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SUMMARY

The aim of this thesis is to review and augment the theory
and methods of optimal nonlinear experimental design. It represents.
a continuation of the work on experimental design in the Department
of Statistics in Glasgow University (Silvey and Titterington (1973),
Ford (1976), Silvey (1980), Titterington (1980a,b), Ford and Silvey

(1980), Torsney (1981) among others).

Chapter 1 serves as an introduction to the nonlinear
problem. In Chapter 2 we formulate the appropriate notation needed
for the development of this thesis. The main assumptions, which we
will recall if needed, and the necessary theory is discussed.

In Chapter 3 the idea of the optimal nonlinear experimental
design is formulated for any convex criterion function. This leads
to traditional definitions as special cases. We also focus on the
canonical form of a design wunder c¢(e)-optimality. Partially
nonlinear models are reviewed and the design for a subset of
parameters 1is discussed ‘;n the context of the general optimality
criterion function. The geometrical aspects of the nonlinear case
are compared and contrasted with the linear case.

Chapters 4 and 5 are devoted to strategies for the
construction of theA nonlinear optimal designs. Alternative
approaches for the static design problem are discussed in Chapter 4.

Emphasis iIs given to the sequential approach to design in Chapter 5.

There, binary response problems are also tackled and the stochastic




approximation method is reviewed and discussed.

Chapter 6 is devoted to confidence intervals. The problem
of constructing confidence intervals if the sequential principle of
design is adopted is discussed and a suggestion is given. As a
result a simulation study'is presented.

In Chapter 7 two more simulation studies are analysed, the
first for a one parameter binary problem and the second for a two
parameter regression problem. Different designing procedures are
applied and more emphasis is given to sequential methods... The
stochastic approximation method is discussed as a fuily sequential
method. The performance of approximate confidence intervals_ is
inﬁestigated.

Chapter 8 considers a compromise between the static and
fully sequential design. The calibration problem is used as an
example and investigated in a (yet another) simulation study. The
maxi-min efficiency design is derived and investigated.

In Chapter 9 we examine a design problem in rhythmometry
involving the cosinor function. Different design criteria are
introduced for the full sample space as well as a truncated form.
Geometrical ideas provide a solution to solve this problem. An
analytical approach is also offered as a method of solution of this

practical design problen.
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CHAPTER 1

INTRODUCTION

One of the most famous data sets is the one collected in
1793 for defining a new unit: the metré {Stigler, 1981). It was
that data set which Gauss used to claim the method of least squares,
so0 named in 1805 by Legendre, who produced the first publication
about this invaluable tool of Science, as his "own Method", ("meine
Method", in Gauss's words); see Plackett (1972).

What is also very important and we would like to put special
emphasis on this, is that for this particular data set:

- In statistical terms it was a nonlinear function that
had to be finally estimated.

— A linear approximation had been used in 1755 for this
probiem and a second order expansion was
applied in 1832,

The metre was defined as equal to one 10000000th part of the
meridian quadrant i.e the distance from the north pole to the equator
along a parallel of longitude passing through Paris. Moreover there
is a relationship between the modulus of arc length (s), latitude (d)

and meridian quadrant (L) and the linear approximation. is of the

form n(L) with

R(L) = 2 = e, +e;sin2L (1.1)




with e; being the "length of a degree at the equator»
©, "the excess of a degree at the pole over one
at the equator", see Stigler (1981).
Then the ellipticity (e) is estimated through e, and e, by the

nonlinear relationship

1 0 3
e =% @, *2

(1.2)
Both Gauss and Legendre were mathematicians and they treated the data
in their own remarkable mathematical way. The first statistical
treatment of a nonlinear function comes from the pioneer of modern
Statistics. R.A. Fisher. In Rothamsted Experimental Station, around
1922, he came across what is known as the dilution series problem.A A
brief description is as follows. For a small volume u takén from the
volume V of a liquid containing n tiny organisms (such as bacteria)
the probability P that u contains no organism is

P = [ 1 - ]n & exp(-nu/V) = exp(-eu), (1.3)

<IE

say. The parameter o, the density per unit wvolume, has to be
estimated. The question is how should we perform the experiment to
get the best possible estiméte. Relation (1.3) is nonlinear in the
sense that the parameter e does not appear as a linear term in the
model. Fisher solved this nonlinear problem in 1922, using a concept
of his own : his information.

Since Fisher's pioneering work in experimental design,
Statistics has become involved in all the experimental sciences
chemistry, biology, pharmacology, psychology, and so on. 0f course
statisticians do not provide methods for designing experiments in
isolation. However, in cooperation with the experimenter, who makes

clear the ojective of an experiment, the statistician provides the




most informative pattefn of the experiment in order that the required

objective can be achieved.

The analysis of an experiment can be summarized in the
flow-chart of Table 1.1.
The objectives of the experimenter can be :
(i) To obtain an estimate for a response n say in some

particular region using variables u=(uy,uy....,u). This is the

response surface problem introduced by G.E.P. Box and Draper (1959).
(ii) To determine the best mathematical model which
describes most precisely the investigated phenomenon. This is the
discrimination problem between rival models and it has been reviewed
by Hill (1976).
(iii) To estimate optimally, in some sense, all or a

subset of the parameters of a model that is assumed correct.

The above mentioned objectives are common to linear and
nonlinear experimental designs (LED and NLED) i.e when the assumed
suitable model is linear or nonlinear with respect to its parameters.
The terms linear and nonlinear are explained clearly with examples in
Chapter 2.

The fact is that more attention has been paid to LED than to
NLED. In their recent review work Steinberg and Hunter (1985)
devoted only one paragraph to nonlinear models, as did St. John and
Draper (1975) ten vears earlier. Other review works on LED are those
of Ford (1976) and Atkinsop (1982). Ash and Hedavat (1978) provide
an extensive bibliography covering the work of Eastern countries in
this field, Titterington (1980b) reviewed the geometric approach to
LED, Pazman (1980) contributed on a theoretical level, Pukelseim and

Titterington (1983) offered a general approach to optimal LED and




Torsney (1981) followed the optimum linear design problem thfough the
general optimization problem, Fedorov (1972) and Silvey (1980)
contributed excellent monographs on LED.

There is no such volume of review work in NLED, although
work on experimental design started with a nonlinear problem, as
Cohran (1973) pointed out in his review paper. Davis (1971} compared
some sequential procedures in bioassay, Abdelbasit and Plackett
(1981,1983) review the nonlinear case for certain types of problems,
but give no attention to regression type experiments, and Wu (1985)
has worked recently on binary response problems. However, the
nonlinear experimental design problem finds applications in many
fields : as a regression problem in kinetics (chemistry, biology), as
a binary -model in testing explosives, biological assays, fatigue
experiments, educational studies and life testing.

The target of this thesis is to review and augment the
theory of NLED; to compare LED and NLED; to provide, for both,
general optimality criteria; to provide methods and discuss problems
associated with- nonlinear problems. The emphasis will be on the

-target {iii) described above and its related difficulties.
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CHAPTER 2

MOTIVATION

2.1 Introduction

To perform any experiment the following are needed
- The éxperimental unit.
- The range of experimental conditions.
- The measurements or responses (y, say)
obtained at certain values of the explanatory
variables (u, say)
- The computer
Usually, in chemical reactions involving kinetics, the
experimenter designs in blocks, and the experimental unit is the
apparatus which provides the measurements. In psychology or medicine
the experimental unit is the individual under investigation, through
a test or a medicine, and thus the experiment is performed through

single observations.

The Book of Science has been written in the mathematical
alphabet. Thus in this chapter we introduce the notation, the
necessary assumptions and definitions for the mathematical

formulation of the nonlinear experimental design problem.




2.2 Notation

The Euclidean space UcRK in which the predictor variables or
covariates or explanatory variables or independent wvariables
u=(uy,u,,...,ux) take their values is known as the experimental
region or design space. A typical example from kinetics is "time".

The parameter space ©cRP is the set where the parameters

e=(elsez,...,ep) takes their values. Let E be the family of measures
£ such that
€(u)20 , uel and [E(du) = 1. (2.2.1)
U

Definition 2.2.1 We shall refer to such a measure € as
a design measure.
Definition 2.2.2 The pair (U,€) will be called the design.
Definition 2.2.3 The support of the design (U,€),Supp(&), say, is
the set of points u for which €(u)>0.
Denoting by Mat(v,m) the set of vxm size matrices we let
ecMat(p,1) be the vector of'parameters.
ujeMat(k,1) the predictor variable,

i=1,2,....,n, n the sample size

For the response y we assume that either ye¥eR or ve{0,1,...,x}, Xal.
When the response y is supposed to take any value in ¥ we also
suppose that a regression model {in general nonlinear) exists
consisting of the deterministic portion f(u,®) and the stochastic

portion, e, known as error, linked through the formulation

yi = f(\li,e) + ei. (2.2.2)




If we assume fhat f(.) is of the form €7g(u) with g being a vector of
continuous function of u then the nonlinear proElem is reduced to the
so called linear problem, as the function f{.) is a linear function
of ® and g(u)=(g1(u),g2(u),...,gp(u)) is known.

When ¥={0,1,2,...2\} we have the multiresponse problem. The most
common one is A=1, i.e a binary response. In this case the outcome
Yi=1 or 0 is linked with the covariates and .the paramefers through a

probablity model "T" with

P(Y;=1) = T(uj,®), P(Yj=0) = 1-T(uj,e), (2.2.3)
where uj; is the value of u goiﬁg with observation Yj

Examples 2.2.1 (i) For a chemical irreversible reaction with

reaction rate mechanism q, where q=1,2,3 or 4 the

deterministic function is (see Hill et al, 1968)

exp(-0y; Ui €Xp(-645/Ui5)) if g=1 (2.2.4)
f(ui,eq) =

=3 .
{1+(g-1)8g, uj exp(-6gy/u,) -0 1f a>1

i.e the vector of parameters is eq=(eq1,eqz), g=1,2,3,4 and presents

the rate constants. The covariates are uj=(uj;,uj,), i=1,2,...,n.

(ii) A typical situation in bioassay is to consider

the logistic model for T in which, if u is a scalar,

T(u,e) = {1+exp(-0,(u-6,))}"1 (2.2.5)

or the probit model in which




T(u,8) = (v2meh)=1fexp(-(v-o,)2/(262))dv. (2.2.6)
)

In both cases e=(e;,6,) with 8, the location parameter and &, the

scale parameter.

2.3 Assumptions

The following main assumptions will be considered throughout
this thesis. We shall refer to them as Assumption 1 or 2 etc when we
recall then.

When limiting results for the sequence of estimators e, are
considered the parameter space © is assumed to be compact. For the
errors the main assumption which is imposed is:

Assumption 1: The errors e; are independent .

and identically distributed with
E(ej)=0 and V(ey)=0%>0, i=1.2,...n. (2.3.1)

Under Assumption 1 for model (2.2.2) we have that

n =n(u,8) = E(Y) = f(u,e). - {2.8.2a)
For the model (2.2.3) we assume that
n = n(u,8) = E(Y) = T(u,8). , (2.3.2b)

(For brevity the dependence of T on © will sometimes be omitted.)
When inference is to be made, for the regression models, Assumption 1

is changed te¢ the typical normal error assumption i.e




Assumption 2: The independent identically distributed
errors are normally distributed with
mean 0 and variance 02>0.
It is usually desirable for the design to be insensitive to any
violation of Assumption 2. For both f and T functions in (2.3.2)
some assumptions are considered. As far as f is concerned we
basically want it to be smooth in the neighborhood of 8, the true
value of @. That is why we assume
Assumption 3: The function f(u,e) is continuous in © at ey
and the second order derivatives of f
with respect to e exist at and near 6.
Function T plays an important role.in binary response problems and it
can be known, as in Example 2.2.1(ii), or unknown. In the latter
case it is suggested by Wu (1985) that it be approximated locally by
the logistic. For T we assume :
Assumption 4: T(u) is a monotonic differentiable

function.

Recall (2.3.2h). The function T{(u) can be considered as a
cumulative distribution function of the random variable Z defined

through the random variable Y as follows

1 if Z ¢ u
Y = Y{u) = (2.3.6)

0 if Z 5> u .

Then :

jo
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PLY=1]

PLZg¢u]

L]

T(u), say

"
]

PLY=07 PLZ>u] 1-T(u).
Therefore :
E(Y) = 1xT(u)+0x{1-T(w))} = T(u) = n

vVar(Y) = T(u)x(1i-T(u)).

In many practical cases T is reiated to the explanatory
variahle u and the parameter e,through a linear function of u and e,
thus T=T(eTu) and f(u,e)=f(eTu). As discrimination between rival
models is not a target of this thesis we will assume throughout this
thesis that
Aésumption 5: The model used to plan the design is
correct.

The existence of the estimators is discussed in the next

section.
2.4 On the existence of estimtors
After collection of the data the question arises as to

whether it is possible to get estimates in all problems, that is

those of binary response and regression.

-

For the model (2.2.2) we introduce the guantity
Sp(€) = L (yi-f(uy,.8))2 = [ly-f(u,e)ll, (2.4.1)

where |[|.{|, 1s the l,-norm. An estimate ® will be called the least

squares estimate (LSE) iff

$,(8) = min { Sp(e): eed} (2.4.2)




Jennrich (1969), imposing some éssumptjons, proved that the
model (2.2.2) has a LSE, ©, as a measurable function ¥ »®, where ¥ is
the space of values of Y's. Under Assumption 2 it is known that the
LSE coincides with the maximum likelihood estimators (MLE).

Fﬁr the binary response problem Silvapulle (1981) provided

conditions under which the likelihood function L,
L« MT(uy,8)}Vi{1-T(u; €)}1Y; (2.4.8)

can provide maximum likelihood estimators (Appendix A3.II). Roughly
speaking that occurs when the intersection of the sets of values
taken by the explanatory variables corresponding to 1's and to 0's is
not the null set. - This happens to be a necessary and sufficient
condition for the logit and probit models.

Now, having ensured that the likelihood equation can provide

MLE and denoting by £ the log-likelihood we define the matrix

S(e g .y) - - __5.2_9___
i § aelaeJ (2.44)
where €; is the design measure on n observations. The matrix
A - a%g A (2.4.5)

will be called the sample information matrix.

Example 2.4.1 Maximum likelihood estimates for the logistic

can be obtained through the "normal eguations”

LTy

I
™M
<«
[

EuiTi - Zyjui

with T;=T(uj:;e) as in (2.2.5).

42
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2.5 Fisher's Information matrix

In the regression problems the variance ¢® is sometimes of
the form ©2(u,e). That is o2 depends on the design point and the
parameter vector. In the linear case it is ofteﬁ assumed independent
of the parameter o. In practice it may or may not be possible to

assume that is known.

Let Vn denote the vector of partial derivatives

vn=(a"‘a—l'-l' ~--1§3)T

de, 3de, aep (2.5.1)

For the exponential family of models Fisher's information

matrix is defined to be
I(e,u) = 072 (n)(wm)T. (2.5.2)

It is easy to see thaf there exists a vector v such that
I(e,u) = vvT. {(2.5.3)

Moreover in many of the nonlinear problems the covariate u

and the parameter @ appear togethef linearly in the form & u. Thus,

if

n = n(e'ru) (2.5.4)
Then

vn = [w(eTu)1t/2 y (2.5.5)
with

w(z) = [an/3z]? , z=0Tu. (2.5.6)

Therefore




I(e;u) = g 2w(6eTu)uuT- (2.5.7)

The concept of the average-per-observation information matrix will
play an important role in our scenario for the nonlinear experiment
design problem. It is defined for €; the n-point design measure, to

be

M(e.€,) = n71 E I(e,uy). _ (2.5.8a)

For the continous case

M(e,g€) = [ I(B,u)&(du).. (2.5.8b)
U

The idea of Caratheodory's Theorem (Appendix A1.II), so
i essential for the linear experiment design, Silvey (1980), can be
used for the average information matrix in nonlinear problems, as has
been noted by Titterington (1980a) in the following theorem.
Theorem 2.5.1 (Titterington, 1980)
For any e€©
(i) M(e,g) is symmetric nonegative definite for
any Ee=.
| (ii) M(e) = {M(e,€); €=} is convex and compact
(iii) The extreme points of M{(e) are each of the
form I(e,u) for some u. Further for any

€€= there exists CeE assigning positive

weight to at most 271k(k+1)+1 points in U

and such that M(e,2)=M(e,L).

Suppose the matrix M=M(e,E) is partitioned in the form



i3

Mys Mz
M= (2.5.9)
T
Miz Mz
with M,,eMat(s,s), M,;,eMat(s,p-s), M,,eMat(p-s,p-s), 1s<p.
We define the matrix
Mg = Mg(®,8) = M,,-M, MM, (2.5.10)
with My, being the generalised inverse of M,, (Appendix A4.I). The

information matrix I(.) will be considered partitioned in the same

fashion. These partitions are helpful when our interest lies in

estimating the leading s<£p parameters in the vector @ as it will be

explained in section 8.4.

2.6 Linearization of the model

The idea of the (desig)n matrix X being known is essential

in dealing with linear models (Graybill, 1976). 1In nonlinear models

we can not define a matrix X in the same fashion. This can be done

only approximately through the partial derivatives of e,

with e
taking its "true" value, ;. We define the nxp matrix
_ e af(u;,8)
X = (x15) 3e; le=e¢ . (2.6.1a)

Then the matrix X=X(e®) is formed as a function of ©. Function f{u,e)

can be linearized through a Taylor series expansion in the

neighborhood of e¢ as

P(u,0) = £(u,0¢)+E(05-0¢)(3(u,0)/30)) lg=p,  (2.6.1D)




Following the pattern of linear fegression models in the nonlinear
regression case, an approximation to the covariance matrix, of the

estimates of the parameters, can be defined as
C & [XT(e¢)X(0¢)] 202, B (2.6.2)

Moreover for all nonlinear problems a useful approximation to the

covariance matrix is
C™! 2 n M(e¢,8). (2.6.8)

M.J.Box (1971b) flinearized" the nonlinear function through a Taylor
series expansion of second order and, through this, he evaluated the
bias of & and f{u,®), when the model was fitted. For this one could
seek minimum bias experiments. This has had little application in
practice for nonlinear models in contrast with the linear case where
the idea was introduced by G.E.P. Box and Draper (1959). M.J. Box

(1970) suggested also that cost optimal designs could be constructed

for the classical nonlinear regression models. The assumption in
this case is that the cost of the experimentis represented by its

duration. In the sequel we will assume that experiments are equally

costly.

The linearization idea can be applied to the logit model
{Cox, 1970) in the following example.
Example 2.5.1 Given that

C1+exp(-6,4(u-6,))]7t = 1/2 + 1/8 e,(u-e,)

when [@;(u-e,)|<3, then the normal equations of Example 2.4.1 are
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approximately

n/2 +(el/6)£(ui—ez) = Lyj

(1/2)fuy +(e,/6)Tuj(ui-6,) = Lujyy

In the next section we present some examples to clarify the

idea of Fisher's information matrix. These

reconsidered in the sequel.

2.7 Examples

(i) Consider the model, in which

P(V=1) = T(eTu).

Let: 8;+0,u,=z=6"u and T'(z)>0, e=(e,,8,), u=(1,u,).

log-likelihood 2, will be

¢ = log{T(z)Ytl—T(z)jl‘Yf + const.

Therefore we evaluate I(©,E) as

EHVD)(V)T} - x(&)uuT

with «(@)=T'2[T(1-T)].

will be

Then the

(2.7.1)

(2.7.2)

Application: T might be either the logit or probit function.
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(ii) For the nonlinear regression model

n = 6;-exp(-6zu), uwel-1,17

we have that

o 1 uexp(-6,u)
I(e,8) = (M) (WM)T = (2.7.3)
uexp(-e,u) u2exp(-2e,u)/ .

We note that I(e,€) is a function only of e,.
(iii) Consider the nonlinear regression model (Box and
Draper, 1959)
n = g,exp(e,u), uelfa,b]

This is a model used to describe growth phenomena. The Xjj vectors

i=1,2,...,n, j=1,2 can be formed according to (2.6.1) as
Xj,=9n/de,=exp(o,uy), xiz%an/aez=eluiexp(ezui) (2.7.4a)
We form Sp(e) as

(2.7.4b)

Sp(8) = L(yj-0,exp(6,uy))2.

N
To find the estimator @, which minimizes §,(e) the partial

derivatives of S,(©) are needed to obtain the “normal equations"
L(yj - ojexp(eyuj)lexp(eui) = 0 (2.7.5a)

Z(yj - e,exp(ejuj))e,ujexp(e,uy) = 0. (2.7.5Db)
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The existence of the least square estimates is shown by Jennrich

(1969). Moreover, in this case, on evaluating the Hessian and its'

expected value we have

Lexp(26,u;) 8,Eujexp(26,uy)
c™2nM(e,E,) = (2.8.6a)
e Lujexp(26,u;) 6°Cu®exp(26,u;)
and
A Eexp(zgzui) giiuiexp(ag}ui)
o72s5(e,8p,y) = N (2.8.6b)
e,Lujexp(20,u;) A(y,u,®)
A
where - A(y,u,8) =%12u§exp(ezui) {yi~231exp(32ui}}.

We shall work on this example in chapter 7, which reports a

simulation study dealing with different procedures for tackling the

design problem.

Having introduced most of the notation needed in the sequel
and the appropriate definitions concerning nonlinear models, we are
ready to formulate the design problem. In the next chapter the idea

of a locally optimal design is introduced and discussed.

19




CHAPTER 3

LOCALLY OPTIMAL DESIGNS

3.1 Introduction

We recall that the aim of the experiment we shall consider
is to estimate as well as possible the parameters included in the
model . It might be all p parameters, or a set of s<p linear
combinations of the p parameters. In the sequel when only s of the
parameters are to be estimated we will assume that they are the first
s components of the vector e=(8,,6,,...,8,), and we shall use the
notation ©(g)=(®;,...,85). The average information matrix, related
approximately to the covariance matrix, as in (2.5.3), is a natural
starting point for the establishment of an optimality criterion.
That is, some real-valued function of M(®,€) can serve as a criterion
on the basis of which to answer the question of why one design is
better than the other, The sense of optimality is then dictated by
thedcriterion that has been chosen and offers a way of comparing one
design - the optimal - with others, which might be optimal under
another criterion.

Now, why might the design be called locally optimal?
it is the o-dependence which leads to the term "locally optimal": the
optimal design depends on the true value of s.

This e-dependence is the main point of difference between linear

experimental design, which originated in Smith (1918) and the
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nonlinear case, originating in Fisher (1922).
Thus in this chapter we provide criteria describing what we
‘mean by suggesting one design take best in comparison with others.

In addition, the geometrical interpretation of these criteria is

discussed.

3.2 Formulation

Suppose we wish to estimate a set of linear combinations of
the parameter vector e=(81,...,ep). This mightrlead to an estimation
of the vector ® itself, some linear combinations of theAp components
of 6 or to s£p components. Let QeMat(s,p), 1€s<p be the matrix of
the Xknown coefficients defining the above mentioned linear
transformation: that is,the quantities of interest are Qe. If
rank{Q)=p, when s=p, the matrix Q is nonsingular. If s<p we suppose
that rank(Q)=s.

On the basis of the experiment the average information
matrix M=M(e,£) is obtained. In the sequel we regard © as taking its

true value. Then we can define the following operator JQ applied to

M, through the above matrix Q

Jo[M1 = QM7 (e.€)QT (3.2.1)

with M ol generalized inverse of M and QTeMat(p,s).

It is easy to verify that

Qy=Q, implies Jg,[M] = Jg,[MJ. (3.2.2)

The converse is not true. The matrix QM Q"eMat(s,s) is
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assumed gonsfgular. Indeed
rank{QM Q7 }£min{rank(Q),rank{M ) }=rank[Q]=s (3.2.3)

Given the above notation we need a real \vaiued function, W say,
applied to Jg to be used as an optimality criterion. We choose w to
be a convex decreasing function on the set of nonnegative definite
matrices ,NMat(s,s) say, i.e w(A)=w(B) if the matrix A-BeNMat(s,s)
and A,BeNMat(s,s).

Definition 3.2.1 The design measure £* is called w-optimal iff

wigM(e,€")I} := min{ w{QM (e,£)QT}, Ee=}. (3.2.4)

Having introduced the above definition we now examine épecial cases

of w and Q which will lead us to familiar definitions. The cases we

shall consider for w are

wy (. )=logdet(QM™QT)
wp (. )=tr(QMQT)

w(.) = {(3.2.5)
wy(.)=max eigenvalue of (QM™QT)

W (.)=sup trii(e,u)OM QT}

and for Q are

AeMat({p,p), rank(A)=p
IeMat(p,p)} - the identity matrix
Q= (3.2.6)
AeMat(s,p), rank(A)=s
[Is:b], IgeMat(s,s), ﬁeMat(s,p—s)

ceMat(p,1)

Any w(.) combined with some Q will lead to some criterion. In the
next paragraph we consider these special cases under the 1light of

definition 3.2.1 along with (3.2.5) and (3.2.6).




We note that, if thé whole discussion is expressed in terms
of [Jq(M')]'l, use, as optimaslity criteria, maximize concave w
functions. Following Silvey (1980) for technical reasons when1§M%s
singular w(.) is defined to be +x (-«) for convex (concave) W

functions.

3.3 Special cases

The following definitions obtain, for w;(.) 1=1,2,3,4
as in (8.2.5) and Q=A as in (3.2.86)
Definition 8.3.1 The design measure e* is called
Da(e)-optimal iff w,(.) is considered
Ap(e)-optimal iff w,(.) is considered

Ep(@)-optimal iff w4(.) is considered
Gp(@)-optimal iff Wyel.) is considered

When Q=IeMat(p,p) the operator Ji(.) provides just the generalized
inverse of M. In this case we obtain the ¢ criterion, introduced by

Titterington (1980a). Actually under our notation the ¢ critefion .

is

¢ =wo JI (3.3.1)
where o denotes the composition of two functions. Corresponding to
W

j. i=1,2,8,4 of (8.2.5) we obtain ¢j=wioJ,i=1,2,3,4.
Traditional definitions of these are the following.

Definition 3.3.2 An optimal desigﬁ measure Q* is called

D(e)-optimal iff ¢,(.) is considered
A(e)-optimal iff &,(.) is considered
E(e)-optimal iff &4(.) is considered
G(e)-optimal iff ¢,(.) is considered.
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The optimality criteria D{®) and G(e) were introduced by White {1973)
who also exteﬁded Kiefer and Wolfowitz's (1960) theorem as follows,
Theorem 3.3.1 (White, 1973)
For the optimal design measure g* the
following are equivalent.
(i) €% is D(e)-optimal.
(11) g* is G(e)—optimal.
(i11) sup d(u,€,0)=p=dimse.
where dime is the dimension of ©€©cRP and
d(u,€,0)=tr{I(Q d)M(e,)"*}

{in this theorem the optimal M will be nonsigular.

