On the Complex Cobordism of Flag

Varieties Associated to Loop Groups

Cenap Ozel
Authoi‘ address:

UNIVERSITY OF GLASGOW, DEPT. OF MATHEMATICS, GLASGOW G12 8QW




ProQuest Number: 13834235

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 13834235

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346



(GLASGOW UNIVERSITY
LIBRARY

N7 (wpb Q) W’g
LIBRAR®




A thesis presented to the
University of Glasgow
Faculty of Science
for the degree of
Doctor of Philosophy
December 1997

© C. Ozel




Acknowledgment
Summary
Chapter 1. The Schubert Calculus and Cohomology of the Flag Space G/B for a

1.
2.

Contents

Ka¢-Moody Group &G

Schubert cells and integral cohomology of K/T for a compact Lie group K.

Differential operators, Lie algebra cohomology and generalized Schubert

cocycles.

Chapter 2. Stratification of the homogeneous space LG/T, Birkhoff-Bruhat

N oo oo o

Decompositions and Grassmannian models
Introduction. |
The Grassmannian model of Hilbert space.
The stratification of Gr(H) and the Pliicker embedding.
The Birkhoff - Bruhat factorization theorems.
The Grassmannian model for the based loop space QU,.
The stratification of Gr{™.
The Grassmannian model for QG where GG is a compact semi-simple Lie
group.
The homogeneous space LG/T.

Chapter 3. The Cohomology Ring of the Infinite Flag Manifold LG /T

1.
2.
3.

Introduction.
The root system, Weyl group and Cartan matrix of the loop group LG.
Some homotopy equivalences for the loop group LG and its homogeneous

spaces.

Cohomology rings of the homogeneous spaces QS5U, and LSU,/T.

©w

18

35
35
36
40
44
45
46

43
49




Chapter 4. The Generalized Cohomology Theories and Topological Construction

of BGG-type Operators

1. Topological preliminaries.

2. The Becker-Gottlieb map and transfer.

3. The Brumfiel-Madsen formula for transfer.

4. The transfer and the Gysin homomorphism.
Chapter 5. Fredholm Maps and Cobordism of Separable Hilbert Manifolds

Introduction.

1. Cobordism of separable Hilbert manifolds.

2. Transversality, cup product and contravariant property.

3. Finite dimensional smooth fiber bundles and transversality.

4. The Euler class of a finite dimensional bundle.

5. Complex cobordism of LG/T and cup product formula.

6. Examples of some infinite dimensional cobordism classes.

7. The relationship between U/-theory and M U-theory.
Bibliography

87
87
95
97
98



Acknowledgment

I wish to give my deepest thanks to my supervisor Dr. A. J. Baker for his inspiration,
guidance, and encouragement during my research and preparation of this thesis.

I am also very grateful to the Mathematics Department of the University of Glasgow
for its support in letting me attend so many conferences and seminars in Edinburgh.

I am also indebted to Bolu Abant Izzet Baysal University for their financial support
from 1994 to 1997, during my thesis.

Finally, special thanks to my family and friends, whose love and support have made

this thesis possible.







Summary

This work is about the algebraic topology of LG/T, in particular, the complex cobor-
dism of LG/T where G is a compact semi-simple Lie group. The loop group LG is
the group of smooth parametrized loops in G, i.e. the group of smooth maps from the
circle §! into G. Its multiplication is pointwise multiplication of loops. Loop groups
turn out to behave like compact Lie groups to a quite remarkable extent. They have
Lie algebras which are related to affine Ka¢-Moody algebras. The details can be found
in [98] and [64].

The class of cohomology theories which we study here are the complex orientable
theories. These are theories with a reasonable theory of characteristic classes for com-
plex vector bundles. Complex cobordism is the universal complex orientable theory.
This theory has two descriptions. These are homotopy theoretic and geometric. The
geometric description only holds for smooth manifolds.

Some comments about the structure of this thesis are in order. It is written for a
reader with a first course in algebraic topology and some understanding of the structure
of compact semi-simple Lie groups and their representations, plus some Hilbert space
theory and some mathematical maturity. Some good general references are Kaé [60]
for Kad-Moody algebra theory, Pressley-Segal [84] for loop groups and their represen-
tations, Young [96] for Hilbert space theory, Adams [3] for complex orientable theories,
Husemoller [56] and Switzer [93] for fiber bundle theory and topology, Ravenel [87]
for Morava K-theories, Lang [74] for the differential topology of infinite dimensional
manifolds, Conway [27] for Fredholm operator theory.

The organization of this thesis is as follows.

Chapter 1 includes all details about Schubert calculus and cohomology of the flag
space G/ B for Ka¢-Moody group . We examine the finite type flag space in section
1. In the section 2, we give some facts and results about Kaé-Moody Lie algebras and

associated groups and the construction of dual Schubert cocycles on the flag spaces




by using the relative Lie algebra cohomology tools. The rest of chapter includes cup
product formulas and facts about nil-Hecke rings.

Chapter 2 includes the general theory of loop groups. Stratifications and a cell
decomposition of Grassmann manifolds and the homogeneous spaces of loop groups
are given.

In chapter 3, we discuss the calculation of cohomology rings of LG/T'. First we
describe the root system and Weyl group of LG, then we give some homotopy equiva-
lences between loop groups and homogeneous spaces, and investigate the cohomology
ring structures of LSU, /T and Q25U,. Also we prove that BGG-type operators corre-
spond to partial derivation operators on the divided power algebras.

In chapter 4, we investigate the topological construction of BGG-type operators,
giving details about complex orientable theories, Becker-Gottlieb transfer and a formula
of Brumfiel-Madsen.

In chapter 5, we develop a version of Quillen’s geometric cobordism theory for
infinite dimensional separable Hilbert manifolds. For a separable Hilbert manifold X,
we prove that this cobordism theory has a graded-group structure under the topological
union operation and this theory has push-forward maps. In section 2 of this chapter,
we discuss transversal approximations and products, and the contravariant property of
this cobordism theory. In section 3, we discuss transversality for finite dimensional fiber
bundle. In section 4, we define the Euler class of a finite dimensional complex vector
bundle in this cobordism theory and we generalize Bressler-Evens’s work on LG/T.
In section 6, we prove that strata given in chapter 2 are cobordism classes of infinite
dimensional homogeneous spaces. In section 7, we give some examples showing that in

certain cases our infinite dimensional theory maps surjectively to complex cobordism.




CHAPTER 1

The Schubert Calculus and Cohomology of the Flag Space
G/B for a Kaé-Moody Group G

1. Schubert cells and integral cohomology of K/T for a compact Lie group
K.

The general reference for this section is [7]. Let K be a compact semi-simple simply-
connected Lie group. We fix a maximal torus 7' C K. The complexified Lie algebras
of K and T will be denoted by g and h respectively. Let b be the Borel subalgebra
of g. The compact group K can be embedded into a complex Lie group G with Lie
algebra g. We choose a Borel subgroup B containing T'. The analytic complexification
K/T — (G/B induces a complex structure on the flag space K/T = G/B. The flag
space /T will be denoted by X. In this section, the root system will be denoted by
A, and the simple root system will be denoted by ¥. A, is the set of positive roots.
From [7],

Theorem 1.1. The finite dimensional flag space X is a non-singular complex pro-

jective variety.

We give at this point two descriptions of the homology of X. The first of these makes
use of the decomposition of X into cells, while the second involves the realization of two-

dimensional cohomology classes as the Chern classes of one-dimensional holomorphic

bundles.

Definition 1.2. Let W be the Weyl group of G. Then the length of an element
w € W is the least number of factors in the decomposition relative to the set of the

simple reflections o, is denoted by £(w).

We know from [12] that N, = wN~-w™' N N is a unipotent subgroup of G of
(complex) dimension £(w), where NN is the unipotent radical of B and N~ is the opposite

nilpotent subgroup of G. From [21], we have




Theorem 1.3. Let G be a complex reductive Lie group. Then

G = u BwB.

weW

In addition, there s an isomorphism of algebraic varieties
N, - BwB/B
given by n — nwB/B.
Corollary 1.4.

X = | | BwB/B.
weW

The cells C,, = BwB/B are open and closed varieties in the Zariski topology. Let
C., be the closure of C,, in X respect to the usual topology, we have from [81],

Theorem 1.5. Let Y be a projective variety and let Y° be the interior of Y with

respect to the Zariski topology. Then the closure of Y° in the usual topology is Y.

Since C, = BwB/B is a Zariski-open set, by Theorem 1.5, the closure of C,,
coincides with the Zariski closure. [Cy] € Haew)(Cw,Z) is the fundamental cycle of
the complex algebraic variety Cy. Let s, € Haeuy(X,Z) be the image of [C,,] under
the mapping induced by the embedding C,, — X.

Proposition 1.6. The elements s, form a basis of the free Z-module H. (X, Z).

Definition 1.7. A group W is a Coxeter group if there is a subset S of W such
that W has the presentation

(s €S :(ss)™ee' = 1)

where mgy € {2,3,...,00} is the order of ss',s # &' and m;s = 1. The pair (W, S) s

called a Coxeter system.
Theorem 1.8. [50] The Weyl group W is a Cozeter group.

Definition 1.9. Let wy,w, € W, v € A;. Then we write w, 2wy when T Wy =

wy and L(we) = (wy) + 1. We put w < w' if there is a chain

W= 1w —> wy — - —>wy = w.

10




This order is called the Bruhat order on the Weyl group W.
Here are some properties of this ordering.

Lemma 1.10. Let w = 1y, -+ -7, be a reduced decomposition of an element w €
W. We put 4; = 1oy Ta;_, (). Then the roots v1,... ,7 are distinct and the set
{7, yn} coincides with Ay NwA_.

Lemma 1.11. Let w, w' € W and let o be a simple root. Assume that w < w'.

Then, either row < W' or row < W', either w < row’ or row < rew'.
The properties in lemma 1.11 characterize the ordering <. From [7], we have
Proposition 1.12. The Bruhat ordering < on W is a partial order relation.

Proposition 1.13. Letw € W and let w = 14, * - 7o, be the reduced decomposition

of w. If
(L.1) w = Taiy + T,

for 1 €41 <9 <+ < i <L, then w' € w. Ifw < w, then w' can be represented
in the form 1.1 for some indexing set {i;}. If w' — w, then there is a unique index i

satisfying 1 <1 £ | and such that

! N
w fomnd ?"al . '?ag_lrag+1 .. TG‘['

Proposition 1.13 yields an alternative definition of the ordering on W in [92]. The
geometrical interpretation of this partial ordering is very interesting and useful in what

follows.

Theorem 1.14. Let V be a finite-dimensional irreducible representation of the Lie
algebra g with highest weight A and let n be the nilpotent part of g. Assume that all
the weights wA, w € W, are distinct and select for each w a non-zero f, € V of weight

wA. Then
w<w <= fu €Un)fy

where U(n) is the enveloping algebra of Lie algebra n.

We use Theorem 1.14 to describe the mutual disposition of the Schubert cells. From

[92], we have

11




Theorem 1.15. Let w € W, C,, C X a Schubert cell, and C, its closure. Then

Cwl g aw = w’ \<\ w.

We turn to the other approach to the description of the cohomology of X. For this

purpose, we introduce in h the coroot lattice

QV - @ Zhi
where A; is the coroot to dual to o; € A. We have the weight lattice
P={xeh": x(h;) € Zforal a; € A}

dual to @V. We set Py = P ®z Q. We denote by hg C h the vector space over Q
spanned by the h;. Let R = S{Pg) be the graded algebra of polynomial functions on
hg over rational coefficients where the graduation is given by the degree of polynomials.

The Weyl group W acts on h* by the rule
Ta;(X) = X — x(hs)a; for @ € ¥ and x € h*,

We can extend the action of the Weyl group W on h* to R by the rule wf(h) = f(w™th)
for f € R. We denote by RV the subring of W-invariant elements in R and set
RY ={f € R : f(0) =0},
J=RYR.
We want to construct a ring homomorphism g : R — H*(X,Q) in the following
way. First let x € P. Since G is simply-connected, there is a character § € Hom(B,C")
such that #(expbd) = exp x(b), for b € b, where exp : b — B is an exponential map

which is a locally diffeomorphism. Since G — X is a principal bundle with structure

group B, this 0 defines a one-dimensional complex holomorphic line bundle

Ly = {lg,¢] : lg exp(b), exp x(b)(] = [9,{]for b € b, g € G and ( € C}

on X. We set 1(x) = ¢y, where ¢, € H*(X,Z) is the first Chern class of L,. Then isa
group homomorphism of P into H%(X,Z), which extends naturally to a homomorphism

of graded rings

Yo : R — H*(X,Q).

12




From [10, 4], we have

Proposition 1.16. The homomorphism g commutes with the action of W on R
and H*(X,Q). keryg = J and the natural mapping g : R/J — H*(X,Q) is an

isomorphism.

We now study the rings R and B = R/J. For each w € W, we define an element
P, € R and a functional D,, on R and investigate their properties. In the next section,
we shall show that the D, correspond to Schubert cell and that the P, yield a basis,
dual to the Schubert cell basis, for the rational cohomology of X. Let v € A. We
specify an operator A, on R by the rule

f_r'yf'

Anf =7

A, f lies in R, since f — r,f = 0 on the hyperplane v = 0 in hg. A; will be called the
Bernstein-Gelfand-Gelfand operator and it will be briefly indicated by BGG-operator.

The properties of the A, are described in the following lemma.

Proposition 1.17. For v € A and w € W, we have

wAw™ = Ay,
ryAy = —Ayry = Ay,
Ty =—7Ay+1=Ayy—1,
Ayf =0 <= nf=1,

AT C T

Proposition 1.18. Let x € hy. Then the commutator of A, with the operator of
multiplication by x has the form [A,, x] = x(hy)ry.

The following property of the BGG-operator A, is fundamental in what follows.

From [7], we have

13




Theorem 1.19. Let ay,...,o¢ € X. We put w = 1oy -7, and A,y =
Agy o+ Agy. If L(w) <1, then Ay =0 . If L(w) = [, then Aq,,...q,) depends only

on w and not on the sel ay,--- , iy in this case we put Ay = A(ay, )

Proposition 1.20. The operators A, satisfy the following commutator relation:

[ Au X = ) (b )™ Au,

~,
w! —rw

where hy is a coroot.

We put S; = R}, where R; C R is the space of homogeneous polynomials of degree
¢ and R} is the dual space of R; and § = @ S;. We denote by ( , ) the natural pairing
S x B — Q. Then W acts naturally on the graded ring S.

Definition 1.21. For any x € hy, we let x* denote the transformation of S adjoint
to the operator of multiplication by x in R. We denote by F, : § — S the linear
transformation adjoint to A, : R — R.

The next lemma gives an explicit description of the .

Lemuma 1.22. Lety € A. For any D € § there is a D € S such that x*(D) = D.
If D is any such operator, then D— 1:71’5 = F.(D), in particular, the left-hand side of

this equation does not depend on the choice of D.

It is often convenient to interpret S as a ring of differential operators on h with
constant rational coefficients. Then the pairing ( , ) is given by the formula (D, f) =
(D)Y0), D €S, f € R. Also, it is easy to check that x*(D) = [D, x], where x € hg

and D € S are regarded as operators on R .

Theorem 1.23. Let ay,...,0q € B. We put w = 1y, -+ 1, If L(w) < I, then
Fo oo Foy = 0. If f{w) =1, then Fy,--- F,, depends only on w and not on ay...q

and in this case we write F,, = F, --- F, . Also, F, = A%, and

x*, Fyw] = Z w'x(hy) Fypw,

7y,
w!—w

where h., is ¢ coroot.

