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SUMMARY

The aim of this thesis is to review and augment the theory 

and methods of optimal nonlinear experimental design. It represents 

a continuation of the work on experimental design in the Department 

of Statistics in Glasgow University (Silvey and Titterington (1973), 

Ford (1976), Silvey (1980), Titterington (1980a,b), Ford and Silvey 

(1980), Torsney (1981) among others).

Chapter 1 serves as an introduction to the nonlinear 

problem. In Chapter 2 we formulate the appropriate notation needed 

for the development of this thesis. The main assumptions, which we 

will recall if needed, and the necessary theory is discussed.

In Chapter 3 the idea of the optimal nonlinear experimental 

design is formulated for any convex criterion function. This leads 

to traditional definitions as special cases. We also focus on the 

canonical form of a design under c(e)-optimality. Partially 

nonlinear models are reviewed and the design for a subset of 

parameters is discussed in the context of the general optimality 

criterion function. The geometrical aspects of the nonlinear case 

are compared and contrasted with the linear case.

Chapters 4 and 5 are devoted to strategies for the 

construction of the nonlinear optimal designs. Alternative 

approaches for the static design problem are discussed in Chapter 4. 

Emphasis is given to the sequential approach to design in Chapter 5. 

There, binary response problems are also tackled and the stochastic



approximation method is reviewed and discussed.

Chapter 6 is devoted to confidence intervals. The problem 

of constructing confidence intervals if the sequential principle of 

design is adopted is discussed and a suggestion is given. As a 

result a simulation study is presented.

In Chapter 7 two more simulation studies are analysed, the 

first for a one parameter binary problem and the second for a two 

parameter regression problem. Different designing procedures are 

applied and more emphasis is given to sequential methods. The 

stochastic approximation method is discussed as a fully sequential 

method. The performance of approximate confidence intervals is

investigated.

Chapter 8 considers a compromise between the static and

fully sequential design. The calibration problem is used as an

example and investigated in a (yet another) simulation study. The 

maxi-min efficiency design is derived and investigated.

In Chapter 9 we examine a design problem in rhythmometry

involving the cosinor function. Different design criteria are 

introduced for the full sample space as well as a truncated form. 

Geometrical ideas provide a solution to solve this problem. An 

analytical approach is also offered as a method of solution of this 

practical design problem.
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CHAPTER 1

INTRODUCTION

One of the most famous data sets is the one collected in 

1793 for defining a new unit; the metre (Stigler, 1981). It was 

that data set which Gauss used to claim the method of least squares, 

so named in 1805 by Legendre, who produced the first publication 

about this invaluable tool of Science, as his "own Method", ("meine 

Method", in Gauss's words); see Plackett (1972).

What is also very important and we would like to put special 

emphasis on this, is that for this particular data set:

- In statistical terms it was a nonlinear function that

had to be finally estimated.

- A linear approximation had been used in 1755 for this

problem and a second order expansion was 

applied in 1832.

The metre was defined as equal to one 10000000th part of the 

meridian quadrant i.e the distance from the north pole to the equator 

along a parallel of longitude passing through Paris. Moreover there 

is a relationship between the modulus of arc length (s), latitude (d) 

and meridian quadrant (L) and the linear approximation, is of the 

form r\(L) with

n(L) = | = e1+e2sin2L (l.l)



with being the "length of a degree at the equator” 

e2 "the excess of a degree at the pole over one 

at the equator", see Stigler (1981).

Then the ellipticity (e) is estimated through Oj and e2 by the 

nonlinear relationship

Both Gauss and Legendre were mathematicians and they treated the data 

in their own remarkable mathematical way. The first statistical 

treatment of a nonlinear function comes from the pioneer of modern 

Statistics, R.A. Fisher. In Rothamsted Experimental Station, around 

1922, he came across what is known as the dilution series problem. A 

brief description is as follows. For a small volume u taken from the 

volume V of a liquid containing n tiny organisms (such as bacteria) 

the probability P that u contains no organism is

P = j ^ l - ^ | n s exp(-nu/V) = exp(-eu), (1.3)

say. The parameter 0, the density per unit volume, has to be 

estimated. The question is how should we perform the experiment to 

get the best possible estimate. Relation (1.3) is nonlinear in the 

sense that the parameter e does not appear as a linear term in the 

model. Fisher solved this nonlinear problem in 1922, using a concept 

of his own : his information.

Since Fisher's pioneering work in experimental design, 

Statistics has become involved in all the experimental sciences : 

chemistry, biology, pharmacology, psychology, and so on. Of course 

statisticians do not provide methods for designing experiments in 

isolation. However, in cooperation with the experimenter, who makes 

clear the ojective of an experiment, the statistician provides the



most informative pattern of the experiment in order that the required 

objective can be achieved.

The analysis of an experiment can be summarized in the 

flow-chart of Table 1.1,

The objectives of the experimenter can be :

(i) To obtain an estimate for a response r\ say in some

particular region using variables u=(u1 ,u2 ....%)_ This is the

response surface problem introduced by G.E.P. Box and Draper (1959).

(ii) To determine the best mathematical model which 

describes most precisely the investigated phenomenon. This is the 

discrimination problem between rival models and it has been reviewed 

by Hill (1976).

(iii) To estimate optimally, in some sense, all or a 

subset of the parameters of a model that is assumed correct.

The above mentioned objectives are common to linear and 

nonlinear experimental designs (LED and NLED) i.e when the assumed 

suitable model is linear or nonlinear with respect to its parameters. 

The terms linear and nonlinear are explained clearly with examples in 

Chapter 2.

The fact is that more^ attention has been paid to LED than to 

NLED. In their recent review work Steinberg and Hunter (1985) 

devoted only one paragraph to nonlinear models, as did St. John and 

Draper (1975) ten years earlier. Other review works on LED are those 

of Ford (1976) and Atkinson (1982). Ash and Hedayat (1978) provide 

an extensive bibliography covering the work of Eastern countries in 

this field, Titterington (1980b) reviewed the geometric approach to 

LED, Pazman (1980) contributed on a theoretical level, Pukelseim and 

Titterington (1983) offered a general approach to optimal LED and



Torsney (1981) followed the optimum linear design problem through the 

general optimization problem. Fedorov (1972) and Silvey (1980) 

contributed excellent monographs on LED.

There is no such volume of review work in NLED, although 

work on experimental design started with a nonlinear problem, as 

Cohran (1973) pointed out in his review paper. Davis (1971) compared 

some sequential procedures in bioassay, Abdelbasit and Plackett 

(1981,1983) review the nonlinear case for certain types of problems, 

but give no attention to regression type experiments, and Wu (1985) 

has worked recently on binary response problems. However, the 

nonlinear experimental design problem finds applications in many 

fields : as a regression problem in kinetics (chemistry, biology), as 

a binary model in testing explosives, biological assays, fatigue 

experiments, educational studies and life testing.

The target of this thesis is to review and augment the 

theory of NLED; to compare LED and NLED; to provide, for both, 

general optimality criteria; to provide methods and discuss problems 

associated with nonlinear problems. The emphasis will be on the 

target (iii) described above and its related difficulties.
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CHAPTER 2

MOTIVATION

2.1 Introduction

To perform any experiment the following are needed :

- The experimental unit.

- The range of experimental conditions.

- The measurements or responses (y, say) 

obtained at certain values of the explanatory 

variables (u, say)

- The computer

Usually, in chemical reactions involving kinetics, the 

experimenter designs in blocks, and the experimental unit is the 

apparatus which provides the measurements. In psychology or medicine 

the experimental unit is the individual under investigation, through 

a test or a medicine, and thus the experiment is performed through 

single observations.

The Book of Science has been written in the mathematical 

alphabet. Thus in this chapter we introduce the notation, the 

necessary assumptions and definitions for the mathematical 

formulation of the nonlinear experimental design problem.



2.2 Notation

The Euclidean space UcR^ in which the predictor variables or 

covariates or explanatory variables or independent variables 

u=(uA,u2,....u^) take their values is known as the experimental 
region or design space. A typical example from kinetics is ’'time".

The parameter space ©sRP is the set where the parameters 

e=(61 e2 ,...,6p) takes their values. Let E be the family of measures 

£ such that

£(u)^0 , ucU and J£(du) =1. (2.2.1)
0

Definition 2.2.1 We shall refer to such a measure £ as 

a design measure.

Definition 2.2.2 The pair (U,£) will be called the design.

Definition 2.2.3 The support of the design (U,£),Supp(£), say, is

the set of points u for which £(u)>0.

Denoting by Mat(VMn) the set of vxm size matrices we let 

©eMat(p,l) be the vector of parameters,

U|eMat(k,l) the predictor variable,

1=1,2 n, n the sample size_

For the response y we assume that either ye'I'cR or ye|0,l .

When the response y is supposed to take any value in ^ we also 

suppose that a regression model (in general nonlinear) exists 

consisting of the deterministic portion f(u,e) and the stochastic 

portion, e, known as error, linked through the formulation

y* = f(uite) + eL (2 .2 .2 )



If we assume that f(.) is of the form eTg(u) with g being a vector of 

continuous function of u then the nonlinear problem Is reduced to the 

so called linear problem, as the function f(.) is a linear function 

of e and g(u)*(gl(u),g2(u),...,gp(u)) is known.

When 0,1,2, . . .X\ we have the multiresponse problem, The most 

common one is X=l, i.e a binary response. In this case the outcome 

Yj=l or 0 is linked with the covariates and the parameters through a 

probablity model "T" with

P(Yj=l) = T(uite), P(Yi=0) = 1-T(uit6), (2.2.3)

where u^ is the value of u going with observation Y^

Examples 2.2.1 (i) For a chemical irreversible reaction with

reaction rate mechanism q, where q=l,2,3 or 4 the

deterministic function is (see Hill et al, 1968)

if q=l (2.2.4)

if q>l

i.e the vector of parameters is 0q=(6q1 ,eq2). q-1,2,3,4 and presents

the rate constants. The covariates are u^ = (u-j1 ,U|2) f i=l,2 n.

(ii) A typical situation in bioassay is to consider

the logistic model for T In which, if u is a scalar,

T(u,e) = \l+expt-Si(u-e2 ))\~1 (2.2.5)

f(ui,eq ) =j exp(-eqluilexp(-eq2/ui2))

(l + (q 1 )®qiuiiexP( ®q2^^i2^^ ^

or the probit model in which



T(u,e) = (✓2TT©2)-1Xexp(-(v-e1)2/(2e|))dv. (2.2.6)
-CO

In both cases ©=(©!,e2 ) with ex the location parameter and ©g the 

scale parameter.

2.3 Assumptions

The following main assumptions will be considered throughout 

this thesis. We shall refer to them as Assumption 1 or 2 etc when we 

recall them.

When limiting results for the sequence of estimators ©n are 

considered the parameter space © is assumed to be compact. For the 

errors the main assumption which is imposed is:

Assumption 1: The errors e-̂ are independent _ 

and identically distributed with

E(ei)=0 and V(ei)=a2>0, i=lf2,...n. (2.3.1)

Under Assumption 1 for model (2.2.2) we have that

n = n(u,e) = e (Y) = f(u,e). _ (2.3.2a)

For the model (2.2.3) we assume that

n = n(u,e) = E(Y) = T(u,e). (2.3.2b)

(For brevity the dependence of T on © will sometimes be omitted.)

When inference is to be made, for the regression models, Assumption 1

is changed to the typical normal error assumption i.e



Assumption 2: The independent identically distributed 

errors are normally distributed with 

mean 0 and variance o2>0.

It is usually desirable for the design to be insensitive to any 

violation of Assumption 2. For both f and T functions in (2.3.2) 

some assumptions are considered. As far as f is concerned we 

basically want it to be smooth in the neighborhood of , the true 

value of e. That is why we assume

Assumption 3: The function f(u,e) is continuous in e at 

and the second order derivatives of f 

with respect to e exist at and near et. 

Function T plays an important role in binary response problems and it 

can be known, as in Example 2.2.1(ii), or unknown. In the latter 

case it is suggested by Wu (1985) that it be approximated locally by 

the logistic. For T we assume :

Assumption 4: T(u) is a monotonic differentiable 

function.

Recall (2.3.2b). The function T(u_) can be considered as a 

cumulative distribution function of the random variable Z defined 

through the random variable Y as follows

Y = Y(u)

if Z < u

0 if Z > u

(2.3.6)

Then



P[Y=0 = PCZ<u3 = T(u) , say 

PCY=OD = PCZ>u3 = l-T(u).

Therefore :

E(Y) = lxT(u)+Ox(l-T(u)) = T(u) = T\

Var(Y) = T{u)x(l-T(u)).

In many practical cases T is related to the explanatory 

variable u and the parameter e,through a linear function of u and e, 

thus T=T(eru) and f(u,e)=f(eTu). As discrimination between rival 

models is not a target of this thesis we will assume throughout this 

thesis that

Assumption 5; The model used to plan the design is 

correct.

The existence of the estimators is discussed in the next

section.

2.4 On the existence of estimtors

After collection of the data the question arises as to 

whether it is possible to get estimates in all problems, that is 

those of binary response and regression.

For the model (2.2.2) we introduce the quantity

Sn (e) = Z (yj-f(Ui,e))2 = ||y-f(u,e)||2 (2.4.1)

where M-lla is the l2-norm. An estimate © will be called the least 

squares estimate (LSE) iff

Sn(e) = min <{ Sn(e); ©e6f (2.4 .2)



Jennrich (1969), imposing some assumptions, proved that the

model (2.2.2) has a LSE, ©, as a measurable function where ^ is

the space of values of Y's. Under Assumption 2 it Is known that the 

LSE coincides with the maximum likelihood estimators (MLE).

For the binary response problem Silvapulle (1981) provided 

conditions under which the likelihood function L,

can provide maximum likelihood estimators (Appendix A3.II). Roughly 

speaking that occurs when the intersection of the sets of values 

taken by the explanatory variables corresponding to l's and to 0's is 

not the null set. This happens to be a necessary and sufficient 

condition for the logit and probit models.

Now, having ensured that the likelihood equation can provide 

MLE and denoting by £ the log-likelihood we define the matrix

will be called the sample information matrix.

Example 2.4.1 Maximum likelihood estimates for the logistic 

can be obtained through the "normal equations"

L  ec T H T U i . e H y i U - T t u ^ e n ^ y i (2.4.3)

(2.4.4)

where £n is the design measure on n observations. The matrix

(2.4.5)

with T^=T(uj;e) as in (2.2.5)



2.5 Fisher's Information matrix

In the regression problems the variance a 2 is sometimes of 

the form c2(u,e). That is a 2 depends on the design point and the 

parameter vector. In the linear case it is often assumed independent 

of the parameter e. In practice it may or may not be possible to 

assume that is known.

Let Vr\ denote the vector of partial derivatives

( " " ! V T ( 2 - 5 - 1 )

For the exponential family of models Fisher’s information 

matrix is defined to be

I(e,u) = cr2 (W0(Vr\)T . (2.5.2)

It is easy to see that there exists a vector v such that

I(e,u) = vvT . (2.5.3)

Moreover in many of the nonlinear problems the covariate u 

and the parameter e appear together linearly in the form ^u. Thus, 

if

n = r\(eTu) (2.5.4)

Then

Vr\ = Cw(0ru)3l/2 u (2.5.5)

with

w(z) = |[3n/3z32 , z=eTu.

Therefore

(2.5.6)



I(e,u) = a~2w(eTu)uuT - (2.5.7)

The concept of the average-per-observation information matrix will 

play an important role in our scenario for the nonlinear experiment 

design problem. It is defined for ^  the n-point design measure, to 

be

M(e,en) = n”1 t  I(e.UjJ . (2.5.8a)

For the continous case

M(e,£) = S I(e,u)£(du). (2.5.8b)
u

The idea of Caratheodory's Theorem (Appendix Al.II), so 

essential for the linear experiment design, Silvey (1980), can be 

used for the average information matrix in nonlinear problems, as has 

been noted by Titterington (1980a) in the following theorem.

Theorem 2.5.1 (Titterington, 1980)

For any ecO

(i) M(e,£) is symmetric nonegative definite for 

any £eE.

(ii) M(e) = (M(e,£); is convex and compact

(iii) The extreme points of M(e) are each of the 

form I(e,u) for some u. Further for any

there exists CeE assigning positive 

weight to at most 2"1k(k+l)+l points in U 
and such that M(e,£)=M(e,£).

.Suppose the matrix M=M(e,£) is partitioned in the form



with M^cMatfs ,s) , M12€Mat (s ,p-s) , M22€Mat(p-s ,p-s), l<s<£p.

We define the matrix

Ms = Mg (©,£!) = Mli-M12M22M[2 (2.5.10)

with M22 being the generalised inverse of M22 (Appendix A4.I). The 

information matrix I(.) will be considered partitioned in the same 

fashion. These partitions are helpful when our interest lies in 

estimating the leading s^p parameters in the vector e as it will be 

explained in section 3.4.

2.6 Linearization of the model

The idea of the (desig)n matrix X being known is essential 

in dealing with linear models (Graybill, 1976). In nonlinear models 

we can not define a matrix X in the same fashion. This can be done 

only approximately through the partial derivatives of e, with e 

taking its "true" value, et . We define the nxp matrix

X = (x-i •) = Wi >A L  1<xijJ 30J |e=et . (2.6.la)

Then the matrix X=X(e) is formed as a function of 0. Function f(u,e) 

can be linearized through a Taylor series expansion in the 

neighborhood of et as

f(u,e) = f(u,et)+E(6j-etj)(8f(u,e)/9e^)!e=e  ̂ (2.6.lb)



Following the pattern of linear regression models in the nonlinear 

regression case, an approximation to the covariance matrix, of the 

estimates of the parameters, can be defined as

C a I XT . (2.6.2)

Moreover for all nonlinear problems a useful approximation to the

covariance matrix is

C"1 s n M(et,g). (2.6.3)

M.J.Box (1971b) "linearized" the nonlinear function through a Taylor 

series expansion of second order and, through this, he evaluated the 

bias of © and f(u,e), when the model was fitted. For this one could 

seek minimum bias experiments. This has had little application in 

practice for nonlinear models in contrast with the linear case where 

the idea was introduced by G.E.P. Box and Draper (1959). M.J. Box

(1970) suggested also that cost optimal designs could be constructed

for the classical nonlinear regression models. The assumption in 

this case is that the cost of the experimentis represented by its 

duration. In the sequel we will assume that experiments are equally 

costly.

The linearization idea can be applied to the logit model

(Cox, 1970) in the following example.

Example 2.5.1 Given that

Ci+expt-ej^(u-e2) )D_i s 1/2 + 1/6 ei(u-e2)

when |01(u-e2)|<3, then the normal equations of Example 2.4.1 are



approximately

n/2 + (e1/6)E{uji-e2) = ly^ 
(1/2)2:14 +(e1/6)Eui(uj-e2 ) =

In the next section we present some examples to clarify the 

idea of Fisher's information matrix. These examples will be 

reconsidered in the sequel.

2.7 Examples

(i) Consider the model, in which

P(Y=l) = T (8t u ).

Let: e1+e2u1=z=eru and T'(z)>Ot e=(elte2), u=(l,u1 ). Then the

log-likelihood fi, will be

Q = log-| TCz^Cl-Tfz);]-1-̂  + const. (2.7.1)

Therefore we evaluate I(e,£) as

E( (VJ?) (Vfi)T l = a(e)uuT

with oc(Q)=T'2ET(l-T)l. (2.7.2)

Application: T might be either the logit or probit function.
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(ii) For the nonlinear regression model 

tv = ©i-expt-e-ju), ucC-1,1]
we have that

f 1 uexp(-e2u) \
i(e,S) = (Vr)(wot = ] (2.7.3)

\ uexp(-02u) u2exp(-2e2u)/ .

We note that !(©,£) is a function only of ©2 .

(iii) Consider the nonlinear regression model (Box and 

Draper, 1959)

r\ = e1exp(e2u)f ueCa.bl]

This is a model used to describe growth phenomena. The Xjj vectors 

i=l,2,..,,n, j=l,2 can be formed according to (2.6.1) as

x-[1=3r\/901=exp(e2U|) , x-[2=3r\/Se2=©iUiexp(02Uj[) (2.7.4a)

We form Sn(e) as

Sn (e) = E(y1-e1exp(©2ui))2 . (2.7.4b)

ATo find the estimator ©, which minimizes Sq(e) the partial

derivatives of Sn (e) are needed to obtain the "normal equations"

E(yi “ 0jexp(e2u-[) )exp(02Ui) = 0 (2.7.5a)

£(yi - e1exp(e2Ui) )e1uiexp(©2u-̂ ) = 0. (2.7.5b)
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and its'

(2.8.6a)

(2.8.6b)

We shall work on this example in chapter 7, which reports a 

simulation study dealing with different procedures for tackling the 

design problem.

Having introduced most of the notation needed in the sequel 

and the appropriate definitions concerning nonlinear models, we are 

ready to formulate the design problem. In the next chapter the idea 

of a locally optimal design is introduced and discussed.

The existence of the least square estimates is shown by 

(1969). Moreover, in this case, on evaluating the Hessian 

expected value we have

f Eexp(2e2Ui) e1Eu^exp(2e2uj[)\ 
o”2nM(e,£n) = I

y ©iEu-^exp (2e2m  ) ©2Eu2exp (2©2u^ ) J
and

A f  Eexp(2©2Uj[) ©1Eu^exp(2e2Ui^
o“2S(e,Sn,y) = IV ©1Eu^exp(2©2Ui) A(y,u,e)

where - A(y,u,©) ^j^Eu^exp(©2u^) ^yi-2©1exp(©2Uj[) \.



CHAPTER 3

LOCALLY OPTIMAL DESIGNS

3.1 Introduction

We recall that the aim of the experiment we shall consider

is to estimate as well as possible the parameters included in the

model. It might be all p parameters, or a set of s<p linear

combinations of the p parameters. In the sequel when only s of the 

parameters are to be estimated we will assume that they are the first 

s components of the vector ©=(©!,e2,...,ep ), and we shall use the 

notation ©(s)=(©1,...,©s). The average information matrix, related 

approximately to the covariance matrix, as in (2.5.3), is a natural 

starting point for the establishment of an optimality criterion. 

That is, some real-valued function of M(e,S) can serve as a criterion 

on the basis of which to answer the question of why one design is 

better than the other. The sense of optimality is then dictated by

the criterion that has been chosen and offers a way of comparing one

design - the optimal - with others, which might be optimal under 

another criterion.

Now, why might the design be called locally optimal?

It is the ©-dependence which leads to the term "locally optimal": the

optimal design depends on the true value of 8.
This ©-dependence is the main point of difference between linear

experimental design, which originated in Smith (1918) and the



nonlinear case, originating in Fisher (1922).

Thus in this chapter we provide criteria describing what we 

mean by suggesting one design take best in comparison with others. 

In addition, the geometrical interpretation of these criteria is 

discussed.

3.2 Formulation

Suppose we wish to estimate a set of linear combinations of

the parameter vector e=(©j,...,©p ). This might lead to an estimation

of the vector © itself, some linear combinations of the p components 

of © or to s**p components. Let QeMat(s,p), l^s^p be the matrix of 

the known coefficients defining the above mentioned linear

transformation: that is,the quantities of interest are Qe. If

rank(Q)=p, when s=p, the matrix Q is nonsingular. If s<p we suppose 

that rank(Q)=s.

On the basis of the experiment the average information 

matrix M=M(e,S) is obtained. In the sequel we regard © as taking its 

true value. Then we can define the following operator Jq applied to 

M, through the above matrix Q :

JqCMI = QM-(e,6-)QT (3.2.1)

with &T oL, generalized inverse of M and QT€Mat(p,s).

It is easy to verify that

Q1=Q2 implies J q ^ M D  = J q 2CMJ. (3.2.2)

The converse is not true. The matrix QM~ Qr€:Mat (s, s) is
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assumedftonsi%ular. Indeed

rank{QWTQt )=minjrank(Q),rank(M~))=rankCQ3=s (3.2.3)

Given the above notation we need a real valued function, w say, 

applied to Jq to be used as an optimality criterion. We choose w to 

be a convex decreasing function on the set of nonnegative definite 

matrices ,NMat(s,s) say, i.e w(A)<£w(B) if the matrix A~BeNMat(s,s) 

and A ,BeNMat(s,s).

Definition 3.2.1 The design measure is called w-optimal iff

wUQCM(e,e*)3) := min-{ w(QM (e,£)Qr ), SeE). (3.2.4)

Having introduced the above definition we now examine special cases 

of w and Q which will lead us to familiar definitions. The cases we 

shall consider for w are

w(.) =

wi(.)=logdet(QM-QT )

w2(.)=tr(QM-QT )
w3(.)=max eigenvalue of (QM~Qr ) 

^w4(.)=sup tr(I(e,u)QM~QT )

(3.2.5)

and for Q are

Q=

AeMat(p,p), rank(A)=p 

l€Mat(p,p) - the identity matrix 

A€Mat(s,p), rank(A)=s 

Cls:OD, IseMat(s,s), OeMat(s,p-s) 

V. ceMat (p , 1)

(3.2.6)

Any w(.) combined with some Q will lead to some criterion. In the 

next paragraph we consider these special cases under the light of 

definition 3.2.1 along with (3.2.5) and (3.2.6).



We note that, if the whole discussion is expressed in terms 

of CJq(M~)I]’"1 , use, as optimaslity criteria, maximize concave w 
functions. Following Silvey (1980) for technical reasons when-^^ls 

singular w(.) is defined to be +« (-«) for convex (concave) w 

functions.

