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A bstract

The topic of dynamic models has been extensively studied in statistics, both 

from classical and Bayesian perspectives. Some of the unknown components 

of a dynamic model evolve in time according to a probability model and 

give rise to observed data according to a second model. If one adopts a 

Bayesian point of view, as we do in this thesis, these models combined with any 

available prior information give rise to a sequence of posterior distributions 

for all the unknowns. They encompass all our knowledge about them but in 

practice the cases where they are analytically available are the exception to 

the rule. A wealth of methods for approximating them have been developed, 

originating mainly from the engineering community. They may however lead 

to unsatisfactory results and the only remaining resort will be to represent 

the posterior distributions by samples. As in all areas of Bayesian statistics 

Markov Chain Monte Carlo methods are the most widespread tool for this 

purpose.

The aim of this thesis is to present and study a group of techniques for 

sampling from intractable distributions; namely, the importance resampling 

methods. They are fast and easy to implement, and some of them have nice 

theoretical properties. Moreover, by their design they are well suited for ap­

plication in dynamic model contexts.



The thesis is divided into two parts. The first one comprises Chapters 1 and 

2. Chapter 1 offers an introduction to dynamic models and presents in detail 

the original resampling method, the weighted bootstrap. We examine how it 

can be applied in dynamic model problems and prove some of its theoretical 

properties. In Chapter 2 we present more recently suggested techniques that 

try to improve the characteristics of weighted bootstrap. We prove that one of 

them, the smooth bootstrap, has the same properties as weighted bootstrap. 

We also compare all the methods in several simulation experiments.

The second part consists of the three remaining chapters. Their unifying el­

ement is that they all deal with versions of the same problem: how to follow 

a moving particle in space when all the data we receive are noisy measure­

ments of our squared distance from it. This is a geometrical description of 

problems that arise in industry. For example, the “moving particle” may 

be the changing optimal conditions for production of a commodity and the 

“squared distance” from the particle may be the cost we pay for not produc­

ing at these conditions. The problem can be expressed as a dynamic model 

with intractable posteriors and we want to see how resampling will perform in 

such a difficult situation. In Chapter 3 we suggest several solutions. They can 

all be adapted to any version of the problem. Resampling encounters some 

difficulties for which we manage to find an ad hoc solution. In Chapter 4 we 

deal with two more complicated versions of the problem. One of them causes 

resampling to break down. This leads us to Chapter 5, where we present and 

examine more recently proposed resampling algorithms. The conclusion is 

that there is still the need for further improvement of the resampling tech­

niques.
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Chapter 1

The W eighted B ootstrap in 

Bayesian Statistics

1.1 Introduction

The original motivation for this work was the analysis of series of images of a 

changing scene. Such problems are expressed in terms of dynamic models that 

are usually nonlinear and/or non-Gaussian. This means that the commonly 

used Kalman filter is not applicable. Moreover, the emerging conditional 

distributions (or posteriors if one adopts a Bayesian perspective) are very 

often analytically intractable.

The tool one has to resort to is Monte Carlo simulation. In order to study a 

distribution whose density is not available in closed form, a sample is obtained 

from it. Then, parameters of interest can be estimated by the corresponding 

parameters of the sample. Even the density function itself can be estimated 

by some form of kernel density estimation. See for example Silverman (1986),

1



CHAPTER 1. WEIGHTED BOOTSTRAP 2

West (1990) and Escobar and West (1995). However, it often happens that 

even sampling from the distribution of interest is impossible. In this case 

techniques that produce samples coming approximately from the target dis­

tribution are employed.

The most widely used group of such techniques are Markov Chain Monte Carlo 

methods (MCMC). They consist of finding an ergodic and irreducible Markov 

chain that has the distribution of interest as its invariant distribution. The 

idea is to simulate the chain for a long enough time so that it forgets its initial 

state and can be assumed to have converged to its invariant distribution. The 

values generated from that point onwards will form a sample of dependent 

observations from the target distribution. For more details on MCMC see 

Gilks et al (1996), Besag and Green (1993) and Smith and Roberts (1993).

However, MCMC methods have some characteristics which limit their ap­

plicability to dynamic model settings. We present these in the next section 

which deals with dynamic models in greater detail. In the rest of the chapter 

we present a method that could be used instead of MCMC for the analysis of 

such models.

1.2 D ynam ic m odels

Throughout this thesis by the name of dynamic model we denote a discrete 

time dynamic model. A dynamic model is a mathematical description of the 

following situation. At instants t in time data yt arise whose values depend, 

among other things, on unknown parameters xt which we want to study. It 

is assumed that each yt is generated according to the model
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yt = A(xt,et)} (1.1)

where A is a function which can have any form and et is a random variable. 

The parameters x t do not remain constant in time, which explains the presence 

of the subscript t. It is assumed that their values evolve according to the model

x t+l = B [ x i,r}t)i (1.2)

where B  is another function of any form and pt is a random variable. In 

dynamic model terminology the parameters xt are thought to be describing 

the evolution of a system and xt is called the s ta te  of the system at time t. 

Model (1.2) is called the system  evolution equation and r)t the system  

d istu rbance at time t. Similarly, model (1 .1 ) is called the observation 

equation  and et the observation noise at time t. The dimensionalities of

yt} D and pt can be arbitrary as long as functions A and B  ensure that they

conform with each other.

Since both (1.1) and (1 .2 ) involve random variables they can be represented by 

the distribution of yt given x t and the distribution of x t+i given x t respectively. 

Of course, this implies that the forms of the distributions of et and pt are 

known, but normally this is true. Usually the distributions of et and are 

assumed not to change in time. We denote any density or probability mass 

function and any distribution by p. The distributions corresponding to (1 .1 ) 

and (1 .2 ) can be written as

(1.3)
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and

p(xt+i\xt). (1.4)

To complete the description of the situation we assume that the state x\ of 

the system at the first time instant also is a random variable with distribution

Any prior information about the system is incorporated in (1.3) ,(1.4) and 

(1.5). (1.1),(1.2) and (1.5) or (1.3),(1.4) and (1.5) comprise a dynamic model.

To simplify things assume that the distributions of rjt , et and x\ are fully 

known, as are the functional forms of A  and B. Moreover, assume that each 

tt is independent of xs and rjs for any s and of es for any s ^  t and that 

each rjt is independent of x s for any s. Then yt is independent of anything 

else in the past given x t and x t is also independent of anything else in the 

past given x t~\. Then interest focuses on inference about x t . At time t the 

most complete and concise description of our knowledge about x t is given by 

its conditional distribution given all the available data ~yt ~  (Vii • ■ • > Vt)- This 

distribution, p(a;t|yf), in dynamic model jargon, is called the filtering distri­

bution. Its evolution in time is described by two recursive formulae given by 

a straightforward application of Bayes’ theorem and elementary probabilistic 

reasoning:

p ( x i ) . (1.5)

I , . pfatkOpQEtlyt-i) 
‘ Ip(yt\xt)p(xt\yt~i)d.xt ( 1 .6 )



CHAPTER 1. WEIGHTED BOOTSTRAP

p(zi|y 4_i) =  J  p ix t lx t - iM xt - i ly t -Jdx t -v  (1.7)

Equation (1.6) is called the update equation and (1.7) is called the prop­

agation or prediction equation or the predictive distribution. For a

detailed presentation of the statistical theory of dynamic models see West 

and Harrison (1997).

In most cases it is impossible to obtain (1.6) and (1.7) in closed form. The 

most well behaved and consequently well studied case is when the functions 

A  and B  are linear and and are Gaussian. This is the so-called 

linear Gaussian model. Then it is easily shown that (1.6) and (1.7) are 

also Gaussian and therefore can be described by just two parameters each, the 

mean vector and the covariance matrix. Probabilistic reasoning can lead to the 

value of these parameters at any time point. The most famous description of 

their evolution in time is the Kalman filter (Kalman (I960)). It is a system 

of two recursive equations that give the value of the mean vector /if and the 

covariance matrix Xh of (1 .6 ) at time t given their values jit- i  and Ef_i at time 

t — 1 and the data yt that has arrived at time t. We present these equations 

later on in Section 2.5.2, which deals with a linear Gaussian model.

From the discussion above it is clear that for a linear Gaussian dynamic 

model we do not need simulation. As soon as nonlinearities enter the model 

or some of the random variables are not Normally distributed the filtering 

distribution becomes intractable. Several methods have been proposed which 

try to analyse dynamic models in such cases. Some rely on transformations of 

the system and the observation equations. The most famous is the extended  

Kalman filter (Anderson and Moore (1979)). It assumes Normal noises and
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linearizes with Taylor expansions any non-linear functions involved in the 

model. See also Fahrmeir (1992). For other transformations see Sorenson and 

Stubberud (1968), Masreliez (1975) and Julier and Uhlmann (1997). Instead 

of taking expansions of the functions involved Srinivasan (1970) takes Gram- 

Charlier expansions of the densities of interest. Alspach and Sorenson (1972) 

linearize (1 .6 ) and (1.7) if they are not linear already and use G aussian sum  

approxim ation , in other words approximation of all the densities of interest 

(including those for noise) by mixtures of Normal distributions. However 

good they are in particular applications all these approximations are based 

on potentially unrealistic assumptions and their general applicability is thus 

inhibited. In a different vein, Masreliez and Martin (1977) and Meinhold 

and Singpurwalla (1989) adapt the Kalman filter to cases of fat-tailed noise 

distributions which can better accommodate outlying observations.

Numerical techniques for evaluation of the integrals involved in (1.6) and 

(1.7) have also been put forward. Kitagawa (1987) and Kramer and Sorenson 

(1988) replace the integrals with sums by approximating the filtering distribu­

tion by piecewise constant functions. Such methods are called g rid  m ethods 

because the piecewise constant functions are evaluated only at a grid of points 

over the state space. They have the advantage that they do not rely on any 

simplifying assumptions about the model. Their problem however, is that 

the grid of points is static and therefore, it has to be very large (especially 

in multidimensional cases) if the piecewise constant function is to always ap­

proximate well the filtering distribution whose support may be shifting. Pole 

and West (1990) manage to get good results with very small grids by forcing 

the grids to shift dynamically in order to follow the support of the filtering 

distribution.
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The intractability of (1.6) and (1.7) also meant that until the advent of MCMC 

it was very difficult, if not impossible, to sample from them. MCMC can 

give samples from them and it does not need any simplifying assumptions 

about the form of A  and B  or about the distribution of the random variables 

involved. Conclusions can be based on the samples and have been shown 

in practice to be more correct than those provided by the approximations 

mentioned above. However, MCMC also has its problems.

First of all, in order to apply MCMC we have to view j>(a;i|y£) as a marginal 

distribution of the full conditional distribution p(x£|y£) of all the states up to 

time t given all the available data. This is because if, for example, the target 

density is g(x) MCMC requires the knowledge of that part of g that depends 

on x. If p(rr£|y£) is the target this means that at least the numerator of (1.6) 

must be known, but this involves p(xt jy£_i) which is also intractable. The 

part of p(xt |y£) that depends on x £, on the other hand, can be written as a 

product of terms of the form p(yt \xt) and p(xt \xt-i)  which are known since 

we know the distribution of et and pt. MCMC will thus give a sample from 

p(x£|y£) from which we will keep only the xt part and discard the rest. The 

same will have to be done at time t +  1 for p(x£+i|y £+1) and so on. If the 

samples are very large and if also such samples are required for many time 

points this means a great waste of resources. The methods that we present 

in the rest of the chapter can sample from p(a;£|y£) if desired and moreover 

in doing so they use the sample from p(xt~i |y £_i) that has been generated at 

time t — 1 . They can also give samples from p(xt |y£_1). They can essentially 

propagate and update these samples in the same way that their corresponding 

densities (1.6) and (1.7) evolve in time.

Another factor inhibiting the application of MCMC in dynamic model settings
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is the issue of convergence of the Markov chain that is simulated. First, it 

can be very slow, which means that real-time analysis of a system may not 

be possible. Secondly, there is not yet any automatic method of assessing 

convergence which rules out an entirely automatic analysis of a system. The 

methods that we are going to present do not involve Markov chains. They are 

therefore a lot faster than MCMC and can be applied without any supervision.

To summarize, we are now going to present methods that work with any type 

of dynamic model without having to rely on unrealistic assumptions about it. 

They are also fast and reliable and can be applied in an automatic, real-time 

analysis set-up.

1.3 Im portance sam pling and the w eighted b oot­

strap

Importance sampling is a well known simulation technique; see for example 

Ripley (1987) and, for a Bayesian viewpoint, Geweke (1989). It works as 

follows. Suppose that we want to estimate

where h(x) = j f^))dx ls a probability density function (pdf). The obvious 

estimator is

where ■ ■ ■ , x n are independent random draws from h. This estimator
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is unbiased and asymptotically Normally distributed given certain regularity 

conditions. If sampling from h is not possible but we can evaluate the value of 

h at any point, we can draw independent samples x\, x2, . ■ -, x n from another 

pdf (/, available for sampling, and obtain the estimator

This estimator is also unbiased and asymptotically Normally distributed be­

cause we can write

Eh{k(X)) = J  k(x)h(x)dx = J  k { x ) j ^ g ( x ) d x  = Eg .

Finally, if not h but only /  can be evaluated, we can still estimate E ^ k l X ) )  

based on the sample a; l 5  x 2, . . . ,  xn from g, by

k = y'n f{xj)

This is because

W ),  - / « £ * »  -
1 3 W  M k x > J

This estimator is asymptotically Normally distributed and asymptotically un­

biased (Geweke (1989)).

An extension of importance sampling can be used in order to take a sample
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from g and arrive at a sample from h. This is the method of w eighted 

b o o tstrap .

1.3.1 W eighted  B ootstrap

This method first appeared in Rubin (1987,1988) and was popularized by 

Smith and Gelfand (1992). It works as follows. Suppose that we want a 

random sample from a distribution h and that we cannot get it directly. 

Moreover, suppose that h(x) = A r ' L , and that we only know how to evaluateJ  J { x ) a x

/ .  If we have another distribution g that is easy to sample from we obtain 

a sample x i , . . . , x n from it. Then to each point x\ we assign an importance 

weight W{ given by

/fa*) /, Q \
W' =  J G )  (L8)

and then normalise it to get

w
Qi

EJU  «>j

The Wi s are called w eights and the <&’s are called norm alized weights. We 

can then sample from among X\,X2 , . . .  ,xn with replacement, using the s 

as probabilities of selection, and take a sample j/i,. . . ,  ym. In other words, for 

each i =  1 , . . . ,  m, Pr(yi =  Xj) =  qj, for all j. The sample yi , . . . ,  ym can be 

considered as coming from h if n is large. The justification for this runs as 

follows1.

1The proof is taken from Smith and Gelfand (1992).
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Suppose that 9* is drawn from among X\, , xn with Pr(0* =  Xj) = Qj- I

is the indicator function. All limits are taken with n — > oo. Then,

Pr(0* <a) = '*Tt qiI (x i < a)

a.s..

i=l
i=iWjI(xi < a)

i  nr=i
E ,  { ^ I { X  <  a ) )

E  (

/ ” O -  a)9(x)dx

/-“oc $ g ( * ) d x

J -„ f (x )d x

/ h{x)dx
J  —  oo

Pi'h{X < a),

where “a.s.” denotes almost sure convergence. In practice, since n is finite, 

this result will hold approximately with the approximation improving as n 

increases. The size m  of the resulting sample should not be larger than n. In 

this thesis we usually take m = n and sometimes m < n. If h is fully known, 

weighted bootstrap is still applied in the same way. The only difference is 

that we use h instead of /  for the calculation of the weights in (1.8). The 

mathematical result for the resulting sample is valid again. Tanizaki and 

Mariano (1994) use a variation of importance sampling wrhere the sample 

points are not drawn at random from the importance sampler but are chosen 

in a deterministic way.
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The sample resulting from weighted bootstrap is used as any random sample 

from h. However, its members, although independent given the sample from 

the importance sampler, are not unconditionally independent. It is easy to 

see that

This is proven in appendix A as part of a larger proof. Because of its con­

nections with importance sampling, weighted bootstrap is also known as im ­

p o rtan ce  resam pling. In the rest of this thesis any density that plays the 

role of g is called the im portance sam pler.

From (1.8) it is clear that weighted bootstrap can be very useful in Bayesian 

settings. There the target is the posterior density of the parameters of interest 

which usually is not fully known. It usually happens that we know only that

Then, if the prior is easy to sample from we can use it as the importance 

sampler. If x i }x2>... , x n is a sample from the prior and y are the available 

data, the weight associated with each sample point X{ is just its likelihood, 

Wi = p(y|zi).

Nevertheless, the method has some disadvantages as well. First of all, it uses a 

discrete distribution, namely the one with support {xi , . . . ,  xn} and probabil­

ity mass function {qi, . . . ,  qn} in order to approximate the target distribution 

which may be continuous. If moreover the target is a multivariate function 

the approximation can be very crude. The only remedy for this problem is to

posterior oc likelihood • prior.
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increase n.

A second problem occurs if the support of g does not contain parts of the 

support of h. In other words, there may be values which are plausible under 

h but cannot be sampled from g. Such values are not going to be part of the 

sample resulting from weighted bootstrap either although it is supposed to 

come from h. For this reason the support of g should be the same as that of 

h and g should have fatter tails than h.

Another problem, possibly the worst, is sample deterioration. This will 

be made clearer with an example. Imagine a situation where data yi, y2 , • • • 

arrive sequentially, generated by a probabilistic model p{y t \ %)  that depends 

on an unknown parameter x. From the model it is clear that 1 / 1 , t/2 > ■ • ■ are 

mutually independent given x. We want to study the resulting posteriors 

p(x\yi),p(x\y2), • • • |yt)» • • • where y t = (?q,. . . ,  yt). This accumulation of

knowledge about a constant quantity based on sequentially arriving data is 

called Bayesian learning. Two successive posteriors are connected by the 

formula

( 1 >  p { y t + i \ x ) p ( x \ y t ) ( , ^  f 1 ^  ^
P W t+ l) =  --- 'p(y~^ |y )---- ^  (L9)

The prior distribution p(a;) completes the chain. The denominators in (1.9) 

cannot usually be calculated and if p(x) and p(yt\x) are not of any standard 

form the only way to study the posteriors will be to obtain samples from them. 

From (1.9) we can see that weighted bootstrap is very handy for this purpose. 

Each posterior can serve as the importance sampler for the subsequent one.

If we start with a sample x'(l), . . . ,  x(n) from the prior p(x) and assign to each
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x(i) weight w(i) =  p(j/i|a;(z)), application of weighted bootstrap will lead to 

a sample a?i(l),. . . ,  3 p(n) from p(x\y{). If we assign to each x\(i) weight 

=  p(V2 l '̂i('O)) application of weighted bootstrap will lead to a sample 

2 :2 (1 ) , . . .  ,X2 (n) from p(x|y2)- Successive applications of weighted bootstrap 

in the same fashion will provide us with a sample 2 . (̂1 ) , . . . ,  .x‘t(n) from each 

posterior p(x’|y j .  All these samples consist exclusively of points that were 

in the initial sample x ( l ) , . . . ,  x(n). Moreover, during the transition from 

Xt(l), . . . ,  x t(n) to x t + 1 (1 ) , . . . , x t + 1 (n) some points contained in the first sam­

ple may not be picked at all during the resampling, especially if their weight 

is small, while points with large weight will probably be picked more than 

once. The points that are not picked are lost forever since x t+\(1), . . . ,  xt+i (n) 

will be the basis for all future resamplings. In other words each sample 

xt ( l ) , . . . ,  x t(n) contains at most the same number of but most probably fewer 

distinct points than its preceding one. If t is very large we may end up with 

Xi(l) =  . . .  — xt{n). Therefore, successive applications of weighted bootstrap 

cause the samples to deteriorate. A side-effect of deterioration is that the 

variance of the samples becomes unrealistically small and underestimates the 

variance of the distribution they are supposed to come from.

Sample deterioration does not only happen in Bayesian learning. Suppose 

again that g is the importance sampler and h is the target. If the main 

support of g is in an area of small support under h, then probably very few 

points among the sample from g will fall in the main support of h. These 

points will receive very large weights compared with the rest of the sample 

and will be favoured during the resampling. The resulting sample will mainly 

consist of many replicates of these few points.

Givens and Raftery (1996) propose a measure of sample deterioration. If the
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sample from the importance sampler had size n and all the normalized weights 

were equal to ^ we would expect the weighted bootstrap to give a sample of 

size m  with n (l — exp(—m/n))  distinct values. If we apply weighted bootstrap 

with the actual normalized weights and get a sample of size m  with Q distinct 

values then the measure U of sample deterioration is

If among the weights there are a few large ones then one would expect the 

numerator of (1.10) to be a lot smaller than the denominator and U to be 

less than 1 . If the weights are close to being equal to each other then we may 

even get U greater than 1.

Another way to measure sample deterioration is the effective sample size. 

This derives from importance sampling theory as follows. Suppose we want 

to estimate

U ( 1 .10)

If we have a sample nq,. . . ,  xn from h(x) — j y ^ dx the estimator is

T. E fcl k ( x i )

n

while if the sample comes from an importance sampler g the best estimator 

is
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7 =  £ " = 1  W j k ( X i )

with Wi =  Comparing the variances of these two estimators, Kong et al 

(1994) state that, if k does not vary too quickly with x t

var<?M_ ^ « i  +  v a r ,K ) ,

where w? = he. it is the importance weight we would have if we knew 

h fully. Then the effective sample size (ESS) is defined as

ESS =  U , . . (1.11)
1  +  varff(iy*)

Imagine a sample of size ESS from h. Then the variance of the sample mean 

of k(x) will be var/t(A;(X))/ESS. But also varh{k) — varh(k(X))/n.  Then,

varh{k{X)) _  - nvar,,(fc) _  , r ,  _n_ _  var„(fc)
ESS ' ESS "(' } ESS varh(k)

n
ESS =

1  +  varg(w$)'

As we can see from the equation above, ESS is the size of a sample from h that 

would be required for that sample’s mean of k(x) to have the same variance 

as the mean A; of a sample of size n from g. If the variance of the weights is 

too large the effective sample size will be very small. If all the weights are
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equal to each other, which will happen if g =  hy then ESS =  n. Also, large 

variance of the weights means that some of them will be a lot larger than the 

rest and therefore if we apply weighted bootstrap the resulting sample will 

be very poor. So, small ESS is a warning signal against applying weighted 

bootstrap.

In practice, instead of having w* we have W{. We can estimate w* by

nwi
2 ^j=i

/rid
sri'O

W . ;

_ h(xj) 
f  f (x)dx g(xi)'

Then the sample variance of w* can be used to estimate ESS.

Carpenter et al (1997) suggest another estimator of ESS which however de­

pends on the function k. Therefore, if many different functions are of interest 

the estimator of Kong et al (1994) is clearly advantageous.

Another indicator of potential problems from applying weighted bootstrap is 

the en tropy  of the normalized weights relative to  uniform ity

V- loS& 
fct logn

which is proposed by West (1993). Small values of it indicate that there is a 

problem while values close to 1  show that the weights are close to being equal 

and we can go ahead with weighted bootstrap.

A remedy against all the problems mentioned above is to increase the ratio 

J  of sample sizes. This is quite inelegant since it relies just on “brute” force. 

Lee (1996) provides a theoretical argument giving the required n for any
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combination of to, h and g. The author proves that the number of points that 

must be drawn from g until we get one belonging to the support of h follows a 

geometric distribution and then derives its expectation. If this expectation is 

a  then n must be {ma} where {k} denotes the smaller integer that is greater 

than or equal to k. Incidentally, Lee (1996) also provides a way of calculating 

both n and m. It is based on the maximum mean squared error that we are 

willing to allow between the true cumulative distribution function (cdf) and 

the cdf implied by the sample y \ , . . . ,  ym.

A second way of fighting sample deterioration is to ensure that the sample 

from the importance sampler does not contain points that are going to have 

a very small normalized weight. This is proposed in Gordon et al (1993) 

under the name of p rio r editing. In the Bayesian learning context, at each 

time t we want a good sample x t( l ) , . . .  ,xt (n) so that most of its members 

will have a good chance of also being part of a;t+1 ( l ) , . . .  , x t+\ (n). This is 

achieved as follows. Suppose that we have already chosen £*(1 ) , . . . ,  Xt(k — 1 ) 

by resampling from among ^ ^ ( l ) , . . .  , 2 q_i(n). At step k we pick x J with 

Pr(:r* =  2 t_i(*)) =  p(̂ ! - i ( 3 )) ‘ If p Ĵt+^x t) is smaller tlian a thresh­
old chosen by us we reject x% and sample another point. When we find x J 

with p(yt+i\xt) larger than the threshold we set xt(k) — x% and move on 

to get x t (k + 1). Therefore, in order to implement this method we must 

wait for yt+i before we can obtain the sample from p(a;|yt). Two disadvan­

tages of the method are the subjective choice of the threshold and the fact 

that in order to acquire aq(l), . . . ,  xt(n) a random number of draws from 

among a:t_ i ( l ) , . . .  ,a;i„i(n) is required. Moreover, if very few points among 

rrt—i (1 ). • • ■, a:t_i(n) have large p(yt+i|;Ci_i(£)) we will still suffer from sample 

deterioration.
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To demonstrate the sample deterioration caused by weighted bootstrap in 

Bayesian learning problems we conduct a simple experiment. We are studying 

a 1 ) population from which we sequentially obtain observations 2/1 , j/2 > • ■ • 

Our prior knowledge about p  is expressed by the prior distribution p(p) which 

we take to be iV(0,1). After the arrival of each new observation yt the pos­

terior of p becomes p(p\yt) — p{p\yu . . . ,  yt). Because both the prior and the 

model generating the data are Normal the posterior is also Normal. See, for 

example, Gelman et al (1997, p.45). The mean and variance of p(//|yt) are

1 Vi A 2 IH —   and cjt =1 + t  L 1 + t

However, we assume that we do not have the posteriors in closed form. In 

order to sample from them we use weighted bootstrap in the way we demon­

strated above. We start with a sample of size 50 from the prior and end up 

with a sample of the same size from each posterior. Here we only consider 8  

observations from N(p,  1). We take p =  0 so that our prior for p  is as good 

a guess of the “unknown” value as could be.

On each posterior sample we performed a Kolmogorov-Smirnov goodness-of- 

fit test to see whether it indeed came from its corresponding distribution. 

For all 8  samples the p-values of the test statistic were smaller than 0.007. 

Figure 1 . 1  shows the histogram of the prior sample and the histograms of 

the posterior samples. Over each histogram is superimposed a plot of the 

distribution the sample is supposed to come from. We can see how quickly 

the samples deteriorate. The sample from p(p\y%) contains only 8  distinct 

values. A sample size larger than 50 would have given better results but 

would have just delayed deterioration.
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Before closing this section we present two methods designed in order to speed 

up the weighted bootstrap. They are both based on the following observation. 

If x’i , . . . ,  xn is the sample from the importance sampler, gi , . . . ,  qn are the 

corresponding normalized weights and n is the required size of the sample from 

the target, each X{ is expected to be picked nqi times during the resampling. 

Liu and Chen (1995) suggest doing no resampling but including each Xi [nqi] 

times in the resulting sample, where [k] is the integer part of k. Because 

[ng*] < ng* we will have £?=i [raft] < n. I fX ^ Jn g J  < n we fill the n — 

remaining places by resampling from among aq, . . . ,  xn with the probabilities 

of selection now being g* — Beadle and Djuric (1997) propose to pick 

during resampling each of aq, ...  , x n with probability If x k is picked we 

include in the resulting sample [ngj copies of it. The same process is repeated 

until the resulting sample reaches size n. If a point Xi with [ngj < 1  is picked, 

one copy of it is included in the resulting sample but then it cannot be included 

in it again. Finally, see Carpenter et al (1997) for a faster algorithm for 

implementing the ordinary weighted bootstrap.

It must be noted that wherever resampling is used re jection  sam pling (Rip­

ley (1987)) could be used instead. If for example, the prior distribution p(x) 

is easy to sample from and an upper bound C(y) can be found for the likeli­

hood p{y\x) then we can generate points x* from the prior and points u from 

a Uniform distribution on (0 ,1 ) and accept x* as coming from the posterior 

if it < p(y\x*)/C(y). The advantage of this method over resampling is that 

the resulting sample comes from the target even for finite sample sizes. The 

disadvantage is that the prior sample size is a random variable and it is not 

known in advance. See also Ripley and Sutherland (1990), Smith and Gelfand 

(1992), Acklam (1996) and Hurzeler and Kunsch (1998).
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1.3.2 Sequential im portance sam pling

We deviate briefly from our course in order to present the method of sequen­

tial importance sampling. Although it does not involve resampling, famil­

iarity with it will facilitate the demonstration of the application of weighted 

bootstrap in dynamic model settings.

The method first appears in Kong et al (1994), under the name of sequential 

imputation. The objective of that work is the analysis of missing data 

problems. More specifically, data arrive sequentially. They are

not complete because each y t is accompanied by a missing part x t . If 6 

is a parameter of interest we would like to study its posterior distribution 

p(0 |xjv,y]v) =  p { 0 \ x i , y i : . . .  , x N , y N) but since only y N is available we have 

to work with p(0|yjy). The former is called the complete data posterior and 

the latter the incomplete data posterior. Suppose that the complete data 

posterior is available in closed form while the incomplete data one is not. 

Then, because

pW y n) = /  p( l̂ îv>y,v)p(xiv|yiv)^x v̂> U-12)

if we had a sample Xyv(l),. . . ,  xjv(n) from p ( x N \ y N ) we could estimate (1 .1 2 ) 

by

p ( % jv) =  ^yp( ®| xwW. y«) -
n i=1

If p(x;y |y^y) is not available for sampling we can use importance sampling. 

We will draw x Ar(l) , . . .  ,xjv(n) from an importance sampler g and use the
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estimator

- ( % w )  =  ( L 1 3 )

Ei- l  wi

with Wi oc ■ Note that g can depend on the observed data y N so

that it is close to the target p{x.^\yN).

This generation of multiple copies of the missing data values from their condi­

tional distribution given the observed data is called multiple imputation. If 

it is of interest to study any of the intermediate posteriors p(0 |yt),l < t < N , 

we will have to employ sequential imputation and get a sample x t ( l ) , . . . .  x t (n) 

from each p(xt |yt). Suppose that at time t such a sample is available from 

f/(xf) and that each point xf(z) has the appropriate importance weight wt(i). 

Then, when yt+x arrives we will need a sample xt+i(l), ■ ■ - , x i+1 (n) from an 

importance sampler <7 (xt+i) with weights rut+1 (i). Sequential imputation, or 

sequential importance sampling as it is also known, allows us to acquire this 

new sample without having to throw away the former. To do this we ex­

press g(xt+i) as g(xt+i\xt)g(xt). For each x t{i) we generate £i+i(z) from 

g(xt+i\xt(i)) and get x i+i(z) =  (zt+i(i) ,x t(z)). Then its weight is

p(xt+1 (z) |yt+1) p{yt+1 |xt+1 (£))p(xt+i (z)\yt)
Wt+l[i) *  </(xm (z)) K g(xt+l^) \x t( i ) ) 9 ^ m

p{*t W ly J  p{yt+1 |xf+i (z) )p{xt+1 W |xt (z)} y t)

oc wt (i)

<KxtW) &(xt+i(i)lxt(i))
P(yt+1 ixt+i (z))p(zt+i W |xt(z), y t)

9(xt+i( 0 lxtW)

Sequential imputation can be applied in any dynamic model if the unknown
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states x t are viewed as missing data. Note that if p(xt|yt) is approximated by

over the support {xf( l ) , . . .  ,x £(n)} then the filtering distribution p(xt |y£) can 

be approximated by the discrete distribution with the same masses as above 

over the support (:c£( l ) , . . . ,  cct(n)}. This view is taken for example by Liu and 

Chen (1995) for the estimation of hidden states in a signal processing problem. 

It is just a small step to go from sequential imputation to the repetitive use 

of weighted bootstrap. We describe how this is done in the next section.

1.3.3 W eighted b ootstrap  and dynam ic m odels

Imagine a dynamic model like those described in Section 1.2. We have a 

system whose unknown state at time t is x t and data yt are generated by the 

probabilistic model yt — A(xt, e£) which can be described by the distribution 

of yt given xt, p{yt\xt)- Then, at time t +  1 the state becomes x t+i which 

is generated by the probabilistic model xt+i = B(x t,r]t) that can also be 

described by a conditional distribution p(xy+1 |a;t)- Our knowledge about the 

initial state x\ is expressed by the distribution p(a;i). We have the same 

assumptions about et and i]t which we made in Section 1 .2 . At each time point 

t we want a sample ££(1 ) , . . .  , x t(n) from p(££|y£), the filtering distribution. 

Suppose that these distributions are not available in closed form and that we 

cannot sample directly from them. We will use weighted bootstrap.

Recall formula (1.6). It is clear from it that at time t the prior p{xt\yt_i) could 

be a good importance sampler for p(x£ |y£). For the time being we are going to 

consider only this choice. In later chapters we will present other alternatives. 

Suppose that somehow we have managed to get a sample xl (1 ) , . . . ,  x*t (n) from

the discrete distribution with probability masses
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p(^£|Yi—i )■ Then the weight assigned to each x*(i) will be wt(i) = p ( ^ | 4W )-  

Application of weighted bootstrap will give a sample a:t( l ) , . . .  , x t (n) which, 

if n is large, can be considered as coming from p(x£|y j .  We call this an 

“update” step because we mimic with samples the effect that (1.6) has on the 

distributions they come from.

In order to proceed to the next time point we must obtain a sample a;J+1(l),

. . . ,  4 + 1  (n ) from the next prior p(a;t+i|y t). Notice that we maintain the same 

sample size n throughout. We assume for the time being that the distribution 

of rjt is known and that we can sample from it. We then obtain a sample 

rjt(1 ) , . . . ,  rjt(n) from it and for each xt (i) we get 4+ iW  = This

is equivalent to sampling 4+ i W fromp(xi+i|xf(z)). Then ■̂ f+i (!)>*••> *̂ t+i ir) 

is the sample we want. We call this a “propagation” step because here we 

mimic the effect that (1.7) has on the distributions the samples come from.

Having started with a sample rr^(l),. . . ,  4 ( n) h’om p{%i) (also assuming that 

p(x i) is available for sampling) we can perpetuate this alternation of update 

and propagation steps to obtain samples from all the distributions we are 

interested in. For applications of the method to contour tracking and to 

clinical patient monitoring see Isard and Blake (1996) and Berzuini et al 

(1997) respectively.

Notice that, unlike MCMC, weighted bootstrap makes very economical use of 

the available resources. The propagation step means that all the knowledge 

expressed via the sample from the current posterior at each time is used in 

the next time point instead of having to start from scratch. Moreover we do 

not simulate any Markov chain which must converge to an equilibrium distri­

bution. Propagation has also another very significant effect. Each posterior 

sample may contain less than n distinct values since it is the result of weighted
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bootstrap. The propagation step eliminates all replicates because each X t( i )  

is associated with its own individual ?y(i). Of course, for this effect to take 

place ry has to be a continuous variable but this is usually true for system 

disturbances.

However, sometimes an unlikely yt may turn up leading to most of x^(i) having- 

very small p(yt\xl(i)). Then a few values will dominate during resampling and 

the resulting sample will be very bad. Although the next propagation step will 

correct things, inference about p(xt\yt) will be unreliable. We can use any of 

the corrective methods described in Section 1.3.1. If we want the prior sample 

at time t + 1  to be of size larger than n we can pass each more than once 

through the system equation, each time with a different ry point. We can 

also use prior editing by getting each xt point that results from resampling 

at time i, passing it through the system equation with its own individual ry 

point and rejecting it if the result, xt+\ say, gives p(yi+i|:ci+i) smaller than a 

chosen threshold.

