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ABSTRACT

The aim of this thesis is to review and develop theory in

discriminant analysis.

In chapter one an example of medical diagnosis is considered, 

and two types of uncertainty are illustrated. Firstly, the log

odds ratio can be close to zero, and secondly there can be 

considerable uncertainty about its true value.

In chapter two we review existing methodology for

constructing interval estimates for the log odds when the two 

populations are normal. Five different methods are considered for 

distributions with equal covariances, and three are generalised 

to the unequal covariance situation.

In chapter three these methods are investigated by

simulation. It is seen that only two methods in the equal 

covariance case give intervals of reliable empirical confidence, 

and only one generalises successfully to the unequal covariance 

case.

In chapter four we go on to use the interval estimation 

methodology to assess a discriminant rule, suggesting some new 

ways of displaying the information available.

In chapter five we develop the methods of chapter four to 

construct an accurate error rate estimator, which is compared 

with standard techniques by simulation.

In chapter six the error rate estimator developed in chapter 

five is extended to the situation where there are more than two 

groups, and it is compared by simulation with generalisations of 

other standard techniques. The different methods are applied to a 

data set.

In chapter seven the limitations of the work are discussed, 

and possible developments suggested.
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CHAPTER ONE 

Introduction

This thesis is concerned with the problem of discriminant 

analysis, or statistical pattern recognition, which we will 

consider mostly in the context of medical diagnosis. In this 

chapter we use an example to illustrate what the discriminant 

analysis problem is, and to give an idea of the problems 

involved.

The example concerns Conn's Syndrome, a form of 

hypertension, which occurs in two distinct forms, which we will 

call type 1 and type 2. The two types need to be treated 

differently, but are difficult to distinguish. To aid the 

clinician in his diagnosis, measurements of eight variables have 

been made on 35 patients. The variables are:-

1 Age

2 Plasma concentration of sodium

3 " " " potassium

4 " " " carbon dioxide

5 " " " renin

6 " " " aldosterone

7 Systolic blood pressure

8 Diastolic blood pressure

Of the 35 patients, 20 are known to be of type 1, 11 are of 

type 2 and the other 4 are undiagnosed. The data are given in 

appendix one (reproduced from Aitchison and Dunsmore (1975)), We 

would like to decide on the type of the four undiagnosed 

patients, A, B, C and D.

A plot of two of the variables, 5 and 3 is shown in figure 

1.1. The data have been log-transformed in order to make an 

assumption of multivariate normality plausible. We can see from
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the plot that A and B look like type Is, C is a borderline case, 

and D looks like type 2. The aim of discriminant analysis is to 

formalise this judgement.

One approach is to estimate the log odds ratio 9(x) where

p(type 1 | x )’
e(x)=ln --------------

,p{ type 2 ! x).

and x is the data on the undiagnosed patient. If we make the 

assumption of normality mentioned above, there are several 

possible estimators of e(x). We will not assume that the 

covariance matrices of the two groups are equal, and so it will 

be neccessary to estimate them separately. This is clearly 

difficult with eight variables, and only 11 observations of type 

2, and so the subset of the four variables 1.3,4 and 5 has been 

selected to reduce the dimensionality of the problem. Choosing a 

suitable subset of variables for dimensionality reduction is a 

complex problem, and ways of assessing and comparing different 

subsets are discussed in chapter four.

Using these four variables. and assuming equal prior 

probabilities for membership of the two types, the minimum 

variance unbiased estimator (Moran and Murphy (1979)), 0(x), was 

used to estimate 0(x) for A.B,C and D. The estimates were:- 

Patient 9(x)

A 10.93

B 5.10

C -0.28

D -1.49

These are rather difficult to interpret, and so we use the 

transformation
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exp(8 (x))
p(type 1 |x) ~ -------------

1+exp(8 (x))

in order to get the estimated probabilities below:- 

Patient p(type l|x)

A 1.00

B 0.99

C 0.43

D 0.18

These appear to suggest that patients A and B are almost 

certainly type 1, and C and D probably type 2. However, there are 

two sources of uncertainty. Firstly, the estimated probability 

for patient C is near to 0.5. implying that this is a borderline 

case (as the plot suggested) and that any diagnosis based on this 

data should be made with caution. Secondly, these are only 

estimates of the true probabilities p(type l|x), and there may be 

some doubt as to the accuracy of the estimator.

Because of this second source of uncertainty, in chapters two 

and three we discuss ways of constructing interval estimates for 

the probabilities, but to give an idea of their importance the 

method due to Rigby (1982) was used to obtain approximate 95% 

confidence intervals for the four undiagnosed cases. They are as 

follows;-

Patient Interval 

A (1.00,1.00)

B (0.96,1.00)

C (0.13,0.99)

D (0.02,0.91)

These intervals show that we can be confident of our 

diagnoses for patients A and B, and they confirm our doubt about 

patient C. However, for patient D the point estimate of



p(type l|x) appeared to indicate that the patient was probably of 

type 2 , whereas the interval estimate shows that in actual fact 

we have insufficient evidence to make any such diagnosis.

This example illustrates some of the problems with 

discriminant analysis. In this case there were only two possible 

diagnoses, type 1 or type 2 , though in general there could be any 

number. Most of the following work will only consider the two 

group case, though many of the results can be generalised. In 

chapter six we consider another example with more than two 

groups.
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CHAPTER TWO

2.1 Inference for the Log Odds-Ratio

Consider the situation where a random vector X. of dimension 

p, arises from one of k multivariate Normal populations 

Npfu-j^fli), i = with probability Tr^.For any observed value

x of X,it is desired to identify the population of origin of this 

observation.The posterior probabilities ^(x) that the 

observation is a member of group i are given by 

trj_ (x)=vif (x))

where fj[(-) denotes the probability density function for 

population i. We will only be concerned with the case k-2,and so 

need only consider the posterior log-odds v(x) in favour of 

population 1 (say).This is given by 

t (x )=v +©(x )

where

t= log {it ±/n2 )
and

2
e(x) = E (-1)1 (oc| (x) + log det O-j )

1 =  1

Here <x^(x) denotes the squared Mahalanobis distance 

(x-u^) (x-u^) , which measures the atypicality of x for

population i. In the particular case =<̂ 2=C5 * G (x ) is simply 
(«2 (x ) —<Xi < X ) ) .

We assume {i r are known, and the unknown. The

training set T consists of independent random samples of size n^ 

from the two populations .Let n=ni+n2 . and Xj_ and denote the 

mean vector and corrected sums of squares and cross products 

matrix for the i**1 population, or in the case fti=f>2 . s denotes the 

pooled matrix S^+S2 . All inferences are made conditional on the 

sample sizes n^ and n2 .
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2.2 Point Estimation and Interval Estimation

There has been considerable discussion in the literature on 

the relative merits of several different 'predictive' and 

'estimative' point estimates of 8 (x) .Following Geisser(1964) it 

has been suggested in Aitchison and Kay (1975) 

Aitchison,Habbema and Kay (1977) , Geisser (1977) and

McLachlan (1977,1979) that predictive estimators are to be 

preferred,However. Moran and Murphy (1979) provide evidence that 

the bias corrected estimative estimators are essentially 

comparable.

Schaafsma (1984 section 2.1) points out that the difference 

between estimators will be of the order n"1 , whereas their

standard deviations are of order n- .̂ Therefore in the context of 

interval estimation the choice of estimator is less important.lt 

is more important to derive and use an estimate of the variance 

of an estimator of 9(x).

We consider in detail several approaches to interval 

estimation for 0 (x) in later sections,but the following is a 

brief historical summary of the work done so far:-

Much of the initial work was done by Schaafsma and colleagues 

in Holland, who derived methods based on asymptotic formulae (see 

for example Schaafsma and Van Vark (1979), Ambergen and Schaafsma 

(1984)).Schaafsma and others have also developed a computer 

package to aid the application of their approach, the POSCON 

project (Van der Sluis and Schaafsma (1984)). Critchley and Ford 

(1984,1985) discuss and derive approaches based on exact variance 

formulae, and Rigby (1982) describes a Bayesian approach to the 

problem. Critchley ,Ford and Rijal (1987) have developed methods 

based on the profile likelihood, and Davis (1987) uses moments 

and joint cumulants in another approach. We now look at some of



these methods in detail.

2.3 Equal Covariance Case

Consider the case <>i=^2=q • so 0(x)=^(a2 (x)-<x1(x)).

2.3.1 Sampling Theory Approaches. El and E2

Moran and Murphy (1979) show that the minimum variance 

unbiased estimator for e(x) is

S(x) = (N-p-l) (Xi-Xa)TS_1 { (Xx+X2) K ^ p t n ^ - n g " 1) 
where N = n ^ n 2-2 .

Schaafsma (1982 section 5) and Critchley and Ford(1985) show 

that the variance of 9(x) is given by

(X-p)(X-p-3)var(9(x))=(N-p+l){e(x)-J£(N-l)(nj^-ng-1) }2
-(X-p-1) [®(x) {(X-l) (n^l+ng-l )̂ a 2}-^a 4]

-VfN-1)(N-p-l){2p(n1“2-n2-2)

-{N+lJtnj-i-ng"1)2}

where ®(x)=&(<*;i (xj+agfx)) measures the average atypicality of 

observation x from the two populations, and

A 2 =(n^-u2 ) (u^-ug) 

is the squared Mahalanobis distance between them.

The exact distribution of 9(x) appears to be intractable 

although invariance arguments, given in Critchley and Ford (1985) 

show that it depends only 9,0 and . Their argument is based on 

a simplifying transformation:-

Let P be a matrix such that ft-1=PTp, let Q be an orthogonal
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matrix whose first column is proportional to P(«i-U2 ) and let
6'r=(A,0.....0). Now transform each vector in the training set,

and the observed vector x, according to t-»t*=At-b, where A^QP and 

b=Au2+)£*. Then

X1-»X1*~Np (^6 ,n1^1I)

X2"^X£ “Np ( ,  ng-^! )

S->S*"Wp (N, I)

where Wp (N,I) denotes the Wishart distribution with N degrees of 

freedom and parametric matrix I.

<X}(x), oc2 x̂  ̂ anc* A are all invariant to this transformation, 

as is ©(x ) . If X}* is the first component of x*, then we also 

have rotational symmetry about the x^* axis, and so the 

distribution must depend only upon A. xj* and the length of x*. 

apart from the known constants n^, n2 and p. Alternatively, since 

<d(x)=x*Tx* + î a2 , the dependence is only upon A. 9(x) and o(x).

Being an affine transformation of the maximum likelihood 

estimator for 9(x), 0 (x) is asymptotically normally distributed, 

with mean and variance as given. It also depends quadratically on 

0(x), increasing as e(x)2 when ni=n2. This allows the 

construction of two different interval estimates.

Method El. called PLUGALL by Critchley and Ford (1985) uses 

9±l.96(v )̂  as an approximate 95% confidence interval, where v is 

obtained by plugging in estimates for all the unknown parameters 

in the above expression for var(8 (x)). The estimators used are 

unbiased for 0(x), <d(x) and A. They are 9(x) as given, and

0 (x)=J£(a1+«2~P(nl""'1+n2~1) )
where «2 = (N-p-l) (x-Xj[ jTs-1 (x-X^ ) , i = l,2 

A=(N-p-l)(X^-Xa)S”1(X!-X2 )

Method E2, called PLUGPART by Critchley and Ford (1985),
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substitutes estimates o(x) and A for o(x) and A to obtain 

var(8 (x)|©(x),S(x),A), and so gets an approximate interval of the 

form

{©(x):(e(x)-9(x))2<(1.96)2var(8(x)|0(x),o(x),A)}

If we write var(e(x)|0(x),o(x),A)=a0(x)2-b0(x)+c{o(x),A>* 
then the endpoints of the interval can be found by solving for 0 

the quadratic equation

(0 (x )—0 (x ))2={1.96)2 {a0(x)2-b9(x)+c(o(x),A ))

2,3.2 The Bayesian Approach E3

Rigby (1982) considers a Bayesian approach to the problem. In 

his paper he considers only the unequal covariance situation, 

but he has unpublished work on the equal covariance case. His 

approach involves a rather different philosophy to that of the 

previous section, and he defines the problem as follows

Prior to being observed, X is assumed to be drawn from the 

combined distribution iriPi(xK )+jr2p2(x|€). where pjjxje) is the 

ith population density at x given the population parameters £. In 

the Bayesian approach due to Rigby. £ is regarded as a random 

variable. We are interested in the distribution of the log 

odds-ratio L=l2~l2 given the feature x. where l^^logtp^(x|£)) and 

L is now an induced random variable since it is a function of £. 

If the moment generating function of the posterior distribution 

of L. $L(t), given the training data can be calculated, then the 

distribution can be approximated by finding the first four 

moments and fitting Pearson curves (Elderton and Johnson 1969. 

chapter five).

X̂,(t) is defined by
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$L (t)=E(etL)= P i U €)'

-P2 x̂ €).
p(£|T)d£

where p(£|T) is the posterior distribution of £ given the 

training data T. If vague prior information is assumed, ie 

p(£)tr|o 4 | ^(P+l) then (£|T) has a Normal-Normal-Wishart 

distribution

p (£|T)=NoNoWip (X1,n1,X2,n2 .n1+n2~2,S )

Rigby then shows that the moment generating function of L is 
given by

where |H|=|S|

' n2 *)ip ' n2 'lip |S jliN

n2+t | H | KN

1+
nat n2t

.D l -  ---------- d2 -
nln2t' -<DiD2-D122)

n1+t n2-t (na+t)(n2-t) 

and Di=(Xi-x)TS”1(Xi-x), i=l,2 , D12=(X1-x)S“1(X2-x)

Hence the first four moments, denoted by m^, i=l 4 , are
given by

mj = i^(N(D2-D1 )+p(n2-1-ni~1))

m2 - (N(D224‘D2^^-2N(D2/n2+Di/nj )+p(n2 2+n^ 2 )]

»12:-ND-~2

m3=N(D23-D13)+3N(D22/n2-D12/n1)

+3N(D2/n22-D2/n^2)+p(l/n23-l/n^3 ) 

+3ND122((D2~D1 )+(l/n2-l/ni))

m4=A+3m22 where 

A = 3[N(D14+D24 )+4N(D13/n1+D23/n2)

-i-6X(D12/n22^D22/n22)+4N(D1/n13+D2/n23 )
•^p{l/n!4+l/n24) ]

+6NDj24+12NDjl22 { (Dj-D2 ) + (l/n2~l/n2))2 

-6ND422(D^+l/n^)(D2+l/n2)
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2,3,3 The Profile Likelihood Approach E4

An alternative approach is to base the interval estimate for 

9 on the profile of the log likelihood function (Kalbfleisch and 

Sprott (1970),Kalbfleisch (1979)).The profile likelihood is 

defined as follows

Let S be the parameter space for the model, and let £ denote 

the full set of unknown parameters. Then given the training data 

the log odds-ratio 0 is a function of £, say 9=h(£) where h:E-»JR. 

Let e=h(S). Let J?:3-»IR be the log likelihood function. For given 

9e© consider the problem P{0 ):

Maximise £(£) over £es subject to h(£)=9 

Where it exists, denote the maximal value by p(9). p(9) is the 

profile log likelihood function for 0 .

Critchley, Ford and Rijal (1988) show how strong Lagrangian 

theory can be used to simplify the construction of the profile 

likelihood, and to obtain interval estimates for 0 . We give their 

results in some detail, as they can be used for distributions 

other than the normal {see later).

Consider the unconstrained problem Q(x),

Maximise £(£)-\h(£) over £es 

Let A be the set of X for which a solution to Q (X) exists, and 

let 0 be the set of h(£)J such that £x *s a solution to Q (X) for 

some XeA. Consider the following conditions

(i) There exists some £eE such that for all £eS,

*(£)<*{£)<«

(i i ) ©=©

(iii) The interior of ©. denoted ©*, is convex.

(iv) For all XeA, £x is unique, and the unique hU^) is 

denoted by 0\.

(v) 0 is open
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{vl) p(.) has a derivative, denoted by p'(-). in ©* .

If these six conditions hold, then Critchley, Ford and Rijal 

(1988) show that

(1) p(.) has domain ©.