3.3 Special cases

The following definitions obtain, for u>i(.) 1=1,2,3,4 

as in (3.2.5) and Q=A as in (3.2.6)

Definition 3.3.1 The design measure £* is called

DA(e)-optimal iff w±(.) is considered
AA(e)-optimal iff w2(.) is considered
EA(e)-optimal iff u>3(.) is considered
GA(e)-optimal iff w4(.) is considered

When Q=IcMat(p,p) the operator Jj(.) provides just the generalized 

inverse of M. In this case we obtain the 0 criterion, introduced by 

Titterington (1980a). Actually under our notation the 0 criterion 
is

0 = w o Jj (3.3.1)

where o denotes the composition of two functions. Corresponding to 

ui, i=l ,2,3,4 of (3.2.5) we obtain 0-ĵ UjoJ j , i=l, 2,3 ,4 .

Traditional definitions of these are the following.

Definition 3.3.2 An optimal design measure £* is called

D(e)-optimal iff 
A(e)-optimal iff 
E(e)-optimal iff 
G(e)-optimal iff

01(.) is considered 02(.) is considered 
03(.) is considered 04(.) is considered.



The optimality criteria D(e) and G(e) were introduced by White (1973) 

who also extended Kiefer and Wolfowitz's (1960) theorem as follows. 

Theorem 3.3.1 (White, 1973)

For the optimal design measure £* the 

following are equivalent.

(i) is D(e)-optimal.

(ii) £* G(e)-optimal.

(iii) sup d(u,£,e)=p=dime.

where dime is the dimension of eeOcRp and 

d(u,Ste)=trU(0.4)M(e,e)"M 

(in this theorem the optimal M will be nonsigular.

Following Whittle (1973), Titterington (1980a) stated the extension 

of the above theorem to any criterion 0. The idea of a directional 

derivative (Appendix A1.I) 0 for 0, when 0 is differentiable, is used 

as a generalization of derivative, giving a useful tool for 

hill-climbing optimization techniques. This theorem plays,

obviously, an important role in nonlinear theory and it is as 

follows.

Theorem 3.3.2 (Titterington, 1980a)

For any ee© the following are equivalent.

(i) 0CM(e,£)3 is minimized at 0CM(e,£*)3.
(ii) 0[M(e,$*) ,M(e,e)>0 for all GeE.

If 0 is differentiable at M(e,S*) we also have 

the equivalents

(iii) 0CM(e,£*), I(e,u)]StO for all ueU.

(iv) 0DM(e,£*),i(e,u)3=0 for any u weighted 
positively in £*; that is, for any u in the 

Supp(£*). Note that 0 is not differentiable 
when M(e,£*) is singular.



In terms of our notation, with AeMat(p,p) nonsingular, there 

is no difference between DA (e) and D(e)-optimality as

detCAM~1(6,^)ATD = detCM'l(Q,?)DCdet(A)32 (3.3.2)

but there is a difference with the other criteria.

D(0)-optimality minimizes the volume of approximate
Aconfidence ellipsoids for e, centered at ©. Moreover, the 

information matrix M(e,£*) corresponding to S* is unique - when 0 
takes its true value - since w in this case is a strictly concave 

function. This is related to the duality theory for the linear case 

first tackled by Silvey (1972) and established by Sibson (1972). The 

linear result can be applied in the nonlinear case when 0=©t> f°r 
other criteria as well. Thus:

G{©)-optimality minimizes the maximum approximate variance of the 

estimated future response. The interpretation for both D(e) and G(e) 

optimality has been made, under Assumption 2, that of normal errors. 

A(0)-optimality minimizes the sum of approximate variances of the 

parameter estimates, as in the linear case (Titterington (1980a)). 

E(0)-optimality seeks to minimize the variance of the worst-estimated 
linear combination cTe, with cTc=l.

Ford (1976) describes in detail the above properties of the 

<t> criterion and its concavity. Titterington (1980b) reviews the 

geometrical aspects of the linear case.

The geometry of these criteria will be discussed in section

3.7. Torsney (1980) works with generalizations of the above criteria 

in linear case criteria and Silvey (1980) reviews the criteria in his 

excellent monograph.

The cases of Q=A€Mat (s ,p), rank(A)=s is similar to that of 

Q=AeMat(p,p). Of course relation (3.3.2) no longer holds.



0

A particular case is that of Cls;(T], IscMat(s,s) the unit
4

matrix and 0€Mat(s,p-s) the zero matrix. This case is discussed in 

section 3.4.

Now, consider Q=ceMat(p,1), i.e Q is a vector. Assuming 

that M-1(e,e;) exists and recalling definition 3.2.1, we have

Jc[M(e,e*):U = rain {cTM“l(e,£)c, SeS) (3.3.3)

with u) the identity function, id say. This criterion minimizes the
Aapproximate variance of a linear combination of e and it is known as

c(e)-optimality. We shall refer to it as 05, i.e

<|>5 = id o Jc. (3.3.4)

3.4 Applications

In the linear case the above criteria are independent of e 

and thus we ref ere to them as D,G, A, E-optimality. We can treat the 

nonlinear case as linear by supposing e to be known.

The D(e)-optimality criterion has been the most commonly

used in practice, ever since the pioneer work of Box and Lucas (1959) 

who obtained locally optimal designs when n=p for a number of 

nonlinear models. For the exact locally optimal design when n-p

maximisation of det(XTX) (see 2.6.1 for definition of X) is 

equivalent to maximisation of det(X) because,

A = det(XTX) = Cdet(X)]2* (3.4.1)



Atkinson and Hunter (1968) suggested that when n=rp one should 

perform the experiment of Box and Lucas for the p-point p-term model 

and replicate the experiment r times. If the design is restricted to 

these p points replication minimizes the generalized variance of the 

p-term model. This may hot, however, necessarily give the optimum 

among all experiments with rp-observations. M.J. Box (1968a) gave a 

generalization to n=rp+k, r>l 0£k*sp~l,
Optimal or at least near-optimal designs can be produced by 

replicating, as nearly as possible (depending on the conditions) the 

experiment of the optimal design using the Box and Lucas idea.

In chemical experimentation the D(e)-optimal criterion 

has been very popular since Behnken (1964) obtained optimum designs 

for determining reactivity ratios. Chemical work was also the 

motivation for Bard and Lapidus (1968), Hunter and Atkinson (1966), 

Henson and Hunter (1969), Hill and Hunter (1974), Hunter,. Hill and 

Henson (1974) and M.J. Box (1968a, 1970).

In Table 3.1 we summarize all the work dealing with kinetic 

models mostly from chemistry and in biology. Given the "true" e the 

optimal design points for the covariates involved has been listed.

More work on D(e)-optimality has been developed in various 

fields. Currie (1982) estimated the Michaelis-Menten enzyme kinetic 

function. Hohman and Jung (1975) obtained D(e)-optimal designs for a 

special regression set up. We shall refer to this again in Section

3.7.

The aesthetic appeal of D(e)-optimality extends also to 

binary response problems.



Begg and Kalish (3984) applied different optimality criteria to 

logistic model for obtaining the optimal proportion of cases for

treatment allocation. Maxim, Hendrickson and Cullen (1977) 

considered binary response for bivariate models such as bivariate 

exponential and Weibull distributions. Their result generalizes the 

following result of Chernoff (1953) for the exponential model under 

A(e)-optimality (which coincides for one parameter with 

D(e)-optimality),

A(e)-optimality was tackled by Chernoff (1953) in his early 

work. He suggested that the maximum number of optimal points needed 

for As(e)-optimality is s(2p-s+l)/2, l<ss*p. It is interesting that 

when s=l or p Chernoff's theorem leads to Elfving's theorem (Appendix 

3) for c-optimality. A(e)-optimality has been suggested by

Titterington (1980a) for dynamic systems.

Little attention has been paid to E(e)-optimality in

applications.

We shall use D(e), A(e) and c(e)-optimality in later 

chapters. It is of interest to comment that criteria , i-1,2,3,4 

coincide for the one parameter model.

We now pay some attention to logit and probit models under 

D(e)-optimality, because of their use in applications. Consider the 

quantal response model of the form T=T(eru) (recall example 2.7). In

this case, (Ford (1976)), the D(e)-optimal design is concentrated at

two points, namely

u1=(u0-e1)/e2 , u2=(-uo-01)/e2 (3.4.2a)

with ^ = £ 2=0.5 (3,4.2b)

and D=detM(e,u0 )H  u0a{u0 ) \ 2 / e 2 (3.4.2c)
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with oc(u0)=cx(u0 ,e) as in (2.7.2).

The function D=D(u0) has a unique maximum at Uq . Then the optimal

points turn to be of the form (±u0-e1)/e2eU,
For the logistic case : uQ = 1.54

For the probit case : u0 = 1.14
If U is symmetric about and (±u0-e1)/e2̂ U=[>r}G then the

D(e)-optimal design is

u l - K u2=X • (3.4.2d)
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3.5 Canonical form of a design ( c(e)-optimality )

It is known, Federov (1972, p 81), that D-optimal designs 

are invariant with respect to any non-degenerate linear 

transformation of the parameters.

It is in fact convenient if we have a design criterion which 

will remain invariant under certain transformations of the design 

space. We would then be able to have a canonical form of the design, 

which, when transformed, would produce other "daughter designs". 

The transformation we introduce is of the form:

h : UgRk T > ZsRk : u> *>h(u)=z=Bu (3.5.1)

with BeMat(p,p), nonsingular.

Consider nonlinear models in which the parameters appear in 

the linear combination eTu=e0+e1u1 (recall example 2.7 (i)). Take as 

criterion <i> that of c(6)-optimality i.e

4>(MU) = ctMuC (3.5.2)

with Mu=Mu(e,£) the average information matrix in U-space (recall 

example 2.7 (i)). Thus

Mu = I ateQ+ej^j)ccT (3.5.3)

with oc(. ) as in example 2.7, and Ci = (l,u1i)T , c-tl,^)7*. 

Let



Criterion (3.5.3) can be written

ctM^1c = cTC E a(.)cicj 3-1c =

ct Bt (Bt )-1C E a(.)ci^T 3_1B_1Bc =

(Bc)T (E oc( . ) [Bei ] [BcL7T)■_1 (Be) = C z ^ z c z

with cz=(l)e0H-e1u1)T-(lfz1)T , Mz=Ea(. ) z i z \  , z1 = (lfzli)T .

Thus the equivalence of c(e)-optimality in U space and Z space has

been proved. This is of practical use as a design can be

constructed on a "suitable" design space say with e0, e i fixed and

then transformed back to the design for e0 , ex of interest.

The c(e)-optimality criterion can be used when the 

percentile of a logistic curve is to be estimated. The lOOp

percentile, Lp, of the response curve T(u) is defined as the solution 

of

T(Lp) = p (3.5.6)

when T(.) is the logistic, A(.) say, we have

A(Lp ;6) = (l+exp(-(eo+01Lp))) = p
Therefore

(3.5.7)
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Lp - ©j1Ce0+ln(p  ̂ 1)D = Lp(©Q,0 )̂ (3.5.8)

Thus Lp has been expressed as a non linear function of eQ,

In bioassays the median is the most common percentile of interest. 

It is easy to see that for p=0.5 (3.5.8) is reduced to

L 15 = — (0q/©^) (3.5.8a)

for the logit case. Clearly, designing as well as possible to get

the best estimate of Lp, has a practical use. We proceed to evaluate

the vector VLp ,

v^p " -©i1(1,Lp)r . (3.5.9)

Let n| be the number of observations at u-̂  for i=l,2,..,,k. Then,
A A  Afor the MLE ©=(©o,01) (recall examples 2.4.1, 2.5.1), it is known

that for k 2̂ and En^=n large

Var^Q,©!) £ (D\(u^ ) (1-A(u^ ) )u-̂ uT n̂  }■ 1, (3.5.10)

in which ui=(l>Uj1)T . From (3.5.9) and (3.5.10) we have that

Var(Lp) s (VLp)TVar(e0,e^VLp (3.5.11)

A
Therefore minimization of Var(Lp) is approximately equivalent to 

minimization of

cTM~1(S)c (3.5.12)

with c=(l,Lp)T and M *(£) given by the right had side of (3.5.10)



We thus require to find a c(e)-optimal design, for the desired

e=(e0 ,©i).

We can then use the "canonical form" idea described above to

obtain the design in the Z space.

For the logistic of the form (3,5.8) Meeker and Hahn (1977),

obtained the two point optimum design for pc[!0.083,0.917D, working on

survival probability at design test.

The logistic model has also received extensive attention in 

bioassays, from, among others, Me Leish and Tosh (1983), Tsutakawa 

(1980), Cox(1970) and Finney (1978). Recently Wu (1985) suggested 

that a binary response model of unknown type can be locally

approximated by the logistic. The method he proposed will be 

discussed in chapter 7.

3.6 Designs for subsets of parameters

The asymptotic generalized variance of the estimators of 

©(s) is defined to be the quantity

V(©,£) * n_1 det[Ms]. (3.6.1)

where Ms is as in (2.5.10). Note that Ms has to be nonsingular for 

©(s) to be estimable. With the operator notation it is easy to see 

that when A=[Is:0], J^(M)=MS. Under the 0 notation of (3.3.1) we 

shall use the notation (J>s for

0S = w o J[i5 ;6]• (3.6.2)

For the cases 0^, i=l,2,3,4 we have the following definition



Definition 3.4.1 The optimal design measure S* is called 

Ds(e)-optimal iff <t>ls(.) is considered

As(e)-optimal iff 02s^') *s considered

Es(e)-optimal iff 03s(.) is considered

Gs(e)-optimal iff 04s(.) is considered.

White (1973) stated an equivalence theorem for Ds(e) 

Gs(e) optimality, similar to that for the linear case. As 

D(e)“0ptimality, Ds(e)~optimality is relevant and appealing 

applications. Begg and Kalish (1984) apply Ds (e)-optimality to 

logistic problem. The Ms matrix and Ds-optimality arise in 

chemical kinetics literature; see Hunter, Hill and Henson (1974) 

application to the first order chemical reaction (Appendix 2).
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3.7 Geometrical aspects

The geometrical approach to the linear optimal design of

experiments has been extensively covered by Titterington 

(1975,1980b). The geometrical insight into the linear problem is 

based on the equivalence theorems of Kiefer and Wolfwitz (1960), for 

D-optimality, and Karlin and Studden (1966), for Ds-optimality. 

Geometric interpretation of these problems has been achieved by 

Silvey and Titterington (1973) for Ds-optimality. For the linear 

model (2.3.3) the geometry was built up not on the design space U, 

but on its image through g, U0=g(U) say, as described by Silvey and

Titterington (1973). Furthermore, for this transformation they

proved that the information matrix M(£) is preserved expressed in

terms of the family of design measures

So = i S o = % r \  & Z \ (3.7.1)

Under the above discussion the following two "duality" theorems play 

an important role in the realm of linear experimental design.

Theorem 3.7.1 (Sibson, 1972)

Let U0 be a compact set which spans RP. The 

D-optimal design problem for U0 is the dual of the minimal ellipsoid 

problem for U0 and the two problems share a common extreme value.

Theorem 3.7.2 (Silvey and Titterington, 1973)

Let U0 be any compact subset of Rp which spans

the leading s-dimensional co-ordinate subspace. Then for U0, the

Ds-optimal design problem is the dual of the thinnest cylinder

problem and the two problems share a common extreme value.



We note that the minimal ellipsoid problem is that of 

finding an ellipsoid of minimal content centred at the origin, 

containing UD , The kernel matrix of the ellipsoid is It was

Silvey (1972) who pointed out that the only possible effective

support points of D-optimal designs are points in U which, through g,

correspond to the points where the minimal ellipsoid hits U0

The thinnest cylinder problem is that of finding a cylinder 

of minimum cross-sectional content - with cylinder axis required to 

pass through the origin - which spans Rs and which contains U0. The 

only possible effective support points, according to Silvey and

Titterington (1973), are points in U whose images in U0 are points 

where the thinnest covering cylinder hits U0 .

We discuss these ideas in the linear case to clarify where 

this ellipsoid is, and how it is influenced by the design measure and 

the information matrix. Now we proceed to the nonlinear case.

The fact that the information matrix depends on the unknown 

parameter e, and since f is not, linear as is g, prompts us to 

approach the problem slightly differently.

Recall the definition of the matrix X in (2.6.1). In the 

linear case in which Ey=Eg^ (x)e^=f (u,e), it is easy to see that 

xij=gj(xi). This is not the case in the nonlinear situation.

Expanding f(u,e) in a Taylor series, we can write the linearized 

model as

W s Xb (3.7.2)

with: X as in (2.6.1a), b=e-et , and W=f(u,e)-f(u,et). Thus from

the space RP, through (3.7.2) we obtain the space Z, say, through a 

transformation, £ say, corresponding to matrix X. Following M.J. Box 

(1968a), another transformation^ say, can be defined from Z to U0gRP



through the relation

V(z) = u0 = (X1X2 ...Xp )"1z (3.7.3)

with "Xj[ being the experiments which constitute an optimal design of

The following diagram

h^Gof (3.7.4)

h=tyo£of

Then following Halmos (1958, p 164), the families of measures

Eo = * So = 1 % Q -Zh~1 , £eE) (3.7.5)

"preserve the measure". That is, the optimal design constructed on Z 

or U0 is transferred to U. Thus the induced design space U0 in which

the geometry can be built up has been defined.

When e takes its true value all the geometric aspects

covered by Titterington (1980b) can be applied to the nonlinear case.

When we end up the experiment with an estimate of e, this estimate 

forms the geometry in a "local" sense, as the estimate might any e in 

the neighborhood of 6^. Thus D(e)-optimality corresponds to the 

minimal local ellipsoid.

p experiments to estimate p parameters", 

describes the above discussion.

Rk+P5Ux© >__ RP

h



In the case n=p, recall section 4.2. Box and Lucas (1953 ) 

gave the geometrical interpretation that the optimal design points 

should be a vertex of the p+l-hedron, a simplex defined by the

p-optimal points and the origin. M.J. Box (1968a) states that the 

optimal experimental sites must lie on the boundary of U0 , where U0 
is obtained using (3.7.4). Atkinson and Hunter (1968) gave two

theorems which ensure that the p+l-hedron must lie wholly within Z in 

the case of n=rp, i.e when we replicate the p-term optimum design r 

times. Hill and Hunter (1974) gave a geometrical interpretation for 

Ds(e)-optimality.

The geometry of c-optimality is covered by Elfving (1952; 

see Appendix A3.I). We shall use Elfving's geometrical argument 

extensively in chapters 8 and 9.
The dependence on e influences the geometry in the nonlinear

case, as the geometric ideas are based on the approximation of the

covariance matrix by £nM(e,£)3-1.

We now discuss the particular special case of the partially 

nonlinear models.



3.8 Partially nonlinear models

Recall the Gaussian regression model (2.2.2). If f(ute) is 

of a special form some useful results can be obtained.

Hohman and Jung (1975) consider the case where

f(u,e) = o ^ g t u ^ ) ,  ueU (3.8.1)

a two parameter model linear in one parameter and nonlinear in the 

other. The D-optimal design provides a two point design with design 

measure £=0.5 at each point. The two design points are either the 

end points of U, or points depending only on the true , say.

The fact that £=0.5 is in accordance with the general result for 

D-optimality which allocates weight 1/p for the regression model 

f(u,©)=eTu when the optimal design is supported on p points.

Hill (1980) defined a regression model to be partially 
nonlinear for the k parameters, k<pf iff

Vf(u,e) = B(e)h(u,8{k)) (3.8.2)

where B(0) is a matrix not depending on u but just on 

e=(61td2,...t6p)f 0(k) is the vector of the k parameters which appear 

in a nonlinear way and h is a vector of functions depending on . 

For the model (3.8.2) the D(e)-optimal design will depend (1980) only 

on 6(k)! see Hill (1980)

Example 3.8.1 Consider the model describing decay (or growth) 

phenomena

f(u,e) = e1exp(e2u)



Then

Vf (u,e) =

Therefore the D(e)-optimal design will depend only on e2. This is in 

accordance with Box and Lucas (1959). We shall reconsider this 

example in chapter 7.

Khuri (1984) provided, for the model (3.8.2), a sufficient 

condition of the following form for Ds (e)-optimality.

Let ©(s) be the "linear terms", 0(p_s) be the 

"nonlinear terms" and consider B(e) partitioned as 

B(6) = QB^(e),Bj(e)3, Bj£Mat(s,p), B2£Mat(p-s,p). Suppose the

corresponding M(e,£) is as in (2.5.10). A sufficient condition for a 

locally Ds(e) optimal design (for ©{s)) to be dependent only on 

e(p-s) *s that matrix B2(e) should be expressible in the form

where P(e)eMat(p-s,p-s) and is nonsingular, Ip_s is the identity 

matrix and KcMat(p-s,s) does not involve e.

Example 3.7.2 Consider the Michaelis-Menten model (Currie, 1982)

Thus (3.8.2) can be applied and therefore the D-optimal design for

B2(e) = P(e)Clp_s:Kl (3.8.3)

with

f(u,e) = e^/teg+u).

For this model

Vf(u,e) = ( u(e2+u) 1 , ©jufeg+u)-2 )T



estimating ©=(0if02) depends only on e2. This is a theoretical 

justification for Currie (1982, section 3.1) who confines himself 

"primarily to K" (K is our e2 ). As far as Dj^-optimality concerned it 

can be easily verified that (3.$.3) does not hold.

We now consider a more general model than (3.t>.l), which we 

shall call proper partially nonlinear, as follows :

f(u,e) = l(u,^) + m(u,/S2) (3.8.4)

where /3̂ — (©^ , e2 , . . , , ©g ) , /32 = (0 g + * • » • > 0p) i . e ©= ( ,  /32) 

l(u,^1)=©0+©1u+...+0sus 

m(u,/S2) any nonlinear function of /S2 ;

We state the following proposition.

Proposition 3.8.1 For the model (3.8.4) the D(©)-optimal

design depends on /Sg. Moreover the

Ds (©)-optimal design for estimating ^  

also depends on /3g.

Proof :

M=M(e,S)=M(/32,£) as, trivially, Vf does not depent on (Ẑ .

Therefore the D(e)-optimal design depends on /S2.

Therefore M22 = M22(£2 ,£) and thus the ratio det(M)/det(M22) is a

function of /EL, only. Therefore the Ds(©)-optimal design depends on 

fZ2 •

This proposition can be viewed as a generalization of the work of 

Hohman and Jung (1975).



Examples 3.8.2 (1) Let (Hohman and Jung (1975))

f(u,©)=e1-exp(-e2u), ©2>0

The optimal design depends only on ©2.

(ii) Let

f(u,©)=©1+©2u+sin(e3u)+cos(©4u)

It is easy to see that M22 is a function of (03,04) . Therefore D(e) 

and D2(e)-optimality depends only on /S2=(03,e4).



3.9 Discussion

Experimental design in the linear case started as an optimum 

allocation of the observations at the treatment points; see Smith 

(1918), de la Ga^a (1954). Fedorov (1972) summarized all the linear 

work, but he does not supply the general formulation of the problem 

which is extensively covered by Ford (1976) who proves the concavity 

of the <J)̂ i=l,2,3,4 in the linear case. Silvey (1980) contributes 

with an excellent monograph. The main target through this 

theoretical framework is to obtain methods - possibly based on 

algorithms - to get the optimum design measure for estimating e. 

Fedorov provided the first algorithm, but it was only in Wu and Wynn 

(1978) that a general dichotomous convergence theorem was obtained, 

concerning the convergence of the sequence of design measures. The 

theoretical framework in the linear case is completed by the duality 

theory which first came to light in Lagrangian theory (Silvey 1972, 

Sibson 1972, Silvey and Titterington 1973). Pukelsheim and 

Titterington (1983) placed the general optimal experiment problem for 

parameter estimation in linear regression models under a general

framework. Thus the linear theory not only has a well defined 

theoretical background but this theoretical frame turns out to be

helpful from the point of view of applications.

The nonlinear theory suffers from the dependence on the

parameters which we want to estimate! Recall (2.6.3) for the average 

information matrix. Thus any function of M(e,£) has to be based on 

the knowledge of the parameters we want to estimate. That made 

Cochran (1973) comment that the statistician could ask the 

experimenter "You tell me the value of e and I promise to design the 

best experiment for estimating e"! Silvey (1980) emphasizes this 

dependence by using the notation <t>e .



This e-dependence also occurs when, in linear regression 

models, interest lies in a nonlinear function of its parameters. An

example is the curvature of the second degree linear model (Ford and

Silvey, 1980). We shall come to this work in chapter 8.
Certain problems of course exist when we have fitted a

nonlinear regression model. Draper and Smith (1981), Bard and 

Lajpidus (1968), Bard (1974), among others, discuss these problems,

which are usually overcome through linearization.

As the nonlinear theoretical framework is based on the true 

e, it is easy to see how the so-called equivalence theorems were 

extended to the nonlinear case from the linear case. We can

certainly say that any experiment with design measure ^  is 

preferable to experiment E2 with design measure £2, performed on the 

same set-up with given 8 iff

0(M(e,ei)) < *(M(e,e2)) (3.9.1)

However, how to get the minimum <J>(.) is another story.

So far as (3.2.4) is concerned, the formulation in sections 

3.2, 3.3 and 3.4 concerning the general local optimum nonlinear

experimental design problem can be stated as follows.

Consider a convex and decreasing w, a known matrix Q and the 

operator Jq. Then :

minimize : u  o Jq

subject to : e is the true value

M(e,£) is positive definite.



