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SUMMARY

It has been suggested that an effective predictor of the survival of 

Eucalyptus grandis cut stumps of multiple stem origin in trials using selected 

herbicide, may be found from measurements taken on the dimensions of the cut 

stumps (or stools). To examine this conjecture, data on stool diameter, sum of 

cut surface diameters and highest height of coppice growth was collected from 

714 cut stumps during a study of cut stumps to assess the efficacy of five 

different types of herbicide in combination with three methods of application, 

carried out in the KwaZulu-Natal Midlands region of South Africa. Although 

the measurements were available they were not used in the final analysis of the 

trial. Little, Maxfield and Kritzenger (1997), found that those stumps treated 

with herbicide using a basal frill method of application were more efficient at 

killing stumps on the first and second applications. It was reported that there 

were no statistical differences between the herbicides. The work described in 

this thesis follows on from, and extends their analysis. By considering the 

continuous measurements of stool dimensions in addition to the treatment 

factors and modelling the total number of applications until a kill is achieved, 

as an ordinal response it was hoped to construct an accurate predictor of cut 

stump survival.

In Chapter 1, an outline is given of the forestry background to the control 

of the Eucalyptus grandis cut-stumps problem, and the original KwaZulu-Natal 

experiment is more fully described. A resume of Little, Maxfield and 

Kritzenger’s results follows.

A preliminary examination of the data is described in Chapter 2, One 

outlier from the continuous variates was identified and changed to a more 

meaningful value. Stool diameter, sum of cut surface diameters and highest 

height were considered to be potential predictors of cut stumps survival 

because of varying degrees of linearity when plotted against the cumulative 

sample logits with stool diameter showing the strongest linear trend. More 

complicated functions of the continuous variates were assessed in the same 

way but with little success. One of the new variables was derived from stool



diameter and sum of cut surface diameters to produce the ratio of the stool 

diameter to sum of cut surface diameters, by seeking to account for the poor 

performance of the cut surface method of application in cut-stumps of multiple 

stem origin. This poor performance is in contrast to the relatively largely 

successful results seen in trials of a similar nature on cut-stumps of single stem 

origin. No evidence was found from this sample that the ratio of stool diameter 

to the sum of cut surface diameters had a systematic effect on the total number 

of applications until a kill is achieved. However, for thoroughness and 

continuity this variable was assessed in a best subsets approach to selecting the 

best linear predictor in Chapter 4 and then later used in an additional analysis. 

This meant that there were 3 strong possible predictors for modelling the 

survival of cut-stumps in this study: stool diameter, highest height and sum of 

cut surface diameters. As a small proportion of the trial had been terminated 

before its completion the response contained some 29 missing values. The 

occurrence of missing values was scrutinised. The pattern of missing data 

appeared to be random.

The present case is an example of the general polytomous data problem 

with 4 response categories (representing total number of applications until a 

tree stump is killed). So, in Chapter 3, approaches to ordinal response data in 

general use are discussed including the use of cumulative logit models. An 

outline of the benefits of using cumulative logit models for ordinal response 

data is given which leads to the presentation of the proportional odds model as 

a suitable model for analysing the cut-stump data. An introduction to 

generalised linear models is given with a close look, in the general case, at the 

estimation of parameters using the method of maximum likelihood. The 

likelihood functions for the multinomial distribution are derived in the final 

section.

In Chapter 4, the best subsets procedure for obtaining the best linear 

predictor is explained and further features of the proportional-odds model are 

discussed. Testing for differences among factors is discussed and the corner- 

point style of re-parameterisation applied is explained. The log likelihood ratio 

statistic is presented as the method used in the analysis to examine the



adequacy of the models being assessed. Details of the fitting procedure used in 

the Minitab software are also given. The 601 sample cases for which complete 

data vectors were available were used to fit each of the ten linear predictors 

resulting from the best subsets approach to selecting the best linear predictor, 

using the proportional odds model. It was found that stool diameter and 

highest height in addition to the constants and treatment factors formed the best 

linear predictor. The results from testing this model showed that stool 

diameter, highest height, method of application, type of herbicide and an 

interaction term for method of application and type of herbicide were all 

statistically significant in explaining some of the behaviour of the ordinal 

response variable. Fitting the proportional odds model to these terms revealed 

that the presence of stool diameter in the model showed that larger stool 

diameters are associated with a higher number of attempts to kill. Highest 

height was not as strongly significant in the model but nevertheless was 

significant at the 5 % level. Of the three methods of application used in the 

trial basal frill outperformed the cut surface method. The Chopper and Brush- 

off types of herbicide performed better than the Timbril herbicide. Prediction 

using the results from Chapter 4, were used to produce graphs of the 

probabilities, given stool diameter and highest height, of a cut-stump requiring 

follow up operations.

The results from the additional analysis using the proportional odds 

model that was performed exclusively on the data from cut-stumps that had 

been treated using the cut surface method of application, showed that the ratio 

of stool diameter to the sum of cut surface diameter was not useful in 

predicting the number of applications of herbicide until a kill is achieved.

It is concluded in Chapter 5 that stool diameter and highest height are 

useful predictors in modelling the survival of cut-stumps of multiple stem 

origin. It is also concluded that the method used to analyse the ordinal 

response in this study is far more efficient than an analysis of variance. It is 

recommended that the proportional odds model is used as a suitable framework 

for data of a similar nature. For possible further work on this data set an 

ordinal response model for nested or hierarchical response data is suggested in 

Chapter 6.
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CHAPTER 1

INTRODUCTION

1-1 Tree poisoning

Unlike most other commercially grown tree species, Eucalyptus grandis has 

the ability to produce new growth via epicormic buds situated in the live bark, or 

cambium, when felled. These buds originate from meristematic tissue, present in 

the leaf axils of small seedlings, which have grown outwards. Usually these buds 

are prevented from sprouting by the presence of growth hormones called auxins, 

which are produced in the leaves. When the crown is removed, as occurs during 

felling operations, the inhibitory effect, known as apical dominance, of the auxin 

on the growth of these epicormic buds is removed and new growth is produced, 

known as coppice shoots. In the early stages after felling a mass of new coppice 

shoots are produced. If left, one or two of the coppice shoots will become 

dominant and suppress the remaining shoots. These coppice shoots can be 

selectively thinned over time and managed as a coppice stand for the production of 

pulp wood.

One problem is that the genetic advantages obtained from tree breeding 

means that larger gains, in terms of volume of timber, may be obtained through the 

replanting of old eucalyptus stands with genetically superior cuttings (clones) 

rather than allowing for coppice regrowth. Consequently, if the eucalypt stools are 

not killed before replanting, the coppice regrowth competes with the newly planted 

trees, resulting in a significant growth reduction as well as highly variable tree 

performance in the new trees. Therefore there is a clear desire to control coppice 

regrowth by killing the tree stools. The problem of killing stools is not just 

specific to coppicing eucalypts but is an established difficulty for foresters 

working with hardwoods.
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Researchers have sought to kill tree stools by means other than the manual 

bashing method, which is expensive whether carried out by hand or by heavy 

equipment such as bulldozers. Of the alternative methods of killing stools the 

most widely researched is the use of herbicides and arboricides on various types of 

species of hardwood. In experiments carried out by the South African Department 

of Forestry (Marsh, 1963) to determine the cheapest method of controlling 

eucalyptus stools (Eucalyptus saligna), the cheapest method found was to strip the 

bark from the stools to a level about 6 in. below that of the soil. However, this 

method was not found to be 100 percent effective and so interest over the years 

has centered on the next cheapest method reported, which was to poison the stools. 

(The economics still hold today.) In the original experiments sodium arsenite was 

used and was wholly effective but since it is extremely poisonous, both to mankind 

and wildlife, other cost-effective poisons have been sought.

The treatment of hardwood stools by chemicals has been practiced for at 

least the last sixty years. Historically, various inorganic chemicals were used, 

such as salts of arsenic, sodium chlorate and hydrocarbon oils, which were sprayed 

or painted on the stools. Today, herbicides such as phenoxyacids, glyphosate and 

triclopyr are used in addition to ammonium sulphate, which are applied by a 

variety of methods, the most common of which are the cut surface, basal frill and 

foliar spray methods (See section 1.2.).

In practice, it has been difficult to find a herbicide that is 100 percent 

effective on a hardwood species at the first application and so consequently 

follow-up operations are required. The present day problem has shifted slightly to 

that of finding a herbicide that will kill tree stools with the minimum number of 

follow up operations (for both efficiency and economic reasons). In the Institute 

for Commercial Forestry Research (ICFR) Annual Report 1998 Little et ah 

showed that it is possible to obtain an almost complete kill to Eucalyptus grandis 

single stem stools using selected herbicides applied using the cut surface method 

of application.
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The distinction between single stem and multiple stem eucalyptus stools is as 

follows. Where there is coppice re-growth the coppice stems are selectively 

thinned to leave the most robust on the stool (original stem). Generally the 

coppice shoots are reduced to the best two and then to a single stem. The stools of 

multiple stem origin are those stools that have been allowed to coppice for 2-5 

rotations and so have several dominant stems. When a forester fells a 

compartment of trees with single stems the stems will be felled at a uniform 

height. If allowed to coppice, the problem that then arises with the stools of 

multiple stem origin is that each time they are re-felled, the discrepancy between 

felling height above ground becomes greater and is dependent on how high the 

bowl of the stem is. This results in a larger stool in terms of height and diameter, 

yet with similar cut surface area. As the reserves (sinks) are larger it is thought 

that the ability of these larger stools to withstand efforts to kill them is that much 

greater. Imagine that the stool is an upside down bowl with pencils sticking out of 

it (the pencils being the stems that are to be harvested). The stems would be cut as 

close to the bowl as possible such that the height of the cut-surface from the 

ground would equate to the height of the stool.

1.2. The sample

Of the 714 tree stools involved in this study only 630 were included in the 

final analysis; this was due to a number of reasons explained below. The study 

was designed as a 3 x 5 factorial design with two additional controls replicated 

three times. The trial was initiated on stands of Eucalyptus grandis that had been 

coppiced four times, covering a total area of 6480m2 in the KwaZulu-Natal 

Midlands region of South Africa. The trial design allows for 48 plots arranged in 

three blocks of 17, to which the treatments were applied in a completely 

randomised fashion. Each plot comprised of 14 stools with the treatments being 

applied to those stools that were living prior to being felled. Five types of 

herbicide were tested in combination with three methods of application. The two
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additional controls did not receive herbicide and any coppice re-growth was 

manually removed with a bush knife.

The distinction between the two types of control lies in the addition of a 

basal frill so that a basal frill was cut in to the stumps of one set of the controls. 

This was used in comparisons with the basal frill treatments. The other control 

was used as a comparison for the foliar spray and cut surface treatments in the 

initial analysis. (See section 1.3.) Unfortunately, due to circumstances outwith the 

researcher’s control, the trial was terminated prematurely. At some time between 

the researcher’s fifth and sixth visit to apply the treatments and record the 

assessments of the stools, the forester had cut all the coppice down (where present) 

and had also used a stump grinder to remove stools to allow for access for timber 

extraction and planting.

On the fifth assessment 100 percent of the stools that were manually bashed 

were still alive. However, these data cannot be used in the analysis. Due to the 

forester’s actions an artificial ceiling has been forced on the control data and 

consequently, owing to the nature of the results from the first five assessments, the 

data as it stands holds no information, and even less distributional information. 

Hence all 84 control units were removed from the analysis and are not discussed 

additionally here. Furthermore, the treatment information recorded on the fifth 

assessment was deemed to be unreliable as the treatment effects at this stage were 

now confounded with the effects of the forester’s actions. This meant that a 

further 15 records were replaced with missing values in the analysis to maintain 

balance, so that in the final analysis the sample size was reduced from 714 to 630 

with 29 missing values in the response.

On inspection of the data, it was clear that although the data was right 

censored at the fourth application, the treatment effects were well established by 

that point. In support of this 28.1 percent of those that received a foliar spray were 

still alive at this stage, 11 percent of those where the cut surface was sprayed were
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still alive and only 0.5 percent of the stools that received a basal frill were still 

alive. Losing the control data does mean that there is an absence of a control level 

for use in comparisons with the various treatment combinations which in turn 

means that care is needed when interpreting the results of the analysis (See 

Chapter 4.)

Stools of multiple stem origin are acknowledged to be more difficult to kill 

than single stem origin stools. The Eucalyptus grandis coppice re-growth draws 

on a large reserve in terms of the underground portion of the stem and roots and 

for this reason, the use of soil active or systemic herbicides has proven to be more 

effective than the use of contact herbicide. Five types of herbicides were to be 

evaluated in this trial along with three types of method of application. As 

mentioned previously, the trial was a 3 x 5 factorial experimental design and the 

types of herbicide applied are given below in Table 1,1.

Table 1.1.

Description of Herbicides used in the trial

Type of Herbicide Commercial Name

Triclopyr (amine) Timbril

Triclopyr (ester) Gar Ion

Imazypyr Chopper

Metsulfuron-methyl Brush-off

Triclopyr (ester) + glyphosate (isopropylamine salt) Nomix + Gar Ion 6

The first method of application of herbicides to the stools to be discussed 

here is the cut surface method. The herbicides were applied to the cut surfaces of 

the stools immediately after cutting, as it is generally accepted that the sooner after 

felling the herbicide is applied, the greater the degree of success. The herbicide 

was applied to the cut surface according to label recommendations within 15 

minutes of felling. Herbicides were applied with a marker dye to the cambium

5



region of each stool using a hand held sprayer dosing gun. Care was taken during 

application to ensure a directed spray on to the stool in order to minimise drift. An 

important aspect considered when using this method was the residual activity of 

the herbicide used in the soil. Any lasting effects of the herbicide in the soil can 

consequently mean that the period before planting has to be increased, as some 

commercially planted species may be susceptible to soil active herbicides. If 

shown to be successful, this method could prove to be one of the most cost- 

effective, but there are indications that larger diameter stools and stools of multiple 

stem origin require follow-up applications.

The basal frill method relies on the application of herbicides into cuts made 

into the cambium at the base of the stool. An axe was used to make horizontal, 

downward-angled cuts into the sapwood of the stool such that run-off of the 

herbicide onto the soil was limited. These cuts were made as complete rings and 

the herbicide was applied within 15 minutes of the cuts being made. The herbicide 

was applied to the cuts as a directed spray using a solid stream tip nozzle with a 

backpack sprayer. The initial treatments were applied the day prior to felling so 

that the presence of any plantation residue would not hinder operations. This 

method is particularly effective in the killing of stools of multiple stem origin. 

Although this method is extremely effective in achieving a one-off kill, it is very 

time consuming and therefore may not be considered as cost-effective as other 

methods.

Herbicides can also be applied as a foliar spray onto coppice re-growth when 

it is approximately 1.5m (0.5-2.Om) in height. Spraying of the herbicides may take 

place from the air or on the ground with pressurised backpack sprayers, depending 

on the product used. Nowadays, compartments are seldom allowed to remain 

unplanted for any length of time, resulting in the aerial application of herbicide as 

a foliar spray being limited to temporarily unplanted areas as a pre-plant spray.

The reason being that the planted seedlings amongst the coppice regrowth could be 

equally susceptible to the herbicides used for this method of application. In this
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trial the herbicides were applied according to label recommendations when the 

dominant height of the coppice regrowth was 1.5m. Treatments were applied 

using a backpack sprayer. To avoid over-application, the herbicide was applied in 

a circular motion from the bottom to the top of the coppice re-growth, wetting the 

entire canopy to the point of run-off. The foliar applied treatments were sprayed 

86 days after felling when the coppice re-growth was approximately 1.5m tall.

After the initial treatments were applied, assessments were made at the same 

time that the treatments were re-applied. In other words, if coppice was present it 

was re-treated with the initial treatment. This was recorded per stool as a 

cumulative value and indicates the initial application of the treatment added to the 

number of return times until the stool was killed. At each assessment the 

presence/absence of coppice re-growth was noted and a record of survival/kill 

registered.