(2) For each XeA, a solution to Q(x) is also a solution to 

P(9) for 9=h(£x), and so p(9)=£(£\). Therefore the entire 

function p(.) is obtained by letting x vary through A.

(3) p(.) is strictly concave on ©.

(4) The family of interval estimates for © based on the 

profile likelihood is {la :oc>0} where Ia={9e©:p(9)-p( 9 ) ,  

9=h(£). These intervals are convex.

(5) For all 9e©° there is a unique XeA, written X(0) , for 

which 9=h(£x)
(6 ) x (9)=p'(0 )

(7) 9(.) is a strictly decreasing function on © 4.

These results mean that in order to find an interval estimate 

for 9. it is neccessary only to find A, 0X and p(©\). The maximum 

of p( . ) , p (9) will be at x=0 and. since asymptotically 

-2(p (©x)"P(©)) has a chi-squared distribution with one degree of 

freedom, it is only necessary to find the two values of x such 

that

p(0x)-p(0)=-^x2(l;O.95)

This is most easily done by drawing the (0 ,p(0 )) graph, or it can 

be done numerically.

In the case of normally distributed populations with equal 

covariances we have, ignoring constant terms,

2{ £(£)-Xh(£) }=-(n1+n2)ln |0|

-{E(x1i-u1)Tft“1(xli-u1 )-X{x-«1)Tft”1(x-a1)>

-{E (X2i~U2) (x 22~)u2 ) (x-ug (x-U2) }
Here x can be regarded as the weight with which x is added to
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population 2 and subtracted from population 1. Hence the unique 

£x can be written down from standard maximum likelihood theory, 

and conditions (i) and (iv) must hold. 

u1(x)=(n1X1-\x)/(n1-x) 

u2 (X) = (n2X2+Xx) / {n2+x)

9(X) = {n1+n2)":L[S+(n1"1-X-l)“l(x-X1) (x-X1)T 

+ (n2“1+k”1)_1 (x-X2 )(x-X2)T]
The condition |0 |>0 gives A as

A={X:(n^-X)(n2+X}-(n2+X)n^D^x+(n^-x)n2D2X

~nln2X2

where Di=(x-X1)TS~1(x-Xi ), i=l,2, D12=(x-X1)TS_1(x-X2 )

The relevant formulae for ex and p(0x) are:- 

0x=-J6(n1+n2 )u/v
where

u=D-l [n^/ (n^-x) ]2{l+n2D2X/(n2+X)}

-D2[n2/(n2+x)]2{l-n1D1x/(n1-\)}

-D^22x{n1/(nf-X)}{n2/(n2+X)}{n^/(n1-x)+n2/(n2+x))

v—{1—n^D^X/(n^-X)}(l+n2D2x/(n2+x)}

+n1n2D122x2/{(n2-x)(n2^X)>

2p(0x)=(n1+n2)p{log(n1+n2)“l}-(n1+n2)log det S 

- (nj+n2)log(w)+2X0x
where

w=l-n1D1x/(n1-x)+n2D2x/(n2+x)

-n1n2x2(DiD2-Di22 )/{(ni-x)(n2+x)}

Conditions (iii) and (iv) hold since ©=fR, and (vi) is clearly 

true. Also ©=IR and so all the conditions are satisfied. Hence it 

is easy to obtain an interval estimate for 0 .



2.3.4 An Approach Based On Sampling Cumulants Of 9 , E5

Davis (1987) has developed a technique for evaluating the 

exact first four moments and asymptotic expansions of the 

cumulants of statistics of the form W where 

W=vtr(ZYTS“1Y)

where S~Wp(ni+n2-2 .0 ), v=ni+n2-p-3, z is a constant 2x2 matrix

and Y has the multivariate normal distribution given by 

(2tt)“P | A |-,fi | ft | -1exp[-tr{M_1 (Y-M)T0-1 (Y-M)} ] 

where A is a symmetric 2x2 matrix and the mean vector M is px2 

Davis considers the (biased) estimators 

e(x)=&(a2 (x)-«i(x))

<i>{x)=^(a2 (x)+cc1 (X) )

A2(x)=v(X1-X2)TS_1(X1-X2)
where

cc1(x)=v(x-Xi)TS'1(x-Xi) , i=l, 2 

t^9(x)+t2<t>(x)+t2A2 has the form W with

z= at-

!̂t2+t3-

M= (x-J^(n^+n2) ./.î—m g)

^(n^ ^+n2- )̂ M(n2_-̂ -n2_^)'
A=

.36 (n2 1-n^ !) nj 1+n2 1

He then uses the method of Peers and Iqbal (1985) to 

construct approximate interval estimates.This method is based on 

the construction of a series of functions (hr) which has the 

property

pjm^fx^-y-^ )<hr \y) = <x+Op(nTr/2) 

where a confidence interval is required for yj . the first 

element of y=(y^,...,yq ), the other 7± being nuisance parameters. 

It is assumed that an estimator y=(yi....,9q) is available for y
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such that v=m^(y-y) has moment generating function with 

asymptotic expansion of the form

which increases with sample size. The Xs are the cumulants of v 

scaled by the associated powers of m, and the tensor convention 

of summing over repeated subscripts from 1 to q has been adopted- 

hr is obtained by substituting the estimators y into an 

expression for hr .

Setting y=(G(x),o(x),A2) and m=v, m^(y-y) has the required 

form and so Davis uses I13 in order to get intervals of 

confidence a+0p (m-3/2). From Peers and Iqbal (1985),

where if n denotes the <x percent point of the standard normal 

distribution,

where t=(t

Mv (t)=exp{(1/2!jXijtitj+nT^Xjti+tnr^/S!)^ijktitjtk 

+(m~1/4!)Xijkl^itjt^t^+Otm-3/2)) 

ltl > • • • * tq) is a vector of scalars and m is a parameter

r
hr= E^m ^ g j

gl = n(X22)̂

O -*■ Jg2 = Xj-j^n2 ---
Xij 3X21 + (n2-l) X^ji

XI1 6 X11

S3 - “xjSl(j)-^ij£l(ij) +
(n2-l) rpxjj

2Xn  U 3Xn
xiii“xiij ei(j)

xlixljSi(ij)

+ J£r\x2 2^ S2 (j) gl(i)Sl(j) -

2i
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(n3-3n)X^lll (2n3-5n)Xjii2A.   _ ______
24Xn 3/2 36xH 1 5/2

3gr
where gr(i)= ---•

371

The approprate asymptotic cumulants are, where p^v/n^ , i = l, 2 , 

vr(x)=0 (x)-!4A2 and omitting the argument x for brevity

X! = ^p(p2-p1)

X11 = + + Pi(<J>-0 ) + p2(0+o)

+v-i [302+t̂ A2+P2{ (p+1) (<j>-0 )-20}

+P2( (p+l) (0+0) +20}+)£p (pi2+p22 ) ] +0 (v 2)

x22 = 02+2if2+(1/8 ) A^+p^ (<j>-©)+pg ($+9)+0 ( v- -̂)

X33 = 2Â -t-4A 2 (pi+p2 ) +0 ( )  

x12 ‘ = 20p+pi (0—0 ) +p2 (0+0 ) +0 ( v  ̂)

X13 = 2©A2+p1(20-A2 )+p2 (20+A2)+O(v“:L) 

x23 = 202+J^A^-p2 (20-A2 ) +p2 (20+A2 ) +0 ( )

X1 2 1  = 40 (02+3ifrA2 ) +6pi { - (02+̂ rA2 ) +20p }+6p2{02+vA2 + 20<&} 

+3{pi2 (0-<j>)+p22 ( 0 + 0 ) + 0 ( )  

x112 = 4p(302+^A2)+P2 (302-60p+2<D2+vA2 )

+ 2p2 (302+60p+2<l>2+ijrA2 )

+3{pi2(<j>-0)+p22 (0+©) }+0(v_1 ) 

x113 ~ 4A2 (302+iirA2 }+4pi (302-30A2+ (p +kt ) A2 }

+4p2{302+30A2+ (0+tJt)A2 }

+2{pi2(-30+0+A2)+P2P2 (2p-A2) 

+P22 (30+0+A2)}+0(v-1) 

xllll = 30{ (0^+602TjrA2+72A^ )+2p^ (-03+3020-30-vrA2+0AirA2 )

+ 2p2 (03 + 3020+30T^A2+0T(rA2 )

+ 12{pi2 (592-1O00+202+3tJ'A2 ) +p22 (502 + l000+202+3t^A2 ) 

+p^3 (0—0)+p23 (0+0)}+0(v ^ )

The estimators 0(x) , p (x ) and A are plugged into these 

equations, which are then used in the construction of h3 , and so
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an interval estimate for 0 (x) is obtained.

2.4 Unequal Covariance Case

Three of the methods of section 2.3 can be generalised to 

the case T^e exceptions are the PLUGPART approach of

Critchley and Ford (1985), which relied upon writing the variance 

of (e(x) |0(x) ,P(x) ,A) as a quadratic function of ©(x), and the 

method of Davis (1987), since the distribution of ©(x) is not 

dependent on only three variables as it is in the equal 

covariance case. In order to use Davis' method it would be 

neccessary to find the joint cumulants of many more parameters, 

and they would include terms involving log

2,4.1 The Sampling Theory Approach. U1

It is straightforward to construct interval estimates for 

© (x) by a method analogous to El. Critchley, Ford and Rijal 

(1987) give the best unbiased estimator of 9(x) as

2 p0G (x) = % e (-DM^ Q t x J + l o g  det Si - Ey{fc(ni-j)}] 
i=l j=l

where

«lG (x)=(ni~p-2 )(x-Xi)TSi_1(x-Xi)-p/ni 

and ?(.) denotes the digamma function, defined in Abramowitz 

and Stegun (1965,p258). It may be evaluated efficiently using the 

algorithm in Bernado (1976).

The distribution of ©G (x) appears to be intractable, but it 

is asymptotically normal, and Critchley, Ford and Rijal (1987) 

give its approximate variance as vG where
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2
VG = c

«iG2<x )

i = lL2(ni-p-4)

p(ni~2)

(ni~2)

.n-L (n-ĵ -p-1) (n^-p-4) .«iGU)

2(ni-p-l) (nj^-p-4) .

where <xiG{x)^{x-ui tx-iq ) , 1=1 ,2 .

Substituting the estimate « 2G (x) of aiG(x ) into to set 
vG , they obtain the approximate 95% confidence interval for 0G (x) 
given by

eG (x)±1.96(vG )^

2.4.2 The Bayesian Approach, U2 

In section 2.3.2 we gave a Bayesian approach to the problem 

in the equal covariance situation, due to Rigby (1982). This 

paper in fact only considers the unequal covariance case, the 

methods being very similar in the two contexts.

Let li = {logpi(x|£)} as before where Z = {tx± • °2) - t]le set

of population parameters. Here the posterior distributions of I2 

and I2 are independent and so the posterior moments of L(=12-12) 

can be obtained by finding the posterior moments of 12 and 12 

separately. Let Zj^p-^ (x j £ )=Pi (x Ijû  , 0-̂ ). If the moment generating 

function of lj is $21^)  then

*ii(t)=E(exp(tli))=E(zit)

If vague prior information is assumed, ie p(ui ,Q± )<* l^i"1 1 (p+1),

then p(u2,0||T) has a Normal-Wishart distribution 

p ( a i | T ) = N o W i p (Xi,m.n^-l,S) 
and Rigby (1982) shows that

E U j t ) -
1 ni rp (5fi(n±-l+t))

js. I^t^pt ni+t rp (j6(ni-i))

n-[t

n-! +t

!£(n.-1+t 1

where here D2=(x-X2)TSj[ 1 (x-X2), i = l ,2
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Rigby goes on to calculate the first four moments of 1^ and 
12 , and then it is easy to obtain the moments of L using 

Et D ^ E d i J - E d g )

V(L)=V(11)+V(12)

E{L-E(L))3=E(11-E(11))3-E(12-E(12 ))3 

E(L-E(L))4=E(11-E(11))4+6V(11)V(12 )4-E(12-E(12))4 
They are m i = l , . . . , 4 ,  where

2 p
mGl = ^ E (~1 )■*■ t (nj_-l)D^+log det S-̂ +p/n-[ - E y(J6(nj_-j)) ] 

i=l j=l
where y denotes the digamma function (Abramowitz and Stegun
(1965))

2
mG2 ~ % Z {(n^-1 )D22-2D^/n^+p/n-[2 

i=l
P

+ % E y ' (Ji(nj_-j) ) ]
j=l

where y x denotes the trigamma function (Abramowitz and
Stegun (1965))

2
mG3 = E (-l)1i:-3Di/ni2+1.5Di2(l-2/ni)

i=l
P

+D13 (ni-1) + p/nj3 +(1/8) E r (2) (J4 (n±-J ))]
j=l

where y(2) denotes the tetragamma function (Abramowitz
and Stegun (1965))

2
mG4 = E r-12Dini“3+6(n2-3)Di2n|“2

i=l
+4(2n1-3)Di3n1_1+3Di4 (ni-l)

P
+3pnj[_4 +(1/16) E y (3 )(& (n^-j )) ] +3mG32

j = l
where y(3 ) denotes the pentagamma function (Abramowitz and Stegun 

(1965)). Pearson curves are then fitted to approximate the

distribution of L as in section 2.3.2.

2.4.3 The Profile Likelihood Approach, U3

Critchley, Ford and Rijal (1987) obtain approximate intervals
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in the same manner as that used for the equal covariance case. 
The appropriate formulae are:-

2*U)-Xh(£)=-(n1- M l o g | 0 1 |-(n2+x)log|ft2 I
-E (Xij-ttj )T01_1(x1 j-u-L )-x(x-Ui )TOi_1 (x-uj )

-E (x2j-u2)T02''1 (x2j-u2)+X(x-u2)Tn2_1 (x-tt2)

Again X can be regarded as the weight with which x is added 

to population 2 and subtracted from population 1. Hence £x is 
given by

ui(x)=(niXi~xx)/(ni-x)

u2 (x)=(n2x2+xx)/(n2+x)

Ol(X)=[S1+(n1_1-X"1 )-1 (x-Xi)(x-X1)T ]/(n^-x)

02 (x) = [S2+(n2_1+x":1 )_1 (x-X2) (x-X2)t3 /(n2+x)

&i(x) must be positive definite for 1=1 ,2 , and so 

A = {X: -n2/(n2D2+l) < X < n1/(n1D1+l)}

where

Di = (x-XijTSi-itx-Xi), 1=1,2 
This gives:-

20x= E(-l)i[log det +log{ni+(-l)iX(l+Dini)} 

+n12Di/{ni+(-l)ix(l+Din1)} 

-(p+l)log(ni+(-l)1x)]

2p(Qx) = Eni[(p+l)log(ni+(-1)^x)-log det Si 

-log{ni+(-1)^x(1+DiUi)}-p 

+(-l)iXDini/{ni+(-l)iX(l+Dini)}] 

Conditions (i) to (vi) hold as before, and so interval 

estimates for 0 can be found.

2.5 Non Normal Data

2.5.1 Logistic Discrimination

If the distributions of interest are clearly non-normal, for 

example if they include discrete variates, one possible approach
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to the interval estimation problem is through logistic

discrimination (Anderson 1982). This is a 'partially 

distributional' method in that the only assumption made is that 

the log-odds ratio Q(x) is linear in the Xj (or sometimes simple 

functions of the xj), where x=(x^,...,xp )T . ie

e(x)=Po-0Tx (*)

where £t =(/3i .....£p ) .

Anderson (1982) gives a large number of distributional

families satisfying (*). They are (i) iMultivariate normal 

distributions with equal covariances, (ii) Multivariate discrete 

distributions following the log-linear model with equal 

interaction terms, (iii) Joint distributions of continuous and 

discrete variables following (i) and (ii), (iv) Selective and 

truncated versions of the foregoing, (v) Versions of the

foregoing with any specified functions of the xj . Kay and Little

(1987) show that, under suitable transformations of the x j . any 

member of the exponential family also satisfies (*).

