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STATEMENT

The first two sections of chapter I of this thesis are 

based on two papers [SHD] and [Sm2] . All the remaining 

sections of this thesis are original. Chapter II together 

with section 3.2 has appeared in [AS]. Chapters III and IV 

contain the duals of the results in chapter I. Chapter V 

generalizes results of chapter I.
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LIST OF SYMBOLS

does not equal. 

j(: dose not divide 

submodule. 

de : essential submodule,

^ : small submodule.

£: contained in. 

e: belongs to.
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soc M: the socle of M.
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S: the class of simple modules.

C: the class of semisimple modules.

N: the class of Noetherian modules.

A: the class of Artinian modules.

X: the class of injective modules.

P: the class of projective modules.

T: the class of singular modules.

Tn : the class of non-singular modules.

G: the class of finitely generated modules.

Gc : the class of finitely co—generated modules.

U: the class of modules with finite uniform dimension.

TJ*: the class of modules with finite dual uniform dimension. 

K: the class of modules with Krull dimension.

Kq,: the class of modules with Krull dimension at most a, for 

some ordinal a > 0.

K*: the class of modules with dual Krull dimension.

K*: the class of modules with dual Krull dimension at most 

a, for some ordinal a > 0.

ACC: the ascending chain condition.

(ACC)e : the ACC on essential submodules.

(iv)



(ACC)S : the ACC on small submodules.

DCC: the descending chain condition.

(DCC)e : the DCC on essential submodules.

(DCC)S : the DCC on small submodules,

V: the joint of two elements in a lattice.

A: the meet of two elements in a lattice.

X]_: a class of lattices.

Z^: the class of singleton lattices,

C^: the class of complemented lattices.

N^: the class of lattices satisfying the ACC.

U]_: the class of lattices with finite uniform dimension.

Pc : the class of pseudo—complemented lattices. 

c(L): the set of complements in the lattice L. 

e(L): the set of essential elements the lattice L. 

s(L): £ {a e L : a is an atom}. 

s^L): A (a e L : a is essential in L} . 

s2(L): V {a e L : [0fa] is complemented}. 

f(L): {a e L : V b^ < a for every chain {b^}^ in L with 

b^ < a for all X e A}.
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L°: the opposite lattice of the lattice L. 

f°(L): (a € L : A bx > a for every chain {bx}^ in L with

bx > a for all X e A}.

L(M): the lattice of all submodules of a module M.

L°(M): the opposite lattice of L(M) for some module M.
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ABSTRACT

It is well known that any finitely generated 2-module is 

a direct sum of a projective (in fact a free) module and a 

Noetherian module (in fact a module of finite length) (for 

example see [Fu]). More generally, [Sml] proved that if R is 

a right Noetherian ring with maximal Artinian right ideal A, 

then every finitely generated right R-module is the direct 

sum of a projective module and a module of finite length if 

and only if the ideal A =■ eR for some idempotent e in R and 

the ring R/A is a left and right hereditary left and right 

Noetherian semiprime ring (see [Sml, Theorem 3.3]). It was 

left open in [Sml] whether the assumption that R be right 

Noetherian is necessary. In fact, it is not, as Chatters 

[Ch] showed, by proving that if R is a ring such that every 

cyclic right R-module is the direct sum of a projective 

module and a Noetherian module, then R is a right Noetherian 

ring (see [Ch, Theorem 3.1]).

Chatters [Ch, Theorem 4.1] also proved that if a is an 

ordinal and R a ring such that every cyclic right R-module 

is the direct sum of a projective module and a module of

(vii)



Krull dimension at most a, then the right R-module R has 

Krull dimension at most a + 1. Van Huynh and Dan [HD] have 

considered rings with the property that every cyclic right 

module is the direct sum of a projective module and an 

Artinian module, or the property that every cyclic right 

module is the direct sum of a projective module and a 

semisimple module. This led to the investigations in [SHD] 

and [Sm2]. The following terminology was introduced.

Let X be a class of modules. Then hX is defined to be 

the class of modules M such that for each submodule N of M, 

M/N belongs to X. Moreover, dX is defined to be the class of 

modules M such that for each submodule N of M, there exists 

a direct summand K of M such that N £ K and K/N belongs to 

X. Finally, eX is defined to be the class of modules M such 

that for each essential submodule E of M, M/E belongs to X.

It is proved in [Sm2] that when X is the class U: the 

class of modules with finite uniform dimension, then a 

module M belongs to eU if and only if M/N belongs to hU for 

some semisimple submodule N of M (Theorem 1.2,1) . This fact 

led [Sm2] to prove that a module M belongs to dU if and only

(viii)



if M - M 2 where M 1 is a semisimple module and M 2 belongs 

to hU (Theorem 1.2.3), Moreover, [Sm2] proved that when X is 

the class N: the class of Noetherian modules, or when X is 

the class K: the class of modules which have Krull dimension 

then a module M belongs to dN (respectively, dK) if and only 

if M — M 1 © M 2 where is semisimple and M 2 belongs to N 

(respectively, K) (Theorem 1.2.4).

In the first two sections of chapter I of this thesis, 

we present all of the background material from [SHD] and 

[Sm2] and, for completeness, we include the proofs. In the 

third section, we prove a generalization of Theorem 1.2.4.

i.e. we prove that when X is the class of modules with dual 

Krull dimension at most a, for some ordinal a > 0, then a 

module M belongs to dX if and only if M - M 1 ® M 2 where M 1 

is a semisimple module and M 2 belongs to X (Theorem 1.3.11).

In section 2.1, we define the property (P) : a module M 

satisfies (P) provided that for any submodule N of M, there 

exists a direct summand K of M such that Soc K £ N £ K. We 

prove that a module M is the direct sum of modules with (P) 

and M is eventually semisimple if and only if M =■ M,® M 2© M 3

(ix)



where M 1 is a semisimple module, M 2 a finite direct sum of 

uniform modules and M 3 has finite uniform dimension and zero 

socle (Theorem 2.1.5).

In section 2.2, we define the property (P*): a module M 

satisfies (P*) provided that for any submodule N of M, there 

exists a direct summand K of M with K £ N and N/K £ Rad M/K.

We prove that a module M is a direct sum of modules

satisfying (P*) and the radical of M has finite uniform 

dimension if and only if M - M, © M 2 © M 3 where M 1 is a 

semisimple module M 2 is a radical module with finite uniform 

dimension and M 3 is a finite direct sum of local submodules 

and has finite uniform dimension (Theorem 2.2.8).

In chapter III, we define h*X (respectively, e*X) to be 

the class of modules M such that every (small) submodule of 

M belongs to X. Moreover, we define d*X to be the class of

modules M such that for each submodule N of M, N contains a

direct summand K of M such that N/K belongs to X. We prove 

that when X is the class of Artinian modules, then for a 

module M, Rad M is artinian if and only if M belongs to e*X 

if and only if M belongs to (DCC)S (Theorem 3.2.4).

(x)



In Chapter IV, we characterize d*X. We prove that a 

module M belongs to d*(hU) if and only if M - M, © M 2 where 

M, is a semisimple module and M 2 belongs to hU (Theorem

4.2.2). We also prove that when X is the class of modules 

which have Krull dimension at most a for some ordinal ot > 0, 

then a module M belongs to d*X if and only if H - M, © M 2

where M 1 is a semisimple module and M 2 belongs to X (Theorem

4.2.3). Moreover, over an FBN-ring we prove that a module M 

belongs to d*U if and only if M - M 1 © M 2 where M 1 is a

semisimple module and M 2 belongs to U. Finally, over a

non-local Dededind domain, we prove that a module M belongs 

to d*N if and only if M — M 1 © M 2 © M 3 for some semisimple 

module M, , Artinian module M 2 and a Noetherian module M3 

(Theorem 4.4.7).

In the last chapter, we prove general properties of the 

class hX, dX and eX when X is a class of complete modular 

lattices, and hence, give one proof to the results in 

sections 1.1 and 3.1. In section 5.3, we prove Goodearl's 

Theorem for complete modular weak upper continuous lattices 

(Theorem 5.3.6).
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Chapter 1.

The classes hX. dX and eX.

§ 1.1 Module classes.

Let R be a ring with 1. A module always means a right 

R-module. By a class X of modules we mean any collection of 

modules which contains a zero module and is closed under 

isomorphisims, i.e. any module which is isomorphic to some 

module in X also belongs to X. Let M be a module and N be any 

submodule of M. We call M an X-module if M belongs to the class 

X. We call N an X-submodule of M if N is an X-module.

Let N be any submodule of a module M. Following the same 

terminology as in [Sm2] we call a class X

s-closed if N is an X-module whenever M is an X-module, 

q-closed if M/N is an X-module whenever M is an X-module and 

p-closed if M is an X-module when N and M/N are X-modules. 

Moreover, if g1 and g2 are any of these three properties then 

we say X is fg1f g2}-closed if X is gj-closed and g2-closed. We 

say that X is {s, p, q}-closed if X is s-closed, p-closed and 

q-closed.
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Let X and Y be classes of modules over the same ring R. 

Then XY is defined to be the class of modules M which contains 

an X-submodule N such that M/N is a Y-module. In particular, 

X^ will denote the class XX. On the other hand, a module M is 

an (X © Y)-module if M is the direct sum of an X-submodule and 

a Y-submodule. Note that any X-module is an (X ® Y)-module, and 

any (X © Y)-module is an XY-module. More generally, if n is a 

positive integer and X]_, X2> Xn classes of modules over

the same ring, then X]_ © ... © Xn will denote the class of

modules of the form M^ © ... © Mn , where M^ is an X-^-module

for all 1 < i < n.

A non-zero submodule N of a module M is called essential

in M, written N M, if it has a non-zero intersection with

any non-zero submodule of M.

Let X be any class of modules. The class dX consists of

all modules M such that, for every submodule N of M there

exists a direct summand K of M such that N £ K and the factor

module K/N is an X-module. In [Sm2] , classes hX and eX are 

defined as follows. The class hX (respectively, eX) consists of
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all modules M such that, for every (essential) submodule N of 

M, the factor module M/N belongs to X.

Gordon and Robson [GR] defined the Krull dimension, K-dim 

M, of M by transfinite induction as follows:

K-dim M =» -1 if and only if M =■ 0 ; if ct > 0 is an ordinal and 

K-dim M / a, then K-dim M - a provided for every descending 

chain Nn > N 2 >... of submodules of M there exists a positive 

integer n such that K-dim (N^/N^,) < ct for all i > n.

Dualizing the above terminology we get the so called dual 

Krull dimension, K*-dim M, of M (i.e. K*-dim M =* -1 if and only 

if M =■ 0. If M / 0, then for an ordinal ct > 0, K*-dim M - a if 

K*~dira M / ct and for any ascending chain N, < N 2 < ... of 

submodules of M there exists a positive integer n such that 

K*-dim (N^+1/N^) < a for all i > n. Note that for a non-zero 

module M, K-dim M (respectively, K*-dim M) - 0 if and only if M 

is Artinian (respectively, Noetherian).

Let S be any set of submodules of a module M. Then S is 

called independent (respectively, coindependent) provided that
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every finite subset {N1 , N2, N^} of S where / 0

(respectively, N-j_ f M) for i =- 1, 2, , k has the following

property: for every 1 < i < k-1, N-̂  fl (N, + . . . + N^_1) - 0 

(respectively, N^ + (N1 fl ... n N̂ ..,) - M) . We say that M has

finite uniform dimension if and only if every independent set

of submodules of M is finite. Equivalently, M has finite 

uniform dimension if and only if every direct sum of non-zero 

submodules of M has only a finite number of summands (see [Go, 

chapter 1]). The uniform dimension, u-dim M, of M is the 

largest cardinality of all the independent sets of submodules 

of M. Note that a module M has finite uniform dimension if and 

only if there exists a positive integer k such that the 

cardinality of each independent set of submodules of M is at

most k (see [Goo2]). The smallest such integer is called the

uniform dimension of M.

Similarly, a module M has finite dual uniform dimension 

provided every coindependent set of submodules of M is finite. 

The dual uniform dimension, u*-dim M, of M is again the largest 

cardinality of all such coindependent sets (see [Ta],and [SV]).



Let N and N* be submodules of a module M. Then N is called 

a relative complement of N* in M if N is maximal with respect

to the property N (1 N* =*0. We call N a complement in M if it

is a relative complement for some submodule of M, Equivalently, 

N is a complement if it has no proper essential extension in M, 

that is, if N K ^ M then K =* N (see [Goo2, Proposition 1.4]. 

On the other hand, if N is a complement of N* in M, then N © n ' 

is essential in M (see [Goo2, Proposition 1.3]).

For any ring R, we denote the classes of zero modules, 

simple modules, injective modules, projective modules, 

semisimple modules, singular modules, non-singular modules, 

finitely generated modules, finitely co-generated modules, 

Artinian modules, Noetherian modules, modules with Krull 

dimension, modules with Krull dimension at most a, for some 

ordinal a > 0, modules with dual Krull dimension, modules with 

dual Krull dimension at most a, for some ordinal a > 0, modules

of finite uniform dimension, and modules of finite dual uniform

dimension by:

2. S, I, £, C, T, Tn, G, Go, A, H, g, g,,, £*, £*, U, U*,
respectively. Unless it is mentioned, the ring R will be always 

an arbitrary ring.
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In the next two sections, we recall results from [SHD] and 

[Sm2] and, for completeness, include the proofs. First, we 

recall some general properties of the classes hX, dX and eX.

Proposition 1.1.1. Let R be any ring. Let X and Y be any 

classes of right R-modules. Then

(i) hX c dX c eX,

(ii) when X S Y, then hX c hY , dX £ dY and eX £ eY,

(iii) C £ dX,

(iv) hX - h(hX) £ X,

(v) d(P © X) - dX and 

(vi) P n dX c h(P © X).

Proof, (i), (ii) and (iii) are clear from definitions.

(iv) It is clear that hX S X, and hence, h(hX) S hX. 

Suppose that M e hX and N be a submodule of M. Since any 

homomorphic image of M/N is also a homomorphic image of M, then 

M/N e hX. Therefore M e h(hX).

(v) By (ii), dX S d(P © X). Suppose that M e d(P © X) and N 

a submodule of M. Then there exists a direct summand K of M 

with N S K and K/N e P © X. Therefore there exist L and L1
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submodules of K and containing N such that K/N - L/N © L/'N 

where L/N e P and L/'N e X. Thus K/l’s l/N is projective. So 

L1 is a direct summand of K, and hence, a direct summand of M. 

Therefore M e dX.

(vi) Let M e P D dX and N a submodule of M. Then there 

exist submodules K and K*of M such that M — K © K* , N £ K and 

K/N belongs to X. Therefore K 1 is projective and M/N s k'© K/N. 

Hence M e h(P © X).

Proposition 1.1.2. Let R be any ring. Let X be any class of 

right R-modules. Then

(i) hX, dX and eX are q-closed and 

(ii) hX and eX are s-closed if X is s-closed.

Proof, (i) Let M e eX and N any submodule of M. Let K be any 

essential submodule of M/N. Then K - L/N for some essential 

submodule L of M which contains N. Therefore M/L e X. Thus 

(M/N)/K s: m/L e X. Therefore M/N e eX. So eX is q-closed.

Similarly, hX and dX are q-closed.

(ii) Suppose that X is s-closed. Let M e hX and N be any

submodule of M. Let K be any submodule of N. Since N/K ^ M/K
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and X is s—closed, then N/K e X- Thus N e hX, Now suppose that 

M e eX and K N. Suppose that L is a complement of K in M. 

Then L fl K - 0. Therefore N/K s (N © L)/(K © L) . Note that

[(N © L)/(K © L)] ^ [M/(K © L)] e X, because K © L is 

essential in M. Thus (N © L)/(K © L) e X, since X is s-closed. 

Therefore N/K e X, and hence, N e eX.

Proposition 1.1.3. Let R be any ring. Let X be any class of 

right R-modules. Then

(i) C © eX — eX and

(ii) C © dX - dX.

Proof, (i) It is clear that eX £ C © eX. Let M e C © eX. Then 

there exist submodules K, K' of M such that M - K © K* , K e G  

and K* e eX. Let N be any essential submodule of M. By [AF, 

Propositions 9.6 and 9.7], K £ N. Therefore N - K © (N (1 K*) 

and M/N - (K © K*)/[K © (N fl K*)] * K/'fN n K') e X, because 

N n K 1 is essential in K*. Thus M/N € X, and hence, M e eX,

(ii) It is clear that dX £ C © dX. Let M e G © dX. Then 

there exist submodules K, k' of M such that M - K ® k ' ,  K e C 

and K* e dX. Let N be any submodule of M. Note that



N + K' - [ (N + K*) fl K] ® k! N o w  K - [ (N + k') (1 K] ® F for

some submodule F of K. Thus N + K* is a direct summand of M.

Since K*e dX, then there exist submodules L, L* of K* such that 

K'- L © L \  (N fl K 1) £ L and L/(N fl K*) e X. But

(L + N)/N s L/(L ON) and L n N - L fl N n R 1 - N n K ’.

Thus (L + N)/N e X. On the other hand,

L*n (L + N) - L'n K'n (l + n > - L'n [l + (n n k')] - l ' h l - o .

Thus N + K* =* l '© (L + N), and hence, L + N is a direct summand 

of M. Therefore M e dX.

Since C © hX £ hX implies C 5 hX, and hence, C £ X, we 

conclude that G © hX f- hX in general. On the other hand, 

C © hX £ dX (see Proposition 1.1.3 (ii)).

Proposition 1.1.4. Let R be any ring. Let X be a p-closed class 

of right R-modules. Then

(i) hX © hX — hX,

(ii) eX © eX — eX and

(iii) hX © dX - dX.

Proof, (i) It is clear that hX £ hX © hX. Suppose that

9



M — M,® M 2 where both M, and M 2 belongs to hX. Let N be any 

submodule of M. Then (M,+ N)/N « M,/(N n M,) e X. Since 

M/M, s M 2 e hX, then M/(M,+ N) e X. But X is p-closed. Thus M/N 

belongs to X, and hence, M e hX.

(ii) It is clear that eX £ eX © eX, With the same notation 

in (i), suppose that M, e eX, M 2 e eX and N M. Then N fl H,

is also essential in M, . Thus (M,+ N)/N « M,/(N fl M,) e X. But

M,+ N - M,® t(M,+ N) n M 2} and (M,+ N) fl M 2 M 2. Therefore

11/(11,+ N) s M 2/[(M1+ N) fl M 2] e X. But X is p-closed. Therefore

M/N € X, and hence, M e eX.

(iii) It is clear that dX £ hX © dX, If M, e hX and M 2 e dX 

in part (i), then (M,+ N)/N = M 1/(M1fl N) e X, Moreover,

M,+ N =• M,® [(M,+ N) fl M 2], Therefore there exists a direct

summand K of M 2 such that (M,+ N) fl M2 is contained in K and 

K/[(M,+ N) fl M 2] € X. Thus M,® K is a direct summand of M and 

(M, ® K)/(M, + N) = K/[(M, + N) n M 2] e X. But X is p-closed.

Therefore (M, © K)/N e X, and hence, M e dX.
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A module M is called a CS—module provided every submodule 

of M is essential in a direct summand of M.

The following example was given in [Sm2] to show that there 

exists a class X of modules such that X is (s, q, p)-closed but 

dX is not s-closed and dX © dX / dX.

Example 1.1.5. Let R = Z[x] , the ring of polynomials in one 

indeterminate x over the integers. Let M be the R-module Rr . 

Then M e dT, M © M / dT and E(M) © E(M) e dT, where E(M) is 

the injective hull of M.

Proof. We know that the class T is {s, p, q}-closed. By [CK, 

Example 2.4], M is a CS-module but M © M is not a CS-module. 

Note that M e  dT. Suppose that M*- M © M e dT and let N be a 

submodule of M* . Then there exists a direct summand K of M' 

such that N £ K and K/N e T. Let L be a submodule of K such 

that N fl L - 0. Then L embeds in K/N, and hence, L e T. But it 

is clear that M'e Tn . Thus L - 0, and hence, N is essential in 

K. Therefore M' is a CS-module which is a contradiction. Hence 

m'/ dT. Since E(M') =- E(M) © E(M) is injective, then E(M) is a 

CS-module, Therefore E(M*) e dT.
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§ 1.2 Some Characterizations of dX when X £ U .

Smith [Sm2] generalized Goodearl's theorem, [Gool], by 

characterizing the class eU. In [SHD] and [Sm2) , the classes 

dN, dK and dU are completely characterized. In this section we 

recall some theorems from [SHD], [Sm2] and include the proofs,

for completeness.

Theorem 1.2.1. For any ring R,

(i) eU - C(hU).

(ii) eN = CN.

Proof, (i) Suppose that M e eU and K any submodule of M which 

contains the socle of M, soc M. Let K' be a complement of K in 

M. Then M/(K © K*) e U. Suppose that K* / U. Then there exists 

a submodule L of k ' such that L - L1 © L2 © L3 © ... where each 

Lj[ is a non-zero submodule of K* with zero socle. Thus L-̂  / C 

for all i. Hence each has a proper essential submodule H^. 