Table 1.2. contains a full list of the variables recorded in the study, and the 

number of cases for which each was missing. Altogether there were 20 variables 

and as mentioned previously 630 observations were used. Of these observations at 

least 12 were missing for each variate, and it was believed that a measurement was 

missing independently of the combination of treatments applied. This assertion, 

however, remains to be investigated.

Table I n ­

variable

Variables recorded during trial

Type No. of missing values

Plot number Identifier

Identifier

Factor

Stool number

Treatment number

(method*herbicide) ( 1 - 1 8 )  

Replication ( 1 - 3 ) Factor
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Type of herbicide applied Factor

( 1 - 5 )

Method of application Factor

(l=cut surface, 2=basal frill, 3=foliar spray)

Additional control Factor

Total number of applications Response 29

Number of times coppice controlled Variable 12

Stool diameter at ground level (cm) Variable 12

Total number of coppice stems per stool Variable 12

that were felled when harvested

Total number of coppice stems per stool Variable 12

with cut surface diameter > 5cm (Never 

more than three)

Diameter of cut surface 1 > 5cm Variable 12

Diameter of cut surface 2 > 5cm Variable 493

Diameter of cut surface 3 > 5cm Variable 618

Sum of cut surface diameters > 5cm Variable 12

Height 1 above ground of each of those Variable 12

cut surfaces that is over 5cm. (cm)

Height 2 above ground(cm) Variable 492

Height 3 above ground(cm) Variable 618

Height of the highest cut surface (cm) Variable 12

1.3. Previous analysis

The above data was collected in 1996, and the statistical analysis then 

carried out was published in Little, Maxfield and Kritzinger (1997). There follows 

a brief description of their results.

All of the 714 observations were used in their analysis. The response data, 

total number of applications until the stump is killed, was originally analysed as 

binomial data and an arc sine transformation was performed for the purpose of



equalising the variances within treatment groups (Snedecor & Cochran, 1980). 

Statistically speaking, replacing the proportions p tj by the angle whose sine is

allows the proportions near zero or one to spread out so as to increase their

variance. In effect, when successfully transforming the response in this way the 

data can be said to be ‘Normalised’. The purpose of doing this was to perform an 

analysis of variance on the factorial experiment.

In the ICFR bi-annual report the authors reported “In comparison to manual 

coppice control, the use of herbicides proved to be more effective. Of the three 

methods used the basal frill method proved to be the most effective with little need

for follow up operations no significant differences occurred between the

various herbicides.” The results presented in the report were not transformed and 

were in the form of a histogram with a bar indicating the mean number of 

operations for each treatment. The report went on to conclude that the manual 

bashing of coppice regrowth on stools of multiple stem origin was not as effective 

as the use of herbicides. There were no significant differences between the various 

herbicides used. Of the three methods of killing stools that were tested, the basal 

frill proved to be the most successful with little need for follow-up operations.

The methods employed to analyse this data are unsatisfactory for the 

following reasons. The most obvious is the authors do not use the ordinal nature 

of the response in their analysis. Transforming the data into the arcsine scale only 

allows the standard analysis to be used as an adequate approximation and 

performing an analysis of variance has the additional complication of back 

transforming the results. Also, the method does not incorporate the individual 

explanatory variables such as stool diameter, sum of cut surface diameters and 

height. If the data was modelled using generalised linear model, normalising the 

response by transforming to the arcsine scale would mean that the analysis is 

restricted to using the identity link function.
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The work described below follows on from, and extends, the above analysis. 

By considering more complicated functions of the variables, and a generalised 

linear (proportional-odds) model, it was hoped to find a framework that would 

adequately model the error structure of the data whilst taking the opportunity to 

use the cumulative information within the response itself. The proportional-odds 

model is more commonly used in the modelling of survival data in medical 

research where in general it is used to model the odds of an individual surviving 

beyond some time point t.

Of more theoretical interest, the present study also gave an opportunity to 

introduce a suitable model to analyse the performance of new herbicides by 

modeling the odds of response below any given number of applications on a real 

set of data. At present the statistical methods employed within the forestry 

industry for this type of data analysis are rather weak.
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CHAPTER 2

PRELIMINARY EVALUATION OF THE DATA

2.1. The purpose of data-exploration

Data from 630 felled eucalyptus trees monitored during the study described 

above were available for analysis. As previously stated records of the control plots 

were disregarded and 15 records relating to the results of a fifth application of 

herbicide were deemed redundant due to exceptional circumstances, and were 

recorded as missing to maintain balance in the designed experiment. In total, 

values were missing from 618 data vectors. Excluding the variables collecting 

information on the diameters and heights of stems > 5cm (dependent on number of 

stems > 5cm), values were missing from 29 data vectors. These missing values 

were mostly due to the 15 redundant records and 12 trees that were dead prior to 

felling.

Before this data set was used in formal procedures using a proportional-odds 

model, it was explored so that desirable features, (such as apparently good 

predictors) might be highlighted and, where possible, undesirable ones 

ameliorated. The question of whether values of the various variables were missing 

“at random” was examined. Extreme observations, which were thought to be 

wrongly recorded or which, even if correctly noted, would have had undue 

influence on the formal procedures to follow, were identified and, where 

necessary, eliminated. To cut out excessive computation and to avoid over-fitting 

of the model, the explanatory variables were assessed and the number was 

reduced. In some cases, variables that appeared to have little predictive power 

were excised. New composite variables were created and their relationship with 

other variables explored and their ability to account for the probability that a 

stump was killed with at most j treatments assessed.
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2.2. Missing values

Of the data vectors, 29 (4.6%) were incomplete. The number of cases for 

which the response (total number of applications) was missing in each group is 

shown in Table 2.1.

Table 2.1.

The pattern of missing data

Method Herbicide

1 2 3 4 5 AH

1 4 2 3 2 2 13

(9.52%) (4.76%) (7.14%) (4.76%) (4.76%) (6.19%)

2 4 1 0  1 3  9

(9.52%) (2.38%) (0,00%) (2.38%) (7.14%) (4.28%)

3 5 0 0 2 0 7

(11.9%) (0.0%) (0.0%) (4.76%) (0.0%) (3.34)

Al] 13 3 3 5 5 29

(10.3%) (2.38%) (2.38%) (3.96%) (3.96%) (4.6%)

Although it is possible that this relatively small number of missing values 

could have been non-random due to treatment or location specific effects Table

2.1. gives no consistent evidence that such a relationship exists.

2.3. Identification of outliers

With the exception of those details recorded on the factorial design of the 

experiment, there were 9 additional measurements recorded on each of the stools. 

The sample distribution of the values of each of these 9 variables was examined to 

identify outliers. In this context, an outlier was any observation sufficiently 

different in character from the rest of the sample to have an excessive influence on 

the calculation of summary statistics for the whole sample. Such observations 

were investigated as they arose in the preliminary inquiry.
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2.4, The relationships between stool dimensions

It was primarily intended to find, from the values of those variables on the 

dimensions of each stool, additional variables that might further explain the 

survival of stools to different treatments. It was thought that any relationship 

between number of times the coppice re-growth occurred and the amount of 

herbicide applied would be quite important. Since there was no information on the 

actual amounts of herbicide applied, investigation found that the total number of 

applications of herbicide until a kill was achieved could in itself be a measure of 

‘how much’ herbicide was applied to a stool. However, on closer inspection it was 

discovered that on every assessment visit, each stool was always controlled for 

coppice re-growth until the stool was killed. Therefore an anomaly arose here, 

since the coppice control was effectively the total number of applications until 

death of each stool minus 1: not a very useflil predictor!

Plots of stool diameter against the sum of the cut surface diameters are 

shown, for the sample, in Figures 2.1., 2.2(a) and (b) respectively. It is clear from

2.1. that there exists a positive linear relationship, if somewhat messy, between 

stool diameter and the sum of cut surface diameters. The sum of cut surface 

diameters increases with stool diameter so that, in general, the larger the stool 

diameter the larger will be the sum of the cut surface diameters of that stool.

Figure 2.2(a) investigates this relationship further. The points have been colour 

coded by the response categories, such that each colour point represents a stool’s 

number of follow up operations until a kill was achieved. As suspected those 

stools with bigger dimensions mostly took a greater number of follow-up 

operations until killed. There are two points that are the exception to this, where 

both have large dimensions and were killed after the first application. Figure 

2.2(b) plots the same graph but this time with the points colour coded to represent 

the type of method used to apply the herbicides. (l=cut surface, 2=basal frill, 

3=foliar spray.)
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Figure 2.2(a). Relationship between Stool Diameter and Sum of Cut Surface

Diameters. (Number of applications until a kill is achieved.)
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It was thought that those stools with larger cut-surfaces were killed sooner 

when herbicide is applied using the cut-surface method. However figure 2.2.(a) 

and figure 2.2.(b) together show the point representing the stool with the largest 

sum of cut surface diameters was treated using the basal frill method and the other 

using the cut-surface method of application. From both figure 2.2(a). and 2.2(b). a 

pattern can be identified in those stools with larger stool diameters killed first 

time;, stools with large diameters killed first time were largely treated using the 

basal frill method of application. Where there are instances of stools with large 

stool diameters having had 3 or 4 follow-up treatments these have almost always 

been treated with the cut-surface or foliar spray methods of application. Larger 

sums of cut surface diameters were rarely killed first time regardless of the method 

used. (This notwithstanding the observation that the distribution of stools with 

large sums of cut surface diameters is slightly uneven across methods with most 

being found in the cut surface and foliar spray treatments.)

In an attempt to relate all three variables: stool diameter, sum of cut surface 

diameters and highest height of coppice re-growth, a new variable, ratio of the 

stool diameter to the sum of cut surface diameters, was created. A scatter plot of 

this ratio vs highest height is shown in Figure 2.3(a). In doing this at least one of 

the dimensions measured on three of the stools were found to be much higher than 

those of the remainder of the sample. These three outlier measurements were from 

cases 376, 602, and case 261. Case 376 has an abnormally high measurement of 

height recorded (601cm) implying that the highest height of the felled coppices 

was over 6 metres; a highly implausible value. It was concluded that the data in 

this case was incorrectly recorded and it was replaced with the more reasonable 

value of 60cm. Cases 602 and 261 had high ratios due to very small sums of cut 

surfaces relative to their stool diameter measurement. Whilst this is of some 

concern, these measurements were not excised from the data set.
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Figure 2.3(a). Relationship between Highest Height and Stoold:C-SD.
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Figure 2.3(b). Relationship between Highest Height and Stoold:C-SD with case 

376 replaced.
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Figure 2.3(c). Relationship between Highest Height and Stool Diameter.
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Figure 2.3(d). Relationship between Highest Height and Sum of Cut Surface 
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Re-producing the scatter plot (Figure 2.3.(b).) with the ill-fitting observation 

replaced, reveals that the ratio between stool diameter and cut surface diameters is 

fairly skewed, i.e., within the range of values 1 — 5 cm for the bulk of the data, 

with a light spattering of points which lie outwith and to the right of this range. 

The relationship between these two variables appears to be weak and it is easy to 

observe that the distribution of the ratio between stool diameter and sum of cut 

surface diameters lies within the same range whatever the highest height 

measurement.

Further plots of highest height vs stool diameter and highest height vs sum of cut 

surface diameters are shown in figures 2.3(c). and 2.3(d). From figure 2.3(c) it is 

seen that highest height and stool diameter measurements have a weak positive 

relationship. As stool diameter increases the variability of highest height also 

increases. Figure 2.3(d) shows a similar relationship.

Table 2.2.

Table of Pearsons Correlation Coefficients.

Stool Diameter Sum of Stool Diameter:

C-S Diameters C-S Diameters

p = 0.558

p = 0.177 p = -0.586

p = 0.254 p - 0.295 p = -0.132

Sum of 

C-S Diameters 

Stool Diameter: 

C-S Diameters 

Highest Height
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Overall, these scatter plots gave no suggestion that highest height, stool 

diameter, sum of cut surface diameters and the ratio of these latter two variables 

are strongly correlated. However, stool diameter and sum of cut surface diameters 

are moderately correlated (p = 0,553), as is sum of cut surface diameters to it’s 

ratio (with stool diameter) which is expected. See Table 2.2 above.

2.5. Assessing possible predictors

Due to the nature of the response variable it was necessary in the first 

instance to consider the proportions within each response category to ascertain the 

relationship of the response (proportion killed in category j or below) to changing 

levels of factors and continuous variables. The manner in which the logistic 

transform of the response probability varied over the levels of the predictor was 

essential in determining whether any relationship is linear. The existence of such a 

relationship gives justification for using the predictor in the modelling of the 

response. This is because the cumulative probability that a stool is killed on the jth 

application is given by

P(Y < j)  = Kj + ... + %j , j = 1,...,J

and the cumulative logit is equal to

logitP(F < j )  = log

In the usual ordinal logistic regression model, 

log itP(7 < j )  = a,j + p x ,

so when plotting the cumulative sample logits against a suitable predictor the 

relationship should be approximately linear.

For each of the continuous variables, a factor was defined whose levels 

corresponded to consecutive intervals of that variable. These were used to judge 

the presence of linearity in the empirical cumulative logits in plots for response 

categories Y < 1 up to Y < 3 . Figures 2.4(a). -  2 .6(d). show the presence or 

absence of linear trends in the cumulative sample logits for stool diameter, highest
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heights, sums of cut surface diameters and the ratio of stool diameter to sum of cut 

surface diameters respectively.

Stool diameter at Y < 1, figure 2.4(a). showss a negative linear trend 

(although there is slight concavity present) in the logit proportions of those stools 

killed against their level of stool diameter size. It is clear that as stool diameter 

increases the proportion that is killed in the first application decreases. Figures 

2.4(b) & (c) emulate this linear trend more definitely and so the above can be 

generalised to state that as stool diameter increases it is thought that the probability 

that a stool is killed on or before the jth application decreases linearly. Generally, 

the linear trend applies throughout the response categories and it was noted that 

although the logits of the proportions killed on or before the jth category decreased 

with stool diameter, overall the cumulative logits of the sample proportions 

increased steadily.

Highest height measurements show the same trend initially at Y < 1, 

although it is not as strongly linear as the stool diameter measurements. However, 

this linearity becomes less obvious in figures 2.5(b) & 2.5(c). This is due to those 

stools killed on the second application largely having smaller height values. On 

the third application of herbicide a greater number of stools with larger height 

measurements were killed. In general, the highest height measurements show a 

weak negative trend in the cumulative logits, although signs of curvature are 

present.

The sum of cut-surface diameters displays some similar qualities for the 

three cumulative logit proportions, notably the general negative decrease in the 

cumulative sample logits with increasing factor levels.. In Figures 2.6(a) - (c), the 

relationship between the cumulative sample logits and the sum of cut surface 

diameters shows signs of curvature, indicating that the relationship between the 

two might be non-linear. That notwithstanding the probability that a stool is killed
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Figure 2.4(a). Y  < 1: Relationship between Stool Diameter and Logit of

Proportion Killed.
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Figure 2.4(b). Y <2:  Relationship between Stool Diameter and Logit of 
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Figure 2.4(c). P(Y  < 3): Relationship between Stool Diameter and Logit of

Proportion Killed.
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Figure 2.5(a). Y < 1: Relationship between Highest Height and Logit of

Proportion Killed.
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Figure 2.5(b). Y <2:  Relationship between Highest Height and Logit of 

Proportion Killed.
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Figure 2.5(c), Y < 3: Relationship between Highest Height and Logit of

Proportion Killed.
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h Y < 1 : Relationship between Sum of C-S Diameters and Logit of

Proportion Killed.

