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ABSTRACT

When analysing spatial data, it is often of interest to investigate whether or not the 
events under consideration show any tendency to form small aggregations, or clusters, 
that are unlikely to be the result of random variation. For example, the events might be 
the coordinates of the address at diagnosis of cases of a malignant disease, such as acute 
lymphoblastic leukaemia or non-Hodgkin’s lymphoma. This thesis considers the 
usefulness of methods employing nonparametric kernel density estimation for the 
detection of clustering, as defined above, so that specific, and sometimes limiting, 
alternative hypotheses are not required, and the continuous spatial context of the 
problem is maintained. Two approaches, in particular, are considered; first, a 
generalisation of the Scan Statistic to two dimensions, with a correction for spatial 
heterogeneity under the null hypothesis, and secondly, a statistic measuring the squared 
difference between kernel estimates of the probability density functions of the principal 
events and a sample of controls.

Chapter 1 establishes the background for this work, and identifies four different 
families of techniques that have been proposed, previously, for the study of clustering. 
Problems inherent in typical applications are discussed, and then used to motivate the 
approach taken subsequently. Chapter 2 describes the Scan Statistic for a one­
dimensional problem, assuming that the distribution of events under the null hypothesis 
is uniform. A number of approximations to the statistic's distribution and methods of 
calculating critical values are compared, to enable significance testing to be carried out 
with minimum effort. A statistic based on the supremum of a kernel density estimate is 
also suggested, but an empirical study demonstrates that this has lower power than the 
Scan Statistic.

Chapter 3 generalises the Scan Statistic to two dimensions and demonstrates empirically 
that existing bounds for the upper tail probability are not sufficiently sharp for 
significance testing purposes. As an aside, the chapter also describes a problem that can 
occur when a single pseudo-random number generator is used to produce parallel 
streams of uniform deviates. Chapter 4 investigates a method, suggested by Weinstock 
(1981), of correcting for a known, non-uniform null distribution when using the Scan 
Statistic in one dimension, and proposes that a kernel estimator replace the exact 
density, the estimate being calculated from a second set of (control) observations. The 
approach is generalised to two dimensions, and approximations are developed to 
simplify the computation required. However, simulation results indicate that the
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accuracy of these approximations is often poor, so an alternative implementation is 
suggested.

For the case where two samples of observations are available, the events of interest and 
a group of control locations, Chapter 5 suggests the use of the integrated squared 
difference between the corresponding kernel density estimates as a measure of the 
departure of the events from null expectation. By exploiting its similarity to the 
integrated square error of a k.d.e., the statistic is shown to be asymptotically normal; the 
proof generalises a central limit theorem of Hall (1984) to the two-sample case. 
However, simulation results suggest that significance testing should use the bootstrap, 
since the exact distribution of the statistic appears to be noticeably skewed. A modified 
statistic, with the smoothing parameters of the two k.d.e.’s constrained to be equal and 
non-random, is also discussed, and shown, both asymptotically and empirically, to have 
greater power than the original.

In Chapter 6, the two techniques are applied to the geographical distribution of cases of 
laryngeal cancer in South Lancashire for the period 1974 to 1983. The results are 
similar, for the most part, to a previous analysis of the data, described by Diggle (1990) 
and Diggle et al (1990), The differences in the two analyses appear to be attributable to 
the bias or variability of the k.d.e.’s required to calculate the integrated squared 
difference statistic, and the inaccuracy of the approximations used by the corrected Scan 
Statistic. Chapter 7 summarises the results obtained in the preceding sections, and 
considers the implications for further research of the observations made in Chapter 6 
regarding the weaknesses of the two statistics. It also suggests extensions to the basic 
methodology presented here that would increase the range of problems to which the two 
methods could be applied.
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CHAPTER 1 

INTRODUCTION

1.1 Background and Motivation

Many different types of scientific investigation may lead to data sets which contain the 
location of objects, events or individuals in some two-dimensional planar region. For 
example, a botanist might be interested in the spread of a particular species of moss 
within a small area of forest or an archaeologist in the distribution of fragments of 
pottery in the soil stratum corresponding to a certain period in the history of an Iron- 
Age settlement. In general, considering spatial patterns of this sort may contribute to 
the understanding of the process generating the coordinates.

One particular type of behaviour which may be important is the aggregation of points 
into one or more groupings that could be described as clusters. Providing a rigorous 
definition of this latter term that would be suitable for all applications is extremely 
difficult. Approximately, however, a 'cluster' could be described as a collection of 
points distributed more densely than would seem to be typical, when judged by the 
geographical spread of the full data set over the entire region of interest.

Diggle (1983, p.2) describes an example of a data set that displays this feature very 
strongly. The locations of 62 redwood seedlings inside a square area of ground appear 
to fall into six distinct groups. Such a clear pattern suggested that there was some 
underlying mechanism influencing where the plants grew. Further investigation 
revealed that the seedlings were clustered around redwood stumps, the positions of 
which had not been recorded initially. Clearly, this explained the observed pattern.

It is also true, however, that apparent patterns of aggregated points may be produced by 
nothing more than the operation of chance. Investigations of geographical distribution 
are only concerned with clusters that may have been caused by some form of generating 
process other than randomness, so the above ad hoc definition must be extended to say 
that the character of the group of points must be such that it would be very unlikely for 
the cluster to have been created randomly. Deciding whether or not a cluster is
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genuine, i.e. non-random, is then a statistical problem and this thesis investigates ways 
in which the problem may be tackled.

Studies of spatial clustering have been employed frequently in epidemiological 
investigations of malignant disease, especially varieties of leukaemia in children. In an 
overview of the epidemiology of childhood leukaemias, Doll (1989) discusses factors 
that are known to cause different forms of the disease. The list includes genetic 
susceptibility, exposure to ionising radiation (either in utero, from radiographic 
examination of the mother during pregnancy, or after birth, through radiotherapy) and 
the development of acute myeloid leukaemia following chemotherapy, which is an 
inevitable result of the treatment but only forms a tiny minority of the total number of 
cases of all varieties. Factors suggested, but not established, as causes include parental 
exposure to certain chemicals, viral infection or environmental factors such as natural 
radiation or proximity to a possible, man-made source of environmental pollution. The 
most controversial examples of the last of these are nuclear installations, especially the 
reprocessing plant at Sellafield in West Cumbria.

Most attention has been paid to investigating whether or not sources of environmental 
pollution can be responsible for increased incidence of leukaemia, although the viral 
infection hypothesis has also been studied; see, for example, Kinlen (1988). Some form 
of spatial clustering around such locations would suggest that the risk of developing the 
disease was greater in that particular area than in the surrounding region. Further 
investigations could then be carried out to determine whether the installation was 
indeed responsible or whether there was some other factor peculiar to the local area 
which would increase the risk. The benefits of this work would be seen both in terms 
of prevention, i.e. by removing the leukaemogenic agent, and, more generally, by 
improving knowledge of the disease's aetiology.

These considerations have prompted a great deal of research effort over the last ten 
years and the results have been reviewed in Gardner (1989) and Wakeford et al (1989). 
Considerable evidence suggests that there have been more cases of childhood leukaemia 
near the Sellafield plant than would have been expected from national incidence rates. 
Weaker evidence suggests the same for the area surrounding the United Kingdom's 
other nuclear waste reprocessing facility at Dounreay on the north coast of Scotland. 
Research in areas near other establishments has been inconclusive. As far as the second 
stage of investigation is concerned, determining the cause of childhood leukaemia 
clusters, little progress has been made.
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The particular context of leukaemia clustering stimulated the work reported here and 
also motivated much of the literature reviewed in the next section. For this reason, later 
discussion will often make use of the following terminology, which is typical of that 
used in the study of disease in human populations:

domain: the geographical region of interest, within which the 
investigation is carried out;

zones: small, administrative sub-regions within the domain, used to
calculate estimates of the population at risk; e.g. civil wards, 
parishes, counties, Census Enumeration Districts (EDs) etc;

centroid: a central reference point for a zone, equivalent to the centre of 
gravity of a physical object, which is used to represent its 
location in space, since boundaries in digital form are usually 
not available;

cases: the point locations of the units or events of primary interest;

controls: the point locations of a second type of event which provides 
ancillary information on the domain.

It is intended, however, that the research discussed in this thesis should be relevant to a 
wider range of applications.

1.2 Review of Existing Methods of Detecting Spatial Clustering

The literature relating to spatial data analysis contains a wide range of techniques for 
detecting spatial clustering. It is possible to stratify these methods into three families, 
an approach taken by Besag and Newell (1991) and the review paper of Marshall 
(1991). The groups are differentiated by the type of question that the members are 
designed to answer. The first consists of techniques for analysing the pattern of cases in 
the region surrounding a particular, fixed point, the second evaluates the general pattern 
of cases in the domain without reference to a specific location and the third assesses 
whether or not groups of cases are larger than would be expected by chance and hence 
form likely clusters.
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1.2.1 Detecting Clustering Around a Fixed Point

A number of methods have been proposed for studying the pattern of disease incidence 
relative to a given point in the region of interest. This point is taken to represent the 
location of, for example, a source of environmental pollution and the purpose of the 
investigation is to decide whether or not proximity to the source is associated with an 
increase in risk. A recent, comprehensive review of such techniques can be found in 
Hills and Alexander (1989).

The most straightforward approach used by Black (1984), amongst others, is to 
compare observed and expected numbers of cases within some pre-specified distance of 
the source, by assuming that the number of cases has a Poisson distribution under the 
null hypothesis of no clustering. For the United Kingdom, population information for 
all the EDs contained within the domain is available through the decennial Census and, 
when combined with national or regional incidence rates, this allows the calculation of 
expected numbers. Hills and Alexander (1989) point out that it may be difficult to 
choose incidence rates for the most suitable geographical scale, difficult to choose the 
size of the region to be considered and that the Poisson distribution may not adequately 
describe the observed variability. The last problem is often termed "extra-Poisson 
variation" in the literature.

To achieve a more sensitive test procedure, it is necessary to work with numbers of 
cases in geographical units at a much finer scale, e.g. EDs within the region of interest. 
However, each of the smaller areas may well contain different levels of population, so 
even in the absence of any increased risk due to pollution, the observed spatial 
distribution of cases may well display marked variability. Methods discussed 
subsequently try to correct for this behaviour.

Black et al (1991), for example, describe an algorithm which groups zones into larger 
areas of approximately equal population size or expected numbers of cases. The 
algorithm's target population count or expectation is set to be that of the zone 
containing the point source, and a goodness of fit test is used to compare the observed 
pattern to a Poisson distribution. Unfortunately, different aggregations of zones tend to 
give different results, and the power of the test is low for small numbers of zones (Hills 
and Alexander, 1989).

An alternative to accumulating small areas is the Density Equalised Map Projection 
method of Schulman et al (1988). This magnifies or shrinks each zone until its area is 
proportional to the population contained within, whilst maintaining the same total area.
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The resulting map should have a uniform distribution of cases if there is no clustering 
effect in operation. Tests can be constructed by considering statistics such as the 
average, minimum or maximum distance between cases and source of pollution, 
although these are not measured in terms of the original units.

A second type of approach is suggested in Stone (1988), who develops a test of trend in 
risk with distance from the fixed point of concern. The zones are ranked by distance 
from centroid to source, and observed and expected numbers of cases, denoted by Oi 
and Et for the i th closest zone, are found for each. The null hypothesis that the number 
of cases in the / th area has a Poisson distribution with mean Et is compared to an 
alternative representing a decrease in risk with increasing separation from the source. 
The same distribution is assumed but now with mean \ E it where

X l  > X 2 >  . . .  > k n >  ....
A

using either a likelihood ratio test or a test based on A1.

Stone (1988) also outlines a test typical of a third type of analytic method for this 
problem. This does not make use of small area information on population or cases but 
assumes that the spatial locations of the latter can be obtained very accurately, e.g. 
through address at time of diagnosis. The role of the former quantities is played by a 
sample of control locations: individuals who do not possess the defining characteristic 
of the case group but are similar in other respects. If 6(- is an indicator variable with 
value 1 if the i th point closest to the source is a case and value 0 otherwise, Stone 
(1988) suggests the test statistic

n £
T= max T —,

n n
where N  is the total number of cases and controls.

Another example of this third group is provided by Diggle (1990), who uses the theory 
of spatial point processes to model semiparametrically the intensity of disease as a 
function of distance from the fixed point at coordinate The intensity function, XGe), 
of the inhomogeneous Poisson process from which the cases are assumed to have been 
sampled is decomposed as

Mx) = pXc ( x ) f{ x -x 0 ;g), 
where p represents the overall, average intensity, A,c(*) the variation in intensity due to 
variations in population density, /(*,*) the contribution from proximity to the source, 
and H is a vector of parameters. The control sample is used to estimate Xc(-) by a kernel 
method (see, for example, Silverman (1986)) and /(•,*) is chosen to represent some
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sensible model of risk decaying with increasing separation. Maximum likelihood 
methods are used to estimate £ and test a null hypothesis of no association between 
intensity and

The use of a control sample was a feature of a relatively early method proposed by 
Lyon et al (1981), The test of clustering suggested therein compares the numbers of the 
two types of point within increasing radii of the source using a %2 procedure. The 
method has two undesirable features. First, a separate test is applied at each distance, 
but there is no correction for multiple testing. Secondly, the cases and controls used in 
tests for the shorter distances are included in each of the tests for the longer distances in 
a cumulative fashion. Hence, the tests are not independent.

1.2.2 Detecting Clustering Behaviour

The second family of techniques dispenses with the fixed point that was the focus for an 
analysis using one of the methods described above. Instead, the spatial distribution of 
cases is investigated for any evidence of a pattern that does not appear to be induced by 
the underlying spatial distribution of the population. Most of the techniques search for 
regions where cases occur much closer together than would seem likely by chance, 
given the available population information. Within this general definition, there is a 
further division between methods that take account of the variability in population 
density through zone totals and those that employ a sample of controls.

Whittemore et al (1987) is an example of the first subdivision. The geographical 
location of each case is only ascertained to the scale of the zones in use; hence, each 
case is assumed to be positioned at the centroid of the subregion in which it falls. The 
proposed test statistic is the mean distance between all pairs of cases, with cases at the 
same centroid having a separation of zero. The population sizes of each zone are used 
to calculate the mean and variance of the test statistic, and an asymptotic normality 
result allows significance testing. The method also permits the stratification of 
observations into different risk categories. Although there may be some reduction in 
the researcher's workload by simply assigning to each case the coordinate of a centroid, 
the test seems to be partially investigating the (discrete) geographical distribution of the 
zones, which is not of interest. If Euclidean distance is to be used at all in an analysis, 
it would be better to define coordinates as accurately as possible and place the problem 
in a more natural, continuous spatial context.

Black et al (1991) employ an adaptation of their original method, discussed in the 
previous section, which searches for evidence of extra-Poisson variation. Aggregations
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are constructed for a range of pre-specified expected numbers of cases, and the Poisson 
indices of dispersion for each sub-region, the ratio of the sample variance to sample 
mean of the observed number of cases, are calculated and compared to a normal 
distribution, with a correction made for multiple testing. The power of this test is 
thought to be greater than that of the %2 statistic used previously, but the caveat 
regarding the sensitivity to different aggregations still applies.

A qualitatively similar aggregation procedure is used in Turnbull et al (1990) to provide 
a set of overlapping areal units of equal population size. For each of the original zones 
in turn, a neigbourhood is created by adding surrounding zones in whole or part until a 
target population size, denoted by R, is reached. The total number of cases in each 
neighbourhood is found by adding the same proportion of cases from each contributing 
zone as was required to achieve R. The suggested test statistic is the maximum 
incidence rate, i.e. maximum number of cases over all neighbourhoods divided by R, 
with significance assessed by a Monte Carlo implementation of a randomisation test. It 
seems likely that the results of this approach will be sensitive to different aggregations 
for the same value of R and, of course, to different values of R itself. However, a range 
of target sizes and a multiple testing procedure might address this latter problem, as in 
Black etal (1991).

Many other measures of spatial clustering based on case and population data in small 
administrative areas have been proposed in the literature. Alexander (1991), for 
example, describes three possibilities, namely the NNA test, the Potthoff-Whittinghill 
test and a modification of a method due to Barnes et al (1987). The first of these is 
adapted from Besag and Newell (1991), which is discussed in Section 1.2.3, and the 
second is a test for extra-Poisson variation based on the numbers of pairs of cases in 
each zone.

The second group of techniques, those which use a sample of controls to represent the 
spatial heterogeneity of the population, is exemplified by Cuzick and Edwards (1990). 
Asymptotic normality is demonstrated for a test statistic which is the sum of score 
functions from each case, where the score is the number of cases amongst its k nearest 
neighbours, for some integer k. As £ is arbitrary and its value affects the results of the 
test procedure considerably, a statistic is also proposed that is a linear combination of 
the original test statistics for different values of k, in an attempt to avoid the problem.



Anderson, N.H. (1992) Chapter 1 22

On a less formal level, Bithell (1990) describes a graphical method of displaying a 
spatial relative risk function for the entire domain. This is constructed using the 
quantity

P(jf) =

where /.(•) is an adaptive kernel density estimate calculated from the relevant sample 
and c is a constant included to ensure that p{x) —> 1 in areas that have few data points. 
The transformation

P(x)= — ^ - -r 
1+ P(*)

is applied to ensure plotted values remain within the interval (0,1). The surface Pi%) 
may be examined for peaks that might indicate an unusually high local risk. Although 
bandwidths must be specified for the case and control kernel density estimates and the 
value of c may also affect the smoothness of the final estimate, the method performs 
well in its intended, exploratory role.

A final example of this type of technique is Diggle and Chetwynd (1991), which 
models the spatial distribution of two types of event using inhomogeneous Poisson 
processes. The test is based on

D(s) = Kn {s)-K n (s),

where

K(j {s)~ E[# typej  events within distances of arbitrary type / event]

and kj is the intensity of type j  events, for j  = 1, 2. Large, positive values of £>(s) 
suggest spatial clustering of type 1 events over and above that related to the behaviour 
of type 2 events. Values of Di$) at a discrete set of distances can be plotted against 
pointwise tolerance limits or combined to give a test statistic, for which significance is 
assessed by simulation.

1.2.3 Investigating Possible Clusters

The third, and smallest, family of methods has an underlying rationale different from 
those of the two groups discussed above. The intention now is to provide exploratory 
techniques which, rather than formally assessing the pattern over the whole domain or 
near a particular point, search for small areas that are likely candidates for the status of

leases (  ̂
/controls (—) ^
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clusters, without assigning any causal explanation to regions so classified. Subsequent 
investigations would be used to decide whether the clusters were due to chance or to 
some aetiological factor. The methods have been proposed as being particularly 
suitable for the routine, possibly automatic, surveillance of a large area, allowing effort 
to be targeted on the most promising putative clusters.

The Geographical Analysis Machine (GAM) of Openshaw et al (1987, 1988) is a 
graphical method designed to highlight areas where there is a mismatch between the 
observed number of cases and the associated population size. A large set of possible 
locations in the domain are tested to see whether or not each could be the centre of a 
cluster. This is accomplished by overlaying the domain with a grid, each point on 
which acts as the centre of a circle of a given radius. The grid size is chosen to ensure 
that the circles always overlap neighbouring ones. The number of cases falling within 
each circle is counted and the relevant population at risk calculated from each zone that 
has its centroid inside the circle. A Monte Carlo test based on 500 replications is used 
to assess significance at each grid point. This process is repeated for different radii and 
all circles significant at the 0.002 level are plotted on a map of the domain. Possible 
clusters are indicated by dense groups of circles of various radii.

A number of weaknesses in this procedure have been discussed by different authors in 
the literature. Openshaw (1990) summarises some of these and Besag and Newell 
(1991) explore some points in more detail. There is a considerable multiple testing 
problem, both at the scale of the whole domain and at that of a given ’cluster’ of circles. 
The interpretation of the latter is very difficult, since many different circles may be due 
to the same cases and are therefore not independent. The GAM is also highly 
computationally intensive. Openshaw (1990), however, also describes improvements to 
the basic algorithm, some of which address these difficulties. For example, methods for 
assessing the significance of circle aggregations are outlined and algorithms are 
described that make use of statistics and associated tests such as those of Stone (1988) 
and Besag and Newell (1991) in place of the count of observed number of cases plus 
Monte Carlo test which was used in Openshaw et al (1987).

The method of Besag and Newell (1991) was proposed as both an alternative inferential 
procedure to that employed by the GAM and as a cluster detector in its own right. In its 
former guise, it was intended to provide a statistical basis for the type of techniques 
used in Openshaw et al (1987). Cases are placed at the centroid of the zone in which 
they are located and then examined in turn. A test is carried out to determine whether 
or not the location of the reference case forms the centre of a cluster of size k+1 (the
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reference case plus k others), where k is a pre-specified integer. The procedure is as 
follows: all the zones are ranked in ascending order of distance from the reference 
centroid; cases are accumulated from neighbouring zones in this order until k (or more) 
other cases have been found; the corresponding population at risk is calculated 
simultaneously from the totals for each included zone, and a Poisson (approximate) tail 
probability is calculated for the number of zones required to find at least k cases. The 
distance from the reference centroid to the centroid of the last zone to be included can 
be used as the radius of a circle, centred on the former point, which is plotted on a map 
of the domain if the significance of the test exceeds a given level. This is analogous to 
the GAM. In addition, tests are outlined for checking whether or not there are more 
clusters than would be expected and whether or not there is evidence of some form of 
clustering behaviour, the type of test considered in Section 1.2.2.

1.2.4 Tests o f Space-Time Clustering

A fourth family of techniques, although not strictly concerned with spatial clustering, is 
relevant to the discussion here. Tests of space-time clustering, also known as space­
time interaction tests, first appeared in the literature much earlier than the methods 
described above and have been cited frequently. They were developed primarily to 
detect aggregations of cancers that had been recorded at approximately the same time, 
possibly indicating that a viral infection was causing the spread of the disease.

Knox (1964a,b) categorises all possible pairs of cases according to whether they are less 
than or greater than some critical distance apart in space and time. Interest centres on 
the cell of the resulting 2 x 2  table containing pairs that are close on both criteria, with a 
large count indicating some form of clustering. Mantel (1967) generalises this 
approach and presents a measure of closeness defined to be the reciprocal of the pair's 
separation in space or time. Both techniques require the specification of arbitrary 
constants capable of affecting the results of the analysis: critical distances for the former 
and additive constants to prevent division by zero for the latter, should discreteness in 
time or space coordinates permit identical case locations.

A second type of approach makes use of locational data in the form of counts of cases 
in cells formed by distinct geographical areas and time periods. Ederer et al (1964) use 
the sum over all spatial regions of the maximum number of cases for the range of 
temporal intervals as an index of clustering, while Raubertas (1988) uses a generalised 
linear model for cell probabilities with spatial and temporal main effects and a space­
time interaction term. By examining contrasts, within sub-regions of the whole area, of 
parameter estimates for the spatial main effect, it is possible to derive a test for spatial
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clustering. However, both the size of the sub-regions and the weights for the contrasts 
are arbitrary and it would appear to be possible for the tests to reflect nothing more than 
different numbers of cases arising from variable population sizes in the individual cells.

McAuliffe and Afifi (1984) construct a test statistic from the distance between a 
reference case and its nearest neighbour from a previous time period, for a specified 
lag, by minimising, over all lags, the sum of standardised distances. Nearest neighbour 
distances are also used by Ross and Davis (1990), to investigate the clustering of 
Hodgkin's disease, given full residential information for each case, during particular 
time periods hypothesised to be aetiologically relevant. Using a permutation test, the 
pattern of cases is compared to that of a sample of controls, so that the behaviour of 
observed nearest neighbour distances is compared with what would be expected in the 
absence of any contagion effect.

If interest is primarily in an investigation of a source of environmental pollution, the 
choice of a space-time interaction test would seem to be unsuitable. Any clustering 
effect under this model would be unlikely to manifest itself more visibly in one time 
period than in any other and, thus, the power of the above methods would be much 
reduced. For the small number of cases typical of a study of malignant disease, 
Wartenberg and Greenberg (1990) demonstrate that the tests due to Ederer et al (1964) 
and Mantel (1967) have low power against two simple alternative hypotheses of locally 
elevated risk due to a point source.

1.3 Problems Inherent in Spatial Clustering Studies

In the general area of epidemiology, and in leukaemia studies in particular, a number of 
different authors have considered solely, or in part, the difficulties inherent in studies of 
spatial clustering. Examples of this are provided by the papers of Besag and Newell 
(1991), Bithell and Stone (1989), Gardner (1989), Hills and Alexander (1989), 
Wakeford (1990) and Wakeford et al (1989). The following discussion is set in the 
same context and some points are specific to that; however, many will apply whatever 
the circumstances of the study.

When working with data on populations of human beings, positive or negative results 
may be simply artefacts of inaccuracies in numerator (case) or denominator (population 
at risk) information. The latter situation is a primary concern of the contributions of 
Besag et al and Openshaw and Craft to Draper (1991). In the United Kingdom, 
information on the human population is usually based on figures from the Census of
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Population, which is taken once every ten years. This interval is long enough to 
encompass considerable demographic change, especially change in the numbers of 
young children, due to fluctuations in birth rates or large scale migration into or out of 
the domain, for example. If a population were to increase rapidly after a Census, there 
would be a corresponding increase in the number of cases expected within the domain. 
Subsequently, an analysis based on the original Census estimate of population at risk 
would be susceptible to the detection of spurious clusters, because there would be too 
many cases for the older population figures to explain. A post-Census decrease might 
lead to the dilution, or even concealment, of evidence of real clustering.

Numerator data may also be at fault. Most methods for detecting clustering assume, 
implicitly, that case ascertainment is complete and free from duplications, or at least 
that it is at a uniform level throughout the domain. In practical terms, this may be 
unlikely. Additionally, classifications or diagnoses may have been made incorrectly or 
based on criteria that have changed during the course of the study. Leukaemia is a good 
example of this, as the distinctions between some types of lymphoid leukaemia and 
non-Hodgkin's lymphoma have been altered over the last twenty years; see, for 
example, Draper (1991, Chapter 2). Migration of cases into or out of the domain could 
affect results in a similar way to that of members of the population at risk. Cases 
generated by a genuine clustering effect may be lost to the investigation when they 
move out of the domain, leading to a loss of power. There would seem to be a 
particular risk of this sort of error in studies of cancer, because of the long latent 
periods associated with malignant diseases. Conversely, cases that originated outside 
the domain may be included when, in fact, they are little more than a confounding 
influence. To avoid these problems, a number of authors have proposed that cases 
should be located at their address at birth rather than that of diagnosis, although in 
general this information is much harder to obtain.

A number of problems may be introduced through the conduct of investigations and the 
techniques of statistical inference used in their analysis. The spatial scale at which the 
study is carried out may be extremely important, in terms of the size of both the domain 
and any administrative zones in use. If these are too large, a small scale or local 
clustering effect may be swamped. Equally, if clustering is present at a scale which is 
much greater than the chosen areas, then it is unlikely that it could be detected, a 
situation analogous to one in the analysis of time series, where a short term trend is 
revealed to be part of a long term cycle by looking at a longer series. It is also possible 
that evidence of local clustering derives from nothing more than the spatial 
heterogeneity of incidence over a much larger region. The method of Stone (1988) is
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an attempt to reduce the importance of the initial choice of one variable, the size of 
domain, but in general it would appear to be necessary to accept these limitations, 
unless there is some prior information on the scale of any possible clustering effect that 
can be incorporated into the study.

The power of an investigation into spatial clustering will be reduced if the number of 
cases expected in the domain is small. This will certainly be true for types of rare event 
such as cases of malignant disease. The effect on power of out-migration has already 
been mentioned, and it is likely that a complex aetiology, i.e. the interaction of different 
causative agents, would similarly make clustering much harder to detect. This last 
factor explains why it is often very difficult to propose a plausible model of clustering 
in a spatial problem and, thus, provide alternative hypotheses that could be tested by the 
most appropriate and powerful methods.

When a technique employs administrative zones or subregions, the continuous spatial 
distribution of population in the domain is transformed into a set of counts at discrete 
zone centroid locations. Although U.K. Census EDs, for example, are drawn up to 
include approximately the same number of households where possible, very often other 
considerations intervene. The Office of Population Censuses and Surveys and the 
General Register Office for Scotland, the Civil Service organisations responsible for 
administering each Census, have a duty to maintain confidentiality, i.e. to ensure that no 
individual or particular region can be identified from the Small Area Statistics that they 
produce. This may mean that ED boundaries are altered to split a small village between 
different zones or to include a much larger area than usual, so that the population within 
the zone reaches an acceptable level. Therefore, the zones may not reflect the true 
distribution of population very accurately. As with the method of Black et al (1991), 
the results of techniques which are based on zone population counts are likely to be 
sensitive to different partitionings. This is an undesirable feature and it may be better to 
work within a continuous frame of reference, if this can be accommodated in the study.