However, we will present in the next chapter methods that do not need to 

resort to such measures and which still manage to avoid sample deterioration.

Weighted bootstrap can also provide samples from any other distribution of 

interest. For example at some time t we may be interested in p(xt-k\yt)i f°r 

0 < k < t. This is called the sm oothing d istribu tion . We may also be 

interested in prediction, i.e. in probabilities of the form p(xt+k\yt), for 0  < k. 

For an article detailing the use of weighted bootstrap for filtering, smoothing 

and predicting in dynamic models, see Kitagawa (1996).
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1.4 Properties of som e descriptive statistics  

of a weighted bootstrap sam ple

When a sample of independent observations Yu . . . , Y n is taken from any 

population it is well known that the sample mean and variance are unbiased 

estimators of the respective population parameters while the variance of the 

sample mean is n times smaller than the population variance. If a sample is 

obtained by weighted bootstrap we would like its statistics to have the same 

properties. This seems to be the case only for the expectations of the sample 

statistics and only in the limit as n — >■ oo.

Suppose that X =  (Ah,. . . ,  Xn) is a sample from a distribution g while the 

target is another distribution hoc f .  Suppose that via weighted bootstrap we 

obtain Y1}. . . ,  Yn. Define the sample statistics as

Their expectations can be calculated by a two-stage process. We first calculate 

expectations conditional on X and then calculate the expectations of the 

results with respect to g. Mathematical details are given in Appendix A.l 

but the final results are

(1 1 4 )
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Eg{c%) «  Yfc( X ) - - C < w h X 2,

f  | a m o ™ .  (.Y, M |l) -  i C „ , (i-, A g } )  (1.15)

Of course it is assumed that all the expectations involved exist and are finite. 

As we can see the non-leading terms in (1.14) and (1.15) go to 0  as n — > oo.

More credibility is lent to these results by a result mentioned in Geweke 

(1989), namely that under weak conditions

spn fHilh(r \

Yj- 1  g(xi)

where k is any function of X  such that its expectation exists and is finite. 

Notice that if k(x) =  x the ratio on the left-hand side of (1.16) is just i?[Y|X]. 

(1.16) shows that one could easily generalize (1.14) and (1.15) for the sample 

mean and variance of any function k(X),  i.e. for

As regards the variance of Y, taking into account that the Yi, . . . ,  Yn are not 

independent, we arrive at the following result
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( v  v h (X ) \+ - r - C o v h l X , : Kn£ g { X ) j  rfi [ ° 0Vh [X ' g ( X ) )
h ( X ) \

(U7>n

Here we see that there are non-leading terms going to zero at the same rate 

as the leading one. Therefore, the variance of the mean is not what we would 

like it to be. The simulations will show that it is actually larger.

If a sample consists of independent observations its mean is asymptotically 

Normal. In a weighted bootstrap sample the observations are not independent 

as we have seen. Berzuini et al (1997) however, prove a central limit theorem 

for the mean of a weighted bootstrap sample. In order to translate it into our 

case we first present it in the context in which it is proven by the authors. They 

refer to a dynamic model problem where at time £, the target of resampling 

is pt(xt), with xt =  (xt_i ,xt) and xi =  aq. They implement resampling as 

follows. At t = 1  they obtain rci(l), . ..  , x'i(ni) from Pi{xi). At time t = k 

they draw Xk{i) from a density /jt(xfc|x/c-j.(i)), for i =  1, . . .  ,n jt- 1 - Then each 

point (xjfc_i(z),Xfc(i)) gets weight

Resampling with probabilities proportional to these weights gives sample 

Xjt(l),. . .  ,xjb(njb), allegedly from pfc(xjb). Define the quantities

„  , ,  . , I 4 x k ) i f t < k
(cix‘) = s c(xfe) otherwise
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Eptft+l(c) = j  c{xt+l)ft+1{xt+i\xt)pt{xt)dxt+L

and

_____ Pk(Xk)______  ^  t < k
wkt{Kk) = \

1  otherwise

Then, if c =  ZlSi c(xfc(0)/nfc> the authors prove that

°k N ( 0 , 1 ), as 77a, • ■ ■,nk —  ̂oo
'k X ‘H4=1 m akU

where ukll = EPlfl+l (E2fkj+2 [(c -  EPk(c))wkl\xl+l\ y  For k = 2  we get

c2  -  EP2( c) JD,

m Z i 2 1 1  +  i ' ^ 2 1 2

iV(0,l), as 7 7 1 , 7 2 2 — > OO (1-18)

where

72211 — E ,Vi h and U2 1 2  =  ^ ( c ) .

In our case consider h =  p2, 9 =  P1 / 2  and c(x) — x. Then (1.18) says that
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oo (1.19)
\ j \  (̂ 211 +  W2 1 2 )

with

u 2 1 1 = £ 9  ( X - E h( X ) f  ( ^ | y )  and u2l2 = Vh(X).

Note that expanding (u2u  +  ^ 2 1 2  ) /n  will give the terms that in (1.17) are 

divided by n. Equation (1.19) shows that even asymptotically the variance of 

the sample mean is larger than the variance of the mean of a random sample 

from the target. Of course (1.19) will hold for any function c(x). To obtain 

all the results above it is assumed that the involved expectations exist and 

are finite.

1.4.1 Sim ulation study

In this section we present a simulation study conducted in order to exam­

ine the validity of formulae (1.14), (1.15) and (1.17) and of the asymptotic 

Normality of the sample mean.

Inference about a Normal population a2) is based on a set of observations 

2/i) ■ • • 1 Vk obtained from it. If the mean (i of the population is unknown, while 

the variance a2 is known, we assign to jit a prior which usually is iV(/zo,<To), 

for specified [xQ, ctq. The pdf of the observed data viewed as a function of /x,



CHAPTER 1. WEIGHTED BOOTSTRAP 31

T k  Vi  2resembles a Normal density with mean y = ^  and variance The

posterior distribution of p is also Normal, N(pi ,a l)  with o\  =  ( 4  +  ^ )  

and fa — cti 4 - . If on the other hand p is known but a2 is unknown

we assign to a2 a prior distribution which usually is SoX,72- This simply 

means that we assume that a priori ^  ~  x t  and that E(o2) =  an(I 

V(a2) — ^ _ 2y2lv~4 ) • we are happy with a Sqx^2 prior for a2 we can choose 

a particular one according to our beliefs about the mean and variance of a2. 

Taking S  =  ~ n)2 the pdf of the observed data viewed as a function

of (72 ,

/(<t2) k & ) 2 exp ( ~ £ d  ■

resembles a SXk- 2  distribution. The posterior of cr2  can be proved to be 

(So +  S)x„lk-

For our experiment we took p =  0 and a2 = 1. We drew k =  10 observations 

from the population. The sample statistics were y — —0.2031 and S  =  8.7545.

Irrespective of which of the two parameters is the unknown one, the pdf of the 

data (or the likelihood) can be viewed as a member of the same distributional 

family as the prior. This is what is called conjugacy. We can then choose 

a prior that closely resembles the likelihood or a prior that is far from it. In 

our study we considered the following cases.

For p unknown we took the following four priors.
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N ( ~  0.15,0.2), 

iV(—0.15,1.5),

AT(0.15,1.5),

IV(0.15, 0.2).

For a2 unknown the likelihood resembles a distribution of the SxH2 family 

with mean 1.4591 and variance 1.0645. We then considered the following four 

priors for a2.

S0 = 1 1 .2 , v — 9 —> mean=1.6 , vai—1.024,

So = 4.8, v =  5 —» mean=1.6 , var=5.12,

So — 260, v — 54 —> mean=5 , var=l,

So =  60, u — 14 —y mean=5 , var=5.

The aim of the study was, considering each prior in turn, to take 1000 samples 

of size n  from it and update each one of them by weighted bootstrap to 

transform them into samples from the corresponding posterior. We stored 

the mean and variance of each of the resulting samples. Then, if we want to 

see whether the weighted bootstrap sample mean is an unbiased estimator of 

the posterior mean we can average the 1000 simulated sample means. If we 

want to see whether the weighted bootstrap sample mean is asymptotically 

Normal we can draw a histogram of the 1000 sample means or perform a 

Kolmogorov-Smirnov goodness-of-fit test on them. The true posterior means 

and variances are available for comparison in all cases. We considered two 

different sample sizes, n = 100 and n ~  1000. For all the simulations we used 

the same ten observations from iV(0,1).

Tables 1.1 and 1.2 refer to the case of unknown mean p,. Table 1.1 presents 

the mean and variance of each posterior. We have also calculated for each 

sample size and prior the values of formulae (1.14),(1.15) and (1.17) and
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present them in the rest of Table 1.1. We see that the expectations of the 

sample statistics are close to the corresponding posterior values. Only for the 

expectation of the variance and for n =  1 0 0  do we see a discrepancy from the 

corresponding posterior value. Note also that the variance of the sample mean 

is two to three times larger than one nth of the posterior variance. Table 1.2 

presents the simulated expectations and variances of the sample statistics. All 

of them are close to their theoretical value. Only for the expectation of the 

sample variance with n — 1 0 0  is the simulated value closer to the posterior 

value rather than the theoretical one. Tables 1.3 and 1.4 refer to the case of 

unknown variance. We observe the same pattern there too, only this time all 

the expectations are close to the posterior values.

We performed Kolmogorov-Smirnov tests on the samples of sample means for 

all the cases considered. We always tested against the Normal distribution 

with mean and variance given by (1.14) and (1.17). Only for the case of un­

known variance, 6 0 = 6 0 , v= 14 and ?i=1000 did we get a p-value smaller than 

0.05, namely 0.006. Note that for this case when we tested against a Normal 

distribution with mean and variance equal to the simulated ones Normality 

was not rejected. Figure 1.2 shows the histograms of the 1000 simulated sam­

ple means and variances for each posterior in the case of unknown mean. We 

can see the values clustering around their theoretical expectations and that 

the histograms of the sample means do not refute the notion of Normality. 

The same happens in Figure 1.3 which refers to the case of unknown variance. 

Here, although the posterior is not Normal the sample means still seem to 

follow a Normal distribution.
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1.5 Sum m ary and discussion

In this chapter we have presented an alternative to MCMC for sampling from 

intractable distributions. This method, the weighted bootstrap, is not yet as 

widespread as MCMC and it probably never will be. This is because of two 

fundamental flaws that it has. The first is that it approximates the density it 

samples from by a discrete density no matter what the nature of the target 

density is. The second and worse problem is that the samples it produces 

usually contain more than one copy of some of their members. In some cases 

they may exclusively contain many copies of very few distinct points.

However we believe that when fast analysis of a dynamic model is needed 

weighted bootstrap is unchallenged. While MCMC has to start from scratch 

in order to sample from each filtering distribution, weighted bootstrap can give 

samples very quickly and, furthermore, can propagate them through time in 

a way that mimics the evolution of the filtering density. This propagation 

partly reverses the effects of sample deterioration as well. Moreover, MCMC 

is further slowed down by the need to monitor the convergence of the Markov 

chain being simulated. Weighted bootstrap on the other hand has simple 

to calculate diagnostics, like the effective sample size, that monitor its per­

formance. Therefore, although MCMC will still be preferable for an off-line 

analysis, when speed is required weighted bootstrap is the choice.

We know that samples resulting from weighted bootstrap can asymptotically 

be considered as coming from the target density. We have proved in this 

chapter that the sample mean and variance are asymptotically unbiased es­

timators of the corresponding parameters of the target. However, it turns 

out that the variance of the sample mean is actually larger than that of the
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mean of a random sample from the target. Moreover, although the weighted 

bootstrap sample does not consist of independent observations a central limit 

theorem can be established for the sample mean.

Although weighted bootstrap is intuitively simple, care is needed in its imple­

mentation. We must choose an importance sampler that covers the support 

of the target adequately. Otherwise, if all the sample points we get fall in 

an area assigned small probability by the target we may get a large ESS and 

a false impression that everything goes well. Before applying the weighted 

bootstrap some exploratory analysis of the target must be performed so that 

no important parts of it are missed by the importance sampler. Such analy­

sis of course is the prerequisite of any method for sampling from intractable 

distributions.

In the next chapter we are going to present methods that modify the o rd in a l 

bootstrap so that it gets rid of some of its flaws while it maintains all its 

virtues.
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Prior 1V(—0.15, 0.2) iV(—0.15,1.5) iV(0.15,1.5) iV(0.15,0.2)
Posterior li i =  -0.1854 

o\  =  0.0666
Hi =  -0.1998 
of = 0.0938

Hi =  -0.181 
of =  0.0938

Hi = —0.0854 
of — 0.0666

II t—i o o

E(Y)  =  -0.1853 
V(Y)  = 0 . 0 0 1 2  

E(a$) = 0.0635

E(Y)  = -0.1997 
y (y )  =  0.0023 
£(<4) =  0.0867

E(Y) = -0.1807 
V (y) =  0.0023 
E(cr$r) = 0.0873

E(Y)  = -0.0847 
y ( ? )  =  0.0013 
E(a^)  =  0.0649

n = 1 0 0 0

E(Y)  =  —0.1854 
V(Y)  =  0.00012 
E(ay) ~  0.0664

E(Y)  ~  -0.1998 
V{Y)  =  0.00023 
E(a$) = 0.0931

E(Y)  = -0.181 
V(Y)  = 0.00024 
E(o-2) = 0.0931

E(Y)  =  -0.0853 
V(Y)  = 0.00013 
E{a$) = 0.0665

Table 1,1: Posterior means and variances and expectations and variances of 
weighted bootstrap sample statistics in the case of inference for the mean of 
JV(/i, 1).

Prior 77(—0.15,0.2) iV(—0.15,1.5) iV(0.15,1.5) 77(0.15,0.2)

n = 1 0 0

E(Y)  =  -0.1844 
V(Y)  = 0 , 0 0 1 2  

E{g\ )  =  0.0669

E(Y)  = -0.1998 
V{Y) = 0.0024 
E(cj* ) -  0.0936

E(Y)  =  -0.183 
P (F ) =  0.0024 
£(of,) =  0.0935

E{Y)  rr -0.0847 
v { ? )  =  0.0013 
E(<t£) =  0.0664

n = 1 0 0 0

E(Y)  =  -0.1857 
V(Y)  =  0.00012 
E{cTy) =  0.0666

E(Y) =  -0.2004 
V(Y) =  0.00024 
E(a£) =  0.0938

E(Y)  = -0.181 
V{Y)  =  0.00025 
E ( a ^ ) =  0.0939

E(Y) =  -0.0847 
V(Y) -  0.00013 
E(tr$r) =  0.0664

Table 1.2: Simulated expectations and variances of weighted bootstrap sample 
statistics in the case of inference for the mean of iV(/r, 1 ).
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Prior Ho =  1.6, <jg =  1.024 
So =  11.2,1/= 9

Ho =  1.6, ctq =  5.12 
So =  4.8, v = 5

Ho =  5, cr̂  =  1 
S0  =  260, z/ =  54

Ho =  5, <Jq =  5 
S0 =  60, is =  14

Posterior H i  =  1.1738 
a 2 =  0.1837

Hi  =  1.0427 
o'2 =  0.1977

H i  =  4.3348 
a? =  0.6263

=  3.1252 
a 2 = 0.9767

ootHilrt

E(Y)  = 1.1752 
V ( Y ) =  0.0032 
E{al )  =  0.1834

E{Y)  =  1.0437 
V { Y ) = 0.0033 
E(c%) =  0.1978

£ (F ) =  4.3427 
V(Y)  = 0.0169 
E(a$) = 0.615

£(Y) =  3.1477 
V{Y)  =  0.0373 
.E(cry) =  0.951

n='1000
E{Y)  =  1.1739 
V(Y)  = 0.00031 
E(cr$) = 0.1837

E{Y) = 1.0428 
V{Y)  = 0.00033 
E(a^)  =  0.1977

E{Y) =  4.3355 
y (y )  =  0.0017 
E(a^)  =  0.6252

£?(Y) =  3.1275 
y ( y )  =  0.0038 
E(<j\,) = 0.9742

Table 1.3: Posterior means and variances and expectations and variances of 
weighted bootstrap sample statistics in the case of inference for the variance 
of JV(0, a2).

Prior Ho =  1-6, <7q =  1.024 
S0 =  11.2, z/ =  9

Ho =  1-6, a2 = 5.12 
S0 =  4.8, v  = 5

fJ- o =  5,^o =  1 
So =  260, v =  54

Ho = = 5 
So = 60, z/ =  14

oo1—!s=!

E(Y)  = 1.1738 
y (y )  -  0.0031 
£(<4) =  0.1812

£ '(y) =  1-0446
y (y )  =  0 . 0 0 3 3

£(<4) = 0.1989

E{Y) = 4.346 
V(Y)  = 0.0169 
E(cr2) = 0.6107

jB?(y) =  3.1502 
V(Y)  =  0.0377 
E { g \ )  = 0.9413

n=1000
E{Y)  =  1.175 
V(Y)  = 0.00031 
E(o$) = 0.1847

E{Y) = 1.0428 
V(Y)  = 0.00033 
£(<4) =  0.1971

E(Y)  =  4.3351 
V(Y)  = 0.00174 
£(<4) =  0.6253

E(Y)  = 3.1336 
V(Y)  = 0.0041 
E ( 4 )  =  0.9733

Table 1.4: Simulated expectations and variances of weighted bootstrap sample 
statistics in the case of inference for the variance of N{0, a2).



CHAPTER 1. WEIGHTED BOOTSTRAP 38

prior 1st posterior 2nd posterior

o

b
o

b
©

‘1•2 0 1 2 3-3 -2 - 1 0 1 2 3  -3 -2 - 1 0 1 2 3

o

b
o

p

3rd posterior 4th posterior 5th posterior

O

O

o

o

o
o
o

-2 -1 1 2 3-3 0

p

o

d
o
pd

-3 -2 0 1 2 3-3 -2 - 1 0 1 2 3  -3 -2 - 1 0 1 2 3

d

pd

6th posterior 7th posterior 8th posterior

d

q
o

-2 •1 0 1 3- 3

o

-3 -2 0 1 2 3

o

1 2•3 -2 ■1 0 3

Figure 1.1: Prior and posterior samples for the mean of a 1V( ,̂ 1) population. 
The prior is 1V(0,1) and the posteriors are based on 8  data points taken 
sequentially from the N(fi^ 1) distribution with (i = 0. Bayesian learning has 
been used. The posterior samples were obtained via weighted bootstrap. The 
curves are the corresponding true posteriors.



CHAPTER 1. WEIGHTED BOOTSTRAP 39

Prior: N {-0 .15 ,0 .2)
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Figure 1.2: Means and variances of 1000 weighted bootstrap samples from 
the posterior of the mean of a N(fi, 1) population for four different choices 
of prior. The vertical lines denote the location of the expected value of the 
sample means and variances according to formulae (1.14) and (1.15). The top 
two rows show histograms of means and the bottom two show histograms of 
variances.
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Prior: S = 1 1.2 , n=9 Prior: S = 4 .8  , n=5 Prior: S = 2 6 0  , n=54 Prior: S = 6 0  , n = 14

Prior: S = 1 1 .2  , n=9

0  1 0  2 0.3 0  4 0  5 0  6  0  7

Prior: S = 4 .8  , n=5

0.2 0.4 0 6  o.e

Prior: S = 2 6 0 . n=54 Prior: S = 6 0 , n=14

0  4 0  6 0.8  1 0  1.2 1 0  1.5 2.0  2.5

Figure 1.3: Means and variances of 1000 weighted bootstrap samples from the 
posterior of the variance of a iV(0, a2) population for four different choices of 
S X~2 prior. The vertical lines denote the location of the expected value of 
the sample means and variances according to formulae (1.14) and (1.15). The 
top two rows show histograms of means and the bottom two show histograms 
of variances.



Chapter 2

Im proving the weighted  

bootstrap

2.1 Introduction

In the previous chapter we presented the weighted bootstrap as an appeal­

ing alternative to MCMC for sampling from intractable distributions. The 

samples it generates have properties that resemble some of the properties 

of samples taken directly from the distributions of interest. It is also very 

straightforward to implement. It is especially advantageous over MCMC in 

situations where we need samples from many complicated distributions in a 

short time and with the least intervention from the user. An example of such a 

case is the unsupervised real-time analysis of a nonlinear and/or non-Gaussian 

dynamic system.

However, we also highlighted two disadvantages of the method. One of them 

is the deterioration experienced in the samples it produces which could be due

41
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to many reasons: bad choice of an importance sampler, presence of unusual 

data or repetitive application of the method on the same pool of points. The 

other is that the distribution weighted bootstrap used to approximate the 

target is always discrete.

In this chapter we present some methods designed to overcome these prob­

lems maintaining at the same time, as far as possible, the good properties of 

weighted bootstrap. Whereas the latter samples x i , . . .  , xn from the impor­

tance sampler and approximates the target distribution by a discrete one with 

masses {gi, . . .  ,qn} over the sample points, some of the corrective methods 

approximate the target by a continuous density constructed by {^i , . ..  , xn} 

and { ( f t , , qn}. Others intervene after weighted bootstrap has been applied. 

In the next two sections we present methods from the former group. Then 

we present the latter group and finally we compare them all in several set­

tings. The chapter closes with a general discussion of our work in the first 

two chapters.

2.2 Sm ooth w eighted bootstrap

This is the most promising of all the corrective techniques. It is a modification 

of ordinary weighted bootstrap and was first presented in Gordon (1993). 

The setting is the same as before. We have a sample sq , . . .  , xn from an 

importance sampler g and we want a sample from another distribution with 

density h(x) = j  when we have only f (x)  in closed form. Each point Xi 

is assigned its weight Wi and its normalized weight qi.

Weighted bootstrap would sample from among x i t . . . t xn with
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P r (? /i — Xj) = qj, for any i and j.  Smooth weighted bootstrap, or smooth 

bootstrap as we will call it for brevity, samples y±,. . . ,  ym from a mixture of n 

symmetric distributions with means ap, . . . ,  xn and mixing weights gi , . . . ,  qn. 

In other words, in order to get we first sample a point from among x \ , . . . ,  xn 

with probabilities of selection </i,. . . ,  qn and then draw yi from the symmet­

ric density with mean the sampled point, xk say. We call these densities 

smoothing kernels. Denote by K  the smoothing kernel and by K{x\ y) the 

value at point x of the smoothing kernel with mean y. Smooth bootstrap 

approximates the target density by the continuous density

P(x ) =  (2-1)
2— 1

As a result the samples it produces do not suffer from sample deterioration. 

Note also that like weighted bootstrap the samples produced by smooth boot­

strap do not consist of independent observations.

We want smooth bootstrap to produce samples that “converge” to samples 

coming from the target density as n tends to infinity. Weighted bootstrap 

achieves this and it can be viewed as a case of smooth bootstrap with the 

smoothing kernels having zero variance. If we take the variance of the smooth­

ing kernels to tend to zero as n goes to infinity, smooth bootstrap as a method 

will approach weighted bootstrap and the samples it produces should have the 

desired property.

We have found this to be true if a sufficient condition holds, namely that

Eg (f(X) V
\9(X)J < oo. We prove this in a special case. The target is a univariate 

continuous density, the smoothing kernel used is the Normal density and we 

have the same variance for all n smoothing kernels. Then (2.1) is written
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as

n

P(x ) = *£)> (2.2)
i~ 1

where N(x\ fi, a2) is the value at point x of the N(p, a2) density. We denote 

the cumulative distribution function of the standard Normal distribution by 

4?. All the limits mentioned are for n — » oo, and bn is such that bn —  ̂ 0. 

Suppose that 9* is a random variable with distribution (2.2). Then,

Pr($* < a) = ][> P r(0*  < a\6* ^  N( xu b2n))

Er=1 ( 9 ^ )
2 = 1

1
1E"=1 Wi

We derive the limit of numerator and denominator separately. For the de­

nominator we have

i £ Wi^ E g ( E n j = i i f ( x ) d x .
n i=1

For the numerator define

n fc] V )

and
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f { X )  ( a - X

g ( X ) /W$ (V )dT'

When n goes to infinity <3? (y-y) — > I{% < a) where I  is the indicator 

function. Therefore

/ oo ra
f (x ) I (x  < a)dx =  / f(x)dx.

-oo J — oo

If Sn —  ̂ fj-oo then

Pr(3 * < a) ^  =  / “ h(x)dz =  Prh( r  < a). (2.3)
J_00f(x)dx j - CO

We now prove that

— >■ Moc. (2-4)

For any positive real number e

Pr(|Sn -  Mool > e) < ■ ^ g [ ( * ^ n  M o o )  ]   V ( L I  g i ^ S n )  T  ( M u  M o o ) '_ _ _
[ (Mn ~ Moo)2  ̂ p.5)

ne2 e2 5

where



CHAPTER 2. IMPROVING THE WEIGHTED BOOTSTRAP 46

cr =  V  ar ,
r°° f 2{%)
'-oo f/f.'Cj

a — a:
da: Mr

However,

cr. O’, f 2{%)
g(x)

dx — fi

If Er,

case
( f w )  < 0 0  *s ^n^,e so *s ^ - 0 0  anc  ̂ therefore so is <j^. In this
2
1 — > 0. Therefore from (2.5) we get

Pr(|£n -  (ioo\ > e) — > 0

and consequently (2.4) and (2.3) are true. This completes the proof.

For any symmetric kernel in the place of the standard Normal density the 

result should still be valid. The same could be said of the multivariate case. 

Intuitively though it seems plausible that convergence must be slower than 

that of the weighted bootstrap sample. To apply smooth bootstrap in a 

multivariate setting a variance matrix should be chosen for the smoothing 

kernels. Its entries should all go to zero as n goes to infinity. It is easier to 

define the variance matrix as Bn = • B  with bn going to zero and B  some

matrix with finite entries.

We have said that the variance of the smoothing kernels must go to zero as 

n goes to infinity but we have not said what that variance should be. The
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technique of kernel density  estim ation  comes to our aid in tackling this 

problem. Kernel density estimation, see Silverman (1986), tries to estimate 

the unknown probability density function (pdf) of a distribution based on 

a sample from that distribution. The estimator is another pdf formed as 

a mixture of distributions. It has as many components as the sample size, 

the components are equally weighted and their means are the sample points 

themselves. The distributions forming the mixture are called kernels, hence 

the name of the technique. Usualty the same form of kernel with the same 

variance is used for all sample points. The estimator is a random function 

since it depends on a random sample. If h is the unknown pdf and h the 

estimator, a measure of the estimator’s performance is the m ean in teg ra ted  

square erro r (MISE),

MISE = E  ( y  (h(x) -  h,(x))2dx\  .

The best estimator is the one that provides the minimum MISE. The value 

of MISE depends on the unknown h, the kernels used and their variance. 

The form of the kernel is not so important and usually the Normal density is 

used because of its nice mathematical properties. The optimal value of the 

variance for a given type of kernel is found by minimizing MISE. It depends 

on the unknown h and on the sample size, n say. Usually it is assumed that 

h comes from a certain family of distributions, Normal for example, and then 

the variance depends only on n.

For a univariate h and assuming that it is not far from Normal, Silverman 

(1986, p.48) suggests for Normal kernels variance
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bl  =  (o .9A n  s ) 2

where A = min{sample standard deviation, sample interquartile range/1.34}. 

In multivariate settings also, Normal kernels are usually used. A suggestion 

for their variance matrix is Sb*, where 5  is the sample variance matrix and

where d is the dimensionality of h.

Smooth bootstrap can be seen as a form of kernel density estimation. It 

approximates a target density by forming a mixture of kernels over a sample. 

The difference is that the sample has not been obtained from the target and 

for this reason the kernels in the mixture do not have equal mixing weights. 

However, the idea of minimizing the MISE between mixture and target can 

be used in order to find the variance of the smoothing kernels. Gordon (1993) 

proposes this approach. For example, imagine a case where we are interested 

in the posterior distribution of an unknown scalar parameter x given data 

y generated by the model p(y|a:). To implement smooth bootstrap we have 

drawn a sample of size n from the prior distribution p(x) and to each point 

Xi we have assigned weight

Ql £ L i P ( y W
p(y|z»)
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As in ordinary kernel density estimation, in order to derive MISE and mini­

mize it we have to assume that the target density comes from a certain family 

of distributions. If we assume that the posterior is Normal with variance 0x\y 

and if we use Normal kernels, minimization of the MISE will give (Gordon

(1993)), variance

4X t ( E( p \ y \ x) )  .
aA1y I pHy) ' "

The quantities cgY|y, l?(p2(y|x')) and p2(y) are usually unknown and will have 

to be estimated from the sample oq, . . . ,  xn from the prior as follows

ox|y

£(p2(yM )

p2(y)

E l v \
Qi )

^ i > 2(yN ),
»=  1

- X M y Mn i=l

where q\ , . . . ,  qn are the normalized weights. Then the variance of the smooth­

ing kernels becomes

bl = 4 \s
3 > \ i= 1 V i=1

E?=iP2(yl^)
{Ei=iP{y\xi)f

The approach we adopt is simpler. Suppose that Xi , . . . , xn is a sample from 

the importance sampler and q\}. . .  ,qn are the normalized weights. For uni-
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variate targets the variance of the smoothing kernels is

= (0.9s?r“̂ ) 2 (2.6)

with s =  \ /E L i Qi (x i ~  E L i Qixi)2 being an importance sampling estimator 

of the target’s variance. For multivariate targets, the variance matrix of the 

smoothing kernels is

b ^ si>* - ( 2 - ? )

with S  -  E?=i Qi (D ~  E L i Qi î) f a  ~ E L i Qixi)T being an importance sam­

pling estimator of the target’s variance matrix.

West (1993) advocates the same approach and proposes a small amendment 

that renders smooth bootstrap more efficient. If in a multivariate setting we 

choose kernels with variance (2.7) then the variance of the mixture

n

P(x ) ~  Y^QiK (x >xi)
i— 1

will be larger than the variance of the target which it approximates. For this 

reason West (1993) suggests taking a mixture

71

p(x) — qiK(x\ rrii)
i—1
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instead, where the smoothing kernels are not centred on the sample points x.L 

but on new means given by

mi =  axi +  (1 — a)x (2.8)

with 0 < a < 1 and x  =  X l̂=1 The kernels still have variance (2.7). 

This mixture has expected value x  and variance matrix S{b\ +  oi2). Therefore 

choosing a = — b\ will give it variance 5, which is as good an estimate of

the target’s variance as we can have at that point. The same correction has 

to be done in univariate settings too but the notation is different. There, the 

estimator s2 of the variance is incorporated in b\. Considering (2.6) we see 

that we have to take a = \ f l  — Notice that even with this correction the 

asymptotic result about the sample produced by smooth bootstrap is valid. 

This is because, as n goes to infinity, a — y 1.

If the sample from the importance sampler is very large and therefore the mix­

ture that approximates the target has many components one could use the 

mixture reduction algorithm of Salmond (1990), as does Gordon (1997). This 

algorithm reduces the number of components in a mixture by merging signifi­

cant components with neighbouring insignificant ones. The significance of the 

components is measured by their mixing weights. The algorithm maintains 

the mean and variance of the original mixture. The merging together of com­

ponents goes on for as long as the mixture’s structure has not been altered by 

more than a quantity specified by the user. The structure is measured by the 

relative contribution of the variance within the components and the variance 

between the components towards the constant overall variance. Reducing the 

number of components simplifies sampling from the mixture but it is ques­
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tionable whether this simplification counterbalances the computational effort 

of reduction.

In the light of all the above, the way we will be implementing smooth boot­

strap is as follows. We will be using Normal kernels with a global variance 

given by (2.6) or (2.7) and with means given by (2.8) with a  suitably calcu­

lated. We will not use mixture reduction.

2.2.1 P rop erties o f sm ooth  bootstrap  sam ple sta tistics

We examine here whether the mean and variance of a smooth bootstrap sam­

ple are asymptotically unbiased and whether the variance of the sample mean 

is n times smaller than the variance of the target. Moreover, we are trying to 

see whether a central limit theorem holds for the sample mean.

In fact we have proved (see the Appendix for the mathematical details) that, 

if we use the same importance sampler, the expectation of the sample mean 

and variance and the variance of the sample mean are the same irrespective 

of whether we use weighted bootstrap or smooth bootstrap in order to obtain 

the final sample. Smooth bootstrap has to be used with correction (2.8) with 

a suitable a  for this result to be valid. Since smooth bootstrap is weighted 

bootstrap with Normal noise added to it we expect Normality of the sample 

mean to be true here too.

To verify this we repeat the simulation experiment of section 1.4.1, using 

smooth bootstrap this time. We have as target the same “unknown” N ( 0,1) 

distribution from which we have obtained the same ten data points as in 1.4.1. 

We treat either the mean or the variance as unknown and in each case we 

consider four different priors. For each combination of unknown and prior we
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take 1000 samples from the prior and update them to arrive at 1000 samples 

of size n from the corresponding posterior at each time. Two different sample 

sizes, n =  100 and n =  1000, are considered.

Table 2.1 is an exact copy of Table 1.1, giving for the case of unknown mean 

the posterior means and variances and the expected values and variances of 

the sample statistics. The latter were derived by evaluation of (1.14),(1.15) 

and (1.17). Table 2.2 presents the simulated expectations and variances of the 

sample statistics. Its comparison with Table 2.1 leads to the same conclusions 

as in the case of weighted bootstrap. The sample mean and variance seem 

unbiased and more so for n = 1000. The variance of the sample mean is 

once more two to three times larger than one nth of the posterior variance. 

Comparing Tables 2.2 and 1.2 also confirms that the sample statistics have 

the same expectation and variance no matter whether weighted bootstrap or 

smooth bootstrap has produced the sample. Tables 2.3 and 2.4 refer to the 

case of unknown variance and also lead to the same conclusions.

The same Kolmogorov-Smirnov tests as for weighted bootstrap were per­

formed here too and Normality of the sample means was not rejected for any 

case. Figure 2.1 presents histograms of the means and variances of the 1000 

simulated samples for the case of unknown mean and for each combination of 

sample size and prior. We see from the histograms of the means that their 

distribution looks Normal. Figure 2.2 refers to the case of unknown variance 

and from it too Normality of the sample means does not look unreasonable.

Therefore, after the agreement of simulations with theory we can say that 

smooth bootstrap sample statistics have the same properties as the corre­

sponding statistics of weighted bootstrap samples.
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2.2.2 C onclusions

As we have demonstrated, smooth bootstrap has all the advantages of weighted 

bootstrap: it provides samples that asymptotically come from the target dis­

tribution, possibly at a lower rate of convergence, it is fast and easy to imple­

ment, the sample statistics have properties that resemble those of a random 

sample and the mean of the samples it produces seems to be asymptotically 

Normal. Moreover, it is devoid of most of weighted bootstrap’s disadvantages; 

it approximates the target with a continuous distribution and the samples it 

produces do not suffer from the deterioration that so much afflicts weighted 

bootstrap samples. In general, smooth bootstrap is a very effective replace­

ment for weighted bootstrap and should be used in the latter’s place. The 

only point of caution, as in weighted bootstrap, is the choice of a good im­

portance sampler. We will see in the following section and in a later chapter 

ideas about how to tackle this problem.

2,3 Other m ethods related to the sm ooth  b oot­

strap

In this section we present three other methods related to the smooth boot­

strap. The first combines it with weighted bootstrap while the second uses 

many iterations of it in order to arrive at a good importance sampler. The 

third “marries” MCMC with the ability to propagate samples through time.
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2.3.1 P artia lly  sm ooth  bootstrap

This method is a hybrid of weighted bootstrap and smooth bootstrap. It 

works as follows. Let Xi , . . . ,  xn be a sample from an importance sampler g. 

