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SUMMARY

The aim of the thesis is to investigate classes of model-based
approaches to statistical image analysis. We explored the properties
of models and examined the problem of parameter estimation from the
original image data and, in particular, from noisy versions of the
the scene. We concentrated on Markov random field (MRF) models, Markov
mesh random field (MMRF) models and Multi-dimensional Markov chain
(MDMC) models.

In Chapter 2, for the one-dimensional version of Markov random
fields, we developed a recursive technique which enables us to achieve
maximum likelihood estimation for the underlying parameter and to
carry out the EM algorithm for parameter estimation when only neisy
data are available. This technigue also enables us, in just a single
pass, to generate a sample from a one-dimensional Markov random field.
Although, unfortunately, this technigue cannot be extended to two- or
multi-dimensional models, it was applied to many cases in this thesis.
Since, for two-dimensional Markov random fields, the density of each
row (column), conditionally on all other rows (columns) is of the form
of a one-dimensional Markov random field, and since the distribution
of the original image, conditionally on the noisy version of data, is
still a Markov random field, the technique can be used on different
forms of conditional density of one row (column). In Chapter 3,
therefore, we developed the line-relaxation method for simulating
MRFs and maximum line pseudo-likelihood estimation of parameter(s),
and in Chapter 5, we developed a simultaneous procedure of parameter
estimation and restoration, in which 1line pseudo-likelihood and a
modified EM algorithm were used.

The first part of Chapter 3 and Chapter 4 concentrate on inference
for two-dimensional MRFs. We obtained a matrix expression for
partition functins for general models, and a more explicit form for a
multi-colour Ising model, and thus located the positions of cr;ticalﬁ
points of this multi-colour model. We examined the asymptotic
properties of an asymmetric, two-colour Ising model. For general
models, in Chapter 4, we explored asymptotic properties under an
"independence” or a "near independence" condition, and then developed
the approach of maximum approximate-likelihood estimation.

For three-dimensional MMRF models, in chapter 6, a generalization

of Devijver's F-G-H algorithm is developed for restoration.
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In Chapter 7, the recursive technique was again used to introduce
MDMC models, which form a natural extension of a Markov chain. By
suitable choice of model parameters, textures can be generated that
are similar to those simulated from MRFs, but the simulation
procedure 1is computationally much more economical. The recursive
technique also enables us to maximize the likelihood function of the
model.

For all three sorts of prior random field models considered in
this thesis, we developed a simultaneous procedure for parameter
estimation and image restoration, when only noisy data are available.
The currently restored image was used, together with noisy data, in
modified versions of the EM algorithm. In simulation studies, quite
good results were obtained, in terms of estimation of parameters in
both the original model and, particularly, in the noise model, and in

terms of restoration.




Chapter 1 1 Introduction

Chapter 1

Introduction
1.1 Image analysis and problems

A digital image is a multi-dimensional vector with positive
elements, which represent a pattern of radiant energy emitted by
objects in space. There is a very wide range of practical problems
requiring image processing. Examples include: various types of
satellite data; wultra-sound; thermal images; nuclear medicine;
computer vision; electron micrography and astronomy.

There are usually two kinds of image; grey-level images and
texture images. In the former each element takes a real value, while
in the latter each element takes a value, or state, or colour, from a
finite state space, for example {1,2,....,S}. The present thesis is
mainly concentrated on texture images.

Due to the nature of image blurring and data acquisition, a
general probleém in image processing is to remove the effect of blur
and noise. For this inverse problem, models play a very important
role. Models in image analysis are required to serve a dual role, both
as descriptions of images that are observed in practice and also as
means to generate synthetic images from image parameter(s).

Therefeore, there are three main problems in image analysis. The
first is to find and to investigate the properties of, suitable
models which may include the original models for the underlying images
and the 'noise-models' for observed data; the second is to recover the
original image from a ncisy image(Restoration); the third is to

estimate the parameter(s) in the models.
1.2 Stochastic constraints and Bayesian inference t

The stochastic model-based approach to image analysis is currently
very active, involving the use of random fields to provide constraints
on the original images. Some authors regard the constraints on the
original images as penalization. In the real scene, the image value or
colour at one site typically has a relationship with the colours of

its neighbouring sites. The objective of stochastic constraints is
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mainly to capture mostly these neighbour relationships.

Let x={X{; teD} be the original image, where D is usually a
regular lattice in multi-dimensional space. The lattice
elements(pixels) correspond to small patches in the scene. Some other
problem-specific image attributes, such as classification or boundary
labels, can also be regarded as part of x (Geman and Geman, 1984,
Silverman, et. al. 1990). Let © denote the set of all pessible x. It
is assumed in the Bayesian approach to image analysis that X=x is a
sample realization from a distribution p(x|B) over . p(x{B) is then
referred to as the 'Prior distribution'. It is also usually assumed
that for all teD, x; takes values from a specific set, either infinite
or finite, corresponding to grey-level images and texture images
respectively.

Now let Y denote the observed process, and Y=v be the observed
data. (In practice, there may bhe repeated observations of Y, or
additional observations obtained through different mechanisms from
that for Y, or even more complicated situations, but we shall imagine
that there is only a single observation process.) Denote by f(y|x.0)
the conditional distribution of VY given X. f(y|X,0) could represent
non-random transformations from X to Y, such as linear
transformations, or random transformations which involve, for
instance, optical blurring or obscurations(i.e. missing observationsj.
The sample space of Y is often different from that of X. For example,
X may be a texture image and Y a set of observed intensities.

The two distributions, pi{x|B) and f(y]|x,8), obviously determine
the joint distribution of X and Y as well as the Posterior
distribution of X given Y, denoted by P{(x|y.B,©). The modern methods
of model-based image restoration, such as Maximum A Posteriori(MAP)
restoration{Geman and Geman, 1984) and the Iterated Conditional
Modes (ICM) method(Besag, 1986), all depend uponrn the posterior
P{x|y,B,®), under the assumption that the parameters, B and @, are
known.

The estimation problem for parameters B and ©, which mav well not
be known in practice, from the observed process Y=y, can be regarded
as an incomplete-data or missing-data problem, or as a mixture-
distribution problem. It is well known that the EM algorithm
(Dempster, et al., 1977) is often used to treat this kind of problen.

However, due to the complicated structure of the distributions.
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especially the prior distribution p(x|B), the EM algorithm is
impossible to implement, except in some very special cases (Geman and
MeClure, 1987, Titterington, et al 1985, Titterington 1989) or by
Monto Carlo methods (Geman and McClure, 1985, Chalmond, 1988, Younes
1988b} .

1.3 Markov random field models and Markov mesh models

There has been considerable recent interest in Bayesian inference,
particularly involving prior models based on Markov random fields. It
has been mentioned that in real scenes, one pixel is typically
related to its neighbouring pixels. The neighbouring pixels of any
pixel are determined by a neighbourhood system, and the 'order' of the
model reflects the size of the considered neighbourhood. A Markov
random field model is classified as either causal or noncausal
depending on the structure of the neighbourhood. In causal models, the
concept of the 'past' of a pixel is introduced and only the past
neighbouring pixels influences the current pixel. Causal Markov random
fields are generally called Markov mesh random fields or simply Markov
meshes, while noncausal Markov random fields are called Markov random
fields. We now review some results for these two sorts of model,

together with their application in image analysis.
1.8.1 Markov random fields(MRF)

Following Cross and Jain(1983), we give the following definition
of a Markov random field.
Definition: A Markov random field is a joint probability density p(x)
on @ subject to the following conditions:
1). Positivity: p({x) > 0 for any xeQ;
2). Markov property: p(x;|x\xj) = p(xj|[x at neighbours of i).

In practice, we shall define a Markov random field by first
choosing a neighbourhood system, by naming the neighbours o; eacg
pixel, and then selecting p(x) from within the corresponding class of
probability distributions. Denote by 3i the neighbours of pixel i, so
that p(xglx\xy) = p(xj|x33). Due to the not-immediately-ohvious
consistency conditions. identified by the Hammersley-Clifford theorem
(see for example, Besag(1974, 1986)), it is necessary to preserve
symmetry in neighbourhood system: that is, if j is a neighbour of i

then i must be a neighbour of j. The general form of MRF distributions
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is given by Besag(1974). It is well known that the MRF model is
equivalent to the Gibbs random field model. and we therefore onlwv give

the form of the Gibbs distribution as follows:

exp{-U(x,B)} {1.3.1)

1
p(x|B) =
C(B)

where C(B) is a normalizing constant, called the partition function in

the discrete-model case, and the energy function U(x,B) is of the form

U(x,B) = £ Vo(x,B) (1.3.2)
v

in which ¢ ranges over cliques associated with the specified
neighbourhood system on D, and the potentials Vo(x,B) are functions
supported on them. (A cligque ¢ is either a single pixel or a set of
pixels such that every pair of distinct pixels in ¢ are neighbours.)

Although they have been studied extensively during the last 50
vears 1in statistical physics,——especially the Ising model (Kaufman,
1949, Kramers and Wannier, 1944, Newell and Montrell, 1953), Markov
random fields are relative newcomers on the mathematical and
statistical scenes, remarkably little prog;ess on inference
methodology has been made, especially in the discrete-model case.
Tjostheim(1978, 1983) developed classes of spatial series models which
are extensions of one dimensional time-series models to
multi-dimensional space. and the asymptotic properties of estimation
are investigated. Pickard(1976, 1977, 1982, 1987) developed the
asvmptotic inference for the Ising model. Possolo(1986) discussed
methods of parameter estimation for binary MRFs. For the application
of MRF to image processing, we refer to two seminal papers by Geman
and Geman(1984) and Besag(1986). Geman and Geman introduced an
ingenious technique for maximizing the posterior distribution, through
simulated annealing and Gibbs samplers. Although the procedure enables
escape from any local maxima to occur, it is, computationally! very
demanding. Besag's{1986) iterated conditional modes(ICM} method
concentrates on the local dependence structure of the MRFs. and
produces restored images very cheaply and gquickly, but it usually
only exhibits 1local convergence. For further work on the use and
estimation of MRF models with applications in image analysis, see
Chapter 4 and Chapter 5 of the present thesis.

We shall concentrate on pairwise interaction MRFs(Besag, 1974,
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1986), in which, for any x in the sample space 0,

1
p(x|B) = C(B)EXP{ i Gjlxy,B) + IL Gyq(xy,%5,8) } (1.3.83)

13
where, to ensure the Markov property, Gj5=0 unless i, J are
neighbours.

Among this class of MRF models, Auto-normal models are often used
in practice, especially in plant ecology. Following Besag{1974, 1986),

for the simplest description of a Gaussian MRF with zero mean, Xj=xj
has conditional density:

p(XiIXai) © exp(—;é(xi - I Binj)z/)\i} (1.3.4)
RE
where (1) Bj4=0 unless pixels 1 and j are neighbours, (2) 5ij*j:5jixi-
There may sometimes be further constraints on parameters. Then it
follows that

pi(x) = {27)7%0|Qi%exp{ -¥x'Qx) (1.3.5)

where Q=A"1B, A is the nxn diagonal matrix with diagonal entries \j, B
is an nxn matrix with unit diagonal entries and with -Bjj as (i,j)h
element, and n is the dimension of x. We shall use formula (1.3.5) in

our later discussion about the ICM method and the EM algorithm in
Chapter 5.

1.3.2 Markov meshes

The Markov mesh model is a sort of multi-dimensional
generalization of the Markov chain., It was introduced by Abend et
al(1965), and was further developed by Kanal(1980), Devijver(1988) and
Lacroix(1987) for the two-dimensional case. In the model, the pixels
are ordered, for example, in the two-dimensional case, through a
diagonal direction. To be precise, the past of pixel (i,j) is defined
as {(m,n): m<i or n<j}. Then, for the second-order model, the
conditional density of pixel (i,j), given states at all past pixels:

is given by

P(xij]xmn, m<i or n<j) = P(Xijlxi—l,jsxi,j—l) (1.3.8)

All these conditional densities determine the distribution over
the entire lattice. Although the models exhibit causal dependence in

that samples from them are generated directionally, they can find
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application in image segmentation, texture analysis and synthesis. For
the pixel labelling problem, Devijver(i1988) and Lacroix(1987)
develoved the F-G-H algorithm, in which, a "local decomposition
relationship" and a “lattice recurrence relationship" are used to
calculate the density of each pixel, conditionally wupon all the
observed data on the past rectangular pixels. In Chapter 6, we shall

extend this algorithm to the three-dimensional case.
1.4 Missing data and the EM algorithm

It often happens in practice that some data are not observed
directly, but only indirectly, through other data. More precisely, we
assume there are two sample spaces ¥ and ¥. X from X is not observed;
only a realization from ¥, namely y, is observed. The EM algorithm is
then an iterative computational approach for maximizing the marginal
distribution of y to find maximum likelibood estimates. Since the
relationship between X and Y can vary widely in nature, the EM
algorithm is useful for many practical probliems, as Dempster et al
described: )

The EM algorithm is remarkable in part because of the simplicity
and generality of the associated theory, and in part because of the
wide range of examples which fall under its umbrella.

Suppose that the joint density over Xx¥ is f(x,v}le) with unknown
parameter o, and that Y=y is observed. x is then called missing data.

The EM algorithm is therefore designed to find the maximizer of

g{vie) = Jf(x,y]m)dx. (1.4.1)
X

We give a brief illustration of the EM algorithm for the following
exponential family cases. Suppose we know the distributional ferm of
X. denoted by p(x|B), and the conditional distribution of Y, given X,
namely, f(y|x.9), and that they take the form

p(x|B) = B, {x)exp{u(B) T,(x)}/A, (B} (1.4.2)

f(ylx,8) = B,(x,y)exp{n(0) T,(x,v)}/A,(0), (1.4.8)

where u(B), n(e), T,(x) and T,(x,y} are all vectors with compatible

dimensions. It is known that Y is a sort of mixture distribution if X
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only takes values from a finite state space. The EM algorithm consists

of two steps, called E-step and M-step, as follows:

E-step: Assume that g(K) and e(kK) are current values, compute

E(TI(X)ly,ﬁ(k),e(k)) = T, (k) (1.4.4)

and .
E(T,(X,y)|y,8(K) elk)) = 1, (k) (1.4.5)

M-step: Find B(K*1) to maximize
w(B)'r, (%) - 1ogla,(B)] (1.4.6)
and o(k*1) 5 maximize
n(e) 'T,K) ~ 1ogla,(0)]. (1.4.7)

Both (1.4.6) and (1.4.7) are of the familiar form of the
log-likelihood for maximum-likelihood estimation given data from a
regular exponential family, in particular, for this problem, data from
distribution (1.4.2) and from the conditional distribution (1.4.8)
respectively. Furthermore, Tl(k) and Tz(k) are the expected values of
the sufficient statistics computed from observed data, based on the
(conditional) distributions. In many cases, (1.4.é) and (1.4.7) can be
maximized either directly or by an iterative computational approach,
such as the Newton-Raphson method. In the following chapters of this
thesis., we will sometimes use the EM algorithm to maximize marginal or
conditional marginal distributions of some random variables. Those
random variables together with some other missing variables will
satisfy the (conditional) distributional forms given in (1.4.2) and
(1.4.3). Therefore, detailed descriptions of the EM algorithm are
omitted at those corresponding places of the present thesis.

However, 1in some cases, especially in image analysis, the
conditional distribution of X given Y=y is very complicated, so that
the E-step is infeasible. Although the Monte Carlo method may be a
useful approach to the computation of T, and T,, it may still %ot be
satisfied because of either the difficulty of generating samples from
the corresponding conditional distribution or the heavy computational
burden. Another difficulty involved in the EM algorithm is that it may
not always be possible to maximize (1.4.8) and (1.4.7) due to the
complexity of the log-likelihood functions of the corresponding
processes.

In statistical image processing, X represents the original image,
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while v is the observed process. Little is known about the
probabilistic or statistical properties of those prior distributions
which are commonly wused in the current literature, while the
conditional distributions or the posteriors are equally or even more
complicated. Both E-step and M-step are infeasible, except for some
special cases. For instance, in chapter 2, we develop a recursive
technique for a one-dimensional version of Markov random fields in
order to carry out an iterative procedure for maximizing the
log-likelihoood and to compute the <corresponding conditional
expectations. For continuous-valued images, the EM algorithm was used
in the case of a prior Markov random field model with only one
parameter by Geman and McClure(1987). Chalmond(1988) used the EM
algorithm together with a Monte Carlo technique, known as the "Gibbs
sampler " to maximize a pseudo-likelihood, his iterative approach was
in fact  made up of simultaneous parameter estimation and
reconstruction. Besag{1986) alsc proposed an iterative procedure for
simultaneous parameter estimation and image restoration, by using his
coding technique(Besag, 1974, 1976) or its modification for parameter
estimation based on some x obtained by a restoration technique. The EM
algorithm was not used, however, so the estimated parameters may be
unreliable when compared with the true values.

The EM algorithm increases the likelihood at each cycle, and the
well-known concavity property of the log-likelihood for regular
exponential families guarantees convergence. However, in some cases,
the maximizing value lies on the boundary of the parameter space, or
there is more than one maximizing point. Therefore, the EM algorithm
is usually of local convergence, and the converged value depends upon
the starting point. For more detail about the EM algorithm and its
properties, see Dempster et al(1977) and Wu(1983).

1.5 Arrangement of the thesis

The aim of this project is to investigate classes of model based
approaches to statistical image analysis, and to examine the three
problems mentioncd in the first section of this chapter. We present
brief summaries for each chapter as follows,

In Chapter 2, for the one-dimensional version of Markov random

fields, (we shall refer tc them as Gibbs chains), we develop a
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recursive technique which enables us to simulate them directly and to
carry out maximum likelihood estimation of parameters. Usually, this
iterative procedure is linearly convergent, The same technigue also
enables us to compute the conditional expectations associated with the
EM algorithm, when only a partially observed process is available,
with the result that both the E-step and the M-step can be carried
out. Some asymptotic properties are also discussed.

In Chapter 3, we first examine a simple example of a Markov
random field, namely, the natural extension of the Ising model to the
multi-colour case. A matrix representation of the partition function
is derived and, from it, the critical points of the model are found.
For a more special case, the asymmetric two-colour Ising model with
perivdic boundary conditions, limiting distributional results are
obtained for the sufficient statistics. Applications of these
asymptotic properties are discussed. Then, for general Markov random
fields, we develop 1line stochastic relaxation, using the recursion
technigue for the one-dimensional version of Markov random fields, in
order to generate samples from the fields. Finally in this Chapter, we
discuss maximum pseudo-likelihood parameter estimation for general
Markov random fields. The principal tools are the conditional
distributions of a block (usually a line) of pixels, given the values
at their neighbouring pixels.

In Chapter 4, we still consider Markov random fields on
two-dimensional rectangular lattices. It is shown that if the
interaction parameter(s) between rows is zero or nearly equal to zero,
certain statistics are asymptotically normal when the number of rows
is large and that of columns is fixed. These results can be used to
obtain an approximate likelihood function, for Markov random fields,
from which one can estimate the underlying parameter(s). Other
statistical applications of the results are also discussed.

In Chapter 5, we discuss the problem of parameter estimation for
Markov random fields from noisy data. Since this is usually done
together with image restoration, we first discuss existing restoration
methods. A detailed discussion of Besag's ICM mothod(1986) in the
auto-normal model <case is provided. Then, we point out the
difficulties of the EM algorithm. Again in the auto-normal case, we
examine the difference between the EM algorithm and the iterative

procedure proposed by Besag(1986) for simultaneous parameter
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estimation and image restoration. Finally, an iterative procedure of
simultaneous parameter estimation and restoration is proposed. It is
almost the same as that proposed by Besag{1986), except that a
modified EM algorithm is used at each cyvcle of the iteration.

In Chapter 6, we discuss problems associated with Markov mesh
models. For the three-dimensional case, we consider a third-order
model, which is a natural generalization from two to three dimensions,
and a generalization of Devijver's F-G-H algorithm for image
restoration is developed. We then discuss the parameter estimation
problem, in particular, for the two-dimensional case, from either the
original image or a noisy version of the image. A modified EM
algorithm, similar to that in Chapter 5, is examined.

In Chapter 7, we introduce a causal dependence model, namely, a
multi-dimensional Markov chain model. It is a natural extension of the
Markov chain, in which each row represents one point of a special
Markov chain. By suitable choice of model parameters, textures can be
simulated that are similar to those generated by Markov random fields,
(see Cross and Jain(1983) for various textures simulated from Markowv
random fields), but the simulation procedure is.computationally much
more economical. The problem of parameter estimation is examined for
the cases of non-noisy and noisy data. In the latter case, again using
an idea similar to that in Chapter 5, procedures are developed for
simultaneous parameter estimation and image restoration.

Finally, in Chapter 8, we present further general discussion about
problems in statistical image analysis. Concluding remarks about the
present thesis are given there.

In each of Chapters 2 to 7, illustrative examples or numerical

results are provided at appropriate places.
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Chapter 2

Parameter Estimation For Gibbs Chains And Hidden Gibbs Chains
2.1. Introduction

A stationary Markov chain X=(X{,Xp,...,Xy)', Xje{1.,2,...,8}, is

generally represented by its probabilistic functions,
P; = Pr(Xq=1) i=1,2,...8 (2.1.1)
Pij = Pr(xt+1=jlxt=i) i,j=1,2,..8. {(2.1.2)

Although this gives a very simple description of a Markov chain,
it is not always convenient as a basis for statistical inference. In
this chapter, we will discuss Gibbs chains, which follows a more
general model than the Markov chain model above, but which satisfy

Markov properties as follows:
PI‘(th{Xj! j%t}) = Pr(thXtﬂ,Xttg,..,Xt*r) (2.1.8)
Pr(Xt|X1,X2,..Xth1) = PP(XtIXt_l,Xt_z,..,Xt_r), {2.1.4)

where r is called the order of the model. We will provide the
definition of the Gibbs chain, which is in fact the one-dimensional
version of the Markov random field or Gibbs field. It will also be
shown that the Markov chain represented by (2.1.1) and (2.1.2) can be
represented as a first-order Gibbs chain. It will be helpful to refer
to the subscript of Xy as the time-point.

It often happens that the stochastic process itself cannot be
observed directly. Instead, another process, either with continuous or
discrete state space, is observed. This is known as a Hidden Markov
model (HMM) and, in particular, as a partially observed Gibbs
chain(POGC) model. We also refer to the observed data as the noisy
process. The model finds application in various areas, including.
signal processing and medical statistics. Both the original chain
model and the noise model are parameterized. In this chapter, some
recurrence techniques are developed for carrying out both steps,
especially the E-Step, of the EM algorithm.

Let the observed process be Y = (Yl,Yz,,..,YN)'. We make a simple
assumption for the conditional distribution Pr(Y}X,e), namely, that of

conditional independence:




Chapter 2 12 Gibbs Chain

Pr(Y|X,0) = Fr Fi(Yi1X4.0).
i=1
For the Markov chain represented by (2.1.1) and (2.1.2) with
observed parallel discrete process Y, Baum and Petrie(1966) proved the
consistency of maximum likelihood estimation(MLE) based on the
likelihood function Pr(Y), and an iterative procedure for finding the
MLE was derived{(Baum and Eagon, 1967, Baum et al., 1970). The
procedure is mainly based on forward and backward recursions. The
algorithm was later generalized to the case with multi-dimensional
noisy data at each time-point by Liporace(1982) and Rabiner et al
(1985), and was used for the recognition of isolated word
vocabularies(Rabiner et al, 1984). Baum's method can be shown to be an
example of the EM algorithm. In this chapter, we develop corresponding
forward and backward recursions in the context of Gibbs chains. The
structure of the Gibbs chain +treats the forward and backward
directions symmetrically and this symmetry is repeated in the
techniques of this chapter. Baum's technique, on the other hand,
treated the two directions asymmetrically, in, parallel with the
familiar way of defining the Markov chain as in {2.1.1) and (2.1.2).
This chapter is arranged as follows. In Section 2.2, we give the
definition of pairwise interaction Gibbs chains, then discuss the
problem of parameter estimation and its asymptotic properties, and we
show that the Markov chain, described by (2.1.1) and (2.1.2), is a
first-order Gibbs chain. In Section 2.3, we will discuss the procedure
for carrying out the EM algorithm in the case where only the noisy
process 1is observed. In Section 2.4, some simulation results are
presented. The main results of this chapter appear in Qian and
Titterington(1990a).

2.2. Inference for Gibbs chains

Definition: A stochastic process X=(Xy,Xp,...,Xy)' is called a
pairwise interaction Gibbs chain(PIGC) or simply Gibbs chain if its

probability function can be written
r N-u
P(X=x|8) = exp{ £ T G,j(Xy,Xi4,.B)}/0(B) (2.2.1)
u=0 i=1

where C(B) is a normalizing factor, B is the parameter, and r is
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called the order of the model. We rewrite Ggj(xXi.xi.8) as g;(xi.B).

Property: If X is a PIGC, then

P(Xil{xj: 1<jEN, jz#i}) = P(xilxiil,xiiz,...xitr) {2.2.2)
N-1
Example: p(X=x[B) = exp{B I 8(Xj,Xj4+1)}/C(B) (2.2.3)
i=1
1 s=t
where 65(s,t) = { 0 set, (2.2.4)

If B>0, model (2.2.3) implies that neighbouring time-points tend
to have the same value, and that all the states are treated equally.
Assume that X=x is observed. In order to obtain the maximum
likelihood estimator of B from (2.2.1), we are required to deal with
the normalizing constant C(B). When B is one-dimensional, we can use a
search method to maximize (2.2.1) if we know how to compute C(B). On
the other hand, if we assume that the exponential part of probability
function (2.2.1) is linear in the parameter B, ie. P(X|B)=exp(B'Z(X)),
where Z(X) is a vector with the same dimension as B, maximizing P(X|B)
is usually equivalent to solving the following equation,

Ip(B) = Z(X) - TS —C(B) =0 (2.2.5)

where d/dB denotes the gradient vector. This equation is also

equivalent to

Z(X) - EgZ(X) = 0. (2.2.6)

It is therefore very important to be able to compute C(B) or to
compute the expectation of the exponential part of P({X|B). The
following double~theorem solves this problem for the first-order and
the second-order cases respectively. The results can be naturally
extended to higher-order cases, although the computational burden
increases with the order r. For clarity, explicit mention of(B is

largely omitted in the notation of the theoren.

Theorem 2.2.1(a) Let X=(X1.,Xg....,Xy)' be a first order Gibbs chain
(r=1), with state space {(1,2,...,8}, and probability function (2.2.1).
Also let a; = [aj(1),...a3(8)1", and b; = [bj(1),...b;(S)] be

S-dimensional vectors, obtained by the following forward and backward

recursions,

aj(s) = exp(gq(s)) s=1,2,..,8
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s
aj(s) = (t§1a1~1(t)exp{61,i_l(t,s)}>exp{gi(s)}
i=2,8,...N, s=1,2,...,8

and
by(s)

exp{gn(s)} s=1,2,...,8

S
bj(s) = <t§1b1+1(t)eXD{Gl,i(s.t)})exp(gi(S)}
i=N-1,N-2,...,1, s=1,2,...,S.

Then,
1)» PP(Xi+1=t|Xi=S,Xi_1,,,Xl) = Pr(Xi+1=t|Xi=S)
= bj.1(t)exp{Gy j(s,t)}.

2}). Pr(Xj=s) = aj(s)bj(s)exp{-gi(s)}/C.

3). Pr(Xi=s,Xi+1=t) = ai(S)bi+1(t)eXD{Gl’i(S,t)}/C.

w

4)-ce) = E aj(s)bi(s)exp(-gj(s))  for any I. .
Theorem 2.2.1(b) For the second-order Gibbs chain, let aj=(aj(s,t))
and bj= (bj(s,t)), s,t=1,2,...8, i=1,2,...N, be SxS matrices defined

by the following forward and backward recursions, respectively:

a; = diag(exp{gy(1)},...,exp{g(S)})
S
aj(s,t)=exp{g;(t)+6y1 j-1(s,t)} I aj_j(v,s)exp{Gy j_a(v,t)},
v=1
s, t=1,2,...8, i=2,3,...N,
and
by = diag(exp{gy(1)},...,exp{gyx(S)}) . )
S
bj(s,t)=exp{(g;(s)+6y (s,t)} T bj.1(t,v)exp{Gz j(s,v))
v=]

s,t=1.2,...5,i=N-1,N-2,...1.
Then,
1) Pr(XiIXi_l,Ximz,...Xl) = Pr(xilxi_l.xi,z)

= exp{Gp jp(xj.2.%j)} bj_3(X5_7,%1).




