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SUMMARY

The objective of this thesis is to estimate the functions

F(x,y,z) = |[{(n,m); O<n<x, n=L,modk,, O<m<y, m=¢,modk,,
((an2+bn+c)m2+(dn2+en+f)m+(gn2+hn+i),pgzp)=l}

for n and m integers, and

P(x,y,z) = [{(q,x); O<g<x, q=2,modk,, O<r<y, r=Q,modk,,
((ag®+bgte)r2+(dq?+eqtf)r+(gq®+hq+i), If p)=1)

for q and r primes.

In Chapter One we give a series of lemmas relating to the
ensuing chapters, In Chaper Two we deal with the function
F(x,y,z) for a=b=c=0, and in Chapter Three with P(x,y,z) for

a=b=c=0,

In Chapters Four and Five the major theorems of the thesis are

presented,
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INTRODUCTION

Nair and Perelli in their paper "Sieve Methods and class-
number problems I" derived an asymptotic formula for the

function
S$(x,y,2) = |{(n,m); O<n<kx, O0<m<y, (n2+m,pgzp)=1}

where the product I1 ranges over all primes less than z, and
where z<max(x,y). Their approach was based on the observation

that S(x,y,z) can be written in two different ways ie.

E I{m; O<mgy, (n?+m, gzp)nlll = S(x,y,2)
O<ngx P

= Z {n; 0<n<x, (m24m, [ p)=1)
O<m<yl P<Z

A simple and explicit estimate of the function within the first
summation sign may be given whenever zKy. This immediately
gives an initial estimate of the second version of S(x,y,z).
But to complete the theorem it is required that we extend the
estimate to z within the range y<z<x. The best available
estimate of |{n; O0<ngx, (n2+m,pgzp)=l) for z<x, given by

Halberstam and Richert [2] involves the product I (1-pp(p))

p<z P
where pp(p)=i1{n:n2=-m modp}|.

The aim of this thesis is to try and extend these arguments

to the most general quadratic case

F(x,y,2z) = |((n,m); a<n<a+x, n=Q modk,, B<m<B+y, m=Q,modk,,

((an2+bn+c)m2+(dn2+en+f)m+(gn2+hn+i),pgzp)=1}

and then the same involving primes.

Rather than launch into the complexities of the most
general case which is quadratic in both n and m, it was decided
that a simpler approach would be taken whereby we begin with

the most general case with the qualification, as in the case
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dealt with by Nair and Perelli, that m 1s linear only.

We examine the function

S(x,y,z) = [{(n,m); o<nfot+x, n=Q modk,, O<m<y, m=¢,modk,,

((an?+bnve)m+ (dn?+en+f), [ p)=1)|

This way many of the arguments that will subsequently be used
in an evaluation of F(x,y,z) can be developed with a minimum of
complication. Other benefits to this approach include the fact
that although subsequently we are only able to find an upper
bound on F(x,y,z), an asymptotic formula for S(x,y,z) may be
found. Furthermore the associated error terms are effectively
computable. The resulting theorem is Theorem One of the thesis.

The approach to finding an asymptotic formula for S(x,y,z)
is in essence that of Nair and Perelli's. In the following I aim
both to clarify the general direction and at the same time to
highlight points of departure from the original paper.

As explained above we write S(x,y,z) in two different ways,

namely

Z I{m; 0<mgy, m=Q,modk,, ((an2+bn+c)m+(dn?+entf), Ezp)wll
a<n{o+x P
n=¢ modk,

= §(X,y,z) =

X l(n; a<ngeetx, n=¢ modk,, ((anZ+bnt+c)m+(dn?+en+f), gzp)=l}
O<m<y P
m=¢ ,modk ,

In Step One of the proof of Theorem One we find an
asymptotic formula for S(x,y,z) whenever z<¥/k, using the first

of these formulations. We firstly remove from the sum any cases

trivially equal to zero. An asymptotic formula for
{m; O<mgy, m=Q,modk,, ((an2+bn+c)m+(dn2+en+f),pgzp)=1)

in all other cases may then be given explicitely. Summation

over n gives a formula for S(x,y,z) whenever z<Y/k,.




Were ¥Y/k,»X/k,. then the theorem would be complete. If
however X/k,»Y/k, then in Step Two we turn to the second
formulation of S(x,y,z) and attempt to find an asymptotic

formula for
(n; a<nko+x, n=Q¢,modk,, (an2+bn+c)m+(dn2+en+f),pgzp)=l}|

whenever z<¥/k,.

This attempt leaves us with the sum

Y R 14:20) (1)
0<u<y p<1z< P
mEQ:‘,mokoyr 1
(m,z) app

to evaluate if we are to complete the theorem where

pm(p)=1{s modp: s2=g; modp)|i
for a quadratic function gy, and where "(m,z) app" is some set
of conditions given explicitely in the text. We do however have
gome information on (1).

If we assume that z<Y¥/k,<¥/k, then a comparison with the
formulation of S(x,y,z) given in Step One gives an asymptotic
formula for (1). This is the springboard from which we develop
the rest of the theorem.

Now poh(p) is closely related to the Legendre symbol, a
relationship made explicit in Step Three. Excluding the cases
where gy, is a square (Step Four), the observation is made that

g (1_£m£E)) may be written as
BTk, 1
M (L-x(p)) M (1-1)

p<Z p p<Z p
ptk,

c(gny.2)

for some function c(gy,z), and where x(p) is the Kronecker
Symbol. (Step Five)
In this way we reduce the problem to one whereby we must

find an asymptotic formula for
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yooomxe)
O<m<y p<z P
m=£ ,modk,

(m,z) app

c(gm»2)

whenever z»Y/k,.

We now see that if we were able to write this sum in terms

of the sum

Z I (1-x(p))
O<mgy P<%o P
mEszodk2

(m,z,) app

C(gm;zo)

for some z,<Y¥/k, (in the proof taken to be exp(27(InY/k,)%))
then we would have our asymptotic formula as required.

Straightforward arguments alone are required to show that
the dependence of c(gy,z) on z may be removed (Step Six), and
it is easily demonstrated that the dependence of the conditions
"(m,z) app" on z may be removed. This leaves only the

dependence on z of the product

T (1-x(p))
p<z P

as a problem.
Fortunately, for z relatively large, this product may be

written in terms of the "smaller" product

T (1-x(p))
P<z, P

in the majority of cases. (Step Seven). These cases we denote
"good". The minority that resist such rewriting we denote
"bad". The remainder of the theorem is essentially concerned

with trying to find an upper bound on

) m (1_X%2))C(gm,2)

<<y p<z
n= modk,
(m,z) app
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for these "bad" cases.

We can find an upper bound sufficient for our purposes if
we place an upper bound on z, namely z(exp(y1/17). (Step Eight)
However to make the theorem as broad as possible we really
require a bound covering a wider range.

In Step Nine we make use of the fact that

M (1-x(p)) ¢ N (1-x(p))
p<z P P<z, P

with at most one exceptional modulus to reduce the problem yet
further. It leaves us with the relatively narrow problem of

finding an upper bound on

yom@x®e)
0<m<y pP<z P
m=0 ,modk,
(m,z) app

c(gp,2z)

for z>exp(y1/’7) for this one possible exceptional modulus.
Unfortunately this is the most stubborn case of all. To tackle

it we firstly find an upper bound on

m (1-
A,

involving the product

ma- 1
Ng<z NB

where the Nf represent the norms of prime ideals in Q(/gy).
(Step Ten). But

m(1- 1) 1

N@<z N@ \ L(1,xp)1nz
whenever z»DS. So to find an upper bound on

M (1-x(p))
p<z P

C(gm:z)
for this final case we must find an upper bound on L(l,xD)"l'

Such a bound is given by the class number formula together with

the Gross-Zagier theorem [11] which gives an upper bound on
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h(d), the class number, for d<0.
This effectively completes the theorem. The final piecing
together of all the various strands is completed in Step

Twelve.

It is convenient in Theorem One to assume that the
polynomials in n of 5(x,y,z) ie anZ+bntc and dn2?+en+f, have no
common factors. Chapter Two concludes with an examination of
the alternative cases. The results are summarised in Theorem

Two.

Having concluded the integer case involving a linear
variable it is natural that we should consider whether the same

arguments may be applied to the function involving primes,
P(x,y,z) = |{(q,r); o<qka+x, q=0,modk,, O<rgy, r=f£,modk,,

((aq2+bq+c)r+(dq2+eq+f),pgzp)=l)
where both the gs and rs are prime.

Following the route of Theorem One and writing P(x,y,z) in

two different forms namely

X |(r; O<r<y, r=g,modk,, ((ag?tbgtc)r+(dq?+eq+f), Tl p)=1)
a<glo+x P
q=2,modk,

= P(x,y,2) =

Z |{q; a<qfa+x, q=Q,modk,, ((aq?+bgt+c)r+(dq2+eqf), g p)=1}
O<x<y p=z
r=¢ ,modk,

quickly leads to difficulties, as a study of the right hand
side of this equation requires that we take o to be 0 and
furthermore the subsequent error terms turn out to be non-

computable. As an alternative approach we study the function
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T(x,y,2) = |{(n,q); o<niat+x, n=¢ modk,, O<q<y, g=¢,modk,,
(((an2+bn+c)q+(dn2+en+f))n,pgzp)=1}|.
We may derive an upper bound on T(x,y,z) following the method

of proof of Theorem Cne. Then an application of the observation

that

y 2
P(xy,2) < T(x,y,2) + O[w(kz)lny'w(k1)1nz/k,]

completes our estimate of P(X,y,z). This is stated in Theorem

Four.

In Chapter Four we turn to the most general integer case.

Here the function we desire an upper bound on is
F(x,y,z) = |{(n,m); O<n<x, n=0 modk,, O<n<y, m=Q,modk,,
((an2+bn+c)m2+(dn2+en+f)m+(gn2+hn+i),pgzp)=l)

for z<max(¥/k,,%*/k,).

Writing, as previously, F(x,y,z) in two different ways, ie

) l{m; O<m<y, m=0,modk,, ((an2+bn+c)m2+(dn2+en+f)m+
0<ngx
n=¢ modk, (gn2+hn+i),pgzp)=1}
= F(x,y,z) =
Z I{n; 0<n<x, n=¢ modk,, ((an?+bnt+c)m2+(dn2+en+f)m+
O<m<y
m=0 ,modk, (gn2+hn+l),pgzp)=1]

we would, if we were to follow the argument of Theorem One,
require an asymptotic formula for one of the functions within
the summation sign for z<min(¥/k,,*/k,). However either
function gives an asymptotic formula involving the product

I (1-p(p))
p<z P




where p(p) is a function of the form

p(p)=1{s(modp): s2=A modp)|
for A some quartic function in either m or n. Previously we
had, for z<Y/k,, an asymptotic formula involving the uncomplic-—
ated product

m(1-1)
p<z P

from which to begin the proof and we should have liked the same
in this instance.
However if we assume that z<Y/k,KX/k, for instance, then we

may find an upper bound on the function

y T (1-pp(p))
O<n<x p<z P
nﬁﬂtmodklp*kz
(n,z) app

(2)

appearing in the estimation of the first formulation of
F(x,y,z). We may use this upper bound as a starting point for
a general theorem. The construction of the upper bound uses
many of the arguments developed in Theorem One.

Firstly we write (2) in terms of

y I (1-py(p))
0<n<y p<z P
nEthodk,p*k?

(n,z) app

which is permissable so long as we assume that z<y. We then

write this latter sum in terms of

i (1-pp(p))
O<n<exp(1nfy) p<£51ny)50 P

n=¢ modk, P,

(n,z) app

and this in terms of
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n (1-pp(p))
25
0<n<exp(1niy) p<£51ny) |3
n={ , modk, PX,
(n,z) app

etc, gradually reducing the range over which we extend both the
sum and the product, In this way the sum is eventually brought
to a manageable form, so that we may find a reasonable upper
bound on the sum (2) as we require. From this starting point we
are able to construct an upper bound on F(x,y,z) using the
methods developed in Theorem One. (Theorem Five) Unfortunately
the proof introduces non-computable error terms into the upper

bound,

The final few pages of the chapter are concerned with
demonstrating how the ideas outlined above may be adapted to
cover the case where n and m within F(x,y,z) are not restricted

to 0<ngx and O<mgy. Here we examine the function

F(x,y,z) = }{(n,m); a<not+x, n=¢ modk,, f<m<B+y, m=L,modk,,

((an2+bn+c)m2+(dn2+en+f)m+(gn2+hn+i),pgzp)=l}

Chapter Five covers the same ground as Chapter Four but for
primes rather than integers. The function we are concerned with

here is

P(x,y,z) = |((q,r); O<q<x, q=Q,modk,, O<r<y, r=Q,modk,,

((aq?+bgre)r+(dqreqrf) r+(gq?+hari), I p)-=1)

for q and r both primes.

Here, for reasons that are given within the text, to find

our starting point we examine instead the function
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T(x,y,2) = |{(n,q); 0<n<kx, n=Cmodk, 0<q<y, g=amodf,

((an2+bn+c)q2+(dn2+en+f)q+(gn2+hn+i),pgzp)=l}

which clearly has much in common with P(x,y,z). Then by
adapting the methods of Chapters Three and Four an upper bound

on P(x,y,z) may be constructed.

In Chapter Six we make the observation that the methods
employed throughout the previous five chapters may be applied

to functions of the type

¢ (x,y) = {{(n,m); n<x, my, ((anZ+bn+e)m?+(dn2+en+f)m+

(gn2+hn+i), k)=1)

A general theorem is not given but a short outline of the

direction a proof might take is included.

Finally a note on the layout of the thesis. Chapter Two
and onwards covers topics as considered in this introduction.
Chapter One however is of a different format. It consists of a
somewhat disparate collection of lemmas, each of which (apart
from Lemma 5.2) is referred to at some point in the rest of the
thesis, Although to an extent these lemmas are ordered as they
appear in the ensuing chapters, whenever lemmas are considered
to follow similar themes they are grouped together. Since
Chapter One follows no apparent rational progression the reader
may prefer to begin with Chapter Two and refer back to the
lemmas és they arise in the proof. (The penalty paid for this
is that the continuity of the proofs of the theorems will be
broken.) Should this approach be taken attention is drawn to
Lemma 5.2 of page 61. Although Lemma 5.2 makes no further

appearance in the thesis it is included as a natural successor
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to Lemma 5.1. It is also considered to be of interest in its
own right. We show that, whenever 2<D<x,

; -1
L(L,xp) = p:llnmf(l XED)_(I’)) {1 + OCexp(~c(lnlnx)4)))

holds with at most 0[[ X ]i} exceptions. The proof is an

Inlinx

optimisation of the methods of proof of Elliott in Lemma 22.8.

[8].
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NOTATION

theorems it may be helpful to have a page reference denoting

where that symbol is introduced. A word of caution; the same

symbols are often used within different theorems but their

definitions may not be completely consistent across theorems.

Consequently we subdivide into theorems.
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CHAPTER ONE

INTRODUCTION

As explained in the Introduction, Chapter One consists
almost entirely of lemmas each of which (apart from Lemma 5.2)
is referred to in the theorems of the following chapters. The
lemmas are grouped where common themes exist but otherwise are
roughly ordered as they appear in the ensuing theorems. The
major exception to the above is Lemma 5.2. Lemma 5.2 is a
consequence and generalisation of Lemma 5.1. It is independent
of the rest of the thesis and it's arguments may be understood
without a knowledge of lemmas and theorems other than Lemma
5.1.

It is again suggested that the reader may go straight to
Chapter Two and refer back to the lemmas of Chapter One as they
occur in the theorems. However "grouped lemmas" may refer to
each other so it is also suggested that should the first member
of a group be read the simplest approach would be to read the

other members of the same group at the same time.




LEMMA 1.1
Let F(n) be a polynomial of degree g with integer

coefficients. Let p(p) denote the number of solutions of the
congruence

F(n) = 0 mod p
and assume that

p(p) < p for all primes p. (1)
Let X/ >z

and set u = lnx/k

In =z

Then,

| {n: asncortx, n=e( mod k ), ( F(n), I p )1 } |

[ X/ [IC L-p(p) ){ 1+0(exp(—u(ln u-lnln 3u-1ln g-2)))
p<z  p_ )

ptk +0(exp(~(1nx/k)* ))}

= ;o (FR), O p)=1

i

i (F(2), O p)>1
4

The O-constants are effectively computable and depend on, at
most, g.
PROOF

The proof consists of an application of Theorem 2.5 of
Halberstam -Richert's "Sieve Methods"[2]. We begin with an
explanation of some of the notation used in their book, which
we will consequently adopt here. Our proof will be an estimate

of the sifting function,

S(A,B,z) = [{ a: aeA; (a, I p) = 1)
PR |




where A = { a:.... } denotes a sequence of integers; where
B is a set of primes; B the complement of B.
We define
Ag = { a: aeA, a=0 mod d )
for d a squarefree integer,
and the number of elements in Ay to be |Ag].
We choose a convenient function X which approximates to |Al,
the number of elements in A, and for each prime p we choose a

function w,(p) such that (wu(p))X approximates to 1A
P

pl-

The remainder we write as

rpi= [A 1-w ( X
P

Consequently we define, for each squarefree d,

Wo(l):=1a wo(d) p]d o(p)

and rgi= 1Aql-w (d)X
d

Finally we define

wo(p) ; peB
w(p)= { -
0 ; peB
and extend this to
w(l):= 1, w(d):= H W(P) ¢ u(d)=0 )

With the function w(p) we form the product

I (1-w(p))
V&= e 5
Similarly
Rq:= |Ad|—w_(£1)x ( p(d)#0 )
d

Theorem 2.5 of [2] states that under conditions (Q,), (,(k)),

and (R) ( which will be explained during the proof below ),

assuming that X > z and setting u = 1ln X
In z




S(A,B,z) = X W(z){ 1+0(exp(-u(ln u-1n 1n 3u-ln k-2))
+0(exp(~(1n X)) )

With regards to the sifting function
{ n: o<ne+x, n=¢ mod k, (F(n),pgzp) =11}

we firstly observe, writing F(n)=agng+ag_1ng_l+...+aUl that for

n=0 mod k, recalling that k':=_1I p,

BrE
(F(n),k")>1 & 4 pik' such that F(n)=0 mod p
& 3 pik' such that

g g=1
agh +ag_,n +...+a,=0 mod p

& 3 pik' such that
g g _
agQ +ag_1Q +...+a,=0 mod p
& (F@), k' )=l

So for (F(R),k')>1l
{ n: a<n<o+x, n=0¢ mod k, (F(n),pgzp)=l 1l =0

Assume henceforth that (F(2),k')=1. The above now implies

that (F(n),k')=1 so that
|( nio<ndetx, n=g mod k, (F(n), [I p)-1 )I

= I{ n: a<n<oetx, n=L@ mod k, (F(n), II p)=1 ]I

Bit
and it is this final sifting function which we will apply
Theorem 2.5 to. Using the notation described above we take

A = { F(n): a<ngat+x, n=¢ mod k )}
and B=( p: ptk }.

Then if (d,k)=1,

1Agl = |( n: a<n<ot+x, n=¢ mod k, F(n)=0 mod d )l
d
= Z I { n: a<ngp+x, n=Q mod k, n=m mod d } I
m=1

F(m)=0 mod d

o G+o} (101<1)




Accordingly we choose
=X/, W, (d)=p(d) for (d,k)=1
and it follows that

1Tg1< wo(d). (2)

We have now, for these choices of X and w,(d), to show that the
conditions (Q,), (2,(k)), and (R) are satisfied.
We take them in order:

(f2,) states O(W(p)<l~l for some suitable constant A,>1.

P A,

But here
plp) ; (p.k)=1
wip) = {

0 5 (K>l
and if (p,k)=1 then w(p)=p(p)<g by Lagranges Theorem together

with (1). Certainly w£21>0, and it is easily seen that
P

w(p)<1l- 1 wusing w(p)<g whenever ppg+l and w(p)<p-1 otherwise,
P g+l

So taking A, =g+l ensures that (2,) is satisfied for all p.

(©,(x)) states Z w(p)ln p < kln z + A, if 2<wgz
P w

Wp<Z
for suitable constants x(>0) and A,(3L).
However Lemma 2.2 of [2] implies that, if condition (2;) holds
then (2,(x)) holds also with k=A,=A, where ({},) is the

condition w(p)<A,.

But w(p)<p(p)<g so (2,(x)) holds with x=A,=g.

(R) is the condition |RqI<w(d) if u(d)#0 and (d,B)-1
But, by the definition of IRyt this is simply (2).

We are now in a position to apply Theorem 2.6 stated above to

give




| { n: o<n<atx, n=0( mod k ), ( F(n), 0 p )=1 } i

Bk
_ X/x ¢ 1-p(p) ){ 1+0(exp(-u(ln u-1nln 3u-1ln g-2)))
pP<z P ;
ptk +0(exp(-(1nx/k)* ))}

as required.

LEMMA 1.2
Let F(n) be a polynomial of degree g with integer
coefficients. Let p(p) denote the number of solutions of the
congruence
F(n)=0 mod p
and assume that
(i) p(p)<p for all primes p
(11) p(p)<p-1 if p4F(0).

Let p(p)+1l ; ptF(0)

p'(p) ={
p(P) ; PIF(O)

and set u = 1n X/, with ¥/p3z.
In =z

Then, for (2,k)=1,

| { n: o<ndertx, n=¢( mod k ), (nF(n), W p )-1 } |

[ X/x ¢ 1-0' (p) ){ 1+0(exp(—u(lnu-lnln3u-1n(g+l)-2)))
p<z  p
prk +0(exp(-(Inx/k) ¥ )))
= 3 ;o ( F(R), I py=1
Bik
0 s ( F(2), Ipy>l
BiE

The O-constants are effectively computable and depend on, at

most, g.




PROOF

From Lemma 1.1 we have

I { n: oa<nga+x, n=2( mod k ), (nF(n),pgzp =1 } l

[ X/x [IC 1-p' (p) ){ 1+0(exp(-u(lnu-Inln3u-In(g+1)-2)))
p<z P
ptk +0(exp(—(1nx/k)% M}
= 1 i ( F()e, 1 p)=1
Bit
0 p (F(2, 1 p)>l
Bit
with p'(p) = |( nmod p : F(n)n=0 mod p }l.

Certainly p'{p) = |{ n mod p : F(n)=0 mod p )I

+ l{ n mod p : n=0 mod p }I ; if p+F(0)

and p'(p) = l{ n mod p : F(n)=0 mod p }!

; 1f pIF(0)
and so p(p)+l ; p4+F(0)
p'(p) ={

p(p) i PIF(O).

Further, for (2,k)=1, (F(Q)Q,Bgﬁp)=l & (F(2), gﬁp)=l
I i

which completes the lemma.

LEMMA 1.3

Let F(n) be a polynomial of degree g with integer
coefficients. Let p(p) denote the number of solutions of the
congruence

F(n)=0 mod p
and assume that

(i) p(p)<p for all primes p




(11) p(p)<p-1 if p4F(0).

Let , - [ PP+l ; p+F(0)
@ = {00 1 PR

and set u = ln X/ with %/y>z.
in z
Write k'=1I p.
<
Pik
Then, for (2,k)=1, and q prime,

l { q: oa<q<o+x, q=2( mod k ), ( F(q),pgzp y=1 } I

[ */k HC 1-p' (p) ){ 1+0(exp(-u(lnu-lnln3u-1ln(g+l)-2)))
p<z P
prk +0(exp(~(lnx/k)E 1))+ 0(A)
< L ( F(R), 11 p)=l
Bik
0 v CF@), I p)>1
| e
where
— . 7ok
A p(k)1n=/y
1 ; z<k

The O-constants are effectively computable, and depend on, at

most,§g.
PROOF
Certainly if (F(2),k')>1 then (F(q),k')>1 and
[ q: o<qo+x, q=€ mod k, (F(q),pgzp)=l )I = 0.
Assume iInstead that (F(2),k')=1.
Clearly the function
{ q: o<q<ot+x, gq=0 mod k, (F(q),pgzp)=l )

counts the integers, n, satisfying a<n<otx, n=¢ mod k for which

n is a prime and (F(n),pgzp)=1. If, however, in addition npz,

then n is counted in

{ n: o<ngo+x, n=0Q mod Kk, (F(n)n,pgzp)=1 o




. z .
Otherwise n&z and as there are O[ AR 0%/ ] Primes <z

which are congruent to £ mod k (by the Brun-Titchmarsh

inequality) if z>k,and 0(1) primes if zck,it follows that

Il q: a<glotx, =g mod k, (F(q), Il p)=1 }l

< |( n: a<netx, n=f mod k, (F(m)m, I p)=l }| + 0(A)

if (F(2),k')=1.

The lemma follows immediately by an application of Lemma 1.2.

a

LEMMA 1.4
Let F(n) be a polynomial of degree g with integer
coefficients. Let p(p) denote the number of solutions of the
congruence
F(n) = 0 mod p.
Let
p(P) if p+F(0)
p,(p) = { :

p(p)-1 if pIF(0)
and assume that p,(p)<p-l for all primes p. (L)

i 1i %
Let 11 X5z and set u=13£————1@ikl). Write k'=11 p.
p(k) In z BTE

Then, for q prime, and k<lnx,

(q: O<q<x1 qEQmOdk: (F(Q).pgzp)ﬁl}

(_x I -p,(p)) _1
o0 Inx  p<z  p-L (1T 00nT)
prk

+ 0{exp(-Y/3(Inu-1nln3u-1In6g-2))))

; (F(2), 11 p)-1

pit

0 ; (F(2), 1 p)>1
Bik
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The O-constants depend on, at most, g.

REMARK: Lemma 1.4 stands in contrast to Lemma 1.3. Though

with fundamentally the same function, namely

{q: O<g<x, gq=Cmodk, (F(q),pgzp)=1) ’

in Lemma 1.4 we are able to give an asymptotic formula rather
than an upper bound on this function. The price we pay for
this apparently stronger lemma is, fistly that we no longer
have effectively computable O-constants, and secondly that the
range of values over which q varies is restricted to O<q<x,
whereas in Lemma 1.3 we were able to take the more flexible

range, a<qQatx.
PROOF
As in Lemma 1.3, if (F(2),k')>1 then (F(g),k')>1 and

|ta: 0<qx, q=tmour, <F<q>,pr<rzp>=1}| = 0.

Assume instead that (F(q),k')=1 so that the function becomes

I{q: 0<q<x, q=Cmodk, (F(q), QP)=1}|
btk ’

The proof is an application of Theorem 2.5' of Halberstam-
Richert [2] which reads
(), (Q,(x)), (Ry), (R,(x,a)): Let X»>z and write

" = In X
In z,

Then
S(A;B,z) = X W(z){Ll + O(exp(-ou(lnu-lnln3u-1nk/,-2)))

+ 0g(L.1n7Ux))

where the O-constants may depend on U as well as on the usual

constants A,', A,, A,, Kk and o."

1 27

However the details of the proof follow to a large extent
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the proof of Theorem 4.2 of the same.
Take A = {F(q): q<x q=fmodk) and B = (p: ptk}.
Following the analysis of Example 6 of Chapter 1 of [2] we take

1i x 4
X =2y and wold) = py¥ (@) p([k,d]) .oy

where

py*(P) = p, (Y (a,k))
and where p,(d) is the number of solutions of
F(m) = O mod 4 for (m,d)=1,

For E(x,q) defined as

E(x,q) = max max M{y;q,2) ~ l% g
2<y<x  1<0<q pid
(-Q sq)=1
it is demonstrated that
irgt < p(d){ E(x,kd) + 1 ) if p(d)=0, (4,k)=1 (2)
and wo(p) = L. (P).P if ptk. (3

p-1

Furth .
UEERSY o) if paF(0)

p.(p) = (&)
p(p)-1 if pIF(0)

and p(p)<g if p(p)<p. (3)
Finally p,(d)<p(d)<g¥(d) for p(d)#0 (6)

where y(d) denotes the number of prime factors of d.

Given all this information we must show that the conditions

@, @,&)), (Ry), (R, (k,a)) are satisfied. We take them in

turn:
(Q,) states 0 < w(p) < 1-1 for some suitable constant A,31.
P Ay
But here
L1 PP 5 (p k)=l
p-1
w(p) =

0 if (p,k)>1 .
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It is easily seen, from (5), that w(p) < 1- 1 if pag+2,
P g+l

and, from (1) that Esg) < l—l if p<g+l.
P g

So taking A,=g+l ensures that (Q,) is satisfied for all
primes p.
@,(x)) states ) YR o gnzs A iF 2quce.
wlp<z P
However it is enough to show that w(p)<A, in which case (£,(x))

holds with A, =k=2g.

(R,) is the condition that

Rat < L[ B2 4 1]a 7@ gor p(aywo,

for L a real number »1 and A,' a constant »1.

From (2) and (§),

IRl € ( E(x,kd) + 1 )g¥(d)  if u(d)=0. (7)
But
E(x,kd) = max max M(y;kd,R) - ltkﬁ)
2<y<x  1<0<kd ¢
(0,kd)=1
X
< 4 + 1
trivially.
So
X (d) s
iRat < { 3 + 2}eY if p(d)=0.
However, as Xm%%ﬁ§ , and assuming that x is large, we have
X X x
_ du Inu-1 _Ju 2 %
P“‘)x‘g In u >£Tm-d“‘[m]2 >3 Tox .
So
4 X 2 X e X
2XInX > 3 iy Tnx In(3 w(k)lnx] Pom Tk

and
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Rgt < (B 4 o)gr(@ s payo
implying that (R,) holds with L=2 and A, '=g.
Finally we look at (R,(x,a)) which reads

"For some constant o (0<aKl) there exists corresponding to any

given constant Uzl a positive constant c such that

x "
2(d)IRgl = Oy
d<X;1n_CUX# d U[1DK+Ux] .

(4,B)=1

In our case, as B = (p: pik),

X _. HZ(d)IRgq1 = X o rA(d) R4 .
d<x®1n Cox d<x®1n Cox
(d,B)=1 (d,k)=1

Taking a=1/3 and U=1, k=2g we need only show

X i
2(d) iR = Q
d<§1/31n ~&0§ ) IRgl [1n2g+fx] .
(d,k)=1

By (7) above

Ly o w@Ra < L pa@mekagr@
d<X /3in "9X d<X 31n "X
(d,k)-1 (d,k)=1
s L, e @@ (8)
d<X ‘31ln "OX
(d,k)-1

To find upper bounds on the sums on the right of (8) we use
respectively Lemmas 3.5 and 3.4 of [2] which read:

"LEMMA 3.4 For any natural number h and for x>1 we have

Y p2(d)hY(d) < x(lnx+1)h, v
d<x

"LEMMA 3.5 Let h and k be positive integers and suppose that

k<ln®x. Then, given any positive constant U, there exists a
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positive constant c=~c(U,h,A) such that

2()RY Prex kd) = 0 _x 1"
in k@R D0k =0y g (]
c‘Kklncx

Unfortunately the O-constant of Lemma 3.5 is not computable

with current knowledge.

For —;ik§ , and for k<lnx say,
d d
1/3, —c ﬂz(d)gy( )E(x,kd) < Z% e u2(d)g7( )E(x,kd).
d<X / "1In "X d<X“ln 0%
(d,k)=1 k

Taking h=g, A=1, and U=2g+l in Lemma 3.5 we thus have

d) X
) 2¢d)g? ‘YE(x,ka) = 0, [— X
a<x'/ 21 Cox T g[sa<k>1n2g+1x]
(d,k)=1
X
- og[ln2g+lx].
Further Lemma 3.4 gives
1/3
Vs o #2@EY < XL (nxe1)®
d<X In "0X 1n oX
(d,k)=1
¢ x'/%(1nx)8
X
—_— for g¢lniX say.
¢ Tox) 2871 8¢ y
Substitution inte (8) gives
X

2(d)IRql = O |—s5——

d<X§1n_c Oxu d g [1n2 g+lx]
(d,k)=1

so that (R,(x,x)) is satisfied with o=1/3 and k=2g.
We are now in a position to apply Theorem 2.5' stated above

to give
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(q: O<q<x, qmmodk, (F(a), [J,p)=11]

1i x T (1~-p,(p))
"B pez | AR {1 + Og(exp(-Y/3(1nu-1nln3u-1n(6g)-2)))
prk

+ Og(ln‘lx)}-

Since 1i x = T§_§ {1 + O[Iﬁli]} this beccmes

(a: 0<q<x, q=pmodk, (F(q), O p)=1)|

x e o)y,
p(k)Inx p<z p-1
ptk

0g (exp (~4/3(1nu-1nln3u-In(6g)~2))) + og(ln-lx)}

which completes the lemma.

LEMMA 2.1

Let an? + bn +¢ and dn? + en + f be polynomials with
integer coefficients, and having no common factors. Then there
exists an integer F(#0) defined by F=|ce-fby if a=d=0, and
F=}{(cd-af) 2-(bd-ea) (ce—-fb) | otherwise, for which, for all n,

(an? + bn + ¢, dn? + en + f)=w

& (a(ntF)?2 + b(n+F) + ¢, d(ntF)2 + e(n+F) + f)=w.

Furthermore, if there exists an integer n for which

(an? + bn + ¢, dn? + en + f)=w,
then w|F.
PROOF

By definition (an2? + bn + ¢, dn? + en + f)>1 if and only if

there exists an integer m such that
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an2 + bn+ c =0 modm and dn? + en + £ = 0 mod m.
We will show that for any such m it follows that m|F where
lce—fbi ; a=0, d=0
F-{
| (cd-af)? - (bd-ea)(ce-fb)]| ; otherwise
with F=0.

(i) If a=d = 0 and be = 0 then it is clear that

an? + bn+ ¢c =0 modm and dn? + en + £ = 0 mod m
implies m|F with Fz0.
(ii) If a=d = 0 and be # 0 then

an? + bn + ¢ = 0 modm and dn?2 + en + £ = 0 mod m

if and only if
bn+ ¢ =0modm and en + £ = 0 mod m.

This implies _
(bn + c)e — (en + £)b = 0 mod m

i.e. ce — fb = 0 mod n.

Certainly ce - fb # 0 for otherwise b/e C/f contradicting our
assumption that an? + bn + ¢, and dn? + en + £ have no common

factors.

(iii) If at least one of a and d is not zero then

an? + bn+ ¢c=0modm and dn? + en + £ = 0 mod m
implies

(an? + bn+ ¢)d - (dn? + en + f)a =0 mod m
i.e. (bd - ea)n + (cd - fa) = 0 mod m. (L)

(iv) If bd - ea = 0 then eced - fa = 0 mod m and in this
instance c¢d - fa # 0, for otherwise we would have
3 =P = /g or a2 =/

Clearly, miF and F#0 as required.
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(v) Assuming that bd - ea # 0, from which it follows that e

and b are not both zero,

an? + bn + c 2= 0modm and dn? + en + f = 0 mod m
implies

(an? + bn + ¢)e — (dn? + en + £)b = 0 mod m
i,e, (ae — db)n? + (ce — fb) = 0 mod m. (2)
But (1) gives

(bd —~ ea)n? + (cd - fa)n = 0 mod m,
This, in conjunction with (2), gives

(cd - fa)n + (ce — £fb) = 0 mod m, (3)

If ¢d - fa =0 then ce - fb

0 mod m and certainly

ce - fb # 0. Again miF and F#0.

(vi) Assuming finally that bd —ea # 0 and cd - af # 0, (1)
gives
(cd — fa)(bd - ea)n + (cd - fa)?2 = 0 mod m (4)

and (3) gives

il

(cd - fa)(bd — ea)n + (ce ~ fb)(bd ~ ea) 0 mod m. (5)
Together these imply
(cd — fa)?2 - (ce - fb)(bd - ea) = 0 mod m
or F=0modm
as required,
This, however, gives no information if F=0, that is, if
(ced - fa)? = (ce - fb)(bd - ea).
If it were the case that
(cd -~ fa)?2 = (ce — fb)(bd - ea)
then writing an2 + bn + ¢ = g(n) and dn? + en + £ = h(n),
and arguing as above, we see that the equations
g(n)e - h(n)b = (ae — bd)n? + (ce —~ fb) (6)

and

[ O
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(g(n)d - h(n)a)n = (bd - ae)n?2 + (ed - fa)n . (7)
hold, for all n.
These imply
g(n)e — h(n)» + g(n)nd ~ h(n)na = (cd - fa)n + (ce - fb)
and consequently that
[g(n)e — h(n)b + g(n)nd - h(n)na)](bd - ae)
= (¢d — fa)(bd - ae)n + (ce — fb)(bd - ae). (8)
But, from (7),
{g(n)d ~ h(n)a](cd - fa)
= (bd - ae)(cd - fa)n + (cd - fa)?
and, as (cd - fa)? = (bd - ae)(ce - fb)
we have
[g(n)e — h(n)b + g(n)nd - h(n)na)(bd - ea)
= [g(n)d - h(n)a](cd - fa)
i.e., h(n){(bd - ea)(an + b) - a(cd - fa)}
= g(n){(bd - ea)(dn + e) — d{(ecd - fa)}. (9)
Hence, there exist integers o,f,vy,5 such that
h(n)(on + B) = g(n)(yn + &) for all n. (10)
There does not exist a constant, k, such that
(on + B) = k(yn + &)
for this would imply that g(n) and h(n) have a common factor.
The alternative is that
g(n) = (an +@)(sn + t)
say, with - (sn + t)|h(n). But again this would imply that g(n)
and h(n) have a common factor.

Hence, as required, Fz0.

It is clear,then, that
(an? + bn + ¢, dn?2 + en + f) = w

& (a(ntF)? + b(ntF) +c, d(ntF)2 + e(ntF) +f) = w




|
|
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and, furthermore, that wiF,

This completes the lemma. O

The arguments used in Lemmas 2.2-2.7 below are specific
examples of lemmas from W.Schwarz's paper.[3]. As he
frequently gives only partial proofs we give them here in
their full form for completeness.

Lemmas 2.9-2.12 are extensions of his argument for finding

an asymptotic formula for

¥ p(f(n)
n<x £(n)

LEMMA 2.2

Z r(m)2 = O(M (1ln M)M)
1<meM

where X\ = 22 — 1 and where 7(n) denotes the number of
divisors of n.

PROOF

Hua{4] pg.111.

LEMMA 2.3

If a» 1 and c = [ %%—% ] + 1

then

Z o@(m) = o( M 1nMM )
1<mM

where \=2C¢-1 and where w(m) denotes the number of prime

divisors of m.

s s s b

O e,
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PROOF

Clearly 20(mM) < r(m), for if m = p} ... R8P  then
T(m) = (v, + 1) (rggqm) + 1)

S
° a(m) = [ 2w(m) ]1“&/1“2 < (r(m))© .

An application of Lemma 2.2 completes the lemma.
LEMMA 2.4

Let f(n) be a polynomial of degree k, with discriminant
D=0, Let g denote the highest common factor of the
coefficients of f(n). Then, whenever r»l, and (pY,g)=1, the
congruence

f(n)=0 mod pt
has at most k.D? solutions.
Furthermore if p(d) denotes the number of solutions of

f(n)=0 mod d
then, for (d,g)=1,

p(d)<(k.D2yw(d)

PROOF

Nagell,T [5].

LEMMA 2.5

i”—"mim) - 0((1n M%%)
1<m<M

In o

where c¢ = [ no

J 1,
PROOF

By Abel's identity,
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pooem 1y e 71 E Q@ (m) ge
1<m<M m M 1<m<M 1 7 1chice
- o¢in 125 Ly & og ? (n 6521 4 )
t
1
- 0¢(ln W25y 4 o¢ (an 02T ? ac )
t
1

0((ln M2y

i

LEMMA 2.6

Using the notation of Lemma 2.4, if 2°<M2,

2C
p(d) 1n In M (1n M)
S>Z p(@d 0{ = M - }
( g)=1

In (k.D2)

where ¢ = 75

PROOF

yoe® 7 (k.02)@(d) 1n In d

¢(d)d dz2
(g>g)-l d>M

) (k.p2)@(d) 1n 1n M
o d M

é X (k.0p2)@(d) | 1n Int - 1/9, tac.

Z
act d t

of 13~§3_§. (1n m)2° )

+0of z 51235)20 (In 1n t - Ly ) ae }

But d { -1n In t (ln t)A
dc

(1n t)A } > >~ (Inlnt - i ©

whenever ALt2,

So O{ & (1n t) (In 1In t - 1/9, t)}
of It (n My 2° } i 2eq

c .
and X p(d) _ 0{ In ln M (1n M)2 } as required.
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LEMMA 2.7
Using the notation of Lemma 2.4,

In(k.D?)

c
Z p(d) _ 0(ln ln M. (ln M)2 }  where ¢ = [ In 2

p(d)
@$H-1

PROOF

] +1

(d)
p(d) p(d) 1lnlnd (x.02)¥'%1nind
L g ¢« ) e imede ) 3

&H-1 " (&= o<t

=

y . 02)¥ D 1n1nm

a<M d 0 d<t

y k.p2)¥() 1
3 © tInt

—

dt

(x.p2)¥ ()

€ 1InlnM Z 3

d<M

2C
¢ InlnM. (1nM)° .

(]
LEMMA 2.8
For any constants a,b, a»b»0, we have
1 a? b?
p([a,b]) p(a) * o(b)
PROQF
Firstly we show that L p((a,b)) (1)

o([a,b])  “pla)p(d) -

This follows from the observation that
p(ab) = p([a,b](a,b)) = w‘[a’b])*"“a’b”w%d)
where d = ([a,b],(a,b))., Since d=(a,b) it follows that

1 _ (a,b)
p(la,b]) p(ab)

But _ p(a)p(b)(a,b)
plab) = == a5y

so that (a,b) _  ¢((a,b)) which completes (1).
p(ab) p(a)p(b)

Since ¢((a,b)) < (a,b) < atb? the lemma follows.
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LEMMA 2.9

Let an?+bnt+c and dn2+en+f be two polynomials with integer
coefficients and having no common factors. Let D denote the

discriminant of the polynomial an? + bn + ¢,

Then
z m(-1)"
p<z P
pi(an2+bnt+c)k,
o<nQotx
n=¢, mod k,

(an24+bn+c, dn?+entf)=w

[ [anzlbn+c]gz+[dn2+$n+f], g i ]=1

Bi

_ X Fz(w)
K., FK,] z { L+

a,[k,,Fk.]2 1n 1In G(x,a) 1InMG(x,a)
o[ B ]

+0[ a,[ki,F:2]3 A ] }

where
(i) { ice—fbi ; if a=0, d=0
F:
| (cd-fa)2-(bd—ea) (ce-fb) | ; otherwise
ii
(it ) m 1+ o )
Mz (¥) p<z  p(p-1)
of modFk,
ai=¢, mod(k,,Fk,)
where ®y,.. ., denote the integers n, In the interval 1<n<Fk,

for which both

(an2+bn+c, dn2+en+f)=w

and [ [anngn+c]92+[dn2;en+f], Bgﬁz ]=l

hold.
(iii) the unique solution, mod [k1,Fk2], of the congruences
n=¢ modk, and n=wjmodFk,
is denoted, if it exists, by fi=Fi(2,,xj). Letting
h=(a, b, ¢); a=a,h, b=b,h, c=c,h,

then,

[ EOY PN
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{ n:n mod p; a,([k,,Fk,]t+81)2+b, ([k,,Fk,]t+81)
+c, = 0 mod p)
elp) = . prk,h
| P i pikyh
(ivé( : { o<l §+§a1n2+b1n+c1| ; D=0
X,0)= . D
o<l §+*a1n2+b1n+01|5 ; D=0

Do [ (B s o
0 ; D=0.

and finally,
(vi) A = max(1nlnG(x,a)lnPG(x,a), 1ln2z)

The term N (l+p(p)) is convergent.
p<z p(p-1)

PROOF

Denote the sum under consideration §S.

i.e
g - z m(-1)t
p<z P
2
Q<n<atK pl(an?+bntc)k,
n=¢, mod k,

(an2+bn+c, dn?2+ent+f)=w
[ [anzzbn+c]gz+[dn2+$n+f]’B%ﬁp ]=1

2

and assume, for now,that D#0.

