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Introduction

Recently there has been interest in the mechanics of 

a perfectly conducting magnetohydrodynamic fluid due to their 

possible relevance to the behaviour of neutron stars. Roberts [1] 

has investigated the stability of a particular equilibrium 

configuration in a complex magnetic material such as 

a superconductor Whose internal energy depends on the mean 

magnetic induction B in an arbitrary way. The relevance of this 

criterion to the configuration of a neutron star is discussed by 

Roberts [l] and by Muzikar & Pethick [2]. Straughan [3] developed 

the same criterion from a consideration of acceleration waves in 

this particular class of fluids.

In this context an acceleration wave is a propagating surface 

E across which the primitive quantities density p, velocity V  and 

magnetic induction B are continuous, but their space and time 

derivatives are potentially discontinuous, straughan showed that 

the propagation velocities, CJ, of such acceleration waves satisfy a 

sixth order polynomial which unexpectedly factorizes into a product 

of a quadratic and a quartic polynomial. Previous experience of 

acceleration waves eg. Lindsay & Straughan [4], [5] and Truesdell 

[6 ] would suggest that mechanical, thermal and magnetic waves 

might interact with each other, whereas this result of Straughan 

would indicate that perhapes in this material there are two 

distinct types of discontinuities present. Straughan showed that 

the stability criterion of Roberts was just the condition that the 

quartic polynomial have real, positive wave speeds.

The aim of this dissertation is firstly to explore the 

significance of this factorization and thereafter to derive
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amplitude equations for the development of the resulting 

discontinuities.

Elcrat [9] investigated the propagation of acceleration waves

for the perfect classical fluid model in the case where the fluid

ahead of the wavefront was moving hut he did not consider any

special flows. The acceleration wave analysis for this model, is

more subtle than that of the perfect fluid. Although the
• «

discontinuities in [V],[B] are themselves vectors, for perfect

fluids it often transpires that these discontinuities are in the

direction of the normal, n, to E so that, in effect, they act just

like scalar discontinuities in the sense that we need only
« *

investigate the behaviour of n.[V] and n.[B]. However in this case

no such simplification materialises. It transpires that the

quadratic polynomial gives rise to an Alfven wave in Which density,

the first derivatives of density, velocity and normal acceleration

are continuous across E hut the derivatives of the magnetic field
*

are discontinuous across E. Specifically the discontinuity in [B] 

is parallel to B x n , The quartic polynomial gives rise to a fast 

and slow wave and corresponds to the situation in which all 

primitive quantities have discontinuous derivatives.

In the case of the quartic polynomial the amplitude equation 

is of Bernoulli type and has a closed form solution. In the Alfven 

wave situation, the corresponding amplitude equation is linear. 

Special attention is directed to the particular constitutive model 

in which -r) = constant and the amplitude equations are formulated 

for discontinuities propagating into a region at rest and at 

constant density. The solutions obtained in this case have the same 

form as the main problem, but are algebraically simpler.
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In particular it is clear that under reasonable physical conditions 

the coefficient of c2 is negative in the quartic polynomial case.

The problem of discussing the evolutionary behaviour of the 

amplitude of an acceleration wave requires the location of the 

singular surface to be determined for all times greater than the 

initial one. It is only when that is known that the amplitude 

equation can be studied with a view to determining the behaviour 

of the amplitude over the surface of the acceleration wave at any 

particular location and time. In order to obtain the required 

surface we use a ** ray *' method developed by Courant & Hilbert [7] 

and further developed by Varley & cumberbatch [8 ], Elcrat [9], 

Seymour & Mbrtell [10], Whitham [11] and Wright [12].

Solutions are obtained for several initial profiles. Since the 

theory allows for variations in amplitude over the singular surface 

this generally results in the amplitude being a solution to a 

partial rather than an ordinary differential equation. However, the 

important feature of the ray method is that along the ray 

trajectories, the partial differential equation describing 

amplitude is essentially of ordinary type, in which the initial 

condition is dependent on surface variables. This introduces the 

possibility of the amplitude of finite sections of the wavefront 

becoming infinite in a finite time.

Initial surfaces which are plane, cylindrical and spherical 

are examined when the fluid velocity ahead of the wavefront is zero 

and the magnetic induction is either a constant or has a known 

value.
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Chapter One 

Electromagnetic Constitutive l>aws.

The evolution of electromagnetic effects in a stationary 

material is governed by the Maxwell equations

V . D = p , (1.1)

V . B = 0 , (1 .2 )

cJBV x E + _ = 0 , (1.3)
dt

3D , ,V x H - _ = J (1*4)
at

where D is the electric displacement, p is the free charge density, 

B is the magnetic induction, E is the electric field intensity,

H is the magnetic field intensity and J is the current density. In 

addition B, H, D and E are further connected by the constitutive 

relations,

p ’ = - V . P , (1.5)

D = <s0E + P , (1.6)

B = H + M (1.7)

where p* is the polarization charge density, «=Q is the permittivity 

of free space, p is the polarization vector and M  is the 

magnetization, When the material moves with non-relativistic 

velocity V, to first order in V, the local electric field e ' is 

given by
E' = E 4- V x B (1.8)

and if we malce the further constitutive assumption of an Ohmic 

material i.e. J is proportional to the local electric field
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intensity E r, then
J = cr(E 4- V X B ) (1.9)

where a is known as the conductivity. In a perfectly conducting 

material non-zero local electric fields initiate infinite currents

and so for a perfectly conducting medium if J is to be finite then

E, V and B must satisfy
E = - V X B . (1.10)

Maxwell’s third equation (1.3) and the field equation for 

a perfect conductor (1 .1 0 ) can be used to compute the convected 

derivative of B in the following way i

dBiBi = —  + Bi,r Vj;
at

= “ eijk Ek, j + Bi,r vr 

= eijk vm ®n),j + Bi,r vr

25 (®im 5jn - ®in 5im)(vm Bn,} + vm, j Bn) + Bi,r vr*

Bi — vi Bj,j + vi,j Bj “ Bi,j ™ v3#j B-l + Vr Bi#r.(l.ll)

Since B is adenoidal, equation (l.ll) becomes 
«
Bi = Vi#1 Bj - V-j#j B± . (1.12)

Stress Tensor

We wish to find the general form of the symmetric stress 

tensor when it is a function of p, B± and Hi and so with this 

end, we construct the form invariant scalar

<t> = ai bj o"ij (p, Bi, Hi) . (1.13)

We use a method which relies on ideas of Capelli [13] and 

which appears in Weyl [14].

Theorem

Suppose <£ is a function of the vectors u1, ... ,um and is form 

invariant under the group of orthogonal transformations then
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a complete table of invariants of the orthogonal group consists of

(I) All scalar products u1 . 1 < i,j < m ,

(II) All nxn determinants formed from any subset of the m vectors. 

The invariants of type I are even and there are m ( m  + l ) / 2  

distinct invariants whereas invariants of type II are odd and there 

are (™) independent forms.

In our case n = 3 and so the version of the forementioned theorem

appropriate to these circumstances is

Theorem

In three dimensional vector space, a complete table of typical 

basic invariants of the orthogonal group consists of

(i) All possible scalar products u . v (even invariants)

(ii) All possible vector triple products u . (v x w) (odd

invariants).