Following Wwhittle (1973), Titterington (1980a) stated the extension
of the above theorem to any criterion ¢. The idea of a directional
derivative (Appendix A1.1) ¢ for ¢, when ¢ is differentiable, is used
as a generalization of derivative, giving a useful tool for
hill-climbing optimization technigues. This theorem plays,
obviously, an important role in nonlinear theory and it is as
follows.
Theorem 3.3.2 (Titterington, 1980a)
For any e€® the following afe equivalent.
(1)  @[M(e,€)] is minimized at o[M(e,€*)].
(i1)  o[M(e,€%),M(e,£)120 for all CeE.
If ¢ is differentiable at M(e,a*) we also have
the equivalents
(11i) @[M(e,2%),I(e,u)]x0 for all uel.
(iv) ¢[M(e,2¥).1(e,u)j=0 for any u weighted
positively in E*; that is, for any u in the
Supp(e*). Note that ¢ is not differentiable

when M(B,E*) is singular.
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In terms of our notation, with AeMat(p,p) nonsingular, there

is no difference between Dp(®) and D(e)-optimality as

det[AM™%(e,€)AT] = det[M~}(e,€) det(a)3? (3.3.2)

but there is a difference with the other criteria.

D{(e)-optimality minimizes the volume of approximate

A
confidence ellipsoids for ©, centered at e. Moreover, the
information matrix M(e,E*) corresponding to " is unigue - when o
takes its true value - since w in this case is a strictly concave

function. This is related to the duality theory for the linear case
first tackled by Silvey (1972) and established by Sibson (1972). The
linear result can be applied in the nonlinear case when €=ey, for the
other criteria as well. Thus:

G(®)-optimality minimizes the maximum approximate variance of the
estimated future response. The interpretation for both D(e) and G(e)
optimality has been made, under Assumption 2, that of normal errors.
A(e)-optimality minimizes the sum of approximate variances of the
parameter estimates, as in the linear case (Titterington {(1980a)).
E(e)-optimality seeks to minimize the variance of the worst-estimated
linear combination cTe, with cTc=1.

Ford (1976) descriﬁés in detail the above properties of the
¢ criterion and its concavity. Titterington (1980b) reviews the
geometrical aspects of the linear case.

The geometry of these criteria will be discussed in section
3.7. Torsney (1980) works with generalizations of the above criteria
in linear case criteria and Silvey k1980) reviews the criteria in his
excellent monograph.

The cases of Q=AeMat(s,p), rank(A)=s is similar to that of

Q=AeMat(p,p). Of course relation (3.3.2) no longer holds.
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A particular case is that of [15:6], IgeMat(s,s) the unit
matrix and 6€Mat(s;p—s) the zero matrix. This case is discussed in
- section 3.4.

Now, consider Q=ceMat(p,1), i.e Q is a vector. Assuming

that M~ %(e,E) exists and recalling definition 3.2.1, we have
w{J[M(e,€%)1t = min {cTM 1(e,E)c, EeE} _ (3.3.3)

with w the identity function, id say. This criterion minimizes the
. N
approximate variance of a linear combination of ® and it is known as

c(®)-optimality. We shall refer to it as ¢g, i.e

®g = id o J. (3.3.4)

3.4 Applications

In the linear case the above criteria are independent of e
and thus we refere to them as D,G,A,E-optimality. We can treat the
nonlinear case as linear by supposing e to be known.

The D(®)-optimality criterion has been the most commonly
used in practice, ever since the pioneer work of Box and Lucas (1959)
who obtained locally optimal designs when n=p for a number of

nonlinear models. For the exact locally optimal design when n=p
maximisation of det(X"X) (see 2.6.1 for definition of X) is

equivalent to maximisation of det(X) because,

A = det(XTX) = [det(X)]?: (3.4.1)
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Atkinson and Hunter (1968) suggested that when n=rp one should
perform the experiment of Box and Lucas for the p-point p~term model
and replicate the experiment r times. If the design is restricted to
these p points replication minimizes the generalized variance of the
p-term model. This may nét, however, necessarily give the optimum
among all experiments with rp-observations. M.J. Box (1968a) gave a
generalization to n=rp+k, r>1 O=zke&p-1.

Optimal or at least near-optimal designs can be produced by
replicating, as nearly as possible (depending on the conditions) the
experiment of the optimal design using the Box and Lucaé idea.

In chemical experimentation the D(e)-optimal criterion
has been very popular since Behnken {1964) obtained optimum designs
for determining reactivity ratios. Chemical work was also the
motivation for Bard and Lapidus (1968), Hunter and Atkinson (1966),
Henson and Hunter (1969}, Hill and Hunter (1974), Hunter, Hill and

Henson (1974) and M.J. Box (1968a, 1970).

In Table 3.1 we summarize all the work dealing with kinetic
models mostly from chemistry and in biologyv. Given the "true“ e the

optimal design points for the covariates involved has been listed.

More work on D(6)-optimality has been developed in various
fields. Currie (1982) estimated the Michaelis-Menten enzyme kinetic
function. Hohman and Jung (1975) obtained D(e)-optimal designs for a

special regression set up. We shall refer to this again in Section

3.7.

The aesthetic appeal of D(®)-optimality extends also to

binary response problems.
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Begg and Kalish (1984) applied different optimality criteria to
logistic model for bbtaining the optimal proportion of cases for
treatment allocation. Maxim, Hendrickson and GCullen (1977)
considered binary response for bivariate models such as bivariate
exponential and Weibull distributions. Their result generalizes the
following result of Chernoff (1953) for the exponential model under
A(e)-optimality (which coincides for one parameter with
D(e)-optimality).

A(e)-optimality was tackled by Chernoff (1953) in his early
work. He suggested that the maximum number of optimal points needed
for Ag(e)-optimality is s(2p-s+1)/2, 1lss<p. It is interesting that
when s=i or p Chernoff's theorem leads to Elfving's theorem {Appendix
3) for c-optimality. A(e)-optimality has been suggested by
Titterington (1980a) for dynamic systems.

Little attention has been paid to E(e)-optimality in

applications.
We shall use D(e), A(®) and c(e)-optimality in later
chapters. It is of interest to comment that criteria ¢;, i=1,2,3,4

coincide for the one parameter model.

We now pay some attention to logit and probit models under
D(e)-optimality, because of their use in applications. Consider the
quantal response model of the form T=T(6Tu) (recall example 2.7). 1In

this case, (Ford (1976)), the D(e)-optimal design is concentrated at

two points, namely

u1=(u0~61)/92 y u2=(—uo“61)/92 (3.4.26)

with €,=€,=0.5 (3.4.2b)

and D=detM(e,uy)={ugx(ugy) }2/8, (3.4.2¢c)
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with ’ x(ug)=x(u,,0) as in (2.7.2).

The function D=D(u,) has a unique maximum at Go- Then the optimal

points turn to be of the form (¢30~al)/ezeU.
For the logistic case : ﬁo = 1.54
For the probit case : Go = 1.14

If U is symmetric about _e;/e, and (tﬁo—ei)/ez¢ﬁ=tx,kj then the

D(e)-optimal design is

ul=K =A. (3.4.2d)
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3.5 Canonical form of a design ( c(e)-optimality )

it is known, Federov (1972, p 81), that D-optimal designs
are invariant with respect to any non-degenerate linear

transformation of the parameters.

It is in fact convenient if we have a design criterion which

will remain invariant under certain transformations of the design

space. We would then be able to have a canonical form of the design,

which, when transformed, would produce other "daughter designs".

The transformation we introduce is of the form:

h : UsRK»—5 ZeRK : us— o h(u)=z=Bu (3.5.1)

with BeMat(p,p), nonsingular.

Consider nonlinear models in which the parameters appear in
the linear combination ®Tu=eg +e,u,; (recall example 2.7 (i)). Take as

criterion ¢ that of c{e)-optimality i.e

o(My) = cTMye i (3.5.2)

with M ;=My(®,€) the average information matrix in U-space (recall

example 2.7 (i)). Thus

My = L x(eg*e,uyi)ccT (3.5.3)

with «(.) as in example 2.7, and ¢;=(1,u;4)7, c=(1,u)7.

Let
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1 0
B = (3.5.4)
9 9,
and
1 0 1 1 1
Z = Bu = = ’ (3.5-5)
% 64/ uy Bo+O Uy \Z,y
Criterion (3.5.3) can be written
c™glc = ¢L L a«(.)ecjc] J7%c =
c™BT(BT) [ L «(.)ciqT 17*B™1Bc =
X A
(Bc)T(Z «(.)[Bcil[Bc, T) " *(Bc) = czMzc,
: = T= T o < - u
with cz={1,8p+05u;) " ={1,24)", Mz=ke(.)zjzj , 2i=(1,2,3)

Thus the eguivalence of c(®)-optimality in U space and Z space has

been proved. This is of practical use as a design can be
constructed on a "suitable" design space say with e, ©; fixed and

then transformed back to the design for e,, e, of interest.

The c(e)-optimality criterion <can be used when the
percentile of a 1logistic curve is to be estimated. The 100p

percentile, Ly, of the response curve T(u) is defined as the solution

of

T(Lp) = p (3.5.6)

when T(.) is the logistic, A(.) sav, we have

A({Lp;e) = {1+exp(-(85+8,Ly))} = p (3.5.7)

Therefore
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Lp = -8ytleg+In(p™t - 1)7 = Lp(eg,8,) (3.5.8)
Thus L, has been expressed as a non linear function of e,, €.

In bioassays the median is the most common percentile of interest.

It is easy to see that for p=0.5 (3.5.8) is reduced to

L.s = = (80/61) (3.5.8&)
for the logit case. Clearly, designing as well as possible to get

the best estimate of Lp, has a practical use. We proceed to evaluate

the vector Vﬁp,
~

Vip = -67(1,Lp) T, (3.5.9)

Let nj be the number of observations at uj for i=1,2,...,k. Then,
A
for the MLE 6=(30,el) (recall examples 2.4.1, 2.5.1), it is known
that for ka2 and Inj=n large
A A Th, 1—1

Var(6,,8;) & {LA(uj) (1-A(uj))ujuing =i, . (3.5.10)

in which wuy={1,uj,)7. From (3.5.9) and (3.5.10) we have that

A ~ A A
var(Lp) = (VL,)TVar(e,,8,)vi, (3.5.11)

A
Therefore minimization of Var(Lp) is approximately equivalent to

minimization of
cT™ 1(8)c (3.5.12)

with c=(1,Lp)T and M™%(€) given by the right had side of (8.5.10).




We thus require to find a c{(e)-optimal design, for the desired

0=(8,,8,).

We can then use the "canonical form" idea described above to
obtain the design in the Z space.

For the iogistic of the form (3.5.8) Meeker and Hahn (1977),
obtained the two point optimum design for pe[0.083,0.9177], working on
survival probability at design test.

The logistic model has also received extensive attention in
bioassays, from, among others, Mc Leish and Tosh (1983), Tsutakawa
{1980), Cox(1970) and Finney (1978). Recently Wu (1985) suggested
that a binary response model of wunknown type can be locally

approximated by the logistic. The method he proposed will be

discussed in chapter 7.

3.6 Designs for subsets of parameters

The asymptotic generalized variance of the estimators of

8(s) is defined to be the guantity

V(e,8) = n~! det[Mg]. (3.6.1)

where Mg is as in (2.5.10). Note that Mg has to be nonsingular for

6(g) to be estimable. With the operator notation it is easy to see

that when A=[Ig:0], Jp(M)=Mgq. Under the ¢ notation of (3.3.1) we

shall use the notation ¢4 for

bg =W o J[I.S:b}' (3.6.2)

For the cases ¢;, i=1,2,3,4 we have the following definition
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Definition 3.4.1 The optimal design measure €% is called
Dg(e)-optimal iff ¢,5(.) is considered
Ag(e)-optimal iff @,g(.) is considered
Es(e)—optimal iff @45(.) is considered

Gg(@)-optimal iff @, (.) is considered.

White (1973) stated an equivalence theorem for Dg(e) and
Gg(e) optimality, similar to that for the linear case. As with
D(e)-optimality, Dg(e)-optimality is relevant and appealing in
applications. Begg and Kalish (1984) apply Dg(e)-optimality to the
logistic problem. The Mg matrix and Dg-optimality arise in the
chemical kinetics literature; see Hunter, Hill and Henson (1974) for

application to the first order chemical reaction (Appendix 2).
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3.7 Geometrical aspects

The geometrical approach to the linear optimal design of
experiments has been extensively covered by Titterington
(1975,1980b). The geometrical ins;ghf into the 1linear problem is
based on the equivalence theorems of Kiefer and Wolfwitz (1960), for
D—optiﬁality, and Karlin and Studden (1966), for Dg-optimality.
Geometric interpretation of these problems has been achieved by
8ilvey and Titterington (1973) for Dg-optimality. For the linear
model (2.83.3) the geometry was built upbnot on the design space U,
but on its image through g, U,=g(U) say, as described by Silvey and
Titterington (1973). Furthermore, for this transformation they
proved that the information matrix M(€) is preserved expressed in

terms of the family of design measures
So = { Ep=Bg™! €eE} (3.7.1)

Under the above discussion the following two "duality" theorems play

an important role in the realm of linear experimental design.

Theorem 3.7.1 (Sibsoﬁ, 1972)
Let U, be a compact set which spans RP. The
D-optimal design problem for U, is the dual of the minimal ellipsoid
problem for U, and the two problems share a common extreme value.
Theorem 3.7.2 (Silvey and Titterington, 1973)
Let U, be any compact subset of RP which spans
the leading s-dimensional co-ordinate subspace. Then for U,, the
Dg-optimal design problem is the dual of the thinnest cylinder

problem and the two problems share a common extreme value.
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We note that the minimal ellipsoid problem is that of
finding an ellipsoid of minimal content centred at the origin,
containing U,. The kernel matrix of the ellipsoid is M"3(€). It was
Silvey (1972) who pointed out that the only possible effective
support points of D—éptimal designs are points in U which, through g,
correspond to the points where the minimal ellipsoid hits U,

The thinnest cylinder problem is that of finding a cylinder
of minimum cross-sectional content - with cylinder axis required to
pass through the origin - which spans R® and which contains Ug. The
only possible effective support points, according to Silvey and
Titterington (1973), are points in U whose images in U, are points
where the thinnest covering cylinder hits Uj. |

We discuss these ideas in the linear case to clarify where
this ellipsoid is, and how it is influenced by the design measure and
the information matrix.- Now we proceed to the nonlinear case.

The fact that the information matrix depends on the unknown
parameter ©, and since f is not, linear as is g, prompts us to
approach the problem slightly differently.

Recall the definition of the matrix X in (2.6.1). In the
linear case in which Ey=Lgj(x)ej=f(u,e), it is easy to see that
xij=gj(xi}. This is not the case in the nonlinear situation.

Expanding f(u,®) in a Taylor series, we can write the linearized

model as

W = Xb (3.7.2)

with: X as in (2.6.1a), b¥e—et, and W=f(u,e)-f(u,e¢). Thus from
the space RP, through (3.7.2) we obtain the space Z, say, through a
transformation, & say, corresponding to matrix X. Following M.J. Box

(1968a), another transformationy say, can be defined from Z to UOERP
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through the relation

P(z) = up = (X;X5...Xp) 1z (3.7.3)

with "Xy being the experiments which constitute an optimal design of
p experiments to estimate p parameters". The following diagram

describes the above discussion.

Rk+p§Uxe "——-—-L RP
A
h by ) g hy=Cof  (3.7.4)
UERP o ZERP h=yoCof

Then following Halmos (1958, p 164), the families of measures
'_-, ! -~ - ”II i _1
~g = {Eo=€h1 3 ge:-} ' S T {Eo":g_h ' geE} (3. 7. 5)

"preserve the measure". That is, the optimal design constructed on Z
or Uy is transferred to U. Thus the induced design space Uy in which

the geometry can be built up has been defined.

When © takes its true value all the geometric aspects
covered by Titterington (1980b) can be applied to the nonlinear case.
When we end up the experiment with an estimate of ©, this estimate
forms the geometry in a "lobal" sense, as the estimate might anv e in
the neighéorhood of 6. Thus D(®)-optimality corresponds to the

minimal local ellipsoid.




In the case n=p, recall section 4.2. Box and Lucas (1951)
gave the geometrical interpretation that the optimal design points
should be a vertex of the p+l-hedron, a simplex defined by the
p-optimal points and the origin. M.J. Box (1968a) states that the
optimal experimental sites must lie on the boundary of Uy, where U,
is obtained using (3.7.4). Atkinson and Hunter (1968) gave two
theorems which ensure that the p+l-hedron must lie wholly within Z in
the case of n=rp, i.e when we replicate fhe p-term optimum design r
times. Hill and Hunter (1974) gave a geometrical interpretation for

Dg(®©)-optimality.

The geometry of c-optimality is covered by Elfving (1952;

see Appendix A3.1). We shall use Elfving's geometrical argument

extensively in chapters 8 and 9.
The dependence on © influences the geometry in the nonlinear

case, as the geometric ideas are based on the approximation of the

covariance matrix by [nM(e,g)]"1.

We now discuss the particular special case of the partially

nonlinear models.
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3.8 Partially nonlinear models

Recall the Gaussian regression model (2.2.2). If f{u,e) is

of a special form some useful results can be obtained.

Hohman and Jung (1975) consider the case where
f(u,8) = 6,+g(u,e,), uel (3.8.1)

a two parameter model linear in one parameter and nonlinear in the
other. The D-optimal design provides a two point design with design
measure €=0.5 at each point. The two design points are either the
end points of U, or points depending only on the true & &y, say.
The fact that €=0.5 is in accprdance with the general result for
D-optimality which allocates weight 1/p for the regression model
f(u,e)=eTu when the qptimal design is supported on p points.

Hill (1980) defined a regression model to be partially

nonlinear for the k parameters, k<p, iff
Vi(u,8) = B(e)h{u,e(k)) (3.8.2)

where B(®) is a matrix not depending on u but just on
e=(ei,ez,...,ep), ©(kx) is the vector of the k parameters which appear
in a nonlinear way and h is a vector of functions depending on 8(k) -
For the model (3.8.2) the D(®)-optimal design will depend (1980) only
on 6(x): see Hill (1980)

Example 3.8.1 Consider the model describing decay {(or growth)

phenomena

f(u,8) = e;exp(oyu).
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Then

1 0 exp(e,u)
Vi(u,8) =

0 ei uexp(ezu)

Therefore the D(e)—optimaludesign will depend only on e,. This is in
accordance with Box and Lucas (1959). We shall reconsider this
example in chapter 7.

Khuri (1984) provided, for the model (3.8.2), a sufficient
condition of the following form for Dg(e)-optimality.

Let ©(g) be the "linear terms", 6(;_g) be the
"nonlinear terms" and consider B(e) partitioned as

B(e) = CBT(e),B{(e)], BjeMat(s,p), B,oeMat(p-s,p). Suppose the

corresponding M(®,€) is as in (2.5.10). A sufficient condition for a
locally Dg(e) optimal design ({(for e(s)) to be dependent only on

8(p-s) 1is that matrix B,(e) should be expressible in the form
Bp(6) = P(8)[Ip_5:Kl (3.8.3)

where P(®8)eMat(p-s,p-s) and is nonsingular, Ip—s is the identity
matrix and KeMat(p-s,s) does not involve 8.
Example 3.7.2 Consider the Michaelis-Menten model (Currie, 1982)
with
f(u,®) = 8,u/(e,+u).

For this model

VE(u,8) = ( u(e,+u)~! , e,u(e,+u)-2 )T

1 0 u(e,+u)”t

0 e, /| u{e,+u)"2

Thus (3.8.2) can be applied and therefore the D-optimal design for
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estimating e=(®4,85) depends only on 6,. This is a theoretical
justification for Currie (1982, section 3.1) who confines himself
"primarily to K" (K is our 6,). As far as D,-optimality concerned it

can be easily verified that (3.%.8) does not hold.

We now consider a more general model than (3.%.1), which we

shall call proper partially nonlinear, as follows :
f(u,8) = 1(u,By) + m(u,B,) (3.8.4)

Where /31=(81,62,...,Bs), [32=(es+1,-.-,9p) i.e 9=(Bi,132)
l(uvﬁi )=90+elu+' B '+BSU‘S

m(u,B,) any nonlinear function of B,:

We state the following proposition.

Proposition 3.8.1 For the model (3.8.4) the D(e)-optimal
design depends on B,. Moreover the
Dg(®)-optimal design for estimating B,

also depends on &,.

Proof

M=M(e,&)=M(B;,€) as, trivially, Vf does not depent on pA,.
Therefore the D(e)-optimal design depends on @,.
Therefore My, = M,;(B;,E) and thus the ratio det(M)/det(M,,) is a

function of B, only. Therefore the Dg(e)-optimal design depends on

Ry .

This proposition can be viewed as a generalization of the work of

Hohman and Jung (1975).
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Examples 3.8.2 (i) Let (Hohman and Jung (1975))
f(u,e)=e,-exp(-e,u), 6>0
The optimal design depends only on ©,.
(ii) Let
f(u,e)=06,+0,u+sin(ezu)+cos (o u)

It is easy to see that M;, is a function of (84,8,) . Therefore D(e)

and D,(e)-optimality depends only on B>=(85,8,).




3.9 Discussion

Experimental design in the linear case started as an optimum
allocation of the observations at the treatment points; see Smith
(1918), de la Ga%a (1954). Fedorov (1972) summarized all the linear
work, but he does not supply the general formulation of the problem
which is extensively covered by Ford (1976)_who proves the concavity

of the ¢; i=1,2,3,4 in the linear case. Silvey (1980) contributes

with an excellent monograph. The main target through this
theoretical framework is to obtain methods - possibly based on
algorithms - to get the optimum design measure for estimating e.

Fedorov provided the first algorithm, but it was only in Wu and Wynn
(1978) that a general dichotomous convergence theorem was obtained,
concerning the convergence of the sequence of design measures. The
theoretical framework in the linear case is completed by the duality
theory which first came to light in Lagrangian theory (Silvey 1972,
Sibson 1972, Silvey and Titterington 1973). Pukelsheim and
Titterington (1983) placed the general optimal experiment problem for
parameter estimation in linear regression models under a general
framework. Thus the 1linear theory not only has a well defined
theoretical background but this theoretical frame turns out to be
helpful from the point of view of applications.

The nonlinear theory suffers from the dependence on the
parameters which we want to estimate! Recall (2.6.3) for the average
information matrix. Thus any function of M({(e,£) has to be based on
the Kknowledge of the parameters we want to estimate. That made
Cochran (1973) -comment that the statistician coﬁld ask the
experimenter "You tell me the value of © and 1 promise to design the
best experiment for estimating e"! Silvey (1980) emphasizes this

dependence by using the notation &g,
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This e-dependence also occurs when, in linear regression
models, interest lies in a nonlinear function of its parameters. An
example is the curvature of the second degree linear model (Ford and
Silvey, 1980)., We shall come to this work in chapter 8.

Certain probﬁems of course exist when we have fitted a
nonlinear regression model. Draper and Smith (1981), Bard and
Lapidus (1968), Bard (1974), among others, discuss these problems,
which are usually overcome through linearization.

As the nonlinear theoretical framework is based on the true
6, it is easy to see ﬂow the so-called equivalence theorems were
extended to the nonlinear case from the linear case. We can
certainly say that any experiment E, with design measure €&, is
preferable to experiment E, with design measure €,, performed on the

same set-up with given e iff

o(M(e,€,)) < ®(M(e,E)) (3.9.1)

However, how to get the minimum ¢(.) is another story.

So far as (3.2.4) is concerned, the formulation in sections
3.2, 3.3 and 3.4 concerning the general local optimum nonlinear
experimental design problem can be stated as follows.

Consider a convex and decreasing w, a known matrix Q and the

operator Jq. Then :

minimize : w o JQ
subject to : €€E, © is the true value

M(®e,£) is positive definite.




CHAPTER 4

STATIC DESIGN

4.1 Introduction

In the linear case, of which an example is that of p-term
polynomial regression the D-optimal design has a tendency to use as
optimal design points the "end" points of the design space, améng
others, when p=2. This is true even when non classical lines of
thought are applied; see Kitsos (1976). Moreover under some
considerations, (Fedorov (1972, Th.2.2.3)) the design points for
D-optimality can be defined as roots of a vparticular polvnomial
{Legendre, Jacobi, Laguerre, Hermite). The design then allocates

measure 1/p at these points.

The situation is different in nonlinear problems. The
design points can only defined under the "true" e. Therefore a
"guess" about © has to be supplied. The aim is then to gain

knowledge about & with an efficient estimate, 8. say, so that the
covariance matrix 6=C(3) will approximate n M ! (e,g€), © the true
value. as well as possible.

This ®-dependence requires the development of alternative
strategies for the construction of experimental designs in practice.

We shall investigate two procedures that the experimenter might use.
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- Procedure 1: Choosé design points. Perform the experiment
at these points, We shall refer to this
procedure as static design.

- Procedure 2: Choose initial design points, Perform the
experiment at these points and estimate the
parameters. Re-assess the design points.
Perform the experiment at these new points
and get new estimates. Continue the procedure
until a predefined stopping rule is satisfied.

We shall refer to this procedure as sequential

design.

In this chapter the static designs will be tackled. Sequential

designs will be discussed in chapter 5.

4.2 Locally optimal approach

In practice the true & is unknown. Thus a guess for e might
be submitted either <from previous experimental work or from
thepretical considerations. The local optimality criteria ¢,
i=1,2,3,4 discussed in chapter 3, therefore give a line of thought
for applications of using that guess instead of the true e, which
hopefully eventually be approached by its estimator e. Therefore
static designs can obtained by using a guess for & instead the true
6. Table 3.1 summarizes published work on Gaussian regression models
aﬂd prsvides the locally optimum settings of the covariates which

might be used when a guess for e is provided.




4.3 Lauter's approach

An attempt to avoid e-dependence has been made through
S-optimality. Lauter (1974) defined S-optimality as follows.

Definition 4.2,1 The design measure €* is called S~optimal iff

S(E*)>= max{ S(€), €= } (4.3.1a)

where

S(€) = [1nIM(e,&)]v(de) (4.3.1Db)

and v is a given measure defined on some o-algebra of subsets of
©cRP - For S-optimality éhe proved an eguivalence theorem like the
one of Kiefer and Wolfowitz (1960) and the one stated by White
{1973). .

Theorem 4.3.1 (Lauter, 1974)

Let d,(e,€,u) = (V)™M %(e,E)(VF)
o = {&: édl(e,a,u)ﬁ(de)(oo},

Then for E, )(/(f and |S{g)|<x for every EeZ,
the following three conditions are eguivalent.
(i) €eEo is S-optimal,
(ii) €* minimizes max{ fd,(e,€,u)v(de), ueU}=T.

(ii) I'=pfv(de).
®

To avoid e-dependence a prior distribution can be assumed for ® and
then we work using an average information matrix, independent of e,

of the form

M(&) = Eg[M(e,8)]. (4.8.2)
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any weighting function w(.) on the parameter space ©, which may or

may not be a formal prior density. Then we can use

M(€)= JM(®,€)w(de) (4.3.3)
@ -

or construct a new criterion

dy(E) = g)[m(e.a)]w(de) (4.3.4)

with & as in (3.3.1). In both cases eguivalence theorems like that

of Lauter (1974) can be written down.

