors is 30, and N=>5,000
runs is considered.

We started the analysis with the simplest parametric approach, standard OAT
design, that proceeds by varying only one input factor at a time while holding all
other factors fixed at some nominal value. Two different standard OAT methods
(SIs and SRs) are applied to the model. Both of these methods are local SA
methods and like any local SA technique the information they provide is limited.
Neither of these local methods is computationally very cheap. The calculation
of the SIs were based on 2k model evaluations where & is the number of inputs.
For the calculation of SRs, the computational cost is more expensive; it requires
k£x N model evaluations, where N is the sample size considered in the analysis.
Both N=100 and N=5,000 is used for the calculation of SRs, and even though the
graphical summaries showed that the results hardly change, the ranking of the
inputs changed considerably. Therefore, we have presented the results based on
N=5,000 model evaluations which assures a better coverage of the input space.

The Morris method, which again changes one factor at a time but is considered
as a global method because it explores the entire input factor space, was also used

to assess the sensitivity of the model outputs. Compared to the standard OAT
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techniques, the information produced by the Morris method is more general. The
computational cost with this method is 7 x (k+ 1), where %k again is the number
of inputs and r is the number of orientation matrices which was taken to be 10.

Note that all three screening exercises used here only provide sensitivity mea-
sures that are qualitative and were used to rank the inputs in order of their
importance. In practice, a screening method allows us to identify a subset of
the most important model input factors. Afterwards, we can apply a quantita-
tive method to the subset of preselected inputs. By doing so, we can sometimes
reduce the computational cost of the experiment considerably, especially when
only a few of the input factors have a significant effect on the model output(s).
Since the number of uncertain input factors of this GCC model under considera-
tion in this chapter is relatively small, we have decided not to exclude the input
factors, which were identified as unimportant by the three screening designs, in
the application of the global SA methods.

The results from the sensitivity measurements based on the three screening de-
signs (SIs, SRs and Morris) show that all these screening methods reveal the same
subset of the most important input factors for the same output variable, with mi-
nor differences in their importance rankings when the detritus/decomposers and
the active soil carbon compartments are concerned.

Although the global SA methods require higher number of model evaluations,
they have been used in order to obtain quantitative sensitivity measures, and
their use is recommended by researchers like Saltelli, Campolongo, Iman, Helton
and Conover (see [47] for a review).

As the first global SA method we produced and examined scatterplots of the
model predictions, in order to assess the nature of the relationship between each
model output variable and each input factor. These scatterplots did not show any
complex patterns. However, because the dimension of the input factor space is
quite high (30), we have to keep in mind that these scatterplots can be misleading

since the structure present in the original 30-dimensional space is not necessarily
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reflected by the individual structures present in the scatterplots of pairs of input-
output variables. On the other hand, if a small number of input factors play a
relatively dominant role compared to the other inputs (like in our case especially
with the atmosphere and the ocean compartments) the corresponding scatterplots
can be of value.

Other global SA measures such as CCs, SRCs, PCCs; and also non-parametric
measures such as SRRCs, PRCCs (which are based upon the ranks of the input
and output values) were calculated, and the absolute value of these estimates
were used to rank the factors in order of influence on the outputs. Using stepwise
regression approach for each compartment in three chosen years, the most impor-
tant input factor sets were obtained and model coefficient of determination (R?)
values were calculated. These high R2-values suggested that the output variables
under consideration are reproduced by the linear regression models very well.

We shall emphasize that less than 10 out of the 30 input factors were found
to have sizeable influence on the output variables under consideration. In this
discussion section, we summarize the results by focussing on the inputs that were
identified as important by the stepwise regression model, but when we presented
the results earlier in the chapter - although it is an arbitrary choice - we assessed
the influence of the top 10 input factors on the outputs in order not to fail to
identify a factor which is important.

The subset of the most important input factors, which account for at least

5% of the variability in the output variable, consists of

- AREA and HM for the atmosphere and the three ocean compartments in

the three chosen years;
- CFO0 for the nonwoody parts of trees compartment in all three years;
- CWO for the woody parts of trees compartment in all three years;

- CGO for the ground vegetation compartment in all three years;
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- TD, CW0, CF0, TW and TF for the detritus/decomposers compartment

in all three years;

- TSL, CGO, THG, TG, TW and CWQ for the active soil carbon compartment

in all three chosen year.

Note that the order of importance between these important input factors
changes slightly from year to year and from method to method; however, all SA
techniques considered here have identified these input factors. There is some
variation in the importance order of the rest of the input factors under different
methods, but these factors appear to have small effects on the total uncertainty
in the output variables under consideration.

Because of monotonic but slightly non-linear relationship detected in the scat-
terplots of AREA versus each of the output variables related to the atmosphere
and the three ocean compartments (similar relationship also found between the
same output variables and HM), rank transformation is considered. The results
of the analysis with rank-transformed data indicated that since the use of rank
transformation improved the performance of the analysis very little, this approach
is not really worth being pursued for the model under consideration here.

Input factor importance for each compartment found to be time dependent.

Because of the random sampling, different rankings can be obtained from
different simulations. In this chapter, we have used the same set of input and
output values in the calculations of different global SA measures so that the
rankings provided by these methods can be comparable. For a future study,
different simulations (the seed used for the random number generation is changed
each time) can be taken into account to compare the variances of the SA estimator

prediction over the various simulations.




Chapter 5

Uncertainty Analysis

5.1 Introduction

The real-world system is precise but complex; a model, which is a simplified rep-
resentation of this system, may be imprecise but simple. This trade-off between
precision and simplicity is the main essence of the modelling process. The effec-
tiveness of a model lies in its simplicity of use, as well as an understanding of the
level of imprecision [92]. Because of the imprecision in the model, uncertainties
exist in the conclusions derived from the model.

Perincherry et al. [92] point out that “Handling uncertainty is perhaps the
most pervasive and the most difficult aspect in the analysis of systems”. Some
investigators may have a tendency to ignore the uncertainties since it simplifies
the decision making process, but ignoring uncertainties may be disastrous. It
is a duty of the researchers to highlight the uncertainties associated with the
inferences that they make.

In practice there is a wide variety of sources of uncertainty involved in the
modelling process, and some of the important ones arising in climate models are
shown in Figure 5.1. Uncertainty analysis (UA) plays an important role in esti-

mating the reliability of climate model projections [43]. In this chapter, focusing

231
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on the three main sources of uncertainty - namely input factor, model and sce-
nario uncertainty - and using computer simulation we apply this framework to
global carbon cycle (GCC) models. The application of UA to GCC models can
make significant contribution to the understanding of the GCC and its role in
determining future atmospheric CO4 concentrations.

Another important source of uncertainty is the modeller. Different modellers
can draw different conclusions from the same output, depending on the context of
the problem and the attitude of the modeller. Therefore, the resulting model can
depend largely upon a modeller. We refer to this type of uncertainty as ‘modeller
uncertainty’. This aspect of uncertainty is also illustrated in this chapter with a

case study.

Real System

\ Analysl‘ or

/ Modeller
A Model of the

System

IO

Uncertainty types and their relations to real systems

Modelling Uncertainty
Conflict and confusion in information
Lack of knowledge

Vaguely defined factors, relations
and measurements

Human and organizational error
Future observables Historical data
Scenario Uncertainty
Unknown aspects of the system
Environmental impact of projects

Other human factors Physical randomness

Figure 5.1. A diagram of sources of uncertainty.
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To determine the effect the sources of uncertainty have on model results,
sensitivity analysis (SA) is used. In the previous two chapters (see Chapters 3
and 4), to assess how sensitive the output of a model can be to variation in
one or a set of model input factors, various SA methods have been applied to
the three GCC models under specific settings. Those settings being: within each
model each input factor is assumed to follow a uniform distribution; IPCC’s IS92a
emission scenario is used for forecasting COy content of each compartment; as
sampling method simple random sampling is used.

At the SA stage of this study, for the three GCC models under consideration,
we have determined which of the input factors are important and hence which
cannot be ignored in future investigations. It should be noted that in the SA
chapters we focused only on uncertainties in the model input factors and assessed
their influence on model outputs within each model.

As pointed out by McKay, it is necessary to validate a model before predic-
tion uncertainty can be evaluated sensibly [83]. Hence, in this chapter, we first in
Section 5.2 do model intercomparison and model validation, that is compare the
historical atmospheric COy predictions of the three GCC models with each other
and with the historical COq record, to determine the uncertainty in the results.
Then in Section 5.3, we talk about type of uncertainties involved in GCC models.
In Section 5.4 three main sources of uncertainty we focus on in this chapter are
explained. These sources of uncertainties: input factor uncertainty, scenario un-
certainty and model structure uncertainty are investigated in Sections 5.5 through
5.7, respectively. In Section 5.8, partitioning the uncertainty in model predictions
between the sources of uncertainty is discussed. Section 5.9 introduces modeller

uncertainty and presents results from a case study in environmental radiactivity.
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5.2 Model Intercomparison and Model
Validation

Model intercomparison and model validation are essential components in the
modelling process for establishing the reliability of models, because until the
disagreements can be identified, nobody will know which model, if any, can be
believed [43]. However, the disagreement among the predictions of different mod-
els and the degree of agreement with available observations is an important aspect
of determining the uncertainty in the results.

Due to different assumptions, simplifications, aproximations etc. made in de-
veloping different models, there can be -and usually there are- disagreements
between model predictions. The process of analysing the disagreements among
the results of different models is called model intercomparison. As Hall notes
in Ref. [43], model intercomparison has an important role because it is essen-
tial to reconcile the disagreements between different models before we can have
confidence in them, but it is UA that provides the basis for a meaningful model
comparison.

The process of comparing model predictions with observational data to eval-
uate their accuracy is called model validation. Even though validation against
observations provides one of the most convincing indications of the reliability of
a model, it is important to emphasize that: 1. there is always some degree of
uncertainty in the observed data; 2. a model can perform well with the past data
but this does not necessarily mean that its future projections would be reliable
as well.

The three GCC models simulated atmospheric CO, over the historical period
1750-2000, using the input factor values listed in Tables 3.2 - 3.5 in Chapter 3
and Table 4.1 in Chapter 4. These yearly atmospheric CO, predictions are shown
in Figure 5.2 along with the historical measurements of atmospheric CO5 con-
centrations from the Mauna Loa Observatory for the period 1958-2000 and from
an ice core taken at Siple Station in Antarctica for the period 1744-1953.
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Figure 5.2. Comparison of historical simulations of atmospheric CO: from three
GCC models under the base-case scenario and the measured atmospheric CO2
concentrations from Mauna Loa Observatory: 1958-2000 (Keeling & Whorf, 2001
[71]); and Siple Station: 1744-1953 (Friedli et al., 1986 [37]).

The predictions of the 8-compartment models (Model I and Model II) bear
strong similarities to each other. This is due largely to the similarity in the
mathematical structure ofthese two models. The estimates from these two models
compared to the 25-compartment model agrees rather well with the observed data
in the first 200-220 years. Both of these models overestimate the Siple ice core
data; Model I until around early 1900s and Model II until around 1870. Then,
both fall below the historical data. Among the three models, Model II produces
predictions closest to the observed data for the first 150 years, between years
1900 and 1970 Model I performs best, and for the most recent three decades the
25-compartment model predictions appear to be closest to the Mauna Loa data.

The model predictions from the 25-compartment model fall below the historical
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data and the other model estimates until around 1960s, and in the early 1970s
this model’s prediction rises above the other two models and agrees quite well
with the Mauna Loa record.

For the 25-compartment model, the greatest deviation from the observed data
occurs in 1843 for which the historical prediction underestimates the Siple ice core
record by 25.5 ppm. As for the 8-compartment models, a maximum deviation of
35 ppm for Model I and 41.7 ppm for Model II occurs in year 2000.

EFrom the comparison of model predictions with each other and with the ob-
served data, it is clear that there is considerable uncertainty due to modelling and
parametrization within model. Both of these sources of uncertainty are defined
in Section 5.4.

Comparison of the model predictions with each other and with historical data
is instructive and by doing so models can be tuned to simulate observed data
well, but this does not necessarily mean that they will be capable of producing
future projections well since the consequences of climate change are not known.
The uncertainty in the future projections is discussed later in the chapter under
scenario uncertainty.

Because our aim in this chapter is neither removing the disagreement between
the models nor tuning the models so that they can simulate available data well,
we only used model intercomparison and validation approach to show that there

are uncertainties attached to the model results.

5.3 Uncertainties in GCC Models

The inherent uncertainty associated with most environmental and climatic sys-
tems is often acknowledged [109]. There is considerable uncertainty about the
future role of the terrestrial and oceanic systems in the global carbon cycle.
Concerning the terrestrial system, there is still considerable disagreement among

scientists as to whether terrestrial vegetation is a source or a sink for CO,. Even
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the amount of carbon stored in terrestrial system is not certain. Carbon esti-
mated in plants range widely between 420 and 830 Gigatons (1Gt = 10%?kg),
depending on the methods used.

The oceans have a very high CO, storage capacity, but lack of knowledge of
the overall effect on the ocean environment and uncertainty about the injected
CO, into the oceans still exist.

UA of GCC models can identify carbon cycle components and processes with
the greatest sensitivities and uncertainties. This information can then be used to
determine which uncertainties have the greatest influence on future atmospheric
CO; concentrations and where further research and data collection could be most
effectively applied to reduce uncertainties. Information gathered from UA can

also be used in future model development.

5.4 Main Sources of Uncertainty

In a general sense, Draper identifies three main sources of uncertainty in any
problem to be: (¢) predictive uncertainty which is conditional on the scenario
and model; (i) scenario uncertainty about the inputs to the models; and (4i4)
model uncertainty (conditional on the scenario) about how to translate the inputs
into forecasts (see [26]).

In another article Draper et al. [27] note that sources of uncertainty in com-
plex prediction problems involve six ingredients: past data, future observables,
scenarios, model (or structural), parametric, and predictive uncertainty.

Uncertainties in computer models can arise from a variety of different sources
and attention has been devoted to examining the magnitude of uncertainty asso-
ciated with model behavior. According to Chatfield [17], as modern computing
power allows us to consider and compare increasingly large number of models, the
problem of dealing with uncertainties in models is becoming increasingly serious.
This issue is also emphasized by Kennedy & O’Hagan in Ref. [72]. They note

that the widespread application of computer models brings together a widespread
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concern about quantifying uncertainties attached to the model results. They de-
fine various sources of uncertainty in computer models which include parameter
uncertainty, model inadequacy, residual variability, parametric variability, code
uncertainty and observation error.

In the context of climate models, three main sources of uncertainty stated by
King & Sale [73] are:

1. uncertainties in future energy and land-use emissions (i.e. scenario uncer-

tainty);

2. uncertainties about the GCC reflected in the structural and conceptual

differences between models (i.e. model uncertainty); and

3. measurement error and uncertainty in the parameters and variables within

a particular model (i.e. input factor uncertainty).

In this chapter, our aim is to evaluate uncertainty in model predictions arising
from these three main sources of uncertainty. First, we shall briefly describe these

sources of uncertainty in the context of GCC modelling;:

Input Factor Uncertainty can be defined as measurement error and uncer-

tainty in the parameters and variables within a particular model.

Scenario Uncertainty can be defined as the uncertainties in future energy and

land-use emissions.

Model Uncertainty can be defined as the uncertainties about the GCC re-

flected in the structural and conceptual differences between models.

5.5 Input Factor Uncertainty

In any model, the output from the model is the item of interest. The knowledge we
have about the model input factors driving the model equations is not perfect.

As a result, these input factors are described as being uncertain. Because of
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uncertainties inherent in the input there are uncertainties attached to the output.
As stated by Helton & Davis [49], uncertainty analysis can be defined as attempts
to answer the question of “What is the uncertainty in the model response given
the uncertainty in the input factors?”.

The values of model input factors can only be determined from the real world
system to a certain extent, that is, there is always some degree of uncertainty
about those values.

This type of uncertainty is quantified in a distribution of input factor values.
Reducing uncertainty in influential factor(s) of a model, which can be identified
through SA, can lead to significant reduction of uncertainty in model predictions.
In Figure 5.3 we present an example showing how reduction in an influential input
factor uncertainty yields a reduction in prediction uncertainty. This example is
based on the atmosphere compartment of the 25-compartment model used in
Chapter 4. In that chapter, we found that the area of the surface ocean (i.e.
the input factor AREA) is the most important input factor for the atmosphere

compartment. Figure 5.3 shows the substantial effect of reducing the uncertainty

All 30 input factors vary One input (AREA) is fixed at nominal
1750 1800 1850 1900 1950 2000 2050 2100 1750 1800 1850 1900 1950 2000 2050 2100
Year Year

Figure 5.3. A simple example of prediction uncertainty bands.



CHAPTER 5. UNCERTAINTY ANALYSIS ' 240

in AREA (i.e. setting it to its best estimate) on the uncertainty in the predicted
COs content of the atmosphere.

This type of uncertainty is of major interest in Chapters 3 and 4. In these
chapters we examined sensitivity of model outputs to the uncertainties inherent
in the model input factors. In this chapter, we investigate two different aspects
of input factor uncertainty. First, the effect of sample size, and the sampling
technique used to obtain input vectors, on model predictions. Then, the effect of

different input factor distributions on model predictions.

5.5.1 Effect of Sample Size and Sampling Technique on
Model Predictions

In uncertainty studies of computer models, it is often necessary to use a limited
number of model runs, especially when dealing with complex models and/or
models with large number of input factors and output variables. For this purpose,
different sampling techniques have been developed and used.

In this subsection we investigate the effect of sample size and sampling tech-
nique on the model predictions. The sampling techniques considered here are
simple random sampling (SRS) and Latin hypercube sampling (LHS). First, to
illustrate the effect of sample size on the variability in model predictions, consid-
ering SRS we generate 10 input samples of size N=10 and N=100 for the initial
conditions of Model I under the assumption that they follow a uniform distribu-
tion on their assigned ranges given in Table 3.2 (see Chapter 3). For examining
such effects we use cumulative distribution functions (CDFs). The CDF's for the
atmospheric CO, predictions in 2100 (i.e. the output variable y,, (¢t = 2100)) are
shown in Figure 5.4. Examination of this figure shows that with increased sample
size, it is reasonable to expect improvement in the results, that is, as the sample
size increases the estimated CDF converges to the true CDF. Helton & Davis [48]
use the term ‘stability’ to refer to the amount of variation between results ob-

tained with different samples generated by a particular sampling technique under
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Figure 5.4. Example CDFs for yAmm(t) from Model I estimated with random
samples of size 10 and 100 under the assumption that the initial conditions of the
compartments are uniformly distributed on their assigned ranges (see Table 3.2).

consideration. We shall adapt their terminology here.