By Lemma 2.1, the integers, n, in the interval a<not+x for

which (an?+bntc, dn?+en+f)=w lie in an arithmetic progression
( n: n=yq{ mod F :i=1,...r)

where y{<F and where w|F, for F a constant dependent only on

the constants a, b, ¢, d, e and £. (If there are no n for which

(an?+bntc, dn2+en+f)=w then we write F=0.)

Similarly, every integer n for which

[ e [P gl ] -

lies in an arithmetic progression

{ n: nEBj mod k,F ; j=1,...,s8 }
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where 6j<k2F.

This follows from the observation that, if mlk,, then

[anzzbn+c]22+[dn2;en+f] 2 0 mod m

o [a(n+k2F)2+b(n+k2F)+c]Q +[d(n+k2F)2+e(n+k2F)+f

e 2 = ] = 0 mod m

Let Qpyee sy denote the integers n in the interval
1<ngk,F for which both

(an2+bntc, dn2+ent+f)=w

and an?+bn+c dn?+en+f 0p 1
{ [ w ]Q2+[ W ]’ Bfﬁz }-1
hold.
Then S becomes
m(i-1)-1
. 1 (1)
osmodFk o<n<a+x p=z P
1 2 2
=0, modk, pl(anZ+bnt+c)k,

n=qymodFk,
A necessary and sufficient condition that the two congruences
n=¢, mod k, and n=a; mod Fk, have a common solution is that
2,=cxy mod (k,,Fk,).
The solution, if it exists, is unique mod [k,,Fk,] and we
denote it B3=F;(2,,01).
Hence

) ) na-n

p<z P
ajmodFk, a<n oty 2
a3=¢,mod(k, Fk,) n=gimod[k,,Fk,]P! (@ +brre)k,

It is clear that the internal product

nm(-1)-1 = m-1n-! ma-n-l

p<z B p<z »  p<z B

pl(an2+bntc)k, plk,h pi(a,nZ+b n+c,)
ptk,h

where h=(a, b, ¢) ; a=ha,; b=hb,; c=hec,,

SO

o it 4
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s= 1 (-7l «x

p<z P
plk,h
) ¥ m(1-1)-1 (2)
p<z P
aymodFk, a<nat+x 5
aiEQ1mod(k1’Fk2) nEBimOd[k1,Fk2]pl(a1n +b ntc )

ptk,h
To estimate S, therefore, it is sufficient that we estimate

the inner sum

Z m(1-1)-% =S, say. (3)
pP<z P
o<nKo+R
. pl(a1n2+b1n+01)
n=@imod [k, ,Fk,] pl,h

The product

ma-untl =1+ y 1
pea P B, =D (D)
pl{a.n2+b . nt+c,) P1---P.Yia‘n2+bln+c1 1 %

h ! ! p LA :P 'fk h
p1<...<p7<z
- ) p2(m)
a1n2+b‘n+c1=omodm¢(m)
(k,h,m)=1
P(m)<z

where P(m) denotes the largest prime factor of m.

Consequently,
5, - L ) w2 (m)
a<ngo+x a,n?+b,n+c,=0modm p(m)
n=@, mod [k,,Fk,] (k,h,m)=1

P(m)<z

which on changing the order of summation gives

2 1
(- L mm
1<n<G (%, a) ® a<nso+x
(k,h,m)=1 n=gimodfk,,Fk,]
P(m)<z a;n?+b n+c,=O0modm
where G(x,x) denotes a{g2§+xla1n2+b1n+c1[.
Further
2
517 L #3023 Z '
1<mCG (x, @) -y <t< atx—B4
(k,h,m)=1 [k,,Fk,] [k,,Fk,]
P(m)<z g(t)=0 mod m

where
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g(t)=a,([k,,Fk,]t+B1)2 + b, ([k,,Fk,]t+B1) + c,
=a,[k,,Fk,]2t? + [k,,Fk,](2a,Bi+b,)t + (a,B$+b,Bit+c ).
Denoting v, (m), 72(m)-""7p(m) as the p(m) solutions of

g(t)=0 mod m, we have

p(m)
s, = ) p2(m) ) ¥ 1
lnce(x,ay P =1 ofy oo By
(k,h,m)=1 [k,,Fk,] [k,,Fk,}
P(m)<z tsyj(m) mod m
D LI CYRIC) . 0(Ly
1<m<G (x, Dz)(p(m) { [k, Fk ,]m }
(k,h,m)=1
P(m)<z
- X Z prmpe(m)y ) p2 (m)p (m)
k1 FRo ] 1emce(x, ) P ! 1<n<G(x,a) P
(k,h,m)=1 (k,h,m)=1
P(m)<z P(m)<z
Further,
S x p2(m)p(m) + 0 p(m)
1 {k‘,Fk ] (k, h? y=1 p(m)m {[k1,Fk ] >§( o g(m)m }
P(m)<z
+ 0 Z p,"’(m)p(m) (4)
{ 1<m<G (%, @) p(m) } .
(k,h,m)=1

P(m)<z

Our first step from here is to simplify the O-terms. Recall

p(m)= {t:tmod m; a,[k,,Fk,]?c?2 + [k,,Fk,](2a,8i+b )t +
(a,B$t+b,Bi+c,)=0 mod m }

Writing
v(Bi)=( a,[k,,Fk,]12, [k,,Fk,](2a,B;+b,), (a,B2+b Bi+c,) )

and denoting the divisors of v(fj) to be

l=e,, e,,...,ep ; e <e,<...<ey gives
r
z pm) _ ¥ X p(m)
m>G(x,a?(m)m j=0 m>G(x,o) p(m)m .

(m,v(B1))=ej

Now, by Lemma 2.6, for j=0,




28

v p(m) _ 0{ 1n 1ln G(x,@) 1nkc(x,a)}
m>G(x,a)¢(m5m G(x,n)

(m,v(Bi))=1

where 1n A= { [ln (2.D2 )]+1}1n 2.

On the other hand, if j®0, then m=mjej say, and (m,v(Bi))=ej

implies (mj,v(ﬁj))=l.

€j
In this case
p(m) = |(titmod m; a,(k,,Fk,]7c2 + [k,,Fk,]1(2a,1+b,)t +
(a,B#+b,Bi+c,)=0 mod m )
= I[t:tmod mje;j ; (At?+Bt+C) =0 mod mj e }l
say, where Aej=a1[k,,Fk2]2,... and (A,B,C)=Xé§i).
So p(m)=l[t:tmod my; (At2+4Bt+C)=0 mod mj }I j
=p(mj)ej.
Consequently
Z _p(m) ) ejp(my)
m>G(x, a)p(m)m mie >G(x,a)w(mjej)mjej
(m,v(B1))=e; (m3,¥(B;))-1
. e
< st ) oy
L85 my>G e, a)™iP M
(m3,¥163))-1
P
]
< 1n 1n G(x,a) InMG(x,a) ej
pley) G(x,a)
Summing over j gives
r
z p(m)  _ 0{ ln In G(x,a) 1nrG(x,q) j }
m>G(x,a€(m)m G(x,a) j=0¢(ej)
Cr

0{ In 1n G(x,0) 1lnMG(x,qa) n }
G(X,a) a=1P ()

e, 1ln 1n G(x,a) 1lnMG(x,q)
- of == HEW) }
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_ 0{ a,[k,,Fk,]2 1n 1n G(x,a) 1nkc(x,a)} (5)

G(x,q)

Similarly, the second error term,

Z p?(m)p(m)
1<m<G (x, o) P <™
(k,h,m)=1

P(m)<=z

i

and

pi(m)p(m)y _

1<m<G (x, 0) P ™
(m,v(Bi))=ej

<

<

So

p2(m)p(m)

1<m<G (x, o) ? ™)
(k,h,m)=1
P(m)<z

However we may also

X p2(m)p(m)

1<m<G(x,a)¢(m)
(k,h,m)=1
P(m)<z

and

(e

#2(m) p(m)
0
! 1<m<G(x P )

0{ Z 12 (m)p(m)
=0 l<m<G(x a) ¢
(m,v(By))=ej

2(1111 1) €3 P(mj)
<G(x, a)¢<m3 e5)
i))=1

1<m s@s

(my,v %

ej Z p(my)
pley) 1< <G (x, @ ay?(mj)

(m3,v(B 3y
J

1nlnG(x,a) 1n*G(x,q) by Lemma 2.7.

0( a,[k,,Fk,]2 1nlnG(x,a) 1lnMG(x,a) )
(6)

write the second error term as

p2(m)p(m)
p(m)

of Y

P(m)<z

Z p2(m)p(m)
0 P(m)=<z p(m)
(m,v(Bi))=ej

of

N

N Snar' R
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Z p2(m)p(m) _ Z p2(mjes) ey p(my)
P(m)<z p(m; P(mje )<z ¢(mjejj
(m:v(ﬁi))nej (mj,V 61))’1
e
J

< -8 Z p2(my)p(mj)
¢(ej) P(mj)<z p(m )
(my,v(B1))=1
e-
J
¢ ej nn (1+ ( ))

P(e]) p<g
3oy (6,?

€J

nQa+2)

< =i ﬁ:I £ —Eij InZ2z.

p(ej) p<z
So in comparison with (6) we also have

p2(m)p(m)

1<m<G(x,a)P(m)
(k,h,m)=1
P(m)<z

= 0( a,[k,,Fk,]2In%z ) (7)

This concludes the simplification of the O-terms.
Now, turning to the leading term of (4), we have,
Yooowme@m) | M ( 1+ p(p) )

(kthm)=1¢(m)m P<i N p(p-1) .
P(m)<z LAk

We note that by an argument similar to that used in deriving

(5), (6) and (7) we have

r

p2(mp(m) 0 Z z p(m)
(k,h,my=1 PT/M { j=0  P(m)<z? (MW
P(m)<z (m,v(B5))=e;

ey
- 1 - 1
- O{ jéo ¢(ej) } { Z p(n) }
= 0( 1In ey ) = 0(ln (a,[k,,Fk,])) (8)
So the leading term of §, is certainly convergent.
Hence, via (5), (6), (7) and (8),
S, = ot m( 1+ p<p) ) { 1+

{k1rFk2] p<z Y P”l)
ptk,h
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a,[k,,Fk.]21nlnG(x,a)1n G (x,a)
t 0[ B z G(x,q) }

vo[tlkuFE]2 A gy ®

where A = max(lnlnG(x,a)lnMe(x,a), 1n?z). A arises from
equations (6) and (7).

This, on substitution back into (2) gives

g -_x m(11)tl ) M1+ p(p) ) {1+
[k,,Fk,] p<z P os mod Fk p<z p(p-1)
pik,h L 2 ptk,h

oi=R, mod(k,,Fk,)

a. [k,,Fk,]2lnlnG(x,a) lnrG(x, o)
+ 0[ E— 2 G(x,o) ]

ofalitata g}

This completes the lemma for D=z0.

If D=0, which may occur only if an2+bn+c has a repeated factor,

so that we may write an?+bntc=6(yn+6)? say, then S becomes

Z ma-1)"t
p<z P
pio(yn+té)k,
o<NQO+X
naQ1 mod k,

(8 (ynt+d)?,dn?+en+f)=w

[ [ame, entenry fhe )
Bik,

The proof of the lemma in this instance is very similar to that

for D#0. ]

LEMMA 2.10
Let an2+bntc and dn2+en+f be two polynomials with integer

coefficients having no common factors. Then, for q a prime,
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Z n (-1t
a<qlatx p<§ P
q=£ modk, pT,

(aq?+bgtc,dq2+eqt+f)=w pI(ag*+bgte) (dq?+eq+t)

( [aqzzbq+c]ez+[dq2+§q+f]' B%ﬁ2p y=1

L2 -7 [k, Fk,]f In(k,,Fk,] M (1+_4p2/2)

Inx p<z P e(lk,,Fk,]) p<z  (p-1)?
ptk, ptk,h
plh

X Ty (w) { 1+ 0[ E%%%%ﬁ%%%%) . % .lnx] }

where

(1) tce—fb| ; a=d=0
Fz[
| (cd-fa)2—(bd-ea) (ce—fb)1 ; otherwise
(ii) h = (ad,ae+bd,af+be+cd,bf+ce,cf)
and A=ad/h ,B=(ae+bd)/h, C=(af+b3+Cd)/h, D=(bf+ce)/h
E=°f/h.

(iii) M = max(lnlnG(x,a)lnMe(x,a), 1n2z)

where G(x,a) = a<32§+x'Aq4+Bq3+Cq2+Dq+El
2
= ([ ) e

where A denotes the discriminant of (aq?+bqg+c)(dq?+eq+f)
if neither ag?+bgtc nor dq?+eq+f have repeated factors.
If aq2?+bqt+c has a repeated factor, say aq2?+bq+c=0(yq+s)?2
and dq?+eq+f does not have a repeated factor then A is
the discriminant of 6(yq+8)(dq2+eq+f)., Similarly if
dq2+eq+f has a repeated factor. Clearly with this
definition A#®0.

and where

(iv) T,{(w) denotes the number of integers m in the Interval
1<n<Fk, for which both

(anZ+bnt+c,dn?+ent+f)=w
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and ( [an?+bn+c]gz+[dn?+en+f] ’ I

Py
W w BT ) )=1

PROOF
Assume firstly that neither an2+bn+c nor dn?+en+f have

repeated factors. Denote the sum under consideration S.

i.e
s - ) mo(-1-l
p<z P
a<gqlatx
=0 ,modk, pTk,

(ag?+tbg+tc,dq?+eq+f)=w pi(ag*+bgte) (dg?reqif)

( [aq2;bq+c]92+[dq2+§q+f]’ B%ﬁzp y=1

The proof is essentially the same as that of Lemma 2.9,
Certainly the argument follows almost identically until

statement (2) of Lemma 2.9 so that we may write

- moa-nty y mo(1-1)-1
g:ﬁ P aymodFk, o<qRotX g;i . P
oh og=0,mod(k, Fk,)  q=Bymod[k,,Fk,) PUZ 0 oo
+Dg+E)

(1)

where given that

(aq?+bg+c) (dq2+eq+f)=adq+(ae+bd) g3+ (af+be+cd) q2+(bf+ce) g+t
we write h=(ad,ae+bd,af+be+cd,bftce,cf) and

A=ad/h, B=(ae+bd)/h, etc. so that (A,B,C,D,E)=1:

where Qyyee 0ty denote the integers n in the interval 1l<n<Fk,

for which both (an?+bn+c,dn?+en+f)=w and

(e, (E5t) ¥

ER,
and where #i=f1(£,,ai) is the unique solution, if it exists, of

the pair of congruences g=¢ ,modk, and q=ojmodFk,.

Writing the inner sum of (1) as §,,

fe. y moQ-p-l

p<z P

ptk,h
P1Aq9+Bq3+Cq2+Dq+E

a<qRotx
q=@imod[k,,Fk,]
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we have

s, = L ) prim)

a<q<ortx Aq4+Bq3+Cq2+Dq+E=Omodn ¥ {™
q=@imod(k,,Fk,] (k,h,m)=1
P(m)<z

where P(m) denotes the largest prime factor of m.

Changing the order of summation gives

- p? (m) 1
N
SmLG (X, a) a<qRot+x
(k,h,m)=1 q=gimod[k, ,Fk,]
P(m)<z

Aq4+Bq3+Cq2+Dq+E=0Omodm

- 4 3 2
where G(x,w) a<€%§+x'Aq +Bq3+Cq2+Dq+E] .

Writing y,(m), y,(m),...,yr(m) as the p(m) solutions of

An4+Bn3+Cn?2+Dn+E=Omodm, gives

- I ow@ooy oy
1
1<n<G (%, o) p(m) yj(m)modm
(k,h,m)=1
P(m)<z

a<geotx

q=pimod(k, ,Fk,]

quj(m)modm
Denoting 5ij = éij(Bi,yj(m)) as the unique solution

mod[k, ,Fk,,m], if it exists, of the pair of congruences

n=gjmod[k,,Fk,]) and n=y;(m)modm we have

- p2(m) 1

<G (x, o) v 3 (m)modm

(k,h,m)=1
P(m)<z

a<q{o+x
yj(m)EBimod([k1,Fk2],m) anijmod[k1,Fk2,m]

Splitting S, into two sums we have

2
- 1 m@ o) I
l<m<G(x,a)p v (m)modm
[k,,Fk,,m]<x
(k,h,m)=1
P(m)<z

o<gRotx
7j(m)Eﬁimod({k1,Fk2],m) qEﬁijmod[k1,Fké,m]
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I =

1<m<G(x,a)¢(m) yj(m)modm a<gqRoat+x
£§1ﬁF§§;?]>x yj(m)EBimod([kl,sz],m) qEBijmod[kl,sz,m]
P(m) <z

Using the estimate of Montgomery-Vaughan [6], namely

MGk, Myik,0) < By, 5 Lckey<x

in the first of these sums and noting that

X 1 <1 in the second gives
a<qo+x
anijmod[k1,Fk2,m]

s < 2x z p2(m) p(m) 1ln [k,,Fk,,m]

oI X ke, P etk FRmD

[k,,Fk,,m]<x
(k,h,m)=1
P(m)<z

+ Z p2(m) p(m)
1<mEG (X, o) p(m)
[k,,Fk,,m}>x
(k,h,m)=1
P(m)<z

By Lemma 2.8 we have 1 < [k1=sz]% m?  so that
p(lk,,Fk,,m]) e([k,,Fk,]) "p(m)

s < 2% [k ,Fk]¥ In[k Fk,] ¥ p2(m) p(m) lnm m?
T T 1Inx e((k,,Fk,]) 1<m<C (x, @) p(m) 2
[k,,Fk,,m]<x
j (k,h,m)=1
P(m)<z
A A OWICY

1n<G(x,0) P

[k,,Fk,,m]>x

(k,h,m)=1

P(m)<z

Arguing as in Lemma 2.9, we have
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¥ £2(m) p(m) lnm m? p(m) m2/3
(m) 2 < (m)?2

km<G(x,@) ¥ (k,h,m)=1 ¥

[k,,Fk,,m]<x P(m)<z

(k,h,m)=1

P(m)<z

m ( l+p(p)p?/3 )

" p<z (p-1)7
ptk,h
and E p2(m) p(m) < Z p2(m) p(m) _ 0(M)
1I<mkG (%, o) p(m) 1<mLG (%, o) p(m)
[k,,Fk,,m]»x P(m)<z
(k,h,m)=1
P(m)<z

where M=max(lnlnG(x,o)1nMG(x,a), ln%z) and where

In A = { [13§%;%fl +1 Jin 2.

So as p(p)<4a

o 2x [k, ,Fk, 14 In[k,,Fk,] M ( 1+ 4p2/3)

S TR p([k, FE, ) PO =) LI
ptk,h
_ 2x [k,,Fk,]? ln[k, ,Fk,] TT ( 1+ 4p2/3 ){1+0[¢([k1,Fk2]) M 1nx]}
Inx ¢(lk,,FK,]) p<z  (p-1)2 Tk, , Tk, '~ x
ptk,h

Substitution back into (1) gives

n (1—l>"1 2x [k,,Fk,]% In[k,,Fk,] T ( 1+ 4p2/3 )

S <

p<z P Inx SD([k| lez] ) p<z (P‘1)2
ptk, ptk,h
pih

D S R e
ojmodFk, T2
=2 ,modFk,

This completes the lemma.
If aq?+bq+c has a repeated factor, say aq2+bg+c=0(yq+s)?

then S becomes
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S = z i (1_1)—1
a<qloa+x p:i P
q=¢ ,modk, pT%,

2
(aq2ibgic,dqrteqif)=y  P10(Ya+0)2(dq?+eqrt)
aq2+bg+c dg2+eq+f P\

S P A

W

The proof of the lemma in this instance is very similar. The
same reasoning applies if both aq2+bq+c and dq2+eq+f have

repeated factors,

LEMMA 2.11
Let an?+bntc and dn2+ent+f be two polynomials with integer
coefficients, having no common factors. Then, for

z<exp( (In x/k1)1"f), for ¢ some constant i>e>0,

Z m (1-1)-1
a<n ot+x g:i P
= 2
?nQ‘;Od§;1 pl(an2+bn+c) (dn2+en+f)
' plP

(an2+bnte, dn?+ent+f)=w
an?+bn+e dn?+en+f I
e

’
w | 2

m@a-1 o -1 [k ,Fk,)? 1 (1+ 4p?/2 )

S Xpz popz P p(lkFK,]) p<z  (p-D)?
park2 ptk,h
pih

¢([k1,Fk2])lnlnx1nX+1X ]}

X Ty (W) {1+0(exp(-(1nx)f)) +0[ =

where
(1) 1ce—fb| s a=d=0
o { | (cd-fa)2-(bd-ea) (ce~fb) | ; otherwise
(ii) h = (ad,ae+bd,af+be+cd,bf+ce,ct)
and A=ad/h ’B=(ae+bd)/h’ C=(af+be+cd)/h’ D=(bf+ce)/h

E=Cf/h.
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. . - 4 3 2
(1i1) G(x,a) a<%2§+x'An +Bn®+Cn2+Dn+E|
an - { [1“(2 )]+1 } 1n2

where A denotes the discriminant of (an?+bn+e) (dn?+en+f)
if neither an?+bnt+c nor dn?+ent+f have repeated factors.
If an?+bn+c has a repeated factor, say an2+bnt+c=6(yn+s)?
and dn?+en+f does not have a repeated factor then A is
the discriminant of 6(yn+d)(dn2+en+f). Similarly if
dn2+en+f has a repeated factor.

and where

(iv) T,(w) denotes the number of integers n in the interval
1&n<Fk, for which both

(an2+bn+c,dn2+en+f)=w

and ( [an2;bn+c]92+[dn2+zn+f]

Op . _
i, 7
PROOF

Assume firstly that neither anZ+bntc nor dn?+en+f have

repeated factors. Denote the sum under consideration S.

l.e.
s = z no(-1)-t
a<n<artx g:ﬁ P
= 2
I(’nQ 1?103221 p1(an2+bn+c) (dn2+en+f)

(an?+bn+c,dn?2+en+f)=w
an?+bn+c dn2+en+f I p
¢ ) gt

-1

2

We argue exactly as in Lemma 2.10. A very rough sketch of the

proof is given here. Certainly

-1y=1
AT ] s, (1)
P P ajmodFk,

STEZ ai=Q ,mod(k,,Fk,)

where
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s - 7 moa-n-1

! p<z P
o<ngo+x prk.h
n=fjmodik, , Fk,] p|A§4+Bn3+0n2+Dn+E
(n,pgzp)=l

and where Qypeeer Oy denote the integers n in the interval

1<n<Fk, for which both (an2?+bn+c,dn2+en+f)=w and

([an2+bn+c]gz+[dn3;en+f]’ B?Ez y=1 ;

w

where h=(ad,ae+bd,af+be+ed,bf+ce,cf) and A=ad/h,

B=(ae+bd)/h, etc. such that (A,B,C,D,E)=1;

and where @;=@8;(2,,a;) is the unique solution, if it exists, of
the pair of congruences n=Q modk, and n=xjmodFk,. We further

have

- 1 mwoy ]

1<m<G(x,a)p(m) 7j(m)modm o<ngo+x
(k,h,m)=1 yj(m)EBimod([k],sz],m) nEGijmod[k‘,sz,m]
P(m)<z (n, O p)=1
p<z
where v, (m),...,yr(m) are the p(m) solutions of

An4+Bn3+Cn2+Dn+E=0 mod m
and 5ij = 5ij(61v7j(m)) is the unique solution mod(k,,Fk,,m],
if it exists, of the pair of congruences n=@jmod[k,,Fk,] and
nEyj(m)modm; and where

- 4 3 2
G(x,o) a<g §+X|An +Bn3+Cn2+Dn+E] .

We divide the sum S, into two to read

s, = L wmoy Lt

1kmg x? p(m) ¥4 (m)modm o<ngetx
[k1 lez] "Yj (m)EﬁimOd([k1 rsz] 1m) nEéiijd[kl ’sz ’m]
(k,h,m)=1 (n, sz):l
P(m)<z P
oL pwoy p
x} <m<G(x,a)w(m) 3 (m)modm a<ngotx
(k,,Fk,] Y3 m)=gimod({k,,Fk,],m) nEGijmod[k1,Fk2,m}
(k;h,m)-1 (w, 11 p)=1
P(m)<z P

(2)
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i x? X l-e
Now if m<[E__FE2] and z< exp((ln ®/k,) ) then zg

14 [k szrm]
X 1 .
and we may apply Lemma 1.1 to the sum to give
a<n<a+x
élﬁmod[k 2,M]
p<zp)—
P S R ¢ VR N
[k, ,Fk,,m] p<z  p
arenocx v [k,,Fk,,m]
n—61 mod [k, ,Fk,,m] PHLEy K
ﬁ p)—l

O(exP(—(ln[TE:T?E;TﬁT])%)) + 0(exp(~u(lnu-1nlnu-2))) )

W [rema)

where u =
In z

We have by our assumptions above that upi(ln x)¢, and that

ln[ x ]] > 12 X and so

[k,,Fk,,m
Yot x T oD
S o(TKFK,,m] { 1+ 0Cexp(~(1n x)¢)) )
a<n<a+x p([k,,Fk,,m]) p<z
5lﬁmod[k ,Fk,,m]
p<zp)—

< $<E§ ’gizif 'E%é)' pEz (1—%) { 1+ 0Cexp(-(Inx)€))].
“ H

(3)
If on the other hand m> x! then we use the comparatively
(k,,Fk,]

weak upper bound

) o< D < e @
a<n<a+x o<nKo+xX e ey .

61 smodf{k, ,Fk,,m] nEBijmod[k1,Fk2,m]

) p)=1
P<Z

Substitution of (3) and (4) into (2) gives
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m(1-1) (k,,Fk,]? p2(m) p(m) m?
5, <x p<z P Wi[k1,Fk2]) 1<m§ < @2 (m) {1+
IEl,FEZI
(k,h,m)=1
P(m)<z

O(exp(—(1n x)€)) )

p?(m) p(m)
* 0[ * ) o(m) [k, ,Fk,,m] ]
[k, FK,] <)
(k,h,my=1
P(m)<z
p2(m) p(m)
+ o[ . ) @ ],
[Ehw?E;] <m<G (%, o)

" (koh,my=1

P(m)<z

As previously we have

) p2m)_p(m) md M (L+ 4pd ) .
o xb  #°W p<z  (p-1)? ’
Tk,  Fk, | prk,h
(k,h,m)=1
P(m)<z
p2(m) p(m) 1 o (m)
<3 <m<G(X,a)w(m) [k1,Fk2'm] < [k1,Fk2]i E " ETETH?
v, ez " 7 P,
(k,h,m)=~1
P(m)<z

- 0[ l1nlnx 1nMx [k1,Fk2]f ]
X2

1In(2A2)
In 2

where 1In N\ = { [ ]+1 }1n 2 ; and

p2(m) p(m) _ O(ln4z) = 0((ln X/ 4(1-¢e)y — 4
= = k) ) 0(1n%*x)
%3 <m<G(x,a)W(m) .
[k,,Fk,]
(k,h,m)=1
P(m)<z

So
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m (1-1) [k,,Fk,]¥ M. (1+ 4p? )
S SR g p RTELTED e oD (LTOCeRR(-(ln 09))

ptk,h

v o ok, By MR MM 5 ) o ek, P ]) ek )

X2 [k,,Fk,]2 ° x
(5
The third error term is absorbed into the second.
Substituting (5) into (1) completes the lemma. As in the
previous lemmas if an2+bn+c or dn?+ent+f have any common
factors then the proof is similar. -

Finally we have Lemma 2.12., The proof is not included as
it is almost identical to that of Lemma 2.11.

Although Lemma 2.12 is applied at an earlier stage in the
following chapters than either Lemma 2.1l or Lemma 2.10 it is
included here as the proof is slightly less complicated than

that of Lemma 2.10.

LEMMA 2.12
Let antb, cn+d and en+f be polynomials with integer
coefficients. Assume that antb and cn+d have no common

factors. Then for z<exp(l0(in x) %)

z n (-1)-1
p<z  p

a<ngo+x plantb

n=g modk, ptk,

(antb,cn+d)=w

([anib]22+[cn+d]’ Bgﬁzp)=1

w
(en+f,szp)=l
< xS mT AL om a7 [k, Pkl
‘p(e) p<z P P<z P p(lk,,Fk,])
ptk,

pth




43

I (l+(§%)2) Tz("’){l + 0(exp(—(1ln x)ﬁ')) +

p<z
ptk,h
OEP([k,,sz]).lnlnx.lnS/?x} }
x4
where
(i) F=bc-ad

(ii) h=(a,b) and a,=3/p, b =P/
(iii) yz(w) denotes the number of integers n in the
interval 1<n<Fk, for which both

(an+b,cntd)=w

and

(e (557 pig,” 01

1K,

LEMMA 3

Let S, T, U be positive real numbers, and suppose

s = {1 + oY}, ana s = uft « of}]

Then
W 1= sf+ o] )
-
@ - oft s of) +ofY )

(i) Given S = T({ 1+0(1l/y) ) we have |S-T| < KT/, for some
positive constant k. If T € S then {T-Sy < kS/x giving
T-S = 0(S/4) or T =8 + 0(S/5) = s{1+0(1/5)).

On the other hand, if T > S then 1S-T| = T-S < KT/, and

T(1-K/y) < S i.e. T < S{1+K/x y). Hence
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1IT-S1 < Sk/y 1o = 0(5/y) and T = s{1+0(1/y)) as required.

(11) As S = T(1+0(l/4)) we have by (i)
T = S(1+0(1/)) = UL+ (/) H1+0(L /) ) = U(L+0(L/)+0(1/5))

as required,

O
LEMMA 4
Suppose a, b, ¢, d ¢ Z with b2-ac#0 and b2-ac=0 mod 4.
Then
{(x,y): 0<x<A, ax2+2bx+c=dy? }I
b2-ac A . tadi<4, ad>0 & ad not a
T[ 4 ]1n[|ad|]’ perfect square
< .
2.
T[b 4ac] ; otherwise
where 7(n) denotes the number of divisors of n.
PROOF
Solving the quadratic
ax2+2bx+c=dy? (L)

for x gives

R= -2b¥ /(4b2-4a(c-dy?))
2a

So for (1) to have integer solutions we require that
b2-a(c-dy?) be a square, say z?, and that either -b+z or b+z be
divisible by a. (We may assume that z is positive.)
Now

b2-a(c-dy2)=z2
if and only if

z2-ady2=b2-ac. (2)
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The proof of the lemma is divided into four steps, Step 1
dealing with the case where ad is negative, Obviously if both
ad and b2-ac are negative, then (2), and consequently (1), has

no solutions.

STEP_1: Number of positive integer solutions of Ax?+By?=g with
A,B>0,

(For convenience we denote the number of positive integer
solutions of Ax2+By2=g as N(g, A, B)).

Clearly we may assume that (A,B,g)=1. We may further
assume that (AB,g)=l, for if there exists a prime p such that
A=0 mod p and g=0 mod p say, then y=0 mod p and the number
of positive integer solutions of Ax2+By2?=g equals the number of
positive integer solutions of (A/p)x2+pr2=(g/P). Similarly if
there exists a prime p such that B=0 mod p and g=0 mod p.
Continuing in this way an equation A'x2+B'y?=g' is reached for
which (A'B',g')=1l, having the same number of solutions as our

original equation.

The solutions of Ax2+By?=g may be derived from the

solutions of the equations

[ AxZ+By?=g p (x,y-1
Ax2+By?=g ; (x,y)=1
81
(3)
Ax?+ByZ=g P (=)=l
L gr
where g,,...,g, denote the square integers dividing g. For

completeness we write g, =1 and the equation Ax?+By?=g as

Ax2+By?=g
Eo-

From section 11.3 of Hua[4], Theorems (4.1), (4.2) and (4.3) it
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follows that the number of solutions of

Ax2+By?=§ ; (x,y)=1
81
is 0{ |{ 0<Q<2§ 1 2 = -4AB mod 4§ )i }
Bi Bi
and we have
N(g,A,B)¢ Z I(0<Q<2§ : 22 = ~4AB mod 4g } (4)
i=0 B1 gi

Otz.

Writing g = p1a1p2 ..pSD'!s i Py<P,<...<pg Wwe will show, by

induction on s, that

N(g,A,B) € 7(g). (5

Assuming initially that g has just one prime factor and

writing g=p1a‘, we have

o,

N(grA:B) < '{O<Q<2p‘ ; 02=—4AB mod 4p1a1 ]I

+ |l0<Q<2p1a‘—2

. 02=-4AB mod 4p, %172 |
Lt |{0<Q<2 . 02=—4AB mod 4 }|

if o, is even;

oy

N(S;A,B) ( |{0<Q<2p1 | QzE"AAB mod 4p1&1 }1

+...+ |{0<Q<2p1 ; 22=-4AB mod 4p, }l
if a, odd.
Taking into account the possibility of p, being 2,
{O<Q<2p16 ; 2=—4AB mod 4p‘6 ) is at most 4.

So N(g,A,B) < 4(a,/2 +1)£37(p1a‘) giving us our starting case.
Assuming now that whenever g has k primes or fewer in its

factorization

N(g,A,B) < 3(a,+1)(a,*+1)...(a+l) = 37(g)

we turn our attention to the case

o o
& =P, 'P,; 2'-~Pkakpk+1ak+1'
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Writing h,,...,ht as the squares dividing p1a1_,,pkak=g' say
r
N(g,A,B) € L. |¢ o<e<2g ; 02=-4aB mod 4g )
i-1 gi &i
t
= z I( O<Q<2g'pk+,ak+‘ ; €2=-4AB mod 4g'pk+]ak+1}|
j=1 hy hj
t
+ Z |{ 0<Q<2g'p];+1°‘1<+1"2 i 22s-4AB mod l}g'pkhak""—z }|
j=1 h; hs
J J
t
+o+ Z ’( 0<R<2g"' ; 02=-4AB mod 4g' )
SR 3

for oqy, even;

N(g,A,B) <
t
Z l{ 0K0<2g'p +‘ak+‘ ; 22=—4AB mod Ag'pk+]ak+‘ )l
31 Ty B3
t
ot X ( 0<0<2g'py4, ; 22=—4AB mod 4g'pyy, !
3= | LN B3 |
for opy, odd.
Now
t
Z I{ O<Q<2g‘pk+16 ; £2=-4AB mod 4g‘pk+16 }I
j=1 By hj
t
= Z I{ 0L0<2g" ; 22=-4AB mod 4g' }I x
SR 3
6 . 2=_ 6
{ 0KQ<py4,  ; L2=—4AB mod Py,, |}
t
) |t 0<e<2g' ; 02=-4AB mod 4g' )
j=1 j hj

< 3(e,+1)...{ox+1l) by the inductive hypothesis.

Applying this oy, times whenever oy, , is even; and gpy,+1
2

times when oy, , is odd gives
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N(g)A:B) < 3(a1+1)---(ak+1)(ak+1+1) = 3T(g)

as required.

STEP 2: Number of positive integer solutions of
x2-Dy 2=4N (6)

for oa<x<£f, with D>0, N>0.

Denote the number of positive integer solutions of
x2-Dy2=4N with a<x£f, as M(N,D,w,f).

If D is a perfect square then, since the number of ways in
which 4N can be decomposed into two factors is at most 37 (4N),
in this instance

M(N,D,0,) < T (7)

Assuming that D is not a perfect square, suppose that
%2-Dy2?=4N is solvable and let (u,v) be a solution. If (x,y)
is a solution of the Pellian equation

x2-Dy2=4 (8)
then (u,,v,) defined by

(u+v, D ) = (u + vD )(x + y/D )
2

so that u, = ux +vyD , v, = XV + uy
2 2

is also a solution of (6). Certainly u, and v, are integers
as, for u?-Dv? even and x2-Dy? even, both ux+vyD and xv+uy are
even. Following the notation used by B. Stolt [7] we say that
the solution (u,,v,) is associated with the solution (u,v).

Now, if (u + v/ )(x + y/mD ) = u,+v, /D,
2

then (u + vy/D )(x + y/D )(x — y/D )=(u,+v, /D )(x — y/D )
2 2 2

giving (u + v/ ) = (u;+v, /D )(x - y/D )
2

So we see that if (u,,v,) is associated with the solution (u,v)
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then conversely (u,v) 1is associated with the solution (u,,v,),
and we say that (u,,v,) and (u,v) are associated with each
other. The set of all solutions associated with each other we
term a class of solutions,

Let € denote a class of solutions of (6), consisting of the
solutions

(uj,vy) ; i=0,1,2,...

If (xn,yo) denotes the fundamental solution of (8) such that
x,>0, y,>0 it is well known that all the positive solutions of

(8) are given by

[XJ—‘“T%"—D ]nz . n=1,2,.

Let (u,,v,) denote the fundamental solution of the class C
defined as the smallest non-negative u belonging to the class
C. Then the members of C (if we regard positive and negative

solutions of equal modulus as being the same), are given by

2

Uptvp/D = (ugt+v /D ){x +y ., /D ]n n=1,2,... (9
It is generally the case that (u,,v,) and (u,,-v,) generate

different classes so we cannot at this point assume anything

about the sign of v,.

Our first step towards an upper bound for M(N,D,u,B) is to

show that
u, >0 . (10)
From (9), u, = UeX+v,y D
2

If v0>0 then it is obvious that u,>0. If however v,<0 then

VWX —1V,1y,D
= —00 0. J0
u, >

f

EO{X - ..I.Y_Q_I..)LQB
2 0 u,

= 5{xgYoD + youp[1- l_vt'il?zg I}

>0
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as u,>0, x,~y,/D >0 and {1~ lfﬁlﬁg } >0 for N positive.
0

We are now in a position to prove, by induction, that

Unt, > Uy > 0 for all n. (1)
From the definition of u,, and as u,>0, it follows that

u, >u; >0

and we have our starting case.

Suppose Ug > Ug.; > 0.
As WtV /D = (ug+v,/D ) [ Xo+y, /D }k
2

= (Ug— Vg, /D ) [ Xty /D }
2

we see that

w = Ue—1%g Z Vi ¥oD

and as up > up_, > 0,

Up—1Xg + Vi1 ¥oD

> Ug—
so that
= D

Wy > =Ly (12)
Now

Uty * Vi p = (Ug—y + VWD ) Xy + yo /D }2

2

gives

x§ + yiD Xp Yo Vk=1 D
1{ 4 } + 2

Ukeq = Uk

and in order to show upy, > up > 0 we require the inequality

X2 + yéD Xq ¥y Vk—; D U, Xg * V—; ¥ D
“k-1{ A } * 2 ” 2

to hold., This occurs whenever

uk—1{ x2 + yéD - 2%, } > Vk-; ynzD (1-x,) . (13)

(13) holds trivially if vy ,»0. If vi_.,<0, (13) becomes
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5 21VE_ 1y D(x,-1)
k=1 x2 + y2D - 2x,

(14)
But as, by (12),

1V, 1Y D

(1l4) is satisfied if

Vi 1¥4D > 21V 17 D(%-1)
X2 x¢ + y2D - 2%,

an inequality easily seen to be satisfied whemever x,>2, which,
by our definition of x,, we may assume to be the case.
So (11) follows as required.
Further relations, similar to (10) and (11) hold for wvy.
Namely
(1) If v >0 for some k, then v >0 for all nzk. (16)
(ii) If vyi_,<0 and vi<0 for some k then v,<0 for
all npk. ' (17)

The proof of (16) follows immediately from the relation

Ut /D = (up+vi /D ){ X +y /D }n —k

The proof of (17) is similar to that of (1ll1). Suppose
vg<0 and vy ,<0.
It is clear that in this case vy<vy_,<0 for since u, increases
as n increases it follows that IVl must increase accordingly.
For (17) it is enough to show that
Vk+1 < Vk
for then the result will follow by induction.

Now

Vk—1¥p * Uk
2

Vi = 1Yo < Vik—1

implies that

Vi Xy — Up_,¥
k L,uz k=150 » Vi

implying in turn that
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Vg, > EK:LZE (18)

Xg —
On the other hand

2 2
Vi, = FoJo Mo Vi (X3 7 yoD )

so that for

Vk+1 < Vk

to hold it is sufficient to show that

XQY5UKH1 ¥ Vi ( %3 Z y2D )< Vk—1%g ; Ug—1Yg

or

"Vk—1xuz" Ye—1Yo _Xuyguk—1 _ Vik— (X3 Z yab )

This is the case whenever

2up_ ¥, (x,-1)

X2 + y2D - 2x, < Vke, a9

From (18) it follows that we have 6n1y to show

2uy,_ x -1 k=1
X3 + Yzé - i < i —Yg
o v Yo 0 )

an inequality which is satisfied whenever x >2. This completes

the proof of (17).

Suppose the solutions u, belonging to the class C, lying

within the range o<u,K@ are given by the equations

2

up + vpD = (uy + v /D )[ X, + y,/D ]n ; n=r,r+l,...,T+s.
(Our proof that upy>u,_,>0 for all n ensures that some
consecutive sequence of integers will give exactly the

solutions in the range o<upyKf.)

