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Summary

Th is work is about the algebraic topology of L G / T , in  pa rticu la r, the complex cobor­

dism o f L G / T  where G  is a compact semi-simple Lie group. The loop group LG  is 

the group o f smooth param etrized loops in  G , i.e. the group o f sm ooth maps from  the 

circle S1 in to  G, Its  m u ltip lica tio n  is pointw ise m u ltip lica tio n  o f loops. Loop groups 

tu rn  out to  behave like  compact L ie groups to  a qu ite  rem arkable extent. They have 

Lie algebras which are related to  affine Kac-M oody algebras. The details can be found 

in  [98] and [64].

The class o f cohomology theories which we study here are the complex orientable 

theories. These are theories w ith  a reasonable theory o f characteristic classes fo r com­

plex vector bundles. Complex cobordism is the universal com plex orientable theory. 

Th is theory has two descriptions. These are hom otopy theore tic  and geometric. The 

geom etric description on ly holds fo r smooth manifolds.

Some comments about the  structure  o f th is  thesis are in  order. I t  is w ritte n  fo r a 

reader w ith  a firs t course in  algebraic topology and some understanding of the structure  

o f compact semi-simple Lie groups and the ir representations, plus some H ilb e rt space 

theory and some m athem atica l m a tu rity . Some good general references are Kac [60] 

fo r Kac-M oody algebra theory, Pressley-Segal [84] fo r loop groups and th e ir represen­

ta tions, Young [96] fo r H ilb e rt space theory, Adams [3] fo r complex orientable theories, 

Husem oller [56] and Switzer [93] for fiber bundle theory and topology, Ravenel [87] 

fo r M orava /i-th eo ries , Lang [74] fo r the d ifferentia l topo logy o f in fin ite  dimensional 

m anifolds, Conway [27] fo r Fredholm  operator theory.

The organization of th is  thesis is as follows.

Chapter 1 includes a ll details about Schubert calculus and cohomology o f the flag 

space G /B  fo r K ac-M oody group G. We examine the fin ite  type  flag space in  section

1. In  the section 2, we give some facts and results about K ac-M oody Lie algebras and 

associated groups and the construction o f dual Schubert cocycles on the flag spaces
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by using the re la tive  Lie algebra cohomology tools. The rest o f chapter includes cup 

p roduct form ulas and facts about nil-Hecke rings.

Chapter 2 includes the general theory o f loop groups. S tra tifica tions and a cell 

decom position o f Grassmann manifolds and the homogeneous spaces o f loop groups 

are given.

In  chapter 3, we discuss the calculation o f cohomology rings o f L G /T .  F irs t we 

describe the roo t system and W eyl group of LG, then we give some hom otopy equiva­

lences between loop groups and homogeneous spaces, and investigate the cohomology 

rin g  structures o f LSU 2 / T  and Also we prove th a t B G G -type  operators corre­

spond to  p a rtia l derivation operators on the d iv ided power algebras.

In  chapter 4, we investigate the topological construction o f B G G -type  operators, 

g iv ing  details about complex orientable theories, Becker-G ottlieb transfer and a fo rm u la  

o f Brum fie l-M adsen.

In  chapter 5, we develop a version of Q u illen ’s geom etric cobordism  theory for 

in fin ite  d im ensional separable H ilb e rt manifolds. For a separable H ilb e rt m an ifo ld  X , 

we prove th a t th is  cobordism theory has a graded-group s truc tu re  under the topological 

union operation and th is  theory has push-forward maps. In  section 2 o f th is  chapter, 

we discuss transversal approxim ations and products, and the contravariant p roperty  o f 

th is  cobordism theory. I 11 section 3, we discuss transversa lity fo r fin ite  dimensional fiber 

bundle. In  section 4, we define the Euler class o f a fin ite  dim ensional com plex vector 

bundle in  th is  cobordism theory and we generalize Bressler-Evens’s w ork on L G / T . 

In  section 6 , we prove th a t s tra ta  given in  chapter 2 are cobordism classes o f in fin ite  

dimensional homogeneous spaces. In  section 7, we give some examples showing th a t in  

certa in  cases our in fin ite  dimensional theory maps su rjective ly to  complex cobordism.



C H A P T E R  1

The Schubert Calculus and Cohomology of the Flag Space 

G/ B  for a Kac-M oody Group G

1 . S c h u b e r t ce lls  a n d  in te g ra l c o h o m o lo g y  o f  K / T  fo r  a c o m p a c t L ie  g ro u p

K .

The general reference for th is section is [7]. Let K  be a compact semi-simple s im ply- 

connected Lie group. We fix  a m axim a l tom s T  C K .  The com plexified Lie algebras 

o f K  and T  w il l be denoted by g and h  respectively. Let b  be the Borel subalgebra 

o f g. The compact group K  can be embedded in to  a complex Lie group G  w ith  Lie 

algebra g. We choose a Borel subgroup B  containing T.  The ana ly tic  com plexification  

K / T  —» G /B  induces a complex structure  on the flag space K / T  =  G /B .  The flag 

space K / T  w il l be denoted by X .  In  th is  section, the roo t system w il l be denoted by 

A , and the sim ple root system w ill be denoted by £ . A + is the set o f positive roots. 

From  [7],

T h e o re m  1.1 . The finite dimensional flag space X  is a non-singular complex pro­

jective variety.

We give at th is  po in t two descriptions of the homology o f X .  The firs t o f these makes 

use o f the decomposition o f X  in to  cells, w hile  the second involves the rea liza tion  o f two- 

dimensional cohomology classes as the Chern classes o f one-dimensional holom orphic 

bundles.

D e f in i t io n  1 .2 . Let W  be the Weyl group of G. Then the length  of an element 

w €  W  is the least number of factors in the decomposition relative to the set of the 

simple reflections r a) is denoted by l (w ).

We know fro m  [1 2 ] th a t N w — w N ~ w ~ 1 Pi AT is a un ipo ten t subgroup of G of 

(com plex) dimension f( iu ) ,  where N  is the unipotent rad ical o f B  and N ~  is the opposite 

n ilp o te n t subgroup of G. From  [2 1 ], we have
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T heorem  1.3. Let G be a complex inductive Lie group. Then

G =  |J B w B .
w£zW

In addition, there is an isomorphism of algebraic varieties

N w B w B /B

given by n —> n w B jB .

C o ro lla r y  1.4.

X =  |J B w B  IB .
w(EW

The cells Cw =  B w B /B  are open and closed varieties in  the Zariski topology. Let 

G w be the closure of C w in  X  respect to  the usual topology, we have from  [81],

T h e o re m  1.5. Let Y  be a projective variety and let Y °  be the interior o f Y  with 

respect to the Zariski topology. Then the closure o f Y 0 in the usual topology is Y .

Since Cw — B w B J B  is a Zariski-open set, by Theorem  1.5, the closure o f Cw

coincides w ith  the Zariski closure. [CtJ  E H 2̂ W)(C W, Z ) is the fundam enta l cycle o f 

the com plex algebraic varie ty  C w. Let E H 2 i{w) { X , rE )  be the image o f [Cw\ under 

the m apping induced by the embedding C w X .

P ro p o s it io n  1 .6 . The elements sw form a basis of the free h-module H * ( X , h ) .

D e f in i t io n  1 .7 . A group W  is a Coxeter group i f  there is a subset S of W  such 

that W  has the presentation

{ s e S :  (ss') mss' -  1)

where m ssi E { 2 ,3 , . . .  , oo} is the order of ssf, s ^  s' and m ss =  1. The pair  (IT , S ) is 

called a Coxeter system.

T h e o re m  1.8, [50] The Weyl group W  is a Coxeter group.

D e f in i t io n  1 .9 . Let w i ,w 2 E W ,  7  E A + . Then we write wi w2 when r^w 1 =

w2 and £{w2) =  £{wi) +  1. We put w <  w{ i f  there is a chain

w — wi -7  w2 Wk — w'.
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This order is called the B ruha t order on the Weyl growp W .

Here are some properties o f th is  ordering.

L e m m a  1.10. Let w — r ai * • ■ r ai be a reduced decomposition of an element w G 

W . We put 7 { =  r ai • • • r Q,t.„1(o;i). Then the roots 71 , . . .  , 7 ; are distinct and the set 

{ 71 , . . .  , 7 ; }  coincides with A + (1 w A _,

L e m m a  1.11. Let w, wf G W  and let a  be a simple root. Assume that w <  w ' . 

Then} either r aw ^  wr or r aw <  r aw', either to ^  r awr or r aw <  r aw '.

The properties in  lem m a 1,11 characterize the ordering < . From  [7], we have

P ro p o s it io n  1 .12 . The Bruhat ordering <  on W  is a partial order relation.

P ro p o s it io n  1 .13. Let w G W  and let w =  r ax • • • r ai be the reduced decomposition 

o fw . I f

(1 .1 ) t° / =  *■<*, • •

for  1 ^  i i  <  Z2 <  ■ • 1 <  ik ^  I, then w' ^  w. I f  wf <  w, then w' can be represented 

in the form 1.1 for some indexing set { i j } .  I f  w' —$■ w, then there is a unique index i 

satisfying 1 ^  i ^  I and such that

W  r a i  • • ? a j _ i  ‘ ' ‘

Proposition  1.13 yields an a lternative  defin ition  o f the ordering on W  in  [92]. The 

geom etrical in te rp re ta tion  o f th is pa rtia l ordering is very in teresting  and useful in  what 

follows.

T h e o re m  1.14. L e t V  be a finite-dimensional irreducible representation of the Lie 

algebra g  toith highest weight A and let n  be the nilpotent part of g . Assume that all 

the weights wX, tu G W } are distinct and select for each w a non-zero f w G V  of weight 

w \ .  Then

w' <  w f w> G U ( n ) f w

where ?7(n) is the enveloping algebra of Lie algebra n .

We use Theorem  1.14 to  describe the m utua l d isposition o f the Schubert cells. From 

[92], we have
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T heorem  1.15. Let w E W , Cw C X  a Schubert cell, and C w its closure. Then

Cw, C C w w' ^  w.

We tu rn  to  the other approach to  the description o f the cohomology o f X .  For th is 

purpose, we in troduce in  h  the coroot la ttice

Qv — %ihi
i

where hi is the coroot to  dual to  E A . We have the weight la ttice

P  =  { x  £ h* : x(h i)  € Z  fo r a ll a; E A }

dual to  . We set Pq =  P  Q. We denote by I iq  C h  the vector space over Q  

spanned by the  hi. Let R  =  S(Pq ) be the graded algebra o f po lynom ia l functions on 

hq> over ra tio na l coefficients where the graduation is given by the degree o f polynom ials. 

The W eyl group W  acts on IT  by the rule

r <xi{x) =  X ~  x{hi)oii for a  E S and x  €  h*.

We can extend the action of the W eyl group W  on h* to  R  by the  ru le  w f(h )  =  / ( tu - 1h) 

fo r /  E R. We denote by R w  the subring o f W -inva rian t elements in  R  and set

<  =  { /  e Rw : m  =  0}, 

J =  R%R.

We want to  construct a ring  hom om orphism  ip<$ : R  — y H *  (X , Q) in  the fo llow ing 

way. F irs t le t x  E P. Since G  is simply-connected, there is a character 9 E H om (JB, C*) 

such th a t 0(exp&) =  e xpx(h ), fo r b E b , where exp : b  —y B  is an exponentia l map 

which is a loca lly  diffeom orphism . Since G  —̂ X  is a p rin c ip a l bundle w ith  structure  

group B,  th is  9 defines a one-dimensional complex holom orphic line  bundle

L x =  {[flSC] : b e x p (6),expx(f>)C] =  [ffiC ]fc r b E b , g E G  and f  E C }

on X . We set ip(x) — cxi where cx E H 2( X , Z ) is the firs t Chern class o f L x. Then ip is a 

group hom om orphism  o f P  in to  I I 2(X ,  Z ), which extends n a tu ra lly  to  a hom om orphism  

o f graded rings

iPq : R ^ H * ( X ,  Q).
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F rom  [10, 4 ], we have

P ro p o s it io n  1 .16. The homomorphism ipq commutes with the action o f W  on R  

and H * ( X ,  Q ). ke r^Q  =  J  and the natural mapping ipQ : R / J  -7  H * ( X ,  <Q>) is an 

isomorphism.

We now study the rings R  and R  =  R j  J . For each w £ W , we define an element 

Pw £ R  and a functiona l D w on R  and investigate th e ir properties. In  the next section, 

we shall show th a t the D w correspond to  Schubert cell and th a t the Pw y ie ld  a basis, 

dual to  the Schubert cell basis, for the ra tiona l cohomology o f X .  Let 7  £  A . We 

specify an operator /17 on R  by the rule

7

A y /  lies in  R, since /  — r 7/  =  0 on the hyperplane 7  =  0 in  hQ. A* w il l be called the 

Bernstein-Gelfand-Gelfand operator and i t  w il l be b rie fly  ind icated by BGG-operator. 

The properties o f the A 7 are described in  the fo llow ing lemma.

P ro p o s it io n  1 .17. For 7  £ A  and w £ W , we have

,

^  =  0 ,

wA^w~x =  A Ŵy,

7’7A 7 =  — A 7r 7 : Ay,

r 7 =  —7 A 7 +  1 =  A 77  — 1 ,

A y /  =  0 r 7/  =  / ,

jl/y J  £  J«

P ro p o s it io n  1 .18. Let x  £ h<Q- Then the commutator of A 7 with the operator of 

multiplication by x  has the form  [A 7 ,x ]  =  x (h 7)?V

The fo llow ing  p roperty  o f the BG G-operator A 7 is fundam enta l in  w hat follows. 

From  [7], we have
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T h e o re m  1.19. Let a i , . . .  , 0 ; € S. We put w =  r a i - - - r ai and A(aii...,ai) =  

A ai • • * A ai. I f  £(w) <  I, then A (ai)...)Q!;) =  0 . I f  £(w) — I, then A (a ii...ia,  ̂ depends only 

on w and not on the set a 1} • • • , a ;/  in this case we put A w — A(ai>... i0rjj .

P ro p o s it io n  1 .2 0 . The operators A w satisfy the following commutator relation:

^ x Q h ) w~1 A w>,
iu'Auj

where hy is a coroot.

We p u t Si =  R*i where Ri C R  is the space of homogeneous polynom ia ls o f degree 

i and R * is the dual space o f R{ and S =  Si. We denote by ( , ) the na tu ra l pa iring
i

S x  R  —$■ Q. Then W  acts n a tu ra lly  on the graded ring  S.

D e f in i t io n  1 .2 1 . For any x  £ h ^ , we let x* denote the transformation of S adjoint 

to the operator of multiplication by x  in R- We denote by Fy : S —> S the linear 

transformation adjoint to Ay : R  —> R.

The next lem m a gives an exp lic it description o f the Fy.

L e m m a  1 .2 2 . Let 7  G A . For any D  £ S there is a D  £ S such that x * (D )  =  D .  

I f  D  is any such operator, then D  ■— rnD  — F y ( D ) ,  in particular, the left-hand side of 

this equation does not depend on the choice of D .

I t  is o ften convenient to  in te rp re t S' as a ring  o f d iffe ren tia l operators on h  w ith  

constant ra tiona l coefficients. Then the pairing  ( , ) is given by the fo rm u la  (D , / )  =  

( D / ) ( 0 ), D  £ S, /  £ R- Also, i t  is easy to  check tha t x *{& )  =  [-£?*x]* where x  £  h.Q 

and D  £ S are regarded as operators on R .

T h e o re m  1 .23 . Let cki, . . .  ,ct; G S, We put w ~  rai * * • r a r  I f  £(w) <  I , then 

F ai • • • F ai =  0. I f  £(w) =  I, then Fai • • • F ai depends only on w and not on a i . . .  ai 

and in this case we write Fw — F ai • • • Fa i . Also} Fw =  A J, and

[x*,^«u>] =  w'x { th )F™'w >
zu'-̂ ur

where hy is a coroot.
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We set D w =  Fw( 1). As we shall show in  the next section, the functionals D w 

correspond to  the Schubert cells in  H * (X ,  Q) in  the sense th a t (D w, f ) =  (sW}^ q ( / ) )  

fo r a ll /  G R. The properties o f the D w are lis ted in  the fo llow ing  theorem.

T h e o re m  1.24. Let w G W, let a  be a simple root and X iX i>-** 1 X 1 £ h j j and 

Dvj G S . Then

J o  i f  t (w ra) < l ( w ) ,

(-Dtm-c i f£ (w ra) ^ £ ( w ) .

^  w,x{hr1)D wi. 
t xUl'—tw

~ D W i f  £(wra ) <  £(w)}

I - D w +  w'a(h^)Dwt i f£ (w ra ) ^  £(w).

\  w '-^ w ra

' y 2 x i { h' i t ) " - X i { h'n)> 

where the summation extends over all chains

71 71 v 71 - 1e -A rt>i -A w2 -■» • • • “A wi =  w .

Let J x be the subspace of S orthogonal to  the ideal J  C R. I t  follows from  lem m a 

1.18 th a t J 1- is invariant w ith  respect to  a ll the I t  is also clear th a t 1 G J L. Thus, 

D w G J 1 fo r a ll w G W .  From  [7], we have

T h e o re m  1 .25 . For w G W , the functionals D w form a basis for J L .

The fo rm  ( , ) gives rise to  a non-degenerate pa iring  between R  and J L . Let 

{TLKugW' be the basis o f R  dual to  { D w} wew> The fo llow ing properties o f the Pw are 

im m edia te  consequences o f Theorem  1.24

F aD w =  

X* {DW) =

r aD w —

[ D jujX i m" X i )  =

15



T heorem  1.26. Let w G W, let a  be a simple root and x  £ h^. Then

__ j °  i f £ ( w r a ) > £ ( w ) ,  
y\al w — \

[ P w r Q i f £ ( w r a ) ^ £ ( w ) .

X P “W   y  ^ ^ X  (h*y}PWl .

?’cv Pyj — ^

Pm i f  £ ( w r a ) >  £ (w ) ,

P w — y y  wa( h~ f ) Pwt i f  £ ( w r a) ^  £ (w ) .

WVa—i-m1

From  Theorem  1.26, i t  is clear th a t a ll the Pw can be expressed in  term s o f Ps, 

where s G IT  is the unique element o f m axim a l length, r  =  £(s). M ore precisely, le t 

w =  r ai ■ • • r an £(w) ~  I. Then

p — a A PW ---  S'

To find  an exp lic it fo rm  for the Pw i t  therefore suffices to  determ ine the Ps G R. From  

[7], we have

T h e o re m  1.27. Ps =  jTy J J  7  (m od J ) .
76A+

We now give some results on products o f the Pw in  R.

T h e o re m  1.28. Let a  be a simple root and let w G W . Then

P)'aPm ^   ̂ Xai^h’m-1^Pm1 ■>
w-̂ -w1

where Xa €  h |  is the fundamental weight corresponding to the root a. Let W i,w 2 G W  

and satisfying £(wi) +  i (w 2) =  r . I f  w2 =£■ w is, and PWlPWlS =  PS} then PWlPW2 — 0 . 

Let w G W  and f  G P . Then

f  Pm — y   ̂ C-m’Pw'
m '^m

I f  vl>i ^  w2s} then PWlPW2 =  0

We define the operator V  : R  —» J L o f Poincare d u a lity  by the fo rm u la  

(V f ) (g )  =  D s(fg ),  f > g e R ,  V f  e J L .

C o ro l la r y  1 .29. V P W — D w.
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We w il l show tha t the functionals D w, w £ W  in troduced in  last section correspond 

to  Schubert cells sw,iu €  W  and give the cap-product fo rm u la  in  the cohomology o f flag 

va rie ty  K / T .  Let sw £  iL* (X , Q) be a Schubert cell. I t  gives rise to  a linear functiona l 

on H*(X >  Q ), which, by means o f the ring  hom om orphism  t/ q : R —> can

be regarded as a linear functiona l on R. This functiona l takes the value 0 on a ll 

homogeneous components P* w ith  k /  and thus determ ines an element D w £

St(w)‘ From  [7], we have

T h e o re m  1 .30 . D w =  D w

Th is theorem  is a na tu ra l consequence of the next two propositions.

P ro p o s it io n  1.31, D e — 1, and for any x  € h |

X *(D W) =  w 'x (h^)Dw. 
w'-Xw

P ro p o s it io n  1 .32. Suppose that for each w £ W  we are given an element D w £ 

Se(w), with D e — 1, for which Proposition 1.31 holds for any x  £  h-z* Then D w =  D w.

For any topological space Y  there is a b ilinear m apping called the cap-product 

n : LT(y, Q) x H j(Y ,  Q) Hj_ i(Y ,  Q).

such th a t

(cC]y,z) =  (y,c.z)

fo r a ll y £ H j (Y t Q), z £ H^~%(Y i Q ), c £  iP (Y ,Q ) . I f  /  : Y± —y Y2 is a continuous 

m apping, then

/* ( /* c  n?/) =  c n / , y  

fo r a ll y £ i7* (Y j, Q ), c £ H *(Y 2, Q ). Then, we have for any x  £ h j ,  /  £ R

(X *(D W) J )  =  (D w, x f )  =  (s w ^ { x )^ q { f ) )  =  (««; H ^ ( x ) , ^ q ( / ) ) .

Therefore, P roposition  1.31 is equivalent to  the fo llow ing geom etrical fact.

P ro p o s it io n  1.33. For all x  £

Sw f l l f ( x )  — ^  ^ to x ( b ,'y')su,r. 

w'-kw
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We re s tric t the one complex dimensional holom orphic line  bnndle L x to  C w C X  

and le t cx E iL 2((7-y;,Q) be the firs t Chern class o f L x . Then, i t  is sufficient to  prove 

th a t

(1 .2 ) sw D cx =  ^  w 'x ih^s^ '

w'Aw

in  H 2e(w) - 2 (Cw>iQ!)‘ To prove Equation 1.2, we use the fo llow ing  lem m a, which can be 

verified by standard arguments invo lv ing  re la tive Poincare dua lity , see [43].

L e m m a  1 .34 . Lei Y  be a compact complex analytic space of dimension n, such 

that the codimension of the space of singularities of Y  is greater than 1. Let E  be 

an analytic vector bundle on Y, and c E JL2(Y ,Q ) the first Chern class of E . Let 

f-i be a non-zero analytic section of E  and =  divp, the divisor of pi. Then
i

P i n  c =  rnffYi] E H 2n - 2 {Y  ̂Q ) where [Y] and [Yi] are the fundamental classes o f Y
i

and Yi.

Let w E 1Y, and le t Cw C X  be the corresponding the Schubert cell. Then, 

P ro p o s it io n  1 .35. Let w1 -k- w. Then C w is non-singular at points x E Cw>,

We now give another proposition to  prove P roposition 1.33

P ro p o s it io n  1 .36 . There is a section fi of the fibering E x over C w such that

divfi =  ^  wfx {H 7) X wl.

2. D if fe r e n t ia l  o p e ra to rs , L ie  a lg e b ra  c o h o m o lo g y  a n d  g e n e ra liz e d

S c h u b e r t cocyc les .

F irs t, we w il l give some facts about Kac-M oody Lie algebras and associated groups 

which w il l be used in  th is section. The general reference is [60] o f V . Kac.

D e f in i t io n  1 .37. Let A  =  {a tj } nXn be a complex matrix of rank I. A rea liza tion  of 

A is a triple ( h , 7r , 7ry ), where h  is a complex vector space of dimension n +  corank A , 

7r — C h* and irv =  C h  are free indexed sets satisfying ctj(hi) =

aii •
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D e f in i t io n  1 .38. Two realizations ( h ,7r , 7r^ ) and (h l5 7T;, 7r^ )  are called isom orphic 

i f  there exists a vector space isomorphism tp : h  —̂  h i  such that p (ttv ) =  i f f  and 

V*(n i) =  7T-

From  [60], we have

T h e o re m  1 .39 . There exists a unique up to isomorphism realization for every n x n  

matrix.

D e f in i t io n  1 .40. A generalized Cartan m a tr ix  A  =  is a matrix of integers

satisfying an =  2 for all i and aij ^  0 i f  i j } aij =  0 implies aji =  0 .

D e f in i t io n  1 .41. Given a realization ( h ,7r , 7ry ) of a n x n  generalized Cartan ma­

trix A, the Kac-M oody algebra g =  g (A ) is the Lie algebra over <C, generated by h  and

the elements ei and f i  for  1 ^  i ^  / such that this basis elements satisfy the following

relations:

[h ,h ] =  0 , [h ,e j =  CLi(h)ei, [h ,fi\ =  - cti(h)fi 

for h G h  and all 1 ^  i ^  I; [e;, fi] =  Sijhj for all 1 ^  i , j  ^  n;

(a ^ e i)1_aii(e j) =  0 =  ( a d / i ) 1_°<J'( / j )

for all 1 ^  i ^  j  ^  n. The elements hi^e^fi are called Chevalley generators and the

subalgebra h  of g (A ) is called the Cartan subalgebra.

The K ac-M oody algebra g =  g (A ) has a root space decomposition.

T h e o re m  1.42. For 0 ^  a , the root space g a =  {a  G g : [h>x] =  a (h )x , \ fh  G h }  

is finite dimensional and there is a root space decomposition

g  =  h  ©  0  g a  =  h  © 0  g a ©  0  ga 
a £ A  a £  A +  a £ A “

where A + (resp. A ~ )  is the positive (resp. negative)  root system.

We define fundamental reflections n  G A u tc (h ), 1 ^  i ^  by r t (h) =  h — cti(h)hi. 

T hey generate the Weyl group W ,  which is a Coxeter group on 

We define the fo llow ing Lie algebras.

n  =  0  g a ,  n “  =  0  g a -

a £ A +  cvGA“
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Then, g =  h  0  n  ® 11“ , where b  =  h  ® n  is called the Borel algebra. We have a 

unique com plex linear in vo lu tion  w o f g defined by io(fi) =  et- fo r a ll 1 ^  / and

<jo{h) — —h fo r h E h. The invo lu tion  to leaves the real points o f g stable, to is called 

the Chevalley invo lu tion . Also, we have a unique conjugate linear in vo lu tion  cu0 w hich 

agrees w ith  to on the real points o f g. We can define a nondegenerate g -in  variant, 

sym m etric  com plex b ilinear fo rm  a  on h* such tha t a (ck,-, a j)  =  (hai, haj) where ( , )  is 

the standard complex inner product on g. Th is fo rm  is called the Killing form. This 

gives a H e rm itian  fo rm  {  , }  on g defined by {.t,  y} =  — (x,u)0(y)) fo r x, y E g.

Now, we w il l m ention  the highest weight module category o f a Kac-M oody algebra 

g. The fundam enta l reference is [60] of V . Kac. Let V  be a g-m odule, A E h*. We 

define

V\ =  {x  E V  : k • x =  \ (h )x fov  Vh G h } .

Then, V\ is a subspace of V. I f  V\ ^  0, A is called a weight o f the g-m odule K , V\ the 

weight space corresponding to  A, and dimVA the multiplicity o f A. I f  A is a weight o f 

V ,  then any non-zero vector o f V\ is called a weight vector o f A. We denote by

P { V )  =  {A  G h* : 14 +  0 } ,

the set o f weights o f the g-m odule V .

L e m m a  1 .43 . For any a  G A  U {0 }  and A G h*, we have

S'a ' ^4 ^  14+ci;-

We set

D { A) =  {A — ex. : o: G Q + },

where Q+ =  Z+cq. For any subset F  C h * ( we define
i

D ( F )  =  U  D ( \ ) -
xeF

We can define a p a rtia l ordering ^  on h* by

A ^  q v  y A — jti G Q +  \  V (J- G jO(A).

We w il l give the de fin ition  o f category O  o f g-modules.
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D e f in i t io n  1 .44 . The objects of O are g-modules V  which satisfy the conditions

1 . V  is h-diagonalizable, i.e.,

v = ® % ,
X e h *

2. d irnVx <  oo for all A E h*,

3. there exists a finite set F  C h* such that P (V )  Q D ( F ) ,  and whose morphisms

are g-module homomorphisms.

B y the p roperty  3 o f the de fin ition  o f O , we have

P ro p o s it io n  1 .45. Every non-zero g-module in O has at least one maximal weight.

D e f in i t io n  1 .46. A g-module V  is called a highest weight m odule, i f  V  has a 

unique maximal weight A and V  is generated by some weight vector vA E Va-

T h e o re m  1,47. Let V  be a highest weight module with maximal weight A, Then,

V  =  U (g) • vA -  U (n “ ) • vA

for any weight vector vA of A; V  E O, d im  VA =  1 and P (V )  C D ( A ); g a • VA =  0

for any a  E A + ; V  has a unique maximal submodule, hence a unique quotient simple 

module; the homomorphic image of V  is also a highest weight module with maximal 

weight A .

Since b  =  h  © n + , we can regard Va as a b-m odule w ith  n + acting on i t  tr iv ia lly . 

We define

M (A ) =  17(g) 0 ^ )  VA

where Va is 1-dimensional weight space corresponding to  the weight A. The g-m odule 

M (A )  is called Verma module corresponding to  the weight A.

T h e o re m  1.48. The Verma module M ( A) is a highest weight module with highest 

weight A. Any highest weight module with highest weight A is a homomorphic image of 

the Verma module M ( A ). M ( A) has a unique maximal submodule with simple quotient 

L (A ). Any irreducible highest weight module with highest weight A is isomorphic to

1(A ).
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Now, we w il l give the de fin ition  o f lowest weight module. Let L (A) be an irre ­

ducible highest weight module w ith  the highest weight A. Let A (A )* be the g-m odule 

contragredient to  L (A). Then

£ ( A ) * = n  w i ■
Aeh*

The subspace

l * (  a )  =  0  m i
Aeh*

is a subm odule o f the g-m odule L (A )* . The m odule A *(A ) is irreducib le  and for 

v E L (A )J, we have

n_ ■ v =  0 and h • v =  — A (/ i)u fo r  h E h.

The m odule A *(A ) is called an irreducible module with lowest weight —A.

T h e o re m  1,49, There is a bijection between h* and irreducible lowest weight mod­

ules given by A  —> L * (—A).

We denote by 7rA the action o f g on L (A). We give a new action 7rA on the space 

L{A ) by

7i' l (g )v  =  7rA(w(^))w,

where to is the Chevalley invo lu tion  o f g. (A (A ) ,7ta ) is an irreducib le  g-m odule  w ith  

lowest weight —A. B y  the uniqueness of irreducib le  lowest weight modules w ith  the

lowest weight —A, th is  module can be identified w ith  A *(A ).

D e f in i t io n  1 .50 . A g-module L  is called quasi-simple i f  it is a highest weight 

module with highest weight vector such that there exists n E with f i n(xo) =  0 for  

all 1 ^  i ^  i.

From  [41], we have

P ro p o s it io n  1 ,51. The quasi-simple g-modules are indexed by the positive integral 

weights.

We w il l denote by L ( A) the quasi-simple module w ith  highest weight A. We w ill

denote the  derived algebra [g ,g ] by gb From  [98], we have
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T h e o re m  1.52. g 7 is the subalgebra of g  generated by the Chevalley generators e; 

anf  f i  for  1 ^  i ^  I and we have the decomposition

g 7 =  h 7 0  11 © n “ ,

where h 7 =  g 7 f i h .