For one of the 8-compartment models, Model I, and the 25-compartment
model, using both SRS and LHS we present plots similar to those in Figure 5.4
for N=100. Because showing them all on the same figure is not very informative,
we have summarised the distributions of the CDFs with mean and percentile
curves. For a given probability value, the mean and the 5th, 50th and 95th
percentiles of the corresponding yArm{t = 2100) were calculated. The results are
given in Figures 5.5 and 5.6. The location of the percentile curves shows how
stable the estimates of the CDFs are. This analysis is repeated three times to
give three estimates of the mean and percentile curves. It is clear in Figures 5.5
and 5.6 that LHS is producing CDF estimates that are more stable than those
produced with SRS.
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Figure 5.5. Summary of distribution of CDFs for Atmospheric CO: predictions
in 2100 from one of the 8-compartment GCC model (Model I) estimated with 3
replications of 100 simple random samples and 3 replications of 100 Latin hyper-
cube samples of size 10 and 100 under the assumption that the initial conditions
are uniformly distributed on their assigned uncertainty ranges (for the initial
conditions and their assigned ranges see Table 3.2).
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Figure 5.6. Summary of distribution of CDFs for yAm{t = 2100) from the 25-
compartment GCC model estimated with 3 replications of 100 simple random
samples and 3 replications of 100 Latin hypercube samples of size 10 and 100
under the assumption that the model input factors are uniformly distributed on
their assigned uncertainty ranges (for the input factors and their assigned ranges
see Table 4.1).
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In SA chapters, because the three model codes are not computationally ex-
pensive to evaluate, and because SRS is .easy to implement and easy to explain
we have considered this sampling technique. Depending on the dimension of the
input space (i.e. the number of input factors), to obtain a better coverage of the
input space one can either use SRS with a sufficiently large sample size when
large samples are computationally practicable or use LHS with a smaller sample
size when large samples are not computationally practicable.

Having seen that LHS is producing CDF estimates that are more stable than
those produced by SRS, it is of interest now to find out what sample size through
the use of LHS would be needed to draw the same conclusion obtained through
the use of SRS, and also to see if this changes from model to model. Considering
SRS and LHS with various sample sizes we ran the model codes and calculated
the output variable y,, (¢ = 2100). The results from one of the 8-compartment
models (Model I) are shown in Figure 5.7 (a) and (b) under the assumption that
the initial conditions and the transfer coefficients follow uniform distribution in
their specified ranges, respectively. As for the 25-compartment model the results
are presented in Figure 5.8 under the assumption that all input factors follow
uniform distribution in their assigned ranges. Appearing in the left panels of
Figure 5.7 and Figure 5.8 are CDF estimates of y,, (¢ = 2100) obtained by
running the model on: a SRS with N=10,000, with N=5000 and with N=100;
LHS with N=10,000, with N=100, with N=500 and with N=1000. The estimates
based on N=10,000 sample size result in a reasonably smooth curve - no matter
which sampling scheme is used as their estimates are in great agreement - the
estimated CDF of the output obtained through SRS with N=10,000 is used as the
“true” distribution function for purpose of examining the effect of using different
sample sizes and sampling schemes.

The results of the previous two chapters were all based on SRS with N=5,000.
As shown in left panels of Figures 5.7 and 5.8, the predictions based on SRS with
N=5,000 turned out to be in perfectly good agreement with the “true” CDF.
Therefore, it is reasonable to treat the CDF obtained through SRS with N=5,000
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(a) Model I - Initial conditions
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Figure 5.7. Comparison of estimated CDFs for output variable yAmm{t = 2100) from
Model I based on SRS and LHS with different sample sizes under the assumption
that the model input factors: (a) Initial conditions, and (b) Transfer coefficients are
uniformly distributed on their assigned uncertainty ranges (for the input factors and
their assigned ranges see Tables 3.2 and 3.3).
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Figure 5.8. Comparison of estimated CDFs for output variable yMm{t = 2100)
from the 25-compartment model based on SRS and LHS with different sample sizes
under the assumption that the model input factors are uniformly distributed on

their assigned uncertainty ranges (for the input factors and their assigned ranges
see Table 4.1).

as “true” CDF.

As indicated in the left frames of Figure 5.7, the predictions based on SRS
with N=100 are consistently higher than the “true” estimates. With the 25-
compartment model, the estimates based on both SRS and LHS with N=100 are
lower than the “true” estimates (see left frame in Figure 5.8). The same plots also
show that compared to the estimates based on SRS with N=100, the estimates
based on LHS with N=100 are much closer to the “true” estimates. In the right
panels of Figures 5.7 and 5.8, we compare the “true” CDF with CDFs based on
LHS with sample sizes 100, 500 and 1,000 to investigate which sample size is
required if LHS is considered in the analysis. It is clear from these figures that
there is a slight but define improvement in the quality of estimates as the sample

size increases, but there appears to be no dramatic change in the CDFs based on
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LHS with the three sample sizes.

As a further investigation, using partial correlation coefficient (PCC) as a
diagnostic tool, we have shown how the importance order of the input factors
change with the sample sizes in Figure 5.9. The output yAwm{t = 2100) from
Model I and the transfer coefficients as input factors are considered, ft appears
that LHS with N=500 gives the importance order which agrees with the results
obtained from SRS with N=5,000. The same is true when the initial conditions
of the model are used in the analysis. As for the 25-compartment model the
required sample size for LHS appears to be N=1000. Hereafter in the analyses
we use LHS as the sampling scheme, and N=500 (when 8-compartment models
are concerned) and N=1000 (when 25-compartment model is concerned) as the

sample size.
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% 0
0o
too "
0
0
'S in
tr o
ra 1
0.

N N S JOH « CNePmighat's bao 75 KOR ON % G Q7 o O fi N iost @« NN o q

Transfer Coefficients

Figure 5.9. Comparison of PCC values based on different sampling technique
and sample sizes. The output variable considered here is yArm{t = 2100) calcu-
lated from Model I with the input factors (here the transfer coefficients) varied
simultaneously under the condition that all factors follow uniform distribution
on their assigned ranges.



CHAPTER 5. UNCERTAINTY ANALYSIS 248

We should emphasize that the results presented in this subsection apply to
the GCC models considered in this thesis, and these results may not apply to just
any model. As the results on the two different underlying models have shown,
sample size requirement is a function of model complexity and the number of

model input factors.

5.5.2 Effect of Input Factor Distribution on Model

Predictions

In sampling based sensitivity/uncertainty studies, assumptions regarding the
probability distributions of model input factors especially the ones that are very
influential on the output variable(s) require careful consideration. There are
various options avaliable for probability distributions of the input factors; for
example, uniform, lognormal, loguniform, triangular distributions. These proba-
bility distributions are often found to provide good representations for physical
quantities. On the other hand, for many quantities such as concentrations, some
probability distributions, like the normal distribution are theoretically inappro-
priate because negative values are allowed. For the models adapted in this thesis,
there are no input distributions specified by the model developers. Since the uni-
form distribution’s use is appropriate when we are able and willing to identify a
range of possible values, but unable to decide which values within this range are
more likely to occur than others, in the previous two chapters we have considered
this distribution for all model input factors. A range for each factor is obtained
by £20% of its nominal value gathered from the scientific literature.

In this section, to assess the effect of input factor distribution on the model
output uncertainty, we consider uniform, lognormal, and triangular distributions
for the input factors of Model I and the 25-compartment model. While the as-
sumptions regarding the probability distributions of the input factors are changed,

the range of each input factor indicated in earlier chapters are kept the same.
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For purposes of illustration, we consider y,, (¢t = 2100) as model output vari-
able; I592a as the emmission scenario. Using LHS of size N=>500 for Model I and
N=1000 for the 25-compartment model input vectors are obtained and using the
model codes y,, (¢t = 2100) from both models are calculated.

For Model I, for which we do not have a built-in calibration process in the
model code and we have to maintain the steady-state condition, the effect of
assumed probability distributions of initial conditions and of the transfer coeffi-
cients on the distributions of model outputs are assessed separately. Figures 5.10
(a) and (b) show the CDFs of y,, (¢ = 2100) from Model I, when the initial
conditions and the transfer coeflicients follow the three selected probability dis-
tributions. The results for the 25-compartment model are shown in Figure 5.11.
In these figures, the solid line represents the CDF for y,, (¢ = 2100) predic-
tions when input factors are assumed to follow uniform, the dotted line when
factors are assumed to follow lognormal and the dashed lines when factors are

assumed to follow triangular distributions on the same ranges assigned to each of
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Figure 5.10. CDI's showing the effect of input factor - (a) Initial conditions, (b)
Transfer coefficients - distributions on the estimated distribution of the output
variable y,, (¢t = 2100) from Model I.




CHAPTER 5. UNCERTAINTY ANALYSIS 250

—  Uniform
—  Lognormal
-- Triangular

[
0 1000 2000 3000 4000 5000
Atmospheric C02 in 2100 (Gt C)

Figure 5.11. CDFs showing the effect of input factor distribution on the esti-
mated distribution of the output variable yMm(t = 2100) from 25-compartment
model.

the factors. Examination of these figures clearly indicates that the distribution
associated with model input factors can have a significant effect on the distribu-
tion of model predictions. How much the output distribution function changes
depends on the degree of change in the input factor distribution and the strength
of the association between each output and each input factor. It can be seen
that with both models under consideration here the change in the distribution is
considerable, which indicates the importance of being as accurate as possible in
specifying the input distributions.

For specified assumptions on input factor distributions, CDFs can be used
to obtain cumulative probability estimates on model predictions. For example,
with the assumption that all input factors follow the uniform distribution in their
specified ranges, from Figure 5.11, the probability that atmospheric CO2 in 2100
will be less than approximately 3500 Gt C is approximately 0.9. However such

estimates are dependent on the ranges and distributions assumed for the input
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factors.

In SA chapters, under the assumption that all input factors are uniformly dis-
tributed, we have identified the factors that are influential on the model output
variables under consideration. As noted above, assumptions regarding the distri-
butions of those factors require careful consideration. On the other hand, for any
input factors that show little or no influence on the output variable, assumptions
regarding their distributions are not as critical.

Next, we want to find out if input factor importance changes as a result of
different distributional assumptions on the model input factors. Here we use
an uncertainty importance measure introduced by Chun et al. [19], which is
based on metric distance between two CDFs. This uncertainty measure is a
useful tool to express the measure of uncertainty importance in terms of the
relative impact of distributional changes of inputs on the output distribution. The
authors evaluated this metric distance measure for both analytical and empirical
distributions.

The form of the metric distance appropriate for our case where we have an

empirical distribution generated by Monte Carlo simulation is as follows:

N .
\/%f > [?!Z/N - y,i/N]Q
)=

MD(@i:o T
¥ 2 Yn
n=1

where M D(i : o) is the normalized metric distance measure in terms of quantiles
between the base case and its sensitivity case, yy y is the {(n/N)th quantile of a
CDF for the base case (0 < n < N), y} y is the (n/N)th quantile of a CDF for its
sensitivity case, and N is the number of simulations. Here, the base case refers to
the case where an output distribution is obtained with all input distributions set
to their assigned distribution, whereas the sensitivity case refers to the case where
an output distribution is obtained with the ith input factor set to its nominal

value while the other factors are varied. Normalization is caried out to make the
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metric distance measure a dimensionless quantity.

Considering the output variable yAtm{t = 2100) of the 25-compartment model
we want to assess an importance order between the input factors based on the
metric distance measure under three different distributional changes of the input
factors. An example is given in Figure 5.12 showing the characteristics of this
uncertainty measure graphically. The shaded area in this figure indicates the
metric distance measure for the input factor AREA ofthe 25-compartment model
and its relative impact on the distribution of the output variable yAm{t = 2100)
when input distributions are taken to be lognormal.

The metric distance (M D) measure for each 30 input factors have been cal-
culated and their relative impacts on the distribution of the output variable have
been ranked according to the magnitude of normalized M D measure obtained

for each input factor. The ranked ten input factors are listed in Table 5.1 under

AREA set to its nominal value
while others varied

°

°8

All 30 input factors varied

CwmUIs e |, 0n >wegen
B Qﬁ a

[=9R

1000 2000 3000 4000

Atmospheric C02 in 2100 (Gt C)
Figure 5.12. An example showing the metric distance measure between two
CDFs. In this example the shaded area indicates the metric distance measure
for the input factor AREA of the 25-compartment model and its relative impact
on the distribution of the output variable yAmm(t = 2100). Simulations are based
on LHS with 1000; emission scenario 1S92a; and lognormally distributed input
factors.
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Table 5.1. Uncertainty importance rankings obtained by metric distance mea-
sure. The output variable y,, (¢ = 2100) from the 25-compartment model, three
different input factor distributions; LHS with N=1000; and emission scenario

1S92a are considered in the calculations.

Rank || Uniform | Lognormal | Triangular
1 AREA AREA AREA
2 HM HM HM
3 TG CSLO TG
4 CSLO TG TSL
5 TSL CWO0 THG
6 CGO TSL CAQ
7 CWO0 TEMPO CSLO
8 THG THG CW0
9 CL CL DELTP

10 TEMPO CGo CGO

the three input distributions. The importance order of input factors varies with
different distributional assumptions. However, the M D values associated with
AREA and HM factors are much higher than the M Ds associated with the rest
of the input factors, and no matter which input distribution is taken these two
factors have been identified as the most important input factors for the output
variable under consideration.

A desirable property of this meagure is that it does not depend on assumptions
about the form of the relationship (like, linearity) between model inputs and
predictions. This measure can also be used as a screening tool. Even though it is
easy to calculate, with a complex model involving a large number of input factors

it can be quite laborious.

5.6 Scenario Uncertainty

Another important source of uncertainty in GCC models is introduced by lack

of knowledge or inability to predict the future conditions exactly. For example,
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population growth, structural changes in economies, energy prices, fossil-fuel sup-
plies, income are among the factors which could have a major influence on future
levels of CO, emissions, and there is substantial uncertainty in all these factors.
Scientists have been developing scenarios of future emissions reflecting different
views of the future. These scenarios provide inputs to climate models.

The three of the six emission scenarios developed by the Intergovernmental
Panel on Climate Change (IPCC) in 1992 are considered in this thesis. These
scenarios are IS92a (also known as the ‘Business-as-usual’ scenario), 1592¢(‘low’
emission scenario) and IS92e (‘high’ emission scenario). A brief description of
these three scenarios is given in Chapter 3 (see Section 3.2.2), and details of
these scenarios can be found in Ref. [58].

In this section, we investigate how the uncertainty in the emission scenarios
under consideration influence the uncertainty in model predictions.

First, within each model, assuming zero uncertainty for the input factors, i.e.
setting them to their nominal values, we have calculated the baseline COy pre-
dictions for each compartment of the three models with the three IS92 scenarios.
These baseline predictions are presented in Figures 5.13-5.15. Since the scenarios
IS592c and IS92e are the two extreme IPCC-1992 scenarios the uncertainty ranges
we see in these figures is for all IPCC-1992 scenarios. As seen in Figures 5.13
and 5.14 showing results for the 8-compartment models, Model 1 and Model II,
respectively, the IS92e scenario yields a high estimate, the 1S92a a median and
the IS92c a low estimate of all compartmental CO, contents over the whole time
period (from 1995 to 2100). However, for the 25-compartment model this is the
case with the atmosphere and ocean compartments only. With the ground veg-
etation compartment the IS92a and IS92e give a high estimate and the IS92c a
low estimate, and as for the other terrestrial compartments the IS92c yields a
high estimate and the scenarios IS92a and IS92e a low estimate. The impact of
different emission scenarios on the deeper layers of the ocean and the terrestrial
ecosystem is not as rapid as it is on the atmosphere, surface layer and the upper

layers of the ocean.
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Figure 5.13. The range of CO:2 baseline predictions of each compartment of Model I,
based on IPCC-IS92a,c,e emission scenarios. These calculations are based on a model
simulation in which all model input factors are set to their nominal values.
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Figure 5.14. The range of C02 baseline predictions of each compartment of Model II,
based on IPCC-IS92a,c,e emission scenarios. These calculations are based on a model
simulation in which all model input factors are set to their nominal values.
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Figure 5.15. The range of CO: baseline predictions of the nine compartments of the
25-compartment model, based o11 IPCC-IS92a,c,e emission scenarios. These calcula-
tions are based on a model simulation in which all model input factors are set to their
nominal values.
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Next, taking the input factor uncertainty into account and varying them over
their assigned ranges from uniform distribution, within each model, we want to
investigate the results obtained considering the three emission scenarios. In the
simulations the same set of input factor values is used with each scenario to
enable a direct comparison among scenarios. The compartmental predictions are
evaluated in the year 2100. A compact summary of the distributions of the output
variables is provided by the boxplots in Figures 5.16 - 5.18 for the three models.
The horizontal lines in these figures are the baseline values for the associated
compartment in year 2100 under each scenario (dotted line: IS92a; solid line:
IS92c; and dashed line: IS92e). The estimated mean values are also indicated in
the boxplots by solid circles.

As examination of Figures 5.16 and 5.17 shows, there is some overlap between
the boxplots (very much for the deep ocean and active soil carbon; and moderate
for the other compartments) when the uncertainty in the initial conditions is
considered. This indicates that on the basis of the overall output uncertainties
no discrimination between the predictions for the three scenarios can be made.
On the other hand, when the uncertainty in the transfer coefficients is considered
there appears to be some overlap between the boxplots of the deep ocean and
active soil carbon (humus compartments for Model II) compartments, but not
for the others. The boxplots not overlapping indicate that on the basis of the
overall output uncertainties discrimination between the predictions for the three
scenarios can be made.

The boxplots for the 25-compartment model given in Figure 5.18 show that
the boxplots of each compartment overlap quite a lot. For the deep ocean-layer13
compartment and all five terrestrial compartments the distributions of the out-
puts appear to behave almost identically no matter which emission scenario is
used.

The contribution of the input factor uncertainties to the prediction uncer-
tainties appears to be very high within each model. In Table 5.2, along with the

baseline values of each compartment’s year 2100 predictions under the three
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Boxplots showing the distribution of CO: predictions in year 2100

from Model I considering considering the three of the IPCC emission scenarios. 500
simulations of data generated using LHS and all input factors ((a) Initial conditions,
(b) Transfer coefficients) considered to follow uniform distribution over their assigned
ranges (see Tables 3.2 and 3.3). The horizontal lines show the baseline CO2 content

of each compartment in 2100 under each scenario: *+-IS92a; —IS92¢;

means are indicated by solid circles.

