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SUMMARY

The work described in this thesis comprised an investigation into a 

number of concepts associated with the failure of xa C-Mn steel (BS4360 

Grade 50D) which is frequently used as a prime structural material in 

offshore structures.

The initial investigation concerned the temperature dependence of the 

stress state sensitivity of the ductile failure strain of the material. 

For the limited range of the stress state studied, it was found that this 

sensitivity is independent of temperature.

Failure initiation characterizing parameters and were also found 

to be sensitive to stress state in the crack tip region. This sensitivity 

however depends on the temperature and decreases with decreasing 

temperature in the ductile-brittle transition region. This behaviour was 

shown to be associated with the interruption of the ductile failure process 

by the lower temperature brittle fracture mechanism.

The investigation into the development of part through surface cracks 

under tensile fatigue loading indicated that the crack profile develops 

towards an equilibrium shape of a/c = 0 .8 .

The distribution of stress intensity factor Kj around the periphery of 

part through surface cracks under remote tensile loading was determined for 

a variety of crack geometries. This distribution was found to be a 

function of the crack profile. Various solutions were examined and it was 

shown that the numerical solution of Newman and Raju correlates relatively 

well with the experimental results for fractional depth in the range 

0 .2 2 ^a/t^ 0 .6 .



It was observed that subsequent to the adoption of an equilibrium 

shape, further fatigue crack growth produced bul ging near the surface

intersections. This behaviour was modelled by considering the variation 

of stress state and its effect on the plastic zone ahead of the crack tip.

The initiation and subsequent propagation due to post yield failure 

around the periphery of a part through surface crack of a/c = 0.69 and a/t

= 0.7 subjected to montonic tensile loading was investigated. The

distribution of initiation COD around the crack front was determined. It

was found that this distribution is different from that for Kj. 

Initiation of ductile failure at ambient temperature occurs first in
toregions of high constraint at locations close but under the plate surface. 

The subsequent crack propagation however is in a manner in which crack 

front progresses towards regions of lower constraint. It was shown that 

post yield failure from the part through crack geometry studied may be 

correlated with failure parameters measured in various types of standard 

laboratory through crack test pieces. Experimental limit loads were 

compared with empirical prediction procedures which were found to be in 

general conservative for the defect geometry studied.



INTRODUCTION

During the past three decades, the development of fracture mechanics 

has presented a useful tool to quantify the fracture behaviour of 

engineering materials. It has also provided a methodology to utilize 

laboratory test data derived from small samples to assure the structural 

integrity of large components in service, and to aid in the analysis of 

service failures.

The engineering application of fracture mechanics has been mostly 

concerned with Linear Elastic Fracture Mechanics (LEFM). While LEFM 

proves to be invaluable for the description of sub-critical crack growth 

due to fatigue loading and for final failure in brittle materials, it 

becomes less appropriate when applied to failure in lower strength ductile 

materials where extensive plasticity prece<fe* and accompanies fracture. 

In recent years, much experimental and analytical work has been devoted 

towards development of elastic-plastic fracture mechanics (EPFM) where 

failure initiation and subsequent crack advance occurs under 

elastic-plastic conditions. EPFM has developed to the point where there 

are recommended procedures^ incorporating the use of crack opening 

displacement (COD) for failure assessment of fusion welded structures, and 

test procedures^ for the evaluation of fracture initiation toughness using 

the J integral approach. However, the useful ap/lication of EPFM for 

analysis of real structures is somewhat limited by the lack of adequate 

information concerning the conditions governing the behaviour of a crack in 

an elastic-plastic stress field.



2.

In the majority of structures, service failures have been associated 

with failure from part-through surface breaking cracks which can be 

approximated by semi-elliptical shapes. Failure from such defects is 

little understood and a relationship between failure from such defects and 

standard laboratory test techniques has not been established.

In the work presented in this thesis, development of surface breaking 

cracks, both in fatigue and under monotonic loading ha\s: been studied. 

Considerable emphasis is placed on the effect of constraint on the fracture 

process in the post yield regime. The material used, was BS4360 grade 50D 

structural steel. This steel is a carbon manganese low strength (ay = 360 

MPa) steel, extensively used in critical joints of offshore structures in 

the North Sea, which at ambient temperature exhibits a high degree of 

ductility.

The layout of this thesis is such that each section as well as being a 

sequential part of thesis, is in itself an integral essay, reporting and 

concluding on a phase of the overall investigation. A review of

development of fracture mechanics to date is presented in a chronological 

order in section one, followed by a detailed review of micromechanisms of 

fracture in Section 2.

It has been shown^ that for most structural steels, the requisite 

failure strain for the initiation of ductile fracture is a strong function 

of the state of stress (triaxiality). Consequently it should be expected 

that/



EPFM fracture characterising parameters are also affected by the degree of 

triaxiality. The initial investigation reported here was a study of the 

variation of failure strain with triaxiality in the ductile-brittle 

transition temperature regime. This part of work together with the basic 

properties of the material is reported in Section 3.

The effect of constraint on the EPFM parameters, COD and J, was 

investigated as a function of temperature across the transition temperature 

range, using two different specimen geometries which produce two markedly 

different degrees of constraint under plane strain conditions. This part 

of the investigation is presented in Section 4 which also contains the 

results of a finite element analysis which was performed to further 

understanding of the elastic plastic fracture behaviour of SECT geometry.

In Section 5 the variation of stress intensity factor around the
%

periphery of a semi-elliptical crack developing under fatigue loading is 

reported. An essential feature of this study was the accurate measurement 

of the crack profile by non-destructive test techniques. A measurement 

technique based on the A.C. potential drop technique was developed to 

satisfy this requirement.

Finally the results of a study of the post yield failure from a 

semi-elliptic surface breaking defect is reported in Section 6. This 

study included an analysis of failure initiation and subsequent monotonic 

crack growth when characterised by COD and the relationship between failure 

characterization for surface breaking and through-crack geometries.
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5.

Section 1 

FRACTURE MECHANICS CONCEPTS

1.1 Introduction

In this section the basic concepts of fracture mechanics are presented 

and the application of fracture mechanics in the prediction of failure of 

structures containing defects is discussed. This section provides a 

chronological review of the development of fracture mechanics to its 

present state. A state which in addition to providing improved safety 

standards, has an important economic role in reducing the cost of 

construction by encouraging less conservative and more adventurous designs.

A description of Linear Elastic Fracture Mechanics (LEFM) is given in 

the form of a discussion bf the concepts of Elastic Strain Energy Release 

Rate and Stress Intensity Factors which form the foundation of modern 

fracture mechanics. The subject is then expanded, to include the concepts 

of Crack Opening Displacement (COD) and the Rate of Change of Potential 

Energy (J), for describing fracture behaviour associated with large scale 

plasticity, where LEFM is inadequate.

1 *2 The elastic strain energy release rate

The engineering approach to fracture originates from the early work of 

Griffith!» who observed a large discrepancy between the theoretical 

estimation of strength of elastic solids based on the atomic cohesive 

forces and experimental evidence of fracture stress. He derived a new 

theoretical/
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criterion based on the energy theorem^ that if the total potential energy 

of a cracked body was reduced by the incremental propagation of an existing 

crack then such propagation would indeed occur. The Griffith analytical 

model consisted of a thin unit thickness, biaxially loaded infinite plate 

having fixed boundary conditions and containing a through thickness crack 

(Fig. 1.1). By using the Inglis^ solution for the elastic stresses in the 

vicinity of an elliptical hole in a uniaxially loaded thin lamina, Griffith 

calculated the elastic strain energy of the system as:

1_ cr̂ rrsP- 
e = "" 2 E'

where a is half crack length

a is nominal applied stress

E' = E Plane stress
f e 1E' - - 7t Plane strain

(1 ~ v )
E is Young's modulus of elasticity 

v is Poisson's ratio

It was postulated that unstable fracture would occur if by 

incrementally increasing the crack length, the rate of change in elastic 

strain energy was equal to or greater than the rate of change in the energy 

required to create new surfaces. Defining the work done to create new 

surfaces as:

W = 2aTe



where Te is the specific surface tension, fracture will occur if:

^e/da>dW/da

i.e.

dUe/da>2Te

The strain energy release rate dUg/^ was therefore considered as a 

criterion to assess the potential for fracture and given the symbol G:

G = dUe/da= 1 ^ .  (1-X)

The level at which unstable fracture takes place is designated GCj the 

critical strain energy release rate. Gc is found -to be a constant

material property for a particular environment, strongly dependent on 

temperature and strain rate, in a similar manner to yield stress.

The critical stress level ac to initiate brittle fracture in a material 

containing a critical crack length 2 ac could therefore be calculated from 

above equation:

%cjc =(2E Te/irac) '

It can also be postulated that at a given stress level, cracks with length 

smaller than 2ac would not cause unstable fracture. The Griffith theory 

is the basis from which modern fracture mechanics has developed and it is 

important to remember its limitations i.e.

(i) the material is entirely brittle



8.

(ii) the model considered is a large plate of unit thickness containing 

a very small through crack in form of a flat ellipse so that no boundary or 

size effects are imposed apart from the crack size.

(iii) the condition is for the onset of instability only and no

information for conditions before or after that is given.

(iv) the only material properties involved are E and Te which are 

assumed constant.

With this relatively simple procedure Griffith succeeded in explaining 

the discrepency between the theoretical and actual strength of brittle 

materials, and validated his work by performing experiments on .glass 

specimens in which the length of defects was varied. After Griffith, there 

was not much development in the field for about 20 years, though energy
4-5-

release rate formulae were developed for some other simple geometries. -

From the limitations of the Griffith analysis outlined above, it is

clear that in order to adapt the criterion to metals, it is necessary to 

modify it considerably to account for the plastic deformation before and 

during fracture. The work term dw/da cannot be taken simply as the 

theoretical surface energy 2T. It was essential to replace 2T by a term

denoting the total work done against the resistance of material to

fracture.

In 1947 Orowan^ and in 1948 Irwin? independently provided the required 

modification to allow a more general application to metals which exhibit 

plastic deformation. This modification took the form of an additional term 

defined as the surface plastic energy absorption Tp:

G=a27ra/E=2(Te+Tp)
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It must be pointed out that the validity of the assumption depends on 

the fact that the plastic zone developed at a crack tip is significantly 

smaller than the crack dimension. In 1952 Irwin and Kies® approached the 

problem from another angle. They postulated that fracture would occur if 

the elastic strain energy is equal to the work done by a remotely applied 

load P to create an incremental displacement 6 at the crack tip:

Ue=P6/2=P2C/2

where C is the linear elastic compliance of the specimen. The strain 

energy release rate G can then be found by differentiating the above 

equation:

p2 jp
dUe/da=G= f -  • ̂  (1.3)

It was suggested that by measuring the linear elastic compliance of similar

specimens which contain different crack lengths, it would be possible to
»VWhatibn

evaluate dC/da as a function of crack length. At fracture the^appropriate 

value of dC/da could then be substituted, along with the associated load to 

determine the level of Gc experimentally.

1.3 The Stress Intensity Factor (SIF)

In 1939, Westergaard^ developed a relatively simple treatment, for the 

stress field in the vicinity of an elliptical internal void, based on the 

functions of a complex variable. Sneddon^-® used this treatment to

calculate the rate of elastic strain energy, and developed a series of 

solutions for linear elastic stresses at the tip of a sharp crack. In 1957 

IrwinU observed that the stress distribution local to the crack tip could 

be/
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expressed in a singular characteristic form which decreased by the inverse 

square root of the radial distance measured from the crack tip, (Fig. 1.2).

°ij “ K r )  'Fij <e>

where

is the stress magnitude in the x, y and z 

coordinate direction at any point, 

f(r) is a series function in terms of r, 

l?ij (0 ) is a function of ® and is dependent of 

the overall geometry of the problem

and finally K is a function of applied stress, crack length and crack 

geometry. K can be considered as a measure of the amplitude of the stress 

field singularity and subsequently it was called the Stress Intensity 

Factor (SIF).

In any loaded cracked body the crack tip stress intensity factor can be 

said to be unique for the particular mode of loading. There are three 

principal types of loading as illustrated in Fig. 1.3.

MODE I - Normal displacement of the crack surfaces relative to

one another (opening mode).

MODE II - In-plane displacement of the crack surfaces relative 

to one another (shearing mode).

MODE III - Anti-plane displacement of the crack surfaces relative 

to one another (anti plane shearing mode).

The stres s intens ity fact_or_w_as thus given a suffix-appropriate to the 

corresponding mode of fracture Kj, K jj and K j j j . The most common type of 

fracture/



is the opening mode. The stress and displacement distribution ahead of 

the crack in terms of stress intensity factor for this mode are:

+...Oxx f 6 n  • 6 • 30 0cos —  Cl - sin~sm—  )

ayy
KI
V2jr 6 M  .u • 0 • 30>> cos —  (1 + sm^- s m “ )

Txy
e . e 30cos~sin“c o s ~

(1.4)
' ■ TT

» - 2U+v) -'-•/£ Cos |(2-2V -Cos2 |)

v = 2(l+v) Sin j(2~2v -Cos2 |)

w - 0 for plane strain 

Since K characterises the crack tip field it has the potential to 

characterise failure of a cracked body i.e. failure occurs when Kj = K q . 

Only for very specific conditions (plane strain, contained yielding) does 

the failure occur when K = Kjq which is termed the fracture toughness.

In the case of a classical central crack of length 2a in an infinite 

remotely tensile loaded body SIF is given by:

K t  = o A  a (1.5)

therefore for a material with fracture toughness Kjq the critical stress at 

the threshold of instability is:

°c = Ki c / ^ a c

This is a more reliable approach than the critical strain energy release 

rate, since it is based on a stress condition at the crack tip. However 

since both G and K are linear elastic characterizations, it is expected 

that/



the^should be related to each other. Indeed by inspection of equation 1.1 

and substituting for K from equation 1.5 it can be seen that:

G=a2ira/E=K2/E" (1.6)

This relationship permits the reverse determination of SIF for a finite 

geometry by experimental measurement of G from compliance methods.

The description of SIF given so far has been for the classical cracked 

thin infinite plate. A more general expression for K is given by:

K = F ( g ) o A a (1.7)

where F(g) is a function dependent on specimen geometry, crack shape,

boundary conditions etc. The form of this function for specific

geometries has been the subject of much research since the introduction of 

the stress intensity factor concept, e.g. Paris and Sih-^, Tada et a l ^  and 

Sih-^. Rooke and Cartwright^ compiled a comprehensive handbook of

solutions for SIF for different geometries, crack shapes and loading 

conditions. In 1981 Rooke et a l ^  described the variety of methods 

available for determination of stress intensity factors.

1-3.1 Crack tip small scale yielding

The stress intensity factor has found great acceptance as a tool in 

assessing fracture since its introduction by Irwin. In order to be 

applicable to elastic-plastic problems, the effect of crack tip plasticity 

must be accommodated. The stress solutions of Irwin given in equation 1.4 

predict that the stress at the crack tip (r=0) will be infinite. From a 

practical/
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point of view this means that the crack tip material will yield producing a 

plastic zone within the surrounding elastic field. The effect of

introducing a small plastic zone at the crack tip is to limit the maximum 

stress at the crack tip. If the plastic zone is very small its strain 

energy content will be negligible and its effect on the overall stress 

distribution will not be significant. As the plastic zone increases in 

size, its energy content will become larger, and its effect on the overall 

stress distribution will correspondingly increase. In this case the K 

and G values obtained from the linear elastic analysis, will not fully 

represent the problem.

Irwin in 1960^ found that the range of applicability of the elastic 

solution could be extended by adjusting the position of the crack tip to 

take account of the local plasticity. From his earlier solution of the 

stress distribution around the crack tip he calculated the normal stresses 

ahead of the ctrack tip (0 =0 ) and by putting this stress equal to the 

material yield stress, estimated the radius of plastic zone.

ry = ~ ~  (K/ciy)2 Plane stress (1.8a)

Ty = ~jr (K/Oy)2 Plane strain (1.8b)

where Oy is nominal yield stress.

The allowance for a small amount of crack tip plasticity could be made 

if a distance Vy was added to the actual crack tip to create a fictitous 

elastic crack of length a+ry. Thus the stress intensity factor would be 

modified as:

K=F(g,ry)a/rr(a+ry) (1.9)
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This correction to the linear elastic stress intensity factor by

artificially increasing the crack length is only valid if ry <<a,W. The 

regime in which the region of plasticity is small compared to crack length 

or net section has become known as contained yielding or Small Scale 

Yielding (SSY).

1.3.2 Fracture toughness testing

LEFM depends for success on the existence of a unique material fracture 

toughness value. Most materials exhibit a strong thickness effect on

toughness. Fig. 1.4 shows typical behaviour where high toughness is 

associated with thin sections and shear fracture. Significantly lower 

toughness occurs when measured in thicker sections and is associated with 

" f l a t "  fracture. The reason for this thickness effect is the changing 

size of the plastic zone size (Fig. 1.5) with constraint. As the material 

thickness increases the plane strain region becomes dominant leading to the 

minimum plane strain fracture toughness Kj q which is a material constant. 

Hence valid fracture toughness measurements require a minimum degree of

plane strain. In 1974 the American Society for Testing and Materials 

ASTM, prepared a standard method for plane strain fracture toughness

testing E399-74^® this was followed by British Standard document

BS5 447-1977*-9. These standards require a validity check on the critical

value of toughness K(j obtained in the test before assigning it the Kj c

designation. This validity check requires that:

a, (w-a), B >2.5(KIC/ay)2 (1.10)

where a, W, B are crack length, specimen width and specimen thickness
, KICs2 . . .respectively.''* ' is the measure of plastic zone size as given m  section
ay

1.3.1.
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Having obtained a valid Kj q value for a material a critical defect size 

for a particular design stress level may be calculated by application of 

the particular equation, for the specific defect geometry, of the type 

(1.7).

1.4 Crack growth resistance curve

The ASTM E-399 and BS5447 procedures for determination of plane strain 

fracture toughness of materials, produce invalid results at the presence of 

plasticity and slow crack growth before the occurrence of fracture. On 

the other hand as Creager and Lui^O stated, the fracture process of a 

cracked thin sheet is not usually comprised of a single sudden 

explosive-type change from initial crack length to total failure. As the 

load increases, considerable slow crack growth takes place prior to 

catastrophic failure. In 1961 Krafft et al^l envisaged a unique

relationship between the amount of slow crack growth prior to fracture and 

the applied stress intensity factor. They called it the crack growth 

resistance curve or R-curve.

The R-curve characterizes a material resistance to fracture during 

incremental slow crack growth and is an extension of LEFM theory in the SSY 

regime. A typical R-curve is shown in Fig. 1.6. The crack instability is 

represented as the tangency of the R-curve and the crack driving force at a 

given load. The application of the R-curve technique will be discussed in 

more detail when the Crack Opening Displacement and J-Integral are 

introduced as elastic-plastic fracture toughness parameters.



Summary of LEFM

The work of Irwin in developing the crack tip parameter K, was a major 

breakthrough in allowing practical assessment of cracked structures and for 

bringing modern fracture mechanics to its present state. However the. 

limitation of the LEFM approach is that it is only applicable for 

situations where plasticity is limited to a region close to the crack tip. 

As the plastic zone becomes significant in comparison to the dimension of 

the crack, then the LEFM treatment becomes inadequate to provide accurate 

solutions for the problem. Valid Kj c test requirements outlined in 

section 1.3.2 demand very large testpieces to obtain valid Kj c values for 

tough materials. It is this dilemma which has provided the driving force 

for the development of elastic-plastic fracture mechanics.

1.5 Elastic-Plastic Fracture Mechanics (EPFM)

In the previous section it was indicated how LEFM procedures can 

successfully predict fracture in situations where the loading or geometry 

of a cracked body is such that none or only small scale plasticity is 

exhibited at the crack tip. This low energy type of fracture can be 

considered as one extreme form of failure, where the other extreme would be 

a plastic collapse mechanism in the uncracked ligament of the material. 

Between these two modes, fracture takes place with large scale plasticity 

which is sufficient to invalidate LEFM, but insufficient to initiate 

plastic collapse. This is then the territory of elastic-plastic fracture 

mechanics.

The elastic-plastic analysis of fracture characterization has evolved 

around many distinctive approaches. Among failure characterising

parameters that have been presented are:



1. The value of the opening displacement at the tip of a crack (COD)

2. The value of the J-integral, which is effectively the change in strain 

energy of a cracked body for a given increment of crack length.

3. The two-criteria failure assessment approach, originally developed

by Dowling and T o w n l e y ^  and adopted by Central Electricity Generation
7he

Board (CEGB) of United Kingdom.

The third technique will not be described here since it is not used in this 

investigation. Reference 23 gives a description of this technique.

1*6 Crack Opening Displacement (COD)

When extensive plasticity occurs at the crack tip before the onset of 

failure the fracture process is controlled by the extent of the plastic 

strain field developed ahead of the crack. Wells^ in 1961 proposed that 

the separation of the crack faces, which is a measure of the extent of

normal deformation, could be considered as a characterization parameter of

the strain and thus stress fields at the crack tip. Crack extension will 

then begin at some critical value of this separation referred to as 

critical Crack Opening Displacement.

