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Abstract

The aim of the project was to study the presentations of solenoids by branched 1-
manifolds. We begin by studying two properties of branched 1-manifolds which effect
the presentation of solenoids, orientability and recurrence. Solenoids are shown to come
in two varieties, those presented by orientable branched 1-manifolds and those presented
by nonorientable branched 1-manifolds. T'wo methods of determining whether or not a
branched l-manifold is orientable are given. Recurrence is shown to be a necessary and
sufficient condition for a branched 1-manifold to present a solenoid. We then show how
the questién of whether or not a branched l-manifold is recurrent can be converted into
question in graph theory for which there exist efficient algorithms.

Next we consider two special types of presentations, elementary presentations and
(p, q)-block presentations, which allow us to extract algebraic invariants for the equiv-
alence of solenoids. A slightly stronger version of a result of Williams [39] is obtained
which states that any solenoid with a fixed point is equivalent to one presented by an
clementary presentation. The proof is constructive and gives a method for finding ele-
mentary presentation given a presentation of a solenoid with a fixed point. Williams has
shown, [39], that there is a complete invariant for the equivalence of solenoids given by
an elementary presentation in terms of the shift equivalence of endomorphisms of a free
group. We prove a result which shows that every solenoid can be given by a countably
infinite number of equivalent (p,q)-block presentations. The (p, ¢)-block presentations
again allow us to find invariants for the equivalence of solenoids in terms of the shift
equivalence of endomorphisms of a free group.

Finally we consider further invariants for the equivalence of solenoids which are de-
rived from the endomorphism invariants. First we examine the invariants which arise
upon abelianizing the free group in question. Second we introduce new invariants which
reflect some of the non-abelian character of these endomorphisms. These new non-abelian

invariants are then used to solve a problem posed by Williams in [39)].




Preface

This thesis is submitted to the University of Glasgow in accordance with the require-
ments for the degree of Doctor of Philosophy.

To my supervisor, Dr. C. Athorne, I wish to express my sincere gratitude for his help,
encouragement and patience throughout my years of research. Thanks are also due to
the staff and research students within the Department of mathematics for their advice

and assistance.

I would like to thank my family for their support and understanding throughout my
time at University. I should also thank Joanne Long for her friendship and encouragement

during my period of research.




Contents

1 Introduction

2 Branched 1-manifolds and Solenoids
2.1 Branched l-manifolds . .. ... .. ... .. ... ... .. ..
2.2 Finite Graphs . . . . . . . . e
2.3 Solenoids. . . . . ...

3 Routes, Orientability and Recurrence
3.1 Routes and Orientability . . . .. .. .. .. ... .. .. ... ......
3.2 The Structure Matrix of a Smooth Graph . . . . .. ... ... ... ..

3.3 Treesandcycles . . . . . . . . ..,

3.4 Orientability and W*-mappings . . . . . .. .. ... ... ... .. ...
3.5 Orientable Double covers . . ... ... ... ... . ... . ......
3.6 Recurrence. . . . . . . . .
| 3.7 Recurrence and W*mappings . . . . ... .. ... ...
!? 4 Presentations of Solenoids
| 4.1 Elementary Presentations . .. ... ... ... ... ... .. . .....

4.2 A Complete Algebraic Invariant for Elementary Presentations

4.3 (p,q)-Block Presentations . ... ... ....... ... ... ......

5 Algebraic Invariants
5.1 Abelian Invariants . . . .. . ... ... L
5.2 Non-Abelian Invariants . . . . . .. ... ... ... ... ...
5.3 Applications . . . . . ..

6 Concluding Remarks

13
13
15
22

27
28
33
40
43
46
02
60

66
66
91
93

107
108
124
142

151




ST T T e

A Some functions on the real line

B Maple routines

154

158



Chapter 1

Introduction

In this thesis we study the presentation of solenoids by branched 1-manifolds. A solenoid
K is a topological space which together with a homeomorphism h: Koo — Ko, called
the shift map, forms a dynamical system. A solenoid Ko, and shift map h are defined,
using an inverse limit construction, by a branched 1-manifold K and a mapping g: K — K
satisfying certain properties. A branched 1-manifold K and a map g defining a solenoid
K and shift map h are called a presentation of the solenoid and we write Ko = {K, g}

Branched 1-manifolds and solenoids play an important role in the theory of dynamical
systems. The first example of the construction of a solenoid (as a hyperbolic attractor)
is due to Smale [32]. In this example Smale describes how a certain mapping of the
solid torus, when restricted to its hyperbolic attractor, is topologically conjugate to the
solenoid presented by a circle S; and an expanding map S; — S7. More detailed examples
of this construction can be found in [8] and [24].

This construction was later generalized by R. F. Williams in [38] and [39}, using
branched 1-manifolds, to give a model which completely describes 1-dimensional hyper-
bolic attractors. In particular Williams shows that if f: M -+ M is a diffeomorphism of a
differentiable manifold M with a 1-dimensional hyperbolic attractor A then there exists
a presentation of a solenoid Ko, = {K, g} with shift map i so that f|A is topologically
conjugate to h. Williams is also able to show that given a presentation of a solenoid
Ko = {K,g} with shift map h there exists a diffeomorphism f:S* — 54, where 5% is
the 4-sphere, which has a 1—dime.nsiona1 hyperbolic attractor on which it is topologically
conjugate to h. Williams has extended some of these results to n-dimensional hyper-

bolic attractors in [41] by considering solenoids and shift maps presented by branched




n-manifolds.

The first example of a 1-dimensional hyperbolic attractor in the two dimensional disk
was given by Plykin {27). The use of branched 1-manifolds in intrinsic in this example.
A variant of this example was used in [25] to show that non-trivial hyperbolic attractors
(for flows) appear in arbitrarily small perturbations of constant vector fields on tori
T™ of dimensions greater than 2. As a result of this, hyperbolic attractors appear in
perturbations of three or more coupled harmonic oscillators, or three or more relaxation
oscillators.

Another intriguing example is that of the DA map introduced by Smale in [32]. The
DA map is a modification of a two dimensional hyperbolic toral automorphism which
Las a 1-dimensional hyperbolic attractor. Thus the DA map restricted to its attractor
is topologically conjugate to a shift map on a solenoid. In [42] Williams uses the DA
example to prove that the structurally stable systems on certain 3-manifolds are not
dense. While Smale’s construction is based on a two dimensional torus, Williams uses a
1-dimensional hyperbolic attractor defined in terms of a solenoid.

In [28], [29], and {30], Plykin considers hyperbolic attractors of diffeomorphisms on
compact manifolds with codimension 1. In these papers there are numerous examples
of the construction of diffeomorphisms on compact two dimensional manifolds with 1-
dimensional hyperbolic attractors. These constructions make use of presentations of
solenoids by branched 1-manifolds.

Some of the questions considered in this thesis include:
1. Which branched 1-manifolds can present a solenoid?

2. If {K,g} and {K',¢'} are presentations of solenoids K and K, respectively is
there any property of the branched 1-manifolds which affect whether the shift maps

I and I’ can be topologically conjugate?

3. Given two solenoids K, and K., with shift maps h and &’ how can you determine

whether or not h is topologically conjugate to h'?

We will give a complete answer to the first question. We give an affirmative answer to
the second question. The third question is addressed by considering invariants for the

topological conjugacy of solenoids given a presentation.




In chapter 2.) we begin with an introduction to branched l-manifolds, finite graphs
and smooth graphs. We show that every branched 1-manifold can be given the structure of
a smooth graph. We define solenoids and review some properties of inverse limit systems.
Finally we review some results of R.F. Williams concerning the presentations of solenoids.
In particular we review a result of Williams which says that if {K,g} and {I’, g’} are
presentations of solenoids with shift maps h and /', respectively, then & is topologically
conjugate to i if and only if the maps g and ¢’ satisfy an equivalence relation called shift
equivalence.

In chapter 3.) we introduce two properties of branched 1-manifolds which have an
effect on the presentation of solenoids, orientability and recurrence. They are shown to
be independent of each other.

We consider orientability first. A branched 1-manifold is orientable if there is no
“smooth” path on it which traverses a branch in more than one direction. On an orientable
branched 1-manifold with a smooth graph structure we can give the smooth graph defined
an orientation which respects its smooth structure, such an orientation is called a coherent
orientation. We next consider how to determine whether or not a branched 1-manifold
is orientable. In doing so we define the structure matrix of a branched 1-manifold with
a given smooth graph structure. We then give necessary and sufficient conditions for a
branched 1-manifold to be orientable in terms of the rank of its structure matrix. We give
alternative necessary and sufficient conditions for a branched 1-manifold to be orientable
in terms of the existence of a certain type of cycle on the branched 1-manifold in question.
We then show that if Ko = {K,g} and K/, = {K',¢'} are solenoids with shift maps
h and I/, respectively, where & is topologically conjugate to h' then I and K’ are both
orientable or both nonorientable. With every nonorientable branched 1-manifold we show
how we can construct an orientable double cover, which we will use to study the recurrence
of nonorientable branched 1-manifolds.

Next we consider the question of recurrence. A branched l-manifold is recurrent if
there exists a closed “smooth” path on it which traverses every branch of the manifold
and thus it is possible to re-trace this path infinitely often. We show that if K is an
orientable branched 1-manifold with a smooth graph structure and coherent orientation
then K must be strongly connected with respect to this orientation. As there exists an

efficient algorithm to determine whether or not a graph with given orientation is strongly




connected it can be used to determine whether or not an orientable smooth graph is
recurrent. We then turn our attention to the question of recurrence in the nonorientable
case. We show that if K is a nonorientable smooth graph with orientable double cover
I, then K is recurrent if and only if K is recurrent. It is therefore possible to determine
whether or not a nonorientable smooth graph is reccurent by studying its double cover.
We show that a nonrecurrent smooth graph will consist of a finite number of maximal
reccurrent sub-branched l-manifolds. Finally we show that a connected branched 1-
manifold K is recurrent if \a,nd only if there exist a mapping g: K — K which satisfies the
conditions necessary for presenting a solenoid. We note that in the higher dimensional
case, branched n~-manifolds, it is still an open question as to which manifolds may present
a solenoid. Some examples of branched 2-manifolds which present solenoids are given in
[16].

In chapter 4.) we study presentations of solenoids. In particular we study methods
of moving from one presentation {X, g} to an equivalent presentation {K',¢'} in which
the smooth graph I’ is simplified or to a presentation where the mapping ¢' has some
desirable property. The methods in this chapter will be particularly useful for finding
invariants for solenoids.

The first method that we consider is due to Williams [39]. We prove a slightly stronger
variant of a theorem of Williams which shows how given any presentation {I(, g} where
¢ has a fixed point we can find an equivalent presentation {X,g'} where /X' has only a
single branch point which is fixed under g. Such a branched 1-manifold is called an ele-
mentary branched 1-manifold and a presentation of a solenoid by an elementary branched
1-manifold is called an elementary presentation. We then review some results of Williams
which show how to find a complete algebraic invariant for the topological conjugacy of
shift maps of solenoids presented by an elementary presentation. Thus these are complete
invariants for solenoids {K, g} where the map ¢ has a fixed point. In particular given
an elementary presentation {K,g} we can associate with it an endomorphism, g, of a
finitely generated free group. We then give a result of Williams which says that if {K, g}
and {K’,¢'} are elementary presentations of with shift maps & and h' with associated
endomorphisms g, and g! then A is topologically conjugate to &' if and only if g, is shift
equivalent to g!. Here the notion of shift equivalence is defined for endomorphisms of

finitely generated free groups in the obvious manner. In this manner we are able to con-



vert the question of whether the shift maps of two solenoids are topologically conjugate
into an algebraic question. The case of solenoids presented by bracheded 2-manifolds has
been studied in [36] in which it is shown that in presentations {X, g} with a special form
it is possible to find an equivalent presentation with a reduced branch structure.

The second method we introduce involves the notion of a {(p, ¢)-block presentation.
In a (p, ¢)-block presentation {K, g} the branched 1-manifold K is has the structure of a
finite graph in which the vertex set of the graph consists of all points fixed under g" where
p < n < q. We show that any presentation of a solenoid may be put into a countably
infinite number of equivalent (p, g)-block presentations. Given a (p, ¢)-block presentation
{I, g} we show how to associate with this presentation an endomorphism of a finitely
generated free group, g.. We then prove that if {X, ¢} and {K’,¢'} are (p,q)-block
presentations with shift maps A and 2’ and associated endomorphisms g, and ¢! then h
topologically conjugate to A’ implies that g, is shift equivalent to g.. In this manner we
are able to construct algebraic invariants for the topological conjugacy of solenoids.

In chapter 5.) we study algebraic invariants for the topological conjugacy of shift
maps of solenoids. In general these invariants are derived from the invariants devel-
oped in the previous chapter as there is no known general method for determining when
endomorphisms of finitely generated free groups are shift equivalent.

In the first section we consider invariants which arise by abelianizing the free group
in question. We show that with any endomorphism ¢ of a free group we can associate a
non-negative integer matrix, ®. The notion of shift equivalence is then defined for non-
negative integer matrices. We then prove that if ¢ and 1) are shift equivalent endomor-
phisms the the associated non-negative integer matrices, ® and ¥, are shift equivalent.
The shift equivalence of non-negative integer matrices is an invariant for sub-shifts of
finite type and has been extensively studied, see [40], [21] and [22]. We prove that if ¢ is
an endomorphism of a free group associated with a elementary presentation or a (p, q)-
block presentation then the non-negative integer matrix associated with ¢ will be in a
special form called primitive. We state a result which shows that the shift equivalence of
non-negative integer matrices can be reduced to shift equivalence over the integers. There
exists a procedure for deciding when two non-negative integer matrices are shift equiva-
lent [21], but it is usually quite difficult to apply. We next review two invariants which

can be derived from the shift equivalence of primitive non-negative inteéger matrices and



which are fairly easy to calculate, the Jordan form away from zero and the Bowen-Franks
group. These invaraints are applied in several examples. We will find the Bowen-Franks
group particularly useful when considering invariants which reflect the non-abelian nature
of the endomorphisms associated with a presentation of a solenoid.

In the second section of chapter 5.) we consider invariants for the endomorphisms
associated with presentations of solenoids which reflect some of their non-abelian nature.
We show how we can associate with any endomorphism ¢ of a free group a matrix @
over a group ring ZG, where the group G4 is isomorphic to the Bowen-Franks group of
an integer matrix associ@ted with ¢. We then define the notion of shift equivalence for
matrices over a group ring. ‘We prove that if ¢ and 1 are endomorphisms with associated
group ring matrices, ® over ZG4 and ¥ over ZGy, then there will be an isomorphism
7m: Gy — Gy so that & and ¥, are shift equivalent. Note that here ¥, is the image
of the matrix ¥ under the ring isomorphism ZGy — ZG, induced by the isomorphism
7: Gy — Gy. There is unfortunately no known method for determining when two matrices
over a group ring are shift equivalent. We do however have some extra information which
we are able to make use of. We prove that if { Ky, go} and {K, gm} are both elementary
or both (p, q)—blopk presentations where gq is shift equivalent to g,, with lag=m then there
will exist presentations (all elementary or all (p, g)-block) {K;,¢;} fori=1,...,m~1
so that g;_, is shift equivalent to g; for j = 1,...,m with lag=1. We then can prove
an easy corollary of this which states that if ¢ and 1 are endomorphisms associated
with elementary or (p,q)-block presentations with associated group ring matrices, @
over ZGy and W over ZGy, then there must exist an isomorphism 7: Gy — Gy so that
trace(®") = w(trace(¥")) for all n € N. Note that we are considering 7 to be the ring
isomorphism induced by the group isomorphism of the same name. As the groups Gy
and Gy are abelian groups with a finite number of generating elements it is possible to
list all isomorphisms 7: Gy — G4 and thus calculate these invariants. We give several
examples of how these invariants can be used to distinguish non-equivalent presentations
of solenoids. Other algebraic invariants for the shift equivalence of solenoids have been
developed in {34]. These are of quite a different flavor and involve the elementary chain of
ideal of the Alexander matrix of a group associated with every solenoid with an elementary
presentation.

In the third section of chapter 5.) we give the solution to a problem posed by Williams

11




in [39]. Our solution makes use of the non-abelian invariants developed in the second
section of this chapter.

In chapter 6.) we give our concluding remarks and consider possible avenues for future
research.

References used in the text refer to the source from which the result was taken at the
time (not necessarily the original source), and so many results are credited to books such
as those by D. Lind and B. Marcus , or J. Hocking and G. Young. Every effort is made
to give credit where credit is due to unoriginal results in this thesis. Any aberrations
or omissions in this respect are unintentional, and entirely the fault of the author. The
following convention is used for assigning credit; cited results are unoriginal and were
obtained from the source cited, all other results are due to the author, if a result is based
on the work of someone other than the author but the proof contains original work then
it will not be cited but a brief explanation of the nature of the change will be given in

the text.
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Chapter 2

Branched 1-manifolds and Solenoids

We begin by defining branched 1-manifolds and introducing some of their elementary
properties. As the name might suggest branched 1-manifolds are similar to 1-manifolds
except that at a finite number of points we allow branching. A differential structure is
defined on a branched 1-manifold as usual.

We next review how a differentiable branched 1-manifold and a self mapping satisfying
certain properties allows us to define a topological space called a solenoid using an inverse
limit construction. We are then able to define a homeomorphism from the solenoid
onto itself called the shift mapping. A solenoid plus a shift map forms a dynamical
systeni. Some elementary properties concerning the presentations of solenoids are given
as well as necessary and sufficient conditions for two solenoids and their shift maps to be

topologically conjugate in terms of their presentations.

2.1 Branched 1-manifolds

In this section we define branched 1-manifolds and give some of their elementary prop-
erties. In doing this we will follow as closely as possible the work in [10], [24], [38],
[39]. Before we can do this we will need some definitions. Fix a C*° function (:R = R

satisfying ((z) = 0if z < 0 and {(z) > 0 if 2 > 0.

Definition 1 Let p,q be integers satisfying p,q¢ > 0 and p+ ¢ # 0 . Then the local

13
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Figure 2.1: examples of branched 1-manifolds

a.) b.)

branched 1-manifold Y, , C R? is given by
Cr

{(z,y) e Ry =iC(z) ory = j¢(~=),i=0,...,p~1,§ =0,...,¢q— 1} if
< 7,q >0,

{(z,y) e Ry =i{(2),s=0,...,p— 1,z >0} if ¢=0,
\ {(z,y) e R*y =i((~x),i=0,...,¢— 1,2 <0} if p=0.

P

Definition 2 A compact branched I-manifold K is a compact Hausdorff topological
space satisfying the following property. There is a finite subset B € K such that for
each z € B there is a neighborhood which is homeomorphic to Ypq where p > 2 or ¢ > 2.

Each « € I — B has a neighborhood homeomorphic to Y; 1, Yo, or Y.

We say that a point z € K is a point of type (p, q) if there is a neighborhood U of
and a homeomorphism @: U — Y, , with ¢(z) = 0. The defect of z is defined to be the
positive integer |p — g|. Points of type (p, ¢) with p > 2 or ¢ > 2 are called branch points.
Let B denote the set of branch points, called the branch set of K. The boundary of K,
9If, consists of all points of type (p,0) or (0,q). If every point of is of type (1,1) then K
is a 1-manifold. Note that in [38] and [39] only points of type (1,1), (1,0), (0,1), (1,2)
and (2,1) are allowed. Pictures of typical branched 1-manifolds are given in figure 2.1.
Note that in both branched 1-manifolds shown all vertices are of type (2,1) or (1, 2).

Let K be a branched 1-manifold. There is a finite covering {U,} of K by open sets

such that for each open set {U,} there is a homeomorphism tq: Uy, — Y, 4. The family

14




{{Uwy o)} defines a C" differential structure on K as usual by saying that a function
fi K — Ris C" if it is continuous and for each @, f o 9! extends to a C™ function from
a neighborhood V, of ¢(U,) to R. A branched 1-manifold has a well defined tangent
bundle because the graphs of the functions in {i{(z)} U {j{(—2)} have infinite order
contact at any point where they meet. We can then define Riemannian metrics and C”
maps between C” branched 1-manifolds and other manifolds as usual. Every compact C7

branched 1-manifold can be C™ embedded in R?® for r > 0.

Note 1 We now always assume, unless otherwise stated, given any branched 1-manifold
I that it is compact and C* with a fixed Riemannian metric. Let ||-|| denote the induced

norm on T'(X).

A differentiable map f: K1 — K5 of branched 1-manifolds induces a map D f: T(K;) —
T'(K3) of their tangent bundles.

Definition 3 A differentiable map f between two branched 1-manifolds is an immersion

if the induced map Df is a monomorphism on the tangent space at each point.

Definition 4 An ezpanding map or ezpansion of a branched 1-manifold K is a C! map
g:I¢ — I such that there are constants C' > 0, A > 1 with ||T(¢™)(v)|| > CA?||v]|| for
allz € K, n>0and v e T,K.

An alternative formulation of the definition of an expansion is given in [38] as follows:
the Riemanian metric determines arc length on K. A map g: K — K is an expansion if

and only if g™ increases arc length by a factor of at least CA\*. We will use these two

definitions interchangeably.

2.2 Finite Graphs

In this section we define finite graphs and introduce some elementary concepts and termi-
nology which we will use through out this thesis. We also prove a simple result showing
that given a branched 1 manifold we can give it the structure of a finite graph by choosing

a finite subset of it which contains the branch set. The following definition is found in

[23].
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Definition 5 A finite graph, G(X,V) (or just graph for short) is a pair consisting of a
Hausdorff space X and a finite subspace V' (points of V' are called vertices) such that the

following conditions hold.

1. X —V is the disjoint union of a finite number of open subsets e, ..., e called edges.

Bach e; is homeomorphic to an open interval of the real line.

2. The point set boundary, &; — e; consists of one or two vertices, and the pair (&;, ;)
is homeomorphic to (S, (0,1)) if the point set boundary consists of one vertex and

([0,1], (0,1)) if the point set boundary consists of two vertices.

A graph G(X, V) is compact, since it is the union of a finite number of compact subsets
( the closed edges €; and the vertices ). It may be either connected or disconnected, and
it may have isolated vertices. If a vertex v belongs to the closure of an edge ¢;, it
is customary to say that e; and v are incident. We will consistently use the notation
Je; = &; — e; to denote the boundary of the edge e;.

A graph G(X, V) will often be specified by two finite sets, V' the set of vertices, E the
sets whose elements are the edges of G(X, V) and an incidence relation which associates
with every edge one or two vertices. V and E are referred to as the vertez set and edge set
respectively. We write G(X, V) = (V| E), or just G = (V, E) for short. We will use I(e)
to denote the set of vertices incident with the edge e and I(v) to denote the set of edges
incident with the vertex v. I is called the incidence function. In order to avoid confusion
we use the following convention. If a graph G is written as a pair G(X,V ), with the G
(or some other symbol) flush against the brackets, then it is being given in the sense of
definition 5. If a graph G is written as a pair G = (V, E), with an equal sign between the

symbol G and the bracket, then it is being given as a vertex set and edge set.

Example 1 The graph G = (V, E) where V = {v1,v3,vs3,%}, E = {ey, €3, €3, €4, €5, €5, er}

and incidence relation given in the following table.

v I(v)

Uy {31762563}

Va2 {62; €3, €4, €p, 87}

U3 {81’ €4, 65}
Uy {es, €5}
16
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Figure 2.2: The graph G given in example 1

Figure 2.2 shows a picture of this graph. In this picture vertices are represented by small

-boxes and edges by lines connecting these boxes.

Let G = (V,E) be a graph. G has a vertes labeling if the vertices v € V are dis-
tinguished from one another by names such as vy, v,,...,v,. Similarly a graph has an
cdge labeling if the edges e € E are distinguished from each other by names such as
€1,0s -5 6n. I |V] = pand |[E| = ¢ then G is a ( ,q) graph, where p is the order
and g is the size, respectively of G. An edge is a loop or a link according to whether
[I{e)] = 1 or |I(e)| = 2. The elements of I(e) are the ends of e, and e is incident upon
them and joins them. The ends of e are in turn incident upon e. Two distinct edges are
adjacent if they are incident upon a common vertex. Two distinct vertices are adjacent
on a common edge. The degree of a vertex v is the number of links plus twice the number
of loops incident upon v, i.e., d(v) = 7 + 2j where i and j respectively are the number of

links and loops in G.

Note 2 When we want to emphasize that the underlying graph is G' we write I(V) a

similar convention will be used for other functions depending on an underlying graph.

Definition 6 Let G = (Vg, Eg) and H = (Vy, Ey) be graphs and suppose there exist
onto mappings f: Ve — Vg and g: Eg — Epy such that Iy o gle) = folgle). We
say that (f,g) is a homomorphism from G to H , and that f and g are vertez and edge

homomorphisms respectively. If f and g are bijections then (f, g) is an isomorphism, G

17



and H are then said to be isomorphic. It is easy to see that an isomorphism is just a
relabeling of the vertices and edges of G. Clearly isomorphism defines an equivalence
relation. We denote by [G] the class of all graphs isomorphic to a graph G. When we
write G 2 H we mean that H € [G].

Definition 7 A walk on a graph G is an alternating sequence of vertices and edges,
W = {vg, €1,v1, . .-, Vk_1, €k, Uk }, beginning and ending with vertices in which each edge is
incident with the two vertices immediately proceeding it and following it., i.e., v;i—1 € I(e;)
and v; € I(e;) for all 7 € {1,2,...,k} The walk is said to join the vertices vy and vg. It

is closed if vg = v, and open otherwise.

A graph is connected if every pair of vertices is joined by a walk. Thus G is connected
if there is no partition of V' = Vj UV, such that no edge joins a vertex of V; to an vertex
of V5. This notion of connectedness clearly coincides with the topological notion when

the underlying space has the structure of a finite graph.

Definition 8 A graph H is said to be a subgraph of a graph G if Vy C Vi, By C Eg
and Iy = Ig|Ey. A graph is said to include its subgraphs and their edges. A subgraph
H is a proper subgraph of G if Vg U Ey C Ve U Eg and a spanning subgraph if Vi = V.
Note we will write H C G if H is a subgraph of G.

Definition 9 An orientation of a graph G is a mapping p: E — V such that p(e) € I(e)
foralle € F.

If p and o are two orientations of G and e is a loop then p(e) = o(e). For any
orientation p of G we define its conjugate as the orientation p* such that p*(e) # p(e) for
each link e € E. Thus p** = p. Given an orientation p we say that p(e) is the sense of the
edge e € E under p and that p*(e) is obtained by reversing the sense of e. If e joins two
vertices v and u, and p(e) = v then we say that e is directed from u to v. The number of
edges directed to a vertex v is called the indegree of v and the number of edges directed
from v is called the outdegree of v. We call a vertex v a source if it is not the image of
an edge under p, and a sink if v = p(e) for all e € I(v). The set of edges directed to a

vertex v is denoted I (v), thus

IF(v) = {e € E: p(e) = v}
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and the set of all edges directed from a vertex v is denoted I, thus
I7(v) ={e € E:p*(e) = v}.

Suppose that G = (V, E) is a finite graph. Then it is easy to give G the structure of
a branched 1-manifold with branch set B C V by choosing an atlas of coordinate neigh-
borhoods for G. Note, however, that we can generally give G many different branched
1-manifold structures and the particular structure we get depends on how we arrange the

edges at the branch points.

Note 3 When specifying a branched 1-manifold structure on G we will only specify the
coordinate neighborhoods at the vertices and will operate under the assumption that any

point which is not a vertex belongs to a coordinate neighborhood of type Y7,

In order to specify a branched 1-manifold structure on a graph G we define the notion
of a switch condition on a graph . A switch condition on a graph in turn is family which
consists of a switch condition for every vertex. A switch condition at a vertex then tells

us how the vertices are arranged, i.e., what type of local coordinate neighborhood it has.

Definition 10 Let G = (V, E) be a finite graph. A switch condition for a vertex v € V is
a pair of subsets, R(v) and L(v), of the incident edges, I(v), at v satisfying the following:

1. R(v) U L(v) = I(v),
2. R(v) N L(v) C{e e I(v):|I(e)| = 1}.

Definition 11 A switch condition/graph on a graph G is a family S = (R(v), L(v))

(v € V) such that R(v) and L(v) form a switch condition for every vertex v € V.

Suppose G is a graph and S is a switch condition on G. The sets R(v) and L(v) are
called the right and left incident edges of v respectively. At a vertex v edges belonging to
R(v) are said to be opposite the edges belonging to L{v). Since only loops can belong to
both R(v) and L(v) only loops can be opposite themselves at a vertex.