We apply weighted bootstrap with appropriate weights and get a sample of 

size TTb which for large n can be treated as coming from a target density h. In 

this sample each X i  will appear r i i  times, with 0 < n* < m  and n i — m - 

For any re* with n* > 2 we drop from the final sample all its replicates but 

one and replace them by points drawn from a symmetric kernel placed over 

X{. The parameters of the kernel are those the kernel would have if we were 

using smooth bootstrap. Therefore, it may not be centred over X i  but over 

rrii given by (2.8). This is the way we use the method later in the chapter.

Note that even given x \ , . . . , x n the members of the resulting sample are 

not independent random variables. Therefore we cannot apply the law of 

large numbers in order to establish whether the sample tends to coming from 

the target distribution. However, as n tends to infinity, the variance of the 

smoothing kernels tends to zero and the method approaches weighted boot­

strap. Therefore, it seems plausible that this method also produces samples 

that asymptotically come from the target density.

2.3.2 Iterated  sm ooth  bootstrap

As its name suggests, this method consists of iterating the smooth bootstrap. 

The idea will be clarified with the help of mathematics. The exposition is 

based on West (1993).

The aim is the same as before. We have a sample x f  \  . . . ,  from a distri-



CHAPTER 2. IMPROVING THE WEIGHTED BOOTSTRAP 56

bution g and want a sample from another distribution h. Having the usual 

weights, which we now denote by w and qr|°\ we apply smooth bootstrap 

and obtain a sample which, we hope, is close to having come

from h. However, we know the exact distribution g\ from which this sample 

has been obtained. It is a mixture of symmetric kernels with appropriate 

variance B and means 2 ;^  or given by (2.8),

9i(x) = Y , q l 0)K{x;m\0\ B ( 0)), 
i =  1

where K (x ; m , B )  is the value at x of the kernel with mean m  and variance 

matrix B.  This is expected to be closer to h than g was and therefore, to 

be a better importance sampler. We can then calculate new weights for the 

a ; ^ , . . . ,  sample,

^(d  _  M d  )
.a)-'j._,

1 ( (d\
9 i ( X i  )

and respectively. Then smooth bootstrap can be applied to . . . ,  x ^  

to get a sample . t^ ,  . . . ,  x which should be even closer to h. We can either 

stop there or consider that the new sample comes from a density r/ 2  and do 

smooth bootstrap again.

This iteration of smooth bootstrap steps is performed so that a possibly un­

satisfactory initial importance sampler can be improved upon. When the 

necessary improvement has been achieved or when no more improvement is 

possible we retain the final sample as the sample from the target. We can 

at each step monitor the effective sample size or the entropy of the weights
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relative to uniformity. Supposing that we keep a constant sample size n 

throughout, a value of ESS very close to n or of entropy close to 1 indicates 

that not much greater improvement is possible and that we should stop; for 

discussion see West (1993).

When the method is applied in dynamic model settings there is a potential 

problem. Suppose that we have started the iterated smooth bootstrap with 

a sample 3 :^ (1 ) ,...,  x ^ (n )  from _p(rct |yt_i) and that the target is p(.Xt|yt) =  

p(xt \yt, y t~ i)- After the kth iteration of smooth bootstrap we have a : ^ ( l ) , . . . ,  

x[k\ n ) ,  coming from a density g ^ ( x t). Then their weights for the (k +  l)st 

iteration will be

LU f  \ L J OC t . \ CX. / 1 \  *

g W ( 4  (*)) g {k){ 4  W )

However, usually in dynamic models p(^i|y£_i) is not available in closed form. 

Therefore it may not be possible to calculate the weight either. A possible 

solution is to approximate |yt_1) by a kernel density estimate based on

Iterated smooth bootstrap can obviously be very time consuming because of 

the need to evaluate many times mixtures of densities possibly consisting of 

thousands of components. West (1993) suggests an algorithm for reducing 

substancially the number of components of a mixture without altering its 

structure. Alternatively the method of Salmond (1990) can be used. For a 

different way of speeding up the iterated smooth bootstrap see Oehlert (1998).

Givens and Raftery (1996) propose an alternative approach that is thought to 

give even better importance samplers for multivariate targets with irregularly
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shaped supports. Their method is iterated smooth bootstrap, or adaptive 

importance sampling as they call it, but they do not use the same variance 

matrix for all kernels. The kernel over point Xi has a variance matrix that 

reflects the variation of the sample points close to Xi. This variance matrix 

is equal to a multiple of the variance matrix of the [Â n] near neighbours of 

Xi: with -  < Xi < 1. The multiplying factor goes to zero as n increases and 

can be different for each X{. When calculating the local variance matrix of a 

group of points we can either weigh them equally or divide their normalized 

weights with their total normalized weight. Moreover, the kernels have means 

Xi and not tti*. The mixture formed with such smoothing kernels follows more 

effectively the shape of the support of the target as indicated by the alignment 

of the sample points in space. For the very first resampling we must use a 

global variance matrix because the alignment of the points of the initial sample 

follows the shape of the support of the importance sampler.

Givens and Raftery (1996) report simulation results which show that when 

the target is very structured and the importance sampler is very diffuse the 

performance of iterated smooth bootstrap is extremely variable. Sometimes 

it is better and sometimes it is worse than weighted bootstrap. On the other 

hand their method performs better than weighted bootstrap when n is small. 

Moreover it can give with a lot smaller n, estimators of the same variance as 

weighted bootstrap. However, in one of their examples with a 10-dimensional 

target and n  =  20000 their method and iterated smooth bootstrap do worse 

than weighted bootstrap. They believe that when n is large the latter is the 

best method because it gives similar results with less computational effort. 

They have not tried smooth bootstrap.
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2.3.3 B ayesian  M etropolis filter

As we have mentioned, one of the disadvantages of MCMC is that for sam­

pling from p(a;i|yj, in a dynamic model context, we have to sample from 

p(xi|y J  an(f ^ en keeP only the xt part of the sample. This happens be­

cause £>(£t|y*_i) is not available in closed form. Gordon and Whitby (1995) 

present a method which they call the Bayesian Metropolis filter. It is a usual 

Metropolis-Hastings algorithm with target

pfelyj ocpfatMpfelyt-i))

where |yrt_1) is a kernel density estimate of p(n;t|yr£_1) based on a sample 

from it. To speed things up the authors use Salmond’s algorithm to reduce 

the number of components in p(x t\yt-i)- The sample from ly^—i) is ob­

tained by passing through the system evolution equation the sample from 

p (z i-i|y f- i)  that the algorithm has given in the previous time point.

The advantage of the method is that it combines the theoretical properties 

of MCMC with the propagation of samples through time. However, we still 

need to monitor for the convergence of the Markov chain at each time point. 

Therefore, the method can still be time consuming and is unwieldy for auto­

matic real time analysis of dynamic models. For this reason we are not going 

to consider it in the simulations section.
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2.4 A ugm entation m ethods

The methods that we have presented so far correct the deficiencies of weighted 

bootstrap by changing the distribution from which it obtains its samples. We 

will now examine two methods that apply weighted bootstrap as usual but 

then modify the sample it produces.

For both of them the setting is the same. We want to obtain a sample 

from h(x) =  f {x ) /  f  f (x)dx  when only f (x)  is known. We get a sample 

x i , . . . ,  xn from another density g(x) and assign to each point X{ a normal­

ized weight (f(xi)/g(xi))  /  (Hj=i Weighted bootstrap gives a

sample y i , . . . ,  yrn that can be considered as coming from h if n is very large. 

However, this sample is unrealistic and unsatisfactory, especially if h is contin­

uous, because it contains more than one copy of at least some of its members. 

The methods we are going to present are called augmentation methods be­

cause they “augment” the weighted bootstrap sample by bringing the number 

of distinct values in it back to m.

2.4.1 T he m ethod  of Sutherland and T itter in gton

This method, which from now on we denote by “S-T” , first appeared in a 

slightly simpler form than that presented here in Sutherland and Titterington

(1994). It relies on a very straightforward idea.

Since the sample y i , . . . , ym is treated as coming from h, a kernel density 

estimate (kde) based on it will be an approximation to h. This kde will, as 

we have mentioned before, be a mixture of m  equally weighted components. 

The «th component will be a symmetric kernel with mean y*, for % =  1, . . . ,  m.
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In other words, if Bm is the variance matrix of the kernels the kde will be

-i ?n

h ( x )  =  - Y , I < ( x \ y » B m ). (2.9)
m i=i

We can then sample m  points z i}. . . ,  zm from it. Since (2.9) is a continuous 

density, the new sample will almost certainly consist of m  distinct points. We 

can base all our inference about h on z i , . . . ,  zm. To sample m  points from 

(2.9) we only have to repeat m  times the following. At step i

• sample 9 with Pr(# =  yj) = for all j  = 1, . . . ,  m.

• draw Zi from K(x; 0, Bm).

Our usual choice of kernel is the Normal density. The variance is chosen 

according to kernel density estimation theory. In univariate cases we take

£4 = (0.9Am- ^)2 (2.10)

with A =  min{sample standard deviation, sample interquartile range/1.34}. 

In multivariate cases, if d is the dimensionality of the target we have

2

( 4 \ d+A

where B  is the sample variance matrix of yi , . . . ,  ym- In. the original version,

in Sutherland and Titterington (1994), a simpler form of variance matrix for

the Normal kernels is used. The variance matrix, in the d-dimensional case, 

is diagonal with its kth diagonal element being calculated by applying (2.10)
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to the Arth component of 2/1 , , ym, for k —  1, . . . ,  d. It is obvious that this 

choice fails to take into account the presence of any correlations in the sample.

Although our choice of variance is theoretically optimal when h is not far 

from being Normal, the simulations show that it works well for many types 

of target distribution.

2.4.2 T he m ethod  of G ordon, Salm ond and Sm ith

This method, which from now on we denote by “G et al” , appeared in Gordon 

et al (1993). This time, from the sample 1/1 , . . .  ,ym we consider each point 

yi once, replacing it with a point Zi drawn from the Normal distribution 

N (y i7 B'm). B fm is a diagonal variance matrix. Its kth. element on the diagonal, 

a \ , is given by

4  =  ( TEkm ~ A ,

where d is the dimensionality of the target density, T  is a tuning constant 

chosen by the user and is the range of the sample in dimension k, for

It 1, . . . ,  df.

Criticism of this method focuses mainly on the choice of variance. First, 

in multivariate settings the variance matrix does not take into account any 

correlations that may be present in the sample. Secondly, while according 

to what kernel density estimation theory dictates for the optimal estimator, 

the variance should decay very slowly, being proportional to m~2̂ d+A\  here 

it is proportional to m~2/d. Finally, in specifying the variance we have to
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subjectively choose a value for the tuning parameter T. However, as the 

simulations are going to show, the method performs equally well as the other 

methods.

2.4.3 A  short note

Acklam (1996) proposes yet another way of augmenting a posterior sample. 

There, the augmentation by sampling from a kernel density estimate of the 

posterior is combined with shrinking of the original posterior sample towards 

its mean. We will not pursue this method any further.

2.4.4 D iscussion

We presented in this section methods that improve the results of weighted 

bootstrap by modifying the samples it produces after it has produced them. 

These methods are no harder to implement than the smoothing methods 

presented earlier in this chapter.

We have seen that, especially in Bayesian learning contexts, successive appli­

cations of weighted bootstrap produce samples with ever decreasing variance. 

A part of this decrease is natural since information is being gathered about 

the unknown parameters. The rest of it is attributable to sample deterio­

ration. Augmentation convolves the samples with the kernels and therefore 

increases their variance again. However, if in a Bayesian learning problem aug­

mentation was employed after each weighted bootstrap application it could 

eliminate all the decrease in variance. This would lead to samples that do 

not reflect in their variance the learning about the unknown parameters. For
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this reason Sutherland and Titterington (1994) suggest using it sparingly in 

Bayesian learning situations.

Finally, there is a technicality about augmentation which luckily does not 

affect its practical performance. Smoothing methods base the variance of 

their kernels on the size n  of the sample from the importance sampler. As 

n — > oo the methods automatically approach weighted bootstrap which in 

that case gives samples directly from the target. In augmentation the variance 

of the kernels depends on the size m  of the sample resulting from weighted 

bootstrap. Therefore they can theoretically be applied even when n — > oo, in 

which case they will “damage” a sample that has come from the target density. 

In practice, n is always finite and, as we will see in the simulations below, 

there is little difference between the results of smoothing and augmentation 

methods.

2.5 Com parisons of the m ethods

Here we gather together all the methods presented in this and the previous 

chapter and compare them in several settings. We try to see how well they 

estimate the posterior distribution and the values of the “unknown” param­

eters.

2.5.1 A  sim ple univariate case

For this first experiment we have obtained 100 observations from IV (0, 1) but 

we are going to treat /i =  0 as unknown. We treat the data sequentially. 

Therefore, we have a case of Bayesian learning with 100 posteriors for /i. We
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assign to fj, a prior jV(0.1,1), a fairly good guess of its true value. If we sample 

n  points from the prior the aim will be to update this sample in order to get 

samples of size n from each of the 1 0 0  posteriors. Of course these posteriors are 

Normal and known analytically, facilitating the assessment of the performance 

of the methods. The iterated smooth bootstrap is not considered here since 

the problem is simple and the entropies of the weights were found to be higher 

than 0.99.

The simulation procedure is as follows. For each of the methods, 30 times we 

start with a sample of n — 1 0 0 0 0  points from the prior and we update it using 

the observations from iV(0,1) so that for each method and each of the 100 

posteriors we have 30 sample sets, i.e. 30 estimates of the posterior’s mean, 

variance, quantiles or any other quantity of interest.

Figure 2.3 presents the true 95% highest density intervals (HDI) of the 1 0 0  

posteriors and against them the corresponding intervals obtained by the five 

methods. These were constructed by taking the medians of the 0.025 and 

0.975 percentiles of the 30 sample sets corresponding to each posterior and 

method. Twice the variances of the same percentiles were added to and 

subtracted from their means and this gave rough confidence bands for the 

interval endpoints. Figure 2.4 presents the logarithm of the true posterior 

variance and the logarithms of the 0.025 and 0.975 percentiles of the 30 sample 

variances corresponding to each posterior and method.

From Figure 2.3 we see that all the methods track the true intervals extremely 

well, with S-T and partially smooth bootstrap giving estimates slightly wider 

than the truth. For S-T in particular and for some time instants the confidence 

bands for the HDI endpoints do not contain the endpoints of the true HDI’s. 

Figure 2.4 leads to the same conclusions. S-T overestimates the posterior
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variance and so does partially smooth bootstrap, something that was seen in 

the previous figure. Notice however that, although this is a Bayesian learning 

problem, having emploj^ed augmentation after each application of weighted 

bootstrap has not eliminated the characteristic phenomenon, in such prob­

lems, of decreasing posterior variance. Only in the last samples provided by 

S-T is there perhaps a hint of the sample variance stabilizing. The ordinary 

weighted bootstrap is doing so well here because the case is very simple, with 

good overlap between prior and posterior at each step.

2.5.2 A  sim ple dynam ic m odel

Although all the methods presented in these two chapters were developed for 

non-linear and non-Gaussian dynamic models, we examine them here in the 

case of a bivariate, linear and Gaussian dynamic model. This is done so that 

we have again, this time provided by the Kalman filter equations, the true 

posteriors of the parameters of interest as a standard which the methods are 

trying to attain.

The system evolution equation is xf =  Gxt- 1 +  i]ti while an observation yt 

becomes available at time I given by the model yt =  H x t +  et. The quanti­

ties rjt and et are random system and observation noise. They are mutually 

independent and independent of their past values and any value of Xt- Their 

distribution is Normal with means =  (1,—1)T and /ie =  (—1 , 1 )T and 

variance matrices
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G and H  are deterministic matrices,
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G =
V

2 2 

1 3
H

V

1.1 0.8

0.6 1.3

The state a,'o of the system at time 0 is unknown and follows a Normal distri­

bution with mean /i0 = (5,3)T and variance matrix

/ 2 1 \ 
1  1.5

All the above are assumed known. A starting value for x0  was chosen from 

this distribution and then the system was simulated for six time steps, giving 

rise to observations y1;. . . ,  yG. We are interested in the six resulting posterior 

distributions p{xt\yt)N — 1 , . . . , 6 . Since the model is linear and Gaussian 

we know that all these posteriors will be Gaussian too. A straightforward 

application of Bayes Theorem gives the following recursive formulae for the 

posterior mean /j,t and variance matrix Df at time t.

E  t =  [ ( G E t_ , G T  +  E , ) - 1 +  H ^ H ]  1

!l l. — (Gf.Lt-1 +  fLjj) +  E t / / T E ,  1 (!/[ — fj,€ — I I  ( G f l i - i  +  fljj))-

These are none other than the Kalman filter equations mentioned earlier in 

Section 1.2.
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Subsequently we treated all these posteriors as unavailable. We consider the 

same five methods as in the previous example. Iterated smooth bootstrap is 

excluded again, for reasons of speed of implementation. Each method was 

initialized on a sample of 2 0 0 0 0  points from the distribution of x 0 and then 

provided a sample of the same size from each of the six posteriors.

Figures 2.5 and 2.6 show true and sample 95% HDI’s for the two components 

of Xt separately, for all six posteriors and for each sampling method. The 

sample intervals are displayed as segments, their endpoints being their cor­

responding sample’s 2.5% and 97.5% quantiles. We cannot distinguish any 

clear winner among the methods since they all produce intervals close to the 

true ones.

Since the target distributions are bivariate these two figures do not provide us 

with the full picture because they convey no information about the correlation 

of the two components. Table 2.5 gives the true correlation coefficient p for 

each posterior as well as the corresponding Fisher ("-score,

In Table 2.6 we present the sample correlation coefficients r and corresponding 

z-scores for each method and posterior. Using the approximate formula z ~  

N(G  ^ 3 ), where for us n — 20000, we calculated 95% confidence intervals for 

(, abandoning for a while our Bayesian perspective. We say that a method 

has “tracked” a ("-score if its true value is included in the confidence interval 

for it given by the method. We can see that the methods are not doing well 

in this respect. The best, partially smooth bootstrap, tracks four out of the 

six (-scores.
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2.5.3 A  sim ple im aging problem  - 1

Here we present a very simple image analysis problem which we formulate 

in a Bayesian learning context. A rectangle lies on a 128 x 128 pixel plane 

and it starts rotating around the centre of the plane with a constant angular 

velocity of lo rads per time unit. If at time t — 1 a point of the rectangle is at 

coordinates then at time t it will be at

=  (a;^“d _  64) cos(w) — (y^L~^ — 64) sin(w) 4- 64, (2.11)

2 , ( 0  =  (a^-d  -  64) sin(cj) +  -  64) cos(o;) +  64. (2.12)

All the points inside the rectangle have brightness 1 and those outside it have 

brightness 0. To find all the points that lie inside the rectangle it suffices to 

know the coordinates (x^ \  'i/f'*), y ^ )  midpoints of its two short

sides and its width. For a presentation of how, given these coordinates and the 

width, we can find which pixels belong to the rectangle see appendix B. We 

can find the coordinates of the midpoints at time t by repetitive application 

of (2 .1 1 ) and (2 .1 2 ), if we know their initial coordinates (£i°\yi°^)> (z2° \l/ 2 °̂ ) 

and u).

At time t we cannot observe the true image but only a degraded version of 

it. We denote by the true brightness of pixel i at time t and by d!p 

its brightness in the degraded version of the image. Each pixel is degraded 

independently of all the other pixels by Gaussian noise W(0,0.36). In other 

words, if ct =  (cf \  . . . ,  c$) is the true image and clt = {d>i \  . . . ,  df$) is the 

degraded one with N  = 1282, we have



CHAPTER 2. IMPROVING THE WEIGHTED BOOTSTRAP 70

p(dt\ct) °c exp 2 • 0.36 -=1 -  C®)2 (2.13)

The assumption of Normal noise for a black and white image is of course 

unrealistic since all the noisy measurements should be grey, i.e. between 0 

and 1. However the image can be a description for some other type of system 

where noisy measurements can take any real value.

In this problem we assume that the only unknowns are x ^ \  2/i°\ ^ 2°^ l/2 ° \ w 

and the halfwidth h. We assume that they are independent a priori with uni­

form distributions, on [20,100] for the coordinates, on [5,15] for the halfwidth 

and on [0,27r) for the angular velocity. Note that all the parameters are contin­

uous variables. Only when coordinates are transformed into pixel coordinates 

do truncations take place. The brightnesses are also continuous.

If we start with a sample from the prior we can update it by weighted 

bootstrap or any other of the methods described thus far and obtain sam­

ples from each of the arising posteriors. After we have obtained a sample 

horn where d*_i =  (d0, . . . , d t- 1 ), each point

needs a weight wt(i) in the light of the 

new data dt. By applying (2.11) and (2.12) t times successively, we get co­

ordinates Xi ' \ i )} V i \ i ) ,  2/2 ^ W which in combination with h(i) produce

an image Ct(i). The weight then will be wt(i) oc p(dt\ct{i)), which is given by 

(2.13).

The prior can be very diffuse compared with the first posterior, p(^i°\y i°\ 

x 2° \  y l ° \ h|do), and for this reason we use the Metropolis-Hastings algo­

rithm to sample from the latter. The first degraded image do does not convey 

any information about u  since rotation has not started yet. Therefore, the
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algorithm will give samples from , y^ , h\do) and after sampling

has finished we will attach to each sample point a point taken from the prior 

of u. The starting values are chosen at random from the prior. The proposal 

density considers the unknowns as independent. At each step of the algo­

rithm one of the five unknowns is chosen at random with equal probabilities 

of selection for all of them and a new value is proposed for it. The proposal 

densities are Normal for all the unknowns. Each one of them has the current 

value of the corresponding unknown as mean and variance 25 for the coordi­

nates and 1 for the halfwidth, If a proposed value lies outside [20,100] for the 

coordinates or [5,15] for the halfwidth we propose a new one.

For this particular application we simulated do and degraded images for the 

first nine time points after the beginning of rotation. The true parameter 

values were (40,40) for the first midpoint, (40,80) for the second, 10 for the 

halfwidth and 0.1 for the angular velocity. All the samples had size 20000. The 

Metropolis-Hastings algorithm was ran for 1000000 iterations. The results of 

the first 900000 were discarded as “burn-in” and from the remaining sample 

points we stored every fifth so as to avoid the presence of serial correlations 

in the samples.

Thus we started the simulations for each of the methods compared, which are 

the same as in the previous experiment. All the methods analysed the same 

set of ten degraded images but each one started with its own Metropolis- 

Hastings sample. Iterated smooth bootstrap was extremely slow and Ave do 

not present results for it. The weighted bootstrap sample after t =  1 already 

contained many copies of two distinct values and therefore, although those 

values are close to the true ones, we do not present results for it either.

Figure 2.7 gives posterior sample boxplots for each parameter separately, for
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the time instants after rotation begins. Because of their intractability we do 

not know the true posteriors and against the boxplots we can only plot the 

true parameter values. In most cases they are not contained in the boxplots 

but are so close to them that the discreteness of the pixel grid eliminates the 

difference. We do not give the reconstructions of the images for reasons of 

economy of space, but the results are very good, similar to those of the next 

example. No method really stands out.

2.5 .4  A  sim ple im aging problem  - 2

The same problem as above is now viewed from a dynamic modelling point 

of view. We assume that the rectangle does not rotate continuously but 

changes location only every time unit. The angular velocity u  — 0.1 is now 

known. The unknowns at time t are the coordinates °f

the midpoints of the two short sides of the rectangle and the halfwidth h. Let 

Ut — ( x i \ y i \ x 2 \ y 2 \ h ) T' We assume that Ut and Ut-\  are related via the 

formula

Ut - C  = A ( U t - i - C )  + Vu (2.14)

where C =  (64,64,64, 64,0)T and Vt =  { v ^ , v f ,  0)T, with being 

independent IV(0,1) random variables. The matrix A is
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 ̂ cos 0.1 — sin 0.1 0

sin 0.1 cos 0.1 0 0 0

0 0 cos 0.1 —sin 0.1 0

0 0 sin 0.1 cos 0.1 0

 ̂ 0 0 0 0 1 j

Therefore, (2.14) is (2.11) and (2.12) in matrix notation and, moreover, system 

noise is introduced. The observation equation is non-linear and consequently 

the Kalman filter cannot be applied. Therefore, the posteriors are not analyt­

ically available. Here we cannot use Bayesian learning because with each new 

frame we have to sample from the posterior of a new set of parameters (only 

the halfwidth remains constant although unknown). Only four time points 

are considered after the rectangle starts moving.

The priors are again the same as before apart from the fact that to is not 

among the unknowns any more. For frame 0 we use the same Metropolis- 

Hastings algorithm as in the previous experiment. Then, weighted bootstrap 

and the other methods are applied. The sample size is again 20000 for all 

samples. The samples from each posterior are passed through the system 

evolution equation to give samples from the next prior.

For reasons of comparison we also use the low-level technique of Hainsworth 

and Mardia (1992). This is done in order to demonstrate the superiority of us­

ing information about the types of object present in an image over pixel-level 

analysis, when such information is available. This method, to be denoted by 

“H-M” from now on, is a low-level technique for the estimation of binary im­

ages. It does not make any assumptions about what objects may be present
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in them. It views each image as an unknown arrangement of black (back­

ground) and white (objects) pixels. It tries to reconstruct the true image 

given the observed data. The reconstruction is not only affected by the data 

but also by the model that generates them and by the prior distribution over 

the space of all possible images. A usual choice of prior is the one that gives 

smaller probabilities to images that contain large numbers of pairs of neigh­

bouring pixels where one is black and one is white. In binary images there 

are pairs of neighbouring pixels where this can happen legitimately; these are 

the pairs through which passes the border of an object. To allow the prior 

to accommodate such pairs an edge variable is introduced for each pair of 

neighbouring pixels. It has two possible values, “present” or “absent”. If 

an edge is present then the pixels can have different colours without being 

penalized for that. The aim of the technique is to reconstruct the true colours 

of the pixels and the true values of the edges at each time point. Because we 

have a sequence of images, the prior for the image at time t depends on the 

reconstructions at previous time points. Considering these as the truth for 

the previous time points, the prior gives smaller probabilities to images that 

have many pixels changing colour or many edges changing value from time 

t — 1 to time t. With model (2.13) generating the data it is not difficult to 

estimate the mode of the posterior distribution of true pixel colours and edge 

values by using techniques like simulated annealing (Geman and Geman 

(1984)) or iterated conditional modes (Besag (1986)). We use simulated 

annealing in this application with the following “cooling” scheme suggested 

by the authors. We start with “temperature” T\ =  2 and lower it according
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At each temperature 200 complete updates of the image and edge values 

are performed. Each pixel colour and edge value is separately updated by 

sampling from its conditional distribution given the other pixel colours and 

edge values and the data.

Figure 2.8 presents posterior sample boxplots for all parameters separately, 

for the time instants after rotation begins. The true parameter values are 

also shown. We do not show results for the weighted bootstrap because, as 

in the previous experiment, it produced very degenerate data. There are no 

boxplots for H-M either since it does not produce samples for the parameters. 

The method that is better is G et al, catching most of the true values in the 

boxplots or being nearer to them than any other method. Again though, the 

discreteness of the pixel grid eliminates all differences in the reconstructions, 

as may be seen in Figure 2.9. All the reconstructions are practically identical. 

The maximum number of mis-coloured pixels in any of them was 22. As was 

expected the reconstructions are much better than those of H-M because the 

latter by its nature cannot give sharp edges to the rectangle. This method 

gives larger numbers of mis-coloured pixels.

2.5.5 A nother im aging problem

Another image analysis problem is considered here. A cuboid is hovering in 

3D space above the plane of the image. Light is shone on the plane in a 

direction perpendicular to the cuboid so that its shadow is cast on it. The 

colour of the image (background) is black (brightness 0) and that of the 

shadow (foreground) is white (brightness 1). The cuboid starts rotating in 

discrete time around an axis passing through its centre and vertical to the
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direction of light. Before and during rotation it is always at such positions that 

the images we would see on the plane would be of a rectangle (the cuboid’s 

shadow) contracting and expanding but having constant width and with its 

centre coinciding all the time with the centre of the image (pixel (64,64)). 

Figure 2.10 will clarify this exposition. The width is assumed known. The 

images are degraded by the same noise as in the previous experiments. The 

unknowns in this problem are the two other dimensions of the cuboid, I and 

6, the angle 6 it was forming with the plane before rotation and the angular 

velocity u. At each time t the true length of the shadow xt is

x t =  /| cos(9 +  u t )| +  b\ sin(# + ut)\. (2.15)

The width of the rectangle is 40 pixels. We observe a degraded image before 

rotation and nine more after rotation begins, at equidistant time points. This 

is again a Bayesian learning problem with each new image giving rise to a new 

posterior distribution for and u. Here we use resampling methods even 

for frame 0 in order to see whether the diffuse prior will cause any problems 

to resampling. The methods are the same as in the previous experiments, u  

is again excluded in frame 0 and is just sampled from its prior. The prior 

distribution for I is taken to be uniform on (20,100), for b uniform on (10,40), 

for 9 uniform on (—| ,  | )  and for u  uniform on (0, 27t). The posteriors once 

more are not analytically available. The true parameter values, used to form 

the images, were I =  65, b — 23, 0=0 and u = 0.5. The samples have size 20000. 

The weighted bootstrap sample again degenerated very quickly and after the 

third frame contained 20000 replications of the same value. We do not show 

results for it.
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Figure 2.11 gives posterior sample boxplots and the true parameter values. 

Here all the methods are doing very well, a lot better than in the rectangle 

problem. All the samples home in on the true values. In most cases there is 

a sharp contrast between what happens before and after frame 3. This is be­

cause each frame basically provides an estimate of the current shadow length 

x t. Equations (2.15) from different time points form a system in four un­

knowns. Until frame 3 we have fewer equations than unknowns and therefore 

less certainty about the parameters’ true values.

2.5.6 A n alternative point of view

We close this section by returning to simpler cases again. This time the 

performance of the methods is examined from a different perspective. If any 

method produces a sample nq, . . . ,  xni allegedly from the target density h, we 

judge its performance by the MISE of the kernel density estimator (kde) h 

based on the sample, in other words by

The expectation is taken with respect to all the sources of randomness that 

play part in the generation of the sample. It is difficult to calculate this 

expectation or even the integral in many cases. We consider two simple cases 

where h is Normal, IV (/i, a2) and where the kde is

(2.16)

?l(x)4 § 7 ^ exph ^ - ^ )2)
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which is the usual kde with Normal kernels. The variance b2 which leads to 

the kde with minimum MISE, since the target is Normal is

b2 = (l.06cm 5) (2.17)

where a is the sample standard deviation (Silverman (1986, p. 45)). Then 

the integral, which is the L2  distance between h and h, is

The expectation of this quantity will depend on the method that generated 

the sample. We estimate it for each method separately by generating many 

samples of size n and averaging the L2 distances of the kernel density estimates 

they produce. Each kde is formed with the optimal variance given by (2.17). 

Here we compare all the methods, iterated smooth bootstrap included. The 

latter is applied with three iterations of smooth bootstrap.

In the first setting we once again use the IV(0,1) prior for the “unknown” 

mean of a N ( 0,1) population. We have 30 observations from this population 

which give rise to 30 posteriors if considered sequentially. All these posteriors 

are Normal. For each method we obtain 200 samples of size n  = 50 from 

the prior and then update them. Thus for each posterior and method we 

have 200 samples and therefore 200 density estimates and 200 L2 distances. 

We average these 200 distances and the results are shown in Figure 2.12.

J  (h(x) — h(x))2dx
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The improvement created by all the smoothing and augmentation methods 

is evident. As weighted bootstrap is applied again and again the estimates 

it gives drift further and further away from the posteriors. We see that the 

average L2  distances for the other methods also increase, but very slowly. If 

we want to pick a winner among the methods this will be the partially smooth 

bootstrap. It is surprising that the iterated smooth bootstrap does worse than 

the smooth bootstrap and the augmentation methods.

A different picture emerges when we consider a dynamic model variation 

of the previous example. Now we have 30 observations yt ~  N(xt,  1) with 

x t ~  N (x t- 1 , 0 .1 ) and x\ ~  Af(0,l). The x'f5s are the only unknowns. The 

posterior distributions the observations give rise to are Normal again since 

this is a linear Gaussian model. Again for each method we take 200 samples 

of size 50 from p(x 1 ) and update them. The average L2 distances are shown 

in Figure 2.13. Here all the methods give estimates that are very close to the 

true posteriors. All the average L2 distances are less than 0.2. Nevertheless, 

the iterated smooth bootstrap is now the worst of the methods, while the 

partially smooth bootstrap is again the best, followed closely by the smooth 

bootstrap and G et al. Weighted bootstrap is now doing well thanks to the 

effect of the propagation equation on the samples.

2.6 Discussion

We now pull together and discuss our findings in the first two chapters. Our 

purpose was to study alternative techniques for obtaining random samples 

from intractable distributions. MCMC is the established group of methods 

that serve this purpose. However there are situations where samples from
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many distributions are needed in a short time. One such situation is the 

real-time analysis of dynamic models. MCMC can be very slow because the 

Markov chain it simulates must converge to the target distribution. Moreover 

convergence must be monitored and this precludes an automatic analysis. The 

methods that we focused on are based on resampling. They all essentially 

acquire an initial sample from the importance sampler, a distribution easy to 

sample from, and based on this sample they construct an approximation to 

the target. They then obtain their final sample from this approximation.

The simplest method is weighted bootstrap. It approximates the target by a 

discrete distribution over the initial sample. If this distribution appropriately 

assigns probabilities to the sample’s members it is proved that sampling from 

it gives samples that tend to come from the target as the initial sample’s size 

tends to infinity. We proved that the mean and variance of the final sample 

are asymptotically unbiased and it has also been proved that the sample mean 

is asymptotically Normal. However, because the approximation is a discrete 

distribution, the samples that the method produces sometimes contain many 

replicates of very few values, which is unrealistic if the target is continuous.

The other methods try to address this deficiency. Smooth bootstrap forms a 

mixture of continuous distributions, with means given by the initial sample’s 

members, and samples from it. We proved that, if the mixing weights have 

appropriately been assigned to the components of the mixture, the samples 

it gives also tend to come from the target as the initial sample’s size tends to 

infinity. Moreover we proved that its sample statistics have the same proper­

ties as those of a weighted bootstrap sample. Partially smooth bootstrap is a 

hybrid between smooth and weighted bootstrap. Iterated smooth bootstrap 

consists of iterating the smooth bootstrap many times by using each sample
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as the basis of a new better approximation to the target. Its performance 

can be unstable and a large computational effort is required. Augmentation 

methods perform weighted bootstrap but then construct a kernel density es­

timate of the target based on the weighted bootstrap sample and draw a new 

sample from it.

The methods have performance diagnostics which are easy to compute and 

to monitor automatically. They are very handy for the analysis of dynamic 

models because they are fast (with the exception of iterated smooth boot­

strap) and can utilise samples from posterior distributions of previous time 

points in obtaining the samples from the current one. We compared them 

in many simulation experiments and there was no clear winner among them. 

However, because of its probabilistic soundness and ease of applicability, we 

will be using smooth bootstrap.