Now

up + ve/D = (u, + v, /D )[ Xy + y,/D ]r
2

implies
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(up + v Y(uy = vpoD ) [ X, + ¥,/D ]r
4N 2

and consequently that

1n { (up + v/D ) (u, = v /D )}

4N
r-
X, + y,/D
in { fampla }
Similarly
1n { (Up4g + Veyg/D ) (g ~ v /D )}
r+s = oN

MRy

giving

YUrss + Vise/D }
s — In { Yy + v D

o [Tl

Certainly up,o > up. > 0.

If vy > 0 then by (16), vyyg > 0 and

In { Zris 2 { 26)
s < - § - QD (20)
1“{_0_2__[1___.} 1“{1}
as 1n { X0 ;.1&12 } > 1In { 3 ; 2 } » % In { % }.
If v < 0 and Vyig < 0 then
s = o { ur+54§ Vy+gdD - Zer/D
In { Eﬂ‘jzy L }

D
1n Up + (v, v
_ { Uppg + Vgt /D }

ey

2in { £ 1
In {

< —_tald (21)

b

If vy < 0 and vy4 g > 0 then by (17), vyy, > 0. But

o Ql%g

(Uyq,+ Ve D) (0, = vo/D )
r+1=1“{ 1 I }

In { T2 Yol® |
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giving
LS v vy 3
1n { X, + y /D }
e (%)
TTE (7]
and
21n | 26
s < ___Emimm%;l + 1 (22)
n {7}
So
1o (2]
M(N,D,x,8) < H*I——{_E_T + 1 X (number of classes).
n —
4
2a.  2a

2amq12b‘+l....qn2bn+l it follows from

For N =1p,  'p,  2...Pp
results B. Stolt [7] achieves that the number of classes is at
most

20 (2a,+1)(2a,+1)...(2a,+1) (b,+1) ... (by+1)

(2a,+1) (2a,41) ... (2ag+1) (2b,+2) ... (2by+2)

7(N).

So

21n

M(N,D,a,8) < + 10 7D (23)

-DIC’Q]{;
——t

STEP 3: Number of positive integer solutions of x2 — Dy2? = 4N
for o<x<f3, with D>0, N<O.

Here, as in Step 3, denoting the number of positive solutions
of x2 - Dy? =4N for a<x<@ where D>0 and N<0 as M(N,D,a,B) we

get
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28
M(N,D,@,8) < m{ ) F1 4o

(7]

The proof goes through almost identically, except that here we
define a class of solutions as those solutions given by

up + vp/D = (u, + v, /D )[ Xg + y,/D ]n ©n=1,2,...

2
where (u,,v,) is defined as the smallest non-negative value
of v, rather than of u.
Following from this definition we are able to show
(i) v,>0
(i1) vpy,>v>0 for all n
(iii) If u>0 for some k then uy>0 for all n>k

(iv) If ug<0 and up,,<0 for some k then u,<0 for all n>k

and complete the proof mutatis mutandis.

STEP 4: The completion of the Lemma.
In summary, we have so far that the number of integer

solutions of z2-ady?=bZ2.ac for b2-ac=0 mod 4 with O<a<z<£f is

7(b?-ac) ; ad<o
2_
iﬁéi_fg) ; ad a perfect
€ square
7[ bf-ac ] { } + 1 ; otherwise
a ]

L w2
In the cases ad<0 and ad a perfect square the lemma follows
immediately.

If however ad>0, and ad is not a perfect square, from (1) we
see that

btz
a

x=

As we require O0<x<A, if a and b are both positive we can only

obtain x within this range if we take
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- ~b+z
a

in which case

~b+z
a

0 < <A

and b € z < Aatb.

The number of positive integer solutions of
z2 - ady? = b2-ac

for z in this range is, hence,

< r[ b2;ac ] 21n { z(ﬁ:+;) + 1
1n [ 2C
4

Continuing in this way, we find that the number of solutions of

ax? + 2bx + ¢ = dy?, for ad>0 and not a perfect square, and for

0<x<A is
2(Aa+b)
21n
1[ bz;ac ] { bd + 1 7 ab>0
n {7}
21b|
[ b2-ac ] 21n { tbi-Alaj +1 , ab<0
7 A ad ' Alal<ib]
n { 7=}
€ 3
b2-ac 21n (21b1) . ab<0
T[ A ]{ In(3%7;) +1} ' Alal=1Iby
b2-ac 21n (21b)) 21n (2(A1ai-1b1))
T[ A ] n(@/, * In(34/,) +1}
. ab<0
Ibi<Alal

These collectively imply that the number of solutions of

ax? + 2bx + ¢ = dy? with 0<z<A is

HEIE N

¢ T[ Ei:iﬁ ] %%—%ad)

A
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52 Jin () ¢ asn

T[ bzzac ] . adpA

which completes the lemma.

N.B. We have achieved an upper bound on the number of
solutions of b?-a(c-dy?)=z? as required, However, recalling
the comments following the opening of the proof, we also
require that either -b+z or b+z be divisible by a. With
regards to this additional restraint we make the following
observation.

If the solutions in a class C of u2-adv?=4N, for ad
positive and squarefree, are given by (uo,vn),(ul,v1),...
(up.,vp) ... then, if u,~b=0moda, it follows that all the
solutions in the series |

<aUn—2s Uns Untgr Untgs .
also satisfy u-b=0Omoda.

Following the comments near the start of the proof we may
assume that (a,4)=1. From equation (9) we have

d12
uptvp/ad = (un_2+vn_2/ad)F&ﬁ1€;E;]

so that

buy = uy_,(xg+ydad)+2advy ,x .y, .

bup = up ,x2 moda.

But (%,,y,) satisfies x2-ady?=4 giving x2=4 moda. So
hup=4u,_, moda.

Since (a,4)=1,
unp=uy_, moda.

Similarly up=u,,, moda. The rest of the proof follows by

induction.
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It follows that, for each class of solutions, we need only
observe the first two solutions to know whether or not that

particular class will yield solutions to ax2+2bx+tc=dy?2,

LEMMA 5.1

Let y and Q be large real numbers. Let o be a positive
real number satisfying o»10 and exp(Ql/a)>exp(cln2Q). Let
ln2QQ<y<z. Then there are at most O(Qg/ﬂ) distinct primitive

characters to moduli not exceeding Q for which the estimate

m(—xeN™  ma-xen-t -1 -3
e N R CR b R )

fails,
The O-constants are absolute, effectively computable, and

independent of the value of o,

PROOF

The lemma is a generalisation of Lemmas 22.5, 22.6 and 22.7
of Elliott [8], and of Lemma 1 of Nair and Perelli [1]}. The
proof is broken into three steps, Step 1 corresponding to

Lemma 22.5 of Elliott, Step 2 to Lemma 22,6 and Step 3 to Lemma

22.6 and Lemma 1 of Nair and Perelli.
The proofs are essentially very similar to their originals.

More detail is given where it is considered helpful.

STEP ONE

Let Q and U be large real numbers. Let o« be a positive
real number, «»10. Then, if 1n2aQ<U<Q2, there are at most
O(Qg/a+1/160) distinct primitive characters to moduli not

exceeding Q for which the inequality
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| % I < U/ (1)
U<pg2U P

fails., The O-constant is independent of «.

PROOF OF STEP ONE

The proof is very similar to that of Lemma 22.5 and is

omitted here.

STEP TWO

Let Q and U be large real numbers with U>Q%. Let a be a
positive real number, o»10. Then there are at most O(Qs/a)
distinct primitive characters to moduli not exceeding Q for

which the inequality

I ) X—(-‘?-)I<Q“*/0z
U<pg2U

fails. The O-constant is independent of .

PROOF OF STEP TWO

Again omitted,.

STEP THREE : GOMPLETION OF THE LEMMA.

We observe that

m(l-xe»t_ n axent 1 Q-xent
P

p<z P PRy y<p<z P
m (-xen~!l n (1-x(pn~1 m o (-x(p)»t
PRy P y<p<exp(Q1/a) P exp(Ql/a)<p<z P

if exp(Ql/a)<z.

- -1
y<p<gxp(Q1/% X—F(,E)) may be dealt with by

firstly showing that

The product

i L-x@EN™T |, o

x(p)
y<p<exp(Ql/®) “p ) < P

y<p<exp(Ql/a) P
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and then applying Steps One and Two to the error term to give

n (1-x(p)~! _ -1 -3
y<p<exp(Ql/®) "p~ L+ 0@y /@) + 0(Q/)

with at most 0(Q9/@+1/80) exceptions.

On the other hand statement (18) of Nair and Perelli's
paper [1l] which reads
" o M xent _
LX) = ey oo (1+0(exp(-c(ln w)£)))
holds uniformly for w)exp(clan) and for all primitive

characters to a modulus g<Q with at most one exception, x,"

. M (Axe)
may be used to estimate the product exp(Ql/a)<p<z o

Assuming that exp(Ql/a)>exp(cln2Q) we have

n A-xeeN-1 _ o a-xen-t n (1-x(p))

exp(Ql/®)<p<z "p p<z P p<exp(QL/®) “p

L(1,x){1 + O(exp(-c(lnz)%)))

x L(1,x)"}1 + O(exp(-cqQl/2a)))

1 + 0(exp(-Ql/2))

1 + 0(Q~3/o),

il

This completes the lemma.

Using a version of Lemma 5.1 Elliott [8] extended his

results over non-primitive characters. He proved

"LEMMA 22.8 Let x be a real number, x»9. Then the estimate

- -1
L(L,xp) = (1 + 0((ln x)-2)) 1 (I-xp()

p<1n2%x p 1
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holds for all D, 2<D<x, -D=0,1 mod4, with the possible.

exception of at most O(x7/8) moduli."

It is clear that the number of exceptional moduli, 0(x7/9),
may be decreased if we widen the range of the product on the
right hand side of (1), or if we accept weaker error terms.
Lemma 5.2 below is an attempt to minimise the number of
exceptional moduli if the problem is approached wvia Elliott's
methods. The only major divergence from his mode of argument
is in the use of estimates such as Lemma 5.3 below. (It is of
course conceivable that other methods of proof than Elliotts may
generate better results and so Lemma 5.2 makes no claim to be
a best possible result.)

Lemma 5.2 is not used in any of the theorems of the thesis
and stands independently of the rest of the work. It is

included as it follows a natural line of inquiry from Lemma 5.1.

LEMMA 5.2
Let x be a large real number. Let o be a positive real

number satisfying o»20 and o€(lnlnx)#. Then the estimate

n (1- -1
L(L,xp) = p<ln2‘§‘x ll%)) (1 + OCexp(-c(lnlox)®)))  (2)

holds for all D, 2<D<x, -D=0,1 mod4, with the possible

exception of at most

x 14
0{[1n1nx] ]
moduli. The O-constant is absolute, effectively computable,

and independent of the value of a.
To prove Lemma 5.2 we firstly require the following lemma:

LEMMA 5.3
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—y -1
L0 = g, R 1+ ogexp(-e(law) 1)) (3)

holds uniformly for Q < exp(clnlnw), and for all primitive
characters x to a modulus q<Q. The O-constant is absolute and

effectively computable.

PROOF OF LEMMA 5.3
The proof of Lemma 5.3 follows classical multiplicative
number theory arguments and is only briefly outlined. Firstly
it may be shown that if
¥0x,x) = L Amx(n)
n<x
where A(n) is the von Mangoldt function, then following the

arguments of Chapter 20 of Davenport [9],

B

x1 ®
, = 0 4
V(x,x) B, + [ (1nl )] (4)

uniformly, for all primitive characters x modg, gq<Q, if
Q < exp(c lnlnx)

and where @, is the possible exceptional zero of L(s,x)

. . c
satisfying #,>1- ng "

It is well known (see Davenport) that an upper bound on §, is

given by

R 1 - =S
b < q%lnq < Q#1nQ -

From (4) it follows, via the argument of Lemma 1 of Nair and

Perelli [1], that
¥(x,x) = 0(exp(~c(lnx)¥)) (5)

uniformly, for all primitive characters x modq, g<Q.
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Further, from (5),

L x(p) = O(xexp(-c(lnx)4)) (6)
pP<x '

Since

v (p))-1
P1>1W(1 %(Jg)) -1+ 0[] +of | pgw zc_lgp_)| ]

the result follows by partial summation.

We cannot extend the method of proof of Lemma 5.3 to
include Q much larger without there being a possible
exceptional modulus. This case was covered by Nair and Perelli
[1] where they proved

Tl -l (I“Zgﬂ’)_l (1 + 0Cexp(-c(1n W) 1)) 6)
holds uniformly for wrexp(cln2Q) and for all primitive
characters x to a modulus gq<Q with at most one exception, yx,."

We are now in a position to prove Lemma 5.2.

PROQF OF LEMMA 5.2

Each discriminant -D may be written in the unique form
-D=02d where, if s is defined to be 4d or d as d#¥lmod4 and
d=lmod4 respectively, s is the disciminant of the quadratic
field Q(,-D). Further xq(p) defined by the Kronecker symbol

{g] is a real primitive character, mod id|.

We have
1- -1
L =1 G

and

xa(p) ; (p,2)=1
xp(p) = [
0 i (p,2)>1
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giving

- -1
L) = 1, (e

- M (1-xg(p))
L(Lxa)y,,  XB )

Now |-Dij=122d|<x implies that |d|<%2 . Define Q=§2.

Writing exp((lnlnx)%) as F(x), for (F%§)]é<ﬁ<xi we have

Q<F(x) and we may apply equation (6) to (7) to give

- -1
LCLxd) = o2 2B (14 oexp(-einimo ) ()

with at most one exception. Let this exceptional meodulus, if
it exists, be denoted x,, having modulus igi.

If 1gI1<lnlnx then from Lemma 5.3,

v -1
LD = o adar BY T (14 oexp(-ealany ). (9)
Together (9) and (8) give, for [F(z)]é<9<xf,
- -1
L(l,xq) = p<2n2§i _§$2>> (1 + 0(exp(~c(lnlnx)%))} (10)

with at most one exception, x,, say with modulus jgt>lnlnx.

X
F(x)

If on the other hand Q<[ ]i then we have F(x)<Q and

applying Lemma 5.1 gives

- -1
L(l,xq) = p<¥n2éi X%LE)) {1+ o[lngx) oo} an

with at most 0(q9/a) exceptions,

For non—-exceptional moduli (10) and (11l) give

o0 (Qexg(e) T (l-xa(p))7L _
L) = g EEEY G e MY ¢ oexp (et 1))

if od(lnlnx)?.

However
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M (1-xq(P)) T (I-xg(eN™1 _ M (A-xa(p)) (1-xg(eN~1L
piR ) p<ln2®x p p1e P p<1n2ax P
p<lnox
M (I-xa(p))
pie p
p>lnzax

I (I-xa(p)) M (1-xgq(p))
pte P p1e P
p<lnox p>1n20x

- T (Q-xp)) 0 (1-x4(p))
p<1n o P pi¢ P
p>1ln2ox

(13)
So (12) and (13) will complete the proof of the lemma for

non-exceptional moduli if an appropriate estimate of

T (1-x4(p))
PI2 P
p>1n20x

can be found.

But
m (I-xa(p)) _ exp| ) a1 - xg(p)]]
pig P P12 P
p>1ntx p>1n2ax
and
iln xd(p)] xd(p) I 32
PIQ P plﬁ P
p>1n20x p>1nZox
So

Z ln[l ép ] < 2 Z 1 | z K_Ell

pig pig P pg P
p>1n20%x p>1nzax p>ln2&x
<3 Z 1
pie

p>1n23x
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3 w(Q)
< T4
1n20x

where w(2) denotes the number of prime divisors of 2.

Since 2<x¥, w(£)€ln x, and

1n[1 - Xa(P) 1
p?Q n[ P ] < 1n20-1y
p>1n20x

we have

T (1-xq(p)) c _ 1
pie P < exP[IHZQ—lX] 1+ O[1n2a_1x]
p>1n20x

As

p?Q (1*Xgép)) = 1 + (extra terms)
p>ln2ax

it follows that

M (l-xa(p)) _ 1
ptie P L+ O[ana—lx]
p>1n20x

and for non-exceptional characters we have, as required,

nm (1-

L(1,xp) = p<1n20

-1
x”ép)) (1 + 0(exp(—c(lnlnX)$))} . (14)

Turning now to the exceptional moduli, according to (10)

for

T <@<x? there is at most onme exceptional modulus for
X

d, namely 131. This satisfies 1gi>lnlnx. Since [-Di=221dI<x
:
xt .
F(x)i Inflnx
generate a value of -D. Hence there are at most

o[ ]

exceptional moduli for

it follows that only those £ within the range

<0gx3-

x3
F(x)?
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If however @< ~Eé% then, from (12) it follows that for
F(x) « 19/
each value of 0 there are at most 0[[53] ] exceptions,
Varying £ over the range Q<Fz§§§ we deduce that the number of
p 4
additional exceptional moduli is of the order
9 18
x 194 1 o [ % 13(1-18/a)
L [EZ] <xs/a ] 78/ < x%/ [F(x)]
x4 x}
o0 — 0 —
F(x)?} F(x)?}
. x
F(x)i-%/a

So the total number of exceptional moduli is

3 : 3
0[[1n§nx] * F?x)f—g/a] - O[[Tﬁ§5§] ]

which completes the lemma.

Recall our earlier comment that we cannot extend Lemma 5.3
to include Q much larger without having to introduce the
possibility of there being an exceptional modulus. Since the
proof of Lemma 5.2 is dependent upon Lemma 5.3 it follows that
Lemma 5.2 is effectively best possible for this method of

proof.

LEMMA 6
Let f(m) = om? + 28m + vy be a polynomial with integer
coefficients, with o#0, and write
F(y):= Ogﬁéy 1£(m) .
Let M be a constant defined by

M = max( 1o+2B+y1, 1-B2-ayl )

and define
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M, = fZ-aytiailM.

If
1B My o
y >N = 1ol
0 ; M.<0
then
(1 F(y) = 1ay2+2By+yl

Assuming in addition that

5181 3yl
y > max{ CTRTT! }

gives

2
(i1) £ < F(y) < 4ioary?

PROOF

Assume firstly that o>0.

The polynomial |jom2+2fm+y| has a local maximum at m=—6/a,
so over the range O<m<y, it will be greatest at one of the

following three points:

(a) m=y i 1f£(m) 1 = 1ay 2+28y+yi
(b) m=1 i 1E(m) 1 = 1o+2f+y)
() m==B/y 5 1Em)1 = 1-B%/4 + 1

I

Now loy2+28y+yi oy 2+2By+y .
This is easily seen to be the case, as

ay2+28y+y = 0

has roots at

_ =B (B%-ay)?
e

So certainly, as f2-ay < M,, assuming that y»N ensures that

-+ (B2-ay) !
y > ———1—

and that

oy 2+2By+y20.
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For F(y) to equal |oy2+2@y+yl then, it is enough to show both
(1) ay?+2By+y » 1at+2p+y|

and
(2) ay?+2fy+y 2 1-62/y + 71

Now (1) holds whenever

oy 2+2By+y-tat2f+yl » 0.

By the same reasoning as above we see that this occurs whenever

-8 + (B2-a(y-1a+2B+y1))}

o

7 B2—a(y+ia+28+y1) 0

; otherwise

Certainly it occurs if ysN.

Similarly (2) holds whenever

~6+(62wa(z-l—ﬁz/a+71))5 . B2a(y=1-B2/ty1) 3 O

y >

0 ; otherwise

i.e. whenever

~B+(B2-(ay—1-B2+ay1)) }
o

B2~ (cy-1-f2-ayl) » 0
y 2

0

; otherwise

Again, this occurs if yaN.
This concludes the proof of (i) for w>0. The proof for w<0 is
very similar.
For (ii) we have

F(y) = 1ay2+2By+yl

< Holy2+2181y+1yI

and

leiy2+2181y+1y1 € 4jaly?

whenever
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21831 1yi
Siar * Frary Y.

; , 5161
Certainly this is the case if y » max{ T
On the other hand

F(y) = lay2+2B8y+yl > laly?3=2181y-1vl
and
taly2=2181y-1yt > y2/9
whenever
4161 2191
Y ? i1t Ciel-Dy
This holds if
4181 2171
Y? et Tary
511 3iy1

This completes the lemma.
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CHAPTER TWO

AINTRODUCTION
In Chapter Two we prove our first major theorem. Define

the function S(x,y,z) to be

S(x,y,z) = {{(n,m); o<n<a+x, n=L,modk,, O<m<y, m=Q,modk,,

((an2+bn+c)m+(dn2+en+f),pgzp)=1)

where the product I is over all primes up to z.

In Theorem One we give an asymptotic formula for S(x,y,z)
when an?+bnt+c and dn?+en+f have no common factors either
constant, linear or quadratic. We assume that a and d are not
both zero. The proof hinges on the observation, first
exploited by Nair and Perelli [1] when estimating the simpler

function
] . 2 =
5(x,y,2) ]{(n,m). o<k, my, (n¥m, [Lp)=1)
that S(x,y,z) may be written as two different sums. Namely
Z {m: O<m<y, m=¢ ,modk,, ((an2+bn+c)m+(dn2+en+f),pgzp)=l}

a<ngo+x
nEQ,modk1

= §(x,y,z) =

z l{n: a<nfat+x, n=@ modk,, ((an?+bn+c)m+(dn?+en+f), gzp)=1}
O<m<y P
m=L ,modk,

Since, whenever z<Y/k2, the function within the first sum
(m: O<m<y, m=¢,modk,, ((an2+bn+c)m+(dn2+en+f),pgzp)=l}

is relatively easy to estimate this gives us a starting point
from which to estimate the second sum whenever ¥/k,<z<¥/k,.
The proof draws on various areas of, what is now considered

to be, classical Number Theory, such as Sieve Theory, Dirichlet
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L-functions and Ideal Theory, as well as on more recent work.
One of the most recent papers to be referred to in the proof of
Theorem One is that by Gross and Zagier [11l] in which it is
proved that, for any §>0, there is an effectively computable
constant ¢,.>0 such that for any imaginary quadratic field F,
hF>c6(1n|dF|)l"5, where hp and dy are the class-number and
discriminant of F respectively.

As noted in the proof, were this paper not available we
would be forced to make use of Siegal's Theorem. Although in
this circumstance the error terms in the estimate of S(x,y,z)
would be sharper it would unfortunately mean that the
associated O-constants were, with current knowledge,
non—computable,

It will be noted that, although in S(x,y,z) we have taken
n to lie in the range a<nka+x for any o, we have not taken m
to lie in an arbitrary range of length y. Furthermore the
estimate of S(x,y,z) for */k >Y/k, in Theorem One is
independent of w. The reasoning behind this will be explained
at the end of the proof of Theorem One.

Before we state Theorem One we give some definitions.

Firstly we define a function H, as

H, = L Ty

w
w=1l or y(w)>z

where y(w) denotes the smallest prime factor of w, and where

Fy(w) is defined to be

I, (w) = z nm a+ e )
: agmodFk, P* PO

aj=@ mod(k,,Fk,)

The notation of I',(w) is as follows:

(i) F = (cd-£fa)?2-(bd-ea)(ce—fb)
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(ii) Oy yeee Oy denote the integers, n, in the interval
1<n<Fk, for which both
(an2+bntc,dn?2+en+f) = w

and

([anz‘-:bn+c]92+[dn2+$n+f]’ fflﬁzp y=1

hold.
(iii) the unique solution, mod[k,Fk,], of the two
congruences n=¢ ,modk, and n=x; modFk, is denoted, if it exists,

by Bij=6i(2,,xi). Letting h=(a,b,c); a=a,h, b=b h, c=c /h, then

{(tmodp; a,([k,,Fk,}t+p;)2+b, ([k,,Fk,]t+B;)+c,=0Omodp)

e(p) = { ; ptk,h

P ; Plk,h

If D denotes the discriminant of the polynomial an?+bn+c then

define G(x,wa) as

2 .
oaarx 20 thymie, | » D#0
G(x,a) =
agg a+x|a1n2+b]n+c1|% ; D=0
and A by
2
( [lﬁig;g-l +1]in2 ; Dx0
In 2
In » =
0 ; D=0
Define A := max(lnlnG(x,a)ln*G(x,a), ln2z).

Finally define {=b2-4ac, n=be-2cd-2fa, and #=e2-4fd.

With these definitions we have:

THEOREM ONE
Let an?+bntc and dn2+ent+f be polynomials with integer
coefficients and with a and d not both zero. Assume that these

polynomials have no common factors. Let x,yeZ and £,,2,,k,,k,
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eN with
exp((1nY/k,)%) > max(1a1,1bi,1ci,idi,te1,1£1,k, k,).

If z satisfies 2<z<max{¥*/k,,Y/k,), then if ¥/k,>¥/k,,

Xy m (1-1) )
S(.Y.2) = FETR) pez 5 M2 {1+ o(exp(-(1n¥/k 1))
+ O(exp(—u(lnu-1nln3u-2))) + o[illklészlfé]

1n1nc(x,a)1n>~c(x,oz)] }
G(x,n)

+ 0[a, [k,Fk,]2
and if ¥/k,3Y/k,, for any >0,

- Xy n (1-1) _
SC0Y.D < ) per | Me (1 O C N/

+ 0(exp(=v(lnv-1nln3v-1n2-2)))

72-807 k,k, [k, ,Fk,] IlnlnZy
+ Oe[lfif.lplnzxari.r[ 7 ]. 1 Zw(ﬂ1)22 " ey e ] }

InY/k, _ _1n¥*/k,

where u =
Inz °’ inz °’

and where 1(n) denotes the
number of divisors of n. The 0-constants are absolute,
effectively computable, and independent of a,b,c,d,e,f,2.,2,,

k, and k,. In the case of */k,»Y/k, the O-constants may

however depend on ¢.

PROOF OF THEOREM ONE

Owing to the length of the proof of Theorem One we split

it into thirteen steps.

STEP ONE An asymptotic formula for

S(x,y,z) = Z I{ m: O<m<y, m=R, mod k, ,
o<ngot+x
n=¢ mod k, ((an2+bn+c)m+(dn2+en+f),pgzp =1

whenever z < Y/k,.




75

Define M(y,z,n) as

M(y,z,n)= |[{m : O<m<y, m=Q, mod k,,

((an2+bn+c)m+(dn2+en+f),pgzp =1

so that
S(x,y,z) = z M(y,z,n) n
a<ngo+x
n=2 mod k,

Define rj to be the highest common factor of the two
polynomials an?+bntc and dn?+en+f. It is apparent that if

(rn, O,p) > 1

then M(y,z,n) = 0.

Assuming, however, that (rn,pgzp)ml we have

M(y,z,n)= |{m : O<m<y, m=0, mod k,,

((an?+bn+c)m+(dn?+ent+f) , QZP )=1)
Tn rn P

which, on applying Lemma 1.1, gives

M(y,z,n)
[y ¢ 1-p(p) ){ 1+0(exp(~u(ln u-lnln 3u-2))
k, p<z p )
ptk, +0(exp(~(1n Y/k,)* )}
B . an?+bntc dn2+en+f I p._
» [ rn ]Qz+[ rn ]’ BfﬁZ )=1
| 0 ; otherwise
where
- _1nY/k,
In =z
and
24+bn+tc dn?+en+f
= {{ m mod p: anonTClm + (28R} = 0 mod }
p(®) i (B (B P

provided, of course, that

p(p)<p for all primes, p.
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But in fact

1 :pa [an2+bn+c]
! r
p(p) = , :
[an + I‘H‘C]

Tn

We note that, under the condition (rn,pgzp)ul, whenever p<z
1 , p 4 an?+bntc
p(p) = [

0 ; p | anZ+bntc .

Summing M(y,z,n) over n gives

m(1- l
S(y,2)=L L RACE RN R
2
§;E<$:§k p{(an2+bn+c)k
(rn’pgzp) =1
anZ+bn+tc dn2+en+f P\
([ Iy ]Qz+[ P ] ! B?ﬁz )=1

+ 0(exp(—u(ln uv-1n 1n 3u-2)))

+ 0(exp(~(1n ¥/k)? ) | (2)

Taking the product I (1-1 ) out to the front of the sum gives

P<z P
_y m(1-1) m (1- 1 )~1
8(x,y,2) k, p<z p Z p<z [ L+
a<n<atx p|(an2+bn+c)k
n=¢  modk,
(tn1,)=1
an?+bn+c dn2+ent+f 0 p_
([ Tp ]Qz+[ Tn ] ’ Bfﬁz )=1
+ O(exp(—u(ln u-1n 1n 3u-2)))
+ 0Cexp(~(In ¥/k;)? )) ] (3)
Now the sum
Y m(1-1 )71
p<z P
a<ngotx
nEQ1modk1 pl(an2+bn+c)k2

(tn, 11, P)=1
([an2+bn+c]gz+[dn2+en+f] , I p )

Bit,

Tn Tn
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- ) ML)l
p<z P

a<ngo+x 2

n=£ modk, Pl(an+bnie)k,

(an?+bn+c, dn?+en+f)=w

([anZ;bn+c]Qz+[dn2;en+f] ’ B%ﬁz y=1

w=1 or
y(w)>z

where y(w) denotes the smallest prime factor of w.

By Lemma 2.9 this sum is equal to

g b

w=1l or y(w)>z

a,[k,,Fk,}? In In G(x,a) 1nMG(x,a)
+O[ = 2 G(x,a) ]

sof alkF)? 8 71 (4)

(ii) Z

a; modFk,
ai=0, mod(k,,Fk,)

where Qpyeensty denote the integers,n, in the interval 1<n<Fk,

for which both

(an2+bnt+ec, dn?+ent+f)=w

and { [an2+bn+C}Qz+[dn?;en+f], Bgﬁi }=1

w

hold.

(iii) the unique solution, mod[k,,Fk,], of the congruences
n=L ,modk, and n=¢j modFk,

is denoted, if it exists, by #;=6;(2,,ai). Letting

h=(a, b, ¢); a=a,h, b=b,h, c=c,h,

then,

{ tmod p; a,([k,,Fk,]t+p{)2+b, ([k,,Fk,]t+B4)

+c, = 0 mod p)

1
; ptk,h

; p|k2h’
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If D denotes the discriminant of the polynomial an?+bnt+c then

(iv) g x+ia‘n2+b1n+c‘| ; Dz0
Slx,= 4 O 4 nteb ¥ ;D=0
o<l §+ialn +b ntc, | ; D=
(v) In 2D2 .
In A = { [ [ In 2 ]+l]ln 2 ; D=0
0 i D=0.

and finally
(vi) A = max(1nlnG(x,a)IlnMG(x,a), 1n2z).
Let

H, = Z I, (w)
w
w=1l or y(w)>z

By Lemma 2.1 we have that, if (an?+bntc,dn?+entf)=w for some
integer n, then F=0 mod w. So the number of possible w is at
most 7(F) where 7(F) denotes the number of divisors of F. We
may however ascertain exactly the number of possible w, for
(an?+bn+c,dn?+en+f)=w if and only if
(a(n+F) 24b(n+F) +¢,d(n+F) 2+e (n+F)+f)=w, and consequently, the
smallest integer n, if it exists, for which
(anZ+bn+c,dn?+en+f)=w will be less than or equal to F.

let these possible w be denoted 1,w,,w,,...,wy. Then

Hy = [y ()05 (w, )+, .+ (wy) .
We note here that if z>F then H,=T';(1).
Substituting (4) into (3) gives

_ Xy ma-1)
S(x,y,2) ﬁ;TETTFE;] p<z E H, { 1+

a,[k,,Fk_ ]2 InlnG(x,a) 1nMG(x,w) a,[k,,Fk,]3 A
0[ o ] * O[ e }

+ 0(exp(-u(lnu-Inln3u-2))) + O(exp(-(In Y/k ) ) } (9

Equation (5) completes the theorem for the case Y/k,>¥/k,,

so we may assume henceforth that
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X/k, =max(*/k,,Y/k,).

STEP TWO

An asymptotic formula for

S(X3Y9z) = X |{ n: a<ngo+x, 'ﬂEQ1m0dk1
0<my
m=0 ,modk, (n?(am+d)+n(bmt+e)+{cm+f) , pr<IZp)=1 )

whenever z<X/k, .

Define N(x,z,m) as

N(x,z,m) = |{ n: a<natx, n=L modk,,

(nz(am+d)+n(bm+e)+(cm+f),pgzp y=1}

so that

S(x,y,z) = z N(x,z,m)

O<mgy
m=L jmodk,

(6)

To find an asymptotic formula for N(x,z,m) we follow the
argument of Step One, and firstly remove from (6) any N(x,y,m)
cbviously zero.

Define s to be the highest common factor of (am+d),
(bm+e), and (cm+f). Then if

(sm,szp )>1
it follows that N(x,z,m)=0.
Further if
(am+d+bmte,cm+f) = 0 mod 2
then
n?{am+d)+n(bm+e)+(cm+f) = 0 mod 2

giving, again, N(x,z,m)=0,

Assuming, then, that
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(sm» 11, p)=1 (N
and

(am+d+bmte,cm+f) = 1 mod 2 (8)
Lemma 1.1 gives

N(x,z,m} =
| { n: a<nfat+x, n=0,( mod k,),

(5] BT - (5] et

[ X ¢ 1-pg(p) ){ 1+0(exp(-v(ln v-lnln 3v-1n 2-2))
k, p<z P 3
ptk, +0(exp(~(1n */k,)* ))}
. , fam+d bmt+ey (em+f) T _
! (Q‘[ Sm ]+Q‘[ Sm ]+[ Sp ]’BTE1) !
0 ; otherwise
) (9)
where
v = 1n %/k,
In =z
and
or(p) = I{n mod p: n2[am+d]+n[bm+e]+[°m+f] = 0 mod p}l
m ) Sm Sm Sm
provided that
pm(p) < p for all primes p. (10)

To verify (10), as it is certainly the case that py(p)<p we

have only to show that py(p)#p, for any prime p. If p>2,

am+d bmte cm+f | .
Pm(p)=p if and only if el ' y=0 mod p which,

Sm Sm
by the definition of sp, cannot occur.
If p=2 then py(2)=2 if and only if ci;f =2 0 mod 2 and
fﬂigihﬂfﬁ = 0 mod 2. But this would imply cm+f=0 mod 2 and

am+d+bm+e=0 mod 2 contradicting (8).
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Hence (1l0) is satisfied, as required.

Summing (9) over m gives

_X o (1= pp(e))
S(x,y,z) §1 0<§<y p<z —ms— { 1+
m=Q ;modk, prk,
(Sm ’ pgzp)':l

(am+d+bm+e , cm+f)=1mod?2

cof (5, () (5] e, " 0

+ 0(exp(~v{lnv-1lnln3v-1n2-2}))

+ O(exp(—(lnx/kT)% ))}

(11)

for z < X/k,.

To simplify the expression under the summation sign we write

"(m,z) appropriate" or "(m,z) app" for those m satisfying the

conditions
(1) (s, 0,p)-1

(ii) (am+d+bmte,cmt+f)=1 mod 2

tt) o, L) g7

Any m satisfying conditions (i), (ii), and (iii) will be
sald to be "z appropriate".

(11) becomes

sry,2) =5 L e (TR {1y
k p<z P
1 O<my
= p'fk‘l
m=¢ ,modk,
(m,z) app

+ 0(exp(-v(1lnv-1nln3v-1n2-2}))
+ Oexp(~(In¥/k ) )}

(12)

Recalling from (5), that for z < Y/k,,
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and with A=max(1nlnG(x,a)ln?G(x,e), ln?z)

Xy n (1—1 )

S(x,y,z)= E;TETTFE;] p<z P H, { 1+

a,[k,,Fk,]? 1nIlnG(x,x) InMG(x,a) a,[k,,Fk,]3 A
0[ : : G(x,o) } * 0[ et X ]

+ 0(exp(—u(lnu~1nln3u-2))) + O(exp(m(lnY/kz)% )) } (5)

If we further restrain z to z exp(27(1nY/k2)5 ) the error
term O(exp(-u(lnu-lnln3u-2))) is absorbed into the final error

term to give,

Xy It (1~l )

S(x,y,z)= E;TETTFE:] p<z P H, { 1 +

~fa,[k,,Fk,]2 InlnG(x,a) 1lorG(x,a) a, [k,,Fk,]3 A
O[ —— : G(x,n) ] N O[ X ]

+ 0(exp(—(1nY/k,)? )) }. (13)

A comparison of (12) and (13) for z < exp(27(1nY/k2)f ) taking

A=1n?z, gives (by Lemma 3),

) M 1- pp(p)) _ K,y ma-1) oy {1+
0<n<y p<z P k,[k,,Fk,] p<z p
m=0 ,modk, P¥¥s
(m,z) app

a, [k,,Fk,]21nlnG(x,a) InMG(x,a)
o[t ]

+ 0[31[k1fik2]alnzz

] + 0(exp(~(1nY/k,) % )))

<+

0(exp(~v(lnv-1nln3v-1n2-2)))

-+

0(exp(-(In¥/k,)2 ) } (14)

As the left hand side of (l4) is independent of x, we may let
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x-®, thus ensuring that ¥/k,> z is satisfied and that v,

Hence
M 1- pp(p)) _ K,y m(1-1)
0<§1<y p=z P K[k, FK;) p<z B 2 o
m=Q modk, Pk,
(m,z) app + O(EXP(—-(].HY/RZ)% )) }
(15)

for

2 < z < exp(27(1n¥/k,) %)) . (16)

To complete the theorem we need to find a result similar to

(15) for z>exp(27(1lnY/k,)?%)).

STEP THREE Determination of pp(p) in terms of the Legendre

symbol.

It is clear that py(p) is closely related to the Kronecker
symbol, x(p), and that the product pgz(l— pm(p)) is related

P
to the product N (1-x(p)). The translation into this latter

p<z p
product will in later steps enable us to make use of results
on Dirichlet's L-function,

However, to begin with, we relate pp(p) to the less

general Legendre symbol.

Recall that

pm(pP) = [{n mod p: n2[aS;d]+n[b‘;‘;e]+[°’;‘;f]so mod p }]

For p<z, and assuming (sm,pgzp)=1,

em(P) = |(n mod p: n?(amsb)+n(bmre)+(cm+)=0 mod P }l
If p+2(am+d) then

n?(am+d)+n(bmte)+(cm+£)=0 mod p

if and only if
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4n?(am+d) 2+4n(bmte) (am+d)+4 (cm+f) (am+d)=0 mod p

i.e. if and omly if
(2n(am+d)+(bm+e)) 2~ (bm+e) 2+4 (cm+f) (am+d)=0 mod p.

But the integers
{ 2n(am+d)+({bmte); 1<n<p )

form an incongruent set of residues (mod p) and it follows

that

pp(P) = l{s mod p: s2=(bmte)2-4 (cm+f) (amt+d) mod p )

= |{s mod p: s?=(b2-4ac)m2+2(be-2cd-2fa)m+(e2-4fd) mod p )
(175

If however pi{am+d), p<z and assuming that m is "z appropriate"

we have
1 ; pt(bmte)
Pm(p) = (18)
0 ; pi{bmt+e)
and if p=2,
1 ; 2+(am+d+bmte)
pm(P) = (19)
0 ; 2)|(amtd+bm+e)

Defining gy as
gm = (b2-4ac)m?2+2(be-2cd-2fa)m+(e?-4£fd),
(17), (18), and (19) give for m "z appropriate", and p<z,
(gm/P) + 1 ; pt2(amt+d)
pu(p) =1 1 : pi2(amt+d) & p+(amt+d+bmie) (20)

0 ; pl2(am+d) & pi(am+d+bmte)

where (-/p) denotes the Legendre symbol.

Elaborating on the comments at the start of Step Three,
and writing g, = r?s, where s is square-free and s#l, the

Legendre symbol, (gm/p), may be reduced to the Kronecker symbol
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-(S/p) or (AS/p), and consequently the product g (1- pp(p)) may

'r 1 p
be related to the Dirichlet L-function, L(1,x), as will be

demonstrated in Steps Five onwards,
However, we firstly deal with the case of g a square. ie

where s=1.

STEP FOUR g a square.

We firstly show that g cannot be a complete square given
our assumption that an?+bn+c and dn2+en+f have no common linear
factor with integer coefficients.

If it were the case then, as

gm = (b?-4ac)m2+2(be-2cd-2fa)mt(e?-4£d)
it would follow that both b2-4ac and e2-4fd were squares and
that

(be~-2cd-2fa)? = (b2-4ac)(e2-4fd). (21)
Now, for b?-4ac a square, an?+bntc may be written as the
product of two linear polynomials with integer coefficients

an?+bn+c = (An+B) (Cn+D) (22)
say.
[ It is not immediately apparent that A,B,C,D are all integers
but it is clear that if an?+bnte=h(a,n?+b,n+c,) with
(a,,b,,c;)=1, and a,n?+b ,ntc, the product of two linear

polynomials, then we may write

]

say, with o,8,v,.,v,,8,,8, integers, (a,B)=1, (vy,,y,)=1 and

a,n2+b ntc, = (an+6)f1‘n +
Y2

| O

1
2

(6,,6,)=1. Assuming that 7y, and §, are not both 1, we have

a1.—_a;y,__|_,b1=a.‘s_l+ﬁ‘)_/1.’ c=ﬁ§_1.
2

and certainly y,tx and §,18.

For b, an integer either §,ia and y,I18 or (y,,8,)>1. However




86

if 5,12 and v,18 then (a,B)#]l contradicting our assumption

above. This leaves the possibility that (y,,§,)>1, for which we

have the same objection.

So 4, and &, are both 1 as required. ]

For e2-4fd a square, dn?+en+f may also be written as the

product of two linear factors with integer coefficients,

dn?+en+f = (En+F) (Gn+H)

say.

(22) and (23) substituted into (21) give

(AD+BC) (EH+FG)—2 (BDEG+FHAC) = (AD-BC) (EH-FG)

i.e. AF(DG-HC) = BE(DG-HC).

(23)

For this to occur, either we must have DG=HC implying D/H = C/G

or AF=BE implying A/E = B/F.

Either case would contradict our

assumption that an?+bn+c and dn?+en+f have no common linear

factor with integer coefficients.

For g, a square, from (20),

Pm(p) =

and

I (1- pplp))

p<z P
ptk,

7 pt2(am+d) gy

;  otherwise
on (1- 2)
p<z P
pk,

pt2(am+d) gy
nm (l—i)
p<z P
ptk,

pt(amt+d) gy

pi2(am+d) & plgy or
pi12(am+d) & p+(am+d+bmte)

n (-1
p<z P
ptk,
p+2(am+d)
Pl18n

m (1-1)
p<z P
ptk,
pt{am+d)
Pl&n

(24)

n (-1
p<z P
ptk,
pt2(am+d)
pt(am+d+bm+e)

n (1-1)

p<z P
ptk,

Pl (am+d)
pt(am+d+bm+e)
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n (-1 o 1-1)-1
p<z P p<z P
ptk, ptk,

pi(am+d)
p! (bm+e)

mo(1-1) m (1-1)-1

< P(Z p p<Z p
ptk, pl(an+d)
It follows that
z I (1—pm(p)) ¢ I (1—3) z In 1In (tam+d}).

