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SUMMARY

The aim of this work was to investigate a protein kinase 
activity found associated with hnRNP particles from rat liver 
nuclei. The location of this enzyme activity coupled with the 
known role of protein kinases in controlling other cellular 

events has led to the suggestion that an hnRNP associated 
kinase might influence the maturation of hnRNA to mRNA.

HnRNP particles were isolated from purified rat liver nuclei 
by the method of Samarina et al., (1968) and further purified by 
centrifugation on 15-30% w/v sucrose density gradients.

When analysed on a 2-dimensional fractionation system, which 

employed non-equilibrated pH gradients in the first dimension and 
SDS polyacrylamide gels in the second, hnRNP particles exhibited 
a heterogeneous protein profile dominated by the core proteins 

which appeared as chains of spots showing charge heterogeneity. 

Isolated hnRNP particles exhibited an endogenous protein kinase 
activity which was capable of phosphorylating added casein or 
histone but also phosphorylated hnRNP particle proteins. V/hen 
the proteins which had been subjected to iji vitro phosphorylation 
were separated on 2-dimensional gels it was seen that the more 
acidic species in the chains of core proteins were phosphorylated.

Evidence/



Evidence for the association of the protein kinase with 40S 
hnRNP particles came from the fact that a peak of kinase activity 

coincided with the 40S peak of hnRNP from sucrose density gradients 
and was still associated with the particles when hnRNP were isolated 

from one gradient and rerun on a second sucrose gradient. Kinase 
activity was still found associated with the particles even after 
gel filtration on a Bio Gel column although losses of kinase 

activity suggest that the enzyme is only loosely bound. A band 
of kinase activity corresponding to the stained hnRNP band was 

detected on non-denaturing polyacrylamide gels.
The fractionation of hnRNP particle proteins to yield 

reasonable quantities of purified proteins is not easy as the 
proteins have strong affinities for each other. HnRNP particles 

could be completely dissociated with high salt concentrations. 
However dissociation was partially reversible and removal of salt 
led to reaggregation of a substantial percentage of the proteins.

In order to try to fractionate hnRNP particle proteins, the 
particles were treated with 1M NaCl before being loaded on to a 

Sephadex G100 column in the presence of 1M NaCl. When the fractions 
from the column were analysed for protein kinase, 2 peaks of 
activity were seen - 'A' and 'B1. Both peaks contained a different 
set of polypeptides as seen on SDS polyacrylamide gels, and although

O,'A 1 and 1B ' had similar pH, Mg , time and temperature profiles
2+their response to Mn and their substrate specificity appeared 

to differ.
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INTRODUCTION

The aim of the work described in this thesis was to investigate, 
in greater detail, a protein kinase activity found associated with 
nuclear hnRNP particles. The location of this enzyme activity, 

coupled with the known role of protein kinases in controlling other 
cellular events, has led to the suggestion that a hnRNP-associated 
kinase might influence the maturation of hnRNA to mRNA. The 
introduction to this thesis therefore attempts to revise what is, 

known of mRNA maturation as well as the structure and possible 
role of ribonucleoprotein in the maturation pathway. It also 

briefly reviews known examples of protein kinase involvement in 
the control of cellular processes.
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1. Nuclear RNA
RNA in eukaryotic cells is present in a number of different 

classes which can be distinguished on the basis of physical and 
chemical properties. The majority of the RNA is functionally 

expressed in the cytoplasm, i.e. the rRNA and tRNA which play 
important roles in the translational apparatus, and the mRNA 
template which is used to synthesise the protein chain. However,
5% of the RNA exists in the nucleus and includes precursors of 
the cytoplasmic species.

1.1 HnRNA
The idea that the primary transcripts are different from the 

mature polysomal mRNA emerged in the early 1960’s due in part to 
the observation that the majority of the radioactivity, after 

pulse labelling of RNA in mammalian cell cultures, remained in 
the nucleus and was never transferred to the cytoplasm (Georgiev 
et al, 1963). Early analysis of this nuclear fraction revealed 
a heterogeneous sedimentation profile and the RNA, v/hich became 
known as heterogeneous nuclear RNA (hnRNA), included molecules 

very much larger than the cytoplasmic polysomal mRNA (Weinberg,

1973). In spite of the size difference, hnRNA had many character­
istics similar to mRNA and distinct from pre-rRNA. These included 
a mRNA-like base composition (Scherrer et al, 1963), a polyadenylated 
3’ terminus (Adesnik et al, 1972), internal methylation and 5' 

capping (Wei & Moss, 1977). -All of these similarities gave rise 

to the idea that the hnRNA was a mRNA precursor, and potential 

pre-mRNA species were detected in hnRNA (Imaizumi et al, 1973).
The greatest/
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The greatest problem with the precursor-product hypothesis, 

however, was the several fold difference in size between the 2 
classes of molecules. Various models put forward to account for 
this paradox included the possibility that an hnRNA might include 
more than one mRNA sequence or that the hnRNA might be cleaved 
and the non-coding sequences digested. The former solution did 
not account for the fact that there is no evidence for poly- 
cistronic mRNA in eukaryotes. The second model was difficult 
to reconcile with the apparent conservation of both the 5' and 3' 

end of hnRNA in the mature mRNA.
It was the discovery of introns, noncoding regions of DNA that 

interupt the coding portions of the genes, that solved the problem 
of how long hnRNA molecules could encode mRNA with the same ends. 
Introns were first discovered in the gene for rabbit ̂ -globin when 
the techniques of restriction mapping and R-loop mapping showed 
that the gene contained at least one long sequence that was not 
present in the mature mRNA (Tilghman et al, 1978).

This phenomenon of non-colinearity between the gene and its 
transcription product now seems to be a common one in eukaryotes, 
as introns, have been detected in numerous systems. Some of the 

first of these were the mouse JB globin gene (Tilghman et al, 1978), 
chick ovalbumin gene (Mandel et al, 1978), humanS and B globin genes 

(Lawn et al, 1978), insulin genes (Lomendico et al, 1979), yeast 
tRNA genes (Knapp, 1978), immunoglobulin light chain genes (Cochet 
et al, 1979), and avian globin genes (Imaizumi et al, 1973). There 
seem/
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seem to be no general rules concerning the sizes and the number 
of introns in different genes. They vary from no introns in most 
histone genes (Schaffner et al-, 1976) and the gene for polypeptide 
IX in Adenovirus 2 (Alestrom et al., 1980) to about 50 introns in 
the collagen gene (Wozney et al., 1981).

The discovery of introns led to speculation that they were 

transcribed into pre-mRNA species and were removed during mRNA 
maturation. That this was the case was first demonstrated when 
Tilghman et al., (1978) followed up their discovery of the intron in 

rabbit JS globin, with the demonstration that a 15S globin mRNA 
precursor contained a transcript of the intron. This was followed 
by the demonstration by Tsai et al, (1980) that the largest pre- 
mRNA for avian ovomucoid contained transcripts of all seven of the 
gene introns and that these were removed in a preferred but not 
necessarily obligatory order. The sequential maturation of an 
initial transcript into mature mRNA by the stepwise removal of 
intron nucleotides has also been demonstrated with precursors of 
ovalbumin mRNA (Tsai et al., 1980), globin mRNA (Kinniburgh & Ross, 
1979) and the precursor of many other genes.

1.2 SnRNA
By 1970 it was known that low molecular weight RNA species occur 

in the nucleus. These include tRNA and 5.8S rRNA destined for trans­
port to the cytoplasm, and a group of RNA species collectively known 
as small nuclear RNA (snRNA) found only in the nucleus (Frederiksen 
et al., 1981). These snRNA species have been designated 'U'RNA due 
to/
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to their high content of uridylic acid and can be separated 
according to size into 6 major species (U1-U6) some of which 
have structural variants (Table 1). Of these U3 and its variants 
occur only in the nucleolus (Zieve & Penman^ 1976), while others 
are nucleoplasmic in origin. They contain 90-220 bases (Lerner 
et aL, 1980), are metabolically stable (Weinberg, 1973; Frederiks.en 
et al., 1974), range in size from 4-8S (Weinberg, 1973; Lerner & 
Steitz, 1979) and are notable for their modified nucleotides which 
include a 'cap-like' 2,2,7-trimethylguanine at the 5' end (Reddy 
et al>, 1979; Epstein et aL>, 1980), together with internal methylated 
residues and pseudouridine (Wise & Weiner, 1981).

Many of these snRNA molecules have been sequenced (Sri-Widada 
et aL, 1981) including U2 (Reddy et al*, 1981) and U3 from hepatoma 
cells (Reddy et aL, 1979), U1 from Drosophila (Mount and Steitz,
1981) and rat brain (Gallinaro et al>, 1981), U6 from hepatoma cells 
(Epstein et al., 1980) and some of their secondary structures have 

also been investigated in chicken, rat and human tissues (Branlant 
et aL, 1981; Krol & Branlant, 1981). The sequence of the snRNA's 
are highly conserved between species, i.e. in Drosophila^U1 shows 
a 72% agreement with human U1 (Mount & Steitz, 1981). They are 

structurally similar in lower eukaryotes (i.e. slime moulds) and 
rats (Takeishi & Kaneda, 1981; Wise & Weiner, 1981) and therefore 
appear to be functionally analogous. Ul, U2, U4, U5 and U6 also 

each contain their own distinctive structural features that have 
been conserved in the evolution of eukaryotes (Myslinski etal,
1984).

Although/
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Although earlier studies concluded that U snRNA's of different 

tissues were similar, Krol et aL, (1981), using chicken, rat and 
human snRNA's, have shown that there may be minor differences in 
the sequences of snRNA's of different tissues. Forbes et aL,
(1984) have shown that there are 7 species of U1 in amphibian 

cells which are expressed at different stages of development.
The first indication that snRNA molecules might be involved 

in the processing of high molecular weight RNA in the nucleus 
came from Prestayko. et aL, (1970) who found U3 hydrogen bonded 
to the precursors of 28S rRNA but not to mature sized rRNA. Sass 
& Pederson (1984) have shown that the amount of snRNA's increases 
as genes are activated and U4 has been implicated in polyadeny- 
lation. However, it is the possible involvement of U1 snRNA in 
pre-mRNA maturation which has attracted most attention. This 
role is considered in Section 2.1.

SnRNA has frequently been detected in ribonucleoprotein particles
isolated from cell nuclei. These particles (snRNP) have a density 

3of 1.43g/cm in CsCl^ and a sedimentation coefficient of 11-12S 
(Liautard et al., 1981; Sri-Widada et aL>, 1981; Brunei et aL, 1981).
'U ' series of snRNA were first isolated in particulate form after 
fractionation of nuclear extracts by gel filtration and on sucrose 
density gradients. Brunei et al., (1981) isolated purified snRNP'son 
CsCl^gradients containing 0.5% sarkosyl (Lauryl sarcosine - an 
anionic detergent). The purified U1 snRNP from He La cells con­
tained 4-5 polypeptides with molecular weights of 10000-14000 

(Brunei et al, 1981: Sri-Widada et aL, 1982) but these must be 

regarded /...
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regarded as the minimum components rather than the complete 
protein complement due to the drastic and severely denaturing 

purification procedure.
Lerner & Steitz (1979) have demonstrated that some patients 

with systemic erythromatosis, an autoimmune rheumatic disease, 
produce antibodies which specifically complex with snRNP particles.

Immunoprecipitates of snRNP particles have been shown to 
contain polypeptides ranging in molecular weight from 12000 to 
35000. These polypeptides are unrelated to the proteins associated 
with hnRNA or to histones. However, U3, which is confined to the 
nucleolus is not present in these snRNP particles.

Lerner & Steitz (1979) have suggested that different subsets of 
particles vary in their snRNA composition but contain the same 7 
protein components, i.e. each snRNA exists as a separate particle 
with an indistinguishable set of 7 polypeptides. Lerner & Steitz 
(1981) present evidence to show that the U1 antigenic determinant 
is conserved from insects to man since the human antibody is capable 
of precipitating U1 containing snRNP's from every intermediate 

species examined.
The antibodies against snRNP particles can be divided into 2 

groups:- anti-Sm and anti RNP antibodies. Anti-Sm antibodies 
recognise antigens on Ul, U2, U4, U5 and U6 containing particles, 
while anti-RNP antibodies recognise antigens which are specific 
to Ul snRNP (Lerner et aL, 1981; Lerner & Steitz, 1981; Lenk et aL, 
1982; Liautard et aL>, 1982). Anti-Sm antibodies recognise Ul snRNP's 

at a/
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at a site physically distinct from the determinant bound by 
anti-Ul RNP (Lerner & Steitz, 1981). Takano et al-, 1981) have 
purified RNP and Sm antigens from calf thymus and shown that purified 
RNP antigens exhibit Sm activity. However, RNase treated RNP was 
immunologically inactive as a RNP antigen but still maintained Sm 
activity. They have shown that Sm and RNP antigens have the same 
8 polypeptide components but the Sm antigen devoid of RNP activity 
only has 4 polypeptides of molecular weight 12000-13000, thus 
showning that RNP and Sm are distinct determinant sites on the same 

nuclear complex. This agrees with the results of Assens et aL,
1982) who found that in HeLa cells the Sm antigenic determinants 
were among , 4-5 proteins of molecular weight 9000-14000 which are 
tightly associated with snRNA's.

The RNA from the RNP-Sm complex is required only for RNP and 
not for Sm antigenicity although the role played by the RNA in 
specifying RNP antigenicity in conjunction with the protein is 
not known (Takano et al., 1981)

Expansion of work in this field has not led to a consensus of 
opinion on the number or molecular weight of proteins in the 
particles. Possible causes for these variations have been 
reviewed by MacGillivray et al>, (1982) and include:-

1. Differences in methods of detection, e.g.
a) gradient centrifugation (Assens et aL, 1983)
b) ion exchange, hydrophobic or ligand specific 

chromatography (Hinterberger et al, 1983)

c ) /
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c) immunoaffinity chromatography (Bringman et al, 1983)

2. Differences in antisera used by different groups. A
protein may be detected in one analysis and missed in
another due to the partial sharing of antigenic sites
and/or variations in antisera.

3. Tissue source or treatment: Although Lerner & Steitz
(1981) have presented evidence for conservation across 
species of snRNP particle proteins, there is some evidence 
for tissue and species specificity (Hinterberger et al, 1983).

The purification of snRNP's is complicated because there is no 
assay for them other than their immunoreactivity. As snRNP's are 
multicomponent assemblies, held together by noncovalent interactions, 
antibody recognition of any component for the particle results in 

the immunoprecipitation of the entire particle.
There is now a general consensus that there is a common core 

in snRNP composed of polypeptides D (13,000), E (11,000), F (10,000) 

and G (8,000). In addition there are polypeptides uniquely 
associated with particular RNA species although there is not 
universal agreement as to their number or size (Hinterberger et al, 
1983; Kinlaw et al., 1983; Billings et aL, 1984; Lin & Pederson, 1984; 

Mattaj et aL, 1985).
Liautard et al-/1982) have looked at protein-RNA interactions, 

in snRNP particles from HeLa cells, using nuclease digestion and 
have found that the more strongly bound proteins of molecular weight 
(D, E, F, G) 9000-14000, are associated with single stranded regions 

of/
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of 23-35 nucleotides which are present in Ul, U2, U4 and U5. This 
single stranded region includes the sequence A-(U)n~G bordered by 

double stranded stems and is located near the 3' end of the snRNA.
Using deletion/substitution mutants (in cloned Xenopus U2 

snRNA genes) Mattaj et al^(1985) have shown that a 12 nucleotide 
region containing sequences conserved in other UsnRNA's (Branlant 

et aL, 1982) is essential for interaction with proteins recognised 
by anti-Sm antibodies. Xenopus oocyte snRNP proteins have the 
capacity to assemble snRNA from Drosophila and mouse into snRNP 
suggesting that the snRNP proteins recognise conserved secondary 
structures (Forbes et aL, 1983).

U6 snRNA has no 2,2,7-trimethylguanosine cap (Branlant et aL,
1982) but when snRNP's are fractionated on affinity columns prepared 
with an antibody for this cap structure (Anti tn^G), U6 is bound and 
co-chromatographs with U4 (Bringman et_al*, 1984). This suggests 
that either discrete U4 and U6 snRNP particles are associated or 
that they are organised in one RNP particle. Bringman et al., (1984) 

suggest that U4 and U6 are associated by base-pairing as U6 co­
precipitates with U4 using anti m^G following phenolisation at 
0°C but at 65°C they dissociate. Hashimoto & Steitz (1984) have 
shown that U4 and U6 possess extensive intermolecular sequence 
complementarity and therefore have the potential to base pair.

Until recently no specific enzyme activities had been found 

associated with snRNP particles. This has been due to the methods 
used/
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used in preparation which lead to protein denaturation. However,
Hinterberger et al«, (1983) have devised a method to prepare

purified snRNP's which should allow analysis of enzyme activities
associated with snRNP’s as it involves a combination of ion-
exchange and hydrophobic ion-exchange chromatography which does
not denature the proteins. Bachman et_alv(1984) have found an
acidic endonuclease associated with 12S RNP from calf thymus and
L5178y cells. U1 snRNA has been identified as a component of
these 12S RNP. This endonuclease degrades poly (U) and poly (C)
but is inhibited by poly (A). It is distinguished from pancreatic
ribonuclease and endoribonuclease VII by its resistance to thiol

24-reagents, inhibition by EDTA, Mg requirement, pi (4.1) and pH 
optimum (pH 6.2).

Although there is experimental evidence for the role of snRNA's 
in processing of hnRNA (Lerner et aL, 1980) their exact role is 
still conjectural. The question still to be answered is whether 

snRNA's are active as naked molecules or as protein complexes.
If snRNP particles actually represent the natural state of snRNA's 
it should be possible to separate them from structures containing 
hnRNA. Experimental evidence seems to show that snRNP particles 

purified from hnRNP particles, and snRNP particles purified using 
antibodies, have the same RNA and protein compositions (Liautard etal, 
1981; Sri-Widada et al>, 1982).

U5 RNP's associated with hnRNP were found to be completely 
protected when these complexes were digested extensively by 
micrococcal/
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micrococcal nuclease (Sri-Widada et aL, 1983), suggesting that the 

U5 RNP is localised inside the hnRNP complex and may play a role 

in the packaging of hnRNP. U2 is also further protected by hnRNP 
suggesting that one third of U2 is localised inside hnRNP. The 

other fragments of UsnRNA's protected in hnRNP correspond to those 
protected in core s:nRNP.

Seytono & Pederson (1984) have investigated intermolecular base 
pairing in hnRNA and U1 in HeLa cells by psoralen cross linking 

in situ. Results indicate that^when U1 base pairs with hnRNA it 

retains its RNP structure but this doesn't rule out the possiblity 
that the RNP structure or the conformation of the U1 RNP may change.

2. Processing of Eukaryotic Nuclear Pre-mRNA
Processing of pre-mRNA occurs within the nucleus and involves 

cutting out the introns and joining the ends of the coding sequences 
(splicing), capping of the 5' end, polyadenylation of the 3' end, 

and internal modifications of the nucleotides (Fig. 1).

2.1 Splicing
Splicing is the process by which the noncoding parts of the RNA 

(introns) are removed,and the coding regions brought together and 
ligated. Although introns differ considerably in length and 
sequence, even for the same gene in different species, there is 
remarkable conservation of regions flanking the coding sequences.

Mount (1982) has catalogued the sequences of 139 exon-intron 

boundaries, and 130 intron-exon boundaries, and has derived a 
consensus/
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consensus sequence which gives rise to the following transcript:-

The sequence immediately to the 5' side of the intron-exon boundary 
is always pyrimidine rich and free of the dinucleotide AG. The 
most invariant aspect of the consensus sequence is the GU at the 
beginning of the intron transcript and the AG at its end. Sequences 
similar to the consensus sequence occur throughout the gene but only 
those at known intron-exon boundaries are apparently recognised as 
splice points; therefore there must be additonal components which 
are involved in the specificity of splicing (Woo et al., 1981).

The role of the consensus sequence in splicing has been 
demonstrated in many systems and is particularly well exemplified 
in the j3-thalassaemias, a group of hereditary anaemias. Several 
examples of these are known in which lack of ̂ -globin production is 
due to a mutation in the DNA encoding the splice points of the large 
intron of the gene (Baird et_aL, 1981; Treisman et al., 1982).

In another example, a single G -> A mutation created the sequence 
CTATTAG within the intron which closely resembled the intron-exon 
boundary sequence CCGTTAG and competed with it as a splice point 
(Busslinger et al., 1981).

A possible mechanism of splicing was independently suggested by 
Lerner et al., (1980) and Rogers & Wall (1980). They noticed that the 
5' end of U1 snRNA showed extensive complementarity to the consensus 
sequence/

51 - exon U Cintron -(„) N A G G -  exon C n 3'

splice point at splice point at
exon-intron boundary intron-exon boundary
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sequence of the splice points (Lerner et aL, 1980; Mount & Steitz,
1981) and suggested that the snRNA could base-pair with both ends 
of the intron causing the remainder of the intron to loop out and 

bringing the 2 exons into alignment for ligation. Figure 2A 
illustrates the proposed model of splicing and Figure 2.B shows a 
variant model (Ohshima et aL, 1981) conceived as taking the secondary 
structure of U1 snRNA into account.

A number of findings have supported the model of Figure 2 and 
implied that snRNP particles played a crucial role in the maturation 
of hnRNA. SnRNP particles were shown to associate with hnRNP, but 
when the 5' end of U1 was removed, the particles containing U1 no 
longer associated with the hnRNP (Lerner et al., 1980). Splicing 
was inhibited when antibodies against Ul snRNP's were added (Yang 
et aL, 1981; Lenk et al, 1981) and Mount et aL, (1983) have demonstrated 
that U1 snRNP1s, but not protein free Ul, bound to DNA transcripts 
which contained sequences corresponding to the small intron and 
flanking exons of the mouse J1 globin gene. In doing so, they 
protected a 15-17 nucleotide region containing the 5' splice site.

Extension of these results had to await the development of in vitro 
splicing systems (Goldenberg and Raskas, 1981) which demonstrated 
that Ul snRNA plus the proteins carrying the anti-Sm determinants 
copurified with splicing activity (Di Maria et al., 1985) and that 

removal of 5' sequence of Ul (Kramer et aL, 1984) or the addition 
of anti-Sm or RNP antibodies (Bossoni et al., 1984; Konarska et aL,
1985) inhibited the in vitro splicing system.

Recent/
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Recent experiments have suggested that hnRNP proteins may 

bind preferentially to intron-exon junctions which are the presumed 
sites of Ul RNP binding (Mayrand & Pederson, 1983). Splicing may 
be initiated by hnRNP proteins aligning or folding the splice sites, 
then U1RNP might bind causing the displacement of the hnRNP proteins. 

This idea is compatible with experiments indicating that hnRNP 
particles are more nuclease sensitive after mRNA splicing (Pederson 

& Munroe, 1981).
It is of importance for future investigation of splicing to 

identify intermediates, and acceptance that an RNA species is an 

intermediate requires that the structure is consistent with the 
established pathway. The recent development of in vitro splicing 

systems has allowed the detection of proposed intermediates. The 
accumulation of excised introns (Grabowski et aL, 1984) proves 

that splicing is not mediated by processive degradation of the 
intron but by cleavage at the 2 splice sites plus ligation of the 
exons. The excised introns plus the intermediate RNA species have 

the unusual configuration of a circle with a tail containing a 

branch point and are referred to as "Lariats" (Konarska et aL,
1985; Grabowski et aL, 1984; Keller, 1984; Zeitlin & Efstratiadis, 
1984). In the Lariat, the 5' terminal guanosine of the intron 
is attached to an internal adenine residue by a 2'-5' phospho- 

diester bond (Grabowski et aL, 1984). If biologically significant 

these branched structures should be detected in vivo. Wallace & 

Edmonds (1983) have observed that HeLa cell nuclear RNA contained 

branched/
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branched nucleotides. These findings have led to a modification 

of the previous model for splicing (Figure 3).
This new modeljbased on the in vitro splicing of human 

p globin pre-mRNA and the Adenovirus system, starts with the 
formation of a lariat which is stabilized by base-pairing, 
followed by the formation of a 2'-5' pyrophosphate branch point 

(Konarska et al., 1985; Keller, 1984). The overall reaction seems 
to take place in two kinetically distinct phases. Phase one 
involves cleavage at the 5' splice site plus the branch formation, 

while in phase two cleavage at the 3' splice site plus ligation 
of the exons takes place. One problem with this model, when 
considering the base pairing interaction between the branch site 
and the 5' splice site, is the role of Ul snRNP. Little is also 

known about the order of intron excision from pre-mRNA's with 

multiple introns, or what governs the selection of alternative 
splice sites in differential splicing.

r

2.2 Capping
Eukaryotic and viral mRNA and its precursors are modified 

at their 5' end by the addition of methylated caps. This general 
cap structure (Figure 4) is a 7 methylguanosine linked to the 
5' end of the transcript by a 5'-5' pyrophosphate bond. This 
structure, known as Cap 0, was found in yeast (Sripat;i et al.,

71976) and the RNA was found to be 75% m G-(5')-pppAp and 25%
7m G—(51 )-pppGp. In animal cells a purine or pyrimidine nucleo­

tide can be adjacent to the cap whereas in yeast it is always a 
purine/
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purine. Cap I is the structure m^G (5')ppp(5!)XmpYp where 
the 7 methylguanosine is joined by a 5'-5' triphosphate linkage 
toa2,-0-methylated nucleotide (Perry & Kelley, 1976). In animal 
cells Cap I is derived from the 5' cap of hnRNA. The third cap 

structure, Cap II, m7G (5*)ppp(5')XmpYmpZp is found in higher 
eukaryotes but is not detected in hnRNA. It arises by a second 
methylation of molecules bearing Cap I that occurs after the 
mRNA enters the cytoplasm (Perry & Kelley, 1976). Cap II is 
restricted to a particular subclass of mRNA with a high 

frequency of pyrimidine nucleotides at position Y, (Yanget al.,
1976). The mRNA molecules with Cap II structures appear to be 
more abundant in polysomes, therefore either the Cap II has a 
higher affinity for ribosomes or the secondary methylation occurs 

after association with ribosomes.
Types I and II have been found in virus mRNA (Rose, 1975;

Moss et al-, 1976).
Three enzymes are involved in cap formation:- 

RNA guanyltransferase transfers GMP from GTP to the 5' end of an 
unmethylated hnRNA containing at least 2 terminal phosphate groups, 

(Wei & Moss, 1977). RNA (guanine-7) methyl transferase methylates 
the transferred nucleotide and the 2'0 position of the penultimate 

nucleotide (Ensinger et ah, 1975) (Figure 5). Monroy et aL, (1978) 
suggest that these 2 enzyme activities copurify. RNA (nucleoside-2) 

-methyltransferase methylates the Cap I structure at position Y 

(Keith et aL, 1978).
Both/
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5' terminus of 
transcript

pp p(5')X p Y p

RGT
\f (RNA guanyl transferase)

Cap 0 G(5') p p p ( ^ ) X p Y p

RGMT
(RNA (guanine-7)methyl transferase)

Cap I

Cap II

m*^G(5/) p p p(57) X  pYp

RNMT
v(RNA (nucleoside-2)methyl transferase)

i7 G(5) ppp(5') X p V  p

FIGURE 5: Enzymes involved in the production of cap
structures.