According to this theorem we may state that <t> is a function of 

the list of variables

ai a-i, â _ bj_, a^ â _ Hi, bj kj/ kj Bj, ^j Bj, Bi Bi, Bj_ Hj_,
(1.14)

Hi Gijk ai Bk* Gijk ai 11 j Bfc, eijk ai Bj eijk toi Bj Hk •
Let us denote the invariants,

p, Bi Bi, B^ Hi Hi by the notation E »

Since «*» is linear in a, b then aiai, bibi can be dropped from list

(1.14) and hence

* “ ai *>i *l(E) + ai Bi Bj, bj Hj, £' eijk bi Bj % )

■*" ai Hi Bj' kj Bj, E* Gijk toi Bj Bk)

+ ^j Bj ^4(£# eijk ai Bj Bjc) + bj Hj 4>5(E/ Gijk ai Bj H)c)

+ Gijk ai kj Bk *e(£> + Gijk ai toj Hk *7(E)
+ eijk ai Bj Bjc ‘t'oCE, eijk ^i Bj H^) . (1.15)
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* = *i(£) + at Bi bj Bj *2 1 ( 0  + ai Bi *>j Hj *2 2 ( 0

+ ai Bi ejrs 13j Br Bs *23(0 + ai Hi Bj *3 i( 0

+ Hi bj Hj *3 2 ( 0  + a-i Hi ejrs Br Hs *33(0

+ bj Bj ©irs ai Br Bs *4 ( 0  + hj Hj ©irs ai Br Hg *5 ( 0

+ ai hj eijk Hk * 6( 0  + eijk ai hj Hj,- * 7 ( 0

"** eirK al Br H]t e jst hj Bs Bi * b (£) * (l»i5)

bj [CTj_j — *x(£) S^j — Bĵ  Bj *2l(0 ” Bi Hj *2 2 (£)

” Bi ejrs BE Hg *23(£) "" Hi Bj *3 i(£) — Hi Hj *32(0
- Hi ejrg Br Hs *33(£) - eirs Br Hs Bj *4 <£)

“eirs Br Hs Hj 4.5 (E) - ©ijit Bk *s(£) - ©ijic H* *7<£)

” eirk ejst Br H}t Bs H^ *8 ( 0 ]  = 0 . (1.17)
Since ai and bj are arbitrary vectors then it follows that

°ij - *1 6ij + Bi Bj *21 + Bi Hj *22 + Bi ejrs Br Hs *23
+ Hi Bj *3X + Hi Hj *32 + Hi ejrs Br Hg *33

+ eirs Br Hs Bj 4.4 + eirs Br Hs Hj * 5 + eijit B^ *e

+ eijk %  *7 + eirk ejst Br H^ Bg Ht *8 (1.18)
where the 4»'s are functions of £ only, if we now define

ci ~ eirs Br Hs, then the symmetry of or requires that

0 = aij “ aji = (Bi Hj - Bj Hi)(4*22 “ *31)
+ (Bi Cj - Bj Ci )( *23 - *4 ) + (Hi Cj - Hj Ci)(4>3 3 - 4.5 )

+ 2 ei jk Bjt * 6 + 2 eijit Hit *7 ( 1.19 )
In view of the fact that C - B x H then Hi Ci = Bi Ci = O and thus

on contracting (1.19) with Hi and Bj we obtain respectively the 

identities

(H . B Hj - Bj H2 )(* 2 2 - *3 1 ) + Cj [H . B (4>23 " *4 )

+ H2 ( * 3 3 - *5 ) + 2 4>6] = O
(1 .2 0 )

(B . H Bi - Hi B2 )(*2 2 - *3I) - Ci [B2 (4-2 3 - *4 )

+ B , H ( * 33 — *5 ) ” 2 *7 ] ~ 0 .
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However since C is perpendicular to B and H then it is immediately 

obvious from (l.2 0 ) that

(i) * 2 2 “ *31 “ ® (1 .2 1 )

(ii) H . B (*23 “ ^4 ) + H2 ( * 3 3 - *5 ) + 2 * 6 = 0 . (1.22)

( iii) B . H ( * 5 _ *3 3 ) + B2 ( * 4  - *23) + 2 *7 “ 0 * (1.23)

Equation (1.18) can now be simplified to

aij = * 1 6 i3 + Bi *21 + CBi h 3 + Hi Bj ) * 2 2 + Bi cj *23
+ Hi Hj * 3 2  + Hi Cj * 3 3 + Ci Bj * 4  + Ci Hj * 5

+ eijlc %  * 6 + Gijk Hk *7 + ci cj * 8  * (1*24)
After further algebra and the introduction of results (1.22) and 

(1.23) into (1.24) the stress tensor assumes here the canonical 

form
O-ij = *i 6 ij + * 2 Bt Bj + * 3 Hi Hj + * 4  Ct Cj

+ * 5 (Bi Hj + Bj Hi) + * 6 (Bi Cj + Bj C±)

+ * 7 (Hj Ci + Hi Cj) (1.25)

Where *i f 1 < i < 7 , are arbitrary functions of £ which are 

related to the coefficients in the previous analysis but are not 

necessarily identical to them.

Special Case

In the important constitutive model in which the magnetisation 

M is parallel to H we have the constitutive relation B = ptH i.e. B 

and H are parallel.

In this case

(1) IB| = ji |H|

(2) C = B X H = 0 .

Thus equation (1.25) becomes

CTij = *x 6ij + * 2 B± Bj + J L  * 3 Bi Bj + . J L  * 5 Bi Bj (1*26)
J*
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and the general form for the stress tensor in this case is

o’ij = *1 ei] + * 2 Bi Bj (1.27)
where *i and * 2 are functions of p, B and have been defined from 

(1.26) in the obvious way.
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Chapter Two

The Mathematics of Singular Surfaces

Consider a regular surface E(t) which is the common boundary 

of two regions R* and R” in any real space. Let 4>(x,t) be 

a tensor-valued function which is continuous in the interiors of 

R+ and RT~ and which approches definite limit values <*»+ and 4>“ as x 

approches a point x q  on E(t) while remaining within R+ and R“ 

respectively. When <*• is continuous across the surface these two 

values are identical, otherwise there will be a jump across E(t) 

at a surface point x q given by

[$] = $+ - 4*" . (2 .1 )

The quantity [<fr] is clearly a function of position and time t. When 

[<*>] * Or the surface E(t) is said to be singular with respect to *.

In subsequent work, we often encounter [AB] where A and B 

can themselves be discontinuous. Elementary algebra verifies that 

[AB] = A+ [B] + B+ [A] - [A] [B] . (2.2)

This form is particularly useful because A+ and B+ are determined 

from the region into Which the discontinuity is propagating and 

thus they are known quantities.

The theory of singular surfaces can be constructed 

from Hadamard's lemma.

Hadamard's lemma

Let a tensor-valued function 4> be defined and continuously 

differentiable in regions R+ and R“ Which are separated by 

a smooth surface E and let and <t>t ± tend to finite limits

(<t/i)+ ) and («*>"", as E is approched on paths interior

to R+ and R“ respectively, if x = x(s) is a smooth curve on £ and
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<f>+ and <t>~ are differentiable along this path, then

d*®1**' j. dXi_  = (*,i)+ 123: , (2.3)
ds ds
d4> . .  ClXi , .  = (<*>,i) -- - * (2.4)
ds ds

In other words, the theorem of total differentiation holds true 

for the limiting values as £ is approched from one side only.

The motion of surfaces

Consider a family of surfaces given by

x = x(t,ea ) (2.5)

where ea are any surface coordinates. This equation gives the 

location in IR3 of the surface point ea at time t and thus it 

describes the motion of a surface. Specifically ©a may not be 

material coordinates.

The velocity u of the surface point ea is defined by 

axu =
at

(2.6)
e<x = constant.

