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M.Sc. Thesis Summary

This thesis, Norms of Ideals in direct sums of number fields and applications to the
circulants problem of Olga, Taussky-Todd/ presents wide-ranging material in the Mathe-
matical areas of Algebraic and Analytic Number Theory. The work, which is substantially
original, is set out in three chapters which are supported by appendices.

As the title suggests, the main aim is to tackle a problem which was originally posed
by Olga Taussky-Todd who asked what values can be taken by the determinant of a certain
type of » x n matrix with integer entries — the circulant (see [15]).

Hitherto fragmentary algebraic results have been proved by M.Newman, using matrix
manipulation ([5],[6]). However, for a given circulant, he gave no indication as to what
proportion of integers are values. The thesis solves this problem by utilising a well-known
relationship between determinants of matrix transformations and “absolute” norms of
fractional ideals in a direct sum of number fields. By working appropriately in the latter
structure, asymptotic methods are made available to complete the solution. A sketch of
the mathematical strategy is given in the preface.

The overall approach is to start at the level of great generality in Chapter 1 where,
by slight modification, there is a generalisation of some extensive results published by
R.W.K.Odoni in recent mathematical journals (see e.g. [12]). Subsequently there is suc-
cessive specialisation down to the case of the circulant. In Chapter 2, by using standard
techniques of group characters and the arithmetic of cyclotornic fields there are proved a
few new results for abelian group determinants. In the final chapter there are given new
elementary proofs of results for particular circulants, first presented by Newman in [5,6].
Then the methodology of the first chapter is reprised to establish the most important orig-
inal result of this thesis — that “almost all” integers with appropriate ’critical’ exponents

are values of a given circulant.

I declare that this thesis, submitted for the Degree of Master of Science at the Uni-

versity of Glasgow, has been duly composed by myself.



Preface

This thesis, presented for the degree of M.Sc. (Research in Mathematics),
consists substantially of new work undertaken with the supervision of Professor
R.W.K.Odoni, to whom I am immensely grateful for his patience, good humour
and most of all a seemingly boundless enthusiasm for mathematics; I wish him all
the best for the future. I would also like to thank the staff and research students
in the Mathematics Department at Glasgow University. Finally, I am indebted
to the Science and Engineering Research Council for financial support during my

studies.

The main task is to tackle a problem, originally posed by Olga Taussky-
Todd, which asks, “What are the integer values which may be taken by a circulant
with integer entries?” We present here a detailed quantitative solution; it seems
that at present a complete characterisation of values cannot be given: during the
course of our work we construct quite an elaborate extension of Q, the field of
rational numbers, by forming the Galois hull, H, of ray-classes (see Chapter 1
for a definition); if a characterisation existed, then there would need to be some
suitable congruence relations on the primes in H, which is unlikely. We can,
however, measure densities; by using the very general machinery of ray-classes
in Chapter 1, we show in Chapter 3 that almost all integers with appropriate
‘critical’ exponents are values of circulants.

In addition to the work directed specifically at the circulants problem, we
look at values of group determinants (for which the circulant is an example). We
consider in some detail the case of elementary abelian p-groups. This material is
presented in Chapter 2, where various methods are employed; in particular, we

use group characters and the arithmetic of cyclotomic fields.

The results for general group determinants are, however, somewhat fragmen-
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tary; the circulant is a very special case, for which the strategy for determining

a quantitative solution is outlined below.

Definition The circulant of order n is given by

Tp 1 .. Tp-1
Tp—1 To ... Tp-2
Ap(z) = . .o ) , where zg,...,Zn—1 € Z.
Zq Tg ... g

It is easy to show that A,(Z") contains all » with (r,n) = 1 (see (L2) in
Chapter 2). Thus it remains to determine, given a prime p | n, what m with

p | m are values of the circulant?

Relationship between group determinants and norms of ideals in algebras

Let G be any abelian group, #G = n; then take QG, the group algebra
of G over Q; dimqQG = n. For any o € QG, we define L, : QG — QG by
2z +— ax Ve € QG. Then L, is a Q-linear map.

Definition The group determinant (denoted by N(«)) := det L.

If we take G = Cp, a € ZG, then the group determinant is a circulant of

order n.

Let A := jes Kj, where K; are algebraic number fields, and let § :=
@D ;cs2;, the integral closure of Z in A. Integral ideals @ in S (denoted by a<.5)
are those of the form (D;¢ ; @; where 0 # a; « Z]

It is established in Theorem 9 for suitable A, that A g QG, while S contains
the image of ZG. For such A and S, we have also (Lemma Al1): suppose r € ZG,
L. : QG — QG is Q-linear, then |det L.| = N(rS).

These two relations prompt us to use the ideal theory of orders in direct

sums of number fields.

For A and S determined in Theorem 9, let @ = ZG; then O is an order
in S. If f = #G, then fS C O. Owing to the poor ideal theory in S we work

i1




mod fS and introduce ray-classes — a generalisation of ideal classes, with certain
conditions imposed. We proceed to examine principal ideals a with generators in
O. So we look for a suitable characterisation of ideals rS;r € O, bearing in mind
the need for relative ease in handling the quantitative analysis. This is achieved
by expressing ideals as @ = bg, where b consists only of prime ideal factors of f.§
and where (g, fS) = 1. A key lemma (Lemma 1) enables us to generate plenty
of partners g ‘compatible’ with & (which give rise to ideals of the form a = rS
with suitable prime exponents), subsequently yielding enough for our purposes.

For the asymptotic analysis of the number of positive integers < z which are
norms of elements of O, we introduce ranges which have the important property
of being Frobenian multiplicative. Hence we are able to utilise the Chebotarev

Density Theorem to reach the desired result, following the method of Odoni in

[11] and [12].

P.Trafford
March 1992.
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CHAPTER 1
Ideal Theory of Orders in a Direct Sum of Number Fields

with Asymptotic Expansion for Ranges

0.Introduction

Let K4, Ky,..., K} be arbitrary number fields (i.e. finite extensions of the
rational field Q ). Let Z; be the corresponding ring of integers (j = 1,..., %), i.e.
the maximal orders of K;. Let A = @;”f:l K; S= @?:1 Z;. Then the integral
ideals @ in S (denoted by a < .S) are those ideals a := EB?:l a;;0 # a; 4Z;.
Necessarily, if @ <« S then S/a is a finite ring. Multiplication of these ideals is
done componentwise as for ordinary integral ideals, and hence the term ‘integral
ideal’ is appropriate; throughout Chapter 1 “ideal” will mean ‘integral ideal’.

Suppose we have a ring O, containing an identity element 1, such that O C §
with finite index. Then O is an order of the direct sum of number fields. For
a4 S, denote by N(a) the norm of a (thus #(S/a)). In Chapter 1, we are
interested in norms for principal ideals with generators in O, i.e. for ideals of
the form rS; r € O. Due to the poor ideal theory in @, we work in the bigger
ring S by introducing a ‘conductor’, f € N (the set of natural numbers) such
that f§ C O. The next two sections describe an appropriate characterisation
for ideals (mod> fS) by introducing ray-classes and ranges. Certain properties
of these enables us to determine a general analysis of asymptotic expansions for

ranges, bringing the first chapter to a close.

1. Ray-Classes

We choose a conductor f € N such that f§ C O: (letting f =[S : O]
will do). Let @;,a; be ideals in S. Then we define a; to be equivalent to as
(write @y ~ az) if and only if there exist A\, u € § such that \a; = pay , with

A= pu =1 (mod*fS); and with X\ and p having the same signature in the
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Minkowski map (write A/p > 0). The details of the Minkowski map are to be
found in Appendix A.

Let [a] := {z;2 ~ a}. As with ray-classes for solitary number fields, multi-
plication is defined for a3, a2 <S by [@1]-[az] := [a1 az], and hence is well-defined.
To impose a group structure we introduce the restriction a; + fS =a; + f5 = S.
Now let I be the set of equivalence classes satisfying all the conditions above.
Then it is easy to show that (I,-) is a finite group under ~ (see Appendix -
LEMMA A1l). As these equivalence classes are obviously extensions of ray-classes
for the one summand case, we call them also ‘ray-classes’ — of S (mod* f.5). Note
that if A\, x € Ssatisfy A—1=p—1=0 (mod*fS), then A—land p—1¢€ O,
hence A, ¢ € O; we include this in the definition of ~. Having defined ray-classes,
we look for systematic ways of handling principal ideals in S with generator in
O. We say an ideal gis ‘good’ if (g, fS) = S, and bis ‘bad’ if bis composed only
of prime ideal factors of fS.Thus Va < S, @ = bg for some unique such b,g. The

following Lemma utilises this decomposition, where A* denotes the units of A.

LEMMA 1 Suppose 0#r € O and rvS=10bg Ifg ~ g, then bg' =r'S, where
0£r' e ONA*Sr/r>0.

Proof This is almost identical to the one summand case (see [7]). We have
Ag = pg, with A = p =1 (mod”fS),\/p > 0. So A\(bg') = pbg = urS, a
principal ideal. Since (A, fS) = (u, fS) = 5, it is clear that bg' is principal, i.e.
bg = vS, for some v € S. Then AvS = urS; hence \v = pure, where ¢ € S*,

the units of S. [$*:= @F_, Z*

j=1Z3, s0 € = [e1,...,e] where ¢; € ZF,7 = 1,...,k].

So Ave™! = pr, and we then have ve™! = r (mod* fS). Hence ve™! € O. Put
ve~l = r' say. Thus A\’ = ur; on taking signatures, we have r'/r = pu/\ > 0,
while bg' = 'S

In order to find asymptotics for the number of positive integers < & which

are norms of elements of O, we first introduce ranges.
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2.Ranges

Definition Suppose we are given a fixed signature ¢ and a fixed bad ideal b.
Then if (rS) = (b)(g), with some r € O, sgn r=g, then b is said to be ‘compatible
with g.

Suppose n € N and that n = N(rS) is soluble for some r € O with sgn
r = g. We have n = (Nb)(Ng) = by, with b,¢g € N; b composed only of primes
p | f, and g composed only of p J f. We define ¢ € N to be ‘good’ if and only
ifpfgVp| f,and let b € N be ‘bad’ if and only if p | 8 = p | f. By unique
factorisation in N, every n € N is uniquely expressible as bg; b bad, and g good.
Definition The ‘Range of g’, R(g) := {[g]; Ng = ¢}-

Hence R(g) € 2! = { subsets of the ray-class group (mod* fS)} , and
R(g) = 0 if no Ng = g. By Lemma 1, if b is compatible with g, Nb=5b, Ng= g,
rS = bg, sgnr’ = g, and if g~ ¢, where Ng = ¢, then b is compatible with
g, and so Ir' € O, sgn r' = ¢ such that N(r'S) = bg'.

Now let s € C, Re s > 1. We can express the last result analytically in the

form:

P =Y n =3 (X (Z ”‘3)
nelU Se2l \geVv beW
U={neN;3Ir € O with N(rS) =n and sgn r = g};
where V = {g € N;g good, g = N g for some g with R(g) = S};

W = {b € N;b bad, b = Nb, compatible with some g with [g] € S}.