4.4 Stone and Morris approach

Stone and Morris (1985), in a recent paper, which in their

own words, "raises more questions both of theoretical and of

practical nature, than it resolves", propose two alternative

criteria. -~ These criteria are for non-sequential non-local,

non-linear design ie, for the static problem. One of their criteria

is based on log-likelihood and the other on sum of squares and both

reguire knowledge of two values 8', @'' of the parameter of interest

©, and include the possibility of a nuisance parameter §.

Their

first criterion function, which must be maximized, is
Cp, = E(LR|®',8) - E{(LR|e'"',%) {4.4.1a)
where LR = logfp(v]e',s')/p(yie'',8'")] (4.4.1b)
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and LR is the logarithm of the likelihood ratio for o' and e'', with
§ evaluated at $' and $©'', the conditional maximum likelihood
estimates for © in each contet. The "design for discrimination"
character of this criterion is obvious. Moreover the assumption of a

common © in (4.4.1a), which must be prespecified, must reduce the

practical utility of this criterion. Their second criterion also
requires prespecification of two e's , &', e''., This criterion is
Cs = inf{ C[nj(e',8') - ng(e'',8'")12, ',8' 'eA}, (4.4.2)

where 1;{e,%5) denotes the expectation of the i-th observation and A
ié a prespecified set. For this criterion, if there is no nuisance
parameter, the result may be a singular design, from which & will be
unestimable. Note that the specification of the set A may present
practical difficulties as well.

The fact that both C; and Cg are based on two specified
values for e, which we aim to estimate eventually, makes these
discrimination criteria rather weak, as far a inference is concerned.
Both the above criteria require prespecification of -a';number of
quanties. Stone and Morris (1985) do not investigate problems of
misspecification, Therefore if inference about the parameters is of
interest rather than discrimination, we reserve judgement on the

practical usefulness of this particular approach.
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4.5 Maxi-min criterion

Another alternative method of avoiding> the ©-dependence

pnoblem is the maximin design approach. That is we solve

max min Che(M{e,€1)] {(4.5.1)

€et eed
where by h¢(.) we mean a function h of the criterion ¢. The maximin
design from {4.5.1) will provide that design whose minimum value of
hg(.) is greater than that of any other. Even if the locally optimum
criterion ¢ is invariant under transformations of the parameter space
is not necessary that the maximin criterion be invariant. The
locally optima] values of ¢, the criterion function, may vary
considerably with e, indicating that some & values may dominate the
construction of the good design. A function hg which is of great use

in this respect (Silvey, 1980 p 58) is the efficiency measure defined

as

he(M{e.€]) := Eff(e €) = o[M(e,8)1 A olM(e,€*)] (4.5.2)

with A = / or - and €*=£*(e) the locally optimum design for e.
Silvey (1980) has applied the criterion in two examples and
casts some doubt on how useful this approach might be. The maximin

efficiency criterion is applied to a particular problem in chapter 8.




4.6 Constant information designs

A constant information design is one where the information
of the associated with a nonlinear design, M(e,£) say, is at least
approximately independent of e,

Fisher (1922,1966) came across this property in the dilution
series experiment, which will be discussed extensively in chapter 7.
Abdelbasit and Plackett (1981,1983) discuss and extend Fisher's work.
In their 1983 work they state that "constant information is a
desirable property because the asymptotic dispersion matrix of the
estimators is then the same, whatever the values of the parameters”.
While there is no doubt that this is an interesting property we doupt
that this might be considered as the only goal for a design of
experiment.

A design with a constant information structure does not

remain invariant under nonlinear transformations. Moreover in theory
we can obtain, under maximin criteria, designs which are at least as
good as egual information designs.
It is interesting to note that Fisher applied this criterion to the
dilution series experimeﬁt but he never came back to this approach
again. Abdelbasit and Plackett generalize this concept to any other
problem.

An alternative to the static designs is the seqguential way

of designing, which is extensively discussed in the next chapter.




CHAPTER 5

SEQUENTIAL DESIGNS

5.1 Introduction

Our objective 1is to construct a design that eventually
estimates the unknown parameter vector © as well as possible.
Adopting the seguential procedure we choose an initial design using
prior knowledge on ® and get an estimate of the parameters. This
estimate is useful as an initial guess to redesign, reestimate and so

on. Some important questions are as follows

How do we choose the initial design?

What measures of optimality can we use?

- How do we revise or continue the design?

I

How wiil inference be made?

In the rest of this chapter we will try to answer these
questions. We mention here that we can proceed by either designing
in batches of observations or adding a single observation at a time

into the design, The latter procedure will be called

fully-sequential design, adopting Ford's (1976) terminology.




5.2 Background

Let us assume that the initial design has been constructed
and an estimate 8 has been obtained. When a new design point is
added (in terms of a batch of observations or a single observation) a
new Fisher information matrix is obtained and a new estimator is
evaluated - through least squares for instance. Thus a sequence of
least squares estimates 3n is obtained. Jennrich (1969) proved the
existence of these estimators when the design is developed
sequentially but in a manner not dependent on %n' Moreover, he
established the strong consistency of the sequence of estimators.
provided © is compact. i.e

n oS
'e'n-—v-a, as n-—o (56.2.1)

The seqguence of average information matrices obtained in

this way is also a strongly consistent sequence i.e, as Nne»w
M(8,.8) Z2-M(e,8). (5.2.2)

Finally, he showed that. as n—®

/n (8n—e)_£é. N(0,02M"1(e,8)) (5.2.3)

where byi we mean convergence in distribution.
Wu (1981) relaxed Jennrich's assumption and proved the same
results.
It is suggested that the initial design should be built
up at the optimum points of the corresponding locally optimal design,

on the basis of an initial guess for ®. Table 3.1 will be of use in
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this context. Fedorov (1972) suggested that the next design point
should be that which minimizes the estimator's generalized variance.
That is a D(e)-optimality criterion is used for choosing the next

design point. This defines an algorithm with the following steps

1.- Define initial values o, for © and perform the
experiment.

2.~ From the initial design obtain an estimate,
6;, of ©.

3.- Choose as the next design point u,.,. n=1,2,..

that which minimizes

A8y, 8y . upey ) =0 2LV (8 upe g ) TTM 1 (8, €0) CVE (8, Upay )]

N
4.- Perform the experiment at up,y, and get ©p,,

5.- Perform steps 3. and 4. the required number

of times.

The above algorithm is based on the results of Jennrich
(1969) and Wu (1981) mentioned earlier. White (1975) considered the

sequence {M(e,€,)} rather than {M(éﬁ,e)}. Under very strong

assumptions she proved that, an n-wew,
as *
detM(e.g,) — det M(e,£") {(5.2.4)
where €% is the optimal measure. But this limiting result has only

been shown to hold for the particular case of D(®)-optimality and one

of the strong assumptions which it is based is that 3n—ra.




5.3 Extensions

Establishment of convergence of M(Sh,en) to M(e,ﬁk) under
some function ¢ has many technical difficulties. One main virtue of
the linear theory is the dichotomous convergence theorem of Wu and
Wynn (1878) for any function ¢, and for the sequence M(&,).

Titterington (1980a) generalized, for the regression
model,the relation proposed (5.2.4) for D(®)-optimality. For any
criterion & (recall Definition 3.3.2) and 1its corresponding
directional derivative ¢ (appendix A1.I) he suggested choosing as the

next design point up,, that which minimizes the‘quantity
~ Fa) A A
dp(®n.Epiupsg) = SLM{8p,8,), I(en,upsq)d. (5.3.1)

A somewhat similar iterative structure appears in the extension of

the Wynn type algorithm for linear designs to nonlinear problems in

the following sense.

Algorithm : (Titterington, 1980a)
Consider a sequence «p, n=1,2,... such that limo;=0
as n-o and Lop=e, o{xp<l. Let w,,, minimize

d[M(e.E,), I(e,upl. (5.3.2)

Given an initial €,€E and subject to certain conditions, the sequence

of designs generated by the convex iteration scheme

gnn: (1_°‘n)gn+an€(unu) (5.83.3)

converges to a ®-optimal design which puts measure 1 on uj.
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There are two difficult_features of seguential design.

Firstly, as any design point comes iﬁto the design on the
basis of a previous estimate of the parameter, the design points are
not statistically independent. Thus the "information" matrix, as
defined earlier, is not Fisher's information matrix in the sense that
it does not necessarily provide an approximate covariance matrix.

Secondly, at the s-th stage, say, the estimator eg has to be
evaluated. This can be done through the Newton-Raphson method (Stoer
and Bulirsh (1979)) which of course might diverge if a poor initial
guess is made.

These two problems are related to inference about & and will
be faced in practice in chapter 7.

On the first point Ford (1976) discussed the confidence
interval preoblem for sequential designs under the repeated sampling
and the strong likelihood principle of inference. Ford and Silvey
(1980), on the basis of a simulation study, made the suggestion of
ignoring the fact that the design is sequential and instead, of using
the values uy.u,,...,u; of the design as if they were prespecified.
Ford, Titterington and Wu (1985) discuss procedures for obtaining
valid inferences when the sequential nature of design is adopted.

On the secondipoint, the Newton-Raphson iteration scheme is
the numerical method which supplies the estimate at stage s, say.

through the iteration

A -
B k+1 = 6.k - 51 ag k=1,2.... (5.3.4)

where gs,k is an estimate of the k-th iteration at the s-stage and S
is the appropriately-evaluated Hessian of the log-likelihood, which
has to be inverted, and gg the vector of first partial derivatives.

For discussion on the Newton-Raphson method in nonlinear problem see
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Bard (1974). A statistical version of the Newton-Raphson method,
known as stochastic approximation (or the Robbins-Monro scheme) will

be discussed in paragraph 5.5.

The sequential idea of designing has also been faced from a

Bayesian point of view. The criterion for parameter estimation is to
choose that value ey of e for which the posterior density is a
maximum. Mereover, in principle for large sample situations the
posterior distribution fof e, mw(elv,.u,}, given a prior distribution

should be approximately normal with

n(e{yp.up) & N(&p, (B+S(ep,En,vp) 1) (5.8.5)

where the matrix B reflects the prior information. The interesting
point is that the Bayesian approach leads to D(e)-optimality, see
Ford (1976) among others. Box and Hunter (1967) and Draper and
Hunter (1967a,1967b) obtained seqguential designs within a Bayvesian
framework. When interest is based on a subset s of parameters
Henson and Hunter (1969) and Hill and Hunter (1974) used a
criterion, based on the corresponding marginal distribution, which
leads to Dg(e)-optimality.

Finally, as it is noted by Silvey (1980 p 866), in
sequential design it is only inference obtained from the likelihood
function, which remains the same whether the design points uy,
i=1,2,...,n have been predefined or evaluated sequentially. If the

repeated sampling approach is adopted the situatioen is not that

clear.




5.4 Binary response problems

Experiments with dichotomous outcomes can be faced in a
variety of practical situations. In these cases the "response" and

the "non-response" outcome can be presented in different ways. Some

practical situations are as follows
-~ In testing explosives:
Usually a weight is dropped on the explosive mixture from

a certain height. The dichotomous variable takes value "explode" or

"not explode".
- In entomological assays

A critical dose level is associated with the insect of

interest. The response is "killed" or "not killed".

- In fatigue experiments.
The strength of a certain material is tested. This
response is "strong" or "not strong".

-~ In educational studies.

The tutor might have questions of the form: "right" or
"wrong".
- In life testing.
Experiment on the life of a photographic film or safety

equipment such as fire extinguishers.

In this kind of problem the main interest is usually devoted
to the estimation of a percentile Lp of the response curve. Usually
this percentile is the median Ly 5. The commonlv used sequential

methods are the following:
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- Spearman - Karber's method (Finney, 1978,sectidn 18.7)
~ Up-and-Down method (UD) of Dixon and Mood (1948)

- Stochastic Approximation (S8A) of Robbins and Monro(1951)

The Spearman—Ka?bef estimator was used in the early 1940's.
Finney (1978) formulates this method, which estimates the mean of the
response with no computational difficulties but with assumptions
which are very unlikely to be attained in practice.

The Up-and-Down sequential scheme can be described by the

model:
u, - © if yYp=1 i
Upey = >0 (5.4.1)

u, + ® if v,=0

Dixon and Mood (1948) assumed a probit model with parameterg u an o<
for the detonation level, when they applied the method on testing
explosives. The choise of the "step size" & is a problem. One
suggestion is that it should be a rough estimate of ©.
Wetherill (1963,1975), Wetherill et al (1966) and Choi (1971) used a
lJogit analysis. Brownlee et al (1953) discuss the method as applied
to small samples and Kershaw (1983) provides an extensive simulation
study on the method. Wasan (1969, chapter 8) and Tsutakawa {1967)
discussed the method as an example of a Markov process : from the
definition of the method the choise of each run depends only on the
current situation.

As far as applications are concerned in binary response
problems we mention that McLeish and Tosh (1983) estimate extfeme
quantiles of the logistic response. Wu (1985) suggested a local

approximation, to any unknown response, hy the logistic, when the
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quantile Lp, pe[0.1,0.9] is to be estimated. Wu (1985) obtained
fully efficient estimates using the Stochastic Approximation scheme
which we discuss in the next section.

As far as life testing is concerned Izeman and Rinoff
{1977) worked on the exponential distribution to provide a sequentiél
design. Bergman and Turnbull (1983) placed the life testing problem

with the framework of sequential design and the method was applied

to data from an:iimal experiments.




5.5 Stochastic Approximation

The Stochastic Approximation (SA) method can be applieé to
an experiment that is fully sequential in Ford's (1976) terms, i.e
when we build up knowledge about & by adding one experimental unit at
each stage of the experiment. It is a stochastic version of the
Newton-Raphson (NR) iteration : this numerical method motivated
Robbins and Monro (1951) in their pioneer work on SA. Since then the
method has attracted much attention in the literature more because of
its theoretical framework than because of its potential in
applications. The practical aspects of the method are discussed in
Qhapter 7. Here we present a critical review of the theoretical
foundation of the method, while avoiding most of the technicalities.

The SA method deals with relations (2.2.3) and (2.3.2).

Namely: evaluate the root e of the eguation
E{Y(u)} := T(u) = p, Dpe€R, (5.5.1)

where @ 1is unique and T, p provided. Robbins and Moanro (1951)

imposed the following two main assumptions on the Borel measurable

function T

(A1) (u-e)[T(u)-pI>0 (6.5.2a)

(A2) PrLlY(u)-pl£K;] = 1 for every u (5.5.2b)
with K, being a constant. Using the conditions

(C1) inflT(u)-pla8>0 (5.5.3a)

(C2) T(u) nondecreasing and T'{(e)=b>0 (5.5.3b)
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they proved that then there exists a sequence «pn, n=1,2.... with
>0, Loy =00,  Loj<@ (5.5.4)

such that the sequence of stimuli

Up+y = Uy - xp{yy-p) n=2,3,.., u, arbitrary (5.5.5)

converges to © in mean sguare, i.e, as n.»®
lim E(up-6)2 = 0. (5.5.6)

Recall that (C2) is actually Assumption 4 mentioned in section 2.2.
The physical meaning of the sequence o, can be thought of as the
"weight" associated with trial n, as discussed in an application by
Guttman and Guttman (1959). A typical o, might be an=n‘1 or more
generally any seqguence satisfying the relation

c'/n & @y £ ¢"/n, c',c” constants (5.5.7)

Wolfowitz (1952) weakened (A2) and proved that, as n.»®

u, —»%, WwWp.l. (5.5.8)

Kiefer and Wolfowitz (1952) modified the method to that of evaluating
the extremes of a function rather than the roots of an eguation.

Different SA schemes were developed and these are reviewed by Wasan

(1969). Letting
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an = c/(nb), b=T'(8)=T'(u)|y=p (5.5.9)

- and assuming that

(AB) Y; = a+b(uj-e)+ey, a=T(e) {(5.5.10)

with e; under Assumption 1 of section 2.2, then we have that, as

N~ ,

lim E(upy-8) = 0 (5.5.11a)

lim Var(up-e) = 0°c?/[nb2(2c-1)], with c>.5. (5.5.11b)

It was Chung (1954) and later Sacks (1958) who looked at asymptotic
normality. More assumption were needed of course and were imposed by
Chung. In addition to (Al),(A2) he required a lower bound for

Var{Y(u)} and that (C1) holds for every >0 when |u-e8{<%. Then with

any «, of the form

an = n~(1-€) | gq1/2 (5.5.12)

relations {5.5.11) still hold. With one more assumption

(A4) E{Y(u)-T(u)}2 = ¢2»0, for every u, (5.5.13)

and for the same sequence o, with € bounded below it can be proved

that, as n—rew

nll-€)/2 (un_e)."i,N(o,c?/zb). (5.5.14)
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Moreover for the sequehce
&, = C/n , n=1.2,.. {5.5.15)

more assumptions were needed. Chung (1954) imposed them and Hodges

and Lehmann (1956) made them slightly weaker. However, the main
result is that, for o«,, n=1,2,... as in (5.5.15) with
C>1/2K where K¢ inf[(T(u)-p)/(u-e)] (5.5.16)

then, as h—,

n(u,-8) Ji. N(0, 02C%/(2bC-1)). bC>r1/2. (5.5.17)

- From (5.5.17) it is obvious that the asvmptotic variance is minimized

with an optimal choice of C. Cy,y say, namely

Copt = b™1 =[T'(e)]"*. (5.5.18)

Recall that p is given but the c.d.f T will usually not be
known, which happens in real life problems. So again we face the
common problem of nonlinear situations. Without the knowledge of
some quantities (here T,®) we can not obtain the optimal procedure
(here Cypty and consequently up.,).

Thus the problem of creating the sequence (5.5.5) contains
the intirnsic problem of creating an approximation for Copt'
Approximations need iterations, iterations are sequences, so we heed
a "daughter" sequence of up., B, say, which might converge, hopefully,
to b. Simultaneously the "parent" sequence, will converge to e.

Sakrison (1965) and Venter (1967) tried to overcome the
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difficulty of the unknown T. Anbar (1978) considered a method which
is the simplest, from the point of view of applications‘and well
behaved from a theoretical point of view. His idea is based on the
main virtue of SA, that SA is a kind of regression of Y on u, and at
the same time, Copt is a kind of slope for the unknown T(®). Thus at

stage n+1 he suggested as C the slope coefficient of the regression

line formed from the data uj and Y(ujy) i=1,2,... namely
C = By = E(ujTy)¥y / E(ug-U,)2 , na2  (5.5.19)
where Up=n"*Luy

Anbar (1978) imposed different assumptions the main one being that,

for all u, and such that T{(®)=p,

Kiu-e}<|T(u) | <K, ju-ej (5.5.20)

with K,K; being constants. Relation (5.5.20) simply means that the
derivative of T lies between K and>K1. -Moreover he restricted the
interval [K,K;] to a subinterval [K*’Ki] in which he assumed Kz<2K.
Although he made heavy use of this assumption, Lai and Robbins (1981)

proved that the following results are still wvalid without the

assumption. Suppose as n-—»o

lim By = b, B, as in (5.5.19). (5.5.21)
Thén
(i) /n(un—e)jéa-N(O,oz/bz), as n-ro {5.5.22)

.

with b as in (5.5.4) and o2 as in (5.5.14), and




(i1) limup = (5.5.23)

moreover

lim {L(uj-6)2/logn} = o2/b2. (5.5.24)

The quantity E(ui*e)z has been named the cost of the experiment by
Lai and Robbins (1979). For the seqguence En- a truncation has been
suggested by both Anbar (1978) and Lai and Robbins (1981) rather than
using at each stage 1/En. Under this truncation idea the seguence
1/35 is restricted to a prespecified interval. Therefore wheﬁ a
value outside this interval is obtained, the sequence is truncated to
the interval iimits. Wu (1985) applied the truncation idea and we

used the truncation of the SA scheme when obtaining estimates for the

dilution series problem which we discuss in chapter 7.

Example 5.5.1. Let 2n(8) be the log-likelihood of the n observations

for a model with c.d.f p(vjluj,®). Then for the n+i
observations the log-likelihood will be 2,,, and

equéls

2n+g(@)=Elogplyjluj.0)=2,(0)+D(Vpiqlugsy.@). (5.5.25)

Let gn' §n+1 be the MLE obtained from 2,.,(®) and 2,(8) respectively.

Taking the derivatives of the two sides of (5.5.25) we have

igx_ﬁ-l(e) agn(e) ' alogp(Yn+1|un+1»e) (5.5.26
de B 3e N 3e ' 5.5.26)

From the definition of MLE




a8 (e) . alOEP(Yn+1lUn+1,e)l
= 36 ‘€h+1 3e 1854

A A I
9%+1 (O +8p .3 ~8p) A
* 3o * Selyneglupeg pey)

P
| . 329, (8y) .
=0+ (en+1~en)gg“"———~ + 8cl¥p+glupsy.0y)  (5.5.27)

based on a first order Taylor expansion about 6. where by S.(.].) we
denote the score function for a single observation.
From (5.5.27) we obtain the appropriate recursion
A » 1 A
<] = 0y -~ TE R S u .8 ' 5.5.28)
n+t n 329,(8,) cVn+1lUn+q-Opn) (
ae?

Approximating the Hessian of ¢ by Fisher's information

N A N
Spey = Op + I71(8)Sc(Vpeylupes . 8q) n=0.1,2... (5.5.29)

Example 5.5.2. Consider the regression model
v = exp(-eu)+e

For the error term e we assume that it is under Assumpfion 2. The

notation of example 5.5.1 is used. Namely
?n = const. -(1/(20%))L(y;-exp(-6u;))2 = Llogp(y;luj,e)
32p/98 = -0"2Lujexp(-6uj) (yvj-exp(-8uj)) = LSy(yiluj,o)

329,/3e2 = —0‘22[(—d§exp(—eui))(yi—exp(heui})+u§exp(—26ui)]




1(e) = o-2rujexp(-26u;)

Applying the recursion formula (5.5.29) we get

I A _y A A
en+1 = Sn 'I (en)Eun+1exp(‘enun+1)(Yn+1-exp(—'6nun+1)] (5-5.30)

The information dﬁexp(—zeui) is asked to be minimized in each stage,
as an optimum design rule. Therefor taking the logarithm of the

information and evaluating the root of the derivative it can be shown

that the optimum design rule occurs when

Ujeq = 1/65 i=0,1, .. (5.5.31)

Substituting (5.5.81) in (5.5.30) we get
~ A A _ _ nt A
en+1=8n-L(1/6p)e ™ (yi.+,-e71)1/[E(1/87_, Jexp(-26,/6;_,)], (5.5.32)

A
as one point recursion. Assuming that (en/§i~1)§1, the scheme

(5.5.32) is approximated by

A A A -1 n+ 2
én+y = Oy — [(1/e4)e{ypey-e71)1/[E(1/054)]. (5.5.33)
nsl
In a long run the summation ﬁ(l/ei_l) will be approximately egual to

»
(n+1)eq?. Therefore (5.5.33) can be approximated by

sy = Oy —Tpe/(n+1)I(ypeg-e~t). (5.5.34)

Scheme (5.5.34) is a stochastic approximation scheme in which the

sequence «, is




xp= 8 /(n+1). (5.5.35)

Moreover if we assume that the sequence of estimates lie in between

e) and &, then

Loy » @)eC1/(n+1) and Lo, & €,e2L1/(n+1)2 (5.5.36)

A
Thus for the truncated sequence in which e,,, is defined by (5.5.34)
A
unless the right-hand side is less than @] (in which case ©n.+4=071) or
A
is greater than e, (in which case ©nh+1~8y), condition (5.5.4) holds

(because of (5.5.30), and therefore the SA scheme converges to the

root of the equation 3%/3e=0. i.e to the MLE e.

7%
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5.6 Discussion

The methods UD and SA tackled in sections 5.4 and 5.5 have
-the following common characteristics.
(i) They deal with the fully sequential way of designing.
(11) There is a non-parametric flavour to them.
{(iii) They are developed for estimating the parameter of
interest, usually a single one and not a subset

of several parameters.

The fully sequential nature is obvious as one observation
comes at each stage. Moreover both UD and SA are "Markovian" in the
sense that the choice of each run depeﬁds only on the current
situation. The martingale (see Appendix 10) structure of SA has béen

considered by Lai and Robbins (1979).

Recall (5.5.5). When the "regression" equation (5.5.5) is

of the form

T(Lp) = p, pe(0,1) (6.6.1)

i.e the 100p percentile of the response is to be evaluated, (5.5.5)

reduces fto

D - g (g op) (5.6.2)

When p=0.5 then the median, m=L g, is to be estimated through

Mpey = My~ &plyp-1/2)= (5.6.3)




= mp - (xp/2)(2yy-1)

(If we take o;=2% to be a constant sequence, then)

= m, - $(2y,-1) (5.6.4)

and relation (5.6.4) is equivalent to (5.4.1). Thus the SA scheme
has been reduced to the UD method, which is used for the median of
the response. In other words the UD method is a special case of the
SA scheme.

The nonparametric feature of the methods is based on the
fact that we try to estimate a functional of the unknown response
T(.), usually the p-th percentile Lp. The assumption which is made
about the cdf T(.) is usually one of two, either normal or logistic,
which leads to probit or logit analysis. Indeed both methods have
been used. The virtue of the logit model is that it is both simple
and approximates the normal very well in the range pe(0.2,0.8]
(Cox,1968, Table 2.1, Finney, 1978, section 17.4).

The SA scheme is a fully sequential procedure for solving an
equation : recall (5.6.1) as a special case of (5.5.5). For the
logistic the percentiie LPAis as in (4.8.8a); that is, a ratio has to
be estimated through (5.6.1).

The superiority of SA in comparison to UD is that the Up
AND Down method has only two positions to which to move. The SA
method on the other hand is more flexible in terms of the step length
taken : SA moves the sequence according to the gradiant of the

tangent to T(.) as the scheme is of the form

Unts = U - (1/(nB))(yp-p), By as in (5.5.19) (5.6.4)

A
where ﬁn is the slope of a linearization of T(.) i.e BneT'(e). Thus

even from a geometrical argument UD can be regarded as a restricted




direction SA.

The analogy between SA and NR is obvious. Thus, the use of
a good initial guess in SA is based on the fact that NR converges for
an initial value in the neighborhood of the solution (see : Appendix
A6.1). The idea that T is a Borel measurable function is as
essential as is the assumption in Numerical Analysis of a continues
differentiable function. Moreover the derivative sequence in NR has

been replaced by a seqguence of real numbers in SA.

Now, let wus try to compare the form of SA and the

generalization of Wynn's algorithm from Titterington (1980b) which is

presented in section 5.3.

For the sequence «p, common to both, we have (we shall refer

to Titterington's algorithm as (A))

(5A) o>0, Lap = @, Fop ¢ (5.7.4a)

(A) 0<xp=l, Loy = e, lim oy = 0. (5.7.4b)

We are applying a convex iteration scheme in both situations. Indeed

for SA the design points are produced through the iteration

(8A) upyy = up - op(yy-p) n=1,2,... (5.8.4a)

For algorithm (A) a convex iteration of the design measures is used,

namely

(A) Zpeq = € - ®p(Ep-Cluy)) n=1,2,... (5.8.4b)

The optimal choice of the sequence «p=C/n in SA (recall that

in (A) a typical «p, is ap=1/n) depends on the optimal choice of C.