Let H — H t © H 2 © H 3 © .,. . Then H is essential in L. Moreover 

L/H s (Lj/Hj) © (L2/H2) © (L3/H3) © ... is an infinite direct

12



Siam of non-zero submodules of L/H. But, by Proposition 1.1.2, 

L e eU, a contradiction. Hence K* has finite uniform dimension. 

Thus K* * (K © K ^ / K  e U. But U is p-closed. Thus M/K e U, and

hence, M/soc M e hU. Therefore M e C(hU).

Conversely, suppose that M e C(hU) and K M. Then there 

exists a submodule N of M such that N e C and M/N e hU. But, by 

[AF, Theorem 9.6 and Proposition 9.7], N S K. Since M/N e hU, 

then M/K e U, and hence, M e eU.

(ii) It is clear that NC Q eN. Suppose that M e eN. Then,

by [PY, Corollary 2.6], M/Soc M c N. Hence M e CN.

Lemma 1.2.2. Let R be a ring and M a right R-module. Then

(i) M e hU if and only if M e U fl eU and 

(ii) If M e dU, then M e U if and only if the socle of M is

contained in a finitely generated submodule of M.

Proof, (i) By the definition of the class hU and Proposition

1.1.1, hIJ £ U fl eU. Suppose that M € U fl eU and N a submodule 

of M. Let N 1 be a complement of N in M. Then M/(N ® N') e U.

Since U is s-closed, then N* e U. But (N + N r)/N a N' e U.

Because U is p-closed, M/N e U, and hence, M e hU.
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(ii) Let M e dU fl U. Let S be the socle of M. Since U is

s-closed, then S e U. Thus S e G. Conversely, let S £ N for

some G-submodule N of M. By Proposition 1.1,1 and the proof of 

Theorem 1,2.1, M/S e U. Therefore u-dim M/N — n for some

integer n > 0. Now we use the induction on n. If n ■ 0, then

M ~ S, and hence, M e G. Thus M e U. Let n > 0. Suppose that M 

does not have finite uniform dimension. Then S / G. Therefore 

there exist submodules S,, S2 of S such that S - S t © S2 and 

both , S2 / G. By hypothesis, there exist submodules M, and 

M 2 of M such that M - M, © M 2, St £ M t, and M^S, e U. Note 

that S, Q soc M t. Therefore soc M 1 — S1 © S* for some submodule 

S' of M 1 . Since s'  embeds in Mj/S^ then S* e U, and hence, S* 

is finitely generated. Note that

S, © S2 = soc M =* soc M, © soc M 2 = S1 © S' © soc M 2. 

Thus S2 s* S' © soc M 2 / G. Hence soc M 2 / G. But soc M 1 / G and 

M/S s (m ,/ soc M t) © (M2/ soc M 2). If M, - soc M 1, then M, £ N, 

and hence, N — M 1 © (N fl M 2). Thus M 1 e G. Hence soc M, e G, a 

contradiction. Therefore M, / soc M 1 . Similarly, M 2 / soc M 2. 

Therefore M ^  soc M 1 and M2/ soc M 2 have uniform dimensions 

smaller than n. By induction on n, both M 1 and M 2 e U. Hence M 

has finite uniform dimension, a contradiction. Thus M e U.
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Theorem 1.2.3, For any ring R, dU - d(hU) =* C © hU.

Proof. By Proposition 1,1.1, d(hU) £ dU. Suppose that M e dU 

and N be a submodule of M. Then there exists a direct summand L 

of M such that N £ L and L/N e U. By Proposition 1.1.2, L e dU, 

and hence, by the same Proposition L/N e dU. So, by Proposition

1.1.1, L/N e eU. So, by Lemma 1.2.2, L/N e hU. Thus M e d(hU). 

By Propositions 1.1.1 and 1.1.3, C © hU £ dU.

Now suppose that M e  dU. Then M e eU. By the proof of

Theorem 1.2.1, M/S e hU where S is the socle of M. Thus M/S has 

finite uniform dimension, say n > 0. Now we use the induction 

on n. If n =- 0, then M - S, and hence, M e C S G © hU. Suppose 

that n > 0 and M / C © hU. Let M =- M 1 © M 2 for some submodules 

M 1 , M 2 of M. Then S = S1 © S2 where S^ is the socle of soc M^ 

(i - 1, 2). Thus M/S a ( M y S ^  © (M2/S2). Suppose that M, f S t 

and M 2 / S2. Then u~dim (M^S,) < n and u-dim (M2/S2) < n. Thus 

M 1 e C © hU and M 2 e C © hU. Hence M e G © hU, a contradiction.

Therefore M 1 =» S1 or M 2 - S2. Since n > 0, then M/S / 0. Thus

there exists m e M such that m / S. Therefore there exist 

submodules K, K ’ of M such that M - K © K* , m R S K  and K/mR has 

finite uniform dimension. Note that, by the previous argument,
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soc K - K e C or soc K* - K* e C. But mR / C, since m / S . 

Therefore K* e C. There exists a submodule F of soc K such that 

soc K - (soc K n mR) © F. Therefore

F a soc K/(soc K fl mR) a (soc K + mR)/mR ^ K/mR. 

But K/mR e U. Therefore F e U. Hence F is finitely generated. 

Thus soc K S mR + F which is again finitely generated. Since 

K e dU, then, by Lemma 1.2.2, K e U. Therefore K e (eU fl U) . By 

Lemma 1.2.2, K t hU, and hence, M e G © hU.

Theorem 1.2.4. Let R be any ring, then

(i) d N = - C © N  and

(ii) dK - C © K.

Proof, (i) By Propositions 1,1.1 and 1.1.3, G © N S dN. For 

the converse, Let M e dN. Then, by Proposition 1.1.1, M e dU. 

Hence, by Theorem 1.2.3, H - © M 2 where M, e C and M 2 e hU.

By Proposition 1.1.1, M e eN. Hence, by [PY, Corollary 2.6], 

M/Soc H is Noetherian. Since M 2 e U, then Soc M/M1 e U. Thus 

Soc M/Mt is Noetherian. Thus M/M1 e N, and hence, M 2 eN,

(ii) By [GR, Lemma 1.1], hK - K, Therefore, by Propositions

1.1.1 and 1.1.3, C ® K - G © h K £ C © d K - d K .  Let M e dK.
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Then, by [GR, Proposition 1.4] and Proposition 1.1.1, M e dU. 

Hence, by Theorem 1.2.3, M = M 1 © M 2 where M, e C and M 2 e hU.

Note that M 2 e U fi dK. We shall prove that M 2 e K by induction

on the uniform dimension of M 2. Suppose that M 2 contains a

non-zero submodule N such that N e K. Then M 2 - L © L*, N £ L,

and L/N e K. Since K is p-closed (see [GR, Lemma 1]), then 

L e K. Moreover, L* has a smaller uniform dimension than M 2. 

Thus, by induction, L* e K. Therefore M 2 e K. On the other 

hand, if M 2 does not contain a non-zero submodule N with N e K, 

then M 2 e G, because M 2 e dK. Therefore M 2 e N. Hence, by [GR, 

Proposition 1.3], M 2 has Krull dimension.

§ 1.3 More results and examples.

The results in this section are not in [SHD] or [Sm2]. In 

this section we will prove more results about the class dX, for 

a different class X, and present some examples.

Lemma 1.3.1. For any ring R, if the class X is s-closed then 

C ® X is also s-closed.
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Proof. Suppose that X is s-closed. Let M - M,® M 2 where M, is a 

semisimple module and M 2 e X, Let K be a submodule of M. Then, 

by [AF, Theorem 9.6], there exists a submodule M* of M, such 

that M, - (K n M 1) © M* . Therefore M - (K fl M,)© M*© M 2. Hence 

K =* (K fl M, ) © L where L - K n (M*© M 2) . Note that L M*® M 2 

and L (1 h '  C  k  n m '  -  K fl ( M , n  M 1 ) -  ( K  D  H , )  fl M 1 which is 

contained in (K fl M 1) fl (M1© M2) — 0. Therefore L embeds in M 2. 

Thus L e X, because X is s-closed. It is clear that K fl M, e G. 

Therefore K e C © X.

Corollary 1.3.2. For any ring R, the classes dN, dK and dU are 

all s-closed.

Proof. By Lemma 1.3.1, Theorem 1.2.3 and Theorem 1.2.4.

Note that the converse of Lemma 1.3.1 is not true as we 

will show in the following example.

Example 1.3.3. Let R be any ring. Let X be the class of all 

semisimple right R-modules with composition series of even 

length. Then C © X is s-closed but X is not s-closed.
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Proof. Since C © X =• C, then C © X is s-closed. Now let M be 

the right R-module N 1 © N 2 where N 1 and N 2 are non—zero simple 

modules. Then M is a semisimple of length 2, and hence, M e X. 

But the submodule N 1 is of length 1. Thus N, / X.

Camillo and Yousif [GY] called a module M eventually 

semisimple if, for every direct sum M, © M 2 ® M 3 © ... of

submodules (i > 1) of M, there exists a positive integer n 

such that M-£ is semisimple for all i > n. In [CY, Lemma 1] , 

they prove that any module M, such that M/(Soc M) has finite 

uniform dimension, is eventually semisimple. Now we prove

Lemma 1.3.4. Let R be any ring. Let M, be a right R-module 

with finite uniform dimension and M 2 an eventually semisimple 

right R-module. Then M =** M 1 © M2 is eventually semisimple.

Proof. Let N = N 1 © N2 © N 3 © ... be a direct sum of submodules 

of M. Suppose that N fl M, * 0. Then there exists k(l) > 1 such 

that (N, © ... © N^(i)) fl M 1 ?! 0. Let

N ‘ “ Nk(l)+1 ® Nk(l)+2 ® Nk(l)+3 ® ••• •

If N' n M 1 & 0, then there exists k(2) > k(l)+l such that
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<Nk(l)+l ® ... ® % ( 2)) fl M, * 0.

Repeating this process and noting that M, has finite uniform 

dimension, we conclude that there exists a positive integer k 

such that (Nk © Nk+^ © Nk+2 0 •••) n * 0.

Let r : M M2 denote the canonical projection. Then 

x(Nk) + x(Nk+]_) + *(Nk+2) + *•* 

is a direct sum. Since M 2 is eventually semisimple, it follows 

that there exists m > k such that t(N^) is semisimple for all 

i > m. But N-̂  s t(N^) for all i > m. Thus N̂ _ is semisimple for 

all i > m. It follows that M is eventually semisimple.

We shall call a class of modules eventually semisimple if 

all of it's members are eventually semisimples.

Corollary 1.3.5. Let R be any ring. Then, the classes dN, dK, 

and dU are eventually semisimple.

Proof. By Lemma 1.3.4, Theorem 1.2.3 and Theorem 1.2.4,

Lemma 1.3.6. Let R be any ring and X be any s-closed class of 

right R-modules. Let M be a right R-module such that M does not
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have a non-zero X-submodule. Then M is a dX-module if and only 

if M is both a CS-module and an eX-module.

Proof. Suppose that M does not have a non-zero X-submodule. Let 

M e dX and N a submodule of M. Then M - K © K* such that N £ K 

and K/N e X. Let L be a submodule of K, If L (1 N — 0, then L 

embeds in K/N which belongs to X, Since X is s-closed, then L 

belongs to X, and hence, L * 0. Therefore N is essential in K. 

Thus M is a CS-module and, by Proposition 1.1.1, M e eX.

Conversely, suppose that M is a CS-module and an eX-module. 

Let N be a submodule of M. Then M ~ K © k ' where N is essential 

in K. But K s M/K* e eX, because eX is q-closed. Therefore K/N 

belongs to X, and hence, M e dX.

We know that the classes dN, dK and dU are closed under 

finite direct sums (see Theorem 1.2.3 and Theorem 1.2.4). In 

the following example, we give a class of modules X such that 

the class dX is not closed under (finite) direct sums and dX is 

not s-closed.
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Example 1.3.7. Let R be the ring of integers Z. For any prime 

number p, let M — (m/pn : m, n e Z and n > 0} and M* - M © M. 

Then M* contains a submodule M* which belongs to dA © dA and 

does not belong to dA.

Proof. It is clear that M is torsion free and Z £ M. Let N be a 

non-zero submodule of M. If N (1 Z ■ 0, then N embedds in M/Z 

which is isomorphic to the singular artinian module Z(p°°). Thus 

N is singular, and hence, N - 0, because M / Tn . If N fl Z / 0, 

then Z/(N HZ) e A. But M/Z e A. Therefore M/(N (1 Z) e A. Thus 

M/N e A, because N fl Z £ N. Thus M e dA. Thus, by Propositions

1.1.1 and 1.1.4, M* e eA. But Soc(M*) - Soc(M) © Soc(M) — 0. 

Hence M* does not contain a non-zero artinian submodule. Note 

that M is an additive subgroup of Q. Therefore, by [MM, p.19], 

M* is a CS-module. Hence, by Lemma 1.3.6, M* belongs to dA. Now 

let M* — Z ® M. Then M* is a submodule of M*. By [MM, p. 19] , M* 

is not CS-module. Thus, by Lemma 1.3.6, M* / dA. Since every 

proper homomorphic image of Z is artinian, then Z e dA. 

Therefore M* e dA ® dA.
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Note that, in particular, Example 1.3.7 shows that, for 

some ordinal a > 0, dK^ © dK̂ , f dKa. On the other hand, by 

Example 1.3.7 compounded with Lemma 1.3.1, we conclude that 

dA / C © A.

In the next example we will show that, in general, 

dU* f C © U*.

Example 1.3.8. Over itself the ring of integers Z belongs to 

dU* but it does not have finite dual uniform dimension.

Proof. Let K be any submodule of Z. If K - 0, then K is a 

direct summand of Z. If K / 0, then Z/K is finite. Therefore 

Z/K e U*. Hence Z is a dU*-module. Let p,, p 2> pn , pn+, be

distinct prime numbers. Since Zp^ — Z(p1p 2....pn) and

^ i  P 2 ■ ■ ■ *Pn^ "** ^Pn+i 33 

then, the set {Zpt, Zp2, ..., Zpn+1} is a coindependent set of 

submodules of Z for any n > 0. Therefore Z does not have finite 

dual uniform dimension.
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Let R be a ring and M be a right R-module. By a subquotient 

of M we shall mean a right R-module N/K for some submodules K, 

N of M such that K S N. Next, we characterize the class hU.

Lemma 1.3.9. Let R be any ring and M a right R-module. Then M 

belongs to hU if and only if every semisimple subquotient of M 

is finitely generated.

Proof. The necessity is clear. Conversely, suppose that M does 

not belong to hU. Then there exists a submodule K of M such 

that M/K does not have finite uniform dimension. So M/K has an 

infinite direct sum of non-zero submodules. Therefore there 

exist elements x t, x2, ... of the module M\K such that the sum

[(x,R + K)/K] + [(x2R + K)/K] + ... is direct. For each n>l, K 

is contained in a maximal submodule Pn of (xnR + K) . Now let 

P - Pt + P 2 + ... and N — K + x,R + x 2R + ... Therefore P is a 

submodule of N and N/P s [(xtR + K)/Pt] © [(x2R + K)/P2] © ... 

So N/P is a non-finitely generated semisimple subquotient of M.

In Proposition 1.1.2, it was shown that the class hU is 

{s,q}-closed. Now we use lemma 1.3.9 to show that the class hU 

is p-closed.
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Proposition 1.3.10. For any ring R, the class hU is p-closed.

Proof. Suppose that N and M/N are both (hU)-modules. Let P £ Q 

be submodules of M such that Q/P is semisimple. We shall prove 

that Q/P is finitely generated. Note that

Q/[P + (Q fl N)] a (Q + N)/(P + N), 

so that Q/[P + (Q fl N) ] is finitely generated. Moreover,

[P + (Q n n)]/p es (q n n)/(p n n), 

so that [P + (Q fl N)]/P is finitely generated. It follows that 

Q/P is finitely generated. Therefore, by Lemma 1.3.9, M e hU.

Note that a module is Noetherian if and only if it has dual 

Krull dimension zero. Thus the next theorem is a generalization 

of Theorem 1.2.4.

Theorem 1.3.11. Let R be any ring and a > 0 be an ordinal. Then 

dK* - C ® K*.

Proof. Suppose that M belongs to dK^. By [Le] , £ K* = K.

Therefore £ U (see [GR,Proposition 1.4]). Hence M belongs to
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dU. Thus, by Theorem 1.2.3, M — M, © M 2 where is semisimple 

module and M 2 belongs to hU. Therefore M 2 has finite uniform

dimension and, by Proposition 1,1.2, M 2 belongs to dK^. First

we claim that M 2/N belongs to for any non-zero submodule N 

of M 2* Suppose not. Then M 2/L does not belong to for some 

non-zero submodule L of M 2. So, by Proposition 1.1.2, there 

exist submodules K, K*of M 2 such that M 2 — K © K 1, L £ K and 

K/L belongs to K^* Therefore, by the hypothesis, K is a proper 

submodule of M 2. Hence K and K* have smaller uniform dimension 

than M 2. By induction on the uniform dimension of M 2, K and K 1 

belong to K^, Therefore H 2 belongs to K*. By [Le, Proposition 

3] , is q-closed. Thus M 2/L belongs to K^, a contradiction. 

Therefore M 2/N belongs to for every non-zero submodule N of 

tt2. Now we show that M 2 belongs to K^. Let N n< < ... be an 

ascending chain of submodules of M 2. If is zero for all i,

then N^+1/N^ e K* 1 (i > 1) . Suppose that there exists k > 1

such that Nk is not zero. Then we have the ascending chain 

0 / Nk < Nk+1 < Nk+2 < ... < H2.

Therefore (Nk+1 / Nk) < (Nk+2 / Nk) < ... < (M2 / Nk) . But we 

know that (M2/Nk) belongs to . Thus there exists t > k+i 

such that for all n > t, [(Nn+1 / Nk) / (Nn / Nk)] e Uq<ci K$,

26



and hence, we have (Nn+1 / Nn) e U^<Q; for all n > t. Thus M 2

belongs to K^. Therefore M e C © K^.

Conversely, suppose that M - M<,© M 2 for some semisimple 

module M t and a module M 2 belongs to K^. Since is q-closed 

(see [Le, Proposition 3]), then M 2 belongs to hK^. Therefore, 

by Proposition 1.1.1 and Proposition 1.1,3, M belong to dK^.

Corollary 1.3,12. For any ring R and an ordinal a > 0, the 

class dK^ is s-closed and eventually semisimple.

Proof. By Theorem 1,3.11 and Lemma 1.3.1.
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Chapter 2.

Modules with the properties (P) and fP*).

$ 2.1. Modules satisfying the property (?).

Let R be a ring and M a right R-module. We shall say that 

the module M has property (P) if for any submodule N of M there 

exists a direct summand K of M such that Soc K £ N £ K.

In the next lemma, we give an alternative characterization 

of modules which have the property (P).

Lemma 2.1.1. Let R be any ring and M a right R-module. Then M 

satisfies the property (P) if and only if for every complement 

submodule K of M there exists a direct summand L of M such that 

Soc L £ K £ L.

Proof. The necessity is clear. Conversely, suppose that for 

every complement submodule K there exists a direct summand L of 

M such that Soc L £ R g L. Let N be any submodule of M. First 

we show that N is essential in a complement submodule. Any zero 

submodule is a complement. Suppose that N is not zero. Then the
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set S of all submodules K of M such that N K is non-empty, 

since N  e S. Let {K^: X 6 A} be any chain of submodules in S, 

Suppose that K* — / S. Then there exists 0 f L ^ K*

such that N fl L =* 0. Therefore (K^ fl L) - 0 for all X e A. Thus 

L - 0, a contradiction. Therefore K* e S, and hence, by Zorn's 

Lemma, S has a maximal member K*. Now suppose that K 1 4e F ^ M. 

Then, by [Goo2, Prop.1.4], N F. Therefore, by the maximality 

of K* , K l=* F. Hence K'is a complement submodule with N K*. 

By hypothesis, there exists a direct summand L of M such that 

Soc L £ K*£ L. Therefore Soc L £ Soc K'. But N is essential in 

K'. Hence Soc K* £ N (see [AF, Proposition 9.7]). It follows 

that Soc L £ N £ L, and hence, M satisfies the property (P).

Note that, by the above Lemma, every CS-module satisfies 

(P), Our first aim in this section is to show that modules with 

the property (P) are built up from CS-modules and modules with 

zero socle. We first show that the property (P) is inherited by 

direct summands.

Lemma 2.1.2. Let R be any ring. Let M be a right R-module which 

satisfies the property (P) . Then any direct summand of M also 

satisfies the property (P).
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Proof. Suppose that M satisfies the property (P) . Let K be a 

direct summand of M. Then M — K © K' for some submodule K ’ of 

M. Let N be any submodule of K. Consider the submodule N © K' 

of M. By hypothesis, there exist submodules L, L' of M such 

that M - L © L' and Soc L £ N © K ’ £ L. Thus L - (L fl K) © K' , 

and hence, K - (L fl K) ® [K (1 (K1 © L')]. Note that N £ L fl K. 

Moreover, Soc (L fl K) £ (Soc L) D K £ (N © K') n K. By modular 

law, (N © K') fl K = N © (K n K') - N. Thus Soc (L fl K) £ N. It 

follows that K satisfies the property (P).