Chapter 2 15 Gibbs Chain

2) Prixi Xjs1) = 343 (X1,X541)b3 (x3,%541)x
exp{-g3 (Xj)-€i+1 (Xj41)-61 i(x1,%X541)}/C.
3) Prixi Xis1.Xjsp) = 2541 (Xi,Xi41)bi41 (Xi41.X542)x

exp{Gp, i (Xj.X142) ~ 8i+1(X341)}/C.

The proofs are straightforward. For instance, for Theorem 2.2.1,

note that for any i and j with i+1<j,

S
PP(Xi+1,Xi+2,...,Xj) = T PI‘(Xi=S,Xi+1,...Xj) (2.2.7)
s=1
we only need to show that
Pr(xi,xi+1,...,xj) = ai(xi)bj(xj)x
Jj-1 j-1
exp{ I gy(Xy) + T G (Xy.Xy41)) (2.2.8)
v=i-1 v=i

Therefore, the detailed proofs are omitted. For numerical
stability in practical calculation, we normalize® a; and by at each
time point to prevent overflow. The theorems enable us to compute the
expectation of g;(X;), Glji(xi,xi+1), etc, and thereby, that of Z(X),
so that we may solve equation (2.2.8) with the help of the following

iteration,

Bp+1 = By + MTI[Z(X) - E(Z(X)|By)], (2.2.9)

where M is a positive definite matrix. This is not the exact
Newton-Raphson method, but note that the derivative matrix of 1p(B) is
equal to -~Var[Z(X)[B]. Since this is usually a negative definite
matrix, the iteration is therefore usually linearly convergent to a
local maximum if M 1is large enough, in the sense of exceeding
Var[Z(X){B] in terms of the Loewner ordering. In some very special
cases, for the example provided above, Var[Z(X)|B) can be calcllated”
exactly, (see Chapter 4 for details), and we can then use the
Newton-Raphson method, which is of second order of convergence.

Note that from 1) of the theorem, Pr(X;|X,=x,, wv<i, B) can be
calculated, so that the Gibbs chain can be generated from X1 to Xy
in one pass, if we first compute all the b;(s). Similarly, if we
first compute all the a;(s), we can generate the Gibbs chain from XN

to X;. For multi-dimensional Gibbs fields, the same results are
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unlikely to obtain, but in the following chapters the recursion
technique is used in several cases associated with multi-dimensional
lattice systems.

We now concentrate on asymptotic properties. Write Z(X) as Zy(X),
and logC(B) as Icy(B). Assume that the domain of B is 2, a connected
open subset of a finite dimensional space, and that Bg,eft is the true
value of the parameter. Denote by BN the maximum likelihood estimate
of B,. For the first-order «case, note that the recurrence
relationships for a; and b; in Theorem 2.2.1(a) can be written in the

matrix form,

1
aj = AiBi-1 aj (2.2.10)
by = AiBibisy (2.2.11)
where Aj=diag(exp{g;(1)},...,exp{g;(S}}) and Bj=[exp{Gy j(s,t)}Igxs.

We thus obtain the following formula for C(B):

C(B) = Lg A1B1Az...By_1AjLg. (2.2.12)

where Lg = (1,1....1)'

Corollary: When r=1, if gy=g, i=1,2,...N, and Gy j=6, i=1,2,..N-1,
let « be the maximum eigenvalue of matrix A¥BA%. (« is positive since
all the elements of matrix A¥BA% are positive(Varga, 1962).) Then

N lieg(B) — logx, as N — o, .

We will not specify any particular form for the functions g; and
Gij' nor any particular condition on them, in order to discuss the
properties of 1cy(®) or its asymptotic behaviour. Instead, we provide
the following lemma about the asymptotic properties of Zy(X), obtained

under some assumptions about the asymptotic properties of Icyn(B).

Lemma 2.2.1: Suppose that, for any pef, as N>,

N12eg(B) —— «o(B) (2.2.13) "
NN 1oy (B) - @ (B)T — 0 (2.2.14)
dB
dZ
NI —lcy(B) —m a,(B) (2.2.15)
ds?

where «4(B), «,(B) and «,(B) are defined on Q. Of these, «,{(B) is a
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vector with the same dimension as B and «,(B) is a matrix. The

convergence is assumed to be uniform on any compact subset of ©. Then,
as N—ox,

N1zg(X) —X s «, (By) (2.2.16)
NEIN"1Z(R) - &, (Bo)] —2— N(O,«,(Bo)). (2.2.17)

Proof: Choose a positive number 6 such that D={B: |B-B,|<6}cft. For
any vector A with the same dimension as B, and for any scalar t,

Bo+tN~1theD and B,+N*%ti\eD when N is sufficiently large. Consider the

random variables,

v = NIN'Zyg(X); W= NE\'[Zy(X) - Ne, (Bg) 1.
The moment-generating functions of V and W are

Cn (Bo+N"1tX) /Cy(Byg)

If

Mv(t IBO,)\)
and

exp{~NEtX &, (Bo) YON (B o+N~%tN) /Cy(B,) .

Thus,  logMy(t|8g,7) = N“lx‘%EICN(BO + N-1t,n),

MW(t|gor)\)

and

2 -~
long(tIBO,X)=N%X'[N‘lgwlcN(Bo)—«l(BO}]+(2N)“1t2k'E—;ICN(BO+N“5tx2)x
dB dp

where [y |, |t,|<|t].

Then the uniform convergence assumed in (2.2.18)—(2.2.15) on the

compact set D ensures that for any te(-o,+w),

My(t|By,») — exp{t\'«, (B,))
and

My (t]Bg,2) — exp{te\ «, (B,)N/2} .

Since eXp{t2x'az(50)x/2} is the generating function of the normal
distribution with =zero mean and variance x'«z(Bo)x, and since
exp{tx'ml(so)} is that of the degenerate distribution at k'al(Bo). it
follows that (Moran(1968))

p
v =5, N, (Bg)
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w2, NCO,» &, (Bo)A). #

Theorem 2.2.2. Suppose that the conditions in the Lemma hold, and
that

d d
<, (B) = — B); «,(B) = —x,(B); «,(B)>0,
1( ) dﬁ‘xo( ) 2( ) dB 1( ) 2( )
Then, as N -2 o
R Pr
1) ﬁN — By
% B D -1
2) NE(By - Bg) — N(0,x,(By) 1),

Proof: 1). Note that h(B)=5'«1(B°)—m0(B} is a concave function, and
that B, is the maximum point. For any e>0, define
Dy = {B; |B-Bol=c, Befn)}
61 = inf{h(By)-h(B), BeDqy}.

Then &, 1is positive. Consider another concave function

1

It

hN(B)=N'1[B'ZN(X)—1cN(B)]. By is the maximum point of hy. The uniform
convergence of N‘llcN(ﬁ) assumed in the lemma on the compact subset Dy

of & therefore ensures that, for N sufficiently lafge, if

IN"IZN(X) - a, (B,) <,
then, hy(B) < hy(B,) for any BeDy.

Since hy is concave with maximum point By, By must lie in the
region {B; |B-B,|<e}. That means that for any e>»0, there exists a &>0
such that, for N sufficiently large,

Pr(|By-Bol<e) » Pr(N"1zy(X)-e«, (By)[<8).
The result then follows from the Lemma.

2). By using the result in 1), the proof for 2) is standard.
#

The assumption in the lemma and the theorem is very naturall, For~
the particular case in the Corollary to Theorem 2.2.1. we know that
®5(B), «,(B} and «,(B) are usually the logarithm of the maximum
eigenvalue of the matrix A¥Ba%¥, and its first-order and second-order
derivatives, repectively. For the example represented by (2.2.3) and
(2.2.4),

Ay = 1g, By = (eP-1)Ig + LgLg',
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«=¢eP+ s -1, and Cyx(B) = 5(ef + s - N1,

i}

Then
oo (B)=log(eP+5-1); «,(B)=eP/(eP+s-1); «,(B)=eP(5-1)/(eP+5-1)2,

For the first-order stationary Markov chain represented by (2.1.1)

and (2.1.2),

s s
Pr(X|P,p) = Pg(1) M T pgiV(X:s:t)

s=1t=1
where

V(X,s,t) = § 8(Xj.1.,8)8(xq,t)
i=2
and &6(s,t)=6gy, the Kronecker delta function.

Its probability function can therefore be written in Gibbs-chain
form. However, because of the constraints among the probabilistic
parameters, it is difficult to make the exponential part linear in the
parameter even 1f the model 1is re-parameterized, for example by
»ij=logpi4, etc.

Finally, in this section, we mention two 4pplications of this
Gibbs chain model and the recursion technique described, that appear
in the later parts of this thesis. One is in Chapter 5, for the
two-dimensional Markov random field{MRF) (also see Qian and
Titterington, 1989, 1990a), where the technique is used to obtain the
relaxation method for simulating MRF and to develop the 'coding'
method for estimating the parameters of MRF. Another is in Chapter 7,
which describes a new texture model, based on a multi-dimensional
Gibbs chain which was introduced and shown to be very useful in Qian

and Titterington(1990c).

2.3 Parameter estimation for hidden Gibbs chains

In this section we discuss the problem of parameter estimatifon for
the partially observed Gibbs chain{(POGC). It was mentioned earlier
that the Gibbs chain may itself be unobservable, but that, instead, an
observed parallel noisy process Y=y may be available. Assume that the
density of X is as in (2.2.1), and that. given the original chain. X,
the noisy data y; at different time-points are conditionally
independent, each noise variable depending only on the original state

at the same time-point. It is not necessary for each noise variable to
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have the same conditional distribution, but we assume that all such

distributions can be written in exponential-family form. Thus

N
P(Y=y|X=x,0) = exp{_tldi(xi,yi,e)} (2.8.1)
l.“:

where © is an unknown parameter.

Lemma 2.3.1 Given Y=y, the conditional probability function of X is

still of Gibbs-chain form with the same order as that of X:

N - r N-u
Pr(X=xly,o,B)=exp{ I g(xj]y;,8,B)+ L T Gyjl(xj,Xy41.B)}/C(Y,0,B),

i=1 u=1 i=1
(2.8.2)
Pr(X=x|y,e,B)=exp{ I g(x;]y;.9,B)+ T T Guj(xj,X341,B)}/C(Y,0,B),
where i=1 p=1 i=1
(2.8.2)

factor.

Note that, if G, =0, for u3l, the y; are independent mixture
variables, in which case the EM algorithm can be used to obtain
parameter estimates (Titterington et al, 1985, Titterington, 1989).
Note that the E-step of the EM algorithm can be qarried out with the
help of the above Lemma and the recursion technigue in the previous
section. The EM algorithm for the POGC model can therefore be

described as follows.

E-step: Assume Oy and By are the current values for 6 and 8. Compute

E[lc’gpr(xzy{erﬁ) !y!ekyﬁk]v

which is a function of 6 and B. Since Pr(X,Y|e,B)=P(X|B)Pr(YiX,e), the
conditional expectation can be separated into two parts, one of which
is a function of B, namely, Qq(B)=E[logP(X[B)|y.6k.B], while the
other is a function of ©, Qg(e)=E[logPy|X,0)|y,6).By].

M-step: Maximize the above two functions Q(B) and Qp(8) to obtain
the new values, 6y,q and Bk+1. respectively. For the particulag case”
where P(X|e)mexp{e'Z(X)}, Ok+1 is obtained by maximizing
e'E[Z(X)]Y,GK,Bk] - logC(®) or, equivalently, by solving the equation

E[Z(X)|Y,0p.B] - E[Z(X)[B] = 0

Therefore, as we mentioned in Chapter 1, the M-step is a procedure
equivalent to maximizing a likelihood function. it is necessary to

use the recursion technique described in the last section.
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The ease or otherwise of computation in practice depends on the
exact forms of P(X|B) and P(Y[X,8). In the M-step, the maximization
procedure for Q(B) is similar to the procedure described in Section
2.2 for estimating © from X, which might itself require an iterative
procedure. At each <c¢ycle of +the EM algorithm, a reasonable,
approximate procedure might be constructed for carrying out this
iteration in the M-step.

Another problem is whether or not Q,(€) can be maximized. For
regular exponential family, it is usually not difficult to maximize
Qo(©). We have assumed conditional independence for P(Y|X,6). For some
special cases, for example, Y=AX+e, where A is a band matrix, and e
is a multi-dimensional normal varible, it may be still possible to
carry out the EM algorithm, except that the order of the conditional
distribution P{X|Y) is higher than that of the original chain.

2.4. Numerical results

We obtained simulation results for several cases. The original
model for X was that of the Example in Section 2, invelving only one

parameter, B. For all the iterative procedures, we used
w = [I(e(k) B(K)y1—(o(k+1) glk+l)yry 2

as the basis for a stopping rule: if w<w,, the iteration stopped. [I*||,
denotes the Euclidean Norm, and », was pre-specified.

(1}. In the first case, we took S§=2 apd $=3, and imposed Gaussian
additive noise with variance o?. We took various values for N and o?,
and, for each situation, we generated 50 samples. We obtained
parameter estimates for the complete-data case and for the case where
X is missing, and the results were summarized by the sample means and
the sample variances. The results are presented in Table 2.1 for S$=2
and Table 2.2 for S$=3. The true B, is 1.5, and wy=0.000001. The
starting values of B and o? were both taken to be 1.0. COM denot;s the
complete data case, INC the case where X is missing, By denotes the
asymptotic variance of the MLE of By, namely. «,(Bo)"1/N, and By. &%,
BV and GZV denote the sample means and sample variances of B and o?,
respectively.

Our experiment showed that convergence of the EM algorithm in this
case was quite fast. For most of the situations described above, the

iteration stopped within 20 cyvcles. The estimates for the INC cases
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were quite close to those for the COM cases, and the sample variances
of B and o? decreased as either No= or o?-50. Note that «Z(Bo)’l, which
is the asymptotic variance of N%(EN—BO), is now
(e1-5+s—1)2/[(S—1)e1°5]. Divided by the sample number N, they, ie, By
in the tables, provide comparisons with the sample variances BV at the
COM case. They turn out to be quite similar.

2). Table 2.3 provides simulated results for the same original model
with S§=3, but where the imposed noisy chains were assumed to be

discrete-valued with the same state space {1,2,3} as X, and
P(yi=t|xj=s) = exp{es(s,t)}/(2 + %),

involving only a single parameter, ©. The larger © is, the higher is
the probability with which y; takes the same value as x;. Note that
the trend in the sample variances from Table 2.3 is similar, as ©

* decreases in Table 2.1 and Table

increases, to that observed as o
2.2.

In the iterations for this model, we took w, to be 0.00005, the
true values B, and &, were 1.0, and the starting values of @ and B
were both taken to be 0.5. For each situation, we simulated 30
samples. We noticed that, for many situations, the estimates converged
slowly. It is also possible that, when N is small and © large, Y is
almost the same as X, in which case the estimate of © might be very

large.

i COM T iNe

~

N | By By By 8% 8%y | By By ofy o’y

(1). c? = 0.36

200{0.0335 1.5172 0.0892 0.3586 0.0015]1.5056 0.1731 0.3483 0.0015
1400;0.0168 1.5286 0.0179 0.3604 0.0005]1.5693 0.0749 0.3610 0.0011
600|0.0112 1.5214 0.0081 0.3608 0.0003]1.5229 0.0389 0.3598 0.0006

[e]
Q

o
-
(o]
()
(]

(2). o% = 0.16
J .
200 0.1594 0.0003{1.53878 0.0750 0.1557 0.0003 '
400 0.1602 0.0001{1.5590 0.0750 0.1621 0.0002
600 0.1603 0.0001]1.5380 0.0177% 0.1607 0.0001
{3). a? = 0.04 |
200 0.0388 0.000011.5212 0.0420 0.0387 0.0000
400 0.0400 0.000011.5249 0.0186 0.0401 0,0000
600 0.0401 0.0000{1.5233 0.0095 0.0400 0.0000

Table 2.1. The results for the symmetric binary chain
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COM INC
N By By By 8%y oy By By oty 8%y
(1). c? = 0.36
!
200(0.0234 1.5118 0.0295 0.3586 0.0015]1.5362 0.0835 0.3498 0.0027
40010.0117 1.5181 0.0083 (0.3604 0.0005(1.5235 0.0382 0.3665 0.0014
60010.0077 1.5118 0.0061 0.3608 0.0003}1.5276 0.0174 0.3622 0.0009
(2). c? = 0.16
200 0.1594 0.0003811.5362 0.0501 0.1595 0.0005%
400 0.1602 0.000111.5256 0.0179 0.1638 0.0002
600 0.1603 0.0001{1.5218 0.0101 0.1614 0.0001
(3) o? = 0.04
200 0.0398 0.0000{1.5062 0.0289 0.0395 0.0000
400 0.0400 0.0000}1.5110 0.0088 0.0396 0.0000
600 0.0401 ¢.0000}1.5105 0.0062 0.0401 0.0000
Table 2.2. The results for S$=3.
COM INC
N | By By By 8y 8y By By Sy Sy
(1). & =0.9
300]0.0137 0.9963 0.0174 0.9021 0.0129|0.7435 0.1679 0.7923 0.1956
60010.0068 1.0196 0.0052 0.9115 0.0074]0.6610 0.0422 0.7628 0.1147
90010.0046 00,9859 0.0041 0.9022 0.00230.8372 0.1163 0.8824 0.0838
(2. e = 1.2
1.2138 0.0139[(0.9004 0.1403 1.1453 0.2041
1.2033 0.0078}0.9991 D.0894 1.1512 0.0597
1.2024 0.0021{1.0083 0.0265 1.2249 0.0367
(3) e = 1.5 .
1.5185 0.0170({0.9945 0.1099 1.5081 0.2329
1.5118 0.0068]1.1313 0.0566 1.4690 0.0566
1.5021 0.0037_}.1453 0.0439 1.4265 0.0367

Table 2.3. The results with discrete noise
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Chapter 3

Inference For Markov Random Field Models
3.1 Introduction

Statistical inference for spatial models was originally motivated
by geographical and ecological data, but was severely hampered by the
dearth of realistic parametric alternatives to spatial independence.
Markov random fields have c¢learly filled this gap. Markov random
fields, and the Ising models, in particular, have been studied
extensively during the last 50 years in statistical physics, where
they are known as Gibbs ensembles(Pickard, 1987). In the discrete
case, Gibbs ensembles are known as Ising models, which are important
in theoretical physics because they exhibit phase transitions, that
is, as parameter values increase past critical values, abrupt changes
occur in qualitative behaviour. In particular, pixel variables laose
their asymptotic long-range-independence, and the simulated samples
are then very likely to be almost one colour. Another major difficulty
in statistical inference for Markov random fields is that their
apparently simple likelihood functions are in fact surprisingly
intractable, even for very simple cases.

The difficulties involved with discrete Markov random fields are
due to the intractablity of the partition functions. The properties of
a MRF are determined by the behaviour of its partition function, which
is analytic in its parameters. However, it has proved surprisingly
difficult to determine the partition function asymptotically in order
to explain the asymptotic properties of the model, even in simple
cases. Kramers and Wannier{(1941) introduced a matrix method for
determining partition functions (see also Newell and Mantroll, 1953).
The method is quite similar to what we used for the one-dimensional
case in the last chapter. Onsager(1944) used this method, obtaining a
matrix representation of the partition function for the classic Ising
model with only two colours, with a first-order neighbourhood svstem
and with periodic boundary conditions. Kaufmann(1949) obtained a
direct product decomposition for this matrix expression. Kaufmann and
Onsager(1949) determined, approximately, the correlation structure for

the same model. Baxter(1972) obtained the partition function for the
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eight-vertex lattice model. Recently, Pickard(1976, 1987) used
Kaufmann(1949)'s decomposition results, obtaining limit theorems for
the sample correlation between nearest neighbours for the symmetric
two-colour Ising model with periodic boundary conditions. These
results provide a basis for asymptotic testing and estimation.

The partition function has alsc been expressed as a determinant or
as a Pfaffian; see Pickard(1977), where he used this expression to
examine the asymptotic properties of a two-colour Ising model in which
two parameters were involved.

For the two-colour Ising model with only one parameter, Kramers
and Wannier(1941) deduced an inversion transformation under which the
partition function is "invariant" when the parameter is transformed
from a low to a high wvalue. The important property of ‘this
transformation is that its fixed point determines the transition point
of the lattice. It was also later found by Kaufmann(1949), by
examining the exact matrix representation of the partition function,
that this fixed point is just the critical point. He also located the
critical points for the two-parameter case. Potts{1952) used a method
similar to that of Kramers and Wannier(1941) to dévclop the inversion
transformation for multi-colour models and obtained the fixed points,
which should alsoc be the c¢ritical points. His work was for the
symmetric case where only one parameter is involved. In this chapter,
we shall obtain the critical points for multi-colour model with two
parameters and first-order neighbourhood system.

For parameter estimation for MRFs, there are four sorts of
approach. The first is the method of moment estimation. However, the
behaviours of moments are very difficult to determine, even
asymptotically. This method can only be applied to very special cases
such as the ‘two-colour Ising model for which some asymptotic
properties have been derived. The second is maximum asymptotic
likelihood estimation. Similarly to the first method, it depends on,
the asymptotic behaviour of the likelihoood function or the partition
function. For the two-colour Ising model, results in Pickard(1976,
1977, 19886) can be used. We shall also examine the two-colour Ising
model with periodic boundary conditions in this chapter. The third
method is maximum pseudo-likelihood estimation. This was first
introduced by Besag(1974) in the form of the'coding technique, using

the local dependence of the fields and a set of conditional
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distributions for single pixels. Geman and Graffigne(1987) proved the
consistency of the method. The fourth is maximum approximate-
likelibood estimation. We shall concentrate on this approach in the
next chapter.

This chapter is arranged as follows. In section 8.2, we provide
matrix representation of partition function for general pairwise
interaction Markov random fields with a first-order neighbourhood
system, and we then discuss the partition function of a special
multi-colour Ising model which is a generalization of the two-colour
Ising model. Critical points are found. In section 8.3, we consider
the asymmetric two-colour Ising model with periodic boundary
conditions, in otherwords, the field is wrapped around a torus.
Limiting distributions for sample correlations between nearest
neighbours are obtained. Applications of these results to parameter
estimation and the problem of testing for symmetry are discussed. In
section 3.4, we discuss the problem of simulating Markov random
fields. Following on from Geman and Geman's(1984) stochastic
relaxation method, we examine a line-relaxation method. In section
3.5, we develop pseudo-likelihood parameter estiﬁation, by using the
distribution of a line of pixels, conditionally upon its neighbour
lines. Some simulation results are presented in section 3.2, section

3.4 and section 3.5. More discussion is provided in section 3.6.
3.2 Partition functions and critical points

3.2.1 Some matrix notation

We first introduce some notation and provide some related
properties. Let A=(aij) be an Mxp complex matrix, and B=(bij) an Nxg
complex matrix. Then the Kronecker product of A and B is defined by

A®B = (aijB) ¢ -

which is an MNxpq matrix. The following properties are standard

results related to this product-operation.

Proposition 3.2.1

(1). (A®B)®C = A®(BEC)
(2). (A + B)®C = A®C + B8C
(3). A®(B + C) = A®B + A8C
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(4). If A, B, C and D are appropriately compatible, then
(AB)®(CD) = {A®C)(BeD)

(5). ePel = eA®l  1geA = eI®A yhere I is an identity matrix.

(8). (A@B)* = A*®B*, where * means the corresponding conjugate

transpose matrix. o

If Ay, i=1,2,..7 are T matrices, let

T
® Ay = A8Ap0.. .®AT .

t=1

Let I(g j) denote the identity matrix of dimension s, L(s,i)
denote s1 dimensional vector with all elements being unity, Is=I(s,1)
and LS=L(S,1)' Then

i+]
Hs,1+3) T 18,0808, 5) T & Ts

i+] '
L(s,i+g) = b(s,1)%(s,5) = e

3.2.2. Partition functions in general pairwise-interaction cases

For simplicity of notation, we only consider homogenous MRFs; that
is, the interaction is assumed invariant over the entire lattice.

Consider a Markov random field X=(Xij) over an MxN rectangular

lattice, where each Xije{l,z,...S}, with distribution
1 M N
P(X=x|B) = exp{ I I g(x;35,B) + Z1(x,B) + Zy(x,B)} (38.2.1)
C(B) i=1j=1
where
M N-1 t 2
Z9(x,B) = ¥ L Gy(Xjj,Xi j4+1.B)
i=1j=1
and
M-1 N
Zz(X,B) = I L[ GZ(Xij’xi'*'l.j’ﬁ)'
i=1j=1

The two terms Z1 and Zp are assoclated with interactions along row
directions and column directions respectively. The normalizing

constant C(B), known as the partition function, is given by
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C(B) = L exp{ 5 g g(xj5.8) + Z1(x,B) + Z5(x,B)}, (8.2.2)
x i=1j=1

where the summation is over all possible x, so that there are
altogether sMN terms. It is therefore impractical to compute C(B) by
using (3.2.2) except when both M and N are very small. The following
matrix method is almost the same as that used earlier for the
one-dimensional version of MRF, but the detailed procedure was omitted
in the previous chapter. In fact, if we consider one row as a
"point", (8.2.1) can be regarded as a first-order stationary Markov
chain with SN states in the corresponding state space. Therefore, from
(2.2.12), C(B) can be written as

C(B) = L(s,N) ABA....BAL(g x) (3.2.3)

where A and B are SNxSN patrices and A is diagonal. However, it is not
easy to find A and B exactly. Before examining this problem, we

introduce some more notation. Let
X(13) ={Xgt, s>i, or s=1,t>j}

a, = exp{g(v,B)}

b (2} = exp{6y(v,u)}
byu(?) = exp(Ga(v,u))

Wi+l “’j-{-z! it}
wy | w2 W3 1zq,ge m;,,*z| XiN
T1e1,18%00.2 ' LSS UET LTS 9233

t
snusunmgy

xM,ltfH,z Xy, ] P

Fig 3.1 X(ij) and notation relevant for inference about C(B)
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X(ij) 1is shown in Fig 8.1. It is a vector of variables over all
pixels coming after pixel (ij), if we order the pixels one by one and
row by row. Also, reference to Fig 3.1 makes it easy to imagine that,

when J<N, Pr(X(ij)[B) can be written in the following form:

8 S s
PF(X(ij)IB) = L I ... I dij(wl,wz,...wN)exp{wij(1}+Wij(2)}/C(ﬁ),
w1=1 w2=1 MN=1

where

—
-
~—

l

= 8(Xi, jer) * B1(w5.x5, ga1) * G1(Xg, ja1.%5, je2)

+

Gz(”j+1axj,j+1) + Gz(xi,j+1,xi+1,j+1)
and

N M N
Wij(z) = L g(Xjq) + L I g(xX,q)
v=j+2 t=i+1 w=1

N N-1
+ I Gplwy,Xjy) + I Gp (X0 Xi y+1)
v=j+2 v=j+2

N

Gplwy,Xj41,u) * T B2(Xjy . Xjaq1,w)
1 v=7j+2

+
[T ur ISR

u

M N-1 M-1 N
* £ L Gl(me’xL,m+1) + z z GZ(XLv’XL+1,v)'
=i+l =1 1=i+1 w=1
Note that Wij(l) is a function associated with x; j43 and its four
neighbour states, Wy, Wiy1. X j+2 and Xj+3,j+1- while Wij(z} is a
summation of those potential functions, namely, g, Gy and Gp, that are
associated with all w, and x(;;) except those associated with Xi, j+1-
When j=N, WiN(l) is a sum of those potential functions associated
with Xj41,1. S0 it contains only four terms, while Wij(z} shows little
change as well. Note that, since

S
Pr(x(i.j+1)lﬁ) = L PF(X(jj)EB)»
®i,je17d

we can then have

di,j+1(w1,...wj,t,wj+2,...wN) =
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atbwjt(l)Silbst(z)dij(wl,..wj,S,Wj+2,...,wN)
for 1<j<N-1,
and
S
di+l,1(t’w2"""wN) = a¢ L bst(z)diN(S'wav---r“’N)-
s=]
Denote dij' by
djj = (di(1,1,..,1),d55(1,1,...,2),..... ,di4(1,1,....8),
dij(l,..,2,1),dij(1,...,2.2), ..... ,dij(l,...,Z,S},
dij(S,S,..,1),dij(S,S,...,2), ...... dij(S,S,....S))

which is an SN-dimensional vector. We therefore have

di,j+1 = T(3-1)®B18L(n-3-1) " T(5)®(AB2) 8T (n-3-1)d4]
and

di+1,1 = (ABp)®I(y-1)dixN »
where, for simplicity, I(,) denotes I(g ,), A is an SxS diagonal
matrix with a, as diagonal entries, By is an $%?xS? diagonal matrix
with [(v~1)S+.]}-th diagonal element bVL(’), and B, is an SxS matrix
with (v,.) element by, (2). Note that

1(5)0AB2) 8T (N~3-1)=1(5)®A®T (n-j-1) " 1(5)®B28L (v-j-1) -
There are therefore ‘three sorts of matrices, namely,

I(j)@A@I(N_j_l), I(j_1)®B1®I(NWjH1) and I(j)eBZ®I(N-j~1)' The first

two are diagonal, and thereby commutative. Furthermore, when j>»i,

I(j)®BZ®I(N—j—1)'I(i}®A®I(N~i-1)
= I(i)eAQI(N—i—l)'I(j]®B2®I(N~j—1)
and
T(5)8B2®l(N-j-1) T(i-1)®B18l(N-1-1)
= I(i—1)®Bl®I(N—i—1)'I(j)®BZGI(N~j—1)’
which means that when j>i, the last sort of matrix is commutative with

the first two. We thus obtain

dijy = DyDpDzdj_3 N

where D;, Dy and Dy are SNxsN matrices which can be written in
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following forms:

N N

Dy = @ I(j—l)®A®I(N"j) = ® A (3.2.4)
J=1 j=1
N-1

Dy = I(j—1)®B1®I(N—j—1) (3.2.5)
i=1 -
N N

Dg = T I(j_1)®Bz®I(N_j) = ® By (3.2.6)
J=1 Jj=1

Since there is no effect associated with By in the first row, we
find that

dy N = D1DpL(n).
where L(N) = L(S,N)'

Note that since C(B) = L[N)ldMN’ we obtain the following formula
for C(B):

C(B) = L(y) DyDaD3D1Dp. . ... D1DD3D1DpL () - (3.2.7)

3.2.3 Partition function in a special case

We consider now a special multi-colour Ising model, which is a
direct generalization of the two-colour Ising model. The model
involves two parameters, and the function g in the model is zero, so
that Dy is an identity matrix. The distribution of the model is given

by

Pr(X=x|«,B) = exp{«Zq(x) + BZy(x)}/C(«x,B) (3.2.8)
M N-1
where Z1(x) = = T 5(Xij'xi,j+1)
i=1 j=1
M-1 N t
and Zp(x) = I L b(xij,xi+1’j).
i=1 j=1

For the two-colour Ising model, Onsager(1944) expressed D, and Dy
in exponential form. The function & in his model is slightly different
from & here, in that &(s,t)=-1, when s#t. Dy is a diagonal matrix, and
therefore, not difficult to express in exponential form, while Dy is

slightly more complicated. Our aim is to express Dy, and Dg in & form
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which is similar to that for

the two-colour case and

which is

associated with some basic matrices in SNxsN matrix space, in such a

way that D, and Dg are related in a very specific way. This

relationship can be very important so far as the properties of the

model are concerned. This more explicit representation could also be

important for examining the asymptotic behaviour of the model, as has

been done for the two-colour case. Note that Dp and Dgy

are only

related to B; and Bp respectively, of which, By is diagonal. We then

re-write By

By

Bo

and By, as follows.