CHAPTER 4

STATIC DESIGN

4.1 Introduction

In the linear case, of which an example is that of p-term 

polynomial regression the D-optimal design has a tendency to use as 

optimal design points the "end" points of the design space, among 

others, when p^2. This is true even when non classical lines of 

thought are applied; see Kitsos (1976). Moreover under some 

considerations, (Fedorov (1972, Th.2.2.3)) the design points for

D-optimality can be defined as roots of a particular polynomial 

(Legendre, Jacobi, Laguerre, Hermite). The design then allocates 

measure 1/p at these points.
The situation is different in nonlinear problems. The 

design points can only defined under the "true" e. Therefore a 

"guess" about e has to be supplied. The aim is then to gain 

knowledge about © with an efficient estimate, ©, say, so that the 

covariance matrix 6=C(e) will approximate n_1M_1(©,£) , Q the true 

value, as well as possible.

This ©-dependence requires the development of alternative 

strategies for the construction of experimental designs in practice. 

We shall investigate two procedures that the experimenter might use.



- Procedure 1: Choose design points. Perform the experiment

at these points. We shall refer to this 

procedure as static design.
- Procedure 2: Choose initial design points. Perform the

experiment at these points and estimate the 

parameters. Re-assess the design points.

Perform the experiment at these new points 

and get new estimates. Continue the procedure 

until a predefined stopping rule is satisfied.

We shall refer to this procedure as sequential 
design.

In this chapter the static designs will be tackled. Sequential 

designs will be discussed in chapter 5.

4.2 Locally optimal approach

In practice the true e is unknown. Thus a guess for e might 

be submitted either from previous experimental work or from 

thepretical considerations. The local optimality criteria <Ĵ , 

i=l,2,3,4 discussed in chapter 3, therefore give a line of thought 

for applications of using that guess instead of the true e, which 

hopefully eventually be approached by its estimator e. Therefore 

static designs can obtained by using a guess for e instead the true 

e. Table 3.1 summarizes published work on Gaussian regression models 

and provides the locally optimum settings of the covariates which 

might be used when a guess for e is provided.



4.3 Lauter's approach

An attempt to avoid e-dependence has been made through 

S-optimality. Lauter (1974) defined S-optimality as follows. 

Definition 4.2.1 The design measure is called S-optimal iff

S(S*) = max( S(S), SeE ) (4.3.1a)

where

S(S) - nn|M(e,€)!v(de) (4.3.1b)
0

and v is a given measure defined on some o-algebra of subsets of 

©crP* For S-optimality she proved an equivalence theorem like the 

one of Kiefer and Wolfowitz (1960) and the one stated by White 

(1973).

Theorem 4.3.1 (Lauter, 1974)

Let d^e.S.u) = (Vf )TM-1,(©,£) (Vf)

H0 = Xdite.S.uMde)^.©

Then for S0 ̂  ^  and }S(£))<cc for every £erE0 
the following three conditions are equivalent.

(i) SeEo is S-optimal.

(ii) £* minimizes max( Xdi(e,£;,u)v(de), ueU)=r.©
(ii) r=pXv(de).©

To avoid e-dependence a prior distribution can be assumed for e and 

then we work using an average information matrix, independent of e, 

of the form

M(£) = EeCM(e,S)3. (4.3.2)



any weighting function w(.) on the parameter space ©, which may or 

may not be a formal prior density. Then we can use

M(£) = XM(e,S)w(de) (4.3.3)
Q

or construct a new criterion

<J>W(£) = X<j>[M(e,g)]w(de) (4.3.4)
©

with d> as in (3.3.1). In both cases equivalence theorems like that

of Lauter (1974) can be written down.

4.4 Stone and Morris approach

Stone and Morris (1985), in a recent paper, which in their 

own words, "raises more questions both of theoretical and of 

practical nature, than it resolves", propose two alternative

criteria. ' These criteria are for non-sequential non-local,

non-linear design ie, for the static problem. One of their criteria

is based on log-likelihood and the other on sum of squares and both 

require knowledge of two values e', 0'' of the parameter of interest 

©, and include the possibility of a nuisance parameter S. Their 

first criterion function, which must be maximized, is

CL = E (LR J ©1 , S) - E(LR|e” ,S) (4.4.1a)

where LR - log[p(y(e')/p(y|e'1,8'')] (4.4.1b)



and LR is the logarithm of the likelihood ratio for e' and 8' 1 , with 
S  evaluated at S '  and S ' ', the conditional maximum likelihood 

estimates for S in each contet. The "design for discrimination"

character of this criterion is obvious. Moreover the assumption of a 

common $ in (4.4.1a), which must be prespecified, must reduce the 

practical utility of this criterion. Their second criterion also 

requires prespecification of two e's , 6', e’'. This criterion is

cs = inf ( E[ni(e\€') - ni (e" ,s'')]2 , s \ s " c A h  (4.4.2)

where m ( 8>S) denotes the expectation of the i-th observation and A 

is a prespecified set. For this criterion, if there is no nuisance 

parameter, the result may be a singular design, from which e will be 

unestimable. Note that the specification of the set A may present 

practical difficulties as well.

The fact that both and Cg are based on two specified 

values for e, which we aim to estimate eventually, makes these 

discrimination criteria rather weak, as far a inference is concerned. 

Both the above criteria require prespecification of a number of 

quanties. Stone and Morris (1985) do not investigate problems of 

misspecification. Therefore if inference about the parameters is of 

interest rather than discrimination, we reserve judgement on the 

practical usefulness of this particular approach.



4.5 Maxi-min criterion

Another alternative method of avoiding the ©-dependence 

problem is the maximin design approach. That is we solve

max min Phj>(M[e,S] )3 (4.5.1)
ScE ©€©

where by h $ ( . ) we mean a function h of the criterion <J>. The maximin 

design from (4.5.1) will provide that design whose minimum value of 

h0(.) is greater than that of any other. Even if the locally optimum 

criterion <t> is invariant under transformations of the parameter space 

is not necessary that the maximin criterion be invariant. The 

locally optimal values of <t>, the criterion function, may vary 

considerably with e, indicating that some © values may dominate the 

construction of the good design. A function h^ which is of great use 

in this respect (Silvey, 1980 p 58) is the efficiency measure defined 

as

h0(M[e,£!) := Eff(8se) = 4>[M(6,e)] A <D[M( ©, £*) ] (4.5.2)

with A = / or - and £*=£*(©) the locally optimum design for 6.
Silvey (1980) has applied the criterion in two examples and 

casts some doubt on how useful this approach might be. The maximin 

efficiency criterion is applied to a particular problem in chapter 8.



4.6 Constant information designs

A constant information design is one where the information 

of the associated with a nonlinear design, M(e,£) say, is at least 

approximately independent of e,

Fisher (1922,1966) came across this property in the dilution 

series experiment, which will be discussed extensively in chapter 7. 
Abdelbasit and Plackett (1981,1983) discuss and extend Fisher's work. 

In their 1983 work they state that "constant information is a 

desirable property because the asymptotic dispersion matrix of the 

estimators is then the same, whatever the values of the parameters". 

While there is no doubt that this is an interesting property we doupt 

that this might be considered as the only goal for a design of 

experiment.

A design with a constant information structure does not 

remain invariant under nonlinear transformations. Moreover in theory 

we can obtain, under maximin criteria, designs which are at least as 

good as equal information designs.

It is interesting to note that Fisher applied this criterion to the 

dilution series experiment but he never came back to this approach 

again. Abdelbasit and Plackett generalize this concept to any other 

problem.

An alternative to the static designs is the sequential way 

of designing, which is extensively discussed in the next chapter.



CHAPTER 5

SEQUENTIAL DESIGNS

5.1 Introduction

Our objective is to construct a design that eventually 

estimates the unknown parameter vector 0 as well as possible. 

Adopting the sequential procedure we choose an initial design using 

prior knowledge on e and get an estimate of the parameters. This 

estimate is useful as an initial guess to redesign, reestimate and so 

on. Some important questions are as follows :

- How do we choose the initial design?

- What measures of optimality can we use?

- How do we revise or continue the design?

- How will inference be made?

In the rest of this chapter we will try to answer these 

questions. We mention here that we can proceed by either designing 

in batches of observations or adding a single observation at a time 

into the design. The latter procedure will be called

fully-sequential design, adopting Ford's (1976) terminology.



5.2 Background

Let us assume that the initial design has been constructed
Aand an estimate e has been obtained. When a new design point is 

added (in terms of a batch of observations or a single observation) a 

new Fisher information matrix is obtained and a new estimator is 

evaluated - through least squares for instance. Thus a sequence of 

least squares estimates ©n is obtained. Jennrich (1969) proved the 

existence of these estimators when the design is developed 

sequentially but in a manner not dependent on . Moreover, he 

established the strong consistency of the sequence of estimators, 

provided © is compact, i.e

A Ot-4en— *0, as n-*-«> (5.2.1)

The sequence of average information matrices obtained in 

this way is also a strongly consistent sequence i.e, as n-*<»

M(en,S) ^>M(e,£). (5.2.2)

Finally, he showed that, as n-*»

v'n (en-e) N(0,a2M_1(e,£)) (5.2.3)

where by^ we mean convergence in distribution,

Wu (1981) relaxed Jennrich's assumption and proved the same

results,

It is suggested that the initial design should be built 

up at the optimum points of the corresponding locally optimal design, 

on the basis of an initial guess for e. Table 3.1 will be of use in



this context. Fedorov (1972) suggested that the next design point 

should be that which minimizes the estimator's generalized variance. 

That is a D(e)-optimality criterion is used for choosing the next 

design point. This defines an algorithm with the following steps :

1.- Define initial values e0 for e and perform the 

experiment.

2.- From the initial design obtain an estimate,

‘e1> of e.

3.- Choose as the next design point un+1, n=l,2,., 

that which minimizes

d(Sn.Sn,un+i)=n-1i:vf(en,Un+i)3TM-1(en.en)CVf(en,un+1)3

4.- Perform the experiment at un+1 and get ©n+1

5.- Perform steps 3. and 4. the required number 

of times.

The above algorithm is based on the results of Jennrich 

(1969) and Wu (1981).mentioned earlier. White (1975) considered the 

sequence <{M{e,£n)}- rather than (M(en ,£)). Under very strong 

assumptions she proved that, an

detM(e,Sn) det M(0,£*) (5.2.4)

where £* is the optimal measure. But this limiting result has only 

been shown to hold for the particular case of D(e)-optimality and one 

of the strong assumptions which it is based is that en-+-0.



5.3 Extensions

Establishment of convergence of Mte^,^) to M(e,£f ) under 

some function 0 has many technical difficulties. One main virtue of 

the linear theory is the dichotomous convergence theorem of Wu and 

Wynn (1978) for any function 0, and for the sequence M(£n ).

Titterington (1980a) generalized, for the regression 

model,the relation proposed (5.2.4) for D(e)-optimality. For any 

criterion 0 (recall Definition 3.3.2) and its corresponding 

directional derivative 0 (appendix Al.I) he suggested choosing as the 

next design point un+1 that which minimizes the quantity

^0(en'^n»un+i) = ^ 0 ^ ® n ’̂ n^’  ̂(®n'^n+i^* (5.3.1)

A somewhat similar iterative structure appears in the extension of 

the Wynn type algorithm for linear designs to nonlinear problems in 

the following sense.

Algorithm : (Titterington, 1980a)

Consider a sequence o<n, n=l,2,... such that liman=0 

as n-*» and Ean=w, o<an<l. Let un+1 minimize

<ICM(e,£n ) , i(e,unjp. (5.3.2)

Given an initial £0cH and subject to certain conditions, the sequence 

of designs generated by the convex iteration scheme

^n+i= ^ -an ^ n +° n ^ uni-i) (5.3.3)

converges to a 0-optimal design which puts measure 1 on un .



There are two difficult features of sequential design.

Firstly, as any design point comes into the design on the 

basis of a previous estimate of the parameter, the design points are 

not statistically independent. Thus the "information" matrix, as 

defined earlier, is not Fisher's information matrix in the sense that 

it does not necessarily provide an approximate covariance matrix.

Secondly, at the s-th stage, say, the estimator ©s has to be 

evaluated. This can be done through the Newton-Raphson method (Stoer 

and Bulirsh (1979)) which of course might diverge if a poor initial 

guess is made.

These two problems are related to inference about e and will 

be faced in practice in chapter 7.

On the first point Ford (1976) discussed the confidence 

interval problem for sequential designs under the repeated sampling 

and the strong likelihood principle of inference. Ford and Silvey 

(1980), on the basis of a simulation study, made the suggestion of 

ignoring the fact that the design is sequential and instead, of using 

the values u1,u2....,un of the design as if they were prespecified. 

Ford, Titterington and Wu (1985) discuss procedures for obtaining 

valid inferences when the sequential nature of design is adopted.

On the second point, the Newton-Raphson iteration scheme is 

the numerical method which supplies the estimate at stage s, say, 

through the iteration

®s,k+i = ®s,k - ®  ̂ *ls k-1,2 . ... (5.3.4)

A,where eSt^ is an estimate of the k-th iteration at the s-stage and S 

is the appropriately-evaluated Hessian of the log-likelihood, which 

has to be inverted, and as the vector of first partial derivatives. 

For discussion on the Newton-Raphson method in nonlinear problem see
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Bard (1974). A statistical version of the Newton-Raphson method, 

known as stochastic approximation (or the Robbins-Monro scheme) will 

be discussed in paragraph 5.5.

The sequential idea of designing has also been faced from a 

Bayesian point of view. The criterion for parameter estimation is to 

choose that value em of e for which the posterior density is a 

maximum. Moreover, in principle for large sample situations the 

posterior distribution for e, rr(e|yn ,un ), given a prior distribution 

should be approximately normal with

w(e|yntun ) £ N(em ,(B+S(em ,£n ,yn )_1) (5.3.5)

where the matrix B reflects the prior information. The interesting 

point is that the Bayesian approach leads to D(e)-optimality, see 

Ford (1976) among others. Box and Hunter (1967) and Draper and 

Hunter (1967a,1967b) obtained sequential designs within a Bayesian 

framework. When interest is based on a subset s of parameters 

Henson and Hunter (1969) and Hill and Hunter (1974) used a 

criterion, based on the corresponding marginal distribution, which 

leads to Ds(e)-optimality.

Finally, as it is noted by Silvey (1980 p 66), in 

sequential design it is only inference obtained from the likelihood 

function, which remains the same whether the design points uj, 

i=l,2,.,.,n have been predefined or evaluated sequentially. If the 

repeated sampling approach is adopted the situation is not that 

clear.



5.4 Binary response problems

Experiments with dichotomous outcomes can be faced in a 

variety of practical situations. In these cases the "response" and 

the "non-response" outcome can be.presented in different ways. Some 

practical situations are as follows :

- In testing explosives:

Usually a weight is dropped on the explosive mixture from 

a certain height. The dichotomous variable takes value "explode" or 

"not explode".

- In entomological assays

A critical dose level is associated with the insect of 

interest. The response is "killed" or "not killed".

- In fatigue experiments.

The strength of a certain material is tested. This 

response is "strong" or "not strong".

- In educational studies.

The tutor might have questions of the form: "right" or

"wrong".

- In life testing.

Experiment on the life of a photographic film or safety 

equipment such as fire extinguishers.

In this kind of problem the main interest is usually devoted 

to the estimation of a percentile Lp of the response curve. Usually 

this percentile is the median L0 s . The commonly used sequential 

methods are the following:



- Spearman - Karber's method (Finney, 1978,section 18.7)

- Up-and-Down method (UD) of Dixon and Mood (1948)

- Stochastic Approximation (SA) of Robbins and Monro(1951)

The Spearman-Karber estimator was used in the early 1940's.

Finney (1978) formulates this method, which estimates the mean of the 

response with no computational difficulties but with assumptions 

which are very unlikely to be attained in practice.

The Up-and-Down sequential scheme can be described by the

model:

Dixon and Mood (1948) assumed a probit model with parameters ij an o2 

for the detonation level, when they applied the method on testing 

explosives. The choise of the "step size" S is a problem. One 

suggestion is that it should be a rough estimate of o.

Wetherill (1963,1975), Wetherill et al (1966) and Choi (1971) used a 

logit analysis. Brownlee et al (1953) discuss the method as applied 

to small samples and Kershaw (1983) provides an extensive simulation 

study on the method. Wasan (1969, chapter 8) and Tsutakawa (1967) 

discussed the method as an example of a Markov process : from the 

definition of the method the choise of each run depends only on the 

current situation.

problems we mention that McLeish and Tosh (1983) estimate extreme 

quantiles of the logistic response. Wu (1985) suggested a local 

approximation, to any unknown response, by the logistic, when the

S>0 (5.4.1)

As far as applications are concerned in binary response



quantile Lp , pe[0.1,0.93 is to be estimated. Wu (1985) obtained 

fully efficient estimates using the Stochastic Approximation scheme 

which we discuss in the next section.

As far as life testing is concerned Izeman and Rinoff 

(1977) worked on the exponential distribution to provide a sequential 

design. Bergman and Turnbull (1983) placed the life testing problem 

with the framework of sequential design and the method was applied 

to data from an;iimal experiments.



5.5 Stochastic Approximation

The Stochastic Approximation (SA) method can be applied to

an experiment that is fully sequential in Ford's (1976) terms, i.e 

when we build up knowledge about e by adding one experimental unit at 

each stage of the experiment. It is a stochastic version of the 

Newton-Raphson (NR) iteration : this numerical method motivated

Robbins and Monro (1951) in their pioneer work on SA. Since then the 

method has attracted much attention in the literature more because of 

its theoretical framework than because of its potential in 

applications. The practical aspects of the method are discussed in 

Chapter 7. Here we present a critical review of the theoretical 

foundation of the method, while avoiding most of the technicalities.

The SA method deals with relations (2.2.3) and (2.3,2), 

Namely: evaluate the root 6 of the equation

where e is unique and T, p provided. Robbins and Monro (1951) 

imposed the following two main assumptions on the Borel measurable 

function T

E(Y (u ) \ := T(u) = p, p€R. (5.5.1)

(Al) (u-Q)CT(u)-p>0 (5.5.2a)

(A2) PrCl Y(u)-^j = i for every u (5.5.2b)

with Ki being a constant. Using the conditions

(Cl) inf)T(u)-p!^S>0

(C2) T(u) nondecreasing and T'(e)=b>0

(5.5.3a)

(5.5.3b)
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they proved that then there exists a sequence an , n=l,2.... with

an>0, Eo:n=«>, (5.5.4)

such that the sequence of stimuli

un+i = un ~ n=2,3,.., ut arbitrary (5.5.5)

converges to e in mean square, i.e, as n-*<»

lim E(un-e)2 = 0. (5.5.6)

Recall that (02) is actually Assumption 4 mentioned in section 2.2.

The physical meaning of the sequence can be thought of as the 

"weight" associated with trial n, as discussed in an application by 

Guttman and Guttman (1959). A typical ocn might be ocn=n_1 or more 

generally any sequence satisfying the relation

c'/n £ ocn £ c"/n, c',c" constants (5.5.7)

Wolfowitz (1952) weakened (A2) and proved that, as n-*<o

un — wp.l. (5.5.8)

Kiefer and Wolfowitz (1952) modified the method to that of evaluating 

the extremes of a function rather than the roots of an, equation. 

Different SA schemes were developed and these are reviewed by Wasan 

(1969). Letting



ocn = c/(nb) , b=T' (e)=T'(u)| u=e (5.5.9)

and assuming that

(A3) = a+b(uj-0) + e a = T ( e ) (5.5.10)

with under Assumption 1 of section 2.2, then we have that, as

n~*» ,

It was Chung (1954) and later Sacks (1958) who looked at asymptotic 

normality. More assumption were needed of course and were imposed by 

Chung. In addition to (A1),(A2) he required a lower bound for 

Var(Y(u) \ and that (Cl) holds for every S>0 when ju-e|<S. Then with 

any ocn of the form

and for the same sequence with e bounded below it can be proved 

that, as n-*<»

lim E(un-6) = 0

lim Var(un-e) = a2c2/[nb2 (2c-i)1, with c>.5.

(5.5.11a)

(5.5.11b)

an = n , e<(i/2 (5.5.12)

relations (5.5.11) still hold. With one more assumption

(A4) E(Y(u)-T(u) \ 2 = o2>0. for every u, (5.5.13)

n(l-e)/2 (un-e) N(0 ,o2/2b). (5.5.14)



Moreover for the sequence

ocn = C/n , n=l,2, . . (5.5.15)

more assumptions were needed. Chung; (1954) imposed them and Hodges 

and Lehmann (1956) made them slightly weaker. However, the main 

result is that, for an , n=l,2,... as in (5.5.15) with

C>1/2K where infC(T(u)-p)/(u-e)l (5.5.16)

then, as

/n(un-e) N(0, o2C2/(2bC~l)). bC>l/2. (5.5.17)

From (5.5.17) it is obvious that the asymptotic variance is minimized 

with an optimal choice of C, Copt say, namely

copt *= b_1 =CT' (6)!”1. (5.5.18)

Recall that p is given but the c.d.f T will usually not be 

known, which happens in real life problems. So again we face the 

common problem of nonlinear situations. Without the knowledge of 

some quantities (here T,e) we can not obtain the optimal procedure 

(here Copi- and consequently un+1).

Thus the problem of creating the sequence (5.5.5) contains 

the intirnsic problem of creating an approximation for 

Approximations need iterations, iterations are sequences, so we need 

a "daughter" sequence of un, say, which might converge, hopefully, 

to b. Simultaneously the "parent" sequence, will converge to e.

Sakrison (1965) and Venter (1967) tried to overcome the



difficulty of the unknown T. Anbar (1978) considered a method which 

is the simplest, from the point of view of applications and well 

behaved from a theoretical point of view. His idea is based on the 

main virtue of SA, that SA is a kind of regression of Y on u, and at 

the same time, C0pt is a kind of slope for the unknown T(e). Thus at 

stage n+1 he suggested as C the slope coefficient of the regression 

line formed from the data u-̂ and Y(u^) 1 = 1,2,... namely

Anbar (1978) imposed different assumptions the main one being that, 

for all u, and such that T(e)=p,

with K.Kĵ  being constants. Relation (5,5.20) simply means that the 

derivative of T lies between K and Kj_. Moreover he restricted the 

interval [K.Kj] to a subinterval [K*’Ki] in which he assumed K*<2K. 

Although he made heavy use of this assumption, Lai and Robbins (1981) 

proved that the following results are still valid without the 

assumption. Suppose as n-+-<»

C = £n = E(ui_un)Yi / Et^-Un)2 , n^2 (5.5.19)

where un=n iEui-

K l u - e K I H u i K K j u - e l (5.5.20)

(5.5.21)

Then

(i) /n(un-e) N(0,o2/b2), as n-*-oo (5.5.22)

with b as in (5.5.4) and a2 as in (5.5.14), and



70

(ii) lim un = © (5.5.23)

moreover

lim (E(ui-6)2/logn) = o2/b2 . (5.5.24)

The quantity Etu^-©)2 has been named the cost of the experiment by
ALai and Robbins (1979). For the sequence , a truncation has been 

suggested by both Anbar (1978) and Lai and Robbins (1981) rather than
A

using at each stage l//3n. Under this truncation idea the sequence
A

l//3n is restricted to a prespecified interval. Therefore when a 

value outside this interval is obtained, the sequence is truncated to 

the interval limits. Wu (1985) applied the truncation idea and we 

used the truncation of the SA scheme when obtaining estimates for the 

dilution series problem which we discuss in chapter 7.

Example 5.5.1. Let £n f©) be the log-likelihood of the n observations

for a model with c.d.f p(y^|u^te). Then for the n+1

observations the log-likelihood will be £n+1 and

equals

5n+1(0)=Elogp(yi|ui,e)=i?n(e)+p(yn+1|un+1,0). (5.5.25)

A ALet en , ©n+1 be the MLE obtained from Sn + l { e ) and 5n(0) respectively. 

Taking the derivatives of the two sides of (5.5.25) we have

afin+i(e) 3fin<e ) 31ogp(yn+1jUn+1,e)
_ _  = ae + ae * (5.5.26)

From the definition of MLE



0 = 3*n(e)
8e

31ogp(yn+1|un+1,e)
n+i 3e n+i

3®n+i(en+en+i en) 
36 + sc^yn+ilun+i,en+i)

* A 3^n(en )
0 + (en+i"®n)^------ + sc^yn+iIun+i-en) (5.5

based on a first order Taylor expansion about en , where by Sc( 

denote the score function for a single observation.