‘■HoCM
8CM
o

oJ

1.95

.05

.15

.25

-1.35

1 2 43
Sum o f C-S Diameters

Figure 2.6(b). Y <2:  Relationship between Sum of C-S Diameters and Logit of 

Proportion Killed.
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Figure 2.6(c). Y < 3 : Relationship between Sum of C-S Diameters and Logit of

Proportion Killed.
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Figure 2.7(a). P(Y < 1): Relationship between Stool Diameter to Sum of Cut

Surface Diameters Ratio and Logit of Proportion Killed.
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Figure 2.7(bV P(Y < 2): Relationship between Stool Diameter to Sum of Cut 

Surface Diameters Ratio and Logit of Proportion Killed.
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Figure 2.7(c). P(Y  < 3): Relationship between Stool Diameter to Sum of Cut

Surface Ratio and Logit of Proportion Killed.
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on or before the jth application decreases as the sum of cut surface diameters 

increases - the exception being the very largest sums of cut surface diameters.

A new variable stool diameter to sum of cut surface ratio was created from 

two of the original measurements taken at the time of the trial. This was done in 

an attempt to formularise the belief mentioned previously, that smaller cut- 

surfaces on larger stools may inhibit the effect of the herbicides applied. In figures 

2.7(a) -  2.7(c), the relationship between the cumulative logits and the ratio of stool 

diameter to sum of cut surface diameters appears to be non-linear. The proportion 

of stools killed on or before the first application of herbicide is higher for smaller 

ratios of stool diameter and sums of cut surface diameter and lower for larger 

ratios. This is reversed for those stools killed on or before the second application 

of herbicide suggesting that a greater number of stools with higher ratios were 

killed on the second application of herbicides. Figure 2.7(c) shows a shifting to 

the left of the trend seen in figure 2.7(b) so that behaviour in the cumulative 

sample logits is now increasing with stool diameter to sum of cut surface 

diameters ratio. The trend here seems to be inconsistent and would be difficult to 

model.

Of the four continuous measurements studied here stool diameter showed the 

strongest linear trend. Highest height also showed a degree of linearity but it was 

thought that of the three measurements assessed stool diameter showed the best 

linear behaviour. As previously stated, the experiment was originally designed as 

a factorial experiment and so it is the intention of this study to model the 

additional information on stool dimension in the systematic component of the 

generalised linear model whilst staying true to the original factorial design. It was 

strongly thought (by the researcher) that the ratio of stool diameters to the sum of 

cut surface diameters was the cause for a poor performance in using the method of 

cut surface application when treating cut-stumps of multiple stem origin. It is for 

this reason, although the variable shows little sign of being a useful predictor at 

this stage, that it was used in a best subsets approach along with the other variables
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assessed here to find the best linear predictor. It was also used in an additional 

analysis using the proportional-odds model to illustrate the result more 

conclusively.

During the course of the preliminary analysis other new variables were 

created using the stool diameter, sum of cut surface diameters and highest height 

variables assessed above. In attempts to determine the dimensions of stools that 

might give some clear insight into the killing of cut-stumps of multiple stem 

origin the following variables were created and assessed exactly as above, these 

variables were cut surface area, sum of cut surface diameters squared, sum of cut 

surface diameters squared multiplied by highest height, stool diameter squared, 

and stool diameter squared multiplied by highest height ( a measurement used in 

yield of timber calculations). None of these functions when plotted against the 

cumulative sample logits showed convincing linearity or provided additional 

information that might be useful in the ordinal response model. The usefulness of 

the above functions (including cut surface and stool diameter to sum of cut surface 

diameters ratio) in nonlinear models remains to be investigated.

31



CHAPTER 3

GENERALISED LINEAR MODELS

3.1 The general problem

The general polytomous data problem may be described as follows.

When the response of an individual or item in a study is restricted to one of a 

discrete set of possible values, such a response is known as polytomous. This 

extends to include the fixed set of possible values that individually reduce to a 

simple dichotomy. In such a situation the binary response variables measured 

on each individual or item collectively form a multivariate response.

A fixed set of categories is said to be ordinal when the categories are 

ordered much like the ordinal numbers ‘first’, ‘second’, ‘third’ etc. and where 

it does not make sense to talk of ‘distance’ or ‘spacing’ between categories. 

More distinctly, when the categories are ordered the extreme categories must 

be treated differently from the intermediate ones.

The number of applications of herbicides it takes to a kill tree stump 

clearly fits into this general framework. The response categories in this case 

consist of the number of applications of herbicide until a stump is killed, 

namely, one, two, three or four. The categories are obviously ordered with the 

first time and fourth time kills being more extreme than the intermediate 

numbers of applications. At each application category a success (kill) or 

failure (survival) is noted. Therefore, the response may be considered to be at 

least ordinal. In fact, the response is discrete interval scaled which is treated as 

ordinal due to the way in which the extreme categories are interpreted.

In practice a number of broad ways are employed when dealing with this 

type of ordinal data. The most basic and simplistic approach is to ignore the 

structure of the response completely and perform logistic regression analysis 

for each of the separate binary response categories. In some situations this may 

be all that is needed but it is not considered further here.
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A second approach is to treat the responses as nominal where the 

ordering is ignored in the first instance. If the resulting conclusions are 

invariant with respect to the ordering then additional assurance can be taken in 

this. Caution is advised in this approach as it is unsuitable for response data 

where there is a ‘large’ number of categories, since each category in this case 

has its own parameter vector pk , so the nominal response model contains 

many more parameters than a single model for ordinal data.

A third approach is to assign conventional numerical values to the scale 

points, typically equally spread, i.e., -2 , - 1, 0 , 1,2  and proceed as for 

quantitative variables. It is wise to check that the conclusions are not critically 

dependent on the scoring system used and additional care is needed if there is 

some tendency to cluster around the extreme points of the scale. Often the use 

of integer scores is unlikely to satisfy completely the theoretical assumptions. 

Arbitrary scores of 0, 1, 2, 3,... are often used and analysed by analysis of 

variance methods on the assumption either that the necessary criteria are 

satisfied or that the list is sufficiently robust for it not to matter. In such a 

situation there are methods for deriving scores.

Snell 1964 outlines a method for deriving category scores assuming an 

underlying logistic distribution. For a scale of k categories, points j t .; j = (1,

.... k) are defined such that category j . corresponds to the interval x hi  to Xj .

Denoting the underlying continuous distribution by P{ ( x j ) the probability of

an observation i in category Sj is equal to P. (jc .) -  P. (xyW), i = l ,2 , . . . . ; j  = 1,

2, ..., k. That is,

f>(X;)=[7 + <f'“'"')r J (3.1.1)

where ai + x- represents the logit of the proportion P. ( x . ). Equations for the

maximum likelihood estimates of the parameters a{ and x - , are determined

and from these approximate estimates of Xj are obtained by substituting 
/ \

P{ (Xj) with the observed proportions.
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Hence values of s . are calculated by the mid class points

Sj = (Xj + Xj_j) /2  , j = 2, ,k-l (3.1.2)

and the average distance x  -  (log P) /Q , where P denotes the probability of a 

value less than x and Q = 1 -  P, is added to x} and xk for the extreme scores 

Sj and sk.

Finally a more satisfactory approach is to centre interest on modelling the 

multivariate ordinal response using a multivariate generalised linear model. 

McCullagh’s 1980 paper has been highly influential in advancing this type of 

model’s use. In his paper McCullagh states that ‘An appealing requirement for 

any model is that it should apply under varying conditions and should, as far as 

possible, be consistent with known physical or biological laws. This means, 

for example, that to measure the difference between two proportions, the 

logistic scale is preferable to the probability scale since a constant difference is 

a logical possibility on the logistic scale but is logically impossible on the 

probability scale.’

A general property of all log-linear models that do not use scores is that 

they are permutation invariant. A cumulative logit model has this and the 

above properties. It often results in simpler interpretations than some of the 

procedures listed above and has potentially greater power than ordinary logit 

models.

3.2 Cumulative Logit Models for Ordinal Responses

If there are J response categories with J  >2 , there are many ways of 

forming logits (A. Agresti, 1984). For example, for a polytomous variable 

having response probabilities (n} ,...,TCy) at a certain combination of levels of 

explanatory variables a conditional logit could be formed.

log
r n i \ n j + n t ^ 

K , .  I 7U . +  K ,
= log

' n A
ft,v k j

(3.2.1)

This is the log odds of classification in category j instead of category k, given 

that an observation falls in one of those two categories. When the response
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categories are ordered it makes sense to work with the cumulative response 

probabilities. The cumulative probabilities can be defined as the probabilities 

that the response Y falls in the category j or below, for each possible j where 

j = 1,...,J (J -  4 in the present study.) Let P(Y < j) be the probability that Y 

belongs to a category less than or equal to j, then the jth cumulative probability 

is given by

The cumulative probabilities reflect the ordering of the categories, with 

P(Y < 1) < P(Y < 2) < ... < P(Y < J) = 1. This cumulative probability model 

does not include the final probability, P(Y < J), since it necessarily equals 1. 

The logits of the first J - 1 cumulative probabilities are formed in a way that 

takes account of the ordering of the categories.

Each cumulative logit uses all of the J response categories. For each 

cumulative logit the response categories collapse into two distinct categories, 

namely, those categories 1 to j and j + 1 to J so that the jth cumulative logit is 

effectively the binary response logit P(Y < j)/ P(Y > j +1). In effect, the jth 

cumulative logit is the log odds that Y belongs to category j or below.

An ordinal model generally needs to provide structure for the J-1 

cumulative logits. This was illustrated by Clayton (1974) in his use of the 

below model to calculate a common ratio 0 of the odds for x  < x  , where x is a 

random variable measured in two populations. If, for samples from each of 

these populations, the frequency distributions are available stratified at the 

points {x(}(* = the data form a (M+l) x 2 contingency table, with

ordered structure in the row classification. Let F] (x) and F2 (v) be the

cumulative distribution functions for x then the model proposed by Clayton 

(1974) is

P (Y < j) = 7ti + -+ 7 tj, j = (3.2.2)

logit[[P(Y < j)]j = logf P(J ^ j 0 j  j = l  J-l
I 1 -P (Y <  j) I

(3.2.3)
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log FjiXj)
1 - F M )

log 0 + log F2(xi)
1 - F 2(x .)

i =

(3.2.3)

In his paper Clayton showed that the above model assumes that for each of the 

M possible ways of collapsing the table into a 2 x 2 table the odds ratio is the 

same proportionality constant between corresponding logits. This is a 

fundamental feature of the proportional odds model that is desirable in 

modelling complex structured explanatory variables since the results are easily 

interpreted.

For the tree cut-stump study, J = 4 and so the chosen model will refer to 

log \ri I (%2 + K3 + TC-#)], log [ft; + %2 /(% 3  + %4)] and log [(%! + %2 + 7tj)/ 7t*].

3.3 Proportional Odds Model

Let X be a predictor, then the model

logit [f(F  <, 7')] = a,i + |3Tx j = 1 J -  1 (3.3.1)

has a linear parameter (3 describing the effect of x on the log odds of response 

Y belonging to category j or below. This model assumes X has an identical 

effect for all the J-l collapsings of the response into binary outcomes. In other 

words the linear equations are parallel.

Interpretations for this model are widely referenced and refer to the odds

ratios for the collapsed response scale, for any fixed j. Agresti (1996) points

out that for two values xj and x2, the odds ratio utilises the cumulative

probabilities and their complements,

P(Y < j \ x 2) / P ( Y >  j \ x 2) 3
P(Y< j \ x i ) / P ( Y >  j  1 x/)

The log of this odds ratio is the difference between the cumulative logits at 

those two values of X. This equals (3(x2 - x }) , which is proportional to the 

distance between the X values. The same proportionality constant ((3) applies 

for each possible point j for the collapsing. That is, the odds ratios depend only 

on the difference (x2 — X i ) ,  but are independent of the choice of category. Note
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that this is a strong restriction which has to be relaxed in models for interval 

scales. (McCullagh & Nelder, 1989; ppl55)

An interesting feature of the proportional odds model is the way in which 

the response probabilities vary with x for the single variable case in which 

(3 >0. As x increases, the response on Y is more likely to fall at the low end of 

the ordinal scale. The probability for the highest numbered category decreases 

with x. For intermediate categories the probability decreases with x up to a 

certain point and thereafter increases. Over certain ranges of x, the probability 

for some of the intermediate categories is almost constant: over the same range 

the probabilities for the extreme categories may change quite appreciably.

The proportional odds model is appealing with respect to the context of 

killing tree stumps as it allows for modelling of the multivariate response data 

without loss of information, with potentially greater power and simpler 

interpretations through the use of linear predictors. The proportional odds 

model outlined above can be adjusted to allow for the incorporation of the 

design structure of the experiment in addition to the continuous variates in the 

tree stumps data. So the proportional odds model for the killing tree stumps 

data can now be written as

log f  P ( Y < j ) A= a, + |3Tx j  = 1........3 (3.3.3)
1 - P ( Y S ; ) /

where j3T is the vector of unknown parameters associated with the covariate 

vector x. Explanatory variables in the cumulative logit models can be 

continuous, categorical, or of both types, which is clearly suited to the killing 

of cut-stumps study as both types are prominent.

3.4 Generalised Linear Models

The proportional odds model is just one of a collection of models 

otherwise known as generalised linear models. In practical terms generalised 

linear models extend linear models to allow the random component to have a 

distribution other than Normal, and to allow for modelling some function of the 

mean. Broadly speaking, generalised linear models accommodate both non-
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normal response distributions and transformations to linearity. Firth (1991) 

explains that this extension yields a class of models of the form

M y )  = f ( y ,  PTx) (3.4.1)

in which x continues to appear only through the linear predictor, T| = pTx , and 

where fy(y) is the density of the response variable Y. Nelder and Wedderburn 

(1972) fir st identified this class of generalised linear models and provided the 

following theory. Let E(Y) = |X, then |1 is determined by T| and so

g(jUL) = -n (3-4.2)

where g is the link function between the mean and linear predictor. If f is a 

density function or probability function that belongs to the exponential family, 

then parameter estimates based on the likelihood enjoy special properties. One 

of these properties is that they satisfy enough regularity conditions to ensure 

that the global maximum of the log likelihood function f (0 ; y) is given 

uniquely by the solution of the equations d£/dQ = 0 or equivalently 

d£ /3|3 = 0 . Particular special instances of generalised linear models with these 

properties are the probit and logit link functions for binomial distributions.

Note that Section 3.3. has centred attention on the proportional odds model 

using the logit link function.

The following general formulation for generalised linear models is based 

on N independent observations. This theory can be extended to the 

multinomial response where the nature of the response categories are non- 

independent and will be dealt with later in this chapter. Let

E(Y) = n(Pi,...,pP) (3.4.3)

be the parametric model for the mean of a response Y, where Pi,..., pP (p<N) are 

unknown parameters and jx(-) is a known function. The model is said to be 

linear if fi(-) is a linear function of pi,...,pP,

| X = i L . p , .  ( 3 . 4 . 4 )
r=l

for some explanatory variables xj,...,xp associated with the response Y.

A generalised linear model is of the form
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v  = g
f-1 Z * rP,-

r=l
V

(3.4.5)

where g(-) is a one-to-one differentiable function and is termed the link 

function. The link function g(p) maps the response interval on to , or

if the response interval is restricted to positive values only g(p) maps (O ^) to 

the whole real line. In particular, the logit link function maps the interval (0,1) 

to ( - « » , o o ) . In the case where the link function is the inverse of the distribution 

function of p., simplification of the log-likelihood function allows for a general 

formula that can be applied to a number of the exponential distribution 

families.