5 is estimated by maximum likelihood. This is straightforward 

if the training data are sampled from the mixture distribution of 

the two populations. Let nj_(x) be the number of points from 

population i at x. Day and Kerridge (1967), show that j3 can be 

evaluated by maximising L, where

L=IT(Pi (x) )nl (x > (p2(x) )n2<x ) ) 

where p^(x)=p(population i|x) and

exp(p0+pTx) 

l^exp(/30+/3Tx )

1

l+exp(i3Q+/3Tx)

Pi(X)=

P2 (x)=
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This is generally maximised by a Newton-Raphson type 
procedure.

The asymptotic variances and covariances of the parameters

are found by inverting the sample information matrix

i=(-a2inL/ai3jaPi) at p=i§.
It is easily shown that

32lnL/3pj3Pi=-tn(x)p1(x)p2(x)xjxj 

where n(x)=n^(x)+n2(x). Maximum likelihood estimators are 

asymptotically normal, and so an approximate 95% confidence 

interval for the log-odds is 9(x)±l.96(var(e(x)))̂ » where 

var(e(x))=xTI_1x

The situation is more complicated if the training data are

drawn as separate samples from each population, but Anderson 

(1979) suggests that £ (but not £q ) can be estimated in the same 

way. He proves this in the case where the variates are all

discrete. In Anderson (1982) it is suggested that the procedure 

(ie maximising L) is also valid for continuous variates. The 

appropriate estimate of £0 is £0 ' =£o~in(7rl/w‘2) where is the 

proportion of population i in the mixture distribution. This must 

be estimated separately. The variance is estimated in the same 

way, but there is an additional error of o(l/n) introduced into 

the variance of £0 .

Efron (1975) compared the asymptotic relative efficiency of 

logistic and normal discrimination when the populations are 

normal, and found that the logistic procedure is between 1/2 and 

1/3 as efficient as the normal one. Amemiya and Powell (1983) 

compare the two methods when the independent variables are binary 

and independent, (here the logistic method is correct), using 

asymptotic theory. They concluded that the normal method did 

quite well in terms of correct classification probability, and
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also in terms of the mean squared error of the log-odds ratio. 

These results might suggest that the normal procedure is worth 

using even if there is doubt about the normality of the 

populations, but in neither paper was interval estimation 

considered.

2.5.2 The Profile Likelihood

As mentioned in section 2.3.3 the profile likelihood can be 

used for non-normal distributions, it is only neccessary to show 

that conditions (i) to (vi) hold. Take for example two 

populations with exponential distributions:- 

fi(x)=7i~1exp(-xri_1), 7j>0, i=l,2
Then

e=ln(r2)~ln(r1 )+x?'2_1-xyi_1 
e=lR

4>=fRiXlR+

& (o)=-n^ln(>'2 )-n2^n(r2 )“yl ^Exii“>’2 ll:x2i 
The problem Q(X) is

Maximise 4(<t>)-X9 over where 

S (<D)-\e=- (nj-x) lntxj )-(n2+x) ln(y2)

-ri"1(Exii-Xx)-72_1(Ex2i+kx)
Hence 0\=(7i(>0,y2 (\)) where

y1 (X) = (Ex^^^-Xx) /(n1-x)

72 (M = (EX2i+Xx)/(n2+x)
The constraints rj[{X)>0, and the definition of 7jjx) as maximum 

(rather than minimum) likelihood estimators leads to the 

definition of A as

A={X:max(-n2 ,n2X2/x)<x<min(n1.n^X^/x)
Now
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0X=lny2(x )-lnri (X)+x>-2 (x) (X) ~1

and

p(ex )=jf(;x )

and it is only neccessary to find the two X such that 

(p(e)-p(ex))«-j*x2 (1; .95) 

and these x will correspond to an approximate 95% confidence 

interval for 9.
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CHAPTER THREE 

A Simulation Study

All the approaches to interval estimation given in the 

previous chapter involve some form of approximation. Therefore, 

in order to assess and compare them it is neccessary to perform 

an extensive simulation study. We wish to investigate how close 

to the nominal confidence level of 95% each method gets, for 

differing sample sizes, population parameters U}»m 2 and 

and values of the observed value x. It is clearly impossible to 

examine every possible combination of the above factors, but 

simplifying transformations mean that we can restrict our 

attention to certain subsets. Details are given in later 

sections.

2.1 The Equal Covariance Case

Using the transformation given in the previous 

chapter,Critchley and Ford (1985) show that the distribution of 

e(x) depends only on the three parameters 0,<o and A, where A is 

the Mahalanobis distance between the populations, and

o=J£ («■[ (x) +«2 (x)).

Therefore we need only consider the case ^i=^2=Ip » ^l3-5* w2=6 

where 6=(&A,0,...,0), and we lose nothing by assuming nj<n2 .

We follow the scheme of Critchley and Ford (1985), who 

examined the behaviour of PLUGALL and PLUGPART. Their results 

suggested that changing A or setting n-£tfn2 had little effect, so 

we only consider n2=n2=n, and A=1.6832. This gives an optimal 

misclassification probability of 0.2. The x values we examine are 

shown in figure 3.1, their values being:-

A=(2.4866,0.....0)
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0.0

Figure 3.1 

Location of points A to F 

as used in the simulation study. 

Outer semicircle indicates 90% contour 

of underlying normal distribution,inner 

semicircle indicates 50% contour.
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B=(0.8416,0,...,0)

0(0. 8416,1.6450,0.....0)

D=(0.4208, 0.5265,0.....0)

E=(0,...,0)

F=(0,1.4134,0,...,0)

We consider n=10,30 and 100, representing small, medium and large 

sample sizes. Initially we only consider dimension p=2.

The method of simulation was as follows

(1) Generate data from appropriate distributions

(2) Obtain an interval estimate estimate for ©(x) by 

whatever method is being considered.

(3) Repeat from (1) a large number NREP of times, and 

count the total number n̂- of times the interval 

contains the true (known) value of ©(x).

An estimate of the true confidence, c, of the interval is 

then c=n-t-/NREP. n^ has a binomial distribution with parameter c. 

Hence var(nt)=c(l-c)NREP and so var(c)=c(l-c)/NREP. c is 

asymptotically normal, and so an approximate 95% confidence 

interval for c would be c±l ,96(var(c) )̂ . In order to get the 

estimate of c to within 1% we therefore want 1.96(var(c))M~.005. 

c=.95, and so the condition is

1.96(.95(1-.95)/NREP)^=.005. 

hence NREP=10000 is a reasonable sample size.

For the details of the random number generation see appendix 

two. To obtain the percentage points of Pearson curves for 

methods E3 and U2 an algorithm due to Davis and Stephens (1983) 

was used. For an algorithm to greatly speed up evaluation of 

methods E4 and U3, see appendix three. We also recorded the 

number of times the interval was wholly greater than the true



value 0(x), and the number of times it was wholly less than e(x).

3.2 Results of Equal Covariance Simulations

The results for the equal covariance simulations are given in 

table 3.1.

3.3 Summary of Equal Covariance Results

As would be expected, all methods perform well when n=100. 

For n=10 and n=30, methods E3 and E5 both perform very well, 

consistantly getting very close to the nominal 95% confidence 

level, with perhaps E3, the Bayesian approach, being slightly 

better than E5, Davis' method. E2 and E4 are both rather less 

good,with E4 (profile likelihood) consistantly undershooting the 

target value, and E2 (PLUGPART), consistantly overshooting it. El 

(PLUGALL) is the poorest performer. The results for PLUGALL and 

PLUGPART are consistent with those of Critchley and Ford (1985).

The greater than/less than 0(x) figures show that most 

methods are not symmetrical, ie they are more likely to produce 

intervals that are greater than e(x) than less than e(x), or vice 

versa, and that different methods are asymmetrical in different 

ways. As might be expected for points E and F, where the true 

value of 0(x) is zero, all methods are approximately symmetrical. 

For the other points 0(x) is negative, and methods El, E2 and E3 

tend to give intervals greater than 0(x), ie nearer to zero. El 

is very bad in this respect, whilst E3 is nearly symmetrical. E4 

and E5 show the opposite trend, with E4 being particularly bad. 

The worst offenders in respect of non-symmetry, El, E2 and E4, 

are also the worst as regards empirical confidence. It is 

possible that a Bartlett type correction could improve methods E2 

and E4 since they give intervals of consistantly high or low
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Table 3.1 Results for the Equal Covariance Simulations

The table shows the empirical confidence of approximate 95% 

confidence intervals, obtained by the five methods E1,...,E5, for 

equal sample sizes of 10, 30 and 100, at the six observation

points A to F, The figures in parentheses are the percentages of 

simulations in which the interval was wholly greater than/ less 

than e(x).

(i) Sample Size = 10
Method

aint El E2 E3 E4 E5

A 94 98 95 91 96
(6.,3/0.,0) (1.,1/0,■ 7) (2.,6/2..0) (1.,3/7,,2) (1.,3/2. 3)

B 91 96 95 93 96
(8.,5/0,.0) (3.,1/0.,5) (2..9/2. 4) (1.,5/6. 0) (1.,0/2.,5)

C 98 98 95 92 96
(2..2/0,.0) (1..6/0..5) (3,.0/2,.2) (2..5/5. 2) (1..9/2..5)

D 95 96 95 93 96
(5..3/0,.0) (3,,4/0,.5) (3,,1/2,.1) (2,.4/4.■ 5) (1,,5/2.,6)

E 99 98 97 93 96
(0.,4/0 .3) (1..0/0,• 9) (1,,6/1 •8) (3,.5/3,.1) (2,.2/2, 2)

F 100 98 95 93 95
(0, oo .0) (0,,9/0 • 7) (2,.7/2,■ 4) (3, COCO ,7) (2..6/2,.3)

(ii) Sample Size = 30
Method

aint El E2 E3 E4 E5

A 95 96 95 93 95
(4,,3/0.■ 7) (2.,4/1. 8) (2.,7/2. 7) (1.,6/5..0) (2..2/2. 6)

B 94 96 95 94 95
(5,, 1/0,■ 6) (3,.1/1..4) (2.,9/2,,6) (1..8/4, 1) (2,.1/2..5)

C 96 96 95 94 95
(3..1/0,■ 9) (2,.4/1,■ 7) (2..7/2.■ 4) (2,. 2/3, 6) (2,,1/2,.7)

D 95 96 95 94 95
(4 .2/0,•7) (3,.0/1 ,.4) {3,.0/2,.3) (2,.8/2,.8) (2,.0/2..6)

E 97 96 95 94 94
<1 .3/1,.4) (2,.0/1,■ 8) (2,.2/2,.5} (2 .8/2,.8) (2 .9/2 .8)

F 97 96 95 95 95
(1 .5/1 • 7) (1 .8/2,■1) (2,.7/2,.6) (2 .7/2,.7) (2 .5/2 • 7)
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table 3.1(continued)

(111) Sample Size = 100
Method

Point El E2 E3 E4 E5
A 95 95 95 95 95

(3 . 6/1 .4) (2 .4/2 •4) (2 .6/2 • 6) (1 .6/3 • 4) (2 .4/2 ,.6)
B 95 95 95 95 95

(3 .8/1 .3) (3 .3/2 • 1) (2,.7/2,•6) (2,.1/3 •2) (2,.4/2,■5)
C 95 95 95 94 95

(3.,0/1,■7) (2,.7/2,.2) (2..7/2,•7) (2,.5/3,.1) (2,.4/2. 7)
D 95 95 95 95 95

(3.,5/1.,4) (3,.1/1.,8) (2.,7/2. 5) (2.,4/2.■ 9) (2,,3/2. 6)
E 96 95 95 95 95

(2.,1/2. 0) (2.,5/2. 2) (2. 5/2. 4) (2.,7/2. 4) (2.,2/2. 6)
F 96 95 95 95 95

(1. 9/2. 0) (2.,4/2. 1) (2. 6/2. 8) (2. 9/2. 6} (2. 3/2. 4)
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confidence. El probably would not benefit from such a 
correction.

3.4 Unequal Covariance Simulations

A similar simplifying transformation used in section 3.1 

means we only need consider the case «i=0p, and ft2=D where

D=diag(d]_, . . . ,dp) . Here we consider n=10, n=30 and n=100, again 

only for p=2 as in section 3.1.

We let D=diag(2,l) and consider the three cases

(a) u2=(l.6832,0)

(b) u2= (1.1902,1.19°2)

(c) fi2=(0,1. 6832)
so (n^-p2 ) (/Lt-̂ -n2 )^=(l .6832)2 in each case.The x values considered 

for case (a) are those used in section 3.1, with 0.8416 added to 

the first coordinate in each case, since here U}=(Qf0) rather 

than (-0.8416.0).For cases (b) and (c) we rotate these points 

through 45° and 90° respectively, so that the line «iu2 always 

corresponds to the line EBA. Note that the optimal 

misclassification probability is no longer 0.2, and is in fact 

different in each case. The three cases were chosen to be 

equivalent to changing only the variance-covariance matrix of 

population 2 in section 3.1, keeping the group means and points A 

to F constant.

3.5 Results of Unequal Covariance Simulations

The results for the unequal covariance simulations are given 

in table 3.2.

3.6 Summary of Unequal Covariance Results

Again, all methods performed well when n=100.For n=30 and 

n=10 U2. the Bayesian approach, is very good, with empirical
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Table 3.2 Results for the Unequal Covariance Simulations

The tables show the empirical confidence of approximate 95% 

confidence intervals obtained by the three methods Ul, U2 and U3, 

for equal sample sizes of 10, 30 and 100, at the six observation

points A  F, in cases (a), (b) and (c). The figures in

parentheses are the percentage of simulations in which the

interval was wholly greater than/less than 0(x)

CASE(a )

Method

Sample size Point Ul U2 U3

A 91 93 90
(9 ,3/0 ■ 0) (2 .5/4 .3) (1 .1/8 .6)

B 98 94 90
(1 .7/0 .0) (1 ,2/4 .6) (0 .8/9 .6)

C 98 94 91
(1 .6/0 .0) (1 .2/4 • 6) (3 .0/6 .3)

D 99 94 91
(0 .8/0 .0) (1 .8/3 .9) (2 .1/7 .4)

E 100 95 92
(0 .0/0 •0) (1 .9/2,.9) (3 .1/5 .4)

F 100 94 91
(0 .0/0,.0) (3 .0/3,.4) (4 .1/5,• 0)

A 93 94 94
(6 .4/0, 2) (2,,3/3. 3) (1..3/4,- 7)

B 96 95 94
(4 .1/0. 4) (1.,6/3. 3) (1.,4/5.•1)

C 96 95 94
(3 .7/0. 3) (2. 3/2. 7) (2. 2/3, 9)

D 96 95 94
(3..4/0. 9) (1. 8/3. 1) (1. 8/4. 6)

E 96 95 94
(1.,9/1. 8) (2. 0/2. 8) (2. 4/3. 4)

F 98 95 94
(1.,6/0. 8) (2. 7/2. 7) (2, 8/3. 5)
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CASE (a )(continued)

Method

sample size point Ul U2 U3

A 95 95 95
{4 .3/1 .0) (2 .2/2 • 5) (1 .8/3 • 7)

B 96 95 95
(3 .3/1 .1) (2 .1/2 -7) (1 .8/3 .7)

C 96 95 95
(3,.3/1.• 2) (2..3/2..6) (2 .3/3..1)

D 96 95 95
(3,,0/1.■ 4) (2,,0/2. 6) (2,.2/3, 3)

E 95 95 94
(2.,4/2. 3) (2,.2/2.■4) (2,.6/3. 0)

F 96 95 95
(2. 3/2. 1) (2. 2/2. 6) (2.,5/3. 0)
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CASE (b)
Method

Sample size Point Ul U2 U3

A 94 93 91
(6 .4/0.• 0) (2..9/3 .9) (1 .9/7 .3)

B 99 94 91
(1 .4/0 .0) (2 .4/4 • 0) (2 .6/6,.5)

C 100 93 91
(0 .0/0..0) (3,.3/3,.3) (4 .4/4.• 4)

D 100 94 91
(0 .0/0. 2) (3.,3/3. 1) (5..0/4. 1)

E 99 94 91
(0 .0/0, 0) (3.,4/2. 2) (6.,2/3. 1)