From (5.5.27) we obtain the appropriate recursion

A= en -n+i wn 32*n(3n)

3e2

scfyn+Jun+i-en) (5-£

Approximating the Hessian of 5 by Fisher's information

en-i-i = en + 1 (®n^c^n+i f un+i • ®n^ n=0,l,2... (5.J

Example 5.5.2. Consider the regression model

y = exp(-eu)+e

For the error term e we assume that it is under Assumption 2 

notation of example 5.5.1 is used. Namely

Pn = const. -(l/(2o2 ))E(yjL-exp(-eui) )2 - Elogplyi Iui ,©)

3£n/3e = -a^^u^expf-ou^) (y£-exp(-0Uj_)) = ESc (y£!ui,0)

325n/3e2 = -a 2E[(-uZiexp(-eui))(yi-exp(-©Ui))+u^exp(-20u:i)]

.27) 

) we

.28)

.29)

The



1(e) = a-2Eû exp(-2euj)

Applying the recursion formula (5.5.29) we get

en+i = ®n -I"1(©n)Cun+1exp(“enun+1)(yn+1-exp(-enun+1)3 (5.5.30)

The information u\exp(-2eu^) is asked to be minimized in each stage, 

as an optimum design rule. Therefor taking the logarithm of the 

information and evaluating the root of the derivative it can be shown 

that the optimum design rule occurs when

ui+1 = l/e* 1=0,1,.. (5.5.31)

Substituting (5.5.31) in (5,5.30) we get

®n+i=®n“C(l/en)e'‘1(yi+i-e”1)3/C^(l/ei-1)exp(-2en/8i_1)D, (5.5.32)

as one point recursion. Assuming that (©n^i-i )al. the scheme 

(5.5.32) is approximated by

a A A , n-U
en+i = en - C(l/en)e(yn+1-e 1)3/CE(1/©^_±)3. (5.5.33)

ntl -
In a long run the summation £(1/6^) will be approximately equal to

A
(n+1) z. Therefore (5.5.33) can be approximated by

©n+i = ®n -rene/(n+l)l(yn+1-e_1). (5.5.34)

Scheme (5.5.34) is a stochastic approximation scheme in which the 

sequence ocn is
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oc n = e / (n+1). (5.5.35)

Moreover if we assume that the sequence of estimates lie in between 

and ©u then

Eocn St ©2eEl/(n+l) and Ean * ©[1e2El/(n+l)2 (5.5.36)

AThus for the truncated sequence in which ©n+1 is defined by (5.5.34)
Aunless the right-hand side is less than ©^ (in which case ©n+i~el) or 

is greater than eu (in which case ©n+i^u)' condition (5.5.4) holds 

(because of (5.5.30), and therefore the SA scheme converges to the 

root of the equation 3£/3e=0. i.e to the MLE a.
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5.6 Discussion

The methods UD and SA tackled in sections 5.4 and 5.5 have 

the following common characteristics.

(i) They deal with the fully sequential way of designing.

(ii) There is a non-parametric flavour to them.

(iii) They are developed for estimating the parameter of 

interest, usually a single one and not a subset

of several parameters.

The fully sequential nature is obvious as one observation

comes at each stage. Moreover both UD and SA are "Markovian" in the 

sense that the choice of each run depends only on the current 

situation. The martingale (see Appendix 10) structure of SA has been 

considered by Lai and Robbins (1979).

Recall (5.5.5). When the "regression" equation (5.5.5) is 

of the form

i.e the lOOp percentile of the response is to be evaluated, (5.5.5) 

reduces to

When p=0.5 then the median, m=L 5, is to be estimated through

T(Lp) = p, pe(0,l) (5.6.1)

Lfa+i» = L<n> _ «n(yn-p) . (5.6.2)

mn+i = mn ~ «n(yn-l/2)= (5.6.3)
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= mn - (ocn/2)(2yn-l)

(If we take ocn=2S to be a constant sequence, then)

= mn - S(2yn-1) (5.6.4)

and relation (5.6.4) is equivalent to (5.4.1). Thus the SA scheme

has been reduced to the UD method, which is used for the median of

the response. In other words the UD method is a special case of the 

SA scheme.

The nonparametric feature of the methods is based on the 

fact that we try to estimate a functional of the unknown response 

T (.), usually the p-th percentile Lp . The assumption which is made 

about the cdf T(.) is usually one of two, either normal or logistic, 

which leads to probit or logit analysis. Indeed both methods have 

been used. The virtue of the logit model is that it is both simple

and approximates the normal very well in the range pe[0.2,0.8]

(Cox,1968, Table 2.1, Finney, 1978, section 17.4).

The SA scheme is a fully sequential procedure for solving an 

equation : recall (5.6.1) as a special case of (5.5.5). For the

logistic the percentile Lp .is as in (4.3.8a); that is, a ratio has to

be estimated through (5.6.1).

The superiority of SA in comparison to UD is that the Up

AND Down method has only two positions to which to move. The SA

method on the other hand is more flexible in terms of the step length 

taken : SA moves the sequence according to the gradiant of the

tangent to T(.) as the scheme is of the form

un+l = un " (l/(n4))(yn-P), &n as in (5*5.19) (5.6.4)

A Awhere £n is the slope of a linearization of T(.) i.e jBnsT’(e). Thus 

even from a geometrical argument UD can be regarded as a restricted
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direction SA.

The analogy between SA and NR is obvious. Thus, the use of 

a good initial guess in SA is based on the fact that NR converges for 

an initial value in the neighborhood of the solution (see : Appendix 

A6.I), The idea that T is a Borel measurable function is as

essential as is the assumption in Numerical Analysis of a continues 

differentiable function. Moreover the derivative sequence in NR has 

been replaced by a sequence of real numbers in SA.

Now, let us try to compare the form of SA and the

generalization of Wynn’s algorithm from Titterington (1980b) which is 

presented in section 5.3.

For the sequence ocn, common to both, we have (we shall refer 

to Titterington1s algorithm as (A))

(SA) an>0, E«n = «> , Eoc* « (5.7.4a)

(A) 0<ocn^l, Eo:n = co , lim ocn = 0. (5.7.4b)

We are applying a convex iteration scheme in both situations. Indeed

for SA the design points are produced through the iteration

(SA) un+i = Uĵ  *- ^yn~ I?) n=l ,2,... (5.8.4a)

For algorithm (A) a convex iteration of the design measures is used, 

namely

(A) £n+1 = ^n ~ otn ̂ ̂ n~^ ̂ n ^ ) n=l ,2,... (5.8.4b)

The optimal choice of the sequence o:n=C/n in SA (recall that 

in (A) a typical ocn , is ocn=l/n) depends on the optimal choice of C.
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This has been chosen from (5.5.18) as that which minimizes the 

asymptotic variance of the quantile estimator, i.e

Under Assumption 4 and using the directional derivative idea 

(Appendix Al.I)

with being the Frechet directional derivative of T. Algorithm (A) 

suggests that the next design point u shall be that which minimizes 

the quantity

with 4> the Frechet directional derivative of the criterion 0 which is

being considered. Thus beyond the point that algorithm (A) is a
k asteepest ascent method and SA is also searching for some optimal 

direction through C and its "regression" approximation (recall in 

(5.5.19) the two schemes share a number of interesting points.

^/^opt ~ T1(8). (5.8.5)

T 1 (e) = <l>T(e,e+i) (5.8.6)

*JM(e.en),i(e,u)> (5.8.7)

Chapters 4 and 5 were devoted to design for point estimation 

under different procedures. The next chapter tackles the interval 

estimation problem .



CHAPTER 6

CONFIDENCE INTERVALS

6.1 Introduction

After performing the experiment and the data have been 

collected^ statistical inference needs point estimation and the 

construction of the appropriate, possibly approximate, confidence 

intervals.

In nonlinear problems we try to apply the linear theory in 

constructing confidence intervals. The cost we have to pay is the 

approximation involved and its lack of accuracy. The accuracy 

depends on how nonlinear the function of interest is and thus the 

idea of a measure of nonlinearity, which is discussed in the rest of 

this chapter, was introduced.

When the design is constructed sequentially the question 

must be asked of how we should obtain the confidence intervals. Ford 

(1976) and Ford and Silvey (1980) studied this problem. An extension 

of their approach is tried in chapter 7. Here we apply their 

argument in section 6.5.



6.2 Background

Recall model (2.2.3), i.e a classical nonlinear regression 

model, under Assumptions 2,3 and 5. As the function f(.), the 

deterministic part of model (2.2.3), is nonlinear it is of interest 

to see how nonlinear it is, by a Taylor expansion.

The tangent hyper-plane to the solution locus (the surface 

in the sample space generated by the points r^fte,^), i»l,2,...,n 

with 8 regarded as a variable) at point f(e) is given by

q(e)=f(e) + X'(e-e) (6.2.1)

where f (e) = (f (e, ux), f (e, u2) f(e,un))T , X=X(e) and X as in

(2.6.1). In principle 8t (the true 8 ) is needed, instead of 8, but
Ae is used in practice.

Beale (1960) suggested a dimensionless empirical measure of 
nonlinearity A*, defined by

A = ps2(d2/d4) (6.2.2)

with s2 as in (2.5.1), p the number of parameters involved and

di = I | fn(©k)-<3(©k) ! I 1 1=2,4 (6.2.3)

where is a set of m points in the neighborhood of 8.

The theoretical measure of nonlinearity according to Beale, A say, is 

the same as A* but with o2 in place of s2 and with m-*«. The minimum 

value of the theoretical measure of nonlinearity, A0 say, was named



the intrinsic nonlinearity of the assumed correct model.

Guttman and Meter (1965) criticized Beale's measures of 

nonlinearity on the basis of some real life models. Later M.J. Box 

(1971b) provided a lower bound for nonlinearity depending on the bias 

of the estimator e : thus bias and nonlinearity were connected.

Measure A0 is a sort of curvature of the solution locus. Bates and 

Watts (1980), using ideas from differential geometry, proved that Aq 

is one quarter of the mean square intrinsic curvature. Moreover they 

proved that by replicating the design r times the curvature at any 

point in any direction is reduced by a factor l//r. Thus replication 

obtained its own geometrical interpretation.

Although the measures of nonlinearity have a strong 

theoretical background thanks to the work of Hamilton, Watts and 

Bates (1982) and Bates and Watts (1981) the linear approximation is 

what is applied in practice. One reason i& that departure from

linearity needs at least the evaluation of the Hessian which might 

prove computationally inefficient, even these days. More recent work 

appears in Hamilton (1986).

6.3 Confidence regions

In constructing confidence regions the target is always to

minimize their volume/area/length. Hence optimal design might lead

to minimum approximate confidence regions.

If (6.2.1) is true, i.e the model is linear, then a

100(l~a)% confidence region corresponds to

Sn (e)-Sn (e) = (e-e)T (XTX)(e-e)£ps2F(a;p,n~p) (6.3.1)



with sn(e) as in (2.4.1), Sn (e) being the residual sum of squares, s2 

an estimate of o2, X as in (2.6.1a) and F(ot;p,n-p) as usual the 

100{l“Oc)% of the F distribution. We note that in nonlinear problems 

the estimator of o2

s2 = Sn(e)/(n-p) (6.3.2)

is not an unbiased estimator of (Draper and Smith, 1981 ,p 504). 

Recall that matrix X depends on an estimate for ©. Thus the 

approximation is based both on the linearity and the dependence of X 

on e .

Beale (1960) treated confidence regions for the classical 

regression problems assuming a uniform prior distribution over the 

solution locus. He adjusted the confidence region to be of the usual 

form, using

Sn (e) - Sn (e) £ Xps2F(oc;p,n-p) ̂ (6.3.3)

in which

1, linearization without Beale's assumption 

X = \  1+(n/n-1)Aq if p=l - (6.3.4)

l+Cn(p+2)/(n-p)p!A0 if p^2

Thus Beale (1960) used the measure of nonlinearity he developed to 

adjust an approximation from linearity, when a confidence region is 

constructed.

In the nonlinear case confidence regions sometimes appear to 

have "banana-shapes". Under suitable transformation they can 

sometimes be made ellipsoidal and thus easier to deal with.



Hamilton and Watts (1985) argue that elliptical confidence 

regions (under D(e)-optimality) that are suitable for large samples 

are not appropriate for small samples. Thus they try to construct a 

quadratic approximation to the volume of small sample confidence 

regions. They propose a design criterion of the form

G = a*logdet(M(6,S)log(1+b-trQ(e,£)) (6.3.5)

where a.b are constants. M(©,£) is the average information matrix and 

Q(e,E) is a matrix describing parameter effects. Because of the 

presence of the second term in (6.3.5) the criterion G is not 

invariant under (nonlinear) transformations of e. Moreover their 

criterion requires an estimate of a2 which is not always available.

In section 6.5 we tackle the small sample problem in 

constructing confidence intervals,_ adopting a sequential design 

procedure. In principle, for large samples, the covariance matrix is 

approximated by the inverse of Fisher's information matrix (recall

(2.6.2)) and thus approximate confidence intervals can be obtained. 

However, account has to be taken of the nature of the experiment, i.e 

if it is a sequential or static one.

It was Ford (1976) who stated that the sequential nature of 

the design is irrelevant to any method pf inference based on the 

strong likelihood principle. Therefore maximum likelihood estimates 

can be calculated as if the design points ^,..., 1̂  were 

predetermined. Moreover in practice Fisher's information matrix can 

be approximated by the sample information (recall (2.4.5)) when the 

likelihood function has been evaluated.

Unfortunately the situation is not that clear when the 

repeated sampling approach is adopted, although Ford and Si Ivey



(1980) suggest that in setting up confidence intervals, even in the 

singular case "we may effectively ignore the fact that the design is 

sequential". Ford (1976) in Section 4.4 provides an illustration. 

Thus the inference made takes into consideration the design procedure 

used in experiment an experiment E is well defined by the following 

four elements

E = (U,S,Fi(Pj) i=l,2, j*l,2 (6.3.6)

where (U,£) form the design, (recall definition 2.2.2), i=l,2

indicates whether the problem is "quantal" or not and Pj, j = l,2 

describes the design procedure : sequential or static. After E has 

been performed, inference is made from the results,

6.4 Simulation study

In sequentially constructed designs, the work of Ford and 

Silvey (1980) plays an important role. Moreover, there are cases in 

which the design tyiust, by necessity, to be built up sequentially. 

Ford, Titterington and Wu (1985) discuss various procedures for 

obtaining valid inferences in sequential design.

The features of a fully sequential design appear in the 

autoregressive model.

Vi + i = 0yi + €i + i - 1=1,2,...,n . (6.4.1)

Note that this is of the form yi+i=QXi+1+€i+1, where Xj,+1=yi- The 

value yt is given and the errors €^+1 satisfy Assumption 2. Then an 

estimate of ©, ©n, is given by



®rur EyiYi + 1 / l/i (6.4.2)

where the summation runs from 1 to n. The sample information In /<̂  

can be evaluated from

In = Z y \ (6.4.3a)

and Lai and Siegmund (1983) point out that the asymptotic result

I#n* (®n-0) -^N(o,o2) (6.4.3b)

holds for |© j <1.

The result of Lai and Siegmund (1983) can be put into

context by noting that if the design points were fixed in the model
a.yi=0xi+ei' 1=1,2...n, and en=ry-jx-j/lx^, then it holds exactly for any

'l/'Z, \  -4 _ 2,n and 6 that In (en-e)— N(0 ,o2) where In=Ix-[. Ford, Titterington and

Wu (1985) also discuss this model. In the simulation study we use

small sample sizes of n=10,5 observations, for different nominal

levels oc=0.05, 0.20. We took y1=0.0 and used error variance o2=1.

Different values of e were taken from the range -1.5£6£l.5.

Confidence limits were evaluated according to the formula

6 t t(n-1; l-a/2)•/[](RSS/n-1 )f'nl (6.4.4a)

with RSS as the residual sum of squares,namely

RSS = Ey\ - ely-j^y.^. (6.4.4b)

Of course (6.4.4) will only give exact confidence intervals 

in the case where yi=ex-[+€i with all the x^'s fixed in advance or



selected independently of the other y^'s.

To test the normality of the sequence ^  the skewness and 

the kurtosis were evaluated. The results are presented in Tables 

6.1, 6.2, for 1000 simulated experiments.

From Tables 6.1, 6.2 it is easy to see that so far as the 

normality is concerned the results are unsatisfactory when e^;(-l,l). 

The mean squared error (MSE) is , of course, larger when the sample 

size is reduced from n=10 to n=5 observations, i.e the accuracy of 

the estimators has been reduced.

However, so far as the coverage probabilities are concerned, 

the study provides evidence that, even with small sample sizes, the 

approximation is with some exceptions reasonably valid. In general 

from the results of Tables 6 the nominal level did not influence the 

study.

Although model (6.4.1) is linear, the estimate e is a ratio 

of the data obtained sequentially, i.e not independently. The work 

of Ford and Silvey (1980) and this simulation study encourages us to 

ignore the sequential nature of the design, when inference has to be 

carried out, though we note the increased non normality of e in 

extreme cases.

We indeed present three more simulation studies to support 

this. The binary response problem and a two variable regression 

problem are discussed in the next chapter.



Table 6.1

Simulation study on autoregressive model (6.4.1) 

Nominal level a=0.05. Number of simulations N=1000 

Sample size n=10,5 , yt=0.0, o=l

n 0 P MSE S K e

10 -1.5 .919 0.03 3.88 21.07 -1.44

-1.0 .947 0.09 1.39 5.47 -.84

-0.5 .970 0.09 0.63 3.27 -0.42

0.0 .967 0.10 -0.06 2.56 0.00

0.5 ,965 0.10 -0.58 3.01 0.41

1.0 .955 0.09 -1.29 5.45 0.85

1.5 .928 0.03 -3.96 22.21 1.45

5 -1.5 .968 0.27 1.13 5.79 -1.29

-1.0 .969 0.27 0.08 10.00 -0.82

-0.5 .979 0.25 -0.09 6.05 -0.39

0.0 .970 0.25 0.22 4.92 0.02

0.5 .973 0.33 -0.58 4.95 0.79

1.0 .975 0.61 -0.14 4.98 0.38

1.5 .957 0.29 -1.23 6.02 1.29

P : estimated coverage, S : Average skewness of estimates 

K : Average kurtosis of estimates }



Table 6 .2

Simulation Study on autoregressive model (6.4.1) 

Nominal level a=.20. Number of simulations N^IOOO 

Sample size n=10,5 . y1=0.0, o=l

n e P MSE S K e

10 -1.5 .773 0.04 4.78 31.35 -1.36

-1.0 .778 0.09 1.12 4.64 -0.85

-0.5 .868 0.08 0,61 3.43 -0.42

0.0 .856 0.09 -0.11 2.73 0.00

0.5 .839 0.09 -0.65 3.37 0.41

1.0 .827 0.07 -1.38 5.84 0.87

1.5 .770 0.03 -3.28 19.39 1.44

5 -1.5 .764 0.25 1.56 6.98 -0.88

-1.0 .851 0.27 0.65 4.83 -0.80

-0.5 .862 0.27 -0.48 7.83 -0.39

0.0 .904 0.24 0.09 5.50 0.00

0.5 .866 0.25 -0.28 4.83 0.38

1.0 .838 0,27 -0.51 4.84 0.81

e, P,S,K as in Table 6.1



CHAPTER 7

SIMULATION STUDIES

7.1 Introduction

We have already reviewed and augmented the theory of the 

nonlinear design problem. This chapter and, the following two, are 

devoted to applications. We try "to put theory to work" on 

particular problems. We discuss the difficulties which arise and the 

results obtained. Both the binary and continuous cases are tackled 

for one parameter and two parameters respectively. The simulation 

studies were carried out on the ICL computer of Glasgow University.

In the sequel we describe the problems simulated, and given 

interpretations of the results. These simulations are-

- Simulation I

The dilution series problem (sections 7.2 to 7.6).

- Simulation II

The first order growth law (sections 7.7 to 7.9).

7.2 The dilution series assesment

Experimenters and statisticians are indebted to Rothamsted 

Experimental Station as it offered a job to the jobless Fisher! 

Since then Fisher developed the theory of experimental design and



tackled the first nonlinear design problem in 1922. This problem is 

that of dilution series which we now describe.

It is desired to determine the concentration of

migro-organisms in a solution. In this case various dilutions are

sampled. For every dilution we record whether or not there is a

sterility. We use the following notation.

u : a small volume that is taken out of a volume, say

V, of liquid which contains N tiny organisms. Let 

U=CUi,Uu3 be the design space.

e : The density per unit volume, i.e e=N/V. The probability 

that the volume contains no organisms is

p = (l-u/V)N s exp(-Nu/V) = exp(-eu).

y : The binary response describing the phenomenon is 

y=l : no organism in u (sterile)

y=0 ; organisms in u (fertile).

The probability model describing the experiment is therefore

p(y|u,0) =

exp(-eu) y=l

e>0 (7.2.1)

1 - exp(-eu) y=0 .

The aim is to estimate e as well as possible. Model (7.2.1) 

might describe also the probability that an insect survives a dose of 

u units of a certain insecticide.

Fisher's information I(u,e) for model (7.2.1) can be 

calculated as (Appendix A7.I)



I(e,u) = u2/(exp(eu)-i) (7.2.2)

On maximizing I(e,u) we get (Appendix A7.I)

©u* =1.59. (7.2.3a)

Thus the optimum design point, the one which minimizes the 

variance, i.e, that which corresponds to D(e)-optimality, depends on 

e according to

1.59/e if 1.59/0 cU

(7.2.3b)

Ui or Uu otherwise.

The form of the probability model (recall (2.4.3) with 

T(u,0) as in (7.2.1)) will be binomial with success probability 

p=p(l|u,e) and number of successes the number of sterile samples. In 

terms of probability, the value u*=1.59/e corresponds to p=0.2. We 

use values of p when 0 is equal to its true value to define the space 

U. It seems reasonable to keep the probability levels between 

[0.025,0.975]. Therefore, throughoil-t^ the simulations we use the 

bounds U}, Uu , which can be evaluated from the relations

exp(-6tUu)=.025 , exp(-etU1)=.975 (7.2.4)

where et is the "true" value of e. For this value we choose 0 t=3.18 

which corresponds to u*=0.5 from (7.2.3a). Thus from (7.2.4) we get

Ui = 0.00796 Uu = 1.160 (7.2.5a)



Note that U j would represent the optimal design point for 

e=199.70 and Uu similarly for ©=1.370. With this in mind we restrict 

the parameter space to 6=C©i»©uD. with

=1.370 eu = 199.70. (7.2.5b)

Thus a bounded parameter space is obtained, useful in the simulation 

study.

7.3 The strategy of Simulation I

Adopting a sequential procedure for designing we choose the 

design points entering the design to be these ones which minimize 

Fisher's information. At each stage , s say. s^l the data are 

generated in a batch of r replications of the form

1 if exp(-etu^)>U(0,1)

i = l, 2.... r (7.3.1)

0 otherwise

where U(0,1) is a uniform (0.1) random number generated by the NAG 

subroutine G05CAF.

In the first stage. s=l. the estimator of e, \  say, can be 

evaluated explicity from the data (proof Appendix A7.II (ii)) as

©i = -Uilnfr^Iyi) . (7.3.2)

We use the bounds of © as estimates of e, in the extreme



cases. It can be proved that if all ŷ ' s are 1 then 6=0 and when all
i *s are 0 then e=«. Therefore we avoid situations, especially with

small batches, when the MLE could not be evaluated (Appendix A3.II). 

The MLE exists and was evaluated iteratively when 0<Ey^<n. The 

numerical method of Newton-Raphson (NR) (Appendix AS.I) was used to 

solve, at each stage, the likelihood equation (Appendix A7.II) for

in the neighbourhood of the solution. Therefore we had to overcome 

this difficulty, which happened often when small batches were used in 

early stages of the sequential design. We used the Bisection method 

(Appendix AS.II) using a rather "large initial interval",

[0.01,100.3] to obtain a "good" initial value and then the 

Newton-Raphson method was started off.

As far as the design points are concerned the procedure can 

therefore be described by

The maximum number of stages, smax, say. depends on the number of 

replications r chosen. Simulations were carried out for r=5,25.50. 

We kept n=100 and therefore smax=20.4,2, respectively.

The estimates corresponding to (7.3.3) were obtained through

aevaluating e. Newton-Raphson converges when the initial value lies

1.59/e

if ®s^®l S—1,2 . . .,Smax (7.3.3) 

if es>0u ,

-uGlny if s=l

°s €>1

if all y ̂  s=0 , s>l

if all yj/s=l (7.3.4)

e evaluated through ( NR if r=50

Bisection and NR if r=5,25.
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Therefore the design points and the estimates at each point are well 

defined through the truncation we have introduced and the numerical 

techniques we used.

To investigate the dependence of the design procedure on the 

initial design points we choose the values 6^2.196 and 63=7.15 as 
the starting values. These values of 6 lead to corresponding design 

points u=.72 and u=.22 in (7.3.3). These design points correspond to 

probability levels p=0,l and p=0.5 respectively when et=3.18 i.e 

values to the right and to the left of the local optimum design point 

u*=0.5 corresponding to 6^=3.18 with probability level p=0.2. For 

the final estimate 0, i.e when n=100 observations were used, an 

approximate confidence interval was evaluated for 0 by using the 

formula

e * 1.96y(l/S(e,£n,y)) (7.3.5)

where S(e,£n,y) is the sample information, recall (2.4.5) (see also 

Appendix A7.II). That is, although in the sequential design the 

design points are not entering the design independently of the 

response we follow Ford and Silvey (1980) who constructed the 

confidence interval by "pretending" that the design points were 

independent of the response. We shall come to this point 

in the discussion of the results of this simulation study. The 

experiment was. repeated 1000 times. The "confidence intervals" were 

constructed and it was checked whether the "true" value of e was 

captured. The estimated confidence probabilities are reported.



7.4 Simulation procedures

Different procedures were applied to tackle the dilution

problem under the strategy described above. We will refer to these 

as P1.P2 etc. In all the cases n=50 or 100.

PI. Static design.

Chernoff (1953), in his early work on A(e)-optimality, 

suggested that the optimal static design (recall chapter 4) will be 

that one which takes all the observations at the locally optimal 

point for the true e, as in (7.2.3b). Therefore the n observations 

were taken at u*=u*(est) where est is the "starting value" for ©. 

Data were generated and the MLE was calculated. For PI the case

n=1000 was also investigated.