1S92e. The



CHAPTER 5. UNCERTAINTY ANALYSIS

p—
.
—— I —
g v
3 1
: [—
g I
=
¥ -
=]
O
aB}
1S92a  1S92¢  1S92e
Emission Scenario

Q 14
=
;1
e .!B -
<]
O

IS92a IS92C  1S92e

Emission Scenario

Circulating carbon-NH

~
g
5
§
a
9]
1S92a  1S92¢  1S92e
Emission Scenario
Circulating carbon-SH
~
g
5
g
S
o
9]
1S92a  1S92c IS92e
Emission Scenario
Figure 5.17.

(a) Initial conditions

Surface ocean-NH

i @

t

IS92a  1S92C  1S92e¢

Emission Scenario

Surface ocean-SH

I

1S92a  1S92¢  1S92e

Emission Scenario

Deep ocean-NH

1S92a  1S92C  1S92e¢

Emission Scenario

Deep ocean-SH

1S92a  1S92¢c  1S92e

Emission Scenario

(b) Transfer coefficients

Surface ocean-NH

1S92a  1S92C  IS92e

Emission Scenario

Surface ocean-SH

1S92a  1S92¢  1S92e

Emission Scenario

11

Deep ocean-NH

B

1S92a  IS92C  1S92e

Emission Scenario

Deep ocean-SH

1S92a  1S92c  1S92e

Emission Scenario

260

Humus-NH

1S92a  1S892¢  1S92e

Emission Scenario

Humus-SH

|

1S92a  1S92¢c  1S92e

Emission Scenario

Humus-NH

1S92a  1S92¢  1S92e

Emission Scenario

Humus-SH

1S92a  1892¢  1892e

Emission Scenario

Boxplots showing the distribution of CO2 predictions in year 2100

from Model II considering considering the three of the IPCC emission scenarios. 500
simulations of data generated using LHS and all input factors ((a) Initial conditions,
(b) Transfer coefficients) considered to follow uniform distribution over their assigned
ranges (see Tables 3.4 and 3.5). The horizontal lines show the baseline C02 content

of each compartment in 2100 under each scenario: *<-1S92a; —IS92c;

means are indicated by solid circles.
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Figure 5.18. Boxplots showing the distribution of C02 predictions in year 2100 from
the 25-compartment model considering the three of the IPCC emission scenarios. 1000
simulations of data generated using LHS and all input factors considered to follow
uniform distribution over their assigned ranges (see Table 4.1). The horizontal lines
show the baseline C02 content of each compartment in 2100 under each scenario:
*ee]S92a; —IS92¢; IS92e. The means are indicated by solid circles.
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scenarios, we give the uncertainty ranges due to only scenario uncertainty, and
due to both scenario and input factor uncertainties.
As seen in this table by introducing input factor uncertainties in addition to

scenario uncertainty overall uncertainty ranges increase dramatically for the

Table 5.2. Scenario baseline values in 2100; uncertainty ranges of compartmental
predictions from 2100 as a result of scenario uncertainty; and uncertainty ranges
of compartmental predictions from 2100 as a result of both scenario and input
factor uncertainties.

Sce.” Sce. & In.Factorb
Compartment IS92a IS92¢ 1892e Un. Range Un. Range
Atmosphere 746.7 910.51 1067.97 321.27 560.31 (394.12)°
Surface ocean 771.80 894.42 1011.44 239.64 488.65 (319.35)
: Deep ocean 38130.16 | 38342.57 | 38527.41 397,25 | 14445.26 (610.21)
-8 N.woody parts trees 45.87 55.63 64.99 19.13 34.05 (23.32)
é Woody parts trees 763.19 874.18 976.54 213.35 449.04 (276.76)
Ground vegetation 71.26 85.85 99.80 28.54 51.86 (35.25)
Detritus/decomposers 130.09 153.10 174.80 44.71 86.12 (56.38)
Active soil carbon 1285.88 1357.38 1420.06 134.19 561.41 (211.11)
Circulating carbon-(NH) 364.43 | 441.26 | 516.85 152.42 263.44  (179.61)
| Surface Ocean-(NH) 482.58 535.00 586.07 103.49 256.56 (140.96)
: Deep ocean-(NH) 12773.49 | 12940.26 j 13087.97 314.49 4557.71 (708.90)
g | Humus-(NH) 111579 | 1160.47 | 1200.78 84.99 | 440.27  (136.59)
§ Circulating carbon-(SH) 323.85 384.00 443.10 119.25 218.80 (147.42)
Surface Ocean-(SH) 726.43 798.86 869.32 142.90 374.23 (188.18)
Deep ocean-(SH) 22526.45 | 22768.65 | 22981.94 455.49 7961.98 (785.91)
Humus-(SH) 378.71 | 391.91 |  403.76 25.04 | 14650  (43.86)
Atmosphere 1109.99 1674.90 2238.98 1128.99 6212.12
g Surface ocean 700.44 723.01 737.92 37.48 361.94
@ | Deep ocean 031.13 944.70 953.98 22.85 324.50
S. Deep ocean 4201.45 4202.53 4203.30 1.85 410.52
*5 N.woody parts trees 31.97 31.72 31.72 0.25 16.96
2 | Woody parts trees 528.82 523.55 523.55 5.28 291.39
g Ground vegetation 64.79 65.05 65.05 0.26 33.40
)g Detritus/decomposers 95.13 94.68 94.68 0.46 88.48
A | Active soil carbon 1089.23 1088.24 1088.24 0.99 1283.69

“Uncertainty ranges as a result of scenario uncertainty
bUncertainty ranges as a result of scenario and input factor uncertainties
“Uncertainty ranges given in brackets obtained when uncertainties in transfer coefficients

are considered.
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25-compartment model with minimum increase being in the atmosphere com-
partment which is over 450%. For the 8-compartment models change in the
uncertainty ranges is also high especially when the initial conditions are taken as
the input factors. In the table the uncertainty ranges given in brackets are based
on the predictions when the uncertainty in the transfer coefficients are taken into
account.

It is also of interest to investigate if the importance order of uncertain input
factors changes depending on the emission scenario used. A quick examination of
scatterplots (not included) showed that the relationship between the considered
output variables (the compartmental CO, contents in 2100) and the input factors
is either linear or there is no relationship. A stepwise regression analysis is used
for the investigation. The analysis results revealed that even though there is slight
change in the order in which the input factors are entered the regression models,
the same set of important input factors are obtained under the three emission
scenarios. For illustration purposes, we show the results from the analysis on one

output variable from each model in Table 5.3.
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Table 5.3. Comparison of Stepwise Regression Analyses with the IS92a,c,e IPCC
emission scenarios for various output variables calculated from the three GCC
models in year 2100 under the assumption that all input factors follow uniform
distribution on their assigned ranges. The order at which the input factors were
added to the corresponding model and the R2-values for the regression models at
each step are given.

1S92a I1S92c IS92e

Compartment Step Input R? | Input R? | Input R2

1 ko 0.7331 | kog 0.8961 | kas 0.6021

2 ks 0.8588 | k1o 0.9768 | krs 0.8285

- N 4 . 8 k12 0.9710 | ks 0.9857 | kia 0.9483

~§ °n‘§§:r;:a“ S1 4 || kss 0.9829 | kg 0.9907 | kss 0.9682

s 5 kar 0.9887 | kag 0.9920 | kis 0.9810

6 kis 0.9911 | ka7 0.9926 | ks7 0.9903

7 k17 0.9915 kit 0.9909

1 k14 0.7925 | kia 0.7345 | k14 0.8154

— 2 ke7 0.8517 | ke7 0.8227 | kss 0.8690

:v 3 kse 0.9104 | kse 0.8912 | k12 0.9210

o Humus-NH 4 k12 0.9647 | ks 0.9519 | ker 0.9696

2 5 kag 0.9882 | kos 0.9864 | kos 0.9888

6 ks 0.9933 | k15 0.9914 | k15 0.9940

7 || kes 0.9941 | kes 0.9922 | kes 0.9948

= 1 TSL  0.4294 | TSL  0.4288 | TSL  0.4294

B 2 CG0 05724 | CGO 05716 | CG0  0.5724

H . . 3 TG 0.6985 | TG 0.6971 | TG 0.6985
3 Active soil

3 4 THG  0.8000 | THG  0.7989 | THG  0.8000

g carbon 5 || cwo 08599 | CWO  0.8591 | CWO  0.8599

? 6 TW 0.9178 | THD  0.9169 | TW 0.9173

A 7 || THD 09534 | TW 0.9531 | THD  0.9534

5.7 Model Uncertainty

As Kennedy and O’Hagan [72] put it “No model is perfect”. Even if there is no
input factor uncertainty, i.e. we know the true values of all the factors required
to make a particular prediction of a process being modelled, the predicted value
will not be equal to the value of the process. The authors call this discrepancy
‘model inadequacy’.

There is uncertainty due to model structure since there is no unique way
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to abstract the real system into a few variables and equations. Many different
sources of uncertainty in GCC models exist, for example, uncertainties can arise
from making physical assumptions, or even entirely neglecting physical processes
[43]. Despite the fact that these GCC models are attempting to represent the
same system, there can be and there usually are disagreements between the results
of the models because of uncertainties in model assumptions, initial conditions,
model structure, etc.

With model uncertainty we simply want to examine and compare three GCC
models. Simply the size of model uncertainties can be estimated by comparison
with observations. However, as mentioned earlier in the chapter, we should keep
in mind that observations can also introduce an important source of uncertainty.
In Figure 5.19 the atmospheric COs predictions of the three GCC models are
plotted and compared with the Mouna Loa (MLO) observations over the period
of the MLO record, from 1959 to 2000.

Figure 5.19 shows that all three GCC models underestimate the observed
data. The MLO measurement show that the atmospheric CO, concentration has
increased from 315.98 ppm in 1959 to 369.40 ppm in 2000 [71). Model I predicts
the atmospheric COy to be 308.16 ppm in 1959 and 334.30 ppm in 2000. In
these respective years, Model II predicts these concentrations as 302.27 ppm and
324.68 ppm. With both of these 8-compartment model the deviation from the
observed data increases rapidly, even though they perform better than the 25-
compartment model in the early years. The predictions with the 25-compartment
model are 295.12 ppm in 1959 and 365.58 ppm in 2000.

The change in CO4 concentration corresponds to an increase of approximately
84.43 Gt C in the mass of carbon in the atmosphere, approximately 59% of the
release of carbon by fossil fuel combustion and land-use change between 1959 and
1991 [33]. The increase in CO, concentration is approximately 42.00 Gt C with
Model I and 38.10 Gt C with Model II, and this corresponds to approximately 29%
and 26%, respectively, of the carbon released. With the 25-compartment model

the change in atmospheric COq concentration is about 109.00 Gt C increase and
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Figure 5.19. Comparison of predicted atmospheric CO:2 concentrations from the
three GCC models under the base-case scenario and the measured atmospheric
CO:2 concentrations from Mauna Loa Observatory: 1959-2000 (Keeling & Whorf,
2001 [71]).

this is approximately 76% of the carbon released into the atmosphere.

The observed increase in the carbon content of the atmosphere is less than
the release by fossil fuel combustion and land-use change because atmosphere ex-
changes carbon with other reservoirs. With the 8-compartment models because
of their highly linear mathematical structure, all model compartments take up
carbon from the atmosphere quite rapidly. As a result we see a low rate of in-
crease in the atmosheric CO2 predicted by these models. The 8-compartment
models utilized in this thesis are contructed using the linear, time-invariant com-
partmental modelling formulation while physical processes of GCC are entirely
neglected, and these models found to be involving a large amount of uncertainty.
The 25-compartment model, however, is a more realistic representation of carbon
cycle processes. For example, it takes into account the turnover mechanism of

carbon in the oceans, the storage of non-labile carbon in the terrestrial biota, the
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depth distribution of *C, etc..

As noted by Draper [26] model uncertainty is conditional on scenarios and in-
put factors. Now, assuming zero uncertainty for model input factors, i.e. setting
them to their nominal values, and concentrating on the future projections we have
calculated compartmental COs predictions for each model, under the three emis-
sion scenarios. The compartments of the three models are aggregated after the
Monte Carlo simulations into: Atmosphere, Ocean, and Terrestrial Ecosystem.
The time dependent behaviour of the predictions for these model components
between the years 2000 and 2100 is presented in Figure 5.20.

For the atmosphere component, considering the emission scenario 1S92a, Model
I and Model II do not yield substantially different results. With Model I the at-
mospheric CO, content reaches to 910.50 Gt C by the year 2100 (about 28%
increase from 2000 to 2100), and with Model II it reaches to 825.27 Gt C by
2100 (about 20% increase). However the 25-compartment model predicts the at-
mospheric COy content to be much higher, 1674.90 Gt C by 2100 (about 114%
increase from 2000 to 2100).

The predictions of COy content of the ocean component obtained from Model
I and the 25-compartment model appears to be closer together where as Model
IT predictions are much lower. All three models predict the CO, content of
ocean to increase with time, but the rate of increase varies with model, Model 1I
predictions indicating a more rapid increase.

The baseline curve associated with the 25-compartment model show the amount
of CO; in the terrestrial ecosystem to decrease (from 1839.96 Gt C in 2000 to
1803.24 Gt C in 2100), but both 8-compartment models predict CO; content of
this reservoir to increase with time. This increase with Model I is more rapid
than it is with Model II.

Although the predicted CO, contents of the three reservoirs change with the
emission scenarios, the tendency in model behaviour does not change.

Model uncertainty range appears to be increasing when the atmosphere and

the terrestrial ecosystem components are concerned, and decreasing slightly when




CHAPTER 5. UNCERTAINTY ANALYSIS 268
— W W W
S 8-compartment Model-I I/ 0 —  8-compartment Model-I —  8-compartment Model-I /
E —  8-compartment Model-1l 8-compartment Model-Il 0 8-compartment Model-11 /
gg + 25-compartment model / ; S - w2S-compartment models Q < -+ 25-compartment model
ey »” e » ) )
Eg »” e o == »
¢ § s ° _ 7 © »”
a= » o S » o »
o » e o= b 8
g ° B
N
2000 2020 2040 2060 2080 2100 2000 2020 2040 2060 2080 2100 2000 2020 2040 2060 2080 2100
Year Year Year
Ocean; 1592a Ocean; 1892¢ Ocean; 1S92e
o
S
~2
Q S
% b
] —  8-compartment Model-1
= —  8-compartment Model-I P
2 « s . Modetll X §-compartment Model-Il —  8-compartment Model-I
g - -compariment Modet €0 25-compartment model —  8-compartment Model-Il
oS 25-compartment model
S — m25-compartment model
g L)
S
3
@
2000 2020 2040 2060 2080 2100 2000 2020 2000 2020 2040 2060 2080 2100
Year Year Year
— i J— _— VWV iVM., - [T —
=
E —  8-compartment Model-l 8 —  8-compartment Model-|
—  8-compartment M odeM ** , ™M e —  8-compartment Model-ll
g ZSC-Zon[::mmzem mf:dele 0N e — $-compartment Model- 9?& -+ 25-compartment model
\[.2 2.8 —  8-compartment Model-1I 0
ce CN 25-compartment model ¢
238 20 P —
=8 5 o — | mm—————————————————
S §® 8 «
(= ° é?d
3 St 0
= 0
§ 0 m
2000 2020 2040 2060 2080 2100 2000 2020 2040 2060 2080 2100 2000 2020 2040 2060 2080 2100
Year Year Year

Figure 5.20. Baseline predictions from the three GCC models with the 1S92a,c,e
emission scenarios for the time period 2000-2100. These calculations are based on a
model simulation in which all model input factors are set to their nominal values.
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the ocean component is concerned, and this is the case with all three emission
scenarios.

Next, by allowing for input factor uncertainty and focusing on the year 2100
predictions from the three models under the three emission scenarions we calcu-
late mean and coefficient of variation (CV) of the three model components. The
results are presented in Table 5.4. When the two 8-compartment models are con-
cerned the uncertainties in the initial conditions and in the transfer coefficients
are taken into account separately in the anaysis. In Table 5.4, the statistics cal-
culated from the simulations in which transfer coefficient uncertainties taken into
account are given in brackets. Because of differences in modelling assumptions,
initial conditions and model structure the estimated average COq content of the
three reservoirs of the three models are different. Since there are some similar-
ities between the 8-compartment models it may be reasonable to compare the
estimated means and the CVs associated with these models. The average CO.
content of all components in 2100 appears to be higher with Model I compared to
Model IT in both analysis based on initial condition and transfer coefficient uncer-
tainties. The CV for each model component is also high with Model I compared
to Model II.

Now, focusing on Model I and Model II when the uncertainty in the initial
conditions is concerned we compare the CV for each component of the three
models. This comparison shows that for the atmosphere component the 25-
compartment model is the most variable (a CV of about 58% with 1592a, 71%
with IS92¢, and 49% with IS92e) where as Model 1I is the least variable (CVs of
about 5-7% with all scenarios). When the ocean component is concerned the 25-
compartment model is the least variable with a CV of around 3% with all three
emission scenarios, where as Model I is the most variable with a CV of about
10% under all three scenarios. As for the terrestrial component, the variability
is highest with the 25-compartment model (around 13% with all scenarios) and
lowest with Model II (around 7% with all scenarios).
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Table 5.4. Comparison of models in terms of estimated mean and coefficient of
variation (CV) values based on year 2100 CO4 contents of Atmosphere, Ocean and
Terrestrial Ecosystem components calculated using the three GCC models with
the three TPCC-1992 scenarios. The calculations are based on N=1000 model
simulations with all input factors assumed to follow uniform distribution over
their assigned ranges.

Model 8-compartment Model I* 8-compartment Model II 25-comp. model

Component Mean cv Mean cv Mean Ccv

Atmosphere 920.89  (916.83) | 7.29 (1.61) 825.25  (826.01)15.86 (1.18) 1926.86{ 57.69
Ocean 39212.26 (39220.85) [10.38 (0.11)||37043.26 (37039.95) {7.53 (0.05) || 38628.22| 2.89
Terr. Ecosys. || 2540.40 ( 2535.96)| 8.33 (1.12) || 1551.92 (1554.45) [7.06 (0.76)| 1813.54| 12.64
Atmosphere 755.42 (750.61) | 8.88 (1.19) 688.26 {688.62) [ 7.03 (0.52) 1402.77| 70.94
Ocean 38878.15 (38890.56) [10.46 (0.07) ||36509.43 (36506.64) [7.64 (0.03)| 38418.11| 2.1
Terr. Ecosys. || 2311.30 (2303.77) | 9.16 (0.85) || 1494.04 (1496.46) [7.33 (0.47)| 1820.23| 12.60
Atmosphere || 1079.93 (1076.47)| 6.21 (1.88)|| 959.93  (961.08) [5.04 (1.63)| 2455.73| 48.78
Ocean 39513.22 (39518.55) [10.30 (0.13)||37525.79 (37522.00) (7.43 (0.07)| 38778.30 3.10
Terr. Ecosys. || 2749.78 (2747.99)| 7.70 (1.32) || 1604.07 (1606.71) [6.83 (1.00)| 1813.5¢| 12.64

I1S92a

I1S92¢

1S92e

“With the two 8-compartment models, the statistics in brackets are from the simulations

where only the uncertainty in the transfer coefficients are concerned.