14




We set D,, = F(1). As we shall show in the next section, the functionals D,
correspond to the Schubert cells in H,(X, Q) in the sense that (Du, f) = (5w, ¥o(f))
for all f € R. The properties of the D,, are listed in the following theorem.

Theorem 1.24. Let w € W, let « be a simple root and v, x1,...,x1 € hg and
Dy € Sewy. Then

0 if L(wry) < £(w),
Dy if Y (wra) 2 4(w).

X'(Du) = ) w'x(hy) Do

w'Bw
-Dy, if L(wry) < 8(w),
ToDw =
—D, + Z w'oalhy) Dy if L(wry) = L{w).

-
W' wry

(Day X177+ x1) = ZXl(h-n) - Xi(By)

where the summation extends over all chains

Let J* be the subspace of .S orthogonal to the ideal J C R. It follows from lemma
1.18 that J* is invariant with respect to all the F,. It is also clear that 1 € J*. Thus,
D, € J* for all w € W. From [7], we have

Theorem 1.25. For w € W, the functionals D,, form a basis for J*.
The form ( , ) gives rise to a non-degenerate pairing between R and Jt. Let

{ Py }wew be the basis of B dual to {Dy}yew. The following properties of the P, are

immediate consequences of Theorem 1.24

15




Theorem 1.26. Let w € W, let « be a simple root and x € hy. Then
0 if H{wry) > £(w),
Pura  if L(wry) < £(w).

XPw - Z wX(h"y)Rw’-

AoP, =

ww!
P, if L(wry) > U(w),
ro Py =
P, — Z wa(hy) Py if {wry) < Hw).

wra—w
From Theorem 1.26, it is clear that all the P, can be expressed in terms of P,
where s € W is the unique element of maximal length, r = £(s). More precisely, let

W= Toy * Tayy L(w) = [. Then
P, = Ay ... Ay, Ps.

To find an explicit form for the P, it therefore suffices to determine the P, € R. From

[7], we have

Theorem 1.27. = —L H (mod J).
€Ay

We now give some results on products of the P, in .
Theorem 1.28. Let o be a simple root and let w € W. Then

Py =" Xalhw-ty)Pur,
whw!
where X € hy, is the fundamental weight corresponding to the root . Let wy,wy € W
and satisfying £(wy) + l(w2) = r. If wy # wys, and Py, Py,s = Ps, then Py, P, = 0.
Letw € W and f € R. Then

fPy = ch"Pw'

w'Zw
If wy & wss, then Py, Py, =0

We define the operator P : R — J+ of Poincaré duality by the formula
(Pf)(g) = Ds(f9), f,g€ R, Pf e

Corollary 1.29. PP, = D,,.

16




We will show that the functionals D,,,w € W introduced in last section correspond
to Schubert cells s, w € W and give the cap-product formula in the cohomology of flag
variety K/T. Let s, € H,(X,Q) be a Schubert cell. It gives rise to a linear functional
on H*(X,Q), which, by means of the ring homomorphism %g : B — H*(X,Q), can
be regarded as a linear functional on R. This functional takes the value 0 on all
homogeneous components Py, with k # #(w), and thus determines an element D,, €

Se(w). From [7], we have
Theorem 1.30. ﬁw =D,
This theorem is a natural consequence of the next two propositions.

Proposition 1.31. D, = 1, and for any x € hy,

X*(ﬁw) = Z w'x(hq)ﬁw.

w' Hw
Proposition 1.32. Suppose that for each w € W we are given an element D, €

Se(w), with D, = 1, for which Proposition 1.31 holds for any x € h}. Then ﬁw =D,.

For any topological space Y there is a bilinear mapping called the cap-product
N: H(Y,Q) x Hy(Y,Q) — H,_;(Y,Q).
such that
(cNy,2) = (g, c.2)

for all y € H;(Y,Q), z € H7{(Y,Q), ¢ € H(Y,Q). If f:Y; — Y; is a continuous

mapping, then

f*(f*cﬂy) =cN fuy

for all y € H.(Y1,Q), ¢ € H*(Y2,Q). Then, we have for any x € h};, f € R

(x*(Dw)s /) = (Du, XF) = (5w D () %a(F)) = (80 N H(x), ol £))-

Therefore, Proposition 1.31 is equivalent to the following geometrical fact.

Proposition 1.33. For all x € h},

sw NP(x) = Z W' (hey) S

w’l)w

17




We restrict the one complex dimensional holomorphic line bundle L, to CwC X

and let ¢, € H*(C\,Q) be the first Chern class of L,. Then, it is sufficient to prove
that

(1.2) SyNey, = Z WX (hy) S

w' dw
in H ze(w)_z(ﬁw, Q). To prove Equation 1.2, we use the following lemma, which can be

verified by standard arguments involving relative Poincaré duality, see [43].

Lemma 1.34. Let Y be a compact complez analytic space of dimension n, such
that the codimension of the space of singularities of Y is greater than 1. Let E be
an analytic vector bundle on Y, and ¢ € H*(Y,Q) the first Chern class of E. Let
i be a non-zero analytic section of E and Zmil’} = divy the divisor of u. Then

?

[Y]Nne= Zmz[Yz] € Hono(Y,Q) where [Y] and [Y;] are the fundamental classes of Y

and Y;.

Let w € W, and let C,, € X be the corresponding the Schubert cell. Then,

Proposition 1.35. Let w' X w. Then Cy is non-singular at points © € Cyy.
We now give another proposition to prove Proposition 1.33

Proposition 1.86. There is a section u of the fibering E,, over C,, such that

divu = Z W x(Hy) X o
w' B

2. Differential operators, Lie algebra cohomology and generalized

Schubert cocycles.

First, we will give some facts about Ka¢-Moody Lie algebras and associated groups

which will be used in this section. The general reference is [60] of V. Kag.

Definition 1.37. Let A = {aij}nxn be @ complex matriz of rank l. A realization of
A is a triple (h,m,7V), where h is a complezx vector space of dimension n + corank A,
T = {aiticicn Ch* and 77 = {hi}igicn € h arve free indexed sets satisfying a;(h;) =

aqj.

18




Definition 1.88. Two realizations (h,m,7") and (hy, n;, 7)) are called isomorphic

if there ewxists a vector space isomorphism ¢ : h — hy such that o(xV) = ©/ and
o*(m) = .
From [60], we have

Theorem 1.39. There exists a unique up to isomorphism realization for every nxn

matriz.
Definition 1.40. A generalized Cartan matrix A = {a@;;}nxn s @ mairiz of integers
satisfying a; = 2 for all v and a;; < 0 if 2 # 7, a;; = 0 implies a;; = 0.

Definition 1.41. Given a realization (h,m,7V) of a n X n generalized Cartan ma-
triz A, the Kaé-Moody algebra g = g(A) is the Lie algebra over C, generated by h and
the elements e; and f; for 1 < 1 < | such that this basis elements satisfy the following

relations:
[h,h] =0, [2, ] = ai(h)es, [h, fi] = —~au(h) i
for h € h and all 1 < i < Iy {ei, fil = dish; for all 1 <i,5 < n;
(ad e) ™ (e;) = 0 = (ad fi)' ™™ (fy)

forall 1 < i+ 5 < n. The elements hy,e;, f; are called Chevalley generators and the
subalgebra h of g(A) is called the Cartan subalgebra.

The Kaé-Moody algebra g = g(A) has a root space decomposition.

Theorem 1.42. For 0 # «, the root space g = {z € g: [h,z] = a(h)z,Vh € h}

is finite dimensional and there is a root space decomposition

g=hoPe-he Peo D e

a€A agAt aEA-
where At (resp. A™) is the positive (resp. negalive) root system.
We define fundamental reflections r; € Aute(h), 1 < ¢ < n, by r;(h) = h— a;(h)h;.
They generate the Weyl group W, which is a Coxeter group on {r;}igigna-
We define the following Lie algebras.

n = @ga, n- = @ga.

acAt aCA™
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Then, g = h®n ®n~, where b = h @ n is called the Borel algebra. We have a
unique complex linear involution w of g defined by w(f;) = e; for all 1 £ ¢ < [ and
w(h) = —h for h € h. The involution w leaves the real points of g stable. w is called
the Chevalley involution. Also, we have a unique conjugate linear involution wy which
agrees with w on the real points of g. We can define a nondegenerate g-invariant,
symmetric complex bilinear form o on h* such that o(, ;) = (ha;, ha;) where (,) is
the standard complex inner product on g. This form is called the Killing form. This
gives a Hermitian form {,} on g defined by {z,y} = —(z,wo(y)) for z,y € g.

Now, we will mention the highest weight module category of a Ka¢-Moody algebra
g. The fundamental reference is [60] of V. Kal. Let V be a g-module, A € h*. We
define

Vi={z €V :h z=Ah)zfor Vh € h}.

Then, V) is a subspace of V. If V) # 0, A is called a weight of the g-module V, V) the
weight space corresponding to A, and dim V) the multiplicity of A. If A is a weight of

V, then any non-zero vector of V) is called a weight vector of A. We denote by
P(V)={xeh*:V, #0},
the set of weights of the g-module V.
Lemma 1.43. For any o € AU {0} and A € h*, we have
8 ' V2 € Vita
We set
D) ={A-—a:a €@y},

where Q)4 = @ Z yo;. For any subset F' C h*, we define

D(F) = D(N).
AEF
We can define a partial ordering > on h* by

Azu <= A—-peR: <= peD).

We will give the definition of category O of g-modules.

20




Definition 1.44. The objects of O are g-modules V which satisfy the conditions
1. V is h-diagonalizable, i.e.,

V=€Bm,

A€h*

2. dimWV\ < o0 for all A € h*,
3. there exists a finite set I' C h* such that P(V) C D(F'), and whose morphisms

are g-module homomorphisms.
By the property 3 of the definition of @, we have
Proposition 1.45. Every non-zero g-module in O has at least one mazimal weight.

Definition 1.46. A g-module V is called a highest weight module, if V has a

unique maezimal weight A and V is generated by some weight vector vy € Vj.

Theorem 1.47. Let V be a highest weight module with mazimal weight A. Then,
V=U(g) va=U(n")-vs

Jor any weight vector va of A; V € O, dimVy =1 and P(V) C D(A); go - Va =0
for any o € Ay; V has a unique mazimal submodule, hence a unique quotient simple
module; the homomorphic image of V is also a highest weight module with mazimal

weight A.

Since b = h @ n', we can regard V) as a b-module with n™ acting on it trivially.

We define

M(A) = U(g) ®uw) Va

where Vj is 1-dimensional weight space corresponding to the weight A. The g-module

M(A) is called Verma module corresponding to the weight A.

Theorem 1.48. The Verma module M(A) is a highest weight module with highest
weight A. Any highest weight module with highest weight A is a homomorphic image of
the Verma module M(A). M(A) has a unique mazimal submodule with simple quotient

L(A). Any irreducible highest weight module with highest weight A is isomorphic to
L(A).
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Now, we will give the definition of lowest weight module. Let L(A) be an irre-
ducible highest weight module with the highest weight A. Let L(A)* be the g-module
contragredient to L(A). Then

LA = T] L(A);.

A€h*

The subspace

1*(A) = @ LAy

Ach*
is a submodule of the g-module L(A)*. The module L*(A) is irreducible and for
v € L(A)j, we have

n--v=0 and h-v=-A(h)vforh € h.

The module L*(A) is called an irreducible module with lowest weight —A.

Theorem 1.49. There is a bijection between h* and irreducible lowest weight mod-

ules given by A — L*(—A).

We denote by m, the action of g on L(A). We give a new action 7} on the space
L(A) by
ma(g)v = ma(w(g))v,

where w is the Chevalley involution of g. (L(A),n}) is an irreducible g-module with
lowest weight —A. By the uniqueness of irreducible lowest weight modules with the

lowest weight —A, this module can be identified with L*(A).

Definition 1.50. A g-module L is called quasi-simple if it is a highest weight
module with highest weight vector o such that there exists n € Zy. with f;"(zq) = 0 for

all 1 <1 < 1.
From [41], we have

Proposition 1.51. The quasi-simple g-modules are indexed by the positive integral

wetghts.

We will denote by L()) the quasi-simple module with highest weight A. We will
denote the derived algebra [g, g] by g'. From [98], we have
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Theorem 1.52. g’ is the subalgebra of g generated by the Chevalley generators e;

anf f; for 1 <1 <[ and we have the decomposition
g=h"gnédn,
where h' = g’ Nh,

Definition 1.53. A g'-module (V, ) is called integrable if w(e) is locally nilpotent

whenever e € g, for any real root.

Let G* be the free product of the additive groups {gq }aea,, with canonical inclu-
sions %, : go —+ G*. For any integrable g'-module (V| 7), we define a homomorphism
™ G* — Aute(V) by 7*(ia(e)) = exp(m(e)) for e € go. Let N* be the intersec-
tion of all ker7* and let ¢ : G* — G*/N* be the canonical homomorphism. We put

G = G*/N*. The next result comes from [63].
Proposition 1.54. G is an algebraic group in the sense of Safarevié.

We call G the group associated to the Kaé-Moody Lie algebra g. G may be of
three different types: finite, affine and wild. The finite type Kaé-Moody groups are
simply-connected semi-simple finite dimensional algebraic groups as introduced in the
Section 1. The affine type Kad-Moody groups are the circle group extension of the
group of polynomial maps from S! to a group of finite type, or a twisted analogue.
There is no concrete realization of the wild type groups. Now, we will introduce some
subgroups of the Kaé-Moody group G. For e € g,, we put exp(e) = ¢(in(€)) so that
Uy = exp g is an additive one parameter subgroup of G. We denote by U (resp. U™)
the subgroup of G generated by the U, (resp. U_,) for @ € Ay, For 1 €7 < [, there

1 =2
exists a unique homomorphism ¢; : SLy(C) — G, satisfying ¢ = exp(ze;) and
0 1
10
@ = exp(zf;) for all z € C. We define
z 1
z 0
H=<yp 1zeC g
0 27t

G = p(SLy(C)). Let N; be the normalizer of H; in Gy, H the subgroup of G generated
by all H; and N the subgroup of G generated by all N;. There is an isomorphism
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W — N/H. We put B = HU. B is called standard Borel subgroup of G. Also, we
can define the negative Borel subgroup B~ as B~ = HU~. ( has Bruhat and Birkhoff
decompositions. Details can be found in [62]. The conjugate linear involution wy of g
gives to an involution «Jjy on GG. Let K denote the set of fixed points of this involution.
K is called the standard real form of G. Also, this involution preserves the subgroups
G, H; and H; we denote by K;,T; and 1" respectively the corresponding fixed point
subgroups. Then, K; = ¢(SU;) and

T;=<¢ dul =1
0 wut

is a maximal torus of K; and T' = [] 7} is a maximal torus in K.
Now, we will give some facts about the topology of K. Let D (resp. D°) be the
unit disk (resp. its interior) in C and let S! be the unit circle. Given u € D, let
e (=)

z(u) = € SU,,
~(L = Ju)'"? T

and z;(u) = @i(2(u)). We also set
Y; = {z(u) :ue D°} C K.

Let w = ry, -+ 1, be a reduced expression of w € W. We put ¥, = Y;, ---Y,,. We

have a fibration 7 : K — K/T. The topological space K/T is called the flag variety of
the K and . Already we have given the topology of finite dimensional flag variety in
the Section 1 of this chapter. Now, we will give the topological structure in the infinite

dimensional case. We define Cy, = m(¥,,). From [61], we have

Proposition 1.55. The decomposition

KT =] .

weW

defines a CW structure on K/T.