Results in Tables 7.1.

P2. Sequential design, equal batches.

The batch sequential method of designing was adopted. 

Equal batches were used to reach the total sample size n.

Results in Tables 7.2

P3. Sequential design, unequal batches.

We start off the design with a batch of 25 or 50

observations. The MLE was evaluated explicitly at the first stage. 

Thereafter, i.e when s=2,3,..smax, the number of replications, r' 

say, was taken to be 5. The values of smax are 15 and 10 and
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correspond to the initial batches 25 and 50 observations.

Results in Tables 7.3.

P4. Fully sequential design (Stochastic Approximation).

Batches of 5,25,50 observations were used to start off

the design. One observation was then added, i.e r'=l, to the design

and only one step of the Newton-Raphson "iteration" was used to 

produce the estimate of e. This is the Stochastic Approximation

scheme discussed in section 5.5.

Results in Tables 7.4.

P5. Fully sequential design (Full Maximum Likelihood

at the end)

Here we use the data generated by P4 and obtain the 

exact MLE at the end of the experiment.

Results in Tables 7.5.

We comment that a fully sequential design with a "fully"

evaluated MLE in all the steps, i.e with a "full" Newton-Raphson 

iteration at each point, was not investigated. The reason was not 

only that the computational time was very large, but we have evidence 

to believe that little was to be gained by using at each stage a 

"full" Newton-Raphson iteration. We shall come to this point in

section 7.5.

Below we describe the output presented in Tables 7.1-7.5 for 

the procedures described above.



© St 

r

ECP

e

S

K

EMSE

Starting value for ©.

Number of observation per batch, r=5,25,50. 

Estimated Coverage Probability i.e the proportion 

of times out of the 1000 simulations the true 

value of e was captured in the confidence 

interval.

The average value of the estimates, ©j, produced 

in N=1000 simulations.

Estimated skewness of ©.

Estimated kurtosis of ©.

Estimated Mean Square Error of the 1000 evaluated
A8-̂ ' s through the relation

EMSE = est.Var(e) + [est.Bias(©)]2 (7.4.1)

The "true" value of © in all the cases was 3.18, and the 

sample size n was either 50 or 100. In Fig.7.1-7.5 lines 

represent r=50, *•* represent r=25,  represent r=5.
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Table 7.1 : Simulation Study I, Procedure PI.

n est ECP e S K EMSE

1000 2.196 .953 3.18 .23 2.97 .018

3.18 .954 3.19 .02 2.97 .015

7.15 .958 3.18 . 05 2.93 .019

| 100 2.196 .950 3.24 .59 3.98 .204

3.18 .952 3.2 .53 3.47 .172 '

7.15 .952 3.0 . 17 3.29 .201

*! 50 2.196 .977 3.31 1.52 5.09 .454

3.18 .958 3.28 .56 3.43 .365

I

1

7.15 .935 3.22 .38 3.27 .462

: Two "outliers" were not considered, therefore N=998
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Fig. 7.1 : Simulation Study I. Graphs of EMSE for PI,

0-45 n - 50

T.iS

n " 1 00

.oi5
n = 1000



Table 7.2 : Simulation Study I, Procedure P2.

n ®st r ECP e S K EMSE

100 2.196 5 .937 3.23 .55 3.86 .20

25 .946 3.24 .66 3.85 .20

50 .945 3.25 1.64 8.46 .22*

3.18 5 .946 3.26 . 51 3.63 . 16

25 .950 3.19 .45 3.72 , 16

50 .950 3.20 .42 3.35 .15

7. 15 5 .955 3.23 .36 2.83 .17

25 .946 3.23 .36 3.09 .19

50 .955 3.24 .36 2.96 .20

2.196 5 .954 3.28 .83 4.32 43

25 .962 3.46 3.12 12.16 1.14*

3.18 5 .952 3.26 .77 3.78 .39

25 .948 3.24 .99 4.32 .35n

7.15 5 .947 3.29 .68 3.64 .42

25 .940 3.28 .57 3.46 .43

* : Two "outliers" were not considered, therefore N=998. 

tt : Three "outliers" were not considered, therefore N=997.



Fig. 7.2 : Simulation Study I, Graphs of EMSE for P2.
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Table .3 : Simulation Study I, Procedure P3.

est r ECP e S K EMSE

2.196 5* .937 3.23 ,55 3.86 .20

25 .944 3.21 .51 3.43 .19

50 .948 3.23 .75 3.97 .20

3.18 5* .946 3.20 .51 3.63 . 16

25 .947 3. 20 .51 3.28 .17

50 .961 3.20 .46 3.31 .15

7.15 5* .955 3.23 .36 2.83 . 17

25 .947 3.20 .44 3.36 . 17

50 .949 3.19 .36 3.21 .18

2.196 o .954 3.28 .83 4.32 .43

25 .942 3.21 1.09 1.28 .51

3.18 5* .952 3.26 .77 3.78 .39

25 .953 3.26 .88 5.43 .38

7.15 o .947 3.29 .68 3.64 .42

25 .948 3.26 .43 2.98 .39

* : From Table 7.2 (r=r'=5)



Fig. 7.3 : Simulation Study I. Graphs of EMSE for P3.
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Table 7.4 : Simulation Study I, Procedure P4

tt:N=997

*:N=998

n est r ECP e S K EMSE

I 100 2.196 5 . 955 3.21 .45 3.53 . 16

25 .959 3.23 .48 3.21 .18

50 .957 3.23 .60 3.83 . 19

3.18 5 .960 3.21 .46 3.33 .15

25 .952 3.21 .75 4.37 . 16

50 ,962 3.20 .59 3.84 . 15

7.15 5 .953 3.24 ,32 2.77 .17 I

25 .956 3.24 .41 3.23 .19

! 50 .946 3.22 .37 3.25 .20

! 75 2.196 5 .943 3.22 .64 3.74 .24

25 .951 3.24 .57 3.22 .25 |

50 .954 3.25 .96 5.51 .28

3.18 5 .948 3.23 .60 3.65 .23

25 .945 3.23 .82 4.45 .23

50 .955 3.23 .68 3.80 . 22

7.15 5 .958 3.25 .38 3.05 .23

25 .953 3. 26 .49 3.38 .26

50 .941 3.21 .43 3.43 .28

50 2.196 5 .956 3.26 .67 3.53 .37

25 .948 3.30 .92 4 . 28 .46

3.18 5 .949 3.24 .89 3.89 . 33^

25 .946 3.24 .98 4.04 .34*

7.15 5 .948 3.26 .69 4.02 .38

25 .948 3.29 .46 3.14 .44
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Fig. 7**+ : Simulation Study I. Graphs of EMSE for PM-.
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Table 7.5 ; Simulation Study I, Procedure P5 .

n ®st r ecp e S K EMSE

:N=999

2.196 5 .961 3.24 .58 3.90 .17

25 .946 3.23 .44 3.17 .18

50 .956 3.23 .41 3.43 .17

3.18 5 .967 3.23 .37 3.17 .15

25 .958 3.21 .32 3.17 .15

50 .954 3.21 .44 3.55 .16

7.15 5 .958 3.28 .58 3.47 .17

25 .952 3.23 .57 4.05 .18

50 .954 3.21 .20 3.06 .18

2.196 5 .955 3.27 .64 3.78 .25

25 .947 3.24 .55 3.46 .24

50 .976 3.33 .86 3.90 .46*

3.18 5 .961 3.24 .59 3.64 .22

25 .955 3.22 .54 3.66 .21

50 .955 3.25 .82 4.43 .37

7.15 5 .951 3.24 .65 3.80 .23

25 .951 3.25 .60 3.86 .25

50 .951 3.22 .24 3.15 .23

2.196 5 .959 3.31 .70 3.65 .40

25 .957 3.28 .82 4.61 .41

3.18 5 .950 3.26 .78 4.11 .37

25 .947 3.25 .73 4.24 .36

7.15 5 .955 3.28 .58 3.47 .37

25 .958 3.28 .82 4.52 .41
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Fig. 7.5 i Simulation Study I. Graphs of EMSE for P5
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7.5 Discussion I

We now discuss the results described in section 7.4. 

Firstly we shall discuss each procedure and then we compare the 

procedures.

We comment that the total information for e, and therefore 

the variance of e can be evaluated (asymptotically) explicitly as

( n l ^ u ) ) -1 * Cnu2/(exp(etu)-l)3-1 (7.5.1)

when the design takes the n observations at the point u. Table 7.6

provides the values of n-1I-1(e,u) for the design points we select 

to start the design under different sample sizes. Therefore, a guide 

for the evaluated mean squares is provided when a static design is 

performed so that it can be compared with the sequential procedures.

Table 7.6 : Evaluating the asymptotic variance.

u

n

.72 .50 .22

1

1000* .0171 .0156 .0208

100 .171 .156 .208

750 .231 .208 .278

50 .342 .312 .416

* : only for PI, ** : only for P4,P5



We now consider each procedure separately.

- PI

We not only tried sample sizes n=100 or 50 but also a sample 

size of n=1000 (!) to study the asymptotic behaviour of the one 

point, one stage design. For n=1000, the EMSE is not too far from 

the expected value (see Table 7.6). As the sample size gets smaller, 

EMSE of course increases. The normality of the vector of estimates 

behaves quite well when n=1000. but it gets worse when n drops to 50.

Thus the sample size is very critical especially when we are 

near to the end points of the probability levels in (7.2.4). This

happens when ^=.72 which corresponds to probability level p=0.1,

because of this truncation may take place, corresponding to a batch

of yj['s all equal to zero. Thus the one-stage design does not have

the opportunity to improve the estimate, when n=50, from this 

pathological situation.

- P2

When n=100 and r=50 (or n=50 and r=25) we have the so called 

two stages design (which we will discuss extensively in chapter 8). 

In the two stages design if, in the first stage the estimator is a 

"bad" one, the design does not have the opportunity to recover in the 

next stage. But when the initial estimate is "reasonable" it is 

improved in the second stage. This is less likely when the initial 

batch is 5 or 25 observations. The design behaves similarly with 

r-5,25 when n=100.



- P3

There is no two stage design in P3. When 5 observations are 

used in the first batch, P3 coincides with P2. When 25 observations 

were used as the first batch the EMSE obtained was slightly better 

than the equal batch procedure P2, when we start off from a point far 

from the true value. When r=50 the design had "enough time to 

recover" from a possible bad estimate at first stage. For this 

particular procedure there is not too much effect from the initial 

batch size and the est value chosen.

- P4

As only one observation was added at each stage, we also 

used the sample size n=75 as an intermediate stage between n=50 and 

n=100. Our aim was to check how far we can improve matters by adding 

only one observation. The performance of the procedure is largely 

independend of the initial batch size and the value est, although 

there is a little more variability when n=50.

- P5

There is little difference between P4 and P5. Under 

different sample sizes the EMSE are close to that of P4. The 

comments for P4 are similar to those of P5.

We now try to present a general view of this simulation study.

The procedures mentioned above can be divided into two 

categories



- One stage design (Procedure PI)

- Sequential design :

Block design (Procedures P2,P3)

Fully sequential design (Procedures P4,P5)

The results of this simulation study support the work of 

Ford and Silvey (1980). All the sequential procedures provided 

satisfactory coverage probabilities, i.e around .95, on the average, 

when 95% confidence intervals were to be constructed with performance 

getting better from P2 to P3 to P4. This encouraging result leads us 

to use the same approach for a two parameter model, presented later.

Wu (1985) applied the truncation idea in fully sequential 

design in a different way. Although he carried out only 500 

simulations per case there are cases where, in 114 or 56 of them the 

initial estimator could not be evaluated and he choose to ommit these 

runs. Of course he had a two parameter model. He faced the problem 

of existence the MLE and thus things were worse than in our case, in 

which

- With small batch size, i.e for r=5 or sometimes r=25, but 

never with r=50, it was quite likely for us to obtain either all 

successes (yj/s^l) or all failures (yj's=0), in which case the MLE at 

the first stage could not be evaluated.

- At some stage of the sequential design, before the design 

had reached 50 observations the Newton-Raphson (Appendix A6.I) 

diverged.

We overcame these main difficulties, and we are consequently 

able to report 1000 simulations, using

- The truncation of the design.

- The Bisection method (Appendix A6.II).



Truncation helped us to "bring the design back" to the

sample space we had defined as it is - neadless to say - a waste of

time to look outside of 0 for estimates of e.

The Bisection method is a rather slow numerical method with 

convergence rate (Appendix A6.II) 1/2, whilst Newton-Raphson has at 

least second order convergence rate. The Bisection method has the 

advantage that no derivatives are needed. Thus with Bisection the 

initial value e0 to feed Newton-Raphson was in the neighbourhood of 

the solution.

Abdelbasit and Plackett (1981,1983) discuss the dilution

series model in the context of constant information design. Indeed 

it was proved by Fisher (1922) that if u=coc~y, c>0, ot>l, y=0,l,2,.. 

with oc and c constants (a is usually 2 or 10) then the information 

for log©, I (log©) is approximately 7T2/61oga, provided that <x does not 

greatly exceed 1. Thus Abdelbasit and Plackett (1981) suggest using 

the constant information criterion for designing; see section 4.6.

We also compared the stochastic approximation scheme with a 

"full likelihood sequential procedure" in a small number of simulated 

experiments. In the latter maximum likelihood estimate was 

evaluated at each stage through Newton-Raphson iteration. Whereas in 

the former only "one iteration" was used. An initial batch of ten 

observations was chosen and various starting values for © were 

suggested. We report in Fig.7.1 the study for the "true" ©=3.18 and 

the "far" ©=7.18 J-29-At every stage up to 100 observations the 

estimates were obtained using the two techniques. In Fig.7.1 we 

denote by * those estimates which were obtained by stochastic 

approximation and by . those estimates which were obtained by 

Newton-Raphson. Both figures 7.1 provide evidence that the estimates 

do not differ. Therefore a gain in computing effort exists when, 

applying a "quick" calculation, the estimate is obtained by



stochastic approximation and is used to redesign. The speed of 

calculation in SA might lead to important improvements over a full 

"maximisation at each stage" procedure in control engineering problems

As far as normality of the estimators is concerned 

acceptable behaviour is observed with n=100. It is less good when 

the sample size is reduced to n=50. We recall the saying of R.A. 

Fisher (1935) "Nothing that we say shall be true, except in the limit 

when the sample is indefinitely increased; a limit obviously never 

obtained in practice". This situation is described in PI where with 

n=1000 everything seems to be acceptable, except the sample size. 

That idea of "practice" was behind this simulation study and it seems 

to us that n=100 is quite "large" and n=50 "reasonable".

Normality of the estimates was also investigated by using 

the NSCORES function of the MINITAB package (Ryan et al (1981)). The 

outcome is not presented in this thesis but gives similar evidence to 

the kurtosis and skewness measures. It improved from P2 to P3 to P4. 

Thinking in terms of probability levels p the values of est=2.196 and 

3.18 correspond to starting design points with values of p=0.1 and 

0.2 respectively. That is low probability of successes compared with 

the p=0.5, the probability level of the "far" 0st value 7.15. 

Therefore there is an "unbalanced" (as one of np or n(l-p) is close 

to n) set of 0's responses which influence the normality of the 

estimates corresponding to starting values 2.196 and 3.18. This 

seems to be more frequent in two stages design (Table 7.2 

est=2.196, n=100, r=50 and r=25 or 0^=3.18, 2.196, n=50, r=25) or in 

cases where the first batch produces such an "unbalanced" set of 0's 

that the design has no time to recover (Table 7.5 : =2.196, n=75,

r=50).

Note that with respect to this problem the optimal design, 

that is optimal on an asymptotic criterion, has not got particularly



good properties for finite sample sizes. At the optimal design point 

p=0.2 and hence the probability of a run of 0's is increased. This

point can be illustrated in the static design for ©st=2.196 when

n=50. In two of the 1000 simulations all 50 y's where equal to zero

and hence e was recorded 199.70, the upper bound of our allowed range

for ©. This means that the corresponding estimates of skewness and 

kurtosis and mean squared error will be greatly effected by such 

outliers. Note that in the tables when outliers occured they were 

ommited from the calculation of the quantitiesmentioned above, but 

not from the calculation of the estimated confidence probability.

Intuition suggests that if you have 50 or 100 observations 

to make and you do not know the optimal point, do not waste all your 

observations at one point but design sequentially. If you can design 

in blocks, as might be the case in chemical design, choose P2 or P3; 

if you design per observation, as in some psychological or 

engineering work, choose P4 or P5.

With the experience of this Simulation Study I behind us, we 

move on to Simulation Study II.



7.6 Two Graphs

Comparing full likelihood estimation 
(.) and stochastic approximation (*).

True 0«3.18, Far 6 =7.29,r=l0,n=l00.

100
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Fig, 7,1b : Comparing full likelihood estimation (.)

and stochastic approximation (*).

True 0 =3.18, Far 0= 7.18, r=10, nslOO.
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7.7 The first order growth law

Biological processes concerning a measure of growth, y say, 

of plants or animals can be expressed through a regression set-up,

known as growth law.

Consider the period ranging from Uj up to Uu with u denoting 

time. The expected initial value of y (i.e when u=0) is denoted by

01>O. The rate of increase of the biological process is denoted by

e2>0. The phenomenon can be described by the nonlinear regression

model

yj = ej êxpCQgUi) + e1( i=l,2 n u€U=QJi ,UU1 . (7.7,1)

For the error term e^ we use Assumption 2, when inference is made.

Under the criterion of D(e)-optimality Box and Draper (1959)

considered this model and produced the locally optimal two point 

design which allocates half observation at the points

u 1 = Uu - l/e2 , u2 = Uu (7.7.2)

where e2>0. Therefore supplying a "guess" e20,say, for ©2 a static

design can be produced. For the so called afecaiy mwwfielL, i.e when

e2<0, the design points are

ui = U1 • u2 = Ui - l/e2. (7.7.3)

The designs (7.7.2) or (7.7,3) depend only on e2, as it is

partially-nonlinear (recall example 3,7.1).



Jennrich (1969) proved for this model the existence of the 

least squares estimates which, under Assumption 2, coincide with the 

maximum likelihood estimators. Our aim is to use this model under 

different sequential design procedures and to investigate the 

distribution of the parameter estimators as well as the construction 

of confidence intervals.

7.8 Strategy and procedures of Simulation II

The optimum design measure is £*=1/2 for the two points 

(7.7.2). We kept the sample size n=40 and the following procedures 

(we refer to them as TTl, TT2,...) are discussed.

Til. Static design.

One stage design. Allocate half observations as in

(7.7.2) providing e20, a guess for e2t.

TI2. Two-stage design.

Use half the observations in the first stage, that is

allocate one fourth at each of the optimal points.
AObtain the estimates e. Use them to redesign as in

A(7.7.2) using e2 instead of e2 .

The other three procedures are sequential ones and only the 

number of stages is changed.



TT3. Five-stage design.

Use 8 observations in each stage.

TT4. Ten-stage design.

Use 4 observations in each stcfcjG..

TT5. "Fully-sequential" design.

Two observations at each stage, i.e one observation at 

each "optimal" point at each stage.

Any design space which is an interval on R can be 

transformed to U=[0,1] and local D(8)-optimality remains invariant 

under linear transformations. Therefore we consider U=[0,1] through 

out the simulation. For the procedures we denote the maximum number 

of stages by Smax, Smax=l,2,5,10,20. The corresponding number of

replications, at each optimal point, is r=20,10,4,2,1. We speed up 

the simulation by generating at each stage, only two normal deviates 

"yj.., j=l,2 using the NAG subroutine G05DDF (Appendix A7.IV) where

yj . r *  N(eltexp(e2tUj), o2/r) , j=l,2 (7.8.1)

with uj j=l.2 taken to be the optimal points, yjj^ the k-th, 

k=l,...,r observation at stage i = l, . . . , Sj,^ for the two points Uj 

j = l,2, as in (7.7.2). We start off the design with different ^  

values, of the form e2f, e2f=e2t,e2t±2, and e2t=l,2,3,4 the "true" 

value of e2 . The value of was kept constant, 6^10.0. The design 

points were evaluated according to



u is+i - 1 ~ 1/©2S > u 2s+ i ~ 1 (7.8.2)

Awith 02s being the estimate of e2 at stage s. For the first stage

(s=l) , in sequential procedures, or for the static design the

estimate for 0 can be evaluated explicitly (Appendix A7.V) as

A  — . a  a  —ei = Y u  .exp(-02u1JL), e2 = Clny11<-lny12 1/ui2. (7.8.3)

In other stages, when s>l, the estimates were obtained through the 

modified Newton-Raphson scheme (Appendix A6.I). We settled on X=0.5 

as the modification parameter. i.e a "half-step’' of the

Newton-Raphson iteration was used to approach the solution, i.e to 

solve equations (2.7.9) (see also Appendix A7.VI).
AAt each stage the estimate was substituted into the

Hessian (recall 2,7.10 or Appendix A7.VI) when =(%s+1, <^s+i ) was 

to be evaluated. The information matrix M=M(e,S) (recall (2.7.9))
A

was evaluated at 9~0(smax)’ the estimate at the last stage.

Simultaneous and individual approximate confidence intervals were 

produced through

(e-e)TM(e,£)(6-e)£2s2F(2.38;.95) (7.8.4a)

©j^l .96/01^(6,£)s2) , i = l,2 (7.8.4b)

respectively, with s2 a suitable estimate of o2 , i.e residual sum of 

squares divided by 38 df, F(.) as usual denoting the F distribution 

and Mjj_ (.) the diagonal elements of M-1(.).

Approximate confidence intervals are obtained through 

(7.8.4) when the design points are predetermined and not obtained 

sequentially. We followed the work of Ford and Silvey (1980) as in 

section 7.3 and applied this approach to sequential designs. The



A Acoverage probabilities for both and e2 individually and jointly 

were evaluated through the procedures mentioned above.

Moreover, the EMSE1 s (Estimated Mean Square Error) for 

and ©2 were evaluated as in (7.4.1), as well as logdetM0, with M0 as 

the right hand side of (2.7.6a) with ^©(S^x). The results are in 

Tables 7.9-7.13. Table 7.12 summarizes the estimated measures of
A Askewness and kurtosis for the 1000 evaluated ©i and ©2 under the 

different procedures. Table 7.12 provides measures of efficiency 

evaluated for ©2 individually and for the design, i.e for ©. As such 

measures we used

Eff(e-i) = gMSEjfqr^Jji-static design f 7 ft5a)
1 EMSE(for ©^ in design under study) ' ’ ‘

Efffe) = iogletM^of^d^J_gn jind^^tudy_ ‘
1 ' logdetM0 for static design U-8.5DJ

Where the locally optimal design for ©21- was used in the 

static design.
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7.9 Discussion II

The logdetM0, of course, achieves its maximum value when 

e2f=©2t i‘e M(e,£) becomes large at the "true" values, that is the 

"local" ellipsoid is minimum at that point, recall section 3.7. The 

EMSE are, as expected, smaller when =e2t • There is not much

difference when we approach the true value either from smaller or 

larger values.

As far as the coverage probabilities are concerned on the 

average they are close to .95 and all the methods perform well.

Among the sequential procedures (TT3,H4 ,TT5), the fully sequential 

procedure, TT5, leads to better EMSE. The normality of the vectors of 

estimates,- obtained from 1000 simulations, seems to behave very well. 

Table 7,14 provides evidence for this as all kurtosis values are very 

close to 3 and the skewneses very close to zero.

The efficiency of the static design for 02 . when we start

off from values far from the true value, is rather poor, since in

one-stage design is treated as known and there is no chance - as 

there is other stage - for the estimator to deviate much from its

true value, this supports the adoption of the sequential design

procedure. Table 7. 1f y supports the comment that the efficiency in

the procedures is getting on the average better in the orde_r

iri<FI2<Tr3<ir4<TI5.

Simulation Study II extends the results of Ford and Silvey 

(1980) for a two parameter nonlinear model.

Thus the sequential nature of the design for nonlinear

models

- May often be irrelevant to the manner of obtaining

estimators and constructing confidence intervals based on 

familiar sampt ling theory methods.



- There are cases in which sequential design procedures

can result in "tighter" inferences, i.e shorter confidence 

intervals. Among them the fully sequential design might 

provide the tightest inference.

Thus, although the static design for the true e might be 

experimentally economical, the absence of knowledge about 6 suggests 

that a sequential procedure should be adopted. The inference can be 

obtained as in the static case.
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CHAPTER 8 

TWO-STAGE DESIGN

8.1 Introduction

In chapter 7 the sequential method of design was adopted and 

different procedures were applied. The idea of the two-stage design 

was discussed. Now we apply this method of design in the calibration 

problem. Here. the nonlinear feature of the problem under 

investigation will evolve from an underlying linear model.

The geometry of the problem and the application of Elfving's

theorem will also be discussed. The maxi-min efficiency design is

discussed along with the results obtained from a further simulation

study. We shall refer to this simulation study as Simulation Study 

III. The procedures followed are discussed in section 8.6,

8.2 The problem

Consider the regression model with

H = E(y|u) = 60+e1u1, u1GU=f-l,l3, (8 .2 .1 )



where U is the design space. Our target is to estimate the value of 

u^-Uq given n=C i.e,

uG = (C-60)/ei. (8.2.2)

We consider two design procedures

- One-stage

- Two-stage.