I
ol
]

o)
iy
]
[=7
[
1]
g
N
—
o
o

(eP-1)T(3) * Lea)l) -

(8.2.9)

(3.2.10)

Now we introduce some basic matrices in SxS matrix space and

present some properties of them.

+

Let ¥+ be a non-trivial S-th root of

unity. where non-trivial means vi¢1, when i<S, and vO=1.

complex number.

and uy
Vj
Proposition
(1). For

u = diag{],w,wz,-.-,
000....,. 01
100..... 0.0

v= 10120 ..00
00 o0.. 10

3.2.2:

any 1£igS-1, v;S = uy

One choice for v is exp{27i/8). Define

vS-l}

1151

1€igS8-1.

(2)., If V=vq + vp +....+ vg_1, then

Ve = (S-2)V + (§-1)I.

The proof is trivial. Property (2) also implies that

v is a
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2 s-2 __,
-V - — I1
S S

i
=)

Therefore, we have

exp{>»[2V-(5-2)11/8} = ¥(e” + e™”)I + ¥(e” -~ e~?)[2V-(S-2)I11/S

1 S-1 1
= [«e” + e 7] + —(e” - e~ ?)V
S S S
Note that
(0 00 01 0
000 001
100 000
Vz = Pt A h e s
0 10000
0 01000
L0, 0010 0]
010 . 0
001. 0
Vs_]_ L R, [ .

000 . 1
100 . 0

We therefore have that V=L‘L'- I, implying that all the
non-diagonal elements of V are unity, while all diagonal elements are
zero. Now define B*. which is a function of B, by the following

equation:

B /2 4 (5-1)e-B /2

= aB
- * = e, (3.2.11)
eB /2 _ oB /2
otherwise written as
B = log[(5-1 + eB)/(eP - 1)1. (3.2.12)
t .
We can then show that
S *
. exp{-%(8-2)g /S} 1
By = ——_exp{¥B W) = exp{- B V)
2 2cosh(kB") 2cosh(%B™) S
= d(B)exp{B V/S}, (3.2.13)

where d(B) = [eP-131-1/58[5-14eB31/S/5,




Chapter 3 34 MRF Inference

There is a symmetry with the transformation: Beﬁ*, in that

5=(B*)*. We now examine Bq. Consider the following $2xS2 patrix:
U = u1®u1* + u2®u2* b R US_1®Us_1*,

where “i* is the conjugate transpose matrix of uj. The [(i-1)8+j]-th
diagonal element of U is

S-1 . - 5-1
L (vR)IT1pK)Iml o p (pind)k
k=1 k=1
{ s-1 i=j
-1 iz

We therefore obtain the following formula for Bj:

By = exp{«(U + I)/8} = exp{«/S}exp{«U/S} (3.2.14)

We have now obtained a quite explicit expression for B and Bo,

and we can then write Dy, and Dy as follows:

(N-1)e « N-1 §-1 ®
Do = exp{——}exp{— I E Uijj+1,v } o (3.2.15)
S S Jj=1 v»=1
B* N 8-1
Dg = [d(B)WNexp{— I I Vy,}, (3.2.16)
S j=1 w=1
where
ij - I(j—l)QUwQI(N~j) (3.2.17)
Vjv = I(j~1)®vv®I(N“j)' (3.2.18)

Consider now the case with periodic boundary conditions, which is
equivalent to wrapping the lattice around a torus. To be precise,
consider the following distribution function:

M N l

exp{ £ T ué(xij,xi,j+1) + ﬁﬁ(xij,xi+1’j)},

P(X=x|«,B)
(«,B) i=1j=1

(3.2.19)

where Xi N+17%i 1» 1€i<M and XM+1’j=X1'j, 1<j<N. Then there are
interactions between the first row and the last row and between the
first column and the last column. In fact, the interaction matrix

between rows is still the same as Dg, but the intra-interaction within
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within one row changes slightly, due to the interaction between the
first pixel and the last pixel. Noting the equivalence of each pixel
in one row, we have
(N-1)« « N 8-1
Dy = exp{———)exp{= I I UjpUj4p o ) (3.2.20)
S § Jj=1 »=1
where Uy,i,4=Uj, 4. Again, because of the interaction between the first
row and the last row, expression (8.2.7) for the partition function

changes to the following form:

C(x,B) = trace[DyDgDs....Dg] = tracelDyDg M (3.2.21)
= ¢ NN, (3.2.22)
A

where X are the eigenvalues of matrix DpDgz. Therefore, when Moo,

C(«,B) approximately depends only on the largest eigenvalues of DyDg.

3.2.4 Critical points

For the multi-colour Ising model discussed above, we have obtained
two matrices, Dy, and Dz, and the representation (3.2.21) and (8.2.22)
for the partition function C(«,B). There is a similarity between D,
and D3. For the two-colour case, both Onsager(1944) and Kaufmann(1949)
found somewhat different transformations which interchange Do and Dg,
and therefore enable us to locate the critical points. We now consider
the similarity relationship between D, and Dg in the multi-colour
case.
We have defined two basic matrices, u and v, which satisfy the

following commutative law:

uv = ¥vu (3.2.28)

Note that the eigenvalues of u and v consist of 1, ¥y *Z»bu
"WS_I, so u and Vv are unitary equivalent +to each other.
Potts(1952) considered the 2x= lattice, but in fact he only examined
the interchange between exp{B*(vi + Vg...+ vg_q)} and exp{B(u; + up
+...Ug.-7}, then located the fixed transtion point defined by p*=B. For
the MxN lattice, the similarity between Dy, and Dg is more complicated.
Since a matrix is equivalent to a linear operator, we consider gN

dimensional linear complex space with the operator:
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D =V1’1V2,1....VN’1. (3.2.24)

Similarly to V; ., the eigenvalues of D consist of 1, w, v2
.,v5~1, each of them repeated s{N-1) +times. Therefore there are S
subspaces of sN-dimensional space, denoted by Q; respectively, where

Qi is an sN-1_gimensional linear space, satisfying

De = »i-1g £y . (8.2.25)
1

Note that Vj ; is commutative with D. From the commutative rule in
(3.2.23), we can also show that Uj,lUj+1,1* commutes with D.
Therefore, all Vj 1 and Uj,IUj+1,1* can be regarded as linear
operators in Qj.

Consider a group of linear operators in 0,

£ & E S
Vi,1- U1,2U2,1 » Vo 1, Uz,1Uz 1 ... Vy-1,1+ Un-1,1Un,1
(3.2.26)

re-written in short notation as

Wi, Wz, W, ..., Wo(N-1). (3.2.27)

t

which satisfies the condition that each element commutes with its
neighbours by the appropriate rule associated with the commutative
rule in (3.2.23) and commutes with all other elements in the seguence
in the ordinary sense. We can show that all of them are linearly
independent. and furthermore, that all following g2(N-1) operators in

4 are linearly independent:

iq, i lo(N-
wytlwpt2, L. Wo(n-1) 2(N-1), (3.2.28)
where i1, ip....ip(y-1) = 0, 1,...5-1.

It is known that for any s(N-1)_dimensional space, all linear
operators form an algebra which is equivalent to the matrix algebra of
s(N-1) dimensions. So the algebra generated by those basic elements in-
(8.2.28) is equivalent to the matrix algebra of s(N-1) dimensions,
although those matrices in (3.2.28) are sN dimensional, we can regard
them as S(N-1)xs(N-1) patrices. The previously independent operator

VN, 1 is now expressible in @ by others; that is,

V.1 = viTlvy 4 Stlvp 4571 vgy 4872 (3.2.29)
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= wi—lwls—1W3s~1 ........ W2N_3S~1- (3.2.80)

We can also notice that

* - —_ -
UN,1U1,1 = WQS 1W4s . wZ(N—l)s 1 (8.2.31)

Now consider another group of basis elements of the algebra
U * * *
Up,1U2,1°» V2,1, U2,2U3,1+ Vg,1,.---Un-1,1Un,1 + VN,2
(3.2.82)

which has the same properties as (3.2.26) or (3.2.27), including the

commutative rule. Therefore the transformation

i3
Vi — Uj,1U5+1,1

* 3
Uj,10541,1 — V41,1 j=t,2,...N-1

describes an automorphism of the whole algebra. Consider two matrices

N §-1 " N S-1
Aq = -Z b3 Uijj+1,v Ap = .ﬂ L Yj”'
Jj=1 v»=1 j=1 w=1
Under the automorphism we have
N s-1 s-1 .
Ay —> I I Vj, + I vi-llygg (3.2.38)
j=2 w=1 w=1
N-1 8-1 ., S .
A2 — I ha Uj'”Uj+1,v + I v”(l‘l)UN’vul'ﬂ . (3'2'34)
j=1 pv=1 p=]

Note that under the automorphism, both transformed matrices are
only slightly different from A, and Ay, respectively. In particular,

corresponding to the subspace €y,

Ay — Ay Ag — Aq, !

or more compactly,

f(Al,Az) —_— f(AZ’AI) (3.2.35)

in the algebra associated with space f11. Application to the operators

D, and Dg given by (3.2.20) and (3.2.16) shows that the following two
operators
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exp{-Ne/S}[d(B) IT™ND,(«)D3(B) = exp{«A,/S}exp{B A;/S)
and
exp{-NB" /S}[d(«*) 1Dy (¥ )Dg (™) = exp{B Ap/S}exp{«a;/S},

can be regarded as the same under the automorphism, so that the set of
(S(N‘l)) eigenvalues of the matrix Dy{«)Dg(B), which are associated
with the space Qp, can be obtained from the corresponding parts of the

eigenvalues of Dz(B*)D3(G*) by the relation
A1) («,B) = [(e%-1)(eF-1)/8Wx(q)(B" ") (3.2.36)

This result applies in particular to the largest eigenvalues of
the operators. The reason is that the operators are matrices with all
positive entries, so each of them has one and only one positive
eigenvector, £, say, which corresponds to the largest eigenvalue
(Varga, 1962, see also Bushell(1973) and Istratescu(1981)), then
because of the commutability between them and D, D¢ is also a positive
eigenvector associated with the largest eigenvalue, and therefore

Dé=¢. That means £ must be in Q1. Therefore,

* *, !

Apax (%.B) = [(e%-1)(eP-1)/81NN 5 (B™ &™) (3.2.37)

On the other hand, if we disregard the effect of v in (3.2.38) and
(3.2.34), we know that the eigenvalues of exp{«Ag/S}exp(B*Al/S} are
the same as those of exp{B*Az/S}exp{«Alfs}. Therefore, approximately

or asymptotically (as M—ox),

Cle,B) = [(e%-1)(eB-1)/sMNc(s™,«™). (3.2.38)

Although we do not have a theoretical guarantee of the existence
of the critical points of the multi-colour Ising model, a simulation
study has shown their existence. We know, for each pair of parameters
(x,B), that there exists a corresponding pair (B*,a*), which exchanges
with («,B). Thus when C(«,B) is analytic at («,B), it must also be at
(B*,«"), and if («,B) is a critical point, so is (8%,«*). THus if-
there are not many critical points, they must occur at the fixed
points of the transformation: («,B) — (B*,m*). To be precise, the

critical points satisfy the equation

(e - 1)(eP - 1) = 5. (3.2.39)

In the case «=B, the critical point is
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log(1l + +/%) (3.2.40)
which is the same as given by Potts(1952).

Some simulated images with parameter slightly bigger and smaller
than the critical point, in the case of three-colour model with «=B
and with free boundary conditions, are shown in Fig.3.2a and Fig.3.2b
respectively. Note that now «=B=1.00505 gives the critical point. We
use the point-relaxation method (Geman and Geman, 1984) to generate
these images. In Section 3.4, we will discuss further the simulation

of Markov random fields.




Chapter 3
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3.3 Asymptotic inference for an asymmetric Ising model around a torus

For the two colour Ising model, Pickard(1976) obtained a weak law
of large numbers and a central limit theorem for the sample
correlation coefficient between nearest neighbours for the isotropic
(symmetric) case which involves only one parameter. In his later
paper(Pickard, 1977), the results were extended to the asymmetric case
for the sample correlations along rows and columns. His work in
Pickard(1976) was for a lattice around a torus, ie, with perodic
boundary counditions, while in Pickard (1977), he did not assume this
condition. However, as indicated in Pickard(1982, 1986), although the
maximum likelihood estimator of parameters is consistent and
asymptotically normal, it cannot be computed. An alternative solution
is therefore taken, namely, to solve an asymptotic-normal equation.
The resulting asymptotic-MLE is consistent but the central 1limit
result cannot be derived, except for the case with periodic boundary
conditions(Pickard, 1976). In this section, we extend the results of
Pickard(1976) for the symmetric case to the asymmetric case with
boundary conditions, so that the asymptotic-MLE is asymptotically
normal, thereby enabling us to discuss the asymptotic behaviour of the

asymptotic~likelihood-ratio test for symmetry.

3.3.1 The model

As mentioned in the 1last section, the imposition of periodic
boundary conditions is equiva i ent to wrapping the lattice around a
torus, The model we consider here is for the two-colour case; the
potential functions are slightly different from those of the
multi-colour model in the last section. We specify the jeoint
distribution function, which involves two parameters, « and B, by

¢ .
1 M N
P(X=x|x,B)=———exp{ T EI[axjiXj 441 + BXj X4 .1}
C(wx,B) jm1jey ) It ij¥i+1,347. (8.3.1)

By the symmetry of all pixels in (8.3.1), the random variables,
Xjj are identically distributed with equal probabilities at -1 and +1,
but they are not independent unless «=B=0,

Consider the vector random variable




Chapter 3 42 MRF Inference

Q M N [Xij¥i,j+1
Q = = 121‘51 (3.3.2)
Q2 J Xi§Xi+1,5)

whose distribution is determined by the parameter values., Clearly,
Q/MN gives the sample correlations between nearest neighbours along
rows and columns. Our first aim is to determine the asymptotic
properties of Q. For the symmetric case, where o=pB, Pickard(1976)
obtained a central limit theorem and a weak law of large numbers for
Q1+Qg. We will achieve this in the case «#B by the same method of
analysing the partition function.

The matrix method(Kramers and Wannier, 1941, Newell and Montroll,
1953) was used to obtain a representation of C(«,B8) as follows; see
also Kaufmann(1949) and Pickard(1976). We use the same notation as in

these papers.

C(«,B) = trace(VovM = ¢ M (3.3.3)
X

with
N .
l(eﬁl +ePe); vy = explx zlsrsr+1),
r=

Vi =
T

==

where all matrices are of dimension 2N, I is the identity, and

SN+1=81. {A} are the eigenvalues of V,Vy, and s, and ¢, are Kronecker

products of N quaternion matrices, ie,

01
cp = 12®Iz®...®[1 O]e.,.elz
1 0
Sp = Iz®Iz®...®[0 _1]®...®Iz.

Note that cp and s, are special cases of Vp 1 and Up 4
respectively, but because of the difference of interaction functions,
Vi and Vp are slightly different from Dy, and Dg in the last section:
respectively.

3.3.2 The eigenvalues of V{Vj,

Kaufmann(1949) obtained a product decomposition of VoVy in terms
of matrices V¥ and V- which are representative of rotations in

2N-space. Half of the eigenvalues of V' and half of those of V™ are
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the eigenvalues of VyV,. Pickard(1976) changed Kaufmann's notation
slightly, and provided the eigenvalues of VoVy for the case «=B. As
mentioned in the last section, it is well known that, asymptotically,
the partition function has critical points. For the asymmetric case, a
careful analysis of the way of choosing eigenvalues from V' and V™ to
be those of V,V; enables us to obtain a critical curve, CLy, which is
defined {(for 0<«, B<=) by

cosh2xcosh28 = sinh2« + sinh2B. (3.3.4)

Fig 3.3 The critical lines and the corresponding two areas

Note that the critical points are in fact those which make >0
equal to zero, (»y is associated with the eigenvalues of V and is
defined later.) As shown in Fig 3.3, the area {«>0, B>0) is separated
by CLj into two parts, denoted by R.; and R,,. The eigenvalues of
VaVy, denoted by 2T and A~ corresponding to V' and V™ respectiively,
are then given (for 0<x, B<w) by
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)\+ = >‘+{(X:B)

It

N
(2sinh2B)N/2exp(% £ 655 172i-1} (3.8.5)
i=1

)

N
v (2sinh2B)V/2exp(k T 655 07052}  (3.8.6)
i=1

>
I
i

fl

N («,B)

where, in each exponent, an even number of &6's are -1 while the other

are +1, giving a total of 2N eigenvalues of V,oV4, and

7y = »(«,B,in/N),

cosh2xcosh2B - sinh2ccosw

y(x,B,w) = cosh™3( - ),
sinh2B
{eXp(—Vo) if (x,B)'eR;q
v =
1 if («,B) '€R+2+CL1.

Since cosh lx=log[x + (x-1)%7 for x»1, and noting that for 0<«,
B<=,

cosh2acosh2B-sinh2eacosw S cosh2xcosh2B-sinhg«

sinh2B i sinh2B 2 1

we can write

»(«,B,w) ¥(x,B,w) - logsinh2B,

where

[

v{«,B,w) log{cosh2xcosh2p - sinh2«cosw +
[ (cosh2xcosh2B-sinh2«cosw)? - (sinh2p)27%).

If we write wvj=v(«,B,in/N), the eigenvalues of V,Vy can be

re-written as

N
Nt («,B)=2N/2(sinh2B) ttexp{y T 80i-1¥2i-1) (3.8.7)
i=1
{
and
/ N
NT=nT (o, B)=u0%2N/2 (sinh2p) \mexp(% T Soi_oVoi-27}, (3.3.8)
i=1

where 1+ and .- are the numbers of &'s which are equal to -1 in the

corresponding exponents and
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{ exp{-vg}sinh2B (x,B)'eR,q
o=

1 (x,B) 'ER+2+CL1,

It is clear that the largest eigenvalues of X% and A~ occur when

all &'s are +1, ie,

x*max=2N/2exp{%.§ ¥2i-1)3 k‘max:zN/zuexp{%‘g ¥oi-2}-
i=1 i=1
The representation of the partition in terms of »* and »~ is now
only restricted to 0<x, B<~., It is desirable to extend it to R2. As in
Pickard(1976) for the symmetric case, we require M and N to be even,
so that C(e,B) satisfies

C(x,B) = C(-«,-B) = C{~«,B). (3.3.9)

Note that, when M and N are not both even, the above property
does not hold, so that the following results have to be regarded as
proved only for the case of even M and N.

Also note that v(«,B) and therefore A" and X\~ are defined for «=0
or B=0 in (3.3.7) and (83.3.8). Appendix 1 shows t@at (3.83.3) provides
the representation of the partition for {«x0, B30}, with the help of
(8.8.7) and (3.3.8). Hence the partition can be extended to RZ by
extending %, %~ and v to R2 by replacing «, B by their absolute
values. There are then all four critical curves, which partition RZ
into five parts. We still denote the area around the origin by R;7 and
the others by R,o. Finally, in this section, we indicate that the

critical curves (Fig.3.3) are equivalently defined by

sinh2«sinh2B = =x1. (3.8.10)

3.3.8 Asymptotic behaviour of C{«,B)

It is convenient to deal with

lc(x,B) = logC(«,B) = logixM. (3.3.11)
A
Pickard(1977) provided 1lec(«,B) in terms of a two-dimensional
Riemann sum plus an error term, with the help of a Pfaffian. Although
this was done in the context of a free boundary condition, all that is
known about the error term and its derivatives is that they are no
larger than O(M), so the central limit theorem obtained is not

completely satisfatory.
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Write 1c(e«,B) as

Io(@,B) = J(x,B) + K(«,B), (3.8.12)
where
N
J(«!B) = 10g)\;;a_XM = ¥MNlog2 + ¥M L ¥04-1
i=1
and
K(«,B) = log =  (ZNhaoM.

+
AENnax

For the moment, we shall restrict our attention to [0,+x)x[0,+w).
Consider the function defined by the Riemann integral
e
B{x,B) = (4W)“1Jv(«,s,w)dw (3.3.13)
0
Then the properties of v ensure that: the first partial
derivatives of B are continuous on {0,+=)x[{0,+w); the higher-order
partial derivatives of B are continuous on [0,+x)x[0,+=)Ly and
undefined on CLy; and these derivatives . are obtained by

differentiation under the integral sign. For s=1,2,...,

1 N 3%waigq 1 N 3Svpip
b - - and I —
2N j=1 3«JapS-I 2N j=1 a«dams—i
aSB _
converge to —m —, wherever it exists. Moreover, convergence
axd aBS~J
, aSs
is uniform on any compact subset of the domain of ———,
axJ gBS~J

Note that, as v(«,B,w), x*, 2~ and B(«,B) can also be extended to
RZ2 to satisfy B{x,B)=B(-«,-B)=B(-«,B) ,the extended function B(«,B) is
such that, for a fixed « (B), B(«,*) (B(*,B)) have right-handed
derivatives of all orders at the origin, and the odd—o;dereq
derivatives vanish there. These results are clear by noticing the

following representation of B:

1 1® 1 r2i 4112Y 422t
B{«,B) = ~log{2cosh2xcosh2B} - - __[ ]{ [~_] + e 3
2 2521 21l 2 2
21 2]

©  (2i+2j-1)! [dx} [dz]
T oee——

i=1j=1 (i1)8(j1)2 2 2
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where di=tanh2«/cosh2p and dz=tanh2B/cosh2c.
We have therefore proved that, as N—ow,
(MN) "1 («,B) ——> ¥log2 + B(«,B) on RZ,

and

8 s
omy -1 2 (< F) | 3%B(=.B) (3.8.14)

ot aps—i axd aps—J

on RZ for s=1 and on R,q+R,s for s32, and that the convergence is
uniform in («,B)' on any compact subset of the appropriate region.

In Pickard(1976) analytic complex functions were used to
determine the approximate speed of convergence of a Riemann sum to its
Riemann integral. In our case, we take G to be any compact subset of
Ry1*Ri2. Then there is a positive number p such that, for any fixed
(ec,B)'eG, the complex function

g(x,B,z) = log{A(«,B,z) + [A(x,B,2z)2 - sinh2p1¥%},
is analytic in the annulus H={z: e Pg|z|<eP},» where A(«,B,z) =
cosh2xcosh2B - %sinh2«x(z + 1/z). Thus,

(MN)%] (MN)~1vI(«,B) - VB(«,B)| = OC(MN)¥e=PN),

where V denotes the first-order derivative vector. (We will use v2 to
denote the second-order derivative matrix.) Therefore, as M, N — o=

(with MgN® for any fixed 6>0),

(MN)¥L (MN) " 1vI («,B) - VB(«,B)] — 0O (3.3.15)

uniformly for («,B)'eG.
In order to deal with K(«,B), by almost the same procedure as

that of Pickard(1976) for the case «=B, we can prove that, as M, N—ow

(provided NO* ¢MgN© for any fixed 61 and e  with
0<81<6<s) '
[ o if («,B)'eRyq
RKie,B) — 4 (3.3.16)
|l log2 if (a,B)'eR+2
and
aSK(«x,B)
—_— s 0 for s=1,2,.., («,B)'€R;q+Rin. (3.8.17)

axcd apS—J
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Again, the convergence is uniform on any compact subset of
R;q+Rip. Combining (3.3.14) and (3.3.17) we obtain

s 8
o) -1 2 1e(<0B) L B(xB) (3.5.18)

axdaps~J axJaps—J

(«,B)'e€Ri1+Ryp, s=1,2,....

as M, N—» (provided N®1gMgN® for any fixed ©1 and 6 with 0<81<6<x).
Furthermore, convergence is uniform in («,B)' on any compact subset

of Ry1*Ryp,

3.3.4 The limiting theorems

Let («,B)'eR,y+Ryp and choose any compact subset
Dg={ (%,V)': (x-«)2+(y-B)2<6)} such that DgcRyj+R4a. For a fixed
two-dimensional vector n=(ny,ns)', consider the random variables
s = (MN) ln'qQ and T = (MN)%n'[(MN)"1Q - vB(«,B)1.
Denote by Mg(t:«,B) and Mq(t:«,B) the moment-generating functions

of S and T. Then

logMg(t:«,B)

IcCec+ (MN) " 1tng, B+ (MN) "1tny) - Zc(«,B)

and

i

logMp(t:e,B)
Te(a+(MN) “#tny, B+ (MN) #tny)-Ic(«,B) -t (MN)%n ' VB(«,B).

When M and N are large enough, («+(MN)'1tn1, B+(MN)_1tn2)'eD5 and

(«+(MN)"%tn1,B+(MN)‘%tn2)'eD5. Noting (3.3.11) and applying Taylor's

theorem to K and J, we obtain

logMg(t:e,B) = (MN) ltn'vic(a+ (MN)"1tqng,B+(MN) " 1tyny)
and

logMp(t:e,B) = t2(MN) In'v2J (a+(MN) %tynq, B+ (MN) %tony)m

+(MN) ¥n ' [ (MN) 71V («,B)-VB («,B) J+K (et (MN) "%tny, B+ (MN) #tny) K («, B)

where |€1|<1t|, l%2|$|tl. The uniform convergence of (8.3.14)),
(8.3.16) and (3.3.18) in Dg, and the convergence of (3.3.15), imply
that, as M, N—->= (provided N®!¢M<N® for any fixed ©: and 6 with




Chapter 3 49 MRF Inference

0<01<6<w) ,

Mg(t:x,B}) — exp{tn'VB(«,B))}
Mp(t:x,B) — exp{ten'V2B(«,B)n}

Since exp{t?n'v2B(«,B)n} is the generating function of the normal
distribution with =zero mean and variance n‘VzB(«,ﬁ)n, and since
exp{tn'VB(x,B)} is that of the degenerate distribution at n'vB(«,B),
it follows that

(MN)~1q ——Bf—e VB(x,B) (3.3.19)
D
(MN)~%((MN)"1Q - VB(«,B)) — N(0,v2B(«,B)). (3.3.20)

Pickard's{1977) numerical results of the asymptotic correlation
between Q; and Qp showed that V2B(x,B) could be a positive definite
matrix when («,B)' is not a critical point. It is very difficult to
prove this, because of the complexity of the function B(«,B). We will
assume this result in the remainder of present discussion.