If ea is eliminated from (2.5), we can obtain a relation of the 

form
f( X, t ) = 0 (2.7)

and on differentiation of (2.7) with respect to time at fixed 6a,

££ + u . Vf := o (2.8)
at

Now n = v f/ 17f I and so we may finally deduce that
flf

u . n = - II / Ivf| , (2.9)
at

This relation effectively tells us that at any point x and time t, 

the normal velocity of the surface un s= u . n is independent of the 

choice of surface coordinates.



suppose we consider two parameterisations

x = x(©2 ,t) , x =-x(v«,t) (2.10)

such that points of constant always move normal to £

8*1i.e. hj.
at eP

ur (2 .11)

Clearly the coordinate representations &P and va are related by 
va - va(0 p#t) and so

at

at

qP at
Xi(v«(©^#t),t)

0/3
= un nA (2 .1 2 )

ax, ava
&P ava at

un nt ( 2 ,13)

av05Now define ua , the coordinate drift velocity/ to be I__ and thus
at eP

we obtain the result

aXi
at

+ ua x1/(X = un n± . ( 2 .14)

Suppose F — F(va ,t) is defined on £ where va = v^ieP,t). We may 

compute the displacement derivative of F with respect to time/ at 

fixed eP i.e. in a direction which is always normal to £ in the 

following way :

FCv^eP.tJ.t) 

av“

8F
at

a
eP at 

aF 
at
5F
at

dP

+ F
at

a (2.15)

Now suppose that \j/(x,t) is a function defined on IR3 and define 

^(^/t) = vp(x(vot/t),t) then the displacement derivative of at 

fixed eP is defined by

8\p a^ + *,i axi
6t eP at X at eP

( 2 .16)

and if we use (2 .1 1 ) then (2.16) becomes



(see Truesdell & Toupin [15]).

Some formulae from the theory of surfaces

Here we list some results concerning surfaces embeded in 

three-dimensional Euclidean space. Let x he a set of coordinates 

describing ffi3 then any surface E c m3 may he parameterised in the 

form x “ x(ua,t) where a takes values 1 and 2. Since ds2 = dx^ dxj_ 

then on E
ds2 - x^#a xi,/3 du0( * (2.18)

We define a ^  = x± t<x xi,/3 3 0 that on E
ds2 = a ^  dua du*3 . (2.19)

The quantities are the components of a symmetric covariant 

tensor called the metric tensor. For the surface E.we must 

introduce another symmetric covariant tensor ba/3 hy the relations

xk,a/3 = nk â/3 *

(2.20)
* * , 0  = - V  *k,a

where , denotes covariant derivative with respect to 0a .

Equations (2.20) are often called the Gauss-Weingarten relations 

and the symmetric tensor ba£ is the curvature tensor for the 

surface E. If n is a unit normal to E then we may also prove that

a0^3 xi#cn xj*j3 ~ ®ij ni 1*3 (2 .2 1 )
(see Eringen & Suhubi [16]) . In order to find the displacement 

derivative of the unit normal to the surface we first differentiate 

equation (2 .1 1 ) with respect to x« obtaining

un,a ” ni#a — - + ni — (xifa) • (2 .2 2 )
at at

Since n^ and Xi#a are perpendicular then
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and consequently equation (2 *2 2 ) becomes

dn± ,_un,a “ ni,oc --- ~ xi,a ---- • (2.24)
at at

If we multiply both sides of equation (2.24) by a05*3 Xj,pi and use 

equations (2 .2 0 ) and (2 .2 1 ), we obtain

a0**3 x-j^p un#a = (Hi nj - fij.]) — i - xj,j3 xi,y — -
at at

(2.25)
Since an^/at = 0 then equation (2.25) becomes

- aaf un ,a = lUi - by? uV x3>(3 (2.26)
at

where we have used the fact that by^ is symmetric. In view of the 

Gauss-Weingarten relation (2.20 )2 and the definition of the 

displacement derivative, we may easily deduce that

—  = “ xi,/3 un,a • (2.27)
fit

This equation relates the displacement derivative of the unit 

normal of the surface to the propagation velocity un .

Geometrical conditions of compatibility

Suppose that 4»+, 4>”, (*#i)+ and (0,*)“ are functions of 

surface coordinates in (2.3) and (2.4), then

*,oc+ “ *, i+ xi,a (2.28)
<t,a = 4>#jL Xir(X . (2.29)

From (2.28) and (2.29), we find that

W , a  = C*f±] xi,a * (2.30)
If both sides of (2.30) are contracted with a x j f£ , then using

(2 .2 1 ), we find that

aa/3 x3//3 [*],« = (fiij - n± nj) [*#i] (2.31)

and thus we have obtained the first order compatibility condition.



Thus equation (2.31) becomes

C<fr,j] = [I>1 0,1] n-5 + a“£> xj>/3 [*],„ . (2.32)

if <t> is continuous across the surface £, equation (2.32) 

reduces to
[^,3 ] = [*,r nr] * (2.33)

If we now replace <J> by in equation (2.32), then it is clear 

that
[*,«) = [nr *,ri] n3 + a«p [*,i3,o *3,(3 • (2-34)

Further from (2.34) we may conclude that

Cni *,ij] = [nr ni *,ri] + a<x0 ai [*,i],a xj,/3 (2.35)
and thus

[♦.ij] = [nr ns *,rs3 "i n3 + a®*5 n-j nr C*,r ],a *1,(3

+ aa|3 C*,i],a *3,0 • (2.36)
In view of (2.32), C^ij] can finally be simplified to the form 

[ * , 13] =  a®*3 <ay8 tocty (4 1 ,6  +  Cn* * , ) c ] ,o ) ( » 3  * 1 , 0  +  “ i  * 3 , 0 )

- a«0 a«y xifP x3,s ([i* ♦,*] b ^  - t * W >

+ [nr ns ^^rsl ni nj • (2.37)
This is the second-order compatibility conditions, (see Truesdell & 

Toupin [15]) .

In particular if 4> is continuous across the surface then 

equation (2.37) reduces to

0,ij] = [nr ns ^rsJ ni «j - [nk 4>#k] Xj/0t x1#p ba^

+ aa^ O, k «k3,a Xi,/3 + n± x-j#j3) . (2.38)

Kinematical conditions of compatibility

Iiet us now evaluate [*], where <t> is the convected derivative of 

given by
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When we use equation (2.17), equation (2.39) becomes 

*$ — __ — Ujj n-j <t#-j + $,-j Vj . (2.40)
8t

If we take the jump of equation (2.40), we obtain

[4] = !_[*] - (un n-j - V3 ) [«(j3 . (2.41)
St

In particular when $ is continuous across £, then using result 

(2.33) equation (2.41) becomes

- (J [nr *,r] (2.42)

where
U - un - Vj nj . (2.43)

*___
Now we wish to evaluate [<&], From equation (2.41)

[*] = f_[*l - (un n-j - Vj) [4,-j] (2.44)
St

where

<*>,j = (—  + <*»,k vk),j
St

= + ^ j k  vk + ^ k  vk,j
st

= *,j + *,* ?k.j . (2.45)
Also, from equation (2,17)

0,j] = f_ [*,3 ] - (un n^ - V*) • (2.46)
St

In particular if * is continuous across £, then using results

(2.38) and (2.43) equation (2.46) becomes

[<t> j] s: - u nj [nr ns ^rsl “ aCt/3 xj,j3 ns vs,a Cnr

- aa^ (U [nr + nj LCnr ^ r l  (2.47)
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Where
«  ) = — ( ) + V® ( ),« • (2.48)

at

If we take the jump of equation (2.45) and use equation (2.47), we 

obtain
4

[*rj] = - u nj [nr ns *,rs] - a Xj//3 ns vB/<x [nr 4»#r]

— a.a@ xj ,/3 (u Cnr <t’,rl),a + nj k[nr **’,r] + C ^ k  vk,j34
( 2 .49)

When (2,49) is taken into (2.44) and (2.42) is used, we find that
ft*
[*] = - L(U Cnr *,r ]) - tr X.[nr 4,r ] - (un n-j - V j ) [4>f]t Vk (3]

+ u2 [nr na *,rs] - ns v« vs ,„ [nr *,r] . (2.50)

Define
F = U [nr ng 4»#rs] - L[nr . (2.51)

Thus (2.50) becomes 
• *
[*3 = - L(U [nr 4>/rl) + u F - (un nj - Vj) Vk ,j]

- ns v« Vs#a [nr *,r] . (2.52) 

When £nr ng 4>7i;s3 is eliminated from (2.47), we obtain

4

[c&#j] = - a«0 Xj#j3 (Q [nr $,r3),a - a0 *3 KjtP ns V8f(X [nr * #r]

- nj F . (2.53)
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Chapter Three

Propagation of mechanical and electromagnetic acceleration waves

The basic equations for a single phase perfectly conducting 

magnetohydrodynamic fluid are

P + P Vi,i = 0 , (3.1)

Bl = V1 (3 Bj - V3(d Bl , (3.2)

P Vi - p fit + a*i/K . (3*3)

In these equations, a superposed dot denotes material time 

differentiation and ,j denotes partial differentiation with 

respect to xj. Also p is the mass density at time t, V*i is the 

velocity field, fi is the specific externally applied body force, 

Bi is the magnetic induction and c^i is the stress tensor, suppose

that the internal energy function \|>* is a function of p and Bi.