D e f in i t io n  1 .53. A g 7-module (V ,7r) is called integrable i f  7r(e) is locally nilpotent 

whenever e G g a fo r  any real root.

Let G* be the free product o f the add itive  groups { g a}aeAre w ith  canonical inc lu ­

sions i a : g a —> G*. For any integrable g 7-m odule (V ,7r), we define a hom om orphism  

ir* : G* A u tc (V )  by n *( ia(e)) — exp(7r(e)) fo r e G g a- Let N *  be the intersec­

tio n  o f a ll leer tv* and le t q : G* —> G * /N *  be the canonical hom om orphism . We pu t 

G  — G * / N * . The next result comes from  [63].

P ro p o s it io n  1 .54. G is an algebraic group in the sense of Safarevic.

We call G the group associated to the Kac-Moody Lie algebra g. G  m ay be o f 

three d ifferent types: fin ite , affine and w ild . The fin ite  type  Kac-M oody groups are 

sim ply-connected semi-simple fin ite  dimensional algebraic groups as in troduced in  the 

Section 1 . The affine type Kac-M oody groups are the circle group extension o f the 

group o f po lynom ia l maps from  S 1 to  a group o f fin ite  type , or a tw is ted  analogue. 

There is no concrete rea liza tion  of the w ild  type  groups. Now, we w il l in troduce some 

subgroups o f the Kac-M oody group G. For e G g a, we p u t exp(e) =  q(ia(e)) so tha t 

Ua =  e xp g a is an add itive  one param eter subgroup o f G. We denote by U  (resp. U~) 

the subgroup o f G  generated by the Ua (resp. U - a) fo r a  G A + . For 1 ^  i ^  /, there

(1 Aexists a unique hom om orphism  : SX2(Q  ->  G, satisfying ip =  exp(ze;) and

\° v
(1 °\<p | =  exp (z f i)  fo r a ll 0 G C. We define
W  1/

z e e

Gi =  99(5X 2(C )). Let Ni be the norm alizer o f Hi in  Gt-, H  the  subgroup o f G generated 

by a ll H{ and N  the subgroup o f G generated by a ll AT There is an isom orphism
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W  —> N f  H .  We p u t B  =  H U . B  is called standard Borel subgroup o f G. A lso, we 

can define the negative Borel subgroup B~  as B~  =  H U ~ . G  has B ruha t and B irkh o ff 

decompositions. D etails can be found in  [62], The conjugate linear in vo lu tion  tuo o f g 

gives to  an invo lu tio n  cJ0 on G. Let K  denote the set o f fixed points o f th is  invo lu tion . 

K  is called the standard real form  o f G. Also, th is  in vo lu tio n  preserves the subgroups 

G i , Hi and H \  we denote by K i,T{  and T  respectively the corresponding fixed po in t 

subgroups. Then, K i  =  tpiSUf) and

u 0

is a m ax im a l torus o f Ki  and T  =  |^[ T{ is a m axim a l torus in  K .

Now, we w il l give some facts about the topology o f K .  Let D  (resp. D°)  be the 

u n it disk (resp. its  in te rio r) in  C and le t S1 be the u n it circle. G iven u G D ,  le t

* (« ) =  9 l / 2  _  ) e S U 2i
y —( l  — |u|2)  ̂ u J

and Zi{u) — ^ ( ^ (w ) ) .  We also set

Yi =  {^ i(w ) : u £ D ° }  C Ki.

Let w =  r^ • • • r in be a reduced expression o f w 6  W .  We p u t Yw =  ■ • • Yin. We

have a fib ra tion  ir : K  —$■ K / T .  The topological space K / T  is called the flag variety o f 

the K  and G. A lready we have given the topology o f f in ite  dimensional flag varie ty  in  

the  Section 1 o f th is chapter. Now, we w il l give the topological s tructure  in  the in fin ite  

d im ensional case. We define Cw — 7t(Yw). From [61], we have

P ro p o s it io n  1.55. The decomposition

K / T  = Q C »

defines a G W  structure on K / T .

The closure o f Cw is given by

C w — J  J  Cwt
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The closures C w are called Schubert varieties and they are fin ite  dimensional complex 

spaces. The in fin ite  type  flag varie ty K / T  is the inductive  l im it  o f these spaces and by 

Iwasawa decomposition in  [62], we have a hom eomorphism K / T  —» G /B .  From  [61], 

we have

P ro p o s it io n  1 .56. The flag variety K / T  is an infinite dimensional complex pro­

jective variety.

P ro p o s it io n  1.57. The elements C w are a basis form of free It-module H * ( K /T ,  If) .

Now we w il l  give the construction o f the dual Schubert cocycles on the flag varie ty 

by using the re la tive  Lie-algebra cohomology tools. Th is construction was done by B. 

K ostan t in  [67] for f in ite  type  and extended by S. K um ar in  [72] fo r the K ac-M oody 

case.

F irs t, we w il l in troduce some notations for th is section. Reference for the notations 

is [53]. B y  A (V ) ,  we denote the exterior algebra on a g-m odule  V.  For a Lie-algebra 

pa ir (g ,h )  and a le ft g-m odule M , le t A (g ,h ,M * )  denote the standard chain complex 

w ith  coefficients in  the r ig h t m odule M *, where M l is the r ig h t g-m odule, whose un­

derly ing  space is M  and on which g acts by the ru le m  ■ g =  - g - m  fo r a ll g E g and 

m E M , and le t C (g ,h ,M )  denote the standard cochain complex w ith  coefficients in  

M .

Let L \  be the quasi-simple g-m odule w ith  highest weight A. Then, there is an 

inva rian t positive defin ite  H e rm itian  form  { , }  on A (n “ ) ®  L \  due to  V . Kac and D. 

Peterson [62]. Let d : A (n ~ ) ® L \  A (n “ ) ® L \  be the d iffe ren tia l o f degree —1 

o f the chain complex k ( n r , L \ ) .  We denote the ad jo in t o f d respect to  { , }  by d*. 

A (n ~ ) ® L \  is a h-m odule  and d is a h-m odule map, as is d*. We define the  Laplacian 

by V  =  dd* +  d*d. We know fro m  [41] th a t A (n “ ) ® L \  decomposes as a d irect sum 

o f f in ite  dim ensional irreducib le  h-modules. From [72], we have

T h e o re m  1.58. Let g  be the Kac-Moody Lie algebra and let L \  be the quasi-simple 

g-module with the highest weight A, Then the action of'V  on A (n - ,Z o /) is as follows. 

Let Sg be an irreducible h -submodule of A (yi~ , L \ )  with highest weight fl, then V  

reduces to a scalar operator on Sg and the scalar is

^ [u (A  +  p, A +  p) -  a (fl  +  p, fl +  p)}
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where p is the sum of all simple roots.

From  [41], we have

T h e o re m  1 .59. With the notations as in Theorem 1.58, the 2j th  homology space 

H 2 j ( n ~ , Lx*) is finite dimensional and it is isomorphic as an h-module to the direct 

sum

©  +p)~p)
£(w)=j

of non-isomorphic irreducible h -modules.

C{ g ,h )  denotes the standard cochain complex w ith  d iffe ren tia l d associated to

the L ie algebra pa ir (g ,h )  w ith  tr iv ia l coefficients. T h a t is, C (g ,h ) is defined to  be

E I io m h (A s(g /h ) ,  C) such th a t h  acts tr iv ia lly  on C. We define 
o

c  =  E c *
ŝ O

where Cs — H om c(A s(g /h ) ,  C). We pu t the topology o f pointw ise convergence on Cs, 

i.e., f n f  'm  Cs i f  and only i f  f n(x) f ( x )  in  C  w ith  usual topology, fo r a ll

x G A (g ,h ) .  From  [26], we have

T h e o re m  1.60. Cs is a complete, Hausdorff, topological vector space with respect 

to the pointwise topology.

In  [72], a continous map 8  : Cs Cs~~l , and a cochain m ap o f b on C are defined. 

We define <9, b to  be the restrictions o f d and 6 to  the subspace C(g, h ). We define the 

fo llow ing operators on C (g ,h ): S =  dd +  dd and L — bd +  <96. From  [72], we have

P ro p o s it io n  1 .61. k e rE ff i im S ' — C.

T h e o re m  1.62. d and d on C (g ,h ) are disjoint.

P ro p o s it io n  1 .63 (H o d g e  ty p e  d e c o m p o s it io n ) .  L e tV  be any vector space and 

d, d : V  —Y V  be two disjoint operators such that d2 =  <92 =  0. Further, assume that 

k e rE  © i m E  =  V  where S =  dd +  dd. Then, ke rE  —̂  k e rd / im d  and ke rE  

ke rE /im <9  are both isomorphisms.
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B y  the  Hodge ty p e  decom position  and P ro p o s itio n  1.61, we have

T h e o re m  1.64. The canonical maps ’• ker.S' —> H (C ,d )  andipg^s ’ her S' — 

if (C ,  d) are both isomorphisms.

Now, we describe a basis fo r k e rL , We fix  w G W  o f length  5 . We define — 

w A _ D A + . consists o f real roots { 71 ,- • * , 7 S}> We p ick y7i G g - 7( o f u n it norm  

w ith  respect to  the fo rm  { ,  }  and le t a;7f =  —iu0(y7.). Let M^p-p) be the irreducib le  h- 

subm odule w ith  highest weight (wp — p). B y P roposition 2.5 in  [41], the corresponding 

highest weight vector is i/7l A ■ • • A yls. There exists a unique element hw G [M (wp„ p) <g> 

A s(n )] such th a t hw =  (2 i)s(y^1 A • • • A y^s A »7l A • • • A x7s) m od Pw 0  A s(n ), where Pw 

is the orthogonal complement o f y71 A • • ■ A y~u in  M (wp_p) . Using the nondegenerate 

b ilinear fo rm  { )  on g, we have embedding

can define sw =  tpĝ s 1( [ ^ ] )  £ H(C^d). From  [72], [6 8 ], we have

T h e o re m  1.65. Let g  be the Kac-Moody Lie algebra and let G be the group asso-

e : ( J )  A s(n  ® n  ) ( J ) [A s(n  ® n  )]*.

Then hw =  e(hw) G leer L. These elements {h w} wew  is a C-basis o f ker L. Then, we

dated to the Kac-Moody algebra g  and B  be standard Borel subgroup of G. Then

0 i f  w ^  w'

is£w  1AnA.

This gives the expression fo r the d, d harm onic form s Sq which are dual to

the Schubert cells where d,

T h e o re m  1 .6 6 . (see [73]J

is a graded algebra isomorphism.

Let ew denote the image o f s0™ by the in tegra l map in  last theorem. These coho­

m ology classes are dual to  the closure o f the Schubert cells, hence we have
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T heorem  1.67. The elements ew, w G W , form a basis of the h-module H * ( G / B , h ).

For a fin ite  type  flag varie ty G / B , ew denotes Pw- 1 in  the  no ta tion  o f Section 1. 

Now, we give a cup product fo rm u la  in  the cohomology o f any type  flag varie ty G /B .  

From  [6 8 ],

T h e o re m  1 .6 8 . Let Xi 6e the fundamental weight of G for  1 ^  i ^  /. For any 

simple reflection 77 and any element w G W , and a coroot q v ,

er i - e " '=  Y  » ( 7 VK ' -
w—ftw

As an analogy o f cohomology theory o f the fin ite  type  flag space G / B , the coho­

mology o f affine type  flag space G /B  and some operators w il l be in troduced in  th is  

section. The fundam enta l reference is [61] o f V . Kac.

Let Q v =  h h i , where hi is coroot, be the coroot la ttice  and le t
i

P  =  {A  G h '*  : A (hi) G h }

be the weight la ttice  dual to  Qv . Let S (P ) =  be the  in tegra l sym m etric
3> o

algebra over the la ttice  P , and P (P )+ =  5 J'(P ) the augm entation ideal. G iven a
3> 0

com m utative  ring  W w ith  u n it, we denote S (P ) r  =  S(P )v  IF. We define the char­

acteristic homomorphism if '■ S {P) —Y H *{G /B ^ h )  as follows: given A G P , we have 

the corresponding character o f B  and the associated line  bundle L \  on G /B .  We pu t 

ip{X) G H 2( G / B , h )  equal to  the Chern class of L \  and we extend th is m u lt ip lic a t iv ity  

to  the whole S (P ).  We denote by ipf  the extension of ip by lin e a r ity  to  S(P)w< In  order 

to  describe the properties o f if]?, we define BG G -operator A * fo r 1 ^  i ^  / on S (P )  by

A i ( / ) =
cq

and we extend th is  by lin e a rity  to  5 (P )f . We define

Iw =  { /  € S (P )J  : A q  ■ • • A in( / )  G £(P)jjr V sequence ( iu  • • • .* „ ) } .

T h e o re m  1.69. We have Iter ip̂  =  I f  and H * ( G /B ,  F) is a free module overimip^.

We w ill in troduce certain operators on cohomology o f the flag space G /B  wh ich are 

basic tools in  the study o f th is  theory. These operators are extension of action o f the
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BG G-operators A t- from  the image o f ip to  the whole cohomology operators. We know 

tha t the  W eyl group W  acts by righ t m u ltip lica tio n  on K / T  and th is  action induces an 

action o f W  on hom ology and cohomology o f flag space. On the  other hand, we have 

a f ib ra tio n  pi : K / T  —> K / K i T  w ith  fib re  K i/T i .  Since the odd degree cohomologies of 

K i /T i  and K / K i T  are tr iv ia l,  then the Leray-Serre spectral sequence o f the fib ra tion  

degenerates afte r the second term . So, H * ( K /T ,  Z ) is generated by imp*-*, which is 

inva rian t and the element ip(xi) where Xi 15 fundam enta l weight. We define a Z -linea r 

operator A  on I I * ( K / T ,  Z ) lowering the degree by 2 such th a t leaves the image of 

A 1 inva rian t and

x — ri(x ) =  A*(a:) U ip(ai)

fo r x E H * ( K / T ,  Z ). S im ilarly , we can define homology operators A* on I T ( K / T ,  Z )  

ra ising the degree by 2 such tha t r ;(A ;(n ))  =  — A ;(n ) and

v +  n (v ) =  A*(u) n  ip(ai)

fo r v E H * (K /T , 'L ) .  The properties o f the actions o f the operators A  (resp. A{) on 

the cup product (resp. cap p roduct) in  the cohomology (resp. hom ology) can be found 

in  [61]. Now, we w il l give the geometric in te rp re ta tion  o f A*. G iven iv E W ,  we choose 

a reduced expression w =  rq  • ■ • r ts and and define a map rw : D  —> K / T  given by 

7tw(ui, • ■ ■ , uB) =  • * * ZisT  where D  is the u n it disk in  the  com plex space Cs and Zi

has been defined in  the previous section. B y  P roposition 1.55, the re la tive  homology 

map gives us an element sw E H 2i(w) ( K / T ,Z ) .  B y  P roposition  1.57, these elements 

are a basis o f H * ( K /T ,  Z ); le t sw be the dual basis o f H * ( K / T , h ) .

P r o p o s i t i o n  1 . 7 0 .

/

ew i f  I (w r i )  >  I (w ) ,

^   ̂ ew — {a j, otherwise.
*7

, wr{ —hju1

S im ila rly , we can give the reflection action on Schubert cycles sw.
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P roposition  1.71.

A i (£w) =  {
ewri i f  £(wri) <  l(w)> 

0 otherwise.

t swri i f t ( w r i ) > £ ( w ) ,  

0 otherwise.

P ro p o s it io n  1 .72.

c i(L a )  ki sw — ^   ̂ {L̂ ^ ,y ')swi

w'—hv

The set o f a ll functions from  the W eyl group W  to  C  w ill be denoted by C {W } . 

C {k F } is an algebra under pointw ise add ition  and m u ltip lica tio n . Now, we w il l give 

the re la tion  between C {W }  and Endh L f* (n “ ,C ). From [6 8 ], we have

T h e o re m  1 ,73. Let (A>d) be a differential graded algebra over C  and let J be the 

derivation in End(*4, d) induced by d such that

&€ =  ~  ( “ 1 YCdfor (  e End* (*4.).

Then i  : i7 (End(^4, d), 5) End H (A ,  d) is an isomorphism graded algebras.

T h e o re m  1.74. The standard cochain complexes C(g, h ) andC(n~) with the topol- 

ogy of pointwise convergence are both differential graded algebras over C.

Also, we can pu t the topology o f pointw ise convergence on End C(g, h ) and End C (n~). 

Then, the derivation map S : E n d C (n “ ) —> E ndC (n~ ) is continuous under th is  topology 

and i t  commutes w ith  the action o f h  on E ndC (n~ ). We denote by Jo, the res tric tion  

o f 6 to  E nd h C (n “ ). From [6 8 ], we have

P ro p o s it io n  1 .75. There exists a unique injective continuous map rj : C (g ,h ) —>■ 

E ndh C (n “ ).

L e m m a  1 .76. We have ??(ker S) C  ker Jo.
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The map rj induces a map fj : ker S —> 7L(Endh C (n~), Sq) A lso, l induces a map 60 : 

LT(Endh C (n~ ), <S0) —•► Endh H*(n~ , C). B y  Theorem 1.59, as an h-m odule, f7 2j (n “ , C) 

is isom orphic to  the d irect sum

(J)
e(w)-j

o f non-isom orphic irreducib le  h-submodules. B y a p roperty  o f the Horn functo r, we 

have

E ndh #  . c ) -  n Endh >c ) -  n  n  E nd» u ■
i^O 0 £(ur)=i

Since M (wp„ p) is irreducib le , Endh ^ (w P- P) is 1-d im ensional w ith  a canonical gener­

ator 1^  which is the id e n tity  map o f M^wp_py  Th is identifies Endh H *  (n “ , C) w ith  

riu /ew  Clio- The space 1S ^ ie  vecf ° r  space C {T K } o f a ll functions from  W

to  C, Let fj be the composite map

ker 5 4 if ( E n d hC(n-),<50) Endh ff* (n “ ,€ ) “  C {W }.

Now, we w il l give filtra tio ns  o f C (g ,h ) and C {TE}. We define a decrasing f ilt ra t io n  

£  =  (^p)pgz- by Qp =  Cq'k(g ,h )  where C9>fc(g ,h )  =  H om h(A 9(n ) ® A k( i r ) ) .
Ô k-i-q̂ p

Th is  gives rise to  a f iltra tio n  JF =  (B p)pe^~ o f E ndhC (n ) by defining T v =  rj(Qv). B y 

we have f ilt ra t io n  7i — {'Hp)pewt+ o f C ITE }. G rC {T E } w il l denote the associated 

graded algebra w ith  respect to  the filtra tio n  o f C {1K }. T h a t is, G rC {T E } =  G rp,
p̂ O

where G rp =  'Hp/'Hp+i- From  [6 8 ], we have

T h e o r e m  1 . 7 7 .  Let g  be a symmetrizable Kac-Moody Lie algebra. Let h  be the 

Cartan subalgebra. Then, H * ( g , h )  —̂  G rC {T E } is a graded algebra isomorphism.

B y Theorem  1.66, we can give the fo llow ing corollary.

C o r o l l a r y  1 . 7 8 .  H * ( G /B ,  C) — G r C { T E }  is a graded algebra isomorphism.

Let g be an a rb itra ry  Kac-M oody algebra associated to  a generalized C artan m a tr ix  

A , w ith  its  C artan subalgebra h  and W eyl group W. Let Q — Q ( h * )  be the fie ld  o f the 

ra tiona l functions on h .  The W eyl group W  acts as a group o f autom orphism s on the
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fie ld  Q. Let Qw  be the smash p roduct o f Q w ith  the group algebra C [W ], i.e., Qw  is 

a r ig h t Q -m odule w ith  a basis and the m u ltip lica tio n  is given by

(S v q v )  * (^10^10) — 8v w (^W Q v)Q w

fo r v ,w  E W  and qv, qw E Q- The module Qw  adm its an in vo lu ta ry  anti-au tom orph ism  

t, defined by (SwqY =  5w-i(w q)  fo r w E W  and q E Q. We define

Xi — —(5ri +  Se) —  =  — (5ri — Se) E Qw  
oq ai

w here i \  E I T  is a sim ple reflection and a {  is the  sim ple root.

P r o p o s i t i o n  1 . 7 9 .  Let w E W  and let w =  • n n be a reduced expression.

Then the element x^  • • • Xin E Qw does not depend upon the choice of reduced expression 

ofw.

The element x^  • ■ ■ Xin E Qw  w il l be denoted by xw and (xw- i  )* denoted by xw. 

P r o p o s i t i o n  1 . 8 0 .

I
xvw if  i{yw) — £(v) -f- £(w),

0 otherwise.

We know th a t Qw  is a righ t Q-module. Also, Q has a le ft Q n'-m odule  s tructure  

defined by (Swq)ql =  w(qq') fo r w E W  and q, q'. We define subring 1Z C  Qw  given by

TZ =  E Qw : x > S C S }

where S — 5 ' ( h * )  is the po lynom ia l algebra on h .  Let 6V  be the smash product 

o f S w ith  the group algebra € [17]. Obviously 5 V  TZ since S has le ft 5V -m odu le  

structure .

T h e o r e m  1 . 8 1 .  7Z is a free right S-module with basis In  particular, any

x E 7Z can be uniquely written as x =  xwpw some pw E S .
ui(E.W

R  w il l be referred as a nil-Hecke ring. Now, we w il l give the coproduct s tructure  

on Qw- Let Qw Qw  be the tensor product, considering bo th  the copies o f Qw  as 

r ig h t Q-modules. We define the diagonal map A  : Qw  —> Qw  & q  Qw  by

  5yjq ® Syj   Syj (̂ ) 8wq
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fo r w  E W  and q E Q. A  is r ig h t Q -linear.

T h e o re m  1 .82. For any w E W , we have

A (X W) =  ®VvPulV
U ,V  ̂ .UJ

for some homogeneous polynomials p™<v E S of degree £(u) -\-£{v) — £(w). In  particular, 

Pu,v — 0 unless £{u) -f- £{v) ^  £(w).

Now, we w ill in troduce some dual objects. Let E  =  HomQ(Qvv, Q )• Since any ( e H  

is determ ined by its  res tric tion  to  the Q-basis we can regard E  as the Q -

m odule o f a ll the functions W  —¥ Q w ith  pointw ise add ition  and scalar m u ltip lica tio n  

defined by the structure  (g£)to =  q • £(u>) fo r q E Q, £ E E  and w E W . E  has 

a com m utative  Q-algebra structure  w ith  the product as pointw ise m u ltip lica tio n  of 

functions on W .  Also, E  has a le ft Qw  module structure  defined by (a; ■ £)y — £(ad • y) 

fo r x , y E Qw  and (  G S. We have the W eyl group action as well as the Hecke-type 

operators A w on E defined by ~  Sw * £ and =  xw * £ fo r w E W  and (  E E. We 

define the im p o rta n t subring A C S a s  follows:

A  =  {£  E S : ^(TZ*) C S a,nd^(xw) =  Ofor a ll bu t a fin ite  num ber o f w E W }

P ro p o s it io n  1 .83 . A is a S-subalgebra o fE . Is a S-basis of A where £w

is dual to xw for w E W .

P ro p o s it io n  1 .84. A{£w =  £riW i f  i \w  <  w, 0 otherwise.

P ro p o s it io n  1 .85 . ~  Xi  ~  w ~ 1Xi  where Xi  Is the fundamental weight dual

to the coroot hi corresponding to simple root ct;.

Now, we w il l give the im po rtan t form ula  equivalent to  the cup p roduct fo rm u la  in  

the cohomology o f G /B  where G  is a Kac-M oody group.

P ro p o s it io n  1 .8 6 .

£ U  £ V    \  '  U> £ V J
£ * t  /  j PutVS 5

U , V ^ W

where p™ is a homogeneous polynomial of degree £(u) +  £(v) — £{w).
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P roposition  1.87.

i f  ViW >  w
nf™ — <

— a i('yV)^w' otherwii•wise.

T h e o re m  1 .8 8 . Let u ,v  G W . We write w 1 =  • - • r Jn as a reduced expression.

1-d im ensional as C-vector space. Since A  is a S'-module, we can define Co ®s  A. I t  is 

an algebra and the action of %  on A  gives an action o f 71 on Co ®s  A. The elements 

a w =  1 ® £w g Co A  is a C-basis fo rm  o f Co A.

P ro p o s it io n  1.89. Co ®s  A  is a graded algebra associated with the filtration of 

length of the element of the Weyl group W .

P ro p o s it io n  1.90. The complex linear map f  : Co <8>s A  —> G rC { W }  is a graded 

algebra homomorphism.

T h e o re m  1.91. Let K  be the standard real form of the group G associated to a 

symmetrizable Kac-Moody Lie algebra g and let T  denote the maximal torus of K . 

Then the map

defined by 0(ew) =  a w for any w G W  is a graded algebra isomorphism. Moreover,

xw G 1Z on Co ®s A .

C o ro l la r y  1 .92 . The operators A% on H *(K /T ,<C ) generate the nil-ffecke algebra.

C o ro lla r y  1 .93 . We can use Proposition 1.86 and Theorem 1.88 to determine the 

cup product £uev in terms of the Schubert basis

where m  =  i [v )  and the notation Ai means that the operator A{ is replaced by the Weyl

group action r*.

Let Co =  S /S + be the S'-module where S+ is the augm entation ideal o f S. I t  is

the action of w G W  and A w on H * ( K /T ,  C) corresponds respectively to that 8W and
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C H A P T E R  2

Stratification of the homogeneous space LG/T, 

BirkhofF-Bruhat Decompositions and Grassmannian models

For th is  chapter, the general reference is [84] o f A. Pressley &; G. Segal.

1 . In t r o d u c t io n .

Let G  be a compact simply-connected semi-simple L ie group.

D e f in i t io n  2 .1 . The loop group LG is the set of all smooth maps from the circle 

S 1 to the compact, connected and simply connected group G.

Since the compact group G  is simply-connected, the loop group LG  is connected. I t  

has the compact-open topology structure  (usual map topology) and also the pointw ise 

group m u ltip lic a tio n  given by the m u ltip lica tio n  in  G.

T h e o re m  2 .2 . Let G be a compact simply-connected semi-simple Lie group. The 

loop group LG  is an infinite dimensional Lie group modelled on separable Hilbert space.

We want to  m ention some subgroups of the loop group LG. These are rea l-ana lytic  

and po lynom ia l loop groups. Since G  can be embedded in  a u n ita ry  group Un by the 

u n ita ry  representation of G on <Cn , a loop rj in  G  is a m a trix -va lued  function  and can 

be expanded in  a Fourier series
OO

(2.1) r j {z)  =  n*z8 '
S= — OO

The rea l-ana ly tic  loops are these such th a t the Fourier series converges in  some annulus 

r  ^  ^ ^  r -1 . The po lynom ia l loop group L po\G consists o f these such th a t the m a tr ix  

entries are fin ite  Laurent polynom ials in  z and z-1 , i.e. loops o f the fo rm  2.1 where only 

f in ite ly  m any o f the matrices ?]s are non-zero. This group is the union o f the subsets 

L Po1,nG  consisting o f the loops (2.1) fo r which r/s =  0 fo r \s\ >  N .  Each o f these subsets 

is a compact space, we can give L po\G the d irect l im it  topology. The po lynom ia l loop 

group L po\G  has the com plexification L po\Gc which is ju s t the points o f G  w ith  values
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in  <C[z, z 1] in  the sense o f algebraic geometry. The po lynom ia l loop group L po\Gc has 

a centra l extension L poiGc by the circle group T . From  [63], we have

T h e o r e m  2 . 3 .  L po\Gc is an infinite dimensional algebraic group in the sense of 

Safarevic.

T h e o r e m  2 . 4 .  Let G be a compact simply-connected semi-simple Lie group. Then 

L p0\G is dense in LG.

D e f i n i t i o n  2 . 5 .  The based loop group is the set of all based smooth maps from 

the circle S 1 to the compact simply-connected G, i.e. the smooth loops which map the 

base point of the circle S 1 to 1 . Similarly, the complexified based loop group QGc is 

defined. Also, the polynomial based loop groups are defined as Qpo\G =  f IG  f l L po\G.

T h e o r e m  2 . 6 . The Lie group LG is the semidirect product of the subgroup G of 

constant loops and the normal subgroup QG of based loops 7  such that the compact 

group G acts on QG by conjugation. In  particular, LG  =  G  X  QG as a manifold; and 

the homogeneous space L G /G  can be identified with QG. Then the based loop group 

QG can be thought as a homogeneous space of LG, since the action of 7  £ LG  on QG  

is uj —Y Co, where

&{z) = 7 (^ )w (2:)7 ( l ) " 1.

2 . T h e  G r a s s m a n n i a n  m o d e l  o f  H i l b e r t  s p a c e .

F irs t, we w il l  give the na tu ra l embedding o f the smooth loop group L G L n(fC) in to  

the restric ted  general linear group o f a complex separable H ilb e rt space H .  Let 

denote the H ilb e rt space L 2(S1; C” ) o f square-summable -valued functions on the 

circle. The group L ctsG Ln(C) o f continuous maps S1 —> G L n(C) acts on the separable 

H ilb e rt space by m u ltip lica tio n  operators: i f  7  is a m a tr ix  valued fuc tion  on the 

circle, we denote the corresponding m u ltip lica tio n  operator by M y. The norm  ||M y|| 

is defined by

HMyll =  sup{|7(0)| : 6 e S1}.

Then the m apping 7  —>- M y embeds the Banach Lie group L ctsG L n(€ )  as a closed 

subgroup o f the Banach Lie group G L ( H ^ )  o f a ll in ve rtib le  bounded operators in
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H (n\  w ith  opexator-norm topology, which is

I l l ’ l l  =  sup /  0|

fo r T  6  G L { H ^ ) .

D e f i n i t i o n  2 . 7 .  A linear operator T  : H i —$■ H 2 between Hilbert spaces is H ilb e rt- 

Schm idt i f  for every complete orthonormal sequence {e ;}  in H i ,  the series E ill'll2
i

converges. The H ilbe rt-S chm id t norm  o f T  is defined by ||T*||g =  ||Te t-||2) 2 .
i

T h e o r e m  2 . 8 . The set E 2{H i\  H 2) of Hilbert-Schmidt operators H i  —̂  H 2 is a 

Hilbert space under the Hilbert-Schmidt norm jj H2 .

D e f i n i t i o n  2 . 9 .  A linear operator T  : H i H 2 is called c o m p a c t  i f  for every 

bounded sequence (a;n) in H i ,  the sequence (Aa^,) has a convergent subsequence in H 2.

T h e o r e m  2 . 1 0 . (see [ 9 6 ] , )  Every Hilbert-Schmidt operator is a compact operator.

Now, we w il l in troduce notion of restricted general linear group. I t  is defined for 

an in fin ite  d im ensional H ilb e rt space which is equipped w ith  a polarization, i.e. a 

decom position H  — H -  © H+  as the orthogonal sum o f two closed in fin ite  dimensional 

sub spaces.

D e f i n i t i o n  2 . 1 1 .  The restricted linear group G L res(H )  is the subgroup of gen­

eral linear group G L ( H ) consisting of operators A such that the commutator [ J, A ] =  

J A J _1A _1 is a Hilbert-Schmidt operator where J  : H  —> H  is a unitary operator given 

by

I h for h G H + , 
j ( h )  =  \

h for h £ H „ .