The likelihood function (3.3.1) cannot be maximized, since C(«,B)
and VC(«,B) are almost impossible to compute. An obvious alternative
solution is to maximize an asymptotic-likelihood, «Q4+BQo—MNB(x,B),

or to solve the asymptotic-normal equation

(MN)"1Q = vB(«,B). (3.3.21)

Suppose «g, Bp are the true values of the parameters and («g,B()'
is not a critical point. Denote by («,B) the solution of (3.8.21). The
standard method therefore yields that, as M, N—o>= (provided N®!g<MgN®
for any fixed &: and 8 with 0<01<6<=),

~

(MN)%[T h “0] _D ., NCO,[V2B(xg,B0) 17 1) (3.3.22)
B - Bg
and t
[f] S N [“0]. (3.8.283)
B Bg
Note that (3.3.23) holds even if («g.Bg) '€CL. For the symmetric
case, with «q=Bg, suppose the asymptotic-MLE « maximises

«l'Q-MNB{«,«), where 1=(1,1)'. Then

- D
(M) "1« - «pg) —— N(O, [1'V2B(xg,Bg)117 1)
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and

- pr
£ — LOE

3.38.5 Testing against asymmetry

In this sub-section, we are interested in testing the null

hypothesis

Hyp: « = B, xeR-{x%sinh™11)
against the general alternative hypothesis of ‘'not Hp'. We shall
consider the use of the likelihood-ratio test. However, as indicated
in the previous sub-section, it is almost impossible to maximize the
likelihood function. The asymptotic-likelihood-ratio test is therefore

used and is defined as follows. Define the test statistic

A(Q) = Supilal(Qj«,B) - Suplal(Q|«,«)

‘X’B (¢4

= &Qp + BQp - MNB(&,B) - x(Q1 + Q) + MNB(x,a),

where («,B)' is the maximizing point of 121(Q|«,B), while « is that of
lal{Q|e«,a); lal is the log-asymptotic-likelihood, namely,
«Q4+B8Qpo-MNB(x,B). We do not know the distribution of A{Q), but we may
use its asymptotic properties. For a size & test, we shall define the

upper &-point gg, by

max lim Pr(A(Q)2qsle=B) = 5.
meR—{&%Sinh"ll} M, N

If a=B=aoeR—{z%sinh“11} provides the true value of the parameters,

clearly, «, B and « converge to «p in probability. Let
€= (MN)#A~%[Q-VB(«y,xg) ], where 8=V2B(xy,«p). It can be derived that

¢

(a¥1) (n¥1)!
—_— e+
141

A(Q) = B&'[I- o(1)1£,

where o(1) means that it converges to zero if «, B and « converge to

®p, S0 it converges to zero in probability. Let d=a#1/|ja¥1)=(dq,dp)",

U=[d1 "dz], and £4=U&=(£47, €35)'. Then U is an orthogonal matrix,
dz dy
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and £; is asymptotically normal with zero mean and covariance matrix
I. Therefore, as M, N—oo (provided N9'¢M¢N® for any fixed €1 and ©

with 0<B1<B<=),

Lim PrfA(Q)»qs] = lim Pr(¥€11%3qs):
M, N M,N—p

€17 is asymptotically normal with zero mean and variance 1, and the
upper &-point, gg, is therefore easily obtained.

Now suppose «p#Bg are the true values, («p,Bg}eR;q+Ryp. Define ;0

by

1'VB(xg,xg) = 1'VB(eg,Bg).

Note that the above equation has one and only one solution.
Clearly, («,B)' converges to («g,Bg)' in probability and « gconverges

to ;ﬂ in probability. Therefore

(MN)"IA(Q) —= B(xg.&g) - (xg=&g, ®o-Bg)VE(xg.By) - Blag.Bg)

Since B{«,B) is a strictly concave function, the right part of the
above formula is positive, implying that, wpen the alternative
hypothesis holds, the test statistic A(Q) has, in probability, the
same order as MN. While Hgp holds, A(Q) satisfies a x2(1) distribution.

3.4 Simulation of MRPs; Stochastic relaxation

Methods of Monte Carlo simulation of Markov random fields are now
not completely satisfatory. The theoretically valid speeds of
convergence of these iterative methods are slow, and the computational
demands are very substantial. The stochastic relaxation method -of
Geman and Geman(1984) treats each pixel! individually at each stage, as
far as updating is concerned. As we mentioned before, if we imagine a
block of pixels, for example, one line, as one point, fields are still
Markov randoem fields, or Markov chains, and their distributiohs areé
still of Gibbs-distribution form. Somewhat in the spirit of Clifford's
discussion of Besag(1974), we may update Markov random fields a line
(row or column) of pixels at a time. Thanks to the techniques we
developed for one-dimensional Gibbs fields in Chapter 2 and because
the density of one line, conditional upon its neighbour lines, is a

Gibbs distribution, this sort of updating for one line can be carried

out.
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The stochastic relaxation method is not the best method for
simulating Markov random fields(Ripley and Kirkland, 1980). In this
section, We discuss theoretical convergence properties of line
relaxation, and relv mainly en a simulation study to compare the
practical convergence rates of point relaxation and block relaxation,

in particular, line relaxation.

3.4.1 Line relaxation

For a Gibbs field with distribution p(X=x), Geman and Geman(1984)
proved the following. Suppose (nt' t»1} is a sequence of pixels such
that it contains each pixel infinitely often. Whatever the starting
configuration, x(0), we visit the pixel n; at time t, and decide a
new state for it according to the local probability properties and the

current states of the neighbouring pixels of ny. Then
Lim Pr(X(t)=w|x{0)) = p(X=w). (3.4.1)
1o,

As described, the relaxation only changes the state of one pixel
at a time, although synchronous updating is also possible. The rate of

convergence depends on

6 = inf  p(Xjy=xjjlx315) (3.4.2)
(ij).x
If we assume that the pixels are visited cyclicly, and let x(t)
denote the result after the t-th cycle, then

Sup |Prix(t)x(0)) - p(x(t))] < rt, (3.4.3)
x(t),x(o0)

where r=1—SL6L, S is the number of possible labels for each pixel and
L=M*N. For a particular case, say, the first order Markov random field
discussed in the last two sections, with a single parameter B>0 and
with only two states, we have &=1/(l+exp(4B)), so that r might b§ very
near unity. Although we can obtain a better rate, it can only be
improved a very little, as in the case, for example, for the above
first-order model. There are, therefore, often practical problems in
using relaxation to simulate Gibbs samples.

Stochastic relaxation is based on the local properties of Gibbs
random fields. We concentrate on the first- or second-order pairwise
interaction MRFs with appropriate distribution forms such as (1.3.3).

Denote by X; the i-th row. It follows that the density of ) ST
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conditional upon all other rows, depends only on its two nearest rows.

To be precise,

P(Xi=xjlx3i,B) = p(X5]Xj.1,X541,B)

N N-1
= exp{ I Gi5(xi5) + % G(ij),(1,5+1) ®ij %5, 5+ /041, K540
j=1 j=1

(3.4.4)

where aij(xjj) depends on Xj_y j and Xj,3 j (for the first-order case)
together with =Xj_3 4-1, Xji-1,j+1» Xi+1,j-1 and Xj4q 441 (for the
second-order case). All these functions G or G depend on the parameter
B, although in (8.4.4), we omit explicit mention of the parameter.
Note that the above distribution, (3.4.4), is of first-order Gibbs
chain form, Thus, in the same way that we change the state for one
pixel, we can obtain the new states of the i-th row, given xq,..Xj_7,
Xj+1+:-+» Xy. This is a relaxation by replacement of one row instead
of one point. We can visit the rows one by one, or carry out

synchronous updating. In this case, the rate of convergence depends con

61 = inf p(x;[Xj-1.Xi+1) (3.4.5)
i,x
and
Sup pCx(t) [%(0)) - B(x(t))] € ryt, (3.4.6)
x(t),x(0)

where ry = 1—SL61M. Generally, ri<r(equivalently, 61>6N). Since the
nearby pixels of a Gibbs field tend to have the same states, &y should
be p(X;=(1)'[X;-1=Xj4+1=(0)') for the first-order model with two
states, for which we have discussed the corresponding & above, where
(1)' denotes a vector of 1's and (0)' a vector of O0's. This 61 1is

1/Rq, where

1+2e5+e45—(1+e25)k2‘XJN_l . (1+e25)x1—1—2e5—e45_xzu_l

Ry = N - n N
1 2 N TR

and " ¥
ny={1+e2P+[ (e2P-1)244) 7%} /2, np={1+e2B_[ (e2P-1)2+47%}/2.

It is easy to see that R1<[1+e4BJN.

3.4.2. Simulation study

In the next section we will discuss in detail several kinds of
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pseudo-likelihoods. Here we mention only point pseudo-likelihood
(Besag, 1974, 1986), which is based on the Jlocal conditional
distribution of a pixel, and line pseudo-likelihood, which is based on
the local conditional distribution of a line of pixels. In the
practical computation involved in stochastic relaxation, pixels or
lines are visited periodically. We also note that, for 1line
relaxation, rows and columns can be visited alternately, in that we
can first visit all rows, then all columns, then rows again, and so
on.

Before we describe our simulation results, we specify the
particular form of Markov random field, which we discussed in the
previous two sections. However, we only consider the symmetric case,
so that only one parameter o=p is involved. This is the first-order
Markov random field which treats all colours egually. The simulations
are based on this particular case, although the methods can be used

straightforwardly for general Markov random fields.

2.5 2.5
s 3-COLOUR-MRF s 3-COLOURMRF

2.0 2.C
LS 53 : sl s

(/' | =PR-PPL . 1=PR-LPL
.0 J
’ 2=LR-PPL 0 2=LR-LPL
0.5 3=LR1-PPL o §=LR1 -LPL
0.0 IT-N 0.0 1T-N

0 5 10 15 20 0 5 10 15 20

Fig 3.4 Results of first 20 cycles of relaxations for 3-colour MRFs

Fig 8.4 provides results from the first 20 cvcles of itefation;
where one cycle means that every pixel is visited once. It is based on
a ‘three~colour MRF with distribution (3.2.8), on a 128x128 lattice.
IT-N denotes the iteration number. We initialised the simulation with
a white noise image. The true value of « is 1.5 and the results for «
are in the form of sample means from 10 replicates. PR means point
relaxation, LR means line(row) relaxation, while LR1 denotes alternate

row-column relaxation. PPL denotes maximum point pseudo-likelihood
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estimation and LPL denotes maximum (one) line pseudo-likelihood
estimation. From Fig 3.4, we see that 1line relaxation or alternate
row-column relaxation is only a little better than point relaxation,
and for all three methods, the maximum pseudo-likelihood estimates
are, on average, almost the same as the true value after 15 cycles of
iteration.

Although the average maximum pseudo-likelihood estimate is almost
equal to the true valve, we still cannot say that the iteration has
converged. Fig.3.5 shows results for binary Markov random fields with
many more cycles of iteration. There is only one sample for each
relaxation. AL denotes maximum asymptotic-likelihood estimation
(Pickard, 1976, 1987). Theoretically, because of its asymptotic
normality, AL gives a better idea about whether or not the iteration
has converged. We still find that LR or LR1 converges faster than PR.

Unfortunately, it is Kknown that, when « is big (bigger, for
example, than the critical point for binary Markov random fields), the
simulated scenes are usually close to being one-colour images. Ripley
and Kirkland(1980) reported this phenomenon. We found that the images
are close to being one-colour once the AL estima%es are almost equal
to the true values, which may be a consequence of the clustering
property of Markov random fields. We also note from Fig 3.5 that, at a
certain stage in AL, there is what appears to be almost a jump to the
true value for each realization. Fig 3.6 and Fig 3.7 provide some
simulated patterns with small and large values for the parameter,
respectively, but they are for second-order case, for which the
distribution is almost the same as that in the last two sections, but
each pixel has 8 neighbour pixels. In both figures, the upper three
are those simulated by PR, while the lower three are simulated bv RR.
Monochromatic images are not usually useful in practical contexts
and, in practice, Markov random fields are usually simulated under the
condition that there be a prescribed number of pixels of each tcolour
or that the boundary pixels be of predetermined colours, but the
resulting patterns may be unrepresentative of the corresponding
theoretical distributions.

Other block relaxations, such as two-line or more-line relaxation,
could also be wused, but our simulations showed that <two-line
relaxation is almost equivalent in performance to one-line relaxation.

Even for one-line relaxation, although the maximum pseudo-likelihood
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Fig 3.5 Results of relaxations for binary MRFs
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Fig 3.6 Simulated patterns with cc=0.3 after 500 cycles

v |

R T LU Bhry
“5rtegCT>3r1i,

Fig 3.7 Simulated patterns with a=0.7 after 500 cycles
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estimates converge to the true values faster than is the case with
point relaxation, it is possible that the asymptotic-likelihood

estimates converge more slowly.

3.5 Pseudo-likelihood parameter estimation

For general Markov random fields, it is difficult to write down
useful expressions for their partition functions, or to compute them,
so it is difficult to maximize the likelihood p(x|[B) directly(Besag,
1976, Possolo, 1986). Younes(1988a) used a Monte Carlo technique to
maximize the log likelihood function. However, as mentioned in the
last section, the Monte Carlo technique requires heavy computation.
Alternatively, Besag(1974, 1976) introduced the coding method, in

which we maximize

T p(xi51%355.8) (3.5.1)

ijea
where Ao is a subset of the whole pixel set such that, for any ij,
mnea,ij#mn, ij and mn are not neighbours of each other. The Markov
properties of Markov random fields ensure that pkxijlxaij,ﬁ) depends
only on several neighbour pixels of ij, np(xijlxaij,ﬁ) is therefore
easily maximized. One could extend the definition of (3.5.1) and take
A to be the whole pixel set, which results in the so-called point
pseudo-likelihood form. Since the density of one line, conditional
upon all other lines, is a Gibbs chain, and depends only on several
neighbouring lines, according to the neighbourhood system, we (Qian
and Titterington, 1989, 1990e) introduced line(row) pseudo-likelihood

functions, among which the one-line case is

T op(xjlx31.B), (3.5.2)
1

where 3i means the neighbouring rows of the i-th row. Another wayv of
t -
writing a pseudo-likelihood function is

I p(XA[XaAyB)! (3?5.3)

Hef
where © is a class of some subsets of the pixel set, and & denotes
elements of ©. Geman and Graffigne(1987) proved the consistency of
pseudo-likelihood parameter estimation. Expression (3.5.3) can then be

considered as a block pseudo-likelihood function, and (3.5.1) and
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(83.5.2) are special forms of (3.5.3). Note that each conditional
density p(xilxai,ﬁ) in (8.5.2) corresponds to a Gibbs chain, and we
can therefore compute its normalizing factor, ie, the partition
function, and thereby to compute p(xi[xai,ﬂ). If then the parameter B
is one dimensional, we may use the Golden-Section Search method to
obtain the maximizing point.

The recursive technique developed in Chapter 2 also enables us to
compute the expectation of the exponential part of a Gibbs chain, and
therefore, in the case where the exponential part is linear in the
parameter, we may maximize the likelihood by the iterative procedure
(2.2.9), which converges linearly. Denote by B(B) the above pseudo-
likelihood form. Then the corresponding iterative procedure for

maximizing B(B) is

Bn+1 = By — P1(3/aB)logl B(By) 1, (3.5.4)

where P is either a positive constant or a positive definite matrix.
As in Chapter 2, the difficulty is the choice of P which influences
the convergence rate. For (8.5.2), we can usually compute the
second-order differential of log[B(B)], so P can be chosen so that the
iteration is the Newton-Raphson method, while, for (3.5.3), it is
difficult to compute the second-order differential, so that the
Newton-Raphson method is not available. However, when the exponential
part of p(xj|xy;,B) is linear in B, the second differential of
—Log[p(xilxai,B)J is the conditional covariance matrix of the
exponential part, given the neighbouring lines. Thus the second-order
differential of Log[B(B)] is usually a negative definite matrix. If it
has a negative upper bound with respect to B, choosing P to be
non-small and positive can ensure convergence.

Note that, if we combine two points such as (xij,xi+1,j) together
as one point, Zij’ say, then Zi; has S° states. The conditional

distribution of (X{,X;{;q1) can therefore be written as t

P(Xi X471 1Xg(1,i+1)B) = P(Zi1.252, .. 2iN1%3(4,5+1)B)- (3.5.5)

It is clear that the above distribution is still a one-dimensional
Markov random field, but each point has S2 states. We can therefore

consider another form of block pseudo-likelihood,

T p(Xi, K543 1%5(5,1+1)+B) (3.5.6)
1<igM-1
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We refer to this as two-line pseudo-likelihood. We c¢an also
consider three-or-more-line pseudo-likelihoods, but the computational
burden increases quickly as the number of lines increases.

Some simulation results are provided in Chapter 5, together with
parameter estimation from noisy data. There, we generate images,
estimate parameters, then add noise, and estimate parameters again,

from noisy data.

3.6 Discussions

We have presented some theoretical and simulation results in this
chapter. The explicit matrix expressions for partition functions are
only obtained for simple cases, ie, the Ising models. For the
two-colour case, Kaufmann{1949) obtained an eigenvalue expression,
which enabled Pickard{1976) to examine the asymptotic properties of
the model. For the multi-colour case, although we obtained similar
results, as far as transition or the critical points is concerned, it
may require theoretical results about finite matrix algebra and the
representation of finite Lie groups, in ordér to get further
properties associated with the partitions. So far as the Monte Carlo
method for generating Markov random fields are concerned. we emphasize
that the stochastic relaxation method is not the best method and that
practical simulation are usually carried out under some restrictions.
Maximum pseudo-likelihood estimation can be used for general MRFs,
while some other methods are available only for special cases.
Pseudo-likelihood functions are based on local conditional properties.
However, for first-order MRF, for example, one pixel has four
neighbouring pixels, while one line only has two neighbouring lines,
therefore line (block) pseudo-likelihood wuses fewer pixels as
"condition" in the corresponding conditional distributions than does
point pseudo-likelihood. It may therefore be more "close" to thé true
likelihood and thereby may provide more efficient estimates. Since
pseudo-likelihood estimators are consistent, the variance{covariance)
of block pseudo-likelihood estimators may be "smaller" than that of

point pseudo-likelihood estimators.
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Chapter 4

Normal Approximations For Lattice Systems
4.1 Introduction

In this chapter, we still consider Markov random fields on a
rectangular lattice. Let X={Xij: 1<igM, 1<j<N} be an array of random
variables on the MxN rectangular lattice, where xije{l.z,...s}.
Throughout this chapter, we shall fix N. For i=1,2,...M, define
xi=<xil,xi2,...xiﬁ)’. Assume that X=(X1,Xp,...Xy) is distributed as a
particular Markov random field with

P(X|«,B) = ——lw_fexp{m' ? £(X5) + B'leg{xi,xi+1)} (4.1.1)
C(e.B) i=1 i=1

where the parameters «, B might be vectors, and f, g are vectors with

the same dimension as « and B respectively. Model (4.1.1) is a general

stationary Markov random field, stationary in Fhe sense that the

interaction terms are independent of location. Particular forms of f

and g can represent first-order and second-order interaction MRFs. If

we consider X; to be a combination of two rows or more, (M would then

be even or a multiple of some fixed integer), model (4.1.1) could

represent a high-order MRF. B is the interaction parameter along the

column direction (i.e., between rows), while «, in whole or in part,

is that along the row direction. Strauss(1975), Saunders et al.(1979)

and Kryscio et al.{(1980) considered the asymptotic properties of the

sample correlations of neighbouring pixels for Dbinary lattice

processes under the condition that all interaction parameters are zero

or almost zero. Asymptotic normality properties were then used to

obtain an approximate likelihood for parameter estimation (Possolo.

1986) and to compare the power of some tests for randomness(i.e.."
whether or not the pixels are independent)(Krvscio, et al., 1980).

Define

M-1
F(Xi): iy = L g(Xi.Xi+1).
1 i=1

Yy =

M=

i

In what follows. we use the central limit properties of finite-

step-dependent stationary processes to show that the random variables
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(YM,ZM)r have a normal limiting distribution when M becomes large,
subject to conditicons on the parameter B. We first handle the case
where the rows are independent (B=0), and then extend to the case
where B 1s proportional to the square root of the variance of Zy. As
in Possolo(1986), limit results are also used in relation to maximum
approximate- likelihood estimation(MALE) for some particular cases. We
discuss the problem of testing for the randomness of rows, and provide
simulation results and comparisons with MALE based on the asymptotic
normality results obtained under the condition that all interaction

parameters are zero(Kryscio et al., 1980, Possolo, 1986).
4.2 Limiting result when B=0

Consider an independent chain {y;}, i=1,2,..., where
vie{1,2,...,T}, with pj=Pr(yi=j). Let A(vj,yi+1) be a finite function
defined on {1.2,..T}x{1,2,..T}, where A might be a vector. Define

M-1
Wy = I A{Vi{,¥i+1)-
i=1
We then have the following lemma.
Lemma: Suppose O0<p;<1, j=1,2,..T. Then M™%(Wy - EWy) has a normal
limiting distribution with zero mean and variance (or covariance

matrix} Vi as M—-e, where

Vi = EAjA7' + E(AjAp  + BpAq') - 3(EAq) (EAp)'
where Ay = A(¥y.Vp), Ap = A(va,v3). #

Note that the process {A(yi{,yi+1))} 1s a one-step-dependent
stationary process. Furthermore, since A(*,*¥) has a finite sample
space, {A(yj.vj-1)} is a first-order strictly stationary Markov chain.
Standard methods can be used to prove that (M-1)7%(Wy - EWy) is
asymptotically normal, as M=, In fact, it can be shown by some long
and tedious calculations that the moments of Wy converge to the
moments of the limiting normal distribution, thus establishing the
lemma (Moran. 1968). (Details of the proof of the lemma are omitted.)

When B8=0, the rows in model (4.1.1) are independent and
identically distributed. Each row can be considered as one point with
sV states. Therefore, two straightforward results for model (4.1.1)

follow from the lemma and are presented in the following theorem.
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Theorem 1: When B=0, then, as M—,
1. M'%(ZM - EZy) has a normal limiting distribution with zero mean

and variance (or covariance matrix, if B is a vector).
Vz = Egg +E(g(X1,Xp)g(Xp,Xs) +g(Xp,Xg)g(Xq,Xp) )-3(Eg) (Eg) '
(4.2.1)
Yy — EY
M_%[ M M

iy ~ EZM

with zero mean and covariance matrix V = (vjj),

] has a multivariate normal limiting distribution

where vq; = Eff' - (Ef)(Ef) ;
vz = Vzi
Vig = vgq = E[f(Xy) + f(Xp) - 2EfI[g(Xq,Xp)-Egl' .

4.3 Limiting results under close alternatives

In this section we consider the limiting distribution of Zy under
another condition, namely that B=M"%B;, where B, is a constant. Thus,
under this alternative hypothesis, the interactioné along columns are
sufficiently small that the assumption of independence among rows is
'nearly’' true.

Let My(t]x) denote the moment generating function of M“E(ZM—EZM)
when B=0, and let My(t|«,B) denote that in the case where B=0. Then

HM(tlm,B)=§ exp{«Yy + BZy)exp{tM %(Zy—EZy)} (4.3.1)

Cl=,B)
and
My(tle) = My(t|x,0). (4.3.2)
It is easy to find that:
My (t]c.M7%B81) = My(t + By |«)/My(Byl«). (4.8.8)

If the sequence of moment generating functions My(t|x) converges
to that of a normal distribution for all t. it follows from (4.3.3)
that M“%(ZM—EZM) has a normal limiting distribution under close
alternatives, since the ratio of the limiting moment generating
functions in (4.3.3) is alsc the generating function of a normal

distribution. We proved in the previous section that H'E(ZM—EZM)
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converges in distribution to a normal random variable. In general,
however, convergence in distribution alone does not guarantee that the
corresponding sequence of moment generating functions will converge to
the moment generating function of the limiting random variable.
Although some tedious calculations for the moments of M“%(ZM—EZM)
could be used to establish convergence of the sequence of moment
generating functions, we use an argument similar to that of Kryscio et
al.(1980). Saunders et al.{1979) showed that convergence in
distribution implies convergence of moment generating functions
provided the sequence of moment generating functions is uniformly
bounded in an interval containing =zero. Thus, to establish the
asymptotically normal properties of Zy under close alternatives it is
sufficient to show that, if B=0, then there is a constant c>0, such

that
Eexp{tM%(Zy - EZy)} < ¢ (4.3.4)
for -agt€a with a>0.
Note that
[M/2] [(M-1)/2]
Zy-Eiy = T [g(Xgj_1.Xpi)-Bgl + [g(X2i,%25.+7)-Eg]
i=1 i=1
(4.8.5)

where [a] denotes the integer part of a, and that, for each sum in
(4.3.5), denoted by Sy and S, respectively, elements are independent
and identically distributed. Thus,

Eexp{tM #(Zy-EZy))} < [Eexp{2tM %8, )Eexp{2tM %s,}11/2
= [Eexp{2tM ¥ (g-Eg))M/2.
Consider the joint density of two rows of variables, X4 and X,,

with partition function Colx,B), ie ¢

1
P(Xy.Xolx,B) = mexp{«f(xl) + «f (X3) + BE(Xq,.X2)}.

Clearly. when « is fixed, Cp(«x,*) is an analytic function. Note

that Eexp{2tM %g(X;,X2)} = Col«,2tM#)/Cy(x,0). Thus
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M
logEexp{tM™#(Zy-EZy)} < E[logcg(«,th‘%)—logcg(a,O)—th-%Egj.

Since Eg=§glog02(a,5) application of simple analysis to the

B=0"

right-hand side of the above inequality shows that it is uniformly
bounded, for t in any finite interval containing =zero, We have

therefore proved (4.3.4). Since

My (t+By o) — exp{%Vz(t+B;)2), as Me—s=

and
My(Bqlx) exp(%vzﬂla}, as M—ow,

we can summarize the above discussion as follows.

Theorem 2: When B=M"%p;, M %#(Zy-EZy) has a normal limiting
distribution with mean VyB; and variance Vy, as M—oi=, #
Remark: In this and the previous section, the operator 'E' denotes
expectation under the condition that B=0. If B is a multi-dimensional
parameter, similar results hold, but with vector-matrix notation as
appropriate. !
Theorem 1 and Theorem 2 provide a basis for a statistical test of
the null hypothesis Hg: B=0, against the alternative hypothesis Hg:
5=M’%B1, By#0. If « is known, then the appropriate test of Hyp versus

H, is based on the statistic

T = M7%v;71(Zy - EZy).

By Theorem 1, this statistic has, under Hp, a standard normal
limiting distribution, while, by Theorem 2, under H;., it has a normal

limiting distribution with variance 1 but with non-zero mean.

4.4 EZy and Vg in particular cases
‘ 4
We now consider how to obtain EZy and V. For convenience, assume
B be a scalar parameter. When pB=0, each row is independent of the

others. Therefore.

P(X|x,0) = T Pq(Xilx), (4.4.1)

1

==

i

where
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Pl(xija) = exp{c:f(xi}} (4.4.2)

Cl(ﬁ)
and C;{«) is the partition function for one row. In Chapter 2, we
developed a vrecursive technique for one-dimensional Markov random
fields; see also Qian and Titterington(1989, 1990a) . This technique
enables us to compute Cq(«) and Eg(X;,Xj,q) for a variety of forms of

f and g. In particular, suppose

N-1
f(X3) = T 6(Xi5.X3 j+1) (4.4.8)
j=1
and
N
g(X,X541) = I 6(Xi5.X54+1,5)> (4.4.4)
j=1

where 6 is the Kronecker delta function. This particular case
corresponds to a first-order Markov random field which treats all
colours equally. From Chapter 2, we know that, when B=0, each row is

simply a strictly stationary Markov chain, with

¢

j+t-1

1
Pr(xij’xi,j+1"'Xi,j+t)=g?;;:gj;;;exD{“ vij 6(Xjy Xy ye1) )
(4.4.5)
Clearly,
Cil{x) = S(e* + s - 1)N-1 (4.4.6)
E&(Xjj,Xj4+1,4) = 1/5. (4.4.7)
Thus, EZy = N(M-1)/8.

From Theorem 1, we know that
Vy; = a + 2b,
where a = E[g(X;,X3) - Egl%;
b= E[g(Xy,Xp) - Eglle(Xs,X3) - Egl.