F 98 93 91
(0 .0/1. 6) (3. 5/3. 3) (6.,4/2. 9)

A 94 95 94
(5 .9/0 > 2) (2 .4/2 .9) (1 .6/4 •6)

B 96 95 94
(4 .0/0 • 4) (2 .3/3 .0) (1 .9/4 .3)

C 99 95 94
{0,.8/0,.7) (2..7/2,•7) (3,.2/3,.0)

D 97 95 94
(1.,1/1..5) (2.,6/2,,8) (3..2/3.• 0)

E 96 95 94
(1. 2/2. 6) (2. 7/2. 4) (3.,7/2. 6)

F 96 95 94
(0. 2/3. 4) (2. 8/2. 7) (3. 9/2. 2)

A 95 95 95
(3 .8/1 .3) (2 .6/2 •7) (2 .3/3 • 2)

B 95 95 95
(3,.2/1 .6) <2 .5/2,■7) (2.. 2/3,.0)

C 96 95 94
(2,.1/2,.1) (2,.6/2,■5) (2,.7/2,.8)

D 96 95 95
(1.,8/2,■ 4) (2..5/2..5) (2..8/2,.5)

E 96 95 95
(1.,9/2..6) (2.,7/2. 4) (2..9/2. 2)

F 96 95 95
(1. 3/3. 2) (2. 7/2. 4) (2. 9/2. 4)
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CASE(c)
Method

Sample size Point Ul U2 U3

A 94
(6.3/0.0)

93
(3.1/3.9)

91
(2.1/7.3)

B 98
(1.7/0.0)

94
(1.3/4.7)

90
(1.2/9.3)

10 c 94
(5.9/0.0)

94
(2.6/3.9)

90
(2.2/7.6)

D 99
(0.8/0.0)

94
(1.3/4.4)

91
(2.2/7.1)

E 99
(0.2/0.3)

95
(2.6/2.6)

92
(4.2/4.0)

F 99
(0.6/0.0)

95
(2.4/3.6)

91
(3.7/5.6)

A 95
(5.2/0.2)

95
(2.4/3.0)

94
(1.7/4.5)

B 95
(4,2/0.5)

95
(1.7/3.6)

93
(1.4/5.4)

30 C 95
(5.3/0.2)

95
(2.6/2.8)

94
(1.7/4.7)

D 96
(3.0/0.7)

95
(1.9/3.2)

94
(1.7/4.7)

E 96
(1.9/2.0)

95
(2.3/2.5)

94
(2.9/3.0)

F 97
(2.2/0.7)

95
(2.6/2.7)

94
(2.4/3.7)

A 95
(4.2/1.1)

95
(2.5/2.9)

95
(1.8/3.2)

B 95
(3.8/1.2)

96
(2.2/3.3)

95
(1.6/3.5)

100 C 95
(4.2/1.2)

95
(2.4/3.0)

95
(2.0/3.2)

D 95
(3.3/1.6)

95
(2.2/3.1)

95
(2.0/3.1)

E 95
(2.4/2.1)

96
(2.2/2.3)

95
(2.6/2.3)

F 95
(2.8/1.9)

95
(2.5/2.6)

95
(2.5/2.9)
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confidence levels ranging from .93 to .95 for n=10. Next best is 

U3, the profile likelihood approach, with values around .90, and 

worst is Ul. These results are consistant across the three 

different cases. The asymmetries noted in the equal covariance 

situation are also apparent here. Ul tends to give intervals too 

close to zero and the other two methods have the opposite 

tendency. Again the worst asymmetry corresponds to the worst 

empirical confidence.

3.7 Simulations in Higher Dimensions

The Bayesian approach performed very well in two dimensions, 

giving confidence levels very close to the nominal 95% level. 

Here we examine its performance for dimension p=5, assuming both 

equal and unequal covariances. All parameters are essentially as 

before, with three 'uninformative1 variables being added to each 

point. ie A becomes (2.4866.0,0,0,0), ju ̂ becomes 

(-0.8416,0,0.0,0) etc. We only consider case (c) in the unequal 

covariance case (D={2,1.1,1,1)).

3.8 Results For Higher Dimensional Simulations

The results of the higher dimensional simulations are given 

in table 3.3,

3.9 Summary of Higher Dimensional Results

In the equal covariance case the empirical confidence levels 

are still very close to .95 for n=100 and n=30, and for n=10 they 

vary only from .92 to .96. In the unequal covariance case the 

performance is worse, with values from .82 to .91 for n=10. 

though for n=100 they are still close to .95, and for n=30 only 

range from .93 to .95. The asymmetry is still apparent, being
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Table 3.3 Results of Simulations in Higher Dimensions

The table gives the empirical confidence of approximate 95% 

confidence intervals obtained by Rigby's method, for equal sample 

sizes of 10, 30 and 100, at the six observation points A,...,F, 

in both the equal and unequal covariance cases. The figures in 

parentheses are the percentage of simulations in which the 

interval was wholly greater than/less than e(x).

Equal Covariance Case

Sample size

Point 10 30 100

A 93 94 95
(1..2/6, 3) (1.,5/4..3) (1..9/3, 3)

B 93 95 95
(1..2/5,■ 9) (1.,5/3. 8) (1..8/3.■ 0)

C 92 94 95
(2.,6/4.■ 9) (2,.4/3..8) (2.,3/2,■ 9)

D 94 95 95
(1 .9/4,.3) (2,.1/3.■1) (2,.2/2,•8)

E 96 96 95
(2,.2/2,■ 2) (2,.3/1,.9) (2..1/2,.4)

F 93 94 95
(3..8/3,■ 7) (2,.6/3,■ 0) (2,.6/2,.6)

Unequal Covariance Case
Sample size 

Point 10 30 100

A 82 93 94
(2.4/15.3) (1.5/5.8) (1.9/3.9)

B 84 93 94
(0.7/15.8) (1.0/6.5) (1.6/4.4)

C 84 93 94
(2.1/14.0) (1.4/5.8) (2.0/3.6)

D 87 94 95
(1.6/11.3) (1.4/5.1) (1.9/3.6)

E 91 95 95
(4.6/4.9) (2.4/2.4) (2.4/2.6)

F 87 94 95
(4.4/8.6) (2.3/3.7) (2.3/3.0)
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worst for small samples, and unequal covariances.

3.10 Conclusions from Simulation Results

The Bayesian approach due to Rigby (1982) perforins 

consistently well, giving confidence levels close to the nominal 

95% level in all but the extreme case of two samples of size 10 

in five dimensions. Of the other methods, that due to Davis 

(1987) is comparable with Rigby's for the equal covariance case, 

but the other methods are all relatively poor. The greater than/ 

less than e(x) figures show that all the methods are 

asymmetrical, the profile likelihood and Davis' methods tending 

to give intervals too close to zero, and the other methods having 

the opposite tendency. It is noticeable that the poorer the 

method is, the worse the asymmetry appears to be.

J  d
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CHAPTER FOUR

Evaluation of a Discriminant Rule

4.1 Introduction

Having constructed a discriminant rule it is often neccessary 

to assess its value. For example, we may wish to compare one 

method of discrimination with another, or we may want to know if 

a particular variable is worth measuring. In the case of Conn's 

Syndrome, where we have eight variables measured on only 31 

patients, it is neccessary to reduce the dimensionality of the 

problem. Here we will need to select a subset of the variables 

which perform 'adequately' and so will need some measure of the 

value of possible subsets.

There are several approaches to this problem in the

literature. Here we review some of them and suggest some new

ideas based on the concept of interval estimation for the 

log-odds. In section 4.2 we look at graphical methods, section

4.3 reviews so called 'discrete' methods such as error rate 

estimation, and in section 4.4 we look at 'continuous' methods. 

Section 4.5 contains a discussion of all the methods considered.

4.2 Graphical Methods

The simplest and most obvious method of assessing variables 

is to draw scatter plots of the training data, using different 

symbols for the groups. For example in figure 4.1 two of the

Conn's Syndrome variables, sodium and potassium, are plotted, 

(for future reference we will call this subset 1). Here a ' 1'

represents type 1 and a '2' type 2, with A,B,C,D being the four

unknown cases. This type of plot does not actually show how well

a discriminant rule is performing, but it gives some idea of the

potential of the variables. Clearly there is quite good
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Conn's Syndrome; plot of age against type



separation of the groups and therefore it could be expected that 

a discriminant analysis using only subset 1 would be quite 

successful. A similar type of plot is shown in figure 4.2 for 

the single variable age (subset 2). Here it can be seen that 

there is considerable overlap between the groups, and so subset 2 

will not provide a useful discriminant rule.

These types of plot are obviously only useful for subsets of 

1 or 2 variables, but Sammon (1970) and Foley and Sammon (1975) 

consider a similar type of graph for higher dimensional data. 

Here the first coordinate displays the separation of the groups 

based on the linear discriminant function, and the second is 

orthogonal to the first, maximising the difference between the 

means of the samples subject to the orthogonality constraint.

Critchley and Ford (1985) suggest a similar plot in which the 

first coordinate is also proportional to the linear discriminant 

score, and the second gives a measure of the atypicality of each 

observation. Hence outliers can be easily picked out, and they 

suggest dividing their plot into the three areas where interval 

estimates for 0(x) are wholly positive, wholly negative or 

contain zero.

Chang (1987) extends the ideas of Sammon (1970) and Foley 

and Sammon (1975) to the case of unequal covariance matrices. His 

first coordinate displays separation mainly due to the sample 

means, and his second coordinate displays differences soley due 

to differences in the covariances. He shows that a straight line 

can be determined visually to show the degree and nature of group 

separation. Chang's plot for the four variables age, potassium, 

carbon dioxide and aldosterone is shown in figure 4.3. This shows 

good separation, though Chang points out that some of the 

apparent separation is due to sampling variation.
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All of the plots mentioned so far are only capable of showing 

potential for discriminant analysis. In order to evaluate how 

well a rule performs in practice. Habbema et al (1978) suggest a 

plot of the estimated probabilities of group membership. A 

modification of their plot is shown in figures 4.4 (a),(b) and

(c) for subsets 1,2 and 3. The minimum variance unbiased 

estimator of the probability is used here. If preferred its 

Jackknifed equivalent (see appendix four) can be used instead. 

These plots confirm our earlier impressions, that subset 2 is of 

little use, and that the other two appear to be quite good.

We have seen in the introduction that point estimates of 

these probabilities are not neccessarily reliable, and so we 

suggest a new type of plot which displays more fully the 

information we have on the discriminatory power of a subset of 

variables. Three of these plots are given in figures 4.5, 4.6.

and 4.7. for subsets 1. 2 and 3 respectively. The 'x axis' on

these plots represents the probability that an observation is of 

type 1. The 'y axis' is case number, so 1 to 20 (the solid lines) 

are type 1, and 21 to 32 (the broken lines) are type 2. The x's 

are the minimum variance unbiased estimators of the probability 

of type 1, the j's their jackknifed equivalents. The lines 

represent 95% confidence intervals for the true probabilities. 

Again we see that subset 2 is of little use, but perhaps.it is 

now easier to choose between the other two subsets. The degree of 

uncertainty in classifying observations of type 2 seems to be 

greater with subset 3, and the estimated probability for case 

number 5 is badly wrong. This would suggest that of these three 

subsets, subset 1 is the best for discrimination.

All of the graphical methods discussed above are useful 

summaries of the data, but they need subjective judgement and
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fig 4.4(c): subset 3
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would be of no use in an automated procedure, or in a manual 

procedure if a large number of comparisons had to be made. We 

therefore go on to quantitative rather than qualitative methods.

4.3 Discrete Methods

'Discrete' methods are so called because they generally 

summarise performance by classification of the data into type 1 

or type 2, rather than using the actual estimated probabilities. 

They usually take the form of classification matrices and error 

rates. See Habbema et al (1978) and Hilden et al (1978a) for 

several useful methods. We go on to discuss the most important.

4.3.1 Forced Classification Matrices

A forced classification matrix is formed by allocating each 

observation in the training data to the type for which it has the 

highest estimated probability, regardless of the value of this 

probability, ie if p(type l|x)>0.5 then x is assigned to type 1, 

otherwise it is assigned to type 2. The forced classification 

matrix for subset 3 is given below

assigned type

 1________ 2
1 19 1

true type
2 0 11

It can be seen that the discriminant rule is correctly 

classifying most of the training data.The version of this table 

obtained by using the jackknifed probabilities (appendix four) 

is in this case identical, but in general it will give a less 

optimistically biased evaluation of the rule. This is illustrated 

in the matrices for subset 1. The unjackknifed matrix is:-
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assigned type 
1 2

true type

The jackknifed version is

true type

18 2

1 10

assigned type 

1 2
18

This suggests that this subset is not quite so good. For 
comparison the matrix for subset 2 is

assigned type 
1 2

true type
10 10

and its jackknifed equivalent:-
assigned type 
1 2

true type
11

9 2

The numbers in all of these tables can be given as percentages 

of the total from each type, if preferred.

4.3.2 Classification Matrices With Doubt

Habbema and Hermans (1974) suggest that if the estimated 

probability is near 0.5, the observation could be classified to 

another 'doubt' category. Exactly how close to 0.5 the 

probability needs to be is calculated on the basis of a loss 

function, where the loss for a 'doubt' assignment must be 

determined, and it must be less than the loss for an incorrect
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assignment. Arbitrarily assigning an observation to the doubt 

category if its estimated probability is between 0.3 and 0.7, the 

classification matrix with doubt for subset 1 is

assigned type

true type

For subset 2 it is:-

true type

For subset 3 it is:-

1 2 doubt
1 16 0 2

2 0 9 2

1
assigned

2
type

doubt
1 5 0 15

2 1 0 10

1
assigned

2
type

doubt
1 18 1 1

2 0 11 0
true type

The large amount of doubt in classifying with subset 2 can 

clearly be seen here, but it is not easy to choose between 

subsets 1 and 3.

4.~3.3 The Uncertainty Matrix

We suggest a matrix similar in form to that in the previous 

section, where an observation is classified to the ’uncertain' 

type if a 95% confidence interval for the probability of group 

membership contains 0.5. The matrix for subset 1 is:-

assigned type

________ 1_______ 2 uncertain
1 16 0 4

true type
2 0 6 5
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The reasoning behind this type of matrix is rather different 

to that in section 4.3.2. There we were saying that in four cases

out of 20 from type 1, using subset 1 the diagnosis was

sufficiently unclear to defer making a decision. Here the

interpretation is that in four out of 20 cases there is

insufficient information on which to base any diagnosis at all.

The table for subset 3 is:-

true type

and for subset 2 it is

1 2 uncertain
1 17 1 2

2 0 4 7

true type

assigned type
1 2 uncertain

1 5 0 15

2 1 0 10

We feel that these matrices give a useful indication of the 

value of a discriminant rule, by providing a good summary of the 

interval plots described earlier. In this case they indicate that 

subset 1 is rather better than subset 3, given the uncertainty in 

classifying observations from group 2 using subset 3, and the 

totally incorrect classification of observation 5

4.3.4 Error Rate Estimation

A frequently used method of evaluating a discriminant rule is 

the error rate, or more often the non-error rate (NER) . This is 

simply the proportion of observations correctly classified, 

assuming that each observation is classified into type 1 or type 

2. It can be regarded as an estimate of the probability of 

correctly classifying a future observation drawn at random from
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one of the two populations. A fuller discussion of error rate 

estimation is given in chapter 5, here we give a method based on 

classification matrices for completeness.

The most obvious estimate of the NER is the proportion of the 

training data correctly classified, ie the trace of the forced 

classification matrix divided by the total sample size. For 

subset 1 it is 28/31, for subset 2 30/31 and for subset 3 12/31. 

These are optimistically biased and the less biased jackknifed 

equivalents are 27/31, 30/31 and 11/31. In chapter 5 we suggest a 

more reliable estimator based on interval estimation, along with 

a discussion of other methods.

4.4 Continuous Methods

Continuous methods are those where the actual estimated 

probabilities are taken into account. For example a correct 

diagnosis with an estimated probability of 0.99 is given more 

credit than one with an estimated probability of 0.51. There are 

many possible statistics used to evaluate discriminant rules in a 

continuous manner, and Hilden et al (1978b) give a good 

discussion of several.