A problem with all resampling methods is the choice of a good importance 

sampler. This has to be as close to the target as possible and its support 

must include that of the target. Usually the latter is not fully known and 

sometimes its support may have an awkward shape. There has been a lot of 

recent research on this issue. In one of the following chapters we will examine 

some recent proposals.
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Prior JV(—0.15, 0,2) N { - 0.15,1.5) 77(0.15,1.5) N(  0.15,0.2)
Posterior H>\ =  -0.1854 

o\ =  0.0666
iii =  -0.1998 
&i = 0.0938

iii =  -0.181
erf =  0.0938

iii =  -0.0854 
a\ =  0.0666

o
 

o
 

1—1

E(Y)  =  -0.1853
v (y )  =  0 . 0 0 1 2

e {<t$) = 0.0635

E(Y)  -  -0.1997 
y (y )  =  0.0023 
e \(t2y ) = 0.0867

E(Y)  =  -0.1807 
V(Y)  =  0.0023 
E(cr$) =  0.0873

£(Y ) =  -0.0847 
1 /(F )  =  0.0013 
E(a$)  =  0.0649

n=1000
E(Y) = -0.1854
y (y )  =  0 . 0 0 0 1 2

E{al)  -  0.0664

E(Y)  =  -0.1998 
V(Y)  =  0.00023 
E(a$) = 0.0931

E(Y) = -0.181 
V(Y)  =  0.00024 
E { a l ) =  0.0931

E(Y) = -0.0853 
V(Y)  =  0.00013 
E(cr^) =  0.0665

Table 2.1: Posterior means and variances and expectations and variances of 
smooth bootstrap sample statistics in the case of inference for the mean of

Prior iV(—0.15,0.2) 7V(—0.15,1.5) 1V(0.15,1.5) AT (0.15,0.2)

o
 

o
 

1—[a

E (Y)  = -0.1872 
V(Y)  = 0.0012 
E(<4) = 0.0667

E{Y) = -0 .2  
F(F) =  0.0022 
E(crp = 0.0946

E(Y)  =  -0.1823 
17(F) = 0.0027 
e {<j$) =  0.094

E(Y)  = -0.0852 
17(F) =  0.0014 
E \o \)  = 0.0661

n=1000
E(Y)  =  -0.185 
17(F) = 0.00012 
E(ol )  = 0.0668

E(Y)  =  -0.1998 
17(F) = 0.00025 
£(<7y) =  0.0937

E(Y)  = -0.1811 
17(F) = 0.00024 
E(cr^r) = 0.094

E(Y)  = -0.0852 
17(F) =  0.00013 
E(tjy) = 0.0665

Table 2.2: Simulated expectations and variances of smooth bootstrap sample 
statistics in the case of inference for the mean of N(fi, 1).
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Prior Ho — 1.6, erg = 1.024 
S q =  11.2, i /  =  9

Ho =  1.6, Op = 5.12 
So =  4.8, v  =  5

Ho ~  5 j — 1 
S o  =  260, v  =  54

Mo =  5, erg =  5 
S q =  60, v  =  14

Posterior H i  =  1.1738 
a\ =  0.1837

Hi = 1.0427 
a\ =  0.1977

H i  = 4.3348 
a f  = 0.6263

Hi  = 3.1252 
a2 = 0.9767

n=100
E(Y)  =  1.1752 
V(Y)  =  0.0032 
E(a\,) =  0.1834

E(Y)  =  1.0437 
V(Y)  = 0.0033 
£(<4) =  0.1978

E(Y)  = 4.3427 
V(Y) = 0.0169 
E{o$) =  0.615

E(Y) = 3.1477 
V(Y) = 0.0373 
E{a$) =  0.951

n=1000
E(Y) -  1.1739 
V(Y)  =  0.00031 
E(a^)  =  0.1837

E(Y)  =  1.0428 
V(Y) = 0.00033 
E{cfy) = 0.1977

E(Y)  =  4.3355 
V(Y)  =  0.0017 
E(a$) =  0.6252

E(Y) = 3.1275 
V (y ) =  0.0038 
E(a2) =  0.9742

Table 2.3: Posterior means and variances and expectations and variances of 
smooth bootstrap sample statistics in the case of inference for the variance of 
N(0 ,a2).

Prior Ho =  1-6, an =  1.024 
So =  11.2, v =  9

Ho : 1-6, a'o =  5.12 
SQ =  4.8, v =  5

Ho =  5, a l  =  1 
S'o =  260, v =  54

Ho =  5,<j§ =  5 
S0 =  60, i/ =  14

n=100
E(Y)  =  1.1745 
V(Y) = 0.003 
E(<jy) = 0.183

E(Y) = 1.0471 
V(Y)  =  0.0034 
E(a£) =  0.2013

E(Y)  = 4.3474 
V(Y) =  0.0167 
E{al)  =  0.609

E(Y)  =  3.151 
V{Y)  =  0.0367 
£ (< 4) =  0.9676

n=1000
E(Y) = 1.1739 
Y(Y) =  0.00031 
E(aI)  = 0.1832

E(Y) =  1.0422 
V(Y) -  0.00033 
E(<j2,) =  0.1974

E(Y)  =  4.3362 
V{Y)  =  0.0018 
E(a$) = 0.6273

E(Y)  = 3.1275 
V(Y)  =  0.0035 
E(a^)  = 0.9735

Table 2.4: Simulated expectations and variances of smooth bootstrap sample 
statistics in the case of inference for the variance of N ( 0, a2).
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Posterior Corr. Coeff. (C-score)
1 -0.296 (-0.305)
2 -0.313 (-0.324)
3 -0.31 (-0.321)
4 -0.308 (-0.318)
5 -0.308 (-0.318)
6 -0.307 (-0.317)

Table 2.5: True posterior correlation coefficients and ^-scores for Example 
2.5.2.

Corr. Coeff. (z-score)
(95% confidence intervals for ()

Posterior W.B. Sm. Boot. Par. Sm. B. S - T . G et al
1 -0.302 (-0.312) 

(-0.326,-0.298)
-0.278 (-0.286) 

(-0.3,-0.272)
-0.301 (-0.311) 
(-0.324,-0.296)

-0.331 (-0.344) 
(-0.358,-0.33)

-0.287 (-0.295) 
(-0.309,-0.281)

2 -0.299 (-0.308) 
(-0.322,-0.295)

-0.275 (-0.282) 
(-0.296,-0.268)

-0.321 (-0.333) 
(-0.346,-0.319)

-0.333 (-0.346) 
(-0.36,-0.332)

-0.309 (-0.319) 
(-0.333,-0.306)

3 -0.302 (-0.312) 
(-0.326,-0.298)

-0.298 (-0.307) 
(-0.321,-0.293)

-0.311 (-0.322) 
(-0.336,-0.308)

-0.324 (-0.336) 
(-0.35,-0.322)

-0.297 (-0.306) 
(-0.32,-0.292)

4 -0.28 (-0.288) 
(-0.302,-0.274)

-0.244 (-0.249) 
(-0.263,-0.235)

-0.342 (-0.356) 
(-0.37,-0.342)

-0.334 (-0.347) 
(-0.361,-0.333)

-0.323 (-0.335) 
(-0.349,-0.321)

5 -0.294 (-0.303) 
(-0.317,-0.289)

-0.289 (-0.297) 
(-0.311,-0.283)

-0.321 (-0.333) 
(-0.346,-0.319)

-0.306 (-0.316) 
(-0.333,-0.302)

-0.335 (-0.348) 
(-0.362,-0.335)

6 -0.3 (-0.31) 
(-0.323,-0.296)

-0.302 (-0.312) 
(-0.326,-0.298)

-0.304 (-0.314) 
(-0.328,-0.3)

-0.329 (-0.342) 
(-0.36,-0.328)

-0.322 (-0.334) 
(-0.348,-0.32)

Table 2.6: Posterior sample correlation coefficients, z-scores and 95% confi­
dence intervals for the ^-scores, in Example 2.5.2.



CHAPTER 2. IMPROVING THE WEIGHTED BOOTSTRAP 85

:

Q.G4 0.06 0.08 0.10 0.04 0.06 0.08 0.10 0.12

0.0550.0600.0650.0700 .0750.080

Figure 2.1: Means and variances of 1000 smooth bootstrap samples from 
the posterior of the mean of a N (/i, 1) population for four different choices 
of prior. The vertical lines denote the location of the expected value of the 
sample means and variances according to formulae (1.14) and (1.15). The top 
two rows show histograms of means and the bottom two show histograms of 
variances.
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Prior: S = 1 1 .2  , n=9

ii i .
0.1 0.2 0.3 0,4 0.5

Prior: S = 4 .8  , n=5 Prior: S = 260  , n=54

0 2 0.4 0.6 0.8 1.0 1,2

Prior: S = 6 0 , n=14

ill,.

30
0

1 » i l tI | i
. i l l !

.

0 
10

0

V  o

i t  ? l i l i l l i s -  5
0.14 0.160 ,18  0.20 0,22 0.24 0.2G 0.15 0.20 0.25 0.30 0,35 0.50 0.55 0.60 0.65 0.70 0.75 O.E

j b t L .
0.7  0.8 0.9 1.0 1.1 1.2

Figure 2.2: Means and variances of 1000 smooth bootstrap samples from the 
posterior of the variance of a N(0, a 2) population for four different choices of 
S x J 2 prior. The vertical lines denote the location of the expected value of 
the sample means and variances according to formulae (1-14) and (1.15). The 
top two rows show histograms of means and the bottom two show histograms 
of variances.
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w eighted  bootstrap sm ooth  bootstrap

O
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0 20 40 60 80 1000 20 40 60 80 100 0 20 40 60 00 100

partially sm ooth  bootstrap Sutherland - Titterington

o

0 20 40 60 80 100

o

GO 80 10020 400

Gordon et al

O

0 20 40 60 eo 100

Figure 2.3: True and estimated 95% HDI’s of the 100 posteriors arising in Ex­
ample 2.5.1. Points: true interval endpoints. Solid lines: estimated intervals. 
Broken lines: Confidence bands for interval endpoints.
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w eigh ted  bootstrap sm ooth bootstrap

O

l

42 30 1

o

2 3 40
log(n) log(n)

partially sm ooth  bootstrap Sutherland - Titterington

o

T

2 3 40

c

ra
t

40 1 2 3

log(n) log{n}

Gordon et al

O

t

1 2 3 40
log(n)

Figure 2.4: True posterior variances and 95% interval estimates of them (in 
logarithmic scale) for Example 2.5.1. Solid line: true variance. Broken lines: 
interval estimates.
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S-T G e t  alw.b. sm.b.

t=3

2

w.b. stn.b. par.sm .b. S-T G el al

t=5

w.b. sm.b. par.sm.b. S-T G e ta l

t=2

3

G e t alS-Tw.b. par.sm.b.

t=4

G e ta lS-Tw.b. sm b .

t=6

8
3
8

8

8
Oo

oo
G e ta lw.b. sm.b.

Figure 2.5: True 95% HDI’s and sample 95% HDI’s of the posteriors of the 
first component of x t for t = l . . . , 6 ,  in Example 2.5.2. Lines: True 95% 
HDI’s. Segments: Sample 95% HDI’s.
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<0
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S-Tw.b. sm.b. par.sm .b. G et al
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w.b. sm.b. par.sm .b. S-T G el al

Figure 2.6: True 95% HDI’s and sample 95% HDI’s of the posteriors of the 
second component of x t for t =  1 . . . ,  6, in Example 2.5.2. Lines: True 95% 
HDI’s. Segments: Sample 95% HDI’s.
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Figure 2.7: True parameter values and posterior sample boxplots for Example
2.5.3. Lines: true parameter values (when they could be accommodated in 
the graphs!).
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Figure 2.8: True parameter values and posterior sample boxplots for Example
2.5.4. Lines: true parameter values (when they could be accomodated in the 
graphs!).
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Truth Sm . Boot. Par. Sm . B. S - T  G e t a l  H ains. - Mar.

Figure 2.9: True images and reconstructions for Example 2.5.4.
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A«CCcVk>"\ o £

Figure 2.10: The cuboid at a starting position (forming angle 9 with the image 
plane), its shadow and the directions of light and rotation, from example 2.5.5.
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Figure 2.11: True parameter values and posterior sample boxplots for Exam­
ple 2.5,5. Lines: true parameter values.
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Figure 2.12: Average L2 distances of density estimates from the true posteri­
ors, in the Bayesian learning setting of Example 2.5.6.
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Figure 2.13: Average L2 distances of density estimates from the true posteri­
ors, in the dynamic models setting of Example 2.5.6.



Chapter 3

A control problem

3.1 Introduction

In this and the subsequent chapters we deal with a problem arising in the area 

of stochastic control. We tackle it using smooth bootstrap. The motivation 

for this work is twofold: first, the problem is interesting in its own right and 

second, it causes the smooth bootstrap in its usual form to break down. This 

fact leads to the consideration of possible improved resampling algorithms. 

As an introduction we give a brief description of control in layman’s terms.

Control is used in numerous mechanical and biological systems. Some exam­

ples will make this clearer. When a virus attacks an organism, the immune 

system releases specialized cells in order to destroy the intruder. Sensors in 

air-conditioning devices “read” a room’s temperature and regulate accord­

ingly the amount of cool air introduced into it. An automatic pilot maintains 

the desired direction of the aircraft or makes adjustments to it when necessary. 

In general, we can say that we have a system whose state can be specified in
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some way. When this state differs from a desired one by a significant amount 

control is employed to eliminate the difference.

In a mechanical system we observe an output which can either be the system’s 

state itself or some other quantity related to it. If the output leads us to 

believe that the state is not the one we want we can change it by supplying 

some input to the system. This input is called control. Therefore control 

is the name for both the process that tries to change the system’s state and 

for the actual input that causes this change. The most interesting cases are 

those where the state changes dynamically in time even without intervention 

by us. Then the relevant output must be monitored continuously and the 

appropriate action must be taken every time it is necessary. Sometimes more 

than one input can have the same effect on the state and then we seek the 

optimal one for each situation. This is what the mathematical theory of 

control deals with.

A usual situation with which we deal here is when the dynamics of the state’s 

evolution in time can be described by a dynamic model that incorporates 

random disturbances. Moreover, the output is a quantity related to the state 

and contaminated by random noise. When in a control problem random 

quantities are involved we talk of stochastic  control.

This chapter is organised as follows. In the remainder of this section we 

present the problem we are studying. Then we give a mathematical descrip­

tion of the general control theory. We show why this cannot be applied to our 

problem and we present an alternative approach. We adapt this and some 

other methods to our problem and present their practical implementation via 

resampling. A simulations section compares the methods under several vari­

ants of the problem. After the simulations we provide a theoretical analysis
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of a simpler version of the problem trying to explain the performance of the 

method that has turned out to be the best. Finally, we close the chapter with 

a short discussion.

3.1.1 T he problem  we are dealing w ith

The problem presented in this chapter belongs to the category of extremum  

adaptation problems; see Titterington (1973). These arise in cases where we 

have a response curve or surface which changes location in time and provides 

us with noisy observations which are used in order to track, in an optimal 

way, an extreme point of this curve.

In the particular case at hand, the response curve is a parabola. Its minimum 

touches the real line and the curve moves along the real line in a random 

manner. The movement takes place in discrete time. Suppose that at time t 

the minimum is at xt. Since we do not know where it is, if we guess that it 

is at Ut-, what we will observe is the value of the parabola at 4>{uu x t) say, 

with some random noise et added to it,

yt -  <f>(uu xt) +  et.

We can assume that are independent, identically distributed (i.i.d.) iV(0, of) 

random variables. We also assume that they are independent of x s for any s. 

The form of the parabola is

(ft(Ut, Xt) — (x£ Ut) . (3.1)
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Furthermore, we assume that aq, the minimum of the curve at the first time 

point, comes from a N(Q}al) distribution and that the parabola moves in 

such a way that the movement of xt is a random walk:

xt =  Xt-\ +  ?7t,

where rjt are i.i.d. N(0} <r̂ ) random variables. Moreover, ?;t is independent 

from es and xs for all s and t.

Equation (3.1) can be seen as a cost function. It gives the cost we expect 

to pay for not knowing the value of Xt and guessing it is Ut■ In industrial 

applications the cost could be production cost, Ut and x t could be production 

conditions, and trying to track x t would amount to trying to manufacture 

the product at the optimal conditions each time. If yt could be observed 

without any noise there would again be ambiguity concerning the location 

of the minimum. At each instant t there would be two candidates for its 

location, namely the solutions of the equation

Vt =  ^ { x t - u t } 2,

which are ut — y/2yi and ut +  y/tyt- The presence of noise complicates things 

even further.
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3.2 General control theory

102

Here we present the mainstream control theory following mainly Aoki (1967). 

We only consider the discrete time case. Suppose that the state of a system 

at time t +  1 is given by the equation

xt+i = Ft (xt,ut,rjt}a t), 

while what can be observed at time t is the output

Dt =  G t ( x  et, P t ) .

ut is the control to be chosen at time t. Note that it affects the state of 

the system at time t +  1. In the problem we are studying ut affects the 

output at time t but not the next state of the system. The a ’s and /Ts 

are unknown parameters which may vary with time. The 7/’s and e’s are 

random noise. For an exposition of general control theory no assumption of 

independence is necessary about them. Their distributions may also involve 

unknown quantities. We denote by Dt all the information available at time t 

prior to choosing ut. It comprises y t = (yi, . . . ,  yt) t ut_i — . . . ,  itt-i), the

prior information about Xq and the posterior distributions of all the unknown 

quantities given y t and ut_ i. We consider closed-loop controls which means 

that ut is a function of Dt only.

In choosing the controls Uo,i£i,. . .  a performance index has to be decided 

upon so that the chosen controls are optimal according to it. The index will
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normally be indicated by the system itself. It may also depend on whether 

the controls must be chosen for the next N  time units or for an infinite period. 

The first case is easier and we start with it. Assume that currently we are at 

time 0. A usual form of the performance index is

r n

J  — E
Li=l t=i t=i

Wt(xn ut~i) is a generic notation for a cost function that can have any form 

as long as it takes non-negative values. Its arguments are x t and ut- \  because 

the latter affects the former. The sequence of optimal controls is the one 

that minimizes J. It can be found either by backward recursion or by 

induction, both methods leading to the same result.

In backward recursion we start by assuming that u0, u1;... , Ujy- 2  have already 

been chosen and that y N_i is available. All that remains is to find the optimal 

control for time N  — 1. According to the performance index this will 

be the minimizer of E  [Tdqv(̂ 'iVi But f?[kTfiv] =  E  (I^TTjvl-DjY-i]) and

therefore £[Wjv] is minimized only if jE’fkTfivlAv-i] is minimized for every 

Djv-]. The derivation of E,[TT^-|Dtv-i] involves the posterior distributions 

of all the unknown quantities but is at least in principle feasible, and so is 

its minimization. We denote E  [ i T j v ^ i V ) b y  7 n - Note that 7 ^ 

depends, among other things, on uo, u \ }. . . ,  un- 2 -

Then we proceed to find U * N -  2- This will be the minimizer of

E UN-2 ) +  W n (x n } u5v-_1 )|Djv_2]
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— E  [T4/ i V - l ( ^ A r - ~ l / ^ A f - 2 ) | ^ A r - 2 ]  +  E  (E  'Lî r_1)|Div_iJ |£ > A T _ 2 )

=  E [ W n - i (x n - i , u n ^2) P T n IDn - z]'

The minimization of this quantity is also feasible in principle. Moving further 

back in the same fashion we can derive uj, i t j , . . . ,  u*N_l .

In induction the reverse procedure is followed. At first Uq is derived for N  = 1 

as the minimizer of E  [kk^aq, ri0)!^o]- Then Hq is derived for N  =  2 as the 

minimizer of E [Wi (x i , uq) +  W2(o;2, Ui)|_D0] where u\ is given by the same 

formula as for N  = 1 but all the quantities that there depended on Dq 

here depend on D\. Going on in the same way . . .  ,u*N_1 are derived.

Of course irrespective of the order in which we derive their mathematical 

formulae, the values of the controls are calculated and applied in the proper 

order.

If we wish to consider the infinite horizon case (i.e. infinite N)  we must find 

the limit of Uq as N  goes to infinity. All controls will be given by the same 

formula, changing only the quantities referring to the unknown parameters so 

that they reflect their changing posterior distributions as new data are being 

collected. Of course in the infinite horizon case the performance index may 

tend to infinity so that it cannot be minimized. Then we may consider a new 

index

J  = E

If the index represents total loss then this last form can be seen as the average 

loss per unit time. This new J  may also tend to infinity. However, if we can
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find a sequence of control points that keeps it finite the system is called 

controllable.

For more information on control theory see Aoki(1967), Whittle (1969), Wishart 

(1969) and Bar-Shalom (1981) among others. For an example of the infinite 

horizon case see Drenick and Shaw (1964).

3.2.1 D ifficulties w ith  the problem  at hand

The standard control theory we presented in the previous section breaks down 

when applied to the problem we study. Suppose that M  optimal controls 

u*, . . . ,  u*M have already been chosen and that we also want the N  next ones. 

The performance index indicated by the system is slightly different than the 

one used in the previous exposition because in our problem we want each ut 

to be close to x t. Therefore we take

N

X](&‘M+t “  UM+t)2\DM
U=1

Note that here DM is the same as in the previous section apart from the fact 

that it also includes Um - We try to derive the optimal controls by induction.

For N  = 1 we have to minimize

J ~  E  [(a,>/+i — um+i)2\Dm] — E { x 2m + 1 \ D m ) — 2 u m + i E ( x m + i \ D m ) +  ^ m + u

which leads to



CHAPTER 3. A CONTROL PROBLEM 106

dJ
a  0 ~  = =  0 ^  = =  B (%M+1 |-^m) •
OUM +1

Therefore, uj*+1, when the horizon is M  +  1, is the mean of the predictive 

distribution of x m + i  given D m - That it minimizes J  can be seen from the 

fact that J  is a quadratic function of u m + i-

For N  — 2 problems appear. We have to minimize

J  =  E  [(â M+i "  ^M+i)2 + (pM- \ -2  — u*m+2)2\Dm^ j

where uJ//+2 corresponds to u^/+1 above with the time index increased by one, 

i.e. u*M+2 =  E ( x m + 2 \D m + i) -  Thus,

J  — E  [(x m +I — U-M+l)2 +  {%M+2 — E ( x m + 2 \ D m + i ) ) 2 \ D m \

=  E  (̂ (x m +i — um+i)2 +  B  [(a;M+2 — E{x m +2\Dm+i ))2\Dm+i \ \Dm )

=  E  [(a-'M+l “  U > M + 1)2 +  Vw{xM+2\L)m+i)\Dm\ •

But xm + 2  =  £m+i +  Pm+ 2  and therefore,

J = E  [(im+i — uM+i)2 + Var(xM+i\DM+i) +  -

Unfortunately, the posterior variance of Xm+i given D m + i cannot be obtained



CHAPTER 3. A CONTROL PROBLEM 107

in closed form because of the non-linearity of Um+i and therefore the procedure 

breaks down. This means that at least in the particular case at hand a 

different approach must be taken.

3.3 An alternative approach

Titterington (1973) analyses the same problem but in a continuous time set­

ting. The non-linearity of the observation equation prevents him from using 

the standard control theory. We hereby summarize his approach.

Assuming that xo ft priori has a unimodal symmetric distribution with mode 

0 we can set uo = 0 . If we keep ut — 0  the posterior distribution of xt , for any 

i, will also be symmetric around 0. If xt moves far from 0 its distribution will 

moreover become bimodal. The author argues that when xt is very close to 0 

the noise dominates the observations and we should keep ut =  0. We should 

choose a value K  such that by the time |a;f| gets close to it the observations 

are dominated by their deterministic part. When this happens we set ut equal 

to K  or —K  at random. Of course we cannot observe x t so we change ut when 

the modes of the posterior distribution of x t reach K  and —K.  When we have 

made the change a te s t period  ensues during which we use the observations 

gathered to check whether the correct mode was chosen as ut. If it turns out 

that the wrong mode had been picked, we take the other one as ut. Then 

a new passage period  begins with ut constant and the variable of interest 

now being |art — ut\. The whole process is an alternation of passage and test 

periods. The length T  of the test period depends on the power of the test. 

The author chooses a very large power so that the possibility that after the 

test ut is not in the correct place can effectively be dismissed. If moreover
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T  is not very large x t will not move a lot during the test and all passage 

periods can be considered probabilistically identical. The same applies to all 

test periods.

The author’s performance index represents expected loss and for a period of 

length T0  is defined as

cTq
J =  E [<f>(xt) Uf)] dt. 

J o

Because the horizon is infinite the author uses the expected rate of loss

=  Epassages Ejloss during passage) + '£tesia E {loss during test) 
Epassages E {passage time to ±  I<) +  EtesU test time

which because of the above arguments about passage and test periods becomes 

E(\oss during one passage) +  E(loss during one test)
j ( K )

T(first passage time to ±  K)  +  T

The optimal value of K  can be found by minimizing 7 (K).

A practical consideration is that of assessing that |a;t | has rea.ched K.  The 

posterior distribution of x t has to be used in this respect but it is not of 

a nice form. The author uses the technique of Gaussian sums approxima­

tion (Alspach and Sorenson (1972)), mentioned in an earlier chapter. More 

specifically the author approximates the posterior distribution p(xt |yt , u t) by 

a mixture, with equal weights, of two Normal densities with the same vari­

ance vt and with means ~ m t and m t and provides formulae for the updating
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of m t and vt in time given the observations. Therefore, we monitor m t and 

when it reaches K, ut is changed. Simulations made by the author show that 

m t approximates | | well when this is in the proximity of JC, which is what

matters.

Titterington’s idea is also appropriate in our discrete time setting. His method 

however cannot be directly adapted to it for several reasons. For example, 

when the author calculates 7 (K) he uses a theorem that gives the expected 

loss during one passage period and the duration of a passage period. The 

equivalent of this theorem cannot be easily derived in the discrete time case. 

Moreover, in calculating T  the author assumes that the aggregate observation 

of the test period is Normal, which does not hold in our case. In the next 

section we will implement Titterington’s idea using a sample-based approach.

3.4 Sam ple-based m ethods

In this section we propose some methods for choosing utl derived directly 

from the discrete time setting. They are modified so that they can be applied 

when only samples are available from the arising distributions of interest.

First of all we recall and introduce some notation to be used in all the pre­

sentation that follows. y t = (y 1 , . . .  }yt) are the data collected up to time t 

and =  (ui , . . . ,  ut) are the corresponding control points. x f =  (2 7 , . . . , x t) 

denotes the sequence of true curve minima up to time t.
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3.4.1 A n adaptation  of T itter in g ton ’s m ethod

The logic behind this method is the same as in the continuous time setting. 

At each time t we want the distance between ut and x t to be at most AT, where 

K  is a value chosen by us. All information about x t is encompassed in its 

posterior distribution p(a;t|yt , u£). After observing yt we want to choose ut+x. 

We argue that the best choice of ut+i is the mode of p(a:£|yf, u£). Although 

it seems even better to choose as ut+i the mode of the prior distribution of 

aJt+i> p(xt+i\yt , u£), our simulations have proved otherwise. We will try to 

explain why this is so in our simulations section. From a theoretical point of 

view the best choice for u£+1 is the mean of p(££+i|y£, u£). However, careful 

consideration reveals that if this was our choice we would have ut = E (x i) 

for all t. This is clearly a very unsatisfactory solution to the problem. When 

x t is far from utl p(xt \ytiUt) will be symmetric around ut and bimodal. If 

the distance of the modes of p(:c£|y£,u £) from. ut is larger than K  we set ut+\ 

equal to one of the modes chosen at random. Then, p(:c£+1|y£, u£) is not 

symmetric around ut+i and therefore, neither is p(:c£+i|y£+1, u£+i). Moreover 

even if p(££+i|y £+1, u£+i) is bimodal only one of its two modes will be global. 

An altogether different case is when x t is close to ut where we may get a 

unimodal p(xt\yt1 u£) with ut as its mode.

In the light of all the above the argument about choosing u t + 1  is as follows. If 

the distance between the global mode of the posterior distribution p(a;£|y£, u£) 

and Ut is greater than K  set u£+1 equal to the mode, otherwise retain u£+i =  ut. 

If p(x£|y£,u £) is bimodal and both modes are global choose one of them at 

random as u£+1. If at some point t x t happens to get very far from ut the 

global mode of p(rc£|y£,u £) will probably also be far from ut. If its distance 

from ut is larger than K  we will set u t + 1  equal to it. Therefore even if we
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begin to lose track of xt this is automatically corrected. This eliminates the 

need for a test period.

As in the continuous time setting, the distributions p(sci|yt,u t) are analyti­

cally intractable because of the non-linearity of the observation equation. We 

suggest representing them by samples taken from them. We will deal with 

how to obtain the samples later on.

We have developed a heuristic for finding the global mode of a sample from 

p(xt |jq, u t). As we will see in the simulations section, if the sample is bimodal 

and we split it in the middle into two subsamples, each of them presents an 

almost symmetric histogram. Applying the formula appropriate for slightly 

non-symmetric unimodal distributions

mode =  3 ■ median — 2 • mean, (3.2)

(Kendall and Stuart (1963), sec. 2.11), we can find the mode of each subsam­

ple and therefore the two modes of p(xt \yt} u t). However, ^(aqly^Ui) could 

also be unimodal with ut as its mode as we have said. In that case (3.2) will 

give two pseudomodes. From a sample we cannot distinguish automatically 

between unimodality and bimodality. Therefore, we do the following at each 

time t.

•  Obtain the sample from p{xt\yt>ut) .

• Calculate the average of its smallest and largest member.

• Using that as a split point, create two subsamples.

• Find the pseudomode in each subsample.
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• Compare the two pseudomodes and ut to get the global mode.

• If the distance between the global mode and ut is greater than K  set 

Ut+i equal to the global mode, otherwise set ut+i — ut.

We take as global mode the point that has the most sample values around it 

in a zone of width equal to half the distance between the two pseudomodes.

The discreteness of the situation does not allow us to use theoretical argu­

ments like Titterington (1973) does in order to derive an optimal value for K.  

This will have to be chosen on the basis of simulations of the system.

3.4.2 A  probabilistic criterion

Here and in the next section we look at the problem of choosing ni+1 from 

a different perspective. We wish u t + 1 to be close to x t+i- How close can it 

be? We can never answer this since xt+\ is a random quantity. We can only 

try to maximize the probability that its distance from u t + 1  will be smaller 

than a quantity V. This probability is stated with respect to the predictive 

distribution of given the information up to time t. In other words we 

want u t + 1  to maximize

Pr {\Xt+l -  ut+1 | < V |yt, u j  .

If we define an indicator variable
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!{%t+1) ^t+i) —
1 if \xt+i — itt+il < V  

0 otherwise

then

P r( |X i+1 ~ u t+1 | < V|ytJu t) ^  E [ I (X t+L,u t+l)\yt, u t] .

If we have a sample . t^ ^ I ) ,  . . . ,  s;J+1(ti) from p(a,y+1|yi} u t) then the proba­

bility above can be estimated by

Pr(|A*+i -  ut+i \ < y |y t,Ui) =  M(xl+l(i),ut+1) (3.3)
n i= l

Alternatively, we can write

(|At+i — ut+1 | < V\yt , u t)
C O
r

= j  Pr(|Ab+i -  iif+i| < V|a;t)p(a;i|y£)Uf)rfa;f
- C O

oo ut+i+V
= J  p{xt\ytAlt) J  p(xt+i\xt)dxt+idxt

u t + \ - V

( Ut+i +  V  — xt

— OO 

oo

$ -  $
(7,

( Ut+l "  V  ~  Xt 
V an

dxf

=  E $  I «t+i +  V -  X t \  _  4  | |
av J \  av

where $  denotes the cumulative distribution function of the standard Normal
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distribution. This probability can also be estimated if we have a sample 

xt{ 1), • ■ •, x t{n) from p(xt |ytJ u t) by

Pr {\Xt+i -  < V\y t, u t)

3.4.3 W orking d irectly  w ith  th e cost

Instead of requiring a small distance between ut+i and x t+i with high prob­

ability we may want to have small cost yt+1 with high probability. After all, 

the cost is what we observe and we will know at each time point whether our 

target has been met or not. We want a ut+\ that maximizes

(I) / »t- i  -  V -  Xjti) (3.4)

for a quantity b. We can write

b

Pr(W+i < b\yt, u t:ut+1) = J  p(yt+l\yt, u t,u t+i)dyt+i
—oo 

b oo

J  J  p{yt+1,xt+i\yty\Xt,ut+i)dxt+idyt+i
—oo —oo 

b oo

=  I I  p(yt+i\xt+i, ut+i)p(xt+i\yt1 u t)dxt+idyt+i
—oo —OO
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0
p(Zi+i|ytsiit) J  p(yt+l\xt+uut+i)dyt+idxt+i

—oo
C O

b -  ~{xt+i -  ut+i)‘
(Je

=  E

p(xt+i\yt>ut)$

* ( 6 ~ ^ (Xt+1-~ “ i+.1l . ) |yt, u t

dx

Therefore, if :ty+1( l ) , . . .  , a;J+1(n) is a sample from p(rui+i|y £, Ut) we can esti­

mate the probability by

t5 r v  ^  u\ \  1 I b ~  2 (x' i+ i ( )̂ “  u t+ i)P r ^ + i  <  b\yt i u u ut+1) -   L.
n »=i V

(3.5)

(3.3),(3.4) and (3.5) are functions of ut+1 and can be maximized with the aid 

of numerical techniques. Instead of changing ut+i each time we could change 

it only if the relevant probability falls below a limit specified by us. This limit 

should be set close to 1 so that bad ui+i are not retained. V or b can have 

any value as long as it is not very large.

3.4 .4  U nknow n variances

In the discussion so far, all the variances involved (of the prior of aq, of the 

noise and of the system disturbances) have been considered known. This 

may not be the case in practice, but, fortunately, our methods do not change 

considerably in such a situation. We consider here two different possible 

settings.

• All variances, tyqoPjof are unknown.



CHAPTER 3. A CONTROL PROBLEM

• of is known, =  (3aj with fj known and aj unknown.

116

In both situations it is easier for Bayesian analysis to work with the preci­

sions, which are the reciprocals of the variances. The posteriors are now joint 

distributions for x t and the unknown precisions. For Titterington’s method 

no modification is needed. When the posterior sample has been obtained, we 

only deal with the xt part of it. For the probabilistic methods slight changes 

are needed in the calculation of the probabilities involved. In the case of 

totally unknown variances they are derived as follows.

P r( |X t+1 - u t + 1 | < V|yt,u t)

=  J  p(rct+i|y t, ut)dxt+i
u t + i  —  V  

« t+ i+ V  co oo

=  /  /  f  pixt+uxt^^y^u^d^dxtdxt+i
u t + i  —  V  — o o  0

oo OO 1^+1+^

=  J  J p{xt,(f)v\yh ut) J  p(xt+l\xU(i)v)dxt+id(f)vdxt
-o o  0 i't+1-V

=  E  [$ ((ut+1 + V -  X t)<j>f) -  <E> ((«l+1 - V -  X M f )  |y(, ut

Therefore, if {xt(T)} (f>v{ 1)) , . . . ,  (xt(n), (f>v{n)) is a sample from p(xu (j>v |ytJ ut) 

we have the estimator

Pr (\Xt+i -  ut+1\ < V\y t1 u t) = -  [$ ((ut+i + V  -  X t i i ) ) ^ 2{%))
n »=i

-  <h ((ut+i -  V  -  a;t ( i ) ) ^ /2(i))] . (3.6)
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If one prefers to use (3.3), this is directly applicable by using only the x t+i 

part of a sample from p(xt+i, (j)lv <f>€\yt , u t).