Hypothesis testing is designed to be used within the scientific paradigm, in which 
preliminary experimentation or prior knowledge leads to the specification of theories 
and then hypotheses, which are confirmed or rejected by further, independent 
experiments. The independence of the confirmatory tests is crucial to this process: 
interpretation of significance becomes complex if the hypothesis under consideration is 
influenced by knowledge of the data to be used at the second stage. One of the dangers 
in studies of spatial clustering is that this type of knowledge might cause the adjustment 
of boundaries to be used in the analysis; for instance, the size and position of the
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domain, the number and type of zones, the time period for which data are collected, the 
sub-types of event to be considered or the specification of risk sub-groups based on 
confounding variables such as age or sex. It might be possible to choose such 
boundaries, either consciously or unconsciously, so that the significance of any apparent 
clustering was inflated or so that a cluster was created from a random pattern. This 
would also introduce an implicit multiple testing problem, since the set of boundaries 
would have been selected from a range of combinations that could have been pre­
defined. Correcting for this effect would be very difficult since the comparisons would 
be statistically dependent and (usually) unspecified in number. As Wakeford (1990) 
comments, it may be permissible to define boundaries post hoc in an hypothesis- 
generating or exploratory study, provided significance levels are used for guidance 
only. However, fresh data would be required for valid hypothesis testing, by examining 
either a new time period for the same domain or the same time period for other, 
comparable domains, although this raises the question of whether or not hidden or 
confounding factors would make it possible to define such regions.

The study of the geographical distribution of leukaemia near sources of environmental 
pollution is prone to post hoc hypothesis formulation, because investigations are often 
initiated following public concern over an apparent excess number of cases that seem to 
be related by proximity to the site. Hills and Alexander (1989) suggest that overall tests 
of clustering, discussed in Section 1.2.2, may be useful for reducing the magnitude of 
the problem, since the selection bias induced by focussing on the spatial pattern around 
the source is removed. Instead, the results are placed in the context of the whole 
domain.

1.4 Aims and Outline

The aim of this thesis is to investigate methods of detecting the spatial clustering of 
point locations that is not attributable to chance. The type of technique that will be of 
interest is one that may be used in the early stages of a study, at a relatively small scale 
or local level, to assess the overall pattern in the domain. For this reason, the existence 
of a coordinate representing, say, a source of pollution is not assumed, although this 
would be a common motivation for such an investigation. This may also serve to 
moderate the effects of selection, as described at the end of Section 1.3. The low 
numbers of cases typical of applications requiring this methodology suggest that 
smoothing techniques may be appropriate, so that estimates at any given point may 
incorporate neighbouring information. Arbitrary administrative zones will not be used 
because of their possible influence on results and the deficiencies in Census figures.
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Instead, estimates of the population at risk will be derived from a sample of controls, 
making the (perhaps not negligible) assumption that a sampling frame exists for the 
domain under consideration that will allow the drawing of representative observations 
without excessive difficulty. Due to the absence of convincing models of clustering, 
and hence alternative hypotheses, in applications such as leukaemia studies, methods 
which are nonparametric in character will be favoured.

Chapter 2 considers the Scan Statistic, which provides a test for clustering in one 
dimension, e.g. time. The assessment of significance by approximating critical values 
is considered, as is the relative power of different methods. Chapter 3 explores the 
generalisation of the Scan Statistic to two dimensions and Chapter 4 introduces a 
correction for a non-uniform distribution of events under the null hypothesis, which 
allows the Scan Statistic to be used, for example, with human populations. The 
behaviour (both asymptotic and simulated) of an integrated squared difference statistic 
based on kernel density estimates is described in Chapter 5 and a power study indicates 
the (asymptotic) advantage of using a fixed bandwidth. Chapter 6 applies the two 
methods to a data set consisting of all cases of laryngeal cancer diagnosed in South 
Lancashire between 1974 and 1983. Chapter 7 closes the thesis with some discussion 
of results obtained.
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CHAPTER 2 

DETECTING CLUSTERING IN ONE DIMENSION

2.1 Introduction

A study of techniques for detecting the clustering of events in a single dimension can 
serve two purposes. First, the methods may be of interest in themselves, for 
applications that are concerned only with clustering in, say, time, and secondly, 
generalisation to two dimensions may be aided by the exploratory work carried out in 
one.

This chapter considers two conceptually straightforward methods, the Scan Statistic and 
a test based on the supremum of a kernel density estimate. The former test is discussed 
in Section 2.2, in which different types of scanning procedure are evaluated and a 
number of approximations to critical values are outlined. Section 2.3 explores the 
kernel estimate based statistic and Section 2.4 reports the results of a power simulation 
study, which compares the two tests.

Chapters 2 and 3 assume that events in the region of interest have a uniform 
distribution, in the absence of any clustering. As has already been indicated, this 
assumption may be unrealistic when dealing with human populations. However, to 
reduce the complexity of the problem, it is convenient to work with a null hypothesis of 
this form in the first instance. A way of correcting for a non-uniform null distribution 
is discussed in Chapter 4.

2.2 The Scan Statistic

The Scan Statistic is a particularly simple method of examining the distribution of a 
sample of data points for evidence suggesting that it may be the result of something 
other than random chance. It was originally proposed as a measure of clustering in time 
by Naus (1965a, 1966a) and a recent review was provided by Naus (1988). Taking the 
region of interest to be the interval (0,1], without loss of generality, and assuming that 
N  events are distributed within it, the Scan Statistic, is defined to be the maximum 
number of points that can be included in a sub-interval [x - d, x], where x  is allowed to
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vary over (d, 1] and d is a prespecified constant, such that d < 1. This process represents 
a window 'scanning' over the unit interval in a continuous fashion, with Sd being the 
largest, instantaneous count of points so 'framed'. Clearly, large values of this statistic 
would indicate some form of clustering.

Two observations simplify the development of an algorithm for calculating the Scan 
Statistic that can be implemented in a programming language such as FORTRAN. 
First, since the statistic is defined to be the maximum count of events within a window, 
regions of the interval (0,1] that contain no events need not be considered. Hence, the 
coverage of the unit interval achieved by the algorithm will not necessarily be 
complete; the scanning process will concentrate on event locations, rather than all 
possible locations. Secondly, if the direction of scan is assumed to be from left to right, 
the total number of events contained within the window may only increase if the right- 
hand boundary reaches the location of a new event, and will decrease if the left-hand 
boundary moves to the right of an event that was previously inside the window. We are 
interested in large counts and, therefore, principally in events that enter the window 
from the right. Hence, if the /th event, eit forms the upper boundary of a scanning 
interval, [erd,e^, of length d and cM = count of events in then the Scan Statistic
is equal to

The programming task is then reduced to counting the numbers of events in N  distinct 
intervals of the form [e-d,e].

Distributional results for the Scan Statistic, under a null hypothesis of no clustering, are 
derived assuming that events are uniformly distributed over (0,1], For some integer n, 
denote Pr(Sd > n \ N d) by P(n\N;d). Naus (1965a) provides an exact result for 
P(n\N;d), using a combinatorial argument, as follows:

max cM.

P(n\N\d)
for d > j ,  n > (N +1) /  2, 
for d < j ,n > N /2 ,

(2.1)

where

C(n\N-,d) = (N -n + l)  b{i\N\d)+ y b { i \N - ,d ) \-2 (N -n ^ b ^ N 'M ) ,
N

i=n

N

N I N-n
R(n\N-,d) = y j b (i\N -,d )\y ib (j\r ,( l-d )  /  d ) \  + H(n\N;d)b(n\N;d),
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N-n N-n+1
H(n\N\d) = { n ( \ - d ) I d } Y ,b ( i \ ( n - W ,( \ - d ) I d ) - ( N - n + \ )  ^ b i i in -A l-d )  / d)

1=0 i - o

and

(  M'
b(k\M;p) = k f ^ ~ p ) M -k

For d > 1/2 and n < {N+l)/2, P(n\N;d) is identically equal to 1; however, the case for 
which d < 1/2 and n < N/2 is not covered by the argument. The latter range of d  and n 
could be of particular interest, in practice, because detecting a small scale clustering 
effect presumably requires a small scanning interval, if the effect is not to be concealed 
by the larger scale pattern of events. The associated value of the Scan Statistic, 
therefore, would be quite small, possibly much less than N/2.

An expression for P(n\N\d) with better coverage of the range of d  and n is described in 
Naus (1966a). For d = Ilk, where k is an integer, k> 2 and 2 < n < N,

P(n\ N; l / k)  = l - N \ k ~ Ny£ j d e t ( l / c p i),

where

fci
( /-* )* “ 2 A + * /»  i< j,

( / - 0 « + X « r, i ^ j ,
r~j

nt denotes the number of points in the interval ((/-l)/£,//£), 1/c !̂ is defined as zero when 
C;j > N  or Cy < 0, and the summation is over all partitions of N  into k positive integers, 
each less than n. Huntington and Naus (1975) and Hwang (1977) derive expressions 
for P(n\N;d) that are somewhat simpler and not limited to interval widths of the form 
1 Ik, k  an integer. Both are qualitatively similar to Naus (1966a), in that they involve the 
summation of the determinants of possibly large matrices, over a set of partitions of N. 
Although the relevant matrices are smaller and the sets of partitions have fewer 
elements, the two alternatives are still difficult to compute. This objection also applies 
to Wallenstein and Naus (1974), who express P(n\N;llk) in terms of multiple 
intersections of events, and to Naus (1982), who gives an approximation for the same 
probability. The accuracy of the latter result is best when the analysis does not 
condition on the total number of events, N, e.g. when the data in (0,1] form part of a
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longer stream of information. In retrospective studies, however, which are common in 
areas of application such as epidemiology, it is usual to take N  as fixed, so the 
approximation will be less useful.

Three possible approaches to overcoming the complexity of the Scan Statistic's 
distributional form are considered here. The first is to search for a different scanning 
procedure with comparable results but simpler behaviour. The second is to find direct 
approximations to the statistic's critical values, since these are the only quantities 
needed for significance testing. The third approach is to calculate critical values from 
approximations to the distribution of the Scan Statistic that are easier to use than the 
ones mentioned above. These options are discussed in turn in the following sections.

2,2.1 An Alternative Scanning Procedure

Instead of a window sweeping continuously over the unit interval, consider k > 2 
disjoint intervals, each of length d = Ilk, covering (0,1] completely. If the number of 
events in the j  th interval is denoted by NJt then the joint distribution of Nv ..., Nk is 
multinomial, with each cell probability equal to 1 Ik, If the analogue of the Scan 
Statistic for this situation is

max N f,
1 <,j<k J

then its distribution is that of the largest cell frequency from a multinomial distribution.

The covariance between N{ and Nj, for some i and j ,  is -N/k2, which may be small 
enough to be neglected if k is large. This would allow the {Nj} to be regarded as a 
sequence of independent and identically distributed binomial (Â l/X;) random variables, 
since each Nj is marginally binomial, which could be approximated by 
normal (N/k, (N/k) (1 - 1/k)) random variables, or normal {Nlkflfk), since k is assumed to be 
large. If M  is the maximum of the standardised versions of these normal random 
variables, then

V2l5I*(A/-4) 

has a Gumbel distribution (David, 1981), where

lk -  ^ 2 logk ~ \  (loglogk + log4n) / ^ 2 logk .
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To assess whether or not a disjoint scan approach is an adequate approximation to the 
continuous Scan Statistic, the empirical null distribution functions of both methods 
were simulated for a range of N and k. For comparison, a maximum count statistic was 
also simulated for discrete, overlapping intervals. The percentage of an interval's length 
covered by a neighbour was chosen to be 10%, 50% or 90%. It is interesting to note 
that this procedure bears some resemblance to the time component of a space-time 
interaction test proposed by Ederer et al (1964) and also to part of the algorithm of the 
Geographical Analysis Machine of Openshaw etal (1987,1988).

Table 1 compares the 5% critical values obtained from 1000 simulations of each 
scanning procedure for different combinations of N  and k, generating the N  events by 
sampling from a uniform(0,1] distribution. As might be expected, there is an obvious 
trend upwards over the different methods for a given N  and k, from the disjoint 
procedure, through the overlapping intervals in order of overlap proportion, to the 
continuous procedure. The results for the disjoint procedure are consistently too low, 
although the error is moderated slightly for the largest values of k\ these are of more 
interest, since the distributional result associated with this procedure requires small 
between-interval correlations. It would appear, however, that the disjoint intervals 
method is not sufficiently accurate to replace the continuous Scan Statistic and, 
therefore, that the multinomial extreme value argument suggested above cannot be 
employed. A further weakness of the method is described in Naus (1966b), which 
proves that the power of the disjoint procedure is less than that of the continuous Scan 
Statistic for all alternative hypotheses that specify continuous p.d.fs, when d  is 
sufficiently small.



Anderson, N.H. (1992) Chapter 2 35

N k Cont. Disjoint
Overlapping Intervals 

10% 50% 90%
50 4 23 20 20 21 22

8 15 13 14 14 15
16 11 9 10 10 10
32 8 7 7 8 8
64 6 6 6 6 6

100 4 39 36 36 37 39
8 25 22 23 23 24
16 17 15 15 16 16
32 12 10 10 11 11
64 9 8 8 8 9

200 4 70 64 64 66 69
8 42 38 38 40 41
16 26 24 24 25 26
32 17 16 15 16 17
64 12 11 11 11 12

400 4 126 119 119 122 125
8 73 68 68 70 72
16 44 39 40 41 43
32 28 25 25 26 27
64 18 16 16 17 18

800 4 238 227 228 230 234
8 132 124 125 127 130
16 76 71 71 72 74
32 45 42 42 43 44
64 29 26 26 27 28

Table 1: Empirical 5% critical values for the Scan Statistic
calculated from 1000 simulations using the 
continuous, disjoint and overlapping intervals 
procedures.
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2.2,2 Direct Approximation o f Critical Values

A second approach to the problem of assessing the significance of the Scan Statistic is 
to find some method of approximating critical values simply and directly, without 
necessarily making reference to a distributional result. Figure 1 plots 5% critical 
values, for sample size N  = 50, against the relevant interval widths, d = 2/3, 1/2, 1/4, 
1/8,1/16,1/32,1/64.

45

40 ■■
35

30 ■■

Critical 25 • • 
Value 20 ■ ■

15 ■■

0.1 050 02 03 0.4 0.6 0.7

Interval Wicih

Figure 1: Plot of simulated 5% critical values for the Scan 
Statistic against seven interval widths, for N  = 50. 
Based on 1000 replications.

The critical values were obtained by simulation of a continuous scanning process, using 
1000 independent replications for each interval size. Some of the results appear in 
numeric form in Table 1 in the previous section. The monotonic increase of critical 
value with d, observed in Figure 1, is typical of the pattern for all sample sizes. If the 
5% critical value, given N  and d, is denoted by c%rf, then a linear model of the form

^ -  = a + p .d  (2.2)
N

might be plausible, where a  and |3 are, respectively, intercept and slope parameters, and 
the standardisation by A is an attempt to make the model independent of sample size.
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However, the curvature apparent at small values of d in Figure 1 is not removed by 
simple transformations, such as loge or square root. This may indicate that a quadratic 
model of the form

= a + p .d + y .d 2 (2.3)
N ^  '

would be more suitable.

Parameter estimates were obtained for (2.2) and (2.3) by least squares from simulated 
critical values for seven choices of each of N and d and these are displayed in Table 2. 
This is intended to be an ad hoc approach, rather than rigorous statistical modelling, so 
there is no assumption of a particular error structure, for example.

N

Coefficients
Linear Model, (2.2) 

a  p
Quadratic Model, (2,3) 

a  P 7
20 0.270 1.096 0.221 1.824 -1.106
50 0.143 1.089 0.112 1.557 -0.711
100 0.098 1.076 0.080 1.338 -0.398
150 0.078 1.069 0.060 1.329 -0.395
200 0.062 1.067 0.046 1.297 -0.348
400 0.042 1.046 0.032 1.191 -0.222
800 0.029 1.032 0.021 1.149 -0.177

Table 2: Parameter estimates for models (2.2) and (2.3), for
simulated critical values of the Scan Statistic 
regressed on seven choices of interval width.

The linear model (2.2) is usually much less accurate than the quadratic model (2.3), 
over the range of N  considered here. For example, Table 3 compares the 5% critical 
values obtained by simulation with those calculated from (2.2) and (2.3), for N  = 50. 
The quadratic model correctly estimates five of the values, whereas the linear model 
can only manage two. The accuracy of both models degrades as N  increases, but (2.3) 
maintains its superior performance.
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d Continuous Linear
(2.2)

Quadratic
(2.3)

2/3 42 44 42
1/2 35 35 36
1/4 23 21 23
1/8 15 14 15

1/16 11 11 11
1/32 8 9 8
1/64 6 9 7

Table 3: Comparison of 5% critical values for N  = 50,
calculated by simulation, (2.2) and (2.3).

Returning to Table 2, we see that the coefficients for the quadratic model appear to be 
converging, with increasing N, to 0,1 and 0 for a, (3 and y, respectively. This suggests 
that it might be possible to improve the accuracy of (2.3) by fitting linear models to the 
three parameters, with A as an explanatory variable, and then substituting the resulting 
expressions into the original model. After transformations to the logarithmic scale, the 
following models for the parameters were obtained:

log a  = 0.331 - 0,629 log N ,

log (|3 -1) = 1.202 - 0.469 log N

and
log (-y) = 1.576 -0.505 log N.

Back-substitution produced a new model for c% :̂

= 1.392 N~°'629 + (l + 3.328 N~°A69 )d -  4.835 N~°305d 2. (2.4)
N

A second direct method of obtaining critical values is derived by generalising an 
argument used in the proof of Theorem IV in Naus (1966b), which holds for d  = 1/2 
and uses approximations to P{n\N\d) for n > {N+1)/2. Consider now the case of d < 1/2 
and, from (2.1), observe that for n > {N+1)/2

N
-2 (N -n )Y ,h (i\N ;d )

i=n
P(n\N-td) = (N -n+ m 2'£b{i\N ;d)+ b(n-l\N -,d)-b(n\N -,d)

I i-n
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N
= 2%Jb(i\N;d) + (N -n+ l){b(n-l\N ;d)-b(n \N \d)}

i=n

= 2'£b(i[N-,d) + (? --N -l\(n \N -,d ) .  (2.5)

Assume that N  is large and employ a normal approximation to the binomial 
probabilities, so that

D, . . .  .. 2 r  f Oc-Nd)2 ] .P(n\N;d) ~  — —  ■■ ,exp4-------- ----------- - >dx
^2nN d{l-d)  J»4 H 2 N d (l-d )\

42nN d(\-d) * 4  1 2 N d ( l-d ) \

By making the substitutionsy  = (r - Nd)!{Nd{l - d)}^ and n = (N + JciN)d, and 
neglecting the first continuity correction, it can be demonstrated that

_ £exp(—\ 0 2k2)

where 0 = {d /(I-d )}^  and <J>(*) is the normal c.d.f.. Hence, for a significance level of 
a , choose k = ka, so that

r 1 k„ Q xA -\92k l)

the corresponding approximate critical value is, therefore,

®nj={N+ka4N)d. (2.6)

For <2? > 1/2 or n < (A+l)/2, (2.6) is still applied, since expression (2.5) is then an 
approximation to the true value of P{n\N\d)\ this approximation is derived by 
Wallenstein and Neff (1987) and forms one of the methods to be discussed in the next 
section.
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2.2.3 Approximations to P(n\N\d)

The third approach to simplifying significance testing for the Scan Statistic is to use an 
approximation for P(rt\N;d) that is not computationally intensive. When d < 1/2, Glaz 
(1989) derives a sequence of approximations, for each of L = 1,..., N-n, so that

P (n \N - ,d )~ l-Q ^ H,
where

QN-«U = QL(QM /Qi.f~"~L+1.

j—2

<?i=PrUC)>

Q;=PrLnpn4c |L
I \k=l JJ

A{ is the event {X(n+M) - X(i) < d }, a superscript 'c' denotes a set complement and is 

the j  th order statistic from the sample. The terms Q1 and Q* can be written as 

weighted sums of binomial probabilities, which are straightforward to calculate.

The accuracy of the approximation increases with L, but so does the number of 
calculations. Glaz (1989) suggests L = 3 as a suitable compromise and, also, that the 
approximation is best when the average number of points in a scanning interval is low, 
e.g. N  x d  < 5. When the latter condition does not hold, a suggested alternative is the 
approximation of Wallenstein and Neff (1987), which justifies the use of (2.5) as an 
approximation to P{n\N;d) for all n and d, by derivation for the case where d = 1/L, L an 
integer, and then by arguing that the result should hold for more general d.

2*2,4 Comparison o f Direct Methods and Approximations to P(n\N;d)

Following the model provided by Section 2.2.1, the proposals of Sections 2.2.2 and
2.2.3 are compared by their ability to produce accurate 5% critical values. Other 
criteria might be more appropriate if the overall behaviour of the different methods was 
of interest, but for significance testing purposes it is only the upper tail that is 
important. The benchmark values are those obtained by simulation (with 1000 
replications), which were used previously in Table 1.
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Table 4 presents the results for the quadratic model (2.3), the quadratic model 
incorporating a trend in the parameters (2.4), the approximate formula (2.6), and the 
approximations of Glaz (1989) and Wallenstein and Neff (1987). The two quadratic 
models, (2.3) and (2.4), are at best moderately accurate and, in fact, there seems to be 
little or no advantage to be gained from including the linear components for the 
convergence of the parameters to zero or one. The method generalised from Naus 
(1966b) is quite accurate for large d, e.g. d > 1/4, but poorer for small d. When the 
window is narrow, typical values of the Scan Statistic will be quite small, relative to N, 
so it is likely that P{n\N\d) would have to be evaluated for n < N/2, whereas the 
expression used to derive (2.6) is valid only for n > N/2. Hence the tail probability 
under calculation is already an approximation, before the further approximating steps 
are taken. In addition, the derivation requires a binomial probability at a single value, 
b(n\N;d), to be replaced by a normal approximation, which may not be adequate.

The results calculated from Glaz (1989) and Wallenstein and Neff (1987) are the best of 
the group, with most of the simulated critical values being reproduced by both methods. 
The latter technique would seem to have advantages over the former, since it does not 
require d  < 1/2 and demands less computational effort. It would also appear that the 
guideline regarding a large average number of points in a scanning interval, suggested 
by Glaz (1989), has some justification. The inaccurate critical values estimated using 
this method occur for large d and N, which might imply a large mean event count, 
whereas the Wallenstein and Neff (1987) method gives more precise values at the same 
locations. For small d, however, it would appear that the methods have about the same 
success in approximating tail probabilities for significance testing.
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N d Cont7 Quad2 (2.4) (2.6) Glaz WNJ
20 2/3 19 19 19 20 - 19

1/2 17 18 18 17 17
1/4 12 13 12 11 12 12
1/8 9 9 9 8 9 9
1/16 7 7 7 6 7 7
1/32 5 6 6 4 5 5
1/64 5 5 5 3 5 5

50 2/3 42 42 43 43 - 42
1/2 35 36 36 35 35
1/4 23 23 24 22 23 23
1/8 15 15 15 14 15 15
1/16 11 11 11 10 11 11
1/32 8 8 9 fy 8 8
1/64 6 7 8 5 6 6

100 2/3 80 80 79 80 _ 80
1/2 64 65 66 64 - 64
1/4 39 39 40 39 39 39
1/8 25 25 25 24 25 25
1/16 17 17 17 15 17 17
1/32 12 13 12 10 12 12
1/64 9 11 10 9 9

150 2/3 116 116 116 116 - 116
1/2 93 94 94 93 - 93
1/4 55 56 55 54 55 55
1/8 34 33 33 33 34 34
1/16 22 22 22 20 22 22
1/32 15 16 16 13 15 15
1/64 11 13 13 9 11 11

1. Simulated 5% critical values, 1000 replications. 2. Quadratic model (2.3). 3. Wallenstein and

Neff (1987) approximation.

Table 4: Comparison of 5% critical values for the Scan
Statistic, obtained by five different approximate 
methods, with those calculated from simulations.
(Continued overleaf).
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N d Cont; Quad2 (2.4) (2.6) Glaz WNJ
200 2/3 152 152 151 152 - 151

1/2 120 122 122 120 - 120
1/4 70 70 70 69 70 70
1/8 42 41 41 41 42 42
1/16 26 26 26 25 26 26
1/32 17 18 18 16 17 17
1/64 12 14 14 10 12 12

400 2/3 292 292 292 293 - 292
1/2 228 230 230 228 - 228
1/4 126 127 128 127 129 127
1/8 73 72 72 72 74 73
1/16 44 43 43 42 44 44
1/32 28 28 28 26 28 28
1/64 18 21 21 16 18 18

800 2/3 568 567 569 570 - 569
1/2 439 442 442 440 - 440
1/4 238 239 238 238 241 238
1/8 132 130 130 131 133 132
1/16 76 75 74 74 76 76
1/32 45 46 46 44 46 45
1/64 29 32 31 27 29 29

1. Simulated 5% critical values, 1000 replications. 2. Quadratic model (2.3). 3. Wallenstein and

Neff (1987) approximation.

Table 4: (Continued) Comparison of 5% critical values for
the Scan Statistic, obtained by five different 
approximate methods, with those calculated from 
simulations.
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2.3 Density Estimate Suprenuim Statistic

The number of points in a scanning interval is controlled by the true underlying 
probability density function in the corresponding region of (0,1], and is therefore 
related to the height of the density function in that area. This suggests that finding the 
Scan Statistic, which is the maximum number of points included in an interval of fixed 
length, is analogous to searching for the maximum height of some estimate of the true 
p.d.f., which has been calculated from the sample.

A useful approach to the estimation of a density function from a sample of data is 
nonparametric kernel density estimation, which has been described, for example, in the 
monograph of Silverman (1986). If the true p.d.f. is denoted by /U), from which a 
sample {Xl}..., XN}, of size A, has been drawn, then the corresponding estimate is

his a. smoothing parameter satisfying h -» 0 as N  —> 00 and Nh —» 00 as N  —> °°, and K{-) 
is the kernel function, which satisfies the following conditions:

The usual choice for K  is a symmetric probability density function, such as the standard 
normal (Gaussian) density.

Rosenblatt (1971) derives the asymptotic distribution of the maximum of a standardised 
kernel density estimate (k.d.e.) that is defined for the domain [0,1]. Although the 
conditions required in the proof are very strong (described in the paper as "unpleasant 
and completely impractical"), it is thought that the result is useful under much weaker 
conditions. If

(a) tf (f)*0,Vfe (-oo,eo),

(b) K{t)dt = l,
V — o o

(c) \~ jK (t)d t = 0.

X = \ K 2<t)dt,
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and
2

B = - ^ ~ { \K ( u ) K ( u + t) d u ^  ,

then

Pr max {/(x) -  E/(x)} < ^2  log ft 1 +-. A+Z - -> exp{-exp(-z)}, (2.7)
V2 log A _1

as TV —» , given conditions on/(*), AT(*) and A.

In the current application,/^) = 1, V x e  [0,1]. If K(<) is chosen to be the Gaussian 
density,

Therefore, B  = 1 and A = log(l/2jt). It can be demonstrated, using a Taylor expansion, 
that

for x g [0,1]. Finally, for a critical value at the a% level, the value of z must be chosen 
so that

and, hence, an expression for an approximate a%  critical value.

In Table 5, 5% critical values obtained from (2.8), for four different bandwidths (see 
below) and seven different sample sizes, are compared to empirical values, estimated by 
simulation. The latter results were based on 1000 sets of data, each one of which was 
generated by sampling from U(0,1]. The k.d.e. of the true p.d.f. for each set was 
calculated using the Fast Fourier Transform (FFT) algorithm of Silverman (1982), with 
the addition of the corrections suggested by Jones and Lotwick (1984). The algorithm 
requires the simulated data to be discretised to a grid of, say, 1024 points, by splitting

A = (4;r) ^ and J K (u)K (u +t)du = (4jr) ^  exp(-/2/4 ).

W( x)  = f ( x ) + \h 2{ \ t2K(t)dt}f"(x)+o{h2) ~ l ,

exp{-exp(-z)} = l - a  => z = -lo g lo g { (l-a ) 1}. 

Substituting these quantities into (2.7) gives the result that, for large N,

Pr m ax/(x) ^1+(2A%V^) 2< ^2  logft 1 - (2.8)
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an observation with value x into two weights, iz~x)/iz-y) and (x-y)Kz-y), which are 
assigned to the grid points with values y  and z respectively, where y  (z) is the point 
immediately to the left (right) of jr. The FFT of the grid, calculated with wrap-around 
edge conditions, is multiplied by the Fourier transform (FT) of the Gaussian kernel, to 
give the discrete FT of the k.d.e.. An inverse transformation provides values of the 
density estimate at 1024 distinct points. The maximum of these was taken to be a 
reasonable approximation to the supremum of the k.d.e. over [0,1].

N Method 0.5
Bandwidth, c = 

1.0 1.5 2.0
20 Sim 2,107 1.526 1.261 1.108

(2.8) 2.162 1.748 1.575 1.414
50 Sim 1.745 1.387 1.224 1.122

(2.8) 1.824 1.532 1.410 1.294
100 Sim 1.600 1.321 1.197 1.120

(2.8) 1.635 1.411 1.317 1.228
150 Sim 1.514 1.280 1.183 1.118

(2.8) 1.545 1.353 1.273 1.196
200 Sim 1.444 1.241 1.162 1.108

(2.8) 1.489 1.317 1.245 1.176
400 Sim 1.350 1.194 1.130 1.091

(2.8) 1.376 1.245 1.189 1.136
800 Sim 1.264 1.159 1.112 1.083

(2.8) 1.289 1.189 1.146 1.105

Table 5: Comparison of 5% critical values for the density
estimate supremum statistic, found by simulation 
and the asymptotic result (2.8).