This has been chosen from (5.5.18) as that which minimizes the

asymptotic variance of the guantile estimator, i.e

1/00pt = T’(e)- (5.8.5)

Under Assumption 4 and

using the directional derivative idea

(Appendix Al1.1)

T'(8) = dp(e,0+1) (5.8.6)

with ®7 being the Frechet directional derivative of T. Algorithm (A)

suggests that the next design point u shall be that which minimizes
the quantity

®iM(e,E,) . I(e,u)} . (5.8.7)

with ¢ the Frechet directional derivative of the criterion ¢ which is

being considered.

i
steepest ascent

Thus beyond the point that algorithm (A) is a
/4

method and SA is also searching for some optimal
direction through C and its "regression" approximation (recall Ry in

(5.5.19) the two schemes share a number of interesting points.

Chapters 4 and 5 were devoted to design for point estimation

under different procedures. The next chapter tackles the interval

estimation problem .




CHAPTER 6

CONFIDENCE INTERVALS

6.1 Introduction

After performing the experiment and the data have been
collected) statistical inference needs point estimation and the
construction of the appropriate, possiblﬁ approximate, confidence
intervals.

In nonlinear problems we try to apply the linear theory in
constructing confidence intervals. The cost we have to pay is the
approximation involved and its lack of accuracy. The accuracy
depends on how nonlinear the function of interest is and thus the
idea of a measure of nonlinearity, which is discussed in the rest of
this chapter, was introduced.

When the design is constructed sequentially the question
must be asked of how we should obtain the confidence intervals. Ford
{1976) and Ford and Silvey (1980) studied this problem. An extension
of their approach is tried in chapter 7. Here we apply their

argument in section 6.5.
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6.2 Background

Recall model (2.2.3), i.e a classical nonlinear regression
model, under Assumptions 2,3 and 5. As the function f(.), the
deterministic part of model (2.2.3), is nonlinear it is of interest
to see how nonlinear it is, by a Taylor expansion.

The tangent hyper-plane to the solution locus (the surface
in the sample space generated by the points ny=f(e,y}, i=1,2,...,n

with @ regarded as a variable) at point f(g) is given by
A A A
qg(e)=f(e) + X'(e-8) ‘ (6.2.1)

A
where f(®)=(f(e,uy),f(8,u,),...,f(0,uy))T, X=X(8) and X as in
(2.6.1). 1In principle o (the true o ) is needed, instead of é, but

&, . .
© is used in practice.

Beale (1960) suggested a dimensionless empirical measure of

nonlinearity A*, defined by

*

A* = ps2(d,/d,) (6.2.2)

with s? as in (2.5.1), p the number of parameters involved and

dj = T |in(eg)-ale) |l i=2,4 (6.2.3)
where {ey} is a set of m points in the neighborhood of 8.
The theoretical measure of nonlinearity according to Beale, A say, is

the same as A" but with o2 in place of s® and with m—c. The minimum

value of the theoretical measure of nonlinearity, Ay say, was named




the intrinsic nonlinearity of the assumed_cofrect model.
Guttman and Meter (1965) criticized Beale's measures of
nonlinearity on the basis of some real 1life models. Later M.J. Box
(1971b) provided a lower bound for nonlinearity depending on the bias
of the estimatér @ : thus bias and nonlinearity were connected.
: Measure A, is a sort of curvature of the solution locus. Bates and

Watts (1980), using ideas from differential geometry, proved that A

|

is one quarter of the mean square intrinsic curvature. Moreover they
\ proved that by rgplicating the design r times the curvature at any
! point in any direction is reduced by a factor 1/¥r. Thus replication
obtained its own geometrical interpretation.

Although the measures of nonlinearity have a strong
theoretical background thanks to the work of Hamilton, Watts and
Bates (1982) and Bates and Watts (1981) the linear approximation is
what is applied in practice. One reason is that departure from
linearity needs at least the evaluation of the Hessian which might
prove computationally inefficient, even these davs. More recent work

appears in Hamilton (1986).

6.3 Confidence regions

In constructing confidence regions the target is always to
minimize their volume/area/length. Hence optimal design might lead
to minimum approximate confidence regions.

If (6.2.1) is true., i.e the model is 1linear, then a

100(1-x)}% confidence region corresponds to

Sp(®)-S,(8) = (8-8)T(XTX)(e-6)£ps2F (;p,n-p) (6.3.1)
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with Sp(e) as in (2.4.1), Sp(e) being the residual sum of squares, s?
an estimate of ©2, X as in (2.6.1a) and F(x;p,n-p) as usual the
100(1-«)% of the F distribution. We note that in nonlinear problems

the estimator of o2

82 = 8,(8)/(n-p) (6.3.2)

is not an unbiased estimator of o® (Draper and Smith, 1981 ,p 504).
Recall that matrix X depends on an estimate for o. Thus the
approximation is based both on the linearity and the dependence of X
on 8.

Beale (1960) treated confidence . regions for the classical
rggression problems dassuming a uniform prior distribution over the

solution locus. He adjusted the confidence region to be of the usual

form, using

Sn(8) - S,(8) = Aps?F(«;p,n-p), (6.3.3)

in which

1, linearization without Beale's assumption
A= 1+(n/n-1)Ag if p=1 . (6.3.4)

1+[n(p+2)/(n-p)plA, if p22

Thus Beale (1960) used the measure of nonlinearity he developed to
adjust an approximation from linearity. when a confidence region is

constructed.

In the nonlinear case confidence regions sometimes appear to
have "banana-shapes". Under suitable transformation they can

sometimes be made ellipsoidal and thus easier to deal with.
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Hamilton and Watts (1985) argue that elliptical confidence
regions (under D(e)-optimality) that are suitable for large samples
are not appropriate for small samples. Thus they try to construct a
gquadratic approximation to the wvolume of small sample confidence

regions. They propose a design criterion of the form
G = a-logdet{M(e,€)}-log{i+b-trQ(e.€)} (6.3.5)

where a.b are constants. M({(®,8) is the average information matrix and
Q{(e.€) is a matrix describingrparameter effects. Because of the
presence of the second term in (6.3.5) the criterion G is not
invariant under (nonlinear) transformations of o. Moreover their
criterion requires an estimate of o2 which is not always available.

In section 6.5 we tackle the small sample problem in
constructing confidence intervals, adopting a sequential design
procedure. In principle, for large samples, the covariance matrix is
approximated by the inverse of Fisher's information matrix (recall
(2.6.2)) and thus approximate confidence intervals can be obtained.
However, account has to be taken of the nature of the experiment, i.e
if it is a sequential or static one.

It was Ford {(1976) who stated that the sequential nature of
the design is irrelevant to anv method of inference based on the
strong likelihood principle. Therefore maximum likelihood estimates
can be calculated as if the design points uy,...,u; were
predetermined. Moreover in practice Fisher's information matrix can
be approximated by the sample information (recall (2.4.5)) when the
likelihood function has been evaluated.

Unfortunately the situation is not that clear when the

repeated sampling approach is adopted, although Ford and Silvey
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(1980) suggest that in setting up confidence intervals, even in the
singular case "we may effectively ignore the fact that the design is
sequential"”., Ford (1976) in %Section 4.4 provides an illustration.
Thus the inference made takes into consideration the design procedure
used in experiment an experiment E is well defined by the following

four elements
E = (U,S,Fi'Pj) i=1,2, j=1,2 (6.3.6)

where (U,&) form the design, (recall definition 2.2.2), Fj., i=1,2
indicates whether the problem is "quantal" or not and Pj. j=1.2
describes the design procedure : sequential or static. After E has

been performed, inference is made from the results,

6.4 Simulation study

In sequentially constructed designs, the work of Ford and
Silvey (1980) plays an important role. Moreover, there are cases in
which the design wmst, by necessity, to be built up sequentially.
Ford, Titterington and Wu (1985) discuss various procedures for
obtaining Yalid inferences in sequential design.

The features of a fully sequential design appear in the

autoregressive model.

Vier = OV * €444 - 1=1,2,...,0. (6.4.1)

Note that this is of the form vj,.,=6xj.,+€j,,. where X{,,=vj. The
value y, is given and the errors €j,, satisfy Assumption 2. Then an

estimate of 8, &,, is given by




A
Ony= LVivier / IV (6.4.2)

where the summation runs from 1 to n. The sample information I,/oc?

can be evaluated from

In = 2yj (6.4.3a)
and Lai and Siegmund (1983) point out that the asymptotic result
N
I??(en—e)ing(o,oz) (6.4.3b)

holds for lel|<1.

‘The result of Lai and Siegmund (1983) can be put into
context by noting that if the design points were fixed in the model
vi=6xj+€4i, i=1,2,..n, and 8n=2yixi/2xi, then it holds exactly for any
n and © that fg?gn—e)jg-N(o,oz) where In=2x§. Ford, Titterington and
Wu (1985) also discuss this model. In the simulation study we use
small sample sizes of n=10,5 observations. for different nominal
levels «=0.05, 0.20. We took y,;=0.0 and used érror variance o2=1.
Different values of © were taken from the range -1.5<e<1.5.

Confidence limits were evaluated according to the formula

& ® t(n-1;1-x/2)/[(RSS/n-1)Tp] (6.4.4a)
with RS8S as the residual sum of squares,namely

RSS = Ly} —‘%Eyi+1yi. (6.4.4b)

Of course (6.4.4) will only give exact confidence intervals

in the case where yj=exj+€; with all the X;'s fixed in advance or
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selected independently of the other vyi's.

To test the normality of the sequence e the skewness and
the kurtosis were evaluated. The results are presented in Tables
6.1, 6.2, for 1000 simulated experiments.

From Tables 6.1, 6.2 it is easy to see that so far as the
normality is concerned the results are unsatisfactory when ef(—l,l).
The mean squared error (MSE) is , of course, larger when the sample

size is reduced from n=10 to n=5 observations, i.e the accuracy of

the estimators has been reduced.

However, so far as the coverage probabilities are concerned,
the study provides evidence that, even with small sample sizes, the
approximation is with some exceptions reasonably valid. 1In general
from the results of Tables 6 the nominal level did not influence the
study.

Although model (6.4.1) is linear, the estimate @ is a ratio
of the data obtained sequentially, i.e not independently. The work
of Ford and Silvey (1980) and this simulation study encourages us to
ignore the sequential nature of the design, when inference has to be

. L A
carried out, though we note the increased non normality of @ in

extreme cases.

We indeed present three more simulation studies to support
this. The binary response problem and a two variable regression

problem are discussed in the next chapter.




Table 6.1

Simulation study on autoregressive model (6.4.1)
Nominal level «=0.05. Number of simulations N=1000

Sample size n=10,5 , v;=0.0, o=1

@

n e P MSE S K

10 -1.5 .91% 0.03 3.88 21.07 -1.44
-1.0 .947 0.09 1.38 5.47 -.84
-0.5 .970 0.09 0.63 3.27 —-0.42

0.0 .967 0.10 -0.086 2.56 .00
0.5 .965 0.10 -0.58 3.01 0.41
1.0 .955 0.09 -1.29 5.45 0.85

1.5 .928 0.03 -3.96 22.21 1.45

5 -1.5 .968 0.27 1.13 5.79 -1.29
-1.0 .969 0.27 0.08 10.00 -0.82
-0.5 .979 0.25 -0.09 6.05 -0.39

¢.0 .970 0.25 0.22 4.92 0.02
0.5 .973 0.33 -0.58 4.95 0.79
1.0 .975 0.61 -0.14 4.98 0.38

1.5 .957 0.29 -1.28 6.02 1.29

P : estimated coverage, S : Average sKkewness of estimates

K : Average kurtosis of estinmates b= A“Q*QQﬁf(éﬁ) V=N




Table 6.2

Simulation Study on autoregressive model (6.4.1)
Nominal level ®=.20. Number of simulations N=1000

Sample size n=10,5 , y,=0.0, o=1

o

n e P MSE S K

10 -1.5 .773 0.04 4.78 31.35 -1.386
-1.¢ .778 0.09 1.12 4.64 -0.85
-0.5 .868 0.08 " 0.61 3.43 -0.42

0.0 .856 0.09 -0.11 2.73 0.00
0.5 .839 0.09 -~0.65 3.37 0.41 |-
1.0 .827 0.07 -1.38 5.84 0.87

1.5 .770 0.03 -3.28 19.39 1.44

5 -1.5 .764 06.25 1.56 6.98 -0.88
-1.0 .851 0.27 0.65 4.83 -0.80
-0.5 .862 0.27 -0.48 7.83 -0.39

0.0 .904 0.24 0.09 5.50 0.00 -
0.5 .866 0.25 -0.28 4.83 0.38

1.0 .838 0.27 -0.51 4.84 0.81

§,P,8,K as in Table 6.1




CHAPTER 7

SIMULATION STUDIES

7.1 Introduction

We have already reviewed and augmented the theory of the
nonlinear design problem. This chapter and, the following two, are
devoted to applications. We try "to put theory to work" on
particular problems. We discuss the difficulties which arise and the
results obtained. Both the binary and continuous cases are tackled
for one parameter and two parameters respectively. The simulation
bstudies were carried out on the ICL computer of Glasgow University.

In the sequel we describe the problems simulated. and given
interpretations of the results. Thesé simulations are

- Simulation 1
The dilution series problem (sections 7.2 to 7.8).
- Simulation II

The first order growth law (sections 7.7 to 7.9).

7.2 The dilution series assesment

Experimenters and statisticians are indebted to Rothamsted
Experimental Station as it offered a job to the jobless Fisher!

Since then Fisher developed the theory of experimental design and




tackled the first nonlinear design problem in 1922. This problem is

that of dilution series which we now describe.

It is desired to determine the concentration of
migro~organisms in a solution. In this case various dilutions are
sampled. For every dilution we record whether or not there is a
sterility. We use the following notation.

u : a small volume that is taken out of a volume, say

V, of liquid which contains N tiny organisms. Let
U=[Uy.U,] be the design space.
© : The density per unit volume, i.e 8=N/V. The probability

that the volume contains no organisms is
p = (1-u/V)N = exp(-Nu/V) = exp(-eu).

y : The binary response describing the phenomenon is
y=1 : no organism in u (sterile)

y=0 ; organisms in u (fertile).
The probability model describing the expefiment is therefore

exp(-eu) y=1
p(viu,e) = e>0 (7.2.1)

1 - exp(-eu) y=0 ,

The aim is to estimate ©® as well as possible. Model (7.2.1)

might describe also the probability that an insect survives a dose of

u units of a certain insecticide,

Fisher's information 1I(u,®) for model (7.2.1) can be

calculated as (Appendix A7.I)

8%
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I{®,u) = u2/(exp(eu)-1). (7.2.2)
On maximizing I{®,u) we get (Aﬁpendix A7.1)
eu” = 1.59. (7.2.3a)

Thus the optimum design point, the one which minimizes the
variance, i.e, that which corresponds to D(e)-optimality, depends on

® according to

1.59/6  if 1.59/e €U
o¥ - (7.2.8b)

Uy or U, otherwise.

The form of the probability model (recall (2.4.3) with
T(u,8) as in (7.2.1)) will be binomial with success probability
p=p(1lju,e) and number of successes the number of sterile samples. In
terms of probability, the value u*=1.59/e corresponds to p=0.2. We
use'values of p when & is egual to its true value to define the space
uU. It seems reasonable to keep the probability levels between
[0.025,0.975]. Therefore, throughoLL%x the simulations we use the

bounds Uy, U,. which can be evaluated from the relations -
exp(-6¢U,)=.025 , exp(-04Uy)=.975 (7.2.4)

where e is the "true" value of ©. For this value we choose ©:=3.18.

which corresponds to u*=0.5 from (7.2.3a). Thus from (7.2.4) we get

Uy = 0.00796 U, = 1.160. (7.2.5a)




Sl
Note that U would‘represent the optimal design point for
6=199.70 and U, similarly for ©=1.370. With this in mind we restrict
the parameter space to ©=[©;,8,], with
61 = 1.370 eu = 199.70. (7.2.5b)
Thus a bounded parameter space is obtained, useful in the simulation

study.

7.3 The strategy of Simulation I

Adopting a seguential procedure for designing we choose the
design points entering the design to be these ones which minimize
Fisher's information. At each stage , s say. s21 the data are

generated in a batch of r replications of the form

1 if exp(-e¢uj)>U(0,1)

¥Yi = i=1,2,...,r (7.3.1)

0 otherwise

where U(0,1) is a uniform (0.1) random number generated by the NAG

subroutine GOSCAF.

In the first stage. s=1. the estimator of e. 31 say, can be

evaluated explicity from the data (proof Appendix A7.II (ii)) as
M
8y = -uyln(r iCy;). (7.8.2)

We use the bounds of © as estimates of ©, in the extreme




cases. It can be préved that if all yj's are 1 then 6=0 and when all
vi{'s are 0 then ®=w. Therefore we avoid situations, especialiy with
small batches, when the MLE could not be evaluated (Appendix A3.II).
The MLE exists and was evaluated iteratively when O0<y;<n. The
numerical method of Newton—Raphson-(NR) (Appendix A6.I) was used to
solve, at each stage, the likelihood equation (Appendix A7.1I) for
evaluating %. Newton-Raphson converges when the initial value lies
in the neighbourhood of the solution. Therefore we had to overcome
this difficulty, which happened often when small batches were used in
early stages of the sequential design. We used the Bisection method
(Appendix A&.1II) using a rather “large initial interval”,
[0.01,100.3] to obtain a "good" initial wvalue and then the

Newton-Raphson method was started off.

As far as the design points are concerned the procedure can

therefore be described by

1.59/65 if ugy,€U
T 3 A

uge; ={ Uy if §,¢0) s=1,2...,spax (7.3.3)
Uy if 850y

The maximum number of stages, spgyx. say. depends on the number of
replications r chosen. Simulations were carried out for r=5,25.350.

We kept n=100 and therefore sy,.=20.4,2, respectively.

The estimates corresponding to (7.3.3) were obtained through

-uglny if s=1
8y if all yi's=0 ,s>1
N
8g =) 93 if all yi’s=1 (7.8.4)

& evaluated through{ NR if r=50

Bisection and NR if r=5.25.

%2




Therefore the design points and the estimates at each point are weil
defined through the truncation we have introduced and the numerical
technigues we used.

To investigate the dependence of the design procedure on the
initial design points we choose the values ©,=2.196 and 6,=7.15 as
the starting values. These values of © lead to corresponding design
points u=,72 and u=.22 inA(7.3.3). These design points correspond to
probability 1levels p=0.1 and p=0.5 respectively when 6 =3.18 1i.e
values to the right and to the left of the local optimum design point
u*=0.5 corresponding to ©4=3.18 with probability level p=0.2. For
the final estimate 6: i.e when n=100 observations were used, an
approximate confidence interval was evaluated for 8 by using the

formula

® F 1.96/(1/5(8,2,,y)) (7.3.5)

where S(%,En,y) is the sample information. recall (2.4.5) (see also
Appendix A7.1I1). That is, although in the sequential design the
design points are not entering the design independently of the
response we follow Ford and Silvey (1980) who constructed the
confidence interval by "pretending" that the design points were
independent of the response. We shall come to this point

in the discussion of the results of this simulation study. The
experiment was. repeated 1000 times. The "confidence intervals" were
constructed and it was checked whether the "true" value of © was

captured. The estimated confidence probabilities are reported.




7.4 Simulation procedures

Different procedures were applied to tackle the dilution
problem under the strategy described above. We will refer to these

as P1,P2 etc. In all the cases n=50 or 100.

P1. Static design.

Chernoff (19583}, in his early work on A(®)}-optimality,
suggested that the optimal static design (recall chapter 4) will bé
that one which takes all the observations at the locally optimal
point for the true &, as in (7.2.3b). Therefore the n observations
were taken at u#=u*(est) where ©g¢ is the "starting value" for e.
Data were generated and the MLE was calculated. For P1 the case
n=1000 was also investigated.

Results in Tables 7.1.
P2. Sequential design. equal batches.

The batch sequential method of designing was adopted.

Equal batches were used to reach the total sample size n.

Results in Tables 7.2

P3. Sequential design, unegual batches.

We start off the design with a batch of 25 or 50
observations. The MLE was evaluated explicitly at the first stage.
Thereafter, i.e when s=2,3,..syax, the number of replications, r'

say, was taken to be 5. The values of spzy are 15 and 10 and
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correspond to the initial batches 25 and 50 observations.

Results in Tables 7.83.
P4. Fully sequential design (Stochastic Approximation).

Batches of 5,25,50 observations were used to start off
the design. One observation was then added, i.e r'=1, to the design
and only one step of the Newton-Raphson "iteration" was used to
produce the estimate of 8. This is the Stochastic Approximation
scheme discussed in section 5.5.

Results in Tables 7.4.

-P53. Fully sequential design (Full Maximum Likelihood -
at the end)

Here we use the data generated by P4 and obtain the

exact MLE at the end of the experiment.

Results in Tables 7.5.

We comment that a fully sequential design with a "fully"
evaluated MLE in all the steps, i.e with a "full" Newton-Raphson
iteration at each point, was not investigated. The reason was not
only that the computational time was very large, but we have evidence
to believe that little was to be gained by using at each stage a
"full" Newton-Raphson iteration. » We shall come to this point in

section 7.5.

Below we describe the output presented in Tables 7.1-7.5 for

the procedures described above.
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&t : Starting value for 6.
r :  Number of observation per batch, r=5,25,50.
ECP :

Estimated Coverage Probability i.e the proportion
of times out of the 1000 simulations the true

value of ® was captured in the confidence

interval.

I : The average value of the estimates, gi' produced
in N=1000 simulations.

S . Estimated skewness of ©.

K : Estimated kurtosis of 8.

EMSE Estimated Mean Square Error of the 1000 evaluated

%i's through the relation
EMSE = est.Var(®) + [est.Bias(8)]2 (7.4.1)

The "true” value of © in all the cases was 3,18, and the

sample size n was either 50 or 100. In Fig.7.1-7.5 lines —

represent r=50, .+~ represent r=25, —--represent r=5.
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Table 7.1 : Simulation Study I, Procedure P1.

ot
w

n st  ECP K EMSE

1000 2.196 .953 3.18 .23 2.97 .018
3.18 .954 3.19 .02 2.97 .015

7.15 .958 3.18 .05 2.93 .019

| 100 2.196 ,950 3.24 .59 3.98  .204
3.18 .952 3.2 .53 3.47  .172

I 7.15 .952 3.0 .17 3.29 .201

| 50 2.196 .977 3.31 1.52 5.09 .454
] 3.18 .958 3.28 .56 3.43 .365

| 7.15 .935 3.22 .38 3.27 .462

: Two "outliers" were not considered, therefore N=998




Fig, 7.I : 8imulation Study I. Graphs of EMSE for PI.
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Table 7.2 Simulation Study I, Procedure P2.
n  egy r ECP @ S K  EMSE
100 2.196 5 .937 3.28 .55 8.86 .20
25 .946 3.24 .66 3.85 .20
50 .945 8.25 1.64 8.46 .22%
3.18 5 .946 3.26 51 3.63 .16
25 .950 3.19 .45 3.72 .16 }
50 .950 3.20 .42 3.35 .15
7.15 5 .955 3.28 .36 2.83 .17
25 .946 3.23 .36 3.09 .19
50 .955 3.24 .36 2.96 .20
50 2.196 5 .954 3.28 .83 4.32 .43
25 .962 3.46 3.12 12.16 1.14%
3.18 5 .952 3.26 77 3.78 .39
25 .948 3.24 .99 4.32 ,35W
7.15 5 .947 3.29 .68 3.64 .42
25 .940 3.28 .57 3.46 .43

# : Three

"outliers" were not considered, therefore N=997.

: Two "outliers" were not considered, therefore N=998.
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'Fig. 7.2 ¢+ Simulation Study I. Graphs of EMSE for P2.
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Table 7.3 Simulation Study I, Procedure P3.
T

n Ot r ECP © s K  EMSE
100 2.196 5% .937 8.23 .55 3.86 .20
26 .944 3.21 .51 3.43 .19

50 .948 3.23 .75 3.97 .20

3.18 5" .946 3.20 .51 3.63 .16

25 .947 8.20 .51 3.28 .17

50 .961 3.20 .46 3.31 .15

7.15 5% 955 3.23 .36 2.83 .17

25  .947 3.20 .44 3.36 .17

50 .949 3.19 .36 3.21 .18

50 2.196 5% .954 3.28 .83 4.32 .43

25 .942 3.21 1.09 1.28 .51

3.18 5% .952 3.26 .77 3.78 .39

25 .953 3.26 .88 5.43 .38

7.15 5% .947 3.29 .68 3.64 .42

25 .948 8.26 .43 2.98 .39

*# : From Table 7.2 (r=r'=5).
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Fig. 7.3 : Simulation Study I.
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Table 7.4 Simulation Study I, Procedure P4.
n o 8g¢ r ECP © S K EMSE
} 100 2.196 5 .955 3.21 .45 .53 .16
25 .959 3.23 .48 .21 .18
l 50 .957 3.23 .60 .83 .19
) 3.18 5 .960 3.21 .46 .33 .15
[ 25 .952 3.21 .75 .37 .16
50 .962 3.20 .59 .84 .15
| 7.15 5 .953 3.24 .32 77 .17
; 26 .956 3.24 .41 .23 .19
| 50 .946 3.22 .37 .25 .20
75 2.196 5 .943 3.22 .64 74 .24
| 25 ,951 3.24 .57 3.22 .25
50 .954 3.25 .96 .51 .28
3.18 5 .948 3.23 .60 .65 .23
25 .945 3.23 .82 .45 .23
50 .955 3.23 .68 .80 .22
7.15 5 .958 3.25 .38 .05 .23
25 .953 3.26 .49 .38 .26
30 .941 3.21 .43 .43 .28
50 2.196 5 .956 3.26 .67 .53 .37
25 .948 3.30 .92 .28 .46
3.18 5 .949 3.24 .89 .89 .33%
25 .046 8.24 .98 04 .34%
7.15 5 .948 3.26 .69 .02 .38
26 .948 3.29 .46 14 .44




Loy

Graphs of EMSE for PH.