Note that, for the particular case,

o
]

E{E[g(X;.Xp) |Xp IE[g(Xo,Xg) |Kp1) ~ N2/s2

NN N7 2
BoDy - H - 0
S s S
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Thus, although g(X4,Xy) and g(X,,X3) are not independent, the
correlation between them is zero. We therefore only need to know a.
Consider the random chain {6{(xq1i,%x54)}. It is clearly a strictly

stationary first-order Markov chain with only two states {0,1} and

N-1
a = Nrg +2 I (N-i)ry, (4.4.8)
i=1
where rj= E[é(xll,xal)—Eﬁ][é(xl’1+i,x2,1+i)—E63, the i-th order
autocorrelation of {&6(x;j,Xpi)}. In view of the properties of strictly

stationary binary Markov chains. r; takes the form (Appendix 2)

ry = roai, i=1,2,... (4.4.9)

Simple calculations from the density functions of (x;7,xp7) and

(xl_‘l 1 X12.X91 .Xzz) give

ro = (S-1)/82 (4.4.10)
e? +§ - 1 1

I (4.4.11)
S(e® + 8§ - 1)2 g2

and T

S(e2%+5-1) - (e%+$-1)2
Thus, A o= . (4.4.12)

(S-1) (e%+8-1)2

We have now obtained EZy and V; for this particular case. Note
that (4.4.9) is associated with the first-order strictly stationary
Markov chain with only two states, and X\ is the eigenvalue of its
transition matrix that is different from unity. In general, if g has
the form

I

g(X;,X447) = d(xij'xi-l.j)’ (4.4.13)

J=1

where d is not now the Kronecker delta function (cf (4.4.4)), both &

and b have a form similar to (4.4.8) (see Appendix) with

ri = upngd, (4.4.14)

where the {xj} are the eigenvalues of the transition matrix of the
corresponding first-order strictly stationary Markov chain

{d(xlj,x2j)}, excluding the eigenvalue unity. The number of these
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eigenvalues 1is associated with the number of wvalues that can be
assumed by d. In some cases, the order of the corresponding Markov
chain may be higher than 1. However, similar results could be also
obtained by using formulae similar to (4.4.8) for higher order Markov
chains. For example, if two points are combined as one, a second-
order Markov chain with S states can be regarded as a first-order
Markov chain with S° states. Thus, we only need to calculate several
low-order autocorrelations in order to obtain Vy. It should be pointed
out that (4.4.3) is a special form which renders each row strictly
stationary. For other forms of f, with the condition that each row is
a finite-order, strictly stationary Markov chain, similar results for
EZy and, especially, for Vy, might also be obtained. For the

calculation of EZy, it is not necessary to let each row be stationary.
4.5 MALE for Markov random fields

In this section. we consider the use of the approximate form of

the partition function C(«,B) in parameter estimation. From (4.1.1),

M M-1
Clx,B) = Zexp{x T £(Xy) + B I g(X;,X54+1))
X i=1 i=1
M
= [Cq(x) Mexp{B(M-1)Eg}rexp(B(Zy-EZy)} T Py(X;|«)
X i=1
= [Cq(«) Mexp{B(M-1)Eg)My (M¥B |x) (4.5.1)

where My(*|x), defined by (4.3.2), is the moment generating function
of M'%(ZM—EZM]. Since we have proved the asymptotic normality property
and the convergence of the sequence of the moment generating functions
for M‘ﬁ(ZM—EZM), and although M%¥B is related to M (not fixed), we may
still use exp{%MBEVz} as an approximation to HM(M%B]«). We therefore

obtain the following approximate form of C(«,B): ¢

Cle,B) = [Cq(x)IMexp{B(M-1)Eg)exp{sMBeVy). (4.5.2)

For the particular case described in (4.4.3) and (4.4.4), suppose
both M and N are large enough for us to omit the difference between N

and N-1. M and M-1. By noting that
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s-1 N-1 i (S-1) (1+%)
Vg = N—[1 + 2 (1 - =)2] 5= Ne—mooot
s2 i=1 N S2(1-a)

we therefore have the approximate log-likelihood function

X _ M N-1 M-1 N
i 108C(e,B) + x I T 8(xjj.Xj,j+1) * B T 6(XijXiv1,j))
i=1j=1 i=1j=1
1 M N-1 M-1 N
x —{& E .Z G(Xij'xi,j*‘l) + B _“: a(xij’xi'*l,j)}
i=1j=1 i=1j=1

S-1)(1+x
- log(e%+5-1)- E - wﬁg

, (4.5.3)
5 252 (1-))

where X\ is defined by (4.4.12).

For the binary case (8=2) when «=B, note that

1
P(X|x) = exXp{-4alX;; + 2a IL'X:iX,.7t,
C(‘X) 1] 13
where L' denotes the sum over nearest neighbour pixels. and xije{o,l},
for all i,j. This is the first-order form of thé density for binary
MRF considered by Strauss(1975), Saunders et al.(1979), Kryscio et
al.(1980) and Possolo(1986). Consider another density involving two

parameters, namely,

P(Xju.v) = C(u,v)‘lexp{utxij + Uy}, (4.5.4)

where y=I'xjjx,,. When v=0, all points are independent with the same
distribution function. Bloemena(1964) and Kryscio et al.(1980) proved
the asymptotic normality properties of y when v=0. The technique,
which uses the moment generating function of the normal distribution
to approximate the moment generating function of another random
variable, was also used to obtain an approximate form of
C(u,v)(Possolo, 1986). Bloemena(1964) gave explicit formulae for Ey

and Var(y) under v=0. Omitting the lower-order terms. we have that,

when v=0,
Ey = 2MNe?
and Var(y) = 2mne2(1-e)(1+70),

where ©=eY/{1+e%). We can hence obtain an approximate form of the
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log-likelihood of (4.5.4) as follows(see Possolo, 1986):

ui_zx--+vi—y-log(1+eu)—2v62*v292(1—9){1+7e). (4.5.5)
My M '

The results of a simulation study of parameter estimation based on
the maximization of both approximate likelihoods, (4.5.3) and (4.5.5),
for binary MRF involving only one parameter, namely, «=B, is presented
in Fig 4.l1a. There are 128x128 pixels. The generating MRFs are
simulated by the method of stochastic relaxation(Geman and Geman,
1984). Although there is no guarantee for convergence of the
simulation procedure for MRFs, by noting the simulation results in the
previous chapter, we know that, after 20 sweeps of relaxation, the
generated patterns are very ‘'close' to the MRFs, especially in the
cases where the parameter is less than the critical point. Denote by
L-P-L the line pseudo-likelihood estimation method which we described
in the last chapter (see Qian and Titterington(1989, 1980e)), while
P-AP-L and L-AP-L denote the maximum approximate likelihood estimates
from (4.5.5) and (4.5.3) respectively. ((4.5.5) and (4.5.3) are based
on the assumptions of point-independence and: line-independence,
respectively.) Fig 4.1b represents some results for three colour MRFs.
In both Fig 4.1a and Fig 4.1b, the values are means of 10 samples for

each value of the parameter.

1.5
2-COLOUR-MRF 3-COLOUR-MRF LoAP-L
.5 { A L-P-L A 2L
o P-AP-{ - Yo'
1.2 L
L-AP-L 0.0
0. ¢
0.6 0.6
0.3 | 0.3 | .
~
0.0 - 0.0 X
0.9 0.3 0.6 0.9 1.2 1.5 0.0 0.3 0.6 0.9 1.2 1.5
(a) (b)

Fig 4.1 Simulation results of MALEs for two and three colour MRFs

From the figure, we know that the maximum approximate likelihood

estimates are near the true values only in a small region. Although we
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find that L-AP-L 1is better than P-AP-L, the quality of each
approximation depends upon B and M. Since My(t|«) does not converge to
exp{¥t2Vz) uniformly for -=<t<w, whereas M%8 is infinite when M=, the
practice of using exp{%Mﬁzvz} to approximate My(M¥B|x) could cause
totally different behaviours.

In conclusion, we may remark that the MALE can only be used for a
small region of parameters and that similar results might also be
obtained for the conditional distribution of Zy given Yy under the
condition that Yy=If(X;) is Kknown. Since (Ymq:Zy) are Jjointly
sufficient for («,B), the asymptotic results about the conditional
distribution of Zy under Yy can provide an approach to the statistical
testing problem in the case where « is unknown. The idea of the "line"
normal approximation described in this chapter is valid for a large
range of models; the difficulty is the calculation of limiting means
and variances or covariances. There 1is the same difficulty in the
"point" normal approximation. It is known that the lemma in Section 2
holds under much weaker conditions, so the results may be obtained for

a variety of models.
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Chapter 5

Parameter Estimation For Hidden Markov Random Fields
5.1 Introduction

We have examined some problems for Markov random fields in Chapter
3. In practice, however, a random field itself 1is wusually not
observed. Instead, a blurred and/or noisy version of it is observed.
This is the case that we consider in this chapter. We mainly
concentrate on the problem of parameter estimation.

To use Markov random fields as priors in image analysis is a new
and active subject in recent years. Cross and Jain(1983) provided
various patterns of texture images which were simulated from MRF
models. These simulated images were very realistic. Geman and
Geman{1984) proposed simulated annealing methods to obtain Maximum a
posteriori(MAP) estimation for image restoration from noisy data, but
the computational problem 1is enoumous. Alternatively, Besag(1986)
proposed the Iterated conditional modes(IéH) method, which
concentrates on the local dependence structure of MRFs, and produces
restored images very cheaply and quickly; see also Glendinning{1989).
Jubb and Jennison(1988) suggested a modification of ICM, which extends
the range of ICM to very noisy images and greatly reduces
computational costs. Another modification, called Iterated Conditional
expectation(1CE), was proposed by Owen(1986, 1989). Chellappa(1985)
and Derin and Elliott (1987) also examined the wuse of Gibbs
distributions for texture images. For parameter estimation, Besag
(1986) proposed an iterative procedure for simultaneous parameter
estimation and image restoration, based on his Coding technigue. Kay
and Titterington(1986) pointed out the difficulties involved  in the
EM algorithm in the context of MRFs. Geman and McClure(1985) prasented
a method of parameter estimation, based on the EM algorithm and the
Monte Carlo technique of generating MRFs, where only one parameter is
involved in the prior distribution function. Chalmond (1988) used a
so-called Gibbsian EM algorithm, computing some posterior mathematical
expectations by the Mante Carlo technique. Younes(1988b) generalized
his own iterative technigue(Younes, 1989), which alsoc use the Monte

Carlo technique, to the case of imperfectly observed Gibbs fields.
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which includes the situation with noisy data. Frigessi and
Piccioni(1988a, 1988b) examined consistent parameter estimation using
the moment method, but only for the two-colour Ising model corrupted
by noise. Simulation studyv was used by Thompson et al(1980) to examine
methods of choosing smoothing parameter in the two~dimensional
smoothing problem, Further relevant work appears in Geman and
Graffigne (1988). ’

For the ICM method, we can carry out both asynchronous updating
and synchronous updating. For the latter case, practical computing
environment or special computer languages can be used, so that the
computation is fast. However, as mentioned in Besag(1986), updating is
most conveniently implemented as a raster scan. and in that case, it
converges faster in term of one cycle. Besag's(1986) experiments for
the case with one parameter, B, involved in the MRF model, where B
represents the interaction between neighbouring pixels, showed that
when B increases, the convergence rate decreases. He therefore took B
increasing during the ICM procedure. In Section 5.2. we consider the
case of continuous intensities, and try to describe these phenomena
from a mathematical viewpoint. We will also "show the different
behaviours of asynchronous updating and synchronous updating, by
giving a counter example.

In section 5.3, we discuss the difficulties of the EM algorithm
for multi-dimensional Markov random fields. We have shown that, for
one—dimensional versicn of MRFs, both E-step and M-step can be
carried out. Due to extremely large computational demands, it is
infeasible to do the same thing for multi-dimensional cases. We will
also, for the auto-normal case, show the different bahaviour between
Besag's(1986) iterative procedure of simultaneous parameter estimation
and restoration, and the iterative procedure of the EM algorithm.

In section 5.4, we develop Besap's(1986) iterative procedure for
simultaneous parameter estimation and restoration. The procedure is
based on a restoration method, such as ICM. and a modified EM
algorithm which, in each cycle, uses partially the observed data and
partially the image restored in the last cvcle. In a similar way to
pseudo-likelihood estimation, the modified EM algorithm is also based
on local conditional densities; for instance, conditional
distributions of one line or two-lines of pixels. XNumerical results

and some further discussion are presented in section 5.5.
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5.2 Discussions on the ICM method

In this section, we use a single subscript to represent a pixel,
whether the image is one or multi-dimensional. Suppose there are L
pixels which are labelled in some manner by the integer i=1,2,...L.
Thus, the pixels are ordered. Let x(k)=(x1[k), xz(k),...xL(k))' be the
estimate of the true scene, x*, at the k-th cycle of iteration, and
x(k+1) at the (k+1)-th cycle estimation. The ICM is based on the local
posterior probability plx;|vy, Xgjd., where Y=y are observed image.

Using asynchronous updating means choosing xi(k+1) by maximizing
plxy |y, xg A1) o xy g (RvD) e (KD oy (KD ] (6.2.1)

for each i at each cyvcle of iteration. Hence, it can be ensured that
plx (1) 1y3 5 prx(K) |y1, (5.2.2)

The above inequality ensures convergence to a local maximum
point. For synchronous updating, xi(k+1) is chosen by maximizing

®

plxi 1y, xq ) xR gy ) s (KD g, (5.2.3)
(8.2.3) can only ensure that

p[xl(k),...xi_l(k),xi(k+1),xi+1(k)....XL(R)Iy]

> p[xltk),...xi_l(k),xi(k),xi+1(k),....xL{k)ly]

for each i, but (5.2.2) cannot necessarilvy be obtained. That means
that convergence is not guaranteed.

Now consider the continuous-intensity case, where

p(x) = exp{-4x Qx) (5.2.4)

where Q={bij} is a positive definite matrix. This is slightly

different from the form given in Chapter 1; see also Besag(1986).

t
Re-write Q as

Q=/\_Bl _Bz (525)

where By is a lower-triangular matrix, Bp, 1is upper-triangular, and

both B; and B, have zero diagonal entries, with

For simplicity, we assume A= XI and that the observations v={yi}
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are independent Gaussian records with mean % and variance 1/x. The

MAP estimate of x* is

X = x(xI + Q) ly. (5.2.6)
Synchronous updating can be expressed in matrix form as follows:
(k+1) ! (k)
X = ——[ry + (By + Bg)x ] (5.2.7)
K + XA
while asynchronous updating can be written as

LI . Bix(k+1) 4 Box(k)j (5.2.8)
K + A

x(k+1) -

or, in another form, as
X(k+1) = [{(k+X\)I - Blj_l[Ky + Bzx(k):l (5.2.9)

For the former case, convergence depends on the norm of matrix
A1=(x+x)"1[B;+B5], while, for the latter, it depends on that of
A2=[(K+X)I—B1]—1B2. Note that parameter X represents, in some respect,
the interaction between neighbour pixels. The 'bigger X, the less
tendency there is that neighbouring pixels have same or similar
colours, that is the less is the interaction. We would like to remark
that the notation here is slightly different from that in Besag{19886),
where X and x could be regarded as the inverse values of » and k here.
respectively. We can also note that, in both cases, when X\ increases,
the convergence speed of the iterations increases as well. This
phenomenon corresponds to that the parameter has controversy relation
with converging speed in discrete MRF models(Besag, 1986). We shall
first show that F(Ap) = max|xy|< 1, where xj are eigenvalues of A,.
That means that, for any X\ and x, asynchronous updating converges. If

nj is the eigenvector corresponding to «j, then,
Agng = ®iT4
thus,
Bong = ay[(k+x)1 - Bydn;.
Since “1'32“1 = “i!Blni = %ni‘(Bl + Bg)n;,

' !
Ay onj - 0y Qny

2
(Vs
i

(5.2.10)

1 H]
(2r+r)ny ny + ny Qnj
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and since Q is a positive definite matrix, it follows that |«;{<1. Now

consider matrix A;. Note that the eigenvalues of Ay can be written as
x={X-B)/(k+X), (5.2.11)

where B are eigenvalues of the matrix Q. Although Q is positive
definite, B>0, for all B, which can only ensure «<l. It is possible
that, for some B, «<-1. In that case, updating is not convergent for
some starting points x(1),

Example: L=3,x=1,

1 -0.75 0.25
Q= |-0.75 1 -0.75
0.25 -0.75 1

The eigenvalues of Q are 0.75, (9-v73)/8 and (9+v73)/8, Q is

therefore positive definite. The smallest eigenvalue of Ay is

—(¥78 + 1)/[8(x+1)1.

When k is small, the above value is smaller tyan -1. o}

Therefore it cannot be guaranteed that synchronous updating always
converges. However, (5.2.7) and (5.2.8) are only two iterative methods
for solving the linear equation (5.2.6). There are certainly some
other methods. we can consider, for instance, the following iterative
method:

1

x(k+1) _ - C[Ky + (cI - Q)x(K)y, (5.2.12)
K

where ¢ is a positive number. Clearly, it is equivalent to

; 1
Xi(k‘*‘l) = ::E[Kyi + (c——)\)xi(k) + jiibijxj(k)]' (5.2.18)

for each 1. t

Note that (5.2.7) is a particular case of (5.2.12) with c=x. The
convergence of (5.2.12) depends on (c-B)/(x+c), where B are still
eigenvalues of the matrix Q. Obviously, when ¢ is big enough,
(c-B)/(x+c) lies between -1 and 1, and the iteration therefore
converges.

Even if (5.2.6) itself converges, in circumstances when we know

the eigenvalues of Q we can still choose a number ¢ to get faster
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convergence. The best choice of ¢ is
¢ = (Bpin * Bpax)/?
then e{(cI-Q)/(x+x}} = (BpaxBmin)/ (2¥+Bpax*Bmin) -

Note that we only use Xj(k), j#i, in (5.2.6), but use xi(k) as
well in (5.2.12). Note that the original image % is represented by
its nodisy version, ie, the observed data, v. I am guite sure that as
the iteration proceeds, the restored image contains more and more
information about the original image x* from the observation v. At
each cycle of iteration, the newly obtained image gets information not
only from y but also from the image estimated in the last cvcle.
{(5.2.12) uses the information contained in xi(k), so it may get more
information than (5.2.6), with the result that it converges faster.
For asynchronous updating, we can also modify the algorithm in a
similar way to get faster convergence.

Although the synchronous updating formula (5.2.6) is not very
practical, we can still conclude that, for the continuous intensity
case, some modification involving the use of xi(k) in the replacement
for x; at the (k+1)-th cycle can increase the converging speed.

For discrete Markov random fields, although it is not certain
that synchronous updating converges, it is difficult to provide
similar discussion. We would like to pose a question to finish this
section.

Can we choose xi(k+1), by using xi(k) together with states at all
other pixels or at its neighbouring pixels, to ensure faster

convergence or get better restoration?

5.3 Difficulties in the EM algorithm

The recursive techniques in Chapter 2 enable us to carry out the
EM algorithm for general one-dimensional versions of Markov random
fields. Two groups of vectors are used there. If the number of gtatéé
at each point is not large, it is practical and not difficul:r to
implement these recursive computations. For two-dimensional Markov
random fields, we have mentioned in Chapter 3 and Chapter 4 that they
can be regarded as one-dimensional versions if we regard one row or a
set of neighbouring rows as one point. However, the number of possible
states at such a point is now sN, or even higher, where S is the

number of possible states or colours at each pixel, and N is the
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number of columns. Even if S§ is equal to 2, it is impractical to
compute two sN-dimensional vectors for each row. It is therefore
infeasible to carry out similar recursive techniques for
multi-dimensional Markov random fields themselves or such fields
corrupted by noisv data.

The prior distribution considered in this chapter is of Gibbs
form. It is known that the conditional distribution, given the
observed image, is still a Gibbs distribution, although the
corresponding neighbourhood system may change. It is therefore still
of exponential distribution form. If the exponential part is linear in
the parameters, the conditional mean and variance of the exponent,
given the observed image, depend only on the normalizing factor, ie,
the partition function, which is now related to the observed data.
From Section 1.4, we know that the computation of the conditional mean
of the exponential part is just the E-step of the EM algorithm.
Chapter 3 has pointed out difficulties in this sort of computation.
Although the Monte Carlo technique of generating samples from Gibbs
distributions can be used, the resulting computational demands are
also very substantial, so the Monte Carlo techni&ue for the E-step is
not an completely satisfatory approach.

As mentioned in Chapter 3, there is no explicit method for
maximizing the likelihood function associated with a realisation of a
Markov random field. We also know that the M-step of the EM algorithm
is in fact equivalent to maximizing the joint distribution of the
original image and the observed image, as if the original image were
observed. This can usually be regarded as consisting of two parts. The
first is to maximize the prior distribution, and the second is to
maximize the noise model. Since the noise models are currently
supposed to be relatively simple, it is not very difficult to achieve
the second maximization. Chapter 3 pointed out the difficulties
involving in parameter estimation for Markov random fields. AXthough
Monte Carlo methods can be used here too, they are computationally
time consuming. Therefore, even we can compute the conditional mean of
the exponential part, ie, carry out the E-step, it is still not easy
to do the M-step.

It is therefore impractical and very difficult to implement the EM
algorithm directly from the original distribution and the noise model.

Although the Monte Carlo method can be used for both steps, we have
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to examine alternative or modified methods. Chalmond(1988) applied the
EM procedure to a point pseudo-likelihood together with the Monte
Carlo technique. Note that, if the original image is partially
observed, for instance(see the next section, and also Qian and
Titterington, 1988). if all even rows are known, we can, by using the
recursive technique for Gibbs chains, carry out the EM algorithm for
the conditional distribution of all odd rows, with all image data at
odd rows replaced by noisy data. We shall therefore examine the
application of the EM algorithm to pseudo-likelihood functions in the
next section.

For the case of auto-normal continuous intensities, the situation
is different. By similar notation to that in the previous section, let

X; denote value at a single pixel, and the density of x be
p(x|B) = |Q|*% exp{-x Qx/2)/(2m)L/2 (5.3.1)

where Q, an LxL matrix, depends on the parameter B. Suppose the noisy

is additive white noisy with conditional density

L .
f(ylx,0%) =T £,(yjlxq,07) (5.3.2)
i=1
with ¥
fi(vilxy,0%) = exp[-(vi-x1)2/(202)1/(2m0?) (5.3.3)
where o® is an unknown parameter. The corresponding E-Step and M-Step

are then as follows.
E-Step: We must compute,
x(k) = E(x]ytﬁ(k),oz(k)) (5.3.4)

and

viK) = gax' |y, 8K o2(K)) (5.8.5)

It is easy to show that

x(K)

(1+02 (K)q(k)y™d.y (513.6) -~
v(k) = 62 (K) (1402 (K)Q(k))-1. (5.8.7)

and

M-step: B(K*1) ig obtained by maximizing
- &) on k) 4 tr(Q-vK)yy - 10e0 Q]2 (5.3.8)
and o2 1) = [ (y-xK) ) (y-x(K)) + tp(vik) /L (5.8.9)

where tr(*) denotes the trace of the matrix.
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The maximization of (5.8.8) is dictated by the dependence of Q on
B. For simple models, it is not difficult in theoryv. Suppose B(K) and

o2 (K) converge to B* and o?*, respectively, thev then satisfy

ES

X %™ -1y (5.8.10)

(I + o
and v¥ = 02™(1+ 02%Q%)"1 (5.3.11)

with the corresponding E* maximizing

-(x"'ox™ o+ tr(Q-v*)) - logllQll, (5.3.12)

also o =[ (y-x") ' (y-x")+Tr(v¥) 1/L (5.3.13)

The method of estimation within ICM in Besag(1986) goes as
follows. A single cycle of ICM is performed with the current
parameters 5{k) and oz(k), giving a new x(X) | This x(K) is treated as
"known" and provides updated estimates B{(K*1) and o?2(kK+1)  gowever,
the ICM method just gives (5.8.6}. This is equivalent, at every step,
to taking v(k) as zero in (5.3.8) and (5.3.9)) to obtain the new
values of B and o?. We therefore know that, if convergence obtains for

the values of B and o2, the limiting values g% and o?¥ satisfy
x# = (I+o?®Q%)"ly (5.8.14)
o?® = (y-x¥)' (y-x%)/L, (5.3.15)
with B® maximizing
-x®*'Qx% - log|Q]. (5.3.16)

It is obvious that the limiting values are different from those
associated with EM algorithm, since generally V(k), the conditional
covariance matrix of x, given vy, is not =zero. Therefore, the
estimators in the ICM procedure without the EM algorithm may be
biased. From our simulated results in the next section, we will also
find that for discrete MRFs, the estimators in the ICM procedu{e are

also biased.

5.4 Simultaneous parameter estimation and restoration

5.4.1 Basic idea

It is known that maximum pseudo-likelihood estimation is currently
a useful method for Markov random fields. Consider the first-order

case and pixel (ij) with its four neighbours. The conditional density
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of Xij, given all other pixels, depending only on these neighbours,

can be written as
P(Xij1Xi j-1-%4-1,5%i, 3+1.%4+1.5,8) (5.4.1)

The point pseudo-likelihood is just a product of a set of such
conditional densities. We only consider a single one here. Imagine
Xj j-1» Xi-1,j> %i,j+1 and X445 4 are four known constants and that B,
6 are unknown parameters. Maximum pseudo-likelihood estimation
involves maximizing (5.4.1). If Xij is missing, but alternatively, Vij
is observed with conditional density f(Yij|ij,e), our aim is to

maximize
Pr(Yij=yijIXi,j—l’xi—l,j’xi,j+1’Xi+1,j'B'e) (5.4.2)

The EM algorithm can be used for this purpose and is not difficult
to carry out. However, it is impractical +to assume that xi,j—l’
Xi-1,3+ %4i,j+1 ans Xj,q 5 are observed; they are usually missing
together with Xjj- One solution to this problem is to use estimated
values to replace them. It is natural to use restored image data.
Since restoration depends on the parameters, we propose an iterative
procedure, ie, restoration, then estimation, then restoration again,
and so on. In the rest of this section we shall develop this idea in

detail.

5.4.2 The case of {X5;} known

In this subsection, for simplicity, we concentrate on the
first-order pairwise interaction model with distribution in (1.3.3).
We suppose the exponential part is linear in the parameter B.

We consider the case where {Xpj_-;.i=1,2,...M/2} are missing, but
{Xpj.,i=1,2,...M/2} are observed. Although this case is not realistic
in practice, our aim is to illustrate the application of }he EM
algorithm to conditional distributions. We assume M is even; if M ié
odd, the results are very similar. We also assume the conditional
density f(Yijlxij,e) be of linear-exponential form, proportional to
exp{eh(Yij,xij)}, say. Consider the following two conditional
likelihoods

TAY=y,{Xpj_13={xp3-1} [{Xpi}={%03},B.9)
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M/2 M
= T plXpj-1lXp5-2,%25,8) T fyj]x4,8) (5.4.3)
i=1 i=1
and
f(Y=y|{Xaq}={xp4}.B,8) = I f{y.{x5i-1)1{x2y).B.9), (5.4.4)
{x23-1}
where  p(xjlXj_3.%347.5)
1 N _ N-1
= exp{B T g3j(Xij) + B T G[ij][4,j+1] %ij X1, 3+1))
C(Xi-1:%1+1:8) jog 0 jop LRI
(5.4.5)
with gij(xij) = gij(xij) + G[ij][i—l,j](xjj-xj—l'j)
+ Grigyriet, i1 %ij X141, 3) (5.4.6)
and
N
f(yjlxy,8) = exp{@ ¢ h(y;j.x55)}.
j=1

If we ignore the conditioning {X,;}, maximization of (5.4.3) is
Just maximization of two exponential distributions for B and
respectively, while maximization of (5.4.4) is that with {Xp4-1) as
incomplete data. We therefore discuss how to use the EM algorithm to
maximize f(y|{{X5i},B,®) in this subsection. Geman and Geman(1984)
proved that the conditional distribution of x given y is still of
Gibbs form. For the case we discuss here, the conditional distribution

is also still of pairwise interaction form. Note that

M/2
f({Xp5-131{x23-1},V,B,8) = T £(Xpj_1|Xp5-2,%p4,V2i-1.5,0),
i=1
where f for each row corresponds to a first-order Gibbs chain. To be

precise, !

(X{=Xj|Xj-1.,Xj41,V§,B,0) =

1 N N-1
exp{ £ g;i(Xi3) + B L Gri41ri s+171(X14 X5 51))
C(X1-1+5141.Y1.5.6) joq 1 S [13104,3+1]"2170%4, 3+
where gij(xiy) = Bgij(X34) + Oh(yy5.%45).

Thus, +the corresponding E-step and M-step for maximizing
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f(y|{xpi},B.6) are as follows.