Prom Roberts [lj cr̂ i. Hi and p are given by

Ofci = - (p'+ H . B) 6Ki + %  B± , (3.4)

Hi = p _____ , (3.5)
3Bi

P ’ = P2 (3.6)
dp

where H is the magnetic field and p' is pressure.

If = q>*(p,Bi) then it is easily shown that v|/ = \p(p,B) where

B = V(Bi Bi). Thus from (3.5),

Hi = n Bi (3.7)

where
n = —  . (3 .8 )

B 5B

Define p = p' + rt B2 . (3.9)

°ki = - P ®3ci + h B]c Bi • (3.10)
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Equation (3.3) becomes

dp 0Bj

where

= - Pp But + np Bi Bk
ap (3.12)
a°ki = _ Pfi 
<?Bj B

8j ®ik + Bi 8j Bk + h (Bi 6 jk + Bk 5i j )
B

Suppose the perfect fluid occupies a region A of Euclidean

space for airtime. Equations (3.1)-(3*11) are all then assumed to

hold on A x (— 00,00). Further we suppose that p, V^, B^ and f^ are

continuous functions of x,t on A x (- oo,oo) and that there is

a surface E x (- ao,oo), such that for each (x,t) e E x (- 00,00) a

unit normal; n, to E is defined at x, and the speed of E at (x,t)
• • • 

is un in the direction of n. The quantities V^, V^j, B^j, p,

are assumed to be continuous functions of x,t on (A - E) x 

(- 00,00) but may have jump discontinuities across E* Such 

discontinuities are called acceleration waves.

From Hadamard's lemma and the assumed differentiability of p,

V  and B, it follows that (see Truesdell & Toupin [15] and Eringen & 

Suhubi [16]),

tBi,j] = ai nj (3.13)

CP,jl = h nj (3.14)

Evi,j3 - ci nj (3.15)

where

ai - Cnj Bi,j3 (3.16)

b * Cnj P,jl (3.17)

Ci = Vi#j] (3.18)
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For later convenience we note that the vectors a^ and c^ can be 

rewritten in terms of normal and tangential components using the 

decompos ition

ai - an ni + a« xi/0t
(3.19)

C-i =* cn n± + c<* xi#a

where

an ai

aoc = aa£ ai K±fp

cn = cj. n±
(3.2 0 )

ca = a0 *3 Ci xi//3 

Since B is solenoidal then from equation (3.13)

0 = CBi,i3 = ai ni (3.21)

i.e. an = o * (3.22)
Hence for an acceleration wave, the magnetic discontinuity is 

always t ransve rse.

On taking the jump of equations (3.1), (3.2) and (3.11) over £,

•
[p] + P [Vl.j] = 0 - (3.23)

CBi] = Bj - [Vj,j] Bt , (3.24)

P [Vil - CP,kl - !2Ei [Bj,K ] = 0 . (3.25)
dp 9Bj

From chapter two we have already shown that 
«

[Bi] = - CJ ai , (3.26)

[p] = - CJ b , (3.27)

[Vi] - - CJ Ci (3.28)

When we take (3.13)-(3.15) into (3.23)-(3.25) using (3.26),(3.27)
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and (3.28), we obtain

- U b  + p c n - o  , (3.29)

— CJ a^ = Ci Bn — cn Bi , (3.30)

— p O cj - - a<T)ci a-j nfe = 0 . (3.31)
dp 3B-j

l»et us initially observe that (3.30) indicates that an = O i.e. it 

is consistent witb the fact that div B = O.

By elimination of Cj_ from equations (3.29),(3.30) and (3,31), it 

can be shown that,

a-j (Bn 9crkl n^ - p U2 6 i;j) + b (Bn n^ gf̂ cl + u2 B±) = 0 . (3.32) 
8 Bj dp

When equation (3.32) is contracted with n^ and B^ we obtain 

respectively

b (u2 - pp + tip Bn2 ) + n ( ?  Bn2 - !?) = 0 (3.33)
B B

b (U2 B2 - Pp Bn 2 + tip B2 Bjj2 )

+ fl (n Bn2 + TIB Bn2 B - p U2 - !! Bn2 ) = 0 (3.34)
B

where

£2 “ Sij Bj . (3 • 35 )

Equations (3.33) and (3.34) are required to have b and £2 non-zero 

and so

u2 - Pp + rip Bn2 2? Bn2 - 2?
B B

U2 B2 - Pp Bn2 t T)p B2 Bn2 I] Bn2 + Tig Bn2 B - p U2 - 2  Bn2
B

= 0

(3.36)

From (3.36) we find a fast wave and a slow wave whose speeds are 

determined by the quartic
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p u4 + uz [<p rip - B) Bn 2 - (P Pp + 55 Bj2 )]
B

+ BnZ CPp <B + —  Bj.2 ) - T)p <n Bn 2 + Bj.2 )] = O.
B B

(3.37)

This is the same equation derived by Straughan [3], who showed that 

the condition necessary for the wavespeeds to be positive is just 

the stability condition of Roberts [1], We shall assume that (3.37) 

yields two real wavespeeds.

Case (1)

CJ satisfies equation (3.36)

In this case we find a fast wave and a slow wave whose speeds 

are determined by the quartic equation (3.37). Here all the 

primitive quantities have discontinuous derivatives. Also b and Cl 

are linearly related.

Case (2)

U does not satisfy equation (3.36)

In this case

(i) b - 0 , i.e. first derivatives of density are continuous

across the surface £.

(ii) 0 = 0 ,  i.e. a is normal to the plane containing n and B.

(iii) cn = 0 , i.e. the normal acceleration components are 

continuous across £.

The corresponding discontinuity equations are

(3.38)

Bn ci + u ai = 0 (3.39)

(3.40)
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From (3.39) and (3.40), we obtain

U2 = J L  Bn 2 . (3.41)
p

This result was also obtained by Straughan [3] and determines the 

velocity of Alfven waves.
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Chapter Four

Ray Equations

Suppose that the initial position of the acceleration 
wavefront is

Xi = Xi<o,e<x) (4.1)

where ea are any acceptable pair of surface coordinates, we want 

to determine the location at time t of £, where £ is a wavefront 

advancing with a known normal speed un and initially starting on 
the surface (4.1).

Theorem

The motion of any point .Xj^t,©01) on the singular surface is 

a solution of the ordinary differential equations

dxj. _ aun 
dt an-?

(4.2)

= (nt nj - 6ij) (4.3)
dt axj

satisfying the initial conditions

Xi = xi(o,©«) , ni = ni(o,©a ) (4.4)

where n^(t,©a ) is the normal to the singular surface at x^(t,©a )

and ni(o,©0() is the normal to the initial surface at Xj/o,©**)

(see varley & Cumberbatch [8 ]).
Proof

To establish equations (4.2) and (4.3) let \p(x,t) be any 

continuous function whose first order partial derivatives are 

continuous and such that

*l/(x,t) = o (4.5)

is the acceleration wavefront under consideration and dty/dt ^ 0  

in some neighbourhood of \p = 0 , suppose that n(x,t) is the unit 

normal to the surface *Kx,t) = constant, in its direction of
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propagation, and un is its speed.