O<m<y P<i 4 p<£ P O<mgy
m={ ,modk, PX, P¥, m={ ,modk,
(m,z) app (m,z) app
gm a square gn & square

Now Ogﬁéy|am+d| < lajy+1di and jajy+idl € 2jaiy if
141/ 10y <.

So assuming 14i/ ., <y, we have

z T (Ipn(p)) 4 U P T (tary) Z
0<m<y p<§ p p<i P O<m<y
m={ ,modk, PT¥, P, m=Q ,modk,
(m,z) app (m,z) app
gn @ square gn & square

(The assumption |d|/|a|<y will be clarified in Step 13 as will
any subsequent assumption on the size of y.)

From Lemma 4 we have

1 2-{¢
Dol e )
O<mgy

En @ square
where {=b2-4ac, n=be-2cd-2fa, and f=e?-4fd, assuming that
y»i81.

(It is clear that 52-{9=0 mod 4 as is required for the

application of the lemma.)

So
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o Q-pp(p)) m (1-1) _[p*-%e y
O<§<y pez | BT TS [ 1nln(|a|y)ln[T?T]
m=Q ,modk, Pk, ptk,
(m,z) app
gn @ square (25)

Note that we have nowhere made any assumption about the size of
7z, so (25) holds for all z.

Substitution of (25) into (15) gives

o (-ppp)) _ k,y n (1-1)
0<§<y p<z P KK, FK;] p<z p Dz {1
m=Q ,modk, Pk,
(m,z) app

gp not a square

+ 0(exp(—(ln Y/k,)% ))

. 0[ T[nzzfel kz[izéf§2] lnln(la]y; ln(Y/l;[)] }

(26)
for 2 < z < exp(27(1n¥/k,)?% )

This completes Step Four.

STEP FIVE Reduction of Bgﬁ (1- pmép))
1

Let (-/p) denote the Legendre symbol. Recalling (20), we

have for m "z appropriate",

(gm/p) + 1 ; p+2(amt+d)

fPnp) = 1 7 pl2(amtd) & pt(amtdtbmte)
0 ; pl2(am+d) & p|(am+d+bm+e)
giving
T (1= pp(p)) _ M (1- (Bm/p)+l ) T (1-1) (27)
p<z P p<z P p<z P
ptk, pr2(amt+d)k, ptk,
P12 (am+d)
p+(amt+d+bmte)

The aim of this step is to rewrite this product to involve the
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products g (1~ l) and pI<Tz(l— x(p)) where yx(p) denotes the
TR, P P
Kronecker symbol as described below.

Firstly we note that

M (1= (Bu/p)+1 )
p<z P
p+2 (am+d)k,

_ T (p1l) m (p=(ém/p) ) W [ p2-((8m/5)+1)p) ]

p<z P p<z P p<zl p2=((Bm/p)+1)p+(Em/p)
p+2(am+d)k, pt2(amt+d)k, pt2(am+d)k,
@=L om =L om Q- Gng) )
p<z P Pp<z P p<z P
ptk, ptk, p12(amtd)k,
p12(am+d) :
n [ p2-((Bm/;)+1)p )
p<z p2-((Bm/p)+1)p+(Em/p)
pr2(amt+d)k,

(28)

Let x(n) = xp(n) denote the Kronecker symbol (D/n), where if
gm = r?s, for s square-free and not equal to 1, D=4s or s as

s#l mod 4 and s=1 mod 4 respectively.

For g, = r2s the Legendre symbol (Em/p)=(s/p)if ptr. If in
addition p+42s then the Legendre symbol (S/p) is the Kronecker
symbol (S/p) and further (S/p)=(43/p).

So for p42gy
'the Legendre symbol (gm/p)=(D/p) the Kronecker symbol'.

Applying this to (28) gives

M (-(m/p+l) _ 0 (1-1) 0 (I- 7L 0 Q- x(p) )
p<z P p<z P p<z P p<z P
pt2(am+d)k, ptk, ptk, pt2(am+d) gpk,

p12(am+d)
n [1_ x(p) ]
p<z pZ-(x(P)+L)p+x(p)

pt2(amt+d) gk,
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m (-1 0ma-xeE)» 0 a-L1 0 Q- x@ 1L
p<z P p<z P p<2 P p<z P
ptk, ptk, p12(am+d) gpk,
P12 (am+d)
n x(p)
x p<z [ 1 p2-(x(p)+1)p+x(p) ]
pr2(amtd) gpk,

This on substitution into (27) gives

T(-pp®) o 0 (- 1 Ax®) )
p<z P p<z P p<z P
ptk, ptk,
where
. n (-1 m -1l 1 xe»H?!
c(gm:2) = __ — = =
p<z P p<z P p<z P
prk, Pk, pi2(am+d) gk,
P12 (am+d) pl12(am+d)
p+(am+d+bm+e)

n [1_ x(p) ]
p<z p2-(x(p)+1)p+x(p)
p+2(am+d) gk,

So
Z‘ n (1- pp(p)) _ T (1-1)
p<z P p<z p
O<mgy
m={ ,modk, ptk, ptk,
(m,z) app
gm Not a square
) Ez(l‘zég)) c (g 2)
O<m<y P .
mEszodk2
(m,z) app

Bp Dot a square

(29)

Equation (26) together with (29) gives
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o (1-1) m (1- x(p)) - k,y n (-1
p<z P 0<§<y p<z p B T eI pez D
P{k‘ mEszodk2

(m,z) app

gp not a square

x H, {1 + 0(exp(-1nY/k,) % )

+ O[T[nZ—KO] k,[k,,Fk,] Inln(ialy) ln(Y/,;L)] }

4 o(k,) y
for z < exp(27(1nY/k,)% )
oY
nm (- xe) ___kiy m (1-1)
z p<z ~5« c(gm.2z) = kz[kl’Fk2] p<z P
O<m<y 1k
m=¢ ,modk, P1%
(m,z) app

gm nNot a square

x Hy {1 + 0(exp(-1nY/k,)% ) +

N O[T[nzzre] k’[ziif§2] 1n1n(xa|§) 1n(Y/l;l)] }

(30)
for z < exp(27(1nY/k,)% )

In particular, writing z, = exp(27(1nY/k2)f ), we have

nm - x{) _ k.y m (1-1)
0<§< P<Z, P olem.2o) = ky[k,,Fk,] p<zy, P
¥y ik
m={  modk, PI%
(m,zy) app

gm not a square

x Bz {1+ O(exp(-1n¥/k,) % ) +

. O[T[nzzte] kz[gzﬁf§2] 1n1n(|al§) 1n(Y/|§L)] }.

(3L)

To obtain an asymptotic formula for
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Z m (1~ pp(e)) .
p<z P
O<mgy
mEszodkzp*k‘
(m,z) app

gy not a square

for all z, it is clearly sufficient for us to show that,

whenever z3z ,

Yoom - xe)
O<m<y p<z P
m=¢ ,modk ,

(m,z) app

gy not a square

) O<§<y Pzzo(l— X%B)) e(emrzo) { 1+ O[TT%7] }

m=2 ,modk,

(m,z,) app
Zm not a square

C(gm,Z)

(32)
for some function T(y)>1l.
Our first step in this direction is to remove the
dependence on z of the conditions under the summation sign of
(31). We recall that the condition, (m,z) app, applies to

those m for which

(1) (s, T,p)=1

(ii) (amtd+bmte,cm+f)=1l mod 2

i1ty o[RS, (o) femet), o

where s = (amtd,bmte,cm+f).

For z>exp(27(lnY/k2)% ), we may assume that y is large
enough to ensure z>k,.(See Step 13.) So condition (iii) is

satisfied if and only if

C ot [Em e, oo emt] 5

For condition (i) to be satisfied either s; must be 1 or s
must have smallest prime factor greater than or equal to z.

If we assume that y is large, with z consequently large, and
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satisfying

z > max{ idi1,1e1,1f1, 1bd-eat, tdc-fal,1ec—fb| )}
then it is a simple matter to show that the latter case cannot
arise.

For if either a, b or ¢ equal zero then sp must divide
either 1di, tel, or tf| respectively. If neither a, b, or c
equal zero then

(am+d)b-(bm+e)a=0 mod s,

i.e. db—ea=0 mod sy .
If db-ea=0 we have instead

(amt+d)c-(cm+f)a=0 mod sy
i.e. de-fa=0 mod sy,
and if both db-ea and dc-fa are equal to zero then we have

(bmte)c—(cm+£)b=0 mod s,

i.e. ec—-fb=0 mod sy .

The situation db-ea = de-fa = ec—fb = 0 cannot arise for
otherwise 3/, = d/,, 3/ = d/f and ¢/ = f/e a situation
implying that am+d, bm+e, and cm+f are constant multiples of
each other, a position contradictory to our assumptions about
S(x,y.,z).

Hence assuming that

z > max{ 1di,1e},i1f), 1bd~eaj, {dc-fai, jec—£fby }
ensures that condition (i) is satisfied whenever
(am+d,bmte,cm+f)=1, and that the only possible sy is s =1.

Consistent with our previous notation we term the integers
m satisfying the conditions

(i) (am+d,bm+e,cm+f)=1

(ii) (am+d+bm+e,cm+f)=1 mod 2

(ii1) (23(am+d)+L, (bm+e)+(em+f), k,)=1

as "m appropriate".

We may now write
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Do Ou®) gy I TG
n=¢ ,modk , m=Q ;modk ,
(m,z) app m app
gn Not a square gm nNot a square
(33)
for
z » exp(27(1nY/k,)¥ ) . (34)

Having dealt with m "z appropriate" we now turn to the
product c(gp,z).

Define c(gy) as

m (1-1) mo@a-1!  ; (1- x(epNn~1
c(en) = = X

ptk, P ptk, P p12(am+d) gk P
pl2(am+d) P12 (am+d)
p4(amtd+bmte)

I x(p)

x [ p2—<x<p>+1>p+x<p>]
p+2(amt+d) gk, )

Then, for z)exp(Z?(lnY/kz)% ), we have
c(gm,z) = clgp)t 1 + O(exp(~(InY/k,)3 )) 1} . (35)

Owing to the length of the proof of (35), we write it as a

seperate step.

STEP SIX Proof of statement (35).

Clearly, for z>k,,

clggz)_ M (1-1)1 m (a-1) 10 (1-x)

c(gp) PPz P prz P P>z P
pi(amt+d) pt{am+d) pl (amtd) g
p4(bmte)

- x(p) ]“1
P>z P2 (x(p)+L)p+x(p)

pt (am+d) gy,
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n (1-1) m (1-x(p)) I [1“ x(p) ]‘1
prz P P>z P p>z p2-(x(P)+L)p+x(p)
pi(am+d) pl(am+d) gy pl(am+d) gy
pi{bmte)

= T,T,T, say.
We deal with each product Ty (i=1,2,3) in turn and show in each
case that
Ty = 1 + OCexp(-(1n¥/k,)? )) (36)

whenever z » exp(27(ln¥/k2)5 ), and y is large.

(1) m (1-1)
Tv=pz 3

pI (am+d)
p I (bm+e)
If either a or b are zero then it is apparent that T,=1, for
z > max{ tdi,1el1,1f1, 1bd-eal, 1dc-fal, 1ec—-fb| )}, a condition
stipulated in Step Five.
If.neither a or b are zero then (am+d)=0 mod p and
(bm+e)=0 mod p together imply
(am+d)b-(bm+e)a=0 mod p
i.e. db-ea=0 mod p.
If db-ea#0 it again follows that T,=1.

This leaves only the possibility that db-ea=0. If, however,

db=ea then b/a = €/q = v say and T, becomes

o oo I (1-1) _ o (1-D
1 prz P prz P
pl(am+d,y(am+d)) pl(amt+d)

Taking logarithms of both sides we have

ot - @D

PAZ P
PI(am+d)

and consequently
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) L < InT, < - Yot

ppz P ppz P
pI (am+d) pl (am+d)
giving
- w(am+d) <InT, <0

z—

where w(A) denotes the number of prime divisors of A,

Now, for any integer A, w(A)<2In|A|. So

2lnjam+dj
T <1nT1<0
and
exp {— ZlEég?iEl } T, <1.
But

ex { 21njam+di } < ex { 21njam+d)
Pl =1 P sp @7 (I /K,y T y-1

1
< exp { exp ((IV/K,) 3 ) }

whenever In jamtd} < exp (26(1nY/k2)5 ), which we take to be
the case.

As

1
exp { exp((lny/kz)f 3 } =1+0 (exp(—lnY/k2)§ )

we have
T, = 1 + O(exp(-1nY/k,)? ) (37)

as required.

(1I1) - (Q-x()»
T2 p>z P
pl(amtd) gy

Clearly




o (1-1)
PRz P < T, <
pl(amt+d) gy
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m(1+1)
prz %
pl(am+d) gy

Following the argument for T, we have

1
- E =T <InT, <
P>z P
pi(am+d) gy

Yool
PPz P
Pl(am+d)gm

Again, assuming that y is large enough for
In ( ram+diigyl ) < exp(26(1lnY/k,)? )

to hold, gives

T, = 1 + O(exp(-(1n¥/k,)% )). (38)
(Iiny o, _ m [1- x(p) ]-1
3 p>z p2-(x(P)+1)p+x(p)
pi(am+d) gy

It is a simple matter to show that

n @a-1) n a+ 1 )
PPz p2 <Te < p»z p(p-2)
pt(amtd) gy pl(am+d) gy
or
m (1-1) n (1+ 1 )
p>z pz S Ta < 55 p(p-2)

Following the argument for T, again we get

- Z pzi

PRz

T <In T, <

Z 1

P>z p(p-2)
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we have
Ty = 1+ 0(1/,)
= 1 + O(exp(~27(ln Y/k,)% )

=1+ 0Cexp(~(ln Y/k,)% ) (39)

A combination of (37), (38) and (39) give, as required,
c(gp z) = c(gp)( 1 + 0Cexp(-(1ln Y/k,)? )) )
whenever
z » exp(27(1n Y/k,)$ )

for y large.

In passing we note that, as

n [ 1 - x(p) ]
pt2(amtd) gk, P*-(x(p)+L)ptx(p)

is absolutely convergent, there exist constants c, and ¢, such

that
m (1-1)1 m (1-x(p )1
1 ptk, P pi12(am+d) gpk, ) < clegm) <

p12(am+d)

pi(am+d+bm+e)

. M o(1-1)1 m (1-x( )1
? prk, P P12 (amtd) gk, P
pi12(am+d)

pi(amtd+bm+e)
(40)

This completes Step Six.

STEP SEVEN Continuation of Step Five.

Recalling (33) and having now proved (35), we have
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¥ m (1-x()
O<m<y p=z P
m=0 ,modk ,

(m,z) app

gn not a square

c(gm,2)

- LM O (g foerp(-n Ykt 1)

O<u<y p=z
m=¢ ,modk,
m app

gm not a square
(41)

for z > exp(27(1nY/k,)% ).

We have now reduced the problem such that to complete the

theorem, we have only to derive an asymptotic equation of the

form
nm (1-
L
O<m<y P P
m=¢ ;modk ,
m app
gm not a square
y T (1-x(p)) 1
= 227" c(gply 1+ 0
0<m<y P<z, P { [T(y)] }
m= ;modk ,
m app
gm MOt a square (42)

for z>z,, and for some function T(y)>1.

Now Lemma 5.1 allows us to write N (1-x(p)) in terms of

p<z P
I (1-x(p)) for at least some of the primitive characters if

<
?ngged oEr x(p) are primitive characters. Recall from Step
Five that x(p) denotes the Kronecker symbol (D/n), where if
Em=r2s, D=k4s or s as s¥lmod4 and s=lmod4 respectively. It is
well known (see for example Davenport [9]) that the quadratic
field Q(v/(gy)) has discriminant D and that x(n) is a primitive
character mod{D]| .

In line with the results of Lemma 5.1 we split the

discriminants, D, into two groups; those that are exceptions in
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the sense of Lemma 5.1 we denote "bad" D, the rest "good" D,
Further, an integer g; will be called "bad" if it gives rise to
a "bad" D as explained above. Otherwise gp will be called
"good",

Clearly IDI < Aogﬁﬁy‘gm"

Taking oo = 27 in Lemma 5.1 and writing Q = 40?%§y'3m|’ we
have, for s»In%4Q, and z>s

m(-xeH™_ 0 A-xent {1+ 0csm1/27)
p<z  p p<s p

+ O((Oggéylgml)“1/9) }

. 1/3 .
with at most 0((0Q&§y|gm|) / ) exXceptions.
From Lemma 6, assuming that y is large enough to satisfy

the condition

-1n1 + M %

—ITI— ; M]}O

0 ; M <0

y »

where gp={m2+2ym+# with {=b2-4dac, n=be-2cd-2fa and f=e?-4fd;
where M =92-{0+)¥iM; and where M=max(|{+29+81,1-92-801);

and the condition

we have
Y < may_iggl < 41812
) 0<m2y Em y
So
pfz(l"X%E>)_l - (1‘KéE))_l{ 1+ 0(s71/27) + 0(y~2/%) }

with at most 0(|?|‘/3y2/3) exceptions.

Taking s=z,=exp(27(1ln Y/kz)i), and assuming




101

exp(27(1ln Y/k,)?) > ln54(0g$§ylgml)

we have

nm(—xeE»N™1, n a-xeE)t
p<z P P<z, P

m (-x(e»1

bz, { 1 + O(exp(-(1n Y/k,) %)) }

with at most 0(|§|‘/3y2/3) exceptions, and, (by Lemma 3),

Z n (1b2<‘1()—p))c(gm) Z f (1_%3))0(8111) { 1+

0<m<y p<z 0<m<y p<z,

m=¢ modk, m=¢ ,modk,

m app m app

gnp not a square gEm Not a square
gm good gm good

OCexp(~(1n Y/k,)$)) }
(43)

This is some way towards the asymptotic formula required.

Further

c(gm)
0<m<y p<z, |3 0<m<y P<Zq P m
m={ ,modk, m=Q ,modk,
m app m app
gm Dot a square gp Dot a square
&m good
* Z Ez (1—KSE))C(gm)
0<ngy P=Zy P
m=0 ,modk,
m app
gy not a square
gnm bad
To find m (i- in t £
o fin X { XSB))c(gm) in terms o

O<m<y P<Zg P
m=L ,modk,

m app

gy Dot a square
&m good

{1+ Oexp(-(an /K, 1)+ 0372/ %)}
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z n (1_K£B))C(gm) which we have previously gained
O<m<y P=z, P
m=¢ ,modk,

m app
gn not a square

information on, we require an upper bound on the sum

yoom (x(e)
0<m<y p<z 0 p
m=¢ ,modk,

m app
gy not a square

gm bad

c(gm)

In Step Five we had

Im(1l- M (1-1 n (1-
P<é EESE))= p<z( 5) p<z( X%B)) c(gp) (1+0(exp(=(1n Y/k,) 1))}
ptk, ptk,

for z3z,.

By Lemma 3 this implies

m(1-1) I (1-x(p)) _ T (I-pp(p)) _
p<z P p<z P clgp) = p<z “%—— {1+0(exp(-(1n Y/kz)%))}
ptk, ptk,

and

— ~1)-1 _
T OB,y - M AT Gon®) (g

p<z p<z p ‘p<Z P
pk, ptk,
0(exp(~(1n Y/k;)#)) )
(44)
for zpz,.
Hence
Yo Q-x(e) moa-p-toy T (1-pp(p))
< - clem) € oo P <z
0<m<y P<z, P P ;0 P 0<m<y P kg P .
n=Q ;modk, PA¥y mEszodkzp'r 1
m app m app
gm Dot a square gp Dot a square
gm bad gn bad
(45)




103

The next four steps are devoted to finding an upper bound for

the sum
Z . (1-ppip))
<z P
0<ny P
mEszodkzpfk‘
m app
gy nNot a square
gm bad

for any zpz,.

STEP EIGHT The sum Z n (l-pp(p)) for
O<n<y P:i P
m=0 modk, P1%,

m app
gn not a square
gp bad

exp (27(InY/k,)% ) < z < exp( y'/7 ).

As pn(p) is always greater than or equal to zero we have

the rather crude upper bound

) M (I-py(P)) yol
O<mgy p<i P 0<n<y
m=¢ modk, S m=2  modk,
m app m app
gp not a square gm DOt a square
8n bad gp bad
But
1
Lot It ¢ ) ¥
O<m<y O<mgy s O<m<y
m=Q ;modk, gn not a square 151¢ (|;|1/3yz/s) gy=T 25
m app gn bad
gm Dot a square
gm bad

From Lemma 4,
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n2-t9 y . 1fs1<A, $s>0 and
T[ 4 ] In [TE] ' s not a perfect square
X 1
<
O<m<y

2
gn=Y 28 T[” 4(0] ; otherwise

where {=b2-4ac, 9=bd-2cd-2fa, and f=e2-4£d.

We certainly have

¢
0<§<y P 5]
Em=I?s

and consequently

z 1 2-f9 vy
£ T ki 1n

0<n<y [ 4 ISI(I§|1/3y2/3{T?T]

m=Q ,modk ,
m app
Em NOot a square
gm bad _
2-{9
¢ r[——n4 ] 1n [ﬂ}%] lrl‘/3y2/?

So T (1-pu(p)) n2-%¢ y 2/3
0<§<y p<z P ¢ ) 5] ey
m=¢ ,modk, prk,

m app
gm DOt a square
gn bad

and

p T a“ﬂ”c(gm) < 0 (-H= T[ﬂ] ln[%]'§’1/3y2/3

0<m<y P<? P p<z P 4
m=0 ,modk, prk,

m app

gm DOt a square

gm bad

€ giﬁl)(ln z)r[n

2-{¢
1 4

](1n 1511/ 3y2/3,

For exp(27(lnY/kz)§ ) € z € exp ( y‘/7 ) we note that this gives
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z n (1—x(p))c( elky) 2-fo
Qs g) < 1 T |§-|1/3 5/8‘
0<m<y p<z ) m k, [ 4 ] Y

m=£ ,modk, (46)

m app
gm Not a square

gqn bad

This gives us, for exp(Z?(lnY/kz)i ) €z K exp(y‘/7),

) M Ax®eey - L 1 AOxC®Decq,
0<m<y p<z P 0<my pez P
m=¢ ,modk, m=¢ ,modk,
m app m app
gm not a square gn Dot a square
gn good (47)

v of £ [T sin/ayese},

By (43) this gives ,

m(1-x(®)), _ M A-x), L
0<§<y p<z ) (8m) O<mcy p<z, P (&m) {
m=2 ,modk, m=¢ ,modk,,

m app m app
gn Not a square gm Dot a square
gn &ood

+ 0(exp(-(1n¥/k,) 1} + of P(ti) T["zzfe] £11/3ys/5)
1

(48)
for z; < z < exp(y'/7).
But, by similar reasoning,
0<m<y 0 P O<mgy P<%o
m=Q ,modk, m= ,modk,
m app m app
gm not a square gm not a square
&m good
+ 0 { ) ilz (1—xép))c(gm) }
0<m<y P<Zg
m={ ,modk,
m app

gn nNot a square
gn bad
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) m (1-x(@)) e(k,) [p2-to ,
= 0/ a(py + 0 B ML 20 v 1/ ays s
0<m<y pP<z, P Em { k, T[ 4 ] y }.
m={ ,modk,
m app

gm NOt a square

Comparing this with (31) which reads, in the light of (33) and

(33),
o (1-xe) plk,)y
) R L TENE W Hy {1 + OCexp(-1nY/k,) 1))
0<m<y 0 2
m=Q ,modk,
m app

Zm not a square

+ 0{ k(kF§ T[nzgfﬂ] 1nln(|a;y) lny } }

we have

I (-x()» _ __pk)y -
O<§1<y pez, oo clEm) = Ry Hy {1 + OCexp(-1nY/k,) 1))
m=¢  modk,

m app

gn DOt a square

gm good

+ O{ k [kl,Fk ] [ 2&?6] 1n1n(|;ly) 1ny

+ 0{ kz[k&:sz} T[szrel |§|1/ay—1/s} }

- _p(k)y ~
T {1 + 0texp(-10/k,) 1))

+ 0{ kz[kirsz]T[ﬂzzre] |§|1/3y—1/5} }

1

(49)
as the second error term is absorbed into the third.

Substitution back into (48) gives
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n (1-x k
) A=x® gy - E;%é:%%£;T'HZO{1 + 0(exp(-1nY/k,)$))

0<m<y p<z P
m=Q ,modk,
m app

gm Dot a square

+ 0{ k:[ké-sz] T[szro] |;|1/3y~1/s} }

1

{1 + O(exp(=(1n ¥/k,)3 »)

o B ([ e

k1
kzsfl({1 1%‘§2] HZQ { 1 + O(EXP(H(ln y/kz)%))

O{ kz[kikaz] T[ﬂzzre] l§|1/3y—1/8} }.

1

(50)
Given (44) we conclude
y T (Q-pp®) _ _ek)y T (- 1) o {1
0 p<z p k,[k,,Fk,] p<z
<m<y' X 2 1 2 K
m=0 ,modk, PTY, P,
m app

gnm Dot a square

0(exp(~(1n Y/k,)$)) + 0f k2 [k1:Fk 2] r [ 2;‘”] is11/3y=1/6 1)

()

for

exp(27(1nY/k2)%) < z < exp(y'/7) . (52)

We now, in Step Nine, turn to the case z > exp(y‘/7)‘
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STEP NINE The sum Z M (l-py(p)) for z > exp(y'/7)
O<m<y p<§ P
m.=.;22modk2p'r 1
m app
gm not a square
gy bad

We have already seen that

X pgz (1 Pmép)) ¢ pgz 1 %) X pl;lz (1 xp#)) c(gg)
O<m<y X x O<mgy
mEszodl%p’r 1 PT¥, m=Q ,modk,
m app m app
gm MOt a square gy Not a square
gp bad gy bad

(53)
and that for exp(27(ln Y/k,)}) < z < exp(y'/7),
Z m (1-x(p)) clgy) ¢ gggl)T[nz_ro] 11/ 3ys/s

Oamcy P P R * 54

m=¢ ,modk, (54)

m app

gn Not a square

gm bad

Now statement (18) of Nair & Perelli [1l] reads

- -1
" L(l,x) = pEw (1 X%g)) { 1 + O0Cexp(~c{ln w) %)) }

holds uniformly for wrexp(cln?Q) and for all primitive

characters x to a modulus q<Q with at most one exception x,. "

s _ 1/ . ;
Writing z,=exp(y /7) and Q aoggzylgml, and recalling that
Ogﬁéylgml < 41f1y? for y large, it is apparent that

z,»exp(cln2Q) and hence that

_ -1
L(l,x) = p“ (I-x()) {1+ 0(exp(-c(in 2> 1))} (55)

<Z 'p

for any zpz,, with at most one exception.

It follows that
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M (1-x()) _ 0 (@) n (1-x@En!
z ,{p<z P p<z P p<z, P

= L(1,x)"L (1+0(exp(~c(ln z,)1)))
x L(1,x) (1+0(exp(-c(ln z,)})))
=1 + O(exp(—c(1n z,)ﬁ))

with at most one exception.

More generally

n (1-x())
z,pez p <L

with at most one exception.

Consequently

n (A-x(p)) n (1-xm)) 0 (d-x®)
0<§<Y p<z P (&m) 0<§<yp<zl P z,<p<z D c(gp)
m=¢ ,modk, m=Q ,modk,

m app m app
gm Mot a square gm Dot a square
gm bad gn bad
m (1-x(p))
¢ O<§<y p<z, P °(&n)
m={ ,modk,
m app
gp not a square
gg bad
2.
¢ ¢ék1) T[ﬂ Are] |;|1/ay5/8 (56)

1

with at most one exception, whenever z»exp(y'/7).

Steps Ten and Eleven are devoted to the possible exceptional

modulus of (56).
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STEP TEN Translation of N (l-pp(p)) into a product
p<z P
Pk,

involving the norms of prime ideals in Q(/gy).

By, for example, Theorem 90 and Theorem 81 of Hecke {10],
for (p) the principal ideal in O(/gy) generated by the prime

number p, we have that

ﬁ162 ; N61=N62=p if (D/P)’:l
(p) =4 B2 i N@=p if (D/p)=o
8 ;  Ng-p? if  (B/p)=-1

where 8, Bi are prime ideals and N§ is the norm of f. It

follows that

m (-1) _ nm (-1)2 1m (1-1) 0 (1-1)

NB<z Ng p<z P p<z P  pi<z  p?
(P/pr=1 pID P/py=-1

Now, we have

n (Q-pp(p)) _ m (1-1) m (1-x(p))
p<z D p<z P p<z  p ClEm?)
P'rk] p'rk‘l
and for ZPZ
n (1-pgp(p)) n (1-1) m (1-x(p))
pz - S px B pez p oo
prk, ptk,
k m (1-1) 0 (1-x(p))
= —_— - AN
p(k;) p<z P Pp<z P ¢ (&),
But

T (1-1) 0 (1-x(p))
p<z P pP<z P

m(a-1) m (-1 n (-1 m (-1) 1m0 1+
p<z P Dp<z P p<z P p<z P p<z P
pID O/p=1  O/py=-1 @)=t (Pyp)--1
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n (-1 m (1-1)2 m (1-1)
p<z P Pp<z P p<z p?
pID p=1 O/p)=-1

¢ 0 L moa-bhz omoa-l)
p<z  p Pp<z P pi<z p?

pID O/l (B/p)=1
_m Q-1
h Nf<z NG
So
I (Q-pyle)) k, m (1-1)
p<z P < p(k,) Np<z NG c(gm) (57)
ptk,

and we immediately deduce

Z m (1-pp(p)) ¢ k, Z m (1-1)
==" c(gm) -

0<m<y p<i p p(k,) 0<m<y NB<z NG m

m=¢ modk, pT, m={ ,modk,

m app m app

gm Not a square gp not a square

gm bad gy bad

(58)
Nair and Perelli [1] have shown that
n (1-1) < 1
NB<z N_ﬁ L(I,XD)I‘HZ
whenever z » D8, and g, is negative. The proof is also
applicable in the case gp positive.
Consequently we have
L B ON P T PR B

O<m<y P x P LA O0<m<y

m=Q ,modk, prK, m=0 ,modk,

m app In app

gy NOot a square gp not a square

gn bad gm bad

(59)

6 6
for z » (oﬂﬁﬁy'gm‘ Y& , and as (oﬁﬁéy'gm' )8 > z,, so that

o (1-1) - k
B}ﬁ1 P ETE:%TEE , we further have
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yo.m Txegy ¢ L 10t etaw

O<mgy p=z O0<m<y
m= modk, m=0 ,modk,
m ann <z m app
O<m<y P gm Mot a square
gn=0 ;modk,, gn bad
m app (60)
gm DOt a square
bad 8
foi8p P v<may _uh )8

Certainly if z>exp(y'/7) then Z>(0E$§y'gm')6’ and we may use

(60) to estimate the sum

I (-
LA o,

O<m<y p<z

m=¢ ;modk,

m app

gnm Not a square
gy bad

over the possible exceptional modulus of (56).

STEP ELEVEN The possible exceptional modulus of {(56).

We require an upper bound on the sum

/
L 1ol e
O0<m<y
m=Q ,modk,
m app
gm DOt a square
gm bad

where the sum Z/ is over g, which give rise teo the possible
exceptional modulus of (56).
We firstly find an upper bound on L(l,x)‘l.

Dirichlets class number formula states

4t L(1,% for d>0
In €
h({d) = (61)
M_}_‘gﬂ) for d<0

2%
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where h(d) 1is the class number of the quadratic field with

discriminant d, and where

2 if d<—t&
w=1 &4 if d=-4

6 1f d=-3

(N.B. The range of d for which w is defined is complete for it
is not possible for d to be either -1 or -2. If it was then we
would have either s=-1 or s=-2 respectively, with s=1 mod 4,
clearly a contradiction.)

and where ¢ = }(tg+tuyvsd) with (t,,u,), t,>0, u,>0 denoting the
fundamental solution of the Pellian equation t2Z-du?=4.

Certainly e>§df when d>0.

(61) gives
d}
m) for 4>0
L(L,x)"L =
w 1di1?
m) for d<0

Clearly h(d)»1 always, and In ¢ » 1ln d.

So
L({1,x)"} ¢ Tﬁéé for d>0. (62)

If d<0, however, from the recent paper of Gross—Zagier [1ll] we
have that, for every ¢>0, there exists an effectively computable
constant c.>0 such that

h(d) > c.(ln 1d1)l-e¢

Hence

1d1?

- for d<0. (63)
(In 1dj)l-e

L(1,x)"1 ¢,
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(62) and (63) give

/ |§'5 /
Lot etew ¢ S8 L e

O<m<y (In |51)+"°¢€ 0<m<y

m={ ,modk, m=¢ ;modk,

m app m app

gy Not a square gn DOt a square
gm bad gm bad

(64)
where, as before, the sum Z/ is over gy which give rise to the
possible exceptional modulus D of (58); and where §=D or §=D/4
according to either D # 0 mod 4 or D = 0 mod &4,

We note in passing that were the Gross—Zagier theorem not
available then to estimate Z/ effectively we would be forced to
make use of Siegel's theorem which states that "for any >0
there exists a positive number c(e) such that h(d)>c(e)ld|%_f
for d<0." Although the use of this theorem would improve any
bound we may reach the constant c(e¢) is unfortunately
non—computable with current knowledge.

Now from (40) back in Step Six we have

1 (1~1)—l o (1_K£E))_l
c(gy < ptk, P pt2(am+d) gpk, P
p12(am+d)

p| (am+d+bm+e)

Less strongly

n (-1 n (1-1)~1
°(en) < ptk, P pl(am+d)ggk, P
pI (am+d)
pl(bmte)
¢ T (1-1n-1 n a-n-1 o @a-n-t
pi(am+d) P pi{am+d)gy P pik, P
p! (bm+e)

As am+d=0 mod p and bm+e=0 mod p together imply that

am+d=0 mod p and gy=0 mod p we have




115

k, . n (1-1)-2
c(&n) < e(k,)  pi(amtd)gy P

k
<€ Eftj) In 1n? (Oggéyl(am+d)gm| ).

Assuming, as we have done previously in Steps Four and Seven,
that y is large enough to ensure

(1) Og§éy|am+dl < 21aly

and
(ii) o%ﬁéy'gm‘ < 4181y?

where {=b2-4ac, gives
clgp) £ X410 1n2 (ratity?)
m p(k,)

€ ;%tT) In In2 (laiif)1) In 1In? y.

Substitution into (64) gives

/
L Lol etgy <

O<m<y
m={ ,modk,
m app
gm Dot a square
gn bad
=13 /
= 1 LI P In2jaf| 1n In? y z L.
(Iniz))1=e o(k,) O<mey
m=Q ,modk,
m app
gm DOt a square
gm bad
(65)
Now

R P

0<m<y O<my
m=Q ,modk, gm=Y 28
m app

gm not a square

gy bad

.| |
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n2-t@ y . if 1sTi<y, §{>0 and
T[ 4 ] ln[|§§|] * 8! not a perfect square
L1«
O<m<y -
Em=r?s T[n 4?8] ; otherwise

and certainly

[0 oy

L1«

wvs |

Assuming firstly that 15Ky,

/
L Lol ety <
O<m<y

if 151y
(66)

if 1513y

(66) together with (65), gives

m=Q ,modk ,
m app
gm not a square
gn bad
yt K1 1n In2jafi 1n 1n2 y 7 [1520) 1
i yyToe plkp 1o 1otiat dn 1oty 7 (] oy
k n2-¥0
2/3 _S1 2
¢ y?/ Sty 1o Intiat) T[ ; ] (67)

If, on the contrary, 1512y then

/
L Ll el <
0<m<y
m=¢ ,modk,
m app
gn DOt a square
gn bad

1512 k,
(lmis)i-¢  p(ky)

2
iIn In2jal| 1n In? y T[n g-B]

A

However, we certainly have |51 ogﬁﬁy'gm‘* and we have
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previously assumed that y is large enough to ensure

0<m§ ignt < 4151y2.

So for 1513y,

/
L L0t elam <e
0<mgy
m={ ,modk,
m app
gy Not a square
gm bad

[nz—fe] y In 1n2 y

[A 1 1-¢ .
(In ¥) (68)

|%__1_ 2
I In In21af) T

Incorporating the results for iTI<y and 1513y gives

/
) L1, cley <
O<mgy
m=Q ,modk,
I app
gm nNot a square
gm bad

1 d Ky 1n In?jal) r[

2—?6] y In In? y
p(k,)

4 n 1-¢
(In y) (69)
for any s§.

(69) together with (60) and (56) gives the general result for

all g, bad,
I (1-x(p))
40 ¢
O<§<y pez P () <
m=L ,modk,
m app
gy Dot a square
gm bad
k 72-f67 y ln Iln? y
f1f —1 . 1n 1n2jaf
131 P(k;) n In4jaf| r[ A ] (1n y)l‘

(70)
for zpexp(y'/7).

This completes Step Eleven.
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STEP TWELVE The completion of the Theorem.

The reasoning of Step Twelve largely follows that of Step

Eight. Equation (43) gave us

n - 0 (1-y
Z <z ( XSE)) c(gp) = Z <z ( ASE))c(gm) { 1+
0<ngy P P O<m<y Pz, P
m=¢ ,modk, m={ ,modk,
m app m app
gm not a square gm not a square
gm good gm good

O(exp(~(1In Y/kz)f)) }

for all zpexp(27(ln Y/k,)%).
But equation (49) gave us further that the right hand side

of this equation is

k
ﬁ%z] Hyy {1+ OCexp(=(ln Y/k) 1)

. O{ T[HZZfB] kZ[kﬁ,FkZ] |r|1/3y-1/s } }

1

so that

Z i (l—“XSE))C(gm) - _EDQ&_)Y_]HZU {1 + 0(exp(~(1n Y/k,)))

0<m<y p<z P k,[k,,Fk,
m=L ,modk,

m app

gy not a square

&m good

. 0{ T[n22§6] kz[k&,sz] |§|1/3Y—1/5 } }.
’ (71)

Now, if z>exp(y‘/7), from (70) we have




119

) m (1-x({) ) m (1-x(p))

XP) (g = c(gp)
0<m<y p<z P O<mcy p<z P

m=Q ,modk, m=Q ;modk,

m app m app

gm Mot a square gm Dot a square

gm good

k 7%-{61 ¥y 1n In? y

and this combined with (71) gives

T X® gy m 0T 5 11 4 oexp(-(1n Y7k,
0<§<y bz p o) 7 i e ol + 0(eR-(n Y/ i)
m=0 ,modk,

m app
gm not a square

+ 0{ T[n2;fﬂ] kz[t1:sz] Igll/sy—1/s }

1

+ 0¢{ 151410 1n?1ar) T[’IL“’] k,k,[k,,Fk,] 1n In2 y 1

4 (k)2 (1n y)l-e

- ek )y
K[k, 7] Mz {1+

+ 0 171410 1n21a8 ,[ﬂQ—fﬁ] k. k,[k,,Fk,] 1n In2 y 1)

4 pk,)? (In y)l—e
(72)

for z>exp(y‘/7), the first and second error terms being absorbed
into the third.

Further, given (44),

X I (Q-pp()) _  ek))y m (1-1) 4 {1 4
O<m<y p<z p k,[k,,Fk,] p<z p Zo
mEszodkzp*k1 ptk,

m app

gm not a square

+ 0 { 151410 1n2jar) 7 [L510) Kukolky B} In dnfy 3

4 plky)? (In y)l-e
(72)
for z>exp(y'/7).

Combining (72) with (51), a similar result but for
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exp(27(lnY/k2)5)<z<exp(y1/‘7), gives

O (Q-pp(p)) _  e(k))y n (1-1)
0<£<y p<z P k,[k, ,Fk,] p<z P Hzo{l *
mEszodkzp{k1 pik,
m app

gm Dot a square

+ Oe{ 1£131n 1n2)al) T[n2~§8] k.k, [k, ,Fk,] In In? y } }

4 o(k,)? (1n y)l €
(73)

for z>exp(27(1nY/k,)?).
To complete the theorem we require an asymptotic formula

for the sum

Z I (I-pp(p))
O<m<y p<z )

n=Q ,modk, ptk,
(m, Z) app
for z»exp(27(ln Y/k,)%) which we may then substitute into (12).

To re-introduce the condition "(m,z) app" simply recall from

Step 5, (33), that

) T (-py(@)) _ ¥ T (Q-pp(p))
O<m<y p<i P O<ny p<i P
m=Q ,modk, PT¥, m={ ,modk, P,
m app (m,z) app
Bm ot a square gy ot a square

for z»exp(27(ln Y/k,)%), and (73) becomes

T (Q-pepe)) _ _ elk)d)y n (1-1)
O<§<y p<z P "~ k,[k,.Fk,] p<z ) Hzo{l N
mEszodkzpfk‘ p¢k1
(m,z) app

Em Dot a square

+ 0{ 151410 1n21aty T{nz w] pgt )I:k 2] 11:(11:1},)1_ 1)

(74)

for z»exp(27(1nY¥/k,)%).
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To extend the sum of (74) to inelude gp a square we return to

(25) which reads

m (l-pp(@)) , M (1-1) ry2-%6 ;
0<§<y p<z P 4 p<z E T[~«Z——] Inln(ialy) 1n[TTT]
=0 modk, PT¥1 prk,

(m,z) app

gm & square

for any =z.

This together with (74) gives

z I (I-pp(p)) _  ek))y mo(1-1) . {1 .
0wy~ P<Z P kp(k,,Fky] p<z p " Fo
mEszodkzp*k‘ prk,

(m,z) app

n2-{0} k,k,[k,,Fk,] In In?2 y
+ 0 { 1t1hin Inziasy 7 [T = e(E)7  (In yy I b

(75)
for z>exp(27(1nY/k,)?).

Before we conclude the theorem we remove the dependence on
z, of the right hand side of (75). This dependence occurs only

in the term Hzo and we will show that

Hy = Hy {1 + O(exp(-(ln Y/k,)%)) ) (76)

for Z>2,.