-  24 -

Both et_aL, (1975) have shown that methylated mRNA molecules 
stimulated protein synthesis to a greater extent than unmethylated 

species, possibly due to the cap being involved in the formation 
of the initiation complex. This role of the cap in translation is 
backed up by the fact that capped mRNA's are more stable due to 
protection from 5' degradation (Furuichi et al., 1977). Pre-mRNA's 

injected in Xenopus oocytes are spliced only if the pre-mRNA is 
capped in vitro prior to injection, as the uncapped RNA is rapidly 
degraded (Green et al, 1983). Recent evidence has indicated that 
caps are required for splicing (Konarska et al., 1984).

The cap structure on pre-mRNA has been shown to be identical 

with that of mature mRNA (Roop et al., 1980) and the 5' termini 
of both mature mRNA and its precursors, map at the same point on 
the gene sequence.

2.3 Polyadenylation

Poly (A) sequences are present in 20-30% of all sizes of hnRNA 
(30-100S) and are conserved to a greater extent than the rest of 

the hnRNA (Jelinek et al., 1973). 70-90% of all cytoplasmic mRNA

molecules contain poly (A) tracts (Brawerman, 1974). Non-poly­
adenylated mRNA appears to fall into 2 classes; those such as 

histone mRNA's which are usually non-polyadenylated (Isenberg, 1979) 
and a class of messengers for which there appears to be polyadenylated 

and non-polyadenylated molecules (Katinakis et aL, 1980). The poly 

(A) tracts are resistant to T'̂ RNase and consist of 200-250 nucleo­

tides of adenosine, added sequentially to the 3' end of pre-mRNA 
as a post-transcriptional event.

The/
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The enzyme involved in the formation of poly (A) sequences, 

poly (A) polymerase, is found free in the cell nuclei and bound 
to the chromatin (Jacob et aL, 1976) and the chromatin bound 
enzyme is responsible for the initial polyadenylation (Rose et aL,
1977). Poly (A) polymerase is a phosphoprotein (Rose & Jacob, 1979) 
of which the degree of phosphorylation varies in different tissues. 
Thus the poly (A) polymerase in rapidly growing hepatoma cells is 
twice as phosphorylated as the enzyme in normal liver cells (Rose & 

Jacob, 1979). This correlates with the finding that phosphorylation 
increases the activity of poly (A) polymerase (Rose & Jacobs, 1980).

Poly (A) polymerase catalyses the addition of AMP residues 
approximately 11-30 nucleotides after the base sequence AAUAAA near 
the 3' end of the gene transcript. This hexanucleotide or a close 

analogue has been found in all eukaryotic mRNA's so far examined 
( Proudfoot & Brownlee, 1976) and its spatial relationship to the 

site of polyadenylation is an essential feature of the addition 
mechanism (Fitzgerald & Shenk, 1981). A second recognition sequence 
element CAYUG has also been observed (Berget, 1984) either upstream 

or downstream from the poly (A) site. Moore & Sharp (1984) by 

using an in vitro polyadenylation system have shown that poly­
adenylation is coupled to active transcription. They suggest 
that part of the specificity of polyadenylation is established 
by in situ synthesis and that this specificity may involve snRNP 

particles as the reaction is inhibited by anti-Sm and anti-RNP 
antibodies.

Berget/



-  26 -

Berget (1984) has shown that the recognition sequences required 

for poly (A) addition are complementary to regions in U4 SnRNA, 

and suggests a model involving the hybridisation of U4 to AAUAAA 
as related to primary site selection, and hybridisation to CAYUG 
as related to cleavage site selection.

The balance of evidence suggests a role for poly (A) in 
extending the stability of mRNA (Gordon et aL, 1973). Poly (A) 
may also modulate mRNA transport. There is some turnover of 

poly (A) in the nucleus and the addition of cordycepin, which 

inhibits the addition of poly (A) sequences to nuclear RNA, also 
inhibits the transport of mRNA to the cytoplasm, (Weinberg, 1973; 
Adesnik et al, 1972). Histone mRNA's, which are not polyadenylated, 
leave the nucleus faster than polyadenylated sequences. However, 

other non-polyadenylated mRNA's do not exhibit this differential 
rate of transport.

Brawerman & Diez (1975) have reported a process of elongation 

of pre-existing poly (A) which is distinct from de novo synthesis 
and it has been suggested that this extra polyadenylation may be 

necessary for mRNA protection (Diez & Brawerman, 1974).

2.4 Internal RNA Methylation
6 6Very few methylated bases are found in hnRNA (4-8 m A, or m C) 

or mRNA (1-2) and they are limited to the eukaryotic system 
(Salditt-Georgieff et aL, 1976). The function of these methylated 
bases is unknown but the modifications appear to be limited to the 
intron transcripts and may be involved in the recognition of the 
intrm regions.

3 . /
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3. Heterogeneous Ribonucleoprotein Particles (hnRNP)

From a very early stage in its synthesis, hnRNA is associated 
with proteins (Schweiger & Hannig, 1971; McKnight & Miller, 1976; 

Sommerville, 1973) and it seems likely that these proteins will 
prove to have a role in mRNA maturation. Electron microscopy 
reveals protein associated with hnRNA as ribonucleoprotein 
particles (hnRNP) while the RNA is still being transcribed 

(McKnight & Miller, 1976) and while it is still attached to the 

chromatin (Sommerville, 1973).

In transcriptionally active regions of chromatin, ribonucleo­
protein fibres are seen branching off the deoxyribonucleoprotein 
axis. Across the wide range of species, tissues and developmental 
stages there is some variation in the observed structure, but in 
general the nascent RNP chains appear to share many characteristics. 

They consist of 4 nm RNP fibrils, which, at apparently non-random 
intervals along their length, are complexed with or aggregated 
into RNP particles of diameter 25 nm (Malcolm & Sommerville, 1974). 

Pederson (1981) concludes that RNP particles, and not 'naked' RNA 
molecules, are the native vehicles for mRNA transport in the 
living cell.

Normally a gradient of increasing RNP fibril length is seen 
along the length of the transcription unit and is assumed to 
represent progression from initiation to termination. Some 

transcription units display abrupt changes in fibril length 

suggesting cleavage of RNA at specific sites on nascent transcripts 

(Miller/
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(Miller & Hankalo, 1972). In oocyte nuclei, the gradient of RNP 

fibrils of increasing length from the point of initiation along 
the length of a transcription unit is often interrupted by abrupt 

discontinuities which appear to be caused by the removal of part 
of the transcript at a time when it is still being extended at 

its 3' end (Laird & Choo, 1976; Scheer et al., 1979). This is also 
seen by Beyer et_al., (l98l) in Drosophila and the results suggest 
that cleavage may occur within the growing RNP fibrils. Beyer 
et aL,(1980) have shown that RNP particles assemble after 
synthesis of 500 nucleotides, and free hnRNA has not been 
detected in the cell.

The failure to generate hnRNP-like complexes by the addition 
of deproteinised hnRNA to cellular extracts (Pederson, 1981;
1974a), the fact that particles prepared in the presence of 

radioactively labelled proteins from other cellular pools failed 
to show significant contamination and the fact that crosslinking 
experiments (Van Eekelen et al, 1981a; Mayrand & Pederson, 1981;

Karn et al., 1977) have shown that proteins found in isolated hnRNP 
can be crosslinked in vivo, all suggest that hnRNP particles are 
not artefacts formed during the isolation procedure.

3.1 Isolation of hnRNP Particles

There is no universal method for isolating hnRNP's which can 
be applied to all cell types. Methods available for the preparation 

of hnRNP particles have been reviewed by Van Venrooij & Jansen (1978) 

and/
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and all start with the isolation of purified nuclei. The original 

method was devised by Samarina et al., (1968) for rat liver cells.

It involves the extraction of nuclei with an isotonic buffer at 
pH 7.0 to remove preribosomes and ribosomes, followed by extraction 

of the hnRNP with a pH 8.0 buffer. This method gives good results 
with many tissues but does not give acceptable results with tissue 

culture cells where the higher temperature required to extract 

particles can lead to partial degradation. Other methods rely on 

nuclear disruption followed by fractionation of the lysate for 
hnRNP preparation. Nuclear lysis has been achieved by using 
hypertonic buffers (Moule & Chauveau, 1968), detergent(Stevenin & 
Jacob, 1972), sonication (Pederson, 1974a; Stevenin & Jacob, 1974), 

disintegration in the French Press (Parsons & McCarthy, 1968) or 

digestion with DNase (Penman et al., 1968).
Nuclear lysis methods give higher yields of hnRNP than extraction 

at pH 8.0, but are more likely to result in contamination. The DNase 
method leads to considerable contamination with chromatin components 

(Penman et al., 1968), while detergents appear to have deleterious 

affects on hnRNP particles and disrupt the chromatin and nuclear 
matrix which in turn contaminate the preparation. The use of the 
detergent sodium deoxycholate can cause dissociation of hnRNP 

(Faiferman et al., 1971; Stevenin & Jacob, 1974). Triton X 100 
does not appear to have deleterious effects on either the protein 

composition or enzyme activities (Wilks & Knowler, 1981a) but it 

has/
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has been suggested that it activates latent RNases and increases 
hnRNP degradation (Lund-Larsen, 1975).

The most widely used of the nucleolytic methods is that using 
sonic disruption. This method is used in cases where the endogenous 
RNase levels are low, and it is often the method of choice when 

isolating hnRNP particles from tissue culture cells as extraction 
at pH 8.0 from the nuclei of such cells requires an unacceptably 
high temperature. The particles isolated by the extraction method 

or by nuclear lysis are very similar (Pederson 1974a; Suria &
Liew, 1979; Albrecht & Van Zyl, 1973).

Extraction at pH 8.0 yields monomeric particles which are 

widely believed to be identical to 25nm particles seen on nascent 
RNP. In the presence of RNase inhibitor (Roth, 1958), polymers 
can be extracted and in electronmicrographs they appear to be 
strings of particles arranged along an hnRNA backbone. Such 
polymeric hnRNP, of up to 300S is more readily produced by sonic 
disruption of purified nuclei (Stevenin & Jacob, 1972; Pederson, 

1974a). The polymers are converted to monomers by low levels 
of ribonuclease (Samarina et al., 1968; Pederson, 1974a).

Kloetzal et al., (1982) have reported a gentle preparation 
of hnRNP from easily disrupted amphibian oocytes and this may well 
lead to the most native hnRNP, but Sommerville (1981) has 
suggested that hnRNP from oocyte and other germ line cells may 
differ markedly from those of somatic cells.

HnRNP/
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HnRNP particles isolated by extraction or lysis are further 

purified by centrifugation on sucrose density gradients followed 
by isolation of the particle containing fractions (Samarina et al., 
1976). Metrizamide has also been used (Karn et al., 1977) but has 
been shown to cause disruption of hnRNP (Gattoni et aL, 1977).

3.2 Properties of HnRNP Particles

HnRNP monoparticles have a sedimentation constant of 30-40S 
(Samarina et al., 1968; Pederson, 1974a) and a molecular weight

g
of 1 x 10 (Krichevskaya & Georgiev, 1969). The particles exhibit 

some heterogeneity in sucrose density gradients which may reflect 

differences in the size of the associated RNA. However, some 
workers have claimed to detect several distinct peaks on buoyant 
density gradients (Houssais, 1975; Faiferman et al., 1970) and 
Guialis et aL, (1983) have identified two discrete classes of 
particle within the monomer population of rat liver hnRNP.

Notwithstanding these possibilities, however, hnRNP particles 

from a variety of tissues and cultured cells exhibit a remarkable 
uniformity in their physical and chemical properties (Brunei & 
Lelay, 1979) (Table 2).

The RNA from hnRNP particles will hybridise to cDNA made 
against total mRNA or specific mRNA species (Mantieva et aL, 1969). 

The presence of mRNA sequences coding for cellular proteins has 
also been detected in hnRNP (Thomas et aL, 1981; Gaitskhaki et aL, 
1981; Maundrell & Scherrer, 1979).

3.3/
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SOURCE SEDIMENTATION
CONSTANT

(s*)

(g/cm3) RNA
(SEDBENTATION

CONSTANT)
(s*)

PROTEINS 
NUMBER OF 
SPECIES

REFERENCE

Rat liver 38-200 1.39 8 45-50 Northeman 
et aL, 1977

1.39 15-20 45-50 Northeman 
. et al, 1978

30 -400 1.39-1.4 5-8 Niessing & 
Sekeris, 1971a

HeLa 40-200 1.43-1.45 20-30 12-25 Pederson, 1974a

Slime mould 55 1.41-1.43 15 Firtel & 
Pedersen, 1975

Wheat enibyro 1.4 15-30 Ajtkhozhun 
et al, 1975

Sea urchin embryo 1.4-1.55 10-30 Ajtkhozhun 
et al, 1975

Drosophila 30-80 1.4 - Szabo
et al, 1981

Chick oviduct 30-350 1.4 93 Thomas 
et al, 1981

TABLE 2: Properties of hnRNP particles.

* The wide range of S values and RNA size reflects the differing extents 
to which different preparations preserve polymeric rather than monomeric 
hnRNP
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3.3 Protein Components of HnRNP Particles

A number of detailed studies on the polypeptides of hnRNP 

particles from a variety of sources have been performed and have 
shown that proteins comprise about 80% of the total mass of the 

particle. Considerable controversy has existed over the precise 
number of proteins which are associated with the particles. Early

/

analyses produced protein compositions varying from one in rat 
liver hnRNP (Samarina et al., 1968) to 90 polypeptides in hnRNP 

from avian erythroblasts (Maundrell & Scherrer, 1979). However, 
these variations were largely due to differences in the purity of 

the product and the sensitivity of the protein fractionations 
employed (Van Venrooij & Jansen 1978; Heinrich et al., 1978). 
Virtually all investigators are now agreed that the proteins are 
heterogeneous, with a dominant group of proteins collectively known 
as the core proteins. Small differences have been detected in the 

minor polypeptide components of hnRNP's of differenct tissues 
(Gallinaro-Matringe et aL, 1977), different species (Beyer et aL, 

1977; VJilks & Knowler, 1980), different stages of development 
(Maxwell & Fisher, 1979) and after viral infection (Gattoni et aL, 
1980). These differences occur mainly in the protein components 
of molecular weight 45000-150000, although there are some species 
differences in the smaller core proteins.

3.3.1 Major Core Proteins: This group of proteins forms the

dominant part of the protein constituent of hnRNP and on one­

dimensional gels are seen as 4-6 species of molecular weight 

30000-45000/
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30000-45000 (Pederson, 1974a; Karn et aL, 1977; Beyer et al>, 1977; 

Stevenin & Jacob, 1979; Northeman & Heinrich, 1979; Wilks & Knowler, 
1980). Rat liver has four species while Beyer et aL, (1977) have 
suggested that the 6 major core proteins in HeLa cells are present 

as 3 groups of doublets (A, B and C). The C proteins (molecular 
weight 42000 and 44000) interact directly with the RNA, while the 

A proteins (32000 and 34000 daltons) comprise 60% of the particle 
mass and apparently function structurally in the packaging and 

stabilization of the hnRNA in a manner analogous to histones in 
chromatin nucleosomes (Kornberg, 1974).

There is disagreement over the proportion of core proteins in 

hnRNP particles and estimates range from 25% (Pederson,1974a) to 

70% of the total mass (Karn et aL, 1977; Brunei & Lelay, 1979). A 

considerable amount of circumstantial evidence indicates that the 
core proteins are the structural proteins of the particles. They 
are stable and abundant proteins that are universally present and 

conserved between species. Antibodies raised against the core 
proteins of one species cross react with those of a wide range of 

mammalian, avian and amphibian species (Martin et. al., 1981; Hugle 

et al., 1982; Leser et al., 1984; Choi & Dreyfuss, 1984a).

In parallel with other nucleic acid binding proteins, i.e. 
histones and ribosomal proteins, the core proteins are basic with 
pi 8-10 (Suria & Liew, 1979; Wilks & Knowler, 1980), and have low 

turnover rates (Martin et al., 1979). They also have a high glycine 

content (Karn et al, 1977; Beyer et aL, 1977) and have unusual (Fig.6) 
methylated/
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9 9methylated arginine residues - N N dimethylarginine (Karn et al., 

1977; Fuchs et aL, 1980). The abundance of glycine in the 
composition of core proteins has led Le Stourgeon et al, (1978) 
to suggest that they contain a high percentage of p sheet in 
their structure, and as such might be admirably suited for inter­
calating with double stranded portions of RNA in the hnRNP 

particles. It has also been suggested that dimethylarginine 
may be involved in protein-RNA interactions (Beyer et al., 1977;
Le Stourgeon et al,, 1979). The core proteins have a high affinity 
for RNA and they will reconstitute with RNA in vitro to form 
particles indistinguishable from non-dissociated controls ( L6 
Stourgeon et aL, 1979).

By dissociating hnRNP particles and looking at their reassembly 
on sucrose density gradients, Pullman & Martin (1983) have 

suggested that the core proteins determine the basic structural 
properties of hnRNP particles. Wilk et aL, (1983), by dissociating 
hnRNP from HeLa cells with micrococcal nuclease, have shown that 

particles which resemble native hnRNP reform when a variety of 
exogeneous RNA's are added. Therefore the hnRNP core proteins 

appear to have the intrinsic capacity to associate with single­
stranded RNA irrespective of its nucleotide sequence. This 
intrinisic ability to form complexes has also been shown in 
brine shrimp Artemia salina (Thomas et al., 1983). The HD40 

(molecular weight 40000) is the major protein of 30S hnRNP in 

the shrimp and forms structures, very similar to hnRNP, with 
exogeneous/
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exogeneous poly (A) strands. It should be mentioned however, 

that the evidence that reconstituted hnRNP particles are the 

same as isolated particles depends on the currently available 
methods by which particle structure is analysed. These are not 
very rigorous.

On 2-dimensional gel fractionation systems the major core 
proteins exhibit charge heterogeneity (Suria & Liew, 1979; 

Maundrell & Scherrer, 1979; Wilks & Knowler, 1980). Each of 

the bands detected on one-dimensional SDS-polyacrylamide gel 
electrophoresis, can be resolved into a string of stainable 
spots. In at least one case this heterogeneity appears to 
result from phosphorylation (Wilks & Knowler, 1981a). Tryptic 
peptide mapping has been employed to analyse the structural 

relationship of the core protein chain of spots (Wilks & Knowler, 
1981b; Fuchs et aL, 1980). Wilks & Knowler (1981b), using 

2-dimensional gels, showed that the most abundant core proteins 
in rat liver hnRNP comprised 4 species. Polypeptides in the 

same group appear to be structurally related whereas there is 
little resemblance between the different groups. This has been 

interpreted as evidence for post-translational modification of 

the core proteins but does not disprove the possibility that 
they may be products of multiple gene families. Fuchs et al», 
(1980) isolated individual basic core polypeptides from one­
dimensional gels, and concluded that there may be only 4 major 

basic proteins. Le Stourgeon et al., (1978) concluded that there 

were/
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were 4 basic and 2 acidic core proteins in HeLa cell hnRNP.

Wilk et aL, (1985) by looking at the amino acid sequence and 
tryptic peptide maps of the core proteins from HeLa cell hnRNP 

have suggested that there are 3 groups of core proteins - 
1) basic proteins (Al,A2,Bla,Blb,B2,Cl), 2) slightly acidic 
(Blc,C2), 3) acidic (C3).

The proteins associated with hnRNA have been shown to be 
subject to post-translational modification including phosphory­

lation (Karn et aL, 1977; Blanchard et al., 1978; Choi & Dreyfuss, 
1984a), methylation (Karn et al., 1977; Beyer et al., 1977; Blanchard 
et al, 1978), ADP-ribosylation (Kostka & Schweiger, 1982) and 
glycosylation (Jacob et aL, 1981). In all cases of phosphory­
lation reported the covalent linkage of the phosphate group is 
via serine and threonine ester linkages.

Modifications of core proteins might permit variation in 
the degree of interaction between the proteins and the RNA in 
the same way that modifications of histones affects their 

association with the DNA. The finding that phosphorylated 

particle proteins are more tightly associated with the RNA 
than nonphosphorylated species (Gallinaro-Matringe et al., 1975) 

and the fact that hnRNP particles contain an endogenous protein 
kinase (Karn et al.̂ ,1977; Blanchard et aL, 1977) has led to the 

suggestion that phosphorylation of hnRNP particle proteins might 
control pre-mRNA processing.

3.3.2 /
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3.3.2 Minor hnRNP Proteins: These minor proteins are mostly

neutral or acidic with pi values of 4.9-6.5 (Pederson, 1974a).

They appear to vary between different species (Karn et aL, 1977; 

Brunei & Lelay, 1979) and very few of them have been ascribed 

specific functions. One polypeptide of molecular weight 110000 

is found to be common to hnRNP particles and to cytoplasmic 

messenger RNP complexes (mRNP) (Schweiger & Kostka, 1980).

They suggest that this protein may be involved in the transport 

of the RNA to the cytoplasm.

3.3.3 HnRNP Proteins Associated with Poly (A) Sequences: There 

is good evidence that the 3' poly (A) tail of hnRNA forms a RNP 

particle which differs in size and composition from the remaining 

hnRNP complex. After treatment of hnRNP with mild RNase, poly (A) 

is found in separate particles which sediment at 15S (Samarina

et aL, 1968; Samarina et al., 1973). They contain at least 60% 

of the nuclear poly (A) in lengths of up to 230 nucleotides (Kish 

& Pederson, 1975) and their buoyant density is 1.36 g/cm 

(Quinlan et al., 1977) suggesting a higher percentage of protein 

than the 40S hnRNP. The 15S particles do not contain core proteins. 

Their major protein is a polypeptide of molecular weight 73-78000 

(Kish/
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(Kish & Pederson, 1975). A polypeptide of similar molecular 

weight is also found associated with the poly (A) component of 

mRNA (Blobel, 1973; Morel et al., 1973) and it has been suggested 

that a single polypeptide is common to the poly (A) segment of 

hnRNP and mRNP. However, Seytono & Greenberg (1981)suggest 

that while the polypeptide associated with poly (A) in cytoplasmic 

mRNP's has a molecular weight of 78000, that associated with hnRNA 

has a molecular weight of 60000 (p60A). Furthermore, the two 

polypeptides differ in their partial peptide maps. They suggest 

that this p60A may be the poly (A) polymerase activity present in 

hnRNP as it is the same size as the poly (A) polymerase described 

by Rose et aL, (1979).

Tomescanyi et aL, (1983) suggest that the 15S poly (A) RNP 

are composed of 90% protein and that almost the entire poly (A) 

is located on the surface of the particles. This agrees with the 

results of Quinlan et aL, (1977) who found that 15S RNP particles 

were composed of 80% protein.

3.4 Models for HnRNP Particle Structure

The earliest model of hnRNP structure was based on the inter­

action of the hnRNA with 20-40 identical polypeptides of molecular 

weight/



- 41 -

weight *40000 (informatin), (Samarina et al., 1968; Krichevskaya & 

Georgiev, 1969; Lucanidin et aL, 1972). This model was a polysome 
like structure of proteinaceous beads around which the RNA was 
wound in a manner analogous to the way in which DNA is thought to 

coil round the nucleosome (Figure 7). Martin et al., (1977) supported 
this model with a slight modification in that they say that the RNA 
linker between particles was double stranded. Acceptance of the 
heterogeneous nature of hnRNP proteins and investigation of the 

effects of increasing concentrations of NaCl, detergents and RNase 
digestion (Stevenin & Jacob, 1972, 1974; Le Stourgeon et al, 1979) 
has provided evidence for an interior location of the hnRNA. Munroe 
& Pederson (1981) shov; that messenger homologous sequences in hnRNP 

are protected by proteins from nuclease attack.

Sekeris & Niessing (1975) have suggested a model for hnRNP 
complexes which locates RNA externally as well as internally (see 
Figure 7b). This model consists of rapidly labelled hnRNA, 
responsible for formation of the polymeric structures, and a 

structural low molecular weight RNA (snRNA) on which the proteins 
are assembled to form the monomeric unit.

Heinrich & Northeman (1981) have proposed a model in which the
snRNA plus the core proteins form a ’core' complex (Figure 8),
while Stevenin et aL, (1977) have suggested the presence of 2

3 3classes of hnRNP particles with densities 1.18 g/cm and 1.28-1.3 g/cm . 
In truth, however, all of these models are based on very limited 

evidence. There is a need to raise specific antibodies, study 
crosslinking and topographical locations before any model can be 
taken seriously.

3.5/
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Models of hnRNP particles.

(a) Model of Samarina et al (1968):one main
polypeptide of molecular weight 40000.

(b) Model of Sekeris & Niessing (1975):
2 types of RNA.
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FIGURE 8; Model of hnRNP structure (Heinrich & Northeman, 1981.).
Basic proteins (molecular weight 30000-45000) (&>), bound 
to snRNA by ionic interactions. Proteins of molecular 
weight > 40000 ( H U H )  and of 115000 ( / 7 complexed with 
pre-mRNA.
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3.5 Enzyme Activities Associated with HnRNP Particles

Care must be taken in defining any activities as true hnRNP

proteins, as it is very easy to contaminate subcellular fractions.
7Three capping enzymes, guanyltransferase, N -methyltransferase 

and 2-0 methyltransferase have been found bound to hnRNP particles 
(Bajszar et al., 1978).