Perhaps the most popular is the Briers score, B, where 

B=(2/N)E(l-pf)2

in the case of two groups, and p^ is the estimated probability 

that observation i belongs to its true group. Clearly 0<B<2, and 

the nearer B is to 0, the better the discriminant rule. A similar 

statistic is the logarithmic score L, where 

L=(l/N)Eln(Pi)
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4.5 Discussion

As mentioned earlier, the graphical procedures outlined in 

section 4.1 are useful for getting subjective impressions of the 

value of a set of variables for discrimination, but in most 

situations it will be more useful to have a quantitative measure 

of discriminatory power. It will therefore be necessary to choose 

between a discrete or continuous method.

Shapiro (1977) gives a good comparison of the two types of

procedure. The classification matrices and error rates have the 

advantage of simplicity and ease of interpretation, and are very 

popular for that reason. Their main drawback is lack of

sensitivity, they do not take into account the magnitude of an 

error. In the situation where a decision has to be made 

regardless of the doubt, then it does not matter whether the

estimated probability is .51 or .99, but this is unusual in 

practice. However, these methods will continue to be used, and so 

we feel it is useful to acknowledge the doubt about the true 

value of the probabilities, and would recommend the uncertainty 

matrix proposed in section 4.3.3.

If the discriminant rule is only to be used as a guide, for 

example to aid a clinician's diagnosis, then it is more important 

to consider the actual estimated probabilities. Here a continuous 

method of evaluation is appropriate, and for a full discussion 

see Hilden et al (1978b). It should be noted that none of the

statistics they suggest take into account the uncertainty in 

estimating the parameters involved.
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CHAPTER FIVE

Error Rate Estimation

5.1 Introduction

Error rate estimation was mentioned in the previous chapter 

as a method of evaluating a discriminant rule. Although it is not 

always the most appropriate method, it is an often useful, and 

certainly very common guide to how well a rule is performing. 

Therefore, in this chapter we review some of the many possible 

error-rate estimators, and suggest some new ones. We will 

restrict our attention to the case of two group linear 

discrimination with multivariate normal populations, since most 

of the literature considers this situation. Toussaint (1974) 

gives an extensive bibligraphy of work done up to that date and 

Hand (1986) updates this. There have been many comparative 

studies of error rate estimators in recent years (Lachenbruch and 

Mickey (1968), Sedransk and Okamoto (1971), Sorum 

(1971,1972,1973), McLachlan (1974), Glick (1978), McLachlan 

(1980), Snapinn and Knoke (1984,1985)). Unfortunately they differ 

from each other both in terms of the types of eror rate they are 

estimating, and the criteria by which they are assessed. In this 

chapter we have decided to follow the work of Snapinn and Knoke 

(1984,1985), in order to make some comparisons with earlier work 

possible. Therefore, the error rate we will be concerned with is 

that which is usually termed the conditional error rate, and our 

criterion for assessing an estimator is its unconditional mean 

squared error (UMSE).

5.2 Notation

Following the definitions of chapter two, if x is our unknown 

observation from population pop^ or popg, and 9(x) is the (true) 

log odds ratio,then we classify x as follows:-



If e(x)>0 classify x into popi
If e(xK0 classify x into pop2

We denote this rule by r.

In general 9(x) is unknown, and is estimated by o(x), giving 

the rule r:~

If 9(x)>0 classify x into pop^

If e(xKO classify x into pop2

There are three distinct error rates associated with these 

rules. Let e^(r) be the probability that an observation drawn at 

random from pop^ is misallocated by rule r:- 

e1(r)=p(Q(x)<0|xepopj) 

e2 (r)=p(0(x)>O|xepop2)

These are the optimal error rates, ie the error rates that 

would occur if 0(x) were known. From now on we will assume x is 

drawn from pop-^, and only consider e^, dropping the subscript. 

The optimal error rate therefore becomes 

e(r)=p(0(x)<O)

The conditional error rate is defined as the probability that 

x is misclassified when the rule r is used, 

e(r )=p(0(xKO |T)

Where T is the training data. This is the error rate conditional 

on the parameters, ie the one that will occur in practice using 

the rule r defined by the training data.

The expected error rate is the expectation of the conditional 

error rate over all training samples, defined as 

E(e(r))=E(p (0(x)<0|T))

Note that the optimal error rate is a function only of the 

population distributions. The expected error rate is a function 

of the population distributions and the training sample sizes, 

and the conditional error rate is a function of the population



distributions and the particular training samples chosen. It is 

this error rate that we will be interested in.

Let e be an arbitrary estimator of the conditional error 

rate. Our criterion for assessing e is its UMSE, defined as 

UMSE=E(e-e(r))2

We assume multinormal populations (1=1,2). If we

estimate ©(x) by its minimum variance unbiased estimator (chapter 

two) then (assuming equal prior probabilities and equal training 

sample sizes ni=n2=n for simplicity) our rule is equivalent to 

Anderson's (1958) linear discriminant rule:- 

assign x to pop^ if W(x)>0 

” " " pop2 otherwise

where W(x)=(n2+n2-p-3)(x-M(Xi+X2))TS_1(X1-X2),

Conditional on the training samples, W(x) has a univariate 

normal distribution, and the conditional error rate is the 

probability that W(x)<0 given by

(5.1)
L(n1+n2-p-3)((X1-X2 )TS":Lns-:l(X1-X2 ))^ 

where ^(t) is the standard normal distribution function 

evaluated at t.

If we have unequal prior probabilities rr̂  and tt2 and unequal 

sample sizes, then the rule is

assign x to pop^ if U(x)>0

" " pop2 otherwise

where U(x)=(n1+n2-p-3)(X1-X2)TS“1(x-^(X1+X2))

+^p(n2-1“n 2_1 ) + log(7T1/7r2 )

This is equivalent to the rule:-

assign x to pop-̂  if W(x)>"^p(ni"1-n2_1 )+log(7r1/7r2)

" " " pop2 otherwise

and the obvious alterations to the conditional error rate should
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be made.

5.3 Estimators of e(r)

5.3.1 The Resubstitution Estimator eR

Let xj (j=l,...,n) be the training sample from pop^, and 

define a counting function hR (.) where 

hR (xj)=l if W(x)<0 

=0 otherwise.

The resubstitution estimator is defined as 

eR=(l/n)EhR (xj).

It measures how well the rule performs on the training data. It 

is well known that eR has an optimistic bias due to the fact that 

it tests the rule on the data from which it was derived.

5.3.2 The Leave One Out Estimator eL

In order to reduce the bias of the resubstitution estimator, 

Lachenbruch (1967) suggested the leave one out estimator, 

sometimes called the jackknifed estimator. Here each observation 

is omitted in turn and the discriminant rule is calculated using 

the remaining data. A new counting function hj is defined in 

terms of this rule, and the estimator is defined as 

eL=(l/n)Ehj(xj)

This is less biased than eR but has a large variance (Glick 

(1978)). See appendix four for further details.

5.3.3 The Bootstrap Estimator eR

Efron (1983) suggested several estimators of e(r) based on 

the bootstrap. The principle is to use the bootstrap to estimate 

the bias of the resubstitution estimator, and then to subtract 

this from eR . The best of his estimators was the so called '.632
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estimator' e*632 which turns out to be 
g .632= 368gR+.632e 

where e is the observed error rate for the points in the training 

data which do not occur in each bootstrap replication. This is a 

very time consuming estimator to use in a simulation study, and 

so we follow Snapinn and Knoke (1985) in using an ’ideal' 

bootstrap estimator eB . This is simply the resubstitution 

estimator minus its true bias. This should provide an approximate 

upper bound to the performance of the true bootstrap, although it 

cannot be used in practice.

Efron's (1983) simulation results suggested that in some 

situations, the .632 estimator could in fact slightly outperform 

this 'upper bound', due to negative correlation between eR and e. 

This was an unusual occurence though, and we feel that eB is 

still a useful guide to the performance of e-632.

It is easy to calculate eB once all the simulations have been 

completed, since

eB=eR-(E(eR )-E(e(?))

The criterion used to compare estimators is UMSE defined as 

UMSE=E(e-e(r))2

hence

UMSEg=UMSER- (E (eR )-E(e (r )))2 

and E(eR ) and E(e(r)) can be estimated from the sample means of 

eR and e(r) over all of the simulations.

5.3.4 The Smoothed Resubstitution Estimator e3

Some smoothed resubstitution estimators were defined by Glick 

(1978) in the univariate case, and generalised by Snapinn and 

Knoke (1985).Their best estimator uses a normal smoothing
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function g(.) where

g(x)=$(-W(x)/bD)

where D2=(ni+n2~2) (X2-X2)TS~1 (X^-Xg) , the estimated Mahalanobis 

distance between the populations, and b is the smoothing 

parameter. The estimator is now 

es=(l/n)lg(Xj)

Snapinn and Knoke (1985) consider several possibilities for 

b. The best, called by them the NS estimator, involves obtaining 

an approximate expression for E(es | , X 2 .S ) as a function of b, 

and equating it with E(e^|X},X2 .S), where e^ is a parametric 

estimator given in the next section. The value of b obtained by 

this method is

ip+iJHni-i j +(n2-i) I*
b=

(n1(n1+n2-p-3))

where p is the dimension of the population distributions. If

n}=n2=n then

b= (n-1)(p+3)
n (2n-p-3)

Note that as b approaches zero, e^ approaches e^, and as b 

approaches »„ approaches 0.5.

5.3.5 The Parametric Estimator e^

The simplest parametric estimator of e(r) is obtained by 

plugging estimates of uj and Q into equation 5.1. This was first 

suggested by Fisher (1936). This is known to be optimistically 

biased, and several variations have been proposed to correct this 

bias. We will consider the method of Lachenbruch and Mickey 

(1968), in line with Snapinn and Knoke (1984). The 'plug in' 

estimator is defined as
ePlug in=$(„£)/2)
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where is the estimated Mahalanobis distance between the

populations. This is modified to be ep where 

ep=<M-DS/2) 

where DS2=(n1+n2~p~3)D2/(n1+n2“2)

Page (1985) notes that this is equivalent to plugging the 

unbiased estimator of (rather than O) into equation 5.1. She

also suggests several other parametric estimators, all of which 

have broadly similar performance to ep .

5.3.6 The Interval Estimation Method e1

We propose a new method of error rate estimation based on 

interval estimation for the log odds ratio. Recall the 

'uncertainty matrix1 of chapter four. Here we are classifying 

observations from the training data as 'uncertain' if a 95% 

confidence interval for the log odds ratio contains zero. In 

other words we are saying that if the interval contains zero we 

do not have enough information on which to base a decision. Hence 

we define a new counting function hj where

hj=l if a 95% confidence interval for 9{x) is wholly negative 

’’ " " " " " " contains zero

=0 " ” " " " " " is wholly positive.

The estimate of the error rate is then 

eI = (l/n)i:hj (xj)

This is in fact another form of smoothed resubstitution, 

which will approach eR if the groups are well separated, and 

approach a if they are identical. In this respect e1 is similar 

to es , though here the degree of smoothing depends directly on 

the amount of uncertainty involved in classification of the 

samples, rather than only their sizes, dimensionality and 

separation.
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5.4 A Simulation Study

5.4.1 Methods

in order to estimate the UMSE for each estimator, we 

performed a simulation study. Sample sizes of 10 and 25 were 

considered for dimensions of 1, 3 and 5. 5000 replications were 

performed in each case. Data were generated from populations pop^ 

and pop2 with multinormal distributions Np(0p ,I) and 

Xp( (A, 0. . . . ,0)T > I) , where A varied from 0 to 3. A is of course 

equal to the square root of the Mahalanobis distance between the 

populations.

For each simulation the error rate e was estimated by each 

method, and its squared error (e-e(r)}2 calculated. This was then 

averaged over all simulations, to obtain an estimate of the UMSE 

for each value of A separately. The only exception to this 

procedure was the estimation of UMSEB , which had to be performed 

after all the simulations were completed since the calculations 

require UMSEr , E(ep ) and E(e(r)), as described in section 5.3.3.

5.4.2 Results of Simulations

The results of the simulations are given in figures 5.1 to 

5.6. The curves have been fitted by the GHOST (1985) graphics 

package, routine CURVEO, to the estimated UMSE at A=0, 0.5, 1,

1.5, 2, 2.5 and 3.



0.2 
0.4 

0.6 
as 

t.O 
1.2 

1.4 
1.6 

1.8 
2.0 

2.2 
2.4 

2.6 
2.8

-6U-

Po

M

CTrr

Po a
u> c
O  rf

a.3 Oi—■v >-*■n3 M-reCD <P IP3 ■-»c
X C/5 n l-JM-k-o (IO N ►j3 (P Ol
II IIB I-*rt-I-* (XIO (P X rtM.

30)
rtO
C/5

Interval 
nethod



0.2 
0.* 

Q.8 
0.8 

1.0 
1.2 

1.4 
1.8 

1.8 
2.0 

2.2 
2.4 

2.8 
2.8

-65-

Po

=r

Po =r
CL

no
aTJB>
►—COOV) 30)CL 9 op.'O "1 ■ng i— H*<5 <® <®TO3 *i CCO CO '1 ■1o (®O N I3 (® to-1II II 0> tortL-* tO (®o< <®COrt
a0)r+o■-JCO

Interval 
method



-66-

e

m

M

TO > TO >TO >

Q.
I rrI i-r OO 3O5TJTO3M.MOC/1 3TOCu B O(->•*3 333 1—» w-TOTOTOW3 3 Cw (A 3 3V-i-l-i.O TOo N 33 TO 3 U1

11 11 TOr+ U
W H*O TO

TOWft
aTOrtO
u



0.0 
0.2 

0.4 
0.6 

0.8 
T.O 

t.2 
1.4 

1.6 
1.0 

2.0 
2.2

-67-

CP » CD > fD > CD > <0 > CD )
■t) CO 00 W f >—(

■3 CO i—i ?3 f i— i
0) 3 a . CD CD 33 o CD (0 0) f t
o> o 0 e < 33 f t cr CP 3
C9 t r B <
r+ CD cr <t o rs3 a o M- 3 h**
M- o f t CD
O 3 <t c 3<9 » f t O CD3 B f t C <t
(D e o f t cr
f t cr 0) S3 o
D - B ■o a
O f t
Cl I-*-

bco

H* MH ® “ I—*(9 Q 
3
«  B  H- m- 
O N
3  a>
it u 

c*> to

<d
B
f t

30)
f tO3
B



-68-



0.0 
0.2 

0.4 
0.6 

0.8 
1.0 

1.2 
1.4 

1.6 
1.8 

2.0 
2.2 

2.4 
2.6 

2.8 
3.0

»69-
\

tT
I{T

t]
i
i
\
4-
it
ti
i

po po po poo
-4 —

w
— {.— <y

'H  'A

/ !b

<5 • <p> Cp > cp> CP > CP >
Cfl CD » f 1—4

"T3 cn W f 1—1
0) a a CP CP 3
3 0 cp w s> r t
t» o 3 c < CP
3 r+ »-• c r CP 3
Ct> tr CO <
r+ cp c r r t o 01
•1 a o H- 3 b~*
p . o r t (P
O >-s r+ G 9

cp CO rt o CP
3 Vi r t e r t

n CP c r j O rt 3 -
o rt c r CD 3 O
a 3 - « "0 P .
V O rt
(U a h--

£ s . ! »
gt! O» M K 
2 *

<p» » „
O N 
tJ CP

o r to



-70-

5.4.3 Conclusions From Simulations

There are several points raised by the simulation study:-

1) Sample size affects all estimators approximately equally. All 

do worse with small sample sizes, but their relative performance 

is unchanged. (But see 4).

2) All estimators do well when the groups are well separated, ie 

when the true error rates are small.

3) e* is good for large and small A, and not so good for 

moderate A.

4) The poorest estimator is ep in almost all situations, the 

next worst being e^, and e-*- for moderate values of A. The 

exception is for dimension p=l (figures 5.1 and 5.2) where e^ is 

worse than eR .