Looking initially for a value of normal displacement in the elastic 

case, it can be seen from Irwin analysis (equation 1.4) that this value is 

equal to zero since r=0. However with the Irwin plasticity correction^ 

such that a=a+ry, the displacement at the actual crack tip can be derived

from equation 1.4 by substituting r=ry and 0 = tt: -

,v = 4K / 5 l ■
E 2 tt

Since the crack opening is twice the value of the normal displacement 

and substituting for Ty from equation 1 .8 , the crack opening displacement
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given by:

6 =2r=4K2/irEoy (1.11)

From the linear elastic analysis presented in section 1.3, K in the above 

relationship can be expressed in terms of G (from equation 1.6) to relate 

the COD to the energy release at the crack tip:

6 =4G/ 7to (1.12)y

In 1963 Wells^5 by using Irwin-Westergaard stress function proposed that 

the energy balance required to produce an increment of crack extension is 

equal to the product of yield stress and the displacement at the crack tip 

(COD) prior to crack extension, since Oy is the only acting stress across 

the plastic zone, therefore:

6 =G/ay (1.13)

A comparison of equations 1.12 and 1.13 indicates a discrepancy between 

two approaches in the form of a factor 4/n, which relates to the extent of 

the plastic zone. Wells^S argued that this factor can be replaced by unity 

without disturbing the energy balance concept at the crack tip. Indeed a 

lower bound is given by

6^G/ay

and by substituting for G from equation 1.6:

6iK2 /E<Jy (1.14)



A different approach to evaluate the extent of the plastic zone and 

hence the plastic strain field was followed by Dugdale^ through a strip 

yielding model. He introduced a new model, similar to that of Baranblatt^ 

which like the Irwin crack model assumed a plastic zone geometry. The 

detailed behaviour at the crack tip was ignored, and attention was focused 

on the strain energy variation. Dugdale suggested that a crack of length 

2 a, in a linear elastic perfectly plastic media, could be represented by a 

hypothetical crack of length 2(a+rp) as illustrated in Fig. 1.7, where rp is 

the extent of plastic zone acted upon by a stress equal to the yield stress. 

This stress is thus assumed constant for ail crack tip displacements i.e; 

the material is assumed to be non work hardening. Within the plastic zone 

the elastic strains are assumed negligible compared with the plastic 

strains i.e. within the plastic zone the material is rigid-plastic. 

Dugdale suggested that, by equating the work done in closing the crack by the 

restraining stress oy> with the change in internal energy due to shortening 

the crack, the displacement at the original crack tip could be estimated. 

Using Westergaard stress functions, Burdekin and Stone^S evaluated the 

displacement at the tip of the real crack as:

6 =(8 aya/7rE)ln Sec(7ra/2ay ) (1.15)

where o is the applied remote tensile stress. It can be seen that when 

the applied stress approaches yield stress equation 1.15 indicates an 

infinite COD. This arises because the model was originally considered for 

a non hardening material as stated earlier.

In their work Burdekin and Stone expanded equation 1.15 to give
80 a



Taking the first term of above equation and using the mode I relationship 

for stress intensity factor K:

first and the second terms of the equation 1.16, the COD can be calculated 

as:

which is similar to the LEFM treatment with a plane stress plastic zone

LEFM into the small scale yielding regime.

It is therefore postulated that even at very low applied load, plastic 

strains are present and that the material in the crack tip plastic zone will 

extend . by an amount equal to 6. Hence the COD can be a useful parameter 

in assessing the fracture potential from the linear elastic region through 

to the limiting condition of plastic collapse.

1.6.1 Crack tip blunting

When a plane strain elastic plastic body containing a crack is loaded in 

tension, the crack tip blunts open forming a stretch zone until crack 

extension occurs. The shape of the blunted tip is not unique, it may have 

two or more vertices which is the indication that the opening is by shearing 

of the material at the corners, or it. may be smoothly curved by imposing 

very high strains on the crack surface. M c M e e k i n g ^  has shown that the 

slip line field near a crack tip blunted by a vertex mechanism with sharp 

corners/

<$_ 770 a = K 
E0V Ea y y

(1.17)

which agrees with the Irwin crack model given in equation 1.14. Taking the

(1.18)

correction (equation 1.8a) differing only in the term tt̂ /24 instead of 1/2. 

It seems that for 1 the crack opening displacement is an extension of



is similar to the slip line field around a smoothly blunted crack in the 

same specimen. Pelloux^O has shown a simple model for the formation of 

the stretch zone at the crack tip deformed by a three vertices mechanism, 

Fig. 1.8. Shear initiates on a plane at 45 degrees to the crack tip, e.g. 

along AC in Fig. 1.8, until work hardening makes further shear on the AB 

more favourable. Thus deformation takes place by incremental shear that 

alternates between two planes at 45 degree to the crack direction, leading 

to an extension of the crack equal to half the crack flank opening 

displacement. Rice and Johnson^ predicted the shape of the blunted crack 

tip using slip line theory for both small scale yielding and fully plastic 

cases and obtained values of crack extension equal to 0.55 and 0.65^ 

respectively. Experimental observations have also shown that for both 

types of blunting the extent of the stretch zone is almost half the COD:

6 = 2Aa (1.19)

1.6.2 Definition of COD

As discussed earlier, a unique definition of COD is required for its 

use as a fracture parameter. A clear understanding of physical

significance of crack opening displacement helps in the establishment of 

such a definition. In general when an elastic-plastic material containing 

a sharp fatigue crack is loaded, the following physical events take place 

at the crack tip prior to total instability:

1. Blunting of the crack tip and formation of stretch zone.

2. Initiation of crack extension.

3. Stable crack growth

4. Onset of instability in the form of a fast fracture or 

plastic collapse of remaining ligament.



The schematic representation of these stages and the relation between the 

characteristic parameter (COD) and the crack growth increment Aa is shown 

in Fig. 1.9. Initially, as the crack blunts, material ahead of t îe i-s 

exposed to large strains and triaxial stresses. Under these conditions 

voids will nucleate and grow in suitable sites. The detailed mechanism of 

void nucleation and fibrous fracture will be discussed later. Nucleated 

voids will grow under plastic strains which develop ahead of the crack tip 

and eventually, at a critical value of COD, one or more of these voids will 

link up to the blunted crack, initiating crack extension. The advancing 

crack will concentrate stress and strain ahead of new tip, hence nucleating 

more voids and the process will continue until the crack ruptures the 

remaining ligament or a mechanical instability occurs.

Considering the progressive geometric changes at the blunting crack 

tip, a unique definition of COD is essential in order to establish the 

critical event leading to instability. Wells and B u r d e k i n ^  suggested 

that the COD should be defined as the displacement at the elastic-plastic 

boundary. Although this definition is reasonable for the small scale 

yielding condition, it is not acceptable for situations where extensive 

plasticity exists at the crack tip in a hardening material. In these 

cases the elastic plastic boundary may move back a significant distance 

along the flanks of the crack^, and COD becomes dependent on the crack 

length and is not therefore a one parameter description of the near tip 

environment. Dawes^ in 1976 proposed that for mode I loading, COD can be 

defined as the displacement at the original crack tip position, i.e. the 

tip of the fatigue pre-crack in a COD test specimen or a natural crack in a 

structure. This definition recognises the formation of a stretch zone 

ahead of the original crack and avoids some of the ambiguity associated 

with earlier definitions based on the deformed crack tip profile and 

elastic/



plastic boundary. By defining the original crack tip as the reference 

position, consistency is maintained with experimental measurement of COD. 

However the use of COD in numerical analysis requires an alternative 

definition. Turner^ £n 1 9 7 8  suggested that the COD should be defined at 

a reference point a distance J/tfy from the actual crack tip where J is a 

path independent integral based on the potential energy variation around 

the crack tip and will be defined in a later section.

Analytical considerations by Rice^ and Tracey^ have led Shih^® to 

suggest that COD could be identified with the points of intersection of the 

crack flanks and the symmetrical 90 degree included angle from the actual 

blunted crack tip as shown in Fig. 1.10. This definition is attractive 

since it is consistent with the experimental observation that the stretch 

zone is approximately equal to half the original crack tip COD. Good 

agreement is therefore expected between this theoretical definition of COD 

and the experimental original crack tip COD. In this work the definition 

of COD due to Dawes will be used.

1.6.3 Critical COD

The application of crack opening displacement in elastic plastic 

situations is based on the assumption that failure occurs at a critical 

value of COD ( ̂ crit^ which may be a material constant independent of the 

degree of plastic deformation. In light of physical events leading to 

failure described in section 1.6.2, ^crit may ke defined as (i) COD at 

the onset of instability <5CJ if stable crack extension is followed by 

unstable fast fracture, (ii) COD at maximum load <$m if failure occurs by 

plastic collapse of remaining ligament or (iii) COD at the initiation of 

crack extension.
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A review of literature indicates that 6C is affected by section

thickness and crack acuity of the test piece, while 6m is dependent on
Thespecimen dimensions and stiffness of testing machine. Thus 6C and 6 m 

should not be used as unique characteristic parameters for safe design. 

Alternatively studies on the value of COD at the initiation of crack 

extension 6£ show that under sufficient plane strain conditions 6£ is 

independent of dimension of test piece and thus has the potential to be a 

material constant for given temperature and loading condition. However it 

has been shown that the state of stress in the crack tip flow field does

affect <$£39. Work by Hancock and Cowling^® on a high strength steel shows

an order of magnitude difference between values of 6£ for high and low 

constraint geometries. Thus <$£ cannot be considered as a unique post 

yield fracture characterizing parameter. There is also experimental 

evidence to show that <$£ can be very conservative for use in design, 

though it is the best established toughness parameter in the 

elastic-plastic regime.

1.6.4 Determination of COD at initiation

The detection of the precise incident of crack initiation is rather 

difficult in practice and 6£ is usually determined from a crack growth 

resistance curve where a series of points on a plot of COD versus physical 

crack extension Aa, is experimentally determined. This relationship,' the 

resistance curve, is then extrapolated back to zero crack extension. If 

the COD is measured as the displacement at the original crack tip, then the 

point of intersection of R-curve with blunting line, where there is zero 

crack extension, is considered as 6£. A schematic COD-R curve is shown in 

Fig. 1.11. The blunting line in the R-curve procedure is given by 6 =2 A a 

as discussed in section 1.6.1.



The crack extension Aa is generally measured by visual measurement on 

a cross section through the specimen or on the fracture surface. Other 

techniques such as the compliance method or potential drop measurement have 

also been used. Values of COD can be determined by different methods such 

as clip gauge measurement of crack mouth opening displacement, replication 

technique using hardening silicon rubber, visual measurement on the 

specimen cross section, measurement of stretch zone size etc.

1.6.5 Significance of COD

The application of COD to elastic-plastic situations is based on the 

assumption that critical COD is a material constant independent of the 

degree of plastic deformation at the crack tip. The analytical evidence to 

support this point is as yet inadequate. However experimental evidence 

indicate that for small scale yielding condition critical COD is related to

KIC by :

cric ic y

where m is a dimensionless constant dependent on the geometry, degree of 

stress triaxiality and possibly material work hardening capacity^. 

Irwin^- assumed a value of 4/ n for m by using his circular plastic zone 

(equation 1.11). Burdekin and Stone^® found m=l utilizing the Dugdale 

strain yielding model (equation 1.17). R i ce^ calculated m=0.787 using an 

approximate slip line solution whereas Levy et al^3 computed m=0.46 9 

employing finite element calculations.

By calculating m for a particular material and geometry, it is 

possible to establish a unique relationship between COD and LEFM stress 

intensity factor in SSY condition and thus calculate the critical crack

. =m(K7 /Ea )



This tends to validate the Crack Opening Displacement concept as a 

fracture characterizing parameter for the prediction of failure in large 

structures from small scale laboratory tests. For widespread plasticity 

equation 1.20 loses its validity. In this situation however, a COD design

curve has been developed from which it is possible to determine the maximum

tolerable defect size directly from a critical COD.

1.6 .6 COD design curve

Burdekin and Stone2^ introduced a non-dimensional form for COD by

rearranging equation 15 and replacing E by °y/ey '

*= 2^ ~= & Tn sec(i - ) ■

They also obtained an expression for the overall strain e, measured over a 

gauge length of 2y across the crack plane. By relating the

non-dimensional COD to the overall strain they established a basis for flaw 

size estimation in the post yielding regime. Burdekin and Dawes^ refined 

and modified this approach and introduced a design curve for determination 

of the maximum allowable crack size on the basis of attainment of a 

critical COD. After a series of further refinement by Dawes^ supported 

by experimental d a t a ^ s the COD design curve was finally presented in 

British Standard Document PD 6493^ and is illstrated in Fig. 1.12. The 

equations defining the COD design curve are:

for e/ey£p.5

(1.2 2)
for e/ey^0.5

which provide the method for determination of a tolerable defect size a m 

as: /

<J> =(e/ey)2

cf> =(e/ey-0 .25)
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a m =C(6c/ey ) (1.23)

The application of design curve in its present form has distinct 

advantages, (i) it is straight forward to use and (ii) it is based on the 

overall strain of the body, thus the secondary stresses such as residual and 

thermal can be taken into account. Against this there are also a number of 

objections, the major one is the manner in which critical COD is determined. 

Cowling and A b o u t o r a b i ^ 8  have discussed the effect of constraint on the COD 

and concluded that for high ductility low constraint configurations, the 

COD design curve is over-conservative.

1.7 J Integral

\ ■
A further parameter for the analysis of non-linear elastic and elastic 

plastic crack problems was provided in 196 8 by Rice^, who introduced a path 

independent line integral which allows the charaterization of fracture 

phenomena.

This line integral was derived for a non linear elastic material as an 

expression for the rate of change of potential energy with respect to an 

incremental extension of the crack length^O. Being therefore the rate of 

change of potential energy it would be expected that it would for LEFM be 

related to rate of change of elastic strain energy G. The J Integral is 

defined as:

, . 3uiJ = / (Wdy - Ti 3^- ds)
r

(1.24)
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JT is any path surrounding the crack tip

W is the strain energy density (non-linear elastic) defined as:

W-^ijdey.
is the traction vector defined according to the outward normal 

n along pathf* .

uj_ is the displacement vector in the direction of T£.

ds is increment of distance along the path f .

x and y are rectangular coordinates.

A schematic representation of J Integral definition is shown in Fig. 

1.13. It should be noted that J is strictly valid for linear and non 

linear materials which unload along the same path as when loaded.

Rice used an analytical argument to prove that the value of J was 

independent of the path chosen. This means that the path can be selected

in a way that it may be either wholly contained within the plastic region

or be outwith in the surrounding elastic region.

For a linear elastic material a path could be chosen which follows the 

crack surfaces only. Thus the traction term T.du/dx must be zero since 

these surfaces cannot sustain any normal force action. Therefore for 

linear elasticity:

J= / Wdy=G (1.25)

The use of the J Integral as an elastic-plastic fracture criterion can

be justified from a consideration of the Hutchinson^l and R i c e - R o s e n g r e n ^ ^  

(HRR)crack tip model. The HRR model predicts that for stationary cracks,

the product of plastic stress and strain in the vicinity of the crack tip

under/



yielding conditions, from small scale yielding to fully plastic condition, 

has a 1/r singularity where r is a near tip crack field length parameter. 

McClintock^ has shown that the crack tip plastic stress and strain field 

for a sharp crack can be expressed from the HRR singularity as:

(1.26a)

(1.26b)

N is the work hardening exponent which relates the equivalent stress to 

the equivalent plastic strain via the Ramberg-Osgood relation:

a eq=aflow (e^eq)^ (1.27)

Equations 1.26a and 1.26b state that for a given material the stresses and 

strains ahead of a crack are determined principally by the applied value of 

J. Hence if a critical crack tip stress field is required to initiate 

failure, a critical value of J specifies this field. Similarly if the 

failure mechanism is strain controlled then a critical J would 

characterize the critical strain condition ahead of the crack tip at

failure. These equations are directly analogous to the linear elastic

crack tip stress and strain equations where stress intensity factor K is

the strength of the r“^/2 singularity (equation 1.4). Thus it is

envisaged that J characterizes the near tip stresses and strains in the 

plastic zone as K does in the elastic zone.

For the linear elastic condition J can be related to K and G by->^:

° i j  = ( j / v )N/n+1

6Pij “

J = G = K2/e (1.28)
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It can be postulated that fracture occurs if J exceeds a critical 

value, Jic, (in plane strain) which is analogous to Gjc and Kjc*

JI c ^ i c =(l“v 2)/E •K2i c (1.29)

In the elastic plastic case a direct comparison between Jjc and K^c as 

in equation 1.29 cannot be made. It has been suggested that Jjc as a 

fracture criterion does not have to be related to Kjc and can be considered 

as a fracture parameter defined independently^. Considerable work has 

been done to measure J in elastic plastic region. Amongst those are the 

work of Begley and Lands^^-^®, Rice, Paris and Merkle^, Turner^”^  and 

others.

1.7.1 Determination of J

Although J was originally defined for nonlinear elastic materials as a 

path independent line integral, a number of finite element analyses have 

shown that path independence is still maintained for a large range of 

cracked geometries when deformed plastically. These numerical analyses, 

using equation 1.24, provide correlations between J and applied 

displacement which can be used to determine the fracture toughness 

characteristics of specific geometries.

A more practical method of estimating J is the interpretation 

provided by Rice^. Rice pointed out that in physical terms the J 

integral can be considered as the potential energy difference between two 

identically loaded bodies having crack lengths a and a+da. This

interpretation is illustrated in Fig. 1.14 where a body with crack length 

a is loaded with opening force P. The corresponding displacement 4 is in 

the/



line of the applied force producing the load deflection curve shown.

Assuming the nonlinear elastic interpretation of deformation theory, the

work done in loading the body is different for crack length a and a+da 

where da can be regarded as an increment of crack extension. Rice^

postulated that the difference in this condition is the energy made

available for a crack extension of da which, from the definition of the J

integral is equal to Jda, and is represented as the shaded area in Fig.

1.14b.

This interpretation was then extended to plastically deforming bodies 

since both J and the load displacement curves for a and a+da will be the 

same for nonlinear elastic or elastic plastic material response provided 

that unloading does not occur. Therefore an alternative representation 

for J for both nonlinear elastic and elastic-plastic conditions is given 

by:

f3P -1 ,d&
J = “/iT d b ~ (dT}

where l>'U is the total absorbed energy, at a particular load point

deflection or the area under the load-load point deflection curve. B 

and a are the specimen thickness and crack length respectively. For

specimens in which the uncracked ligament is subjected to bending, this

takes the form:

J = " (1-30)

where W is the width of the specimen. Sumpter and Turner^ presented a 

more general form of the above equation which is applicable to any

geometry:
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Up is the plastic component of total energy and can be calculated as the 

plastic area under the load-displacement curve. rip is a geometry

dependent constant and values for different geometries are given in Ref.66.

It must be emphasized that in the case of plastic behaviour where 

deformation is not reversible, J loses its significance as a crack driving 

force since it is no longer a measure of the energy available at the crack

tip for crack extension. However it can still be regarded as the

difference in energy imparted to a given geometry containing incrementally 

different crack lengths and may therefore be considered as a characterizing 

parameter for crack tip damage. The difference in unloading

characteristics between a linear or non linear elastic material and that 

for a elastic plastic material essentially implies that J should be 

limited to situations with no unloading. Since crack extension leads to 

relaxation and thus unloading in the regions behind the growing crack tip, 

J should be restricted to monotonic loading situations and only be used to 

characterize events leading up to first crack extension. ‘ However work by 

Landes and Beg/ey57 an(j Logsdon*^ showed that with a limited amount of 

crack extension, the use of J may be justified.

1.7.2 Determination of ^Ic

The basic procedure for the determination of Jjc is similar to that of 

<S£, in which a number of identical specimens are loaded to different

amounts of crack extention and load vs load point displacement is recorded.

Values of applied J, measured by equation 1.31 are plotted against the 

amount of crack extension &a. A linear regression line is fitted to the 

J-Aa data and the intersection of this line with the blunting line, where 

there is zero crack extension, is Jjc (Fig. 1.15). The plot of J-Aa must 

fall/
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between two limits. A lower limit of crack extension is chosen to ensure 

that actual crack extension is distinguishable from blunting. An upper 

limit is chosen to keep the total amount of crack extension small so that 

the data is confined to the initial linear part of the R-curve where J is 

valid.

The standard procedure recommended by the ASTM Committee E24.01.09 

gives the following approximate equation for the blunting line:

J = 2Qq Aa (1.32)

where a D is the material flow stress.

This equation is derived by assuming that the stretch zone is

approximately equal to half the COD and thus:

J = maQ 6 where m =1 (1.33)

This assumption may be inaccurate and in the next section it will be seen

that the coefficient to equation 1.33 may be as high as 4.

1.7.3 Relationship between J and COD

CIn previous sections the detailed charateristies of both Crack Opening
A

Displacement and J as single fracture parameters applicable under EPFM have 

been discussed. It has been demonstrated that for small scale yielding 

conditions, J and COD are simply related to the plane strain stress

intensity factor Kj. In fact much of the experimental work on J has been
. °fconcentrated on the evaluation Kjc from small specimens which fail to meet 

plane strain validity criteria^>57# gy considering the size requirements 

for/
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valid Kj c t e s t s * - **>19 and valid Jj c tests^? it is envisaged that it should 

be possible to predict Kjc from Jjc by using a specimen much smaller than 

that used for a direct determination of Kjc.

A similar approach was used by Robinson and Tetelman**** to estimate K^c 

from critical COD values by the use of equation 1.20. This approach is 

reasonable in the small scale yielding regime when the same micromodes of 

fracture initiation can be guaranteed in both the small specimen and the 

much larger valid Kjc specimen.