In the method involving Yt+i we have

U
Pr(y t + 1  < b\yt}n t ,u t+1) =  J  p(yt+i\yt, u u ut+i)dyt+i

" O O

b o o  oo

J  J p(yt+u ^t+1 , 0e|yi, Ut, ut+i)d<l>€dxt+1dyt+i
—o o  —o o  0

c o  o o  bJ  J p(xt+U(j)c\yt, u t) j  p(yt+1\xt+u fa, ut+i)dyt+1d<f>edxt+1
—o o  0 —oo

= E ® ((& “  -  ut+1)2)^1/2) lYi.Ui

Now, if (:rt*+L(l) ,0 * (l)) ,. . . ,  (£*+1^),0*(n)) is a sample from p(xt+i, 0e|yt, ip) 

we have the estimator

Pr(*t+i < 6|yt,u t,uf+i) = $  ((&“  ~^ i+ i)2)^*W1/2n i=l i \  *
(3.7)

Of course, all the above means that at each instant we have samples for all 

and we use whichever part of them is relevant to each estimator.

When only a\ is unknown we have — f3a\ which means 0e — /?07? and 

therefore, while (3.7) remains unchanged, (3.6) becomes
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Pr(|A"t+i -  ut+L| < V |yt,iit)

$ (ut+i -\-V -  x t(i))4>lJ 2(i)
VP VP

(3.8)

where (^(1), &(!)),■ • •, (^ (n), 0£(n)) is a sample from p(rctj 0£|yt, u t).

3.5 R esam pling im plem entation

It is obvious from the previous discussion that the application of any of the 

methods in any situation in practice will require the generation of samples 

from a possibly very large number of distributions. The dynamic nature of the 

problem makes the resampling techniques the most suitable for this purpose, 

as has been made clear in the previous chapters. Because we may have to 

follow x t for a long time we will use smooth bootstrap so that the samples do 

not degenerate.

Depending on our degree of knowledge about the variances, different samples 

and therefore different resampling weights are required. In all cases though, if 

we start with a sample from the prior we can easily update it to get samples 

from all the subsequent posterior and prior distributions. The resampling 

weights will always be equal to the likelihood of the prior sample points.
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3.5.1 K now n variances

The prior for x\ is N(0}af) and therefore easy to sample from. Suppose that 

at time t a sample 2^(1), . . . ,  x^(n) from p{xt\yt_h u 4_i) is available. After yt 

is observed at ut, the weight of sample point xf(i) is equal to

wt(i) =  exp
1

2a? ( v t  -  ~  U t ) 2 )

After resampling, we end up with a sample 3^(1),.. . ,  xt(n) from p(xt |yt, ut). 
Then, because

oo

p(xt+i|yt,ut)=  / p{xt+i\xt)p(xt\yt,nt)dxt

we can obtain a sample 3^+1( l) ) . . . ,  a;J+1(n) from it by setting

x*t+i(i) = x t(i) + r}t+1 ,»

for each i =  1,2, . . . ,  n, where r}t+i,h • ■ ■ > are points sampled from AT(0, o^) 

This constitutes a full transition from one prior to the next.

3.5.2 U nknow n noise and disturbance variances w ith  

known ratio (3

The unknowns here are x and the precision of the noise. For simplicity we 

denote the latter by (j). At each time instant we need samples from both x t and



CHAPTER 3. A CONTROL PROBLEM 120

cj). Since the variance of xi is known we can consider x\ and (j) independent 

a priori Following common Bayesian practice we take the prior of 0 to be 

Gamma. Its parameterization will be explained in the simulations section. It 

is easy to obtain a sample from p(xi, (j)). We get points from IV(0, of) and to 

each one of them we attach a point from the Gamma prior of <fi.

Suppose that at time t a sample (a;J(l), </>*( 1)), . . . ,  (x^(n), (f>*(n)) from 

p(xu 0|yt-D u£-i) is available. When yt is observed at ut, the weight of point 

(a;J(i), is equal to

- “O2)

Resampling gives us the sample (a;t (l), 0(1)), • • ■, (a:t(n,), 4>(n)) fromp(o;£, u t). 

Then, because

0 0

P(zi+i>0|ytjut) = J  p{xt+i\xu <t>)p(xu <i>\yt iut)dxtl
— OO

we can get a sample (a;£+1(l), 0*(1)),. . . ,  (^£+1(n), </>*(n)) from it by setting

^t+iW =  xt (i) + Vt+i,i 

=  (f)(i)

for each i =  1, 2, . . .  ,n, where r}t+i,i is a point from IV(0, ~^y). This is easily 

explained by the fact that p(xt+i\xt, (f>) is iV(0, since /?=&-.
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We should note here that the very first prior distribution, p(x i ,0) can be 

very diffuse, especially in the direction of <j5>, if very little is known about <p. 

A sample of size n from it may contain very few points or no point at all 

close to the true values of aq and <j>. Then the sample from p(x i ,  <j>\yi,ui) will 

not be truly representative of the posterior. All the subsequent analysis will 

be based on very unstable foundations. For this reason we select the size of 

the first prior sample to be a lot larger than n. Alternatively one could use 

MCMC for obtaining this first sample. We set u\ equal to the prior mean of 

xi, i.e. ui =  0.

3.5.3 T otally  unknown variances

The unknowns here are x, <j>i, 0^, although </>i is not necessary in the main 

bulk of the calculations. We leave the sampling from the first prior aside 

for the moment because of some peculiarities which have to be taken into 

account.

p(xt: (bV: »W-i) ai'e available. After yt is observed at nt> the weight of

point (x*(i),(j)*(i)7(J>*(i)) is equal to

Note that makes no contribution at all to the weight. The resampling gives 

M 1), &?(!)> &(!))> • ■ • > ( ^ W i  4>r){n), <f>e(ri)) from p(xt, ^ \ y t, w)- Follow­

ing similar thinking to before, we get a sample 

lx*t+i(n )> 'Kp1')-. 4>'M)) from p(xt+x,4>v, 4>t |y(, ut) by setting

Suppose that, at time £, (zj(l),  <£*(!)),..., (aj'(rc), 0,*(n), C ( n )) fr°m

wt(i) =  0JW1/2ex p
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'<+ lW = x t(i) + r}t+lii

0JW =  M i )

M i )  = Mi)>

where r]t+i,i is a point from N ( 0, ^ y )  for each i = 1 ,2 , . . . ,  n.

As we see, while 0  ̂ is essential in propagating posterior samples, any value 

of it could in theory go through the resampling step. We have to ensure that 

the initial pool of points of 0T/ is good. This makes the sampling from the 

very first prior and the first resampling very crucial. If we use only the first 

observation yi any point <pv from the prior can pass through the resampling. 

For this reason we have to consider s i, x2} 0i> 0t/> & as a kl°ck- Then, using 

observations yi and y2 we will get a sample from p(xi, x 2: 0i, 0^, 0 e|y 2 ) u 2 )- 

The prior of this block of unknowns is

p{x 1 , £2, 0 1 , 0e) =  p(0l)p(07?)p(0e)p(^l|0l)pfe|-'i'-l, 07?)-

The priors for the precisions are again Gamma, p(xi\4>i) is the density (p.d.f.) 

of N{0, ^-) and p(x2\xi^(j)r]) is the p.d.f. of N ( x The parameteri­

zation of the Gamma priors is explained in the simulations section. To 

get , xl (i) ,  ̂ from the prior, we independently sample

(i), 0J(i) and 0*(i) from their corresponding priors, then x\(i) from N ( 0, ^ y )  

and finally xl(i) from N(xl(i) ,  ^ y ) -  The weight corresponding to it is
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iu(i) =  ^>*(i)exp

The resampling will favour “good” pairs of x\ and X2 and therefore “good” 

points for <fiv too. We do not care about “good” points for (pi since straight 

after the resampling we forget about it. The size of the first prior sample is 

again a lot larger than n. We set u\ =  u<z =  0.

3.5 .4  A  sm all am endm ent to  the resam pling algorithm s

In simulations we have observed that smooth bootstrap sometimes breaks 

down when applied to the problem at hand. More specifically, sometimes 

all the resampling weight goes to a single point of the prior sample and the 

subsequent samples “lose” x t. In this section we explain why this happens 

and we suggest a remedy. We refer separately to the cases of known and 

unknown variances.

Known variances. The weight assigned to a prior sample point x } when we 

have observed y at it, viewed as a function of x is

21

Since w(x) is proportional to the likelihood of x, it is maximized at the max­

imum likelihood estimates of x
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x
u +  a/2y and u — \ / 2 y if y > 0

u if y < 0

which we shall call MLE’s from now on. Incidentally, the value of the MLE 

for y < 0 can be seen as another justification for not changing u when the 

noise dominates the deterministic part of the observation. A negative y can 

be the result of either the true x being very close to u or of very large noise, 

and in either case it is better to retain the same u until more data have been 

gathered.

Suppose that we have, at time £, a sample from p(a;t|yf_l5Ui_i). Being a 

sample it does not cover the whole support of the prior it represents. If the 

true xt comes from the tails of the prior it will lead to a positive yt and the 

two MLE’s may be outside the sample’s range. If this happens and <re is very 

small, the weight function will be very peaked around the MLE’s and almost 

0 away from them. Then the sample point closest to one of the MLE’s will get 

all the weight and will be exclusively favoured during resampling. If this point 

happens to be far from the true Xt the resulting sample will lose Xt- The same 

will hold for all the subsequent samples unless by chance another extreme x t 

occurs in the future which “lands” in the corresponding prior sample’s range.

To prevent this from happening we suggest the following solution. When 

yt > 0 and both MLE’s are outside the prior sample’s range we scrap this 

sample and we do not perform resampling. Instead we take as the posterior 

p(a |̂y£> u0 a. mixture, with equal mixing weights, of two Normals: N (fi i ,a 2) 

and N(f.L2 , c 2)> where



CHAPTER. 3. A CONTROL PROBLEM 125

Ut +  yjtyt

ut -  \ftyt 
\/2yt +  4 ae 

2

The value of a is derived heuristically based on the following argument. It 

holds with probability higher than 0.975 that

-  utf  < yt +  2ae = > u t -  \j2yt + 4crc < xt < ut +  yj2yt +  4ae.

Taking a — •32̂ +4ff£ ensures that the mixture will cover with probability 

higher than 0.975 the range

(m-2 ~ y/2 y tL  4o*0 n x -1- y/2 yt +  4aê

=  -  xflyt -  y/2yt +  4cre, ut +  \j2yt +  \ j 2 yt +  4a()j

which is wider than (ut — \j2yt +  4cre, ut -F \J2yt +  4<j c) . Therefore, when we 

sample n  points from the mixture the chance that the true x t will not be in 

the range of the sample is negligible.

From this mixture we take a sample of size n and then we return to the 

usual procedure until such in terven tion  is needed again. In our case the 

extreme observations are possible although unlikely under our model. In 

practice however, we cannot be sure that a model explains the behaviour of

Mi =

M2  = 

a —
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the system under study. Therefore, outlying observations throw doubt on the 

model and intervention becomes necessary; see West and Harrison (1989, sec. 

1.2.3).

With this amendment, our samples have never “lost” x t in all our simulations 

so far.

U nknow n variances. Irrespective of whether we know the ratio of noise 

and disturbance variances or not, the weight is a function of x and the noise 

precision, (j) say,

w(x, (/)) =  4>lt2 exp ( y - i ^ - u ) 2)

The function is again proportional to the likelihood. If y < 0 the function, has 

a maximum at (u , 1/y2). The case that can cause trouble is y > 0. For x — 

u-\- \ / 2 y and x = u — y/ 2 y (the MLE’s) the value of w increases monotonically 

as (j) increases and therefore w has no global maximum. However, for any 0, 

w(Xj 4>) < w(u +  y/2y, (j)) ~  w(u — y/ 2 y, <j>). Therefore, w forms two ridges in 

the direction of the MLE’s which become steeper and taller as (j) increases. 

In a sample from the prior, points with x not very close to the MLE’s get 

very small weights. As a result of this the same problems as in the known 

variances case may appear. The solution we propose is the following.

When yt > 0 and both MLE’s are outside the range of the prior sample’s x t 

part, from the sample we keep the precision parts and, instead of resampling, 

we get xt points from a mixture of two Normal distributions with the MLE’s 

as their means and standard deviation
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s j 2 y t +  4cr(

where <7g is an estimate of cr£ derived from the noise precision sample points 

as

Again, with this amendment the samples have never “lost” x t in any of our 

simulations so far.

3.6 Sim ulations

In this section we examine how the techniques mentioned so far in this chapter 

perform in practice. We begin with two very simple experiments for demon­

strative purposes. With the first one we show what kind of pseudo-modes we 

get with the heuristic of section 3.4.1. We consider a case where the prior and 

system standard deviations are equal to 1 while the noise standard deviation 

is 0.1. This allows quite quick passage from unimodality to bimodality for 

We keep ut = 0 for all t and consider 25 time points. Figure 3.1 

shows histograms of the samples taken from p(£t|yt, u j ,  for t — 1 , . . . ,  25, and 

the two pseudo-modes for each one of them. The samples have size 1000 and 

were obtained with smooth weighted bootstrap. We can see that the global 

mode is picked by one of the two pseudo-modes unless the sample is unimodal 

without a veiy prominent mode.
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With the second experiment we want to show that the probabilistic methods 

actually pick out the modes of the distributions to which they refer. This 

is expected because, in bell-shaped densities with not very narrow peaks, 

observations fall with the highest probability close to the modes. In Figure 3.2 

we show the samples fromp(^i+1 \yt, u t), for t =  1, . . . ,  25, with the maximizers 

of (3.4) and (3.5). In most cases the two values fall very close to each other. 

When they do not it is because the distribution is bimodal and each maximizer 

picks out a different mode. In all samples the overall mode is located by at 

least one of the two methods. In the maximization we used the non-linear 

minimization routine e04bbf of the NAG library for FORTRAN 77. The 

values of V" and b were 1.5 and 0.15 respectively.

Although these results correspond to the case of known variances the methods 

pick out modes equally well in cases of unknown variances.

In the remainder of this section we present and discuss the results of an 

experiment designed to give us more insight into the problem of choosing K  

for Titterington’s method and also in order to compare the performance of the 

methods in several situations. The criterion used to assess the performance 

is the mean rate of loss

We consider five different combinations of values for the variances:

2 2 2 i• erf = cr* = <7* ~  I
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• a? =  ^  =  1, of =  4

• = (?l =  4, cr 2 =  1

• a? -  a,2 =  or? =  4.

For each combination we also consider all three different situations concerning 

the degree of our knowledge about the variances. Therefore, in all, we compare 

the methods under fifteen settings.

For each setting we simulate the mean rate of loss using fifty simulated chains 

£'i, - • ■ ,£'ioo of realizations of x. Each method is applied in turn, producing 

its own fifty chains of optimal control points u i , . . . ,  iqoo- If %ti and uu signify 

the true minimum and the control for time t and chain i, the mean rate of 

loss is estimated by

Ef=,E £ , ( * « - «*)2 „r . lnn
7"  = --------- 5 ^ v ---------  • ^  = 1........ 10°-

In each setting we consider the two probabilistic methods referred to as prob­

abilistic criteria 1 and 2, and for criterion 1 we use both estimators (3.4) 

and (3.3) based on the indicator variable. For probabilistic criterion 1 we set

V  =  1.5 which is quite small for the values of a^ involved. For criterion 2 we 

set b =  1.5 unless <je =  0.1 where we set b =  0.15. Again these values are 

quite small for the corresponding values of <re. In all cases if the probability 

involved is greater than 0.9 we set ut+i =  ut. If it falls below 0.9 we choose 

as ut+i the maximizer of the probability; 0.9 is large for the chosen values of

V  and b so that rarely do we have ut+i =  ut. We also consider Titterington’s 

method with three different values for K. The smaller of the three is 0 which
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means that we change ut each time. The larger is always one that we believe 

is too large for the variance values of the particular setting. In other words, 

for that value we change ut less frequentl}'. The particular values of K  for 

each case are shown in the respective graphs.

The prior distribution for x\ when the variance u\ is known is just N ( 0 ,a 2). 

The precisions have a Gammafa, b) distribution assigned to them as prior. Its 

p.d.f. at point 2 ; is p(z) oc 2 :a~ 1 exp(-bz). Its mean is a/b and its variance is 

a/b2. We choose a and b so that the variance is equal to 10 and the mean 

is equal to 1 , unless the true value of the precision is 1 0 0  in which case the 

mean is also equal to 100. This leads to quite diffuse priors. The first control 

point, u l 5  is always chosen equal to 0, the mean of aq. The samples drawn 

from the distributions of interest have size 1 0 0 0 . When there are unknowm 

variances the sample from the very first prior has size 1 0 0 0 0 .

Each one of the five Figures (3.3)-(3.7) refers to a single combination of vari­

ance values. The figures show the evolution of 7 ^ for each method as N  goes 

to 100. A look at them reveals a few general characteristics. We see that each 

expected rate of loss quickly reaches a limit. In other words the system is in 

all cases controllable. It seems that in our problem the limit of 7 ^ does not 

depend on the degree of our knowledge about the variances. It does depend 

though on the system variances and, to a lesser extent, on the noise variance 

too.

In particular, increasing the system variances from 1  to 4 almost quadruples 

the limit as well. This happens if the noise variance is equal to 1. When it 

is equal to 4 the increase in the limit is smaller. Therefore, the same change 

in the system variances has a different effect according to the noise variance. 

Changes in the noise variance when the system variances remain constant
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have less noticeable effects on the limit. When the system variances are equal 

to 1 , increasing the noise variance from 0.01 to 1 and then to 4 causes small 

increases in the limit. When the system variances are equal to 4 increasing 

the noise variance from 1 to 4 does not have any effect.

In all settings but one, Titterington’s method with K  =  0 turns out to be 

the best. The exception is the case of known variances of =  of =  4, of =  1, 

where K  =  1 performs better than K  =  0. Trying even larger ratios of 

noise to disturbance variance has not given any concrete evidence that a 

value of K  other than 0 would be optimal. Intuitively, it does not seem 

wholly unreasonable that the best strategy is to change ut after each new 

observation. A tentative explanation runs as follows.

In the continuous-time setting cost for not getting observations yt at the 

minimum of the response curve is being incurred continuously. This is the 

reason why, when we change u, moving to K  for example, we want very quickly 

to resolve whether we have made the right move or whether we should have 

gone to —K. Larger K  leads to faster decisions and hence smaller costs. 

When we observe the system in discrete time we incur cost only every time 

we get a new observation. Therefore if, for example, after receiving yt- i  we 

decide to move ut to m  away from where x t turns out to be the only cost 

we are going to have will be (xt ~  m ) 2 / 2  and yt will lead us to the correct 

direction, because such is the nature of our method. In other words, there is no 

need for test periods and hence no need to have K  other than 0. This shows 

that continuous and discrete time settings of the problem are not directly 

analogous.

In any case, since the theoretical results of Titterington (1973) cannot be 

adapted to the discrete time case our only tool for choosing K,  if we are not
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persuaded that K  = 0 is the best, is simulation. We can simulate the system 

off-line, trying several values of K  and picking out the one that performs best. 

There is no problem when the variances involved are known. If they are not, 

we can observe the system on-line for a while with K  = 0. This will quickly 

give us an idea about the variances in the form of posterior distributions. Then 

we can again simulate the system off-line using combinations of quantiles of 

those distributions. However, the larger the number of unknowns the more 

difficult this approach becomes because we will have to simulate the system 

under more combinations of quantiles.

As we said earlier the mode of p(ait+i|yt,ut) seems a more reasonable choice 

for ut+i rather than the mode of p(xt\yt} u*). However, in all the cases we have 

studied the expected rates of loss turn out to be higher when the former choice 

of u t + 1 is used. We believe that the reason lies in the relationship between 

the posterior distribution of xt and the prior distribution of a;t+1. The latter 

is the convolution of the former with a zero-mean Normal distribution. This 

means that if the posterior is symmetric and unimodal the two distributions 

will have the same modes. If however, the posterior is bimodal then the modes 

of the prior will lie between the modes of the posterior. Our choice of Ut+\ 

will be conservative, not opting clearly for any of the posterior modes which 

are the more likely locations of the mean of xL+i. This will be reflected in 

the posterior distribution of x t+i which will be more diffuse than the one we 

would get if we had set ut+i equal to the dominant mode of p(a;t|yt, u t).

Each of the two policies for choosing ut - we will call them “prior” and “pos­

terior” policy - produces its own series of observations and its own succession 

of posterior distributions of xt. Those given by the “posterior” policy are 

more accurate and this more than counterbalances the suboptimal choice of
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ut. This is demonstrated in Figure 3.8. We have applied both policies in 

order to track the same 1 0  values aq, . . . ,  aqo of x generated by a system with 

ai = a7, — 1 and crc =  0.1. Both policies have started with the same sample of 

size 1000 from the prior distribution of aq. The graphs show the 10 posterior 

samples of the same size produced by each of the policies and we see that those 

of the “posterior” policy are more accurate for most of the time. This fact 

explains why the probabilistic methods perform worse than our adaptation of 

Titterington’s. They pick as ut+\ the mode of p(a,y+1 |yt, Ui).

3.7 Theoretical analysis

In this section we study mathematically the behaviour of the rate of loss and 

its expectation. We focus on Titterington’s method with I\ = 0. The situa­

tion we have studied so far is complicated since it involves random variation 

of the minimum, non-linearity of the observation equation and random ob­

servation noise. For this reason we examine two analogous but simpler cases 

which, we hope, offer sufficient insight into the problem. In both of them we 

have a randomly varying minimum xt and we want to choose u-t as “close” to 

it as possible. The movement of x t is described by the same random walk as 

before.

First, suppose that x t can be observed directly and without any error but that 

we still have to provide a good guess ut for it. Having observed aq, . . .  , aq_i 

the best guess is ut — x t-\. For t ~  1 we choose ui =  E(xi). Then the rate 

of loss is
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(X l - E { x  0 ) 2  e £ 2 ^ 2
7 N  =  ---------JTT  =  -------- ^ ---------- 1----- T~r—

Then,

E {ln ) = J j  + J T a ’
as N oo

and therefore the system is controllable.

We now turn to a more complicated case. At each time t we observe not x t 

but yt — !(£* — ut) 2 without any noise. Therefore, after observing y%~.i we 

know that x t- i  can have been equal to either u t - 1  +  ^jTytI \  or ut~i — \/%yt-1 - 

This is closer to the actual problem wre are dealing with. Again, we have 

to pick ut optimally and, as we have seen, the optimal value would be xt-\.  

Based on the current and the previous observations we will be able to express 

probabilistically our beliefs about which of the two points is more likely to 

coincide with #i_i. This point will be chosen as ut while the other will be 

denoted by u[. The same happens at each time point apart from the first one, 

where we have u\ — E (x i). Summarizing, at time t we have two candidates 

for The one chosen, ui} satisfies P r ( a ; t_ i  ~  u i-i) — (k while the

other, u'u satisfies P r ( a : i_ i  =  u't \yt_1, ut_i) =  bt. Obviously, bt =  1 — at and 

bt < Now we show how these probabilities can be derived.

Hereafter, (j)(a\b, c) denotes the value that the p.d.f of a Normal distribution 

with mean b and standard deviation c takes at point a. At time t — 1, before 

observing yt- \  and in the light of all the currently available data we can say
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that the prior pdf of x t- i  is a mixture of two Normal densities,

p(£t—i|y t_2 ,Uf— 0  =  crv) + i>t_i 0 ( ^ - 1  K_i ,  ^ ) -

This applies to x± too, where U\ — u[ =  E(xi) and bi =  When y t- 1 is 

observed the posterior density of x t- i  becomes

p i x t - x l y ^ u t - x )  oc p(yt- i \ x t -h  u t-i)p{x t- i \y  t - 2 -> u t_i).

In fact, the posterior is discrete with its probability mass divided between 

m — ut-i 4- y/2 yt-i and m! = ut- \  — y/2 yt-\ since for all other points the 

likelihood is zero. The posterior is

where

Note that m  and m! have the same likelihood and therefore it cancels out in 

the derivation of the posterior probabilities.

It is easy to see that the highest posterior probability is given to that point 

which is on the same side of ut-\  as is u't_l . Therefore, this point is ut while 

the other is u[. At time 1 , however, we get 6 2  =  \  because u\ =  u\ and we
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choose one of the two candidates at random.

We now proceed to derive the expectation of 7 ^.

136

E  [(zt -  Mi)2] =  E { E  [(Zi -  'at)2|yt_„1)Ui_i]}

and

E  [0* -

=  atE  [(a;* -  ut)2 \xt-i  =  ^t] +  btE  [(zt -  -  uj]

= ata 2 +  btE  [(st -  u’t)2 \xt- i  -  u'^ +  bt(u[ -  ut)2 

=  tr2 +  bt{u’t -  u t ) 2 =  a 2 +  4bt(2yt_i) = a2 +  ±bt{xt- i  -  ut_ 1 )2.

Therefore,

E  [(3jt -  uf)2] =  a 2 +  4.E -  ut- i )2] . (3.9)

bt cannot be taken out of the expectation because its value depends on the 

deviation \xt~i — itt-ij. This formula has been verified in simulations.

We deviate briefly from our discussion in order to show why it is better to 

choose as ut the point among m  and m! with which a?t_i is more likely to 

coincide. The alternative would be to choose at random between the two 

points. Without loss of generality assume that Pr(a7 _i =  m ly ^ ,  U£„i) =  at 

and Pr(a:t_1 =  m 'ly ^ ,  ut_i) =  bt. Then we would choose m  for ut with
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probability at. In this case

E  [(re* — *wt)2 |yt_i, ut_i]

=  atE  [(zt -  m)2 |yt_Xj ut-t] 4- btE  [ ( 0 7  ~  ut_

Following the same line of thought as above, we have

E  [(a:* — m)2 |y f „ l 5 u^-i]

=  CLtcr2 +  btE  [(Tt -  m)2|a7 _i =  m'] =  o\ +  4bt{xt- i  -  ut

and similarly

E  [(at -  ?7 L/)2 |yt_1, ut_x] =  cr2 +  4at(>;i_i -  ut- 1 )2.

Then,

E  [(zt -

=  <r2 +  8atbtE  [(a:t_i -  ^ t-i)2] > a 2 +  AbtE  -  ut_ 

since at >

We now return to where we left off. The expected rate of loss is
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E (lN ) = ^ L i E ^ Xt “ t)2
N

E  [(x'l — Ui)2] +  E  [(x’2 — U2 )2] +  E  [(x t ~  ui)2]
N

However, E[(x 1 — U1 )2] =  o\ and # [ ( £ 2  — U2 )2] — <A2 + 2cr2 because b2 = |  

always. Then,

3n2  +  (N -  l ) a 2  ( 4 £ £ 3  E [bt(xt̂  -  u ^ ) 2]
n ) = ^  +

N  N

We now write

E  [bt(xt- 1 -  ^ - i ) 2] =  ^ E  [(xvi -  ^ i-i)2] , Vt > 3. (3.10)

As we will see in the simulations section below, after some point M  in time 

which arrives very soon, (3t becomes (3 < 1  and /? does not depend either on 

time or on oq or av. Up to M, (3t is a function of <5 =  ~  only. Its functional 

form depends on time t. We have calculated the formulae of (3t for t = 3,4,5 

and we give them further below. The stabilization of j3t to j3 seems correct 

intuitively although we have not been able to prove it. We can explain it 

as follows. The method by its construction will very quickly find a true x t. 

Thereafter, all the deviations of the form |a;t_x — ut- 1 | will be affected by 

cjv only and will follow the same distribution. The value bt depends on all 

past deviations (rut— 1 — Ut-1 | but more on the most recent ones. Simulations 

show that very quickly its distribution becomes independent of t. But f$t is 

a measure of the distribution of bt and therefore becomes constant. It is not
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influenced by an either because <r7? affects both sides of (3.10) in the same 

way. At the beginning, but only then, u\ also plays a role and then its ratio 

with av affects (3t.

In the light of all this the expected rate of loss for N  > M  becomes

E { l  n ) =  

+

+

N
(3 -  /3)o* + (TV -  l ) t f  +  Z t l s (ft ~ 0 )2  [ fc - i  ~

N
P T . ^ E K x t - u t f ]

N
(3 -  p)cij +  E £ 3  (A -  P)E [(xt-L -  ^ - i ) 2]

N
(N r  i)og m  -  i ) E ( r r ^

N  N  K J

Let c — (3 P)a\ +  E?13(A -  P)E [(a;t_i ~ '^t-i)2] , x n = #(7n) and a = g\ 

Then (3.11) becomes

c n — 1 _n — 1 . . _ .xn — — 1---------a +  p ------- x’n_i, Vn > M.
n n n

To investigate convergence formally, define a new sequence {2/71} as yn = xu+m - 

Then,

_  c ( n +  M -  1  n +  M - 1  ^
~  TTTf Tlof ^ 2/n-i- (3.12)

77. + M n + M n + M
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The first term of the sequence, yi is finite. A non recursive formula for yn can 

be found by applying (3.12) recursively. It is not difficult to see that

c ( E " = o + )  ,  a T & M M  +  n - i - l )  , on_ 1 M  +  1
71 M  +  n M  +  n M  + n 1

We now examine the limit of each term as n — > oo separately.

1 T 1 Vl  —  ̂0 since P  < 1 -A4 ~1- n

c ( e k t p  = c i -  ^  ^
M  +  n M  +  n 1 — (3 

The limit of X)£o2 Pl{M 4- n — i — 1) is harder to find but we observe that

TT42 _ (M +  n - i - 1 )  ^ ai . { M + n - i -  1) .
V  p -  —   < )  P since   —-----------  < 1.
X - /  r  I o-. ^  1 \ / I  _L
i=o M  + n  So M + n

Moreover,

AT +  n 

1 + i 1

E V - E V ( M + n " i " 1)
i=0 i=0

71 —  2

-  T P M +  n M  + n \  (1 — P)
1 p  -  p 11- 1 1 -  (n -  l ) p n ~ l

M  +  n (1 -  p ) 2 ~~ (M  +  n)(l -  P)

P - P n- 1 1 — (n — l )p
'  T P J

qti— 1

0.
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In other words, X]£=o2 Pl M̂~M+n ^ positive, bounded from above by and gets 

closer and closer to a sequence whose limit is jzp- Therefore,

a I S ) 2 /?*(M +  n — i — 1) a
M +  n 1 — (3

So lim yn = . Therefore,

Um E(lN ) = ^ .  (3.13)

We see that the limit is directly proportional to the system variance, as we 

also observed in the more complicated case we have been studying.

E xtension. Suppose now that the system equation has the more general 

form xt = KXt-i + Vt) where k is a known non-zero coefficient. Then the 

above ideas apply here as well. In other words when we observe y t- 1 we get 

two candidates for the location of x t- \  with posterior probabilities at and bt . 

The one with probability at is multiplied by k and becomes utt while the 

other, multiplied by rc, becomes u[. It is then easy to see that

E  [(zt -  ut)2] =  cr2 +  4k2E \bt(x t - 1  -  nt_i)2] .

If we try to prove convergence of the expected rate of loss we will arrive at 

the fact that as N  goes to infinity

(3.14)
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provided that k,2(3 < 1 . As we will see in the simulations below the system 

remains controllable and k,2{3 < 1. We have not been able to prove this either 

but intuitively one could expect it. As k, becomes larger the separation of ut 

from u't also becomes larger. This makes picking out the correct control point 

easier and should lead to a decrease in (3 that makes up for the increase in k.

A sim ulation  study. In order to check the theoretical results, we conducted 

the following simulation. At each time point t , we estimated E{ 7 t), E  [(m£ — ut)2], 

E  — rit-i)2] and j3t by taking 10000 simulations of the system for 1000

time points and letting

p  r, , 2 i ES” [(*« -  ««)2]
=   loooo---------

P h (.  .. ... E H 00 (M ^ -m  -& -  U.-0 j -  ------------- --------------------

M it)

10000

where x ti is the true state, uti is the control and bt{ is bt) all for chain i at 

time t. This was done for four different combinations of and namely

® 0 * 1 =  l,crv =  1

•  (Jj — 1, Gj j  — 2

• <Ti =  2, av = 1

• (Ji =  2, av = 2.
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In Figure 3.9 we present the progress of E(j n ), E  [(ay — ut)2] and J3t. The 

first column of graphs shows that the convergence of the expected rate of loss 

is extremely fast. We also see from the second column that E  [(ay — ut)2] also 

reaches a constant level, and finally that the value of given by the graphs in 

the third column quickly reaches (M  ~  5) a constant level which is the same 

irrespective of 5. (3 is somewhere close to The limit of the expected rate of 

loss is in all four cases close to the theoretical one given by (3.13). Moreover, 

it is in agreement with the respective limits observed in the simulations of the 

previous section.

In Figure 3.10 we examine the evolution of the distribution of bt in time. We 

plot the histograms of the 1 0 0 0 0  simulated values of 6 3 , 6 1 0 , 6 50, ^ 1 0 0  and 6 1 0 0 0  

for all combinations of cy and <j v . As expected we see that the distributions 

of 6 1 0 , 6 5 0 , 6 1 0 0  and 6 1 0 0 0  are very similar everywhere while differing from that 

of 6 3 , which moreover changes according to 6 . We can therefore say that the 

simulation results verify our theoretical derivations and assumptions.

We also conducted the same experiment for several combinations of the vari­

ances and for several values of k, other than 1 . A problem that affects the 

simulation of the system with the aid of a computer is that if k > 1  the 

absolute value of ay grows exponentially with time. More specifically, \xt \ is 

of order k;£|mi |. This causes memory overflows and rounding errors that lead 

the computer to report zero deviations |oy — u*| for large t. For this reason 

we simulated the system for only 1 0 0  time points and for values of k close to 

1 . The pattern observed was the same for all combinations of oy and av and 

therefore we only present results for oy =  av =  1 . The values of k, considered 

were 0.5, 1.1 and 1.3. Figure 3.11 shows the progress of 1 ^(7 #), E  [(ay — ta* ) 2 ] 

and K,2j3t. The first column demonstrates that the system is controllable and
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that the rate of loss reaches its limit quickly. The second column shows that 

E[(xt — ut)2] also stabilizes very fast. Finally we see in the third column that 

quickly attains a level tPp below 1. Moreover, in each case the limit of 

the rate of loss is that postulated by formula (3.14). Note however that as 

k, increases so does the limit of the expected rate of loss and n2p  approaches 

1. This means that, although the system remains controllable as k increases, 

the limit of the expected rate of loss approaches infinity.

T he form ulae of /2 3 , / ? 4  and  p5. Here we give the formulae of /?3 , / ? 4  and / ? 5  

and we briefly sketch how they were calculated.

For each t

_  4E[bt(x t - 1  -  u*_i)2]
P t ~  E ^ - u ^ f ]  *

If E  [(rci_i — i)2] is known, calculating E  [6 t (a;t_i — ^ t-i)2] will lead to Pt.

