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ABSTRACT

When analysing spatial data, it is often of interest to investigate whether or not the
events under consideration show any tendency to form small aggregations, or clusters,
that are unlikely to be the result of random variation. For example, the events might be
the coordinates of the address at diagnosis of cases of a malignant disease, such as acute
lymphoblastic leukaemia or non-Hodgkin's lymphoma. This thesis considers the
usefulness of methods employing nonparametric kernel density estimation for the
detection of clustering, as defined above, so that specific, and sometimes limiting,
alternative hypotheses are not required, and the continuous spatial context of the
problem is maintained. Two approaches, in particular, are considered; first, a
generalisation of the Scan Statistic to two dimensions, with a correction for spatial
heterogeneity under the null hypothesis, and secondly, a statistic measuring the squared
difference between kernel estimates of the probability density functions of the principal
events and a sample of controls.

Chapter 1 establishes the background for this work, and identifies four different
families of techniques that have been proposed, previously, for the study of clustering.
Problems inherent in typical applications are discussed, and then used to motivate the
approach taken subsequently. Chapter 2 describes the Scan Statistic for a one-
dimensional problem, assuming that the distribution of events under the null hypothesis
is uniform. A number of approximations to the statistic's distribution and methods of
calculating critical values are compared, to enable significance testing to be carried out
with minimum effort. A statistic based on the supremum of a kernel density estimate is
also suggested, but an empirical study demonstrates that this has lower power than the
Scan Statistic.

Chapter 3 generalises the Scan Statistic to two dimensions and demonstrates empirically
that existing bounds for the upper tail probability are not sufficiently sharp for
significance testing purposes. As an aside, the chapter also describes a problem that can
occur when a single pseudo-random number generator is used to produce parallel
streams of uniform deviates. Chapter 4 investigates a method, suggested by Weinstock
(1981), of correcting for a known, non-uniform null distribution when using the Scan
Statistic in one dimension, and proposes that a kernel estimator replace the exact
density, the estimate being calculated from a second set of (control) observations. The
approach is generalised to two dimensions, and approximations are developed to
simplify the computation required. However, simulation results indicate that the
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accuracy of these approximations is often poor, so an alternative implementation is
suggested.

For the case where two samples of observations are available, the events of interest and
a group of control locations, Chapter 5 suggests the use of the integrated squared
difference between the corresponding kernel density estimates as a measure of the
departure of the events from null expectation. By exploiting its similarity to the
integrated square error of a k.d.e., the statistic is shown to be asymptotically normal; the
proof generalises a central limit theorem of Hall (1984) to the two-sample case.
However, simulation results suggest that significance testing should use the bootstrap,
since the exact distribution of the statistic appears to be noticeably skewed. A modified
statistic, with the smoothing parameters of the two k.d.e.'s constrained to be equal and
non-random, is also discussed, and shown, both asymptotically and empirically, to have
greater power than the original.

In Chapter 6, the two techniques are applied to the geographical distribution of cases of
laryngeal cancer in South Lancashire for the period 1974 to 1983. The results are
similar, for the most part, to a previous analysis of the data, described by Diggle (1990)
and Diggle et a/ (1990). The differences in the two analyses appear to be attributable to
the bias or variability of the k.d.e.'s required to calculate the integrated squared
difference statistic, and the inaccuracy of the approximations used by the corrected Scan
Statistic. Chapter 7 summarises the results obtained in the preceding sections, and
considers the implications for further research of the observations made in Chapter 6
regarding the weaknesses of the two statistics. It also suggests extensions to the basic
methodology presented here that would increase the range of problems to which the two
methods could be applied.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Many different types of scientific investigation may lead to data sets which contain the
location of objects, events or individuals in some two-dimensional planar region. For
example, a botanist might be interested in the spread of a particular species of moss
within a small area of forest or an archaeologist in the distribution of fragments of
pottery in the soil stratum corresponding to a certain period in the history of an Iron-
Age settlement. In general, considering spatial patterns of this sort may contribute to
the understanding of the process generating the coordinates.

One particular type of behaviour which may be important is the aggregation of points
into one or more groupings that could be described as clusters. Providing a rigorous
definition of this latter term that would be suitable for all applications is extremely
difficult. Approximately, however, a 'cluster' could be described as a collection of
points distributed more densely than would seem to be typical, when judged by the
geographical spread of the full data set over the entire region of interest.

Diggle (1983, p.2) describes an example of a data set that displays this feature very
strongly. The locations of 62 redwood seedlings inside a square area of ground appear
to fall into six distinct groups. Such a clear pattern suggested that there was some
underlying mechanism influencing where the plants grew. Further investigation
revealed that the seedlings were clustered around redwood stumps, the positions of
which had not been recorded initially. Clearly, this explained the observed pattern.

It is also true, however, that apparent patterns of aggregated points may be produced by
nothing more than the operation of chance. Investigations of geographical distribution
are only concerned with clusters that may have been caused by some form of generating
process other than randomness, so the above ad hoc definition must be extended to say
that the character of the group of points must be such that it would be very unlikely for
the cluster to have been created randomly. Deciding whether or not a cluster is
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genuine, i.e. non-random, is then a statistical problem and this thesis investigates ways
in which the problem may be tackled.

Studies of spatial clustering have been employed frequently in epidemiological
investigations of malignant disease, especially varieties of leukaemia in children. In an
overview of the epidemiology of childhood leukaemias, Doll (1989) discusses factors
that are known to cause different forms of the disease. The list includes genetic
susceptibility, exposure to ionising radiation (either in utero, from radiographic
examination of the mother during pregnancy, or after birth, through radiotherapy) and
the development of acute myeloid leukaemia following chemotherapy, which is an
inevitable result of the treatment but only forms a tiny minority of the total number of
cases of all varieties. Factors suggested, but not established, as causes include parental
exposure to certain chemicals, viral infection or environmental factors such as natural
radiation or proximity to a possible, man-made source of environmental pollution. The
most controversial examples of the last of these are nuclear installations, especially the
reprocessing plant at Sellafield in West Cumbria.

Most attention has been paid to investigating whether or not sources of environmental
pollution can be responsible for increased incidence of leukaemia, although the viral
infection hypothesis has also been studied; see, for example, Kinlen (1988). Some form
of spatial clustering around such locations would suggest that the risk of developing the
disease was greater in that particular area than in the surrounding region. Further
investigations could then be carried out to determine whether the installation was
indeed responsible or whether there was some other factor peculiar to the local area
which would increase the risk. The benefits of this work would be seen both in terms
of prevention, ie. by removing the leukaemogenic agent, and, more generally, by
improving knowledge of the disease's aetiology.

These considerations have prompted a great deal of research effort over the last ten
years and the results have been reviewed in Gardner (1989) and Wakeford ef a/ (1989).
Considerable evidence suggests that there have been more cases of childhood leukaemia
near the Sellafield plant than would have been expected from national incidence rates.
Weaker evidence suggests the same for the area surrounding the United Kingdom's
other nuclear waste reprocessing facility at Dounreay on the north coast of Scotland.
Research in areas near other establishments has been inconclusive, As far as the second
stage of investigation is concerned, determining the cause of childhood leukaemia
clusters, little progress has been made.
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The particular context of leukaemia clustering stimulated the work reported here and
also motivated much of the literature reviewed in the next section. For this reason, later
discussion will often make use of the following terminology, which is typical of that
used in the study of disease in human populations:

domain: the geographical region of interest, within which the
investigation is carried out;

zones:  small, administrative sub-regions within the domain, used to
calculate estimates of the population at risk; e.g. civil wards,
parishes, counties, Census Enumeration Districts (EDs) efc;

centroid: a central reference point for a zone, equivalent to the centre of
gravity of a physical object, which is used to represent its
location in space, since boundaries in digital form are usually
not available;

cases:  the point locations of the units or events of primary interest;

controls: the point locations of a second type of event which provides
ancillary information on the domain.

It is intended, however, that the research discussed in this thesis should be relevant to a
wider range of applications.

1.2 Review of Existing Methods of Detecting Spatial Clustering

The literature relating to spatial data analysis contains a wide range of techniques for
detecting spatial clustering. It is possible to stratify these methods into three families,
an approach taken by Besag and Newell (1991) and the review paper of Marshall
(1991). The groups are differentiated by the type of question that the members are
designed to answer. The first consists of techniques for analysing the pattern of cases in
the region surrounding a particular, fixed point, the second evaluates the general pattern
of cases in the domain without reference to a specific location and the third assesses
whether or not groups of cases are larger than would be expected by chance and hence
form likely clusters.
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1.2.1 Detecting Clustering Around a Fixed Point

A number of methods have been proposed for studying the pattern of disease incidence
relative to a given point in the region of interest. This point is taken to represent the
location of, for example, a source of environmental pollution and the purpose of the
investigation is to decide whether or not proximity to the source is associated with an
increase in risk. A recent, comprehensive review of such techniques can be found in
Hills and Alexander (1989).

The most straightforward approach used by Black (1984), amongst others, is to
compare observed and expected numbers of cases within some pre-specified distance of
the source, by assuming that the number of cases has a Poisson distribution under the
null hypothesis of no clustering. For the United Kingdom, population information for
all the EDs contained within the domain is available through the decennial Census and,
when combined with national or regional incidence rates, this allows the calculation of
expected numbers. Hills and Alexander (1989) point out that it may be difficult to
choose incidence rates for the most suitable geographical scale, difficult to choose the
size of the region to be considered and that the Poisson distribution may not adequately
describe the observed variability. The last problem is often termed "extra-Poisson
variation" in the literature.

To achieve a more sensitive test procedure, it is necessary to work with numbers of
cases in geographical units at a much finer scale, e.g. EDs within the region of interest.
However, each of the smaller areas may well contain different levels of population, so
even in the absence of any increased risk due to pollution, the observed spatial
distribution of cases may well display marked variability. Methods discussed
subsequently try to correct for this behaviour.

Black et al (1991), for example, describe an algorithm which groups zones into larger
areas of approximately equal population size or expected numbers of cases. The
algorithm's target population count or expectation is set to be that of the zone
containing the point source, and a goodness of fit test is used to compare the observed
pattern to a Poisson distribution. Unfortunately, different aggregations of zones tend to
give different results, and the power of the test is low for small numbers of zones (Hills
and Alexander, 1989).

An alternative to accumulating small areas is the Density Equalised Map Projection
method of Schulman et al (1988). This magnifies or shrinks each zone until its area is
proportional to the population contained within, whilst maintaining the same total area.
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The resulting map should have a uniform distribution of cases if there is no clustering
effect in operation. Tests can be constructed by considering statistics such as the
average, minimum or maximum distance between cases and source of pollution,
although these are not measured in terms of the original units.

A second type of approach is suggested in Stone (1988), who develops a test of trend in
risk with distance from the fixed point of concern. The zones are ranked by distance
from centroid to source, and observed and expected numbers of cases, denoted by O;
and E; for the { th closest zone, are found for each. The null hypothesis that the number
of cases in the i th area has a Poisson distribution with mean E; is compared to an
alternative representing a decrease in risk with increasing separation from the source.
The same distribution is assumed but now with mean A, E,, where
AM2A 202402

using either a likelihood ratio test or a test based on ZA.I

Stone (1988) also outlines a test typical of a third type of analytic method for this
problem. This does not make use of small area information on population or cases but
assumes that the spatial locations of the latter can be obtained very accurately, e.g.
through address at time of diagnosis. The role of the former quantities is played by a
sample of control locations: individuals who do not possess the defining characteristic
of the case group but are similar in other respects. If §; is an indicator variable with
value 1 if the { th point closest to the source is a case and value 0 otherwise, Stone
(1988) suggests the test statistic

T= 123&’,52—

where A is the total number of cases and controls.

Another example of this third group is provided by Diggle (1990), who uses the theory
of spatial point processes to model semiparametrically the intensity of disease as a
function of distance from the fixed point at coordinate x,. The intensity function, A(x),
of the inhomogeneous Poisson process from which the cases are assumed to have been
sampled is decomposed as

Mx)=pA, (1)f (x~x,:6),
where p represents the overall, average intensity, A () the variation in intensity due to
variations in population density, f{:,-) the contribution from proximity to the source,
and @ is a vector of parameters. The control sample is used to estimate A,(*) by a kernel
method (see, for example, Silverman (1986)) and f{-,)) is chosen to represent some
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sensible model of risk decaying with increasing separation. Maximum likelihood
methods are used to estimate 0 and test a null hypothesis of no association between
intensity and x,,.

The use of a control sample was a feature of a relatively early method proposed by
Lyon et al (1981). The test of clustering suggested therein compares the numbers of the
two types of point within increasing radii of the source using a 2 procedure. The
method has two undesirable features. First, a separate test is applied at each distance,
but there is no correction for multiple testing. Secondly, the cases and controls used in
tests for the shorter distances are included in each of the tests for the longer distances in
a cumulative fashion. Hence, the tests are not independent.

1.2.2 Detecting Clustering Behaviour

The second family of techniques dispenses with the fixed point that was the focus for an
analysis using one of the methods described above. Instead, the spatial distribution of
cases is investigated for any evidence of a pattern that does not appear to be induced by
the underlying spatial distribution of the population. Most of the techniques search for
regions where cases occur much closer together than would seem likely by chance,
given the available population information. Within this general definition, there is a
further division between methods that take account of the variability in population
density through zone totals and those that employ a sample of controls.

Whittemore et al (1987) is an example of the first subdivision. The geographical
location of each case is only ascertained to the scale of the zones in use; hence, each
case is assumed to be positioned at the centroid of the subregion in which it falls. The
proposed test statistic is the mean distance between all pairs of cases, with cases at the
same centroid having a separation of zero. The population sizes of each zone are used
to calculate the mean and variance of the test statistic, and an asymptotic normality
result allows significance testing. The method also permits the stratification of
observations into different risk categories. Although there may be some reduction in
the researcher's workload by simply assigning to each case the coordinate of a centroid,
the test seems to be partially investigating the (discrete} geographical distribution of the
zones, which is not of interest. If Euclidean distance is to be used at all in an analysis,
it would be better to define coordinates as accurately as possible and place the problem
in a more natural, continuous spatial context.

Black et al (1991) employ an adaptation of their original method, discussed in the
previous section, which searches for evidence of extra-Poisson variation. Aggregations
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are constructed for a range of pre-specified expected numbers of cases, and the Poisson
indices of dispersion for each sub-region, the ratio of the sample variance to sample
mean of the observed number of cases, are calculated and compared to a normal
distribution, with a correction made for multiple testing. The power of this test is
thought to be greater than that of the y? statistic used previously, but the caveat
regarding the sensitivity to different aggregations still applies.

A qualitatively similar aggregation procedure is used in Turnbull et a/ (1990) to provide
a set of overlapping areal units of equal population size. For each of the original zones
in turn, a neigbourhood is created by adding surrounding zones in whole or part until a
target population size, denoted by R, is reached. The total number of cases in each
neighbourhood is found by adding the same proportion of cases from each contributing
zone as was required to achieve R. The suggested test statistic is the maximum
incidence rate, i.e. maximum number of cases over all neighbourhoods divided by R,
with significance assessed by a Monte Carlo implementation of a randomisation test. It
seems likely that the results of this approach will be sensitive to different aggregations
for the same value of R and, of course, to different values of R itself. However, a range
of target sizes and a multiple testing procedure might address this latter problem, as in
Black et al (1991).

Many other measures of spatial clustering based on case and population data in small
administrative areas have been proposed in the literature. Alexander (1991), for
example, describes three possibilities, namely the NNA test, the Potthoff-Whittinghill
test and a modification of a method due to Barnes et al (1987). The first of these is
adapted from Besag and Newell (1991), which is discussed in Section 1.2.3, and the
second is a test for extra-Poisson variation based on the numbers of pairs of cases in
each zone.

The second group of techniques, those which use a sample of controls to represent the
spatial heterogeneity of the population, is exemplified by Cuzick and Edwards (1990).
Asymptotic normality is demonstrated for a test statistic which is the sum of score
functions from each case, where the score is the number of cases amongst its k£ nearest
neighbours, for some integer k. As £ is arbitrary and its value affects the results of the
test procedure considerably, a statistic is also proposed that is a linear combination of
the original test statistics for different values of £, in an attempt to avoid the problem.
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On a less formal level, Bithell (1990) describes a graphical method of displaying a
spatial relative risk function for the entire domain. This is constructed using the
quantity

pla) = fmD
f;:ontrols (2‘:_) +c

where f,(-) is an adaptive kernel density estimate calculated from the relevant sample
and c is a constant included to ensure that p(x) — 1 in areas that have few data points.

The transformation

_ plx)
PO=1550

is applied to ensure plotted values remain within the interval (0,1). The surface P()
may be examined for peaks that might indicate an unusually high local risk. Although
bandwidths must be specified for the case and control kernel density estimates and the
value of ¢ may also affect the smoothness of the final estimate, the method performs
well in its intended, exploratory role.

A final example of this type of technique is Diggle and Chetwynd (1991), which
models the spatial distribution of two types of event using inhomogeneous Poisson
processes. The test is based on

D(s) = Ky (s)—Ky(s),
where

K;(s)= 2.}1 E[# type/ events within distance s of arbitrary type event]

and A, is the intensity of type j events, for j = 1, 2. Large, positive values of D(s)
suggest spatial clustering of type 1 events over and above that related to the behaviour
of type 2 events. Values of D(s) at a discrete set of distances can be plotted against
pointwise tolerance limits or combined to give a test statistic, for which significance is
assessed by simulation.

1.2.3 Investigating Possible Clusters

The third, and smallest, family of methods has an underlying rationale different from
those of the two groups discussed above. The intention now is to provide exploratory
techniques which, rather than formally assessing the pattern over the whole domain or
near a particular point, search for small areas that are likely candidates for the status of
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clusters, without assigning any causal explanation to regions so classified. Subsequent
investigations would be used to decide whether the clusters were due to chance or to
some aetiological factor. The methods have been proposed as being particularly
suitable for the routine, possibly automatic, surveillance of a large area, allowing effort
to be targeted on the most promising putative clusters.

The Geographical Analysis Machine (GAM) of Openshaw er a/ (1987, 1988) is a
graphical method designed to highlight areas where there is a mismatch between the
observed number of cases and the associated population size. A large set of possible
locations in the domain are tested to see whether or not each could be the centre of a
cluster. This is accomplished by overlaying the domain with a grid, each point on
which acts as the centre of a circle of a given radius. The grid size is chosen to ensure
that the circles always overlap neighbouring ones. The number of cases falling within
each circle is counted and the relevant population at risk calculated from each zone that
has its centroid inside the circle. A Monte Carlo test based on 500 replications is used
to assess significance at each grid point. This process is repeated for different radii and
all circles significant at the 0.002 level are plotted on a map of the domain. Possible
clusters are indicated by dense groups of circles of various radii.