The closure of C, is given by

Cuv=[] Cuw

w!'w
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The closures C,, are called Schubert varieties and they are finite dimensional complex
spaces. The infinite type flag variety K/T is the inductive limit of these spaces and by
Iwasawa decomposition in [62], we have a homeomorphism K/T — G/B. From [61],

we have

Proposition 1.56. The flag variety K/T is an infinite dimensional complex pro-

jective vartety.
Proposition 1.57. The elements C., are a basis form of free Z-module H.(K /T, 7).

Now we will give the construction of the dual Schubert cocycles on the flag variety
by using the relative Lie-algebra cohomology tools. This construction was done by B.
Kostant in {67] for finite type and extended by S. Kumar in {72] for the Kag-Moody
case.

First, we will introduce some notations for this section. Reference for the notations
is [53]. By A(V), we denote the exterior algebra on a g-module V. For a Lie-algebra
pair (g,h) and a left g-module M, let A(g,h, M*) denote the standard chain complex
with coefficients in the right module M*, where M* is the right g-module, whose un-
derlying space is M and on which g acts by the rule m - g = —g-m for all g € g and
m € M, and let C(g,h, M) denote the standard cochain complex with coefficients in
M.

Let Ly be the quasi-simple g-module with highest weight A. Then, there is an
invariant positive definite Hermitian form {,} on A(n~) ® L, due to V. Ka& and D.
Peterson [62]. Let 0 : A(n7) ® Ly — A(n~) ® Ly be the differential of degree —1
of the chain complex A(n~, L,"). We denote the adjoint of d respect to {,} by 9*.
A(n7)® Ly is a h-module and 9 is a h-module map, as is §*. We define the Laplacian
by V = 80* + 0"8. We know from [41] that A(n™) ® L) decomposes as a direct sum

of finite dimensional irreducible h-modules. From [72], we have

Theorem 1.58. Let g be the Kaé-Moody Lie algebra and let Ly be the quasi-simple
g-module with the highest weight \. Then the action of V on A(n~, L)) is as follows.
Let Sp be an irreducible h-submodule of A(n=, L") with highest weight 3, then V

reduces to a scalar operator on Sg and the scalar is

%[a(,\ +p,A+p)—a(B+p,B+p)
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where p is the sum of all stimple roots.
From [41], we have

Theorem 1.59. With the notations as in Theorem 1.58, the 2jth homology space
Hy;(n=, Ly\') is finite dimensional and it is isomorphic as an h-module to the direct
sum

D Mupn-n
Lw)=7

of non-isomorphic 1rreducible h-modules.

C(g,h) denotes the standard cochain complex with differential d associated to
the Lie algebra pair (g,h) with trivial coefficients. That is, C(g,h) is defined to be
Z Homy (A*(g/h),C) such that h acts trivially on C. We define

520
c-ye
520
where C* = Homg(A%(g/h),C). We put the topology of pointwise convergence on C°,
ie, fo = fin C® if and only if fu.(z) — f(z) in C with usual topology, for all
z € A(g,h). From [26], we have

Theorem 1.60. C° is a complete, Hausdorff, topological vector space with respect

to the pointwise topology.

In [72], a continous map 0 : Co — 55‘1, and a cochain map of b on C are defined.
We define 8, b to be the restrictions of § and b to the subspace C (g,h). We define the
following operators on C(g,h): S = dd + dd and L = b3 + 9b. From [72], we have

Proposition 1.61. ker S @ im S = C.
Theorem 1.62. d and 0 on C(g,h) are disjoint.

Proposition 1.63 (Hodge type decomposition). Let V be any vector space and
d,0 : V — V be two disjoint operators such that d* = 8* = 0. Further, assume that
ker S @ imS = V where S = d0 + 0d. Then, ker S — kerd/imd and kerS —

ker 0/ im0 are both isomorphisms.
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By the Hodge type decomposition and Proposition 1.61, we have

Theorem 1.64. The canonical maps g5 : ker S — H(C,d) andiys : ker S —
H(C,0) are both isomorphisms.

Now, we describe a basis for ker L. We fix w € W of length s. We define @,, =
wA_ N A;. @, consists of real roots {1, ,7vs}. We pick y,, € g, of unit norm
with respect to the form {, } and let 2., = —wo(yy;). Let M(yy—p) be the irreducible h-
submodule with highest weight (wp — p). By Proposition 2.5 in [41], the corresponding
highest weight vector is g, A -+ Ay,,. There exists a unique element h* € [M(yp—p) ®
A*(n)] such that A% = (2i)*(yy, A+ AYy, A2y A+ Ay,) mod P, ® A*(n), where P,
is the orthogonal complement of y,, A -+ Ay,, in Mg,—,). Using the nondegenerate
bilinear form () on g, we have embedding

e: @ ANndn)— @{As(n @®n7)"
k20 k>0
Then hy = e(hy) € ker L. These elements {Ay }uew is a C-basis of ker L. Then, we
can define s* = a5~ ([h*]) € H(C,d). From [72], [68], we have

Theorem 1.65. Let g be the Kad-Moody Lie algebra and let G be the group asso-
ctated to the Kaé-Moody algebra g and B be standard Borel subgroup of G. Then

0 if w# W,
[
Ct

v (4)>4) H (o)™t ifw =,
vEwlANAL
Sw
This gives the expression for the d, 0 harmonic forms sy = i which are dual to
w

the Schubert cells where d,, = / sv.
Theorem 1.66. (see [73])
H f ) H*(g,h) — H*(G/B,C)

15 a graded algebra isomorphism.

Let " denote the image of s¢® by the integral map in last theorem. These coho-

mology classes are dual to the closure of the Schubert cells, hence we have
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Theorem 1.67. The elements e, w € W, form a basis of the Z-module H*(G/B,Z).

For a finite type flag variety G/B, €* denotes P,-1 in the notation of Section 1.
Now, we give a cup product formula in the cohomology of any type flag variety G/B.
From [68],

Theorem 1.68. Let x; be the fundamental weight of G for 1 < 1 < . For any
simple reflection r; and any element w € W, and a coroot v,
s =) xlr)e
w—w!
As an analogy of cohomology theory of the finite type flag space G/B, the coho-
mology of affine type flag space G/B and some operators will be introduced in this
section. The fundamental reference is [61] of V. Kaé.

Let QY = 69 Zh;, where h; is coroot, be the coroot lattice and let

K]

P={\eh™: \Nh)e€Z}

be the weight lattice dual to QY. Let S(P) = @ S%(P) be the integral symmetric
algebra over the lattice P, and S(P)* = EB S (J_;()J the augmentation ideal. Given a
commutative ring F with unit, we denote Jg EP)F = S(P)r ®z F. We define the char-
acteristic homomorphism + : S(P) — H*(G/B,Z) as follows: given A € P, we have
the corresponding character of B and the associated line bundle L on G/B. We put
Y(A) € H*(G/B,Z) equal to the Chern class of Ly and we extend this multiplicativity
to the whole S(P). We denote by i the extension of 9 by linearity to S(P)p. In order
to describe the properties of ¢, we define BGG-operator A; for 1 <7 <[ on S(P) by

f=r(f)

@

and we extend this by linearity to S(P)r. We define

Ai(f) =

Ir={f € S(P)f : Ay, - A (f) € S(P)F V sequence (i1, -+ .in)}
Theorem 1.69. We have ker yp = Iy and H*(G/B,F) is a free module over im ¢y.

We will introduce certain operators on cohomology of the flag space G/ B which are

basic tools in the study of this theory. These operators are extension of action of the
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BGG-operators A; from the image of ¥ to the whole cohomology operators. We know
that the Weyl group W acts by right multiplication on K /7" and this action induces an
action of W on homology and cohomology of flag space. On the other hand, we have
a fibration p; : K/T — K/K;T with fibre K;/T;. Since the odd degree cohomologies of
K;/T; and K/K;T are trivial, then the Leray-Serre spectral sequence of the fibration
degenerates after the second term. So, H*(K/T,Z) is generated by im p;*, which is r;
invariant and the element 1(x;) where x; is fundamental weight. We define a Z-linear
operator A’ on H*(K/T,Z) lowering the degree by 2 such that r; leaves the image of

A? invariant and
x —ri(z) = Az) U ()

for @ € H*(K/T,Z). Similarly, we can define homology operators A; on H.(K/T,Z)
raising the degree by 2 such that r;(A4;(v)) = —A:(v) and

v+ ri(v) = A(v) N p(ey)

for v € H(K/T,Z). The properties of the actions of the operators A’ (resp. A;) on
the cup product (resp. cap product) in the cohomology (resp. homology) can be found
in [61]. Now, we will give the geometric interpretation of A;. Given w € W, we choose
a reduced expression w = 7y, ++- 1y, and and define a map 7, : D — K/T' given by
Tw(Ut, + yUs) = 2, -+ - 2,1 where D is the unit disk in the complex space C° and z;
has been defined in the previous section. By Proposition 1.55, the relative homology
map Ty, gives us an element s, € Hayyw)(K/T,Z). By Proposition 1.57, these elements

are a basis of H,(K/T,Z); let €” be the dual basis of H*(K/T,Z).

Proposition 1.70.

gv if L(wr;) > £(w),

e¥ — Z {0i,7)e”"  otherwise.

¥
wri—nw’

7 (Ew) =

Similarly, we can give the reflection action on Schubert cycles s,,.
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Proposition 1.71.

v if L(wr;) < f(w),

0 otherwise.

Ailsa) = Swr; i L{wr;) > Lw),

0 otherwise.

Proposition 1.72.

ci(Lya) Nsy = Z (A7) 8w
w’l>w
The set of all functions from the Weyl group W to C will be denoted by C{W}.
C{W} is an algebra under pointwise addition and multiplication. Now, we will give

the relation between C{W} and End, H*(n~,C). From [68], we have

Theorem 1.73. Let (A,d) be a differential graded algebra over C and let § be the
derivation in End(A, d) induced by d such that

8¢ = dt — (—1)*¢d for £ € End'(A).
Then v : H(End(A,d),6) = End H(A,d) is an isomorphism graded algebras.

Theorem 1.74. The standard cochain complezes C(g,h) and C(n™) with the topol-

ogy of pointwise convergence are both differential graded algebras over C.

Also, we can put the topology of pointwise convergence on End C(g, h) and End C(n™).
Then, the derivation map § : EndC(n~) — End C(n™) is continuous under this topology
and 1t commutes with the action of h on EndC(n~). We denote by Jo, the restriction

of § to Endy C(n™). From [68], we have

Proposition 1.75. There exists a unique injective continuous map n : C(g,h) —

Endy C(n™).

Lemma 1.76. We have n(ker S) C ker .
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The map 7 induces a map 7 : ker S — H(Endp C(n™), ds) Also, ¢ induces a map ¢ :
H(Endy C(n™),8) — Endy H*(n™,C). By Theorem 1.59, as an h-module, H%(n~, C)

is isomorphic to the direct sum

D M

Hw)=j
of non-isomorphic irreducible h-submodules. By a property of the Hom functor, we

have

Endy H*(n~,C) & [[Endn #i(n~,C) = [ [] Ends Mup—p).

>0 i20 L(w)=i
Since M(y,-p) is irreducible, Endp M(y,—,) is 1-dimensional with a canonical gener-
ator 1, which is the identity map of M(y,-,). This identifies Endp H*(n~,C) with
[Toew Clu. The space [, e Cluw is the vector space C{W} of all functions from W
to C. Let 77 be the composite map

ker S Iy H(Endy, C(n~),60) % Endy, H*(n™,C) = C{W}.

Now, we will give filtrations of C(g,h) and C{W}. We define a decrasing filtration
G = (Glpez-by Gp = 3 C7(g,h) where C7(g,h) = Homy(A%(n) ® A*(n")).
This gives rise to a ﬁltrg,filsglq 2} = (Fp)pez~ of Endy C(n) by defining F, = n(G,). By
t0, we have filtration H = (H,)pez+ of C{W}. GrC{W} will denote the associated

graded algebra with respect to the filtration of C{W?}. That is, Gr C{W} = Z Gr?,

pz0
where Gr? = H,/H,+1. From [68], we have

Theorem 1.77. Let g be a symmeirizable Kaé-Moody Lie algebra. Let h be the
Cartan subalgebra. Then, H*(g,h) — Gt C{W} is a graded algebra isomorphism.

By Theorem 1.66, we can give the following corollary.
Corollary 1.78. H*(G/B,C) — Gr C{W} is a graded algebra isomorphism.

Let g be an arbitrary Kac-Moody algebra associated to a generalized Cartan matrix
A, with its Cartan subalgebra h and Weyl group W. Let @ = Q(h*) be the field of the

rational functions on h. The Weyl group W acts as a group of automorphisms on the
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field @. Let Qw be the smash product of @ with the group algebra C[W], i.e., Qw is

a right Q-module with a basis {4y }wew and the multiplication is given by
(6090) * (Suwgu) = (™" ¢0)quw

for v,w € W and gy, ¢» € Q. The module Qw admits an involutary anti-automorphism
t, defined by (6,¢)" = &,-1(wq) for w € W and ¢ € Q. We define

1 1
T; = ""(6r'g + 5&); = ;((Sr; - fse) S QVV

2

where r; € W is a simple reflection and «; is the simple root.

Proposition 1.79. Let w € W and let w = r;, ---r;, be a reduced expression.

Then the element z;, « -+ ©;, € Qw does not depend upon the choice of reduced expression

of w.
The element z;, - - - @;, € Qw will be denoted by z,, and (.’Ew—l)t denoted by .

Proposition 1.80.

Tow i L(vw) = L(v) + {(w),

Ty Toy =
0 otherwise.
We know that Qw is a right @-module. Also, @ has a left Quw-module structure
defined by (84,9)¢’ = w(qq’) for w € W and ¢, ¢’. We define subring R C Qw given by

RE{wEle.'B'SgS}

where S = S(h*) is the polynomial algebra on h. Let Sw be the smash product
of S with the group algebra C[W]. Obviously Sw C R since S has left Sw-module

structure.

Theorem 1.81. R is a free right S-module with basis {2y }wew In particular, any

x € R can be uniquely written as x = Z TwPuw SOME Py € 5.
weW

R will be referred as a nil-Hecke ring. Now, we will give the coproduct structure
on Qw. Let Qw @q Qw be the tensor product, considering both the copies of Qw as
right @-modules. We define the diagonal map A : Qw — Qw ®g Qw by

A(5wQ) = 6uq ® by = 6y ® Guy
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for we W and g € Q. A is right Q-linear.
Theorem 1.82. For any w € W, we have
A@w) = Y Tu®TupY,
w,ugw

Jor some homogeneous polynomials p,,, € S of degree £(u) +£(v) — L(w). In particular,
Py, =0 unless £(u) + L(v) = £(w).

Now, we will introduce some dual objects. Let = = Homg(Qw,®). Since any ¢ € =
is determined by its restriction to the @-basis {6y} wew, we can regard = as the Q-
module of all the functions W — @ with pointwise addition and scalar multiplication
defined by the structure (¢€)w = q-&(w) for ¢ € @, £ € Z and w € W. Z has
a commutative ()-algebra structure with the product as pointwise multiplication of
functions on W. Also, = has a left Qw module structure defined by (z- &)y = (2% - y)
for ¢,y € Qw and € € =. We have the Weyl group action as well as the Hecke-type
operators A, on = defined by w€ = 6, - € and Ayl = @y - { for w € W and £ € Z. We

define the important subring A C = as follows:
A={£€Z:¢R"Y) C Sandé(z,) = 0for all but a finite number of w € W}

Proposition 1.83. X is a S-subalgebra of 2. {{*}uwew ts a S-basis of A where £
s dual to T, for w € W.