Fig. 7.4 : Simulation Study I.
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Table 7.5 Simulation Study I, Procedure P5 .
m  eg r ECP @ S K  EMSE
100 2.196 5 .961 3.24 .58 .90 .17
25 .946 3.23 .44 A7 .18
50 .956 3.23 .41 .43 .17
.18 5 .967 3.238 .37 A7 .15
25 .958 3.21 .82 17 .15
50 .954 3.21 .44 .55 .18
| .15 5 .958 3.28 .58 47 17
25 952 23 .57 .05 .18
| 50 .954 3.21 .20 .06 .18
‘§J 75 2.196 5 .955 3.27 .64 .78 .25
25 .947 3.24 .55 .46 .24
*:N=999 | 50 .976 3.33 .86 .90 .46
.18 5 ,961 3.24 .59 .64 .22
] 25 ,955 3.22 .54 .66 .21
50 .955 3.25 .82 .43 .37
.15 5 .951 3.24 .65 .80 .23
25 .951 3.25 .60 .86 .25
50 .951 3.22 .24 .15 .23
50 2.196 5 .959 3.31 .70 .65 .40
25 .957 3.28 .82 .61 .41
.18 5 .950 3.26 .78 .11 .37
25 .947 3.25 .73 .24 .36
.15 5 .955 3.28 .58 .47 .37
25 .958 3.28 .82 .52 .41
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Simulation Study I. Graphs of EMSE for P5.
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7.5 Discussion I

We now discuss the results described in section 17.4.
Firstly we shall discuss each procedure and tﬁen we compare the
procedures.

We comment that the total information for o, and therefore

the variance of & can be evaluated (asymptotically) explicitly as
(ni{e,u)) ! = [nu/(exp(etu)-1)]11 (7.5.1)

when the design takes the n observations at the point u, Table 7.6
provides the values of n"*I"1(e,u) for the design points we select
to start the design under different sample sizes. Therefore, a guide
for the evaluated mean squares is provided when a static design is

performed so that it can be compared with the sequential procedures.

Table 7.6 : Evaluating the asymptotic variance.
u 72 .50 22
n
1000%| 0171 .0156 .0208
100 171 .156 .208
58} 231 .208 .278
50 .342 .312 L4186
* : only for P1, 8% . only for P4,P5
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We now consider each procedure separately.

We not only tried sample sizes n=100 or 50 but also a sample
sizg of n=1000 (!) to study the asymptotic behaviour of the one
point, one stage desigh. For n=1000, the EMSE is not too far from
the expected value (see Table 7.6). As the sample size gets smaller,
EMSE of course increases. The normality of the vector of estimates
behaves quite well when n=1000. but it gets worse when n drops to 50.

Thus the sample size is very critical especially when we are
near to the end points of the probability levels in (7.2.4). This
happens when u,=.72 which corresponds to probability level p=0.1,
because -of this truncation may take place, corresponding to a batch
of y;'s all equal to zero. Thus the one-stage design does not have
the opportunity to improve +the estimate, when n=50, from this

pathological situation.

- P2

When n=100 and r=50 (or n=50 and r=25) we have the so called
two stages design (which we will discuss extensively in chapter 8).
In the two stages design if, in the first stage the estimator is a
"bad" one, the desipn does not have the opportunity to recover in the
next stage. But when the initial estimate is "reasonable" it is
improved in the second stage. This is less likely when the initial
batch is 5 or 25 observations. The design behaves similarly with

r=5,25 when n=100.
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- P3

There is no two stage design in P3. When 5 observations are
used in the first batch, P3 coincides with P2. When 25 observations
were used as the first batch the EMSE obtained was slightly better
than the equal batch procedure P2, when we start off from a point far
from the true value. When r=50 the design had "enough time to
recover" from a possible bad estimate at first stage. For this

particular procedure there is not too much effect from the initial

batch size and the egy value chosen.

As only one observation was added at each stage, we also
used the sample size n=75 as an intermediate stage betweeh n=50 and
n=100. Our aim was to check how far we can improve matters by adding
only one observation. The performance of the procedure is largely
independend of the initial batch size and the value 6gt. although

there is a little more variability when n=50.

- P
There is 1little difference between P4 and P5. Under
different sample sizes the EMSE are close to that of P4. The

comments for P4 are similar to those of P5.

We now try to present a general view of this simulation study.

The procedures mentioned above can be divided into two

categories




- One stage design (Prbcedure P1)
~ Sequential design :
Block desipgn (Procedures P2,P3)

Fully sequential design (Procedures P4,P5)

The results of this simulation study support the work of
Ford and Silvey (1980). All the sequential procedures provided
satisfactory coverage probabilities, i.e around .95, on the average,
when 95% confidence intervals were to be constructed with performance
getting better from P2 to P3 to P4. This encouraging result leads us
to use the same approach for a two parameter model, presented later.

Wu (1985) applied the truncation idea in fully sequential
design in a different way. Although he carried out only 500
simulations per case there are cases where, in 114 or 56 of them the
initial estimator could not be evaluated and he choose to ommit these
runs. Ofcourse he had a two parameter model. He faced the problem

of existence the MLE and thus things were worse than in our case, in

which

- With small batch size, i.e for r=5 or sometimes r=25, but
never with r=50, it was quite likely for us to obtain either all
successes (vj's=1) or all failures (yj's=0), in which case the MLE at
the first stage could not be evaluated.

- At some stage of the sequential design, before the design
had reached 50 ohservations the Newton-Raphson (Appendix A6.1)
diverged.

We overcame these main difficuities, and we are consequently
able to report 1000 simulations, using

-~ The truncation of the design.

- The Bisection method (Appendix A6.1I).

1o




Truncation helped us to "bring the design back" to the
sample spéce we had defined as it is - neadles§ to say - a waste of
time to look outside of © for estimates of .

The Bisection methed is a rather slow numerical method with
convergence rate (Apbendix A6.11) 1/2, whilst Newton-Raphson has at
least second order convergence rate. The Bisection method has the
advantage that no derivatives are needed. Thus with Bisection the
initial value &, to feed Newton-Raphson was in the neighbourhood of
the solution.

Abdelbasit andr Plackett (1981,1983) discuss the dilution
series model in the context of constant information design. Indeed
it was proved by Fisher (1922) that if u=coV, c>0, o>1, §=0,1,2,..
with o and c constants (o is usually 2 or 10) then the information
for loge, I(loge) is approximately m%/6loge, provided that « does not
greatly exceed 1. Thus Abdelbasit and Plackett (1981) suggest using
the constant information criterion for designing; see section 4.6.

We also compared the stochastic approximation scheme with a
"full likelihood sequential procedure” in a small number of simulated
experiments. In the latter maximum 1ikélihood estimate was
evaluated_at each stage through Newton-Raphson iteration. Whereas in
the former only "one iteration" was used. An initial batch of ten
observations was chosen and various starting values for © were
suggested. We report in Fig.7.1 the study for the "true" ©=3.18 and
the "far" e=7.187T29.At every stage up to 100 observations the
estimates were obtained using the two techniques. in Fig.7.1 we
denote by * those estimates which were obtained by stochastic
approximation and by . those estimates which werer obtained by
Newton-Raphson. Both figures 7.1 provide evidence that the estimates
do not differ. Therefore a gain in computing effort exists when,

applving a "quick" —calculation, the estimate is obtained by
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stochastic approximation and is used to redesign. The speed of
calculation in SA might lead to imgﬁrtant improvements over a full
"maximisation at each stage" procedure in control engineering problems.

As far as normality of the estimators is concerned
acceptable behaviour is observed with n=100, It is less good when
the sample size is reduced to n=50. We recall the saying of R.A.
Fisher (1935) "Nothing that we say shall be true, except in the limit
when the sample is indefinitely increased; a limit obviously never
obtained in practice". This situation is described in Pl where with
n=1000 everything seems to be acceptable, except the sample size.
That idea of "practice" was behind this simulation study and it seems
to us that n=100 is quite "large" and n=50 "reasonable".

Normality of the estimates was also investigated . by using
the NSCORES function of the MINITAB package (Rvan et al (1981)). The
outcome is not presented in this thesis but gives similar evidence to
the kurtosis and skewness measures. It improved from P2 to P3 to P4.
Thinking in terms of probability levels p the values of 04¢=2.196 and
3.18 correspond to starting design points with values of p=0.1 and
0.2 respectively. That is low probability of successes compared with
the p=0.5, the probability ‘level of the "far" eogy value 7.15.
Therefore there is an "unbalanced" (as one of np or n{l-p) is close
to n} set of 0O's responses which influence the normality of the
estimates corresponding to starting values 2.196 and 3.18. This
seems to be more freguent in two stages design (Table 7.2
6g=2.196, n=100, r=50 and r=25 or O4+=3.18, 2.196, n=50, r=25) or in
cases where the first batch produces such an "unbalanced" set of 0's
that the design has no time to recover (Table 7.5 : ¢ =2.196, n=75,
r=50).

Note that with respect to this problem the optimal design,

that is optimal on an asymptotic criterion, has not got particularly




good properties for finite sample sizes. At the optimal design point
p=0.2 and hence the probability of a run of 0's is increaséd. This
point can be illustrated in the static design for 6g¢=2.196 when
n=50. In two of the 1000 simulations all 50 y's where egual to zero
and hence © was recorded 199.79,-£he upper bound of our allowed range
for ©. This means that the corresponding estimates of skewness and
kurtosis and mean sguared error will be greatly effected by such
outliers. Note that in the tables when outliers occured they were
ommited from the calculation of the quantitiesmentioned above, but
not from the calculation of the estiﬁated confidence probability.
Intuition suggests that if you have 50 or 100 observations
to make ahd vou do not know the optimal point, do not waste all your
observations at one point but design sequentially. If you can design
in blocks, as might be the case in chemical design, choose P2 or P3;
if YOU design per observation, as in some psychologicalv or

engineering work, choose P4 or P5.

With the experience of this Simulation Study I behind us, we

move on to Simulation Study II.
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7.6 Two Graphs

Fig. 7.%a : Comparing full likelihood estimation

(.) and stochastic approximation (¥),

True @ #3.18, Far ¢ =7,29,r=10,n=100.
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Fig. 7.1b : Comparing full likelihood estimation (.)

and stochastic approximation (%),

True @ =3.18, Far 8= 7.18, r=10, n¥100.
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7.7 The first order growth law

Biological processes concerning a measure of growth, y say,
of plants or animals can be expressed through a regression set-up,
known as growth law.

Consider the period ranging from Uj up to U, with u denoting
time. The expected initial value of v (i.e when u=0) is denoted by
©,>0. The rate of increase of the biological process is denoted by

@,>0. The phenomencn can be described by the nonlinear regression

model

Vi = 94exp(eyuy) + ey, 1i=1,2,...,n uel=CUy,0,]. (7.7.1)

For the error term e; we use Assumption 2, when inference is made.
Under the criterion of D{e)-optimality Box and Draper (1959)
considered this model and produced the 1locally optimal two point

design which allocates half observation at the points
u, = Uy - 178, ., uy = Uy (7.7.2)
where 6,>0. Therefore supplying a "guess" @,,,say, for &, a static

design can be produced. For the so called decay model, i.e when

8,<0, the design points are
u, = Uy .Uy = Uy - 1/8,. (7.7.3)

The designs (7.7.2) or {7.7.3) depend only on 9,, as it is

partially-nonlinear (recall example 3.7.1).




Jennrich (1969) proved for this model the existence of the

least squares estimates which. under Assumption 2, coincide with the
maximum likelihood estimators. Our aim is to use this model under
different sequential design procedures and to investigate the
distribution of the parameter estimatorsAag well as the construction

of confidence intervals.

7.8 Strategy and procedures of Simulation II

The optimum design measure is €*=1/2 for the two points
(7.7.2). We kept the sample size n=40 and the following procedures

(we refer to them as M1, T2,...) are discussed.
Mi. Static design.

One stage design. Allocate half observations as in

(7.7.2) providing e,,, a guess for 6,¢.
M2. Two-stage design.

Use half the observations in the first stage, that is
allocate one fourth at each of the optimal points.

A
Obtain the estimates ©. Use them to redesign as in

N
(7.7.2) using e, instead of e,.

The other three procedures are sequential ones and only the

number of stages is changed.

wr |




Ts. ‘Five—stage design.

Use 8 observations in each staée.
T4 . Ten—stagé design.

Use 4 observations in each-st«zgeu
M5. "Fully-sequential" design.

Two observations at each stage, i.e one observation at

each "optimal" point at each stage.

Any design space which is an interval on R can be
transformed to U=[0,1] and local D(e)-optimality rémains invariant
under linear transformations. Therefore we consider U=[0,1] through
out the simulation. For the procedures we denote the maximum number
of stages by Spgyx, Spax=1.2.5.10,20. The corresponding number of
replications, at each optimal point, is r=20.10,4,2,1. We speed up

the simulation by generating at each stage, only two normal deviates

Ej__, Jj=1,2 using the NAG subroutine GO5DDF (Appendix A7.IV) where

Vj. ~ N(eyrexp(eyeny), 0?/r) , j=1,2 (7.8.1)

with ug j=1.2 taken to be the optimal points, ¥iik the k-th,
k=1....,r observation at stage i=1,...,§;5x for the two points u§
j=1,2, as in (7.7.2}. We start off the design with different e
values, of the form 8,¢, B,¢=85¢,0,¢%2, and 6,¢=1,2,3,4 the "true"

value of e,. The value of 8, was kept constant, 6,=10.0. The design

points were evaluated according to
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uis+r = 1 - 1/6z5 . Upgeq = 1 (7.8.2)

A
with e,g being the estimate of e, at stage s. For the first stage
(s=1), in sequential procedures, or for the static design the
estimate for © can be evaluated explicitly (Appendix A7.V) as

A A A - —
1 = Vy1.8XP(-0zuyy), Oy = [lnyyy -lnyyp J1/ug,. (7.8.3)

In other stages, when s>1, the estimates were obtained through the
modified Newton-Raphson scheme (Appendix A6.I). We settled on X=0.5
as the modification parameter, i.e a “half-step" of the
Newton-Raphson iteration was used to approach the soclution, i.e to
solve equations (2.7.9) (see also Appendix A7.VI).

At each stage the estimate gzs was substituted into the
Hessian (recall 2.7.10 or Appendix A7.VI) when €g+1:(€&3+1'éés+l ) was
to be evaluated. The information matrix M=M(e,€) {(recall (2.7.9))
was evaluated at e=g(smax), i.e the estimate at the last stage.

Simultaneous and individual approximate confidence intervals were

produced through

~ A
{6-8)TM(0,€) (6-8)<2s2F (2.38;.95) (7.8.4a)

®;%1.967 (M (6,8)s2),  i=1,2 (7.8.4D)

respectively, with s a suitable estimate of 02, i.e residual sum of
squares divided by 38 df, F(.) as usual denoting the F distribution
and M}E(.) the diagonal elements of M~ 1(.)

Approximate confidence intervals are obtained through
{(7.8.4) when the design points are predetermined and not obtained
sequentially. We followed the work of Ford and Silvey (1980) as in

section 7.3 and applied this approach to sequential designs. The
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coverage probabilities for both g; and 32 individually and jointly
were evaluated through the procedures mentioned above.

Moreover, the EMSE's (Estimated Mean Square Error) for e,
and &, were evaluated as in (7.4.1), as well as logdetM,, with M, as :
the right hand side of (2.7.6a) with e=3(smax). The results are in
Tables 7.9-7.13. Table 7.12 summarizes the estimated measures of

A A
skewness and kurtosis for the 1000 evaluated 9; and ©, under the

different procedures. Table 7.12 provides measures of efficiency

evaluated for o, individually and for the design, i.e for e.

As such
measures we used
.y _ EMSE(for ®&; in static design ) .
Eff(e;) = EMSE(for e; in design under study)’ i=1,2 (7.8.5a)
_ logdetM, of design under study )
Eff(e) = logdetM, for static design (7.8.5b)

Where the locally optimal design for &, was used in the

static design.




124

]

hroH ® senfea TTV ()
mloH X senyea TIYy ()
SI%°6 £'c L°¢ 766" £G66° £G96° 0’9
8L%°6 £°C 't o%6° o%76° L96" 0%
11276 £ %'e £96° 896° LG6" o'z o'y
$68°L €1 [4 1%6° 76’ £n6° 0°¢g
166°L 6 7°8 756" 966" 196° o'¢g
102" L 9% 9% B8S6" 356" L%6° m 0°'1 o'¢
L£9°9 9g oS 976" 256" Sv6" | 0%
909°9 8¢ 9¢ 756" G667 %6’ o'z 0°z
960°'%S 891 8CT £56° 656" 766" o't
oLn°S ¢xunm ¢v0m 766" 196° £v6° 0°'1 0’1
‘W 38p Ul Nm Hm Nm ﬂm _ No pue ﬁm mwm HN@
asK3 sa13111qeqoxd a3eiano)
ILI 2anpedoig ‘II 4Apnig uoijernuwis :4°/ OIGBL




122

mnoH X santea TIV (%)
0T % sanTea TIY (*)
15%°6 z z°'t 696° | 896" 646" 0'9
8LY"6 £ 2z Z96° wqm. 756" 0%
L9€°6 z 7'z 1L6° 896" LG6" 0°2Z 0%
056" L o1 01 096° 666" 766" 0°¢
066" L S'6 6 Ly6" 966" 9%6" 0'¢
8GL L 1 1 676" 696" €56 m 01 0°¢
%59 oY 43 056" 056" Ch6" w 0%
909°9 rAs ot v6° 6€6° £v6” 0°t 0°2
145 88 gL 756" 256" Sh6” 0'¢
0i%"§ w €S @27 656" 296" 19N 0'1 0°1
. 2 Tg Nmu Te % pue g iz 1z
K 3°p U1 ) mm_‘..g.m — S913T11qeqoad mwmum:roo ® 6
Z1I °anpedoxg ‘Il 4Apnig uwoIjeinwis : Q°/ STQEL




123

hloH X sonfea TTV (3)
mIOHX SSNTeA TTV H.u

89%°6 7' 1'c | #%s6° £56° 166° 09
BLY"6 1z z 096" 096" LS6" 0%
8E% " 6 ¢ £'c | swe £46° Ly6" 0°¢ 0"y
LL6°L o1 96 | 46’ 76" 996" 0°¢g
166°1L $°6 6 Z6° 8€6" 056" 0°€
€16°L 01 o1 | %6’ $%6” 146" 0'1 0'¢
%85°9 vE 1€ | 996" w46 896" 0%
G09°9 67 Lz | 9s6° 956" £56° 0°¢ 0°¢
SEv°S <9 9¢ | 0$6° 646" 796" 0°¢
0L%°S 0SS »0Ss | 56’ 696" cH6" 0°'1 0°'1
°R 39p Ul ‘s —e ‘e - ‘o pue T Fed 1z

ISH 2 sa13T11Iqrqoad a8BI8A0D 6 0

€LI @anpadolg ‘ II 4Apnig uoIIBINUIS . L 9IGEL




24

0I ¥ sentea TTY
: 5701 x sentea TTV

g~
€LY°6 [A [4 096" 866" 656" 0'9
8L%°6 (AN 4 056" 156° 0s6° 0’y
8676 (4 [4 LG6° LS6° €56° o'z o'y
786°L 8 8 696" 796" LG6° 0°¢
066°L o1 o1 | 8€6° ov6’ AN 0°€E
£56°L 01 01 9%6° 176" 8%6" 0°'1 o'¢
S65°9 et Q% €6’ £y6’ the’ 0y
909°9 8¢ 9t 096° ¢96° 666" 0°¢z o'z
1A A €9 9¢ 6€6° 8c6” 8%76° 0'¢
0LY°S oo 09 () €8 SY6° e’ 0s6° 0°1 0'1
°R 19p uf mm 's %q H@ Nm pug .nmw iz, Hmm

HqSH 3 8913111 1Iqeqoad @3r18A0)
$0T°L Q1qRL

#1I 2anpadold ,\HH Apn3yg uollRINUIS




125

htOH X sentea TTV (x)
mnoH X sentea TIV (°*)
9L%"6 4 6°1 1L6° 0L6° 866" 0°'9
8LY°6 sz %' | o%6° 796" 176" 0%
89%7°6 [4 A4 S76” L%6° L86° 0°'Z 0%
L86°L 6 6 9%6° 796" 9%6° 0°S
066°L 76 hwm 0S6° 166° 966" 0°¢
£€L67L 01 S'6 946" 76" 9%6" 0'1 o'g
109°9 og Lz 156° 766° 9%6° 0%
€09°9 [AX 013 gE6’ 1€6° 9¢6" 0°¢ 0°¢
€9%°¢ 65 A9 €S6° 0s6° 796° 0°'¢
1i%°S oo €5 9% £56° 6s6° 796" 0'1 0'1
oq 30p 1T % Ty % B | % pue T 1z, 1z,
ASH 3 §911111qRq0Id 23BIDA0)

G¢II @anpadoxg ‘I1 Apnig uorlBINUIS

:71°L °1921




12

Nm 8150310y (7)
Nm ssouMdds (1)
76°C 601°0~ 86°C %61°0-| 68°C S00°0-| 66°C %90°0- | 60°¢ 61070 0'9
L6't 010°0 €1°e #60°0 99'z %90°'0 0c'e 100°0- | 06°C €10’ 0~ 0%
88°2 680°0 66°C S61°0-{ %w6'Z 8£0°0 9L'c %£0°0 88°C 7€0°0- 0'¢ 0"y
90°¢ 0’0 06°C 60070 98°'¢ L9070 70'¢ %1070 L°T 7%0°0 0°S
69°C 610°0 60°¢ €70°0- | #%8°C .m¢o.ol %6°C 6€0°0- | L6 6070~ o'e
98°¢ 020°0 68°'z woﬂ.o 1672 SE1°0-} 96°CT 0CO'O ov'e L60°0 0°'1 0°¢
L1°¢€ 0Z0°0 86°C 610°0 e8¢z | 101°0-| €8T ¥%I0'O 91°¢ 100°0 0%
7l'E £80°0 £8°C 800°0-1 09'C 40070 L1°€ £20°0- | 86°C z10°0- 0°¢C 0°¢
L8°T 260°0 00°¢ 990°0- | 6Z°€ STI'O ¢0'g 6070 T0°¢ 200°0- 0°¢g
91°¢ 0700 88°C N«O.o. 66°C %¥L0°0 £9°C S10°0 16°¢C 100°0O- 0'1 0°1
(2) (1) (?) (D () n (2) (1) (2) (D) iz, 1z,
[P %11 eI 211 aHH aanpasoig
Nm zo3sueaed ayj 103
(TL°L PI9RL

gainpadoad jua193JIp 03 ST503INY PUE ssousag ‘T £pnis UOTIBRINUWIS




127

€1'1 01°1 70°1 0'1 18° 0’9
16° 01°'1 01°1 01 0°1 0%
0°1 01°'1 g6’ 16° ©9° c°C o'y
£6° G0°1 68° 78" qL- 0°s
96° 78" £6° €6’ 0'T o°¢
88’ 78° 78" 09° ; 0z’ 0°1 0°¢
96" 98" £8" 7L* ¢'0 0%
18" 0'1 96° 98" 0'T 0°¢ 0'2
96° 68" 68° 89" 9¢” ¢
80°1T 96° 0°'1 90°1 0’1 0°'1 0°1
£T LZ
] 8
mm ¢m & [ 1
aanpavoad
.Hm 103 g9T0ULTOTIIFe Surzenieay ‘II Apnis UOTIBINWES :¢1°/ SIqBL




12e

(9§°8°L) T1Bo®2

6 103 AOULTIOTFFE (7)

Awm.w.hu T1leoea Nm 107 ho.ﬁw.mu.m..mw_.m AHV

0'T GV'I 66° cT'1 66° o6 0°1 SUM 66" 0°'1 0'9
0’1 26 0'1 Yo't 0°'1 GO'1 0'1 0'1 0°'1 0°1 0%
66" St 66" STl 66° Gy 66° ST'1 L6 9L o'z 0%
66 0°1 66° 211 0°'1 06" 66° 06" 66" 69" 0°¢
o't 96 0°'1 06" 01 <6° 0°1 <6 01 0°1 o°'¢
66" 08" . 66° 06" 66" 06° L6" %9° 06" oz* 0°1 o€
66 <6° 86" 88" 66" z8” 66" oL L6* 0g* 0y
01T 19" 0°1 0'1 0'1 96° 0'1 L8* 0'1 0°'1 02 0°2
66" L6 66° 06" 66" 88" 86" 79* €8’ wg " 0°¢
0'T 20°1 0°1 $6° 01 £0'1 0°1 0'1 0'1 0'1 01 0'1
(2) (D () (1) € (m () (D) (2) (M az iy
SI1 I €L rASy 111 aanpasolag
soanpacsold JusiajFIp Iopun
Nm.amvuo pue Nm 103 8910uUdIDI3Je 3urleniBaj ‘II Lpnis ﬁowumHaﬁmm L. 91qB]

(




7.9 Discussion II

The logdetM,, of course, achieves its maximum value when
6,70, i.e M(e,€£) becomes large at the "true" values, that is the
"local" ellipsoid i1s minimum ét that point, recall section 3.7. The
EMSE are, as expected, smaller when e,p=6,¢. There is not much
difference when we approach the true value either from smaller or
larger values.

As far as the coverage probabilities are concerned on the
average they are close to .95 and all the methods perform well,
Among the sequential procedures (I13,74,T5), the fully seqguential
procedure, M5, leads to better EMSE. The normality of the vectors of
estimates; obtained from 1000 simulations, seems to behave very well.
Table 7.14 provides evidence for this as all kurtosis values are very
close to 3 and the skewneses very close to zero. B

The efficiency of the static design for e,. when we start
off from values far from the true value, is rather poor, since in
one-stage design ©,; is treated as known and there is no chance - as

‘there is other stage - for the estimator to deviate much from its
true value, this supports the adoption of the seguential design
procedure. Table 7.14 supports the comment that the efficiency in
the procedures is getting on the average better in the order
M1<N2<M3<M4<TS .

Simulation Study II extends the results of Ford and Silvey
(1980) for a two parameter nonlinear model.

Thus the seguential nature of the design for nonlinear
models

~ May often be irrelevant to the manner of obtaining

estimators and constructing confidence intervals based on

familiar samp: ling theoryv methods.




- There are cases in which sequential design procedures
can result in "tighter" inferences, i.e shorter confidence

intervals. Among them the fully seguential design might

provide the tightest inference.

Thus, although the static design for the true e might be
experimentally economical, the absence of knowledge about & suggests
that a sequential procedure should be adopted.

The inference can be

obtained as in the static case.

1%0




CHAPTER 8

TWO-STAGE DESIGN

8.1 Introduction

In chapter 7 the seqguential method of design was adopted and
different procedures were applied. Thé idea of the two-stage design
was discussed. Now we apply this method of design in the calibration
problem. Here, the nonlinear feature of the problem under
investigation will_evolve from an underlying linear model.

The geometry of the problem and the application of Elfving's
theorem will also be discussed.l The maxi-min efficiency design is
discussed along with the results obtained from a further simulation

study. We shall refer to this simulation study as Simulation Study

III. The procedures followed are discussed in section 8.6,

8.2 The problem
Consider the regression model with

n = E(ylu) = 84+8,u,, u,et=C-1,17, (8.2.1)
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where U is the design space. Our target is to estimate the value of

u;=uy, given n=C 1i.e,

uo = (C—OO)/GI. (8.2.2)

We consider two design procedures
- One-stage
- Two-stage.