Proposition 2.1.3. Let R be any ring and M a right R-module 

which satisfies the property (P). Then M - M, © M 2 where M t is 

a CS-module with essential socle and M 2 is a right R-module 

with zero socle.

Proof. Suppose that M satisfies the property (P). Let S be the 

socle of M. Then, by Zorn's Lemma there exists a submodule N of 

M which is maximal with respect to the property S fl N — 0. By 

the hypothesis, there exists a direct summand K of M such that 

Soc K £ N £ K. Therefore Soc K £ S fl N, and hence, Soc K — 0. 

It follows that K n S “ 0. By the maximality of N, N - K, and
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hence, N is a direct summand of M. Therefore M * N © N* for 

some submodule N' of M. By [AF, Corollary 9.9 and Proposition 

9.19] , S - Soc M =■ (N fl S) ® (N’ fl S) - N' fl S £ N' . Let L be 

any submodule of N 1 such that S fl L - 0. Then S n (N © L) - 0, 

and hence, N - N © L, by the choice of N. Therefore L - 0, and 

hence, S is an essential submodule of N'.

Let P be any submodule of N 1. By Lemma 2.1.2, there exists 

a direct summand Q of N' such that Soc Q 5 P 5 Q. It is clear 

that S * Soc N f . By [AF, Corollary 9.9], Soc Q - (Soc N') HQ. 

Thus Soc Q is essential in Q, and hence, P is essential in Q. 

Hence every submodule of N 1 is essential in a direct summand. 

Thus N f is a CS-module.

In the next example, we shall show that the converse of 

Proposition 2.1.3 is false and, we also show that, a direct sum 

of modules with the property (P) does not need to have (P).

Example 2.1.4. Let R be the ring of integers Z. For any prime 

p, let M 1 be the simple right R-module Z/Zp. Moreover, let M 2 

be the right R-module Z^. Then M, and M 2 satisfy the property 

(P) . On the other hand, M — M 1 ® M 2 does not satisfy (P) .
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Proof. Since M 1 is a semisimple module, then by [AF, Theorem 

9.6], M, satisfies the property (P). Since Soc M 2 - 0, then by 

definition, K 2 satisfies the property (P). Let K be the cyclic 

submodule Z(l+Zp,p) of M. Since, as an Abelian group, K is 

infinite cyclic, it follows that K is a uniform Z-module. 

Suppose that L is a submodule of M and K is essential in L. 

Then L is uniform. Now L is finitely generated. Thus, by the 

fundamental Theorem of Abelian groups, L is a finite direct sum 

of cyclic submodules, and hence, L is cyclic. Thus there exist 

elements a, b e Z such that L — Z(a+Zp,b). Hence there exists 

an element n e Z such that (1+Zp,p) =* n(a+Zp,b). Therefore we 

have 1-na e Zp and p - nb. It follows that n =- 1 or -1, and 

hence, K - L. Thus K is a complement submodule of M.

Now suppose that M satisfies the property (P). Then there 

exists a direct summand N of M such that Soc N S K £ N. Since 

Soc K - 0, then Soc N - 0, and hence, N fi M, -0. Therefore N 

embeds in M/M1, and hence, N is uniform. But this implies that 

K is essential in N. Hence, by [Goo2, Proposition 1.4], K - N. 

Thus K is a direct summand of M. So there exists a submodule K' 

of M such that M — K © K'. Thus K' is uniform. Since Soc K - 0, 

then by [AF, Proposition 9.19] M, - Soc M - Soc K' S K', and
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hence, M 2 n K* - 0. Thus K' - . But K © M, - M^ © pM2 * M, a

contradiction. Therefore M does not satisfy the property (P).

It is easy to prove that any CS-module with finite uniform 

dimension is a finite direct sum of uniform modules. Let R be 

a ring and M a right R-module. For any m e M let r(m) denote 

the right ideal (r e R : mr «* 0). Okado [Ok, Lemma 3] (see also 

[MM, Proposition 2.18]) proved that if R is a ring and M a 

right R-module such that M is a CS-module and R has the 

ascending chain condition on right ideals of the form r (m) , 

where m e M, then M is a direct sum of uniform submodules. Now 

we prove:

Theorem 2.1.5. Let R be any ring and M a right R-module. Then 

the following statements are equivalent.

(i) M is a direct sum of modules with (P) and M is 

eventually semisimple.

(ii) M — © M 2 © M.3 where M 1 is a semisimple module, M 2 a

finite direct sum of uniform modules and M 3 a module with 

finite uniform dimension and zero socle.
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Proof. Suppose that (ii) is true. Then, by Lemma 1.3.4, M is 

eventually semisimple. But it is clear that semisimple modules, 

uniform modules and modules with zero socles satisfy (P).

Suppose that M is eventually semisimple and there exist a 

non-empty index set A and submodules (XeA) of M, each having 

(P), such that M - ©^ M^. By Proposition 2.1.3, for each X e A, 

is a direct sum of a CS-module and a module with zero socle. 

Thus, without loss of generality, we can suppose that is a 

CS-module or a module with zero socle for each X e A. Now let 

A' =■ {X e A : is not semisimple}. Because M is eventually

semisimple it follows that A' is a finite set. Thus there 

exist a positive integer k and submodules (1 < i < k) of M 

such that M =- N, © ... © N̂ ., N, is semisimple and, for each 

2 < i < k, Nj_ is a CS-module or a module with zero socle.

Let K be a direct summand of M such that K has zero socle. 

Since M is eventually semisimple it follows that K has finite 

uniform dimension. Now let N be a CS-module such that N is a 

direct summand of M. Because N is eventually semisimple, we can 

apply [CY, Lemma 2] to obtain submodules N, and N 2 of N such 

that N — N, © N 2, N t is semisimple and N2 has finite uniform 

dimension. But direct summands of CS-modules are CS-modules
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(see [MM, Proposition 2.7]). Therefore N 2 is a finite direct 

Siam of uniform modules. Therefore (ii) follows.

We shall write ACC (respectively, DCC) to denote the 

ascending (respectively, descending) chain condition. Moreover, 

for any ring R, we say that a module M satisfies the (ACC)e 

(respectively, (DCC)e) when M satisfies the ACC (respectively, 

DCC) on essential submodules.

Armendariz [Ar, Proposition 1.2] proved that the class of 

modules which satisfy the (DCC)e is {s ,q}-closed. In the next 

lemma, we give a different proof and show that the class of 

modules which satisfy the (ACC)e is also (s,q]-closed.

Lemma 2.1.6. Let R be a ring. Then the class of modules which 

satisfy the (ACC)e ((DCC)e ) is {s ,q}-closed.

Proof. Let M be a right R-module. Let N and L be submodules of 

M such that N S L £ M and L/N is an essential submodule of M/N. 

Then L is an essential submodule of M. In this way ACC (or DCC) 

on essential submodules passes from M to M/N. Thus the class of 

modules which satisfy the (ACC)e ( (DCC)e) is q-closed.
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Let N' be a complement of N in M. Then N © N 1 M. Let K 

be an essential submodule of N. Then, by [AF, Propositions 5.16 

and 5.20], K © N f M. Using this fact, it is easy to show 

that ACC (or DCC) on essential submodules passes from M to its 

submodule N. Thus the class of modules which satisfy the (ACC)e 

((DCC)e) is s-closed.

Corollary 2.1.7. Let R be any ring. Let M be a module which 

satisfies the (ACC)e (respectively, (DCC)e). Moreover, let N be 

any uniform submodule of M. Then N is Noetherian (respectively, 

Artinian).

Proof. By Lemma 2.1.6, N satisfies the (ACC)e (respectively, 

(DCC)e), and hence, N is Noetherian (respectively, Artinian),

Corollary 2.1.8. Let R be any ring. Let M be a direct sum of 

modules which satisfy the property (P). Then

(i) M satisfies the (ACC)e if and only if M belongs to C © N,

(ii) M satisfies the (DCC)e if and only if M belongs to C © A.

Proof, (i) Suppose that M satisfies the (ACC)e . By the proof of
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[Gool, Proposition 3,6] (see also [DHW, Lemma 2]), M/(Soc M) 

is Noetherian. Hence, by [CY, Lemma 1], M is eventually 

semisimple. Thus, by Theorem 2.1.5, M - M, © M 2 © M 3 where M, 

is a semisimple module, M 2 a finite direct sum of uniform 

modules and M 3 a submodule of M with zero socle. Therefore M 3 

is Noetherian, because it embeds in M/(Soc M). On the other 

hand, by Corollary 2.1.7, M 2 is Noetherian. Thus M 2 © M 3 is 

Noetherian. Therefore M e C © N. Conversely, let M e C © N. 

Then (M/Soc M) is Noetherian. Thus, by [AF, Proposition 9.7], 

M satisfies the (ACC)e .

(ii) Suppose that M satisfies the (DCC)e. Then, by [Ar, 

Proposition 1.1], M/(Soc M) is Artinian. By the proof of part

(i) , M € C © A. Conversely, suppose that M belongs to C © A. 

Then M/(Soc M) is Artinian. Thus, by (AF, Proposition 9.7], M 

satisfies the (DCC)e .

§ 2.2. Modules satisfying the property (P*')

Let R be a ring and & a right R-module. The module M will 

be called a radical module if M - Rad M , the Jacobson radical 

of M. Also, the module M is called a local module provided that
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Rad M is a maximal submodule of M and contains every proper 

submodule of M. A submodule N of M is called small In M, and 

written N ^ M , provided M ^ N + K for any proper submodule K 

of M. We shall call a module M a dual CS-module provided, for 

any submodule N of M, there exist submodules K and K* of M such 

that M =* K © K' , K £ N and N H K ’ is small in K' . Note that 

dual CS-modules are called "modules with ( D ^ 11 in [MM] and 

"modules with (C^" in [Os],

We shall say that a module M satisfies the property (P*) 

provided, for any submodule N of M, there exists a direct 

summand K of M such that K £ N and N/K £ Rad (M/K) . Clearly 

every radical module satisfies the property (P*)

Before dealing with the first result in this section, we 

recall a useful lemma about some properties of small 

submodules.

Lemma 2.2.1. Let R be any ring and M be a right R-module. Let

: i e 1} be the set of all small submodules of M. Then, for 

all i e 1,
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(i) is small in M for any submodule of N^,

(ii) (N^ + L)/L is small in M/L for any submodule L of M,

(iii) (N^ fl K) is small in K for any direct summand K of M,

(iv) £ (N^ : i € I ' } is a submodule of M and small in M for 

any finite subset I* of I.

(v) Rad M - j ;  { %  : i e I).

Proof. See [AF, Proposition 5.17 and Proposition 9.13],

An alternative characterization of modules which satisfy 

the property (P*) is given in the following lemma.

Lemma 2.2.2. Let R be any ring and M a right R-module. Then h 

satisfies the property (P*) if and only if for any submodule N 

of M there exist submodules K and K f of M such that M =* K ® K' , 

K S N  and N fl K' £ Rad K' .

Proof. Suppose that the module M satisfies the property (P*). 

Let N be any submodule of M. Then there exist submodules K, K' 

of M such that M - K ® K* , K S N  and N/K £ Rad (M/K) . Suppose 

that K' - Rad K' . Then it is clear that N fl K 1 £ Rad K ’ . Now
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suppose that K 1 / Rad K*. Then there exists a maximal submodule 

P of K', and hence, (K © P)/K is a maximal submodule of M/K. 

Consequently, N/K £ (K © P)/K, It follows that N £ K © P, and 

hence, K fl K' is contained in P. Thus every maximal submodule 

of K f contains N fl K' . Therefore N fi K* £ Rad K' .

Conversely, suppose that M has the stated condition. Let N 

be any submodule of M. Then there exist submodules K, K 1 of M 

such that M - K © K' , K £ N and N ft K' £ Rad K' . If M/K is a 

radical module then N/K £ Rad (M/K). Suppose that Rad (M/K) is 

not equal to M/K. Then there exists a submodule Q of M such 

that K £ Q and Q/K is a maximal submodule of M/K. Therefore 

Q - K ® (Q fl K') and Q fl K ’ is a maximal submodule of K' . Thus

N (1 K' £ Q fl K' . But this implies N - K © (N fl K 1 ) £ Q. Hence

N/K £ Q/K. Therefore every maximal submodule of M/K contains 

N/K, and hence, N/K £ Rad (M/K) and M has (P*) .

Note that, by Lemma 2.2.2, local modules and dual

CS-modules satisfy the property (P*).

We know that the property (P) is inherited by direct 

summands (see Lemma 2.1.2). In the next lemma, we show that the

40



property (P*) is also inherited by direct summands.

Lemma 2.2.3. Let R be a ring. Let M be a right R-module which 

satisfies the propert (P*) . Let K be any direct summand of M. 

Then K satisfies the property (P*).

Proof. Suppose that M satisfies the property (P*). There exists 

a submodule K' of M such that M — K © K' . Let L be a submodule

of K. Then, by Lemma 2.2.2, there exist submodules N, N' of M

such that M - N © N 1 , N £ L and L (1 N 1 £ Rad N' . By the modular 

law, K — N © ( K n N ' ) .  Now we have to show that L (1 K I) N 1 is 

contained in Rad (K (1 N*). Note that L n K n N' - L n N* . If 

Rad (K fl N 1) - K fl N 1 , then L n N1 £ Rad (K fl N'). Otherwise, 

there exists a maximal submodule P of K fl N ’ . Thus N © P © K* 

is a maximal submodule of M. But, by [AF, Proposition 9.19], 

Rad N' £ Rad M, and hence, L f l N 1 £ N © P © K r . Thus L n N' is

contained in P. Hence L fl N' £ Rad (K fl N'). So K has (P*) .

Let N be a submodule of any module M. A submodule K of M is 

called a supplement of N in M provided M - N + K and M * N + L 

for any proper submodule L of K. It is easy to check that K is
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a supplement of N in M if and only if M =■ N + K and N 0 K is 

small in K. A submodule K of M is called a supplement submodule 

of M provided there exists a submodule N of M such that K is a 

supplement of N in M. Note that in any module M zero and M are 

supplement submodules of M. A module M is called supplemented 

provided that every submodule of M has a supplement in M. It is 

clear that semisimple modules are supplemented. Moreover, any 

Artinian module is supplemented (see [Mi, Prop. 1.6]). On the 

other hand, as a module over itself, the ring of integers is 

not supplemented (see Example 3.3,2).

In Section 2.1, we showed that modules which satisfy the 

property (P) are built up from CS-modules and modules with zero 

socle (see Proposition 2.1.3). We will prove the analogue of 

this result in the following Proposition.

Proposition 2.2.4. Let R be any ring and M a right R-module 

which satisfies the property (P*). Moreover, suppose that the 

radical of M has a supplement in M. Then M - M, © M 2 such that 

M 1 is a dual CS-module which has a small radical and M 2 is a 

radical module.
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Proof, Suppose that M satisfies (P*) and Rad M has a supplement 

in M. There exists a submodule N of M such that M — N + Rad M 

and M * L + Rad M for any proper submodule L of N, This means 

that N (1 Rad M is small in N. There exist submodules K, K' of 

M such that M ~ K © K 1 , K S N  and N H K' S Rad K' (see Lemma

2.2.2), By [AF, Proposition 9.19], Rad K 1 Q Rad M, and hence,

N fl K' 5 Rad M. But N » K © (N n K' ) . Therefore N - K + Rad M,

and hence, M =» K + Rad M. Thus N - K, and hence, M * N © K' . By

[AF, Proposition 9.19], Rad N £ (N H Rad M) N. Therefore N 

has a small radical. Moreover, by Lemma 2.2.3,N satisfies (P*). 

Let L be any submodule of N. Then there exist submodules P, P1

of N such that N - P © P' , P £ L and L (1 P' S Rad P' . But we

know that Rad P' c Rad N N. Thus L H P '  is small in P1 . Hence 

N is a dual CS-module. We now consider the submodule K 1 . We

have M - N + Rad M =■ N + Rad N + Rad K 1 — N © Rad K* . But we

know that M - N © K*. Therefore K' - Rad K',

Recall that (P) © (P) f (P). The analogue result is also 

true as we will prove in the following example.
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Example 2.2.5. Let R be the ring of integers Z. For any prime 

number p, Let - Z/Zp. Moreover, let M 2 - the rational

numbers. Then M, and M 2 satisfy the property (P*) . On the other 

hand M — M 1 © M 2 does not satisfy the property (P*).

Proof. Since M t is a semisimple module, then by [AF, Theorem

9.6] and Lemma 2.2.2, M, satisfies (P*) . Since M 2 is a radical 

module, then M 2 satisfies (P*) . Let N be the submodule M, © Z. 

Since Z is essential in M 2, then N is essential in M. But N is 

a proper submodule of M. Therefore N is not a direct summand of 

M. On the other hand N % Rad M — M 2. Thus M does not satisfies 

the property (P*).

Note that, in Example 2.2.5, M^ is a dual CS-module and the 

radical of M has a supplement M 1 in M. Therefore the converse 

of Proposition 2.2.4 is not true.

Lemma 2.2.6. Let R be any ring and M a right R-module which 

satisfies the property (P*). Let L be a submodule of M such 

that L H Rad M — 0. Then L is a semisimple module.
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Proof. Suppose that M satisfies the property (P*) . Let L be a 

submodule of M such that L fl Rad M — 0. Let L' be any submodule 

of L. By Lemma 2.2.2, there exist submodules K, K' of M such 

that M - K ffl K' , K S L' and L’ fl K* £ Rad K* . But, by [AF, 

Proposition 9.19], Rad K's Rad M. Thus L' fl K* £ L n Rad M, and

hence, L* fl K 1 * 0. On the other hand, L 1 - K © (LT fl K 1 ) . Thus

L' — K, and L 1 is a direct summand of M. Thus L' is a direct 

summand of L. Therefore, by [AF, Theorem 9.6], L is semisimple.

Corollary 2.2.7. Let R be any ring and M a right R-module 

which satisfies the property (P*). Then M — M 1 © M 2 where M, is 

a semisimple module and M 2 is a module with essential radical.

Proof. Suppose that M satisfies the property (P*). By Zorn's 

Lemma there exists a complement submodule N of Rad M in M. Thus 

N fl Rad M — 0. There exist submodules K and K 1 of M such that

M - K © K 1 , K S N  and N fl K' £ Rad K' . But, by [AF, Proposition

9.19] , Rad K' £ Rad M. Hence N (1 K r - 0. By the maximality of K 

with respect to K (1 k ' - 0, N - K. It is clear that Rad N - 0. 

Moreover, by Lemma 2.2.3, N satisfies (P*), Thus by Lemma 2.2.6 

N is a semisimple module, and hence, K is a semisimple module.
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Therefore Rad M — Rad K' . Since N is a complement of Rad M in 

M, then N © Rad M is essential in M, and hence, K © Rad K' is 

essential in M. Therefore Rad K 1 is essential in K 1.

It is proved in [Os, Theorem 3.5] (see also [MM, Theorem 

4.15]) that if M is any dual CS module such that for every 

epimorphism from M onto a direct summand of M splits, then M is 

a direct sum of local modules and radical modules. In 

particular, for such a module M, Rad M has finite uniform 

dimension if and only if M is a direct sum of a semisimple 

module and a module with finite uniform dimension. We 

generalise this fact in our next result.

Theorem 2.2.8. Let R be any ring and M a right R-module. Then 

the following statements are equivalent.

(i) Rad M has finite uniform dimension and M is a direct sum 

of modules satisfying the property (P*).

(ii) M — M 1 © M 2 © M 3 where M 1 is a semisimple module, M 2 is a 

radical module which has finite uniform dimension and M 3 is a 

module which has finite uniform dimension and which is a finite 

direct sum of local submodules of M.
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Proof. Suppose that (ii) is true. Then it is clear that M is a 

direct sum of modules satisfying the property (P*) . Moreover, 

by [AF, Proposition 9.19], Rad M has finite uniform dimension.

Conversely, suppose that Rad M has finite uniform dimension 

and M - such that , for each X e A, M^ satisfies (P*). By

[AF, Proposition 9.19], Rad M - ©^ (Rad M^). Since the radical 

of M has finite uniform dimension, then there exists a positive 

integer k such that Rad M^ — 0 for all X > k. Thus, by Lemma 

2.2.6, M^ is semisimple for all X > k. Therefore, it remains to 

prove that if N is a module which satisfies the property (P*) 

and its radical has finite uniform dimension, then N is a 

direct sum of N t, N 2 and N 3 where N 1 is a semisimple module, N 2 

is a radical module with finite uniform dimension and N 3 is a 

module with finite uniform dimension and a direct sum of local 

submodules.

Suppose that N has the stated conditions. Then, by Lemma

2.2.3 and Corollary 2.2.7, we can suppose without loss of 

generality that N has finite uniform dimension. Suppose that N 

is uniform. Suppose that N is not a radical module. Then there 

exists an element m € N \ Rad N. Therefore, by Lemma 2.2.2, 

there exist submodules K, K' of N such that N - K © K', K S m R
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and mR fl K 1 S Rad K ’ . Suppose that K — 0. Then K' — N, and 

hence, m e Rad N, a contradiction. Therefore K * 0, and hence, 

K' - 0, by the hypothesis. In this case, N - K £ mR. It follows 

that N is a local module.