We recall from Step One that

Hy, = L [y(w)
w
w=1 or y(w)>z

where y(w) denotes the smallest prime factor of w, and

n a+ ek )
PGy = L P
ojmodFk , pez p(p-1)
aj=L€ mod(k,,Fk,)
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The notation of I'y(w) is defined as follows:
(1) Qyyenes Oy denote the integers, n, in the interval
1<{ncFk, for which both
(an?+bn+c,dn?+en+f) = w

and an2+bn+c dn?_ en+f I p -
CFEEEe o [F) g, ) -t

hold.
(i1) the unique solution mod{k,,Fk,] of the two congruences
n=¢ modk, and n=ojmodFk, is denoted, if it exists, by

Bi=PF1(2,,2y). Letting h=(a,b,c); a=a,h, b=bh, c=c;h we have

{t: tmodp; a,([k,,Fk,]t+B;)2 + b, ({k,,Fk,]t+G;)

o(p) = tc, = 0 mod p }
; ptk,h

L P ; plk,h

Now, firstly, from Lemma 2.1 it follows that if w with y(w)>z
exists such that (an?+bntc,dn?+en+f)=w then w must divide F.

So assuming that z >F rules out this possibility and H20
becomes on(l). ie w=1 only.

Secondly, assuming that z >k,, and that z>z,,

( (an2?+bn+c)Q, + (dn2+en+f), Bg p )=l
k3

& ( (an?tbntc)l, + (dn?+ent+f), I p )>=1 .

1%,

This leaves only the term M (1 + p(p) ) dependent on z,.
P<z, p(p-1)

But
| (e tmodp; a,[k,,Fk,]2t2 + [k, ,Fk,](2fja,+b,)t
p(pP) = 1 + (a,f2 + b,B; + ¢,;) =0 mod p )
; Prk,h
- P ; pik,h

and so for ppz,, as B;<[k,,Fk,], and assuming
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z >max{ a,[k,,Fk,12, [k,,Fk,](2[k,,Fk,]a,+b,),
a, [k, ,Fk,)2+b, [k, ,Fk,]+c, )

we have p(p)<2 if ptk,h.

Consequently
T QA+ e ) _ n @Q+pe ) n QA +p(p) )
p<z p(p-1) pP<z, p(p-1) z (Kp<z p(p-1)
and
m (1+1 ) M (1+ p(p) ) m (+1) o (1+2
z,Sp<z  p-l z,Kp<z p(p-1) z,&p<z  p-1 z,p<z p(p-1)
pik,h pik,h ptk,h

Assuming further that z »h gives

1< 1 (L + p(p) ) < mad+ 2 )
z,&p<z  p(p-1) z,&p<z  p(p-1)
p{kih

Arguing as in Step Six we get

m (1+p(p) )
1< ZD<P<Z P(P—l) < 1 + OCexp(~(ln y//kz)%))

giving

I 1+ p@ )
z ,Sp<z p(p-1) =1 + 0(exp(-(ln y/kz)%))-

Hence, (by Lemma 3),

M (1+p@ ). T (1+pp ) i
p<z,  p{p-1)  p<z -1y (L * 0(exp(~(1n Y/k,) %))}

and HZO = H,{1 + O(exp(-(1ln Y/kz)ﬁ))) as required.

Equation (75) becomes

)
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T Q-ep®)) _ _ek)y m (1-1)
) p<z P K[k, ,Fk;] p<z D =z {1 *
O<m<y k 2 1 2 k
mEszodkzp'r 1 pK,
(m,z) app

n2-t07 k. k,[k,,Fk,] 1n In2 y
+ 0 { 151din Inziany 7 [1—] Simgpuge (In y)l”e} }

K,y mo(1-1)

= H, {1 +
k,[k,;,Fk,] p<z P Z {

72-{8) k.k,[k,,Fk,] 1n 1In2 y
+ OE{ 15131n In2jaf) T{ A ] L ;(k:)z 2 In 3¢ } }

(76)
for zzexp(27(ln Y/kz)i).

Equation (15) covers the case for 2<z<exp(27(1ln Y/kz)%); a

combination of (76) and (15) gives

Z M (1-pp(p)) _ k,y n (1-1) H {l +
O<n<y p=z P k,[k,,Fk,] p<z p Z
mEQ2modk2p*k‘

(m,z) app

n2-{07 k,k,[k,,Fk,] 1n 1n? y
+ Of{ 15141 1n?jaf) r{ % ] 1 ;(k:)2 2 (n 37l ¢ } }

(7

for zp»2, and (77) substituted into (12) gives

Xy mah oy

S(XIY’Z) = k2{k1,Fk2] p<z P

- 2
+ oe{ |§-|%1n In2jat) T[’Tz fﬂ] k1k2[k1,Fk2] In In? y }

4 p(k,)? (In y)l-e

+ 0(exp(=v(ln v-1n 1ln 3v-1ln 2-2))) + O(exp(-(ln ¥/k,)%)) }
(78)
for 2 < z < ¥/k, thus effectively completing the theorem for

Y/k,&%/k,. Recalling that (5) completed the theorem for

X/k,<¥/k, the theorem is essentially complete.
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STEP THIRTEEN Some mopping up.

Scattered throughout the proof of Theorem One (from Step
Four onwards) are various assumptions about the size of y. 1In
Step Thirteen we aim to show that making the single assumption

exp((1n Y/k,) %) > max(1al,ibi,ict,tdr,1e1,1£1,k,,k,)
(79)
for Y/k, large is enough to cover them all.

We deal firstly with the recurring assumptions, namely
(1) 141/,4, < y.

Assuming this allowed us to make use of the inequality

jam+di<21aly. It is clear that it is satisfied if (79)is

satisfied.

(11) —-Iq1 + M, 3

___T?T"“l ; M,>0
y >
0o ; M,<0
with {=b2-4ac, n=be-2cd-2fa, f=e2-4fd, M,=n2-{6+|{ 1M, and
M=max (i {+29+01,1-12-{01). Assuming this allowed us to make
use of the double inequality %2 < Ogﬁéylgmi < &41fy2.
Certainly M < max( 151+219t+161,1921+151161). But,
assuming (79),
15142 1n1+101 < b2+4jalici+2tbitei+2icr1di+21f11a1+e2+41f)1d)
< lémax{1al,tbi,lci,1di,1e1,1£1)?
< 16exp(2(ln Y/k,)%).
Similarly
N2+151101 < 35exp(4(1ln Y/k,)%).
So M < 35exp(4(1ln Y/kz)%) and
M, < g2+ 1101+15135exp(4(1ln Y/k,) )
< 7lexp(4(ln Y/k,)?)
and finally

i+, 2

- < ImiHME < T2exp(4(ln Y/k,)E) <y
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as required. So assuming (79) we have
y2
5 < tgml < 4laty?

as required.

For the rest of the assumptions in the proof we deal with each
in the order they appear. We take each step seperately for
ease of reference. In brackets below each stated assumption
we briefly show that assuming (79) is sufficient. The first
of the assumptions, as stated previously, occurs in Step Four
and so we may assume in all the following that
zexp(27(1n¥/k,) 1)) .
STEP FOUR
(i) y>1!f| where {=b2-4ac
( 1b2-hac| < b2+4jaliey < Sexp?((ln Y/kz)%) <y)
STEP FIVE '
(ii) z>k,
( k, < exp((In Y/k,)3) < exp(27(ln Y/k,)%) < z )
(iii) z > max{idi,1e1,1f, tbd-eaj, |de-fal, tec—fbi}
( max{i1di,1e1,1£1,1bd-eal, tdc-fal, jec-fb)}
< max(Ibiidi+ieltal, 1ditei+ifirar, itetici+ifiibi}
< 2exp2?((In Y/k,)?%)
< exp(27(1n Y/k,) %)
< z )
STEP SIX
(iv) In(lam+diigyl) < exp(26(1n Y/k,)?)
( InCram+diiggl) < In(8jal1¥1y3) from (I) and (II), and
In(81ai181y®) < In(8yS) < 1n(8(Y/k,)'°) < exp(26(ln Y/k,)%) )
STEP SEVEN
(v) InS4(qnas 1gnl) < exp(27(in Y/k,) 1)

( From (II), 1n54(0g%§y|gm|) < 1In54(4 18 1y2?)
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< InS49(4y3%) < InS4(4(¥/k,)®) < exp(27(1ln y/kz)i) )

STEP NINE

(vi) exp(y1/7) > exp(clnz(oggéylgml))

( 1n2(qmas 1gn!) < 1n2(4151y2) < In2(4y°) < yi/7 )
STEP TEN

(vii) (O@%éylgml)s > exp(27(1ln Y/k,)?%)

P 6 y2 1 y 248
CFrom (D, (euggy1enn® > [ > (2 ()] >
exp(27(1n Y/k,) %)

(viii) exp(y'/7) > (Oggéylgml)s

( (Oggéylgml)s < (41t1y2)8 < (4y3)s < exp(y'/7) )
STEP TWELVE

(ix) exp(27(1ln Y/k,)%) > F where

{ jce~fbi if a=0, d=0
F =
t (cd-fa)?2—(bd-ea) (ce—-£fb)1 otherwise

( ictier+i1f1ib) if .a=0, d=0
F<{

(teridi+ifyran) 2+(ibridi+iertar) Cierter+1£11b1)

otherwise

< 4dmax2(jai,ibi,l1ci,1dl,lel, £}

< 4exp(2(1ln Y/k,)%) < exp(27(1n Y/k,) %) )

(x) exp(27(In ¥/k,)%) > k,
( Obvious )

(xi)  exp(27(In Y/k,)?) > max{ a,[k,,Fk,]?,

[k, ,Fk,)2(2[k,,Fk,]a,+b,), a,[k,,Fk,]2+b, [k, ,Fk,]+c,

where a,=8/y, b1=b/h, ¢,=%/n with h=(a,b,c).
( Firstly,
a,[k,,Fk,]2? < 1alk,?F?k,2 < l6exp(9(1ln Y/k,)?%)
< exp(27(1ln Y/kg)%).
Secondly,

[k,,Fk,]12(2[k,,Fk,}a,+b,) < 64exp(13(ln Y/k,)?)

< exp(27(1n Y/kz)ﬁ)

}
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and lastly,
a,[k,,Fk,]2+b, [k, ,Fk,]+c, < 48exp(9(ln Y/k,)?)
< exp(27(1n Y/k, %) ).
(xii) exp(27(1n Y/k,)%) > h.

( Obvious )

This completes the proof of Theorem One.

AFTERWORD

It will be noticed from the statement of Theorem One that
if }'/k2>x/k1 then the error terms in the estimate of S(x,y,z)
. are not independent of «, whereas when X/k,>Y/k, the error
terms are independent of «.

On the other hand an examination of Step One of the proof
of Theorem One will reveal that, for Y/k,>¥/k, and z<Y/k,, had

we taken S(x,y,z) to be

S,(x,y,2) = [{(n,m);a<nartx, n=Q modk,, B<m<B+y, m=L,modk,,

((an2+bn+c)m+(dn2+en+f),pgzp)=1)

then we could have found an asymptotic formula for §,(x,y,z)
independent of $. The obvious course of enquiry is to examine
whether or not an estimate of S, (x,y,z) can be found with all
terms independent of @ when X/k 3>Y/k,. Our method of proof
does not allow us to answer this conclusively.

The main stumbling block occurs when we try to extend the

function

m (1-x(p))
p<z . —E— for Z ﬂ<y/k2
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to M (1-x(p)) for z»z,.
p<z P

Whereas for m in the range O<m<y with Q*g@%éy'gml we were
able to apply Lemma 5.1 this lemma becomes inapplicable for §
arbitrarily large, since in this instance we would be forced to

- 20 i

take Q 6<$2§+y|gm| and we could not ensure that 1In4®Qgz is
satisfied, a condition of the lemma.

So in summary we have, writing S,(x,y,z) to be

$,(x,¥,2) = |{(n,m);e<n<o+x, n=¢ modk,, fB<m<f+y, m=Q,modk,,

((an2+bn+c)m+(dn2+en+f),pgzp)=1) ’

that an estimate of S,(x,y,z) may be found independently of «

if X/k,»Y/k, and independently of B if ¥/k,>¥X/k,.

With reference to our assumption in Theorem One that a and
d are not both zero, were the contrary true then we would

require an estimate of the function

S(x,y,z) = |{(n,m);a<na+x, n=Q modk,, O<mgy, m=Q modk,,

((bn+c)m+(en+f),pgzp)=l) )

Essentially the method of argument of Step One of the proof
repeated twice would suffice to give such an estimate. We omit

the details.
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We conclude Chapter Two with an examination of the other

case concerning the function

S(x,y,2) = |{ (n,m): a<nka+x, n=¢ modk,, O0<m<y, m=¢,modk,,

((an2+bn+c)m+(dn2+en+f),pgzp)=l )

excluded by Theorem One, namely where an?+bnt+c and dn?+en+f

have a common factor.

The case when an?+bn+c and dn?+bnt+c have a constant
integer in common is essentially trivial and is not examined.

We assume in what follows that (a,b,c¢,d,e,f)=1.

We assume firstly that an?+bnt+c and dn?+en+f are constant

multiples of each other so that S(x,y,z) may be written

5(x,y,2) = |{ (n,m): a<ncotx, n=L modk,, O<m<y, m=¢,modk,,

((An2+Bn+C) (Dm+E) ,pfgzp)=1 }

for some integers A,B,C,D and E.

We prove the following:

THEOREM TWO
For x,y,zel let M=min(¥*/k,,Y/k,) and assume that z
satisfies 2€z<M. Let ('/p) denote the Legendre symbol and let

6=RB2-4AC. Then

S(x,y,2) = X m Q-1 o (- ¢G/p)+l) o (1-1) {1+
i k.k, p<z P p<z P p<z P
ptk,D p12Ak, ptk,
pi2A
pTA+B

O(exp(—u(lnu-1nin3u-1n2-2))) + O(exp(—(lnx/kI)é))

+ 0(exp(-(1n¥/k,)$))}

for u = 12_§ if the conditions
In =z
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(1) (DR,+E, [T p)=1
2 Bgﬁz
(ii) (A+B,C)=1 mod 2

(iii) (AQ2+BQ.+C, II p)=1
1 1 BTE‘

are satisfied.

Otherwise S(x,y,z)=0.

Further, if ¥*/k,<z<Y¥/k,, then under conditions (i), (ii)

‘i,
and (ii1) noa-h 0 - G/

S(x,y,2) < =X

n @a-n 0 1- ¢/p+l) 0 (1-1) [1+

k1k2 p<z P P<x/k1 P P<x/k1 5
ptk,D pt2Ak, ptk,
PI12A
pPTA+B

0(exp(-v(lnv-1nln3v-1n2-2))) + O(exp(—(lnx/k1)%))}

1n ¥/k,

where v =
In z

The O-constants are absolute, effectively computable, and

independent of A,B,C,D,E,k, and k,

PROCF OF THEOREM TWO

Assuming firstly that z<¥/k,, define the function M(y,z) to

be
M(y,z) = |{m: O<mgy, m=Q,modk,, (Dm+E,pgzp)=1}

so that
S(x,y,z) = Z M(y,z)
a<nsotx

n=¢ modk,
(An2+Bn+C,szp)=1

An application of Lemma 1.1 gives
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[y n (i-1 3 B o
E, p<z 3 {1 + 0(exp(-u(lnu-1nln3u-1n2-2)))
ptk,D
+ O(exp(—(lBY/kz)ﬁ)))}
M(y,z) =
; (DR,+E, gﬁ p)=1
| 2
| 0 ; otherwise
where u = In Y/k2 .
In z

Se if (D2, + E, g p)>1 then 5(x,y,z)=0 whenever z<Y/k,.
i
Qtherwise

s(x,y,z) = moa-yn oy {1+ 0(exp(-(1nY/k,) H)))
2

p<z P
a<n{a+x
prk,D n=Q ,modk,
(An2+Bn+C,pgzp)=l
+ O(exp(Hu(lnunlnlnu~1n2~2)))}
(1)
Write the sum
Z 1 = (n: a<natx, n=g ,modk,, (An?+Bn+C, gzp)=1}
a<ngo+x P
nEQ1modk1

(An2+Bn+C,pEzp)=l

as N(x,z). Then N(x,z) may be estimated if we assume in
addition that z<X/k,.

If (A+B,C)=0 mod 2 then N(x,z)=0.

Assuming that (A+B,C)=l mod 2, a second application of

Lemma 1.1 gives
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r X n (1-p(p)) _ _ 19—
K, p<z = {1 + 0(exp(—v(1lnv-1nlndv-1n2-2)))
ptk,
+ 0(exp(—(1ln X/k,)%))}
N(x,z) =
; (Ae? + Be, + C, T p)-l
Bik,
0 ; otherwise
X

where v = In %/k, and where

In z

p(p) = |[{n modp: An?2 + Bn + C =0 modp)l

Consequently, if (AQ? + BQ, + G, Bgﬁ P )>1l, S(x,y,z)=0.
1X,

Otherwise

_xy T (-1 n
S(.X’y:z) _‘2 p(z 'ﬁ p<z

Xy (1"352)){1 + 0(exp(—(1n X/kl)%))
ptk,D ptk,

+ 0(exp(~(1ln Y/kz)f)) + 0(exp(—u(lnu—lnlnSu—ln2—2)))}

_ In(min(*/k,,Y/k,))

where u oz
Now if p+24,
p(p) = ‘{n modp: n2?=B2-4AC modp}
_ [BZ—4AC] +1
b

where [;] denotes the Legendre symbol.

On the other hand if pi2A then

1 ; p+(A+B)
elp) = {

0 ; pI(A+B)
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m (l-p(p)) _ T (1- (O/m+l ) 1M (1-1)

p<z  p p<z P pP<z P

ptk, pt2Ak, ptk,
pPI2A
p+(A+B)

where §=B2-4AC which completes the theorem for
z<min(¥/k,,Y/k,).

If ¥/k,<z<Y/k, then from (1)

sy, = L0 DR s ogexp -k )
k, p<§ 5 P a<ngotx
P, nEQ,mode
(An2+Bn+C,pgzp)=1

+ 0(exp(—u(lnu—lnlnu—an—Z)))}
Writing ¥/k, as x, for convenience it follows that

saoy,z) < L0 DR 1k otexp -/ D))
k, p<z P a<n<a+x 2
pik,D n=¢ modk,
2 -
(An +Bn+C,ng?) 1

+ 0(exp(—u(lnu—lnlnu—an—Z)))}

- X nah mo@a-¢/mpely 00-L f1+
p

kik, p<z  p  p<x, P p<x,
ptk,D pt2Ak, ptk,

pPi2A
pTA+B

0(exp(-v(1nv-1nln3v-1n2-2))) + O(exp(~(1n¥/k,)$)}

which completes the theorem,

N.B. A quick examination of the proof will reveal that Theorem

Two holds for z<min(¥*/k,,¥/k,) or ¥X/k ,<z<Y¥/k, even if we take
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S(x,y,z) = {{(n,m): a<nat+x, n=¢ modk,, B<mLf+y, m=L , modk,,

((An2+Bn+C) (Dm+E), [ p)=1)

However, consistent with Theorem One, we leave S(x,y,z) in its
original form,
We may also extend the proof to cover z in the range

Y/k Lz<X/k,, to give

S(x,y,z) < XY n (-1 o - (8/p)+1 ) 0 (1-1) {1 .
? ] p

k.k, p<Y/k,p p<z P p<z
ptk,D pt2Ak, ptk,

P12A

PtTA+B

0(exp (-u(lnu-1nln3u-1n2-2))) + O(exp(—(lnY/kz)%))}

_ 1InY/k,

Inz °

We now turn to the case where an?tbntc and dn2+en+f have a
linear factor only in common. In this instance S(x,y,z) may be

written

S(x,y,z) = | (n,m): a<n<o+x, n=¢ modk,, O<m<y, m=Q,modk,,

((An+B) ((Cn+Dymt(En+F)), I p)=1)

for some integers A,B,C,D,E and F.

Firstly we give some definitions:

(i) R=DE-FC
3 _ A m @a-1)71 [k, ,Rk,}?
(D) Tz § p(A) p<z P p(Tk,,Rk,])? s
ptk,

w=1 or y(w)>z pih

m (1+ p: )
pP<z (ﬁ:T)2
ptk,h

¥, (w)
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where h=(C,D) and C1=C/h, D,=D/h;
and where ¥,(w) denotes the number of integers n in the
interval 1<n<Rk, for which both

(Cn+D,En+F)=w

and

([02+D]Q2+[E3+F]' Bgﬁ Py
2
hold.

With these definitions we have the following:

THEOREM THREE
For x,yeZ let M=max(Y/k,,X/k,).Define z,=min(z,¥/k,) and
assume that z satisfies 2<z<M.

Then, whenever exp((lnM)ﬁ))max{|a|,|b|,|cl,|dl,IeI,1fl,k1,

kz)!
xy I (1-1) m (i-1)
ptk,
0exp(-1n Y/k,) %)) + 0(exp(~(1n */k,)%))
+ 0(exp(-v(1lnv-Inln3v-1n2-2))) }
1 1nX/k .
for v = e . The O-constants are absolute, effectively

computable, and independent of A,B,C,D,E,k, and k,.

PROCF OF THEOREM THREE

Assume to begin with that Y/k,<X/k,.
We follow the procedure of Theorem One.

Define

M(y,z,n) = [{m: O<m<y, m=Q,modk,, ((Cn+D)m+(En+F),pgzp)=1)

so that
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S(x,y,z) = Z M(y,z,n) (L)
a<nLo+x )
nEQ,modk1
(An+B,pgzp)=1

Define r, to be the highest common factor of the two
polynomials Cn+D and En+F. It is apparent that if (rn,pgzp)>l

then M(y,z,n)=0. Assuming that (rn,pgzp)=1 we have

M(y,z,n) = |(m: O<ucy, m=0,modk,, (([SE:2]ms[EREE

rn ]'pgzp)=1}

n

and an application of Lemma 1.1 for zKY/k, gives

' %2 PEZ (l_%) {1 + O(exp(—u(inu-Inlnm3u-1n2-2)))
ptk,
p+(Cn+D)
+ 0(exp(-(ln Y/kz)%))}
M(y,Z,n) =
. Cn+D En+F I p._
' ([rn ]Qz+[ rn], BTEZ ) 1
0 ; otherwise
where u = lnY/kz.
In 2z

Summing M(y,z,n) over n gives

. m (1-1)
S(X,y,Z) = "k"‘ Z p<z -1; {1 +
? o<ndotx +(Cn+D)k
n=¢ modk, P 2

(rq, ,p)=1

e 5] e, 0

(an+B, 1 p)=1

0Cexp(~(1n Y/k,) 1)) + O(exp(—u(lnu—lnln3u—ln2—2)))}.

(2)
Taking the product 1 (1-1) out to the left of the sum gives
1K, P
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_y T (1-1) n (-1-1
S(x,y,2) Ez p<z P Z p<z P {1 +
k a<n{o+x K
Pk, n=0 modk P,
(r 1n p);l p! (Cn+D)
n’p<z
Cn+D En+F I p
([ Iy ]Qz+[ I ]’ Bfﬁz )1

(An+B,pgzp)=l
0Cexp(~(1n Y/k,) %)) + 0(exp(—u(lnu—lnlnSu—an—Z)))}

Now the sum

y m (-1
awndarx  P%E P
= 2
n=g modk, p1(Cn+D)

(rnapgzp)=l

(e 5] gle,” 0

(An+B,szp)=l

) ) 1 oy
w a<n oa+x p<§ P
w=l or y{w)>z n=0 modk, P,

(Cn+D, En+Fy—y  P1(C0+D)

([02+D}Qz+{E2+F]’ Bgﬁzp y=1

(An+B,pgzp)=l

where y(w) denotes the smallest prime factor of w.
Assuming, in addition to zKY/k,, that z<exp (10 (1nx) ¥) we

may apply Lemma 2.12 to this sum to give

Xy m (1-1) I
S(x,y,2) < —; =
=32 SEE L UF e

pik,

(1“%) Iy (W) {1 +

O(exp(—(1n Y/kz)%)) + 0(exp(~u(lnu-1nln3u~-1n2-2)))

+ 0Cexp(~(1nx) 1)) + 0fp([k,,Fk,]) EEEBE;%EfffE ]}
X

(3

where R and I',(w) are as described in the introduction to the

Theoren.
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We now estimate S(x,y,z) in a different way.

Define

N(x,z,m) = [{n! a<na+x, n=Q modk,,

((An+B)((Cm+E)n+(Dm+F)),pgzp)ﬂl}

so that

S(x,y,2) = X N(x,z,m).
O<mgy
m=Q ,modk,
Define sy to be the highest common factor of (Cm+E) and
(Dm+F)., Then if (sm,pgzp)>1, N(x,z,m)=0,
Further if ((A+B) ((Cm+E)+(DPm+F)),B(Dm+F) )=0mod2 then
S(x,y,z)=0. Assuming that (sm,pgzp)al and

((A+B) ((C+E)+(Dm+F) ) ,B(Dm+F) )=1mod2 we may write

N(x,z,m) = |{n: a<na+x, n=¢,modk,,

Cm+E] [Dm+F
n+

(CanvB) ([ ) pLp -1

and applying Lemma 1.1 again (this time for z<X/k,) gives

Il 1-
§1 p<z ( QméB)) {1 + 0(exp(—(1n x/k1)%))
ptk,
+ 0(exp(—v(lnv-1nln3v-1n2-2)) )}
N(x,z,m) = |
. Cm+E Dm+F I p
o) (2], o [2E]y, ooy
| 0 ; otherwise
(4}
where v = lﬂwf£k1 and
In z
Cm+E Dm+F
(p) = | dp: (An+B + y=0 modp)
fmlP n modp (n)([sm]n[sm] modp

provided that pp(p)<p for all primes p, a condition which is

easily seen to be satisfied under the conditions (sm,pgzp)=l
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and {((A+B) ((Cm+E}+(Dm+F)),B(Dm+F) )=l mod2. Summing (4) over m

gives
Seey,z) =5 ) M Qe
vo0<mg p<z P
y K
m={ ;modk, PT¥,

((A+B) ((Cm+E)+(Dm+F) ) ,B(Dm+F) )=1lmod2

((AQ1+B)([CE;E]Q +[Dm+F])’B¥ﬁ1p Y1

Sm

0 (exp(~v(lnv-1nln3v-1n2-2))) + O(exp(-(ln X/k,)%))}
(5)
for z<¥/k,.
To simplify this expression we use the notation "(m,z) app"
to denote those m which satisfy the conditions

(1) (sp, JH1,p)=1

(ii} ((A+B) ((Cm+E)+(Dm+F)),B(Dm+F))=1mod?2

C:;E]Q1+[Dm+F

(1i1)  (Ca0,+B) ([ ] .pig P o=
1

Sm

so that (5) becomes

_o0x n (1-pp(p))
S(x,y,z) = E1 0<§<y p<z _mﬁﬂ {1 + O(exp(—-(1n X/kI)%))
m=¢ ,modk, Pk,
(m,z) app

+ 0(exp(—v(lnv—lnlnBv—an—Z)))}

(6)
Recalling our assumption that Y/k,<X/k,, if z<exp(10(ln 1,

(6) and (3) give
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T (L-pp(p)) _ Yy m (1-1) m (1- 1)
0<§1<y pz b K, pz b e Fato {1+
mEszodk2 pfk, psz
(m,z) app

0(exp(~(1n X/k,)%)) + 0(exp(-(ln Y/k,)?))

([k,,Rk,]).1nlnx.1n3/2x
0[¢ 1 2 5 ]

+ O(exp(—v(lnv—lnlnsv—lnz—z)))}

Letting x-» we get,

z E (1-p )) k 2 (1-1) Ez (1~ l) I, () {1 "
0<m< pz . P<Z P P
Y k Tk
m={ ,modk, PTY, Pk,
(m,z) app

Oexp(~(1n ¥/k,)$))]

(7)
for z<exp(10(1n y)i).

In particular writing z,~exp(l0(ln y)%) we get

M (Qpp®)  _y 0 A-L? 9,
0<§< P<z, p w(kz) p<zy, P ZO( ) {
7 K.
mEszodk2 prK,
(m,z,) app

Oexp(~(1n Y/k,) )}
8y
We now determine the nature of M (1-p ( })

bz P
pk,

For p<z and (sm,pgzp)nl,
pm(P) = |{n modp: (An+B) ((Cm+E)n+(Dm+F))=0 modp}
The linear congruence
(1) An+B=0 modp
has one solution if p4A and no solution if plA. Similarly the

linear congruence

(ii) (Cm+E)n+(Du+F)=0 modp
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has one solution if p+(Cm+E) and no solution otherwise. So
certainly pp(p)<2 for all primes p.

Suppose p+A(Cm+E) so that both (i) and (ii) have exactly
one solution. Then pp(p)=2 unless (i) and (ii) have the same
solution. If this is the case multiplying (i) by Cm+E and (ii)
by A it follows that

(iii) A(Bm+F)-B(Cm+E)=0 modp.

So if A(Dm+F)-B(Cm+E)#0 modp then pp(p)=2. Otherwise pp(p)=1
or 2 and we leave pp(p) undetermined in this instance.

We have shown that

m (l-pp(p)) _ T (1-2) I (Q-pu(p))
p<z p p<z P p<z P
pfk1 Pfk1 p{k‘

PTA(Cm+E) pPAA(Cm+E)

pHA(Dm+F)-B(Cm+E) P1A(Dm+F)-B{(Cm+E)

n (-1 0 Q-1

X (9)
‘p<Z p p<Z p
ptk, ptk,
PIA ptA
P+ (Cm+E) p1(Cm+E)
This may be reduced to read
_ —1y2
M (Qpy(e)) . 1 (A-12 (10)
p<Z p p<Z P
ptk, prk,
where
I @a- 1 ) n 1+ p2-ppp))-1)
c(m,z) p<z (p__]‘_')z p<z (p~1)2
ptk, ptk,
ptA(Cm+E) prA(Cm+E)

pFA(Dm+F}—-B(Cn+E) PIA(Dm+F)-B(Cm+E)

n -1n-! n @t o @12

X

p<z P p<z P P<z P
prk, prk, ptk,
PIA ptA Pl1A

P4 (Cm+E) P! (Cm+E) p1(Cm+E)
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Only straightforward arguments are necessary, following Step

Six of Theorem One, to show that, whenever z3z,
c(m,z) = c(m,z ) {1l + O(exp(~(In Y/kz)f))}. (11)

Substituting (10) into (8) gives

m o (1-1)2 y ~m QD2 1+
DA A R
m=0 ,modk, P71
(m,z,) app
O(exp(—(1n Y/kz)f))}
so that

Z c(m,z,) < af%—). QES%L), on(w){l + 0(exp(-(1ln Y/kz)%))}
nm odk o
m=0 _mo
(m,2g) app (12)

To complete the Theorem for ¥/k,<¥/k, we require an upper bound

on the sum

Z I (1"Em£2)) for zpz .
0 p<z P 0
<mgy rk
m={ ,modk, PT¥,
(m,z) app

But from (10) and (11), for z3z,,

) M Q-pp(e)) _ 0 A-1DZ2F
<z P p<z P ’
0<mgy p O<my
m=¢ ,modk, Pk, ptk, m=2 ,modk,
(m,z) app (m,z) app
—1y2

T A1 ¥ omz,) (1 + 0(exp(-(In ¥/k,) 1))

p<§ P O<nky

prY, mEQZ,modk2

(m,z) app

Since, for z»z; and for y large, those m in the range O<mgy

which satisfy "(m,z) app" are exactly those satisfying "(m,z,)
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app" we have

¥ pgz (1—gg£g)) - pgz (1—%)2 Yo octmz
O:m<y prk prk 0:m<y
m=¢ ;modk, 1 1 m=Q ,modk,
(m,z) app (m,z,) app

0(exp(-(1n Y/k,)%))).

From (12) we now have, for zpz,

M (l-pp(p)) y nmo(1-1)2 1+
0<§<y p<z P Se;) pez bz {
n=£ ;modk,, Pk,

(m,z) app

0(exp(~(In Y/k,)8)}

Further for zpz, an(w) = Ty(w) {1l + 0(exp(-1n Y/kz)i))).

So for zpz,

T (I-pplp)) _ ¥ nm (1-1) o (1-1)
0<§<y p<z P S k, p<z P p<z P [z () {l *
m=0 ,modk,, ptk, ptk,
(m,z) app

0(exp(—(1n Y/kz)%))}.
(13)

(13) and (7) substituted into (6) give

Xy m (1-1) o (1-1)
S(lesz) < 'E""‘Ez P<Z 5 P<Z E FZ(W) {1 +
pik,

0(exp(-1n ¥/k,)%)) + 0(exp(~(ln ¥/k )2))

+ O(exp(—v(lnv~lnln3v—1n2—2)))}
(14)

which completes the theorem for ¥/k,<¥/k,.

We now turn to the second case, namely where z<¥/k,<Y/k,.

Equation (6) gave us, for z<X/k,,

I
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{(n,m): o<nat+x, n=¢ modk,, O<m<y, m=¢,modk,,

((An+3)((Cn+n)m+(En+F)),pgzp)=1}|

= X ) M (1-pp(p)) {1 + O(exp(-(1ln X/k ) 1))
k, 0<m<y P<i p
m=2 ,modk, P,
(m,z) app

+ 0(exp(—v(lnv~ln1n3v—ln2~2)))}

An exactly parallel argument gives

{(n,m): otx<na+2x, n=L,modk,, O<my, m=¢,modk,,

((An+B)((Cn+D)m+(En+F)).pgzp)=l}

-z ) M e f1 4 o(exp(-(1n %/k,) )
1 0 <m<y p<'lz< P
m=LQ ,modk, Pk,
(m,z) app

+ O(exp(—v(lnv—lnln3v—1n2—2)))}_

Consequently

I((n,m): a<ngo+x, n=g,modk,, O<m<y, m=Q,modk,,

((An+B)((cn+D)m+(En+F)),pgzp)=11|

= 3 ]{(n,m): a<n<a+2x, n=@,modk,, O<m<y, m={,modk,,

((An+B)((Cn+D)m+(En+F)),pgzp)=1}|

x {1 + O(exp(-(In X/k,)%)) + O(exp(—v(lnv-1nln3v-In2-2)))}.

Writing (M-1)X/k,<Y/k,N¥/k,, \ repetitions of the above

argument gives

{(n,m): o<notx, n=@ modk,, O<m<y, m=Q,modk,,

((An+B)((Cn+D)m+(En+F)),szp)=1)




146

= % {(n,m): o<n<otAx, n=g modk,, O<m<y, m=¢,modk,,

((An+3)((Cn+D)m+(En+F)),pgzp)=1}'

x {1 + OCexp(-(1n X/k,)¥)) + O(exp(-v(lnv-1nln3v-1n2-2)))}.
(15)

Since Y/k, KA\¥/k, we may apply (1l4) to the function

{((n,m): a<nga+ix, n=L ,modk,, O<mgy, m=¢,modk,,
((An+B)((Gn+D)m+(En+F)),pgzp)=l}

to give

{(n,m): a<na+ix, n=¢ modk,, O<my, m=¢,modk,,

((An+B) ((Co+Dym+ (EnvF)) , 1T p)=11 |

Xy I (1-1) n (1-1)
k.k, p<z P p<z P
ptk,

rpen {1+

0Cexp(-1n Y/k,)#)) + O(exp(~(1n X/k,)%))

+ O(exp(—v(lnv-1n1n3v-1n2u2)))}
(16)

(16) together with (15) gives

{(n,m): o<na+x, n= modk,, O<m<y, m=¢,modk,,

((An+B) ((CsDyme (En+F)), 1T p)=1) |

xy T (1-1) 1 (1-1)
S Kk, pz p ez p 2™ {t+
ptk,

0(exp(~1n Y/k,)$)) + 0(exp(-~(1ln X/k,)¥))

+ 0(exp(—v(lnv—lnlnSv—an—Z)))}
(17)

which completes the theorem for the case z<¥/k,<Y/Kk,.

Finally we look at the case X/k,Kz<Y/k,.
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Equation (2) gave us for z<Y/k,,

S(x,y,z) = ¥ T (=D ¥ noa-bp
k, p<i P - p<£ P

(rn, JM1,p)=1
Cn+D En+F P \_
([ Iy ]Qz+[ Th ]’ B?Ez =1
(An+B,ngp)=l

0(exp(~(1n Y/kz)%)) + O(exp(—u(lnu—lnlnSu—an—Z)))}

Writing for convenience */k,=x,, (2) and (17) give for z=x,,

y n a-un-l1  x m (1-1)

- <+ = Iy (w 1+
a<n%a+x p=z P kK, p<x, P %, (0 {
n=¢ modk, ET%éH+D)

(rn,pgxg)=l
Cn+D En+F I p
CEoe ) i’

(An+B,pgx?)=l

0(exp(-(1ln x/k,)’i)) + O(exp(—v(lnv—lnlnBv—an—Z)))}.

(18)
Now for z»x,,
¥ m (-1-1 < y mo(-n-t
a<nLa+x P:i P a<n otx P;E1 P
n=¢ modk, gl(én+D) n=Q modk, gl(én+D)
(rn,pgzp)=l (rn’pgx?)=1
Cn+D Ent+F N p._ Cn+D En+F 0. v _
([ Th ]Q2+[ Ty ]’ Bfﬁz -1 ([ Tn ]Q2+[ Tn ]’ Bfﬁ; -1
(An+B,szp)=l (An+B,ng?)=l

x {1 + O(exp(~(ln X/k,))))
(19)

which follows easily from the observation that

n -1 _ 1 @l
p<z P P<X, P
ptk, Pk,
p1{(Cn+D) P1(Cn+D)

{1l + O(exp(~(1ln x/k1)%))}.
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Substitution of (19) and (18) into (2) gives

Xy M (1-1) n (1-1)
SGyi2) € 3 e 5 petsk, p Tx, () {1 +
ptk,

O(exp(—(1n x/k‘)f)) + O(exp(—v(lnv—lnlnSv—an—Z)))}‘
(20)
Since FXI(W) =T,(w){1l + 0(exp(~(1n x/kl)%))} for z3x,

the Theorem is complete. o
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CHAPTER THREE

INTRODUCTION
The major theorem of Chapter Three, Theorem Four, is an

upper bound on the function

P(x,y,2z) = |[{(q,r); a<q<a+x, gq=f,modk,, f<r<B+y, r=Q,modk,,

((aq2+bq+c)r+(dq2+eq+f),pgzp)=1}

where the q's and r's are primes. We assume as in Theorem One
that a and d are not both zero and that the polynomials
aq?+bg+c and dq2+eq+f have no common factors, (A study of the
case where aq?+bg+c and dq?+eq+f have common factors may be
undertaken without introducing any new methods of argument and
is consequently omitted here.)

1f ¥/k,»¥X/k, we find an upper bound on P(x,y,z) with a=0,
and if X/k 3Y¥/k, we find an upper bound on P(x,y,z) with (=0.

To emphasise the different approaches we define

P,(x,y,2z) = |{{q,r); O<qggx, qEQ1modk1, B<rgf+y, rEQQmodkz,
((aq2+bq+c)r+(dq2+eq+f),pgzp)#l}

and

Pz(x,y,z) = t{(q,r); oa<qa+x, qEQ1modk1, O<rgy, r=Q,modk,,

((aq2+bq+c)r+(dq2+eq+f),pgzp)=l}

As would be expected an upper bound on P,(x,y,z) may be found
independently of g if Y/k,»*/k,, and an upper bound on
P,(x,y,z) may be found independently of a if X/k,3Y/k,.

There are at least two possible approaches to the problem
of finding such upper bounds. Firstly we might, following the

method of argument of Theorem One, write
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P(x,y,z) = X Ilr: B<r<B+y, r=€,modk,,
a<qQot+x

QEQ1m0dk1 ((aq2+bq+c)r+(dq2+eq+f),pgzp)=1]|

and then apply Lemma 1.4 to the function within the summation
sign. However, as the remarks after the statement of Lemma 1.4
indicate, any asymptotic formula or upper bound derived in this
way would have associated error terms with non-computable
O-constants. Furthermore we would be forced to take both « and
# to be zero.

An alternative approach, and the one that is adopted here,

is to firstly study the functions

T,(x,y,2) = |((q,m); 0<q<x, q=¢,modk,, B<m<PB+y, m=Q,modk,,

(((aq2+bq+c)m+(dq2+eq+f))m,pgzp)=l}

and

T,(x,y,2) = |{(n,q); a<nga+x, n=€ ,modk, , O<q<y, q=L,modk,,

(((an2+bn+c)q+(dn2+en+f))n,szp)=l}

the former when ¥*/k,<¥/k,, the latter when Y/k,{X/k,. Upper
bounds may be found for both of these functions with the
associated error terms having computable O-constants. In Step
Thirteen of the proof of Theorem Four we demonstrate how these
upper bounds can be used to give upper bounds on the functions
P, (x,y,2) and P,(x,y,z).

It is worthy of note that were we to take the former route
i.e. via Lemma 1.4, the main term of the subsequent asymptotic
formula for P(x,y,z) would be

' K, K, In%/k, . InV/E, p<z D

for some constant ¢, depending only on the constants a,b,c,d,e,
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f,k,,k,. 1In contrast the leading term of the upper bound for
P.(x,y,z) when */k,3Y/k, for atb+c@d+e+f mod2 is of the order

o XY m (-2 o (1-1)

ii
2k, k, p<z P p<z, P (0

where z, = min(z, exp((lnY/kz)l”f) for some ¢, O<e<i.

Assuming, for example, that z is approximately x%, (ii) is
weaker than (i) by a factor of (ln y)€¢. So it seems we pay
rather a high penalty for computable O-constants when
X/k,3Y/k,. On the other hand when Y/k_>¥/k, and z is
approximately yf then the two approaches give similar leading
terms .,

Before stating Theorem Four we give some definitions.

Firstly we define the functions J, and G, as

_ [k,,2Fk,]? M L+ 4p2/3)
J5 “mﬁj) 1n[k‘,2Fk2] p<z (p-1)2 R g; T, (w)
pt2k,h =l or 5 (w)>z
and
_ [k, Fk QP mo(1 o+ 4p2/3) '
% w([kl’sz]) P<z (p-1)2 ‘Zq Tz(W)

p*kzh w=1l or y(w)>z

The notation of J, and G, is as follows:

(i) y(w) denotes the smallest prime factor of w

(ii) F=(cd-fa)?2-(bd-ea)(ce-£fb)

(111) h=(ad,ae+bd,aftbe+cd,bf+ce,cf) and A=3d/y,
B=(ae+bd)/h, C=(af+be+cd)/h, D=(bf+ce)/h' E=Cf/h.