Since both J and COD characterize the critical conditions at the crack 

tip, a relationship between these two parameters must exist. A relation­

ship of the form:

<5 =MJ/ ay (1.34)

based on the theoretical as well as experimental results is assumed, where 

M is a plastic constraint factor dependent on the work hardening capacity 

of the material as defined by equation 1.27 and independent of crack 

configuration under SSY conditions. For low work hardening materials M 

is thought to be configuration dependent in the fully yielded stated9. By

evaluating slip line fields for non-hardening materials R i c e ^  estimated a 

value of 0.67 for M whereas Rice and Johnson^*- by considering the 

non-hardening limit of the HRR singularity field at crack tip obtained a 

value of 0.79. S h i h ^  carried out a finite element analysis to determine 

the relationship between J and COD for the complete regime of 

elastic-plastic deformation by exploiting the HRR singularity dominance in 

the crack tip region. For the non-hardening case in small scale yielding 

conditions he found M=0.63.



35 .
For hardening materials Rice^® presented the following relationship:

6 =0.55J/ao (1.35)

where aG is the flow stress in tension given by:

CToasay/['J‘ (1 + + N)oy/NE]N (1.36)

Parks^l suggested that the coefficient of equation should be 0.65. Tracy^ 

conducted finite element calculations for SSY conditions and proposed that:

« - 0.54(l*>JAr (1>37)

An experimental attempt to measure M was carried out by Robinson and

Tetelman^^ using standard ASTM Kjc specimens. Their results indicated a
fo* . .value of unity M, substantially higher than values predicted from the

analytical approaches given above. Brothers et a l ^  measured stretched

zone width in broken test pieces meeting ASTM specifications for Kjc

testing in different materials and their results showed a value of 0.7 for

M for all the materials investigated.

1*8 The limitations on-^Ic and 6i

For J^c or <$ £ to be used as a single configuration-independent 

toughness parameter, the HRR fields (equation 1.24) must dominate over a 

region ahead of the crack tip which is large compared to the scale of the 

fracture events involved. For ductile fracture initiation in SSY, it has 

been shown that COD correlates well with the scale of the micromechanism of 

the failure process i.e. the spacing of voids, nucleating at second phase 

particles (see section 2.3). Thus COD, given by equation 1.34 sets the 

local size scale on which fracture process occurs and hence HRR field must 

be/



36.

large compared to COD. This requirement, like the conditions for

Kj-dominance and valid Kjc measurement in LEFM, implies that certain 

specimen size limitations must be for a valid Jjc (<$ £> measurement. In 

this context it can be envisaged that all specimen dimensions in a valid 

Jlc ( ̂ i) test must exceed some multiple of ^  = M Jxc/ ao» Landes and 

Begley^ proposed the following size requirement, where L is the 

dimension of remaining ligament:

Jlca, B, L*25-50 o
Hancock and Cowling^ by testing different crack geometries, representing 

different flow fields, found that the values of  ̂£ and Jjc varied with 

changes in flow field configuration for a tempered and quenched steel 

similar to HY80, although all their specimens satisfied the above 

requirement. McMeeking and P a r k s ^ 3  by using finite strain finite element 

analysis compared the fully plastic fields with that of small scale 

yielding and concluded that although for the limiting case of SSY, the 

specimen size limitation given in equation 1.3 8 essentially guarantees a 

unique geometry-independent J characterization of the fracture process, 

this uniqueness vanishes in the fully plastic fields. They suggested that 

the minimum specimen size requirement necessary to ensure a valid J£C ( <$£) 

value for low constraint fully plastic configuration should be:

L*200 (1.3 9)o

This means that for certain geometries, the size requirement for valid 

elastic-plastic fracture toughness parameters may be no less restrictive 

than that for Kic testing. The objectives of these size limitations are 

to set a condition in which a unique Jjc or ^£ can be related to the Kjc 

for determination of critical crack size or critical stress level. 

However in many structures the estimation of critical defect size from a 

Kic/
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procedure is invalid since LEFM conditions will not apply, and there are 

areas in a real structure where the constraint is low resembling a fully 

plastic flow field. In these situations the observation of size

limitation as given in equation 1.3 9 may result in over conservative 

assessment of fracture behaviour. On the other hand, by elastic-plastic 

testing of a specimen with similar flow field and dimensions to that of the 

actual component of structure, a more realistic fracture toughness measure 

may be obtained irrespective of satisfying the size requirement.

In section 4 experimental analysis of dependence of the post yield 

fracture toughness parameter 6£ on the crack tip constraint in the 

transition temperature range is presented and the results of a finite 

element analysis of the flow field of a low constraint geometry are 

discussed.

1.9 Summary of EPFM

An important factor in application of fracture mechanics for assessing 

the significance of defects in structures, is the characterization of 

fracture toughness of materials. Many low to medium strength steels used 

in the section size of interest in different structures, develop a large 

plastic zone at the tip of an existing crack under static loading and 

therefore a toughness criterion in terms of Kjc in the realm of LEFM is 

unable to characterize their behaviour.

Successful introduction of COD and J as toughness criteria in the 

elastic plastic regime have added a new dimension to practical application 

of fracture mechanics. In the prece-ding sections the theoretical

foundation of EPFM as a natural extension of SSY to cases of large scale 

plasticity/



has been reviewed. Analysis based on the Dugdale strip yielding model 

confirms<£at COD is a characteristic parameter of local conditions at the 

crack tip whereas the main support for the J-Integral characterization of 

stress and strain fields local to crack tip comes from the HRR singularity 

fields. Based on these theoretical considerations, therefore, the

critical values of COD and J at failure may be considered as toughness 

parameters. The critical values of J and COD are determined with

laboratory fatigue pre-cracked specimens at the initiation of crack 

extension. An implicit assumption in the application of these values to 

predict the critical condition in service components is that initiation of 

crack growth constitutes the instability event. In reality many

materials, in elastic plastic conditions, undergo a period of stable crack 

growth prior to instability, hence the critical initiation criteria (6£ and 

Jjc) may be conservative in these situations. However the conservatism 

contained within such an approach is obviously satisfactory from the 

viewpoint of safety and lack of a clear understanding of instability 

conditions, though it may lead sometimes to very costly overdesign of 

structures.

The objective of elastic plastic fracture mechanics is ultimately to 

develop a tool for assessing the presence of an allowable defect and/or an 

allowable stress level for safe design. This can be achieved by utilizing 

design curves based on either COD or J-Integral. To avoid errors in 

determination of critical values of COD or J, crack resistance curves may 

be generated and crack initiation toughness values be derived from these 

curves by extrapolating to zero crack extension.



The general philosophy in the use of critical values of fracture 

parameters, relies on an understanding of events leading to fracture. 

This can be achieved only by involving the micromechanisms .of the fracture 

process which will be discussed in the following chapter.
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Section 2 

FAILURE MECHANISMS

2.1 Introduction

In this section the mechanisms of Brittle, Ductile and Fatigue failure 

processes are discussed.

2.2 Brittle fracture

Brittle fracture in metals is characterized by a rapid rate of crack 

propagation, with no gross plastic deformation, requiring very little 

energy. In steels it occurs by a process of transgranular cleavage

producing bright, planar cleavage facets. Cleavage fracture is prompted 

by those factors that produce locally elevated tensile stress levels such

as low service temperatures, high strain rates and the presence of stress

concentrations especially in regions of high triaxial stresses.

Low* showed that for mild steel of a given grain size, tested at -196°C

brittle fracture in tension occurs at the same or greater value of stress

than is required to produce yielding in compression. It is envisaged 

therefore, that some plastic flow is a necessary step to promote cleavage 

and that yielding is involved in the nucleation of cleavage fracture.

It was suggested by Zener^ that the stress levels at the head of a 

dislocation/



pile-up could be sufficient to produce the plastic flow required to cause 

cleavage fracture. Stroh^ developed this idea by proposing that the 

dislocations could be squeezed together to produce a crack nucleus. He 

presented a theoretical analysis of this crack nucleation mechanism and 

calculated that the energy balance required for subsequent propagation of 

the crack is achieved by the squeezing together of dislocations, and hence 

the cleavage fracture is nucleation controlled. The Zener-Stroh model does 

not predict that cleavage fracture will be promoted by the local elevation 

of tensile stresses. Knott^ examined the influence of tensile stress on 

cleavage of mild steel and concluded that the fracture obeyed a critical 

tensile stress criterion, and therefore it is propagation controlled.

Cottrell^ proposed an alternative dislocation mechanism for the 

nucleation of cleavage cracks in essentially bcc (body centered cubic) 

metals such as ferritic iron. This mechanism involves the interaction of 

two dislocations slipping on intersecting [1 0 1 ] planes to form a tensile 

dislocation normal to the cleavage plane. This interaction is accompanied 

by a reduction in dislocation energy so that crack nucleation is easier than 

if it followed the Zener-Stroh model. The cleavage fracture by this 

mechanism will therefore be propagation controlled. This model not only 

predicts a tensile stress controlled cleavage fracture, but also explains 

the effects of grain size and yielding parameters on fracture. However the 

influence of other microstructural variables such as grain boundary carbide 

particles remain neglected.

Smith6 proposed a theoretical model of cleavage fracture in mild steel 

similar to that of Zener and Stroh by assuming that a microcrack due to 

dislocation pile-up is formed in a grain boundary carbide particle and 

subsequently propagates into the ferritic matrix under the combined 

influence/



50.

of the pile-up and the applied stress. Thus in addition to demonstrating 

the role of yielding parameters in determining the fracture stress, the 

influence of grain size and carbide particle size are also emphasized.

2.2.1 A model for cleavage fracture

It is evident from different models discussed above that an energy 

based interpretation of fracture toughness is not adequate to explain 

cleavage fracture in steels. The micromechanisms of fracture have to be 

incorporated with the stress field characterization by the stress intensity 

factor in order to predict the material fracture toughness. The stress 

distribution ahead of a loaded crack predicts that the maximum tensile 

stress elevated at the tip of a pre-existing crack declines rapidly with 

distance^. Dimensional considerations of aforementioned cleavage

mechanisms, namely the grain size and carbide particle size imply that if 

fracture from a sharp crack is to occur at a critical stress intensity 

factor, then the attainment of a critical local tensile stress is not a 

sufficient criterion but a distance requirement must also be satisfied. 

Ritchie, Knott and Rice6 proposed that the local tensile stress in steels 

had to exceed a critical fracture stress over some microstructurally 

determined distance ahead of the crack tip before fracture could occur. 

Thus with the knowledge of stress distribution which is characterised by 

the stress intensity factor at the crack tip and experimental determination 

of the critical fracture stress by a simple uniaxial test, it is possible to 

predict the fracture toughness if the characteristic distance is known. 

This model, referred to hereinafter as RKR, was used to predict the 

temperature dependence of the fracture toughness of mild steel. The 

prediction was in good agreement with experimental results when the 

characteristic distance was taken as being equal to two grain diameters. 

Although/
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the RKR criterion was originally proposed for mild steel, it has been 

successfully applied to low strength low-alloy steels^, higher carbon 

steels^6 , titanium alloys^- and high strength low alloy steels used in 

nuclear pressure v e s s e l s ^ .

2.3 Ductile fracture

Conditions required for the initiation of a macroscopic brittle 

fracture and micromechanisms involved were discussed in the previous 

section. When there is local plasticity at the crack tip, instability is 

usually associated with some stable crack extension though final failure 

may still be of a brittle nature. Therefore ductile fracture is

characterized by the local crack tip micromechanisms of crack extension, 

mainly the linkage of microvoids formed at second phase particles. In low 

strength steels voids form by the separation of the interface between the 

ferrite matrix and non metallic inclusions such as sulphide particles. 

Voids can also be nucleated at carbide particles either by interface 

separation or by the particle cracking. Nucleated voids grow under 

applied stress until they coalesce with the blunted crack tip producing a 

fracture surface consisting of dimples centred on the inclusions. This 

mode of failure known as fibrous fracture, requires the development of high 

strains in the matrix around and between the voids. When the matrix has a 

low work hardening capacity, plastic flow can become localised so that the 

voids link by shear decohesion along shear planes.

Rice and Johnson^6 analysed microvoid coalescence by considering a 

sharp crack subjected to a mode I plane strain stress state in Small Scale 

Yielding (SSY). They calculated the maximum tensile stress and tensile 

strain by constructing the slip line field at the crack tip. The slip line 

field/
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solution for a sharp crack is shown in Fig. 2.1a. In regions A and B the 

fans are centered and the lines are straight, implying that there are no 

strain concentrations ahead of the crack tip. Intense shear

concentrations form above and below the tip where the lines are curved in 

region C. In order to keep a continuity of displacement at the crack tip, 

when the body is loaded, the crack must blunt with the consequence that the

fan region ahead of the crack tip is now non-centered and focuses intense

strains into region D directly ahead of the blunted tip, Fig 2.1b.

Rice and Johnson -̂6 postulated that if the tip blunted into a semicircle 

of diameter 6, where 6 is the crack opening displacement at the original 

crack tip, then region D would have exponential spiral slip lines and would 

extend a distance approximately 2 5 ahead of the crack tip. They

calculated the stresses and strains in this region for a nonhardening 

material as a function of distance from the blunted crack tip (x). Their 

results are presented graphically in Fig. 2.2. At the crack tip the 

strains become infinite whereas the stresses are limited by the yield 

stress but reach a maximum of 2.6 a y (Tresca criterion) at the end of

logarithmic spiral. Strain hardening raises all the stress levels and 

decreases the extent of spiral^.

Macroscopic failure initiation may be defined as the point when the

blunting crack tip first coalesces with the growing void nearest to the 

crack tip. As discussed in section 1.6.4 the value of COD at this

fracture initiation point is a material fracture toughness parameter 6 .̂ 

Coalescence of the blunting crack with the nearest void causes a shift in 

the position of the crack tip to the far side of the void. Propagation 

would then progress by blunting of this new crack tip and the envelope of 

the next void into the new logarithmic spiral. Thus ductile fracture can

be related to some physical measurement of inclusion spacing.



2.3.1 A model for ductile fracture

Mackenzie, Hancock and Brown^ (MHB) proposed a model to predict 

fracture toughness of steels in the ductile regime. They suggested that 

macrocrack growth by coalescence of microvoids would occur if the local 

plastic strain exceeds a critical strain value over a microstructural 

characteristic distance. This characteristic distance was taken as some 

multiple of inclusion spacing. This model is analogous to that of RKR for 

brittle fracture by considering a critical strain criterion instead of 

critical stress. It has been established^"^ tjlat piastic strain at the 

crack tip is strongly dependent on the triaxial state of stress. Hancock 

and M a c K e n z i e ^  showed that the ductility of some materials is decreased 

with increasing triaxiality. The MHB model recognizes the effect of 

triaxiality and proposes experimental determination of fracture strain as a 

function of triaxiality. This value is compared with the stress and 

strain distribution ahead of a crack and the value of COD (5) at which the 

equivalent plastic strain just exceeds the fracture strain over the 

characteristic distance from the crack tip is then taken as 6 .̂

Cowling and Hancock^^ used the MHB model to predict fracture toughness 

of a low alloy high strength steel and found a close agreement with 

experimentally determined fracture toughness. The characteristic distance 

was shown to be the size of an inclusion colony. Ritchie et a l ^  applied 

this model to two nuclear pressure vessel steels and found that fracture 

toughness of both steels can be accurately predicted by taking the 

characteristic distance as some multiple of planar inter-inclusion spacing. 

They concluded that critical microstructural size scale must be regarded 

not only as a parameter indicating the spacing between particles, but also 

the critical number of voids which coalesce with the blunted crack tip at 

the initiation of crack growth.
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2.4 Effect of temperature on fracture processes

So far two different approaches for the analysis of fracture processes 

have been discussed. These are the macroscopic approach which involves the 

fracture toughness parameters such as Kjc, Jjc etc. (as reported in

Section 1) and the microscopic or local approach which involves the

micromechanisms of crack tip processes.

The fracture process of structural steels is greatly influenced by 

variation in temperature. The effect of temperature on the toughness is 

well known from the Charpy impact notch testing, in which the notch

toughness of material is shown to be sharply reduced with decreasing 

temperature. A similar trend exists with other fracture parameters as 

shown in Fig. 2.3. This toughness transition may be explained in terms of 

the critical levels of stress and strain required to initiate brittle or 

ductile failure. For cleavage fracture, it is necessary to achieve a

critical value of tensile stress below the crack tip to propagate

microcracks. At low test temperatures, this is usually attained well below 

general yield loads. As the test temperature is increased, the yield

stress decreases, thus the level of stress required for cleavage fracture

increases beyond that required for general yield. As gross yielding is

approached material at the vicinity of crack tip deforms plastically, 

making it impossible to develop a sufficient level of tensile stress to

initiate and propagate microcracks at the crack tip. This therefore marks 

the transition in fracture mode from lower shelf cleavage fracture to the 

upper shelf ductile failure.

There has been considerable research in recent years into the

temperature dependence of fracture toughness. Kalitassien^O has reviewed 

the/



influence of temperature on yield stress and toughness. In very tough 

materials the fracture process may be initiated by a ductile mechanism even 

in the lower shelf region where the subsequent crack propagation is by means 

of the cleavage mechanism.

In lower toughness materials there is a gradual transition from upper 

shelf ductile to lower shelf cleavage initiation and propagation 

mechanisms. In the transition region the failure process involves a 

mixture of the two mechanisms with plasticity ahead of the opening crack tip 

producing void initiation and growth as in the upper shelf region. This 

void growth is interrupted before the coalescence stage by the triggering 

of the brittle cleavage mechanisms. A further study of these processes and 

the effect of constraint on them is reported in section 4.0 below.

2.5 Fatigue fracture

The life of most engineering structures is dominated by the growth of 

pre-existing defects which are introduced by the manufacturing process e.g. 

flaws in welded structures. Subcritical cracks which are inactive under 

static load, may propagate under repeated loading by a fatigue mechanism 

whereby the critical size is eventually achieved and failure will occur.

The application of the term fatigue to the failure of materials 

subjected to cyclic loading is indicative of the original observations of 

the eventual failure of components under loads which had been previously 

withstood many times. It was believed that, after a number of loadings, 

the component tired and suddenly failed when the material load carrying 

capacity was exhausted.



The most notable contribution to the early investigations of the 

fatigue phenomena was the experimental work of Wohler^ between 185 8 and 

1870. From the results of his work on iron and steel, Wohler concluded 

that the cyclic life of his specimens was dependent on not only the maximum 

cyclic stress but also the range of stress in the cycle. He also noted 

that a minimum stress range exists below which fatigue would not occur. 

These observations led to the original presentation of the type of stress 

range/cyclic life fatigue curve, known as the S-N curve, still in normal 

use.

tht.
Early in 20th century, attention was directed to the metallurgical 

, aspects of fatigue leading to an understanding of the initiation of fatigue 

cracks by the development of slip bands in the crystallographic structure 

of the metallic materials. Further work in this area revealed the effects 

of the presence of non-metallic inclusions and material anistropy on 

fatigue strength and, later, considerable progress was made in defining the 

mechanism by which fatigue cracks propagate. More recently fracture 

mechanics has been used in the study of fatigue crack propagation in 

evaluating structural integrity. The use of fracture mechanics has been 

particularly successful in reducing the number of accidents in the pressure 

vessel industry over the last two decades. This success has been achieved 

through the evaluation of fatigue crack growth rate data and the 

application of LEFM to life prediction.

The fatigue growth of a macrocrack is a fracture process caused by the 

opening and closing of the crack. For ductile materials fatigue crack 

propagation has been shown to be crack extension producing a flat surface 

perpendicular to and controlled by the maximum tensile stress range.
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The most successful mathematical presentation of fatigue crack growth 

data has been in terms of linear elastic fracture mechanics. This

application of fracture mechanics was propsed by Paris and E r d o g a n ^ ^ > whQ 

argued that since the stress field around the crack tip was defined by the 

stress intensity factor, the rate of growth of the crack is dependent on 

the cyclic range of that parameter. By reviewing various empirical laws 

and examination of a large bank of experimental data, they concluded that 

the crack growth rate can be described by the following relationship:

da / dN=C AK111 , (2.1)

where C and m are empirically determined material constants, da/dN 

represents the rate of crack growth increment per load cycle and AK is the 

applied range of stress intensity factor at the crack tip i.e. the 

difference between the maximum and minimum values of SIF.

Crack growth behaviour under fatigue has been classified into three 

distinct stages as shown in Figure 2.4, where the crack growth rate versus 

AK curve is plotted in log-log form after Paris and E r d o g a n ^ .  Region I 

indicates a threshold value of A K ^  below which a crack does not

propagate and remains inactive. In the intermediate stage II the crack 

grows steadily at an increasing rate which is primarily dependent on the 

level of applied AK as described by the Paris law. It is generally 

considered that the most of the life of a structure is spent in the stage I 

and II regions. In region II crack advance is associated with striation 

formation on the fracture surface, with striation spacing equivalent to 

da/dN.

The final stage III, is where the maximum crack tip stress intensity 

factor/
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in the cyclic range approaches the level of Kjc or Kc (or the applied load 

approaches the limit load). In this stage the crack growth mechanism can 

include the macroscopic static failure processes.

As indicated earlier, most structures contain pre-existing defects 

which can be considered to be readily available for propagation in the 

manner suggested by stage II. The Paris equation can therefore be used to 

calculate the number of cycles required to cause failure:

dn=da/CAKm (2.2)

i ac
n=-/ a r m Ja 1 (2.3)

c «i

where a£ is the initial defect or crack length, or the size of the smallest 

defect detectable by a Non Destructive Testing (NDT) technique, ac is the 

critical defect or crack length and N is the number of load cycles to cause 

failure. K is the range of applied stress intensity factor given by:

AK= Ao(7ra)®*^F(g) (2.4)

where F(g) is a geometric function dependent on the crack shape and boundary 

conditions. For defect geometries with complex geometry functions, 

integration of the Paris equation becomes extremely difficult. In such 

cases the integral can be calculated numerically using an interactive 

technique.