Jeanteur (1981) has also described an hnRNP associated methyl­

transferase activity which is capable of transferring the methyl 
group of S-adenosyl-methionine to the synthetic substrate GpppG.
The capping enzymes do not appear to be strongly or uniquely 
bound to hnRNP. Enzyme activities would have great difficulty in 
performing their catalytic function if they were a rigid and 
integral part of the particle, and might best serve their function 
if able to move from transcript to transcript.

Several RNase activities have been detected in hnRNP particles, 
including a sequence dependentendonuclease (Niessing & Sekeris, 1970) 
and a 5’ exonuclease activity (Molnar et aL, 1978), and an RNase H 
activity able to digest the RNA strand of a DNA: RNA hybrid (Kish 

& Pederson, 1975). Double stranded RNA specific RNases have also 
been described in the hnRNP of HeLa cells (Rech et al., 1979) and 

rat liver (Molnar et al., 1978). Double stranded regions, in hnRNA, 
with a hairpin-like structure have long been recognised (Ryskov 
et al., 1973), as have branched structures (Wallace & Edmonds, 1983). 
The significance of such findings has greater-meaning since the 

discovery of Lariat structures in pre-mRNA processing intermediates 
(see Section 2.1). The comigration, in density gradients, of hnRNP 

particles/
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particles and these enzyme activities may reflect a functional 

approximation of the processing enzymes and their substrates 
(i.e. hnRNA). Bachman et aL, (1984) have identified an endoribo- 
nuclease VII associated with 45S hnRNP. This enzyme has a pH 
optimum of 7.2, pi 8.5 and Bachman et aL, (1984) have suggested 
that it is one of the hnRNP proteins of molecular weight 74k.

Other RNA processing activities found associated with the hnRNA 

in hnRNP particles (Table 3) includes poly (A) polymerase (Niessing 
& Sekeris, 1972) and other homoribopolymerases capable of synthes­

ising guanosine, cytosine or adenosine polymers (Niessing & Sekeris,
1973). Niessing & Sekeris (1973) have presented evidence for 2

2+separate poly (A) polymerase activities - one dependent on Mg
2+and the other on Mn . Much of the poly (A) polymerase is only 

loosely associated with hnRNP. From its amino acid composition 
(Rose & Jacob, 1976) and antigenicity (Rose et al., 1979), it has 

been suggested that the 73-78K protein may be the poly (A) polymerase 
(Jeanteur, 1981).

Protein kinase activity has been detected in hnRNP particles 

(Blanchard et aL, 1977; Karn et aL, 1977; Periasamy et aL, 1979;
Wilks & Knowler, 1981a; Holocomb & Friedman, 1984) and it may be 
a possible regulatory enzyme (Blanchard et aL, 1977, 1978). Partial 
purification of the kinase activity (Periasamy et aL, 1979) revealed 
similarities to the nuclear kinase NK1 of rat liver. The kinase 
activity detected by Blanchard et al., (1977) and Karn et aL, (1977) 

had a pH optimum at pH 8.5 and was unresponsive to cAMP, cGMP or 

calmodulin. Wilks & Knowler (1981a) also detected a kinase activity 
associated/
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associated with hnRNP particles, but it had an optimum activity
at pH 6.5 and was stimulated by cAMP and polyamines. The kinase

24-activity detected by Holocomb & Friedman (1984) was cAMP and Ca 
independent but was stimulated by polyamines. A molecular weight 
of 48000 for the protein kinase has been determined from chromato­
graphy on Sephadex, while SDS-polyacrylamide gel electrophoresis 
suggested that the protein was a dimer with 25000 and 28000 

molecular weight subunits (Periasamy et aL, (1979).

The kinase has been shown to auto-phosphorylate hnRNP particle 

proteins (Blanchard et aL, 1978; Wilks & Knowler, 1981a). Auto­
radiographs of 2 dimensional polyacrylamide gels of hnRNP particles

32show the core proteins as strings of ( P) spots (Brunei & Lelay, 

1979; Wilks & Knowler, 1981a). The proteins labelled in vivo and 
in vitro are similar, and peptide mapping reveals that some of the 

tryptic peptides are phosphorylated (Brunei & Lelay, 1979).
Histones are able to be phosphorylated and changes in their 

level of phosphorylation have been implicated in changes in the 
condensation of chromatin (Louie & Dixon, 1973). It is therefore 
tempting to speculate that the phosphorylation of core proteins 

may control the extent to which hnRNA is available to the enzymes 

of maturation or degradation. Some support for this idea comes 
from the findings of Gallinaro-Matringe et al., (1975), who showed 

that phosphorylated hnRNP particle proteins are more tightly 
bound to the particles than non-phosphorylated species of similar 
molecular weights. The protein kinase may also play a role by 

modifying the activities of some of the other hnRNP particle enzymes. 
For example,/
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ACTIVITY SOURCE REFERENCE

Poly (A) polymerase rat liver Niessing & Sekeris (1972)
capping rat liver Bajszar et al., (1978)

RNase rat liver Niessing & Sekeris (1970)

Molnar et al., (1978)
double stranded rat liver Molnar et al., (1978)
specific RNase

HeLa Rech et al., (1979)
Protein Kinase rat liver Schweiger & Mazur (1975)

Karn et al., (1977)
HeLa Blanchard et al., (1977)

Periasamy et al., (1979)
Phosphoprotein HeLa Periasamy et al., (1977)

phosphatase

TABLE 3: Enzyme activities associated with hnRNP particles.
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For example, nuclear poly (A) polymerase is known to be phosphorylated, 
and phosphorylation has been shown to exert a positive control on 
enzymatic activity (Rose & Jacob, 1979).

The protein kinase activity in hnRNP particles is balanced by 
the presence of phospho-protein phosphatase activity (Periasamy et aL, 

1977) which is distinct from the nonspecific alkaline phosphatase 
found in nucleoli.

3.6 Association of HnRNP Particles With the Nuclear Matrix
When nuclei are lysed by methods which do not involve shear 

forces, native hnRNA is not seen as free hnRNP particles, but is 
intimately associated with the nuclear matrix (Faiferman & Pogo,
1975). The nuclear matrix is a recently identified nuclear entity, 

left behind when nuclei are sequentially extracted with high salt 

concentrations and detergents and are then treated with DNase and 
RNase (Faiferman & Pogo, 1975). It consists of a network of protein- 
aceous fibres together with nucleolar structures, nuclear pores and 
connecting lamina. The matrix is bordered by an outer nuclear 

lamina connected to the cytoskeletal framework as well as the 
inner filaments. The filaments are organised in a three dimensional 

network in which nucleoli are enmeshed (Capco et ah, 1982). The 
matrix is composed of 97% protein (Peters & Cumings, 1980), and is 
almost devoid of DNA.

If the RNase step is omitted during the isolation, the matrix 

is strongly associated with hnRNA or hnRNP (Maundrell et aL, 1981). 

Results show a 200-300$ granular component superimposed on the 50$ 

fibrous network. The hnRNA is not an integral part of the filaments 
since/
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since RNases can digest the majority of the hnRNA without affecting 

the matrix architecture (Miller et al>, 1978). Protein-protein and 
protein-RNA are important interactions which maintain the RNP 
complexes attached to the nuclear skeleton (Miller et aL, 1978).
Van Eekelen & van Venrooij (1981) have shown, by crosslinking and 
RNase studies, that the hnRNP particles of HeLa cells are attached 
to the nuclear matrix via two proteins of molecular weights 41500 

and 43000 which correspond to the C group proteins (Beyer et aL, 
1977). Maudrell et al», (1981) have suggested that the core proteins 

are not involved in association with the matrix, as in a high salt 
extraction of the nuclear matrix no core proteins remain associated 

with the hnRNA: matrix complex. Only 2 proteins remained associated 
with the hnRNA when the matrix was isolated in this way. One was 

a 43000 molecular weight protein and the other, of molecular weight 
73000, migrated with the poly (A) binding protein. This, plus the 

evidence that poly (A) sequences are left in the matrix of HeLa cells 
after RNase digestion (Herman et aL, 1978), has led to the suggestion 
that hnRNP might be bound to the matrix via a poly (A) ribonucleo- 

protein complex (Maundrell et al>, 1981).

There is a growing body of evidence that the nuclear matrix may 
be closely associated with both transcriptional and post-transcrip- 
tional processes.

In HeLa cells infected with Adenovirus 2, where the virus 

specific hnRNA associates with the nuclear matrix, crosslinking 

with U.V. light shows that all viral poly (A) mRNA molecules (i.e. 
precursors,/
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precursors, products and processing intermediates) are crosslinked 
to 2 host cell proteins of molecular weight 41500 and 43000 

(Mariman et al>, 1982). This supports the concept that the nuclear 
matrix may function in the localisation and structural organisation 
of hnRNA during processing. Gallinaro et aL, (1983) have compared 
the nuclear matrix and hnRNP particles to establish whether pre-mRNA 

is associated with the same constituent in both structures. They 
propose that the results are compatible with the idea that the salt 

resistant complexes of hnRNP constitute the fibrils associated with 
pre-mRNA in the nucleoplasmic matrix. They suggest that the fibrils 

may be the basic unit of splicing and their organisation in the 
matrix might provide the spatial configuration necessary for regulation. 
DNA is thought to be arranged in supercoiled loops anchored to the 
matrix and actively transcribed genes such as the ovalbumin gene of 

chicken oviduct cells are preferentially associated with the nuclear 
matrix, (Robinson et aL, 1982). Ciejek et alL, (1982) have shown 
that all precursors to ovalbumin and ovomucoid mRNA's in chick 
oviduct cells are associated with the nuclear matrix and have 

suggested that the matrix may be the structural site for RNA 
processing.

Busch & Reddy (1982) proposed that snRNP molecules are poly­
merised on to moving elements of the nuclear matrix. The sites 
proposed are assembly points for U-series snRNP-hnRNP complexes 
which then migrate to the envelope chromatin where processing occurs.
As a/
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As a result of processing the mRNP particles are released into 

the cytoplasm and the snRNP particles are recycled.

3.7 Regulation of HnRNP Particle Protein Synthesis
The major core proteins, which are thought to be the structural 

proteins of the particles, are highly conserved between species 
(Karn et al., 1977; Pederson, 1974a) while some of the other hnRNP 
particle proteins (molecular weights 40000-120000) appear to be 

tissue specific (Karn et aJL, 1977; Brunei & Lelay, 1979).

Pederson (1974b) has shown that the administration of hydro-
3cortisone caused an increased incorporation of ( H) orotate into 

rat liver hnRNP particle hnRNA, accompanied by an increased 
synthesis of acidic hnRNP particle proteins. The proteins which 
respond are likely to be concerned with the post-transcriptional 
event, namely assembly and processing of hnRNP particles. Similar 

increased synthesis of proteins has been observed by Stanton & 
Holoubek (1977) in human amnion cells infected with poliovirus, 
and in stimulated human lymphocytes (Henniki, 1975). In HeLa cells 

and HeLa cells infected with Adenovirus 2, the hnRNP particles shov; 
the same general characteristics except that in infected cells the 
hnRNP particles contain 6 additional polypeptides (Gattoni et aL, 

1980).
Rats fed the carcinogenic dye 3' methyl-4-dimethylaminoazo- 

benzene, have altered protein compositions in 30S particles, and 
lose one major protein (Patel & Holoubek, 1976). In comparing 

normal liver nuclei and hepatoma nuclei hnRNP particles, a 60-70% 

decrease/
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decrease in the relative amount of a polypeptide of molecular 

weight 125000 was found in hepatoma cells (Albrecht & Van Zyl, 1973).
HnRNP particles from adrenalectomised rats show a decrease in 

protein kinase activity and many of the proteins are no longer 
phosphorylated (Knowler & Wilks, 1980). Administration of dexa- 

methasone, a synthetic glucocorticoid, to adrenalectomised rats,
!

restores their pattern of phosphorylation to that of control 
animals.

HnRNP particles isolated from Drosophila cells heat shocked at 
37°C, show an altered protein composition (Kloetzel & Bautz, 1983). 
HnRNA synthesis continues at a normal rate but hnRNP assembly is 

incomplete (Mayrand & Pederson, 1983). Mayrand & Pederson suggest 
that this incomplete assembly leads to an abortive processing of 
some precursors and favours processing of others whose maturation 
is less dependent on normal RNP structure. It is clear that the 
protein component of hnRNP particles can vary with the cellular 
environment thus strengthening the suggestion that they play a 

role in post-transcriptional processing of mRNA and its regulation.

4. Protein Kinases

The results section describes an analysis of protein kinase 
activity in hnRNP particles of rat liver. Because it is possible 
that such enzymes have a role in control of mRNA maturation, the 
introduction concludes with a short review of the known precedents 

for protein kinases having a role in the control of cellular events.
Protein/
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Protein phosphorylation is now recognised to be a general 

mechanism by which intracellular events in mammalian tissues are 

controlled by external stimuli, and the idea that different 
cellular functions are controlled by common protein kinases and 
protein phosphatases is gaining acceptance.

For protein phosphorylation-dephosphorylation (Figure 9) reactions 

to function in regulation, it is apparent that appropriate signals/ 
should bring about changes in the relative concentrations of the 
phosphorylated and nonphosphorylated forms of the protein substrates. 

This could occur through control of the protein kinase step,the 
phosphoprotein phosphatase step, or through the simultaneous 

regulation of both reactions. These controls could involve rapid 
or immediate responses, due to fluctuations in the levels of effector 
molecules (i.e. cAMP, cGMP, calcium) or they might be mediated by 
adaptive changes that alter the ratio of protein kinase to phospho­
protein phosphatase.

A number of protein kinases are regulated through their direct 

interaction with specific regulatory agents.

Cyclic AMP dependent protein kinase (cAMP-PrK) is a multi­
subunit enzyme that normally exists as an inactive complex in the 
absence of cAMP. There are at least 2 classes but all have the 
same general subunit structure and obey the same general mechanism 
of activation. The inactive holoenzyme is a tetramer containing 
2 regulatory (R), and 2 catalytic (C) subunits (Rubin & Rosen, 1975).

R2C2 + 4 cAMP R2 - (cAMP) 4 + 2C

INACTIVE
HOLOENZYME

ACTIVE 
CATALYTIC SUBUNIT

cAMP/
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Protein

Protein

PROTEIN
KINASE

nNTP ------------- ^  Protein - P + nNDP-----  n

P + Ho0 -  ==* Protein + nPin 2

PHOSPHOPROTEIN
PHOSPHATASE

FIGURE 9: Phosphorylation-dephosphorylation reactions.
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cAMP promotes dissociation of the holoenzyme producing a fully 

active C subunit. cAMP-PrK Type I is found predominantly in 
skeletal muscle while Type II is found predominantly in cardiac 
muscle (Rubin et al«, 1972). The differences between the 2 types 
lie in the R subunits while the C subunits are identical (Hofman 

et aL, 1975).
cGMP dependent protein kinase (cGMP-PrK) is made up of 2 '

identical subunits and the cGMP binding and catalytic activity 
reside on a single polypeptide chain (Gill et al., 1977). cGMP-PrK 
has similar but not identical structural determinants of specificity 

to cAMP-PrK (Lincoln & Corbin, 1978). Lincoln & Corbin (1978) 
suggest that the 2 kinases have overlapping substrate specificities 
in vitro.

The amino acid residues to which the phosphoryl group is 

transferred is usually serine or threonine but recently phospho- 
tryosine has also been detected (Eckhart et al., 1979) in the trans­

forming proteins of tumour viruses. Tyrosine protein kinase 
activity has been found in rat spleen and other tissues (Swarup 

et aL, 1983) and a primary effect of 2 cellular growth factors is 

to activate intracellular tyrosine protein kinases (Ushiro et al., 1980).
It is important to consider criteria that have to be satisfied 

to establish that a given enzyme undergoes physiologically significant 
phosphorylation-dephosphorylation:-

1. Demonstration that the enzyme can be phosphorylated

in vitro at a significant rate by an appropriate protein 

kinase and dephosphorylated by a phosphoprotein phosphatase.

2./
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2. Demonstration that the functional properties of the 

enzyme undergo meaningful changes that correlate with 

the degree of phosphorylation.
3. Demonstration that the enzyme can be phosphorylated 

and dephosphorylated in vivo or in the intact cell 
and that this accompanies functional changes.

Discovery of enzyme regulation by reversible phosphorylation 
stems from the discovery that neural and hormonal control of 

glycogen metabolism in skeletal muscle was mediated by changes in 
the phosphorylation state of glycogen phosphorylase (Krebs et at, 
1956), phosphorylase kinase (Krebs et aL, 1959') and glycogen 
synthetase (Friedman et at, 1963).

Hormones bind to receptors on the cell membrane activating 
formation of cAMP which in turn activates the protein kinase 

(Figure 10). The cAMP-PrK then catalyses the phosphorylation of 
phosphorylase kinase converting it into its active form. The active 
phosphorylase kinase then phosphorylates phosphorylase_b, the 

modified enzyme being the active phosphorylase a which is responsible 
for glycogen breakdown. At the same time that cAMP turns on phos­
phorylase _a through this cascade mechanism, it activates the cAMP-PrK 
to phosphorylate the active form of glycogen synthetase but in this 
case phosphorylation causes inactivation thus inhibiting glycogen 
synthesis. Thus the 2 opposing pathways of glycogenolysis and 

glycogen synthesis may be regulated in an synchronous manner.

A number of other enzymes are regulated by cAMP-PrK in vitro
and/
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and are likely to be physiological substrates for this enzyme. 

cAMP-PrK is a highly specific enzyme and phosphorylates few 
proteins at significant rates.

The activation of triglyceride lipase (Steinberg, 1976) and 
the inactivation of glycerol-phosphate acyltransferase (Nimmo, 1980) 
by phosphorylation by cAMP-PrK may coordinate triglyceride break­
down and synthesis in adipose tissue in response to Adrenalin. The 

activation of cholesterol esterase increases the pool of cholesterol 

in the adrenal cortex in response to ACTH (Boyd et aL, 1980). Phos­
phorylation of acetyl CoA Carboxylase decreases its activity (Hardie 
et aL, 1980), while phosphorylation also inhibits pyruvate kinase
and increases the K for phosphoenolpyruvate and makes it morem
sensitive to inhibitors (Engstrom, 1980).

Phosphorylation of troponin I in cardiac muscle fibres decreases
2+the affinity of troponin-C for Ca and may contribute to the 

adrenalin induced relaxation of cardiac muscle (England, 1980). 
Phosphorylation of phospholamban in cardiac sarcoplasmic reticulum 

is associated with activation of the sarcoplasmic reticulum ATPase 
and increases Ca^+ uptake (England, 1980).

It was perhaps fortunate that the first example of enzyme 
regulation by reversible phosphorylation (activation of glycogen 
phosphorylase) should involve phosphorylation at a single site by 
a single protein kinase since it greatly facilitated elucidation of 
the complex effects of covalent modifications on the kinetic 
properties. This situation is relatively uncommon however and 

'multi-site' phosphorylation, which increases the regulatory 
potential/
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potential of enzymes, is turning out to be the rule rather•than 

the exception. Phosphorylation at one site may amplify or even 
antagonise effects of phosphorylation at other sites or alter the 

rates at which they are phosphorylated or dephosphorylated. 
Phosphorylation at different sites by different protein kinases 

enables enzymes to respond to several physiological stimuli and in 
such situations interactions between phosphorylation sites may 

represent the mechanism by which one stimulus influences another.

phosphorylated at 2 sites by cAMP-PrK, one on the subunit and one on 
thesubunit and activation correlates with the phosphorylation of 
the A7 subunit (Cohen, 1973).

Glycogen synthetase is phosphorylated by 5 different kinases.
The general effect is to decrease activity but different phosphory­
lation sites have different activities. Phosphorylation increases 
the Km for substrate, decreases the Km for inhibitors and increases 

the Ka for activators (Roach, 1982). Multiple site phosphorylation 

produces cooperative interactions among the phosphorylation sites 
(De Paoli-Roach et aL, 1983).

Pyruvate dehydrogenase is inhibited by phosphorylation by a 
cAMP independent protein kinase. Pyruvate dehydrogenase is a multi­
enzyme complex and is phosphorylated on the Ct subunit of the pyruvate 

decarboxylase component causing inactivation. Phosphorylation also 

occurs at other sites but their significance is not known (Nimmo & 
Cohen, 1977).

Phosphofructokinase/

Phosphorylase kinase is composed

Phosphorylase kinase is
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Phosphofructokinase is activated via phosphorylation by a 

cAMP independent protein kinase (Brand,& Soling, 1975). Histone HI is phos-! 
phorylated by cAMP-PrK (Langan, 1969) and is also phosphorylated by 
another kinase at distinct sites although the role of the phosphory­
lation is not very clear.

Calcium ions can also influence the activity of protein kinases.
2+Many of the biological actions of Ca are mediated by the Ca-binding 

protein calmodulin. The ability of calmodulin to function as a 
Ca-dependent regulator of enzyme activity is a consequence of 

conformational changes following its binding of Ca^+ which leads 
to the formation of specific interaction domains.

In mammalian cells there is only one catalytic subunit of cAMP-PrK 
that phosphorylates a variety of proteins, whereas many different 
protein kinases, with restricted substrate specificities, are 

activated by calmodulin. The cAMP and calmodulin pathways are
2+closely interlinked and it has been suggested that cAMP and Ca - 

calmodulin dependent protein kinases phosphorylate the same proteins, 

although at distinct sites, e.g. glycogen synthetase'(Payne & Soderling, 1980) 
and phospholamban (Le Peuch et aL, 1979).

The ac(tion of many hormones and neurotransmitters depends on the 

hydrolysis of membrane phosphoinositides (Nestler & Greenberg, 1983).
The phosphoinositides breakdown rapidly in response to receptor 
mediated activation (I-lajerus et al., 1984) to give diacylglycerol 

and inositol -1, 4, 5 triphosphate (IPg) which function as second 
messengers to activate two independent but parallel signal pathways 

in a synergistic manner. These in turn stimulate a wide variety of 
cellular/
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cellular processes. Diacylglycerol functions within the plane of

the membrane to increase protein phosphorylation via activation
of Ca-dependent protein kinase C. It does this by increasing its

affinity for Ca^+ (Nishi^uKa, 1984), while 1P^ is released into
2+the cytosol to mobilise Ca from intracellular stores (Berridge, 

1984; Nishujuha, 1984). This synergistic role is found in 
catecholamine release from adrenal medullary cells (Knight Bakef  ̂

1983), aldosterone secretion from adrenal glomerulosa cells 

(Kojima et al«, 1983) and insulin release from the pancreas 

(Zawalich et al>, 1983).
Tumour promoting esters such as TPA (tetradecanoyl phorbol 

acetate) have been shown to stimulate protein kinase C in the same 
way as diacylglycerol (Majerus et aL, 1984) and the results suggest 

that the tumour promoters are intercalated into the membrane to 
modify the microenvironment thus leading to activation of the 
kinase (Nishijuha, 1984).

Kinase activity has also been found associated with the 
receptors for growth hormone and insulin (Strosberg, 1984). These 

receptors possess an intrinsic tyrosine specific protein kinase 

which may mediate the activity of the'peptide factors (Carpenter 
& Cohen, 1984). The ligand binds on the outside of the cell 
membrane while the kinase domain is on the inside (Hunter, 1984), 
therefore the kinase is probably activated by a conformational change 
in the receptor. The binding of epidermal growth factor (EGF) to 

its receptor results in the phosphorylation of a number of endogenous 
membrane/
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membrane proteins including EGF receptor (Cohen et al., 1980)

(Figure 11). Tumour promoters block this hormonal stimulated 

tryrosine phosphorylation of the EGF receptor although they do 
not block EGF binding to the receptor. This again suggests a 
role for protein kinase C (Friedman et al., 1984) especially as 
recent evidence suggests that the major receptor for tumour 
promoting agents and the protein kinase C copurify (Ashen del 
et aly, 1983; Hunter 1984).

Transforming genes of retroviruses display homologies with a 
class of cellular genes that are normally concerned with regulating 
cell growth. Evidence suggests that some of these oncogenes code 
for growth factors or their receptors. Growth factor receptor and 

viral transforming proteins both have tyrosine kinase activity, 
and in both cases this tyrosine kinase activity is associated with 
cell proliferation. The mechanism by which the signal is transmitted 
from the receptor into the cell is unknown but is likely to involve 
tyrosine kinase phosphorylation of cytoplasmic proteins. Barkerkcw 

& Bauer (1984) have demonstrated the differential expression of 

the src gene product (the normal cellular analogue of the trans­
forming protein of Rous sarcoma virus) and its phosphokinase 
activity by showing an age and tissue dependent difference.

New examples of enzymes undergoing phosphorylation-dephosphory- 
lation reactions are being revealed at a steady rate. The recent 

increase in knowledge concerning these enzymes and their substrates 

is leading to a more detailed understanding of the regulation of 

many/
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Calcium influx
(IP3)

Diacylglycerol

Protein Kinase C 
(inactive)

Tumour Promoters

Protein Kinase.C 
(active)

\l/
Protein Kinase C Mediated Phosphorylation

Inhibition of 
EGF binding to receptor

1
Inhibition of 

Tyrosine Kinase activity

EGF + R EGF-R 'sT EGF-R—P(Tyr)

FIGURE 11: Proposed model for role of EGF-receptors in the
activation of Protein Kinase C.
(EGF : epidermal growth factor 
R : membrane receptor

EGF-R-P(Tyr) : Tyrosine phosphorylated EGF Receptor
+ : stimulation 

- : inhibition)
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many physiologically important processes. Current evidence suggests 

that there is an integrated network of regulatory pathways, mediated 
by reversible phosphorylation, that allows diverse cellular events 
to be controlled by neural and hormonal stimuli.
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MATERIALS.

1. Suppliers
Unless otherwise specified, all chemicals used were, as far as 

possible, AnalaR Grade supplied by B.D.H. Chemicals Ltd. Where 
chemicals and equipment were obtained from other sources, this is 
indicated in the text and a list of the names and addresses of 

the suppliers is given below.

B.D.H. Chemicals Ltd., Poole, Dorset, U.K.
Beckman Spinco Ltd., Pala Alto, California, U.S.A.
Bio-Rad Laboratories Ltd., Watford, Herts., U.K.
Corning Glass Works, New York, U.S.A.
Eastman-Kodak Co., Rochester, New York, U.S.A.