The same smoothing parameters were used for both the simulations and the 
approximations from (2.8). The usual formula for an optimal value of h, obtained by 
minimising approximate mean integrated squared error, is
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hop,= { \ t 2K (t)d tY 5{ \K 2(t)d tY { \f" (x )2dx} l N^-, (2.9)

e.g. if the observations are drawn from a normal distribution with variance cr2, say,

hopt =1.06cW"i

The uniform p.d.f. has zero second derivative, preventing (2.9) from being used 
directly. It does, however, suggest that bandwidths of the form

h = coN~^ (2.10)

would be sensible, where a is set equal to the standard deviation of the uniform 
distribution, i.e. <7 = 12“^. In Table 5, the value of the constant c was chosen from the 
set {0.5,1.0,1.5, 2.0}.

When smoothing examples of the simulated data sets, the bandwidth with c = 0.5 in 
(2.10) gave the best results to the eye; it also achieved two significant figure accuracy 
over most of the range of N, which was better than the other three choices. The overall 
accuracy of approximation (2.8) is poor, but improves for the smaller bandwidths and 
for larger sample sizes. The simulated values, it should be noted, may themselves lack 
precision. First, they are based on the empirical distribution of maxima that are found 
by a grid search over [0,1], and are, therefore, likely to be underestimates. Secondly, 
the empirical critical value is effectively discretised, being the 951st order statistic from 
a sample of 1000 simulated maxima, whereas the true critical value is measured on a 
continuous scale. Hence, accuracy to a large number of decimal places would not be 
expected.

2.4 Power Comparison

In Sections 2.2 and 2.3, two statistics were described that were designed to detect the 
clustering of points along the real line. Methods of approximating critical values for 
significance testing were also investigated. This section attempts to compare the Scan 
Statistic and the density estimate supremum statistic (DESUP) on the basis of their 
ability to identify data that has been sampled from a distribution representing a small 
cluster within a larger scale random (uniform) pattern.

The best method for calculating critical values for the Scan Statistic proved to be the 
approximation to P(n\N;d) due to Wallenstein and Neff (1987), hereafter referred to as 
WN, Results for the approximation of Glaz (1989) were almost identical, but required
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greater computational effort. The least accurate of the methods considered were the 
quadratic models, (2.3) and (2.4), of which the former, denoted by Q, seemed to have a 
slight advantage in that it was marginally simpler. Approximation (2.6) fell somewhere 
in between. To indicate the range of figures for power that would be expected for the 
Scan Statistic, when using these methods to obtain critical values, only WN and Q are 
included in the comparison.

The study was carried out by simulation, for tests at the 5% level. One thousand sets of 
artificial data were generated for each technique, sample size and, in the case of WN 
and Q, interval length, by sampling from the mixture distribution

p  £/(0,l] + (1 -p) £7(0,5-e,0.5+e], (2,11)

where U(aJ?] is the uniform p,d.f. on {ajb\,p is a mixture parameter chosen from the 
set {0.8, 0.9, 0.95,1,0} and e = 0.025, The significance level of each test was taken to 
be 0.05 and the value p  -  1.0 was included to check empirically the level accuracy of 
the three methods. Critical values for DESUP were obtained from (2.8), using a 
bandwidth of form (2.10) with c = 0.5.

Table 6 summarises the results forp  = 0.8, 0.9, 0.95. The power of all three methods 
shows the expected increase with sample size and decrease with p. The mixture 
parameter has the interpretation of one minus the proportion of events that might be 
expected in the cluster, sop = 0.8 corresponds to an average of 20%, for example. The 
three methods are clearly more powerful for larger clusters. There is considerable 
variability with interval length for WN and Q, with smaller intervals generally giving 
greater power. There seems to be evidence indicating that power increases to a 
maximum at around d = 1/16, decreasing thereafter. The width of the cluster generated 
by (2.11) is 0.05, so it would seem that the power of the Scan Statistic is maximised 
when the length of the scanning interval is approximately the same as that of the 
interval within which the clustering effect is operating. This observation confirms a 
similar simulation result in the discussion of Wallenstein and Neff (1987).

WN is more powerful than Q for/? = 0.8 and for large N  when p  = 0.9, but for a small 
cluster there is little difference between them. One feature of Q that is apparent over 
the entire range of N  and p  is the often sharp decrease in power for very small d. 
Examination of earlier results suggests that Q almost always overestimates the relevant 
critical value and, hence, that a test based on Q for d = 1/64 is very conservative. 
DESUP is usually less powerful than the best results of either WN or Q for a given 
choice of Nandp.
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N d WN

00i 
°

D1 WN

p  = 0 .9  

Q iy WN

p  =  0 .95  

Q D7

20 2/3 0.101 0.101 0.062 0.062 0.053 0.053

1/2 0.114 0.024 0.046 0.006 0.026 0.004

1/4 0.180 0.092 0.050 0.013 0.028 0.005

1/8 0.200 0.221 0.267 0.045 0.043 0.070 0.019 0.016 0.044

1/16 0.237 0.284 0.040 0.056 0.013 0.014

1/32 0.408 0.189 0.102 0.024 0.057 0.010

1/64 0.093 0.123 0.090 0.027 0.005 0.005

50 2/3 0.298 0.314 0.128 0.148 0.074 0.086

1/2 0.424 0.311 0.181 0.092 0.084 0.032

1/4 0.542 0.534 0.135 0.148 0.047 0.061

1/8 0.750 0.744 0.664 0.219 0.243 0.175 0.068 0.079 0.049

1/16 0.809 0.808 0.212 0.247 0.053 0.055

1/32 0.806 0.797 0.231 0.265 0.068 0.063

1/64 0.715 0.457 0.221 0.062 0.079 0.090

100 2/3 0.380 0.412 0.118 0.132 0.064 0.057

1/2 0.744 0.632 0.285 0.215 0.124 0.083

1/4 0.904 0.909 0.352 0.362 0.097 0.116

1/8 0.959 0.963 0.964 0.429 0.438 0.435 0.089 0.118 0.092

1/16 0.986 0.988 0.534 0.550 0.093 0.110

1/32 0.981 0.948 0.481 0.351 0.084 0.039

1/64 0.936 0.647 0.289 0.057 0.053 0.007

150 2/3 0.609 0.611 0.202 0.211 0.081 0.095

1/2 0.859 0.798 0.332 0.244 0.112 0.078

1/4 0.979 0.965 0.480 0.414 0.093 0.112

1/8 0.998 0.999 0.999 0.659 0.719 0.639 0.136 0.203 0.145

1/16 1.000 0.999 0.785 0.791 0.184 0.189

1/32 1.000 0.999 0.734 0.639 0.160 0.112

1/64 0.988 0.927 0.504 0.191 0.070 0.013

1. DESUP statistic of Section 2.3. Note that values of d apply only to WN and Q columns.

Table 6: Empirical power of three tests of one-dimensional
clustering, using 1000 replications, against 
alternatives with three sizes of cluster. (Continued 
overleaf).
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N d WN

p  = 0 .8

Q iy WN

p  = 0 .9  

0 iy WN

p  =  0 .95  

Q iy

200 2/3 0.802 0.726 0.303 0.260 0.128 0.102

1/2 0.967 0.916 0.491 0.351 0.176 0.102

1/4 0.997 0.997 0.642 0.613 0.165 0.166

1/8 1.000 1.000 0.999 0.820 0.853 0.818 0.226 0.308 0.232

1/16 1.000 1.000 0.944 0.930 0.362 0.376

1/32 1.000 1.000 0.925 0.847 0.349 0.240

1/64 1.000 0.999 0.798 0.466 0.218 0.043

400 2/3 0.978 0.974 0.505 0.516 0.201 0.226

1/2 1.000 1.000 0.786 0.680 0.287 0.248

1/4 1.000 1.000 0.944 0.946 0.380 0.390

1/8 1.000 1.000 1.000 0.990 0.993 0.999 0.546 0.618 0.565

1/16 1.000 1.000 0.999 0.999 0.682 0.738

1/32 1.000 1.000 0.998 0.994 0.604 0.604

1/64 1.000 1.000 0.992 0.890 0.476 0.135

800 2/3 1.000 1.000 0.818 0.858 0.331 0.408

1/2 1.000 1.000 0.980 0.942 0.484 0.406

1/4 1.000 1.000 1.000 1.000 0.709 0.670

1/8 1.000 1.000 1.000 1.000 1.000 1.000 0.890 0.911 0.921

1/16 1.000 1.000 1.000 1.000 0.967 0.970

1/32 1.000 1.000 1.000 1.000 0.961 0.936

1/64 1.000 1.000 1.000 0.999 0.823 0.511

1. DESUP statistic of Section 2.3. Note that values of d apply only to WN and Q columns.

Table 6: (Continued) Empirical power of three tests of one­
dimensional clustering, using 1000 replications, 
against alternatives with three sizes of cluster.
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The level accuracy of all three methods is moderate and the tests are usually quite 
conservative. For example, empirical significance levels are displayed in Table 7 for 
N  -  50; a full range of interval lengths is included for WN and Q. Conservatism in the 
Scan Statistic may result from a discretisation effect; i.e. it may not be possible to 
achieve a level of 0.05 in practice, since the statistic can only take integer values. Table 
7 also contains columns of empirical levels for WN and Q that were calculated using 
critical values that had been reduced by one. For WN, all the levels are greater than 
0,05, while five out of seven are greater than 0,05 for Q, suggesting that discretisation 
may be a plausible explanation, and that Q's level accuracy may be less than that of 
WN. Q is especially poor for d = 1/64, for the reasons noted above.

d WN
WN-

reduced7 Q
Q-

reduced7 DESUP^
2/3 0.045 0.101 0.046 0.116
1/2 0.043 0.096 0.015 0.037
1/4 0.029 0.066 0.039 0.071
1/8 0.036 0.090 0.039 0.118 0.022
1/16 0.022 0.074 0.015 0.082
1/32 0.029 0.125 0.022 0.115
1/64 0.042 0.232 0.002 0.041

1. Empirical level calculated using critical values reduced by one. 2. Independent of d.

Table 7: Empirical significance levels for the density estimate
supremum statistic and two critical value 
approximation methods for the Scan Statistic, for 
N  = 50. Simulations based on 1000 replications.

Power and level accuracy results have not been included in Tables 6 or 7 for 
significance testing by simulation, i.e. by comparing the Scan Statistic for each artificial 
data set sampled from (2.11) to the appropriate simulated critical value from the first 
column of Table 4. The missing entries are almost identical to those of WN, because of 
the close agreement between the two sets of critical values (see Section 2.2.4), and, 
hence, the comments regarding the performance and level accuracy of WN apply to the



Anderson, N.H. (1992) Chapter 2 52

simulation technique. Alternatively, one could use a Monte Carlo significance test 
(Barnard, 1963; Hope, 1968), in place of the empirical critical values, at each 
replication; however, the results should be the same, if allowance is made for sampling 
variability.

2.5 Conclusion

The Scan Statistic and density estimate supremum statistic are reasonably effective 
methods of detecting clustering in one dimension. For the former technique, the use of 
an approximation to P(n\N;d) that may be calculated easily, such as that of Wallenstein 
and Neff (1987), is more satisfactory than estimating critical values directly, or using 
scanning intervals that are disjoint or discrete and overlapping. Significance testing for 
the k.d.e. based statistic may employ an asymptotic result, but the accuracy of the 
critical values obtained can be poor. Simulation provides an alternative approach to the 
problem that is quite attractive for both methods.

For the simple alternative hypotheses considered, the Scan Statistic was more powerful 
than the k.d.e. maximum, provided the size of the scanning interval was chosen to 
reflect the scale at which clustering was occurring. If this parameter was mis-specified, 
the supremum statistic performed very favourably, although the results were similarly 
dependent on an arbitrary constant, i.e. the bandwidth, h. The Scan Statistic could also 
be regarded as a smoothing technique, e.g. a type of moving average procedure, and 
thus both the Scan Statistic and the density estimate supremum statistic can be seen to 
share a problem common to all smoothing methods, i.e. dependence on the particular 
values of a smoothing parameter.
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CHAPTER 3

THE SCAN STATISTIC IN TWO DIMENSIONS

3.1 Introduction

In one dimension, the Scan Statistic is calculated from counts of points within a 
window that moves in a continuous fashion over the unit interval. If we wish to 
consider an analogous method in two dimensions, it is natural to generalise the unit 
interval to the unit square, [0,1] x [0,1], and the scanning interval to a scanning 
rectangle, with sides of length u and v, parallel to the x m d y  axes, respectively. This 
formulation of the two-dimensional statistic was first proposed by Naus (1965b).

Let N  events be distributed within the unit square and let

fly = the number of points within the rectangle [x - Uyx] x \y - vy]. 

The two-dimensional version of the Scan Statistic is defined to be

SBV = m a x ^ .

The decision to refer to a particular rectangle by its top right-hand comer is arbitrary, 
but convenient for computational purposes. A two-dimensional version of the 
algorithm for calculating the Scan Statistic that was discussed in Section 2.2 can be 
developed easily, since the observations made previously regarding sufficient coverage 
of the region of interest generalise to two dimensions. Each event location is used in 
turn as a reference point for a one-dimensional scan, with the first count being made in 
the square with top right-hand comer located at the reference event, and subsequent 
counts being made when new events enter the square as it scans horizontally; the scan 
finishes when the current reference point is dropped by the window. The next event in 
the sequence is then selected as the reference point, and the process is repeated. This 
algorithm calculates the Scan Statistic correctly, but, as in the case of the one­
dimensional version, does not necessarily scan all possible locations.
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Using notation similar to that of Section 2.2, the tail probability
Fr(Suv >n\N;u,v)

may be abbreviated to
P{n\N;u,v).

Under the relevant null hypothesis, which is that there is no process operating in the 
unit square that would generate clusters, the N  events are assumed to be sampled from a 
uniform distribution that is defined on [0,1] x [0,1].

Conover et al (1979) describe an application of the theory of one-dimensional Scan 
Statistics to the positions on a two-dimensional map of anomalous radioactivity counts 
from bismuth-214, which have been measured along parallel flight lines from aerial 
reconnaissance aircraft. A finite number of discrete horizontal scans is performed along 
the paths of these samples, with the height of the scanning window chosen so that a 
given number of lines is included at one time, e.g. three paths. For this application, the 
number of points inside a window at a specific location has the same distribution as the 
analagous count of points in the one-dimensional case, allowing the exact results of 
Naus (1966a), for example, or approximate results for P(n\N;d) to be employed. Those 
areas achieving a count exceeding a pre-specified critical value are shaded on a map of 
the observations. Further investigation is to be targeted subsequently on areas with a 
high density of shading. The algorithm is qualitatively similar to Openshaw et al 
(1987, 1988), and may therefore share the deficiencies of that method, which were 
discussed in Section 1.2.3. One of the main weaknesses is the dependence between 
overlapping, shaded areas, since different passes through the data may share flight lines.

An initial investigation of the behaviour of the two-dimensional Scan Statistic is made 
by simulation in Section 3.2. Naus (1965b) presents upper and lower bounds for 
P(n\N',u,v), which are discussed further in Section 3.3. The evaluation of empirical 
power is undertaken by simulation in Section 3.4, and Section 3.5 summarises the 
conclusions of the preceding work. Section 3.6 is in the spirit of an aside; it considers a 
problem with multiplicative linear congruential pseudo-random number generators that 
was encountered while carrying out the simulations reported in Section 3.2.

3.2 Simulation of Critical Values

Simulation of the Scan Statistic under the null hypothesis stated in Section 3.1 can 
provide useful information about the expected behaviour of the test procedure, and 
provides a reference point for later work. We will concentrate on the case of a square
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scanning window, a decision made partly for convenience, but also prompted by two 
observations that suggest a square may be the optimal shape, in some sense. First, a 
comment in Naus (1965b) suggests that, for a given, fixed area of scanning window, a 
square gives a higher probability of seeing a large cluster than would a rectangle, in the 
sense of maximising P(N\N;u,v) subject to uv = A, A a constant. Secondly, a rectangle 
may be more appropriate for situations where there is prior information to suggest that 
one co-ordinate direction may be more important than the other for measuring 
clustering. In the type of examples used in this investigation, there is no such 
anisotropic effect; therefore, subsequent work assumes u = v = d.

N
2/3 1/2 1/4

d
1/8 1/16 1/32 1/64

50 34 24 12 7 5 4 3
(0.048) (0.046) (0.014) (0.018) (0.007) (0.003) (0.014)

100 62 41 18 10 6 4 4
(0.034) (0.043) (0.039) (0.009) (0.032) (0.049) (0.003)

200 113 73 28 14 8 5 4
(0.038) (0.048) (0.050) (0.022) (0.008) (0.034) (0.013)

400 211 132 47 20 11 7 5
(0.049) (0.044) (0.036) (0.033) (0.014) (0.006) (0.007)

Table 8: Empirical 5% critical values for the two-
dimensional Scan Statistic, calculated from 1000 
simulations. Exact significance levels in 
parentheses.

Table 8 displays some empirical 5% critical values and the simulated upper tail 
probability to which each corresponds. The results are derived from the empirical 
frequency distributions of 1000 replications, with the co-ordinates of events being
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simulated by sampling from the uniform distribution on the unit square. Some of the 
tail probabilities are much smaller than 0.05, especially for small d. It would appear 
that the Scan Statistic suffers from a discretisation problem in two dimensions, just as it 
does in one, i.e. it may not be possible to attain a significance level of precisely 0.05, 
because of the restriction of the statistic to integer values.

The following example helps to explain why there is considerable variability in the 
empirical levels in Table 8 for small d. The empirical distribution in the above 
simulations for A = 50 and d = 1/2 was

s 15 16 17 18 19 20 21 22 23 24 25 26 27
F 10 35 97 163 217 166 123 94 49 24 15 3 4

where S represents values of the statistic and F the frequency, whereas the empirical 
distribution for d = 1/32 was

Statistic 1 2  3 4
Frequency 2 876 119 3

The range of values taken by the Scan Statistic for small d  is much narrower than that 
for larger scanning squares. There is a greater concentration of weight on a few central 
values and the tails are shorter. This can lead to a greater difference in the estimates of 
P{n\N;d,d) for adjacent values of n than would be observed for larger choices of d.

A point of interest is that, for the same value of N , the critical values in Table 8 for a 
square of side d are of the same order of magnitude as those in Table 4, for the 
continuous one-dimensional Scan Statistic for an interval of length d2. This seems 
plausible, since the two windows cover the same proportion of their respective regions 
of interest.

3.3 Bounds for Tail Probabilities

Naus (1965b) presents upper and lower bounds for P(n\N;u,v) that have the same 
limiting form, as u and v tend to zero. If

P '(lmji\N\u,v) = Pr[One and only one set of n points is contained within a u x 
v rectangle; no rectangle with the same dimensions 
contains more than n points],
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then it is demonstrated that 

where 

and

L<P(n\N;u,v)<U,

L = max{P(/il/V;w,l)P(«l«;l,v); P(nW;l,v)P(«l«;w,l)}

C/ = P(n\N;utl)P(n\N;l,v) H 1
<n J

-l

It is also noted in Naus (1965b) that if either u or v is equal to 1, P{n\N;u,v) and 
P f(l:n\N;u,v) reduce to the one-dimensional Scan Statistic tail probabilities for intervals 
of size equal to the measurement that does not have the value of unity. Hence, the 
bounds for a d x d, square scanning window can be rewritten in the form

L=P(n\N;d)P(n\n;d) (3.1)

and

U = {P (n\N -,d)Y -\l
(N'\-1

(3.2)

where P'(1:»UV;<2) is the one-dimensional equivalent of P'{\\n\N44), in an obvious 
notation.

Calculation of the bounds to P{n\N\d4) from (3.1) and (3.2) requires evaluation of three 
probabilities, namely P(n\N;d), P{n\n;d) and P'(l:n\N',d). The first two are standard 
one-dimensional tail probabilities for the Scan Statistic, for which different exact and 
approximate results were discussed in Chapter 2. It is difficult to derive the third 
quantity analytically, but it can be estimated empirically by the proportion of those 
Scan Statistics equal to n and found at only one location in, say, 1000 simulations, 
where N  artificial events for each replication are sampled from the uniform distribution 
on (0,1],

The best approximation to P(n\N;d) in Chapter 2 was the result of Wallenstein and Neff 
(1987), denoted by WN, which was both accurate and computationally undemanding 
when used to calculate 5% critical values. Table 9 displays some specimen values of 
(3.1) and (3.2) for a scanning square of side d and a sample size of 20, which were 
produced using a combination of WN and simulation. The values of n included in the
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table were chosen to bracket the appropriate two-dimensional 5% critical values 
obtained by simulation in the previous section.

Five of the values for the upper bound are greater than one, which is a worrying feature; 
since (3.2) is defined to be the difference of a pair of probabilities, the calculation 
should produce a result that is less than one. This behaviour is a consequence of a 
weakness in WN that was described in Glaz (1989). When the true value is large, i.e. 
when n is small with respect to N, WN may generate an approximation to P(n\N;d) that 
is greater than one. In addition, the magnitude of the error increases as \x = Nd 
decreases. The approximations to P(n\N;d) corresponding to the entries in Table 9 are 
shown in Table 10. The pattern of WN results that are greater than one matches that of 
the upper bounds in Table 9.

WN can be applied successfully to the estimation of tail probabilities for significance 
testing in the context of a single dimension, since the relevant quantities are usually in 
the range 0.01 to 0.1. Probabilities of this size ensure that n is quite large relative to N, 
so the result is very accurate. In two dimensions, however, values of n that give tail 
probabilities in the above range are much smaller than the corresponding values in the 
one-dimensional case. The two-dimensional bounds require the calculation of one­
dimensional tail probabilities for the same choice of n, and so the WN approximation 
has to be evaluated in a region in which its performance is poorer. Table 10 indicates 
clearly that WN is unsuitable for calculating (3.1) and (3,2).

A different approach to evaluating the bounds for P(n\N;d4) is to make use of the 
tables of exact values for P(n\N;d) that have been included in, for example, Naus 
(1966a) and Wallenstein and Naus (1974). Results from the latter reference cover 
sample sizes of up to 100 for a limited range of interval sizes and ordinates, n. These 
have been used in the construction of Table 11, which compares the lower bound (3.1), 
the upper bound (3.2) and simulated values of P{n\N',d,d), based on 10000 replications. 
P'(l:n\N;d) was also estimated from 10000 simulations, and it is straightforward to 
calculate P(n\n;d) from the exact probability statement (2.5) in Chapter 2. The choices 
of n for which exact P{n\N;d) exist are not ideal for a comparison directed towards 
significance testing, since they are generally larger than the corresponding two- 
dimensional 5% critical values (see Table 8). This also means that many of the 
associated tail probabilities are too small to be estimated from 10 000 simulations. 
However, the available parameter combinations may be sufficient to indicate suitable 
conditions for obtaining good performance from (3.1) and (3.2).
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d n Lower Bound, (3.1) Upper Bound, (3.2)
1/4 6 5.898 x 10-3 1.6167

7 1.632 x 10-3 1.4761
8 3.332 x 10-4 0.7381

1/16 3 0.0310 7.6197
4 1.115 x 10-3 1.3789
5 2.499 x 10-5 0.0864

1/64 2 0.1183 14.5560
3 4.176 x 10-4 . 0.2309
4 8.026 x 10-7 9.841 x 10-4

Table 9: Examples of the lower and upper bounds, (3.1) and
(3.2), to P{n\N\d,d) for N = 20 events. Calculated 
using the Wallenstein and Neff (1987) 
approximation and simulation.

d n WN approximation to P{n\N\d)
1/4 6 1.2715

7 1.2153
8 0.8734

1/16 3 2.7604
4 1.1970
5 0.3447

1/64 2 3.8152
3 0.5761
4 0.0532

Table 10: Sample values of the Wallenstein and Neff (1987) 
approximation to P(n\N;d) for N  = 20, for 
comparison with Table 9.
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The upper and lower bounds show little evidence of convergence to some estimate of 
P(n\N;d,d) over the range of parameters considered, although the absolute difference 
between L and U decreases as n and d increase and decrease, respectively. It is possible 
that a tighter bounding interval might be achieved for much smaller values of d. The 
upper bound is often much larger than the simulated value of P{n\N;d4)> although, 
again, the error is less for larger n and smaller d. However, noting the above comment 
on the available range of n, the greater differences for small n between (3.1), (3.2) and 
the simulated values of P{n\N\d,d) suggest that the bounds are not particularly sharp for 
choices of n close to the relevant 5% critical value for the two-dimensional Scan 
Statistic.
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N n d Lower Bound Upper Bound Simulation
10 4 1/4 5.012 XlO'2 0.9675 0.2594

1/6 1.248 x 10-2 0.5040 0.0419
1/8 3.639 X lO’3 0.1786 0.0098

5 1/4 1.050 X 10’2 0.3702 0.0361
1/6 9.295 X lO'4 4.548 x lO’2 0.0018
1/8 1.351 x 10-4 7.097 x lO"3 0.0003

20 7 1/4 1.328 x 10’3 0.9765 0.0399
1/6 7.523 x 10'5 0.2985 0.0008
1/8 5.770 X lO'6 4.226 x lO ’2 *2

8 1/4 3.120 x 10-4 0.6404 0.0056
1/6 6.054 x 10‘6 4.703 X 10-2 *
1/8 2.344 x lO'7 2.903 x lO’3 *

9 1/4 5.170 x 10*5 0.2036 0.0008
1/6 3.656 x 10'7 4.542 X lO'3 *
1/8 7.153 x 10'9 1.084 X 10-4 *

30 11 1/4 6.890 x 10'6 0.7069 0.0007
1/6 2 .748xl0-8 2.562 x 10-2 *

00 2.724 xlO '10 7.012 x 10'4 *
12 1/4 1.286 X 10'6 0.3168 0.0002

1/6 1.821 x 1 0 9 2.972 x lO’3 *
1/8 9.895 x lO*12 4.375 X 10'5 *

13 1/4 1.931 x 10’7 9.274 x lO'2 *
1/6 1.061 x lO'10 2.970 X lO'4 *
1/8 3.347 XlO'13 3.360 x lO 6 *

40 14 1/4 1.368 XlO'7 0.7175 0.0001
1/6 1.078 x lO'10 1.167 XlO'2 *
1/8 2.701 x 10'13 9.776 XlO*5 *

15 1/4 2.682X10-8 0.3729 *
1/6 7,435 x lO’12 1.592 x l O 3 *
1/8 9.038 x 10'15 6.750 x  lO'6 *

16 1/4 4.427 X 10“9 0.1379 *
1/6 4.594 xlO '13 1.695 x 10’4 *
1/8 _1

- *

1. No value of P(n\N;d) available.

2. Simulation estimates tail probability to be less than 1.0 x 10'4

Table 11: Comparison of (3.1), (3.2) and simulated values of 
P{n\N\d,d) based on 10000 replications, using exact 
values of P{n\N;d) from Wallenstein and Naus 
(1974).
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3.4 Investigation of Empirical Power

The level accuracy of a test based on the two-dimensional Scan Statistic is reduced by 
the restriction of the statistic to integer values (see Section 3.2). To counteract this 
problem, significance testing in the following investigation of power is carried out with 
the addition of a Randomised Rule (Gibbons, 1986). If the Scan Statistic calculated
using a square of side d, denoted by Sd, is compared to a critical value c, which
corresponds to an actual significance level of a v where a t < a  , and a  is the intended 
significance level, then the standard hypothesis test rejects HO at the cq level if

SdZc. (3.3)

A test at level a  may be constructed by using the following decision rule instead of
(3.3):

reject HO with probability 1 if Sd > c;
reject HO with probability (j> if Sd = (c -1);
do not reject HO if Sd < {c -1). (3.4)

The overall Type I Error for this scheme is
oq + <J>(a2 - a x),

where a 2 is the significance level corresponding to a critical value of (c - 1), such that 
a 2 > ex. The probability <|> is chosen to ensure that

cci + <J>(a2 - cq) = a  => 0 = ——— . (3.5)
a 2 -cxi

The power of the Scan Statistic to detect a single cluster alternative was investigated by 
simulation. One thousand sets of artificial data were generated by sampling from a 
bivariate version of (2.11), the mixture used to evaluate the power of the one­
dimensional test in Section 2.4. Specifically, the p.d.f. of the locations of the events 
was

pU(0,1] + (1 - p ) m  - e, k + e], (3.6)

where the mixture parameter, p, was selected from {0.8, 0.9, 0.95}, e = 0.025 and 
k -  0.5, 0.75, giving two possible cluster locations. H{a,b] represents the bivariate 
uniform p.d.f. on the square with lower left-hand comer {a,a) and top right-hand comer 
(bfi). Table 12 shows the empirical power of the Scan Statistic in two dimensions 
against alternative (3.6), with each test employing simulated critical values from Table 
8 and the Randomised Rule (3.4), in order to ensure that an exact significance level of 
0.05 was attained. Values of a Y and a2 in (3.5) were estimated from the empirical null 
distributions calculated for Table 8.