Now s 07° is analytic and bounded in every closed half plane of the
type Re s > § > 0; thus, to a large extent, the singularities of F'(s) are governed
by those of the various ) gev 9~ °; to determine the behaviour of the latter, we

need to find some properties of ranges.




If A, B € 2!, then define Ao B := {ab;a € A,b € B}. (By convention, Aol =
PoA =9, VA € 27). Thus 2 becomes a finite commutative monoid, partially
ordered by inclusion (see Lemma 2 below) with identity being the singleton {1}
where 1 is the principal class. Note that 2/ may be regarded as the power set of
p1 X p2... X pr; p; = ray-class group (mod* fZ;) of K;(j =1,...,k).
Notation N,, := {n € N;(m,n) = 1}; in particular N; = { good g in N}.
LEMMA 2 For g1,92 € Ny, R(g192) 2 R(g1) 0 R(g2) with equality if g and go
are coprime; in particular R : Ny — 27 {5 multiplicative.

Proof This is easy (see Appendix A), following directly from analogy with the

one summand case,

From this Lemma, we note that the range R(n) depends only on the prime
factorisation of n. A lot of further information may be derived, all of which is
analogous with the one summand case; we restrict our attention to those facts

which are needed to calculate asymptotics.

Mazimal Ranges and their characterisation

Consider the set of all ranges R(n);n € N. Since 27 is finite, the image
R(Ny) is finite, and so there exist ranges which are maximal with respect to
inclusion in 2. We call these ‘maximal ranges.’ Let 1 := {1},1 = identity

ray-class.

LEMMA 3 There exists a unique mazimal range which contains 1; it 1s a subgroup
of L

Proof Let M be a maximal range containing 1. Let M = R(g;). Then, by
Lemma 2, M? C R(¢g?). As 1 € M, we have M C M? C R(g?). Thus R(g}) is a
range containing 1, while the maximality of M implies M = M2, and so M is a
subgroup of I because I is finite. Suppose now that M7, M, are maximal ranges

containing 1, and let R(g1) = M1,R(g2) = My. Then R(g192) 2 MiM, 2 M,
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and also MMy D Mg; but 1 € Mi,NM; = MM, = M, = M, (as Ml,M2 are

maximal) —

LEMMA 4 The mazimal ranges are precisely the cosets of H in I, where H s the

unique mazimal range containing 1.

Proof Let M be any maximal range. Suppose R(¢g) = M, R(h) = H. Then
R(gh) 2 MH 2 M. Hence MH = M ( while M™"H = M™ ¥n > 1). From this
it is clear that M is a union of cosets of H. We show first that M is a single coset
of H. Let py,p90 € M and let n = #I. Then 1 € M™, and M™" = HM™ O H,
ie. M™ D H, while R(¢") 2 M™ 2 H. By the maximality of H, M™ = H. Now
1= pl and puf tpg € M™ = H, hence p iy € H. So ps H = pH, V1,49 € M
and this implies M = uy H = po H.

Now we show that each coset of H is a maximal range.

Given any class x € I, dg € Ny with x € R(g) = M (maximal). Then
M = xH C R(g)H = R(g)R(h) € R(gh), where R(h) = H. This implies
R(gh) = M and hence xH = R(gh) = M is a maximal range

3. Frobenian Property of Ranges

Using the notation above, we have arbitrary number fields Ky,..., K, with
corresponding rings of integers Z,, ..., Z;. We have also f§ C O for some f € N.
Let p; be the ray-class group of K;(mod* fZ;), (j = 1,...,k). Then denote by M
the finite monoid consisting of all subsets of p; X...X p; , which is determined by
letting R(n) := {(C1,...,Ck € p1 X...Xpp}such that for j = 1,...,5 30 # a;<Z;
with H;;l N(a;) = n and [e;] = C;}. We wish to characterise the ranges
R(p™) of p € Ny in terms of prime ideals in a suitable extension of R. In
particular, we find appropriate conditions on primes p # ¢ € Ny such that
R(p™) = R(¢™) Vn € N, so that we may invoke the Chebotarev density theorem

to obtain qualitative results on the distribution of norms ‘of the right type.” The
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following Lemma yields the desired conditions. First we recall the definition of

a Frobenian multiplicative function.

Definition Suppose 8 : Ny — M is multiplicative, where M is a commutative
monoid. Suppose 3 a number field L such that

(1) L/Q is Galois;

(ii) No prime in Ny ramifies in L/Q;

(iil) Whenever p,q are primes in Ng, with Frob(p, L/Q) = Frob(q,L/Q),
then Vn > 1, 6(p™) = 0(¢™), where Frob(p,L/Q) denotes the conjugacy class of
p relative to L over Q.

Then we say that § is ‘Frobenian multiplicative relative to L / Q.

LEMMA 5 The range function is Frobenian multiplicative relative to L/Q, for
some L (defined below).

Proof From Lemma 1, to prove R(p") = R(¢"™) Vn € N, it will suffice to show
in each Z;, that pZ; and ¢Z; have the same number of prime ideal factors of given
residual degree and ray-class (mod* fZ;), (for: = 1,..., k). We construct a suffi-
ciently large (finite) Galois extension L of Q so that this holds whenever we have
distinct primes p,q € Ny, unramified in L, with Frob(p, L/Q) = Frob(q,L/Q).
We choose L to be the Galois hull over Q of the compositum H:;l Ri; here R;

is the ray-class field of K;(mod* fZ;). This gives us the following tower of fields:

R4 R : . .

. | |
I I, : . . /Ki . . . K
\\ g /
Fig. 1
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Consider now the consequences of Frob(p, L/Q) = Frob(q, L/Q) for distinct
primes p, ¢ unramified in L/Q. Hence, pZ; = p;...p,4, with Np; = plo and
9Zr, = ¢, ... q,, with Ng; = q%, where fy is the order of any Frobenius element,
Frob(p:, L/Q) or Frob(g;, L/Q). WLOG, we may take ¢; := Frob(p;, L/Q) =
Frob(q;,L/Q),forj =1,...,9.

Now Frob(p;,L/K;) is the smallest power of o; which lies in Gal(L/K;)
(see Lemma A2 in Appendix A). Hence Frob(p;, L/K;) = Frob(q;, L/K;)
in Gal(L/K;). Now R;/IK; is Galois and there exists a natural projection
m : Gal(L/K;) — Gal(Ri/K;) defined by o +» o |gr; (see Lemma A3 in Ap-
pendix A). Under 7, Frob(p;, L/I;) maps to Frob(p; N R;, R;/K;).

Thus Vi, j, Frob(p; N Ri, Ri/K;) = Frob(g; N Ry, Ri/K;) = (g.gfg_) the
Artin symbol, since R;/K; is abelian. Thus, by Artin’s reciprocity theorem,
p; N K; and g; N I; lie in the same ray-class (mod™ fZ;) V¢, j. Also the residual
degree of p; N K; equals the residual degree of g; N K; Vi,j. It follows that
R(p"™) = R(q"™) Vn € N as required[

The next section utilises the Frobenian multiplicative property of ranges.

4. Asymptotic expansions for ranges of arbitrary orders in a direct

sum of number fields

Our analysis starts from the following general theorem which describes
qualitatively the type of expansions which arise in studying the asymptotics of
#{n < z;6(n) = a}; here 8 is any Frobenian multiplicative function with values
in a finite commmutative monoid M, and & € M. We are particularly interested
in #{n < z;8(n) # 0}, where 6 is the range function defined above. Details of

the proof of the theorem are to be found in [11].

THEOREM 6 Let a € M, a finite commmutative monoid. Let 6 be a Frobenian

multiplicative funclion with values in M. Then #{n < z;8(n) = a} has an
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asymptolic expansiton consisting of a fintte sum of asymptotic series of the type
. h oo )
2" (log z))P~1 Z Z arn(loglog z)"(log £)™™ 4+ Oz e~cV!°9 %) (4.1)
r=0 n=0

where € Q, ,0<<1,0LheZ, ke N.

We now apply this to ranges. For d divisible by all primes ramified in L/Q,
let P = {p € Ny such that p splits completely in L}; then we have:
LEMMA 7 Let « € M, let 8 be the range function, and suppose 8(n) = « is
soluble. Then the dominant term of (4.1) has k = 1, and 8 = the Dirichlet
density of the set of primes p € P.

Proof This may be deduced from the following:

LEMMA 8 Let v : Ny — {0,1} be Frobenian multiplicative. Then #{n €

Nygin <z, (n) =1} has an asymptotic expansion of the type
oo
z(log =)’ 1 ch(log )77},
j=0

where v € Q is the Dirichlet density of the set of primes p with ¥(p) = 1,
and co > 0 if v > 0.

Proof
Let F(s) = Z n”® where s =0 +1t; o,t € R. (4.2)
N
Then
Fo=[|1+ > »*
2l P =1
And so

log F(s)y= Y p™° +H(s),
P(p)=1

where H(s) is analytic for ¢ > 1.




Let T, = {C such that Frob(p,L/Q) = C,%(p) = 1}. Let v = %z, the

Dirichlet density of the set of primes p with ¢(p) = 1. Then
F(s)=(s—=1)""D(s),

where D(1) # 0, D(s) is analytic for ¢ > 1, with moderate vertical growth.
Applying the Mellin transform, we find that: #{n € Ng;n < z,%(n) = 1} has
an asymptotic expansion of the type Z;x;l Ajz(log =)™, with A; > 0 and this
is easily seen to be of the required form— o

We have Vp € P, Vn € N, R(p") = 1, i.e. consists only of the principal

ray-class. So if we let 8y : Ny — M be given by

0 otherwise ’

then 6, is clearly Frobenian multiplicative. Let £ 1= {n € Ng;p | n = p € P}.
We deduce from Lemma 8 that #(€ N [1,z]) = #{n € Ng;n < z, 6;(n) = 1}
has an asymptotic expansion of the type E;’il Ajz(log &)"~7, where A; > 0,
7p is the Dirichlet density of the set of primes p with 8;(p) = 1. Clearly this
number is a lower bound for #{n € Ny;n < z,R(n) = 1}. Now suppose « € 2!
with R(no) = a, for some ny. Consider all numbers n := nge < z, where e € £
and (e,ny) = 1. Clearly all of these have R(n} = a@. Their number is given by
#{e € e < =, (ey,n0) = 1}. In (4.2), with ¢ = 6;, we just remove those p

which divide ny (a finite number). It follows that

@ 11 o (N or E 1N g (og
- (e>n0) - 1} (nO )(log nO )'y j;ga’.](log n()) ]1

#{e€ e <

¥
o
with g > 0.