If we differentiate equation (4.5) with respect to time, we obtain

!^ + ! L ! ! 2 : = o . (4.6)
at dK± at

From equation (2.11), it follows that at fixed ©a , 

dvk avLfJ. + j L u n ni = o (4.7)
at axi

thus
^  + |V4M un = o (4.8)

i.e. un = - ^  / |VkJi| . (4.9)

Now n^ = / |Vvi>l and if we use equation (4.9), this become

. ( 4 . 1 0 )
un >l»t

Now suppose that
= \|>(x,t) = constant (4.11)

where t = t(x), then if we differentiate (4.11) with respect to 

time we obtain
<1», i  +  =  o . ( 4 . 1 2 )

dxx

Thus on using (4,12), equation (4.10) yields

5i = ! L .  <4.i3)
Un SKj_

Let us suppose that un = un( n, x, t) has the property that for any 

scalar C
c un = un(c n, x,t) (4.14)

i.e. un is homogenous of degree one in n. In particular if C = Un"-1 

then
1 = u n ( _ ! L ,  x ,  t )  . ( 4 . 1 5 )

u,n
After differentiating (4.15) with respect to and using result 

(4.13),



From (4.13)

- 26 -

a(!U)
gun un + dun + ni aun = 0 #
a(l̂ i) dK± dK± Un at

un

a t  a n-i a rin= _  (_2 ) = ( 1 )  . (4

(4,

ax^axj axi un axj un 

Thus along any curve x = x(s) given by

a*i = gun
dS a(^)

«n
we can show from (4,16)-(4.18) that

L<2±) = - ( ^  + !!i !^) (4 .
ds un axi un at

along such a curve t = t(s) varies so that

dt = at dx-t = n± aun = x 
ds axi ds un

un
In terms of un(n, x, t) equations (4.18) and (4.20) imply that 

dxi __ aun (4.
dt an^

which is the first of the required equations 

Further from (4.19)

d .m. . aun , n± aun _un —  (_±) = - (_Ei + _± _J!) (4,
dt un ax^ un at

and hence it follows that

dni  =  n i  ( dun _  ^ n } _  f^ n  . ( 4(
dt un dt dt ax-L

However, n is a unit vector and so from (4.23) we may conclude

dun aun , aun " = __  + un n^  “ (4,
dt at dx^

from which we may eventually deduce the second of our required 

equations, namely

.16)

17)

18)

19)

20)

21)

22)

23)

that

24)
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flni , ~ 5unA* = / h • h - — R t - \ 11= <Qi tlj - 6ij) (4.25)
dt ax-j

Special Case

Ray Equations For un = Vn + CJ(xfBn)

Here we suppose that un = V± + U(x,Bi ni). In order to 

make un homogeneous of degree one as is required toy the atoove 

theorem, we rewrite un in the form

un =  V i  n t  +  u (x ,  B i  n i  V f n r  nr ) . ( 4 .2 6 )
^(nr nr )

When equation (4.2 6 ) for un is differentiated with respect to n^, 

we produce
= VjL + u( 2n± ) +

5ni 2 /(nr nr)
v au a , B± n± v + V(nr nr ) ---------(— ±_±__)
dBn ani /(nr nr )

vi t U ni + [ Bi - Bn ni 1
dBn V(nr nr ) (V(nT nr ))3

Vi + O nA + [Bi - Bn ni]
SBn

However B^ - Bn n^ = Ba Xi/CX and so the first ray equation in this 

case finally toecomes

* i  =  V i  +  U n i  +  ^L. Ba  X i , a  . ( 4 . 2 7 )
3 %

Differentiation along rays

For any function o(x,t)

do ao . ao dX4 /Jt v
  =__ + _________±  . ( 4 . 2 8 )
dt at axi dt

When the value of Xj_ is substituted in ( 4 . 2 8 ) ,  we obtain 

do ao au  =   + 0 i ( V i  +  U lli f ___ Ba X i a ) . ( 4 . 2 9 )
d t  s t  1 s iT  1,an



If we introduce the definition

- ff! + V« 0/tx (4.30)
8t

then equation (4.29) becomes

do au w_  = L(O) + _  B<* 0#a (4.31)
dt aBn

Ray equations for Alfven waves

In this case U2 = 11 Bn 2 and hence the ray equations become

= Vi + V(r)/p) Bi (4.32)
ani

ni — (ni nj ®ij) nr (vr * V(h/p) ®r),j * (4.33)

Also if o is any function defined along the ray then we may show
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Chapter Five

The amplitude equations

in this chapter we derive the amplitude equations of the 

electromagnetic acceleration wave. When equations (3.1), (3.2) 

(3.11) are differentiated materially with respect to time, we 

obtain

P + P Vi,i 4 p virl = 0 (S

B± ~ vi,3 Bj 4 V1(i Bj — V-j, j Bi — V-j,] Bi , (5

p V± + p Vi - p £± - p fi - p,]c - P,k p
ap ap2

- O T, b- 7  „ a?aki I pP,k B 3     B3 ,k "------  P b3,KaBj ap aBj apaB j

a2ovi * _ _ . _-  Br Bj/Jc = o . (5
aBj aBr

If we take jumps of equations (5.1), (5.2) and (5.3) then we 

produce

CP] 4  [p  V i , ! ]  + P [ V i , i ]  =  0 (S

[Bi] — [Vi,j B-j] 4 Bj [Vi,j] - Bi [Vj,j] — [Vj,j Bi] (5

• * « • #   * 2
P [Vi] 4 [p Vi] - fi [p] - _Z*i [p,k ] - [p,3c p] _ 2 s i

ap ap2

- [p ,jc b 3] f!f*i - £f*i - [p Bj,x]
aBjap aBj apaBj

_ a2qkl [Br B3,k ] = 0 . (5

and

.i)

.2 )

*3)

*4)

.5)
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From chapter two we "have already shown that 
* •
[Bi] = - L(U ai) + U F± + U ai cn - U c* (Bi(k)+ , (5.7)

[Bi,}] = - Fi n-) - a0*5 (O ai)((3 x3(0( - a± n* (vk(j)+ , (5.8)

« %
[ p ]  = U E - L(U b) f U D C „ - U CS ( p , s ) +  ' (5*9)

[p,kl = - E n* - b ns (Vg,k )+ - a“0 (a b)rP ■ (s.io)

» +
[ V i ]  = U S i  - L(U C i )  + U Cn  C i - U CS (V i / S )+  , (5.11)

[vi,j] " ■" si nj “ a0t̂  (u ci),/3 Kj,a ” ci ns (vs,j)+ • (5.12)

With the aid of these expressions, the jump equations (5.4),

(5.5) and (5.6) become

U E - p S n + X = 0  ( 5 . 1 3 )

(J F i  +  Bn S i  -  Sn B i  +  Y i  =  0 ( 5 . 1 4 )

p  v S i  +  E njc acr,ci +  P j njc acrk l +  z ± =  o ( 5 . 1 5 )
dp c?B-j

where

X = - Z.(U b) 4- 2 u b cn - U cs (p#s)+ - p q  ns (VSfi)+

- 2 U b (Vi#i)+ - p a®/3 (U C i )#/3 xi#a , (5.16)

Yi - - L(U a± ) f 2 cn u aA - Bi Cj ns (Vs#j)+ - u cs (Bi/S)+ 

+ U aj (Vi,})-*- - 2 U aA (Vj^)-*- + cn Bj (Vi,j)+

- Bi a«B (u C j )//3 xj/<x t B^ (U C i )//3 , (5.17)
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zi = - P L ( u ci) + a«B (u b ) /i3 x * ^  - u  b 2 nk
ap ap2