A general example is as follows. Assuming independence in N 

observations, yi , . . . ,yN,  where each yr- is from an exponential family with 

parameters (0*,<j>) (where 0  is the dispersion parameter), the log-likelihood for 

the sample is

1 ^  X  -----+ c(yi,<|>) > (3.4.6)
/=/ «(cj>)

(the function a((|)) has the form a(<j>) = (J)/cof. for known weight co(.) 

and so let

g(p0 = g{Z>T00} = X * ,rP,. =x?’P = r |I. i=  1,...,N
r=l

(3.4.7)

be the structure imposed on the parameters, 0i , through a generalised linear 

model. If g(-) is the canonical link function then the likelihood for the 

regression parameters may be generalised to the following formula

c M )  . (3.4.8)
r=j 1=1 a { i ()} L«(4>)

This general form along with the known quantity (j> leads to further 

simplification of the estimating equations for the parameters Pi,...,pP.

The likelihood functions for some of the most common families of 

distributions can be written in the general form
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L(0,<j>;y) = exp( y T9 -fr(9)

§
(3.4.9))

for a single observation y. If the value of <|> is known, the family is referred to 

as a linear exponential family indexed by the natural parameter 0 .

It is appropriate at this point to illustrate that the Multinomial distribution 

can be written in the exponential family form, so for example

f A y )  = P(YI = y„...YJ = y J) =
v^y

(3.4.10)

(where J is the number of attributes or response categories.), can be written as

/ v (y) -  exp((y} lo g (7 t j ) +  . . . +  y 7 l o g ( 7 t , ) +  l o g

v^y
).(3.4.11)

where y  is the vector of responses and

ml^ 171̂

v^y
which, by comparison with equation (3.4.9) is seen to belong to the exponential 

family,

/(yf;0/,<!>) = exp{[y.0. -fc(0,)]/a(<|>) + c(;y,,<|>)} (3.4.12)

where i in this instance refers to the ith observation vector and where 

0 = log(k j ),...,log(ny), c(yf.,4>) = m !/y7!...yy!, b(Q) = 0 and a((j)) = i .

3.5 Maximum Likelihood

The maximum likelihood method operates through the likelihood 

equation, which is obtained by differentiating the log-likelihood function for 

the sample. When the log-likelihood is of the linear exponential form some 

elementary properties follow

EQiidQ) =0
(3.5.1)

- E Q 2£/dQ2) = E(d£/dB)2 

where t  = log L (0, <j>; y ) . These properties, although not restricted to the 

exponential form but hold in general, are used in maximising the likelihood 

equation. By setting the likelihood equation equal to zero and finding the 

minimal sufficient statistics for the unknown parameters which satisfy (3.5.1),
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these minimal sufficient statistics when substituted in (3.5.2) maximise the log- 

likelihood function.

For N independent observations, Yi,...,Yn, the log likelihood is

? ,) = - ^ e . o i / a w + c c y , ^ ) . (3 .5 .2)
/

i = 1,... ,N. It follows then, that the first and second derivatives of this log- 

likelihood are

3t?/30; = [yf — &’(0f)]/fl(<|>), and 

32£/302 = (3.5.3)

respectively, where bXQ.) and &”(0,) denote the first two derivatives of b 

evaluated at 0f . In light of the above, equations (3.5.1) imply

£(?;.)=H.f =z>*(ef), 

and var(Y() = fc”(0.)a(<|>). (3.5.4)

To obtain the likelihood equations, it is first important to recognise that 0 

depends on the model parameter p , such that

«P ) = X l o g / ( y i;e,..<|)) = ^ f .
i=l i- I

where I { = ^(0f,<t>;3?f) ; i = 1,...,N, and so the likelihood equations are given by 

U ,  _  d I ,  9 9 ,  3 n ,  9 n ,  r 3 5 5 ^

ap , 30, 3(1,. 3n, 3Pr '

Since 3l?/30(. = [y r. -& ’(0(-)]/«(([>), and since p.,. = b ’(Qi) and 

vav(Yi) = b ,,(QiM § ) ,

3^/30- = [ y . - n f]/fl((|)),

3]if /3 0 f. = b ”(fli) = var(yi)/a($)  (3.5.6)

Also, given (3.4.7) where rp = ^  *frPr , where r = l,..p and p<N is the number
r=i

of model parameters,

an,.
= x,.. (3.5.7)

3p,. "
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Finally, since g(|i.;) = tt, 3jiir- /3 r |(. depends on the link function of the model. 

So substituting these results in (3.5.5) yields,

(>,■ -M-f) <*(<!>)
ap r «(4>) var(Y)) dr\; ir ’

which reduces to

te ,  _  (yf dm
ap,. var(F;) rill,. ’

and so the likelihood equations are given by 

y  (y,- dft,-

(3.5.8)

r "  l,...,p  (3.5.9)
i=1 var(y,.) dn(.

In general the likelihood equations are non-linear and they have to be 

solved by numerical iteration methods. Dobson (1990, p40) illustrates the use 

of the Newton-Raphson method. The mth approximation to the true 

parameters P is given by

-i
3 -tf(P)

K
¥ (m-I) (3.5.10)

p=t/'

where a ^ (P )
-1

P=bf'

is the matrix of second derivatives of 1?(P) evaluated at P = b ("' ;)and is

the vector of first derivatives 5/?(p)/0pj. evaluated at p = b ("'~J). The Newton- 

Raphson method can be simplified by using the method of scoring. Effectively 

this is the Newton-Raphson method with matrix of second derivatives in 

(3.5.10) replaced with the matrix of expected values

te t j E1 te j
L;>mpJ — —£L[dp,dpj

= - E

var(T)

dm- (yj-MvK 9m-,
var(^) 3rii var(y;) dr];

te),

and so E '  a 2 f ( P ) ' N -V V 
_  y  /r i.v ^ )

Lapr9ps J t f v a r ( ^ ) W
(3.5.11)
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Equation (3.5.11) is also known as the information matrix Inf. The 

information matrix can be written in matrix notation so that

Inf=XTWX (3.5.12)

where W is the diagonal N by N matrix with elements

w, = 0 ^ /9 T i f)2 /var(y.) (3.5.13)

and X is the N x p design matrix.

The actual iterative method used to fit generalised linear models is called 

Fisher Scoring. The initial values for the weights w. are calculated by the 

initial linear predictor, at iteration m a new approximation to the estimate of p 

is found by a weighted regression of ‘working’ values Zi on X with weights wf-. 

To identify these working values consider the Fisher Scoring algorithm with 

the mth approximation to the true parameters p

h(m) = b f»,-7j + ( x r W f'"';jX r V '" - ;), or

(Xr W (""yjX)bw  = ( XTW {m-1)X)b(m'I} + q (m_/) (3.5.14)

where (Xr W (,""J)X) is the m-1 approximation for the estimated information 

matrix. The right hand side of (3.5.14) is the vector having elements

r=l

X l r X irV 7 ir

S v a i &\i
P ( m - J ) +

var(T;) 9rif

Therefore, (3.5.15)

(X7’W {"i'7)X)bf"i-yj + q ('"~y) = x TW {m'1)z (m-1)

(XTW X)bw  = x r W (m'JJz (m'J) (3.5.16)

where has been defined as z ('"“i) = X b (m), which has elements

■*- f 3ti!“(  TWy(m-I) \

r=l

= n (»-o + (y j

(™ -/)

an

V

<$5 XT)

Finally, (3.5.16) can be arranged to find the form of the Fisher Scoring 

equations for generalised linear models
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b (n,} = ( x ^ ^ X ^ X 7^ ”' ^ ”’̂  (3.5.18)

The vector z is known as the working variable because at each mth cycle of 

the iterative method z (m_7) is regressed on X with weight W ("‘~y) to obtain a 

new estimate of . This provides a new linear predictor f(fmJ = Xbf"1‘7J and 

pM _  g-i _ 7he maximum likelihood estimator is the limit of b f"!) as m 

tends to infinity. The iteration procedure continues producing new values until 

a suitable convergence criterion is satisfied. This procedure is more generally 

termed iterative weighted least squares (IWLS).

A neat result of the above procedure is that the asymptotic covariance 

matrix of (3 is the inverse of the information matrix, estimated by

Cov{ P) = (XT W ^X )-1 (3.5.19)

where (X7 W (0X) is a by-product of the final IWLS iteration and (3 is b fmJ at 

convergence.

Finally, the IWLS scheme depends on the response distribution only 

through its mean and variance functions which is why it is fairly straight 

forward to extend the generalised linear modelling theory to include multi­

response models.

3.6 The Multinomial Distribution

In the tree stumps data the tree stumps possess one and only one of the k 

attributes Ai,...,Aj, namely, killed after the first application of herbicide, killed 

after second application and so on, up to the kth application of herbicide. 

Theoretically (McCullagh & Nelder, 1989), if the population is infinitely large 

and a simple random sample of size m is taken, the probability of an 

observation to have been killed after the jth application of herbicide is given by

ml
pr(Y] = = y j ;m,%) = — -—  -------Kr'...KJ: ,(3.6.1)

otherwise known as the multinomial distribution. The probability vector n  is 

related to explanatory variables, through a link function. In this case the 

cumulative probabilities are modelled using the logit link function. As was
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shown in section 3.4, the multinomial model is a member of the linear 

exponential family. The variance function of the multinomial distribution is 

now the covariance matrix X with elements

\ n m A l -TZ,) i = j
X „ =  . , (3.6.2)

 i ^  j

and the expectation is given by

 ̂ m.exptri ) ^
E(J t) = mil,. = n,. =   , (3.6.3)

1  +  e x p (T |; )

for the proportional odds model with the logit link function. Therefore, it 

follows that the variance of 7,- can be written as

r \ \
v a r t f )  =

1 + exp(rjr.)
exp(rir.)

i  + exp(rj.)
. (3.6.4)

To obtain the likelihood functions, consider the following. Each stool 

7., say, is independently observed of another and each 7i falls in one and only

one of the J categories. However, due to the presence of the continuous 

predictor in the linear component of the proportional odds model, the 

probability with which 7, can be expected to be in the jth category differs with 

each 7{. I x i . To clarify this further suppose that Yt is the vector [yK i ) yJ(0) 

where y j(i) — 1 if 7̂  falls in category j and y J{i) = 0 , then 

7 (. ~ ,...,7tj(f))

where m ~  1 and Kj{i) indicates the different category probabilities for the zth 

observation given x f.

Suppose that the zth observation lies in category j(i) such that 

y i = (0,1,0,".,0) , e.g. j(i) -  2 , then

Lik(7r.; v.) = — - — (3.6.5)

“  n 2(i) •

which for the proportional odds model is equivalent to 

= exp(a2(0 -I- |3r x ) .
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In general, the likelihood is proportional to

Lik{ni ; y .) oc • (3.6.6)
M

(Note that the y j{i) is zero except for the category in which the ith observation 

falls.) Then from the ith observation y ., the contribution to the log likelihood 

is

£(ftl '>yi) = ' £ y m l o g ‘iZKi) j =.1......J (3.6.7)
j

The total log likelihood is the sum of contributions one from each of the n 

observations. Thus,

f(rc;y) ^^y/cnlogjcyco (3.6.8)
u

Differentiation of the log-likelihood with respect to Km subject to the 

constraints 7i/(/) = 1 and yja) = mi where m. = 1 in this case, gives
j

d£(n;y) y jio-Km (3.6.9)
37t/(0 Kj(i)

At first glance, it is not immediately obvious how McCullagh & Nelder (1989, 

ppl71) ai'rive at equation (3.6.9). However, it can be seen that differentiating

(3.6.8) with respect to Kj(i), subject to the constraints, yields equations

equivalent to (3.6.9) at the maximum likelihood estimators of izJ0). Let

L0 = /(7t;y) = £y;(olog7&<o, (3.6.10)
ij

be a function of the same form as the likelihood but without the constraints and

let L = L0 with the constraint ^7t;(o = 1 . Then L is a function of
j

Km ,...,Kj_Ki) for all i, plus

and where — = - /  . (3.6.11)
j = i  ° K m

Therefore using the chain rule,

dL _ dLo dL0 dftjyy

' 7(0 dnj( 0 dKm  dKjm

OJ cP 1 dL0
(3.6.12)
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Differentiating L0 with respect to n j(j) yields 

^L0 y j(j)

n m
(3 .6 . 13)

such that

dL _  y m  y m  (3.6.14)
dnm  7zm  n J{i)

It is at this point that McCullagh & Nelder set n J(i), in the second term to the 

maximum likelihood estimate y.

yjd) (3.6.15)

and so

y ju)—
^Kj(i) Kj{i)

= y m - m F m  &

mo

which is equivalent to equation (3.6.9). So as has been shown, it is possible 

using the above method to derive the maximum likelihood equation from the 

log-likelihood. Equation (3.6.9) follows from 3.6.14 if the second (and only 

the second) term is replaced by the maximum likelihood term. This seems odd 

at first sight. To understand the implications and justification of this 

approximation, let us look at an alternative derivation, using the formalism of 

Lagrange multipliers.

The constrained maximum may be found using the method of Lagrange 

multipliers (Finney & Thomas, 1990). In general terms, this method states that 

the extreme values of a function f ( x ,  y ) whose variables are subject to a 

constraint g(x, y) = 0 , are found to be on the surface g = 0 at the points where 

V / = XV g (3.6.17)

for some scalar X (called a Lagrange multiplier) and where V / and Vg are the 

derivatives of f ( x , y ) and g(x , y)  respectively.

Using this method as a general framework for finding the maximum 

likelihood equation and given (3.6.10)
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L0 -  £(%\y) = ^  3̂ (0log7T;(0
ij

and

C. =0.  (3.6.18)

Now define,

L = L0 -5 > ,.C ,..  (3.6.19)
i

Note that if equation (3.6.18) is satisfied, the second term disappears, and L 

becomes equal to the log likelihood. That is,

dL dL°— 1 - ^ -  = 0 (3.6.20)

and finding the values of X( , %j(j) and y jU) that satisfy

3Lo _ ^ x _dC_  (3.6 .21)

and

Now,

dnj(i) dKm

c  = %j{i) — 1  = 0

dL _  dL0 ^
dKj(i> dnjU)

= I l L L - X i , (3.6.22)
71KO

implying that Xt = y j(i) /%jU) or %m  = y m  f X .. That is, the Lagrange

multipliers which are determined from the constraint equation (3.6.18). By 

setting (3.6.22) equal to zero, solving for Xi , and inserting the resulting 

expression into equation (3.6.18) this leads to

f l  y m = l  (3.6.23)
J

which along with

Z 3 'y « )= m  f  (3.6.24)
j

yields = ^  = i  (3.6.25)

48



=4> X i =  t i l t . (3 .6 .26)

Thus,

y JW f'l c.—------ = — ml . (3.6.27)
° K J(i) K j ( 0

which is exactly (3.6.16) and reduces to (3.6.9) when mi = 1 .

Now, consider the parameter likelihood equations for the proportional 

odds model, where for neatness y^o = kko +... + njcn then our proportional odds 

model is of the general form

log if (^(o) = (3.6.28)
r

where Xj(i)r are the components of the design matrix X of order nJ x p* where 

p*= p + k -  1 and p = (oti,...,CXk -i,Pi,...pP) . The (i,j) row of X has components 

( 0 , . .  .,1,. . . , 0 , X i ) with the unit value in position j and the ith block of J-l rows is

Differentiation with respect to p yields 

d£ d£ dyjco
apr 'fdy/U) apr

= o ) ^ —  (3-6-29)

where j e _ = y i m - K m  _ y hI(n- K h m  (363Q)

n J( n k j-j(o

The maximum likelihood estimates are obtained by setting the above equation 

equal to zero and using the iterative weighted least squares procedure.

In the above illustration the category probabilities are for the ith 

observation are conditional on the corresponding ith value of x, thus the 

conditional expectation of F. has changed and can be determined by the 

following equation.

E{Yt \x) = P(Y = l;x) + 2*P (Y  = 2;x) + 3*P(Y = 3;x) + 4 * P ( Y = 4 ; x )  

which for the proportional odds model is equivalent to (3.6.31)
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exp(a7(0 + prx) exp(q2(f) + prx) exp(a3(0 + prx)
1 + exp(a;o) + pr x) 1 + exp(a2(/) + pr x) 1 + exp(a5(f) + p r x)

(3.6.32)

To summarise, the method described above comprises the iterative 

weighted least squares for a multivariate generalised linear model using the 

Newton-Raphson method with Fisher Scoring as described in section 3.5. 