5.8 Partitioning Uncertainty

The discrepancies between the observed data and simulated atmospheric CO,
content indicates that some of the sources of uncertainty must be large enough
to be causing the discrepancies, but which sources of uncertainty are to blame
for this?

In order to reduce the uncertainty in the model predictions an analysis of the
contribution of the individual sources of uncertainty is of great interest. Once
the main sources of uncertainty are identified, futher research can be done in a
way that the output uncertainties can be reduced.

First, assuming that there is no input factor uncertainty and focusing on the
atmosphere compartment we calculate predictions using the three GCC models
with the three emission scenarios to obtain an overall uncertainty range over

time. In Figure 5.21 the shaded area indicates the maximum uncertainty range
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(MUR*) of atmosperic CO:z content over the period 1995-2100.

The MUR2100 which involves both model and scenario uncertainties in 2100
(pointed out in Figure 5.21) is 2238.99 - 688.28 = 1550.71 obtained by subtracting
the maximum and minimum curves in year 2100. The uncertainty range (UR()
can be calculated when not all models and/or scenarios is considered. The re-
duced URz2100 when the 25-compartment model is not in operation is calculated
and it appears that this model contributes 76% to the MURz2100s without this
model the MUR2100 goes down to 379.68. Since Model I is the ‘median’ model
the MUR2100 do not change with this model not being in operation. The contri-

bution of Model II to the MUR2100 is only 4%. Now, focusing on the scenarios, it
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Figure 5.21. Maximum uncertainty range of the Atmospheric CO:z predictions
based on the three GCC models with the 1S92a,c,e emission scenarios for the period
1995-2100. These calculations are based on model simulations in which all model
input factors are set to their nominal values.
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is easily seen that IS92e is contributing the most to the MURg;qp (about 36%) and
the contribution of 1S92¢ is 9%. Without scenario 1S92a which is the ‘median’
scenario the MURg;99 do not change.

In the previous sections we have discussed and investigated input factor un-
certainty within model and scenario, scenario uncertainty within model, model
uncertainty within scenario. Now, it is of interest to find out how much of the
overall uncertainty about an output variable is attributable to the three sources
of uncertainty.

First, focusing on scenario and input factor uncertainty, we wish to investigate
whether differences in the predictions are attributable primarily to scenario or
the input factors, for a given model. As the output variable the CO, content of
atmosphere in the year 2100 (i.e., y,,. (¢ = 2100), for convenience we will use y
to refer to this output variable in this section) is considered. Using an approach
introduced by Draper (see [26]) and refered to as model uncertainty audit, we
partition the overall predictive uncertainty about y into ‘between scenario’ and
‘due to input factors within scenario’ components, the second of which represents
the component of uncertainty arising from lack of knowledge about the input
factors.

With y as the output variable, and scenario ¢ occuring with probability p;
and leading to estimated mean (ji;) and standard deviation (&;) of y, the overall

mean and variance of the output variable are calculated using

AU' ES[E y§3 sz.uu (5'1)

and

5 = VslE@|S)]+ Es[V(y]S)]
(5.2)

S
= Yl P+ L pod =03, 403,
=
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respectively, where S stands for scenario and s = 3 (three emission scenarios:
IS92a, IS92c and IS92e). For each of the three models the scenario-specific means
and standard deviation (SD) estimates are given in Table 5.5, together with two
possible vectors of scenario probabilities. The first of these vectors (Case 1) gives
a probability of 0.9 to the IS92a (Business-as-Usual scenario), and 0.05 to each
of the IS92c and IS92e scenarios. We also consider another case (Case 2) where
all three scenarios are equally probable. For the purpose of sensitivity analysis
we have chosen these two cases but in reality for deciding on possible vectors of
scenario probabilities expert opinion should be sought.

The calculation of the estimates given in Table 5.5 are based on N=1000
model simulations in which all model input factors are assumed to follow uniform
distribution over their assigned ranges. For the two 8-compartment models the
uncertainties about the initial conditions are considered.

Then, considering each of the two cases, and applying Equations (5.1) and
(5.2) with the estimates given in Table 5.5 we obtain the results summarised in

Table 5.6. For the 25-compartment model, it can be seen that the percentage of

Table 5.5. Estimated scenario-specific means and standard deviations of At-
mospheric CO4 content in 2100 from all three models, together with two sets of
scenario probabilities.

Scenario prob. (p;)

Model Scenario | Mean (j;) | SD (6;) | Case 1 Case 2
15922 1926.9 | 111L.7]  0.90 1/3
25-compartment | ;o0 1402.9 | 9953 |  0.05 1/3
model IS92e 2455.6 | 1198.0 |  0.05 1/3
15922 920.9 670 | 0.90 1/3
§-compartment | g0 7554 |  67.0|  0.05 1/3
Model 1 1S92e 1079.9 67.0 |  0.05 1/3
1S02a 825.2 81| 090 1/3
§-compartment | ;a0 688.3 81| 005 1/3

Model 11

1592e 959.9 48.1 0.05 1/3
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variance arising from scenario uncertainty is quite small in both cases of scenario
probabilities, about 2% in Case 1 and 13% in Case 2. This confirms what we
had already seen in Figure 5.18, where there was actually very little variation
between the prediction uncertainty due to different scenarios, for this particular
model. As for the two 8-compartment models, Table 5.6 shows that in Case 1 the
contributions of scenario and input factor uncertainties to the overall uncertainty
are about the same with input factor uncertainty contributing slightly more, but
when the scenarios assumed to have equal probability of occurrence (Case 2)

the situation is the other way around, that is the percentage of variance arising

Table 5.6. Results from partitioning the total uncertainty in predicted Atmo-
spheric COq content in 2100 into ‘between scenarios’ and ‘due to input factors
within scenarios’ components as a function of scenario probabilities. The results
are given for all three models.

Results with
Scenario probabilities
Model Summary of the Results Case 1 Case 2
Overall mean (f) 1927.14 1928.47
Overall variance (62) 1261285.00 1405265.00
25-compart. | Between-scenario variance (62 ) 27704.93  184697.40
model Within-scenario variance (62, 1233581.00 1220568.00
% of variance between scenarios 2.0 13.0
% of variance due to input factors within scenarios 98.0 87.0
Overall mean (1) 920.58 918.73
Overall variance (52) 7122.46 22041.39
8-compart. | Between-scenario variance (62 ) 2633.46 17552.39
Model I | Within-scenario variance (62, ) 4489.00 4489.00
% of variance between scenarios 37.0 79.6
% of variance due to input factors within scenarios 63.0 20.4
Overall mean (i) 825.09 824.47
Overall variance (6?) 4157.88 14608.31
8-compart. | Between-scenario variance (62 1844.27 12294.7
Model IT | Within-scenario variance (62,,) 2313.61 2313.61
% of variance between scenarios 44.4 84.2
% of variance due to input factors within scenarios 55.6 15.8
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from scenario uncertainty is much higher, about 80% with Model I and 84% with
Model II.

Above we have partitioned the prediction uncertainty between scenario and
input factors within scenario, for each particular model, now we wish to go a
step further and partition the prediction uncertainty between scenarios, between
models within scenarios, and between input factors within models and scenar-
ios, again following Draper’s model uncertainty audit approach (see [26]). In
this case, where we want to partition the overall uncertainty about ¥ into three
components, the situation is slightly more complicated.

There are s = 3 scenarios, m = 3 models and the models are given equal
weights (wy, ws, ws) = (1/3,1/3,1/3). With ¢ indexing scenarios and j models,
the nine values of atmospheric COg content in year 2100 (i.e., §i;;) are calculated.
Table 5.7 gives the scenario-specific means fi; = » 7", w;f; and standard devi-
ations 6; = [ D00, wi(fsy — f1)?]'/% computed using these predictions, together
with the probability assessments (p;, ps, ps) for the three scenarios. As before the
two cases with different sets of scenario probabilities is investigated here.

With y as the atmospheric COq content in 2100, = as the means and standard
deviations given in Table 5.7 and 6% as the predictive variance conditional on
the scenario and model, which are assumed to be independent, the overall mean

and variance equations in this case are as follows:
. R s
= Es[Ex{E(ylz, M, $)}] = Y pifui, (5.3)
i=1

and

62 = Vs[Ex{B(ylz, M, S)}] + Es[Var{ £(y|z, M, $)}] + Es[Ea{V (y|z, M, S)}]
(5.4)

s S s m
= Zzzlpz(ﬁz - /1)2 + ;pi&iz + g;piwj&izj = &1235 + 6-§MWS + 6%PWMS

respectively, where S standing for scenario and M standing for model.
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Table 5.7. Estimated scenario-specific means and standard deviations of Atmo-
spheric COq content in 2100, together with two sets of scenario probabilities.

Scenario probability (p;)

Scenario i || Mean (ji;) | SD (6;) | Case 1 Case 2
1592a 1136.90 382.02 0.90 1/3
IS92c 848.32 186.56 0.05 1/3
1592e 1422.30 579.17 0.05 1/3

As the results in Table 5.8 reveal in both cases, with different set of proba-

bilities given to the three scenarios, what is determining the overall uncertainty

appears to be the input factors within model. The input factor uncertainty at-

tribute about 72% in Case 1 and 64% in Case 2 of the overall uncertainty. The

least contribution to the overall uncertainty is due to scenarios, less than 2% in

Case 1 and about 9% in Case 2. The uncertainty contribution of models to overall

prediction uncertainty is moderate when we assume that they are equally likely.

Table 5.8. Results from partitioning the total uncertainty in predicted At-
mospheric CO, content in 2100 into ‘between scenarios (BS)’, ‘between models
within scenarios (BMW S)’ and ‘between predictions within models and scenarios
(BPWMS)’ components as a function of scenario probabilities.

Summary of the Results

Results with
Scenario probabilities

Case 1 Case 2
Overall mean () 1136.74 1135.84
Overall variance (62) 571549.17 636087.42
Between scenario variance (62 ) 8236.55 54909.41
Between models within-scenario variance (62, ) 149854.78 172057.81
Between predictions within models & scenarios variance (62 ) |413457.84 409120.20
% of variance between scenarios 1.44 8.63
% of variance between models within scenarios 26.22 27.05
% of variance between predictions within models & scenarios 72.34 64.32
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The results revealed that with equal weights given to the three models, no
matter which of the two sets of scenario probabilities is taken, the uncertainty
about the input factors within each model is the major source of uncertainty in
the predictions. The contribution of model uncertainty to the overall uncertainty
is reasonably high, while the contribution of scenario uncertainty on the overall

prediction uncertainty is quite low.

5.9 Modeller Uncertainty

In this section, we identify another important source of uncertainty: modeller
uncertainty. Firstly, we shall note that by the terminology ‘modeller’ we do not
mean model developer, we mean model user. Uncertainty due to modeller is not
usually taken into account in uncertainty analysis, and the potential importance
of modeller interpretation rarely seems to be recognised [2].

Uncertainty may arise because: different modellers’ interpretation of both
the model and the scenario can vary; modeller’s limited experience of modelling
concepts, and with incomplete knowledge of the situation to be modelled can
contribute significantly to the model predictions.

We look at this aspect of uncertainty in the context of environmental radioac-
tivity modelling, using real world data from Chernobyl accident. In this section,
first a brief background of the accident and its consequence is included, then
desription of the study and data is given. Following that, the predictions made
by different modellers are analysed using some statistical tools for addressing

modeller uncertainty.

5.9.1 General Background

In 1986, a major accident occurred at the former Soviet Union’s Chernobyl nu-
clear power station when two explosions destroyed the core of Unit 4 and the
reactor building, and large amounts of radioactive substances were released to

the atmosphere. The radioactive isotopes of iodine (**1I) and cesium (*37Cs) were
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two of the radiologically most important isotopes widely dispersed and eventually
deposited onto the surface of the earth over the ensuing ten days or so.

Radioactive material released from Chernobyl was distributed throughout the
northern hemisphere, mainly across Europe and deposited by the actions of wind
and rain. These substances were available for uptake by plants and animals,
hence to foodstuffs and ultimately into man.

The radionuclide composition of the release and of the subsequent deposi-
tion on the ground also varied considerably during the accident due to variation
in temperature and other parameters during the release. 37Cs was selected to
characterise the magnitude of the ground deposition because: (1) it is easily mea-
surable, and (2) it was the main contributor to the radiation doses received by
the population once the short-lived **!I had decayed [85).

5.9.2 Description of the Study and Data

Researchers, regulatory agencies such as IAEA (International Atomic Energy
Agency), NEA (Nuclear Energy Agency) and WHO(World Health Organization),
environmental assessment groups within the programms like VAMP (Validation of
Environmental Model Predictions) and BIOMOVS (Biospheric Model Validation
Study) have been using various kinds of computer codes to predict the movement
and the level of radioactive material in various parts of the biota, over time.

These models are used mainly to evaluate situations in which only limited
measurements are available. They can also be used to reconstruct past situations
given the existence of partial or incomplete information. When decisions of major
economic or social importance are based on model results, it is essential, for the
sake of scientific and public credibility, to establish a degree of confidence in these
results [104].

Three terrestrial food chain codes called CHERPAC, RUINS, and CLRP were
obtained and run by modellers for several scenarios (such as BREMEN and FORT
COLLINS) involving the transfer of radionuclides *'I and 37Cs from air to pas-

ture and milk. The detailed descriptions of the scenarios and the manual for the
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computer models can be found in Ref.[1]. In this exercise, we report on the results
of the BREMEN scenario, and the CHERPAC computer code. The radionuclide
considered here is 1*"Cs, a long-lived radionuclide deposited in the environment
after the accident at Chernobyl.

A brief description of the BREMEN scenario and the CHERPAC computer code
adopted for this study is as follows:

The BREMEN scenario is based on the data collected for the
pasture-cow-milk pathway in Bremen/Germany after the Chernobyl
accident.

CHERPAC (CHalk River Environmental Research Pathways Anal-
ysis Code) was developed by Peterson in 1994. It is a time-dependent
stochastic code, and calculates output from a short-term release. Out-
put can be calculated daily (for up to 60 days) concentrations of 37Cs
in some foodstuffs (on fresh-weight pasture and in milk) or averaged

monthly concentrations in others [93].

In September 1994, the CHERPAC code and description of the BREMEN
scenario were sent out to the interested modellers. Ten participants submitted
results from this code. The modellers involved in the experiment were provided
with information about the accident, the particular region, Bremen, the effect
of the accident on this particular region, and background information regarding
the diet and pasture rotation for the one cow from which milk samples were
taken. The participants were also given manuals explaining how to run the code
and how to implement changes in input parameters for the model. These man-
uals did not have any information about the formulation of the code or how it
was implemented numerically. Each modeller was provided with the same basic
information.

The driving data for the CHERPAC code were concentrations of 137Cs aerosols
on pasture and in milk at Bremen. The considered time periods for CHERPAC
code are May 5 - June 27, 1986 for concentrations on pasture and May 14 - June

27, 1986 for concentrations in milk.
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The participants were to use the same assumptions about the scenario in the
code. Most of the modellers involved in this exercise were familiar with general
modelling concepts, and models for the environmental transport of radioactivity.
Modellers were encouraged to seek opinion and advice from experts who did not
participate in the experiment, but were not allowed to discuss the exercise with
participants. Questions asked by modellers regarding the code and the scenario
were answered and the answers distributed to the participants unless answering
those questions would have an effect on assumptions. Each modeller’s results is
labeled by a letter, A through J.

This test exercise was carried out as a so called “blind test”, i. e. the modellers

received a scenario description (input data), and after they had completed the
calculations and submitted the results to the co-ordinator, they were provided
with the observed data (test data) that matched the endpoints asked for in the
scenario description. '37Cs concentrations in pasture (Bq kg™!) were measured
in the time period May 5 - June 28, 1986 (at 20 time points).
It is well known that evaluation of the impact of radionuclide releases on hu-
mans and on the environment is important. Computer codes and the predictions
made with them help us to assess the potential routes and the levels of those
radionuclide releases. The fundamental purpose of this section is to investigate
the uncertainty in the predictions due to modellers who used the same computer
model, within BREMEN scenario to make predictions. For convenience, we shall
use ‘modeller prediction’ terminology instead of ‘model prediction made by mod-
ellers’. The steps followed here are: (¢) intercomparison of modeller predictions;
(i) comparison of modeller predictions with the observed data; (éi:) finding out
if there is any apparent grouping amongst modeller predictions, and measured
data.

5.9.3 Testing Modeller Predictions

In order to compare the modeller predictions, first of all we assume that the

model is being used by the different modellers with the same purpose. It is also
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assumed that the modellers are independent of each other. Several graphical and

statistical techniques have been used to make comparisons.

5.9.3.1 Exploratory Data Analysis

Predictions of daily concentrations on pasture are shown in Figure 5.22. The fig-
ure shows that there is a considerable decrease in concentrations for all modeller
predictions and observed 137Cs concentrations. The potential influence of the
modeller on model results can easily be seen. The uncertainty in the predictions
due to modeller appears to be quite high. The modeller predictions especially E
and F; B and D; A, G and J seem to give quite similar results. Modeller predic-
tions H, I, E and F appear to be the ones closest to the observed concentrations.
Some of the modellers, especially A, G and J, show a tendency for overestimating

137Cs activity in pasture compared to the observed data.

10 20 30 40 50
Time(Days)
Figure 5.22. Measured concentrations, and model predictions calculated with

CHERPAC on daily concentrations of 137Cs on Pasture from May 5 - June 27,
1986. The measured data are indicated by stars.
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5.9.3.2 Modelling the Modeller Response

Now we perform a more quantitative analysis. The least squares method has
been used to estimate the trend using the same model form for each modeller
prediction. The main reason for modelling the changes in concentration is to
provide summaries of the parameters, slopes and intercepts, to provide some
idea about the variation in slopes or the intercepts across a group of modeller
predictions. A simple linear relationship of log-transformed concentration against
time is found to be sufficient to fit all ten modeller predictions, and the measured
data. See Figure 5.23 for the plot of the log-transformed data. The model
fitted to the predictions provided by each modeller, and the measurement data
is: log(Concentratiorii) = a + P *Dayi -I- &, where ¢ ~ N(0, a2).