Jencons Ltd., Hemel Hempstead, Herts., U.K.
Koch-Light Laboratories, Colnbrook, Bucks., U.K.
L.K.B. Instruments Ltd., South Croydon, Surrey, U.K.

Pharmacia Fine Chemicals AB, Uppsala, Sweden.
Amersham International pic, Amersham, Bucks., U.K.
P.L. Biochemical Inc., Wisconsin, U.S.A.
Schleicher & Schull, Dassel, W. Germany.

Sigma (London) Chemical Co. Ltd., Kingston-upon-Thames, Surrey, U.K. 
Whatman, Cambridge, England, U.K.

2. Experimental Animals

Male albino rats, derived from the Wistar Strain, were bred in 

the departmental animal house. All animals were 200-250g in weight 
and/
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and were starved overnight prior to death.

3. Glassware

Glass homogenisers with motor driven Teflon pestles were 
purchased from Jencons Ltd., and Corex glass centrifuge tubes 
were obtained from Corning Glass Works. Pipettes, glass centri­
fuge tubes, test tubes and other glass items were sterilized at 

160°C for at least 6 hours before use. Plastic tubes and most 
solutions were autoclaved.

Cellulose nitrate tubes for ultracentrifugation were obtained 
from Beckman Spinco Ltd., and were rinsed in sterile distilled 
H^O before use.

4. Radioisotopes and Materials for Liquid Scintillation Counting
A. Amersham International pic, Amersham:

[ V  - 32P [] ATP
£j32p̂ j orthophosphate

B. Koch-Light Laboratories Ltd.

2,5 diphenyloxazole (PPO) - Scintillation Grade 

Toluene - AnalaR Grade

5. Electrophoresis
A. B.D.H. Chemicals Ltd.

Acrylamide - electrophoresis grade 

Bisacrylamide - electrophoresis grade 
Coomassie Blue R250 
Urea - AristaR Grade 

SDS/
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SDS - electrophoresis grade 

Ammonium persulphate - AnalaR Grade
B. Koch-Light Laboratories Ltd.

Bromophenol Blue
TEMED

Mercaptoethanol

C. Pharmacia
Ampholines - 40% solution pH range 3.5 - 10

6. Metabolites

A. Sigma Chemical Co. 
cyclic-3'-5'-AMP 

cyclic-31-51-GMP
B. P-L Biochemicals Inc.

ATP - sodium salt

7. Gel Exclusion Chromatography

A. Bio-Rad Laboratories 

Bio Gel A - 0.5m

B. Pharmacia
Sephadex G-100 - fine

8. Ion Exchange Chromatography : Whatman
Phosphocellulose - Pll 

DEAE-Cellulose - DE52 
CM-Cellulose - CM52

9./
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9. Protein Kinase Activity
A. Schleicher & Schull 

Nitrocellulose filters - 25mm, 0.45jj
B. Sigma Chemical Co.

Casein - hydrolysed and partially dephosphorylated 
Histone - Type II (Calf thymus)
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METHODS.
1. Preparation of Nuclei

Rat liver nuclei were prepared by modification of the method 
of Chauveau et_al., 1956. Livers of rats (200-250g) were finely 

chopped with dissecting scissors at 4°C and then homogenised at 
20ml per liver in 2.3M sucrose, lOmM MgCl^ using 3 strokes of a 
Potter-Elvehjem glass/teflon homogeniser. The resulting suspension 

was filtered through 4 layers of muslin and the filtrate layered 

over 7ml cushions of 2.3M sucrose, lOmMMgCl^ in SW27 centrifuge 
tubes. The homogenate was then centrifuged at 40000 x g^  for 
1 hour in a Beckman SW27 rotor. The supernatant was removed 
leaving a nuclear pellet.

2. Preparation of hnRNP Particles

The extraction method of Samarina et al., 1968 was employed.
The nuclear pellet was resuspended in STM7 buffer (lOOmM NaCl, 
lOmM Tris HC1 pH 7.0, ImM MgCl^). The nuclear suspension was 
gently stirred at 0°C for 15 minutes and the nuclei recovered 

by centrifugation at 6000 x g^  for 10 minutes in a Sorval HB4 

rotor. The supernatant was discarded and the residual nuclei were 
suspended in the same buffer at pH 8.0 (STM8), stirred at 0°C for 
1 hour and centrifuged to recover the nuclei. This was repeated 
twice more, pooling the pH 8.0 extracts. This extract was then 
applied to the top of 38ml 15-30% sucrose density gradients, which 

were then centrifuged at 78000 x g^  in a Beckman SV/27 rotor for 

15-17 hours. Completed gradients were then harvested from the 
bottom by suction through a Sigma peristaltic pump via a narrow 
tube introduced from the/
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the top of the gradient. ^260nm Was con^^nuous^y nionitored by 
passing the eluate through the flow cell of a Gilford 240 spectro­

photometer. The portions of the gradients containing hnRNP particles 
were collected for further analysis.

3. Fractionation of HriRNP Particle Proteins

Many chromatographic fractionation techniques were tried. Some 
of these are described in the relevant section of results. The 
methods presented here are limited to those that constitute standard 
methods employed.
3.1 Gel Exclusion Chromatography

This was done using either BioGel A - 0.5m (Bio Rad Ltd.) or 

Sephadex G-100. For gel filtration of hnRNP particles on BioQel A - 

0.5m, an all glass Pharmacia column of internal diameter 3cm, was 
filled to a height of 30cm with degassed BioGel A - 0.5m, pre­
equilibrated at 4°C with STM8 (lOOmM NaCl, lOmM Tris HC1 pH 8.0, ImM 

MgCl^). The column was arranged with the entry port within 0.5cm
3of the surface of the gel and a speed flow of 10cm /hour set on a 

peristaltic pump which was placed at the exit port. HnRNP particles, 

suspended at lmg/ml in STM8, were applied to the surface of the 
column. •

HnRNP particles treated with 1M NaCl were subjected to gel 
filtration on Sephadex G100. An all glass column of internal 
diameter 2.5cm was filled to a height of 85cm with degassed Sephadex 

G-100, pre-equilibrated with lOmM Tris HC1 pH7.5, ImM EDTA, 1M NaCl,
- 3The column was run at a speed of 10cm /hour

set on a peristaltic pump placed at the exit port.

On/
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On both columns the void volume of the column was determined 

by using blue dextran and fractions were collected in a LKB 
automatic fraction collector.

3.2 CM - Cellulose Fractionation

This was done by disrupting purified hnRNP particles with 1M 
NaCl and adding a known amount of protein to CM-cellulose in 

dialysis tubing and dialysing to reduce the salt concentration.
The slurry was collected in a test tube, spun at 2500rpm for 10 
minutes and the 'supernatant' collected. Sequential elution of 
the proteins was carried out by bringing the slurry to 250 mM with 
respect to NaCl, mixing for 5 minutes and collecting the super­
natant. This was repeated with 500mM, 750mM, 1M, 2M NaCl and 6M urea.

4. Techniques used in the Analysis of hnRNP Particles

4.1 SDS-Polyacrylamide Gradient Gel Electrophoresis
This was performed using modifications of the method of 

Jeppeson (1974). An all glass apparatus as described by O'Farrell 

(1975) was used, and consisted of 2 glass plates (one notched and 

the other plain), two 1mm thick perspex spacers, one piece of 

compressible silicon tubing and 4 large bulldog clips. A second 

rubber tube was placed inside the sealing tube, through which the 
polymerising mixture was poured from a perspex gradient maker. 17mls 
of a 5% w/v acrylamide solution (acrylamide: bis-acrylamide ratio of 
30:1 in 0.375M Tris HC1 pH8.8, 20% w/v sucrose, 1.2% w/v SDS), plus

15 ̂Jil 10% v/v TEMED was placed in the chamber nearest the exit.

17mls of a 15% w/v acrylamide solution (acrylamide:bis-acrylamide 
ratio of 30:1 in 0.375M Tris HC1 pH8.8, 10% w/v sucrose, 1.2% 
w/v /
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w/v SDS) plus lOpl 10% v/v TEMED was placed in the other chamber. 

2Qpl 10% w/v (NH^)^ SOg was added to each chamber. The gel was then 
overlaid with isobutanol. A 3% w/v stacker in 0.12M Tris HC1 pH6.8, 

0.1% w/v SDS was allowed to set round a teflon well-forming comb. 
Electrophoresis was performed using SDS-gel running buffer (25mM 
Tris, 192mM glycine pH8.8, 10% w/v SDS) at 35mA until the bromo- 
phenol blue marker was 1cm from the bottom of the gel. Completed 
gels were placed in 50% v/v methanol, 10% v/v acetic acid containing 
0.25% w/v Coomassie brilliant blue R250 and simultaneously fixed and 
stained overnight at room temperature. Destaining was performed in 

50% v/v methanol, 10% v/v acetic acid until the background was 
clear. The gels were then dried on to 3mm filter paper under vacuum 

on a Bio Rad gel drier.

4.2 Two-Deminsional Gel Electrophoresis

4.2.1 NEPHGE: Non-equilibrated pH gradient electrophoresis gels 
were prepared as described by O'Farrell et al., (1977). Pyrex 
tubes of internal diameter 3.5mm and length 12cm were prepared for 

electrophoresis by washing with Decon followed by thorough washing 

in water and air drying. One end of each tube was sealed with a 
rubber cap and the tubes were.arranged in a vertical position.

The gel solution was prepared by mixing 5.5g AristaR urea,
1.33ml of a mixture of 28.38% w/v acrylamide and 1.62% w/v bis- 
acrylamide, 2mls 10% w/v N-P40 (Nonidet P40), 2ml H^O and 0.5ml 
40% w/v ampholines (pH3.5-10). The gel mix was degassed and 

15^1 10% w/v (NH^J^S^Og and l'Ojul TEMED added. The polymerising 

mixture was then poured into the gel tubes to a height of 10cm 

via a teflon cannula. Gels were overlaid with 20^1 distilled 
water/
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water and left for 2 hours.

NEPHGE gels were loaded anodically and electrophoresis was 

performed using a disc electrophoresis apparatus. lOmM phosphoric 
acid was placed in the upper chamber (anode) and 20mM NaOH in the 
lower. Electrophoresis was carried out for 4 hours at 500 volts 

(2000 v.hr). Protein preparation (either lyophilisates or acetone, 

ethanol or TCA precipitates) were dissolved at 5-15mg/ml in lysis 
buffer (9.5M urea, 5% v/v mercaptoethanol, 2% w/v N-P40, 2% w/v 
ampholines pH3.5-10). Between 100-500pg of protein was applied to 

the gel. After electrophoresis the gels were incubated for 10 
minutes in SDS sample buffer (2.3% w/v SDS, 5% v/v mercaptoethanol, 
10% v/v glycerol, 62.5mM Tris HC1 pH6.8, 0.01% w/v bromphenol 
blue). If the gels were not to be run in the second dimension 
immediately, they were stored in sample buffer at -20°C.
4.2.2 Second dimension fractionation: SDS polyacrylamide gel 
electrophoresis was performed essentially as described by he 

Stourgeon & Beyer (1978). An all glass slab gel apparatus as 

described by O'Farrell (1975) was used and consisted of 2 glass 

plates (one notched, the other plain), two 1mm thick perspex 

spacers, one piece of compressible silicon tubing and 4 large 
bulldog clips.

For an 8.75% w/v polyacrylamide gel, 18ml distilled H^O, 10ml 
resolving gel buffer (1.48M Tris HC1 pH8.8, 0.25% w/v SDS), 11.4mls 

acrylamide solution (30% w/v acrylamide, 0.8% w/v bisacrylamide) 
were mixed, degassed and polymerisation initiated by the addition 
of 150^1 10% w/v (NH^J^S^Og and lOjil TEMED. The mixture was then 

rapidly pipetted into the assembled apparatus. Gels were overlaid 
with/
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with isobutanol to provide a level gel surface. Pre-incubated 

first dimension gels were applied to the polymerised slab gel 
by squeezing them into direct contact with the gel surface 
(Garrels, 1979). Electrophoresis was performed using SDS gel 
running buffer (25mM Tris, 192mM glycine pH8.8, 10% w/v SDS) at 

35mA/gel until the bromophenol blue marker was 1cm from the bottom 
of the gel. Completed gels were stained, destained and dried as 
for the SDS gradient gels.

4.3 SDS-Polyacrylamide Gel Electrophoresis

This was performed using the slab apparatus as described by 

O'Farrell (1975). An 8.75% w/v polyacrylamide gel was prepared 
as for the second dimension gels (See Methods 4.2.2). A 3% w/v 

stacking gel was prepared by mixing 6.5ml disilled H^O, 2.5ml 

stacking gel buffer (0.536M Tris HC1 pH6.8, 0.25$>w/v SDS), 1ml 
acrylamide (30% w/v acrylamide, 0.8% w/v bisacrylamide). The 
mixture was degassed and polymerisation initiated by adding lOjul 
10% w/v (NH^J^S^Og and lOpl TEMED and was poured round a teflon 
well-forming comb. Protein samples were dissolved in sample 
buffer (0.1M sucrose, 0.1% w/v SDS, 1% v/v mercaptoethanol, 0.2M 
Na^HPO^, 0.2M NaH^PO^, 0.05% w/v bromophenol. blue).

4.4 Non-denaturing Polyacrylamide Gel Electrophoresis
The apparatus used was the same as that used for the second 

dimension gels (4.2.2). For a 7% w/v polyacrylamide gel, 6mls of 
solution A (36.3g Tris, 48ml 1M HC1, 300̂ il TEMED), 12mls solution B 

(28% w/v acrylamide, 0.74% w/v bisacrylamide) and 6mls distilled 

H^O were mixed and degassed. Polymerisation was initiated by 
adding/
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adding 24mls of a (NH^J^S^Og solution (1.4mg/ml). Gels were over­
laid with isobutanol and left for one hour to set. 1% w/v agarose 

stacker in 10.7mM Tris was then poured. Protein samples were 
brought to 10% w/v glycerol before being loaded. Electrophoresis 
was performed using 10.7mM Tris, 76.8mM glycine, 0.1% v/v mercapto­
ethanol at lOmA/gel. Gels were fixed and stained in 50% v/v 

methanol ,10%v/v acetic acid containing 0.1% w/v Coomassie blue R250 

for one hour at 40°C. The gels were then destained in 10% v/v 

methanol, 10% v/v acetic acid.

4.5 Protein Kinase Assay
This was performed using a modification of the method of Kish 

and Kleinsmith (1974). The assay volume of 500jul contained 7.5pmoles 
Mg Acetate, 400pl sample in 50mM MOPS pH6.5, lOOpg casein and 0.Inmoles

initiation of the reaction with addition of Mg Acetate. The assay 

v/as incubated at 30°C for 10 minutes and was terminated by the 

addition of 3mls of ImM ATP to 150pl of the assay volume. Then 3mls 

of ice cold 10% w/v trichloroacetic acid, 3% w/v Na pyrophosphate 

was added and the mixture filtered through nitrocellulose membrane 
filters (0.45pm) presoaked in ImM ATP. Each filter was washed twice 

with 5ml of 5% w/v trichloroacetic acid, 1.5% w/v Na pyrophosphate.
The filters were oven-dried and counted by liquid scintillation counting 
in 5mls of toluene/PPO.

4.6 Kinase Detection in Non-denaturing Polyacrylamide Gels

Non-denaturing gels with 1% w/v agarose stackers were prepared 
and run as described in Methods (4.4). Protein kinase activity was 
assayed/

lOOmCi/mmol. All tubes were held on ice prior to
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assayed in the gel by the method of McClung & Kletzien (1981).

After electrophoresis the gels were soaked in 20mM Hepes pH7.2 
at 30°C for 30 minutes with 2 changes of buffer. The buffer was 
removed and the gels were soaked in 20mM Hepes pH7.2 containing 
Histone or casein at 3-7.5mg/ml. After 30 minutes at 30°C the 

gels were incubated at 37°C for 20 minutes in 20mM Hepes pH7.2, 
lOmM MgCl^, ImM EGTA, ImM dithiothreitol, and IjjiM ATP (approximately)

0.15mCi [*- 320  ATP per gel per 60mls buffer). Gels were rinsed 
in 5% w/v ice cold trichloroacetic acid and left overnight ir 1L 5% 

w/v trichloroacetic acid with gentle agitation, washed for 7-8 hours 
in 5% w/v trichloroacetic acid and left overnight in 10% w/v acetic
acid. The gels were dried on to 3mm filter paper under vacuum on
a Bio Rad gel drier and autoradiographed using Kodak X-Omat H film.

5. Protein Estimation
5.1 Bradford Protein Assay

This assay is based on the binding of Coomassie Blue G250 to 
protein and the resulting spectral shift. The assay solution was 
prepared by dissolving lOOmg G250 in 50mls 95% w/v ethanol. lOOmls 
85% w/v phosphoric acid was added and the solution filtered to 

remove any insoluble material and then made up to 1L. This solution 
is stable for 5-10 weeks if stored at 4°C. The assay consisted of 

lml of solution plus 20pl of the sample to be tested. The O.D. was 
measured at 595nm and the concentration of protein read directly 

from a standard curve which was constructed using BSA.

5.2 Bramhall Protein Assay

This assay was used when the protein samples were in buffer 

containing/
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containing high concentrations of NaCl. Samples were blotted on 
to 2.5cm Whatman No. 1 filter discs, dried, washed in cold 7.5% 

w/v trichloroacetic acid and heated to 80°C for 30 minutes in 7.5% 

w/v trichloroacetic acid. The filters were then washed in 2 changes 
of 7.5% w/v trichloroacetic acid and stained in lOmg/ml Xylene 

Brilliant Cyanin G in 7% v/v acetic acid at 50°C for 15 minutes.

Excess dye was removed with several washings with hot (50°C) 7% v/v acetic 
acid until the background was almost white. The filters were then 
washed in 50% v/v methanol, 10% v/v ether, then washed in ether, 

dried and each filter added to 5mls of destaining fluid (66mls 
methanol, 34mls H^O, 1ml 0.88% ammonia). The O.D. of the solution 
was then measured at 610nm, and the concentration of protein read 
directly from a standard curve which was constructed using BSA.

6. Microdialysis

For dialysis of very small volumes (less than 200pl), where 

conventional dialysis is inadequate, the sample was placed in an 
Eppendorff reaction tube which has had the centre of its cap 

removed. A piece of dialysis tubing was placed over the top of 

the tube and it was recapped so that the semi-permeable membrane 

replaced the cut out cap. The Eppendorffs were briefly centri­
fuged in an inverted position in order to bring the sample into 
contact with the membrane. The inverted tubes were then placed 
in a polystyrene holder and allowed to float on dialysis buffer, 

making sure that there were no air bubbles between the membrane 
and the buffer.
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RESULTS
1. Isolation and Characterisation , of Rat Liver HnRNP Particles

1.1 Fractionation Sucrose Density Gradients
There is considerable ultrastructural data showing that nascent 

transcripts of eukaryotic structural genes become complexed with 

protein at a very early stage in their existence (Miller & Hamkalo,
1972; Malcolm & Sommerville, 1974, 1977). However the assumption 
that isolated hnRNP particles are the same as the particles observed 

in vivo is difficult to prove. Section 3 of the introduction discussed 

the approaches to this problem employed by other workers and some of 

these are repeated in the present study.

Rat liver nuclei were prepared as described in the methods 
section and examined by phase contrast microscopy to ensure that 
they were free from gross contamination with cytoplasmic debris.
They were then extracted at pH7.0, a procedure which according to 
Samarina et al., (1967) removed peri-nuclear ribosomes and nucleo- 
plasmic pre-ribosomal particles, before being re-extracted three 
times at pH8.0 to recover hnRNP. When this extract was fractionated 

on sucrose density gradients, a single peak of hnRNP (Figure 12), the 
so called 40S peak was recovered as described by many other workers 

(Karn et al., 1977; Beyer et al., 1977; Wilks and Knowler, 1980). 

Furthermore, the protein profile of this peak (Figure 13) was 

characteristic of hnRNP and was dominated by the so-called proteins 
of molecular mass 26000-42000 and arrowed on Figure 13. Neither the 

40S peak, the initial pH8.0 extract, nor even the pH7.0 extract,contained



FIGURE 12: Analysis of the Protein Components of Each Fraction

of a Sucrose Density Gradient

The pH8*0extract of purified nuclei was layered 
onto 15-30% sucrose density gradients containing lOOmM 

NaCl, lOmM Tris HC1. pH 8.0, ImM MgCl2 and centri­
fuged at 78000 x g for 15-17 hours in a SW27 rotor. toav
The gradients were then scanned at 260nm by passing
through a flowcell attachment of a Gilford 260
Spectrophotometer.

The 3 ml fractions collected from the gradient
were dialysed against H20, precipitated with 3
volumes of ethanol, redissolved in SDS sample buffer
and analysed on a 5-15% SDS polyacrylamide gradient

gel as described in Methods (4.1).
The stained pattern (B) has been arranged below

the O.D.__^ trace of the sucrose density gradient 2oUnm
(A) so that the relative positions correspond.
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[clearly identifiable] levels of ribosomal proteins or histones (Figure 13).

The initial pH 7.0 extract contained no particulate matter 
detectable on sucrose density gradients (results not shown) nor 
did it contain core proteins. Some of its proteins were apparently 
identical to those of the pH 8.0 extract although most of these were 
non-particulate and remained at the top of the sucrose density 
gradient (compare Lanes 4, 5, 6 and 7 of Figure 13 and Figure 12). 

Those proteins which remained at the top of the sucrose density 
gradients included very little core protein. However some of the 
higher molecular mass bands appeared to be approximately equally 
partitioned between the particles and this non-particulate part 

of the pH 8.0 extract (compare Lanes 6 and 7 of Figure 13). This 
could be interpreted as contamination of the particles with non- 
particlate polypeptides. Alternatively, it might reflect the 
weak association of some hnRNP proteins and their normal parti­
tioning between hnRNP and the nucleoplasm. As will be seen, 

the kinase activities associated with the particles showed a 
similar partitioning.

1.2 Characterisation on BioQel A-0.5m

The particlate nature of the hnRNP isolated from sucrose 
density gradients was further demonstrated by taking the peak 
from a sucrose density gradient, dialysing away most of the 
sucrose and running it on a second gradient to recover the same 

peak. Alternatively the 40S peak from a sucrose density gradient 
could/



FIGURE 13: Comparison of HnRNP Particle Proteins with Histones

and Ribosomal Proteins

Samples of the pH7*0 and pH &0 extracts of purifiedI
nuclei, 40S hnRNP, and fractions from the top of 
sucrose density gradients loaded with pH 8 extracts, 
and centrifuged at 78000 x g^  for 15-17 hours, 
were dialysed against H^O, precipitated with 3 
volumes of ethanol, redissolved in SDS sample 

buffer and analysed on 5-15% polyacrylamide gradient 
gels as described in Methods (4.1). The proteins 
present were compared with histones and ribosomal 

proteins.

Gel Lane No.
1, 11 Markers

2, 10 Histones
3, 9 Ribosomal proteins
4 STM 7

5 STM 8
6 Top of sucrose density gradient
7 40S HnRNP
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FIGURE 14: Purification of hnRNP on Bio Gel

HnRNP particles isolated from 15-30% w/v sucrose 

density gradients, as described in Methods (2) were 
loaded onto a Bio Gel A-0.5m column as described in 

Methods (3.1). 5 mis fractions were collected and
analysed for protein and refractive index to demon­

strate separation of the hnRNP particles from the 

sucrose.
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could be placed directly onto a Bio Gel A-0.5m gel filtration 
column. The hnRNP particles were eluted with the void volume 
(Figure 14). For a while this appeared to be a better method 

than dialysis to remove the sucrose from hnRNP but yields were 
poor and aggregation appeared to be a problem.

1.3 Characterisation on One-Dimensional Polyacrylamide Gels

The protein profile of the 40S peak from sucrose density 
gradients showed considerable complexity on SDS polyacrylamide 

gradient gels (Figure 12), being dominated by 5-7 polypeptides 
of molecular weight 25000-45000, known as the core proteins, 
with 2 main bands and up to 5 minor bands. Early investigations 
of hnRNP's which used urea gels resolved a single polypeptide of 
molecular weight 40000 which was designated "informatin"
(Samarina et al, 1968) but it has been shown (Niessing &

Sekeris, 1971b; Gallinara-Matringe et aL, 1975; Northeman et aL, 
1978; Suria & Liew, 1979) that this observation of a single 

polypeptide was an artefact of the urea based gel fractionation 
system employed. Subsequent analysis using SDS polyacrylamide 
gel electrophoresis has revealed between 14-(Niessing & Sekeris, 

1971b) and 45 protein components (Gallinaro-Matringe et al., 1975).
Apart from core proteins other proteins are also present 

including those of molecular weight 120000, 100000, 70000 and 

68000 which are seen in the 40S hnRNP profile (Figure 13) and 
which have all been seen by other workers (Karn etaL, 1977;
Beyer etaL, 1977).

1.4/



-  -84-

1.4 Characterisation on Two-Dimensional Polyacrylamide Gels

Two dimensional electrophoretic fractionation is a powerful 
technique for analysis of a complex protein mixture. HnRNP 

particle proteins have been analysed in this way by a number 
of workers (Suria & Liew, 1979; Brunei & Lelay, 1979; Wilks & 
Knowler, 1980).

The more usual isoelectric focusing (IEF) coupled to poly­
acrylamide gel electrophoresis (O'Farrell, 1975) caused the loss 
of the basic core proteins (Wilks & Knowler, 1980) even if a 
basic range of ampholines (pH9-ll) was employed in the first 

dimension or if the protein was added by anodic loading. The 
non-equilibrated pH gradient in the first dimension, which produced 
a pH gradient of pH 3.9-9.1 (Figure 15), gave a satisfactory 

fractionation of the complex proteins of hnRNP particles. It was 
used here to demonstrate that the particles isolated had the 
protein components described by others, and was used in subsequent 
experiments to analyse the proteins which could be phosphorylated. 
The two-dimensional fractionation of hnRNP particles and pH 7.0 
and pH 8.0 extracts revealed that the pH 7.0 extract differed 

from the other two (Figure 16), although it is clear in this 
experiment that the pH 7.0 extract does contain some core protein.