Comparing this with the statement of the theorem, we see that at least one
of the expansions (4.1) must have x = 1. As all a}s > 0, the dominant term has

a term (4.1) with 8 =, 4




R S T TN

If we define 63 : Ng — M by

Gy(n) := { L R(n)# 9

0 otherwise ’

then 6;3(n) is clearly Frobenian multiplicative and we deduce immediately from
Lemma 8 that #{n € N4 R(n) # 0} has an asymptotic expansion consisting of
a finite sum of asymptotic series of the type (4.1), with the leading term having

k =1, f = the Dirichlet density of the set of primes p with 6;(p) = 1.
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CHAPTER 2

Norms and Abelian Group Determinants

0. Introduction

In this chapter we seek primarily more information on the nature of norms
of ideals in algebras, by considering the special case K = Q. In particular, for
a given prime p, we are interested in ‘allowable’ exponents k such that there
exist norms n, with p* || n, and the ‘critical’ exponent — the [, say, such that
p | n = p' | n. The chapter ends with a simple demonstration that almost all

norms have non-empty range.

1. Group Determinants

Let R be a commutative ring with 1, G a finite group, #G = n, G =
{91,---,9n} say. Let RG be the group algebra of G over R ; so RG is free as
an R— module of rank n. For « € RG, let L, be the R~ module morphism
t = at (for t € RG). The determinant of L, is called the ‘norm’ of «, denoted
by N(a); clearly N(af) = N(a)N(B) as Lapg = Lo 0 Lg, and N(a) = 0 if
and only if o is a zero divisor in RG. Now adjoin independent indeterminates
Z1,...,%y to R and consider the “generic” element A := "1, z;g; in R[z]G. The
determinant of Ly (regarded as an R[z]— module morphism) will be called the
‘group determinant’ of GG, denoted by det(RG). It is a homogeneous polynomial
of degree n in zy,...,x,, with coefficients in the prime subring of R; taking

R=17, G = C, gives a circulant - we shall study this in detail in Chapter 3.

Structure of QG; Construction of a Q — algebra isomorphism

First we need some information on characters and group algebras. Let G be
any finite abelian group, and let G denote its dual — the group of characters of G
(ie. G =Hom(G, C)). Let y € G; then x(@) is cyclic, and G/ker x is cyclic;

clearly these D are precisely the kernels of characters of G. Consider all D « G
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such that G/D is cyclic. Label them {D;}; € J. Choose Vj € J, x; € G such
that ker x; = D;. Suppose ker ) = D;, some ¥ € G. Let < 7 >= G/D;, where
v € G. Then (v) = x;(v") with (r,[G : D;]) = 1. Hence (y) = x5(v) and it
follows that 1 = x7, since v and D; together generate G-. Thus for each D; there
is at least one character x; such that Vr with (r,[G : D;]) = 1, ker x} = D;,
and these X7 are all the characters of G whose kernels are Dj; from now onwards
we take an arbitrary but fixed choice of the ;.

Now define the following:
Let I; = Q(primitive [G : D;]**root of 1);
Z; = integers of Kj;
N;j =norm K;/Q;
T; = trace K;/Q.
THEOREM 9 Let £: QG — @ ¢, K; be defined by
Y 49— (Z quj(g))
9€G 9EG ied
Then L ts a Q - algebra tsomorphism.

Proof We have that QG and € jes &j are Q - algebras. £ is clearly a homo-

morphism, so it suffices to show that
(1) Va € @jeJKj Jy € QG ; ['(2) =
(42) £ is an injection.
(i): We construct a preimage for a as follows. Let @ = {«;}jes € @ ; K;. We

need to find ¢y € Q such that a; =37 ggx;(9) ,Vj € J.

Suppose, then, that
@ = aux;(9),
)

where x; € (G': D;)* roots of 1.




Let ¢ €Gal(K;/Q) = T;, say. Denoting (after Hilbert) o(x(g)) by x°(g),
we have af = 37 ¢,x7(g). Multiplying through by X;’-(h‘“l), where h € G, we
obtain

WIxF (A7) =" gexi(gh™").
g

Now summing over all ¢’s € T'; implies

doalx(g = > x(¢") (any ¢’ € G).

o xiker x=D;

Thus,

Yoag Y xlgh™) =3 afxi(h7h)

X
kﬁrx:DJ‘

= Ti(a;x;(h71)).

Now summing over all j € J yields,

Y oag Y x(gh™h) =3 Ti(exi (A1),

x€G Jjed
Then
1 -
@ = 2z 2, Tilesx; (k™)

JjeJ
since we have the orthogonality relation

Zx(a)={#G if a =1c

4 0 otherwise
XEG

Finally, noting that a — M(a) is a Q-linear map P K; — QG, we sce that
if M(a) =3, ("#”1'(“; YierTi (ajxj(g“l))) g then, from the orthogonality rela-
tions, L(M(a)) = a.

(ii) It is enough to show that QG and P jes K; have the same dimension over
Q. The dimension of QG is clearly #G, while that of K is ¢((G : D;)), (¢ =
Euler’s totient function). But ¢((G : D;)) is also #{x € G; ker x = D;}. Hence
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dim @, K; = e (G s D)) = Tyer#lx € G ker x = D} = #G =
#G, as required.[_—_]

Summarising, we have:

) QG = K; whil
(1) Q Q@ {; while
o (1.1)
(i) « € L(ZG) & Y Ti(a;X5(g)) € #GZ Vg € G.
JjeJ
LEMMA 10Z4t least one of the summands on the RHS. in (1.1) (i) is Q (WLOG

the first, say), then det ZG D n"Z.

Proof We have from (1.1)(ii) that nS C ZG. Let z € Z and o = n(z,1,1,...,1);

3
then N(a) = n"z as required
2. Critical and Allowable Exponents for Finite Abelian Groups

Most of our discussion will apply to elementary abelian p-groups, but first

we may establish a few properties for more general cases.

Z — order of a direct sum of arbitrary number fields

Suppose R is a Z-order such that R C K; ... K, := A, where the
K; (+ = 1,...,r) are number fields. Choose a Z-basis wy,...,w, of R and
consider now the K/Q norm of N(Z?=1 zjw;) for z = (21,...,%,) € Z™; such
N(r) have norms of the form N( E;;l z;w;). It is clear that this is a polynomial
F(z) € Z[z]. Now p* || N(3Tj., #;w;) is soluble iff 3z € Z™ such that p* ||
F(z). This indicates that, for any Z-order R, when examining allowable/critical
exponents of primes p which divide norms, we may apply the Chinese Remainder
Theorem to a set of simultaneous congruences, and thus we need only treat each

p separately.

Group Rings
Let G be an arbitrary finite abelian group of order n. . Consider the values

k € N such that p* || N(r), some r € ZG and prime p | n. The following theorem
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shows that the allowable/critical exponents may be obtained by considering only
group rings for groups of prime power order. Recall that since G is finite abelian,
it has a unique Sylow p-subgroup S, say.

THEOREM 11

(1) If « € ZS such that p* || detsa then A8 € ZG such that p* || detsp.
(11) If B € ZG such that p* || detgB then Ja € ZS such that p* || detsa.

Proof We give constructions for g in (i) and « in (ii).
We have G = ST (an internal direct product) such that SN T = (1).
(i) Suppose a € ZS such that p* || detsa. Then consider
B=a) t+#T1g— Y t
teT teT
B is clearly in ZG. Let y € G = Hom(G,C*). Then we may extend x to a

Q-algebra homomorphism QG +— C by defining X(EQEG deg) = deG ggx(g)-

Hence,
X(B) = x(a) Y x(t) + #T — ) x(t) (2.1)
teT teT
In (2.1), x |7 is trivial iff x is a character of S only if x(8) = x(a)#T, whereas

if x |7 is non-trivial then x(8) = #T (since 3o x(t) = 0). Hence,

detcp = [ x(8) = [ [T x(B(8) = (#7)" [] x(e) = (#T) detse.

X€G xeSxeT x€S$

As p J(#T) then p* || detsc as required—

(i) Suppose 8 € ZG such that p* || detgB. We may write

B = Z Zn(a,'r)m", where n(o, ) € Z.

oceSteT

Now consider

a= H Z Zn(a, T)¢(7)o € Z[(]S, where ( is some root of unity.

peT o€EStET
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In fact o € ZS since for a given o, the net coefficient of ¢ in this expression of

« is a symmetric function of the ¢(7). Also we have

detsa = ] x(a) = [] [ x(8) = detaBpy

xES‘ xeS$ T

3. Some Results on the Group Determinants of Elementary Abelian
p-Groups

Let G be an elementary abelian p - group of order p™ (n € N). Then we
have the following (see Odoni [10]):

THEOREM 12 Let p > 2 be prime and let G be elementary abelian of order
pt* (n 2> 1), If m € Z and p J/ m then a necessary and sufficient condition for

m € det(ZG) is that mP~t =1 (mod p™).

We examine now critical exponents for G. The methods will continue to

utilise group characters and the arithmetic of cyclotomic fields.

Lower Bounds for Critical Ezponents of G = Cp"

Notation Given a Dedekind domain, for a ring R, and principal prime ideal AR,
Vala) == k; A¥ || «,(a € R).

(8.(i)) Suppose p|m and m € det(ZG), i.e. m = det v, for some v € ZG. If
Y =2 4e6 99 (ag € Z) then

(m=)det y= 1] x(v) =[] D_ aox(9)
x€G XEG 9EG

(lifting up x as on page 14). We have Vy € G, 2 gec %x(9) € Z[(] where ( is
some primitive p" root of unity; and also Ix' € Gy A 1= 1 — (| > gcc %x'(9)
since det v € pZ. As Vx € G, x(¢) is a power of (, x(g) =1 (mod X). Hence
A Xeqay, and so

Z ag € pZ. (3.1)

9€G
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If € &, then ¥(g) = 1 (mod \), giving > geq @g(¥(g) — 1) =0 (mod A) and

hence

> agp(g) = 0 (mod ). (3.2)

geG
From (3.1) and (3.2) we deduce Vi(det v) > (p — 1)V (22, e @9) +p™ — 1 (since
pZ[¢) = M~ and #G = p™). Thus a trivial lower bound is

n_1
Vi(det v) 2 Vp( Y ay) + 2

(3.3)
gEG p—~1

(8.(i1)) We may find a tighter lower bound by regarding G as a vector space
Fp = {(z1,22,...,2,); 2 € Fp (1 =1,...,n)}. We proceed now to handle first
odd primes p and then the case p = 2.

Suppose p > 2. Let A = 1 — ¢ where ( is a primitive p** root of unity.
A typical character ¥ € G may be defined by Xz(g:_) = (=¥ vz ¢ @, where Y

running through G gives the complete set of characters. Then
dety=]] > aoxto) =[] | 2 al@)¢*¥ -1)+T,
x€G 9EG YEG (z€C
where T' = ZEEG a(z). So
Va(det v) =Y VA | T+ ) a@) (=¥ -1)].
yeG z€G

Now \ =1 — ( gives

C(EE-E) —1=(1-A)2,—-1= (1 —_ (gy_))\ + <£23> AZ 4. ) — 1.

Hence we obtain,

Valdet v) = > Vi (T + 3 ae) {—w\(g.g) + A2 (g;;_) — . }) . (34)

gEG zEG
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Regarding the inner sum as a polynomial in y, f(y) say, we define:

z€G

Yy = {y €G; ) a(z)(zy) =0 (mod p)}

Vy 1= {y_ €Vyi; Y a(z)(z.y)? =0 (mod p)}

zeG

Vp = {g € Vn-1; Y a(z)(z.y)" =0 (mod p)}
zeqG

where V, # {0} = Vr41 for some r < n, with necessarily r < p.