D e f i n i t i o n  2 . 1 2 . Let H i  and H 2 be Hilbert spaces. The linear operator A  : H i  —> 

H 2 is called Fredholm  i f  d im  ker A  and d im  coker A  are both finite. Then the index of 

A is

index A  =  d im  ker A  — d im  coker A .

P r o p o s i t i o n  2 . 1 3 .  (see [27]) I f  the operator A  : H i  —» H 2 is invertible modulo 

compact operators, it is a Fredholm operator.
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P ro p o s it io n  2 .14. (see [27]) The set F ied(H \, H 2 ) of the Fredholm operators is 

an open subset of the norm space £ {H i ]  H 2 ) of bounded operators in the sup-norm

respect to the decomposition IT =  H -  © H+. Then, A  E G L res( H ) i f  and only i f  b

is a homotopy equivalance.

We have seen th a t the continuous loops in  G L n{C) can be regarded as a subgroup 

o f G L (H (n) f  The smooth loops in  G L n(C) are contained in  G L res( H G ) f  Th is fact is 

proven by the next proposition.

P ro p o s it io n  2 .17. I f  7  : S 1 G Ln(C) is continuously differentiable, the multi­

plication operator M 7 is in G Lres( H ^ ) .

D e f in i t io n  2 .18. G r(H )  is the set of all closed subspaces W  of H  such that the 

orthogonal projection p r+ : W  —̂ TI+ is a Fredholm operator and the orthogonal pro­

jection pr_  : W  —> I I I  is a Hilbert-Schmidt operator.

The de fin ition  o f the Grassmannian o f a H ilb e rt space can be given another way: 

W  € G r(H )  i f  i t  is image o f an operator w : H + —$■ H  such th a t p r+ ow is Fredholm  and 

pr_  on; is H ilbe rt-S chm id t. The restricted general linear group G L ves( H ) acts sm ooth ly 

on the space G r(H ) .  We have

P ro p o s it io n  2 .19 . The restricted unitary subgroup Ures( H ) acts transitively on 

G r (H ) ,  and the stabilizer of H + is U (H + )  X  U ( H - ) .

topology. The index function index from the space Fred(H1, I I 2) of Fredholm operators 

to Z  is locally constant and hence it is continuous.

The fo llow ing  proposition  gives us a characterization o f the restricted general linear 

group G L ves(H ) .

P ro p o s it io n  2 .15. Let A  E G L ( H ) be written as a 2 x 2  matrix with

and c are both Hilbert-Schmidt operators. I?i particular, i f  A  E G L xgs(H ) ,  a and d are 

Fredholm operators.

P ro p o s it io n  2 .16. The map G L xes(H )  —> F red (H + ) given by A
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D e f i n i t i o n  2 . 2 0 . I f T  : H i  —> H 2 is an operator, the graph o f T  is the set

{h  © Th  E H i  © H 2 : h E d o m T }.

L e m m a  2 . 2 1 . The sum of a Fredholm operator and a Hilbert-Schmidt operator is 

a Fredholm operator.

B y  Lem m a 2.21, we have

P r o p o s i t i o n  2 . 2 2 . I f  W  E  G r (H ) ,  so does the graph of every Hilbert-Schmidt 

operator W  — W L .

These graphs fo rm  the subset Uw  ° f  Gr(JT) consisting o f a ll W '  fo r which the 

orthogonal p ro jec tion  W '  ->  W  is an isomorphism: i t  is in  one-to-one correspondence 

w ith  the H ilb e rt space o f H ilbe rt-S chm id t operators W  - *  W L . Then, we

have from  [84]

T h e o r e m  2 . 2 3 .  G r ( f L )  is a separable Hilbert manifold modelled on H - ) .

We define the v ir tu a l dimension fo r an a rb itra ry  W  E G r(fJ ).

D e f i n i t i o n  2 . 2 4 .  The v ir tu a l dimension of an arbitrary W  E  G r(H )  is the index 

of the orthogonal projection p r+ : W  —>■ H + , i.e.

v ir t-d im  W  =  d im k e rp r+ — d im  coker p r+ .

Equivalently,

v ir t-d im  W  =  d im  W  H fT_ — d im  W L D H + .

Now, we w il l in troduce an orthonorm al basis in  the separable H ilb e rt space H .  

We know th a t £fG) =  L 2( S \  Cn) can be decomposed in to  the  positive and negative 

eigenspaces o f the in fin ites im a l ro ta tion  operator —id/dO as follows:

H ™  =  { /  €  : f (e )  =  J 2 h e ike}
0

and

H ™  =  { /  e  H W : f {9 )  =  h  e’ tS}
k<e
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where f k G Cn , I f  we id e n tify  H  w ith  the space L 2(S 1;C ) w ith  na tu ra l basis { z k} ke%} 

we have the collection o f points { H s }  in  G r(H )  such tha t Hs  is ju s t the closed subspace 

spanned by fo r s 6  where 5  is a subset o f Z  which has fin ite  difference from  the 

positive  integers N. We w ill denote S fo r the fam ily  o f such sets S. We see th a t

v ir t-d im  Hs =  ca rd (5  — N) — card(N  — S).

Th is  num ber w ill be called the virtual cardinal o f S.

P r o p o s i t i o n  2 . 2 5 .  For any W  G Gv(H), there is a set S G $  such that the per­

pendicular projection W  —> Hs is an isomorphism.

Then, by P roposition  2.25, the sets { Us}ses, where Us — UhSi fo rm  an open 

covering o f G r(H ) .  We can have coordinate charts on separable H ilb e rt m an ifo ld  

G r( iJ ) ,  indexed by S. A  po in t o f Us is the graph o f a H ilbe rt-S chm id t operator 

Hs —> H s L , and is represented by an S X  S m a trix , where S — Z  — S. The trans ition  

functions are given by T j =  (c +  dTo)(a - f  6To) _1 where Tt- is H ilbe rt-S chm id t operator 

fro m  I is t to  Hs,^ fo r i G {0 ,1 }. Now, we w il l define an im p o rta n t dense subm anifo ld 

o f Gr(JjT) in  terms o f the coordinate charts Uhs-

D e f i n i t i o n  2 . 2 6 .  G r o (H )  is the set of all subspaces W  such that zkH + C  W  C  

z~kH + for some k.

G tq(H )  is the union o f the fin ite  dimensional classical Grassmannians G r( H - k,k) 

where H„k,k =  z~kH + / z kH + . In  terms of coordinate charts, G ro(H) consists o f the 

graphs o f operators Hs —> H s ^ w ith  only fin ite ly  many non-zero m a tr ix  entries. These 

graphs are dense in  the space ^"2( ^ 5 ; H s ± ) o f H ilbe rt-S chm id t operators.

3 .  T h e  s t r a t i f i c a t i o n  o f  G r(H )  a n d  t h e  P l i i c k e r  e m b e d d i n g .

The s tra tifica tio n  o f the Grassmannian G r (H )  is analogous to  tha t o f f in ite  d i­

mensional Grassmannians. A  s tra tifica tion  of G r ( i f )  may be by the dimension o f the 

in tersection W  Pi JT_, w hich is necessarily fin ite . However, we can give a finer s tra tifica ­

tio n , which records the dimension o f W C\zkH „  for every k. For th is  finer s tra tifica tion , 

we w il l in troduce some notions.
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D e f in i t io n  2 .27 . An element f  of the Hilbert space H  — is of fin ite

order s if  it is the form f iz 1 with f s ^  0. In  other words, f  is the boundary value
l — —OO

of a function which is meromorphic in the hemisphere \z\ >  1 with only a pole of order 

s at z =  oo. For any W  E G r (H ) ,  the set of elements of finite order in W  will be 

denoted by PFfin.

Since the set o f elements o f fin ite  order is dense in  Hs  fo r S' € <S, by P roposition 

2.25, we have

P ro p o s it io n  2 .28 . PF*11 is dense in W .

For given W , we define

Sw — {-s E Z  : W contains an element o f order s }.

D e f in i t io n  2 .29 . For given S E S, the set

£ 5 =  { W  E G r( f f )  :S W =  S }  

is called the s tra tum  of G r(H )  corresponding to S.

In  o ther words, £ 5  consists o f a ll W  such tha t dimWjfe =  dk(S) fo r a ll k, where 

W k =  W H  zh+1H -  and dk(S) is the num ber o f elements o f S which are ^  k. A n  

indexing set S o f v ir tu a l card inal d can be w ritte n

S { s —̂ , s—tj-j-i,. . .

w ith  <  S-g+1 <  . . .  and S{ =  I fo r large L We w ill order the sets o f the same 

v ir tu a l card inal by

S ^  S' si ^  s / fo r  a ll I

<=> dk(S) ^  dk(Sf) for a ll k

Also, we define the length £(S) o f S by

t (S )  =  £ ( ;  - » , ) .
1̂ 0

N ote th a t S <  S' im plies I (S )  <  I (S ') .
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T h e o r e m  2 . 3 0 .  The stratum E ^  is a contractible closed submanifold of the open 

set Us, of codimension £(S). The stratum Es is the orbit of Hs by Af- where Af- 

is s tr ic t ly  lower triangu la r subgroup of G Lves consisting of all elements A  such that 

A (z kH _) — zkH_ for all k. The closure of E# is the union of the strata with

S' >  S'.

We know  th a t the Grassmannian of a fin ite  dimensional vector space has a Schubert 

cell decomposition. Th is details can be found in  the [43]. B y  de fin ition , G ro{H) is the 

union o f the fin ite  dimensional Grassmannians G r(#_*,*.). I t  too can be decomposed 

in to  Schubert cells. This decomposition is dual to  the s tra tifica tio n  o f G r( H )  described 

in  the last section in  the fo llow ing sense: the same set S  indexes the cells Cs and the 

stra ta  E#; d im C s  =  codimE,?; Cs meets S 5 transversally in  a single po in t. For the 

description o f Cs , we w ill in troduce some notation.

N

D e f i n i t i o n  2 . 3 1 .  The co-order of a polynomial element /  =  ^  fkzk of H  is the
k = - N

smallest k such that f k ^  0 .

Then fo r W  £ Gtq(H ) ,  we define

Sw =  {s £ Z  : W  contains an element o f co-order s }

For S £ <S, we define

Cs =  { W  £  G r0{H )  : Sw  =  5 } .

T h e o r e m  2 . 3 2 .  Cs is a closed submanifold of the open set Us of G i (H )  and it is 

diffeomorphic to . Cs is the orbit Hs under the s tr ic t ly  upper triangu la r subgroup 

Af+ o fG L res which consists of all A  such that A (zkH +) =  z kH + for all k. The closure 

of Cs is the union of the cells Cs1 with S' ^  S . Cs intersects E s> i f  and only i f  S ^  S' 

and Cs intersects S 5 transversally in the single point Hs-

We w il l give the re la tion  between ro ta tion  action o f the circle group T  on G r(H )  

and the s tra tifica tion  o f Gv(H). The circle group T  acts 011 H  =  L 2(S1; C) by ro ta ting  

S 1 and th is  action preserves the decomposition H  — H+  0  fT_, hence T  also acts on 

the Grassmannian Gt{H ).  Th is action is continuous b u t i t  is not differentiable. The
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ro ta tio n  action o f T  extends to  an action

C ^ ix x  G r(H )  G r(jff)

o f the semigroup C ^ i x o f non-zero complex numbers o f m odulus ^  1. Th is action is 

holom orph ic on the open set C < ix x  G r{H ).  The ro ta tion  action of the circle T  on the 

subm anifo ld Gyq(H )  extends to  a holom orphic action o f the whole group C x .

P r o p o s i t i o n  2 . 3 3 .  Es consists of the points W  G G r( H )  such that R UW  tends to 

Hs as u —> 0 .

Cs consists of the points W  G Gyq(H) such that R UW  tends to Hs as u —>■ oo.

We know th a t a fin ite  dimensional Grassmannian space can be embedded in to  a 

pro jec tive  space and points o f the Grassmannian can be w ritte n  in  coordinates o f the 

p ro jec tive  space. Details can be found in  [43]. We can do exactly  the same w ith
S

Gi'(H).  For s G S w , le t ws be an element o f W  o f the fo rm  E fkZk w ith  f s =  1.
k = —oo

Then {u>s}  is a basis o f i y fin in  the algebraic sense. We can choose ws un ique ly such 

th a t i t  pro jects to  zs\ we w ill call th is  canonical basis o f W .  We w il l in troduce the 

notion  o f admissible basis fo r W .  Suppose tha t W  has v ir tu a l dimension d.

D e f i n i t i o n  2 . 3 4 .  A sequence in W  is called an adm issible basis f o r W  if

the linear map w : z~dH + —¥ W  which takes zk to Wk is a continuous isomorphism and 

the composite p r ow, where p r : W  —> z~dH + is orthogonal projection, is an operator 

with a determinant. The canonical basis for W  is admissible: the composite map p r ow 

differs from the identity by an operator of finite rank.

D e f i n i t i o n  2 . 3 5 .  I f  w is an admissible basis for W , S G S is a set of virtual 

cardinal d, and p rs : W  —> Hs is the projection, we define P liicker coordinate tts(w) 

of the the basis w as the determinant D e t(p rs o w).

P r o p o s i t i o n  2 . 3 6 .  The Pliicker coordinates define a holomorphic embed­

ding

7T : G r(H )  P (H )
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into the projective space of the separable Hilbert space TL =  £2{$) of the sequences

Si : S —y C. such that |^ i |2 <  oo and S{ =  0 for all except a countable number of
ies

i G S.

P r o p o s i t i o n  2 . 3 7 .  D e t  : L  G r (H )  is the holomorphic line bundle with fibre

D e t f t U )  at W  G  G i'(H) which is to be thought of as the top exterior power o fW .  The 

line bundle D e t  is the pull-back of the tautological line bundle on P ( 7 7 ) .

U s i n g  t h e  P l i i c k e r  e m b e d d i n g ,  w e  h a v e

P r o p o s i t i o n  2 . 3 8 .  G r (H )  is a Kahler manifold with the closed 2-form to which 

represents the Chern class of the line bundle D e t  on G r (H ) .

4 .  T h e  B i r k h o f F  -  B r u h a t  f a c t o r i z a t i o n  t h e o r e m s .

D e f i n i t i o n  2 . 3 9 .  The subgroup L + G Ln(C) of L G L n(<C) is the set of loops 7  which 

are the boundary values of holomorphic maps

7  : {z  G  C  : \z\ <  1 }  —̂ G L n(fG).

T h e o r e m  2 . 4 0 .  Any loop 7  G L G L n(jC) can be factorized uniquely

7 =  7u ■ 7+

where 7 ^  is an element of the based loop space ftUn and 7 +  G L + G L n(C). The product 

map

a u n X L + G L n(C) -► L G L n{C)

is a diffeomorphism.

D e f i n i t i o n  2 , 4 1 .  The subgroup L ~ G L n(jC) is set of loops 7  G  L G L n{C) which are 

the boundary values of holomorphic maps

7  : {z  G C U 00 : \z\ >  1} —> G L n(C )

T h e o r e m  2 . 4 2 .  Any loop 7  G  L G L n(C )  can be factorized

7  =  7 _  ■ A  • 7 + ,
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where 7 _ E L  G L n(C), 7 + E L + G Ln(<C) and X E T  is a loop which is a homomorphism 

from the circle group T  into the maximal torus T  in G L n(C), i.e. X is of the form

( i .a j \
?a 2

In J

The product map

is a diffeomorphism where

I r x L + 7  L G L n(C)

L i =  { 7 _ E L : 7 _(oo) =  1}.

In  Theorem  2.40 and 2.42, L G L n(fC) can be replaced by LGc  fo r any compact semi­

sim ple L ie group G. B o th  theorems are referred as Birkhoff’s factorization theorems 

and have exact analogues for the groups o f ra tiona l and po lynom ia l loops. Now, we 

w il l give the Bruhat factorization theorem.

T h e o r e m  2 . 4 3 .  Any polynomial loop 7  E -LpoiGrTn(C) can be factorized

7  =  u • A • u,

where u and v both belong to L + G Ln(C) and A is a homomorphism from the circle 

group T  into the maximal torus T .

5 .  T h e  G r a s s m a n n i a n  m o d e l  f o r  t h e  b a s e d  l o o p  s p a c e  QUn.

We know th a t the group L G L n(C) acts by m a tr ix  m u ltip lic a tio n  on the separable 

H ilb e rt space =  L 2(S1; Cn), and by Proposition 2.17, on the Grassmannian G r(H ) .  

Since the action of 7  E L G L n(fC) commutes w ith  m u ltip lica tio n  by the func tion  z, the 

subspaces W  o f the fo rm  7 iT+ fo r 7  E L G L n((£) have the p rope rty  z W  C W .

D e f i n i t i o n  2 . 4 4 .  G r ^  denotes the closed subset of G i ( H ^ )  which consists of 

subspaces W  such that z W  C W .
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We will show that G r ^  is gives a Grassmannian model of the loop space.

D e f i n i t i o n  2 . 4 5 .  L i G L n(jC) is set of the commutant elements of the multiplication 

operator M z in G L res( H M ).

P r o p o s i t i o n  2 . 4 6 .  The loop group L i U n =  L ± G L n(fC) Pi LUn acts transitively on 

G r ^ ; and the isotropy group of H + is the group Un of constant loops.

Then, by P roposition  2.46, Tt\Un =  L iU nlU n can be identified  w ith  G r ^  as a set.

P r o p o s i t i o n  2 . 4 7 .  In  the correspondence G r ^  ^  S liUn) G r ^  and G r ^  corre­

spond to polynomial based loop space HpoiUn and TtUn respectively.

The com plexified group L i G L n( C) acts on Gr^n  ̂ as w ell as L i U n, and the stab ilizer 

o f H + in  L i G L n(<C) is the closed subgroup L i + G Ln(C). Thus, th is  gives the the proof 

o f Theorem  2.40.

6 . T h e  s t r a t i f i c a t i o n  o f  G r £ ^ .

In  th is  section, we w il l drop the subscript oo fo r smooth m anifolds G rco( f f )  and 

G r£ j\  Since G r ^  can be identified  w ith  L G L n{€ ) / L + G L n(C) by Theorem  2.40, The­

orem 2.42 asserts th a t each L~ o rb it contains a po in t o f the fo rm  z aH ^ n\  unique up 

to  the order o f {« i,  02, . . . ,  an}.

D e f i n i t i o n  2 . 4 8 .  N ~  is the set of loops 7  such that 7 ( 0 0 )  is upper triangular with 

1 }s on the diagonal.

P r o p o s i t i o n  2 . 4 9 .  Each orbit of N ~  on G r ^  contains a unique point of the form  

and the orbits of N ~  are the intersections of G r ^  with the strata o fG v (H ) .

The fixed points o f the ro ta tion  R u action of T  on ftUn given by (R uuj)(0) =  

lo{9 — u)u>(—u ) ” 1 fo r lo G TtUn are the homomorphisms A : T  —¥ C/n, corresponding to  

the subspaces A ■ in  G r ^ .  The action o f the circle group T  extends to  an action o f 

the semigroup C ^ iX and fo r any W  G G r ^ ,  the po in t R UW  tends to  A • H + as u —̂  0. 

The s tra tifica tion  o f G r(H )  was defined for H  ~  Z 2^ 1; C), whereas in  th is section, we 

are concerned w ith  H M  =  Z 2(S 1;C ?l). Since a ll in fin ite  dim ensional separable H ilb e rt 

spaces are isom orphic, a ll th a t we need is a H ilb e rt space w ith  an o rthonorm al basis
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indexed by the integers. Then, we can define an isomorphism, between the separable 

H ilb e rt spaces: i f  : 1 ^  i ^  77}  is the standard basis o f Cn , we le t a z k correspond 

to  znk^%~1 G H .  G iven a vector valued fuc tion  w ith  components ( / i ,  / 2, . . . , f n) G H ^ n\  

we have the sea,lanvalued /  G H  given by

/  = /l(f") + C/2(Cn) + • • • + C"- 1/n(Cn).

Conversely, given /  G we obta in  G H ^  by

/*«(•*) = ^ £ c - 7 (o,fl
c

where £ runs through the ?zth roots o f The isom orphism  is an isometry. Then,

H  =  iifG ) has the orthonorm al bases We can define G r ^  in  term s o f ( k.

Then, the de fin ition  o f G r ^  can be rew ritten

Gl.(») = { w  e Gr(H) : CnW  C  W}.

We know from  the de fin ition  o f the stra ta  E s o f G r(W ) th a t W  belongs S s i f  S is the 

set o f integers s such th a t W  contains an element o f order s. I f  W  G G r ^  belongs to 

E5 , then S  +  n C  S. Sets S G S  satisfying th is condition are com plete ly determ ined 

by the com plem ent S* o f S +  n in  S', which must consist o f n elements, one in  each 

congruence class m odulo n. They corresponds to  the hom om orphism s from  the circle 

T  in to  the m axim a l torus. For the hom om orphism  there corresponds the set Sa 

such th a t Sa* is

{noti, nci2 +  1 , . . . ,  nan +  n — 1} .

Thus the stra ta  o f Gr(fiT) which meet G r ^  can be indexed by the hom om orphism  z a. 

We w il l w rite  E a fo r Ssfl D G r ^ ,  and H a fo r Hsa.

P ro p o s it io n  2 .50. The orbit of H & under N ~  is S a. I t  can be identified with the 

subgroup L &~ of N ~ , where L a~ =  N ~  D zaL i~ z~ a.

P ro p o s it io n  2 .51. G r ^  is smooth submanifold o fG v (H ) .
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T h e o r e m  2 . 5 2 .  The map 7  —¥ 7 H a defines a diffeomorphism between z&Lfi~z~& 

and a contractible open neighbourhood Ua of H a in G r ^ . The stratum E a is a con­

tractible closed submanifold o fU a, of complex codimension

d(a) =  \ai — — i'(a ),
i < j

where i/(a) is the number of pairs i yj  with i <  j  but ci{ >  aj. The orbit of H a under 

N + is a complex cell Ca of complex dimension d(a), which meets E a in the single point 

H a. The union of the cells Ca is Gi’o ^  and Ca is the intersection of Gt^C with the cell 

Csa ofGTo.

7 .  T h e  G r a s s m a n n i a n  m o d e l  f o r  QG  w h e r e  G  i s  a  c o m p a c t  s e m i - s i m p l e  L i e

g r o u p .

Since L G  is a L ie group, by its  ad jo in t representation, LG  acts on the H ilb e rt space 

i j s  =  L 2(S 1; gc) where gc is the complexified Lie algebra o f the compact L ie group G. 

I f  d im  G  =  n, we can id e n tify  H s w ith  H C ) . B y the u n ita ry  representation o f G  o n C ,  

LG  is a subgroup o f LUn. Then, the based loop space QG  is a subm anifo ld o f QUni 

which can be identified  w ith  a subm anifold G r( iJ s). W sm is the subspace o f smooth 

functions in  W . I t  is dense in  W .

D e f i n i t i o n  2 . 5 3 .  G rg is the subset of G i ( H s) consisting of subspaces W  such that 

z W  C  W , — z W , where W  is the conjugate space o f W  and W Bm is a Lie algebra

under the bracket operation for  g c -valued smooth functions in W .

T h e o r e m  2 . 5 4 .  The action of LGc on G r( iJ s) preserves G rg and 7  —y 7 i7+ de­

fines a diffeomorphism QG  G rs .

I f  we choose a m axim al torus T  o f G  and a positive roo t system A + , then we can 

define the n ilpo ten t subgroups N + and N ~  o f Gc whose L ie algebras are spanned by 

the positive (respectively negative) root vectors o f gc corresponding to  the positive 

(resp. negative) roots. Also, we can define n ilpo ten t subgroups N + and N ~  o f the 

loop group LGc- A"+ is the set o f the loops 7  G L + Gq such th a t 7 (0 ) G iV+; N ~  is the 

set o f the loops 7  G L~G c  such tha t 7 (0 0 )  G N ~  and L fG c  G C  L ± Gc-
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T h e o r e m  2 . 5 5 .  G rg =  f lG  is the union of strata E a  indexed by the coweight lattice
v ^

T  of homomorphisms A : T  —y T  where the strata Ea is the orbit o f \ * H +  under N ~  and 

it is locally closed submanifold of finite codimension d\ in G rg . The complex cell C \  of 

dimension d\ is the orbit of A • H+ under N + and it meets the strata Ea transversally 

in the single point A ■ H + . The union of the cells C \ is Gi'os =  n poiG.

Now, we w il l m ention  the hom otopy equivalance between the based loop group 

JTlfj and the po lynom ia l based loop group f2poiG. We know th a t the cells C \  o f Gro8 

have even dimension, thus the fundam ental group 7Ti(Grog) m ust be tr iv ia l.  Also, the 

fundam enta l group o f f lG  is the second hom otopy group tv2 (G). Then, we have

P r o p o s i t i o n  2 . 5 6 .  The inclusion Q p o i G  LlG is a homotopy equivalance.

C o r o l l a r y  2 . 5 7 .  The homotopy group ^ ( G )  is trivial for any compact semi-simple 

Lie group G.

8 . T h e  h o m o g e n e o u s  s p a c e  L G / T .

One o f the  most im p o rta n t homogeneous spaces o f a compact group Lie group G  is 

G /T ,  where T  is a m axim a l torus of G. The analogue o f G / T  fo r a loop group L G  is 

L G / T  ra ther than the homogeneous space QG. L G /T  is a com plex m anifo ld , because 

i t  is d iffeornorphic to  L G c /B + where

7 kZk E L + G<c : 70 E i? j> .

L G / T  is s tra tified  by the orb its o f N ~ , and the stra ta  are indexed by the affine W eyl 

group W ,  We know tha t the affine W eyl group W  is the sem i-d irect product W  ex T  

where W  is the W eyl group of G and T  is the co-weight la ttice  o f G. Since W  =  

( N ( T )  • T ) / T  where N ( T )  is the nonnalizer group of T  in  G, W  is a subset o f L G /T

P r o p o s i t i o n  2 . 5 8 .  The set of fixed points of the action of the circle group T  on 

L G / T  is the affine Weyl group W .

T h e o r e m  2 . 5 9 .  The stratum Eu; is the orbit of w under N ~ } where E w is a locally 

closed contractible complex submanifold of L G /T  whose codimension is the length i (w )  

of w. The stratum Yiw is a closed subset of the open subset Uw of L G /T ,  where Uw =

(  OO

5+= E
I  k—0
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w U e. The union of the strata Z w indexed by the affine Weyl group W  is the complex 

manifold L G & /B + =  L G jT .  A complex cell Cw of dimension £(w) is the orbit of w 

under A w where A w =  N + D w N ~ w ~ 1. I t  intersects the strata transversally at w . 

The union of the cells Cw is L vo\G jT .  I f  £{w') =  £{w) - f  1, then Z wi is contained in 

the closure o /S w i f  and only i f  to1 =  w ra where ra is the reflection corresponding to a 

simple affine root a,

I f  a is a sim ple affine root o f L G , then there is a hom om orphism  i a : S L 2(JC) —y LG<c 

w hich maps the Borel group B  o f S L 2(C) to  B + . Th is gives us a map i a : C P 1 —» L G /T  

where C P 1 is the two dimensional complex p ro jective  space w hich  is d iffeom orphic to  

the sphere B2 =  C U oo. I f  w' =  w ra and £(wf) =  £{w) +  1 , the map z —$■ ia • it) from  

B2 to  LG<c/B+ defines a holom orphic pro jective  curve in  L G j T  lin k in g  w to  wh This 

p ro jec tive  curve lies in  except for ?a(oo) • w — w ' , so the closure o f Ew contains

Now, we w ill describe about the Bott-Samelson resolution o f the closure o f the 

com plex cell Cw.

T h e o r e m  2 . 6 0 .  The closure of Cw is a compact complex algebraic variety with 

singularities.

I f  the element w o f the affine W eyl group W  is w ritte n  as a p roduct w =  rai r &2 • • ■ r afc 

o f reflections corresponding to  simple roo t a; o f LG, then the closed cell C w is the image 

o f the map

SU2 x - - - x S U 2 -± L G /T  

given by (gu . . . ,gk) ->  i ai • • Gafe • T.

P r o p o s i t i o n  2 . 6 1 .  Z w =  SU2 X j S U 2 X f  • * X j S U 2/ T  which is an iterated smooth 

projective bundle over C P 1 is diffeomorphic to the complex manifold Pai x  Pa2 X  

• ■ ■ x jg+ Pak/ B + , where Pai =  i a i(S L 2(C)) • B + C LGq, i.e., Pai is a minimal parabolic 

subgroup which is containing B + .

P r o p o s i t i o n  2 . 6 2 .  The surjection Zw C w is a birational equivalence of alge­

braic varieties.
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Now we w ill describe the BorehW eil theory for the loop group LG,  which is analo­

gous to  th a t fo r compact L ie groups. G iven a central extension L G  o f L G  by the circle 

group T , we know tha t L G /T  =  L G /T  =  L G c /B + . Every character A o f T  extends 

canonically to  a holom orphic hom om orphism  A : B + —>• C x . Then, we can define a 

holom orphic line  bundle L \  =  LG<c x gyC on L G /T  by acting B + on C v ia  6-77 =  A(6)77 

fo r b 6 B + and 77 £ C.

P r o p o s i t i o n  2 . 6 3 .  The line bundle

=  |  b s  1] € LGe c : [ 7 , 7 ]  =  [7&1 6 • 77] V6 £  5 + j

has an equivariant structure.

P r o p o s i t i o n  2 . 6 4 .  LG  acts on the holomorphic line bundle L \  and this action is 

compatible with the action on L G /T .

P r o p o s i t i o n  2 . 6 5 .  The rotation action on L G /T  of the circle group T  is covered 

by an action on L \ .

Now, we w ill in troduce some useful notions and term inology. B y  a representation of 

a topological group G, we mean a complete loca lly  convex com plex topological vector 

space V  on which G  acts linearly  and continuously in  the sense th a t (g, 77) —A g ■ 77 is a 

continuous map G

D e f i n i t i o n  2 .6 6 . A representation is irreducib le  i f  it has no closed invariant sub­

space.

W hen V  is a representation of a L ie group G, then a vector 77 £  V  is called smooth 

i f  the action given by g —y g • 77 is smooth. The set o f a ll such smooth vectors o f V  w il l 

be denoted by Km-

D e f i n i t i o n  2 . 6 7 .  The representation V  is smooth i f V sm is dense in V .

A fte r we give some term inology, we re tu rn  to  the holom orph ic line bundle L \  on 

L G /T .  We w il l denote the space o f holom orphic sections o f the line  bundle L \  by I V  

I t  is a complete vector space w ith  the compact-open topology. B y  P roposition 2.64, 

LG  acts on the holom orphic section space F\.  Then F \  is a holom orphic representation 

o f L G  b u t i t  may be zero.

51



D e f in i t io n  2 .68. The weight X is called antidom inan t i f  X(ha) ^  0 for every pos­

itive coroot ha. of LG.

Now, we w il l give an im p o rta n t theorem in  th is  section.