A number of weaknesses in this procedure have been discussed by different authors in
the literature. Openshaw (1990) summarises some of these and Besag and Newell
(1991) explore some points in more detail. There is a considerable multiple testing
problem, both at the scale of the whole domain and at that of a given 'cluster' of circles.
The interpretation of the latter is very difficult, since many different circles may be due
to the same cases and are therefore not independent. The GAM is also highly
computationally intensive. Openshaw (1990}, however, also describes improvements to
the basic algorithm, some of which address these difficulties. For example, methods for
assessing the significance of circle aggregations are outlined and algorithms are
described that make use of statistics and associated tests such as those of Stone (1988)
and Besag and Newell (1991) in place of the count of observed number of cases plus
Monte Carlo test which was used in Openshaw et a/ (1987).

The method of Besag and Newell (1991) was proposed as both an alternative inferential
procedure to that employed by the GAM and as a cluster detector in its own right. In its
former guise, it was intended to provide a statistical basis for the type of techniques
used in Openshaw ef al (1987). Cases are placed at the centroid of the zone in which
they are located and then examined in turn. A test is carried out to determine whether
or not the location of the reference case forms the centre of a cluster of size k+1 (the
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reference case plus & others), where £ is a pre-specified integer. The procedure is as
follows: all the zones are ranked in ascending order of distance from the reference
centroid; cases are accumulated from neighbouring zones in this order until k¥ (or more)
other cases have been found; the corresponding population at risk is calculated
simultaneously from the totals for each included zone, and a Poisson (approximate) tail
probability is calculated for the number of zones required to find at least £ cases. The
distance from the reference centroid to the centroid of the last zone to be included can
be used as the radius of a circle, centred on the former point, which is plotted on a map
of the domain if the significance of the test exceeds a given level. This is analogous to
the GAM. In addition, tests are outlined for checking whether or not there are more
clusters than would be expected and whether or not there is evidence of some form of
clustering behaviour, the type of test considered in Section 1.2.2.

1.2.4 Tests of Space-Time Clustering

A fourth family of techniques, although not strictly concerned with spatial clustering, is
relevant to the discussion here. Tests of space-time clustering, also known as space-
time interaction tests, first appeared in the literature much earlier than the methods
described above and have been cited frequently. They were developed primarily to
detect aggregations of cancers that had been recorded at approximately the same time,
possibly indicating that a viral infection was causing the spread of the disease.

Knox (1964a,b) categorises all possible pairs of cases according to whether they are less
than or greater than some critical distance apart in space and time. Interest centres on
the cell of the resulting 2 X 2 table containing pairs that are close on both criteria, with a
large count indicating some form of clustering. Mantel (1967) generalises this
approach and presents a measure of closeness defined to be the reciprocal of the pair's
separation in space or time. Both techniques require the specification of arbitrary
constants capable of affecting the results of the analysis; critical distances for the former
and additive constants to prevent division by zero for the latter, should discreteness in
time or space coordinates permit identical case locations.

A second type of approach makes use of locational data in the form of counts of cases
in cells formed by distinct geographical areas and time periods. Ederer et al (1964) use
the sum over all spatial regions of the maximum number of cases for the range of
temporal intervals as an index of clustering, while Raubertas (1988) uses a generalised
linear model for cell probabilities with spatial and temporal main effects and a space-
time interaction term. By examining contrasts, within sub-regions of the whole area, of
parameter estimates for the spatial main effect, it is possible to derive a test for spatial
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clustering. However, both the size of the sub-regions and the weights for the contrasts
are arbitrary and it would appear to be possible for the tests to reflect nothing more than
different numbers of cases arising from variable population sizes in the individual cells.

McAuliffe and Afifi (1984) construct a test statistic from the distance between a
reference case and its nearest neighbour from a previous time period, for a specified
lag, by minimising, over all lags, the sum of standardised distances. Nearest neighbour
distances are also used by Ross and Davis (1990), to investigate the clustering of
Hodgkin's disease, given full residential information for each case, during particular
time periods hypothesised to be aetiologically relevant. Using a permutation test, the
pattern of cases is compared to that of a sample of controls, so that the behaviour of
observed nearest neighbour distances is compared with what would be expected in the
absence of any contagion effect.

If interest is primarily in an investigation of a source of environmental pollution, the
choice of a space-time interaction test would seem to be unsuitable. Any clustering
effect under this model would be unlikely to manifest itself more visibly in one time
period than in any other and, thus, the power of the above methods would be much
reduced. For the small number of cases typical of a study of malignant disease,
Wartenberg and Greenberg (1990) demonstrate that the tests due to Ederer ef al (1964)
and Mantel (1967) have low power against two simple alternative hypotheses of locally
elevated risk due to a point source.

1.3 Problems Inherent in Spatial Clustering Studies

In the general area of epidemiology, and in leukaemia studies in particular, a number of
different authors have considered solely, or in part, the difficulties inherent in studies of
spatial clustering. Examples of this are provided by the papers of Besag and Newell
(1991), Bithell and Stone (1989), Gardner (1989), Hills and Alexander (1989),
Wakeford (1990) and Wakeford er al (1989). The following discussion is set in the
same context and some points are specific to that; however, many will apply whatever
the circumstances of the study.

When working with data on populations of human beings, positive or negative results
may be simply artefacts of inaccuracies in numerator (case) or denominator (population
at risk) information. The latter situation is a primary concern of the contributions of
Besag et al and Openshaw and Craft to Draper (1991). In the United Kingdom,
information on the human population is usually based on figures from the Census of




Anderson, N.H. (1992) Chapter 1 26

Population, which is taken once every ten years. This interval is long enough to
encompass considerable demographic change, especially change in the numbers of
young children, due to fluctuations in birth rates or large scale migration into or out of
the domain, for example. If a population were to increase rapidly after a Census, there
would be a corresponding increase in the number of cases expected within the domain.
Subsequently, an analysis based on the original Census estimate of population at risk
would be susceptible to the detection of spurious clusters, because there would be too
many cases for the older population figures to explain. A post-Census decrease might
lead to the dilution, or even concealment, of evidence of real clustering.

Numerator data may also be at fault. Most methods for detecting clustering assume,
implicitly, that case ascertainment is complete and free from duplications, or at least
that it is at a uniform level throughout the domain. In practical terms, this may be
unlikely. Additionally, classifications or diagnoses may have been made incorrectly or
based on criteria that have changed during the course of the study. Leukaemia is a good
example of this, as the distinctions between some types of lymphoid leukaemia and
non-Hodgkin's lymphoma have been altered over the last twenty years; see, for
example, Draper (1991, Chapter 2). Migration of cases into or out of the domain could
affect results in a similar way to that of members of the population at risk. Cases
generated by a genuine clustering effect may be lost to the investigation when they
move out of the domain, leading to a loss of power. There would seem to be a
particular risk of this sort of error in studies of cancer, because of the long latent
periods associated with malignant diseases. Conversely, cases that originated outside
the domain may be included when, in fact, they are little more than a confounding
influence. To avoid these problems, a number of authors have proposed that cases
should be located at their address at birth rather than that of diagnosis, although in
general this information is much harder to obtain.

A number of problems may be introduced through the conduct of investigations and the
techniques of statistical inference used in their analysis. The spatial scale at which the
study is carried out may be extremely important, in terms of the size of both the domain
and any administrative zones in use. If these are too large, a small scale or local
clustering effect may be swamped. Equally, if clustering is present at a scale which is
much greater than the chosen areas, then it is unlikely that it could be detected, a
situation analogous to one in the analysis of time series, where a short term trend is
revealed to be part of a long term cycle by looking at a longer series. It is also possible
that evidence of local clustering derives from nothing more than the spatial
heterogeneity of incidence over a much larger region. The method of Stone (1988) is
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an attempt to reduce the importance of the initial choice of one variable, the size of
domain, but in general it would appear to be necessary to accept these limitations,
unless there is some prior information on the scale of any possible clustering effect that
can be incorporated into the study.

The power of an investigation into spatial clustering will be reduced if the number of
cases expected in the domain is small. This will certainly be true for types of rare event
such as cases of malignant disease. The effect on power of out-migration has already
been mentioned, and it is likely that a complex aetiology, i.e. the interaction of different
causative agents, would similarly make clustering much harder to detect. This last
factor explains why it is often very difficult to propose a plausible model of clustering
in a spatial problem and, thus, provide alternative hypotheses that could be tested by the
most appropriate and powerful methods.

When a technique employs administrative zones or subregions, the continuous spatial
distribution of population in the domain is transformed into a set of counts at discrete
zone centroid locations. Although U.K. Census EDs, for example, are drawn up to
include approximately the same number of households where possible, very often other
considerations intervene. The Office of Population Censuses and Surveys and the
General Register Office for Scotland, the Civil Service organisations responsible for
administering each Census, have a duty to maintain confidentiality, i.e. to ensure that no
individual or particular region can be identified from the Small Area Statistics that they
produce. This may mean that ED boundaries are altered to split a small village between
different zones or to include a much larger area than usual, so that the population within
the zone reaches an acceptable level. Therefore, the zones may not reflect the true
distribution of population very accurately. As with the method of Black et al (1991),
the results of techniques which are based on zone population counts are likely to be
sensitive to different partitionings. This is an undesirable feature and it may be better to
work within a continuous frame of reference, if this can be accommodated in the study.

Hypothesis testing is designed to be used within the scientific paradigm, in which
preliminary experimentation or prior knowledge leads to the specification of theories
and then hypotheses, which are confirmed or rejected by further, independent
experiments. The independence of the confirmatory tests is crucial to this process:
interpretation of significance becomes complex if the hypothesis under consideration is
influenced by knowledge of the data to be used at the second stage. One of the dangers
in studies of spatial clustering is that this type of knowledge might cause the adjustment
of boundaries to be used in the analysis; for instance, the size and position of the
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domain, the number and type of zones, the time period for which data are collected, the
sub-types of event to be considered or the specification of risk sub-groups based on
confounding variables such as age or sex. It might be possible to choose such
boundaries, either consciously or unconsciously, so that the significance of any apparent
clustering was inflated or so that a cluster was created from a random pattern. This
would also introduce an implicit multiple testing problem, since the set of boundaries
would have been selected from a range of combinations that could have been pre-
defined. Correcting for this effect would be very difficult since the comparisons would
be statistically dependent and (usually) unspecified in number. As Wakeford (1990)
comments, it may be permissible to define boundaries post hoc in an hypothesis-
generating or exploratory study, provided significance levels are used for guidance
only. However, fresh data would be required for valid hypothesis testing, by examining
either a new time period for the same domain or the same time period for other,
comparable domains, although this raises the question of whether or not hidden or
confounding factors would make it possible to define such regions.

The study of the geographical distribution of leukaemia near sources of environmental
pollution is prone to post hoc hypothesis formulation, because investigations are often
initiated following public concern over an apparent excess number of cases that seem to
be related by proximity to the site. Hills and Alexander (1989) suggest that overall tests
of clustering, discussed in Section 1.2.2, may be useful for reducing the magnitude of
the problem, since the selection bias induced by focussing on the spatial pattern around
the source is removed. Instead, the results are placed in the context of the whole
domain.

1.4 Aims and Outline

The aim of this thesis is to investigate methods of detecting the spatial clustering of
point locations that is not attributable to chance. The type of technique that will be of
interest is one that may be used in the early stages of a study, at a relatively small scale
or local level, to assess the overall pattern in the domain. For this reason, the existence
of a coordinate representing, say, a source of pollution is not assumed, although this
would be a common motivation for such an investigation. This may also serve to
moderate the effects of selection, as described at the end of Section 1.3. The low
numbers of cases typical of applications requiring this methodology suggest that
smoothing techniques may be appropriate, so that estimates at any given point may
incorporate neighbouring information. Arbitrary administrative zones will not be used
because of their possible influence on results and the deficiencies in Census figures.
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Instead, estimates of the population at risk will be derived from a sample of controls,
making the (perhaps not negligible) assumption that a sampling frame exists for the
domain under consideration that will allow the drawing of representative observations
without excessive difficulty. Due to the absence of convincing models of clustering,
and hence alternative hypotheses, in applications such as leukaemia studies, methods
which are nonparametric in character will be favoured.

Chapter 2 considers the Scan Statistic, which provides a test for clustering in one
dimension, e.g. time. The assessment of significance by approximating critical values
is considered, as is the relative power of different methods. Chapter 3 explores the
generalisation of the Scan Statistic to two dimensions and Chapter 4 introduces a
correction for a non-uniform distribution of events under the null hypothesis, which
allows the Scan Statistic to be used, for example, with human populations. The
behaviour (both asymptotic and simulated) of an integrated squared difference statistic
based on kernel density estimates is described in Chapter 5 and a power study indicates
the (asymptotic) advantage of using a fixed bandwidth. Chapter 6 applies the two
methods to a data set consisting of all cases of laryngeal cancer diagnosed in South
Lancashire between 1974 and 1983. Chapter 7 closes the thesis with some discussion
of results obtained.
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CHAPTER 2

DETECTING CLUSTERING IN ONE DIMENSION

2.1 Introduction

A study of techniques for detecting the clustering of events in a single dimension can
serve two purposes. First, the methods may be of interest in themselves, for
applications that are concerned only with clustering in, say, time, and secondly,
generalisation to two dimensions may be aided by the exploratory work carried out in
one.

This chapter considers two conceptually straightforward methods, the Scan Statistic and
a test based on the supremum of a kernel density estimate. The former test is discussed
in Section 2.2, in which different types of scanning procedure are evaluated and a
number of approximations to critical values are outlined. Section 2.3 explores the
kernel estimate based statistic and Section 2.4 reports the results of a power simulation
study, which compares the two tests.

Chapters 2 and 3 assume that events in the region of interest have a uniform
distribution, in the absence of any clustering. As has already been indicated, this
assumption may be unrealistic when dealing with human populations. However, to
reduce the complexity of the problem, it is convenient to work with a null hypothesis of
this form in the first instance. A way of correcting for a non-uniform null distribution
is discussed in Chapter 4.

2.2 The Scan Statistic

The Scan Statistic is a particularly simple method of examining the distribution of a
sample of data points for evidence suggesting that it may be the result of something
other than random chance. It was originally proposed as a measure of clustering in time
by Naus (1965a, 1966a) and a recent review was provided by Naus (1988). Taking the
region of interest to be the-interval (0,1], without loss of generality, and assuming that
N events are distributed within it, the Scan Statistic, S, is defined to be the maximum
number of points that can be included in a sub-interval [x - 4, x], where x is allowed to
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vary over (d,1] and d is a prespecified constant, such that 4 < 1. This process represents
a window 'scanning' over the unit interval in a continuous fashion, with S, being the
largest, instantaneous count of points so 'framed'. Clearly, large values of this statistic
would indicate some form of clustering.

Two observations simplify the development of an algorithm for calculating the Scan
Statistic that can be implemented in a programming language such as FORTRAN.
First, since the statistic is defined to be the maximum count of events within a window,
regions of the interval (0,1] that contain no events need not be considered. Hence, the
coverage of the unit interval achieved by the algorithm will not necessarily be
complete; the scanning process will concentrate on event locations, rather than all
possible locations. Secondly, if the direction of scan is assumed to be from left to right,
the total number of events contained within the window may only increase if the right-
hand boundary reaches the location of a new event, and will decrease if the left-hand
boundary moves to the right of an event that was previously inside the window. We are
interested in large counts and, therefore, principally in events that enter the window
from the right. Hence, if the i/th event, ¢, forms the upper boundary of a scanning
interval, le-d,e;], of length d and c,; = count of events in [ed,e;], then the Scan Statistic
is equal to

max c;,.
iel,.. N i

The programming task is then reduced to counting the numbers of events in N distinct
intervals of the form [e-d,e].

Distributional results for the Scan Statistic, under a null hypothesis of no clustering, are
derived assuming that events are uniformly distributed over (0,1]. For some integer »,
denote Pr(S; = n | N ; d) by P(niN;d). Naus (1965a) provides an exact result for
P(nIN;d), using a combinatorial argument, as follows:

C(IN;d)-R(nIN;d), fordz1,n>(N+1)/2,

2.1
CnN;d), ford<t,n>N/2, @1

P(nN;d) ={

where

N N N
C(niN;d) = (N-n+1){ Y bGN;d) + Zb(z’lN;d)}——Z(N-—n)Zb(z’IN;d),

i=n-1 I=n+1 i=n

N N-n
R(nIN;d) = Zb(ilN;d){Zb(jli;(l—d) /d)}+H(nlN;d)b(n|N;d),

i=n j=0
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N-n N-n+1
H(nN;d) ={n(1-d)/d} Y b@l(n-1);(1~d) /d)— (N ~n+1) Y b(iln;(1-d)/d)

=0 i=0

and

bkIM;p) = (tl)p" 1-p)M+*,

For d 2 1/2 and n < (N+1)/2, P(nIN;d) is identically equal to 1; however, the case for
which d < 1/2 and n < N/2 is not covered by the argument. The latter range of 4 and n
could be of particular interest, in practice, because detecting a small scale clustering
effect presumably requires a small scanning interval, if the effect is not to be concealed
by the larger scale pattern of events. The associated value of the Scan Statistic,
therefore, would be quite small, possibly much less than N/2.

An expression for P(nIN;d) with better coverage of the range of d and » is described in
Naus (1966a). Ford = 1/k, where k is an integer,k22and 2<n <N,

PIN;1/K) =1-N1&™ Y det(1/c; 1),

where

j-1
G=dn=Yn +n, i<j,

r=i

]
G-dn+dYn,, izj,

r=j

n; denotes the number of points in the interval ((-1)/k,i/k), 1/c;! is defined as zero when
¢; > N or ¢; <0, and the summation is over all partitions of N into k positive integers,
each less than n. Huntington and Naus (1975) and Hwang (1977) derive expressions
for P(nlV;d) that are somewhat simpler and not limited to interval widths of the form
1/k, k an integer. Both are qualitatively similar to Naus (1966a), in that they involve the
summation of the determinants of possibly large matrices, over a set of partitions of N.
Although the relevant matrices are smaller and the sets of partitions have fewer
elements, the two alternatives are still difficult to compute. This objection also applies
to Wallenstein and Naus (1974), who express P(nlN;1/k) in terms of multiple
intersections of events, and to Naus (1982), who gives an approximation for the same
probability. The accuracy of the latter result is best when the analysis does not
condition on the total number of events, N, e.g. when the data in (0,1] form part of a
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longer stream of information. In retrospective studies, however, which are common in
areas of application such as epidemiology, it is usual to take N as fixed, so the
approximation will be less useful.

Three possible approaches to overcoming the complexity of the Scan Statistic's
distributional form are considered here. The first is to search for a different scanning
procedure with comparable results but simpler behaviour. The second is to find direct
approximations to the statistic's critical values, since these are the only quantities
needed for significance testing. The third approach is to calculate critical values from
approximations to the distribution of the Scan Statistic that are easier to use than the
ones mentioned above. These options are discussed in turn in the following sections.