(McCullagh, 1980) gives further details of the general fitting methods for 

multivariate generalised linear models in his Appendix.
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CHAPTER 4

RESULTS OF GENERALISED LINEAR MODEL ANALYSIS

4.1 Overview

This chapter describes the results obtained from fitting a generalised 

linear model to the tree stump data. Data from 629 tree stumps, from each of 

which records of the stump’s dimensions were taken (See Chapter 2.), and 

assessed as covariates in addition to the original treatment factors in the 

generalised linear model. These variates were used in a best subset procedure 

to select the best linear predictor equation. For reference, Table 4.1. lists the 

level numbers and descriptions for both the method of application and type of 

herbicide factors.

Table 4.1.

Reference table for factor levels

Method of application (Factor a ) Level Number

Cut surface Level 1

Basal frill Level 2

Foliar spray Level 3

Type of herbicide (Factor b )

Timbril Level 1

Garlon Level 2

Chopper Level 3

Brush-off Level 4

Nomix + Garlon Level 5
N.B. Combinations of the two factors are indicated by levels (method*herbicide).

4.2 Linear Predictor

Consider again a linear model in which there are both continuous and 

qualitative variates present. Within the context of a generalised linear model, 

interest was focused on how the continuous variable affects the response 

variable in the presence of the qualitative factors. In practice a factor may 

influence the relationship between X and Y in various ways.
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Consider the model in which the intercept varies with the jth factor level, 

but where the slope is constant over levels,

ri = a ; + px  j = 1........J (4.2.1)

in such a case there is no interaction between the effects of x and the factor. If 

the slope does change with the factor level then the model is written as

rj = a y +p,-x. J = l ,  .J (4.2.2)

In this situation an interaction exists between the effects of x and the factor.

The changing slope and intercept terms with the levels of factor means that 

there is a different linear predictor for the different levels of factor. In 

accordance with this result, modelling the tree stump data with continuous and 

qualitative variables in the model means that differing effects between the 

levels of a factor are measured by the coefficient in the linear predictor.

To maintain the original factorial design of the experiment and 

incorporate the inclusion of covariates, the linear predictor for the cut stump 

data was of the form

i j % = a j + QX + F  (4.2.3)

where i j f y  is the kth possible linear predictor, k  = 1,...,10 (see equation 4.2.5);

j  = m = 1,...,3; i  — 1,...,5 and where a ;. is the response factor that

represents the J-l collapsings of the total number of applications into binary 

outcomes (kill or survival). Since the purpose of this analysis was to explore 

the relevance of a stool’s physical dimensions in predicting the number of 

applications until a kill is achieved, the best subset approach applied to finding 

the best linear predictor involved only those continuous variates representing 

the stool dimensions. To make the linear predictor useful for predictive 

purposes the model should include as many variables as necessary to keep bias 

errors small, so that reliable values can be determined. In addition to the 

continuous variates being assessed, the nature of the design of the experiment 

dictated that method, herbicide and the interaction term method*herbicide be 

included in the equation. In equation 4.2.3 , Q represents the matrix of 

coefficients for the possible subsets of the continuous explanatory variates
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X = [x0,x L,x 2,x 3], where x 0,...,x3 denotes the variables stool diameter, sum

of cut surface diameters, highest height and ratio of stool diameter to sum of 

cut surface diameters respectively,

(0 +0  +0  +0 

q§ + 0 + 0  + 0  

0 + + 0 + 0  

0 + 0  + ^2 0 

qQ+q{ +0  +0  

q0 +0 + q2 + 0 

0 T q̂  + q2 F b

4o + 9 i + 92+0

Q =

0 + 0 + q^ + q3 

0 + 0  + 0  + q^

X =

\ X3V. 3 J

(4.2.4)

Note that because X3 represents the ratio of stool diameter and sum of cut 

surface diameters it was considered on its own and in conjunction with highest 

height to avoid introducing collinearity into the model. Adopting this approach 

meant fitting ten possible linear predictors to the data. The choice of which 

linear predictor was best to use was then made by assessing the patterns 

observed.

For this model the quantities a  . provide quantification of the difference

between successive categories on the scale of the logit function, however, a 

necessary restriction of the proportional odds model is that it must avoid 

obtaining probabilities that are negative and thus a } < a 2 < a 3. The

cumulative sum of all response category probabilities is equivalent to 1, so the 

number of cut-points is equal to J-l, or in the case of the tree stump data, three. 

This at first seems incomplete (since only three equations are estimated for four 

categories), but the probability of a tree being killed at the fourth application is 

easily found by calculating

P(Y = 4 ) = 1 - P ( Y < 3 ) .

In general, to find the probability that a tree stump is killed after the jth 

application for j = 1,...,4
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P ( Y < j ) =  ̂ (4.2.5)

P(Y  = j )  = P(Y < j ) - P(Y < j - l ) ,  (4.2.5)

and where

exp ( ^ )
1 + exp(77®,)

As stated previously, effects of the factors on the the log odds of success 

may vary among the levels of each factor in F,

F  =  A , A ,  +  A A  +  A , „ A  (4 -2 -6 )

this is represented by p /m for factor a (method of application), where m =

1......3; by P2̂  for factor b (type of herbicide) where £= 1,...,5 and by PJm€for

the interaction of factors a and b . In short, pimand P2i? measure the 

difference between the effects of the first and the m or t  th levels of the 

corresponding factor. As a consequence of this the possible number of 

parameters used in the model is high, as potentially there is a different 

parameter to be estimated for each level of each factor. Even so, the parallel 

lines assumption, born from using the proportional odds model, is adhered to. 

The model constrains the J-l response curves to have the same shape ensuring 

that the model cannot be fitted by forcing separate logit models for each cut- 

point. (See Chapter 3, 3.3)

Clearly model (4.2.3) is over parameterised due to the number of 

parameters being greater than the number of independent equations, because of 

this the linear predictors need to be constrained. Dobson (1990) illustrates in 

detail the style of re-parameterisation applied here known as corner-point 

constraints. The corner-point constraints for this model are:

Pi; = 0 ’ Pi i  = ° .  Pi;; = ° >  Pj;j = 0 ’ Pjm = ° .  Pji i  = ° >
P ; , 2 = 0 ,  P * ; = 0 .  P * , = 0 .  (4-2.7)

These constraints, although different from the more usual sum-to-zero 

constraints, correspond to the same alternative hypothesis, namely, that the 

response mean for some level of a factor may differ, compared with the null 

hypothesis that the means are all equal. Thus, the parameters p , where
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is estimated sequentially in such a way that the redundant corner-point 

parameters, i.e., those parameters set to zero (p 7), are identified as the baseline 

effects of their associated factors.

To illustrate this further consider

(1) a y + p ox (4.2.8)

to be the baseline model for the tree stump data, where (30x is a covariate and

the unknown parameters for level one of each factor and factor combination, 

are taken to be the redundant corner-point parameters. To test the hypothesis 

that the response mean for level two of the factors are equal to the baseline 

level, the following formal test is conducted. So, without loss of generality, 

assume that the linear predictor is

Pi2^2 (̂ 22̂ 2 P.J22 (^2^2 ) (4.2.9)

the differences can then be tested using (4.2.8) and the models derived from

(4.2.9) to give

(2) a,j +p0x + p;2<32

(3) d j  + P 0X + PJ2&2 2̂2̂ 2

(4) (X  j  + P 0X +  P^2^2 P 22̂ 2  Pj22 (^2^2 ) ' (4.2.10)

The null hypothesis in each case respectively, is:

Ha: Mean response for method of application, level 2 is the same as 

the mean response for the method of application, level 1. (i,e. mean 

difference equals zero.)

H r : Mean response for herbicide, level 2 is the same as the mean 

response for herbicide, level 1

Hab: Mean response for level 2 (method)*level 2 (herbicide) 

interaction is the same as the mean response for the level 1 

(method)*level 1 (herbicide) interaction.

To find the differences between levels of method of application, type of 

herbicide and method by herbicide interactions, the above process was repeated 

systematically for each linear predictor fitted.
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4.3. Log-Likelihood Ratio Statistic

Assessing the adequacy of the model of interest is done by comparing the 

likelihood under the proposed model with the likelihood under the maximal 

model. In general, the maximal model uses the same distribution and link 

function as the proposed model but the number of parameters in the maximal 

model is equal to the number of observations, the benefit of this is that the 

maximal model provides a complete description of the data. The likelihood 

functions for the maximal model and the model of interest are evaluated at the

respective maximum likelihood estimates (3max and P to obtain values
A A.

L(Pmax;y) and L(P;y) respectively. If the model of interest describes the data 

well then L((3;y) will be approximately equal to L(Pmax ;y ) . Hence, this is

used to produce a measure of goodness of fit of (4.2.3) to the tree stump data. 

Now, let
A

x  = ^ t W y )  or equivalently log X = /(^ m„ ; y) -  Z(0; y)
L( P;y)

A A
/(P,nax;y) and Z(P; y) are the log likelihood functions evaluated at their 

respective maximum likelihood estimates, so that large values of log A suggest 

that the model of interest is a poor description of the data. The critical region 

for log A, is calculated using the test statistic

D = 2 log A, = 2[Z(Pmax;y) — Z(p; y)] ~ X2W_, (4.3.1)

which has the %2N_p distribution and where N is the set of observations and p is

the number of parameters to be estimated in the model of interest. The test 

statistic D is compared with the associated Chi-squared distribution. If the 

model is a good fit then D is expected to lie in the middle of the distribution. 

Therefore, if D does not lie in the middle of the distribution but is to be found 

in the upper 5% tails of the distribution it is concluded that there is sufficient 

evidence (at the 5% significance level) to reject the null hypothesis.

4.4 Fitting the model

An Ordinal Logistic Regression procedure is contained in the Minitab 

Software package. This procedure fits a regression model (proportional odds)
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to ordinal data using an underlying logistic distribution and a logit link 

function. Iterative weighted least squares was used to calculate the maximum 

likelihood estimates and standard errors for the unknown parameters. (See 

Chapter 3.) These are given in Table 4.5.4 on page 62. Interestingly, it is 

convention in other statistical packages to state the general proportional odds 

model as

log it (P < j)  = Qj - p Tx (4.4.1)

which is different in sign to that of model (3.3.3). This has important 

implications for the interpretation of the results since the negative sign ensures 

that as x increases the probability of the response lying in the higher category 

also increases. However, the ordinal logistic regression procedure in Minitab 

uses (3.3.3) which conversely ensures that as x increases the probability that 

the response will lie in the higher category decreases.

The maximum likelihood parameter estimates are tested for equivalence

to zero -  in the case of the baseline levels (first levels) of each factor, the cut-

points are calculated and the baseline parameters are taken to be equal to zero. 

That is, the response is modelled by the systematic component

a , + P 0x. (4.4.2)

where, for generality, p0x represents the single continuous variable case.

To test

H0: p = 0 (4.4.3)

for p symbolising any of the non-redundant factor parameters specified in F  

(see equation (4.2.6)), against

H i : p * 0  (4.4.4)

the test statistic is;

z = $ /A S E  (4.4.5)

which has approximately a standard normal distribution when p = 0 and where 

ASE  is the asymptotic (large sample Normal distribution) standard error, 

obtained from taking the inverse of the information matrix, z was referred to 

the standard Normal table to get two-sided P-values.
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4.5. Results

To establish the best linear predictor each of the ten possible regressions 

were fitted to the data using the proportional odds model. As previously stated, 

the predictor variables here are x0,x 15x 2,and x3 representing stool diameter, 

sum of cut surface diameters, highest height and the ratio of stool diameter to 

sum of cut surface diameters, respectively. An a-  term and the treatment

factors F  are always included. Thus there are k = 23 + 2 =10 possible linear 

predictors to be fitted. The first of these is the fit of

■n%=aj + F  (4.5.1)

The other 9 fits appear in Appendix A. Table 4.5.1 looks at the significance of 

the subsets of x ^ x ^ X j, and x3 in the model. The subsets are divided into 

three sets A, B and C.

Table 4.5.1

Significance /non significance for all possible subsets

(P-value given in brackets)

A (1--variable) B (2-variable) C (3-variable)

xo (0.000) xo>x i (0.002; 0.390) x0,x 1,x 2 (0.005; 0.731; 0.057)

X1 (0.002) xo,x 2 (0.001; 0.040) -

x 2 (0.001) x l>x 2 (0.042; 0.018) -

X3 (0.801) X2,x 3 (0.001; 0.777) -

Table 4.5.1 reveals that x0, Xj, and x2 are all statistically significant in 

the model when entered as single covariates in equation 4.5.1. The addition of 

further variables to these shows a consistent pattern in the behaviour of xt . It 

can be seen that in the presence of x0, x, is no longer significant in the 

regression and because x0 (p < 0.0001) is much more significant than Xj (p < 

0.002) it can be concluded that stool diameter (x 0) is a stronger predictor 

variable than that of sum of cut surface diameters (x s). So , although 

significant when entered into the model on its own, removes very little of the 

unexplained variation in comparison to x0. The examination of all possible 2-
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variable subsets entered into the model does not provide a clear cut solution to 

finding the best linear predictor. Since the combinations of x0, Xj, x2; x0, Xj

and x2,x3 can be disregarded due to the non significance of one or more of the 

variables, the remaining possible linear predictors include either x0, x2 or 

Xj, x2. The question is, which of these two subsets should be selected for 

further attention? Both of these equations in Table 4.5.1, column B are 

acceptable models but if

= a i + 4lXl + ?2X2 + F (4-5-2)

is chosen then there will be some inconsistency because the best single­

variable equation involves x0. It can also be seen that the p-values for x0, x2

are more significant than those for Xj ,x2 suggesting that x0 and x2 are

stronger predictors. This is seen more clearly in Table 4.5.2 which lists the log 

likelihood ratio statistics, in order of the highest to lowest values, for a model 

with only the constant terms a  j and the fitted model. This is given for each

model fitted. (See section 4.3.) This was used as an informal way of assessing 

which combination of predictors performed best. Those models with larger 

likelihood ratio statistics (when considered with the degrees of freedom in the 

model) may be taken to explain more of the variation in the data.

Table 4.5.2

Likelihood ratio statistics for all possible regressions 

( d f = Degrees of freedom)

A (1-variable) B (2-variable) C (3-variable)

518.426 (x 0) 522.448 (x 0,x 2) 522.560 (x 0,x 1,x 2)

II II i"-<ii

510.585 (x 2) 519.140 (x 0,Xj) -

II ’"■'iII

509.261 (x t) 514.561 ( x , ,x 2) -

n M

499.564 (x 3) 510.668 (x 2,x 3) -

T'-iII ii
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Table 4.5.2 was examined to determine the existence of any consistent 

pattern of variables in the leading equations in each column. It can be seen that 

those models with the same degrees of freedom but with higher log likelihood 

ratio statistics - and so consequently can be said to explain more variation in 

the data - are those that contain x0 and x2. To summarise, the best linear 

predictor presented in these investigations is the linear predictor which includes 

the continuous variables stool diameter, x0 and highest height, x2. To test 

whether this model was significantly different from the model with the single 

continuous variable x0, a goodness of fit statistic was calculated with the result

that the difference in deviance statistics 4.062, when tested on 1 degree of 

freedom was significant at the 0.05 level of significance. So the best linear 

predictor is of the form

fr jme = Uj + q0x0 + q2\ 2 + F  (4.5.3)

For thoroughness and to determine the adequacy of (4.5.3) to model the 

tree stump data, each component was assessed- systematically and the 

maximum likelihood estimates and log-likelihood ratio statistics for the 

proportional odds model calculated. To assess the significance of the 

introduction of each factor to the proportional odds model the following 

models were compared.