(iv) If ¢, denotes the solution of the congruences m=lmod2
and m=Q ,modk,, then T,(w) denotes the number of
integers n in the interval 1<n<2Fk, for which both

(an2+bntc,dn?+entf)=w
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and

([an2+3n+c]ga+[dn2+$n+f

. B%Ekz )=l
hold,
and finally
(v) Tz(w) denotes the number of integers n in the interval
1<n<2Fk, for which both

(an2+bn+c,dn?+en+f)=w

and

([an2+2n+c]ﬁz+[dn2+:n+f]’ Bgﬁzp y=1

hold.

Let A denote the discriminant of the polynomial
(an2+bn+c) (dn2+en+f) if neither an?+bnt+c nor dn?+en+f have

repeated factors. If anZ+bnt+c has a repeated factor, say

then let A denote the discriminant of @8(yn+s) (dn2+en+f).
Similarly if dn?+en+f has a repeated factor.
With this definition of A define

e a a 2
G(x) : OggéxiAq +Bq3+Cq2+Dg+E|
for q prime, and

1n ) = { [ln(Z.Az)

- +1}1n2.

Finally define, as in Theorem One,

{=b2-4ac, n=be-2cd-2fa, and f=e2-4fd.
With these definitions we have:

THEOREM FOUR Let an?+bn+c and dn2+en+f be polynomials with
integer coefficients, and with a and 4 not both zero. Assune
that the polynomials have no common factors. Let X,ye¢Z and €,,

2,,k, kN with (2,,k,)=1, (2,,k,)=1 and
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exp((lny/kz)i) > max[ lai, Ibl yiCH, 'dl el lfl 1k1 tkz)'
. . 1 4
Let e be any constant satisfying O<e< 7~ Inlny
Then we have the following upper bounds on P,(x,y,z) and

P,(x,y,2).

(I) If Y/k,>%X/k, and z satisfies 3<z<Y/k, then for

a+bt+c#Ed+e+f mod2,

2xy n 1-12 m @-1-1
Piy®) § i T pez § pez 5 Y O
pt2k, pi2k,
pih

+ 0[&0([1{1»25‘]‘2]) InlnG(x) 1n>‘G(x) ]_n}(]
[k,,2Fk,] 3 x

o([k,,2Fk, 1) k z 1n2z
+ 0 [Efff?ﬁjf% ) Ty )

+ O(exp(-u(lnu-1nln3u-1n2-2))) + O(exp(~(1n¥/k,)1)) |

where u = lnY/kz R
Inz

(I1) If Y/k,»X/k, and atbt+c=d+e+f mod2 and if the conditions
(1) 2=¢,modk,
(1ii) c#fmod2

(1i1) (z, 0,p)=1

(iv) ([4a+2b+°]ga+[“d+2e+f], I p

T r BTEkz )=l

are satisfied where r=(4a+2b+c,4d+2e+f) then

y n (1-2) nm (1-L
Py Sz <z b p<z P
pt2k, p2k,

pt(4at2b+c) (4d+2e+f) pi(4at+2bte) (4d+2e+1)

x {1 + 0(exp(-(1nY/k,)#)) + 0(exp(-u(lnu-1nln3u-1n2-2)))

s ) |
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If on the .other hand at least one of the conditions (i) to

(iv) is not satisfied then P,(x,y,z)=0,

(I1I) If Z%/k,>Y/k, and z satisfies 3<z<*/k, with

at+b+c#Ed+e+f mod2 then

y.x I (-2 m (1-1) 0 Q- 1)
B0 € e G U b, B osgese (D)2
moa-n7ton -yl
p<z, P P<zZ, P
p[kz plk2h

Gz {1 + OCexp(-(In¥/k,)))

2_¢ Inln3
+ oe[p((k'] 7Fk-2l) 0“[1; G] So(kz) Irl% 1n1n3|afcl .Z_;-l;:_;_)_}g,/z]

Tk, FE, 13 7
p([k,,Fk, ]} k z.1ln?z
* 0[—'_2%[1(1 K13 Pk = J

+ 0(exp(~v(lnv-1nln3v-1n3-2))) }

X
where v = l%ﬁéE‘ and z, = min(z, exp((IHY/kz)l"f)).

(IV) If %/k.3¥/k, and z satisfies 3<z<*/k, with atb+c=d+e+f

mod2 then

X m (1-1) 1x
P,(x,y,z) < E1 p<z = {1 + 0(exp(~(1n /k1)%))

pik,
+ 0(exp(~v(lnv=1nln3v-2))) + 0[_kt z.1nz ¥ )]
P p(k,) x lny

where v = 1nX/k1'

Inz

The O-constants are absolute, effectively computable, and

independent of a,b,c,d,e,f,k,, and k,.
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PROOF_OF THEOREM FOUR

As in Theorem One we split the proof into steps. Since the
proof of Theorem Four is in many respects similar to that of
Theorem One wherever possible the steps are kept parallel. The
proof of Theorem Four is not given in as much detail as that of
Theorem One, except where wholly new material and arguments are

employed.

STEP ONE An upper bound for
T,(x,y,2) = |{(q,m): O<q<x, q=Q modk,, B<m<f+y, m=@,modk,,
(((agq?+bg+c)m+(dg2+eq+f) Im, pgzp =11}

with X/k,<Y/k, and z<Y/k,.

Define for q fixed the function

M(y,z,q) = [{m: f<m<B+y, m=Q,modk,,

(((aq2+bq+c)m+(dq2+eq+f))m,pgzp =1}

so that T,(x,y,z) may be written

T,(X,y,z) = Z M(Y.Z,Q) ’ (1)
O<q<x
q=2,modk,

It is clear that we may rewrite M(y,z,q) as

M(y,z,q) = |{m: B<m<B+y, m=lmod2, m=Q,modk,,

(((aq2+bg+c)mt(dq?+eq+f) ym, pQZP =1}

The congruences m=lmod2 and m=¢,modk, have a common solution
mod[2,k,] if and only if (2,k,)1(2,~1). If (2,k,)=2 then, for
(2,,k,)=1, it follows that 2,=lmod2 and consequently that
(2,k;)1(R,-1). Hence there always exists a constant 2, with

(2,,[2,k,])=1 such that
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M(y,z,q) = |{m: B<m<B+y, m=Q,mod[2,k,],
(((aq2+bq+c)m+(dq2+eq+f))m,pgzp )=1) .
(2)
Suppose firstly that (atb+c)=(d+e+f) mod 2. Then, for g>2 and
m=lmod2, it follows that (agq?+bg+c)mt+(dq2+eq+f)=0mod2 and
consequently that M(y,z,q)=0. Under these circumstances (1)
becomes
0 y if 2#2 modk,
T,(x,y,2) = [ (3)
M(y,z,2) ; otherwise
If, in addition to atb+c=d+e+f mod 2, we have c=f mod 2 then
for ¢g=2 and n=lmod2 it again follows that
(agZ+bgte)m+ (dq2+eq+f)=0 mod 2 and that M(y,z,q)=0. So we may
further adapt (1) to read
0 ; if 2#2 ,modk, or c=fmod2

(&)
M(y,z,2) ; otherwise Lo . R et

T,(x,y,2) = {
So in the case atb+e=d+e+f mod 2 we are left with the problem
of estimating M(y,z,2) when c#f mod 2.

From (2), for q=2, we have

M(y,z,2) = {{m: B<m<B+y, m=L mod[2,k,],

(((4at2bre)mr (4a+2e+H)Im, T p )-1}|

Define r, to be the highest common factor of &4a+2b+c and
4d+2e+f, It is apparent that if (rz,pgzp)>1 then M(y,z,q)=0.

Assuming that (rz,pgzp)=l, M(y,z,2) becomes

M(y,z,2) = [{m: @B<m<B+y, m=Q mod[2,k,],

(<[4a+it+c]m+[4d+ij+f]

)m,PQZp )=1}

An application of Lemma 1.2 gives




157

[ Y m (1-p'(p)) _ -
[Z,K,] p<z P (1+0(exp(~(1n Y/2k,) %))
pt2k,
+0(exp (~u(lnu-1nIn3u-1n2-2)))}
M(y,Z,Q) =
. 4a+2b+e 4d+2e+f Op .
iy ( [ T, ]93+[ T ]’BTakz)-l
L 0 ; otherwise
where u = lE_XZEEz , and where
In z
4d+2e+f
p(p)+l | pt ....ff__,
2
q p'(p) =
4d+2e+f
p(p) Pl ——
2
with

[aa+§b+c]m+(4d+2e+f]

p(p) = |(m mod p: =
2 2

= 0 mod p}

provided that

(i) p(p)<p for all primes p; and

.. , 4d+2e+f
(i1) p(p)<p-1 if pr -~
2
But
1 4a+2b+e
T,
e(p) =
La+2b+c
0 ; p) 2E2re
T

2

so that (i) is easily seen to be satisfied, and (ii) is

4d+2e+f
T

2

satisfied for all p>2. If p=2 then for #0mod2 we

require p(2)=0. But under our assumption (rz,szp)=l we may

assume that 24r, so that égi%Eif #0mod2 ¢« 4d+2e+f#0mod2 &
2

f#0mod2. TFor cFfmod2 this implies c=0Omod2 and consequently
4a+2b+c

I,

that =0mod2 giving, as required, p(2)=0.

We are now in a position to state
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if 2#¢ modk, or c=fmod2 or
0;

ha+2b+e 4d+2e+£) 1 p
(2 02051 or ([0 [FR20) pishyo
Tl (X'YDZ) =
y M (1-p'(p)) _
[2,%,] p<z p (1+0(exp(-(1n Y/2k,) %))

pt2k,
+0(exp(—u(lnu~1lnln3u-1n2-2))))

L ; otherwise
(5)

where r,=(4a+2b+c,4d+2e+f); €, denotes the solution of the

1n ¥/2k,

congruences m=1lmod2 and m=Q _modk, ; u= o 2

[4a+2b+c][4d+2e+f]

r, T

eri® = La+2b 44 22 £
+2b+
1 ;pl[a C][ +e+]

T, T

2

if atb+c=dte+f mod 2.

We now turn to the second case, namely where a+b+cgd+e+f mod 2.
Define rq to be the highest common factor of the two
polynomials aq2+bq+c and dq2+eq+f. It is apparent that if
(rq,pgzp)>1 then M(y,z,q)=0. Assuming that (rq,pgzp)=l,

M(y,z,q) becomes
M(y,z,q) = |{m: B<m<B+y, m=0 mod[2,k,],

(([aq2:2q+°}m+{dq2;:q+f])m,pﬂzp )=1}

We have already dealt with M(y,z,2) so we may assume here that
g»3. A second application of Lemma 1.2 gives

i [7ZE ] pgz (1‘£L%R)) {(1+0(exp(~(1n Y/2k,)$))
1Ko

pt2k,
+0(exp (—u{lnu—-1nln3u~1n2-2))))

M(y.z,q) =

e e gy

;  otherwise

(6)
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where u= 12—21252 , and where
In z
dq2+eq+f
p(p)+l ; pr 22
q
p'(p) =
dq2+eq+f
pp) ; p1I AT
q
with

[aqzzbq+f]m+[dq2+eq+f] = 0 mod p)

p(p) = |{m mod p: =
q q

provided that

(i) p(p)<p for all primes p; and

2
(11) p(p)<p-1 if pr JATreatt
q
But
2+bg+
1 pr RS
q
p(p) =
0 7 pl .a_'.q_.zj.?q_-m
Tq -

so that to satisfy (i) and (ii) we have only to show that
2
p(2)=0 when Eﬂdggﬂif

. # 0 mod 2, But, as (rq,pgzp )=1, we have

p(2) = I{m mod2: (aq?+bg+c)m+(dq2+eq+f)=0 mod 2)|
= |{m mod2: (atb+c)m+(d+e+f)=0 mod 2}|

for ¢»3. As atb+c@Edte+f mod 2 it is easily seen that we have
p{2)=0 as required.

Recalling that

[Ey_k | pgz <1-P'_pP)) {1+0 (exp(~(1n Y/2k,)*))
P2
pt2k,

+0(exp (—u(lnu-1nln3u-1n2-2))))

)=1

M(y,z,2) = i [4a+2b+c]Q3+[4d+§i+f]’ %§§2

and c#fmod?, (rz,pgzp)=1

L 0 :  otherwise (7)
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summing (6) and (7) over q gives, for atb+c@Fd+e+f mod2,

-3 T (1-p' ()
T‘i (X!y:z) [2,k2] a<§<x p<z p_ { 1 +
q=£ ,modk, P12k,
(rq, 0,p)=1
aq?+bgtc dq2+eq+f Ip_
([ Iq }Q3+[ Tq ]' Bfikz) 1

0(exp(-u(lnu-1nln3u-1n2-2))) + O(exp(-(ln ¥/2k,) %)) }
(8)

where

[ 0 if c#fmod2
o =

2 if c=fmod2

Now, for (rq,pgzp)=1,

M (I-p'(p))_ 0 (1-2) n Q-1
p<z P p<z P p<z P
pt2k, pt2k, pt2k,

pt(aq2+bg+e) (dq2+eq+f) pi(aq?+bg+c) (dq2+eq+f)

o (1-1)2 n (1-1)
< s =

p<z P p<z p

pt2k, pt2k,

pt(aq2+bg+c) (dq?+eq+f) pi(aq?+bq+c) (dg2+eq+f)

- T (1-1) nm (1-1)
p<z P p<z P
pt2k, pt2k,

pf(aq?+bqtc) (dq2+eq+f)

. 0 a-n? m (-1
p<z P p<z P
pt2k, p12k,

pl(aq2+bg+c) (dq?+eq+f)

and (8) becomes
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y m (1-1)2 n (1-1-1
T, (xy,2) < [2,k,] <z P z p<z ) { 1
S 2k
PreX, q=£ ,modk pToi,

(rq E p)=i p! (aq2+bq+f) (dq2+eq+f)
p<z

(e e, e

+ 0(exp(-u(lnu-lnln3u-1n2-2))) + O(exp(-(ln ¥/2k,) 1)) }

(9)

Now the sum

¥ mo(1-y-1
a<qex ek, ©
q={ ,modk preX,
(ro, );1 p1{aq?+bg+f) (dq2+eq+f)
q’ p<zp
aq?+bgt+c dq2+eq+f 0p \_
([ rq ]Qa+[ rq ]’ Bfﬁkz) 1
- ) ) n a-p?
w a<gRx pjgk P
w=1l or y(w)>z qEQ,modk, p 2

(aq?+bq+c,dq2+eq+f)=w P1(aq?+bqf) (dq?reqtt)

([an;bq+c]Q3 [dq +eq+f] B<§k

where y(w) denotes the smallest prime factor of w.

By Lemma 2.10 this sum is less than

2% m (-1 [k,,2Fk,]? In[k,,2Fk,] T (1+ 4p2/3)
Tn x p<z P o([k,,2Fk,]) p<z  (p-1)2
pi2k, p2k,h
pih

x Z Ty (W) { 1+ O[ p([k,,2Fk,]) lnln@(x)-lnxG(X)lnx]}

w [k,,2Fk,]2z 3
w=1l or y(w)>z (10)
where
(1) F = ((cd~-fa)?~(bd-ea)(ce-fb)|
(ii) h = (ad,ae+bd,aft+be+cd,bf+ce,cf)

and A=ad/h ,Bz(ae+bd)/h' C=(af+be+cd)/h’ D=(bf+ce)/h
E=°f/h.

(1iii) Gx) = OQEEX 1Aq4+Bq3+Cq2+Dg+E)|
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and In A = { [lﬂ§%§ézl +1 } In2
where A denotes the discriminant of (aq2+bg+c)(dq2+eq+f)
if neither aq?+bg+c nor dq2?+eq+f have repeated factors.
If ag?+bq+c has a repeated factor, say aq2+bgq+c=0(yq+s)?
and dq?+eq+f does not have a repeated factor then A is
the discriminant of 6(yq+6)(dq2+eq+f). Similarly if
dq2+eq+f has a repeated factor. Clearly with this
definition A#0,
and where
(iv) T,(w) denotes the number of integers n in the interval
1<n<2Fk, for which both
(an2+bn+c,dn2+en+f)=w

and ( [anzspn+c]ﬂa+[dn2+zn+f] ’ B?§§2)=l |

_ [y 28k 08 Infk, ,2Fk,] T (1 + 4p2/2 )
o((k,,2Fk,]) p<z (p-1)2
p+2k,h

Let Jg,

T, (W) .

w=1l or y(w)>z

Substituting (10) into (9) gives

2xy n (-1)2 n (1-1)-1
T‘(X’Y’z)<[2,k2].1nx p<z ) p<z P Iz {1 *
ptik, p12k,
pih

0[ p([k,,2Fk,]) 1n1nc(x).1nkc(x)]
[k,,2Fk,]2 X

+ 0(exp(-u(lnu-Inln3u-1n2-2))) + O(exp(-(ln Y/Zkz)%))}.
(11)

This completes Step One.

STEP TWO An upper bound for

T,(x,y,z) = z I{q: O<q<y, gq=£,modk,,
oa<n{otx

n=g,modk, (((anz+bnte) g+ (dnZ+ent+f))n, [ p)-1)
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with X/k,5>Y/k, and z<exp((ln Y/k,)17€), O<e<y.

The reasoning of Step Two follows very closely that of Step

One. Define for n fixed

N(y,z,n) = |{q: O<q<y, q=0,modk,,

({an?+bntc) g+ (dn?+en+f), pgzp)=l )

so that T,(x,y,z) may be written

T,(x,y,2) = &  N(y,z,n) (12)
a<n&o+x )
n=0 ,modk,

(n, T,p)=1

Certainly within this sum n=lmod2 for otherwise (n,pgzp)>l.
Now if (a+b+c)=(d+e+f)mod2 then for g>2, q prime,
(an?+bn+c)q+(dn2+en+f)=0mod2. Consequently, if

(atb+c)=(d+e+f) mod2, N(y,z,n)Kl and

T,x,y,2) < L1
a<nQotx
nEleodk1

(0, 0,p)=1

But by Lemma 1.1 we have

z 1 = X m (-1 {1+0(exp(-v(1lnv-1nln3v-2)))

a<n{o+x K, P<§ P
n={ ,modk, Pk,
(n, 11,p)=1
+0(exp(=(1n *¥/k,)%)) )
(13)
X

where v= In /k‘

in =z

Hence if at+b+c=d+e+f mod2 we have

x I (1-1)
k, p<z P
pik,

T,(x,y,z) < {1+0(exp(-v(1nv-1nln3v-2)))

+0(exp(—(1in X/k1)%)) }
(14)
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and this completes our estimate of T,(x,y,z) in this instance.

Assuming instead that atb+cfd+e+f mod2, definme rj to be the
highest common factor of an2+bn+c and dn2+en+f. Clearly if
(rn,pgzp)>1 then N(y,z,n)=0. Assuming then that both

a+b+cEd+e+f mod2 and (rn,pgzp)nl, N(y,z,n) becomes

N(y,z,n) = |{q: 0<q<y, q=£,modk,,

([an2+bn+c]q+[dn2+en+f

: ). ot

n In

which on applying Lemma 1.3 gives

(Y m (I-p'(p)) 3 1
E, opan oo {1+ OCexp(-(n Yk )
pik,
+ 0(exp(-u(lnu-1nln3u-1n2-2))) }
N(szvn) < 4 + 0(A)
) an2+bn+ec dn2+en+f e
! ([ rn ]QZ+[ r, ]' B|ﬁ2) 1
0 ; otherwise
(15)
where u= In y/kz,
In z
Z
Tk SIn 27k i z>k
A = | PN 77K, N
1 i z<k,
2
and p(p)+l 5 pr dn :en+f
n
p'(p) =
dn?+en+f
p(p) v Pl a—
n
with

an2+bn+c]m+[dn2+en+f]

p(p) = |{m modp: [ =0 modp )

Tn In
provided that (i) p(p)<p for all primes p, and

dnZ+en+f

(i1) p(p)<p-1 if pr ——

n
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But an?+bn+c
1 pt —p—
Tn
p(p) =
an?+bn+tc
0 ; pt ——m———
In

and (i) and (ii) are seen to hold by reasoning similar to that
used in Step One.

Taking the 0(A) term into the main term gives, for

([an2+bn+c]gz+[dn2+en+f

I p
) BiE, )1

Tn

n (

, P<z
Psz

N(y,zm) < ¥ 1"£léB)> {1+ 0(exp(~(In Y/k,) 1))

—nt -1
+ 0(exp(~u(lnu-1nln3u-1n2-2))) + 0[ Ak, T (Q-p'(p)) ] }

Yy p<z P
ptk,

(16)

But clearly

2
NoAp N o moant Ay [ e Y ek
p<z P p<z P p<z P 2
psz Psz p{kz 1n2z 2k

For z<exp((ln Y/k,)1-€) this gives

2

2

p<z P
(1n ¥/k,)2(1-€) ; z<k,

n (-p(p))-1 < { (In ¥/k,)2(L1-¢) Efé%z) R
ptk,

Further 1 -
urthe A ¢ PTE,) " exp((1ln Y/k2)1 €) ; z>k,

1 ; z<k,

and from here it is a simple matter to show that

Ak, T (1-p'(p))-1
_yz pez - € exp(—(ln Y/k,)1)
prk,

and the third error term of (16) becomes absorbed into the

second.

2

2
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Summing (15) over n gilves

1__ 1
T,x,y,2) < % X Ez ( Q_Sg)) {1 +

2 g<notx P " P

n=2 modk, prk,

(n, J1,p)=1

(rn ’ pgzp )=1
an2+bn+c dn2+en+f Ip ._

([ ry ]Qz+[ L ]’ BT 2 )=1

O(exp(-(ln Y/k2)§)) + 0(exp(—u(lnu—lnlnBu—an—Z)))}.

(17)
From the definition of p'(p) we have

2 ; pt+(an?+bn+c) (dn2+en+f)
p'(p) =

1 ; pi(an?+bnte) (dn2+n+f)

for (rn,pgzp)=1 and p<z. Hence the product [ (l-p'(p)) in

P<z P
ptk,
(17) becomes
n (1-p'(p)) _ 0 (1-2) m (i-1)
p<z P p<z P p<z P
pik, ptk, ptk,

pt(an2+bntc) (dn?+en+f) pl{an2+bn+ec) (dn?+en+f)

n (1-1)2 n (1-1)-1
pP<z P p<z P
ptk, ptk,
pl (an?+bn+c) (dn?+en+f)

and (17) becomes

y 1 (1-1)2 mo(1-1)7t
Tz(x,y’Z) < kz p=z 5 a<n§a+x p=z P {l '
ptk,

n=0 modk, ptk,

2 2
(n,pgzp)=1 P! (an?+bn+c) (dn?+en+f)

(rp, J0,p)=1

([an2;2n+c]ez+[dn2+en+f]’ B?Ez y=1

Tn
0(exp(—(1n Y/kz)f)) + O(exp(—u(1nu—1n1n3u—1n2—2)))}.

(18)
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Now the sum

y mo(1-1)-1
a<n a+x g:i P
(Efgﬁm;?ii Pl (anZ+bn+c) (dn2+ent£)
p<z
(rn,pﬂzp)“l
2 2
(e )
. b R
w a<niot+x P;i P
w=1 or y(w)>z (nnﬁg’g§i§1 gl(§n2+bn+c)(dn2+en+f)
p<z

(an?+bn+c,dn2+ent+f)=w
an?+bn+c dn?+en+f
(e [

1P y_
< ' BiE, =1

where y{w) denotes the smallest prime factor of w.

By Lemma 2.11 this sum is less than or equal to

m(1-1) 0 (1-1)
o<z B pez D é Ag) {1+
plk, ptk,h

w=1l or y(w)>z

AL
O(exp(—-(lnx)f)) +O[W([k1,Fk2]) Inlnx 1nAtix }}

X2
(19)
M b - Sy g U Ghy T
ptk,h
and where
(i) F = ((cd-fa)2-(bd-ea)(ce-fb)]

(ii) h (ad, ae+bd,af+be+cd,bf+ce,cf)

and =ad/h ’B=(ae+bd)/h, C=(af+be+cd)/h’ D=(bf+ce)/h

E=°f/h.
(iii) G(x,a) = a<32§+x|An4+Bn3+Cn2+Dn+EI
and In(2.A2)
Inx = { o224 ] e

where A denotes the discriminant of (anz+bntc) (dn?+en+f)

if neither an2+bnt+c nor dn?+entf have repeated factors.
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If an?+bntc has a repeated factor, say an?+bnte=8(ynt+s) 2
and dn2+ent+f does not have a repeated factor then A is
the discriminant of §(yn+s)(dn2+en+f). Similarly if
dn?2+en+f has a repeated factor.

and where

(iv) TL(w) denotes the number of integers n in the interval
1<n<Fk, for which both

(an?+bntc,dn?+en+f)=w

e e R A

lLet
© Gz = Z Az (w)
w

w=l or y(w)>z
(As in Theorem One we have that the number of possible w is at
most 7(F) where 7(F) denotes the number of divisors of F.)
Substituting (19) into (18) gives
~132 ~ -
T,(x,y,2) < yx T (1-1) n (-1 m (1-1)

k, p<z p p<z P p<z P
psz Pk, p{kzh

Gy, { 1+

Al
O(exp(-(1lnx)€)) +0[¢([k1.Fk2]) i;lnx Initlx ]

+ O(exp(—(lnY/kz)*)) + O(exp(—u(lnu—lnlnBu—an—Z)))}
(20)

This completes Step Two.

STEP THREE An asymptotic formula for

T,(x,y,2) = Z I{n: o<ngot+x, n=¢ modk,,
0<q<y
q=L ,modk,

(((aqtd)n®+(bgte)n+(cq+f))n, T p)=l)
with 3<z<¥/k,

The initial stages of Step Three are very similar to those

of Steps One and Two. Define for q fixed
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R(x,z,q) = |(n: a<notx, n=¢ modk,,

(((aq+d)n2+(bq+e)n+(Cq+f))n,pgzp)=l }

so that the sum under consideration becomes

T,(x,y,2) = L R(x,z,9 . (21)
O<q<y
q=Q ,modk,
To find an asymptotic formula for R(x,z,q) we continue as we

have done previously and remove from (21) any R(x,z,q)

obviously zero. Certainly for z>3

R(x,z,q) I{n: o<nat+x, n=lmod2, n#Omod3, n=Q€ modk,,

(((ag+d)nz+(bgre)n+(cq+))n, [ p)=1 )|

l(n: o<n<a+x, n=lmod6, n=¢ modk,,

(((aq+d)n2+(bgre)nt(eq+))n, 1 p)=1 )|

+ i(n: a<nkot+x, n=5modé, n=Q modk,,
(((aqrd)nz+(bgre)nt(cqt))m, 11 p)=1 1
Now there exists a constant ¢, with (€,,6,k,)=1 such that

{n: a<na+x, n=lmod6, n=Q modk,,

((Cagrd)n2+(bgre)nt(eq+t))n, 11 p)-1 )l

|(n: a<ncarx, n=0 mod[6,k,],

(((agtd)nz+(bgre)nt(eq+t) ), 1 p)=1 H

; if (6,k;)1(2,-1)

L o ;i (6,k,)4(2,-1)

and there exists a constant ¢, with (2,,6,k,)=1 such that

l[n: a<n<a+x, n=5mod6, n=¢,modk,,

(((ag+d)n2+(bgte)n+(cq+f))n, 1 p)=1 ]
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(n: a<nat+x, n=Q mod[6,k, ],

(((aq+d)n2+(bq+e)n+(cq+f))n,pgzp)=l }

3 if (6,k ) 1(R,-5)

L 0 ; 1f (6,k)4(2,-5)

If (6,k,)=3 or (6,k;)=6 with (2,,k,)=1 then (6,k,)1(2,-1) or
(6,k,)1(2,~5) but not both in which case there exists a

constant 2. with (2,6,k,)=1 such that

R(x,z,q) = |{n: a<n<o+x, n=Q . mod[6,k,],
(((aqtd)n2+(bgre)nt(cqrf))m, I p)=1 )

(22)
If on the other hand (6,k,)=1 or (6,k,)=2 then both

(6,k,;)1(2,-1) and (6,k,)1(2,-5) and

R(x,2,q) = [(n: ancosx, n=ggmod[6,k,],

(((aq+d)n?+(bgre)n+(eqrf))n, 11 p)=1 )|

+ l{n: a<nortx, n=f mod[6,k,],
(((aq+d)n2+(bq+e)n+(cq+f))n,pgzp)=l )I

(23)

Define sq to be the highest common factor of aq+d, bgte, and

cg+f. If (s Ezp)>l then R(x,z,q)=0 so assume the contrary.

4'p
If aq+d+bgtet+cq+f=0mod2 then (ag+d)n2+(bg+e)n+(cq+f)=0mod2 for
n=lmod2 so again assume the contrary.
If (aq+d+bg+etcq+f,4(agq+d)+2(bg+e)+{cq+f))=0mod3 then
(ag+d)n?+(bg+e)n+(cq+f)=0mod3 for n#¥Omod3. Again assume the
contrary.
Assuming then that

(1) (sq. 0,p)-1

(ii) (aq+d+bgtetcq+f)=lmod?2

(iil) (agq+dtbgteteq+f,4(aq+d)+2(bgte)+(cqg+f))#0mod3,

an application of Lemma 1.2 to (22) gives, for (6,k,;)=3 or 6,
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X n (1-p ( b "
[6,k,] p<z p {1+0(exp(~(1n X/6k,) 1))
ptok,
R(x,z,q) = +0(exp (-v(lnv-1nln3v-1n3-2))) )
. ([29¥9), 2, [bgte cq+f P
e e, [ P 0o
0 : otherwise
with v = 12_51251 and
In =z
+f
pq(P)*+l ; pr 1=
! q
Pq(P)=
. cg+f
Pq(P) ? Pl P
q
with
Pq(P) = I{n modp: [Egig]nz+[kﬂi2]n+[CQ+f] = 0 mod p }|

q Sq Sq
provided that
(a) pq(p)<p for all primes p

cq+f

(b) pg(p)<p-1 if pr
°q

Our conditions (i), (ii) and (iii) are enough to ensure that
(a) and (b) hold.

Summing R(x,z,q) over q gives

Loy - ey L T Gmie) g,
q~92modk P16k,
(q,z) app

0(exp(-(1ln X/6k )%)) +0(exp(~v(lnv-1nln3v-1n3-2))) )
(23)

when (6,k,;)=3 or &, where the term *(q,z) appropriate" or
"(q,z) app" denotes those primes q for which the following

conditions hold:

(1) (sq, 0, p)=1

(il) aq+d+bg+e+cg+f=lmod2
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(iii) (aq+d+bgte+cq+f,4(aq+d)+2(bg+e)+(cg+£f))#0mod3

(o) (B0, (B, 2011, e 1o

Any q satisfying conditions (i) to (iv) is said to be
"z appropriate".

If we extend the range of definition for "(q,z) app" so
that when (6,k,)=l or 2 it becomes the set of conditions

(1) (s )=1

q’ p<zp

(ii) aq+d+bg+e+cqg+f=lmod?2

(iii) (aqt+d+bg+e+eq+f,4(ag+d)+2(bg+e)+(cq+f) )#0mod3

o (2o, e (BT, 2 1 e
(e P 0[S, e 5o

then a similar argument gives

- X M (1-pg(pP))
T,(x,y,2) [T'E] 0<§<y p<z —g—-— {1+
q=¢ ,modk, POk,
(q,z) app

O(exp(—(1n x/le)%)) +0(exp(-v(lnv-1nln3v-1n3-2))) }

(24)
for any value of (6,k,).
Recalling from (20), that for z < exp((ln Y/kz)l_e),
¥yx m(-12 nm (1-1) n (1-1)
T,(x,y,2) € K, p<z b p<z 7 p<z p Gz { 1+

ptk, ptk, ptk,h

[k,,Fk,]) lnlnx lnMlyx ]

0(exp(—(1nx)€)) +ofp( a

+ O(exp(—(1n Y/kz)%)) + O(exp(—u(lnu-1nln3u-1n2-2))) }

a comparison with (24) gives
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) T -pg' ) ylo k] M (1-1)2 T (1-1) 1o (1-1)
O<qcy P2 P k, p<z p psz  p p<z  p
qEQZmodkzp*Gk‘ ptk, pik, ptk,h
(q,2z) app

o([k,,Fk,]) lnlnx 1nMlx ]

x G { 1+ OCexp(~(1nx)€)) +0| ;
X

+ 0(exp(-(1n ¥/k,) %)) + 0(exp(-u(lnu-lnln3u-1n2-2)))
+ O(exp(—(lnx/6k1)%)) + 0(exp(—v(lnv—lnlnBv—lnS—Z)))}

(25)
As the left hand side of (25) is independent of x we may let

xX»o and (25) becomes

) m (l-pg' (P yl&,k] M (A-1)2 1 (1-1) 1T (1-1)
O<q<y  P<% P k, p<z P p<i P p<i . P
qiﬂzmodkzp*ﬁkl pik, PIX, ptk,
(q,z) app

X Gy {1 + 0(exp(—(1ln Y/k,)¥)) + 0(exp(—u(lnu-lnln3u~1n2—2)))}
(26)

for 3<z<exp((ln Y/k,)17€). (27)

STEP FOUR Determination of pq'(p) in terms of the Legendre

symbol.

Arguing as in Theorem One we have, for p<z and q "z

appropriate",
(Bq/p)+l  ; pt2(aq+d)
Pq(p) = 1 ; pl2(agq+d), pt(agq+d+bq+e) (28)
0 i pl2(aq+d), pi(aq+dt+bg+e)

where Bq = (b2-4ac)q2+2(be-2cd-2fa)q+(e?2-4£fd), and where ('/p)
denotes the Legendre symbol.

So, for 3<p<z and q "z appropriate", since
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pq(P)+Ll ; pr(cg+f)
pq' (p) = [
pq(P) ; pi(egt)
we have
(8q/p)+2 ; pt(aq+d)(cq+f)
(8q/p)+1 ; pr(agq+d), pi(cqf)
pq' (P) = ; (29)
2 ; pi(aq+d), pr(bgte)(cq+f)
1 i pi(agqtd), pl(bgte)(cq+f)

STEP FIVE gq @ square

As in Theorem One we may assume that if ag?+bq+c and
dq?+eq+f have no common factors then 8q is not a complete
square,

For Bq @ square, from (29), we have
(3 pt(aq+d) (eq+f)gq

pr(aq+d) (eq+f) & plgg

2 or p{(aq+d)gq & pl(cg+f)
pg' () = (30)
or pl(aq+d) & p4(bg+e) (cq+f)

pt(agq+d) & pi(eq+f) & pigg

1
or pl(ag+d) & pl(bg+e) (cq+f)
and
I (1“Pg'(P)) - I (1-3) n (1-2) n (1-2)
p<z P p<z P p<z P p<z P
pték, prék, pték, pt6k,

pf(aq+d)(cq+f)gq pt(ag+d) (cq+f) pf(aq+d)gq
PlEq pl (cq+£f)
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T (1-2) m (1-1) mo(1-1)
p<z P p<z P p<z P
pt6k, pték, p16k,
pl(aq+d) pt(aq+d) pt(agtd)
pt(bgte) (cq+f) pl(eq+f) pl(bgte) (cq+f)
Pl8q

If pi(aq+d) then pi(bg+te) < plgq. So

I (1-pq'(p)) ¢ m (1-2) m (1-2) I (1-2)
p<Z P p'(Z P p<Z P p<z P
piék, p1bk, pt6k, pt6k,
p~r(aq+d)(cq+f)gq pt(ag+d) (cq+f) p{(aq+d)gq
PiBg pi(eq+t)
'J
; n (1-2) m (1-2) n (1-2) n (1—}_)"1 i (1—_]“._)‘1
) P<z P p<z )Y p<z P p<z P p<z P
prék, pték, ptok, ptbk, proék,
p+(aq+d) pi(aq+d) Pl (aq+d) pi(aq+d) pi(ag+d)
pieqtf)  preqif)gy pileqiflgg pieqtt)  pileqif)gg
Pl1&q PlBq

mo(1-2) 0o ALl 1 -l

pP<z P P<z P pP<z P
prok, prék, prék,
pt(ag+d) pi(aq+d)
p1(cq+f) pi(cqrf)gg
Plgq
¢ T @2 1m ant
p<z P p<z P
p1ék, pl(eq+f)gg
m (1-2)
4 p<z 3 1n1n(|(cq+f)gq|)
pték,

Now in Theorem One (Step Thirteen) we saw that assuming
exp((ln Y/kz)i) 2 max{ ial,lbi,ict,1d1,1e1,1f1,k, ,k, )

was enough to ensure that

y? 2
5 < Ogg§ylgql < 4%y
with {=b2-4ac.
It is also clear that under the same assumption we have

teq+fi < 2iery.

i1
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So
T (1-pq'(p)) ¢ nm (1-2) Inln(81tciy?)
p<z P p<z )
pték, pt6k,

and it follows that

Z i

(1-pq' () ¢ n

D ganqiterys) LY

p<z P p<z
0fq<y pt6k pr6k 0fQ<Y
q=2 ,modk , 1 1 q=Q ,modk,
(q,z) app (q,z) app

8q @ square

gq a square

¢ T D ey L1
pez P 0<m<
pték 7
! m=£ ,modk,

gm & square

Following the argument of Step 4, Theorem One, we have

. f - 2.
¥ pgz (1-pg' (R)) ¢ EZ (1-2) T[ﬂ_zfﬂ] Inln(ifeiy?)
0<q<y P ek, |
q=¢£ ,modk, ptbk, p6k,
(q,z) app
gq @ square
y
x n[¥] Gh

where {=b2-f4ac, n=be-2cd-2fa, 6=e?2-4fd.

We note here that (31) holds for all =z.

Substitution of (31) into (26) gives

) M (1-pg' (@)  y [6,k,]
0<q<y p<z P kz
= pték
q=¢ ;modk, 1
(q,z) app

8q not a square

m Q-1
p<z p
ptk,h

n (-2 0 (1-1)
p<z P p<z P
ptk, plk,

z {1 + 0(exp(-u(lnu-lnln3u-1n2-2)))

0(exp(—(1nY/k,) %))

+ O[w([k,,sz])kz T[nz_rs] 1n1n;|§c;y) In

[k,,Fk,]2

4

i) 2]}

(32)
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for 3 < z < exp((ln y/kz)l"e)-

This completes Step Five.

STEP SIX Reduction of n (1—pq'(P))_
p<z P
ptbk,

Let (-/p) denote the Legendre symbol. Recalling (29) we

have for q "z appropriate",

M (I-pg'(p)) _ M (1- (Bg/p)+2 ) M (1- (Bg/p)+l )

p<z P p<z P p<z P
pték, prok, pték,
ptr{aq+d) (cq+L) pt+(ag+d)
pi(eq+L)
n (1-2) n (1-1)
p<z P p<z P
prék, ptbk,
pi1(aq+d) © pi(ag+d)

pt(bgte) (eq+f) pi(bgte) (cq+f) .. - ...

This may be rewritten as

I (l—pg'(p)) . n Qa- (gQ/p) >y no(1-2) I (1-1)
p<z P p<z P pP<z P p<z P
ptbk, pt6k, prok, pték,

pt{ag+d) pt(agq+d) (cq+f) pt(aqtd)
pi{cgtf)
m (1-2) mo(1-68,(p)) M (1- 6,(p)) M (1-1)
p<z P p<z p? p<z p? p<z P
pibk, pték, ptok, p16k,
Pl (aq+d) pt{aq+d) (cq+L) pt(ag+d) pl(aq+d)
pt(bg+e) (cq+f) pi(cg+t) pl(bg+e) (cg+L)
(33)
2 2
where 68, = 2p?. (Bq/p) and 6, = p?.(8q/p)

' e (- (Ba/p)) - -Dp-(8a/p))

Let x(p) = xp(p) denote the Kronecker symbol (D/P) where if
gq=r25 for s square-free and not equal to 1, D=4s or s as

s#l mod4 and s=1 mod4 respectively. Then, as in Theorem One,
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the Legendre symbol (gq/p) is equivalent to the Kromecker symbol

(D/p) whenever p¥2gq. Applying this to (33) gives

I (1-pg'(@) . 0 (1= x(p)) N0 (1-2) n (1-1)
p<z P p<z P p<z p p<z P
pA6k, P46k, pt6k, pték,

pt(aq+d)gq pt(aq+d) (eq+f)  pr(aq+d)
Pl (cqg+f)
n (1-2) m (- 6,(p» m Q- 6,(p)) T (1-1)
p<z P p<z p? p<z p? p<z P
pték, ptoék, pték, piék,
pl(aq+d) pr(aq+d) (cq+f)gq pt(agtd)gg  pi(agtd)
pt(bgte) (cg+£) pl{cg+f) p! (bg+e) (cq+f)
2p2x(p) p3x(p)
vhere 0y = amyoxe) ™ %2 T DY)
This may also be written
I (I-pg'(p)) . M (1-2) IO (1-x(p))
p<z P p<z P p<z p  T(Bq:®) (34
p»r6k1 p-r6kl
where
£gg2) = 1 (IxE»™ 1 Aa-6,e» T (1~ 6,(p))
p<z p p<z P p<z P
p[6k‘(aq+d)gq pt6k, pték,
prlagtd) (cq+f)gq  pr(aqtd)gg
pl(cg+f)
T (1+1 ) o (+1)
X p<z P2 p<z p-2 (3%
ptbk, p1bk,
pt(ag+d) Pl (ag+d)
pl(cq+f) pi(bgte) (cq+f)

Equation (34) together with (32) gives
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o (1-x(p)) yi6,k.] M(l-1) O (1+ 1 )
0<§<y p<z P f(SQ'z) < N P<z P p<z P2-2p
q=L ,modk, prok,

(q,2z) app

8q not a square

-1)-1 -1yl -1)2
p<z P p<z P p<z p
Pk, pik,h pi6k,

O0(exp(—u(lnu-Inln3u-1n2-2))) + O(exp(-(1in Y/kz)%))

+O[W(H:::g§::%;kz T[‘f)z;fe] 1nln}(r|§’c]y) ln[[—yﬂ] lnz] }

(36)
for 3<z<exp((1nY/k,)l~€).
In particular writing z =exp((ln Y/kz)l"f), since we may assume

that z >max(k,,k,,h), we have

y M Ax®) g, oy ¢ 2I6,K, ] _kh  p2(6k) T (1-1)
0<q<y P<z, P q'=e plk,) “plk,h) 36k, 2 p<z, P
q=0 ,modk,

(q,2,) app

Bq DOt & square

T A+ 1

———— — €
S 57, Gzof 1 + 0(exp(~(1nY/k,)€))

ptbk,

ol - (1] B wnf] ] ]

(37)
By a proof identical in most respects to that of Theorem One we
are able to show that the primes q that are "z, appropriate"
are exactly those primes q that are “"appropriate". i.e. those
primes q satisfying the conditions
(1) (ag+d,bgte,cq+f)=1
(ii) aq+dtbg+e+cq+f=l mod 2

(iii) (aq+d+bgtetcq+f,4(aq+d)+2(bg+e)+(cq+f))#0 mod 3
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(iv) ((agq+d)R %+(bqte)l +(cqte), 6k,)=1
if (6,k,;)=3 or 6.
Similarly for (6,k,)=1 or 6.