For the one-stage design, we might use as criterion function o,

) {recall section 3.3), either D-optimality for (e,,6,) or c-optimality
for estimating ugy. The D-optimal design is of interest because it
will be intepended of © since we have a linear model. It is of
interest to investigate the effectiveness of the D-optimal design as
measured by the c-optimality criterion. Under c-optimality, thanks

to Elfving's theorem, we can construct a locally optimal two point

design geometrically. The criterion we would like to use is

min Var(ﬁo) {8.2.8)

with Go given by (8.2.5b) below. Strictly speaking Var(ﬁo) does not
exist. however the asymptotic formula for Var(ao) is still useful for
the construction of confidence intervals as long as 8,/0C is not
small. 1In the sequel Var(ﬁo) will refer to the asymptotic formula.

We can proceed by considering u, as a function of e, and e,.

That is, with ug=uy(ey.8,).

Vu, = (-1/8,)u, where u=(1,uy)7. (8.2.4)

Then




var(u,) = 62 uTvar(d)u (8.2.5a)

with

Ug = (C-8,)/8,. (8.2.5b)

In the sequel one stage and two-stage designs will be discussed, with

an aim of estimating u,. as well as possible.

8.3 One-stage design

From geometrical considerations it is clear that the optimal
design measure &€ either under D-optimality or c-optimality can be

defined by p and 1-p, the proportions of observations at the end

points, of the design space, that is,

) at +1
g€ = €(p) = (8.3.1)

1-p at -1.

The corresponding design matrix M is of the form

1 2p-1
M = M(p) = (8.3.2)

2p-1 1

We are interested in minimizing. from (8.2.5), the quantity v(p)

where,

T

vip) = (n6r) tuTM tu, (8.3.3a)

(4n&dp(1-p))~t(ud+2uy (1-2p)+1). (8.3.3b)

[}

v(p)




Under D-optimality we allocate half observation at the end points

+1, -1. That is

p =1-p = 1/2. {8.3.4)

The value of (8.3.3b) under this design, Vp say, is
Vp = (ne)) i), (8.8.5)

The locally c-optimal design can be obtained using Elfving's theorem
(appendix A3.1). The percentage of the observations p allocated at
+1 will depend on uy,. i.e p=p(uy). The induced design space U,
(recall section 3.7) has to be formed for the mode; (8.2.1).

Therefore as Uy=f(U), with f(u,)=65+e,u,, U, will be
Up = { v (vy,v5), vi=1, vy=u,€U }. (8.3.6a)

The induced design space U, and its reflexion -U, form the two line
segments as in Fig. 8.1. The gebmetry of the design space gives
evidence of the symmetry in the ’problem, as a square is formed
centered at the origin. From Elfving's theorem, we may take the

support points (recall definition 2.2.3) to be the end points, i.e
Supp(€*) = {-1, 1}. (8.3.6b)
The weight of observations at each point can also be evaluated

according to Elfving's theorem.

Consider the following two cases :
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(1) lupl<1
Take ug=u; as in Fig. 8.1. Then it is easy to see
that
p = (u,+1)/2, 1-p=(1-uy)/2. (8.3.7)
Uz
’
S L S, -
-3 \\N__...——-—V——"——-/w +4
o’ o
//////,//flLL
l-
Vo
-U
/
S
f'-\‘__—"/‘_— 2
I V221 Y
¥ S Y W3
Us

Fig. 8.1 The induced design space Uy and its reflexion

~Uo for the model n=E(ylul=8,+0,u. uel-1.11.

(i1)  Jugl>1

Take u, equal to u, and uy as in Fig. 8.1. Then:

- For up, from the similar triangles, it is easy to see that

d=(uz-1)/u,,  d'=2-d=(uy+1)/u,.




Hence,

D = (up+1)/(2uy) , 1-p=(uy-1)/(2u,).

- For ugy it is easy to see that

s=(ug+l)/uy , s'=2-s=(uz-1)/uj.

Hence. we obtain in a symmetrical fashion,

1—p:(us+1)/us; p=(u3—1)/(2u3).

To summarize the above discussion

5(u0+1)/2 if lugl«1
p = (8.3.8a)
‘\(u0+1)/(2u0) otherwise
(1-ugy)/2 if [ugyi<t
1-p = (8.3.8h)
{ug-1Y¥/{2u,) otherwise.

Therefore under this criterion the optimal v(p) value, Ve sav, is

(appendix A8.1)

(né})~1 if fugi<l
Vo = {8.3.9)
(ne’i)“lu0 otherwise.
There 1is interest in comparing (8.3.5) and (8.3.9), We use the

efficiency measure, Eff{C.D) say, to assess the efficiency of the
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D-optimal design relative to the local c-optimal design.

(ui+1)t lug 1 <1
Eff(C,D) = Ug/Up - (8.3.10)

u;/(u%+1) otherwise.

A plot of Eff(C,D) vs u, is shown in Fig. 8.2. Fig. 8.2 indicates
that the efficiency at the end points %1 is 50%. Moreover the
D-optimal design at any other points in the interval (-1, 1) has a
greater efficiency. The efficiency also increases outside the end

points,

It is of interest to investigate the maxi-min efficiency

design for this particular problem.

€1{(q,0)

—— e — e —_—

Fig. 8.2 The efficiency of the calibration design for

different values of u,.
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8.4 Maxi-min efficiency design

Recall the maxi-min efficiency design measure introduced as
another approach to static design in section 4.5. That is, we choose

o the form (o) -
that design' whose minimum efficiency E(€) is greater than that of any

other design i.e

max{ min [Eff(€(p), ueUl,Ee= }, (8.4.1)

recall {(4.5.1) and {4.5.3) with A = /.

From the discussion in section 8.3, interest in maximum

efficiency design for the special problem means interest in

max min [Vi(ug)/v(p)] (8.4.2)
F %

where v(p) is as in (8.3.3b) and V; is either Vp as in (8.3.5) or Vg

as in (8.3.9). Then comparing the approximate variances from the

generdl design 5B with the D-optinmal dosign and the Gococtly c-cpbimol
v(p) we can evaluate the following efficiencies.

- For D-optimality
EFfLE(1/2)] = Vp/vip) = (db+1)/v(p). (8.4.3)
~ For €(p)

[4p(1-p)/(uh+2ug(1-2p)+1)]  Jugl<1
Eff[€(p)] = (8.4.4)

E4d%p(1-p)/(uﬁ+2u0(1—2p)+1)j otherwise,




139

The minimum values of (8.4.4) are (Appendix, A8.I1) p,., 1-p and
4p(1-p). Therefore, according to (8.4.1) we are looking for a design

which satisfies

max min {p,1-p, 4p(1-p)t. (8.4.5)
P
A heuristic proof that p=1/2 is ‘provided in Fig. 8.3. The

simultaneous graph of the function in (8.4.5) illustrates that the

maxi-min value occurs when p=1/2.

‘j}
Ap0-F)
3
[
L
: \
- : " /—"4?(1'P)
}
]
]
: -P
!
¢) 1/ g

Fig. 8.3 A simultaneous sketch of the functions

p. 1-p, 4p(i-p).

Therefore for the calibration design problem curently under
discussion the maxi-min efficiency design turns out to be the

D-optimal design.




8.5 Two-stage design

It is of interest to compare the maxi-min design with the
two stage design which makes of use of our knowledge of the locally
c-optimal design.

As the true values of 6,. ®, are not known the experiment
must obtain eétimates of them. This might be done by using a portion
of observations p, say to obtain these estimators, 30, 31, say, under

D-optimality i.e allocating pg,/2 observations at each of the end

design points. Then we estimate
N
Uy, = (C-6,)/8, (8.5.1)

with C as in (8.2.2). Therefore this value can be used as if it were
the true one and the remaining proportion 1-p, of the observatiéns
can be used to construct a locally c-optimal design. That is,
depending on GO we allocate the remaining observations at the end
points according to Elfving's theorem.

Thus a two-stage. two-point design can be constructed to
tackle this calibration problem. The advantage over the static
design is certainly the use of an objective estimate of u,. rather
than a subjective guess. We study this method in a simulation study

which we discuss in the next section.

8.6 Simulation Study

The ideas discussed above are applied in a simulation study.

We let the true 6=(8,,8,) be 8.=(0,1). Therefore u,=C.
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As different values of C we conéidered ¢=.1, .3. .85, .7. .9, 1.1,
1.3. The corresponding values of p, when a local c-optimal design is
adopted. can be evaluated through (8.3.8a). In fact p=p(C) is
calculated as p=.55, .65, .75, .85, .95, .954545, .884615 for the
above values of C. When the D-optimal design is adopted, p=1/2. We
let n=10,20,50. Problems can arise if ©. the standard deviation of
the response is large. When o is large the distribution of u, is
unstable since 31 is likely to He occasionaly close to 0.0. In the
results presented we shall assume o0=.25. Tables 8.1 and 8.2
summarize the outcomes obtained for the one stage design under c¢ and
D-optimality. For the one-stage design, under different values of C

approximate confidence intervals were evaluated for Gg. As stansdard

error of ﬁo- se(ﬁo) say, we used (recall (8.3.3b))
A
se(ug)=(v(p)s?)°-5, (8.6.1)

with s? a suitable estimator of o2, namelv $2=RSS/{(n-2). where RSS is
the residual sum of sguares. The values ECP and EMSE presented in
Tables 8.1 and 8.2 are the estimated confidence probabiiities and the

~
estimated mean square error of 8. EMSE(gl) say, evaluated as
A iv00
EMSE(®y) = 1073 L(ey4-6,1)2 (8.6.2)

A two stage design simulation study was also carried out.

For sample sizes n=10,20,50 we took Po= -2.,.4,.6,.8 as the proportion

of observations in the first stage. Then we allocate the rest of the

cbservations according tb (8.3.8a). For the two-stage design the
m

estimated value of ug, Go say, was obtained after the second stage

. . A
and an approximate confidence interval was constructed for uy. As

R X .
standard error for WY,, se(u,) say, we used (8.6.1) with the




appropriate p.

Tables 8.3 provide the average confidence limits for %%.
under different p, values for the specified u,. Table 8.4 provides a
comparison of the one stage D-optimal and local c-optimal designs
with the two stage design. These designs wé#e compared by
standardising with respect to the mse for the c-optimal design. The
efficiencies were evaluated and listed in Table 8.5 for the different
designs constructed. The procedures described above will be denoted
by My, T2, Ty, namely,

—- Ty : One-stage - using D-optimality

- T, : One-stage - using local c-optimality

- T3 : Two-stage deéign.

The simulation was carried out in a similar manner to

simulation study II (see : Appendix A8.III).
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Table .

8

1

Simulation Study III - Procedure 7,

Values of ECP and vEMSE for different u, values and

different sample sizes

n 10 20 50
u, ECP +EMSE ECP <EMSE ECP YEMSE
0.1 .929 0.075 .945 0.0567 .936 0.037
0.3 .926 0.082 .934 0.058 .935 0.038
0.5 .917 0.088 .936 0.064 .933 0.040
0.7 .933 0.097 .942 0.068 .941 0.044
.9 .955 0.047 .9358 0.077 .838 0.048
1.1 .912 0.11¢ .932 0.085 .942 0.052
1.8 .921 0.129 .945 0.090 .936 0.058
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Table 8.2

Simulation Study III - Procedure 7w,

rValues of ECP and vEMSE for different ug, values and

different sample sizes

n 10 20

U, ECP vEMSE ECP VEMSE ECP <EMSE
0.1 .908 0.082 .942 0.056 .948 0.034
0.3 .919 0.080 .943 0.056 .939 0.0385
0.5 .915 0.080 .935 0.055 .951 0.034
0.7 .911 0.081 .926 0.059 .946 0.036
0.9 .945 0.036 .940 0.056 .933 0.038
1.1 * * .9834 0.066 .946 0.040
1.3 .929 0.106 L9839 0.074 .946 0,047

* The corresponding p=.954545 so that no two point

design can obtained with n=10,
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Table 8.3a

Simulation Study III - Procedure My

Values of ECP and vEMSE for different u, values.

Sample size : n=10.

Po 0.2 0.4 0.6 0.8

U, ECP___J/EMSE ECP __ J/EMSE ECP  vEMSE ECP  yEMSE
0.1 .907 0.082 .921 0.079 .921 0.080 .924 0.080

0.3 .906 0.081 .917 0.083 .,903 0.082 .918 0.081

0.5 .895 0.082 .920 0.079 .904 0.084 .917 0.084

6.7 .908 0.081 .905 0.087 .898 0.087 .900 0.091

0.9 .935 0.038 .949 0.038 .944 0.041 .949 0.043

1.1 .885 0.096 .900 0.100 .8938 0.107 .879 0.115

1.3 .915 0.105 .9%22 0.107 .813 0.115 .903

0.117
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Table

8.3b

Simulation Study III - Procedure 7.

Values of ECP and vEMSE for different uj, values.

Sample size : n=20.

Py 0.2 4 6 -8

Ug ECP__/EMSE ECP vEMSE ECP JEMSE ECP  VEMSE
0.1 .937 0.056 .927 0.056 .930 0.056 .942 0.056
0.3 982 0.057 .934 0.055 .933 0.058 .921 0.059
0.5 .916 0.057 .923 0.059 .930 0.059 .946 0.057
0.7 .981 0.057 .936 0.057 .927 0.061 .939 0.061-
0.9 .928 0.600 .933 0.062 .927 0.063 .933 0.067
1.1 .934 0.064 .928 0.066 .921 0.071 .937 0.077
1.3 .936 0.077 .945 0.078 .947 0.077 .946 0.085
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Table

8.3¢c

Simulation Study 111 - procedure Ty

Values of ECP and vEMSE for different uy values.

Sample Size : n=50.

Po 2 4. Q. 0.8

U, ECP vEMSE ECP YEMSE ECP vEMSE ECP J/EMSE
0. .946 0.035 .956 0.034 .921 0.080 .948 0.035
0. .947 0.036 .940 0.036 .945 0.034 .943 0.037
0. .948 0.035 .946 0.037 .945 0.037 .953 0.038
0. .944 0.037 .949 0,037 .951 0.037 .948 0.041
0. .958 0.035 .938 0.039 .948 0.039 .938 0.044
1. .948 0.040 .950 0.042 .952 0.040 .943 0.048
1. .952 0.046 .952 0.048 .952 0.050 .938 0.054
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Table 8.4
Simulation Study 111
Summary of one stage and two-stage design

comparing the efficiencies (*), Sample size n=10,20,50

Uy D-optimal Two _stages design

0.2 0.4 0.6 0.8

0.1 1.0 0.99 1.0 1.0 1.0
0.99 1.0 1.0 1.0 1,0
0.92 1.0 0.99 1.0 0.98
0.3 0.98 0.98 0.97 0.98 0.99 i
| 0.95 0.97 - 1.0 0.96 0.93
] 0.92 0.96 0.97 0.94 0.92 |
0.5 0.91 0.98 1.0 0.95 0.95 |
1 . 0.87 0.96 0.94 0.94 0.97 |
0.84 0.97 0.94 0.93 0.90 |
0.7 0.83 1.0 0.92 0.93 0.89 |
0.87 1.0 1.0 0.96 0.96
0.83 0.99 0.99 0.93 0.88 |
0.9 0.77 0.96 0.96 0.88 0.84 |
0.73 0.94 0.91 0.88 0.83 |

0.78 1.0 0.97 0.95 0.86
0.78 1.0 1.0 0.93 0.86

1.3 0.82 1.0 0.99 0.92 ¢.90

0.82 0.96 0.95 0.95 0.87




8.7 Discussion

In this application we are estimating a nonlinear function
of the parameters of a linear model and wé are using an approximation
for obtaining the variance of the estimator (8.2.5b).

As would be expected, under procedure 7,, the evaluated
vEMSE for each value of u, is smaller than the vEMSE under m,. This
holds for the different sample sizes n=10.20,50.

Overall, Tables 8.3 indicate that the policy of allocating
po=0.8 i.e 80% of the observations at the first stage might provide
the worst EMSE's. For n=50 the D-optimal design and the two-stage
design with py=0.4 provide very similar EMSE's. This is not so when
pPp=0.8. The situation is much better with py=0.2 with the smaller
sample size n=10,20 in that the two-stage design, even with pg,=0.2.
provides smaller EMSE's than the D-optimal static design. With small
size n=10 the confidence intervals do not have the expected nominal
level. There is a tendency to be lower, close to .90. With n=20 the
results . are improved, although still low. For n=30 the results are
more reliable.

| From Table 8.4, comparing the efficiencies of the designs in
general, the two-stage design with py;=0.2,0.4,0.6 is better than the
D-optimal static design.

This simulation study, dealing with estimation in the
calibration problem provides enmnpirical evidence that efficient
procedures can be achieved by the 1two-stage designs. It is
interesting that the D-optimal design is also the maxi-min and, over

the contexts covered in the simulations, performs fairlyv well but not

as well as the two-stage design.
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Abdelbasit and Plackett (1983) consider two-stage designs
for thé dilution series problem and for the two aprameter logistic
problem. They examine efficiency based on approximation to the total
information for the two stages. In their problems the first stage
requires an initial estimate for the unknown parameters. Their
results suggest that a two stage design given a particular starting
estimate can be quite efficient relative to a design with more
stages. Our results suggest that even with n not very large the
two-stage design might prove useful. even when we use only 20% of our

observations at first stage.
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CHAPTER 9

OPTIMAL DESIGN IN RHYTHMOMETRY

9.1 Introduction

In this chapter we present a particular illustration of a
.nonlinear design problem. based on an application from physiology.
The so-called cosinor model (Nelson et al. (1979)) has been proposed
as a model for biological time series. An example of such a time
series is that of circadian rhythms in airway calibre in normal and
asthmatic patients. Normai subjects were recruited for this study
and agreed to record their peak expiratorv flow rate at different
times of the day for a certain number of days. A form of the cosinor
model, depending on clock or calendar time. has been applied by
Hetzel and Clark (1980). Confidence intervals and related
statistical analysis on the proposed model have been developed by
Nelson et al. (1979).

We study the problem from the point of view of experimental
design, that is what are the optimum times during the day that the
measurements have to be recorded, how many times per day should the
measurement take place, and how should these times be weighted
optimally.

In the practical problem considered a nonlinear function of the

parameters of the linearized cosinor model is to be estimated.




Various optimal design procedures are discussed from a geometrical

and analytical point of view,

with the locally optimum design.

will replace u by t in the sequel. The unit for t is time in days.

9.2 Background

Some diurnal rhythms can be described by the following

cosine model, known as the cosinor model in the biomedical
literature.
v{t) = n(t,e) + ¢ ' {9.2.1a)
with
n(t,e)=eo+eico§(wt+ez) (9.2.1Db)
where
y(t) is the response at time t. i.e the biological

variable (rhythm) we want to study.
the mesor, i.e the “mean” value about
which pscillation occurs.,
the amplitude, i.e the half difference between
the highest and lowest value during the osciilation

in a complete cvcle (360° or 24 hours).

. acrophase, i.e timing of high point in degrees.

angular frequency=degrees/unit time (2m=360°

corresponds to a complete cycle). We consider

w=21 to correspond to a daily ecycle.

the error term under (recall chapter 2)
Assumption 2, when inference is made

Assumption 1, when the design is discussed.

{etolﬂ

and their efficiencies are compared

As the design depends on time we
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The model is illustrated in Fig. 9.1 below.

o’ ~90" -190° - 2'(0: -360° (deovees)

.
.
i
T 1
.
i
'

/

oo 6° 12°° 18 24" (hours) *
Fig 9.1 : A typical cosine function of the form

n(t,e)=6,+8,cos(2Mt+6,)

From a clinical point of view the ratio e,/e, is the
parameter of interest. This represents the ratio of the amplitude of
the cyclic variation to the overall mean.

We are assuming a. period of one dav. i.e we consider w=2m.
The reference point for phase is 0° or 00.00 hours since cos(P=1.
Zero time is taken as 00.00 hours on the first day the study is
started. It is easy to see, from Fig. 9.1, that the case 8,/85<1 is
the only practical one in real life situations. When 6,/8,>1 we

would bhave negative values for n which has no phvsical meaning in the

problem.

Expanding the cosine term. n(t,e) we have

n(x,8) = 8yXy+R; Xy +BsX, (9.2.2)

with
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By =6,C088,. B,=-0,5in0,. X4=1, X,=cos2nmt, x,=sin2nt (9.2,21)
Therefore model (9.2.1) can be written as
Y(t) = wT(t)B+€ ~B=(601B1;BZ)y WT(t)=(xQ-x5|:vaZ)' (9-2'3)

When the model (9.2.2) is fitted estimates for & and e, can be

obtained through the relations
'e'l = J(BE+RY), 8, = Wik _ (9.2.4)

AA

say, Wwhere Q=arctanlﬁ2/ﬁll and k is an appropriate constant. The
value 26, is the peak to trough estimate and w is the estimate of the
phase of the rhythm i.e the time of the computed acrophase. For

N
different values of ﬁi,ﬁz we have (see Nelson et al (1979)).

~ A A A

/31 ' ,32 > 0 then 6, = -W (k=0)

N » Fad A

B1<o, B2>0 then 92 = ~TH (k=-T)
A A A A

By<0, B;<0 then 6, = ~T-W {Kk=-1)

ﬁl>0. §2<0 then &, ~2mi (k=-2m)

In the sequel the design problem will be discussed for a nonlinear

function of the parameters of the linearized model (9.2.1), namely

(9.2.8).




9.3 D-optimal design

For the model (9.2.1) clinicians are interested in efficient

estimation of the relative stability of breathing i.e the ratio
g=g(8,,0,1=0,/8, (9.3.1)

is to be estimated as well as possible.

Therefore we consider optimum designs for estimation of g.

For the model (9.2.2) the design space, X say, is a circle, defined

by

Xo = 1, x3+x% = 1. (9.8.2)

The centre of the circle is on the Xo axis at point (1,0,0); see Fig;
9.2. It follows then (Fedorov. 1972 p.75) that the points of the
D-optimal design must lie on the given circle. Moreover any
equally-weighted design whose support coincides with the vertices of
any regular polygon inscribed in the circle is D-optimal. For
instance a four point, equally spaced and equally weighted design

will be a D-optimal design. We comment that, in contrast. under

c-optimality a two point unequal weighted design will be produced in

section 9.4.




is%6

&
2= » X
O(o, °>°,) 6“5:0) s
X

Fig. 9.2 : Position of the design space X

For the model (9.2.2) we evaluate the average information
per observation matrix for this four point design, mentioned above.

It equals (recall (2.5.8c))

n Lcos(2mt;) Isin(2mt;)
nM(€) = | Lcos(2mt;) Ecos?(2mt;) Ecos{2mtj)sin(amt;)] (9.3.3)

Isin(2mtj) Lcos(2mtj)sin(2mty) Lsin?(2mty)

Take the 4 points to be
t, t+1/4, t+1/2, t+3/4
i.e, in angles,
2wt. 2mt+m/2, 2mt+m, 2mt+3m/2.

Let §j=2mt+T;. T{=0,m/2,7,31/2 it is easy to see that

LcosS;=LsinS;=0, Lcos?8;=Lsin?g;=2. (9.3.4)

Thus for n observations obtained in n/4 days (9.3.3) is reduced to
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n 0 0
nM =/ 0 2(n/4) 0 =ndiag(1,1/2,1/2). (9.3.5)

0 0 2{(n/4)
Interest is in estimating (9.3.1) written as

g = (J(Bzﬁﬁé))/eo. (9.3.6)
Thus the approximate variance of g is

nVar(g) z o2(Vg)TM 1 (Vg) (9.3.7)

where Vg is the vector of partial derivatives of g(.) and equals

(VE)T=(~ (¥ (By+B3)) /8% , By/(8o/(Ri+B3), Bp/eoy (Bi+A2))

=01 (-6,/8y, By/8,. By/e,) (9.3.8)

Substituting (9.3.8), (9.3.5) in (9.3.7) we obtain the approximate

variance, V4 say, of an equally-spaced equally-weighted 4-point

design.

Vg = (0%/(neg)) [(e,/84)2 + 2. (9.3.9)

Note, from (9.3.7) that our problem is approximately

equivalent to a locally c-optimal design, where "c¢" is given by

(9.3.8).
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9.4 C-optimal design

For given 6,, ©,, 6, and therefore B,, B, the locally

c-optimal design problem is to
min {cT™M™(8)c, Ee=} (9.4.1)

with c=(cg,cy,cp)T=Vg as in (9.3.7) and nM(€) as in (9.3.3) i.e €
imposes a measure which puts weight 1/n at Y.ty ..., th€[0,1). In
principle we require an optimal measure € on f0,1) to solve (9.4.1).
Elfving (1952) developed a geometrical approach to finding c-optimal
designs. With this in mind, and considering the reflection, -X, of
the design space X. a cylinder is formed, connecting X and -X with

the Xgy-axis as axis and directrix the circle X, see Fig. 9.3.

| 3]

talarcton 22

2n

fxo

Xy

Fig. 9.3 The design space X and its reflection -X form the

cylinder-Cj for the model (9.2.2)




The equation of the cvlinder is
£
= { {Xg.X;.X5) 1 -1&xo€l, X3+X5 = 1}, (9.4.2)

Moreover any point on the cylinder C:is either

(i) On the curved surface (ray r,, point R; in Fig. 9.3) or
(ii) On one of the ends (ray r,, point R, in Fig. 9.3).

Any ray, R say, can be written

R = { (Acg.Ac,.AC,) , &S0 | (9.4.3)

for some cg, €y, Cp. In particular, we consider the case where
Cy:Cy.Cp is @as in (9.83.7). The ray hits xy=1 at A=1/cy =- ©y/6, and

therefore the point of intersection is (1, c¢,/cqy. Ca/Cq). We

distinguish cases (i) and (ii) as follows

it (ci+c%)3/¢% > 1 then R, is considered

< 1 then R, is considered (9.4.4)

; It is easy to verify that
t
) (& +c5)2/¢3 = (8,/8,)2. (9.4.5)

The geometry of the problem suggests the use of Elfving's

theorem (Appendix 3) to tackle the two cases described above.