T h e o re m  2.69. I f  the representation T \  is non-zero, then A is antidominant and 

the representation is irreducible with lowest weight A where A is a character o f T x T  

which is trivial on T . Furthermore, i f  p is any other weight o fV \ ,  then /a — X is a sum 

of positive roots LG.

D e f in i t io n  2 .70. Representations V  and V ' of a group G are essentially equivalent 

i f  there is an injective G-equivarant continuous linear map V  —>■ V ' which has dense 

image.

W arning: th is is not an equivalence re lation. Indeed, a reducible representation 

m ay be essential equivalent to  an irreducib le  representation. I f  V  and V '  are fin ite  

d im ensional topo logical vector spaces, then essential equivalance agrees w ith  the notion 

o f G-equivarant linear isomorphism.

T h e o re m  2.71. Every irreducible representation of L G  is essentially equivalent to 

some Ta-

P ro p o s it io n  2 .72. The line bundle L \  on L G jT  has non-vanishing holomorphic 

sections i f  and only i f  the weight X is antidominant.

We know th a t a character y  is a class function  on G. W hen G  is a compact Lie 

group, each element o f G  is conjugate to an element o f the m ax im a l torus T , so the 

character x  is described by the restric tion  to  T.  Now, we w il l  be interested to  the 

character theory o f representations o f loop groups. We consider the representations of 

T  tx L G , where LG  is an a rb itra ry  central extension o f L G  by the circle group T . In  

the last section, we have seen th a t every irreducib le  T \  contains a unique lowest weight 

vector, up to  scalar m u ltip le , transform ing according to  a character A o f T  x T  which 

determines I V  Then,

T h e o re m  2.73. Every representation of T  x  LG  is determined up to equivalence 

by its restriction to T  x  T .
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D e f i n i t i o n  2 . 7 4 .  The character of the representation V  of T  x  L G  is the sum

Xv =  dx ‘ e ' A 

A

where d\ is the number of multiplicity of a character A o / T x T .

We w il l state an im p o rta n t result due to  V . Kac [59] w hich is an exact analogue of 

the  W eyl character fo rm u la  fo r compact groups.

T h e o r e m  2 . 7 5 .  ( T h e  K a c  c h a r a c t e r  f o r m u l a )

Xa =  J J (1 -  ( - 1/ M  e*'(” ’A+sH ) )

a we w

where s(w) is the sum of all positive roots a  of LG  for which w~xa  is negative.

Now, we w il l give an application of lowest weight representations o f the affine type 

K ac-M oody algebras. Th is gives the algebraic proof o f the character form ula. The 

fundam enta l reference is W . Zh.e-X.ian [98]. F irs t, we w il l give some notations. The 

universal enveloping algebra £ /(Tpoigc) w il l be denoted by 7/, U ( b ~ o l )  (resp. U (n *o]) 

) w il l be denoted by £/_. (resp. U+ ) B y  the P o inca re -B irkho ff-W itt Theorem , the 

m u ltip lic a tio n  map

U + ® U ~  - > U

is an isom orphism  o f complex vector spaces.

D e f i n i t i o n  2 . 7 6 .  A representation space M \  of T  x  L po\G which is generated by 

a vector (x, is called a Verm a module i f f \  is annihilated by iip ol, Ca is an eigenvector 

of T  x  T  correponding to the character A and the map U  ®u-  C  —> M \  given by 

a ® x —A . t o  • (A is an isomorphism.

C o r o l l a r y  2 . 7 7 .  The Verma module M \  is isomorphic to Ca <g> S ym (iipol) as a 

representation of T  ® T , where Ca denotes C with the action of T  0  T  given by the 

character A.

P r o p o s i t i o n  2 . 7 8 .  I f  a representation space V  is a direct sum of one-dimensional 

irreducible representations pi of a compact group K , then the character of the exterior 

algebra A (V )  is J}(1  +  pi), while that of S ym (F ) is J}(1  - f  Pi)~~1 ■
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C o r o l l a r y  2 . 7 9 .  The character <p\ of the Verma module M \  is

- n o
a > 0

P r o p o s i t i o n  2 . 8 0 .  The Verma module M \  is a lowest weight module with lowest 

weight A  of the multiplicity 1. Any lowest weight module with lowest weight A  is homo­

morphic image of M \ .  M \  has a unique maximal submodule with simple quotient L \ .  

I f  V  is an irreducible lowest weight module with lowest weight \ ,  then V  is isomorphic 

to L \ .

P r o p o s i t i o n  2 . 8 1 .  The character xx of the irreducible representation T \  is a count­

able sum of the form where n^ 6  'Landp runs through weights such that p — \

is a sum of positive roots of LG  and a(p — p,p — p) =  <j (A — p, A — p). Here, p denotes 

(0, p, —e) where p is the half of sum of all positive roots of G and c is p(ha0) +  1 .

L e m m a  2 . 8 2 .  For any weight A  and any w 6  W , we have

w < p x =  ( “ 1 Y {w)<pw(x-P)+P.

L e m m a  2 . 8 3 .  Let A  be an antidominant weight, and let p be a weight which sat­

isfies the following conditions.

1 . p — A is a sum of all positive roots of LG,

2. p — p is an antidominant weight,

3 .  <r(p -  p ,p  -  p) =  < j ( A  -  p, A  - p ) .

Then, A =  p.

T h e o r e m  2 . 8 4 .

AA =  X ( - 1)^ V ^ (A -p )+ P.
u/gW

B y P roposition  2.80 and Theorem 2.84, we have 

T h e o r e m  2 . 8 5 .  There exists a resolution

0 i— F a ^ i — ©  Mw{ \ -p )+p  Afu»(A-p)+p ' ' '
£(io)=l t (w )= 2

of the irreducible representation T \  by Verma modules.
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This is called the Bernstein-Gelfand-Gelfand resolution. Th is  resolution expresses 

the s tra tifica tio n  o f the basic homogeneous space L G /T .  W hen F \  is realized as the 

space o f holom orphic sections o f the line bundle L \  on homogeneous space L G / T , we 

can id e n tify  the antidua l o f the canonical surjection M \  —> F \  w ith  the res tric tion  map 

o f sections T (L \ )  —̂  r ( T /\|?7), where U  is the dense open s tra tum  o f L G /T .

T h e o re m  2 .8 6 . I f  F \  is the irreducible representation of L G  with lowest weight, 

then

n - ; r A) e  0  C U,(A_(,)+P
l (w )=q

as a representation o f T x T ,  where <Cw^-p)+p denotes C  with the action o f T x T  given 

by the character w(X  — p) +  p.

T h e o re m  2 .87 . The map H ( f )  : i7 * (L g ,h ;C )  —} H * ( L G /T ;  C) is a graded- 

algebra isomorphism.

We already know th a t the Z-cohom ology o f the homogeneous space L G / T  is the free 

abelian group generated by the s tra ta  of complex codimension p , w hich are indexed 

by the elements o f length p in  the affine W eyl group.
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C H A P T E R  3

The Cohomology Ring of the Infinite Flag Manifold LG /T

1 . In t r o d u c t io n .

In  [72], K um ar described the Schubert classes which are the dual to  the closures 

o f the  B ruha t cells in  the flag varieties of the Kac-M oody groups associated to  the 

in fin ite  dimensional Kac-M oody algebras. These classes are indexed by affine W eyl 

groups and can be choosen as elements o f in tegra l cohomologies o f the homogeneous 

space L poiG £ /B  fo r any compact s im ply connected sem i-simple Lie group G. Later, 

S. K um ar and B. Kostant gave exp lic it cup product form ulas o f these classes in  the 

cohomology algebras by using the re la tion  between the inva rian t-theore tic  re la tive  Lie 

algebra cohomology theory (using the representation m odule o f the n ilpo ten t pa rt) w ith  

the pure ly  n il-Hecke rings [6 8 ]. These exp lic it product form ulas involve some BG G - 

type operators A z and reflections. Using some hom otopy equivalances, we determ ine 

cohomology ring  structures o f L G /T  where L G  is the sm ooth loop space on G. Here, 

as an example we calculate the products and e xp lic it ring  s truc tu re  o f LS U 2 / T  using 

these ideas.

2. T h e  r o o t  s y s te m , W e y l g ro u p  a nd  C a r ta n  m a t r ix  o f  th e  lo o p  g ro u p  L G .

We know from  compact simply-connected semi-simple L ie theory tha t the complex­

ified Lie algebra g<c o f the compact L ie group G has a decom position under the ad jo in t 

action o f the m ax im a l torus T  o f G. Then, from  [54], we have

T h e o re m  3 .1 . There is a decomposition

g c - t c 0 g a,
a

where g0 =  t<c is the complexified Lie algebra o f T  and

ga =  {£  gc : t • £ =  a (t)£ V t  €  T } .
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The hom om orpliism s a  : T  —* T  fo r which g a ^  0 are called the roots o f G. They 

fo rm  a fin ite  subset o f the la ttice  T  — H o m (r , T ). B y  analogy, the  com plexified Lie 

algebra L g c  o f the loop group LG  has a decomposition

Lgc =  0  gc * zh

where gc is the  com plexified Lie algebra o f G. Th is is the decom position in to  eigenspaces 

o f the ro ta tio n  action o f the circle group T  on the loops. The ro ta tio n  action commutes 

w ith  the ad jo in t action o f the constant loops (?, and from  [84], we have

T h e o r e m  3 . 2 .  There is a decomposition of L gc  under the action of the maximal 

torus T  of G }

£ gc  =  ( D  go 1 zk © (£ )  g a ■ zk.
[k%cc)

The pieces in  th is  decomposition are indexed by hom om orphisms

(&, a ) : T  x  T  —»■ T .

The hom om orphisms (&, a ) G 2  x  T  which occur in  the decom position are called the 

roots o f LG.

D e f i n i t i o n  3 . 3 ,  The set of roots is called the root system of L G  and denoted by

A .

Let 5 be (0 ,1). Then

A =  |J(A  U {0} +  k5) =  A  U {0} +  ZS,
kez

where A  is the roo t system o f G. The root system A  is the union o f real roots and 

im ag inary roots:

A  =  A re U A im,

where

A re  =  {(or, 77.) : a  €  A, n 6  S }

A im =  {(0 , r )  : r  e h } .
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where

and

Definition 3,4. Let the rank of G be I. Then, the set of simple roots of LG  is

{ ( a t-, 0) : a ; e S /o r  1 ^  i ^  / }  U { ( - a / + i ,  1 )},

where a /+1 is the highest weight of the adjoint representation o fG .

The roo t system A  can be d iv ided in to  three parts as the positive  and the negative 

and 0 :

A  =  A + U {0 }  U A “

where

A + =  A + U A +
^  r e  ^  l m )

A -  =  A -  U A r ,

A „  =  { ( ° ) n) S A ,, : n >  0 } U {(ct, 0) : a  6  A +},

& L  =  {"<5 : n >  0 }

A " =  -A +e,

A r  = - A + .
n n  l m

Now, we w ill give some examples. F irs t, we w ill discuss the case o f SU 2 - The 

roo t system A  o f the loop group LSU(2)  has two basis elements a0 =  ( —n, 1) and

a i =  (cr,0 ) where a  is the simple root o f SU 2 . A l l  roots o f LS U 2 can be w ritte n  as a

sum o f the sim ple roots a0 and a i .

P ro p o s it io n  3 .5 . The set of roots of LSU 2 is given by A  =  A re U A jm where

A re ^  (^^-0 T  l&i • |k — /| =  1 , k £ S } ,

A jm =  T  k& 1 \ k e Tf}.

C o ro lla r y  3 .6 . The set of positive roots of LSU 2 is given by A + — A ^ U A j^  where 

A i  =  {& a0 +  /a i : |& — Z| =  1 , fc G Z +} =  {(a:, r ) ,  ( —a, s) : r  ^  0 , s >  0 } ,

A ^  =  {/sag +  k&i : k £ S'*"}
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In  the case o f LSUn, for n >  3, the root system A  o f the loop group LSU n has

basis elements a0 =  (—a o , l)  and a  ̂=  (a»,0), 1 ^  i ^  n — 1 where a ; is the simple
Ti— 1

roo t o f SUn and ao =  a{. A ll roots o f LSUn can be w ritte n  as a sum o f the simple
i =  1

roots a

T h e o r e m  3 . 7 .  (see [ 6 0 ] , )  The set of roots of LSUn, fo r n ^  3, is

i —1 j  — 1 n — 1

A ~ { k  a r  +  I a r  - f  k a r  : \k — l\ =  1 , Ar G  S  andO ^  i ^  j  ^  n } .

r=0 r= i r = j

C o r o l l a r y  3 . 8 .  The set of positive roots of LSUn, for n ^  3, is

i —1 j —1 n—1

A + =  a r  +  I a , ,  +  k a r  : |fc — /| =  l,fe  e andO ^  i ^  j  ^  n }.
r= 0  r = j

Now, we w il l discuss the W eyl group o f the loop group LG. In  order to  define th is  

group, we need a larger group structure. We define the sem i-d irect p roduct T  x  L G  o f 

T  and L G  in  which T  acts on L G  by the ro ta tion . From  [84], we have

T h e o r e m  3 . 9 .  T x T  is a maximal abelian subgroup of T  K LG.

T h e o r e m  3 . 1 0 .  The complexified Lie algebra of T  k  L G  has a decomposition

(C ® tc) ® I (J )  t(Q • zk ® ga ■ zk y j
\ * # 0  (k,a) J

according to the characters o f T x T .

We know from  chapter 1 th a t the roots o f G are perm uted by the W eyl group 

W . T h is  is the group o f automorphisms of the m ax im a l torus T  w hich arise from  

conjugation in  G, i.e. W  =  N ( T ) / T , where

N ( T )  =  { n e G :  nT n ~x =  T }

is the  norm alizer o f T  in  G. In  exactly same way, the in fin ite  set o f roots o f L G  is 

perm uted by the W eyl group W  =  N (  T  x T ) / ( T x T ) ,  where AT(T x  T )  is the norm alizer 

in  T  K LG. The W eyl group W  which was defined above is called the affine Weyl group.

P r o p o s i t i o n  3 . 1 1 .  The affine Weyl group W  is the semidirect product of the 

coweight lattice T v =  H o m (T ,T ) by the Weyl group W  of G.
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We know from  chapter 1, the W eyl group W  o f G acts on the Lie algebra o f the 

m axim a l torus T , i t  is a fin ite  group o f isometries o f the Lie algebra t  o f the m axim a l 

torus T . I t  preserves the coweight la ttice  T v , For each sim ple roo t ct, the W eyl group 

W  contains an element r a o f order two represented by exp ( | ( e 0 +  e_a)) in  N (T ) .  

Since the roots a  can be considered as the linear functiona ls on the Lie algebra t  o f 

the m ax im a l torus T , the action o f r a on t  is given by

r « ( f)  =  f  ~  a(€)ha fo r ? E t ,

where ha is the coroot in  t  corresponding to  simple root a. A lso, we can give the action 

o f r a on the roots by

ra(/3) =  P — a (h p )a fo r or,/? E t* ,

where t *  is the dual vector space o f t .  The element r a is the re flection in  the hyperplane 

H a o f t  whose equation is ce(f) =  0. These reflections r a generate the W eyl group 

W .  For the special u n ita ry  m a tr ix  group SU 2 , we have on ly one simple roo t a  w ith  

corresponding reflection r a which generates the W eyl group o f SU 2 and W  =  Z /2 . 

M ore generally, we have from  [55].

T h e o re m  3 .12 . The Weyl group of SUn is the symmetric group Sn.

Now, we want to  describe the W eyl group s tructure  o f LG. B y  analogy w ith  R  for 

real fo rm , the roots o f the loop group LG  can be considered as linear forms on the Lie 

algebra R  x t  o f the m axim a l abelian group T x T .  The W eyl group W  acts linearly  

on R  x t ,  the action o f W  is an obvious reflection in  the affine hyperplane 1 x  t  and 

the action o f A E T v is given by

A * (® ,f)  =  +  aA).

Thus, the W eyl group W  preserves the hyperplane 1 x  h , and A E T  acts on i t  by 

trans la tion  by the vector A E T v C t.  I f  a  0, the affine hyperplane H atk can be 

defined as follows. For each root (a ,fc),

H atk =  { f  € t  : a ( f )  =  —k}.
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We know th a t the W eyl group W  o f G  is generated by the reflections ra in  the hyper­

planes H a fo r the sim ple roots a. A  corresponding statem ent holds fo r the affine W eyl 

group W .

P r o p o s i t i o n  3 . 1 3 .  Let G be a simply-connected semi-simple compact Lie group. 

Then the Weyl group W  of the loop group LG  is generated by the reflections in the 

hyperplanes H a The affine Weyl group W  acts on the root system A  by

?’(a,fc)(7 >m ) =  ( ^ ( 7)3 m — ce(hj)k) for  (a , k), (7 , m ) £ A .

P r o p o s i t i o n  3 . 1 4 .  The Weyl group W  of LSU 2 is

W  =  { ( r aorai)k, ( w ) ^ ,  (rairao)k, ( ra ir ao) fcr ai : k ^  0, r l o =  r 2&x -  Id } .

P r o p o s i t i o n  3 . 1 5 .  The Weyl group of LSUn is the semi-direct product Sn tx Z 71” 1 

where Sn acts by permutation action on coordinates o fL *1-1.

A c tu a lly  the sym m etric  group Sn acts on %n by the pe rm u ta tion  action. Z n_1 is 

the fixed subgroup which corresponds to  the eigen-value action. From  [50], we have

T h e o r e m  3 . 1 6 .  The affine Weyl group W  of L G  is a Goxeter group.

We w il l give some properties o f the affine W eyl group W .

D e f i n i t i o n  3 . 1 7 .  The length of an element w £ W  is the least number of factors 

in the decomposition relative to the set of the reflections { r a.}, is denoted by t{w ).

D e f i n i t i o n  3 . 1 8 .  Let wi^w2 £ W , 7  £ A * .  Then wi w2 indicates the fact that

r^w 1 =  w2,

£ { w 2 )  =  i { w i )  +  1.

We put w ^  w' i f  there is a chain

w =  wi —>■ w2 -7  • • • —> Wk =  u /.

The relation ^  is called the B ruha t order on the affine Weyl group W .
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P r o p o s i t i o n  3 . 1 9 .  Let w £ W  and let w =  r air a2 ■ • • r a , be the reduced decompo­

sition of w. I f  I  ^  i i  <  . . .  <  ik I and w' =  raiir ai2 > • • r aik, then w’ ^  w. I f  w'  ^  w, 

then w' can be represented as above for some indexing set I f  w'  —̂  w, then there

is a unique index i, 1 ^  i ^  / such that

w' ^ r a i - ’ - r ^ r ^ .

The last p roposition gives an a lternative  de fin ition  o f the  B ru ha t ordering on W .  

Now we w il l define the subset IT  o f the affine W eyl group TT w hich w ill be used in  the 

te x t la ter. We know th a t the W eyl group IT  o f the loop group LG  is a sp lit extension 

T v —y TT TT, where TT is the W eyl group o f the compact group Lie group G. Since 

the W eyl group W  is a sub-Coxeter system o f the affine W eyl group IT , we can define 

the set o f cosets W / W .

L e m m a  3 . 2 0 .  The subgroup o f W  fixing 0  is the Weyl group W .

C o r o l l a r y  3 . 2 1 .  Let w ,w ' £ W . Then, u ; ( 0 )  =  i t / ( 0 )  i f  and only i f  w W  ~  w’W  

in W / W .

B y the last corollary, the map W / W  —> T y given by w W  —> ru(O) is well-defined 

and has inverse map given by Xi r ^ W ,  so the coset set W / W  is identified  to  T v as 

set. We have from  [18],

T h e o r e m  3 . 2 2 .  Each coset in W / W  has a unique element of the minimal length.

We w il l w rite  I{w )  fo r the m in im a l length element occuring in  the coset w W ,  for 

w E W .  We see tha t each coset wW, w E W  has two distinguished representatives 

which are no t in  the general the same. Let the subset W  o f the affine W eyl group 

IT  be the set o f the m in im a l representative elements £(w) in  the coset w W  fo r each 

w E IT . The subset TT has the B ruha t order since i t  iden titifies  the set o f the m in im a l 

representative elements I{w ).  As a example, we calculate the subset IT  o f the W eyl 

group o f LS U 2. O ur a im  is to  find  the m in im a l representative elements t{w)  in  the 

lig h t coset w W  fo r each the element w E IT , where

TT =  { ( r aor a i) fe, ( r aor a i)V ao, (rairao)m, ( ra ir ao)nr ai : k , l ,m ,n  >  0 , r 2ao =  =  id } ,
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and W  =  ( r a j; =  id ) .  We have the m in im a l representative elements £(w) fo r each

coset w W , w £ W  as follows

l { ( rao^a j*) =  ( V a J '  fol' A? ^  0

^ ( r aor a i)V ao) =  ( raor a i)V ao fo r / ^  0

/((?’a ira0)nr a i) =  ( v a i)n fo r n ^  0

and

Id  fo r m  =  0
K ( v ao)m)

( '-a„>'al j'"‘_ 1J’a0 fo r m  >  0

B y the transform ations m — 1,1 and A; —5- n, we have the subset

W  =  : w E W }  =  { ( r aor a i)n, ( r aor a i)7V ao : n >  0}.

Now we w il l describe the Lie algebra L poigc and its  universal centra l extension in  

term s o f generators and relations. For a fin ite  dimensional semi-simple Lie algebra gc, 

we can choose a non-zero element ea in  g a for each root a. From  [ 5 4 ] ,  we have

T h e o r e m  3 . 2 3 .  gc is a Kac-Moody Lie algebra generated by e *  =  eai and f i  — e~ai

for i =  1 , . . .  , I where the ai are the simple roots and I is the rank of gc only i f  G is

semi-simple.

Let us choose generators ej and j )  o f Lgc  corresponding to  sim ple affine roots. 

Since gc  C L g c , we can take

I
ze-a 0 fo r j  =  0 ,

ei for 1 <  j  <  I

and

Iz- 1eao for j  =  0 ,

f i  fo r 1 <  j  ^  I

where «o is the highest root o f the ad jo in t representation. From  [84],

T h e o r e m  3 . 2 4 .  Let gc be a semi-simple Lie algebra. Then, L poigc  is generated 

by the elements ej and f j  corresponding to simple affine roots.



The C art an m a tr ix  A(;+1)x ({+1) o f Lgc has the C artan integers =  a j(h ai) as the 

entries where a0 =  — oro, and a, =  a j  i f  1 ^  j  ^  I. As an example,

P r o p o s i t i o n  3 . 2 5 .  Let G =  SU 2 - The Cartan matrix A 2x2 of L gc is the symmet-

( 2  —2
ric matrix I

\ - 2  2

A lthough  the relations o f the Kac-M oody algebra hold in  L poig<c, they do not define 

it .  B y  a theorem  o f Gabber and Kac in  [40], the re lations define the universal central 

extension L poigc  o f T poigc by C which is described by the cocycle lok given by

' 2 tt  

'0

As a vector space L pojgc is T poigc 0  C and the bracket is given by

w /c (f, ?7) =  ^  J  rj'[O))d0.

T h e o r e m  3 . 2 6 .  L g c  is an affine Kac-Moody algebra.

3 .  S o m e  h o m o t o p y  e q u i v a l e n c e s  f o r  t h e  l o o p  g r o u p  L G  a n d  i t s

h o m o g e n e o u s  s p a c e s .

From  [ 4 2 ] ,  we have

T h e o r e m  3 . 2 7 .  The compact group G is a deformation retract of Gc and so, the 

loop space LG  is homotopic to the complexified loop space LGc-

Now, we want to  give a m a jo r result from  [ 8 4 ]

T h e o r e m  3 . 2 8 .  The inclusion

l : TpoiGxc LGc

is a homotopy equivalence.

Now we w il l give some useful notations. The parabolic subgroup P  o f L poiG c is 

the set o f maps C - *  Gc which have non-negative Laurent series expansions. Then 

P  — Gc [z]. The m in im a l parabolic subgroup B  is the Iw ahori subgroup

{ /  6 P : f(0) e B},
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where B  is the fin ite-d im ensional Borel subgroup o f G. Note also th a t the m in im a l

parabolic subgroup B  corresponds to  the positive roots, the  parabolic subgroup P  to

the roots (a , n ) w ith  n ^  0. From  [42],

T h e o r e m  3 . 2 9 .  The evaluation at zero map e0 : P  G<c is a homotopy equiva­

lence with the homotopy inverse the inclusion of G<c as the constant loops.

The fo llow ing  fact follows from  the local r ig id ity  o f the t r iv ia l bundle on the pro­

jec tive  line. From  [44], we have

P r o p o s i t i o n  3 . 3 0 .  The projection

T Poif?c L po\G c /p  

is a principal bundle with fiber P.

Now, as a consequence o f Theorem 3.28, Remark 2.6, P roposition  3.30 and Theorem 

3.29, we have

T h e o r e m  3 , 3 1 .  £LGc is homotopy equivalent to L po\G<c/P.

T h e o r e m  3 . 3 2 .  (see [ 7 9 ] , )  The homogeneous space

LPoiGc/P = J ] BwP/P.
wew/w

C o r o l l a r y  3 . 3 3 .  The homogeneous space

LPoiGc/B =  JJ BwB/B.
w(zW

B y  Theorem  2.87 o f chapter 2, we have an isomorphism

T h e o r e m  3 . 3 4 .

H * ( L G / T ; C) s  fT ( T g c , t c ; C) ^  f f * ( £ g c , t c ;C ) “  H * ( L polG€ /B ;  C).

B y  Theorem  3.34, the Z-cohom ology ring  o f L G /T  generated by the s tra ta  can be 

calculated using C oro lla ry 1.93 o f chapter 1. In  the next section, we w il l work at an 

example.
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4. C o h o m o lo g y  r in g s  o f  th e  hom og e ne o us  spaces f lS U 2 a n d  LS U 2/ T .

In  order to  determ ine the in tegra l cohomology ring  o f LS U 2/ T , we need some 

calculations in  the in tegra l cohomology o f LSU 2/T .

T h e o re m  3 .35 . For n ^  0, the action of affine Weyl group of LSU 2 on the real 

root system is given by

(3.1) (V &1 )n( - a ,  -s) =  (-ck , 5 +  2n);

(3.2) ( V a ir ( a , r )  =  ( a , r - 2 n ) ,

(3.3) (raorai)nrao(~ a ,s )  =  (a, s -  2n -  2);

(3.4) (?’aor a i) > ao( a , r )  =  ( - a ,  r  +  2n - f  2),

(3.5) ( V a or ( - a , s )  =  ( - a , s - 2 r c ) ;

(3.6) (?'a17'a0)n(a > r )  =  (a , r  +  2n),

(3.7) ( r a ir ao)nr a i( - a , s )  =  (a , 5 +  2 n)\

(3.8) ( r a ir ao) V ai (a , r )  =  ( - a ,  r - 2 n ) .

PR O O F. F irs t, by induction  on n, we shall show th a t

( r aor a i) " ( - a i , s )  =  ( - a , s  +  2n)

( raor a i)n(o :,r) =  ( a , r  -  2n),

fo r (—a, s), (o :,r) G A ve. The case n =  0 is t r iv ia lly  true.

Now, we assume th a t the equations (3.1) and (3.2) hold fo r n =  I. Then,

( r aor a i)?+1( - o , 5 )  =  ( r a o ra iX ra o ra j 't - a ,* )

=  ( r a0r ai) ( - O ! ,s +  2 i)

=  '̂ao ( ^ j  ^ T  2/)

— (—o, s T  2(1 +  1)) ,
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and

( v ai) ( raor ai) l ( a , r )

( r aor a i) ( a , r  -  21) 

r ao(—a , r  -  21)

( a , r  -  2(1 +  1)).

Th is means th a t Equations (3.1) and (3.2) hold fo r any n ^  0.

Since ( ra ir ao)nr ai =  r a i( r aor a i)n, we can find  easily the action o f the reflection 

(^ai^a0)n rai on the real roo t system. Then, we have E quation  (3.7) and (3.8),

( V a or r a i( - a , s )  =  r a i(raQr ai)n( - a , s )  =  r a i( - a , s  +  2n) =  (a ,s  +  2 n ),

and

( r a ir ao)nr a i(a ;,r) =  ?’a i(?'aor a i)” ( a , r )  =  r a i(ck, r  -  2ra) =  ( - a , r  -  2n).

Since ( r a ir ao)n is inverse of ( raor a i)n, the action o f (rair ao)n on the real roo t system 

is given by

(rairao)n( a , r )  =  ( a , r  +  2n)

( r a ir ao)n( -a :,  s) =  ( - a ,  s - 2 n ) .

Also, since ( r aor a i)nr ao =  r ao(rair ao)n, the action o f ( r aor a i)” r ao 011 the real root 

system is given by

( raQr ai)nr ao(a , r )  ~  r ao(rair ao)n(a, r) =  r ao( a , r  +  2n) =  ( - a , r  +  2n +  2),

and

( r aor a i) +1(c*?r )  =

( r ao?-*a i)nr ao(-a :,,s ) =  r ao( ra i7’ao)n ( - a , s )  =  r ao( -a : ,s  -  2n) =  (a , s — 2n -  2 ).

□
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C o ro lla ry  3 .36 . Let  (a : u ) and ( —a, v ) ,u  ^  0, v >  0, be real positive roots o f

l s u 2. For n 7>. 0,

(3.9) r (a,u) (raoT ai ) ( O, s) — a, s +  2n +  2u);

(3.10) r(a,u){rELOr Eil)n(a r̂ ) = —cn, r  — 2n — 2 it) ,

(3.11) r (a,u){r a.or 8ii )n^a0 ( — 5) = —a, s — 2n — 2u — 2);

(3.12) r (a>«)(r’aor a1) = a, r  +  2n - f  2u +  2),

(3.13) T(ce,u) (?’aP’ao) ( ,s) = a, 3 — 2n +  2u);

(3.14) r (<^)(ra i r ao)n(a>r) = —ck, r  +  2n — 2u),

(3.15) r(a,u)('r8ilr ao )nr ai ( - a ,  5 ) — —a, s +  2n — 2u);

(3.16) r(a,«)(ra ir ao) nr a i(a , r ) = a, r  — 27̂  +  2u),

(3.17) ^ (-« ^ )(r ao^a1)n(-CV,3 — (a, 3 H- 2n — 2u);

(3.18) r (-cv,w)(^aoy’a i) (<*) F = (—a, i—  2n +  2v),

(3.19) ’’ (-a,t;)(»'ao7’a1)nra o ( -a ) 5 = (—a, s — 2n - f  2n — 2)

(3.20) ^(-a,4i)(?ao^a1)n7’a0( a , r = (a, r  +  2n — 2t> +  2),

(3.21) ? (-a,v) (? ap ao ) ( ^5 (a, 3 — 2n — 2u);

(3.22) r ( - a r (w) (r ai ?’a0 ) (cq T = ( —o r ,  r  +  2n +  2u),

(3.23) 7’ (—a,f) (?’ai^ao) *̂ai ( ^  5, = (—a, s +  2n - f  2n);

(3.24) r (-a,u)(r a i?'a0) r a1(Cti^ = (a , r  — 2n — 2n).

Theorem  3.37. For k >  0, the following equations hold in H *(L S U 2 / T , Z ) .