Anderson, N.H. (1992) Chapter 3 63

N d

OOoiip.

k = 0.5 
p = 0.9 p = 0.95 p = 0.8

k = 0.75 
p = 0.9 p = 0.95

50 2/3 0.521 0.217 0.121 0.390 0.136 0.076
1/2 0.836 0.363 0.159 0.584 0.183 0.071
1/4 0.943 0.504 0.208 0.949 0.509 0.199
1/8 0.971 0.561 0.203 0.969 0.566 0.195
1/16 0.990 0.699 0.278 0.988 0.693 0.259
1/32 0.972 0.636 0.259 0.972 0.635 0.258
1/64 0.887 0.400 0.141 0.889 0.407 0.135

100 2/3 0.842 0.321 0.134 0.697 0.215 0.091
1/2 0.983 0.645 0.288 0.916 0.354 0.139
1/4 0.999 0.763 0.270 0.999 0.776 0.241
1/8 1,000 0.926 0.438 1.000 0.930 0.436
1/16 1.000 0.975 0.566 1.000 0.976 0.576
1/32 1.000 0.970 0.595 1.000 0.969 0.591
1/64 0.998 0.783 0.346 0.998 0.785 0.334

200 2/3 0.995 0.602 0.232 0.955 0.419 0.160
1/2 1.000 0.886 0.397 0.997 0.647 0.177
1/4 1.000 0.979 0.541 1.000 0.979 0.546
1/8 1.000 0.998 0.794 1.000 0.997 0.759

1/16 1.000 1.000 0.915 1.000 1.000 0.916
1/32 1.000 0.999 0.887 1.000 1.000 0.888
1/64 1.000 0.988 0.608 1.000 0.989 0.600

400 2/3 1.000 0.863 0.356 1.000 0.720 0.246
1/2 1.000 0.997 0.693 1.000 0.933 0.384
1/4 1.000 1.000 0.884 1.000 1.000 0.900
1/8 1.000 1.000 0.989 1.000 1.000 0.986

1/16 1.000 1.000 1.000 1.000 1.000 0.998
1/32 1.000 1.000 0.994 1.000 1.000 0.995
1/64 1.000 1.000 0.915 1.000 1.000 0.920

Table 12: Empirical power of the two-dimensional Scan 
Statistic, with a square scanning window, against 
alternative (3.6), with three sizes of cluster ip) and 
two locations (£). Based on 1000 simulations.
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The pattern of results for the two-dimensional statistic in Table 12 is very similar to that 
of the one-dimensional statistic; c./ Table 6. Power is clearly greater for smaller values 
of p, which correspond to larger expected proportions of events in the cluster. Smaller 
scanning squares are more powerful, and the best performance is achieved for d = 1/16. 
As the cluster defined by (3.6) has approximate dimensions 0.05 x 0.05 and the ‘best’ 
window is 0.0625 x 0.0625, it is apparent that the two-dimensional statistic has greatest 
power if the scanning square is chosen to be roughly the same size as the area covered 
by the events that have been produced by the clustering effect. Changing the location 
of the cluster from the centre of the unit square {k = 0.5 in (3.6)) to the top right-hand 
comer (k = 0.75) reduces power for the test when d ~ 2/3 or 1/2. However, the Scan 
Statistic appears to be insensitive to cluster location for smaller scanning windows.

3.5 Discussion

The upper and lower bounds to P{n\N\u,v) of Naus (1965b) do not appear to be 
particularly useful for significance testing. They lack sharpness overall, and the trend 
in increasing separation of (3.1) and (3.2) with decreasing rt, observed for the particular 
choices of n, N  and d employed in Section 3.3, suggests a particular weakness for 
values of n near the true 5% critical values. The bounds depend on two different one­
dimensional tail probabilities, one of which is not amenable to analytic derivation and 
must, therefore, be simulated, and a second, for which the best approximation method 
from Chapter 2 does not produce reliable results. These objections suggest that some 
form of Monte Carlo method will provide a better approach to assessing the 
significance of the Scan Statistic.

Section 3.4 indicates that the power of the two-dimensional statistic is low for small 
numbers of events, although it should be noted that the alternative (3.6) is demanding, 
since a given realisation may contain only a few (or perhaps no) events that are due to 
the clustering component. The results from both Chapters 2 and 3 support the 
observation of Wallenstein and Neff (1987), that the power of the Scan Statistic is 
greatest when the geographical extent of the cluster is matched by the size of the 
scanning window. This suggests a method of choosing the arbitrary constant, d, before 
an analysis is undertaken; Le. to select a window that will be of approximately the same 
magnitude as the supposed cluster. However, as this information will be rarely, if ever, 
known in practice, this guideline appears to be of limited benefit and applicability. A 
better approach may be to carry out several analyses using a range of square 
dimensions, and then to apply a suitable multiple comparisons correction to the results.
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3.6 A Problem Encountered with Pseudo-Random Number Generators

3,6,1 Introduction

Simulation of the Scan Statistic in two dimensions requires the production of a large 
number of artificial spatial point patterns. The basic assumption of the theory 
associated with the statistic is that events are uniformly distributed under the null 
hypothesis of no clustering. Therefore, the x and y  co-ordinates of each point must be 
sampled from independent sequences of uniform (0,1] pseudo-random deviates, 
assuming that the unit square is taken to be the region of interest.

The sampling procedure is normally undertaken by employing a multiplicative linear 
congruential generator, of the form

* , , > ^ m0dM - 0 . 1 .....  (3.7)

with the sequence of random deviates, {x,-; i = 1, 2, ...}, being started by the "seed", 
x0 = s/M, where s is specified by the user. A generator of the form of (3.7) produces 
only a finite set of distinct values of xf-. This set can contain no more than (M - 1) 
elements, since

xf -  0 => Xj = 0, V/ > i +1.

At some point, the sequence {xf: i = 1, 2, ...} must reach a repeated value and so will 
cycle through the same set of values, with a given period. The choices of a and M  
govern the theoretical maximal period of the generator, which may be less than (M -1), 
and whether or not the actual period, p, attains this upper bound. For example, if 
M  = 2P > 16, for some integer (3, then (3.7) has a maximal period of only M/4, which is 
attained if and only if a mod 8 = 3 or 5 (Ripley, 1987, Section 2.2). Familiar versions 
of (3.7) include the generator DURAND within the I.B.M. Engineering and Scientific 
Subroutine Library (ESSL) package, in which a = 75 and M  = 231 - 1, and G05CAF 
from the NAg FORTRAN Subroutine Library (NAg, 1990), in which a = 1313 and M = 
259.

These commercial generators have been designed to achieve long periods, good 
marginal uniformity and insignificant serial correlation, as described in Ripley (1987, 
Section 2.2), for instance. Suppose, however, two sequences {x,; i = 1, 2, N} and 
(y,; i = 1, 2,..., A}, corresponding to the x m dy  co-ordinates of events in the simulated 
data sets, are generated according to (3.7). For some choices of initial seeds x0 =sx/M 
and y 0 = s2/M, the standard Pearson product moment correlation between {x,-} and (y,}
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is very high. For example, with N  = 100, a = 75 and M  = 231 - 1, the correlations of a 
set of 1000 sequentially generated pairs of pseudo-random sequences had mean 0.49264 
and standard deviation 0.09950, with s l = 5 and s2 = 10; similarly, for s l = 20 and 
s2 = 40, the mean correlation was 0.49122, with a standard deviation of 0.09688. 
Further experimentation suggested that the magnitude of the average correlation was 
independent of both N  and the number of sequence pairs examined.

These results are wholly unacceptable for an application requiring independent sets of 
co-ordinates. The following sections identify the source of the problem and the 
necessary solutions.

3.6.2 Cross-Correlations o f  Pseudo-Random Deviates

Examination of point patterns i -  1, ..., N}, generated from (3.7) with different
seeds (r0ly0), suggested that the strength of the relationship between {xt} and (yf} 
depends on the ratio yjx^. Table 13 lists the means and standard deviations of 1000 
correlations calculated from simultaneously generated pairs of random deviate streams 
of length 100, where y 0 was chosen to be an integer multiple of x0. The particular 
generator in use was DURAND, i.e. a = 75 and M = 231 - 1. As the ratio of the two 
seeds increases, the strength of the association exhibited declines.

Ratio 5. Mean Correlation Standard Deviation
2 1 2 0.49585 0.06734

64 128 0.50106 0.07093
4096 8192 0.49568 0.07093

3 1 3 0.33227 0.08419
64 192 0.33543 0.08540

4096 12288 0.32735 0.08596
4 1 4 0.24514 0.08983

64 256 0.24821 0.09490
4096 16384 0.24346 0.08975

Table 13; Means and standard deviations of samples of 1000 
cross-correlations between pseudo-random deviate 
streams of length 100, generated by DURAND, with 
x0 = s fM  and j>0 = sJM, where M  = 231 -1.
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Figure 2 plots four examples of point patterns, each of 100 events that were generated 
with seeds in different proportions, revealing the structure underlying the evidence of 
dependence provided by the cross-correlations in Table 13. For Figures 2(a) to 2(c), all 
the observations lie on a small number of parallel lines in the x-y plane. If

x0 n2 '

where nx and n2 are integers with greatest common divisor 1, then the diagrams suggest 
that there are (nl + n2 - 1) lines, each with gradient n jn 2, at vertical intervals of l/n2. 
Figure 2(d), apparently, has more acceptable behaviour; the ratio yjx^, in this case, is 
non-integer, whereas (a) to (c) have integral ratios of 2, 3 and 4. However when a 
greater number of points (e.g. 10000) are included, it becomes clear that here, too, there 
is a structural relationship between the {xf} and {y,} streams (see Figure 3).
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(c) (d)

Figure 2: Point patterns of 100 events. X  and Y streams 
generated in parallel from (3.7) with a =75 and M  = 
231 - 1, using seeds sl and s2 as follows: (a) 1 and 2; 
(b) 64 and 192; (c) 4096 and 16384; (d) 13 and 64.
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By the method outlined in Section 3.6,5, it is possible to demonstrate that the following 
relationship must hold between {*, } and {y,-}.

Theorem 3.1. Suppose sequences {jq-: i = 0, 1,...} and {y{. i = 0, 1, ...} are generated 
according to (3.7) and that

= “r*o» (3.8)n

where nx and n2 are positive, relatively prime integers. Then, for all i = 0,1,

(3.9)n2 n2

for some integer rt e {-(«j - l ) , ... ,(/i2 - 1)}.

This result explains the appearance of sets of parallel lines in Figures 2 and 3. It is also 
possible to present an approximate argument, based on random variables jointly 
distributed on a degenerate sample space but marginally uniform, that indicates the 
form of the association between the choice of seeds, jt0 andj>0, and the cross-correlation 
coefficient of the sequence {(*,*>*,•); i = 1, 2, ...}, generated by calls to (3.7). This 
sequence is, of course, deterministic, so it is only strictly valid to consider its full-period 
correlation coefficient, C, where

the summations are for i = 0 to / = p  - 1, and the generator has period p. Exact 
calculations are often possible for the serial correlation coefficient of a single sequence 
from a linear congruential generator, in terms of generalised Dedekind sums, as 
discussed in Section 3.3.3 of Knuth (1981). We failed to construct an analogous exact 
calculation of C as given by (3.10). As Knuth (1981, p.88) points out, however, such 
exact computations are indeed difficult, but, if p  is large, useful approximations are 
available by averaging over all real values, rather than the discrete set realised by the 
generators. The exercises on p.88 of Knuth (1981) show how effective such 
approximations can be, and Theorem 3.2 represents a further manifestation of the 
usefulness of this approximate approach.
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Theorem 3.2. Suppose (X,y) are a pair of random variables with probability density 
function

where S is the sample space made up of the intersection of the unit square {0 <x <1} x 
{0 <y < 1} and the set of parallel lines {y = («1//t2) x + (r/«2); r = ~{nx -1),..., (n2 - 1)}. 
Suppose also X  ~ U(0,1], Y - U(0,1] and q is the correlation coefficient between X  and

The proof of Theorem 3.2 is also given in Section 3,6.5. The result suggests that the 
correlation between streams {xt: i = 1, 2,...} and {yf. i = 1, 2, ...}, calculated from seeds 
in the ratios 2:1, 3:1 and 4:1, should be approximately 1/2, 1/3 and 1/4, which 
corresponds closely to the empirical results of Table 13.

3.6.3 Remarks About Existing, Related Literature

The two-stream random number generation process described in Section 3.6.1 can be 
expressed as a single, matrix generator of the form

(3.12), but for more general A, has a substantial literature, some of which identifies 
potentially worrisome dependences, although none of them is precisely of the form 
encountered in Section 3.6.2.

Grothe (1987) considers both period length and a method for constructing a maximal 
period matrix generator. Eichenauer-Herrmann et al (1989) consider the case where the 
modulus M - p a for/? prime and a>  2. They derive the maximal period length and 
show how to construct a generator that achieves it. In the review paper of L'Ecuyer 
(1990), the discussion is written in terms of matrix generators, treating the scalar 
version simply as a special case.

U,J>) € 5, 
otherwise,

(3.11)

Y. Then

xi+1 = Ax; (mod M), (3.12)

where xf = (*,-J^-), in our previous notation, A = a I2, where I2 is the 2 x 2 identity 

matrix, and x j = (x0,y0) is used as a two-dimensional seed. The generator defined by

Afflerbach and Grothe (1988) consider the properties of
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where the { x j  making up yf are a set of n r-dimensional vectors (r = 2 in our context).

They provide a description of the lattice structure of a matrix generator in n x r 
dimensional space. They also comment that this information is relevant to assessing the 
independence of a sequence of n pseudo-random vectors and not just the distribution of 
the yt. A basis for the lattice on which the vectors in the latter situation lie, with r and 
A chosen to correspond to those of our context, is formed from the 2n column vectors 
of

B =

I2
(ll2 
a21,

M l

an~% 0

M l,

M l 2J

However, this does not seem to be the cause of the patterns in our case, which are 
related to the starting values Xq when the multiplier is of the form A = a I2.

Of greater relevance is Durst (1989), who suggests two methods of generating parallel 
streams of random deviates: either a single sequence, split at random locations, or many 
different sequences, each using a different multiplier, a. The inference from Durst 
(1989) is that using the same multiplier for each sequence would not give satisfctory 
results. In the case of a modulus of the form M  = 2e, for some e, Durst (1989) states 
that two maximal period multipliers, ax and a2, will satisfy

ax = a{, for some odd j , (3.13)
and that, if

7 = 1 (mod2e-r), r> 2 , (3.14)

then the pairs (a*, a*) lie on at most 2 r*2 lines. Since Xn = {an mod M) XQ (mod M) for

each sequence, an is equivalent to Xn in some sense. Therefore, a small value of J  in
(3.13) would lead to strong dependences. If ax = a2 then j  -  1 in (3.13) and (3.14) is
satisfied for all 2 < r < e and for r  = 2 as well, although this latter case is not allowed by

the result. If r = 2 could be regarded as a pathological case, we have {a[ ,a2) lying on a

single line and, therefore, the worst case of dependence. The results of the previous 
section suggest that this observation may extend to multipliers other than M  = 2e, such 
as those of the form M  « 2 /-1 , e.g. DURAND w ith/= 31.
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The paper of Fishman and Moore (1982) is also of interest here. They consider the 
behaviour of, amongst others, the generator with multiplier 75 and modulus 231 - 1 
when used to produce non-overlapping t-tuples for t = 1, 2, 3. Its overall behaviour is 
found to be unsatisfactory by testing the uniformity of 100 sequences of Muples, each 
sequence being of length nft for t = 1, 2 or (n - 2)/t for t = 3, where n = 200000. 
However, the vectors were all generated from within a single sequence and so the paper 
does not address the problem of dependence due to seed choice.

3,6.4 Discussion

Theorem 3.1 demonstrates that a very strong structure is inherent in the parallel 
generation, from different starting points, of two sequences of pseudo-random deviates 
by any simple multiplicative linear congruential generator. The potential for error is 
great in any application that may require, or receive accidentally, two or more 
initialisations, especially when one seed is an integer multiple of the other. The pattern 
discussed here would clearly carry over to any transformed versions of the two 
sequences, e.g. the generation of deviates from a distribution other than the uniform by 
an inverse transform method (Rubinstein, 1981).

The problem can, of course, be dissipated easily, in practical terms, by generating the 
two sequences in series from a single seed. In the case of the generator DURAND, 
however, the results of Fishman and Moore (1982), described in Section 3.6.3, indicate 
that the independence of 2- and 3-vectors produced in this way may be suspect. Other 
solutions include following the recommendations of Durst (1989), regarding the 
random splitting of a single sequence, or the use of a more sophisticated generator, such 
as RANMAR or RCARRY, described by James (1990).

A final comment relates to the NAg subroutine G05CAF. Use of this generator is 
normally preceded by a call to an initialising routine, G05CBF, with the intended seed, 
s , as an argument. G05CBF carries out a preliminary transformation of s to

s f — 2s+1,
so that two sequences generated from seeds sx and s2 would have, effectively, the seeds 
2 ^  + 1 and 2s2 + 1. A plot of {x,} versus \yt)  would therefore show, for example, 7 
"lines" of gradient 5/3, tor sx = 1 ands2 = 2, rather than 2 "lines", each with gradient 2, 
as might otherwise be expected.
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3.6.5 Proofs 

Proof of Theorem 3.1

We prove (3.9) by induction. The case / = 0 is true by definition, from expression 
(3.8). Therefore, assume (3.9) is true for i -  k and demonstrate that it holds for 
i - k + 1 .

First, note that

(In the following argument, Kv K2, K3, K4, Lv L2, Lv L4 and L5 are integer constants.) 
Let

an xMxk + aMrk = KXM + Lx + aMrk = K fA  + Ll (3.1
and let

Since n2 e Z, n f 2 e Z so we can fix an integer p  such that

pM < n-f2 < t 7 + 1W  

torp e {0,..., (n2 -1)} and write n2h2 = pM  + L3 and therefore, from (3.17),

anxMxk + aMrk = {njK.3 + p)M  + L3.

Compare this with (3.15) to see that L3 = Lx and hence

modM

an
K-M + L (3.16)

Then, from (3.16),
anlMxk + aMrk = nfC3M  + n f 2 . (3.17)

r _ A + pM  2 “  ~

From (3.16),

modM = L Zq + pM  
n2
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{anlMxk)modM  ̂ pM  1
Ho Ho

From the derivation of (3.15) it is clear that

anxMxk = KxM + Lx. (3.19)

Let aMxk =K4M + L4. Then

anxMxk = nxKJ4 + nxL4. (3.20)

Now fix q such that
qM <nxL4<(q + l)Mt

for q <= {0, ..... (nx - 1)}, and write nxL4 = qM + L5. Comparing (3.19) with (3.20)
suggests that L5 = Lx and, hence, that

Lx ~ nxL4 - qM,
or that

(anxMxk) modM = nx{(aMxk) modM} - qM.

Substitute this into (3.18) to obtain

nx (aMxk)modM p - q  
Jk+i = -----------   + -------n7 M tio

liL v . rk+1*vKi.1 "T„ uJt+i/in

where rk+1 - p - q ,  with p  such that 

pM  <n2 ^ anxMxk aMrk  ̂
\  n 2 « 2  j

mod A/1 < (p+ l)M ,

forp  e {0,..., (n2 -1)}, andq  such that

qM < nx{(aMxk)mod M} <{q + 1)M,

for q € {0,..., (nx -1)}.
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Proof of Theorem 3.2

Let X  and Y be two uniform random deviates, related by the expression

Y = 0 i .x + — , (3.21)
n2 n2

for/2 g {-<«! -1),..... (n2 - 1)}. Then

XY = ^ X 2+ — X  
n2 «2

and so

E(XKIX)=-^-X2+ —  E (flX ) . (3.22)
n2 n2

Further progress requires information about the distribution of R, conditional on X. 
Asymptotically, this distribution is a discrete uniform distribution, as can be justified by 
considering the (joint) distribution of X  and Y. The joint sample space, S, for X  and Y 
consists of a set of parallel line-segments in the unit square, as shown for example in 
Figure 4 for the case nx = 3 and n2 = 5. Thus the joint density of X  and Y is degenerate, 
concentrated on the above degenerate (in a two-dimensional sense) sample space. 
Suppose we consider an arbitrary subset of S, of length 6 > 0. It is clear that, in order 
that both X  and Y have marginal uniform distributions, the probability of (X,Y) falling 
in that subset must be proportional to 5. In other words, (X,F) are jointly uniformly 
distributed on their sample space. (The flxy)  defined in (3.11) is constant on S.) From 
this it follows that, given X, R (which is then equivalent to Y) is uniformly distributed 
on its finite sample space.

To follow up the implications of this for 1E(/2IX) it helps again to refer to the exemplar
provided by Figure 4. For example, at A the values of R which are available are 0,1, 2,
..., (n2 - 1) and so

E(J?IX = A) = (n2 —1)/2.

Similarly, for X  = B the range of R is -1, 0,1,..., (n2 - 2), which implies

E(tflX = B) = {{n2 —1)/2}—1.

Hence, in general,

IE(/2IX) - {{n2 - 1 ) / 2 } f o r  i fa  < X < (i+ 1)//^, 

for z = 0 ,1 ,...,(« !-1 ). Using (3.22), we have
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Hence

1E(XK) = E{E(AYIX)}

= ̂  e ( x 2)+ — f  xT£.(R\X)dx
Tlf ft? ®

3 n2 n2

_ ni

n2- l  fi , |*(i+i)/hi .- —  xdx -  >,
2 jfo 'Vni

3/i2 «2

3«2 4 4«2 2/t* «2

1

2«i(«i — l)(2/i! — l) H- 3/̂ ! (/ij - l )

4 12/i1/22

 ̂ E(XF) -  IE(X) E(F) 
P JVar(X)Var(Y)

1 1 1 1
4 1 2 ^ 2  2 2

"  / i- .J L
V1212 

= («in2)"1.

since X and F are marginally uniform (0,1].
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1

R = 4

4/5

= 3

3/5

=  2

2/5

1/5

R = 0 R = -1 R = -2

0
0 1/3 2/3 1

Figure 4: Diagram of the joint sample space for uniform 
random variables X  and Y, which are related by 
expression (3.21), representing parallel pseudo­
random deviate generation with n{ = 3 and n2 = 5.
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CHAPTER 4

CORRECTING FOR A NON-UNIFORM NULL DISTRIBUTION

4.1 Introduction

The previous two chapters assumed that, in the absence of any clustering effect in the 
region of interest, the distribution of the type of events under consideration would be 
uniform. In practice, however, geographical features, natural variation or some other 
factor may ensure that the distribution under the null hypothesis is markedly non- 
uniform (Bithell, 1990; Diggle, 1990). For example, human populations aggregate into 
high density (urban) areas surrounded by low density (rural) ones. Thus, it would be 
reasonable to expect that cases of a particular disease would occur more frequently in 
the former regions than in the latter, and that a map of cases displayed without 
reference to the population baseline would exhibit apparently significant clustering in 
the areas of high population density. This type of clustering is not of interest, in 
general; it is necessary, therefore, to correct for this effect, and then to search for 
aggregation that may have been caused by a factor with more aetiological relevance.

A method of allowing for the type of problem described above in analyses employing 
the one-dimensional Scan Statistic was described by Weinstock (1981). Instead of 
using a scanning interval of a given magnitude, d, the technique allows the length of the 
interval to depend on the null probability density function of events. If the region of 
interest is the interval [0, A], in which N  events are distributed with p.d.f./(*), then the 
length of the scanning interval with right hand boundary at x e [0, A] is denoted by 6, 
where 6 satisfies

analysis. If [0, A] represents time, and the events are cases of a human disease, k  has 
the interpretation of the (constant) number of person-years at risk occurring inside the 
(variable length) scanning interval.

(4.1)

and £ is a pre-specified constant, which takes the place of the constant d in the standard
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This correction ensures that the expected number of cases in the window under the null 
hypothesis remains the same for all locations. Thus, if k = djAt say, and the Scan 
Statistic calculated using this procedure is n, then the corresponding tail probability is 
obtained from the theory for the original statistic, as discussed previously; i.e.

where P{ti\N\d) is the quantity defined in Section 2.2. If /(•) in (4.1) is the uniform 
p.d.f., d=k, Vx, and we recover the method of Chapter 2.

The true p.d.f.,/(♦), will not usually be known, so that practical implementation of (4.1)

(Silverman, 1986), which could be calculated from a sample of controls representing 
the population at risk, to replace /(•) in (4.1) is investigated in Section 4.2, as well as 
ways of simplifying the computational process. Section 4.3 generalises the method to 
two dimensions and Section 4.4 discusses the results obtained and suggests a simpler 
and more robust implementation of the technique.

4.2 Investigation in One Dimension

The aim of this section is to present a method of calculating 6 from (4.1) that is 
straightforward to employ in practice. For clarity, it is presented first for the one­
dimensional case, then generalised to two dimensions in the next section, although the 
results of this section may be useful for certain applications in their own right, such as 
the detection of clustering in time.

4.2.1 Computational Considerations

Assuming for the moment that the null distribution, /{•), is known, the first step in 
solving (4.1) is to approximate the integral by some simple numerical rule, such as 
Simpson's Rule or the Trapezoidal Method. Table 14 compares the accuracy of the two 
techniques for small numbers of knots at a range of coordinates within the unit interval. 
Each coordinate, x, forms the upper boundary of a scanning interval, the magnitude of 
which is estimated by solving

Pr(ScanStatistic> n \N ,k  = d/A) -  P{n\N;d),

a

will require its replacement by some estimate /(•). The use of a kernel density estimate

(4.2)

for 6, using the Bisection Method (Press et al, 1989), where/{•) is taken to be the p.d.f. 
of the Be(3,3) distribution. Subsequently, values of the integral
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[ _ /« )< *

are approximated using each of the numerical methods and the interval sizes, 5, 
obtained from (4.2). These are listed in Table 14. The best balance between simplicity 
and accuracy is achieved by Simpson’s Rule with three knots, leading to the 
approximation

f  { /{ x ~ 8 )+ 4 f(x —£<5)+ /(* )} , (4.3)Jx-o 5

with the magnitude of the associated error term being

\E\ < S5 , where M = max | / (4>(f)l.
1 1 2880 teUSjcr 1

Coordinate
<*) 2 knots

Trapezoidal Rule 
3 knots 5 knots

Simpson's Rule 
3 knots 5 knots

0.3835 0.259803 0.252201 0.250537 0.249897 0.249993
0.5194 0.256813 0.251587 0.250390 0.249898 0.249999
0.5328 0.256702 0.251564 0.250385 0.249988 0.249999
0.6789 0.257539 0.251751 0.250430 0.249982 0.249999
0.7556 0.259137 0.252082 0.250509 0.249961 0.249997

Table 14: Comparison of different numerical integration rules 
over a range of coordinates in the unit interval. 
Integral is area under Be (3,3) p.d.f. bounded by a 
scanning window with length estimated from (4.2) 
and right-hand boundary at jr.

Rather than evaluating the function,/!*), at three different coordinates, the second step 
in this implementation of (4.1) is to replace f ix  - 6) and f ix  - V6 5) in (4.3) by their 
Taylor expansions. By discarding terms after the first derivative, (4.1) may be 
approximated by the quadratic equation in 6
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- \ f ' ( x ) 5 2 + f ( x ) S - k  = 0, (4.4)
or by the cubic

%f"(x)53 - j f ' ( x ) S 2 + f ( x ) S - k  = 0, (4.5)

if terms after the second derivative are neglected. The remainder terms are of the form 
c1 82 for the two first order expansions that lead to (4.4), and c2 83 for the second order 
expansions. Hence, the accuracy of each approximating step is proportional to a power 
of 8.

Since a polynomial of degree p  will have p  zeros, some of which may be complex, an 
heuristic rule for choosing the correct solution of (4.4) or (4.5) is to let 8 equal the 
smallest of the real zeros within the allowable range, [0, x], at coordinate x. We are not 
aware of any rigorous justification for this observation. If jf is small enough, so that

j  f i t )  dt <k,

then no solution of (4.4) or (4.5) will be permissible. However, any length of scanning 
interval greater than x can in fact be used safely at the lower edge of [0, A], since the 
count of cases falling inside it will remain the same, whatever value is used for 8.

The null distribution of events is again assumed to be Be(3,3), so that A = 1, for Table 
15, which compares interval sizes calculated from (4.4) and (4.5) with an 'exact' 
solution, found by the Bisection Method, at four coordinates, x, for five different 
choices of k - d .  Expression (4.5) is reasonably accurate for the range of coordinates 
and choices of d examined, while (4.4) is less effective, particularly for larger d> 
although its accuracy is still adequate. Both approximations are weak in the upper tail 
of the distribution, where values of the p.d.f. are small and, thus, numerical instability 
in (4.4) and (4.5) is more likely. In a repeated analysis, with/b) chosen to be Be(2,2), 
accuracy in the tails improved for both expressions. The Be(2,2) distribution is 'flatter' 
and 'wider' than Be(3,3), so values of the former p.d.f. tend to be larger than those of 
the latter at the same coordinates in the tails of the densities.
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X Interval d

From 1/4 1/8 1/16 1/32 1/64
0.3943 (4.1) 0.194639 0.079900 0.037931 0.018583 0.009208

(4.4) 0.172394 0.078500 0.037787 0.018567 0.009206
(4.5) 0.205260 0.080008 0.037935 0.018584 0.009208

0.5971 (4.1) 0.135901 0.069020 0.035114 0.017758 0.008936
(4.4) 0.130285 0.068235 0.035007 0.017744 0.008935
(4.5) 0.135519 0.068990 0.035112 0.017758 0.008936

0.6735 (4.1) 0.146698 0.077772 0.040632 0.020873 0.010595
(4.4) 0.140967 0.076843 0.040493 0.020854 0.010593
(4.5) 0.145653 0.077673 0.040623 0.020872 0.010595

0.9171 (4.1) 0.279656 0.190731 0.129036 0.085071 0.053892
(4.4) 0.319723 0.214730 0.141287 0.090429 0.055849
(4.5) 0.251269 0.180291 0.125507 0.084044 0.053650

Table 15: Scanning interval sizes at coordinates x, calculated 
from (4,1), with k = d, and the two approximate 
polynomials, (4.4) and (4.5); /{•) is assumed to be 
Be (3,3).