The V;’s represent varieties in y. Now we obtain

Valdet 7) = VA(T) + G\ V1) + 24 (Vi \ Vo) + ... + (r + D##(Vr \ Vi)

=WA(D)+ (" —#V1)+2(# Vi —#Vo) + ... (r + D)F#(V, - 1)

=VA(T)+ > (#V;—1)+p" —1
j=1

Hence, under the assumption that p is sufficiently large compared with n,

B =1 ~#Y,; -1

where V,,(T') > 1.

It is a fact that V;, the set of projective points, satisfies #V;—1 = 0 (mod p—

1). (See e.g. Ireland & Rosen [2].)

(38.(iii)) We are now faced with the problem of minimising (3.5) by an appro-

priate choice of a(z) satisfying T' = 37 . a(z) € pZ. For V1, this is equivalent

to determining the number of co-dimension 1 subspaces of F'}. The minimum

number possible is thus p"~* which is attainable by the following argument. For
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1=1,2,...,nlet ¢, = (0,...,1,...,0) with the ‘1’ in the 1** position ). Hence

€1,€9,---,€, 18 a basis for F?. Then any z, and fixed candidate y is given by:
1 &2 n P Yy Z, Yy

L= Hi1&y —|~‘Ll,2_(3_2 + "'+/“n2n7 where 1 € FP (l: 172:"':77‘))
and y = Aje; + Aaeg +... + Ape,, where \; € Fy, (I =1,2,...,n).
Hence we need for V; (a(z) being denoted by au, us,...un)):

=1 p-—-1 —1

DD D G s+ Aoz o Anpin] = 0 (mod p)  (3.6)

#1=0 py=0 #n=0
Put ag1,0,..,0) = pF —1, a(1,0,.,0) = 1 and all other a¢,, 4, . u.) =0. Then (3.6)
becomes

(®* — DA + A = 0 (mod p).

Thus (3.6) clearly has p™~! solutions (A1, Ag, ..., Ap) with \y = A, (mod p) and
Arany € Fp (1 <1< n), and so y has p” choices|

For Vs, V3 and upwards, the minimum number is not generally obvious. We

do have however:

LEMMA 13 Let G = C,°, where p is an odd prime. Then in (3.5), Vy(det v) >
> Vo(T) + p + 2. Further, by a suitable choice of a(z) (to be determined)

Jy: Vy(det v) =k +p+2, where k € N is arbitrary.

[The case p = 2 is dealt with later]

Proof Consider V; represented by (3.6) above ; here this becomes

p—1 p-1

Y D du(Mip + dapz) =0 (mod p). (3.7)

#1=0 pa=0
As above #V; > p. Using the same notation, the number of solutions y to V3 is

given by the number of solutions (A1, Ag) to

=1 p-1

Z Z Ay ua (Aapn + Aapi2)? = 0 (mnod p). (38)

#1=0 pp=0
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In general, this has at least one solution in common with (3.7), viz (A1, A2) = 0.
Hence #V, > 1 so in (3.5) V,(det v) = V,(T) + p + 2. In fact, putting a;0 =

p¥ =2, ap,1 = agp =1, and a; ; = 0 (for all other i, ;) yields in (3.6):

(p* — 2)A1 + 83Xz = 0 (mod p)
= 2)\1 = 3)\2 (mod p)

3

The congruence (3.9) has p solutions mod p. In (3.8) we have: (p* —2)A\2 +5)\2 =
0 (mod p) and substituting in the value of \; from (3.6) gives A2 = 0 (mod p).
Hence (A1, A2) = 0 is the unique solution. Thus in (3.5) V,(det v) = k +p + 2,
where Ei:ol Zf__:é a;,; = p*, as required n

3.(iv) For p = 2 we use a different approach which manipulates matrices. This

method helps give a complete solution for the particular case p = 2, n = 2 but

cannot be applied so effectively to more general cases.
PROPOSITION 14 Let G = C2*. Then det(ZG) is given by (4Z + 1) U 16Z.

Proof It follows directly from Theorem 12 that if 2 J m then m € det(ZG) iff
m = 1 (mod 4). Hence the only odd numbers in det(Z@G) are precisely those given
by 4Z + 1. We show now that the only even numbers in det(ZG) are given by
16(Z). First we consider G = Cy" for arbitrary n € N. Let v:= 37 s a,. Then

det y= ] D agx(9)-

xeG 9€G

Let by =37 g agx(9), so det v = [L,e¢ Ox- In matrix form we have:

by, xi(g1) xalge) ... xi(gan) ag,

bm _ X2(gl) Xz(gz) v X2(92n) Qg,

. b . . . . b
byon xen(91)  xen(g2) ... xon(gan) Qgyn
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where G = {g1,...,92n} and G={x1,-..,x2n }.

Let 4 = (x:i(9;)) 4,7 = 1,...,2". The following Lemma yields much infor-

mation.

LEMMA 15 _42 = 2"£2n, where :-‘{L 18 the k X k identity matriz for k € N,
Proof Asin (3.(ii)) we regard G as F2™ and since —1 is the primitive second root
of unity, Vo € G characters x, are defined by, xy = (—1)*% where y runs through
G. This expression is symmetric in g and y, thus x4, (g:) (= (=1)7"9) = x4,(9;),
i.e. there exist labellings such that 4 = éT. Hence if a;; 1= xi(g;) then,

211

(ATA)i =) ajiaj
j=1

= xi(9:)xi(gx)
j=1
= > agx(gig;i")

e

1 if g; = —gx
= 2"6y where 8 = {1 9 =~k
ik WHETE ik 0 otherwise

We deduce that 42 = éTé = 2"£_D
This result helps us to characterise {é z;z € Z2" }. For the critical exponent,
we must decide which ¢ = (¢1,¢9,...,¢9n) € Z2" are such that Az = chasa
solution & € Z2" with 2 | sz:q ¢;. (The ¢; correspond to the by,).
From now on assume n = 2. From é z = ¢ we have é2£ = Ac, hence
Ac =4z by Lemma 15. 4 is easily computed; it is given by
1 1 1 1
1 -1 1 -1

1 1 -1 -1
1 -1 -1 1

é:

From the equation Ac = 42 we obtain the following set of simultaneous
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congruences for c¢1,c2,¢3,¢c4 € Z:

c1+cz+03+c450(mod4)w
c1 —eg +c3 —cq =0 (mod 4)

c1+ ¢z —cg—cg =0 (mod 4)

c1— ¢y —cg+ca =0 (mod 4)

A series of row subtractions yields ¢; = ¢35 = ¢4 (mod 2) and ¢; = ¢; (mod 4).
If any of the ¢; are odd, then all are and so 2 J ¢jceczcs. Thus we need
¢1, €2, c3 and ¢4 all even and hence det(ZG) C 16Z. Now choosing ¢; = ¢; =
2 (mod 4) and c3 = ¢4 = 0 (mod 4) satisfies (*) and yields det(ZG) 2 16Z. The

proposition is provedD

(8.(vi)) For n =2, and any odd prime p, this kind of approach yields:
PROPOSITION 16 For an odd prime p, if G = Cp?, then det(ZG) 2 ppz(pZ:i:l).

Proof We define characters as in (3.(ii)), with v, by, and 4 as in (3.(v)). We
would like to characterise {A z; z € Z? "}. This is apparently difficult, so instead,
to automatically satisly p | Hf; ci, where ¢ = (c1,...,¢p2) € Zf’z, we consider
which ¢ are such that Az = pe. Then det vy = ‘:.’:1 pei; ¢; € Z. Recall that
the characters of C'pz are defined by: for z = (2,23) € F,%, z +» (YL Here

A = [(*¥], yeF,2, Where ( = e2m/P Let = (r1,72) € Fp?%, 5 = (s1,82) € F,%

Then the (r1p+ 72 + 1,s1p + 72 + 1) entry is ("*1772°2, We now compute __A__Z.

For fixed 71,72,51 and so the (rip+ 72 +1,81p+ s9 + 1) entry is given by

p—1p—1

E Z C(jr1+irz)+(j31+i82)

=0 j=0

p—1p—-1

— Z Z Ci(r2+sz)cj(n+81)

=0 j=0

r—1

- p—1
— Z Ci(rz-l--?z) E Cj(f‘1+81)
j=0

=0

= pb(ry, s2)pb(r1, $1),
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where §(z,y) = { 1 ifz+y=0(modp) (3.11)

0 otherwise
We have that (3.11) is satisfied exactly once in each row and in each column,
with all other entries being zero. Thus we have p?x some permutation of ipz'

Relabel the 2;’s so that WLOG we have:
p'z =pAc (3.12)
Examining 4 we note that its first row consists entirely of 1’s so,

c1+c+ ...+ cpr =0 (mod p). (3.13.1)

For rows 2 to p?, given r = (r1,73), we have two cases:
a) rp # 0 (mnod p). Then as s; runs through 0,1,...,p—1, then rys; +7y8y runs
over the complete set of residues in F;“, as sg does. Hence row rip+ s+ 1 consists

of p blocks of 1,¢,(?%,...,(P! in some order. Hence we have a congruence of the

following type:
(Cigyyy T oot i)+ (Ciggny + - F Ciga ) )C+ .o

+(Cigyay -+ + Cigy ) )P = 0 (mod p) (3.13.2)

b) Suppose r3 = 0 (mod p). Then res; = 0 (mod p). Hence we obtain blocks of
length p of (™ for each s;. Similarly again, as s; varies over F, then so does

r181. Noting that for s; =0, ("™*® =1, we obtain a congruence,
(citeat..de)+{ci+ . Feppp-1)+. ..

+(Cjpoy F vt Cjpoytp—1)¢PT =0 (mod p) (3.13.3)

(3.13.1), (3.13.2) and (3,13,3) cover between them all congruences possible from
pz = Ac. Note that in (3.13.2) and (8.13.3) the number of coeflicients of (* = p.

23




Thus ¢; = a (mod p), any a € F, is a solution of the three congruences.

In

particular, ¢ = —1 gives

det(ZG) 2 p* (pZ +1)P" = p (pZ + 1)

and ¢ = 1 gives

det(ZG) 2 ppz(pZ — 1)

We may now easily deduce the following:

LEMMA 17 Let G = C3*®. Then det(ZG) D 3°Z.

Proof By Proposition 16, det(ZG) D 3°(3Z £ 1). Hence it only remains to show
that det(ZG) 2 3°(32).

In (3.12) we have WLOG [[;_, ¢; € det(ZG), inwhich¢; € Z (i = 1,2,...,9)

satisfy 3z = Ag¢, where z = (z1,

s, Ty) €20, A= [CE"Q]_:D_,QEFR (see (3.11)).