On two-dimensional gels some of the core proteins fractionated 
into several polypeptides which exhibited heterogeneity in their 

charge (Figure 16A). The hnRNP particles also contained a large 

number of minor-acidic polypeptides with molecular weights of greater 
than 45,000. The overall protein profile on these gels is in 
agreement/



FIGURE 15: pH Gradient of NEPHGE Gels
NEPHGE gels were prepared and run as described 

in methods (4.2.1). The gels were then cut into
0.9cm lengths, shaken gently for 5-10 minutes in 

lml 0.01M KC1 and the pH of the eluate then measured.
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FIGURE 16: Two Dimensional Fractionation
Two dimensional gels were prepared and run as 

described in Methods (4.2) using NEPHGE gels in the 
first dimension and SDS Polyacrylamide gels in the 
second. HnRNP particles isolated from sucrose 
density gradients as described in methods (2), and 
STM7 and STM8 extracts of purified nuclei were 
dialysed against H^O, precipitated with 2-3 volumes 
of ethanol and resuspended in lysis buffer (9.5M 
urea, 5% v/v mercaptoethanol, 2% w/v NP-40, 2% w/v 

pH 3.5-10 ampholines), before being loaded onto the 
NEPHGE gels.

A: 400pg hnRNP particles
B: 300̂ ig pH7*0extract of purified nuclei

C: 150jjg pH8-0 extract of purifed nuclei
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agreement with the results of other workers, (Suria & Liew, 1979; 
Brunei & Lelay 1979; Maundrell & Scherrer, 1979; Wilks & Knowler, 
1980; Peters & Cummings, 1981). Strangely, the probable core 
protein aggregates described in Section 1.2 were not seen on two- 
dimensional gels.

1.5 Characterisation on Non-Denaturing Polyacrylamide Gels
As a further test of the particulate nature of the hnRNP 

particles, they were fractionated on non-denaturing gels prepared 
as described in the Methods section 4.4.

HnRNP particles were found as a band at the top of the resolving 
gel. They appeared to move towards the anode and therefore had an 
overall negative charge at the pH at which the gel was run (pH9.2) 
(Figure 17A). Flat bed gels were also used, the hnRNP sample 
being loaded in the centre of the gel. The hnRNP particles still 

moved towards the anode.
The sucrose density gradients, BioGel separations and electro­

phoretic analyses described in sections 1.1 to 1.4 showed that 
particulate matter had been isolated from nuclei which showed 

the characteristics of hnRNP described by many other workers.
These particles formed the material for subsequent analysis of 
endogenous protein kinases and their potential hnRNP particle 
substrates.

2. HnRNP Particle Kinase Activity

Autophosphorylation of hnRNP's was first noted by Schweiger 
& Schmidt (1974) and similar kinase activity has been detected by 
other/



FIGURE 17: Non-Denaturing Gels

HnRNP particles isolated from sucrose density 
gradients as described in Methods (2) were run on 
non-denaturing gels as described in Methods (4.4). 

The gels were then tested for kinase activity as 
described in Methods (4.6) using casein or histone 
as exogeneous substrates.

A: stained gel

B: autoradiograph of gel : showing endogenous
phosphorylation 

C: autoradiograph of gel with casein added as

exogeneous substrate 
D: autoradiograph of gel with histone added as

exogeneous substrate
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other workers (Blanchard et al, 1975, 1979; Periasamy et al,

1979; Wilks & Knowler, 1981a).

2.1 Association of Kinase with 40S hnRNP

Several lines of evidence have supported the association of 
the kinase with rat liver hnRNP particles. The first support 
came from the analysis of each fraction of* a sucrose density 
gradient which showed a peak of kinase activity coinciding with 

the 40S peak (Figure 18). A second peak of kinase activity was 
found at the top of the gradient and represented kinase activity 
not bound to the hnRNP particles.

When particles, isolated from one gradient, were re-run on a 
second sucrose density gradient, kinase activity was still found 
associated with the hnRNP particles although there was a 60% loss 
of activity. Patel & Holoubeck (1977) found that centrifugation 
of hnRNP's on sucrose density, gradients caused loss of minor high molecular 

weight polypeptides. Repeated recentrifugation resulted in 
progressive loss until the predominant core proteins were 
virtually the only polypeptide components observed.

Clearly, the minor proteins,including the kinase activity, 

could be contaminants or they could be weakly bound but 
important proteins. These alternatives are discussed in 
detail later, and it will suffice here to state that at least 
some protein kinase activity was sufficiently bound to hnRNP to 
remain associated after a second sucrose density gradient, after 

exclusion chromatography on BioQel A-0.5m (Figure 19) or sephacryl, 
and after fractionation on non-denaturing gels (Figure 17).

2.2/



FIGURE 18: The in vitro incorporation of phosphate into fractions

from sucrose density gradients

The pH 8 extract from purified nuclei was loaded

onto a 15-30% w/v sucrose density gradient and spun
at 78000 x g for 17 hours as described in Methods av
(2)r2.5ml fractions from the gradient were dialysed 
against 50mM MOPS, lOmM MgCl^, pH 6.5 and assayed for 

kinase activity as described in methods (4.5).
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FIGURE 19: The in vitro incorporation of phosphate into fractions
from A Bio Gel A-Q.5m column

HnRNP particles isolated from sucrose density 
gradients as described in Methods (2) were fraction­

ated by gel exclusion chromatography on Bio Gel 
A-0.5m as described in Methods (3.1). 5 ml fractions
were assayed for protein, and microdialysed against 
50mM MOPS, lOmM MgCl^ pH 6.5 before being assayed 
for kinase activity as described in Methods (4.5).
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2.2 Optimisation of Kinase Assay Conditions
The time course for in vitro phosphorylation showed an 

increase in phosphate incorporation for up to 30 minutes after 

which it levelled off and remained stable for at least one hour 

(Figure 20.1). This differed from the time course of the kinase 
activity detected in rat liver by Wilks & Knowler (1981a) which 
showed a linear increase for 10-15 minutes followed by rapid 
decrease in phosphate incorporation.

The level of phosphate incorporated was proportional to the 
amount of hnRNP particle protein added to the assay (Figure 20.2).

Rat liver hnRNP kinase activity showed a pH optimum at pH b-5 

whereas the kinase detected in HeLa cell hnRNP particles 
(Blanchard et al., 1977) had a pH optimum of 8.5. The pH 

optimum of rat liver hnRNP*s kinase activity detected here 
agrees with that detected by Wilks &Knowler (1981a). (For 
characterisation of pH and temperature effects see Results 

Section 4.1).
Phosphorylation was dependent on Mg^+, for which the optimal

concentration was 15-20mM (Figure 21.2), and the reaction was

totally inhibited by EDTA. This agreed with the results of
Blanchard et al, (1977) and Wilks &Kriowler (1981a). Mn^+ ions
also exhibited a stimulatory effect on kinase activity but to

2+a lesser extent than Mg .

The purification of the kinase activity, which was a major 

objective of this work, required dissociation of the kinase from 

the/



FIGURE 20: Optimisation of in vitro kinase assay conditions

1. Time: HnRNP particles isolated from 15-30% w/v 

sucrose density gradients as described in 
Methods (2), were dialysed against 50mM MOPS, 

lOmM MgCl^ pH 6.5, then assayed for kinase 
activity as described in Methods (4.5) after 

incubating at 30°C for various time intervals.

2. Amount of protein: HnRNP particles isolated

from 15-30% w/v sucrose density gradients as 
described in Methods (2) were dialysed against 
50mM MOPS, lOmM MgCl^ pH 6.5, then assayed for 
kinase activity as described in Methods (4.5) 

after adding various amounts of hnRNP particle 

proteins to the assay.

(The error bars represent standard deviations derived 
from duplicate analyses).
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FIGURE 21: Effects of Mg^+, Mn^+, Na+, Triton-XlOO and Urea on
hnRNP particle kinase activity

HnRNP's isolated from sucrose density gradients as 
described in Methods (2) were dialysed against buffer to 

remove the sucrose and then treated as follows 
1: hnRNP were dialysed against 50mM MOPS, lOmM MgCl^,

pH 6.5 and then brought to various Na+ concentrations 

by addition of 5M NaCl. Kinase activity was then 
measured as described in Methods (4.5) using casein 

as exogeneous substrates.

2: hnRNP dialysed against 50mM MOPS pH 6.5 were brought
2+ 2+to various Mg or Mn concentrations by adding 

250mM MgCl^ or MnCl^. Kinase activity was then 
measured as described in Methods (4.5) using casein 

as exogeneous substrates.

3: hnRNP dialysed against 50mM MOPS, lOmM MgCl^ pH 6.5
were brought to various urea concentrations by adding 

12M urea. Kinase activity was then measured as 
described in Methods (4.5) using casein 
as exogeneous substrates.

4: hnRNP dialysed against 50mM MOPS, lOmM MgCl^ pH 6.5
were brought to various Triton-XlOO concentrations 
by adding 12% v/v Triton-XlOO. Kinase activity was 

then measured as described in Methods (4.5) using 
casein as exogeneous substrates.

(The error bars represent standard deviations from 

duplicate analyses;. ; similar data to that presented 

was obtained when histone was used as a substrate).
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the particle without destroying kinase activity. Therefore the 

effects of a number of reagents of possible use in this respect 
were investigated.

Kinase activity fell off rapidly in NaCl concentrations 
above 0.2M (Figure 21.1) in agreement with the results of Beyer 

et al., (1977), Blanchard et al., (1977) and Wilks & Knowler (1981a). 
250mM NaCl has been shown to initiate disaggregation of hnRNP 
particles (Blanchard et aL, 1977).

Urea inhibited rat liver hnRNP particle kinase activity while 
Triton-XlOO had only a slight inhibitory effect (up to 6% w/v 
Triton-XlOO). (Figure 21.3 and 21.4). HnRNP particles treated 
with either 1M NaCl, 2M NaCl, 10% w/v Triton-XlOO, or 5M urea 
showed inhibition of kinase activity varying from 100% inhibition 

by 5M urea, to 3% inhibition with 10% w/v Triton-XlOO. However 
dialysis of hnRNP particles treated with 1M NaCl, 2M NaCl, 10% 
w/v Triton-XlOO or 5M urea restored some of the kinase activity 
although control samples showed that 10% of the activity was 
lost upon dialysis alone (Tabled).

^3-mercaptoethanol (up to lOmM) had no effect on rat liver 

hnRNP particle kinase activity, whereas RNase at 2pg/ml (37°C 
for half an hour) decreased activity by 20%.

Cyclic AMP did not appear to have any effect on hnRNP particle 
kinase activity. This result agrees with the results of most workers 

using a variety of tissues, although Wilks and Knowler (1981a), 
using rat liver, and Ohtshuki et aL, (1980) using mouse spleen have 

shown the presence of a cAMP dependent protein kinase associated 
with hnRNP particles.
2.3/



TABLE 4: Effect of treatment of NaCl, Triton-XlOO and Urea 

followed by dialysis

HnRNP isolated from sucrose density gradients as 
described in Methods (2) were treated with either 1M 
NaCl, 2M NaCl, 5% Triton-XlOO or 5M Urea. 200 pi of 

each was microdialysed against 50mM MOPS, lOmM MgCl^ 
pH 6.5, then all fractions were analysed for kinase 
activity as described in Methods (4.5).

(Background levels have been subtracted, and levels 
have been corrected for volume changes due to micro­
dialysis) .

(Each result is the average of 2 determinations).
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C.P.M/assay 
(before dialysis)

C.P.M/assay 

(after dialysis)

Control 10980 + 80 9880 + 110
= 100% = 90%

10% Triton 10840 + 150 9550 + 120
= 97% = 87%

5M Urea Zero 3420 + 180 

= 31%

1M NaCl 3830 + 20 8150 + 60
= 35% = 74%

2M NaCl 2770 + 160 7370 + 120
= 25% = 67%

TABLE 4
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2.3 Phosphorylation of hnRNP Particle Proteins
The endogeneous protein kinase activity of hnRNP particles 

could use added casein or histone as substrates, the casein 
being a better substrate than histone (Figure 17, and data to 

be presented) but the activity was also capable of phosphory- 
lating hnRNP particle proteins (Figures 22 and 23). On 2- 

dimensional fractionation it was seen that some core proteins 
plus a number of other proteins were phosphorylated. Some of 
the phosphorylated proteins were sufficiently abundant to give 

stainable spots. Others were not detected by staining, but 
were strongly phosphorylated. This was particularly true of 

heterogeneous entities of molecular weight 32000, (Figures 
22 and 23).

3. Attempts to Purify hnRNP Particle Kinase Activity

3.1 The Use of Ion-Exchange Chromatography
In order to determine more precisely the nature and number of

protein kinases present, it was necessary to fractionate the

particle proteins. As core proteins are basic while most of 
the minor proteins are acidic or neutral, it was decided to 

fractionate the core proteins using CM-Cellulose ion-exchange 
chromatography and in this way it was hoped to separate the 

kinase from the core proteins. HnRNP particles were loaded on 

to CM-Cellulose columns at a variety of ionic strengths and pH 

values. The columns were then washed with salt solutions to 

release any bound proteins. Samples from each wash were 
analysed/



FIGURE 22: Phosphorylation of HnRNP Particle Proteins

HnRNP particles isolated from sucrose density 

gradients as described in Methods (2), were dialysed 
against 50mM MOPS, lOmM MgCl̂ , pH 6.5. They were then

10m Ci/pmol using 50p Ci/500 jig hnRNP, then precipi­

tated with 2-3 volumes of ethanol and resuspended in 
SDS sample buffer. The precipitated proteins were 

then run on a SDS polyacrylamide gel as described 
in Methods (4.3).

The gel was stained, destained then dried and 
autoradiographed.

A: stained gel

B: autoradiograph of stained gel

Gel track jug hnRNP

32incubated at 30°C for 10 minutes with (6 - P) ATP at

1. 20
2. 40
3. 60
4. 75





FIGURE 23: 2-Dimensional Fractionation of Phosphorylated HnRNP
Particle Proteins

HnRNP particles isolated from sucrose density
gradients as described in Methods (2) were dialysed

against 50mM MOPS, lOmM MgCl^ pH 6.5. They were
32incubated at 30°C for 10 minutes with {*£ - P)ATP 

at 10m Ci/jimol using 50p Ci per 500 )ig hnRNP . The 

proteins were then precipitated by adding 2-3 volumes 
of ethanol. The precipitated proteins were resuspended 
in lysis buffer before being loaded onto NEPHGE gels. 
The first and second dimension gels were run as 
described in Methods (4.2).

The gel was stained, destained, dried and auto­
radiographed.

A: Stained gel (400 }ig hnRNP)

B: autoradiograph of stained gel

(The arrow on B indicates the 32000 molecular weight 
heterogeneous entity).
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analysed for kinase activity and for any proteins present. It 

was seen that any fractions in which kinase activity could be 

detected also contained core proteins plus other particle 
proteins. These results may have been due to whole particles 
binding to the CM-Cellulose and all the proteins being eluted 
together. Therefore it was decided to disrupt the particles 
first before trying to fractionate the proteins.

In one type of experiment (Methods 3.2) hnRNP particles were 

dissociated in 1M NaCI which was then dialysed away with CM- 
Cellulose present in the dialysis tubing. The cellulose was 
then separated from any unbound protein by centrifugation, 
packed in columns and any bound protein eluted with increasing 
salt concentration. Very little protein was unbound but salt 

washes eluted all bound protein, including core proteins and 
kinase activity, virtually simultaneously, (data not shown).

Phosphocellulose is capable of functioning rather like an 
affinity chromatographic system for kinase enzymes, and at first 
appeared to give encouraging results. HnRNP particles were 

dissociated in 1M NaCI for 15 minutes at 0°C and then diluted 
to 0.1M NaCI immediately before application to a 3cm x 1cm 
column of phosphocellulose. Kinase activity could be eluted 
with 0.5M NaCI (Figure 24) but this activity was only 30% of 
control values. A small amount of activity was also detected 

in the 0.75M NaCI wash (10% of control hnRNP levels).

Attempts were then made to improve the specificity and 

completeness of the recovery of kinase activity from phospho­
cellulose by eluting with buffers containing 5mM ATP as well 
as/



FIGURE 24: Fractionation of HnRNP Particle Kinase activity on
Phosphocellulose

HnRNP particles were brought to 1M NaCI and stirred 

at 0°C for 15 minutes. The sample was then diluted to
0.1M NaCI with column buffer (lOmM Tris HC1 pH 7.9, 

lOOmM NaCI, 1.5mM MgCl^, 6mM ^mercaptoethanol, 10% 
w/v glycerol), and 400-500jig protein (at 4000 cpm/ 
jig protein) applied to a 3cm x 1 cm phosphocellulose 

column (Whatman No.11) equilibrated with column buffer. 

The column was then washed with increasing concentrations 

of NaCI. Some of each of the collected fractions was 
microdialysed and assayed for kinase activity as des­

cribed in Methods (4.5) while the rest was dialysed 
against H^O, ethanol precipitated and analysed on SDS 
polyacrylamide gels as described in Methods (4.3).

Gel Track No. Kinase Activity

1. wash through eluate —

2. 0.10M NaCI wash (4mls) -

3. 0.25M NaCI wash (4mls) -

4. 0.50M NaCI wash (4mls) 1200cpm//ig protein

5. 0.75M NaCI wash (4mls) 400cpm/jig protein

6. 1.00M NaCI wash (4mls) _

( Indicates fractions in which kinase activity 

was detected).
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as increasing concentrations of NaCI. Again the results seemed 

encouraging in that kinase activity was recovered in fractions 

containing relatively few other hnRNP proteins (Figure 25). 
However, yield was once again unacceptable being only 35% 
recovery.

Samarina et al,(1967) have shown that when the salt is removed 
from NaCl-dissociated hnRNP's, the particles are able to re­

associate, and Stevenin et al, (1979) have shown that this occurs 

even after the digestion of the RNA component with ribonuclease. 
It seems very likely that reassociation into particles or other 
aggregates was a contributory factor to the poor results with 
ion-exchange chromatography and this was supported by continuing 
poor results when ribonuclease was employed, (data not shown).

Before trying any further fractionations it was decided to 
examine the efficiency of salt dissociation and the extent to 
which reassociation occurred after the salt was removed.

3.2 Effect of NaCI on hnRNP particles

pH8*0 extracts of isolated nuclei^prepared as described in 
Methods (2.)̂  were treated with 1M NaCI then loaded on to 
15-30% sucrose density gradients containing 1M NaCI. V/hen 

the gradients were scanned in the usual way^ no 40S hnRNP peak 

was seen, and all of the hnRNP particle proteins were found 
at the top of the gradient (Figure 26A). These results indicated 
that 1M NaCI disrupted hnRNP particles and caused the proteins 
to be found at the top of the gradient.

To/



FIGURE 25: ATP wash of Phosphocellulose Column

HnRNP particles were treated with 1M NaCI and 

stirred at 0°C for 15 minutes. The sample was then 
diluted to 0.1M NaCI with column buffer (lOmM Tris 
pH 7.9, 50mM NaCI, 1.5mM MgCl^, 6mM mercaptoethanol,

10% w/v glycerol) and then 400-500pg protein (kmcxst activit’ 
4300cpm/^g protein)was applied to a 3cm x 1cm phospho­
cellulose column. The column was then eluted with 4ml 
aliquots of buffer with continually increasing concentra­
tions of NaCI and ATP. The collected fractions were 
microdialysed and assayed for kinase activity as 
described in Methods (4.5) or dialysed against H^O, 
precipitated with ethanol and analysed for protein on 
SDS polyacrylamide gels as described in Methods (4.3).

Kinase Activity
1. wash through eluate -
2. 0.1M NaCI wash
3. 0.25M NaCI wash

4. 0.3M NaCI wash -

5. 0.3M NaCl/5mM ATP wash 500cpm/jug protein
6. 0.3M NaCl/5mM ATP wash
7. 0. 3M NaCI v/ash -
8. 0.5M NaCl/5mM ATP wash 1500cpm/jig protein
9. 0.5M NaCl/5mM ATP wash

(t indicates fractions in which kinase activity 
is detected).
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FIGURE 26: Effect of NaCI on HnRNP Particles
A: STM8 extract of isolated nuclei was treated with 1M NaCI

then some was loaded on to a 15-30% w/v sucrose density 

gradient containing 1M NaCI while the rest was dialysed 
against STM8 before being loaded onto a normal gradient. 
The gradients were spun at 78000x g^v for 17 hours in a 

Beckman SW27 rotor, then scanned as described in Methods 
(2). The results were compared to STM8 extract loaded 

onto gradients as per usual.
i) sucrose density gradient loaded with STM8 

extract of purified nuclei (— ---- )
ii) sucrose density gradient containing 1M NaCI,

loaded with STM8 extract treated with 1M NaCI(------ )
iii) Sucrose density gradient loaded with STM8 

extract which had been treated with 1M NaCI 

followed by dialysis against STM8 buffer. (-------)

B: STM8 extract, treated with 1M NaCI, was then dialysed
against lOOmM NaCI, lOmM Tris HG1 pH 8.0, ImM MgCl^ 

and loaded on to 15-13% sucrose density gradient.
The gradient was spun at 78000x g^  for 17 hours in a 

Beckman SW27 rotor then collected in 5ml fractions as 
described in Methods (2). The fractions were dialysed 
against H^O, precipitated with 2-3 volumes of ethanol 

and the proteins analysed on SDS-polyacrylamide gels as 
described in methods (4.3).

The stained gel (B) has been arranged below the O.D. 

scan (Aiii) so that the relative positions correspond.
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To look at reconstitution, hnRNP particles were treated v/ith 
1M NaCI and then dialysed against STM8 (lOOmM NaCI, lOmM Tris 

pH 8.0, ImM MgCl^) before being loaded on to a 15-30% sucrose 
density gradient. When the gradients were scanned as described 
in Methods (2. -) a 40S hnRNP peak was seen (Figure 26B). However, 
a higher molecular weight entity was also present and presumably 
represented an aggregate of particles or atypical aggregates of 

particle proteins. To test whether the formation of this higher 
molecular weight complex was caused by the NaCI treatment or by 
dialysis, intact hnRNP particles were dialysed against STM8 and 
then loaded on to a 15-30% sucrose density gradient. When the 

gradients were scanned the 40S peak was seen but there was no 
higher molecular weight aggregate. Therefore, it appears that 
treatment with NaCI followed by dilution may result in some 
rearrangement of the particles or the formation of a higher 
molecular weight aggregate.

Similar ideas have been expounded by Stevenin et_alv(1979), 
after examining the effect of ribonuclease on hnRNP particles.

These results showed that fractionation of the particulate 

kinase would be achieved only when conditions could be found 
which satisfied the following requirements:
(a) The particle must be dissociated or at least the kinase 

activity must be dissociated from the particles.
(b) Dissociation must not destroy kinase activity.
(c)/
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(c) Either the particle constituents must be fractionated 

in the dissociating medium or changing the medium must 
not result in reassociation.

For these reasons it was decided to try gel filtration in the 
presence of 1M NaCI.

3.3 Fractionation on Sephadex G100

HnRNP particles were brought to 1M NaCI and stirred gently at 0°C 
for 15 minutes. They were then loaded on to a Sephadex G100 column 
equilibrated with column buffer (lOmM Tris pH7.5, 1M NaCI, 6mM 
mercaptoethanol, ImM EDTA) and the column was run as described 

in methods (3.1). The fractions were collected and analysed for 
kinase activity and protein content (Figure 27).

Two peaks of kinase activity were seen ('A' and *B *), associated 

with fractions that contained different sets of polypeptides. Peak

*B ' contained core proteins while 'A' did not. Calibration of the 
Sephadex column showed that * B 1 had a molecular weight of approximately 

33000 while the molecular weight of !A' was approximately 112000.
Clearly ’A' and 'B' could be different activities, different forms of 

one enzyme, or 'A' could represent kinase still bound to undissociated 
particles while 1B 1 could be dissociated kinase. The latter possibility 
seemed unlikely as treatment with 1M NaCI had been shown to 
dissociate hnRNP particles and when the Sephadex G100 column was 

run in the present of 1.5M NaCI the kinase profile was unaltered 
(data not shown).

4./



FIGURE 27: Fractionation of hnRNP particle proteins on

Sephadex G100
HnRNP particles isolated from sucrose density 

gradients as described in Methods (2) were dissociated 
in 1M NaCI and stirred at 0°C for 15 minutes. Then 
7-8mg hnRNP in 5mls*of equilibration buffer were 

loaded on to a Sephadex G100 column equilibrated 
with lOmM Tris pH 7.5, 1M NaCI, 6mM mercaptoethanol, 

ImM EDTA and the column was run as described in 
Methods (3.1). Some of each 2ml fraction was 
microdialysed and assayed for kinase activity as 

described in Methods (4.5). The rest was precipitated 

with trichloroacetic acid and analysed on SDS poly­
acrylamide gels as described in Methods (4.3).

The kinase profile (1) is arranged above the 
stained pattern (2) so that the relative positions 

correspond.

* This concentration of hnRNP was used when running the 
Sephadex column as at higher concentration of the hnRNP 
the particle proteins tended to precipitate.
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4. Characterisation of 'A* and 'B' Activities

4.1 Optimisation of Assay Conditions

To determine whether the 'A' and 'B 1 activities were similar 
or different, they were characterised with respect to their 
optimum conditions for enzyme activity.

Both 'A' and 1B * activities showed a pH optimum at pH 6.5, the 
same as that found for intact hnRNP particles. Figure 28 

illustrates the pH optimum when casein was employed as the endo- 
geneous substrate but the phosphorylation of histone had the same 
pH optimum.

The time course for the in vitro incorporation of phosphate 
was similar for 'A1, 'B * and intact hnRNP although when calculated 
as cpm per pg of total protein the linear reaction was longest 

for peak 'A'. This was more likely to result from differences 
in the relative enzyme concentrations than from enzymatic 
differences (Figure 29).

The stability of 'A*, 'B', and intact hnRNP kinase activity 

was investigated by incubating them at 30, 50 or 60°C for various 
times then analysing for kinase activity at 30°C in the usual 

assay (Figure 30). All 3 activities appear to be stable at 30°C 
while incubation for even 2 minutes at 60°C destroys 70% of the 
activity in 'A' and 90% of the activity in *B 1 and hnRNP. Kinase 

1B ' activity appeared to be the most labile with only 27% of the 

activity remaining after 20 minutes incubation at 50°C, while 

hnRNP was 50% inactivated after 5 minutes and the kinase activity 
in ’A'/



FIGURE 28: Effect of pH on Kinase Activity
HnRNP particles isolated from 15-30% w/v sucrose 

density gradients were dialysed against buffers, at 
various pH values, containing lOmM MgCl^. ME S.was 

used for the range pH 5.6 - 6.8 whileHOPS was used 
for pH 6.4 - 7.6. The casein substrate was also in 
the appropriate buffer solution. Kinase activity at 
the various pH values was then determined as described 

in Methods (4.5).