We can note that the logarithmic transformation on concentrations has led to
a linear regression relation. The lowest R 2 value of 99% shows that the regression

equations explain almost all the variation in concentration for all the ten modeller

0,
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Figure 5.23. Log-transformed measured concentrations, and modeller predic-
tions calculated with CHERPAC on daily concentrations of 137Cs on Pasture.
The measured data are indicated by stars.
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predictions of PASTURE data. For the observed data R? value is found to be
95% which is reasonably high.

The parameters of these linear relationships, the slopes and intercepts, are
plotted in Figure 5.24. Each point in the figure is labeled by the corresponding
modeller. In terms of the intercepts, we can see that there is quite a lot of vari-
ability. The intercepts are varying between 3.7 (associated with log-transformed
modeller C predictions) and 7.6 (associated with log-transformed modeller A pre-
dictions). The mean and the standard deviation of the intercepts from the ten
modellers predictions are 6.1 and 1.3, respectively, and the intercept of the log-
transformed observations is 6.3. Comparison of the intercepts associated with
the ten modellers’ predictions and the observed data show that modellers H, E

and F provided predictions which are closer to the observed data.
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Figure 5.24. Scatterplots of estimated model parameters (Intercepts vs. Slopes)
of log-transformed data.

In terms of the slopes, it is clear from Figure 5.24 that the slopes associated
with the modellers appears to be close together and slightly higher than the
slope of the observations. The mean and the standard deviation of the slopes
from the modellers’ predictions are -0.052 and 0.004, respectively. The slope of
the observed data is -0.076.
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5.9.3.3 Clustering

A cluster analysis is carried out to find the natural groupings, if any, of the ten
modeller predictions. In order to carry out a cluster analysis first the similarity
(or dissimilarity) of every pair of modeller predictions are measured. There are
many ways of doing this. Standardized Euclidean distance is one of the most com-
mon measures of dissimilarity and it is used here. On the calculated distances,
complete-linkage clustering has been used resulting in a plot of a clustering tree
(often called a dendrogram), has been created for log-transformed data (See Fig-
ure 5.25).

In this dendrogram, we see a simple group structure, and a measure of “close-

ness” or “similarity” of the modeller predictions and the measurements.
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Figure 5.25. Dendrogram of log-transformed measured concentrations and mod-
eller predictions of daily *¥7Cs concentrations on Pasture.
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5.10 Discussion

Uncertainty in predictions of models arises from, among other sources, the model
structure representing the real world system, the scenario reflecting different views
of the future, the uncertainty in the model input factors, the assumptions made
by the model users. In this chapter we have looked at scenario uncertainty, model
uncertainty and input factor uncertainty within the framework of the three GCC
models. We also explored modeller uncertainty with a case study.

Within a model and a scenario, the prediction uncertainty can be partitioned
between input factors, using methods like stepwise regression. But as McKay
emphasizes [83] one should avoid using statements like “30% of the uncertainty
in a dependent variable (say y) is due to an input parameter (say ;)” which pre-
supposes a quantitative measure and can be quite misleading, depending on how
well the probability distribution of y is summarised by the model. An example
of a more precise statement would be “On average, the variance of y is 30% less
when z; is fixed than when it is varied; average is with respect to the distribution
of z;”.

Prediction uncertainty due to input factors uncertainty was investigated in
Chapters 3 and 4 in detail. In this chapter we have assessed the effect of sampling
technique, sample size and distributional assumptions for the input factors on
model predictions. First, with a graphical presentation we have demonstrated
that holding an important input factor (or a set of important factors) at its best
estimate value leads to a substantial reduction in prediction uncertainty. It is
also shown that there is tendency for increasing uncertainty in the predictions
with time.

To assure the full coverage of the input space it is important to use a suffi-
ciently large number of runs in model simulations. It is shown in Section 5.5.1
that the Latin hypercube sampling produces more stable cumulative distribution
function estimates of model output variables than those produced by the simple
random sampling. It is also shown that increasing the sample size improves the

quality of the estimate and hence the reliability of the results. The number of
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model runs needed in the analysis depends on the complexity of the model and
the number of model input factors.

Different distributional assumptions can have a dramatic effect on model out-
put distribution, and also on input factor selection. Therefore, it is important to
recognise this effect on analysis results and investigate its occurrence. An input
factor may be identified as important when sampled on a specified range with
one distribution and identified as relatively less important or even unimportant
when sampled on the same range with a different distribution.

When investigating scenario uncertainty we only assessed the uncertainty
caused by changing fossil fuel and land-use emissions and uncertainty in each
model compartment as a result of those emissions. It would be of interest to
assess the scenario uncertainty arising from scenario specific parameters as well.

When input factor uncertainty was taken into account, it was seen that for
the 8-compartment models, on the basis of overall uncertainties discrimination
between the predictions for the three scenarios can be made for most of the output
variables considered in the analysis, but as for the 25-compartment model no
discrimination between the predictions for the three scenarios can be made.

Uncertainty in the predictions due to model was found to be much higher
with the 8-compartment models, due to the fact that they are quite simple,
highly linear and do not capture physical processes we see in real world.

In order to reduce the uncertainty in model predictions, we need to know which
source of uncertainty is determining the overall uncertainty. Such information can
help to set priorities for future research, model and scenario improvements and
developments.

First, focusing on uncertainty in the predictions resulting from scenario and
input factor uncertainties, we have partitioned the uncertainty in y,,_ (t = 2100)
between these two sources of uncertainty, within a particular model. For this
we have considered two possible vectors of scenario probabilities. The results of
this partitioning confirmed what we have found out when investigating scenario

uncertainty. That is, for the 25-compartment model, the contribution of input
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factor uncertainty to the prediction uncertainty is significantly high no matter
which vector of scenario probabilities is considered. As for the 8-compartment
models, we have seen that the contributions of input factor and scenario un-
certainties to the prediction uncertainty changes with different cases of scenario
probabilities. When the scenarios are given equal probability the uncertainty
about the scenarios influences the prediction uncertainty much more. Again this
confirms what we have seen in the scenario uncertainty section.

A further attempt involved the partitioning of the overall uncertainty into
three components: between scenario, between models within scenarios, and be-
tween predictions within models and scenarios. Results of this investigation re-
vealed that, for the particular models and scenarios under consideration, when
equal weights given to the three models and with the chosen two sets of scenario
probabilities the model input factors are dominating the prediction uncertain-
ties, whereas the contribution of model uncertainty on the overall uncertainty is
reasonable but the contribution of scenario uncertainty is very small.

With a case study we assessed the ten modellers’ influence on model predic-
tions by comparing differences in the predictions obtained by different modellers
even though they used the same model and the same scenario description. We
have seen that the potential influence of modeller’s interpretation of model and
scenario on the model results can be quite significant and should be taken into

account.




Chapter 6
Conclusions

As Chapter 1 indicates our knowledge about the real world is always incomplete,
and to understand the real world phenomena we need models. But the models, at
best, are only approximations of the system being modeled, and thus are inher-
ently uncertain. While quantifying the uncertainty associated with the process
of building a model is not possible, there are ways of reducing, and perhaps more
importantly, highlighting areas of uncertainty. Among many other sources of un-
certainty, the key sources of uncertainties which we have explored in this thesis
are: (¢) structural uncertainty resulting from incomplete/improper mathematical
formulation of conceptual models; (#4) scenario uncertainty resulting from lack
of knowledge or inability to predict the future conditions; and (44¢) input factor
uncertainty resulting from vaguely defined, estimated input factors.

An important step towards reducing the uncertainty in model predictions and
hence increasing the reliability of a model is to obtain more accurate information
on the main sources of uncertainty. For this purpose it is necessary to carry out
sensitivity and uncertainty analyses. These important modelling tools can lead
to improved understanding of the fundamental processes being modeled.

Sensitivity analysis (SA) methods are broadly classified into three categories:
screening methods, local SA methods and global SA methods. When dealing

with a very complex, computationally expensive model with hundreds of input
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parameters, screening methods can be used to identify the most important input
factors which control most of the output uncertainty. Local SA methods provide
information on the local impact of the input factors on the output variables.
They are based on taking partial derivatives of the output functions with respect
to the input factors at selected points in the parameter space. Even though
local methods have the disadvantage of providing only local measures, they also
have an important advantage of not being dependent on chosen distributions
for input factors. Global SA methods which are widely used in the analysis of
large complex computational models require information about the distributions,
minimum and maximum values for the input factors as well as mean values and
standard deviations.

In this thesis we have used sensitivity and uncertainty analysis tools with a
view to understanding the uncertainty issues related to compartmental models,
in particular some compartmental models which have been used for global carbon
cycle (GCC) modelling.

We have considered three GCC models in this thesis, two of which are quite
simple providing no detailed biological and chemical information on complex
carbon cycle process. The third model consists of 25 compartments is a more
complex model and believed to be a more realistic representation of carbon cycle
processes. The application of sensitivity and uncertainty analyses techniques to

these models revealed the following benefits and limitations:

- Even though a one-factor-at-a time (OAT) approach produces some bene-
fits, it is a very ineflicient way of performing a SA and is limited in appli-
cation to models that are not computationally expensive and have a small
number of input factors. Compared to computer models available in sci-
entific literature with hundreds of input factors, the models we utilize in
this thesis are relatively small. Even so, the application of OAT design was

quite impractical.

- A very important disadvantage of OAT design is that it varies only one input

factor at a time while fixing the others at their nominal values - frequently
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not valid for the models in which the input factors are related and can result
in a confused picture of how input factors affect model behaviour. This is
the case with the two GCC models for which we have to take into account
the fact that the system has to be in steady-state before introducing any
perturbations to the system. So to maintain this steady-state condition,
when one input factor is varied over its entire range at least one other
input factor has to be changed to initialize the GCC model. As a result,
the carbon content of each compartment changes during a simulation as a
function of not only the factor varied but also the one(s) that are calculated,
of course in addition to the time-dependent releases of carbon from fossil

fuel emissions and land-use change.

The use of an efficient screening design can help to avoid high computational
and financial costs, as well as physical and human resources. The Morris
design, we have applied to the three global carbon cycle models, is an
OAT design but because it covers the entire space over which the input
factors vary it is considered as a global screening design. It is also an
economical screening design and should be prefered to the other screening

designs discussed in this thesis.

Even though the global SA methods require a higher number of model
evaluations, they provide quantitative sensitivity measures, and should be

prefered over local SA methods.

When global SA methods were applied to the two 8-compartment models,
in order to maintain a steady-state condition in the system, a subset of
transfer coefficients were treated as uncertain input factors while others
are used in the model calibration process. For this last setting, we have
approached the necessary constraint from the linear algebra point of view

using Gauss-Jordan elimination.

- Windowing analysis was performed on the 8-compartment models since
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large uncertainty in model initial conditions was causing the model output
to deviate from an acceptable trajectory. Although this problem was re-
solved by discarding ‘unsatisfactory’ simulations, a large number of model
runs were needed to obtain an adequate sample of simulations. Windowing
analysis is also being used in order to adjust the values of model input pa-
rameters to achieve an acceptable match between observed and predicted
model conditions (for an example see [40]). According to King & Sale [73],
windowing can also provide a correlation structure between the input fac-

tors as well as estimates of input factor ranges.

- A major objective in the SA of a model is to obtain a ranking of the input
factors. SA techniques including sensitivity indices, standardised ranges,
Morris method, derivative based method, regression based methods, corre-
lation coefficients, non-parametric tests on partitioned data sets. It appears
that the results we have from these techniques all very broadly agree. The
rankings obtained from these techniques do not always agree but the subset
of potentially important input factors that account for most of the variation
in model output variables are identified by all the techniques considered.
Thus, it is reasonable to conclude that most of the techniques would be

appropriate for SA for the type of models considered in this thesis.

- Using stepwise regression technique or some other regression technique, rel-
ative input factor importance can readily be determined. In the application
of such techniques, a criterion such as PRESS should be used to protect
against overfitting the data. The standardized regression coeflicients (SRC)
and partial correlation coeflicients (PCC) are used as a measure of input
factor importance. The estimated coefficients proved to be a useful way of
presenting sensitivity results for output variables which were functions of
time. The sign of these coefficients indicates whether the output variable
increases or decreases as the associated output variable increases. In this

study, regression based global SA methods proved to perform well due to
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the fact that the output variables under consideration were linear function
of the input factors. However, when there is no linear relationship between
the variables, the nonparametric equivalent of these methods should be

used.

- In a time-dependent multi-output model a single ranking of model input
factors is not possible. Uncertainty contributions of model input factors
differ for various outputs and at different time points. In SA individual in-
put factors were examined to determine whether their importance changes
through time. We have found that different sets of input factors are impor-
tant for different model outputs and also for different model output times.
For instance, the uncertainty contribution of TSL (the terrestrial turnover
time in the active soil compartment of the 25-compartment model) was
found to be much higher when the output of the active soil compartment

was considered (see Chapter 4).

- In this thesis, we also extended the use of some of the modern types of
graphical techniques, such as star plots and dotplots, to present analysis
results. These graphical tools prove to be good ways of picking out the most

important input factors identified by the sensitivity measure at a glance.

- In Chapters 3 and 4 we have assumed that all model inputs follow a uniform
distributions on uncertainty ranges obtained by applying +20% of their
reference values. Such an assumption is usually made when knowledge
about the input factor is poor. However, it should be recognised that
changes in distributions and in uncertainty ranges may cause substantial
changes in sensitivity analysis results. When needed and possible, expert
elicitation should be used to construct the probability density functions for

the uncertain model parameters.

As emphasized by Iman et al. [64] selection of uncertainty ranges and
probability distributions for model input factors is an important issue and

it is an area of sensitivity analysis where interaction among experts in the
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process being modeled, model developers and those conducting SA is very

important.

- The type of probability density function of the output variable depends
on the mathematical structure of the model. In Chapter 5 we have shown
that because of the highly linear and simple structure of the 8-compartment
models the probability distribution of the output variables is not different
from that of the input factors when all input factors are assigned the same
probability distribution. On the other hand, with the 25-compartment
model which has a more complex structure, we have seen that although
the same probability distribution is assigned to all 30 input factors of the

model, an output variable can follow a different probability distribution.

- The effect of sampling technique and sample size on the model predictions
was investigated and it was shown that LHS gives more stable cumulative
distribution functions of the output variables and requires fewer model eval-
uations. The number of model runs needed in the analysis is shown to be

a function of model complexity and the number of model input factors.

There are many different sources of uncertainty and in the computer experi-
ments that we have done we have been able to look at scenario uncertainty, model
uncertainty and input factor uncertainty within the framework of the three GCC
models. We also explored modeller uncertainty with a case study based on ra-

dioactivity modelling.

- We know that no model is right. When model uncertainty was investi-
gated using the three GCC models it was found that there was consider-
able amounts of model uncertainty in the 8-compartment models and this
is believed to be mostly related to the fact that the real world processes are

not being reflected in the mathematical structure of the models.

- In the scenario uncertainty we explored the amount of uncertainty in the
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predictions due to three emission scenarios both with and without input fac-
tor uncertainty included. The results showed that for the 25-compartment
model the uncertainty in the predictions were not determined by the sce-
nario uncertainty, but for the 8-compartment models, the uncertainty in

the predictions was highly influenced by scenario uncertainty.

- The total prediction uncertainty of a model output variable (a compart-
mental COy content at a certain time, in our case) is a combination of
uncertainties from different sources like scenario, model structure, input
factors within a particular model. It was the main interest of Chapter 5 to
find out the relative contribution of these three main sorces of uncertain-
ties to the overall uncertainty. First, focusing on scenario and input factor
within each model, we have partitioned the prediction uncertainty between
scenario and input factors. The results of this analysis confirmed what we

have found out from the analysis of scenario uncertainty.

- The overall uncertainty due to model structure, scenario and input factor
uncertainty was partitioned between these three sources of uncertainty. The
analysis results showed that, for the particular models and scenarios under
consideration in this investigation, when equal weights are given to the
three models and with the chosen two sets of scenario probabilities the
model input factors dominate the overall prediction uncertainties, whereas
the contribution of model uncertainty on the overall uncertainty was found
to be reasonably high but the contribution of scenario uncertainty to be

very small.

- Another source of uncertainty which is often ignored is modeller uncertainty.
A comparison between the measured data and the ten sets of predictions
made by ten modellers who used the same model and the same scenario
description to make their predictions showed that there can be large dis-
crepancies in the model results due to the modeller’s interpretation of the

model and scenario. This case study revealed how significant this source of
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uncertainty can be.

We believe that sensitivity and uncertainty analysis is an essential tool box for
every modeller. With the use of sensitivity and uncertainty analysis we can obtain
valuable information which can help us in deciding which processes included in
our model will benefit most from improvement. Thus, spending a large amount
of effort in improving/characterizing aspects of the model which have very little
influence on the predictions can be avoided.

Furthermore, there is no method of sensitivity and uncertainty analysis that
we can rate as superior to another method, but different methods have both
strengths and weaknesses. How to decide which technique to use depends on the
model under consideration and the type of information is needed. However it is

advisable to use more than one method and compare the results.
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Appendix A

Simulation Results of Model 1

Summarised in Chapter 3
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A.1 Model I Initial Conditions
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Figure A.I. Surface ocean CO:2 predictions resulting from varying initial com-
partmental content of compartment i (i = 1,2,..., 8) OAT (given in top-left
corner of each graph - see Table 3.2 for description of these input factors). N=100
model runs, 1S92a emission scenario is considered.
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Figure A.2. Deep ocean CO: predictions resulting from varying initial compart-
mental content x° of compartmenti (i = 1,2, 8 ) OAT (given in top-left corner
of each graph - see Table 3.2 for description of these input factors). N=100 model
runs, 1S92a emission scenario is considered.
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Figure A.3. Nonwoody parts of trees CO2 predictions resulting from varying
initial compartmental content x° of compartment i (i = 1,2, 8 ) OAT (given in
top-left corner of each graph - see Table 3.2 for description of these input factors).
N=100 model runs, IS92a emission scenario is considered.
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Figure A.4. Woody parts of trees CO2 predictions resulting from varying initial
compartmental content x° of compartment i (i = 1,2, ...,8) OAT (given in top-
left corner of each graph - see Table 3.2 for description of these input factors).
N=100 model runs, IS92a emission scenario is considered.
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Figure A.5. Ground vegetation CO02 predictions resulting from varying initial
compartmental content x° of compartment i (i = 1,2, ...,8) OAT (given in top-
left corner of each graph - see Table 3.2 for description of these input factors).
N=100 model runs, 1S92a emission scenario is considered.
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Figure A.6. Detritus/decomposers CO:2 predictions resulting from varying ini-
tial compartmental content x° of compartment i (i = 1,2,..., 8) OAT (given in
top-left corner of each graph - see Table 3.2 for description of these input factors).
N=100 model runs, 1S92a emission scenario is considered.
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Figure A.7. Active soil carbon CO:2 predictions resulting from varying initial
compartmental content x° of compartment i (i = 1,2, ...,8) OAT (given in top-
left corner of each graph - see Table 3.2 for description of these input factors).
N=100 model runs, IS92a emission scenario is considered.