- 2 U b aj n* g2<rki + aaB (U aj)fj3 JCk,a f2Si
apaB-j aB-j

- J _  u b (Bj,*)* + u ar (Bj,*)*
p aBj aBj aBr

- a a r aj nk -f U b (Bj/k)+ f!f*i
aBjaBr apaBj

“ (P,*:)4* <—  u b aqjcl - u b a2(Jm  - u a-j a2qkl)
p ap ap2 aBjap

+  <v s ,s > + <P U "lc +  1 3 ^ 6 3  f ! 2 E i +  p u  O i
ap2 aBjdp

, _ 9̂ CT|(i 1 T, XJ-+ Sj nj£ B i    + p Sj  ) — p U  Cg (Vj^g)
aB-jaBr apaBi

+ b ns (Vs,k )+ - b njc Ba (Vj/a)+
ap aBjap

+ aj nr (Vi^)"*" - aj n^ Bs (Vr#g)‘*' —
aBj aBjasr

(5.18)

Equations (5.13), (5.14) and (5.15) are three differential

equations to be solved for the six unknown quantities b, ai and

Ci* To do this, however, we first need to remove the terms 

involving E, F± and s^. It can be shown with the aid of (3.12) that 

E (CJ2 + Tip Bn 2 - Pp) Bi + E Pp Ba xlf0( + Fi (n Bn 2 - p U2 )

+ Fn Bn ri Bi + Bn fi* (TlB - hi 5?) = Qi (5.19)
B B

where
Qi = Bn Zi - p a Yi + U X Bi (5.20)

fi* = Fi Bi . (5.21)



32

Case (1)

Here U satisfies equation (3.36).

Define
C = 0Z - Pp + Tip B„2 (5.22)

£ « p U2 - T) Bn2 - 5? Bj2 (5.23)
B

M = —  (TIB Bn2 “ pB) • (5.24)
B

From (3.37) it is clear that

C £ + p pp Bj2 = o (5.25)

When equation (5.19) is contracted with nj[ and we obtain

(5.27)

If we eliminate ri* from (5.26) and (5.27) and use equation (5.25), 

we find that

- Bi2 (U2 + T1p Bn2 )[Qn - P„ (2 11 Bn 2 - p tj2 )]

+ C Bn [Q“ Ba + Bn F„ (T| Bn 2 - n Bj.2 - p C2 )] = 0. (5.28)

This equation describes the amplitude of the acceleration wave.

It is clear that the amplitude equation contains b, a-̂  and c-̂  

and their derivatives. However we can eliminate both and Cj_ to 

obtain a partial differential equation for b alone as follows

(i) From equation (3.29) we see that cn = Ub/p.

(ii) Since an = 0, equation (3.30) and (3.31) have form

respectively

i E + IX tl* = L. [ Qn + Fn (p O2 - 2 T] Bp2 )] , (5.
»n

(5.26)

CJ a<x + Bn ca - Ba V b (5.29)
P

p cj c& x±'P + n* aP *j#/3 = - p u cn ni - b nk 3CTki
dp

(5.30 )
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When equation (5.30) is multiplied by a0̂  *±ty ; we obtain

p u c« +■ n* aP a«y xi#y = - b nK a«T xi#y ao^i
SB-j 3p

(5.31)
However,

nk a*3 a0̂  Xi#y acricl = Bn afi B^ Ba 2? + ri Bn aa (5.32)
9B-j B

thus equation (5,31) becomes

p u ca + Bn a*3 Bp Ba !!? + ti Bn aa - - b nfc a0̂  xi/y a°̂ ci .
B dp

(5.33)
Now (5.29) and (5.33) represent four equations in the four unknowns 

cl' ^2 , aj and a2 * Thus if the determinant of equations (5.29) and 

(5.33) is non-zero then we must solve these equations for a^, a2 , 

and C£ in terms of b. The required determinant is

u

o

o

u

T| Bn + Bn BjB1 15 Bn B1 B2 !5
B B

Bn
0

p u

Bn B2 r>B Tj Bn + Bn B2B2 O
B

O

Bn

0

p u
(5.34)

and after further algebra, this determinant has value

(p U2 - T) Bn2 )(P U2 -n Bn2 - 15 Bn 2 Ba B“ ) .
B

(5.35)

We require expression (5.35) to be non-zero. Since we are dealing 

with case (1 ) in which p U2 - h Bn 2 # O then we require to show 

that
U2 = !!lL (n + U? Bĵ 2 ) (5.36)

P B
cannot be a solution of equation (3.37). suppose the contrary then
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B|?!..Bj-Z 116 [H5 Bn2 Bi2 + (p Tip + T|) B„2 -  p  Sp - ! ?  Bi2 ]
B p B B

+  B i 2 a<P ' pT|> s  o
p b a(p,B)

Bn Bi... [5?— B.n. B —  + *1b Bn2 (Pn)p - P Pp riB - TJB b ± 2 5* 
B p B B

+ Pp (pti)b ” (pn)p Pb3 s 0 

Bn2 B l2 «.2 a. * « 2
p B2

[riB Bj/ + B (pti)pK^B Bn “ p b 3 * 0

B 2 B .2- J! L_ [riB Bx2 + B (prj)p]2 = 0 (5.37)
p B2

where we have used the fact that Bn 2 - PB = - [173 B ^ 2 f B (pri)p] 

We may show that we cannot find T]( p,B) such that p*, p*p are always 

non-negative and for which 173 B^ 2 + B (prj)p = 0 and hence we may 

conclude that determinant (5,34) is non-singular.

We can determine the form of the amplitude equation (5.28), 

hut instead we shall determine the coefficients of L(b), b rp, b2, 

b baa , b (VS(S)+, b (Vr,s )+, b (p,*)* and b.

Coefficient of I.(b) in amplitude equation is

- 2 O2 Bn Bi2 (£ + P £> • (5.38)

Coefficient of h rp in amplitude equation is

- Bi2 (U2 + T)p Bn2 ) 0 B0 ?£ tl- (O2 “ »1p Bq2 ) + T1 Bn2 - p U2
£ Pp

- !5 Bn 2 Bi2] + C u %  #  !e [2 p J2 B„ - Z n Bn3 - 1 % 1  Bi2 
B £

“ 5  Bn Bi4 + {£_ (u2 - Tip Bn2 ) - p CJ2}]. (5.39)
B Bn Po
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After a long calculation it can be shown that

Coefficients of b « au « , _______ §fS = __ W 3 . (5.40)
Coefficents of L(b) aBn 

If we use equation (4.31), then the amplitude equation has form

—  + Al <vs,s)+ b + Ars (vr,s)+ b + & 3 ba“ b + Ak (p,k )+ b 
dt

+ As b + Ae b 2 = 0 (5.41)

where

K AL ss [<£ Bn Ba Xif0t - Bx2 nt (CJ2 + Tip Bn2 )] [2 U2 B±

- p Bn njc  E  - Bn nk B-j  E  - P Bn nk Ba x-jfOC _P  E
ap2 dpdBj £ apaBj

- p U2 Bn ~ P PP* Bi + PP n±} - 2 pu2 fp Ba Xir0C
P Bn £ £ £

- Bn bfc Br B“ X3,0( ] , (5.42)
£ 9Bj9Br

X »rs = [C B„ B« X i , a  - Bi2 ni (U2 + r)p Bn2 )] [pa2 B« *£ xs,a 6ir
£

t U2 Bs 6ir + Bn nk Bs + Bn nk Bg B“ Xj>a
dpdBr £ 3Bj3Br

- Bn nr 6(Tsl -t p Bn U2 (U  ~ p FP ) Bg + PP ng) 8ir 
ap p Bn i £

- Bn nr B« Xj/£X ^  - [Bx2 <u2 + Tip Bn2 )
£ SBj

<2 T1 Bn 2 -p CJ2 ) + c Bn2 (n Bn 2 - T1 Bx2

- p CJ2 )] (B<* Xg,a nr *£) , (5.43)
£

K A3 = (Bn nj B*3 3C|c,j3 DT ̂  — ) [Bi2 Hi (CJ2 + r)p Bn2 )
£ SB-j

- £ Bn Ba Xi/0(] , (5.44)
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* A* = [£ Bn B« Xira - Bx2 IU (U2 + I7p Bn2 )] f35i
p ap

+■ u3 Bi (( £ ~ P Pp) Bk 4 Pp njg) - U Bn B<* Xj/Qt *£ d2<J*i 
P  £ B n  £ £ apaBj

» CJ Bn f2qki] , (5.45)
ap2

X  A5 = C£ Bn B“ Xi / 0 t  -  Bi2 I l i  (U 2 +  np Bn2 )] [p Bn L [U 2  £ p J 5
£

+■ u  ~ p Pp) Bi)] - B„ a«P **,„ (O By>,p Xj,y
P £ B„ £ 3Bj

- Bp a«0 O fp Xfc,,, f5Ei - U B„ B« Xr,„ (Bj/k)+ f p
ap £ aBjaB];.