2.2.1 An Alternative Scanning Procedure

Instead of a window sweeping continuously over the unit interval, consider £ = 2
disjoint intervals, each of length d = 1/k, covering (0,1] completely. If the number of
events in the j th interval is denoted by N, then the joint distribution of N, ..., N, is
multinomial, with each cell probability equal to 1/k. If the analogue of the Scan
Statistic for this situation is

max N iz
1)<k

then its distribution is that of the largest cell frequency from a multinomial distribution.

The covariance between N; and N, for some i and j, is -N/k?, which may be small
enough to be neglected if £ is large. This would allow the {Nj} to be regarded as a
sequence of independent and identically distributed binomial(V,1/k) random variables,
since each AN; is marginally binomial, which could be approximated by
normal (N/k,(N/k) (1-1/k)) random variables, or normal (N/k,N/k), since & is assumed to be
large. If M is the maximum of the standardised versions of these normal random
variables, then

V2logk(M-1,)

has a Gumbel distribution (David, 1981), where

l, = 2logk —1 (loglogk +log4m) / \[2logk .
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To assess whether or not a disjoint scan approach is an adequate approximation to the
continuous Scan Statistic, the empirical null distribution functions of both methods
were simulated for a range of N and k. For comparison, a maximum count statistic was
also simulated for discrete, overlapping intervals. The percentage of an interval's length
covered by a neighbour was chosen to be 10%, 50% or 90%. It is interesting to note
that this procedure bears some resemblance to the time component of a space-time
interaction test proposed by Ederer ef al (1964) and also to part of the algorithm of the
Geographical Analysis Machine of Openshaw et a/ (1987, 1988).

Table 1 compares the 5% critical values obtained from 1000 simulations of each
scanning procedure for different combinations of N and &, generating the N events by
sampling from a uniform(0,1] distribution. As might be expected, there is an obvious
trend upwards over the different methods for a given N and k, from the disjoint
procedure, through the overlapping intervals in order of overlap proportion, to the
continuous procedure. The results for the disjoint procedure are consistently too low,
although the error is moderated slightly for the largest values of k; these are of more
interest, since the distributional result associated with this procedure requires small
between-interval correlations. It would appear, however, that the disjoint intervals
method is not sufficiently accurate to replace the continuous Scan Statistic and,
therefore, that the multinomial extreme value argument suggested above cannot be
employed. A further weakness of the method is described in Naus (1966b), which
proves that the power of the disjoint procedure is less than that of the continuous Scan
Statistic for all alternative hypotheses that specify continuous p.d.f's, when d is
sufficiently small.
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Overlapping Intervals
N k Cont. Disjoint 10% 50% 90%
50 4 23 20 20 21 22
8 15 13 14 14 15
16 11 9 10 10 10
32 8 7 7 8 8
64 6 6 6 6 6
100 4 39 36 36 37 39
8 25 22 23 23 24
16 17 15 15 16 16
32 12 10 10 11 11
64 9 8 8 8 9
200 4 70 64 64 66 69
8 42 38 38 40 41
16 26 24 24 25 26
32 17 16 15 16 17
64 12 11 11 11 12
400 4 126 119 119 122 125
8 73 68 68 70 72
16 44 39 40 41 43
32 28 25 25 26 27
64 18 16 16 17 18
800 4 238 227 228 230 234
8 132 124 125 127 130
16 76 71 71 72 74
32 45 42 42 43 44
64 29 26 26 27 28

Table 1: Empirical 5% critical values for the Scan Statistic
calculated from 1000 simulations using the
continuous, disjoint and overlapping intervals
procedures,
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2.2.2 Direct Approximation of Critical Values

A second approach to the problem of assessing the significance of the Scan Statistic is
to find some method of approximating critical values simply and directly, without
necessarily making reference to a distributional result. Figure 1 plots 5% critical
values, for sample size N = 50, against the relevant interval widths, d = 2/3, 1/2, 1/4,
1/8, 1/16, 1/32, 1/64.

45

35 @

Criical 25
Value 20

15 ®
10 ®

wn

Interval Widh

Figure 1: Plot of simulated 5% critical values for the Scan
Statistic against seven interval widths, for N = 50.
Based on 1000 replications.

The critical values were obtained by simulation of a continuous scanning process, using
1000 independent replications for each interval size. Some of the results appear in
numeric form in Table 1 in the previous section. The monotonic increase of critical
value with d, observed in Figure 1, is typical of the pattern for all sample sizes. If the
5% critical value, given N and 4, is denoted by wy, ,, then a linear model of the form

Wy 4
—= =a+f.d 2.2
N B 2.2)

might be plausible, where o and 3 are, respectively, intercept and slope parameters, and
the standardisation by N is an attempt to make the model independent of sample size.
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However, the curvature apparent at small values of d in Figure 1 is not removed by
simple transformations, such as log, or square root. This may indicate that a quadratic
model of the form

er’d =a+B.d+y.d? 2.3)

would be more suitable,

Parameter estimates were obtained for (2.2) and (2.3) by least squares from simulated
critical values for seven choices of each of N and 4 and these are displayed in Table 2.
This is intended to be an ad hoc approach, rather than rigorous statistical modelling, so
there is no assumption of a particular error structure, for example.

Coefficients
Linear Model, (2.2) Quadratic Model, (2.3)

N o §] o 3 Y
20 0.270 1.096 0.221 1.824 -1.106

50 0.143 1.089 0.112 1.557 -0.711
100 0.098 1.076 0.080 1.338 -0.398
150 0.078 1.069 0.060 1.329 -0.395
200 0.062 1.067 0.046 1.297 -0.348
400 0.042 1.046 0.032 1.191 -0.222
800 0.029 1.032 0.021 1.149 -0.177

Table 2: Parameter estimates for models (2.2) and (2.3), for
simulated critical values of the Scan Statistic
regressed on seven choices of interval width.

The linear model (2.2) is usually much less accurate than the quadratic model (2.3),
over the range of N considered here. For example, Table 3 compares the 5% critical
values obtained by simulation with those calculated from (2.2) and (2.3), for N = 50.
The quadratic model correctly estimates five of the values, whereas the linear model
can only manage two. The accuracy of both models degrades as N increases, but (2.3)
maintains its superior performance.




Anderson, N.H. (1992) Chapter 2 38

d Continuous Linear Quadratic
(2.2) (2.3)
2/3 42 44 42
1/2 35 35 36
1/4 23 21 23
1/8 15 14 15
1/16 11 11 11
1/32 8 9 8
1/64 6 9 7

Table 3: Comparison of 5% critical values for N = 50,
calculated by simulation, (2.2) and (2.3).

Returning to Table 2, we see that the coefficients for the quadratic model appear to be
converging, with increasing N, to 0, 1 and 0 for «, 3 and v, respectively. This suggests
that it might be possible to improve the accuracy of (2.3) by fitting linear models to the
three parameters, with NV as an explanatory variable, and then substituting the resulting
expressions into the original model. After transformations to the logarithmic scale, the
following models for the parameters were obtained:

log o = 0.331 - 0.629 log N,
log (B- 1) =1.202 - 0.469 log N
and
log (-y) = 1.576 - 0.505 log N.

Back-substitution produced a new model for w ;:

Dy aq

=1.392 N6 4 (1+3.328 N4 )7 — 4,835 N 05542, 2.4)

A second direct method of obtaining critical values is derived by generalising an
argument used in the proof of Theorem IV in Naus (1966b), which holds for d = 1/2
and uses approximations to P(nlN;d) for n > (N+1)/2. Consider now the case of d < 1/2
and, from (2.1), observe that for n > (N+1)/2

N N
P(niN:d) = (N-n+1){22b(iIN;d)+b(n ~1N;d) —b(nlN;d)}—?.(N —n)Zb(ilN;d)

i=n i=n
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N
=23 bEIN;d)+(N-n+D{b(n-1N;d) ~b(nIN;d)}

i=n

= 2§:b(iw;d) +(§—N—1)b(nlN;d). (2.5)

=n

Assume that N is large and employ a normal approximation to the binomial
probabilities, so that

Do 2 [ ool x=N?
P(nIN;d) = mfn_f"p{ 2Nd(1—d)}dx
W) Jn—%exp{ 2Nd(1'd)}dx'

By making the substitutions y = (x - Nd)/{Nd(1 - d)}* and n=WN + kNN)d, and
neglecting the first continuity correction, it can be demonstrated that

kexp(——f,; szz)

L2md-a) ’

where 6 = {d /(1-d }}** and ¢(*) is the normal c.d.f.. Hence, for a significance level of
«, choose k =k, so that

P(IN;d) = 2{1-p(6k)} +

ke exp(_%ezki) .
2{1-p(k, ) }+ N i

the corresponding approximate critical value is, therefore,

By =(N+kyN)d. (2.6)

For d > 1/2 or n < (N+1)/2, (2.6) is still applied, since expression (2.5) is then an
approximation to the true value of P(nlN;d); this approximation is derived by
Wallenstein and Neff (1987) and forms one of the methods to be discussed in the next
section.
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2.2.3 Approximations to P(n|N;d)

The third approach to simplifying significance testing for the Scan Statistic is to use an
approximation for P(nlN;d) that is not computationally intensive. When d < 1/2, Glaz
(1989) derives a sequence of approximations, for each of L = 1, ..., N-n, so that

P(nIN;d)=1- Qﬁz(vL-t.la)rp
where

o =0 (@ /@)™,
Q=0- ZQ* )
j=2

Q= Pr(Ag),

=
Q =Pr{Am(:F_]1AE ]}

A; is the event {X,,; ), - X, <d }, a superscript 'c' denotes a set complement and X, is
the j th order statistic from the sample. The terms Q, and Q; can be written as

weighted sums of binomial probabilities, which are straightforward to calculate.

The accuracy of the approximation increases with L, but so does the number of
calculations. Glaz (1989) suggests L = 3 as a suitable compromise and, also, that the
approximation is best when the average number of points in a scanning interval is low,
eg. N xXd<5. When the latter condition does not hold, a suggested alternative is the
approximation of Wallenstein and Neff (1987), which justifies the use of (2.5) as an
approximation to P(nlN;d) for all n and d, by derivation for the case where d = 1/L, L an
integer, and then by arguing that the result should hold for more general d.

2.2.4 Comparison of Direct Methods and Approximations to P(n|N;d)

Following the model provided by Section 2.2.1, the proposals of Sections 2.2.2 and
2.2.3 are compared by their ability to produce accurate 5% critical values. Other
criteria might be more appropriate if the overall behaviour of the different methods was
of interest, but for significance testing purposes it is only the upper tail that is
important. The benchmark values are those obtained by simulation (with 1000
replications), which were used previously in Table 1.
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Table 4 presents the results for the quadratic model (2.3), the quadratic model
incorporating a trend in the parameters (2.4), the approximate formula (2.6), and the
approximations of Glaz (1989) and Wallenstein and Neff (1987). The two quadratic
models, (2.3) and (2.4), are at best moderately accurate and, in fact, there seems to be
little or no advantage to be gained from including the linear components for the
convergence of the parameters to zero or one. The method generalised from Naus
(1966b) is quite accurate for large d, e.g. d 2 1/4, but poorer for small 4. When the
window is narrow, typical values of the Scan Statistic will be quite small, relative to N,
so it is likely that P(nIV;d) would have to be evaluated for n < N/2, whereas the
expression used to derive (2.6) is valid only for n > N/2. Hence the tail probability
under calculation is already an approximation, before the further approximating steps
are taken. In addition, the derivation requires a binomial probability at a single value,
b(nlN;d), to be replaced by a normal approximation, which may not be adequate.

The results calculated from Glaz (1989} and Wallenstein and Neff (1987) are the best of
the group, with most of the simulated critical values being reproduced by both methods.
The latter technique would seem to have advantages over the former, since it does not
require d < 1/2 and demands less computational effort. It would also appear that the
guideline regarding a large average number of points in a scanning interval, suggested
by Glaz (1989), has some justification. The inaccurate critical values estimated using
this method occur for large d and N, which might imply a large mean event count,
whereas the Wallenstein and Neff (1987) method gives more precise values at the same
locations. For small d, however, it would appear that the methods have about the same
success in approximating tail probabilities for significance testing.
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N d Cont! Quad? (2.4) (2.6) Glaz WN?

20 2/3 19 19 19 20 - 19
172 17 18 18 17 - 17

1/4 12 13 12 11 12 12

1/8 9 9 9 8 9 9

1/16 7 7 7 6 7 7

1/32 5 6 6 4 5 5

1/64 5 5 5 3 5 5

50 2/3 42 42 43 43 - 42
1/2 35 36 36 35 - 35

1/4 23 23 24 22 23 23

1/8 15 15 15 14 15 15

1/16 11 11 11 10 11 11

1/32 8 8 9 7 8 8

1/64 6 7 8 5 6 6

100 2/3 80 80 79 80 - 80
172 64 65 66 64 - 64

1/4 39 39 40 39 39 39

1/8 25 25 25 24 25 25

1/16 17 17 17 15 17 17

1/32 12 13 12 10 12 12

1/64 9 11 10 7 9 9
150 2/3 116 116 116 116 - 116
1/2 93 94 94 93 - 93

1/4 55 56 55 54 55 55

1/8 34 33 33 33 34 34

1/16 22 22 22 20 22 22

1/32 15 16 16 13 15 15

1/64 11 13 13 9 11 11

1. Simulated 5% critical values, 1000 replications.

Neff (1987) approximation.

Table 4:

2. Quadratic model (2.3).

3. Wallenstein and

Comparison of 5% critical values for the Scan
Statistic, obtained by five different approximate
methods, with those calculated from simulations.

(Continued overleaf).
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N d Cont! Quad? (2.4) (2.6) Glaz WN?
200 2/3 152 152 151 152 - 151
1/2 120 122 122 120 - 120
1/4 70 70 70 69 70 70
1/8 42 41 4] 41 42 42
1/16 26 26 26 25 26 26
1/32 17 18 18 16 17 17
1/64 12 14 14 10 12 12
400 2/3 292 292 292 293 - 292
1/2 228 230 230 228 - 228
1/4 126 127 128 127 129 127
1/8 73 72 72 72 74 73
1/16 44 43 43 42 44 44
1/32 28 28 28 26 28 28
1/64 18 21 21 16 18 18
800 2/3 568 567 569 570 - 569
1/2 439 442 442 440 - 440
1/4 238 239 238 238 241 238
1/8 132 130 130 131 133 132
1/16 76 75 74 74 76 76
1/32 45 46 46 44 46 45
1/64 29 32 31 27 29 29

1. Simulated 5% critical values, 1000 replications.
Neff (1987) approximation.

Table 4:

(Continued) Comparison of 5% critical values for
the Scan Statistic, obtained by five different

approximate methods, with those calculated from
simulations.

2. Quadratic model (2.3). 3. Wallenstein and
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2.3 Density Estimate Supremum Statistic

The number of points in a scanning interval is controlled by the true underlying
probability density function in the corresponding region of (0,1], and is therefore
related to the height of the density function in that area. This suggests that finding the
Scan Statistic, which is the maximum number of points included in an interval of fixed
length, is analogous to searching for the maximum height of some estimate of the true
p.d.f., which has been calculated from the sample.

A useful approach to the estimation of a density function from a sample of data is
nonparametric kernel density estimation, which has been described, for example, in the
monograph of Silverman (1986). If the true p.d.f. is denoted by Ax), from which a
sample {X,, ..., Xy}, of size N, has been drawn, then the corresponding estimate is

A __1_” x—-X\,
fm'méd:h)

h is a smoothing parameter satisfying # — 0 as N — o= and Nh — o as N — oo, and K(*)
is the kernel function, which satisfies the following conditions:

(@ K(t) 20, Vt € (—oo,00),

® [ K@®ar=1,

© [ &@®ar=o.

The usual choice for K is a symmetric probability density function, such as the standard
normal (Gaussian) density.

Rosenblatt (1971) derives the asymptotic distribution of the maximum of a standardised
kernel density estimate (k.d.e.) that is defined for the domain [0,1]. Although the
conditions required in the proof are very strong (described in the paper as "unpleasant
and completely impractical”), it is thought that the result is useful under much weaker
conditions. If

A:jK%ﬁm,

p
A= log(—g—]
T
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and
2
B= -%;iz-{ | K(u)K(u+t)du}L=0,
then
Pr{gxslxaé{af( )} {f(x) ]E;f(x)}<\/210gh + —— \/—__.. — exp{—exp(-2)}, (2.7

as N — oo, given conditions on A(*), K(-) and A.
In the current application, fix) = 1, V x € [0,1]. If K(*) is chosen to be the Gaussian

density,
A=(4r)” and JK @K (@ +t)du = (4m) " exp(—t2/4).

Therefore, B = 1 and A =1log(1/2x). It can be demonstrated, using a Taylor expansion,
that

Ef (x) = £ 00 + 312 { [ PR O de )7 () +0(h?) =1,

for x € [0,1]. Finally, for a critical value at the a% level, the value of z must be chosen
so that

exp{-exp(-z)}=1-a = z=-log log{(l - a)‘l} .

Substituting these quantities into (2.7) gives the result that, for large N,

\ i < log{emlog-0)}||
Pr (r)rslxas)if(x)ZH(Zth/E) {\/Zlogh - J210gh’1 =, (2.8

and, hence, an expression for an approximate a% critical value.

In Table 5, 5% critical values obtained from (2.8), for four different bandwidths (see
below) and seven different sample sizes, are compared to empirical values, estimated by
simulation. The latter results were based on 1000 sets of data, each one of which was
generated by sampling from U(0,1]. The k.d.e. of the true p.d.f. for each set was
calculated using the Fast Fourier Transform (FFT) algorithm of Silverman (1982), with
the addition of the corrections suggested by Jones and Lotwick (1984). The algorithm
requires the simulated data to be discretised to a grid of, say, 1024 points, by splitting
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an observation with value x into two weights, (z-x)/(z-y) and (x-y)/(z-y), which are
assigned to the grid points with values y and z respectively, where y (z) is the point
immediately to the left (right) of x. The FFT of the grid, calculated with wrap-around
edge conditions, is multiplied by the Fourier transform (FT) of the Gaussian kernel, to
give the discrete FT of the k.d.e.. An inverse transformation provides values of the
density estimate at 1024 distinct points. The maximum of these was taken to be a
reasonable approximation to the supremum of the k.d.e. over [0,1].