(3.25) (er-° )s* =

(3.26) (er“ )2t =  (2 k )!e (r‘ ‘ r-°> \

(3 .27) (s'"" )u+1  =  (2k +  1)! e(’'“or«i)l‘r«o)

(3.28) (er“1 )2i+1 =  (2fc +  l)!e< r“ i r-o)*r- i

PR O O F. B y  induction  on fc, we w ill show th a t these equations hold  in  H * ( L S U 2 / T yh ) .  

For k  =  0 , these equations hold.
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Now, we assume th a t these equations hold for k — n. Then, we have to  show th a t 

they hold fo r k =  n +  1. B y assumption,

( £ r * o ) 2 n + 2  —  ( y ’a° )  • ( V a° ) 2 n + 1

=  (2n +  1)! era° • e(raorai ) nr«o,

We have

(£’"°)2n+2 = (2n + l)! Y ,  Xo(K)em.
( ? ' a o r » l  ) n r*o~^w

W hen we check the action o f the reflections which have length  2n T  2, by the action of 

r(a>u){i'a0r a i)n^a0 and r(_ ot|W) ( raor a i)nr ao on the real roo t system, we see th a t the sum 

in  the r ig h t side o f the last cup product equation holds the  on ly  fo r the  positive root

( —CK, 2n T  2 )  =  (2n T  2 )a o  T  (2 n -}- l ) a i .

Then,

^£raoj 2n+2 __ ^2n -j- 2)! £r(-a>2n+2) (rao^ )n>’a0 _

The com position of reflections 7’(_ai2n+2)(^aor a i)n^a0 can be represented by the W eyl 

group element ( r aor a i)n+1, so

(erao)2n+2 _  Q n - f  2 )! )"+1.

I f  we continue the induction  fo r equation (3.27), by assumption,

(era°)2n+3 =  (£^o ) . (£’a0 )2n+2

-  (2n +  2 )!e rao .e (raorai ) n+ i.

We have

(£r“« )2,l+3 = (2n + 2)! Y  Xo{h^)£m.
(raorai)n+14 ^

W hen we check the action o f the reflections which have length 2n +  3, by the action o f 

^(a,«)(^a0r a i)n+1 and r^_a>v̂  ( r aor ai )n+1 on the real roo t system, we see th a t the sum in  

the r ig h t side o f the last cup product equation holds on ly fo r the positive  root

(—a, 2ra +  3) — (2 n +  3)a0 +  (2n +  2 )a i.
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Then ,

(£f’ao)2n+3 =  (2 n  +  3 ) !£ r(-«.2n+3)(’’a0f’a1)n+it

The com position o f reflections r ( „ a)2n-|-3) ( raor a i )n+1 can be represented by the W eyl 

group element ( r aor a i)n+1r ao, so

(e»a0)2n+3 =  (2n +  3)1 t

Thus, we have proved th a t the equations (3.25) and (3.27) ho ld  in  i7*(TS W 2/T ,  Z ). 

S im ila rly , by assumption,

(£rai )2n+2 =  (er* i ) • (erai )2n+1

=  (2n +  1)! £rai • £(rairao)"rai _

We have

(er*I )2n+2 =  (2n +  1)! Y  X l (h-,)tw-
{ra.1rao)nrai -̂w

W hen we check the action o f the reflections which have length 2n +  2 , by the action of 

^(a,u){^a j ’ao)” ^ !  and r ( r &1 r ao)nr ai on the real roo t system, we see th a t the sum 

in  the r ig h t side o f the last cup p roduct equation holds the on ly  fo r the positive  roo t

(ck, 2 n  +  1) =  (2 n  +  l ) a 0 - f  (2 n  +  2)ax.

Then,

££ra ij 2n+2 _  _|_ 2 )! £r(a,2n+l) O'ai ra„ )"'a i _

The com position o f reflections r(a)2n-f i) ( ra i?’ao) " r ai can be represented by the W eyl 

group element ( r a ir ao)n+1, so

(£r&l )2n+2 =  (2n +  2 )! ghaP'ao)"'1'^

I f  we continue the induction  fo r equation (3.28),

(£ra i)2n+3 _  (erai  ̂ . ^£rai j 2n+2

=  ( 2 n  +  2 ) !e rai • e(r^ ir«o)” +1.
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W e have

(£- i ) 2»+3 =  (2„  +  2 )! £  X i t M e ” .

(rajrao)^1̂

W hen we check the action o f the reflections which have length 2n - f  3, by the action o f 

?’(«,«) (r a i7’a0)n+1 and r(_ a)W)( ra ir ao)n+1 on the real root system, we see th a t the sum in  

the r ig h t side o f the last cup product equation holds the on ly fo r the positive  root

(a ,2n  +  2 ) =  (2n +  2)ao 4- (277 -f- 3 )a i.

Then,

(£>'a^2n+3 =  (2n +  3 )!e r(Q'2n+3) (rai ra“ )n+1.

The com position o f reflections r (a)2n+2) ( ra ir ao)n+1 can rePresented by the W eyl group 

element ( r a ir ao)n+1r aiJ so

( £ r a i  )2n+3 _  Qn  +  3) ! £ f l a 1r a 0) f l + 1r a 1 >

So, the induc tion  is completed and we have proved tha t a ll equations hold in  # * (T 5 '[ /2/T ,  Z ).

□

We w il l make another ca lcu lation in  the in tegra l cohomology algebra o f L S U 2 / T .

T h e o re m  3 .38 . For n ,m  ^  0, the following equation holds in H *{L S U 2 / T JrL ).

(n +  m )(e r-° )n • (er**)m =  n(er^ ) n+m +  m (er* i ) n+m.

PROOF. B y  induc tion  on m , we shall prove th a t the resu lt holds in  iT*(L5 '£ /2/X 1, Z ). 

Since the in tegra l cohomology ring  o f L S U 2 / T  is torsion-free, the in tegra l cohomology 

ring  can be embedded in  the ra tiona l cohomology ring  hence the  calculations can be 

done in  the ra tiona l cohomology. For 777, =  0, the equation obviously holds.

F irs t, we w il l  ve rify  the equation fo r m  =  1. For m =  1, the equation reduces to

(3.29) (n +  l) ( e ra<>)" ■ (er* i)  =  ra(era° )n+1 +  (er* i ) n+1.

Now, we w ill use sub-induction w ith  respect to n on the equation (3.29). The equation

(3.29) obviously holds fo r n =  0.
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Now, we assume tha t equation (3.29) holds fo r n — k. We ve rify  tha t equation

(3.29) holds fo r n =  k +  1. B y the induction  hypothesis, we have

£r*l . (£^o ) *+ =  (gfai . (£ra0) fc) . £»*ao

= { k h {^ )h+1 + k h ^ ' )k+1) - ^

(3.30) =  - 4 -  (£p-o)*+2 +  y d r  f +1 ■ sr“° •
ft? -p I  K y i

Now, we calculate the cup product

( £ ra i )fe+i . £ ra0

in  the above equation. We now trea t the case k odd or even separately. I f  k =  2/ — 1 , 

by equation (3.26),

(3.31) £’ "■> ■ (ep* i ) 2i =  (2/)! • (e<r‘ i .

B y  the cup product form ula,

£r.0 . £( , W =  ^  x o ^ y .

(rai raQ)l ^ w

W hen we check the action o f reflections ?’(<*,«) (?’a ir ao) /:l and r(_ c,)U)(ra 1r ao)/ by the action 

o f the W eyl group elements ( ra ir ao)V ai and ( r aor a i)V ao w hich has length 2 / +  1 , we 

see th a t the reflections 7' ( - a, i) ( ra ir ao)/ and r(Q,j2/)(ra ir ao) f can be represented by the 

W eyl group elements ( raor a i)V ao and ( ra i?’ao)V ai respectively. Using the positive root 

(ck, 21) =  (2/) a0 - f  (2 / +  1) a i in  the cup product form ula,

( 3 .3 2 )  £ , a° • £ h al rao) =  £ (raora i) »’a0 _j_ ^ 2 /) &1 , a° ^ ? ai .

B y  equations (3.27) and (3.28),

(3 33) s,a° • £^’ai ,'ao)i = ----- ------- (V’*oW+ 1 j  ^ ___ f£rai )2?+1
K > (21 + 1 )!1 } + (2 ; +  l ) ! 1 J '

W hen the last resu lt is placed in  the equation (3.31), we have 

£?'ao ■ (erai ) 2* =  (2 /)! ^£ta° • (e(r* irao)1)^

=  (2IV ( ___- fer“«'l2!+1 + ___- ___ fe’'“0 2,+1 I
{ > , \ ( 2 l  +  l ) \ {£ > (21 + 1 ) !  J J

1 i ^ ) 2W + J F ( ^ f +1-2 z +  r  '  2 / +  1
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U sing  k =  21 — 1, we have

(3 .34 ) er*o • =  _ L _ ( era0)*+2 +  ^ ± 1 ^ ^ + 2_
k -{- 2 k -j~ 2

W hen the last result is placed in  the equation (3.30), we have

er*i . (e ^ o )^ 1 =  (e'’-o)*+2 +  _ i _  (erai)*+ i . £r*0
k -f- 1 k 1

A: +  1
(£r*o)k+2 -----  —  ( — _— (£r^ ) k+2 4- —-'t..1 (Vr*i \ k+2\
{ J ^ k  +  1 \ k  +  2 [ J  +  2 {6 } )

(fc  +  l  +  (k +  l ) (k  +  2 ) )  (e’ “0U 2 +  k +  2 l'e’^ >'+2

=  ,m ^ k + 2 + k h ^ k+2-

I f  k =  2/, by the equation (3.28),

(3.35) (£’ >■) ■ (£’'■'■ )2i+1 =  (21 +  1)! (’(er« )  • (e(r* i ’- * o f \  .

B y  the cup product form ula,

( e *-a0 )  . ( g h ^ r a o l ' r a i )  _  ^  X o ( ^ y ) ^ -

( r a i r a o U ’a i-^ IO

W hen we check the action o f reflections r (CV)U)( ra ir ao)V ai and r(_ atW) ( ra ir ao)V ai by the 

action o f the W eyl group elements ( ra ir ao)i+1 and (raor a i) 1+1, w h ich  has length 21 - f  2, 

we see th a t the reflections r(_ Q,)1)(7ia i?iao)/?’ai and r (a!2;+ i)( ra ir ao)V ai can be represented 

by the W eyl group elements (r aor ai) l+1 and ( ra ir ao/ +1 respectively. Using the positive  

roo t (a , 21 +  1 ) =  (2 / + 1) ao +  (21 +  2 ) a i, we have

( 3 . 3 6 )  ( e ra ° )  • ( g h a i ^ 0 ) ^ - 1 )  =  g h a o r a ! ) 1* 1 +  ( 2 /  +  l ) e ( r a i r « o )i+ 1 .

B y equations (3.25) and (3.26),

13  3 7 1  £ f’a0 . g b ’a i ^ a o ) '^ !  _   I  /  r aQ\2 i+ 2  , -  s 2l+ 2

( > (21 +  2 )! } +  (2* +  2 )C  ; ’

W hen the last result is placed in  the equation (3.35), we have

£ra0 . ( e r ^ ) 2 l + 1  =  ( 2 1  +  1)! ^era° • (ghai^a0)ha i^

=(2*+1)! i m w {£" r + 2 +w i b {£" )2i+2)
1 ( e »'«o)2f+2 +  21 +  1 ( gVa1^2f+2

2 / +  2 '  21 +  2
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U sing  k  =  21, we have

(3.38) er"° • (erRi ) fc+1 =  — ^— (er°o)*+2 4 . _ .l t
k T  2 At —(— 2

W hen the last result is placed in  the equation (3.30), we have

er*‘ • (er-° )fc+1 = (£■■“« )fc+2 + - L -  (£'■>. )t+1 ■ er“°
/c +  1 k +  1

*  T T  (e ’"0)t+2 +  i t T T  ( * T 2 (£r*°)i+2  +  l r ^ (£r" )t+2)

+ t~7—, iw, , r>\ (£ra°)/c+2 + r -n r(erai)*+2A: —|— 1 (A -}- 1)(A T  2) J  k  2

=  l r l (e’'“0U 2 + ^ ( er“ ‘ ) fc+2-

The induc tion  on n is completed. Thus, we proved th a t the equation holds fo r m =  1.

We assume tha t equation holds fo r m — s. Then, we w il l ve rify  th a t i t  holds for 

m =  s +  1. B y  assumption,

(er'° )n •(er“  )s+1= (er-  )n+* +  — (er“‘ )n+S)  ■
\ n  T  5 n s J

— — H   (V'«o ) n+s . £ r * i  _L 3 |'e »,a1 \n + s + l
n +  s '  n +  5 V '

_ 71 Z' n +  S / . r « .x n + - + l  , 1(  11 +  ,S (£>a0\ ^ + l  ,_____1___  / ra^n+a+A  ,
\ n  +  s +  1 } +  n +  3 +  1 1 } J  +

n +  s

n - f  s \?2 +  s +  

(£’■»!)

f \ n + s + l  !(e^ +  -    +  (erai)
n +  s +  1 \ ( n  +  s ).(n  +  s +  1) n  +  s

n ^ rao jn+a+ i +  -s2 +  a(n +  1) +  re ^n+s+ i
n - f  s +  1 (?7 +  s)(n  - f  s +  1)

^  f .ran \n + s + l 1 5 T  1 / j'ai \n + s + l(sra° )n+fi+1 +  ■
?} +  s +  1 (n  +  s +  1)

Thus, the induction  is completed. □

Let R  be a com m utative  ring  w ith  u n it and le t rfl(a;o, ® i) be the d iv ided power 

algebra over R, where deg .To =  degaq — 2 .

T h e o re m  3 .39 . Then, H * (L S U 2 / T , R) is graded isomorphic to Tr(:co, x \ ) f I r  where 

the ideal I r  is given by

I r =  ( - T 'T 1 -  ( "  +  ™ ~ * )  4 ” +ml -  ( ”  +  ™ "  L  x f +m] : m, n »  l )
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and which has the R-module basis in each degree 2n fo r n ^ 1.

P r o o f . Since the odd dimensional cohomology is tr iv ia l,  by the universal coeffi­

cient theorem, i t  suffices to  prove th is  for R — Z . The Schubert classes { £W} wEwLSu(2) 

fo rm  a basis o f the in tegra l cohomology H *(L S U 2 / T , Z )  such th a t ew G H 2eM (LSU 2 /T ,  Z ). 

Since the cohomology m odule basis is indexed by the affine W eyl group W ,  the Poincare 

series over Z  o f cohomology o f LSU 2 I T  is

00

p { t , i )  =  i  +  Y , 2t2k-
k=1

Now we w il l show th a t the in tegra l cohomology algebra H * (L S U 2 / T :iZ )  is isom orphic 

to  the quotient o f d iv ided power algebra Tz(a;oj Then, we define a Z-algebra

hom om orphism  if from  the d iv ided power algebra F a (r0, to  the in tegra l cohomology 

o f L S U 2 / T  as follows.
n

For U  =  ^ 2  w ith  G Z , le t
*=o

n—1

i>{U) =  unX  (n) +  «0y ( n )  +  Y i
i = 1

where

IgFaof’aJ1 for n — 21

g (raora i)Ji'a0 f o r  72 — 2 /  +  1

ghap'ao)* fo r n — 21
Y {n)  =

£(f’aP’ao)ai for 72 — 21 -J- 1 .

We w il l  show th a t if) is a Z-algebra hom om orphism. Let

t f = I >  4 M "  '3 V  =  V3 ]®im 3] >
i=0 J=0
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where U{, Vj E Z . F irs t, le t us calculate

vi=o
^ ( t / )  • -^ (v ) =  $  Ui 4 M n *]j  • $  ( vj  4 ]* im j]

/  n— 1
=  I  u0Y(n)  +  u„X(n)  +  ^

V <=i

/  ^  i t i0y ( m )  +  vmX(m)  +  >  t ;

1 |F ( n )

^  J L V i - 1
m—1

= nou0y(n)y(m)+«oi;my(rt)A '(m)+y^ u0Vj
i = l

m—1
+ u nu0X (n )Y (rn )+ u nvmX ( n ) X (m ) + ^ P  unv3

3=1

 ̂^ y (7 7 )X (m ) - f  ^  . ) y ( n ) y ( m )

11) - X ( " ) A ’ M  +  ( ™  . 1 )X(n)Y(m)

71—1
+  ^  Mt-U0

i ~  1 

n—1

+

n—1 m ~  1

+ Z  Z
i= l j= l rD ( m 1) ™ +(r ? )  C7 1 )x(n)yH

71—1 771 — 1

+ E E
1=1 j = l

U i Vi u3 n ,*) (™- i ) Yw x(m)+c * o (mj

B y equations (3.25), (3.26), (3.27), (3.28) and (3.38),

y ( n ) y ( m )  -
f n  +  m \  
\  n J

Y (n  +  rn)

X ( n ) X ( m )  =  ( n ^~171 ) x ( n  +  m ) ,

X ( n ) y ( m )
77 +  777 — l \ ^ .  / n  +  m  — 1 '. , . ,  N

X ( n  +  m ) +  y ( n  +  m )777 /  V n

and

y ( n ) X ( m )  =
77 +  777 l \  . /n  +  m — l . - . -  N

) X ( n  +  7Ti) +  ( y(?7 +  777).
77 /  \ m ‘
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If we put the last results in the equation, we have

( m  +  n — X
=  X (n + m )  ^  ^ +

m

m—1
777. +  n  —  1 \  f n  4 - m \

( ) 4" /  /
n  '  i = 1

UjiVj

i r - i  f n  — l \  /m  +  72 — l \

\  /  \  /  i_1

m — l \ f n  m \  f m  — l h / m  +  n — 1

j  - 1 /  \  n /  v i / v  m

n — 1\  /?2 +  ??A / n  — l \ / n  +  m  — 1
2 — l J l  n /  i / V  n

n — 1 m —1

E E
£=1 j= I

72 — 1 \  A n  — l \  / n 4- ?7i \  / n  — 1 \  / m  — 1 \  / n  +  m  — 1

^ - i / v i - i / v  n / v - i / v  i  / V  ™
+

n—1 m —1

E E
i= l  i = l

n — 1 \ f m  — 1 \ f n  +  m  — 1

* y v i - U V  n
+

-r/-/ \ j , 'n +  m \  f n - \ - m  — l \
r  (72 +  772) \ UqVq ( ^ ) +  UoVm I ] +

771—1

2 ^  «OVi 
i = i

772 — l \  f m  +  72 — l \  f m  — l \  f n  +  772
J - 1  J  \  772 72

(m  +  72 -  1 \ ^
Un^ ° \  72 J +  /  , “n^j

7=1

772 — l \  / 772 +  72 — 1
I . 1 1 14-

n—1

i = l

72 — l \  A i +  772 — l \  /V2 — l \  /?2 +  772
. ■ - J  « M  *

n—1

+ E U;V*
72 — l \  f n  4- 772 “  1

t = l

n ~  1 m —1

2 _. 2 _, UiVi
i= 1 j= l

772

n — 1 m—1

+e e w *:
t=i j= i

72 — 1 \  /  772 — 1 \  /  72 +  772 — 1

72 — l \  f m  — l \  /?2 +  772 — 1
2 - 1 3 72 +

3 - 1 772 +
72 l \  A t2 — l \  / t2 4"

) \
772

72

4-

"h
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Now an expanding,

U - V  =  u0vo f n +  m )  + +H  +  +  £  UoV. ^  ™ A  xWxb*r
j = 1 ^ '

I W  M  I A i  +  m \  [n+m] . ( n  A  [n+jl \ m - j ]+  UnVoXQ 3q 4“ UnVm ^  ^  J X o “1- /   ̂nnVj ^  j X q Xj

_i_ / «  +  m  -  A  [i] [n +m -i] . V '  / m  +  A  [m+i] ^
+  2 J “ it’o l m  1*0 ®1 +  2_, u>vm I . K  'x \  '

—̂1 v /  \  /

n —1 m —1

+ £ £ ^ ( A ) (  n _ i +  ̂ ^+A

Hence,

fn  +  m  — A  f n  +  m — 1 

i - 1

. / r r  , , , 1  / n  +  m — 1\  / n  +  m — A / n  +  m  — 1\
^ ( t f - V ) = A ( n  +  m ) j « oU|n^  ^  J  +  £  « o ^  n ^ _  x J  +

/ n  +  m  — 1\  / n  +  m \  ( m +  A  A n  +  77 — 1\

“"H m J+U»W»V " J+tTU<WmV * A n-i J +
/ra +  A / n  +  m  — 1\  / n  +  m  — A  A

g “'H „ Jl, J + g “H  „ A

+ g » ^ C t j) ( (”+”. - i|i+'1)C ++7- 11)}
, w  , \ \  / n  +  m \  / n  +  m  — 1\  / n  +  m — A  / n  +  m  — IN

+ y ( n  +  m ) j u 0^  n J + « o U m (^  m  J  +  E “ ^ \  n ) {  j  J  +

/ n  +  m — 1\  v A  f n  +  A  f n  +  m — 1\  A  / n  +  m — A  f n  +  m  — 1\

“■H - J+̂ UnH - Jl n+i J+§ UH  m )( i r
A  f i  +  m \  f m  +  n -  1\  A  A  / i  +  A  / ( n  +  m ) -  (z +  j ) \  / n  +  m  -  1\  1

g ~ H  i K  r g g - l , , X  - <  X  .+J ) )

We show th a t ip(U • V )  =  if(u) • t/> (A  for a ll po lynom ials U ,V .  In  order to  ve rify  

th is equation, we need the equa lity o f the coefficients o f U{Vj in  the both  sides o f th is 

equation. We see th a t the coefficients o f u»Vj,i =  0 , . . .  , n and j  — 0 , . . .  , n  in  the 

bo th  sides o f the equation are equal fo r A (77 +  m) as w ell as V (n  +  m ). Then if is a 

Z -a lgebra hom om orphism .
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We w il l show th a t the Z-algebra hom om orphism  ip is surjective. Because, fo r every 

element a X (n )  +  bY{n) G H 2n(LS U 2 /T ,% ) ,  we have ax\^  -f- b x ^  such th a t ip ( a +

6 2̂ )  =  a X ( n ) +  hY(n ), where a, 6 G Z .

Now we want to  fin d  the kernel o f the hom om orphism  ip. For n, m  ^  1, le t

(3.39) =  x-g*1 • a,-'” 1 ~  +  ™ _  * )  4"+m] -  ( "■+ ™ ~  * )  4 " +H  ■

We cla im  th a t the kernel o f the hom om orphism  ip is equal to  the fo llow ing ideal 1% 

generated by the elements un>m.

h  =  E  &

where

^ = { Y / r  ( 4 ]* [r ] -  g :  1 ) 4 *  -  ( * ;  y ? ) : 4  € r . t . c o }

Now we w il l prove tha t our cla im  is true. Let U  G f | .  Then

- * (_e ‘.w-f-" - (‘t: :)4‘] - (*7 y r’i)

0<r<fc ^ ^ '  \  /  /

Then is equal to

e  «<?> ((*: y  w+(‘; 1)y<‘> - (t: - C;
0<r<k

Then ip(U) =  0. So, U  G k e r ip.
k

Conversely, le t U =  G ker?/?. Then,
;=o

i>(U) =  UoY(k) + ukX(h) +  Y Ui (fc _  ; ) * ( * )  +  ( fe i  : ) y (fc) =  °>
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So, we have to  determ ine the solution o f the homogeneous linear equations system 

A  • v =  0, where

A
1 f c - 1  .. 

0 1

(V) • 
( t ! )  •

1 0

k - 1  1
and v -

u 1

Ui

Uk-1

\ uk J

The rank o f the m a tr ix  A  is 2 , so we have in fin ite  solution vectors w hich have k —1 linear 

independent components and other two components depend these linear independent 

components. Then,

I  \
U 0 

I I I

V =

Uk-1 

\ uk)

(  ip l  fh  _  1\  \-E*
i = l

tk-1
k-1

\  i= 1
E *

fc - 1  
k — i

where U E Z  fo r i =  1 , . . .  , k — 1. So, U  E ker if) is given by

*=i
k-l

k-1
[fc-

f c - i

fc — z
.[*]

fc - 1 ,1*1

fo r some i;  £  25. Thus, we have proved th a t t /  € □
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T h e o re m  3 .40 . Under the isomorphism i f , the h-module operator A 1 of H * (L S U 2 /T ,  Z )  

corresponds to the partial derivation operator

af- for degree 4n 

, at" f or degree 4n +  2 

for i j ,  i =  0 , 1 .

PR O O F. W e  w ill prove th a t Z -cohom ology operator A 1 corresponds to  th e  p a rtia l 

d erivation  operators as stated. B y  defin ition  of we have

^ O e (raora1)11 _  0 j

)n _  £(rag *'al )H fi’a0 ^

y^0^(raO?‘al )n,’a0 =  £('-ao'-ai)n 

^ l £ (ra0ra1)7V ao _

^ 0 £ (?'ai?’a0 J71 _  £ (rai»*a0)n b’aj ^

^ l £ (ra iJ'a0)" _

4̂0£(ral T’ao)nrai Q?

_  £ (raj ra0)" ^

B y  if isom orphism , we have the fo llow ing correspondences

e(,’a0rR1)"  ̂ Y gfiao'ai)11̂  <--- ^ [ 2/1+ 1]̂

£ (ra ira0)n < y iTj2n]  ̂ £ (rai rao)" rai  ̂ y a;P!n+1l.

The last equations and correspondences verify  onr cla im . □

C o ro l la r y  3 .41 . The partial derivation operator on the divided power

algebra induces a derivation on cohomology of LSU 2 / T .

Now we w ill discuss cohomology o f QG respect to  L G / T  and G / T  where G is a 

compact semi-simple Lie group. Since OC is hom otopic to  n poi, the discussion can 

be restric ted  to  the Kac-M oody groups and homogeneous spaces. The L ie algebras of 

LpoiGc/B+ , L PoiG<c/Gc and G c /B  are g[£,£"1] / b + , g [ t , t “ 1] / g  and g /b  respectively.
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T here  is a su rje c tive  hom om orph ism

evt= i : g [M _1] / b + g /b ,

w ith  k e re v t- i =  g [^ ,^-1 ] /g .  Since the odd cohomology groups o f g[£,£-1 ] / b + and g /b  

are tr iv ia l,  the second te rm  E%* o f the Leray-Serre spectral sequence collapses and 

hence we have

T h e o r e m  3 . 4 2 .  Let R  is a commutative ring with unit. Then there exists an injec­

tive homomorphism j  : H * ( G /T ,R )  -4  H * (L G /T ,  R) and a surjective homomorphism 

i : H * ( L G /T ,  R) —y iJ * (n G , R). In  particular, J  =  i m j + is an ideal of H * ( L G /T ,  R) 

and

H*(LlG, R) £  H * ( L G / T , R ) / / J .

C o r o l l a r y  3 . 4 3 .

h-(sisu2,R) = r R(x,y)/ ( iR,a(*[1] - y [l)}) = r«(®),

where a G R.

Now we w il l give a different approach to  determ ine the cohomology ring  o f based 

loop group LIG using the Schubert calculus. For a compact sim ply-connected semi­

sim ple Lie group G, we have from  Theorem 2.40 o f chapter 2

T h e o r e m  3 . 4 4 .  The natural map

G - ¥  LG  -+ L G /G  ~  HG,

is a split extension of Lie groups.

T h e o r e m  3 . 4 5 .  Let G be a compact simply-connected semi-simple Lie group and 

let T  be a maximal torus of G. Then n : L G /T  —> L G /G  is a fiber bundle with the 

fibre G / T .

PR O O F, Since LG  —Y L G /G  is a p rinc ipa l G-bundle and G / T  is a le ft G-space by 

the action gx ■ gfT  =  gigfT  for gx, g2 G G, we have a fib ra tion

G /T  —»■ LG  x G G /T  —> flG.
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Therefore, we have to  show th a t LG  x G G / T  is d iffeom orphic to  L G / T . Since LG  X q 

G / T  is equal to

{h S fltf1] : [7 ,gT] =  [7 h , l r lgT]Vg,h  £ (7, 7  £ L G },

we define a smooth map r  : LG  x G G /T  -7  L G /T  g iven by [ j ,g T ]  -7  7 ^T . I t  is 

well-defined because fo r h £ (7 ,

r ( [ 7 ^, / T 1̂ ] )  =  7 W i“ 1̂ r  

=  19T

For every 7 T , we can find  an element b ,T ]  £ L G  Xq G / T  such th a t t ( [ 7 ,T ] )  — 

7 T.  So, r  is a surjective map. Now, we w il l show th a t r  is an in jec tive  map. Let 

[71^ 1 ^ 5  [72, 9 2 T] £  LG  x G G / T  such tha t

(3-40) T{hfu9iT]) =  t ( [ 7 2, #2T ]).

The equation (3.40) gives

7 i 9 i T  =  72</2T.

So, (71^1 ) _1 (72^ 2), { l 2 9 2 )~1{Ti9 i )  € T . Then,

[71 , 9 i t ] =  [ l i 9 u 9 i l 9 iT ]

=  h i9 u T ]

=  [(71^ 1 )(71^ 1 )_1 (72^2), ( 7 2 ^ ) “ 1(7 i5 fi ) ^ ]

=  [72^ 2, T]

=

=  [72 , 9 2 T].

Thus, we proved th a t r  is an in jective  map and i t ’s inverse is given by 7 T  -7  [7 , T] 

which is sm ooth map. Then, 7r : L G /T  -7  L G /G  =  91G given by 7 T  -7  7 G is a fiber 

bundle map. □
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Since L G / T  is a fiber bundle over LlG w ith  the fibe r G /T ,  by the Leray-Serre 

spectral sequence o f the fib ra tion  and C oro llary (5.13) o f K ostan t and K um ar [68], 

9 : iL * (n G ,Z )  H * ( L G / T , h )  is in jective  and 9(H*(LlG ,  Z ) )  is generated by the 

Schubert classes in  the cohomology of L G /T  and hence we can determ ine the

cohomology ring  o f f iG .

Let R  be a com m utative ring  w ith  u n it and le t 1^ ( 7 ) be the d iv ided power algebra 

w ith  deg 7  =  2 .

T h e o re m  3 .46 . H *(Q S U (2 ),  R) is isomorphic to ^ ( 7 ) with the R-module basis 

7 ^  in each degree 2n for n ^  1 .

PR O O F. Since the odd cohomology is tr iv ia l,  by the universal coefficient theorem, 

i t  suffices to  prove th is  fo r R  =  Z . The in tegra l cohomology o f QSU 2 is generated by 

the Schubert classes indexed

Then, we define a Z-algebra hom om orphism  7 from  1^ ( 7 ) to  H*(L lSU 2 ^ )  given as

Let us calculate 7 (7 ^ )  • 7 (7 ^ )  =  X (n )  • X (m ) .  B y  equations (3.25) and (3.27), we

W  =  {£(u>) : w G W }  -  { ( r aor a i)n, ( r aor a i)nr ao : n ^  0}.

follows. For n ^  0 ,u n e Z , r/(un^ )  =  unX (n ) .  Now, we w il l show th a t 7 is a 

Z-a lgebra hom om orphism . We have

have

So

Then, we have shown th a t 7 is a Z-algebra hom om orphism .
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Also, i t  is surjective and in jective. Because, fo r every element unX ( n )  G 

we have uniyn such tha t r](unj n) =  unX (n )  and

ker rj =  {u nj n : r]{un7 71) =  unX (n )  =  0 }

=  {un : un =  0 }

=  0 .