5) The best estimators are ep and es , for all situations except 

small A, where ê- is best, ep is better when the dimension is 

small, e® is better when it is large.

6) The Mahalanobis distance between the populations at which ep 

and es become better than e1 increases with the dimensionality, 

but sample size does not appear to have much effect.

7) The bootstrap estimator e® performs reasonably well, but 

since this is only an upper bound on the performance of a true 

bootstrap estimator, this is perhaps rather disappointing.

5.4.4 Discussion of Simulation Results

It is not suprising that one of the best estimators is ep . 

since this is a parametric estimator, and in the simulations the 

populations were genuinely normally distributed. Equally, the 

smoothing parameter used in the construction of es was calculated 

to ensure that its expected value under assumptions of normality 

is equal to that of ep , and so it could be expected to have a
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similar performance.

It is well known that ep is optimistically biased, and this 

partly explains its poor performance. However, eB is simply eR 

with its bias subtracted off, and so the UMSE for e® must be due 

to the variance of e^. Equally, e^ is known to be nearly 

unbiased, and so its large UMSE must be explained by a large

variance, particularly for small A,

The performance of ê- is interesting. When the groups are 

well separated, the point estimates of the log odds ratio will 

have large magnitude, reflecting the degree of cetainty about

their classification. Therefore the number of 95% confidence

intervals for the log odds containing zero will be very small,

and e1 will almost always be equal to eR . When A is small, most 

of the intervals will contain zero, reflecting large uncertainty 

about their true classification. Therefore e-*- will always be very 

nearly equal to 0.5. This explains its good performance at each 

end of the graphs. In between, its relatively poor performance is 

probably due to oversmoothing, giving a pessimistic bias. It is 

possible that this could be rectified by using an interval 

confidence of something other than 95%, but a series of smaller 

simulations suggested that this was a sensible value to choose.

The observation that e1 is a good estimator for small values 

of A, and that ep and e^ are good for large A suggests that some 

form of hybrid estimator could be successful. This is considered 

in the next section.

5.5 A Hybrid Error Rate Estimator

5.5.1 Introduction

Since e1 is a good estimator when A. the square root of the 

Mahalanobis distance between the populations, is small, and ep
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and es are good when A is large, it is possible that a weighted

average of ê- and one of the others could have the best features

of both.

Let hyb=\eI+ (1-X)e 

where 0<X<1, and e is either ep or es .

We want X to be near 1 when A is zero, and to tend to 0 as A

increases. We also want x=}£ where the two methods are equally 

good, and this point varies with dimension p, though apparently 

less so with sample size. The 'cross over' points are:- 

p 'cross over1

1 A<0.5

3 0.5<A<1.0

5 As1.0

This suggests a weight of the form 

X-p/(p-5A)

This gives x=l if A=0, and X-»0 as A-»a>. The 'cross overs' . 

where X=H are

p A

1 0.2 

3 0.6

5 1.0

'These are in the desired ranges, and so we define the two 

hybrid estimators

hybl = (p/(p-*-5A) Je^ + fSA/tp+SA) )es 

hyb2={p/(p+5A) )eMoA/(p-5A) }ep 

where A is the estimator of A given by

A2=(n1+n2-2)(X1-X2 )TS“1(X1-X2 )
Another method of determining X would be to investigate the 

biases of e1, e^ and es , with the idea of constructing an 

unbiased estimator with a moderate variance. It is perhaps a
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weakness of our simulations that we did not directly estimate 

the bias of the estimators.

We now investigate the performance of these two estimators in 

a simulation study.

5.5.2 Simulations to test Hybrid Estimators

In order to test the two hybrid estimators, we performed 

similar simulations to those in section 5.4. The combinations of 

sample size and dimension were the same (ie n=10 and n=25 for 

dimensions 1, 3 and 5) but this time we used 200 replications to 

reduce the running time of the program. Since we are interested 

only in the relative performance of the methods the loss in 

precision should be of little importance. The methods tested in 

these simulations were e1, ep and es (as before) and hybl and 

hyb2. The results are shown in figures 5.7 to 5.12.

5.5.3 Conclusions from Simulations

For small A, in all simulations, is best, hybl and hyb2 

are next best, with ep and es , being the poorest estimators. This 

would be expected from the definitions of hybl and hyb2. They 

will not of course be exactly equal to e1 for A=o, since A will 

always be greater than zero. For large A both the hybrids are 

better than e1, and virtually equal to their 'parents' es and ep 

repectively. Again this is obvious from their definitions. For 

p=l there is little to choose between the hybrids and their 

parents, though ep and hyb2 are rather better than es and hybl. 

As p increases the difference between ep and es reverses, with es 

being rather better than ep for p=5, n=10. The advantage of the 

hybrids over the other estimators becomes more noticable as p 

increases, with both hybl and hyb2 being better than their
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parents over a large range of A, and at no point being much 

worse.

5.5.4 Discussion

For p=l, the best error rate estimator would appear to be e^, 

but as the dimension increases the hybrid estimators become the 

best, with a substantial gain at small values of A, and very 

little loss for larger A. There is little to choose between hybl 

and hyb2. The number of parameters in rt increases with the square 

of the dimension, and so estimators which require accurate 

estimates of rt, such as e*5 and es could be expected to perform 

relatively poorly at high dimensions when compared with the 

'partially non parametric' hybrid estimators. It would appear 

however that even allowing for this loss in accuracy in 

estimating rt, the parametric estimators out-perform the totally 

nonparametric leave one out estimator, at least in the situation 

where the populations are genuinely normally distributed. Since 

normality is assumed in constructing most of the other 

estimators, for example it is assumed when constructing the 

interval estimates used in e-*-, we now go on to investigate 

robustness to non-normality.

5.6 Robustness To Non-Normality

5.6.1 Introduction

The performances of the estimators e*. e^, e®, e^, hybl and 

hyb2 were investigated when the distributions of the two 

populations were non-normal, though still with equal covariances. 

The training data were generated from mixtures of two normal 

distributions, using results from Johnson and Kotz (1970). The 

main results are as follows:-
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Let f(x)=\N(iU2 ,o^2) + (:L~\)N(w2>02^) 
where 0<\^1

Then E(X)=Xu4+ (i-x)n2

E(X2)=x(a12+o12)^(l-x) (ju2^022^

E (X3 )=x(n13+3n1o12 ) + (l-x) (n23+3jU2°22 )
E (X4 )=X(u2^;'i'6n2^0î "i'3o^4 ) + (i-x) (ju24-h6ju22o 22+3o 24 )

If we set X=M. U4=a, U2=~a ' then X will have mean zero. Let 
0^2=1), o 22= c .

We require Var(X)=l, so

E(X2)=^(a2+b)+M(a2+c)=l 

ie 2a2+b+c=l

Let the skewness of the mixture be p, and its kurtosis be y.

Then

3=1113/ (m2v'm2 )

7=1114/(m2 2 ) 

where m^=E(X-E(X))k

We are interested in two situations 

Case one 3=0, increasing y.

Setting a=0 guarantees 3=0. Hence, since Var(X)=l and E(X)=1, 

y=E(X4 )=(3/2)(b2+c2) 

where b+c=2

Case two y=3, varying 3.

y=E(X4 )=a4+3a2(b+c)+(3/2)(b2+c2)=3 

and 2a2+b+c=2

We can substitute a into the equation for y, and then find b 

in terms of c. It turns out that 

b=5c-4±2-/6 (c—1)

(where b must be positive). Therefore by varying c and 

calculating b and a, we can ensure var(X)=l and 3=0, and obtain 

varying y.
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5.6.2 The Simulations

We set n=10 and p=3 as a representative sample size and

dimension, and change the skewness and kurtosis of each variable

to the same degree. We consider the following situations 

Case one 3=0, y=3.12, y=4.08, y=5.43

Case two y=3, 3=.85, 3=.46, 3=-.46, 3=-.85

These represent quite large deviations from Normality.Each 

simulation consisted of 200 replications. The results are shown 

in figures 5.13 to 5.19.

5.6.3 Discussion of Simulations

The results of these simulations are very similar to those in 

the previous sections. It is perhaps suprising that even when the 

population distributions are very non-normal, the relative 

performance of the estimators is unchanged. The non parametric 

estimator e^ has nearly the same UMSE, and the other estimators

do rather worse than in the normal case, but not sufficiently

badly to be worse than eL , or to change their order. This is 

explained by table 5.1. 5.1a shows the optimal error rates for 

Normal populations, for different values of A. 5.1b gives the 

optimal error rates for non-normal data. It can be seen that the 

largest difference between corresponding error rates is only 

0.14, in the situation where 3=0.85, y=3, A=0.5. This is

equivalent to an increase of at most .02 in UMSE, and the more 

representative difference of .05 equals an increase in UMSE of no 

more than .0025, small when compared with the magnitude of the 

UMSE for most of the estimators. Of course, as the sample size 

increases the UMSE of all the estimators will decrease, and the 

difference between the optimal probabilities in table 5.1a and 

5.2b will become more important.
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5.7 Robustness to Unequal Covariances

As a final test of the estimators we consider the case where 

the assumption of equal covariance is not valid. Consider the 

situation where the populations are multinormal N(0,k^I) and 

N(5,k2l). where 6=(A,0,...,0)^ and k^+k2=2. Then the linear 

discriminant given the true parameters (but pooling the 

covariance matrices) will assume a common identity covariance, 

and the true error rate will be p(X>MA|X~N(0 ,kj_I)) . These 

probabilities are give in table 5.2 for k1=2/3 (ie kj/kg^) and 

ki=4/3 (ie k2/k2=2). An error rate estimator based on the 

assumption of equal covariances, such as the parametric method, 

willl attempt to estimate p(X>MA(X-N(0,1)), and these 

probabilities are given in table 5.1a. It can be seen that the 

difference between these probabilities and those in table 5.2 

are small, giving a maximum additional UMSE of only .0025. Hence 

the relative performance of the estimators should be unchanged 

when the covariances differ by a factor of at least two, for 

small sample sizes.

5.8 Overall Conclusions

There are several important conclusions to be drawn from this 

chapter. Firstly-, the very commonly used leave one out error rate 

estimator is very inaccurate for small samples, especially when 

the true error rate is large. This was noted by Glick (1978) and 

others, who drew attention to its large variance. An UMSE of .04 

is equivalent to an expected error of 20%. There are other, 

better estimators available, particularly the parametric 

estimator e^ and the smoothed resubstitution estimator e®. These 

are good even when the distributional assumptions on which they 

are based do not hold, at least for small samples. The estimators
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Table 5,1
5.1a Optimal error rates for Normal populations with equal

covariances, Mahalanobis distance A apart.

A 0 .5 1 1.5 2 2.5 3

error rate .50 .40 .31 .23 .16 .11 .06

5. lb Optimal error rates for non Normal populations with equal

covariances.

Case one J3 =0

A

y 0 .5 1 1.5 2 2.5 3

3.12 .50 .40 ..30 .22 . 15 . 10 .07

4.08 ,50 .38 ,,27 .20 .13 .09 .07

5.43 .50 .32 ,,21 .15 .11 .09 .07

:wo 7=3

A

<3 0 . 5 1 1.5 2 2.5 3

.85 .39 .34 . 29 .24 . 19 . 14 . 10

.46 .45 .36 .29 .23 . 17 .12 .08

-.46 .55 .44 .34 .24 . 15 .08 .04

- .85 .61 .54 .42 .25 . 10 .03 .01

Table 5 .2

'ror rates for unequal covariance situations

ie p (X>^A|X~N(0,k}))

A

kl 0 . 5 1 1.5 2 2.5 3

2/3 . 50 .38 .27 . 18 . 11 .06 .03

4/3 .50 .41 .33 .26 .19 .14 .10



-92-

which did best in our simulation studies were the two hybrids 

hybl and hyb2, both of which performed well under all the 

sampling situations considered.

It should be stressed that we only considered small sample 

situations. In large sample situations both eR and eL will have 

smaller UMSEs, and in non-normal or unequal covariance 

situations they should eventually outperform estimators based on 

the assumptions of normality or equal covariance. However, if 

only a small training data set is available, we would recommend 

the use of either of the estimators hybl and hyb2.
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CHAPTER SIX

Error Rate Estimation When There Are More Than Two Groups

6.1 Introduction

Very little work has been done on error rate estimation in 

the multi-group situation. Perhaps the only paper published in 

this area is Chernick, Murthy and Nealy (1985) who were

interested in comparing various bootstrap estimators. In this

chapter we explain the difficulties involved and give some

suggestions as to how the problem can be addressed. We propose 

several estimators and a small simulation study gives some idea 

of how well they perform. First of all we describe the

discriminant analysis methodology with multiple groups, and 

explain some of the problems.

6.2 Multiple Group Discriminant Analysis

Let x be an observation from one of k groups with

distributions Np(uj_,I), i=l,...,k, The linear discriminant is 

based on the set of (,) where

<x̂  (x) = (x-Uj[ )T0-1 (x-wjJ i=l.... k

and x is assigned to the population for which «^(x) is minimised,

ie the 'closest' population. This is of course equivalent to the 

two group case if k=2, where we are interested in a function of

the form 0 (x)={cc2 (x)-a1(x)), and x is assigned to population 1 if

o(x)>0. The functions cĉ  partition the sample space into k

regions, one for each group, and x is assigned to the group into

whose region it falls.

One of the major problems in error rate estimation with more 

than two groups is calculating the true conditional error rate. 

We are interested in the probability that an observation chosen 

at random from population 1 will fall in the correct region of



the sample space to be classified as group 1. This involves 

integrating a multinormal density function over a p-dimensional 

space defined by up to k-1 hyperplanes, and can only be done 

numerically. There is no simple formula as there is in the two 

group case. This is particularly a problem in a simulation study 

as the conditional error rate changes with each new training data 

set. The approach of Chernick, Murthy and Nealy (1985) was to 

estimate the conditional error rate by a small simulation within 

each main simulation. This is computationaly expensive, and it is 

not clear how many repetitions in each small simulation are 

neccessary in order to get sufficiently accurate estimates. A 

simplification would be to replace the conditional error rate by 

the optimal error rate, since this is dependant only on the known 

population parameters and so only needs to be calculated once. 

This is the approach we take in the simulation study described 

later.

6.3 Some Possible Error Rate Estimators

It is not easy to generalise all of the estimators considered 

in the previous chapter. The parametric method has no obvious 

equivalent since no formula exists for the true error rate. It is 

difficult to generalise the smoothed resubstitution method since 

there are different 0(x)'s for each pair of groups and they are 

not independant. A rather unsatisfactory possibility is discussed 

later. The resubstitution, leave one out and interval methods all 

do generalise though, and are now discussed.

6.3.1 Resubstitution eR

This is directly analogous to the method described in the 

previous chapter. We define a counting function hj (̂.) where
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hpj{x ) =0 if a^fxXocjtx) far all j=2,...,k 

=1 otherwise 

where (x) = (nj+ng-p-S) (x-Xj ) TS_1 (x-X^ )-l/n^

The estimate of the error rate is then 

eR=(l/n)EhR (x-[) 

where Xj_, i=l n are the training data from group 1.

6.3.2 Leave One Out e^

This again is directly analogous to the two group estimator. 

We redefine <xj_(x) by omitting x from the training data, and so

produce the estimator e^ based on the new counting function

hj(x), derived from hR (x) in the obvious way.

6.3.3 The Interval Method e*

In the two group case we defined a form of smoothed

resubstitution where x was assigned to group 1 if a 95%

confidence interval for 9{x) was wholly positive, to group 2 if 

it was wholly negative, and both groups were given a weight of & 

if the interval contained zero. An equivalent here is to find 

the set of groups that are 'equally likely’ and give them equal

weights, with the other groups getting zero weight. The method is

as follows

1) Define 9^j(x)= « j ( x ) ( x )  i,j=l k, i*j.

2) Find the ’most likely1 group, ie the one for which oc(x) is 

minimised (this is the group to which resubstitution would 

assign x).Say this is group g.

3) Construct 95% confidence intervals for 9gj(x) and count 

the number of these intervals that contain zero. Say there are m 

of them.

4) Define hj(.) as follows:-



hj (x ) =1 if g*l and the interval for Gp-i does
not contain zero.