Bandwidth, ¢ =

N Method 0.5 1.0 1.5 2.0
20 Sim 2.107 1.526 1.261 1.108
(2.8) 2.162 1,748 1.575 1.414
50 Sim 1.745 1.387 1.224 1.122
(2.8) 1.824 1.532 1.410 1.294
100 Sim 1.600 1.321 1.197 1.120
(2.8) 1.635 1.411 1.317 1.228
150 Sim 1.514 1.280 1.183 1.118
(2.8) 1.545 1.353 1.273 1.196
200 Sim 1.444 1.241 1.162 1.108
(2.8) 1.489 1.317 1,245 1.176
400 Sim 1.350 1.194 1.130 1.091
(2.8) 1.376 1.245 1.189 1.136
800 Sim 1.264 1.159 1.112 1.083
(2.8 1.289 1.189 1.146 1.105

Table 5: Comparison of 5% critical values for the density
estimate supremum statistic, found by simulation
and the asymptotic result (2.8).

The same smoothing parameters were used for both the simulations and the
approximations from (2.8). The usual formula for an optimal value of k, obtained by
minimising approximate mean integrated squared error, is
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-2 L -1
b ={[PROat] “{[KR2 @@tV {[ £ 02 ax} N, 2.9
e.g. if the observations are drawn from a normal distribution with variance 02, say,

Jrope =1.060N 5.

The uniform p.d.f. has zero second derivative, preventing (2.9) from being used
directly. It does, however, suggest that bandwidths of the form

h=coN" (2.10)

would be sensible, where o is set equal to the standard deviation of the uniform
distribution, i.e. ¢ =127%. In Table 5, the value of the constant ¢ was chosen from the
set {0.5, 1.0, 1.5, 2.0}.

When smoothing examples of the simulated data sets, the bandwidth with ¢ = 0.5 in
(2.10) gave the best results to the eye; it also achieved two significant figure accuracy
over most of the range of N, which was better than the other three choices. The overall
accuracy of approximation (2.8) is poor, but improves for the smaller bandwidths and
for larger sample sizes. The simulated values, it should be noted, may themselves lack
precision. First, they are based on the empirical distribution of maxima that are found
by a grid search over [0,1], and are, therefore, likely to be underestimates. Secondly,
the empirical critical value is effectively discretised, being the 951st order statistic from
a sample of 1000 simulated maxima, whereas the true critical value is measured on a
continuous scale. Hence, accuracy to a large number of decimal places would not be
expected.

2.4 Power Comparison

In Sections 2.2 and 2.3, two statistics were described that were designed to detect the
clustering of points along the real line. Methods of approximating critical values for
significance testing were also investigated. This section attempts to compare the Scan
Statistic and the density estimate supremum statistic (DESUP) on the basis of their
ability to identify data that has been sampled from a distribution representing a small
cluster within a larger scale random (uniform) pattern,

The best method for calculating critical values for the Scan Statistic proved to be the
approximation to P(nIN;d) due to Wallenstein and Neff (1987), hereafter referred to as
WN. Resuits for the approximation of Glaz (1989) were almost identical, but required
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greater computational effort. The least accurate of the methods considered were the
quadratic models, (2.3) and (2.4), of which the former, denoted by Q, seemed to have a
slight advantage in that it was marginally simpler. Approximation (2.6} fell somewhere
in between. To indicate the range of figures for power that would be expected for the
Scan Statistic, when using these methods to obtain critical values, only WN and Q are
included in the comparison.

The study was carried out by simulation, for tests at the 5% level. One thousand sets of
artificial data were generated for each technique, sample size and, in the case of WN
and Q, interval length, by sampling from the mixture distribution

2 U(0,1] + (1-p) U(0.5-8,0.5+€], (2.11)

where U(a,b] is the uniform p.d.f. on (a,b], p is a mixture parameter chosen from the
set {0.8, 0.9, 0.95, 1.0} and € = 0.025. The significance level of each test was taken to
be 0.05 and the value p = 1.0 was included to check empirically the level accuracy of
the three methods. Critical values for DESUP were obtained from (2.8), using a
bandwidth of form (2.10) with ¢ = 0.5.

Table 6 summarises the results for p = 0.8, 0.9, 0.95. The power of all three methods
shows the expected increase with sample size and decrease with p. The mixture
parameter has the interpretation of one minus the proportion of events that might be
expected in the cluster, so p = 0.8 corresponds to an average of 20%, for example. The
three methods are clearly more powerful for larger clusters. There is considerable
variability with interval length for WN and Q, with smaller intervals generally giving
greater power. There seems to be evidence indicating that power increases to a
maximum at around d = 1/16, decreasing thereafter. The width of the cluster generated
by (2.11) is 0.05, so it would seem that the power of the Scan Statistic is maximised
when the length of the scanning interval is approximately the same as that of the
interval within which the clustering effect is operating. This observation confirms a
similar simulation result in the discussion of Wallenstein and Neff (1987).

WN is more powerful than Q for p = 0.8 and for large N when p = 0.9, but for a small
cluster there is little difference between them. One feature of Q that is apparent over
the entire range of N and p is the often sharp decrease in power for very small 4.
Examination of earlier results suggests that Q almost always overestimates the relevant
critical value and, hence, that a test based on Q for d = 1/64 is very conservative.
DESUP is usually less powerful than the best results of either WN or Q for a given
choice of N and p.
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p=038 p=09 =095

N d WN Q D! WN 0 D! WN Q D/

20 2/3 0.101  0.101 0.062 0.062 0.053 0.053
1/2 0.114  0.024 0.046 0.006 0026  0.004
1/4 0.180 0.092 0.050 0.013 0.028  0.005
1/8 0200 0221 0.267 | 0.045 0.043 0.070 | 0.019 0.016 0.044
1/16 0237 0.284 0.040  0.056 0.013  0.014
1/32 0.408 0.189 0.102 0.024 0.057 0.010
1/64 0.093 0.123 0.090 _ 0.027 0.005  0.005

50 2/3 0.298 0.314 0.128  0.148 0.074  0.086
1/2 0424 0311 0.181  0.092 0.084 0.032
1/4 0542 0.534 0.135 0.148 0.047  0.061
1/8 0750 0744 0.664 | 0219 0243 0.175 | 0.068 0.079 0.049
1/16 § 0.809 0.808 0.212 0.247 0.053 0.055
1/32 0.806 0.797 0.231 0.265 0.068 0.063
1/64 | 0.715 0457 0.221  0.062 0.079  0.090

100 2/3 0.380 0412 0.118 0.132 0.064 0.057
1/2 0.744  0.632 0285 0.215 0.124  0.083
1/4 0904 0909 0352 0.362 0.097 0.116
1/8 0.959 0963 0964 | 0429 0438 0435 | 0.089 0.118 0.092
1/16 | 0986 0.988 0.534 0550 0.093 0.110
1/32 0981 0948 0481 0.351 0.084 0.039
1/64 0.936  0.647 0.289  0.057 0.053  0.007

150 2/3 0.609 0.611 0.202 0.211 0.081  0.095
1/2 0859 0.798 0332 0.244 0.112 0.078
1/4 0979 0.965 0480 0.414 0.093 0.112
1/8 0998 0999 0999 | 0659 0719 0639 | 0.136 0.203 0.145
1/16 1.000  0.999 0.785 0.791 0.184 0.189
1/32 1.000 0999 0.734 0.639 0.160 0.112
1/64 0.988  0.927 0.504  0.191 0.070 _ 0.013

1. DESUP statistic of Section 2.3. Note that values of d apply only to WN and Q columns.

Table 6:

Empirical power of three tests of one-dimensional

clustering,
alternatives with three sizes of cluster.

overleaf).

using

1000 replications,

against

(Continued
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p=08 p=09 p=095
N d WN Q D/ | WN Q D! | WN Q D

200 2/3 0.802 0.726 0.303  0.260 0.128 0.102
1/2 0967 0916 0491 0.351 0.176  0.102
1/4 0997 0.997 0.642 0.613 0.165 0.166
1/8 1.000 1000 0999 | 0.820 0.853 0.818 | 0.226 0.308 0.232
1/16 | 1.000 1.000 0944 0930 0.362 0.376
1/32 1.000  1.000 0925 0.847 0.349  0.240
1/64 1.000  0.999 0.798  0.466 0.218  0.043

400 2/3 0978 0974 0.505 0.516 0201  0.226
1/2 1.000 1.000 0.786  0.680 0.287 0.248
1/4 1.000  1.000 0944  0.946 0.380  0.390
1/8 1.000  1.000 1.000 | 0990 0.993 0999 | 0.546 0.618 0.565
1/16 1.000 1.000 0999  0.999 0.682 0.738
1/32 1.000  1.000 0998 0.994 0.604 0.604
1/64 4 1.000  1.000 0.992  0.890 0.476 _ 0.135

800 2/3 1.000  1.000 0.818 0.858 0.331 0.408
1/2 1.000  1.000 0980 0.942 0484 0.406
1/4 1.000 1.000 1.000 1.000 0.709 0.670
1/8 1.000 1.000 1.000 | 1.000 1.000 1.000 | 0.890 0911 0.921
1/16 1.000  1.000 1.000 1.000 0967 0970
1/32 { 1.000 1.000 1.000 1.000 0961 0936
1/64 1.000  1.000 1.000 0999 0823 0.511

1. DESUP statistic of Section 2.3. Note that values of d apply only to WN and Q columns.

Table 6: (Continued) Empirical power of three tests of one-
dimensional clustering, using 1000 replications,
against alternatives with three sizes of cluster.
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The level accuracy of all three methods is moderate and the tests are usually quite
conservative. For example, empirical significance levels are displayed in Table 7 for
N =50; a full range of interval lengths is included for WN and Q. Conservatism in the
Scan Statistic may result from a discretisation effect; ie. it may not be possible to
achieve a level of 0.05 in practice, since the statistic can only take integer values. Table
7 also contains columns of empirical levels for WN and Q that were calculated using
critical values that had been reduced by one. For WN, all the levels are greater than
0.03, while five out of seven are greater than 0.05 for Q, suggesting that discretisation
may be a plausible explanation, and that Q's level accuracy may be less than that of
WN. Q is especially poor for d = 1/64, for the reasons noted above.

WN - Q-
d WN reduced? Q reduced! DESUP?

2/3 0.045 0.101 0.046 0.116

1/2 0.043 0.096 0.015 0.037

1/4 0.029 0.066 0.039 0.071

1/8 0.036 0.090 0.039 0.118 0.022
1/16 0.022 0.074 0.015 0.082
1/32 0.029 0.125 0.022 0.115
1/64 0.042 0.232 0.002 0.041

1. Empirical level calculated using critical values reduced by one. 2. Independent of 4.

Table 7: Empirical significance levels for the density estimate
supremum statistic and two critical value
approximation methods for the Scan Statistic, for
N =50. Simulations based on 1000 replications.

Power and level accuracy results have not been included in Tables 6 or 7 for
significance testing by simulation, i.e. by comparing the Scan Statistic for each artificial
data set sampled from (2.11) to the appropriate simulated critical value from the first
column of Table 4. The missing entries are almost identical to those of WN, because of
the close agreement between the two sets of critical values (see Section 2.2.4), and,
hence, the comments regarding the performance and level accuracy of WN apply to the
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simulation technique. Alternatively, one could use a Monte Carlo significance test
(Barnard, 1963; Hope, 1968), in place of the empirical critical values, at each
replication; however, the results should be the same, if allowance is made for sampling
variability.

2.5 Conclusion

The Scan Statistic and density estimate supremum statistic are reasonably effective
methods of detecting clustering in one dimension. For the former technique, the use of
an approximation to P(nlN;d) that may be calculated easily, such as that of Wallenstein
and Neff (1987), is more satisfactory than estimating critical values directly, or using
scanning intervals that are disjoint or discrete and overlapping. Significance testing for
the k.d.e. based statistic may employ an asymptotic result, but the accuracy of the
critical values obtained can be poor. Simulation provides an alternative approach to the
problem that is quite attractive for both methods.

For the simple alternative hypotheses considered, the Scan Statistic was more powerful
than the k.d.e. maximum, provided the size of the scanning interval was chosen to
reflect the scale at which clustering was occurring. If this parameter was mis-specified,
the supremum statistic performed very favourably, although the results were similarly
dependent on an arbitrary constant, i.e. the bandwidth, . The Scan Statistic could also
be regarded as a smoothing technique, e.g. a type of moving average procedure, and
thus both the Scan Statistic and the density estimate supremum statistic can be seen to
share a problem common to all smoothing methods, /.e. dependence on the particular
values of a smoothing parameter.
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CHAPTER 3

THE SCAN STATISTIC IN TWO DIMENSIONS

3.1 Introduction

In one dimension, the Scan Statistic is calculated from counts of points within a
window that moves in a continuous fashion over the unit interval. If we wish to
consider an analogous method in two dimensions, it is natural to generalise the unit
interval to the unit square, [0,1] x [0,1], and the scanning interval to a scanning
rectangle, with sides of length x and v, parallel to the x and y axes, respectively. This
formulation of the two-dimensional statistic was first proposed by Naus (1965b).

Let N events be distributed within the unit square and let
n,, = the number of points within the rectangle [x - u,x] x [y - vyl.
The two-dimensional version of the Scan Statistic is defined to be

S,

Wy = Maxn

xelu,1] v
yelwll

The decision to refer to a particular rectangle by its top right-hand corner is arbitrary,
but convenient for computational purposes. A two-dimensional version of the
algorithm for calculating the Scan Statistic that was discussed in Section 2.2 can be
developed easily, since the observations made previously regarding sufficient coverage
of the region of interest generalise to two dimensions. Each event location is used in
turn as a reference point for a one-dimensional scan, with the first count being made in
the square with top right-hand corner located at the reference event, and subsequent
counts being made when new events enter the square as it scans horizontally; the scan
finishes when the current reference point is dropped by the window. The next event in
the sequence is then selected as the reference point, and the process is repeated. This
algorithm calculates the Scan Statistic correctly, but, as in the case of the one-
dimensional version, does not necessarily scan all possible locations.
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Using notation similar to that of Section 2.2, the tail probability
Pr(S,, = nlN;u,v)
may be abbreviated to
PniN:u,v).

Under the relevant null hypothesis, which is that there is no process operating in the
unit square that would generate clusters, the N events are assumed to be sampled from a
uniform distribution that is defined on [0,1] % [0,1].

Conover et al (1979) describe an application of the theory of one-dimensional Scan
Statistics to the positions on a two-dimensional map of anomalous radioactivity counts
from bismuth-214, which have been measured along parallel flight lines from aerial
reconnaissance aircraft. A finite number of discrete horizontal scans is performed along
the paths of these samples, with the height of the scanning window chosen so that a
given number of lines is included at one time, e.g. three paths. For this application, the
number of points inside a window at a specific location has the same distribution as the
analagous count of points in the one-dimensional case, allowing the exact results of
Naus (1966a), for example, or approximate results for P(nlN;d) to be employed. Those
areas achieving a count exceeding a pre-specified critical value are shaded on a map of
the observations. Further investigation is to be targeted subsequently on areas with a
high density of shading. The algorithm is qualitatively similar to Openshaw et al
(1987, 1988), and may therefore share the deficiencies of that method, which were
discussed in Section 1.2.3. One of the main weaknesses is the dependence between
overlapping, shaded areas, since different passes through the data may share flight lines.

An initial investigation of the behaviour of the two-dimensional Scan Statistic is made
by simulation in Section 3.2. Naus (1965b) presents upper and lower bounds for
P(nlN;u,v), which are discussed further in Section 3.3. The evaluation of empirical
power is undertaken by simulation in Section 3.4, and Section 3.5 summarises the
conclusions of the preceding work. Section 3.6 is in the spirit of an aside; it considers a
problem with multiplicative linear congruential pseudo-random number generators that
was encountered while carrying out the simulations reported in Section 3.2.

3.2 Simulation of Critical Values

Simulation of the Scan Statistic under the null hypothesis stated in Section 3.1 can
provide useful information about the expected behaviour of the test procedure, and
provides a reference point for later work. We will concentrate on the case of a square
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scanning window, a decision made partly for convenience, but also prompted by two
observations that suggest a square may be the optimal shape, in some sense. First, a
comment in Naus (1965b) suggests that, for a given, fixed area of scanning window, a
square gives a higher probability of seeing a large cluster than would a rectangle, in the
sense of maximising P(NIN;u,v) subject to uv = A, A a constant. Secondly, a rectangle
may be more appropriate for situations where there is prior information to suggest that
one co-ordinate direction may be more important than the other for measuring
clustering. In the type of examples used in this investigation, there is no such
anisotropic effect; therefore, subsequent work assumes u = v =d.

N d
2/3 1/2 1/4 1/8 1/16 1/32 1/64
50 34 24 12 7 5 4 3

(0.048)  (0.046) (0.014) (0.018) (0.007) (0.003) (0.014)

100 62 41 18 10 6 4 4
(0.034) (0.043) (0.039) (0.009) (0.032) (0.049) (0.003)

200 113 73 28 14 8 5 4
(0.038) (0.048) (0.050) (0.022) (0.008) (0.034) (0.013)

400 211 132 47 20 11 7 5
(0.049)  (0.044)  (0.036) (0.033) (0.014) (0.006) (0.007)

Table 8: Empirical 5% critical values for the two-
dimensional Scan Statistic, calculated from 1000
simulations. Exact significance levels in
parentheses.

Table 8 displays some empirical 5% critical values and the simulated upper tail
probability to which each corresponds. The results are derived from the empirical
frequency distributions of 1000 replications, with the co-ordinates of events being
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simulated by sampling from the uniform distribution on the unit square. Some of the
tail probabilities are much smaller than 0.05, especially for small 4. It would appear
that the Scan Statistic suffers from a discretisation problem in two dimensions, just as it
does in one, i.e. it may not be possible to attain a significance level of precisely 0.05,
because of the restriction of the statistic to integer values.

The following example helps to explain why there is considerable variability in the
empirical levels in Table 8 for small d. The empirical distribution in the above
simulations for N = 50 and d = 1/2 was

s |15 16 17 18 19 20 21 22 23 24 25 26 27
F |10 35 97 163 217 166 123 94 49 24 15 3 4

where S represents values of the statistic and F the frequency, whereas the empirical
distribution for 4 = 1/32 was

Statistic |1 2 3 4
Frequency | 2 876 119 3

The range of values taken by the Scan Statistic for small 4 is much narrower than that
for larger scanning squares. There is a greater concentration of weight on a few central
values and the tails are shorter. This can lead to a greater difference in the estimates of
P(nIN;d d) for adjacent values of n than would be observed for larger choices of d.

A point of interest is that, for the same value of ¥, the critical values in Table 8 for a
square of side d are of the same order of magnitude as those in Table 4, for the
continuous one-dimensional Scan Statistic for an interval of length d2. This seems
plausible, since the two windows cover the same proportion of their respective regions
of interest.