Fracture mechanics can therefore be used to predict the expected life

of/



3a structure, containing pre-existing crack by a knowledge of fatigue crack 

growth resistance of material. Fatigue crack growth data is normally 

obtained by applying cyclic loads to a cracked specimen of material and 

monitoring the subsequent crack growth. The monitoring of the crack as it 

grows is usually achieved by using NDT methods. This procedure has been 

used during the present investigation to study the fatigue growth of 

part-through cracks and the results are reported in Section 5.
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Section 3

MATERIAL PROPERTIES

3.1 Introduction

In this section the basic material properties and the results of the 

experiments on the variation of yield stress with temperature, Charpy 

V-notch energy and the effect of degree of triaxiality on the effective 

plastic strain to failure in the transition temperature range are 

presented.

3.2 Material

The material used in this investigation was a carbon-manganese 

structural steel, to the specification of BS4360 grade 50D, typical of that 

used in critical joints of offshore structures. The steel was supplied by 

the British Steel Corporation in 25mm thick plates, normalized at 910°C. 

Chemical composition and mechanical properties of the as received plates 

are given in Table 3.1. Optical metallographic examination indicated a 

fine grained normalized structure, with an average grain size of d = 35ym 

measured by the linear intercept method. The inclusion particles were 

primarily manganese sulphide MnS. A quantitative examination of random 

metallographic sections gave the number of inclusions per unit area as 

6.3mm“2 and an average inclusion spacing of S = 200um was calculated byl:
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During the course of the present investigation the following test piece 

geometries were used: Uniaxial Tension, Notched Bar Tension, Single Edge

Cracked (SECT) in Tension, Double Edge Cracked (DEC) in Tension, and Part 

Through surface Cracked (PTC) in tension. The specification of each

geometry and the experimental procedures will be given in appropriate 

sections. All the test pieces, with the exception of PTC, were tested 

under montonic tensile loading at various temperatures. Therefore a 

versatile cryostat was designed to accommodate the low temperature testing 

of various geometries and is described in next section.

3.3 Low temperature testing method

Test temperatures below ambient were obtained by testing the specimens 

in a cryostat cooled with liquid nitrogen. The cryostat consisted of four 

sections, containing coiled copper tubes around the inside chamber in which 

the specimens were loaded. Two of the sections could be removed to form a 

smaller chamber for testing small size specimens. Liquid nitrogen was 

pumped continuously through the copper tubes or into the individual 

sections until the required temperature was achieved. For very low

temperatures (-140 to -196°C), the chamber itself contained various levels 

of liquid nitrogen. By controlling the rate of liquid nitrogen flow, it 

was possible to achieve the requisite temperature and maintain it for the 

duration of test within +_ 2°C. Specimen temperature was measured by a 

Cu-Con thermocouple glued to the specimen surface at the point of interest 

i.e. in the vicinity of the crack tip for SECT and DEC geometries and just 

above the notch for the notched round tensile specimens.



3.4 Variation in yield stress with temperature

Tensile tests were carried out on machined cylindrical tensile test 

pieces of 8mm diameter, conforming with BS18-Part 2- 1971 specification, 

cut in Transverse (T) direction from the parent plate. Tests were 

performed on a 250kN Instron TT-K servo-hydraulic testing machine at 

various temperatures in the range - 140 to + 20°C. Specimens were loaded 

under displacement control at a strain rate of 1.6 x 1 0”® S“^ , and

load-displacement curves were recorded. Extension was obtained via a 

strain gauge extensometer attached to the specimen on a gauge length of 

25mm.

The results of tensile tests are shown in Fig. 3.1 where the lower and 

upper yield stress are plotted as a function of temperature. All flow 

curves exhibited an upper and lower yield point which is characteristic of 

low-carbon steels. Both the upper and lower yield stress increase with 

decreasing temperature although this trend is steeper for the upper yield 

point. The yield strength CTy used in this investigation, refers to the 

upper yield stress. Yield data obtained here were introduced into a 

relationship due to Bennett and Sinclair^, to obtain a single equation for 

as a function of temperature and strain rate:

° y = 745.6 - 0.056T ln(^~^) (3.2)

where:

ay is yield stress in MPa 

T is temperature in °K 

e° is strain rate in S“ 1 and 

A is a constant equal to 10® S”1



All subsequent values of yield stress for a given temperature and strain

rate were derived from equation 3.2.

3.5 CVN impact testing

Charpy V notch impact tests were conducted in the temperature range of 

-80 to +20°C. The specimen dimensions and test procedure were in

accordance with BS131 : Part 2 : 1972.

The results in the form of a plot of impact energy absorption versus 

temperature are given in Fig. 3.2, where each data point is the average of 

three tests. Fractography examination of fracture surface by optical and 

scanning Electron Microscopy revealed that at -80°C fracture occurs 

entirely by cleavage with no shear lips apparent on the surface. At 

temperatures of -60°C and above, cleavage is prece ded by regions of 

ductile fracture indicating that fracture was initiated by a ductile

mechanism. By increasing testing temperature, the amount of ductile

fracture and the extent of the shear lips also increase which explains the 

increase in the absorbed energy. On the basis of fractography observations 

and the results presented in Fig. 3.2, the dynamic Nill Ductility

Temperature (NDT) of the material is considered to be -60°C.

3 .6 Variation of failure strain with triaxiality

As discussed in section two ductile fracture can be modelled as a strain 

induced process, in which failure, in form of void initiation, growth and 

coalescense, occurs when a critical strain is locally exceeded over some 

microstructurally characteristic distance®. It has been shown®-^ that 

this critical strain is a strong function of multi-axial state of stress. 

Therefore/
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a study of ductile failure necessarily involves the determination of the 

failure strain as a function of triaxiality. In this section the

relationship between failure strain and triaxiality, for the material under 

investigation, is experimentally established and the effect of temperature 

is also studied.

Definition

The triaxial state of stress can be represented by the non-dimensional
am . . „ . -quantity ~r“ , m  which °m is the mean stress and or the effective flow

stress.

The mean stress is the hydrostatic component of an arbitrary state of 

stress which causes volume changes without plastic flow and is the average 

of the principal stresses,

°» ■ J < ° 1  + ° 2  + ° 3 ) (3.3)

The effective stress is defined by Von Mises equation in terms of principal 

stresses.

? ' 2 I(°l - ° 2 >2 + (°2 - °3>2 + (°3 ~ V 2 ]* (3.4)

The effective stress is associated with plastic flow in metals, which is 

accomplished by the movement of dislocations under the effect of shear 

stresses.

amThe degree of triaxiality is infinite for a stress system of 

° l = °2 = ° 3 (full triaxiality) and zero for stress system of aRd

a 3 = 0 (pure shear). In a uniaxial tensile test before plastic instability 

°2 = °3 = 0 * bence cr = and Qm = 3"al which results in a triaxiality of

°m = 1
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The effective plastic strain eP is defined in terms of the increments of 

principal plastic strains:

O J'
deP - T  [(deP - deP)^ + (deP - deP)^ + (deP - deP)^] (3.5)9 1 2 2 3 3 1

eP is a scalar quantity and is always taken to be positive. The dilation

component of the strain, analogous to the mean stress, is not considered as

volume changes during plastic deformation are negligible

(deP + deP + deP = 0) . Thus in a uniaxial tensile test on a cylindrical
1 2  3

test piece where

plastic strain can be written in terms of deP as:
2

e~P = /deP = 2 l n ~  (3.6)

where d and do are the instantaneous and initial diameters.

3.6.1 Experimental Procedure

3.6 .1.1 Specimens

Different triaxial stress states can be obtained by testing 

axisymmetric circumferentially notched specimens with varying notch 

severity^ as shown in Fig. 3.3. In such a test piece failure initiates in 

the centre region of the notch where the triaxial stress state is most 

severe. Failure initiation can be detected by a sharp drop in the plot of 

the average stress versus effective plastic strain^- which indicates a loss

in load-bearing cross-section due to formation of a crack in the centre of

the testpiece on the minimum cross section. The effective plastic strain 

associated with this discontinuity in specimen behaviour is defined as the 

effective plastic strain for failure initiation ef. Hancock and Mackenzie^ 

used the Bridgman^ analysis for the minimum section of a necked tensile 

specimen,/

deP - deP = - V  9 deP, for uniform deformation effective 2 3 1
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to calculate stress and strain states for a notched test piece. In Fig.

3.4 the results of Bridgman analysis in the form of the distribution of

stresses and effective plastic strain are shown. From these results eP
6m

and - at the centre of a notched bar are estimated as:a

eP « 2 In jj2- (3.7)

l f = 3  + ln(1 + tR> (3’8)

where R is the notch root radius and do and d are the original and 

current diameter of the notch. Earl and Brown^ have pointed out that the 

extrapolation of Bridgman analysis to approximate the plastic flow field of 

notched specimens may produce erroneous results.

The finite element analysis of Hancock and Brown^ provides more
a

accurate solutions for the distribution of —  and eP as a function of 
do ®
d • These solutions are for selected notch geometries and are presented 

in graphical form in Ref.7. In the work presented here both Bridgman and 

Hancock and Brown solutions are considered although in subsequent sections 

only those results which have been processed by the latter solution will be 

used.

3 .6 .1.2 Test procedure

Circumferentially notched tensile specimens were machined from the 

transverse direction of the plate. The dimensions of specimen are given in 

Fig. 3.3. In addition unnotched specimens (labelled ) of diameter 

d = 7.6mm were also tested.



Tests were carried out on an 250kN Instron TT-K servo hydraulic testing 

machine, under displacement control at a constant strain rate of

1.5 x 10"3 s*"l and over the temperature range of -60 to 100°C. The 

diameter change at the minimum section of the notch was measured 

continuously with a strain gauge extensometer. A second extensometer 

mounted across the notch, controlled the axial displacement rate. The 

applied load, axial displacement and the diameter changes were continuously 

recorded by using a multi-channel data logger. Low temperature tests were 

performed in a manner similar to that for low temperature uniaxial tensile 

testing, and high temperature tests were carried out in a furnace attached 

to the testing machine. Loading was stopped when a sharp drop in the 

applied load was detected. After unloading, the minimum cross section and 

the curvature of the notch were measured for each specimen using an optical 

comparator. Specimens were subsequently sectioned longitudinally at the 

centre of the notch and prepared for optical examination by normal 

metallurgical specimen preparation techniques.

3.6.2 Results and Discussion

Fig. 3.5 shows the results of A and D notch specimens tested at room 

temperature, in which the average axial stress is plotted against effective 

plastic strain eP. The unnotched tensile result is also shown. The 

average stress was obtained by dividing the load by the current 

cross-section area, 'Td^/4, and eP was calculated from the diameter change 

of the specimen (equation 3.7). As shown the average stress rises as the 

material strain hardens and then drops sharply. Also it can be seen that 

with increasing severity of the notch the average stress for a given strain 

increases and the ductility of material decreases. The stress-strain 

curves/



for each specimen geometry as a function of temperature are shown in Figs.

3.6 to 3.8. All curves exhibited a sharp fall off in average stress at 

the point of failure initiation with the exception of the D notch specimen 

tested at -60°C which fractured before the load could be reduced.

Metallographic observations performed on the longitudinal sections at 

the centre plane of the specimens indicate that the failure in all 

specimens was initiated at the centre of the notch by coalescence of holes, 

nucleated and grown at inclusions. A typical failure initiation event is 

seen in Fig. 3.9, which shows the damaged area of the A notch specimen 

tested at -20°C and unloaded after the sharp fall off in the average stress 

curve. Although there are discrete holes, the failure is associated with 

linking up of large holes at the centre of the specimen which results in a 

loss in load bearing cross-section area of specimen and thus a sudden drop 

in average stress. Cowling and Hancock® observed the same behaviour in a 

low alloy high strength steel. In the more severe D notch specimen tested 

at -40°C failure occurred by localized micro cracking between the large 

holes as shown in Fig. 3.10. These micro cracks may be cleavage since on 

the fracture surface of same geometry tested at -60°C areas of cleavage 

were observed, though fracture initiation was still in a ductile manner. 

Similar behaviour was observed by Cowling and Hancock^ where the effect of 

pre-straining prior to the introduction of a notch into the specimen at 

room temperature was studied. They found that for commercially pure iron 

a pre-strain of <5p = 0 . 2 promoted a mixed mode fracture in the more severe 

D notch geometry whereas the A notch specimen failed by a complete ductile 

mechanism.
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In Table 3.2 the results of the effective strain at failure initiation
amef and triaxiality parameter —  are given for different notch geometries
a

at various temperatures, using two different analyses. For the Bridgman®

analysis original values of notch diameter, d, and notch minimum curvature,
amR, were used in equations 3.7 and 3.8 to calculate ef and —  . This
aa

simplification underestimates the values of -=- by up to 20% for D and -A
o m inotch geometries and assumes a uniaxial tension stress state of ~=~ = /3

for unnotched geometry. Finite element analysis of Hancock and B r o w n ?  on
amthe other hand gives the progressive distribution of -=- and ep as a

dofunction of -jj- and therefore includes the stress state history. In this 
0 tnanalysis —  for the unnotched P specimen was obtained by using failure

0
initiation values of d and R in equation 3.7. This was consistent with 

the NeedlemanlO solution for a necking cylindrical bar as described by 

Hancock and Brown?.

The results in Table 3.2 are presented graphically as failure loci in 

Figs. 3.11 and 3.12 for both analyses. The stress state history involved

in the deformation is also included in Fig. 3.12. As it can be seen the
-  ^mfailure strain ef depends strongly on triaxiality and at a given is

am _
independent of temperature. The influence of - on ef has been

observed by other workers®^. Mackenzie et al^ found that the dependence 

of ductility on triaxiality is a material property. For example Cowling et 

a l H  examined the ductile failure of BS4360 Grade 50D steel and showed that 

an increase in the sulphur content not only decreases the ductility of 

material but also decreases the stress state sensitivity of the failure 

strain. It has been shown® that the failure locus of steels is sensitive 

to the orientation of test piece with respect to the rolling direction.



The results of present study indicate that temperature, in the range 

studied has no apparent effect on the material failure loci. This can be 

attributed to the fact that in this temperature range failure is initiated 

by a ductile mechanism and that the requirement for such initiation i.e. 

attainment of a critical strain is essentially independent of temperature. 

The reduction in toughness of material in this range (transition) is 

however related to the incidence of alternative failure mechanisms which 

affect both failure initiation in crack tip stress fields (where the degree 

of triaxiality is higher than that achieved in the notched tensile tests) 

and the propagation of failure.

The results on the effects of triaxiality on ductility will be 

discussed fully in Section 4. The relevance of the results presented here 

is that they may be applied to crack tip stress and strain fields where the 

triaxiality is such that material behaviour in uniaxial tension is 

inadequate to understand the failure process in such flow fields.
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Table 3.1 Chemical composition and mechanical 
properties of the BS4360 grade 50D steel.

CHEMICAL COMPOSITION (Wt%)

C Si Mn P S Cr Mo Cu

0.17 0.29 1.30 0.010 0.008 0.09 0.01 0.11

MECHANICAL PROPERTIES

Yield stress Ultimate stress Elongation Reduction oi

MPa MPa % % AV

360 55 8 26 56

Nb

0.045

Area



Table 3.2 Values of ^ and ef at various temperatures for 
two different analyses

Test
Temperature (°C)

Specimen

Bridgeman
Analysis
am _ —  efa

Finite Element 
Analysis

am efa

D 1.26 0.33 1.82 0 . 2 2

1 00 A 0.77 0.48 1.04 0.45

P 0.33 1 . 1 0 0.62 1.09

D 1.29 0.34 1.81 0.23

20 A 0.76 0.47 1 . 0 2 0.44

P 0.33 1.13 0.64 1.13

D 1.29 0.35 1.87 0.24

- 2 0 A 0.77 0.48 1.04 0.45

P 0.33 1.13 0.64 1.13

D 1.29 0.31 1.75 0 . 2 0

-40 A 0.77 0.46 1 . 0 2 0.43

P 0.33 1.24 0.67 1.24

D 1.3 0.33 1.80 0.23

-60 A 0.77 0.47 1 . 0 2 0.44

P 0.33 1.11 0.63 1 . 1 0
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Damaged area at the centre of an A notch specimen tested at 
-20°C showing the failure initiation event.

Damaged area at the centre of a D notch specimen tested at 
-40°C showing that failure occurs by localized micro cracking 
between the large holes.
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Section 4

POST YIELD FRACTURE TOUGHNESS PARAMETERS

4.1 Introduction

The fracture touchness of materials in the LEFM regime is characterized 

by a single parameter, Kj q , for which test pieces must obey certain 

dimensional restrictions^. For low strength tough steels, the minimum 

thickness of a valid test piece at a given temperature is excessively 

large, imposing a practical difficulty in determining for these

materials. In addition, many sections in real structures do not have 

adequate sizes for a valid LEFM treatment. In these situations the use of 

other fracture toughness parameters s u c h  as COD and J which characterize 

the stress and strain conditions at the crack tip^»3 becomes particularly 

attractive.

 Some geometry restrictions are also necessary for J testing^ as

discussed in section 1.8. For COD measured at the initiation of crack 

extension (<$£), which is claimed to be a material property provided that 

the plane strain condition is maintained^, no restriction on specimen 

thickness has been agreed upon. The reason for this is that in the 

practical use of COD it is suggested^ that tests should be carried out on 

specimens which have the same thickness as the material or structural 

section under consideration.

In the elastic-plastic regime failure is usually initiated by the 

ductile mechanism. It has been shown^*® that the microscopic events 

leading to ductile failure are influenced by the extent of the triaxial 

state of stress. Thus it is reasonable to expect that the macroscopic 

fracture/



toughness parameters are also dependent on the level of triaxiality. In 

this context Hancock and C o w l i n g ^  tested different cracked configurations 

with varying degrees of constraint for a high strength low alloy steel. 

They found an order of magnitude change in upper shelf values of <5̂ between 

the highest and lowest degrees of constraint studied i.e. the deep Double 

Edge Crack (DEC) geometry in tension with 10:1 width to ligament ratio and 

the Single Edge Crack Tension (SECT) geometry loaded at the centre of

ligament. In contrast experimental work by Markstrom^® on two different 

medium strength steels showed a unique value of Jc for the DEC (with 5:1 

ratio) and Centre Cracked Panel (CCP) geometries. The CCP has a similar 

flow field to the SECT geometry. This discrepancy in experimental results 

is attributable to the specimens tested and the degree to which the size 

requirement for EPFM is satisfied. It should also be noted that the 5:1 

DEC geometry does not incorporate a high level of triaxiality in the crack 

tip field and therefore differences between fracture characterizing

parameters measured using this geometry and the CCP would not be expected 

to be large for most materials.

In the work presented in this section, the effect of constraint on the 

post-yield fracture to ughness parameters over the entire temperature

range, from the lower to the upper shelf regions, is investigated. Two 

different specimen geometries representative of two different flow fields 

have been tested and the results are discussed in terms of the failure

mechanisms involved. A finite element analysis was also performed to 

obtain further information on the stress and strain fields associated with 

the SECT geometry.



4.z Experimental procedure

4.2.1 Specimen geometry

The geometries selected for this study of the effect of constraints on 

the fracture toughness parameters were the deep Double Edge Crack in 

tension (DEC) and Single Edge Crack in tension (SECT) loaded at the centre 

of ligament. The DEC geometry with width-to-ligament ratio of 10:1 

develops the full constraint of the Prandtl slip line field^ as shown in 

Fig. 4.1a. The etching^ study of Cowling and H a n c o c k ^  0n this geometry 

confirms that the plasticity is fully contained in the ligament between the 

crack tips. The triaxiality in the diamond ahead of the blunted crack tip 

can be obtained from the Hencky equation of slip-line field analysis:

JE = (1 + 2 In (1 + 2 X) ) / / 3 (4.1)
n I T

where °m is the mean stress, cr is the effective stress, 6 is the crack 

opening displacement and X is the distance from the crack tip on the 

crack plane. At the end of the log-spiral where -2 (see section 

2.3) a triaxiality of 2.4 is achieved).

In the SECT configuration only modest triaxiality occurs ahead of the 

tip but intense shear strains develop on planes at 45 degrees to the crack 

plane. The slip-line field consists essentially of two straight lines at 

45 degrees to the crack plane (Fig. 4.1b) provided that crack tip blunting 

is small compared with the ligament size, and there is no bending moment 

over the ligament. This geometry produces a fully plastic field with the 

lowest triaxiality associated with the plane strain condition: -



The configuration and dimensions of the test pieces are shown in Fig. 4.2.

4.2.2 Test method

Both DEC and SECT specimens were subjected to increasing monotonic 

loads under displacement control, at various temperatures and the COD and J 

at failure initiation were determined. In the DEC test piece the onset of 

crack extension can be readily observed by a sudden drop in the load 

displacement curve under the displacement control condition^. p0r the 

SECT geometry, however, failure initiation is not easily detectable and 

thus a multi-specimen R-curve procedure, as discussed in Section 1.6.4 was 

adopted.

4.2.3 Test procedure

4.2.3.1 Fatigue precracking

All the test pieces were extracted in the transverse direction from the 

plate, with the fatigue cracks grown in the rolling direction. Fatigue 

precracking of all specimens was performed in a high frequency Amsler 

resonant fatigue testing machine under constant amplitude three point 

bending at a frequency of approximately 60 Hz and stress ratio of R = 0.2. 

For the DEC specimen two slits 1mm wide and 10mm deep were machined at 

opposite sides of specimen and saw cuts of 0 .2mm width were introduced at 

the root of the slits. Fatigue cracks were initiated from the tip of saw 

cuts. The maximum applied load in the cyclic load range was 45 KN and 

35KN for first and second crack respectively. This level of load produced 

a maximum stress intensity factor of less than 24 MPa.m^ which developed 

plastic zones of less than 0.2mm at the tip of each crack. Care was taken



produce aligned fatigue cracks since it has been shown^ that the slip-line

field for non-aligned (non-cop1anar) cracks is different from that shown in

Fig. 4.1a, and results in a different level of constraint. Thus prior to 

monotonic loading each specimen was optically examined and non-aligned 

cracked specimens were rejected.