Proposition 1.84, A;(¥ = " if r;w < w, 0 otherwise.

Proposition 1.85. & (w) = y; — w™ly; where x; is the fundamental weight dual
X

to the coroot h; corresponding to simple root ;.

Now, we will give the important formula equivalent to the cup product formula in

the cohomology of G/ B where G is a Kad-Moody group.

Proposition 1.86.

e =3 e,

w,vgw

where py, is a homogeneous polynomial of degree {(u) + £(v) — £(w).
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Proposition 1.87.
fw Ef W > w,

—(w™ o)€M 4 £v — Z a;(Y)EY  otherwise.
riw—w!

rif" =

Theorem 1.88. Let u,v € W. We write w™ =1r;, ---r;, as a reduced expression.

n

pﬁ"vz Z Ailo"'oAijlO"‘OA-i;mO"'DAin(fu)(e)
j1<"'<j771
Fi T im =Y

where m = £(v) and the notation A; means that the operator A; is replaced by the Weyl

group action r;.

Let Co = S/S™* be the S-module where ST is the augmentation ideal of S. It is
1-dimensional as C-vector space. Since A is a S-module, we can define Gy ®5 A. It is
an algebra and the action of R on A gives an action of R on Cp ®s A. The elements
¥ =1Q ¢ € Gy ®s A is a C-basis form of Cy ®g A.

Proposition 1.89. Co ®s A is a graded algebra associated with the filtration of
length of the element of the Weyl group W.

Proposition 1.90. The complez linear map f: Co @s A — GrC{W?} is a graded

algebra homomorphism.

Theorem 1.91. Let K be the standard real form of the group G associated to a
symmetrizable Kac-Moody Lie algebra g and let T denote the maximal torus of K.
Then the map

6 : H(K/T,C) = Co ®s A

defined by 0(¢¥) = o¥ for any w € W is a graded algebra isomorphism. Moreover,
the action of w € W and A¥ on H*(K/T,C) corresponds respectively to that &, and
Ty € R on Cy Qs A.

Corollary 1.92. The operators A' on H*(K/T,C) generate the nil-Hecke algebra.

Corollary 1.93. We can use Proposition 1.86 and Theorem 1.88 to determine the
cup product ec in terms of the Schubert basis {e¥ }}wew of H*(K/T,Z).

34




CHAPTER 2

Stratification of the homogeneous space LG/T,

Birkhoff-Bruhat Decompositions and Grassmannian models

For this chapter, the general reference is [84] of A. Pressley & G. Segal.

1. Introduction.

Let ¢ be a compact simply-connected semi-simple Lie group.

Definition 2.1. The loop group LG is the set of all smooth maps from the circle

St to the compact, connected and simply connected group G.

Since the compact group G is simply-connected, the loop group LG is connected. It
has the compact-open topology structure (usual map topology) and also the pointwise

group multiplication given by the multiplication in G.

Theorem 2.2. Let G be a compact stmply-connected semi-simple Lie group. The

loop group LG is an infinite dimensional Lie group modelled on separable Hilbert space.

We want to mention some subgroups of the loop group LG. These are real-analytic
and polynomial loop groups. Since (G can be embedded in a unitary group U, by the
unitary representation of G on C*, a loop 7 in G is a matrix-valued function and can
be expanded in a Fourier series

(2.1) n(z) = Z ns2°.

=00
The real-analytic loops are these such that the Fourier series converges in some annulus
r < z < r~'. The polynomial loop group Ly consists of these such that the matrix

entries are finite Laurent polynomials in z and 2™

, 1.e. loops of the form 2.1 where only
finitely many of the matrices 1, are non-zero. This group is the union of the subsets
Lo, NG consisting of the loops (2.1) for which 5, = 0 for |s| > N. Each of these subsets
is a compact space, we can give LG the direct limit topology. The polynomial loop

group LpaG has the complexification LyqGe which is just the points of G with values
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in C[z,7z '] in the sense of algebraic geometry. The polynomial loop group LpaGe has

a central extension Ly G by the circle group T. From [63], we have

Theorem 2.3. L,,Gg is an infinite dimensional algebraic group in the sense of

Safarevic.

Theorem 2.4. Let G be a compact simply-connected semi-simple Lie group. Then

LpaG is dense in LG.

Definition 2.5. The based loop group QG is the set of all based smooth maps from
the circle St to the compact simply-connected G, i.e. the smooth loops which map the
base point of the circle S to 1. Similarly, the complexified based loop group QG¢ is
defined. Also, the polynomial based loop groups are defined as QpoiG = QG N LyaG.

Theorem 2.6. The Lie group LG is the semidirect product of the subgroup G of
constant loops and the normal subgroup QG of based loops v such that the compact
group G acts on QG by conjugation. In particular, LG = G x QG as a manifold; and
the homogeneous space LG/G can be identified with QG. Then the based loop group
QG can be thought as a homogeneous space of LG, since the action of v € LG on QG

s w — @, where
&(z2) = (2w (z)y(1) 7"
2. The Grassmannian model of Hilbert space.

First, we will give the natural embedding of the smooth loop group LGL,(C) into
the restricted general linear group of a complex separable Hilbert space H. Let H(
denote the Hilbert space L*(S';C*) of square-summable C*-valued functions on the
circle. The group LG L, (C) of continuous maps St — GL,(C) acts on the separable
Hilbert space H™ by multiplication operators: if 4 is a matrix valued fuction on the

circle, we denote the corresponding multiplication operator by M.,. The norm ||M,]]

is defined by
1M]| = sup{|v(6)] : 0 € S}

Then the mapping v — M, embeds the Banach Lie group L¢:sGL,(C) as a closed
subgroup of the Banach Lie group GL(H™) of all invertible bounded operators in
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H®™), with operator-norm topology, which is

T o =sup{”|ﬁl” oo o}

for T € GL(H™).

Definition 2.7. A linear operator T : Hy — Hj between Hilbert spaces is Hilbert-
Schmidt if for every complete orthonormal sequence {e;} in H;, the series z || Te:l)?

converges. The Hilbert-Schmidt norm of T' is defined by ||T||2 = (Z | Te:]|?)z.

Theorem 2.8. The set Fy(Hq; Hy) of Hilbert-Schmidt operators Hy — Hs is a
Hilbert space under the Hilbert-Schmidt norm |} ||2.

Definition 2.9. A linear operator T' : Hy — Hy is called compact if for every

bounded sequence (x,) in Hy, the sequence (Ax,) has a convergent subsequence in Hy.
Theorem 2.10. (see [96]) Every Hilbert-Schmidt operator is a compact operator.

Now, we will introduce notion of restricted general linear group. It is defined for
an infinite dimensional Hilbert space which is equipped with a polarization, i.e. a

decomposition = H_ @ H; as the orthogonal sum of two closed infinite dimensional

subspaces.

Definition 2.11. The restricted linear group GlL,s(H) is the subgroup of gen-
eral linear group GL(H) consisting of operators A such that the commutator [J, A] =

JAJ LA™Y is a Hilbert-Schmidt operator where J : H — H is a unitary operator given
p

by

h  forhe€ Hy,
J(R) = *

—h forh e H_,

Definition 2.12. Let Hy and Hy be Hilbert spaces. The linear operator A : H; —
Hj is called Fredholm if dimker A and dim coker A are both finite. Then the index of
A s

index A = dimker A — dim coker A.

Proposition 2.13. (see [27]) If the operator A : Hy — H, is invertible modulo

compact operators, it is a Fredholm operator.
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Proposition 2.14. (see [27]) The set Fred(Hi, Hy) of the Fredholm operators is
an open subset of the norm space L(Hi; Ha) of bounded operators in the sup-norm
topology. The index function index from the space Fred(Hy, Hy) of Fredholm operators

to Z is locally constant and hence it is continuous.

The following proposition gives us a characterization of the restricted general linear

group G'Lyes(H).

a b
Proposition 2.15. Let A € GL(H) be written as a 2 X 2 matriz with

c d
respect to the decomposition H = H_ @ Hy. Then, A € GLws(H) if and only if b

and ¢ are both Hilbert-Schmidl operators. In particular, if A € GLyes(H), a and d are

Fredholm operators.

a b
Proposition 2.16. The map GLyes(H) — Fred(H,) given by A = - a,

c d

is a homotopy equivalance.

We have seen that the continuous loops in GL,(C) can be regarded as a subgroup
of GL(H™). The smooth loops in GL,(C) are contained in GLye(H™). This fact is

proven by the next proposition.

Proposition 2.17. If v : S' =+ GL,(C) is continuously differentiable, the multi-
plication operator M., is in G Lyes(H (”)).

Definition 2.18. Gr(H) is the set of all closed subspaces W of H such that the
orthogonal projection pry : W — H, is a Fredholm operator and the orthogonal pro-

jection pr_ : W — H_ is a Hilbert-Schmidt operator.

The definition of the Grassmannian of a Hilbert space can be given another way:
W € Gr(H) if it is image of an operator w : H; — H such that pr ow is Fredholm and
pr_ ow is Hilbert-Schmidt. The restricted general linear group G Lyes(H) acts smoothly
on the space Gr(H). We have

Proposition 2.19. The restricted unitary subgroup U.es(H) acts transitively on
Gi(H), and the stabilizer of Hy is U(Hy) x U(H-).
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Definition 2.20. IfT : Hy — H> is an operator, the graph of T' is the set

{h@®The H ®H,: hecdomT}.

Lemma 2.21. The sum of a Fredholm operator and a Hilbert-Schmidt operator is

a Fredholm operator.
By Lemma 2.21, we have

Proposition 2.22. If W € Gu(H), so does the graph of every Hilbert-Schmidt
operator W — Wi,

These graphs form the subset Uw of Gr(H) consisting of all W’ for which the
orthogonal projection W’ — W is an isomorphism: it is in one-to-one correspondence
with the Hilbert space Fo(W; W) of Hilbert-Schmidt operators W — W+, Then, we
have from [84]

Theorem 2.23. Gr(H) is a separable Hilbert manifold modelled on Fo( Hy; H-).
We define the virtual dimension for an arbitrary W € Gr(H).

Definition 2.24. The virtual dimension of an arbitrary W € Gr(H) is the index

of the orthogonal projection pr, : W — Hy, i.e.
virt-dim W = dim ker pr, — dim cokerpr, .
Equivalently,

virt-dim W = dimW N H_ —dimW™* n H,.

Now, we will introduce an orthonormal basis in the separable Hilbert space H.
We know that H™ = L%(S}C*) can be decomposed into the positive and negative
eigenspaces of the infinitesimal rotation operator —id/df as follows:

HP = {f e H™ : f(6) = Y fi ™'}
k320
and

HY = {J e HM : f(0) =Y fre™)

k<0
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where fr € C* . If we identify H with the space L*(S%; C) with natural basis {z*}1ez,
we have the collection of points {Hg} in Gr(H) such that Hg is just the closed subspace
spanned by 2° for s € S, where S is a subset of Z which has finite difference from the

positive integers N. We will denote S for the family of such sets S. We see that
virt-dim Hg = card(S — N) — card(N - 5).
This number will be called the virtual cardinal of S.

Proposition 2.25. For any W € Gr(H), there is a set S € S such that the per-

pendicular projection W — Hg is an isomorphism.

Then, by Proposition 2.25, the sets {Us}ses, where Us = Upn,, form an open
covering of Gr(H). We can have coordinate charts on separable Hilbert manifold
Gr(H), indexed by S. A point of Us is the graph of a Hilbert-Schmidt operator
Hs — Hg', and is represented by an § x S matrix, where § = Z — $. The transition
functions are given by Ty = (¢ + dTo)(a + bTy) ™! where T} is Hilbert-Schmidt operator
from Hg, to Hg,* for i € {0,1}. Now, we will define an important dense submanifold

of Gr(H) in terms of the coordinate charts Ugs.

Definition 2.26. Gro(H) is the set of all subspaces W such that zFH, C W C

z"RH, for some k.

Gro(H) is the union of the finite dimensional classical Grassmannians Gr(H_ )
where H_p;, = 2 *H, /zFH,. In terms of coordinate charts, Gro(H) consists of the
graphs of operators Hg — Hs" with only finitely many non-zero matrix entries. These

graphs are dense in the space Fo(Hs; Hst) of Hilbert-Schmidt operators.

3. The stratification of Gr(H) and the Pliicker embedding.

The stratification of the Grassmannian Gr(H) is analogous to that of finite di-
mensional Grassmannians. A stratification of Gr(H) may be by the dimension of the
intersection W N H_, which is necessarily finite. However, we can give a finer stratifica-
tion, which records the dimension of WNz* H_ for every k. For this finer stratification,

we will introduce some notions.
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Definition 2.27. An element f of the Hilbert space H = L*(S%;C) is of finite

order s if it is the form Z fiz' with f, # 0. In other words, f is the boundary value
l=—co
of a function which is meromorphic in the hemisphere |z| > 1 with only a pole of order

s at z = co. For any W & Gu(H), the set of elements of finite order in W will be
denoted by Win,

Since the set of elements of finite order is dense in Hg for S € &, by Proposition

2.25, we have
Proposition 2.28. Win is dense in W.

For given W, we define
Sw = {s € Z : Wcontains an element of order s}.
Definition 2.29. For given S € S, the set
Ys={W € Ge(H) : Sw = S}
is called the stratum of Gr(H) corresponding to S.

In other words, Ys consists of all W such that dim Wy = d,(S) for all &, where
Wi = W N 2" H. and di(S) is the number of elements of § which are < k. An

indexing set S of virtual cardinal d can be written

S ={S-dyS—dt1,- - }»

with s_g < $_gy1 < ... and s; = [ for large [. We will order the sets of the same

virtual cardinal by

S8 = s =sforalll

<=  dp(S) < di(S") for all k

Also, we define the length £(S) of S by

Note that S < 5" implies £(5) < £(S").
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Theorem 2.30. The stratum Xg is a contractible closed submanifold of the open
set Ug, of codimension £(S). The stratum Yg is the orbit of Hg by N_ where N_
is strictly lower triangular subgroup of GL..s consisting of all elements A such that
A(z*H_) = 2*H_ for all k. The closure of Xg is the union of the strata Ls with
S =5,

We know that the Grassmannian of a finite dimensional vector space has a Schubert
cell decomposition. This details can be found in the [43]. By definition, Gro(H) is the
union of the finite dimensional Grassmannians Gr(H_4). It too can be decomposed
into Schubert cells. This decomposition is dual to the stratification of Gr(H) described
in the last section in the following sense: the same set S indexes the cells C'g and the
strata Lg; dimCg = codimXg; Cs meets Lg transversally in a single point. For the

description of Cs, we will introduce some notation.

N
Definition 2.31. The co-order of a polynomial element f = Z frz® of H is the

k=—-N
smallest k such that fi # 0.

Then for W € Gro(H), we define
SW = {s € Z: W contains an element of co-order s}
For § € 8§, we define
Cs = {W € Gro(H) : SV = S}.

Theorem 2.32. Cs is a closed submanifold of the open set Us of Gr(H) and it is
diffeomorphic to CX5). Cs is the orbit Hs under the strictly upper triangular subgroup
N,y of Gles which consists of all A such that A(zkH+) = z*H, for all k. The closure
of Cs is the union of the cells Cs with S' < S. Cg intersects g if and only if S = 5

and Cg intersects 2g transversally in the single point Hg.