3.3 Bounds for Tail Probabilities

Naus (1965b) presents upper and lower bounds for P(nlN;u,v) that have the same
limiting form, as # and v tend to zero. If

P'(1:nlV;u,v) = Pr[One and only one set of # points is contained within a # X
v rectangle; no rectangle with the same dimensions
contains more than # points],
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then it is demonstrated that
L<P@nNuyv)<U,
where
L = max{PnIN:u,1)P(nin;1,v); P(nIN;1,v)P(nin;u,l1)}
and

AV
U=P(nIN;u,l)P(nIN;l,v)—{1-—(n) }P’(1:nIN;u,1)P’(1:nIN;1,v).

It is also noted in Naus (1965b) that if either u or v is equal to 1, P(nlIN;u,v) and
P'(1:nlN;u,v) reduce to the one-dimensional Scan Statistic tail probabilities for intervals
of size equal to the measurement that does not have the value of unity. Hence, the
bounds for a d X d, square scanning window can be rewritten in the form

L = P(niN;:d)P(nin;d) (3.1)

and

-1
U={Pl N;af)}2 —{1—(2’) }{P’(l:nlN;d)}z, (3.2

where P'(1:n|N;d) is the one-dimensional equivalent of P'(1:nlN;d,d), in an obvious
notation.

Calculation of the bounds to P(nlV;d,d) from (3.1) and (3.2) requires evaluation of three
probabilities, namely P(rlV;d), P(nln;d) and P'(1:nIN:d). The first two are standard
one-dimensional tail probabilities for the Scan Statistic, for which different exact and
approximate results were discussed in Chapter 2. It is difficult to derive the third
quantity analytically, but it can be estimated empirically by the proportion of those
Scan Statistics equal to n and found at only one location in, say, 1000 simulations,
where N artificial events for each replication are sampled from the uniform distribution
on (0,1].

The best approximation to P(nlN;d) in Chapter 2 was the result of Wallenstein and Neff
(1987), denoted by WN, which was both accurate and computationally undemanding
when used to calculate 5% critical values. Table 9 displays some specimen values of
(3.1) and (3.2) for a scanning square of side d and a sample size of 20, which were
produced using a combination of WN and simulation. The values of 7 included in the
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table were chosen to bracket the appropriate two-dimensional 5% critical values
obtained by simulation in the previous section.

Five of the values for the upper bound are greater than one, which is a worrying feature;
since (3.2) is defined to be the difference of a pair of probabilities, the calculation
should produce a result that is less than one. This behaviour is a consequence of a
weakness in WN that was described in Glaz (1989). When the true value is large, i.e.
when 7 is small with respect to N, WN may generate an approximation to P(nlV;d) that
is greater than one. In addition, the magnitude of the error increases as p = Nd
decreases. The approximations to P(nIN;d) corresponding to the entries in Table 9 are
shown in Table 10. The pattern of WN results that are greater than one matches that of
the upper bounds in Table 9.

WN can be applied successfully to the estimation of tail probabilities for significance
testing in the context of a single dimension, since the relevant quantities are usually in
the range 0.01 to 0.1. Probabilities of this size ensure that 7 is quite large relative to N,
so the result is very accurate. In two dimensions, however, values of n that give tail
probabilities in the above range are much smaller than the corresponding values in the
one-dimensional case. The two-dimensional bounds require the calculation of one-
dimensional tail probabilities for the same choice of 7, and so the WN approximation
has to be evaluated in a region in which its performance is poorer. Table 10 indicates
clearly that WN is unsuitable for calculating (3.1) and (3.2).

A different approach to evaluating the bounds for P(nlN;d,d) is to make use of the
tables of exact values for P(nIN;d) that have been included in, for example, Naus
(1966a) and Wallenstein and Naus (1974). Results from the latter reference cover
sample sizes of up to 100 for a limited range of interval sizes and ordinates, 7. These
have been used in the construction of Table 11, which compares the lower bound (3.1),
the upper bound (3.2) and simulated values of P(nIN;d.d), based on 10000 replications.
P'(1:nIN;d) was also estimated from 10000 simulations, and it is straightforward to
calculate P(nln;d) from the exact probability statement (2.5) in Chapter 2. The choices
of n for which exact P(nlV;d) exist are not ideal for a comparison directed towards
significance testing, since they are generally larger than the corresponding two-
dimensional 5% critical values (see Table 8). This also means that many of the
associated tail probabilities are too small to be estimated from 10 000 simulations.
However, the available parameter combinations may be sufficient to indicate suitable
conditions for obtaining good performance from (3.1) and (3.2).
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d n Lower Bound, (3.1) Upper Bound, (3.2)
1/4 6 5.898 x 103 1.6167
7 1.632 x 103 1.4761
8 3.332 x 104 0.7381
1/16 3 0.0310 7.6197
4 1.115x 103 1.3789
5 2.499 x 10-> 0.0864
1/64 2 0.1183 14.5560
3 4,176 x 104 . 0.2309
4 8.026 x 107 9.841 x 104

Table 9: Examples of the lower and upper bounds, (3.1) and
(3.2), to P(nIN;d,d) for N = 20 events. Calculated
using the Wallenstein and Neff (1987)
approximation and simulation.

WN approximation to P(nlV;d)
1.2715
1.2153
0.8734
2.7604
1.1970
0.3447
3.8152
0.5761
0.0532

1/4

1/16

1/64

AW NG A WO IR

Table 10: Sample values of the Wallenstein and Neff (1987)
approximation to P@INid) for N = 20, for
comparison with Table 9.




Anderson, N.H. (1992) Chapter 3 60

The upper and lower bounds show little evidence of convergence to some estimate of
P(nIN;d,d) over the range of parameters considered, although the absolute difference
between L and U decreases as n and 4 increase and decrease, respectively. It is possible
that a tighter bounding interval might be achieved for much smaller values of d. The
upper bound is often much larger than the simulated value of P(#IN:d.d), although,
again, the error is less for larger # and smaller d. However, noting the above comment
on the available range of n, the greater differences for small #» between (3.1), (3.2) and
the simulated values of P(nlV;d,d) suggest that the bounds are not particularly sharp for
choices of n close to the relevant 5% critical value for the two-dimensional Scan
Statistic.
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N n d Lower Bound Upper Bound Simulation
10 4 1/4 5.012 x 102 0.9675 0.2594

1/6 1.248 x 10-2 0.5040 0.0419
1/8 3.639 % 10-3 0.1786 0.0098
5 1/4 1.050 x 10-2 0.3702 0.0361
1/6 9.295 x 104 4.548 x 102 0.0018
1/8 1.351 x 104 7.097 x 10-3 0.0003
20 7 1/4 1.328 x 10-3 0.9765 0.0399
1/6 7.523 %103 0.2985 0.0008
1/8 5.770 x 106 4.226 x 102 * 2
8 1/4 3.120 x 104 0.6404 0.0056
1/6 6.054 x 106 4.703 % 10-2 *
1/8 2.344 x 107 2.903 x 10-3 *
9 1/4 5.170 x 105 0.2036 0.0008
1/6 3.656 x 10°7 4.542 % 103 *
1/8 7.153 x 109 1.084 x 104 *
30 11 1/4 6.890 x 106 0.7069 0.0007
1/6 2.748 x 108 2.562 % 102 *
1/8 2.724 x 1010 7.012x 104 *
12 1/4 1.286 x 106 0.3168 0.0002
1/6 1.821 x 10 2972 x10-3 *
1/8 9.895 x 10-12 4,375 x 10-5 *
13 1/4 1.931 x 107 9.274 x 102 *
1/6 1.061 x 1010 2,970 x 104 *
1/8 3.347 x 1013 3.360 x 106 *
40 14 1/4 1.368 x 10”7 0.7175 0.0001
1/6 1.078 x 10-10 1.167 x 10-2 *
1/8 2.701 x 10-13 9,776 % 105 *
15 1/4 2.682% 108 0.3729 *
1/6 7.435 x 1012 1.592 x 103 *
1/8 9.038 x 10-15 6.750 x 106 *
16 1/4 4.427 x 10° 0.1379 *
1/6 4,594 x 10-13 1.695 x 104 *
1/8 -1 - *

1. No value of P(nlV;d) available.
2. Simulation estimates tail probability to be less than 1.0 x 104

Table 11: Comparison of (3.1), (3.2) and simulated values of

P(nIN;d,d) based on 10000 replications, using exact
values of P@IN;d) from Wallenstein and Naus
(1974).
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3.4 Investigation of Empirical Power

The level accuracy of a test based on the two-dimensional Scan Statistic is reduced by
the restriction of the statistic to integer values (see Section 3.2). To counteract this
problem, significance testing in the following investigation of power is carried out with
the addition of a Randomised Rule (Gibbons, 1986). If the Scan Statistic calculated
using a square of side d, denoted by S, is compared to a critical value ¢, which
corresponds to an actual significance level of o, where a; < o, and « is the intended
significance level, then the standard hypothesis test rejects HO at the o, level if

S;2c. (3.3)

A test at level o may be constructed by using the following decision rule instead of
(3.3):

reject HO with probability 1 if S, = c;

reject HO with probability ¢ if S, = (c - 1);

do not reject HO if S, < (c - 1). (3.4)

The overall Type I Error for this scheme is

a; + ¢la, - ay),
where «, is the significance level corresponding to a critical value of (¢ - 1), such that
o, > a.. The probability ¢ is chosen to ensure that

CX"'al

o, +éla, -o) =t = = .
1 ¢ 2 1 ¢ 062—051

(3.5)

The power of the Scan Statistic to detect a single cluster alternative was investigated by
simulation. One thousand sets of artificial data were generated by sampling from a
bivariate version of (2.11), the mixture used to evaluate the power of the one-
dimensional test in Section 2.4. Specifically, the p.d.f. of the locations of the events
was

Pﬂ(o,l] + (1 -P).u(k - & k + 8]3 (3.6)

where the mixture parameter, p, was selected from {0.8, 0.9, 0.95}, € = 0.025 and
k= 0.5, 0.75, giving two possible cluster locations. 1J(a,b] represents the bivariate
uniform p.d.f. on the square with lower left-hand corner (a,a) and top right-hand corner
(b,b). Table 12 shows the empirical power of the Scan Statistic in two dimensions
against alternative (3.6), with each test employing simulated critical values from Table
8 and the Randomised Rule (3.4), in order to ensure that an exact significance level of
0.05 was attained. Values of o, and a, in (3.5) were estimated from the empirical null
distributions calculated for Table 8.
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k=05 k=0.75
N d p=0.38 p=09 p=095 | p=0.8 p=0.9 p=0.95
50 2/3 0.521 0.217 0.121 0.390 0.136 0.076
1/2 0.836 0.363 0.159 0.584 0.183 0.071
1/4 0.943 0.504 0.208 0.949 0.509 0.199
1/8 0.971 0.561 0.203 0.969 0.566 0.195
1/16 0.990 0.699 0.278 0.988 0.693 0.259
1/32 0.972 0.636 0.259 0.972 0.635 0.258
1/64 0.887 0.400 0.141 0.889 0.407 0.135
100 2/3 0.842 0.321 0.134 0.697 0.215 0.091
1/2 0.983 0.645 0.288 0916 0.354 0.139
1/4 0.999 0.763 0.270 0.999 0.776 0.241
1/8 1.000 0.926 0.438 1.000 0.930 0.436
1/16 1.000 0.975 0.566 1.000 0.976 0.576
1/32 1.000 0.970 0.595 1.000 0.969 0.591
1/64 0.998 0.783 0.346 0.998 0.785 0.334
200 2/3 0.995 0.602 0.232 0.955 0.419 0.160
1/2 1.000 0.886 0.397 0.997 0.647 0.177
1/4 1.000 0.979 0.541 1.000 0.979 0.546
1/8 1.000 0.998 0.794 1.000 0.997 0.759
1/16 1.000 1.000 0.915 1.000 1.000 0.916
1/32 1.000 0.999 0.887 1.000 1.000 0.888
1/64 1.000 0.988 0.608 1.000 0.989 0.600
400 2/3 1.000 0.863 0.356 1.000 0.720 0.246
1/2 1.000 0.997 0.693 1.000 0.933 0.384
1/4 1.000 1.000 0.884 1.000 1.000 0.900
1/8 1.000 1.000 0.989 1.000 1.000 0.986
1/16 1.000 1.000 1.000 1.000 1.000 0.998
1/32 1.000 1.000 0.994 1.000 1.000 0.995
1/64 1.000 1.000 0.915 1.000 1.000 0.920

Table 12: Empirical power of the two-dimensional Scan
Statistic, with a square scanning window, against
alternative (3.6), with three sizes of cluster (p) and

two locations (k). Based on 1000 simulations.




Anderson, N.H. (1992) Chapter 3 64

The pattern of results for the two-dimensional statistic in Table 12 is very similar to that
of the one-dimensional statistic; ¢,/ Table 6. Power is clearly greater for smaller values
of p, which correspond to larger expected proportions of events in the cluster. Smaller
scanning squares are more powerful, and the best performance is achieved for d = 1/16.
As the cluster defined by (3.6) has approximate dimensions 0.05 X 0.05 and the 'best’
window is 0.0625 x 0.0625, it is apparent that the two-dimensional statistic has greatest
power if the scanning square is chosen to be roughly the same size as the area covered
by the events that have been produced by the clustering effect. Changing the location
of the cluster from the centre of the unit square (¢ = 0.5 in (3.6)) to the top right-hand
corner (k = 0.75) reduces power for the test when d = 2/3 or 1/2. However, the Scan
Statistic appears to be insensitive to cluster location for smaller scanning windows.

3.5 Discussion

The upper and lower bounds to P(®IN;u,v) of Naus (1965b) do not appear to be
particularly useful for significance testing. They lack sharpness overall, and the trend
in increasing separation of (3.1) and (3.2) with decreasing n, observed for the particular
choices of n, N and 4 employed in Section 3.3, suggests a particular weakness for
values of n near the true 5% critical values. The bounds depend on two different one-
dimensional tail probabilities, one of which is not amenable to analytic derivation and
must, therefore, be simulated, and a second, for which the best approximation method
from Chapter 2 does not produce reliable results. These objections suggest that some
form of Monte Carlo method will provide a better approach to assessing the
significance of the Scan Statistic.

Section 3.4 indicates that the power of the two-dimensional statistic is low for small
numbers of events, although it should be noted that the alternative (3.6) is demanding,
since a given realisation may contain only a few (or perhaps no) events that are due to
the clustering component. The results from both Chapters 2 and 3 support the
observation of Wallenstein and Neff (1987), that the power of the Scan Statistic is
greatest when the geographical extent of the cluster is matched by the size of the
scanning window. This suggests a method of choosing the arbitrary constant, d, before
an analysis is undertaken; i.e. to select a window that will be of approximately the same
magnitude as the supposed cluster. However, as this information will be rarely, if ever,
known in practice, this guideline appears to be of limited benefit and applicability. A
better approach may be to carry out several analyses using a range of square
dimensions, and then to apply a suitable multiple comparisons correction to the results.
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3.6 A Problem Encountered with Pseudo-Random Number Generators

3.6.1 Introduction

Simulation of the Scan Statistic in two dimensions requires the production of a large
number of artificial spatial point patterns. The basic assumption of the theory
associated with the statistic is that events are uniformly distributed under the null
hypothesis of no clustering. Therefore, the x and y co-ordinates of each point must be
sampled from independent sequences of uniform (0,1] pseudo-random deviates,
assuming that the unit square is taken to be the region of interest.

The sampling procedure is normally undertaken by employing a multiplicative linear
congruential generator, of the form
(aMx;)mod M
Xy =———, i=0,1,.., 3.7
i+l M (

with the sequence of random deviates, {x; i = 1, 2, ...}, being started by the "seed",
Xy =8/M, where s is specified by the user. A generator of the form of (3.7) produces
only a finite set of distinct values of x;, This set can contain no more than (M - 1)
elements, since

x,=0=>xJ=O,Vj2i+1.

At some point, the sequence {x;: { = 1, 2, ...} must reach a repeated value and so will
cycle through the same set of values, with a given period. The choices of a and M
govern the theoretical maximal period of the generator, which may be less than (M - 1),
and whether or not the actual period, p, attains this upper bound. For example, if
M = 2B 2 16, for some integer {3, then (3.7) has a maximal period of only M/4, which is
attained if and only if 2 mod 8 = 3 or 5 (Ripley, 1987, Section 2.2). Familiar versions
of (3.7) include the generator DURAND within the L. B.M. Engineering and Scientific
Subroutine Library (ESSL) package, in which a = 75 and M = 23 - 1, and GO5CAF
from the NAg FORTRAN Subroutine Library (NAg, 1990), in whicha = 1313 and M =
259,

These commercial generators have been designed to achieve long periods, good
marginal uniformity and insignificant serial correlation, as described in Ripley (1987,
Section 2.2), for instance. Suppose, however, two sequences {x; i = 1, 2, ..., N} and
{rsi=1,2, .., N}, corresponding to the x and y co-ordinates of events in the simulated
data sets, are generated according to (3.7). For some choices of initial seeds x, =s,/M
and y, = s,/M, the standard Pearson product moment correlation between {x;} and {y;}
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is very high. For example, with N = 100, a = 75 and M = 231 - 1, the correlations of a
set of 1000 sequentially generated pairs of pseudo-random sequences had mean 0.49264
and standard deviation 0.09950, with s; = 5 and s, = 10; similarly, for s, = 20 and
s, = 40, the mean correlation was 0.49122, with a standard deviation of 0.09688.
Further experimentation suggested that the magnitude of the average correlation was
independent of both NV and the number of sequence pairs examined.

These results are wholly unacceptable for an application requiring independent sets of
co-ordinates. The following sections identify the source of the problem and the
necessary solutions.

J.6.2 Cross-Correlations of Pseudo-Random Deviates

Examination of point patterns {(x;,p); i = 1, ..., N}, generated from (3.7) with different
seeds (xqp,). suggested that the strength of the relationship between {x;} and {y;}
depends on the ratio yy/x,. Table 13 lists the means and standard deviations of 1000
correlations calculated from simultaneously generated pairs of random deviate streams
of length 100, where y, was chosen to be an integer multiple of x,. The particular
generator in use was DURAND, ie. a = 75 and M = 231 - 1. As the ratio of the two
seeds increases, the strength of the association exhibited declines.