For the one-stage design, we might use as criterion function <t>, 

(recall section 3.3), either D-optimality for (ê, ,Q1 ) or c-optimality 

for estimating u0. The D-optimal design is of interest because it 

will be intepended of e since we have a linear model. It is of 

interest to investigate the effectiveness of the D-optimal design as 

measured by the c-optimality criterion. Under c-optimality, thanks 

to Elfving's theorem, we can construct a locally optimal two point 

design geometrically. The criterion we would like to use is

/»min Var(u0) (8.2.3)

with u0 given by (8.2.5b) below. Strictly speaking Var(u0) does not 

exist, however the asymptotic formula for Var(u0) is still useful for 

the construction of confidence intervals as long as 6-j/a is not
Asmall. In the sequel Var(u0) will refer to the asymptotic formula.

We can proceed by considering u0 as a function of e0 and 

That is, with u0=u0(e0 , ) ,

VuQ = (-l/e1)u, where u=(l,u0)r . (8.2.4)

Then
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Var(u0) = e'* uTVar(e)u (8.2.5a)

with

u0 = (C-0O)/61. (8.2.5b)

In the sequel one stage and two-stage designs will be discussed, with 

an aim of estimating u0 as well as possible.

8.3 One-stage design

From geometrical considerations it is clear that the optimal 

design measure £ either under D-optimality or c-optimality can be 

defined by p and 1-p, the proportions of observations at the end 

points, of the design space, that is,

e = £(p) = (8.3.1)

The corresponding design matrix M is of the form

M = M(p) = (8.3.2)

We are interested in minimizing, from (8.2.5), the quantity v(p) 

where,

v(p) » (ne^)“1ut M"1u , (8.3.3a)

i.e
v (p ) = (4n6*p(1-p))_1(Uq +2u0 (l-2p)+1). (8.3.3b)



Under D-optimality we allocate half observation at the end points 

+1, -1. That is

p = 1-p = 1/2. (8.3.4)

The value of (8.3.3b) under this design, Vp say, is

(8.3.5)

The locally c-optimal design can be obtained using Elfving's theorem 

(appendix A3.I). The percentage of the observations p allocated at 

+1 will depend on u0 , i.e p=p(u0). The induced design space U0 

(recall section 3.7) has to be formed for the model (8.2.1). 

Therefore as U0=f(U), with f(uA)=0o+e1u1, U0 will be

The induced design space U0 and its reflexion -U0 form the two line

segments as in Fig. 8.1. The geometry of the design space gives

evidence of the symmetry in the problem, as a square is formed

centered at the origin. From Elfving's theorem, we may take the

support points (recall definition 2.2.3) to be the end points, i.e

uo = \ v: <vi'v2)- Vi*1* v2=u1cU ). (8.3.6a)

Supp(£*) = (-1, 1). (8.3.6b)

The weight of observations at each point can also be evaluated 

according to Elfving's theorem.

Consider the following two cases :
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(i) ! u0 ! <1

Take Uq-Uĵ as in Fig. 8.1. Then it is easy to see

that

p = (u1+l)/2, l-p=(l-u1)/2. (8.3.7)

+1

- U

1 -i-1

Fig. 8.1 The induced design space U0 and its reflexion

-U0 for the model n=E(y!u)=90+e1u . ue[-i.i].

(ii) !u0|>1

Take uQ equal to u2 and u3 as in Fig. 8.1. Then:

- For u2, from the similar triangles, it is easy to see that

d=(u2-i)/u2, d'=2-d=(u2+l)/u2.



Hence.

p =  (u2+1)/(2u2) , l-p=(u2-l)/(2u2).

- For u3 it is easy to see that

s=(u3+l)/u3 , s'=2-s=(u3-l)/u3.

Hence, we obtain in a symmetrical fashion,

l-p=(u3+l)/u3 , p=(u3-l)/(2u3).

To summarize the above discussion

Therefore under this criterion the optimal v(p) value, V q say, is 

(appendix A8.I)

otherwise

v(u0—1)/(2u0) otherwise.

(8.3.8b)

/(ne^) 1 if ! Uq I

(8.3.9)

otherwise,

There is interest in comparing (8.3.5) and (8.3.9), We use the 

efficiency measure, Eff(C.D) say, to assess the efficiency of the



D-optimal design relative to the local c-optimal design.

(uS+1) -i !u0 |<1

Eff(C.D) = UC/UD = (8.3.10)
 ̂ 2u0/(uo+l) otherwise

A plot of Eff(C,D) vs u0 is shown in Fig. 8.2. Fig. 8.2 indicates 

that the efficiency at the end points =Fl is 50%. Moreover the

D-optimal design at any other points in the interval (-1, 1) has a 

greater efficiency. The efficiency also increases outside the end 

points.

It is of interest to investigate the maxi-min efficiency 

design for this particular problem.

l.o

Fig. 8.2 The efficiency of the calibration design for 

different values of uQ .



8.4 Maxi-min efficiency design

Recall the maxi-min efficiency design measure introduced as

another approach to static design in section 4.5. That is, we choose 
o-? tHe. for-wy.

that design whose minimum efficiency E(£) is greater than that of any 

other design i.e

recall (4.5.1) and (4.5.3) with A = /.

From the discussion in section 8.3, interest in maximum 

efficiency design for the special problem means interest in

max min CVi(u0)/v(p)U (8.4.2)
f  «©

where v(p) is as in (8.3.3b) and Vj_ is either Vq as in (8.3.5) or Vc 

as in (8.3.9). Then comparing the approximate variances from the 

( -̂€Y)ev'ci£ un'tK tW  c-cpknia^.

v(p) we can evaluate the following efficiencies.

- For D-optimality

max( min [Eff(S(p), ueU3,ScE \ (8.4.1)

Efff?(l/2)1 = VD/v(p) = (Uq+1)/v(p). (8.4.3)

- For £(p)

EffK(p)3

C4p(l-p)/(Uo+2u0 (l-2p)+l)l |u0j<1

(8.4.4)

C4Uq P(1~p )/(Uo+2u0 (l-2p)+l)l otherwise.



159

The minimum values of (8.4.4) are (Appendix, A8.II) p, 1-p and

4p(l-p). Therefore, according to (8.4.1) we are looking for a design

which satisfies

max min (p,l-p, 4p(l-p)). (8.4.5)
?

A heuristic proof that p=l/2 is provided in Fig. 8.3. The

simultaneous graph of the function in (8.4.5) illustrates that the

maxi-min value occurs when p=l/2.

i-P

Fig. 8.3 A simultaneous sketch of the functions 

p, 1-p, 4p(1-p).

Therefore for the calibration design problem curently under 

discussion the maxi-min efficiency design turns out to be the 

D-optimal design.



1^0

8.5 Two-stage design

It is of interest to compare the maxi-min design with the 

two stage design which makes of use of our knowledge of the locally 

c-optimal design.

As the true values of e0. are not known the experiment 

must obtain estimates of them. This might be done by using a portion 

of observations p0 say to obtain these estimators, eQ , , say, under

D-optimality i.e allocating p0/2 observations at each of the end 

design points. Then we estimate

u0 = (C-Sq)/©! (8.5.1)

with C as in (8.2.2). Therefore this value can be used as if it were 

the true one and the remaining proportion l-p0 of the observations 

can be used to construct a locally c-optimal design. That is.
Adepending on u0 we allocate the remaining observations at the end 

points according to Elfving's theorem.

Thus a two-stage, two-point design can be constructed to 

tackle this calibration problem. The advantage over the static 

design is certainly the use of an objective estimate of u0, rather 

than a subjective guess. We study this method in a simulation study 

which we discuss in the next section.

8.6 Simulation Study

The ideas discussed above are applied in a simulation study. 

We let the true ©=(6(3,6^  be et = (0,l). Therefore u0=C.



As different values of C we considered C=.l, .3. .5, .7, .9. 1.1.

1.3. The corresponding values of p, when a local c-optimal design is 

adopted, can be evaluated through (8.3.8a). In fact p=p(C) is 

calculated as p=.55, .65, .75, .85, .95, .954545, .884615 for the

above values of C. When the D-optimal design is adopted, p=l/2. We 

let n=10,20,50. Problems can arise if o. the standard deviation of 

the response is large. When a is large the distribution of u0 is 

unstable since ^  is likely to be occasionaly close to 0.0. In the 

results presented we shall assume a=.25. Tables 8.1 and 8.2 

summarize the outcomes obtained for the one stage design under c and 

D-optimality. For the one-stage design, under different values of C 

approximate confidence intervals were evaluated for Uq . As stansdard
A Aerror of u0 , se(u0) say, we used (recall (8.3.3b))

se(u0) = (v(p)s2)° *5 , (8.6.1)

with s2 a suitable estimator of a 2 , namely s2=RSS/(n-2). where RSS is 
the residual sum of squares. The values ECP and EMSE presented in 

Tables 8.1 and 8.2 are the estimated confidence probabilities and the
A  Aestimated mean square error of elt EMSE(e1) say, evaluated as

A i»oe> A
EMSE(e1) = 10'3 E{elt-ell)2 (8.6.2)

A two stage design simulation study was also carried out. 

For sample sizes n=10,20,50 we took p0= .2,.4,.6,.8 as the proportion 
of observations in the first stage. Then we allocate the rest of the 

observations according to (8.3.8a). For the two-stage design the 

estimated value of u0, u0 say, was obtained after the second stage 

and an approximate confidence interval was constructed for u0 . As 

standard error for "uq , se(u0) say, we used (8.6.1) with the



appropriate p.
ATables 8.3 provide the average confidence limits for u0 , 

under different p0 values for the specified uQ . Table 8.4 provides a 

comparison of the one stage D-optimal and local c-optimal designs 

with the two stage design. These designs were compared by 

standardising with respect to the mse for the c-optimal design. The 

efficiencies were evaluated and listed in Table 8.5 for the different 

designs constructed. The procedures described above will be denoted 

by  ̂ tt2 , tt3; namely,

_ tt1 : One-stage - using D-optimality

- 7T2 : One-stage - using local c-optimality

- tt3 : Two-stage design.

The simulation was carried out in a similar manner to 

simulation study II (see : Appendix A8.III).



Table 8.1

Simulation Study III - Procedure

Values of ECP and vHEMSE for different u0 values and

different sample sizes

n 10 20 50

uo ECP ✓EMSE ECP ✓EMSE ECP ✓EMSE

0.1 .929 0.075 .945 0.057 .936 0.037

0.3 .926 0.082 .934 0.058 .935 0.038

0.5 .917 0.088 .936 0.064 .933 0.040

0.7 .933 0.097 .942 0.068 .941 0,044

0.9 . 955 0.047 .935 0.077 .938 0.048

1.1 .912 0.119 .932 0.085 .942 0.052

1.3 .921 0.129 .945 0.090 .936 0.058



Table 8.2

Simulation Study III - Procedure 7T2

Values of ECP and -/EMSE for different u0 values and

different sample sizes

n 10 20 50

uo ECP v'EMSE ECP /EMSE ECP ✓EMSE

0.1 .908 0.082 .942 0.056 .948 0.034

0.3 .919 0.080 .943 0.056 .939 0.035

0.5 .915 0.080 .935 0.055 .951 0.034

0.7 .911 0.081 .926 0.059 .946 0.036

0.9 .945 0.036 .940 0.056 .933 0.038

1.1 * * .934 0.066 .946 0.040

1.3 .929 0.106 .939 0.074 .946 0.047

* The corresponding p=.954545 so that no two point 

design can obtained with n=10.



Table 8.3a

Simulation Study III - Procedure tt3.

Values of ECP and /EMSE for different u0 values.

Sample size : n=10.

.. Po 0, 2 0.4 0 6 0 8
_Uo— ... ECP v'EMSE ECP v'EMSE ECP /EMSE ECP v'EMSE

0.1 .907 0.082 .921 0.079 .921 0.080 .924 0.080

0.3 .906 0.081 .917 0.083 .903 0.082 .918 0.081

0.5 .895 0.082 .920 0.079 .904 0.084 .917 0.084

0.7 .908 0.081 .905 0.087 .898 0.087 .900 0.091

0.9 .935 0.038 .949 0.038 .944 0.041 .949 0.043

1.1 .885 0.096 .900 0.100 .893 0.107 .879 0.115

1.3 .915 0.105 .922 0.107 .913 0.115 .903 0.117



Table 8.3b

Simulation Study III - Procedure t t3 .

Values of ECP and -/EMSE for different u0 values. 
Sample size : n=20.

JBo~ 0 2 0 4 n A 0 8
u0 . ECP v'EMSE ECP ✓EMSE ECP /EMSE ECP /EMSE

0.1 .937 0.056 .927 0.056 .930 0.056 .942 0.056

0.3 .932 0.057 .934 0.055 .933 0.058 .921 0.059

0.5 .916 0.057 .923 0.059 .930 0.059 .946 0.057

0.7 .931 0.057 .936 0.057 .927 0.061 .939 0.061 -

0.9 .928 0.600 .933 0.062 .927 0.063 .933 0.067

1.1 .934 0.064 .928 0.066 .921 0.071 .937 0.077

1.3 .930 0.077 .945 0.078 .947 0.077 .946 0.085



Table 8.3c

Simulation Study III - procedure 7t3.

Values of ECP and /EMSE for different u0 values. 
Sample Size : n=50.

Po .. 0 2 0 4 o 6 o g

ECP v'EMSE ECP ✓EMSE ECP v'EMSE ECP v'EMSE

0.1 .946 0.035 . 956 0.034 .921 0.080 .948 0.035

0.3 .947 0.036 .940 0.036 .945 0.034 .943 0.037

0.5 .948 0.035 .946 0.037 .945 0.037 .953 0.038

0.7 .944 0.037 .949 0.037 .951 0.037 .948 0.041

0.9 .958 0.035 .938 0.039 .948 0.039 .938 0.044

1.1 .948 0.040 .950 0.042 .952 0.040 .943 0.048

1.3 .952 0.046 .952 0.048 .952 0.050 .938 0.054
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Table 8.4

Simulation Study III 

Summary of one stage and two-stage design 

comparing the efficiencies (*). Sample size n=10,20,50

uo D-optimal  Two stages  design___

________________ 0,2 0.4 0,6 0.8
0.1 1.0 0.99 1.0 1.0 1.0

0.99 1.0 1.0 1.0 1.0
0 .92 1.0 0.99 1.0 0.98

0.3 0.98 0.98 0.97 0.98 0.99

0.95 0.97 1.0 0.96 0.93

0.92 0.96 0.97 0.94 0. 92

0.5 0.91 0.98 1.0 0.95 0.95

0.87 0.96 0.94 0.94 0.97

0.84 0.97 0.94 0.93 0.90

0.7 0.83 1.0 0.92 0.93 0.89

0.87 1.0 1.0 0.96 0.96

0.83 0.99 0.99 0.93 0.88
0.9 0.77 0.96 0.96 0.88 0.84

0.73 0.94 0.91 0.88 0.83

0.78 1.0 0.97 0.95 0.86
1.1 - - - - -

0.78 1.0 1.0 0.93 0.86
0.76 0.99 0.95 0.86 0.83

1.3 0.82 1.0 0.99 0.92 0.90

0.82 0.96 0.95 0.95 0.87

0.81 1.0 0.97 0.92 0.86
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8.7 Discussion

In this application we are estimating a nonlinear function 

of the parameters of a linear model and we are using an approximation 

for obtaining the variance of the estimator (8.2.5b).

As would be expected, under procedure tt2 , the evaluated 

/EMSE for each value of u0 is smaller than the vTEMSE under tt^. This 

holds for the different sample sizes n=10.20,50.

Overall, Tables 8.3 indicate that the policy of allocating 

po=0.8 i.e 80% of the observations at the first stage might provide 
the worst EMSE's. For n=50 the D-optimal design and the two-stage 

design with po=0.4 provide very similar EMSE's. This is not so when 

po=0.8. The situation is much better with po=0.2 with the smaller 

sample size n=10,20 in that the two-stage design, even with po=0.2. 
provides smaller EMSE's than the D-optimal static design. With small 

size n=10 the confidence intervals do not have the expected nominal 

level. There is a tendency to be lower, close to .90. With n=2Q the 

results. - are improved, although still low. For n=50 the results are 

more reliable.

From Table 8.4, comparing the efficiencies of the designs in 

general, the two-stage design with po=0.2,0.4,0.6 is better than the 
D-optimal static design.

This simulation study, dealing with estimation in the 

calibration problem provides empirical evidence that efficient 

procedures can be achieved by the two-stage designs. It is 

interesting that the D-optimal design is also the maxi-min and, over 

the contexts covered in the simulations, performs fairly well but not 

as well as the two-stage design.



Abdelbasit and Plackett (1983) consider two-stage designs 

for the dilution series problem and for the two aprameter logistic 

problem. They examine efficiency based on approximation to the total 

information for the two stages. In their problems the first stage 

requires an initial estimate for the unknown parameters. Their 

results suggest that a two stage design given a particular starting 

estimate can be quite efficient relative to a design with more 

stages. Our results suggest that even with n not very large the 

two-stage design might prove useful. even when we use only 20% of our 
observations at first stage.



CHAPTER 9

OPTIMAL DESIGN IN RHYTHMOMETRY

9.1 Introduction

In this chapter we present a particular illustration of a 

nonlinear design problem, based on an application from physiology. 

The so-called cosinor model (Nelson et al. (1979)) has been proposed

as a model for biological time series. An example of such a time 

series is that of circadian rhythms in airway calibre in normal and 

asthmatic patients. Normal subjects were recruited for this study 

and agreed to record their peak expiratory flow rate at different 

times of the day for a certain number of days. A form of the cosinor 

model, depending on clock or calendar time, has been applied by 

Hetzel and Clark (1980). Confidence intervals and related 

statistical analysis on the proposed model have been developed by 

Nelson et al. (1979).

We study the problem from the point of view of experimental 

design, that is what are the optimum times during the day that the 

measurements have to be recorded, how many times per day should the 

measurement take place, and how should these times be weighted 

optimally.

In the practical problem considered a nonlinear function of the 

parameters of the linearized cosinor model is to be estimated.



Various optimal design procedures are discussed from a geometrical 

and analytical point of view, and their efficiencies are compared 

with the locally optimum design. As the design depends on time we 

will replace u by t in the sequel. The unit for t is time in days.

9.2 Background

Some diurnal rhythms can be described by the following 

cosine model, known as the cosinor model in the biomedical 

literature.

y(t) = r\(t,e) + e (9.2.1a)

with

n(t,e)=e0+e1cos(wt+e2) (9.2.lb)

where :

y(t) : is the response at time t, i.e the biological

variable (rhythm) we want to study. 

e0 : the mesor, i.e the "mean" value about

which oscillation occurs.

: the amplitude, i.e the half difference between 

the highest and lowest value during the osciilation 

in a complete cycle (360° or 24 hours).

©2 : acrophase, i.e timing of high point in degrees,

w : angular frequency=degrees/unit time (2tt-360°

corresponds to a complete cycle). We consider 

u=2tt to correspond to a daily cycle.
€ ; the error term under (recall chapter 2)

Assumption 2, when inference is made 

Assumption 1, when the design is discussed,t£ Lo,£i



The model is illustrated in Fig. 9.1 below.

-2TO '

•tOO* Chours)

Fig 9.1 : A typical cosine function of the form

r\( t t e ) = e 0 +Q1 cos (2trt+e2)

From a clinical point of view the ratio tlie

parameter of interest. This represents the ratio of the amplitude of 

the cyclic variation to the overall mean.

We are assuming a- period of one day. i.e we consider u =2tt.

The reference point for phase is 0° or 00.00 hours since cosCP^l.

Zero time is taken as 00.00 hours on the first day the study is 

started. It is easy to see, from Fig. 9.1, that the case e1/e0<l is 

the only practical one in real life situations. When e1/e0>l we

would have negative values for n which has no physical meaning in the

problem.

Expanding the cosine term. n(t,e) we have

r\(x,e) = ©oxo+^ixi+^2x2 (9.2.2)

with
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^t=e1cose2. 02=-e1sine2. x0=l, x1=cos2TTt, x2=sin2TTt

Therefore model (9.2.1) can be written as

y(t) = WT(t)0+e ,^(60^ 1^ 2)- WT(t) = (x0 ,xv x2) . (9.2.3)

When the model (9.2.2) is fitted estimates for 0! and e2 can be 

obtained through the relations

et = -/(^+^|)t e2 - w +k (9.2.4)

a. A A
say, where w=arctan|02/0i! and k is an appropriate constant. The 

value 20JL is the peak to trough estimate and w is the estimate of the 
phase of the rhythm i.e the time of the computed acrophase. For

A. A
different values of 0it02 we have (see Nelson et al (1979)).

A A
0!, 02 > 0 then
A A
^i<0, 02̂  then
A A02<O, 01<O then 

^>0. 02<O then

A0O =
A©A —

A
8, =

~t0 ( K = 0 )

-7T+W (K=-TT)

7T—W {K=-TT)
A“2TT+10 (k =-2tt)

In the sequel the design problem will be discussed for a nonlinear 

function of the parameters of the linearized model (9.2.1), namely

(9.2.3).
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9.3 D-optimal design

For the model (9.2.1) clinicians are interested in efficient 

estimation of the relative stability of breathing i.e the ratio

g=g(e0,e1)=e1/e0 (9.3.1)

is to be estimated as well as possible.

Therefore we consider optimum designs for estimation of g.

For the model (9.2.2) the design space, X say, is a circle, defined

by

x0 = 1, x^+xa2 = 1 . (9.3.2)

The centre of the circle is on the x0 axis at point (1,0,0); see Fig.
9.2. It follows then (Fedorov. 1972 p.75) that the points of the

D-optimal design must lie on the given circle. Moreover any

equally-weighted design whose support coincides with the vertices of 

any regular polygon inscribed in the circle is D-optimal. For

instance a four point, equally spaced and equally weighted design

will be a D-optimal design. We comment that, in contrast, under 

c-optimality a two point unequal weighted design will be produced in 

section 9.4.



Fig. 9.2 : Position of the design space X

For the model (9.2.2) we evaluate the average information 

per observation matrix for this four point design, mentioned above. 

It equals (recall (2.5.8c))

n Ecos(27Tti) Esin(2?Tt^)

nM(£) = [ Ecos(27Tti) Ecos2(2TTt̂ ) Ecos(2TTti )sin(2Trti )J (9.3.3) 

sEsin(277t2) Ecos(2TTt2 )sin(27Ttĵ  j Esin2(277t̂ )

Take the 4 points to be

t, t+1/4, t+1/2, t+3/4

i.e, in angles,

27Tt, 2lTt+7l/2, 27Tt+7T, 27It+37T/2 .

Let $|=27Tt+T-[, 7*2=0 ,tt/2 ,tt, 37T/2 it is easy to see that

EcosS}=EsinS2=0, Ecos2<S^=Esin2S-i=2. (9.3.4)

Thus for n observations obtained in n/4 days (9.3.3) is reduced to
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n 0 0

nM * 1 0 2(n/4) 0 I =ndiag(l,1/2,1/2). (9.3.5)

0 0 2(n/4)

Interest is in estimating (9.3.1) written as

g = (^(^+4))/B0- (9.3.6)

Thus the approximate variance of g is

nVar(g) s o2(Vg)TM“l(Vg) (9.3.7)

where Vg is the vector of partial derivatives of g(.) and equals

(Vg)T=(-(-/(/3\+/32) )/e*0 , /S1/(e0v'(^+4), jS2/©0̂ (^+|8j))
=©o1 (-6^00, ^/©i) (9.3.8)

Substituting (9.3.8), (9.3.5) in (9.3.7) we obtain the approximate

variance, V4 say, of an equally-spaced equally-weighted 4-point 

design,

V4 = (o2/(neo)) Ctej/eo)2 + 2], (9.3.9)

Note, from (9.3.7) that our problem is approximately

equivalent to a locally c-optimal design, where "c" is given by

(9.3.8).



9.4 C-optimal design

For given e0, elt e2 and therefore /Blt the locally

c-optlmal design problem is to

min \ cTM~(£)c, £e-[ (9.4.1)

with c=(c0,c1,c2)r=Vg as in (9.3.7) and nM(£) as in (9.3.3) i.e £ 

imposes a measure which puts weight l/n at tx,t2,...,tnc[0,1). In 

principle we require an optimal measure £* on [0,1) to solve (9.4.1), 
Elfving (1952) developed a geometrical approach to finding c-optimal 

designs. With this in mind, and considering the reflection, -X, of 

the design space X. a cylinder is formed, connecting X and -X with 

the x0-axis as axis and directrix the circle X, see Fig. 9.3.

Fig. 9.3 The design space X and its reflection -X form the 

cylinder£5 for the model (9.2.2)



The equation of the cylinder is

'C* = ( (x0,xltx2) : -l*x0£l, Xi+Xj = I f .  (9.4.2)

Moreover any point on the cylinder C  is either

(i) On the curved surface (ray rx, point R,,̂ in Fig. 9.3) or

(ii) On one of the ends (ray r2 , point R2 in Fig. 9.3).
Any ray, R say, can be written

R = ( (Ac0,Acx, Ac2) , A>0 ) (9.4.3)

for some c0 , c ±, c2. In particular, we consider the case where

c0’ci’c2 is as *n (-9-3.7). The ray hits x0=l at A=l/c0 =- @o/0i and 
therefore the point of intersection is (1, Cj/c0. c2/c0) . We 

distinguish cases (i) and (ii) as follows :

if (c*+c^)2/Cq > 1 then R.̂  is considered

< 1 then R2 is considered (9.4.4)

It is easy to verify that

<c:i+c2)2/co = (eo/ej2 . (9.4.5)

The geometry of the problem suggests the use of Elfving's 

theorem (Appendix 3) to tackle the two cases described above.