Given a switch condition R(v), L(v) at a vertex v the coordinate neighborhood {(U,, ¢, )}
at v is specified as follows. U, is chosen as a small open neighborhood of v such that U, N
V —{u} =0. 9,:U, = Y, 4 where p = max{|R(v)|, |L(v)|} and ¢ = min{|R(»)]|, |L(v)|}.
If max{|R(v)|,|L(v)|} = |R(v)| and min{|R(®)|,|L(v)|} = |L(v)| we give the edges be-
longing to Ii(v) an arbitrary ordering {zo,...,%,-1} and the edges belonging to L(v)
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an arbitrary ordering {vo,...,yq—1} when ¢ > 1, when ¢ = 0 there will be no edges
in L(v). The map ¢ is then defined as follows. ¢,(v) = (0,0), ¥|Z; N U, is a home-
omorphism from % N U, to {(z,i¢(z)):xz > 0} for 4 = 0,...,p — 1 and, when ¢ > 1,
©u|7: N U, is a homeomorphism from §; N U, to {(z, j{(—2)} for j =0,...¢—1. Similarly
if max{{R(v)|,|Z(v)|} = |L{v)| and min{|R(v)|, |L(v)|} = |R(v)| we give the edges be-
longing to L(v) an arbitrary ordering {yo, ..., yp-1} and the edges belonging to R(v) an
arbitrary ordering {zo, - .., Z,—1} when ¢ > 1, again R(v) will be empty if ¢ = 0. The map
¢ is then defined as follows. @,(v) = (0,0), ¢|7;NU, is a homeomorphism from §; N U, to
{(z,i¢(x)):x > 0} for i =0,...,p— 1 and, when ¢ > 1, ¢,|Z; N U, is a homeomorphism
from #; N U, to {(z,j¢{(—z)} for j =0,...¢— L.

Note 4 When specifying a branched 1-manifold structure on a graph G using a switch
condition all coordinate neighborhoods are assumed to be C* compatible in the usual

sense.

Definition 12 A smooth graph K is a graph with a designated branched 1-manifold
structure. We will usually denote a smooth graph as a pair K = (G, S) where G is a

graph and S is a switch condition on G.

When representing a smooth graph with a diagram we will use a graph diagram where
at each vertex the right incident edges are specified by using a small slash close to the

vertex.

Example 2 The diagrams representing the two branched 1-manifolds of figure 2.1 as
smooth graphs where the vertex set of each is chosen to be the branchset are shown in

figure 2.3.

In the next theorem we show that every branched 1-manifold K can be given the
structure of a graph G = (V, E). In fact any branched 1-manifold can be given a countably
infinite number of graph structures the only requirement being that BUJK C V.

Theorem 1 Let A be a finite subset of a connected branched 1-manifold K such that the
BUOK C A then G(K,A) is a finite graph.

Proof. Consider K — A. Since A is finite and thus closed we know that X — A must

be open. Let F' be a component of K — A. F' must be open as it is the union of open
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Figure 2.3: Diagrams representing the branched 1-manifolds in figure 2.1

neighborhoods homeomorphic to ¥;,;. We also know that OF is finite since it is a subset
of A. BEvery point of /' has a neighborhood homeomorphic to Y71, i.e., the real line. Thus
F' is a connected 1-manifold with a countable basis and thus homeomorphic to either
(0,1) or S;. F' is homeomorphic to (0,1) as otherwise X would be disconnected. We
know this because if F' is homeomorphic to Si, then F = F and thus OF = §. As any
path from a point in F to a point in K — F must path through a branch point {(a point
in OF) no such path can exist. It is easy to see that OF must consist of one or two points
and that F' is homeomorphic to S; if &F consists of one point and F' is homeomorphic
to (0,1) if OF consists of two points. We can see that K — A consists of only finitely
many components as follows. Let A = {ay,...a;}, each g; has a coordinate neighborhood
(Ui, ;) such that @:U; = Y),mu where @;(a;) = (0,0) and we can choose the U; so
that U; NU; = O for i # j. It is easy to see that (K — A) N (UL ,U;) is equal to the
disjoint union of 1/2 37_, (n; +m;) sets each of which is homeomorphic to (0, 1) and that
any component of K — A must intersect two of these sets. Thus K — A must consist of

1/2 Zézl (n; + m;) disjoints sets homeomorphic to (0, 1).

Note 5 From this point on we will always assume that a branched 1-manifold has been

given the structure of a graph, i.e., that it is a smooth graph.




2.3 Solenoids

In what follows we define the generalized solenoids, their shift maps and give some of
their elementary properties. Most of this material is based on the work of R.F. Williams

in [38] and [39].

Definition 13 Let K be a smooth graph and ¢g: K — K an immersion. A point z € I
is non-wandering for g if for every neighborhood U of x there is an integer n > 0 such
that g"(U) N U # 0. The set of non-wandering points is denoted by Q(g). It is a closed

g-invariant set and contains all recurrent behavior of g.

Definition 14 Let K be a smooth graph and ¢: X' — K an immersion. Then g is a

W -mapping if it satisfies the following conditions:
W 1. g is an expansion,
W 2. all points of K are non-wandering under g, i.e., Q(g) = K,

W 3. each point of K has a neighborhood N such that for some n , g"(NV) is a 1-cell,

i.e., an edge.

Note 6 Let K be a smooth graph and ¢: X — K a W-mapping. Condition W3 of
definition 14 implies that for each branch point b of K there is a neighborhood N of b
which is such that for some integer n the image of N under g" is an edge of K. As g is

an expanding immersion this is trivially true for any ordinary point.

Before proceeding to the definition of Solenoids we need to define inverse limit systems,
inverse limit spaces and to review some elementary results concerning their properties.

This material was found in [19] pages 91-96.

Definition 15 Let X, X1, Xy, ... be a countable collection of spaces and suppose that
for each n € N there is a continuous mapping f,: X;, = X,-1. The sequence of spaces
and mappings {X,, [} is called an inverse limit sequence and may be represented by the

following diagram,

L. fn+1 Xn fn Xn_lfn—l . f3 Xz fa X]_ f1 XO.




It is easy to see that if {X,, f} is an inverse limit system and n > m that there is a
continuous mapping fpm: X, — X, formed from the composition fn = fmi1 © fra2 ©

"'Ofuml Ofn-

Definition 16 Let (zo,%1,...,%n,...) be a sequence where each point z, is a point
of the space X, and such that z, = fr1(2psq) for all n > 0. Each such sequence
can be identified with a point in the product space P52.,.X,, by considering the function
0 " — UL X, given by ¢(n) = x,. The set of such sequences given in this way is a
subset of P2, X, and has a topology as a subspace. This topological space is called the

inverse limit space of the sequence {X,, f,}. It will be denoted X,

The following results concerning inverse limit sequences and inverse limit spaces can
be found in [19]. Theorem 2 is an existence theorem. It illustrates the fact that from any
coordinate x,, toward the “front” of the sequence the coordinates of a point, i.e., z,, with
m < n, are controlled absolutely by x, but there is room for choice from z, onward in

the sequence.

Theorem 2 [19] If {X,, fn} is an inverse limit sequence, if each f, is a mapping onto,
and if Tny, Tngy -+ Tngy -+ 15 @& Set of points with, ny < ny < -+ < ng < -+-, where
Tn; € Xy, fori=1,2,3,... and such that if i < j then fo;n,(Tn;) = Tn;, then there is a

point in Xy, whose coordinate in Xy, s z,, fori=1,2,3,....

Theorem 3 [19] Suppose that each space X,, in the inverse limit sequence {X,, fo} 15 a

compact Hausdorff space. Then X, is nonempty.

There is a natural way to map two inverse limit sequences into each other which
we will make frequent use of. Let {4,, fn} and {B,, g,} be two inverse limit sequences
of spaces. A mapping ®:{A,, fu} — {Bn,gn} is a collection of continuous mappings
on: Ap — By, satisfying the condition g, o ¢, = ©n_1 0 fr, n > 1. This condition may be

given by stating that we have commutativity in the following diagram.

An fn An—-l fn--l An_z . Al fl A(]
l‘Pn llﬂn—l l'ﬂnnz lgol ltpg
Bn In B'n.—l 1 B’n.—-2 e B1 7 BO

This means that we can pass from A, to B,_; in two different ways but the result is still

the same. The mapping ¢ induces a mapping ¢: A, — By on the inverse limit space as
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follows. For each point a = (ag, a1, - ..) we define ¢(a) = (po(as), vi(a1),...). It follows

immediately from the equations that ¢(a) is a point of Be.

Theorem 4 [19] The mapping ¢: Aw —> By induced by the mapping ® : {As, fn} —

{Bn, gn} is continuous.

Definition 17 Let K be a branched l-manifold and ¢: K — K a W-mapping. Then
let I{o, be the inverse limit space of the inverse limit sequence {X, g}, i.e., I{; = K and

g; = ¢ for all 7 as shown in the diagram below.

NI - UL AN QR IO BN L BN ¢

For a point a = (ag, ay, az, . ..) € Ky let Ala) = (g(ag), ag, a1, . . .) and h=1(a) = (a1, as, as, . . .
Then h: Ko — K is called the shift map and K is called the solenoid. We say that
K is presented by {K, g}.

Note 7 The mapping h: Ko, — K is a homeomorphism.
The inverse limit T'(K ), of the tangent bundles

2L () P (K) P PR () P T (1)

is a line bundle over K, and serves as a tangent bundle. The shift map h then induces

a shift map Dh on T'(k)-

Note 8 The classical solenoids {9],[35], [40] are those in which K = S; and g is an

expanding map of degree=n with n > 1.

We now give several elementary results concerning the properties of W-mappings on
branched l-manifolds and the solenoids that they present. These were originally found
in [38], [39]. They are given without proof. Throughout the remainder of this section

g: I{ — K is an immersion of the branched 1-manifold K.

Theorem 5 [38] If g: K — K satisfies W1 and W2 of definition 14 then K has an empty

boundary.

Note 9 If f is a mapping will use the notation Fix(f) to denote the fixed points of f.
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Theorem 6 [38] If x € Fiz(g™), then let

a(z) = (z,9" Mz), ¢" (z),...,7,¢" =), g" *(z),...),

clearly a(z) € Ko, a(z) € Fig(h™) and there is a one to one correspondence x — a(z)
between Fiz(g") and Fiz(h"). If g: K — K satisfies W1 and W2 then periodic points of

g are dense in K and the periodic points of h are dense in K.

Two presentations {X, g} and {K’, g'} of solenoids K , I{, and their shift maps A,

h' along with a map f: K — K’ such that the following diagram is commutative

K—>K

fl lf

K —K'
g
induce mappings Fj: Ko — K, for i € Z by

(f(=:), f(zi41), -+ ) fori >0,
(g * o fzo), g 0 f(z1),...) fori<0.

Definition 18 An F; from K to K., for such an f is called ladder map.

Fi<$g, z1, - - ) =

These maps are interrelated as follows, F; = Fy o hi = At o F,.

Theorem 7 [39] The only maps between generalized solenoids which commute with their

shift maps are the ladder maps

Thus if 0: K, — K is such that 8 o h = h' o § then there is an f: K — K’ such that
fog=g'ofandan i€ Z such that § = F;.

Theorem 8 [39] A necessary and sufficient condition that the shift maps presented by
{K, g} and {K',g'} be topologically conjugate is that there exist maps K — K' and

' ' — K and a positive integer m such that the following diagrams are commutative:

K21 K—1-x KLk

|

K' -g—,*K’ K' ?K’ K’WK’

Definition 19 Two mappings g and ¢’ are said to be shift equivalent if they satisfy the
relations given above for some 7, ' and m. We will use the notation g ~; ¢’ to denote

shift equivalence. The integer m is called the lag of the shift equivalence, written lag= m.




It is straight-forward to verify that shift equivalence is an equivalence relation.

Definition 20 Let g: K — K be a W-mapping where B C K is the branch set of K. g
is a W*-mapping if there is a finite set A C K such that B C A and g(4) C A.

Theorem 9 [39] Suppose that g: K — K 15 a W-mapping then there is a W*-mapping
¢ and a branched 1-manifold K', g': K — K', such that g ~; q.

Thus every generalized solenoid can be presented by a W*-mapping and a branched
l-manifold. We will therefore restrict our attention from here onwards to presentations
of generalized solenoids given by W*-mappings. It will also be assumed that when given
a branched 1-manifold as a smooth graph K = (G, S) and a W*-mapping g from I to
K the set of vertices V is chosen such that g(V) C V.

The following useful theorem gives a nice alternative to checking that a W-mapping

g on K satisfies W2, i.e., that non-wandering set of is all of K.

Theorem 10 [89] If g: K — K is an onto immersion satisfying W1 and W3 then g

satisfies W2 if and only if there is an integer m such that g™ maps each edge e of K onto

K.




Chapter 3

Routes, Orientability and

Recurrence

In this chapter we introduce two properties of smooth graphs, orientability and recurrence.

We first consider the problem of determining whether a given smooth graph is ori-
entable or nonorientable. In doing so we introduce the structure matrix of a smooth graph
and discuss methods of determining whether a smooth graph is orientable or nonorientable
in terms of its structure matrix. We also devise a graph theoretic method for determining
whether a given smooth graph is orientable or nonorientable.

Next we study the effect the orientability or nonorientability of a smooth graph has on
the solenoids it presents. Given presentations of solenoids, {I, g} and {K’, ¢'}, we show
that g ~, g’ implies either that K and K’ are both orientable or that K and K’ are both
nonorientable. Thus solenoids come in two varieties (up to the topological conjugacy of
their shift maps), those presented by orientable smooth graphs and those presented by
nonorientable smooth graphs.

We show that every nonorientable smooth graph has an orientable double cover. This
fact will be useful when we study recurrence.

We then turn to the problem of determining whether or not a smooth graph is re-
current. We show that if the smooth graph we are considering is orientable it is then
possible to convert the problem of determining whether or not it is recurrent into a prob-
lem in graph theory for which efficient methods of solution exist. When the smooth
graph that we are studying is nonorientable we show that it will be recurrent if and only

if its orientable double cover is recurrent. Thus we can can use the same graph theoretic



method to determine the recurrence of a nonorientable smooth graph by constructing its
orientable double cover and applying this method to it.

Finally we study the effect the recurrence or non-recurrence of a smooth graph has
on the solenoids it presents. We show that given a smooth graph K there exists a W=*-
mapping on K if and only if K is recurrent.

Many of the ideas in this chapter were inspired by the work in {1].

3.1 Routes and Orientability

In this section we define what we mean by a route on a smooth graph. We define ori-
entability, prove an elementary theorem concerning orientability and give some examples
of orientable and nonorientable smooth graphs.

Throughout the rest of this chapter we will assume that K = (G, S) is a connected
smooth graph where G = (V, F). For ease of presentation we also assume that I has
no loops. If we are given a smooth graph K with loops we can apply the results of this
section to it by forming the smooth graph K’ from K by removing each loop e, where
say I(e) = v, and replacing it with a walk {v,e’,v’,¢”,v} where v’ ¢ V and ¢',¢" ¢ E.
The new switch conditions are then obtained as follows; Ry (v') = €, Li(v') = €", if
e € Ri(v) and e ¢ Li(v) then €,¢" € Ryi(V), if e ¢ Rx(v) and e € Lg(v) then
¢',e" € Li(v), and if e € Ri(v) and e € Lk (v) then ¢ € Rp:i(v) and " € Ly(v).
The smooth graphs K and K’ agree on all edges which are not loops. K and K’ clearly

| represent the same branched 1-manifold.

| Definition 21 A route on a smooth graph K is a walk W = {x0,y1, Z1,- - -, Tn-1, Yn, Tn }
such that at the vertex z; the edges y; and y;,; are opposite for all 1 = 1...n ~1. A

route is said to be closed if o = z,, and yp is opposite y, at zg.

A route on I can be interpreted as a walk on X which takes no "sharp” turns,
i.e., a walk which when passing through a vertex always passes to an edge opposite the
edge upon which it entered the vertex. It is easy to see that the existence of a route
W = {zg,y1, 21, .. ,x,,_l,yn,xn} implies the existence of an immersion f:[0,1] — K,
where f(i/n) = x;fori=0,1,...,nand f(((i—1)/n,i/n)) = y; fori = 1...,n. Similarly

if the route W is closed then this implies the existence of an immersion f:S; — K where
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Figure 3.1: The diagram for the smooth graph K given in example 3

again f(i/n) = z; for 1 = 0,1,...,n and f(((¢ — 1)/n,i/n)) = y; for i = 1...,n. Note

that here we are considering Sy to be a circle with circumference equal to 1.

Example 3 Let K be the smooth graph where V = {v;,vs,v3}, E = {e1,e9,€3,€4,€5}

and with the incidence relations and switch conditions given in the table below.

v | R(v) L(v)
vi | {e2} {e, e3}
) {61762} {es, e, €5}

vs | {es} {ed}

A diagram for K is given in figure 3.1. Consider Wy = {w, ez, vq, €4, vs, €5, Vg, €2, U1, €3, U2 }

and Wy = {vg, €5, vs, €4, Vo, €1, V1, €2, U2 }. It is easily checked that W, and W, are routes

and that Ws is a closed route.

Definition 22 A smooth graph K is said to be orientable if there exists an orientation

p on I{ such that at each vertex v either:
1. I} (v) = R(v) and I (v) = L(v),
2. I7(v) = R(v) and I} (v) = L(v).

A graph which is not orientable is said to be nonorientable. An orientation which satisfies

1.) and 2.) is said to be a coherent orientation.
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The definition of orientability suggests an obvious method for determining whether
or not a given smooth graph is orientable, try all orientations and check whether or
not one satisfies definition 22. This simple minded scheme is of course very tedious for
smooth graphs of any size since the number of orientations we must check for any given
smooth graph with edge set E is 2/Zl. There are much more efficient ways to determine

orientability which we will develop in this chapter.

Theorem 11 Let K be o connected smooth graph. If there exists a route W on K
which contains the subroutes (subsequences), W1 = {v,e,v'} and W, = {¢', e, v} for some

vertices v,v', v # v' and some edge e then K is nonorientable.

Proof. Suppose that there exists a route on K which contains the subroutes W; =
{v,e,v'} and W, = {v',e,v} where v # v’ and suppose further that K is orientable.
Without loss of generality we can assume that the subroute Wj occurs before the subroute
Wy in W and that there are no other subroutes of this form between W; and W,. For any
orientation p on I there are two choices for the edge e, p(e) = v and p(e) = v'. Suppose
that between Wy and Ws in W is the route W3 = {co,ds,c1,...,dm, Cm} Wwhere ¢y = v/
and ¢,, = v'. If e is given the orientation p(e) = v then the orientability of I{ implies that
d; has must have orientation p(d;) = ¢;_; for 1 = 1...m since d, is opposite e and d; is
opposite diy1. Thus p(di) = p*(dm), ie., d € I} (v') and d,, € I, (v'). Also both d; and
dy are opposite e and thus on the same side of the vertex v’ hence either dy, d,, € R(v')
or dy, dy, € L{v"). Clearly choosing the conjugate orientation for e yields d; € T , (v") and
dyn € I,}L (v"). This is a contradiction since K was chosen to be orientable. Thus we are
left with two possibilities; 1.) there is no orientation p on K for which at every vertex v
either /¥ (v) = R(v) and I (v) = L(v) or I, (v) = R(v) and I"(v) = L(v), 2.) no route
of this form exists. O

This result in theorem 11 can be summarized by saying that if a smooth graph has a
route on it which traverses an edge in more than one direction then it is nonorientable.
The contrapositive, which is also useful, states that an orientable smooth graph has no
routes which traverse an edge in more than one direction. The converse to this, however, is
not true. A counter example is given below. We will be able to prove a complete converse

to this theorem in the special case that the smooth graph in question is recurrent.
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Figure 3.2: Diagram of the ndnorientable smooth graph K given in example 4

Example 4 Consider the smooth graph K where V = {vy, va, U3, V4, U5, U6}, B = {e1, €9,
€3, €4, Cs, €, €7, €g, €9} and the incidence relations and switch conditions are given in the

following table.
\ v | R(v) L(v) v | R(v) L{v)
vi | {ez} | A{e}  |lva|{er} | {es}
vy | {ea} | {e1, €3, €4} || vs | {eo} | {ea,e5,e8}
vg | {er} | {es, es,e5} | vs | {eo} {es}

The diagram of K is given in figure 3.2. We can easily check by trial and error that no

route traverses any edge in more that one direction and that it is impossible give K an
orientation. As the chapter progresses we will develop techniques which make it checking

these features more systematic. We encourage the reader to come back and apply these

new techniques to this example.

Example 5 An orientable smooth graph. Consider the smooth graph I where V =

{v1,v9,u3,v4}, E = {e1, eq, €3, €4, €5, €5} and the incidence relations and switch conditions

are summarized in the following table.

v | R(v) | L{v)

vy | {ea} | {e1, €4}
vz | {ea} | {es,es}
v3 | {ea} | {es,e5}
v | {es} | {er, e}
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Figure 3.3: Diagrain of the orientable smooth graph K given in example 5

A diagram for K is given in figure 3.3. A coherent orientation on I can be given by
plel) = va, plea) = v1, ples) = vs, pea) = va, p(es) = vs, and p(es) = v4. In the diagram
this orientation is represented by a small arrow head on each edge e pointing to the vertex

toward which e is oriented.

Example 6 A nonorientable smooth graph. Consider the smooth graph I where V =
{v1,ve,v3,vs}, B = {e1, e, €3, €4, €5, €6} and the incidence relations and switch conditions

are summarized in the following table.

v | R(v)| L(v)
v1 | {ea} | {e1, e}
V2 {65} {63,64}
vz | {e2} | {es,es}
vy | {es} | {er,es}

A diagram for K is given in figure 3.4. The nonorientability of K can be verified by

considering the route W = {uvg4, s, Vg, €4, V1, €2, V3, €3, V2, €6, 04} on K. This route con-
tains the subroutes Wy = {vy,e5,v2} and Wy = {v, e5,v4} thus by theorem 11 it is

nonorientable.
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Figure 3.4: Diagram of the nonorientable smooth graph K given in example 6
3.2 The Structure Matrix of a Smooth Graph

In this section we introduce the structure matrix of a smooth graph. We prove that
a smooth graph is orientable if and only if the rank of its structure matrix is one less
than the number of vertices in the graph. We also show how the structure matrix can
be used to find a coherent orientation on an orientable smooth graph and illustrate the
relationship between the structure matrix of an orientable smooth graph and its incidence
matrix.

Throughout this section we assume that K is a connected smooth graph which is given

an arbitrary vertex labeling V = {vy,vq,...,v,} and edge labeling E = {e1,€3,...,€m}.

Definition 23 The structure matriz J of a smooth graph K is the n x m matrix (J;;)

whose entries are
1 ife; € R(w)

Jij=4q -1 ife; € L(v)

0 otherwise.

From the definition of the structure matrix J of a smooth graph I several things are
readily apparent. Each column of J contains exactly two nonzero entries which can be 1
and a —1, two 1’s, or two —1’s. This is because every edge is incident upon exactly two
vertices. Recall we assumed that there are no loops. Each row of J contains at least one
nonzero entry which must be 1 or —1. This is because the smooth graph K is assumed

to be connected and thus every vertex must have at least one incident edge.
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Example 7 The structure matrix J for the orientable smooth graph in example 5 is

given by ) ]
-11 0 -1 0 ©0
0o 6 -1t 1 0 -1
J =
0 1 -1 0 -1 0
-10 0 0 1 -1

Theorem 12 A smooth graph K with structure matriz J is orientable if and only if there
exists ¢ such that cJ = 0 where ¢ = [c1,¢ay...,Cn), e =F1 fori=1,...,n, and 0 is the

1 x m zero matriz.

Proof. Suppose that K is an orientable smooth graph with structure matrix J. Let p

be a coherent orientation on K where for each v; either;
L IF(v) = R(v;) and I (v;) = L(v;), or
2. Ip_(’Ut) = R(’Ui) and I:('Uz) = L(’Uz)

Consider ¢ = [c, ¢y, . . ., €] Where ¢; = 1 if v; satisfies 1.) above and ¢; = —1 if v; satisfies

2.) above. The jth term (cJ); of the 1 X m matrix cJ is of the form
n
(CJ)j = Z CiJij.
i

For any 4 this sum only contains two terms c,Jp; and c,Jy; where the edge e; is incident
upon the two vertices v, and v,. Thus we have (c¢J); = ¢, Jpj+cqJgj. There are three cases
that we need to consider; e; is right at v, and left at v, in which case (cJ); = ¢, — ¢,
e; is right at both v, and v, in which case (cJ); = ¢, + ¢4, and e; is left at both v,
and v, in which case (¢J); = —(cp +¢4). If e; is right at v, and left at v, then either
p(e;) = v, or p(ej) = vg. In the first instance we find that ¢, = ¢; = 1 in the second
that ¢, = ¢; = —1. Thus we have (cJ); = 0. If ¢; is right at both v, and v, then either
p(ej) = v, or p(ej) = vg. In the first instance ¢, = 1 and ¢, = —1 in the second instance
we have ¢, = —1 and ¢; = 1. Thus we have (cJ); = 0. If ¢; is left at both v, and v, then
either p(e;) = v, and p(e;) = v,. In the first instance we have ¢, = —1 and ¢; = 1 and
in the second instance we have ¢, = 1 and ¢; = —1. Thus (cJ); = 0. Therefore we have
shown that if K is an orientable smooth graph with structure matrix J then there exits

c=ley,...,cy] where ¢; = 41 such that ¢J = 0.
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Conversely suppose that K is a smooth graph with structure matrix J and that

¢ =[cy,...,cn) is such that ¢J = 0. Consider the orientation p on K where p(e;) = v; if
¢; = 1 and e; is right at v;, p*(e;) = v; if ¢; = 1 and e; is left at v;, p(e;) = v; if ¢; = —1
and e; is left at v;, and p*(e;) = v; if ¢; = —1 and e; is right at v;. Note, when defining

the orientation p(e) of an edge e in terms of its conjugate p*(e) we mean that p(e) = b
where b is the only element in I(e) — {p*(e)}. We need to show that this orientation is
well defined for the whole smooth graph K, i.e., that we are not giving any edge more
than one orientation. This consists of tediously going through all possible cases. Consider
the edge e; and suppose that I(e;) = {vp,vs}. There are three possibilities to consider.
If e; is right at v, and left at vy then we must have either ¢, = ¢, _ lorc, = cg=—1
since (eJ); = ¢p — ¢g = 0. In the first instance we have p(e;) = v, in the second instance
we get p(e;) = v,. If e; is right at both v, and v, we must have either ¢, = —¢c; = 1 or
—¢p = ¢g = 1 since (e¢J); = ¢p + ¢q = 0. In the first instance we get p(e;) = v, in the
second instance we get p(e;) = v,. Lastly if e; is left at both v, and v, then we must
have either ¢, = —¢q = 1 or —¢, = ¢g = 1 since (cJ); = —(cp + ¢;) = 0. In the first
instance p(e;) = v, and in the second instance p(e;) = v,. We claim that the orientation
p so defined is such that for all v; either 1.) IF(v;) = R(v;) and I (v;) = L(v;) or 2.)
I7(v;) = R(v;) and It(v;) = L(w;), i.e., p is a coherent orientation on K. For some i
suppose that ¢; = 1. If an edge e; is right at v;, 1.e., e; € R(v;) we have p(e;) = v; and
thus e; € If(v;). If an edge e; is left at v; then p*(e;) = v; and thus e; € I (v;). Since
R(v;) U L(v;) = I(v;) and either e; € R(v) or e; € L(v) but not both since X has no loops
we see that 1.) above is satisfied. Suppose for some ¢ that ¢; = —1. If an edge e, is right
at v; then p*(e;) = v; and thus e; € I™p(v;). If an edge e; is left at v; then p(e;) = v; and
ej € IF(v;). Again since R(v;) U L(v;) = I(v;) and either e; € R(v) or ¢; € L(v) but not
both since I has no loops we see that 2.) above is satisfied. Therefore we have shown
that if K is a smooth graph with structure matrix J and there exists a ¢ = [cy,..., ¢y
such that ¢J = 0 where ¢; = %1 then K is orientable. O

This result immediately suggests another way to test whether or not a given smooth
graph K is orientable, find the structure matrix J of K and check to see if there exists a
¢ =let,...,cq), where ¢; = &1, such that ¢cJ = 0. This is fairly easy to do and it is lots
quicker then looking at all 2/¥! possible orientations. Such a solution also gives us a way

of finding a coherent orientation on K. It also suggests a relationship between the rank
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of the structure matrix J and orientability which we will investigate in the next theorem.