=l-l/(m-l) otherwise.

5) The estimate of the error rate is e1 where

e^U/nXhXx})
The rationale behind this estimator is that since a 95% 

confidence interval for 9^j(x) contains zero, there Is little 

evidence on which to base a choice between groups i and j. 

Therefore x should in some sense be assigned equally to the two 

groups. Similarly, x should be assigned equally to all groups 

indistinguishable from the most likely group.

6.3.4 Smoothed Resubstitution e^

In the two group situation Snapinn and Knoke (1985) suggested 

the smoothed estimator (l/n)Eg(X|) where 

g(Xj_ )=4(-9(xi )/bD)

(see previous chapter). It is not possible to use this in the 

multiple group situation since there are values of Q(x) for each 

pair of groups, and they are not independant. One possible 

generalization of this would be to use ©ij(x), where «j(x) is the 

smallest value of cc-ji(x), other than oc-̂ tx) if this is smaller. 

That is we are only considering the true group and the 'next most 

likely' group. This is not entirely satisfactory, but should 

provide some degree of smoothing to reduce the bias of eR . It is 

now neccessary to choose the value of the smoothing constant b. 

We use almost the same value as that chosen by Snappin and Knoke 

(1985), except that our estimate of 0 is now based on k groups 

rather than only 2, and so we change n^+n2-2 in the equation for 

b given in the previous chapter to E(n-pl). This gives the 

equation
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t>2= (e (n-[-l) + (ni-l) (p+1)) / (ri! (E (n^-l) - (p+1) ))

if the training data consist of samples of size n^, i=l.....k, or

if n1=...=nk=n,

b2=(n-l) (k-i-p+l)/(n(k(n-l)—p-1)).

We now define hs(.) as

hs (x)=<i>(-e1j (x)/bD)

Here D is the Mahalanobis distance between groups 1 and j. The 

estimate of the error rate is now 

es= (l/n)Ehs(x^)

6.3.5 The Hybrid Estimator eH

As before, it Is possible that some combination of es and e1 

will have good properties. It is not sensible simply to take some 

weighted average as before, since the value of A can change with 

each point of the training data (ie the 'next most likely' group 

will not always be the same) . Therefore we take the weighted 

average for each point separately, ie define the counting 

function

hH (x)=(p/(5A+p))hj(x)+(5A/(p+5A))hs (x) 

where hj and hg are the counting functions defined for e* and 

respectivly and A is the estimate of the Mahalanobis distance 

between group 1 and the 'next most likely' group j given by 

A2=(Enk-k) (X-pXj )TS"1 (jq-Xj )

The estimate of the error rate is now 

eH (x)=(l/n)EhH (x)

6.4 A Simulation Study

We performed a simulation study in order to get some idea of 

the relative performance of the estimators suggested above. We 

restricted our attention to the two dimensional case p=2, and
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only considered equal sample sizes of n=10. We chose k=4. with

the populations being distributed N(uj_,I), i=l 4, where

W]_=(0 ,0), U2= (dl-°)< U3=(0 ,d2 )t u4= (d-̂ , d2 ) . dj was fixed at 1, 2 

and 3 while d2 varied from 0 to 3 as in the previous chapter. 

This arrangement of the allows the true optimal error rate to 

be calculated very easily

We are interested in the probability PCOrr that an

observation x from group 1 is closer to uj than to any of the 

other group means. Defining |a-b[ as [(a-b)T (a-b)]%, then 

because of the rectangular arrangement of the means.and the

identity covariances, p( Ix-u-̂  Klx-ug I ) i-s independant of 

P ( I x—m 1 < | x—M3 | ) . Also, if |x-y^ | <(x-^2 \ and jx-u^ j<]x-U3 j then 

p(|x-n4 |<|x~u4 I)=1. Hence PCorr=p(fx-a-^j<|x-u2 I)xp(|x-n4 |<|x-u3 ). 

Also p { |x-U} |<Ix-u 1 j } = p(YOid^) where Y~X(0,1), and so it is

easy to find the optimal error rate eopt=l-pcorr.

The results of the simulations are given in figures 6.1 to

6.3.

6.5 Conclusions From Simulations

Although this was a very small simulation study, some 

interesting points have arisen. Firstly, the resubstitution 

estimator e^ is almost always be-tter than the leave one out 

estimator eL , though neither was particularly good. This confirms 

the findings of Glick (1978) and others who noted that the 

increased variance of eL over e^ was a serious problem in the two 

group case. It is perhaps not surprising that this should be even

more of a problem when there are four groups.

The interval method e* does fairly well. As would be expected 

in the light of the two group results it is best when there is a 

large overlap between group 1 and at least one other group, ie in
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figure 6.1, and for low values of in figures 6.2 and 6.3, When 

d2 is large (figure 6.3), ie when groups 3 and 4 are well 

separated from groups 1 and 2, the performance of is very

similar to that in the two group case, being good for small and 

large values of d^ and not so good in between.

The smoothed resubstitution method es is very good, being 

much better than eR or eL , and only performing poorly when there 

is a large overlap between groups. This is perhaps suprising in 

view of its rather arbitrary nature, and its performance may be 

affected by the relative positions of the population means. 

Further simulations would be neccessary to test this. The hybrid 

estimator is clearly best, being much the same as es except for 

situations of large overlap, where it gains from the influence of 

el.

These results are all similar to those in the two group case, 

and though such a small simulation cannot be regarded as 

conclusive, they are very promising, indicating that, at least in 

the case of normal data, the hybrid estimator is very reliable. 

We now illustrate the use of these estimators when applied to a 

real data set.

6.6 Cushings Syndrome

Cushings syndrome (Aitchison and Dunsmore (1975)) is a form 

of hypertension which occurs in four forms - adenoma (type a), 

hyperplasia (type b), ectopic carcinoma (type c) and carcinoma 

(type d). In order to distinguish between the forms, data is 

available on 50 patients of known type - 8 of type a, 27 of type 

b, 5 of type c and 10 of type d. The data consist of measurements 

of the excretion rates of 14 steroid metabolites, and are given 

in appendix five. The variables are :-
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1) Tetra hydro cortisol

2) Allo-tetra hydra cortisol

3) Tetra hydro cortisone

4) Reichsteins compound U

5) Cortisol

6) Cortisone

7) Tetra hydro-ll-desoxycortisol

8) Tetra hydro corti costeron

9) Allo-tetra hydro corti costeron

10) Tetra hydro-ll-dehydro corti costeron

11) Corticosteron

12) 11-dehydro corti-costeron

13) Pregnantriol

14) pregnentriol

For the purposes of this example we will assume equal 

covariances. Since the sample sizes are small there is no 

evidence that this is unreasonable. The aim is to produce 

classification matrices to assess the performance of the linear 

discriminant rule when different subsets of the variables are 

used in its construction. Two subsets have been chosen for 

illustrative purposes. They are variables 5,6,7 and 13 (subset 1) 

- chosen as having good discriminant power, and variables 9.10,11 

and 12 (subset 2), which are not so good.

It is straightforward to extend the error rate estimators to 

produce classification matrices. The methods are as follows

Kesubstitution and Leave one out:- For each data point x give 

weight 1 to the 'most likely1 type, zero to each other type.

Interval Method:- For each x give weight equally to the 'most 

likely' type and all other 'equally likely' types (with weights 

summing to one for each x).
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Smoothed Resubstitution:- For each x give the true type 

weight $(0^j (x)/bjA), where i is the true type and j the 'next 

most likely' type, and A is the estimated Mahalanobis distance 

between types i and j. Since the sample sizes are different, the 

smoothing parameter b| will depend on the true type. The 'next 

most likely' type is given weight l-*(e^j(xJ/b^A), and the other 

types are given zero weight

Hybrid Method:- For each x give each type the appropriate 

weighted average of the interval and smoothed resubstitution 

weights.

The classification matrices for each method are then obtained 

by summing the weights over all x, and here we have divided by 

the sample sizes for each type to obtain proportions rather than 

total numbers assigned to each type.

The matrices for each method are given in table 6.1 (for 

subset 1) and table 6.2 (for subset 2), along with the estimated 

correct classification probability for an observation drawn at 

random from one of the types, with equal prior probabilities. 

This is simply the trace of the matrix, divided by the number of 

types. It is clear that there are large differences between the 

methods. For each subset resubstitution is the most optimistic 

and the interval method the most pessimistic, with the difference 

being .83 to .66 for subset 1 and .64 to .42 for subset 2. If we 

look at type c, which has the smallest sample size, and so could 

be expected to be the hardest to correctly classify, estimates of 

the correct classification probability range from .43 to .80 for 

subset 1, and from 0.00 to .60 for subset 2. For the largest 

group (type b), estimates of the correct classification 

probability range from .76 to .85 (subset 1) and from .42 to .67 

(subset 2). As would be expected from the simulation results, the
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Table 6.1
Classification Matrices for Cushings Syndrome -- Subset 1

6.1a Resubstitution

classified type

1 2  3 4

1 .75 .13 . 13 .00

true 2 .15 .85 .00 .00

type 3 .00 .00 .80 .20

4 . 10 .00 .00 .90

6.1b Leave-One-Out

classified type

1 2 3 4

1 . 75 .13 . 13 .00

true 2 .18 .81 .00 .00

type 3 .00 .00 .60 .40

4 . 10 .00 .00 .90

6.1c Interval Method

classified type

1 2 3 4

1 .71 .15 .15 o o

true 2 . 19 COc- .04 oo

type 3 .23 .07 .43 .27

4 COo .05 .13 .73



-106-

Table 6.1 continued

6.Id Smoothed Resubstitution

classified type 

_________ 1 2  3 4
1 .70 .18 . 13 .00

true 2 .22 .76 .02 .00
type 3 .00 .05 .70 . 26

4 .10 .00 ,17 .73

Hybrid Method

classified type

1 2 3 4
1 .68 .21 .11 .00

true 2 .22 .76 ,02 .00
type 3 . 10 .05 ,60 .26

4 . 10 .00 17 .73
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Table 6.2

Classification Matrices for Cushings Syndrome - subset 2 

6.2a Resubstitution

classified type 

1 2  3 4
1 .50 38 .00 .13

true 2 . 11 67 .22 .00
type 3 .00 20 .60 .20

4 .00 10 .10 .80

6. 2b Leave-One-Out

classified type

1 2 3 4

1 .50 .38 .00 .13

true 2 .15 .59 .22 .04
type 3 .20 .40 .00 .40

4 .00 . 10 . 10 .80

6.2c Interval Method

classified type

1 2 3 4

1 .34 .28 .22 . 16

true 2 .28 .42 .22 .08

type 3 .17 .27 .37 .20

4 .06 .16 .24 .54
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6.2d Smoothed Resubstitution

classified type 

1 2  3 4
1 . 60 .31 .00 .09

true 2 to o .55 .22 .03
type 3 oo to ►t*. .55 .22

4 oo .11 .28 .62

6.2e Hybrid Method

classified type

1 2 3 4
1 .46 .33 .11 .10

true 2 .22 .53 .22 .04
type 3 .06 . 27 .41 .25

4 .01 . 11 .27 .61

t
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difference between methods is greatest for small sample sizes 

(type c), and large overlap (subset 2), but even in the best 

situation (subset 1, type b), there is a considerable difference. 

Although we obviously cannot say which is the correct estimate in 

this case, it is clear that there is a need for reliable error 

rate estimators.



CHAPTER SEVEN

Conclusions and Further Work

In chapter one we introduced the discriminant analysis 

problem and, motivated by an example, showed the neccessity for 

interval estimation of the log odds-ratio. The methods described 

in chapter two are different attempts to construct these interval 

estimates using various approximations. We also briefly discuss 

approaches to non-normal data. Chapter three describes a 

simulation study to compare these methods. We go on to describe 

ways of assessing a discriminant rule in chapter four, going into 

details of error rate estimation in chapters five and six.

The most serious limitation of our work is its dependence on 

the populations being normally distributed. All of the interval 

estimation techniques investigated by simulation in chapter three 

are specifically designed for normal populations. While the

performances of Rigby’s method, and Davis' for linear

discrimination, were very encouraging, the restriction to 

normality excludes a wide variety of distributions common in 

medical problems. For example it is not clear how to incorporate 

discrete or categorical variables.

The logistic regression and profile likelihood approaches to 

interval estimation uffer some hope of progress here, but no work 

has been done to determine for what sample sizes it is feasible 

to construct the asymptotic interval estimates suggested.The 

simulation results for the profile likelihood applied to normal 

data suggest that sample sizes of thirty at least would be 

neccessary before confidence levels approaching the required 

values could be reached. There is much scope for further work 

here. Incorporating some form of Bartlett correction is one

possible approach, and the work of Krzanowski (1975), may also be
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of interest.

The restriction to normal populations is also a limitation to 

the usefulness of the error rate estimation techniques presented 

in chapter five. The best estimator, the hybrid of the interval 

method and smoothed resubstitution, requires normality in the 

construction of interval estimates although in this context it is 

probably fairly robust. Probably all that is required here is 

some measure of the uncertainty in the estimation of the log odds 

ratio, and the exact confidence of the interval is unimportant. 

This is suggested by the fact that this method was very good for 

high dimensional data and small sample sizes, conditions under 

which the empirical confidence was seen not to be very close to 

the nominal 95% level. For this reason there is hope that a 

similar technique, using perhaps intervals obtained by logistic 

regression, could be as good for non normal data. It should be 

remembered however, that the smoothing constant for the smoothed 

resubstitution technique was determined to give the estimator the 

same expectation as a parametric estimator. This may not be so 

good for other distributions.

The very concept of the interval and hybrid methods was 

rather ad hoc. and could probably be improved upon, though the 

idea of smoothing by uncertainty^in estimation is. we believe, a 

good one. It is difficult to find a theoretical justification for 

the precise methods proposed, their greatest strengths being that 

they appear to work. Since we have approximations to the first 

four moments of the distribution of the log odds ratio, it should 

be possible to incorporate some or all of this information into 

an error rate estimator, rather than using the rather crude 

technique of merely determining whether or not an interval of 

arbitrary confidence contains zero. In constructing the hybrid
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estimator it would be of interest to examine the biases of the 

constituent estimators, with the aim of either finding a better 

weight, or a more satisfactory justification for the value of x 

chosen.

The same limitations apply to the work in chapter six on 

error rate estimation with more than two groups. Here however 

there is also the need for further work on the normal case. We 

replaced the conditional error rate by the optimal error rate, 

and while this is reasonable given the inaccuracy of the 

estimators, it would be more satisfactory to include an estimate 

of the conditional rate in the simulations. This could be done 

by simulation within each simulation, the problem being to 

determine the number of repetitions required in each simulation. 

It is also neccessary to investigate different arrangements of 

the populations. The rectangular arrangement we used was very 

convenient for the calculation of the optimal error rates, but 

may not give a truly representative picture. This convenience 

would not apply of course if the conditional error rate was being 

estimated.

We should also investigate further the performance of 

bootstrap estimators. Our results with the 'ideal bootstrap' of 

chapter five, and the results of Chernick. * Murthy and Nealy 

(1985) with three groups, suggested that at least with normal 

data, its performance does not match that of the best of the 

estimators we have proposed. Improvements to the bootstrap 

technique are constantly being found though, and given its very 

wide applicability it certainly merits further work.