We have completed the proof. □
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C H A P T E R  4

The Generalized Cohomology Theories and Topological 

Construction of BGG-type Operators

In  Chapter 1 , we gave the homology and cohomology ring  s truc tu re  o f the flag space 

G /B  where G  is a Kac-M oody group. In  th is section, we w il l discuss the generalized 

com plex-oriented cohomology and homology theories o f the flag space G / B , and the 

classical B G G  and Kac operators w ill be constructed topo log ica lly  using the transfer 

map for compact fib re  bundles. In  order to  do th is, firs t we w il l  give some topological 

notations.

1 .  T o p o l o g i c a l  p r e l i m i n a r i e s .

The reference fo r th is  section is [3].

1 . 1 .  G e n e r a l i t i e s  o n  g e n e r a l i z e d  c o h o m o l o g y .  A  generalized cohomology the­

ory h* ( )  is a contravariant functo r from  topological spaces to  graded abelian groups 

which satisfies a ll the Eilenberg-Steenrod axioms except the dimension axiom. T h a t is, 

the coefficients h* — h*(pt) need not be concentrated in  a single degree. We w il l always 

assume th a t h* is m u ltip lica tive , and tha t the associated ring  s truc tu re  is com m utative  

in  the graded sense. Then fo r a topological space X ,  h * (X )  is a h*-module. The firs t 

example is o rd inary  cohomology w ith  coefficients in  Z .

We take F P (X ) =  F P (X , Z ) =  [X , X ( Z , i ) ] ,  where A "(Z ,z) is an Eilenberg-Maclane 

space, and [X , Y] denotes hom otopy classes o f based maps from  X  to  Y  fo r X  and Y  

topo logical spaces w ith  based points.

For a generalized theory h * ( ), there is a spectral sequence w hich computes h * (X )  

in  term s o f F P (X ; h*). Th is spectral sequence is called the Atiyah-Hirzebruch spectral 

sequence, and details can be found in  [ 3 ] ,

T h e o r e m  4 . 1 .  There is a spectral sequence with E 2 term TTP(X , hq(pt)) ==>■ hp+q(X ) .  

The differential dr is of bi-degree (r, 1 — r ) .
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C o r o l l a r y  4 . 2 .  Suppose that X  has no odd dimensional cells and hq(pt) =  0  for q 

odd. Then the Atiyah-ffirzebruch spectral sequence collapses at the E 2 term.

Now we define reduced cohomology. Let i : pt —> X  be the inclusion o f a po in t and 

7r : X  —y pt be the collapsing map. Then n o i — id, so i* o n* =  id  on h*(pt). 

Let h * (X )  =  k e r i*  be the reduced cohomology o f X .  Then, as a h*-m odule,

h * (X )  =  h * (X )@ h * .

1.2. C lassifying spaces. In  th is  section, we give some facts about the construc­

t io n  o f universal bundles and classifying spaces o f groups. The general reference for 

th is section is [56]. Let G  be a group. There is a universal space E G  w ith  a free rig h t 

G -action and irfiEG)  =  0 fo r a ll i >  0 . Moreover, A G  is a l im it  o f m anifolds w ith  the 

induc tive  l im it  topology. For example, for G =  U(n),  the u n ita ry  group,

E U (n )  =  lim  K ( C n+m),
771—^ 0 0

where

v„(c*“) =
U[m )

is a Stiefel m anifo ld . The classifying space B G  is defined as E G / G . For G =  U(n)>

A G -  lim  Gn(Cn+m),m—>oo

the Grassmannian m an ifo ld  o f n-planes.

We have the universal bundle (A G ,p , A G ), where E G  A  A G  is the obvious pro­

je c tion  map. Then B G  has the fo llow ing universal property.

Theorem 4.3. Let P  A  A  be a numerable right G-principal bundle. Then there 

exists a unique (up to homotopy) classifying map f  : A  —̂ A G  such that f * ( E G ) — A  

as G-principal bundles over A , where f  : P  E G  is the canonical morphism of the 

induced bundle given by p- 1(fr) == P_ i ( / ( ^ ) )  for each b £ A .

As a consequence,

C o r o l l a r y  4 . 4 .  A G  is well-defined up to homotopy and classifies induced vector 

bundles.



Let P  4  5  be a rig h t G -princ ipa l bundle. Then, i f  F  is a fin ite  dimensional 

representation o f G, E  — P  x G F  is the associated vector bundle over B  w ith  structure  

group G, where

E  =  P x G F  =  P x F / ~  

is the space obtained as the quotient o f the product space P  x F  by the re la tion

{x, y)  ~  (xt, t~ ly), t e G , x < E P , y e F .

T h e o r e m  4 . 5 .  Let E  —> B  be a vector bundle associated to the fibre F  with struc­

ture group G. Then there exists f  : B  B G  with f * ( E G  x GF )  =  E  as vector bundles 

over B ,

Consider the special case o f the classifying space fo r a complex line  bundle. The 

appropriate structure  group is U{ 1), so the appropriate classifying space is B U (  1). B y  

the above construction,

B U (  1) =  lim  CP m = C P ° ° .
771—> CO

We know fro m  [56] tha t

H * (B U (  1 ),Z ) =  Z[s],

where X[x] is the graded ring  of polynom ials in  one variable w ith  coefficients in  Z  and 

deg x =  2. Let

i
T  =  l [ U ( l )

i=1

be a torus. Then,
i

B T  =  Y [ S U ( 1 ) ,

i=1

and since H*{BU(1)^  Z )  is torsion-free, by the K unneth  form ula , we have

i
H \ B T , Z ) S  (g )  H \ B U {  1), Z ) £* Z [X l , . . . ,  x,},

i = l

where Z [a q ,. . . ,  xi] is the graded ring  o f polynom ials in  I variables w ith  coefficients in  

the ring  Z .
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1 . 3 .  C o m p l e x  o r i e n t a b l e  c o h o m o l o g y  t h e o r i e s .  We fo llow  [ 3 ]  in  th is discus­

sion.

Let i : C P 1 —̂  C P 00 =  B U (  1) be the inclusion.

D e f i n i t i o n  4 . 6 .  We say that the multiplicative cohomology theory h* is complex 

oriented i f  there exists a class x E /t*(C P °°) such that i* (x ) is a generator offaffCP1) 

over the ring h*(pt). Such a class x is called a complex o rien ta tion .

h*(C P 1) =  h*(S2) is generated by one element over h*(pt).

As an example, i f  h* =  H *,  then x can be taken as a ring  generator o f H * (C P ° ° , Z ), 

so x E i7 2(C P °° ,Z ) . CP°° has a universal line bundle L \  given as follows. Let eA be 

the one-dimensional representation o f T  =  U( 1) given by

A f  i0 \  zOe (e ).v =  e .v,

where A E L ie (T ) is a fundam enta l weight. Then, fo r a com plex orientable theory h* 

w ith  o rien ta tion  given by x, the firs t Chern class is given by x — C i(Pa), where L \  is 

the line  bundle associated to  eA. Let T  be an /-d im ensional torus.

T h e o r e m  4 . 7 .  With the above notation, we have isomorphisms of graded h*-algebras

h *(C P °°)**h *(p t)[[x ]] ,  

h ^ B T ) ^ h \ p t ) [ [ x 1, . . . , x l}}, 

h ^ C P ’' )  =  h^p i)[[x ]} /(xn+ %

I
/i*(JJ  CP"' ) =  h*( B T )  j ( x l l+1, . . . ,  a;“l+1).

j= l

Now le t 7r : L —y X  be a line bundle over X .  Then L  induces a classifying map 

6 : X  —y C P°°. Then the firs t Chern class o f L  is c i(L )  — 6*(x). N ext we define the 

top Chern class o f a vector bundle.

D e f i n i t i o n  4 . 8 .  Let i t  : E  —► X  b e  a vector bundle. I f  there is a space Y  and a 

map f  : Y  X  such that f *  : h * (X )  —y h*(Y ) is injective and f * ( E ) =  0  Li, where 

Li are line bundles on Y , f  is called a sp littin g  map for ir.

F ro m  [56],
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T h e o re m  4 .9 . I f  tt : E  —̂  X  is a vector bundle, there exists a splitting map of n. 

Then,

D e f in i t io n  4 .10 . The top Chern class cn(E )  where d im  E  =  n} which also will be 

referred as the Euler class x {E ) ,  Is defined by the formula

p m e ) ) =
i

where f  is a splitting map for w.

1.4 . F o rm a l g ro u p  law s. Let F be a com m utative r ing  w ith  un it.

D e f in i t io n  4 .11 . A fo rm a l group law over F  is a power series F ( x }y) over F that 

satisfies the following conditions:

1. F (x ,  0) =  F (0 , a) =  x,

2. F(x,y)  =  F(y,x),

3. F(F(x,y) ,z)  =  F(x,F(y,z)) ,

4. there exists a series i(x ) such that F (x , i ( x ) )  =  0.

From  [87], we have

T h e o re m  4 .12 . In  a complex oriented theory, for line bundles L > M , we have

c1( L ® M )  =  F (c 1(L ) i c1(M ) )  

where F  is a formal group law over the coefficient ring h * .

Now, we w il l explain this. A  line  bundle L  over a space X  is equivalent to  a 

hom otopy class o f maps f L : X —± C P °° . Let L  and M  be tw o line  bundles. Then we 

have

h  X f M : X  -¥  CP°° x C P°°.

CP°°  has an H - space s tructure  m  : C P 00 x CP°° —> C P °°. The hom otopy class of 

m  0 (fh  X /m ) is then equivalent to  the tensor product L  0  M .  There is an induced 

map m * : h *(C P °°) —> h*(C P°° X C P °°). Since, h *(C P °°) =  /i*(pt)[[a;]] and h*(C P °° x 

C P °°) =  ^ 2]]) has the form ,

m *(x) =  ^ 2 ai3x i x23 =  P ( * i,a :2).
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Then c\{L  ® M )  =  F ( c-l( L ) , c i(M ) ) .  As an example, i f  L  and M  are line bundles, we 

see in  o rd ina ry  cohomology I I *  ( ) tha t

ci(L  ® M )  — ci(L) +  c i(M ) .

1.5 . C o m p le x  c o b o rd is m . Complex cobordism is the universal complex o ri­

entable theory. There are two different descriptions o f com plex cobordism, hom otopy 

theore tic  and geometric. The hom otopy theoretic de fin ition  is va lid  fo r topological 

spaces b u t the geometric de fin ition  is va lid  only for m anifolds.

We begin w ith  the geometrical de fin ition  due to  Q uillen  in  [85]. B y  a m anifo ld , we 

mean a sm ooth m anifo ld , and maps o f m anifolds w ill always be smooth. The firs t step 

is to  define a complex oriented map o f m anifolds /  : Z  —» X .  Th is is a generalization 

of a weakly-com plex s tructure  on Z  when X  is a po in t.

D e f i n i t i o n  4 . 1 3 .  The dimension of f  at z is defined to be

d im  f z =  d im  Z z — d im  

I f  X  and Z  are connected, then

d im  /  =  d im  Z  — d im  X .

D e f i n i t i o n  4 . 1 4 .  Suppose first that at each point z of Z , the dimension of f  is 

even. Then, a complex orienta tion  o f f  is an equivalance class of factorizations o f f

Z  -4  E  A x

where p : E  —>■ X  is a complex vector bundle over X  and where i an embedding 

endowed ivith a complex structure on its normal bundle I f  the dimension of f  is 

odd, a complex orientation for f  is defined to be one for the map ( f , e ) : Z —> X  x l ,  

where e (Z ) — 0, For a general map f ,  let Z  — Z ' U Z " , where

d im  Z'z — d im  X

is even, and

d im  Z" — d im  A y p.) 

is odd. Then f  is complex oriented i f  it is complex oriented both pieces.
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 ̂ p , , i j—, p
Tw o fac to riza tion  Z  —y E  —Y X ,  Z  ~Y E ' —Y X  of f  are equivalent i f  there is a fin ite

i" v"
dim ensional complex vector bundle Z  —Y E ,( —Y X  such th a t i and %' are isotopic in  E " 

com patib ly  w ith  the complex s tructure  on the norm al bundle.

Let /  : Z  —Y X  be a complex orientable map and g : Y  — X  be a map transverse 

to  / .  Then the induced map g* is defined by

g ' ( f ) - . Y l [ Z - * Y
X

which has a complex orienta tion  given by the pu llback o f the bundle defining the 

com plex o rien ta tion  on / .  The transversa lity condition im plies Y  ^  is a m anifo ld .

D e f i n i t i o n  4 . 1 5 .  Let f i  : Z \ —Y X ,  / 2 : Z 2 —Y X  be two proper complex oriented 

maps. Let et- : X  —Y X  x  IR be given by e fx )  =  (x , i )  for i =  1,2. Then, we say that 

( Z i , / i )  is cobordant to (Z 2, f 2 ) i f  there is a proper complex-oriented map b : W  —Y 

X  x  R  such that b is transversal to and the pull-back £**(&) of b by Si is equivalent 

to fi .

P ro p o s it io n  4 .16 . Cobordism is an equivalence relation.

B y the T hom  transversa lity theorem o f [94], we can find  a map g : Y  —»■ X  which 

is hom otopic to  a map g : Y  —Y  X  such tha t g transverse to  / .  So, we can define 

g * ( Z , f )  =  g*(Z ,  / )  in  a hom otopy invariant way.

D e f in i t io n  4 .17 . For a manifold, the cobordism M U n( X ) is the set of cobordism 

classes of proper complex-oriented maps of dimension —n.

M U * ( X )  has a ring  structure  given as follows. Let [Z i , f i ]  and [ ^ 25/ 2] be two 

cobordism classes o f X .  Then [ Z i , / i ]  - f  [ ^ 25/ 2] is the class o f the well-defined map

The negative o f the cobordism class o f /  : Z  —Y X  is the cobordism  class o f /  endowed 

w ith  the negative complex o rien ta tion  which is defined as follows. Let the o rien ta tion  

of /  be represented by a facto riza tion  Z  A  C 1 x  X  —Y  X  w ith  com plex structure  on 

the norm a l bundle l -̂. Then the negative orienta tion  is represented by the same facto r­

iza tion , w ith  the same complex s tructure  on 1g, bu t w ith  the new complex structure
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on Cn given by

, Zjfj — ( ^ l j  ? 1? i^n)'

The class o f em pty set 0 is the zero element.

The product s tructure  on M U * ( X )  is given by externa l products o f m anifolds. I f  

[Z i,  A ] G M U * [ X )  and [Z2J 2\ € M U r ( X ) t then

f i  x f 2 : Z i x Z 2 X  x X  e M U p+r( X  x X ) .

Then the cup product is defined by

[ Z i , / i ] - [ Z 2, / 2] =  A * ( (Z 1, Z 2) , / 1 x / 2)

where A  : X  —> X  x  X  is the diagonal embedding and A * : M U * ( X  x l ) 4  M U * ( X )  

is induced by the map A . The u n it element 1 6  M U ° ( X )  is given by the id e n tity  map 

X - ± X .

Now we want to  give the hom otopy theoretic description o f the complex cobor­

dism  theory. Let E U {n )  —»■ B U (n ) be the universal n rank vector bundle. Let 

D ( E U ( n )) and S (E U (n )) be its  disc and sphere bundles respectively. Then, M U ( n ) =  

D (E U ( n ) ) /S (E U (n ) ) .  M U ( n ) is called the universal Thom space. M U  ~  { M U ( n ) } n 

is a E-spectrum . The graded-group [E ° ° X t M U ]*  defines a cohomology theory [56], 

where [E ° ° X ,M U \ *  is the graded group of hom otopy classes.

T h e o re m  4 .18 . (see [85],) I f  X  is a smooth manifold, M U n( X )  is isomorphic to 

the group [E °°X , M U ] n.

B y Theorem  4.18, the complex cobordism functo r M U * (  ) is a generalized co­

hom ology theory functo r. We w ill show geom etrica lly th a t i t  has the contravariant 

property.

Let g : Y  —Y X  be a map of m anifolds and le t /  : Z  —̂  X  be a proper complex- 

oriented map. B y  the transversa lity theorem, g m ay be moved by a hom otopy u n til 

i t  is transverse to  / .  The cobordism class o f the pull-back map g * ( f )  : Y  X x  Z  —$■ Y  

depends on the cobordism class o f / ,  and th is  gives the map

g* : M U q{X )  M U q(Y )  

defined by g*[Z, / ]  =  [Y X x  Z ,g  *  ( / ) ]  fo r each q.
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A  proper com plex-oriented map g : X  -*  Y  of dimension d induces a map

g* : M U q( X )  M U q~d(Y )

w liic lr sends the cobordism class o f /  : Z  —> X  in to  the class o f the com position 

g f  : Z  — y ,  since the com position of proper com plex-oriented maps g f  is a proper 

com plex-oriented map, [33], see page 57. Th is <7* is called the  Gysin homomorphism.

D e f i n i t i o n  4 . 1 9 .  The push-forward g* is defined by

g *[Z ,f]  =  [Ztgf].

From  [3],

T h e o r e m  4 . 2 0 .  M U * {  ) is a complex orientable theory.

P r o p o s i t i o n  4 . 2 1 .  (see [ 8 5 ] , )  Given an element a ofh*(pt), there is a unique mor­

phism 0  : M U * —y h* of functors commuting with push-forwards such that 0 1  =  a, 

where 1 is the cobordism class of the identity.

Thus M U *  is the universal cohomology theory w ith  respect to  push-forwards. From

[3],

T h e o r e m  4 . 2 2 .  The formal group law of M U *  is the Lazard’s universal formal 

group law.

2 .  T h e  B e c k e r - G o t t l i e b  m a p  a n d  t r a n s f e r .

The general reference for th is section is [ 5 ] .

Let 7r : E  —̂ B  be a fiber bundle w ith  the fiber F ,  wh ich is a compact d ifferentiab le  

G -m anifo ld  fo r a compact L ie group G. For any cohomology theory h* we have the 

induced map 7r* : h * (B ) —¥ h*(E ).  A  transfer map is a backwards map h*(E )  ->  h * (B ). 

We get a transfer map from  a section o f the bundle. However sections usually do not 

exist. Here, we w il l give a technique fo r producing a transfer map.

D e f i n i t i o n  4 . 2 3 .  Let £  - 4  B  be a vector bundle. Let D ( f )  =  G f  : \x\ ^  1 }  

and S(£) =  {a  € £ : \%\ =  1} be the disk and sphere bundles respectively. Then, 

=  D (£ ) /S (£ )  is called the Thom  space of the vector bundle £.
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N ow  we g ive th e  usefu l p ropos itions  fro m  [56],

P r o p o s i t i o n  4 .24 . I f  £ —̂ B  is a trivial n dimensional vector bundle} then the 

Thom space where B + is the union of B  with a point.

P r o p o s i t i o n  4 .25 . I f  £ and rj are two vector bundles over B, then A Mr} =

We define transfer fo r the map from  the fiber F  to  a po in t. We can embed F  

equ iva rian tly  in to  a real G-representation V  o f dimension r  such th a t r  > >  d im F . 

Let v —» F  be the norm al bundle o f the embedding. B y  the tu b u la r neighbourhood 

theorem , we can id e n tify  the norm al bundle N  w ith  a neighbourhood U  o f F  by a 

d iffeom orphism  cp. There is an associated Pontryagin-Thom  collapsing map c : Sv  —> 

M v , where S v  is the one po in t com pactification o f V , defined by

I base po in t o f F N i f  x £ U, 

ip(x) i f  x e U.

Let T ( F )  be the tangent bundle o f F .  Then we can id e n tify  T ( F )  ® N  w ith  the tr iv ia l 

bundle F  X V .  There is an inclusion i : N  N  ® T ( F )  =  F  x V  and hence we have

an inclusion o f Thom  spaces i \ M v  Sv  A F + .

D e f i n i t i o n  4.26 . The transfer r  to a point is the composition r  =  i o c.

Let 7r : E  —̂ B  be a fiber bundle associated to  the p rinc ip le  G -bundle p : P  —> B.

Then the transfer to  a po in t gives a map

Id  x r  : P  x G Sv -P P  x G ( F  x  V )+ .

W hen we collapse the section at oo to  a po in t, which is equivalent to  tak ing  Thom  

spaces, we get a map t  : -A M tt*(£) where f  is a vector bundle associated to  the

representation V.  Then there is a map t A id  : M ^ A M ^  ~ > M 7 r*(f)  A M f . I f  we restric t 

to  the diagonal A  in  B X  B,  we have transfer map

t ( t t )  : E mB + - A  E mE + .

96



3 .  T h e  B r u m f i e l - M a d s e n  f o r m u l a  f o r  t r a n s f e r .

The general reference for th is section is [2 2 ].

Let G  be a compact connected semi-simple Lie group w ith  m ax im a l torus T . Let 

H  be a closed connected subgroup o f G containing the m ax im a l torus T . Let W q and 

W h  be the W eyl groups o f G and H  respectively. Suppose th a t P  —> B  is a p rinc ipa l 

G -bundle. We have associated bundles

7Ti : E x =  P  x G G /T  B  

7t2 : E 2 =  P  x g G / H  —► B.

Then there is a fib ra tion  7r : E i E 2 w ith  the fiber H / T .  Since the W eyl group W G 

acts on G /T , Wg  also acts on E \ . The W eyl group W jj  o f H  also acts on E \  over E 2. 

Thus, cosets w G W g /W h  define maps tt o w  on E\.

T h e o r e m  4 . 2 7 .  We have

7Ti* o t(7T2)* =  W  O 7T*.
Ŵ W(̂  / Wjy

C o r o l l a r y  4 . 2 8 .  I f  we choose H  =  T } we get

TTl* O t (7Ti )* =  Y l  W.
w E W q

A lthough  B rum fie l and Madsen were the firs t to  assert th a t Theorem  4.27 is true, 

th e ir p roo f was wrong. In  [ 3 7 ]  Feshbach, and in  [ 7 5 ]  Lewis, M ay and Steinberger have 

given different proofs o f Theorem 4.27. Since E G  is the universal space fo r G, we have 

the p rinc ip le  bundle E G  BG.

C o r o l l a r y  4 . 2 9 .  Let B T  B G  be the fiber bundle with the fiber G /T .  Then

7r* o r(7 r)* =  1 1 ) .

w E W q

For a compact semi-simple Lie group G, any root a  defines a subgroup M a =  K a • T  

such th a t the com plexified Lie algebra m a  contains the roo t spaces g a  and g _ a  where 

K a a lready has been defined in  Chapter 1 . The induced fibe r bundle tt; : B T  —$■ B M i  

has fibe r M {/ T  =  SU2/ T  “  C P 1. Then
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Corollary 4.30.

i r *  o t(7T;)* =  1 +  r aii 

i f  r ai is the reflection to corresponding to the simple root a ^ .

T h e o r e m  4 . 3 1 .  (see [ 3 8 ] , )  Let B  be a finite C W  complex and tt : E  - >  B  be a 

fiber bundle such that fiber F  is a compact G-manifold. For any multiplicative complex 

oriented cohomology theory h*,

r(7r)* o 7r*(^) =  x ( F ) x  +  u x i 

where u E  h°(B ) is nilpotent and x (E )  zs  ^ie Euler characteristic of F .

C o r o l l a r y  4 . 3 2 .  I f  x (E )  is a unit} then tt* is injective.

Since x ( G /T )  =  |W g |, we have

C o r o l l a r y  4 . 3 3 .  I f \W o \  is a unit in h*(pt)} then tt* : h * (B G )  —> h *(B T )  is injec­

tive.

4 .  T h e  t r a n s f e r  a n d  t h e  G y s i n  h o m o m o r p h i s m .

Let f  : E  —y X  be a vector bundle and h* be the com plex oriented theory. Then 

there is the associated Thom  class u €  h*(M £).  From  [ 3 2 ] ,  we have

T h e o r e m  4 . 3 4 .  The Thom map : h * (X )  —> h * ( M £ )  given by $ ( . t )  =  u • 7r*(a:) 

is an isomorphism.

Let tt \ E  —> B  be a fiber bundle w ith  compact sm ooth /-d im ens iona l fiber F.  

Suppose th a t the tangent bundle T F  —y F  is a complex vector bundle. Then we have 

the Gysin hom om orphism  tr* : hk(E )  —> hk~*{B).  Since the tangent bundle T ( F )  

has complex s tructure , in  the complex orientable theory h* T'n has an Euler class, so 

X ( 2 T )  =  cn{Tfi).

T h e o r e m  4 . 3 5 .  (see [ 5 ] , )  The transfer t (tt)* : hk( E )  — )• hk( B )  is given by t (tt)* (x ) =  

tt* (x  • x(?V)).
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Let L a be the line  bundle on B T  associated to  the character e“  where a  is a root. 

We want to  determ ine when its  characteristic classes are not zero divisors. We know 

th a t the characters e" do not usually generate the representation ring  R (T ).  Let Ai 

be the fundam enta l weight corresponding to  the simple roo t a* such th a t \ i ( h ai) =  1 , 

where ha{ is the coroot. Then

T h e o re m  4 .36 . (see [5 6 ]j These eA* generate the representation ring R (T ) .

B y Theorem  4.7,

h *(B T ) =  h*(pt)[[c i(L \t), - ■ ■ )C l(L ,,) ] ]

where I is the rank o f the compact Lie group G. Since x(^a<) are generaters o f h*{BT)^  

the x(Lxt)  are no  ̂ zero-divisors in  h * (B T ). This im plies th a t x (^ A f) is not n ilpo ten t. 

We know th a t fo r any weight A G I f ,  A can be w ritte n  as

i

^  =  ^  y ^  5
t = l

where is the m u lt ip lic ity  number. Using the fo rm a l group law in  /U, the Euler class 

x (L a ) o f the line bundle L \  in  h* is equal to

i
n.iCi(L\{) +  higher order terms.

i = l

I f  ni is no t a zero-divisor in  h*(pt), then x(-^a) is not a zero-divisor in  h *(B T ) .  I f  the 

weight A is a roo t corresponding to  the adjo in t representation, the  m u lt ip lic ity  numbers 

Hi in  the sum are the Cartan integers. B y an exam ination o f the C artan m atrices, we 

have

P ro p o s it io n  4 .37 . I f  p ^  3 is a prime, there is some n{ such thatp does not divide

n{.

C o ro lla r y  4 .38 . I f  h*(pt) has no 2-torsion} then the Euler class x(-^a,) is not a 

zero-divisor for any simple root a*.

Since every roo t is the image o f a simple root by an element o f the W eyl group W q 

and the W eyl group acts by autom orphism  on h * (B T ), we have
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C o ro l la r y  4 .39 . I f  h*(pt) has no 2-torsion, then the Euler class x ( T a) Is n°t  a 

zero-divisor for any root a.

Now we want to  give the Brum fie l-M adsen fo rm u la  fo r the Gy sin map o f the fib ra- 

tio n  7r : B T  —>■ B G  w ith  the fiber G /T .  We need a complex structure  on G /T .  We 

know th a t the smooth m anifo ld  G / T  is d iffeom orphic to  the com plexified space G c /B  

where B  is a Borel group. Then we can determ ine the tangent bundle o f the fiber 

G c /B .  The tangent bundle T (G c /B )  is isom orphic to  G X t  g /b .  Using the ad jo in t 

representation o f T , we have

g = b e 0  g_„,
aC A +

where A + is the set o f positive roots corresponding to B. Thus

g /b  -  0  g_a.
aG A+

Therefore the tangent bundle along the fiber G /T  is

Ttt =  E G  X t  g /b  =  T-cn
a e A +

where L - a is as above. We know th a t

x " p v )  =  n
« G A +

where ]/[ is the cup product in  any complex orient able theory h*. B y  Theorem  4.35, 

we have

7T* O =  7T* o 7t*(.t  • x ( ^ tt))

fo r x G h *(B T ) .  Since x (^V ) i s a product o f the non-zero divisors in  h * (B T ), we have 

T h e o re m  4 .40 , (see [19 ]/ For x G h *(B T ),

here the right hand side is in a localization h*

B u t since the le ft hand side preserves the subring h * (B T ), i t  m ay be regarded as 

an id e n tity  on h *(B T ).

100



C oro lla ry  4.41. I f  x { L - a) is a non-zero divisor, for the fibration 71* : B T  —Y B M i  

with the fiber M i /T ,

D {(x) =  7rt* o 7rt**(a:) =  ( 1 +  r*) ( ■
\ X \ t j - a )

Let h* be the ord inary  cohomology w ith  complex coefficients. From  chapter 1, we 

know th a t there is an isom orphism  0  : h* —> H 2(BT,<C) given by A —¥ x {L \) -  0  

extends to  an inclusion o f the sym m etric  algebra R  =  S^h*) in to  H * ( B T , C). Then

H * (B T ,  C) =  C [A i, • • • , \ i ]  

under the iden tifica tion  x (L a J  =  A*-. W hen G — M i,

C oro lla ry  4.42.

Di  =  i ( n  -  1)
a

is just the classical B G G  operator which was defined in chapter 1.

I f  we apply Theorem 4.40 to  JF-theory, fo r G =  M i,  the fo rm u la  Di  — tt* o 7i** in  

/F -theory gives the Demazure operator.

Now, we w il l apply th is  result to  P P -the o ry  and M orava iF -theory. In  order to  do 

th is , we w il l give some defin itions. Let F  be a form al group law over com m utative  ring  

w ith  u n it R.

D efin itio n  4.43. For each n, the ?i-series [u-](:r) of F  is given by

[1](.t) =  x,

[n](rc) =  F (x ,  [n -  l ] (x ))  for n >  1 ,

[~n](x)  -  i ( M O ) ) -

O f p a rticu la r in terest is the p-series, where p is a prim e. In  characteristic p i t  always 

has leading te rm  axq where q =  ph fo r some integer h. Th is leads to  the fo llow ing.

D efin itio n  4.44. Let F (x ,y )  be a formal group law over an Wp-algebra, I f  \p](x) 

has the form

[p](&) — axph +  higher terms

101



with a invertible, then we say that F  has height h at p. I f \p ] (x )  =  0 then the height is 

infinity.

Suppose th a t h* is an Fp-algebra and the fo rm a l group law F  has the  height h.

Since the elements x =  x ( ^ a J  £ h * (B T ) are non-zero divisors, [p](a;) has the fo rm

This lead us to  m od p /C-theory and the Morava K - theories. The reference fo r these 

cohomology theories is [87]. We generalize C oro llary 4.38 and 4.39.

T h e o re m  4 .45 . For any prime p, in K (n ) * (B T ) ,  the Euler class x { L ai) is not a 

zero divisor for any simple root ort-.

T h e o re m  4 .46 . For any prime p, in K (n ) * (B T ) ,  the Euler class x ( L a) is not a 

zero divisor for any root a.

C o ro l la r y  4 .48 . Let ir; : BT — BMj be a fiber bundle with the fiber Mi/T. For 

x e K(n)*(BT),

B T .  Now, we w ill give some in teresting results about the flag varie ty G /T .  Since the 

cohomology o f G / T  vanishes in  odd degrees, C oro llary 4.2 gives

C o ro l la r y  4 .49 . Let h* be any complex oriented cohomology theory. Then the 

Atiyah-Hirzebruch spectral sequence for G /T  collapses at the E 2 ~term.