The random quantities involved in bt(xt~i — Ut-i) 2 are all the deviations \xi — 

ui\ for I = 1,2, . . .  , 1  — 1. The distribution of each of them, in decreasing 

order of I, given all its predecessors is not difficult to find. Multiplying by 

each distribution and integrating in turn will lead eventually to the desired 

expectation. In appendix C we give the derivation of p3  in more detail. The 

formulae for p<\ and /I5  are

7T +  2(442  +  1) tan 1 — 44
A  =  7r(2<52  +  1)
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f t  =  -n

where,

m
8 +

3 t t - 4  5 tan 1 ( \)  _ f  i
4

4- (452 + 1) tan'

25 1
+

25 5
452 +  l 2\jA52 + 1  (1652 + 5)\/5

1052
(1652 +  5)v/452 

1652 +  5

5 /1
+  4 tan  ( 2 \

5 tan' ' ' ( I )

tan' D  ̂ K?,  ~i f t+ 4o tan

5 tan 1 (j^J +  8d2

S tan"1 ( I)  \

2^ ^ S ta n " 1 + 8 5 2y

3 /2

+
80£3 8£2

(16(52 +  5)v/5 4<52 4-1

and

n = 2ty +  2(452 +  1) tan 1 — 45,

while

where,
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217T 21

H tan'
8

105

- 1  5?r 5 + - i ^ v ^
( ^ - ) + T - 2 tan ( 4 i }

41
+

1005
42y/5(452 +T) \/452 +  1 42V1652 +  5 (1652 +  5)>/5

2 n ( +
Stan 1( |)

5 tan_1 (i) +  852

8 K A J 

349945

2 1 tan“1(# )
21 tan-1(“ ) +  1652\/5

+

4

41
21(6452 +  21)\/84 42 /[6 5 2' + 5

41 /Vl6<52 + 5 \tan 1

V 25
2052

+
4415

427T\/1652 +  5 
1005

(1652 +  5)\/20 (1652 + 5)v/452_+ T  ' (6452 +  21)a/21
4252\/To_______________5255

(6452 +  21) ̂ 2(452 +  1) 21 (6452 +  21) >/2l

10052
2l(6452 + 21)v/1652 +~5 

5
+  "  t a n - V 1 )  r  5 t a n  ~ t a n " 1  ( +  5  t a n  + )  +  g )

4 t t  2  \  3 2 < 5 2  +  5 t a n  ' ( | )  +  8  ^  2 + 5 t a n - 1 ( | )  j

4 5tan HI) 5 tan *(|)
32(52 + 5tan_1( |)  +  8

/ y /32(52 +  5 ta n - 1 ( | ) + 8 \  

tan" V 2 ^ 5  tan - 1 (I) )
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320<53 3 2<53

+  (16.52 +  5 )V 5  ~  4<52 +  1'

We can see that (3^ @4 and (3$ depend only on 5 and not on the variances 

and this agrees with the simulations. Unfortunately the formulae are too 

complicated to allow us to derive any convergence results about {3t .

3.8 D iscussion

In this chapter we studied at some depth and proposed solutions for a con­

trol problem that finds applications in industry. The system involved can be 

described by a dynamic model. All the suggested solutions require the avail­

ability of the relevant prior and posterior distributions, but non-linearities in 

the system make it impossible to have them in closed form. Resampling tech­

niques, however, and more specifically smooth bootstrap allow us to obtain 

random samples from all the distributions of interest in very short time.

The application of smooth bootstrap revealed a problem that we believe is 

inherent in all sampling techniques. In essence the problem is due to the 

fact that a sample from any continuous distribution, in whatever way it is 

obtained, is bound to under-represent the tails of the distribution. However, 

the problem becomes more serious in resampling because samples form the 

foundation for the acquisition of future samples. In the present application 

we overcame the problem by discarding the results of resampling when it was 

based on such a bad sample and replacing them by a sample formed in a way 

that guaranteed it would be a good basis for future resamplings. In other 

applications, however, it may not be easy to detect a bad sample.
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The distributions that arise in the control problem can be either unimodal 

or bimodal. We developed an automatic heuristic that finds their global 

mode when all we have is a sample from them. We do not claim it to be 

an alhpurpose tool, however, since it is designed with a particular type of 

distribution in mind.

As far as the control problem is concerned all the proposed methods manage to 

keep the system under control. After an initial transient period they maintain 

the expected rate of loss at a constant finite level. This level is not affected by 

our degree of knowledge about the variances of the random noises involved. 

The best method is our adaptation of Titterington’s method with K  =  0. 

The fact that in a continuous time setting (Titterington (1973)) the optimal 

solution required K  > 0 shows that in some problems discrete and continuous 

time settings do not have similar solutions. A similar situation is reported 

in Drenick and Shaw (1964). A theoretical analysis of a simpler version of 

the problem proved that the system is controllable, verified the limits of the 

expected rates of loss and explained some patterns observed in the simulations.

As a conclusion we can say that we have found a method that is easy to 

implement and which deals efficiently with the control problem at hand. We 

are now going to apply it in more complicated variants of it where it could 

encounter trouble.
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Figure 3.1: Simulation results from section 3.6. Histograms of samples from 
p(^t|yt> u t)> t ~  1> • • ■ > 25, <7i =  djj =  1, a€ =  0.1. Vertical lines denote pseudo­
modes found with the adaptation of Titterington’s method.
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Figure 3.2: Simulation results from section 3.6. Histograms of samples from 
p(xt+i\yt,u t), t =  1 , . . . ,  25, cti — <7J? =  1, er£ =  0.1. Vertical lines denote the 
maximizers of (3.4) and (3.5).
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Figure 3.3: Simulation results from section 3.6. Estimated expected rates of
loss. Top left image: known variances <j\ — =  l ,o f  =  0.01. Top right

2

image: Only a\ and known. Bottom image: entirely unknown variances.G*
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O Prob. criterion 1
A Prob. cntenon 1
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X K=0

Figure 3.4: Simulation results from section 3.6. Estimated expected rates of 
loss. Top left image: known variances af = 1 ,oft = l ,o f  =  1. Top right
image: Only o\ and known. Bottom image: entirely unknown variances.
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Figure 3.5: Simulation results from section 3.6. Estimated expected rates of 
loss. Top left image: known variances of — l,cr^ =  l,o f  = 4. Top right

er2image: Only a\ and known. Bottom image: entirely unknown variances.
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Figure 3.6: Simulation results from section 3.6. Estimated expected rates of 
loss. Top left image: known variances erf = 4,crĵ  = 4, a] =  1. Top right
image: Only af and ^  known. Bottom image: entirely unknown variances.
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Figure 3.7: Simulation results from section 3.6. Estimated expected rates of
loss. Top left image: known variances o\ =  4, af = 4, erf = 4. Top right

2

image: Only af and known. Bottom image: entirely unknown variances.
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-2.0 -1.5 -1.0 -0.5 0.0 0.5

Figure 3.8: Simulation results from section 3.6. Histograms of samples from 
p(xt |y ^ u t), t =  1 , . . . ,  10, (7i =  av = 1 ,cr£ =  0.1. First and third rows: 
Samples created with “posterior” policy. Second and fourth rows: Samples 
created with “prior” policy. The vertical lines denote the corresponding true 
value of x t.
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Figure 3.9: Simulation results from the first experiment in section 3.7. First 
column: graphs of the estimated expected rate of loss, E(j n ). Second column: 
graphs of E[(xt — ut)2]. Third column: graphs of pt- All graphs for t = 
1 , . . . ,  1000 and for four combinations of crt and arv.
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Figure 3.10: Simulation results from the first experiment in section 3.7. His­
tograms of the simulated distributions of 6 3, bw, 6 5 0 , bw0 and 6 1 0 0 0  for four 
combinations of (j\ and av.
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Figure 3.11: Simulation results from the second experiment in section 3.7. 
First column: graphs of the estimated expected rate of loss, E(jjv). Second 
column: graphs of E[(xt — ut)2]. Third column: graphs of K2(3t. All graphs 
for t =  1 , . . . ,  100. All for <Ti =  cr7? = 1.



Chapter 4

E xtensions of the control 

problem

4.1 Introduction

In the present chapter we study two new variants of the extremum adaptation 

problem. The first incorporates unknown coefficients in the system evolution 

and the observation equations. The second refers to the tracking of an ex­

treme point of a multivariate function. We propose a solution for each case 

and we examine whether this solution can be implemented with the aid of 

resampling methods. We find that in principle this is feasible in both cases 

but in practice when the equations contain unknown coefficients resampling 

can cause problems.

The chapter is organised as follows. The two following sections deal with 

the first variant of the extremum adaptation problem. In the first of them

161
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we present the problem, propose solutions and show how they can be im­

plemented with the help of resampling. In the second we demonstrate the 

implementational problems faced by resampling. The next section deals with 

extremum adaptation in multidimensional spaces. A simpler version of the 

problem is analysed theoretically and the conclusion is that the problem is 

solvable. Then we analyse the problem in its full form with the help of re­

sampling. In the final section we summarize the findings of the chapter and 

present some conclusions.

4.2 Unknown coefficients in the system

In this section the problem analysed in the last chapter is trea/ted in its most 

general form. More specifically, the movement of x t is now described by the 

model

Xt =  fixt , +  1h , fj, ~  /V(0, r/'r, 1) (4.1)

while the observation equation now takes the form

yt = a(x t -  ut)2 + et , t t ~  N(Q,<t>e 1). (4.2)

The prior distribution of x\ is Normal once more,

x i  ~  7 V (0 ,  (fti1)-



CHAPTER 4. EXTENSIONS OF THE CONTROL PROBLEM 163

The random variables {ef} and {rjt} are mutually independent and indepen­

dent across time. They are also independent from {a;*}. Apart from the value 

of xt, the values of ch , p, (j)i ,  f a ,  fa are also unknown. Our aim still is to have, 

at each time t, ut as close to x t as possible.

We tackle this problem in exactly the same way as in the last chapter. We 

maintain our Bayesian approach and we assign to a,/?, fayfayfa a prior dis­

tribution. At time t — 1, after observing yt~i, our knowledge about all the un­

knowns is mathematically described by the posterior distribution p(xt~i ,  ck, (3, 

fa, fa, 0e|yy„i, Ut_i). At time t interest shifts from x t~i to x t and we derive 

the prior distribution

p(xt, a, ,6, fa, fa, fa\yt-i ,  Uf-i)

=  J  p(xt\xt- u  P,fa)p(xt- u a ,  P , fa , fa , fa \y t_u u t- i)dxt-i.

Finally we observe yt at our chosen ut and arrive at the posterior distribution

p(xt, a, p, 4>i, fa, fa |y£, u t) oc p(yt\xu a, fa, ut)p{xtl a , P, fa, fa, c ^ ly ^ , uf_i).

Although fa is among the unknowns, in practice we are not interested in it 

for t > 2 and we integrate it out of the prior and posterior distributions. Our 

choice for ut is the same as in the last chapter. In other words, ut is the mode 

of ut_i) which is a marginal distribution of the posterior of all

the unknowns at time t — 1.

The distributions involved are intractable and we replace them with samples
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obtained  from them . B ecause o f th e dynam ic nature of the problem  th e m ost 

prom ising way of ob tain ing the sam ples is through resam pling. Its im plem en­

ta tion  involves trivial calculations. W hen (aij(1), a*, /3J, </>*(!)), • • ■ > i x t (n )>

is a sam ple from p(xu a , A  A ?, A |y t-i> ut_i) the resam ­

pling w eight of each point (x*(i),af, is

( y t - a t f o K i )  ~ u t ) 2)

R esam pling gives a sam ple ( z t( l ) ,  c*i, A ,  A ?( l ) ,  & ( 1 ) ) , . . . ,  (a;t (n ), a „ , /?„, ^ ( n ) ,  

A M )  from  a , / ? , 0 e| yt , u*) which then gives a sam ple from the next 

p riorp(xt+i jOCi  A  A„ A |y t> w )  by replacing each point ( x t ( i ) ,  a*, A , A W > & W )  

w ith  A M ’ A*M) where

A + i W is a draw from N ( p i X t ( i ) ,  (f)v ( i )  x),

a* =  Q!j,

A* -  A, 

AjW ~  A/(A 

A W  =  AW-

We again analyse the first two tim e points together in order to  get a good  sam ­

ple for /? and A  which do not appear in the weight function. T he starting  sam - 

pie ( x \ (

<j>*{m),<j>*(m)) has size m  a lot larger than n  and is ob tained  by drawing

(a*, AA A W M W ’ AJW)  from the prior of cm, A  A , A,, A» th en  x * ( i )  from  

W ( 0 , 1 / A W )  and finally A W  fr°m  W» 1/A )W )> for i  — 1 , . . . ,  m . W e

take u i  — U2 =  0 and w hen we observe y \  and 1/2 the resam pling w eight of
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each point (i), 4 ( i) ,  a*, <j>\(i), cf)*(i), cj)*(i)) is

W2) 2 +  (y2 — a

Resampling gives (zi(l), a;2(l), a:i5 A , A (l), <^(1), <A(1)), • • •, O i(n), x2(n), 

«n, An <t>r,(n)> M n)) fromp(xu x2l a, A A, (j>e|y2, u 2). From this sam­

ple we drop the X\ part since we are not interested in x\ anymore and the A 

part which amounts to integrating A out of the posteriors.

Apart from taking the mode of p(£ i-i|y t_i, u t_i) as ut we can also use with 

straightforward modifications any of the two probabilistic methods presented 

in the previous chapter. If we want to maximize Pr (JXt — ut\ < R |y t- i, u f_i) 

for some R, we can estimate this probability by either

Pr (|A"i -  ut | < R l y ^ u ^ i )  -  -  £  I{x*t {i), ut)
Tb ■ -i

or

Pr ( \Xt ~ u tI < R|yt_1} U(_ t )

=  “  i t ,  (('at + V -  {3iXt-i{i))<i))j2{i)) ~ $  (Ot -  V -  A £V iM )0y2W)]

where a;£(l),. . . ,  x^(n) is a sample fromp(a;t|yt_i , uj_i) and (xt~i('l), fii, 0^(1)), 

. . . }(xt-i(n),0n,<f>v(n)) is a sample from p(xt-i,  {3, <^|yt-i> u t-i)- I{xt)ut) de­

notes an indicator function taking value 1 if \xt — ut\ < V  and 0 otherwise,
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while <£ denotes the cdf of the standard Normal distribution. If on the other 

hand we want ut to maximize Pr(yt < 6|yi_1, , it*) for some b, we can

estimate this probability by

-t n

P r (yt <  b\yt_ 1:u t- u ut) =  [ f 6  “  a * M W  ~  ut)2)  0 * W 1 / 2 ]  >
n  i = 1

where (rcj (1), a j, <j6J(l)),. . . ,  (n), cm*, (f>*(n)) is a sample f ro m p ^ , a, (j)e | y i_ 1,

u*_i). All the samples from marginal distributions are obtained by using the 

necessary parts of samples from the corresponding distributions of all the 

unknown quantities.

4.3 Im plem entational difficulties o f the  

m ethods

We have seen that the control problem of the previous section can be solved by 

an adaptation of the methods used in the last chapter for a related problem. 

The distributions involved are intractable and must therefore be represented 

by samples obtained from them. The most efficient way to do that seems 

to be resampling. This approach ought from a theoretical point of view to 

perform well. In practice however, unexpected problems crop up and they are 

caused precisely by resampling. In this section we explain what goes wrong 

and why.

We begin with the exposition for the case of known cv. At time t the weight as- 

signed to a point (A* W> /?> W) A°m the prior distribution of x t, {3,

(f>e is
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Wi = (j)*e{i)1/2 exp (iJt -  a{xl(i) -  ut)2) .

In Figure 4.1 we present the graph of the generic function w with formula 

ft) =  01/2 exp [— |  (y. — ft)2] for a particular value of y and for positive ft. 

We see that the larger values of w correspond to points where ft is close to y. 

For values of ft further away from y small values of 4> give largish values to w.

For our problem this means that if yt is positive the larger weights will go 

to the prior sample points that give a(xl(i) — ut)2 close to yt. These are the 

points with £jf(z) close to one of the maximum likelihood estimates (MLE’s) 

of Xt, Ut ±  \Jytf(x. Each x%(i) is a random draw from a N(PiXt-i(i)-, 

distribution, where (:r£_i(y), )) is the corresponding sample point from

the previous posterior distribution. It is much more likely to get a point 

xl(i) close to one of the MLE’s from a N(PiXt^i(i), cj)v(i)~l ) distribution with 

/3{Xt- i ( i ) close to one of the MLE’s rather than from one with far

from them even if the latter has a lot smaller If x t happens to come

from the tails of /V(/Lz:t_i, (j)~l) and if yt is close to a(xt — ut)2 then sample 

points with x t~i(i), A and ^ ( i )  close to the true values of these unknowns 

will most probably give points x* (z) far from the MLE’s while points with bad 

££__i(y) and pi but for which piXt~i{i) is close to one of the MLE’s will give 

(z) which will receive the larger weights. Therefore, the posterior sample 

will be very poor in terms of P values. Unsatisfactory values of p will generate 

unsatisfactory values of x£+i in the next prior sample. If there are no good 

values of p left then all the prior sample of xt+i will be poor. This will lead to 

u losing track of x in the future. Fortunately this situation is slowly reversed.
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First, when both MLE’s at time t are outside the range of the prior sample of 

x t we draw the posterior sample of it from a mixture of two equally weighted 

Normal distributions with means the MLE’s and variance cj2, where

[yt +  2 ae) /a  1 A  1
a =  -------- —------“  with ae — — )  j

2 n j

This is what we called intervention in the last chapter. Notice that if a =  1/2 

we have the same a as in the last chapter. Intervention brings the posterior 

sample of x t close to the true value of x t again. The posterior sample of the 

other unknowns is the same as their prior sample.

Secondly, when x t is not very far from /Lrvi even if all the values of j3 in 

the prior sample are bad there is a reasonable chance that some of the large 

weights will go to values closer to the true value of (5. If we use smooth 

bootstrap as our resampling method (which is what we do) the posterior 

sample of /? will contain more values closer to the truth. If this keeps on 

happening it will eventually lead to a good sample for (3 again. However, a 

long time may elapse before this good sample is obtained during which we 

are paying a high cost. Moreover, nothing guarantees that the samples will 

not deteriorate again as a result of another xt far from

If the prior and posterior distributions where available analytically such prob­

lems would not occur. This is so because if a point (x t , /?, <j>v, </>e) has a bad (3 

value even if it has a high likelihood its small prior probability will counter­

balance this and its posterior probability will not be large. When the prior 

distribution is represented by a sample, however, even one bad point with 

very large weight is enough to produce a poor posterior sample.
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When a  is also unknown matters can get even worse. The weight assigned to 

a point (a:J(z), a j, f3*, $J(i), <£*(«)) will now be

Wi = (/)*(»;)1/2 exj) # ( * )

All the things that we mentioned above can still go wrong and moreover, 

sample points with unsatisfactory values of a* and x^(i) but with a* (a;J (z) — 

ut)2 close to yt get large weights. On top of that, there are now infinite MLE’s 

at each time t and therefore intervention cannot be used.

In general we can say that there is a confounding between the effects of (3 and 

those of the disturbance r\t in the system evolution equation and between the 

effects of a and those of the noise et in the observation equation. Although this 

does not affect the theoretical analysis of the problem, it creates difficulties 

for a sample-based approach if at least one of a and (3 is not known. A remedy 

could be to increase the size of the samples that represent the distributions of 

interest. This would improve the chance of getting good sample points from 

resampling even when xt is far from /3xt~i* These good sample points would 

dominate future resamplings if future values of x were close to (3xt-  i-

We now demonstrate a case where problems appear. We have simulated a 

chain x t for t =  1, . . . ,  100 and we apply Titterington’s method with K  = 0 in 

order to produce the u points. The unknowns are /?, <Ai, and their true

values are /? =  l,</q =  0.25, =  0.25, <pe =  1. The value of a is 1/2 and it

is known. The prior distribution of each of the precisions is Gamma(0.1,0.1) 

while the prior of (3 is Uniform on the interval (0,3). In the spirit of the 

previous chapter /?, ^i, ^  and 0e are considered independent a priori and the
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first two time points are analysed together. All the samples that represent 

prior and posterior distributions have size 1 0 0 0  apart from the sample from 

p(x’i, X21 ft, which has size 1 0 0 0 0 .

Figure 4.3 presents the values of x t and ut for t = 1 , . . . ,  100. We see that 

somewhere after time 50 ut loses x t to recover it only occasionally from then 

onwards. Serious problems first appear at time 50. The true value of t 50 is 

31.77 which is more than 1.5 standard deviations from 28.61, the true value 

of X4Q. The MLE’s are 5.5 and 31.64. In Figure 4.4 we display the posterior 

samples of £ 4 9  and (3 given y49. It is clear that the combinations of £ 4 9  and 

/3 points that will give t 50 prior points close to the MLE’s are those with 

t 4 9  ss 28 and (3 > 1. This is verified by the histogram of the prior sample 

of £ 5 0  and by the plot of the weights this sample’s members receive. In the 

rest of Fig. 4.4 we see the posterior samples of t 50 and (3. Almost all (3 

values are larger than 1 . This causes future samples of x to move rightwards 

and therefore, to drift further away from the true values of x . Only when 

intervention is applied a few time points later does ut recover x t.

A different sort of problem occurs at time 6 6 . By then, a string of true x t 

values close to each other has led to a quite good sample of (3. Figure 4.5 

shows the posterior samples of t 65 and (3 given y 65. We see that the main 

mode of the x  sample is far from the true value of £9 5 . This leads to Uqq being 

far from x ^  which produces a large y6 e. From among all the points belonging 

to the prior sample of t 66 only a few receive all the weight and they all are far 

from .Tee and with large (3. From then on only frequent interventions manage 

to keep ut close to xt . In Figure 4.6 we present boxplots of the posterior 

samples of /3,07? and 4>e. Before the samples collapsed at time 6 6  the samples 

of <̂7? and <f>e were very spread out and we do not present them because this
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would obscure all detail in the boxplots of the later samples. We see how bad 

the posterior samples are even after 100 items of data have been processed.

The last two sections have demonstrated a problem with resampling methods. 

When the importance sampler is the prior distribution the resampling weights 

are exclusively influenced by the likelihood of the sample points. A single bad 

sample point with high likelihood can result in a very poor posterior sample 

if the sample size is not big enough. A different importance sampler can be 

helpful but then the weights may not be eas}̂  to compute. We will examine 

some alternative importance samplers in the next chapter but for the time 

being we turn our attention to another variant of the control problem.

4.4 M ultivariate control

In this section we deal with the multivariate equivalent of the control problem 

of the last chapter. In other words we now have a response surface that 

changes location in d-dimensional space in discrete time. We are again trying 

to follow an extreme point of the surface as closely as possible. We use the 

same notation as before and we denote the location of the extremum at time t 

by x t . If we guess that it is at ut we obtain a noisy observation of the surface’s 

height over ut

yt =  Xt) +  et.

In our case the surface is a paraboloid,
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where ||rcf — u t||2 is the squared distance between x t and uti

\xt ~ ut\

The extremum x t is the paraboloid’s minimum. The observation is univariate 

and we assume that the et are i.i.d. JV(0, of) random variables.

The movement of the surface is such that the movement of x t is described by 

a random walk in d dimensions:

x t = x t_x +r)t,

where the are i.i.d. Nd{0,Ev) random variables, i.e. they follow the d- 

variate Normal distribution with mean vector 0 and variance-covariance ma­

trix Sjj. We also assume that {a;*}, {e£} and {ry} are mutually independent. 

For x\ we assume that it follows a Nd(0, Si) distribution a priori and for this 

reason we always choose ui =  0.

We can see that even if there is no observation noise there will still be ambigu­

ity about where xt lies since all the points on the d-dimensional hypersphere 

with centre ut and radius y/2yt can give observation yt. It is clear that the 

scope for choice increases as d becomes larger. The presence of noise increases 

the number of candidates even more. Probabilistic reasoning can lead at each
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time t to a posterior distribution of x t given all the data y t gathered up to 

that time. This posterior will in turn give rise by a simple integration to the 

prior distribution of Xt+i- We argue that the mode of the posterior of x t is 

the best choice for ut+i- We first provide a theoretical analysis of the problem 

to show that the system is controllable.

4.4.1 T heoretical analysis

As in the univariate case we will analyse the problem theoretically in the 

simpler case of no noise in the observations. Our aim is to examine whether 

the system is controllable, in other words whether the expected rate of loss

E  ( T L i II*. -«tlP)
7w = ----------- N -----------

has a finite limit. We will only consider the case of d =  2 and briefly mention 

d =  3 because we believe that the results generalize to higher dimensions.

Our first aim is to find a relationship between i?[||a;t+1 — ri£+i | |2] and jB[||.'e£ — 

n£||2]. The ideas rely on 2-dimensional geometry and Figure 4.2 can be helpful 

in understanding them. When we have ut and we observe yt =  — ut ||2,

we know that xt lies on a circle A£+i =  ja; E R 2 : | |rc — ut\\ =  \/2t/£ =  r£+i | ,  

i.e. the circle of centre ut and radius \fTyt. We assign a subscript t +  1 to 

the circle because it is used for choosing ut+1 - We do not know which point 

on A£+i is xt but, based on all our observations y £ and control points u £, as 

well as on the prior for we formulate our beliefs as a posterior distribution 

with density function bt+i(x) defined on A£+1, such that
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/ bt+i(x)dx =  1
J xSAf+i

and

I bt+i(x)dx = Pr(xt e AJ5|yt,Ui),
J x e A B

where A B  is any segment or collection of segments of A£+i.

The prior density for x t+i will then be a mixture of Normal densities

p(xt+i\yt}u t) =  /  bt+i(x)p(xt+l\xt = x)dx

oc f  bt+l(x)(j)2 (E~1/2\\xt+i - x \ \ ) d x ,
JxE At+i

where 0d(a) is the value of the density function of the standard d-variate 

Normal distribution at point a.

Now suppose that x t = x* and we have chosen ut+i as our control point. It 

is not difficult to verify that

E[\\xt+i - u t+i\\2\xt =  a*,yt,u t]

=  ||a;* — ut+i\\2 +  E[||x-£+i -  I =  £*]■
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If X  ~  Nd(n, E) then

-  m||2] =  £ £ [ ( *  -  m̂ 2] =  E 4
i=l i=l

where cr̂  is the z-th element on the diagonal of £. Here therefore we have

£[||a't+i -  iA£+i||2|yi5uf]

=  /  6t+i(a:)E[l|.Ti+i — iit+1||2|a;t =  x, y t , u t]dx
J  i-6A(+ i

=  E[\\xt + 1 -  x\\2\xt = x] + [  bt+1(x)\\x -  ut+i\\2dx
Jxe&t+i ■

=  ^ 1 + ^ 2 + /  6f+i ( 3 ; ) | | . T - u t+1| |2d3;,Jx£ Af-|_i

where crT is the z-th element on the diagonal of

For a particular x £ Af+i denote by ip(x) the angle between the radii connect­

ing u t + 1  with ut and x with ut. Denote by a  the length of the perpendicular 

from ut on to the chord joining u t + 1 and x. Then

\x -  U i + i | | 2  =  ( Zy f r h i  ~  a 2 Ĵ

4||a;t -  ut ||2 1

Therefore,



CHAPTER 4. EXTENSIONS OF THE CONTROL PROBLEM 176

E[\\xt+i - u t+i||2|yt,u f]

=  a 2! + cj22 +  4||rct ~ u t\\2 j  bt+i(x) ( l  ~ cos2(^~^-)] dx.
Jx<E A t+1 \  2 J

The integral is always between 0 and 1 since bt+i is a density and 0 < 

cos2(,0) < 1 for any angle ip. If we denote it by B t+i we get

£[||zi+i - u t+ i lp ly i .u j  = a 2n + cj22 + 4Bt+l\\xt -  ut \\2

and hence,

■^[ll^i+i -  ^t+il!2] =  Tp +  + 4E[5m ||^i -  Ui||2]. (4.3)

Furthermore, we can write

E\Bt+i\\xt — « t||2] =  ^ E [ \ \ x t - u t \\2].

Thie results are directly analogous to those for the univariate case, see (3.9) 

and (3.10). If, after finite time M, (4t+\ stabilizes to (4 and if j3 < 1 then the 

proof of the univariate case can be used to show that the expected rate of loss 

jF(7jv) is finite and that

lim E(1 n ) =
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Therefore the system is again controllable.

One last note in order to complete the argument concerns the choice of Ut+i 

and then the derivation of the posterior distribution for x t+i after we have 

observed yt+1. It is clear that ut+i is the maximizer of bt+i(x). After y t + 1 

is observed a new circle A t+2 with centre ut+\ and radius y/2yt+\ emerges. 

We have already derived the prior distribution of x t+i. Its posterior, whose 

density will be denoted by bt+2 , will be the same density but confined to the 

points of Af+2 - In other words,

/?t+ 2 (a;) =   ̂ f y z A t+2 JzgA(+1 b t + i { z ) < f>2 (s ,7 1/,2|]i/-z||)rf2fiy t+2 . (4 .4 )

0 otherwise

The very first posterior we need is b2. It is easy to see that if £ 1  is diagonal 

b2 will be a uniform distribution over A 2.

In three dimensions Af+1 is a sphere of centre ut and radius rt+i • Then doing 

the same calculations as above we get that

E[\\xt+1 -  u t + 1 | | 2 | y t , u t ]  = ( J 2 i  + a 2 2  +  a 2 3  + f  bt+i{x)\\x -  ut+1\\2dx.
J z £  A t+1

Now imagine a point x 6E A t+i and the two radii connecting ut+1 with ut and 

x with They define a plane P  whose intersection with A*+i is a circle with 

the same centre and radius as Af+1. If is the angle between these radii 

on P  we again have
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E [ \ \ x t +i - ^ + i | | 2] =  afn +(j^2 + <j23 + 4E [JBt+i||zt -  ut ||2],

where

#t+i =  [  k + i ( x )  ( l  -  cos2( - ^ M  dx.
JxEAt+i \  Z )

Then, reasoning similar to that of the bivariate case leads to the result that 

the expected rate of loss is finite and that

l]mEhN)  =  4 ± 4 l ± £ e .

In the same way we can generalize the results for spaces of any dimension 

d >  3.

An important feature of the formulae we have derived is that the presence of 

correlations between the components of the disturbance does not complicate 

things. The mathematical results still hold. Only the posteriors 6i+i (and 

therefore fi) change.

As in the univariate case, if the system evolution equation has the form x t =  

KXt-i +  rjt, where k is a known non-zero scalar quantity, the results will be 

similar with only the appropriate changes to incorporate k. We do not pursue 

this further.
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4.4 .2  Checking th e theory

In this section we present a simulation study that we conducted in order to 

examine whether (4.3) holds and whether the value of p t + 1 stabilizes to a level 

below 1 , i.e. whether the system is indeed controllable. We only simulated the 

2 -dimensional case because we took discrete approximations of the necessary 

continuous densities. It was felt that in higher dimensions we would either 

obtain very crude approximations or we would have to run the simulations 

for too long.

We now describe the set-up of the experiment. The calculation of posterior 

densities involves integration over the circumference of a circle and this is an­

alytically impossible. This leads us to discretize the densities in the following 

way. We represent each circle by a group of 1000 points ziti , . . .  , £4 , 1 0 0 0  

spread equidistantly on its circumference. The corresponding pdf bt is re­

placed by the discrete probability function bt which is such that

We only consider a system evolution equation of the form xt+\ =  x t +  rjt, 

which means that we choose as u t + 1 the maximizer of 6 t+1. We want u t + 1 to

1000
Y  h(zu)  = !•

Therefore, (4.4) becomes

(4.5)
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be any point on A£+i and not necessarily one of ££+1 ,1 , ■ ■ •, ££+1 ,1 0 0 0 - For this 

reason we take as ut+1 the maximizer of

1 0 0 0  ^
b*ix ) = Y  btizt,i)fa (S “ 1/2(a; -  ztp)) , (4.6)

i= 1

with x  lying on the circumference of A£+i. In order to calculate the first pos­

terior density & 2 with the aid of (4.5) and to get we define a dummy circle 

Ai of zero radius by taking z\t 1 =  . . .  =  £1 , 1 0 0 0  — ^ 1  and we get bi = 0.001 for 

i =  1 , . . . ,  1000. For the maximization of (4.6) we use the subroutine e04bbf 

of the NAG library for Fortran 77. This subroutine can only maximize univari­

ate functions and we make (4.6) univariate by the following transformation. 

Each x that we examine lies on Ai+1. Each point on that circle can be rep­

resented by its polar coordinates with respect to ut. Since they all lie at a 

distance rt+i from it only the angle 0 between the a>axis and the segment 

connecting them with ut changes. Thus, (4.6) becomes a function of 0 only, 

since r £+i is known. After the optimal angle, 0opU say, has been found we 

easily calculate the coordinates of ti£+i as

u t+ 1,1 =  ^ £ ,1  +  f t + l  COS(&opt),

u t+ 1 ,2  =  V-t,2  + ? ’£ + !  A l l ( 6 opt) ■

In fact, we use the same trick in approximating Af+i. Since it is centred 

on ut and has radius rt+1 , we can split [0,27r) into 1000 equal segments and 

the angles 0* =  (i — 1)/(27t) that result from this give us the points Zt+1 ,1 - 

Therefore, instead of having bt+i(zt+1 ,1 ) we can equally well have bt+i{6i)-
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We also discretize B t+i. All the angles are measured anticlockwise and there­

fore, the angle ^  between ut+i and zt.fi,* is

Then J3t+j, which, incidentally, after a few simple calculations can be ex­

pressed as

Instead of 1000 one could choose more points to improve the approximation, 

because it is obvious that, the larger the radius, the more points we need to 

approximate the circle. However, even with just 1000 points the calculations 

are quite time consuming.

In order to simulate expectations we created 400 realizations of a true chain 

of extrema ay, t =  1 , . . . ,  100. Then, for each of them we approximated bt and 

B t and chose the chain of optimal ut. We approximated expectations as

'tpi 0i T 2n 6opt.

is approximated by

E \ \ \x t - u t\\2[ii 400
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E  -  U t - i | | 2]

^ ( 7  n )

400
E r=1E [ H ^ - u t |

N

The simulations were performed under three different variance regimes. In
/  o  n \

the first one, Si =

and in the third Si =
1 0 

0 1

0 1 
\

, in the second Si — S„ =

1 0.8

0.8 1

\

2 0 

0 2

The third case was

designed so as to check the effect that correlation between the components 

of the disturbance has on the limit of the expected rate of loss. The results 

appear in Figure 4.7. In the first column we plot the estimated expected rates 

of loss and we see that they stabilize quickly in all cases. In the second column 

we present the evolution of the expected squared distances — ut\\2]. We

notice that after a short initial transient period they reach a certain level 

(different in each case) around which they fluctuate. The third column shows 

the evolution of J3t in time. In all cases it quickly attains a level below 1 and 

fluctuates around it. In the fourth column we test the validity of (4.3). We 

see that the ratio

E [ \ \ x t - u t \\2) - c r g i  

i E [ B t \ \ xt- i  -

stays close to 1 with some variability. The fluctuations that the quantities 

experience around their constant levels are due, in our opinion, to the fact 

that they are sample estimates and to the discretizations of the continuous 

densities. In all cases the limit of the rate of loss agrees with its theoretical 

derivation. We can therefore be fairly sure that our theoretical analysis and
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the conclusions based on it are sound.

A remarkable feature of the simulation results is that the limit of the expected 

rate of loss is lower in the third case than in the first one. In other words, 

the presence of correlation between the components of the disturbance has a 

beneficial effect as regards the controllability of the system. We think that 

when this correlation is strong the number of directions xt can take during 

its random walk is greatly reduced and this makes the search for it easier.

4.4.3 P ractical application

In a practical application noise will also be present. Nevertheless the principle 

behind the choice of u t + 1  will be the same. Given the observations y t and 

the control points u* we will choose as ut+\ the mode of p(xt \yt, u t). Un­

fortunately this distribution is not available in closed form and we will again 

have to use resampling starting with a random sample (x i ( l ) , . . . ,  £i(n)) from 

A^fO, Ex), the prior distribution of x\. We take ui — 0. When the sample 

(a;*(1),. • •, xj(n)) from p(:ct|yt-n u t-i) available and yt is obtained at uti 

the weight wt(i) corresponding to rcj(i) will be

wt{i) = exp

The samples take the form of disks around the current control point and if the 

value of the observation is large they may look like “doughnuts” . Sometimes 

the value of yt may be so large that all the MLE’s lie outside the range of 

the prior sample. This could make the samples collapse. In order to prevent 

this from happening we employ intervention, as we did in the univariate case.
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More specifically, we replace the posterior sample by a sample taken as follows. 