Further we may show for z>z, that

£(gq,2) = £(gg) (1 + O(exp(-(1n Y/k,)))) (38)
where
_ -1 - _
£(gg) = m (1 gég)) n 0;2?)) nm (1 Bzép))
p|6k1(aq+d)gq pték, piék,
pt(aq+d) (cqtf)gq  pt(aqtd)gq
pl(cq+f)

m (1+1 ) m (1-2)°t

x =) 5 (39)
pték, pt6k,
pt(aq+d) pi{agq+d)
pl{cg+f) pl(bg+te) (cq+f)

The proof of (38) follows the arguments used in Step Six of
Theorem One and it is not repeated here.

We finally note that as both I (l—Gl(p)) and
pték, P’

pt(agq+d) (cq+f) gq

m (1-6,(p))
p«r6k1 p?
pt(agtd)gq
pi(cg+f)

are absolutely convergent there exist constants

¢, and c, such that

I (xe)N™l m @+ 1 ) mo(1+ 1)
1 pi6k, (aqrd)gq P prék, p-Z  prek, p2 < f(Bg) <
pt(ag+d) pi(ag+d)
Pl (cg+f) pl (bgt+e) (cq+f)
.. W (A-xeep»™t m 1+ 1 ) m @+1)
2 p|5k1(aq+d)gq P pt6k, p-2  pibk, P2
pt(aq+d) pi(ag+d)
pl(cq+f) pi(bg+e) (cq+f)
(40)

In line with Theorem One we end Step Six here.

|
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STEP SEVEN Continuation of Step Six.

We split Bqr as we split gy, inte "good" and "bad"
corresponding to whether or not the related D is exceptional
in the sense of Lemma 5,1,

2
Clearly 1Dy < 40g3§y]gq| < lé61t1y?.
Taking o=27 in Lemma 5.1, and writing Q = 4033§y|gql, we

derive, for zpz,,

nm (1- m @a-
) T Oxe) ey = ) T GxDe 1+
0<g<y P P 0<q<y p=<z, %
q=2 ,modk, q=Q ,modk ,
q app q app
gq Mot a square gq not a square
Bq good Bq good

0(exp(—(1n Y/k,)%)) }.
(41)

The next four steps are devoted to finding an upper bound

for the sum

) T (I-pq' (@)
p<z P
04y prék
q=¢ ,modk, 1
q app
gq Dot a square
8q bad
for z3z,.
STEP EIGHT The sum Z N (1-pg'(p)) for
qE!szoclkzp'r 1
q app
gq not a square
g8q bad

exp((1ln Y/kz)l‘f) < z < exp(y'/7).

As pq'(p) is always greater than or equal to one we have
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Z pgz (1—Pq;(p)) < sz (1—%) Z 1
O<qgy 0<q<y
q=L modkzp*Sk‘ pr6k, q=L ,modk,
q app q app
gq Mot a square gq DOt a square
gq bad gq bad

p<z
p+6k,

oy ¥

P O<my
n=¢ ,modk,
gn bad

¢l OB P i) s

p<z
p46k,

from Step Eight of Theorem One.

P 4

So

O<q<y P‘<Z p ‘D(k1)
qaﬁzmodkzp{sk‘

q app

8q not a square

gq bad

and

0<q<y p<z

q=¢ ,modk,

q app

Bq not a square
8q bad

m (1-x(p)) k
Z = f(gq) <€ 6?Ef) T

plk))  [n2=50
e i b

For exp((ln Y/k,)1=€)<z<exp(y'/7)

T[ﬂz—fe] ln[l{I] |§i;/zy2/3

(555 1nfy) SO

n (1-2)-1
p<z P
ptbk,

] ln[ b ] 1?1‘/3y2/3 1oz .

15

this gives
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Z - Ax®E), p(Ky) [12-50) ¢ 1/3y5/6 42
O<qgy P** o (8 <5 T[] sy “e
q=Q ;modk,

q app
8q not a square
8q bad

So, for exp((ln Y/k2)1‘5)<z<exp(y!/7),

Lo Ay - I T e
P

O<qcy P** P 0<q<y P**

q=¢ ,modk, q=Q ,modk,

q app q app

Bq not a square 8q not a square
Bq good

+ O[sO(k,) T[”zz“’] m1/3ys/e]

k,

which, by (41}, gives

o (1- m (1-
Lo 0 Ay o L T Ax®egy 1
0<q<y F p 0<q<y P70 P
q=0 ,modk, q=L ,modk,
q &pp q app
8q not a square Eq not a square
Bq good

0(exp(ln Y/k,) %)) }

+ 0[¢(k1) T[ﬂzzrg] l§|1/3ys/s].

k,

But from (37),
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P

O<q<y P<%o p(k,) ' p(kh) ' 36k,? ° p<z, P
q=£ ,modk,
q app
gq not a square
8q good
m (+ 1 )
p<z, 5775 Gz, { 1+ 0(exp(=(In ¥/k)€))
pt6k,
p(lk,,Fk 1)k, [m?={8) lnlnCifciy), [ ¥
+ 0 [k, FE. T3 r [T 7 In[;F] 10y
o[k ,Fk, 1) o(k,)p(k,h) q2-6 -
+ o 65,1 S K r[Tg) irn /ey /e tny]}
(43)
Hence
) n Q- x(p)) flgoy < Y18k D Kph - p2(6ky) M (1-1)
O<q<y P2 8q (k ) p(k,h) "36k,2 " p<z, P
q=2 ,modk,
q app

gq ot a square

m (+ 1 )
pP<Zg p?-2p
pt6k,

Gy, {1+ OCexp(=(1n ¥/I,)€))

. o{w([k1,Fk 2]) o )ellah) (02800 p)1/5y1/6 1my] ]

[k, Fk, ]2 (k) k,h 2
and
n (1‘Pq'(P)) y[6,k,] k,h »2(6k.) n(i-1)
. 2 . 1/, o
0<§<y pez P S o0y pUGR) 36K, T p<z, D
q=0 ,modk ,PT¥1
q app

gq not a square

m (Q+_1 ) m (1-2)
P<Zg p?-2p p<z P
pt6k, pt6k,

Gz, { 1+ OCexp(-(1n Y/k;)®))

o€k Fk,1) p(k,)p(k,h) q2-t6 -
* ol CEsTt T ) /ey /e ny]

(44)
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for exp((ln Y/k2)1”6)<z<exp(y‘/7).

In Step Nine we turn to the case y>exp(y1/7).

STEP NINE The sum Y m (l-pg' (p)) for zrexp(y'/7).
0<q<y p<zk‘ P
qEQ.zrl}o(:llc!pr 1
q app
gq not a square
gq bad

Writing z,=exp(y1/7) we saw in Step Nine of Theorem One

that for z>z ,

m (1-x(p))
z,<p<z p <

with at most one exception.

So, for z>exp(y'/7), by (42) we have

I (I-x(p)) T A-x®EN
) X®)e(gy) ¢ L X)) gy

O<qggy p<z O<q<y p<z,

q=0 ,modk, q=2 ,modk,

q app q app

gq NoOt a square gq noOt a square
gq bad gq bad

¢ @ﬁkl) T[nzzfo] 1511/ 3ys/s

1

with at most one exception.

STER TEN Translation of I (1—pq'(p)) into a product
p<z P
pték,

involving the norms of prime ideals in Q(ng).

As in Theorem One we have

m{a-1 ) 0 (1-1) m (1-1) o (i-1)
N@<z N B<z P, P<z ) Bz<z p?
(¥/p)=1 pID V/p)=-1

(45)




186

where § is a prime ideal in U(ng), and NS is the norm of 3.

We were consequently able to show that

m(1-1) m (1-x(p)) ¢ n (1-1)
P<z P p<z P Nf<z NB

So, for zdexp((ln Y/k,)1-¢€),

p<z p p<z P p<z P
pték, pték,

T (1-pq'(p)) ¢ I (1-2) 0 (I-x(p)) £(gq)

) k.2 M (-2 1

1-x(p))
C o) pez P opee p (8D

—

k.2 n (1-1) n -1 )
< Ei%ET) p<z p NB<z N £(gq) -

Further, as nm (1-1)

¢ 1 for zYD6, and
NfB<z “NB L(l,xilnz

exp(y'/7) » (Oggéylgql)6 » exp((ln Y/k,)1-€),

we have
P -1
y M (lpg' @) ( k2 1§ L™ g
p<z P w2(k,) 'In?z
0<q<y 16k 0O<q<y
qEszodk2p 1 q=2 ,modk,
q app q app
&q net a square 8q not a square
gq bad gq bad

(46)
for z;exp(y1/7), and

¥ M Qx®) gy ¢ ) L(1,071 £(gy)
0<g<y p<z P a 0<q<y
q=0 ,modk, q=£ ,modk,
q app q app
gq not a square gq Dot a square
gq bad gq bad

(47)

In Step Eleven we estimate (47) over the possible

exceptional modulus of (45).
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STEP ELEVEN The possible exceptional modulus of (45).

From (62) and (63) of Theorem One we have that for every
e>0 there exists an effectively computable constant ¢>0 such
that

L1, < ¢ _ st

' ¢ (Inrspl=e/2
where D is the possible exceptional modulus of (45) and where
§=D or §=D/4 according to either D#Omod4 or D=Omod4. We will
take the ¢ above and the ¢ appearing in zn=exp((lnY/k2)1“f) to
be identical.

Now, from (40) in Step Six, we have

£lg) < 1 (I-x(e»™t m (+1) m (1+1)
=4 P16k, (ag+d)gg P prék, p-2 pibk, p-2
pt(aq+d) p1(ag+d)
pl(cq+f) pl(bg+e) (cq+f)
Less strongly,
£(gs) < m (-1l m @+ 1) mo(@+1)
5q pik,(ag+d)gqg P pi(cq+f) p-2 piaq+d) p-2

€ ;%iT) Inlnj(ag+d)gql.1lnlnicq+fi.Inlnlag+dg

4 a%tT}nln3|afc|.lnln3y.

Consequently
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YLl feg) ¢ st R,y

PEETEILY CoTery Inln®iafer.
0<q<y ¢ (Anisnyl-e/2 Tplky)
q=¢ ,modk,

q app
&q not a square
gq bad

x 1lnln3y Zf 1
O<q<y
q=Q ,modk,

q app
gq Mot a square
gq bad

where the sum Zr is over gq which give rise to the possible
exceptional modulus of (45).

Clearly

YoraTl fleg o _imit Ky
0<q<y ¢ (Imisnl-e/2 Tplky)
q=¢ ,modk,

q app
8q not a square
8q bad

Inln3tafer.

X lnln3y Zf 1
O<m<y
m=0 modk,
gqn not a square
gq bad

so that following Theorem One we have

-1 -
YLl £(gg) ¢t Talnsiarer. s [1575]

O<gy Pk, 4
q=¢ ,modk,
q app
Bq not a square
gq bad
ylniniy
(1n y)l—e/Z (48)

(48) together with (47) and (45) gives
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T (A-x(p)) f(gq) <e Iflf.—El— ln1n3|a§C|.T[ﬂj:££]

O<q<y p<z p (P(k1)- 4
q=L ,modk,
q app
gq Mot a square
gq bad
¥ylnln3dy
(In y)l-e/2 “

for zexp(y'/7).

This completes Step Eleven.

STEP TWEILVE Completion of the estimate of T,(x,y,z) for

X/k, > Y/k,.

Recall that equation (41) gave

Lo Oy - LT XDy 1y
q=g ,modk, q=L ;modk,
q app q app
gq DOt a square gq DOt a square
&q good 8q good

0(exp(~(1n Y/k,) %)) }

for all zpexp((ln Y/k,)1~€)=z .
But equation (43) gave us that the right hand side of this

equation is less than or equal to

yl6,k,] k,h p2(6k,) T (1-1) 0 (1+_ 1 ) {1 +
w(k,) "p(k,h) 36k, Z " p<z, P p<zy, DZ-2p Zo
ptok,

0(exp(~(ln Y/k,)€))

+ 0[ [k:’sz}%-T[ A ]g(kf)kzﬁ _,g—la/sy 1/8 lny] }

so that
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Z n (1_Z£B))f(gq) < yi6,k,1 k,h p2(6k,) n (1-1)
P

0<q<y p(Z P(kz) -@(k2h) 36k12 ' p<zo p
q=0 ,modk,
q app
Bq Dot a square
8q good
1
szn( +F%7§) Gy, {1+ OCexp(~(In ¥/k,)€))
pték,
p(k, Fk, 1) [92-807 plk,)p(k,h) 1/3v—1/6
+ of [k,,sz]i'T[ % ]'¢(k1).k2h g11/3ym /e day]
(50)
for z3z,.
But (50) together with (49) and (44) gives
X I (I"KSB))f(g y < y[6,k,] k,h ¢2(6k1)' m (1-1)
0<q<y p<z P 4 p(ky) "p(k,h) 36k, ? * p<zy, P
q=L ,modk,
q app

gq Dot a square

T o+ 1)
p<z, p%-Zp Gze {l *
ptok,
k., Fk 2_¢p 1nln?
°e[¢§k:,pk§}%'f[n L IO NTILRES SR R
(51)

for z>z,.
In a similar fashion to Theorem One we are able to show
that (51) can be extended over q "z appropriate" and gq @

square, and that we may write
Gz, = Gz {1 + O(exp(=(1n Y/k;) %))}

for zpz,.

Hence
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. M (1-pg' (p)) y[6.k,] k,h o2(6k,) 1T (1-1)
Pq \P w22 1/ ot
0<§<Y p=z P < p(k,) “p(k;h) 36k, 2 " p<z, p
qEQZmodkzp*6k1
(q,z) app

n @+ 1 ) m (1-2)
p<z, P22p p<z p % {1 *
ptok, ptk,

ok, ,Fk,]) n2-t0 Inln3y
o [k:,Fk:]f'T[ 4 ].@(kz).|§|%.ln1n3|a§ci.TTE?TT/Z] )

(52)
for zZpz .

Equation (26) covers the case for z<z,, and a combination of

the two gives

y T (l-pg'(®)  yibk,] T (1-2) T (1-1)
0<qy p<2k P k, P<§k p pP<z, P
qEQQmodk2p¢ 1 POk,

(q,z) app

n (1—-]_..)2 I (1—})‘1 mn (l—l)_1 n (+ 1 ) . {l
P<z, P  P<Z, P P<Z, P p<z, p¥-2p %
p16k, pik, pik,h ptok,

ok, ,Fk, 1) n2-$0 lnln3y
SNt (RN R <ON
(53)
for z>3 with z, = min(exp((1nY¥/k,)1¢),z),
and (53) substituted into (24) gives

m (-2) nm -1y n -2 0 @a-n-l

T (x,yv,2) < bAS
2(%,5,2) ., P<z P P2z, Pp p<z, P Pp<z, P

k

pték, pi6k, pik,
n Q-1 o @a+ 1)
p<z, P p<z, pZ-2p €z {1 +
pik,h p1ék,

o([k, , Fk,]) _[n2-30 1nlndy
06[ [k1,Fk2}1 .T[ A ].(p(kz).|§‘|%.ln1n3|a§’cl.m§7—e—/z]

+ O(exp(~(ln X/k,)%)) + 0(exp(-v(lnv-1nln3v-1n3-2))) }
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This may be restated as.

yx 0 (-2 m (-1 m o (1- 1 )
T,(x,y,2) < K, p<z b p<z, P z,p<z (p-1)2

n -1 o a1l
pP<z, P p<z, P
pPik, pik,h

Gy {1 +

p(lk,,Fk,]) 7n2-58 Inln3y
o [k,:szfl [ ].¢(k2).1§|5.1n1n3|a§c1.ziﬁ§7? )

+ O0(exp(—(1ln X/k1)f)) + 0(exp(—v(lnv-1nln3v-1n3-2))) }

which concludes Step Twelve. (4

STEP THIRTEEN The completion of the Theorem.

To complete the theorem we require an upper bound on the

function

P,(x,y,z) = [{(q,r); a<q<a+x, q=¢,modk,, O<rgy, r=£,modk,,

((aq2+bq+c)r+(dq2+eq+f),pgzp)=1}

whenever ¥/k,»Y/k,; and an upper bound on the function

P,(x,y,z) = |{{(q,r); O<q<x, g=2,modk,, B<r<f+y, r=L,modk,,

((aq2+bq+c)r+(dq2+eq+f),pgzp)=l)

whenever Y/k,»>¥/k,. The variables q and r denote primes
throughout.
Dealing firstly with the case */k,»Y/k, we observe that

the function
{q: a<q<at+x, q=¢ modk,, ((aq2+bq+c)r+(dq2+eq+f),szp)=l}

counts the integers n satisfying o<nlat+x, n=¢,modk,, for which
n is a prime and ((an2+bn+c)r+(dn2+en+f),pgzp}=l. If in

addition npz then n is counted in
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{n: o<natx, n=L modk,, (((an2+bn+c)r+(dn2+en+f))n,pgzp)=1)l

Otherwise n<z. Since there are O[P(k )in 7K ]+0(1) primes
i 1

less than or equal to z that are congruent to 2 modk, it

follows that

|{q: a<qLat+x, q=0,modk,, ((aq2+bq+c)r+(dq2+eq+f),pgzp)=1}l

< |(n: a<notx, n=,modk,, (((an2+bn+c)x+(dn2+en+f))n,pgzp)=1}|

2
+ 0[*?ET$TEZ7ET] + 0(1).

Y
Consequently
P,(x,y,2) < z ![n: a<no+x, n=¢, modk,,
O<ry
r=¢,modk, (((an?+bn+e)r+(dnZ+en+f))n, I p)=1) [

y z y
¥ 0[¢(k2)1nY/k2 w(k,)an/k,] * 0[;?%2515Y7E;]

_ y z y
= T,(x,y,2) + O[W(kz)lny ¢(k1)1nz/k,] * o[p(kz)lny]-

(53)

Assuming that, in addition to */k 3Y/k,, we have
at+btcgdt+e+f mod2 then from (54) of Step Twelve we have
m@a-12 m@-1) m¢- 1 ) ma-nt

P<z P P<z, P z,&p<z (p-1)? p<z, P
pik,

yx
Tz(st3z) < E;

mo(1-n-t
p<z, P
plk,h

Gz {1 + O(exp(~v(1nv-1nln3v-1n3-2)))

([k,,Fk, 1) _(m2-{9 1nln3y
* OE[ETETfﬁiif% r[T5—) k) 151E Inindiated zI;§;E72}

+ 0exp(~(1nX/k ) 1) |

Substituting this into (55) gives
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yx O (1-1)2 m(1-1) m@- 1 ) 101l
F2O0YE) S0 b Bopez, P orcess (D2 pz, B
pik,

nmo(1-1)-1
p<z, P
pik,h

Gy {1 + 0(exp(~v(lnv-1nln3v-1n3-2)))

o(lk,,Fk,]) n2-{o Inin?y
+ OE[ [k.l:sz]Z]f T[ A ] vp(kz) |§|% lnln3la§‘cl ‘(1—ny—)"é7‘z]

s ocemeamh) «oftfiugl) o 25 )

(56)
1f X/k,3Y/k, but atb+c=d+e+f mod2 from equation (14) of

Step Two we have

n 1-1
P,(x,y,2) < %1 p<z ( 5) {1 + 0(exp(-v(lnv-1nln3v-2)))
ptk,

. k z lnz y
+ O(exp(—(lnx/k,)f)) + 0[;E§t7 = TE§]}.

(57)

We may similarly show that whenever Y/k,>¥/k,,

X Z
P,(x,y,2) < T,(x,y,2) + 0[¢(k,)1nx/k1[p(kz)lnz/kz +1]]

(58)
Part (I) of the Theorem follows on applying equatien (11)
of Step One to (58). Part (II) follows on applying equation
(5) of Step One when the conditions
(1) 2=2,modk,
(ii) c#f mod2

(i11) (r,, 0 p)=1

4a+2b+c]Q +[4d+2e+f] 11
3 ’

Py
T, r, By =1

v ([ i

are satisfied. If at least one of these conditions is not

satisfied then a repetition of the argument leading to equation
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(5) but applied to the function P,(x,y,2z) rather than T,(x,y,z)
gives
P,(x,y,z)=0,

This completes the theorem.




196

CHAPTER FOUR

INTRODUGTION

In this chapter we attempt to extend the method of argument

of Theorem One to the evaluation of the more general fumction

F(x,y,z) = [{(n,m): 0<n<x, n=@ ,modk,, O<m<y, m=Q,modk,,

((an2+bn+c)m2+(dn2+en+f)m+(gn2+hn+i),szp =1}

We will assume in what follows that ¥/k,3Y/k,. The argument
when Y/k,»*/k, is very similar. Beginning as we did in Theorem
One we write F(x,y,z) in two differant ways for z<y.

Firstly for z<y,

Fx,y,z) =L ooy 7EREY) (1 4 0exp(~(1n Y/k,) )
2 0<ngx Kk
naﬁlmcadlqp'r 2
(n,z) app
+ O(exp(—u(lnu-Inln3u-1n2-2)))}
(L)
where u = In Y/kz;
In z

where, if rpj=(an?+bntc,dn?+en+f,gn?+hnt+i), then for p<z and

(rp, 0,P)=1,

pn(p} = |{m modp: (an?+bn+ec)m2+(dn2+ent+f)m+(gn2+hn+i)=0 modp}|;

and where "(n,z) app" denotes those integers n satisfying the
conditions

(1) (rp, 0 p)-1

(1i) (an?+bnt+c+dn2+entf, gn?+hn+i)=1 mod2

s ([ P IR, g P

Similarly for z<x,
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F(x,y,z) = %1 0<§1< pi‘z (1“2359)) {1 + OCexp(-(In ¥/k,)%))
mEszodkzp*k‘
(m,z) app
+ O(exp{—v(lnv-1nln3v-1n2-2))))
(2)
where v = 12nxik‘;

where, if s =(am?+dmt+g,bm2+em+h,cm?+fm+i), then for p<z and

(Sm:pgzp)=ln

pm(p) = |{(n modp: (am?+dmtg)n2+(bm2+em+h)n+(cm2+£fm+i)=0 modp)|;

and where "(m,z) app" denotes those integers m satisfying the
conditions

(1) (sp, 0,p)=1

(ii) (am2?2+dm+g+bm2+em+h,cm2+fm+i)=1l mod2

(iii) ([am2:im+g]g12+[bm2+em+h]Q1+[cm2+fm+i], Bgﬁ Py -

Sm Sm Ik,

Recalling the method of argument of Theorem One we were
firstly (Step 1) able to find ahrelatively simple expression for
the function S(x,y,z) for z<y, and then compare this with the
more complicated expression we derived for S(x,y,z) with z<x,.
This gave us a starting point from which to develop the
argument.

In order to follow the same method here we would compare
expressions (1) and (2) for z<y. However before this can be

done in a meaningful way we require at least an upper bound on

the function

O<ngx p<§ p
nEleodklp‘r 2
(n,z) app

for z<y.

Assuming that an2+bn+c and dn?+en+f have no common factors,

and that a and d are not both zero, define F to be
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F = ((cd-fa)?—~(bd-ea) (ce—-fb)i
( The assumption that an?+bn+c and dn?+en+f have no common
factors and that a and d are not both zero is only an artificial
restriction. Similar results to what follows may still be
derived. To include all possible cases leads only to
unnecessary complication.)

If zpmax(F,k,) then, by Lemma 2.1,

y M (pye)) . ¥ M (l-pg(p))
0<n<x p<z P 0<n<x p<z )
n~=—Q1modk1p'sz n¥Q1modk,ka2
(n,z) app n app

where "n app" denotes those integers n satisfying the
conditions

(i) (an2+bn+tc,dn?+en+f, gn2+hn+i)=1

(ii) (an2+bn+c+dn?+entf, gn?+hnt+i)=l mod2

(iii) ((an?tbntc),2+(dnZ+en+f)L +(gn2+hn+i), k,)=1

If however z<max(F,k,) then

) M Q@) ¢ § 1 ¢ 2,4, @)
O<ngx p<z P 0<ngkx k,
k
nE!Iz,lno«cﬂzgp'r 2 n={ modk,
(n,z) app

which is possibly very weak but will suffice.

For z>max(F,k,) we work with the sum

z I (1-pp(p))
O<ngx p=z P )
naQ,modk1p{k2
n app

Firstly we give some definitions.
(I) For g,'=(d?-4ag)n?+2(de-2ah-2gb)n3+(2df+e2-4ai-4bh-4cg)n?+
2(ef-2bi-2ch)n+(£2-4ci)

define




199

gn' if g,' has no squared linear factor

En-= '
7 ﬁ+n)2 if g,' has a squared linear factor ({nt+n)?2;

(&,m)=1
(II) Define T(y,s) to be the number of integer solutions, (n,r),
in the range O<ngy of the equation g,=r?s.
(I1I) Define

S(y):= max T(y,s)1.
O<s<yS

and finally

(IV) N = maximum coefficient of g, in modulus,

¢

I

max{lal,Ibt,1cy,tdl,1et,1£4, 181, thi,1i1).

Before stating Lemma One which will give an upper bound on

the sum
Z 0 (I-pp(p))
0<ngx p<z p
nEQ1modk,p*k2
(n,z) app

as required, we will attempt to give upper bounds on T(y,s) and

S5(y).

1
In the case where gn:(?%?ﬂ)z ie where g, is a quadratie,

writing go~An?+2Bn+C it follows from Lemma 4 that

T(y,8) € 7272 1ny )

and consequently that

B2-AC

() ¢ 1 [=7—]1ny . (8)

For the case g,=g,' ie where g,' has no squared linear
factor, a bound on T(y,s) follows from Theorem One of Evertse
and Silverman's paper "Uniform Bounds for the number of

solutions to YP=f(x)." [12] which states, for n=2,

"THEOREM 1: Set the following notation:
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K an algebraic number field of degree m

S a finite set of places of K, containing the infinite

places
s = #S
Rg the ring of S-integers of K

£(X) €Rg[X]}, a polynomial of degree d with discriminant
disc(f)eR%

L/K  an extension of degree M

k(L) the 2-rank of the ideal class group of L.
Let V(Rg,f) = (xeRg:f(x)eK¥2),
Let d»3 and assume that L contains at least three zeros of f.
Then

# V(Rg, ) < 7d3(4m+95)4k2(L)- "

I am indebted to J.H.Evertse for outlining the application
of this theorem to the integral case. In detail, we take K to
be the set of rationals and p,,...,py to be the prime divisors
of disc(f). Let S be the set of p-adic valuatiomns for p,...py,
together with the valuation corresponding to the unique
infinite prime divisor.

ie S={v_ ,

v v }
1 ? .
Py ©

Voo,
Py Pr
Then
s=#S=w(disec(f))+1.
By definition R4, the ring of S—integers of (] is the set
{aeQ1 vp(a)>0 va,(S}.
Since, for a an integer, vp(a)>0 it follows that f£(x)eRg[x].
Rg, the unit ring of S-integers is defined as
Ri={acO Vp(a)=0 Vvpfs).
If a divides disc(f) then clearly vp(a)=0 for all vp not in S.

It follows that disc(f)eRz.

Let L be an algebraic number field of degree less than or
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equal to d3 containing at least three zeros of f. Define k,(L)
to be the 2-rank of the ideal class group of L. Then by Theorem
1 above the number of solutions in integers of f(x)=y? is at
most

543 (4+98) K, (L)

or
7d3(13+9t)4k2(L)
where t=w(disc(f)) and d is the degree of f(x).
To extend this result to find an upper bound on the number
of integer solutions of
ey2=f(x) (9
we write F(x)=2f(x) so that (Ly)2=F(x).
Since disc(f)=Q(2d"2)disc(f) we have
w(disc(F)) < w(@)+w(disc(f)).
It follows that the number of integer solutions of (9) is at
most

7d3(13+9(w(9)+w(disc(f)))akz(L).

So we have
T(y.s) < 743(13+9(w(s)+w(disc(gn)))akz(L)
where L is an algebraic number field of degree less than or
equal to 43, containing at least three zeros of gn. and where
k,(L) is the 2-rank of the ideal class group of L.
Writing G as
oo 740 (9u(disc(gy))+13) k, (L)
we have
iy, )< 2-008) .
Since 2¢(8)<7(s), where 7(s) denotes the number of prime
divisors of s, we have

T(y,s) < G.(20(s))1618 ¢ G (r(s))1618 ¢ . 51/300 (10)

say.
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We further have, recalling the definition of S(y),
S(y) ¢ G_y1/su.
With the above definitions of G, g, N and { we may prove the

following:

LEMMA ONE
Suppose zy<x. Then there exists an absolute and
effectively computable constant c,, independent of a,b,c,d,e,f,

g,h,i,k,, and k,, for which it follows that

) M (l-pg(p)) x nm @1 n (111
0<%<x p<z P < ¢ k, p<z P (35)\)100 p x
nEQ‘modk'psz p¢k2
(n,z) app

{1 + In({.k,.\) + 1

+ k..G.1nln?{
(70 °° (77)2 ! }

if zpmax(F,k,).

If on the other hand z<max(F,k,) then

Z M (1-pp(p)) <X 4o
p<z P k )
O<ng<x K !
nEQ,modk‘p‘r 2
(n,z) app

PROOF OF LEMMA ONE

The second part of the lemma ie where z<max(F,k,) has been
dealt with previously. (see (4)).

We assume for the time being that g,=g,' ie g' has no
squared linear factor, and that g, is of degree 3 or 4 so that
we may apply the bounds on T(y,s) and S(y) derived above.

Many of the methods of argument of Lemma One will be by now
familiar and are not given in detail. We will assume throughout
the proof that z»In'00(yS)., If z is smaller than this then a
shortened version of the proof will suffice.

Firstly we more clearly define p,(p).
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We have, for "n app" and p<z,

pn(p) = |{m modp: (an2+bntc)m?+(dn2+en+f)m+ (gn2+hn+i)=0 modp}l

For p+2(an2+bn+c) this becomes

pn(p) = I(m modp: m2=(dn?+en+f) 2-4(an?+bn+c) (gn?+hn+i) modp)|

Writing

]

gn' (dn2+en+f) 2-4 (an2+bn+c) (gn2+hn+i)

(d?2—4ag)ni+2(de-2ah-2gb)n3+(2df+e?-4ai—-4bh-4eg)n?

+2(ef-2bi-2ch)n+(£2-4ei)

we have
(Bn/p)+1l ; pt2(an+bn+c)
pnp) = 1 i Pt2{an2+bnt+c) & pir(an?+bnt+c+dn?+en+f)
0 ; pl2{an?+bn+c) & pi(an?+bntc+dn?+entf)
where
&n' if g,' has no squared linear factor
En =

T§%§%72 if g,' has a squared linear factor ({n+y)?2;
(&,m=1.
For g, not a square, define x(n)=xp(n) to be the Kronecker
symbol (D/p), where if g,=r2?s, for s squarefree and not equal to
1, D=4s or s as s#lmod4 and s=1lmod4 respectively. This enables

us to write

T (Q-pp(@)) . 0T (1-1) 0 (1-x(p))
p<z P “pz p pz . CEm® <)

ptk, ptk,

for all z, where
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_n (a-n-l m (1-x(p))?
Sn® = p Pz p
ptk, pl2(an?tbntc) gk,

pl2(an2+bntc)
pl(an?+bnt+ctdn?+ent+f)

n (1- x(p) )
p<z p2-(x(p)+1)p+x(p)
pt2(an2+bn+e) gk,

It will be of advantage to us later to note that, for any z>z,

o(gnrz) - c(gn,zo){l . O[In(f.kz-k).ln n]} (13)

Zg

where {=max(tal,Ibl,lci,1d1,1e1,tfi,tg1,1hi,1i1} and
A=maximum coefficient of g, in modulus.

To find an upper bound on the sum

Z T (I-py(ep))
<Z P
O<ngx P
n=0  modk, PT¥z
n app

it seems clear that we will need an upper bound on the product

m (1-x(p))
P

p<z when often D is relatively large in comparison to

z, a seemingly difficult problem. However we are able to avoid
the problem by reducing the sum to a form wherin D becomes

"small” in comparison to z using the following observation:

" If max(F,k,) € % ¢ f(Y>/kz < Y/k,, then for any AcN,

) T (=pp@)) _ ¥ n (1—pn(p)){l .
AE(Y)<o<(A+D)E(y) PE P O<n<f(y) PiF P
n=Q modk, Pk, n=Q ,modk, PAK,
n app n app
0(E(v)) + O(exp(-(1n £(¥)/x)1)}
(14)
f
where v = EIL—EZEZE‘ , E(v) = exp(-v(lnv-1lnln3v-1n2-2))). "

In z

The proof of (14) follows from an examination of the two




205

functions

M(x,y,2) = |[((n,m): O<n<f(y), n=f,modk,, O<m<y, m=¢,modk,,
((an2+bn+c)m2+(dn2+en+f)m+(Bn2+hn+i)’pgzp)=l

and

N(x,y,z) = |{(n,m):Af(y)<n<(A+1) £(y) ,n=0 modk,, O<m<y,m=Q ,modk,

((an2+bn+c)m2+(dn2+en+f)m+(gn2+hn+i),pgzp)=1

If max(F,k,)<z<E(¥)/k,<¥/k,, following the by now well-used

arguments we have

M(x,y,z) = L T (=enl®)) 11 4 o(r(u)
€2 oence(y) P P
n=Q modk, Pk,
n app
+ 0(exp(—(1n Y/k,)$)))
where u = E§EZéE2 , or alternatively
_ n (l-pp(p))
M(x,y,2) T‘—Oq}:n{y o, el (o)
m={ ,modk, Pk,
(m,z) app
+ 0Cexp(~(1n £ /1))
£
where v = lgiﬁ£§Zék‘.

Comparing these two gives

) M (lpg(e) _ vk ¥ M (Lpn(e)) |,
O<m<y p<§ |3 £(¥) -k, O<n<£f(y) p<§ P
mEszodkzp‘r 1 n=g modk, P,

(m,z) app n app

+ O(E(v)) + OCexp(~(1n £k )iy,
(15)

Similarly a calculation of N(x,y,z) in two different ways gives




206

Z n (I-pp(p)) _ £(y).k, Z M (1-pp(p))
Af(y)<n<(a+1)E(y) P2 P VK oy PeE P
n=0,modk, P, mEszodkE'r 1
n app (m,z} app

x {1 + O(E(v)) + OCexp(~(1n £ /K )d))).

(16)
(16) together with (15) gives (14) as required.
Consequently, for z<y,
0<ngx p<§ P y 0<ngy p<§ N
‘ nEQ,rnodk,p'r ? n=¢ modk, pAX,
t . app n app
+ 0(E(v)) + 0(k,? exp(~(ln y)1)))
(17)
1nY/k2, and we need only find an upper bound on the sum

with v=
Inz

O<ngy z P :
n=¢, modk , P¥¥2
n app

We firstly deal with the sum over g, square ie

X M (1-pn(p))
<z P
0<ngy P
nEQ1modk1pfk2
n app

g&n @ square

For a square we have
1

M (l-pp(e) _ T (1-2) mo(1-1) mo(1-1)
p<z P p<z P p<z 1% p<z p
ptk, ptk, pik, prk,
pTr2(an2+bn+c)g,, p42(an?+bn+c) pl2(anZ+bntc)
PlEn p+(anZ+bn+c+
dn2+en+f)

Following the argument of Theorem One this gives

M (I-pa(e)) ¢ M (-1 1 aA-DH7L
p<Z P pP<z P p<Z P
ptk, ptk, pl(anZ+bn+c)

\P




207

so that
Z n (1-pp(p)) ¢ n 1-b Inln{, lnlny Z 1
0<n<y p<z P pez P O<n<y
Tk ptk
nEQImodk1 ptk, 2 gn 4 square
n app

gn & square

Since by definition, and (10),

L1 = 1(r,1) = 0@
O<n<y
gn @ square

we have
z T (A-pp(P)) ¢ m (1-1) .1nln!{.1Inlny.G. (19)
p<z P P<Z P
O<n<y +k 1k
n=Q ,modk, Ll [k
n app

gn & square

Consequently,
) o QQeppe)) _ ¥ m (1-pp(p))
<z P p<z P
O<ngy P O<ngy
n=¢ modk, pik, nEszodk‘p{kz
n app n app

gn NOot a square

+of 1 472 1nint.1nlny.q)
p<z P

ptk,

(20)

and our task is reduced to finding an upper bound on the sum

<z P .
O<ngy P
n=¢ modk, ptk,
n app

gn Dot a square

From (12) this sum is equal to
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m (1-1) n (1-x(p)
= AE , 22
p<z P 0<§<y p<z p (&2 (22)
Pk, n=¢ modk,
n app

gpn not a square

where x(p)w(D/p).
Our intention is to change the dependence of (22) on z to one
of dependence on z, for z,<z.
Clearly lDi<40Q%2y|8n|~
Writing gp=a,n“+a,n3+a,n2+a,n+a, it is also clear that if
t>20max{ia i, 1a51,1a,1,1a,1,l1a,1} then
5
Aoggétlgnl < tS. (23)
So we certainly have
5
1Dt < 4og%§y!gn| < yS.
Writing Q=y5 and putting =50 in Lemma 5.1 gives

M (1-x(p)) _ W

(I-x(p)> .
p<z P p<z, P (1 + 0(=, 1/s50y 4 0y~ 3/10y)

for any real number z, satisfying z3»z,»>1n'00(yS)=51081n'00y,
with at most 0(y9/‘°) exceptions.
With the usual understanding of "good" and "bad" g, we

have, taking z,=31001n'00y,

¥ m (l-pp(e»)_ T (-1 ¥ 0 Ax@) (g
0<n<y p<z P p<z P 0<n<y p<z, P >
n=¢ modk, Pk, prk, n=¢ modk,

n app n app
En Dot a square Bpn Dot a square
gn good

x {1 + 0(1ln"2y)}

Pl el
0<ngy
n=0, modk , PT¥?
n app

gn Mot a square
gn bad
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But, by (11),

- 1

IO G ] 1 ) )

0<n<y P . P 0<n<y s 0<ngy
nEI?!,modlqplr 2 gn bad |s|<y9/'0 ris=g,
n app
gn Not a square
gn bad

€ S(y)ys/1e £ g.yr1/12

where S(y) is as defined in the introduction.

Secondly, from (13), for n<y,

In({.k,.\)
= 2
c(gn2) = c(gn.z,){1 + 0 e 1}
So
¥ M (l-pg(p))_ moa-1 ¥ m (1-1)
p<z P Z,{p<z P p<z P
O<ngy ' 0<ngy 1
n={ modk, prk, prk, n=¢ modk, prk,
n app n app
gn not a square gn not a square
gn good

m (I_Zég))c(gn,z,){l + o[lﬂ&i;&z;ﬁl] + O[——l—]}

p<z, 1n%%y in?y
+ 0(G.y11/12)
m (1-1) Z I (L-pu(p)) {1 + 0[1n(§'-k2.?\)}
z Sp<z ) 0<n<y p<z, P 1n99%
prk, nEleodkip*kz
n app
gn NOt a square
&n good

TR

But, going backwards through the argument, we may write this

final sum as
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Z 0 (A-pp(p)) _ Z M (1-pn(p)) | 0(G.y11/12)
p<z, P p<z, p
nEQ]modl«:‘pr 2 nEQ,modk,p 2
n app n app
gn not a square
gn good
[ b (1—£).1n1n§.1nlny.G]
pP<z,
prk,
so that
Z I (-pp(e)) _ 0 (1-1) Z E (1—PD(P)){1 +
0<n<y p<lz( P Z, <P1<CZ P 0<n<y p,ﬂZ{1 P
r15!21mo<5lk1p'f 2 P, n’=‘Q1m0dk1p 2
n app n app
gpn not a square
o[lEﬁf;Ez;ﬁl] + o[__l_]} + 0(G.y'1/12)
1n9%y In?y

+ 0[ 1 <l_l>.ln1n§.ln1ny.G]
p<z P .

P (24)

Substitution of (24) back into (20) gives

Z T (Q=py(p)) _
p<z P
O0<n<y
nEQimodk1PJrkz
n app

n (1-1) 2 I (1“PD(P)){1 -
Z,Sp<z P O<n<y Pz, P
pik, nEQ1modk1p{k2
n app

1

O[ln(f.kz.x)

1n99%y ] * o[lnzy]} N O(G'y11/12)

+ 0[ n (1~£).1n1n§.1nlny.G]
p<z P

ptk, (25)

and substitution of (25) into (17) gives




211

Z I (I-pp(p)) _ x m (1-1) »X n (Q-pu(p )){l
0<n<x p<z Y y 2 |<P<Z P 0<n<y p<z,
n={ modk, ptk, Pk, nEQ1modk1p{k2
n app n app

In(!.k,.\) 1 _
+ o[__l?@_;_] + O[lnzy] + 0(E(v)) + O(k,?.exp(-(lny)?)))