- Case I : Consider points such as Rx, ie e1/e0<l. The side

elevation for point Rĵ is presented in Fig. 9.4. The 

ray hits the cylinder at (Ac0 , Aca ,Ac2) . Thus
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(Ac^z+Ucs)2^, A2(c'i+c^)=l, A=l/y(c1+c|).

So the point Rt is

Rx =(i/(c\+c22))~1 (c0,c1,c2). (9.4.6)

Applying Elfving’s theorem and using the notation of Fig. 9.4 we get

KRj/RiLWu-S) i.e e/(l-^) = (l+c0//(ci+c|))/(l-c0V{di+c|))

=(i-e1/e0 )/(l+e1/e0 ) (9.4.7)

where g, will be the weights assigned under the c-optimal

design.

Fig. 9.4 : Side elevation for point Rx from the cylinder £

in Fig. 9.3,



Therefore from (9.4.7) we get

e = 0.5(1 - ej/e0), ex/e0<i . (9.4.8)

The corresponding 2711* value will be (with t* being the optimal

value)

2rrt* =* arctan c2/Ci = arctan( 032/(eieo) )/(£i/(©i©0))) = 

arc tan /32//Ŝ  = tan"1(-tane2) - tan-i (tan(~02)) = “-e2

Thus for Si/fio < 1 allocate

£ = 0.5(l-6i/eo) obs at “©2/2.71
l-£ = 0.5(1+63̂/60) obs at tt-02/2TL (9.4.9)

For the two point design the corresponding 3x3 matrix 

M=M(e,£) is singular with rank(M)=2. Considering the general form of 

M(8,£) in (9.3.3) for this particular case it is easy to verify that 

under (9.4.9)

1 ( 2 £ - 1 ) c o s 6 2 -(2£-l)sin0^\

M(e,£) = I (2£-l)cose2 c o s 2 0 2 -cos02sin02 (9.4.10)

-(2£-l)sin©2 -cose2sine2 sin2e2 J .

Substituting £ in (9.4,10) from (9.4.9) we get, for the optimal

design measure £=£2 say

1 -(0i/eo)cose2 (8i/0o)sine2̂
M(e,£2) = f -(e1/e0)cose2 c o s 2 ©2 -cos02sine2 

(©i/e0 )sine2 -cose2sine2 sin2e2

To solve (9.4.1) the generalized inverse M"(e,£2) is needed. Using a



matrix result (Rao (1965) p. 26, Appendix A4.II (v) ) we have

cos2e2 (e1/e0)cos©2 0

mC(©,£2) = I  (e1/e0)cose2 l o \__ _̂__ t (9.4.11)
((_ \

0 0 0 /.

Hence for £=£2 and 

cT=(Vg)T=(i/e0) (-©i/So, /32/e1)-(i/e0) { - e x / e 0 , cose2,-sine2)

we obtain

cTM~(e,£)c = (l/e0)2 (9.4.12)

and therefore the approximate variance V2 for the two point design is 

V2 = Var(cTe) = (l/e0)2 a2/n, ©1/e0<l. (9.4.13)

-Case II : Consider points such as R2. i.e e ^e^l. The

sectional diagram showing point R2 is presented in 

Fig. 9.5.

In section 9.2 we noted that for that particular problem our 

interest is restricted to ©1/©0<1. For completeness however, we also 

discuss the other case now. Interest is focused on a result, following the

same procedure as in Case I, which is complementary to that in (9.4.9).

Consider Fig. 9.5. Any chord of the type HT1 , i.e going through 

R2, corresponds to a design resulting in the point R2. We choose the 

diameter D jD2 of the circle with centre 1^(1,0,0). The

point R2 can be obtained by allocating weight £ on D2 and l-£ to Dt.



point R2 can be obtained by allocating weight £ on D2 and l-£ to 

Therefore

S/(l-e)=D2R2/R2D1=t;iW(ctl+c|)D/Cl-^(c11+C2)3=

=Cl+(/(c\+c|))/c0D/Cl-(/(cVc,2))/c0>(l-eo/e1)/(l+eo/e1).

Thus for © j/O qM  the weights are

£=o.5(i-e^/e() , l-^o.su+etf/e^). (9.4.14)

Therefore there is a symmetry in the result obtained for 

both cases, I and II, as can be seen by comparing (9.4.14) and

(9.4.9).

Fig. 9.5 : Sectional diagram for point R2 from the

cylinder^in Fig. 9.2.
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9.5 Restricted Design space

An important practical difficulty with the optimal designs 

of section 9.4 is that they require measurements to be made when the 

response function is maximum and minimum. The latter typically 

occurs in the early hours of the morning.

It might be desirable for the design to be restricted to 

more social hours, i.e avoid taking measurements during the night. 

We restrict the design to a portion 1-T, say of the day, where T is 

the length of the night-time period, e.g 11pm till 7am, see Fig. 9.6. 

Moreover we assume that the minimum of the response function occurs 

at the middle of T and the maximum, in 1-T, occurs at the middle of 

this interval. Any design depends on ©i/e0 anc* e 2 ■ Moreover the

restriction on time means that the new design space, say, is no

longer a circle and hence the idea of a full cylinder is no any 

longer applicable. The cylinder will be "truncated". say, as is

shown in Fig. 9.7. A side elevation is presented in Fig. 9.8. Thus 

we have to reevaluate the equations of interest.

Firstly we evaluate the equation of the ray r ^  This is the 

equation of the line through the points 0(0,0) and R1(-e1/e0 ,l) : see 

Fig 9.8. This is

y = (-eQ/e^x. (9.5.1)

(The point corresponds the case discussed in Fig. 9.4). The 

equation of the line through the points L '(1,1) and W(-l,cos^), with 

being the angle corresponding to the portion of 2tt which is

equivalent to T/2, is

(y-l)/(cos4'-l) = (x-l)/(-l-l) . (9.5.2)



A

Fig 9.6 A typical situation when the rythm is 

"going down" during the night.

-X'

Fig. 9.7 The truncated space Xjg and its corresponded

truncated cylinder.

W utu>°1 —.

Fig. 9.8 Side elevation of Fig. 9.7
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As T is the portion of the day which defines the design

space, X, we have 2^=2ttT. Therefore from (9.5.2) we get

y = 0.5Cc o s (TTT)+13 + 0.5Cl-Cos(rrT)3x. (9.5.3)

The coordinates of E, Fig. 9.8, are the solutions of the

simultaneous equations (9.5.3) and (9.5.1) and therefore

x - 0.5Ccos(TTT)+l3/(0.5cos(nT)-0.5-eo/e1), (9.5.4)

giving a corresponding y.

It is easy to see that, with T=0, x=-e1/e0 and therefore y=l

i.e the point in the untruncated case. Now using Elfving's

theorem (recall Fig.9.8)

(!-£)/£ = DE/EF = (l+x)/(l-x) £ = 0.5(l-x).

Therefore

s = C“0.5(©o/e1+i)3/C0.5cos(7TT)-0.5-eo/e13. (9.5.5)

Therefore design weight l-£ is applied at A and 0.5£- at each of B and 

C, under the symmetry assumption which we have imposed; recall Fig.

9.6. For definiteness we consider T=l/3, that is a restriction to a 

16 hour period. The information matrix can be written in the form

M = (1-S)MA + 0.5£Mb + 0.5£MC; (9.5.6)

recall Fig. 9.6 and the regression (9.2.2c). It is easy to see that, 

for any T,



2TTt A+e 2=0 i.e tA=-e2/2TTf t £)rt A~l/2 

tB = tD+(l/2)T-l/2[I-e2/TT -1+T3 

tC=tD-(i/2)T+l = (l/2)C-e2/rr +1-T3.

If we set T=l/3 in the above relations, the vectors corresponding to

W (t ̂ ) i=A,B,C are (recall (9.2.2c)) :

W(tA )=(l. cose2 , ~sine2)T 

W (tB ) = (1, cos (62+2tt/3) , -sin(e2+2rr/3) )T

W(tc) = (l, cos(e2-27T/3), -sin(e2-27T/3) )T .

We can therefore write M^=W(t)WT (t^), i=A,B,C. Moreover it is easy

to prove the following Lemma.

Lemma 9.5.1 : The average per observation information matrix 

M(£) as in (9.5.6) can be written as

M (S) = (1 -S) A +SA 2A2+£A3A3

with

A ^ f l , cose2,-sine2)

A2=(l,-l/2cose2,l/2sin©2)

A3=(0,/3/2sine2,/3/2cose2).

Our target is to evaluate eTM_c. Therefore the following

Lemma provides the evaluation of the desired quanity.

Lemma 9.5.2 : The matrix M{£) can be written as

M(£) = XcccT+XcjddT+XeeeT (9.5.7)

where the vectors ctd,e are orthogonal. Moreover
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p - cnrtsjc = Xc/[l-;£ceXcXe:] (9.5.8)

For details of the proof see Appendix A5.III. The

quantities in (9.5,7) and (9.5.8) can be proved equal to :

X3=[-0o(2k+1)]/[2(/<2+1)] , X4=[2k-K2]/[2(k2+1)] , K = e 1/ e 0 . 

After some algebra we find that p is given by

p=(l/380)2C(4K+l)2(l-$) + (2-A02£D/r£(l-S):i, *=e0/ei- 0.5.9)

Therefore the approximate variance for the three point 

optimally-weighted truncated design is

The corresponding design weight £3 can be evaluated from 

(9.5.5) with T=l/3 as

cT=(l/e0)(-e1/e0, cose2, -sine2)

dT=(0, sine2 , cose2), eT=(e0/e1( cose2 , -sine2)

Xc=(l-£)X1 + £X3 , Xd=3/4 £,

Xe=(l-£)X2 + £X4 , Xce=(l-£)X1X2 + £X3X4
with

X1 = [(l-/<)e0!/[*r2+i], X2=[(/c-t-!)/<]/[/<2+1]

V3 = Var(cTe) = pcr2/n. (9.5.10)

£3 = C0.5(/<+l)D/C0.25+ffl, (9.5.11)

Thus the design measure still depends on the fraction ©i/©0 
which we are trying to estimate. If we wanted to construct an
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equally-weighted 3 point design in this truncated case, the design 

measure would be defined by £=2/3, with corresponding approximate 

variance

vl = (2/36o)C2(k+1)2 *(2-K)23o2/n. (9.5.12)

In the next paragraph a synopsis is presented of the above 

results and the efficiencies of the designs are evaluated.

9.6 Synopsis

We summarize the-results obtained in previous sections for 

the optimal design for estimating the function g=e0/e1 of the

parameters e0 , e 1 of the model n{t,e)=e0+e1cos(2Trt+e2). The results 

are tabulated in Table 9.1.

For the results evaluated in section 9.3, 9.4, 9.5

efficiencies can be obtained. For the untruncated case, Table 9.1

compares the four point and the two point designs.

e2,4 = V2/V4 = i/C(e1/e0)2+2l. (9.6.1)

The truncated design compared with the untruncated unequally 

weighted design gives efficiencies

e2 ,3 = v2/v3 = C9S(i-£)D/Lk1(i-£)+k2£;3 (9.6.2)

with

/<1 = (©1/e0 +1)2 , /<2 = (2-e1/e0)2, £ as in (9.5.11).



For the equally weighted truncated design compared with the 

two point design

E2.3 - vz'v3 - 3C2(e1/e0)2+(2-e1/e0)2r 1. (9.6.3)

For different values of e1/e0<l the efficiencies and the

design measures have been evaluated for the different designs in

Tables 9.2 and 9.3. It is interesting that truncation does not

greatly influence the nature of the design. Thus an equally weighted 

truncated design can be recommended. In practice, from previous 

experience the ratio ©^/©o does not exceed 0.3. In principle any 

optimal design, in the nonlinear case, depends on the parameters it 

is planning to estimate. In this particular case Table 9.2 reflects 

this dependence. However for small values of ©A/©0 there is little 

difference between the optimal designs. Thus we choose-the design 

procedure we adopt, we provide a guess for 0J./00 and the appropriate 
design measure can be evaluated, as in Chapter 4. That is we know 

what percentage of the omeasurements will be allocated to each point.
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Table 9.2 : Efficiencies when e 1/e0<l for the designs

described in Table 9.1 and relations refered 

in sections 9.6.

J2  .  3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0,8 0.9

0.50 0.49 0.48 0.46 0.44 0.42 0.40 0.37 0.35

0.53 0.51 0.48 0.46 0.44 0.42 0.40 0.39 0.37

E2 3  0.49 0.49 0.48 0.46 0.44 0.42 0.40 0.37 0.35

Table 9.3 : Evaluating design measures when ©i/Qo^l

for the designs described in Table 9.1

Design

1 .

/e0

2 .

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4b

2 =£3

0.25 for all i=l,2,3f4 and for every ©J./0O
!

0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.46 0.42 0.40 0.36 0.33 0.30 0.28 0.25 0.22

0.27 0.29 0.30 0.32 0.33 0.35 0.36 0.37 0.39



9,7 Analytic approach

In chapter 3 we presented the geometric aspect of the

design, after producing the analytic forms of the confidence 

intervals. In this chapter we have proceeded by using firstly 

geometrical arguments and now we describe the analytic approach of 

the problem. Both approaches are of course the two sides of the same 

coin.

In our practical context interest is focused only on Case I,

i.e e1/©0<!, We now tackle this case using a different approach.

For the two point design the matrix M(£) is as in (9.4.10)

and the design allocates proportion £ at -e2 and l-£ at Tr-e2.

Consider the two vectors bx, b2 as follows

✓2bA = (1, cos<t>, ~sin0)T , ^2b2 = (1, -cos<|>, sincJ>)T (9.7.1)

which orthotjoyxal ojt-bll.flpfwi 1. ,ci vector h can be

written as

h = Vb1+(1-V)b2 , VCR. (9.7.2)

Moreover we can write M(e,£), recall (9.4.10), as

M(e,£) = 2 + 2(l-£ )b2bT2 (9.7.3a)

and therefore using a matrix result (Appendix A4.I, (vii, viii))

M~ (©,£) =V2£"1b1bVV2(l-£)-1b2b2. (9.7.3b)



For any h as in (9.7.2), considering M~ = M~ (£) as in

(9.7.3) we find that

2 hTM~(£)h = v2/£ + (l-V)2/(l-£) (9.7.4)

Relation (9.7.4) gives the value of the criterion function for any £ 

and it can easily be shown to be minimized when

|V/(1-V)! = f£/(l-£)j i.e iV/d-v) =£/(l-£), (9.7.5)

Thus for the particular h in which we are interested namely, 

(-©1/e0)h=(l,(-©o/Qi)cose*>, (©0/ei)sine2) we can obtain

V = 0.5(1-00/0!). (9.7.6)

Tftis is of course the value of the optimum £ evaluated with the

geometrical argument in (9.4.14). From (9.7.5) we have that either 

£=v or £=-v/(l-2v). Thus, taking into consideration (9.7.6) we 

obtain relations (9.4.14) and (9.4.10) respectively, namely

£ = 0.5(1-60/©!) if ej/e0>l (9.7.7a)

£ = 0.5(l-©1/©o) if ©1/©0<1. (9.7.7b)

Consider now the general problem of truncated daily time

interval T and the allocation of the observations as follows (recall 

Fig. 9.6 allocating observations at the end points and the middle of 

1-T) :

l-£ at t^ = -62

0.5£ at tB = -e2-277*l/2 (1-T) = -0-77 (1-T) = -<D-S

0. 5£ at tc = -©2+2tt*1/2(1-T) = -0+tt(1-T) = -<J>+S,
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with S=tt(1-T). The corresponding vectors W(t) (recall (9.2.2c)) will 

then be

W(tA)r = (1, cose2, -sine2)

W(tB)T = (i, cos(e2+S), -sin(e2+S))

W(tc)T = (1, cos(e2-S), -sin(e2-S)).

Therefore the matrix M=M(8,£) can be evaluated explicitly as

m = d-e)w(tA)w(tA)r + o.5£rw(tB)w(tB)T + w(tc)w(tc)T .̂ (9.7.8)

For the matrix M as in (9.7.8) the following Lemma holds 

(for proof see Appendix A5.I).

Lemma 9.7.1 : The matrix M can be written as

M = M0 + a12Cb1b2+b2b^l (9.7.9)

with M0 matrix defined in Appendix A5.I and oc12=2oc( l-oc)£> witil 
oc=0 .5(cosS+l) .

The inverse of M is needed as the general problem can be 

formulated as

min hTM_1h , £eE, h=(-ei/e0 )(1,(-e0/e1)cose2 .e0/e1sine2)r . (9.7.10)

Therefore the following Lemma can be proved (Appendix A5.I).

Lemma 9.7.2 : The quantity hrM~1h is evaluated to be

hTM-1h«(eV20o)(l-oc)"2Hl-v)2/£ + (v-a)2/(l-£) f, (9 .7 .11)



with oc=0.5{cosS+1)

Minimizing (9.7.11), we rediscover (9.7.5) and obtain

£ = CO.5(l+eo/01)1/tO.5-O.5cos(7TT)+eo/e13. (9.7.

With T=l/3, the particular case discussed earlier, (9.7.

corresponds to (9.5.5).



CHAPTER 10

EPILO0JE

The cardinal target of this thesis was to gain knowledge, by 

means of theoretical and applied work, on optimal nonlinear

experimental design.

The two different routes of inquiry, theoretical argument 

and laboratory experimentation -through the simulations - were 

followed. We only wanted to serve the sense of "measure", an 

ancient Greek principle, which in recent terminology says: put equal 

weight on both theory and practice.

The statistician moves sequentially from the Scylla of

theory to the Charybdis of application. That is, he has to find 

the optimal route between theory and application. Throughout our 

applications we have assumed that the model was known. More work is 

needed to study the robustness of optimal nonlinear designs. On the 

theoretical side there is still no general theory concerning the 

convergence of the sequence M(en ,£n) in sequentially designed 

experiments. We have commented on the link between fully sequential 

designs and the Wynn type algorithm. Possibly links of this type
S

might aid development of a general theory of convergence.

The linear optimal design problem has fl'O^rished in the

work of, for example, Wu and Wynn (1978) and Pukelsheim and

Titterington (1983). The former offer a dichotomous theorem to check 

whether an appropriately created sequence of design measures



converges to the optimal one. The latter place optimal linear 

experimental design under a general convex analysis setting. It 

would be nice if nonlinear design could be taken closer to these 

targets.

Ironically optimal designs for nonlinear problems require 

knowledge of the unknown parameters. Some static designs are based 

on initial point estimates for the unknown parameters while others 

require specification of a range of plausible values or a prior 

distribution for the unknown parameters. More experience is needed 

on the application of these approaches to practical problems.

Extending the work of Ford and Silvey (1980) we performed a 

number of simulation studies for a variety of design strategies and 

problems. It appears that approximate inference can be carried out 

ignoring the sequential nature of the design assuming that the sample 

sizes are reasonably large. The most complicated model considered 

had two parameters. It would be of interest to study more complex 

problems with more parameters.

Our results suggest that two stage designs might provide a 

useful compromise for an experimenter unable to carry out a fully 

sequential design. More studies might be needed to clarify the 

situation as it seemed that the nature of the problem influenced the 

performance of the two-stage design.

Geometrical aspects play an active role in this thesis. 

It is not just because we are pure lovers of Plato, who did not 

permit anybody to enter his Academy without the knowledge of 

Geometry. It is because we also believe that the beautiful is 

equally as useful as the necessary. In chapter 9 we have another 

practical example where geometrical interpetation is in accordance 

with an analytic approach, to prove that theory serves the Nature and 

nature can be ruled from Theory.



379

APPENDIX 1

A1.1 Differentiability

Let g be a function from Rn to [-«,«] and x=(x1 ,x2 ,...,xn ) a 

point where g is finite. Then we define

Definition : The (Gateaux) directional derivative at x in 

the direction of y is defined to be

G(x,y) = lim c"1-!g(x+cy)-g(x) ) (Al.l)
e^o+

If g is differentiable

G(x,y) = EVitSgCxi/axi)

Note that

G(x,ej) = (3g/3Xj)

i.e the right hand partial derivative of g with respect to the j-th 

component of x, with ej being the j-th unit vector.

The Frechet direction derivative is defined as

F(x,y) = G(x,y-x) (A1.2)
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The following theorem can be proved.

Theorem : For a concave function g and x a point where g

is finite then G(x,y) exists for all y ; this is 

so wehether or not g is differentiable at x.

Comment : The entries x, y might be matrices. In the

design contest with criterion 0 and derectional derivative 0 we have 

corresponds to g=0 and G=<I> and x, y are matrices.

References : Silvey (1980), Torsney (1981).

Al.II Convex sets

Definition 1 : The set S is called convex if all points

seS the form

s=as1+ (l-oc)s2 , slfs2eS* ae[0,l]

are elements of S.

Definition 2 : The set of points. S* say, with elements

s = Eotis^. Eocj=l, a|e[0,l3, s ^eo

is a convex set. S* is called the convex

hull of the set S.
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Theorem ( Caratheodory ) ; Each point s* in the convex hull

S* of any subset S, of the 

n-dimensional space, can be represented in the 

form

* n+i '•his = EafSi , a-^0, s^eS, ^ai=l

If s* is a boundary point of the set S*, then 

an+1 can be set equal to zero.

References Fedorov (1972), Silvey (1972)
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APPENDIX 2

Many phenomena from Biology and Chemistry involve nonlinear 

functions, especially kinetic data and growth curve phenomena. We 

present a survey of the literature in which nonlinear experimental 

design ideas have been used. Methods for fitting nonlinear models 

are presented in Ratkowsky (1983). Table 3.1 summarizes the optimum 

design points suggested for various nonlinear models, as defined by 

the response function n=f(u,e). The design space U is the "operating 

region" for the experimenter.

A2.I Mitscherlish equation of diminishing returns.

Model : n=e1+B2exp(e3u)

u=Qc,*DsR, ©gR+xR“

where :

H : the expected amount of growth

: hypothetical growth from an infinite amount 

of fertilizer 

ei+e2: measures the rate at which additional 
increment of fertilizer decreases, 

u : the amount of added fertilizer 

(see : Box and Lucas (1959) )



A2.I.1 If it is assumed in A2.1 that f(0,e)=0 then 02=-©i 

Let e3=e2 . Then the monomolecular model is

Model : n=e1|l-exp(e2u)[

U=CK,>GsRf ©e R +x R~

where :

r\ : the amount of product formed at time u from 

a simple decay law.

(see : Box and Lucas (1959), Hohmann and Jung (1975), 

Katz et al (1981))

A2.II The growth (or decay) law.

Model : r\=e1exp(e2u) , (e2̂ °)

U=[k ,X]c R, ©gR+ xR 

where :

n : the amount of substance growth (or decay) 

(see : Box and Lucas (1959). Jennrich (1969))

A2.III Irreversible reaction B  > C .

Model :n = exp{ ^expC-Ss (1/T - 1/T0 )])
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u=(ti ,T)e;UgR+xA, A* [380,450], ©gR2

(see : Box and Lucas (1959), M.J. Box (1968a))

If it is assumed that f («,e)-f (0,e) = l then the model is 

reduced to

n=©1-exp(-©2u)

In order to estimate the reaction rate constant 

k and its variation with temperature (T) the Arrhenieus law gives

k=Aexp(-E/RT),

were : A is the frequency factor, E the activity energy. R the

gas constant and T the temperature (°K) . If n is the fraction of 

the original material remaining after the reaction has continued for 

a time t at temperature T then rv=exp(-Aexp(-E/RT)). Rewriting this 

in terms of the rate at specific temperature T0 and letting e2=E/R 

be the proportion of the activation energy we obtain model A3.III.

If t-=l/T - 1/To then

n=exp^-01t1exp(-e2t2)} , u=(t1,t2)cR2

This is the first order decay law with rate a function of 

temperature

(see : Hunter and Atkinson (1966))



A2.IV Chemical reactions A—

Model : rv=C©i/(©i“02)^exP(~e2't)“exP(-ei't) f 

u=teU=R+ * ©gR2

where:

r \ ' the amount of B present after time t,

expressed as a function of the total material 

present when initially (t=0) only material 

A is present (n=[B])

ei: rate constant A — ► B
e2 : rate constant B — C

We can also assume that the 0's are functions of the 

temperature according to the Arrhenius law. i.e

ei=kiexp(-E1(l/T - 1/T0)) 

with k^, E-̂ parameters. The model is considered with

u=(t,T)eUgR+xA, A=[380.4501.

(see : Fedorov (1972) p 227, Katz et al (1981), Draper and 

Hunter (1967), Hunter, Hill and Henson (1969))

A2.V Chemical reaction R — ►P1+P.

The catalytic dehydration of Hexyl Alcohol Reaction.

Model : n=(ei©3P1 )/(l-f-eiP1+02P2)
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u=(P*,P2)eAxA, A=C0,31, 6cR3
where :

H : speed of chemical reaction

partial pressure of product 

P2: partial pressure of product P 

0 :  the absorption equilibrium constant 

for the reactant R 

©2 : the absorption equilibrium for the product P2 

e3 : effective reaction rate constant.

(see: Fedorov (1972))

A2.VI BET (Brunauer-Ermet-Teller) equation.

Model : n=(e2e1P1)/r(l-P1)(i+(e2-l)Pi)1 

u^PjfiAgR. A=CO-05t030l. ©cR2

where :

H : Volume of gas absorbed on the solid Pt 

Pi: P^Po relative pressure

e 1 : the monolayer capacity (Um in Chemistry) 

e2 : constant characterestic of the gas-solid.