The kinase-containing peaks ’A' and 'B1, isolated 
from a Sephadex G100 column as described in Methods 
(3.1), were prepared for assay in the same way as 
the hnRNP particles.

1. ' B 1

2. 'A'
3. HnRNP

(The error bars represent standard deviations derived 
from duplicate analyses).
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FIGURE 29: Effect of Time of Incubation on Kinase Activity
'A* and ’B* peaks isolated from a Sephadex G100 

column were dialysed against 50mM MOPS, lOmM MgCl^ 

pH 6.5. They were then assayed for kinase activity as 
described in Methods (4.5) adding casein as an exogenous 
substrate and incubating at 30°C for various time intervals. 
The results were compared with those of hnRNP particles, 

isolated from 15-30% w/v sucrose density gradients, as 
described in Methods (2), which were dialysed against 

50mM MOPS, lOmM MgCl^ pH 6.5 and assayed for kinase 
activity as for 'A' and 'B * above.

1. 'B'

2. 'A'
3. HnRNP

(The error bars represent standard deviations derived

from duplicate analyses).
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FIGURE 30: Effect of Temperature on Kinase Activity
‘A 1 and 'B * peaks isolated from a Sephadex G100 

column were dialysed against 50mM MOPS, lOmM MgCl^ 

pH 6.5. They were then incubated at 30°C, 50°C or 
60°C for various time intervals, cooled then assayed 
for kinase activity using added casein as described 

in Methods (4.5) by incubating at 30°C for 10 minutes. 
The results were compared with those of hnRNP particles 

which were isolated from 15-30% w/v sucrose density 
gradients as described in Methods (2), and treated 

in the same way as 'A ' and * B *.

1. 1B '

2. 'A'
3. HnRNP

(The error bars represent standard deviations derived
from duplicate analyses).
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in 'A' gradually became inactivated with time but still retained

60% of the activity after 20 minutes.
The kinase activities in peaks 'A' and 'B ' as well as that

in intact hnRNP, were markedly dependent on the concentration 
2+of Mg (Figure 31). The activity of 'A'^and the undissociated

2+particle was maximal at 20mM Mg while that of 'B ' showed further
2+small increases up to 40mM. Furthermore Mn could partially 

2+replace Mg in phosphorylation by 'A'̂  and intact particlestbut
was totally ineffective for peak *B' kinase activity.

Neither 'A', 'B 1 or intact hnRNP kinase showed any activity
32when assayed in the presence of ( ^ - P) GTP rather than 

( 75 -32P) ATP.

One major difference between 'A' and 'B'was in their substrate 

specificity (Table 5). Whereas 'B1, like hnRNP, could use added 
casein or histone as substrates, 'A' appeared to be specific for 
hnRNP particle proteins and to be unable to use added casein or 
histone. That is, no increase over endogenous phosphorylation 
was observed when these substrates were added to the peak of enzyme 

activity.
These results show that no additional phosphorylation was

seen when casein or histone was added to 'A' but did not show
that casein or histone were not phosphorylated. To demonstrate

this,casein and histone were incubated with either 'A' or ' B' in
32the presence of ( K - P) ATP. The proteins were then analysed 

on SDS polyacrylamide gels and the phosphorylated proteins 

detected/



2+ 2+FIGURE 31: Effect of Mg and Mn on Kinase Activity
'A' and 'B' peaks isolated from a Sephadex G100

column were dialysed against 50mM MOPS pH 6.5. They

were then assayed for kinase activity using added

casein as described in Methods (4.5) after bringing
2+ 2+them to various Mg or Mn concentrations by adding 

250mM MgCl^ or MnCl^. The results were compared with 
those of total hnRNP particles, isolated from 15-30% 
w/v sucrose density gradients, which were treated as 
'A 1 and 'B ' above.

1. 'B'
2. 'A'
3. HnRNP

(The error bars represent standard deviations derived

from duplicate analyses).
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TABLE 5 : Substrate Specificity of Kinase Activity
'A1 and 'B 1 isolated from a Sephadex G100 column 

as described in Methods (3.1), and hnRNP particles 

isolated from sucrose density gradients as described 

in Methods (2) were dialysed against 50mM MOPS, lOmM 

MgCl^, pH 6.5. They were then assayed for kinase 
activity as described in Methods (4.5) with or without 

the addition of 100 pg casein or 180 pg histone to the 

assay.



C
Ad d e < 

None
S u b s

Casein
t  r a t  e 
Hi stone Casein +- 

Histone
H n R N P

A

B

1 0 0 0 0 
1 0 0 00 
5 0 0 0

2 3 0 0 0  
9 00 0 

4 3 00 0

1 6 0 0 0 
9 5 0 0 
9 0 0 0

3 5 0 0 0 
1 0 0 0 0 
5 0 0 0 0

T A B L E  5
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detected by autoradiography (Figure 32). The results showed that

histone^and particularly casein were phosphorylated in the presence

of 1B 1 but that 'A' j incorporated little or no phosphate into
jhistone and small amounts into casein. | Similar results can
be seen in Figure 33 in an experiment which was initially designed
to investigate the reason for the plateau after 30 minutes of

enzyme activity, (Figure 29). At the 30 minute time point the

residual assay mixture was divided into several equal portions
and various additions made before removing aliquots to test for

kinase activity at 40, 50, 60 and 70 minutes. The results showed
that the levelling off of kinase activity at 30 minutes was due

32to substrate exhaustion as the addition of extra {X - P) ATP 

did not increase phosphate incorporation whereas addition of 
further substrate did. Addition of extra enzyme also caused 

increased phosphate incorporation but this result was hard to 
interpret as the enzyme was impure and impossible to add without 
providing more substrate. The addition of casein to 'A' at 30 
minutes showed only a slight increase in phosphorylation, again 

demonstrating that 'A! did not phosphorylate casein to a great 
extent. Conversely, the 30 minute addition of casein to 1B * 
was more effective than adding more endogeneous substrate.

Heparin has been shown to inhibit casein kinase II and so 
was used here to see its effect on 'A' and 'B1 kinase activities. 

Neither heparin, cAMP, putrescine, spermidine/isobutylmethyl 

xanthine (IBMX) added alone had any marked effect on hnRNP,

'A'/

\



FIGURE 32: Phosphorylation of Casein and Histone
'A' and 'B 1 isolated from a Sephadex G100 column

as described in Methods (3.1) were dialysed against
50mM MOPS, lOmM MgC^pH 6.5. 400jul of each of ’A'
and 'B * was incubated at 30°C for 10 minutes with

100 pg of casein, 180 jug histone and 0.1 nmoles 
32( ̂  - P) ATP at lOOmCi/mmol. The proteins were then 

precipitated with ethanol, resuspended in SDS sample 
buffer and analysed on SDS polyacrylamide gels as 
described in Methods (4.3). The gels were then 
stained, destained, dried and autoradiographed to 
reveal whether casein or histone had been phosphorylated.

This figure shows the autoradiograph obtained, with 
the positions of the casein and histone on the gel 
indicated.

1. 'A' kinase 20 jug protein loaded on the gel

2. 'A' kinase 40 pg protein loaded on the gel

3. ’ B ' kinase 20 jug protein loaded on the gel
4. 'B' kinase 40 ̂ g protein loaded on the gel



- 116- -

III-II I n » I ,|U.,I,. I ,WW|,

i s *

I ®  S i l l
i

i m B m

•rr/i-im m W ' W'a»
w m m.....

S®'’ ?'100. O  ,•■
S W M S

O ’ Oo
S f f f i l l l

s i i i i sR W i W S W f t  fPliP ASEIN$&%K9

p m i l H I S T O N E

TOOTo';, : O O O  000 O'T; '̂ OTO- 7 '
•O'T't'TVi-'

BOTTOM



FIGURE 33: Substrate Specificity of Kinase Activities 'A' and ' B 1

'A' and ' B 1 peaks isolated from a Sephadex G100 column 
as described in Methods (3.1) were dialysed against 50mM 

MOPS, lOmM MgCl^ pH 6.5 and assayed for kinase activity.

The assay mixture was analysed at 0, 10, 20 and 30 
minutes by removing aliquots and measuring kinase activity 

as described in Methods (4.5). The residual assay mixture 

at 30 minutes was divided into several equal portions and 
additional substances added as indicated below. Further 

aliquots were then removed for assay at 40, 50, 60 and 70 
minutes.

O—O—O endogenous kinase activity (i.e. no casein

in original assay mixture)

kinase activity with casein present in the
original assay mixture

--0-—Q— ©““ addition of extra casein (250pg/ml of assay)

to assay at 30 or 60 minutes

•••O— 0~0" addition of endogenous substrate (300jug/ml
of assay) at 30 minutes

(Kinase-free substrate was the pooled fractions C, D, E
from the Sephadex G100 column as indicated on pl23)

326 e addition of extra ( '6 - P) ATP to assay at
30 minutes

B- ■...s addition of extra endogenous kinase activity

to assay at 30 minutes
(i.e. peaks 'A' or *B ' from Sephadex G100 

column)

1. 'B'
2. 'A'
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'A' or 'B * kinase activities (Table b). The lack of effect of 

cAMP and polyamines differed from the results of Wilks & Knov/ler 
(1981a), who detected a kinase activity in rat liver hnRNP 

particles which was stimulated by cAMP and polyamines. However, 
fluoride, an inhibitor of phosphatases, stimulated particulate 
kinase activity five fold and peak *B 1 kinase activity 1.6 fold.
The addition of cAMP slightly enhanced the effect of the fluoride. 
No effect of fluoride was seen on peak ’A' kinase activity and 

IBMX, also a phosphodiesterase inhibitor^ had no significant effect 
on any of the activities. EDTA and 1M NaCl inhibited peak 'A1, 

peak 'B ' and particulate kinase activity.

4.2 Attempts to further purify 'A1 and ’B 1 kinase activities
As both 'A' and 'B 1 are clearly heterogeneous, further attempts 

were made to try to improve the purity of both activities.

4.2.1 Phosphocellulose: 3cm x 1cm phosphocellulose (Whatman 

No. 11) columns were set up and equilibrated with lOmM Tris 
pH 7.9, lOOmM NaCl, 1.5mM MgCl^, 6mM mercaptoethanol, 10% w/v 

glycerol. Peaks 'A' and ' B', isolated from Sephadex G100 column, 
were dialysed against the above equilibration buffer and then 
loaded on to the column. When 'A' was fractionated in this way 
the kinase activity was detected in the 0.5M NaCl/5mM ATP wash 
along with other polypeptides. Some purification was achieved 

in that many of the loaded polypeptides were not bound to the 

column. However the enzyme-containing peak was still very impure 
and/



TABLE h: Effect of various additives on kinase activity
HnRNP particles were isolated from sucrose density 

gradients as described in Methods (2) andthepeaks 'A' 

and * B ' were isolated from the Sephadex G100 column as 
described in Methods (3.1). They were dialysed against 
50mM MOPS, lOmM MgCl^, pH 6.5, before being analysed 
for kinase activity as described in Methods (4.5).

The kinase activity was measured in the presence of 

various substances as indicated in the table.

The results here are the average of 2 separate 

determinations.

IBMX = isobutylmethylxanthine
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...
A B HnK

“““I

ADDITION _3cpm x 10 % cpm x 10-3 % cpm x ic f3 %
per of per of per of
assay control assay control assay control

cAMP (]£M) 129 10436 132 = 100% 93 = 103%

Dibutyryl 
cAMP (lOpM) 126 102% 129 = 98% 92 = 102%

cAMP dependent
protein kinase 
inhibitor (lC)jg 122 93% 128 = 97% 96 = 107%
per assay)
Putrescine (5mM) 120 97% 132 = 100% 90 = 100%

Spermidine (5mM) 124 100% 115 = 93% 92 = 102%

Fluoride (25rrM 128 103% 210 = 152% 460 = 500%

Fluoride + 
cAMP 134 108% 248 = 188% 532 = 590%

Putrescine + 
cAMP 132 106% 128 = 97% 90 = 100%

B K  (lirM) 122 93% 129 = 93% 85 = 94%

Heparin 
(̂ jg per ml) 124 100% 130 = 93% 92 = 102%

EDTA (IQ iM) 20 16% 25 = 19% 17 = 19%

NaCl (m) 43 35% 57 = 43% 28 = 31%

Control 124 10036 132 = 100% 90 = 100%

TABLE 6
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and there was a 60% loss of kinase activity (Figure 34). When the 
experiment was repeated with peak 'B', kinase activity was found in 

the run-through eluate and there was very little binding of kinase 
or contaminating protein to the phosphocellulose (Figure 34). Thus, 
phosphocellulose did not appear to offer a potential means of 
further purifying the enzymes.

4.2.2 Ammonium Sulphate Precipitation: 'A' and 'B * isolated from
the Sephadex G100 column were brought to various concentrations of 

ammonium sulphate by adding increasing volumes of a saturated 
solution. The precipitated proteins were then analysed on SDS 

polyacrylamide gels. The treatment appeared to destroy all kinase 

activity in 'A' as no activity could subsequently be detected. 
Kinase activity was detected in the 40% (NH^^SO^ fraction from 
peak 1B ' (Figure 35). However, the majority of 'B ' polypeptides 

were also found in this fraction and no effective purification of 
kinase was achieved. Futhermore there was a 55% loss of kinase 

activity.

Time did not permit further attempts to purify the kinase 

activities.

4.3 Endogenous Phosphorylation of HnRNP Particle Proteins by 
Kinases 'A* and *B'

In order to analyse the endogenous phosphorylation of hnRNP 
proteins/



FIGURE 34: Phosphocellulose columns with 'A1 and 'B 1

'A' and 'B' peaks isolated from a Sephadex G100 

column as described in Methods (3.1) were diluted to
0.1M NaCl with phosphocellulose column buffer (lOmM 

Tris HC1 pH 7.9, lOOmM NaCl, 1.5mM MgCl^j 6mM mercapto- 
ethanol, 10% w/v glycerol. Amounts containing kinase 
activity of 3000 opm/jug protein of peak 'A' kinase 

activity or 9000cpm/jug protein of peak ' B ' kinase 
activity were added to 3cm: ;< lcm phosphocellulose 
columns. The columns were washed with 4ml aliquots 
of buffer containing increasing concentrations of 

NaCl. The collected fractions were microdialysed 
against 50mM MOPS, lOmM MgCl pH 6.5, and assayed forj

kinase activity as described in Methods (4.5) or pre­

cipitated and analysed on SDS polyacrylamide gels as 
described in Methods (4.3).

Gel Track Kinase Activity (cpm/jug protein)
1. run through eluate

' B '
8000

2. 0.3M NaCl wash
3. 0.3M NaCl wash
4. 0.5m NaCl/5mM ATP wash 1200
5. 0.5M NaCl/5mM ATP wash
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FIGURE 35: Treatment of 'B1 with Ammonium Sulphate

Peak ' B 1 isolated from Sephadex G100 column as 
described in Methods (3.1) was brought to various 

concentrations of ammonium sulphate. The precipitated 
proteins at each stage were analysed on SDS poly­
acrylamide gels as described in Methods (4.3). Some 

of each fraction was dialysed against 50mM MOPS, lOmM 

MgCl^ pH 6.5 and analysed for kinase activity as 
described in Methods (4.5).

Gel Track Kinase activity (cpm/pg protein)
1. 'B' 9700
2. 30% (NH4)2S04 -
3. 40% (NH4)2S04 4350
4. 50% (NH4)2S04 -
5. supernatant -

6. markers
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proteins by the 2 kinase activities, the eluate from Sephadex

G100 columns (Methods 3.1) was fractionated as indicated below:-
When 'A' and 1B ' were added to the pooled ' C', 'D' and *E '

32fractions, dialysed and incubated with ( % - P)ATP the results,
seen in Figure 36, were very similar to those seen with intact
hnRNP particles (Figure 23), thus showing that the Sephadex

column did not produce anomalies and indicating that differences

seen between the proteins phosphorylated by peaks ’A' and 'B *
are not caused by the fractionation.

'C*, 'D'and 'E ' were then added separately to either 'A'
32or 1B ' incubated with (# - P)ATP and the phosphorylated 

proteins analysed on 2-dimensional gels to see if there was any 
difference in the proteins phosphorylated by 'A' and 1B ' kinase 

activities. (Figures 37, 38, 39, 40).

C
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FIGURE 36: Phosphorylation of total protein isolated from

Sephadex G100 column
The peaks of kinase activity 'A' and 'B ' and the

pooled fractions C, D and E (section A3) isolated
from the Sephadex G100 column as described in Methods

32(3.1) were added together in the presence of (& - P)
ATP at 10m Ci/jamol using 50ji Ci/500pg protein, incubated 

at 30°C for 10 minutes. The ethanol precipitated 
proteins were then resuspended in lysis buffer (9.5M 

Urea, 5% v/v mercaptoethanol, 2% w/v NP—40, 2% v/v 
ampholines pH 3.5-10) before being loaded on NEPHGE 

gels. These gels along with the second dimension SDS 
polyacrylamide gels were run as described in Methods

(4.2). The gels were stained, destained then dried and 
autoradiographed.

1. A + B + C, D and E - stained gel
2. A + B + C, D and E - autoradiograph
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FIGURE 37: Phosphorylation of Proteins in Fractions 'A' and 'B1

Peaks 'A1 and 1B * were isolated from a sephadex 

G100 column as described in Methods (3.1). They 

were then dialysed against 50mM MOPS, lOmM MgCl^, 
pH 6.5, before being incubated at 30°C for 10 minutes 

in the presence of [ x -32p] ATP at lOmCi/^mol using 
lOjiCi/lOO^g protein. The proteins were then pre­

cipitated with 2-3 volumes of ethanol, before being 
resuspended in lysis buffer and loaded onto NEPHGE 
gels. The first and second dimensional gels were 
loaded and run as described in Methods (4.2). The
proteins in the gels were then stained and incor- 

32porated ( P) detected by autoradiography.
The results here show the stained gels and the

corresponding autoradiographs.

(i) stained polypeptides of 150jug of peak 'A' 
proteins

(ii) stained polypeptides of 150jug of peak ' B * 
proteins

(iii) autoradiograph of the stained gel (i)
(iv) autoradiograph of the stained gel (ii)
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FIGURE'38: Phosphoryration of Proteins in Fraction C by

1A» and ’B 1
Peaks 'A1 and 'B 1 and fractionC were isolated from 

a Sephadex G100 column as described in Methods (3.1). 

They were then dialysed against 50mM MOPS, lOmM
MgCl^, pH 6.5, before being incubated at 30°C for

3210 minutes in the presence of (#- P)ATP at 10mCi/pmol,
using lOjiCi/lOOpg protein. The proteins were then
precipitated with 2-3 volumes of ethanol, before being

resuspended in lysis buffer and loaded onto NEPHGE

gels. The first and second dimensional gels were
loaded and run as described in Methods (4.2). The
proteins in the gels were then stained and incorp- 

32orated ( P) detected by autoradiography.

The results here show the stained gels and the 
corresponding autoradiographs.

(i) stained polypeptides of 100 ̂ tg of peak A and 
250 jig of fraction C proteins

(ii) stained polypeptides of 150 jig of peak B and 
150 jig of fraction C proteins

(iii) autoradiograph of the stained gel (i)
(iv) autoradiograph of the stained gel (ii)
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FIGURE 39: Phosphorylation of Proteins in Fraction D by

1A ' and * B 1
Peaks 'A' and 1B 1 and fractionD were isolated

from a Sephadex G100 column as described in Methods

(3.1). They were then dialysed against 50mM MOPS,
lOmM MgCl^, pH 6.5, before being incubated at 30°C

/ 32for 10 minutes in the presence of (#-- P)ATP at
lOmCi/pnol, using lOOpCi/lOOjjg protein. The proteins

were then precipitated with 2-3 volumes of ethanol,

before being resuspended in lysis buffer and loaded
onto NEPHGE gels. The first and second dimensional

gels were loaded and run as described in Methods (4.2).
The proteins in the gels were then stained and 

32incorporated ( P) detected by autoradiography.

The results here show the stained gels and the 
corresponding autoradiographs.

(i) stained polypeptides of 100 p.g of peak A and 

200 ̂ ig of fraction D proteins
(ii) stained polypeptides of 100 yug of peak B and 

200 ̂ ig of fraction D proteins
(iii) autoradiograph of the stained gel (i)

(iv) autoradiograph of the stained gel (ii)
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FIGURE 40: Phosphorylation of Proteins in Fraction E by

1A * and 1B 1
Peaks 'A' and VB* and Fraction E were isolated

from a Sephadex G100 column as described in Methods
(3.1). They were then dialysed against 50mM MOPS,

lOmM MgCl^j pH 6.5, before being incubated at 30°C
for 10 minutes in the presence of|~~k -^p] ATP at

lOmCi/jumol, using lbjaCi/lOOjug protein, the proteins
were then precipitated with 2-3 volumes of ethanol,

before being resuspended in lysis buffer and loaded
onto NEPHGE gels. The first and second dimensional
gels were loaded and run as described in Methods (4.2).
The proteins in the gels were then stained and incor- 

32porated ( P) detected by autoradiography.
The results here show the stained gels and the 

corresponding autoradiographs.

(i) stained polypeptides of 100 jug of peak A and 
250 jig of fraction E proteins

(ii) stained polypeptides of 100 pg of peak B and 

200 jig of fraction E .proteins

(iii) autoradiograph of the stained gel (i)
(iv) autoradiograph of the stained gel (ii)
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DISCUSSION
1. Authenticity of hnRNP Particles

The possibility that non-specific adsorption might contribute 
to the observed protein profile of isolated hnRNP is particularly 

difficult to exclude as there is no functional assay available to 
distinguish or define hnRNP proteins. The defining of hnRNP 
proteins is made more complex as some of the proteins may be 
true components of more than one subnuclear complex. The solution 
of this problem needs detailed consideration-of the individual 
proteins, their functions and their locations within the cell.

The authenticity and integrity of hnRNP particles, have, over 
the years been demonstrated in many ways including:-
1. Electronmicrographs: From a very early stage in their synthesis 
the transcripts of eukaryotic genes are seen to be associated with 
protein (Sommerville, 1973; McKnight & Miller, 1976) in the form
of 25nm particles on the nascent RNP fibrils.

2. Antibody studies: Antibodies prepared against several hnRNP
proteins specifically label RNP associated with DNA loops under­
going transcription (Martin & Okamura, 1981) and it has been 
shown that hnRNP particles can be formed during in vitro trans­
cription (Economides & Pederson, 1982).

3. Protein profiles: The protein profiles of particles isolated
by various methods i.e. by extraction method of Samarina et al., 
(1966) and the lysis method of Pederson (1974a), are very similar.

4./
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4. Failure to generate artefactual complexes: It is not possible 
at present to totally exclude the possibility that small amounts 

of soluble proteins adsorb on to hnRNP during their isolation. 
However, particles isolated in the presence of radioactively 
labelled proteins from other cellular pools have failed to 
demonstrate significant contamination (Wilks & Knowler,, 1981a).

HnRNP's have been shown not to be artefacts by the failure to 
generate hnRNP-like complex by addition of deproteinised hnRNA to 
cellular extracts (Pederson, 1974a, 1981).
5. Constituent RNA of hnRNP particles can be shown to compete with 
hnRNA in hybridisation to DNA (Mantieva et aL, 1969) and to hybridise 
to saturation with radioactively labelled cDNA copies of total mRNA 

(Kinniburgh & Martin, 1976).
6. Crosslinking experiments have been used to look at the integrity 
of hnRNP particles and have shown that the protein profile of 

particles crosslinked in situ in HeLa cells with U.V. light was 
indistinguishable from that of non-crosslinked particles (Mayrand
et al., 1981). The same proteins are cross-linked to host RNA 
and viral RNA sequences in virus infected cells (Van Eekelen 

et aL, 1981b).
In the work presented here rat liver hnRNP was shown to have 

the same protein composition as that described by other workers 
and no contamination with histones or ribosomal proteins could 
be detected (Figure 13). These two groups of proteins serve 
as markers for chromatin and ribosomes, the two most likely 
contaminants.

2./



2. Authenticity of protein kinase as an hnRNP protein
The collected evidence, listed above shows that hnRNP particles 

are not artefacts but correspond to the nascent hnRNP observed 
in situ. It remains possible, however, that small quantities of 

proteins adhere to the particles during their purification and it 
is very difficult to rule this out especially when one is claiming 
that an enzyme detectable only by its catalytic activity is 
associated with hnRNP particles. At least 10 enzyme activities 
have been detected in hnRNP particles and a host of minor proteins 
are detectable on stained 2D gels, yet the molecular weight of the 

particle has been estimated at 1,000,000 (Krichevskaya & Georgiev, 
1969) of which 60-90% is core protein. Le Stourgeon and co-workers 
have calculated that the core proteins occur in the ratio of 3 

each of A^ and A^, 1 each of and and 3 of and C A t  an
average molecular weight of 40000 this gives a molecular weight of 
560000 and takes no account of the more acidic D group of core 
proteins (Wilks & Knowler, 1981). In short, the non-core proteins 
are likely to have a combined molecular weight of not more than 
400000 and possibly as little as 100000, so it is difficult to 
conceive that they include molecules of ten enzymes and other 
non-core proteins in each particle.

It is not necessary, however, to envisage that an enzyme such 
as a protein kinase is a rigid component of every particle. The 

occurrence of an enzyme activity, even weakly or transiently, and in 

equilibrium with other cellular components might still be of
i

physiological/
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physiological importance. It is to be expected that a kinase 
activity such as this is not strongly bound to the particles but 

should be free to dissociate and move from one gene transcript 
to another. It is difficult to see how it could perform its 
catalytic function if it was a rigid and integral part of the 

particle structure.
Few workers regularly purify hnRNP particles more extensively 

than their recovery as a peak from sucrose density gradients. 
Particles can certainly be subjected to further purification 
procedures but it is not certain whether the products are more 
pure or depleted in their components. Bajszar et al., (1978) have 
demonstrated the loss of endogenous mRNA capping enzymes during 
repeated purification of particles. Similarly, in this work when 

the hnRNP peak from sucrose density gradients was concentrated and 
subjected to gel filtration (Figure 19) or rapidly dialysed and 
relayered on a second sucrose density gradient, there were partial 
losses of endogenous kinase activity and these steps were not 
therefore used routinely. For the reasons outlined above, it is 
difficult to know whether the lost entities were contaminants or 
loosely bound particle proteins.