E-step: Assume that B(k), olk} are the current values. Note that both
f(Xpi-11X0i-2,%X21:V24-1.B,©9) and f£(Xo;_1iXp3-2,%21,8) are of Gibbs
chain form, and that f(YijzyijIXij»e) is exponential, so that we only
need to compute

E(gi-1,j(X2i-1,3) |X2i-2, %25, V2i-1,8K),0(k)y,

ECG[Zi—l,j}[2i—1,j+1](X2i-1,j’xzi—1.j+1)fxzi—z'xzilyzi—l’s(k)»e(k))v

and

ECh(y23-1,5.%X2i-1,j) 1%2i-2,%21,V2i-1,8 ), 0(K))

for all possible i and j.

M-Step: It is easy to see that the maximization can be regarded in two
parts, namely, for B and 6 respectively. For B, it is almost the same
as line pseudo-likelihood, as illustrated in Chapter 3. We have to use
the recursive technique developed in Chapter 2, the only difference
being that we deal simultaneously with a number of chains with the
same parameter. For ©, it depends on the pFecise structure of
h(Yj;.Xi3). When Y;j is normal with mean X;; and veriance o?, it is

easy to obtain new value for o?Z,

5.4.3 The case where {xj} are all missing

In practice, {xpj} are missing as well as {Xpj_1}. As pointed out
in Section 5.3, if we try to maximize f(y|®,0?), there will be many
difficulties. It is natural to replace Xoi by their estimates, and we

therefore propose the following iterative procedure.

(1). Obtain initial estimates of both parameters B and ©, and an
initial estimate {§21} of {X54}. {The Maximum likelihood
classification or another better restoration method such as ICM can be

used to obtain an estimate of X; see Besag, 19886). .

(2). Concentrate on f(y{{§2j}.e,cz), and use one or several cycles of
the E-Step and M-Step described in the last subsection, to obtain new

values of B and €.

{(3). Re-obtain {%21}. A cheap way is to apply one or several cycles of
ICM(Besag,1986) to all the pixels, with the parameters estimated in
step (2).

(4). Return to (2) for a fixed number of cycles or until convergence
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seems to have occurred.

We know little about the theoretical properties of the above
algorithm, such as whether or not it is convergent. We use the
estimates {§21} as if they were true, and one problem may arise,
namely, that the parameter estimaters may be biased. In (3), to
re-obtain new estimates for all pixels means to reconstruct the image

simultaneously with parameter estimation.

5.4.4 Other pseudo-likelihood approaches with the EM algorithm

Besag's(1986) iterative procedure of simultaneous parameter
estimation and image restoration is as follows: restore the image, X,
from necisy data, y, then maximize a pseudo-likelihood to obtain new
estimates, B, from the restored image, X. (f(y]x,e) is maximized to
obtain a new value ©6.) B and & are then used for restoration in the
next cycle. Note the difference between our procedure and Besag's. At
each cycle of procedure, we use the EM algorithm to maximize a single
conditional likelihood, say, nf(YI{izi},B,e), while in Besag's, two
(conditional) likelihood functions, namely, vnp(ﬁijliaij,ﬁ) and
f(yvix,e}), are maximized. Although the estimated image is used in both
procedures, our simulation showed that their behaviours are quite
different.

The EM algorithm in the above iterative procedure is only applied
to the product of conditional distributions of all odd rows. It is
easy to note that it can be extended to the product over all rows, if
all pixels are restored at each cycle. We refer to it as LPL-EM, in
correspondence with line pseudo-likelihood. Also note that the EM
algorithm can be used to maximize f(yi,yi+1|xa(i.i+1),ﬁfe) , provided
that X3(i, 1+1)=X3(i,i+1) is known. Denote by 2LPL-EM the corresponding
iterative procedure in which two-line pseudo-likelihood function is
used. (See Chapter 3.) Finally, Hp[yijiﬁaij.ﬁ,ej is more eﬁsy tq
maximize by the EM algorithm, where the product is over all pixels. We
refer to the associated iterative procedure as PPL-EM. Obviously, the
procedure can usually be used with all sorts of pseudo-likelihoods.
Since the restored image 1is determined by the observed image, the
noisy image contains more information about the original image and the
unknown parameters, so using the EM algorithm may result in better

parameter estimation.
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5.5 Simulation studies and discussion

The results from the procedure outlined in Section 5.4.3 are
given in Table 5.1 and Table 5.2, but they correspond to second-order
MRFs with only one parameter B, over a 64x64 lattice. We used 30
cycles of row-by-row relaxation to generate random fields, and imposed
normal noise with different variances. The choice of Xpi, i=1,...M/2,
is by ICM updating for all the pixels. The results, with complete
data, with {Xpj} known and with {X;} all missing are compared in the
tables. The numbers of simulated random fields are also gven in the
tables. Of course, the method leads to a restoration of the original
image. From it and the estimation method for complete data, we obtain
another set of parameter estimates, given in the tables as the fourth

set of results.

| 1. the variance of noise is 0.36, number of fields: &0

B of
N-Mean N-Vari. N-Mean | N-vari.
Complete data | 0.49766 0.00048 0.35938 | 0.00008
| {Xo4} true 0.50366 | 0.00113 | 0.35921 | 0.00009
[ {X;} missing 0.49664 0.00210 0.37134 0.00012
] 0.75911 0.01101 0.37742 0.00012

2. The variance of noise is 0.16, number of field: 30

| Complete data | 0.49933 | 0.00089 | 0.156871 | 0.00002
| {X51) true 0.50854 | 0.00088 | 0.15980 | 0

| {X{) missing | 0.49151 | 0.00091 | 0.16159 | 0.00005
} 0.57735 | 0.00279 | 0.16250 | 0.00006

3. The variance of noise is 0.04, number of fields: 30

I
I
|
|
I
|
l
.00002 |
l
t
l
l
|
|
l

[ complete data | 0.49933 | 0.00039 | 0.03996 | 0.00000
| {Xzi} true 0.49842 0.00043 0.03998 0.00000
| {X;) missing 0.49842 0.00043 0.08991 0.00000
| 0.50131 0.00042 0.03885 0.00000

Table 5.1 Parameter estimation for two-colour MRFs

Simulation results show that with different parameters, the
differences between images restored by ICM, are relatively small, so
Besag's({1986) iteratve procedure, if it converges, should be very
similar in performance to the fourth set of results. Note thag those
results show positive biases. When the variance of the noise is small,
the restored image is almost the same as the original one, so all the
sets of results are almost equally good. The reason for this may be
that the maximum probability restoration has the tendency to make the
probability, with which the neighbouring pixels have different
colours, become smaller than the true probability. In other words, a

pixel with colour different from that of its neighbouring pixels,




Chapter 5 86
might be smoothed to the same colour as
restoration, so that the estimated parameter

becomes bigger.

Hidden MRFs

its neighbours after

within the MRF model

1 1- Variance of Yi-—-: 0.36, number of fields: 10

1 1 1 0 o*

1 1 1 N-Mean | N-Vari. | N-Mean | N-Vari. |
1 1 complete data 0.49148 | 0.00044 0.35873 | 0.00001 |
1 1 {X24> true 0.48671 | 0.00054 0.35912 | 0.00005 T
1 1 {¥J} missing 0.46746 | 0.00039 i 0.34840 | 0.00006 |
1 1 0.58595 | 0.00064 0.34345 | 0.00007

1 2. variance of Y*: 0.16 Number of fields: 10

1 1 complete data 0.49148 | 0.00044 0.15932 | 0.00000 |
1 1 {X21i} known 0.48840 | 0.00040 3 0.15931 ! o.ooo00i

1 1 {¥}> missing 0.47810 | 0.00032 0.15484 | 0.00002

1 1 0.52180 | 0.00037 0.15053 | 0.00002 |
1 3. Variance of ym-f: 0.04, number of fields: 10

1 1 complete data 0.48148 | 0.00044 | 0.03969 | 0.00000 1
1 1 {X2p true 0.49022 | 0.00039 0.03975 | 0.00000 1
1 1 {Xi} missing 0.48987 | 0.00040 0.03953 | 0.00000 1
1 1 1 0.49287 0.00044 0.03928 | 0.00000 1

Table 5.2 Parameter estimation for three-colour MRFs

Original i»«t«

64x64 fraae

Es tlasted value:
0 - 1.10321

2 cycles of Iter
Error e« 443
0 e« 0.46171
o'* 0.30640

Fig 5.1 Iterative

ESV.i
.4

HLE of *. with o* -0.36

Error e« 1060

Start 1ltar.
0 - 0.2
o!> 0.8

value:

6 cycles of Iter
Error e« 380
0 - 0.72574
o'— 0.32881

procedure for an

1 cycle of Iteration
Error e 461

0 - 0.32794
o'- 0.36672

18 cycles of Iter
Error e« 364

0 « 0.93793

o'— 0.36225

artifical images
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Fig 5.1 provides images at several steps of the procedure for an
artificial image, together with the estimated parameters and the error
rates at those steps. We used a second-order model. Note, in
particular, that, although the last two images are very similar in
terms of error rate, the estimates of B are quite different. The final
estimates of o? are very close to the true value.

Fig 5.2 provides results of Besag's(1986) iterative procedure of
simultaneous parameter estimation and restoration. The underlying
binary images were simulated by the point relaxation method, under the
Ising model with one parameter «=B. We added white noise with zero
mean and variance o=0.5. For each value of «, 40 replicates were
simulated. The straight lines in the figure indicate the true values.
We note that the estimated parameters, «, are larger than the true
values, with the implication that the restored images are
oversmoothed. The reason for this may be that the restored images
contain less information than the noisy images. The application of the
EM algorithm to pseudo-likelihood functions may enable us to get more
information from the observed images. Fig 5.3 presents results of
PPL-EM and LPL-EM for the same model as in Fig 5.2. LPL denotes
estimation from the originally simulated fields, using one-line
pseudo-likelihood. The average LPL is the almost straight line in the
figure, which is very close to the true value. In Fig 5.3(a), the
middle line from «=0.3 to 1.0 and the bottom one from «=1.0 to 1.5
display the results of LPL-EM, we then see that LPL-EM is slightly
better than PPL-EM. However, both of +them represent considerable
improvements on the results presented in Fig 5.2. The top two figures
of Fig 5.4 give similar results for 2LPL-EM, where 2LPL also denotes
parameter estimates from the data originally simulated but now by the
two-line pseudo-likelihood method. Fig 5.4 is based on only 20 samples
for each «. Note that the behaviours of 2LPL and 2LPL-EM are almost
the same. The bottom two figures of Fig 5.4 show the sample variance
of the above estimated parameters. &% shows similar behaviour, while
the variance of « increases quite guickly as « increases. However,
even for o equal to 1.5, which is much bigger than the critical point
of about 0.88, the sample variance is still not very large.

For all the above simulations, we used the method of Golden-

Section~Search to find estimates of the single parameter «(B).
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Fig 5.2 Parameter estimation without the Modified EM algorithm

We use ICM for restoration in our simulation. It is known that ICM

converges to a local maximum point. However, the pseudo-

especially based

only
likelihood functions together with the EM algorithm,

on the two-line pseudo-likelihood, result in very good parameter

estimation. Therefore we conclude in this chapter that, whatever

method is used for restoration, the modified EM algorithm is very

useful for the parameter estimation.
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Fig 5.3 Parameter estimation with the modified EM algorithm
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Fig 5.4 Results by two-line E¥ algorithm and sample variances
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Chapter 6

Three-Dimensional Markov Mesh Models
6.1. Introduction

Although Markov random fields can be thought of as a
two-dimensional version of the one-dimensional concept of a Markov
chain, they, in general, differ from Markov chains in an important
respect, in that they are not easily simulated. Realizations of Markov
chains can be simulated by a single pass along the (one-dimensional)
set of sites {Chapter 2), but this is not truve of Markov random
fields. However, for a Markov Mesh Random Field (MMRF) model, which,
as mentioned in Chapter 1, is in fact a causallv-dependent MRF and
also a sort of generalization of a Markov chain, single pass
simulation can be achieved. In the two-dimensional case this can be
done by a raster scan.

In principle, there is no fundamental need for the set of sites in
the random field models to correspond to a two-dimensional lattice of
pixels. This chapter considers the three dimensional case of MMRF
models. The model is a natural generalization of the two-dimensional
version of MMRF. We only consider the case where the only available
data is a noisy version of the true scene. We shall effectively
present a direct analogue of the ‘"two-dimensional" ©paper by
Lacroix(1987). The closeness of the analogy will become clear as this
chapter develops. Instead of pixels, the sites are a set of volume
elements or voxels. Such images are also common in practice in the
study of materials and in medical imaging.

Markov models for two-dimensional sceneg are important because of
the need to represent (spatial) contextual association among
neighbouring pixels. Their extension to genuinely three—dimen§ional’
versions is crucial, particularly in the above contexts, in whicﬁb
interframe, as well as intraframe associations must be modelled. The
MMRF models we discuss are comparatively general and are not
formulated for special three-dimensional phenomena such as short-range
motion across a sequence of two-dimensional frames.

For Markov random field models, the conditional distribution,
given the observed noisy image, is still that of a Markov random

field, with a slightly changed neighbourhood system, but it is not
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true of MMRF models. It is almost always computationally impossible to
seek Maximum a Posteriori(MAP) restoration for MMRF models. Some sort
of approximation is required, and a modified criterion is then used
for the estimation of the +true scene; see Devijver(1988) and
Lacroix(1987) for two-dimensional cases.

In Section 6.2 the Markov Mesh models and assumptions are
specified and in Section 6.3 the algorithm is derived. It takes the
generalized form of the F-G-H algorithm of Devijver(1988); see also
Lacroix(1987). It will be emphasised in Section 6.3 that simplifying
assumptions are necessary, in order to creat a practicable algorithm.
The treatment of boundary voxels is also specified there. Experimental
results are presented in Section 6.4. In Section 6.5, we discuss the
problem of parameter estimation from noisy data. An iterative
procedure similar to that in Chapter 5, together with the modified EM
algorithm, can be used. We present some simulation results But only
for the two-dimensional case. Section 6.6 contains a brief discussion
of conclusions and possible further research,

It should be mentioned here that notation in this chapter are

different from those in the rest of this thesis.
6.2. The hidden Markov Mesh random field(MMRF) model

In this section we establish the basic assumptions underlying our
Markov Mesh models for three-dimensional scenes and for the generation
of noisy versions thereof. The true scenes are described by a lattice
of voxel labels, denoted generically by A, and the observed images by
a corresponding set of feature vectors, for which the letter x is
used. The development and detaiiled notations parallel very closely the

two-dimensional version in Lacroix(1987).

6.2.1 The MMRF model H

In notation very similar to that in Lacroix(1987), let

* Vynp = { (m,n,2), O<mgM rows, 0<ngN columns, 0<#<L layers) be a
finite integer lattice;

* (a,b,c) be a voxel at the intersection of row a, column b and layer
c:

* Xabe and Xgphe be the label and feature vector, respectively, at

voxel (a,b,c), with each xap taking a value from a finite set of
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"colours", where X,pe could also be one-dimensional;
* Vapc denote the rectangular parallelopiped array of voxels depicted
in Fig 6.1, with Vabc(x) and Vabc(x) as the corresponding arrays

of labels and feature vectors.

We shall also use the superscripts (») and (x) to denote arrays
of labels and feature vectors associated with other sets of voxels.
For the concept of the Past of voxel (a,b,c), we use the
generalization of the definition introduced in Abend et al(1965) and
used later in Kanal(1980) and Lacroix(1987) for the two-dimensional

case. The past of voxel (a,b,c) is the set {(m,n}s): m<a or n<b or

2<c} .

/ / / / g:ff"ﬁ'

- ;/ A AP

c-th L8[ Aoe Nooete [ Mave [N | //

Asce-1 Aob-lc-t| Aabe-1 Ao v
v

/ b
L

Aaoo Nbto [Nato Moo aﬁo—.

o

Fig 6.1 Definition of Vup. and Vabc(k)

2N\

The model chosen for Vyyp{*) is that of a homogeneous, third-
order Markov Mesh, thereby creating the natural analogue of the

second-order process used by Lacroix(i987}) for the two-dimensional
case.

Third-order Markov_ Mesh: The Markovian assumption for this model is

that
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P[Xabc!{ nne : M<a or n<b or #£<c}1 = PLhapc!Vabe M \rapel

= Plxabel*a-1,bcr *a,b-1,c: *ab,c-17- (6.2.1)
The term “third-order" reflects the fact that the probabilities
are conditional on three \'s.
Versions of this for the boundaries are obvious and will not be

written out in detail.

Homogeneous: We now impose further simplifying assumption on (6.2.1).
Let S denote the finite state space for the labels. Then for 0<agM,
0<bgN, 0<cgL and for q, r, s, teS,

PlXabc=d12a~1,bc=T+ Xa,b-1,c=S+ *ab,c-1"t1 = Pqirst:
independent of a, b and ¢. For the boundary conditions, which are also

to be considered homogeneous, we make the natural assumptions that

Pg = Plrgpo=1l (initial voxel)
Pqlron = Plra00=q1*a-1, 0071 (initial Row axis, azl)
Pqloso = PLrobo=9lXq,b-1,0=5] (initial Column axis, b1}
Pqlont = Plrooc=ql%po,c-1=11] (initial Layer axis, c21)

Pqlrsn = P[Xabo=9l*a-1,bo"T: *a,b-1,0=S] (initial RC-plane, a>1,b>1)
Pqlost = Plrobe=ql*o,b-1,c"S+ Xob,c-1=t1 (initial CL-plane, b>1,ck1)
Pqirot = Plraoc=9!*a-1,0c=F: *ao,c-1=tJ (initial LR-plane, a®l,ck1)

These assumptions lead to the following properties for the

process.
Property 1. For any (a,b,c)eVyyr,

a b c

P[Vapc (M1 = HO “0 gnopfxmnflkm—l,nﬁ’ m,n-1, ¢ ™mn,2-11. (6.2.2)
m= n= =

f .
(Thus, the joint probability function of the labels on Vapc factorises

into a simple form reminiscent of "independence" models. It is easy to
handle such a single (conditional) density, which looks like a local
conditional distribution of a Markov random field. Therefore,
similarly to the case of pseudo-likelihood for MRFs, it 1is
usually not difficult to get likelihood estimates for the unknown

parameter(s) involved in the model, from observed VMNL(X)' directly
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or by an iterative procedure.)
Property 2. For any (a.b,c)eVyyr,.,
Plagbe!{(Appg: (m,n,2)=(a,b,c)}] = PIxgpel{dype: (m,n,2)eh(abc)}]
(6.2.83)

{a-1,b,c) (a,b-1,c) (a,b,c-1)
(a+1,b,c) (a,b+1,c) (a,b,ctl)
(a+1,b-1,¢) {a~1,b+1,c) {(a-1,b,c+1)
(a+1,b,c-1) {a,b+1,c-1) (a,b-1,c+1)

where D(abc) =

with appropriate modifications at the boundaries.

Property 3. The rows (resp. columns, lavers) of a homogeneous MMRF
form a stationary vector Markov chain of dimension (N+1)(L+1) (resp.
(L+1) (M+1), (M+1)(N+1}).

6.2.2 The noise model

As in Devijver(1988) and Lacroix{1977) and previous chapters, we
assume that the noise variables on different voxels are conditionally
independent, given VMNL(k)r and that each feature vector has the same
conditional probability function f(xXgpolXzpe). dependent only on »gpe-
Thus

a b c

PLVape (X! [Vape (M1 = “0 no Rnof(xmnﬂlkmn2)~ (6.2.4)
m= n= =

6.2.3 Statement of the problem

We first assume that all the parameters in the MMRF model and in
the noise model are known. In Section 6.5, we shall discuss the
problem of parameter esimation from noisy data. Our problem is now to
identify the original array VMNL(X) from VMNL(X)v the latter
representing the available data, so that the original array is hidden"
by the noise. The approach we adopt for the labelling is different
from that we used for Markov random fields, where MAP is used for the
entire scene. In fact, we also use the Maximum a Posteriori({MAP)
estimate, but for each pixel, conditionally on only part of the array

of feature vectors: to be specific, for (a,b,c)eVyyp, we choose \gpe=9

where g comes from the rule:
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PLNabe=0!Vape (¥} 1 = max PLagpe=r |Vape (X) 1. (6.2.5)
r
This is in contrast with the usual practice with non-causal MRFs,
where MAP estimation is undertaking conditionally on all feature data

(Besag, 1986). One would attempt to choose iabc=q by

Pfkabc=q|VMNL(x):| = mix P[)\abczriVMNL(x)]. (6.2.8)

In the contexts of both MRF and MMRF models, implementation of
(6.2.6) is very complicated. With MMRF models, the hope is that one
can implement (6.2.5), or a plausible approximation thereof, using a
single pass through the data. Clearly, the situation would be much
simpler if the right-hand side of (6.2.6) were P[xabc=rlvabc(x)], for
then one can substitute from (6.2.1), using the labellings already
established for voxels (a-1,b,c), (a,b-1,c¢) and (a,b,c-1), thereby
easily finding ¢. Since, unfortunately, only x is available and since
the true labels are spatially correlated, the exact expression even
for PLhape=rVape(¥)1, when expanded in terms of voxel labels on

Vabe! will turn out to be complicated. '
6.3 Generalized F-G-H algorithm

For the two-dimensional case Devijver(1988) proposed the so-called
F-G-H algorithm, and this procedure was generalized in Lacroix(1987).
The general principle of the algorithm is to begin at one corner of
the frame and to work diagonally downwards, labelling the pixels in
the new "diagonals" as they enter into the pass. As remarked at the
end of Section 6.2.3, the construction of a recursive procedure to

effect a 1labelling following this type of pass will not feasible,

computationally, without making approximations; these will be
determined in terms of a "hypothesis", to be specified in Fectin
6.3.2. i

In section 6.3.1 we introduce some notation, in Section 6.3.2 we
derive the basic features of the algorithm itself, and, in Section
6.3.3, we discuss how to deal with the voxels at or close to the

initial axes or planes, in other words, the boundary voxels.
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6.3.1 Some notation

First we introduce the "past of order h", Vafc, and the "diagonal
of order h". Daljc, for voxel (a,b,c).

We define

vabc = O<m<a, 0<n<b, 0<i<c. m+n+i<a+b+c-h) (6.3.1)
and

Dabc = { (a-i,b-j+i,c-h+7j), 0<i<j<h} (6.3.2)
where we assume h<min (a,b,c). The boundary cases corresponding to a<h

and/or b<h and/or c<h, will be treated in Section 6.3.3.

The physical meanings of, and relationships among, these sets are

depicted in Fig 6.2, which shows Vafc, Dafc, Vadc, Dadc, Va”c and
2 h n_

Dabc* Note that vapC\DapC is a subset of all the past of all voxels of

Dabc in vabc* We a”so have Vabc=vabc’ and Da”° consists only of voxel

(a.b.c).
Define
1'"i “abc<X)” * pCDhabc ¢') lvabc<X) 3~ (6.3.3)
Our problem is to maximize yr, (D&"c”xb . ie Tp(g). (Fig 6.2 may be

helpful for us to understand the definition of functions .)

Fig 6.2 Definition of Valj (x) and Da[jc (x)
The cornerstones of the F-G-H algorithm are a "local decomposition
relationship" and a lattice "recurrence relationship". The latter is

associated with ©particular partitionings of VasC and Dabc, and we

discuss these next.



Chapter 6 97 Hidden Meshes

Fig 6.3 depicts the required partitioning of Vagc for h>»3. The
major element of the partition is Va—l.g:g,c—l' while the other six
components can be divided into two kinds, denoted by Aagc(*) and

Bagc(*), where *=R,C,L refers to row, column or layer respectively.
The A's are face and B's are edges, as Fig 6.3 demonstrates. There are

various ways of relating and manipulating <these components, as

h
A (:)_i/ . ahe R)
L - V,;bc R

follows.

h
Uabc 1
B Yh o
Vgi?b-ic-;
Dg:?b-lc-l
N h .
Usbe A sbe (L)

abe (L)

Fig 6.3 The decomposition of Vagc and Dagc

Decomposition relationships for Vagc (h»3) !

Equations (6.3.4) and (6.3.5) describe two types of partitioning.

h h h h-3 h-1 )
Aabc(R) * Babc(L) * Aabc(C) + Va-l,b—l.c—l = Vab,c—l
h h h h-3 h-1
Aabc(c) * Babc(R) * Aabe(L) * Va-1,b-1,c-1 = Va-1bc (6.3.4)

h h h h-3 h-1
Aabc(L) * Babc(C) * Aabc(R) * Va-1,b-1,c~-1 = Va,b-1,c |
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h h-3 h-2
Aabe(R) * Va-1,b-1,c-1 = Aa,b-1,c-1
h h-3 h-2
Aabe(c) * Va-1,b-1,c-1 = Aa-1,b,c-1 ‘ (6.3.5)
h-3 h-2
Aabc(L) + Va-1,b-1,c-1 = Aa-1,b-1,c

In these equations "+" denotes set-union operation.

Note that similar decomposition relationships hold for Dagc-
These involve subsets of Dagc' to be called Uagc(*) and Wagc(*),
that are direct analogues of Aagc(*) and Bagc(*)v respectively. The
decomposition relationships for Dagc (h>8) are identical to those for
Vagc’ except that we replace V by D, A by U and B by W.

For example (c.f. (6.3.4)),

h h h-3 h-1
Uabe(R) * “abc(L) *+ Uabe(c) * DPa-1,b-1,c-1 = Pab,c-1

and (c.f. (6.3.5)}),

h-3 h-2
1

h
Uabc(R) * Pa-1,b-1,c-1 = Da,b-1,c-1-

Uagc(*) and Wagc(*) are also shown in Fig 6.3.

6.3.2 The algorithm

The algorithm is founded on two principle features, a local

decomposition relationship(LDR) and a workable recurrence

relationship(RR). In order to construct the (RR) from the (LDR) a
simplifying hypothesis has to be imposed.

The Local Decomposition Relationship(LDR)

The (LDR)} express ®¥:(D - (x)) in terms of corresponding functions
itYabe ? .

®i41(D ;gi( )), related to DEEL, which is the diagonal of next highest

order. Precisely, for igh-1, where, h<min(a,b,c):

(LDR) ?i(DabC(x)) =

—:P[Dabc(h 'Dabc( ) il q'1+1(Dabc( ))P[Dabc( )lnabl(k)l’ (6.3.6)
i
Dabe (M)
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where Ny = P[Végé(x)]/P[Vagc(x)J, is a normalizing number.
Proof of (LDR):
i i +1 1+1 i
P[Dapc (M), abc(x)J z 1 PLDapc M, Dab (N, vape (%), Dabe (X1

E P[Dab L), Vabé( )3P[Dabc(k)lDahé(x)JpEDabc( )lDabc(k)J
+1
Dab ()

n

PEDégé(x)] t 1 P[Dabl( )'Vabc(x)]P[Dabc( )lDa+1(x)]
pe (M)

xP[Da%C(X)lDa%C(X)]

= P[Dabc(X)j §+1 l"1«~1(Dabc( ))PfDabc(x)lDabc )JP[Dagc(x)lDaéc(k)3-
Dabc(k)

Since vi(Da%C(*)) = P[Daéc(*),Vaécix)]/P[Vagc(x)J. (LDR) follows.

Note that P[Daéc(*)fnégé(*)] are known, for the neighbouring past

of any voxel of Daéc belongs to D;gé. Also since

i i
PLDabc (¥) [Dape (M1 = I Plxpn e [ Mmne (6.3.7)
i
(m,n,1)eDaphe
these factors in (6.3.6) are also known. Thus if ¥, were known, we
could recursively compute all of the ®;, 0<i<h, so that, in h steps,

we can compute ¥5(g), which is our basic goal.

The Simplifying Hypothesis

In order to exploit the (LDR), therefore, we reqguire to compute
¥,. It is impractical to do this "exactly" and we impose a hypothesis.
which allows us to create a simplified expression for ¥, and thereby
to determine the whole system. An equivalent procedure was carried out
in Devijver(1988) and Lacroix(1987).