We have explicitly,

(o

T2
T3
T4
Ty
Te
L7
Ly

)

/

\

e+ e+ e+ e+ s+ e+ et s+ Cg\
e1+ Cea+Cles+ et Ces+ (et ot (est+ (e
ci+ et (st e+ Ces+ Ceet+ er+ CPes+ (e
e+ e+ et Ca+ (es+ e+ Cor+ Ces + (o
e+ Cea+CPeg+ (eat Ces+ o+ (Per+ st (o
1+ Cleg+ Ces+ Cea+ s+ Clcs+ e+ Ces+ ¢
a+ e+ ca+Ca+t e+t (et (st Coo
Cl+<CZ+C203+CQC4+ 05+C06+CC7+C268+ Cg
at e+ Cogt+ CPeat Cos+ ot Cort  os+ (P

In each row we require the coefficients of 1, ¢ and ¢? to be equal (mod 3). Thus,

we arrive at the following set of simultaneous congruences for the ¢;:

— h'
01+C4+C7§Cz+05+08§03 +c6 + ¢
Q+Q+@§%+%+%§@+%+@

C]_+C6+C8?C2+C4+09?C3 + cs -+ c7

Ve

Q+%+®§%+%+%§Q+%+@

q+q+%+%+%+%+w+q+@?0
/
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By inspection, {c1 =3 0;co,c3,c6,c8 =31; cq4,cs,c7,c9 =32} yields the solution

det(ZG) 2 39(3Z(3Z + 1)*(8Z - 1)) = 39(32) as required

(3.(vii)) Allowable Exponents

For circulants (i.e. when G = C, ) we shall establish explicitly, in Chapter
3, what are the corresponding critical exponents: in particular, it will be shown

that all m coprime with n are values of the circulant.

However, for general abelian groups this appears to be a rather difficult
problem. For the elementary abelian case, all we have shown so far, apart from
some minor cases, is that there are gaps, i.e. sets K = {1,...,k; some ¥ € N}
of exponents of primes p which are such that p! J m (3 € K) for any m €
det (ZCp™); n € N.

These are at the two extremes in terms of existence of critical exponents, so
for other abelian groups the divisibility question lies somewhere in between them.
At present, a method to tackle the critical exponents for general abelian groups
is still lacking. So instead we consider the question of allowable exponents: if
n = G, p|nis a prime, is there an ng € N such that Vry > ng I m € det(ZG)
such that p” || m; i.e. are all sufficiently large exponents allowed? By Theorem

11, we consider GG of prime power order.

Recall the following elementary Lemma: if (a,b) = 1, where a,b € N, then
VYn € N; n > ab Jdz,y € N such that n = az + by. Now, by the absolute
multiplicative property of norms, if my, ms € det(ZG) such that p*t ||my, p*2 ||
my then m{'ms? € det(Z@G) with ptkitaezks | m$tm32 where a1, a3 € N. Hence
it is sufficient to show that there exists k;,k, € N such that p*t |my, p*2||m,
and (ki,kz) = 1 where my,mq € det(ZG). Careful selection of a of the form

2.geG g9 ng € Z may reveal the necessary p-values in the formula det o =

I1, e x(o). However, the simple method in the following Lemma is sufficient.
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LEMMA 18 Let G be a finite abelian p-group; #G = p™ say. Then Ing € N
such that Vn, > ng Ja € ZG with p™ || det a.

Proof We have QG = @jeJKja where at least one summand, K say, is Q, and

as usual let S = P;c;Z; 2 ZG. For a = (aj)jes (@; € Zj), we have

a € ZG & Y Ti(a;X;(9)) € p"Z. (3.14)
JjeJ

Let B8 € S be arbitrary, and take o« = p™f. Then, for all 7 € J we have
Tj(«;%5(9)) = p*T;(Bx;5(9) € p"Z,

so certainly, by (3.14), « € ZG. Suppose p*|| det . Let k; € N. We form a new
«* € S by putting o} = p*ay, and af = a; for j > 1. Then, again by (3.14),

a* € ZG and pFtHhi || det afy
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CHAPTER 3

Circulants

0. Introduction

In this chapter, by specialising to the case K = QC,, O = Z(C,,, we are
able to present a complete description of critical exponents. We start with some
general results obtained by elementary methods - these were first proved by
Morris Newman in [5,6]. However, Newman showed that there is no simple
formula for det(ZC): ). Hence we are prompted to use the machinery of Chapter
1, giving a fully detailed account of ranges which are specially modified in this
case. We show that almost every m with allowable exponents at the p | n has
a maximal range. We conclude the chapter by showing almost all m < z with
allowable exponents lie in det(ZC,), giving an asymptotic expansion for the

number of exceptions.

1. The Group Determinant for the Cyclic Group

For the group determinant det(ZG), let G = C,,, the cyclic group of order n,
which we may regard as the group of integers under addition modulo n. Hence
its elements are, say, g1,92,...,9n Where g; = i—1 (mod n);i = 1,2,...,n. Thus
in the matrix, for the (i,j) position we put z; where k = i + j — 1 (mod n).
For any 0 # o € QG we define, as in §1 of Chapter 2, L, : QG — QG by
z +— ax (Vo € QG), which gives us a Q—linear map (Q™ — Q™). Recall also
that N(a) := det L,.

Suppose a € ZG, then L, is given by an n X n matrix with integer entries.

In fact, suppose o = Y ;_; #n—kgk, Where z,_ € Z. Then L, is given by:

n
agi = zn-igrgs 1=1,2,...,n.
k=1

i n
= Zzi_jgj + Z Zn—(j-00g; t=1,2,...,n,
Jj=1 j=i+1
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So we have in matrix form:

ZQ Zn—1 e X1
21 Z0 e 22
Lo = (1.1)
Zp-—1 -2 41

Hence L, is a circulant. We now proceed to find norms by examining the

determinant of this matrix.
2. Some results for Circulants

To emphasise the matrix form, for G = C,,, we denote det(ZG) by A,(z).

Let ¢ be an n'* root of unity. In (1.1), relabelling the s and multiplying
row ¢ (1 < i < n) by ¢ gives:

5005_12 $1C:; . wn-—1C:;
Xl An(e) = m"‘?c m"f o onmat (2.1)
311(—“ IL‘QC_n :UOC"“

Add all the rows into row n to give all entries in row n of the form ¢*(z¢ + (z; +

oot (" 1z ) where k € Z. Thus, in Clz], for each ¢, zg+Cx1+...+¢(" ey
divides A,(z). This implies

M@ =1{ I (jxic"

) u(z), where u(z) is some polynomial in Clz].
¢"=1 \:i=0

By comparing degrees u(z) is a constant andsoc=1(e.g. o — 1; z; = 0, 7 > 0

gives A,(z) =1).

Thus we have

An(z) = H f(¢) , where

¢r=1

f(T)=2o4+21T+... 42, T" jz€ 2™ (2.2)
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General case : some particular values

Consider
n—2 n—1 z" —1
l+z4...+2" 242 = =[] -0
z—1
¢n=17¢
Then putting z = 1 gives
n= [] -0 (2.3)

¢r=1%¢
Suppose (r,n) = 1, for some r € N. Then, by Euclid, Js,# € Z such that

1 = rs+nt. Hence ¢ = (" where s' = s (modn),1 <s" <n. Thusif { # 1 then

11:C<7' _ 1+C+C2+' i -+Cr_l — 1].-——(5:)3 _ g(]_c)’ with g(C) ?é 0 a unit in Z{C];

hence %CL is a unit in Z[¢]. Now choose

f(T)=a(14+T+T%+...+T" ) +(1-T"), where a € Z, 0 < 7 < n, (ryn) = 1.

Then (" =1 # ( implies f(z) = 1— (" (for the sum of the roots of unity is zero).
Also, f(1) = an. Hence,

Ag(ZM)2an [ 1=¢)=an [] -0 =an’.
¢r=15¢ (n=1g¢
Putting @ = £1,42,... gives

An(Z™) D n2Z. (L.1)

So the circulant has a positive density of values.

Now let

T =al+T+. AT H4bA+T+T? 4 ...+ T,

Then for (" =1#¢, f({)=a (11—_CC’) , and f(1) = ar + bn. Hence

An(Z™) 2 (ar + bn)a™ 1.1
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Putting a = 1 gives

Ap(Z™) 2 r =b+n where (r,n) =1 and b arbitrary € Z (L.2)

Thus An(Z™) contains all integers & which are coprime with n.

Case : Ap(ZP), p prime

(i) p = 2: From (2.2) we have
An(z) = (z0 — 21)(0 + 21) = k, say (v, k € Z).

Necessary conditions for k are: & = de where d

k, 6“\’,‘ , g — 1 = d, To+z1 = 6)
and d = e (mod 2). Hence d, e are both odd or both even, and these are sufficient

conditions for k as

1
Ty = "2"(6 + d)
1 = T,,%1 € Z.
Ty = E(e - d)
Thus k € Ay(Z?) iff k # 2 (mod 4), i.e.
Ao(Z%) = (Z\ 2Z) U 2°Z. (L.3)

(ii) odd prime p: From (L.1) and (L.3), A,(ZP) contains (Z \ pZ) U p*Z. We
show, after a couple of Lemmas, that this is all. For the remainder of this section

we let ¢, = e?™i/7,
LEMMA 19 For any o € N, pZg = (1 = (pe yEC%) | where K = Q((pe)-

Proof In Appendix C it is shown for the field K = Q((p«), that p ramifies
totally in Z, i.e. pZy = pﬁ(]’a), where pq is the prime ideal (p,1 — (pe).
However, we have
p=]J1-¢)
pls
So p belongs to (1 — (p«); hence pq is just (1 — (PQ)D
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LEMMA 20 (a)Suppose k € A, (Z"™), withn € N, k € pZ. Then,

k=[] Na(F(Ca)),

d|n

where f(T) € Z[T]; 0f <n, Ng(B) := Na(ea)/Q(B)-
(b) Suppose further that n = p' is a prime power. Then p | F(1), p |

Na(f(Ca)) for each d in the product.

Proof (a): From (2.2) we have

k=[] £,

¢(n=1

where f(T) € Z[T}, f < n. Then

k=H{IIf®}

dln | ord ¢(=d

Since the bracketed term is just a product of all conjugates in Q(({z) (#(d) in

total), then

b= Na(F(C2).

din

(b) We now assume that n = p' where [ € N. In Z[(,] we have by Lemma
19 that pZ[(,) = p*™, where p = (1 — () is prime. As plk = [[ n_, f(w),
we deduce that p |some f(w) = f(¢5). However z —y | f(z) — f(y) in Z[z,y].
Hence for every s, ¢7 — (2| F(¢T) — £(¢2) in Z[Ca]. But ¢T — (2 € p, and also
f(¢3) € p. Consequently f(¢3) € p for all s. In particular, for every d | n,
Na(Ca)) € 9 NZ = pZ. The case d = 1 gives p| f(1)q

COROLLARY 21 Ifn =p', then p't1|k.
Proof We have p|f(1), p|Npa(f({pe)) , a=1,... M
COROLLARY 22 A,(Z?) = (Z\ pZ) U p2Z.
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Proof From Corollary 21, if & € pZ then k € p?Z and now the result follows
from (L.1) and (L.2)

Considering circulants of order p?, we observe Ay2(Z%") D 33Z (in (2.2) put
f(z) =1+2z+2%). But in general, Apz(sz) # (Z\pZ) U p®Z: Newman showed
(in [6]) that for odd primes p > 3, k > 1 that p*+! ¢ Apk(Z-”k).