Example 8 In example 7 we gave the structure matrix J for the orientable smooth graph
K given in example 5. In order to find a ¢ such that ¢J = 0, where ¢; = £1 we can
consider the equivalent set of linear equations given by J¥cT = 0, where in this case 0
is the m x 1 zero matrix. We may then form the augmented matrix A = [J7|0] and

perform elementary row operations on A until it is in reduced row-echelon form as shown

below. . -
100 1 0
010 1 0
001 -120
000 0 O
000 0 O
000 0 0]

It is then a simple matter to the read possible solutions for ¢. In this case we have
cp, = —C4, Cg = —C4, 3 = C4 and ¢4 = 1. Thus the two possible solutions for c
are [—1,—1,1,1] and [1,1,—1,—1]. These then can be used to specify the two possible
coherent orientations p and w on K using the procedure described in the proof of theorem
12, these are, respectively; p(e1) = vy, ples) = v1, ples) = vs, ples) = vq, ples) = v,
ples) = vs and wle)) = vy, w(e) = vs, wles) = vo, wles) = vy, w(es) = vq, w(eg) = va.

We then also see that w = p*.

Theorem 13 Let K be a smooth graph with |V| = n and structure matriz J. Then
1. K s orientable if and only if J has rank n — 1,

2. K 1is nonorientable if and only if J has rank n.

Proof. First we will demonstrate that K is orientable if and only if J has rank n — 1.
Suppose that K is an orientable smooth graph and let ¢ = [cy,...,c,] be a solution to
cJ = 0 where ¢; = +1. Consider the matrix A = CJ where C = diag(cy,...,cn). It is
clear that A and J must have the same rank since A is obtained from J by multiplying
its rows by £1. Let (A); denote the j-th row of A. Since there is only one +1 and one

~1 in each column of A it follows that the sum of the rows of A is the 1 x m zero matrix
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and that the rank of A is at most n — 1. Suppose that we have a linear relation

> a;(A); =0,
=1

where not all the coeflicients «; are zero. Choose a row (A); for which the coefficient
ay # 0. This row will have nonzero entries in the columns corresponding to the edges
incident with vy. For each such column, there is just one other row (A); with a nonzero
entry in that column and in order for the given linear relation to hold we must have
o = ay. Thus, if oy # 0, then oy = oy for all vertices v; adjacent to vx. Since K is
connected it follows that all coefficients «; are equal and so the given linear relation is

just a multiple of

Consequently the rank of A isn — 1.

Conversely suppose that K is a smooth graph with structure matrix J and that J has
rank n— 1. In order to show that X is orientable we will construct a ¢ = [cy, ..., ¢} such
that ¢J = 0, where ¢; = £1. Let (J); denote the j-th row of J. Since J has rank 1, there

must exist c;, not all zero, such that the linear relation,

> e(3); =0,
i=1

is satisfied. Choose a row (J); for which the coefficient ay # 0. This row will have
nonzero entries in the columns corresponding to the edges-incident upon the vertex wvy.
For each such column there is just one other row (J); with nonzero entry in that column.
There are two cases to consider. If the edge e, incident with v, and v; is right (left) at v
and left (right) at v, then ay = —oy. If the edge e, incident with v, and v, is right (left)
at vy and right (left) at v, then @y = a;. Thus, if ay 7 0, we must have o = %oy, for
vertices v; adjacent to vg. Since K is connected we also must have «; = F« for some a.
We may then choose our ¢ to be ¢ = [a1/a, aa/a, ..., an/a). It is then easy to see that
c¢J = 0 and thus that K is orientable.

Next we will demonstrate that X is nonorientable if and only if J has rank n. Suppose
that K is a nonorientable smooth graph with structure matrix J. We know that there

does not exist a ¢ such that cJ = 0 with ¢; = 1. We again let (J); denote that j-th row




of J. Suppose there exist coefficients «;, not all zero, such that the linear relation,

Y e(3); =0,
=1

is satisfied. We know that the existence of such «; implies the existence of a ¢ =
[/, ..., /] such that ¢J = 0, where & = *a;. This is a contradiction since K
was chosen to be nonorientable. Thus J has rank n.

Conversely suppose that K is a smooth graph with structure matrix J and that J has
rank n. Let (J); denote the j-th row of J. Suppose there exists a c, where ¢; = &1, such

that ¢J = 0. This would clearly imply that the linear relation,

n

> a(d); =0,

j=1
is satisfied. This is a contradiction since J was chosen to have rank n. Thus K is
nonorientable. O

This gives us a very simple method for determining whether or not a given smooth
graph K is orientable. Construct the structure matrix J for I and calculate its rank. If
we want to find a coherent orientation on K we must actually find a c such that cJ =0
where ¢; = 1. There are standard techniques in linear algebra for doing both of these

things which are reasonably efficient.

Example 9 We can see very quickly from example 8 that the structure matrix J for
the smooth graph K in example 5 has rank 3 and since |V| = 4 that K is orientable.
Similarly constructing that structure matrix J for the smooth graph I in example 6 we
find that J has rank 4 and since |V| = 4 that KX is nonorientable. We also find that the

structure matrix J of the smooth graph K in example 4 has rank 6. Thus, since |V| = 6,

K is nonorientable.

An easy corollary of theorem 13 is that there are only two possible coherent orienta-
tions on any orientable smooth graph K. This is because the structure matrix J of &
always has rank |V| — 1 and thus the system of equations given by c¢J = 0 depends upon
only 1 parameter, say c,, and ¢, is only allowed to take two possible values +1. Each
choice of ¢, then corresponds to a choice of orientation. The two possible orientations
are, also, always conjugate to each other.

We are now in a position to illustrate the relationship between the structure matrix

of a smooth graph and the incidence matrix of a graph with an orientation.
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Definition 24 The incidence matriz I of a graph G with orientation p is the n x m

matrix with entries (I;;) given by

1 if ple;) = v,
Lij =< =1 if p*(e;) = v,
0  otherwise.

Suppose that K is an orientable smooth graph with structure matrix J. Then there ex-
istsac=/{cy ...,c,) such that cJ = 0, where ¢; = &1. As we have seen a particular choice
of ¢ determines an orientation p on K. The matrix I = CJ, where C =diag(ci, co, - - -, Cn),
is then easily seen to have the structure of an incidence matrix and is in fact the incidence
matrix for K with orientation p. We also see that any route W = {zg,y1, %1, -, Yk, T }

on K is a walk where either p(y;) = z; foralli =1,...,kor p*(y;) = z; foralli=1,... k.

Definition 25 Let G be a graph with orientation p. An oriented walk, W = {zg, y1, %1, - - -

, Uk, T} on G is a walk where p(y;) = =z; foralli=1,...,k.

Thus on an orientable smooth graph K with a coherent orientation p every route W
is an oriented walk with respect to either p or p*.

The edges e of a smooth graph K are found be of three possible types; right at both
incident vertices, right at one incident vertex and left at the other, or left at both incident
vertices. We refer to these types as RR,RL, and LL respectively.

If X = (G,S) is a smooth graph we can change the switch conditions at any vertex
v by interchanging the sets of right and left edges without effecting the branched 1-

’ manifold being represented. This is because Y, 4 is diffeomorphic to Yy, via the mapping

f(z,y) = (—=z,y). In doing so we obtain a new smooth graph K = (G, 5").

Definition 26 Let K = (G, S) and K' = (¢, 5") be smooth graphs. We say that
there is a smooth graph homomorphism (isomorphism) from K to K’ if there exists a

homomorphism (isomorphism) (f, g) from the graph G' to G” which is such that for each

v € Vg either:
1. go Rg(v) = Rg o f(v) and go Lg(v) = L o f(v),
2. go Rg(v) = L o f(v) and go Lg(v) = Re o f(v).

It is easy to see that if K and K’ are isomorphic smooth graphs then they are diffeo-

, morphic as branched 1-manifolds. This then leads us to our next theorem.
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Theorem 14 An orientable smooth graph K is isomorphic to an orientable smooth graph

K' whose edges are all of type RL.

Proof. Let K be an orientable smooth graph with coherent orientation p, structure
matrix J, vertex set V = {vy,...,v,} and edge set F = {ey,...,en}. Associated with p
there is a ¢ = [c1, . . ., ¢;) where ¢; = 1. Let C =diag{cy,...,c,} and A = CJ. A is the
incidence matrix of K with orientation p. Construct the smooth graph K’ with vertex
set V! = {v},...,v.}, edge set E' = {e},...,el,}. Define f:V = V' and g: & — E'
such that f(v;) = v; and g(e;) = €. Define the switch conditions and incidence relations
of the vertex v; of K' to be R (v)) = g o Ri(w:), Li:(v)) = go Lg(v;) if ¢; = 1 and
Ry (v)) = g o Lg{v;), Lger(v}) = g o Rg(v;) if ¢; = —1. The matrix A is then clearly seen
to be the structure matrix of K’. Since A has the structure of an incidence matrix we
know that each column of A has exactly one +1 and one —1. Thus all of the edges of K’
are of type RL. Also, (f,g) is an isomorphism from K to K'. O

Theorem 15 A smooth graph K whose edges are all of type RL is orientable.

Proof. Let K be a smooth graph with n vertices, structure matrix J and whose edges
are all of type RL. Each column of J clearly contains exactly one +1 and one —1. Thus

the sum of the rows of J is zero and J has rank n — 1. Therefore K is orientable. O

3.3 Trees and cycles

We will now consider the question of orientability for two types of smooth graphs with
boundary points; trees and cycles. In doing so we will obtain an alternative method for
determining whether or not a smooth graph is orientable as well as some results which

will be useful when trying to determine if a nonorientable smooth graph is recurrent.

Definition 27 A smooth graph K is a cycle if it consists of a closed walk where all
vertices and edges are distinct. We will refer to a smooth graph which is a cycle as a

smooth cycle.

Definition 28 A smooth graph K is a tree if it is non-empty, connected and contains no

subgraphs which are cycles. We will refer to a smooth graph which is a tree as a smooth

tree.




Theorem 16 A smooth tree is orientable.

Proof. Let K be a smooth tree with n vertices. X will then have n — 1 edges. The
structure matrix J for K will then be a n x (n — 1) matrix and thus has rank n — 1.

Therefore K is orientable. O

Theorem 17 Let K be a smooth cycle and Ngrgr denote the number of RE edges in K and
Ny, denote the number of LL edges in K. Then K is orientable if and only if Ngr+ Nir

18 even.

Proof. Let K be a smooth bycle with n vertices and n edges. We can label the vertices
Vi,..., U, and the edges ej,...,e, of K so that the structure matrix J of K has the

following form,;

[ aq 0 0 -- 0 0 by, —
bl (45 o .- 0 0 0
J = D bg ag - 0 0 0 ’
0 bn—‘2 -1 0
0 - 0 byt an

where a;, 0; € {—1,+1}. Fori=1...n—1let a; = 1 if ¢; is an RL edge and o = —1
if ¢; is an RR or LL edge. Let R; stand for row 7 of J. By performing elementary row
operations to J; Ry +— Ry + O{1R1, Rs > Rs + Cl!sz, ey R,— R, + Q,L,1Rn,1, we may

convert the matrix J to a matrix A of the following form;

ap O 0 o1
0 ay 0 0}
A = 0 0 ag 0 J3 )
0
Gn—1 On—1
0o -- 0 ap+o,
where o = b,, 09 = by, ..., On = by, H?;ll o;. The matrix A will have rank n—1 if and

only if a, + o, = 0. Thus K will be orientable if and only if a,, + 0, = 0. ]—[;:11 a; =1
if the number of RR edges plus the number of LL edges in the set {e,...,en—1} is even
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and [ c; = —1 if the number of RR edges plus the number of LL edges in the set
{e1,...,e,_1} is odd. Suppose that e, is an RR or LL edge. Then

n—1
an+on=j:(1+Hozi) =0

i=1
if and only if the number of RR edges plus the number of LL edges in the set {e1,..., €51}
is odd. Thus K is orientable if and only if the number of RR edges plus the number of
LL edges in K is even. Suppose that e, is an RL edge. Then

n—1
an-i—an::l:(l—naei) =0

i=1
if and only if the number of RR edges plus the number of LL edges in the set {e1,...,en—1}
is even. Thus I is orientable if and only if the number of RR edges plus the number of
LL edges is even. O

In order to prove our next theorem will need the following well known result from

graph theory.
Theorem 18 [4] A non-empty graph has a spanning tree if and only if it is connected.

Let K be a connected graph and 7" a spanning tree of K. Let Er be the set of edges
in T'. The remaining edges belonging to Fx — E7 are called the chords of T'. For every

l chord e € Ex — Ep there is a unique cycle w, in K, see Bollobés, [3], page 37.

Theorem 19 A connected smooth graph K is nonorientable if and only if there exists a
cycle w on I for which Npr(w) + Npr(w) is odd, where Nrr(w) is the number of RR

/ edges in w and Npr{w) is the number of LI edges in w.

Proof. First we will show that if K is a nonorientable connected smooth graph then
there exists a cycle w on K for which Ngg(w) + Nrz(w) is odd. Let K be a connected
nonorientable smooth graph. Then we can find a spanning tree T' in K. The spanning
tree 7" is orientable and we can find a coherent orientation p on T'. We would like to try to
extend p to a coherent orientation p’ on K. Suppose that every cycle w on K associated
with a chord of T" has Npp(w) + Npp(w) an even number. Then every cycle associated
with a chord of 7' must be orientable. We may then extend the coherent orientation p
on T' to a coherent orientation p’ on K as follows. Define p'(e) = p(e) for e € Ep. For

each cycle w(e) associated with a chord, e € Ex — Er there will be a unique choice of
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orientation p'(e) for the chord e so that p'|E, defines a coherent orientation for w(e).
Recall that the chords of T' are orientable . Thus the structure matrix for w(e) has rank
| Eue)] = 1 = |Visey| — 1 and a choice of coherent orientation for the edges in Fye) — {e}
determines a coherent orientaion on e. In this manner we define the orientation o on
K. The orientation p' is also clearly a coherent orientation since each chord e is oriented
coherently at its incident vertices. Thus K is orientable which is a contradiction.

Conversely suppose that K is a smooth graph where there exists a cycle w with
Npp(w)+ Npz(w) an odd number. Suppose that K is orientable and let p be a coherent
orientation on K. p would then be a coherent orientation for w and thus w must have
Npp(w) + Npz(w) even which is a contradiction. O. »

This result gives us a new method for checking whether or not a given smooth graph
K is orientable. Find a spanning tree 7' on K and check whether or not each cycle w
associated with a chord e of T has Npr(w) + Np(w) an even number. If so, then the

smooth graph I{ will be orientable. If not then K is nonorientable.

3.4 Orientability and W*-mappings

We now investigate the relationship between orientability and shift equivalence. We will
show that solenoids come in two varieties, those presented by orientable smooth graphs

and those presented by nonorientable smooth graphs.

Theorem 20 Let K; and Ky be connected smooth graphs and (f,g) a smooth graph

homomorphism from K, onto K. Then there exists an onto immersion h : I{{ — Ko.

Proof. We will give a sketch of how the smooth graph homomorphism (f, g) can be used
to construct an immersion A from X onto to K,. For each closed edge B of K, choose
a diffeomorphism sg: 8 — [cg,dp] so that Dsgl, = 1 for all z € . Each closed edge
has two boundary points, the vertices incident upon 8. For each edge e in K; we will
have g(e) = £ for some edge f of Ky. Suppose that @ and o are the vertices incident
upon f where sg(a) = cg and sg(a’) = dg. Further, suppose that the vertices incident
upon e in I{; are v and v where v and v’ are labeled so that f(v) = « and f(v') = o'.
We may then choose a diffeomorphism r.:& — |[ae, be) so that Dre|, = 1 for all z € ¢,
re(v) = a, and r.(v) = b,. For each interval [a., b] associated with an edge e of K;we

may find a diffeomorphism 7e: [ae, be] = [Co(e)s dg(e)] S0 that; Ye(ae) = co(e), Ve(le) = dg(e),
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DYela. = D¥elp, = 1 and Dey,ly > 0 for all z € (ae, be). See appendix A for a detailed
construction of such a function. We may then define the mapping h: I{; = K3 by letting
hlé = sg“(}g) o 7, o1, for each edge e in K;. We must of course verify that this is indeed
a well defined mapping as it could be multi-valued on the vertices of K;. We know,
however, for each closed edge & of K that at the vertices v and v’ incident with e we have
Sy © 70 7e(v) = f(v) and Sye © Vo Te(v') = f(v'). Since f is a well defined mapping
on the set of vertices of K7 so h will be well defined on the set of vertices of I{;. The
mapping h is also continuous since each by definition hlé is continuous for each e in K,
see Massey [23] page 232. Thus it only remains to be shown that & is an onto immersion.
However, h is cleaﬂy onto since (f,g) is onto. Also Dhl, > 0 for all & € Ki and Dh
is well defined and continuous because of our choice of the r,, v, and sg. Thus all that
remains to be verified is that & so defined does not bend back any of the branches at a
branch point, but because of our stipulation that (f, g) be such that at every vertex v

either;
1. go Rg(v) = Rar o f(v) and g o Lg(v) = Le © f(v) or,
2. go Rg(v) = Lg o f(v) and g o Lg(v) = Rer o f(v),

it is easily verified that this is the case. O

Theorem 21 A smooth graph K is orientable if and only if there is an immersion o: K —
Si.

Proof. Suppose that K is an orientable smooth graph. Since K is orientable by theorem
14 there is an immersion (diffeomorphism) oy: ' — K’ where K’ is a smooth graph with
every edge of type RL. We may then refine the graph structure on K’ to produce a new
smooth graph K" by picking a single point z; in the interior of each edge e; and calling
it a vertex. The edge e; is subdivided into two new edges w; and u;. For example if we
have the edge e; with I(e;) = {z,y}, e; right at = and left at y. Then I(w;) = {z, %}
and I(u;) = {z;,y}. The edge w; is right at = and left at z;. The edge u; is right at
z; and left at y. K" is clearly such that every edge is of type RL. Also K’ and K" are
diffeomorphic via the identity map, say, go: K' — K". Since oy is a diffeomorphism it is
also an immersion. The vertex set V" of K" can be partitioned into two subsets V; and

Va. Vi is the set of vertices in K" which are also vertices in K'. V, is the set of “new”
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vertices from the points chosen from the interior of the edges. Similarly the edge set £
of I{" may partitioned into two subsets Ey and Ep where E; = {w;} and By = {u;}.
We may consider the circle, S;, to be the smooth graph consisting of two vertices x1, zo
and two edges y1, y3 where R(z1) = L(zs) = {y1}, R(z2) = L(z1) = {y2}. Consider the
homomorphism (f, g): K" — S given by

z ifvel;
fv) = ,
zy fvel,
and
yy ifee Fy
gle) = ,
yg if e € By,

We see that if v € V; then f(R(v)) = 1 and f(L(v)) = y2 and if v € V; then f(R(v)) =
yo and f(L(v)) = y1. Thus (f,g) is clearly a homomorphism and the conditions for
theorem 20 are satisfied. Thus there exists an immersion h: K" — S;. By composition
hoogoop: K — 57 will also be an immersion.

Suppose that K is a smooth graph and o: K — S; is an immersion. We need to show
that I is orientable. We can give S; the structure of a smooth graph by considering the
set of points o(V) to be vertices of S; where V is the vertex set of I{. We may ensure
that |o(V)| > 1 by choosing a point in the interior of an arbitrary edge of K and calling
it a vertex if necessary. Thus, without loss of generality we may assume that |o(V)] > 1.
Write V' = o(V) = {z1,...,%,} for the set of vertices of S;. The set of edges for Sy will
be given by E' = {y1,...,¥p} where R(z1) = L(zs) = {w1}, R(z2) = L{z3) = {v2},.. .,
R(xp-1) = L(zp) = {yp-1}, R(zp) = L(z1) = {yp}. S1 is orientable and we may choose
a coherent orientation p on S as follows; p(y1) = %2, p(y2) = Z3, .., P(Yp-1) = Zp,

p(y,) = z1. The immersion o induces a homomorphism (f, g): K — S defined by

f(w)=c() forveV

gle)=o(e) foreeE.
Recall that edges are open subsets. We see that f~! o po g{e) is a set of vertices in I,
which f maps to the single vertex p o g(e) in S;. The vertex p o g(e) is the sense of
the image of the edge e under the orientation p. Since S; contains at least two edges
I{e)N f~topog(e) must contain only one vertex of K. Thus we may define an orientation
v on K by v(e) = I(e) N f~1 o po g(e). We claim that «y is a coherent orientation. Let v

be a vertex of K. Since o is an immersion the homomorphism (f, g) is such that either
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1. Rg, o f(v) = go Rg(v) and Lg, o f(v) = g o Li(v) or,
2. Rg, 0 f(v) = go Lg(v) and Lg, o f(v) = g o Rx(v).

If case 1.) is true we have If(v) = R(v) and I;(v) = L(v). If case 2.) is true we
have It (v) = L(v) and I (v) = R(v). Thus 7 defines a coherent orientation and K is

orientable. O

Theorem 22 Let g: K — K and f: L — L be W*-mappings and let X — L and

s: L = K be a shift equivalence between {K, g} and {L, f}. Then r and s are immersions.

Proof. Suppose that » is not an immersion. Then there exists a 2 € K such that Dr|, =0
(Recall that the tangent space at any point of a branched 1-manifold is 1-dimensional).
Let m be the lag of the shift equivalence given by r and s, i.e., sor = g™ and ros = f™.
Since ¢ is an immersion so is ¢™ and Dg™|, # 0 for all z € K. However, we know that if
Dr|, =0 then D(sor)|, = DslyDr|, = 0, but then D(sor)|, = Dg™|, = 0 which is a

contradiction. The case for s is exactly the same since shift equivalence is symmetric. O

Theorem 23 Let g: X — K and f: L — L be W*-mappings with g ~; f. Then K and

L are both orientable or both nonorientable.

Proof. Let r: K — L and s: . — K be the mappings giving the shift equivalence.
Suppose that K is orientable and L is nonorientable. Then by theorem 21 there is an
immersion ¢: KX — S;. By theorem 22 we know that s is an immersion. Since the
composition of two immersions is also an immersion we have ¢ o s: L, -+ S; an immersion

and thus L is orientable which is a contradiction. O

3.5 Orientable Double covers

In this section we show that we can associate with every connected nonorientable smooth
graph K an orientable smooth graph M which is a double cover of K. There is a well
defined mapping f: M — K which is an immersion, locally a diffeomorphism, and 2 to 1
at each point of . We will use double covers to study nonorientable smooth graphs in

later sections.

Definition 29 Let K and M be smooth graphs. We call a map f: M — K a covering

map from M to K if it satisfies:




1. f is a continuous surjection.

2. If z € I then f~(z) is a finite or countable set {z1,Z1,...,%n...}. If U is a small

neighborhood of z € K, then

(a) f-YU)=U,UU;U...0U, U..., where U; is a small neighborhood of z; for
1=1,2,....

(b) UiﬁUj=®f0ri7£j.

(c) f|U; is a diffeomorphism onto U.

We say that M covers K by f, and that M is the covering space of K. If |f~'(z)| = 2
for all z € K then M is a double cover of K.

We now wish to develop a procedure which we can use, when given any connected
nonorientable smooth graph K, to construct a double cover K’ which is orientable. We
call such a cover an orientable double cover of I{. The following theorem establishes the
existence of a orientable double cover for every nonorientable smooth graph as well as

giving a method for constructing it.

Theorem 24 Let K be o connected nonorientable smooth graph. Then there exists a

| connected smooth graph K' which is an orientable double cover for K.

Proof. Let K = (G,S) be a nonorientable smooth graph where G = (V,E), V =
{vi,..., v}, and E = {ey,...,en}. The orientable double cover for K is given by the
smooth graph K' = (G',S") where G' = (V',E"), V' = {z1,...,2,} U {1, ..., ¥} and

E" = {wy,...,wm}U{2,...,2n}. The incidence relations and switch conditions for K’

are assigned according to the following rules. For each edge e;, say I(e;) = {va,vs}, we

have either;
1. e; right at v, and e; left at vg,
2. e; right at both v, and vg,
3. e; left at both v, and vg.

In case 1.) we assign I(w;) = {4, xg} with w; right at z, and left at z5. Similarly

I(2;) = {Ya,yp} with 2; left at y, and right at yg. In case 2.) we assign I(w;) = {Za, yp}
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with w; right at 2, and left at yg. Similarly I(2;) = {ya, s} Wwith z; left at y, and right
at zg. In case 3.) we assign I'(w;) = {@q, yp} with w; left at x, and right at yz. Similarly
I(2) = {Ya, Tg} With y, right at y, and left at ys. We note that cases 2.) and 3.) involve
an arbitrary choice as to which incident vertex is considered v, and which vg in K. We
also note that every edge e € K’ is an RL edge and thus K’ is orientable.

We now need to show that K’ is connected and that it is a double cover. We know
that I is connected. Thus there is a closed path P on K which traverses every edge of
K. We can choose P so that it contains an odd number of RR plus LL edges. This is
because K is nonorientable and thus as a result of theorem 19 contains a cycle w which
contains an odd number of RR. plus LL edges. Suppose that () is a pa.th which traverses
every edge of K. We can choose () so that it starts and ends on a vertex in w. If w
contains an odd number of RR plus LL edges then we are done P = (). If () contains
an even number of RR plus LL edges then let P be the path which traverses ) and then
traverses w. The number of RR plus LL edges in P will then be odd. We will now use
P to construct a path P’ on K’ which traverses every edge of X' and thus show that K’
is connected. We may decompose P into subpaths P = PP, ... F,, q odd, so that each
F; contains exactly one RR or LL edge and that this edge is the last edge traversed. We
may write

B ={a}, B}, .., Off(i)-pﬁzi(i): O‘E:(i)}'
Note, here ,Bf(i) is an RR or LL edge. Let s1,55:V — V' be defined by s1(v;) = z; and
so(vi) = y; for all i = 1,...,n. Similarly define ¢1,t5: E — E' be defined by ¢;(e;) = w;
and ty(e;) = z; for all j = 1,...,m. Consider the paths W; and Z; on K’ given by;

Wi = {31(0{3): t1<ﬂ%)» Sl(a'i)r ce ,31(0‘?(;')_1), 6%: SZ(Ofg(i))}?

Z; = {s2(c), 12(0), s2(0), - - -, sa(edfisy 1), 6%, 51 () }-

Where 6% and &} are assigned according to 1.) and 2.) below;

L8 = tl(ﬁ[i(i)) and 0§ = tz(ﬁ;(i)) if Joty (ﬂf(i)) = {s (af(i)—1)a 52(04?(1-;)} and IOt?(ﬂli(i)) =
{32(a§(i)—1)a Sl(ag(i))}:

2. 01 = ta(Biy)) and 6 = t1 (B ;) if Tot1 (Bly)) = {s2(cf;y_y)s 51(afyy)} and Tota(Bf,) =
{s1 (Off(i)—l): 32(“?(1'))}'




It is easy to check that the composition of W;Z;,, and Z,;Wz-ﬂ fori=1,...,q, WyZ; and
Z,W; are also well defined paths on K’. Thus we may form the path

P = W20, WsZy. .. Zqs W, T WaZs ... Wy, 2,

which contains all edges of K'. Thus K’ is connected. Lastly we need to show that there
exists a covering map h: K’ — K which is two to one at all points of K'. As a result of
theorem 20 we know that if we find a homomorphism (f, ¢): K’ — K which is onto and

such that for all v € K' either
1. go RK('L)) =-RKI Q f('U) and go LK('U) = LKl o} f(v) or
2. go Rg(v) = R o f(v) and g o Lg(v) = Ly o f(v),

there will exist an onto immersion h: K’ — K. This immersion is necessarily a local
diffeomorphism at all points in K’ — B’ where B’ is the branch set of X'. In order to
ensure that there exists an immersion 2 which is a local diffeomorphism at the points
in B' we will need to find a homomorphism (f,¢) which also satisfies a third criteria,
which states that for each vertex v of K’ g should be a bijection from the set of edges in
K' adjacent v to the set of edges adjacent to f(v) in K. The immersion h constructed
according to theorem 20 will then also be a local diffeomorphism at the points in B'.
Consider the homomorphism (f, g) defined by f(z;) = f(y:) = v foralli=1,...,n and
g(w;) = g(z;) = e; for all j =1,...,m. It is clear that both f and g are both onto, but
we still need to show that (f, g) is a homomorphism and that it satisfies our three criteria
above. Consider the edge e;, where say I(e;) = {va, vs}. In cases 1.), 2.), and 3.) in the

construction of K’ it is easy to check that

I o g(wi) = folg(w;) = Igog(z)=folx(z)={vavs}

Thus (f, g) is a homomorphism. Also if an edge w; or 2; is right/left at z; € {zy,...,2,}
then g(w;) = g(z) = e; is right/left at v; and if an edge w; or # is right/left at y; €
{y1,. ., yn} then g(w;) = g(z) = e; is left /right at v;. Thus for all z; we have goRy (z;) =
Ry o f(z;) and g o L () = Lg: o f(x;) and for all y; we have go Ry (y;) = Ry o f(y;)
and g o Lk (y;) = Lgr o f(y;). The only edges which are identified under g are w; and 2
for each 7. Since w; and z; are never incident upon the same vertex in K’ and the degrees

of the vertices z; and y; are equal to the degree of v; for all j we see that g must be a
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bijection from the adjacent edges at each vertex of K’ to the adjacent edges of its image
under f. Thus there exists a covering map h which is two to one at each point of I{'. O

Given a connected nonorientable smooth graph K the orientable double cover K’ of
K has several useful properties. First, given any closed path P' on I’ which traverses
every edge of X' the image of P’ under the covering homomorphism will be a closed path
on P on K which traverses every edge of K and if P’ is a route then P will be a route.
The second property is that given any closed path P on K which traverses every edge
of K and an odd number of RR plus LL edges we can construct a path P’ on K' which
traverses every edge of K’ in manner used in the proof of theorem 24 and, again, if P is a
route then P’ will be a route. The image of this path under the covering homomorphism

will then be the path P traversed twice.