To motivate the need for simplifying hypotheses, let us try to

compute ¥,. By its definition,

T Dapc (M) = PLDabe (M), Vabe (X) 1/PLvahe ()1 (5.3.8)
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Next, we introduce some more notation. Define

- h h (»

AR) = <Aabc§§‘§. Uabchg)

- h h (»
and B(r) = (Babc(X)' Wabc%R%)

along with similar definitions for Z(C)’ E(L)' E(C) and E(L)-

Also define

V= (Va-1,b-
for h23.
As a result of our earlier decomposition relationships(6.3.4) and

(6.8.5), and with reference to Fig 6.3, it is clear that the

denominator of (6.8.8) is

P[K(R), K(C)' K(L)’ E(R)’ E(C)’ E(L)' ?}. (6.3.9)

The crucial step in the computation of (RR) will be the
replacement of (6.3.9) by the factorised form

+

PIB(R).A(c) A(L) VIPLB(c) A(r)-A(r) VIPLB(1) A(r) A (c) VIPLV]

P[K(R).VJP[K(C),GJP[K(L),63
(6.3.10)

Clearly, (6.3.10} follows from (6.3.9) only under special
independence assumptions involving the arguments of (6.3.9), and these
assumptions constitute a suitable hypothesis. There are several
approaches to the establishment of such a hypothesis. The most simple

sufficient hypothesis is to assume K(*) and 5( (altogether 6 terms)

*)
are independent of each other, conditionally on G, ie,

PLA(R).A(C) - A(L) B(R) B(C) B(r)IV]

- - — - -— -— — . - — —_ - {
= P[A(R)IV]P[A(C)|V]P{A{L)[V]P[B(R)|V]P[B(C)!V]P{B{L)IV], (6.8.11)

It is easy to use the above assumption to derive (6.8.10) from
(6.3.9). However, note that there is a sort of T"neighbour"
relationship between K(*) and §(¢). For example, some voxels
corresponding to A(R) are neighbours of some voxel corresponding to
E{C)- Therefore, one may think of this hypothesis as not being

realible. In fact, we shall state minimal assumptions under which
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(6.3.10) follows from (6.3.9), and associated with such minimal

assumptions, we can quote a more generous but syvmmetric set of

assumptions.

A suitable minimal hypothesis (M) is represented by the following
set of assumptions, expressed in four stages, (M1)-(M4).
Hypothesis (M):

M1 (A(L)» B(R)» B(C)) are assumed statistically independent of
B(L)' conditionally on (V A(R)» A(C)}

M2 (A(C) B(R)) are assumed independent of B(C) conditionally
on (V A(L)’ A(R))

M3 A(R) is assumed independent of B(g), conditionally on
(V. Aoy Am))-

M4 A(R) A(c) and A(g) are assumed to be mutually independent,
conditionally on V. o]

For this hypothesis to make sense, in terms of the Markov Mesh
model, it is important that, in each of the above statements, the
conditioning item separates the items assumed independent, in that it
blocks any pathway between them that exists in the directed graph
represented by the assumptions of the model. This ‘was the case in the
two-dimensional work in Devijver(1988) and Lacroix(1987), and its
veracity can be easily be checked. (c:f. Fig 6.3), while it is not
true of the assumption represented by (6.3.11)

Bypothesis (M) is not a unique set of minimal conditions: two
others can be created by replacing "L" by "R" or "C" in (Mi) and
relabelling thereafter, as appropriate.

If this lack of uniqueness or the asymmetry among L, C and R is
displeasing, the following symmetric hypothesis (S) suggested by a
referee of our paper(Qian and Titterington, 1990b), is undoubtedly
sufficient for our purposes. This hypothesis has two stages.

(81). (i) Assume (A(L) B(R), E(C)) independent of E(L}’ given
(V, &r). A(c)) _ _ t
{ii) Assume (A(C) B(L)’ B(R)) independent of Bicy. given
(V. Ay, Ac)) _
(iii) Assume (A(R) (C)' B(L)) independent of B(R): given
(V. Acc)» Ay
(S2). Same as (M4). o}
Note that (S1)(i) is the same as (Mi), that (S1)(ii) implies (M2)
and that ($1)(iii) implies (M3), thus verifying that, altogether, (S)
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is enough to imply (M)}, but not vice versa.

In practice, it is irrelevant which of (M) or (S) is assumed. They
are both "respectable" in reflecting the type of "pathway blocking"
mentioned above, and, as we will see, they both allow the deduction of

(6.3.10) from (6.3.9}.

(6.3.9) To (6.3.10) Under Hvpothesis (M)

Here we show that (6.3.9) leads to (6.3.10), under the hypothesis
summarised by (M1)-(M4).
By (M1},

PLA(R).A(C) A(L) B(R) B(C) B(1).V]

PLA(R) A(c) A(L) B(R) B(c) - VIPLB(1) A(R) .A(C) V]

P[K(R),K(C),ﬁl
By (M2),

PLA(R)A(c)-A(L)B(R)-B(c)V]

PIA(R)-A(C) A(L) B(R)VIPLB(c) A(L) A(r)"V]

P[Z{L).K(R),GJ

By (M3),

PIA(R)-A(c) A(L) B(R)- V)

PLA(R).A(c) A(L) VIPLB(R) A(c) A(L) V]

PLA(c) A(L) V]
By (M4),

P[K(R)'X(C)vE(L)'§]

P[K(R),Z(c),GJP[K(L),K(R),GJP[K(C),K(L),GJ
PLV]
= . t
PLA(R)»VIPLA(c),VIPLA (L), V]

Multiplication of the above four equations generates the required

results.

The Recurrence Relationship(RR)

The step from (6.3.9) to (6.3.10) is the first stage in the

derivation of the following Recurrence Relationship. It is helpful to
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introduce some further notation, representing certain subsets of

h
. Dabc(k)'

We define
1(n h (» h (x b (» h-3 (x

Dh%R; = (UabcEL}’Wabc%Rg’UabcgcgyDa—l b—l,é—%>» (6.8.12)
2(x h (x» h-3 (A

Dth; = (Uabchg,Da—1,b—1.é—%) (6.3.13)

pp ™ = (a1, 573, 0o ) (6.3.14)

and Di%é%, Di%;;» Dﬁgé and Dﬁ%f% by analogy with (6.3.12) and
{6.3.13) respectively. Note that all these objects are composed of
those labels of Dagc(x) located in Danl?gg. Da,g:g'c,l, Da*l,gi?‘c_l,
etc.

With the help of this notation, our recurrence relation (RR) is

(RR) (Do (M)

1 1{%\) 1 1 A 3(x
*h(R)ﬂDhER))“h(C)(D 5 3)*h(L)(Dh§L§J?h(Dh( )

’h(R (Dh§ §>¥h(c (Dng §>*h(L>(Dh§ 3)

{(6.3.15)

PLV,-1 pe %) PV, b1 o) IPLV,n g (KD ppvay B3 (%03

where N, =

h-2 h

P[Vy b-1,c- 1(X)3PEVa~1?E?c—1(X)JP[Va—l,b:i,c(x)JPEVagc(x)3

Note that, similarly to the functions ¥;., the functions &ﬁ(*),
(i=1,2,8, *=R,C,L) are associated directly with voxel (a,b,c). They

are, in fact, directly expressible in terms of our previous notation

in that ?ﬁ(*), ?ﬁ(*) and wﬁ correspond respectively to ¥, 1, ?h—z and
®h.3 associated with voxels (a-1,b,c) and {a-1,b-1,c} and '

(a-1,b-1,c-1), etc. For example, T%(R)(Déggﬁ) = P[DigR%[Va 1, bc(k)]

*h(R) (O (R} =PIOR(R] 1Va. 55,213 ana w0 =prof M 1vauy 577 (1. as

a result, from the *; associated with voxels belong to the past of
voxel {a,b,c), (i<h), with the help of "local decomposition
relationship", we can compute ¥, associated with voxel (a,b,c) and,

thereby attain our goal.
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*Proof of (RR):

1), V1/P[Vap (%)

h - — — -— - —_—
#, (Dabe (M) = PIA(R).A(c).A(L) B(r) B(c) B

_ PIA(c) B(r) Ar) VIPLA(L) B(r) A(c) . VIPLA(R) 1B(c) A(x)  VIPLV]

P[Vagc(x)JP[K(R) VIPLA(c),VIPLA(L). V]

1{x h-1 1(x) h~1 1(x h-1 L
pooR(R)vart 58 o (o) 1va s () ok (2] 1vRe o
2(x 2{\ h-2 N
PIDE(R) 1Va, bos, cx1 IPLDA (8] IVact b, 21 PPLDA (1) IVach  pot o1
PEDR ) 1Vais 50y, T IPIVACT 5o IPIVa b0 PV, o1 PTVa-1, 51, ¢
PLVabc (X) IPLVa, B3, -1 %) PLVacy b aes () 1PV 1, bog, ¢ (X) 2
(0]

The recurrence relationship (6.8.15) helds if h»3. For h=1 or 2,

the decomposition relationships of Vg, and, in particular, of Dgpe

are different. To be precise, Dabe is only divided into six parts,

none of which belongs to Va_q -7 -1, while, for Dape, the situation

is even more simple. However, if we formally defink

-1 -2 4]
Va-1,b-1,c-1 = Va-1,b-1,¢-1 = Va-1,b-1,c-1 * Va-1,b-1,c-1"

-2

-1
Da-1,b-1,c-1

define Dg_q p-1,c-1 = to be empty sets and define

Uaéc(*), with *=R,C,L also to be empty sets, then the decomposition

relationships for h=1,2 can be written in terms of the same formulae

as those for h»3. We have the following recurrence relationships for

h=1 and h=2. (c.f. Fig 6.3)
¥i(r,s,t) =
p[xa—l,bczrlva—lfgéjp[xa,b—l,C=51Va,b—%%éjp[xab,C—l=t|vab,é§%]
(6.3116)
¥5(n{,Ns,...0ng) ©
PLng.ng.ngIVals BeIPIng.ng s Va, §-{ L IPIng, n5 ng Vah, o211

PIng Voo po1,c ¥ IPINg Va1, b, -1 F) PIng1Vang po1,c X1

(6.3.17)
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6.3.3 Boundary conditions

In this subsection, we assume h to denote the highest order
adopted in both relationships. If voxel (a.b.c) belongs to the first h
rows (or columns, or layers) ie., min(a,b, c)<h-1, it is not possible
to consider the h-th diagonal, and only functions such that
0<i<min (a,b,c) are defined as in the last two subsections. However,
there is a difference between the three- and two-dimensional cases. In
the two-dimensional case, if  we consider pixel (a,b) and if
i=min(a,b)-1, j=max(a,b)-1, we can define diagonals with order higher
than i and lower than 3j, but where the numbers of pixels 1in these
diagonals are the same as that in the i-th diagonal. For voxel (a,b,c)
in the three-dimensional case, let i=min(a,b,c)-1, and let
Jj=i4min{ (a-i+1,b-i+1,c-1+1)\ (0)}, so that Jj+1 1is the second smallest
of a, b and c. If j>i, we can also define diagonals with order from
i+l to j. However, the numbers of voxels in these diagonals increase

(see Fig 6.4). On the other hand, note that, for the initial planes,

we can use the method for the two-dimensional case with high order.
Therefore, if i<j, for a voxelwith i and j defipea as above, we may
either use local decompositionrelationships only upto functions P

or we may define functions ¥s (s>i) in such a way that we can use
similar local decomposition relationships and recurrence
relationships. If we adopt the former strategy we need the recurrence
relationship for order 1 and order 2. These are presented in the

preceding subsection, and we therefore do not discuss them here.

Fig 6.4 Vaf{jc and Daljc at boundary case

From Figs 6.4 and 6.5, we can see that the functions * with
subscript higher than 1 have fewer arguments (which  represent the
states at thosecorresponding voxels), and, 1in terms of the 1local

decomposition relationships, the numbers of voxels increase along only
two directions. Thus Dboth relationships, the recurrence relationship

in particular, become simpler. To illustrate this, we only consider
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the case of i=c-1 in detail. For the other two cases, the argument is

directly analogous.

=Z
s-1b-lc
e A, C
a-1b-lc afic (U
Y,
7
/ S
AS U 0
abe R} Us
abc (R) g

Fig 6.5 The decomposition of Vagc and naﬁc at boundary case
Local decomposition relationship

When s>i, the LDR for function ®g is almost the same as that in
the last subsection, except that Dagc’ vaﬁc, D:gé and Vzgé are
slightly different, in that fewer voxels are involved.

Recurrence relationship

When s>i we see that, as shown in Fig 6.5,

s s s-2 S
Vabc = Aabe(R) * Va-1,b-1,c¢ * Aabc(C) (6.3.18)
2
b

s s s— s
Dabe = Uabc(R) * Pa-1,b-1,¢ * Uabe(C)- (6.3.19)

We therefore impose the hypothesis that (Aagcgﬁg, Uagcgﬁg) and
(Aagc(cg, Uabc§cg) are independent, conditionally upon 1va_§f§_lf§),
s-2 (»
Dp S8y,

The RR is therefore obtained as follows:

N -2 (X
s(Dabc( )) = [®g_ ~-1(a-1, ch(UabcER; Da—?,h—é,é>

s (\) s—z ) s- 2 (x)
x®¥5-1(a,b-1,c) UVabe(c) Da-1, ( ,c) 1/ ®s-2(a-1,b-1,¢){Pa-1,b-1,¢’
where  ¥g_j(a-1,bc)r ¥s-i1(a,b-1,c) and Pg_p(a-1,b-1,c) are those

functions associated with voxels (a-1,b,c), (a,b-1,¢) and (a-1,b-1,c)
respectively. Note that the above recurrence relationship is almost

the same as that in the two-dimensional case (Lacroix, 1987).
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6.4 Experimental results

In order to analyse data from real, noisy images using Markov Mesh
models, it is first necessary to guess, or estimate, values for
unknown parameters from the data. This is usually a difficult problem,
which we shall discuss in the next section. In our numerical work
here, we used simulated binary images and an artifical ternary image
corrupted by white noise, and we implemented our labelling algorithm
under the assumption that the true parameters in the model were known.

In the following simulations the Markov meshes were defined by a
single parameter, B>0, that represents a measure of the Markovian
information contained in the true scenes. Suppose §; denotes the
number of members of the state space $. (In our examples, Sp=2 or 3.)

Then we took

Pq = P[Nooo = @] = 1/8y

Pqiroon = Pglorn = Pqoor = exp{BRd(q,r)}/ T exp{Bd(w,r)}
weS *

Pqirsu = Pq]rns qunrs

= exp{B(&(q,r)+6(q,s))}/ & exp{B(o(w,r)+6(w,s))}
weS

Pqlrst=exp{f(d(q,r)+6(q,s)+8(q,t))}/T exp{B(6(w,r)+d(w,s)+6(w,t))}
weS
where &(q,r)=1 if g=r; =0 otherwise. The lower B is, the lower is the
tendency for neighbouring voxels to have the same label, and the lower
therefore is the Markovian information in the scene.

Since we have generated the images subsequently restored, we can
easily count the number of voxels incorrectly restored and thereby
report error rates.

Fig 6.6a shows an artifical ternary image on a 64x64x8 framef(ie.f
M=N=63, L=7). The first column displays lavers 1-4 and the second
column shows layers 5-8. Note that the picture changes slightly from
one layer to the next, while there is a big difference between the
first and last layer. The state space for the true labels was (0,1,2)
and to each voxel independent white noise, with variance o?=0.36, was
added.

First, the voxel-wise maximum likelihood(ML) classifier was
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applied. This simply assigned each voxel to the label "nearest" to its
feature variable. The resulting labelling, shown in Fig 6.6b incurred
8410 errors(25.6%). Next, the image was labelled using our algorithm
with h=1. The parameter B was chosen to be 1.5. For the boundaries we
used the simplest possible approach, wusing only a one-step
decomposition and recurrence iteration up to the nearest, past
neighbouring voxels, of which there can be 1 or 2. The corresponding
restored image is shown in Fig 6.6c and contains 1955 errors (6.0%).
We also implemented the "block constraint" method of Kanefsky and
Strintzis(1978), as was done in Lacroix(1987) as a comparison with the
two-dimensional algorithm. This method maximizes likelihoods
corresponding to a small regions. The rule for assigning a state g to

voxel (a,b,c) is:

Kabe (4} = max Kape(W)
weS

where

Kabc(“')=r z tp[r's't]fr(xa—l,bc)fs(xa,b—l,c)ft(xab,c—l)fw(xabc)Pw{rst
in which f.(Xape) = f(Xgpcl>ape=r) and P[r,s,t] is the probability of
the occurrence of the event (Xz_1 p¢=r.»z, b-1,c=S:%ab,c-1=t) over the
entire image. In practice, P[r,s,t] is unknown. In simulations,
however, such quantities can be estimated either from the true scene
or, less satisfactorily, from restorations obtained by some other
method. Our experience was that, not surprisingly, it was better to
use the true scene.

We compared the block-constraint method with our own algorithm for
h=1 and h=2 in a study that parallels one reported by Lacroix(1887).
We generated binary images on 20x20x20 frames with conditional means
my=0.1 and m,;=0.9 for the white noise. For the block-constraint
method, the P[r,s,t] were estimated from the true scenes. ¢

First we fixed B=0.8 or 2.0 and varied o, so that the error rate
was a function of o. Results shown in Fig 6.7 reflect a similar trend
to that in Lacroix{1987), based on a measure of signal-to-noise ratio

(SNR): the smaller o is, the larger is SNR. In our example,

SNR = (m,-mg)2/(402) = 0.16/0%.

In the second part of the study, we fixed o at 0.4 or 0.7 and
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varied B. Note that the larger B is, the greater is the Markovian
information, and the smaller therefore is the entropy. The results are
shown in Fig 6.8. In both Figs 6.7 and 6.8, the error rates are

averages of three replications.

Note from both Figs 6.7 and 6.8 that, when B and o are both large,
the results for h=1 are superior to those for h=2. This situation did
not occur for the combinations of small B with large o {e.g. B=0.8,
o=1.2) or large B with small o(e.g. B=5.0, o=0.5). The explanation may
be that, for a particular voxel (a,b,c}, some of the probabilities

(PID2(R) 1Va,b-1, 6503, PID2 (8] IVact b, o2, PID2 (M) 1Vast boi¥2D) (see

(6.3.10)), are very small if B and o are both large, and, in the
recurrence relationship associated with h=2, where Do (%) is only one
voxel, (for example, D2(R) is voxel {(a,b-1,c-1)), the product of these
three functions is used as a divisor of three other conditional
probabilities (see (6.3.17)). Repetitions of such operations in
numerical calculations may lead to the accumulation of round-off
errors, with the result that unexpectedly many voxels are assigned
wrong labels. To combat this we made the following' modification: for

each ?Z(Dabc(x)) obtained by (6.3.17), a small, positive regularising
constant (specifically, 0.5) is added to each factor in the divisor.
The results are presented in Figs 6.9 and 6.10, corresponding to Figs
6.7 and 6.8, respectively. We can note that the resulting figures were
virtually identical to Figs 6.7 and 6.8 except that the anomalies in
the results for h=2 disappeared. The performance of h=2 still shows

little superiority over that of h=1.
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Fig 6.6a An artifical inage: 64x64x8
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Fig 6.6b MaxiBim likelihood classifier: 25.6% error rate
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Fig 6.6c Restoration with h=1: 6.0* error rate
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6.5 Parameter estimation from noisy data

Our aim in this section is to discuss the problem of estimating
the model ©parameters. We concentrate only on the case of
two-dimensional second~order models. The treatment is directly
analogous for multi-dimensional cases. Devijver(1988) proposed a
learning algorithm, which is based on a decision directed (DD)
approach and is in fact a modification of the iterative procedure of
the EM algorithm. In his procedure, the restored image was used at
each cycle of iteration. Note from the last chapter that, in the
iterative procedure of simultaneous parameter estimation and
restoration for Markov random field models, a product of a set of
local conditional distributions is maximized by using the EM
algorithm. We can adopt the idea to hidden MMRF models as well. To be
precise, at each cycle of iteration, after restoring the image, say,

X, we re-estimate the parameters by maximizing the function

M K
I I Pr[xij[ii_l’j,ii’j~1,5,e). . (6.5.1)
i=0 j=0

(6.5.1) calls for some comments. First of all, it comes directly

from the prior likelihood function

M K
T W Prlxjlng-1, 5.2, 5-1.B). (6.5.2)
i=0 j=0
It is easy to deal with both sorts of conditional densities in
(6.5.1) and (6.5.2), respectively, if Pr[xijlxij,e] is not
complicated, and the EM algorithm can therefore be used to maximize
(6.5.1). Secondly, for the case of MRF models, all the neighbouring
pixels of one pixel are used in the corresponding local conditional
density, while in (6.5.1) we only use the past neighbours. This may be
a reason for the different behaviours of the procedures for the two
models. Thirdly, we may, at each cycle, maximize (6.5.2), providing

a=x, and the other function involving the parameter ©, namely,

M N )
| I Pr[xijlxij,e], (6.5.3)
i=0 j=0
to obtain new values of the parameters. This is just the procedure
described in Besag(1986).
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Our experiments were performed under the additional assumptions
that only one parameter, 13 is involved in the prior model, (to be
precise, the (conditional) probabilities are defined in a similar way
to (6.4.1), (6.4.2) and (6.4.3)), and that the observed images are

created with additive white noise with variance as the only unknown

parameter.

Original image Closest Classifier 1st cycle 2nd cycle

£ = 2.20526 o= 0.6 8 = 1.60470 £ = 1.65437
£ = 1.87845 o¥ = 0.29498 a2 » 0.33649

02 = 0.18423 error=11.82* error=9.89%

error=25.66%

4th cycle 8th cycle 12th cycle 18th cycle

£ = 1.77154 £ = 1.90790 £ = 1.95748 £ = 1.96740
= 0.36763 02 = 0.38656 02 = 0.39385 o2 = 0.39578
error=9.13% error=8.91%* error=8.96% error=8.96*

Fig 6.11 Iterative procedure with EM algorithm

The illustrations concern an artifical 64x64 three-state image.
White noise with variance 0=0.6 was added. We first restored the image
by means of closest classification, and then estimated parameters by

maximizing (6.5.2) and (6.5.3), assumimg that the restored image was

the true scene. From these estimates, we started our iterative
procedure which maximizes (6.5.1) at each cycle. Results of parameter
estimation and restoration are shown in Fig 6.11. The procedure
converges very quickly. Note that a similar phenomenon to the
procedure for Markov random fields (see Fig 5.1) occured: the

convergence of restoration is extremely rapid, and the restored image
changes a 1little after one cycle, whereas the parameter estimates are

quite different. Fig 6.12 illustrates the iterative procedure where
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(6.5.2) and (6.5.3) were used in each cycle, where we also started the
iterative ©procedure the same way as 1in Fig 6.11. This procedure
converges faster, however, and we find that estimation using (6.5.1),
especially for the wvariance of the noise, 1is much better than the
procedure without the EM algorithm, although the difference between
restorations 1is not so great.

Our experiments with different variances for the artifical image
and for simulated images also showed that the estimated parameter £ is
usually smaller than the true value, whereas estimation of the
variance of the noise is quite good. We can note from the last chapter
a different phenomenon for the MRF model case, in that, for simulated
images, the estimates of the parameter 8 are almost the same as the

true values.

Original image Closest classifier 1st cycle 2nd cycle
£ = 1.49143 £ = 1.51826
02 = 0.25709 o2 = 0.26117
error=25.66% error=11.82% error=11.30%
4th cycle 8th cycle 12th cycle 18th cycle
£ = 1.53522 £ = 1.54563 £ = 1.54769 £ = 1.54769
£2 = 0.26399 02 = 0.26590 02 = 0.26629 52 * 0.26629
error=11.06% error=10.89% error=10.86% error=10.86%

Fig 6.12 Iterative procedure without EM algorithm

6.6 Discussion

As in the two-dimensional case(Lacroix, 1987), our algorithm
consists of two parts, the second of which relies on a hypothesis
whose wvalidity cannot be guaranteed. If, in the three-dimensional

case, the algorithm is applied to order greater than 2, then the
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number of voxels involved in the restoration of a single voxel becomes

very great, with consequently high computational demands. There is

also another computational problem. The diagonal Dagc contains many
voxels, so that some of the associated conditional probabilities are
small and prone to underflow, even after normalization. Finally, we
are liable to suffer the problem of numerical instability discussed in
Section 6.4, Introduction of the modification mentioned there
transforms the procedure into a quite different algorithm.

These factors, along with the likelihood that the results with h>2
are unlikely to be dramatically superior to those with h=2, stimulate
us to suggest that the algorithm be used only with h=1 or h=2,

Besag's(1986) ICM method is originally proposed for MRF models.
It is an iterative procedure, while the method we discussed in this
chapter is a single pass restoration. From Property 2 of our model
(Section 6.2), we know that the conditional probabilities for one
voxel, given labels at all other voxels, can easily be computed. For
MMRF models, therefore, one can also use ICM for restoration.

The model discussed in this chapter is thg simplest model for
three-dimensional problems. One might use a more complex model in
both two-~ and three-dimensional cases.

In the iterative procedure for parameter estimation and
restoration, we can maximize a product of more complex conditional

densities, such as,

1 2 (x
np[xabcrnabc(X) lDabc( ).B,01,

and this may lead to estimators with better properties.

Although our methods have produced reasonable results, further
work can be carried out to improve the methods, particularly with a
view to enhancing the numerical stability by deriving a better

recurrence relationship.
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Chapter 7

Multi-Dimensional Markov Chain Models For Image Textures
7.1 Introduction

In this chapter we explore the use of the multi-dimensional Markov
chain as a model for texture. Consider a rectangular array of M rows
and N columns, regarding each row as a random vector. Under the model,
it is assumed that the distribution of the current row, conditionally
upon all "previous rows", depends only on a small number of past,
neighbouring rows. This conditional distribution will be assumed to
reflect pairwise interaction between neighbouring pixels, in order
that the properties of the model might be very similar to those of
pairwise-interaction MRF models.

The MMRF model exhibits causal dependence in that samples from
them can be generated directionally. As mentioned before, it can be
regarded as a direct analogvue of the (one-dimensional) Markov chain,
or as a sort of two-dimensional time series. Tﬁe asvmmetry of its
local dependence structure leads to the aesthetically unsatisfatory
directional property. Causal dependence is not present in the MRF
model, but realisations are usually generated by a iterative
procedure. Some methods for simulating MRFs, such as that used in
Cross and Jain(1983), are conditional on prescribed assumptions. The
resulting patterns may therefore be wholly unrepresentative of the
distribution of the corresponding MRF(Besag, 1986). Although the
convergence of Geman and Geman's (1984) stochastic relaxation method
can be proved, and parallel computational architectures can be
exploited, the theoretically valid speeds of convergence are very
slow.

Our model is a stationary multiple Markov chain. Although tit is-

difficult to make it strictly stationary, and non-directionality

cannot be guaranteed, local dependence on the past pixels is
symmetric. As in the case of MRFs, values chosen for the underlying
parameters reflect the nature of the interaction between neighbouring
pixels.

In Chapter 2, (see also Qian and Titterington, 1990a), we

investigated the one-dimensional, pairwise-interaction Gibbs chain,
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and developed a recursive technique for calculating its normalizing
constant, thereby enabling us to simulate the Gibbs chain and to carry
out maximum likelihood estimation of parameters. This "line technigque"
also enables us to handle the model which we shall introduce in this
chapter.

Standard Markov chains have been used for generating textures.
Connors and Harlow(1980) generated streaky line textures according to
a simple Markov chain that ignores dependence among rows. Haralick and
Yokoyama{1979) generated essentially one-dimensional textures.
Although they injected some correlation between neighbouring rows by
considering co-occurrence matrices, it is almost impossible to specify
the spatial, probabilistic structure of the resulting pattern, and
their simulation results were also limited in scope.

In Section 7.2, we define the multi-dimensional Markov chain model
and simulate patterns corresponding to a variety of choices of
neighbourhood systems and parameters. (The selection is made with a
view to producing patterns similar to those of Cross and Jain{1983).)
In Section 7.3, we discuss the problem of parameter estimation based
on a realization of the model. Maximum likel}hood estimation is
achieved through an iterative algorithm which is similar to the
procedure we illustrated in Chapter 2, and, since it is not exactly
the Newton-Raphson procedure, it usually converges linearly. In
Section 7.4 the ICM method is used to restore images from noisy data,
and the problem of parameter estimation from noisy data is also
addressed there. In Section 7.5 simulation results related to Section
7.3 and 7.4 are presented and compared. Concluding remarks are given

in Section 7.6.
7.2 The multi—~dimensional Markov chain {(MDMC) model

We now consider an MxN frame. Let X{=(Xj1:X42,...X4jy! denote the
i-th row. where Xjje{1,2,...8} for each i and j; X=(X;.Xp,...Xy)
denotes the whole image. The model is based on the causal assumption
that the distribution function of one row, conditionally on all past
rows, depends only on a few immediately preceding rows. it is known
that MRFs provide symmetric texture models, allowing us to consider
neighbouring pixels in all directions. For MMRF models, although only

a few past pixels are used in the definition of the model. the local
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dependence involves more pixels. (See Property 2 in Chapter 6.)
Similarly, for this new model, we only consider neighbouring pixels in
the past rows and in the current row in defining the conditional
density of the current row.