1/12 x T (1-1)
+0(x.6.y1/12) + o[ 2 ez 3 .1n1nr.1n1ny.c]_
i prk,

(26)
i thus returning us to our original sum.
We have however now reduced the problem to one of finding an

upper bound on the sum

) T (I-pu(p))
o<n<y p<z 1 p
nEleodk,lyrk2
n app

We repeat the process now writing this sum in terms of a sum
dependent on z, with z,<z, rather than on z, and so reducing
the problem further,

Firstly from (l4) we have

O<ngy p;i p exp %.‘/ O<n<exp (In Jzy) pﬂZ( p
n=pQ modk n=¢ modk, P2
n app n app

x {1+ 0(k,t.exp(-(In y)4))) (27)

and
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M (e _ ¥ M (1-py(p))
O<n<exp(1nﬁy) p<;, P O<n<exp(1n5y) p<i1 P
n=¢ modk, ptic, n=0 modk, P,
n app n app
gn not a square
n Q-1 3
o[p(z‘ 5’ -Inlnt. In(lny) .G]_
ptk,
(28)
Further
z I (l-py(p)) _ I (1-1)
<2 P p<z P
O<n<exp(1n%y) p<z, 1
n=Q modk, ptk, prk,
n app
En MOt a square
) EZ (l”-X%)) c(gn.2z,)
0<n<exp (1nty) Pz,
n=¢ modk,

n app
gn Dot a square

with D} € 4 max 1g41 < exp(5(1nty)) from (23).
0<n<exp (1nty)
Writing Q=exp(5(1n5y)) we have from Lemma 5.1 again, with =50,

I x()_ T (-x() 1
p<z, P p<z, P {1 + 0(1In"y))

where 22=5100(1n y)so, with at most O(exp(9/101nfy))
exceptions,

We also have, from (13), for n<exp(ln%y),

c(gnizy) = clgn,z,) {1 + o[lgﬁggéi;bl]},

So




M (l-pg(p))_ T (1-1)

0<n<exp(1n%y) p<§1 P
n=Q modk, P,
n app

gn not a square

m(1-1)
z Kp<z
ptk 2

n=Q modk,
n app

1 P O<n<exp(1n%y) pe
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M (1-pn(p))
Z,8p<z, P O<n<exp(lnty) P22 P
P2 np modk, o PTK:
n app
8n not a square
gn good
In(f.k,.\) 1
x 41 + Of=—>>+"2:2/}t + 0
{r+0f 1ns9/2y b obwsl)
. X 2 (1-pn(p))
O<n<exp(lnty) P71 P
EleOdk1 P2
n app
gn Not a square
gn bad

n (l~pn(p)) {i + O[ln(f.kz.x)]
z, P 1n99/2y

ptk,

gn not a square

gn good

+ O[Inly]} + O(G.exp("/,zlnfy)).

Thus we have, arguing backwards again,

M (1-puplp))_ T (1-1) T (1-pp(p))
O<n<exp(ln%y) p<§, P z2<p§z, P 0<n<exp(1n§y) p<§2 P
n=Q ,modk, prK, PTX, n=¢ modk, pTk,
n app n app

gn not a square

< {1 + o[ln(f.kz.k)
1n%9/2y

J + ofwsl}

+ 0(G.exp(11/,,1n} ¥))

+ 0[ o - lnlnf.ln(lny)%.G]

p<z, P
ptk,

Substituting (29) into (28) gives

(29)
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M (-pp(p))_ <ﬂ (1-1) X T (1-pn(p))
O<n<exp(lnty) P*2:1 P Z28P<Z1 P pengexp(lndy) PSZ2 P
n=Q modk, ptk, ptk, n=0 ,modk , ptk,
n app n app

o ofnEny L o[ 1)

' + 0(G.exp(11/,,Inty))

m(1-1)
o[p<Z1 = Inln{.1n(lny)$.G]

ptk, (30)

and (30) substituted into (27) gives

) I (1-pn(p))_ y m (1-1)
p<z P 1n2 ) Z <p<z, P

0<ngy ! exp(IlnZy 2 1

n=Q,modk, Ptk ptk,

n a‘pp

x ) M (L-pg(®)) [ O[ln(f.kz.k)] +of; 1 1)
0<n<exp(lnty) P ;2 P 1n99/2y ny
n=£ modk, Pk,
N app

+ O(k,i.exp(-lnﬁy))} + 0(G.y.exp(~'/, ,Inty))

y m (-1
+ 0[3§5f15§§7 Cp<z, 3 lnlnf.ln(lny)%.G].
ptk, (31)

Finally substituting (31) into (26), and writing z=z,, gives
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y M (l-p5(p)) X mo(1-1)
O<n&x p<z p exp((Iny)?)  Z<p<z P
n={ modk prk, prk,
n app
O<n<exp((lny) %) P p2 o<t<1ln
nEQ,modk1 PTX,
n app
t+1
+0of __3%;t_] + 0k, ) exp(-(lny)'/2 )] + 0(E(w))
ogtgl 1n y 0<t<l
y
+ 03]}
— 1
ofre L, 0D gy am'/)
O<t<l Z<p<z P
ptk,
Inlnt In(lny) /2%
* O[X‘ ? z “Ez Y 72¢ ]
nz “p(k,) ool exp((lny)'/27)

(32)

Although this estimate has such unpleasant looking error terms
we will shortly see that these can be greatly simplified if we
accept some loss of strength. We have also now reduced the

problem to one of finding an upper bound on the sum

I (L-pnp(p ))
O<n<exp(ln%y) p<i p
n=0 modk, pi%,

n app

It is clear that we may approach this in the same way,

splitting into the smaller sums

M (1-pp(p))
0<n<exp(1nﬁy) p:i P :
n=¢ ,modk, Lkt
n app

We may continue the process until we reach the sum
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Z o (1-pu(p))
O<n<exp(1n' /28 y) p A+l p )
n=0 ,modk,
n app
A+
where Zpe1” 5100(1n y)1oo/2 , and where

1 1
1n /sz » Tmax{layl,lal,ta,l,l1a,;i,1a41) » 1In /2A+1y

where a,,...a; are the coefficients of gj.
Recalling that A\=max{ia,l,lazl,1a,l,1a,1,1a,1}) we will then
have
Z I (I-pn(p)) _ X . n (1-1)
-—m——# —
0<n<x p<§ P exp ((1ny) /2% Zp41SP<Z P
n=g modk, Pt ptk,
n app
x T Cenle )){1 + 0{In(f .k, N) ) g /2 ]
0<n<exp((1ny)1/2A) P2a41 O<t<A n
n=0 ,modk , ptk,
n app

1 3 _ 1/t
’ 0{ 0<§<A i;37;t§] ’ O[k1 0<§<Aexp( Ciny) 7 )] " o)

+ 0[x.6. ) ] <“<z(1‘l) .exp(~’/‘2(lny)1/2t)}
0<t<A tpik P
2
Inlnt k In(lny) /2"
+0[x£.___ZG niiny ]

“Inz Cp(k,) 6<t<A exp((lnY)‘/Qc)
(33)

As stated previously we may tidy this sum up somewhat by noting

that the first error term satisfies

1 1 .
0[1n(§.k2.x)0<§<A 1;§§7;ty] - o[ln(r.kz.x>.I;§37;g§j ;




217

the second error term satisfies

1 1 _
° O<§<A I;f7;t§] i 0[1537335] '

and the third error term satisfies

ofi,t. L exp-iny) /2] = 0k, ).
O<t<A

Furthermore the sum from the leading term satisfies

1/.A
y M (pp(e)) ¢ expluy) /2y 000
0 /.8y p<z P k '
<n<exp (1ny) *27) A+l !
n=Q ,modk, ptk,
n app
So
) M (lpg(e) x T (A-1) 1 @a-1)7L (14
.O<Il<X p<1z< P k‘ p<lz< P P<ZA+1. P
nEQ1modk1p¢ 2 Pk, ptk,
n app
In(f .k, .\) ~2/,A
o[_i;§37gg;e] + 0(ln y) + 0(k, b}
— 1 t
+ O[X.G. Z . (H( (1-1) .exp(-1/,,(1ny) /2 )]
Ogtga “tSP=Z P
ptk,
1/t
+ O[X Inlny k, In(lny) 72 ]
Inz “p(k;) gefea exp((Iny)1/27) 7
(34)

From the definition of A straightforward arguments give

y T () (x N (-1 0 (a-D7L {1+
0 p<z P k, p<z P DpP<(35)\)100 p

< n<X k 1 k
nEQ,modk,p* 2 pT,
n app

In(f.k,.\) -2
0[_“"Z7K§33_] +0((7N72) + 0k, D}
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n o (1-1) /Lt
+ O[X'G6<§<A 2¢Kp<z  p exp(='/,,(Iny) 2 )]
pik,
lnlnf In(iny) /2"
+ O[X. — ]

Inz ‘p(k,) (.Kt(A exp((lny)l/zt)
(35)

Finally we may give upper bounds on the remaining error terms

1-1 1/_t
O[X.G. Z I ( —) -eXP(_1/12(1HY) /2 )]
0<t<A ZKp<z P
ptk,
and
Inlnt k In(lny) /2°
O[X.—%—E—.——El} . ntony c ]
nz ‘P( 27 OKtgA exp((lny)‘/z ) *
Firstly
n -1) _ nm (1-1) n (-1, n1 @a-1
= = = = ¢ =" .1lnz;.
ZgKp<z P p<z P P<Zy P p<z p
ptk, ptk, ptk, ptk,
100/,C 1/ t
Since z¢=5109%(1ny) it follows that Inz {In(lny) 2 and
that
-1 1
X.G. Z m -1 exp(-1/,,(1ny) /2t)
oct<a ZtSP<Z P
P'sz
1
moa-n oy 1n(lay) /2%
£ x.G. - t
p<z P octca exp(‘/12(1ny)‘/2 )
ptk,

For any t satisfying 0<t<A,

1/ t 1/ t—1
1n(lny) /2 In(lny) ‘2
£, » 2. =1
exp(1/12(1ny)'/2") exp(1/12(lny) /2" ")

holds.

So the sum




219

1 REx
n(lny) 2
O<t<A exp(‘/12(lny)‘/2t)-

is convergent.

Hence

n (1-1 /.t

0[x.6. ) 2o< <z( 2 Lexp(=1/,,(1ny) /2 ))
o<tga ZtSP P

ptk,

- ofx.c. 1 AD ]

‘pcz P
ptk,
Similarly
nln¢  k 1n(lny) /2°
O[X"TEE"”Tﬁl)G' 73t ]
PAR27 ogrga exp((lny)!? ) 7

- o[x.1nlnr.c. T 7))
p<z p J.
Pk,
It follows that there exists an absolute and effectively

computable constant ¢, independent of a,b,c,d,e,f,g,h,i,k, and

k, for which

- - -1y-1
) M opne) ¢ x M A-h M AhThg
0<ngx p<z P Tk, p<z P p<(35\)100 p
nEleodk‘p*k2 prk,
n app

In(t.k,.n) 1
(7x) 98 (702

+ k,.G.1nInt}

This completes the lemma in the case g,=g,' ie where gn' has no
squared linear factor and is of degree 3 or 4.
. _ &' 1 i
In the alternative case ie where gy (?ﬁgﬁ)z or gn,=8n' is of
degree 2 a very similar proof may be constructed using the

observation that here, writing g,=An2+2Bn+C,




220

(y,5) € 7[272 1ny

and

B2-AC
S(y) ¢ 7 [>7~]1ny
from Lemma 4, and further that

]lny ¢ G.y'/so0.

T[B -AC

This completes the lemma,

Lemma One may now be applied to equation (1), our initial
estimate of F(x,y,z) and, following the arguments of Theorem
One, an upper bound on F(x,y,z) may be constructed.

Write, for convenience, the function

n (1- 1) -1 In(f.k, ), 1
pe(350)100 5 {1+ —,+ k,.G.1lnln¢

(78) 99 (N2

as I'.
Before stating Theorem Five we make some definitions and
observations.
Let gp':i=(b2-4ac)m+2(be-2af-2cd)m3+(2bh+e?~-4ai-4df-4gi)m?
+2(eh-2di-2gf)m+(h2-4gi)
and write
p = b2-bac.
Define
gn' if gp' has no squared linear factor

(§%$E)2 if gp' has a squared linear factor (fm+y)?2;
(&,m=1

Define U(y,s) to be the number of integer solutions, (m,r), for

m in the range O<m<y of the equation gy=r2s; and V(y) to be
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V(y) = max 1U(y,s)1.
O<s<bpniy?

Whenever gp=g,' define H as

g e 4% (90(disc(gn))+13), ky (L")

where L' is an algebraic number field of degree less than or
equal to 43 containing at least three zeros of g;, and where
k,(L') is the 2-rank of the ideal class of L. With this
definition we conclude, as previously, that

V(y) = O(H.1p1/s0.y1/50),
From here we derive

THEOREM FIVE.

Let an?+bn+c, dn?+en+f, and gn2+hn+i be polynomials with
integer coefficients, an2+bn+c and dn?2+en+f having no common
factors. Let x,yeZ and 2,,k,,0,,k,eN with
exp((1nY/k,) H)>max{1a1, 1bi,1c1,1d1,1e1,1£1, 181, thi,111,k, ,k,).

Then, for 2<z<x, and */k,3Y/k,,

F(x,y,z) < C"Ef%z pgz (1—%) r {1 + 0(exp(~(1nY/k,) 1))
ptk,

+ 0(p(ky) . tpuiV/S.y=1/7.H) + 0(exp(~V(lnv—lnln3v~ln2—2)))}

where c, is the constant appearing in Lemma One, and where

v = 1nx/k1_
1nz

The O-constants are absolute, and independent of a,b,c,d,e,
f,g,h,1,2,,2,,k,, and k,. (They are however non-computable

with current knowledge.)

The proof of Theorem Five is not given as it is essentially

the same as that of Theorem One. It really differs in only one
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respect. Recall Step Eleven of Theorem One where we found an

upper bound on the function

/
L Lo lieg
0<m<y
m=0 ,modk,

m app
gp Not a square

gn bad
vwhere the sum X/ was over gp giving rise to a possible
exceptional modulus. An equivalent sum occurs in the proof of
Theorem Five. Since g, may be of degree 4 in this instance (see
the definition before the statement of the theorem) our previous
estimate

HE

1n)s|

L(l,x)"L ¢

merely gives
2
-1 ¢ -
LA™ < 15

which is too large for our purposes. To avoid this difficulty
we use Siegel's Theorem. Unfortunately this leads to non—

computable error terms being introduced into the upper bound.

In line with the results of Theorem One we would expect

that an upper bound for the function
F,(x,y,2) = |{(n,m); a<netx, n= medk,, O<m<y, m=L,modk,,
((an2+bn+c)m2+(dn2+en+f)m+(gn2+hn+i),szp)=l)

could be found independently of o whenever z<x, and similarly an

upper bound on the function
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F,(x,y,2) = j{(n,m); 0<nk%, n=L modk,, f<m<f+y, m=Q ,modk, ,
((an2+bn+c)m2+(dn2+en+f)m+(gn2+hn+i),pgzp)=1)

independently of @ whenever z<y. This is indeed the case.
Looking firstly at F,(x,y,z) for z<x we may rewrite the

function as

Fo(x,y,z) = |{(s,m): O<s<x, s=(2,-c)modk,, O<m<y, m=Q modk,,

((a(s+a) 2+b(s+a)+c)m2+(d(s+a) 2+e (s+a) +f)m+ (g(s+a) 2+h (s+a) +

i),pgzp)=l} '
Following previous arguments we get
1 1-
Foeoy,s) =5 Lo 1 GBI ogenpaant/k) )
' O<mKy
mEszodkzp*k‘
(m,z) app

+ 0(exp(-v(lnv-Inln3v-1n2-2))) }

where if sy is the highest common factor of am2+dmtg,
2acm2+bm?+2domtem+2ga+h, and ac?m?2+bom?+em?+do?m+eamtfmtgo?+ha
+i then "(m,z) app" denotes those integers satisfying the
conditions

(1) (sy, M,P)=1

P
(ii) (am2+dm+g+2aom2+dm2+2dom+em+2goth,

ac?m2+bom?2+em2+de 2mteom+fm+go 2 +ha+i)=1 mod2

2 2
(1ii) ([am +bm+c]Q$+[2aam +bm2+2dam+em+2ga+h]g1+

Sn Sm

2m2 2 2 2 2 i
. [aa m2+bom2+cm?+da 2m+eam+ £m+gor +h&+1], ? Py_1
2

Sm

Under these conditions pp(p) is defined by

Pm(P) = l{n(modp): (am?+dm+g)n2+(2aom2+bm2+2dam+em+2ga+h)n

+(ac?m?+bom2+cm2+dom 2+eom+ fm+ g 2+ha+i) = 0 modp)

Clearly s may be rewritten as the highest common factor of

am?+dm+g, bmZ+emt+h, and cm?+fm+i so that the condition
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(sm,pgzp)=1 is satisfied if and only if the condition

(am2+dm+g,bm2+em+h,cm2+fm+i,pgzp)=l is satisfied. Further,

condition (ii) is satisfied if and only if
(am2+dm+g+bm2+emth,cm?+fm+i )=l mod2,

and condition (iii) is satisfied if and only if

( [ﬂiﬂ@_g _“‘2;‘6_‘“;‘11]

](Q'+a)2+[b EEiiEEii],Bgﬁp )=1.

(Q,+a)+( S ‘
1

Sm m
Finally
(Em/p)+1 i pA2(am2+dm+g)

pmip) = 1 P12(am2+dmtg) & p+(am2+dm+g+2aom2+bm2+emt+
’ 2ga+h)

0 ; otherwise
where
gm = (2aom?+bm2+2dom+em+2ga+h) 2—4 (am2+dm+g) (ac?m2+bom2+cm?
+do?mieomt+fmigo?+thati) |
gm Mmay be simplified to read

gn = (bm2+em+h) 2—-4 (am2+dm+g) (cm2+fm+i)

and
(Bm/p)+1 ; pr2(am?+dmtg)

pm(pP) = {1 ; pl2(am2+dm+g) & pt+(am2+dm+g+bm2+em+h)
0 ; otherwise

oxr

pn(pP) = I{n(modp):(am2+dm+g)n2+(bm2+em+h)n+(cm2+fm+i)50 modp ) .

So F,(x,y,z) may be rewritten

n 1-
F‘I (X‘y,z) = %1 0<§<y p<z ( B%SB)) {1 + O(exp(—(lnx/kI)%))
mEQZmodkzp‘rk1
(m,z) app

+ o(exp(—v(1nv—1n1n3v-1n2-2)))}

where if s, is the highest common factor of am2+dm+g, bm2+em+h,

and cm?+fm+i then "(m,z) app" denotes those integers m
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satisfying the conditions
(1) (sm, 1, p)=1
(ii) (am?2+dmtgibm24+emth, cm?+fm+i)=1 mod2

o
R e O e O e
&

But the sum

Z 0 (1-pmp(p))
0<mgy p=z P
mEszodkzp*k‘

(m,z) app

for these definitions occurs in the estimate of the function
{(n,m): O<n<x,n=(Q,-o)modk,, O<m<y, m=Q,modk,,
((an2+bn+c)m2+(dn2+en+f)m+(gn2+hn+i),pgzp)=1]_;

the function covered in Theorem Five. Since the upper bound
on F(x,y,2) in Theorem Five is independent of the value of £,

it follows that an upper bound on

z T (l-pp(p))
<Z p
O<mgy P
mEQ2modk2p*k‘
(m,z) app

may be found independently of the value of o when z<x as

required. The proof when z<y is very similar,




226

CHAPTER FIVE

To apply the reasoning of Chapter Four to the general prime

function
P(x,y,z) = |{(q,r): q<x, g=¢,modk,, <y, r=Q,modk,,
((aq2+bq+c)r2+(dq2+eq+f)r+(gq2+hq+i),pgzp)nl)
for q and r primes, we would, following the argument of Theorem
Four, firstly find an upper bound on the function
R(x,y,z) = |{(n,q@): n<x, n=L modk,, q<y, q=£,modk,,
(((an2+bn+c)q2+(dn2+en+f)q+(gn2+hn+i))n,pgzp)=1)
for z<x and X*/k,>Y/k,.
‘Progressing as in Steps 2 and 3 of Theorem Four we see that

for z(exp((lnY/kz)ﬁ), R(x,y,z) may be written

R(x,y,2) < % ) 2 (=g’ (@) {1 + 0(exp(~(1nY/k,) %))
) 2 0<n<x p i P
n=0 modk, PrK,
(n.pgzp)ml
(n,z) app

+ O(exp(—u(lnu—ln1n3u—ln2—2)))}
(1)
where "(n,z) app" represents a series of conditions on n, the

exact evaluation of which need not concern us here: and where

pn(p)+l ; p+(gn2+hnti)
Pt (P) = {
en(p) ; p1(gn?thn+i)
for
pn(p) = I{m(modp):(an2+bn+c)m2+(dn2+en+f)m+(gn2+hn+i)EO modp}

whenever p<z.

On the other hand, for z<x, defining s, to be the highest

q

common factor of aq2+dq+e, bq2?+eq+h, and cq?2+fq+i, R(x,y,z) may

be written
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R(X,Y,2) = ) f (1HEQL£E)){1 *
[6,k,] 0<q<y p<z p
qEQZmodkzp“er1
(q,z) app

O(exp(—(lnx/6k1)f)) + 0(exp(—v(lnv—lnlnBv—1n3—2)))}
(2)
where for some integers ., £, and €. all satisfying
(Ry,6,k,)=1; 1=1,2,3, "(q,z) app" denotes the primes satisfying

(1) (s p)=1

Q'pgz
{(ii) aq?+dq+gtbg?+eq+h+cq?+fg+i=1l mod2
(iii) (aq?+dq+gt+bg?+eq+hteq?+fg+i,

4(aq2+dqtg)+2(bg2+eqth)+(cq2+fg+i) )#0 mod3

(0 (e (BT e (M o

if (6,k,)=3 or 6; and

(1) (sq,; 0, p)=1

(ii) aq?+dg+g+bq2+eq+h+cq2+fq+i=l mod2
(iii) (aq?+dq+g+bg2+eq+h+cq2+fq+i,

4{aq?2+dq+g)+2(bq?+eq+h)+(cq2+fq+i) )#0 mod3

2 .
) ([P oge [0 o P00 P 0 o

aq?+dqtg),,, (dq2+eq+h cq?+fg+i 0 p \_
([ Sq ]Q4+[ 8q ]Q4+[ Sq ]' T%kl =1
otherwise. In what follows we will assume that (6,k,)=3 or 6.

When (6,k,)=1 or 2 a similar argument may be applied.

Further
Pq(P)+1 ; pr(cq?+fq+i)
pq' (p) =
eq(P)  ; pi(eq?+fqti)
where

pq(p) = l{n(modp):(aq?+dq+g)n2+(bq2+eq+h)n+(cq2+fq+i)50 modp}
whenever p<z.

The obvious way forward is now to find an upper bound on the
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function
y M (lpg' @) 3
O<n<x ka |3 )
n=¢ modk P12
(n, 0,p)=1
(n,z) app

which is a problem similar to that tackled in Lemma One, where

the sum we required an upper bound on was

Z m (I-pn(p))
0<n<x p=z P
nEQ,modk1p¢k2
(n,z) app

(NB "(n,z) app" may be defined differantly in the two cases.)

In that instance we wrote the product g (1-pp(p)) in terms
T, P
of the product g ](l—pg(p)) for z,<z, thus reducing the sum
2
to one effectively dependent only on z,.

Although as in Lemma One the product of (3}, g (1—pn'(p))

+K, )
may be written in terms of the product g (1-pn'(p)) for some
3 p

z,<z it is not clear how the condition (n,pgzp)=l appearing
under the summation sign may be reduced to (n,pgzp)=1.
1
To avoid this difficulty we take a different approach.

Rather than work with the function

R(x,y,2z) = |{(n,q): nkx, n=f modk,, q<y, q=¢,modk,,
(((an2+bn+c)q2+(dn2+en+f)q+(gn2+hn+i))n,szp)ﬂl}

we look instead at

T(x,y,z) = |{(n,q): n<x, n=L . mod[6,k,], q<y, gq=amodf,

((an2+bn+c)q2+(dn2+en+f)q+(gn2+hn+i),szp)=l}

where (a,f) is not necessarily equal to 1.
For z<exp(54(lnY/k2)§)), an upper bound may be found on

T(x,y,2) following the usual argument ie
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T(x,y,2) < Lz L M (oeal @D 4 o gexp(-(10/g) 1))
26 0<ngx p<z P B
n=¢ mod |6k, |PT2P
(n,z) app
+ O(exp(—u(lnu—ln1n3u—ln3—2)))}
(4)
for some set of conditions "(n,z) app" and where
Pn(pP)+l ; pign?+hn+i
en' (P) = {
pn(P) ; pign?+hn+i
with
pn(p) = |{m(modp):(an2+bn+c)m2+(dn2+en+f)m+(gn2+hn+i)50 modp}
for p<z.
On the other hand for zg<x, defining, as before, Sq to be

the highest common factor of aq?+dq+g, bq2+eq+h, and cq2+fq+i

we have the alternative estimate of T(x,y,z),

T(x,y,2) = 2 L M (oegefy
[6:k0) geqey P2 P
q=omodf prék,
(q,2) app

O(exp(ﬂ(lnx/6k1)f)) + 0(exp(-v(lnv—lnlnBv—1n3~2)))}
(5
where, for p<z,

pq(p) = | {n(modp) : (aq?+dq+g)n?+(bq2+eqth)nt+(cq?+£fq+i)=0 modp}

and where "(q,z) app" is the set of conditions
(1) (sq,JI,p)=1
(ii) aq?+dq+g+bq2+eq+h+cq?+£fg+i=l mod2
(iii) (aq?+dq+gt+bq?+eqth+eq?+fq+i,

4(aq?+dgq+g)+2(bg2+eqth)+(cq2+£fq+i))#0 mod3

o ([ [ e

a set of conditions identical to those defining "{q,z) app" in

(2).
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Now, applying the method of argument of Lemma One to the

sum of (5) instead of (1) we attain

LEMMA TWO

Suppose 2LzKy<x. Define F:=|(cd-fa)?-(bd-ea)(ce-fb) 1. Then
there exists an absolute and effectively computable constant c,,
independent of a,b,c,d,e,f,g,h,i,k,,2.,0 and B for which it

follows that

M (1-py'(p)) x N (1-2) n (1+ 1)
0<§<x p<z P < c"E1 p<z P p<(35\)100 p=2
nEQsmod[ﬁ,kl]P*ZB P12
(n,z) app

X {1 + lﬂﬁf;ﬁ;ﬁ) + mi_ + k,.G.lnln(}
(7)) %9 (7n\)?

if zpmax(F,2R).

If on the other hand z<max(F,28) then

o (1-py'(p)) X n (1-1)
z p<z P < [E * 0(1)] p<z P .
O<ngx 128 1 pt28
nEQsmod[S,ki]p
(n,z) app

The notation is as described in Lemma One.

Writing I' as

- nm @ad+ 1 ) In({.\) 1
r = c"p<(35k)‘°° =2 1+ ISR + L + k,.G.lnlnf}
p#2

it follows that

I (I-py' (P)) X n (1-2)
0<§<x p<z p < 1“51'11'13<Z P - 1nf (6)
- 2 pt2B
n=0 mod[6,k, 1PT
(n,z) app

for z<y<x with I' independent of § if z»max(F,2B). Furthermore

(6) holds for zgmax(F,28) as well.
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Substitution of (6} into (4) gives

T(x,y,2) < %§%1F.ln6.pgz (1“%) 1+ 0(exp-amy/kpn}
p123

for z<exp(54(1nY/k2)i)), and a comparison with the alternative

estimate of T(x,y,z), (5), gives

M (1-pg(p)) o Y.[6.k ] 0 T (-2)p
0<§<y R T S e
q=omod pt6k, p+2p
(q,2) app

0(exp(~(1n¥/g) )}

(8)
for z<exp(54(1nY/k,)?¥)). We emphasise here that I is
independent of 3.

Given this upper bound we will demonstrate how this

information may be used to find an upper bound on the function

Z pg (1-pq"' (P))
z p
qu<y ptok
q=2 ,modk, 1
(q,z) app

which appears in (2), the estimate for R(x,y,z), whenever
z(exp(Sh(lnY/kz)i)). In doing so we sidestep the difficulty of

having to find an upper bound on

X o (1-py'(P))
p<Z P .
0<ngx
nEQ1modk‘p*k2
(m, 1,p)=1
(n,z) app

Recall that

pq(p)+l ; pt(cq2+fq+i)

pq' (P) = {
! pq(P)  ; pi(cq?+iq+i)
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pq(p) = | {n(modp): (ag?+dq+g)n?+(bq?+eq+h)n+(cq?2+£fq+i)=0 modp} ‘

It follows that

M (l-pg'(P)) _ M (1~ pg(@)+1 ) M (1-pg(p))

p<z P p<z P p<z P
p16k, p16k, prék,
ptcq?+fg+i picq?+fqg+i
M (1) 0 (l-pg(p)) M (1-1)71
p<Z P P<z P p<Z P
prék, P16k, (cq?+fq+i)

w T (1= pqfp) )
p<z (p-1) (P-pq(P))
ptbk,
ptceq2+fg+i

Since pq(p)>0,

M (Q-pg' (@) M (I-1) T (lpg(p)) M (1-1)71
p<z p p<z - p Pp<=Z P p<z p
piék, pt6k, pl6k, (cq2+fq+i)

and we have

z pgz (1_Pq;(P)) < pgz (1—%) E pgz (1”Pgép))
0:q<y p6k, 0:q<y prék,
q=0 ,modk, q={ ,modk,
(q,z) app (q,z) app
n a-un-1
p<z P

pi6k, (cq?+fq+i)

The second sum is clearly similar to that of equation (8).
The reasoning from here is along the lines of Lemmas 2.9
and 2.11.
Let # denote the highest common factor of ¢, f, and i and

write c,=%/y, f1=f/9 and i1=i/9. Then
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z pgz (1_Pg;(p)) < pgz (1—%) Z pgz (l—pq;p))

0<q<y 0<q<y

qsﬁzmodkzp*sk’ ptok, 0 qEszodkzp*Gk‘

(q,z) app (q,z) app

n o(1-1)-1

p<z P .
p|(c,q2+f,q+i1
pték, o

Write the sum

¥ g (1-pg(P)) pgz (1—%>"1
p=<z P
NIy prek pic,q2+E,q+
q=0 ,modk, 1 6& 1 !
(q,z) app PTo%,

as S so that the sum we require satisfies

0<q<y p<z P p<z P
qEQZmodkzp*Gk‘ P16k, 0
(q,z) app
-1n-1
Now the second product of §, m Q-1 , 1s equal to
p<z P
plc,q2+f,q+i,
pi6k, 0
X 2 (m)
c,q%+f,q+i ;=0 modm p(m)
(6k,6,m)=1
P(m)<z

where P(m) denotes the largest prime factor of m.

Consequently
s= T T (g ) k2 (m)
qu<y E:zk, g ¢,q?+f,q+1,=0 modm pim)
q={ ,modk, (6k,6,m)=1
(q,z) app P(m)<z

which on changing the order of summation gives
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S = Z p2(m) Z M (1-pq(p))
p(m) p<z P
1<m<G (y) 0<q<y r6k
(6k,0,m)=1 q=0 ;modk,PT7%1
P(m)<z (q,z) app

c,q?+f,q+i,=0modm

where G(y):=ogaéy[c1q2+f,q+il|.
Let 4, (m),...,y(m) be the p(m) solutions of
c,n2+f nt+i, =0 modm
and let §{=58j(L,,yi(m)) be the unique solution, mod[k,,m], if

it exists of the pair of congruences n=Q,modk, and n=y;(m)modm.

Then
) p2(m) ) ) M (1-pq(p))
1<n<e ()P ™y (m)modn 0<q<y k.
(6k18,m)=1 yi(m)Egzmod(kz,m) qs&imod[kz,m]p 1
P(m)<z (q,z) app
We divide the sum S into two to read
) 2 (m) ¥ I (1-pg(p))
1<m<exp((1ny)5)w(m> vi (m)modm 0<q<y p;zk P
(6k,0,m)=1 vi(m)=¢,mod(k,,m) gq=5jmod[k,,m]PT" s
P(m)<z (qa,z) app
) prmy ¥ ¥ M (1-pg(p))
exp((1ny) H<n<6 (3™ 4 (m)modn 0<q<y VL
(6k,6,m)=1 vi(m)=2, mod(k,,m) q=6;mod[k,,m] P71
P(m)<z (q,z) app
(10)
Now, if m<exp((lny)?) then from (8) we have that the first
innermost sum satisfies
I (1—pq(P>) Y[G'kl] 1n[k21m} n (1__%)
Z p<z P <o T [k,,m] p<z P {1 *
O<q<y 6k ‘ ? 20k, ,m]
q=s mod[k,,m]PT*% p12(k,,
(q,z) app

0(exp(~(1nY/[k,,m]) 1))}
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y [k,,m] m (1-1)2
< Z.E;[G,k1].F.ln[kz,m].a??Tﬁ;TﬁT) p<z D {1 +
0(exp(~(1ny) 1))} (11)

with ' independent of m,
(We recall here that the derivation of this upper bound stemmed
from an analysis of the function T(x,y,z) introduced on page

228.)

If however m>exp((lny)%) then the second innermost sum

satisfies

Z n (1_Pq(P)) < Z 1 Ez_.ln[kzrm] + 1.
0<q<y . 0<q<y ny e (lk;.m])
qEé:l-_mocl[kz,m]p'r 1 g=éymod[k,,m]
(q,z) app (12)

Substitution of (11) and (12) back into (10) gives

m o (1-1)2 y p(ml2{mlnk, n]. [k, m)
p<z P 1<m<exp((1ny)%)W(m) Y ([k2lm])
(6k,6,m)=1
P(m)<=z

S < 2.§;[6,k,].r.

x {1 + 0(exp(~(lny) 1))

+ o[ z p2(m).p(m) In[k,,m] ]
Y exp((lny) ) <n<a(y) p(m) p([ky,m])
(6k,6,m)=1
P(m)<z
+ 0 ) K2 p(w)] (13)
exp((]_ny) %)<m<G(y) p(m)
(6k,6,m)=1
P(m)<z

But the first sum of (13) satisfies

) o(my 22 In[k,,m]. [k, ,m] §2(m) p(m)ms/ 4
Lcncexp((1ny)d) ¢~ ¢*([kz,mD) (6, 0,m=1 #° @

(6k,8,m)=1 P(m)<z
P(m)<z

<k
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<k T+ 2ps/a )y
2 p<z (p-I)3
p1ék, 8

< 2k,.8(3/2) (14)

where {( ) denotes the Riemann zeta function.

The second part of (13) satisfies

pr(m) .p(m) Infk,,m] . ) p(m) .m3
exp((1ny) ) <n<G (y) (™ p([kz,m]) ? meexp((lny) H?” ™
(6k,0,m)=1
P(m)<z

< K, Z p(m).lnénm
m>exp((lny) %) ¢(m).m

¢ 1nlny p(m)
? exp((lny)?) m>exp ( (1ny)3)? ™
¢k, DY) g oyM/2 (15)

2"exp(7(iny)?)

by Lemma 2.7 with 1nM—{[lE£ng_l]

+1}1n2 for D the discriminant
of c1n2+fln+i1.

The third sum of (13) satisfies

p2(m).p(m) mo(+ 2 )
exp((1ny)5)<m<c(y;_;T67”“‘ p<z = (16)
(6k,6,m)=1 p16k, 0
P(m)<z
So

S < 4. y [6 Ky ]k, DL E(3/2) “ (1- 1) {1 + 0(exp(- (1ny)%))}

y (1nlny) 2. (1ny)M/2 m (1+ 2)
M O[lny'kz' exp(#(Iny) %) ] * 0[ p<2k p-1 ]
p1ék, 0

For z<exp(5#(lnY/k2)i) this yields
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s < 4.0.06,k,).k,.I.5(3/2 ) e (1 1) 1+ 0(exp(-(lny) %))
"k
for M{inlny.
From (9) we now have

) p“z (1‘£g%£2)) < 4.%.[G,k,}.kz.r.§(3/z).pgz (1‘%)
0<q< 1
q<g iodk prék, p1ék, o
(q, Z) app 5

e UE L oemp-amin} an

for z<exp(54(1n¥/k,)). This is the upper bound we required. (It
appears in our estimate of R(x,y,z).)

Given this starting point we may proceed as in Theorem Four

to reach

) M (Apg B ¢ 4 ¥ 16,k,].k,.I.0¢3/2). 1 (172
O<q<y  P<Z o k, pP<z P
qaﬂzmod]:«:zp‘r6k1 p6k,
(q,z) app

m (-1 n @2 @-2)71 [1+
p<z P Pz, P P<Z,
PT6k10 p4'6k1

0(exp(~(1nY/k,) 1)) + 0(|p|‘/5.H.y‘1/7.lny)} (18)

for any z<x, where

exp(54(1nY/k,) %) ; z>exp(54(1nY/k,)?)
T {z . z<exp(54(1nY/k,) })
where, if we define g, to be
gm=(b?-4ac)m?+2(be-2af-2cd)m?®+(2bh+e2-4ai-4df-4gi)m?

+ 2(eh-2di-2gfim+(h2-4gi)

then p:=largest coefficient of g, in modulus;
and where H is as defined for Theorem Five.
This upper bound may now be substituted into our initial

estimate of F(x,y,z), (2).
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Substitution of (18) into (2) gives

k o (1-2) 1 (1-1) 1 (1-1)2
R ] y 4- .r.f‘ 3 K.Y, —_ — -
(X y Z) < E1z ( /2) X.y P<=z P p<z1 P P<Z‘ P
p6k, pt6k 6
-1
pEz (1- 2) {1 + 0(exp(-(InY/k,) 1)) + 0( 111/ H.y"/ 71ny)
p{sk,

+ O(exp(—(lnx/6k1)%)) + O(exp(~v(1nv—lnln3v—ln3~2)))}
(19)
which concludes the case for (6,k,)=3 or 6.
If (6,k,)=1 or 2 then an almost identical proof gives

m (1-2) 0 (-1 n (1-1)2

R 8 TLE(s
(x,y,2) < Crayxy. ., 5 p<z, P D<z, P

ptbk, P16k,
pgz (1- 2)“ {1 + 0(exp(~(1nY/k,) 1) + 0(ip1'/5.H.y?/ 71ny)
p—r6k1

+ O(exp(—(lnx/6k1)f)) + 0(exp(—v(lnv—lnlnBv—lnS—Z)))}
(20)

A combination gives

8 k M (1-2) 0 (1-1) O (1-1)2
R (I N R R N N B R

p1ok, pték,
pEz (1~ 2)_ {1 + 0(exp(~(InY/k,)4)) + 0(1p11/5.H.y'/71ny)
P*6k1

+ O(exp(—(lnx/Skl)i)) + O(exp(—v(lnv—lnlnBv—ln3—2)))}
(21)
for any value of (6,k,).
Returning to the start of the chapter we recall that the

function we were really interested in was P(x,y,z). Now

P(x,y,2z) < R(x,y,z) + 0[—fﬁzf§ﬁi?7ﬂ
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so we have the following theorem:

THEOREM SIX

Let an?+bn+c, dn?+ent+f and gn2+hn+i be polynomials with
integer coefficients, an2+bn+c and dn?+en+f having no common
factors. Let x,yel and £,,k,,2,,k,¢N.

Then for 3<z<x, and ¥X/k,3Y/k,,

m (1-2) M (1-1) 1m (1-1)2

8 k
_ —~2 3
P(x'y’z)<¢((6,k;)§'k1'§< /2)'X‘y'p<z P P<z, P P<z, P

pt6k, pt6k, o
n @-2)71
<z, 5 L+ OCexp(-(InY/k)H)) + 0C1pi /5 K.y M1ay)
ptok,

+ O(exp(—(lnx/6k1)§)) + O0(exp(~v(inv-1nln3v-1n3-2)))

* O[x.¢?é???2(k2)]}

1nX/k,
Inz °

where v=

The O-constants are absolute and independent of a,b,c,d,e,

f,g,h,i,0,,2,,k, and k,.
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CHAPTER 6

As a final note we include the observation that the methods
developed throughout the previous chapters may be used to

estimate functions of the form

P (x,y) = [{((n,m): n<x, my, ((an2+bnte)m2+(dn?2+entf)m+
(gn2+hn+i), k)=1} )

Defining

$(x,y,2z) = [{(n,m): n<x, <y, ((an2+bnt+c)m?+(dn?+en+Lf)m+

(gn?+hn+i), B?E P )=1}|

we proceed in a manner similar to that adopted previously. By

a simple adaptation of Lemma 1.1 we have, for z<y,

e(x,y.2) =y L M Q=ea®) (1 4 o(s(wy) +
0<ngx P i |3
(n,z) app Pl
0(exp(~(ln y)%)))
(L)
where E(u)=exp(-u(lnu-lnln3u-1n2-2)) and u~i§ Z :
and for z<x,
dp(x,y,z) = x Z M (-pp(p)) {1 + O(E(V)) +
0<m<y p<lz( p
(m,z) app P!
0(exp(—(1ln x) %))}
(2)
where v In x .
n z

Following the arguments of Lemma 5.1 we may show that for y and
Q large real numbers, o310, and lnzaQ<y<z,
m (xeN™t_ 1 a-xen-1

p<z P Py P
plk plik

{1 + 0(ay~l/®) + 0(Q~3/e)

@ |
(3)
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with at most 0(q9/a) exceptions, where P(k) denotes the largest
prime factor of k.
Given (1), (2) and (3) an asymptotic formula, or upper
bound, for ¢ (x,y,z) may be derived. No major changes occur
in the argument; in many instances the arguments are simpler.
The details of a general theorem have not been derived but
we give as an example (without proof) the following relatively

simple case:

THEOREM 7

For x,yeN, let M-max(x,y). Then defining the function

b(x,y,2) = [((n,m): O<ncx, O<mcy, (n2+m, Bgﬁp>=l>|
I

we have

m (1-1)
‘p<z P
pik

$p(x,y,2) = xy {1 + 0(exp(~u(lnu-1nln3u-1n2-2)))

+ D(exp(—(1ln y)%)) + O0(exp(—(1n x)1)) + O[expi;T;‘o)]

ol

(&)

where u—ig S, and z satisfies 2<z<M. All the implicit

constants are absolute and effectively computable.

ko moa-pt
p(k) p<P(k) p

P(k)(exp(y‘/54), (4) may be rewritten

Since ¢ 1In P(k}) it follows that, for

m (1-1)
‘p<z P
Pk

oK(X,¥,2) = xy {1 + 0(exp(-u(lnu-1lnln3u-1n2-2)))

+ 0(exp(—(1ln y)%)) + O(exp(—(1n x)%))}'

For &p(x,y) = {{(n,m): O<nkx, O<mgy, (n2+m,k)=1) clearly
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b (x,y) € & (x,y,z). So we have the following:

COROLLARY
For all x,yeN, and for keN satisfying
P(k)<min(x},exp(y'/64)),
there exists an absolute and effectively computable constant c,

such that

e(x,y) < o gxy B

To judge the effectiveness of the Corollary we note that

Theorem 3.5 of Halberstam—Richert [2], gives

Y1 <. fégl.y if y»e® and P(k)<y.
my
(m,k)=1

An almost identical proof yields

Y1 <. 2By if yres and B(K)<y.
a<meo+y
(m, k)=1

This implies that

bp(x,y) = Z Z 1 < 7.Eé5).xy if y»e® and P(k)<y.
n<x, 0Ny
(n2+m,k)=1

Our corollary does not of course improve on this result

except that it allows for a much wider range of k whenever

y&Ux.
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