- Case 1 : Consider points such as R,, ie 8,/8,<1. The side
elevation for point R, is presented in Fig. 9.4. The

ray hits the cylinder at (Acy,Acy,Ac,). Thus
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(Ac,)2+(Aco,)2=1, A2(6L+dl)=1. A=1/v/(c +cz).
1 2 1%Co 1%C2

So the point R, is

Rl =(J(C21+c2‘2))—1 (CO'CI.'CZ" (9.4.6]
Applying Elfving's theorem and using the notation of Fig. 9.4 we get

KRy /R,L=€/(1-€) i.e &/(1-8)=(l+co/v(c2+c3))/(1-cov(h+cd))

=(1-8,/8)/(1+8,/64) (9.4.7)

where €, 1-€ will be the weights assigned under the c-optimal

design,

aXg
"
/
U m/ L
1
1
¥
1
[]
I
KL ("I;O)D’ i L; (1,0,0)
Ve e
K’ L

Fig. 9.4 : Side elevation for point R; from the cylinder Zf

in Fig. 9.8.
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Therefore fromA(9.4.7) we get
€ =0.5(1 - o,/0,), 8,/84<1 . (9.4.8)

The corresponding amrt™ value will be (with t* being the optimal

value)

2mt® = arctan cp/cy = arctan((B,/(8,8,))/(B;/(0,84))) =

arctanf,/fy, = tan“i(—tanez) = tan-i(tan(-e,)) = -6,

Thus for e,/e, < 1 allocate

m
1t

0.5(1-8,/8,) obs at “QZIZR

T
m
n

0.5(1+8,/8,) obs at m-8,/9m. (9.4.9)

For the two point design the corresponding 3x3 matrix
M=M(e,€) is singular with rank(M)=2. Considering the general form of
M(®.€) in {9.3.3) for this particular case it is easy to verify that

under (9.4.9)

1 (2€-1)cose, ~(2€-1)sine,
M(e,.8) = (2€-1)cos8, cos?e, -cose,sine, [(9.4.10)
-{28-1)sine, -cose,sine, sin®e,

Substituting € in (9.4.10) from (9.4.9) we get, for the optimal

design measure €=E, say

1 -(98,/8,)cos8, (8, /8,)sine,
M(e,8,) =[ -(e,/6y)cose, cos?e, -cose,sine,
(8,/65)sine, -cose,sine, sin®e,

To solve (9.4.1) the generalized inverse M (e,€,) is needed. Using a




matrix result (Rao (1965) p.26, Appendix A4.II (v) ) we have fﬁzsﬁlg)

cos®e, (®,/65)cos6, O

MC(e,8,) = | (8,/0,)cos8, 1 0 1 - (9:4.11)
o0l

0 0

Hence for E£=€, and

cT=(Vg)T=(1/6,) (-8,/6q, B1/8;, By/8;)=(1/85)(-8,/6,.c086,,-5in6,)

we obtain
cTM™(e,€)c = (1/84)2 (8.4.12)

and therefore the approximate variance V, for the two point design is

V, = Var(cT8) = (1/84)2 02/n, e,/8.<1. (9.4.13)

-Case II : Consider points such as R,. i.e &,/8,>1. The

sectional diagram showing point R, is presented in

Fig. 9.5.

In section 9.2 we not?d that for that particular problem our
interest is restricted to 6, /84<1. For completeness however, we also
discuss the other case now. Interest is focused on a result, following the
same procedure as in Case I, which is complementary to that in (9.4.9).

Consider Fig. 9.5. Any chord of the type IT', i.e going through
R,, corresponds to a design fesulting in the point R,. We choosé the
diameter D,D, of the circle with centre L,(1,0,0). The

point R, can be obtained by allocating weight € on D, and 1-€ to D,.




point R, can be obtained by allocating weight € on D, and 1-& to D,.

Therefore

€/(1-8)=D2R,/R,D, =[1+av(cy+c3) I/[1-av (S +ch) =

=L1+(/(y+c3))/cod/D1-(V(ch+c) ) /eod=(1-85/0,) /(1+68,/8,).

Thus for ®;/6,>1 the weights are

€=0.5(1-¢,/98;) , 1-8=0.5(1+8,/9,). (9.4.14)

Therefore there is a symmetry in the result obtained for

both cases, I and II.

as can be seen by comparing (9.4.14) and
(9.4.9).
J‘)‘z
7
Y T
\
TN D,
I\
\
pOS\ e
HGY r
1
“’—-’L -
Ll AC' z x'
)
L

Fig. 9.5 : Sectional diagram for point R, from the

cylinder(j’in Fig., 9.2.
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9.5 Restricted Design space

An important practical difficulty with the optimal designs
of section 9.4 is that they require measurements to be made when the
response function is maximum and minimum. The latter typically
occurs in the early hours of the morning.

It might be desirable for the design to be restricted to
more social hours, i.e avoid taking>measurements during the night.
We restrict the design to a portion 1-T, say of the day, where T is
the length of the night-time period, e.g 1lpm till 7am, see Fig. 9.6.
Moreover we assume that the minimum of the response function occurs
at the middle of T and the maximum, in 1-T, occurs at the middle of
this interval. Any design depends on 8,/845 and 6,. Moreover the
restriction on time means that the new design space, Xy, say, is no
longer a circle and hence the idea of a full cylinder is no any
longer applicable. The cyvlinder will be "truncated". say, as is
shown in Fig. 9.7. A side elevation is presented in Fig. 9.8. Thus
we have to reevaluate the equations of interest.

Firstly we evaluate the equation of the-ray ry. This is the
equation of the line through the points 0(0,0) and R, (-8,/64,1) ; see

Fig 9.8. This is

y = (-eo/ei)x- (9.5.1)

(The point R, corresponds the case discussed in Fig. 9.4). The
equation of the line through the peoints L'{1,1) and W(-1,cos¥w), with

Y being the angle corresponding to the portion of 2m which is

equivalent to T/2, is

(v-1)/(cosy-1) = (x-1)/(-1-1). (9.5.2)
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Fig 9.6 A typical situationiwhen the rythm is

"going down" during the night.
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> XeX

Xy
Fig. 9.7 The truncated space Xy and its corresponded

truncated cyvlinder.
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Fig. 9.8 Side elevation of Fig. 9.7
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As T is the portion of the day whﬁch defines the design

space, X, we have 2p=2nT. Therefore from (9.5.2) we get
v = 0.5Ccos(nT)+1] + 0.5[1-cos(nT)Ix. (9.5.3)

The coordinates of E, Fig. 9.8, are the solutions of the

simultaneous equations (9.5.3) and (9.5.1) and therefore

X = 0.5[cos(nT)+1]/(0.5cos(nT)~0.5~eo/ei), {(9.5.4)

giving a corresponding v.
It is easy to see that, with T=0, x=—61/e0 and therefore y=1

-i.e the point R, in the untruncated case. Now using Elfving's

theorem (recall Fig.9.8)
(1-€)/8 = DE/EF = (1+x)/(1-x) € = 0.5(1-x).

Therefore

g€ = [:~0.5(90/61+1)3/[0‘SCOS(HT)%}.5—60/61]. (9.5.5)

Therefore design weight 1-€ is applied at A and 0.5& at each of B and
C, under the symmetry assumption which we have imposed; recall Fig.
9.6. For definiteness we consider T=1/3, that is a restriction to a

16 hour period. The information matrix can be written in the form
M = (1-€)Mp + 0.58Mp + 0.58M(; » (9.5.6)

recall Fig. 9.6 and the regression (9.2.2¢c). It is easy to see that,

for any T,




le7

2t pr@ =0 1.e tp=-0,/2m, tp=tp1/2
tg=tp+(1/2)T=1/2[-e,/m -1+T]

to=tp-(1/2)T+1=(1/2)(-85/m +1-T].

If we set T=1/3 in the above relations, the vectors corresponding to

W(ty) i=A,B,C are (recall (9.2.2c))

W(tp)=(1. cose,, -sine,)T
W(tg)=(1, cos(e,+2m/3), -sin(e,+am/38))7

W(tg)=(1, cos(e,-2n/3), -sin(e,-2n/3))7

We can therefore write Mj=W(t;)WT(ty), i=A,B,C. Moreover it is easy
to prove the following Lemma.
Lemma 9.5.1 : The average per observation information matrix

M(€) as in (9.5.6) can be written as

M(E)=(1-8)A,A} ,EA,AL+EAAY
with
A;=(1,cos8,,-s5ine,)
Ao=(1,-1/2c0s8,,1/2sine,)
A5={0,/3/2s8in6,,v3/2c0886,).

Our target is to evaluate cTM c. Therefore the following
Lemma provides the evaluation of the desired quanity.

Lemma 9.5.2 : The matrix M(€) can be written as

M(€) = xpceT+rgddT+hgee” (9.5.7)

where the vectors c,d,e are orthogonal. Moreover




0 = ™M (E)c = Ap/[1-Xsedchel (9.5.8)

For details of the proof see Appendix A5.I1I. The

quantities in (9.57) and (9.5.8) can be proved equal to :

with

cT={1/84)(-0,/0,, cOSO,, -sine,)
d"=(0, sine,, cose,), eT=(8,/0;, cosO,, -siney)
kc'—‘(l—g))\i + aay >\d=3/4 ay

Me=(1-€)%; + Oy, Ige=(1-2)A%, + DD,

X =[(1-K)ey1/[Kk2+1], o= (kt1)k]/[KB+1]

rg=l-0g(2k+1)1/[2(k2+1)], Ag=[2Kk-k2]1/[2(k2+1)], K=6,/8.

After some algebra we find that ¢ is given by

0=(1/384) 2[ (4k+1)3(1-8)+(2-Kk)2€]/[E(1-€)], k=6,/6,. (9.5.9)

Therefore the approximate variance for the three point

optimally-weighted truncated design is

Vy = Var(cT8) = po?/n. (9.5.10)

The corresponding design weight €, can be evaluated from

(9.5.5) with T=1/3 as

€5 = [0.5(kx+1}]/C0.25+K]. (8.5.11)

Thus the design measure still depends on the fraction e,/e,

which we are tryving to estimate. If we wanted to construct an
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equally-weighted 3 point design in this truncated case, the design
measure would be defined by €=2/3, with corresponding approximate

variance

va = (2/365)[2(k+1)2,(2-k)2J02/n. (9.5.12)

In the next paragraph a synopsis is presented of the above

results and the efficiencies of the designs are evaluated.

9.6 Synopsis

We summarize the-results obtained in previous sections for
the optimal design for estimating the function g=6,/6, of the

parameters &,, ©; of the model n(t,e)=e,+8;cos(2mt+6,). The results

are tabulated in Table 9.1.
For the results evaluated in section 9.3, 9.4, 9.5

efficiencies can be obtained. For the untruncated case, Table 9.1

compares the four point and the two point designs.
Ex 4 = Va/Vy = 1/[(e,/8,)3+21. (9.6.1)

The truncated design compared with the untruncated unequally

weighted design gives efficiencies

Ep.s = Vo/Vy = [9E(1-€)1/[K, (1-8)+k,€] (9.6.2)

with

Ky=(0,/8g +1)2, Ky=(2-6,/6,)2, € as in (9.5.11).




For the equally weighted truncated design compared with the

two point design

) L
E» g = Vo/Vg = 8[2(6;/8,)%+(2-8,/6,)2]72. (9.6.83)

For different values of ©,/e,<1 the efficiencies and the
design measures have been evaluated for the different designs in
Tables 9.2 and 9.3. It is interesting that +truncation does not
greatly influence the nature‘of the design. Thus an equally weighted
truncated design can be recommended. In practice, from previous
experience the ratio ®;/6;, does not exceed 0.3. In principle any
optimal design, in the nonlinear case, depends on the parameters it
is planning to estimate. 1In this particular case Table 9.2 reflects
this dependence. However for small values of @, /6, there is little
difference between the optimal designs. Thus we choose_the design
procedure we adopt, we provide a guess for ©,/6, and the appropriate
design measure can be evaluated, as in Chapter 4. That is we know

what percentage of the omeasurements will be allocated to each point.
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Table 9.1:

)

from the model n(t,8) o

Synopsis of the proposed designs for estimating g
+ 8; cos (27t + 85)

Approximate Variance

Design Measures

Optimal design points

Designs
1. 4 equal spaced _ ) 1 _ *_ - _ )
equally weighted Vy = ||Nl m W + mt_ %l A L=1,2,3,4 €= 2mt, mwl 2nt + 5
points Amon every .mb. ) 3= 2mt+m,
© £fi= 2wt + %.
2. 2 point umequally _ o2 @)
weighted V2= 37 £1= 3 (1 - 2b) 6 = -6, = 2nt
c-optimal @ o
E,= 1 - £ 5 =m-8, = 21t + 7
2 - L&
B. 3 point, T period g 2 bml.._.. + : (1-£1)+(2 - .wnru £ m&n E T o= -63.
truncated unequally | V3 = 57 o Losm)-L - 8o * 1.6
‘weighted 0 £ (1 -¢) . 2 2 6 mmumh 24T-11
c-optimal @ L 308 6
Huy-m.mm_u%ui wuwﬁ-m;w-qu
fra. When T = H\m V3 as above in 3, £¥o .vamu .Hlvl m.w = -6,
1 _ ® i \ﬁw ) 22 -
b. when T = 7/3 - ST 2 3 wuu;tuuw.
= 2 _2 61 2 .59 o £1= 1-€ ,€x = £3 =%E
and mo /3 Vs BETYA hNﬁmo + 1)7+ (2 B ) a 5 muw = - roimu +# 1
° e as above with &* =°/3 '
© as 4a

.mwn 2n@*
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Table 9.2 : Efficiencies when 8;/85<1 for the designs

described in Table 9.1 and relations refered

in sections 9.6.

8,/8, 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Bz 4 0.50 0.49 0.48 0.46 0.44 0.42 0.40 0.37 0.35

Es 5 0.53 0.51 0.48 0.46 0.44 0.42 0.40 0.39 0.37

E; o 0.49 0.49 0.48 0.46 0.44 0.42 0.40 0.37 0.85

Table 9.3 : Evaluating design measures when 6,/6,<1

for the designs described in Table 9.1

Design | ®,/8, | 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 |
!

1. €; 0.25 for all i=1,2,3,4 and for every ©,/6, |

|

2, €, 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05
€2 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

4b. €y 0.46 0.4é 0.40 0.86 0.33 0.30 0.28 0.25 0.22
€o-e3 0.27 0.29 0.30 0.382 0.33 0.35 0.36 0.37 0.39
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9.7 Analytic approach-

In chapter 3 we presented the geometric aspect of the
design, after producing the analytic forms of the confidénce
intervals. In this chapter we have proceeded by using firstly
geometrical arguments and now we describe the analytic approach of
the problem. Both approaéhes are of course the two sides of the same
coin.

In our practical context interest is focused only on Case I,
i.e 6,/85<1. We now tackle this case using a different approach.

For the two point design the matrix M(€) is as in (9.4.10)
and the design allocates proportion € at -8, and 1-€ at m-e,.

Consider the two vectors b,, b, as follows
v2b, = (1,cos¢,-sind)T, v2b, = (1,-cosd,sind)T (9.7.1)
which .. &€y orthogonal wikh norw 4. SLLp?osehd, vector h can be

written as

h = Vb, +(1-V)b, , VeR. (9.7.2)
Moreover we can write M(o,£&), recall (9.4.10), as
M(e,€) = 28b,by + 2 (1-8)b,yb, (9.7.3a)
and therefore using a matrix result (Appendix A4.I, (vii, viii))

M (e,€) =Y2e b, 1, 2 (1-8)"1b,bh (9.7.3b)




For any h as in (9.7.2), considering M = M (£€) as in

(9.7.3) we find that
2hTM (€)h = VB/€ + (1-V)2/(1-E) (9.7.4)

Relation (9.7.4) gives the value of the criterion function for any £

and it can easily be shown to be minimized when
v/ (1-v)| = |8/(1-€)] i.e #v/(1-v) = €/(1-€). (9.7.5)

Thus for the particular h in which we are interested namely,

(-8,/849)h=(1, (-8,/8,)cos83, (8,/8,)sine,) we can obtain

V = 0.5(1-8,/0,). (9.7.6)
This is of course the value of the optimum € evaluated with the
geometrical argument in (9.4.14). From (9.7.5) we have that either
€=V or E&=-v/{(1-2v). Thus, taking into consideration (9.7.8) we

obtain relations (9.4.14) and (9.4.10) respectively, namely

m
]

0.5(1-85/0,) if e,/8,>1 (9.7.7a)

m
1]

= 0.5(1-8,/8,) if 6,/6,<1. (9.7.7b)

Consider now the general problem of truncated daily time
interval T and the allocation of the observations as follows (recall

Fig. 9.6 allocating observations at the end points and the middle of

1-T)
1-€ at tp = -8,
0.5€ at tg = -8,-2m*1/2(1-T) = -¢o-w(1-T) = -¢-%
0.58 at tg = -0,+27*1/2(1-T) = -d+mW(1-T) = -¢+8,
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with 8=m(1-T). The corresponding vectors W(t) (recall (9.2.2c)) will

then be

W(tp)T = (1, cose,, -sine,)
W(tg)T = (1, cos(e,+8), -sin(e,+8))
W(tg)T = (1, cos(e,-8), -sin(e,-8)).

Therefore the matrix M=M(e,€) can be evaluated explicitly as
M= (1-2)W(tp)W(tp)T + 0.58[W(tp)W(ty)T + W(tc)W(te)TI. (9.7.8)

For the matrix M as in (9.7.8) the following Lemma holds

{for proof see Appendix A5.1).

Lemma 9.7.1 : The matrix M can be written as

M = My + & o[b,by+b,b} ] (9.7.9)

with M, matrix defined in Appendix A5.I and & 5 =2x(1-x)&" with

o=0.5(cos®+1).

The inverse of M is needed as the general problem can be

formulated as

min hM™h , €€E, h=(-8,/8,)(1,(-8,/6,)c086,.08,/6,5in85)T. (9.7.10)

Therefore the following Lemma can be proved (Appendix A5.1).

Lemma 9.7.2 : The quantity hTM *h is evaluated to be

hTM th=(€} /260) (1-x)"2{ (1-V)2/€ + (v-a)2/(1-€)}, (9.7.11)
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with «=0.5{cos®+1)
Minimizing (9.7.11), we rediscover (9.7.5) and obtain
g€ = [0.5(1+ed/el)]/[0.5—O.Scos(nT)+eo/61]. (9.7.12)

With T=1/8, the ©particular case discussed earlier, (9.7.12)

corresponds to (9.5.5),




CHAPTER 10

EPILOGIE

The cardinal target of this thesis was to gain knowledge, by
means o0f theoretical and applied work, on optimal nonlinear
experimental design.

The two different routes of inquiry, theoretical argument
and laboratory experimentation -through the simulations - were
followed. We only wanted to serve the sense of "measure", an
ancient Greek principle, which in_recent terminology says: put equal
weight on both theory and practice.

The statistician moves sequentially from the Scylla of
theory to the Charybdis of application. That is, he has to find
the optimal route between theory and application. Throughout our
applications we have assumed that the model was known. More work is
needed to study the robustness of optimal nonlinear designs. On the
theoretical side there is still no general theory concerning the
convergence of the ‘sequence M(®e,,8,) in sequentially designed
experiments. We have commented on the link between fully sequential
designs and the Wynn type algorithm. Possibly links of this type
might aid development of a general theory of convergence.

The linear optimal design ‘problem has flo@rished in the
work of, for example, Wu and Wynn (1978) and Pukelsheim and
Titterington (1983). The former offer a dichotomous theorem to check

whether an appropriately created seqguence of design measures

A7




converges to the optimal one. The latter place optimél linear
experimeﬁtal design under a general convex analysis setting. It
would be nice if nonlinear design could be taken closer to these
targets.

» Ironically optimal designs for nonlinear problems require
knowledge of the unknown parameters. Some static designs are based
on initial point estimates for the unknown parameters while others
require specification of a range of plausible wvalues or a prior
distribution for the unknown parameters. More experience is needed
on the application of these apprdaches to practical problems.

Extending the work of Ford and Silvey (1980) we performed a
number of simulation studies for a variety of design strategies and
problems. It -appears that approximate inference can be carried out
ignoring the sequential nature of the design assuming that the sample
sizes are reasonably large. The most complicated model considered
had two parameters. It would be of interest to study more complex
problems with more parameters.

Dur results suggest that two stage designs might provide a
useful compromise for an experimenter unable to carry out a fully
sequential design. More studies might be needed to clarify the
situation as it seemed that the nature of the problem influenced the

performance of the two-stapge design.

Geometrical aspects play an active role in this thesis.
It is not just because we are pure lovers of Plato, who did not
permit anybody to enter his Academy without the Kknowledge of
Geometry. It is because we also believe that the beautiful is
equally as useful as the necessary. In chapter 9 we have another
practical example where geometrical interpetation is in accordance
with an analytic approach, to prove that theory serves the Nature and

nature can be ruled from Theory.
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APPENDIX 1

A1.I Differentiability

Let g be a function from R! to [-«,x] and X=(X;,X,...,Xp) @
point where g is finite. Then we define
Definition : The (Gateaux) directional derivative at x in

the direction of v is defined to be
G(x,y) = lim e Yg(x+ey)-g(x)} (A1.1)
E»Ot
If g is differentiable
G(x,y) = Ly;(dg(x)/3x;)
Note that
G(x,e;) = (38/3x4)
J J
i.e the right hand partial derivative of g with respect to the j-th
component of x, with € being the j-th unit vector.

The Frechet direction derivative is defined as

F(x,y) = G(x,y-x) (A1.2)
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The foliowing theorem can be proved.
Theorem : For a concave function g and x a point where g
is finite then G(x,y) exists for all y ; this is

so wehether or not g is differentiable at x.
Comment : The entries X, y might be matrices. In the
design contest with criterion ¢ and derectional derivative & we have

corresponds to g=¢ and G=0 and x, v are matrices.

References : Silvey (1980), Torsney (1981).

Al.II Convex sets

Definition 1 : The set S is called convex if all points

s€S the form

s=xs,+(1-x)s, , §,,8,€S8, x€[0,1]

are elements of S.

Definition 2 : The set of points, s* say, with elements

s* = Lxjsj. Lxj=1, «4€[0,1], Sies

is a convex set. S is called the convex

hull of the'set S.
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Theorem ( Caratheodory ) : Each point s® in the convex hull
S* of any subset S, of the
n-dimensional space, can be represented in the

form

* +1 hig 8
s' = Lajs;j . ay20, si€S, Eai=1

If s is a boundary point of the set S*, then

an+; can be set equal to zero.

References : Fedorov (1972), Silvey (1972).




APPENDIX 2

Many phenomena from Biology and Chemistry involve nonlinear
functions, especially kinetic data and growth curve phenomena. We
present a survey of the literature in which nonlinear experimental
design ideas have been used. Methods for fitting nonlinear models
are presented in Ratkowsky (1983). Table 3.1 summarizes the optimum
design points suggested for various nonlinear models, as defined by
the response function n=f(u,®). The design space U is the "operating

region" for the experimenter.

A2.,1I Mitscherlish equation of diminishing returns,

Model : n=e,+6,exp(6yu)}

U=[k,xJeR, ©cR¥XR~

where
n : the expected amount of growth
6,: hypothetical growth from an infinite amount
of fertilizer
64+6,: measures the rate at which additional
increment of fertilizer decreases.
u : the amount of added fertilizer

(see : Box and Lucas (1959) )

482
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A2.1.1 If it is assumed in A2.1 that £(0,8)=0 then es=-8,

Let ©5=6,. Then the monomolecular model is
Model : n=e,{l-exp(eyu)t

U=[x,\JeR, 6=R*xR~

where

n : the amount of product formed at time u from
a simple decay law.

(see : Box and Lucas (1959), Hohmann and Jung (1975),
Katz et al (1981))
A2.1I1 The growth (or decay) law.

Model N=6,exp(e,u), 6,20 (6,<€0)

U=[k,A1cR, ©cRTXR
where

n : the amount of substance growth {or decay)

(see : Box and Lucas (1959). Jennrich (1969))

A2.11I Irreversible reaction B -——> C .

Model :n = exp{-e,t,exp[-6,(1/T - 1/Ty5)]}




u=(ty,T)eUcR*xA, A={380.450], ©cR2

{see : Box and Lucas (1959), M.J. Box (1968a))

If it is assumed that f(«x,8)-f{(0,8)=1 then the model is

reduced to

n=e,-exp(-6,u)

In order to estimate the reaction rate constant

A k and its variation with temperature (T) the Arrhenieus law gives
k=Aexp(-E/RT),

were A is the freguency factor, E the activity energy. R the
gas constant and T the temperature (°K). If n is the fraction of
the original material remaining after the reaction has continued for
a time t at temperature T then n=exp(-Aexp(-E/RT)). Rewriting this
in terms of the rate e; at specific temperature T, and letting e,=E/R

be the proportion of the activation energy we obtain model A3.III.

If £,=1/T - 1/Ty  then

n=exp{-e,;t exp(-6,tp)} . u=(ty,t;)eR?

This is the first order decay law with rate a function of

temperature

{see : Hunter and Atkinson {1966)).
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A2.IV Chemical reactions A—»B—sC,
Model : n=[e,/(e,-8,){exp(-6,t)-exp(-0,t)}

u=teU=R*" éng
where:

n: the amount of B present after time t,
expressed as a function of the total material
present when initially (t=0) only material
A is present (n=[(B])

®1' rate constant A——» B

6,: rate constant B—»C

We can also assume that the o6's are functions of the
temperature according to the Arrhenius law, i.e
84=kiexp(-E;(1/T - 1/T,))
with k;, E; parameters. The model is considered with
u=(t,T)eUsR¥ XA, A=[380,450].
(see : Fedorov (1972} p 227, Katz et al (1981), Draper and B
Hunter (1967), Hunter, Hill and Henson (1969))
A2.V  Chemical reaction R—sP +P

The catalytic dehydration of Hexyl Alcohol Reaction.

Model : n=(e;84P,)/(1+6;P,+6,P,)
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u=(P; ,P;)eaxa, A=[0,3], ©cR3

where

n : speed of chemical reaction
1: partial pressure of product P,
P,: partial pressure of product P

©,: the absorption equilibrium constant

‘ for the reactant R

6,: the absorption equilibrium for the product P,

, 65: effective reaction rate constant.

(see: Fedorov (1972))

A2.VI BET {Brunauver-Ermet-Teller) equation,

Model : n=(e,e,P,)/[(1-P,)(1+(e,-1)P4)1]

u=P,eAcR. A=[0.05,030], ©cR?

where
n : Volume of gas absorbed on the solid P,
Pyt P/Py relative pressure
8;: the monolayer capacity (Up in Chemistry)
©,: constant characterestic of the gas-solid.
(see : Hill and Hunter (1974), Henson and Hunter (1969),

Khuri(1984))
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A2.VII Catalyst and reactionrstudy
Model : n=(®,/(8,+8,-03)){exp(-06,t)-exp(-(6,+0,)t)}
u=teUsR, ©cR®

where
A : reactant reacting to form
B : the desired product
C : undesired by-products
Also B further reacts to form C

8,,0,,85 rate constants

(see : Hill and Hunter (1974))

A2 .VIII Isomerization of n-pentane to i-pentane in the

presense of hydrogen.

Model : nn = eles(ug‘ul/l.ﬁsz)

1+62u1+83u2+e4u3

u=(uy,U, Uz)el=4, XA,RA5ER? }
A =[107,4711, A,=[69,294], Ag=[11,121]
6cR*
where
n : the rate of disappearence on n-pentane

8, : reaction parameter

6, ,053.08, equilibrium constants
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Uy .uz.ug partial pressures of hydrogen,

n-pentane. i-pentane respectively.

(see : Prichard and Bacon (1977)).

A2.IX Oxidation of benzene.

Model : n = 9,exp(-05uz}e,exp(-84uz)u u,

8; eXp(~B83Uz) U, +UyB5eXp(-64tg) U,

U=(U1|U2.UQ;U4)€U=A1XA2XA3X{5.75 }ER‘}' . egR4

84=0107%,16%1073], 4,=[1073.4*10721, A4=[623,673]

where
n : the initial reaction rate

u,; : the concentration of oxygen

) u, : the concentration of benzene

uy = 1/T - 0.0015428, wehere T is the absolute

temperature of the reaction

u, : the observed stoichiometric number

©1:02,85.84 : model parameters arrising in

Arrhenius's law.