Now suppose that u-dim N > 2. Again we shall suppose that N 

is not a radical module. Then there exists an element x such 

that x e N \ Rad N. By hypothesis, there exist submodules Kx, 

Ix of N such that N — Kx ® 1̂ , Kx £ xR and xR fl Lx £ Rad Lx. 

But x / Rad N. Therefore Kx * 0. If Lx * 0 then Kx and Lx both 

have smaller uniform dimensions than N. Moreover, by Lemma

2.2.3, both Kx and satisfy the property (P*) . By induction 

on the uniform dimension of N, Kx and Lx are both direct sums 

of semisimple modules, radical modules and local modules, and 

hence so also is N.

Now suppose that 1^ - 0 for all x e N \ Rad N. Then N - xR 

for all x e N \ Rad N. It follows that N is a local module. 

Therefore, in any case, N has the required structure.
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Chapter 3.

The classes h*X. d*X and e*X.

Let R be any ring. For any class X of right R-modules, we 

define classes h*X, d*X and e*X dual to the classes hX, dX and 

eX respectively. First of all, the class h*X (respectively e*X) 

consists of all modules M such that every (small) submodule of 

M belongs to X. Note that X - h*X if and only if X is s-closed. 

Next, we define d*X to be the class of modules M such that for 

each submodule N of M, N contains a direct summand K of M such 

that the factor module N/K belongs to X.

§ 3.1.General Properties.

Throughout this section, we shall consider classes of 

modules over any ring R.

We start this section with an elementary result which gives 

an alternative characterization of the class d*X.

Lemma 3.1.1. Let R be any ring. Let X be any class of right 

R-modules. Then a module Ml belongs to d*X if and only if, for
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every submodule N of M, there exist a direct summand K of M and 

an X-submodule L of M such that N - K © L.

Proof. The sufficiency is clear. Conversely, suppose that 

M belongs to d*X and N is a submodule of M. By hypothesis, 

there exist submodules K, K T of M such that M - K ® K' , K £ N 

and N/K e X. By the Modular Law, N - K © (N (1 K 1) . Note that 

N fl K' s N/K e X. Therefore M has the stated condition.

Proposition 3.1.2. Let R be any ring. Then

(i) Z - h*Z,

(ii) e*Z - e*I - {M : Rad M - 0},

(iii) C - d*Z - d*I,

(iv) h*I =* X fl C and

(v) P n  d*P - h*P.

Proof, (i), (ii) and (iv) are elementary (see [AF, Theorem 9.6 

and Proposition 9.13]).

(iii) By [AF, Theorem 9.6], C - d*Z £ d*I. Suppose that M 

belongs to d*I and N a submodule of M. There exist submodules K 

and K'of M such that M - K © K' , K £ N  and N/K is injective.
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Thus N fl K 1 is injective, and hence, N I) K 1 is a direct summand 

of K'. Hence N is a direct summand of ML By [AF, Theorem 9.6], 

M is a semisimple module.

(v) Suppose that M belongs to P n d*P and N is a submodule 

of M. By Lemma 3.1.1, N — K © L for some direct summand K of M 

and a projective submodule L. Since M is projective, then K is 

projective, and hence, N is projective. Therefore M belongs to 

h*P. It follows that P PI d*P £ h*P. On the other hand, it is 

clear that h*P £ P and h*P £ d*P.

The next two propositions contain some basic information 

about the classes h*X, e*X and d*X. The first one is the 

analogue of Proposition 1.1.1 and the second one contains the 

analogue of Proposition 1,1,2.

Proposition 3.1.3. Let R be any ring. Let X and Y be any 

classes of right R-modules. Then

(i) h*X £ d*X £ e*X,

(ii) If X £ Y, then h*X £ h*Y, d*X £ d*Y and e*X £ e*Y,

(iii) C £ d*X,

(iv) h*X - h*(h*X) £ X,
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(v) d*(I © X) = d*X,

(vi) I n d*X £ h*(I © X) and 

(vii) e*(I ® X) - e*X.

Proof, (i), (ii) and (iv) are elementary, (iii) is an immediate 

consequence of (ii) and Proposition 3,1.2 (iii).

(v) Let M e d*(I © X). Let N be any submodule of M, Then 

there exist submodules K, K' of M such that M - K © K' , K £ N

and N/K belongs to I © X. Thus N - K © (N fl K') and N fl K' has

the form I © L for some injective submodule I and X-submodule 

L, since N n K' = N/K. Thus I is a direct summand of K' , and

hence, K © I is a direct summand of M. But N/(K © I) a* L e X.

It follows that M e d*X. Thus d*(X © X) £ d"*̂ . On the other

hand, by (ii), d*X £ d*(I © X).

(vi) Suppose that M e l f l  d*X. Let N be a submodule of M. 

Then M — K © K 1 , K S N  and N/K e X. Since M is injective then K 

is injective. But N - K ®  (N n K 1) and (N n K') s N/K e X. Thus 

N belongs to I ® X.

(vii) By (ii), e*X £ e*(I © X). Moreover, e*(I © X) £ e ^

is a consequence of the fact that injective small submodules of

any module are zero.
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Proposition 3.1.4. Let R be any ring. Let X be any class of 

right R-modules. Then

(i) h*X, e*X and d*X are all s-closed,

(ii) h*X is q-closed, if X is q-closed,

(iii) h*X is p-closed, if X is p-closed,

(iv) e*X - (h*X)(e*X), if X is p-closed, and

(v) h*X - X fl d*X, if X is {p,q)-closed.

Proof, (i) The classes h*X and e*X are trivially s-closed. 

Suppose that M belongs to d*X. Let N be a submodule of M and H 

be a submodule of N. By Lemma 3.1.1, H = - K © L  for some direct 

summand K of M and X-submodule L of M. But K is also a direct 

summand of N. Therefore, by Lemma 3.1.1, N belongs to d*X. It 

follows that d*X is s-closed.

(ii) Suppose that X is q-closed. Let M be an h*X-module and 

N be a submodule of M. Any submodule of M/N has the form K/N, 

where K is a submodule of M containing N. Thus K e X, and 

hence, K/N e X. Therefore M/N e h*X.

(iii) Suppose that X is p-closed. Let K be a submodule of a 

module M such that K and M/K are both h*X-modules. Let N be a 

submodule of M. Then N/(N n K) « (N + K)/K e X. Hence N/(N fl K)
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is an X-module. Since K e h*X then N fl K e X. Therefore N e X, 

and hence, M e h*X.

(iv) It is clear that e*X £ (h*X)(e*X). Conversely, suppose 

that M e (h*X) (e*X) . Then there exists a submodule K of M such 

that K e h*X and M/K e e*X. Let N be any small submodule of M. 

Then, by Lemma 2.2,1, (N + K)/K ^ M/K. Hence (N + K)/K e X. But 

(N + K)/K s N/(N n K) and N fl K e X. Thus N e X. So M e e*X.

(v) Clearly h*X G X n d*X, for any class X. Suppose that X 

is {p,q)-closed. Let M e X fl d*X and N be any submodule of M. 

By Lemma 3.1.1, there exists a direct summand K of M and an 

X-submodule L such that N - K © L. Since X is q-closed then K 

belongs to X, and hence, N/L belongs to X. Therefore N e X. It 

follows that M e h*X.

In the following example we show that the class e*X is 

neither q-closed nor p-closed, even when X is {s ,q ,p }-closed. 

Thus the analogue of Proposition 1.1.2 (ii) is not true

Example 3.1.5. Let R be the ring of integers. Then the class 

e*Z is neither q-closed nor p-closed.
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Proof. Let F be a free right R-module of non-zero rank. Then, 

by [AF, Proposition 17.10], Rad F — F J(R) - 0. Hence, by Lemma

2.2.1, F belongs to e*Z. Let p be any prime number. Therefore 

Rad(F/Fp2) - Fp/Fp2 f 0.

Therefore F/Fp2 / e*Z (see Lemma 2.2.1), and hence, e*Z is not 

q-closed. On the other hand, F/Fp and Fp/Fp2 are semisimple 

modules. Therefore F/Fp e e*Z and Fp/Fp3 e e*Z. Hence e*Z is 

not p-closed.

Note that C © h*X £ h*X implies C S X ,  (see Proposition

3.1.4), which is not true in general. Hence C © h*X / h*X. But

the classes d*X and e*X behave nicer as we will show in the 

next proposition which contains the analogue of Proposition

1.1.3.

Proposition 3.1.6. Let R be any ring. Let X be any class of 

right R-modules. Then

(i) C © h*X S h*(C © X) S C © X,

(ii) C © d*X - d*X and

(iii) C © e*X - e*X.
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Proof, (i) Let M - M 1 © M 2 where M, is a semisimple module and 

M2 belongs to h*X. Let N be a submodule of M. By [AF, Theorem

9.6] , M 1 =* K ® (N fl M,) for some submodule K of M r  Therefore 

M - K © (N n M,) © M 2. Thus, by modular law, N - ( N n M . , ) © L  

where L - N fl (K © M 2) . Note that (K © M 2)/K a M 2 e h*X. Thus 

(L + K)/K c X. But L fl K S (N fl Mx) fl K - 0. So L a (L + K)/K 

which belongs to X. Thus N e C © X. Therefore M e h*(C © X), It 

is clear that h*(C © X) £ C © X.

(ii) It is clear that d*X £ C © d1̂ . Suppose that a module 

M belongs to C © d*X, Then M ™ M 1 © M 2 where M, is a semisimple 

module and M 2 belongs to d*X. Let N be a submodule of M. Then, 

by [AF, Theorem 9.6], M 1 *■ (N fl M,) © M 1 for some submodule M* 

of M, . Thus M =» (N 0 M,) © M* © M 2, and hence, N - (N fl M t) © H 

where H - N fl (M* © M 2) . Since (M2 © M ^ / M 1 e d*X, then

(H + m')/m’ - (K/m') © (L/M1) 

for some submodules K and L containing M* such that K/M1 is a 

direct summand of (M2 © m')/m' and L/M* e X (see Lemma 3.1.1). 

Thus K is a direct summand of M. But K * M* © (K fl H) , so that 

(K fl H) is also a direct summand of M. Thus (N fl Mx) © (K fl H) 

is a direct summand of M. On the other hand,

N/[ (N fl Mx) © (K fl H)] a H/(K fl H) a (H + K)/K which is equal
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to (H + M')/K S* L/Hr e X. Thus M e d*X.

(iii) It is clear that e*X S C ®  e*X. Suppose that a module

M belongs to C © e*X. Then M - M]_ ® M 2 where M]_ is semisimple

and M2 e e*X. Let N be a small submodule of M. By Lemma 2.2.1, 

N n M]_ is small in M]_. Hence N (1 - 0. Thus N s= (n + M^)/M]_

which is small in M/M^ sj M 2 (see Lemma 2.2.1). Thus N e X. We 

conclude that M e e*X.

Corollary 3.1.7. Let R be any ring. Let X be any s-closed

class of right R-modules. Then C ® X S d*X.

Proof. By Proposition 3.1.3 (i) and Proposition 3.1.6 (ii),

C © X - C © h*X S C ®  d*X - d*X.

The next two propositions contain the analogue of 

Proposition 1.1.4. In these two propositions, we examine how 

different classes behave under direct sums.
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Proposition 3.1.8. Let R be any ring. Let X be a p-closed class 

of right R-modules. Then

(i) h*X © h*X - h*X and

(ii) e*X © e*X - e*X.

Proof, (i) It is clear that h*X £ h*X © h*X. By Proposition

3.1.4 (iii), the converse is true.

(ii) It is clear that e*X £ e*X ® e*X. Let M =* M, © M 2 

where both and M 2 belong to e*X. Let N be a small submodule 

of M. By Lemma 2.2.1, N fl is small in Hence N (1 M]_ e X. 

But, by Lemma 2.2.1, (N + M]_)/M]_ is small in M/M]_ ^ Hence 

(N + M]_)/M]_ € X. It follows that N e X. Thus M e e*X.

In the next chapter (see Example 4.1.9) we shall give a 

class of modules X which is {s,q.p)-closed but,

d*X © d*X f d*X.

This fact is interesting in view of the following proposition.

Proposition 3.1.9. Let R be any ring. Let X be a p-closed 

class of right R-modules. Then

(i) d*X - d*X © h*X and

(ii) d*X - d*X © (P fl d*X).
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Proof, (i) It is clear that d*X £ cl*X © h*X. Suppose that 

M belongs to d*X © h*X. Then M — M 1 © M 2 where M n belongs to 

d*X and M 2 belongs to h*X. Let N be any submodule of M. Then

N + M, - M 1 © [(N + M, ) ft M 2].

Therefore (N + M^/M, e X, and hence, N/(N II H,) e X. By Lemma

3.1.1, there exist a direct summand K and an X-submodule L of 

M 1 such that N PI — K © L. Note that K is a direct summand of 

M and (N n M^)/K e X. Thus N/K e X. Therefore M e d*X.

(ii) It is clear that d*X £ d*X © (P fl d*X) . Conversely, 

suppose that M belongs to d*X © (P fl d*X) . Then M =* H 1 © M 2 

where M t belongs to P fl d*X and M 2 belongs to d*X. Let N be a 

submodule of M. Note that M/M2 e P fl d*X- Therefore there exist 

submodules K and K' of M containing M 2 such that

M/M2 - (K/M2) © (K’/M2),

K £ N + M 2 and (N + M 2)/K e X. Note that K - (K fl N) + M 2 and

k /m 2 - [(k  n N) + m 2]/m 2 « (k n n)/(m2 n n).

Therefore (K fl N)/(M2 fl N) is a projective module. Therefore

(K fl N) - H © (M2 n N) 

for some submodule H of M. Therefore M - H © K*. But M 2 e d*K. 

Hence M 2 - F © f' for some submodules F and F' of M 2 such that 

F S (N n M 2) and (N fl M 2)/F belongs to X* Note that
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M - H © K*- H © M 2 © (K1 (1M,) - H $ F ® F*© (K'fl M,) .

Since N/(K fl N) s (N + M 2)/K e X, then N/(K D N) e X. On the

other hand (K (1 N)/(H © F) - [H © (N fl M 2)]/(H © F) which is 

isomorphic to the X-module (N fl M 2)/F, Thus (K fl N)/(H © F) 

belongs to X. Since X is p-closed we conclude that N/(H © F) 

belongs to X. Therefore M e d*X.

Corollary 3.1.10. Let R be any ring. Let X be any p-closed

class of right R-modules. Then

d*X - d*X © h*X © (P n  d*X) © C.

Proof. By Proposition 3.1.6 and Proposition 3.1.9.

^ 3.2. Modules with Noetherian or Artinian radical.

Let R be a ring and M a right R-module. We shall say that M 

satisfies the (ACC)S (respectively, (DCC)S) when M satisfies 

the ACC (respectively, DCC) on small submodules of M.
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Let R be a ring and M a right R-module. It is known that M 

satisfies the (ACC)e if and only if M/(Soc M) is Noetherian 

(for example, see [DHW, Lemma 2]). Dually, M satisfies the 

(DCC)e if and only if M/(Soc M) is Artinian (see [Ar, Prop. 

1.1]). We prove analogues of these results for the radical of 

M. Specifically, the module M satisfies the (ACC)S ((DCC)S) if 

and only if Rad M is Noetherian (Artinian).

The next result was proved by Varadarajan [Va, Lemma 2.1]. 

We shall give a proof for completeness.

Proposition 3.2.1. Let R be any ring and M a right R-module. 

Then Rad M is Noetherian if and only if M satisfies the (ACC)S,

Proof. The necessity is an immediate consequence of Lemma 2.2.1 

Conversely, suppose that M satisfies the (ACC)S. Then M 

contains a maximal small submodule K. Therefore, by Lemma 2.2.1 

Rad M - K. Finally, by Lemma 2.2.1, Rad M is Noetherian.

A companion result of Proposition 3.2.1 is the following.
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Proposition 3.2.2. Let R be any ring and M any right R-module. 

Then the following statements are equivalent.

(i) Rad M has finite uniform dimension.

(ii) M belongs to e*U and there exists a positive integer k 

such that u-dim N < k for every small submodule N of M.

(iii) M does not contain an infinite direct sum of non-zero 

small submodules.

Proof. Suppose that Rad M has finite uniform dimension. Suppose

that N is a small submodule of M, Therefore, by Lemma 2.2.1, N

has finite uniform dimension which smaller than u-dim Rad M.

Now assume statement (ii). Let N 1 © N 2 © ... be an infinite

direct sum of non-zero small submodules of M, Then, by Lemma

2.2.1, © ... © N3c+1 is small in M. On the other hand we have

u-dim (N1 © ... © N^+1) > k + 1, a contradiction. So M does not 

contain an infinite direct sum of non-zero small submodules.

Assume that statement (iii) is true. Suppose that Rad M 

does not have finite uniform dimension. Therefore there exist 

non-zero submodules (i — 1, 2, ...) of Rad M such that

K1 © K 2 © ... £ Rad M. For each i > 1, let k^ be a non-zero 

element of K^. By Lemma 2.2.1, k^R is small in M for all i.
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Thus b^R + k 2R + ... is an infinite direct sum of non-zero

small submodules of M, a contradiction. Therefore Rad M has 

finite uniform dimension.

Recall the following result (see Theorem 1.2.1).

Proposition 3.2.3. Let R be any ring and M a right R-module. 

Then the following statements are equivalent.

(i) M/(Soc M) is Noetherian.

(ii) M belongs to eN.

(iii) M satisfies the (ACC)e .

In the following theorem, we prove that the dual of 

Proposition 3.2.3 is true.

Theorem 3.2.4. Let R be any ring and M a right R-module. Then 

the following statements are equivalent

(i) Rad M is Artinian.

(ii) M belongs to e*A.

(iii) M satisfies the (DCC)S.
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Proof. Suppose that Rad M is Artinian. Then, by Lemma 2.2.1, M 

belongs to e*A.

Now suppose that M belongs to e*A. Let N 1 > N 2 > ... be a

descending chain of small submodules of M. Since N, is

Artinian, then the chain is finite. So M satisfies the (DCC)S.

Finally, suppose that M satisfies the (DCC)S. Let N be a

finitely generated submodule of Rad M. Then, by Lemma 2.2.1,

N is small in M. Thus, by Lemma 2,2.1, N is Artinian. Therefore 

Rad M is locally Artinian. Now let K be any proper submodule of 

Rad M. Let x e (Rad M)\K. Then xR is artinian. On the other 

hand (xR + K)/K = xR/(xR fl K) . Thus (xR + K)/K is a non-zero 

Artinian module. It follows that (Rad M)/K has essential socle. 

Suppose that Rad M is not Artinian. By [AF, Proposition 10.10], 

the set ft of submodules L of Rad M such that (Rad M)/L is not 

finitely cogenerated, is non-empty. Let {L^ : X e A) be any 

chain of submodules in ft. Let L * L^. Suppose that L / ft,

then (Rad M)/L is finitely cogenerated, and hence, L - L^ for 

some X e A. Thus L e ft, a contradiction. Therefore, by Zorn's 

Lemma, ft has a minimal member, say P.

Let S denote the submodule of Rad M, containing P, such 

that S/P is the socle of (Rad M)/P. We have seen already that
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S/P is an essential submodule of (Rad M)/P. Therefore, by [AF, 

Proposition 10.7], S/P is not finitely generated.

We next prove that P is small in M. Suppose that M - P + Q 

for some submodule Q of ML So, by modular law, S =■ P + (S HQ). 

Suppose that P fl Q # P. Therefore (Rad M)/(P fl Q) is finitely 

cogenerated, by the choice of P. On the other hand,

S/P - [P + (S n Q)]/P a (S n Q)/(P fl Q) £ Soc[(Rad M)/(P HQ)], 

and hence S/P is finitely generated, a contradiction. Therefore 

P * (P fl Q) £ Q, and hence, M - P  + Q -  Q. S o P i s  small in M.

Finally, we prove that S is small in M. Let M - S + V for 

some submodule V of M. Then

M/(P + V) - (S + V)/(P + V) a s/[P + (S n V)].

Thus M/(P + V) is semisimple. If M ^ P + V, then there exists a 

maximal submodule W of M such that (P + V) £ W. On the other 

hand, S £ Rad M £ W. So S + (P + V) £ W, and hence, S + V £ W. 

Thus M £ W, a contradiction, because M / W. Thus M =■* P + V, and 

hence, M =- V, because P is small in M. Therefore S is small in 

M. Since M belongs to e*A, then S is Artinian. It follows that 

S/P is Artinian, and hence, S/P is finitely co-generated. But 

S/P is a semisimple module. Therefore S/P is finitely generated 

which is a contradiction. Therefore Rad M is Artinian.
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We shall call a submodule N of a module M semimaximal 

provided N is an intersection of M and a finite number of 

maximal submodules of M.

Corollary 3.2.5. Let R be a ring and M a right R-module. Then 

the following statements are equivalent for M.

(i) M is Artinian.

(ii) M satisfies both the (DCC) s and the DCC on semimaximal 

submodules.