Each of the MLE’s can be represented by its distance 7 7 + 1  =  y/2yl from ut and 

an angle 9. We sample n angles from a Uniform distribution over [0, 2ir) and 

then for each of them we sample a point from a bivariate Normal distribution 

with mean the corresponding MLE and a diagonal variance matrix with both 

diagonal elements equal to

2 _  2 ijt +  4 of 
°  4

We again tried to maintain a correspondence with the univariate case. A 

posterior sample for xt can be transformed to a prior sample for xt+i by adding 

to each of its points a random draw from the distribution of the disturbance 

r}t+i- The resampling method used was smooth bootstrap.

In order to find the mode of p(a;t|yt , u*) when all we have is the sample from 

it we calculate its density estimate from that sample and maximize it using 

the NAG routine e041bf. For the density estimation we use the optimal 

bandwidth given by (2.7) and the correction (2.8).

Our method can easily be modified if as well as x t there are additional un­

known quantities. However, we do not pursue this further.

4.4 .4  Sim ulations

Here we present the results of a simulation study conducted in order to exam­

ine whether the system is controllable under several variance regimes. Figures 

4.8(a) to 4.8(e) present estimated expected rates of loss for Titterington’s
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method with K  — 0 for the following five cases:

E i  =

•  E l

® E]_ =

E i  =

 ̂ 1 ( 0  

v° l )  

(  1 0 ^

0 1

1 0
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y  —, ^  7j

) E ^  —

1 Oi 

0.8 1

 ̂ 1 cC 

V°  l )

( 1 0 

0 1

\

^ 2  0 ^ 

0 2

1 0 

0 1

0.8 1

of =  1 , in 4.8(a).

of =  3 , in 4.8(b).

of =  1 , in 4.8(c).

of =  1 , in 4.8(d).

, of — 1 , in 4.8(e).

The rates were once more simulated by taking 50 chains, each of 100 time 

points. We can observe the same features as in the univariate case. The 

system is controllable and we see that the level of the rates agrees with the 

theoretical case. We see furthermore that the limit of the rate depends more 

on E7? than on Sj. We finally note once more that when there is correlation 

between the components of x t the limit of the expected rate of loss gets 

smaller.

4.5 Conclusions

In this chapter we dealt with two new forms of the extremum adaptation 

problem, one including unknown coefficients in the system and observation
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equations and the other referring to multidimensional spaces. We saw that 

our adaptation of Titterington’s method proposed in the last chapter can be 

straightforwardly modified so that it works here too.

In the multidimensional case we reached similar conclusions about the control 

problem to those of the unidimensional one. The case of unknown coefficients 

however, highlighted a disadvantage of the resampling techniques used. When 

we adopt the prior distribution as the importance sampler the likelihood solely 

affects the resampling weights. Sometimes prior sample points which have 

high likelihood but which do not come from the main support of the posterior 

distribution dominate resampling, resulting in very poor posterior samples. 

One solution is to increase the sample size so as to increase the chance that 

satisfactory points will be included in the posterior sample. It would however, 

be preferable to use a more efficient importance sampler which at the same 

time permits easy calculation of the resampling weights. The next chapter 

examines some alternatives that have been recently proposed in that respect.
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0 0

Figure 4.1: Graph of the function w((f), H i )  = 0 1/2 exp — |  (y — k ) 2 for y = ‘2.5.
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Figure 4.2: Illustration of the geometric ideas behind section 4.4.1.
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Figure 4.3: Trace of x t and ut for t =  1, . . . ,  100 from the simulation example 
of section 4.3. Solid line: xt, broken line: ut.
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Figure 4.4: Top left: Posterior sample of £49. The vertical line denotes the 
true location of £4 9 . Top right: Posterior sample of £ 4 9  and (3. Middle left: 
Prior sample of x50. The vertical lines denote the location of u50 and the two 
MLE’s. Middle right: Un-normalized weights of prior £ 5 0  points. Bottom 
left: Posterior sample of £50. The vertical line denotes the true location of 
£ 5 0 . Bottom right: Posterior sample of £ 5 0  and (3. All for the simulation 
experiment of section 4.3.
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Figure 4.5: Top left: Posterior sample of x 6 5 . The vertical line denotes the 
true location of a:6 5 . Top right: Posterior sample of x6 5  and (3. Middle left: 
Prior sample of x66. The vertical lines denote the location of u6 6  and the two 
MLE’s. Middle right: Un-normalized weights of prior xgg points. Bottom left: 
Posterior sample of x6G. Bottom right: Posterior sample of x 6 6  and (3. All for 
the simulation experiment of section 4.3.
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Figure 4.6: Top: Boxplots of the posterior samples of (I for t =  2, . . . ,  100. 
Middle: Boxplots of the posterior samples of ^  for t — 66, . . . ,  100. Bottom: 
Boxplots of the posterior samples of (j)t for t = 66, . . . ,  100. All for the sim­
ulation example of section 4.3. The endpoints of each boxplot correspond to 
the smallest and largest value in the sample. The horizontal lines denote the 
true value of each parameter.

^
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Figure 4.7: Results of the simulations in section 4.4.2. The first column 
shows expected rates of loss; the second column shows — ^ t||2]; the
third column shows j3t\ the fourth column shows (E[||a;£ — u t ||2] — (o^ + 
a^2))/ {^E[Bt \\xt-i  — nt_ i||2]), all for t =  1, . . . ,  100. In the first row, Xh =

^  =  ' 0 1 )' ^10 seconc  ̂ row’ Si =  =  | q ^ I ■ In the third row,
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Figure 4.8: Estimated expected rates of loss from the simulations in section 
4.4.4.



Chapter 5

M ore m ethods for the control 

problem

5.1 Introduction

The first part of the previous chapter demonstrated a well known fact about 

importance resampling. When the target of resampling is a posterior dis­

tribution and the importance sampler is the associated prior, the resampling 

weights are very sensitive to the presence of outliers in the data. The result of 

an outlying item of data may be a posterior sample totally unrepresentative 

of the distribution it is supposed to come from. If the resampling method 

used is weighted bootstrap, another side effect of outliers is that posterior 

samples may be very poor in the sense that they contain few distinct values. 

Recently, there have been proposed sampling methods which are designed to 

be immune to the presence of outliers.

195
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A second problem concerns inference about unknown constants in dynamic 

model problems. As we have mentioned earlier, in such settings the effects 

of sample impoverishment are reversed by the system evolution equation. 

However, this is true only for the unknown states the system goes through. 

The posterior samples of unknown constants become poorer as time goes by 

because the system evolution equation leaves them unchanged. Methods that 

have appeared lately call for conditioning the analysis on these unknowns or 

integrating them out of the distributions involved.

The aim of this chapter is to present all these methods and to examine how 

they could be implemented in the control problem we have been studying. It is 

organised as follows. Section 5.2 presents all the methods in a general setting 

while section 5.3 shows how they can be adapted to the control problem. In 

section 5.4 the methods are compared in a simulation experiment. Section

5.5 presents two more methods for constructing good importance samplers 

which, we believe, are not yet suitable for dynamic model problems. Section

5.6 summarizes the chapter and gives a brief discussion. We close the chapter 

by re-evaluating our work on the control problem and pointing to directions 

for future research in section 5.7.

5.2 Presentation  of the m ethods

In this section we present the methods in general dynamic model terms. We 

begin with the methods that give samplers which are not affected by outliers 

and then we present those that tackle the problems encountered by unknown 

constant quantities. It should be noted that all these methods have been 

developed with the weighted bootstrap in mind as the resampling technique
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used. The use of smooth bootstrap would avoid some of the problems they 

are trying to solve, for example the problems concerning unknown constants. 

However, in presenting the methods we assume that resampling is imple­

mented by weighted bootstrap.

5.2.1 A uxiliary variable particle filtering

This method was first used by Berzuini et al (1997) for the analysis of data 

arising from patient monitoring. It was independently presented in a gen­

eral dynamic modelling context by Pitt and Shephard (1997), to whom its 

name is due. The name derives from partic le  filtering. This term, also 

used by Carpenter et al (1997), describes the approximation of the filtering 

distribution by a discrete probability function over a sample taken from the 

filtering or some other distribution. The members of the sample are called 

particles. What we have used in the two previous chapters is particle filtering 

implemented with resampling.

The notation we use is mostly the same as that we have used for dynamic 

models throughout this thesis. Suppose that x t is the vector of all the un­

knowns at time t. This means that some of its components can be quantities 

that remain constant in time. After receiving data yt and processing them 

we obtain a sample ■. ■, x t(n) from the filtering distribution p(xt |yt).

We approximate this distribution by a discrete one assigning probability 1/n 

to each =  1, . . .  ,n. The predictive distribution of x t+i can then be

approximated by

1 "
p(xt+i\yt)  =

”  i = l
(5.1)
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After receiving yt+x the next filtering distribution can be approximated by

p(zt+i|yt+i) p(yt+i\xt+i)p(xt+i\yt) (5-2)

and the objective is to obtain a sample from it in the most efficient way. 

The introduction of an auxiliary variable makes this task easier. P itt and 

Shephard (1997) advocate using rejection sampling, importance resampling 

or MCMC simulation while Berzuini et al (1997) use only the latter. We are 

going to present the resampling and MCMC implementations.

5.2.1.1 Resampling implementation

In our resampling algorithms so far we have ignored the approximations (5.1) 

and (5.2). Our importance sampler has been p(^t+i|yt) and the way to sample 

from it has been outlined in section 1.3.3. If we want to have (5.1) as the 

importance sampler we can obtain a sample a;J+1( 1), - - ■, a:J+1(n) from it by 

repeating n times the following two steps.

For obtaining =  1 , . . . , n:

• Pick at random a number i between 1 and n with equal probability of 

selection for all i.

• Draw x*t+l(j) from p (^ + i|a;f(i)).

From (5.2) it is easy to see that the resampling weight of each point 

is just its likelihood p(yt+1 )), i.e. the same as if the importance sam­

pler had been p(xt+i|y f). Therefore both these samplers are very prone to
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failure if an outlying yt+i is observed. The samples resulting from resampling 

may contain few distinct values and may be away from the main support of 

p{xt+i|y t+1).

A more efficient importance sampler will be one that is not affected by out­

liers and which still permits easy calculation of the resampling weights. This 

precludes p(a;i+i|y t+1) from being the target since

P(zt+i|yt+i) oc

and p(a;t+i|yt) is usually not available in closed form. Formula (5.2) is not 

very good either because for each point x%+1(j) from the importance sampler 

the calculation of the weight will involve the evaluation of p(xj+ i(j)|a;£(i)) 

for i — 1, . . .  ,n. Usually n is large and this can be very time consuming. 

Moreover, p(x t + 1 may not be available in closed form either.

If p(xt+i\xt) is least available for sampling we can find an efficient impor­

tance sampler. We modify (5.2) with the introduction of an auxiliary variable 

k that takes values from among 1, . . . ,  n. The filtering distribution becomes

p(xt+u h \y t+1) oc p{yt+i\xt+i)p{xt+i\xt(k)}. (5.3)

Note that (5.3) approximates p(xt+i i ^i|yt+1) by restricting the Xt variable 

to take a value from among the sample points £f( l ) , ...  , x t(n) with uniform 

probability. The marginal distribution of xt+i is (5.2) and therefore we can 

sample from it by obtaining a sample from (5.3) and dropping the k part of 

it.
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If the importance sampler is g(xt+i>k) and we generate a sample (a;J+1 

. . . ,  (a,*J+1(n), k*) from it, the weight of (ajJ+i.(0> be

^  P(Vt+1 14+1 M)p W +i (0 M&?)) 
p O^+i OOA*)

If p(rct_|_i |â t) cannot be evaluated the importance sampler has to be of the 

form

g(xt+uk) oc ^(fclyt+JpG^+il^W)- (5-4)

The weight of (a;*+1(z), k*) will be

_ p(j/t+ik?+i(Q)

* f l W l y w )  '

Note that taking g(k\yt+1) = l / n  for k = 1 gives us the importance

sampler that we presented at the beginning of the section. P itt and Shephard

(1997) suggest taking

f fM y t+i) oc p(s/t+i|/it+i(fc)), (5.5)

where fit+i(k) can be any parameter oi p(xt+\\xt(k)), or even a random draw 

from it as long as it depends only on x t(k). The weight of (a^+1 GQ, k*) becomes

w _ =  pfat+il^+tW ) 
p(pt+ iir t+ i(* i))’
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To draw (x t+nk*) from (5.4) when ^(^jyt+i) is of form (5.5) we have to 

• choose k* with

® draw a;J+1 fiom p(xt+i\xt{k*)).

This choice of importance sampler makes the procedure more resistant to 

outliers. This is so because the xt (i) are not chosen with uniform probability 

but those that give high p(yt+i\p,t+i[i)) generate xt+i more often than the 

rest. This ensures that the weights are more evenly distributed among the 

^-t+iW points and the sample resulting from resampling cannot usually be 

very poor. However, if yt+i is an outlier even the “best” x t (i) point may 

not be good enough and then the x t+i points may have large weights without 

corresponding to the main support of p(a;t_|_i |yt+1). In such a case the resulting 

sample will be unsatisfactory even if it contains many distinct values.

5.2.1.2 MCMC implementation

If we want we can obtain the sample from (5.3) by an MCMC sampling 

algorithm. We will see that the calculations required are similar to those 

needed for resampling.

Gibbs sampling

The procedure begins by selecting, in any way we want, a pair of initial values 

#t+i, fr'oin fhe support of (5.3). We then iterate M + N  times the following- 

two steps.
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At iteration m:

® Obtain k ^  from the discrete distribution with

Pr(A;(m) =i)  = Pr(/c(m) =  i \ x ^  ^ y ^ )  ocp(4™ 1}M 0 )

v^n U./'oWE?=i p M + i 1}M j) )
(5.6)

9  Sample .T^j1 from

p ( a ; i + i | / c ( m ) , y t + 1 ) oc p ( 2/ i + i | a ; i + 1 ) p ( a ; t + i |a ; t ( /c( m ) ) ) .  ( 5 . 7 )

Sampling from (5.6) is easy but it is necessary to recalculate the probabili­

ties at each iteration and this may prove to be time consuming for large n. 

Perhaps this is why Berzuini et al (1997) use Metropolis-within-Gibbs. In 

other words they simulate one transition of a Metropolis-Hastings sampler 

designed to sample from (5.6). At iteration m  they choose a value k' uni­

formly among 1, . . . ,  n and set &(m) = kf with probability r and =  k^m^  

with probabilit}' 1 — r, where

Metropolis-within-Gibbs is probably necessary for sampling from (5.7) too. 

M etropolis-H astings sam pling

In Metropolis-Hastings sampling we update both xt+i and k together at each

r =  min c 1

iteration. We again start with an initial pair chosen in an arbitrary

way and iterate M  + N  times the following steps.
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At iteration m:

® Draw x't+1,k' from a proposal distribution g(xt+1 , k).

• Set (ajt+jjA:^) =  (£;i+1,/d) with probability r or retain ( x t+ l j k ^ )  =  

(a^+i 1\  k^m~1̂ ) with probability 1 — r, where

It is clear that the ratio involved in r is the ratio of the resampling weights

or if, as P itt and Shephard (1997) advocate, we take g to be given by (5.4) 

and (5.5) then

General comments

Whichever method we use we take M  large enough so that after M  iterations 

the algorithm has converged to the target distribution. The results of these 

first M  iterations are discarded and as our sample we keep the results of the 

next N  (in which case N  = n) or of every (N/n )th of them if we want to 

eliminate the serial correlation between consecutive draws.

r — min

that (2Er'i+i,/c;) and (aj[+i 1\  ^) would have if they had been drawn from

importance sampler g. Therefore, if g(xt+i,k)  ocp(xt+i\xt(k)) then

r — min < 1,

r — min < 1
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The discussion about resistance against outliers in the end of the last section 

applies here too since the target is again (5.3). Moreover, before storing the 

samples we have to wait for convergence. If yt+i is an outlier it is likely that 

only a few values from among 1, . . . ,  n will be selected for k and we may get 

stuck in any of them for a long time. This means that fast convergence is not 

guaranteed. Finally, as we have mentioned previously the need to monitor 

for convergence makes the methods unsuitable for the automatic analysis of 

dynamic systems.

MCMC algorithms like those presented here are also described in Liu and 

Chen (1997).

5.2.2 Stratified  particle filtering

This method has been proposed by Carpenter et al (1997). It is similar to aux­

iliary variable particle filtering and its aim is to create an importance sampler 

resistant to outliers. The motivation for it is entirely different however.

Expanding p(a:i+i|y t) in (5.2) we get

n

p(®i+i|yt+i) °c U p fe t+ ilz f+ iM zt+ iM i)) (5.8)

and we can easily see that

P(zt+i|yt+i) D"=i Ip(yt+i\xt+i)p{xt+i\xt {j))dxt+l
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p f a t + 1 |a;t + 1 ) p( a; f + i | a ; t ( z ) )  

f  p(yt+ 1 |xf+1)p (^+i l^t (0 )^ + 1
n

= (5-9)
l~l

This is a mixture of densities with unequal mixing weights. The weights fa 

reflect the different “predictive likelihood” of each point x t(i). If we assume 

that the variance of Xt+i is the same under each the most efficient way to 

sample n values from (5.9) is to sample n* =  nfa values from each component 

Pi. Unfortunately, usually neither pi nor fa is available in closed form.

Carpenter et al (1997) suggest taking an importance sampler

o{xt+1) =  Y^PiPiixt+i), (5.10)
2— 1

where fa and fa are approximations to fa and pi respectively and Y?i=i fa — 1- 

Moreover pi are such that we can easily sample from them. From each fa we 

draw hi = nfa points and the weight of point £f+1(j) is

m _ Pfa‘+ikt*+iO'))p(gt+i(j)l̂ t(»)) ,5 U )
1 APifct+iO'))

if xl+1(j) has been drawn from fa,. The form of the weight can be explained 

if we imagine an auxiliary variable k taking values in 1, . . .  ,n. Then (5.8) is 

replaced by

p(xt+1 , fc|yt+1) oc p{yt+1\xi+l)p{xi+i\xt(k)), (5.12)
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which has (5.8) as the marginal distribution of xt+i, and (5.10) is replaced by

g{xt+1 , k) = j3kpk(xt+1 ). (5.13)

Then (5.11) is the appropriate weight when the target is (5.12) and the im­

portance sampler is (5.13). Of course, the x^+l are not obtained exactly from 

(5.13) since each fa is sampled a fixed number of times. However, we have been 

doing the same thing in all previous chapters, where our importance sampler 

has effectively been (5.13) with fa =  1/n for all i and fa = p(;ct+i|£tW) and 

each pi has been sampled once.

It is very unlikely that hi =  nfa will be an integer quantity for all i. For this 

reason Carpenter et al (1997) have developed an algorithm that generates 

integers n \ , . . . ,  nn such that

n
— n , E(rii) = nfa and |m — nfa \ < 1 for all i.

i~  L

As with auxiliary variable particle filtering, stratified particle filtering can also 

be implemented with MCMC sampling but we do not pursue this further.

Stratified importance sampling is robust against outliers but like the previ­

ously mentioned methods, it does not eliminate the possibility of producing a 

sample that is far from the main support of the distribution it is supposed to 

represent. In Carpenter et al (1997) the weights are accumulated from time 

point to time point and resampling is not performed at all. This requires 

a straightforward modification of (5.8),(5.9) and (5.11) to accommodate for 

the fact that now p(xt(z)|yt) is not 1/n for all i. At each time point the



CHAPTER 5. MORE ON THE CONTROL PROBLEM 207

current weights will reflect posterior probability and will counterbalance the 

likelihood. However, when some weights, as time goes by, become very small 

resampling will have to be performed. It is plausible that the effect of outliers 

will be less severe but it will not disappear.

It should be noted that none of the methods presented thus far offers any 

improvement as far as the posterior samples of unknowns that remain constant 

in time are concerned. This is the objective of the methods that we are going 

to present now.

5,2.3 S tratification

Now we make a distinction between the unknowns that change value in time 

and those that do not. We denote the former by xt and the latter by 9. The 

filtering density at time t is p(xt, 0 |y£) . Any of the methods mentioned so far 

can be used to get samples from it. The problem is that each time we move to 

a new filtering distribution the sample from it contains fewer distinct 6 values 

than the previous one. Stratification was proposed in P itt and Shephard 

(1997) as a way of dealing with this problem.

To implement the method we draw a sample 0i , . . .  , 0m from p(9), the prior 

distribution of 6. Then for each 9i separately we start with a sample from 

p{xi\0i)  and as observations y t come along we update it with any of the 

methods mentioned so far, so that, after having observed yt, for each 9i we 

have x t(i, 1) , . . . ,  xt(i, n) from 9i). These samples can be used to draw

conclusions about xt and 9. We propose some ways of doing this.

If we need inference for p(0|yt) we can use importance sampling ideas. We 

have 0i , . . . ,  9m from p(9)  and the target is p(0|yt) oc p { y t \9)p{9). Therefore,
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each di receives importance weight

w (o,I = p ( y t \Qi) = p { y i \ 9 i )  I l p ( v 3 \ y ^ A ) .
3 =2

We do not usually have 0) in closed form but we can approximate

it as part of the sampling process. Note that

p ( y t \ y t - i , 0 i )  =  J  p { y t \ x u 0 i ) p { x t \ y t- i , 0 i ) d x t .

We have a sample 1), . . .  ,x^(i,n) from &i) as a by-product of

the sampling process or we can easily obtain one. Then

1 71
p { y t \ y t- i , 0 i )  =  -  J 2 p ( y t \ x t ( L j ) > 9i)-

n o=i

This assumes that we have p(yt \xt,6) in closed form. Then p{Q\yt) can be 

approximated by the discrete distribution ji(0|yt) over 0i5 . . . ,  9m with proba­

bility function

Pr(e = e.|yt) =  C M  =
TJj=i

If we want inference about p(a;t|yt) we have, among others, the following 

options.

a) We already have a sample of xt values but it is not a random sam­

ple from p(a;t |yt) because of the weighting due to 6{. However, p(xt\yt) =
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f  p{xt\01y t)p(6\yt)d9. We can get a random sample from p(rct |yt) by repeat­

ing the two following steps as many times as the desired sample size:

• Generate 9 = 9k with probability 7r^,A: =  1 , 2 , . . . , m. This approxi­

mates a draw from p(0|yt).

• Sample a point from among xt(k, 1), . . .  , x t(k,n) with equal probability 

of selection for all points. This approximates a draw from p(xt\9,yt).

b) If we want to estimate an expectation, E  (/i(a;t)|yt) say, we observe that

E (h (x t)\yt) =  E [E(h (x t)\0,yt) |y j =  |  (^J h(xt)p(xt\9, y t)cbt) p{9\yt)d9 

=  J  h{e,yt)p{e\yt)de = E  [/i(0,yt) |y j .

We can now estimate h(9}y t) and E (h(xt) |yt) from the available samples by

I n

H ^ y t) = » (5-14)
n i=i

771

E(h{x t) |yt) =  Y^irelHOi.yt). (5.15)
7 — 1

(i)However, as time goes by and we obtain more observations yt the weights w^t 

for most of the 0* become very small so it would be better perhaps to resample 

from time to time from among them in order to get a sample, from p(0|yt), in 

which all its members have the same weight. We suggest doing this by sam­

pling with replacement from among 01}. . . ,  9m with probabilities . . . ,  7rffi
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respectively. Each 0* is accompanied by a sample =  (xt (i> !)>■•• ->x t(h A)), 

and when this 0* is selected its accompanying sample stays with it. The 

justification for this is as follows.

We want samples from p(xt, 0\yt) and we have samples 0j from an impor­

tance sampler defined by p(0)p(xt |0, yt). If we want to resample from among 

them the probabilities of selection have to be proportional to

^  =  P(xj<U|y,) =  p J fiM  k  Kyt|ft) ^

p(0i)p(*t l0i,Yt)

This resampling may generate a poor sample for 0, creating the problem that 

we are trying to avoid. However, as with stratified particle filtering the effects 

of outliers may be less strong than if resampling was applied at each time 

point. Stratification is also very expensive in terms of storage requirements 

because usually m  will have to be quite large for the state space of 0 to be 

covered adequately and each 0* will be accompanied by n values of x t.

5.2 .4  R ao-B lackw ellization

Rao-Blackwellization is another way of dealing with unknown parameters that 

remain constant in time. If the filtering distribution is p(xt, 0|yt), if is better, 

if possible, to integrate 8 out and work with p(xt |yf). As we have said, an 

indicator of good performance of importance sampling is the variance of the 

weights. If g(xt , 6) is the importance sampler used for p(xt> 0|yt) and g(xt) is 

the marginal density of x t obtained from g, it is true (Doucet (1998)) that
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/ p M y ^  ^ _  ( p ( x t ,0 |y j
9<I,)l g(xt) ) - var^ . " ) (  g(Xlt8)

However, integrating 9 out is not always easy.

Another form of Rao-Blackwellization is concerned with the estimation of 

p(9\yt) when a sample (2 ^( 1 ), 0i ) , . . . ,  (xt(n), 6n) from p(xt, 0 |y j is available. 

The usual estimator would be the histogram of 9\, . . . ,  9n. The Rao-Blackwellized 

estimator takes advantage of the knowledge of the relationship between x t and 

9 and the availability of the samples 3^(1),.. .,  xt{n)} and has the form

P W y t ) =  (5-16)
n i=i

This implies that p(9\xt, y t) is available in closed form.

Finally, Rao-Blackwellization is a method of enrichment of a sample (a;t (l), 0i),

. . . ,  (^ (n ), 9n) from p(xt, 0|yf) which is very poor in terms of 9. This method 

is presented in Liu and Chen (1998) and McEachern et al (1998). It is ar­

gued that since the sample already comes from p(xt,9\yt) it will not matter 

if each 0t- is replaced by a point coming from p{9\xt(i) ,y t). If this is not 

available for sampling we can replace each 9{ by a draw from the transition 

kernel of a Markov chain which has p(9\xt(i), y t) as its invariant distribution. 

In fact each 0f can be replaced by more than one draw, 0*^,. . . ,  0 ^ , for ex­

ample. Each one will form a pair with a copy of X t ( i ) .  Moreover we can use 

Rao-Blackwellization before resampling. If we have (a;J(l), 0J), . . . ,  (x^(n),9*) 

from an importance sampler we can replace each pair (a;J(i),0*) by pairs
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an appropriate Markov chain. Each of the new pairs will receive the re­

sampling weight that had, and resampling can go on as usual.

McEachern et al (1998) stress that the time points t at which we employ Rao- 

Blackwellization must have been decided in advance otherwise the sampler 

will be illegitimate.

It may not be easy to apply Rao-Blackwellization in practice. Otherwise, on 

its own or in combination with stratification it would be a very useful tool for 

providing inference about unknown constants.

5.3 A pplication of the m ethods to the control 

problem

In this section we examine the applicability of the methods we have discussed 

to the control problem that we have been studying. The notation used for 

the problem parameters is the same as that in the previous two chapters.

5.3.1 A uxiliary variable particle filtering

5.3.1.1 Resampling implementation

At first we concentrate on the univariate case and we assume that at any time 

point t the only unknown is the minimum x t of the curve. The importance 

sampler we have been using, put into an auxiliary variable context, takes the 

form
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g(xt+uk) oc p(xt+i\xt{k)) oc exp 2(j2 x t{k)) (5.17)

If yt+i > 0 and if ni+1 — >/2yt+i and ut+i +  y/2yt+i, the maximum likelihood 

estimates (MLE’s) of xt+i, are outside the range of the x t+\ part of the sample 

drawn from (5.17) we have considered yt+i to be an outlier. When y t + 1 is an 

outlier we have used intervention because resampling would have given very- 

poor samples consisting of very few distinct values and possibly being distant 

from the main support of p(rct+i|y t+1, ip+1 ). Instead of intervention we could 

have used an importance sampler of the form

g{xHU k) oc p('yt+1\f.Lt+i{k))p(xt+i\xt(k))

with /zt+1(ft) =  x t(k) for example. However, we have already said that such 

samplers only enrich posterior samples but do not ensure that they will fall in 

the main support of p(a?t+i|y i+1, u t+i) if yt +1 is an outlier. We prefer to use 

a sampler like (5.17) but with an increased variance when necessary, so that 

among the x*t+1 points it produces there are always some close to the MLE’s.

We have arrived at the following approach. The distance between the MLE’s, 

provided that y t + 1 > 0, is 2v/2?/£+1. A Normal distribution with mean xt (k) 

which lies between the MLE’s needs standard deviation a such that 2cr > 

y/2yt+i, so that it has a good chance of generating values close to at least one 

of the MLE’s. We take an importance sampler of the form

(5.18)
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with

a 2 =  m a x j a 2, y ^ } .  (5.19)

This means that if an is not large enough (5.17) “stretches” itself out to cover 

the support of p(a;f+1|yi+1, ui+i). It is easy to see that the resampling weight 

of a point (rcj+1(i), &*) drawn from (5.18) will be

The second exponential becomes 1 if a2 — a2. The denominator of o2 in 

(5.19) must be smaller than 4, but apart from that its choice is arbitrary. 

Note that with such an importance sampler we do not need intervention.

In exactly the same way we can devise an importance sampler for the multi­

variate case, multiplying the disturbance variance matrix by an appropri­

ate factor when necessary.

When there are additional unknowns as well as xt it may not be possible to 

take such an approach. For example, to return to a case from the previous 

chapter, if the observation equation has the form yt =  cx(xt — ut)2 +  et and 

a  is unknown there are infinite MLE’s and no way of finding an importance 

sampler that will generate points close to each one of them.
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5.3.1.2 MCMC implementation

Both Gibbs and Metropolis-Hastings sampling are very straightforward to ap­

ply but as we have said Gibbs sampling can be very time consuming. There­

fore we concentrate our attention on Metropolis-Hastings sampling only. In 

the univariate case when only x t is unknown we can use (5.18) with variance 

given by (5.19) as the proposal density. As we have seen the acceptance ratio 

will be equal to the ratio of the weights that the proposed and the current 

point would have if (5.18) were used as an importance sampler.

If Xt is not the only unknown then, as it is not easy to find an effective 

importance sampler, neither is it easy to find a good proposal density.

5.3.2 Stratified particle filtering

We again start with the univariate case and with x t being the only unknown. 

The filtering density can be written, as we have seen, as a mixture

71

P(a-‘i + i |y i+ i , u i +1) =  /3iPi(xt+1)
1“ 1

-  V  J>(W n \xt+i,ut+i)p(xt+i\xt{i))dxt+i 
~ i  E ”=i JX'WhI^Vt-i, ut+i)p(xt+i\xt(j))dxt+i 

p(yt+\|a?t+i > '^+i)p(at+i 1 x t{i)) 
f  p(yt+1 , ut+i)p(xt+i\xt(i))dxt+i ’

where x t( l ) , . . . ,  x t(n) is a sample from p(xt \yt , u*). We use simulation to 

estimate (5i since the integrals are analytically intractable because of the 

non-linearity of the observation equation. For each x t(i) we draw m  points
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r i  m
/ p(yt+i|a;i+i,Ui+i)p(a;t+i|a;t (i))da;t+i ~  — £ p ( 2/t+i|£ t+i(«, j) , ut+l) 
J m i=1

and

f t
T ,T = i p { y t +1 |ft+i fe j ), ^t+i) 

E L i E^=iP(yt+i|a;t+i(/c, j), ut+1) '

As for Pi(a;i+1) oc p{yt+i\xt+i,Ut+i)p(xt+i\xt{i)) we simply take pf(;cm ) a  

The resampling weight of apoint ^ +1(j) generated frompftT^+i)

will be

f t

Of course we could use other forms of pi. For example we could have

1 
Pi{xt+1) oc exp  -  —  (a:i+i -  £ tW )2 (5.20)

with a2 given by (5.19).

A similar approach can be taken for a multivariate setting or when there are 

more unknowns. If for example the precisions (j)£ and (j>v are also unknown and 

(xt( 1), <^(1), &(!))>• •., (zt(n)5<ft(n),<£e(n)) is a sample from p(zi,<^,0e|yt) iit) 

we can estimate ft as
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s =  E?Li p(yt+1 l^t+i (», j ) ,  &(»), «t+i) 
Z U Y . T =1p{yt+i\&L+1( k , j ) , M k ) , u t+ly

with 1) , . . . ,  £t+i{h m ) being random draws from p(xt+i\xt(i)1(i)11(i)),

and we can use p(a;t+i|a;*(i), (j>v{i)) as pi(xt+1 ).

Stratified particle filtering can be combined with intervention. When we ob­

serve yt+1 we generate a temporary prior sample from p(xt+i |yt, ut). If the 

MLE’s of xt+\ are outside this sample’s range we employ intervention as out­

lined in Chapter 3, otherwise we discard the prior sample and apply stratified 

particle filtering. Of course, if pi is of form (5.20) this process is not required.

5.3.3 S tratification

Stratification is also very straightforward to apply. Suppose that as well as 

x t we also do not know 01,0?? and 0e. According to the notation of section 

5.2.3, 9 — (<A/? </y), although for the first two time points 9 also includes 

0i which later on is dropped. From the prior distribution p (0 i,0 7?,0 t) we 

draw m  points (0 i(l), 07?(1), 0E(1)),. . . ,  (0i(m), 07?(m), 0e(m)), and then for 

each (0i(i), , <f>e(i)) we draw (afj(i, 1), (?-, 1)), • ■., ( ^ ( b  n), n)) from

p(xi, :r2|0i(i), 0J?( )̂, 0e('i))- Subsequently the analysis proceeds as usual for 

each (0i(i), 07?(i), 0e('i)) separately.

At any time point t the estimates of the conditional likelihoods are

1 71
pfeil^W»0eW,yt-i) =

n j=i
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where x%(i, 1) , . . . ,  x%(i, n)  is a sample from p ( x t \ y t - i ,  u t-i> <l>e{i))-

In order to choose Ut+i we need an estimate of the mode of p(xt\yti u i)- There­

fore we need a sample from it and we can obtain it in the way outlined in 

section 5.2.3.

Although in theory the method can be applied we believe that it is impractical 

because we will have to generate a large number m  of points from the initially 

three-dimensional state space of 9 and for each one of them a large number n  

of Xt samples. For this reason we do not pursue it in the simulations section.

5.3.4 R ao-B lackw ellization

It is very difficult to employ Rao-Blackwellization, in any of the forms men­

tioned in the previous section, in our control problem. The reason is twofold.

First, it is not possible to integrate 9 out of the filtering distribution because 

all the densities involved are non-linear with respect to it.

Secondly, we cannot even obtain p ( 9 \ x t , y t ) in closed form because the cal­

culations come to grief if we approximate the filtering densities by discrete 

densities based on samples. To see this more clearly consider the following:

P{ 0 \ x t : y t ) oc p { 9 ) x t \ y t ) gc p ( y t \ 9 , x t ) p ( 9 } x t \ y t_ 1)

= p ( y t \9, x t ) p ( x t \9t y*_iM0|yt_i). (5.21)

If (01,a:t_1(l))) . . . ,  (0n,z t_i(n)), is a sample from p ( 9 , x t- i \ y t_ 1) then
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is approximated by a discrete density over the 9 part of that sample because 

it is not available in closed form. This means that any kernel used to enrich 

the 9 part of the sample from p(0, x t\yt) wiH have to have the same discrete 

state space that gave the poor sample in the first place. Alternatively, we can 

replace p(0|y*_i) in (5.21) with a kernel density estimate p(0|yt_i) based on 

the 9 part of the sample from Because of the non-linearities

in the problem it is very likely that Metropolis-Hastings sampling will have 

to be used in order to sample from (5.21). This will require the evaluation 

of p(0|yt_j) for every 9 value considered for acceptance and can be very time 

consuming. As with stratification we will not pursue Rao-Blackwellization in 

the simulations section.