For the SECT specimen, the fatigue crack was initiated at the root of a 

2mm deep V-notch, machined on the surface of the specimen. The maximum 

stress intensity factor in the cyclic range was less than 24 MPa.m^/2 . 

Subsequent to pre-cracking, SECT specimens were machined to produce screw

threaded ends such that the tensile axis was applied to the centre of

ligament.

4.2.3.2 Monotonic loading

Tensile loading of all specimens was carried out in a 250 KN Instron 

TT-K servo-hydraulic testing machine at a constant strain rate of

1.5 x 10”3 s""l under displacement control. Crack opening displacement 

was measured by extensometers mounted across the mouth of the cracks. 

Values of load, cross-head displacement and crack mouth opening 

displacements were continually recorded. Low temperature testing was 

performed in a cryostat as described in section 3.3 and high temperature 

tests were carried out in a furnace attached to the testing machine. 

Tests on DEC specimens were stopped when a sudden fall off in the 

load-displacement curve were observed. At temperatures below -80°C DEC 

specimens fractured before the test piece could be unloaded. At least 

four SECT specimens were tested at any temperature to obtain sufficient 

data points for the construction of a resistance (R) curve. At -196°C 

SECT specimens fractured prior to any detectable crack extension. After 

testing,/
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specimens tested at sub-zero temperatures including those fractured, were 

immediately transferred into an alcohol mixture to prevent water 

condensation and subsequent corrosion of the damaged crack tip on fracture 

surface. Unfractured specimens were then sectioned longitudinally at the 

centre line and prepared for optical examination by usual metallographic 

methods. COD at the original fatigue crack tip and the amount of crack 

extension were measured within +. 0 .0 2mm using a micrometer attached to an 

optical microscope. The fracture surface of those specimens fractured 

were prepared for Scanning Electron Microscope (SEM) observation.

4.3 Results

The results of the experimental work are presented in terms of

initiation values of COD ( 6^) and J-integral (J£). In many practical 

situations the use of <$£ to derive critical defect sizes is considered too 

conservative and some relaxation is possible by the use of COD at maximum 

load (6 m ) where some stable crack extension in a structure may be allowed. 

However <5̂  is an appropriate representative of material fracture behaviour 

in the elastic-plastic regime and characterizes the local events leading to 

failure.

4.3.1 <Sj for d e c geometry

Values of ^  at various temperatures are given in Table 4.1. As 

noted earlier, with this geometry ^i can be determined by a single

specimen procedure. The geometry of the specimen and the loading

configuration is such that the COD at the crack tip is approximately equal

to the measured COD at the crack mouth. Indeed the crack mouth

displacements measured by extensometers, correlated very well with the COD 

at/
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the crack tip measured on the section profiles. The 6^ results given in 

Table 4.1 are presented in Fig. 4.3 as a function of temperature.

4.3.2 6 -j- for SECT geometry

Values of COD and Aa measured for SECT specimens tested at various 

temperatures are given in Table 4.2. In Fig. 4.4 the variation of COD as 

a function of crack extension, Aa, at different temperatures is plotted in 

the form of a R-curve. It can be seen that, in general, the resistance to 

crack growth i.e. the slope of the R—curve, increases with increasing 

temperature. Similar results have been observed for a low alloy weld 

metal tested in three-point b e n d i n g ^ .  The COD at initiation of crack 

extension ( 6£) is obtained by the intersection of the R—curve with the 

blunting line (taken as 6 = 2 Aa). Values of 6 ^ at different temperatures 

are given in Table 4.2 and plotted against temperature in Fig. 4.3 together 

with the DEC results.

4.3.3 Determination of J.; for DEC geometry

The use of the J— integral as an elastic—plastic fracture toughness 

parameter was outlined in Section 1.7. J values at the onset of crack 

extension, j£, were obtained using two different analyses^ ,17. Rice, 

Paris and Merkle^ proposed that for the DEC geometry, J can be estimated

as:
6
P

J = J 2 Pd6 - P 6 
P Pel + B(W-2a) (4.3)

'o

where B and W are the thickness and width of the specimen respectively, and 

2 a is the total crack length. Je£ is the elastic component of the applied 

J/
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and can be directly related to the strain energy release rate G and hence 

to the stress intensity factor Kj i.e. Je£ = Kj^/E . The integral term in 

equation 4.3 can be interpreted as the area under the load-displacement 

curve as shown in Fig. 4.5. Using this analysis, j£ for the DEC specimen 

tested at room temperature is:

J £ = 0.241 KNmm-  ̂ (4.4)

Sumpter and Turner^ proposed another procedure for determination of J:

np UD
J ■ J*1 + Tw-a*)B (4‘5)

where Up is the plastic area under load-displacement curve as shown in Fig.

4.6 and 7p is a geometry dependent function given byi®.

n , w-a. 1 3PL , .

where Pl is the limit load. For the tension case:

PL = Loy B(W-a) (4.7)

where L is a constraint factor which depends on geometry if the plane 

strain condition is maintained. From equations 4.6 and 4.7:

, rW-a> 1_ 8 L
np " 1_ ( W ’ L f(f) (4.8)w

For the DEC geometry an approximate expression for L is given byi^:

L = l + l n ( ~  ) (4.9)W-2a



Differentiating equation 4.9 for the specimen dimensions and combining with 

equations 4.8 and 4.5, J£ for the DEC specimen tested at room temperature 

is:

J £ = 0.23 9 KNmnT1 (4.10)

which agrees very well with the estimation given by equation 4.4.

Values of J£ at various temperatures are given in Table 4.1 and are 

shown in Fig. 4.7 as a function of temperature. It can be seen that with 

decreasing temperature J£ decreases in a similar manner to the variation 

of 6 £ with temperature. At -100°C, j£ satisfies the size requirement for

a valid test, i.e. (W-a) 25J/ay, and can be considered as JjC* From 

the results given in Table 4.1, it is deduced that there is a unique 

relationship between j£ and $£ for all test temperatures:

where M is approximately 0.5. This value agrees with the experimental

0.45 to 0.65 for the three point bend geometry with the same grade of

(4.11)

results of DeCastro et al^ who obtained values of M in a scatter band of

material. This value of M also agrees with with the finite element 

analysis of Tracey^® as described in section 1.7.3 (equation 1.36), when 

the flow stress in his analysis is taken as the mean value between yield

stress and ultimate tensile stress.



4.3.4 Determination of Ji for SECT geometry

for the SECT geometry at various temperatures was determined by 

using the R-curve technique. For calculation of J associated with each 

specimen the procedure due to Sumpter and Turner^ was used as described in 

section 1 .7.1 :

n u
T _  T x P  PJ “ Jel + B(W-a)

where Dp is given by equation 4.8. For the SECT geometry with straight 

slip lines at 45 degrees to the crack plane and little constraint, 

dL/d(a/w) in equation 4.8 is equal to zero and thus Dp = 1. Turner^ also 

obtained rip = 1 for a single edge crack specimen of a/y loaded in tension. 

Up for each specimen was obtained by measuring the plastic area under load 

displacement curve as shown in Fig. 4.5. Values of J so obtained were 

plotted against the actual crack extension, A a measured from the blun_te_d_ 

crack tip (Fig. 4.8). In the recommended procedure for determination of 

(Section 1.7.2.), values of J are plotted against Aa measured from the 

original crack tip and j£ is then taken as the intersection of the R-curve 

with the blunting line given by:

J = 2 Aaciy (4.12)

Equation 4.12 is based on the assumption that a relationship of the form 

6=MJ/Oy with M=1 exists between  ̂ and J. As outlined in section 1.7.3, 

the coefficient M is configuration dependent in the fully yielded state 

and therefore the use of equation 4.12 for the SECT geometry may produce 

erroneous results. By plotting the R-curve in the form of J versus/



actual crack extension, Aa , the need for the blunting line is eliminated 

and hence an accurate J£ is determined. With this procedure, M can also 

be calculated accurately without imposing any pre-assumption. The values 

of j£ are given in Table 4.2 and are plotted as a function of temperature 

in Fig. 4.7. Values of M are also given in Table 4.2. It can be seen 

that M increases with decreasing temperature.

4.4 Application of the RKR model

As described in section 2.2.1, Ritchie, Knott and R i c e ^  modelled the 

lower shelf fracture process by postulating that cleavage fracture occurs 

when the maximum local tensile stress exceeds a critical cleavage stress 

Of , over a microstructurally significant distance, X. The stress 

distribution ahead of a sharp crack is characterized by a unique singular 

field described by the stress intensity factor. Hence the fracture

toughness of a material, Kt q  can conveniently determined— if— the-

critical cleavage stress is known. The fact that at lower shelf

temperatures, the DEC specimen geometry used in this investigation 

satisfies the valid Jjq size requirement implies that at these temperatures 

there is a unique mathematical relationship between j£, 6£ and Kjq and

therefore the RKR model can also be used to predict 6 £ and j£. To predict 

Kic from the RKR model, the critical cleavage fracture stress of the 

material must be evaluated. Fractographic observation of DEC specimens 

indicated that at -100°C failure just initiated by a cleavage mechanism 

with negligible crack extension, thus the maximum tensile stress ahead of

the crack at this temperature is equal to the critical stress for cleavage
• ^  • • •i.e. Of =Oyymax. The maximum tensile stress ahead of the crack tip is

obtained from the slip-line solution for this geometry.
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° y y < » a *  = 2k( 1 +j - |  ) (4.13)

where k is yield stress in pure shear and 0 is the notch flank angle. By 

assuming the Von Mises'yield criterion, the critical stress for cleavage 

fracture is obtained, tff* = 1360 MPa which is assumed independent of 

temperature^. This value is based on the data from sharp-cracked

specimens, whereas equation 4.13 is valid for notch angles greater than 6.4

d e g r e e s ^ .  However it has been shown^ that the error involved is small

and is within the scatter band of experimental data.

The stress distribution ahead of a sharp crack as a function of 

distance ahead of the crack measured in terms of (Kj q / ay)^ has been 

investigated by many workers25“27# Finite element analysis of Rice and 

Tracy27 is shown in Fig. 4.9. By equating af*/ay to ayy/ay» ^IC at 

various lower shelf temperatures can be obtained from Fig. 4.8, if only the 

characteristic distance is known. Precise determination of the

microstructural characteristic distance requires a complete understanding 

of the micromechanisms of cleavage failure. Ritchie et al^2 were able to 

produce good agreement with their experimental results on a mild steel, by 

choosing the characteristic distance equal to two ferrite grain diameters. 

There is of course no fundamental reason for the characteristic distance to 

equal precisely two grain diameters. However since for low strength

steels cleavage is intergranular, it is reasonable to assume that the 

critical fracture event must occur over the first few grains from the crack 

tip. In the present work by taking the characteristic distance as 4 or 5 

grain sizes, (0 . 1 2 or 0.15mm) the prediction of Kxc and therefore <$£ agrees 

well with experimental results as illustrated in Fig. 4.3. Above the

cleavage-ductile transition temperature, however, the RKR prediction

markedly underestimates the experimental data.
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4.5 Application of the MHB Model

The upper shelf fracture toughness may be predicted by the Mackenzie, 

Hancock and Brown model^B which postulates that ductile fracture occurs 

when a critical strain, which itself is a function of the state of stress, 

is exceeded over a minimum volume of material (see Section 2.3.2). This 

volume of material is characteristic of the scale of physical events 

involved. The application of this model involves experimental

determination of the fracture strain ef, as a function of stress state. 

This is obtained by using circumferentially notched round tension specimens 

as described in section 3.6. The distribution of effective plastic

strain ep, and stress state 0B/5 ahead of a sharp crack for small scale 

yielding are then taken from the blunting solutions of M c M e e k i n g ^  or Rice 

and Johnson^, as a function of distance ahead of the crack. <$£ can then 

be predicted by determining the value of COD where the equivalent plastic 

strain exceeds, over a charactexij5fLLc_ distance.— the— strain— to— fai-Ture— for- 

the material. It is assumed that stress and strain field ahead of the 

crack in DEC geometry is described by the Rice and Johnson^ small scale 

yielding analysis, since the flow field associated with this geometry is 

fully contained in the ligament between the crack tips. The upper shelf 

fracture toughness of the DEC geometry was, therefore, predicted using the 

MHB model. Values of critical strain at fracture ef were obtained from 

the material failure locus analysed using the Hancock and B r o w n ^  finite 

element analysis (Fig. 3.12). By taking the characteristic distance as 

one inclusion spacing i.e. 200jL(m (section 3.2), it was found that the 

predicted upper shelf value of \  (shown in Fig. 4.3) correlated very well 

with experimental results. This is consistent with the fractographic 

studies of this geometry which indicate that on the upper shelf, failure 

is initiated by successive coalescence of holes to the blunted crack tip.



Values of characteristic distance of 1 to 10 times the inclusion spacing 

have been reported^ for some high strength steels where failure is 

initiated by shear localization and shear decohesion between a number of 

voids.

It has to be noted that the application of both the RKR and MHB models 

to predict the macroscopic fracture behaviour of a wide range of materials 

is not feasible because of uncertainties in the magnitude of the 

characteristic distance. In most investigations, as here, the

characteristic distances were chosen to fit the experimental data. 

However, the description of fracture toughness in terms of these models 

provides some insight into the micro-mechanics and mechanisms of failure.

4.6 Discussion of Experimental Results

 The_fracture— toughness— parameters^— j— a n d J f — obtained-f or— the— DEG— and

SECT geometries show a transition from upper to lower shelf behaviour with 

decreasing test temperature (Figs. 4.3 and 4.7). In the DEC geometry 

tested on the upper shelf, fracture occured by a mechanism of void growth 

and coalescence to the crack tip. Fig. 4.10a shows a DEC specimen tested

beyond the initiation point at room temperature, where failure is

associated with the successive coalescence of holes to the blunted crack 

tip. The fracture surface of the same specimen shows the coalescence of 

large holes initiated from around the larger inclusions (Fig. 4.10b).

At lower temperatures however, hole growth in the high strain field

ahead of the crack is limited by the interventiuon of cleavage cracking and 

failure. The damaged area ahead of the crack in a DEC specimen tested at 

-40°C is shown in Fig. 4.11a and illustrates cleavage microcracks in the 

ligaments/
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between holes. The fracture surface of a similar specimen is shown in 

Fig. 4.11b and clearly shows the presence of cleavage facets cutting 

through holes. Also at this temperature the size of holes is smaller than 

those in specimens tested at room temperature indicating that the hole 

growth has been limited by the intervention of cleavage cracks. This 

behaviour may be explained in terms of the critical levels of strain and 

stress required to initiate failure. As the temperature is lowered, the 

increase in yield stress necessitates the attainment of a higher level of 

local tensile stress to develop the critical strain required for hole 

coalescence. This level of stress may exceed the critical cleavage stress 

on a local scale and thus initiate cleavage microcracks between holes. 

Thus the microscopic initiation of crack extension is by a mixed model 

mechanism resulting in a smaller than that achieved on the upper shelf. 

It has to be noted that the two dimensional idealization of ductile 

fracture in which the onset of failure is defined as the coalescence of the 

Jrirst fully grown hole to the— blunted crack tip,— is not^appropriate^in^the- 

transition region. Instead a mixture of ductile and cleavage damage is 

responsible for the extension of the crack. With further decrease in 

temperature the stress state ahead of the crack is such that cleavage 

cracks become involved in the initiation of crack extension at an earlier 

stage of the hole growth process which results in a further decrease of

At temperaturej less than -80°C fracture initiation and propagation 

occurs by the cleavage mechanism leading to immediate failure. The onset
kof catastropic crack propagation requires some yielding ahead of the crack
A

to nucleate cleavage cracks from dislocation arrays and around stress 

concentrating second phase particles. Some voids may initiate in discrete 

locations in front of the crack, due to local variation in the inclusion 

content. Fig. 4.12 shows a narrow ductile band of less than 10 ym wide 

ahead/



of the fatigue pre-crack in a DEC specimen tested at -196°C. However 

these bands appear to have no effect on the macroscopic crack propagation 

by the cleavage mechanism.

The temperature transition for the SECT geometry can also be

explained in the context of cleavage involvement in the failure initiation 

process. The precise mechanism of ductile crack extension in the SECT 

geometry on the upper shelf is not fully understood. Metallographic 

observations of crack profile indicate that crack blunting occurs with two 

vertices (Fig. 4.13) as opposed to the smoothly curved crack tip associated 

with DEC specimen as shown in Fig. 4.10a. It appears that in the SECT 

geometry, deformation takes place by alternate sliding along the shear

bands at approximately 45° as modelled by Pelloux^O (see Section 1.6.1). 

Fig. 4.14 shows the damaged crack profile of a SECT specimen tested at room 

temperature (on the upper shelf). It can be seen that crack propagation 

occurs directly ahead of the crack in the crack plane, and not in the 

direction of shear bands. The fracture surface of a similar specimen is 

shown in Fig. 4.15. This figure shows that regions of small voids are

linked together by a shear mechanism. These voids are almost one order of 

magnitude smaller than those observed in DEC test pieces, suggesting that 

the void initiation, growth and coalescence mechanism observed in the DEC 

geometry is not the relevant mechanism associated with the ductile failure 

process in the SECT geometry. This feature has also been observed for a 

high strength steel^ and a stainless steel^l. To evaluate this behaviour, 

numerical analysis was carried out to determine the flow field and the 

states of stress and strain ahead of a crack in the SECT geometry. The

results of this analysis are reported in Section 4.7.



A comparison between the versus temperature curves for the DEC and 

SECT geometries (Fig. 4.3) shows that is dependent on the level of

constraint for the upper shelf region and the transition range. This 

dependence decreases as the temperature decreases and on the lower shelf 

the two curves are almost coincident. Similar behaviour is observed for 

J £ as shown in Fig. 4.7. As noted earlier the lowest level of triaxiality 

associated with plane strain condition is developed in SECT geometry. A 

study of the failure locus of the material (Section 3.6) indicates that at 

low triaxialities large effective plastic strains are required for 

initiation of ductile failure, and thus a large value of is expected. 

On the other hand in the deep DEC geometry plasticity is fully contained in 

the ligament and the full constraint of Prandtl slip-line field is 

developed. This high level of triaxiality requires little plastic strain 

for ductile failure initiation and is thus associated with a small  ̂£. It 

was shown in Section 3.6 that the failure locus of the material is 

independent of temperature. Therefore the progressive reduction in the 

effect of triaxiality on $£ may be attributed to the increasing involvement 

of cleavage in the fracture process which lessens the influence of factors 

controlling the operation of a ductile mechanism.

Results presented in Fig. 4.3 indicate that a change in triaxiality 

(°m/o) from 2.4 to 0.57 causes a maximum increase in ^£, measured on the 

upper shelf, by a factor of 1.8. For the same constraint variation, 

factors of 4 and 10 have been found for A533B pressure vessel steel^ and 

HY80 steel^ respectively. These observations indicate that the effect of 

triaxiality on the fracture toughness parameters and j£, is material 

dependent.



The effect of constraint on the elastic-plastic fracture toughness

parameters has been investigated elsewhere on test pieces loaded in

essentially bending configurations. It has been shown32,33 that, in

bending, constraint is relaxed by a reduction in both specimen thickness 

and crack length-to-width ratio (a/W). Sumpter^ obtained an increase in

in a high strength welded steel when constraint was relaxed by

decreasing the a/W ratio and Chipperfield et al^5 observed the same

behaviour by changing the specimen size. Y o u ^  investigated the effect of 

a/W on low alloy high strength steels with different strength levels and 

found that a change in a /W from 0.5 to 0.1 results in an increase in *■>£ by 

a factor of 2.5 to 3 for all the materials investigated. The effect of 

constraint on fracture toughness has been observed by other workers^?-? 9 

where fracture toughness was characterized using (maximum load COD), 

which has been recognised to be dependent on both geometry and testing 

configuration (see Section 1.6.3). The present experimental results 

however demonstrate that even <5 £ (or J^) cannot be considered as a unique 

material parameter in plane strain.

Results in Figs. 4.3 and 4.7 show that the ductile/cleavage transition 

temperature is altered by a considerable amount (about 60°C) as a result of 

the change in constraint. Sumpter^ found a similar effect with a 

decrease in (a/W) from 0.3 to 0.1 in a three-point band test of a high 

strength steel. Landes and Begley^® observed an apparent increase in Jj q 

value with reducing specimen thickness for cast steel in the transition 

range. They attributed this effect to the scatter in the results for thin 

specimens. It was argued that a thick specimen samples more material than

a thinner one, therefore local regions of low toughness control the 

behaviour of the large specimens whereas in the small specimen a high or a 

low toughness region may be sampled which results in a high degree of 

scatter.
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Pisarski^- by testing a homogeneous material and using a test procedure 

which ensured the uniform sampling of material, still found an increase in 

J £ with decreasing specimen thickness. Similar behaviour was obtained by 

D a w e s ^ 2  and Chell and Gates^? by varying (a/W) while thickness was kept 

constant.

It has to be noted that size restrictions for Jic testing requires that 

the ligament should exceed 25 J/ Oy. At -100°C both the DEC and SECT 

geometries tested here meet this requirement (See Fig. 4.7) and yet j£ for 

SECT is higher than that for DEC. Ritchie^ has proposed that the 

observed j£ variation with specimen configuration may be explained by the 

differing size requirements for J dominance for the various test piece 

geometries in which the levels of triaxiality (constraint) vary widely. 