(iii) M satisfies the (DCC)S and Rad M is semimaximal.

Proof. If M is Artinian, then clearly statement (ii) is true.

Suppose that M satisfies the DCC on semimaximal submodules. 

Let N be a minimal semimaximal submodule of M. It is clear that 

Rad M S N .  If M is a radical module, then Rad M - N. Suppose 

that M * Rad M. If P is a maximal submodule of M, then N (1 P is 

semimaximal, and hence, N - N fl P, so that N £ P. It follows 

that N £ Rad M. Hence N — Rad M. Thus, in any case, Rad M is 

semimaximal.

Finally, suppose that M satisfies the (DCC)S and Rad M is 

semimaximal. Then, by Theorem 3.2.4, Rad M is Artinian. If M is
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a radical module, then M is Artinian. Suppose that M * Rad M. 

Then Rad M - P1 fl ... fl Pn for some positive integer n and 

maximal submodules P^ (1 < i < n) of M. Therefore M/(Rad M) 

embeds in (M/Pt) © ... © (M/Pn) which is a finitely generated 

semisimple module. Therefore M/(Rad M) is Artinian. Hence M is 

Artinian, because the class A is p-closed.

Corollary 3.2.6. Let R be any ring and M a right R-module 

which is a direct sum of modules, each having (P*). Suppose 

that R satisfies the (ACC)S (respectively, (DCC)S). Then, 

M — M, © M 2 for some semisimple module M 1 and a Noetherian 

(respectively, Artinian) module M 2,

Proof. By Proposition 3.2.1, Theorem 3,2,4 and Theorem 2.2.8.

Note that the module M is Noetherian if and only if M. 

satisfies the (ACC)e and the ACC on complement submodules. To 

see why this is so, recall that a module M satisfies the ACC on 

complement submodules if and only if M has finite uniform 

dimension ([Go, Lemma 1.3]). Thus, if a module M satisfies the 

ACC on complement submodules, then Soc M is Noetherian, and if,
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in addition, it satisfies the (ACC)e, then M is Noetherian (see 

Proposition 3.2.3).

The analogue of the fact that (ACC)e and ACC on complement 

submodules gives ACC on all submodules will be proved in the 

next lemma.

Lemma 3.2.7. Let R be any ring. Let M be a right R-module

which is a supplemented module and satisfies the DCC on 

supplement submodules. Then M/(Rad M) is a finitely generated 

semisimple module.

Proof. Suppose that M satisfies the stated conditions. Let N be 

any submodule of M containing Rad M. There exists a supplement 

K of N in M. Since N fl K is small in K, then N n K is small in 

M, and hence, N Cl K £ Rad M. Thus M/(Rad M) can be decomposed 

as follow M/(Rad M) - {N/(Rad M)} ® {(K + Rad M)/(Rad M) }. Thus 

every submodule of M/(Rad M) is a direct summand, and hence, by 

[AF, Theorem 9.6], M/(Rad M) is semisimple.

Now suppose that Rad M £ N t 5 N 2 £ .., is an ascending 

chain of submodules of M. Because M is supplemented, there
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exists a descending chain of submodules K 1 2 K 2 2 ... such 

that is a supplement of in M for each i > 1. Therefore 

there exists a positive integer t such that Kt - ... .

Because M/(Rad M) - {N-j/CRad M)} © {(K* + Rad H)/(Rad M) }, for 

all i > t, it follows that Nt - Nt+1 - Nt+2 - .. . Therefore 

M/(Rad M) is Noetherian, and hence, finitely generated.

Theorem 3.2.8. Let R be any ring and M a right R-module. Then 

M is Artinian if and only if M is supplemented and M satisfies 

the (DCC)S and the DCC on supplement submodules.

Proof. The necessity is clear. Conversely, suppose that 11 is a 

supplemented module which satisfies the (DCC)S and the DCC on

supplement submodules. By Theorem 3.2.4, Rad M is Artinian. By

Lemma 3.2.7, M/(Rad M) belongs to G fl C. Therefore M /(Rad M)

is Artinian, and hence, M is Artinian.
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$ 3.3. Countere-gampl

Let R be any ring. We know from Theorem 1,2.1 that 

eU — C(hU). Moreover, in Theorem 3.2.4, we proved that 

e*A - {M : Rad M is Artinian). In view of these facts, the 

following question arises: if M is a module such that every

small submodule has finite uniform dimension, does Rad M have 

finite uniform dimension? i.e. does e*U - {M : Rad M e U}?

In this section, we will give a negative answer to the 

above question (see Example 3.3.3).

We start this section with an example to show that Theorem 

3.2.4 is not true for the class of Noetherian modules.

Example 3.3.1. Let R be the ring of integers Z and p is a 

prime number. Let M be the right R-module Z(p°°), the Prufer 

p-group. Then M belongs to e*N , but the radical of M is not 

Noetherian.

Proof. Since every proper submodule of M is cyclic and spanned
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by 1/Pn f°r some n > 0, then every proper submodule of M is 

finite ,and hence, Noetherian. For i - 1, 2, ... , let N^ be

the cyclic submodule spanned by 1/p-*-. Then 

0 < N, < N 2 < ... < U Ni - M 

is an infinite ascending chain of submodules of M. Hence M is

not Noetherian. Since N^ < N^+1 for all i > 1, then M has no 

maximal submodules. Therefore Rad M - M. Since M is infinite 

and the sum of finite submodules is finite then every proper 

submodule of M is small. Thus M e e*N and Rad M / N.

Note that the ring of integers Z is not Artinian. In the

next example, we show that Theorem 3.2,8 is not true for the

class of non-supplemented modules.

Example 3.3.2. Let M be the right Z-module Zy;. Then M has no 

proper supplements and no non-zero small submodules.

Proof, Let n e Z. If n — 0, 1 or -1, then nZ is a supplement 

submodule of M. Suppose that nZ is a supplement submodule where 

n f 0, 1 and - 1. Then there exists m e Z which is relatively 

prime to n and mZ is minimal with respect to nZ + mZ - Z. Let
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k > 1 be any integer which is relatively prime to n. Then mk is 

also relatively prime to n. Thus nZ + mkZ - Z, a contradiction, 

because mkZ < mZ. Thus M has no proper supplement submodule. In 

the other hand, nZ + fZ - Z for any f e Z which is relatively 

prime to n. Hence zero is the only small submodule of M.

In the next Example, we show that Theorem 3.2.4 can not be 

generalized to the class of modules which has finite uniform 

dimension. In fact, it can not be even generalized to the class 

of modules with Krull dimension one. We start with an example 

which was constructed by E. R. Puczylowski.

Example 3.3.3. Let R - {s/t: s, t e Z and p/t) where p is a 

prime number. Let M be the right R-module R © R © . . . . Then

every small submodule of M is Noetherian of Krull dimension one 

but the radical of M does not have Krull dimension.

Proof. It is clear that Rad R — Rp - {sp/t: s, t e Z and p/t). 

Therefore Rad M - Rp © Rp © ... . Thus the radical of M does 

not have finite uniform dimension. Let N be any small submodule 

of M. Without loss of generality, we can suppose that N is a
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non—Artinian submodule. Suppose that N does not have finite 

uniform dimension. Then N contains an infinite direct sum of 

non-zero submodules, say F. Thus F - R x 1 © R x 2 ©.... ^ N where 

^ 0 for all i > 1. Hence F is a free R-module of infinite 

rank. The field of fractions of R is the rational numbers Q 

which is countable. But Q is countably generated over R, Thus 

there exists an R-epimorphisim from F onto Q. Let K be the 

kernel of <t>. Then F/K « Q which is an injective R-module. 

Therefore M/K “ F/K © L/K for some submodule L of M which 

contains K. Hence M - F + L. Thus M - N + L, and hence, M - L. 

Therefore F * K, a contradiction. Thus N has finite uniform 

dimension. By Goldie's Theorem, there exists k > 1 such that 

n ' — Rx, © Rx 2 © ... © Rx-̂  is an essential submodule of N where

Xi e N for all 1 < i < k. Therefore N* £ G - R © R © ... © R

(t-direct summands and t > k). Hence N/N* is torsion. Therefore 

(N+G)/G a N/(N H G) is torsion. But M/G s m  which is torsion

free. Therefore M/G is torsion free, and hence, (N+G)/G - 0. So

N £ G. But G is Noetherian. Therefore N is Noetherian, and 

hence, N has Krull dimension one (see [MR, 1.8 ch.6]). Thus M 

belongs to e*K , and hence, belongs to e*TJ. Since Rad M does 

not have finite uniform dimension, then Rad M / K .
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Chapter 4.

Some Characterizations of d*X

§ 4.1. Further properties of d*X and examples.

Let R be a ring. Let X be a class of right R-modules. For 

any right R-module M, we define the X-socle Soc%(M) to be the 

sum of all X-submodules of M. It is clear that M - Socx(M) if H 

belongs to X. Moreover, Soc M — Soc^CM) when X is the class of 

semisimple right R-modules. In the first result of this section 

we investigate the internal structure of d*X-modules.

Proposition 4.1.1. Let R be any ring. Let X be a class of right 

R-modules. Let M be a d*X-module. Then M/Soc^CM) is semisimple.

Proof. Suppose that M belongs to d*X. Let S - Soc^CM). Any 

submodule of M/S has the form N/S for some submodule N of M 

containing S. There exist submodules K and K' of M such that 

M - K ® K' , K £ N and N/K belongs to X. Thus, by modular law, 

N — K © (N (1 K 1) and N fl K' e X. Thus N fl K' Q S, and hence, 

M/S - (N/S) © [(K'+ S)/S]. Therefore, by [AF, Theorem 9.6], M/S
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is semisimple module.

Corollary 4.1,2. Let R be any ring. Let X be a class of right 

R-modules such that S S X. Let M be a d*X-module. Then Socy(M) 

is an essential submodule of M.

Proof. Suppose that M belongs to d*X. Let N be any submodule of 

M such that N fl Soc^CM) — 0. Then N embeds in M/Socy(M) . Thus, 

by Proposition 4,1,1, N is semisimple. Thus N £ Socy(M), and 

hence, N — 0. Therefore Socx(M) is essential in M.

Lemma 4.1.3. Let R be any ring. Let X be any class of right 

R-modules. Let M be a d*X-module and N be any submodule of M. 

Then N contains a non-zero X-submodule or N is a semisimple 

direct summand of M.

Proof. Suppose that M belongs to d*X and N be a submodule of M. 

Suppose that N does not contain a non-zero X-submodule. Let P 

be any submodule of N. By Lemma 3.1.1, P - K © L where K is a 

direct summand of M and L is an X-submodule of M. Thus L - 0, 

and hence, P - K. Therefore, by [AF, Theorem 9.6], N is a
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semisimple. Moreover, by [Lemma 3.1.3], N is a direct summand

of M.

Proposition 4.1.4. Let R be any ring. Let X be any s-closed 

class of right R-modules and M be any d*X-module. Then there 

exist a semisimple submodule M^ of M and a submodule M 2 of M 

such that M - M]_ © M 2 and every non-zero submodule of M 2 

contains a non—zero X-submodule.

Proof, By Zorn's Lemma M contains a submodule M^ maximal with 

respect to the property that it does not contain a non-zero 

X-submodule, By Lemma 4,1,3, M̂ _ is a semisimple direct summand 

of M. There exists a submodule M 2 such that M - © M 2 . Let N

be a non-zero submodule of M 2 . Then M^ ® N contains a non-zero 

X-submodule K, by the choice of M^. Note that K fl £ X, and 

hence, K fl M^ — 0. Thus K embeds in N, and hence, N contains a 

non-zero X-submodule.

Corollary 4.1.5. Let R be any ring. Then

(i) C © T £ d*T £ C © [T(C fl T)] £ TC and

(ii) d*Tn - C © Tn .
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Proof, (i) By Corollary 3.1.7, C ® T S d*T. Moreover, by 

Proposition 4.1.4, any d*T-module M can be written in the form 

M - M^ ® M2 where M^ is a semisimple module and M 2 a module 

with essential singular submodule. Thus M2 belongs to T(C fl T) 

(see Proposition 4,1.1). Therefore d*T S C ®  [T(C fl T) ] and it 

is clear that C ® [T(C fl T) ] S TC.

(ii) By Corollary 3.1.7, we get the first inclusion and ,by 

Proposition 4.1.4, we get the second one.

Corollary 4.1.6. Let R be any ring. Then

(i) d*T - C ® T, if R is right non-singular,

(ii) T S d*T S T 2, if R has zero right socle, and

(iii) d*T “ T, if R is right nonsingular and has zero right 

socle.

Proof, (i) Suppose that R is right non-singular. Then T 2 - T. 

Thus, by Corollary 4.1.5, d*T — C ® T.

(ii) Suppose that R has zero right socle. Then C S T, and 

hence, (ii) follows by Corollary 4.1.5.

(iii) Follows from part (i) and part (ii).
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Note that, if R is a commutative domain which is not a 

field, then Corollary 4.1,6 gives that d*T — h*T — T. Moreover, 

Note that, for any ring R, is the class of right R-modules

which have a singular radical (see Lemma 2.2.1),

Corollary 4.1.6 suggests that d*T - C © T, but this is not 

true in general. This fact will be proved in the next example.

Example 4.1.7. Let K be a field. Let R “{ [q ^] : a * ^ e K} * 

Then over the commutative ring R, d*T f C © T.

Proof. Let M be the right R-module Rr . Then the singular 

submodule, Z(M), of M is the subring of R consisting of all 

elements of R with a - 0, It is clear that 0, Z(M) , and M are 

the only submodules of M. Moreover, Z(M) is the unique maximal 

submodule of M, and hence, Z(M) =» Rad(M) . Thus Z(M) is small in 

M (see Lemma 2.2.1). Therefore M is indecomposable, and hence, 

M is not a semisimple module (see [AF, Theorem 9.6]). But M 

belongs to d*T. Moreover, M is not singular.

In Example 1.1.5, It was shown that the class dX is not 

s-closed, in general, and dX © dX / dX. The analogue of these
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results is true as we will show in the next two examples.

Example 4.1.8. Let R be the ring of rational integers. Then 

d*Tn is not q-closed.

Proof. Let M be the additive group of rational numbers 

considered as an R-module. Then M is non-singular and M has 

zero socle. Thus, by Corollary 4.1.5, M belongs to d*Tn . On the 

other hand, the ring of integers Z is a submodule of M such 

that M/Z is singular and M/Z is not semisimple. By Corollary 

4.1.5, M/Z does not belong to d*Tn .

A module M is called small provided there exists an 

extension module M ’ of M such that M is small in M' . Leonard, 

in [Leo, Theorem 1] , proved that M is small if and only if M is 

small in its injective hull E(M). In [Pa, 3.2], Pareigis showed 

that the small modules form a class which is {q,s}-closed and 

is also closed under finite direct sums. Moreover, if X is the 

class of small modules, then the dual CS-modules belongs to 

d*X.
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Example 4.1.9. Let R be a ring which is local commutative and 

principal ideal domain. Let P be the unique maximal ideal of R. 

Suppose further that R is not complete in the P-adic topology. 

Then d*X yt d*X © d*X where X is the class of small R-modules.

Proof. Let K be the field of fractions of R. Let M - K © K. 

Then, by [MM, Proposition A.7], M is not a dual CS-module. On 

the other hand, by [MM, Proposition A.7], K is a dual 

CS-module. Therefore K belongs to d*X. Note that, by [Ha, Lemma 

2.1], M is injective. If M belongs to d*X, then, by Lemma 4.4.1 

M is a dual CS-module, a contradiction. Therefore M does not 

belong to d*X.

S 4.2. The classes d*(,hU> and

In this section, for an arbitrary ring, we shall completely 

characterize the classes d*(hU) and the classes d*^, for an 

ordinal ot > 0.

Let R be a ring and let X be any class of right R-modules.
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We shall denote aX to the class of right R-modules M such that 

every proper submodule of M belongs to X. It is clear that, for 

any class X, aX £ d*X. We also define, for any positive integer 

n, x(n) - X ® X ® ... ® X (n summands) . Finally we define

X(w) - Un>1 X(n>.

Lemma 4.2.1. Let R be any ring, let X be any class of right 

R-modules. Then U fl d*X £ (aX)^).

Proof. Let M be a (U fl d*X)-module. We prove that M is a 

(finite) direct sum of aX-modules by induction on the uniform 

dimension of M. Suppose first that M is uniform. Let N be a 

proper submodule of M. By hypothesis, there exist submodules K 

and K f of M such that M - K ® K' , K £ N and N/K is an X-module. 

Because K / M, it follows that K - 0, and hence, N belongs to 

X. Thus M is an aX-module. Now suppose that M has uniform 

dimension n > 2. Suppose that M / (aX)^). Then M / aX. There 

exists a proper submodule L of M such that L / X* Since M e d*X 

then there exist submodules P and P' of M such that M - P ® P' ,
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P £ L and L/P is an X-module. Note that P £ 0 and P 1 * 0. Thus 

P and P* both have uniform dimension at most n - 1. Therefore, 

by Proposition 3.1.4, and induction on n, P and P' belong to 

(aX)(c*>)( and hence, ft belongs to (aX) , a contradiction. Thus 

M belongs to (aX)^).

It is proved, in Theorem 1.2.3, that dU - d(hU) — C © (hU). 

the analogue of this fact will be proved in the next Theorem.

Theorem 4.2.2. For any ring R, d*(hU) - C © (hU).

Proof. By Corollary 3.1.7, C © (hU) £ d*(hU). Conversely, let 

M e d*(hU) . Then there exist submodules K and K* of ft such that 

M — K © k' , K £ Soc ft and (Soc M)/K e hU. Thus K is semisimple. 

But Soc k' se (Soc M)/K. Hence Soc k' is finitely generated. By 

Proposition 3.1.4, we can suppose without loss of generality, 

that Soc M is finitely generated and prove that M € hU.

Let P £ Q be submodules of M such that Q/P is semisimple. 

Proposition 3.1.4 allows us to assume M — Q. By hypothesis, 

there exist submodules L, L ’ of M such that. M - L e L 1, L £ P  

and P/L e hU. By modular law, P — L © (P fl Lr). Hence P fl L'has
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finite uniform dimension. But, by Zorn's Lemma, there exists a 

submodule L” of L 1 maximal with respect to L" n (P n I') - 0. 

Since L" 0 P — 0, then L" is semisimple, and hence, finitely 

generated, because Soc M is finitely generated. The submodule 

L* contains the essential submodule L h © (P PI L*) which has 

finite uniform dimension. Thus L* has finite uniform dimension.

By Lemma 4.2.1, L* e (a(hU))(w). Let N be a submodule of L' 

such that N e a(hU) . If N S P I) L' ^ P/L, then N e hU. Other 

wise P n N c n, and hence, N/(P fl N) has a maximal submodule. 

By Proposition 1.3.10, N e hU. Therefore, in any case, N e hU. 

Since L* e (a(hU))(a)), then, by Proposition 1.3.10, l' e hU. 

But M/L s L* . Therefore M/P is finitely generated. Thus, by 

Lemma 1.3.9, M e hU.

In Theorem 1.3.11, for an ordinal a > 0, we proved that

We prove the dual of this fact in the next theorem.

Theorem 4.2.3. Let R be any ring R. Then, for an ordinal ct > 0,

d %  -  C ©  Kq,.
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Proof. By Corollary 3.1.7, C ® S Conversely, suppose

that M e Since Kq, £ hU (see, for example, [GR, Lemma 1.1

and Proposition 1.4]), then by Proposition 3.1.3 and Theorem 

4.2.2, M — M,® M 2 where M t is semisimple module and M 2 has 

finite uniform dimension. By Proposition 3.1.4, M 2 e *̂Kq!* Cn 

the other hand, by Lemma 4.2.1, M 2 e (aK^,)^). But it is clear 

that aK^ — (see [GR,Lemma 1.1]). Therefore M 2 e Ka . Thus M 

belongs to C ® Kq.

In Theorem 1.2.3, it was proved that dN - C $ N. The dual 

of this fact will be proved in the following Corollary.

Corollary 4.2.4. For any ring R, d*A - C e A.

Proof. Since K 0 - A f then the proof follows by Theorem 4.2.3.
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§ 4.3. FBN-rings.

Let R be a ring. We know from Theorem 1.2.3 that 

dU - d(hXJ) - C ® (hU) .

Clearly d*(hU) £ d*U. However, if R - K[X1tX 2l..,] denotes the 

polynomial ring over a field K in a countably infinite number 

of commuting indeterminates X 1 , X 2, ..., then Rr  is uniform.

Thus Rr e d*U. On the other hand, Rr / C © hU - d*(hU) , because 

Rjj has zero socle and the ring R has a homomorphic image with 

non-finitely generated socle. Therefore d*(htJ) f d*U.

This raises the question: given a ring R, what is d*U for 

the ring R? We shall show that d*tJ - C © U for the class of 

right FBN-rings.

Proposition 4.3.1. For any ring R, d*U fl CG £ C © U.

Proof, Let M e d*U fl CG. Let S denote the socle, Soc M, of M. 