+ J L  u Bn (Bj v)f aq)ci + p U Bp {U2 ~ P PP* Bi PPn±} fl
P aBj p Bn £ £

2
- W Bn <Bj/k)+ f_25i - p O £.(5.5? B« Xi>a) + O Bi L(D) 

dpdBj £

-  P  O3 (Bi(S)+ t<f - p Pp) Bs + pp "sn
P Bn £ £

+ [Bi2 <a2 + rip Bn 2 )(2 n Bn2 - P a2 ) + c b„ 2 <n b„ 2

-  T1 B i2 -  p  U2 ) ]  [U n± ( B i ,g ) +  ( ( ~  P PP ) Bg + PP n 3 }
P Bn £ £

- *  <£>.* + B* ni,p o [<1 ~ p pp> Bi +
U p  P Bn £ ' £

4 52 a«p [U2 <e - p pp) Bo,}^ - B« Xi,a L(ni) !£] , 
u p Bn £ £

(5.46)
2

X  * 6  = [£  Bn B« Xi,a  -  B i2 ni (U 2 + rip Bn2 ) ]  [a  Bn nk
3p2

pp+ 2 U Bn t *  B« X j , a  5? !_5Ei - a3 Bi + 2  a3 B« Xt , a
£ epaBj p £

+ U Bn I* B« xr ,0  BP X j , p  £^ki_ j ( 5 . 4 7 )
£ 2 aBjaBr
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and where

K = - 2 U2 Bn Bx2 ?£ (£ + p C) . (5.48)
£

Thus the solution of the amplitude equation (5.41) has form

= bp exp(- Jpb g dt)________  (5 .4 9 )
1 + ho So* & 6 exp(- Sq & a ds) dt

Where
« = (VS ,S )+ + Ars (Vr,s )+ + A3 ba“ + Ak (p,k >+ + As

Case (2)

Here we are considering the situation of Alfven waves in which

case
Jb - n = 0 , U2 = 11 Bn2 .

P
Thus in this case equation (5.19) becomes

E (U 2  +  T)p  B„ 2 - Pp ) Bj + E Pp  B« Xi( 0 (  +  T1 F n Bn BA

4 a* Bi (I® B„ 2 - 5*) + 55 0* B« Xi(a = Qi . (5.50)
B B B

When equation (5.50) is contracted with n^, we obtain

Cn = (E  c +  H  t l *  +  T1 Fn  Bn 2 ) Bn . ( 5 . 5 1 )

If ( is now eliminated between equations (5.50) and (5.51) then

Qi = Qn —  + (E Pp + SI* 5?) B<* xi/0t (5.52)
Bn B

from which we can readily deduce that

s0t = QP_BpB« _ ( 5 53)
Bx2

i.e. Qa and BCT are parallel. This equation describes the amplitude 

of the Alfven wave.

When (5.16), (5.17) and (5.18) is taken into (5.20), we obtain
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Qi - P ®n M U  Ci) - p U L(ai) - Bn aa0 Xkf(X (U aj)#J
3Bj

2- p U2 cs (BifS)+ + Bn U ar 15EL. (a3 nk - (Bjjk)+)
3Bj0Bp

+ p O Bf> (U Ci)/P + (p,k )+ [U2 Bi cjt - B„ D Sj 8 °ki]
dpd Bj

“ <vs,s)+ CBn aj nk Br — + P Bn nk aj —
3B j 3Br dpdBj

+ P Bn a Ci + 2 p u2 a±] + (Vr,k )+ [p U Bn C* 6iir

~ Bn aj nr _^EE: + Bn aj ns Bk ------- + p U2 ak 8ir]
3Bj 3Bj3Br

(5.54)

It is clear that the amplitude equation (5.53) contains ai 

and Ci and their derivatives. However Ci can be eliminated to 

obtain a partial differential equation for a^ alone, Thus the 

amplitude equation has form

dial _ U lal .,t . H B O B j  %  |a| Bj/k+    exrk ejpq nr np Bk Bq + ----- ---------- — —
d t  Bn Bx2 2 B 17 Bn

+ U Bk lal np (p,»)+ + 1*1 (Vs s)+ (2 n + B rig + p  rip)
2 r) Bn 2 T)

a Br Sk hB (Vr,k)+ = o (5.55)
2 B T| 

where
a = |a| A ti U Bn / p)

and
|a| - a Bx .

Thus the solution of the amplitude equation (5.55) has form

|a| = laol exp(So^ a dt) (5.56)

where the form of a is obvious from (5.55) .
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Special Case t} = constant

In this event we can see from (3,8) that vp must have form

T) B2 ip =  __  + f(p) . (5.57)
2 p

If equation (5.57) is differentiated with respect to p, we obtain

B2 »= “ ----  T] + f (p ) . (5.58)
2 p2

From equations (3.6), (3.9) and (5.58) we find that

= 1 B 2 +P = '* + £'(P) P2 • (5.59)
2

Thus
Pp = (P2 fp)p (5.60)

which is a function of p only and

PB = t) B (5.61)

We shall consider the situation in which the fluid ahead of the

wavefront is at rest and at constant density.

Case(1)

Here u satisfies the quartic equation (3.37) which in this 

case has form

p CJ4  - U2 (p Pp + T) B2) + T] Pp Bn2 = O (5.62)

and the amplitude equation has form 

dc o  + c c c + j 3 c 2 = 0 (5.63)
dt

where
e =  -  JL vr p t j Z  ~  B r 2  n r2 p ° 2 < p 2  -  pp> + P a uD + 2 ] ,

2 pu4 - n Pp Bn2 pu4 - n Pp B„:
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1  .    Uz (D D2L(U B„) - L(Bi) °1 - 1 %  Bj) + B<*0,CT
2 O Bn 2 Bn (p O4 - I) Pp Bn2) 2 B„

, U3 (p a2 ni - n  Bn Bi) (p U2 n j  -  n  Bn B3 )

-  ^  <P 04  ^  PP  Bn 2 ) I-B2  ( P  Pz -  T| Bn2 ) l

4 o Bn (p u2 - ^ Bn2 ) p u4  - n Pp Bn2

p u3 (P o2 - n Bj,2 ) a2 B® .
- - - - - - - - - - - - - - - - - - - - - - - - - - -  V - - - - - - - - - - - - - - - ) r cx
2 Bn (p U4  - rj Pp Bn2 ) p U2 - n Bn 2

_ ______  P  Tl bq]B Bq ^  u5________
2 (p D2 - ri Bn2 ) (p D4  - T) Pp Bn2 )

In the expression for (3 we have already observed that

p UZ - T) Bn 2 _ U2 B j_2 > 0 .

Further,
p U4 - T) Pp Bn 2 U 4  Bj 2̂ + Bn2 <D2 - Pp)2 

2 p U2 <U2 - Pp) = 2 p D2 T)' Bj.2 > O
p  U4  -  n  Pp Bn2 r j2 Bn2 Bx2 + ( P  U2 -  n  Bn2)2 

and since we would anticipate that Dp is also positive, then we 

expect p to be negative for any real material.