4,2.2 Introduction o f  a Kernel Estimator

Naturally, in real applications of the Scan Statistic, the true distribution of events under 
a null hypothesis of no clustering will be unknown. Therefore, implementation of a

A

correction based on (4.1) will require the replacement of /(*) by some estimate /(•). If a 
control sample from the population from which events are assumed to derive is 
available,

f a  j * J .

say, then a suitable estimate of fir) may be calculated using non-parametric kernel 
density estimation. This technique was previously discussed in Section 2.3 and is 
studied in detail by Silverman (1986). Given a kernel function, K{-), and a smoothing 
parameter, A, /(•) is estimated from the controls by
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This is a particularly convenient estimator for our purposes, since its wth derivative is 
readily available, viz

providing K(-) is sufficiently differentiable, and where a superscript "(m)" indicates an
_ a .

mth order derivative. Therefore, the estimate, /(•), and all the derivatives required by
(4.4) or (4.5) can be calculated on a single pass through the data.

Table 16 provides an example of the procedure, by comparing simulated 5% critical 
values obtained for the standard Scan Statistic of Chapter 2 to values obtained for a 
statistic applying (4.4), using control samples of size 50, 100 or 200. The observations 
(events and controls) were sampled, under a null hypothesis of no clustering, from the 
mixture distribution

W U(0,1] + 34 Be(3,3), (4.6)

which has greater probability mass in the tails than the Be(3,3) distribution used 
previously, making the estimation of interval length easier and more robust. Since the 
tails are important in the calculation, the null density was estimated using an adaptive 
kernel method (Silverman, 1986, pp. 100 - 102). In this approach, a rough pilot 
estimate is computed initially, to obtain information about the locations of high and low 
density areas. A second estimate uses the pilot's guidance to add more weight to low 
density regions. A sensitivity parameter, a , controls the influence of the pilot on the 
final estimate; Table 16 was calculated with a  -  V2 .

Both the initial and final estimates used Gaussian kernels and the smoothing parameter

h = 0.9 ANc“% (4.7)
where

A = min (s , r/1.34),

s is the sample standard deviation and r the interquartile range of {^ ,...,7 ^  }. The

bandwidth (4.7) was suggested as a widely applicable smoothing parameter for use with
a Gaussian kernel, by Silverman (1986, pp. 47 - 48), to increase robustness to skew or 
bimodal distributions. It is obtained by modifying the bandwidth that minimises 
approximate mean integrated square error in an intuitively sensible way. The results in 
Table 16 are based on 1000 replications.
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N d Uniform
Null

Mixture Null Distribution, 
Numbers of Controls 

50 100

(4.6)

200
20 1/4 12 16 13 14

1/8 9 11 10 9
1/16 7 8 7 7
1/32 5 6 6 5
1/64 5 5 5 5

50 1/4 23 31 30 30
1/8 15 22 20 18
1/16 11 15 13 12
1/32 8 10 9 8
1/64 6 8 7 7

100 1/4 39 53 58 51
1/8 25 33 32 27

1/16 17 20 18 18
1/32 12 13 12 12
1/64 9 10 9 9

150 1/4 55 105 82 74
1/8 34 56 57 39
1/16 22 31 29 23
1/32 15 19 18 15
1/64 11 13 13 11

Table 16: Simulated 5% critical values for the Scan Statistic, 
assuming a null distribution that is either uniform or 
of form (4.6), but using correction (4.4) with an 
adaptive kernel method in the latter case. Based on 
1000 replications.
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The agreement beween the empirical critical values for a uniform null distribution and 
those based on (4.6) improves as the number of controls increases, since a larger Nc 
suggests an improved estimate o f/(•). However, the accuracy of the correction for 
d = 1/4,1/8 is still relatively poor, even for Nc -  200. With smaller values of d, both 
the numerical integrations and the Taylor expansions will be more accurate. As 
previously indicated, the error of each approximation depends on 5*, for various positive 
integers, /, and a small d implies a correspondingly small value of 6.

To investigate the source of error in Table 16 in more detail, the same type of 
simulation study was carried out again, first by assuming that the null distribution of 
events was known and equal to the mixture distribution (4.6), and secondly, by 
generating control samples from U(0,1]. The former analysis was included to assess the 
contribution of the kernel density estimation procedure to inaccuracies in the correction 
method, and the latter to assess whether or not the shape of the null distribution was 
actually affecting the empirical critical values obtained, contrary to theoretical 
expectation. Table 17 compares the results of the above two simulations with the 
uniform null distribution results of Chapter 2, with each entry being calculated from the 
empirical distribution of 1000 replications. Use of an exact null distribution allowed 
fix) and f ' i x )  to be evaluated precisely for the solution of (4.4) for 6, whereas the 
second analysis described above required the calculation of kernel density estimates 
from samples of 100 controls, using the adaptive procedure referred to earlier, with a 
bandwidth, h , calculated from (4.7). A modification included to improve the estimation 
of the uniform distribution in the latter case was to employ wrap-around edge 
conditions, i.e. to add the probability mass of the estimate that fell below the lower 
boundary of [0,1], due to individual kernels overlapping the edge of the interval, to the 
upper tail of the density estimate, and vice versa. This was accomplished by using 
estimates of the form

It should be noted that, although (4.8) is apparently of the wrong form for the estimator 
of a p.d.f. (since it will integrate to the value three on ( - 00,00)), we are interested only 
in an estimate of a density for the interval [0,1], on which the ordinary kernel estimator,

A ^

/  (•), will integrate to a value usually less than one. On the same domain, f w (•) will 

better approximate a probability density function in terms of its integral. However, this 
may still fail to achieve a value of one, particularly if the kernel chosen has infinite 
support, as the following, simple example demonstrates.



Anderson, N.H. (1992) Chapter 4 87

Example

With only Nc = 2 data points, Yx = 0.1 and Yz = 0.9, Gaussian kernels and a smoothing 
parameter of h = 1,

^ X) = U 2 k § eXp^”^ X~ Y‘^

and

f w M  = ' j ^ ' X [ exp[_ i h _ (yi + i)}2]+ e x p { -4 (* - y;.)2}

+exP[ - i { x - ( y ; - i ) } 2]j.

Then,

f f ( x )d x ~ l ,
J — e o

clearly, but

Jo/ U ) ^  = 0.3557

and

\ J w(x)dx = 0.8356.

The substitution of an exact distribution in place of the k.d.e. does not improve the 
accuracy of the empirical critical values. In fact, for d < 1/8, accuracy usually 
decreases, while for small d, the uniform and exact results are very similar. This 
suggests that something other than the kernel estimation procedure is mainly 
responsible for most of the error in Table 16, although, as that table demonstrates, 
improving the precision of the estimate clearly does improve accuracy. This latter 
observation also indicates that the correction method will be sensitive to the value of the

a

smoothing parameter, h, which also affects the accuracy of /(•). The second set of 
results in Table 17 is very similar to that obtained previously for 200 controls; 
therefore, the shape (or non-uniformity) of the null distribution does not explain the 
magnitude of the inaccuracy for large d. Hence, it seems likely that the main constraint 
on the implementation of (4.1) described in this section is the precision of the numerical 
integration rule, (4.3), and Taylor expansions, (4.4) or (4.5), rather than any other 
factor.
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N d Uniform Exact Mixture Sample from
Null Null, (4.6) U(0,1] + (4.8)

20 1/4 12 17 13
1/8 9 9 9
1/16 7 6 7
1/32 5 5 5
1/64 5 4 5

50 1/4 23 44 28
1/8 15 19 17
1/16 11 11 11
1/32 8 8 8
1/64 6 6 6

100 1/4 39 95 53
1/8 25 45 29
1/16 17 17 18
1/32 12 11 12
1/64 9 8 9

150 1/4 55 148 78
1/8 34 71 40
1/16 22 24 24
1/32 15 15 16
1/64 11 10 11

Table 17: Simulated 5% critical values for the Scan Statistic, 
comparing uniform null results to those calculated 
using correction (4.4), assuming the exact 
distribution (4.6), or using an adaptive k.d.e., 
calculated from 100 observations drawn from 
U(0,1]. Based on 1000 replications.
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4.3 Generalisation to Two Dimensions

Working by analogy, it is possible to extend the methods of Section 4.2 to two 
dimensions. The region under consideration is taken to be [0, A] x  [0, B], defined on 
which is a two-dimensional p.d.f. representing the distribution of events under a null
hypothesis of no clustering. In Chapter 3, this density was the two-dimensional
uniform p.d.f.

■ 0 £ X S A . 0 £ J , £ B .  (4g)
elsewhere,

with A = B  = 1. A square, with sides of constant length d, scanning over [0, A] x  [0, B\ 
in a continuous fashion would always bound a fixed volume under (4.9) of d2!AB. 
Therefore, if /(*,•) is some non-uniform p.d.f., then the length of the sides of the 
scanning square with top right-hand comer at coordinates ixy) is 5, where 6  is chosen 
to satisfy

r  r  f ( s it)dsd t~^— = 0 . (4.10)
J x - S J y - S J  AB

4.3,1 Numerical Procedures

To reduce (4.10) to a simpler equation for 6 , it is possible to use a numerical integration 
rule and Taylor expansions of/(♦,*) at coordinates other than ixy), by applying them to 
each coordinate direction in turn. To demonstrate this, the following example uses 
Simpson’s Rule with 3 knots and expands terms of the form f ix  -  &,y) and f ix  -  V2 S,j>) 
to third order.

Example Let /  = T P f(s,t)dsdt.
J x - S  J y - S

r  * / te*t)dt« ~ { / is,y -  8 )+4 / {s,y ~^d)+ f{s,y)}

“  • |[ /(s .j ')  -  fe j’) + 2 5 2  fa (s -y'>~6 s %

+ Af(s ,y) -^df,(s,y) + \ 8 2f a(s,y) 8 %  (s,^)}

= f ( s , y ) S —\ f t (s,y)8 2 + \ f tt (s ,y )5 3 (s,y)S4

=#(s,y), say,
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where a subscript s or t represents a partial derivative with respect to the first or second 
coordinate direction, as appropriate, and multiple subscripts represent higher order 
derivatives. Then,

J *X
xg(s,y)ds

*x -S

~g(x,y)8 - i g s (x,y)S2 +}gss (x,y)8 3 ~ ^ g sss (x,y)8 4

approx’

where

Approx = f (x ,y )d 2 - ± { f s (x,y) + /, {x,y)}d3 + {±fss (x,y) + ± fst {x,y) +±ftt (x,y)}S4 

24 fsss 12 fsst 12 fstt (-x>y) ~2a fat (x>y)

+{-kfsSSt ( * o > ) (x>y)+-kfsm (*>y)}s6

“  144 (x >y) ^fssttt 376 fsssttt (x,y)S • (4.11)

By discarding terms of the appropriate order in the argument above, it is clear that the 
equations for 6  that approximate (4.10), and that are based on first, second and third 
order Taylor expansions, are respectively

\ f s t  b j ) 8 A ~ 2  { f s  (x*y)+ft (* ,j) } £ 3 + f(x ,y )S2 - 4 “  = 0 , (4.12)AB

~kLtt (x.y) 8 6 ~J2 { /,« (*>y)+An (x,y)}8 5 + {±fss (x,y) + \ f sl (x,y)+\ f tt (x,y)}8 4

- 2 1/s (x,y)+f,{x,y)}8 3 + f(x ,y ) 8 2 = 0 (4.13)
AB

and

'.p p r o x - ~ 0 .  (4.14)

where / approx is as defined in (4.11).

The zeros of these polynomials in 5 may be found numerically to a good degree of 
accuracy by, for example, the routine C02AGF from the NAg FORTRAN Subroutine 
Library (NAg, 1990). The algorithm used by this procedure was proposed by Smith 
(1967) as a modification of the iterative scheme called Laguerre’s Method.
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If we assume that/(*,•) is known and integrable, it is possible to compare (4.12), (4.13) 
and (4.14) with the exact result (4.10), which may be expressed as a polynomial 
equation for 6  by evaluating the double integral analytically. If/(*,*) is taken to be the 
two dimensional equivalent of (4.6), i.e.

f i x y )  = Va u i x y )  + Va b i x y ) ,  (4.15)

where u ( x y )  is the p.d.f. of the two-dimensional uniform distribution on the unit square 
and b i x y )  is the p.d.f. with coordinates that are independently Be(3,3), then (4.10) is a 
polynomial of degree 1 0 , the zeros of which may be found by a numerical procedure, as 
discussed above. The same heuristic rule that was applied in Section 4.2, regarding the 
selection of the smallest real, positive zero, may be used here.

N Method
1/4 1 /8

d
1/16 1/32 1/64

2 0 (4.10) 7 5 4 3 3
(4.12) 8 5 4 3 3
(4.13) 9 5 4 3 3
(4.14) 8 5 4 3 3

50 (4.10) 1 2 7 5 4 3
(4.12) 18 7 5 4 3
(4.13) 15 8 5 4 3
(4.14) 11 7 5 4 3

1 0 0 (4.10) 19 1 0 6 5 3
(4.12) 34 10 6 4 4
(4.13) 26 1 2 6 4 4
(4.14) 18 1 0 6 4 4

150 (4.10) 23 1 2 7 5 4
(4.12) 52 14 7 5 4
(4.13) 36 17 7 5 4
(4.14) 24 11 7 5 4

Table 18: Simulated 5% Scan Statistic critical values (100 
replications) with the exact null distribution (4.15) 
and the exact, (4.10), or approximate, (4.12) to 
(4.14), correction methods.
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A simulation study was carried out to compare the accuracy of (4.12), (4.13) and (4.14) 
to (4.10). For different choices of N and d, events were drawn from the density (4.15), 
and, throughout, the null distribution was assumed to be of this form also. For each of 
100 replications, the Scan Statistic was calculated, using either the exact correction or 
one of the three above approximations; given (4.15), it is straightforward to calculate 
the partial derivatives required by the latter methods. Empirical 5% critical values 
derived from these simulations are displayed in Table 18.

As would be expected, the results for (4.10) correspond almost exactly to the simulated 
critical values for the original two-dimensional Scan Statistic; c f  Table 8 in Chapter 3, 
which is based on 1000 replications. The differences, for N  = 100, are minor and 
attributable to sampling variability and the smaller number of replications. The 
accuracy of the approximations is very good for small dt and for the whole range of 
constants for (4.14), but (4.12) and (4.13) are much poorer for d  = 1/4, 1/8. As in the 
one-dimensional case, this may be explained by the role of 6  in the error and remainder 
terms of Simpson's Rule and the Taylor expansion.

However, a weakness of the approximations is that, at some locations in the unit square, 
the resulting polynomials may have no real zeros, or the smallest real and positive zero 
may be larger than unity. This was also observed in Section 4.2. Near the boundary, 
the problem may arise because there is, in fact, no solution to (4.10); that is, for (rjO 
near the left-hand and lower edges of [0 ,1] x [0 ,1], the largest possible 6  that ensures 
the scanning square remains completely contained within that region, i.e. 5 = minCr^), 
is such that

J is , t )d sd t< d 2.
J x - 5  J y - 8

Away from the boundary, the approximation to the exact equation for 6  may simply 
break down. In the simulations reported above, and later in this section, the occurrence 
of either error was flagged. If all zeros returned by the numerical root finding 
procedure were complex, a value of zero was returned for 6 ; if 6  was real but larger 
than one, the value was left unchanged. Table 19 contains some examples of the total 
numbers of the two types of error counted over each set of 1 0 0  replications used to 
form Table 18. The increased frequency for larger A is an artefact of the algorithm 
used to calculate the Scan Statistic. Each event in turn forms the focus of a scan of its 
vicinity, so that the larger the number of events, the larger the number of calculations of 
6  that are required. The number of errors decreases with d and decreases as the order of 
the Taylor expansion used in the correction increases; both factors will tend to improve
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the approximation to (4.10), so this observation is intuitively reasonable. Neither type 
of error was recorded for the simulations implementing (4.14).

N Method
1/4

d
1/16 1/64

2 0 (4.12) 663/183 53/16 0 / 0

(4.13) 226/59 0 / 0 0 / 0

(4.14) 0 / 0 0 / 0 0 / 0

150 (4.12) 23412/4597 963/227 0 / 0

(4.13) 10576 /1915 0 / 0 0 / 0

(4.14) 0 / 0 0 / 0 0 / 0

Table 19: Number of errors occurring in the estimation of 6  in 
the simulations used to produce Table 18. First 
figure equals the number of intervals set to zero; 
second is the number of intervals greater than one.

4.3.2 Generalisation o f  the Kernel Method

The results of Section 4.2 suggest that, under certain conditions, an adaptive kernel 
density estimate could provide an acceptable method of estimating the null distribution 
of events, which is unknown in practice, for inclusion in the correction method. The 
adaptive k.d.e. generalises easily to two dimensions (Silverman, 1986), and so it is 
possible to replace /(*,•) in (4.10) by a suitable /(•»•). To reduce the computational 
workload inherent in calculating a kernel density estimate, it is desirable to use kernels 
that have bounded support; Le. kernels that are only non-zero at coordinates in a finite 
interval in their domains. The two-dimensional Epanechnikov kernel,

, v x), x Tx< l,
K e \ X )  ~ i  #

10 , otherwise,
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is ideal for the pilot estimate, because it is simple to calculate, while still having good 
theoretical properties. The second-stage, or adaptive, estimator requires greater 
differentiability to allow the implementation of (4.12), (4.13) or (4.14), as these involve

The third approximation, (4.14), requires an estimate with more derivatives, so the 
kernel /C3(*), where

is a better choice. Both K2(m) and A?3(-) were suggested by Silverman (1986).

The above kernels were used to investigate, by simulation, the effect of inserting a 
kernel density estimate into (4.12), (4.13) and (4.14). The null distribution of events 
was assumed to be the mixture p.d.f., (4.15), and 100 controls and a given number of 
events were sampled from this distribution on each of 100 replications. The smoothing 
parameter was chosen to minimise the approximate mean integrated square error of the 
estimator, the usual criterion for an ’optimal1 bandwidth. For a general two-dimensional 
problem, the formula for this optimal h is

Nc is the number of (control) observations in the sample and K{') is the particular kernel

places). For the K2 kernel described above, the optimal smoothing parameter, given 
(4.15), is therefore

A

partial derivatives of /(■,•) to increasing orders. A suitable kernel for the first two 
approximations is

£ r £ < l,
otherwise.

47r“1( l - x r *)3, x Tx< l,
0 , otherwise,

(4.16)

where

a  =s JJs2/r(.s,f)dfcfi7£, 

P = j j K 2 (s,t)dsdt,

in use,■» ForyX*,*) equal to (4.15), J(vV)2 can be shown to be 2148.98 (to two decimal
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A2 = 0.569707V; 

similarly, use of the K3 kernel leads to

A3 = 0.63937AT*.

Critical values at the 5% level for the Scan Statistic, when simulated using the three 
different approximations to (4.10) and the above parameters, are displayed in Table 20. 
For reference, the corresponding critical values for the uncorrected statistic (assuming a 
uniform null distribution of events) are also included. Overall, the accuracy of the three 
approximations is poor, although there is a trend towards the correct critical values as 
the number of terms retained in the Taylor expansion increases. For (4.14), the values 
for small d, d < 1/16, are close to the target uniform results, if allowance is made for 
sampling variability and the different numbers of replications: the latter figures were 
generated from 1000 simulations, rather than 100 for the rest of Table 20.

By increasing the precision of the estimate of/(•,*)» however, some improvement can be 
made in the accuracy of this type of correction procedure. Table 21 employs (4.14) 
only and, using the same null distribution, kernels, bandwidth and number of 
replications as Table 20, estimates 5% critical values for the Scan Statistic by 
simulation, with control sample sizes of 200, 400 and 800. Accuracy increases with the 
number of controls, so that with Nc > 400, the correct values are quite closely achieved 
for d < 1/16. For larger d, however, (4.14) is still very poor, with most of the results 
much greater than the corresponding true values.

As in the previous section, it is clear that the smoothing parameter, h, of the kernel 
density estimate will also affect the accuracy of the approximations. It is well known 
that the precision of a k.d.e. depends on h, so the bandwidth will have considerable 
influence on the results, just as the sample size does in Table 21.
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N Method
1/4 1 /8

d
1/16 1/32 1/64

2 0 Uniform 7 5 4 3 3
(4.12) 9 6 4 3 3
(4.13) 14 6 4 3 3
(4.14) 13 5 4 3 3

50 Uniform 12 7 5 4 3
(4.12) 30 1 2 6 4 3
(4.13) 48 12 6 4 3
(4.14) 40 9 5 4 3

1 0 0 Uniform 18 10 6 4 4
(4.12) 89 19 10 5 4
(4.13) 1 0 0 23 8 5 4
(4.14) 90 82 7 5 4

150 Uniform 23 1 2 7 5 4
(4.12) 139 32 16 6 4
(4.13) 150 106 9 6 4
(4.14) 132 117 8 6 4

Table 20: Simulated 5% Scan Statistic critical values (100 
replications) for null distribution (4.15), using three 
approximate corrections based on adaptive k.d.e.'s 
calculated from 1 0 0  controls, compared to uniform 
null values.
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N No. of 
Controls 1/4 1 /8

d
1/16 1/32 1/64

2 0 1 0 0 13 5 4 3 3
2 0 0 10 5 4 3 3
400 10 5 4 3 3
800 9 5 4 3 3

Uniform 7 5 4 3 3
50 1 0 0 40 9 5 4 3

2 0 0 26 8 5 4 3
400 2 2 7 5 4 3
800 19 7 5 4 3

Uniform 1 2 7 5 4 3
1 0 0 1 0 0 90 82 7 5 4

2 0 0 56 51 6 4 4
400 46 25 6 5 4
800 39 13 7 5 4

Uniform 18 1 0 6 4 4
150 1 0 0 132 117 8 6 4

2 0 0 103 77 8 5 4
400 74 47 7 5 4
800 54 29 7 5 4

Uniform 23 1 2 7 5 4

Table 21: Simulated 5% Scan Statistic critical values (100 
replications) for null distribution (4.15), using (4.14) 
based on adaptive k.d.e.'s with different numbers of 
controls, compared to uniform null values.
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4.4 Discussion

The results of both the one and two-dimensional investigations provide a consistent 
assessment of the implementation of a correction based on Weinstock (1981) that makes 
use of numerical integration and Taylor expansions. The performance of the method is 
dependent on the number of controls, Nc, the smoothing parameter, h, and the ’square 
size' constant, d, Nc and h govern the precision of the estimate of the null distribution 
of events; increasing the number of controls, for example, clearly improves accuracy 
when estimating the Scan Statistic and, hence, when assessing significance. The 
constant d affects the magnitude of, respectively, the error and remainder terms in the 
numerical integration and Taylor expansions of/(*) or/(•,•). With smaller values of d, 
these terms are reduced and the correction is more successful. In the two-dimensional 
case, if Nc = 800 then the correction is adequate for choices of d less than or equal to 
1/16. If the conditions of the problem are below this optimum, then the correction 
seems to overestimate the Scan Statistic, sometimes to a very great extent, which would 
lead to a very conservative test with correspondingly low power. In practice, h and d 
are quantities that must be specified by the user and, therefore, introduce an element of 
subjectivity to the procedure.

At the left-hand and lower boundaries of the region of interest, the polynomial for 6  

may have no real zeros; see the discussion of this in Section 4.3. If a square of either 
side 0  or /, where I is the maximum size of square that may be completely contained 
within the domain at the current point, is substituted, then it is possible for the Scan 
Statistic to be underestimated, since part of the total area has not been scanned properly. 
A similar comment may be applied to points nearer to the centre, at which no solution 
to the approximation to (4.10) is found. A more serious problem is suggested by the 
simulation results that indicate the approximations may provide values of 6  that are 
much larger than the appropriate true size of square, even to the extent of returning 6  

> 1, when the region of interest is the unit square. Although this behaviour is 
moderated by larger numbers of controls or smaller choices of d, it could lead to an 
increased risk of Type I errors.

A useful feature of the correction described in this chapter is the simplicity of tests of 
significance associated with it. The construction of the method is such that a null 
hypothesis of no clustering may be treated as being equivalent to one of a uniform 
distribution of events on the region of interest. Therefore, a Monte Carlo significance 
test, suggested as the most effective inferential method for the Scan Statistic in Chapter 
3, may be implemented by sampling a number of artificial events, equal to the sample
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size of the original data set, independently from a uniform distribution on the unit 
square, then calculating the associated Scan Statistic. If the observed statistic was 
calculated with a constant k = d2JAB in (4.10), then the simulations are carried out using 
scanning squares with sides of length d. With this substitution, there is no need to 
sample artificial controls. The process is repeated independently R times. If the 
number of simulated statistics greater than or equal to the observed value is denoted by 
r, then an approximate /7-value for the data set in question is

p  = (r + 1) / (R + 1). (4.17)
When coded in FORTRAN, for example, this algorithm can be executed very quickly, 
even when R is large.

Instead of the procedure based on Weinstock (1981), it might be possible to correct for 
a non-uniform null distribution in other ways, e.g. by using a cartogram or a bootstrap 
significance test. A cartogram is a transformed version of an ordinary geographical 
map, with the property that the area of any sub-region is scaled to be proportional to the 
null distribution of events in that sub-region. Thus, the distribution over the whole 
region becomes uniform, which would allow the Scan Statistic of Chapter 3 to be 
applied without further modification. Schulman et al (1988) employed a cartogram 
with a different measure of clustering in their Density Equalised Map Projection 
method, which was discussed in Chapter 1.

An alternative approach would be to calculate the Scan Statistic for the observed set of 
events, with no corrections or transformations and a scanning window of a fixed size. 
A test of the ’no clustering' null hypothesis could be carried out by using a bootstrap 
significance test (Hinkley, 1988), based on a set of controls. The observed statistic 
would be compared to a set of simulated statistics calculated from a large number, e.g. 
99 or 999, of artificial data sets of the same size as the original. Each simulated set of 
data could be obtained by independently sampling with replacement from the controls. 
Calculation of the / 7-value would then follow the model of (4.17) above. The second 
data set would be necessary so that resampling was carried out under the null hypothesis 
(Hall and Wilson, 1991); Le. so that the bootstrap samples represented the distribution 
of events in the absence of any clustering component. It is likely, however, that this 
method would have very low power to detect clusters in areas for which the null density 
took very small values, within a domain that mixed regions of both high and low 
density. In this situation, the number of events in the cluster could be large for the 
immediately surrounding area, but small relative to the number found in the high 
density regions. It would be reasonable to expect the observed Scan Statistic to be 
found in one of the latter areas, since the scanning window remains fixed, and the same
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would probably be true for the Scan Statistic of each bootstrap sample also. Therefore, 
the observed and bootstrapped statistics would have very similar values, and hence, the 
associated /7-value would be quite large, even if some genuine clustering effect was 
present in the domain.

The use of a second set of data to provide an estimate of the null distribution of events 
has been suggested previously for other methods of detecting spatial clustering. In the 
context of malignant disease in human populations, for example, a number of the 
techniques discussed in Chapter 1, such as Lyon et al (1981), Cuzick and Edwards 
(1990) and Diggle and Chetwynd (1991), make use of samples of the non-diseased 
population as some form of baseline for the null hypothesis. However, as some of these 
authors note, it may be very difficult to obtain a representative sample of controls. The 
proposals contained in this thesis assume that a suitable sampling frame is available and 
that controls may be drawn from it without excessive difficulty. The results of the 
preceding sections suggest that as many controls as possible should be obtained, so that 
the estimate of the null distribution achieves maximum accuracy. Therefore, the 
sampling procedure must be capable of generating a large number of controls, without a 
disproportionate penalty in terms of cost. If human populations are of interest, it would 
often seem to be desirable to sample controls from the decennial Census; this has been 
suggested by a number of authors, e.g. in the contributions of Mantel and Clayton and 
Yandell to the discussion of Cuzick and Edwards (1990). However, it is possible that 
the limitations of Census information, such as insensitivity to migration and a 
discretised coordinate system (discussed further in Chapter 1), would carry over to 
controls obtained in this way. The use of an ancillary data set was proposed partly as a 
means of avoiding such problems, so there would appear to be disadvantages to the 
Census sampling approach, despite its relative simplicity.