A.2 Results of Morris Design on Model I Initial

Conditions

Table A.1. Morris estimated means and standard deviations associated with
the initial conditions of Model I. (IS92a emission scenario considered).

Compartmental | Input Year 1900 Year 2000 Year 2100
Output Factor mean st.dev, mean st.dev. mean st.dev.
] 1.7076884-00 | 2.10835E-06 1.70761E+400 | 2.81091E-05 1.70760E+400 | 2.10850E-06
o] 1.83101E400 | 3.44247E-06 1.83099E--00 | 2,10818E-05 1.83099E+400 | 2.81058E-06
o 1.02089E4-02 | 1.04237E-05 1.02999E+02 | 3.44216E-05 1.02999KE+02 | 1.09088E-05
Atmosphere mg 1.04835E-01 | 2.81091E-06 1.04840E-01 | 3.442651-05 1.04833E-01 | 2.10818E-06
wg 1.74077E+4-00 | 3.22017E-06 1.74075E-4+00 | 2.81092E-05 1.74073E400 | 3.22027E-06
g 1.62755E-01 | 2.81091E-06 1.62767E-01 | 3.51364E-05 1.62753E-01 | 2.10819E-06
o3 2.96918E-01 | 3.22031E-06 2.96913E-01 | 3.22031E-05 2,96913E-01 | 2.10819E-06
@2 3.10421E400 | 2.81046E-06 3.1041454-00 | 2.10819E-05 3.10410E400 | 2.10865E-06
mg 1.80805E--00 3.22031E-05 1.80804E+-00 3.22037E-06 1.80804E+-00 3.22047E-06
@ 1.93872E+4-00 | 2.81C91E-05 1.9386913-+00 | 3.44256E-06 1.93868E4-00 | 3.51338E-06
of 1.09067E402 | 3.22487E-05 1.09057E+4-02 | 1.05471B-05 1.09057E+4-02 | 1.04237E-05
Surface wg 1.11000E-01 | 1.57072E-09 1.10999E-01 | 2.81091E-06 1.11000E-01 | 0.00000E--00
Ocean of 1.84314E4-00 | 2.10819E-05 1.84313E+4-00 {| 3.55413E-08 1.84311E400 | 2.10835E-06
oy 1.723183E-01 | 3.22031E-05 1.72323E-01 | 3.51364E-06 1.72323E-01 | 3.51364E-06
o 3.14380E-01 | 3.22031E-05 3.14377E-01 | 3.51364E-06 3.14375E-01 | 3.22030E-06
H 3.28675E4-00 | 3.22030E-05 3.28670E4-00 | 7.10827E-08 3.28667E4-00 | 0.00000E400
of 1.01744E4-02 | 3.21885E-05 1.01744E4-02 | 2.10328E-05 1.01744E4-02 | 3.59653E-06
@3 1.09096E4-02 | 1.60842E-06 1.09096E+02 | 3.21281E-05 1.09097E+02 | 3.59653E-06
mg 6.13708E+4-03 | 5.91338E-04 6.13708E4+-03 { 5.95801E-04 6.13708E+03 | 6.08994E-04
Deep od 6.24622E4-00 | 3.22031E-05 6.24624E+4-00 | 3.44266E-05 6.24625E-+00 | T7.10827E-08
Ocean of 1.03718E4-02 | 8.43464E-05 1.03718E+4+02 | 8.51652E-05 1.03718E4+02 | 3.21684E-06
o 9.69715E4+00 | 2.81085E-05 9.69717E+4+00 | 3.51358E-05 9.69718E400 | 1.42165E-07
@2 1.76909E401 | 2.81114E-05 1.76910E--01 | 3.22054E-05 1.76910E+-01 | 2.06996E-06
g 1.84950E4-02 | 3.23288E-05 1.8495054-02 | 4.72776E-05 1.84950E+02 | 3.27265E-06
=f 1.05G38E-01 | 3.22031E-06 1.05640E-01 | 3.44265E-05 1.05633E-01 { 3.51364E-05
o3 1.13271E-01 | 3.22031E-06 1.13273E-01 | 2.10819E-05 1.13273E-01 | 2.10819E-05
=9 6.37174E+400 | 2.10745E-06 6.37175E+4+00 | 3.22033E-05 6.37176E400 | 3.22031E-05
Nonwoody parts By 6.48533E-03 | 2.81091E-06 6.48667E-03 | 3.22031E-05 6.48000E-03 | 2.81091E-05
of Trees ® 1.07687E-01 | 2.10818E-06 1.07673E-01 | 2.10819E-05 1.07673E-01 | 2.10819E-05
o 1.00673E-02 | 2.10819E-06 1.00667E-02 | 0.00000E+-00 1.00667E-02 | 1.38833E-10
o2 1.82667E-02 | 2.77667E-10 1.83733E-02 | 3.44265B-05 1.83667E-02 | 3.51364E-05
@ 1.92033E-01 | 0.00000E+400 1.92033E-01 | 3.51364E-05 1.92033E-01 | 8.51364E-05
@ 1.71489E+-00 | 3.51347E-08 1.71487E+00 | 3.22056E-06 1.71486E4-00 | 3.44265E-06
o 1.83880E4-00 { 3.44274E-06 1.83878E4-00 | 2.81091E-06 1.83877E4-00 | 3.22017E-06
@ 1.03436E4-02 | 1.22493E-05 1.03437E+4-02 | 1.02989E-05 1.03437E4-02 | 9.78362E-06
Woody parts @3 1.06281E-01 | 2.10819K-06 1.05279E-01 | 2.10819E-06 1.05279E-01 | 2.81091E-06
of Trees mg 1.74818E+4-00 | 2.81091E-06 1.748158+400 | 3.44274E-06 1.74813E400 | 3.55413E-08
o3 1.63447E-01 2.22133E-09 1.63443E-01 3.51364E-06 1.63442E-01 3.22030E-06
@ 2.98180E-01 | 4.44267E-09 2.98176E-01 | 3.44265E-06 2.98174E-01 | 2.10819E-06
@ 3.11743E4-00 2.81114E-06 3.11735E-4-00 3.22056E-06 3.11730E+00 2.81114E-06
® 1.64616E-01 | 3.44265E-06 1.64614E-01 | 2.10818E-06 1.64600E-01 | 2.22133E-09
m 1.76509E-01 3.22031E-06 1,76509E-01 3.442658-06 1.76520E-01 2.81091E-06
® 9.92907TE+00 | 2.10865E-06 9.92009E4-00 | 2.10865E-06 9.92909E+-00 | 3.44272E-05
Ground B 1.01067E-02 | 1.38833E-10 1.01067E-02 | 0.00000E4-00 1.01200E-02 | 2.81091E-05
Vegetation o 1.67809E-01 | 3.44265E-06 1.67807E-01 | 2.10819E-06 1.67807E-01 | 2.10819E-05
@ 1.56893E-02 | 3.44265E-06 1.56880B-02 | 2.81091E-06 1.57000E-02 | 3.51364E-05
m3Z 2.86240E-02 | 3.44265E-06 2.8622712-02 | 3.44265E-06 2.86267E-02 | 3.44265E-06
of 2.99247E-01 | 0.0G000E+-00 2.89239E-01 | 2.10819E-06 2.99233E-01 | 3.51364E-05
of 2.96639E-01 | 2.81001E-06 2.96635E-0L | 3.22030E-06 2.96633E-01 | 3.51364E-05
w§ 3.18073E-01 | 2.10820E-06 3.18070E-01 | 3.51364E-06 3.18073E-01 | 2.10819E-05
of 17.89230E4-00 | 3.41789E-06 17.89233E--00 | 2.10865BE-06 17.89236E+00 | 3.44269E-05
Detritus/ mg 0.18213E-01 2.10819E-06 0.18211E-01 3.44265E-08 0.18220B-01 3.22031E-05
Decomposers mg 3.02399E-01 | 2.10819E-06 3.02393E-01 | 2.10819E-06 3.02387E-01 | 2.81091E-05
mg 0.28273E-01 3.92680E-10 0.28271E-01 3.44265E-06 0.28273E-01 2.10819E-05
«$ 0.51679E-01 | 2.81091E-06 0.51578B-01 | 3.22031E-06 0.51567E-01 | 3.51364E-05
@ 5.39247E-01 | 2.10819E-06 5.39233E-01 | 6.28288E-09 5.39220E-01 | 3.22031E-05
of 3.10655E4-00 | 3.44201E-08 3.10647E+4-00 | 3.55413E-08 3.10853E4-00 | 2.81091E-04
o3 3.33099E4+00 | 2.10745E-06 3.33092E+-00 | 3.21998E-06 3.33100E+4-00 | 3.51364E-04
mg 187.37016E4-00 2.04718E-05 || 187.37078E4-00 1.93010E-05 187.37127TE+-00 2.10795E-04
Active Seail of 0.190719E4-00 | 2.81091E-06 0.19071E+-00 | 3.51364E-06 0.19080E+-00 { 2.81091E-04
Carbon =g 3.16690E+-00 | 0.00000E+00 3.16678E4+00 | 3.44274E-06 3.16680E+00 | 2.81091E-04
@ 0.29609E+-00 | 3.22031E-06 0.29608E-+-00 { 3.44285E-06 0.20607TE--00 | 2.10819E-04
o 0.54016E4-00 | 8.88534E-09 0.54014E4-00 | 3.22029E-06 0.54033E+-00 | 3.51364L-04
EH 5.64751E+00 | 2.80754E-06 5.64719E4+00 [ 2.81024E-06 5.64713E4-00 | 3.22031E-04
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Figure A.8. Surface ocean CO predictions resulting from varying transfer coefficients
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ki; OAT (given in top-left corner of each graph - see Table 3.3 for description of these
input factors). N=100 model runs, IS92a emission scenario is considered.
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Figure A.9. Deep ocean CO: predictions resulting from varying transfer coefficients
kij OAT (given in top-left corner of each graph - see Table 3.3 for description of these
input factors). N=100 model runs, IS92a emission scenario is considered.
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Figure A.10. Non-woody parts of trees CO, predictions resulting from varying trans-
fer coefficients k;; OAT (given in top-left corner of each graph - see Table 3.3 for
description of these input factors). N=100 model runs, IS92a emission scenario is
considered.
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Figure A .ll. Woody parts of trees CO: predictions resulting from varying transfer
coefficients kij OAT (given in top-left corner of each graph - see Table 3.3 for description
of these input factors). N=100 model runs, IS92a emission scenario is considered.
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Figure A.12. Ground vegetation CO: predictions resulting from varying transfer
coefficients kij OAT (given in top-left corner of each graph - see Table 3.3 for description
of these input factors). N=100 model runs, IS92a emission scenario is considered.



APPENDIX A 15

1750 1800 1850 1900 1950 2000 2050 2100 1750 1800 1850 1900 1950 2000 2050 2100 1750 1800 1850 1900 1950 2000 2050 2100
Year Year Year

1750 1800 1850 1900 1950 2000 2050 2100 1750 1800 1850 1900 1950 2000 2050 2100 1750 1800 1850 1900 1950 2000 2050 2100
Year Year Year

1750 1800 1850 1900 1950 2000 2050 2100 1750 1800 1850 1900 1950 2000 2050 2100 1750 1800 1850 1900 1950 2000 2050 2100
Year Year Year

Figure A.13. Detritus/decomposers CO:2 predictions resulting from varying transfer
coefficients £ OAT (given in top-left corner of each graph - see Table 3.3 for description
of these input factors). N=100 model runs, IS92a emission scenario is considered.
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Figure A.14. Active soil carbon CO, predictions resulting from varying transfer
coefficients k;; OAT (given in top-left corner of each graph - see Table 3.3 for description
of these input factors). N=100 model runs, IS92a emission scenario is considered.
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A.4 Results of Morris Design on Model I

Transfer Coeflficients

Table A.2. Morris estimated means and standard deviations associated with
the selected transfer coefficients of Model I. (IS92a emission scenario considered).

Compartmental Input Year 1900 Year 2000 Year 2100
Output Factor mean st.dev. mean st.dev, mean st.dev.
kig 0.3501 0.0726 2,3683 0.4884 7.7045 1.6296
kas 0.8670 0.0736 5.1667 0.4397 23.8652 2.0873
keg 0.0925 0.0188 0.3271 0.1518 1.1521 0.3330
kyg 0.0060 0.0014 0.0501 0.0113 0.0759 0.0203
Atmosphere ksg 0.0118 | 0.0057 0.0701 | 0.0323 0.2969 | 0.1447
kiy 0.0290 0.0086 0.2289 0.0678 0.3698 0.1267
ka7 0.0040 0.0023 0.0443 0.0185 0.0460 0.0421
Rig 0.1935 0.0263 1.3359 0.1543 3.9234 0.6628
kia 0.2531 0.0299 1.8600 0.2228 4,5337 0.5435
kag 1.1865 0.0867 7.3525 0.5086 30.8632 2.4607
k75 0.0719 0.0162 0.6373 0.1261 0.9788 0.3126
Surface kra 0.0048 0.0012 0.0407 0.0104 0.0630 0.0185
Ocean kgg 0.0095 0.0048 0.0517 0.0258 0.2537 0.1272
kyy 0.0234 0.0070 0.1938 0.0559 0.3064 0.1068
kgr 0.0033 0.0018 0.0359 0.0142 0.0390 0.0361
kig 0.1525 0.0260 1.0215 0.1495 3.2554 0.6609
k1o 0.6463 0.1589 3.9553 0.9661 17.5040 4.1683
kog 3.4076 0.2412 20.1411 1.4138 96.8655 7.2276
ke 0.1816 0.0223 1.0583 0.1245 4.7081 0.6041
Deep ke 0.0111 | 0.0023 0.0695 | 0.0151 0.2789 | 0.0440
Ocean kgg 0.0213 0.0079 0.1023 0.0417 0.6660 0.2489
b1y 0.0549 0.0134 0.3489 0.0847 1.3017 0.3360
kg7 0.0079 0.0045 0.0534 0.0284 0.1855 0.0998
kia 0.3495 0.0258 1.9219 0.1410 10.2683 0.6352
ki 0.0209 0.0043 0.1417 0.0285 0.4650 0.0972
kag 0.0518 0.0049 0.3059 0.0303 1.4401 0.1335
ks 0.0114 0.0040 0.0935 0.0317 0.1470 0.0556
Nonwoody parts krg 0.0036 0.0043 0.0274 0.0347 0.0463 0.0568
of Trees kge 0.0007 0.0003 0.0042 0.0018 0.0183 0.0088
kit 0.0095 0.0086 0.0697 0.0678 0.1243 0.1139
kar 0.0012 0.0013 0.0099 0.0100 0.0128 0.0164
kis 0.0115 0.0016 0.0787 0.0094 0.2379 0.0400
F1z 0.2467 | 0.0465 15732 | 0.2793 6.1783 1.2250
kag 0.6102 0.,0412 3.3763 0.2360 18.4444 1.2536
k7s 0.3917 0.0886 2.9931 0.6014 7.0420 1.9492
‘Woody parts ke 0.0042 0.0009 0.03356 0.0071 0.0702 0.0175
of Trees kgg 0.1177 0.0308 0.8687 0.1950 2.2451 0.7238
kit 0.0213 0.0065 0.1716 0.0507 0.3322 0.1147
kgr 0.0715 0.0230 0.5351 0.1502 1.3358 0.5277
kig 0,1017 0.0636 1.0086 0.4332 1.1895 1.2306
k12 0.0314 0.0065 0.2122 0.0431 0.7052 0.1495
kag 0.0774 0.0064 0.4518 0.0372 2.1818 0.1841
krs 0.0082 0.0017 0.0736 0.0132 0.1083 0.0318
Ground krs 0.0081 0.00:2 0.0627 0.0100 0.1045 0.0169
Vegetation kas 0.0038 0.0011 0.0322 0.0090 0.03556 0.0173
kit 0.0026 0.0008 0.0218 0.0064 0.0341 0.0119
ka7 0.0004 0.0002 0.0041 0.0016 0.0042 0.0039
kig 0.0174 0.0024 0.1177 0.0137 0.3653 0.0613
kio 0.0511 0.0103 0.3397 0.06656 1.1936 0.2469
kag 0.1263 0.0125 0.7242 0.0764 3.6497 0.3452
k76 0.0328 0.0055 0.2880 0.0482 0.3623 0.0808
Detritus/ kra 0.0025 0.0004 0.0194 0.0028 0.0342 0.0062
Decomposers kgg 0.0074 0.0026 0.0512 0.0167 0.1609 0.0611
kit 0.0692 0.0100 0.4737 0.0816 0.8521 0.1536
kar 0.0010 0.0008 0.0081 0.0068 0.0274 0.0248
kig 0.0117 0.0042 0.0562 0.0324 0.3218 0.0871
kia 0.1993 0.0374 1.1800 0.2129 5.7912 1.0983
kas 0.4884 0.0544 2.7636 0.3001 16.4211 1.7429
ks 0.0372 0.0142 0.2190 0.1080 0.9437 0.4202
Active Soil kvg 0.0242 0.0027 0.1783 0.0172 0.4642 0.0672
Carbon kae 0.1645 0.0473 1.1157 0.2768 3.60584 1.2133
k17 0.0623 0.0193 0.4214 0.1257 1.3677 0.4513
kg7 0.0557 0.0320 0.3820 0.1998 1.2044 0.7741
kis 0.6342 0.0684 3.5234 0.3370 17.3505 1.6007
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Table A.3. Pearson correlation coefficients (CC) for the outputs of Model I. The
outputs from years 1900, 2000 and 2100 based on N=100 and N=5000 model runs

are considered.