Similar arguments are relevant to the kinase activity which 
remains at the top of the sucrose density gradient after the 
isolation of hnRNP's (Figure 18). This activity could be free 

nucleoplasmic enzyme extracted from nuclei with the particles. 
This/



This in itself could be different from or in equilibrium with the 
particulate activity. Alternatively the enzyme at the top of the 
gradient could result from dissociation from particles caused by 
the shear forces of the centrifugation. It would have been 
desirable to compare and contrast this non-particulate enzyme 
activity with those characterised on the particles. Such a 
comparison may have resolved some of the above possibilities but 
time did not permit it. The fact that kinase activity was still 
found associated with hnRNP particles after gel filtration on 
Bio Gel columns, (Figure 19) and after respinning on a second 
sucrose density gradient, and that a band of kinase activity 
corresponded to the stained band of hnRNP on non-denaturing gels 
(Figure 17) suggests that the kinase is genuinely associated with 
hnRNP particles.

3. Difficulty of Fractionating Kinases and other hnRNP Proteins

The fractionation of hnRNP particle proteins to yield 
reasonable quantities of purified proteins is not easy as the 
proteins have strong affinities for each other. Even after 
extensive RNase digestion of the RNA component^ hnRNP proteins 
still occur in particulate form and then aggregate into even 
higher molecular weight conplexes (Stevenin et aL, 1979). Results 
presented in this thesis show that treatment with 1M NaCl followed 
by dilution may result in some rearrangement of the particles or 
the formation of a higher molecular weight aggregate, (Figure 26).

HnRNP/
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HnRNP particles can be completely dissociated by high salt 
concentrations (Figure 26) but Fuchs & Jacob (1979) argue that 
some particles, (representing a separate population) appear to 
be resistant to dissociation up to 0.4M NaCl and that complete 
dissociation required greater than 0.7M NaCl.

Reports suggesting the existence of biochemically distinct 
monoparticle populations on the basis of salt and nuclease 
sensitivity of RNP have been disputed and may represent rearrange­

ments of monoparticles as a result of RNase treatment and resedi­
mentation on sucrose density gradients (Stevenin et al., 1977;

Stevenin et al., 1979). Nevertheless reports exist that strongly 
suggest a heterogeneity of structures (Gattoni et al., 1977).
Gattoni et al., (1977) have shown 2 distinct populations of hnRNP 
monoparticles with distinct and characteristic RNA and protein 
compositions which do not appear to represent rearrangements of 
RNP components.

The work presented in this thesis employed 1M NaCl to look at 
dissociation of hnRNP particles. In our hands 1M NaCl caused 
complete dissociation of hnRNP particles but this dissociation 
was partially reversible and removal of salt led to reaggregation 
of a substantial percentage of the proteins, (Figure 26). This 
could account for the results obtained with ion-exchange columns 
(Results 4.1). Even when the dilution was made at the moment of 
application to the column or when the salt was dialysed away with 

the ion-exchange resin present in the dialysis tubing it seemed likely 
that aggregation was occuring.

Dialysis/
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Dialysis appeared to result in reconstitution of the protein 
into hnRNP particles as the nature and relative abundancies of the 
particles resembled those of the hnRNP. However care must be 
exercised with this interpretation, as a considerable amount of work 

was done with reconstituted chromatin in the early 1970's only 
to be followed by strong indications that the reconstituted material 
was not the same as the original.

Fractionation of the particle kinases can only be achieved 
when conditions can be found which satisfy the following requirements
1. Particle must be dissociated or at least the kinase activity 

dissociated.
2. Dissociation must not destroy kinase activity.
3. Either the particle constituents must be fractionated in the 

dissociating medium or changing the medium must not result 

in reassociation, i.e. 1M NaCl fractionation only met the 
criteria when it was not subsequently diluted.
The only method which met these criteria was the fractionation 

of hnRNP protein in the presence of 1M NaCl. Under these conditions 
protein kinase activity was recovered as 2 peaks which are here 
referred to as 'A' and 'B', (Figure 27).

The main question was whether the 'A' and 'B ' activities isolated 
from the Sephadex G100 column, represented different kinases or 
different forms of the same enzyme. Thus peak 'A' could represent 
kinase still bound to undissociated particles and peak 'B ' could be 
the dissociated kinase. Alternatively, 'A' could be a multisubunit 
kinase/



- 136 -

kinase perhaps in a form attached to a regulatory subunit with
'B* representing the free monomeric form, i.e. similar to cAMP-

dependent protein kinase.
Various arguments tend to rule out all of these possibilities.

1M NaCl has been shown to completely dissociate hnRNP particles

(Figure 27) but even increasing the salt concentration to 1.5M NaCl
did not alter the kinase profile from the Sephadex column. This
suggests that 'A' may represent a different activity. When visualised

by coomassie blue staining, the peaks 'A' and 1B* contained a different

set of polypeptides (Figure 27) though the enzymes may not have been

detectable in this way.
Although 'A' and !B' had similar pH and time profiles to that of

total hnRNP kinase activity, their dependence on divalent ions was
slightly different. 'A' and hnRNP kinase activity were maximally

2+stimulated at 15-20mM Mg whereas ' B' continued to show further
2+slight increases up to 40mM Mg . Furthermore the activity of 'A'

2+was stimulated by Mn whereas that of 'B ’ was not.
Kinase 'A' activity appeared to be more stable than 'B1 at 

50°C and 60°C. However this difference could conceivably result 
from differential stabilisation by other proteins in the fraction.

Another major difference was the fact that 'A'  kinase activity 
could only use hnRNP particle proteins. It has been shown that 
the lack of histone and casein phosphorylation by 'A' was not 
due to excess acceptor proteins in 'A' (Figure 33 and 34), and 

that the casein and histone were actually phosphorylated by 'B '
Protein/
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Protein kinases have been detected in nuclear extracts by 
several workers (Takeda et al., 1971; Kimayama et al., 1971; 

Desjardins et al., 1972). Kish & Kleinsmith (1974) have 

separated the nuclear protein kinase activity into 12 distinct 
peaks. Each activity exhibited different specificities for 

casein, histone and non-histone proteins as substrates as well 
as showing a variety of cofactor requirements. However, they 
all had a pH optimum at pH 7.5.

The activities investigated in this work showed similarities 
with the enzyme detected in rat liver hnRNP by Wilks and Knowler 
(1981a) which also had a pH optimum at pH 6.5. The present 
enzymes differed however in that they were cAMP independent and 
were not stimulated by polyamines. In the latter characteristic, 
they also differed from the activity described by Ohtsuki et al.,

(1980) in mouse spleen. Enzyme 1B * and total hnRNP kinase activity 

did show some stimulation (Table 7) with cAMP in the presence of 
fluoride (phosphatase inhibitor) but the phosphodiesterase 
inhibitor isobutylmethyl xanthine did not appear to have any 

effect on either 'A', 'B ' or hnRNP kinase activities. No activity 
strongly responsive to cAMP could be detected in the fractionated 
particle proteins. It must be remembered, however, that the 
particles have been subjected to moderately denaturing conditions 
which may irreversibly inactivate the activity detected in intact 
particles by Wilks & Knowler (1981a).

The lack of effect of cAMP, phosphodiesterase inhibitor and

the/
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the cAMP-dependent protein kinase inhibitor provide some evidence 
that the kinase in peaks*A* and*B* are not related to each other in 

the way that the active and inactive forms of cAMP-dependent kinase 

are.
Although 'B 1 and hnRNP kinase activities could use casein as 

an exogeneous substrate, unlike casein kinase II (Hathaway & Traugh, 
1984) they were not inhibited by heparin.

An enzyme activity which is similar to hnRNP particle kinase 
activity in rat liver is the cAMP dependent nucleoplasmic protein 
kinase isolated by Neuman et_al.,(1978) which has a pH optimum at pH 

6.5 but differs in that this kinase is histone specific.
The hnRNP kinase activity detected by Blanchard et al., (1977) 

in HeLa cells had a maximum activity at pH 8.3 in the presence of 
lOmM MgClg and was also cAMP independent.

The 'A' and 1B 1 activities detected in this work could not use 
GTP in place of ATP and were thus similar to the activity detected 
by Blanchard et al., (1977) in HeLa cells. An activity detected 
in HeLa cells by Holcomb & Friedman (1984) could use GTP or ATP.
It was stimulated by polyamines and inhibited by heparin and was 

thus similar to casein kinase II. All these differences in the 
kinase activity characteristics could be explained if multiple 
nuclear protein kinases were capable of weak and transient 
association with hnRNP. The different methods used by different 

workers in this field could favour the detection of different enzymes. 

Periasamy/



Periasamy et al., (1979) have reported the partial purification of 
a kinase activity from HeLa cell hnRNP particles, by using DEAE and 
phosphocellulose chromatography. The activity was similar to that 
detected by Blanchard et al, (1977). It had a molecular weight of 

48000 as determined by gel filtration and appeared as 2 bands of 
molecular weight 25-28000 on SDS gels. Periasamy et al-, (1979) 

suggest that this activity shows similarities to nuclear kinase 
I from rat liver cells (Thornburg et aL, 1977).

Holcomb & Friedman (1984) have purified 2 casein kinases from 
micrococcal nuclease disrupted hnRNP from HeLa cells using DEAE 
and phosphocellulose. The first kinase showed greatest activity 
towards casein but no activity against the major particle proteins. 
It constituted 70% of the total particle kinase activity. The 

second kinase activity eluted from the phosphocellulose over­
lapped the C-core protein peak and Holcomb & Firedman suggested 
that this activity was the C-protein kinase. The work described 
in this thesis indicates that aggregation by hnRNP proteins can 
give rise to problems where ion-exchange resins are used to 
fractionate hnRNP proteins.

4. Phosphorylation of HnRNP Particle Proteins

4.1 Endogenous Phosphorylation of Proteins within the Peaks A and B

The protein kinase-containing peaks*A'and1B'were seen to 
contain different sets of proteins in Figure 27 and this is again 
seen in two dimensional fractionations (Figure 37 (i) and (ii)). 
Peak/



Peak A contained relatively little protein and gave rise to very 
faint two dimensional stained profiles. The failure of further 
attempts at purification of the kinase means that it is not known 
whether any of the stainable spots represent the enzyme.

The autoradiographs of Figure 37 (iii) and (iv) reveal totally 
different sets of polypeptides that are phosphorylated(by the 
endogenous enzymes. Peak A contains relatively few clearly defined 
phosphorylated products (indicated by Roman numerals) while Peak B 
contained multiple groups of phosphorylated polypeptides (indicated 
by Arabic numberals) which included phosphorylated core proteins 

(1). Repeat analysis of peak A, however, (data not shown because 
of poorly stained protein profile) revealed that the strongly 
phosphorylated low molecular weight spots VI and VIII in A and
(4) and (6) in B were probably identical. In this region of the 

gels only the spots VII in A and (5) in B appeared different.
It should be emphasised that the differences probably reflect 

the phosphorylatable components of peaks A and B rather than 
differences in the specificity of the enzymes.

4.2 Phosphorylation of Proteins in Fractions A, B and C by the 
kinases of Peaks A and B 
The stainable polypeptide profiles of A and C are still very 

different from those of B + C (Figure 38). The latter is dominated 

by the core proteins while the former is dominated by other hnRNP 
proteins.

Many/



Many of the phosphorylated polypeptides are unchanged from 
Figure 37 and it can now be seen that the spots VI and VIII 
form an identical pattern to (4) and (6). The spots VII and
(5) however remain different. Some new, or much more noticeable 

spots, have appeared on both of the autoradiographs of Figure 38. 
Thus, on Figure 38 (iii) a faint spot labelled IX on Figure 37 
is now much stronger and co-migrates with the most basic 

elements of the core proteins. Of perhaps more interest are a 
group of labelled polypeptides X in Figure 38 (iii) which were 
never seen with peak A alone and appear to be fraction C specific 

proteins. Their interest stems from the finding that some of 
them at least appear not to be phosphorylated by the kinase 
activity in peak B. Other changes occur in Figure 38 (iv) where 

the proteins in fraction C are combined with peak B. Most 
notable of these are the disappearance of the spot (1) and the 
appearance of the streak (8) and the spot (9). However, all 
three of these subsequently reappear in Figure 39 (iii), the 
autoradiograph of A + D.

All of these experiments were performed twice and most of 
them three times. Nevertheless the appearance of these three 
spots in experiments A + D and C + B, and their absence in other 
combinations would appear artifactual.
4.3 Phosphorylation of Proteins in Fractions A, B, and D by 

the Kinases in Peaks A and B 

Mention has been made above of the spots (1), (8) and (9). 
Apart/
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Apart from these, the addition of fraction D to the Peaks A and 
B resulted in no new clearly identified spots. Rather the addition 

of the D proteins to each peak made both the stained profiles and 
the autoradiographs of the phosphorylated proteins much more alike, 
i.e. there is little difference between A + D and B + D. Comparison 
of repeat experiments only served to indicate that those spots which 
did appear quantitatively, if not qualitatively different in Figures 
39 (iii) and (iv), were not reproducibly so.

4.4 Phosphorylation of Proteins in Fractions A, B and E by
the kinases in Peaks A and B

The stained polypeptides of Figure 40 (i) and (ii) are strikingly 
different from those with other combinations of gel filtration 

column fractions. The core protein profile now contains many extra 
spots which appear to be lower molecular weight derivatives of 

each of the charged separated polypeptides. They are faintly 
discernible in all gels containing peak B (Figures 37 (ii), 38 (ii),
39 (ii)) but are now very obvious and must form a major part of 
Fraction E. It must be likely that they are breakdown products.
On the autoradiographs (Figures 41 (iii) and (iv)) core protein 
phosphorylation is now much less obvious. Futhermore some new 
spots have appeared on both fractionations. These are the spots 
labelled XI on Figure 40 (iii) and the spots labelled(10), (11)& (12) 
on Figure 40 (iv) (12 is a complex of at least 3 components). It 
would appear that these are E specific polypeptides that are 

differentially phosphorylated by the 2 kinase activitiesv

4.5/
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4.5 Analysis of the Data on Endogenous Phosphorylation of
HnRNP Particle Proteins
Considerable care must be taken with the interpretation of the 

data on the endogenous phosphorylation of fractionated hnRNP 
proteins. To begin with the fractionation is arbitrary and 

incomplete, with many proteins probably present in more than 

one fraction. Secondly, when the effects of the enzymes on the 
phosphorylation of the proteins in C, D and E are examined, one 
is looking for changes against the background phosphorylation of 
the proteins in A or B. Thirdly, repeat experiments can show 
greater variation than comparisons between different fractions.
This is particularly true of the low molecular weight components 
which migrate very close to the marker dye, i.e. components (4),(5),
(6),VI, VII and VIII. In most gels spot 4 appears the same as VI, 
and spot (6) the same as VIII. There are differences however in 
the areas (5) and VII which may be associated with proteins in 
peaks A and B.

Notwithstanding, all of the above, there do appear to be some 
differences in the proteins phosphorylated by the enzymes in peaks 
A and B. These are polypeptides X in Fraction C (Figure 38 (iii)) 

and the polypeptides XI, (10) (LI) and, (12)in Fraction E (Figure 40).
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CONCLUSION

In conclusion 2 different protein kinase activities have 
been detected in hnRNP particles. It has not proved possible to 
purify or quantitate either protein but they would appear to be 

minor components of the hnRNP particles. The enzymes may be 
transiently associated with the particles and may be partitioned 
between the particle and other nuclear fractions. On the basis of 
substrate specificity, with both exogenous and endogenous sub­

strates, as well as their apparent molecular weight and, stability 
in high temperature, and activation by fluoride, it would appear 
that the two enzymes are genuinely different. However, it cannot 
be totally excluded that the apparent differences derive from the 
other proteins with which the impure enzymes are associated. The 
effect of fluoride in particular could result from phosphatase 
presence.



R E F E R E N C E S



REFERENCES
Adesnik, M., Salditt, M., Thomas, W. & Darnell, J.E. (1972)

J.Mol.Biol., 71, 21-30.

Ajtkhozhin, M.A., Polimbetova, N.S. & Akhanov, A.U. (1975)
FEBS Letts, 54, 212-216.

Albrecht, C., Van Zyl, I.M. (1973) Exptl. Cell Res., 76, 8-14.
Alestrom, P., Akusjarvi, G., Perricaudet, M., Methews, M.B.,

Klessig, D.F. & Pettersson, U. (1980) Cell, 19, 671-681.
Ashendel, L., Staller, J.M., & Boutwell, R.K., (1983) Cancer 

Res., 43, 4333-4337.
Assens, C., Liautard, J.P., Sri-Widada, J., Brunei, C. & Jeanteur, P

(1982) Biochem. Biophys. Res. Commun., 106, 953-960.
Assens, C., Liautard, J.P., Sri-Widada, J., Brunei, C., & Jeanteur, 

P., (1983) Biochem. Biophys. Res. Commun., 106, 953-960.
Bachman, M., Messer, R., Trautmann, F., Muller, W.E.G., (1984) 

Biochim. Biophys. Acta., 783, 89-99.
Baird, M., Driscoll, C., Schreiner, H., Sciarratta, C.V., Sansone, G 

Niazi, G., Ramirez, F. & Bank, A. (1981) Proc. Natl. Acad. Sci., 
78, 4218-4221.

Bajszar, G., Szabo, G., Simoncsits, A. & Molnar, J. (1978) Molec. 
Biol. Rep., 4, 93-96.

Bakerkow, A., & Bauer, H., (1984) Biochim. Biophys. Acta., 782, 
94-102.

Berget, S.M.,(1984) Nature 309, 179-182.

Berridge, M.J., (1984) Biochem. J., 220, 345-360.

Beyer, A.L., Bouton, A.H. 8c Miller (Jr.), O.L. (1981) Cell, 26, 
155-165.

Beyer, A.L., Christensen, M.E., Walker, B.W. & Le Stourgeon, W.M.
(1977) Cell, 11, 127-138.

Beyer, A.L., Miller (Jr), O.L. & McKnight, S.L. (1980) Cell, 20, 
75-84.

Billings, P.B., & Hoch, S.O., (1984) J. Biol. Chem., 259, 
12850-12856.



- 146 -

Blanchard, J.M., Brunei, C. & Jeanteur, P. (1977) Eur. J. 
Biochem., 79, 117-131.

Blanchard, J.M., Brunei, C. & Jeanteur, P. (1978) Eur. J. 
Biochem., 86, 301-310.

Blobel, G. (1973) Proc. Natl. Acad. Sci. U.S.A., 70, 924-928.
Bossoni, I., Annesi, F., Beccari, F., Fragapane, P., Pierandrei- 

Amaldi, P., & Amaldi, F., (1984) J.Mol. Biol., 180, 1173-1178.
Both, G.W., Bonerjee, A.K. & Shatkin, A.J. (1975) Proc. Natl. 

Acad. Sci. U.S.A., 72, 1189-1193.

Boyd, G.S. & Gorban, A.M.S. (1980) Molec. Aspects of Cellular 
Reg., 1̂, (ed. Cohen, P.) 135-152.

Bradford, M.M. (1976) Annal. Biochem., 72, 248-254.

Brand, I.A. & Soling, H.D. (1975) FEBS Letts., 57, 163-168.

Branlant, C., Krol, A., Ebel, J.P., Lazar, E., Haendler, B.,
& Jacob, M., (1982) EMB0 J. 1, 1259-1265.

Branlant, C., Krol, A., Ebel, J.P., Gallinaro, H., Lazer, E.
& Jacob, M. (1981) Nuc. Acid Res., 9, 841-858.

Brawerman, G. (1974) Ann. Rev. Biochem., 43, 621-642.
Brawerman, G., & Diez, J., (1975) Cell, 5, 271-280.

Bringmann, P., Appel, B., Rinke, J., Reuter, R., Theissen, H. , 
Luhrmann, R., (1984) EMB0 J., 3, 1357-1363.

Bringmann, P., Reuter, R., Rinke, J., Appel, B., Bald, R. & 
Luhrmann, R. (1983) J. Biol. Chem., 258, 2745-2747.

Brunei, C. & Lelay, M.N. (1979) Eur. J. Biochem. 99, 273-283.
Brunei, C., Sri-Widada, J. Lelay, M.N., Jeanteur, P., & Liautard, 

J.P. (1981) Nuc. Acid. Res., 9, 815-830.
Busch, H. & Reddy, R. (1982) Biochem. Soc. Bulletin, Vol. 14,

No. 3, p.22.

Busslinger, M., Moschanos, N. & Flavell, R.A. (1981) Cell, 27, 
289-298.

Capco, D.G., Wan, K.M. & Penman, S. (1982) Cell, 29, 847-858. 
Carpenter, G., & Cohen, S. (1984) TIBS, 9., 169-171. '



- 147 -

Chauveau, J., Moule, Y. & Rouiller, C.H. (1956) Exptl. Cell Res., 
11, 317-321.

Choi, Y.D., & Dreyfuss, G., (1984) Proc. Natl. Acad. Sci. U.S.A. 
81, 7471-7475.

Ciejek, E.M., Nordstrom, J.L., Tsai, M.J. & O'Malley, B.W. (1982) 
Biochem., 21, 4945-4953.

Cochet, M., Gannon, F., Hen, R., Maroteaux, L., Perrin, F., 
Chambon, P. (1979) Nature, 282, 567-574.

Cohen, P. (1973) Eur. J. Biochem. 34, 1-14.
Cohen, S., Carpenter, G., & King Jr., L., (1980) J.Biol. Chem., 

255, 4834-4842.
De Paoli-Roach, A.A., Ahmad, Z., Camici, M., Lawrence Jr., J.C. & 

Roach, P.J. (1983) J. Biol. Chem., 258, 10702-10709.

Desjardins, P.R., Lue, P.F., Liew, C.C. & Gornall, A.G. (1972) 
Can. J. Biochem., 50, 1249-1259.

Diez, J., & Brawerman, G., (1974) Proc. Natl. Acad. Sci. U.S.A. 
71, 4091-4095.

Di Maria, P.R., Kaltwasser, G., & Goldenberg, C.J., (1985)
J. Biol. Chem., 260, 1096-1102.

Douvas, A.S., Stumph, W.E., Reyes, P. & Tan, E.M. (1979) J.Biol. 
Chem., 254, 3608—3616.

Eckhart, W., Hutchinson, M.A. & Hunter, T. (1979) Cell, 18, 925-933.
Economidis, I.V., & Pederson, T., (1982) Proc. Natl. Acad. Sci., 

U.S.A., 79, 1469-1473.
England, P.J., (1980) Molec. Aspects Cellular Reg. 1, (ed. Cohen,P.) 

153-173.
Engstrom, L. (1980) Molec. Aspects of Cellular Reg. l,(ed. Cohen,P.) 

11-31.
Ensinger, E.J., Martin, S.A., Paoletti, E. & Moss, B. (1975) Proc. 

Natl. Acad. Sci., 72, 2525-2529.
Epstein, P., Reddy, R., Henning, D. & Busch, H. (1980) J. Biol. 

Chem., 255, 8901-8906.



- 148 -

Faiferman, I., Hamilton, M.G. & Pogo, A.O. (1971) Biochim. Biophys. 
Acta, 232, 685-695.

Faiferman, I. & Pogo, A.O. (1975) Biochem. 14, 3808-3816.
Firtel, R.A. & Pederson, T. (1975) Proc. Natl. Acad. Sci. U.S.A.,

72, 301-305
Fitzgerald, M. & Shenk. T. (1981) Cell, 24, 251—260.

Flytzanis, C., Alonso, A., Louis, C., Krieg, L. & Sekeris, C.E.
(1978) FEBS Letts., 96, 201-206.

Forbes, D.J., Kirschner, M.W., Caput, D., Dahlberg, J.E., &
Lund, E., (1984) Cell, 38, 681-689.

Forbes, D.J., Komberg, T.B., & Kirschner, M.V7., (1983) J. Cell Biol.,
97, 62-72.

Frederiksen, S., Flodgard, H. & Hellung-Larsen, P. (1981) Biochem.
J., 193, 743-748.

Friedman, B., Frackelton, A.R., Ross, A.H., Connors, J.M.,
Fujiki, H., Sugimura, T., & Rosner, M.R., (1984) Proc. Natl.
Acad. Sci. U.S.A., 81, 3034-3038.

Friedman, D.L. & Lerner,J., (1963) Biochem., 2, 669-675.

Fuchs, J.P., & Jacob, M. (1979) Biochemistry 18, 4202-4208.
Fuchs, J.P., Judes, C. & Jacob, M. (1980) Biochem., 19), 1087-1094.
Furuichi, Y., La Fiandra, A. & Shatkin, A.J. (1977) Nature, 266,

235-239.
Gaitskhoki, V.S., L'vov, V.M., Schwartzman, A.L., Skobeleva, N.A., 

Frolova, L. Ju., & Neifakh, S.A. (1981) Mol. Biol. Rep., 8, 57-62.
Gallinaro, H., Lazar, E., Jacob, M., Krol. A. & Branlant, C. (1981) 

Molec. Biol. Rep., 7, 31-39.
Gallinaro, H., Puvion, E., Kister, L. & Jacob, M. (1983) EMB0 J.,

2, 953-960.
Gallinaro-Matringe, H., Stevenin, J. & Jacob, M. (1975) Biochem.,

14, 2547-2554.

Gallinaro-Matringe, H., Stevenin, J. & Jacob, M. (1977) Differentiation, 
9, 147-155.

Garrels, J. I. (1979) J.Biol.Chem., 254, 7961-7977.

Gattoni, R., Stevenin, J., & Jacob, M. (1977) Nuc. Acid. Res.,
4, 3931-3941.



- 149 -

Gattoni, R., Stevenin, J. & Jacob, M. (1980) Eur. J. Biochem., 
108, 203-211.

Georgiev, G.P., Samarina, O.P., Lerman, M.I., Smirnov, M.N. & 
Severtov, A.N. (1963) Nature, 200, 1291-1294.

Gill, G.N., Walton, G.M. & Sperry, P.J. (1977) J.Biol. Chem., 
252, 6443-6449.