Finite element calculations of McMeeking and Parks^ estimated the size 

requirement for single-parameter J characterization in terms of the 

ligament dimension, L. It was found that, while for highly constrained 

geometries a 25 J/ Oy size limitation is appropriate, a more stringent 

limitation of L>200 J/Oy should be applied to low constraint CCP and SECT 

specimens. Experimental results of Markstrom^® on wide plate SECT and 5:1 

DEC specimens show that J£ = Jjc an(* is independent of configuration when 

these size requirements are satisfied. To obey the size restriction for 

the determination of J^q in the present material on the upper shelf it is 

necessary to test DEC and SECT specimens with 165 and 400mm widths 

respectively, and a corresponding specimen thickness to maintain plane 

strain conditions. There are sections in engineering structures where 

constraint is low, with dimensions and flow fields similar to that of SECT 

geometry. In these situations, the size limitation imposes a practical 

limitation in characterizing the fracture behaviour. On the other hand ^£ 

or Jjc values derived from highly constrained geometries may introduce 

over-conservatism in assessing a tolerable defect size.



4.7 Numerical analysis

4.7.1 Procedure

To investigate the crack growth behaviour in SECT specimens, the 

distribution of stresses and strains around the crack tip was numerically 

evaluated using finite element analysis. The MARC finite element program, 

modified by Rice and Co-workers at Brown University (e.g. Ref. 44), was 

used. This program has a finite strain capability which enables an 

incremental determination of plane strain or axisymmetric elastic-plastic 

solutions, using the Prandtl-Reuss flow rule for an incompressible plastic 

solid. For power hardening cases the following power law stress-strain 

relationship was used:

( i , £ay

where Oy is the uniaxial yield stress, a the effective stress, G the 

elastic shear modulus and N is hardening index. For the material under 

investigation an appropriate value of N is 0.2.

The finite element mesh contains 425 nodes and 384 plane strain 

isoparametric quadrilateral elements. The undeformed mesh representing 

one half of a SECT specimen and the detail of the near tip mesh is shown in 

Fig. 4.16. The mesh had an a/W = 0 . 5  and the ratio of undeformed notch 

width, bQ to ligament L, was ^°/l = 2xl0~^. The analysis was performed for 

non-hardening (N=0) and 0.2 power hardening cases. A point force was 

applied at the centre of the ligament at an appropriate node on the top 

surface. An elastic step loading was carried out until a load just 

sufficient/

, o  v _ 3Ge -
a — — 1- ' y (4.14)y °y
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to initiate plastic flow in the first element was achieved. This load 

level was designated 100% of the elastic load regime. By means of further 

increments of load yielding was then allowed to spread gradually to other 

elements. Loading was stopped when a crack opening displacement 6 equal 

to experimentally determined $£ was achieved. This required a load level 

of 820% for the 0 . 2 power hardening material and 5 0 0% for the non-hardening 

material. The crack opening displacement <5 was taken as the distance 

between the nodes that, in the undeformed configuration lay at the

intersection of the straight flank and the semi-circular tip of the

original notch. The nodes ahead of the tip on the crack plane were

restrained to remain on that plane, as illustrated in Fig. 4.16.

4.7.2 Results and discussion

In Fig. 4.17 the distribution of maximum tensile stress oi for the

non-hardening case is plotted against the distance x from the crack tip

for the material points ahead of the crack tip. The str.ess is normalised

by the yield stress to give the non-dimensional °^/oy which is a measure of 

triaxiality if the Von Hises yield criterion is assumed. The position x 

is normalized by the current crack tip opening <5 . it has been s h o w n ^ 3  

that the original crack tip geometry does not influence the near tip stress 

and deformation fields after opening of the crack to about twice the

original notch width. Fig. 4.17 has been plotted for an opening equal to 

the experimentally determined <$£, which is large compared to the notch 

width. This gives a ligament to crack tip opening ratio of 6 =17.

McMeeking and P a r k s ^  calculated the stress and strain fields for the

Centre Cracked Panel (CCP) which according to slip-line analysis has a 

similar/



flow field to the SECT geometry. They used a finite element mesh with 

bo/L = 2xl(T4 so that much smaller openings in terms of ligament could be 

analysed. The solution used in the present work was considered desirable 

in order to extend their analysis to obtain crack openings compatible with 

experimental results. The McMeeking and Parks results for b / 5 = 1182, 

143 and the M c M e e k i n g ^  finite element results for Small Scale 

Yielding (SSY) are also shown in Fig. 4.17.

It can be seen in Fig. 4.17 that where <5 is small compared to ligament 

dimension, there is a reasonable agreement with SSY. Since 6 and J are

proportionally related to each other, it is then envisaged that in these 

situations J is independent of specimen geometry. However at larger

deformations where conditions of general yielding are achieved, triaxiality 

deviates sharply from SSY, which implies that the crack tip field is 

considerably far from dominance by the HRR singular field. Thus 6 ^ (or 

J^) can not be considered as a single geometry-independent fracture 

characterizing parameter.

It may be argued that the decrease of triaxiality ahead of the crack, 

shown in Fig. 4.17, could be the result of the non hardening idealization. 

However the same trend is shown in Fig. 4.18 for a material with the strain 

hardening exponent of N = 0.2. Again the triaxiality for large scale 

yielding (which is the case for b/ 6 =17 )  lies considerably below the SSY

curve.

Fig. 4.19 shows the variation of effective plastic strain ep (Section

3.6)^ for N = 0.2 on the crack plane (6=0°) and at 0=45° with distance 

ahead/



of the crack tip. It is apparent that for the fully yielded condition, 

crack tip plastic strain in both directions is greater than for contained 

yielding. Also it is evident that larger plastic strains occur on the 

macroscopic slip lines rather than on the crack plane. Rapid decrease of 

triaxiality and effective plastic strain ahead of the crack and 

amplification of plastic strain at 45 degrees suggest that the crack may 

extend in the 45 degree direction, in contrast to the more highly 

constrained DEC geometry. However experimental results from the present 

work and other investigations^>31 indicate that, although large scale void 

growth has not been observed ahead of the extending crack, crack extension 

is always straight ahead of the crack tip. An analysis based on the 

numerical results was carried out to examine the failure condition ahead of 

the crack. The contours of distribution of plastic strain ep and

triaxiality am /<j are shown in Fig. 4.20 and 4.21 for the non-hardening 

material and in Figs. 4.22 to 4.23 for the 0.2 power hardening material, at 

a crack opening displacement equal to the experimental $£. By 

superimposing these contours, it is possible to determine the values of 

triaxiality and effective plastic strain in each element around the crack 

tip and compare them to the ductile failure locus of the material (Section

3.6). The analysis indicates that for N = 0 only those elements which lie 

at 45° to the crack plane, and close to the crack tip, meet the failure 

criterion over and beyond the characteristic distance (Fig. 2.24) 

suggesting that crack extension may occur along the shear bands, consistent 

with the slip-line prediction. For N = 0.2, however, the analysis shows 

that the failure criterion is satisfied at a distance X =  0.3 mm on the 

crack plane, ahead of the crack, Fig. 4.25. Although this distance is 

only a fraction of the crack opening (^/$ = 0 .6 ) compared to ^/d = 2 for 

contained yielding, it is in excess of the characteristic distance of the 

material, taken as 0.2 mm (Section 3). This suggests that failure may 

occur/



straight ahead of the crack as observed experimentally. Furthermore the 

confinement of the failure zone to the crack tip implies that the 

conditions required for void growth are not satisfied at greater distances 

from the crack tip. This is confirmed by the experimental observations of 

the crack profile e.g. Fig. 4.14 which shows that although the crack 

extends directly ahead no significant void growth is evident in the region 

ahead of the crack tip.

The crack tip behaviour may be explained to some extent by the 

"unzipping model" proposed by Liu4 ,̂ based on the alternating shear 

rupture mechanism. The characteristic crack tip deformation incorporated 

in the unzipping model is shown in Fig. 4.26. As the applied stress on a 

cracked solid is increased, the decohesion processes take place along slip 

lines aj, b2 , bj_, C£, cj and d£ successively (Fig. 4.26) while the slabs 

between the neighbouring slip lines move like the teeth of a zipper during 

the unzipping process, causing crack tip blunting. The morphology of the 

crack tip and metallurgical observations mentioned above,- suggest that the 

crack extension may also be modelled by the unzipping process. However 

this model is rather ambiguous in describing the initiation of crack growth 

and the critical events leading to initiation such as attainment of a 

critical COD as described by a resistance curve. Also the model does not 

indicate when a fracture process will intervene in the alternating sliding 

deformation model. Further work is required to study the exact mechanism 

of ductile crack extension for the SECT geometry.



4.8 Summary of section 4

98.

The work presented in this section focussed primarily on the effect of 

constraint on the elastic-plastic fracture parameters. Two different 

geometries, representing two extreme cases of plane strain flow fields were 

studied. It was found that the upper shelf (or J^) for the SECT

geometry is 1.8 times that for the DEC geometry. On the upper shelf the 

crack tip in the DEC geometry blunts to a smoothly curved shape and crack 

extension is by a void growth and coalescence mechanism. In the SECT 

geometry crack tip blunting occurs with two vertices by a shear mechanism 

and the advancing crack tip maintains this morphology.

i

In the temperature transition region, the effect of constraint on

6j[(or Jj[) is reduced. Metallurgical investigations indicate that the hole 

growth and coalescence mechanism in this region is interrupted by cleavage, 

resulting in a mixed mode crack growth initiation and extension process. 

On the lower shelf the cleavage mechanism is dominant.

The results of numerical analysis showed that for the work hardening 

material investigated, a failure zone (high triaxiality and/or plastic 

strain) is present at the tip of the crack in the SECT geometry.

Although this failure zone is much smaller than that for SSY condition, it

is large enough to initiate crack extension on the crack plane rather than

in the direction of maximum shear strain.
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Table 4.1 ^ £ and j£ for DEC specimens tested at 
various temperatures

Test
Temperature (°C) (mm)

J i
(KN/mm)

M
(ay6 i/Ji)

140 0.370 0.265 0.50

20 0.325 0.241 0.48

- 2 0 0.215 0.163 0.50

-40 0.159 0.126 0.51

-80 0.119 0 . 1 1 2 0.48

- 1 0 0 0.073 0.07 0.49

-196 0.065 0.062 0.54
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Fig. 4.1 Slip line fields for (a) deep DEC geometry 
and (b) SECT geometry.

a- 22.5 mm

Wc 50 mm

B- 25 mm

a —10 mm

W— 20 mm

B — 15 mm

Fig. 4.2 DEC and SECT.specimen geometries.
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Fig. 4.3 COD at the onset of crack extension, 6 ., against
temperature for DEC and SECT specimen^eometries, 
showing the ductile-brittle transition. The 
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Fig* 4.4 COD R-curve for SECT test pieces at various temperatures
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of J-integral associated with DEC geometry.
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Fig. 4.6 Area under load-displacment curve used in
Sumpter and Turner^ analysis for evaluation 
of J-integral.
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.9 Near tip distribution of normal stress ahead of an initially sharp 
crack in plane strain for small-scale yielding (Ref. 44).



(b)

Fig. 4.10 (a) Crack profile for a DEC specimen tested at 20°C, showing
that failure is associated with successive coalescence of holes 
to the blunted crack tip. (b) Fracture surface of the same 
specimen.



( b )

Fig. 4.11 (a) Damaged area ahead of the crack tip in a DEC specimen
tested at -40°C, showing the cleavage microcracks between the 
holes. (b) Fracture surface of the same specimen showing that 
hole growth is interrupted by cleavage facets.



fatigue crack

Fig. 4.12 Narrow ductile band ahead of the fatigue crack tip in a 
DEC specimen tested at -196°C.

Fig. 4.13 Blunted crack tip in a SECT specimen tested at 20°C.



Fig. 4.14 Damaged area ahead of a SECT specimen tested at 20°C

Fig. 4.15 Fracture surface of a SECT specimen tested at 20°C.



(b)

Fig. 4.16 (a) Two dimensional finite element mesh representing one half 
of a SECT specimen (b) Detail of near tip mesh.
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Fig. 4.17 Distribution of the maximum tensile stress ahead 
of the crack tip for the non-hardening material. 
The results of McMeeking^ for SSY and McMeeking 
and P a r k s ^ 3  for ccp geometry are also shown.

SSY

Present work

Slip line prediction

Fig. 4.18 Distribution of the maximum tensile stress ahead of 
the crack tip for the 0 . 2 power hardening material. 
The result of M c M e e k i n g 2 5  for SSY is also shown.
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Fig. 4.19 Distribution of equivalent plastic strain ahead of 
the crack tip, on the crack plane and at 45° to the 
crack plane. The results of M c M e e k i n g ^ S  for SSY 
are also shown.
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Fig. 4.20 Contours of distribution of effective plastic strain around 
the blunted crack tip in the non-hardening material.
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Fig. 4.21 Contours of distribution of triaxiality around the blunted 
crack tip in the non-hardening material.
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(a)

26
R&J Characteristic distance

1 Inclusion spacing

(b )

Fig. 4.24 (a) Deformed mesh for the non-hardening case.
(b) Failed elements around the blunted crack tip for which 
ductile failure criterion has been satisfied.



2 Inclusion spacing

0*5 mm

(b)

Fig. 4.25 (a) Deformed mesh for the 0.2 power hardening case.
(b) Failed elements around the blunted crack tip for which 
ductile failure criterion has been satisfied.



(e)

pig. 4.26 Unzipping model for crack opening 
and advancing45
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Section 5

STRESS INTENSITY FACTORS FOR SEMI-ELLIPTICAL CRACKS

5.1 Introduction

Part through semi-elliptical surface breaking cracks are among the most 

common types of defects in many engineering structures such as offshore 

structures, pressure vessels, aircraft structures etc. The increasing 

requirement for storing hazardous substances in pressurized containers and 

the construction of large welded tubular joints used in offshore oil 

production platforms, means that the evaluation of the behaviour of these 

cracks is very important in assessing structural integrity.

The stress intensity concept of linear elastic fracture mechanics and 

its unique characterization of crack tip stress fields, together with 

elastic-plastic fracture toughness parameters, have made it possible to 

assess in an approximate way the safety of structures in-service. However 

no exact solution for the stress intensity factor around the periphery of a 

semi-elliptical crack is yet available. Several investigators have

considered this problem and a number of approximate solutions based on 

analytical or numerical analyses have been proposed. A review of

literature indicates that these solutions differ markedly and do not 

correlate well with experimental results.

In the work presented in this section an attempt has been made to obtain 

an accurate description of the stress intensity factor distribution along 

the entire front of a semi-elliptical crack subjected to remote tensile 

forces. Large plates of the material under investigation, containing 

part-through/
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starter notches, have been carefully tested under fatigue loading and the 

crack profile development at various stages of crack growth has been 

monitored with the aid of a specially devised size measurement technique. 

The stress intensity factor was then calibrated by measuring the crack 

propagation rate, and the use of the Parish law. Various solutions for 

stress intensity factors were examined and conclusions, as to the best fit 

to the experimental results, have been drawn.

Before presenting the details of experimental procedure, it is 

appropiate to review the practical difficulties in the analysis of surface 

cracks. In the next section an analytical investigation of

semi-elliptical cracks is presented and various fracture mechanics 

solutions together with available experimental evidence are compiled.

5.2 Theoretical considerations

No exact solution exists for the stress intensity, factor associated 

with a part-through surface crack. The elastic stress field introduced by 

such a crack configuration is singular, highly three dimensional and is 

complicated in practical situations by the influence of finite thickness 

and finite width of the body.

The surface cracked geometry is idealized as shown in Fig. 1. The 

plate is of thickness t and width W. The crack is ideally

semi-elliptical with the dimensions a, the crack depth in thickness 

direction and 2c, the crack length along the surface. The crack can be 

characterized by the ratios of crack depth to crack half length a/c and 

crack depth to thickness a/ f  The stress field remote from the crack is 

considered/



one of pure tension, perpendicular to the crack plane, which loads the crack 

in the Mode I configuration. The stress intensity factor varies with 

angular position 9 around the crack front. The state of stress is plane

strain at 0 =90°, where lateral constraint is afforded by the adjacent 

material. The stress state is plane stress on the surface where no such 

constraint exists.

The first fracture mechanics analysis was performed by Irwin2 , who 

calculated the stress intensity distribution around an elliptical crack 

embedded in a plate of infinite dimensions. The solution which is referred 

to hereinafter as Kj r is of the form:

KI = kIR = (s i n 2 6 + * 2  Cos28)0.25
° (5.1)

where a is the applied tensile stress and E(k) is the complete elliptical 

integral of the second kind given by:

9 0 2
E(k) = / (Sin2 0+ ~ 9 Cos2 0)°-5 d0 . (5.2)

o c

The elliptical integral is expressed in terms of the elastic shape 

parameter Q and can be obtained from standard graphical representations. 

An approximate solution for E(k) was presented by Newman^ as:

E(k) = [1 + 1 .47(~)1•64]0.S for -  $ 1.0 (5.3)c c

In the course of the present investigation, Equation 5.3 will be used.

The solution for a semi-elliptical crack in semi-infinite plate is 

obtained/



by hypothetically cutting the solid containing an embedded elliptical crack 

in half. This has the effect of raising the stress intensity factor due to 

the introduction of a free surface and thus a front face correction factor 

Mp, has to be applied to equation 5.1:

Kj = Mp K jR (5.4)

Mp is dependent on the position along the crack front and is a function of 

crack aspect ratio a/c.

When the plate is of a finite thickness, it has been shown that 

semi-elliptical cracks subjected to fatigue loading tend to adopt a 

preferred profile. Figure 5.2 illustrates the experimental results of 

various investigations for the tension case in a variety of materials2®. 

It is clear that in this case the crack shape development is towards that of 

a semi-circle while the fractional depth a/t is less than half. In general 

a small degree of ellipticity is then introduced as the crack grows towards 

the back face. This profile development suggests that the stress intensity 

factor on the plate surface may be higher than that at the deepest point. 

Equation 5.4 predicts that the maximum stress intensity is always 

maintained at the deepest point and therefore it does not describe the 

observed crack profile development. The shift in the maximum value of Kp 

from deepest point to surface intersection is due to the presence of the 

back surface and hence a back face correction factor Mg, has to be 

introduced to account for the effect of the thickness of the uncracked 

ligament:

Kj = Mp Mg K i r (5.5)

Mg is a function of a/t and a/c and varies along the crack front.



In finite size specimens where the crack length to specimen width 

ratio, c/w , is relatively large, the cracked area occupies an appreciable 

proportion of the cross section area. In this situation the stress 

intensity factor at the crack front is elevated by stress redistribution 

over the uncracked ligament and hence a finite width correction factor, My, 

has to be considered to account for the effect of fractional width c/ y

Applying the front face, back face and finite width correction factors, 

the stress intensity factor around the periphery of a semi-elliptical crack 

in an elastic finite size plate subjected to Mode I uniform tension loading 

is given by:

Kp = Mf Mb My K i r  = MKi r  (5.6)

where

M = f(c ’ t ’ W ’ 6 )

Several solutions based on numerical, analytical and experimental 

techniques have been proposed to calculate the boundary correction factor 

M. In the following section a brief description of some of the proposed 

solutions and their limitations is presented.

5.3 Review of SIF solutions

In this section the proposed solutions for the correction factor M, for 

the calculation of the stress intensity factor for a semi-elliptical crack 

under tension loading are presented in a chronological order.



1962 - Irwin^ approximated the correction factor at0 = 7r/2 , based

on a analogy to the problem of an edge crack in a half plane

M =/l.2 - 1.1 (5.7)

This coefficient accounted for the combined effect of both the front 

face and back face in the range 0£a/tS0.5 and 0 ^a/c^l.

1965 - Paris and Sih^ estimated the correction factor at 9 = /2 which

included a front face and back face correction for a/t^0 . 7 5  

and a/c ^l:

M = {1 + 0.12(1 - - ) } ✓ —  tan (5.8)c 7ra L t

The tangent term was obtained from an analysis of an infinite plate 

containing an infinite periodic array of cracks.

1966 - Smith et al® by using the alternating method analysed the

variation of stress intensity around the whole front of a 

semicircular surface crack. Later Smith^ modified this 

solution to obtain an estimate of SIF for a semi-elliptical 

surface crack in a finite thickness plate. He proposed 

that the stress intensity correction along the entire front 

could be given by:

M  = Mp Mg f(a) (5.9)

where f(a) is an angular function of a =(90-0). Values of Mp and MB j

calculated by alternating technique and graphical interpolation are given 

in graphical form in Ref. 7.
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1969 - Kobayashi and Moss® estimated the boundary correction factor

at 0 =7T/2

M = Mp Mg (5.10)

where Mp, the front face correction factor was given by:

Mp = 1 + 0.12(1- - ) 2 (5.11)

The back face correction factor Mg, was obtained by solving the 

SIF for a pair of coplanar elliptical cracks under uniform 

tension, with a plane of symmetry which simulated the back

face, located midway between the two cracks. The curves for the 

product of Mp and Mg are given in Ref. 8 .

/

1969 - Masters, Haese and Finger^ used an experimental method to

derive the correction factor. They tested 2219-T87 Aluminium 

specimens containing surface cracks with various a/c and a/t 

ratios, under montonic tension at room and cryogenic temperatures. 

Calculated stress intensity factors were then equated to the 

plane strain fracture toughness Kpc, at the same test temperature 

and the correction factors were obtained. The correction factor 

for a/t£0.85 and 0.1sa/c$:0.8 was given as:

M = 1.1 Mk  (5.12)

The curves for MR are given in Ref. 9.