Furthermore, since p(0\xt7y t) is unavailable it is not possible to use an esti­

mator like (5.16).

5.4 Sim ulations

In this section we examine how well some of the new methods perform in the 

analysis of the control problem and we compare them with the resampling 

algorithm we have used in the two previous chapters.

5.4.1 G eneral com m ents

The set-up is the same as in Chapter 3. For the very first minimum, .ti, we 

assume that aq ~  N(  0, of) and for the movement of the curve we assume that 

it is such that [af|af_i] ~  N (x t - i }o’%). The observation satisfies [yt \xt ,Ut\ ~  

N ((x t — ut)2/ 2, of). The methods are compared under five different scenarios,
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each one defined by a combination of variance values:

• a\ — — 1, of =  0.01

• ^  =  1

» 0 - 2  =  a 2  = l j C r 2  =  4

• crj =  or̂  _  4j ff2 _  1

• a? =  ^  =  ^  =  4.

Under each scenario we have generated 50 chains of true x t for t = 1 ,2 , . . . ,  100. 

These are the ones also used in Chapter 3. Each method produced 50 chains 

of control points ut and thus for each method at any time point N  < 100 we 

have a simulated expected rate of loss

7N 50 -N

where xa and u ti are the locations of the minimum and the control point for 

chain i at time t.

We also discriminate between two cases, one in which the variances are known 

and one in which they are all unknown. When they are known the new meth­

ods we consider are auxiliary variable particle filtering in both resampling 

and MCMC implementations and stratified particle filtering. When the vari­

ances are unknown we consider stratified particle filtering and an MCMC 

implementation of the ordinary particle filtering we have used in the previous 

chapters. The methods were used in order to provide samples necessary for 

the application of our adaptation of Titterington’s method with K  =  0. For
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comparison we also present for each scenario the results of our adaptation of 

Titterington’s method with K  =  0 from Chapter 3. There the method was 

implemented with resampling. All resampling required by the methods was 

performed with smooth bootstrap.

We now present the implementational details for each method.

5.4.2 K now n variances

Auxiliary variable particle filtering with resampling was implemented with 

importance sampler (5.18) and variance (5.19).

For the MCMC implementation we considered two different proposal densities, 

one for sampling from p(xi\yi, u{) and one for any of the subsequent filtering 

densities. For p(xi|yi, u\) we did not use auxiliary variables, and the proposal 

density g at iteration m  of the algorithm was given by

For the subsequent filtering densities, p(xt\yt, ip), the proposal density was

(5.18) with variance (5.19). Plots of the generated values revealed that the 

Markov chains converge quite quickly and that autocorrelations become very 

small very quickly. We took a “burn-in” period of length M  = 5000 and from 

the subsequent 30000 iterations we stored the output of every thirtieth.

Finally, stratified particle filtering was employed as outlined in section 5.3.2 

with m = 10 and combined with intervention. All the samples from prior and 

posterior densities had size n = 1000. For all the methods we took u\ = 0,
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the mean of the prior of x\.

Figure 5.1 presents the simulated expected rates of loss for all the methods. 

We see that the system is controllable whichever method we use. We also 

see that none of them performs clearly better than the rest. If we compare 

them on grounds of practicality the ordinary particle filtering of Chapter 3 

is the simplest to use while the MCMC implementation of auxiliary variable 

particle filtering is the most awkward.

5.4.3 U nknow n variances

In this setting we do not use auxiliary variable particle filtering because it is 

difficult, if not impossible, to find an importance sampler or proposal density 

that will efficiently cover the whole support of the filtering distribution. For 

all the methods that we present the first two observations are considered as 

a block so that we will get a good sample for 0^. Therefore, the first filtering 

density is

P ( % l ) x 2i  0 1 )  4>rji </ >e | y2 ! u 2 ) -

We consider the precisions to be independent a priori and their priors are 

taken to be Ga(0.1,0.1) unless <$>t — 100, in which case its prior is taken to 

be Ga(1000,10). The prior of xi given the precisions is A ^ O ,^ 1) and for x 2 

given the precisions and xi is N(xi,(j)~l).

For demonstrative reasons we combine the simple particle filtering of Chapter 

3 with MCMC sampling. As in the case of known variances we had two
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different proposal distributions, one for the first filtering distribution and one 

for the subsequent ones. When we worked with the first filtering distribution 

the starting values of the precisions were taken at random from a Uniform 

density on the interval (0,3) except that when </>e — 100 its starting value 

was taken from a Uniform distribution on (90,110). This was done because 

when we tried drawing starting values from the priors sometimes they were so 

extreme that the Markov chain would get indefinitely stuck far from the main 

body of the posterior otherwise there would be overflow problems. Given 

starting values for the precisions the starting values for X\ and x 2 were drawn 

from the appropriate prior distributions. The proposal densities for each 

parameter at iteration m  were

x[ ~  7V(4m_I),0.5) 

x'2 ~  JV(4m' 1), 0.5) 

log('//,) ~ miogt^y, o,3) 
log(^) ~  JV(logW>'m- ‘>),0.3) 

log(^) -  7V(log(^m- 1)),0.3).

For each of the subsequent filtering distributions the proposal density was 

similar to (5.17). An index k' between 1 and n was chosen at random with 

equal probabilities of selection for all possible values, and then x't+1 was drawn 

from p(xt+i\xt(k'), <&,(&')) where (xt(l), 4, (1)) , . . . ,  (xt{n), (j)v{n)) was a sam­

ple from p(xt, 4>r]\yf> u t)- Graphs of the generated values showed that the 

Markov chains converge quite fast and the autocorrelations in the samples 

diminish quickly. However, because this is a multivariate problem we took
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a “burn-in” period of length M  = 10000 and from the next 90000 iterations 

we stored the output of every ninetieth. Sometimes very small acceptance 

probabilities (between 1% and 10%) were reported but, as the graphs show, 

this did not affect the performance of the method. Because the acceptance 

ratio corresponds to a ratio of weights, small observed acceptance probabili­

ties reflect cases where most of the resampling weights would have been very 

small and the posterior sample, had resampling been applied, would consist 

of very few distinct values.

Note that the samples for (j)v and (j)e become poor as time goes by and, for this 

reason, after we had obtained (xy(l), <^(1), ^e(l)), ■ ■ ■, (xt(n), 4>e(n))

from p(xt, (f)vi (pe\yn u t) we augmented the sample, combining the method of 

section 2.4.1 with West’s correction from section 2.2.

Stratified particle filtering was applied as outlined in section 5.3.2 with m =  10 

and combined with intervention. For all methods all samples from prior and 

filtering distributions had size n — 1000. The only exception was in the two 

resampling based methods where the sample from the very first prior had size 

10000. For all the methods we took ui = U2 — 0, the mean of the prior of x\.

Figure 5.2 presents the simulated expected rates of loss for all the methods. 

As in the case of known variances they all perform well with none standing 

out. As for the issue of practicality the comments of the previous section 

apply here too.
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5.5 Two non-dynam ic m ethods

We now present two other methods which were devised for use in static con­

texts. They both aim at finding a good importance sampler for any given 

target density. As we will see they are not well suited for use in the analysis 

of dynamic systems. In the presentation we follow the references in which 

they appeared.

5.5.1 A nnealed  im portance sam pling

Annealed importance sampling was presented in Neal (1998). Suppose that 

the target density is P q ( x )  oc f o ( x ) } that we can compute f o ( x )  for any x  but 

that we cannot generate samples from it. On the other hand we have another 

density p m {x) oc f m (x)  from which we can draw random samples. We can 

also compute f m (x) at any point x.  The density p m is not guaranteed to be 

a good approximation to po, however, and therefore, cannot be used as an 

importance sampler.

For this reason we take a sequence of intermediate densities pi ,p2, . . .  iPm-i- 

This sequence is defined by us as follows. We take P i ( x )  oc f i ( x ) ,  for i  — 

1,2, . . . ,  m  — 1, where

/)(>) =

with 1  —  j30 > pi > . . .  > (5m =  0. For each i =  1 ,  2 , . . . ,  m  —  1  we must 

have a Markov chain transition probability density T* that leaves pi invariant. 

The only other requirement for Ti is that we are able to sample from it. It
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can have any form; for example it can be a sequence of Metropolis-Hastings 

transitions. Let Ti(x\x) be the probability or probability density of the chain 

moving from a; to ah

To draw a sample m(l), . . . ,  x{n) with corresponding weights w ( l ) , . . . ,  tu(ra) 

we must do the following for each x(j):

Then let x(j)  =  xq and

,r )  _  f m — l ( ‘K?n— l )  f m —2 2  )  f i j x i )  f o ( x 0) (r ,

W  3 "  f m ( X m - 1 )  / 2 ( ^ l ) 7 l ( ^ ‘o ) '

The form of the weight can be explained if we consider an m -dimensional 

state space with points (a;0) • • • M-m-i) and define on it the density

generate £m_i from pm, 

generate zm_2 from Tm_i (• ),

generate aq from Xh(-1^ 2 )?

generate a?o from (-|mi).

m—1
f ( x o,. . .  =  f Q(x0) n  Ti{xi\xi^i), (5.23)

where % is the reversal of T* given by

(5.24)

and Ti(x\x) is the probability or probability density of the chain defined by
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Ti moving from x to x.

Notice that (5.23) has /o as the marginal density of £o- The sample points 

have been generated from the importance sampler

g&o, ■ ■ ■ 5 i)
771—1

i=1
(5.25)

Substituting (5.24) in (5.23) and dividing by (5.25) gives weights (5.22). Since 

they are the correct weights for the extended space they are also correct for 

the marginal space of oio-

If an independent sample from p0 is required we can resample from among 

rc(l), . . . ,  x(n) with probabilities of selection proportional to the weights. Also 

we can use each x(j)  as the starting point of a Markov chain that leaves po in­

variant. According to the theory of Rao-Blackwellization the points generated 

from this chain can take weight w(j) and can also be used in a resampling 

scheme.

Neal (1998) argues that the larger m is the better the method performs be­

cause the variance of the weights is reduced. Moreover, for any given m  the 

best way of choosing the actual values of /% is to place ln(/?t), i — 0 , . . . ,  m  at 

equidistant points in [0,1].

The virtue of the method is obvious. It can give importance samplers as good 

as we want for any target density. However it is very time consuming even 

in static settings. This feature will be even worse if we apply it in a dynamic 

problem for sampling in real time from the filtering densities. Of course, as 

computing equipment becomes faster, the method will prove more useful in 

the future.
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5,5.2 C haining via  annealing

This method has some similarities with annealed importance sampling. It was 

proposed by Evans (1991) and its aim again is to find an importance sampler g 

that approximates a target density proportional to /  in the best possible way. 

If we decide to look for g in a class Q we can find it by adap tive  im portance 

sam pling. This term is used by Evans (1991) and it is an entirely different 

technique from that presented in Chapter 2. Suppose that m* is a vector 

of characteristics of /  that can be calculated via expectations. Also suppose 

that m(A) is the corresponding vector for g\ E G- We can find g as follows.

1. Choose a starting density g\x E Q.

2. Sample ic(l),. . . ,  x(n) from g\t . Then estimate m* by mi  using the sample. 

For example, if x is univariate and its expectation is an element of 777.*, the 

corresponding element of rhi will be

3. Find the g\ E G that minimizes ||tti(A) — mi\\2 and call it g\2.

4. Generate aj(ra + 1) , . . . ,  x(2n) from g\2 and get a new estimate ttA of by 

combining both samples. For example (5.26) becomes

YZ=ix{i)f{x(i))/g\i(x(i)) + Zj=n+ix{i)f{x(i))/g\2(x{i)) 
/(zM)/<7Ai(z(i)) +  Ei=„+1 f{x{i))/g\2{x(i))

We then repeat steps 3 and 4 until the estimates stabilize. The final g\ is the 

g we want. However, the method will not perform well if the starting density
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<7ai is not good. This is why we use chaining. It involves setting up a chain 

of target densities. The chain is set up in such a way that for the first of the 

targets there is a good starting density for adaptive importance sampling. We 

apply adaptive importance sampling to each target density in turn, with the 

resulting best fitting density for a target being used as starting density for 

the next one. The final target in the chain is /  itself.

The chain consists of target densities proportional to

M)(x ) = f ( x ) L/tgM(x)1/u, (5.27)

with t and u being positive parameters. g\1 is a density from which we can 

draw samples. For large t and u =  1 (5.27) resembles gxli while for t — 1 

and large u it resembles / .  We select u = 1 and a large value t x for t for the 

first target density and g\ 1 as the corresponding starting density for adaprtive 

importance sampling. After adaptive importance sampling is finished we de­

crease t slightly and use the result of adaptive importance sampling as starting 

density for the new target. We stop when t reaches 1. We proceed in the same 

fashion by forming more target densities, but now we keep t = 1 and we in­

crease u slowly until it becomes very large. The result of the final adaptive 

importance sampling is the density that can be used to perform importance 

sampling for / .

The comments concerning the applicability of annealed importance sampling 

in dynamic systems are valid here too. In fact, chaining will be slower than 

an annealed importance sampling scheme that uses the same number of in­

termediate densities. The choice of how to describe the densities by a vector 

of characteristic expectations is an awkward one. If the target density is of a
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strange form a very large number of characteristics may be necessary to de­

scribe it adequately. Then trying to find an importance sampler that matches 

it in all of them may not be an easy task.

5.6 D iscussion

In this chapter we dealt with recently proposed methods for obtaining samples 

from the filtering densities that arise in the analysis of dynamic models. They 

have arisen as improvements of the resampling based methods that we have 

been using so far. Some aim to be robust in the presence of outliers and others 

to avoid the gradual impoverishment of the posterior samples of unknown 

constants.

Auxiliary variable and stratified particle filtering are indeed more robust than 

the simple particle filtering we used in the two previous chapters. However, 

even they cannot guarantee that the posterior samples they give will come 

from the main body of the posterior distribution if an outlier is observed. 

This is an inherent problem of all particle filtering techniques because they 

use discrete probability functions over finite-sized samples in order to approx­

imate continuous distributions. From a practical point of view it is better to 

implement them by resampling instead of by MCMC sampling so as to avoid 

the need to monitor the convergence of the Markov chains involved in the 

latter.

As far as unknown constants are concerned neither of the two methods just 

mentioned nor stratification offers any substantial improvement because they 

all use resampling. At least stratification accumulates the resampling weights
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over many observations, thus alleviating to some extent the effects of outliers. 

Another corrective measure is to implement any necessary resampling with 

smooth bootstrap. Rao-Blackwellization looks more capable of achieving its 

aims but it requires the availability for sampling of the full conditional distri­

bution of the unknown constants given all the other unknowns and the data. 

This requirement may not always be satisfied, and this is the case with our 

control problem.

Annealed importance sampling may be impractical for dynamic model prob­

lems for the time being but it will benefit from more powerful computing 

equipment in the future. It still relies on resampling, however, and therefore 

it too approximates continuous densities with discrete distributions.

Finally, chaining via annealing is very unwieldy and since annealed importance 

sampling can give equally good results with smaller computational cost we 

cannot see it becoming a widespread statistical tool.

5.7 R eassessm ent of our work on control

In the last three chapters we have devoted our attention to a problem from 

the area of stochastic control. We had a double motive for doing this. First, 

it is an interesting problem in its own right that can find useful applications 

in industry. However, it is difficult to solve with the usual theory of control 

because of the non-linearities involved. Secondly, if we express the problem 

in dynamic model terms and try to use statistical methods, the arising distri­

butions are intractable. We wanted, therefore, to see how resampling would 

cope with sampling from them.
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We suggested three ways of solving the problem which are almost equivalent. 

The one that, according to simulation results, turned out to be the best 

consists of setting the current control point equal to the mode of the posterior 

distribution of the minimum’s location for the previous time point. The mode 

is estimated from a sample from the posterior. Assuming decreasing degrees 

of knowledge about the parameters of the problem the method managed to 

give good results for all but the most extreme case. It also coped well with an 

extension of the problem in a multidimensional space. We also managed to 

analyse theoretically a simpler version of the problem and gain useful insight 

into the workings of the method.

Because of the dynamical nature of the problem the samples required by the 

method were obtained with resampling and the resampling algorithm used 

was smooth bootstrap. We took the simplest choice of importance sampler, 

namely the prior associated with each posterior. This means that the most 

favoured points during resampling were the ones with the highest likelihood. 

Sometimes an outlier would be observed which would have led to a bad poste­

rior sample, possibly consisting of few distinct values and being away from the 

main support of the posterior. Fortunately, we were able to use intervention 

and to correct things in all variants of the control problem apart from that 

with the most unknowns.

The new resampling algorithms of this chapter have as their strategy to de­

velop importance samplers that generate points which are bound to receive 

large weights. We believe that this strategy does not really improve things 

and we attempt to explain why.

In dynamic models in general, if the posterior distributions are not available 

in closed form then neither are the priors. A resampling algorithm that has
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a posterior as its target must then ensure that the prior forms part of the 

importance sampler. This leads to the weights being affected solely by the 

likelihood. However, high likelihood does not necessarily mean high posterior 

density, especially if an outlier is observed. For this reason we think that if the 

prior is available in closed form it should be left out of the importance sampler. 

Then it will be part of the numerator of the weights and will counterbalance 

the effect of the likelihood. This is, in our opinion, the only way to have a 

resampling algorithm totally immune to the presence of outliers. One could 

argue that a kernel density estimate of the prior based on a sample from it 

could be used in the calculation of weights. However, kernel density estimates 

are effective only for distributions of very few variables. We believe that the 

creation of importance samplers which are not affected by outliers is still an 

open challenge.

A course of action that we have not taken in this thesis would be not to 

perform resampling at each time point but to accumulate the weights. Re­

sampling could be performed every time the effective sample size became very 

small, for example. The accumulated weights will then play the role of the 

prior distribution and points with high likelihood will not necessarily receive 

large weights.

The problem studied in the last three chapters and the models considered 

in Chapter 2 involved Normally distributed noise and disturbance variables. 

This was done only for convenience and does not imply that in non-Gaussian 

cases resampling is not effective. The bearings only track ing  problem for 

example, which is a well known non-linear and non-Gaussian problem has 

been studied by many researchers with the aid of resampling; see among 

others Gordon et al (1993) and Carpenter et al (1997). Different noise dis­
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tributions lead to different distributions of weights and different disturbance 

distributions lead to different propagation effects on the samples. The gen­

eral properties of the method however, remain the same. The most important 

thing is to be able at least to sample from the disturbance distribution and 

to evaluate the likelihood.

Another interesting area of study in resampling into which we have not ven­

tured is the development of algorithms which may not be as good asymp­

totically as the methods already presented but which may be more effective 

with finite sample sizes. If this turns out to be possible it will have significant 

implications since in practice sample sizes are always finite.
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Figure 5.1: Simulated expected rates of loss for Titterington’s method with 
K  = 0 from the experiment of section 5.4.2. Five different combinations of 
(Ti, (T̂ and ae are considered. The standard deviations are assumed known. 
The method has been implemented with four different ways of obtaining the 
samples it requires. O rd inary  signifies the simple particle filtering of Chapter 
3. A uxiliary  and M CM C mean the auxiliary variable particle filtering in 
its resampling and MCMC implementations respectively. Finally, stra tified  
is the stratified particle filtering.
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Figure 5.2: Simulated expected rates of loss for Titterington’s method with 
K  =  0 from the experiment of section 5.4.3. Five different combinations of 
<Ti ,<t7? and cre are considered. The standard deviations are assumed unknown. 
The method has been implemented with three different ways of obtaining the 
samples it requires. O rd inary  signifies the simple particle filtering of Chapter
3. M C M C  means the MCMC implementation of the simple particle filtering 
of Chapter 3. Finally, s tra tified  is the stratified particle filtering.
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A ppendix A

E xpected  values of w eighted  

bootstrap and sm ooth w eighted  

bootstrap sam ple statistics

A .l  W eighted bootstrap samples

Suppose that a sample from a distribution g is available and let X =  (Xi, X 2,

. . . ,  X n) be that sample. We apply weighted bootstrap and get a sample 

(Yi, Y2, ■ ■ • j Ki) in order to study another distribution h with h(x) — j- f^jdx ■ 

The probabilities of selection are, as usual, qi — w with Wi — Now 

let Y  and by be the mean and variance of the weighted bootstrap sample.

The expectations of these two estimators can only be calculated with respect 

to (w.r.t.) g since they are actually based on the sample from it. For example, 

it is obvious that
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n j y i_ X  ■
£ ( f  |X) =  £ (H |X ) =  Y,QjXj =  L! ’

■?=1 ^J= l g(Xj)

By taking the expectation w.r.t. g of the rightmost part of the above equality 

we get the unconditional expectation of Y:

Eg(Y ) =  Es =  E9 =  E« fS i\ J  J  J I
v=i J V ■j=l g ( X j )

Let Si =  Eg(Si) + and S2 = Eg(S2 ) +  $2 , where Eg(5i) = E g(52) = 0. Also 

let in =  Eg(Si) and M2  =  Eg(S2).

Then

51 _  fii +  <$1

52 M 2  +  ^ 2

Mi <5 2 S \ 5 2 j i Q l

1 1 2  n 2 / / 3M 2  M2  M2

Higher powers of S2 have been omitted. Thus, we get

( v ) = !r -V0 2 / M2  M 2  M2
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— n J  ^ j' }jxg(x)dx  — n J  x f ( x ) d x ,

Therefore,

Ti _  n j  x j  {x)cl:i 
(i2 n j f ( x ) d x f  f ( x ) d x

Eg(52z)

n l E ,
\ 9 (X )

f{Xj)\  „T , „ ( f ( X ) \  
{Xi) J

n

= n

9 \ g ( x )

J  ( ~ j ^  g{%)dx~~ (^1 f ( x ) d x

(^1 f ( x ) d xf i m r
g{%)

dx = n ( m y
9 ( x )

1 2• dx „ /i 2
n z

So,
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n2 ( /  f(x)dx)2 J g{x)

(X) [ h{x)dx — 1 =
[V g(x)

Vi—i g(-X-i) i=i 9\Xi) J 

( I T l x  X T 'I

7 / w V  Y1 p f f f l v ]  E ( I T T
! [ U - y ) j " J  ' U w  /  9 0 ( x ) )  
( / « ) ’ 1  1

(Sf (x)dx)2 J g(x)

7  f n x ) v \

Therefore,
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Eh fh{X)
\ 9{X)

X

and finally,

The conclusion is that

Ea(Y) = Eg ( | > * > )  »  Eh(X) -  \ c o v h ( * ,  , (A.l)

where X  is a random variable with distribution g. The result shows that the 

mean of a weighted bootstrap sample is a biased estimator, but the bias goes 

to zero as the sample size increases.

Concerning the variance of the same sample we have the following calculations:
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E ( Y 2 |X)

= n-
f(Xi)  v -2  

=1 g(Xi)Ai
V̂n f(Xj) l g(Xi)

s ( E E 2| x ) + s fE E E E ix
\ i = l  /  V t47 j

[n £ (lf |X )  +  n(n -  l ^ Y ^ X ) ]  

1 { E (Y 2|X) + (n -  1) [£(E|X)]2}

JSAilx2^1—1 of XI i
E ll

z=]
g(X)

M A9{Xi)
+  (77 — 1)

E t i

E L

/(x
9(Xi Xi

f ( X j )  
1  g ( X i )

So, after a few straightforward calculations we arrive at

E(a2Y |X)
E t /(Xi) 

1 g{Xi)
y 2  I  y n  R X j )  y
A i / Li= i g(Xi) A ‘

y n  /(X) 
T>i=l g(Xi)

y n  f(Xj) 
Xi=L g(Xi)

By a procedure similar to the one used for the mean Y  we get that

F t l M X ]  ~ E ( y  1 Cov, ( X2 hR l \  (A 2)
E L . m  ~  } " I ’ ffW  J ' ( ' }

~̂ 9 i

• 5(X) ■

From the calculations concerning the mean we have that

Ej=i ^  Mi +  f  62 <$2

~ s * ~  to v to fti

and, after some approximations, we have that
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E n
s _ p 2' 

s 2
= En

Li LI L>2
2) _  _4^

L2

Using results from previous calculations we get the following:

4 = ^ w i 2.L-2

- , E a(622)L2
Eh( X ) ^ E s(5l)

L2
1
n [£/.(*)]

M m - *

Es{S2i) -  r a r 5(Si) - V a r s nVars

= n < E,

= n

U r n '

i lP E X dx _ k
g(x) n

rp ( f { X)
bg U w

So,

1
L2

£ # i<52).
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Eg (W 2 ) — n — x d x  « M1 M2g(x) n2

=  - E d * )
Pi n

' ( K  X)
Eh \ W ) X

Eh( X)

So, after some simple calculations,

E r.
S C  2

S2
E n t L n X i ) ’-

L i= 1

[S;i(X )]2 -  l E h(X)Covh ( x ,

+  ln C0Vh ( * ’ j f f j X )  ■
(A.3)

Then,

Eg(al)  =  Varh(X) -  C o v h ^Y2,

+ n

Again we see that the estimator is biased but the bias goes to zero as the 

sample size increases.

For the variance of the sample mean we have
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Va(Y )  = n‘ E W . l  +  E E ^ . i i )
_i=l

vg{Yi) =  v ,[£ (y ,|x )] +  jsg[y(yi|x)]

and

Covg(Yu Yj) = C rn ^ S ^ IX ] , £ft-|X ]) +  Es[Gov(Y„ Y^X)].

But given X the members of the weighted bootstrap sample are independent. 

Therefore Cou(Tj, Y,|X) =  0. They are also identically distributed given X  

and so, E[Yi |X] =  E[Yj |X] for all i and j .  These lead to

COT,(y4lyy) = y„[E(yi|x)].

Then,

i  [nV,[E(y4|X)] +  *E,[V(y4|X)] +  n(n -  l ^ p S l X ) ] ]/ b
1
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n — 1
Ean 1 j

E g l 'Z q iX i
\ i = 1

All the quantities involved have been calculated earlier. We put them in the 

equation and simple calculations lead to

Vg(Y) = - V ' W + f L - T E n W C o v J x , -
n \ n 2 n j  \  g
1
n

n — 1

k(X)
9(X)

n4 Covh \ X , X
K X ) \
9(X)J

1
n 2 Co" 4 Y,n § ) .

~^Covh X \  
nl

2 h (X ) \  
9(X)J  '

We see that there are non-leading terms which go to zero at the same rate as 

the leading one and therefore this variance is not for any n  as small as the 

variance of the mean of a random sample from h.

A .2 Sm ooth bootstrap samples

Here again we start with a sample X =  (Ad,...  , X n) from g(x). Each point 

Xi  again receives weight Wi = which is transformed into a probability 

qi — — . Smooth bootstrap amounts to sampling n values
Xj=i wj

from a mixture

n

p ( y )  =
i- 1
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of symmetric densities with means mi and variance 62. Recall that m* =  

a X i  +  ( 1  — a ) X  and X  =  QiXi- Also recall that for a suitably cho­

sen value of a', (A.4) has mean X  and variance s2 =  Z)?=i Qi{Xi ~  X ) 2 = 

Y î=i QiXf — E ”=i QiXi)2 which is an estimator of the variance Vh{X) of the 

target distribution h(x) oc f(x).  Define the sample statistics Y  = ^ Z)?=1

Then,

ES(Y) =  Eg [£(K|X)] =  E, (X)  = E„

which is the same result as in the case of weighted bootstrap.

For the variance of the sample we have

Eg(a2 ) =  Bs[S (4 |X )]  =  Eg(s2) = Es F'o £< ***
, i=  1

n

which from (A.2) and (A.3) becomes

This is again the same as in the case of a weighted bootstrap sample. 

For the variance of the mean notice that
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Vg{Y) -
i - 1 j ^ i

vs(Yi) = y9[£(r,|x)] + E,[y(y4|x)]

and

Covg{Yi, Yj) =  O u ^ K j X ] ,  E[Yj|X)) +  Ea\Cov(Yu r,|X )].

Here too the members of the smooth bootstrap sample are independent given 

X. Therefore following the same logic as in the weighted bootstrap case we 

get

VS(Y) = Vi[£W|X)] + iiSs[m |X )].

Because of the use of correction (2.8) for the means with suitable a, we have 

that £ (y |X )  =  E"=i QiXi and y(y<|X) =  E ?=1 q i X f - C E t  1 <liXi)2. Therefore 

from now on everything is the same as for weighted bootstrap.



A ppendix B

The algorithm  that locates the  

rectangle

For a clarification of the ideas presented in this section refer to Fig B.l. A 

rectangle lies on the square N  x N  lattice. We only know the halfwidth h 

of the rectangle and the coordinates {xi,yi) and (£'2 , 2/2 ) t^ e midpoints 

of its two short sides. The point (0,0) of the coordinate system coincides 

with the lower left corner of the lattice. The a;-axis is the lower border of 

the lattice and the y-axis is the left border of the lattice. We want to find 

which pixels in the lattice belong to the rectangle. We begin by calculating 

di — x2 — x\,dj  =  y2 -  yijl — \Jd2 +  dpcoscj) = djjl and sin<j) — dj/l. We 

also find the coordinates (i(l), j( l) ) , (i(2), j(2)), (i(3), j(3)), (i(4), j(4)) of the 

four corners of the rectangle. For example,
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j (  1) =  y i+ /is in = yi +  h cos cj).

We will also use the coordinate system x'O'y'. (i, j)  denotes the coordinates 

of a pixel with respect to the original coordinate system and its coor­

dinates with respect to x'O'y1. Their relationship is

Obviously in the rectangle belong the pixels whose coordinates satisfy

To avoid examining all pixels in the lattice we try to find a “search area” 

within the lattice such that we are certain that all pixels outside the search 

area do not belong to the rectangle. We have two separate search areas 

depending on whether |di| > \dj\ or |d;| < \dj\.

If jĉ l > \dj\ our search area consists of the pixels in the square surrounding 

the rectangle. Their coordinates (i,j) satisfy the inequalities

i' =  — xi) cos 0 +  (j — yi) sin <f>,

f  = U -  Vi) cos (j) -  (i -  x 1) sin <f>.

0 < i' < I and — h < j 1 < h.

min(i(l), z(2), i(3), i(4)) < i <  max('i(l),i(2),i(3),i(4)) and 

m in(j(l), j(2),j(3),j(4)) < j <  max(j(l), ;/(2), j(3), j(4)).
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If \di\ < \dj\ our search area consists of the pixels in the parallelogram 

A B B 'A 1, see Fig. B.2. Their coordinates (i,j) satisfy

m in(j(1), j (2), j (3), j (4)) < j  < m ax(j(l), j(2), j(3), j(4 ))} (B.l)

x\ — b +  a < i < .x‘i T 6 T a,

where b =  hf  sintp and a = (j — yi) cos (j)/ sin (j). In other words, for any j  

satisfying (B.l) we take pixels between lines A" and B" and displace them to 

the right by a. If a is negative the displacement is to the left.
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J;
Figure B.l: Locating the rectangle: case of \d,\ > \dj\.

cv

A
A '

Scare V\ arei\
*tWi ̂

, >ara \ 0

Figure B.2: Locating the rectangle: case of \dr\ < \dj\.
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A ppendix C

D erivation of the formula for f t

Here we give the steps that lead to the formula of f t .  After observing yi there 

were two candidates for the location of x\, both equally plausible. Therefore, 

u2 was randomly chosen from between them. The other candidate is denoted 

by uf2. Then we observe y2 and this gives us two candidates for x2. The one 

lying on the same side of u2 as u'2 has the higher posterior probability of being 

x 2. This point is termed U3  and the other is f t  for which, as we have said,

Pr( # 2  =  f t |y 2,u2) =  3̂ -

Then

_  4E [b3(x2 -  u2)2]
E [ ( x 2 - u 2 ) *]  •

E  [(T2  — u2)2] =  2<ft 4- f t  and all that remains is to find E  [6 3 ( ^ 2  — u2)2]. In

260
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the following we again use the notation < (̂a|6 , c) for the value of the p.d.f of 

iV(5, c2) at point a. Then

[0(n3|n2,(J?7) +  (f)(u3\u’2, <7V) + (j){ur3\u2>o-v) +  <f>(u3\u2} crv)] ’

if we take into account that 6 2  = 0.5 always. In the remainder we ignore the 

term (27rf72)-1/2 because it cancels out. Deriving the densities we get

(Ku3\u2ian) =  (j)(u'3\u2,av) =  exp exp 2 al (x2 -  u2y

because |n3 — u2| =  I'tt̂  — u2\ = \fW 2 =  \x2 — u2\. Also,

0(li31 Û CTt,)
1

=  exp --------
2(7̂

f  1=  exp
H 2

1
----- exp

(u3 - u 2)2

(u3 — u2)2 +  (u2 — 'u/2)2 +  2(u3 — u2)(u2 — j

6XP { _ 2of ~ Û 2 +  _  U2̂ U2 ~  u^}  } ’

Similarly we derive (})(ufz\u27 av) and, if we recall the relative locations of 

u2f u‘2l n.3 , u2 it is not difficult to see that (u3 — u2)(u2 — u/2) =  — — u2)

(u2—u2). Taking all these remarks into account, after some trivial calculations 

we get
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1 +  exp - ^ t{u2 - u'2)2 exp ~ ~ 2 { u '3 - u 2 ) { u 2 ~ - u '2 )
n  J

2 +  exp -  A (“2 ~ u '2 ) 2
(exp - ^ ( “3 ~ “ 2 ) ( “ 2  -  “ 2 )7'

+  exp A rK  -  u2)(u2 ~ u'2) )
Again because of the relative location of the points we can say that

(V3  — u2)(u2 ~ uf2) — ctfi where a = \x2 — u2\ and (3 = \u2 — u’2\. (This (3 should

not be confused with the limit of (3t). Then,

or
b3 ( x 2 -  u 2) 2

1 +  exp Ai2<J 2 exp

2  +  exp ( — ̂ ;exp a(3 + exp a.P
(C.l)

The random quantities affecting (C.l) are a  and (3. We will get the densities 

p(ot\j3) and p(/3) and we will multiply (C.l) by each one of them and integrate 

in turns to get

E  [6 3 (1 - 2  -  u2)2} = E { E  [6 3 ( 1 2  -  u2)2\P] } .

Given (3 we can see that

x = x2 -  u 2 \(3 ~  iiV ( 0 ,cr^) +  ~N(u'2 -  u2,a 2).

Using the change of variables rule we finally get that
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p{a\p)
,2

2 +  exp + exp

We see that, given their distance, the locations of U2 and u'2 do not affect the 

distribution of a.

For /? we observe that aq — u\ ~  N(0, of) and therefore (5 = 2 < t i X i ,  where xi 

is random variable following the ^-distribution with one degree of freedom. 

Therefore,

All that is needed from here are careful integrations.

N ote: For deriving fa, fa and other values the technique is the same, but 

each time the number of integrations that have to be performed increases by 

one. In general one has to keep in mind that the random quantities affecting 

bt are all the deviations \xi — ufa I =  1, 2 , . . . ,  t — 1.

UiJIVEKSSirl?