Ratio S, S, Mean Correlation Standard Deviation

2 1 2 0.49585 0.06734
64 128 0.50106 0.07093

4096 8192 0.49568 0.07093

3 1 3 0.33227 0.08419
64 192 0.33543 0.08540

4096 12288 0.32735 0.08596

4 1 4 0.24514 0.08983
64 256 0.24821 0.09490

4096 16384 0.24346 0.08975

Table 13: Means and standard deviations of samples of 1000
cross-correlations between pseudo-random deviate
streams of length 100, generated by DURAND, with
X =5,/M and y, =s,/M, where M = 231 - 1,
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Figure 2 plots four examples of point patterns, each of 100 events that were generated
with seeds in different proportions, revealing the structure underlying the evidence of
dependence provided by the cross-correlations in Table 13. For Figures 2(a) to 2(c), all
the observations lie on a small number of parallel lines in the x-y plane. If

YoM

Xo N2

where n, and 1, are integers with greatest common divisor 1, then the diagrams suggest
that there are (n, + n, - 1) lines, each with gradient n,/n,, at vertical intervals of 1/n,.
Figure 2(d), apparently, has more acceptable behaviour; the ratio y,/x,, in this case, is
non-integer, whereas (a) to (c) have integral ratios of 2, 3 and 4. However when a
greater number of points (e.g. 10000) are included, it becomes clear that here, too, there
is a structural relationship between the {x;} and {y,} streams (see Figure 3).
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Figure 2: Point patterns of 100 events. X and Y streams
generated in parallel from (3.7) witha =75and M =
231 - 1, using seeds s/ and 52 as follows: (a) 1 and 2;
(b) 64 and 192; (c) 4096 and 16384; (d) 13 and 64.
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By the method outlined in Section 3.6.5, it is possible to demonstrate that the following
relationship must hold between {x;} and {y;}.

Theorem 3.1. Suppose sequences {x;: i =0,1, ..} and {y: i =0, 1, ...} are generated
according to (3.7) and that

=M
Jo = i, Xo5 (3.8

where 7, and n, are positive, relatively prime integers. Then, foralli=0,1, ..,

L W/
Vi , xf+n2 , 3.9

for some integer r; € {—(nl -1),....(n, —-1)}.

This result explains the appearance of sets of parallel lines in Figures 2 and 3. It is also
possible to present an approximate argument, based on random variables jointly
distributed on a degenerate sample space but marginally uniform, that indicates the
form of the association between the choice of seeds, x,, and y,, and the cross-correlation
coefficient of the sequence {(x,y); i = 1, 2, ...}, generated by calls to (3.7). This
sequence is, of course, deterministic, so it is only strictly valid to consider its full-period
correlation coefficient, C, where

_ P{fo)’r - (lzxi )(Zyz)} .
Y- oz - F

, (3.10)

the summations are for i = 0 to i/ = p - 1, and the generator has period p. Exact
calculations are often possible for the serial correlation coefficient of a single sequence
from a linear congruential generator, in terms of generalised Dedekind sums, as
discussed in Section 3.3.3 of Knuth (1981). We failed to construct an analogous exact
calculation of C as given by (3.10). As Knuth (1981, p.88) points out, however, such
exact computations are indeed difficult, but, if p is large, useful approximations are
available by averaging over all real values, rather than the discrete set realised by the
generators. The exercises on p.88 of Knuth (1981) show how effective such
approximations can be, and Theorem 3.2 represents a further manifestation of the
usefulness of this approximate approach.
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Theorem 3.2. Suppose (X,Y) are a pair of random variables with probability density
function

flx,y) {> 0. my)es, (3.11)

=0, otherwise,

where S is the sample space made up of the intersection of the unit square {0 <x <1} x
{0 <y <1} and the set of parallel lines {y = (n,/n,) x + (*/ny); r=-(n, - 1), ..., (n, - 1}.
Suppose also X ~ U(0,1], ¥ ~ U(0,1] and g is the correlation coefficient between X and
Y. Then

0= ().

The proof of Theorem 3.2 is also given in Section 3.6.5. The result suggests that the
correlation between streams {x;: /=1, 2, ...} and {y;: i =1, 2, ...}, calculated from seeds
in the ratios 2:1, 3:1 and 4:1, should be approximately 1/2, 1/3 and 1/4, which
corresponds closely to the empirical results of Table 13.

3.6.3 Remarks About Existing, Related Literature

The two-stream random number generation process described in Section 3.6.1 can be
expressed as a single, matrix generator of the form
X, = Ax; (mod M), (3.12)

where x! =(x,,;), in our previous notation, A = a I,, where I, is the 2 x 2 identity

matrix, and x} =(x,, _yo) is used as a two-dimensional seed. The generator defined by

(3.12), but for more general A, has a substantial literature, some of which identifies
potentially worrisome dependences, although none of them is precisely of the form
encountered in Section 3.6.2.

Grothe (1987) considers both period length and a method for constructing a maximal
period matrix generator. Eichenauer-Herrmann et al (1989) consider the case where the
modulus M = p® for p prime and ¢ > 2. They derive the maximal period length and
show how to construct a generator that achieves it. In the review paper of L'Ecuyer
(1990), the discussion is written in terms of matrix generators, treating the scalar
version simply as a special case.

Afflerbach and Grothe (1988) consider the properties of

T r T T .
¥ =(aF Xl xl) 11,23,
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where the {x;} making up y, are a set of 1 r-dimensional vectors (* = 2 in our context).

They provide a description of the lattice structure of a matrix generator in nxr
dimensional space. They also comment that this information is relevant to assessing the
independence of a sequence of n pseudo-random vectors and not just the distribution of
the y;. A basis for the lattice on which the vectors in the latter situation lie, with » and
A chosen to correspond to those of our context, is formed from the 2r column vectors
of

(1, 0 \
al, MI,

However, this does not seem to be the cause of the patterns in our case, which are
related to the starting values x, when the multiplier is of the form A =a L,.

Of greater relevance is Durst (1989), who suggests two methods of generating parallel
streams of random deviates: either a single sequence, split at random locations, or many
different sequences, each using a different multiplier, a. The inference from Durst
(1989) is that using the same multiplier for each sequence would not give satisfctory
results. In the case of a modulus of the form M = 2¢, for some e, Durst (1989) states
that two maximal period multipliers, a, and a,, will satisfy

a, = a}, for some odd j, (3.13)
and that, if

j=1 (modze"), r>2, (3.14)

then the pairs (a{‘ ,a'z‘) lie on at most 2 ™2 lines. Since X, = {a” mod M} X, (mod M) for

each sequence, @* is equivalent to X, in some sense. Therefore, a small value of j in
(3.13) would lead to strong dependences. If a;, = a, thenj = 1 in (3.13) and (3.14) is
satisfied for all 2 < r < e and for r = 2 as well, although this latter case is not allowed by

the result. If » = 2 could be regarded as a pathological case, we have (a{‘ ,ag) lying on a

single line and, therefore, the worst case of dependence. The results of the previous
section suggest that this observation may extend to multipliers other than M = 2¢, such
as those of the form M = 2/- 1, e.g. DURAND with /= 31.
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The paper of Fishman and Moore (1982) is also of interest here. They consider the
behaviour of, amongst others, the generator with multiplier 7° and modulus 23! - 1
when used to produce non-overlapping ¢-tuples for ¢ = 1, 2, 3. Its overall behaviour is
found to be unsatisfactory by testing the uniformity of 100 sequences of ¢-tuples, each
sequence being of length n/t for ¢t = 1, 2 or (n - 2)/t for ¢ = 3, where n = 200000.
However, the vectors were all generated from within a single sequence and so the paper
does not address the problem of dependence due to seed choice.

3.6.4 Discussion

Theorem 3.1 demonstrates that a very strong structure is inherent in the parallel
generation, from different starting points, of two sequences of pseudo-random deviates
by any simple multiplicative linear congruential generator. The potential for error is
great in any application that may require, or receive accidentally, two or more
initialisations, especially when one seed is an integer multiple of the other. The pattern
discussed here would clearly carry over to any transformed versions of the two
sequences, e.g. the generation of deviates from a distribution other than the uniform by
an inverse transform method (Rubinstein, 1981).

The problem can, of course, be dissipated easily, in practical terms, by generating the
two sequences in series from a single seed. In the case of the generator DURAND,
however, the results of Fishman and Moore (1982), described in Section 3.6.3, indicate
that the independence of 2- and 3-vectors produced in this way may be suspect. Other
solutions include following the recommendations of Durst (1989), regarding the
random splitting of a single sequence, or the use of a more sophisticated generator, such
as RANMAR or RCARRY, described by James (1990).

A final comment relates to the NAg subroutine GOS5CAF. Use of this generator is
normally preceded by a call to an initialising routine, GOSCBF, with the intended seed,
s, as an argument. GO5CBEF carries out a preliminary transformation of s to
s’ =2s+1,

so that two sequences generated from seeds s, and s, would have, effectively, the seeds
2s;+1and 25,+ 1. A plot of {x;} versus {y,} would therefore show, for example, 7
"lines" of gradient 5/3, for s; = 1 and s, = 2, rather than 2 "lines", each with gradient 2,
as might otherwise be expected.
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3.6.5 Proofs

Proof of Theorem 3.1

We prove (3.9) by induction. The case i/ = 0 is true by definition, from expression
(3.8). Therefore, assume (3.9) is true for i = k£ and demonstrate that it holds for
i=k+1.

First, note that

an,Mx, + aMr,
(aMy, )mod M m n,
M M

JmodM

Y =

(In the following argument, K, K,, K3, K,, L,, L,, L4, L, and L are integer constants.)
Let

anMx, +aMr, =KM +L, +aMr,=K,M + L, (3.15)
and let
“”ka +“1’Zrk =K;M+L,. (3.16)
Then, from (3.16),
anMx, +aMr, = n,K.M + n,L, . (3.17)

Since n, € Z, n,L, € Z so we can fix an integer p such that
M <nl,<(@p+1)M
forp € {0, ..., (n,- 1)} and write n,L, = pM + L, and therefore, from (3.17),
anMx, +aMr, = (n,K; + p)M + L.
Compare this with (3.15) to see that L, = L, and hence

L, =0t
ny

From (3.16),
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_ (anlMxk)modM_i_pM. (3.18)
n, n,
From the derivation of (3.15) it is clear that
anMx, =K.M + L,. (3.19)
Let aMx, = K,M + L,. Then
anMx, =n,KM +n\L,. (3.20)

Now fix ¢ such that
gM <n,L,< (g +1)M,

for g € {0, ...., (n; - 1)}, and write n,L, = gM + Ls. Comparing (3.19) with (3.20)

suggests that L, = L, and, hence, that

Li=nL,-qM,
or that
(@anMx) mod M = n,{(aMx,) mod M} - gM.

Substitute this into (3.18) to obtain

=_n_1(aMxk)mOdM+p-q

Y

n, M n,
ny Ten

==X t—,
n, ny

where ., =p - g, with p such that

pM<n, {[anlMx" L+ aMn ]modM} <(p+1)M,
n; n,

forp € {0, ..., (n,- 1)}, and ¢ such that
gM < n {(aMx))mod M} < (g + 1M,
forg € {0, ..., (n, - D}
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Proof of Theorem 3.2

Let X and ¥ be two uniform random deviates, related by the expression

y="x R (3.21)
n; n,

forRe {-(n,-1), ..., (n;-1)}. Then

xy="1x2 . Ry

n, n,
and so
noa X
E(XYIX)=—+X*+—E(RX). (3.22)
n, n,

Further progress requires information about the distribution of R, conditional on X.
Asymptotically, this distribution is a discrete uniform distribution, as can be justified by
considering the (joint) distribution of X and ¥. The joint sample space, S, for X and ¥
consists of a set of parallel line-segments in the unit square, as shown for example in
Figure 4 for the case n; = 3 and n, = 5. Thus the joint density of X and Y is degenerate,
concentrated on the above degenerate (in a two-dimensional sense) sample space.
Suppose we consider an arbitrary subset of S, of length & > 0. It is clear that, in order
that both X and Y have marginal uniform distributions, the probability of (X,Y) falling
in that subset must be proportional to 6. In other words, (X,Y) are jointly uniformly
distributed on their sample space. (The flx,y) defined in (3.11) is constant on S.) From
this it follows that, given X, R (which is then equivalent to ¥) is uniformly distributed
on its finite sample space.

To follow up the implications of this for IE(RIX) it helps again to refer to the exemplar

provided by Figure 4. For example, at A the values of R which are available are 0, 1, 2,
wes (15 - 1) and so

E(RIX = A4) =(n, -1)/2.
Similarly, for X = B the range of R is -1, 0, 1, ..., (n, - 2), which implies
E(R X =B)={(n,-1)/2} -1.
Hence, in general,

E(RX) = {(n2 —1)/2}—i, for ifn, < X< (i+1)/n,,

fori=0,1, .., (1, - 1). Using (3.22), we have
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E(XY) = E{E(XYIX)}

=4 E(x?)+ = [ ¥ ERIX)dx
n, ny 70

_ n _1_ _ (i+1)/n1
- 3n, +n2 | -[ z’jr/nx ]

_m  1[m-1 1 "‘“li(21‘+1)]

+
3n, m| 4 nlel 2

3n, 4 4n, 2nfn, 6

1
12,

1
==+
4

Hence

_ E(XY)- E(X) E(Y)
- JVar(X)Var(Y)

i1 11
4 12nm, 22
T 1

1212

= (’11”2 )—1 ,

since X and Y are marginally uniform (0,1].
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0 113 2/3 1

Figure 4: Diagram of the joint sample space for uniform
random variables X and Y, which are related by
expression (3.21), representing parallel pseudo-
random deviate generation with n, = 3 and n, = 5.
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CHAPTER 4

CORRECTING FOR A NON-UNIFORM NULL DISTRIBUTION

4.1 Introduction

The previous two chapters assumed that, in the absence of any clustering effect in the
region of interest, the distribution of the type of events under consideration would be
uniform. In practice, however, geographical features, natural variation or some other
factor may ensure that the distribution under the null hypothesis is markedly non-
uniform (Bithell, 1990; Diggle, 1990). For example, human populations aggregate into
high density (urban) areas surrounded by low density (rural) ones. Thus, it would be
reasonable to expect that cases of a particular disease would occur more frequently in
the former regions than in the latter, and that a map of cases displayed without
reference to the population baseline would exhibit apparently significant clustering in
the areas of high population density. This type of clustering is not of interest, in
general; it is necessary, therefore, to correct for this effect, and then to search for
aggregation that may have been caused by a factor with more aetiological relevance.

A method of allowing for the type of problem described above in analyses employing
the one-dimensional Scan Statistic was described by Weinstock (1981). Instead of
using a scanning interval of a given magnitude, d, the technique allows the length of the
interval to depend on the null probability density function of events. If the region of
interest is the interval [0, A], in which N events are distributed with p.d.f. (), then the

length of the scanning interval with right hand boundary at x € [0, A] is denoted by §,
where & satisfies

[ roa=k, (4.1)

and £ is a pre-specified constant, which takes the place of the constant 4 in the standard
analysis. If [0, A] represents time, and the events are cases of a human disease, k£ has
the interpretation of the (constant) number of person-years at risk occurring inside the
(variable length) scanning interval.
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This correction ensures that the expected number of cases in the window under the null
hypothesis remains the same for all locations. Thus, if £ = d/A, say, and the Scan
Statistic calculated using this procedure is #, then the corresponding tail probability is
obtained from the theory for the original statistic, as discussed previously; ie.

Pr(Scan Statistic = n | N, k =d/A) = P(nIN:d),

where P(nlN;d) is the quantity defined in Section 2.2. If A() in (4.1} is the uniform
p.d.f., d =k, Vx, and we recover the method of Chapter 2.

The true p.d.f., f{*), will not usually be known, so that practical implementation of (4.1)
will require its replacement by some estimate f (-). The use of a kernel density estimate
(Silverman, 1986), which could be calculated from a sample of controls representing
the population at risk, to replace f{) in (4.1) is investigated in Section 4.2, as well as
ways of simplifying the computational process. Section 4.3 generalises the method to
two dimensions and Section 4.4 discusses the results obtained and suggests a simpler
and more robust implementation of the technique.

4.2 Investigation in One Dimension

The aim of this section is to present a method of calculating 8 from (4.1) that is
straightforward to employ in practice. For clarity, it is presented first for the one-
dimensional case, then generalised to two dimensions in the next section, although the
results of this section may be useful for certain applications in their own right, such as
the detection of clustering in time.

4.2.1 Computational Considerations

Assuming for the moment that the null distribution, f{*), is known, the first step in
solving (4.1) is to approximate the integral by some simple numerical rule, such as
Simpson's Rule or the Trapezoidal Method. Table 14 compares the accuracy of the two
techniques for small numbers of knots at a range of coordinates within the unit interval.
Each coordinate, x, forms the upper boundary of a scanning interval, the magnitude of
which is estimated by solving

[ fode=025 (4.2)

for 8, using the Bisection Method (Press et al, 1989), where f{*) is taken to be the p.d.f.
of the Be(3,3) distribution. Subsequently, values of the integral
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[ roar

are approximated using each of the numerical methods and the interval sizes, 9,
obtained from (4.2). These are listed in Table 14. The best balance between simplicity

and accuracy is achieved by Simpson's Rule with three knots, leading to the
approximation

[ 0dt=S{r G- +476-18)+ f)}, “.3)

with the magnitude of the associated error term being

f(4) (t)l'

|E| < 55£~, where M = max
2880 te(x—6,x)

Coordinate Trapezoidal Rule Simpson's Rule
(x) 2 knots 3 knots 5 knots 3 knots 5 knots
0.3835 0.259803 0.252201 0.250537 0.249897 0.249993
0.5194 0.256813 0.251587 0.250390 0.249898 0.249999
0.5328 0.256702 0.251564 0.250385 0.249988 0.249999
0.6789 0.257539 0.251751 0.250430 0.249982 0.249999
0.7556 0.259137 0.252082 0.250509 0.249961 0.249997

Table 14: Comparison of different numerical integration rules
over a range of coordinates in the unit interval.
Integral is area under Be(3,3) p.d.f. bounded by a
scanning window with length estimated from (4.2)
and right-hand boundary at x.

Rather than evaluating the function, f*), at three different coordinates, the second step
in this implementation of (4.1) is to replace flx - 8) and f{x - 2 6) in (4.3) by their
Taylor expansions. By discarding terms after the first derivative, (4.1) may be
approximated by the quadratic equation in &
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-3 (x)8%+ f(x)6-k =0, (4.4)
or by the cubic
Lr7(x)8 =L f'(x)8% + f(x)6 -k =0, (4.5)

if terms after the second derivative are neglected. The remainder terms are of the form
¢, 62 for the two first order expansions that lead to (4.4), and ¢, & for the second order

expansions. Hence, the accuracy of each approximating step is proportional to a power
of d.

Since a polynomial of degree p will have p zeros, some of which may be complex, an
heuristic rule for choosing the correct solution of (4.4) or (4.5) is to let & equal the
smallest of the real zeros within the allowable range, [0, x], at coordinate x. We are not
aware of any rigorous justification for this observation. If x is small enough, so that

[reae <k,

then no solution of (4.4) or (4.5) will be permissible. However, any length of scanning
interval greater than x can in fact be used safely at the lower edge of [0, Al, since the
count of cases falling inside it will remain the same, whatever value is used for 8.