1970 - Rice and Levy^® determined the stress intensity factor at the

deepest point using a line spring model, which reduces the three 

dimensional crack problem to a two dimensional one, similar 

to a single edge cracked plate. In this model the SIF was 

presented/



graphically in terms of the ratio of the SIF at the crack 

deepest point KF to the SIF for a single edge Cracked 

Specimen with a crack of the same depth. The correction 

factor for the range 0 .l£a/t^0.7 and 0 £a/c 1 could then be 

presented as:

KIM = (~)F,/t3 (5.13)
Jy o o

where Q is the elastic shape factor, F is the correction factor
KI .for a single edge crack and is obtained from the curves m
CO

Ref. 10.

1970 - Anderson, Holms and Orange^ modified the boundary

correction for the equation of Paris and Sih (equation 8 ) by 

enhancing the effect of the back surface, and thus increasing its 

range of applicability for deeper cracks

M = [1 + 0.12 (1 - 7 )] . f )]0 *5 (5.14)c ira 2Q t

1972 - Newman^ combined the analytical results of Smith and Alavi^^

for a near semi-circular crack (a/c = 0.4 - 1.0), Rice and 

Le vy^ for shallow cracks (a/c = 0.1 - 0.2) and Gross and 

S r a w l e y ^  for a single edge crack (a/c = 0) to derive 

the following expression for M at the deepest point:

M = [MF+(E(k) / 7  - Mf )(t-)p ]Mwa E (5.15)
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where:

1972

1974 -

1976 -

MF = 1.13 - 0.1 (“ ) for 0.02$- $1 (5.16a)c c

Mf =/£(l+0.03-) for -  S 1 (5.16b)a 3. c

P = 2+8 (J)3 (5.17)

%  = / S e c(n| . |  ) (5.18)

Shah and Kobayashi3^ solved the stress Intensity factor 

for an embedded elliptical crack approaching the free surface 

of a semi-elliptical solid^ and derived an equation to calculate 

the front face correction factor MF, for the deepest point 

of a semi-elliptical crack.

MF = 1 + 0.12(1- | c )2 (5.19)

Smith and S o r e n s e n ^  used the alternating method to calculate 

M along the entire front of a semi-elliptical crack for 

0.l£a/cSl and a/t£0.9. The curves of combined effect of front 

and back face correction factors are presented in Ref. 16.

Kobayashi^2 calculated the boundary correction factor M, at the 

deepest point of a semi-elliptical crack by improving the 

boundary condition of his earlier alternating method. He used 

a two dimensional finite element model of a single edge crack in 

tension, to correlate the effect of bending restraints on the SIF.
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The SIF was calculated for a l c ~ 0-2 and 0.98 and by 

interpolation between these two limits, the SIF for other 

aspect ratios were obtained. The results are presented in a 

graphical form in Ref. 17.

1979 - Raju and Newman^-® calculated the stress intensity factors

along the whole crack front of a semi-elliptical surface 

crack in tension by using a three dimensional finite-element 

analysis with singularity elements around the crack front 

and linear strain elements elsewhere. The validity of 

the F.E. method was first tested by analysing embedded 

circular and elliptical crack configurations which produced 

accurate results within 1% of the exact solutions for these 

geometries^9. The stress intensity boundary correction 

factor for a semi-elliptical crack in a finite thickness solid 

was then calculated by a convergence method, taking into account 

the effects of front and back surfaces. The results for 

0 .2sa/c$2, 0.2sa/tS0.8 and c/^^0.25 are presented in 

graphical and tabular form in Ref. 18.

1981 - Scott and Thorpe^® used the crack profile development during

the fatigue crack growth process by integrating the Paris 

equation, to examine the accuracy of some of the analytical 

solutions outlined above. They concluded that the Raju 

and Newman finite element analysis correlated very well with 

experimental results. By fitting the Raju and Newman results 

into the Newman original equation (equation 16), they derived 

a new expression for boundary correction factor as:
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where

M =[Mf +(E(k)/—  -MF )(7 )p]Mw (5.20)
<1 t

P = 1.6 + 3(-)3+ 8 ( - ) ( - ) 5 + 0.008C-) 6 =1T/2 (5.21a)c c t a

P = 0.3 + 1 .15(— )C1 1 +0.8(“ )3 6 = 0  (5.21b)

and
Mf = 1.13 - 0.07(J)0 -5 %J /2 (5.22a)

Mf = 1.21 - O.l(-) + 0.1(“ )4 6 = 0 (5.22b)

To evaluate the influence of finite width on the SIF they used the Holdbrook 

and Dover2  ̂ equation:

M  - 1 4. 1 <T> •My = 1 + c_______W t (5.23)
(0.0599)2

I(-) = 0.059+0.108(-)-0.7 3 4(-)2+1.85(-)3-2.01(-)4+0.79(-)5 c c c c c c

J(~)= -0.00252+0.274(-)-0.354(-)2+l .00 8 ( - ) 3 w W W

K(j-) = 0.0126-0.132(^)+0 . 857(“ )2-1.182(^)3 + 0.746(^-)4

1981 - Newman and Raju22 used their previous three dimensional finite

element results^ 3 to develop an empirical equation for the stress 

intensity boundary correction factor around the periphery of a 

semi-elliptical crack in a finite size solid subjected to 

tension loading:

M = [Mx + M2 (f)2 + M3 (^)4 ]g MW (5.24)
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where

Mi = 1.13 - 0.09(~) c

w _ n 0.89Mo = -0.54 + ----------
0 . 2 + (J)c

M3 = 0.5------- — -----  + 14(1.0 - - ) 2 4
0.65 + (-) cc

g = 1+(0.1 + 0 .35(~)2) (1 - Sin6 ) 2

and M^ is given by:

Mw = (sec(iT— / t-))0 *^ (5.25)W L

The advantage of this solution is that it is easy to use and it gives 

the stress intensity factor along the entire crack front for a wide range
Si Si cof crack configurations, 0 $~ <1 , 0 < ~ $ 1 and 0$“ $0'. 25

Many of the solutions outlined above do not agree well with each other. 

Figs. 5.3 and 5.4 illustrate the variation of stress intensity correction 

factor, M, as estimated by the above solutions, as a function of fractional 

depth a/t» for two crack shapes. For a crack shape of a/c = 0.2, agreement 

between the results is reasonably good at a/t ratios less than 0 .2 . 

However for large ratios of a/t the differences among the various solutions 

are more marked and at a/j- = 0 . 6 the difference between upper and lower 

bounds is as great as 80%. The same discrepancy is observed for a/c = 0.6 

(Fig. 5.4), although the difference between extreme results is only about 

20%.
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5.4 Determination of stress intensity factors

5.4.1 Experimental procedure

The experimental method for calibration of stress intensity factor was

based on a fracture mechanics analysis of the fatigue process. It is

assumed that the range in alternating stress intensity factor-AK, controls
dathe fatigue crack growth rate m  the intermediate growth range (Section 

2). For the material under investigation, the Parish equation gives the 

relationship between AK and crack growth rate:

^  = C(AK)m
dN (5.26)

where C and m are empirical constants and can be found from fatigue crack 

growth rate measurement made on specimens which have known stress intensity 

calibrations. By substituting the fatigue crack growth data for

semi-elliptical cracks in the Paris equation, the range of stress intensity 

factor, AK, can be experimentally evaluated. This method has been 

successfully employed by various investigations to calibrate the SIF of 

particular geometries, or to check the K-calibrations calculated by other 

methods2^.

For materials with isotropic crack growth properties the Paris equation 

may be modified to give the growth rate at any point along the boundary of a 

surface crack

= C(AK,,)m  (5.27)dN o

where R q is the distance of any point on the crack front from the centre 

point/
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of the crack surface length and hereinafter is referred to as radial crack 

length. Clearly Rq - &180 = c t îe crack length and Rqg = a the crack 

depth. By measuring the radial crack length during fatigue test, the crack 

growth rate at any particular location on the crack front may be determined 

and through equation 27, the stress intensity factor may be calibrated for 

the entire crack boundary.

5.4.2 Crack size measurement technique

The A.C. Potential Drop technique was used to monitor the crack profile 

development. The Potential Drop (PD) technique is a widely accepted method 

of monitoring crack initiation and growth in controlled laboratory tests 

where an instantanious measure of crack size may be obtained while the test 

is in progress. The basic principle of crack sizing by this method relies 

on the fact that the resistance to flow of an electric current in a specimen 

or structure is changed by the presence of partial discontinuities such as a 

crack.

The main reason for the choice of A.C. is that at high frequencies the 

current is confined to the surface layer of the conductive test piece. The 

thickness of this layer is known as "skin depth". Calculations of skin 

depth for common metals indicate that it is relatively small compared with 

the thickness of most test specimens or structures, for instance at a 

frequency of 6KHz, the skin depths for Mild Steel and Aluminium alloys are

0.25 and 1.30 mm respectively^. Due to this feature, the apparent A.C. 

resistance is therefore much higher than that of D.C. for a given current 

which means that lower current can be used. Furthermore, since A.C. is 

concentrated at the surface, the proportional change in measured voltage 

due/



to a crack is much greater for A.C. than D.C. and thus cracks are sized more

the accuracy of crack profile measurement was crucial to ensure an accurate 

calibration of the stress intensity factor. These requirements led to the 

selection of the A.C. potential measurement technique.

In this technique, provided that the flow field is uniform, the crack 

depth is simply obtained by measuring the potential difference on the test 

piece surface between two measuring points a distance A apart:

where and V 2 are voltages measured across and adjacent to the crack 

respectively.

5.5 Fatigue crack growth test-series (i)

Specimens of dimension 850 x 150 x 25 mm were cut from the as-received 

plate with the major specimen axis at 90° to the rolling direction of the 

plate. Part-through surface notches were machined at the centre of the 

specimens using a slitting wheel 0.15mm thick introducing a surface flaw of 

aspect ratio a/c = 0.28 where a = 5 mm and 2c = 35 mm.

accurately. In the present work large specimens were to be tested and also

(5.28)

A fatigue crack was initiated and grown from the starter notch under 

constant amplitude, sinusoidal, tension to tension loading in a 1MN Dartec 

servo-hydraulic test machine at stress ratio R = 0.1 and a frequency of
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To measure the crack size, a Unit Inspection "Micro Gauge" instrument 

was used. This instrument consists of a thermister-stabilised Wier bridge 

oscillator used to generate a 6KHz sine wave which supplies the necessary 

current to the specimen via a constant current power amplifier. The 

voltages detected on the specimen surface are relayed to a filter amplifier 

which in addition to amplification of pick-up signals, rejects other 

unwanted common mode signals. The signals are then passed through a 

rectifier which rejects pick-up signals from the power amplifier circuit 

and produces a linear and stable output.

To monitor the potential changes on the specimen, 24 voltage reading 

stations were attached to the specimen along the crack surface edge, 5 mm 

apart. Each station consisted of three contact terminals spot welded to 

the specimen on a line perpendicular to the crack surface edge as shown in 

Fig. 5.5. Terminals 1 and 2 measure the voltage across the crack Vj and 

terminals 2 and 3 measure the voltage adjacent to the crack V£. The 

distance between the terminals (a) was 20 mm. Current leads were connected 

to the specimen surface 2 0 0 mm either side of the crack.

The specimen was loaded to a maximum stress of 180 MPa half the uniaxial 

yield stress. By using the Scott and Thorpe^ solution (equation 20), it 

was found that this stress introduced a maximum applied stress intensity of

22.3 MPa.m®*5 which was enough to initiate the fatigue crack growth. The 

level of the applied stress intensity was maintained constant by reducing 

the applied load during the cyclic loading. At every 5000 cycle interval, 

loading was stopped and the specimen maintained under the mean load (to 

eliminate the effect of crack closure) while the voltages and V£ were 

measured for all the contact stations. Equation 28 was used to obtain the 

crack/
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size from Vj and V£ and graphs of crack profile development were produced. 

The fatigue test was terminated when the P.D. technique predicted that the 

crack had penetrated to 70% of specimen thickness. The specimen was then 

fractured under monotonic loading.

5.5.1 Results

Fig. 5.6 shows the predicted crack shape at the termination of the test 

compared to actual shape revealed on the fracture surface. As it can be 

seen, the A.C. measurements underestimated the crack depth by up to 50% and 

overestimated the crack surface length by a considerable amount, 

furthermore it predicted a zig-zag crack front whereas the actual crack 

front was relatively smooth.

These observations indicated that the A.C. technique, in the way it was 

employed, was inadequate to produce an accurate measurement of crack 

profile. The following points were considered to be the major sources of 

error:

5.5.1.1 Induced magnetic voltages

It is well known that if the magnetic flux enclosed in a coil of wire is 

changing, a voltage proportional to the rate of magnetic flux is induced in 

the coil (Faraday's law). Terminal wires connected to the specimen were 

found to form a complete loop enclosing some of the magnetic flux produced 

in the specimen by the current flow. The current and hence the flux was 

continually changing so that a voltage was induced in the loop. This 

voltage was in series with the measured surface voltage and thus caused a 

measurement/
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error. In addition since the loop areas at various contact stations were 

unequal, induced voltages varied, resulting in the erroneous zig zag 

prediction of crack profile.

5.5.1.2 Non uniformity of the current flow field

Equation 5.28 is valid only if the current flow on the surface of the 

specimen is uniform. In finite bodies containing part-through cracks of 

finite size, the gradient of potential is not constant^? as shown in Fig. 

5.7. It was deduced therefore that a reading for reference voltage , 

obtained off the crack on the specimen surface was not constant due to a 

divergence of the current flow in the vicinity of the crack. Neither did 

the reading for V2 represent the potential drop due to actual crack depth, 

since the discontinuity in current flow across the crack surface edge was 

not constant. Thus equation 5.28 provided an inaccurate measurement of 

crack size.

5 .6 Improved A.C. P.P. measurement

5.6.1 Induced voltage

To eliminate the loop induced voltages, the stationary spot welded 

terminals were abandoned. Instead a voltage sampling probe, with two 

contact points 10 mm apart was employed. The probe was designed such that 

the voltage pick up wires connected to contact points were pressed very 

close to the surface of specimen and thus the area of the conducting loop 

was reduced to a minimum.

Improvement was also made by minimizing the stray magnetic field 

induced/
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in the specimen by current leads. The current leads were taken away from 

the connection poles in a plane perpendicular to the specimen plane, and 

they were eventually twisted together at a distance one metre from the 

specimen. This large loop of current ensured the minimum magnetic field 

because magnetic field strength is inversely proportional to distance from 

the wires. Thus eddy currents which might have affected the voltage probe 

circuit were minimised.

5.6.2 Uniform current flow field

Dover et al^5 have considered the non-uniform field problem 

mathematically for particular cracks by comparing the electrical flow field 

with the flow of a stream over a plane containing a circular arc

indentation. By making use of relevant hydrodynamic solutions, they 

concluded that the conditions leading to equation 28 are not generally

satisfied in the case of a finite part-through crack and that a modification 

factor in form of a multiplier, has to be applied to correlate the A.C. 

potential reading to true crack size. They proposed a modification factor, 

M, which is a function of crack aspect ratio and probe size:

d x = Mdx (5.29)

where dj is the first estimation of crack depth by A.C. potential drop

technique via equation 5.28 and d£ is the measure of true crack depth.

Michael and Collins^ presented the values of M at the crack centre line 

only, for various crack shapes and probe sizes, in a graphical form. Dover 

and Collins^? calculated the variation of M along the crack length for a 

specific probe size and crack aspect ratio. The disadvantage of their 

solution is that a prior knowledge of crack profile must exist before the 

modification factor is determined, a situation highly improbable in 

practice.



5.6.2.1 An empirical solution for A.C. modification factor

In the present work it was necessary to measure the crack profile 

development while the integrity of the test was preserved. Thus a 

calibration of the A.C. modification factor all along the crack front was 

required such that the A.C. potential drop output could be readily 

correlated to the actual crack shape. An experimental procedure was 

therefore carried out to achieve this.

The proposed modification factor is given by:

R *  =  =  F ( f c  • T c  • x )  ( 5 - 3 0 )

where x is the distance along crack surface edge from the crack centre on 

the specimen surface, ax is the actual crack depth and dx is the first 

estimate of crack depth made by the use of equation 5.28.

5.6 .2.2 Experimental Procedure

A series of specimens were tested under cyclic loading with testing 

procedure similar to that reported in section 5.5. To measure the crack 

size, the voltage sampling probe was manually traversed across the specimen 

on and off the crack, against a linear displacement transducer to give a 

continuous record of voltages Vj and V£» recorded on a x-y recorder. From 

these records the first estimate of crack depth dx could be determined via 

equation 5.28.

The true crack depth ax during the fatigue growth was obtained by 

delineating the crack front through a beach marking technique. Beach marks 

were produced by reducing the load amplitude to 50% of its previous value 

while/
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the frequency increased to 2.5 Hz and the maximum load was kept constant. 

In this way, the value of K ^ x  remained unchanged during both the marking 

and non-marking periods. It was found that the beach marks were visible 

only if there was a small but significant amount of crack propagation during 

the reduced-load period. A computer program was developed to determine the 

point of onset and duration of each reduced load period in order to produce 

a 0.1mm band of crack propagation at 1mm intervals. The method used 

consisted of a number of steps detailed below:

Step 1. AK was calculated at the surface and deepest point of

the crack for initial values of a, c and fractional depth 

a/t> by usi-ng the Scott and Thorpe^® solution (equation 20).

Step 2. An incremental growth of Aa=0.05mm together with the calculated 

AK was used in the Paris equation (equation 27) to determine N 

and Ac.

i f  =  C ( A K c )m

for the material in use, the constants C and m were taken as 

2.51 x 1 0 “ 1 2 metres per cycle (AK in MPatti^*^) and 3.25 

respectively.

Step 3. The crack shape was updated to a=a+Aa and c=c+Ac

and the procedure returned to step 1 until a growth 

of 1mm was achieved at the deepest point.

Step 4. The loading condition was changed to that required for 

beach marking (same Kmax, R=0.5, F= 2.5 Hz) and steps 

1 to 3 were repeated to obtain the number of cycles 

required/
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to produce a crack growth band of 0.1mm. Conditions were then 

returned to normal loading and steps 1 to 4 repeated until the 

crack penetrated to 80% of specimen thickness.

After termination of the fatigue test, the specimen was fractured at 

room temperature under monotonic loading at a strain rate of 2 .6 x 1 0”^ S“*. 

The fracture surfaces containing beach marks were photographed and crack 

depths, ax , were measured for each beach mark at 5mm intervals along the 

crack surface edge. These optical measurements on the fracture surface 

were then used to calibrate the potential drop measurements.

5.6 .2.3 Results and discussion

The beach marks revealed on the fracture surface are illustrated in 

Fig. 5.8. Fig. 5.9 shows the variation of the A.C. potential field 

measured on the specimen surface across (V^) and adjacent (V2 ) to the crack. 

In Fig. 10 the actual crack profile at a/c = 0.7, revealed by the beach 

mark, and the first estimate of crack profile obtained by P.D. method are 

plotted together. As expected the P.D. underestimated the crack depth at 

the centre line by about 40% and predicted a larger crack length on the 

specimen surface. However these results illustrate a significant

improvement over previous results, that is the prediction of a smoothly 

curved crack front consistent with the true crack. This indicates that the 

probe had properly sampled only the actual potential field and that the 

other induced voltages had been eliminated.

Modification factors were calculated for 11 different crack shapes 

using equation 5.30. Fig. 5.11 shows the values of the modification factor 

for/
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the crack deepest point (denoted as 1^=90 where 6 is the angular position on 

the crack front) against P.D. first estimate, d'̂ Q. Crack aspect ratio and 

probe size, normalized by the crack half length, are also plotted on the 

same graph. The initial increase in R 90 is due to the increase of crack 

aspect ratio which enhances the non-uniformity of the flow field. The 

maximum however coincides with an apparent change in the rate of a/c 

increase which is due to the fact that the crack grows towards a preferred 

shape^. Adoption of a preferred shape means that the growth on the 

surface is higher than that through the thickness. Therefore the effect of 

^/c becomes more pronounced which results in a reduction of Rqo* Eventually 

the effect of aspect ratio and probe size cancel each other out and the 

modification factor remains constant.

The variation of Rx along the entire crack front for a variety of crack 

shapes is shown, in Fig. 5.12 in a manner readily usable for the sizing of 

defects within the range investigated, without a prior knowledge of crack 

shape. The results are presented for only half the crack front, since a 

semielliptical crack has a symmetric shape. To give a basic comparative

criterion for different probe size, the value of Rx is normalized by ^/c .
d9o .Crack shape has been presented in aspect ratio term, a/c , as well as /c. 

The advantage of latter representation is that without prior knowledge of 

crack shape, the crack profile can be predicted using only the potential 

drop technique.

5.6 .2.4 Application of A.C. modification factor solution

The procedure outlined below demonstrates the use of the AC potential 

drop technique and modification factors presented in this section for exact 

sizing and profile determination of a part-through surface crack.
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1. The crack length on the specimen surface (2c) can be 

measured by simple optical techniques.

2. The voltage sampling probe of the AC system is placed

at the centre of the crack on the specimen surface and

the voltages across and next to the crack (V]_ and V 2 ) 

are measured. These values are then used in Equation 

5.28 to give the first estimate of crack depth at the 

deepest point (dgo).

3. From dgg» crack half-length c and probe size A t the

curves in Figure 5.12 can be used to modify the predicted

crack depth at any position x along the specimen surface.

Thus, the true crack depth at any point may be determined 

and hence the accurate crack profile.