Definition: X is called a first-order pairwise-interaction
multi-dimensional Markov chain (MDMC) if, for certain functions (gij),

(Gij),

\ -
P(X1=%7) = plxq)= %1exp(j§1glj(x1j) + jﬁielj(xlj.xl,j+1)}, (7.2.1)
and, for i=2,3,...,M,
P(Xj=xi |X{1=Xi_1.X{-2"Xj_2,...,.X1=Xy) = P(xjlxi.1) (7.2.2)
1 N _ N-1
= E;T;;jIT exp{jilgjj(xij) + izleij(xij’xi'j+l)}, (7.2.3)
where
[ g11(xj3) + G§g)ixi—1,1»x11) * G§%)(xi~1,21Xi1) j=1

. (-1), (0),
€ij(Xij) + Gij  (Xj-1,j-1-%i3) + 643 (Xj-1 §.%Xi5)

gij(%ij) = (1), o
+ Gij (xi,l’j+1,xij) 25 J<N-1

(-1}, 0 .
L giN(XiN) *+ GiN )(Xi—l,NwlrxiN) + GéN)(Xi—l.N’xiN) J=N

(7.2.4)

i-1,j-1 i-1,3 i-1,3+1

i,3-1 i,3 i,j+1

Fig 7.1 Form of neighbourhood for the first-order case
t

Note that the exponential parts of these {conditional) probabilitﬁ-
functions are very similar to those of pairwise-interaction MRF's, and
that the interaction relationship between neighbouring pixels is
represented by the functions Gx and G«(™), Fig 7.1 shows pixels ij and
those neighbours which are considered to have an interaction

relationship with it. It follows easily that, in an obvious notation,

P(xij]xl,xz,..,xi_l,xil,xig,....xi’j_l,xi'j+1,....xiN)
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= P(x331%5-1,§-12%4-1, 3 Fi-1,3+1-%1, j-1Xi, j+1)

= exp{gij(Xjj) + G j-1(Xji, j-1,X3j) + Bi5(Rij,%X5 j+1)

(1), . (0), . (1)
Gij "(Xi-1 j-1.Xijh + 613" (Xj-1,5.Xij3) + 61 (Xi-1 j+1-%35) ).
(7.2.5)

Different forms of the functions Gx and Gx!™) or different
interaction relationships can be chosen to create different types of
image.

If instead we use second-order chains, we can naturally extend the
model to the second-order case with neighbourhoods of the form shown
in Fig 7.2. For higher-order cases the theroy of high-order Gibbs

chains is required.

-
i-2,j-1 i-2,j i-2,j+1

i-1,j-2 | i-1,j-1 i-1,3j i-1,3+1 | i-1,j+2

i,j-2 i, i1 ij i,j+1 i,j+2

Fig 7.2 Form of neighbourhood for the second-order case

Note also that the (conditional) probability functions (7.2.1) and
(7.2.3) have the same form as that of the first-order Gibbs chain
which we examined in Chapter 2. The model can therefore be simulated,
from the first row to the last row, in just one scan, whereas existing
methods for simulating MRF's have to use iterative procedures (Cross
and Jain, 1983, Geman and Geman, 1984).

Cross and Jain(1983) generated some examples of MRF's. according
to various settings of the parameters, in order to imitate a variety
of real textures. In presenting some images generated from our model,
we chose parameters with a view to creating patterns similar to those
in Cross and Jain(1983). We can consider either ordered-colbur or
unordered-colour textures in the cases of both MRF's and MDMC's. We
can also adopt different interaction relationships in different
sections of the whole image in both classes of model. One of the
differences between these 1two models, which might be to the
disadvantage of MDMCs, is that, in MRFs, isotropy can be enforced, so
that the interaction relationship between one pixel and its

neighbouring pixels in different directions is the same, while, for
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the MDMCs, we cannot create exactly isotropic cases, since the effects
of the interaction functions Gij and Gij(*) in the conditional density
of the i-th row. f(X;{X4-1), are different. In other words, since

(-1)__(0)

PriX;ij1Xa11 othersl © exp{gj j+61 j-1+G6;i j+CGij "+6ij

Ci+1(Xy)

+ G§%)+Gi£§3j—1+si£gzj*Giiz%§+1}' (7.2.6)
we see that the density function for one pixel, conditionally upon all
other pixels, depends not only on its 8 neighbours but also on all
other pixels in the same row, while that of a second-order MRF depends
only on its 8 neighbours. However, we might still be able to generate
virtually isotropic images by choosing different parameters for
different directions.

The descriptions of the images simulated are as follows. We take

gij(x33) =0 1

Gij(xXij,X5,j+1) = BO(Xij,%] j+1)
(-1)

+

Gij " (Xi-1,j-1-%¥ij) = B-10(Xj-1, j-1.%X55) (7.2.7)
(0), . _ ]
Gij (Xj-1,3Xi3) = Bod(xj-1,5.%X4j)
NET _
613" (Ri-1,3+1%13) = B1d(Xi-q, j+1.%4j) -
1 s=t
and 5(s,t)= s,t e {1,2,...8} (7.2.8)
0 otherwise

(1) Pseudo-Isotropic Effects: Fig 7.3 shows five simulated 64x64

binary textures, where the rows generated first are at the top of the
patterns. Fig 7.8a represents the "noise", ie, with B=B_{=By=B1=0,
and Fig 7.3b and Fig 7.3c are run-of-the-mill cases. Fig 7.3d is an
image with equal parameters in the horizontal and vertical directions.
whereas, in Fig 7.3e, the horizontal parameter B is bigger than Bg. We
find therefore that there is more similarity among rows than'amoﬁé
columns and that the model is vertically directional,

(2) Anisotropic Effects: Fig 7.4 shows extremely anisotropic 64x64

binary images. The parameters B, B, B_, and By control horizontal,
vertical, NW-SE and NE-SW directional interactions respectively. For
the three images, the parameter for one direction is large relative to
those for the other three.

(3) Ordered Patterns: By enforcing negative interactions between one
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pixel and its four nearest pixels, we can simulate the chessboard-like
pattern shown in Fig 7.5. Note that a black pixel is very likely to be

surrounded by four white pixels,, and vice versa.

i. €-0.0 0-0 b- ®(-i)*0o.0 c¢* ®“°-9 s(_jj*o.0
0(0)“0.0 B (1)-0.0 BJQ)*0.6 B3j23»0.0 0(0)*0.9  £i(ij*0.0
* * , 1 )
A\
e. f1-0.8 B | »0.0

0(0)-1.6 B (1)-0.0

Fig 7.3 Some pseudo-isotropic examples

ds

a. fl1-2.0 ®(-1)*¥0.0 b-e-0.1 Bf.jj-0.0' c. B-0.05 B(.:)-2.0
®(0)*°-1 e®(i)*0.0 ® (0)*2.0 ® (1J*%0.0 B (0)-0.05 B (1)-0.05

Fig 7.4 Examples of anisotropic effects
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Ordered pattern: (0)*"1+*®

Fig 7.5 Chessboard-like pattern

(4) Attraction-Repulsion Effects: As in Cross and Jain(1983), an
attraction-repulsion process involves ©positive interaction between
"near" neighbouring pixels, resulting 1in clustering Dbut negative
interaction between "far" neighbouring pixels, to inhibit the growth
of clusters. If the interaction with far pixels is also positive,
large areas with the same colour would Dbe generated. Fig 7.6
illustrates inhibition in both diagonal directions: typical patterns
have many horizontal and vertical lines. Fig 7.7 shows two images
simulated from the second-order model. The twelve kinds of interaction
functions associated with twelve neighbouring pixels (Fig 7.2) are
taken to be of the same form as those of the first order case 1in
(7.2.6). Twelve parameters are therefore listed there according to the
positions of the corresponding pixels in the neighbourhood.

(5) Changing-Interaction Effects: For the above four cases, the
interactions among neighbouring pixels are the same over the entire
images. The texture model does allow wus to consider different
interaction relationship in different parts of the frame, and also to
simulate it easily. Fig 7.8a shows an example 1in which interactions

change gradually in the horizontal direction, ie

Gij E Gij E 0: Gij(xij*xi, = ie®(xij »x1i )

and GIFA(Xi.'(F,x"J) = e06 (xi-1,3j>xij)e 7.8b, on the other

hand, which shows wvertical change, we have G*"jl1” s Gjj~ s 0, and
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Gij(xij,xi .j+1)“P6 (xij ,J+1)J Gij ~<xi-i,j*xij)=j%06 (xi-1,j*xij)*
Fig 7.8c shows a pattern with changing parameters in both horizontal

and vertical directions.

a. 0=0.2 ~ (1) *~0.8 b. 0=1.0 ®(-1) "~
0(o)=0.2 0 (1)=-0.8 0(o )*1 *5 ~(1l)s-1-5

Fig 7.6 Examples of attraction-repulsion in 1lst order case

a' -0.3 -0.3 -0.3 T -0.2 -0.2' -0.2
-0.3 0.35 0.35 0.35 -0.3 -0.2 0.7 0.7 0.7 -0.2
-0.3 0.45 0.45 -0.3 -0.2 0.9 0.9 -0.2

Fig 7.7 Examples of attraction-repulsion in 2nd order case

(6) Multi-Colour Patterns: Fig 7.9 shows one four-state picture and
one five-state picture. They are simulated from the second-order model
with the same parameters as listed there.

All these images look very realistic. The first four examples are
very similar to those simulated by Cross and Jain(1983) from MRFs.
This results from similarconsideration of the interaction
relationships. We can also note the re-appearance of the effect that
these images appear out of focus, which is intrinsic to texture models

based on stochastic assumptions.
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a. Horizontal effiect: b. Vertical effiect: c. Both direction effiect:
P(-1)“®(1)“0 %0 * (-1)"e (1)n°-° e (-ir®(1)"0-0
0*1 .2 CjQj«0.5 0*0.7 0 (gj*1.5 0 « 0(0) *1.5

Fig 7.8 Examples of changing parameter effects

-0.3 -0.2 -0.3
Fig 7.9 Some Multi-colour patterns
7.3 Parameter estimation

In this section, we express the (conditional) probability
functions in the last section in terms of parameters, and assuuye that
the the exponential parts of these densities are linear in the

parameter, 8. Thus,

1
p(x1|pP) = ———— —exp{f zitXi)} (7.3.1)
C1 (P1)

1
p(xi|xi 1,P) = -——- Zd (xi-i ,xd)}, (7.3.2)

cifxki-l%p '
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where B is a multi-dimensional, unknown parameter and the Z; are
) vector functions, which have still the interaction form shown in
{7.2.1)-(7.2.4). Then

M
P(X=x,B) = p(x,B) = p(x1|B) T p(xj|x5-1,B) (7.3.8)
i=1
and
M M
#p(x,B) = logp(x,B) =B I Z; - I logCy, (7.3.4)
i=1 i=1

where Cy=C;(xj-1,B) is the normalizing factor of the i-th row. Thus,

1 a
1 Cy 8B

™=

a M
— ep(x,B) = T 24 -
B i=1 i

cy. (7.8.5)

Note that the normalizing factors C; satisfy

Ci(Xi-1.B) = L exp{B Zj(x5_1,%X1)}. (7.3.6)
Xy ‘
Thus
3 M M
—p(x,B) = I Zy(X;_9.%3) - E[Z3(Xq)|B] - T ELZj(x5_1,%;)[%j-1.R]
3B i-1 i=2
(7.8.7)
and
FY: M
—fp(x,B) = - ¢ Var[Zi(xi_l,Xi))xi_i.B]. (7.3.8)
ane i=1

d
In the above formulae, _E denotes the partial derivative vector
2 d '
3
— denotes the second-order partial derivative matrix and Var denotes
ap2
a covariance matrix or a conditional covariance matrix. The results in

Chapter 2 imply that Cj(x;.9,B) and E[Zj(x;-1.X;)|Xj-1.,81 can be
computed easily. If therefore B is one-dimensional, we can use a
search method to find the maximum point of the log-likelihood function
(7.3.4). When p is multi-dimensional, as we pointed in Chapter 2 and
Chapter 3, it is not easy to compute Var(Zi|x;-1,B) exactly. As a
consequence, we cannot use an exact Newton-Raphson iterative procedure

to maximize #p(x,B). If, however, we can find a positive-definite
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matrix Ag such that

2

a

—— #p(x,B) € ~Ag <0 Vx, B, (7.3.9)
ap2

where £ (<) denote the (strict) Loewner ordering, we can still]l use the
following iteration, which is similar to that in Chapter 2, to obtain

maximum likelihood estimates. This iteration converges linearly.

M
plik+l) = glk) - -1 ¢ 7, -
i=1 i

E(Zjlxi-1.B(K))1, k=0,1,..., (7.8.10)

™ =
(3

where A > Ap is also a positive definite matrix.
Although it is difficult to check whether or not (7.3.9) holds,

2

d
—-2p(x,B) is usually a negative definite matrix. Thus, in practical
ap2
computation, when A is "large" enough, the iteration will converge to

the maximum likelihood estimates. Some simulation results together
with results of reconstruction and parameter estimation in the case

where only noisy data are available are provided jn Section 7.5.

7.4 Image restoration and parameter estimation based on noisy data

As in previous chapters, we assume that, given the original image
X=x, the noisy data on different pixels are conditionally independent,
and that the noisy variable for pixel (i,j) depends only on Xij- It is
not necessary teo have the same conditional distribution for each

pixel. Thus
M N

P(Y:ylx=x’9) = It H fij(yijlxij’e)’ (7'4'1)
i=M j=1

where & is an unknown parameter.
7.4.1 Image restoration
For the first-order model defined by (7.2.1)-{7.2.3), the marginal

probability function for Xij the colour on pixel {(i,3),

conditionally upon all observed noisy data and on the true colours at
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all other pixels, satisfes

PLXy§=X3 3 1Y=y, x\{x33}] = £4;(yyjlx;35)PrixgIx\(x45}1 (7.4.2)

The ICM method of Besag(1986) is a convergent method to maximize
P[X|Y=v,B,0), given the parameter B in the original image model and ©
in the noise model. Noting the expression for Pr[xij{x\{xij}] in
(7.2.6), we see that, apart from the term (Cjuq(x3))71, (7.4.2) is the
same as that of the MRF, However, Cj,q(xj) can be computed by the
recursive technique in Chapter 2, and, as a consequence, we can use
the ICM technique to obtain the Maximum Probability Reconstruction.
Although the method incurs a heavier computational burden than in the
case of MRFs, some techniques for computing the normalizing constant
of the Gibbs chain can still be used to reduce the computational
demands if we update the colours pixel-by-pixel and row-bv-row. The
techniques involve two groups of vectors; one is defined by forward
recursion, and the i-th vector in the group depends only on the
previous functions g and G; the other is defined by backward
recursion, and the i-th one in the group depends only on the
following functions g and G. Thus, in order to update colours from the
first pixel to the last pixel in the i-th row, we can first compute
all backward vectors, then compute forward recursion vectors element
by element as the new colours are being chosen for each pixel at a
time. Therefore compared with the MRF case, it is only the
computational demands of these two groups of vectors that increase for
each row: it is not necessary to compute Ci+1(x4) for each pixel in
the i-th row. If S, the number of possible colours, is not large, the
additional computational burden is not heavy.

Just as in the case of the MRF model, the ICM method is only of
local convergence for our model. Instead of using the ICM method, we
can adopt a rule which is similar to that for the MMRF model. This
results in a non-iterative procedure, such that the image gan be
restored through a single pass. To be precise, we still start updating
from the first row, and for the j-th pixel in the i-th row. we may

either use

P[Xijlxl,ﬁzy---,ii_l,yl,Y2,...,yil=P[Xij|§1_1,yi]

or

P[Xij|xl’“'Xiwl’xil'xiz'"'Xi,j~1’y1’y2""yi] =
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PLXjj1%i-1,%51,..,Xg, §-1.V1]
to decide a colour for pixel (ij). Note that both the above

conditional densities can be maximized bv the recursive technigues.

7.4.2 Simultaneous parameter estimation and restoration

We now consider estimation of unknown parameters, B and 6. Since
the original data are not available, we examine the use the EM
algorithm. As in the case of the MRF model and MMRF model, it is
infeasible to carry out the EM algorithm exactly. For the MRF model
and MMRF model we have, in Chapter 5 and Chapter 6 respectively,
developed the iterative procedure proposed by Besag(1986) for carrying
out restoration and parameter estimation simultaneously. The approach
used noisy data and the currently restored image to choose new
parameters by using the EM algorithm to maximize a single
pseudo-likelihood. For +the MDMC model introduced in this chapter,
based on the same idea as used in the previous chapter, we propose
the following iterative procedure. ,

Suppose that fij(yijlxij,e) = exp{dij{xij,yij,e)} and write y as
(V1:¥2,...,¥y) where y; represents the noise or the observed data in
the i-th row.

1. Obtain initial estimate B and 6.
2. Carry out ICM as in the last subsection, based on the current B

and 6, thereby obtaining a new x.

3. Obtain new values for B and & by maximizing the pseudo-likelihood

M
P(v118,0) T Pr(yjl%i_1,5.0). (7.4.3)

i=2

4. Return to 2 and continue for a fixed number of cycles or until

an appropriate stopping rule is satisfied.
Remarks

(1) Note that both of the conditional densities p(xiiii_l,ﬁ) and
Pr(xil%{_1,v{.B,0) are of Gibbs chain forms. The EM algorithm
can therefore be used to maximize (7.4.3).

{2) Both Step 2 and Step 3 are in fact iterative procedures. At early
stages 1in the whole procedure it is however not necessary to
carry them out until (approximate) convergence. Experimental

results suggest that a small number of iterations is sufficient,
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for the 1ICM stage, in particular. As the procedure reaches
convergence, of course, the component Steps 2 and 3 converge
guickly in any case.

(3) Instead of the ICM method, we can use other restoration methods,
such as the rule described at end of the last subsection.

{(4) In Step 2, we might have tried, instead, to maximize the
following two functions in order to obtain new estimates for the

parameters, B and €, respectively:

M

p(X11B) T P(XjlX{-1.B) (7.4.4)
i=2

T fi5(vijl%54,0). (7.4.5)

iJj

Suppose Xj_1 = X4.1 is not missing and consider the single factor
p(X;{X3-1,B). When y; is available, it is preferable to maximize
p(v31%4-1,B8,8) rather than to maximize Q(iilxi_l,ﬁ) and
p(vi|X;,©) respectively, because X; contains less information
than y;. Therefore, the results obtained by maximizing (7.4.3)
should be better than those obtained by maximizing (7.4.4) and
(7.4.5). We can observe this phenomenon for the MRF model and the
MMRF model in Chapter 5 and Chapter 6, respectively.

(5) Similarly to the case with other models, little is known,
theoretically, of the convergence properties of the above
procedure. In our numerical experiments, in which we estimated
four interaction parameters, corresponding to four directions,
along with the variance of the Gaussian noise, by choosing
positive initial estimates, the procedure always converged.
Convergence did not always obtain if, instead, we maximized

(7.4.4) and (7.4.5) in Step 3. ¢ oo
7.5 Numerical results

Figs 7.10-7.12 show some simulated results of the iterative
procedure described in the last section, applied to 100x100 frames.
The images at the upper-left corner were simulated from the model

with parameters indicated as OP {original parameters). These
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parameters represent interaction relationships in four directions as
expressed in (7.2.7). EP denotes the parameters estimated from the
original image by the method described in Section 7.3. The upper-right
images display the results of maximum likelihood classification after
corruption with additive normal noise, with the stated variances. We
started the iteration from initial estimates pB=B_1=Bp=B1=0.5, and
0=0.3 in all three cases. The lower-left images correspond to two
cycles of iteration, while the lower-right indicates the converged
state. IEP denotes the estimated parameters obtained by the iterative
procedure in Section 7.4, and REP denotes parameter estimates
obtained from the restored images, treated as true realizations of the
model, by the method in Section 7.8.

Note that Fig 7.10 and Fig 7.11 are for the same original image
but with noise of different variances. In the case of low level noise
(Fig 7.10), both IEP and REP are quite close to the original
parameters, while for higher noise variance IEP is better than REP.

Fig 7.12 is an example to show the difference in performance if,
in Step 3 of the algorithm, one maximizes (7.4.4) and (7.4.5), rather
than (7.4.3). The iterative procedure based on (7:4.4) and (7.4.5) did
not converge for this example since, after several cycles, parameters
B_; and Bq became negative and the error rate for the currently
restored image increased. This had an adverse effect on parameter
estimation. From the figure we c¢an also identify the effect by
noticing that, although the reconstruction is quite good, one of REP
values is negative, very unlike the original parameter and the IEP.

Although it can happen that REP is better than IEP, IEP performed

better in most of our numerical experiments.
7.6 Concluding comments

In this chapter we have developed a multi-dimensional Gibbs¢ chain
model and used it as a model for image textures. We have demonstrated
that, by choosing the underlying parameters appropriately, textures
can be created that are verv similar to those realised, after
considerably more computational effort, from Markov random field
models. The problems of image restoration from noisy data and of
barameter estimation have been attacked using Besag's(1986) ICM

algorithm coupled with an approximate version of the EM algorithm.
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Important developments for the future include refinements of the
algorithmic aspects of the methodology and theoretical investigation

of the convergence properties of the iterative procedures.
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fﬁ?ﬁ
Error rate: 6.74X Error rate: 6.63X
3 -1.141 1.143 1.328
£(-130.409 0-0.397 IEP. 0.401 rEp. 0.367
3() -0.512 0.527 0.508
Oo@) -0.406 0.395 0.355
o—0,397

Fig 7.10 Example 1 of the Iterative procedure
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-1.2 EP. 1.209 Closest classifier
-0.4 0.383 .

mD.5 0.547 o — 0.6

-0.4 0.352

Error rate: 26.7*

Error rate: 15.25% Errar rate: 14.94%
o78 1.073 1.419
430 ©o—0.585 IEP. 0.401 REP. 0.309
468 0.563 0.710
458 0.407 0.272
5= c.53%

Fig 7.11 Example 2 of the iterative procedure
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& N
Closest classifier:
0.255 c « 0.6
0.519 Error rate: 25.22
0.226
Error rate: 9.42
rate: 8.52
3 -1.555 1698
. 2.118
= 0.387 0 = 0.594 0.247 RE?. 0.022
0.731 1.049
0.424 .
2(0) 0.232 -0.042
.447
3 © 0.595

~*2 7.12 Exaaple 3 of the iterative procedure
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Chapter 8

Discussion And Concluding Remarks

This thesis mainly concentrates on spatial statistical models
associated with applications to image analysis. Our aim is to explore
the properties of the models and to examine the problem of parameter
estimation from the original image data and, in particular, from the
noisy versions of the scene,

In Chapter 2, we developed a recursion technigue which enables us
to deal with one-dimensional versions of Markov random fields,
specifically, +to achieve maximum 1likelihood estimation for ‘the
underlying parameters and to carry out the EM algorithm for parameter
estimation  when only noisy data are available. Although,
unfortunately, this technique cannot be extended to two- or
multi-dimensional models, it can still be used in many cases. We
remark that it is used in Chapter 3, Chapter 4 and Chapter 5 for
two-dimensional Markov field models, and that it enables us to
intreduce the new model, the MDMC model, in Chapter 7.

Chapter 8 and Chapter 4 concentrate on inference for
two-dimensional Markov random fields. We obtained a matrix expression
for partition functions for general models, and a more explicit matrix
representation for multi-colour Ising models. This expression enables
us to locate the positions of critical points. We also examined the
asymptotic properties of asymmetric, two-colour Ising models. For
general models, in Chapter 4, we explored the asymptotic properties of
certain statistics under an "independence' or a "near independence"
condition.

An important idea in this thesis is to regard a set of pixels as
one "single point". It preserves the Markovian properties of MRF
models. This idea was first adopted, in Chapter 3, in introducipg thq
block pseudo-likelihood function, which is an extension of poin%
pseudo-likelihood. Although the parameter estimates from both point
pseudo-likelihood functions and line pseudo-likelihood functions are
almost egually good, we can, from Chapter 5, note that line
pseudo-likelihood performed better than the other one, when only noisy
data were available and our modified EM algorithm was used. The idea
is then used in Chapter 4. By assuming "independence" between rows,

the limiting results of one-dimensional stochastic processes were used
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in two-dimensional cases, thereby enabling us to establish approximate
normal results. This idea is then used in Chapter 7 together with the
recursion technique.

For the Markov random field itself and its application to image
analysis there are many aspects to be developed. They include
asymptotic properties, special structures for practical phenomena,
edge structures in the potential function, identification of the
model, choice of the neighbourhood system, testing, influence
analysis, etc.

Another main idea in this thesis is that the currently restored
image might be used together with noisy data in iterative procedures
for simultaneous parameter estimation and image reconstruction. The EM
algorithm is then used at each cycle of the iteration, which is
developed from Besag's(1986) procedure. For MRF models, Chapter 5
presented a simulation study of this procedure with different kinds of
local conditional densities. The same procedure was also adopted in
Chapter 6 and Chapter 7 for the MMRF model and the MDMC model,
respectively. Quite good results have been obtained in terms of
estimation of parameters in both the original model and, particularly,
in the noise model, and in terms of image restoration, for all three
sorts of prior random field model considered in this thesis.

In Chapter 6, we extended the MMRF model to the three-dimensional
case. A generalized F-G-H algorithm for restoration was then proposed.

In Chapter 7, based on the results for Gibbs chains, we introduced
the MDMC model. Although it is a causal-dependence random field
model, textures can be simulated, by suitable choice of parameters,
that are similar to those generated from MRF models, and, very
importantly, the simulation procedure is computationally much more
economical.

In this thesis, we have examined the three problems mentioned in
Section 1.1. The author would like to remark finally that although, .
under a fixed type of model, restoration is not very sensitive to the
values of parameters, the parameters should lie in a suitable region.
Therefore, choice of the model and parameter estimation are very

important for image analysis.
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Appendix 1
—((«,B) at boundaries

The following results are used in Section 3.83.

When «=0 (B=0), X consists of N (M) independent Markov chains with
the same distribution function. The matrix method for defining the
normalizing constant can be simply used in those one-dimensional

Markov chains, and yields

- Na M
C({x,0) = [trace[ecc e ] = [(e® + e~®)N 4 (ex - g~x)NiM
g™% e«
and
C(OYB) = [(eﬁ + E‘B)M -+ (eB - e_ﬁ)M]N.

As «=0, vi=log(cosh2p+1)}. From (3.3.7) and (3.3.8)

1

N ry
r aM = gHMN ¢ {

'](sinh25)iM(CDsh25+1)%MN_iM
N i=1

1

(eP+e™B)MN(y 4 [ (eP-e"B)/(eP+e B)IMN = Cc(0,pB).

]

As B=0, again, from {(3.3.7) and (3.3.8), all X are zero except

kﬁax- In order to prove (xﬁax)M=C(m,0), it is required to show that
N
22Nj§1(cosh2m - sinhzmcosej) = [(e%+e )N 4 (eX-g™x)N32, (*)

where ejz(zj—l)n/N. In fact, the left-hand side of (*) is

. o5 o5 |2
22N n (e %cos—+ie%sin—)| =
j=1 2 2
N
| T [(e%+e™%)+(e%-e %)exp(-105)]|2.
j=1

Since (e“+e"“)+(e“-e'“)exp(—iej), 1£j<N, are N roots of the
equation
(x-e%-e )N 4 (e"“—e“)N = 0,
(*) is therefore proved. We have therefore proved that, with the help

of (8.3.7) and (8.3.8), (3.3.3) provides the representation of the
partition function for {«20, B»0}.
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Appendix 2
——Autocorrelations of Markov chain

The following results are used in Chapter 4.

Consider a strictly stationary Markov chain with state space
{i1,1,...ig},  equilibrium  probabilities P=(Py,Pp,...Pg)  and
transition matrix Q=(pij)SxS' Suppose Aj<\p...<kg_1<rg=1 are the
eigenvalues of Q, with eigenvectors ny, Nng, ..., Mg, respectively,
where ns=(1,1.,..1)'. Clearly,

P'nj = P'Qny = %\P'ny

Then P'ny = 0. 1€igs-1

]

Clearly, P'ns 1

Let E=(il,12,..is)l; ﬂ=(ﬁ1, ﬂz,...ﬂs); ilﬁﬂ_15=(£11,...ils)l;

and
d(P) = diag{P{,Py,...Pg).
Then, .
Ex; = Pp'eg = Plﬂﬁl = €18
and ‘
i s t .
Exixi+j = ¢ d(P)QJ¢ = £1 1 d(P)Q3n£1
= £ 'n'd(P)ndiag{xJ, . ... xgI)eq
s .os-1
= I pixid =T uynd o+ g,
i=1 i=1
where uwg = {£1532. Therefore, the autocorrelations {AC{i)} of the

Markov chain have the form
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