' We will give the relation between rotation action of the circle group T on Gr(H)

and the stratification of Gr(H). The circle group T acts on H = L*(S%; C) by rotating
S' and this action preserves the decomposition H = H.. @ H_, hence T also acts on

the Grassmannian Gr(H). This action is continuous but it is not differentiable. The
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rotation action of T extends to an action
ng x Gr(H) — Gr(H)

of the semigroup C¢; ™ of non-zero complex numbers of modulus < 1. This action is
holomorphic on the open set Cey ™ x Gr(H). The rotation action of the circle T on the

submanifold Gro(H) extends to a holomorphic action of the whole group C*.

Proposition 2.33. Xg consists of the points W € Gr(H) such that R,W tends to
Hg asu — 0.

Cs consists of the points W € Gro(H) such that R,W tends to Hs as u — co.

We know that a finite dimensional Grassmannian space can be embedded into a
projective space and points of the Grassmannian can be written in coordinates of the
projective space. Details can be found in [43]. We can do exactly the same with

Gr(H). For s € Sw, let w; be an element of W of the form Z frz® with f, = 1.
k=—o0

Then {w,} is a basis of W in the algebraic sense. We can choose w, uniquely such
that it projects to z°; we will call this canonical basis of W. We will introduce the

notion of admissible basis for W. Suppose that W has virtual dimension d.

Definition 2.34. A sequence {wy}ry—q in W is called an admissible basis for W if
the linear map w : 2~ H, — W which takes z*F to wy, is a continuous isomorphism and
the composite prow, where pr : W — 2~%H, is orthogonal projection, is an operator
with a determinant. The canonical basis for W is admaissible: the composite map pr ow

differs from the identity by an operator of finite rank.

Definition 2.35. If w is an admissible basis for W, S € S s a set of virtual
cardinal d, and prg : W — Hg is the projection, we define Pliicker coordinate mg(w)

of the the basis w as the determinant Det(prg o w).

Proposition 2.36. The Plicker coordinates {ms}ses define a holomorphic embed-
ding

72 Gr(H) — P(H)
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into the projective space of the separable Hilbert space H = (*(S) of the sequences

s+ 8 = C. such that Z |s:]* < o0 and s; = 0 for all except a countable number of

_ ies
1€ 5.

Proposition 2.37. Det : L — Gr(H) s the holomorphic line bundle with fibre
Det(W) at W € Gr(H) which is to be thought of as the top exterior power of W. The
line bundle Det is the pull-back of the tautological line bundle on P(H).

Using the Plicker embedding, we have

Proposition 2.38. Gr(H) is a Kdahler manifold with the closed 2-form w which
represents the Chern class of the line bundle Det on Gr(H).

4, The Birkhoff - Bruhat factorization theorems.

Definition 2.39. The subgroup LT GL,(C) of LGL,(C) s the set of loops v which

are the boundary values of holomorphic maps
v:{z e C:|z| <1} = GL,(C).
Theorem 2.40. Any loop v € LGL,(C) can be factorized uniquely
TY= YT+

where 7y, is an element of the based loop space QU,, and v € LYGL,(C). The product

map
QU, x LY GL(C) = LGL,(C)

is a diffeomorphism.

Definition 2.41. The subgroup L~GL,(C) is set of loops v € LGL,(C) which are

the boundary values of holomorphic maps
v:{z€CUoo: |z| > 1} = GL,(C)
Theorem 2.42. Any loop v € LGL,(C) can be factorized

T=V- A0
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where y- € L™ GLn(C), 74 € LYGL,(C) and X € T is a loop which is a homomorphism
from the circle group T into the mazimal torus T in GL,(C), i.e. X is of the form

/z‘“ \

a2

The product map
L™ x LT — LGL,(C)
is a diffeomorphism where
Lim={y- €L :q_(c0) =1}

In Theorem 2.40 and 2.42, LG L, (C) can be replaced by LG for any compact semi-
simple Lie group (G. Both theorems are referred as Birkhoff’s factorization theorems
and have exact analogues for the groups of rational and polynomial loops. Now, we

will give the Bruhat factorization theorem.

Theorem 2.43. Any polynomial loop v € LyaGL,(C) can be factorized
Yy=u-A-v,

where u and v both belong to LYGL,(C) and X is a homomorphism from the circle

group T into the maztmal torus T'.

5. The Grassmannian model for the based loop space QU,.

We know that the group LG L, (C) acts by matrix multiplication on the separable
Hilbert space H™ = L*(S% C"), and by Proposition 2.17, on the Grassmannian Gr(H).
Since the action of v € LG L, (C) commutes with multiplication by the function z, the

subspaces W of the form vH, for v € LGL,(C) have the property zW C W,

Definition 2.44. Gr™ denotes the closed subset of Gr(H™) which consists of
subspaces W such that z2W C W.
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We will show that Gr(™ is gives a Grassmannian model of the loop space.

Definition 2.45. L%GL,L((C) is set of the commutant elements of the multiplication
operator M, in G Lyes(H™).

Proposition 2.46. The loop group L%Un = L%GL,I((C) N LU, acts transitively on
Gr™ | and the isotropy group of Hy is the group Uy, of constant loops.

Then, by Proposition 2.46, Q3Uy = L, Uy /Uy, can be identified with Gr™ as a set.

Proposition 2.47. In the correspondence Gr'™ ¢ Q%Un, Gr(()n) and Gr{™ corre-

spond to polynomial based loop space QpaU, and QU, respectively.

The complexified group Ly GLn(C) acts on Gr™ as well as L 1Un, and the stabilizer
of Hy in Ly GL,(C) is the closed subgroup L%"'GL,I((C). Thus, this gives the the proof
of Theorem 2.40.

6. The stratification of Grg.’f).

In this section, we will drop the subscript co for smooth manifolds Gre,(H) and
Gr{™. Since Gr™ can be identified with LGL,(C)/L* GL,(C) by Theorem 2.40, The-
orem 2.42 asserts that each L~ orbit contains a point of the form 2z2H, ™ unique up

to the order of {a1,az,...,an}.

Definition 2.48. N~ is the set of loops v such that y(co) is upper triangular with

1’s on the diagonal.

Proposition 2.49. Each orbit of N~ on Gr™ contains a unique point of the form
22 H, ™ and the orbits of N~ are the intersections of Gr'™ with the strata of Gr(H).

The fixed points of the rotation R, action of T on QU, given by (R.,w)(0) =
w(f — u)w(—u)"! for w € QU, are the homomorphisms A : T — U,, corresponding to
the subspaces A - H. in Gr(™. The action of the circle group T extends to an action of
the semigroup C¢™ and for any W € Gr™), the point R, W tends to A - H, as u — 0.
The stratification of Gr(H) was defined for H = L*(S% C), whereas in this section, we
are concerned with H(™ = L*(S§%; C"). Since all infinite dimensional separable Hilbert

spaces are isomorphic, all that we need is a Hilbert space with an orthonormal basis
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indexed by the integers. Then, we can define an isomorphism between the separable
Hilbert spaces: if {e; : 1 € ¢ < n} is the standard basis of C*, we let &;2F correspond
nk+4i—

to z 1 € H. Given a vector valued fuction with components (fi, fa, ..., fa) € H®,

we have the scalar-valued f € H given by

F= A +CRET) + o+ T )

Conversely, given f € H, we obtain {fihicign € H™ by
L s
fern(e) == 3O,
¢

where ( runs through the nth roots of z. The isomorphism is an isometry. Then,
H = H™ has the orthonormal bases {(*};cz. We can define Gr™ in terms of ¢*.

Then, the definition of Gr{™ can be rewritten
Gr™ = {W e Gr(H) : ¢C"W C W}

We know from the definition of the strata Xg of Gr(H) that W belongs Xig if S is the
set of integers s such that W contains an element of order s. If W € Gr™ belongs to
g, then S +n C S. Sets S € & satisfying this condition are completely determined
by the complement 5* of S 4+ n in S, which must consist of n elements, one in each
congruence class modulo n. They corresponds to the homomorphisms from the circle
T into the maximal torus. For the homomorphism z¢, there corresponds the set S,

such that S,* is
{nai,nas +1,...,na, +n—1}.

Thus the strata of Gr(H) which meet Gr™ can be indexed by the homomorphism 2°.

We will write &2, for ©is, N Gr™, and H, for Hs,.

Proposition 2.50. The orbit of H, under N~ is X,. It can be identified with the
subgroup L,” of N™, where L,”™ = N~ N 2*L,"z72.

Proposition 2.51. Gt is smooth submanifold of Gr(H).
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Theorem 2.52. The map v — vH, defines a diffeomorphism between z*L,”27*
and a contractible open neighbourhood U, of H, in Gr™ . The stratum %, is a con-
tractible closed submanifold of U,, of complex codimension

d(a) = Z |ai — a;] - v(a),
1<g
where v(a) is the number of pairs 1,7 with 1+ < j but a; > a;. The orbit of H, under
N7 s a complex cell Cy of complex dimension d(a), which meets X, in the single point
H,. The union of the cells Cy is Gro™ and C, is the intersection of Gr'™ with the cell
Cs, of Gryp.

7. The Grassmannian model for QG where G is a compact semi-simple Lie
group.

Since LG is a Lie group, by its adjoint representation, LG acts on the Hilbert space
H& = L*(S% g¢) where g is the complexified Lie algebra of the compact Lie group G.
If dim G = n, we can identify H8 with H. By the unitary representation of G on C”,
LG is a subgroup of LU,. Then, the based loop space 2G is a submanifold of QU,,,
which can be identified with a submanifold Gr(##). W*™ is the subspace of smooth

functions in W. It is dense in W.

Definition 2.53. Gi® is the subset of Gr(H®) consisting of subspaces W such that
zW C W, W= 2W, where W is the conjugate space of W and W™ is a Lie algebra

under the bracket operation for ge-valued smooth functions in W.

Theorem 2.54. The action of LG¢ on Gr(H8) preserves Gr® and v — vHy de-
fines a diffeomorphism QG — Gr8,

If we choose a maximal torus T' of G and a positive root system AT, then we can
define the nilpotent subgroups N* and N~ of G¢ whose Lie algebras are spanned by
the positive (respectively negative) root vectors of g¢ corresponding to the positive
(resp. negative) roots. Also, we can define nilpotent subgroups N* and N- of the
loop group LGg: N7 is the set of the loops ¥ € LTGg such that v(0) € N*; N~ is the
set of the loops v € L~G¢ such that y(co) € N~ and LEGc C N* C L*Ge.
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Theorem 2.55. Gr® = QG is the union of strata ) indexved by the coweight lattice
T of homomorphisms X : T — T where the strata Ty is the orbit of \-Hy under N~ and
it is locally closed submanifold of finite codimension dy in Gr8. The complex cell C) of
dimension dy is the orbit of A - Hy under Nt and it meets the strata ¥y, transversally

in the single point A - Hy. The union of the cells C) is Gro® = QpaG.

Now, we will mention the homotopy equivalance between the based loop group
QG and the polynomial based loop group Q,,G. We know that the cells C of Grg®
have even dimension, thus the fundamental group m1(Gre®) must be trivial. Also, the

fundamental group of QG is the second homotopy group m3(G). Then, we have
Proposition 2.56. The inclusion QpaG — QG is @ homotopy equivalance.

Corollary 2.57. The homotopy group mo(G) is trivial for any compact semi-simple

Lie group G.

8. The homogeneous space LG/T.

One of the most important homogeneous spaces of a compact group Lie group G is
G/T, where T' is a maximal torus of G. The analogue of G/T for a loop group LG is
LG/T rather than the homogeneous space QG. LG/T is a complex manifold, because
it is diffeomorphic to LGg/B* where

Bt = {ivkzk €eLtGoim € B} .
k=0
LG[T is stratified by the orbits of N—, and the strata are indexed by the affine Weyl
group W. We know that the affine Weyl group W is the semi-direct product W x T
where W is the Weyl group of G and T' is the co-weight lattice of (. Since W =
(N(T) - T)/T where N(T) is the normalizer group of T' in &, W is a subset of LG/T

Proposition 2.58. The set of fized points of the action of the circle group T on
LG/T is the affine Weyl group w.

Theorem 2.59. The stratum %, is the orbit of w under N“, where L, is a locally
closed contractible complex submanifold of LG [T whose codimension is the length £(w)

of w. The stratum X, s a closed subset of the open subset U, of LG/T, where U, =
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wYe. The union of the strata ,, indexved by the affine Weyl group W is the complex
manifold LG’@/E"‘ = LG/T. A complex cell Cy of dimension £(w) is the orbit of w
under A, where A, = N*NwN-w~. It intersects the strata 2w transversally at w.
The union of the cells Cy, is LytG/T. If {(w') = l(w) + 1, then T, is contained in
the closure of 3y, if and only if W' = wr, where v, 1s the reflection corresponding to a

simple affine root a.

If ais a simple affine root of LG, then there is a homomorphism ¢, : SLy(C) — LG¢
which maps the Borel group B of SLy(C) to B*. This gives us a map 15 : CP! — LG/T
where CP! is the two dimensional complex projective space which is diffeomorphic to
the sphere 82 = CU co. If w' = wr, and £(w') = £(w) + 1, the map z — 7, - w from
S?to LG¢/B* defines a holomorphic projective curve in LG/T linking w to w’. This
projective curve lies in £, except for 7,(c0)-w = w’, so the closure of ¥, contains .

Now, we will describe about the Bott-Samelson resolution of the closure of the

complex cell C,,.

Theorem 2.60. The closure of C,, is a compact complex algebraic variety with

singularities.

If the element w of the affine Weyl group W is written as a product w = ra,7a, -+ * Tay

of reflections corresponding to simple root a; of LG, then the closed cell C,, is the image

of the map
SUy x --- % SUz —+LG/T
given by (g1,... ,9%) = ta, "+ " 1a, * 1.

Proposition 2.61. Z, = SU; x1SUs X7+« xp.SUs /T which is an iterated smooth
projective bundle over CP' is diffeomorphic to the complex manifold Pa, X 54 Pa, X5+
o+« Xy Pay /BT, where Py, = 14,(SLy(C)) - B* C LGqg, i.e., Py, is a minimal parabolic

subgroup which is containing B*.

Proposition 2.62. The surjection Z, — C., is a birational equivalence of alge-

braic varieties.
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Now we will describe the Borel-Weil theory for the loop group L, which is analo-
gous to that for compact Lie groups. Given a central extension LG of LG by the circle
group T, we know that LG/T = LG/T = LG¢/ E*t Every character A of T extends
canonically to a holomorphic homomorphism A : EI‘ — €*. Then, we can define a
holomorphic line bundle Ly = LGe XB;;(C on LG/T by acting 5:' on Cviab-n= A(b)y
for b e grl' and n € C.

Proposition 2.63. The line bundle

Ly= {[’Yﬂ?] e LGe X=1 C:[y,n] =[vb,b-n]Vbe E'F}
has an equivariant structure.

Proposition 2.64. LG acts on the holomorphic line bundle Ly and this action is

compatible with the action on LG/T.

Proposition 2.65. The rotation action on LG/T of the circle group T is covered

by an action on L.

Now, we will introduce some useful notions and terminology. By a representation of
a topological group G, we mean a complete locally convex complex topological vector
space V on which G acts linearly and continuously in the sense that (g,n) =+ ¢g-nis a

continuous map G x V — V.

Definition 2.66. A representation is irreducible if it has no closed invariant sub-

space.

When V is a representation of a Lie group G, then a vector n € V is called smooth
if the action given by ¢ — ¢ 7 is smooth. The set of all such smooth vectors of V' will

be denoted by V.
Definition 2.67. The representation V is smooth tf Vi, is dense in V.