Correlation Coefficients (CC)

Gompartmental Input Year 1900 Year 2000 Year 2100
Qutput Factor | N300 | N=5000 || N=100 | N=5000 || N=100 | N=5000
Tz 0.4264 0.4098 || -0.4598 0.4457 || -0.3663 T0.3463
kog -0.8898 -0.8775 || -0.8605 .0.8448 || -0.9282 -0.9199
ks -0.2384 -0.1028 || -0.2842 .0.1501 || -0.1795 -0.0464
Atmosphere kre -0.0201 0.0136 || -0.0177 0.0115 || -0.0219 0.0163
kas -0.0336 0.0109 || -0.0274 0.0101 || -0.0431 0.0125
k17 0.0352 -0.0474 0.0199 -0.0562 0.0618 -0.0313
bgr 0.1347 0.0199 0.1291 0.0226 0.1439 0.0167
ks -0.2718 0.2249 || -0.2037 .0.2536 || -0.2209 -0.1716
T2 0.2086 0.2324 0.2462 0.2721 0.1868 0.1626
kog -0.9557 -0.0586 |i -0.9416 0.9444 || -0.9747 -0.9771
k75 -0.1442 -0.0673 || -0.1667 .0.0047 || -0.1190 -0.0356
Surface kre 0.0585 0.0142 0.0683 0.0127 0.0428 0.0161
Ocean kg -0.0527 0.0170 || -0.0400 0.0174 || -0.0565 0.0172
k17 0.0618 -0.0456 0.0515 -0.0530 0.0773 -0.0344
ks7 0.1890 0.0091 0.1605 0.0099 0.1407 0.0091
™ -0.2516 01311 || -0.2654 01413 || -0.2237 -0.1085
F12 0.2574 6.5149 0.2643 0.2223 0.2471 0.2056
[ 0.9635 0.9654 0.9630 0.9648 0.0654 0.9669
krs 0.0442 -0.0657 0.0458 -0.0652 0.0481 -0.0604
Deep o 0.0313 -0.0170 0.0312 -0.0174 0.0307 -0.0184
of Trees kse 0.0732 -0.0319 0.0736 -0.0304 0.0722 -0.0327
kir -0.1249 0.0003 || -0.1256 0.0015 || -0.1227 0.0040
kst -0.1685 -0.0180 || -o0.1672 .0.017d4 || -0.1700 -0.0187
k1 _0.0318 -0.1146 || -0.0243 0.1060 || -0.0333 -0.1182
1z 04140 0.4010 || -0.4435 70,4333 || -0.3634 0.3467
Eaz -0.8709 0.8458 || -0.8331 .0.7974 || -0.9230 -0.9113
k75 -0.3042 -0.1605 || -0.3387 -0.2467 || -0.2160 -0.0016
Nonwoody parts k76 -0.0420 -0.0276 || -0.0420 -0.0377 §| -0.0824 -0.0041
of Trees ks -0.0396 0.0107 || -0.0334 0.0101 || -0.0459 0.0123
kg 0.2151 0.1523 0.2286 0.1788 0.1526 0.0677
ka7 0.1316 0.0352 0.1248 0.0409 0.1430 0.0245
k1s -0.2596 .0.2220 || -0.2778 0.2523 || -0.2279 -0.1736
Tz ~0.3730 03511 || -0.3607 70.3468 || -0.3641 70.3369
kog -0.6905 -0.7397 || -0.5731 -0.6318 || -0.8456 ~0.857
f 0.4567 0.5260 0.5686 0.6254 0.2593 0.3600
Woody parts koo -0.1313 0.0068 || -0.1540 0.0028 || -0.0037 0.0121
of Trees ks -0.2306 0.1205 || -0.2569 -0.1561 || -0.1802 -0.084
k7 0.0045 -0.0283 0.0862 -0.0316 0.1019 -0.0227
gy 0.0387 -0.0852 0.0060 -0.0801 0.0839 -0.0899
k1 0.1622 0.1431 0.2616 0.2205 0.0378 0.0536
12 0.4145 70,4078 || -0.4502 0.4484 || -0.3611 Z0.3460
keoa -0.8856 0.8718 || -0.8d01 -0.8322 || -0.9278 -0.9181
ks -0.2496 0.1020 || -0.3013 -0.1506 || -0.1871 -0.0478
Ground ko 0.0740 0.1173 0.0095 0.1439 0.0234 0.0664
Vegetation kg 0.0177 0.0627 0.0385 0.0770 || -0.0185 0.0871
o 0.0221 -0.0480 0.0009 -0.0562 0.0858 -0.0315
kgt 0.1570 0.0213 0.1557 0.0251 0.1547 0.0174
k1g -0.2851 -0.2258 || -0.3083 _0.2531 || -0.2388 -0.1750
T2 0.3962 03768 || -0.4056 0.3845 || -0.3682 ~0.8471
kg -0.8217 -0.7824 || -0.7470 0.6846 || -0.9002 -0.8948
ks -0.3079 -0.2071 || -0.3695 -0.2841 || -0.2028 -0.0836
Detritus/ k7o -0.0451 0.0027 || -0.0458 -0.0015 || -0.0405 0.0108
Decomposers kse -0.1074 -0.0355 -0.1144 -0.0440 -0.0955 -0.0219
o 0.4507 0.4127 0.5320 0.5166 0.2963 0.2199
ka7 0.1075 0.0185 0.0030 0.0217 0.1269 0.0118
kis -0.1105 0.0074 || -0.0821 -0.080 || -0.1342 -0.0981
12 70.3351 00453 || -0.3440 T0.2566 || -0.3350 0.2461
kng -0.4902 05218 || -0.40s2 -0.5213 || -0.5767 -0.6034
fut 0.0010 0.0323 || -0.0171 0.0104 0.0015 0.0412
Active Soil ke -0.0611 0.0149 || -o0.0520 0.0224 || -0.0663 0.0092
Carbon kse 0.0553 0.2044 0.1008 0.2444 0.0042 0.1574
iy 0.1805 0.0607 0.1914 0.0759 0.1692 0.0402
kg7 0.1653 0.0869 0.1752 0.1010 0.1652 0.0705
k1g 0.7361 0.7786 0.7127 0.7606 0.6829 0.7318
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Table A.4. Order of importance between the independent transfer coefficients
resulted from stepwise regression on Model I. R?-values obtained with the entry
of listed transfer coefficients into the regression model are also given. The outputs
from years 1900, 2000 and 2100 based on N=5000 model runs are considered.

Compartmental
Output Step Yr 1900 Yr 2000 Yr 2100
1 ka3 ka3 ka3
2 k12 k1o k12
3 18 kis 18
Atmosphere 4 k75 k75 ks
5 17 ki 17
6 kgg kse kas
7 k7o kve ke
R2=0.9944 | R%2=0.9944 | R2=0.9940
I ka3 ka3 kog
2 k12 k12 k12
3 kig k15 18
Surface 4 75 ks ks
QOcean 5 17 k17 ki
& ksg kgy kse
7 kg7 kse
R?=0.9956 | R2=0.9960 | R2=0.9947
I ka3 ko3 ko3
2 12 k12 k12
3 kis kis kis
Deep 4 krs k75 kvs
Ocean ) 17 ki7 k17
6 ksg kse 86
7 76 ke ke
R?=0.9956 | R®=0.9957 | R®=0.9949
1 Ka3 ka3 k23
2 k1o ki2 i2
3 18 ks kig
Nonwoody parts 4 krg kis k75
of Trees 5 kv kiy 17
6 ke k7e 76
7 kar kst 86
R?=0.9878 | R®=0.9844 | R?=0.9922
1 k23 ko3 K23
2 k75 kes ks
3 k12 k12 k12
Woody parts 4 kss kis kse
of Trees 5 kg kg6 ks
6 kg7 kst ks
7 ki7 k17 ki
R2=0.9907 | R®=0.9907 | R®=0.9912
1 ka3 ka3 k23
2 12 k12 k12
3 18 18 18
Ground 4 kvs krs 75
Vegetation 5 76 k7s k76
6 86 kse kse
7 kv 17 k17
R2=0.9944 | R®=0.9943 | R2=0.9940
1 K23 ko3 ka3
2 kv k17 k12
3 k12 k12 k17
Detritus/ 4 kg ks ks
Decomposers 5 kis k1s k1s
6 kss kso kse
7 kre 76 k76
R2=0.9930 | R?=0.9920 | R2=0.9935
1 k18 k18 k18
2 kas ka3 ko3
3 k12 k12 k12
Active Soil 4 kss kse kse
Carbon 5 k17 ki7 k17
6 ka7 ksy kg7
7 76 76 kve
R2=0.9942 | R?=0.9936 | R%2=0.9940
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B.l Screening Methods

B .1.1 Initial Conditions

X7 initial X8 initial
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Figure B.l. Circulating carbon-(NH) CO:2 predictions resulting from varying
initial condition x° of compartment i (i = 1,2,8) OAT (given in top-left corner
of each graph - see Table 3.4 in Chapter 3 for description of these factors). N=100
model runs, IS92a input scenario is considered. In each graph solid line represents
the base-line case and dashed lines represent the predictions.



APPENDIX B

X1 initial

2L e OC
-Bo 5= 80

1750 1800 1850

x5 initial

u
5
!
g

CBO s o0

1750 1800 1850

x7 initial

1750 1800 1850

1900 1950

1900 1950

1900 1950
Year

2000

2000

2000

2050

2050

2050

2100

2100

2100

22
uo X2 initial
0 m
[
W
(o)
m
1750 1800 1850 1900 1950 2000 2050 2100
uo X6 initial
5n
¢
&I
PR
v Tf
1750 1800 1850 1900 1950 2000 2050 2100
0o X8 initial
0 In
co
[S
o
"
g§
1750 1800 1850 1900 1950 2000 2050 2100
Year

Figure B.2. Surface ocean-(NH) C02 predictions resulting from varying initial

condition x° of compartment i (i =

1,2,8) OAT (given in top-left corner of

each graph - see Table 3.4 for description of these factors). N=100 model runs,
IS92a input scenario is considered. In each graph solid line represents the base-
line case and dashed lines represent the predictions.
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Figure B.3. Deep ocean-(NH) CO: predictions resulting from varying initial

condition x° of compartment i (i = 1,2

,-..» 8) OAT (given in top-left corner of

each graph - see Table 3.4 for description of these factors). N=100 model runs,
IS92a input scenario is considered. In each graph solid line represents the base-
line case and dashed lines represent the predictions.
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Figure B.4. Humus-(NH) COz2 predictions resulting from varying initial condi-
tion x° of compartment i (i = 1,2, ...,8) OAT (given in top-left corner of each
graph - see Table 3.4 for description of these factors). N=100 model runs, [S92a
input scenario is considered. In each graph solid line represents the base-line case
and dashed lines represent the predictions.
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Figure B.5. Circulating carbon-(SH) COz2 predictions resulting from varying
initial condition x° of compartmenti (i = 1,2,8) OAT (given in top-left corner
of each graph - see Table 3.4 for description of these factors). N=100 model runs,
IS92a input scenario is considered. In each graph solid line represents the base-
line case and dashed lines represent the predictions.
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Figure B.6. Surface ocean-(SH) C02 predictions resulting from varying initial

condition x%¥ of compartment i (i = 1,2

,--» 8) OAT (given in top-left corner of

each graph - see Table 3.4 for description of these factors). N=100 model runs,
IS92a input scenario is considered. In each graph solid line represents the base-
line case and dashed lines represent the predictions.
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Figure B.7. Deep ocean-(SH) CO: predictions resulting from varying initial

condition x° of compartment i {i =

1,2,

...,8) OAT (given in top-left corner of

each graph - see Table 3.4 for description of these factors). N=100 model runs,
IS92a input scenario is considered. In each graph solid line represents the base-
line case and dashed lines represent the predictions.
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Figure B.8. Humus-(SH) COz2 predictions resulting from varying initial condi-

tion x° of compartment i (i =

1,2,8) OAT (given in top-left corner of each

graph - see Table 3.4 for description of these factors). N=100 model runs, 1S92a
input scenario is considered. In each graph solid line represents the base-line case

and dashed lines represent the predictions.
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Figure B.9. Morris screening results on Circulating carbon-(NH), Surface ocean-
(NH), Deep ocean-(NH) and Humus-(NH) compartments of Model II in 1900,

2000 and 2100. Mean and standard deviations are associated with the initial
conditions considered in the analysis.
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Figure B.IO. Morris screening results on Circulating carbon-(SH), Surface
ocean-(SH), Deep ocean-(SH) and Humus-(SH) compartments of Model II in
1900, 2000 and 2100. Mean and standard deviations are associated with the
initial conditions considered in the analysis.
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Table B.3. Results of Morris experiment on Model II. Initial conditions are
ranked in order of importance according to the SA measures of Morris mean .
Rankings given here are the same for the three chosen years - 1900, 2000 and

2100.
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Figure B.11. Circulating carbon-(NH) CO, predictions resulting from varying transfer
coefficients &;; OAT (given in top-left corner of each graph - see Table 3.5 for description
of these factors). N=100 model runs, IS92a input scenario is considered.
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Figure B.12. Surface Ocean-(NH) CO, predictions resulting from varying transfer coef-
ficients k;; OAT (given in top-left corner of each graph - see Table 3.5 for description of
these factors). N=100 model runs, IS92a input scenario is considered.
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Figure B.13. Deep Ocean-(NH) CO:2 predictions resulting from varying transfer coeffi-
cients kij OAT (given in top-left corner of each graph - see Table 3.5 for description of
these factors). N=100 model runs, IS92a input scenario is considered.
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Figure B.14. Humus-(NH) CO, predictions resulting from varying transfer coefficients
ki; OAT (given in top-left corner of each graph - see Table 3.5 for description of these
factors). N=100 model runs, IS92a input scenario is considered.
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Figure B.15. Circulating Carbon-(SH) COs predictions resulting from varying transfer
coefficients k;; OAT (given in top-left corner of each graph - see Table 3.5 for description
of these factors). N=100 model runs, IS92a input scenario is considered.
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Figure B.16. Surface Ocean-(SH) CO, predictions resulting from varying transfer coef-
ficients k;; OAT (given in top-left corner of each graph - see Table 3.5 for description of
these factors). N=100 model runs, IS92a input scenario is considered.
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Figure B.17. Deep Ocean-(SH) CO, predictions resulting from varying transfer coeffi-
cients k;; OAT (given in top-left corner of each graph - see Table 3.5 for description of
these factors). N=100 model runs, IS92a input scenario is considered.
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Figure B.18. Humus-(SH) CO, predictions resulting from varying transfer coefficients
ki; OAT (given in top-left corner of each graph - see Table 3.5 for description of these
factors). N=100 model runs, 1S92a input scenario is considered.
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Table B.4. Sensitivity Rankings from SI - Model II transfer coeflicients k;; are

varied OAT.

Sensitivity Index (SI)

Sensitivity Index (SI)

- £~
s |8 51k
- | .
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4; 2 -
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Table B.5. Sensitivity Rankings from SR - Model II transfer coeflicients %;; are

varied OAT.
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Figure B.19. Morris screening results on Circulating carbon-(NH), Surface
ocean-(NH), Deep ocean-(NH) and Humus-(NH) compartments of Model II in
1900, 2000 and 2100. Mean and standard deviations are associated with the
transfer coefficients considered in the analysis.



APPENDIX B

Circulating carbon-SH; year:1900 Circulating carbon-SH; year:2000

45

Circulating carbon-SH; year:2100
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Figure B.20. Morris screening results on Circulating carbon-(SH), Surface
ocean-(SH), Deep ocean-(SH) and Humus-(SH) compartments of Model II in
1900, 2000 and 2100. Mean and standard deviations are associated with the
transfer coefficients considered in the analysis.
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Table B.6. Results of Morris experiment on Model II. Initial conditions are
ranked in order of importance according to the SA measures of Morris mean p.
Rankings are the same for the three chosen years - 1900, 2000 and 2100.

Compartmental | Input Morris Compartmental | Input Morris
QOutput Factor Rank Qutput Factor Rank
k12 2 k12 3
k23 4 ka2s 4
k1a 5 k14 6
k15 11 k1s 11
Circulating zzz g Circulating zg: Z
Carbon-~(INH) kse 1 Carbon-(SH) kse 1
k7e 7 kw6 7
kay 10 kat 10
kg7 3 ker 2
kss 8 kss 8
k12 5 k12 6
kos 3 k23 3
k14 7 k1a 7
ki1s 11 k15 11
Surface 2;: ; Surface IZEE :
Ocean-(INH) kse 9 Ocean-(SH) k;; 4
kre 6 kre 5
ka7 10 ks7 10
kar 4 ket 1
kss 9 kss 9
k12 6 kiz 9
k23 3 k2s 4
k14 7 k14 6
k1s 11 kis 11
Deep iz: 3 Deep ZBE i
Ocean-(INH) kse 5 Ocean-(SH) kiz 5
kre 1 k7e 1
ka7 8 kar 7
ker 2 ker 2
kss 10 kss 10
kia 3 kiz 4
kas 5 kas 5
k14 1 k14 7
kis 11 k1s 11
ko5 6 kes 6
Humus-(INI) kog 9 Humus-(SH) kos 9
kse 2 kse 2
kve 7 k7o 8
kav 10 ka7 10
ket 4 ker 3
kss 8 kss 1
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Table B.7. Rankings of the transfer coefficients of Model II based on standard-

ised sensitivity coefficients evaluated in 1900, 2000 and 2100.