Example 10 Consider the nonorientable smooth graph K = (G, S) where G = (V, E),

V = {v, v}, E := {e1,es,e3} and the incidence relations and switch conditions are

summarized in the following table.

v | R(v) | L(v)
v | {ed} | {ez, €3}
vy | {e2} | {e1, ea}

Using the method given in theorem 24 the double cover for K is given by X' = (G', S")

where G' = (B, V'), V' = {&1, %2, Y1, Y2}, B = {wi, ws, w3, 21, 22, 23} and the incidence

relations and switch conditions are summarized in the table below.

v | Rv) L(v)
gy | {w} | {we, ws}
T2 {wz} {wh Za}
yi| {2,285} | {=}
va | {ws, 21} | {72}

The smooth graph diagrams for for K and K’ are given in figure 3.5.
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Figure 3.5: The diagrarms for the smooth graphs K and K’ given in example 10.




3.6 Recurrence

A second property which is important when studying W*-mappings on smooth graphs
is recurrence. In this section we define recurrence and study some elementary properties
of recurrent and nonrecurrent smooth graphs. We also demonstrate how to convert the
problem of determining whether or not a smooth graph is recurrent into a graph theoretic
question, which can then be solved by highly efficient algorithms. Recurrence as we shall
later see will turn out to be a necessary and sufficient property for the existence of a

W*-mapping on a given smooth graph.

Definition 30 A connected smooth graph K is said to be recurrent if there exists a

closed route on I which traverses every edge in K.
In order to study this simple sounding property we will need some definitions.

Definition 31 Let K be an orientable smooth graph with coherent orientation p. A
walk W = {0, Y1, T1, - - -, Tp—1, ¥p» Tp} o0 K is said to be a directed walk if p(y;) = =z; for

alli=1,...,p.

A directed walk on a connected orientable smooth graph K is always a route on & and
the set of all routes on K consists of two disjoint subsets corresponding to the directed

walks under the two possible orientations on K.

Definition 32 Let X be an orientable smooth graph with coherent orientation p. An
edge e is said to be accessible from an edge e’ if there exists a directed walk on K which

starts on e’ and ends on e, i.e., a directed walk of the form W = {zg, €', z1,...,Zn-_1,€,Tn}

Definition 33 An orientable smooth graph K with coherent orientation p is said to be

strongly connected if for any pair edges e and € belonging to K each is accessible from

each other.

Note 10 The above definitions of accessibility and strong connectedness differ slightly
from the standard definition found in most texts on graph theory, for example see [6],

{15], in that they are defined in terms of the edges of the graph in question as opposed

to the vertices.




Our first theorem shows that for an orientable smooth graph the notions of recurrence
and strong connection are equivalent. Thus an algorithm which determines whether an
orientable smooth graph is strongly connected will also determine whether or not a smooth

graph is recurrent.

Theorem 25 An orientable smooth graph K with coherent orientation p is recurrent if

and only if 1t is strongly connected.

Proof. Let K be an orientable smooth graph with coherent orientation p. Suppose that
K is recurrent. Then there exists a closed route W on K which traverses every edge of
K. Tt is easy to see that- W is a directed walk under either p or p*. Without loss of
generality we will assume that W is a directed walk under p. Let e and e’ be two edges
of K. Since W traverses every edge of K and is closed we know that e and e’ occur in W

and that thus there is a directed walk from e to e’ and €' to e. Conversely suppose that &

is strongly connected. Label the edges ey, ..., ey. Since K is strongly connected we can
find a directed walk W; from e; to ;.1 for i =1,...,m —1 and a directed walk W,,, from
em to e;, with respect to the orientation p. Let X;, for i =1,..., m, be the sub-walk of

W; which traverses every edge that W; traverses except the last. The composition of the
directed walks W = X1 X,...X,, will also be a directed walk. It is also a closed route.
It is a route because every directed walk is a route and it is closed because at any vertex
v a directed walk W must leave v from an edge opposite an edge upon which it enters it.
O

We will now prove several results establishing the relationship between the recurrence
of a nonorientable smooth graph K and the recurrence of its double cover K', namely
that I is recurrent if and only if K’ is recurrent. This will allow us to deal exclusively

with orientable smooth graphs when using an algorithm to determine recurrence.

Theorem 26 Let K be a connected nonorientable smooth graph and K’ its orientable

double cover. Then K is recurrent if ' is recurrent.

Proof. Let K be a connected nonorientable smooth graph and K’ its orientable double
cover. Suppose that K’ is recurrent. Then there exists a closed route W' = {9, y1, 21, . .

T3

Tn—1,Yn, T} o0 ' which traverses every edge of K'. Let (f, g): K' — K be the covering
homomorphism. The image W = {f(20), 9(y1), f(z1),- -+, F (@n=1), 9(yn), f(zn)} of W'




under (f, g) is a closed route on K which traverses every edge of K. Thus I is recurrent.

a

Theorem 27 Lelt K be a recurrent nonorientable smooth graph. Then for every closed
route W = {20, Y1, %1, - - -, Tn—1, Yns T} 01 K which traverses every edge of K there erists
a vertez v = x; = %, © # j such that y; € R(z;), vis1 € L(w:), y; € L(z;), and
yj+1 € R(z;).

Proof. Let /i be a connected recurrent nonorientable smooth graph. Suppose that there
exists a closed route W on K which traverses every edge of K and is such that for every
vertex v € I we have either v; € R(z;), yiv1 € L(z;) or y; € L(z;), yir1 € R(z;) for
all z; = v in W. Clearly W cannot traverse any edge of K in more than one direction,
i.e., W cannot contain both the subroutes {z,e, '} and {z’,e,z} for any edge e in K.
Since W must contain every edge e of K we know that there must exist a subroute of
W of the form {v',e,v} and that {p,e, v'} will not be a subroute of W, i.e., the route
W -always traverses e by traveling from v’ to v. We may then assign an orientation p to
K by letting p(e) = v if {v',e,v} is a subroute of W. It is also clear that p will be a
coherent orientation since as W traverses a vertex v it will either always enter v upon
a right edge and leave v on a left edge or it enter v upon a left edge and leave v upon
a right edge. In the first instance we will have [ (v) = R(v) and I (v) = L(v). In the
second instance [f(v) = L(v) and I, (v) = R(v). This is a contradiction since I{ was

chosen to be nonorientable. O

Theorem 28 Let K be a recurrent nonorientadble smooth graph. Then there exists a
route W on K which for every edge e belonging to K contains the subpaths {z,e,z'} and

{#',e,z}, i.e., the route W traverses every edge of IC in both directions.

Proof. Let K be a connected recurrent nonorientable smooth graph. Let W = {zy, y1, 1,
<oy Tp—1,Yp, Tp} be a closed route on K which traverses every edge of K. From Theorem
27 we know that there must exist a vertex v = x; = x;, 1 # j such that y; € R(zy),
Yiv1 € L(z;), y; € L(z;), and y;41 € R(x;41). Thus the route W enters v upon a right
edge and leaves v upon a left edge as well as entering v upon a left edge and leaving v
upon a right edge. Without loss of generality we will assume that 7 < 7. Consider the

subroutes of W; Py = {0, y1, ..., %}, Po = {&i, Yiv1, - -, } and Py = {z},Yj11, -+, Tp}
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Let @y, Q2 and @3 be the routes obtained by traversing P, P, and I, respectively, in
reverse, i.e., @1 = {T, Y, -+ > To}, Q2 = {Z, ¥y, -, @i} and Qs = {Tp, Yy, ...z} We
may then form the route P! = PP, PQ1Q3Q2Fs as a composition of the routes P, P,
Py, Py, @1, @, and Q3. It is easily verified that P’ must traverse every edge in both
directions. O

We now have all the pieces to prove that in the special case that the underlying
smooth graph is recurrent a converse to theorem 11 is possible. Namely, if there exists
a route W on a smooth graph K which traverses an edge e in more than one direction,
i.e., contains the subpaths {z,e,2'} and {z',e,z} then K is nonorientable. We therefore

have the following result.

Theorem 29 Let K be a recurrent smooth graph. Then there is a route W on K which
contains the subpaths {z,e,x'} and {a',e,z} for any edge e if and only if K is nonori-

entable.

Proof. This is a result of theorems 11 and 28. O

Theorem 30 Let K be a recurrent, nonorientable smooth graph and W = {zo, y1, z1,
ey Tp1, Ypy Tp} @ TOUte on K with 39 = x, and either y1,y, € R(x0) or y1,Yp € L(zo)-

Then if A= {i:y; a RR or LL edge } then |A| is odd.

Proof. Let K be a connected, recurrent, nonorientable smooth graph and W = {zo, y1, 21,
<y Tp_1,Yps Tp} & TOube on K with zo = , and y1, 4, € R(zo). The case for 31,9, € L(z0)
is similar. Consider the smooth cycle C = (V,FE) defined by V = {vg,...,vp-1},
E = {e1,...,¢e}, I(e;) = {vimy,vi} for i = 1,...,p— 1 and I(e;) = {vp_1,%}. The
switch conditions for C' are given by; e; is right/left at v;_y if y; is right/left at x;—; and
e; is right/left at v; if y; is right/left at z;. Let A = {i:y; a RR or LL edge }. There is
clearly a one to one correspondence between the set of RR and LL edges of C' and the
clements of A. We claim that the cycle C is nonorientable and thus by theorem 17 the
number of RR plus LL edges in C is odd. In order to see this consider trying to place a
coherent orientation p on C. If we choose p(e;) = vy then p(e;) = v; fori=1,...,p—1.
We then see that it is impossible to orient e, in a coherent manner. Choosing p(e1) = vg
we must then have p(e;) = v;_; for 1 =1,...,p — 1. Again it is impossible to orient the

edge e, in a coherent manner. Thus C is nonorientable and the number of RR plus LL




edges in C is odd. Since there is a one to one correspondence between the edges RR plus

LL edges of and the elements of A we must have |A| odd. O

Theorem 31 Let K be a nonorientable smooth graph with orientable double cover K'.

Then ' is recurrent if K is recurrent.

Proof. Let K = (G,S) be a connected recurrent nonorientable smooth graph, where
G=(V,E),V ={v,...0}, and E = {ey,...en}. Let ' = (G',S’) be a double cover
for I, where G' = (V',E"), V! = {z1,... 2.} U {y1,...,¥n}, and B = {wy,...,wn} U
{21,...,2m}. The incidence relations and switch conditions for K’ are assigned according

to the following rules. For each edge e; € K, say I(e;) = {va, Vs}, we have either;
1. ey right at v, and left at vg,
2. e; right at both v, and vg,
3. ¢; left at both v, and vg.

In case 1.) we assign I(w;) = {@q, 35} with w; right at z, and left at z5 as well as
assigning I(z) = {ya ys} with 2z; left at y, and right at yg. In case 2.) we assign
I(w;) = {Ta,yp} with w; right at z, and left at yg as well as assigning I(z;) = {ya, 25}
with z; left at y, and right at z5. In case 3.) we assign I(w;) = {Za,ys} with w; left
at z, and right at yp as well as assigning I(z;) = {zg, 5o} With z; right at z5 and right
at Y, We note that this construction is the same as that in theorem 24. Since K is
recurrent and nonorientable by theorem 28 we can find a closed route W = {dg, 11, d1,
ooy 0p1, Yy Op} on I which traverses every edge of K. By theorem 27 we know that
there must exist a vertex v = ¢; = J; in K where v;,vj41 € R(v) and 741,y € L(v).
By cyclicly permuting W if necessary we can assume that 7z = 0 and 7 > 0 thus moving
Y t0 ¥ , Yit1 to 71 and setting o = 0, since W is a closed route. We will use W to
construct a closed route W' on K’ which traverses every edge of K’ and thus prove that
K’ is recurrent. First we note that W can be decomposed into two routes Wy = {4y, 11, 1,
.., 0;} and Wy = {0;, Vj+1, 041, - .., 0p}, where W = Wy W,. Using the routes W; and
Wy we can construct a new route ¢ = WiWyW, on K as the composition of W; and
W, We note that ) is not a closed route but it traverses every edge of I, starts and
ends on the same vertex v and the first and last edges that it traverses are right at v.

The number of times @ and Wy traverse a RR or LL edge is odd. We also note that @
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composed with W, given by QW is a closed route. Since the number of times Q traverses
an RR or LL edge is odd we can use it to construct a route Q' on K’ which traverses
every edge of K’ in a manner analogqus to that in used in theorem 24, but @' will not
be a closed route. We can also construct a route Wy on K’ using Ws, it also will not be
a closed route. Q' and W} will both however start and end on the same vertex and their
composition QW will be a closed route on K'. We now show how this can be done. Let
s1,82:V — V' be defined by s1(v;) = z; and sa(v;) = ;. Similarly let 29,00 £ — E' be
defined by #;(e;) = w; and ta(e;) = z;. We will first construct the route Q' on K'. We
can decompose @ into @ = @1Qs . .. Q, where g is odd and each @; contains exactly one
RR or LL edge aﬂd that this edge is the last edge traversed. We write Q; = {x}, o, &1,

s By 1y Olays iy - Consider the routes on K7

M; = {81(’{6): tl(ai)a 51("{?]:.)3 R Sl(K’i(i)—l)’ a’i! 32(’{3?(1'))}1
and
N = {SZ(H’%)! tﬂ(gi)» 52(’%% R 32(&;:('5)-1): CL;, 31(5;.(1‘.))}

where ai and o} are assigned according to 1.) and 2.) below;

Loal =t (of(z.)) and a} = tg(O';:(i)) iffotl(af(i)) = {31("03(2-)_1), 52(’{’;:(1'))} and I°t2(azi(i)) =
{'92(“§(i)»1)» Sl(ﬁzi(i))}:

{31(%(1‘)-—1): 32("“%(1))}-
It is easy to check that the composites M;N;1 and N;M;yq are also well defined routes

on K’. Thus we may form the route
Q, = MlNgMg Ca Nq_quNIMgNg - Mq__qu.

The route @' must traverse every edge of K’ since every edge of I{' will belong to at
least one of the N; or M;. We also know that M; starts at the same vertex as Vg
ends since s1(kg) = s1(do) = s1(ssfy) = s1(§;). @', however, is not a closed route since
o} and ol are both right at s1(d,). Next we will construct the route Wj on K'. We
can decompose the route Wy into Wy = LiLs... Ly where k is odd and each subroute
L; contains only one RR or LL edge which is the last edge traversed. We write L; =
{pbs vy s -+ My 1 Vigays Mgy }- Consider the routes on s

Oi = {s1(u), t1 (), 51.(14); - -, s1.{gsy—1)» V% 2 (iysy) }
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and
P = {52(1‘1'6)) tz(yf), SZ(H‘%)’ AR 32(/1'::1(71}—1)) bg: Sl(”ﬁt(i))}

where 0% and b} are assigned according to 1.) and 2.) below;

Lb = tl(’/cil(i)) and by = ta(vyq) if I o tl(”é(i)) = {s1(tai)-1), s2(tta@s))} and I o
ta(vag) = {s2(pagiy-1), s1(pa)

2. b = t2(V)) and By = ti(vaw) if I o ti(vly) = {s2(ta@-1), 51(kae)} and I o
t2(Vay) = {81(ag)—1), s2(1ags)) }-

Again it is easy to check that the composites O;P;; and P;0;,; are also well defined

routes on I{'. Thus we may form the composite route
WZI = O]_PzOg . Pk_lOkPlong e Ok_lPk.

The route W, starts and ends upon the same vertex as Q' since s1(if) = 5,(6;) =
51 (uﬁ(k)) = 51(dp). However, W begins and ends by traversing the edges ¢;(v) and b,
which are left at s1(dy). We may then compose Q' with W} to form the closed route
W' = Q'W, which traverses every edge of K’. Thus K’ is recurrent. O

Before we think about algorithms for determining whether a given orientable con-
nected smooth graph is strongly connected we will examine the structure of those that
are not strongly connected. We show that there exist a finite number of nontrivial maxi-
mal strongly connected subgraphs. These maximal strongly connected subgraphs are also
maximal recurrent subgraphs. These results also apply to a nonrecurrent smooth graph
since we can examine its smooth orientable double cover and find its maximal recurrent
subgraphs, the image of these subgraphs under the covering homomorphism will be the

maximal recurrent subgraphs of the original manifold.

Definition 34 A strongly connected component of an orientable smooth graph K with

coherent orientation p is a maximal strongly connected subgraph of K.

It is clear from the definition above and the previous theorems that on an orientable

smooth graph K with coherent orientation p the strongly connected components of K

are also the maximal recurrent subgraphs.

Theorem 32 Let I be a connected orientable smooth graph with coherent orientation Jo

Then there ezists a nontrivial strongly connected component L of K.




Proof . Let K be a connected orientable smooth graph with coherent orientation p.
It is clear that if K has a closed directed walk it must be part of a strongly connected
component of K. Suppose then that there is no closed directed walk on K. Let W be
a maximal directed walk on K which contains no vertex or edge more than once. The
last vertex v’ of this walk must clearly have I7(v') = @ since otherwise it would not be
maximal. This is a contradiction since it is assumed that for all vertices v of K that
I¥(v) # 0 and I, (v) # 0. Thus there must a directed walk on X which traverses an edge
or vertex more than once and thus contains a directed sub-walk W which is closed. W is
clearly nontrivial and must be part of a strongly connected component of K. O

It is also clear that any strongly connected component of an orientable connected
smooth graph K with coherent orientation p must contain at least two edges. Recall that
we are assuming that there are no loops in K. Thus if an edge e is part of a strongly
connected component L there must exist a directed walk W in L from e to itself. Thus
the strongly connected component must contain at least e and W and W will contain at
least one edge.

We also see that a connected orientable smooth graph will contain a finite number of
strongly connected components, which are also maximal recurrent subgraphs. The under-
lying smooth graph is recurrent if and only if it contains exactly one strongly connected
component which is the entire smooth graph. These results clearly apply to nonori-
entable connected smooth graphs since as stated before we can examine the orientable
double cover and then project the results back to the original smooth graph using the
covering homomorphism.

We would like to have a method of determining whether or not a given smooth graph
is recurrent and to find the maximal recurrent subgraphs if it is not. There exists an
algorithm which determines whether or not a orientable smooth graph is strongly con-
nected and which finds its strongly connected components. It is highly efficient and has
a complexity of O(max(|V],|E])). This algorithm is based on depth-first searching and
was originally developed by Hopcraft and Tarjan in [20] and [33], a second treatment of
this algorithm can found in Gibbons [13]. This algorithm will clearly also test for the
recurrence of an orientable smooth graph since an orientable smooth graph is recurrent if
and only if it is strongly connected. In order to determine whether or not a nonorientable

smooth graph is recurrent we first find its orientable double cover and then determine
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whether it is strongly connected and thus whether or not it is recurrent. This then suf-
fices to determine whether or not the original nonorientable smooth graph is recurrent or
not in light of the fact that a nonorientable smooth graph is recurrent if and only if its
orientable double cover is recurrent. Since this algorithm is well known we will not give

a description here.

3.7 Recurrence and W*-mappings

We now investigate the effect the recurrence or non-recurrence of a given smooth graph
plays in determining whether or not there exists a W*-mapping on that smooth graph.
We will show that there exists a W*-mapping on a smooth graph if and only if it is

recurrent.

Theorem 33 A smooth graph K with at least one edge is recurrent if and only if there

exists an onto immersion o1 S; — K.

Proof. Suppose that there exists an immersion ¢:S; — K. Give S; the structure of a
smooth graph by letting c=1(V) be the set of vertices of S;, where V is the vertex set
of K. Write V' = 07}(V) = {=1,...,3,} by giving the vertices of S; an arbitrary cyclic
ordering. We may then label the edge set of Sy as E' = {y1,...,¥p} where the incidence
relations and switch conditions are given by R(x1) = L(zs), R(z2) = L(z3), ..., R(zp-1) =
L(zy), B(z,) = L(z1). Let (f,g): S1 — K be the smooth graph homomorphism induced
by o, ie., f(z;) = o(z;) and g(y;) = o(y;). Consider the walk

W= {f(:El):g(yl)) f(mZ))g(EZ)) T f(w'r))g(y?‘)) f(a:l)}

on K. Since (f, g) is a smooth graph homomorphism and W is the image under (f, g) of
the closed route {z1,y1, %2, Y2, - .+, Tr, Yr, T1} o0 S; we know that W is a closed route on
K. Also, since o is onto we know that W must traverse every edge of K.

Suppose that K is recurrent. Then there is a closed route W on K which traverses
every edge of IS, W = {wy,ei,v,...,0p¢p,v1}. Give S the structure of a smooth
graph by considering a finite set of distinct points {%1,2,,...,2,}, labeled to reflect their
cyclic order, as vertices. Write for the set of edges of Sy, {y1, ..., y,} where the incidence
relations and switch conditions are given by R(z1) = L(zq), R(z2) = L(z3),..., R(zy-1) =

L(z,), R(z,) = L(z1). We may associate each vertex of S; with a vertex traversed by W
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using the mapping f defined by f(z;) = v;. Similarly we may associate each edge of 5
with an edge traversed by W using the mapping g defined by g(v;) = e;. The mapping
(f,9): S1 — K is then a well defined smooth graph homomorphism and since W traverses
every edge of K the homomorphism (f, g) will be onto. Then by theorem 20 there exists

an immersion ¢: 57 — K. O

Theorem 34 Let K be a connected smooth graph. Then K is recurrent if and only if
there exists a W*-mapping g: K — K.

Proof. First we will show that if there exists a W*-mapping ¢: X — K then K is
recurrent. Suppose that there exists a W*-mapping ¢: K — K. Let L be a nontrivial
maximal recurrent sub-manifold of /. Since L is recurrent there exists an onto immersion
0.5, — L. Let & be a closed edge (one-cell) of L. By theorem 10 there exists an integer
m such that ¢™ maps & onto K. Since both ¢ and o are immersions their composition
g™ o 0:S; = I is also an immersion and g™ o 0(Sy) = K. Thus K is recurrent.

Next we show that if K is a connected recurrent smooth graph then there exists a
W*-mapping ¢g: K — K. We will first deal with the case in which K is orientable. Let K
be a connected orientable recurrent smooth graph. Let p be a coherent orientation on K.
There exists a closed route W on K which traverses every edge of K. We may choose W
so that it traverses every edge in agreement with the orientation p. Let vy be the initial
and final vertex of the closed route W. Consider the mapping g: & — K where g(v) = vg
for all vertices v in I and g expands each edge e along the route W. To make this more
precise consider for each edge e € K a diffeomorphism he: @ — [a(e), b(e)] which is such
that; he(p(e)) = ale), he(p*(e)) = b(e) and DH|, = 1 for all z € & Similarly we may
parameterize the route W using an immersion 7: [c,d] — K such that Dr|, = 1 for all
z € [c,d]. Since W traverses every edge in K we know that we must have d—c > b(e)—a(e)
for all e in K. We may then choose an € > 1 and a diffeomorphism fe: [a(e), b(e)] — [c, d]
for each edge e such that; fe(a(e)) = ¢, fe(b(e)) = d, D felate) = Dfeloe) = € and D fels > ¢
for all z € (a(e),b(e)). See appendix A for a detailed construction of such a function. We
may then define g|é = 7 o f, o h, for each closed edge é.

The mapping g is well defined since the only point z on which any two f, and
fg will both be defined will be a vertex and thus we will have fo(z) = fz(z) = vo.

We know that g is continuous because g|é is continuous for each e in I, see Massey
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(23] pag;a 232. The mapping ¢ is also clearly an expanding immersion since Dgl, =
D7\ i (5) D felne(m) Dltels = Do) = € > 1 for all z € K. We also know that (g) = K,
i.e., the nonwandering set of g is all of K, as g(e) = X and thus the conditions for the-
orem 10 are satisfied. Finally we need to check that there exists an integer m where for
every ¢ € K there is a neighborhood N, such that g™ (IN;) is an arc. It is clear that this
is the case for any point which is not a vertex. At each vertex v every edge e € I, (v)
will have a small arc [v, p.] where g([v,pe]) = €1 and e; is the initial edge of the route W.
Write 4, = U, I () [v,pe]. Similarly at each vertex v every edge e € If(v) will have a
small arc [ge,v] such that g({ge,v]) = ex and e is the final edge of the route W. Write
By = U, 1) [ge, v]. For each vertex v we may then let N, be the interior of A,UB,. We
will then necessarily have g(IN,) = e; U {vo} U e), which is an arc. Thus the mapping g
constructed as above will be an onto immersion satisfying W1,W2, and W3 and therefore
a W-mapping. Since g(V') = v, it will also be a W*-mapping.

We will now consider the case where K is a nonorientable, recurrent, connected smooth
graph and show that this implies that there exists a W*-mapping g: K — K. Let K be a
nonorientable, recurrent, connected smooth graph. Let T be a spanning tree for . We
may give T' a coherent orientation p. Since K is recurrent there exists a closed route W on
I which traverses every edge of K and which is such that the initial edge traversed isin T,
We may also assume that W traverses its initial edge in accordance with the orientation
p, i.e., if y; is the initial edge of W and vy is the initial vertex of W then p*(y;) = vo.
Let vy be the initial vertex traversed by W. Consider f:7 — K where f(v) = vg for
all vertices v € K and f expands each edge of T" along the route W. Again in order to
be more precise for each edge e € 1" consider a diffeomorphism h.: & — [a(e), b(e)] which
is such that; he(p*(e)) = ale), he(p(e)) = b(e), Dhe|, = 1 for all e € &. We may also
parameterize the route W using an immersion 7 [c, d] — K which is such that Dn|, =1
for all z € [c,d]. We will necessarily have d — ¢ > b(e) — a{e) since W contains every
edge of I{. We may therefore choose an ¢ > 1 and for each edge e € T' a diffeomorphism
re: [a(e), b(e)] = [c, d] such that Drelae) = Drelye) = € and Dre|, > € for z € (a(e), b(e))-
We then define f|é = 7 o1, 0 he. See appendix A for a detailed construction of such a
function. This is a well defined mapping from T to K for the same reasons as in the
preceding paragraph. It is also continuous since f|é is continuous for each e in T'.

Let c1,...,cp be the chords of T'. The chords of T' are found to come in three types:
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1. ¢; is incident upon vertices v and v’ each of which is the sense under the orientation

p of an edge in T,

2. ¢; is incident upon vertices v and v’ one of which is the sense under p of an edge in

T and one of which is not the sense under p of an edge in T,

3. ¢; is incident upon two vertices both of which are not the sense under p of an edge

inT.

Let e; be the initial edge traversed by W an v; be the second vertex traversed, similarly
let e; be the final edge traversed by W and wvg_; the second to last vertex traversed.
Consider the routes Wy aﬁd W, on K which traverse every edge of K and start and finish
on the same vertex vy as W. Let W, be such that that it starts and finishes on the same
initial edge e; traversed by W where the first time it traverses e; it does so by going from
vo to vy and the last time it traverses e; it does so by going from vy to vy . Let Wy be
such that it starts and finishes on the final edge e; of W where the first time it traverses
ey it does so by going from vy to vx_; and the last time it traverses e it does so by going
from v,_; to vg. The fact that we can find such routes on K is a consequence of theorem
28.