After we give some terminology, we return to the holomorphic line bundle L on
LG/T. We will denote the space of holomorphic sections of the line bundle Ly by T'.
It is a complete vector space with the compact-open topology. By Proposition 2.64,
LG acts on the holomorphic section space ['y. Then Ty is a holomorphic representation

of TG but it may be zero.
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Definition 2.68. The weight A is called antidominant if A(ha) < 0 for every pos-
ilive coroot hy of LG.

Now, we will give an important theorem in this section.

Theorem 2.69. If the representation I'y is non-zero, then A is antidominant and
the representation is irreducible with lowest weight A where X is a character of T x T
which is trivial on T. Furthermore, if it is any other weight of Ty, then u— X is a sum

of positive roots LG,

Definition 2.70. Representations V and V' of a group G' are essentially equivalent
if there is an injective G-equivarant continuous linear map V. — V' which has dense

image.

Warning: this is not an equivalence relation. Indeed, a reducible representation
may be essential equivalent to an irreducible representation. If V and V' are finite
dimensional topological vector spaces, then essential equivalance agrees with the notion

of G-equivarant linear isomorphism.

Theorem 2.71. Fvery irreducible representation of LG is essentially equivalent to

some ['y.

Proposition 2.72. The line bundle Ly on LG/T has non-vanishing holomorphic

sections tf and only if the weight A is antidominant.

We know that a character y is a class function on G. When G is a compact Lie
group, each element of G is conjugate to an element of the maximal torus T, so the
character yx is described by the restriction to 7. Now, we will be interested to the
character theory of representations of loop groups. We consider the representations of
T x EG, where L@ is an arbitrary central extension of LG by the circle group T. In
the last section, we have seen that every irreducible I'y contains a unique lowest weight
vector, up to scalar multiple, transforming according to a character A of T x T which

determines ['y. Then,

Theorem 2.73. FEvery representation of T x LG is determined up to equivalence

by its restriction to T x T.
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Definition 2.74. The character of the representation V of T x LG is the sum
Xv = Z dy - e
)
where dy is the number of multiplicity of a character A of T x T,

We will state an important result due to V. Ka& [59] which is an exact analogue of

the Weyl character formula for compact groups.

Theorem 2.75. (The Ka¢ character formula)
Y = H(l . ez‘a)—l Z (__l)f(w) ei(w,\—i-s(w)),
« weW

where s(w) is the sum of all positive roots a of LG for which wla is negative.

Now, we will give an application of lowest weight representations of the affine type
Kaé-Moody algebras. This gives the algebraic proof of the character formula. The
fundamental reference is W. Zhe-Xian [98]. First, we will give some notations. The

— ———

universal enveloping algebra U(Lpogc) will be denoted by U, U(by,) (vesp. U(nt,)

pol

) will be denoted by U_. (resp. U;) By the Poincaré-Birkhoff-Witt Theorem, the

multiplication map
UtreuU - —U
is an isomorphism of complex vector spaces.

Definition 2.76. A representation space My of T x Z_:;:]G which is generated by
a vector Qy, ts called a Verma module tf (5 is annihilated by n_ ), (x is an eigenvector
of Tx T correponding to the character A and the map U Qu_ C — M), given by

a® z — za- () is an isomorphism.

Corollary 2.77. The Verma module M) is isomorphic to Cy\ ® Sym(ngol) as a
representation of T ® 'f, where Cy denotes C with the action of T® T given by the

character M.

Proposition 2.78. If a representation space V is a direct sum of one-dimensional
irreducible representations p; of a compact group K, then the character of the exterior

algebra A(V) is [[(1 + p:i), while that of Sym(V) s JJ(1 + pi)~*.
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Corollary 2.79. The character @, of the Verma module M, is
0y = et H(l _ eio‘)—l.
a>0
Proposition 2.80. The Verma module My is a lowest weight module with lowest
wetght A of the multiplicity 1. Any lowest weight module with lowest weight \ is homo-
morphic image of My. My has a unique mazimal submodule with simple quotient L.

If V is an irreducible lowest weight module with lowest weight A, then V is isomorphic

to L)\.

Proposition 2.81. The character x) of the irreducible representationI'y is a count-

able sum of the form Z NPy, where ny, € Zand i runs through weights such that p— A
m
is a sum of positive roots of LG and o(p—p,pp—p)=oc(A—p,\—p). Here, p denotes

(0, p, —¢) where p is the half of sum of all positive roots of G and c is p(hy,) + 1.
Lemma 2.82. For any weight X\ and any w € W, we have
wox = (1) ™puinp.

Lemma 2.83. Let A be an antidominant weight, and let pt be o weight which sat-
isfies the following conditions.

1. u— A is @ sum of all positive roots of EG,

2. u— p is an antidominant weight,

3. o(u—pu—p)=0c(A—p,A—p).
Then, A = u.

Theorem 2.84.

XA = Z (=1 ) oy (5 p)p-
WGW

By Proposition 2.80 and Theorem 2.84, we have

Theorem 2.85. There exists a resolution

0Ty My P Mupmpyso & P Muprop)ss < -
Lw)=1 L(w)=2

of the irreducible representation Ty by Verma modules.
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This is called the Bernstein-Gelfand-Gelfand resolution. This resolution expresses
the stratification of the basic homogeneous space LG/T. When TI') is realized as the
space of holomorphic sections of the line bundle L) on homogeneous space LG/T, we
can identify the antidual of the canonical surjection M) — I') with the restriction map

of sections I'(Ly) — ['(Lx|U), where U is the dense open stratum of LG/T.

Theorem 2.86. If Ty is the irreducible representation of LG with lowest weight,
then

H*(07T) = P Cupmppte
Hw)=q
as a representation of T x i where Cyr—p)+p denotes C with the action of T X T given

by the character w(A — p) + p.

Theorem 2.87. The map H(f) : H*(Lg,h;C) — H*(LG/T;C) is a graded-

algebra isomorphism.

We already know that the Z-cohomology of the homogeneous space LG/T is the free
abelian group generated by the strata of complex codimension p , which are indexed

by the elements of length p in the affine Weyl group.
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CHAPTER 3

The Cohomology Ring of the Infinite Flag Manifold LG/T

1. Introduction.

In [72], Kumar described the Schubert classes which are the dual to the closures
of the Bruhat cells in the flag varieties of the Kat-Moody groups associated to the
infinite dimensional Kaé-Moody algebras. These classes are indexed by affine Weyl
groups and can be choosen as elements of integral cohomologies of the homogeneous
space ZpolGC / B for any compact simply connected semi-simple Lie group G. Later,
S. Kumar and B. Kostant gave explicit cup product formulas of these classes in the
cohomology algebras by using the relation between the invariant-theoretic relative Lie
algebra cohomology theory (using the representation module of the nilpotent part) with
the purely nil-Hecke rings [68]. These explicit product formulas involve some BGG-
type operators A’ and reflections. Using some homotopy equivalances, we determine
cohomology ring structures of LG/T where LG is the smooth loop space on . Here,
as an example we calculate the products and explicit ring structure of LSU2/T using

these ideas.

2. The root system, Weyl group and Cartan matrix of the loop group LG.

We know from compact simply-connected semi-simple Lie theory that the complex-
ified Lie algebra g of the compact Lie group G has a decomposition under the adjoint

action of the maximal torus 7' of G. Then, from [54], we have

Theorem 3.1. There is a decomposition

gc — t‘c@gaa

where go = te s the complexified Lie algebra of T' and

8o ={¢€gc:t-{=alt){VteT}.
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The homomorphisms a : 7' — T for which g, # 0 are called the roots of G. They
form a finite subset of the lattice T' = Hom(7,T). By analogy, the complexified Lie

algebra Lgc of the loop group LG has a decomposition

Lge = Pec-
keZ

where g is the complexified Lie algebra of G. This is the decomposition into eigenspaces

of the rotation action of the circle group T on the loops. The rotation action commutes

with the adjoint action of the constant loops 7, and from [84], we have

Theorem 3.2. There is a decomposition of Lgc under the action of the mazimal

torus T' of G,

Lec=Pgo- 2 0 P ga - 2~

keZ (k)

The pieces in this decomposition are indexed by homomorphisms
(k,a): TxT =T,
The homomorphisms (k,a) € Z x T which occur in the decomposition are called the

roots of LG.
Definition 3.3. The set of roots is called the root system of LG and denoted by

A.

Let & be (0,1). Then

A= J(AU{0} +k6) = AU {0} +Z4,
keZ

where A is the root system of . The root system A is the union of real roots and

imaginary roots:

A =AU A,

where
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Definition 3.4. Let the rank of G be [. Tﬁen, the set of simple roots of LG is

{(c,0) s o € Tfor 1 <i KLU {(—anyr, 1)},

where oy 1s the highest weight of the adjoint representation of G.

The root system A can be divided into three parts as the positive and the negative

and 0:

where

where

and

K:&‘*WJ{O}UZ&“

- X+
Are - —Al‘e)
- _ AN+
All]’l —Aim

Now, we will give some examples. First, we will discuss the case of SU,. The

root system A of the loop group LSU(2) has two basis elements ag = (—e,1) and

a; = (o, 0) where o is the simple root of SU;. All roots of LSU, can be written as a

sumn of the simple roots ag and a;.

Proposition 3.5. The set of roots of LSU; 1s given by A = A U Ajm where

Ave = {kag +1la,: |k —1|= 1,k e 7},

Ay = {kao + ka, : k € Z}.

Corollary 3.6. The set of positive roots of LSU, is given by At = Ej;Uz&in where

Af = {kao +lay : [k =] =1,k € Z"}= {(o, 1), (—a,8) : 7 > 0,5 > 0},

ﬁjn = {kag + ka, : k € Z}
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In the case of LSU,, for n > 3, the root system A of the loop group LSU, has
basis elements ag = (—ap,1) and a; = (e;,0), 1 € ¢ € n — 1 where q; is the simple
n—1

root of SU, and o = Z o;. All roots of LSU, can be written as a sum of the simple
—
roots a;, '

Theorem 3.7. (see [60]) The set of roots of LSU,, forn = 3, is
i—1 7=1 n—1
A={k> a+1> a,+k> a:lk—Il=1keZand) <i<j<n}.
r=0 r=1 r=j
Corollary 3.8. The set of positive roots of LSU,, forn > 3, is

{AZa,—i—lZﬂ,—l—kZa, |k —1ll=1,k € ZTand0 < i< j <n}.

r=0 r=

Now, we will discuss the Weyl group of the loop group LG. In order to define this
group, we need a larger group structure. We define the semi-direct product T x LG of

T and LG in which T acts on LG by the rotation. From {84], we have
Theorem 3.9. T x 1" is a maximal abelian subgroup of T x LG.

Theorem 3.10. The complexified Lie algebra of T x LG has a decomposition

Cot)® | Pt 0P e 7

ks£0 (k)

according to the characters of T x T'.

We know from chapter 1 that the roots of G are permuted by the Weyl group
W. This is the group of automorphisms of the maximal torus 7" which arise from

conjugation in &, i.e. W = N(T)/T, where
N(T)={ne G:nTn™ ' =T}

is the normalizer of T' in . In exactly same way, the infinite set of roots of LG is
permuted by the Weyl group W = N (TxT)/(TxT),where N(T xT) is the normalizer
in T x LG. The Weyl group W which was defined above is called the affine Weyl group.

Proposition 3.11. The affine Weyl group W is the semidirect product of the
coweight lattice TV = Hom(T,T) by the Weyl group W of G.
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We know from chapter 1, the Weyl group W of G acts on the Lie algebra of the
maximal torus T, it is a finite group of isometries of the Lie algebra t of the maximal
torus T'. It preserves the coweight lattice 7V. For each simple root «, the Weyl group
W contains an element r, of order two represented by exp (Z(eq + e—o)) in N(T').
Since the roots o can be considered as the linear functionals on the Lie algebra t of

the maximal torus T, the action of r,, on t is given by

To(€) =& — a(é)hafor € € 1,

where £ is the coroot in t corresponding to simple root . Also, we can give the action

of r, on the roots by
ra(8) = B — alhg)afor o, € t*,

where t* is the dual vector space of t. The element r,, is the reflection in the hyperplane
H, of t whose equation is a(§) = 0. These reflections r, generate the Weyl group
W. For the special unitary matrix group SU,, we have only one simple root a with
corresponding reflection r, which generates the Weyl group of SU; and W & Z/2.

More generally, we have from [55].
Theorem 3.12. The Weyl group of SU, is the symmetric group S,.

Now, we want to describe the Weyl group structure of LG. By analogy with R for
real form, the roots of the loop group LG can be considered as linear forms on the Lie
algebra R X t of the maximal abelian group T x 7'. The Weyl group W acts linearly
on R X t, the action of W is an obvious reflection in the affine hyperplane 1 x t and

the action of A € TV is given by

A (msg) - (x,§+m/\)

Thus, the Weyl group W preserves the hyperplane 1 x h, and A € T acts on it by
translation by the vector A € TV C t. If @ # 0, the affine hyperplane H,; can be

defined as follows. For each root (o, k),
Hoyp = {tf ct: a({) = —k}
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We know that the Weyl group W of @ is generated by the reflections ry in the hyper-
planes H, for the simple roots . A corresponding statement holds for the affine Weyl

group W.

Proposition 3.13. Let G be a simply-connected semi-simple compact Lie group.
Then the Weyl group 1% of the loop group LG is generated by the reflections in the
hyperplanes H, r. The affine Weyl group W acts on the root system A by

rag) (1) = (ra(7),m — a(hq)k) for (a, k), (v,m) € A,
Proposition 8.14. The Weyl group W of LSU, is
W= '{(Tauraz)kv (?‘a07‘a1)k7‘ao, (ra1rao)k7 (7'a1rao)kTa1 k20,5 = Tazll =Id}.

ag

Proposition 3.15. The Weyl group of LSU, is the semi-direct product S, w Z™!

where S, acts by permutation action on coordinates of Z"™ 1.

Actually the symmetric group S, acts on Z™ by the permutation action. Z™! is

the fixed subgroup which corresponds to the eigen-value action. From [50], we have
Theorem 3.16. The affine Weyl group w of LG is a Cozeter group.
We will give some properties of the affine Weyl group W.

Definition 3.17. The length of an element w € W is the least number of factors

in the decomposition relative to the set of the reflections {ra,;}, is denoted by {(w).

Definition 3.18. Let w;,wq € W,’y € AL, Then wy 2 wy indicates the fact that

r7w1 = Wy,

L(ws) = 8(wy) + 1.

We put w < w' if there is a chain
w=w1—>w2—>----——>wk=w'.

The relation < is called the Bruhat order on the affine Weyl group w.
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Proposition 3.19. Let w € W and let w = Ta;Tap " " Ta, be the reduced decompo-
sitton of w. If 1 i3 <... <ip < and w' = rg; 1o, ** 7oy, then v < w. Ifw' < w,
then w' can be represented as above for some indexing set {ig}. If w' — w, then there

s a unique index 1, 1 < ¢ <[ such that
[
W =Tay " Ta; g Tagy, -

The last proposition gives an alternative definition of the Bruhat ordering on w.
Now we will define the subset T of the affine Weyl group W which will be used in the
text later. We know that the Weyl group W of the loop group L is a split extension
™V W — W, where W is the Weyl group of the compact group Lie group . Since
the Weyl group W is a sub-Coxeter system of the affine Weyl group W, we can define
the set of cosets W /. |

Lemma 3.20. The subgroup ofW fizing 0 is the Weyl group W.

Corollary 3.21. Let w,w' € W. Then, w(0) = w'(0) if and only if wW = w'W

By the last corollary, the map W/ W — TV given by wW — w(0) is well-defined
and has inverse map given by x; — ro, W, so the coset set W/ W is identified to TV as
set. We have from [18],

Theorem 3.22. Fach coset in W/T/V has a unique element of the minimal length.