There exists a C-subraodule N of M such that M/N is finitely 

generated. Thus (M/S) is finitely generated. Hence there exists 

a finitely generated submodule L of M such that M - L + S. But 

S is semisimple. Therefore S - (L fl S) © for some submodule
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S1 of S. Hence S, is semisimple and M — L © S^.

Suppose that L is not a U-module. Then there exists a 

submodule N* — ®aeA w^ere is a non-zero submodule of L 

for all ct € A. By Proposition 3.1.4, L e d*U. Thus, by Lemma

3.1.1, N* - K © P for some direct summand K of L and a 

submodule P of L which belongs to U. Note that L is finitely 

generated. Therefore K is finitely generated. But P has finite 

uniform dimension. Therefore there exists a finitely generated 

submodule Q of P which is essential in P. Therefore K © Q is 

essential in K © P. But K © Q is finitely generated. Therefore 

K © Q £ ®aeA* ^or some finite subset A* of A, Therefore

(K © Q) fl Na - 0 for all a / A* . Hence Na - 0 for all a / A', a 

contradiction. Therefore L has finite uniform dimension, and 

hence, M e C © U.

Corollary 4.3.2. Let R be any ring. Let M be a right R-module 

which belongs to d*U. Then any finitely generated submodule of 

M has finite uniform dimension.

Proof. By Proposition 3.1.4 and Proposition 4.3.1.
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Lemma 4.3.3. Let R be any ring. Let M be a nonsingular right 

R-module which belongs to d*U and has zero socle. Then M has 

finite uniform dimension.

Proof. Suppose that M does not have finite uniform dimension. 

Then there exists N - N1 © N 2 © ... which is an infinite direct 

sum of non-zero submodules of M. Note that, for each i > 1, 

has zero socle, and hence, has a proper essential submodule 

Kt (see [AF, Proposition 9.7]). Let K - K 1 ® K 2 © . . . . Then K 

is essential in N (see [AF, Proposion 5.20]). Note that, by 

Proposition 3.1.4, N e d*U. Thus there exist submodules L, L ’ 

of N such that N - L © L* , L S K  and K/L has finite uniform 

dimension. By modular law K - L © (K n L'). Thus K fl L 1 has 

finite uniform dimension. Since K essential in N, then K 0 L' 

is essential in L' , and hence, L* has finite uniform dimension. 

Therefore L* contains a finitely generated essential submodule 

H, and hence, there exists t > 1 such that H S N, © ... © Nt.

Let x e Nt+1 and x / Kt+1. Then x - y - y' for some y e L

and y*e L 1. Since y e K, then y - k t + ... + 1 %  for some n > 1

and k^ e (1 < i <n). There exists an essential right ideal E

of R such that y'E £ H 5 N,® ... © Nt. Note that
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y* - y - x - k, + ... + kt + (kt+1- x> + kt+ 2 + ••• + kn-

But y'E G (N1 © ... © Nt) . Thus (kt+1- x)E - 0. Since Nt+1 is

nonsingular, then kt+1 - x - 0, Therefore x - kt+^ e Kt+1, a 

contradiction. It follows that M has finite uniform dimension.

Proposition 4.3.4. Let R be any ring. Then 

C © U G d*U G T © C © TJ.

Proof. By Corollary 3.1.7, C © U G d*tJ. Suppose that M e d^. 

Let S be the socle of M. Then there exist submodules K and K' 

of M such that M - K © K* , K G S  and S (1 K' e U. Therefore K is 

semisimple and K' has finitely generated socle, S fl K 1 . Let Z 

be the singular submodule of K 1. But, by Proposition 3.1,4, K' 

belongs to d*U, and hence, there exist submodules L and L 1 of

K' such that K' — L © L*, L G Z and Z n L' e U. Therefore L is

singular and the singular submodule Z 1 of L' has finite uniform 

dimension.

We claim that L f has finite uniform dimension. Suppose not. 

Then there exists an infinite direct sum P - P 1 © P 2 © ... of 

non-zero submodules of Lf. Since Soc K ? is finitely generated, 

then Soc K ’ e U. Moreover, z'e U. So without loss of generality
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suppose that P^ is nonsingular with zero socle for all i > 1 . 

Thus P is a nonsingular d*U-module with zero socle. Thus, by 

Lemma 4.3.3, P has finite uniform dimension, a contradiction. 

Therefore L' has finite uniform dimension. Thus any d*U-module 

belongs to T ® C ® U.

Using the last proposition we shall prove that for any 

commutative Noetherian ring R, d*tj — C © U. In fact we can do 

rather better. Recall that a ring R is a right FBN-ring if R is 

right Noetherian and, for every prime homomorphic image S of R, 

every essential right ideal of S contains a non-zero two-sided 

ideal. Examples of right FBN-rings are commutative Noetherian 

rings and right Noetherian rings which satisfy a polynomial 

identity (i.e. right Noetherian PX-rings).

Let R be a right Noetherian ring and U a uniform right 

R-module. Recall that P - { r e R : A r - 0  for some non-zero 

submodule A of U] is a prime ideal of R and P - ann(W) , the 

annihilator of some non-zero submodule W of U. We call P the 

assassinator of U and write P - ass(U).
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Lemma 4,3.5. For a prime right FBN-ring, d*U - C © U.

Proof. Let R be a prime right FBN-ring. Then, by Corollary

3.1.7, C © U £ d*U. Suppose that d*U % C © U. Because R is 

right Noetherian, we can suppose that d*tJ - C © U for any 

proper prime homomorphic image of R. Let M be a d*U-module such 

that M / C © U. Then, by Proposition 4.3.4, M e T © C ® U .  Thus 

there exists an infinite direct sum N - N 1 © N 2 © ... of 

non-zero singular submodules N^ (i > 1) of M such that N-j_ has 

zero socle (see the proof of Proposition 4.3.4) and is uniform 

for each i > 1 .

Let i > 1 and let N' — N^. Let 0 / x e N*. Then xE - 0 for 

some essential right ideal E of R. Because R is a prime right 

FBN-ring, there exists a non-zero ideal I of R such that I £ E. 

Then xl — 0, and hence, xRa - 0 for each a e I. Thus 0 * I £ P 

where P - ass(N'), Let P^ - ass(N^), for i > 1. By the above 

argument, P^ ^ 0, and we can suppose without loss of generality 

that N̂ Pj_ — 0.

For each i > 1, let be a proper essential submodule of 

N^ (N^ has zero socle, so we use [AF, Proposition 9.7]). Let 

K — K 1 © K 2 © ... . Then K N - N 1 © N 2 © N 3 © ... . Thus, by
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Proposition 3.1.4, there exist submodules L and L 1 of N such 

that N =* L ® L' , L £ K and K fl L 1 e U. By the argument used 

in the proof of Lemma 4.3.3, L 1 e U. Therefore there exists a 

finitely generated essential submodule H of L' . Thus there 

exists a positive integer t such that H S N, ® ... ® N t, (see 

the proof of Lemma 4.3,3). Let x e L 1 . Then x =» x t + ... + xn

for some n > 1 and x^ e (1 < i < n) . On the other hand,

x(P, fl . . . fl Pt) £ Nt+i ® . . . ® Nn .

Hence x(P, fl ... fl Pt) n H = 0. Therefore x(P, fl ...fl Pt) - 0.

It follows that L'(P, fl . . . fl Pt) = 0.

Now we adapt the last part of the proof of Lemma 4.3.3. Let 

x e Nt+1 and x / Kt+1 . Adopting the same notations of Lemma

4.3.3, y ' e L 1 , so that y* (P., fl ... fl Pt) = 0, and hence,

<kt+1- x)(P1 n ... fl Pt) - 0.

It follows that (P1 fl ... fl Pt) c Pt+1 , because kt+1- x * 0.

Hence (Pj.^P^) £ Pt+1 and P^ £ Pt+1 for some 1 < i < t.

Similarly, for each j > t+1, there exists 1 < i < t such that

Pi £ Pj . There exist an infinite subset fi of {t+1, t+2, ...}

and 1 < i < t such that P-̂  £ Pj for all j e fi. Let M' = © N^, 

where the sum is taken over all i e 0. Then M'P^ = 0. Hence M' 

is a right module over the prime right FBN-ring R/Pi- Note that
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P^ ;* 0 and the (R/P^)-module M* is a d*U-module. Therefore, by 

Proposition 3.1.4, it follows that M* belongs to C © U, But M' 

has zero socle (see [AF, Proposition 9,19]). Therefore M* has 

finite uniform dimension, a contradiction. Thus d*U - C © U.

Theorem 4.3.6. Let R be a right FBN-ring. Then d*U - C © U.

Proof. Let R be a right FBN-ring. By Corollary 3.1.7, it is 

always true that C © U £ d*U. Suppose that d*U % C © U. Then 

there exists a d*U-module M which does not belong to C © U. 

But, by Proposition 4.3.4, M e C © U © T. Thus there exists an 

infinite direct sum N - N, © N 2 © ... of non-zero singular 

submodules N^ (i > 1) of M, each with zero socle. As in the 

proof of Lemma 4.3.5, we can suppose that Nj_ is uniform and 

N-jJP-̂ — 0 for some prime ideal P^, for each i > 1. Because R is 

right Noetherian, R contains only a finite number of minimal 

prime ideals. Let , Q 2, ..., denote the minimal prime

ideals of R. For each j > 1 ,  there exists 1 < i < k such that 

Qj[ £ Pj. Hence there exists Q e {Qt, ..., Q^} and an infinite 

set 0 of positive integers such that Q £ Pj (j e Q). In this 

case, let K - © Nj, where the sum is taken over all j e 0.
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Note that KQ — 0. Thus K is a d^G-module with zero socle over 

the prime right FBN-ring (R/Q). Therefore, by Lemma 4.3.5, K 

has finite uniform dimension, a contradiction. It follows that 

over a right FBN-ring d*U - C © U.

5 4.4. The class d*N.

We know that, by Corollary 3.1.7, that C © N £ d%. On the 

other hand if M is the Prufer p-group Z(p°°) , then M e aN £ d ^  

(see Example 3.3.1). Moreover M is not Noetherian and the socle

of M is zero. It follows that d*N f C © N in general.

This raises the question: given a ring R, what is d*N for 

the ring R?

In this section, we shall show that, if R is a non-local 

Dedekind domain, then d*N — C © A © N.

Lemma 4.4.1. For any ring R,

(i) G n d*G - N - h*G,

(ii) d*G - d*N and 

(iii) d*N n CG - C © N.
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Proof. (i) Since the class G is {p,q}-closed, then by 

Proposition 3.1.4 (v) , G ft d*G - h*G. Clearly h*G - N.

(ii) First, note that N £ G implies d*N £ d*G. Let M be a 

d*G-module. Let L be any submodule of M. Then, by Lemma 3.1.1, 

L — K © P for some direct summand K of M and G-submodule P. By

Proposition 3.1.4 (i), P e G ft d*G £ N. Again applying Lemma

3.1.1, we have M e d*N.

(iii) By Corollary 3.1.7, C ® N £ d*N. It is clear that

C © N £ CG. Conversely, let M e d*N ft CG. Then M e d*U . Thus,

by Proposition 4.3.1, M — M, © M 2 where M 1 e C and M 2 e U. 

Therefore M 1 is contained in the socle of M and M/M1 e G. Thus 

M 2 e G. But M 2 is d*N-module, whence a d*G-module. Thus, by (i) 

M 2 e N. Therefore M e C © N,

Lemma 4.4.2. Let R be a non-local Dedekind domain. Suppose 

that the R-module M e  aN. Then M is an Artinian injective 

module or M is Noetherian.

Proof. Let M be an injective R-raodule. Then M is indecomposable 

and hence, M * K, the field of fractions of R or M * E(TJ) , the 

injective hull of a simple R-module U (see [SVa, Theorem 2.32
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Corollary]). Let P and Q be distinct maximal ideals of R. Then 

E(R/P) © E(R/Q) embeds in K/R, so that K / afi. Thus M * E(U), 

and hence, M is Artinian (see [SVa, Theorem 4.30]).

Suppose that M is not injective. Then M is not divisible 

(see [SVa, Theorem 4.25]). Therefore there exists a maximal 

ideal P of R such that M * MP. On the other hand M/MP is a 

non-zero semisimple module. Therefore M has a maximal submodule 

N. But, by hypothesis, N is Noetherian, Thus M is Noetherian.

Note that, if R is a local Dedekind domain, then Lemma 

4.4.2 is not true as we will show in the following example.

Example 4.4.3. Let R be a local Dedekind domain. Then there 

exists a right R-module M such that M belongs to aN but M is 

neither Noetherian nor Artinian.

Proof. Let R be a local Dedekind domain. Let 0 ^ P be the 

unique maximal ideal of R. Then P is a principal ideal Rp for 

some element p e P. Let K be the field of fractions of R. Then 

the left R-submodules of K form a chain as follow:

0 - nn Rpn £..£ Rp2 £ Rp £ R £ Rp-’ £ Rp“ 2 S...£ UnRp~n - K.
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Thus K belongs to aN and K is neither Artinian nor Noetherian.

As usual, we shall call a module reduced if it contains no 

non-zero injective submodules.

Lemma 4.4.4. Let R be a Dedekind domain. Suppose that M is an 

Artinian R-module. Then any reduced submodule of M is 

Noetherian.

Proof. Let M be an Artinian R-module. Suppose that there exists 

a reduced submodule of M which is not Noetherian. Let N be a 

reduced submodule of M which is minimal with respect to not 

being Noetherian. Then N is not divisible, and hence, N £ NP 

for some maximal ideal P. Note that N/NP is semisimple and 

Artinian. Therefore N/NP is Noetherian. But, by the choice of 

N, NP is Noetherian. Thus N is Noetherian, a contradiction. 

Therefore any reduced submodule of M must be Noetherian.

Corollary 4.4.5. Let R be a Dedekind domain. Let M be an 

R-module which belongs to N ® A. Then any reduced submodule of 

M is Noetherian.
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Proof. Suppose that R is a Dedekind domain. Let M be the 

R-module M, © M 2 where M 1 is a Noetherian R-module and M 2 is an 

Artinian R-module. Let N be any reduced submodule of M. Then 

N fl M 2 is reduced. Hence, by Lemma 4.4.4, N fl M 2 is Noetherian. 

Now N/(N n M 2) * (N + M 2)/M2 £ M/M2 « M t. Thus N/(N 0 M 2) is 

Noetherian, and hence, N is Noetherian.

Crollarv 4.4.6. Let R be a Dedekind domain. Then N © A £ d*N.

Proof. Let R be a Dedekind domain. Suppose that M e N © A. Let 

N be any submodule of M. We know that N - N, © N 2 for some 

injective submodule N 1 and a reduced submodule N 2. By Corollary 

4,4.5, N 2 is Noetherian. Hence M e h*(I © N). Therefore, by 

Proposition 3.1,3 (v) , M belongs to d*N.

Theorem 4.4.7. Let R be a non-local Dedekind domain. Then 

d*N - C © A © N.

Proof. Let R be a non-local Dedekind domain and M an R-module. 

Suppose that M e d*N. Then, by Proposition 3.1.3, M belongs to 

d*U. Hence, by Theorem 4.3.6, M e C © U .  But, by Proposition
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3.1.4 and Lemma 4.2.1, M e C © (aN)(w). Therefore, by Lemma

4.4.2, M belongs to C ® A ffi N.

Conversely, suppose that M e C © A © N. Then, by Corollary 

4,4.6 and Proposition 3.1.6, C ® A © N £ C ©  d*N £ d*N.

Lemma 4.4.8. Let R be a ring. Let M be a uniform right R-module 

such that M e d*N, Then M e aN.

Proof. Suppose that M / aN. Then there exists a non-Noetherian 

proper submodule N of M. Therefore there exist submodules K, K 1 

of M such that M - K © K*, K £ N and N/K e N. If K - 0, then N 

is Noetherian, a contradiction. Moreover, if K'« 0, then N — M, 

a contradiction. Thus K and K* are non-zero submodules of M 

such that K H K'» 0, a contradiction. Therefore M e aN.

Theorem 4.4.9. Let R be a ring. Let M be a right R-module such 

that M e d*N. Then M e C © (aN)^) for some positive integer k.

Proof. Suppose that M e d*N. By Proposition 3.1.3, M e d*(htJ). 

Thus, by Theorem 4.2.2, M e C © hU. So there exist submodules 

M t, M 2 of M such that M., € C and M 2 e hU. Thus M 2 has finite
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uniform dimension. Now we finish the proof by using induction 

on the uniform dimension of M 2. If u-dim M 2 - 1, then, by Lemma

4.4.8, M 2 e aN. Suppose that u-dim M 2 > 1. Moreover, suppose 

that M 2 / aN. Then there exists a proper submodule N of M 2 such 

that N is not Noetherian. But, by Proposition 3.1.4, M 2 e d*N. 

Thus there exist submodules K, K* of M 2 such that M 2 - K © k', 

K £ N and N/K is Noetherian. If K - 0, then N is Noetherian, a 

contradiction. On the other hand, if K r- 0, then N — M 2, a 

contradiction. Therefore K and K* are non-zero direct summands 

of M 2. But M 2 e hU. Hence u-dim K and u-dim K* are smaller than 

u-dim M 2. Therefore, by induction on the uniform dimension of 

M 2, K e (aN)(s> and K' e (aN)<t=) for some positive integers s, 

t. Therefore M 2 e (aN)(s + . Thus M e C © (aN) (k) for some

positive integer k.

For some prime number p, let M - Z(p®) © Z(p®). Then it is 

clear that M e (aN)(2)o Z(p°°) / N. Hence M / aN. Therefore,

for an integer k > 2, (aN) 0s) jS aN in general.
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Chapter 5.

Complete Modular Lattices.

Let L be a lattice. Then L is said to be modular if for all 

elements a, b, c of L, a A (b V c) — (a A b) V c when c < a. A 

lattice L is called complete if every non-empty subset S of L 

has a least upper bound V S and a greatest lower bound A S.

Throughout this chapter "a lattice" always means a complete 

modular lattice which has least element 0 , greatest element 1 

and symmetric relations A and V. Let L be a lattice. Then an

element e of L is called essential if e A a f 0 for all

non-zero elements a of L. Denote the set of all essential 

elements of L by e(L).

Let L be a lattice and c be an element of L. We shall call

c a complement in L if there exists c’e L such that c V c'- 1

and c A c'- 0. Denote the set of complements of L by c(L).

For any element a < b in a lattice L, we define [a,b] to be 

the set {x e L : a < x < b}. A well known fact about a modular 

lattice L which we shall use repeatedly is that, for all a, b 

in L, [a A b,a] is lattice isomorphic to [b,a V b](for example 

see [Gg, Theorem 4.2]).
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By a class of lattices we mean any collection of complete 

modular lattices which contains all the singleton lattices and 

is closed under lattice isomorphisms.

In previous chapters we always used X to denote a class of 

modules. To avoid any confusion, throughout this chapter we use 

X][ to denote a class of lattices.

Let Xi be a class of lattices. By hX^ we mean the class of 

lattices L such that [a,l] e X^ for all a e L. Moreover, define 

eXi to be the class of all lattices L such that [a,l] e X]_ for 

all a e e(L). Finally, let dX^ be the class of all lattices L 

such that for every element a e L there exists c e c(L) such 

that a < c and [a,c] e X]_.

Let X^ be a class of lattices. Consider the dual classes 

h*X^, e*Xi, d*Xi of hX^, eX^, dX^, respectively. Moreover, let 

X° = (L : L° e X} where L° is the opposite lattice of the

lattice L. Then h*X^ = hX]_, e*X^ =* eX^» d*X^ = dX^. This 

duality motivates studying lattices as well as modules.

A lattice L is called complemented provided that c(L) =■ L. 

We denote the class of singleton lattices by and the class 

of complemented lattices by .
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5 5.1 General Properties.

In the first section of chapter one some general properties 

of the classes hX, dX, and eX were proved. In this section we 

prove the same properties for hXx, <3Xl» and eXx.

Proposition 5.1.1. Let Xx and Yx be classes of lattices. Then

(i) hX]_ £ dXX £ eXlf 

(ii) hXx £ hYx, dXx £ dYx, and eXx £ eYx, when Xx £ Yx,

(iii) Cx - dZx £ dXx , and

(iv) hXx - h(hXx) £ Xx .

Proof, (i) It is clear that hXx £ dXx. Suppose that L e dXx and 

a e e(L). Then there exist b, b'e L with b A b ' - O ,  b V b ’ -1, 

a < b, and [a,b] e Xx. Therefore, a A  b'— 0, and hence, b — 1. 

Therefore, L € eXX.

(ii) Clear, because for any elements a, b of L [a,b] e Yx 

when [a,b] e Xx.

(iii) By (ii), dZx £ dXx. If L is a complemented lattice, 

then c(L) - L, and hence, L e dZx. Thus Cx £ dZx. Suppose that 

L e dZx and a e L, then there exists b e c(L) such that a < b
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and [a,b] e Z^. Thus a — b, and hence, L e C^.