The correction method of Weinstock (1981), when generalised to two dimensions, is a 
sensible and intuitive way of allowing the Scan Statistic to be used when the 
distribution of events under the null hypothesis is non-uniform. However, the particular 
implementation described here may be unreliable under certain circumstances. 
Therefore, it would be desirable to find a more robust algorithm for use in a real 
application. One possibility is based on a piecewise constant approximation to the 
density estimate of/(*,*) in (4.10). Values of the kernel density estimate, denoted by e^  
are calculated for each point (ij) of a very fine grid overlaying the region of interest. If 
the grid points are separated by a distance, g, along each axis, then the value of the 
estimate within the g  x g  square region centred on (ij) is approximated by e .̂ The 
volume under the k.d.e. bounded by a general square, W, of any size may then be
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approximated by summing the contributions g 2 for each grid point contained within 
W. Hence, the length of the side of a scanning square at a particular location can be set 
to (m-l)g, where m is the maximum number of grid points in each axis direction 
allowing an approximate volume, as defined above, that is less than or equal to cP/AB. 
The use of a Fast Fourier Transform algorithm to calculate the kernel density estimate 
at a grid of distinct values would decrease significantly the computational workload of 
this method.
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CHAPTER 5

AN INTEGRATED SQUARED DIFFERENCE STATISTIC

5.1 Introduction

The general principle of a test of spatial clustering of the type examined here is to 
compare the distribution of the kind of events under consideration to the distribution 
that would be expected if there was no clustering effect. In the preceding chapters, this 
was mainly accomplished by using the Scan Statistic to examine the pattern of events 
and a kernel density estimate, calculated from a sample of controls, to represent the null 
distribution. However, Chapter 2 briefly investigated the assessment of clustering by 
calculating the maximum of a k.d.e. for the probability density of events, when the null 
distribution is assumed to be uniform. Chapter 5 combines the two approaches, by 
considering a method of comparing two kernel estimates, one of which is calculated 
from the events and the other from the controls.

A number of different measures could be defined for the purpose of comparing two 
kernel density estimates. For example, Ahmad (1980) describes an affinity measure, X, 
between two probability density functions that is estimated by replacing the true p.d.f's 
by kernel estimates; i.e.

£ _ _ / / ( * ) d G n (*) +  J i M  dFn (*)

^ f 2 {x)dx + ̂ g 2 (x)dx

/ \

where /(•) and g{) are the kernel estimates, and Fn{-) and GJ-) the empirical 
distribution functions, calculated from the two sets of data. An alternative would be the 
ratio of the two kernel estimators, as suggested by Bithell (1990). The measure to be 
investigated here is the integrated squared difference (ISD) between f x (•) and f 2 (•), ie.

rhh = J {/i M  ~ h  ( x ) f  d x , (5.1)

A

where yj(*) is the kernel estimate of the p.d.f. of events, calculated with smoothing
A

parameter hv  and / 2 (•) is the controls estimate, which has smoothing parameter h2.
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Expression (5.1) would seem to be a natural test statistic to consider in the kernel
density estimation context, because of its similarity to the integrated square error (ISE) 
of a k.d.e.,

which is used frequently to measure the global performance of the kernel estimator.

Hall (1984) provides a central limit theorem for (5.2), using martingale and {/-statistic 
theory. The results, and methods of the proof, are employed in Section 5.2 to 
demonstrate the asymptotic normality of (5.1). Simulation results regarding the small 
sample behaviour of (5.1) are described in Section 5.3, and Section 5.4 considers some 
modifications to that improve the theoretical properties of the statistic. Power 
against a certain class of alternatives is investigated by simulation in Section 5.5. The 
chapter closes with discussion in Section 5.6 and, in Section 5.7, some intermediate 
results required for the proof in Section 5.2.

5.2 Asymptotic Behaviour of the ISD Statistic

5.2.1 Notation

Let {xx,...,X,h } and {^,...,7^ } be two independent samples from the /^-dimensional

p.d.f. /{•). Given two bandwidths or smoothing parameters, hx and h2t the kernel 
density estimates of/(•) from the X  and Y samples are

(5.2)

and

respectively, where K{') is a p.d.f. that satisfies the conditions

jK(z)dz = 1, J ztK {z)dz-  0  and j ztZjK(z) dz = 8 yd,

where a  is a constant and is the Kronecker delta.
v
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The following quantities, included here for ease of reference, are used to simplify some 
complex expressions in the statement and proof of the Theorem below:

<*A = J { v 2/ (x ) } 2/ U ) ^ - [ J { v 2/ U ) } / U ) ^ ] 2,

gb ~ \ f 2 (x)dxi^\^K{u)K(u + v)du\ rfvj,

g Ib -  J f 2 ( * ) {JK(u)K{u + v)du \\^K (u)K(u +h]v / h2)

Gc =  ^ \ v 2f(x)}f{x)dx^K.2 {u)du, 

g d = \ { v 2f ( x ) Y  f i x )  dx

and

K
( x - Y A  (  x -Y ,
\  h2 )  \  h2 j

•dx ,

5 .2 . 2  Theorem

Let k lt k2, X3, k4 and k5 be positive, finite constants. If, for i = 1,2,

6 , —S:*- ->0 , nthf  >oc and h jh 2 = 0 (1 ),
then Thllt2 is asymptotically normal with mean

{ ( 'r f )  1 + {n2h2 ) l \ \ K 2 {u)du+%a2{hl - h i ) 2  ̂ \ y 2f { x ) Y  dx (5.3)

and variance

+ £22 + ds — (£2 4 + £ 5̂) (5.4)

where

n j X o f o l ,
2nJ2hJpo 2B>

p+& /  4 p ,

n, a  X l" o2A + 2 A; ’" o \  |, if nihf+A - 4  Xt,

if nfif* 4 

if nM** —» 0 ,

for i = 1 ,2 ,
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(«x lh2 + n2 )oc2Oa , if n2h%+4 -» «> or

4(«1«2/t|?) 1 olg, if n2h$ +4 —> 0  and nxh^h^ —> 0 ,

+ ^ ) « M  +4d^}, if n2h%+4 -> Aa a n d n t fh i  -» A3 ,

Q 4  —

n l xh l h \ a 2a 2D , if +2 -» ©o,
n f h [ p h 2 a c 1% , if «1/tf+2 -» 0 ,

_ £ + £  _ 2_  /  v

« ! /,+2 Â +2A|a(A^ac + « a ^ ), if nxh[ +2 -» A'4*

and

a
n2 lh 2h la 2o 2D, if n2h$ * 2 —> ©©,
nl 2h%h2 pa,Oc> if « 2/* |+2 ” >
n2 p*2XP5 2h%a{x~5 Gc + cktJ), if rt2/tf+2 ^5 •

5,2.3 Proof 

Write 7 ^  as

J { /1  (*) “ /(* )}*  dx + J { /2 (^) - / U ) } 2 d x - 2 j  { f  (x) - / ( * ) } { / 2 (*) - f ( x ) } d x .

(1) From Hall (1984), J (/• - / )  , for i = 1 ,2 , is asymptotically normal with mean

foA/T1 J K2 b)du+%a2h4 \ { V 2f ( x ) } 2 dx

and variance Vit where

V,=

nJlh ta 2o zA,
Z n f h ^ a l ,

if rift? * 4 -» ©©, 
if nth[ +4 —> 0 ,

P+8 f  4 P

n, r*‘ a  X f‘a \  + 2 A,. ' +4crj L if /i./if44 -> A,.
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(2) Following the method of Hall (1984), write J" (/i - / )(/2 - / )  as

j ( / i  -  e £ )(  e / 2 - / ) + J U  -  E /2)( e / ,  - / )

+ j( / i  -  Wi){/2 -  W t)  + / ( l ^ i  - / ) ( e / 2 - / ) ,  (5.5)

and denote the first three terms in (5.5) by I lv I l2 and I2, respectively. The fourth term 
is non-stochastic in nature.

(a) Let

«iI
(=1

where

*1 = (x )- f(x )}d x ,

As in the proof of Lemma 1 from Hall (1984), let

t, = J K{(* -  Xi)/A1}{ W 2 (x) - f ( x ) } d x .

Then

E fc) = h\ \ { \ K  W /(*  -  A ) & }{ E/ 2 (x ) - f { x ) \d x  

= ih fh la  j  {V2f(x )} f(x )d x + 0 {hfh22),

E (',2) = J {J K{z)K(z+u)f{x-zhJdzW  W 2 ( x ) - f ( x ) }  

{ Hf2 (*+ )_ /  (*+u A,)} du dx 

= + o{htPh2)

and

E  [ f a c j p h ? ,

for some constant ck. Hence,

E U2 ) “ 4Al2/'*2a2°'5
and

E(z/)<C 4V ^ 28-
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Using the Lindeberg-Feller Theorem (Heyde, 1983) for this context,

(=1

is asymptotically normal if, V e > 0,

s '2! )  e {z(2/(W  > a ) }  >0.
t=l

where

S2 = £ E (z2).
1=1

If g { ' )  represents the p.d.f. of z t, then noting that

Je{z?/(|z,-| > e s ) }  = Jz2/(|z*| > e s ) g ( z ) d z  

= f z 2g ( z ) d z
\z\>ES

< ( e s ) ~ 2 J z 4g ( z ) d z
\z |>£S

<{es)~2 j z 4g(z)dz 

= (es)-z JE{z4),

the left-hand side of (5.6) becomes

£-2^-4 ^  e (z 4) < e~z ) 2 nxc j i 4ph\
i=1

= o(«1~1) >o.

(5.6)

Therefore, In  is asymptotically normal with mean zero and variance
i - 1 .  4 „ .2 _ 2
i» i  *2® a A.

By symmetry, / 12 is also asymptotically normal, with mean zero and variance
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(b) Let

where

I 2 =(n1n2h?hg) 1U,

«1 *2

t/ = £ £ / / ( x , ,F y).
i= l j =  1

Note that

e {H(X, F)} = 0. E {H(X, F)|X} = 0 and E{//(X, F)|f} = 0.

Hence, U is a degenerate, two-sample ^/-statistic. Theorem 2 of Khashimov (1988) 
demonstrates that U is asymptotically normal if, for / = 1,2,

(i) n,rV3E{|f/(X,F)|3} >0,

and

(ii) a - 4 e [{  E(ff(X,, Y2 F3 )|F2, F3 ) } 2

where

a 2 = e { # 2(X,F)}.

For condition (i),

e { |//(x , f )(3} < [ e { |//(x , y ) f  }]* 

< [ e { « 2(x , f )}]1

Therefore, using Result 1 of Section 5.7,

«:=[ E  {h2 (X. y)}]- i  e (|« (X , F)|3}< o{n,r* {hf'hi YHhf'hg )*} 

=  o(n )̂ "i-*- > 0 ,

for i = 1,2. For condition (ii), Result 2 of Section 5.7 demonstrates that

e [{  E ( f f  (Xj , y2) » (x,, y3 )|y2. y3 )}2 ]  = o{Kphlp).
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so that

[ e { h 2( X, Y )}]~2 e [ {  E(//(X1,F2)//(X1;F3)|F2,y3)}2 j = o( V '/tJ 2V ’* !')

= o(tl2 ) - " ^ - - >0 .

Thus, U is asymptotically normal with mean zero and variance nln2 E { //2(X,y)},

which can be shown to equal using Result 1 of Section 5.7. Hence, / 2 is
asymptotically normal with mean zero and variance

(c) In , I12 and / 2 are imcorrelated and their joint distribution is asymptotically normal. 
Therefore, using (a) and (b), we find that In + / 12 + / 2 is asymptotically normal with 
mean zero and variance V, where

by examining the order of the ratio of the two terms on the right-hand side of (5.7).

(3) Parts (1) and (2) demonstrate that the three components of Thh are jointly 
asymptotically normal. is a linear combination of these terms, so it must also be 
asymptotically normal (Miller, 1964, pp. 22 - 24). The appropriate mean and variance 
are calculated as follows:

(5.7)

this can be rewritten as

(a) e ( 7 ; J =  e { } ( / 1 - / ) 2} + e { J ( /2 - / ) 2 } - 2 e { J ( /1 - / ) ( / 2 - / ) }

= J Varl + J Var2 + J (A-b2)2
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= {(«lAf)  l +(«2*f) 1 } | + i « 2 (*12 -  )2 J {VV }2 >

where Vari is the variance, and Bt the bias, of the kernel density estimate based on the 
/th data set, for i = 1 ,2 .

(b) - f ) Z) + Var{\{f2 - / ) 2} + 4Var{ | ( / 1 - / ) U  - / ) }

- 2 Q » v { j U -f th  - / ) } - 2 C o v { | ( / 2 - / ) 2 . j U  - / ) ( / 2 - / ) } .

The covariance terms are evaluated in Result 3 of Section 5.7. By considering the ratio 
of and hi terms in each component, the first covariance may be rewritten as

j  n[vhlh \a 2G2D, if »°o,

* K V * |a < &  if nih( +2 —>0 ,
\  nx p+z X^hlayX^Oc + a a \ ), if n$ * 2 A4,

and the second covariance similarly, by substituting n2 for nlt h2 for h1 and X5 for X4. 
This proves the Theorem of Section 5.2.2.

5.3 Finite Sample Behaviour

The theorem in Section 5.2.2 considers the limiting behaviour of making use of 
the central limit theorem for the ISE of a kernel density estimate from Hall (1984). 
Real applications, however, will involve the analysis of data sets that are finite and 
possibly quite small, e.g. 50 or 100 events. It is necessary, therefore, to have some 
information about the effectiveness of the asymptotic result as an approximation to the 
exact distribution of both ISE and the test statistic (5.1).

Tables 22 and 23 contain specimen values of the mean and variance of the asymptotic 
normal distributions of ISE and T h ih 2 > respectively. The former values were calculated 
from Hall (1984) and the latter from Section 5.2.2. The parameters were obtained for 
three different univariate p.d.fs, /{•), and three choices of sample size, n or nv In the 
case of Table 23, the value of n2 was taken to be three times that o f n v  a ratio of events 
to controls that might be commonly chosen in a practical example. The bandwidth or
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bandwidths were calculated from the usual formula for a smoothing parameter that 
minimises approximate mean integrated square error (see expression (2.9) in Section
2.3 or Silverman, 1986), assuming the use of a Gaussian kernel throughout. Once the 
required functionals of /{•) and /C(*) had been evaluated analytically, the results quoted 
in the two tables were calculated by a short FORTRAN programme, using double 
precision arithmetic. It should be noted that the same calculations performed in single 
precision FORTRAN or on a pocket calculator gave different answers, especially for 
the case of the standard normal probability density function.

ISE and Thh<2 are the integrals of squared expressions and must be, therefore, entirely 
non-negative. Hence, if the distribution of each is to be adequately approximated by a 
normal density, it would be reasonable to expect that the quantities

mean ± k standard deviations, (5.8)

when calculated from Hall (1984) or the Theorem above, should be contained entirely 
within the non-negative part of the real line, where k takes all of the values {1 , 2 ,..., /}, 
and I is at least three. However, in both cases, the standard deviations in the respective 
tables are usually more than half the corresponding mean, so that k -  1 is the best that 
can be achieved in (5.8). This suggests that the two densities may be skewed for the 
range of sample sizes considered here, and that there may be some practical difficulties 
in trying to use a normal distribution for significance testing with Th h or as a measure 
of the behaviour of ISE.

Support for these observations is obtained from simulations of the distribution of rhih2 

under the null hypothesis. Using 100 replications, events and controls were sampled 
independently from the three one-dimensional probability density functions used in the 
production of Tables 22 and 23. Smoothing parameters were calculated as described 
above, again employing Gaussian kernels. Empirical density functions for each choice 
of /{•) and sample size pair are displayed in Figures 5, 6  and 7, and the mean and 
standard deviation of each set of simulated statistics corresponding to these histograms 
are listed in Table 24.
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Density Sample Size Mean Standard
Deviation

50 0.01456 0.01177
N(0,1) 250 0.00402 0.00276

1250 0 .0 0 1 1 1 0.00065
50 0.02077 0.01265

Ga(2,l) 250 0.00573 0.00297
1250 0.00158 0.00070
50 0.01048 0.00786

i/2N(-1,1)+i/2N(1,1) 250 0.00289 0.00185
1250 0.00080 0.00043

Table 22: Specimen means and standard deviations of the 
asymptotic normal distribution of ISE, from Hall 
(1984). Kernel density estimate uses a Gaussian 
kernel and optimal bandwidth.

Density n2 Mean Standard
Deviation

50 150 0.01685 0.01443
N(0,1) 250 750 0.00465 0.00337

1250 3750 0.00128 0.00079
50 150 0.02404 0.01603

Ga(2,l) 250 750 0.00663 0.00374
1250 3750 0.00183 0.00088
50 150 0.01213 0.00989

V2N(-1,1)+i/2N(1,1) 250 750 0.00335 0.00231
1250 3750 0.00092 0.00054

Table 23: Specimen means and standard deviations for the 
asymptotic normal distribution of Thlh2 from (5.3) 
and (5.4), Kernel density estimates use Gaussian 
kernels and optimal bandwidths.
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(a) Normal, 50 events, 150 controls (b) Normal. 250 events, 750 controls

(c) Normal, 1250 events, 3750 controls

— i—  

0 0006

Figure 5: Empirical distribution of under the null
hypothesis for N(0,1) density, with (a) nl =50, 
n2 = 150, (b) nx = 250, n2 = 750 and (c) nx = 1250, 
n2 = 3750. Calculated from 100 replications, with 
Gaussian kernels and optimal bandwidths.
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a -i

(a) Gamma, 50 events, 150 controls

S  -

(b) Gamma, 250 events. 750 controls

a -

(c) Gamma, 1250 events, 3750 controls

i i i i
003 004 006 006

Stelatic

Figure 6: Empirical distribution of under the null
hypothesis for Ga(2,l) density, with (a) nl = 50, 
n2 = 150, (b) nx = 250, n2 = 750 and (c) nx = 1250, 
n2 = 3750. Calculated from 100 replications, with 
Gaussian kernels and optimal bandwidths.
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(a) Mixture, 50 events, 150 controls (b) Mixture, 250 events, 750 controls

(c) Mixture. 1250 events, 3750 controls

a -i

a -

i----------1----------1----------1
0 0 0 0005 0 0010 0.0015

sill eke

Figure 7: Empirical distribution of under the null
hypothesis for mixture density, with (a) nx = 50, 
n2 = 150, (b) nx = 250, n2 = 750 and (c) nl = 1250, 
n2 = 3750. Calculated from 100 replications, with 
Gaussian kernels and optimal bandwidths.
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The empirical distributions in Figures 5 to 7 are positively skewed for all sample sizes 
and choices o f /6 ), which agrees with the analysis of the specimen means and standard 
deviations in Table 23. The simulated parameter values in Table 24 do not agree 
closely with those predicted from the Theorem, being between approximately 50% and 
100% of the latter values for the Gaussian and mixture p.d.f's and approximately double 
for the Gamma (2,1) density. Since the available evidence suggests that the asymptotic 
result is a poor approximation to the small sample distribution, it would be unrealistic to 
expect the corresponding estimates of mean and variance to be substantially better. 
However, the ratio of mean to standard deviation, at least, does appear to be similar for 
the two tables.

Density « i n2 Mean Standard
Deviation

50 150 0.00978 0.00761
N(0,1) 250 750 0.00314 0.00169

1250 3750 0.00076 0.00040
50 150 0.05408 0.03089

Ga(2,l) 250 750 0.04518 0.01291
1250 3750 0.04507 0.00604
50 150 0.00758 0.00628

i/2N(-1,1)+i/2N(1,1) 250 750 0.00223 0.00131
1250 3750 0.00068 0.00037

Table 24: Simulated means and standard deviations for Thi h2> 
under the null hypothesis, corresponding to the 
empirical distributions in Figures 5 to 7. Based on 
1 0 0  replications.
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5.4 Modifications to the ISD Statistic

A number of alterations can be made to the form of Th\h2 that improve its theoretical 
performance with respect to bias and the minimum distance between alternatives it is 
possible for the statistic to detect. A fuller account of the material in this section and in
5.5 is presented in Anderson et al (1992a).

If the standard normal distribution was to be used for hypothesis testing with the ISD 
statistic, (5.1) would have to be centred and standardised. From (5.3), it can be seen 
that the expectation of is composed of the sum of two functionals, one involving 
K?{') and the other V̂ T(*). The former can be calculated analytically, but the latter is an 
unknown and, therefore, would have to be estimated in practice. However, by setting 
hy = h2 = h (and writing Thlhz as Th), the term involving V2j\') will be canceled out, 
leaving a much simpler expression for the mean. Essentially, using the same bandwidth

A A

for /  (•) and f 2 (•) reduces the bias inherent in the use of kernel methods to estimate the 
ISD between two probability density functions. Although this might lead to sub- 
optimal estimates of the individual densities, interest here resides in a comparison of the 
two p.d.fs and the quality of the estimates is not of particular concern, so the 
importance of the bandwidth is reduced.

Under the alternative hypothesis for the test considered here, the two samples of data 
are drawn from different p.d.fs, f x and / 2. Anderson et al (1992a) consider the 
minimum separation at which an hypothesis test based on Th can discriminate between 
f i  and / 2, when the alternative is true. This is investigated for a class of alternatives of 
the form

w here/is a given p.d.f. and# is a function integrating to zero. Clearly, (5.9) is not a 
restrictive definition, since any two p.d.fs may be included in the class by rewriting f 2 

as

A  = f  and / 2 = f + 6 g, (5.9)

If 6  is chosen to be of the form

8  -  cn ~2h \ (5.10)
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for some non-zero constant, c, n = nx + n2 and nxln2 bounded away from zero and 
infinity, then Th can be shown to be asymptotically normal when the alternative 
hypothesis, (5,9) plus (5.10), is true. The argument follows that of Section 5.2.3 or 
Hall (1984), by demonstrating that the first two components of the expansion

As a result, the variance of the statistic is an increasing function of c, so that the power 
of Th against the alternative hypothesis tends to one as |c| —»<». Thus, the minimum 
separation permitting Th to discriminate between f x and f 2 is

As h —» 0, n zh 2 -» <*> for a given n, so that, in general, if we wish to discriminate 
between distributions separated by 0 (n~ ^), we must fix the smoothing parameter, h. 
Setting h = 1 is convenient, since this simplifies the calculations for Th, although any 
value that does not depend on n will suffice. Hereafter, denote the test statistic with a 
fixed smoothing parameter equal to one by T. A minimum discrimination distance for 
T of 0(/r^) compares favourably with many tests in a parametric setting (Hall and Hart, 
1990).

Under the null hypothesis, T is no longer asymptotically normal, since the fixed 
bandwidth contravenes one of the conditions of the Theorem in Section 5.2.2, If

Th = \  {/, - A -  e , a (a  - A  )}2 + 2 } [a  - A  -  e „ , {a - A ) }  E», ( /, - A )

+ J { e „ , ( / 1 - / 2 ) } 2

are asymptotically normal and that

a(x) = jK (x -y ) f ( y )d y ,  

A = j K 2 - j a z

and

M(x v x2) = J - x 2 ) -a (x ) \d x t

then Anderson et al (1992a) demonstrate that
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« { r - ( « r 1+ *2l )j, } -> S = £  A  | (  ppz* -  ) 2 -  (Pi'1 + p~2 ) J

in distribution. Of the constituent parts of S, above, the terms pit i = 1, 2, are constants 
such that nt = ptn , for 0  < p,- <«», the Zy, i = 1 , 2 , j  = 1 , 2 , are independent standard 
normal random variables and the Xj,j = 1 , 2 , ..., are the coefficients of the orthogonal 
expansion of M(v) in its eigenfunctions with respect to the weight/^); Le.

DO

M (x  „ *2) = X  V*>* (xi K  (x2) .
k=1

where

J M(xx ,x2 )wk (x, )/(x! (x2)
and

^<oJl(x)<Ql(x)f{x)dx =

where &kl is the Kronecker delta. This distribution is quite complex and depends upon 
the unknowns Kv X2, so that significance testing may be more practical if the 
bootstrap (Hinkley, 1988) is used instead.

Given the original data, denoted by D, two artificial data sets , and of 
respective sizes nx and n2> are created by sampling independently with replacement 
from D. The fixed bandwidth test statistic is calculated for these two samples, giving a 
value THl). This process is repeated a further (R -1) times, e.g. where R = 100 or 1000, 
giving a sample of simulated (bootstrapped) test statistics,

A critical value at the 100a% level, ta, is estimated from this sample by setting ta equal 

to the bootstrapped statistic that ensures

vt{r>ia\D)=a.
The null hypothesis is rejected subsequently at the 100a% level if Tt the observed value 
of the test statistic, is greater than ia .

A further consideration is the composition of the "original data", D, in the preceding 
paragraph. Since the null hypothesis assumes that the two observed samples,
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{ ^ . . . . . X j a n d f t  yJ ,

are drawn from the same distribution, D might be taken to equal either sample 
individually or the pooled sample

 Y„2}.

The latter choice would naturally contain more data points, and should, therefore, have 
better level accuracy when the null hypothesis is true. However, in a context where one 
sample represents controls or some baseline distribution, an approach more intuitively 
connected to the detection of clustering might be to resample from the control data 
only. The set of simulated statistics thus obtained would be more typical of those 
expected in the absence of clustering, rather than simply the values expected when the 
two original samples were drawn from the same distribution. This condition is, of 
course, all that is required for the bootstrap test to be carried out correctly, so that, in 
practice, the choice of resampling scheme is arbitrary.

5.5 Power Comparison

The ability of the test statistic T to detect differences of smaller order than Th, as 
indicated in the previous section, suggests that the former statistic may have greater 
power, both in general and for alternatives that differ from the null by only a small 
amount. To investigate this empirically, the powers of the two statistics were compared 
for a particular form of alternative by simulation.

Events were sampled independently on each of 1000 replications from two different 
probability density functions,

/ i  U) = (1 -y)<t>(x; 0,1) + Yt>(x] 0, a 2) (5.11)

or
/ 2 (x) = 0(*;O,l), (5.12)

where 0 (x;/t,<T2) denotes the density function of the univariate normal distribution

with mean \x and variance a2. In (5.11), the variance or2 was chosen to be 2 or 4 and the 
mixture parameter, y, was defined to be

y -c (n 1 + n2)“ , (5.13)

where nx and n2 were the sizes of the samples to be drawn from f x and / 2, respectively, 
and c was a constant, taking the values 1, 2, 4 or 6 . The kernel estimates for T and Th 
were calculated using Epanechnikov kernels (Silverman, 1986, p. 42), and in the case of
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the latter statistic, the bandwidth was chosen to minimise approximate mean integrated 
square error for (5.12) given the total sample size, Le. formula (2,9) with K(*) equal to 
the Epanechnikov kernel, f{x )  = <j>{x; 0,1) and N ~ n l + n2.

At each replication, the significance of the simulated test statistic was assessed by a 
bootstrap hypothesis test (Hinkley, 1988). However, rather than following the method 
presented at the end of Section 5.4, each test followed the scheme of the sequential 
Monte Carlo tests proposed by Besag and Clifford (1991), the main benefit of which 
was the reduction of the computational load that the procedure permitted. For the 
sequential method, R bootstrap samples are generated as normal, but the test is declared 
to be significant at the 1 0 0 a% level if

where r is the number of bootstrapped test statistics greater than or equal to the 
observed value. However, if after generating the /th bootstrap sample,

A} +1 > oc (R  +1) ,

where rt is the number of bootstrapped values matching or exceeding the observed test 
statistic at stage /, then the bootstrap procedure is halted, since the test could not then 
attain significance at the 100a% level. In the simulations reported here, a  = 0.05 and 
R -  199, In the case of Th, the original bandwidth was used to calculate each 
bootstrapped value of the test statistic.

Table 25 displays the results of the simulations for (a) a2 = 2 and (b) a2 = 4. Both cases 
are demanding so far as testing is concerned, and (a) in particular, and this is reflected 
in the low magnitude of the figures overall. As would be expected, power is greater for 
case (b) and increases with c. The sample sizes were chosen for consistency with 
previous work, but do not affect the results substantially, since the alternative 
hypothesis is corrected for nY and n2 through (5.13): as the total number of observations 
increases, y decreases andf^-)  —»/ 2(*). When c > 2, the superiority of T is fairly clear, 
especially for case (b), which is consistent with the theoretical analysis of Section 5.4. 
The results for c = 1 suggest that this particular alternative is rather too demanding and 
that the significance of individual tests is simply attributable to chance and sampling 
variability, which means that the comparison of Th and T is more difficult in this case.
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(a) o2 = 2

nA n2 Statistic
1 .0

c
2 .0 4.0 6 .0

2 0 60 Th 0.076 0.053 0.079 0.131
T 0.066 0.082 0.107 0.172

50 150 Th 0.066 0.072 0.063 0.130
T 0.054 0.075 0.087 0.132

1 0 0 300 Th 0.047 0.064 0.071 0.079
T 0.048 0.054 0.104 0.136

(b) o2 -  4

nx n2 Statistic
1 .0

c
2 .0 4.0 6 .0

2 0 60 Th 0.068 0.109 0.166 0.334
T 0.076 0.115 0.259 0.498

50 150 Th 0.056 0.064 0.162 0.279
T 0.058 0.087 0.235 0.480

1 0 0 300 Th 0.065 0.066 0.107 0.233
T 0.048 0.094 0.241 0.451

Table 25: Empirical power of Th and T against the alternative 
(5.11), (5.12) and (5.13), with (a) a2 = 2 and (b) a2 

= 4. Based on 1000 replications, with sequential 
bootstrap significance tests using a maximum of 199 
resamples.
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5.6 Discussion

The ISD statistic considered in this chapter is defined to be a measure of the difference 
between two probability density functions. As noted previously, it is an attractive and 
intuitive choice for analyses in the context of kernel density estimation. However, it is 
not dedicated to detecting an excess of one particular type of events over another. 
Therefore, Th or T will be sensitive to both excesses and deficits of, for example, 
cases compared to controls, in the case of applications involving incidence of disease, 
or what might be termed positive and negative clustering, respectively (Marshall, 1991). 
A benefit of this is that the test statistics may be useful in a range of problems that is 
broader than might otherwise be the case, i.e. as varieties of two-sample goodness of fit 
statistics. However, a disadvantage is that, for most types of investigations of spatial 
clustering, the power of an ISD statistic may be lower than that of a measure that 
detects differences in only one direction. A further consideration is that the value of the 
test statistic will not discriminate between the two situations in which a significant 
result is due to positive or negative clustering, although comparing three-dimensional 
plots of

may be informative, since the former quantity will indicate the sign, and the latter the 
relative magnitude, of peaks due to large, local differences in the values of the two 
kernel estimates.