The solution of the amplitude equation (5.63) will be

C - CQ eXP(~ -fo* « at> (5.64)
1 + Cq So ** 3 exp(- Sq s a ds) dt

(i) if cq < o, then since (3 < Q

1 +  c q  J o *  (3 exp(- So3 a  ds) dt 
is always positive and hence c is never infinite. In fact c 

is always negative. Also c q  < o implies that b < o , i.e. p 

is decreasing which means that we axe moving from a low 

pressure region to a region of constant pressure.

(ii) If cq > o, then 1 + cq Jo*1 P foB « ds) dt may or may
not be zero depending perhapes on the size of cq
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case(2)

Here we axe considering the Alfven wave situation in which

case
Jb = n = 0 , p U2 = rj Bn2 .

The amplitude equation in this case has form

—---!---- “ —  ̂u eirs ejpq nr np Bs Bq (®i,j)+ (5.65)
dt Bj.2

and the solution will be

U tat — Uq I ao I «fo* ■ eirs ®jpq ^r ap Bs Bq (Bi,j)*)
Bx2

(5.66)
Suppose that A  = n x B, then (5.65) becomes

a lal = a0 |aol expUo* VW p) Ai Aj <B1;j)+) . (5.67)
Bj2

If B = f(p) (-y, x, 0) and n = (n1# n%, 0), then Ax = A2 = 0 and

u |a| = u0 |aol (5.68)

which means that the jump in acceleration is constant.
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Chapter Six

Examples

Propagation of a wavefront into a region at rest and at constant 

density.

Here the ray equations has the form

Xi = U ni + --- B<* KXf<x
(6 .1 )

ni - (ni nj ” 6ij)
dKj

where
U = U(B,Bn ) .

Firstly we discuss the propagation of a wavefront into a region of 

constant magnetic field. We may take B = (B,0,0) without loss of 

generality. From (6.1)z we may deduce that n^ = constant on a ray 

and thus Bn is also constant on the ray. Further au/3Bn and 

B°c xi,a = Bi “ Bn ni are constants. Thus the ray equation (6.1)^ 
may be integrated to obtain

atr „Xj. = {U n± + ___ (B± - Bn n± )} t + Xi(0,ea ). (6.2)
5Bn

Specifically, if U is homogeneous of degree one in Bn then 

Bn au/3Bn = U and therefore the surface described by (6.2) assumes

the simplified form
Xi = fl?  B± t + X^O,©0*) . (6.3)

3Bn

The Alfven situation is a special case of (6.2) where CJ is linear 

in Bn and acj/9Bn = /(n/p).
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(a) Propagation of a plane wave with normal direction n

Here we suppose that the initial profile is a plane wave with 

equation X . n = a then from (6.2) we have

x  . n = a + U t . (6.4)

i.e. the final surface is a plane wave parallel to the original 

surface and propagating with speed CJ( B, Bn ).

(b) Propagation of a cylindrical wave

In this section we suppose that the initial wavefront is the 

surface of the cylinder

x(o,ea ) = (Rcose,Rsine,z) .

The unit normal to this cylinder is n(o,ea ) = (cose,sine,0) and 

thus the location of the singular surface at time t is readily seen 

from (6.2) to be

etJx = (u — Bn ___ ) t (cose,sine,o) +  t (b ,o ,o )
3Bn 9Bn

+ (Rcose,Rsine,Z) . (6.5)

Equation (6.5) has component form given by

. dV . . _ , , _ dU , _ _x - (CJ - Bq  ___ ) t cose + t B ___ + R cose ,
9Bn 9Bn

9Uy = (CJ — Bn ___ ) t sine + R sine , (6.6)
0Bn

z = z

In order to find the cartesian equation of the singular surface at 

time t > 0, it is necessary to eliminate e from (6.6) bearing in 

mind that Bn = B cose .
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<c) Propagation of a spherical wave

Here we suppose that the initial wavefront is the surface of 

the sphere

x(0,ea ) = (R sine cosct>,R sine sin<t>,R cose). (6.7) 

The unit normal to this sphere is

n = (sine cos4>,sine sinc|>,cose) 

and thus the location of the singular surface at time t can he 

shown to be

aux = (CJ - Bn ___) t (sine cos<t>,sine sin<t>,cose)
dBn

au+ ___ t (B,o,o) + (R sine cos$,R sine sin<t>,R cose).
3Bn

(6.8)
In component form

9U 9Ux = (U — Bn ___ ) t sine cos<t> + ___ t B + R sine cos4> ,
dBti

auy = (CJ — Bn ___) t sxne sin<t> + R sine sin4» , (6.9)
aBn

duz = (u _ Bn ___) t cose + r  cose
aBn

where Bn = B sine cos$ .

Alfven wave propagation

Here the ray equation has the form described by (6.3) where CJ 

is linear in Bn and aCJ/aBn = V(r\/p) .

Propagation of a cylindrical and spherical wave

for the cylindrical initial surface we have 

x = /(h/p) B t + R cose ,

y - R sine , (6.10)
Z  BS z
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If e is partially eliminated between (6 .1 0 )1 ^ 2 then

(x - B t ✓(ri/p))2 + y2 « R2 (6.11)

and in the special case in which rj a constant then we have a 

cylinder radius R, centre (B t /(rj/p),0).

Similarly for the initial spherical profile (6.7) we may show that 

X as /(ri/p) B t + R sine cos<J> ,

y = R sine sin$ , (6 .1 2 )

z = r cose .

If e is partially eliminated between (6.12)j 2 then

(x - V(n/p) B t)2 4- y2 + z2 = R2 . (6.13)

and in the special case in which rj a constant then we have a sphere 

radius R, centre (B t y(r|/p)/0/0 ).

Cylindrical magnetic fields

Let us assume that the magnetic field has form

B = f(p) <-y,x,o) , p = /(x2 + y2 > (6.14)

which, we observe in passing, satisfies div B = 0.

If we define g(p) = Y(r\/p)f then equation (6 .1 ) 1 Incomes

xi = g(p) Bi . (6.15)

In component form

x = - h(p) y

y = h(p) x , (6.16)

«
z = o

where h(p) = f(p) g(p).

From (6 .1 6 )3 ^ 2  we find that 
* •

x x + y y = 0 (6.17)
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which implies that

x2 + y2 = p2 = po2 (6

i.e. p = Po(©) . (6

Also

fL(JL> = sec2( e) ^  ^ ^ x = h sec2( &)
dt x dt x x2

(6

and so

e = h . (6

From equation (6.19) and (6,21) we may deduce that 

x = p o (©) cos(© + h(p0(©)) t)
<©y = Po(©) sin(e + h(po(9 )) t) .

In figures 1 and 2 , the locus (6 .2 2 ) is sketched when f(p) = 1 

for initial profiles

<i) Po - 2 cose # (2 ) po = 2 + cose .
In figures 3 and 4, we sketch (6.22) when f(p) = l/p2 and the 

initial profiles are

(3) po = - sece , tt/ 2  < e < 3rr/2 ,

(4) Po - cose + sine + -/[(cose + sine)2 + 14]

A conservation property of Alfven waves

Suppose that rj = constant , B - (Bx , By, 0). If A is the 

closed area bounded by a wavefront then

Area = I x de . (6-I.3A de

If (6.23) is differentiated with respect to t # then we obtain

d (Area)= f (x ̂  + x ̂ )de . (6
Jdt J dA de de

.18)

.19)

.20)

.21)

.22)

and

.23)

.24)
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On using (6.15) equation (6.24) becomes 

d  (Area) = f g Bjj ^  + x By) de  ̂ (6.25)
dt J 3A de deI

After further algebra and the use of Green*s theorm, we obtain

f f  < —JJa  ax
fL (Area) = g ff (9Bx + ff?) dx dy (6.26)
dt JJa  ax ay

and since B is solenoidal equation (6.26) becomes

fL (Area) = 0 (6.27)
dt

i.e. The area enclosed by the Alfven wave is conserved although the 

shape may vary.
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Figure 2
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