Model 1: logit(TCj) = a  . + q0x 0 + q2x 2

Model 2: logit(%jm) = a ; + q0x 0 + q2x 2 + (3lmam

Model 3: logit{%jml) = + q0x 0 + q2x 2 + (3!mam + (32tbe

Model 4: logit(njml) = a,- + qQx Q +q2x 2 -1- p lmam + p 2tbt + p  3mt (anbt )

The table overleaf gives the results of the comparisons of models 1 and 2, 

2 and 3, and finally 3 and 4, respectively. The procedure used here (also used 

to assess the goodness of fit test on above) to compare the different models was 

simplified somewhat in recognising that the maximal model is the same for all 

models. (The maximal model has the number of parameters equal to the 

number of observations.) Therefore, calculating the difference in deviance

60



statistics did not involve the maximal model at all and so the deviance statistic 

(rewritten) reduces to:

D2 —Dj = 2log%2 -2logXj  =

2{ m 2; y) - ; y)] - [/($,; y) - *(& ,_; y)]+ [ / & « , ;  y) -  /<$,._; y)] 1

= 2 H | 2;y) + <(5,;y)]

= 2[<?$2; y ) - . f $ 1;y)]. (4.5.4)

Thus to test the null hypothesis that the models of interest are the same, the 

difference in deviance of the two models was calculated as above and the 

probability value was obtained from the %2P p statistical table. The results are

given in Table 4.5.3. For example, the column titled ‘Model 2 ’ gives the result 

for the comparison of ‘Model 2 ’ with ‘Model 1’. The null hypothesis for this 

test was

H0: logit(Kj) = a j  + p 0x = logit(%jm) = a,- + p0x + p/ma m 

and the alternative was

Hi: logit(nj ) = a j +$0x *  logit(%Jm) = a j +$0x + $Jmam.

Ho is rejected in favour of Hi if the difference in deviance statistics is higher 

than a critical value. This was tested at the 5% significance level.

Table 4.5.3.

Results of goodness of fit statistics

Parameters Model 1 Model 2 Model 3 Model 4

Log-likelihood -793.089 -565.602 -553.014 -539.733

No. of Parameters 2 4 8 16

Deviance Statistic (Difference) - 454.974 25.176 26.534

No. of Parameters (Difference) 2 4 8

Significance Level - <0.001 <0.001 <0.05

From Table 4.5.3, there is clear evidence that the best fitting model is 

‘Model 4 ’. The final conclusion that ‘Model 4 ’ is the better model, was due to 

the reduction in the differences between the log-likelihood values as more

61



terms are added. It was of interest to assess the inclusion of a stool diameter by 

herbicide or method of application interaction term but further investigations 

did not uncover any of these combinations to significantly improve on Model 

4.

In summary, Table 4.5.3. shows that there exists both a method of 

application effect and a type of herbicide effect in the response. Furthermore, 

there was statistically significant evidence of an interaction between both of 

these factors.

The results of fitting

logit(ltjml) = a j + q 0x 0 +q2x 2 +fiImam + § u b, + P,„,f (a ,A ) 

to the data are given in Table 4.5.4. The z-statistics are printed alongside the 

associated probabilities. The estimated response factors oc; , a 2, and a 3

(-2.2216, -0.7968 and 1.4030, respectively) quantify the difference between 

successive categories on the logit scale. Therefore the difference between a 

kill at the first application of treatment and one at the second application is 

quantified by -2.2216 and the difference between a kill at the second 

application and the third application is -0.7968. By the same token the 

difference between a kill at the fourth application and one at the third is 1.4030. 

As expected the difference between the extreme categories and the 

intermediate categories is larger than the difference between the intermediate 

categories, with the biggest difference existing between category 1 and 2.

From Table 4.5.4 stool diameter (q0 = -0.020289; z = -3.42,

p = < 0.001) is statistically significant at the 5% level. The negative 

coefficient, and an odds ratio that is just below one indicates that larger stool 

diameters are associated with a higher number of attempts to kill. Although 

stool diameter is statistically significant, the odds ratio is very close to one, 

indicating that a one centimetre increase in diameter minimally effects a tree 

stump’s survival. A more meaningful difference is found by comparing tree 

stumps with a larger diameter difference. Moreover, the confidence interval 

for the odds ratio is narrow, suggesting that the odds ratio is precise. Highest
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Table 4.5.4

Ordinal logistic regression parameter estimates

Parameter Estimate St. err. z-statistic p-value Odds ratio 95% Cl

a ; -2.2216 0.4734 -4.69 0 .0 0 0

a 2 -0.7968 0.4542 -1.75 0.079

a , 1.4030 0.4548 3.08 0.002

#0 -0.0202 0.0059 -3.42 0.001 0.98 0.97 0.99

9 2 -0.0072 0.0035 -2.05 0.040 0.99 0.99 1.0

Method

p « 5.2303 0.567 9.22 0.00 186.84 61.49 567.:

p » 0.2075 0.4507 0.46 0.645 1.23 0.51 2.9

Herbicide

p 22 0.8058 0.4394 1.83 0.067 2.24 0.95 5.3

p 22 1.1366 0.4470 2.54 0.011 3.12 1.30 7.4

p 2< 1.3729 0.411 3.11 0.002 3.95 1.66 9.3

p 2j -0.5154 0.4551 -1.13 0.257 0.60 0.24 1.4

Interaction

Pi22 -1.7536 0.7016 -2.50 0.012 0.17 0.04 0.60

p » 1.069 1.183 0.90 0.366 2.91 0.29 29.6

Pi24 -0.3145 0.8701 -0.36 0.718 0.73 0.13 4.0

Pi25 0.7053 0.7885 0.89 0.371 2.02 0.43 9.50

P 332 0.0943 0.6126 0.15 0.878 1.10 0.33 3.63

P i i i -0.4083 0.6172 -0.66 0.508 0.66 0.20 2.21

P i* -0.2063 0.6132 -0.34 0.737 0.81 0.24 2.71

P ii5 1.1189 0.6314 1.77 0.076 3.06 0.89 10.5'
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height (q2 = -0.007244; z = -2.05; p < 0.040) is statistically significant at the 

5% level. Again, the negative coefficient, and an odds ratio that is just below 

one indicates that higher highest heights are associated with a higher number of 

attempts to kill. As before, even though highest height is statistically 

significant a one centimetre increase in height minimally affects a tree stump’s 

survival. Larger differences in highest height measurements will have a more 

pronounced effect.

If at this stage the constant terms in the model are interpreted as the out­

points when the factors are at level one, then the parameter P72 is the 

difference between the cut-points for the cut surface and basal frill methods, 

(i.e., basal frill is ep'2 times the cut surface method.). For the levels of both 

factors the parameters represent differences from the first level, making it easy 

to compare each level of a factor with its base level. The estimate for basal 

frill (p72 = 5.2303;z = 9.22;p < 0.0001) shows that the difference between the 

cut-points for the levels of method of application is significant at the 5% level. 

The positive coefficient and the odds ratio substantially greater than one 

(186.19) indicates that those stools that have herbicide applied in this manner 

tend to require a lower number of applications. The 95% confidence interval 

for the odds ratio is wide (61.49, 567.7). In contrast, the estimate for the foliar 

spray method is not significant (p = 0.645) and so it was concluded that the 

foliar spray method is not significantly different to that of the cut surface 

method of application.

Recall that there are five types of herbicide in all, namely, Timbril, 

Garlon, Chopper, Brush-off and Nomix + Garlon. Of these only Chopper 

(/?23 = 1.1366, z = 2.54, p = 0.011) and Brush-off

(/?24 = 1.3729,z = 3.1 l ,p  = 0.002) performed significantly differently to the 

Timbril herbicide. The estimate for Gallon was not statistically significant 

(/?22 = 0.8058, z = 1.83, p = 0.067) neither was the estimate for the 

Nomix+Garlon herbicide (/?95 = -0.5154,z = -1.13, p = 0.257). It was also of 

interest to determine whether the statistically significant herbicides were
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performing better or worse than Timbril. The odds ratio for Brush-off (OR = 

3.71) and Chopper (OR = 2.88), are both greater than one. Meaning that tree 

stumps treated with Brush-off tend to require a lower number of applications 

than those treated with Timbril.

As previously stated parameter estimates for the levels of herbicide and 

method of application reflect the estimated change in

log

The presence of a statistically significant interaction factor suggests that the 

two factors were not acting independently of each other and that the factors are 

behaving multiplicatively.

The combination of applying the Garlon herbicide using the basal frill 

method (level 2*2) produces a significant change in the cumulative logits 

(when compared against the base level interactions). It is difficult to 

understand what is actually happening here as the negative coefficient means 

that relatively more probability mass at this level falls at the higher end of the 

response scale. Listed in Table 4.5.5 are the number of kills, the mean stool 

diameter of the stools and its standard deviation. Means and standard 

deviations are given only for stool diameter as it is the strongest continuous 

predictor in the model. Table 4.5.5 was useful at this stage for exploring the 

raw data but is not adjusted for main effects and as such is not presented here 

as meaningful in the predictive sense. The results here seem to contradict the 

regression results in showing that the highest instances of kills are found in the 

lower end of the response scale (see row 2*2). An explanation for this 

behaviour at this stage is offered in the simple fact that the trends are weakly 

defined in some of the base interaction levels and a number of these have 

higher instances of kills in the intermediate response categories. In addition it 

was thought that the p-value could be considered close enough to the 5% level 

to warrant caution because a lot of combinations are being independently 

contrasted with the base levels of the interaction term. In such circumstances it
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Table 4.5.5

Table of number of applications until a kill bv treatment combination

Method*Herbicide Number of applications 

1*1

1*2

1*3

1*4

1*5

2*1

2*2

2*3

2*4

2*5

1 2 3 4 AH

1 4 12 21 38
65.500 56.750 52.208 56.762 55.553
~ ~ 22.824 19.911 15.217 17.104

4 8 13 15 40
48.625 49.813 41.308 54.400 48.650
27.654 16.551 10.301 21.763 18.483

5 8 14 12 39
43.000 47.438 40.679 45.000 43.692
13.852 12.397 10.263 11.308 11.334

5 5 22 8 40
46.200 41.400 53.136 47.375 49.650
13.989 15.278 17.790 8.043 15.627

5 1 8 26 40
30.800 39.500 44.813 48.462 45.300
9.115 — 12.983 12.292 13.045

32 1 5 0 38
47.141 53.000 61.700 — 49.211
15.041 -- 26.035 — 16.970

28 10 2 1 41
40.036 51.300 49.500 58.500 43.695
14.267 17.375 7.778 — 15.422

41 0 1 0 42
50.817 — 55.000 — 50.917
14.695 — — — 14.529

38 3 0 0 41
46.211 68.167 — — 47.817
16.233 26.269 — — 17.656

34 4 1 0 39
41.574 44.750 51.500 — 42.154
16.169 7.643 — — 15.328
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Table 4.5.5 Contd.

Method*Herbicide Number of applications

3*1 0

3*2
0

3*3
1
35.000

3*4
2
48.000 
2.828

3*5
1
51.000

AH
197
45.302
15.654

Counts of kills 

Mean of stool diameter

5
47.700
8.715

17
42.353
15.196

15
51.933
14.970

6
37.833
12.910

32
47.156
9.010

4
66.750
24.659

9
53.667
20.788

20
47.825
22.929

12
51.917
20.903

11
44.227
10.036

19
49.868
17.057

8
52.750
11.032

5
51.800
9.846

24
51.167
14.637

12
62.250
18.251

80
48.688
15.456

190
48.082
15.945

134
52.862
16.201

Standard deviation of stool diameter

37
46.959
14.786

42
47.690
13.270

42
49.940
21.378

40
48.800
13.851

42
54.405
15.630

601
48.317
16.044

67



would have been preferable to use a multiple comparison test because as the 

risk of making a Type II error conclusion was increased.

On further investigation Table 4.5.5.1ed to the production of Table 4.5.6. 

which ranks each herbicide within the levels of method of application 

according to the percentage of first time kills in each factor combination.

Table 4.5.6

Ranks of Herbicide (% killed after first/second application) 

Type of Herbicide ranked highest to lowest

Method

1 3(12% ) 4(12% ) 5(12%) 2(10% ) 1(3%)

Y=2 (12%) Y -2 (2%)

2 3(97%) 4(93% ) 5(87%) 1(84% ) 2(68%)

3 4 (5%) 3 (2.3%) 5 (2.3%) 2 (0%) 1(0%)

Y=2 (21%) Y=2(12%) Y=2 (14%) Y=2 (13%)

Table 4.5.6 confirms that both herbicides 3 and 4 consistently out­

perform the other types of herbicide regardless of the method used to apply the 

herbicide. There is evidence of a slight interaction between method 3 and 

herbicide 3 and herbicide 4, but this has not proved to be significant in the 

analysis. Level 5 of type of herbicide performs consistently regardless of the 

method of application used and better than herbicides 2 and 1. In the last two 

columns of Table 4.5.6 an interaction is suggested at level 2 of method of 

application. The application of herbicide 2 using method 1, produces a slightly 

higher percentage kill on the first application than when applying herbicide 1 

using the same method. A slimmer difference is seen in method 3 (although a 

first kill is not obtained until the second application). In contrast when these 

herbicides are applied using method 2 herbicide 1 has quite a considerably 

higher percentage of first time kills than herbicide 2 yeilding the interaction 

between levels 2 of method and herbicide in the analysis. So when the Garlon 

herbicide is applied using the basal frill method of application this combination
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produces a performance 0.18 times as much as the base level of interactions set 

by the constrained model.

4.6 Prediction

Using the cut-point and coefficient parameter estimates from Table 4.6.4, 

predicted logits were calculated and from these predicted values of P(Y>1) for 

each of the five types of herbicides were also calculated. Figures 4.6.1 (a). - 

4.6.5 (a) plot predicted values of (P>1) as a function of the stool diameter at the 

three levels of method of application. Figures 4.6.1 (b) -  4.6.5 (b) plot 

predicted values of (P>1) as a function of highest height. The constant 

difference between the three methods is displayed in all ten graphs. In each 

graph the lower line represents the basal frill method of application, and the 

upper lines, often intermingled, represent the cut surface and foliar spray 

methods of application.

For the basal Mil method, as stool diameter increases it can be expected 

that the probability that follow-up operations will be needed increases. This 

probability increases most quickly when using the Garlon herbicide seen in 

Figure 4.6.2 (a). This pertains to the interaction term in the model and reflects 

the findings that Garlon when applied using the basal frill method of 

application performs poorer in terms of a first time kill as stool diameter 

increases. Figures 4.6.3 (a) & 4.6.3 (b) show that the probability of a follow up 

operation, as stool diameter and highest height increase, remains roughly 

constant for the Chopper and Brush-off herbicides when applied using the 

basal frill method of application. The cut surface and foliar spray methods 

show a small but steady increase across all herbicides but neither method really 

performs better than the other. Figures 4.6.5 (a) & (b) reveal the largest 

difference between these two methods; the Garlon+Nomix herbicide performs 

slightly better when applied with the cut surface method rather than with the 

foliar spray method.

Overall, Figures 4.1 (a). -4 .1  (e), show that as stool diameter and highest 

height increase, the probability that further applications are needed increases 

too. The rate of probability increase, as stool diameter and highest height
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Figure 4.6.1 (a). Predicted probabilities of P(Y>1) vs stool diameter for the 

Timbril herbicide.
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(1=  cut surface; 2 =  basal frill; 3 =  foliar spray)

Figure 4.6.1 (bT Predicted probabilities of P(Y>1) vs highest height for the 

Timbril herbicide.
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Figure 4.6.2 (a). Predicted probabilities of P(Y>1) vs stool diameter for the

Garlon herbicide.
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Figure 4.6.2 (b). Predicted probabilities of P(Y>1) vs highest height for 

Garlon herbicide.
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Figure 4.6.3 (a). Predicted probabilities of P(Y>1) vs stool diameter for

Chopper herbicide.
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Figure 4.6.3 (bV Predicted probabilities of P(Y>1) vs highest height for 

Chopper herbicide
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Figure 4.6.4 (a). Predicted probabilities of P(Y>1) vs stool diameter for

Brush-off herbicide
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Figure 4.6.4 (b). Predicted probabilities of P(Y>1) vs highest height for Brush- 

off herbicide
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Figure 4.6.5 (a). Predicted probabilities of P(Y>1) vs stool diameter for

Nomix+Garlon herbicide
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increase, differs for each of the methods depending on the type of herbicide 

used. The basal frill method of application consistently performs better than 

the other methods. The probability of further applications is much lower than 

the other two methods of application, even s stool diameter and highest height 

increase. This effect is more defined in the Brush-off and Chopper herbicides. 