(iv) Let L e hX]_. Then [0,1] e X^, so L e X^. Therefore, by

(Ii), h(hX^) £ hX^. On the other hand, if L e hX]_ and a, b e L

with a < b, then [b,l] e Xx. Thus [a,l] e hXx, So L e hChXi) ,

Let X]_ be a class of lattices. Then X^ is called q-closed 

if [a,l] e X^ for all lattices L in X^ and a e L. On the other 

hand, X^ is called s-closed if [0,a] e X]_ for all lattices L in 

X]_ and a € L. Also, X]_ is p~closed if L e X^ for any lattice L

such that [0,b] e X^ and [b,l] e Xl» some b e L.

Lemma 5.1.2. Let L be a lattice. Let a, b be any two elements 

of L such that a < b and b € e([a,l]). Then b e e(L) .

Proof. Let x e L such that x A b - 0. Then, by modularity of L,

(x V a) A b — (x A b) V a - 0 V a * a. Since b e e([a,l]), then

(x V a) - a. Thus x < a < b. Therefore, x - 0, and hence, b is

an essential element of L.

Proposition 5.1.3. Let X^ be any class of lattices. Then

(i) hX]_, dX^, and eX]̂  are all q-closed, and
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(ii) hX^ is s-closed if is s-closed.

Proof, (i) By 5.1.1 (iv) , hX^ is q-closed. Let a, b e L such 

that b e [a,l]. Suppose that L e dX]_. Then there exist c, d e L 

such that c A d - O ,  c V d — 1, b < c ,  and [b,c] e X̂ _. By the 

modular law, c A (a V d) - a V (c A d) - a V 0 - a. On the 

other hand c V (a V d) - 1. Therefore c e c([a,l]>, and hence, 

[a,l] e dX^. Finally suppose that L e eX^ and b e e([a,l]). By 

Lemma 5.1.2, b is essential in L, and hence, [b, 1 ] e X]_. Thus 

[a,l] e eX]_. So all the classes hX^, dX]_ and eX^ are q-closed.

(ii) Suppose that X]_ is s-closed and L e hX]_. Let a, b e L 

such that 0 < b < a. Then [b,l] e X]_. Since a e [b»l] and X^ is 

s-closed, then [b,a] e X]_. Therefore, [0,a] e hX^, and hence, 

hX|_ is s-closed.

Note that in Proposition 1.1.2 it was shown that eX is 

s-closed when X is s-closed. But this fact can not be extended 

to lattices, because the class Z]_ is s-closed but eZ^ is not 

s-closed (see Example 3.1.5).
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Let and Y^ be classes of lattices. Then X]_ © Y]_ will 

denote the class of lattices L such that there exists c e c(L)

with [0,c] e X*l and [c,l] e Y^. Note that a lattice L e X]_ © Y^

if and only if there exist c, c'e L with c V c ' - l ,  c A c ' - O ,  

[0 ,c] € Xj_, and [0 ,c'] e Y^.

For any classes of lattices X^ and Y^ we define the class 

X^Y^ to be the class of lattices L such that there exists an 

element a of L with [0,a] € X]_ and [a,l] e Y]_. It is clear

that, for any classes of lattices and Y^, X]_ © Y]_ £ XlXl*

Lemma 5:1.4. Let L be any lattice, let a, b, c e L. then

(i) If a A (b V c) “ 0, and b A c - 0, then (a V b) A c - 0.

(ii) If b is essential in L, then a A b is essential in [0,a].

Proof, (i) Since (b V c) A (a V b) - ((b V c) A a) V b - b, 

then (a V b) A c < (a V b) A (b V c) - b, by the modular law. 

But (a V b) A c < c. Therefore, ( a V b )  A c < b A c - 0 .

(ii) It is clear that a A b e [0,a]. Suppose that d is a 

non-zero element such that d € [0,a] . Since d A ( a A b )  > d A b 

and b e e(L), then d A ( a A b )  ^0. Thus a A b e e([0,a]).
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Proposition 5.1.5. Let X^ be any class of lattices. Then

(i) © dX^ — dX]_, and

(ii) © eX]_ - eX^.

Proof, (i) By the definition dX^ £ C]_ © dX^. Let L be a lattice

such that L e C]_ © dX^. Then there exist two elements a, a'of L

such that a A  a*- 0, a V  a'=- 1, [0,a] c C^, and [0,a'] e dX^. 

Let b e L. Then a'v b - (a'v b) A (a'v a) - a'v ((a'v b) A a), 

by the modular law. Let c - (a'v b) A a. Then c < a. But [0,a] 

is complemented. Thus there exists c' such that a - c V c ’ and 

c A c' “ 0. Hence (a' V b) V c' - (a* V c) V c* — a* V a — 1.

By Lemma 5.1.4, (a’ V c) A c' - 0. Therefore, (a'v b) A c '- 0,

and hence, a'v b e c(L). By Proposition 5.1.3, [0,a'] e

Thus there exist d, d' e L such that d V d' - a', d A d* - 0,

a* A b < d, and [a'A b,d] e X^. Therefore, a'A b < b A d. On

the other hand, b A d - b A a'A d — b A a* . Thus a'A b - b A d. 

So [b A d,d] e X^. Therefore, [b,b V d] € X]_.

Note that (b V d) V d' - b V (d V d*) - b V a'. Moreover, 

(b V d) A d'- ((b V d) A a') A d'- ((b A a’) V d) A d'~ d A d' . 

Therefore, (b V d) A d' - 0. Hence, b V d € c([0,a'v b]). Since

a'v b e c(L), then b V d e c(L). On the other hand, b < b V d
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and [b,b V d] e Xx. It follows that L e dXx.

(ii) By definition, eXX £ Cx © eXx. Let L e Cx © eXx. Then 

there exist a, b e L such that a A b - 0, a V b - 1, [0,a] e Cx 

and [0,b] <= eXx. Let x be any essential element of L. Then, by 

Lemma 5.1.4, x A a  e e([0,a]). But x A a e c([0,a]). Therefore, 

x A a - a, So a < x and x V b - 1. Therefore, [x,l] - [x,x V b] 

which is isomorphic to [x A b,b]. On the other hand, by Lemma

5.1.4, x A b e e([0,b]). But [0,b] e eXx. Thus [x A b,b] e X x, 

and hence, [x,l] e Xl* Therefore, L e eXx.

Proposition 5.1.6. Let Xx be any p-closed class of lattices. 

Then,

(i) hXx © hXx - h(hXX) - hXx,

(ii) eXx © eXx - (eXx)(hXx) - eXx, and

(iii) hXx © dX]_ - dXx .

Proof, (i) Using the definition and Proposition 5.1.1, we can 

see that h(hXx) - hXx £ hXx © hXx. Suppose that L e hXx © hXx. 

Then there exists an element b e c(L) such that [0,b] e hXx and 

[b,l] e hXX. Let a e L. Since a A b < b, then [a A b,b] € Xx. 

Therefore, [a,a V b] e Xx. Since [b,l] e hXx and b < a V b < 1,
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then [a V b,l] e X^. But X^ is p-closed. Therefore, [a,l] e X^, 

and hence, L e hX^.

(ii) By definition, eX^ £ eX^ © eX^. Let L e eX^ © eX^.

Then there exist b, b'e L such that [0,b] e eX^, [0,b ' ] e eX]_,

b A b'- 0, and b V b' — 1. Let a e e(L). Then, by Lemma 5.X.4,

a A b e e([0,b]). Thus, [a A b,b] e X]_. Hence [a,a V b] e X]_.

Since a e e(L), then a V b € e(L). Therefore, by Lemma 5.1.4,

(a V b) A b'e e([0,b*]). Thus, [(a V b) A b',b'] e X^. Since

[a V b,l] - [a V b,(a V b) V b ’] « [(a V b) A b',b'], then 

[a V b,l] e X^. But X^ is p-closed. Therefore, [a,l] e X]_. It 

follows that L e eX^.

It is clear that eX^ £ (eX^) (hX^) for any class X^ of 

lattices. Suppose that L e (eX^)(hX^). Then, there exists a e L 

such that [0,a] e eX^ and [a,l] e hX^. Let b e e(L). Then, by 

Lemma 5.1.4, a A b e e([0,a]). Therefore, [a A b,a] e X^, and 

hence, [b, aV b] e X^. Since [a,l] e hX]_, then [a V b,l] e X]_. 

Thus, [b,1] e X^, because X^ is p-closed. Therefore, L e eX^.

(iii) By the definition dX^ £ hX^ © dX]_. Let L e hX]_ © dX]_. 

Then there exist b, b'e L such that [0,b] e hX^, [0,b'] e dX]_,

b A b'— 0, and b V b'— 1. Let a e L. Since 0 < a A b < b, then

[a A b,b] e X]_, and hence, [a,a V bj e X^. Since [0,b'] e dX^,
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then there exist d, d'e L such that (a V b) A b'< d, d A d'- 0,

d V d' — b' and [(a V b) A b f,d] e X]_. But (a V b) A b ’< a V b.

So (a V b) A b*< (a V b) A d. Since (a V b) A d < (a V b) A b ’ ,

then (a V b) A d — (a V b) A b*. Therefore [(a V b) A b',d] is

lattice isomorphic to [a V b,b V d]. So [a V b,b V d] e Xl- 

Since X]_ is p-closed, then [a,b V d] e X^. Finally, we need to 

show that b V d e c(L). Note that, by Lemma 5.1.4 (i) , we have 

(b V d) A d'- 0. But (b V d) V d' - b V (d V d') - b V b' » 1. 

Thus b V d e c(L). Therefore L e dX]_.

§ 5.2 Pseudo-complemented Lattices.

Let L be a complete lattice. A subset X of L is called

independent if any finite subset {x1 , x 2, ..., xn } of non-zero

elements of X satisfies the following: for every 1 < i < n, 

xi A (V xj) — 0 where i ^ j e (1, 2, ..., n^ For any subset

S - (x^ : i e I) of L we write Vx x-̂  for V S, and Aj x^ for

A S.

Define a lattice L to be essentially good if the following 

condition hold: suppose that A - {a1f a2, ...} is a countable

independent subset of L and B - {bT, b 2, ...} is a subset of A
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such that for all i, b-£ is essential in [Q.a-jJ. Then V B is 

essential in [0,V A].

Let L be a lattice and a e L. By a pseudo-complement b of a 

(if it exists) we mean an element b which is maximal in the set 

S “ { c e L : a A c =■ 0}. We shall call L pseudo-comp lamented 

if every element of L has a pseudo-complement. We denote the 

class of pseudo-complemented lattices by Pc.

Lemma 5.2.1. Let L be a lattice. For any elements a, b t L, If 

a is a pseudo-complement of b, then a A b = 0 and a V b e e(L).

Proof. Suppose that a is a pseudo-complement of b. Let c e L

such that (a V b) A c - 0. Then by the modular law we obtain

b A (a V c) = b A (b V a) A (a V c) — b A (a V ((b V a) A c))

= b A a = 0. By the maximality of a, a V c = a.

Thus c < a < a V b. Therefore c = ( a V b )  A c = 0, and hence, 

a V b is essential in L.

Lemma 5.2.2. Let L be a lattice. Then L is complemented if and 

only if L is pseudo-complemented and L does not have an element 

b such that b f 1 and b e e(L) .
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Proof. Let a e L. Suppse that L e C^. Then there exists b e L 

such that a A b — 0 and a V b - 1. Thus, L e Pc. Moreover, if 

a / 1, then b ^ 0. Therefore a / e(L). Conversely, Suppose that 

there is no element b with b ^ 1 and b e e(L). By Lemma 5.2.1 

and the hypothesis, there exist c e L such that a A c - 0 and 

a V c e e(L) . Therefore a V c - 1. Thus L is complemented.

A lattice L is called upper continuous if for every chain

{a^} of elements of L and every b e L, b A (V a^) - V (b A a^) .

We call L weaJc upper continuous, and denote it by WUC-lattice, 

if for every chain (a\)A of elements of L and each element b of 

L, the condition (V a^) A b ^ 0 implies a^ A b ^ 0 for some p

in A (i.e. if a^ A b - 0 for all X e A, then (V a^) A b - 0).

It clear that every upper continuous lattice is a WUC-lattice.

An element x of a lattice L is called an atom provided that 

[0,x] — (0, x}. We shall call L atomic if [0,a] contains an 

atom for every non-zero element a of L. For any lattice L, Let 

s(L) — V -fa : a is an atom}. For an upper continuous lattice L, 

[0,s(L)] is atomic (see [CD, 4.3]).
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For any lattice L, let s^L) - A {a : a is essential in L} 

and s2(L) — V <[b : [0,b] is complemented}. Before we study the 

relation between s(L), s^L) and s2 (L) we introduce the 

following terminology.

For any lattice L, let f(L) - { a 6 L : a > V b^ for every 

chain {b^}^ of elements of L with a > b^ for all X e A). We 

define L to be weak noetherian if for all elements a, b e L 

with a < b, there exists c e f(L) such that c < b and c fi a. 

Note that finite lattices are weak noetherian.

Lemma 5.2.3. Let L be any lattice. Then s(L) < s2(L) < s^L). 

If L is pseudo-complemented, then s^L) — s2 (L). On the other 

hand s,(L) — s2(L) — s(L) whenever L is pseudo-complemented and 

weak noetherian.

Proof. Let a be an atom. Then [0,a] is complemented.Therefore, 

a < s2 (L). Thus s(L) < s 2(L). Let c, b e L with c e e(L) and 

[0,bj is complemented. Then, by Lemma 5.1.4, c A b e e([0,b]). 

Therefore there exists d e [0,b] such that b - (c A b) V d and 

c A d - 0, S o d - 0 ,  and hence, b < c. So b < s.,(L). Therefore 

s(L) < sa(L) < 8 ,(L).
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Suppose that L is pseudo-complemented. Now we show that 

[0,st(L)] is complemented. Let a e [O.s^L)]. Then there exists 

b e L such that a A b - 0 and a V b € e (L) . Thus s, (L) < a V b . 

Hence s^L) - s^L) A (a V b) - a V (st(L) A b), by the modular 

law. But a A (s,,(L) A b )  — a A b — 0. Therefore [0,s,,(L)] is 

complemented. Thus s,(L) < s2(L)( and hence, st(L) - s2 (L).

Let L be a pseudo-complemented and weak noetherian lattice. 

Suppose that s(L) < s,,(L). Then there exists c € f(L) such that 

c jC s(L) and c < s^L). Since [0,c] is complemented, then there 

exists d e [0,c] such that c - d V (c A s(L)) and d A s(L) - 0. 

Suppose that d > 0. Then there exists c' c f(L) with c* > 0  and 

c' < d. Let X - <[x e L : x <  c'}. Then X is not empty, because 

0 e X. Since c' e f(L), then by Zorn's Lemma X has a maximal 

member p. But [0,c] is complemented and c* < d < c. Thus [0,c'] 

is also complemented. Therefore there exists y e [0,c'] such 

that c* — p V y and p A y - 0. Since p is maximal and [0,y] is 

lattice isomorphic to [p,c']f then y is an atom. Therefore, by 

definition, y e [0,s(L)]. Thus y < c' A s(L) < d A s(L) - 0. 

Hence y - 0. Therefore c* — p, a contradiction. Thus d - 0, and 

hence, c - c A s(L). Therefore c < s(L), a contradiction. Thus 

s(L) - s 1(L) - s2 (L).
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We shall call L amply pseudo-complemented if for every 

interval [a,b] of L, [a,b] is pseudo-complemented. It is clear 

that every complemented lattice is amply pseudo-complemented 

and every amply pseudo-complemented is pseudo-complemented.

Lemma 5.2.4. Let L be a WUC-lattice. Then for any y e L, [0,y] 

is pseudo-complemented and essentially good. Moreover, if L is 

upper continuous then [x,y] is pseudo-complemented for any 

elements x and y of L.

Proof. Suppose that L is WUC-lattice. Let a e [0,y], Then the 

set S =- { b  e [0,y] : a A b - 0  } is not empty, because 0 e S. 

Let {bj^A be any chain in S. Then a A b^ - 0 for every X e A. 

Since L is WUC-lattice, then a A (V b^) — 0. Thus V b^ € S, and 

hence, by Zorn’s Lemma S has a maximal member p. Thus a has a 

pseudo-complement p in [0,y], and hence, [0,y] e Pc .

Let (a^, i e X} be a countable independent set of elements 

of [0,y], Let b,, b 2, ... be elements of [0,y] such that for

each i, b-̂  e e([0,a.jj). Then {b^} is an independent set of 

elements of [0,y] . Let a - V a^, b - V b^, and 0 c < a. Then 

c — c A a - c A  (V a^) f 0. Therefore, there exists j £ I such
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that c A aj ^ 0. Thus (c A aj) A bj - c A bj / 0. Therefore, 

c A b 5* 0. Hence a e e([0,b]). Thus [0,y] is essentially good.

Suppose that L is upper continuous. Let a e [x,y]. Then the 

set S - {b e [x,y] : a A b - x) is not empty, because x e S.

Let (b^}^ be a chain in S. Then a A (V b^) - V (a A b^) - x.

Thus V b^ e S. So, by Zorn's Lemma, S has a maximal element 

which is a pseudo-complement of a in [x,y]. Therefore [x,y] is 

pseudo-complemented, and hence, L is amply pseudo-complemented.

Lemma 5.2.5. Let L be an upper continuous lattice. Then 

[0,s(L)] is complemented and every element of [0,s(L)] is a 

join of atoms.

Proof. Suppose that L is upper continuous. Let x e [0,s(L)J. 

Then, by Lemma 5.2.4, [0,s(L)] e Pc. Thus, by Lemma 5.2.1,

there exists an element y e [0,s(L)j such that x A y - 0 and 

x V y € e([0,s(L)]). Let 0 f a e L be an atom. Then, by the

definition of s(L), a < s(L). Thus (x V y) A a j* 0, and hence,

(x V y) A a - a. Hence a < x V y. Therefore s(L) - x V y. Thus 

[0,s(L)] is complemented.

Now let b - V {a : a < x where a is an atom). Then b < x.

115



Suppose that b / x. Since [0,s(L)] is complemented, then [0,x] 

is complemented. Therefore there exists 0 f c e [0,x] such that 

b A c - 0 and b V c - x. By [CD, 4.3], [0,s(L)] is atomic. But

c 7* 0. Therefore there exists an atom d < c. But d A b - 0.

Thus d j£ x, a contradiction. Thus b — x.

Note that, by the above lemma , for any upper continuous 

lattice L and for any element x e L, s([0,x]) - x A s(L).

Let L be a lattice. We say that L has finite uniform

dimension if every independent subset of L is finite. In this 

case, there exists a least positive integer k, called the

uniform dimension of L, such that every independent subset of L

contains at most k elements (see [Pu, Theorem 2.10]).

We shall call a lattice L uniform when every non zero

element of L is essential in L. It is known that a lattice L

has finite uniform dimension k if and only if there exist

elements a,, a 2  of L such that (a, V a 2 V ... V a^) is

essential in L and [0,a^] is uniform for all i - 1, 2, ... , k 

(see [Pu, Theorem 2.8]). We denote the class of lattices which 

have finite uniform dimension by U^.
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Lemma 5.2.6. Suppose that L is pseudo-complemented and has 

finite uniform dimension. Moreover let L e eUi- Then L € hU^.

Proof. Suppose that L « U| n H Pc , Let a e L. Then there

exists a pseudo-complement c of a. By Lemma 5.2,1, a V c is

essential in L. Thus [a V c,l] has finite uniform dimension. 

Since [a A c,c] — [0,c] and is s-closed, then [a,aVc] has 

finite uniform dimension. But, by [Pu, Corollary 2.9], is 

p-closed. Therefore [a,l] has finite uniform dimension, and 

hence, L e hU^.

Lemma 5.2.7. Let L be an amply pseudo-complemented lattice. 

Then L e dU^ if and only if L e d(hU^).

Proof. By Proposition 5.1.1, d(hU^) £ dUi- Suppose that L is 

amply pseudo-complemented such that L e dU]̂ . Let a e L. Then

there exist c , c ' e L such that c A c ' - 0, c V c ' - 1 1 a < c ,

and [a,c] has finite uniform dimension. By Proposition 5.1.3, 

[c',1] e dU]_. Therefore [0,c] e dU^, and hence, by Proposition

5.1.3, [a,c] e dU]_. Thus, by Proposition 5.1.1, [a,c] e By

the hypothesis and Lemma 5.2.6, [a,c] e hU^. Thus L e d(hU^) .
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§ 5.3 Lattices which satisfy the ACC.

Let L be a lattice. Then L is said to satisfy the ACC (or, 

be noetherian) if for every ascending chain a 1 < a 2 < ... of 

elements of L there exists n such that a ^ ^  - an for all i > 1. 

Let N]_ denote the class of lattices which satisfy the ACC.

Lemma 5.3.1. Let L be a lattice and a, b e f(L). Then 

(i) L is noetherian if and only if f(L) - L.

(ii) If c is a complement in [0,a], then c e f(L),

(iii) If L is upper continuous, then a V b e f(L).

Proof, (i) If L is noetherian, then for any chain of L,

V a^ — a^ for some 0 e A. Hence f(L) - L. Conversely, suppose

that f(L) — L. Let a, < a 2 < ... be an infinite ascending chain

of L. Then a-j_ < V a^ (k > i) . But, by hypothesis, V a^ e f(L).

Thus V a^ < V a^, a contradiction. Hence the chain is finite.

Therefore L is noetherian.