We may construct g: K — K by letting g|T' = f and expanding each chord of T" along

one of the routes Wy, Wy or W according to the following set of rules;
e if ¢; is of type 1.) then g expands ¢; along the route Wy,
e if ¢; s of type 2.) then g expands ¢; along the route W,
e if ¢; is of type 3.) then g expands ¢; along the route Ws.

To be more precise for each closed chord ¢; we find a diffeomorphism h;: & — [a;, b
which is such that Dh|, = 1 for all € &. For each of the routes W, and W, we
find a parametrization v; and vy, where vy:[aq, 1] = K and 7s: [ag, o] — K. We also
stipulate that v, and <y, should satisfy; Dy |, = 1 for all z € [ay, (1] and Dy, = 1
for all z € [ag,f2]. For each chord ¢; of type 1.) we then choose a diffeomorphism
73 [ag, ;] = [ow, 1] where Dryl,, = Dryly, = € and Dry|, > € for € (a;,b;). For each
chord ¢; of type 2.) we then choose a diffeomorphism r;:{a;, 4] —+ [c, d] where again

Dri|o; = Dryly, = € and Dryl, > ¢ for ¢ € (a;,b;). Finally for each chord ¢; of type 3.)
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we choose a diffeomorphism 7;: [a;, b;] = [, B2] where Drylq, = Dryly,, = € and Dryl, > €
for x € (a;,0;). We then define for ¢; of type 1.) g|&G = 7 o r; 0 hy, for ¢; of type 2.)
glé; = mor;0h; and for ¢; of type 3.) g|G =07 0 hy.

We now must verify that the mapping g constructed in this manner is a valid mapping
as well as satisfying the conditions necessary to be a W*-mapping. In order to verify that
g is a well defined mapping it is only necessary to check that this is so on the vertices
since they are the only points on which g might be multiply defined, but every vertex v
in K is mapped to the vertex vy, thus g is well defined. We again see that g is continuous
since g|€ is continuous for each edge in e.

In order to verify that g is an immersion we must check that Dg is a monomorphism on
the tangent space a each point. It will suffice to show that Dg is well defined, continuous
and not equal to zero at any point. Again the only points which may cause us trouble are
the vertices since the points in the interior of each edge clearly satisfy these conditions.
Let v be a vertex of K then Dgl|, = ¢, thus Dg is not equal to zero at any point and
it is well defined. For any edge e in T' the mappings w o 7, o h, are the composition of
immersions and thus immersions, recall that the r, and the h, are such that Drels > 1
for all € [a(e}, be)] and Dh,|, = 1 for all z € &. Similarly for any chord ¢; the mappings
Yror;ohy Y0 ;I‘-g o h; and 7o r; o h; are all the compositions of immersions and thus
immersions. If e is an edge in K which is incident with the vertex v then as we approach
v along e then Dg will approach € continuously by the definition of g as the composition
of iminersions in the interior of e.

We must also check at each vertex that we are not bending back any of the branches.
Let v be a vertex. If e is an edge of T and e € I7(v) then we can find a small arc
[v,pe) C € at v such that g([v, p.)) maps into the initial edge of W, e;. Similarly if e is an
edge of T and e € If(v) then we can find a small arc (g, v] C € at v such that 9((ge, v])
maps into the final edge of W, ey. If ¢; is a chord which is incident with v and if ¢; is of
type 1.) it will be on the same side of v as the edges in I (v) and opposite the edges in
I} (v) accordingly we may find a small arc [v, s;) C & at v such that 9([v, s;)) maps into
the initial edge ey of W. If ¢; is a chord incident with v and if c; is of type 3.) then it will
be on the same side of v as the edges in I¥(v) and opposite the edges in I » (v), again we
may find a small arc (s;,v] C ¢ such that g((s;,v]) maps into the final edge e, of W. If

¢; is a chord incident upon v and it is of type 2.) and v is the sense of an edge in 7" then
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¢; will be of on the same side of v as the edges in I, (v) and opposite the edges in I (v)
and we may find a small arc [v, s;) C & at v where g([v, s;)) maps into the initial edge e;
of W. If ¢; is a chord incident upon v and it is of type 2.) and v is not the sense of an
edge in T then ¢; is on the same side of v as the edges in I} (v) and opposite the edges in
I (v) and we may find a small arc (s;,v] C ¢ at v such that g((s;, v]) maps into the final
edge e of W. Thus the branches of K are not bent under g.

From the above we also see that every vertex v has a small neighborhood N,, consisting
of the union of the arcs constructed as above, such that g(N,) = e1 U {vo} U ex. Thus
W3 is satisfied. Since for all z € K we have Dgls > ¢ > 1 we know that g is an
expansion and W1 is satisfied. Also, since g(é) = K for all edges e € K we know that
the nonwandering set {2(g) = K by theorem 10 and therefore W2 is satisfied. Lastly we
know that g(V) = {vp} making ¢ a W*-mapping. O

65




Chapter 4

Presentations of Solenoids

In this section we discuss methods of moving from one presentation, {K, g}, of a solenoid
to an equivalent presentation (up to the topological conjugacy of their shift maps),
{X', ¢'}, in which the smooth graph X" is simplified or which is such that the W*-mapping
¢’ has some desirable property. The methods in this section will prove particularly useful
for finding invariants for the topological conjugacy of the solenoids.

The first method that we discuss is a slightly stronger version of a method due to
R.F Williams [39] and applies only to presentations where the W *-mapping has a fixed
point. It allows us to find a presentation equivalent to our original, called an elementary
presentation, in which the smooth graph has only a single branch point which is fixed
under the W*-mapping. This allows us to convert the question of whether two solenoids
given by elementary presentations are topologically conjugate into a purely algebraic
question.

‘The second method we discuss involves finding a presentation {K’, ¢'} equivalent to
the original where the W*-mapping ¢’ acts on a finite set of periodic points in a prescribed
manner. ‘This allows us to find algebraic invariants for the topological conjugacy of

solenocids and can be applied to any solenoid.

4.1 Elementary Presentations

Given a presentation {K, g} of a solenoid with at least one fixed point it is possible to
find a shift equivalent presentation {K’,¢'} in which the smooth graph K’ has only a

single branch point. In this section we show how this can be done. Our motivation for
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doing this will be to convert the question of whether two solenoids are equivalent into an

algebraic problem which we can try to solve directly or use to extract invariants.

Definition 35 By an elementary smooth graph K we mean a smooth graph which has a

single vertex b and a number of edges of which
1. some ( type O ) are both right and left at b,
2. some ( type R ) are right at b,
3. some ( type L ) are left at b.

Note, that an elementary smooth graph is orientable if and only if all of its edges are of
type O and it is always recurrent. We will denote an orientable elementary smooth graph
by O(m) where m is the number of edges. A nonorientable elementary smooth graph
is recurrent if and only if it possess an edge of type R and an edge of type L. We will
denote a nonorientable elementary smooth graph by N(ni, ng, n3) where ny is the number
of edges of type O, ny is the number of edges of type R, and nj is the number of edges of
type ns.

Our first order of business will be to demonstrate how any presentation {I{,g} of a
solenoid is shift equivalent to a presentation {K’, g’} where every branched point is of

type (2,1). The method we present for doing this is based on work by R. F. Williams in
[38].

Theorem 35 Let I be a smooth graph, g: K — K a W* — mapping and b a branch
point of I where there exists two arcs [b,a] and [b,c] at b such that g([b,a]) = g([b, c])
with g(a) = g(c). Let K = K/ ~ with the induced differential structure and Riemannian

metric, where ~ is the equivalence relation given by

T =1y or,

z € [b,al,y € [b,c] and g(z) = g(y).

z ~ y if and only if

Then there exists a W*-mapping §: K — K such that grs g

Proof. Let r: K — K be the projection map. Then ¢g: K — K induces a mapping § on
K given by g =r o gor~L. This is a well defined mapping since if {z,y} = r71(2) then
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g(z) = g(y). Similarly we may define a mapping s: K — K by s = gor~!. This is again

a well defined mapping for exactly the same reason as before. We then see that

1 1

jor=rogorlor=rog soj=gortorogor=gos,

1

sor=gortor=g andros=rogor =43,

Thus we have g ~; §. O

Theorem 36 Let IC be a smooth graph and g: K — K o W*-mapping. Then there ewists
a smooth graph K' with all branch points of type (2,1) and a W*-mapping ¢ K' — K’
such that g ~; g'.

Proof. If all of the branch points of K are of type (2, 1) then we are done. Suppose not.
Write K = Iy and g = go. Let By be the branch set of K} and

Bo(j) ={x € By: z of type (p,q) with p+q=j}

for j = 3,4,...,No where Ny = max{j: Bo(j) # 0}. We will show that there exists a
smooth graph K’ with all its branch points of type (2,1) and a W*-mapping ¢' such
that g ~; ¢ by finding shift equivalences g;_; ~, g; of lag=1 for ¢ = L,...,m =
Eﬁ_ﬂﬁj]Bo(Ng — J + 1) where g K; = K; , K; = K;_;/ ~; and the equivalence re-
lations ~; are chosen so that K, = K" has all branch points of type (2,1).

There must exist a branch point b € By(INp) such that there are two arcs [0, a] and
(0, c] at b where go([b,a]) = go([b,c]) and go(a) = go(c) a vertex, since otherwise there
would not exist a neighborhood M, of b with g"(M,) an arc. Also since gy is an expansion
e and ¢ can be chosen to be points in the interior of an edge incident upon b, possibly
by labeling a point of type (1,1) a vertex in K. As in theorem 35 we let K = Ky ~

where ~; is the equivalence relation given by

. . | T=yor,
% ~ y if and only if
z € [ba],y € [b,d and g(z) = g(y).

There is then a g; ~; g of lag= 1 by theorem 35.
Let By be the branch set of K and

Bi(j) ={z € B:: z of type (p,q) where p+gq =7}
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It is easy to see that

- |Bi(No)| = [Bo(No)| - 1,
|B1(No — 1)| = {Bo(No — 1) + 1,
|B1(4)| = |Bo(4)| for j =4,..., Ny -2,
|B1(3)] = |Bo(3)| + 1.

We may now repeat this procedure for K; and g;: K; — K; to get a shift equivalence
gi ~iy1 9iq1 of lag=1. At each stage we choose a branch point b; where there exist arcs
[bi, ¢;] and [;, a;] at b; such that g;([b;, &) = gi([bs, @), a; and ¢; are in the interior of an
edge incident upon b;, gi(a;) = gi(c;) a vertex. The branch point b; is chosen to belong to
Bi(NV;) where B;(j) = {z € B;:z of type (p,q) where p+q = 5}, N; = max{j: B;(j) # 0},

and B; is the branch set of K;. Again we see that
|Birt (N3)| = | Bi(NG)] - 1,

|Bisa(N: = 1)| = |Bi(N; — 1)[ + 1,
|Bi1 ()| = |Bs(j)| for j = 4,...,N; - 2,
|Bis1(3) = |By(3)] + 1.

Thus after 1, = |By(Vy)| steps we reach a smooth graph Ky, which has B, (Ny) = 0.
After ny = 2|By(No)| + |Bo(No) — 1| steps we reach a smooth graph I, which has

By, (No) = By, (Ng — 1) = 0. After n, = > %1 71Bo(No) - 7 + 1| steps we reach a smooth
graph K, which has

By, (No) = B, (No— 1) = ... = B, (Noy — p+1) = 0.

Therefore we see that after m = E;\;”l_ % j1Bo(Ng) — j + 1| steps we reach a smooth

graph [(;,, which has only branch points of type (2,1), i.e., Bn(Ng — 5 + 1) = 0 for
7=1,...,No — 3. At each stage we have a lag= 1 shift equivalence g; 1 ~, g; therefore

G0 ™~ gm with 1ag=~= m. O

See example 11 for the explicit use of the techniques developed in theorem 36 above.

Definition 36 Let K be a smooth graph, ¢: K — K a W*-mapping and z, a point in

I{. The orbit of g is the set of points orb (zq) = {zg, 1,22, . . .} where 211 = g*(z;)

bl

i=0,1,2,...,00.




Definition 37 Let K be a smooth graph, g: K — K a W*-mapping. A point y € K is
sald to be eventually periodic if ¢™(y) = = for some m where z is a periodic point. The

point y is referred to as being eventually periodic to orb (z).

Theorem 37 Let K be a smooth graph, g: K — K a W*-mapping and zy a periodic

point of g. Then the set of points eventually periodic to orb(z) is dense in K.

Proof. We need to show that given any point y € K and any neighborhood Ny of y
there is a point z € Ny such that z is eventually periodic to orb (z). If y is eventually
periodic to orb (z) then we are done. Suppose not. An easy consequence of theorem 10
is that given any arc J in K there is an integer m such that g™ maps J onto XK. Thus we
may choose a small arc J, C N, about y. There exists an integer m such that ¢™ maps
Jy onto K. Since g™|Jy is onto there must be a point z € J,, such that ¢g™(z) = z. Thus

z is eventually periodic to orb (z). O

Theorem 38 Let K be a smooth graph and g: K — K a W*-mapping where every branch
point of I 1s of type (2,1). Then there is a smooth graph K' and a W*-mapping ¢": K' —
K" where g ~, ¢' such that every branch point of K’ is of type (2,1) and at every point
x € K' there is a neighborhood N, of z such that g(N,) is an arc.

We refer the reader forward to example 12 which gives an illustration of the techniques
we develop in the proof of theorem 38.

Proof. If g: K — K is such that for all z € K there is a neighborhood N, with g(N:)
an arc we are finished. Suppose not. '

‘The set of points A where there does not exist a neighborhood N, of z € A with g(Ng)
an arc must be a subset of the branch set, i.e., A C B. Also we know that g(4) C B and
that A # B since there must exist at least one branch point with a neighborhood whose
image under g is an arc.

Let p be the smallest integer such that for all z € K there is a neighborhood N, of z
such that gP(IN,) is an arc. For each i = 1,...,p let 4; denote the set of branch points in
I for which 4 the smallest integer such that there exists a neighborhood N, for z € A;
with ¢*(N,) an arc.

We claim that A; # 0 for each i = 1,...,p. There exists a branch point b which
belongs to A, by definition. For each j = 1,...,p — 1 the image of b under g7, ¢/(b),
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must not equal any of the points b, g(b), ..., g7~ 1(b) and g?(b) must belong to A,_; since
there will be a neighborhood of ¢/(b) which is an arc under g?=7. Thus A4; # @ for
i=2,...,p- 1. It is also easy to verify that g(4;) C A;—y fori=2,...,p.

Let C = g(A;). Label the elements of C = {¢y,...,cs}. For each ¢; € C there is a
neighborhood N; where g(IV;) is an arc. We may pick two points a; and d; in the interior
of each N; so that g(a;) = g(d;). We may choose a; and d; so that they are eventually
periodic to some orb (v) where v is a periodic point in V. This is a result of theorem
37 as well as the fact that ¢(V) C V. There will be two small arcs [¢;, a;] and [c;, d;] at
each ¢;. As in theorem 35 we may form a new smooth graph K=K / ~ where ~ is the

equivalence relation given by

. . T =y or,
z ~ y if and only if

T € [c;, ai],y € [b;, ;] and g(z) = g(y) for some .
By theorem 35 there will exist W*-mapping §: K — K such that g ~; §.

We claim the smooth graph K has the same number of branch points as I. Under
the projection map m: K — K we see that the image of each z € B — C is a branch point
and that 7 is one to one and onto from B — C to n(B — C). The image under 7 of each ¢;
is an ordinary point, the image under 7 of each pair a; and d; is a branch point and the
image of each & € K — B —|J;{a;, d;} is an ordinary point. The effect of the identification
can be visualized as the collapsing of a small neighborhood around each ¢; in I.

In order for § to be a W* mapping we must have the image of every vertex v € K a
vertex in K as well as the “new” branch points 7(a;) = 7(d;) and the finite set of points
{mog™(a;)) = mog™(di):n = 1,...,00}. Note, since a; and d; are eventually periodic
under g that (a;) = #(d;) will be eventually periodic under §.

Let ¢ be the smallest integer such that every point z € K has a neighborhood N,
such that g(N,) is an arc. We claim that ¢ = p — 1. We will show that this is the case
by examining the images under § of neighborhoods of the branch points of K.

For z € m(A;) we have two possibilities; z = n(y) with y € C or & = w(y) with
y € Ay — C. In the first instance there is definitely a neighborhood N, of z where §(IN,)
is an arc since x is not a branch point. In the second instance we know that there is a
neighborhood Ny of y where g(I,) is an arc thus wog(N,) will be an arc. N, = 7 (V) will

be a neighborhood of z and since g and § are commutative under =, i.e., mog(N,) = g(Ny),

we know that g(IV,) is an arc.




For each z € m(Ay) there will be two points ¢, and B, such that g(az) = a; and
9(0z) = b; for some i. The points o, and S, will be in the interior of the two edges, eq
and eg, incident upon = and on the same side of . We the can choose a point v, in
the interior of the single edge opposite e, and eg. Consider the arcs [y, @] and [vz, f)
through z. The union, Ny = [Va, &) U [V, Bz] is a neighborhood about z. The image of
N, under g will be a neighborhood about ¢;. Similarly the image of N, under n will be
a neighborhood about 7(z). The image under 7 of g(NV,) however will be an arc since
points along the two arcs [¢;, a;] and [¢;, d;] are identified under 7. Thus each point 7 (z)
has a neighborhood 7 (N;) whose image under § is an arc since g and § commute with
respect to . Thus every point z € 7(Az) has a neighborhood N, where g(V,) is an arc.

Since g(A;) € A;—; for i = 2,...,p we may continue in the fashion above to show that
for = € m(A;) there is a neighborhood N, such that g=!(N,) is an arc.

The only branch points in /& we have not examined yet are those of the form 7 (a;) =
w(d;) for some i = 1,...,s. Each point ¢; has a neighborhood N; such that g(c;) is an
arc. The points a; and d; where chosen to be in the interior of N;. Thus we may choose a
small neighborhood P; about @; and @; about d; such that g(F;) = g(Q;) and P, @Q; C N;.
Since P, (J; C N; and g(1V;) is an arc we know that g(F;) = g(Q;) is an arc. Under 7 the
union P; U @; will be a neighborhood, W; = #(P; U @;), about m(c;). Thus since g and §
commute under 7 we know that §(W;) = n o g(P;) = 7 o g(Q;) is an arc.

Thus ¢ = p — 1 where ¢ is the smallest integer such that for all # € K there is a
neighborhood N, where g7(IV;) is an arc. Note that the “new” smooth graph K has all
branch point of type (2,1).

Let K = K, and § = g;. If we now repeat this procedure on K; for i = 1,...p—1we
will produce a smooth graph K., and W*-mapping g;11: K;41 — Kiy where g; ~; gi1
with lag= 1. Let g; be the smallest integer such that for all z € I there is a neighborhood
N, where gf'(N,) is an arc. We willhave p=gqi+1=g+2= - =¢g_1+(p—1) so
that g,—1 = 1. Thus K’ = Kj_; is the desired smooth graph and ¢’ = g,_1is the desired
W*-mapping. O

Theorem 39 Let K be a connected smooth graph and ¢: K — I a W*-mapping with

fived point zy, A = {z € K:g(z) = ¢} and K = K/ ~, with the induced differential




structure and Riemannian metric, where ~ is the equivalence relation given by

T =y o,

z,y € AU {zo}.

x ~ y if and only if

Then there ezists a W*-mapping §: K — K such that g ~; §.

Proof. Let r: K — K be the projection map. Then ¢: K — K induces a mapping § on

I given by § = rogori,

This is clearly a well defined map since r(zp) is the only
point at which r~! is multivalued, but r~!(zg) = A and g(A4) = z, which is a single point.
Similarly we may define a mapping s: X — K by s = g or~!, The'map s is well defined

for the same reason as before. We then see that, as in theorem 35,

1 1

1

JOT =70(¢gOT ~OTr=T7T0 Sog=¢@goTrT. 0oTO0QgOT T=(goOg§
g g ) ,

1 1

sor=gor Tor=g andros=rogor " =j.

Thus we have g ~; g. O

The next theorem is based on a result by R.F. Williams in [39], but uses a slightly
different method. Williams showed that if I is a smooth graph and ¢: X' — K is a
W*-mapping then there will exist an integer m and an zy such that ¢™(z¢) = z¢ and
each embedded 1-sphere in K will contain a point in g~!(zy). He then showed that there
will exist a smooth graph K' and W*-mapping ¢": k' — K' where g' ~, ¢™, with shift
equivalence given by m K — K' and s: X' — K, and K' such that every embedded
I1-sphere in K' contains 7(zp). The next theorem is similar, but it gives control over
the integer m, allowing us to find a shift equivalence with m = 1. It differs in that it
requires that we start with a mapping with a fixed point. Williams’ method does not
allow control over m regardless of whether or not you start with a mapping with a fixed
point. We should note that our result does imply his since for any smooth graph K and

W*-mapping g there will exist an integer n such that g™ has a fixed point.

Theorem 40 Let K be a connected smooth graph and g: K — K a W*-mapping with
fized point xy. Then there exists a smooth graph K' and W*-mapping ¢': K' — K' such
that g ~s ¢', where the shift equivalence is given by the maps r: K — K' and s: K' — I

and I{' is such that every embedded 1-sphere in K' contains the point r(xy).
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We refer the reader forward to example 13 which gives an illustration of the techniques
we develop in the proof of theorem 38.

Proof. Write K = K and g = go. It is clear that K, will contain at most a finite
number of embedded 1-spheres. If every one of these one spheres contains zy then we are
done. Suppose not.

Let A3 = {z0}, A} = {z € Ky:go(z) = z0}, and AY = {z € K:g(z) € A? ;} for
i=1,...,00. We necessarily have g(Ay) = A} , fori =1,...,00. Let N be the smallest
integer so that every embedded 1-sphere contains a point in Ufio A?. We are guaranteed
the existence of a finite such NV by theorem 37.

Let Ky = Ky/ ~1, with the induced differential structure and Riemannian metric,

where ~y is the equivalence relation given by

T =Yy or,

x ~q y if and only if
z,y € AJU A4J.

By theorem 39 there exists a W*-mapping g1: K1 —+ K where ¢; ~; go with shift equiv-
alence given by the maps r1: Ky — Ky and s1: Ky — K;.

Let A} = {ri(A§ U A}, Al = {ri(49)}, and A} = {r(A);}} fori=1,...,00. We
see that A} contains just a single point, 7(zy) which is fixed under g;. We also see that
a(A)=A] [ fori=1,...,00.

If J is an embedded 1-sphere in Ky which contains points of A} then r1(J) will be a
finite number of embedded and immersed 1-spheres in K; which contain r(zg). 1f J is an
embedded 1-sphere in K, which contains points in AY, ¢ > 2, and does not contain points
in A} then r{(J) will be an embedded 1-sphere in K; which contains points in A} ;. Thus
every embedded 1-sphere in K; will contain a point in U?r: 31 Al

We may then continue in this fashion for j = 1,..., N — 1 where ;41 = I{;/ ~jq1
and ~, is the equivalence relation given by

z ~;¢ ¥ if and only if =y or., ‘

z,y € AU Al
Then by theorem 39 there will exist a W*-mapping g;1: K41 — K41 where gj41 ~ g;
with shift equivalence given by rj 11 I — K and sj1: K; = Kjiq. In the above
Al = {r;(A7TU AT Y and A! = {rj(Al )} fori =1,...,00. Again notice that Al will

consist of the single point rj 07 0+ or(xy) which is fixed under g;. K; will be such
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that each embedded 1-sphere will contain a point of Ufg}j Al When we reach j = N we
will have a smooth graph Ky = K' which is such that every embedded 1-sphere in K’
contains a point in A) which consists of the single fixed point ryory_jo---ori(zg). The
mappings r =ryory_10---0r; and § = Sy 0 Sy_1 0+ 0 gy give the shift equivalence

between gy and gy. O

Definition 38 If K is an elementary smooth graph (branched 1-manifold) with branch
point b and g: X — K is a W*-mapping where g(b) = b then we say that {X, ¢} is an

elementary presentation of the solenoid K, and shift map h.

The following theorem is Based on a result of R.F Williams [39].. The proof that we
give is similar to that in [39], but we have made some modifications as Williams’ original
proof contained an error. Given a presentation {Kj, go} the technique in Williams’ proof
consists of finding a “new” presentation {K,,gm}, where g, ~; go with lag= m, by
moving through a finite number of presentations, {K;, ¢;}, where g;—; ~; ¢; with 1ag¥1 for
1 =1,...,m. Williams’ error was the fact in certain circumstances the map r;: K;_1 — K;
which he constructed as part of the shift equivalence between K;_; and K; will not always
be onto. Example 14 illustrates how this can occur. We give a “new” proof in complete
detail as it gives a procedure for finding elementary presentations. We note that although
the version that we give is slightly stronger than that stated in [39] this is as a result of

theorem 40. The proof is essentially same except for a few modifications.

Theorem 41 Let g: K — K be a presentation of (I, h) with a fized point z. Then there
is an elementary presentation ¢": K' — K' such that (K., h') is topologically conjugate

to (Koo, h), .., grs g

Proof. Let X = Ky and g = gp. From theorems 36 and 38 we know that there exists
a smooth graph I{; and W*-mapping g;: K; — K; where g; ~; ¢o, K1 has all branch
points of type (2,1) and every point of z € K is such that there exists a neighborhood
N, of z such that g;(N) is an arc. Let ri: Ky — K, and s;: K; — Kj be the mappings
giving the shift equivalence. If we then perform the procedure given in theorem 40 we
find a smooth graph K, and a W*-mapping g, where gy ~; g1 , with the shift equivalence
given by ro: If; — K and sq: Ky — K ,and where K, is such that every 1-sphere in

I{, contains the point r4 o 71(xy). We also note that every branch point of I, except
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79 0 71(x) will be of type (2,1) and every point in z € K, except 73 o 71(zg) will have a
neighborhood N, such that go(V;) is an arc.

If I{5 has no branch points other then b = ry o r1(@p) then we are done. Suppose not.
We will find an elementary smooth graph X' and W*-mapping ¢": X' — K' with ¢’ ~; go
by “removing” the branch points other than b = ry o 71(mg) using a reduction process.
Let V, Y, X and C be the branched 1-manifolds and boundaries given in figure 4.1. Note
that there are “natural” maps V — Y and X — C. The stem of C is [ay, b1] N [az, ba).
The stem of Y is [b, ¢1] N [b, ca].

We proceed to remove the branch points of K, by a series of two types of “moves”.

1. Remove a copy of C from K; — b and replace it with a copy of X.

2. Remove a copy of ¥ from K; and replace it with a copy of V.

At each move we pass from g;: K; — K; to a shift equivalent g;q: K;pq — IGpq with
shift equivalence given by r;11: K; — Kjy1 and sj: Ky — K;. With the exception
of r;0r;_1 0+ 0r3(b), no branch other then those of type (2,1) are allowed. Each K;
will be such that every embedded 1-sphere will contain 7; 0 ;1 o -+ 0 73(b). We call
70751 0---org(b) the distinguished branch point throughout and will be referred to as

Just b. To show that this process converges, we introduce two weight functions:
w1 (K;) is the number of stems of C-sets in K; — b.

wy(K;) is the number of stems of Y-sets in K; — b.
If Cy is a copy of C in K; — b, where Cy = {ay,a9,b1,02} is open in K;, and Kiq
is formed by replacing Cy with a copy X of X, then wi (K1) < wi(K;). We see this

because if C7 is a copy of C remaining in K;4, such that
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(a) C} N Xy = 0. Then C7 corresponds to C' C K;;
(b) C1 N Xy = [ai,b;]. Then Cf corresponds to Cy C K; where Cy N Cy = [a, b;]; or

(c) C; N Xo = [a1,b1] Ua1,b2] ( or one of the other four copies of ¥ in Xj), then there
is a corresponding C; C K;, where Cy N Cy = [ay, b1] U [ay, bs), ete.

Finally, note that the stem of Cy has been removed and not replaced so that w;(X;) =
wy (ICi1) + 1

If Yp is a copy of ¥V in K; with V' — {b,c1,c2} open in K; and I;y; is formed by
replacing ¥y with a copy Vg of V, then we(K;) = we(K;y1) + 1. This is similar to and
easier than the case for a copy of C' in K.

Consider g¢;: K; — K; a W*-mapping which is such that every 1-sphere of K; contains
the distinguished branch point b and where every poinﬁ z € K; — {b} has a neighborhood
N, such that g;(N,) is an arc. Suppose that K; has stem copies S; and Sy of C, we
say that S < Sy provided gl'(S1) C Sy for some n > 0. This is a partial ordering, in
particular Sy < 5] is impossible as g; is an expansion.