[p](ic) =  axph +  h igher terms, (a is a u n it.)

Let 7T : B T  —> B G  is a fiber bundle w ith  the fiber G / T .

T h e o re m  4 .47 . For x 6  K (n ) * (B T ) ,

here the right hand side is in a localization K ( n ) * ( B T ) [ rix (£ -a )l*

O f course, these results can be generalized to Fp-algebra h* w h ich has a fo rm a l group 

law F  w ith  the height n. In  th is  section, so fa r we have concentrated our a tten tion  on
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Let 7 : B T  —y B M i.  Since G / T  is a T -p rinc ipa l bundle, there is a classifying map 

9 : G / T  B T .  S im ila rly  there is a classifying map 9{ : G /M { —> B M i.  The fo llow ing 

diagram  is a cartesian square.

G / T  B T

Pi

G/Mi — BMi
Let Ci =  pT o Pi*. Then 9* o Di =  Ci o 9*. The fo llow ing theorem  gives a topological 

description o f the  operator Ci. From  [36],

T h e o re m  4 .50 . I fh * (p t ) contains then 9* is surjective.

D e f in i t io n  4 .51 . For i — 1 , . . .  ,1, let D i be the linear operator associated to the 

simple root a*. Then we say that D{ satisfy b ra id  re lations i f

(D iD jD i )mi> =  (D j I ) iD j ) 7Tlij, 

where niij is the number of factors in each side for all pairs i and j .

For any Kac-M oody group, since T  and M t- are s t il l f in ite  d im ensional compact 

groups, we can define Di  operators on h *(B T ).

T h e o re m  4 .52 . Let G be a Kac-Moody group and let h* be torsion-free. Then the 

operators D i satisfy braid relations i f  and only i f  the formal group law is polynomial.

PR O O F. There are three cases to  consider. These cases are when two non-orthogonal 

roots a* and otj have m y  =  3,4, or 6. In  the fin ite  dim ensional case, the reference for 

case rriij =  3 is [2 0 ] and fo r the rem ain ing two cases the reference is [45]. In  the affine 

case, i t  can be done s im ila r way. □

Th is theorem  tells th a t the ord inary cohomology and 7F-theory satisfy b ra id  rela­

tions b u t cobordism  and e llip tic  cohomology and another com plex oriented cohomology 

theories do not satisfy.

B y  Theorem  4.50 and 4.52, we have

T h e o re m  4 .53 . The operators Ci satisfy braid relations for ordinary cohomology 

and K-theory.

103



Now we w il l give our result about the in fin ite  d im ensional flag variety. Let G  be 

an affine K ac-M oody group and K  be the u n ita ry  fo rm  o f G. For every sim ple root 

le t M i — K i  • T.  We have a p rinc ipa l M j-bund le  K  —> K f M i , and the associated fiber 

bundle K / T  —)■ K j M i  w ith  fiber M i /T .  M { /T  is d iffeom orphic to  complex pro jective  

space C P 1.

T h e o re m  4 .54 . Let Wi : K / T  —> K /M {  be the fiber bundle with the compact fiber 

C P 1 and let ¥  be a commutative ring with unit. For x £ H * (K /T ,W ) ,

Oi{x) =  TT? o 7T;*(.t) =  - ( 1  +  n)  ,

here the right hand side is in the localization H * ( B T ) [ j-^^l— y]. In  fact Oi is the Kac 

operator which was introduced in chapter 1.

PR O O F. B y  the Brum fie l-M adsen form u la  and Theorem  4.35, we have the fo llow ing 

id e n tity

7I-; o T ( 7 T i ) * ( x )  =  7T* O 7T i * ( ^ ( ~ X i )  * ® )  =  ( l  +  ^ ( x ) ,

where ?y is the simple reflection associated to  and Xi is the  fundam enta l weight 

corresponding to  the simple root a t-. Let x 6  H * ( K /T ,F ) .  We know from  Chapter 1

th a t f i (x i)  =  £r* where : 5 (h * )  -4  H *{K /T ^  F). In  H * (K /T >  F ), we know th a t the

element er' is a non zero-divisor, so we can define the local r ing  H * ( K /T ,  F )[-^ -]. Then, 

we have the fo llow ing id e n tity  in  the local r ing  H * ( K / T , F ) [— ],

7T* O TTi *( x)  =  ~ ( 1  T  n )  .

Since the le ft hand side o f the id e n tity  is an element o f H * { K / T , F), we are done. □

We know from  [61] th a t the Kac operators satisfy b ra id  re lations fo r a ll affine 

K ac-M oody groups.
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C H A P T E R  5

Fredholm Maps and Cobordism of Separable Hilbert 

Manifolds

In t r o d u c t io n .

In  [85], Q uillen  gave a geometric in te rp re ta tion  o f cobordism  groups which suggests 

a way o f defin ing the cobordism o f separable H ilb e rt m anifo lds equipped w ith  suitable 

structure. In  order tha t such a defin ition  be sensible, i t  ought to  reduce to  his fo r fin ite  

dim ensional m anifolds and smooth maps of m anifolds and be capable o f supporting 

reasonable calculations fo r im p o rta n t types of in fin ite  d im ensional m anifolds such as 

homogeneous spaces o f free loop groups o f fin ite  dim ensional L ie groups.

1. C o b o rd is m  o f  se p a ra b le  H i lb e r t  m a n ifo ld s .

B y  a m an ifo ld , we mean a smooth m anifo ld  modelled on a separable H ilb e rt space.

D e f in i t io n  5 .1 . Let X  and Y  be manifolds. Then the smooth map f  : X  Y  is 

called proper i f  the preimages of compact sets are compact.

D e f in i t io n  5 .2 . Let U  and V  be normed vector spaces. The linear operator A  : 

U is called Fredholm  ( fd im k e r  A and d im  coker A are both finite. Then the index 

of the operator A  is

index A  =  d im  leer A  — d im  coker A .

P ro p o s it io n  5 .3 . (see [27]) The set Fred(f7, V ) of Fredholm operators is open in 

the space of all bounded operators L{U, V ) in the norm topology. The index function 

index : Fred(?7, V ) —>■ Z  is locally constant, hence continuous.

D e f in i t io n  5 .4 . Let X  and Y  be as above. Then the map f  : X  —» Y  is called the 

F redholm  i f  for each x £ X ,  dfx : TxX  T f ^ Y  is a Fredholm operator. Thus, at 

each point of X ,  we can define the index of f  at x,

index ̂  =  d im  ker dfx — d im  coker dfx.
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P r o p o s i t i o n  5 . 5 .  The function from X  to % given by x in d e x dfx is locally 

constant, hence continuous.

D e f i n i t i o n  5 . 6 .  Let Si, and R  be smooth manifolds and f i  : Si R  be smooth

maps for i =  1,2. We say that f f  and f 2 are transversal at r  £  R if

dfi(TB1Si) +  df2(Tn S2) =  TrR

whenever / i ( s i )  =  =  r. "The maps f f  and f 2 are said to be transversal i f  they

are transversal everywhere.

L e m m a  5 . 7 .  Let Si, and R  be smooth manifolds and f i  : Si —> R  be smooth maps 

for i =  1,2. Then f i  is transversal to f 2 iff f i  x  f 2 is transversal to the diagonal 

embedding

A  : R  R  x  R.

D e f i n i t i o n  5 . 8 .  Let ff  : Si —̂ R be smooth maps between smooth Hilbert manifolds 

for i ~  1,2. I f  f i  and f 2 are transversal, then topological pu llback

Si S2 =  { ( 51, 52) 6 Si x  S2 : f i (s i )  =  /2 (52) }
R

is a submanifold of Si X S2 and the diagram

S x U rS 2  ^  s 2 

Si R

is commutative where the map f i * ( f j ) is pull-back of f j  by the map f i .

P r o p o s i t i o n  5 . 9 .  Suppose that A  : U  —>• V  is a linear operator, where U  and V  

are finite dimensional vector spaces. Let L be any linear complement of her A, i.e. L 

is a vector subspace of U  such that U =  k e rA ©  L. Then the restriction A \  L —> im A  

is a vector space isomorphism. Hence cod im ker A =  d im im A .

P r o p o s i t i o n  5 . 1 0 .  Let U and V  be finite dimensional vector spaces. Then every 

linear operator A  : U  —> V  is Fredholm and

index A  — d im  U — d im  V.

h

106



PROOF. B y  P ro p o s itio n  5.9, we have th e  fo llo w in g  equa tion ,

co d im  ker A  — d im im  A.

Then,

index A  =  d im  ker A  — d im  coker A

=  (d im  U  — cod im ker A) — (d im Y  — d im im  A )

— (d im  U — d im  im  A) — (d im  V  — d im  im  A)

=  d im  U — d im  V.

□
• * A  B

P ro p o s it io n  5 .11 . (see [97],) Let U  —>■ V  W  be a sequence of Fredholm opera­

tors A  and B , where U, V  and W  are vector spaces. Then the composite linear operator 

U  ^4 W  is also Fredholm and

index B A  =  index B  +  index  A .

P ro p o s it io n  5 .12. Let X  a n d Y  be finite dimensional connected smooth manifolds

and let f  \ X  Y  be a smooth map. Then f  is a Fredholm map and, for any point

x e X ,

index f x =  d im X  — d im K

PR O O F. For each X  € X  and y  G Y ,  since the m anifo lds X  and Y  are fin ite

dimensional,

d im T ^ X  =  d im X  and d im T ^P  =  d im Y .

Then the d iffe ren tia l dfx o f /  at x is a linear operator from  the tangent space of X  at 

the po in t x to  the tangent space o f Y  at the po in t f ( x ) .  B y  P roposition  5.10 and the 

de fin ition  o f Fredholm  map, /  is a Fredholm  map and

index /  =  d im  ker dfx — d im  coker dfx

=  d im  TxX  — d im  T Y  

=  d im X  — d im Y .
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B y  P ro p o s itio n  5.11, we have

P ro p o s it io n  5 .13 . Let X  -4- Y  Z  be a sequence of Fredholm maps f  and g} 

where X , Y  and Z  are smooth manifolds. Then the composite smooth map X  Z  is 

also Fredholm and for x € X ,

ind  ex(g f)x =  ind  exgf ^  +  index f x.

D e f in i t io n  5 .14, Suppose that f  : X  —̂ Y  is a proper Fredholm map with even 

index at each point. Then f  is an admissible com plex-orient able map i f  there is a 

smooth factorization

f - . x  - 4  f  4  y ,

where q : £ —>■ Y  is a finite dimensional smooth complex vector bundle and f  is a 

smooth embedding endowed with a complex structure on its normal bundle v { f ) .

A complex orientation for a Fredholm map f  of odd index is defined to be one for  

the map ( / , e) : X  —> Y  x  R  given by (f^e)(x)  =  ( f ( x ) i 0) fo r every x £  X .  A t x £  X ,  

in d e x (/, e)a; =  (index f^) — 1. Also the finite dimensional complex vector bundle £ in 

the smooth factorization will be replaced by £ x R ,

Suppose th a t /  is an admissible complex orientable map. Then since the map /  is 

the Fredholm  and f  is a fin ite  dimensional vector bundle, we see /  is also a Fredholm  

map. B y  P roposition  5.13 and the su rje c tiv ity  o f q,

index /  =  index /  — d im  £.

Before we give a notion  o f equivalence o f such factorizations /  o f / ,  we want to  give 

some defin itions.

D e f in i t io n  5 ,15. Let X ,  Y  be the smooth separable Hilbert manifolds and F  : 

X  X M. —y Y  a smooth map. Then we will say that F  is an isotopy i f  it satisfies the 

following conditions.

1 . For every i  G l ,  the map F t given by Ft(x) =  F(x>t )  is an embedding.

2. There exist numbers to <  t± such that F t — F io for all t  ^  t0 and F t =  Ftl for all 

t ^ t i .
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The closed interval [to, ti] is called a proper dom ain for the isotopy. We say that 

two embeddings f  : X  Y  and g : X  Y  are isotopic i f  there exists an isotopy 

Ft : X  x  R  —» Y  with proper domain [t0, t i ]  such that f  =  F io and g =  F t l .

P r o p o s i t i o n  5 . 1 6 .  (see [ 7 4 ] J  The relation of isotopy between smooth embeddings 

is an equivalence relation.

D e f i n i t i o n  5 . 1 7 .  Two factorizations f  : X  - 4  £ Y  and f  : X  A  £' Y  

are equivalent i f  £ and £' can be embedded as subvector bundles of a vector bundle

—$■ Y  such that f  and f '  are isotopic in and this isotopy is compatible with the 

complex structure on the normal bundle. That is, there is an isotopy F  such that for  

all t 6  [ W i L  Ft : X  —> is endowed with a complex structure on its normal bundle

which matches that of f  and f ‘ in at to and t\ respectively.

B y P roposition  5.16, we have

P r o p o s i t i o n  5 . 1 8 .  The relation of equivalence of admissible complex orientability 

of proper Fredholm maps between separable Hilbert manifolds is an equivalence relation.

This de fin ition  is actua lly  a generalization o f Q u illen ’s de fin ition  o f the complex- 

orientable map fo r fin ite  dimensional manifolds. S im ila rly  we can define the notion  of 

cobordism  o f two Fredholm  maps X i  A  Y  for i £ { 1 , 2 } .  We w il l need the fo llow ing 

proposition.

P r o p o s i t i o n  5 . 1 9 .  Let f  : X  Y  be an admissible complex orientable map and 

g : Z  —>■ Y  be a smooth map transversal to f .  Then the pull-back map

g* ( f )  : Z j [ X  ^  Z
Y

is an admissible complex orientable map with the finite dimensional pull-back vector 

bundle

9 * ( 0  =  z Y [ t  =  { { z >{y>v)) € z  x  f  : g(z)  =  g( (y,v) ) }
Y

in the factorization of g* { f )  where q : £ *->- Y  is the finite-dimensional complex vector 

bundle in the factorization of f .
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Now we w il l define a notion  o f cobordism for the adm issible com plex-orientable 

maps between separable H ilb e rt manifolds. This is also a generalization o f Q u illen ’s 

no ta tion  o f complex cobordism for fin ite  dimensional m anifolds.

D e f in i t io n  5 .20. Let f i  : A } Y  be admissible complex-orientable maps for i E 

{0 ,1 } .  Then, we say that f 0 is cobordant to f i  i f  there is an admissible complex- 

orientable map b : W  Y  x  R  sitch that Si \ Y  - y f x R  given by £{(y) — (y, i )  for  

i E {0 ,1 } ,  is transversal to b and the pull-back map e* ( b ) is equivalent to f i .  The 

cobordism class of f  ; X  — Y  will be denoted by [X , / ] .

P ro p o s it io n  5 .21 . Cobordism is an equivalence relation.

P r o o f .  R e f le x iv i t y :  Let /  : X  —y Y  be an admissible com plex orientable map. I f  

we choose W  as X  x  R , then we have the admissible complex orientable map ( / ,  H r )  : 

X  X  R  —> Y  x l  w hich is transverse to  £*•. Now we have to  show th a t the pull-back 

map £o*(/, H r )  is equivalent to  / .  F irs tly , we w ill prove th a t X , the dom ain o f / ,  is 

d iffeom orphic to  the intersection m anifo ld  Y  I ly x M  ^  x  which is the dom ain o f the 

pu ll-back map £o*(/, H r ) .  B y the defin ition  o f the maps £o, (/? H r )  and transversality, 

we get

Y  n  x  E  =  (X1V)) ' £o(y) =  (fJd-TS.)(x ,v ) }
Y xR

=  { ( y , ( x , v ) ) : (y ,o ) =  { f ( x ) , v ) }

=  { ( / ( a ) , ( a ,  0)) : V,t E X }

So, we have a b ijec tive  smooth map h from  intersection m an ifo ld  Y  I I v x R ^  x  E  to  

X  given by h ( ( f ( x ) , ( x ,  0 ))) =  x, Vx E X .  Also, we have the  smooth inverse h -1 

given by h~1(x) =  ( f ( x ) , ( x ,  0)). Thus y { { y xMAr X  M. is d iffeom orphic to  X .  Since 

£o* ( { f i  I d R ) ) ( / ( a ) , (x, 0)) =  f ( x ) ,  \ /x E X , the pull-back map £o* ( ( / ,  Id®)) is equivalent 

to  / .  S im ila r ly  we can show th a t £ i* ( / ,  H r )  is equivalent to  / .  Therefore ( X , f )  is 

cobordant to  itse lf.

S y m m e try :  Let f i  : X i  Y  be an admissible complex orientable map fo r i E 

{0 ,1 } .  Suppose th a t (X o ,/o ) is cobordant to  ( X i , / i ) .  B y  the de fin ition  o f cobordant 

class, we have an admissible complex orientable map b : W  —Y Y  x  R  such tha t 

Si : Y  — Y  x  R , is given by £ ;(y) — ( y , i) ,  is transversal to  b and the pull-back map
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£i*(b) is equivalent to  /*. Let b' : W  — Y  X  K. be the negative o rien ta tion  class o f 

the adm issible complex orientable map b be represented by the  same fac to riza tion  bu t 

w ith  a new complex s tructure  on the norm al bundle o f embedding. Since the admissible 

complex orientable map 6 is transverse to  et- and the pu ll-back map e * ( B ) is equivalent 

to  f i ,  the opposite orientable map bf is transverse to  £ i_ ; and £ i_ i*(& ') is equivalent to  

Therefore ( X x, f i )  is cobordant to  ( X 0, / 0).

T ran s itiv ity : Let f i  : Xi  —> Y  be admissible complex orientable maps fo r i £ 

{0 ,1 ,2 } .  Suppose tha t (Xo,fo) is cobordant to  ( X i , / i ) ,  and ( X i , f i )  is cobordant 

to  ( X 2, f 2). Then we have to  show tha t (X o ,/o ) is cobordant to  ( X 2, f 2). B y  the 

equivalence o f (J f0, / 0) =  ( X ^ / i ) ,  we have an admissible complex orientable map 

&i : W i -+ Y  x  K. such thci/t £2 *  ̂ 'y  ^  is transverse to  and (^1) is ecjmvalent

to  f i  fo r 1 £ {0 ,1 } .  B y  the equivalence o f [X \ ,  f-f) — [ X 2, f 2f  we have an admissible 

complex orientable map &2 : W 2 —̂ Y" x  IR such th a t e* is transverse to  &2 and £j-*(&2) is 

equivalent to  f i  fo r i £ {1 ,2 } .  Since the 61 and b2 are transvere to  £1, by the im p lic it  

m apping theorem , there exists a smooth subm anifo ld U\ C  W \  such th a t fo r £1 >  0, 

U\ is d iffeom orphic to  Xo X ( —£ i,£ i)  and s im ila rly , there exists a smooth subm anifo ld 

U2 C W 2 such th a t fo r £2 >  0, U2 is d iffeom orphic to  X 0 x  ( —£2,£2). B y the g lu ing o f 

U\ and U2, since £1 and £2 can be choosen as a rb itra ry  sm all, we have a smooth map 

0  : W i J J  W 2 - > y x R  given by
Wir\W3

\ bi i f  w £ W i ,
0M  = {

62 i f  W £ W 2 •

where W \ W 2 is a g lu ing o f m anifolds W\  and W 2 along the common subm anifo ld
WiUWz

W \ f l  W 2. B y  defin ition , the smooth map 0  is an adm issible com plex orientable map 

such th a t £{ is transversal to  0  and £ ;* (0 ) is equivalent to  f i  fo r i £  {0 ,1 ,2 } .  Therefore 

{ X 0 J 0 ) is cobordant to  ( X 2, f 2). □

D e f i n i t i o n  5 . 2 2 .  For a separable Hilbert manifold Y ,  the cobordism set U d(Y )  is 

the set of cobordism classes of the admissible complex-orientable Fredholm maps of 

index —d.
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In  the above defin ition , instead of proper maps, closed maps could be used for 

in fin ite  dim ensional H ilb e rt manifolds, because o f the fo llow ing  proposition  o f Smale 

[91 ].

T h e o r e m  5 . 2 3 .  I f  f  : X  —»■ Y  is a closed Fredholm map where d im X  =  oo, then 

f  is proper.

L e m m a  5 . 2 4 .  I f  f  : X  Y  and g : Y  ->  Z  are proper, so is g o f .

B y P roposition  5.13 and Lem m a 5.24, we have the fo llow ing  theorem.

T h e o r e m  5 . 2 5 .  I f  f  : X  —>■ T  is an admissible complex orientable map with index 

d\ and g : Y  Z  is an admissible complex orientable map with index ^ 2, then g o /  : 

X  —)■ Z  is an admissible complex orientable map with index d\ -f- o?2 .

P r o o f . For the complex orienta tion  o f the com position map g o / ,  see [33 ]. □

Let g : Y  —> Z  be an admissible complex orientable map w ith  index —r. B y 

Theorem  5.25, we have push-forward, or Gysin map

gt -.Ud( Y ) - > U d+r(Z )

given by # *([X , / ] )  =  ( [X ,g  o / ] ) .  We w il l show tha t i t  is well-defined. Suppose tha t 

g : Y  —> Z  be an admissible complex orientable map and fo : Xq —> Y  and f \  : X i  —»■ Y  

are cobordant. Then, there is an admissible complex orientable map b : W  —> Y  x  E  

such th a t £i : Y  Y  x  E  given by £ i ( y )  =  ( y , i)  fo r i £ {0 ,1 } ,  is transverse to  6 and 

the pu ll-back map £i*(b) is equivalent to  fi. So,

W  n  F  =  { K j ) : 6 W  =  ( ! , , 0 ) } S A 'o

FxM.eo

and

w  n  y  =  { K y ) : 6H  =  ( y , l ) } ^ J V : 1.
Y  x R ,e i

Since g : Y  —$■ g (Y )  is an admissible complex orientable map,

h =  (flf, Id ) o 6 : W  Y  x  E  -► g(Y )  x  E
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is an adm issible complex orientable map transverse to  et- : g (Y ) g (Y ) x M. Then

w II = {(w>g(y)): y G YM w) = (9(y),Q)}
g { Y ) x R, £ Q

=  {{w ,g (y)) ■ y G Y,(g, Id ) o b(w) =  (g(y), 0 )}

=  { K y ( y ) ) : K w) =  (^ “ 1sr(y)» o )}

=  {(u>,y) : b(w) =  (y ,0 ) }  =  X 0,

and

w II = {(u,»y(y)): ye Y>Kw) = {9(y),i)}
ff(y)xM,e 1

=  {(«>,y(y)) : y € Y, (g , ld )  ob(w)  =  (flf(y),l)}

=  { ( ^ » y ( y ) ) : =  (y_1y (y ), l ) }

=  { (™ > y ) : K w) =  i v A ) }  -  x i-

Thus we have verified tha t i t  is well-defined.

The graded cobordism set U * (Y )  o f the separable H ilb e rt m an ifo ld  Y  has a group 

s tructure  given as follows. Let [ X t , / i ]  and [ ^ 5/ 2] be cobordism  classes, then

[ X u f i }  +  [X 2J 2]

is the class o f the map

where X i  U X 2 is the topological sum (d is jo in t union) o f m anifolds X \  and X 2 . We 

w il l show th a t th is  is well-defined. Then, we have to  show th a t i f  [ X , f ]  =  [X 1, / 1] and 

[Z,g] =  [Z',g'],  then

[ X J ]  +  [Z,g] =  [ X 'J ' ]  +  \Z',g').

There is an admissible complex orientable map b : U  —> Y  x R  such th a t the pull-back 

map eo*(b) is equivalent to  /  and sq*(b) is equivalent to  f  where e* : Y  —> Y  x  R  given 

by St(y) — (2/ ) '0 fo r i  =  0 , 1 , is a map transverse to  6. S im ila rly , since [Z,g\ =  [Z^g*], 

we have an admissible complex orientable map c : W  - > h x R  such th a t the pull-back 

map £q*(c) is equivalent to  g and £ i*(c ) is equivalent to  g \  where : Y  —t Y  x  M given
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by £ t(2/) — (v f i )  f ° r  t — 0,1, is a map transverse to  c. Because the d is jo in t union o f 

Fredholm  maps is a Fredholm  map too, there is an adm issible com plex orientable map 

b U c - . U U W  ^ Y  X  IK. such th a t i t  is transversal to  and LI c'j is equivalent to  

/  U <7, £ i*(6 U c )  is equivalent to  f  U g1. So, [X , / ]  +  [Z, g] — [X ',  / ' ]  - f  [Z \  g']. We have 

shown th a t the add ition  on the graded cobordism set U * (Y )  is well-defined. As usual, 

the em pty set 0 is the zero element o f the cobordism set and the  negative o f [W, / ]  is 

its e lf w ith  the opposite o rien ta tion  on the norm al bundle o f the  embedding / .  Then 

we have

P r o p o s i t i o n  5 . 2 6 .  The graded cobordism set U * (Y )  of the admissible complex ori­

entable maps o f Y  is a graded abelian group.

I f  the cobordism  functo r U  o f admissible complex orientab le  maps is restric ted  to 

f in ite  dim ensional H ilb e rt m anifolds, i t  agrees Q u illen ’s com plex cobordism functo r 

M U * .

T h e o r e m  5 . 2 7 .  For a finite dimensional separable Hilbert manifold Y } U * (Y )  is 

isomorphic to the Quillen’s complex cobordism M U * ( Y ) .

2 . T r a n s v e r s a l i t y ,  c u p  p r o d u c t  a n d  c o n t r a v a r i a n t  p r o p e r t y .

We would like  to  define a product s tructure  on the graded cobordism  group ld*(Y). 

I f  [W i, f i \  £  U dl ( y )  and [X 2, / 2] G l4d2(Y )  are two cobordism classes, then we have the 

externa l p roduct

[ ( A , / 2) : X !  x X 2] e U d' +d* (Y  x Y ) .

A lthough  there is the external product in  the category o f cobordism  o f separable H ilb e rt 

m anifo lds, we can not define the in te rna l product unless Y  is a fin ite  dimensional 

m an ifo ld . B u t, i f  admissible complex orientable maps f i  and / 2 are transversal, then 

we have in te rna l product

[Xufi ] u [X2,/2] =

where A  is the diagonal embedding. The u n it element 1 is given by the id e n tity  

map Y  ->  Y  w ith  index 0. I f  the separable H ilb e rt m an ifo ld  Y  is f in ite  dimensional, 

by T h o m ’s transversa lity  theorem  in  [94], every complex orientable map to  Y  has a
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transversal approxim ation. Therefore the cobordism set U * (Y )  has a ring  structure  by 

the cup product U.

We want to  give a useful theorem  due to  F. Q uinn [8 6 ].

T h e o re m  5.28. Let N  be a smooth separable Hilbert manifold. Let f  : M  —¥ N  be 

a Fredholm map, g : W  —$■ N  an inclusion of a finite-dimensional submanifold of N . 

Then there exists an approximation g' of g in (700(IT, N )  with the fine topology such 

that g’ is transversal to f .

Details about the fine topology and smooth maps space Cfoo(lT , N )  can be found 

in  [77]. Here, the derivatives o f the difference function  between the func tion  g and its  

approxim ation  g' are bounded. We would like  to  in te rpre te  th is  approxim ation  in  the 

fine topology. In  order to  make th is, we need some nota tion .

D e f in i t io n  5 .29 . Let X  and Y  be smooth manifolds. A k -je t from  I  to  h  is 

an equivalence class [ / ,# ]& of pairs ( /,& ’) where f  : X  —» Y  is a smooth mapping, 

x £ X .  Two pairs ( /,& ') and ( f ^ x ' )  are equivalent i f  x =  xr, f  and f  have same 

Taylor expansion of order k at x in some pair of coordinate charts centered at x and 

f ( x )  repectively. We write [ / ,  x]k =  J kf ( x )  and call that the k -je t o f f  at x.

Note th a t there is another de fin ition  o f the equivalence re la tion : [ / , » ] *  — [f ',x']k  

i f  x =  x' and T kf  =  T kf  where T k is the kth tangent m apping.

D e f in i t io n  5 .30. Let X  be a topological space, A covering of X  is loca lly  fin ite  

i f  every point has a neighborhood which intersects only finitely many elements of the 

covering.

Now we in te rp re te  the approxim ation g1 o f g in  the smooth fine topology as follows. 

Let { L i } iEj  be a loca lly  fin ite  cover o f W .  For every open set L z-, there is a bounded 

continous map et- : Li —»• [0 , 00 ) such tha t

||J kg(x) -  J V M I I  <

fo r every x £ W  and k >  0.

B y Theorem  5.28, a smooth map g : Z  —»■ Y", where Z  is f in ite  dim ensional m anifo ld , 

can be moved by a hom otopy u n til i t  is transversal to  an adm issible complex orientable
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map /  : X  ->  Y .  Then the cobordism functo r is contravariant fo r any map from  a 

fin ite  dim ensional m an ifo ld  to  a H ilb e rt m anifold.

T h e o re m  5 .31 . Let f  : X  —̂ Y  be an admissible complex oriented map and g : 

Z  —$■ Y  be a smooth map from a finite dimensional manifold Z . The cobordism class 

of the pull-back Z  { { y  X  Z  depends only on the cobordism class of f } hence there is 

a map g* : U d{Y)  —> U d(Z )  given by

Y

where g' is an approximation of g such that it is transverse to f .

PROOF. Suppose th a t f  : X  Y  be admissible com plex orientable map. B y 

Therorem  5.28, there exists an approxim ation go : Z  —> Y  o f g such th a t i t  is transverse 

to  / .  We w il l show th a t gJ[X , / ]  depends only on the cobordism  class [X t f ] ,  Assume 

th a t /  : X  —̂ Y  and f  : X '  —Y Y  are cobordant and another approxim ation  g\ : 

Z  —Y Y  o f g is transverse to  f .  Then there is an adm issible com plex orientable map 

b : W  —Y Y  x R  such th a t £*• : Y  —Y Y  x R given by £{(y) =  (y>i) fo r i € { 0 , 1 } ,  is 

transversal to  b and the pull-back map £q(6) is equivalent to  /  and e*(6) is equivalent 

to  f .  So,

W  n  y  = {(» .» ) : =  (», ° )}  =  x,
7 x 1

and

7 x 1

There is a smooth map (g0L lg i, Id ^ ) : Z  x R —Y Y  x R transverse to  admissible complex 

orientable map 6 : W  —Y Y  x R. B y Proposition 5.19, the map (go U g i,Id ii)* (& ) : 

x R —̂  Z  X R is an admissible complex orientable map and i t  is transverse 

to  : Z  —Y Z  x R , i =  0,1. B y Proposition 5.19, we have induced map

eS(<7oU</,,IdE)*(6 ) : [ W  J J -Z x IR J  J J  Z -» Z.
\  7 x 1  /  Z x R
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The p roduct m an ifo ld  ( W  I Iy x R  % x  R ) H zxK  % *s eclual  f °

=  { ( w , ( z u t ) , z 2) : b(w) =  (00(21) , * )  or 6(10) =  (p1(^1) , i ) ,  =  (22, 0 ) }

=  { ( « b ( 2 i , 0 ) : b{w) -  (go(z1) i 0)o ib (w ) =  ( p i ( ^ i ) ,0 ) }  =  Z j ^ X .
Y

S im ila rly , we have induced map

e K flbU ft.IdR )*: ( w I J Z x R )  J J  Z  -+ Z.
V YxR /  ZxR

The p roduct m an ifo ld  (fiF I Iy x R  % x  R ) IIz x R  % 1S d iffeom orphic to  Z  JJy  X ' . The 

induced map £o(go LJ gi,ld$)*(b) are equivalent to  0q ( / )  and £*(po U <71, IdjQ*(&) are 

equivalent to  g Y (f f ) .  □

In  the case th a t g is a smooth map between infinite dim ensional separable H ilb e rt 

m anifo lds, F. Q uinn d id  the best approach to  solve th is  problem  in  [8 6 ].