For p = 2 there is a slight strengthening on Corollary 21.

LEMMA 23 Suppose n = 2% (k—1¢& N). Then if m € A, (Z"), and 2|m, then

2k+2 |m

Proof Take k& > 3. From (2.2) and Lemma 20 we have:

k
m = FUF(=D)F)F(=i) [T Nas (F(¢)),

=3
where f is a polynomial; 0f = n — 1,
By Lemma 20, 2 | Nyi(f((yi)) for 5 = 3,...%k So 252 divides the
Hj>2 Noi (f(¢23))-
We now show that 2* | f(1)f(—1)f(:)f(—¢) (which will hence include also
the case k = 2). Reduce f mod z* — 1, so WLOG 8f (mod z* — 1) < 4; so
f(z) = ap+arx + aza® + aga®, say. Suppose 2| f(1), 2| f(—=1), and 2| F(:) F(—i)

- by the previous argument these are the smallest powers - then we have:

f(].) = ag +ay +as +ag =4b+2 <1>
f(-1) = a—ata—a; =4c+2 <2>
FG)f(—=1) = (ao—az)?+(a1—a3)? =4d+2 <3>

Adding < 1 > and < 2 > gives ag + a3 = 2(b+ ¢ + 1), which is even. Hence
ap — ag is even. Similarly, subtracting < 2 > from < 1 > gives a; — a3 even.
Thus, 2% | (ag — @2)? + (a1 — a3)? which is a contradiction to < 3 >, and so
24 F(DF(=D) FE)F(=7), as required]

LEMMA 24 Ay (Z*)=(Z\2Z) U 16Z

Proof We have, by (L.2), Ay(Z*) 2 (Z\ 2Z) and by Lemma 23, Ay(Z*) C
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C (Z\ 2Z) U 16Z. But (L.1) gives A4(Z*) D 16Z. Thus the assertion of the

Lemma 1s forcedD

We've shown necessary conditions for powers of primes which divide possible
values of the circulant. By a simple trick, which uses the Binomial Theorem, we
show that provided certain conditions are satisfied then there are circulants which

may be divisible by arbitrarily high powers of a given prime divisor of n.

PROPOSITION 25 Suppose that for an odd prime p, p° || n (s € N). Then

Vt € N there exists a value of the circulant A,(Z™) = m, such that p**'||m.

Proof In (2.2), let f(¢) = a + bz, a,b € Z. So the corresponding value of the

circulant is given by,

m=[] (a+8¢)

¢n=1

o (9
o () )
= a® — (—1)"b",

Now put a = 1+ ¢b (¢ € Z), and let b = —1. Then, m = (1 — ¢)® — 1. For any
p|n, now suppose n = p°e, where p Je. Put ¢ = p'd with (d,n) =1, any t € N.
Then,

m = (1—dp)®" —1

_ é (ezs)(—dpt)

= dFep*tt 4 ...
We show that p*+**! divides all except the first term. Hence p®+*| m. For this

it is sufficient to show that &' > I where p* || (ez,) (¢ > 2) and p' || ep®c. So
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consider the powers of p in the numerator and denominator of

-~ (n = ep®). (2.4)

We want to show that the power of p which divides the numerator is greater than
that which divides the denominator. In (2.4) we may cancel a factor of n, so we
are left with

A A =(n=1)n-2)...(n—a+1)c*!
5 where {B =§.2...%£z——1)2z ( ) (a > 2) (2.5)

Three cases arise:
(i) If @ < p then p does not divide the denominator and we are done.
(ii) If @ = p then p?~!|the numerator, whereas p|| the denominator, and we are

done.

(iii) If @ > p, consider products of the form

N
P
An = Hoz, soeg Az=1...p...2p...(p— L)p...p%
a=1
Let ptv |A. Then ks =p+1, ks =p(p+1)+p, ..., kn =pkny—1 + 1. And it

is then trivial to show that

: m _q
kv=> p' =2 (2.6)

(a) Consider now the power of p which divides (n—1}(n—2)...(n—a+1);

(a — 1 terms). Then, mod p, these terms cover all the residue classes at least

[“;1] times, where [z] denotes the largest integer less than or equal to z. In

fact, it is an easy exercise to show that p|4 > o | [““1] times.

P(X
(b) Next, we look at the denominator of (2.5). Suppose lpV ! < a <

< (I+1)pN-1, where 1 <1 < p (N > 2), then

Vo(a) < (1+ D)ky_y +1. (2.7)
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In (2.5), p/|c*~! where j > a—1> IpV~1, and pl [(n=1)(n—-2)...(n—a+1)
where j' > [“—;—1] > Ip—2%, Hence

Vy(A) 2 1N 4 1p 2. (2.5)
Now using (2.6) in (2.7) gives:

pN—l__]_

< (%—1) PV -1 +1

I+1\ ~Noa
< [T
_( ' )p
< le—1 + le_Z.

This is as required. Now put ¢ =[], ¢p. Then clearly m = (1—-¢)*—1 € A,(Z")

pln
with required critical exponents ]
We may perform the above procedure in turn for each prime divisor of
n, but no indication is given of possible primes, dividing m and coprime with
n, i.e. which are ‘compatible.” This is a significant problem which we address
after tidying up the discussion on critical exponents, by establishing sufficient

conditions for 2 dividing n.

LEMMA 26 Suppose that 2°||n (s € N). Then Vt > 2 there ezists o value of the

circulant A (Z™) = m, such that 2¢7° || m.

Proof The proof is exactly as in the Proposition, putting p = 2, except that
condition (i) does not apply; and in (ii), if @ = 2 then an extra exponent for c is
forced. In this case we have in (2.5) that A = (n — 1)¢, and B = 2. Hence 2*| 4,

so that with 2|| B, we need ¢ > 1. The rest of the proof goes throughp

Circulants of order p* and their corresponding ideals in the group ring.

The main purpose of using ray-classes, as will be shown in the next section,

is to establish asymptotic results. However, in a few simple cases, for a given
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prime exponent e of a value of a circulant, we may find information concerning
the corresponding ideals in S. We illustrate this for the case Apz(sz), p odd.
We've shown that if m € Apz(sz), p|m, then p® | m (Corollary 21), and
also that Im € Apz(Zp2) such that p® || m (Proposition 25). So let m = pir.
From (L.1), Apz(sz) 2 p*Z so the only values of the circulant still to be shown
are those m with p J r. The question of which r are allowed seems difficult
to answer. However, such r do exist and it is for the corresponding m that
we find associated ideals ¢ < S; Na = m. By the discussion in Chapter 1, §1,
a = bg, Nb = p® and Ng = r. The Q-algebra isomorphism in Theorem 9,
(L1), gives QG = Q@D Q) B QGye). Hore S = ZD Z[¢,] D Z[Gye] and a
may be expressed as a; P az P ag, with b= b P b, P bs, g= g, P 9, P gs,

indicating the ‘bad’ and ‘good’ components in each summand. We have from

(2.2) and Lemma 20,

m=[] £(0) =[] Na(f(¢)) = FQ)N, (£(G)) Ny (£(Gp2)) -

¢r¥=1 flp?
From Lemma 20 we deduce further that Nb; = p*'; a; € N. Hence a; =
ag = ag = 1 is the only possibility.
Put f(T) = A+ BT, where A,B € Z. Then in (2.2}, m = A" — (—=B)" is a
value of the circulant. Let A 1= a + ¢p, B = —q; a,c € Z, with p Ja, p Jc. Then

it is easily seen from the Binomial Theorem that p? |m. We have:

m= 1] 0+=-¢)

¢r?=1

C C C
- apggpra + Fp — )Nz (1 + Ep — (p2).
= Na.
Hence
2_ C C
a=a” Tz P+ T - )P+ T - ),
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where by = pZ, by = (1 — (;) and b3 = (1 — (;2) (see Lemma 19). By Theorem

AB, Nb; = p; i = 1,2,3). The corresponding g is given by

— O'J)?_ICZ, — (1 + w_p?ﬁﬁﬁ) , — (}_ + mn____.gf___m) .
gl L) Cl(l _ Cp) g3 a(l _ sz)

3. Asymptotics for values of a circulant

So far we have shown (after Newman) that A,(Z™) contains all integers a
such that a and n are coprime (see (L.2)). We've also shown that if pFr || n,
where p is an odd prime and k, € N, then there is a value m of the circulant
such that p*»*+#||m for any s € N. For p = 2, if p||n, then there is a value m of
the circulant such that p'**||m for any s € N; if p*» || n, with &, — 1 € N, then
there is a value m of the circulant such that p*»*¢ || m for any s € N. (These
results are all from the previous section.)

Suppose for any prime p that p*»+¢||m. Let p(p*»**) be the density of those
integers g coprime with p such that m = gp*»** is a value of A,(Z"). More
formally,

#1g; (¢,p) =1, pP»° € Ay(Z"), g < N}
#{g < N} ’

kp+3 fy— 1'
p(p™™) = lim

provided that the limit exists.

We shall show that the density of those integers which are values of the

circulant is
H 617: (3‘ 1)

where

N’

(p>2) bp = (1 + Z:-ikpﬂ p(p*)p~*
{ 1=} (k2 =1)
YR p(2027 (k> 1)
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We show that in (3.1), for each ¢, p(p?) has density 1. In fact, we show that for

odd primes p,
1 1
bp=1— =
! p o phr(p-1)

and for p = 2,
1- %+ o5 (k2 =1)
0p =
1'—%-]"51—.}_5; (k2>1)

This requires the methods of Chapter 1.

Modified Ray Classes

We have G = C,, the cyclic group with n elements. Now define K; and Z;
as in §1, Chapter 2, and let § = ZjeJ Z;. Let R = ZG, then certainly 1 € R and
setting f = n, f§ C R (for instance, we may regard S/R as an abelian group
under addition, which clearly has order dividing f). Hence those (integral) ideals
@ which are members of I, the set of ray-classes (see §1, Chapter 1) are members
of R. For the circulants problem, we may define a modified ray-class equivalence

relation ~ as follows.

For ideals g, g5, with gy + fS = g, + /S = 5 we define

G1~Gy = P11 = P20,

where p1, p2 € R, N(p1p2) > 0, and (p1, fS) = (p2, fS) = S.

It is easy to check that by defining [glo = {g'; ¢'~g} and [g{]o © [¢2]0 =
{91 9210, then the set of modified ray-classes form a group I'y, which is a quotient
group of I since ~= ~.

We define also a ‘range’, Ro(g) := { classes [g]o € T'o; Ng= g¢}.

Our aim can now be expressed as follows: we wish to show that given b,
which consists solely of prime factors of n satisfying the conditions for critical

exponents, then almost every g, which consists of prime factors coprime with n,
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is such that bg is a norm of some p € R. This condition will be satisfied if given
such ‘0’, almost every g has non-empty range, i.e. Ro(g) # 0.