We will write £(w) for the minimal length element occuring in the coset wW, for
w € W. We see that each coset wW,w € W has two distinguished representatives
which are not in the general the same. Let the subset W of the affine Weyl group
W be the set of the minimal representative elements £(w) in the coset wW for each
w € W. The subset W has the Bruhat order since it identitifies the set of the minimal
representative elements m As a example, we calculate the subset W of the Weyl

group of LSU,. Our aim is to find the minimal representative elements £(w) in the

right coset wW for each the element w € W, where

W = {(‘T’aoT‘al)k, (raoral)lrao, (rasTag)™s (TayTag)"Tay : kylymyn 2 0, rgo = Tfn = id},
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and W = (ry,; r2 = id). We have the minimal representative elements £(w) for each

coset wW, w € W as follows

1((rapra; )¥) = (ragra,)® for k>0
U(ragra)Tag) = (Tagta,)'Ta, forl=0
1((rayTag)™a;) = (ragra,)® formn =0
and
Id form=10

l(("‘al Tag )m) =

(PagTay )™ 1ra, form >0

By the transformations m — 1,/ and & — n, we have the subset
W = {l(w) :w e W} = {(ragra,)", (TagTa, ) "Tag : 7 = 0}.

Now we will describe the Lie algebra Ly,gc and its universal central extension in
terms of generators and relations. For a finite dimensional semi-simple Lie algebra g,

we can choose a non-zero element e, in g, for each root «. From [54], we have

Theorem 3.23. g¢ is a Kac-Moody Lie algebra generated by e; = ey, and f; = e_g,
fori=1,...,0 where the o; are the simple roots and | is the rank of gc only if G is

semi-simple.

Let us choose generators e; and f; of Lgc corresponding to simple affine roots.
Since gc C Lgge, we can take
ze_q, forj=0,
e; for 1<y <!
and

z7ley, forj =0,

fi=
fi for 1 <5<
where aq is the highest root of the adjoint representation. From [84],
Theorem 3.24. Let gc be a semi-simple Lie algebra. Then, Lyagc is generated

by the elements e; and f; corresponding to simple affine roots.
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The Cartan matrix Agy1)x+1) of Lge has the Cartan integers a;; = a;(ha,) as the

entries where ag = —oyp, and a; = a; if 1 € j € [. As an example,

Proposition 3.25. Let G = SU,. The Cartan matriz Agxy of Lgc is the symmet-

) _ 2 -2
C matrie
-2 2

Although the relations of the Kac¢-Moody algebra hold in L,,gc, they do not define
it. By a theorem of Gabber and Ka& in [40], the relations define the universal central

extension Epolgc of Lyaige by € which is described by the cocycle wg given by
1 27
w6 =5 [ o(€®),n/(0)ds
T Jo
As a vector space Epolg@ is Lpoige @ C and the bracket is given by
[(&,A), (0, )] = ([&: ], wic (€, m))-

Theorem 3.26. Eg@ is an affine Kac-Moody algebra.

3. Some homotopy equivalences for the loop group LG and its

homogeneous spaces.

From [42], we have

Theorem 3.27. The compact group GG is a deformation retract of G¢ and so, the

loop space LG is homotopic to the complexified loop space LGc.
Now, we want to give a major result from [84]

Theorem 38.28. The inclusion
t: LyaGe = LG

is a homotopy equivalence.

Now we will give some useful notations. The parabolic subgroup P of L,quGc is
the set of maps C — G¢ which have non-negative Laurent series expansions. Then

P = Gg[z]. The minimal parabolic subgroup B is the Iwahori subgroup

{f € P: f(0) € B},
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where B is the finite-dimensional Borel subgroup of G. Note also that the minimal
parabolic subgroup B corresponds to the positive roots, the parabolic subgroup P to

the roots (v,n) with n > 0. From [42],

Theorem 3.29. The evaluation at zero map eg : P — Gl¢ is ¢ homotopy equiva-

lence with the homotopy inverse the inclusion of G¢ as the constant loops.

The following fact follows from the local rigidity of the trivial bundle on the pro-

jective line. From [44], we have
Proposition 3.30. The projection
LyiGe = LpaGe/P
is a principal bundle with fiber P.

Now, as a consequence of Theorem 3.28, Remark 2.6, Proposition 3.30 and Theorem

3.29, we have
Theorem 3.31. QG¢ is homotopy equivalent to LyaGe/P.

Theorem 3.32. (see [79]) The homogeneous space

LoaGc/P= ][] BwP/P.
weW |W

Corollary 3.33. The homogeneous space

LpolGC/B = H B’LUB/B

wEW
By Theorem 2.87 of chapter 2, we have an isomorphism
Theorem 3.34.

H*(LG/T;C) = H*(Lgc, te; C) = H*(Lgc, te; ©) = H*(LpaGe/B; ).

By Theorem 3.34, the Z-cohomology ring of LG//T generated by the strata can be
calculated using Corollary 1.93 of chapter 1. In the next section, we will work at an

example.
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4. Cohomology rings of the homogeneous spaces QSU, and LSU,/T.

In order to determine the integral cohomology ring of LSU;/T', we need some

calculations in the integral cohomology of LSU, /T

Theorem 3.35. For n 2 0, the action of affine Weyl group of LSU, on the real

root system is given by

(3.1) (ragTa; )" (—ay, 8) = (—a, s + 2n);
(3.2) (ragTa;)"(@,7) = (a, 7 — 2n),

(3.3) (TagTay )"Tag(—a, 8) = (o, 8 — 2n — 2);
(3.4) (ragTa, ) rag (@, 7) = (—a, 7 + 2n + 2),
(3.5) (ra;Tay)" (=, 8) = (—a, 8 — 2n);
(3.6) (ra,7as)" (e, 7) = (o, 7 + 2n),

(3.7) (rairag)"ray (=, 8) = (s + 2n);

(3.8) (rayTag)"Ta, (e, 7) = (—a, 7 — 2n).

Proor. First, by induction on n, we shall show that

(TagTay)" (—a, 8) = (—a, s+ 2n)

(raoral )n(az T‘) = ((.Y, T 2’”’)1

for (—a,s), (a,r) € Ave. The case n = 0 is trivially true.

Now, we assume that the equations (3.1) and (3.2) hold for n = {. Then,

(Taora1 )l+1(_a7 S) = (Taoral)(raorm)l("aa 3)
= (rapray )(—a,s + 20)
= ra(c, s+ 20)

= (—a,s+2(l+1)),
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and

(Tao 7,a1)l+1(a’ T) = (Tao ra1)(rao71al)l(aa T)
= (rapgra,)(a,r — 2[)
= ra(—a,r —2[)

= (o7 —2(l+1)).

This means that Equations (3.1) and (3.2) hold for any n > 0.
Since (ra;Tap)"Ta; = Tay(TagTay)"> We can find easily the action of the reflection

(7ay7ap)"Ta, on the real root system. Then, we have Equation (3.7) and (3.8),
(rayTag)"Tay (=0, 8) = Ta, (TagTa, ) (—, 8) = ra, (—a, s + 2n) = (a, s + 2n),
and
(TayTag)"Tay (@, 1) = 72, (TagTay )" (@, 7) = 7a, (@, 7 — 2n) = (—a, 7 — 2n).

Since (7a,7a,)" 1s inverse of (rara, )", the action of (ra,7a,)" on the real root system

is given by

(ray7ag)" (e, 7) = (e, 7 + 2n)

(TayTa) (—e, 8) = (—a, s — 2n).

Also, since (rayra, )"'ay = Tag(Ta;Tay) ", the action of (ra,ra, )"ra, on the real root

system is given by

(TapTay )" Tag(@, 1) = Tag(Ta;Tag )" (0, 1) = rap(e, 7 + 2n) = (—a, 7 + 2n + 2),

and

(TagTa; ) "Tag(— @, 8) = Tag(TayTag )" (—t, 8) = Pag(—ct, s — 2n) = (@, s — 2n — 2).




Corollary 3.36. Let (a,u) and (—a,v),u 2 0,v > 0, be real positive roots of
LSU;. Forn 20,

(3.9) P(au)(TagTay )" (=0, 8) = (o, 5 + 2n + 2u);
(3.10) Plaw)(TaoTar )" (@, 7) = (—a, 7 — 2n — 2u),
(3.11) (o) (TagTar ) "Tag(—, 8) = (—a, 5 — 2n — 2u — 2);
(3.12) 7o) (TagTa )" Tag (@, 7) = (e, 7 + 21 + 2u + 2),
(3.13) Plaw)(TarTan )" (— 0y $) = (o, 8 — 21 + 2u);
(3.14) Tan)(TarTag) (a0, 1) = (—a, r + 2n — 2u),
(3.15) (eyu)(TarTa ) "Tay (—, 8) = (—a, s + 2n — 2u);
(3.16) () (Tay Tag) "Tay (@, 7) = (@, 7 — 2n + 2u),
(3.17) P(—aw)(TaoTa; )" (—a, 8) = (e, s + 2n — 2v);
(3.18) Pmaw)(TaoTay )" (@, 7) = (=, 7 = 2n + 20),
(3.19) T(—ayw)(TagTay) " Tag(— @, 8) = (—a, 8 — 2n + 2v — 2);
(3.20) (—ayw)(TaoTar) " Tag (0, ) = (e, 7 + 2n — 2v + 2),
(3.21) P(=aw)(TaiTag) (—, 8) = (o, s — 2n — 2v);
(3.22) P(—aw)(TaiTag)" (o, 1) = (=, 7 + 2n + 20),
(3.23) T(—ayw)(TayTag) " Ta; (—at, 8) = (—a, s + 2n + 2v);
(3.24) T(—aw)(TayTag ) Tay (@, 7) = (@, 7 — 2n — 2v).

Theorem 3.37. For k 2 0, the following equations hold in H*(LSU,/T,Z).

(8.25) (e70)® = (2k)lelore)’,
(3.26) (Era;)% _ (Qk)!g(ralrao)"',
(3.27) (7)Y = (2k + 1)l glraoran)rao
(3.28) (e7)H = (2h + 1)l elrearo)ra

PROOF. By induction on k, we will show that these equations hold in H*(LSU, /T, Z).

For k = 0, these equations hold.




Now, we assume that these equations hold for & = n. Then, we have to show that
they hold for £ = n 4 1. By assumption,
("0)™™ = (g"0) . (g7 )*H

= (277; '+‘ 1)! 5"*10 . 6("&07'al)n7’a0 .

We have

(e720)™" 2 = (2n 4 1)! Z Xo(hy)e®.

(raoral)nraolltu
When we check the action of the reflections which have length 2n + 2, by the action of
T(amu)(TaoTar) Tag 81 T(_q0)(TagTa, ) Ta, o0 the real root system, we see that the sum

in the right side of the last cup product equation holds the only for the positive root
(—o,2n +2) = (2n + 2)ag + (2n + 1)ay.

Then,
(e70)27+2 = (9 4 2)! gM(—a2nta) (ragre; )"rag

The composition of reflections r(_a,%_,_g)(raoral )"ra, can be represented by the Weyl

group element (74,7, )" 1, so
(e70)*™+? = (2n + 2)! lreome)™,
If we continue the induction for equation (3.27), by assumption,
(€M0)2™H3 = (g7a) . (g7 )22
= (2n 4 2)le™o0 - glreora)™,

We have

(€)™ =@n+2)! D xo(hy)e®.

(rnorax)n+11>w
When we check the action of the reflections which have length 2n 4 3, by the action of

)n+1

r(a’u)(raural)’H']l and 7(—q,0)(TaoTa; on the real root system, we see that the sum in

the right side of the last cup product equation holds only for the positive root

(—o,2n 4+ 3) = (2n + 3)ag + (2n + 2)ay.
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Then,
(€70)¥H3 = (2n 4 3)! g"(=a2nta) (ragrag )"t

The composition of reflections r(_q 2n+43)(ra7a, )" can be represented by the Weyl

group element (ragTa, )"t sy, 50
(E"‘-“U )2n+3 — (27?, + 3)] e(ruornl)n-i‘lrau ,

Thus, we have proved that the equations (3.25) and (3.27) hold in H*(LSU,/T,Z).

Similarly, by assumption,
(6"&1 )Zn-}-? o (Eral) . (Erul )2n+1
= (2n + 1)! Eral M 6(1‘51 7'30)"1';11 .

We have

(€)™ =@+ D xi(hy)e™

(rayrag)ra; D
When we check the action of the reflections which have length 2n 4 2, by the action of
T(au)(TarTao) Tay AN T(—gw)(T'a;Tap) Ta, ON the real root system, we see that the sum

in the right side of the last cup product equation holds the only for the positive root
(o,2n 4+ 1) = (2n + 1)ag + (2n + 2)a;.

Then,
(6,.81)271-5-2 _ (2n + 2)!6.»(0"2"“)(,.&1 Fag)™ra;

The composition of reflections r(q,2nt1)(7a;7ay)""a, can be represented by the Weyl

n+1’ SO

group element (74,74, )
() = (2 +2) o,
If we continue the induction for equation (3.28),

(5,\31 )2n+3 — (Eral) . (5"“1 )2n+2

+1

= (2n +2)le™ . glrara)”

71




We have

Ea)P =@+ Y ke

(ray rao)n'*'ll)w
When we check the action of the reflections which have length 2n -+ 3, by the action of
P(au)(Tay rag )"t and 7'(~a,0) (a1 Tag )**! on the real root system, we see that the sum in

the right side of the last cup product equation holds the only for the positive root
(o, 2n 4+ 2) = (2n + 2)ag + (2n + 3)ay.

Then,
(7)™ = (2 + )l " (eansn) (Peara) ™,

The composition of reflections r(q 2n+2)(Ta, s, )"+ can be represented by the Weyl group

element (ra,ray )" ra,, S0
(Erul)2n+3 — (277, + 3)| 6(1.81,.a0)n+1r.11 .

So, the induction is completed and we have proved that all equations hold in H*(LSU /T, Z).
1

We will make another calculation in the integral cohomology algebra of LSU,/T.
Theorem 3.38. Forn,m > 0, the following equation holds in H*(LSU,/T,Z).
(n 4 m)(e™0)" - (e")™ = n(e"™ )" 4 om(e™™ )“+m.

PROOF. By induction on m, we shall prove that the result holds in H*(LSU,/T, Z).
Since the integral cohomology ring of LSU,/T is torsion-free, the integral cohomology
ring can be embedded in the rational cohomology ring hence the calculations can be
done in the rational cohomology. For m = 0, the equation obviously holds.

First, we will verify the equation for m = 1. For m = 1, the equation reduces to
(329) (7?, + 1)(8"“0 )n . (Eral) — n(srao )'n-}—l + (87"11 )n—i-l'

Now, we will use sub-induction with respect to n on the equation (3.29). The equation

(3.29) obviously holds for n = 0.
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Now, we assume that equation (3.29) holds for n = k. We verify that equation
(3.29) holds for n = k + 1. By the induction hypothesis, we have

e . (Erao )k+1 — (67‘“1 . (67'no)k) . g™

_ (ke [ DITNRY TR
_(k+1(6 ST T E)T ) e

1
FrTl

&

(3.30)

(Ef'ao )k’+2 + el )k+1 . gleo,

T E+1

Now, we calculate the cup product
() e

in the above equation. We now treat the case k& odd or even separately. If & = 2/ — 1,

by equation (3.26),

(3.31) g0 - (g™ )% = (20)! (e - (.s(wauV)) .