Assume that wy(K;) > 0. Then there is a stem Sy of a copy of C' in K; — b, minimal
relative to this partial ordering. A copy Cy of C' can be chosen small enough so that if
K, is formed as described then there is a I;41 C K}, and a map gip1: Iy — Ky
which is shift equivalent to g;. This is done as follows. We choose Cy small enough so
that g|Cp factors through an arc. This is possible as at every point of x € K; except the
distinguished b there exists a neighborhood N, such that g;(N,) is an arc. The natural
map X — C provides the map s} ;: K, — K;. We claim there is a map 7}, : I; — K],
so that the following diagram is commutative:

g
1 i+1 ]
Kz‘+1 e Ki-l-l

TI'+1
' 1 '
Si+1l lsi+1

I(,, _y;-} I{;

Suppose = € K; and consider

Case 1.) gi(z) ¢ Co. Then r{, () is the unique point (i)' o g;().

Case 2.) = € I; NIy, where g;(I;) = [ap, by), p = 1,2. This is impossible by the minimality
of S[).




Case 3.) z € 1 N1y, where g;(I) = [aq, bp], p = 1,2 for some ¢ = 1,2. Then define 7} |/,
to map I to {ag, bp] C Kj, ;.

Case 4.) For some p, ¢, z lies on one or more one-cells 7, each of which maps under g; to

@y, bg] C Co. Then ri,, takes such an I to [ay,bg] C Xo so that siy; oriyy = g;-

Note that the maps i, ;: K; — Ki,, and g, : K, — K, defined above, are not

necessarily onto. Thus we define

Ky = 7"§+1(Ki)a Sit+1 = 5§+1|’"§+1(Ki)a
Tit1 =Ty a0d  gipy = gipq|riy (KG).
We then have riy1: K; — Kiyq and gi4q: K41 — K onto. We also then see that
gi ~s git1. We note that since K1 C K|, we still have wy (K1) < wi(KG).
Similarly, consider g;: K; — K; a W*-mapping where I is such that every 1-sphere in
I; contains the distinguished branched point b and at every point = € IK; except b there
exists a neighborhood N, such g;(IV,) is an arc, wa(K;) = 0, and two stem copies Y; and
S of Y C I;—b. We say that Y; < Y; provided ¢?(Y;) C Y; for some integer n. These is
again a partial ordering and we can prove the following in similar fashion to the above.
Assume that wy(K;) > 0. Then there is a stem Sy of a copy of ¥ in K; — b which is
minimal relative to this partial ordering. A copy Yy of ¥ can be chosen small enough so
that if K;y; is formed as described then there is map g¢;y1: Kjp1 — K which is shift
equivalent to g;. This completes the reduction process. O
Next, we consider several examples which demonstrate the techniques developed in
theorems 36, 38, 40, 41 and which are used to find an elementary presentation. We show
each technique separately and concentrate on simple cases in order to keep the examples
simple and to illustrate as clearly as possible the underlying technique. In general more

complicated examples just involve repetition of the techniques in question.

Example 11 In this example we demoﬁstrate how given a smooth graph K and a W*-
mapping g: I — K we can find a smooth graph K’ and a W*-mapping ¢": K’ — K’
with g ~; ¢' and every branch point of K' of type (2,1). Thus we will be showing an
application of the technique developed in theorem 36.

Consider the orientable smooth graph K = (G, S) with G = (V, E), V = {v), vy, v3},

E = {e1, 9, €3, e4, €5} where the incidence relations and switch conditions are summarized
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Figure 4.2: The smooth graphs &K and K’ given in example 11

in the table below:

v R(v) L(v)

vy | {e1, es,eq} | {ea} _
va | {en,es} | {e2}
vs | {es,ea} | {es}

A diagram showing K can be seen in figure 4.2. The orientation p shown in the diagram

by the arrow heads is given by; p(e1) = p(es) = ve, p(e2) = vy, and p(e3) = pleq) = vs.
Consider the W*-mapping g: K — K given below

'
€1 > €1€92€36E5€2€1

€9 3 €9L4€E5€En
94 e3> egeseqeiegey

€4 ¥ €1828385€9C4

| €5  €exeqey.

Since I{ is orientable each word e;...e; above uniquely denotes a route on K and g is
assumed to be an immersion which expands each edge e along the route g(e). Examining
I we notice that every branch point of K is of type (2,1) except v;. There exist small
arcs [vg,p] C é and [vy,q] C & at the vertex v; where g([v1,p]) = & and g([v1,q]) =
€1. The points & and y are shown by a small “X” in the diagram and are such that
9(p) = 9(q) = v2. By identifying the arcs [v1,p] and [v1, ¢] we arrive at the smooth graph
K' = (G, 8") with G' = (V' E'), V' = {21, %5, 23,24}, B' = {91,792, Y3, Y4, Us, Ve } \n;here




the incidence relations and switch conditions are given in the table below:

z | R(z) |L(z)

z1 | {ys, ¥a} | {92}
Ty | {y1, s} | {2}
z3 | {ys, vat | {v5}
z4 | {y1, 94} | {¥6}

The smooth graph diagram for K’ is shown in figure 4.2. The orientation shown in the
diagram of K’ is induced by the orientation p on K and given by; v(v1) = v(ys) = za,
v(y2) = =1, 7(ys) = 34 and v(ys) = 7(ya) = z3. The projection mapping r: K — K' is

such that;

r{v) =z fori=1,2,3, r(p)=r(g) =24, r(lvr,pl) =r([v1,a]) = s,
T<€j) = yj for .7 = 2731 51 T([p:»v.’l]) =¥, T([q,vg]) = Y4
The mapping ¢": I{' — K’ induced by g and r is such that ¢’ fixes the vertices zy, z3, x3,

g'(z4) = x5 and ¢' expands the edges of K’ along routes y;...y; as shown below;

P

Y1 Y2YsYsy2YsY1

Y2 = YoYelYaYsYa

Y3+ YsYaUsYaYeY1YaYeld
Ya - YoUslsY2YeY4

Ys > YsYalsls

[ Ys ™ Yel1.

The mapping s: K’ — I is then given as follows; s(z;) = v; for i = 1,2, 3, s(z4) = v, and
s expands each each edge of K’ along the routes e;...e; as shown below;

.
Y1 —+ egeszeseney

Yz = €2€4€5€3

Y3 ¥ €4€5€2€1€2€4
8 4
Y4 3 ex€3e5€3€4

Us > E5€9€1

[ Vs e

We then have g ~; ¢’ with lag=1 via the mappings r and s. Thus rog = g'or, gos = sog,

ros=g¢,and sor=g.
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Figure 4.3: The smooth graphs K and K’ given in example 12

Example 12 In this example we investigate the technique developed in theorem 38 which
when given a smooth graph K where all branch points are of type (2,1) and a W*-mapping
g : I{ — K allows us to find a smooth graph K’ and a W*-mapping ¢": K’ — ' where
g ~s ¢ and such that for all z € K’ there is a neighborhood N, of z such that g(IV;) is
an arc. We note that this technique is similar to that in example 11 in that both involve
the “zipping” up of a small neighborhood near branch points.

Consider the ﬁonorien’cable smooth graph K = (G, S) where G = (V, E), V = {v1, v},

E = {ei, €2, 2} and incidence relations and switch conditions given in the table below:

v | R(v) | L(v)
v | {ea} | {e1}
v | {e2} | {es}

A diagram of K is given in figure 4.3. The arbitrary orientation p on K shown in the

figure is given by p(e;) = p(ea) = v; and p(es) = vq. Let g: K — K be the W*-mapping
where g(v1) = vq, g(v2) = v1 and g expands each edge along the route e}* ... e;-”“ as shown
below;

ey - e3

gy €z eey !

€3 > €y 16382.
Note, that in the above representation of g a positive exponent means that g expands
the edge in same direction as the orientation shown in the figure and negative exponent

means that g expands the edge in the opposite direction to the orientation shown in the
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figure. We see that there is a small neighborhood N, of the vertex vy for which g(IV,)is
an arc, but that there is no neighborhood of v; whose image under g is an arc. We do
see however that under g v; maps to ve thus there will be a small neighborhood Ny of v;
where ¢(V;) is an arc. Consider the two small arcs [vq, p] C €3 and [vg, g] C €3 at the
vertex vy. In the diagram p and g are represented by small “x” marks on the edge ej.
The arcs [vg, p] and [vg, q] are chosen so that g([va, p]) = g([ve, q]) = €2, g(p) = g(q) = vs.
By identifying the arcs [vg,p] and [vg, ¢] we arrive at the smooth graph XK' = (G, ")
where ¢’ = (V', E'), V! = {1,223}, B' = {y1, Y2, U3, ¥a} and the incidence relations and

switch conditions are given in the table below:

z | R(z) | L(z)
o1 | {y2} | {1}
2 | {2} | {va}
3 | {ya} | {vs}

The smooth graph diagram for K’ is shown in figure 4.3. The orientation, v, shown in

the figure is given by v(y1) = ¥(y2) = =1, ¥(y3) = z3, and y(ya) = z2. The projection
mapping 7 I — K’ is given by;

v(v1) =31, T(v) =32,  7(p) =r(g) = s, r(e1) =y,
r(es) =y, r([p,q]) =3, 7([v2,0]) = 7([v2,q]) = wa.
The mapping ¢": K’ — K' is such that g(z1) = z2, g(z2) = 71, g9(x3) = 3, and ¢’ expands

the edges of K" over the routes yi* ...y* as follows;

,

Y1 > Y yav

v iyt
g <

Y3 = ¥s T YsYaye

Ya =+ Yo

\
The mapping s: K' — K is then given as follows; s(z1) = s(z3) = vy, s(z3) = vy, and s
expands the edges of K’ along the routes el ...e’* in the manner given below;

7

r
Y1+ €3

-1
Y2 — €169
S <

Y3 > e3

L Yq > e3.

We then have g ~ ¢' with lag=1 and shift equivalence given by the mappings  and s.
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Figure 4.4: The smooth graphs K and K’ given in example 13

Example 13 In this example we demonstrate the technique developed in theorem 40.
Thus we will show that given a smooth graph K and a W*-mapping ¢g: K — K with a
fixed point zo we can find a smooth graph K’ and a W*-mapping ¢': X' — K' where
g ~, g and K’ is such that every l-sphere in K’ contains .

Consider the smooth graph K = (G, S) where G = (V,E), V = {v,v}, B =
{e1,eq,€3,€4} and the incidence relations and switch conditions are given in the table

below:

v | Rv) L(v)
v1 | {e1,ea} | {e1, es}

V2 {62, 64} {83, 64}

A diagram for K is given in figure 4.4. K is orientable and an orientation p is shown

in the figure with p(e1) = p(ea) = vy and ples) = ples) = ve. Let g: K — K be the
W*-mapping where g(v1) = vy, g(v2) = vz and g expands each edge of K along the routes

e;...e; as specified below;
)

€1 =* e3eq

€9 > €4€9
g 3
e3 + €34

| €4 eqeae; g€y,

We see that both vy and vy are fixed under g. We will use the vertex v; to find the
new presentation consisting of K’ and ¢’. Note that the embedded 1-sphere consisting
of the loop e4 does not contain v4. The preimages of the point v; consist of two points

p and ¢ in the interior of the edge e4. In the diagram p and ¢ are represented by “x”
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marks. We form the new smooth graph K’ by identifying the points p, ¢ and the vertex
vi. K' = (G",S") where G' = (V',E"), V = {z1, 72}, B' = {v1,¥2, V3, ¥4, s, Ys} and the

incidence relations and switch conditions are summarized in the table below:

T R(z) L(zx)

o {?,’1, Y2, Y4, y5} {yl; Y3, Y4, 3/5}
T2 | {v2,ys} {y3, y6}

The smooth graph diagram for K’ is shown in figure 4.4. The orientation -y shown in the
figure is induced by the orientation p on K and is given by; v(v1) = v(y2) = v(va) =
v(ys) = 1 and y(y3) = v(ys) = z2. The projection mapping r: K — K’ is given by;

r(v)==a; fori=1,2,  7([vs,p}) =5, 7([v2,4]) = s,

r(es) =y; for j =1,2,3, r([p,q)) =va.
The mapping ¢': X' — K’ is then such that ¢'(z1) = 21, g('ze) = z2 and ¢' expands each
edge of I{' along the route y;...y; as follows;

’

Y1 Ysl2

Yo = YsYaYsl2
Yz = Y3YsYals
g9
Ys =+

Ys —* YsYalsl2

L Y6 YsYsYaYe-

The mapping s: K' — K is given by; s(z1) = v, s{x3) = vy and such that s expands each
edge of K’ along the route e;...e; in the manner shown below;

.
Yy — €3z

Yo >+ €4€2
Y3 7+ €3y
LR
Ys—r e

UYp = €4C3

| Vs €34

We then have g ~; ¢’ with lag=1 with shift equivalence given by the mappings r and s.

Example 14 In this example we demonstrate the technique for finding an elementary

presentation developed in theorem 41. We start with a smooth graph I and W*-mapping
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Figure 4.5: The smooth graphs Kj and K given in example 14
g:I{ — K with fixed point v; where K is such that every embedded l-sphere in K
contains v;. We then show how to find an elementary smooth graph J and W*-mapping
fid = J with g ~,; f. The smooth graph K = Ky = (Gy, Sy) with Gy = (W, Ey) where

Vo = {v1,ve,v3}, Fo = {e1, 2, €3, €4, 5} and incidence and switch conditions summarized

in the table below:

v | R(v) L(v)

n {61, 62} {64, 65}
vp | {es} |{e1,eq}
V3 {63} {64) 65}

A diagram for K is shown in figure 4.5. Kj is orientable with orientation p, shown

in the diagram, given by p(e1) = p(ea) = v, ples) = w4, and pley) = ples) = vy. Let
go: Ko — Ky be the W*-mapping where go(v;) = vy, for ¢ = 1,2,3 and which expands
each edge of K along the route e;...e; as shown below;

.
€1 > e1€3€4

€2 > €1€8364
o e3> egesey

€4 ¥ €9€36€5

€5 > €2€3€5
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It is clear from the diagram of Iy that every 1-sphere in K; contains the vertex v;.
Also [rom the definition of go we see that for every point z € K there is a neighborhood
N, such that go(/V,) is a 1-cell. Thus we may begin the reduction process as given in
theorem 41.

Let C, X, Y, and V be given as in figure 4.1. Kj contains a single copy Cy of C.
Where Cg = [a1, 01] U [ag, by) and [aq, b1] N [ag, by] = €. Note that go(Cy) factors through
a l-cell. Cp is obviously minimal under the partial ordering given in theorem 41 as it
is the only copy of C'in K. We may then form the new smooth graph K/ from Iy by
removing Cp {rom Ky and replacing it with a copy Xy of X. We write K| = (G}, 57) with
G = (V], E}) with V/ - {z1,...,%0}, Bl = {y1,...,v12} where the incidence relations

and switch conditions are summarized in the table below:

| z | R(z) L(=z) z | R(z) | L(z)
T | {yn, o} | {va, viz} || @6 | {vs, v7} | {ve}
za| {vsb | {va} | = | {vs,ws} | {y10}
z3 | {va} {vi} | =s| {wo} |{yu}
4 | {Ys, Yo} {ya} Ty | {yw} |{yi2}
s | {y7, ys} {ya}

A diagram of the smooth graph X7 is shown in figure 4.5. The orientation shown on I¢ :
is induced by orientation p on Kp. The mapping s}: K — Kj is induced by the natural

map X — C. We see that s} maps the vertices of K} to Ky as follows;

The map s} maps the edges of K! to K as shown below;

.
Y = {01,661] Ys =+ €3 Yg = [Ua,bz]

) ve[vn,a9] we - es yio [vg, by]

Ys > [ag,v2] yrres yi [ba, v1]

Yy [fl1,'02] Ys e Yia > {0y, v1].

Next we need to find the map r{: Ky — Kj. By following the procedure given in

theorem 41 we find that r{ is such that 7{(v;) = z; for i = 1,2, 3 and that 7 expands
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each edge of Ky along the route y;...y; as follows;

4
€1 = Y1YaYrYelna

€2 ¥ Y1YaYrloli1
7"1 § €3 Y2UsUsYalii

€4 = YaYsYsYi0Y12

L €5 7 Y2U3YsY10Y12-

We note that r]: Ky -+ K is not onto since there does not exist an z € Kj such that
i (z) € yg. We will restrict our attention to the sub-manifold K; = r{(Kj) and define
ri: Iy — Ky by rp = 7}, and s1: Ky — Ky by 57 = s{|K;. We then have r: Iy — K,
onto. The maps r{ and s; are now such that s;07 = go. We may then define g1: 1 — K

as g1 = r; © 8. The mappings are then such that the diagram below commutes

Ky~ K,
|27
Ko —57> Ko
and the mappings r; and s; define a shift equivalence of lag=1 for the W*-mappings go
and g;.
In order to reduce the amount of book keeping necessary we will remove the type (1,1)
vertices o, 23, Ts, T7, Tg, and g from K, and replace them with ordinary points. We
then write K; = (G1,51), with Gy = (Vi, E1), V1 = {wy, we,ws}, By = {z1, 22, 23, 24, 25}

and the incidence relations and switch conditions given in the table below:

w | R(w) | L{w)

wy | {21,220} | {23, 24}
Wy {25: 23} {22}
W3 {25, 21} {24}

A smooth graph diagram for K is given in figure 4.6. The orientation shown in the

diagram is induced from that on Kj. The mapping gi: K1 — K is such that gy (w;) = w,

fori=1,2,3 and g; expands each edge of K, along the route z; ...z, as given below;

p
21 B 2124292524

2o b 2124
914 23 > 2025242923

Z4 > 2923

25 > 292524.
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Figure 4.6: The smooth graphs K; and K, given in example 14

The smooth graph K contains two copies of Y, ¥; and Y3, where Yy = [by, w;]U[bg, w]
and Y7 = [a1, w;) U [ag, wy]. Here [by, w1] N [b2, w1} = 22 and [ay, wq] N [ag, wi] = 2z4. The
points ay, ag, by, by are labeled in diagram 4.6 using x’s. In regards to the partial ordering
given in theorem 41 neither Yy < Yj or Y] > Y}, thus it does not matter which we remove
first. We will remove both in a single step.

We create a new smooth graph K, from K; by removing ¥, and Y) and replacing
them with copies V5 and Vi of V respectively. K, = (Ga,Ss), with Gy = (V4, E»),
Vo = {uy,...,us}, B2 = {t1,...,t7} and the incidence relations and switch conditions are

summarized in the table below:

U R(s) L{u)
uy | {t1,t2, 83} | {ta, b5, 87}
uz | {ta} {t2}
ug | {te} {t:}
ug | {te} {ts}
us | {ts} {t7}

The smooth graph diagram for K3 is given in figure 4.6. The orientation shown is
again induced from that on Kj. It is easy to see that Kj will be an elementary smooth

graph if we remove all the vertices of type (1,1) and replace them with ordinary points.
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The mapping s2: I{ — K; induced by the natural mappings from V; — Y, and
Vi = Y7 is such that sp(uy) = wy, s2(u2) = s2(uz) = wa, s2(us) = sa(us) = ws and sy

maps the edges of Iy to K; as given below;

p
120 f5+ 24

o> 29 g+ 25
82<

tg> 2y trir 2

| tg — 23.

We must now find the mapping ro: K1 — K3, We will clearly have ry(w;) = u; for
i =1,2,3. We still need to determine the action of 5 on the edges of K;. By examining
the image of each 2; in Ky under g; as well as image of each #; in K, under s, we find

that ry expands each edge of K, along ¢;...¢; as shown below;

4
21 > tstytitets

Zg 3 Tgly
71 4 23 > tilgtstats

24 > Toly

| 25 —r Tilgts.

The mapping go: Ky — K3 is then defined by g2 = r5 0 85. We see that gq is such that
92(wi) = uy for i =1,2,3,4,5 and that g, is such that it expands each edge in K, along

the route ¢;...t; as given below;

t1 > taty
ty > tgly
tg > tabrtitgts
924 t4 — tytetstaly
t5 - toty

tg ¥ t1tgts

Ty = toty.

The mappings ry and s; then form a shift equivalence from of lag=1 of ¢; and g,.
Putting everything together we see that ryor;ory and sy0s1 05, form a shift equivalence

of lag=3 of gy and g,. By re-labeling the type (1,1) vertices, ug, us, uq and us, of Ky as

ordinary points we may write K, as an elementary smooth graph with three edges, say

a, b, ¢, and a single vertex, say v (see figure 4.7). Here we are assuming that the edge
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K,

Figure 4.7: The smooth graph K, (relabeled) given in example 14

a is made from the edges, %3, t7, the edge b is made from edges %3, ¢4, and the edge c is

made from the edges {1, ts, and 5. The mapping g, will then be given by;

a > ach
g2 4 b ach

¢ — ach.

In this example it is interesting to note that if we consider the circle S; to be an
elementary smooth graph with a single edge, say p, and a single vertex, say g and then
define then expanding mapping f:S; — S; which wraps the circle around its self three
times, i.e., p — ppp. We may then form a shift equivalence between f and gy as follows.
Let r:S; — K, be defined by r(¢) = v and r expands p along the route abc. We then
define s: K5 — S so that s(v) = ¢ and s maps each edge of K, to the edge p of S;. We
then see that gy ~ f. Thus go is shift equivalent with lag=4 to the map f, an expanding

mapping of the circle!




Theorem 42 [39] S(h) does not depend on the choice of presentation.

Theorem 43 [89] Let h and h' be shift maps of solenoids Ky, and K[, and assume thal
Ko and K!, have elementary presentations {K, g} and {K', g'}, respectively. Then h is
topologically conjugate to B’ ( g ~, ¢') if and only if S(h) = S(K').

Our final result in this section is a result of Williams [39] giving necessary and sufficient
conditions for an endomorphism of a finitely generated non-abelian free group to realize
a shift equivalence class for an elementary presentation.

Let oz F — F be an endomorphism and F' a finitely generated free group where the
generators of ' are partitioned into three subsets O (orientable), R (right-nonorientable),
and L (left-nonorientable). We say that o satisfies the Q-condition if for some m > 0,
the word o™(z) contains the whole alphabet O U R U.L, for each letter z. By this we
mean that for all z € F' there must exist an m > 0 so that the word o™ (z) contains every
generating element or its inverse. A map A\: X — X, where X is a finite set, is said to be
eventually constant if for some integer m > 0, A™ is a constant map.

Let o and F' be defined as in the preceding paragraph. For each generator of F' write
z € Ot and 7' € O™ for z € O, etc. An endomorphism « satisfies the immersion
condition if for every x € OU RU L, then a(z) = y1y2 - - - yr, where each y; or its inverse
is in O U R U L, and satisfies:

(i)
OtUR* if y; € OYU L%,

Yit1 €
O-UL*  otherwise;

(i) « is locally orientation preserving [reversing], i.e.,

(a)
OtUR* if z€ OTUR* [0~ ULY

h €
O~ UL*  otherwise;

OtUL* if £€OFUR* [0~ URY

O~ UR*  otherwise;

Yr €




Note that condition (i) says that the immersion f of the elementary branched 1-manifold
K which is to induce « doesn’t double back on any of the branches of K. Condition
(ii.a) says that if a one-cell of X begins pointing rightward/leftward, then in the locally
orientation preserving case its image under the immersion f will begin pointing right-
ward/leftward and in the locally orientation reversing case its image under f will begin
pointing leftward/rightward. Condition (ii.b) says that if a one-cell of K ends pointing
leftward/rightward then in the orientation preserving case its image under f will end
pointing leftward/rightward and in the orientation reversing case its image under f will

end pointing rightward/leftward.

Theorem 44 [39] In order for a shift class S(h) to have a shift map h with an elementary
presentation it is necessary and sufficient that it contains an endomorphism a of a free

group F' on generators O U RU L such that
(o) « satisfies the immersion condition,
(b) o satisfies the Q-condition,
(c) there are eventually constant maps A, : OURUL — O U RU L such that

1. a(z) has the form Az) - p(z) if z € O,
2. a(z) has the form A(z)--- A(z) if z € R,

3. a(z) has the form p(z)--- () if ¢ € L.

4.3 (p,q)-Block Presentations

In this section we introduce (p, g)-block presentations. With each (p, ¢)-block presentation
we can associate an endomorphism of a finitely generated free group. We then show that
if two presentations, say {K, ¢} and {K', ¢'} with associated endomorphisms g. and ¢.,
have (p, g)-block form and are shift equivalent, then their associated endomorphisms will
also be shift equivalent. Thus (p, ¢)-block presentations allow us to find further algebraic
invariants associated with presentations of solenoids. In general finding a (p, ¢)-block
presentation shift equivalent to a given presentation of a solenoid is easier then finding

a shift equivalent elementary presentation. Also, every presentation of a solenoid will be




shown to be shift equivalent to a countably infinite number (p, ¢)-block presentations,

each possibly yielding different invariants.

Definition 41 Let {&, g} be the presentation of a solenoid with vertex set V' # 0. Let
p,q € Z where 1 < p < ¢. Then {K, g} is said to be in (p, g)-block form (or a (p, g)-block

presentation) if

Suppose two presentations of solenoids, {K, g} and {K', ¢}, are in (p, ¢)-block form
and are shift equivalent with the shift equivalence given by the maps r K — K’ and
s: K’ — K. Then it is easy to see that we must have (V) = V' and s(V') = V, where
here V' is the vertex set of K and V' is the vertex set of K'.

We will now give a result showing how to calculate the number of fixed points of g* for
each integer 1 = 1,..., 00 for a solenoid given a presentation. This result was originally
shown to be true by Williams in [38] for presentations of solenoids {K, g} where the
smooth graph in question has all branch points of type (2,1) and are such that every
point z has a neighborhood N, where g(N;) is an arc. We have written a new proof of

this theorem so it applies to the more general presentations of solenoids considered in

this thesis.

Theorem 45 Let {K, g} be the presentation of a solenoid where K has vertezr set V, edge
set B. Let p be an arbitrary orientation on K. Let C be an |E| x |E| matriz where Cj;

equals the number times the image g(e;) of edge e; crosses edge e; regardless of direction

and let D be a |V| x |V| matriz where for eachi,7=1,...,|V|

1 if g(v) = v; and g maps right(left) edges at v; to right(left) edges at v;.
Dji =19 =1 of g(v;) = v; and g maps right(left) edges at v; to left(right) edges at v;.
0  otherwise .

Then

|Fiz (g™)| = trace C™ — trace D™.

Proof. Consider g: K — K. Let W C K and denote by Fix {¢™, W) the set of fixed
points of g™ in W. It is easy to see that

|[Fix (¢™)] = [Fix (¢™, K = V)| + [Fix (g™, V).
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We alse know that

15|
K-vV=|]Je
i=1
where e; are the edges of K. Thus we have
|5
|Fix (g™, K — V)| = > _ |Fix (g™, e)|-
k=1

We will calculate |Fix (g™)| by first finding |Fix (¢™, K — V)| and then |Fix (¢™, V)|. We
will then show that their sum must be trace C™ — trace D™,

Suppose the edge e; maps under g™ to the route of'a}?...cq" on K where o; € E
and n; = +1; n; = 1 if e; traverses a; in accordance with the orientation on a; and
n; = —1 otherwise. It is easy to see that (C™);; will be the number of occurrences of e,

regardless of direction (what power it is raised to), in the route a*ab? ... ag”.

Suppose that e; occurs p times in the sub-route ah?af® ... oz:;i’i‘ then, corresponding
to each occurrence of e;, g™ will have a fixed point in e;. If a; = ¢; and ny = 1 then there
will be no fixed point in e; corresponding to this occurrence of e; in the route, however g™
will fix an end point of e; corresponding to this occurrence. If oy = e; and n; = —1 then
g™ will have a single fixed point in the interior of e; corresponding to this occurrence.

Similar results hold for a; = e; with ny = £1.

Bach edge e; € F where g™(e;) = o ... aq? will be of one of the following 6 types:
1. oy, 0 # ey

2. oy = e, g 7 € Or oy # ey, g = e; where ny = 1 or ng = 1 respectively,

3. o =e;, g F# € O oy # e, g = e; where ny = —1 or ny = —1 respectively,

4. a; =ay=-¢; withn; =n, =1,

5. sy =ay=¢ withni=-1,ny=1o0rn; =1,n,=-1L

6. a) = ay = ¢; with ny = ng = ~1,

Let A; be the set of edges in K with type i. We may then write B = A; U A, U ... U A;
where A; N A; =0 for ¢ # j.

If e; € Ay then the number of fixed points of g™ in e;, |Fix (¢™,e;)|, is (D™); and

none of the incident vertices of e; is fixed.