We are able to achieve our objective with moderate effort because of the
fact that for the circulants case since g € A,(Z"™) where (g,n) = 1, then Ir € R
such that N(rS) = g (some r € R); hence as [rS]p = [S]o = [1]o, the principal
ray-class in I, Ro(g) 2 {[1]o}, the identity subset of 2°, For an arbitrary finite

group G, this is not true in general.

Ranges

Results for ranges R(g) carry over immediately to ranges Ro(g). To sum-

marise then, we have:
LEMMA 27 For g1,92 € N, Ro(g192) 2 Ro(91)Ro(g2)-
LEMMA 28 The identity subset {[1]o} has o unique mazimal range, Hy, say.

LEMMA 29 The mazimal ranges are precisely the cosets of Hy in T'y.
Now we use the special property of ranges for circulants.

LEMMA 30 Hy =T4y. (ue. all the mazimal ranges are equal to the whole group
Ig.)

Proof We have [1]y € Ro(g) Vg;(g9,n) = 1. So Ro(¢) € Hp. If € Ty, then aHy
is a maximal range (by Lemma 29). Thus 2 Hy = Re(¢') C Hy. Hp is a maximal
range, so xHy = Hj is forced, and hence all the maximal ranges are equal. As

all classes are contained in a maximal range, we must have Ho = ['g.

Asymptotics

Let Ny := {k € N; (k,d) = 1}. Then, given b which satisfies the conditions
on its prime exponents, dr € ZG and at least one g* € N, such that for each
prime p|n, V,(N(rS)) equals the given prime exponent for b; and rS = b*, where

Nb=1b, Ng* = g*. In fact a suitable g* is (¢*,1,...,1) = ¢*Z ®1<d|n Z[(a).
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We show now that in almost all cases (i.e. with density 1) all classes of I'y
contain ideals g € S with Ng = ¢, so that Ro(g) = Iy, and hence 3¢ € S such
that Ng = g with g*~¢g', thus compatible with b.

THEOREM 31

iy igood g, g S Ni Rolg) =To} _

1,
N—oo #{good g, g < N}

First we prove a general result on sets of prime numbers.

LEMMA 32 Let g € Ny, and let Pq,..., P be any sets of rational primes,
each of positive natural density. Let Qi(g) = #{pi € Pi;pi | ¢ (counting
multiplicities)}(i = 1,2,... k'). Then, for each i, given any k € N,

#{g € Ny; Qui(g) <k }

D; = —0 asz — o0.
#{g € Nyjg < z}

(i.e. #{g € N#;Qi(g) is bounded for some i} is of zero density).

Proof Clearly, WLOG we need only demonstrate this for P;, say. So suppose
Q1(g) £ k. We define a generating function G(s) for the number of prime divisors

of g with < k prime factors in (k) by

G(s): = { Mo+ ) p““‘—”sq-w...} ITa-pr=" 2

PEP p<g in P, PEPy
—s 1 ifQ <k
= Z 8(g)g~°, where 6(g) = {0 ;thér(\fri)s; (3.3)
geNy;

From (8.2), noting that the term with k distinct primes is dominant (by virtue

of the infinitude of P;), we obtain,

G(s)

{ Y. @eew)+Is) [[a-p)7

p1< . Kpr €Py €T

.
= %(Z pﬁ) £ () p (s = )70,

pEP)
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where §; > 0 is the density of P; and J(s), J'(s) are negligible compared with

p*)rass— 1T,

G(s) = {%(log . i 1) + J”(s)} (s —1)~(=01),

Hence the singularity of G(s) at s = 1 is weaker than -5 and hence D; — 0 as

required. . ..

For details see [3].
Proof of Theorem Consider a prime p € N,. We wish to find enough g€ S
such that Ng = p and the ~ classes [g]y cover T'y. To do this, first observe the
decomposition of p in Z[(,], where d| f. By the results in Appendix A, we have
PZ[Ca] = p1g2...,py where, for ¢ = 1,...,9, p; is a prime ideal in Z[(4] with
Ng; = p/" (f' € N). Then choosing each of the p; in turn will provide us with
plenty of g’s with Ng=g¢; ¢ € N,,.

Now every ~ class is of the form (Cy,...,Cq,...)q|s , where Cy is a ray-class
(mod*n) in Sy := Z[(4]. We've seen that I'y is a quotient group of I, so we may

define a natural epimorphism = —> Iy by 7([a]) = [a]o Va < S. Hence
Ro(p) = {’ﬂ”(cl,... ,Cd,. . .); (Cl,. .. ,Cd,. . ) S ’R(p)}

It is a well known fact that for each d| f there exists an infinite number of

primes pg € N, such that «(1,...,1,C4,1,...,1) € Ro(pa), and that, in fact,

> p*~Slog

(1,..,Cq,. JERG(p)

as s — 1T, some § > 0.

S.._.

This result is a special case of the theorem that prime ideals are equidistributed
amongst ray-classes — see [4], p.326. Thus, for each d | f(= n), and each Cy4
(a ray-class mod™ f of S4), there is a set P(d,Cy) of primes py in N, of positive
Dirichlet density, such that «(1,...,1,C4,1,...,1) € Ro(pa) for all p; € P(d,Cq).
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Choosing one such pq for all d | f, we have 7(Cy,...,Cf) € Ry (Hd[fpd), while
the latter contains 1p. The Lemma now tells us that, except for a subset of
(natural) density 0, the typical members of N have enough prime factors from

the various P(d,Cy) to ensure that Ry(g) = I, and so we are done[




APPENDIX A

Generalised Minkowski Map

It is well known for a number field K, that K = Q(«), for some o € C.
If [K : Q] = n, then there are precisely n distinct embeddings of K into C.
Complex embeddings (i.e. image € R) occur in complex conjugate pairs; let
there be ¢ of these, say. Hence, if » = the number of real embeddings, then
n = r 4+ 2¢. Suppose {ai,...,an} is a complete set of zeros of the minimum

polynomial of « over Q, then for x € K the embeddings F; are of the form
Fi(z) = Fi(ao + aja+ ... + anwla”‘l) =ap+ara;+...+ an_m?—l.

For non-zero such x, we define the signature sgn z of z as the r—tuple [g4,...,&.],
where g; denotes the sign of the F;(z); and it is assumed that the real conjugates
of a are oy, ... a,. For r = 0 it is taken as positive in sign.

For a direct sum of number fields @;::1 K;, we define the signature to be
the row vector of r;—tuples; sgn (z;), where + = € z; and r; = the number of
real embeddings of K; into C.

(see [4] p.46).

LEMMA Al Suppose ray-classes (mod™ fS) are defined as in Chapter 1, with
I = { ray-classes (mod™ fS)}. Then (I,-) is a finite group.

Proof I is clearly closed, associative and has identity, 1 = S, so it remains
to show that for all classes in I, there exists an inverse. Consider a € S. Then
a= @;;1 a;; 0 # a;<4Z;. For [a] we find & € @ such that aS+fS = S; and using
the component notation for clarity, then aS = @?:1 aj(@;‘f:l b;) C @;;1 b;.
So @;‘le b; + fS = S. Now consider S/fS as a finite ring. 1 € @ 2 fS. So
& (the image of & (mod* fS)) is a unit in S/fS. Thus a®*™ = 1 (mod*f5S)

where n, = the number of units of S/fS. The ‘2’ gives a positive embedding
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in the Minkowski map, i.e. «?™ > 0. We have also, a?™§ = (a§)*" =
: nu (K n k k k
(69;:1 a;)*" (D b;)*™ = D= a;(D;~; ¢;) for some P;_, ¢;S. It follows
k k . . . k — k
tha‘t [a2nu S] = —1— = [@]:1 a’j][@j:l cj]’ Wthh 1mphes [@]:1 a'J] ! = [@]:1 Cj].
The finiteness of (I,) now follows from the fact that for each j, the ideal class

group of S; is finite (see (4] p.95)

Functorial properties of the Frobenius symbol

Notation For a Galois extension K3/K; of number fields we denote the Galois
group by G(K,/Kq).

Suppose L/I is Galois. Let G = G(L/K). Now suppose () is some inter-
mediate field, with H = G(L/Q), T = G(Q/K) (if defined). If p is a prime
ideal of I, unramified in L, then we have the following tower of fields, with the

respective decomposition of g:

Py L P
G T Q P
r
N J/ K ©
Fig. A.1

Let ¢ = Frob( P, L/K), the Frobenius element of G associated with P.
LEMMA A2 Frob(P,L/Q) is the smallest power of o which lies in H.

Proof Let 7 = Frob(P,L/Q). We may regard Zgo/P as an extension of
degree f’ over Zy/P. Hence NP = N(go)f'; since, Ve € Zp, o(z) =

zNe(mod P), t(z) = ™7 (mod P), it follows that + = ¢ € H. Thus f' is
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a multiple of the smallest f with of € H. Now Vz € Zy (and in particular,
Va € Zg), o'(z) = V0 (mod P), and so Vz € Zgq, of(z) = V) (mod P). As
z—aVe) € Q, ot(z) = a:(NE")f(mod PNQ = P)in Zg. But Zg /P is the unique

extension of degree f ' over Zg /P which implies {' | f, and so f' =f

LEMMA A3 Suppose G(Q/K) is defined. If w is the natural map:G — G(2/K),
then (o) = Frob(Y/ K, p).

Proof We have Vz € Z,0(z) = zV¢(mod P). Under m, o(z) — o'(z),
where ¢! € G(R/K), and o'(z) = 2N¢(mod PN FT), where FI is the fixed
field of ker . But ker 7 = G(Q/K) fixes 2, so o'(z) = eVP(mod PN Q), ie.
o'(x) = aNe(mod P)
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APPENDIX B

Elements of norm —1

For any group ring R, if —1 is a norm of some element r € R, then n is a norm
of some r' € R & —n is also a norm of some r"” € R. We wish to determine for
what finite abelian groups G is —1 a member of the group determinant det(ZG).

Note that if the order of G is odd then via QGE D;cs K;, puttinga =1¢€
@D ,csZ; implies (=1)#Ca € ZG and hence (—1) € ZG with N(~1) = —1.

Thus we are left to consider G with even order.

We show, in Lemma A4, necessary and sufficient conditions for the existence
of an element of G with the desired property. We then complete the task by
showing that if there is an element of ZG whose norm is —1, then there exists

an element of GG, ¢ say, such that det ¢ = —1; hence, Lemma A4 is sufficient.

LEMMA A4 Suppose G is any finite group of even order. Then dg € G with
det g = —1 off every Sylow 2-subgroup G4 of G is cyclic.