By the cup product formula,
g0 - glrairen)’ — Z Xo(hy)e®.
(ray rag) Hw
When we check the action of reflections r, ) (ra, re,) " and (=) (Tay ra,)' by the action
of the Weyl group elements (ra,7q,)'ra, and (ragra,)'ra, Which has length 20 + 1, we
see that the reflections 7’(_a,1)(ralrao)l and r(a,m)(ralrao)l can be represented by the
Weyl group elements (ra,ra, )'ra, and (PayTag)'Ta, Tespectively. Using the positive root

(o, 20) = (21) ap + (2] + 1) a; in the cup product formula,
(332) a0 . 5("!11 "no)l — 5("80"n1)l"ao + (21) 5("&1 "Ro)l"m .
By equations (3.27) and (3.28),

1 o0
@ T

When the last result is placed in the equation (3.31), we have

mmmD

2l
g7v0 )21 Tag \20+1
(2L+ tar e )

(8“’0 )2l+1 ‘l‘ z‘l

(3.33) o . lrmrsa)’ —

g . (M) =

_2L+1 o (€)™

20+1




Using k£ = 2] — 1, we have

(3.34) e (eren ) = i S(E0)* 4 ——Z :: ;(sm ),

When the last result is placed in the equation (3.30), we have

g™ - (7o) = Lkﬁ (e70)"** + ;.TJ]:T (g7 )™+ - gm0
= fﬂ}-l (70 )F*2 4 k% (ﬁ groo )iy Z_j‘té_(gral)muz)
- (L -i; RO 1)1(k n 2)) (70)" + klﬁ(e"“‘l)’““
= 2—1—% (70)* (™)™,
? If k = 21, by the equation (3.28),
(3.35) (e70) - (em1)™ = (2 +1)! ((6“‘0) : (mra) )) .

By the cup product formula,
() (bmredmey = 7 xo(ha)e®
(rograg) ra, 2w
When we check the action of reflections r(q,y)(7a, rao)"ra1 and r(—aw)(ra, rao)lral by the
action of the Weyl group elements (ra,7a, )" and (ra,ra, )", which has length 2/ + 2,
we see that the reflections r(_q,1)(ra, Tao)'Ta, and T(a2141)(Tay T'ay)'Ta, can be represented
by the Weyl group elements (r4,7a,) ™" and (ra,ra,)" respectively. Using the positive

root (o, 20 + 1) = (20 + 1) ag + (2[ + 2) a;, we have
(3.36) (e700) - (glrasres)'ras) = glreoran)™ (91 4 1) glraarao) ™,

By equations (3.25) and (3.26),

2041

Tag ., ("al"ao)l"al = ———————

(Erao )2l+2 +

1 Tay )2l+2
@ +2)! '

When the last result is placed in the equation (3.35), we have

&0 . (gm)zl+1 = (20 +1)! (E,-,Jo _ (g("ul"nu)[ral))

1
= (21 + 1)! ( (6r50)2l+2 1 QZL Era1)21+2>

1
(2t + 2)! 2+ 21
20+ 1

20+ 2

_ 1 rag \21+2
= o)

( ray )2l+2 )




Using k& = 2{, we have

1

(3.38) e (M) = o LEATFNEY)

raq Y42
(™) 4 7

When the last result is placed in the equation (3.30), we have

(6’"‘10 )k+2 _|_ _1_m_

ra; YA+l | rg
k+1(5 1) g #o

' . (g )’ﬂ+1 —

?—-l
= 4| e
—t

ok 1 1 . k+1 .
_ rag \h+2 Tag Vh+2 rag \k--2
e o (e + gt

(Eral )k+2

k 1 -
(k+ +(h+U@+20(6 wk+k+2

]ﬂ‘{‘l ( 1a0)k+2
T k+2

The induction on n is completed. Thus, we proved that the equation holds for m = 1.

Tay k+2.
Fra)
We assume that equation holds for m = s. Then, we will verify that it holds for
m = s + 1. By assumption,

T n ra; \StT1 7 ran \TtHSs S raq \N+s L oTa
o () = () 4 Sy e

(erm )ttt

. n (6“‘0 )ﬂ+8 et

_n—]~5 n-+s

— n n+s rag \nrks1 1 req \n+s+1

T n+4s (n—l—s—}—lo3 ’) +n+3+1(8 ) +

8 oy \+s+1
n+5(6 )

— n ragp \ts+1 n 8 raq \F+s+1
—n—l—s—{—l(e ’) ((n+s).(n+s—|—1)+n—|—s> ()
— n rag yPts+1 s+s(nt+1)+n ray yits+l
_n+s+1(6 ) (n—}-s)(n—[—s—l—l)(e )

_ M ragyntstl s+1 ray ydtstl
—n+s+1(5 ’) (n+s+1)(‘E ) '

Thus, the induction is completed. Ol

Let R be a commutative ring with unit and let I'g(xo,21) be the divided power

algebra over R, where deg zo = dega;, = 2.

Theorem 3.39. Then, H*(LSU;/T, R) is graded isomorphic to U'r(zo, 1)/ Ir where

the ideal IR is given by

n —1 n+m -1 n
IR:(E]xEm}—(n+m )w%"‘l—(n-l_m ):z:iler]:m,n)l)
n

m




and which has the R-module basis {&,g , En]} in each degree 2n forn = 1.

PRrRoOOF. Since the odd dimensional cohomology is trivial, by the universal coeffi-
cient theorem, it suffices to prove this for R = Z. The Schubert classes {ew}wEWLSU(Z]
form a basis of the integral cohomology H*(LSU, /T, Z) such that e¥ € H*W(LSU, /T, Z).
Since the cohomology module basis is indexed by the afline Weyl group W, the Poincaré

series over Z of cohomology of LSU,/T is

P(t,Z)=1+4) 2%,
k=1

Now we will show that the integral cohomology algebra H*(LSU, /T, Z) is isomorphic
to the quotient of divided power algebra I'g(zo,21)/lz. Then, we define a Z-algebra
homomorphism i from the divided power algebra I'g(x0, 1) to the integral cohomology
of LSU, /T as follows.

For U = Zu“ 22 with u; € 7, let

=0

P(U) = unX(n) + uoY (n) + 2—:1 K” - 1.) X (n) + (” B 1) Y(n)] w,

n—1
i=1

where

g(ragray)! for n = 2!
X(n) =

glraorar)'reo  for p =20 41

g(rarrag)’ for n = 21
Y(n) =

graimaolay  for m = 21 + 1.

We will show that ¢ is a Z-algebra homomorphism. Let

U:Zutrg]mgn 1y ZUJ'EO Jglm=a1,

7=0
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where u;,v; € Z. First, let us calculate

nnnnnn

| () (G oo

By equations (3.25), (3.26), (3.27), (3.28) and (3.38),

Y (n)Y(m) = (” : m) Y(n +m)

n+m

X((rm) =(

n

o=

and

)x(a-+m)

_X(n-l-m)+< n

n—i—m——l)

Y(n)X(m) = (“ + ™ 1)){(71 Tm) 4 ( "
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Y(n+m)

Y(n +m).




If we put the last results in the equation, we have

(O Y(V) = X(ntm) {m (") mz s (1) ()

13
i=

(i RN (a5 o[ Ty R G [ (i I
I () [ 5 > | (i [ GO Y s [ QR I
) 3l (uey TGy TG R Vs [ TG
S ]GO}

Y(n»i—m){uovo(n-;m)+uovm(n+m_—1)
lej[( )(m-{-n——l)_{“(m.—l)(n—}—m)]_{_
7—1 m 7 n

m—1
unvo(m+n—1)+zunvj( Tl)(m-{-n—l)_}_
n e 7 n

300 [y G R A [ (]

1 n—1m-—1
n—I\/n+m-—1 n—1 m — 1 n-4m—1
(") (TSR () ()T

i=1 j=1

B[N

i=1 g=1

=1




Now an expanding,

U-V = uyvo (THT; ) [rtm] 4 vgumal™az M 4 Z ug J(n_l_m_J) {1 [r+m—i]

[
i=1

m—1 -
e SRR Gy PR S (N

: n
j=1

n—1 . n—1 .
4 Z Usto (n -I-:; - Z) $(|:)Z]$[ln+m—z] + Z Ut (m + z) mgmﬂ]m[ln—i]

=1 =1 ¢

n—1m—1 . . . .
N Z wiv; (z —i-J) ((n +m) — .(z + J)) Qi m)~ ()],
=1 1

n—1

3 J=

Hence,

| m—1 .
P(U-V)=X(n+m) {uovm (n = l) + ) uov; (n Tm '“J) (n + m — 1>+
" =1 n J—1

1 -1 _
_— n-+m - n+m +Zuzvm mjl—z m-+n—1 n
m 7 — 7 n—1

= n+ 7 n+m—1 = n+m—1\[/n+m-—1
Zunvj n ZU’UQ i1

=1 1=1
n—1m-1
+ 7 n—l—m—(z—i—]) n+m-—1
ZZ( >( )(m-_l)}

7+ n -+ sy n-+m— n-t+m-—1
-}-Y(n+m) {uovo( ) -+ uovm( > Zuovj( - .?>< ; >+
i=1

m-1 n—1
Unvo<n -l—:?: — 1) E o (n —I—j) (n —;T]— 1) Zuwo(n +m mz> (n +7:& 1>+
=1

=1

— (i—}-m)(m—l—n—l) o= (z—i—j)((n+m)—(i—i—j)><n—|—m—l)
E UiV, ) + UsV; ) . C .
= 7 m -1 i n—1 147

1= ]:

We show that (U - V) = ¢(u) - (V) for all polynomials U, V. In order to verify
this equation, we need the equality of the coefficients of u;v; in the both sides of this
equation. We see that the coefficients of wv;,7 = 0,...,n and 7 = 0,... ,n in the

both sides of the equation are equal for X (n + m) as well as Y (n 4+ m). Then ¢ is a

Z-algebra homomorphism.




We will show that the Z-algebra homomorphism v is surjective. Because, for every
element aX (n) + bY (n) € H*™(LSUy/T,Z), we have a ™ + b2!™ such that Wlaz™ +
bm[ln]) = aX(n) + bY(n), where a,b € Z.

Now we want to find the kernel of the homomorphism 3. For n,m > 1, let

(3.39) U = 5Lgv,] 2l (n +m — l) 2l <n +m — 1) m[1”+m].

m [

We claim that the kernel of the homomorphism v is equal to the following ideal Iz

generated by the elements wu, 4.

IZ = Zj%n

k2

where

. » E—1\ k—1 g
I — { )3 tk( [l (k—r)m[[)k]_( ) )mgu) :tfef‘z(mo,wl)}.
o< r<k

Now we will prove that our claim is true. Let U € I5. Then

— ke b =l (R=1\_m _ (k—=1\
¢(U)_¢(0§;ktr(mo Zy (k—r)xo ( r z3)

k SRS =1\ w_ (k—1\ [
5 s (- (D)= (1)),

Then (U) is equal to

e (e (- (ke - (7))

Then (U) =0. So, U € kergb.

Conversely, let U = Zuzmoﬂa,g]“ 1 € kertp. Then,

=0

D(U) = upY (k) + up X (k Jrzluz [( )X(k) (’“ ; 1>y(k)] =0,

=1
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So, we have to determine the solution of the homogeneous linear equations system

A v =0, where

The rank of the matrix A is 2, so we have infinite solution vectors which have k—1 linear

independent components and other two components depend these linear independent

components. Then,

) [FE(TH)

Uy 51
v = U; = t;
Uk—1 tr—1

\ ) \_gti(*;j),)

where t; € Z for i = 1,... Jk — 1. So, U € ker® is given by

Uo

Uy

Up—

\

)

/

k—1 k-1 k-1
k—1 ; k-1 3 [hemi
: : i=1

k—1
2 g (k=1 E—1\ g
-3 (= ()= (7))

for some t; € Z. Thus, we have proved that U € I}.
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Theorem 3.40. Under the isomorphism ), the Zi-module operator A* of H*(LSUs /T, Z)

corresponds to the partial derivation operator

% for degree 4n

Ty

3%‘, for degree 4n + 2

fori#£3,1=0,1.

Proor. We will prove that Z-cohomology operator A’ corresponds to the partial
derivation operators as stated. By definition of A?, we have

Alglreore)™ —
Alg(ragran)™ — clragra;)*~'rag ,

AUE("ﬂo"al)n"an = 6("810 Tay )n’

Als(f‘ao’"t\l)n"ﬂn =0,
Aog(ral"ﬂn)n _ 6(,‘“1 rao)n—lral’
Alglrairan)® = ()

AOE(’"nl"ﬂo)n"m = 0;

Alglrairag)™rar — o(ragrag)™

By 1 isomorphism, we have the following correspondences

elraoray)” PN a}[OZn], e(ragra;) rag $([}2n+1],

6(1-81 Tag )™ PR $[12n], 6(ra\1 Tag) ey $[12n+1] .

The last equations and correspondences verify our claim. 0

Corollary 3.41. The partial derivation operator 5%; + 5?51' on the divided power

algebra induces a derivation on cohomology of LSU,/T.

Now we will discuss cohomology of Q& respect to LG/T and G/T where G is a
compact semi-simple Lie group. Since QG is homotopic to §,,, the discussion can

be restricted to the Ka¢-Moody groups and homogeneous spaces. The Lie algebras of

LyaGe/B*, LpaGe/Ge and Ge/B are g[t,t~']/b*, g[t,t7']/g and g/b respectively.




There is a surjective homomorphism
evizy ¢ g4, 17]/bT = g/b,

with kerevi; = g[t,t7']/g. Since the odd cohomology groups of g[t,t7]/b* and g/b
are trivial, the second term FE}* of the Leray-Serre spectral sequence collapses and

hence we have

Theorem 3.42. Let R is a commutative ring with unit. Then there exists an injec-
tiwve homomorphism j : H*(G/T, R) — H*(LG/T, R) and a surjective homomorphism
i: H*(LG/T,R) — H*(QG, R). In particular, J = imj* is an ideal of H*(LG/T, R)

and
H*(QG, R) = H*(LG|T,R)//J.
Corollary 3.43.
H*(QSUs, R) = Tr(z,y)/ (Ig,a(zM — y!M)) = Tg(z),
where a € R.

Now we will give a different approach to determine the cohomology ring of based
loop group QG using the Schubert calculus. For a compact simply-connected semi-

simple Lie group ¢, we have from Theorem 2.40 of chapter 2
Theorem 3.44. The natural map
G — LG — LG/G = Qd,

is a split extension of Lie groups.

Theorem 3.45. Let G be a compact simply-connected semi-simple Lie group and
let T' be a mazimal torus of G. Then w : LG/T — LG/G is a fiber bundle with the
fibre GJT.

PROOF. Since LG — LG/G is a principal G-bundle and G/T is a left G-space by
the action gy + goT = g1g2T for g1, g2 € G, we have a fibration

G/T — LG x¢ G/T — QG.
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Therefore, we have to show that LG xg G/T is diffeomorphic to LG/T. Since LG X g
G/T is equal to

{[v 9T : {7,971 = [yh, kT Vg, h € G,v € LG},

we define a smooth map 7 : LG xq G/T — LG/T given by [y,¢T] — ~vgT. It is

well-defined because for h € G,

m([yh, k™ gT]) = vhh™'gT
=97

= 7([v,9T]).

For every 4T, we can find an element [y,7] € LG xg G/T such that 7([y,T]) =

~T'. So, 7 is a surjective map. Now, we will show that 7 is an injective map. Let

71,01 T], [V2, 92T] € LG X G/T such that

(3.40) (71, 9:T1) = 7([72, 92T).

The equation (3.40) gives

1191 T = 72927
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