(ii) Suppose that there exists d e L such that c V d - a 

and c A  d — 0. Let (bx)/\ be a chain of elements of L. Suppose

that c — V b^. Then a - c V d - (V b^) V d - V (b^ V d) . Thus,
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by the hypothesis, there exists u e A such that a =* b„ V d,
n

Hence c = c A a  = c A  (b^ V d) « b^ V (c A d) b^t V 0 *=* b^. 

Therefore c e f(L).

(iii) Suppose that L is upper continuous and a V b - V b^ 

for some chain {b^}^. Then a=“ a A ( a V b ) * a A ( V  b^). Thus 

a = V (a A b^J.and hence, a =* a A b^ for some /t e A. Therefore 

a < b^. Similarly, b < b̂ , for some y c A. Since {b^}^ is a 

chain, assume that b,y < b^. Thus a V b < b^ V b,y — b^ < V b^. 

Therefore a V b = b^, and hence, a V b e f(L).

Note that, by the above lemma, every noetherian lattice is 

weak noetherian.

Lemma 5.3.2. Let L be an upper continuous and weak noetherian

lattice. Suppose that for some elements a and b of L [a,b] is

noetherian. Then there exists d e f(L) such that b = a V d.

Proof. If a = b, then we can take d = 0. Suppose that a < b.

Then, by hypothesis, there exists cte f(L) such that ct < b and 

c, $( a. Suppose that a V c 1 < b. Then there exists c 2 c f(L) 

such that c 2 < b and c 2 a V c 1 . By continuing these process
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we get the ascending chain a < a V c, < a V c 1 V c 2 < ... .

Since [a,b] e N]_, then b - a V c 1 V c2 V ... V cn such that 

c^ e f(L) for i - 1,2,...,n. Let d - c t V c 2 V ... V cn. 

Since [a,b] e N^, then any chain in [a,b] is finite, and hence, 

[a,b] is upper continuous. Thus, by Lemma 5.3.1, d e f(L).

Lemma 5.3.3. Let L be a complemented upper continuous lattice. 

Suppose that 1 / f(L). Then there exist elements b and c of L 

such that both b, c / f(L) with b V c — 1 and b A c — 0.

Proof, If L has finite uniform dimension, then there exist 

elements a1, a2, ..., an such that (a1 V a 2 V ... V an) e e(L)

and [O.ajJ is a uniform lattice for all i - 1, 2 .......n (see

[Pu, Theorem 2.8]). Since L is complemented, then [0,a-jJ is 

complemented (i — 1, 2, ..., n) and a 1 V a 2 V ... V an - 1.

Therefore is an atom (i - 1, 2, ..., n). Hence a^ e f(L) for 

all i — 1, 2, ..., n. Thus, by Lemma 5.3.1 (iii), 1 e f (L), a

contradiction. Thus L does not have finite uniform dimension.

Hence there exists an infinite independent set {bt , b 2, ...} of 

elements of L. Let a - V b^ where i is odd, and b - V b^ where

i is even. Now we show that a / f(L). For i - 1, 2, ... , Let

120



d± - b t V b 3 V V b 2i _ Then {d^} is a chain with d^ < a

for all i But V d^ - a. Thus a / f(L). Similarly, b / f(L).

Suppose that a A b / 0, then , by hypothesis, bj A b^ f 0

for some odd j, even i, a contradiction. Hence a A b — 0. By

the hypothesis, there exists c 6 L such that (a V b) V c - 1 

and (a V b) A c - 0. Hence, by Lemma 5.1.4, a A  ( b v  c) - 0 .  

Note that b A c - 0. Suppose that b V c e f(L). Then, by Lemma 

5,3.1, b t f(L), a contradiction. Therefore, b V c / f(L).

Lemma 5.3.4. Let L be a pseudo-complemented lattice such that 

L e eN^. Then, for any element a of L, [0,a] e

Proof. Let b e e([0,a]). Let b < a, < a 2 < ... < a be an

ascending chain of elements in [0,a], By the hypothesis, there

exists c e L such that a A c - 0 and a V c e e(L). Therefore 

b V c e e(L). Thus [b V c, 1] c Nj_. Now we have the ascending 

chain b V c < a 1 V c < a 2 V c <  ... <1. Hence there exists a 

positive integer n such that an V c - an+-l V c - an+j V c - ... 

Therefore an+1 - a ^  A  <an+1 V c) - an+1 A  (an V c). Thus, by 

modular law, an+1 - an V (an+1 A c) * %  V 0 - a^. Thus [b,a]

is noetherian, and hence, [0 ,a] e eN^.
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Lemma 5.3.5. Let L be a WUC-lattice. Suppose that s^L) - 0 and 

L e eN]_. Then L has finite uniform dimension.

Proof. Suppose that L does not have finite uniform dimension. 

Then there exists an infinite countable set of independent 

elements x 1 , x 2, ... of L, By Lemma 5.2.4, L is essentially

good and pseudo-complemented. Thus, by Lemma 5.2.3, [0,x^] is

not complemented for all i. Therefore, by Lemma 5.2.2, for all 

i there exists x^ ^ bjL € e([0,x^]). Therefore V b^ is essential 

in [0,V x-jJ . Hence, by Lemma 5.3.4, [0,V x^] e aN^. Therefore

[V b^,V x-jJ is noetherian. On the other hand

V b i < x 1 V b 2 V b 3 V ... < x 1 V x 2 V b 3 V ... < ... < V x £ 

is an ascending chain in [V b^.V x-fj . Therefore it must be 

finite, and hence, there exists a positive integer n such that 

a V (V bj) - a V xn+1 V (V bk) where a - x, V x 2 V ... V xn, 

j e {n+1, n+2, ...} and k e {n+2, n+3, ...}. Therefore we have

xn+i " xn+i A (a v xn+i v (v bk>) " xn+i A (a V (V bj)). Note 

that xn+1 can be written as xn+i “ xn+i A (a V bn+1 V (V bk)). 

Thus, by modular law, xn+i *" bn+i ^ (xn+i A (a V (V bk))).

But x t, x 2, ... are independent. Therefore xn+1 A a - 0.

Note that a V bn+2 < a V bn+2 V bn + 3 < ... is a chain such that
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xn+i A (a V bn + 2 V ... V bt) - 0 (t > n + 2)„ But the lattice 

is WUC-lattice. Therefore xn+1 A (a V (V b^)) - 0, and hence, 

xn+1 - bn+1, a contradiction. Therefore L has finite uniform 

dimension.

Note that for any lattice L, if [s^L),!] is noetherian 

then L e eSl* For WUC-lattices the converse is true as we will 

see in the next generalization of Theorem 1.2.1.

Theorem 5.3.6. Suppose that L is a WUC-lattice and L e eSl- 

Then [s^L),!] is noetherian.

Proof. Suppose that L is a WUC-lattice and L e eN^. Then, by 

Lemma 5.2.4, L is pseudo-complemented. Thus there exists k e L 

which is a pseudo-complement of s,(L) in L. Let s - s^L). 

Then, by Lemma 5.2.1, s V k e e(L). Thus, by the hypothesis, 

[s V k,l] e N^. Moreover, by Lemma 5.3.4, [0,k] e ©N^. Note

that, by Lemma 5.1.4, x A k e e([0,k]) for all x e e(L). Thus 

A (y : y « e([0,k])} < A {x A k : x e e(L)} < A {x : x e e(L)}. 

Hence s^fO.k]) < s^L). But s^fOjk]) < k and k A Sj(L) - 0. 

Therefore s^fO.kj) - 0. Therefore, by Lemma 5.3.5, [0,k] has
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finite uniform dimension. Thus there exist uniform elements b 1,

b 2 ...... bn of [0,k] such that (bt V b 2 V ... V bn) e e([0,k])

(see [Pu, Theorem 2.8]). Let g - b, V b 2 V ... V bn. Therefore 

[g,k] € N^, because [0,k] € eN^. On the other hand, by Lemma

5.3.4, [0,b-jJ e eN^ for all 1 < i < n. Therefore [0,bjJ is 

noetherian for all 1 < i < n, because b 1s b 2, ..., bn are

uniforms. Thus [0,g] is noetherian. Hence [0,k] is noetherian. 

But [s,s V k] is a lattice isomorphic to [0,k]. Thus [s.s V k] 

is noetherian. But is p-closed (see [Pu, Corollary 2.9]). 

Therefore [s,l] is noetherian.

S 5.4 Examples and Applications.

In this section we apply our terminologies to some examples 

and prove some facts about the lattice of all submodules of any 

module. Before we start this section note that for any lattice 

L the opposite set f°(L) of f(L) is equal to the following set: 

{ a e L : A b ^ > a  for every chain {b^}^ in L such that b^ > a 

for all X e A). Now we prove the following lemma.

T-emmrt 5.A 1 Let L be a complete, modular, upper continuous and 

weak noetherian lattice. Then the opposite lattice L° of L is 

weak noetherian.
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Proof. Let u, v be any two elements of L such that u < v. Then 

we need to find c e L such that c > u, c ^ v, and c e f°(L). By 

hypothesis, there exists w £ f(L) such that w < v and w u. 

Let S - { x e L : u < x  and w ft x). Then u € S. Let {x̂ )y\ be any 

chain in S. Let y - V {x^}. Suppose that y f, S. Therefore w < y 

because u < y. Hence w — w A y - w A  (V x^) - V (w A x^) . But 

w e f(L) . Therefore w — w A x^ for some fi e A. Hence w < x^, a 

contradiction. Thus y e S, and hence, by Zorn's Lemma S has a 

maximal member p. We claim that p £ f°(L). Let {a^}^ be a chain 

in L such that p < a^ for all X in A. Then u < p < a^ for all X 

in A. Thus, by the maximality of p, a^ / S for all X in A. Thus 

w < a^ for all X in A, and hence, w < A {a^ : X £ A}. We know 

that A {a^ : X £ A} > p. Suppose that A {a^ : X e A} - p. Then 

A {a^ : X £ A} y w, a contradiction. Hence A { a ^ :  X £ A } > p .  

So p £ f°(L). But p > u and p ^ w, Thus L° is weak noetherian.

Now we give an example to show that a WUC-lattice does not 

need to be upper continuous.

Example 5.4.2. Let S - {(x,y): 0 < x,y < 1, and x, y are real 

numbers}. Let L - S U {(0,0), (1,1)} with the following order
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(a,b) < (c,d) if and only if a < c and b < d. Moreover, let

(a,b) A (c,d) - (min a,c , min b,d) "min means minimum” and

(a,b) V (c,d) — (max a,c f max b,d) ”max means maximum”. Then L 

is a lattice with the following properties.

Fact 1 . The lattice L and its opposite lattice L° are both 

complete modular lattices.

Proof. It is clear that L and L Q are complete lattices. Now 

let a - (x^y,), b - (x2 ,y2),and c - (x3 ,y3) such that c < a.

Then x, > x 3 and y, > y3. Moreover,

a A (b V c) - a A (max x 2 ,x3, max y 2 ,y3)

— (mintx,,max x 2 ,x3), minty, ,max y 2 *y3 ^  anc*

(a A b) V c — (min x, ,x2, min y, ,y2) v c

- (max{x3,min x,,x2}, max{y3,min y,,y2}).

Thus to calculate a A (b V c) and ( a A b ) V c w e  only have the 

following three cases:

Case I. x, > x 2 > x 3. So we have the following cases:

1. If y, > y 2 > y 3, then a A (b V c) - (x2 ,y2) - (a A b) V c.

2. If y 2 > y, > y 3, then a A (b V c) - (x-j.y,) - (a A b) V c.

3. If y 2 < y 3 < y, , then a A (b V c) - (x2 ,y3) - (a A b) V c
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Case II. x 2 > x, > x 3. So we have the following cases:

1. If y, > y 2 > y3, then a A (b V c) *= (x1 ,y3) - (a A b) V c.

2. If y 2 > y, > y 3, then a A (b V c) •» (xt,yt) n (a A b) V c.

3. if y, > y 3 > y 2, then a A (b V c) *=* (x, ,y3) - (a A b) V c.

Case III. x, > x 3 > x 2. So we have the following cases:

1. If y, > y 2 > y 3, then a A (b V c) - (x3 ,y2) « (a A b) V c.

2. If y 2 > y, > y 3, then a A (b V c) - (Xg.y,) =* (a A b) V c.

3. If y 1 > y 3 > y 2, then a A (b V c) - (x3 ,y3) - (a A b) V c.

Therefore, L is a modular lattice. Hence L° is modular, because 

the opposite lattice of a modular lattice is a modular lattice.

Fact 2. It is clear that L satisfies the following properties: 

s(L) = s^L) = s2(L) = 0 and c(L) = {(0,0), (1,1)}. Moreover, 

e(L) = L\ (0,0). Thus L is uniform, and hence, L is essentially 

good and pseudo-complemented.

Fact 3. L and L° are both weak upper continuous but neither L 

nor L° is upper continuous.

Proof. Let {a.\}y\ be a chain of elements of L and b e L. Suppose 

that (V a^) A b f 0. Then b ^ 0 f V a^. Therefore, there exists
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H € A such that a^ f 0. But b e e(L). Thus A b / 0. Hence L 

is weak upper continuous. Note that L° is WUC-lattice if and 

only if for every chain in L and every b e L such that

a^ V b - (1,1) for all X e A, (A a^) V b - (1,1). But it is 

clear that, if b V - (1,1) then b - (1,1) or a^ - (1,1). 

Therefore, L° is WUC-lattice.

Now Let D — {(1/2,y) : 0 < y < 1} and a - (3/4,1/4). Then D 

is a chain with V D - (1,1). Thus (V D) A a - a. On the other

hand V {(d A a): d e D} - (1,1) / a. Therefore L is not upper

continuous. On the other hand, a V (AD) - a V (0,0) - a and 

A {(a V d): d e D)} - (0,0) /a. Therefore the opposite lattice 

L° is not upper continuous.

Fact 4 . L and L° are both not weak noetherian.

Proof. Let I - {1, 2, ... }. Let (0,0) f a  - (x,y) e L. For

n € I, let bn - (1 - l/n)(x,y). Then (bn)x is a chain such that

bn < a for all n e I. But V bn - a. Thus a / f(L), and hence, 

f(L) - (0,0). Thus, by definition, L is not weak noetherian. 

Now let (1,1) fa* ™ (x^y*) e L. Moreover, for each n e I, let 

cn - 1/n (1 - x 1, 1 - y') + (x^y*). Then cn > a* for all n. 

But A cn — a' . Therefore f°(L) - (1,1), and hence, L° is not 

weak noetherian.
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Example 5.4.3. Let S 1 - {(1 - 1/n ,0) : n - 1, 2, . . .} and

S 2 — {(0,1), (1,1)}. Let L — S 1 U S2. Then with the same

ordering in Example 5.4.1, L has the following properties:

Fact 1. L and L° are both complete complemented lattices. L is 

an essentially good lattice with s(L) - s.,(L) - s 2 (L) - (1,1). 

Proof. It is clear that L and L° are complete lattices. Note 

that (0,1) V (1/2,0) - (1,1) and (0,1), (1/2,0) are atoms.

Therefore, s(L) - (1,1). Let a e L. It is clear that a has a 

complement if a - (0,0) or (1,1), Suppose that a - (0,1), then 

any b e St is a complement of a. Finally, If a e S1? then (0,1) 

is a complement of a. Therefore, c(L) - L, and hence, L is 

complemented. Thus L° is also complemented. Since c(L) - L, 

then s 2(L) - (1,1) and e(L) - {(1,1)}. Thus s,(L) - (1»1). 

Hence s(L) - st(L) - s 2(L) and L is essentially good..

Fact 2. L and L° are not modular. L is not WUC-lattice, and 

hence, L is not upper continuous. But L° is upper continuous, 

and hence, L° is WUC-lattice.

Proof. Let a - (2/3,0), b - (0,1) and c - (1/2,0). Then c < a 

and a A  (b V  c) - a A (1,1) -a. But ( a A b )  V c - c / a. Thus
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L is not modular, and hence, L° is also not modular. Note that 

St is a chain such that (0, 1) A a = (0,0) for any element a in 

S, and (0,1) A ( V S,) - (0,1) A (1,1) - (0,1) / (0,0). Thus L 

is not WUC-lattice, and hence, L is not upper continuous. It is 

clear that L is artinian. Thus L° is noetherian, and hence, L° 

is upper continuous.

Fact 3 . L and L° are both weak noetherian lattices.

Proof. Let a, b c L such that a < b. We need to find c e f(L) 

such that c < b and c f( a. Note that S 1 is a chain in L such 

that V St = (1,1) and a < (1,1) for every a e S,. Therefore 

(1,1) / f(L). Moreover, note that f(L) “ L \ (1,1). Therefore, 

if b / (1,1) then we take c = b. Suppose that b ** (1,1). Then 

either a c S 2 o r a e S 1. In the first case take c to be any 

non- zero element of In the second case take c to be any

x e S 1 such that a < x. Thus L is weak noetherian. It is clear 

that L° is weak noetherian, because f°(L) = L.

Remark 5.4.4. In this remark we use Example 5.4.3 to check the 

validity of some results in sections 5.2 and 5.3 when we drop 

some assumptions. It is clear that (1/2,0), (0,1) e f(L). But
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(1/2,0) V (0,1) * (1,1) / f(L). So Lemma 5.3.1 (iii) is not 

true if L were not upper continuous. Note that (0,1) e f(L). 

Thus there exist no a, b e L such that a A b - 0, a V b - 1 ,  

and both a, b / f(L). Therefore Lemma 5.3.3 is not true if L 

were not upper continuous. On the other hand if we take x to be 

(2/3,0), then s([0,x]) — (1/2,0) / x A s(L) - x. Therefore the 

second part of Lemma 5.2.5 is not true for lattices which are 

not upper continuous.

5.4:5 The lattice of submodules.

Let R be any ring and H be a right R-module. Let S be the 

set of all submodules of M such that S is ordered by inclusion. 

For any K, K* e S, define A and V as follow: K A K* - K (1 K 1 

and K V K* - K + K* . Then it is clear tha (S, fl ,+) is a 

lattice. Let L(M) — (S, fl ,+) and L°(M) be the opposite lattice 

of L(M) . Then the lattices L(M) and L°(M) satisfy the following 

properties:

Fact 1 L(M) and L°(M) are complete modular lattices.

Proof. It is clear that L(M) and L°(M) are complete lattices 

with 0 and 1 to be the zero submodule and M respectively. Let
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K, K 1 , and N be submodules of M such that K £ N. Then it is 

clear that K + (N n k') S N n (K + K'). Let x e N fl (K + K*). 

Then x - k + k' where k e K and k f e K* . So k' - x - k e K* fl N. 

Therefore x e K + (N n k'). Hence N(1 (K + K*) - K + (N fl K*). 

Thus L(M) is modular, and hence, L°(M) is also modular,

because the opposite lattice of a modular lattice is again 

modular.

Fact 2. L(M) is upper continuous, and hence, WUC-lattice. But 

in general L°(M) is not WUC-Lattice, and hence, not upper 

continuous.

Proof. Let K e L(M). Let B,, B 2, ... be any chain of elements 

of L(M). Then J - U Bj and J (K n Bj) - U (K fl . But it

is clear that K fl (U B^) — U (K fl B^) . Therefore L(M) is upper

continuous, and hence, L(M) is WUC-lattice. To show that the

lattice L°(M) is not WUC-lattice, let M be the Z-module Z. 

Then, by Example 3.3.2, M is not supplemented. Thus L°(M) is 

not pseudo-complemented. Thus, by Lemma 5.2.4, L°(M) is not

WUC-lattice. Hence L°(M) is not upper continuous.

Fact 3. L(M) and L°(M) are both weak noetherian lattices.
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Proof. Let A, B be submodules of M such that A c B. Then there 

exists x e B such that x / A. Therefore, xR e f(L(M)) such that 

xR £ B and xR <£ A. Thus L(M) is weak noetherian. Therefore, by 

Lemma 5.4.1, L°(M) is also weak noetherian.

5.5 Open Questions:

In Example 1.1,5 it was shown that dT is not s-closed. 

Thus, by Lemma 1.3.1, d T ^ C m T .  Moreover, in Examples 1.3.7 

and 1.3.8 we showed that dA / C ® A and dU* f C © U*. This 

raises the following question:

Question 1 . Let X be any one of the classes of modules T, A, or 

U*. What is the structure of the class dX ?

We have shown that over a right FBN-ring d*U — C © U (see 

Theorem 4.3.6). We do not know what d*U is over a general ring! 

Indeed The following question is also open:

Question 2 . Over a right noetherian ring does d*U - C © U ?
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In studying the class d*ft we showed that d*N S C ®  (aN) W  

for some positive integer k (see Theorem 4.4.9). Moreover, it 

is clear that aN S d*N and (aN) (k) ^ general (see page

99). A natural question is:

Question 3. For some positive integer k does (or when does) 

(aN) (k) s d*N ?

In Theorem 1.3.11 we showed that, for an ordinal a > 0 and 

for any ring, dK^ - C ® K^. We also showed that the dual of 

this fact is true (see Theorem 4.2.3). Our question therefore 

is:

Question 4 . Can we prove the above facts for lattices ?
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