Compart. Local Compart. Local

Output Sensitivity Yr 1900 |Yr 2000 | Yr 2100 Output Sensitivity Yr 1900|Yr 2000 (Yr 2100

8y1 / B=Y 7 7 7 8y / Bwf 7 7 7

8y1 / HwY 6 6 6 8ys / 8§ 6 6 6

Circulating | 8y /Gmg 2 2 2 Circulating | 8yp / Bmg 2 2 2

Carbon-(NH) | 8y1 / 8] 3 3 3 Carbon-~(SH) | 8y / fm§ 3 3 3

8yg / Owf 8 8 8 8yg [ O 8 8 8

(v1) By1 /0w || 4.5 4 4 (us) Bus / O3 5 4 4

8y1 / Bwf 1 1 1 Oys / Owf 1 1 1

8y1 [/ Bof 4.5 5 5 8ys / Hog 4 5 5

8yg [ O 7 7 7 Oyg / 6wl 7 7 7

Bya [/ B} 5 5 5 Byg / Omd 6 5 5

Surface Byz / =g 2 2 2 Surface Bye / O3 2 2 2

Ocean-(NH) | 8ya / Smg 3 3 3 Ocean-(SH) | 8yg / 8w} 3 3 3

8yz / O 8 8 8 Byg / Buf 8 8 8

(u2) 8yz / 8wg 4 4 4 (ve) Oye / Bwg 4 4 4

8yz / Owl 1 1 1 Bya / Bl 1 I3 1

Hyz / Bwf 6 6 6 8yg [/ B 5 6 6

dyz / 83 6 6 6 8yr / 8% 6 6 6

dys / 8wl 5 5 5 8yr [/ Bl 5 5 5

Deep 8ya / 8wf 1 2 2 Deep 8yr [ B 2 2 2

Ocean-(NH) | 8yg / 8af 4 3 3 Ocean-(SH) | 8y7 / 8] 4 4 3

Bys / Bl 7 7 7 Syt [ Bl 7 7 7

(v3) Byg / Bug 3 14 4 (v7) Byr [/ Bwg 3 3 4

Bya / Bmg 2 1 1 8yr [/ 8w} 1 1 1

Bya / Bwf 8 8 8 Byz [/ g 8 8 8

dyq / B} 5 5 7 8ys [/ Owf 6 7 7

Byq / 80§ 6 6 5 Byg / B} 8 6 6

By [ Bw] 3 3 2 8yg / Bw] 3 3 2

Humus-(NH) fya /Gmg 1 2 2 Humus-(SH) Sua /Bmg 4 4 4

Bya / 8wl 7 8 8 Byg / Bwg 7 8 8

(va) Oya / 8wy 4 4 4 (vs) Bys / 8wf 5 5 5

Oyg / Bmg 2 1 1 Byg /Bmg 2 1 1

Byq / Owf 8 7 6 8yg / Bmg 1 2 3

B.2.2

Transfer Coefficients
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B.3.1 Initial Conditions

e 81;1 81 ™\
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Figure B.21. Classification tree showing the performance of the windowing data.
The class of the predicted response variable (g-for ‘good’, b-for ‘bad’) is centered
in the node. The number underneath each terminal node is the misclassification
error rate.
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Figure B.22. A pruned version of the classification tree given in Figure B.21.
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Figure B.23. Time dependent behaviour of all output variables predicted by Model
II following windowing analysis as a result of varying all input factors (x°, i = . ,...s )
simultaneously. Emission scenario 1S92a is considered in the model calculations.
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Figure B.25. Scatterplots of predicted CO, content of Circulating carbon-(SH), Surface ocean-(SH), Deep ocean-(SH) and
s ini

Humus-(SH) compartments in 2100 versus each compartment’
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Table B.9. Rankings of absolute Pearson correlation coefficients (CC) for the
outputs of Model II. The outputs from years 1900, 2000 and 2100 based on
N=5,000 model runs are considered. The eight initial conditions are ranked in
order of importance, and the rankings associated with the initial conditions for
which CC with each output variable have p-values less than 0.1 are highlighted.

Compart.
Output

Input

Factor

Yr 1900

Yr 2000

Yr 2100

Compart.
Output

Input
Factor

Yr 1900

Yr 2000

Yr 2100

Circulating
Carbon-(NH)

=]

o
Za

Surface
ocean-(NTH)

Circulating
Carbon-(SH)

Deep
ocean-(INH)

Surface
ocean-(SH)

Humus-(NH)

0 H o RN W R[0T AN W R0 O AR W DO N RN WD

L R IR R R B B T - T T S S N LIS R T R R . - -

G H N s RNW a0 g N W O R M AN WD RG] RN WD

Deep
ocean-(SH)

Humus-(SH)

O FH a1 b W O U s R W D0 Gt AT b W DI O N N WD

Q@ H g AW o T A AR W D[ Rt =B N D0 N AN o

@ H gt N WSRO N W e DS W D0 O AN WG

The most important input factor for all compartments in all three years is z9

with a CC value of about 0.636 and the second most important factor is z3 with
a CC value of about 0.357. The absolute CC values associated with the other
input factors and the output variables vary between 0.007 and 0.044.




APPENDIX B 95

Table B.10. Rankings of absolute Standardized Regression Coefficients (SRC)
for the outputs of Model II. The outputs from years 1900, 2000 and 2100 based
on N=5,000 model runs are considered. The initial conditions are ranked in order
of importance, and the most important factors with SRC values greater than 0.1
are highlighted.

Compart., Input SRC Ranks Compart. Input SRC Ranks

Output | Factor || v\ 1900 | vr 2000 | ¥r 2100 Output | Factor || v, 41900 | vr 2000 | vr 2100

s 7 7 7 = 7 7 7

x3 5 5 5 3 5 5 5

@3 2 2 2 Y 2 2 2

Circulating E34 3 3 3 Circulating £ 3 3 3

Carbon-(NH) =2 8 8 8 Carbon-(SH) £33 8 8 8

=3 4 4 4 g 4 4 4

L1 1 1 1 wd i 1 1

EH 6 6 6 x§ 6 6 6

PH 7 7 7 P 7 7 7

EH 5 5 5 EH 5 5 5

=f 2 2 2 of 2 2 2

Surface £ 3 3 3 Surface ] 3 3 3

ocean-(NH) xg 8 8 8 ocean-(SH) 28 8 8 8

=3 4 4 4 g 4 4 4

wf 1 1 1 Lk i 1 1

:ng 6 6 6 :vg 6 6 6

=3 7 7 7 34 7 7 7

EH 5 5 5 x5 5 5 5

®g 2 2 2 og 2 2 2

Deep =3 3 3 3 Deep £ 3 3 3

ocean-(NH) =9 8 8 8 ocean-(SH) zg 8 8 8

£ 4 4 4 =g 4 4 4

of 1 1 1 wf 1 1 1

g 6 6 8 =g 6 6 6

=g 7 7 7 =3 7 7 7

EH 5 5 5 EH 5 5§ 5

- NEH w©g 2 2 2 a SH »f 2 2 2

umus-( ) 23 3 3 3 umus-(SH) o3 3 3 3

g 8 8 8 =g 8 8 8

xg 4 4 4 EH 4 4 4

£33 1 1 1 34 1 1 1

zg 6 6 6 g 6 6 6

The most important input factor for all compartments in all three years is z%
with an SRC of about 0.98 and the second most important factor is z3 with an
SRC of about 0.88. The absolute SRC values associated with the other input
factors and the output variables are quite small, between 0.021 and 0.078.

The absolute PCCs produce identical rankings of input factor importance,
and as with the SRCs, except for z3 and z3 the other initial conditions under

consideration have very small PCCs, below 0.025.
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Table B.11. Stepwise regression analyses for output variable y;(t) (i.e. Circulat-
ing carbon-(NH) compartment) of Model II in 1900, 2000 and 2100. Calculations
are based on N=5,000 model runs and IS92a emission scenario.

Circulating carbon-(NH)

y1(t = 1900) y1(t = 2000) y1(t = 2100)
Step | Variable R2 PRESS | Variable R? PRESS | Variable R2 PRESS
1 w; 0.4038 533678.00 m‘,’ 0.4037 533679.00 :n.? 0.4038 533680.00
2 ®3 0.9882  10571.60 Ty 0.9884  10571.00 @3 0.9883  10570.60
3 mZ 0.9944 5004.83 :DZ 0.9944 5004.76 mz 0.9944 5004.71
4 @ 0.9972 2603.49 ®g 0.9971 2603.43 ®g 0.9971 2603.39
& mg 0.9983 1555.74 og 0.9982 1555.69 mg 0.9982 1555.65
6 :cg 0.9990 927.21 a:g 0.9990 927.20 @3 0.9990 927.19
7 . a:i 0.9995 417.02 wg 0.9995 417.02 mg 0.9995 417.02

The analysis results for the other seven compartments are very similar to the

results presented in the above table for the circulating carbon-(NH) compartment,

in the sense that the same variables were selected with R2-values that are quite

similar and the order of variable selection does not change.
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B.3.2 Transfer Coefficients

Circulating carbon-(NH) Circulating carbon-(SH)
c ©
Oo
8\ LO
[eN0)
1750 1800 1850 1900 1950 2000 2050 2100 1750 1800 1850 1900 1950 2000 2050 2100
Year Year
Surface ocean-(NH) Surface ocean-(SH)
o§
80
CN
0 O
O ©
1750 1800 1850 1900 1950 2000 2050 2100 1750 1800 1850 1900 1950 2000 2050 2100
Year Year
Deep ocean-(NH) Deep ocean-(SH)
[e}Ne} 0s
0 ?0 0o
0o E;3
0 o
0 o
OSs (O
Year Year
Humus-(NH) Humus-(SH)
0 gﬂ
S5 Og
?\1 m
3% 5%

1750 1800 1850 1900 1950 2000 2050 2100

Year

Figure B.26. Time dependent behaviour of all output variables predicted by Model
II as a result of varying selected 11 free transfer coefficients simultaneously. Emission
scenario IS92a is considered in the model calculations.
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Figure B.27. Scatterplots of predicted CO, content of Circulating carbon-(NH),
Surface ocean-(NH), Deep ocean-(NH) and Humus-(NH) compartments in 2100
versus each free transfer coefficient. N=100 model runs, and IS92a emission
scenario is considered.
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Figure B.28. Scatterplots of predicted CO; content of Circulating carbon-
(SH), Surface ocean-(SH), Deep ocean-(SH) and Humus-(SH) compartments in
2100 versus each free transfer coefficient. N=100 model runs, and 1S92a emission

scenario is considered.
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Table B.12. Rankings of absolute Pearson correlation coefficients (CC) for the
outputs of Model II. The outputs from years 1900, 2000 and 2100 based on
N=5,000 model runs are considered. The eleven free input factors are ranked in
order of importance, and the rankings associated with the input factors for which
CC with each output variable have p-values less than 0.1 are highlighted.

Compart. Input CC Ranks

Output | Factor || v 1900 | ¥r 2000 | ¥r 2100

kig 2 2 3

kas 4 4 4

k1a 6 G [+]

kg B & 5

Circulating kgg T T T

carbon-(NH) kg 10 10 10

k5 1 1 2

kqg 8 8 9

k37 11 11 11

kgt 3 8 1

kpg 9 9 8

kg 5 B 5

kog 3 3 8

k1a 6 6 [}

k15 7 7 8

Surface kas 1 1 1

ocean-(INH) kag 8 8 9

kse 2 2 2

keg 9 10 T

kgr 11 11 11

ke 4 4 4

kag 10 9 10

ka2 6 8 6

ka3 3 3 8

k1g 7 7 7

ki1 11 11 11

Deep kab 5 5 5

ocean-(NH) kag 8 8 8

k56 4 4 4

krea 1 1 1

k37 9 9 10

kegr 2 2 2

ks 10 10 9

k12 38 3 4

kas 5 5 5

k14 1 1 1

ks 6 6 6

kes 7 7 T

Humus-(INH) kag 9 9 9

kga 2 2 2

ks 11 11 11

kar 8 8 8

kgt 4 4 38

kgg 10 10 10

Compart. Input CC Ranks

Qutput | Factor | v\ 1500 | v+ 2000 | Yr 2100

kig b1 3 8

kas 4 4 4

k1q T T 7

kip 6 ] 6

Circulating kes 5 5 5

carbon-(SH) kaog 11 11 11

kge 1 1 1

kyg 8 8 8

ksv 10 10 10

het 2 2 2

krs 9 9 9

k12 5 & 5

kag 3 3 3

k14 T T T

ki 8 8 ]

Surface kegs 2 2 2

ocean-(SH) kog 11 11 11

hsa 4 4 4

kg [¢] 8 6

ka7 10 10 10

kgt 1 1 1

ks 9 9 8

ki 8 8 8

kag 4 4 4

ki1a 6 6 ]

ki1s 9 9 9

Deep kas 3 3 3

acean-(SH) kog 10 10 10

ks B 5 &

krg 1 1 1

kst 11 11 11

kar 2 2 2

kgg T T 7

kg 4 4 4

kas 5 5 B

k1a 8 8 B8

kig T 7 T

keas 6 i} 8

Humus-(SH) ka6 10 11 10

ks 2 2 2

kg i1 9 11

kgr 9 10 9

kgt s 3 3

kgs 1 1 1




APPENDIX B

62

Table B.13. Rankings of absolute Standardized Regression Coefficients (SRC)
for the outputs of Model II. The outputs from years 1900, 2000 and 2100 based
on N=5,000 model runs are considered. The input factors (Transfer Coefficients)
are ranked in order of importance, and the most important factors with SRC

values greater than 0.1 are highlighted.

Compart.

Output

Input

Factor

SRC Ranks

Yr 1800

Yr 2000

Yr 2100

Circulating
carbon-(SH)

[= - B}

[ =
o ©H o

Surface
ocean-(SH)

I VN I

-
-

Compart. Input SRC Ranks

Qutput | Factor | v\ 1900 [vr 2000 | Yr 2100

k12 2 2 3

kag 4 4 4

kia 6 8 6

kig 5 5 5

Circulating kas T 7 7

carbon-(NH) kag 10 10 10

kse 1 1 2

kre 9 9 9

kaz 11 11 11

ker 3 3 1

kgs 8 8 8

k1g 5 5 5

kag 3 3 3

kia 6 6 6

kis 7 7 8

Surface kg 1 1 1

acean~(NH) kag 9 8 9

k5a 2 2 2

kg 8 9 7

kst 1 11 11

kg7 4 4 4

ksg 10 10 10

kia 8 ] 6

kag 3 3 3

ks 7 7 7

kis 9 9 9

Deep keg 4 4 4

acean-(INH) kog 11 11 11

ke 1 5 5

kg 1 1 1

kar 8 8 8

kgt 2 2 2

ksa 10 10 10

kig 3 3 4

kas 1 5 5

kia 1 1 1

kis 6 6 G

kgs T 7 7

Humus-(NH) kog 10 10 10

ksg 2 2 2

kvg 9 9 9

ka7 11 i1 11

kgt 4 4 3

ksg 8 8 8

Deep
ocean-(SH)

U N RROFR LA RN IR ENS DR S aO aA®

o
-

T A N

[ =3
o N o F o o

Humus-(SH)

O RD O Ne @R AN o

[
R g

ON DO N0 AAENO RO WA RROoR T OoRE NGOG ORISR SR

-
(=]

[}

[ - BNl - SRR N - SN

]

The PCCs have also been calculated. Even though the PCCs tend to be larger
than the SRCs, the rankings of input factor importance provided by both of these

statistics are identical.
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Table B.14. Stepwise regression analyses for all compartments of Model 11 in
1900, 2000 and 2100. Calculations are based on N=5,000 model runs and IS92a
emission scenario.

Yr 1900 Yr 2000 Yr 2100
Compart.

Output Step Variable RZ Variable R2 Variable R?
1 kse 0.3157 kss 0.3308 ket 0.2964
2 k12 0.6103 k1o 0.6396 kse 0.5806
: . 3 ket 0.8391 kay 0.8430 k12 0.8312
Cglf,‘;‘;‘:fa(ﬁ;“}% 1 kas 09328 | kes 00283 |  kas  0.9447
5 kis 0.9597 k15 0.9564 kis 0.9648
6 kia 0.9792 kia 0.9790 k14 0.9790
7 kes 0.9827 kes 0.9829 kes 0.9818
1 kes 0.3194 ket 0.3269 kes 0.2925
2 kss 0.5611 kie 0.5801 ko3 0.5303
g ka2s 0.7699 kas 0.7793 ke 0.7424
ocommtn | 4 ker 08817 | ker 08783 | ke  0.8914
5 k12 0.9648 k12 0.9656 k12 0.9612
6 k1a 0.9696 k14 0.9705 k14 0.9659
7 ks 0.9712 ki 0.9722 k7s 0.9683
1 ke 0.4487 kve 0.4375 kg 0.4607
2 ker 0.8222 ket 0.8141 ket 0.8300
Deep 3 kas 0.8901 kog 0.8842 kas 0.8958
ocean-(NH) 4 kes 0.9330 kes 0.9296 kes 0.9357
5 kye 0.9710 kse 0.9709 kse 0.9702
6 k12 0.9834 ki2 0.9844 k12 0.9813
Vi k14 0.9846 k14 0.9854 k14 0.9826
1 k14 0.8203 [ 0.8344 Ria 0.7883
2 kse 0.8776 kse 0.8893 kse 0.8522
3 kigz 0.9310 k12 0.9415 k12 0.9106
Humus-(INH) 4 ket 0.9722 ket 0.9752 ker 0.9660
& kas 0.9892 kos 0.9893 kog 0.9884
6 kis 0.9945 k15 0.9949 kis 0.9935
7 kes 0.9951 kes 0.9956 kes 0.9942
1 kse 0.5394 kse 0.5612 kse 0.4837
2 ket 0.7536 ka7 0.7527 kg7 0.7555
: N 3 kia2 0.8672 k12 0.8699 k12 0.8627
CS:L?J?E;;;% 4 k2s 0.9201 kzs  0.9165 k23 0.9315
5 kess 0.9611 kes 0.9597 kes 0.9655
6 kis 0.9762 k1is 0.9753 ki1s 0.9769
7 kia 0.9852 ki1a 0.9753 ki1a 0.9769
1 kaT 0.6931 kg7 0.6811 ka7t 0.7192
2 kes 0.8493 kes 0.8525 kgs 0.8424
3 kas 0.9140 kos 0.9120 kas 0.9174
oci‘;;fszg;-l) 4 kse 09507 |  ksg 09495 |  kse  0.9529
5 k12 0.9588 k12 0.9575 k12 0.9615
6 k7e 0.9659 ke 0.9642 kre 0.9691
7 k14 0.9703 k14 0.9689 k14 0.9729
1 kre 0.7069 kre 0.7204 kre 0.6924
2 ket 0.8947 ket 0.8943 ket 0.8937
Deep 3 kes 0.9507 kas 0.9553 ks 0.9444
ocean-(SH) 4 kas 0.9668 kas 0.9690 kas 0.9631
5 kse 0.9744 kse 0.9763 ke 0.9708
6 kig 0.9786 kis 0.9800 kia 0.9756
7 k15 0.9797 kis 0.9812 k12 0.9766
1 kss 0.7290 kss 0.7408 k58 0.6977
2 kse 0.8735 kse 0.8855 kse 0.8493
3 ker 0.9308 ket 0.9339 keT 0.9233
Humus-(SH) 4 k12 0.9618 k12 0.9641 kiz 0.9570
5 kas 0.9759 ka3 0.9758 k2s 0.9754
6 kes 0.9869 kes 0.9872 ka5 0.9864
7 kis 0.9910 kis 0.9917 k1s 0.9902