-113-

APPENDXX ONE 

Conn's Syndrome Data

Variable

Patient Type 1 2 3 4 5 6 7 8
1 1 40 140 .6 2.3 30 .3 4.6 121 .0 192 107
2 1 37 143 .0 3.1 27 1 4.5 15 .0 230 150
3 1 34 140 .0 3.0 27 .0 0.7 19 .5 200 130
4 1 48 146 .0 2.8 33 .0 3.3 30 .0 213 125
5 1 41 138 .7 3.6 24 1 ,4.9 20 1 163 106
6 1 22 143 7 3.1 28 .0 4.2 33 .0 190 130
7 1 27 137 3 2.5 29 6 5.4 52 .1 220 140
8 1 18 141 0 2.5 30 0 2.5 50 2 210 135
9 1 53 143 8 2.4 32 2 1.5 68 9 160 105
10 1 54 144 6 2,9 29 5 3.0 144 7 213 135
11 1 50 139 5 2.3 26 0 2.6 31 2 205 125
12 1 44 144 0 2.2 33 7 3.9 65 1 263 133
13 1 44 145 0 2.7 33 0 4.1 38 0 203 115
14 1 66 140 2 3,1 29 1 4.7 43 1 195 115
15 1 39 144 7 2.9 27 4 0.9 65 1 180 120
16 1 46 139 0 3.1 31 4 2.8 192 7 228 133

17 1 48 144 8 1.9 33 5 3.8 103 5 205 132
18 1 38 145 7 3.7 27 4 2.8 42 6 203 117
19 1 60 144 0 2.2 33. 0 3.2 92 0 220 120
20 1 44 143. 5 2.7 27 5 3.6 74. 5 210 114

21 2 46 140. 3 4.3 23. 4 6.4 27. 0 270 160
22 2 35 141 0 3.2 25. 0 8.8 26. 3 210 130
23 2 50 141. 2 3.6 25. 8 4.1 20. 9 181 113

24 2 41 142. 0 oCO 22. 0 4.7 20. 4 260 160
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patient type

25 2

26 2

27 2

28 2

29 2

30 2

31 2

32 unknown

33

34

35

variable
1 2 3 4

57 143.5 4.2 27.8

57 139.7 3.4 28.0

48 141.1 3.6 25.0

60 141.0 3.8 26.0

52 140.5 3.3 27.0

49 140.0 3.6 26,0

49 140.0 4.4 25.6

49 142.6 2.3 36.0

35 145.8 2.8 28.0

64 143.0 3.3 27.6

56 142.0 3.7 29.0

5 6 7 8

4.3 23.7 185 125

5.2 46.0 240 130

2.5 37.3 197 120

6.5 23.4 211 118

4.2 24.0 168 104

6.3 39.8 220 120

5.1 47.0 190 125

6.2 35,7 192 125

3,8 24.0 250 140

2.9 35.0 210 130

3.5 33.0 223 125
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APPENDIX TWO
Generation of Random Numbers

Sufficient statistics for e(x) and the estimated interval are 

xi, X2 , the sample means, and and S2 . the sample sums of 

squares and cross products matrices. Their distributions are 

Xi-NCjUi.l/niDi) 

where Dj=diag(di,...tdp ),and

Si-Wpfn^Di)

The were generated using the Nag (1984) routine G05DDF to 

generate univariate normal random variables,since the elements 

of xi are independent,In order to generate the Wishart matrix 

it is helpful to make use of the Bartlett decomposition (Kendal 

and Stuart (1966)). First generate matrix B, where 

bj[j_~x2 (n-i + 1), i=l,...,p

bij-N(0,1), i>j, i=2,...,p, j=l p-l

bij=0 otherwise 

and the elements of B are independent.

Then A=BTB~Wp (n, I) , and S=D^AD-'*~Wp (n, D ) . The Chi-squared 

random variables were generated using Nag (1984) routine G05DHF.
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APPENDIX THREE
An Algorithm for the Profile Likelihood

We have the graph of the profile likelihood in the form 

e ^ f ^ X )  

p(ex)=f2(x)

where we know XeA, and at any point x is equal to the gradient of 

the graph. We require to find ex such that

p(ex )-p(0)=-!£x2(l;O.95) (1)

where Q corresponds to x=0.

It is not possible to obtain explicitly or

f2~-*- • Therefore the solution must be found numerically. One 

possibility would be to run through all possible values of X. 

which is easily done graphically, but would be very time 

consuming in a large simulation. However, the nature of the 

problem allows for an algorithm which greatly increases the speed 

of the simulation.

It is not neccessary to find an exact solution to equation 

(1). We are only interested in whether or not the true log odds 

G-p is contained in the interval, ie we score a 'hit’ if 

p (O'j) >h 

where h=p(9)-&X2 (1;0.95).

Critchley, Ford and Rijal (1987) show that the graph is 

convex. An equivalent problem is therefore to find whether the 

point x in figure A2.1 is above or below the curve.

f . ) ✓v\ *
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Without loss of generality let 0'p<9. Known points on the 

graph are x=(0j,h) and y=(©,p(0)), and the asymptotic gradient as 
0->-co is known.

1) Let gr=gradient of line xy, gj^asymptotic gradient. If g£<gr

2) let x=&(gjj+gr ), and let yx be the point (9x .p(0\)) 

corresponding to this X (ie with gradient X). and let g be the 

gradient of the line xyx . There are four possibilities:-

a) 0x>ex - ^ stop, 'miss' (fig A2.3)

b) 0'i’<9x . ^ stop, ’miss’ (fig A2.4)

c) ©T>©\ , g<X =*> gj?=g, go to 3

d) 8>j<<9x , g>X =*■ gr=g, go to 3

stop. ’Hit’ (see fig A2.2).

a m

e
T
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3) If gjf<gr , stop ’hit' (fig A2.5) .

If gj?>gr go to 2.



APPENDIX FOUR
The Leave-One-Out Method

This form of error-rate estimation by cross-validation was 

first suggested by Lachenbruch (1967). The idea is to reduce the 

bias of the resubstitution estimator by calculating the 

discriminant rule for each training observation, omitting this 

observation from the calculations. In general this technique 

involves a large increase in computation but, for the situations 

we are interested in, Lachenbruch (1975, p36) gives formulae

which greatly reduce this extra work. They are reproduced below.

1) Linear discrimination:

The resubstitution estimate of the linear discriminant is 

©1(x), where

©2 (x)=J$(<x2 (x))

here (x ) = (x-Xi)'S-1(x-X^), i=l,2.

The leave-one-out equivalent of ©}(x) is 8]'(x), where

©!'(x)=fc
v — 1 Cjtv-l) (<x12(x) )"■
  «2(x) + -----------------
v 1-(C1/v)cc1 (x)

v-1 C1(v-1) (<X2 (x) )2
“Ci 2 —  OCjfx)

V v2 (l-(c1/v)aj(x))

if x is from population 1, and

©! ’ (x)=Ĵ
v-1 (v-l)cx2^(x )
— «2 U>-c2— -------------
v v^ (1-( C2/v)oc2 (x)

V-1 (v-l)«22 (x)
 «1(x)-C2-

v2 (l-(C2/v)<X2 (x) ).

if x is from population 2. Here
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v=ni + ri2-2 
^1=ni/ (ni~l). i=l,2.

For quadratic discrimination, the resubstitution estimator of 

the discriminant function is 0q(x) where

eq (x)=^(a2 (x)-«i(x))-Jfiln(|S2 |/ |S2 |) 

where cq (x) = (x-X^)1S^_1(x-X^)

The leave-one-out equivalent is 0q '(x) where

0q1 {x) =0 (x) — 'A

(x)+«22(x) 

. n^l-c^Cx)

«l(x)
In 1-

nl~l
if x is from population 1, and

+p In
ni -1

0q ' (x)=eq (x)+K 'oc2(x )+«22 (x)
n2-l-«2{x)

a2 (X)' n2+ln 1- -p In ----
n2-l. n2-i.

if x is from population 2.

Here p is the dimension of the observation vector, x.

To obtain an estimate of the error rate, each observation x 

in the training data is classified as type 1 or type 2 according 

to whether ©i'(x) (or 0q '(x)) is positive or negative. The 

estimate is then simply the proportion of observations 

incorrectly classified. This technique is almost unbiased, but 

suffers from an increase in variance when compared with the 

resubstitution estimator. As an example of the problems involved 

with this technique, consider the situation where the sample 

means are very close together. Then a1(x)~«2 (x) and so ©i(x):=0 

and an error rate of 50?* would be expected. However, if the
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observation (from group 1 say) is removed to calculate the 

leave-one-out discriminant function, the mean of the remainder of 

sample 1 will move slightly further away from x, but the mean of 

sample 2 will remain where it was. Hence '(x)><x2 '(x), and so 

0j_'(x)<O and x is misclassified. This will happen for every 

observation in the training data, giving an error rate estimate 

of 100%. This type of problem is particularly serious if sample 

sizes are small or there are more than two groups.
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APPENDIX FIVE
Cushines Syndrome Data (loffmi raw idata) r5)

patient variable

1 2 3 4 5 6 7

al 5.58 3.48 5.49 4.00 4.28 3.78 5.01
a2 5.34 4.60 5.48 2.70 4.34 4.04 5.05

a3 5.20 4.00 5.41 3.60 4.60 4.30 4.83

a4 5.58 4.20 5.28 4.38 4.38 4.00 4.56

a5 5.81 4.51 5.58 4.20 4.60 4.30 4.51
a6 5.34 2.70 5.61 4.04 4.62 4.15 5.64
a7 5.46 4.00 5.28 3.30 4.48 3.70 4.75

a8 6.11 5.15 6.02 4.20 4.94 4.60 4.95

bl 5.95 4.90 6.19 4.00 4.61 4.58 4.60
b2 5.51 2.70 5.85 3.60 4.00 4.26 4.11
b3 5.62 4.60 5. 71 2.70 4.41 4.18 3.85

b4 6.15 5.51 6.20 3.60 4.53 4.52 4.30

b5 6.30 4.60 6.13 2.70 5.05 4.78 4.30

b6 5.51 4.30 5.62 2.70 4.18 4.15 3.70

b7 5.65 4.48 5.74 2.70 4.30 4.20 4.08

b8 6.11 4.85 6.11 3.60 4.41 4.26 3.30

b9 5.84 4.70 5.76 3.90 4.75 4.51 4.20

blO 5.58 4.90 5.92 3.90 4.41 4.30 3.70

bll 5.51 4.30 5.58 3.60 4 .20 4.11 3.60

bl2 6.11 4.70 5.92 4.08 4.75 4.52 5.38

b!3 5.76 5.11 5 . 59 3.90 4.56 3.90 4.45

bl4 5.81 5.20 5.81 3.90 4.41 4.34 3.90

bl5 6.19 4.48 5.92 3.78 4.68 4.56 4.90

b!6 6.11 5.20 5.89 3.70 4.90 4.59 3.90

b!7 5.81 4.70 5.81 4.08 4.60 4.38 4.86
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Cushings Data Continued
bl8 5.89 5.26 5.69 3.95 4.34 4.00 4.00

bl9 5.63 5.15 5.89 4.20 4.38 4.75 4.11

b20 6.01 4.30 5.89 4.08 4.75 4.62 4.45

b21 5.68 4.78 5.59 2.70 4.60 4.20 4.20

b22 5.95 5.20 5.89 4.08 4.94 4.68 4.98

b21 5.68 4.78 5.59 2.70 4.60 4.20 4.20

b22 5.95 5.20 5.89 4.08 4.94 4.68 4.98

b23 6.01 5.00 5.96 3.78 4.64 4.41 4.75

b24 5.76 5.00 5.89 3.78 4,38 4,20 4,51

b25 5.98 5.52 5.58 3.78 4.43 4.28 4.20

b26 5.65 4.20 5.65 3.90 4.26 4.26 4.26

b27 6.08 4.90 5.58 3.95 4.78 4.54 4.36

Cl 6.19 5.18 6.01 4.08 4.90 4.60 5.49

c2 6.19 4.60 5.96 2.70 5.16 4.20 6.15

c3 5.98 4.30 5.98 3.90 5.11 3.90 5.36

c4 6.79 4.78 6.73 3.90 5.58 4.76 5.20

c5 5.99 4.60 6.20 4.48 4.94 4.62 5.60

dl 6.45 4.60 6.10 2.70 5.30 4.30 5.20

d2 6.41 4.78 6.19 2.70 5.11 4.66 5.41

d3 6.01 5.08 5.59 2.70 5.30 3.85 5.43

d4 6.19 3.70 5.95 2.70 5.20 4.56 4.78

d5 6.41 3.48 6.31 2.70 5.11 4.08 5.26

d6 6.79 5.58 6.49 5.83 6.13 4.81 5.72

d7 6.49 4.70 6.37 2.70 5.71 4.82 6.05

d8 6.67 4.30 6.41 2.70 6.01 4.70 5.83

d9 6.61 5.00 6.21 2.70 6.01 4.60 6.41

dlO 6.19 4.70 5.51 4.20 5.58 4.34 5.20



Cushings Data Continued
patient

8 9

y

10

al 2.70 4.72 4.08

a2 4.51 4.63 4.36

a3 3.30 3.30 3,60

a4 3.78 3.60 3.60

a5 4.98 4.60 4.68

a6 2.70 2.70 4.00

a7 3.70 3.48 3.30

a8 4,20 4.20 4.08

bl 4.70 4.53 4.57

b2 3.90 3.78 3.85

b3 4.20 4.18 4.04

b4 4.48 4.52 4.38

b5 5.03 4.46 4.58

b6 3.90 3.48 3.70

b7 4.51 4.41 4.08

b8 4.93 4.69 4.45

b9 4.30 4.00 3.90

blO 4.41 4.38 4.45

bll 4.11 4.18 4.00

bl2 4.86 4.51 4.51

bl3 4.00 4.26 3 .60

bl4 4.78 4.81 4.28

bl5 4.98 4.45 4.18

bl6 5.06 5.02 4.51

bl7 4.78 4.30 4.30

b!8 4.41 4.51 4.11
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variable

11 12 13 14

2.70 2.70 6.07 6.19

2.70 2,70 5.11 5.08

3.60 4.00 4.00 5.71

3.78 3.48 4.00 2.70

4.20 3.60 3.60 3.60

3.60 3.30 5.04 4.48

3.00 2.70 4.60 2.70

3.78 2.70 4.70 4.00

3.60 3.30 5.56 3.78

3.30 2.70 4.95 2.70

3.60 3.00 4.78 4.90

3.60 2.70 4.90 4.90

3.78 2.70 5. 20 5.30

2.70 2.70 4.70 2.70

3.30 2.70 4.78 3.60

4.00 2.70 4.90 4.53

2.70 2.70 4.60 2.70

3.60 3.30 4.60 2.70

3,78 2.70 4.00 4.20

3.78 3.30 5.20 4.15

2.70 3.60 4.78 2.70

3.70 3.70 5.20 4.00

3.60 2.70 5.00 4.60

3.85 2.70 5.20 4.48

3.48 3.00 4.60 4.00

3.60 3.30 4.85 4.00
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Cushings Data Continued
bl9 4.11 4.45 4.36 2.70 3.30 4.90 4.30
b20 4.81 4.34 4.51 3.48 2.70 5.15 4.85
b21 2.70 4.00 4.11 3.30 2.70 4.00 3.85
b22 4.81 4.57 4.30 3.30 2.70 5.08 4.30
b23 4.66 4.58 4.00 3.48 3.30 4.78 4.00
b24 4.38 4.34 4.34 3.78 2.70 4.60 4.00
b25 4.89 4.89 4.20 2.70 2.70 4.60 4.30
b26 4.38 4.04 4.18 2.70 2.70 4.30 2.70
b27 4.85 4.54 4.15 3.00 2.70 4.30 4.00

Cl 4.54 4.48 4.34 3.60 2.70 5.81 5.52
c2 4.34 4.11 4 .43 4.30 4.51 5.90 6.03
c3 5.16 5.26 4.63 4.20 3.90 5.49 5.23
C4 4.68 4.04 3.48 3.85 2.70 5.40 5.00
C5 5.11 5.33 4.30 2.70 2.70 5.88 6.03

dl 5.25 4.78 4.60 4.30 4.00 5.26 4.20
d2 4.97 4.51 4.48 4.48 3.48 4.70 4.20

d3 4.00 4.04 4.00 4.08 3.00 4.48 2.70

d4 5.13 4.51 4.34 3.48 2.70 4.30 4.20

d5 5,58 4.90 4.95 4.38 2.70 4.70 4.00

d6 6.06 5.51 5.41 5.28 4.20 4.78 4.60

d7 5,59 4.86 4.60 4.38 3.60 4.90 3.90

d8 5.41 4.72 4.90 4.60 4,20 5.51 4.30

d9 5.51 5.18 5.28 4.51 4.32 5.65 4.08

dio 4.60 4.30 4.30 4.34 3.85 5.00 2.70
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