Goldenberg, C.J. & Raskas, H.J. (1981) Proc. Natl. Acad. Scie.,
78, 5430-5434.

Gordon, J.B., Lingrel, J.B., & Marbaix, G., (1973) J. Mol.
Biol., 80, 539-551.

Grabowski, P.J., Padgett, R.A., & Sharp, P.A., (1984) Cell 37,
415-427.

Green, M.R., Maniatis, T., & Melton, D.A., (1983) Cell, 32,
681-694.

Guialis, A., Arvanitopoulou, A., Patrinou-Georgoula, M. & Sekeris, C.E.
(1983) FEBS Letts., 151, 127-133.

Hardie, D.G., & Guy, P.S., (1980) Eur. J. Biochem., 110, 167-177.
Hashimoto, C., & Steitz, J.A., (1984) J.Mol.Biol., 180, 927-945.
Heinrich, P.C., Gross, V. , Northeman, W. & Schleuren, M. (1978) 

Rev. Physiol. Biochem., Pharmacol., 81, 101-134.

Heinrich, P.C. & Northeman, W. (1981) Mol.Biol. Rep., 7, 15-24.

Herman, R., Weymouth, L., & Penman, S., (1978) J. Cell, Biol., 
78, 683-674.

Hinterberger, M., Pettersson, I. & Steitz, J.A. (1983) J.Biol. 
Chem., 258, 2604-2613

Hofman, F., Beavo, J.A., Bechtel, P.J. & Krebs, E.G. (1975) 
J. Biol. Chem., 250, 7795-7801.

Holcomb, E.R., & Friedman, D.L., (1984) J.Biol.Chem., 259, 31-40.
Houssais, J.F. (1975) FEBS Letts., 56, 341-347.
Hugle, B., Guldner, H., Bautz, F .A. & Alonso, A. (1982) Exptl. 

Cell Res., 142, 119-126.
Hunter, T., (1984) Nature, 311, 414-416.



- 150 -

Imaizumi, T., Diggelman, H. & Scherrer, K. (1973) Proc. Natl.
Acad. Sci., 70, 1122-1126.

Isenberg, I., (1979) Ann. Rev. Biochem. 48, 159-191.
Jacob, M., Develliers, G., Fuchs, J.P., Gallinaro, H., Gattoni, R., 

Judes, C. & Stevenin, J. (1981) Cell Nucleus VIII, 194-246.
Jacob, S.T., Roe, F.J. & Rose, K.M. (1976) Biochem J., 153, 733-735.
Jeanteur, P. (1981) Cell Nucleus IX, 145-170.
Jelinek, W., Adesnik, M., Salditt, M., Sheiness, D., Wall, R., 

Molloy, G., Philipson, P. & Darnell, J.E. (1973) J. Mol.Biol., 
75, 515-532.

Jeppeson, P.G.N. (1974) Analyt. Biochem., 58, 195-207.

Kamijama, M., Dastugue, B. & Kruh, J. (1971) Biochem. Biophys. 
Res. Commun., 44, 1345-1355.

Karn, J., Vidali, G., Boffa, L.C. & Allfrey, V.G. (1977) J.Biol. 
Chem., 252, 7307-7322.

Katinakis, P.K., Slater, A., & Burdon, R.H., (1980), FEBS Letts., 
116, 1-7.

Keith, J.M., Ensinger, M.J., & Moss, B., (1978) J. Biol. Chem., 
253, 5033-5041.

Keller, W., (1984) Cell 39, 423-425.
Kinlaw, C.S., Robberson, B.L., & Berget, S.M., (1983) J. Biol. Chem., 

258, 7181-7189.

Kinniburgh, A.J. & Martin, T.E. (1976) Biochem. Biophys. Res. Commun., 
73, 718-726.

Kinniburgh, A.J. & Ross, J. (1979) Cell, 17, 915-921.
Kish, V.M. & Kleinsmith, L.J. (1974) J. Biol. Chem., 249, 750-760.
Kish, V.M. & Pederson, T. (1975) J. Mol. Biol., 95, 227-238.

Kloetzel, P.M., & Bautz, E.K.F., (1983) E.M.B.0. J. 2, 705-710.
Knapp, G., Beckman, J.S., Johnson, P.F., Fuhrman, S.A., & Abelson, 

J., (1978) Cell, 14, 221-236.



- 151 -

Knight, D.E., & Baker, P.F., (1983) FEBS Letts., 160, 98—100.

Kojima, I., Lippes, H., Kojima, K., & Rasmussen, H., (1983) 
Biochem. Biophys. Res. Commun., 116, 555-562.

Konarska, M.M., Padgett, R.A., & Sharp, P.A., (1985) Cell 38, 
731-736.

Kornberg, R.D. (1974) Science, 184, 868-871.

Kostka, G. & Schweiger, A. (1982) .Biochim. Biophys. Acta, 969, 139-144.

Kramer, A., Keller, W., Appel, B., & Luhrmann, R., (1984) Cell 38, 
299-307.

Krebs, E.G. & Fischer, E.H. (1956) Biochim. Biophys. Acta, 20,
150-157.

Krebs, E.G. Graves, D.J. & Fischer, E.H. (1959) J. Biol. Chem., 
234, 2867-2873.

Krichevskaya, A.A. & Georgiev, G.P. (1969) Biochim. Biophys. Acta, 
194, 619-621.

Krol, A. & Branlant, C. (1981) Nuc. Acid Res., 9, 2699-2716.
Krol, A., Gallinaro, H., Lazar, E., Jacob, M & Branlant, C. (1981) 

Nuc. Acid Res., 9, 769-787.

Laird, C.D. & Chooi, W.Y. (1976) Chromosoma, 58, 193-218.
Langan, T.A. (1969) J.Biol. Chem., 244, 5763-5765.

Lawn, R.M., Fritsch, E.F., Parker, R.C., Blake, G.& Maniatus, T.
(1978) Cell, 15, 1157-1174.

Lenk, R.P., Maizel, J.V. & Crouch, R.J. (1982) Eur. J. Biochem., 
21, 475-482.

Le Peuch, C.J., Haiech, J. & Damaille, J.G. (1979) Biochem., 18, 
5150-5157.

Lerner, M.R., Boyle, J.A., Hardin, J.A. & Steitz, J.A., (1981), 
Science, 211, 400-402.

Lerner, M.R., Boyle, J.A., Mount, S.M., Wolin, S.L. & Steitz, J.A.
(1980) Nature, 283, 220-224.



Lerner, M.R., Steitz, J.A. (1979) Proc. Natl. Acad. Sci. U.S.A., 
76, 5495-5499.

Lerner, M.R. & Steitz, J.A. (1981) Cell, 25, 298-300.

Leser, G.P., Escara-Wilke, J., & Martin, T.E., (1984). J.Biol. 
Chem., 259, 1827-1833.

Le Stourgeon, W.M. & Beyer, A.L. (1978) Methods in Cell Biol.,
16, 387-406.

Le Stourgeon, W.M., Beyer, A.L., Christensen, M.E., Walker, B.W., 
Poupore. S.M. & Daniels, L.P. (1978) Cold Spring Harbor Quant 
Symp. Biol., 42, 885-898.

Liautard, J.P., Sri-Widada, J.S. & Brunei, C. (1981) Mol. Biol.Rep. 
7, 41-45.

Liautard, J.P., Sri-Widada, J., Brunei, C. & Jeanteur, Ph. (1981)
J. Mol. Biol., 162, 623-643.

Lin, W.L. & Pederson, T., (1984) J. Mol. Biol. 180, 947-960.
Lincoln, R.M. & Corbin, J.D. (1978) J. Biol. Che., 253, 337-339.

Lomendico, P., Rosentahl, N., Efstratiadis, A., Gilbert, W., 
Kolodner, R. & Tizard, R. (1979) Cell, 18, 545-558.

Louie, A.J. & Dixon, G.H. (1973) Nature New Biol., 243, 164-168.
Lukanidin, E.M., Zalmanzon, E.S., Komaromi, L., Samarina, O.P.

& Georgiev, G.P. (1972) Nature New Biol., 238, 193-197.

Lund-Larsen, R.T. (1975) Int. J. Biochem., 6, 657-661.
MacGillivray, A.J., Carroll, A.R., Dahi, S., Naxakis, G., Sadaie, M 

Wallis, C.M. & Jing, T. (1982) FEBS Letts., 141, 139-147.
Majerus, P.W., Neufeld, E.J., & Wilson, D.B., (1984) Cell, 37, 

701-703. —
Malcolm. D.B. & Sommerville, J. (1974) Chromosoma, 48, 137-158.
Malcolm, D.B. & Sommerville, J. (1977) J. Cell Sci., 241, 143-165.
Mandel, J.L., Breathnach, R., Gerlinger, P., Le Meur, M., Gannon, F 

& Chambon, P. (1978) Cell, 14, 641-653.

Mantieva, V.L., Avakjan, E.R. & Georgiev, G.P. (1969) Mol. Biol. 
U.S.S.R., 3, 545-553.

Mariman, E.C.M., Van Efekelen, C.A.G., Reinders, R.J., Berns, A.J.M. 
& Van Venrooij, W.J. (1982) J. Mol. Biol., 154, 103-119.



- 153 -

Martin, T., Billings, P., Pullman, J., Stevens, B. & Kinniburgh, 
A. (1977) Cold Spring Harbor Symp. Quant. Biol., 42, 899-909.

Martin, T., Jones, R. & Billings, P. (1979) Mol. Biol. Rep., 5, 
37-42.

Martin, T., Okamura, C., & Pullman, J., (1981) Molec. Biol. Rep. 
7, 181.

Mattaj, I.IV., De Robertis, E.M., (1985) Cell, 40, 111-118.
Maundrell, K.M., Maxwell, E.S., Puvion, E. & Scherrer, *K. (1981) 

Exptl. Cell Res., 136, 435-445.

Maundrell, K.M. & Scherrer, K. (1979) Eur. J. Biochem., 99, 225-238.
Mauron, A. & Spohr, G. (1978) Eur. J. Biochem., 82, 619-625.

Maxwell, E.S. & Fisher, M.S. (1979) Biochim. Biophys. Acta,
562, 319-330.

Mayrand, S., & Pederson, T., (1981) Proc. Natl. Acad. Sci. U.S.A., 
78, 2208-2212.

Mayrand, S., & Pederson, T., (1983) Molec. Cell Biol. 3, 161-171.
Mayrand, S., Setyono, B., Greenberg, J.R. & Pederson, T. (1981)

J. Cell Biol., 90, 380-384.
McClung, J.K. & Kletzien, R.F. (1981) Biochim. Biophys. Acta,

676, 300-306.
McKnight, S.L. & Miller Jr., O.L. (1976) Cell, 8, 305-319.
Miller. O.L. & Hamkalo, B.A. (1972) Int. Rev. Cytol., 33, 1-25.

Miller, T.E., Huang, C.Y. & Pogo, A.0. (1978) J. Cell Biol., 76, 
675-691.

Moffett, R.B. & Webb, T.E. (1981) Biochem., 20, 3253-3262.
Molnar, J., Bajszar, G., Marczinovits, I., Szabo, G. (1978)

Mol. Biol. Rep., 4, 157-161.

Monroy, G., Spencer, E. & Hurwitz, J. (1978) J. Biol. Chem., 253, 
4481-4489.

Moore, C.L., & Sharp, D.A., (1984),Cell 36, 581-591.

Morel, C., Gander, E.S., Herzberg, M., Dubochet, J. & Scherrer, K. 
(1973) Eur. J. Biochem., 36, 455-464.

Moss. B., Gershowitz, A., Wei, C.H. & Boone, R. (1976) Virol., 72, 
341-351.



- 154 -

Moule, Y. & Chauveau, J. (1968) J. Mol. Biol., 33, 465-481.
Mount, S.M. (1982) Nuc. Acid Res., 10, 459-472.
Mount, S.M., Pettersson, I., Hinterberger, M., Karmas, A. &

Steitz, J.A. (1983) Cell, 33, 509-518.

Mount, S.M. & Steitz. J.A.(1981) Nuc. Acid Res., 9, 6351-6368.
Munroe, S.H., & Pederson, T., (1981) J. Mol. Biol., L47, 437-449.

Myslinski, E., & Branlant, C., (1980) J. Mol. Biol., 180, 927-945.

Nestler, E.J., & Greenberg, P., (1983) Nature 305, 583-588.
Nevins, J.R. (1982) Cell, 28, 1-2.
Newman, J.R., 0'Heara, A.R. & Herrmann, R.L. (1978) Biochem. J.,

171, 123-135.
Niessing, J. & Sekeris, C.E. (1970) Biochim. Biophys. Acta, 209, 

484-492.
Niessing, J. & Sekeris, C.E. (1971a) Biochim. Biophys. Acta, 247, 

391-403.
Niessing, J. & Sekeris, C.E. (1971b) FEBS Letts., 18, 39-42.
Niessing, J. & Sekeris, C.E. (1972) FEBS Letts., 22, 83-88.
Niessing. J. & Sekeris, C.E.(1973) Nature New Biol., 243, 9-12.
Nimmo, H.G. (1980) Molec. Aspects of Cellular Reg., 1, (Ed. Cohen, P.) 

135-152.
Nimmo, H.G. & Cohen, P. (1977) Adv. Cyclic Nuc. Res., 8, 145-266.
Nishizuka, Y., (1984) T.I.B.S. 14, 163-171.
Northeman, W., Gross, V., Scheurlen, M. & Heinrich, P.C. (1978) 

Biochim. Biophys. Acta, 519, 406-417.

Northeman, W. & Heinrich, P.C. (1979) Biochim. Biophys. Acta,
564, 67-78.

Northeman, W., Scheurlen, M., Gross, V. & Heinrich, P.C. (1977) 
Biochem. Biophys. Res. Commun., 76, 1130-1137.

O'Farrell, P.H. (1975) J. Biol. Chem., 250, 4007-4021.
O'Farrell, P.Z., Goodman, H.M. & O'Farrell, P.H. (1977) Cell, 12, 

1133-1142.



- 155 -

Ohshima, Y., Itoh, M., Okoda, N. & Mijata, T., (1981) Proc. Natl.
Acad. Sci., 78, 4471-4474.

Ohtsuki, K., Yamada, E., Nakamura, M., & Ishida, N. (1980) J.Biochem, 
87, 35-45.

Parsons, J.T. & McCarthy, K.S. (1968) J. Biol. Chem., 243, 5377-5384.
Patel, N.T. & Holoubek, V. (1976) Biochem. Biophys. Res. Commun.,

73, 112-119.

Payne, M.E. & Soderling, T.R. (1980) J. Biol. Chem., 255, 8054-8056. 
Pederson, T. (1971a) J. Mol. Biol., 83, 163-183.
Pederson, T. (1974b) Proc. Natl. Acad. Sci., 71, 617-621.
Pederson, T. (1981) Amer. Scient., 69, 76-84.

Pederson, T. & Munroe, S.H. (1981) J. Mol. Biol., 150, 509-524.
Penman, S., Vesco, C. & Penman, M. (1968) J.Mol.Biol., 34, 49-69.
Periasamy, M., Brunei, C., Blanchard, J.M. & Jeanteur, P. (1977) 

Biochem. Biophys. Res. Commun., 79, 1077-1083.

Periasamy, M., Brunei, C. & Jeanteur, P. (1979) Biochimie, 61, 
823-826.

Perry, R.P. & Kelley, D.E. (1976) Cell, 8, 433-442.

Peters, K.E., & Cumings, D.E., (1980) J. Cell. Biol. 86, 135-155.
Prestayko, A.W., Tonato, M. & Busch, H. (1970) J. Mol. Biol., 47, 

505-515.
Proudfoot, N.J. & Brownlee, G.G. (1976) Nature, 263, 211-214.
Prusse, A., Louis, C., Alonso, A. & Sekeris, C.E. (1983) Eur. J. 

Biochem., 128, 169-178.

Pullman, J.M. & Martin, T.E. (1983) J. Cell Biol., 97, 99-111.
Quinlan, T.J., Kinniburgh, A.J. Martin, T.E. (1977) J.Biol. Chem.

252, 1156-1161.

Rech, J., Brunei, C. & Jeanteur, P. (1979) Biochem. Biophys. Res. 
Commun., 88, 422-427.

Reddy, R., Henning, D. & Busch, H. (1979) J. Biol. Chem., 254, 
11097-11105.



- 156 -

Reddy, R., Henning, D., Epstein, P. & Busch, H. (1981) Nuc. Acid 
Res., 9, 5645—5657.

Reuter, R., Appel, B., Bringmann, P., Rinke, J., & Luhrmann, R., 
(1984) Exptl. Cell res., 154, 548-560.

Rinke, J., Appel, B., Blocker, H., Frank, R., & Luhrmann, R.,
(1984) Nuc. Acid. Res., 12, 4111-4126.

Roach, P.J. (1982) Curr. Topics in Cellular Reg.,20, 45-105.
Robinson, S.I., Nelkin, B.D. & Vogelstein, B. (1982) Cell, 28, 99-106.

Rogers, J. & Wall, R. (1980) Proc. Natl. Acad.Sci., 77, 1877-1879.
Roop. D.R., Tsai, J.J. & O'Malley,B.W. (1980) Cell, 19, 63-68.
Rose, J.K. (1975) J. Biol. Chem., 250, 8098-8104.
Rose, K.M.,Bell, L.E. & Jacob, S.T. (1977) Nature, 267, 178-180.
Rose, K.M. & Jacob, S.T. (1979) J. Biol. Chem., 254, 10256-10261.
Rose, K.M. & Jacob, S.T. (1980) Biochem., 19, 1472-1476. 
Roth, J.S. (1958) J. Biol. Chem., 231, 1085-1095.
Rubin, C.S., Erlichman, J. & Rosen, O.M. (1972) J. Biol. Chem.,247, 

6135-6139.
Rubin, C.S. & Rosen, O.M. (1975) Ann. Rev. Biochem., 44, 831-887.
Ruffel, G.U., Wyler, T., Muellener, D.B. & Weber, R. (1980) Cell, 

19, 53-61.
Ryskov, A.P., Saunders, G.F., Farashyan, V.R. & Georgiev, G.P. 

(1973) Biochim. Biophys. Acta, 312, 152-164.
Salditt-Georgieff, M., Jelinek, W. & Darnell, J.E. (1976) Cell,

7, 227-237.

Samarina, O.P., Aitkozhina, N.A. & Besson, J. (1973) Mol. Biol. Rep., 
1, 193-199.

Samarina, O.P., Krichevskaya, A.A., & Georgiev, G.P., (1966)
Nature (London) 210, 1319-1322.

Samarina, O.P., Molnar, J., Lukanidin, E.M., Bruskov, V.I., 
Krichevskaya A.A. & Georiev, G.P. (1967) J. Mol. Biol., 27, 
187-191.



- 157 -

Samarina, O.P., Lukanidin, E.M., Molnar, J. & Georgiev, G.P., 
(1968) J.Mol. Biol., 33, 251-263.

Sass, H., & Pederson, T., (1984) J. Mol. Biol. 180, 911-926.

Schaffner, W., Gross, K., Telford, J., & Birnstiel, M., (1976),
Cell 8, 471-478.

Scheer, U., Spring, H. & Trendelenburg, M.F. (1979) Cell Nucleus 
(Busch, H., ed.) VII, p3-47, Academic Press, New York.

Scherrer, K., Latham. H. & Darnell, J.E. (1963) Proc. Natl. Acad. 
Sci., 49, 240-248.

Schibler, U., Marcu. K.B. & Perry, R.P. (1978) Cell, 15, 1495-1509.
Schweiger, A. & Hannig, K. (1971) Biochim. Biophys. Acta. 254, 

255-264.

Schweiger, A. & Kostka. G. (1980) Exptl. Cell Res. 125, 211-219.
Schweiger, A., & Schmidt, W. , (1974) FEBS Letts. 41, 17-19.
Sekeris, C.E. & Niessing, J. (1975) Biochem. Biophys. Res. Commun., 

62, 642-650.
Seytono, B. & Greenberg, J.R. (1981) Cell, 24, 775-783.
Seytono, B. & Pederson, T. (1984) J.Mol.Biol., 174, 285-295.
Sommerville, J. (1973) J. Mol. Biol., 78, 487-503.
Sommerville, J. (1981) Cell Nucleus (Busch, H., ed.) VIII, 1-57. 

Academic Press, New York.
Sripati, C.E., Groner, Y. & Warner, J.R. (1976) J. Biol. Chem., 

251, 2898-2904.

Sri-Widada, J., Liautard, J.P., Assens, C. & Brunei, C. (1981)
Mol. Biol. Rep., 8, 29-36.

Sri-Widada, J., Liautard, J.P., Brunei, C., & Jeanteur, P., (1983) 
Nuc. Acid. Res., 11, 6631-6646.

Sri-Widada, J., Assens, C., Liautard, J.P., Jeanteur, P. & Brunei, C. 
(1982) Biochem. Biophys. Res. Commun., 104, 457-462.

Stanton, G.J., Holoubek, V. (1977) Biochim. Biophys. Acta. 477,
151-164.

Steinberg, D. (1976) Advances in Cyclic Nucleotide Res. 7, 157-198.



- 158 -

Stevenin, J., Gallinaro-Matringe, H., Gattoni, R. & Jacob, M. 
(1977) Eur. J. Biochem., 74, 589-602.

Stevenin, J., Gattoni, R., Divilliers, G. & Jacob, M. (1979) 
Eur. J. Biochem., 95, 593—606.

Stevenin, J. & Jacob, M (1972) Eur. J. Biochem., 29, 480-488.
Stevenin, J. & Jacob, M. (1974) Eur. J. Biochem., 47, 129-137.
Stevenin, J. & Jacob, M. (1979) Molec. Biol. Rep., 5, 29-35.
Strosberg, A.D., (1984) TIBS. 9, 166-169.
Suria, D. & Liew, C.C. (1979) Can. J. Biochem., 57, 32-42.

Swarup, G., Dasgupta, J.D. & Garbers, D.L. (1983). J. Biol. 
Chem., 258, 10341-10347.

Szabo, G., Marozinovits, I., Kamaromy, L., Bajszar, G & Molnar, J.
(1981) Mol. Biol. Rep., 7, 221-225.

Takano, M., Golden, S.S., Sharp, G.C. & Agris, P.F. (1981) 
Biochem., 20, 5933-5936.

Takeda, M., Yamamura, H. & Ohga, Y. (1971) Biochem. Biophys.
Res. Commun.., 42, 103-110.

Takeishi, K. & Kaneda, S.(1981) J. Biochem. 90, 299-308.
Thomas, J.O., Glowacka, S.K. & Szer, W., (1983) J. Mol. Biol.,

171, 439-455.
Thomas, P.S., Shepherd, J.H., Mulvihill, E.R. & Palmitter, R.D.

(1981) J. Mol. Biol., 150, 143-166.
Thornburg, W., O'Malley, A.F. & Lindell, T.J. (1978) J. Biol. Chem., 

253, 4638-4641.
Tilghman, S.M., Tiemeier, D.C., Seidman, J.G., Matija Peterlin, B., 

Sullivan, M. Maizel, J.V. & Leder, P. (1978) Proc. Natl. Acad. 
Sci., 75, 725-729.

Tomcsanvi ., T., Molnar, J. & Tigyi, A. (1983) Eur. J. Biochem., 131, 
283-288.

Treisman, R., Proudfoot, N.J., Sharder, M. , & Man rv.i a.tis, T., (1982) 
Cell 29, 903-911.

Tsai, M.J., Ting, A.C., Nordstrom, J.L., Zimmer, W. & O'Malley, B.W.
(1980) Cell, 22, 219-230.



- 159 -

Ushiro, H. & Cohen, S. (1980) J. Biol. Chem., 255, 8363-8365.
Van Eekelen, C.A.G., Mariman, E.C.M., Reinders, R.J. & Van Venrouij, 

W.J. (1981a) Eur. J. Biochem., 119, 461-467.

Van Eekelen, C.A., Riemen, T. & Van Venrooij, W.J. (1981b) FEBS 
Letts., 130, 223-226.

Van Eekelen, C.A.G. & Van Venrooij, W.J. (1981) J. Cell Biol.,
88, 554-563.

Van Venrooij, W.J. & Jansen, D.B., (1978) Mol. Biol. Re'p., 4,
3-8.

Wallace, J.C., & Edmonds, M. (1983) Proc. Natl. Acad. Sci. U.S.A., 
80, 950-954.

Wei, C.M. & Moss, B. (1977) Proc. Natl. Acad. Sci., 74, 3758-3761.

Weinberg, R.A. (1973) Ann. Rev, Biochem., 42, 329-354.
Wilk. H.E., Angeli, G., & Schafer, K.P., (1983) Biochemistry 22, 

4592-4600.
Wilk, H.E., Werr, H., Friedrich, D., Kiltz, H.H., & Schafer, K.P.,

(1985) Eur. J. Biochem., 146, 71-81.
Wilks, A., Cato, A.C.B., Cozens, P.U., Mattaj, I.W. & Jost, J.P.

(1981) Gene, 16, 249-259.
V/ilks, A.F. & Knowler, J.T., (1980) Electrophoresis, 1_, 155-158.
Wilks, A.F. & Knowler, J.T., (1981a) Biochim. Biophys. Acta, 652, 

228-233.
Wilks. A.F. & Knowler, J.T., (1981b) Bioscience Rep., 1, 407-411. 
Wise, J.A. & Weiner, A.M. (1981) J. Biol. Chem., 256, 956-963.
Woo, S.L.C., Beattie, W.G., Catterall, J.F., Dugaiczyk, R.,

Staden, R., Brownlee, G.B. & O'Malley, B.W. (1981) Biochem.,
20, 6437-6446.

Wozney, J., Hanahan, D., Tate, V., Boedtker, H. & Dolty, P. (1981) 
Nature, 294, 129-135.

Yang, N.S., Manning, R.F. & Gage, L.P. (1976) Cell, 7, 339-347.

Yang, V.W., Lerner, M.R., Steitz, J.A. & Flint, S.J. (1981) Proc. 
Natl. Acad. Sci., 78, 1371-1375.



Zawalich, W., Brown, C., & Rasmussen, H., (1983) Biochem Biophys. 
Res. Commun., 117, 448-455.

Zeitlin, S., & Efstradiadis, A., (1984) Cell 39, 589-602.
Zieve, G., & Penman, S., (1981) Cell 8, 19-31.