(see : Hill and Hunter (1974), Henson and Hunter (1969)

Khuri(1984))
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A2.VII Catalyst and reaction study

Model ; r\=(e1/(e2+e1-©3))]exp(-e3t)-exp(-(©1+©2)t)[

u=teUcR, ecR3

where :

A : reactant reacting to form 

B : the desired product 

C : undesired by-products

Also B further reacts to form C 

ei,e2!03 ra-te constants

(see : Hill and Hunter (1974))

A2.VIII Isomerization of n-pentane to i-pentane in the 

presense of hydrogen.

Model : n = eie3 (u2~ui/;1 •632)

where

l+©2u1+e3u2^04u3

u=(ulfu2iu3)g U=A1XA2X^3CR3

^  = [107,471], A2= [69 , 294 ] . A3 = [11,121]

©gR4

n : the rate of disappearance on n-pentane 

©■l : reaction parameter 

e2,e3* 64 equilibrium constants



ui.u2•u3 partial pressures of hydrogen,

n-pentane. i-pentane respectively.

(see : Prichard and Bacon (1977)).

.IK Oxidation of benzene.

Model . n . e1exp(-e3u3)e2exp(-e4u3)u1uz
e1exp(“e3u3)u1+u402exp(-e4u3)u2

u ^ ^  ,u2 ,u3 ,u4)€U=A1xA2xA3x{5.75fgR4 , 0gR4 

A1=ri0"3,16*10“31, A2=ri0“3.4*10_3l, A3=f623,6731 

where :

r\ : the initial reaction rate 

: the concentration of oxygen

u2 : the concentration of benzene

u3 = l/T - 0.0015428, wehere T is the absolute

temperature of the reaction

u4 : the observed stoichiometric number

ei-e2-©3-e4 : model parameters arrising in 

Arrhenius's law.

(see : Prichard and Bacon (1977), Prichard et al (1977))



iB9

A2.X Michaelis - Menten model.

Model : r\=e1u/(e2+u) 

ueUgR, ©c r2

where :

H : the reaction velocity

ex: maximum velocity of the reaction

e2: the half saturation constant (i.e maxn)

u : the concentration of substrate.

(see : Currie (1982))



APPENDIX 3

A3.I Elfving’s theorem

Elfving (1952) stated the geometrical characterization of 

c-optimality as follows :

Consider the model n=E(y]u) = fT (u)ef u£U. As far as 

c-optimality is concerned, the optimal design weights of the 

observations can be obtained through the following geometrical 

argument:

Draw the convex hull of the space UQ=f(U) and its

reflection in the origin, -UQ . Draw the vector c and let be the 

point of intersection of c with ̂ . Then lies on the line which 

joins AeU0 and B'c(-U0 ) and which forms part of the surface Note

that B' is the reflection of B. Then the c-optimal design is located 

at A and B with weights 12-£ respectively where

£/(!-£) = T^'/AT*.

Moreover the optimum minimum variance is rOT/OT^2 . The 

cases in which U0 is a line segment or a circle are discussed in 

chapters 8 and 9 respectively.
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Fig. A3.1 Elfving's theorem.

A3.II Silvapulle's theorem

Silvapulle (1981) stated and proved the conditions under 

which the existence of the MLE in binary problems is guaranteed.

Let Uj, u2,..,,ur be the design points corresponding to 

responses y^l, i=l,...,r and ur+1,...,un corresponding to responses 

Yi=l, i=r+l,...,n. Consider the convex cones S = ^Ek^u^ ,K-j^0, Vim,.. r) 

F = -lEkjUj V j = r + 1 , . . . ,nk Then the following theorem holds.

Theorem : Let the condition (L) be defined by

(L) S fl F / j/ or one of S or F is RP=©

Then for the binomial response model 

Prob(yi=l)=T(u|e)

A,(i) The MLE e of e exists and the minimum set (ef is



bounded only when (L) is satisfied.

(ii) Suppose that

S(e)=-i;iogT(uie) - ElogU-Ttu^e))

is a proper closed convex function on RP. Then the
A

MLE e exists and the minimum set {ef is bounded if 

and only if (L) is satisfied.

(iii) Suppose that -logT and log(l-T) are convex and u1;j_=l
A Afor every i. Then e exists and the minimum set {8^ is 

bounded if and only if SflF̂ jZf. Let us further assume 

that T is strictly increasing at every t satisfying 

0<T(t)<l. Then 8 is uniquely defined if and only 

if Sf|F=0.

As an example where the MLE does not exist consider Fig.A3,2 

where there is no "interblocking" condition between S and F.

Fig. A3.2 : No intersection between S and F



APPENDIX 4

A4.I Generalized inverse

Definition : Let AeM(m,n), with M(m,n) the set of mxn 

matrices then A" is the Moore-Penrose 

generalized inverse iff :

(i) AA~ and A~A are symmetric

(ii) A~AA~ = A- and AA~A = A"

Properties :

(i) When A- exists it is of size nxm and it is unique,

(ii) (A~)~ = A

(iii) (At ) “ = {A'7 ) r

(iv) rank(A) = rank(A_) = rank(AA- ) = rank(A~A) = 

rank(AA~A) = rank(A AA )

(v) If A = Ar then A^ = (A~)r

(vi) If A=A x+A 2+ . . .+A^ and AjAj=0 for all ifj=l,2,...k

i^j then A" = A~t +A2 + . . . +A^
(vii) If a is a nonzero vector then a“=(aTa)“aT=||a|p2aT



m

A4.II Conditional inverse

Definition : Let AeMat(m,n). Ac is a conditional inverse

iff

AACA = A

- The generalized inverse is also a conditional inverse.

The opposite not necessarily true.

For the linear model Y=X/3+e the normal equations are

XrX/3=XrY. Moreover it is known vT{XTX) cv=vT (XTX) “v  ̂
v  -to U\e. co^wwi s- X \

Properties :

(i) rank(Ac)^rank(A)

(ii) rank(AcA)=rank(AAc)=rank(A)=tr(AAC )=tr(ACA)

(iii) AAC , ACA are idempotent matrices

(iv) ACA=I rank(A)=n 

AAC = X rank(A)=m

(v) If A of rank r is partitioned as

then

with B of rank r.

References : Graybill (1969), Rao (1965)
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APPENDIX 5

A5.I Evaluation of min-| hrM 1(e,^)h, SeS)

(i) Proof of Lemma 9.7.1

(See also A5.II for details about trigonometric equations)

i.
W  ^ ( 6 , 0  = ( COS O2 <-°b (?2 - COS $2 ^2.

-CosQlSlVjQj. Q2.

0O*,( &z-f S')

+ -^5 1 to&CBi+S') co^C&z+S) -s ir )C B zf S ) c ^ & ^ S )

SiV>(0z+6) - sroCf)^^ cosC^zf^) sin2($2 ̂ 0

^ C d i - S )  -^ Y iC d z-c fico sC d i-S ) )( cosCeSt-6) cos

<1 - 5 )

-<bin(B2'̂ )cosC 2̂.'«5) sivi ̂ 2,-

± UPS^Z. ~ S-c-Vj^

6 0S B-z. CoS &z *" CoS(92_ St-0^2

- Si-O $Z “ COS&2^ lV) 8i *bi'v\Z 2

2 iS a > s d z - ■ z u . i S ^ z  \

"2. | •z.cosi co^ b i "Z^Cob i ‘OB 8z +  - o o i ,2 .SbinZd^ I
-2<os<5s.<h)i -coi2.5i.inb2 -zJtoS^Vi+siflVsi-i^

vJC
l
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, ^ \  (  i CoS5^05^2. -c©S<5sir>5-l')
"* 5 f co$Eoo<,'bz \

\-C o < > b £»t>)5l /

/ O  \  (_ 0 Stvj^SL»i^2 Si'n <Fcos9z^) ̂
( S\V»<£ \
K s ^ s ^ J  ( *5 -2)

We define

b4 = “p  ( i  ODhb'z
' V i

i», - J-̂  ^ . — ô sS-l , sv*o
z Vi '

oL - ' (o, „ CO s 3ZV  ; b ^ j - d .  .

we can write

\  _ CC f ® S ^  , + Cl ,
-cos£-siViO*. /  V ^S-lo lI*. )  ( A 5 . 2 & J

where o< ^ (cosc£ + i ') ,

.'. [v U & , s )  = <:< - b<T-+ 5, « ■  t>-i v^ici '^iszTJj^xtivS"ci-«^i=^|]

-t ^  f> i d  cL =

~ £ 0 '$)b<UT+ 25^ o ^ b i % t f 6 ^)ktbi

O - o O  ^ •+■ dolT r L̂, *  ̂ 3 d  cL +

Ĉ *‘2' L  ̂  ̂  "* ^ » ■=■ ^ o  -+ ;
fA5.3)with

tf, = 2 6 -t z ̂ o t 1

^2. = 2-^ (t-oO^

^3 ~ %  5 in* <£
(V1z - cm C l - oO  ̂  ,
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Our target is to evaluate M ~ ' ,

Firstly M o  - o\" * b^ + ckz 'b^b^ + d  d. C ^ ̂

Secondly M i  - C  M o  * 0(\% k>, bj} - M o '
f **■ c/̂ 2 (& i k>/

-  M o  -<*1*2. M o  b \ b j  M l CA65)

Because b  z M o  b>, - ° ,

Thus / i
K 1. tvl'1 .

<0. +Q,,^t| M, fc>2

We then have

t;i b; Hr'fc.2 = br Cm." - ° t ' i I ' ^ ' W  i O w  =

- b.T Ho'bi “ Mo b.bl Mo bt - di ,
Chs.i)

Because

M 0''bj - o

bj Mo'bi - b|T 0*. b) bi1 1 ot% bihl•* bjcJol1)^, = °l\ 

t>2 M o  fc> j “ /

a n  n r W b , T M r ' ^  (

~  M o ' b 2 b /  Mo'* - Mo'^i b,TM<> - M e

•t-ĉ,2. M o  fc>(t>̂ M o  b i b ^ M p  h>) Idj. M p  j

CilO bu Mo"bL ; &1' L - h Z

M( •= M d -di2 Ml'b/ki

c/,ẑ ô btbl M 0 ~d>2^1o bib,' M 0 /o^-^Md bib M 0/o}t

(A 5 .8?
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(ii) On proof of Lemma 9.7.2

We want to minimize the quantity hTM“1h, with

0  > " S,'V)3'0 - 

The vector h can be written as

I ^ + > ' / =

Thus

i1 rvf u - _
fc

_ ^ b/ t Vf\-/) bj1 M  -v ki

t *+■ ^  -- 

^  M  b } '+ v/0 -'i/’)j2 fc>/T M  62. M  k J  * (i-y) M  fc>2 \ ,
0 th 5 .9)

We havehave
co b / M ' b ,  = b7M;'t», -a(lfcfc7oCb.t.; m ;'*,- &**>*>!

- e/,'- _ l l i ~ _ £  b? M;' b2 b, !<<=, . jLf b,M0’b, t,; Mo"b,
\ -  ^  \ ■ ^  <** — S T

^bJM o'b i bj '̂M^b, + fil^  b |M0 b, blMplb,( •=
“ —  *..41 — -̂  -»

j i   ( .  _ L  \  =  _ i _  +  C a s .(o')

c''̂ 0('a’1 0(1 ' - ^ > ^ 1
By symmetry

 ̂ ^ * - ' 0  

ui) bj- • "oTi*

Moreover

c«0 W  tA* ̂  - t>" r^o
r<*> *io

b? (a s .b M oj. =
I - °> \Z  lo t^ -t-
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_ * »  {t,T m . %  b, K b z -  7 < b ^ i j < b 2
of\^i i - c/4)d  A i ' °

ix.2 bT M0''b? faJi'On + ^  bU ^ '  \
ct\

° l 12

J3 < 1  /o£ tf,2

Oyr) bl K'b, = bl (VC- b,b2- ̂  "
-  Vi
I ■ ol jot \

C A-S.I2.)

°(v

T I
-  V i z  M o  k z k ^ M ,  ^  "**

J£- K ' b . b I  M d"')A>

T  , -I T “> T «v>| "'. ^  *** { *°Z M b ^  I
- ba Mt, k, - a'jT.bs.Mo k, b t ^ o  b» “ "~Y7^ " ^ r 1

CP *

q'l* b j Mo k (T M0 k v _  b i  M o  k i  k ,
or.

o' T.

t/, ̂i.

(A5 . i i )
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Therefore substituting (A5.10), (A5.ll), (A5.12), (A5.13) 
to (A5.9) we have

S)"r v lM  t C i - ^ M  - j-^c i j. K^KK’ rxl --------   ,-----  i
i7o \ — jo /\ 4 1

(h -/dt -v'foi -2^0-^)°'^

4-Sfi-S> O - o O 1

a 0-dV

The minimum of (A5.14) with respect to ^ is obtained when

\ - h \  - \ ^

Ij7 v>_ 
o/ + | -2. ✓

^2 ̂  ^i i ~  I |, ,T i f

Vl - //i toif37T)4 &

^ f2 -  ^iCosCl7T )+ £V £ )

C AS- M-).

C A S. (S')

CAS. 16)



A5.II Some elementary trigonometric results

to u>±'(*-6z-S) 4 cot'C-Vi-iS) = cosHd7+S) +. cos’-CF-di,')

-  2- £  C o ^ D i C a S ^  +■ Siv>*8^i

o o  •S.i'nY-S^-cT) 4r k T ) = ‘Hn'-tfi + f)  + Sl'yl Y ^ - 0

- 2 C -2. i- ^C 'T ll£ c jo s ^ '& i ̂

t-iii") Co?r- K - 6 )  ■*■ c o s e - d i  + J )  -  ^  r & ^ + f ) - t  ooi ccT - ^ 2 )

~ 2. CoS £  Co S & 2 

(i\0 — (B^-f-S^) *- StV) (di - «0 J -=■ - 2. Co s l V~i

0 0  - St n f5^'l£)coS OSVds.) - St-'rj C & i S )  =

=  -  ( s i V j & - j J  +  c o s 5 i5 ^ ’>i J*)  (cp5^2. c o s <5 —s t n S i  s<o<5“)

-  COS -  Coc, S'a SCncT) 4  ^ lv\ ^ z S<V7<50

-  ~  2  «&1>J$2. GO S £■ I. £ .  C o ^ c S  -  < S c ^ * £ ] ]  -  ~ ^ V )  £ 0 j,  COS# <3 *
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A5.III Special case T=l/3

The proof of Lemma 9.5.2 is based on Appendix A5.I when 

cosS=l/2. From Lemma 9.5.1 we express vectors , Az , Ag as linear 

combinations of the vectors cf d, e as follows

A\ - Q, c + 3 e.

AvT.-

A 3 ~ oL *

The analysis of (9.5.7) can be evaluated through an analysis 

similar to that of A5.I or can be considered as special case of ,

a2' 3̂ * 0Ci2 *n (A5.3a). For (9.5.8) consider A5.1 with M-1 evaluated 

as

W " ’- Mj' - ce-T ~

l t e ^ m ;' O c e C K ' O C £ ] < V ± ! 0 - 3 L ^
ce, ^ ̂

, -y- ( cr ^ c ' ) L ( V ^ pe~)
t T K -'c _  * — T T ^ T ^ C O f e ^ ’e)

<̂ T M.^c - C S . S - S ' ) .

7 7 o \ T 7 ? M 0''<:) C e ’r |Mo'e ^
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A6.I Newton-Raphson scheme.

Let f be a function f:Rnt— >-Rn with a root. £ i.e f(£)=0. 

Iterative methods are considered to evaluate such as £. When n=l the 

iteration, known as Newton-Raphson. is

xi+l = xi " f(xi)/f'(x±). i=0.1,2... (A6.I)

When n>l scheme (A6.1) is generalized to

Xi^i = Xj[ - (Df (xj_) )_if (xjl ) i=0,1,2,.. . (A6.2)

where Df(x^) is the nxn Jacobian matrix with elements df^/ax^j,

k,.j = l, 2 n. We assume thet Df(x^) is nonsigular. Iteration

schemme (A6.2) can be modified in the form

xi-i *= X* - *i(Df (xi))_1f(xi) . >^€(0.1), i=0 ,1, . . . (A6.3)

Newton and Kantorovitch's theorem (see Ortega and Rheinfold.

1970, p.421) provides conditions under which the Newton-Raphson

scheme (A6.2) converges, provided that the initial guess lies In the 

neighborhood of the solution £.

The method is a very rapidly converging scheme. Its

convergence is of quadratic order i.e



2o3

IUi+1-e|j^k|ixi-ei|P, p±2

with k being a constant and ||.|1 the P2-norm.

The method was proposed by Sir Isaak Newton in Analysis per 

Aequationes Numero Terminorum Infinitas (1666) and by J.R Raphson, 

Esq. in Analysis Aequationum Universalis (1690). It was only in 1818 

that Fourier was able to use the iteration (A6.1).

A6.II Bisection method

A slow (convergence rate 0,5) but very reliable method is 

the Bisection rule (Stoer and Bulirsh. 1980, p,285) for solving the 

equation f(x)=0.

We define a sequence of subintervals, starting from an 

initial interval [a0 ,b0l which contains the root of f. We define

/Lij = (aj+bj)/2 j=0,1, 2 , . . .

and let

bj + 1 = aj + i = a j if f (/jj) f (b j )>0

or

a j + j. = Mj. bj + 1 = bj if f (juj)f (bj)<0

Then the sequence [aj+1,bj+ilc[aj,bjl approaches £. Obviously

I a j-4-i “ bj + i ! = 0.5|aj - bjj.



APPENDIX 7

1. On Simulation Study I.

A7.1 Evaluation of I(e,u), for a single observation

From (7.2.1) 8 (y|u,e)=logp(yIu,e) will be

.-eu y=l

fi=fi(y|u,e) = <

log(l-exp(-eu)) y=0

Therefore

• • 1°8P/3e = |

-Cu2exp(-eu)l/ri-exp(-eu)l2

Thus

y-1

y-0

I(6.u) = E(- 3 8 / d e )  =

Op(l|u,e)+Cu2exp(-eu)l/Cl-exp(-eu)12p{0 \ u ,e) 

u2exp(-eu)/(1-exp(-eu)).



Moreover

3l(©,u)/3u = 0 2=2exp(-©u)+eu.

The equaqtion 0('+J)=2exp('-4')+'4J-2=O, <4>=eu can be solved numerically 

by the Newton-Raphson scheme.

A7.II Calculation of the MLE for the model (7.2.1)

(i) The likelihood is

L(0;u,y) = IT exp(-6Uj ̂ (l-expf-eu^ ) )i-Yi

= expf-elu^y^) IT(l-exp(-eu})) 1_yi 

fi(e) = log(L{.)) =-eEu^y} + E(l-y-| )ln(l-exp{-eu} )) 

fi'(e) = -Eu^yi - E(l-yi)ruiexp(-0Ui)l/Tl-exp(-eui)1 (*) 
fi’(e) = -E(l-y^ JTuiexpC-OU! )l/Cl-exp(-eu-[ )12 .

To get the MLE 5(e)=0 has to be solved. The Newton-Raphson 

iteration is applied to get

®i/+i = (©y) . e0 given. v=l,2....

(ii) Evaluation of e1.

For the first batch, Ui=ult i=1.2...,r. r=5,25,50. Thus

from (*)



Zo6

i r rfi (e)=“U1Eyj + UjEfl-y^expt-eUi^/Cl-expf-eu-j^)) = 0 e=i>
r ^
Iyi=Cexp(-eut)/(l-expl- e u 1 ) 3 L { l - y i ) =*>
r  ̂ rEy* - expt-eu^Ey-^ = expt-ei^)Cr-Ey*)

rrexp(-eui)=Ey^ {7.3.1).



2. On Simulation Study II.

A7.IV Sum of Squares for Simulation Study II.

Let j=l,2 denote the two points where the observations are 

obtained, let I denote the number of stages and nj; the number of 

observations at each point in each stage.

Then the sum of squares SS equals

= i>Sl +5S 2.
Note that

S S  1 —  O ' 2 1 ) 3-1-
Ui

-  N  (e,e9llt l , • £ ) .

We therefore need to generate normal and Chi-square random 

numbers. We used the ICL 2988 computr of Glasgow University the NAG 

routines G05DDF for N(p,a} and G05DHF for Xyt

We kept n^ constant through the experimentation, i.e, equal 

replications, r say, at each point each time. Thus
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A7.V Estimates at first stage.

At first stage 1 = 1 from (*) we want to minimize SS2, namely

( Y u  >-etexp(e2u11)2+(y21 -e1exp(02u21} )2.

That is, both the terms must be equal to zero ie

©iexpte^Ui!)=ylx_ , e1exp(e2u21)=y21 

yn./y21. = exp(e*2 (u11-u21)).

Hence we obtain relation (7.8.3).

A7.VI Minimizing SS2

f , - - 2 X X . ' C  5„ - 9, eV-»0 ̂ uji

T V  r -  «Y - - - 2 2 -  C y_)[. *
• d h

\--r

djL. ^  I Ce9tUjc>
F ,  -- - r 9 ,

The equations Fj^O and F2=0 have to be solved using the 

Newton-Raphson method. The Hessian H(i,j) i=l,2, j=l,2 has terms.



W C 4 . 0

= - r l  1 « z V  1 1  Uji. {.£a^ 1)2

HC»,0 - -r I I + i\r I I V
HU,2) = + AVlICujte^O

The residual sum of squares has been evaluated as

W S  = 9 C u - « f +  5 * S 2 f 4 A ) -
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Evaluating in (8.3.9),

(i) !u0!<l
P= pcuo) = — 5-

1 ^p"i
xa = ;

3-ip -A A

From (8.3.3a) we have

*itfvcp> = — -t ° ,Uo)X-U£

. . . s i

(ii) Iu01>1
?<*>)» 2. U o 

/ I  1 /Uc
^  r V  i / l to i

by (8.3.3a) we have
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A8 .II The study of (8.4.4)

(i) |u01<1 .

E f?  ( \C P > ) ~  4 - p C < - p )  -4-  t u 0l f2 .U c  C i - 2 p )  f l 3
a i  oiMc

o
C Uo1 + 2.Uot|~2{>> + 0

Uo c L

' < o

°̂ uo lu0r2?-l

Therefore u0=2p-l gives the maximum.

The corresponding value of efficiency is 1. We check at the 

end points.

- At U=1 E f j f ( V $  = p

- At u=-i a?.?C5cp5) = -- i - - ?  ■

(ii) !u0!>i

_ i  m  (?CP)>
CLlAo

4 ? 0 t - p )  « L  
du©

z.
U o =■ O

+ 2UoCl-2.p) ■+ *

Therefore u0=(2p-l) 1 or uo=0 the latter of which is not

accepted.

A - Z e . H ( i c . r i )
cluD 0

- -s " 3 Uol +  2 .IA0 C l - 2 p ) + 1 -
^   —  1,

(  ^ 0 + 2 _ u o 0 - 2 - p H 4 )
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f  \Ao -  — — " )

Therefore u0=(2p-l)-i is a maximum and the corresponding value of 

Eff(1/(2p-l))=1.

A8.III Simulation strategy

Let be the k-th observation at i=±l point for the

j=l...r replication. We know that

i 4.. ^ Oo - ̂  ~  ) (A8.1a)

^ (A8. lb)

with Y\,,fTj+l the number of observations at ±1f and

A . _ ^
&o = - £ ( y-< + (A8.2a)

e< - j  (■ 5+. - 5 - 0 .
(A8.2b)

We took advantage of (A8.1) and (A8.2) as the sufficient 

statistics concentrate the information in two normally distributed 

quantities. Thus only two normal numbers need to be generated for 

obtaining estimates for e0 . Moreover the residual sum of squares



V. *

2 i3

rj[j will be

and the residual sum of squares r is

r  -  2 - 1 y*,ju •* 
jx Jk

= Z .  ty+l/k - y+,,y +  Z ^ c y +,j. - y * , . y +
jk J J k

Z  tv-uk-H-tf.y +  L ^ j  ( y . y  - % yJk J J jk J

-t +  yi+4( c y +1). - 3 +, . y  + vi*,* c y +1J. - y *, ..) ^
2.

The are independent tT with V — * '**‘'4* •

Therefore a single ( f random number was generated for f .

The SUBROUTINES used from the NAG routines of the ICL computer of the 

University of Glasgow were

- G05DDF for Normal

- G05DHF for Chi-Square.



Let Xn , n=l, 

joint distribution 

continuous density pn 

supposed to have well* 

Definition 1

Definition 2

2 14

APPENDIX 9

2,3,... be a stochastic process such that the

of (XlfX2 Xn) has a strictly positive

t. In the sequel the variables Xn and Yn are 

-defined expectations.

: The sequence Xn , n=l,2,3,... is called

absolutely fair if

E{X1)=0

EfXn+JXi.....Xn )=0.

: A sequence Yn is a martingale if

E(Yn+1!Y1.... Yn)=Yn

with

Yj|=X^+X2+> • • .+Xjj+c 

Xn being as in Definition 1, and c a 

constant.

The following theorem is known as the mmzitiirngmle ©miiEwsirpeiittDe

theorem.
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Theorem :

Note : 

probability one 

variable Z iff

Let Sn be an infinite martingale with E{S*)-<c<«o 

for all n. There exists a random variable S 

such that

Sn “̂ S ' as n~>0°

Furthermore

E(Sn)=E(S) for all n.

A sequence of random variables Zn converges with 

w.p.l) or almost everywhere (a.e) to the random

PClimZn=Zl - l.
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