The null distribution of events is again assumed to be Be(3,3), so that A = 1, for Table
15, which compares interval sizes calculated from (4.4) and (4.5) with an 'exact'
solution, found by the Bisection Method, at four coordinates, x, for five different
choices of k =d. Expression (4.5) is reasonably accurate for the range of coordinates
and choices of d examined, while (4.4) is less effective, particularly for larger d,
although its accuracy is still adequate. Both approximations are weak in the upper tail
of the distribution, where values of the p.d.f. are small and, thus, numerical instability
in (4.4) and (4.5) is more likely. In a repeated analysis, with {*) chosen to be Be(2,2),
accuracy in the tails improved for both expressions. The Be(2,2) distribution is 'flatter'
and 'wider' than Be(3,3), so values of the former p.d.f. tend to be larger than those of
the latter at the same coordinates in the tails of the densities.
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X Interval d
From 1/4 1/8 1/16 1/32 1/64
0.3943 4.1) 0.194639 0.079900 0.037931 0.018583 0.009208
4.4) 0.172394 0.078500 0.037787 0.018567 0.009206
(4.5) 0.205260  0.080008 0.037935 0.018584  0.009208
0.5971 4.1) 0.135901 0.069020 0.035114 0.017758 0.008936
4.4) 0.130285 0.068235 0.035007 0.017744 0.008935
4.5 0.135519  0.068990 0.035112 0.017758 0.008936
0.6735 4.1) 0.146698 0.077772 0.040632 0.020873 0.010595
4.4) 0.140967 0.076843 0.040493 0.020854 0.010593
4.5) 0.145653  0.077673  0.040623  0.020872  0.010595
0.9171 “4.1) 0.279656 0.190731 0.129036 0.085071 0.053892
(4.4) 0.319723 0.214730 0.141287 0.090429 0.055849
(4.5) 0.251269  0.180291  0.125507 0.084044  0.053650

Table 15: Scanning interval sizes at coordinates x, calculated
from (4.1), with k=d, and the two approximate
polynomials, (4.4) and (4.5); f(*) is assumed to be
Be(3,3).

4.2.2 Introduction of a Kernel Estimator

Naturally, in real applications of the Scan Statistic, the true distribution of events under
a null hypothesis of no clustering will be unknown. Therefore, implementation of a

correction based on (4.1) will require the replacement of f{-) by some estimate f (). Ifa

control sample from the population from which events are assumed to derive is
available,

{fp 1.

say, then a suitable estimate of f{*) may be calculated using non-parametric kernel
density estimation. This technique was previously discussed in Section 2.3 and is
studied in detail by Silverman (1986). Given a kernel function, K(-), and a smoothing
parameter, &, f{*) is estimated from the controls by

1 & (x=Y,
NchZK( h )

=1

Flo)=
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This is a particularly convenient estimator for our purposes, since its mth derivative is
readily available, viz

A 1 e x-Y )
(m) (m) i
= > KM =—L ),

i=1

providing K(-) is sufficiently differentiable, and where a superscript "(m)" indicates an
mth order derivative. Therefore, the estimate, (-), and all the derivatives required by
(4.4) or (4.5) can be calculated on a single pass through the data.

Table 16 provides an example of the procedure, by comparing simulated 5% critical
values obtained for the standard Scan Statistic of Chapter 2 to values obtained for a
statistic applying (4.4), using control samples of size 50, 100 or 200. The observations
(events and controls) were sampled, under a null hypothesis of no clustering, from the
mixture distribution

14 U(0,1] + 3 Be(3,3), (4.6)

which has greater probability mass in the tails than the Be(3,3) distribution used
previously, making the estimation of interval length easier and more robust. Since the
tails are important in the calculation, the null density was estimated using an adaptive
kernel method (Silverman, 1986, pp. 100 - 102). In this approach, a rough pilot
estimate is computed initially, to obtain information about the locations of high and low
density areas. A second estimate uses the pilot's guidance to add more weight to low
density regions. A sensitivity parameter, o, controls the influence of the pilot on the
final estimate; Table 16 was calculated with a = Y.

Both the initial and final estimates used Gaussian kernels and the smoothing parameter

h=0.9AN%, 4.7)
where
A =min (5, r/1.34),

s is the sample standard deviation and r the interquartile range of {Yl,...,YNc}. The

bandwidth (4.7) was suggested as a widely applicable smoothing parameter for use with
a Gaussian kernel, by Silverman (1986, pp. 47 - 48), to increase robustness to skew or
bimodal distributions. It is obtained by modifying the bandwidth that minimises
approximate mean integrated square error in an intuitively sensible way. The results in
Table 16 are based on 1000 replications.
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N d Uniform Mixture Null Distribution, (4.6)
Null Numbers of Controls
50 100 200
20 1/4 12 16 13 14
1/8 9 11 10 9
1/16 7 8 7
1/32 5 6 6 5
1/64 5 5 5 5
50 1/4 23 31 30 30
1/8 15 22 20 18
1/16 11 15 13 12
1/32 8 10 9 8
1/64 6 8 7 7
100 1/4 39 53 58 51
1/8 25 33 32 27
1/16 17 20 18 18
1/32 12 13 12 12
1/64 9 10 9 9
150 1/4 55 105 82 74
1/8 34 56 57 39
1/16 22 31 29 23
1/32 15 19 18 15
1/64 11 13 13 11

Table 16: Simulated 5% critical values for the Scan Statistic,
assuming a null distribution that is either uniform or
of form (4.6), but using correction (4.4) with an
adaptive kernel method in the latter case. Based on

1000 replications.
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The agreement beween the empirical critical values for a uniform null distribution and
those based on (4.6) improves as the number of controls increases, since a larger N,
suggests an improved estimate of f(*). However, the accuracy of the correction for
d =1/4, 1/8 is still relatively poor, even for N, = 200. With smaller values of 4, both
the numerical integrations and the Taylor expansions will be more accurate. As
previously indicated, the error of each approximation depends on &, for various positive
integers, /, and a small 4 implies a correspondingly small value of 5.

To investigate the source of error in Table 16 in more detail, the same type of
simulation study was carried out again, first by assuming that the null distribution of
events was known and equal to the mixture distribution (4.6), and secondly, by
generating control samples from U(0,1]. The former analysis was included to assess the
contribution of the kernel density estimation procedure to inaccuracies in the correction
method, and the latter to assess whether or not the shape of the null distribution was
actually affecting the empirical critical values obtained, contrary to theoretical
expectation. Table 17 compares the results of the above two simulations with the
uniform null distribution results of Chapter 2, with each entry being calculated from the
empirical distribution of 1000 replications. Use of an exact null distribution allowed
S} and f’(x) to be evaluated precisely for the solution of (4.4) for &, whereas the
second analysis described above required the calculation of kernel density estimates
from samples of 100 controls, using the adaptive procedure referred to earlier, with a
bandwidth, %, calculated from (4.7). A modification included to improve the estimation
of the uniform distribution in the latter case was to employ wrap-around edge
conditions, i.e. to add the probability mass of the estimate that fell below the lower
boundary of [0,1], due to individual kernels overlapping the edge of the interval, to the
upper tail of the density estimate, and vice versa. This was accomplished by using
estimates of the form

sy 1 & (x-1-Y, x-Y, x+1-¥,
fip) = chg{x(———-h Jr(2 ) (22 )} “8)

It should be noted that, although (4.8) is apparently of the wrong form for the estimator
of a p.d.f. (since it will integrate to the value three on (—o0,0)), we are interested only

in an estimate of a density for the interval [0,1], on which the ordinary kernel estimator,

F6), will integrate to a value usually less than one. On the same domain, fw () will

better approximate a probability density function in terms of its integral. However, this
may still fail to achieve a value of one, particularly if the kernel chosen has infinite
support, as the following, simple example demonstrates.
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Example

With only N, = 2 data points, ¥, = 0.1 and Y, = 0.9, Gaussian kernels and a smoothing
parameter of 2 =1,

Fe)= 5= S enpl -4 17)

fe=l

and
Fiw (%) = 2‘/12—” !z;[exp[—-%{x—-(}'} +1)}2]+exp{—%(x - Y,)z}
rexp]~4{x- (-] |
Then,
[~ f)ax=1,
clearly, but
[ Fx)ax =0.3557
and

1 A
ju Fip(x)dx =0.8356.

The substitution of an exact distribution in place of the k.d.e. does not improve the
accuracy of the empirical critical values. In fact, for d < 1/8, accuracy usually
decreases, while for small d, the uniform and exact results are very similar. This
suggests that something other than the kernel estimation procedure is mainly
responsible for most of the error in Table 16, although, as that table demonstrates,
improving the precision of the estimate clearly does improve accuracy. This latter
observation also indicates that the correction method will be sensitive to the value of the
smoothing parameter, /#, which also affects the accuracy of f (). The second set of
results in Table 17 is very similar to that obtained previously for 200 controls;
therefore, the shape (or non-uniformity) of the null distribution does not explain the
magnitude of the inaccuracy for large d. Hence, it seems likely that the main constraint
on the implementation of (4.1) described in this section is the precision of the numerical
integration rule, (4.3), and Taylor expansions, (4.4) or (4.5), rather than any other
factor.
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N d Uniform Exact Mixture Sample from
Null Null, (4.6) U(0,1] + (4.8
20 1/4 12 17 13
1/8 9 9 9
1/16 7 6 7
1/32 5 5 5
1/64 5 4 5
50 1/4 23 44 28
1/8 15 19 17
1/16 11 11 11
1/32 8 8 8
1/64 6 6 6
100 1/4 39 95 53
1/8 25 45 29
1/16 17 17 18
1/32 12 11 12
1/64 9 8 9
150 1/4 55 148 78
1/8 34 71 40
1/16 22 24 24
1/32 15 15 16
1/64 11 10 11

Table 17: Simulated 5% critical values for the Scan Statistic,

comparing uniform null results to those calculated

using

correction (4.4), assuming the

exact

distribution (4.6), or using an adaptive k.d.e.,
calculated from 100 observations drawn from
U(0,1]. Based on 1000 replications.
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4.3 Generalisation to Two Dimensions

Working by analogy, it is possible to extend the methods of Section 4.2 to two
dimensions. The region under consideration is taken to be [0, A] x [0, B], defined on

which is a two-dimensional p.d.f. representing the distribution of events under a null
hypothesis of no clustering. In Chapter 3, this density was the two-dimensional
uniform p.d.f.

(ABY?; 0<x<A,0<y<B,

fx,y)= {0 (4.9)

: elsewhere,

with A =B = 1. A square, with sides of constant length d, scanning over [0, A] X [0, B]
in a continuous fashion would always bound a fixed volume under (4.9) of d?/AB.
Therefore, if f(*,) is some non-uniform p.d.f., then the length of the sides of the
scanning square with top right-hand corner at coordinates (x,y) is 8, where & is chosen
to satisfy

2
[[ ssndsar “‘g’g =0. (4.10)

4.3.1 Numerical Procedures

To reduce (4.10) to a simpler equation for §, it is possible to use a numerical integration
rule and Taylor expansions of f{:,:) at coordinates other than (x,), by applying them to

each coordinate direction in turn. To demonstrate this, the following example uses
Simpson's Rule with 3 knots and expands terms of the form fix — 8, y) and f(x — 128, »)
to third order.

Example Let I = j:_s E-a f(s,t)dsdt.
Jj_sf(s,t)dt =-g—{f(s,_y-é')+4f(s,y—-«_’,;8)+f(s,y)}

“g‘[f ©.)) =& (.0 +48° 1, (5.9) ~ 48 f (5.9

+4{f (5.) -1 &, (5.0) +1 8%/, (5,0) = 8 frn (5.9}
+f(s,0)]

=fs. )8 -% 1, (s.0)8% +1 £, (s,)8° =& £ (5,)8*
=g(s,y), say,
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where a subscript s or ¢ represents a partial derivative with respect to the first or second
coordinate direction, as appropriate, and multiple subscripts represent higher order
derivatives. Then, '

I= j:_ ;8 ds
~g(x, )8 ~1g,(x, )8 + 18, (x,0)8° — kg, (x,) 8
=1

approx’

where

Lo = F )82 = 1{£, e ) + £, e, )} +{4 £, e, 9) + 3 £, (0, 0) + 4 £, (x,9) }6°
& foss ) 55 S )+ fo (0 ) + 25 fr (2,0) } 65
H g frsst 02 + % oo (0.9) + &5 fre (2,9)}6°
— 2 1 oo ) + fre e ) 367 + 2l S (4, 0) 85, 4.11)

By discarding terms of the appropriate order in the argument above, it is clear that the
equations for & that approximate (4.10), and that are based on first, second and third
order Taylor expansions, are respectively

2
1 £ e )8 —1{f, e, )+ £ (x,0)}8% + £ (x, )62 —%B? =0, 4.12)

3 fooe D)8 =S { £ ) + £, e} +{L £ e, 0) +1 £, (o) + 1 £, (2, ) )¢

2
— L o)+ £ e ) )83+ £ (x,0) 8 ~~?A§ =0 4.13)
and
d2
Iapprox - 'A'—B' =0, (4.14)

where I, is as defined in (4.11).
'The zeros of these polynomials in & may be found numerically to a good degree of
accuracy by, for example, the routine CO2AGF from the NAg FORTRAN Subroutine
Library (NAg, 1990). The algorithm used by this procedure was proposed by Smith
(1967) as a modification of the iterative scheme called Laguerre's Method.
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If we assume that f{*,") is known and integrable, it is possible to compare (4.12), (4.13)
and (4.14) with the exact result (4.10), which may be expressed as a polynomial
equation for & by evaluating the double integral analytically. If f(,) is taken to be the
two dimensional equivalent of (4.6), i.e.

Sap) = Y% ubky) + 34 bxy), (4.15)

where u(x,y) is the p.d.f. of the two-dimensional uniform distribution on the unit square
and b(x,y) is the p.d.f. with coordinates that are independently Be(3,3), then (4.10) is a
polynomial of degree 10, the zeros of which may be found by a numerical procedure, as
discussed above. The same heuristic rule that was applied in Section 4.2, regarding the
selection of the smallest real, positive zero, may be used here.

N Method d
1/4 1/8 1/16 1/32 1/64
20 (4.10) 7 5 4 3 3
4.12) 8 5 4 3 3
(4.13) 9 5 4 3 3
(4.14) 8 5 4 3 3
50 (4.10) 12 7 5 4 3
4.12) 18 7 5 4 3
(4.13) 15 8 5 4 3
(4.14) 11 7 5 4 3
100 (4.10) 19 10 6 5 3
4.12) 34 10 6 4 4
(4.13) 26 12 6 4 4
(4.14) 18 10 6 4 4
150 (4.10) 23 12 7 5 4
(4.12) 52 14 7 5 4
{4.13) 36 17 7 5 4
(4.14) 24 11 7 5 4

Table 18: Simulated 5% Scan Statistic critical values (100
replications) with the exact null distribution (4.15)
and the exact, (4.10), or approximate, (4.12) to
(4.14), correction methods.
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A simulation study was carried out to compare the accuracy of (4.12), (4.13) and (4.14)
to (4.10). For different choices of N and d, events were drawn from the density (4.15),
and, throughout, the null distribution was assumed to be of this form also. For each of
100 replications, the Scan Statistic was calculated, using either the exact correction or
one of the three above approximations; given (4.15), it is straightforward to calculate
the partial derivatives required by the latter methods. Empirical 5% critical values
derived from these simulations are displayed in Table 18.

As would be expected, the results for (4.10) correspond almost exactly to the simulated
critical values for the original two-dimensional Scan Statistic; ¢f Table 8 in Chapter 3,
which is based on 1000 replications. The differences, for N = 100, are minor and
attributable to sampling variability and the smaller number of replications. The
accuracy of the approximations is very good for small d, and for the whole range of
constants for (4.14), but (4.12) and (4.13) are much poorer for d = 1/4, 1/8. As in the
one-dimensional case, this may be explained by the role of § in the error and remainder
terms of Simpson's Rule and the Taylor expansion.

However, a weakness of the approximations is that, at some locations in the unit square,
the resulting polynomials may have no real zeros, or the smallest real and positive zero
may be larger than unity, This was also observed in Section 4.2, Near the boundary,
the problem may arise because there is, in fact, no solution to (4.10); that is, for (x,)
near the left-hand and lower edges of [0,1] X [0,1], the largest possible & that ensures
the scanning square remains completely contained within that region, i.e. 8 = min(x,y),
is such that

J.:_g Jj_ S0 dsdt < 42,

Away from the boundary, the approximation to the exact equation for & may simply
break down. In the simulations reported above, and later in this section, the occurrence
of either error was flagged. If all zeros returned by the numerical root finding
procedure were complex, a value of zero was returned for &; if & was real but larger
than one, the value was left unchanged. Table 19 contains some examples of the total
numbers of the two types of error counted over each set of 100 replications used to
form Table 18. The increased frequency for larger N is an artefact of the algorithm
used to calculate the Scan Statistic. Each event in turn forms the focus of a scan of its
vicinity, so that the larger the number of events, the larger the number of calculations of
o that are required. The number of errors decreases with 4 and decreases as the order of
the Taylor expansion used in the correction increases; both factors will tend to improve
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the approximation to (4.10), so this observation is intuitively reasonable. Neither type
of error was recorded for the simulations implementing (4.14).

N Method d

1/4 1/16 1/64

20 4.12) 663 /183 53/16 0/0
(4.13) 226 / 59 0/0 0/0

(4.14) 0/0 0/0 0/0

150 4.12) 23412 /4597 963 /227 0/0
(4.13) 10576 / 1915 0/0 0/0

4.14) 0/0 0/0 0/0

Table 19: Number of errors occurring in the estimation of  in
the simulations used to produce Table 18. First
figure equals the number of intervals set to zero;
second is the number of intervals greater than one.

4.3.2 Generalisation of the Kernel Method

The results of Section 4.2 suggest that, under certain conditions, an adaptive kernel
density estimate could provide an acceptable method of estimating the null distribution
of events, which is unknown in practice, for inclusion in the correction method. The
adaptive k.d.e. generalises easily to two dimensions (Silverman, 1986), and so it is
possible to replace f(*,”) in (4.10) by a suitable £(,). To reduce the computational
workload inherent in calculating a kernel density estimate, it is desirable to use kernels
that have bounded support; ie. kernels that are only non-zero at coordinates in a finite
interval in their domains. The two-dimensional Epanechnikov kernel,

“Afy _ T T
Ke(_)g)={2n. (:E X l)’ x'x<],

0, otherwise,
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is ideal for the pilot estimate, because it is simple to calculate, while still having good
theoretical properties. The second-stage, or adaptive, estimator requires greater
differentiability to allow the implementation of (4.12), (4.13) or (4.14), as these involve

partial derivatives of f(,)) to increasing orders. A suitable kernel for the first two
approximations is

K,(x)= {3”'1(1—26.Tzc.)2, x'x< L
, otherwise.

The third approximation, (4.14), requires an estimate with more derivatives, so the
kernel K;(-), where

-1{1_ T, ) T
K;(x)= an1-x"Tx), x £<1.,
0, otherwise,

is a better choice. Both K,(-) and K;(-) were suggested by Silverman (1986).