The conditions imposed on the smoothing parameters, hx and h2, by the Theorem in 
Section 5.2.2 should be reasonable in most practical applications. The bandwidths for 
the two samples would normally be chosen by the same method, e.g. by reference to a 
standard distribution (Silverman, 1986) or by least squares cross-validation (Bowman, 
1984), These and similar methods would normally ensure that hx and h2 were of order

where p  is the dimensionality of the problem. Thus, both smoothing parameters would 
tend to zero with increasing n and would be of the same magnitude, satisfying the 
conditions in the Theorem.

A  f z

and
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However, the sample parameter values and simulation results of Section 5.3 suggest 
that the Theorem may be of limited use for significance testing. The apparent skewness 
of the small sample distribution of Thih2 implies that the use of a normal approximation 
may be restricted to very large samples, which will probably be too large to be achieved 
in practice. It is also clear that the application of the results of Hall (1984) for purposes 
other than theoretical analysis must be treated with great care. Usually, therefore, 
hypothesis testing for any of the statistics discussed in this chapter will have to be 
accomplished by a bootstrap approach, as described in Section 5.4.

The alterations to T h \h 2 outlined in Section 5.4 provide a way of extending the statistic 
based on (5.1) so that its theoretical properties, such as power, are improved. The 
simulation results of Section 5.5 provide some corroboration of this. T may prove to be 
an attractive statistic in practice, since it does not require the estimation of a suitable 
bandwidth, the usual difficulty encountered with implementing nonparametric 
smoothing methods. It is also qualitatively similar to a test proposed by Hall and Hart 
(1990) for comparing two nonparametric regression curves. The statistic proposed 
therein is based on the quantity

r .= £ £ { A * , ) - £ M } \
n (=1

where xn) are the design points and /(•) and g(-) are the regression function
kernel estimators, which have a common, fixed smoothing parameter. Asymptotically, 
Tn behaves in a similar way to T, since its distribution is non-normal unless the 
bandwidth is permitted to tend to zero as n -» °°, In addition, Tn is capable of 
discriminating between functions that are 0{nrl/) apart. However, difficulties may arise 
when using T if nl and n2 are of very different magnitudes. Use of the same smoothing 
parameter for both of the estimators in these circumstances could lead to drastic over- 
or under-smoothing of one kernel density estimate. This might introduce bias, in the 
case of over-smoothing, or variability, otherwise, sufficient to make the results of the 
test unreliable.

A more general investigation of the use of orthogonal expansions to represent the 
distributions of certain test statistics is carried out by Anderson et al (1991), who 
examine Edgeworth expansions for sums of independent / 7-vectors, where p  increases 
with sample size. Practical application of the results is limited in many circumstances, 
since individual terms in the Edgeworth expansion may be very difficult to compute.
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However, knowledge that an expansion exists as a series in given powers of the sample 
size, n, can give an accurate interpolation rule for use with existing tables of a 
distribution (Anderson et al> 1992b). In the two-sample problem, as considered here, 
some progress can be made by using a Gram-Schmidt procedure, to provide empirical 
approximations to the required orthogonal functions, and a bootstrap approximation to 
the distribution of the test statistic, which is of the form

is a sequence of orthonormal polynomials of degree/ ,  estimated from the first sample of 
data, and

is the second sample of data. By appropriate choices of the constants Xj, the power of 
the statistic to detect a difference in one particular characteristic of the distributions, 
e.g. location or scale, can be increased.

where

is a sequence of positive constants that converges to zero,
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5.7 Intermediate Results for Section 5.2.3 

Result 1

e { //2(X,F)} = JJ E17* ( x - X "j 1L ( y ~ x ] f y - X } 11-  EK -  E/C
[1 I K  J I K  JJl I I h  JJJ

x E [I*
( v \x - Y -  EAT f y - Y ^ -  JEKf 1

LI \  h2 L h2 J Jl \  j \  h2 )
dxdy

= J H *
x - X K ry - x ^ f{ X )d X - \K \ x - W

. K

X
x - Y

2
K

"2 J

K y-V _
K

f (v )dv

f ( Y ) d ¥ - j  K ] ^ - ^ y { W ) d W \ d l - Z ) r f { y ) d V dxdy

= hf h% JJ ABdxdy , 

where

A = J  K{z1) k U ^ - + z 1 X f ( x - z 1h1)dz1

- h f  J K{z2 ) f { x - z 2hl )dz2 j x ( z 3 ) f (x  - z j ^ ) d z 3,

and B  is as above, with h2 replacing hx throughout. Then, (5.14) equals 

hlPK \ \  {J K { z 3) k {z x +u)f(x)dzl +o(hf)}

xifiC (r2)/C

(5.14)

Z —Lu 
V K  J

f(x)ck2+o(h% )jd M «
hiPh%G?lB

0 {hlphp\  if h jh 2 - 0 (1).
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Result 2

Let E23 = E{H(X1,K2)//(X1,y3)|y2,y3}. Then

En = \\< K \X ¥z TEK
2 J

X-Yy 
\  h2 j

K y z Y3
v h2 j

JEK y z Y*
\  h2 j

x E K
f  v  \  x ~ X l
v hi J

-me K
f  v  \
y - x i

K hi
me' y z l Z

V K  ,
dxdy

k \ x ~ y>
h2 J

~ E K ( x - yA -  V.K
/ v h 2 ) a 2̂ J *2 /

/ ( x - z h j d z

- h f  J K{zl) f ( x - z 1h1)dzl J K(z2 ) f { y - z 2h])dz2}dxcty

x-Y*
r r j j f  ± _ a .  - b c .

x-Y*
h2 )  K h2

K x -Y ,  fu 3 + J 1 M
V h2 h2 j

me x  Y* hi
 —H— ~U

V h 2 h 2 j

xf(x){\K{z)K(z +u)dz\dxdU'

E (^ a )  = h?p JJ JJ /(^ i)/(jc2){J K{zx)K{zi + «1)iik1} { j  K(z2 )k (z 2 +u2 )dz2}

x E K
\  h2 j

- merh z L ^
\  h2 j

K rx 2 -Y 2'
\  h2 j

me( x2 -y 2x
\  h2 j

x E K
V h2 h2

— me' iL = £ +V\  h2 h2 j

Y.KK
f x 2 -Y 3 fu x 

— — —  — —u 2  

V h2 h2 j
- merx 2 -Y 3 fu '

- 2— 1l + r L»2
V h2 2 J

dx1 dux dx 2 du2. (5.15)

The first subsidiary expectation in (5.15) is approximately equal to
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h ^ K ( a ) K \ a + ^ - ^ \ f { x l -ah2)da + o{h22p)

~f{Xl)hp\K{a)K\a+ZLj-^ da,

and the second to

K j K(b+ T"ui K b + X? Xl +^Lu2 f(xl -bh2)db + o(hiP) 
V "2 J v "2 2 J

” f ( x 1)h!jK \b+ & -u 1
' 2 J

f  u ^, x 2 - x x hxb H—- - 3- + -i «2
V h2 h 2 j

K db .

Therefore,

e ( e 223) = K ph \p \ \  j j / 3U ) / f e ) { j  + « ,M i}

x { j  K(z2)k(z2 + « 2 )<fc2 }  j j  A T (a )A ^ .
X2 ~ xx

h
da

2 J

x/1 /Cl /> +— ul K
2 J

b + ? i z ! L +! h U:
\  h2 h2 j

db |  dxx dux dx2 du2

-  t f 'A ?  J / 4 U ) * J j  {J K{zr)K( zx+ux )&,}{[ K(z2 )K(z2 + U2)<fe2}

X K\ b + ht u \
f
b+ c+ — u

h
db \dc dux du2,

by making the substitution c = (r2 - x^)lh2. Therefore if h jh 2 -  0(1),

e [ {  e { «  (X,, y2 )H(Xf ,K3)|K2,K3}}21 = o(h fphlP).



Anderson, N.H. (1992) Chapter 5 129

Result 3

To evaluate

C o v t y U - / ) 2, j ( / , - / ) U - / ) }

write |  [f i~ f f  as

J U ~ f  + 2 J U  -  Wi) ( -  / )  + J (UTi -  f f .
and write J (/, - / ) ( / 2 - / )  as

J U  -  E /J U  -  E /2) + J ( /, -  £ /,) (  E /2 - / )

+1U  -  W z ) ( - / ) + j  ( W i  - / ) ( W z  - / ) •

Most of the resulting covariances are zero, leaving (5.16) equal to

I^ ) (E r 2 - / ) }

+2 c o v { \  {a  -  n^ )( w  - / J . j U  -  w ) {  W z  - / ) } •

The first covariance term in (5.17) equals

i \ 4

(5.16)

(5.17)

{nM) TLICov
i= 1 j= l l= \

x ~ X t
h

r x - X ^ 1 \ ( * - x A l ><

E K M *
j -  JEK j

K 1̂ JJ l < j I h J'dx,

-JEK x - X l
h

’{W z ( x ) - f { x ^ d x

-  («A7' ) 3 X  JJ 2 l'2 a \ y 2f{x ) \h ll) {J K 2 (z)K(z+t)f(x)dz}dtdx
1=1

2hl ph2a a 2,

by ignoring all the terms in the summation other than those where i ~ j  -  I and making 
the necessary substitutions. Using similar steps we find that the second covariance term 
in (5.17) equals
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(« i* f) S S Cov
■=i y-i

J A
x-X,

K

\
- me

j

x - X j
hx ►{ Eft (*)-/(*)}<&>

x - X ,'HT-  me x - X j

\ K
\ W z ( x ) - f { x ) \ d x

* \ri[lhlhla2G2D JJ K(z)K(z+u)dzdu

= in?h?h 2a 2o 2D,

since the double integral is a convolution (of a symmetric function, K(-)), integrated 
over its entire range. Similarly,

Cov{j U  -ff>j  (/l - / ) U  - / ) }  = \n?h2ih-/a<J2c +inllh%hl<x2ol.
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CHAPTER 6 

APPLICATION TO LARYNGEAL CANCER DATA

6.1 Introduction

The purpose of this penultimate chapter is to provide an example of the use of the Scan 
and ISD statistics that were examined on a theoretical basis in the preceding sections. 
The two techniques are used to analyse a real data set, which was provided by Professor 
P.J. Diggle and Doctor A.C. Gatrell of the University of Lancaster. The data are 
concerned with the geographical distribution of cases of cancer of the larynx in South 
Lancashire, and were previously analysed in Diggle (1990) and Diggle et al (1990).

The remainder of this section describes the data in more detail and outlines the method 
of analysis developed in Diggle (1990), together with the results of its application to the 
South Lancashire data. Section 6.2 carries out an investigation with the ISD statistic of 
Chapter 5 and compares the results to exploratory plots of the type proposed by Bithell 
(1990). Section 6,3 considers the application of a null-density-corrected Scan Statistic, 
as suggested in Chapter 4, and discusses the problems involved in its implementation. 
The results of the analyses are discussed in Section 6.4.

6.1.1 The South Lancashire Data

The data set consists of two groups of point locations in the Chorley and South Ribble 
Health Authority district in Lancashire, England. The first sample, containing 58 
observations, provides the Ordnance Survey map reference of each case of laryngeal 
cancer recorded in the above area between 1974 and 1983, the reference being obtained 
from the Postcode of the address at diagnosis (Diggle et al, 1990). These coordinates 
are plotted in Figure 8 . The second sample acts as a control group, and consists of the 
grid references of all 978 cases of lung cancer presenting in the same area and time 
period. These controls are shown, for comparison, in Figure 9. Addresses with the 
same Postcode were assigned the same grid reference, so the controls data set has a 
number of coordinate points at which there are two or more observations.

The small group of four cases of laryngeal cancer near the coordinates (35600,41400) 
in Figure 8  seemed anomalous when the two samples were compared, because the
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density of lung cancer in that area appeared to be much lower than that of laryngeal 
cancer. This gave rise to some concern, since an industrial waste incinerator, located 
very close to the four cases, had been operating between 1972 and 1980 (Diggle et al, 
1990). The aim of the original analysis in Diggle (1990) was to ascertain whether or 
not there could be a link between this possible source of environmental pollution and 
the apparent local increase in risk of cancer of the larynx.

The selection of controls from cases of a disease other than the one of interest has been 
suggested previously by, for example, Lyon et al (1981), but is quite unusual. Diggle et 
al (1990) suggest that the approach has two advantages. First, it models simultaneously 
the overall distribution of population and the less obvious variation in the composition 
of risk groups within the population that are defined by, for example, age and sex. 
Secondly, it controls for the effect of smoking, which is a risk factor of considerable 
importance in the aetiologies of both cancers. However, it is necessary to assume that 
the control malignancy is not associated with the mechanism responsible for the 
increased case incidence, if there is such a factor. Since the larynx and lungs are both 
part of the human respiratory system, an association with airborne pollution for the 
former site might cast doubt on the assumption that cancer of the latter site would not 
be affected similarly. Diggle et al (1990) point out, however, that the consequence of 
'overmatching' in this way would be for the power of the method to be reduced, so that 
it would become important only if no association between source and cases was found.

6 .1 . 2  Methods and Results o f  Diggle (1990)

Diggle (1990) analysed the Lancashire data by developing a technique for modelling 
the intensity function, X(x), of the inhomogeneous Poisson process from which cases of 
laryngeal cancer are assumed to derive, in terms of the distance from the point location 
representing the source. The method was one of those discussed in Section 1.2.1. A 
semiparametric, multiplicative model is assumed for Mx), with three separate terms to 
represent the different sources of variation, i.e.

A(x) = pXc (x)/(x -  x0; a , /?). (6 .1)

The first component of (6.1), p , represents the overall intensity or number of events per 
unit area. The second term, Xc(x), represents the variation in intensity due to the spatial

heterogeneity of the population at risk. It is estimated by a kernel method from the 
control sample; given a suitable kernel function, K(),  and smoothing parameter, h, the 
estimator is
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Figure 8 : Geographical distribution of 58 cases of cancer of 
the larynx, from the South Lancashire data. 
Coordinates are Ordnance Survey map references.
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34000 34500 35000 35500 36000 36500

Figure 9: Geographical distribution of 978 cases of cancer of 
the lung, from the South Lancashire data. 
Coordinates are Ordnance Survey map references.
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Ac(x) = A-2X /:{(x-Y i)/A}, (6.2)
1=1

where { Yt ,..., Y„2} represents the set of n2 controls. The general form of (6.2) is very

similar to that of a k.d.e.; K(-) must satisfy the same conditions as those stated in 
Section 2.3, and the value of h plays a role in controlling the quality of the final 
estimate similar to that of the smoothing parameter in the density context. It should be 
noted, however, that there is a factor of n2l missing from (6 .2 ) that is present in the 
general expression for a kernel density estimator. The smoothing parameter is 
estimated by the method of Diggle (1985), with an auxiliary result from Berman and 
Diggle (1989), which selects the value of h that minimises an estimate of the mean

square error of /£(•), assuming that the data are a realisation of a Cox process (Diggle, 

1983), so that \  (•) is also a stochastic quantity.

The third component of (6.1) models the dependence of intensity on distance from the 
point source at coordinates Xq, The particular formulation o f/tv )  determines the type 
of model being fitted, although the most likely requirement is for intensity to be 
greatest at the source and to decay exponentially in all directions as distance from Xq 
increases, when there is a genuine clustering effect, or for/(•,•) to be equal to unity, 
under the null hypothesis. Diggle (1990) chooses

which is straightforward and satisfies the above requirements. Maximum likelihood 
estimation is used to fit the model, with a test of the null hypothesis, i.e. /(•,•) = 1 , being 
provided by comparing the deviance statistic to %\-

Using a Gaussian kernel in (6.2), with a smoothing parameter of value h = 0.15 km (the 
region plotted in Figures 8  and 9 is a 25 x 25 km square), the maximum likelihood 
estimates of a  and (3 in (6.3) for the South Lancashire data were 23.67 and 0.91, 
respectively, with corresponding estimated standard errors of 24.69 and 0.60 and a 
correlation of 0.83. The deviance statistic had an associated/?-value of 0.008, a figure 
supported by the results of a Monte Carlo significance test, which suggested that the 
intensity of events within the region of interest was dependent on distance from the 
waste incinerator. Thus, the four cases previously identified could have been 
connected, in some way, to the operation of the plant. The scale of the clustering effect

(6.3)
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appeared to be quite small, however, as it was sensitive to the removal of one or two of 
the four cases in the group. The deviance /7-value for model (6.1), with (6.2) and (6.3), 
when one case was deleted at random from the "cluster", was 0.054. Randomly 
removing a second case increased the /7-value again to

0.2231 </?< 0.2346.

6.2 ISD Statistic

6 .2 . 1  Calculating the Test Statistic

Our first analysis of the Lancashire data employs the statistic Thlhz from (5.1), rather 
than Th or T as considered in Section 5.4. The decision to use different, random 
bandwidths for the kernel estimates of the two samples was taken because of the great 
difference between the number of cases (58) and the number of controls (978). As a 
result of this disparity in sample sizes, using the same smoothing parameter for both 
samples could produce one very poor kernel estimate. For example, it is likely that a 
bandwidth calculated for the lung cancer data would be too small to be used for the 
cases of laryngeal cancer as well, because it would give a very undersmoothed, or 
noisy, estimate of the p.d.f. from which the latter observations were sampled. The 
noise might increase the apparent difference between the two kernel estimates and, thus, 
increase the probability of a Type I error.

Diggle and Marron (1988) demonstrate that the value of the smoothing parameter 
chosen for the kernel estimation of the intensity function of an inhomogeneous Poisson 
process by the method of Diggle (1985) is the same as that selected for kernel 
estimation of the density function by least squares cross-validation (Bowman, 1984), 
hereafter abbreviated to LSCV. This is a useful result, since LSCV is not 
straightforward for the controls data. The repeated coordinates, discussed in Section 
6.1.1, cause the LSCV score function,

Ml(h) = n~2h~l y ' y \ K ’ ( ^ - 2 2 \ +2n~lh~lK(0), (6.4)
h /

where
K*(t) = K m (t)-2K(t),

and K®>(t) is the convolution of the kernel function with itself, to approach minus 
infinity as h tends to zero, forcing the degenerate choice of bandwidth, h = 0. As 
Silverman (1986, pp. 51 - 52) points out, a large number of off-diagonal terms that are
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non-stochastic, Le. where Xt = Xj for i * j ,  may dominate (6.4), because /C*(0) takes a 
constant, negative value. Silverman (1986) suggests the condition

m / n > |3,

where m -  number of pairs with i < j  for which Xt -  X}- in a sample of size n, and

P = \ K i2) (0)/{2K(0)-K& (0)}.

to determine that Mx(h) — as h —» 0. For the lung cancer locations, m =442, 
n = 978 and (3 = 1/6, so that there is clearly a discretisation effect with the controls data 
set. It is possible to obtain a smoothing parameter by LSCV directly, if repeated values 
are perturbed, e.g. by a random displacement distributed as bivariate N(0,a2), with zero 
correlation coefficient. This is an unsatisfactory solution, however, because the final 
choice of h depends on the standard deviation of the noise, as can be seen from Table 
26.

a 0.05 0.075 0 .1 0.125
LSCV smoothing parameter (km) 0.107 0.136 0.159 0.176

Table 26: Smoothing parameters obtained from least squares 
cross-validation of South Lancashire controls with 
Gaussian kernels. Repeated coordinates perturbed 
by random deviates from N(0,a2).

The bandwidth selection procedure of Diggle (1985) was derived under the assumption 
that a uniform kernel is to be used, i.e.

k (X) = K -  x' x - 1’
[0 , otherwise,

for the two-dimensional case. With this approach, Diggle (1990) obtained a smoothing 
parameter for the controls data of h = 0.3 km. However, the argument of Diggle (1985) 
cannot be used to derive a corresponding result for use with a general kernel. Instead, it 
is necessary to calculate the smoothing parameter, hu> for a uniform K('), and then to
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employ a correction to standardise the old bandwidth by the expected squared radial 
distance of the new kernel; this may be accomplished by using the formula

Kew = (2 cT*hu< (6-5)

where c is the quantity E (xrx) for non-uniform kernel. For example, the bivariate

uniform kernel has c = 1/2, so that we recover hmw = hu\ c -  2 for a bivariate Gaussian 
kernel, giving hnew = hJ 2 , as in Diggle (1990), and c = 1/6 for the bivariate 
Epanechnikov kernel.

Since the bandwidth for the controls, h2, calculated by minimising the approximate
mean square error of the intensity estimator, is equivalent to that found by LSCV for
the density estimator, h2 will be of the form

h2 =kn2\  (6 .6 )

where n2 = 978 and k is some constant. The cases and controls are sampled from the 
same density under the null hypothesis, and the corresponding k.d.e.'s will, usually, be 
calculated using the same type of kernel, so it would be reasonable to employ (6 .6 ) for 
the cases kernel estimate, with a correction to allow for the substantially different 
number of observations. Thus,

(6.7)

where nY = 58, would be a suitable choice of smoothing parameter.

Data can only be collected on a finite, bounded region, A, outwith which one has no 
information on the behaviour of the probability density, /(•), of the events under 
consideration. Clearly, a sudden change in the character of /(•) just outside the 
boundary of A would affect the estimate, /(•), calculated by some smoothing technique 
on a larger region, B, that completely contained A. However, the estimate calculated 
from A itself would not reflect this feature. Therefore, the degree of uncertainty about 
the quality of a density estimate increases near the boundary, and its accuracy may be, 
in fact, quite poor if there is some such "edge effect" present. One approach to 
minimising the influence of the area outside A is to use a kernel of bounded support, 
e.g. the bivariate Epanechnikov kernel (see Section 4.3.2). A second is to generalise the 
"wrap-around" method employed in one dimension in Section 4.2.2, by identifying the 
top edge of a rectangle enclosing A with the bottom edge, and the left edge with the 
right, to form a torus. Implementing this in practice, however, may be difficult if A has
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a very irregular boundary, as seems to be the case for the South Lancashire data, and so 
this correction was not applied in the following analyses.

It is possible that the ISD statistic will be less sensitive to edge effects than, for 
example, the Scan Statistic. Under the null hypothesis, the two types of event are 
drawn from the same/f*), so the inaccuracy in one estimate near the boundary should 
also be reflected in the second, with the same sign and magnitude. Hence, the 
measurement of discrepancy between the two samples by Thlh2 should remain 
unaffected.

If an Epanechnikov kernel is used to reduce the influence of the boundary, the limits of 
integration within become quite complex, which, in turn, makes the analytic 
evaluation of the statistic very difficult. In addition, experimentation with the South 
Lancashire data suggested that the integrand for this problem was not sufficiently well 
behaved for a numerical integration procedure to be successful. Therefore, the analyses 
reported below obtained values of the test statistic by Monte Carlo integration 
(Rubinstein, 1981, pp. 115-121). Let

7 (x) = { /i(x ) - /2 (x)}2, (6 .8 )

the integrand within The technique assumes that a bounding region in the (jc,y) 
plane, B , is available, such that

/(x) = 0, Vx<£ B,

and that

0 <i(x )<b,  VxeZ?.

For convenience, B is normally chosen to be a rectangle, so that /(*) is completely 
contained within a cuboid (usually referred to as an "envelope") of volume

V = ABb,

where Ag is the area of B . A large number, e.g. R = 106, of random vectors (x^y),  
i -  1, ..., R, are generated from the bivariate uniform distribution on B for the {x,}, and, 
independently, U(0,Z>] for the (y,}. For each vector, a successful trial is recorded if

(6.9)

and then the value of the integral (interpreted as the volume under the surface /(x)) is 
estimated by rV/R, where r is the number of successes. For each vector, (6.9)



Anderson, N.H. (1992) Chapter 6 140

represents a Bernoulli trial, in which the probability of success is estimated by r/R, so 
an approximate 95% confidence interval for the value of the integral is

« . 10)
K R*

6 .2 . 2  Analysis

As noted in Section 6.2.1, Diggle (1990) obtained a bandwidth of h2 = 0.3 km for the 
lung cancer data using a bivariate uniform kernel function. From (6.5), this is 
equivalent to a smoothing parameter of

h2 = 0.520, (6.11)

to three decimal places, for a bivariate Epanechnikov kernel. Correcting for the smaller 
sample size of the laryngeal cancer cases, (6.7) gives a corresponding bandwidth of

hx = 0.832. (6.12)

Perspective plots of the kernel density estimates of the cases and controls are displayed 
in Figures 10(a) and 10(b), respectively, and the squared difference between the two 
surfaces, i.e. a plot of 7(x) in (6 .8 ), is shown in Figure 11(a). The three diagrams were 
produced with the appropriate smoothing parameters from (6 .1 1 ) and (6 .1 2 ) and are 
displayed from the point of view of an observer to the south west of the region of 
interest. The surfaces were evaluated over a 51 x 51 grid and the x  and y  axes have 
been converted to kilometres. The case and control k.d.e.'s seem to be undersmoothed, 
and so the squared difference surface in Figure 11(a) is noisy. There are two 
pronounced spikes visible, one at approximately the location of the four cases 
mentioned in Section 6.1.1, and the other just to the north east of this position. If 
Figure 11(a) is compared to Figure 11(b), which represents the surface

{ / lW '/a W } '

it becomes clear that the former peak is due to a relatively greater density of cases in 
that area, whereas the latter is attributable to an excess of controls. With the 
dimensions of a suitable envelope estimated from the data used to produce Figure 11(a), 
the corresponding Monte Carlo estimate of Thlh2, using a sample of R = 106 random 
vectors, was 0.012025, with an approximate 95% confidence interval from (6.10) of

(0.011617, 0.012433).
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(b)

Figure 10: Kernel density estimates of (a) cases, and (b)
controls, with smoothing parameters (6.12) and
(6.11), respectively. Viewed from the south west.
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(a)

(b)

Figure 11: (a) Squared, and (b) {case - control}, difference
surfaces, with smoothing parameters from (6.11)
and (6.12). Viewed from the south west.
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The significance of this observed value of the test statistic was assessed by a Monte 
Carlo test implemented with the smoothed bootstrap, a technique outlined (for more 
general contexts) in Silverman (1986, pp. 144 - 147) and discussed in more detail by 
Silverman and Young (1987). The principle of the smoothed bootstrap is that, instead 
of sampling from the observed data with replacement, new observations are created by 
sampling from the relevant kernel estimate. If the simulation is to be based on a data 
set, D, containing n observations, then sampling from the k.d.e. calculated with 
smoothing parameter h is accomplished by creating the bootstrap data set

{Zi + h£i;i = l„..,nb},

where the {Zz} are sampled with replacement from D, the {e,} are independent random 
deviates sampled from the kernel p.d.f., /T(*), and nb represents the size of bootstrap 
sample required. For the South Lancashire data, nb is 58 or 978.

This procedure was preferred to the standard bootstrap, because, in general, the "with 
replacement" resampling scheme of the latter technique produces simulated data sets 
containing repeated values. The set of original lung cancer coordinates contains 
duplicate points before any selection is carried out, as discussed in Section 6.1.1. 
Therefore, it is possible that the standard method would increase the frequency of 
identical observations, making the kernel estimates more noisy.

The issue of whether to replace D, above, by the pooled sample or one of the individual 
samples for an analysis with the ISD statistic was discussed in Section 5.4. The sample 
of laryngeal cancer locations is too small to be used on its own, so the choice lies, 
effectively, between the 978 controls and the pooled sample of 1036 observations. 
There may be a small advantage in terms of power if resampling is carried out from the 
controls only, since this may better approximate the null hypothesis of no clustering. 
Therefore, the significance tests reported below were performed with this choice of D.

The Monte Carlo test with the smoothed bootstrap is similar in other repects to the type 
of procedure described previously: a test statistic is calculated for each set of 58 
simulated cases and 978 simulated controls, and a /7-value for the observed statistic is 
based on its rank when it is added to the set of bootstrapped values. For 

.012025, as given above, the corresponding /7-value was 0.68, when 99 
bootstrap replications were employed. In this test, and in subsequent analyses, each 
bootstrapped statistic was calculated with the same bandwidths as the observed value.
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It is interesting to compare Figures 11(a) and 11(b) to Figure 12, which is a plot of the 
type proposed by Bithell (1990), previously discussed in Section 1.2.2. The surface 
drawn is

a * )  = 7 ^ r .  (6-13)
1 +p(x)

where

/ iW + cp(x)
h  (x)+c*

A A

and f x (•) and f 2 (•) are kernel estimates for the cases and controls, respectively. The 
constant c is included to prevent division by zero and to ensure that p(-) —» 1  and 
F(-) —» \  outside the area in which data were collected; in Bithell (1990), it was chosen 
to be 0.1 x the height at the origin of the kernel in use. This formula gives a value of 
c = 0.064 for the bivariate Epanechnikov kernel employed here, which has an origin 
height of 2JT1. The surface in Figure 12 is noisy, due to the variability of the two kernel 
estimates that were used in its construction; however, the two strongest features seem 
to correspond with those observed in Figures 11(a) and 11(b), with an excess of 
laryngeal cancer at the location of the four case "cluster", and a control excess to the 
north east.