{see : Prichard and Bacon (1977), Prichard et al (1977))
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A2.X Michaelis - Menten model.
Model : n=e,u/(®,+u)

ueUcR, ©cR?
where
n : the reaction velocity
6, : maximum velocity of the reaction
©8,: the half saturation constant (i.e maxn)

u : the concentration of substrate.

(see : Currie (1982))




APPENDIX 3

A3.1 Elfving's theorem

Elfving (1952) stated the geometrical characterization of
c-optimality as follows

Consider the model n=E(ylu)=fT(u)e, uel. As far as
c-optimality is concerned. the optimal design weights of the
observations can be obtained through the following geometrical
argument:

Draw the convex hull fi of the space Uy=f(U) and its
reflection in the origin. -U,. Draw the vector c and let T, be the
point of intersection of ¢ with C?. Then T; lies on the line which
joins A€U, and B'e€(-U,) and which forms part of the surface Zf. Note
that B' is the reflection of B. Then the c-optimal design is located

at A and B with weights €, 12-£ respectively where
€/(1-8) = T,B'/AT,.

Moreover the optimum minimum variance is [OT/Dlez. The
cases in which U, is a line segment or a circle are discussed in

chapters 8 and 9 respectively.
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Fig. A3.1 Elfving's theorem.

A3.I1 Silvapulle's theorem

Silvapulle (1981) stated and proved the conditions under

which the existence of the MLE in binary problems is guaranteed.

Let uy, u,,...,u, be the design points corresponding to
responses yi=1, i=1,...,r and Up.;,...,u, corresponding to responses
yij=1, i=r+l,...,n. Consider the convex cones § = {Ekiui,xieo.\ﬂ=n“r}
F = {ijuj,Kjeo.Vj=r+1,...,n}. Then the following theorem holds.

Theorem : Let the condition (L) be defined by

(L) SNF %lﬁlor one of S or F is RP2®

Then for the binomial response model

Prob(y;=1)=T(uje)

(i) The MLE 6 of © exists and the minimum set {e} is




(ii)

(iii)
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bounded only when (L) is satisfied.

Suppose that
2(8)=-LlogT(u®8) - Llog(1-T(u}e))

is a proper closed convex function on RP. Then the
MLE g exists and the minimum set {8} is bounded if

and only if (L) is satisfied.

Suppose that -logT and log(1-T) are convex and u, ;=1
for every i. Then 3 exists and the minimum set {3} is
bounded if and only if SﬂFﬁﬂ. Let us further assume
that T is strictly increasing at every t satisfving
0<LT(t)<1. Then & is uniquely defined if and only

if SNF=0.

As an example where the MLE does not exist consider Fig.A3.2

where there is no "interblocking" condition between S and F.

TU)

Fig. A3.2 : No intersection between S and F




APPENDIX 4

A4.1I Generalized inverse

Definition : Let AeM(m,n), with M{(m,n) the set of mxn

matrices then A~ is the Moore-Penrose
generalized inverse iff :
{i) AA” and ATA are symmetric

(ii) ATAA™ = A” and AATA = AT

Properties

(1}
(ii)
(iii)

(iv)

(v)

(vi)

(vii)

When A™ exists it is of size nxm and it is unique.

(A7) A

(A7)~

(AT )T

rank(A) = rank(A™) = rank(AA™) = rank(A"A) =

rank{AATA) = rank(A AA )

If A = AT then A~ = (A™)7T

If A=A +A,+...+Ay and AiA§=0 for all i,j=1,2,...k
i#J then A7 = A +A,+.. . +Ag

If a is a nonzero vector then a"=(aTa) a’=]||a]| 2aT

192
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A4.11 Conditional inverse

Definition : Let AeMat(m,n). AC is a conditional inverse
iff

AACA = A

The generalized inverse is also a conditional inverse.
The opposite not necessarily true.

For the linear model Y=XB+¢ the normal equations are
XTXB=XTY. Moreover it is known vT{(XTX) Cy=vT(XTX) "v,
~ be&w\%g to the coluwn space of XT

Properties

(i) rank (AC)}arank({A)

(ii) rank(ACA)=rank(AAC)=rank{A)=tr(AAC)=tr(A€A)

{(iii) AAC, ACA are idempotent matrices

(iv) ACA=I = rank(A)=n

AAC=T =2 rank(A)=m

(v) If A of rank r is partitioned as

A= then AC =

with B of rank r.

References : Graybill (1969), Rao (1965)
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APPENDIX 5
A5.1 Evaluation of min{ hTM™%(e,€)h, €e=}

(i) Proof of Lemma 9.7.1

(See also A5.II for details about trigonometric equations)

L% o% 62 -5 ‘92

™M= M(e)%) = (4-%) (ooeez ws' @, -—c.osezer.'ngz

2
~oinl;  —cosGomB, Stn'6s

L wo(0,48) ~5vn(6,+9)
T 55 | 0o (848D 02 (8,+6) =511 (8,0 )Cox( B, #8)
~50q(8248)  ~sen(8y48) wos(B248)  sin{(8;45)
[ cos(8:-6) ~6n(02-6)
++ 3 cos B,-6) 0% -8)  _gin(d,-O)os(dr-6)
cein(B-0)  -oin(Br-8)cos(63-8)  sin'(B-t)
= (- g) i wsh - sa«,&z
[€ =39 8?. (—05187_ - cos&;_ 5 (.ﬂ 32
—oimbzs —costhsinb2 st
2 ZcosbcosDz T - 2¢esSsinlz \
+ ’E % 20050 Cosaz 2[w525w5282 +s{ﬂ"5%x'ﬂzﬁlj —w0s28sin 2r3§
' -2wsd S\‘ﬂﬁz -eos 20 $\'ﬂa'2_ ’z.[w sza- k3 (9; +.S|'nz JSl'ﬂzDL'
/)

(A5.4




MO, gy /4 (lra’os&i ~sinda )

ws Vs
~5UMle
( i 505500ng -—cr:=5sm31)
1 S aosﬁo:ﬁz)
Cosﬁ sma
(o gtﬂggLﬂbz svngcosﬁz>'
* 3 (5\1«(59\7)3?.) (AS 2)
Sans Cosa
We define
2 ) B"'
be: & (4 cosDy ,-5tnds
, T
‘37_ - .Q'Lz: C'&, -—00531_ ,St'ﬂ87,>
C[— - (O) 5!’\/)31,00931)‘- ; bq.Lbz) bz.LOI..
W€ can write
i { 1
wsdesde ) o[ s, + () [-as
—6055 ‘.frl.'ﬂa?_ "$Cf)bz

ornda (ASZd)

where

= -é(cabcg +L> .

M(&,g}= C(—g)qub(T+g[\/EO(bq+
- ‘gSl'ﬂqCSo{CLT =

-—
-

201y + ?.S%olzb«bf + (-0 bibg + ()-8 byb" +

T d_T‘f'
(4_0(-34!‘})1—!011& + gg{'ﬂlé c{d‘r - a|b1b{T+ 0’1‘92.)9?, +a3cl

1':: M +a, b}.b\
d(?.[bqbf-tb,‘)a;‘lt‘; Mo‘fﬂrtgb|bg*‘°}\‘zb'¢.b« A 3

(A5.3)
with
A, = fZ(l’S) 4—2'€cxz
daz 2% (i-e)"
Jz = %QM%- |
o, = 2o0li-)%,

VZC1 -o0by | [+ vz (1) o]
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Our target is to evaluate M“.=M*1(e,e;} .

. - - - ] T CAS.4)
Firstly Mo = o 'byb + oy by b + oy dd

-l T
- - - -t d. M b b M
Secondly 1"\1‘ = (Mo-vd\zb\b,_) = M, - S22 T

-l
A +oh, b7 M, b,

- - -
~ Mo -, Mo’b\b; Mo CrA5.5)

- -l
Because b, My b =0,

Thus

T - \ M-"o bWM-f . )
M—I'-‘- (M.l'i'oz\:;_b-z,bl) = MU - __j‘_(_z____l__L-L——-L— (A56

-1
qa "F'OI,-z_b;T M' bz

We then have
- ~t - -t -
) b—r, M\Jbz = b (Mo‘ - o2 Mo bi b, M\:)k’z

-1 -1 - ,.)d -1
ol bTMc:‘bz = dl?a!): Mo bq’b-: MD ba," 02\'2.‘?{1 z )
o (A5.7)

Because
b’{ MD-,bQ :O | —
by My'by = by (d:'b' by O’;bzb:*dsololobl = o
i °©

!

-1
oy

1yl

by Mo b,

(M3 —dha Mg byba Mo ba by (Mo -0l Mok bIMST)
o \

(

- w!
(\‘i) M\ bg’b\TM\ ’ —l
. -1 T - 1
-1 -! + -—l_ ‘o b a,‘ M b‘ b M
= Mg by b)T Mo.' ~ o, Mo byba' Mo by b Mo = My, by M by 6, M,

A -1 T -1 .
ralla Mo by Mo'byh My by by Mo

-1 -1
c‘.“() b: MO bl. o dL L :l, 2 .

M = Mt;‘ ~0h2 M:b;’b; Mo

- 1 - P
; . N Mo bib
o %M:bz,b: M; - dizMo'b|)~>|‘ MD,/O!L"“!Z MD ‘Dsz Mp/d' H& My L/é/."qu
12 o I

A — daz [ ey (A5.8)
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(ii) On proof of Lemma 9.7.2

- We want to minimize the quantity hTM ih, with

3| o r} .
k‘-"'é;i("»"?“’“ws&’" _Eﬂan&z).

The vector h can be written as

1]
pl—
\/’

he - %; 7‘_ Vb, + C_‘\-V’)l:_gs 5 A 0-

ThuS
M \) 1 Cl \ 5 v)o) -+ (‘ _\/)b
H ‘\ - % 55 1 b E lll 2&
—_— - b bl
- _5—“ b + ] )bl 2 pd

+ -k M7 ba] =

L +(1-V T ™ ‘ng
%fg Vzb;TM by + v(l'V>Eb' My 53 M bJ (0% (A5.9)

We have ¥a 'olT (AS.S) by

- Mo bb Mo b, '——J‘
(N blH\bl = b Mg 'b, - 9'“«*-‘3 \ &1 (- a3:‘:/::&*"1

iz %b? Mo bz b\MO b! - -—-O—;— bIMO by by M, b

- e =
=N T L e ; “"4
b =
_%‘}b,\"(:bz o7 Moy« S o M3 b by Ml
| Q" | q/\}>_.___l_,* M"l CASm)
P AL e (B N A O T

- |7./°)\d7' .
By symmetry

ERE : '

Q’]_ Y - 0‘)?_'?. fdld"'

'

T -1
t\'l7 bq,M bL
Moreover

- a 1 -1
G i M, = fof Mobr - oligbl Mo b, Mo by

—-—-\/.;’" d\—| 0(2':.‘
&2 b (A5.83b, =

- olya /d,d'v.
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o, T ot ! ,
= e e fpT MIb, B My, - b Mo byl Mo b
otz - d ),y * °
o N-tb b’M-'b O(;L?. or M—lb lr:-'M—": g
-y i My 2 Moy + — O B 'L 2R
2 by 2 3 qh Ym LT
2
- Q’u _ A _____o_(.'f—u —
% o V- oy LACH
3
. X A [y
did, . 1, (AS.12)
1 - dll/dld“ .

~ ! i ] o
(.(U) b;_ M b’ = bl (MD‘- d‘zMolb.bi Mb _

' -1 - -1 - -
-—i’i{‘_’-’-‘ < MD bzbi MD - dl‘z MD rblb;’ Mo aL -
1 dl‘_‘_/d\dl‘ . K

kd
of =1 T -1 _
. - =} ’ __.L?—-—- 50' >b pu
-~ &2 Mo‘bzb-; Mb '. - I .,_i ™ b b, D) )

~ - r -t 1 -1 o« { b‘TM"b blMu.,bl
b2 Mb l); - 0(;1_b7_MD b, bLMD b, ~ —= e Vo B, -
Ty 1 -0 /d, ¥ d:.-1 o,

-l T -l
@z o] Mok, b Mo'by — —o2 b Mo L, bt M'b,
. . "‘y—a”— - ]

T
oy g -t T "’b
e Y M, by My \>
+ & D _%,-ro"‘—"

°/| dl

-1

il

X2 (o{"a(
— 2 \
- ’ (AS.13)
\ - O/nz/d\dz
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Therefore substituting (A5.10), (A5.11), (A5.12), (A5.13)

to (A5.9) we have -
B‘m{ Vel + (=T, -wc|-v>°“/°/'°'%'"g

\'\‘TM\'\t —;;,; . . d;/d'q’l
b voly w4 -1) e ~2v(-»)di2
S Aoy - Ay
o 2 G-WD0-1) +z§éa~o{>v - —V)f :
S 4 5(1-8) Gr-ad?
O % (l—V)’- CV-d)Zj Chs 18).
2 A - oO‘ —=% J -

The minimum of {A5.14) with respect to ¥ is obtained when

\_3"__\__ \ 1—#\

€ S o (Aas.18)
s L (i~ Do . ¥ = 7Y
ve 70 "97> N ot -2v
o
1), (1 + &
:_i—*«z-—)‘—_r)-‘ {90
1)y — lfp COS (R 5,
/3 G+ %/80) CPS.16)

112 - Vycos(R T+ ‘}"/9\




A5.1I Some elementary trigonometric results

(D ws‘(;.B?;;ﬂ =+ 61:&"(—97,"& = Cbszfa'z*fS) + a:s""(é‘—&-a,)
= 2 [ooslalwsld- + ‘Sinza;'ét'nzé-}

) sint(-R-0) v ornt (-0 +8) = Sin (9,46 + st (F2-F)

= 2 [Coszé_éc'ﬂzaz + 65&125-095?“6?_1

G cos (- §o-6) + o5 (-~ 92 +d) = cos (Go+d) + o5 (S-J2)

= 2 coS 569532

(V) -—Et.n (8.+6) v SL'«;(&-;—J)] = - 2 wsg$u'n&2

) - Sin (9t8)cos (S+02) — Stn (§2-8)cos 808 =
X nd
= (sl'nfi-z’do&cf + Cosz)y_gz'n 5) ((osffz cosd —sLanzs (¢} )

WUz S o
- (QL'Y)BZ.CO'>5-* oS 32 SL’n(Y) (C.os choscf v(-iw\3 Sin >

"'26 Ty C,osa ws QS— SLv; t; = u%‘ 29 ‘)gd.
5 87_ [ : ] L 2 !
1 1 V) Lo

—
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AS5.III Special case T=1/83

The proof of Lemma 9.5.2 is based on Appendix'AS.I when
cos®=1/2. From Lemma 9.5.1 we express vectors A,, A,, Ay as linear
combinations of the vectors ¢, d, e as follows

A=,¢C + D €
Az: Dt +5 €
Az= -—‘?o\. -

The analysis of (9.5.7) can be evaluated through an analysis
similar to that of A5.I or can be considered as special case of o

0y, &3, & p in (A5.3a). For (9.5.8) consider A5.I with M~! evaluated

as - -
-\ - -
3\/\”‘-_., MD - Y ce Mo c et My —
-1 -1 -1
q eg_ M‘O‘\ _QCQCM;‘CBCQT M;vec" {MD ’qce_ﬁo ce (VT(; .
Deed Mo - Ace Vo O /N7 2L ——mr : i 3

o Certie (o M)

- -
-1 "J]’Ee < MC’C)L (eTNOw-’"Q> i”

-1 -
. Mo = "M C ¥ . ):‘,_CCTI\":C—) (QTMOQ

C,T M:C e — = CC).S@).

) (e Ms'e)

i

{ - ’)tce. C

Mo = . ccTadgdd T 2 EC




APPENDIX 6

A6.1 Newton-Raphson scheme.

Let f be a function f:RI._R! with a root &€ i.e f(8)=0.
Iterative methods are considered to evaluate such as €. When n=1 the

iteration. known as Newton-Raphson, is

Xiwqg = Xy - f{x3)/f'(x3). i=0.1,2... (A6.1)

When n>1 scheme {A6.1) is generalized to

Xj-q = X3 - (DE(x3))71f(xy) i=0,1,2.... (A6.2)

where Df(x;} is the nxn Jacobian matrix with elements afk/axij.
k,j=1,2.....n. We assume thet Df(xy) is nonsigular. Iteration

schemme (A6.2) can be modified in the form

Xj—y = X§ - A;(Df(x3))72f(xy). X;€(0.1), i=0,1.... (A6.3)

Newton and Kantorovitch's theorem (see Ortega and Rheinfold.
1970. p.421) provides conditions under which the Newton-Raphson
scheme (A6.2) converges, provided that the initial>guess lies in the
neighborhood of the solution €.

The method is a wvery rapidly converging scheme. Its

convergence is of quadratic order i.e




| 1x5+4-€]1k]| [x4-€| P, p=22

with k being a constant and ||.|] the 2,-norm.

The method was proposed by Sir Isaak Newton in Analysis per
Aequationes Numero Terminorum Infinitas (1666) and by J.R Raphson,
Esq. in Analysis Aequationum Universalis (1690). It was only in 1818

that Fourier was able to use the iteration (A6.1).

A6.11 Bisection method

A slow (convergence rate 0.5) but very reliable method is

the Bisection rule (Stoer and Bulirsh. 1980, p.285) for solving the

equation f(x)=0.

We define a sequence of subintervals, starting from an

initial interval f[ay,by] which contains €, the root of f. We define

by = (aj+by)/2 j=0.,1,2....

and let

bj+1 = Mj, @i+ = 8j if f(Uj)f(bj}>0

or

i

Bi.4 = Hj. bj+1 bj if f(Nj)f(bj)(O

Then the sequence [aj+1.bj+1]§[aj.bj} approaches €. OQObviously

laj+1 - bj+1! = O.Slaj = bjl.
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APPENDIX 7

1. On Simulation Study I.

AT.1 Evaluation of I(e,u), for a single observation

From (7.2.1) 2(viu,e)=logp(viu,6) will be

—2u y=1
g=2(ylu,8) =
log(1-exp{(-eu)) y=0
Therefore
0 y=1
39/38 -

~[uZexp(-eu)l1/[1-exp{-6u)]2 vy=0

Thus

I(e.u) = E(-30/3€) =
Op(1]u,8)+[uexp(-eu)]/[1-exp(-6u)]2p(0lu,8)=

u2exp(-6u)/(1l-exp(-6u)).




Moreover

gl(e,u)/8u =0 2=2exXp{-Bu)+6u.

The equagtion o (¥)=2exp(-¥)+Py-2=0, Y=8u can be solved numerically

by the Newton-Raphson scheme.

A7.I1 Calculation of the MLE for the model (7.2.1)

(1) The likelihood is

L(e;u,y) = T exp(-6u;)¥i(i-exp(-6uj)) %
= exp(-etu;jy;) ﬂ(1~exp(—eui))1‘yi =

2(8) = log(L{.))=-6Eujy; + E(l—yi)ln(l—exp(—eui))=?

2'(8) = -Tujy; = C(1-yj)Cujexp(-6u;)]/[1-exp(-6u;)] (*)
2" (o) = -L(1-y;)lujexp(-8u;)1/[1-exp(-0u;)12.
To get the MLE 2 (8)=0 has to be solved. The Newton-Raphson

iteration is applied to get

Byry = By - 2 (8)/% (8)) . 8, given. v=1,2...

(ii) Evaluation of €1~

For the first batch, wuj=u,, i=1.2...,r. r=5,25,50. Thus

from (%*)
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, s N

2 {e)=-uyLyy + usL{1-y;lexp{-6u,)/(1-exp(-0u,y)) = 0 ==
c v
Lyj=[exp(-6uy)/(1-exp{-6uy ) IL(1-v{) =>

- v r

Ly; - exp(-6u,)Ly; = exp(-eu,)(r-Ly;)=>

’
rexp(-6uy )=ky; = (7.8.1).
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2. On Simulation Study II.
A7.IV "Sum of Squares for Simulation Study II.

Let j=1.2 denote the two points where the observations are
obtained, let I denote the number of stages and n; the number of
observations at each point in each stage.

Then the sum of squares SS equals

5523 {3 [ £ 1y,-net )]

Ked
B Uy

L2 L LT e B e (G-nee ey 1
J=k =

BLUUL
233 S (- B L I

J=i L=y K=
= 551*562\'
Note that

e I 2
591 o X (220n-)iE( (n-2T) "
- i
i 2
SARSNIOE )

We therefore need to generate normal and Chi-sguare random
numbers. We used the ICL 2988 computr of Glasgow University the NAG
routinces GOSDDF for N(u,o) and GOSDHF for )C}

We kept n; constant through the experimentation. i.e. equal
replications, r say, at each point each time. Thu§

i i‘rg_\*
2 (5 € sty

<4

M~

552 =«

“—
K]
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A7.V Estimates at first stage.

At first stage I=1 from (*) we want to minimize 882, namely

(V11.-018Xp(05uy4)2+(¥,y -01€XD(0,U,,)) 2.

That is, both the terms must be equal to zero ie

A ~ - A ~ —_
©;:exXp(BaUy1)=V ;. . ©,eXp(8yupy )=Voy
— -— Fad

Vi1./Vay. = exp(8p(uy -uyy)).

Hence we obtain relation (7.8.3).

A7.VI Minimizing SS2 N
i L‘nn
£ . @59 5 3y, -p )
L7 & 8
o0 €282ugt> B,Hjtfl 2y

B
2z

= v

NS DR R D DRl
; |

— . S By 2
FZ - —\I'BQ Z_ZHJ‘L.MJi.e&quL _*%‘,/‘ZZMJi(el JI’) ,

The eguations F,=0 and F,=0 have to be solved using the

Newton-Raphson method. The Hessian H{i,j) i=1,2, j=1,2 has terms.




L

Lz
WD) = e LY (¥
WQ2d= -] z‘ gﬁ-“.}\-e&zujl 20 2 Z Uyt (ea"uﬁ>2
H(z2,D = -v ) Z gJ'lL'L{'SLeB'LMJL 2D 5 Z.uJL (eaqu\)Z

- i .
H(2,2) = - T T Guuh W o9 e 1T (wie™Wy):

The residual sum of squares has been evaiuated as

2. 2 A A
RSS = QQM_ug +552(6,6,).
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APPENDIX 8

A8.1 Evaluating Vi in (8.3.9),

(1) fuyi<t

u
= ?c“u) = AT

Ay Zzp-1 A Yo
M = -—(
29 3 Ko 4 ’

From (8.3.3a) we have

L "uoj> (;J )
2 _ i CA, ug) <
M O Vi = L-ud Mo b “
= = 4.
(ii) luol>1
_ A%
P = Pdes 2 Uy

< 1 1/u°>
M = o &
by (8.3.3a) we have

L2 L ~4/u,>(( >
kA o <
718X\WIP> = Y (‘,u°> <:-4/ua A U

kX
:_...—.—\/QQ.
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A8.I1 The study of (8.4.4)

(1) Tuol<d.
-1
JA’ EfY (xep) = 4 Lt-9) ;(%o]:uol-rzua C-2p) +1 ]
w

2Ue +2 (1-2p) g o
2Uo+201-2p)

= AP(1-9)1% -
%' (M + 2Ue(1~20) -H)z

Ue = 2ZP-L

££f(xe) = - ap@r —p} tﬂ’(g p) =~ :Eip)‘\o .

°lU~o U~ 20-1

Therefore u,=2p-1 gives the maximum.

The corresponding value of efficiency is 1. We check at the

end points.

' 490D _
- At u=1 E ;) = e = P
’ il (s p) 1a2(1-2D) +4

- At u=-1 eff(gep) = ———= = a-P,

(i1) tugi>1,

L (3e) = 4pi-p) S Ue =0

Jute U + 2Uo(a-2p) 1

T

Therefore uy=(2p-1)7! or uy=0 the latter of which is not

accepted.

2 .
d r

Bus+2uo(1-20) =
_BUs+2Uo(1-2P) M

= —a9U-p)
i (u§+zuoC(~2_P7M)3 ‘
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<Vlo= ;i—-;)

- - 4p(s-f) 2 , <O
[ (z5.0+)

»

Therefore ug=(2p-1)"! is a maximum and the corresponding value of

Eff(1/(2p-1))=1.
A8.1I11 Simulation strategy

Let vjik be the k-th observation at i=x1 point for the

j=1,..r replication. We know that

— 2
9_4.. ~ N(B""G() ;{:)

(A8.1a)
Yoo » N (8. +81, '%f: > (A8.1b)
with v, ,n, the number of observations at 21, and
éo = E" ( g—i + g-ﬂ) | (A8.2a)
B & (T -0,
(A8.2Dh)

We took advantage of (A8.1) and (A8.2) as the sufficient
statistics concentrate the information in two normally distributed
quantities, Thus only two normal numbers need to be generated for

obtaining estimates for &4, ©;  Moreover the residual sum of squares
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rij will be

— 2
by = 2: 691_5;(” -)l'_[-> (A8.3)

and the residual sum of squares r is

g - — 2
v = 2,. ('9-\-ljk —H-(-~>2 A Z-\yljk '—"5_.1')
JK Jk
= Z— (y-ﬂjk —ZU.BZ + Zﬂﬁ (gu_; - g+1-->2+
Jk Jk
-— 2 — —
?K (.‘Lg_sk ‘“.‘J_U'.> + jZk'ﬂ-\j (L-LU‘ ‘iq.)z

= - - vy 2
= Vot ‘rl'z + M (\:’4‘.*&—1.)14 nqq_(‘:]..iz. "94..)

2
! i3 - -
The rgs are independent ¢ ,;(v’ with v= 2:0ﬂ3-4> =M-4.
™ z

Therefore a single d:;&%{grandom number was generated for Y.
The SUBROUTINES used from the NAG routines of the ICL computer of the
University of Glasgow were

- GO5DDF  for Normal

- GOSBHF for Chi-Square.




214

APPENDIX 9
Let X,, n=1,2,3,... be a stochastic process such that the
joint distribution of (X;,X,,....X;) has a strictly positive
continuous density pp. In the sequel the variables X, and Y, are

supposed to have well-defined expectations.
Definition 1: The sequence X, n=1,2,3,... is called

absolutely fair if

E(X,)=0
E(Xpiq X, ... .X,)=0.

Definition 2: A sequence Y, is a martingale if
E(YpeglYqyooo. ¥)=Y,

with
Yo=K +Xo+. .. . +Xp+C

X, being as in Definition 1, and ¢ a

constant.

The following theorem is known as the martimpmle Cconmvenpemnre

theoren.
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Theorem Let S, be an infinite martingale with E(Si)(c«n
for all n. There exists a random variable §
such that

snﬁﬁis, as n—reo
Furthermore
E(8,)=E(S) for all n.
Note

A sequence of random variables Z, converges with
probability one (w.p.1) or almost everywhere {(a.e) to the random
f

variable Z iff

P[limZ,=7] = 1.
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