The above kernels were used to investigate, by simulation, the effect of inserting a
kernel density estimate into (4.12), (4.13) and (4.14). The null distribution of events
was assumed to be the mixture p.d.f., (4.15), and 100 controls and a given number of
events were sampled from this distribution on each of 100 replications. The smoothing
parameter was chosen to minimise the approximate mean integrated square error of the
estimator, the usual criterion for an 'optimal' bandwidth. For a general two-dimensional
problem, the formula for this optimal 4 is

Proge = [Zﬁa—Z{ | (v2 f)z}'TN;%, (4.16)
where

o= ”szK (s,t)ds dt,

B=|[K* G, asat,

N, is the number of (control) observations in the sample and K(-) is the particular kernel

in use. For(-) equal to (4.15), [(V2£)" can be shown to be 2148.98 (to two decimal

places). For the K, kernel described above, the optimal smoothing parameter, given
(4.15), is therefore
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hy = 0.56970N;
similarly, use of the K; kernel leads to

hy = 0.63937N%.

Critical values at the 5% level for the Scan Statistic, when simulated using the three
different approximations to (4.10) and the above parameters, are displayed in Table 20.
For reference, the corresponding critical values for the uncorrected statistic (assuming a
uniform null distribution of events) are also included. Overall, the accuracy of the three
approximations is poor, although there is a trend towards the correct critical values as
the number of terms retained in the Taylor expansion increases. For (4.14), the values
for small d, d < 1/16, are close to the target uniform results, if allowance is made for
sampling variability and the different numbers of replications: the latter figures were
generated from 1000 simulations, rather than 100 for the rest of Table 20.

By increasing the precision of the estimate of f{:,-), however, some improvement can be
made in the accuracy of this type of correction procedure. Table 21 employs (4.14)
only and, using the same null distribution, kernels, bandwidth and number of
replications as Table 20, estimates 5% critical values for the Scan Statistic by
simulation, with control sample sizes of 200, 400 and 800. Accuracy increases with the
number of controls, so that with N, > 400, the correct values are quite closely achieved
for d < 1/16. For larger d, however, (4.14) is still very poor, with most of the results
much greater than the corresponding true values.

As in the previous section, it is clear that the smoothing parameter, 4, of the kernel
density estimate will also affect the accuracy of the approximations. It is well known
that the precision of a k.d.e. depends on 4, so the bandwidth will have considerable
influence on the results, just as the sample size does in Table 21.
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N Method d
1/4 1/8 1/16 1/32 1/64
20 Uniform 7 5 4 3 3
4.12) 9 6 4 3 3
(4.13) 14 6 4 3 3
(4.14) 13 5 4 3 3
50 Uniform 12 7 5 4 3
(4.12) 30 12 6 4 3
(4.13) 48 12 6 4 3
(4.14) 40 9 5 4 3
100 Uniform 18 10 6 4 4
(4.12) 89 19 10 5 4
4.13) 100 23 8 5 4
(4.14) 90 82 7 5 4
150 Uniform 23 12 7 5 4
4.12) 139 32 16 6 4
4.13) 150 106 9 6 4
(4.14) 132 117 8 6 4
Table 20: Simulated 5% Scan Statistic critical values (100

replications) for null distribution (4.15), using three
approximate corrections based on adaptive k.d.e.'s
calculated from 100 controls, compared to uniform
null values.
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N No. of d
Controls 1/4 1/8 1/16 1/32 1/64
20 100 13 5 4 3 3
200 10 5 4 3 3
400 10 5 4 3 3
800 9 5 4 3 3
Uniform 7 5 4 3 3
50 100 40 9 5 4 3
200 26 8 5 4 3
400 22 7 5 4 3
800 19 7 5 4 3
Uniform 12 7 5 4 3
100 100 90 82 7 5 4
200 56 51 6 4 4
400 46 25 6 5 4
800 39 13 7 5 4
Uniform 18 10 6 4 4
150 100 132 117 8 6 4
200 103 77 8 5 4
400 74 47 7 5 4
800 54 29 7 5 4
Uniform 23 12 7 5 4
Table 21: Simulated 5% Scan Statistic critical values (100

replications) for null distribution (4.15), using (4.14)
based on adaptive k.d.e.'s with different numbers of
controls, compared to uniform null values.
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4.4 Discussion

The results of both the one and two-dimensional investigations provide a consistent
assessment of the implementation of a correction based on Weinstock (1981) that makes
use of numerical integration and Taylor expansions. The performance of the method is
dependent on the number of controls, N,, the smoothing parameter, &, and the 'square
size' constant, d. N, and A4 govern the precision of the estimate of the null distribution
of events; increasing the number of controls, for example, clearly improves accuracy
when estimating the Scan Statistic and, hence, when assessing significance. The
constant d affects the magnitude of, respectively, the error and remainder terms in the
numerical integration and Taylor expansions of f{*} or f(*,’). With smaller values of d,
these terms are reduced and the correction is more successful. In the two-dimensional
case, if N, = 800 then the correction is adequate for choices of & less than or equal to
1/16. If the conditions of the problem are below this optimum, then the correction
seems to overestimate the Scan Statistic, sometimes to a very great extent, which would
lead to a very conservative test with correspondingly low power, In practice, 2 and d
are quantities that must be specified by the user and, therefore, introduce an element of
subjectivity to the procedure.

At the left-hand and lower boundaries of the region of interest, the polynomial for &
may have no real zeros; see the discussion of this in Section 4.3. If a square of either
side 0 or /, where / is the maximum size of square that may be completely contained
within the domain at the current point, is substituted, then it is possible for the Scan
Statistic to be underestimated, since part of the total area has not been scanned properly.
A similar comment may be applied to points nearer to the centre, at which no solution
to the approximation to (4.10) is found. A more serious problem is suggested by the
simulation results that indicate the approximations may provide values of & that are
much larger than the appropriate true size of square, even to the extent of returning &
> 1, when the region of interest is the unit square. Although this behaviour is
moderated by larger numbers of controls or smaller choices of 4, it could lead to an
increased risk of Type I errors.

A useful feature of the correction described in this chapter is the simplicity of tests of
significance associated with it. The construction of the method is such that a null
hypothesis of no clustering may be treated as being equivalent to one of a uniform
distribution of events on the region of interest. Therefore, a Monte Carlo significance
test, suggested as the most effective inferential method for the Scan Statistic in Chapter
3, may be implemented by sampling a number of artificial events, equal to the sample
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size of the original data set, independently from a uniform distribution on the unit
square, then calculating the associated Scan Statistic. If the observed statistic was
calculated with a constant k = d2/AB in (4,10), then the simulations are carried out using
scanning squares with sides of length d. With this substitution, there is no need to
sample artificial controls. The process is repeated independently R times. If the
number of simulated statistics greater than or equal to the observed value is denoted by
r, then an approximate p-value for the data set in question is

p=r+1)/R+1). (4.17)
When coded in FORTRAN, for example, this algorithm can be executed very quickly,
even when R is large.

Instead of the procedure based on Weinstock (1981), it might be possible to correct for
a non-uniform null distribution in other ways, e.g. by using a cartogram or a bootstrap
significance test. A cartogram is a transformed version of an ordinary geographical
map, with the property that the area of any sub-region is scaled to be proportional to the
null distribution of events in that sub-region. Thus, the distribution over the whole
region becomes uniform, which would allow the Scan Statistic of Chapter 3 to be
applied without further modification. Schulman et al/ {(1988) employed a cartogram
with a different measure of clustering in their Density Equalised Map Projection
method, which was discussed in Chapter 1.

An alternative approach would be to calculate the Scan Statistic for the observed set of
events, with no corrections or transformations and a scanning window of a fixed size.
A test of the 'no clustering' null hypothesis could be carried out by using a bootstrap
significance test (Hinkley, 1988), based on a set of controls. The observed statistic
would be compared to a set of simulated statistics calculated from a large number, e.g.
99 or 999, of artificial data sets of the same size as the original. Each simulated set of
data could be obtained by independently sampling with replacement from the controls.
Calculation of the p-value would then follow the model of (4.17) above. The second
data set would be necessary so that resampling was carried out under the nuil hypothesis
(Hall and Wilson, 1991); i.e. so that the bootstrap samples represented the distribution
of events in the absence of any clustering component. It is likely, however, that this
method would have very low power to detect clusters in areas for which the null density
took very small values, within a domain that mixed regions of both high and low
density. In this situation, the number of events in the cluster could be large for the
immediately surrounding area, but small relative to the number found in the high
density regions. It would be reasonable to expect the observed Scan Statistic to be
found in one of the latter areas, since the scanning window remains fixed, and the same
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would probably be true for the Scan Statistic of each bootstrap sample also. Therefore,
the observed and bootstrapped statistics would have very similar values, and hence, the
associated p-value would be quite large, even if some genuine clustering effect was
present in the domain.

The use of a second set of data to provide an estimate of the null distribution of events
has been suggested previously for other methods of detecting spatial clustering. In the
context of malignant disease in human populations, for example, a number of the
techniques discussed in Chapter 1, such as Lyon et al (1981), Cuzick and Edwards
(1990) and Diggle and Chetwynd (1991), make use of samples of the non-diseased
population as some form of baseline for the null hypothesis. However, as some of these
authors note, it may be very difficult to obtain a representative sample of controls. The
proposals contained in this thesis assume that a suitable sampling frame is available and
that controls may be drawn from it without excessive difficulty. The results of the
preceding sections suggest that as many controls as possible should be obtained, so that
the estimate of the null distribution achieves maximum accuracy. Therefore, the
sampling procedure must be capable of generating a large number of controls, without a
disproportionate penalty in terms of cost. If human populations are of interest, it would
often seem to be desirable to sample controls from the decennial Census; this has been
suggested by a number of authors, e.g. in the contributions of Mantel and Clayton and
Yandell to the discussion of Cuzick and Edwards (1990). However, it is possible that
the limitations of Census information, such as insensitivity to migration and a
discretised coordinate system (discussed further in Chapter 1), would carry over to
controls obtained in this way. The use of an ancillary data set was proposed partly as a
means of avoiding such problems, so there would appear to be disadvantages to the
Census sampling approach, despite its relative simplicity.

The correction method of Weinstock (1981), when generalised to two dimensions, is a
sensible and intuitive way of allowing the Scan Statistic to be used when the
distribution of events under the null hypothesis is non-uniform. However, the particular
implementation described here may be unreliable under certain circumstances.
Therefore, it would be desirable to find a more robust algorithm for use in a real
application. One possibility is based on a piecewise constant approximation to the
density estimate of f(:,) in (4.10). Values of the kernel density estimate, denoted by e,
are calculated for each point (i,f) of a very fine grid overlaying the region of interest. If
the grid points are separated by a distance, g, along each axis, then the value of the
estimate within the g X g square region centred on (/) is approximated by e;. The
volume under the k.d.e. bounded by a general square, W, of any size may then be
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approximated by summing the contributions g2 e, for each grid point contained within
W. Hence, the length of the side of a scanning square at a particular location can be set
to (m-1)g, where m is the maximum number of grid points in each axis direction
allowing an approximate volume, as defined above, that is less than or equal to d2/AB.
The use of a Fast Fourjer Transform algorithm to calculate the kernel density estimate

at a grid of distinct values would decrease significantly the computational workload of
this method.
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CHAPTER 5

AN INTEGRATED SQUARED DIFFERENCE STATISTIC

5.1 Introduction

The general principle of a test of spatial clustering of the type examined here is to
compare the distribution of the kind of events under consideration to the distribution
that would be expected if there was no clustering effect. In the preceding chapters, this
was mainly accomplished by using the Scan Statistic to examine the pattern of events
and a kernel density estimate, calculated from a sample of controls, to represent the null
distribution. However, Chapter 2 briefly investigated the assessment of clustering by
calculating the maximum of a k.d.e. for the probability density of events, when the null
distribution is assumed to be uniform. Chapter 5 combines the two approaches, by
considering a method of comparing two kernel estimates, one of which is calculated
from the events and the other from the controls.

A number of different measures could be defined for the purpose of comparing two
kernel density estimates. For example, Ahmad (1980) describes an affinity measure, A,
between two probability density functions that is estimated by replacing the true p.d.f's
by kernel estimates; ie.

i [F)aG, )+ [$(x)dF, (x)
[Pwar+[wa
where () and () are the kernel estimates, and F,(-) and G,() the empirical

distribution functions, calculated from the two sets of data. An alternative would be the
ratio of the two kernel estimators, as suggested by Bithell (1990). The measure to be

investigated here is the integrated squared difference (ISD) between f; () and £, (), ie.
A A 2
T, mf{fl (x)—fz(x)} dx, (5.1)

where f;(-) is the kernel estimate of the p.d.f. of events, calculated with smoothing

parameter A,, and f2(-) is the controls estimate, which has smoothing parameter #,.
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Expression (5.1) would seem to be a natural test statistic to consider in the kernel
density estimation context, because of its similarity to the integrated square error (ISE)
of ak.d.e.,

A 2
SE= [{f(n- s} ax, (5.2)
which is used frequently to measure the global performance of the kernel estimator.

Hall (1984) provides a central limit theorem for (5.2), using martingale and U-statistic
theory. The results, and methods of the proof, are employed in Section 5.2 to
demonstrate the asymptotic normality of (5.1). Simulation results regarding the small
sample behaviour of (5.1) are described in Section 5.3, and Section 5.4 considers some
modifications to 7}, ,, that improve the theoretical properties of the statistic. Power
against a certain class of alternatives is investigated by simulation in Section 5.5. The
chapter closes with discussion in Section 5.6 and, in Section 5.7, some intermediate
results required for the proof in Section 5.2.

5.2 Asymptotic Behaviour of the ISD Statistic

5.2.1 Notation

Let {Xl,...,X,,I} and {Yl,...,};,z} be two independent samples from the p-dimensional

p.df. /(). Given two bandwidths or smoothing parameters, 4, and #,, the kernel
density estimates of f(-) from the X and Y samples are

filx) = (nlhlp)—liK(x—Xi]
i1 hy

and

Folx) =(n,nf )'lfllc(i‘-;:-ﬁ),
2

i=1
respectively, where K(°) is a p.d.f. that satisfies the conditions
[K@)&z=1, [zK()dz=0 and [zz,K(2)dz =50,

where o is a constant and 65-,. is the Kronecker delta.
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The following quantities, included here for ease of reference, are used to simplify some
complex expressions in the statement and proof of the Theorem below:

o = [{vr@f rwa-[[{vr @l wa],
o =[f? (x)dx[_[{jK(u)K(u +v) a’u}2 dv],

O',fB = J'f2 (x)dx[j{jK(u)K(u +v) du}{JK(u)K(u +h1v/h2)du}dv],
ot =[{Virwlrea[k2wau,
o} = [{vr@f rax

and

5.2.2 Theorem

Let A;, Ay, A3, A, and A be positive, finite constants. If, for i =1,2,
by —22=0, nhf —4==—c0 and h,/h, = O(1),
then T}, ,, is asymptotically normal with mean

() 4t N @i+ 30202 -2 [P rwFas 63
and variance
Q+Q,+Q, -(Q,+Q;) (5.4)
where
nhiood, if mAP™ = oo,
Q, ={2n’n; "0}, if nhf ™ — 0,

+8

Py i) I -
n; 7 (azlﬁ’*‘aﬁ +24; ol ), if maf* — A,

fori=1,2,
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(nf 4 nym olo?, if nyh2** — oo or mhhE —> oo,
-1 .
Q, ={4(nn,pt )" 62, if n bt — 0 and n ke — 0,

-
n; n, 7”123%{(22 +A; )ozzo'f1 +46§B}, if nzh{+4 — A, and nlhfhﬁ’ - A,

i
n*hiniatcd, if nAf*? — oo,
Q, ={n’hPhiac?, if m a2 — 0,

5 e aclel v aod), iEnhl* A
[ AR o\ o o)), iEmATT = Ay,

and

ny'hihi oo}, if nh8*? — oo,
Q; ={n;°hn;?ac?, if n,h2*? — 0,

_pi 2
n; A h2e( X5 02 + oo ), i npht*? — As.

5.2.3 Proof

Write T, ,, as
[A@-r@f e+ [{Aw-rof ac-2[{f0-roHAw-rwla.

A )2
(1) From Hall (1984), J( fi—f ) , for i = 1,2, is asymptotically normal with mean

(nh? ) [ K2 @) du+o?mf [{V2 £ ()} ax

and variance V;, where

—154 2 2 s p+d
n; h; "oy, it nhf™" — oo,

V, =42n 2702, if nh?™ 0,
+8

Y ) A I
n; # (azl;?*‘cri +2A; "o} ] if mhf+ — A,
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(2) Following the method of Hall (1984), write j( fl -f )( H-f ) as
J(J?l - lEfl)( Efz ‘f)'*',[(fz - Efz)( Efi “f)
+[(A -2 - 5 )+ [ (7, - 1) 7, - 1) 65

and denote the first three terms in (5.5) by /,,, I}, and I, respectively. The fourth term
is non-stochastic in nature.

(a) Let

_ n
I =(”1hlp) 124‘:
i=1

where

Z; =J‘-[K{(I_Xi)/hl}_' EK{(x—Xi)/hl}]{ Ef; (x) -—f(x)}dx.

As in the proof of Lemma 1 from Hall (1984), let
b= [K{(e— X, m B 00 - 7o) e,

Then
() =1 [{[ K@) f(x - 2h)de{ B, () - £ ()}
= $hrda [{Vi w0} f @) e+ o(ufh2),
)= [ [{[ K@K G +u) flx - zm)az { B (6) - r (0}
{Bf e+ uby) - £ e +uiy)
= 1h?ija’? +O(irns)
and

k 2
IE(t,- )5 cy?h3®,
for some constant ¢,. Hence,

E(e? ) = Aol
and

lE(z,f1 ) <c RS
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Using the Lindeberg-Feller Theorem (Heyde, 1983) for this context,
51
2
i=1

is asymptotically normal if, ¥V &€ > 0,

s""i E{z,-zl(|z,| > &)} —m=2=50, (5.6)

i=l

where

If g(*) represents the p.d.f. of z, then noting that

E{z21(z]|> &)} = jzzl({z,-| > &5)glz) dz

= jzzg(z)dz

lz]>es

<(&s) j g dz
lees

<(a)?[z'%g(z)dz

= (&) 2 E(z4),
the left-hand side of (5.6) becomes
2 4 e o 2(1, 52PpAn2,2 )2 4p, 8
%Y E(2*) < e?(dnhirhiao? ) ne b h
=1
=0(n;!)—m=2=50.

Therefore, I, is asymptotically normal with mean zero and variance
1,-1p4,2 2
'an hza o A

By symmetry, 1,, is also asymptotically normal, with mean zero and variance

1,42 2
$ny oy,
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