The probability of further applications when herbicide is applied using either 

the cut surface or foliar spray method of application is at the higher end of the 

probability scale with this probability slowly approaching one with increases in 

stool diameter and highest height.

4.7 An additional analysis

An additional analysis was performed on a subset of the data set, using 

the same model as above. It is thought that in some instances an individual 

stool’s take up of herbicide might be inhibited when applied using the cut 

surface method of application. This is because of the way in which the 

herbicide is applied using this method. Recall (Chapter 1, page 5) that the 

herbicide is applied to the cut surface area of the stools immediately after 

felling. This cut surface is variable across stools and there was concern that 

those stools with small cut surface areas and large sinks (large stool diameters 

and so hence greater stool volumes) were receiving a disproportionate amount 

of herbicide to their size therefore making them harder to kill. Although in the 

trial no record of the amount of herbicide applied to a stool was recorded it was 

considered reasonable that those stools with greater sums of cut surface 

diameters would receive more herbicide than others.

The subset of data on which the analysis was carried out involved only 

those stools that had herbicide applied using the cut surface method of 

application. The subset contained 210 data vectors of which 13 had missing 

values in the response, total number of application until a kill. The analysis did 

not use any of the treatment factors in the linear predictor since the purpose of 

this analysis was primarily to determine if  the ratio of stool diameter to sum of 

cut surface diameters had any effect on the survival of the tree stumps. The 

linear predictor used in this model was of the form,
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T l - C C j + q ^

where 0Cj is as before and x3 represents the ratio of stool diameter to sum of

cut surface diameters. The fall results of the analysis are given in Appendix B. 

The results from the analysis revealed that the ratio of stool diameter to the 

sum of cut surface diameters ( q2 = 0.01442; z = 1.07; p = 0.285) was not useful

in predicting the number of applications of herbicide to a tree stump until a kill 

is achieved.
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CHAPTER 5

CONCLUSIONS

Of the many continuous variables assessed as predictors for the systematic 

component of the generalised linear model, stool diameter (cm) was the most 

promising in the preliminary analysis with the strongest linear relationship with 

the cumulative logits. Highest height and sum of cut surface diameters also 

showed some signs of linearity with the cumulative logits and so accordingly, 

these three variates were assessed, using a best subsets approach, as predictors in 

the proportional odds model. Stool diameter and highest height were found to be 

significant predictors of the number of applications required until a stool is killed. 

The ratio of stool diameter to sum of cut surface diameter was also assessed as a 

predictor in the model in the above way. This was later used in an additional 

analysis on a subset of the data to establish if a relationship between amount of 

herbicide, size of stool sink and stool survival could be modelled. The experiment 

was originally designed as a factorial experiment and so the study modelled these 

additional variates whilst staying true to the original factorial design. In addition 

to the continuous variable the proportional odds model made use of two factors: 

method of application and type of herbicide. An interaction term for the two 

factors was also included in the model.

For these predictors, estimates and standard errors of the estimates were 

calculated using the iterative weighted least squares method for multivariate 

generalised linear models. The results show that stool diameter, highest height, 

method of application, type of herbicide and an interaction term for method of 

application and type of herbicide were all statistically significant in explaining 

some of the behaviour of the ordinal response variable.

The presence of stool diameter in the model showed that larger stool 

diameters are associated with a higher number of attempts to kill. A one
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centimetre increase in stool diameter minimally effects a stool’s survival, but the 

effect is cumulative. Highest height was not as strongly significant in the model 

but nevertheless was significant at the 5 % level. The presence of highest height in 

the model meant that higher highest height measurements are associated with a 

higher number of attempts to kill. As with stool diameter a small increase in 

highest height minimally effects a stool’s survival, but again the effect is 

cumulative. Of the three methods of application used in the trial basal frill 

outperformed the cut surface method. Quantification of this performance was 

given by the odds ratio statistic. The odds that a stool is killed below any fixed 

level was estimated to be 183.19 times as much using the basal frill method as 

using the cut surface method: a clear and strong result.

The Chopper and Brush-off types of herbicide outperformed the Timbril 

herbicide, where the odds that a stool is killed below any fixed level was estimated 

to be 2.88 times as much using the Chopper herbicide as using the Timbril 

herbicide. Similarly, the odds ratio for Brush-off showed that the odds of a kill 

was estimated to be 3.71 times as much in comparison to using the Timbril 

herbicide. Out of all the contrasts with the Timbril herbicide the Brush-off 

herbicide performed best. As the estimates given were for paired contrasts, the 

same model specified with different corner-point constraints will produce new 

parameter estimates and hence new paired contrasts are calculated.

The model reveals that there exists an interaction effect in the data. The 

interaction occurs when the Garlon herbicide is applied using the basal frill 

method. The result was that the odds that a stool is killed below any fixed level 

was estimated to be 0.18 times as much than using a combination with the Timbril 

herbicide or the cut surface method of application.

An additional analysis using the proportional odds model was performed 

exclusively on the data from stools that had been treated using the cut surface 

method of application. It was concluded from the analysis that the ratio of stool
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diameter to the sum of cut surface diameter is not useful in predicting the number

of applications of herbicide until a kill is achieved.

The recommendations resulting from this study with respect to the type of 

herbicide to be applied using one of the methods of application are based on the 

comparisons made in the ordinal logistic regression. Given that all of the 

parameter estimates for the factor levels arise due to comparative calculations 

involving the cut surface method of application and the Timbril herbicide the 

recommendations to be given are conditional on the base line levels. Had the 

experiment not originally been prematurely terminated these recommendation 

could have been based on comparisons with the control treatments and as a result 

would have been much stronger. It is recommended that the basal frill method is 

used in preference to the cut surface methods and it is also recommended that the 

Chopper and Brush-off herbicides are used in preference to the Timbril herbicide.

Statistically the method of analysing ordinal response data in this study has 

proved to be far more efficient and informative than an analysis of variance on the 

set of transformed data set (variance stabilizing). In addition this method has 

enabled the effects of factor levels and increments in continuous measurements to 

be quantified through the proportional odds. Furthermore, the proportional odds 

model used in this study is more sophisticated statistically, than the previous 

methods used. For instance it has the property that the response categories can be 

analysed on their natural scale by being thought of as contiguous intervals on a 

continuous scale, which in turn means the response can be measured more finely 

and the estimation of cut-point parameters can be produced. As a consequence of 

the findings in this study the use of the proportional odds model is advocated as a 

suitable framework for data of a similar nature.
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CHAPTER 6

FURTHER WORK

6.1 Hierarchical/nested response models

This chapter gives a brief introduction to an alternative model that could 

be used to model the cut-stump data. This particular type of model is known as 

a nested or hierarchical response model and is discussed in McCullagh & 

Nelder (1989) on pages 1 6 0 -1 6 4  and again on pages 180—181.

Consider the total number of applications until a kill is achieved as 

having response categories that can be broken up into four levels/stages and at 

each stage reduced to a dichotomy. The response at stage one is the dichotomy 

between killed and not killed, whereas the response at stage two is the 

dichotomy between killed and not killed given that the m -  y } stools were not 

killed on the first application of treatment. Here m represents the total number 

of stools in the study, and y} represents the number of stools killed on the first 

application of herbicide. At stage three the response is the dichotomy between 

killed and not killed given that m — y} — y2, where y2 is the number of stools 

killed on the second application of herbicide, and so on. These responses are 

very similar but technically different. The response is broken down into 

conditional factors such as the proportion of stools being killed at the second 

stage given that they survived the first application. If used to analyse the cut- 

stump data this approach would allow for an expected incline/decline in the 

mean susceptibility to the herbicides at the successive stages whilst at the same 

time the effect of particular predictors in the model affecting stool survival 

would also be apparent.

The model for this type of ordinal response is as follows: 

g(TC7) = a 7+ p r x 

g(%21(1- J j ) )  = a 2 + p r x 

g(n3 / ( l - y 3)) = a ,  + p r x 

g(%4 / ( l - y 4)) = a 4 + pr x
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where g must be the same link function. If the logistic link function were 

used the model would be

log(7Cy. /(I -  yj)) = ctj + pTx (6.1.1)

where a  . are the parameters allowing for incline/decline in susceptibility as 

mentioned above and y . = itj +... + 7C.. pr x is an explanatory variable that

can be qualitative or continuous. If x is a treatment factor then the result from 

the analysis is similar to that of the proportional odds model: the odds in 

favour of success in category j is exp( a  . + pr x ).

Model (6.1.1) draws many parallels with the proportional-odds model but it has 

the added benefit of allowing for the unusual case where the ordinal response is 

to be considered at each stage of the trial, i.e. in the cut stump case at each 

return visit to re-treat the stools. It is also a good way of modelling a response 

scale that could in theory have an indefinite number of stages. Further work on 

this data set might consider fitting (6.1.1) to the data and comparing the results 

reported in this study.
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APPENDIX A

All possible regressions

The variables shown in the following Minitab analysis outputs are: 

x0 = Stool diameter

Xj = Sum of cut surface diameters

x 2 = Highest height

x 3 = Ratio of stool diameter to sum of cut surface diameters 

The ten possible linear predictors are:

n (/)11 jm t = a + F

n (2)11 jm t ~ a j +  <lox o + F

n (i)11 jmt = a  j + F

11 jm t - a , +  q 2X 2 + F

n (5)11 jm t ”  a j +  q 0X 0 +  q ] x I + F

T»(6)11 jm t ~ a j T q 0* o + q 2x 2 + F

Tj{7)11 jm t = a  j +  q ] x 1 + q 2x 2 + F

n 'S)11 jm t = a  j +  q 0x 0 +  q 1x 1 +  q 2x 2 + F

n (9)11 jm t = a  j +  q 2x 2 + Q3X3 + F

n (;o)11 jm t = a  j +  q 3X 3 + F



Ordinal Logistic Regression

Link Function: Logit

Response Information

Variable Value Count
totalops 1 197

2 80
3 190
4 134
Total 601

601 cases were used 
2 9 cases contained missing values

Logistic Regression Table
Odds 95% Cl

Predictor Coef SE Coef Z P Ratio Lower Upper
Const(1) -3.6714 0 .3672 -10.00 0.000
Const(2) -2.2710 0.3361 -6.76 0.000
Const(3) -0.1361 0.3157 -0.43 0.666
method
2 5.2426 0.5619 9.33 0.000 189.16 62 . 89 568.97
3 0.4737 0.4426 1.07 0.284 1. 61 0 . 67 3 . 82

herbicid
2 0.9927 0.4339 2.29 0.022 2.70 1.15 6.32
3 1.3034 0.4374 2.98 0.003 3 . 68 1. 56 8. 68
4 1.3748 0.4351 3.16 0.002 3 . 95 1.69 9 .28
5 -0.3115 0.4479 -0.70 0.487 0.73 0.30 1.76

me thod*herbicid
2*2 -1.7621 0.6947 -2.54 0.011 0.17 0 . 04 0 . 67
2*3 0.821 1.175 0.70 0.485 2.27 0.23 22 .77
2*4 -0.3867 0.8592 -0.45 0.653 0 . 68 0 .13 3 . 66
2*5 0.6688 0.7839 0.85 0.394 1.95 0.42 9 .07
3*2 -0.1927 0.6050 -0,32 0.750 0.82 0.25 2 .70
3*3 -0.7372 0.6074 -1.21 0.225 0.48 0 .15 1.57
3*4 -0.3752 0.6072 -0.62 0.537 0.69 0 .21 2 .26
3*5 0.6766 0.6174 1,10 0.273 1.97 0.59 6.60

Log-likelihood = -551.209
Test that all slopes are zero: G = 499.497, DF = 14, P-Value = 0.000



Ordinal Logistic Regression

Link Function: Logit

Response Information

Variable Value Count
totalops 1 197

2 80
3 190
4 134
Total 601

601 cases were used
29 cases contained missing values

Logistic Regression Table
Odds 95% Cl

Predictor Coef SE Coef Z P Ratio Lower Upper
Const(l) -2.4289 0.4653 -5.22 0.000
Const(2) -1.0100 0.4451 -2.27 0.023
Const(3) 1.1785 0.4434 2 . 66 0.008
X q -0.024134 0.005596 -4.31 0.000 0.98 0.97 0.99
me thod
2 5.2105 0.5658 9.21 0.000 183.19 60.44 555.25
3 0.2813 0.4495 0.63 0.531 1.32 0.55 3.20

herbicid
2 0.8404 0.4393 1.91 0.056 2 .32 0.98 5.48
3 1.0586 0.4442 2.38 0.017 2 . 88 1.21 6.88
4 1.3114 0.4392 2.99 0.003 3 .71 1.57 8.78
5 -0.4952 0.4551 -1.09 0.277 0 . 61 0.25 1.49

method*herbicid
2*2 -1.7312 0.7007 -2.47 0.013 0.18 0.04 0.70
2*3 1.149 1.181 0.97 0.331 3 .16 0.31 31.95
2*4 -0,2836 0.8681 -0.33 0.744 0.75 0.14 4.13
2*5 0.7071 0,7892 0.90 0.370 2 . 03 0.43 9.53
3*2 0.0050 0.6113 0.01 0.993 1.01 0.30 3.33
3*3 -0.4008 0.6164 -0.65 0.516 0.67 0.20 2 .24
3*4 -0.2270 0.6126 -0.37 0.711 0.80 0.24 2 . 65
3*5 1.0531 0.6305 1.67 0.095 2.87 0.83 9 .86

Log-likelihood = -541.744
Test that all slopes are zero: G = 518.426, DF = 15, P-Value = 0.000



Ordinal Logistic Regression

Link Function; Logit

Response Information

Variable Value Count
totalops 1 197

2 80
3 190
4 134
Total 601

601 cases were used 
29 cases contained missing values

Logistic Regression Table
Odds 95% Cl

Predictor Coef SE Coef Z P Ratio Lower Upper
Const(1) -3.0762 0.4129 -7.45 0.000
Const(2) -1. 6674 0.3879 -4.30 0.000
Const(3) 0.5056 0.3782 1.34 0.181
X1 -0.028008 0.008871 -3 .16 0.002 0.97 0 .96 0.99
method
2 5.2653 0.5650 9.32 0.000 193.51 63 .93 585.69
3 0.4478 0.4457 1.00 0.315 1.56 0.65 3 .75

herbicid
2 0 . 9338 0.4366 2.14 0.032 2.54 1.08 5.99
3 1.3610 0.4399 3.09 0.002 3.90 1.65 9.24
4 1.5056 0.4391 3.43 0.001 4.51 1.91 10.66
5 -0.3724 0.4509 -0.83 0.409 0.69 0.28 1.67

method*herbicid
2*2 -1.8018 0.6982 -2.58 0.010 0.17 0.04 0.65
2*3 0.850 1.178 0.72 0.471 2.34 0.23 23 . 55
2*4 -0.5300 0.8633 -0.61 0.539 0.59 0.11 3 .20
2*5 0.6863 0.7863 0.87 0.383 1.99 0.43 9.28
3*2 -0.1705 0.6081 -0.28 0.779 0 . 84 0.26 2.78
3*3 -0.7506 0.6102 -1.23 0.219 0 .47 0.14 1.56
3*4 -0.4974 0.6106 -0.81 0.415 0 . 61 0.18 2.01
3*5 0.7452 0.6217 1.20 0.231 2 .11 0. 62 7.13