T h e o r e m  5 . 3 2 .  Let U be an open set in separable infinite dimensional Hilbert 

space H  and let F  : M  —f  N  be a proper Fredholm map between separable infinite 

dimensional Hilbert manifolds M  and N .  Then the set of maps transversal to F  is 

dense in the closure of Sard function space S (U>N) in the C°° fine topology.

For the te rm ino logy o f Sard functions, see D e fin ition  5.41. We w il l require the open 

embedding theorem  of Eells and E lw orthy  in  [ 3 4 ] .

T h e o r e m  5 . 3 3 .  Let X  be a smooth manifold modelled on the separable infinite 

dimensional Hilbert space H .  Then X  is diffeomorphic to an open subset of H .

Using the open embedding theorem, we have the transversal sm ooth approxim ation  

o f Sard functions in  the C°° fine topology. From  [34], we have

T h e o r e m  5 . 3 4 .  Let X  and Y  be two smooth manifold modelled on the separable 

infinite dimensional Hilbert space H .  I f  there is a homotopy equivalence <p : X  —$■ Y , 

then (p is homotopic to a diffeomorphism of X  onto Y .

B y Theorem  5.32, 5.33 and 5.34, we have the fo llow ing theorem.

T h e o r e m  5 . 3 5 .  Let X , Y  and Z  be infinite dimensional smooth separable Hilbert 

manifold. Suppose that f  : X  —̂ Y  is an admissible complex orientable map and
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g : Z  —̂ Y  is a Sard function. Then the cobordism class of the pull-back Z  JJy X  —»■ Z  

depends on the cobordism class of f  hence there is a map g* : U d(Y )  —» U d{Z) given by

g ' ( [ X J ] )  =  [ Z x Y X , g ' ( f ) ] .

Then, U*  is a contravariant functo r fo r Sard functions between in fin ite  dimensional 

separable H ilb e rt manifolds.

O f course, the question o f whether i t  agrees w ith  o ther cobordism  functors such as 

representable cobordism is not so obviously answered. There is also no obvious dual 

bord ism  functo r.

3 .  F i n i t e  d i m e n s i o n a l  s m o o t h  f i b e r  b u n d l e s  a n d  t r a n s v e r s a l i t y .

D e f i n i t i o n  5.36 . A smooth fiber bundle £ over a smooth manifold B  (the basej 

coiisists of a smooth manifold E  (the to ta l space^, a smooth map ir : E  —$■ B  ( pro jection  

map,). For each b £ B, Eb =  7r " 1(6) is called the fiber over b. These must satisfy 

the following local t r iv ia l i ty  condition. There is an open covering {U i}  of B  and a 

finite dimensional smooth manifold V  such that for \/i, T{ \ 7r ” 1(?/{) —»• x V  is a 

diffeomorphism commuting with the projection onto U{ and f o r \ / x  £ Ui} the induced 

map on the fiber Tix : 7r~1(^) —y V  is a diffeomorphism. I f U i  and Uj are two members 

of the covering, then the map gij : Ui f l  Uj D iff(V r) given by x - *  r ;xrq ._1 is a smooth 

map which satisfies the identities

gij(x)gjk(x) =  gik(x) Vx £ Ui n  Uj f l  Uk 

gu(x) =  1 .

gij is called the trans ition  function  of the pair of smooth charts ( t; ,? /;)  and ( r j ,U j ) .  

A subgroup G of the diffeomorphism group D iff(H ) is called a s tructure  group of fiber 

bundle i f  im g t j  C  G. When the smooth manifold V  is a vector space, (E,7r, B ,V )  is 

called a smooth vector bundle B i f  the structure group G is a subgroup of G L (V ) .

D e f i n i t i o n  5 .37 . A smooth map f  : X  —̂ Y  is called a submersion at x £  X  

i f  there exists a chart (£7, tp) at x and a chart (V, ip) at f ( x )  such that cp gives an 

diffeomorphism of U  on a product Ui x  U2 and the map ip fp ~ l : U\ x  U2 —> V  is a 

projection where U\, U2 are open sets in the vector space V .
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The fo llow ing proposition gives us the characterization o f the notion  o f a submersion 

map between separable H ilb e rt manifolds.

P r o p o s i t i o n  5 . 3 8 .  Let f  : X  Y  be a smooth map between smooth separable 

Hilbert manifolds X  and Y .  Then f  is a submersion at x £ X  i f  and only i f  the 

derivative map dxf  is surjective and its kernel splits.

B y  P roposition  5.38, we have

P r o p o s i t i o n  5 . 3 9 .  The smooth fiber bundle 7x : E  B  is a submersion, hence it 

is transversal to any smooth map f  : X  —y B .

B y P roposition  5.39, the cobordism functo r is contravariant fo r any fin ite  d im en­

sional smooth fibe r bundle map 7r. Let 7r : E  Y  be a sm ooth fibe r bundle, f  : X  —± Y  

be an adm issible complex orientable map between separable H ilb e rt m anifolds. Then 

the cobordism  class o f the pull-back E  X  —s- E  depends on the cobordism  class o f 

/  and we get the map 7r* : U d{Y)  —v U d(E )  given by

7 T * ( [X , / ] )  =  [jB X y X , 7 T * ( / ) ] .

4 .  T h e  E u l e r  c l a s s  o f  a  f i n i t e  d i m e n s i o n a l  b u n d l e .

In  th is  section, we w ill in troduce the Euler class o f a vector bundle in  complex 

cobordism  for the separable H ilb e rt manifolds. In  order to  do th is , we w ill give some 

defin itions.

D e f i n i t i o n  5 . 4 0 .  Let E  be a Banach space. We say that a collection S of smooth 

functions a  : E  —> M. is a Sard class i f  it satisfies the following conditions:

1. for r  E R , y £  E  and a  E S, then the function x —> a (rx  +  y) is also in the class

S,

2. i f  a n E S, then the rank of differential D x(a: i , . . .  , arn) is constant fo r all x not 

in some closed finite dimensional submanifold of E .

D e f i n i t i o n  5 . 4 1 .  Let S  be a Sard class on E , Uopen in E , and M  a smooth Banach 

manifold. We define S(U, M )  to be the collection of Sard functions /  : U  —̂  M  such 

that for each x (= U there is a neighbourhood V  of x, functions a i , . . .  , a n E S, and a
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smooth map g : W  —̂  M ,  where W  open in R n contains ( a i , . . .  , an){y), all such that 

f \ V  =  go  ( « i , . . .  , a n) |V.

D e f in i t io n  5 .42. The support of a function f  : X  —y R  is the closure of the set 

of points x such that f ( x )  ^  0 .

From  [8 6 ], we have

T h e o re m  5 .43 . E  admits a Sard class S i f  S (E ,  K.) contains a function with 

bounded nonempty support. In  particular, the separable Hilbert space admits Sard 

classes.

D e f in i t io n  5 .44 . A refinem ent of a covering of X  is a second covering, each ele­

ment of which is contained in an element of the first covering.

D e f in i t io n  5.45. A topological space is paracompact i f  it is Hausdorff, and every 

open covering has a locally finite open refirement.

D e f in i t io n  5 .46 . A smooth p a rtitio n  o f u n ity  on a manifold X  consists of an 

covering {? /;}  of X  and a system of smooth functions : X  —Y M. satisfying the 

following conditions.

1. \ /x  € X ,  we have x ) ^  0;

2 . the support of ipi is contained in Ui;

3 . the covering is locally finite;

4. for each point x <E X ,  we have

Y j M x ) =  !•
i

D e f in i t io n  5 .47. A manifold X  will be said to a dm it p a rtition s  o f u n ity  i f  it is 

paracompact, and if, given a locally finite open covering {U i} ,  there exists a partition 

of unity { i f i }  such that the support of ^  is contained in some U{.

F rom  [74 ], we have
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T h e o r e m  5 . 4 8 .  Let X  be a paracompact smooth manifold modelled on a separable 

Hilbert space H . Then X  admits smooth partitions of unity.

From  [35],

T h e o r e m  5 . 4 9 .  On a separable Hilbert manifold the functions constructed using 

the partitions of unity form a Sard class.

We know from  [58] tha t global sections o f a vector bundle on smooth separable 

H ilb e rt m an ifo ld  can be constructed using the pa rtitions  o f un ity , then a ll sections are 

Sard. B y  Theorem  5.33 , the smooth separable H ilb e rt m an ifo ld  B , which is the base 

space o f a vector bundle, can be embedded in to  the separable H ilb e rt space H  as a 

open subset and by Theorem  5.32, we have

C o r o l l a r y  5 . 5 0 .  Let 7t : E  B  be a finite dimensional complex vector bundle 

over the separable Hilbert manifold B  and let i : B  — E  be the zero-section of the 

vector bundle. Then, there is an approximation i of i such that i is transversal to i.

B y  Theorem  5.34 and 5.35, we define the Euler class o f a fin ite  d im ensional complex 

vector bundle on separable H ilb e rt manifolds. Note th a t Theorem  5.35 im plies tha t 

Euler class is well-defined.

D e f i n i t i o n  5 . 5 1 .  Let E  —>• B be a finite dimensional complex vector bundle on a 

separable Hilbert manifold B  and let i : B  —$■ E  be the zero-section of vector bundle. 

Then the element z*z*(l) is called the Euler class of the vector bundle in the complex 

cobordism U * (B )  and denoted by x (B ) .

Now, we w il l give the p ro jection  fo rm u la  o f Gy sin map fo r submersion maps.

T h e o r e m  5 . 5 2 .  Let f  : X  —¥ Y  be an admissible complex-orientable submersion 

map and let n : E  —»■ Y  be a finite dimensional complex vector bundle. Then

x ( E ) U [ X J ]  =  f , x ( r E ) .

PROOF. Let £ denote the cobordism class [ X , / ] .  Then

X (E ) =  { y € Y  : s(y) =  (y, 0) } ,
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w here s is th e  generic section o f 7r. So,

X( E)  U £  =  { (y ,  x ) : y  =  f ( x ), s(y) -  (y, 0) }

=  { / M  : 5 ( / W )  =  ( / ( ® ) , 0 ) } .

Now, we determ ine the expression

f * ( E )  =  { ( (y ,u ) ,a ; )  : 7r(y,u) =  y =  / ( ® ) }

=  : y  =  f ( x ) J * n ( x , v )  =  re}.

Then

So,

f *xF(E) = {/(®) : «(/(&)) = (/(®),0)}.

Thus, we have completed the proof. □

5 .  C o m p l e x  c o b o r d i s m  o f  L G /T  a n d  c u p  p r o d u c t  f o r m u l a .

We w ill now give the construction of a collection o f some elements in  the negative 

part o f the complex cobordism o f the smooth H ilb e rt m an ifo ld  L G /T .  We know from  

the Chapter 2 th a t L G /T  is a complex m anifo ld  by the d iffeom orphism  L G / T  =  

LG<c/B+ .

Let pi : LG<c/B+ LG<c/Pi be the fiber bundle w ith  the fiber P i /B + =  CP 1, where 

Pi is the parabolic subspace o f LGc  corresponding to  the sim ple affine roo t ce*. Let 

1 G U ° (L G /T )  denote cobordism class o f the id e n tity  map Id  : L G c /B + —» L G c /B + . 

Then we have p ;* ( l)  =  [L G c /B + ,pi o Id] G l t~ 2(LG c /P i) .  Since the bundle map pi is 

a submersion, i t  is transversal to any map, so

p,*(p;. ( l ) )  =  [LGC/ B +  P [  L G c / § + ,p * (p i  ° Id)] € U ~ \ L G / T ) .
L G C/P ,

B y the de fin ition  o f the p roduct, the space LG<c/B+ IIlG c /P ; LG<c / B + is equal to

=  { ( 6 B + , 6 B +) : 6 a  =  6 a }
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The last space is d iffem orphic to  LGc  x P i /B + given by sm ooth map (£1 £2P +) —> 

[6 , 6 _16 ^ +] where B + acts on L G C x  P i/B +  by b ■ { ( i x iB + )  =  ( f 6, r 1ar1-S+ ). The 

smooth map from  LGc  x  £+ P i /B + to  L G c /B + IIlG c /P ; L G c /B + is given by [£, £ ;P +] —> 

(£x iB + , ( B + ). Hence the pull-back map pi*(pi o Id ) from  LGc  X P ; / P + to  L G c /B + 

is given by [£, £ ;P + ] f  • X i§ + .

For i j ,  le t pj : LGc/B+ —»■ LGc/Pj be the C P 1 bundle associated to  a d ifferent 

parabolic space Pj. Then Pj*Pj*Pi*Pi*(l) is represented by the  sm ooth map

s:LGc/B+ TT LGcxs+Pi/B+ ->LGC/B+.
L G c f P j

B y  the de fin ition  o f p roduct, the smooth subm anifold L G c /B + T IlGv/Pj LG c 

Pi / B + is equal to

=  { « i £ + , [ ^ X i B + ] )  : ^ P j  =  6  • Xi P j }

=  { ( 6  s + , [ 6 , x j +] ) : 6 * r 16 e ^ } -

The space LGc/B + YIlg^/Pj BGc x £+ Pi/B + is d iffeom orphic to  LGc Xg+PiX #+ Pj/ B + 

given by the smooth map (£ iB + , [£2, —> [£2, 2̂ ^i~1̂ iB^]. The sm ooth map

LGc  xg+ Pi ><b+ P j / B + -> L G c / B + JJ  LGC x f i+ P ;/B +
L G c / P j

is given by [£, rct-, X jB +] —> (£x{XjB+ , [£, X{B+]). Then the cobordism class of

s : LGc x §+ Pi x b+ Pj/B̂  LGc/B+.

is given by [£, X i , X j B + ] £ • X{  • X j B + . C ontinu ing in  s im ila r way, by induction , for 

any sequence I  =  - - • d j  such tha t i*  7  ̂ ik+1, we can construct a space

Zj = LGc x§+ P( 1 xb+ ' 1' xp+ Pin/B+
together w ith  a sm ooth map zi \ Z j  L G c /B + given by [ £ , £ q , . . .  : XinB +] f  •

Xir • • • XinB + . Here B + acts by the m u ltip lica tio n  on the  r ig h t side of the each te rm  

in  the  sequence and by the inverse m u ltip lica tio n  on the le ft side o f each te rm  fo r any

i e i .

P ro p o s it io n  5 .53 . For any sequence I  =  (zi, *2? • • • >z») such that i*  7  ̂U-+i> Z i  is 

a smooth complex manifold and z i  : Z \  L G c /B + is a proper holomorphic map.
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D e f i n i t i o n  5 . 5 4 .  Let • • • r t-n be the reduced decomposition of the element w of 

the affine Weyl group W . Then

Zw =  Ph X b  Pi2 Xb  XJ5 Pin/ B  

in the Z i  is called Bott-Samelson varie ty associated to w.

D e f i n i t i o n  5 . 5 5 .  A ra tiona l map of a complex manifold M  to projective space <CPn 

is a map

f : z ^  [ l , / i , / „ ( * ) ]

given by n meromorphic functions on M .  A rational map f  : M  —̂  N  to the algebraic 

variety N  C CP n is a rational map f  : M  —>■ CP n whose image lies in N .

D e f i n i t i o n  5 . 5 6 .  A rational map f  : M  ^  N  is b ira tion a l i f  there exists a rational 

map g : N  —$■ M  such that fo g  is the identity as a rational map. Two algebraic varieties 

are said to be b ira tio n a lly  isomorphic, or simply b ira tiona l, i f  there exists a birational 

map between them.

D e f i n i t i o n  5 . 5 7 .  Let Y  be a complex manifold with singularities and let 0  : X  —̂ 

Y  be a map. Then (X , 0 )  is a resolution o f singularities o f Y  i f  X  is smooth and the 

map 0  is proper and birational.

T h e o r e m  5 . 5 8 .  (see [ 2 8 ] J  zw : Z w —>■ Cw is a resolution of singularities of the 

closure of the cell Cw of L G c f B + in the usual complex topology.

Since the resolution Z i  is a complex m anifo ld  and the map zi  is a holom orphic 

map, n a tu ra lly  z i  has complex orientable structure. Then, [Z^ zj\ is a cobordism  class 

of U * (L G fT ) .  We w il l denote th is  class by x i  for any sequence I  — ( i i , . . .  , i n).

Let pi : LG<c/B+ —y LG ^ /P i  be a Q P1 bundle associated the  parabolic subgroup 

P{. Then, the operator

Pi*Pi* : U * (L G /T )  -4  U*~2{L G /T )

w il l be denoted A{. Th is operator is analogous of Kac operator which has been in tro ­

duced in  the w ork about o rd inary cohomology o f flag spaces in  the chapter 1 .

P r o p o s i t i o n  5 . 5 9 .  We have cobordism classes x i  — A j ( l )  for I  — ( z i , . . .  , in).
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P roposition  5.60. Let I  — (zx, . . .  , i n) and J  =  (i1}. . .  ,i„+i).  Then, i n+i(a;j) =

X j .

Now we w il l describe a m ethod for com puting the products o f the cobordism classes 

x i  w ith  characteristic classes o f line bundles on L G / T , Let L \  be the line  bundle on 

L G / T  associated to  a weight A. We know tha t gives the Euler class in  the

U 2( L G /T )  where % is the  zero-section o f the line bundle L \ .

T h e o re m  5.61.

x ( L \ )  U x i =  z i *x (z i L a)-

PROOF. Since z i  is a complex orient able and submersion map, by Theorem 5.52, the 

equa lity  is a d irect consequence o f the pro jection  fo rm u la  fo r the Gysin hom om orphism .

□

Given a index I  =  (A , •. - , i n), we define new indices I k, />& by

I ' ( ^ 1  j  ■ ■ ■ j  1  j  5 • • • :  ^n): I > k  ( ^ f c + 1 ) • • ■ j  •

A  subindex J  o f I  o f length k is determ ined by a one-to-one order preserving map

a : {  1 , . . .  , n }

by the ru le  j m =

For the subindex J  o f I  o f length k there is a na tu ra l embedding

i j , i  : Z j  —̂  Z i

defined by converting a k T  1-tup le  (£, Xjx, . . .  , Xjk) to  the n +  1-tu p le  in  the G(m)th slot 

fo r 1 ^  ??7. ^  k and the id e n tity  element elsewhere. A  pa ir x j  =  [Z j ,  i j j ]  represents an 

element o f W ( Z i ) .

The classes o f the fo rm  x j  are precisely the classes we use to  ob ta in  the expression 

fo r x ( ^ a ) .

A  complex line bundle is determ ined up to  isom orphism  by its  f irs t Chern class 

ci(L )  in  in tegra l cohomology. The P icard group of line  bundles on Z j  denoted P ic (Z / )  

is isom orphic to  H 2(Z i ,  Z ) , w hich is free and has a basis o f elements whose lift in g s  to 

hi*(Z i)  can be chosen to  be x ^
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T he  f irs t  C hern class is g iven as

Cl : P ic (Z j)  -+  H 2(Z IyZ).

H2(Zi, Z ) is free w ith  basis consisting o f classes xjk w ith  1 ^ k ^ n. Therefore we can 

choose a basis fo r P ic ( ^ j)  consisting of line bundles Z*., where 1 ^  k ^  n y satisfying

We take Lk to  be the line  bundle associated w ith  the d iv isor Zjk. Th is means Lk has 

a section w hich intersects the zero section transversally on Zjk so th a t x(Zfc) — x i k in  

complex cobordism. Th is basis connects line bundles w ith  a geom etric basis fo r U *(Z i ) .  

In  o rd ina ry  cohomology, the Euler class of a line bundle on Z j  is a linear com bination 

o f X j k .

T h e o r e m  5 . 6 2 .  Let X be a weight. Let I  =  (H>. . .  , i n) be a index and r i  denote 

the corresponding product of reflections. Then the line bundle L \  on Z j  decomposes as

L x =  ® L ; {r’> ^ ‘I
k=1

PROOF. For the proof, see [ 2 0 ] ,  □

6 . E x a m p l e s  o f  s o m e  i n f i n i t e  d i m e n s i o n a l  c o b o r d i s m  c l a s s e s .

In  th is  section, we w il l show tha t the stratas in troduced in  chapter 2 give some 

cobordism  classes o f separable H ilb e rt manifolds.

We know from  Theorem 2.23 in  chapter 2 tha t the Grassmannian space G r I I  is a 

separable H ilb e rt m anifo ld . B y Theorem 2.30 o f chapter 2 , we know th a t the s tra tum  

Tis is a loca lly  closed contractib le  complex subm anifold o f G r(iZ ) o f codimension £(S). 

The inclusion i : Es —» G r (H )  is closed in  the open subset Us and i t  is a Fredholm  map 

w ith  index —I(S ) .  Since the s tra ta  Es is an in fin ite  dim ensional m an ifo ld , by Theorem 

5.23 o f th is  chapter, the embedding i : E^ —̂  G r(H )  is a proper Fredholm  map. 

Therefore, we have

T h e o r e m  5 . 6 3 .  The strata E #  —y G r(H ) ,  S € S, is an element of cobordism group 

U s‘ (s> (G r(H )).

These stratas E s are dual to  the Schubert cells C's in  the fo llow ing  sense:
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1 . the dimension o f Cs is the codimension of Es and

2 . Cs meets Es transversally in  a single po in t, and meets no other s tra tum  the 

same codimension.

We know from  chapter 2 th a t the based loop group f lG  o f compact semi-simple Lie 

group G  has a s tra ta fica tion  Ea where A : T  ->  T  is a hom om orphism . B y  Theorem  

2.55 o f chapter 2 , we know th a t the stra ta  Ea is a loca lly  closed contractib le  complex 

subm anifo ld o f f lG  o f codimension d\ where d\ has been defined in  chapter 2 . Then, 

i : Ea — LtG is a proper Fredholm  complex orient able map. Then, we have

T h e o r e m  5 . 6 4 .  The stratas Sa —$■ LIG give elements of cobordism group U 2dx(ClG) .

Also these s tra tifica tion  holds fo r the homogeneous space L G /T  where G  is a com­

pact semi-simple Lie group. Then, we have

T h e o r e m  5 . 6 5 .  The strata E w  —>• L G / T , w €  W , give elements of cobordism 

group U 2̂ W\ L G / T ) .

We don’t  know whether these stra tifica tions are a basis fo rm  o f cobordism groups 

o f homogeneous spaces.

7 .  T h e  r e l a t i o n s h i p  b e t w e e n  W - t h e o r y  a n d  M U - t h e o r y .

In  th is  section we consider the re lationship between ^/-theory and M U - theory, in  

pa rticu la r, fo r Grassmannians and L G /T .

F irs t we give the general re lationship between U *(  ) and M U * (  ). Let X  be a 

separable H ilb e rt m anifo ld . Then fo r each smooth map /  : M  — » X  where M  is f in ite  

dim ensional, there is a pullback h om om orph ism /* : U * ( X )  — > U * ( M )  =  I f

we now consider a ll such maps in to  X ,  then there is a unique hom om orphism  W { X )  — > 

jJ-im^. In  pa rticu la r, the fo llow ing seem reasonable.

C o n j e c t u r e  5 . 6 6 .  1 .  The natural homomorphism hi*(X )  — > lim  M U * ( M )
lid̂ —

is surjective.

2. I f U ev( X )  =  0 o rU odd{ X ) =  0, the natural homomorphism Id* ( X )  — i>- ^ lim ^ M ? 7 * (M )  

is surjective.

3. I f  M U ev( X )  =  0 or M U odd(X )  =  0, the natural homomorphism U * ( X )  — >

^ im  M U * ( M )  is surjective.
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Now we discuss some im p o rta n t special cases. For a separable complex H ilb e rt 

space le t H n (n ^  1) denote an increasing sequence o f f in ite  dim ensional subspaces 

w ith  d im  H n — n w ith  H°°  =  (Jn H n dense in  H.

From  [71], we have K u ip e r’s theorem:

T h e o re m  5 .67 . The unitary group U (H )  of a separable Hilbert space H  is con­

tractible.

Let G rn (i7 ) be the space o f a ll ?^-dimensional subspaces o f separable H ilb e rt space 

and le t G rn(H °° )  =  |^J G rn( H k). Then G rn(H °°)  is subset o f G rn{H )  and i t  is dense.
k^n

T h e o re m  5.68. The natural embedding G rn(H °°)  —> G rn(H )  is a homotopy equiv­

alence, and the natural n-plane bundle —J- G rn(H )  is universal.

PR O O F. B y a theorem  of Pressley and Segal [84 ], the u n ita ry  group U ( H ) acts 

on G t(H )  tra ns itive ly  and hence U (H )  acts on Grn(H )  trans itive ly . Let H n be an 

n-d im ensional subspace o f in fin ite  dimensional separable H ilb e rt space H  and le t H i  

be its  orthogonal complement in  H .  The stab ilizer group o f H n is U ( H n) X  U (H i)  and 

th is  acts freely on the contractib le  space U (H )  and hence

r r  (m =  a (g )
" l  J U { H n) x  U (H i)

=  B ( U ( H n) x  U (H i) )

=  B U { H n) x  B U ( H X).

Since U ( H i )  is contractib le  by Theorem 5.67, then B U ( H i )  is contractib le . Hence 

G rn(H )  ~  B U ( H n) =  B U (n ).  On the other hand,

where H^~n is the orthogonal complement o f H n in  H k.

B y  the  construction, the na tu ra l n-plane bundle —y G rn{H )  is universal. A lso,

the na tu ra l bundle —> G rn(Hro°) is classified by the inclusion G rn(H °°)  —5* G in(H ) .

Since the la tte r is universal, th is  inclusion is a hom otopy equivalence. □

In  pa rticu la r, the inclusion P (H °° )  =  P ( H n) C P ( H )  is a hom otopy equivalence.
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Theorem  5.69. The natural map U * { P { H ) )  — ► ] i m M U * ( P ( H n)) =  M U * { P ( H ° ° ) )
n

is surjective.

PROOF. We w ill show by induction  th a t fo r each n, U * ( P ( H ) )  M U * ( P ( H n+1))

is surjective. I t  w il l suffice to  show th a t xl £ im i*  fo r i =  0 , . . .  , n. For n =  0, th is  is 

tr iv ia l.  Now we ve rify  th is  fo r n =  1. B y  Theorem 5.68, since £ : L P ( H )  ~  P ( iJ co) 

is a universal line  bundle, the fo llow ing diagram com m utes n ^  1

*•;(£) =  v - * - >  l

*»(f) f

C P ”  =  P ( H n+1) P ( f f ) ,

where i n : C P 51 =  P ( iJ n+1) —̂ P ( H )  is an inclusion map. Then fo r the generator a; =  

x(*7) £ M t/* (P (-£ P 1,+1)), rc ^  1, by the co m p a tib ility  o f induced bundles, there exists an 

Euler class x =  x {L )  £ U 2( P (H ) )  such tha t i * (£ )  =  x , where i n : P ( H n+1) —> P ( H )  is 

an inc lusion map.

Assume th a t is surjective. Then there exists yi £ l t 2l( P ( H ) ) , i  =  0 , . . .  , n such 

th a t =  xl £ M U 2t( P ( H n+1)). Also, — P  +  zt-:en+1 £  M h 22( P ( P 11+2)) where

Zi  £  M U 2 ( n - i - + l )  ■

In  pa rticu la r, le t yn ~  [W, / ]  € U 2 n̂\ P { H ) ) .  Then the fo llow ing  diag ram  commutes

r ( L )  -C - +  l

/•(«) f

w  p ( i? )

and there exists an Euler class x (/* (P )) =  [W 1, g] £ U 2{W ).  Now yn+i =  f * x { f * { L ) )  € 

U 2n+2( P ( H ) )  satisfies

C h 2/«+i =  xnx{v)

=  xn+1.

Hence, iix u *+1 contains the M t/*-subm odu le  generated by x \  i =  0 , . . ,  , n. Hence, 

i *+1 is surjective. Th is  completes the induction . This shows th a t the map U * ( P ( H ) )  — Y 

l im M U * ( P ( H n)) =  M U * ( P ( H ° ° ) )  is surjective. □
n

Now we need some geometry o f Grassmannians. We know from  chapter 2 th a t 

Gro(-P) is the un ion o f the fin ite  dimensional Grassmannians G r ( P _ w h e r e  H-k,k =
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z kH + / z kIL+ . The Grassmannian space Gi'o is hom otopic to  the classfying space B U  x  

Z  and i t  is dense in  G r(H ) .

T h e o re m  5.70. The map U*(Gvn(H ) )  —¥ M U * ( G r n(H ) )  is surjective for n ^  1 .

PROOF. For k ^  n, the inclusion i : Gvn(H-k,k) G rn(H )  induces a contravariant

map

U *(G rn(IL)) W (G v n(H _ ktk) =  M U *(G v n( H - ktk)).

For k ^  n } since Cs G G in(H-k,k) is transversal to E b y  Theorem  2.30 o f chapter 2 

and section 6 o f th is  chapter, there exists s tra tum  E^/ such th a t

<rs',k =  [G r„ (# _ * ,* )  H E s, G i'n{H-k,k)] e M U *(G v n( H ^ k))

are the classical Schubert cells. From  [78], these as>,k generate M U *(G i 'n(H-k,k)) as a 

M£7*-module. Then i* is surjective. Since M C/odd(G rn(i7_^j^ )) is t r iv ia l fo r every &, 

then

W *(Gr n(H ) )  —̂ lim  M  U* (G rn (H - ktk))

=  M U * ( G in(H °° ) )  

“  M U *(G v n(H ) )

is onto. □

T h e o re m  5,71, L etG  be a semi-simple compact Lie group. Then j *  : U * ( L G /T )  —> 

M U * ( L G /T )  is surjective.

PROOF. If the following composition

U * (L G /T )  -+  M U * ( L G /T )  -► H * ( L G / T , Z )

is onto, th is  im plies th a t j *  is onto since the A tiyah - H irzebruch spectral sequence 

collapses here (because L G /T  has no odd cells). We know fro m  chapter 3 th a t 

H * ( L G / T , h )  is generated by the Schubert classes ew,w  6  W  wh ich are dual to  the 

Schubert cells Cw. Since Xfo is dual to  Cw by Theorem 2.59 o f chapter 2 , the image of 

the s tra ta  T,w by com position map gives ew. Hence the com position map is onto. □

S im ilarly , by Theorem  2.55 of chapter 2, we have
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T h e o re m  5.72. Let G be a semi-simple compact Lie group. Then j  : U*(LlG) —> 

M U * ( Q G ) is surjective.
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