To investigate sensitivity to the values of the smoothing parameters, the significance 
test was repeated for kernel estimates of the cases and controls that were calculated with 
bandwidths of the form

hjne'"> =\lht, (6.14)

for / = 1 , 2 and p = 1.5 (0.5) 5.5. The ht terms in (6.14) are the original smoothing 
parameters from (6.11) and (6.12). Figures 13, 14 and 15 represent the laryngeal and 
lung cancer k.d.e.’s, together with the corresponding squared difference surfaces and 
plots of (6.13), for p = 2, 3 and 4. Comparison of the two kernel estimates suggests that 
the density of laryngeal cancer near the four case group of particular interest is greater 
in relation to that of the surrounding area than the density of controls in the same 
region. However, as p increases, the prominence of the peak at that location in the 
squared difference surface decreases, until, by p = 4, the most significant feature is the 
control excess spike to the north east. This behaviour is echoed by the sequence of 
plots of (6.13). The relative height of the peak due to the "cluster" is reduced as p 
increases, whereas a deficit of cases nearby is suggested quite strongly.
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Figure 12: Plot of (6.13), due to Bithell (1990), with 
smoothing parameters from (6 .1 1 ) and (6 .1 2 ). 
Ratio constant, c, equals 0.064. Viewed from the 
south west.
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(a)

(b)

Figure 13: Kernel density estimates of (a) cases, and (b)
controls for South Lancashire data. Bandwidths of
form (6.14), with  ̂= 2. (Continued overleaf)
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Figure 13: (Continued) (c) Squared difference surface, and
(d) plot of (6.13), for South Lancashire data.
Bandwidths of form (6.14), with p. = 2.
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(a)

i\

(b)

Figure 14: Kernel density estimates of (a) cases, and (b)
controls for South Lancashire data. Bandwidths of
form (6.14), with  ̂= 3. (Continued overleaf)
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(c)

(d)
Figure 14: (Continued) (c) Squared difference surface, and

(d) plot of (6.13), for South Lancashire data.
Bandwidths of form (6.14), with p = 3.
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(a)

I  TT .

(b)

Figure 15: Kernel density estimates of (a) cases, and (b)
controls for South Lancashire data. Bandwidths of
form (6.14), with (x = 4. (Continued overleaf)
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(c)

(d)
Figure 15: (Continued) (c) Squared difference surface, and

(d) plot of (6.13), for South Lancashire data.
Bandwidths of form (6.14), with p = 4.
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Table 27 lists the /7-values for the tests corresponding to each value of p, with each test 
comparing the observed statistic to 99 simulated values that were obtained by the 
smoothed bootstrap approach described above. A trend towards significant /7-values 
with increasing p is evident, such that for p > 4, the distribution of cases appears to be 
substantively different to that of the controls. The sample plots of Figures 13 to 15 
seem to indicate that these results are due, mainly, to a lack of cases to the north east of 
the group that originally gave rise to concern; i.e. there seems to be some evidence of 
negative clustering (as defined in Marshall (1991) and Section 5.6).

1 1.5 2 2.5 3
/7-value 0 .6 8 0.72 0.57 0.25 0 .2 2

3.5 4 4.5 5 5.5
/7-value 0.06 0 .0 1 0.03 0 .0 2 0.05

Table 27: Results for smoothed bootstrap significance tests of 
the South Lancashire data, using bandwidths from 
(6.14) with different values of p. Monte Carlo test 
based on 99 replications.

6 .2 .3 Further Investigation

The results of Diggle et al (1990) suggest that the scale of association with the 
incinerator is quite small, extending over a distance of only about three to four 
kilometres from the facility. The ISD statistic measures the difference between the case 
and control densities over the whole 25 x 25 km region, and, thus, may have lower 
power against alternatives with a highly localised clustering effect. Therefore, it may 
be necessary for to be focussed more closely on the region in which clustering is 
occurring for the effect to be detected. To illustrate this, the integrated squared 
difference between the two kernel estimates, based on the full data with p = 3 , was 
calculated for a reduced area of 5 x 5 km around the group of four cases, namely 
[35250, 35750] x [41250, 41750] or, on the kilometre scale, [12.5,17.5] x [2.5, 7.5].
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The relevant sections of the two k.d.e.'s and the squared difference surface are shown in 
Figure 16. With the same type of significance test as before, the original /7-value of 
0 .2 2  was reduced to 0.08, which is much closer to being conventionally significant. 
Therefore, concentrating the ISD analysis on the particular region of concern does 
provide more evidence of an anomalous distribution of cases, although the most 
important contribution to this result may still be from a lower than expected density of 
laryngeal cancer in the north east of this area. It should be noted, of course, that the 
post hoc selection of a sub-region in this way is not valid inferentially, but it is useful 
for the purposes of an example.

(a)

Figure 16: (a) Section of squared difference surface for South
Lancashire data within 5 x 5  km sub-region. 
Bandwidths from (6.14), with (-1 = 3. (Continued 
overleaf)
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Figure 16: (Continued) Sections of (b) case, and (c) control,
k.d.e.'s for South Lancashire data within 5 x 5 km
sub-region. Bandwidths from (6.14), with \x = 3.
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6.3 Scan Statistic

To demonstrate the application of the Scan Statistic to a real set of data, the 
geographical distribution of laryngeal cancer for the South Lancashire area between 
1974 and 1983 was analysed, with the correction for a non-uniform null density based 
on a kernel estimate of the p.d.f. of cancer of the lung in the same region. The 
approximation of the exact equation, (4.10), for the square dimension, 6 , was attempted, 
as in Chapter 4, by numerical integration and Taylor expansions of first, second and 
third orders, i.e. by using the polynomials (4.12), (4.13) and (4.14). The smoothing 
parameter for the k.d.e. was chosen to be

*2=1.819,

which is equivalent to \i = 3.5 in (6.14). It was hoped that a larger bandwidth, resulting 
in a smoother estimate, would improve the reliability of the square-size calculation.

Section 4.4 describes a Monte Carlo procedure for assessing the significance of an 
observed value of the Scan Statistic. For the South Lancashire data, transformed to a 
kilometre scale, each replication of the simulation requires 58 events to be sampled 
from the bivariate uniform distribution on (0, 25] x (0, 25], which represents the null 
hypothesis if the correction is used. Table 28 displays empirical null distributions, 
based on 1000 replications, for the Scan Statistic for a sample of size 58, given 
scanning squares with sides of length 2, 4, 6  and 8  km. These results also serve to 
indicate a feasible range of values of the statistic for the laryngeal cancer data: observed 
test statistics either much smaller or much larger than the simulated values would have 
to be treated with caution.

With A = B = 25, the constant d in (4.10) was chosen, initially, to be in the range 
d = 1 (1) 10. The analyses based on first and second order Taylor expansions 
experienced the same type of numerical difficulties that were reported in Chapter 4. 
The observed values of the Scan Statistic for each choice of d  in these two cases are 
listed in Table 29, along with the dimensions of the square inside which the statistic was 
observed. Especially for the smaller d, the values obtained were much greater than 
those found in Table 28. In addition, the corresponding square dimensions seemed to 
be too large, and the consistency across the range of d was curious.
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Values of the Frequency
Scan Statistic d = 2 d = 4 d = 6

001!■*3

2 3
3 419
4 485 1

5 8 8 185
6 5 459 1

7 268 35
8 67 245
9 14 347 1

1 0 5 226 36
11 1 1 0 0 168
1 2 34 265
13 1 0 242
14 2 149
15 85
16 41
17 8

18 5

Table 28: Empirical nail distributions of the Scan Statistic for 
the South Lancashire data, with d  x d  scanning 
squares. From 1000 simulations, events being 
generated from a bivariate uniform distribution.
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d First Order, (4.12) Second Order, (4.13)
Scan Statistic Square Size Scan Statistic Square Size

1 11 11.5909 2 0 6.3097
2 14 18.3940 2 0 6.3106
3 14 18.4051 2 0 6.3121
4 2 2 8.1390 2 0 6.3143
5 2 2 8.1735 2 0 6.3171
6 2 2 8.2143 2 0 6.3204
7 2 2 8.2609 2 0 6.3244
8 2 2 8.3127 2 0 6.3289
9 2 2 8.3689 2 0 6.3340

1 0 2 2 8.4291 2 1 6.4137

Table 29: Observed Scan Statistics for the South Lancashire 
data, given population corrections (4.12) and (4.13). 
The size of the scanning window inside which each 
statistic was located is also listed.

These two factors suggested that the algorithm was consistently overestimating the size 
of window required and, thus, inflating the value of the Scan Statistic. The following 
example supports this observation.

Example

For the first order correction, (4.12), with d = 1, the Scan Statistic was found within a 
square with sides of length 11.5909 km in the region

[2.4091,14.0000] x [3.6091,15.2000].

A square of this size was not typical of those calculated during the scanning procedure, 
as can be seen from the following stem and leaf diagram, which plots all the values of 6  

that were estimated from (4.12) by the FORTRAN program used to search for the Scan 
Statistic:
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Stem unit = tenths; leaf unit = hundredths

0 0 0 0 0 0 0 0 0 0 0

1 7888
2 00011123334444566777777788899999999
3 0011111111222223333334455566666777778
4 00012222455567899
5 06778899999
6 000011111235688899
7 1222233333345556778999999
8 001233444677889
9 068

1 0 18
11

1 2 9

High : 2.1097, 2.7292, 6.9901,11.5909,11.5909

Number of observations = 183 
Median = 0.4227 
First Quartile = 0.2931 
Third Quartile = 0.7262

If the square is of the correct size, it should bound a volume under the controls k.d.e. of 
d2/AB = 0.0016. However, by using the type of Monte Carlo integration procedure 
described in Section 6.2.1, with 106 replications, the actual volume was estimated to be 
0.166895, with an approximate 95% confidence interval of (0.164844, 0.168946). 
Hence, the given value of the Scan Statistic is clearly erroneous.

At a number of locations, the first and second order analyses were unable to calculate 
square dimensions, i.e. there were no real, positive zeros of the polynomials (4.12) or 
(4.13). This type of problem was also encountered in Chapter 4.

For the third order method, analyses with d > 4 suffered from the same numerical 
difficulties described above, although with a lower frequency. The results in Table 30, 
for smaller d, seem to be much more reasonable. The only problem encountered was a 
small set of coordinates at which no estimate of 6  could be calculated, for d  = 3. The
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Scan Statistics observed for the different values of d in Table 30 seem typical of those 
expected under the null hypothesis and, therefore, provide no evidence of clustering of 
laryngeal cancer within the Chorley and South Ribble Health Authority district between 
1974 and 1983.

d Scan Statistic Square Size /7-value
0.25 2 0.01539 0.474
0.5 2 0.03078 0.931
0.75 2 0.15154 0.999

1 2 0.20606 1.000
2 4 0.40413 0.578
3 4 0.67287 0.998

Table 30: Observed Scan Statistics for the South Lancashire 
data, with population correction (4.14), listed with 
corresponding square dimensions and ̂ -values.

6.4 Discussion

The conclusion reached by Diggle (1990) and Diggle et al (1990) was that there 
appeared to be a local increase in the risk of laryngeal cancer in the area around the 
incinerator, but that the magnitude and extent of the effect was very difficult to 
quantify, because of the relatively small number of cases involved. Most of the 
evidence for clustering was provided by the aggregation of four cases near the 
coordinates (35600,41400), and the results were sensitive to the random deletion of 
either one or two points from this group. With smoothing parameters greater than those 
obtained by least squares cross-validation (or, equivalently, the method of Diggle 
(1985)), the analysis using the ISD statistic provided some evidence of a difference 
between the case and control densities, although this seemed to be attributable to a 
region with a greater relative density of controls, rather than to the clustering of 
laryngeal cancer. Plots of the surface P{x, y) from (6.13), due to Bithell (1990), 
supported this observation. The analysis based on the Scan Statistic, with the null 
density correction of Chapter 4 employing third order Taylor expansions, found no



Anderson, N.H. (1992) Chapter 6 160

evidence of clustering for any of the choices of d. However, only one choice of 
smoothing parameter was used with the kernel density estimate of the lung cancer data, 
and the results may be unreliable, because of the inaccuracies in the correction that were 
noted in Chapter 4 and in Section 6.3. Since it has been demonstrated that the method 
may overestimate the size of a scanning window, 6 , or that it may find no value for 6  at 
all, it is also possible that some square dimensions could be underestimated, an error 
that is more difficult to detect, and which might cause the statistic to be reduced and the 
power of the test to be lowered. In general, the Scan Statistic would seem to be a useful 
tool for the investigation of spatial clustering, but the correction method used here is 
unsatisfactory for most purposes, and should be replaced by a method such as the one 
described in Section 4.4.

The use of a series of smoothing parameters, each being a multiple of the value found 
by the method of Diggle (1985), with the ISD statistic was prompted by the observation 
that the individual case and control kernel estimates were quite noisy. In strict terms, 
therefore, the inference for the group of results so obtained is highly complex, since the 
approach was formulated a posteriori and led to a set of multiple comparisons. 
However, the results are useful for investigating the methodology, and seem to indicate 
that the smoothing parameters employed in the calculation of should be larger than 
those that would be used simply to estimate the density from which data points were 
sampled. In other contexts, this type of phenomenon has been discussed in the 
literature for quantities similar to Thih? For example, Jones and Sheather (1991) 
consider the nonparametric estimation of the functionals

where a superscript "(w)" represents an mth order derivative, by replacing/b) with its 
kernel density estimate. The authors note that the smoothing parameter suitable for 
estimating (6.15) is different to that appropriate for estimating /(•). It is possible that 
the same may be true for the ISD statistic, since Thyh2 is qualitatively similar to (6.15) 
when m = 0 .

A standard property of a k.d.e. is that the value of the smoothing parameter controls the 
relationship between the bias and variance of the estimate. With small values of h, bias 
is low, but variability is high and, thus, the variance of the bootstrapped ISD statistics, 
which depend upon the control estimate, might also be increased. If a sufficient 
number of large, simulated values of Th h were caused by this noise, the power of the

A.

test could be reduced. As the smoothing parameters increase, the biases of both / ,  (•)

(6.15)
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A

and / 2 (■) increase, but the variances of the estimates are reduced, which could improve 
the sensitivity of the test. If the two estimates were biased to approximately the same 
order, one might expect some form of cancellation effect (since we are working with 
the differences between the kernel estimates and not the estimates themselves), and that 
there might be some advantage (in terms of power) in choosing smoothing parameters 
that were artificially high. In the current example, however, a k.d.e. of the laryngeal 
cancer data will have considerably greater bias than that of the lung cancer data, 
because of the discrepancy in sample sizes, and, thus, the difference in magnitude of the 
two bandwidths. This may explain why the (graphical) evidence for an excess of cases 
is reduced as the smoothing parameters are increased, so a genuine cluster of laryngeal 
cancer should not be ruled out on the basis of these new results.

The calculation of THh2 and the associated test of significance, as described in Section 
6.2.1, is computationally demanding. The use of an Epanechnikov kernel to minimise 
edge effects means that the test statistic must be calculated by Monte Carlo integration, 
which requires a large number of function evaluations and the generation of many 
pseudo-random deviates. Each simulation step requires the procedure to be carried out 
again, and requires two bootstrap samples to be drawn from the controls. The 
Epanechnikov kernel is normally chosen in preference to, for example, the Gaussian 
density if computational efficiency is an important consideration, because the former 
p.d.f. may be evaluated more rapidly. Paradoxically, it may prove to be more efficient, 
for this context, to employ a Gaussian kernel, so that Thlh2 may be calculated 
analytically, removing the need for the time-consuming Monte Carlo procedure. The 
penalty to be paid for this substitution would be the loss of probability mass from the 
region within which data were collected, but this might be thought to be of less 
importance than the reduction in the computational workload that could be achieved.

The semiparametric method of Diggle (1990) seems to be more effective than either the 
Scan Statistic or Thih2 for the South Lancashire data set. This may be because the 
clustering effect is limited to the immediate vicinity of the incinerator site, which forms 
the focus of the model of intensity, (6.1). Global measures may be more appropriate in 
other situations, such as the detection of spatial clustering on a larger scale or in the 
exploratory stages of an investigation. If the study is required to exclude the location of 
an hypothesised point source, so that the pattern of events is assessed as if no prior 
knowledge is available, or if the application is the regular monitoring of a large area for 
anomalous event patterns, then a statistic such as Th hz or the Scan Statistic would, in 
fact, be required by design.
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CHAPTER 7 

CONCLUSIONS

7.1 General Considerations

The work reported in this thesis investigates ways of examining the geographical 
distribution of locations of events for evidence of a tendency to aggregate into clusters. 
This type of inferential task is commonly undertaken in studies of leukaemias, 
lymphomas and other types of malignant disease, but other fields, e.g. geography and 
ecology, may give rise to spatial point patterns for which the detection of spatial 
clustering is important. Some types of analysis used for this purpose estimate the null 
distribution of events from data that are not particularly suited to the task, or are based 
on counts within arbitrary sub-regions. The effect of the latter feature is, effectively, to 
discretise a problem that is actually continuous, and to make the results of the analysis 
dependent on the particular spatial distribution of the sub-regions.

To avoid these difficulties, the methods discussed here assumed that the exact 
geographical coordinates of the events were available, and based the analyses on 
estimates of the underlying p.d.f.'s obtained by smoothing techniques, in particular 
nonparametric kernel density estimation. Samples of controls were used to represent 
the distribution of events in the absence of any clustering effect. Suitable sampling 
frames and schemes with which to generate these subsidiary observations will vary 
from application to application and, therefore, have not been discussed in great detail. 
However, in practice, considerable time and effort will be required to ensure that a 
representative sample is drawn, and this will form an important part of the organisation 
of a study.

A number of other problems that could be encountered when studying spatial clustering 
were discussed in Chapter 1. These included the importance of the relative size of 
clusters and study region, the formulation of hypotheses and boundaries a posteriori 
and the low power of some statistical methods that results from the small sample sizes 
found in typical applications. It is likely that these difficulties will be common to all 
investigations, regardless of the methodology employed, and that it will not, in general, 
be possible to prevent them from having some influence on the analysis.
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7.2 The Scan and Integrated Squared Difference Statistics

The Scan Statistic, discussed in Chapters 2 and 3, is usually employed to detect 
clustering in a single dimension, such as time. However, it may also be generalised to 
two dimensions, to provide a simple method of investigating the spatial distribution of 
event locations. Existing bounds for the upper tail probability of the statistic (Naus, 
1965b) are unsuitable for significance testing, because they lack sharpness for ordinates 
of magnitudes appropriate for that purpose. Therefore, the most tractable approach for 
inference is to use simulation, by employing Monte Carlo significance tests.

Empirical investigations of the power of the Scan Statistic suggested that the probability 
of detecting a genuine cluster would be maximised by setting the size of the scanning 
window to approximately that of the cluster itself, which confirmed a result of 
Wallenstein and Neff (1987). In practice, of course, the geographical extent of the 
cluster will be unknown, so there will be little information to guide the choice of the 
scanning square's magnitude. A possible alternative would be to carry out significance 
tests for a range of values of d, where d is the length of one side of the window, and to 
apply a correction for multiple testing at each stage. This procedure could, perhaps, be 
interpreted as a type of diagnostic tool, for which the choices of d leading to significant 
results would indicate the scale at which clustering might be occurring. Although this 
approach would be appropriate for exploratory data analysis, for the purposes of 
inference it would seem to be preferable to find some objective method of choosing an 
optimal size of scanning window before any analysis was undertaken; however, it is not 
clear how this could be achieved.

If the distribution of events in the region of interest is non-uniform under the null 
hypothesis, the number of observations within the scanning window will be large in 
regions of high density and the test will tend to be significant, regardless of the presence 
or absence of any genuine clustering. The correction discussed in Chapter 4 alters the 
size of the window so that the Scan Statistic is calculated properly, and hypothesis 
testing may proceed as if the observations were drawn from a uniform density. Thus, 
simulation or approximation to the distribution of the statistic is simplified 
considerably. The precision of the method by which the correction procedure is 
implemented will rely, to a great extent, on the accuracy of the kernel estimate that is 
calculated from the control sample, and, therefore, the choice of the corresponding 
smoothing parameter and sample size will be important. The success of the method 
used in Chapter 4, and again in Chapter 6 , was limited by the accuracy of the Taylor 
expansion applied to the estimator, which required either the target size of the scanning
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window to be very small or for terms of higher order to be retained in the 
approximation, if the error was to be reduced to acceptable levels. This would place too 
great a constraint on the use of the correction procedure with the Scan Statistic in 
practice, and so other implementations, such as the one described in Section 4.4, should 
be investigated, with a view to accuracy, simplicity and reliability.

The integrated squared difference (ISD) statistic of Chapter 5 is a measure of the 
agreement between two probability density functions and, thus, should detect areas in 
which the density of events is either higher or lower than would be expected from the 
behaviour of the population, represented by the sample of controls. Therefore, it may 
have lower power against clustering (in the usual sense of an increase in "risk") than a 
statistic that is defined, explicitly, to search for this feature. However, the ISD statistic 
should be useful for more general applications that require the comparison of two 
spatial patterns of events, and so it does merit consideration. Section 5.2 demonstrates 
that the asymptotic distribution of Th h is normal, by considering central limit theorems 
for certain random variables and {/-statistics, but the results of a simulation study 
suggest that, even for quite large sample sizes, the exact distribution is clearly non­
normal. Therefore, a Monte Carlo implementation of the bootstrap seems to be the 
most feasible approach to hypothesis testing.

We have remarked previously that the quality of the individual estimates of the two 
probability density functions is not of primary interest. However, Chapters 5 and 6  

suggest that this issue will, nevertheless, be of some concern, because there appear to be 
two possible routes by which the accuracy of the kernel estimates may affect a test of 
significance undertaken with the ISD statistic. First, if the two bandwidths employed in 
calculating Th\h2 undersmooth one or both of the kernel estimates, the resulting noise 
may obscure a genuine difference between the two distributions. Therefore, it may be 
necessary to increase the magnitudes of the smoothing parameters, so that the 
variability of the k.d.e.’s is reduced. Secondly, the analysis of the South Lancashire 
data suggests that the statistic could fail to detect a small scale cluster if the associated 
increase in density of the cases is masked by the bias of the corresponding kernel 
estimate, or if the difference in magnitude of the biases of the two estimates reduces the 
prominence of the peak in the squared difference surface in the region of the 
aggregation. Further investigation is required to determine more precisely the influence 
of the variability and bias of the k.d.e.'s on the power of the statistic, and how such 
effects may be minimised. In the case of the latter problem, for example, it may be 
appropriate to ensure that both kernel estimates have the same bias under the null 
hypothesis, which would require the two smoothing parameters to be of equal value.
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The above considerations indicate that it would be desirable to find some objective 
method of selecting smoothing parameter values for use with the ISD statistic. Existing 
methods for choosing bandwidths for the purpose of estimating a single density, such as 
least squares cross-validation (Bowman, 1984), will probably be unsatisfactory in our 
context, because it will be necessary for the procedure to consider the behaviour of both 
estimates simultaneously, so that variability is minimised, and the appropriate 
relationship between the two biases is maintained. The results of Jones and Sheather 
(1991) offer a possible line of enquiry, since the authors are interested, explicitly, in 
estimating the integral of a squared function, rather than the function itself.

Chapter 5 also proposes a modified integrated squared difference statistic, Ts for which 
the two smoothing parameters are taken to be equal and fixed, i.e. independent of 
sample size. An asymptotic argument and empirical results show that T has greater 
power than ^h\h2 for a number of clustering alternatives. This approach seems 
attractive, because a procedure for calculating suitable bandwidths is no longer required 
and, since the two parameters are equal, the kernel estimates will have the same bias 
under H0, so T may be less susceptible to the second type of problem described above. 
However, tests of significance employing T may still be affected by kernel estimates 
with large variability, so that a statistic with random smoothing parameters may prove 
to be a better choice in certain cases.

A number of individual problems with the Scan and ISD statistics have been identified 
above. A further point that may have to be considered for both tests is the influence of 
the boundary of the region in which data were collected on the required kernel 
estimates. It would be hoped that the ISD statistic would not be affected to any great 
extent by the absence of information outside this area, because both estimates should be 
in error by approximately the same amount, and the test is concerned with the detection 
of differences between the two densities. However, it would be desirable for this to be 
confirmed in some way, e.g. by a simulation study. The Scan Statistic will normally 
require the correction of Chapter 4 when it is applied in practice, and so the analysis 
will depend on a single kernel estimate, that of the control sample. Hence, inaccuracies 
in the k.d.e. near the boundary would reduce the precision of the calculation of scanning 
window magnitudes nearby, which could alter, incorrectly, the value of the Scan 
Statistic, and affect the results of a test of significance. To avoid this, calculation of the 
kernel density estimate could, perhaps, be based on a sample of controls from a region 
much larger than, but containing, the one from which cases were obtained. The 
analysis would, however, use only that part of the estimate falling within the original 
area. A more complex alternative would be to incorporate directly into the estimation
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procedure some form of edge-correction that would allow for a region with an irregular 
boundary.

The power of the two techniques described in this thesis to detect spatial clustering in 
the vicinity of a prespecified point, thought to have some influence on the incidence of 
the events under consideration, will be lower than that of methods designed for that 
specific application, such as the techniques proposed by Diggle (1990) or Stone (1988). 
The Scan and ISD statistics will be better suited to exploratory investigations or to 
studies in which, for example, the location of the causative agent is not clear and one 
wishes to avoid the bias that would result from choosing the wrong coordinate for the 
focus of modelling or testing. A third situation for which these methods would be 
particularly appropriate is the regular surveillance of one or more areas in a proactive 
cluster detection programme, in which there would be, normally, no specific fixed 
location that was hypothesised to be aetiologically relevant.

Chapter 3 indicates that the power of the Scan Statistic is low for clusters consisting of 
only a few events. In addition, because the statistic is discrete, it would be possible for 
a number of small clusters to produce a sequence of (possibly identical) window counts 
during the scanning process, none of which individually reached the critical value for 
the given sample size and significance level. Therefore, the statistic should have greater 
power to detect a single, large cluster, rather than a number of smaller aggregations, for 
a given level of "clustering activity". The ISD statistic should be more flexible, since 
its definition is equivalent, in some sense, to the sum over the whole region of squared 
deviations between the two densities. Hence, a large (significant) value of Th h2 or T 
could be composed, plausibly, of a single, large deviation or several smaller deviations 
at different locations, the former representing one cluster and the latter, many.

7.3 Generalisations

Since significance testing for the Scan Statistic will usually be accomplished by 
simulation, it would be possible to extend the method to use scanning windows of 
different shapes. For example, it might be thought to be more relevant to some 
clustering alternatives to use a scanning circle, which would give a test procedure with 
similarities to the Geographical Analysis Machine of Openshaw et al (1987, 1988). 
This resemblance would become stronger if, as suggested above, the scanning 
procedure were repeated for a range of radii, with the intention of exploring the scale at 
which clustering might be taking place. Other shapes could be introduced to increase
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power for specific alternative hypotheses, e.g. a rectangle or ellipse aligned with the 
direction of the prevailing wind, to test hypotheses regarding air dispersion of 
pollutants. However, dispensing with the square window would have the disadvantage 
that the design of an efficient computational algorithm that would ensure the necessary 
coverage of the region of interest by the scanning procedure would become more 
difficult.

The ISD statistic, Thlh2, is based on the difference between two kernel density 
estimators, whilst the exploratory method of Bithell (1990) consists of plotting a 
function of the ratio of these quantities. It would be of interest to compare other 
measures of the deviation between two k.d.e.'s, the most obvious choice, perhaps, being 
the maximum Lx distance between the two estimates,

max|/i ( x ) - f z  (x )| j (7.1)
x tA  * I

where A is the region of interest. This statistic may have greater power than Th h to 
detect small clusters, since the former test could be sensitive to a single spike in the 
surface representing absolute difference, whilst the corresponding integrated squared 
difference between the two kernel estimates might not be significantly large. Obtaining 
distributional results for (7.1), whether exact or asymptotic, could be very difficult, and, 
therefore, it might be necessary to use a bootstrap significance test. If so, a smoothed 
bootstrap procedure might be appropriate once more, since repeated values in the 
simulated data, caused by the with-replacement sampling scheme, could produce 
artificially high spikes in the corresponding simulated absolute difference surface, 
reducing the power of the test.

It would also be of interest to extend the type of technique considered here, i.e. based 
on nonparametric smoothing methods in a continuous spatial domain, to the problem of 
detecting clustering around a fixed location, the particular concern of the methods 
discussed in Section 1.2.1. In fact, one-dimensional results for both the Scan Statistic, 
as presented earlier, and the ISD statistic could be used for this purpose with few 
modifications. Providing directional heterogeneity could be neglected, either technique 
could be applied to assess the distribution of ’event to fixed point' distances, where the 
null hypothesis of no clustering could be represented by the empirical distribution of 
'control to fixed point' distances. This approach might be generalised further, to 
problems where the fixed location is replaced by a line, which might represent, say, a 
high voltage electrical power cable. The two samples would then consist of the
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perpendicular distances between the observations and the line source. It would be 
reasonable to expect these methods to have relatively low power, but there may be other 
possibilities with greater power that retain the advantages of this type of method for 
detecting spatial clustering.
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