Log-likelihood = -546.327
Test that all slopes are zero: G = 509.261, DF = 15, P-Value = 0.000



Ordinal Logistic Regression

Link Function: Logit

Response Information

Variable Value Count
totalops 1 197

2 80
3 190
4 134
Total 601

601 cases were used 
29 cases contained missing values

Logistic Regression Table
Odds 95% Cl

Predictor Coef SE Coef Z P Ratio Lower Upper
Const(1) -3.0346 0.4057 -7 .48 0.000
Const(2) -1.6212 0.3802 -4 .26 0.000
Const(3) 0.5439 0.3706 1.47 0.142
x2 -0.011304 0.003326 -3 .40 0.001 0.99 0.98 1.00
method
2 5.2623 0.5644 9 .32 0.000 192.93 63 .82 583.27
3 0.3068 0.4464 0. 69 0.492 1.36 0.57 3 .26

herbicid
2 0.8984 0.4358 2.06 0 .039 2 .46 1.05 5.77
3 1.3601 0.4397 3 . 09 0 . 002 3 . 90 1.65 9 .23
4 1.4516 0.4375 3 . 32 0. 001 4.27 1. 81 10 . 07
5 -0.3966 0.4502 -0 . 88 0.378 0. 67 0.28 1. 63

method*herbicid
2*2 -1.7901 0.6976 -2 . 57 0. 010 0.17 0 . 04 0 . 66
2*3 0.786 1.178 0. 67 0.504 2.20 0.22 22.09
2*4 -0.4338 0.8626 -0. 50 0. 615 0 . 65 0 .12 3 . 51
2*5 0.6954 0.7854 0. 89 0.376 2.00 0.43 9.34
3*2 -0.0030 0.6087 -0.00 0 . 996 1.00 0.30 3 . 29
3*3 -0.6527 0.6098 -1.07 0.285 0 . 52 0.16 1.72
3*4 -0.3090 0.6095 -0.51 0 . 612 0.73 0.22 2 . 42
3*5 0.8813 0.6228 1.42 0.157 2.41 0.71 8.18

Log-likelihood = -545.665
Test that all slopes are zero: G = 510.585, DF = 15, P-Value = 0.000



Ordinal Logistic Regression

Link Function: Logit

Response Information

Variable Value Count
totalops 1 197

2 80
3 190
4 134
Total 601

601 cases were used
29 cases contained missing values

Logistic Regression Table
Odds 95% Cl

Predictor Coef SE Coef Z P Ratio Lower Upper
Const(1) -2.3962 0.4671 -5.13 0.000
Const(2) -0.9773 0.4469 -2.19 0.029
Const(3) 1.2166 0.4457 2 .73 0.006
x 0 0.021013 0.006713 -3 .13 0.002 0 . 98 0.97 0.99

x1 -0.00917 0.01068 -0.86 0.390 0 . 99 0 , 97 1.01
method
2 5.2230 0.5665 9.22 0.000 185.49 61.11 562.98
3 0.3007 0.4501 0. 67 0.504 1. 35 0 . 56 3 .26

herbicid
2 0.8422 0.4396 1.92 0.055 2.32 0.98 5.50
3 1.1098 0.4477 2 .48 0 .013 3 . 03 1.26 7.30
4 1.3654 0.4438 3 .08 0 .002 3 .92 1. 64 9.35
5 -0.4884 0.4557 -1. 07 0 .284 0 . 61 0.25 1.50

method*herbicid
2*2 -1.7493 0.7011 -2 .49 0 .013 0 .17 0 .04 0 . 69
2*3 1.118 1.182 0 . 95 0 .345 3 . 06 0.30 31. 02
2*4 -0 .3455 0.8704 -0 .40 0 . 691 0 . 71 0 .13 3 .90
2*5 0 .7048 0 .7892 0. 89 0.372 2 . 02 0 ,43 9 .50
3*2 -0.0149 0.6120 -0. 02 0. 981 0. 99 0.30 3 . 27
3*3 -0.4512 0.6186 -0.73 0.466 0.64 0 .19 2 .14
3*4 -0.2907 0.6163 -0.47 0.637 0.75 0 .22 2.50
3*5 1.0226 0.6314 1. 62 0.105 2 .78 0 . 81 9.58

Log-likelihood = -541.387
Test that all slopes are zero: G = 519.140, DF = 16, P-Value = 0.000



Ordinal Logistic Regression

Link Function: Logit

Response Information

Variable Value Count
totalops 1 197

2 80
3 190
4 134
Total 601

601 cases were used 
29 cases contained missing values

Logistic Regression Table
Odds 95% Cl

Predictor Coef SE Coef Z P Ratio Lower Upper
Const(1) -2.2216 0.4734 -4.69 0.000
Const(2) -0.7968 0.4542 -1.75 0.079
Const(3) 1.4030 0 .4548 3.08 0.002

x0 -0.020289 0.005927 -3.42 0.001 0.98 0.97 0.99

x2 -0.007244 0.003533 -2.05 0.040 0.99 0 . 99 1. 00
method
2 5.2303 0. 5670 9.22 0.000 186.84 61.49 567.70
3 0.2075 0.4507 0.46 0.645 1.23 0 .51 2 . 98

herbicid
2 0.8058 0.4394 1.83 0.067 2 .24 0 . 95 5.30
3 1.1366 0.4470 2.54 0.011 3 .12 1.30 7 .48
4 1.3729 0.4411 3.11 0.002 3.95 1. 66 9 .37
5 -0.5154 0.4550 -1.13 0.257 0.60 0 .24 1.46

method*herbicid
2*2 -1.7536 0.7016 -2.50 0.012 0.17 0 . 04 0. 68
2*3 1.069 1.183 0.90 0.366 2.91 0 .29 29.60
2*4 -0.3145 0.8701 -0.36 0 .718 0.73 0 .13 4.02
2*5 0.7053 0.7885 0.89 0.371 2.02 0.43 9.50
3*2 0.0943 0. 6126 0.15 0.878 1.10 0.33 3 . 65
3*3 -0.4083 0.6172 -0.66 0.508 0. 66 0.20 2.23
3*4 -0.2063 0.6132 -0.34 0.737 0 . 81 0.24 2.71
3*5 1.1189 0.6314 1.77 0.076 3.06 0.89 10 . 55

Log-likelihood = -539.733
Test that all slopes are zero: G = 522.448, DF = 16, P-Value = 0.000



Ordinal Logistic Regression

Link Function: Logit

Response Information

Variable Value Count
totalops 1 197

2 80
3 190
4 134
Total 601

601 cases were used 
29 cases contained missing values

Logistic Regression Table
Odds 95% Cl

Predictor Coef SE Coef Z P Ratio Lower Upper
Const(1) -2.7799 0 .4278 -6.50 0.000
Const(2) -1.3643 0.4050 -3.37 0.001
Const(3) 0.8188 0.3990 2.05 0.040
X1 -0.019419 0.009532 -2.04 0.042 0.98 0.96 1.00

x2 -0.008487 0.003581 -2.37 0.018 0 .99 0.98 1.00
method
2 5.2734 0.5659 9.32 0.000 195.07 64 .34 591.48
3 0.3309 0.4478 0.74 0.460 1.39 0 .58 3.35

herbicid
2 0.8845 0.4370 2.02 0.043 2 .42 1. 03 5.70
3 1.3872 0.4408 3.15 0.002 4. 00 1. 69 9 . 50
4 1.5212 0.4397 3 .46 0.001 4.58 1. 93 10 . 84
5 -0.4160 0.4514 -0.92 0.357 0. 66 0 . 27 1.60

method*herbicid
2*2 -1.8160 0.6992 -2.60 0.009 0.16 0. 04 0.64
2*3 0 . 815 1.180 0.69 0.490 2 .26 0. 22 22 . 81
2*4 -0.5152 0.8646 -0.60 0.551 0.60 0.11 3 .25
2*5 0.6946 0 .7863 0.88 0.377 2.00 0. 43 9 .35
3*2 -0.0385 0.6101 -0.06 0.950 0.96 0.29 3 .18
3*3 -0.6857 0.6112 -1.12 0.262 0.50 0.15 1. 67
3*4 -0.4079 0.6119 -0.67 0.505 0.67 0.20 2 .21
3*5 0.8764 0.6245 1.40 0.160 2.40 0.71 8.17

Log-likelihood = -543.677
Test that all slopes are zero: G = 514.561, DF = 16, P-Value = 0.000



Ordinal Logistic Regression

Link Function: Logit

Response Information

Variable Value Count
totalops 1 197

2 80
3 190
4 134
Total 601

601 cases were used
29 cases contained missing 

Logistic Regression Table

values

Odds 95% Cl
Predictor 
Const(1) 
Const(2) 
Const(3}

Coef 
-2.2174 
-0 .7928 
1.4084

SE Coef 
0 .4738 
0.4546 
0.4553

Z
-4. 68 
-1.74 
3 .09

P
0.000
0.081
0.002

Ratio Lower Upper

x 0 -0.019173 0.006810 -2.82 0.005 0.98 0.97 0.99

X1 -0 .00378 0.01099 -0.34 0.731 1.00 0 . 97 1.02

x 2 -0 .006920 0.003637 -1.90 0.057 0.99 0.99 1.00
method
2 5.2345 0.5672 9 .23 0 .000 187.63 61.73 570 .32
3 0.2186 0.4512 0 .48 0 . 628 1.24 0.51 3 . 01

herbicid
2 0.8086 0.4395 1. 84 0 .066 2.24 0.95 5.31
3 1.1544 0.4491 2 . 57 0. 010 3 .17 1.32 7 . 65
4 1.3920 0.4444 3 .13 0.002 4.02 1. 68 9. 61
5 -0.5117 0.4554 -1.12 0.261 0.60 0.25 1.46

method*herbicid
2*2 -1.7608 0.7017 -2.51 0.012 0.17 0 .04 0.68
2*3 1.060 1.183 0.90 0.370 2.89 0 .28 29.35
2*4 -0 .3384 0.8719 -0.39 0.698 0.71 0 .13 3 . 94
2*5 0.7042 0.7885 0.89 0.372 2.02 0 .43 9.49
3*2 0.0816 0.6132 0.13 0.894 1.08 0 .33 3 . 61
3*3 -0.4287 0.6190 -0.69 0.489 0.65 0.19 2.19
3*4 -0.2331 0.6167 -0.38 0.706 0.79 0.24 2.65
3*5

Log-likelihood

1.1036 

= -539.677

0.6324 1.75 0.081 3 .02 0. 87 10.41

Test that all slopes are zero : G = 522..560, DF ;= 17, P'-Value = 0.. 000



Ordinal Logistic Regression

Link Function: Logit

Response Information

Variable Value Count
totalops 1 197

2 80
3 190
4 134
Total 601

601 cases were used
29 cases contained missing values 

Logistic Regression Table 

Predictor Coef SE Coef Z P
Odds

Ratio
95%

Lower
Cl
Upper

Const(1) 
Const(2) 
Const(3)
x 3

-2.9635 
-1.5498 
0.6150

0.02207

0.4701
0.4484
0.4412

0 . 07775

-6.30 
-3 .46 
1.39

-0.28

0 . 000 
0.001 
0.163
0.777 0.98 0 . 84 1.14

x 2 “° .011468 0.003364 -3 . 41 0 . 001 0.99 0 .98 1. 00
method
2 5.2540 0 .5645 9.31 0.000 191.33 63 . 28 578.50
3 0.2964 0.4467 0.66 0.507 1.35 0.56 3 .23

herbicid
2 0.8903 0.4360 2.04 0.041 2.44 1.04 5.73
3 1.3424 0.4426 3 .03 0.002 3.83 1. 61 9.11
4 1.4385 0.4396 3 .27 0.001 4.21 1.78 9.97
5 -0.4058 0.4515 -0.90 0.369 0.67 0.28 1.61

method*herbicid
2*2 -1.7765 0.6979 -2.55 0.011 0.17 0.04 0.66
2*3 0.800 1.178 0 . 68 0.497 2 .23 0.22 22.43
2*4 -0.4120 0.8653 -0.48 0.634 0. 66 0.12 3. 61
2*5 0 .7034 0.7857 0.90 0.371 2.02 0.43 9 .43
3*2 0.0182 0.6105 0.03 0.976 1.02 0.31 3 .37
3*3 -0.6371 0.6108 -1.04 0.297 0 .53 0.16 1.75
3*4 -0.2894 0.6121 -0 .47 0 . 63 6 0 .75 0.23 2 .49
3*5 0.9024 0.6257 1.44 0 .149 2 .47 0.72 8.40

Log-likelihood = -545.623
Test that all slopes are zero: G = 510.668, DF = 16, P-Value = 0.000



Ordinal Logistic Regression

Link Function: Logit

Response Information

Variable Value Count
totalops 1 197

2 80
3 190
4 134
Total 601

601 cases were used
29 cases contained missing values

Logistic Regression Table
Odds 95% Cl

Predictor Coef SE Coef Z P Ratio Lower Upper
Const(1) -3.7260 0.4228 -8. 81 0.000
Const(2) -2.3256 0.3958 -5.88 0.000
Const{3) -0.1897 0.3779 -0.50 0 . 616
x 3 0.01934 0.07659 0.25 0.801 1. 02 0 . 88 1.18
method
2 5.2501 0.5624 9.34 0.000 190.58 63 . 30 573.82
3 0.4805 0.4428 1.09 0.278 1.62 0 . 68 3 . 85

herbicid
2 0.9982 0.4341 2.30 0.021 2.71 1.16 6.35
3 1.3199 0.4408 2.99 0.003 3 . 74 1. 58 8. 88
4 1.3877 0.4376 3.17 0 .002 4.01 1.70 9.44
5 -0.3044 0.4491 -0 . 68 0 .498 0.74 0 .31 1.78

method*herbicid
2*2 -1.7735 0.6953 -2 . 55 0 . 011 0.17 0 .04 0.66
2*3 0. 808 1.176 0.69 0.492 2.24 0.22 22.50
2*4 -0.4059 0.8619 -0 .47 0.638 0 . 67 0.12 3 .61
2*5 0.6624 0.7845 0.84 0.398 1.94 0.42 9.02
3*2 -0.2081 0.6065 -0.34 0.732 0.81 0.25 2 . 67
3*3 -0.7498 0.6084 -1.23 0.218 0.47 0.14 1.56
3*4 -0 . 3916 0 . 6096 -0.64 0.521 0. 68 0.20 2.23
3*5 0.6606 0.6197 1. 07 0.286 1.94 0.57 6.52

Log-likelihood = -551.175
Test that all slopes are zero: G = 499.564, DF = 15, P-Value - 0.000



APPENDIX B

An additional analysis 

The variable shown in the following Minitab analysis output is: 

x 3 -  Ratio of stool diameter to sum of cut surface diameters 

The linear predictor used in this analysis is:

T  jm t ~

Ordinal Logistic Regression: totalops versus stoold:csd

Link Function: Logit

Response Information

Variable Value Count
totalops 1 197

2 80
3 190
4 134
Total 601

601 cases were used 
2 9 cases contained missing values

Logistic Regression Table

Predictor 
Const(1) 
Const(2) 
Const(3) 
stoold:c

Coef 
-0.7238 
-0.1623 
1.2429 

0 . 0 0 2 2 0

SE Coef 
0.1821 
0.1797 
0.1875 

0 .06396

-3.98 0.000 
-0.90 0.366 
6.63 0.000 
0.03 0.973

Odds
Ratio

1 . 0 0

95% Cl 
Lower Upper

0 . 8 8 1.14

Log-likelihood = -800.957
Test that all slopes are zero: G = 0.001, DF 1, P-Value = 0.971
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