If e; € A, then number of fixed points of g™ in e;, |Fix (¢, e;)| is (D™);; — 1 and one
of the incident vertices of e; is fixed.

If ¢; € A then the number of fixed points of g™ in e;, |Fix (g™, ¢e;)], is (D™); and
none of the incident vertices of e; is fixed.

If e; € A, then the number of fixed points of g™ in e;, |Fix (¢™, €;)|, is (D™);; — 2 and
both of the incident vertices of e; are fixed. ‘

If e; € As then the number of fixed points of g™ in e;, |Fix (¢, e;)}, is (D™);; — 1 and
one of the incident vertices of e; is fixed.

If e; € Ag then the number of fixed points of g™ in e;, |Fix (g™, e;)|, is (D™); and
none of the incident vertices of e; is fixed.

Putting these results together we see that

|| | 5|
[Fix (9™, K = V)| = Y [Fix (g™ ex)] = D (D™)is — | Aa| = |As] — 2| Aa].

k=1 k=1

We will now calculate |Fix (¢™, V)|. The vertices of K which are fixed under g™ can
be partitioned into two types, those whose orientation is preserved under g™ and those
whose orientation is reversed under g™. Let By be the set of vertices fixed under g™
whose orientation is preserved under g™. Let By be the set of vertices fixed under g™
whose orientation is reversed under g™. We then see that |Fix (g™, V)| = |By| + | Bal.
We may further refine this partition, below, by considering how the incident edges are
mapped under ¢g™.

Let X be a finite set and f: X — X be an eventually constant map, then there will
only exist one point € X such that f(z) = =.

Consider a vertex v; of V where g(v;) = v;. Suppose that the orientations of the edges
incident upon v; are preserved under g™. We may define two maps A: R(v;) — R(v;)
and gu: L(vj) — L(v;). The map X is defined so that for e € R(v;), where g™(e) =
na

10y ... aq", we have A(e) = ay. The map p is defined so that for e € L(v;), where

g™(e) = of* ... 0y 7 ay, we have pu(e) = a,. Since g™ must satisfy W3 we know that
maps A and p must both be eventually constant. Thus there can only exist one edge
e € R(v;) such that A(e) = e and only one edge e € L(v;) such that ;u(e) = e. A similar
result holds for the vertices fixed under g™ whose orientation is reversed under g™.

We may partition the vertices of K in B;, for 4 = 1, 2, into two classes. Let B;1 C B;

be the set of edges in B; such that there are two e, ¢’ € I(v) such that g™(e) = o} ... g’




with a; = e and g™(e') = of* ... ag" with oy = €'. Let B;5 C B; be the set of edges in
B; such that there is only one edge in e € I(e) such that ¢™(e) = a;al? ... a7 o with

o = g = e. We then have B; = B;1 U B;» where B;; N By = (. We may then write
[Fix (g™, V)| = |Bia| + [Buia| + | Bza| + | B2gal-

Consider the matrix D™. If v; is a vertex in By it is easy to check that (D™);; = 1.
If v; is a vertex in By we have (D™);; = 1. Thus we see that

vl

> (D™ = |Bi| = |Ba| = | Bl + | Buo| = |Bap| = |Bagl.

i=1

Combining this with our result for |Fix (¢™, V)| we find that

VI
|Fix (g™, V)| = 2Byl + 2|Bia| = Y ,(D™);5.
i=1
We then see that
E2] id
Fix (™) = > (C™re — » (D™ — | Az| — |As| — 2| Aa] + 2| Byi| + 2| Ba].
k=1 j=1

We claim that 2|By 1| + 2| By 2| — |A2] — |45 — 2|44| = 0.

For vertex v; € Bj, there are exactly two edges in A; and every edge in A; must
belong to B,y thus 2|By ;| = |As|. For every vertex v; € By there is either one edge in
Ay or two edges in As. We also know that every edge in Ay U A5 must belong to By .
Thus we have 2|By | = 2|A4| + |As|. Therefore 2|By 1| + 2|Bya| — |Ag| — |As| — 2| A4] =0

and the theorem is proved. O

Theorem 46 Let I, and K be solenoids with shift maps h, and I, respectively, where
h is topologically conjugate to h'. Then |Fiz(ht)| = |Fiz(h")| fori=1,...,00. Similarly
if {IS, g} is a presentation of (Keo,h) and {K',¢'} is a presentation of (K. ,1I') then
|Fiz(g))| = |Fiz(g")] fori=1,...,c0.

Proof. If i is topologically conjugate to &' then there exists a homeomorphism f: K, —
K, so that f o h = h'o f. Recall that a homeomorphism is a continuous bijection with
a continuous inverse. Suppose that ¢ € Fix (k™) for some integer m > 0. Then since
h™(z) = z we have K™ o f(z) = f(z). Thus f(z) will be fixed under A'™. Since f is a
bijection s = f|Fix (™) will be bijection from Fix (A™) to Fix (k™). From theorem 6 we
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know that if {K, g} is a presentation of the solenoid Ko, with shift map A then there is a
1-1 correspondence between the fixed points of A™ and ¢g™. Thus |Fix (h™)| = |Fix (h'™)]
and |Fix (¢™)] = |Fix (¢"™)|. O

Theorem 47 Let {K, g} be the presentation of a solenoid. Then there exzists a (p,q)-
block presentation {K',g'} shift equivalent to {K, g}.

Proof. Let {I{;, go} be the presentation of a solenoid. Our first task will be to find a
presentation {K,, gn} shift equivalent to {Kjy, go} where every vertex of I, is a periodic
point under g,. Clearly if every vertex in K is periodic under go thep we can move on
to the next step. If not then we must show how we can arrive at such a {Kn, gn}. We
do this by first showing that there will be an smallest integer N > 0 so that every point
in gl¥(Vy) is a periodic point under go, where here V5 is the vertex set of ;. We then
show how we can find a shift equivalent presentation {Xi, ¢} so that M = N — 1 is the
} smallest integer so that all points in ¢} (V;) are periodic points under g;. It is then clear

that if we perform this procedure N times we will arrive at a shift equivalent presentation

with the desired property.
Let ¥ be the vertex set of Ko, write A} = V; and AY = gi(Vp) for i = 1,...,00. Since
go is W*-mapping we know that go(Vy) € V, and thus that go(AY) C A? for i =0,...,00.
Since AJ is a finite set we know that there must exist an N > 0 such that for j > N we
' have go(A9) = A} = AY. In other words N is the smallest integer so that every point
in A% is a periodic point under go. Since every z € A% is a periodic point under g, we
know that each will have a unique pre-image y € A%, i.e., go|A% is a bijection.

We may partition each A} into two subsets, AY = A2, UCY?, where go(C?) C AY,, and
A}, N CY = 0. The vertices in C? are vertices which are eventually periodic to the orbit
of some periodic vertex in AY. It is easy to see that Cf =@ for j > N. For 0 < j < N
the vertices in C} are eventually periodic to the orbit of some vertex in A% and “land”
on this orbit after at most NV — j iterations of go.

We may define a “new” smooth graph K from Ky by identifying each z € C%_; with

the unique pre-image in A% of go(z) € A%. Thus K; = K;/ ~ where ~ is the equivalence

relation given by

ifz e C’R,_l,y € A(I)V and go(z) = go(y) or ,
T~y

T =1.
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We then define ro: Ko — K3 to be the projection mapping. We define the map so: K; —
Ky by sp =goory 1. We know that sg is well defined because if To ! is multi-valued at
z € Iy then r5(2) = {®1,...,3:} U {y} where {z1,...,2:} € C}_, and y € A}, is the
unique pre-image in A% of go({z1,...,7:}) € A%. We may then define g;: K3 — K by

g1 =19 0 5o. We know that gy ~; go with lag=1 since
giOTg=T90800Tg="g0goOTy " ©rg="rgO0 go,

$00g1=goOTg 0Ty 08y = goO So,
S00To=gooTy " ©To= g,
and
Tp © 8¢ = 1.

We now need to show that {Kj,g;} is such that every point in gf'~!(1}) is periodic
under g, where V; is the vertex set of K;. We clearly have ro(Vp) = 70(A4Y) = V4. If we
define AY = V; and A} = g¢(V}) then clearly ro(AY) = A} since

7‘0(14?) =TpO Qo(Ag_l) =00 TO(Ag—l) = 91(14}-1) = A%-

We claim that g1(Aj_;) = Ak,. We know that A}_; = A} U C}_; and ro(A}_,) =
70(A%) by the definition of the identification. Thus A},_; = A}, since

Ay =mo(Ay_y) =mo(AY) = Ay

We then see that every point in Ak, = g'*(V4) is periodic under g;.

If we repeat this procedire N times in each case moving from the presentation
{K;i_1, gi—1} to ashift equivalent presentation { K;, g;} we arrive at a presentation { Ky, gn}
where every point in the vertex set Vy of Gy is periodic under gy.

Our second task is to find a (p, ¢)-block presentation from {Ky, Gy} by relabeling
periodic ordinary points of Ky vertices. Every point in Vi is periodic under gy thus we
may partition Vi into a finite number of orbits under gy; Vy = O1 U -+-U O;. Each O;
has a period n; > 0 under gy, where n; is defined to be the least integer so that for all
z € 0, gy(z) =z Let ¢ = maﬁ{nl, ...,n;} and p = min{ny,...,n;}. We then define

K ny1 to be the “new” smooth graph formed from Ky by re-labeling all periodic ordinary




points in K with period ¢, p < t < ¢, vertices. The mappihg gna1: K1 = Ky is

then defined by gy = gny1 and that gy ~; gy is trivial. We then have

q
Vi = | Fix (g")

n=p
and thus that {Ky41,gn+1} is a (p, ¢)-block presentation.
It is also easy to see that by relabeling more periodic ordinary points vertices we may

give find a “new” presentation { K42, gn+1} which is a (p, ¢')-block presentation for any

p and ¢’ such that 1 <p' <p<¢g<q. O

Theorem 48 Let {K, g} and {K',¢'} be presentations of solenoids where Fiz(g) =
Fig(g") fori=1,...,00. Then {K, g} is shift equivalent to a presentation {Ki, g1} and
{K',g'} is shift equivalent to a presentation {K1,gi} where {Ki,q1} and {K}, ¢!} are
(p, q)-block presentations.

Proof. From theorem 47 we know that {K, g} is shift equivalent to a (p, ¢)-block pre-
sentation {Kjy, go} for some integers p > ¢ > 1. Similarly {K’, ¢'} is shift equivalent
to a (p', ¢')-block presentation {Kj}, gy} for some p' > ¢ > 1. Let N = max{p,p'} and
M = min{q, ¢'}. Re-label all ordinary points of Iy with periods ¢, M < i < N of Kj,
under go vertices. Similarly re-label all ordinary points of K with periods i, M <i < N,
under g vertices. Denote the “new” presentations {K1,¢:} and {K7i,g}} respectively.
Both {&, g1} and {K7, g1} are clearly (IV, M)-block presentations. O

We will now now show how we can associate with every (p, ¢)-block presentation an
endomorphism of a finitely generated non-abelian free group. We also show that if { K, g}
and {If, g} are (p,q)-block presentation of solenoids and g, and g. are the associated
endomorphisms then g ~; ¢’ implies g, ~; g.. In order to do this we will need some
notation. Let A = {ay,...,a,} be a finite set. We will denote by (4), or {a1,...,a,) the
free group (non-abelian), on the set of generators A. We will use id to denote the empty
word and a; " to denote the inverse of a; in (A).

For every (p,q)-block presentation {K, g} of a solenoid we will associate an endo-
morphism g,: (F) — (E) where (E) is the free group generated by the set of edges E
of K. Let {K,g} be a (p, q)-block presentation of a solenoid. If K is orientable let p
be a coherent orientation on K and if X is nonorientable let p be an arbitrary orienta-

tion on I{. For every edge ¢ in the edge set F = {ey,..., e, } of I{ choose an embedding
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Ye: [0, 1] — &so that . traverses & in agreement with the orientation on e, i.e., ¥(0) = p*(e)
and 7,(1) = p(e). Note that if the e is a loop we assume that some path . is chosen
around the loop. For each edge e € E we can form the map g o 7.:(0,1] = K. Define
0=t <t < < tyey—1 < tye) = 1 80 that g o ve((tim1,t:)) € E for i = 1,...,1l(e).
The action of the endomorphism g,: (E) — (F) on the generating set F is then defined
by g.«(e) = a*ai. azl('()"‘) where o; = g o Ye((t;_1,%)) for s = 1,...,1(e) and n; = 1 if
g 0 Ye|oy; traverses ¢y in the same “direction” as 7o, and n; = —1 if Yela; traverses c; in
the opposite “direction” as 7,,. In order to make g, an endomorphism if f; ... 8; € (E)

where f; € E we define g.{8;...0;) = g:(81)g:(B2) ... 9(0;) and g.(id) = id. It is clear

that g, defined in this manner an endomorphism.

Definition 42 Let {X, g} be a (p, g)-block presentation and let g.: (E) — (E) be the
endomorphism defined in the manner given above. Then g, is called the associated endo-

morphism for the presentation {X, g}.

Our next theorem shows that if {K, ¢} and {K", g'} are (p, g)-block presentations with

associated endomorphisms g, and g! respectively, then g ~; ¢’ implies that g, ~; gi.

Theorem 49 Let {K, g} and {K',¢'} be presentations of solenoids in (p,q)-block form

with associated endomorphisms g, and g, respectively. Then g ~; g' implies that g, ~; gs.

Proof. Suppose that {K, g} and {K’, ¢'} are (p, ¢)-block presentations of solenoids where
g ~ ¢ with lag N. Let g,: (E) — (E) and g,:(E') — (E') be the endomorphisms
associated with {K, g} and {K', ¢'} respectively. Let mK — K' and s: ' — K be
the maps giving the shift equivalence between g and ¢'. Since {X&, g} and {K',¢'} are
(p, q)-block presentations we know that (V) = V' and s(V') = V where V and V' are
the vertex sets of K and K’ respectively. In order to show that g, ~, g, we need to find

homomorphisms 7,: () — (E') and s,: (E') = (E) such the diagrams

(B) —">(B) (B)—">(B) (E)—"—>(E)

(B) = (B) (B) —= (B} () — (E')

ITI’L

are commutative for some integer m.
We want to define the homomorphisms r, and s,. With each edge ¢ € F we have

an embedding .:[0,1] — & used in the definition of the endomorphism g,. Similarly
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for cach edge y € B’ we have an embedding m,: [0,1] — 7 used in the definition of the
endomorphism g,. For each edge e € E we may form the map 1o 7.:[0,1] = K'. We
can then find 0 = dp < di < +++ < dye)-1 < dye) = 1 s0 that r o v,((di-1,di)) € E' for
each i =1,...,I(e). We are assured that the incident vertices of e map to vertices of K’
since r(V) = V'. We may then define the homomorphisms r, in a manner similar that of
g«. Thus we define the action 7, on the generators of (E) by r.{(e) = af* .. a;l(’g) where
a; = 10 Y ((ti_y, t;)) for i = 1,...1l(e) and n; = 1 if 7 o y.|a; traverses oy in the same
“direction” as 7y, and n; = —1 if 7 o y.|ey; traverses o; in the opposite “direction” as mq,.
In order to make 7, a homomorphism from (E) to (E') if f162...0; € (E) where §; € E
we define r.(610z ... 0;) = r(B)r(Ba) ... 7+(6;) and r,(id) = id'. Note, here id denotes
the empty word of (E) and id' the empty word of (E'). The map r, so defined is clearly a
homomorphism. The homomorphism s, is defined in a similar manner and again because
{X, g} and {K", '} are both (p, g)-block presentations we are assured that s(V') = V.

We need to verify that r, and s, satisfy the usual relationships of shift equivalence.
We will show that 7, o g, = g% o7,. We know that r o g = ¢’ or. For an edge e € E may
form the maps 7o go~.:[0,1] — K’ and ¢' or oy, [0,1] = K’. There will exist 0 =ty <
b < ... < tye)-1 < toe) = 1 s0 that 70 g o ye((ti-1,%:)) € B’ for each ¢ = 1,...,5(e).
We see that 7, o gi(e) = aft. ..a':("e(;’ where a; = 70 gov((ti_1,%:)) for i = 1,...5(e)
and the n; are determined in the usual manner. Similarly g or.(e) = 67 .. .5:;:;”’ where
8; = g'orov,((tii1,t:)) fori=1,...(e) and the m; are determined in the usual manner.
However, since r o g = g’ or we know that 7o g o ¥e({ti1,%)) = ' or o y{(ti-1,t:)) for i =
1,...,s(e). Thus af* = ¢ for i =1,...,s(e). The proofs showing that g, o s, = s, 0 g,
s,or, =gN, and r, 0 s, = ¢’V hold are similar. O

Note, unlike elementary presentations, given a presentation {I, g} when we find a
shift equivalent (p, ¢)-block presentation, {K’, ¢'}, the smooth graph I’ often has a more
complicated structure then the original smooth graph K. The reason for finding a (p, q)-
block presentation is generally to calculate an invariant. Thus one might be trying to
determine whether or not two presentations, say {Ki,¢:} and {K>, g2} are shift equiva-
lent. We might find shift equivalent presentations for each which are in (p, g)-block form.
We would then know that the associated group endomorphism would be shift equivalent.

We could then try to use these endomorphism to develop further invariants. We will

do exactly this in the next chapter. While these invariants will not be able to tell us
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that the two presentations are shift equivalent they will sometimes allow us to say that
two presentations are not shift equivalent. We finish this section by giving an example

demonstrating the techniques used to find (p, ¢)-block presentations.

Example 15 In this example we demonstrate the techniques used in finding a (p, q)-
block presentation. We start with a presentation {, g} which has no fixed points and
six period two points. We find a (2, 2)-block presentation shift equivalent to {X, g}.
Consider the smooth graph Ky = (G, Sp) with Gy = (Va, Fa), Vo = {v1,v9,u3}, Eo =
{e1, €2, €3, €4, €5} where the incidence relations and switch conditions are summarized in

the table below:

v | R(v) L(v)
vr | {e2} |{en,es}
vy | {ea} |{ern,eq}

v | {es,es} | {es, €5}

A smooth graph diagram for Kj is shown in figure 4.8. Kj is orientable and is shown in
the diagram with the coherent orientation p where p(e;) = p(eq) = vq, p(ez) = v1, and
ples) = ples) = vs.

Consider the W*-mapping go: Ko — Ko where go(vi) = v2, go(v2) = go(vs) = v; and
go expands each edge ¢ € E along the route e;...e; as given below;

.
€1 F* €92€3E5€4€9

€9 €1
90 § €3 > €9

€4 ¥ €169

L €5 —+ e1es.

We see that the vertices vy and vy are periodic under ¢ and that vs is eventually periodic
to the orbit {vy, ve} with go(vs) = v;. The unique pre-image of v; in the period 2 orbit is
Vg.

We form a new smooth graph K; from K, by identifying the vertex vz with the
vertex vp. The smooth graph K; = {Gl,Sl} with Gy = (W, Ev), Vi = {z1,22}, By =

{v1,v2, Y3, Vs, ys } where the incidence relations and switch conditions are summarized in
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Figure 4.8: The smooth graphs Kp and K; given in example 15

the table below:

z R(z) L(z) .

o1 | {we} {1,935}
Ta | {2, Ya, Us} | {v1, V3, Va, Us }

The mapping ro: Ko — K is given by the projection mapping. We find that ro(v1) = =1,
r0(v2) = T3, 70(vs) = zp and that ro maps the edges of Ky to the edges of K, as shown
below;

ey

€z Y2

To§ ezt Y3

€4 = Yy

| €5 Us.

The mapping so: {1 — K is given by goory*. This is a well defined and continuous map
since the only points which are identified under ry are vy and v3, thus 75 (2) = {vs, v3}.
But we know that go(va) = go(vs) = v1. We see that so(21) = va, so(x2) = vy and that sp
maps the edges of I{3 to Ky in the manner shown below;

,
Y1+ €2€3E5€64€7

Y2 = €1
504 Y3 ey

Yq €169

| Y5 = ejea.

The W*-mapping g;: K1 — K is then defined by g; = 7¢ 0 so. Thus we see that g;(x1) =
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Ta, g1(z2) =z and that g; acts on the edges of K; as given below;

r

Y1\ YaUsYsYal2
Y2 = U1

g1y ys Y

Y4 = Y12

Ys = NYa.

\
We now have g; ~, go where K, is such that all vertices in V; are periodic, with period
two, under g;.

We want to form a new smooth graph K, from K; by re-labeling all of the periodic
points of period 2 in I{; vertices. If we consider g% we see that gf acts on the edges of I(y
in the following manner;

Y1 = Y1Y2Y1Y2Y1Y201
Yo = YaYsYsYala
g\ v

Y4 > YaYsYsYaYal1
Ys = Y2YsYsYaYal1-

\

From this we see that there are two occurrences of y; in the interior of the word defined
by 9%2(v1), Y2¥1Y2¥1Y2, thus there will be two fixed points of g2 in y;. But since g; has no
fixed points we know that these are both period two points. There is one occurrence of
y4 in the interior of the word defined by ¢%(v4), ¥aysyaye, and one occurrence of ys in the
interior of the word defined by ¢2(ys), ysysyaye. Thus there will be one period two point
in y4 and one in ys. This gives us a total of 4 ordinary points in K which have period 2.

We re-label the two period two points in y; as vertices x3 and z4. The edge y; then
splits into 3 edges which we re-label 21, 25, 23. We re-label the period two points in yy4
and ys as x5 and xg, respectively. The edges y4 and ys split into two edges each, which we
re-label z4, z5 and zg, 2y, respectively. We call this new smooth graph K. The smooth

graph diagram for Kj is given in figure 4.9 The mapping go: K5 — K3 is then such that

g2(21) = 2, g2(m2) = %2 ga(ws) = 5

92(%1) = x5 ga(ws) = 24 g(ws) = 3,
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Figure 4.9: The smooth graph K, given in example 15

and g, expands each edge of K, along the routes in K, as shown below;

21 - YalYs2e 2o b7 2724 23 2 Z5Y2
g2 24 B> 2129 25 = 23Ya 25— 21

2y > ZoZ3WYa Yo b 212223 Y3 ¥ Yo

The presentation { K3, g2} is then the desired (2,2)-block presentation.




Chapter 5

Algebraic Invariants

In chapter 4 we demonstrated that with any presentation of a solenoid {X, ¢} which is
either an elementary presentation or (p, ¢)-block presentation we can associate an en-
domorphism of a finitely generated free group. We also proved that if we are given two
presentations { K, g} and {K’, ¢’} which are either elementary presentations or (p, g)-block
presentations then g ~; ¢’ implies that g, ~; g, where g, and g/ are the associated endo-
morphisms. In this chapter we discuss the shift equivalence of endomorphisms of finitely
presented free groups in order to develop further invariants for solenoids. In the first sec-
tion we discuss invariants for endomorphisms of finitely generated free groups which arise
due to the abelianization of the free group in question. Many of these invariants are found
in the extensive literature concerning sub-shifts of finite type. In the second section we
develop some invariants which reflect the non-abelian character of these endomorphisms.
In the final section we give examples how these invariants, especially the non-abelian
ones, can be used to study the shift equivalence of W*-mappings of solenoids. In par-
ticular we will be able to solve a previously unsolved problem posed by R.F. Williams
in [39]. Throughout this chapter we restrict our attention to endomorphisms induced by
presentations {K, g} where the smooth graph K is orientable and the W*-mapping ¢ is
orientation preserving. Thus if ¢: (a1,...,a,) — (ai,...,a,) is such an endomorphism

then for each a; there will be no instances of a,;-‘l for any a; in the words ¢(a;).




5.1 Abelian Invariants

In this section we study invariants for the shift equivalence of endomorphisms of finitely
generated free groups which arise by considering the abelianization of these groups. An
endomorphism ¢: (A) — (A} will induce an endomorphism ¢g: (A)ap = (A)as Where (A)ap
is the abelianization of (A). We show that if two endomorphisms ¢ and 1 are shift
equivalent then the induced endomorphisms ¢p and 4, are also shift equivalent. The
endoxﬁorphisms ¢o and 1y can be given a matrix representation. This then gives us a
set of matrix relations for shift equivalence. These matrix relations are well known from
symbolic dynamics. We will consider some of the invariants Whiélh can be derived from
these matrix relations. One invariant of these matrix equations which will be particularly

useful when considering non-abelian invariants is the Bowen-Franks group.

Definition 43 Let A = {ai,...,a,} be a finite set and (A) the free group generated
by the alphabet A. The abelianization, (A)u, of {A) is the quotient group (A |a;a; =

aja; for all a;,a; € A).

There is a well defined epimorphism : (A) — (A)q which is such that if a € {(A)
then y(a) is the equivalence class of a in (A)g. (A)ae is generated by {y(a1),...,7(a.)}-
In general we will write v(a;) = [a;]. Each element o € (A)y has a unique expression

as [a]™ [ag]™ ... [a,]™, where we consider [¢;]° = id. For example y(asa2a20302) =

[az]s[aa][%]-

Note 11 Let F' and G be two groups. If F' is isomorphic to G we will write F' 22 G.

Theorem 50 [31] Let A = {ay,...,a,} and (A) be the free group generated by A. Then
(A)a is isomorphic to Z" = Z & -+ @ Z, the direct product of n infinite cyclic groups,
i€, (A)g = Z".

We will consider the direct product of n infinite cyclic groups, Z", to be the group
generated by the set {c1,¢a,..., ¢y}, where ¢; = (0,...,0,1,0,...,0)T, with the 1 in the
i-th position. The binary operation for Z" is then addition ,“+”, defined as usual and
the identity is given by 0 = (0,0,...,0)T. The inverse of an element b = (by,...,b,)T is
then —b = (=1, ..., —b,)T. An isomorphism &: (A)y; — Z" can be defined by

6([a1]m1 [a‘z]m2 ey [a’ﬂ]mu) =m1C + MgCy o+ MpCnp,
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where here, using a slight abuse of notation, m;c; = (0,...,0,m;,0,...,0).

Let ¢: (A) — (A) be an endomorphism of the finitely generated free group (A). The
endomorphism ¢ induces an endomorphism ¢g: (A)ey = (A)as. The action of ¢ on the
generators of (A)g is defined so that ¢o([a;]) = v o ¢(a;). For @ = ajaz...om € (A)as
where a; € {[ai1],..-,[as]} we then define do(a) = ¢o(ar)do(az) ... do(am) as well as
¢o(id) = [¢d]. 1t is easily checked that ¢ defined in this fashion will be an endomorphism
and is such that the diagram

(4) "> (4)
'rl lv
(A)ap —5=> (A)a
commutes.
| Since (A)q, = Z™ the endomorphism ¢y will induce an endomorphism ¢y: Z™ — Z",

which is defined by ¢; = € o ¢pg 0 €71, We then see that the diagram

(4) —2 (4)

'rl lv
(A)ab =5 (A)as
el le
g

commutes.

We may give ¢, a matrix representation. Let & be the n X n matrix where ®;; equals

the number of occurrences of a; in the word ¢(a;). We claim that for any ¢ € Z™ we have
®c = ¢1(c). Consider ¢; € Z™ We have £ o y(a;} = ¢;. Let m(j,%) denote the number
of occurrences of a; in ¢(a;), then o ¢(a;) = [a) ™D [ag]™2) . .. [@,]™™D. We then see
that

£ oyo¢(a;) =m(l,i)cs +m(2,i)cg + - - m(n,i)c, = ¢i(ci).

For any ¢ € Z™ we may write ¢ = wy¢y + - - - + w, ¢, thus we see that

szgoyo &(a;) sz (Zm(], )—

since ®;; = m(y,7). It is clear from the above that the matrix ® is necessarily a non-

negative integral matrix (Z*-matrix), i.e., each entry ¢;; is necessarily a non-negative

integer.




Definition 44 Let ¢: (A) — (A4) be an endomorphism of a finitely generated free group.
Then the matrix @, where ®;; equals the number of of occurrences of the letter a;
in the word ¢(a;), is called the non-negative integral matriz representation (Z*-matrix

representation) of the endomorphism ¢.

Definition 45 Let @ and ¥ be square Z*-matrices and m > 0 an integer. ® and ¥ are
said to be shift equivalent, written ® ~; ¥, if there exist ZT-matrices R and S satisfying

the four shift equivalence relations

$S =S¥, R® =R,
&™ = SR, and ¥™ = RS.

As usual the integer m is called the lag of the shift equivalence.