Proof Suppose G = {¢1,92,...,9n}, where n = #G. For G, consider the
permutation matrix II, generated by some g € G ¢g; — gg¢; ¢t = 1,2,...,n. Then
det g = sign II where gg; = gn;). Let d = ord g; then ¢°% ¢t,...,g%" 1 are
distinet and II is a product of 4 disjoint d cycles. Thus, sign II = (=1)E=13 =
(=1)™(—1)4. Hence, det ¢ = —1iff n £ % (mod 2). Suppose n = 2¥s; s,k € N
with s odd. Then n # 2 (mod 2) iff d = 2*t where t | s is odd. Certainly, if
d = 2% (¢ = 1) is allowed then this is sufficient; this happens iff G5 is cyclic. [
LEMMA A5 Suppose that G in Lemma A4 is also abelian. Suppose Ja € ZG

such that det o = —1. Then dg € G such that det g = —1.

Proof Suppose —1 = det a = eré x(@), for some o € ZG. We use the fact
that QG g P jeq ;. From this, we may bracket together all characters xy which

are mutually conjugate. Hence
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-1= H { H x(a) p, where C; = it* class of conjugate. Thus

i=1 | XEC;

-1 =[] Milxi(a))

where x; is a representative of C;, and N; is the norm from Q(x;) to Q. We
observe that y;(«) is an algebraic integer of Q(x;)-

If x; has order > 2, then (as there are no real embeddings), N;(x;(a)) = 1.
If ord x; £ 2, then N(x;(a))} = %1, while x; is really a character of G/G*. Thus

1= ]] x(a).

x2=xo

Let I = {x € &;x% = xo}, ['= Ny e ker x. Write a = de(}' cgg, and consider

the following. Let 2 € G; we have

Dox(hx(a) =Y x(h™H D epxlg) = #1Y  c.

x€er xel 9€G g€Ty,
If > er, ¢g =0, Vh € G, we deduce ) .gc; = 0 which implies xo(a) = 0,
giving a contradiction. Hence 3h € G such that ]zxef x(h=Vx(a)] > 4f

But x(h~!) and x(«) are £1,¥x € I, so the Triangle Inequality shows that

& = x(h™)x(e) is independent of ¥ € I'. We now have
~1= ] x(a) = [] €x(r) = €#F ] x(h).
xel x€el x€r

But #I'is even so £#T =1, and —1 = [Ler x(h) = detgh

It is in fact possible to generalise the above result so that the hypothe-
sis ¢ abelian is unnecessary, but this requires more complicated analysis using

irreducible representations of GG over the algebraic closure of Q.
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APPENDIX C

Applications of a theorem by Kummer — Dedekind — Zolatarev to

Cyclotomic fields

Suppose K = Q(a), 0 # a € Zx (the integral closure of Z in K). Let ¢(z)
be the minimum polynomial of & over Q, which is monic in Z[z] and irreducible
of degree n = [K : Q]. Let R = Z[a]. It is a fact that then [Zg : R] = d < oo,
for some d € N.

Let p € N be prime, p Jd. Suppose that in Fp[z], we have

#() = [[ )",

i=1
where ¢;(2) are distinct monic irreducibles, with deg @:;(z) = fi.
In Zg, let p;i = (p,¢i(a)), where ¢;(z) € Z[z] is any such that
¢i(z) (mod pZz]) = ¢i(x).
We then have the following well known theorem (see e.g. [4]):
THEOREM A6
(i) p1,...,p, are distinct prime ideals in Zg,

() pZr = [[}-, i, and N(p;) = pf.
Applications

LEMMA AT IfI{ = Q(e*™/™), p I then pZix = g1 ..., pq where g = £2, f =
the order of p in (Z/nZ)*, the group of units mod n.
Proof [K : Q] = ¢(n) (=the number of primitive n** roots of unity). Denote

e?mi/n by (,. Take o = (,, then it is a fact that Zja] = Zx => d = 1. The

minimum polynomial of & over Q is

¢(z) = @,(z) (the n** cyclotomic polynomial) = H (z—¢("), 1<a<n.
(a,n)=1
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We have p Jn = 2™ — 1 is separable over F,,. Therefore we seck normal
extensions of F,, which contain all n** roots of 1. It must be F,* where ¢ = of,
with [F, : ;] = f. F,* is cyclic, order = ¢— 1. So 3a € F;* a zero of 2® —1 (and
soofordern) iff n|¢—~1 <= ¢=1(modn) <= pf=1(modn) <=
f =0 (mod the order of p in G = (Z/nZ)*). Take f = the order of p in G. Then
F, is a normal extension. Hence, 2™ — 1 splits in F; with the f above and is
F,[z], 2™ — 1 is a product of distinct monic irreducibles of degree f ,so there are

Q(J—?l of themD

LEMMA A8 Suppose K = Q(e2™/™), p | n - i.e. n = p°k, p J k. Then
pZi = (p1...p4)° where g = ¢_(fﬂ, and Np; = pf where e = ¢(p*), f = order

of p in (Z/kZ)*.

Proof In F,, z® — 1 = (¥ — 1)?*. So we need only consider the splitting field
for ¥ — 1. Hence, as in Lemma A6, for z* — 1, all the roots lie in F, < pf =
1 (mod k). Take f = order of p in (Z/kZ)*. Then pZx = (p1...p,)°, where
(0]
f

g = , Np; = pf; and e is some exponent which satisfies (on taking norms of

both sides), #(n) =e.g.f -soe = %%Z—; = ¢(P")
COROLLARY A9 In Lemma A8 take k = 1. Then p ramifies totally in Zx.

Proof We have f =1, QS(I(;) =1l=g9g=1= pZig = sg%p*)

Relationships between Relative Norms and Absolute Norms

Let I{ be a finite extension of Q, the field of rational numbers, so [K : Q] =
n < oco. Then for @« € K, L, : ¢ — az is a Q-linear transformation X — K,

Define NI(/Q(oz) = det(La).
LEMMA A10 Let 0 # a € Zg. Then N(aZg) = |[Nx/q(a)|.

Proof We give below a demonstration which generalises easily. For a quicker

proof, see e.g. Stuart & Tall [14] which proceeds by showing:
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T T ——

(a) Every non-zero ideal « of Zg has a Z-basis{w:,...,wn};

Alwy, ..., wy] H

A

where A is the discriminant.

() Nazi) = |

(c) {awr,...,awy} is a Z-basis; now substitute in (b).
We assume (a) and now proceed differently from (b) and (c). Thus assume
Wi,...,wy 1s a Z-basis of Zx. If the w;’s can be chosen so that dywy,...,dwy

form a Z-basis for aZy (d; € N; i =1,...,n), then

Zic/oZy 2L/ Z P...Pz/d.z.

Hence N(aZg) = didy ... d,.

So we look for a diagonal matrix (with diagonal entries dy,...,d,) to rep-
resent L. The method is as follows.

Let ¢1,..., (s be any Z-basis for Z . Then a(y,...,al, is a Z-basis for Zg.
Suppose -Ti—._i’_ := (ai;), where a(; = E;zl(aij)(j, i =1,...,n. We look for linear
transformations on g which preserve det(Lg). Suppose wi,...,wy is another

Z-basis for Z .

Then
wy Gt
t | =W | : | where W € M,(Z).
Wy Cn
Also
(1 w1
=z
Cn Wn
Hence,
wq w1
-Ww 2z
Wy Wn

It follows that W Z = [ , Whence det Wdet Z = 1, where detW,detZ € Z.
Hence det W = %1, i.e. W is unimodular. This is thus a necessary condition for

preserving Z-bases of Zf.
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Conversely, if H € My(Z) and det I = +1 then H(adj H) = (detg)én
where adj H denotes the adjoint matrix of H; here, adj H € M,(Z). Hence
|det H| = |det(adj H)| = 1. So H is non-singular and hence W = H({)T is a
Z-basis for Z and det(g g) = det g

We seek a new Z-basis of Zy such that the matrix L, becomes diagonal; in
fact, a triangular matrix with dy, ds,..., d, as entries along the diagonal suflices.
To achieve this, we use repeated multiplication {on the left or right) by unimod-

ular matrices. So the problem remaining is to find unimodular U,V such that

:’:

UL

=&

V = D where D is a triangular matrix with diagonal entries dy.dy, ..., dx.

The procedure is as follows.

We have
a1 di2 ... Qin
Le=| " P WLoG an #0.
An1  Gn2 Gnn
Algorithm

Let k =1, let ¢ = 1; let é = (af‘-,].) 1= Lo,

We now apply Euclid’s algorithm:
(1) Form=k+1,...,nlet a, , := ¢m@  + Tm,1, Where 0 < rpy < fay ] let
Row m:=Row m — ¢, X(Row k). (These operations just add multiples of one
row to another, so the determinant of the revised matrix is preserved, and thus

these operations may be represented by unimodular transformations on A and

hence on L,. Hence column %k becomes

1
e,k
T2,k . ;
N Wlth ‘r,n,k < Iak,kl.
Tn,k
(2) Now suppose 7 = min{re41,ks Th42,k, - - -+ Tn,k } (S0me 7). Swap rows k and
j, and put ai‘:;:l) =T ke
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(3) Label the entries of the new matrix af ; (for 2,5 = k,...,n).
(4) Let ¢ :=c+ 1.
(5) Repeat steps (1) to (4) inclusive until we have

!
A
1

Qo k

A (col k) = @ &

0
\ 0 /
(This will happen after a finite number of steps because we have the monotonic

(1) (2) )

decreasing sequence of natural numbers Ak > Qg > e

(6) Let dy. = ay, ;. Label the (k, k) entry of A di. (After one iteration of the main

algorithm, we have

1 ! I
d, dya QA13 A n
! ! !
0 Q9,2 G23 Qa.n
!
A= 0 azp .
! !
0 an,2 a’n,n
(7) If £ =n then
di a2 a3 ... aip
0 dz az.3 s Q2.n

A — 0 0 d3 e (13,-,1
0 0 0 .0 d,
which is triangular as required, and the Z-basis for aZ is

w1 1

fl
[l

Wn Cn
So we stop here.
If k # n then let k := &k + 1 and proceed now from (1).
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Now suppose r € ZG, where G is a finite abelian group, and let L, : QG —
QG be Q-linear QG — QG. Suppose A = P, ; K; Zq QG; Let S =P, ;2Z
(see §1, Chapter 2 for construction of A). Then we have:
LEMMA A1l |detL,| = N(rS).

Proof For each j € J, we may construct a Z-basis for Z; : ng), ,wgf,), where

n; = [I; : Q]. So for a basis for S we may choose a direct sum of Z-bases,

m@w . wm@ @w ,...,wf,ﬁ),

where E =1 1j = n, the order of G. Hence § may be regarded as a Z-module of
dimension n, with Z-basis w(l) ,w,(zll),wgz), .5522), ,ng) ,wnN). Thus
it follows that if r € ZG, then rwg ), e ,rw,(,ﬁ) is a Z-basis for rS. We may now

proceed as in Lemma A10[
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Page

v

12
39
1l
11
12

1l

12
16

Index of Notation

Page
a iv
b iv
g v
C; 5
M 5
O iii
R(g) 3
Ro(g) 38
Vn 18
Do 38
P; 4
a 3

C = the set of complex numbers

N = the set of natural numbers (1,2,
Q == the set of rational numbers

R = the set of real numbers

Z = the set of integers

F, = field with p elements
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