Matrix shift equivalence was first invented by R.F. Williams as an invariant for sub-
shifts of finite type in [40] and has been extensively studied since. We introduce it in order
to develop some further invariants for the shift equivalence of W*-mappings on smooth
graphs. We will use some of these invariants later to construct non-abelian invariants for

W*-mappings.

Theorem 51 Let ¢ and 1) be endomorphisms of finitely generated free groups with Z*-
matriz representations € and ¥ respectively. Then ¢ ~; 1) with lag=l implies that

P~ ¥ with lag=l.

Proof. Let ¢:(A) — (A) and ¢:(B) — (B) be endomorphisms of the free groups
generated by the finite sets A = {ay,...,a,} and B = {by,...,b,}, respectively. Let
r:(A) = (B) and s:(B) — (A) be the homomorphisms giving the shift equivalence
between ¢ and . We need to find Z*-matrices R and S which define a shift equivalence
between the Z*-matrix representations ® and ¥ of ¢ and 1. Let R be the m x n matrix
where IZ;; is the number of occurrences of b; in the word r(a;). Let S be the n x m
matrix where Sj; is the number of occurrences of a; in the word s(b;). We claim that the
matrices R and S define a shift equivalence between ® and W.

Let v: (A) — (A)w and s (B) — (B)a be the epimorphisms so that, for a € (A),
7¥(a) is the equivalence class of a in (A)4, and for b € (B), 4/(b) is the equivalence class of
bin (B)ap- Let ¢o: (A)ap = (Adap and thy: (B) gy — (B)a» be the endomorphisms induced
by ¢ and ¢, respectively, on the abelianizations of (4) and (B). In a similar fashion the
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homomorphism 7 will induce a homomorphism 74: (A)ap — (B)ay and the homomorphism
s will induce a homomorphism 50: (B)ap — (A)a. The homomorphism 74 is defined so
that, for a; € A, ro([a;]) is the equivalence class of 4 o r(a;) in (B)ay, ro([ida)) = [idg],
and for o = ... 05 € (A)as, where oz € {{aq],...,[an]}, 7o(@) = ro(a)...7ro(e;). The
homomorphism sy is defined so that; for b; € B, so(b;) is the equivalence class of y o s(l;)
in (A)a, so([idp]) = [ida], and for B = By...0; € (B)a, where §; € {[b], - - -, [bml] }s
so(8) = so(B1) - - - (B;). Note, that here we are letting ida and ids denote the identity for
(A) and (B), respectively. It is clear that the diagrams

(4) ——(B) (B) ——(4)

N

(Aas —5> (Bav (B)ab =5 (A)as

commute. From the diagrams

(B) : (B) (4) ’ (4)
LT A,
A) , l (A) v (B) l (B) U
7 (Bla — : (B)ab ¥ ¥<A>ab - : (A)as

(A)ap 7 (A)ap (B)ab - (B)ab

(B) (A)
N P S PN
) g J (4) (B) ) l (B

(B T (A)ab e
7 (Do (Bla , (B)ab

we see that the homomorphisms 74 and sy define a shift equivalence between ¢y and 1.

Let {c1,...,ca} and {ci,...,cm'} be the sets generating Z"™ and Z™, respectively.
Consider the isomorphisms &: (A, — Z" and & (B)gy — Z™, where

5([0’1]’(:l T [a’n]k") = klcl + kncu
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and

Eb]™ ... [bm]™™) = wiey' + - + W'

We define ¢, = Eogro€™! and 9 = & orhyod™™", so that ¢ and ; are the endomorphisms
induced on Z™ and Z™, respectively, by ¢¢ and . Let r1:Z" — Z™ be deﬁned by
=& oryo& ! and s: Z™ — Z" be defined by s; = £osgo0 &L, Similar diangams,
to those for ¢, ¢y ¥, 2o, r, 70, s, 50, ¥ and 7/, can be shown to be commutative for do,

$1, Yo, 1, To, T1, So, S1, &, and &. Thus we see that r; and s; form a shift equivalence

between ¢; and 1.

We claim that R is the matrix representation for r; and that S is the matrix repre-
sentation for s;. Thus for any ¢ € Z™ we should have ;{c) = Rc and for any ¢’ € Z™ we
should have s;(c') = Sc'. Consider ¢; € Z™. We have € ov(a;) = ¢;. We know that Rj;
denotes the number of occurrences of b; in 7(a:), thus ¥ o r(a;) = {by]F1:[b] B2 . [by] R,

We then see that
m
él o 71 o T(ai) = Rlica A RmiC:,n = ZRNCQ
—
For any ¢ € Z"™ we may write ¢ = wicy + -+ + WpCyp, thus we see that

n n m

n(e) = w07/ or(a) = 3w (Z Rﬁcé-) o
gz2] i=1 j=1

Similarly, consider ¢} € Z™. We then have vos(b;) = ci. We know that S is the number

of occurrences of a; in the word s(b;), thus o s(b;) = [a1]5% . . . [@,]5. We then see that
§oyo (bz) = 51¢1 + -+ + Spicy.

For any ¢’ € Z™ we may write ¢/ = uc) + -+ + upc!_, thus

S1 (C') = iu@ oyo S(bz) = iui (i Sjici) = Sc'.
i=1 i=1 Jj=1

Therefore R and S are matrix representations of r1 and sy, respectively. Since r; and
51 form a shift equivalence between ¢1 and 9, we know that R and S will form a shift
equivalence between ® and ¥, the matrix representations of ¢1 and ¢y, O

There are theoretical procedures to decide whether two matrices are shift equivalent
[21], but they are usually very difficult to apply and would take us too far afield. We will

instead focus on invariants for Z*-matrix shift equivalence which are easy to compute.
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The two main invariants which we will develop are the Jordan form away from zero, J*,
and the Bowen-Franks group, BF. The invariance of the Jordan form away from zero is
originally due to Parry and Williams [26] and was developed as an invariant for subshifts
of finite type. The Bowen-Franks group is due to Bowen and Franks [5], who discovered
it in their study of continuous time analogues of subshifts of finite type. Qur treatment

of these invariants is due to that in [22].

Example 16 Consider the endomorphisms ¢: (A) = (A) and ¥: (B) — (B) where 4 =
{a,b} and B = {a, 8,6} defined by

2
¢(a) = ab?a, vl@) = apd,
RO 6,
»(d) = of
The homomorphisms 7: (4) — (B) and s: (B) — (A) defined by,
s(a) = ab%a?,
r(a) = afé,
s(B) = a,
r(b) =4,
s(6) = ab?a,

form a shift equivalence of lag=2 between ¢ and . This can be verified by considering

the action of ¢, , r, and s on the generators {a, b} of (4) illustrated in the diagrams

below:

¢
a ————gh?q —'“—'u ab2a4b2a

(I

afid = afsafs — afd (apd)is?aps

b a—2  abba

[

§ afs e afdaBs

Similar diagrams can be created to illustrate the action of these maps on the generators
{a, 8,8} of (B).
The Z*-matrix representations, ® and W, of ¢ and 1, respectively, are then found to

be given by

1 01
21

P = and =11 0 1
2 0

2 11




We may then construct a 3 X 2 matrix R from the homomorphism r and a 2 X 3 matrix

S from the homomorphism s as follows;

10
31 2
R = 1 0 and S = .
2 0 2

It is then easily verified that R® = ¥R since

10 1 01 10 2 1

2 1

10 =1101 101=1]21
\ 2 0

11 2 11 11 4 1

We also see that &S = SW since

101
2 1 3 1 2 3 1 2 8 2 6
=1101 = .
2 0 2.0 2 2 0 2 6 2 4
; 211

We can check that ®2? = SR since

10

2 1 2 1 31 2 6 2

= 10 |= .

2 0 2 0 2 0 2 4 2
11

Finally considering ¥? = RS we see that

101 101 10 31 2
31 2
101 101 }1=110 =131 2
2 0 2
211 2 11 5 1 4
Thus R and S given a matrix shift equivalence between ® and .
Example 17 In this example we show how matrix shift equivalence can sometimes be
used to determine whether or not two endomorphisms are shift equivalent. Let ¢: {a,b) —
(a,0) and ¥: (e, B) — (o, B) be defined by
$(a) = ab®, P(a) = af?,
¢(d) = ab?, P(B) = afaPsS.

The Z*-matrix representations ® and ¥ of ¢ and %) respectively are then given by

11 1 4
® = and ¥ = )
8 7 27
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Suppose that ¢ and 1 are shift equivalent then we know that & and ¥ must be shift
equivalent Z*-matrices. Thus we must have integral 2 x 2 matrices, R and S, which
give a shift equivalence between ® and ¥. Since RS = ®!, for some integer [ > 0, and

det(®) = —1, it follows that det(R) = 1. Let

h 1
R =
i k
The equation AR = RB is
h+j3 i+k h-+2i 4dh+ 74
8h+7§ 8i+ Tk i4+2k 45+ 7k

Solving for j and & in terms of  and ¢ gives j = 2i and & = 4h + 61, so that

h 1 ) L
det(R) = det = 2(h* + 3hi — 1°).
21 4h+ 61
This contradicts the fact that det(R) = %1, proving that & is not shift equivalent to ¥
and thus that ¢ is not shift equivalent to 1.

We now introduce the apparently weaker notion of shift equivalence over Z for integral
matrices. We then show that the Z*-matrix representation of an endomorphism induced
by either an elementary or a (p, q)-block presentation is necessarily of a special form called
primitive. We then state results demonstrating that if we have two primitive Z*-matrices

then Z*-matrix shift equivalence holds if and only if Z-matrix shift equivalence holds.

Definition 46 Let A and B be integral matrices. Then A and B are shift equivalent

over Z, written A ~z B (lag k), if there are rectangular integral matrices R and S

satisfying the shift equivalence relations.

Definition 47 An Z*-matrix A is irreducible if for each ordered pair of indices (i,9),

there exists some n > 0 such that Al > 0.

Theorem 52 Let ¢:(E) — (E) be an endomorphism induced by a presentation of a
solenoid, {K, g}, which is either an elementary presentation or a (p, ¢)-block presentation

and where E is the edge set of K. Then the Z"-matriz representation ® of ¢ is irreducible.
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Proof. Since g: I[{ — K is a W*-mapping by theorem 10 we know that there will exist
an integer m > 0 so that for every edge e; of K we have g™(¢;) = K. Let ¢: (E) — (E)
be the endomorphism induced by ¢ and @ the Z*- matrix representation of ¢. It is then
clear that for any pair of edges e; and e; that ¢™(e;) will be a word in (E) which contains
e; since any parameterization of e by [0,1] will, by composition, give a parametrization
of g™(e) which will traverses every edge K. It is then obvious from the definition of &

that @} > 0. O

Definition 48 Let A be a Z'-matrix. The period of state i, denoted per (¢) is the
greatest common divisor of those integers n > 1 for which A% > 0. If no such integers
exist we define per (1) = co. The period per (4) of the matriz A is the greatest common
divisor of the numbers per (4) that are finite, or is co is per (¢) = oo for all i. A matrix is

aperiodic if it has period 1.

Theorem 53 Let ¢: (E) — (E) be an endomorphism induced by an elementary or (p, q)-
block presentation {K, g}, where E is the edge set of K. Then the Z*-matriz representa-

tion P of ¢ ts aperiodic.

Proof. Since g: K — K is a W*-mapping by theorem 10 there exists an integer m > 0
such that for every edge e; of X we have g™(e;) = K. Since the mapping ¢ is onto we
see that g"(e;) = K for all n > m. Let ¢: (E) — () be the endomorphism induced by
g and let ® be the Z*-matrix representation of ¢. From the above properties of ¢ and
the definition of ¢ it is clear for any ¢; € E and any n > m that ¢”(e;) will be a word in
(&) which contains e;. Thus ® > 0 for all n > m and consequently per (z) = 1. Since

per (z) = 1 for all 7 we see that per (®) = 1. O
Definition 49 A Z*-matrix is primitive if it is both irreducible and aperiodic.

Theorem 54 Let ¢: (E) = (E) be an endomorphism induced by an elementary or (p, q)-
block presentation {K, g}, where E is the edge set of K. Then the Z*-matriz representa-

tion ® of ¢ is primitive.

Proof. This follows from theorems 53 and 52. O

"The following results can be found in [22] and are stated without proof.




Theorem 55 [22] Let A and B be primitive integral matrices. Then A ~; B if and and
only if A ~y A

Definition 50 An integral matrix P is said to be invertible over Z if it is nonsingular
and its inverse is also integral. Two integral matrices A and B are similar over Z if there

is an integral matrix P which is invertible over Z such that A = P~1AP.

Theorem 56 [22] Let A and B be primitive integral matrices which are similar over 7.

Then A ~gz B with lag=1.

Next we introduce the Jordan form away from zero, J*, as an invariant for shift
equivalence of primitive Z*-matrices. Of course, since two primitive Z*-matrices are
shift equivalent over Z* if and only if they are shift equivalent over Z, the Jordan form
away from zero is also an invariant for shift equiva,lenée over Z. Our treatment of the
Jordan form away from zero is based on that found in [22].

First turn to the linear algebra of an r x r integral matrix A. The rational field Q is
the smallest one containing the integers and we will use it as our scalar field. When we
refer to linearity, subspaces, linear combinations, etc, it will be with respect to Q.

Let A be an r x r integral matrix. A then defines a linear transformation A: Q - Q.
We will in general consider A as acting on the right, i.e., elements of " will be considered

to be row vectors. Also if E C Q" then its image under A is denoted by FA.

Definition 51 Let A be an r x r integral matrix. The eventual range R4 of A is the

subspace of " defined by
oS
Ra=[)QA*
k=1
The eventual kernel K4 of A is the subspace of 7 defined by

Ka= U ker(AF),

k=1

where ker(A) = {v € Q":vA = 0} is the kernel of A viewed as a linear transformation.

Let A be an r X r integral matrix. If Q" A = F A¥! then A will be invertible on
Q@ AF and thus Q" A% = QP A7 for all n > 0. If we then consider the nested sequence

Q@ OUADQPAIDQAS...
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of subspaces we see that once equality occurs in the sequence all further inclusions must
be equalities as well. We also know that since proper subspaces must have strictly smaller

dimension there can only be at most r strict inclusions before equality occurs. Thus
Ra=QA".

A similar argument shows that

Ka =ker(A").

The eventual range of A is the largest subspace of Q© on which A is invertible.
Likewise the eventual kernel of A is the largest subspace of F on which A is nilpotent.
For every A we claim that Q" = K4 @ R 4. Suppose that v € 4 "R 4. Then vAT =0
so that v = 0 since A is invertible on R4. Thus R,NK4 = 0. Let v € . Then
VA" € R4. Since A is invertible on R4, there is a u € R4 such that vA™ = uA’”. Then
v—ueK sothat v=u+(v—u) e Ry ®K,.

Definition 52 Let A be a square integral matrix. The invertible part A* of A is the
linear transformation obtained by restricting A to its eventual range, i.c., AX: R4 — R4

is defined by A*(v) = vA.

We will now consider the relationship between the invertible part of integral matrices

and shift equivalence over Z.

Definition 53 A linear transformation is a linear isomorphism if it is one-to-one and
onto. We say that two linear transformations f:V — V and g : W — W are isomorphic

if there exists a linear isomorphism h: V — W such that ho f = goh.
Note that the invertible part A* of an integral matrix A is a linear isomorphism.

Theorem 57 [22] Let A and B be integral matrices where A ~z B. Then AX and B*

are isomorphic linear transforms.

In order to tell whether two linear transformations are isomorphic we will use their

Jordan canonical forms, which we now briefly review. For a complex number X\ and an




integer m > 1, define the m x m Jordan block for X to be

[ 31

0 ...00
0A1..00
00 XN..D0O
To(N)
000 ... A1
\000.0,\

A matrix A which has block diagonal form, say

Ay
As

may be written more compactly as a direct sum;
A=A1@A2$$Ak

The basic theorem on the Jordan canonical form says that every matrix is similar
over the complex numbers C to the direct sum of Jordan blocks. Thus for every matrix
A there are complex numbers Ay, Ay, ..., A\, and integers my, mso, .. ., Mg, so that A is
similar to

JA) =T, (M) ® Ty (M) B -+ B T (Mr)-

The matrix J(A) is call the Jordan form of A. The Jordan form of a matrix is a complete
invariant for the similarity of matrices over C, thus two matrices are similar over C if and
only if they have the same Jordan form ( up to the ordering of the Jordan blocks). We
also see that since the Jordan form is a complete invariant for similarity over C the Jordan
form of a linear transform is well defined and a complete invariant for isomorphism.

If a matrix A has Jordan form given by
J(A) = Jml ()‘1) ® Jm2 ()‘2) G- @ Jmk ()‘k)
then the eigenvalues of A are the A; (not necessarily distinct).

Definition 54 Let A be an integral matrix. The Jordan form away from zero of A,

written J*(A), is defined to be the Jordan form of the invertible part AX of A.
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The next result is an easy consequence of theorem 57 and is found in [22].

Theorem 58 [22] Let A and B be integral matrices where A ~gz B. Then J*(A) =
J*(B).

Note, from the above result it is clear that if A and B are integral matrices and
A ~gz B then the characteristic polynomials of A and B, X4 (t) and A(t) respectively,

are such that Ay (t) = t*A(¢) for some integer s.

Example 18 In this example we demonstrate how the Jordan form away from zero can
sometimes be used to show that two endomorphisms are not are not shift equivalent. Let

¢:{a,b,c) — (a,b,c) and ¥: (o, B,8) — (@, B,) be the endomorphisms defined by

#(a) = abea, P(a) = 3/35
¢(b) = ab’c, (f) =
¢lc) = bc*a, P(d) =
The Z*-matrix representations, ® and W, of ¢ and 1 are then given by
2 11 3 10
=112 1 |and =12 1
11 2 2 11

The eventual range of both ® and ¥ is Q*. The characteristic polynomials, X3 (t) and
Ag(t), of ® and ¥ are given by (¢ — 4)(¢t — 1)*. However we see that rank (& — Id) =1
and rank (¥ —Id) = 2 thus the Jordan forms away from zero, J *(®) and J*(T), of

and ¥ are different and are given by

100 110
JM@)=10 10 | and I¥X(¥)=1] 0 1 0
0 0 4 0 0 4

Thus ¢ and ) are not shift equivalent.

We now consider another invariant of shift equivalence over Z., the Bowen-Franks
group. In order to do this we will need to review some results from the theory of finitely
generated abelian groups.

Let Z4 denote the cyclic group of order d, i.e., Zy = Z/dZ. We will let Zy denote Z.

We also see that Z; is the trivial group with only 1 element.
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Theorem 59 [22] Let I" be a finitely generated abelian group. Then there exist integers
dy, day ..., dg, such that
sz’m@Zdz@”'@de

where = denotes group isomorphism and there is a unique choice for the d; for which

di # 1 and d; divides dj4q for 1 <j <k -—1.

In the above theorem the d; are called the elementary divisors of the group I'. It is
clear that two finitely generated abelian groups are isomorphic if and only if they have
the same elementary divisors. Thus the set of elementary divisors is a complete invariant

for finitely generated abelian groups.

Definition 55 Let A be an r X r integral matrix. The Bowen-Franks group of A is
BF(A)=7Z"/Z"(1d - A),

where Z"/(Id — A) is the image of Z" under t‘he matrix (Id — A) acting on the right.

We will use the Smith form to “ compute ” the Bowen-Franks group of a given integral

madtrix.

Definition 56 Let A be an integral matrix. We define the elementary operations over

Z on A to be:
1. Exchange two rows or two columns.
2. Multiply a row or column by —1.

3. Add an integer multiple of one column to another, or of one row to another.

It is well known that the matrices corresponding to these operations are invertible

over 7.

Theorem 60 [22] Let A and B be integral matrices where B is obtained from A. by
elementary operations. Then Z/Z(1d — A) 2 Z/Z(Id — B).
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Theorem 61 [22] Let A be an integral matriz. Then A can be transformed by o sequence

of elementary operations into a diagonal matriz

d
da

d

called the Smith form where the d; > 0 and d; divides d;iq. If we put (Id — A) into its
Smith form then

BF(A) 2 Z4y @ %y, @ - & Ly,

Note that by our convention, each item in the direct product with d; = 0 is Z while
those with d; > 0 are finite cyclic groups.

The next theorem shows that the Bowen-Franks group is an invariant for shift equiv-
alence over Z. The proof is included as it gives a useful construction of isomorphism
from BF(A) to BF(B) given square integral matrices A and B. We will find this iso-
morphism useful when considering non-Abelian invariants for the shift equivalence of

endomorphisms of a finitely generated free groups. Our treatment of the proof is taken

from [22].

Theorem 62 [22] Let A and B be square integral matrices where A ~g B. Then
BF(A) = BF(B).

Proof. Let m denote the size of A and n the size of B. Suppose that R and S give a
shift equivalence of lag=[ between A and B. Let v € Z™. Then

v(Id -~ A)R = vR — vAR = vR - vRB = (vR)(Id — B).

This shows that

(Z™Id - A))R C Z™(Id - B).
Thus R induces a well defined map R on the quotients
R:Z™/Z™(1d — A) — Z"/Z"(1d — B),

or R: BF(A) — BF(B). Similarly, S induces a well defined map S: BF(B) — BF(A).
Now the map induced by A on the quotient Z™[Z™(Id — A) is just the identity map,
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since cosets of v and vA modulo Z™(Id — A) are equal. Since S o R: BF(A) — BF(A)
is induced by A!, it follows that S o R is the identity on BF(A). Similarly Ro§ is the
identity on BF(B). Thus R is an isomorphism from BF(A) to BF(B). O

Example 19 In this example we demonstrate how the Bowen-Franks group can some-
times be used to show that two endomorphisms are not shift equivalent. Consider the

endomorphisms ¢: (a,b) — (a,b) and ¥: (e, 8) = («, B) where

¢(a) = abad®, P(a) = B,
$(b) = ab?,  P(B) =a’p.

The Z*T-matrix representations, ® and ¥, of ¢ and 1 are then given by

2 1 3 D
P = and ¥ = |
6 2 11
By performing elementary operations the Smith forms, ® and ¥', of Id — ® and Id — ¥

are then found to be

10 20
@' = and ¥’ =
0 8 0.4
Thus BF(A)} & Zy @ Zg and BF(B) & Z; ® Zg. Therefore BF(A) is not isomorphic to
BF(B) and ¢ is not shift equivalent to ).

Definition 57 Let ¢:(aq,...an) — (ai,...,a,) be an endomorphism. The Bowen-
Franks group of ¢, written BFy, is defined to be the same as BF(®), where ® is the

Z*-matrix representation of ¢.

The invariants that we have developed, by considering the abelianization of the group
in question, give us a useful set of tools which we can use to try and distinguish between
non-shift equivalent endomorphisms. However they still leave plenty to be desired. In
particular, if ¢ and ¢ are two endomorphisms of finitely generated free groups (E) and
(E'), it is clear that any invariant based on the abelianization of (E) and (E') will be
unable to take account of the order of the generating elements in the words ¢(e), for
e € (E), and ¢(e'), for ¢’ € (E'). In the next example we give two endomorphisms which
are not shift equivalent but whose Z*-matrix representations are shift equivalent. Thus

all of the invariants developed so far must be the same for these two endomorphisms.

123




Example 20 Consider ¢: (a,b) — {(a,b) and : («, f) — (e, #) where ¢ and ¢ are given
by

¢(a) = abab, P(a) = ?F?,

¢(b) = ab,  Y(B) =ap.

The Z ™ -matrix representations ® and ¥ for ¢ and 1 are given by

@ = \P =
2 1
It is clear that ® and W are shift equivalent as ® = ¥. We claim that if ¢ and v are
induced by elementary or (p, ¢)-block presentations, say {X, g} and {K', ¢'}, then g is not
shift equivalent to ¢'. In the next section we will develop an invariant which will allow

us to prove this claim.

5.2 Non-Abelian Invariants

In this section we develop invariants for the shift equivalence of endomorphisms of finitely
generated free groups which reflect some of the non-abelian nature of the endomorphisms.
In order to do this we need to introduce the notion of a group ring and Fox’s free dif-
ferential calculus. Our treatment of these topics is based on that found in [14], [2}, and
[12].

For any group G consider the set ZG (where Z denotes the ring of integers) of all

formal sums of the form

Doy

geEG

where n, € Z and only finitely many of the n, are nonzero. Examples of such formal
sums are g1 + 392 and 2g; — 3g3 + g4 and so on. The set ZG has the natural structure of

an abelian group where addition is given by

(Z ngg) + (ngg) =3 (ny+my) g

ged geG geq@

Since only finitely many of the n, and m, are nonzero the same holds true for (n, +m,)
and so the right hand side is an element of ZG. If we think of G as a set, i.e., we forget

about multiplication on G, then ZG is a free abelian group on the set G.
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We get multiplication on Z@G, making it a ring, by remembering the multiplication on

G. Thus
(Z 'n,gg) (thh) = (z ngmh(gh)) :
9eG heG e

The above result is not quite in the right form but if we write for £ € G, px =

> gcG TgMg-1%, then we can partition the sum on the right hand side to get

Zpkk}.

keG
It is well known and easy to check that py will be non-trivial only for a finite number of
k in G. The ring Z@ is defined in the above manner is called the group ring of G.

It is well known that if G is a finitely generated free abelian group then ZG will be
a greatest common divisor (g.c.d.) domain. Recall that a g.c.d. domain is an integral
domain in which any finite set of elements has a g.c.d.

We observe that if Gy and G4 are groups and n : Gy — (5 is a homomorphism, then
7 induces a homomorphism from ZG; to ZG,, which we denote by the same symbol 7,

where

(Z %Q) = z agg" = Z agn(g)-

gEG geG) geG)

Next we will need some results from the theory of “ derivatives ” developed by R. H.

Fox in [11], [12].

Definition 58 A derivative on a group G is a mapping D: G — ZG so that D(gh) =
D(g) + gD(h).

Theorem 63 [14] If D:G — Z is o derivative, then
1. D(g™") = —g~'D(g),
2. Dg")=00+g+g¢*+ --+g"1D(g) for alln € Z.

In particular we will have need for the case where the group G = (zy,...,,) in
question is a free group on a finite number, n, generators. In this case, to each generator

z; € G, there corresponds a unique derivative written

9 G =2 ZG
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defined by
Ox; 1 ifi=yjy,

O 0 ifisy,
where here 1 is being used for the identity of G. With §/0z; defined on the generators

there is then no difficulty in extending it to all of G in the obvious manner.
For each j = 1,...,n there is then a well defined mapping

i: ZG = 2
(9$j

given by

o) 3}
2 (5m)-prt

geq@ geq

where a, € Z. It is known that g2~ is well defined, see [2].

Example 21 Consider the free group G = (a, b, ¢) and the word w = a?bc™'b € G. Then

we see that

a—w—l-i-a
da ’
dw 2 2; 1
i be !,
5 a® 4+ a“oc
and

Ow 27 ~1
2 = —d?
e ¢

Theorem 64 (2] Let A = {a1,...,a,) be a finitely generated free group where w and

Uy Uy are words in A, with w = w(ay, ag, ..., a,). Then
0 ©. [ dw Juy,
-——-(w(vl(al)-.-7a7l)),--.,vn(al1,...an)) = (_—_—.) (_> .
('Mj ; a'UIc V=05 (a1 1000 30,3

Next we introduce a new invariant for the shift equivalence of an endomorphism ¢ of a
finitely generated free group. Consider the finitely generated free group 4 = {(ay,..., an)
and the endomorphism ¢: A — A. It is clear from the definition of the Bowen-Franks
group that when ¢ is such that for each a;, the words ¢(a;) contain no instances of

al_l, ceey G,;_;l then BFg & [Aq'a] where
[A¢] = (a'h ) an' ¢(ai) = ai, 005 = aja,i).

It is clear that there is a natural homomorphism 7: A — [Ay], which takes words in A to
their equivalence class in [A4]. The homomorphism 7 will then induce a homomorphism

from Z A to Z[Ag|, which we will also denote by 7.

126
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Definition 59 Let ¢, A, [44] and  be defined as above. The Z[Ag4]-matriz representation

of ¢ is the n x n matrix ® over Z[Ay] where

()" ()" o ()]

da,, fay day

(acb(cu))” (aqsgaz))” (a¢gan)>”
& = Baz dag e Bag

(8¢§a1))n (aqsgaz))” (aqsga.;))”
Ban dan e dan

Definition 60 Let G be a group, ZG the group ring over G and m > 0 an integer.
Square matrices ® and ¥ over ZG are said to be shift equivalent, written ® ~, ¥, if

there exist matrices R and S over Z@G so that the usual shift equivalence relations hold,
ie.,

®S =S¥, R =VUTR,

™ = SR, and U™ = RS.

The i