5.7 Fatigue crack growth-series (ii)

5.7.1 Experimental procedure

Specimens identical to those of series (i) (section 5.5) were tested 

under cyclic loading. Prior to fatigue cycling, each specimen was ground 

to provide a suitable surface for crack growth observation. The maximum 

applied stress, for a stress range ratio R=0.1, was 140 MN/m^. This level 

of stress was kept constant during the test which implied that by increasing 

crack size the applied K would increase. Irwin^2 has suggested that 

following criterion must be satisfied in order to maintain a valid LEFM 

stress intensity factor:

( — ) 2  £ 0 . 3 t t c ( 5 . 3 1 )ay



By using the Scott and Thorpe^® solution, it was found that at the stress
A r belevel used, a maximum SIF of 40 MPa.mu,:) would attained if the crack had 

penetrated to 80% of specimen thickness, which satisfies the above 

requirement.

To monitor the crack growth an A.C.P.D. Crack Micro Gauge instrument 

was used. The instrumentation and measuring method was similar to that 

outlined in sections 5.6.1 and 5.6 .2.2. At certain predetermined cycle 

intervals, the specimen was held at mean load and A.C. voltage signals 

and V 2 , corresponding to the crack shape, were measured. The crack surface 

length, 2 c, was measured optically with the aid of a travelling microscope.

The actual crack depth at any point along the crack surface edge was 

determined by modelling the A.C. prediction of crack depth via the 

procedure outlined in section 5.6 .2.4- Since the modification factors near 

the surface of specimen are not clearly defined, the crack profile close to 

the surface tip was determined by extrapolation between the surface tip and 

nearest point on the crack front which could be determined accurately. 

This technique proved to be successful especially in the later stages of the 

tests, where the crack bulging near the surface intersections was observed.

5.7.2 Results and Discussion

In Fig. 5.13 the crack growth rate at the deepest point and plate 

surface are shown. It can be seen that at initial stages of fatigue 

loading the growth at the deepest point is faster than that at plate 

surface. As the crack reaches half specimen thickness, the growth rate at 

the surface is increased whereas the crack depth increases at a constant 

growth/
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rate. Holdbrook and Dover^1 observed the same trend for mild steel (BS 

4360 Grade 50B) both under sinusoidal and random tensile fatigue loading.

Fig. 5.14 shows the variation of crack aspect ratio a/c against crack 

fractional depth a/t , which indicates the tendency for the crack to grow 

towards an equilibrium shape of a/c = 0.8. This tendency has been observed 

by other workers as shown in Fig. 5.15 which illustrates that the adoption 

of a preferred shape is independent of initial crack size and profile.

To determine the crack growth rates along the crack front, the Rq vs N 

datttr at 6 = 0» 15, 30, 45, 60, 75 and 90 degrees, were smoothed by 

computing a weighted approximation to the data points. The degree of 

polynomial was computed such that the sum of the squares of the weighted 

residuals was minimized. The growth rates were then calculated as
S

derivatives to the fitted curve. Fig. 5.13 shows the fitted curve to the 

data points at 0= 0 and 0 = 90 where the maximum error deviation was less 

than 3% and shows the accuracy of measuring technique.

Crack growth rates calculated in this way, were used in modified Paris 

equation (equation 5.27) to determine AK and hence K jq = AK^/O-R) around 

the crack boundary.

In Fig. 5.16 K j q  is plotted against the radial crack length R^. Solid 

lines show the variation of K-j-q at fixed positions on the crack boundary 

(0 = constant) as the crack grows through the thickness. Dotted lines 

present the variation of KIq along the crack front, from 0 = 0 to 0 = 90, at 

any particular crack profile (constant a/c). The stress intensity factor 

all along the crack front is increased by increasing crack size as expected. 

At/



aspect ratios less than 0.65 and before the crack penetrates to the

mid-thickness of the plate, the rate of increase in SIF (slope of the solid

lines, Fig. 5.16) is highest at the surface intersection. This is more 

pronounced at lower values of ,a/c where the fatigue growth is initiated on 

the specimen surface only when SIF reaches a threshold value. In this 

region, SIF decreases from a maximum at the crack deepest point to a minimum 

at the crack surface intersection (dotted lines, Fig. 5.16), which is 

consistent with the original formulation of Irwin in equation 5.1.

At aspect ratios greater than 0.65 the SIF is almost constant along the 

entire crack front. This may be attributed to the effect of the back

surface and its interaction with the stress field ahead of the growing 

crack. If the plate was of infinite thickness Kj would have always been 

highest at deepest point and the crack would have grown towards a true 

semi-circular shape. However at a/c = 0.65, the crack has already 

penetrated to 55% of plate thickness whereupon the proximity of the back 

surface prevents the ideal profile developing.

Comparison between values of Kj on the specimen surface and at the 15° 

shows that the crack grows faster at locations near the surface

intersection than at the crack surface tip. This observation indicates

that once the crack has penetrated to mid-thickness of plate, the crack 

shape begins to deviate from that of a semi-ellipse and bulges at the ends 

of the major axis. This phenomena has been observed by other w o r k e r s ^ 8-29 

and it may be attributed to the fact that the stress condition changes from 

plane stress on the specimen surface to the plane strain in the interior. 

This change in stress field triaxiality along the crack front results in a 

variation in the extent of crack tip plasticity. At relatively high 

applied loads, considerable plasticity may occur at the surface crack tip 

which/
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retards the fatigue crack growth. The plastic zone size r, on the

specimen surface and at the deepest point can be estimated. This is

calculated for the crack profile of a/c =0.7 where the crack has penetrated 

to a fractional depth of a/t = 0.77. At the crack deepest point, the state 

of stress is plane strain whereas on the specimen surface a plane stress 

condition exists, thus from Irwin^ plastic zone correction (section

1.3.1):

r90 = £7 <^ a')2 = °-59mm 

r0 = 57 (!y)2 = 1-93mm

The state of stress at 6 = 15° is assumed to be somewhat between plane 

stress and plane strain:

r15 “ 4 tT (^ L ) 2  = °*92mm

A notional elastic crack profile can now be assumed by adding the plastic 

zone sizes to the true crack profile such that an = 20.03mm, cn = 29.72mm 

and R].5 n = 28.55mm. An examination of this notional crack shape indicates 

that it satisfies the analytical equation for an ellipse i.e.

Therefore it can be deduced that although the actual crack profile deviates 

from a semi-elliptical shape, the notional elastic crack profile maintains 

a semi-elliptical shape, which confirms the effect of state of stress on the 

crack profile development.
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Data obtained in this work were also used to predict the stress 

intensity factor via analytical solutions outlined in section 5.3. 

Emphasis is placed on those solutions that have been shown to be consistent 

with changes of crack profile during fatigue growth and have produced the 

best correlation to experimental results reported in literature^O”^ .  

addition only those solutions which have been presented in a numerical form 

are considered* Since they could be directly applied to solve the problem 

of a growing fatigue surface crack where both crack aspect ratio a/c and 

crack fractional depth a / 1 are continuously changing. Some published 

solutions are in tabular or graphical form (as presented in section 5.3) 

and show the variation of stress intensity factor against one variable 

parameter while the others are kept constant, and thus cannot readily be 

applied to a growing crack in which the aspect ratio is changing. With 

this in mind, four solutions due to Shah and K o b a y a s h i ^  (Eq. 5.19), 

Newman^ (Eq. 5.15), Scott and Thorpe^O (Eq. 5.20) and Newman and R a j u ^  

(Eq. 5.24) were considered. In order to find the solution which gave the 

best correlation to experimental results, comparison was first made at the 

crack deepest point. Results are presented in Fig. 5.17, where stress 

intensity factor is plotted against crack fractional depth a/ f  The Shah 

and Kobayashi solution which considers only the front face correction 

factor, predicts a very conservative value for Kj, even at low ratios of 

a/t where the effect of the back surface is thought to be minimal.

The Newman solution^ agrees well with present results when the crack is 

small compared to the specimen dimensions (a /t$0 .6 ), but underestimates 

them by as much as 2 0 % as. the crack grows beyond a/t = 0 .6 .
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The Scott and Thorpe^ and the Newman and R a ju^ solutions were 

expected to produce similar results since both are mathematical 

interpretations of the same finite element analysis^®, but they differ 

slightly. The difference may be due to the effect of finite width 

correction factors. Indeed as the crack grows beyond the mid-thickness of 

the plate, the crack surface area becomes a considerable proportion of 

specimen cross section area (45% at a/t = 0.77) and hence the effect of 

finite width becomes significant. The Newman and Raju solution employed a 

finite width correction (equation 5.25) which is mildly dependent on the 

ratio of crack to specimen surface area. This solution underestimates the 

experimental results by up to 13% at a/t = 0.77. The Scott and Thorpe 

solution, on the other hand, uses a finite width correction (equation 5.23) 

which is more influenced by the finite size nature of the specimen and gives 

a better agreement with experiment.

Of the solutions discussed only Newman and Raju^-® calculated the stress 

intensity factor for all locations on the crack front. Figure 5.18 shows 

the variation of stress intensity correction factor on the crack front for 

some of the crack profiles developed. Similar results were observed for a 

maraging steel in reference^!. Figure 5.19 shows a comparison between the 

predicted stress intensity factor by Newman and Raju solution and the 

experimental results, for all the data considered (0.3$a/c$0.7 ,

0.22£a/t,$0.8) The comparison at the crack surface tip (6 =0°) shows that 

the prediction correlates well with experiment, within a 1 0 % scatter band, 

for the whole range of a/ f  The agreement between prediction and

experimental results for all other locations on the crack front from 

6 = 15° to 90° is also good up to a/t $0.6 but at higher ratios of a/t, the 

Newman and Raju solution tends to underestimate the experimental results.
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If in this solution the finite width correction term is replaced by 

equation 5.23, then the prediction is improved by up to 3%. However the 

fact remains that as crack grows, the prediction differs from 

experimentally determined stress intensity factor. This is thought to be 

due to the fact that theoretical solutions assume that a semi-elliptical 

crack maintains its elliptical shape during cyclic loading and ignore the 

deviations such as bulging near the surface, as observed in present work, 

which may be material dependent. The variation of constraint along the 

crack front, from that of plane strain at the deepest point to that of plane 

stress at the point of crack intersection with the plate surface, is a major 

factor contributing to differences between predicted and observed fatigue 

crack growth behaviour.
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Fig. 5.1 Semi-elliptical surface cracked specimen.
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Fig. 5.5 ACPD crack size measurment for series (i) tests, showing 
the set up for one of the 24 voltage reading stations.

Fig. 5.6 Crack profile prediction by ACPD in series (i) tests.
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Fig. 5,7 Current flow on the surface of a conductive plate 
containing a part through surface crack.

5 m m

Fig. 5.8 Beach marks on the fracture surface.
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crack shapes.
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Section 6

ELASTIC-PLASTIC ANALYSIS OF PART-THROUGH SURFACE CRACKS

6 .1 Introduction

Detailed examination of failure of engineering components

reveals that in most cases crack propagation starts from a Part-Through 

Surface Crack (PTC). Increasing requirements for less conservative

designs have increased the practical importance of elastic-plastic 

assessment of these defects. However due to the three dimensional nature 

of the problem, the analysis of fracture toughness parameters is more 

complex than that of the plane problem i.e. through thickness cracks.

In the work presented in this section, ductile fracture from a 

semi-elliptical surface crack subjected to tensile loading is considered. 

Crack Opening Displacement (COD) and crack extension all along the crack 

front has been experimentally measured and by using the COD R-curve 

technique, initiation COD, 6 ,̂ is derived for the entire crack front. As 

an introduction to this section a review of previous investigations is 

presented. This is followed by a description of the experimental work 

carried out here and comparison of results with those obtained for through 

crack test pieces.

6 .2 Review of experimental work on PTC

A review of literature indicates that while elastic analysis of PTC has 

received/
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considerable attention, as discussed in section 5, there is relatively 

little work on the elastic-plastic fracture process from such defects.

The elastic-plastic fracture may be characterized by crack opening 

displacement. In small scale yielding (SSY), the relationship between COD 

and stress intensity factor K may be used to calculate critical defect 

size^-:

K = / -  6 ea„ (6.1). m y

In general yielding however final failure is associated with a large 

degree of plasticity and thus an approach which is capable of describing 

failure in the elastic-plastic and fully plastic regime is required. As 

discussed in section 1.6.6. a critical value of COD may be used directly as 

a post yield fracture parameter to assess the ductile failure of service 

components. Therefore a need exists to. characterize COD at the tip of a 

surface crack and to relate this to COD measured in standard through 

thickness test pieces.

A typical semi-elliptical surface cracked plate is shown in Fig. 6.1. 

In a few of the experimental studies reported, because of difficulties 

involved in measuring crack tip displacement, COD was measured as crack 

mouth opening i.e. displacement of the crack faces on the specimen surface 

at the mid-point of the crack. Randall^ was the first to measure crack 

mouth opening. His specimens were instrumented primarily to observe 

possible pop-in behaviour, but from the load-COD records he was able to 

correlate the COD values to the extent of plastic flow at the crack tip. 

Tiffany et al^ used crack mouth opening measurements as a qualitative 

indication of sub-critical crack growth. Quantitative analysis of COD 

however, has been restricted by several factors. One is the lack of an 

exact/



solution for COD as a function of crack size and shape. Another factor is 

that no extrapolation formula exists to relate crack-mouth opening 

displacement to the actual crack tip displacement. Lack of such a 

relationship is due to a lack of understanding of the compliance of the 

cracked section.

Clearly measurement of COD on the specimen surface, though useful, does 

not measure directly the fracture characterizing parameter over the entire 

crack front. Prantl and P r o d a n ^  devised a technique to derive crack tip 

COD from the crack mouth displacements for a low strength structural steel. 

They measured the initial notch opening displacement in seven positions 

along the crack line on the surface by using a miniature COD-meter, in an 

attempt to record the spatial opening of the whole notch. The opening of 

the crack tip was then determined by extrapolating the notch opening 

displacements to the actual crack front. For a crack shape of a/c = 0.4 

and a/t = 0 . 5  (a, c and t are defined in Fig. 6.1), they found that upon 

attainment of a certain load, crack extension occurs in the interior and 

only at loads very close to the maximum load does crack growth become 

noticeable on the surface of the specimen. This implies that for this 

particular crack profile initiation occurred at some point away from the 

specimen surface. It was also found that at low ratios of net stress to 

yield stress i.e. for conditions approximating to SSY, the crack front COD 

closely followed the linear elastic crack opening displacement 6 = G/a y. 

The onset of stable crack growth was also detected by acoustic emission 

techniques and results similar to those for measurement of COD when the SSY 

condition was exceeded were found. However caution should be excercised 

in using the Prantl and Prodan results because of poor accuracy in the COD 

measurements and the large scatter in the acoustic emission results.



6.3 Experimental procedure

The experimental procedure is based on the multi-specimen R-curve

technique for determination of critical COD at the onset of crack

extension. In this technique, testing of identical fatigue pre-cracked

specimens is essential to obtain accurate results. The procedure adopted
20for determination of 6 ^ was as described in BS5762 (for deep through 

cracks). However, because of the difficulties involved in sizing of PTC, 

production of identical crack profiles can be very difficult. Some

investigators^ have used a single specimen method for surface cracks by 

periodically fatigue marking of the fracture surface. It is thought that 

extrapolation to zero crack extension with this single specimen method may 

not give an accurate evaluation of 6 £ due to variation in crack profile 

development under the application of different load levels.

The successful use of the A.C. potential drop technique in the present 

study (section 5) made it possible to reproduce crack profiles and thus 

determine the COD R-Curve for part-through cracks. The procedure includes 

the following stages:

(i) Production of fatigue pre-cracked specimens with identical crack 

profiles.

(ii) Loading of the specimens to appropriate points on the 

load-displacement curve under displacement controlled conditions, 

at room temperature.

(iii) Recording load, displacement and the COD, at the crack tips on the 

specimen surface, as a function of time.



(iv) Sectioning of specimens (off load) into thin slices perpendicular 

to crack plane. Each side of each slice represents the crack tip 

profile at a certain position on the crack front, as schematically 

illustrated in Fig. 6.2.

(v) Determination of the exact position of each profile in the crack

front, measurement of crack tip opening displacement 6 and crack 

extension Aa.

Cvi) Plotting of COD and Aa, for each position in the form of a R-curve 

and extrapolation to zero crack extension to obtain 6 .̂

6.3.1 Test procedure

Three specimens with the dimensions h=850mm w=150mm and t=25mm were

cut from the parent plate in the transverse direction. Each specimen was

ground to provide a suitable surface for observing the crack growth. An

initial notch of aspect ratio a/2c=0.14 where a=5mm and 2c=35mm was 

machined in all specimens with a 0.15mm thick slitting wheel.

Fatigue cracks were initiated and grown from the base of these notches 

by subjecting the specimens to constant amplitude, sinusoidal tension to 

tension cyclic loading in a 1MN Dartec servo-hydraulic testing machine at 

stress ratio of 0.1 and frequency of 1Hz. The maximum nominal net section 

stress in the fatigue loading range was 150 MNm”^ (40% of net section 

yield). This loading gave a maximum stress intensity factor of 40 MPam®*^ 

as the crack grew to 70% of the specimen thickness.



To measure the development of the crack shape, the A.C. potential drop 

technique was used as reported in section 5.6. By precise monitoring of 

the crack profile development it was possible to grow identical 

semi-elliptical fatigue cracks with a = 17.4 +_ 0.1mm and 2c = 50.2 + 0.2mm. 

This shape was consistent with the preferred crack shape for the material, 

as described in section 5 .7 .2 .

Since the load capacity of the testing machine was insufficient for 

static loading, the width of pre-cracked testpieces were reduced to 96mm, 

94mm and 92mm for specimens 1, 2, and 3 respectively. To monitor the COD 

on the specimen surface, two clip gauge extensometers were positioned 

between knife-edges attached to the specimen surface above and below the 

crack plane, with an initial gap of 5mm. Specimens were loaded in tension 

under displacement control at a strain rate of 1.6x10”^ S“^. Values of 

load, cross-head displacement and clip gauge displacements were 

continuously recorded at 30 second intervals by a multi-channel data 

logger, for subsequent processing.

The first specimen was deformed until a maximum load of 885KN 

corresponding to 6.80mm axial displacement was achieved. The second and 

third specimens were loaded to overall displacements of 4.54mm and 4.24mm 

respectively. On the attainment of prescribed load the specimens were 

unloaded and the deformed front and back surfaces photographed. The 

specimens were then sectioned normal to the crack plane into slices of 

approximately 3mm thick and 1.8mm apart Fig. 6.2. The sectioning sequence 

started at a position close to the centre line of the crack such that the 

deepest point of the crack would be contained on one side of the first 

section. By this procedure each section revealed two crack tip profiles



the damaged crack front, one on either side of each slice. The sections 

were then polished and the COD at the original fatigue crack tip 6 and the 

crack extension A a were measured to within ±  0.02mm. The measurement 

was made by using an optical micrometer attached to a stereo-microscope at 

an appropriate magnification. The exact position of each section profile 

on the crack front was determined by measuring the initial gaps between the 

sections and the thickness of each section prior and after polishing.

6 .4 Results and discussion

The load-displacement curves for all three specimens are given in Fig. 

6.3. It has to be noted that the width of specimens differed slightly 

resulting in different load-displacement curves. In Fig. 6.4 the clip

gauge displacements for specimen 1 , loaded to maximum load, are plotted 

against the applied load. The absence of a well-defined point on these 

curves to mark the initiation of crack extension, necessitated the 

observation of the damaged crack front for this specimen prior to the 

loading of the others. Fig. 6.5 shows the crack profile at 0 = 45° (for a 

definition of 0 see Fig. 6.1) for specimen 1. In view of the large

amount of crack extension associated with the application of maximu m load, 

and on the basis of engineering judgment, specimens 2 and 3 were loaded to 

appropriate points on the load-displacement curve to give suitable data for 

the R-curves.

Observations during the test revealed that the yielding of all 

specimens occurred when the net section stress exceeded the uniaxial 

yielding stress of the material and just after that the first visual 

indication of plastic deformation, in the form of small surface 

depressions,/



observed at the crack tips on the specimen surface. Lack of lateral 

constraint on the specimen front surface reduces the hydrostatic stress 

component and material experiences extensive yielding characteristic of the 

state of plane stress. As a result surface contraction, or crack tip 

dimpling, develops at stress levels corresponding to those at which crack 

tip blunting occurs. These dimples are highly localized and are

associated with plastic deformation introduced upon loading.

Fig. 6 . 6 shows the front surface of specimen 2 after unloading. Light 

reflection at the crack surface tips due to presence of dimples reveals the

pattern of plastic zone development. This pattern is not a quantitative

representation of plastic zone size. However it illustrates qualitatively 

that the shape of the plastic zone is characteristic of the plane stress 

condition in which the crack propagates by a shear mechanism along 45° 

shear planes. The crack extension on the surface of specimen 1 is shown 

in Fig. 6.7. The form of failure is Mode II ductile shear along 45° planes 

consistent with the plastic zone orientation. This behaviour has been

observed by other workers for a variety of materials^”^. At high applied

loads Mode III out of plane shear may also be involved in the failure

process due to the action of a significant bending moment caused by the 

eccentric loading on the remaining ligament*

On the back surface of all specimens a large surface depression 

elongated in the width direction of specimen in the crack plane and with a 

length approximately equal to 2c was observed. This phenomena has been

seen by other investigators^»H . Figs. 6 . 8  and 6.9 show the back surface 

morphology of specimens 1 and 2 respectively, and indicate that the extent 

of back surface depression is larger for specimen 1 which has undergone 

higher/



plastic deformations. It was intended to measure the size of back surface 

depressions by a replication method and correlate them with the values of 

crack tip COD and crack extension Aa along the crack front. However due 

to the difficulties involved in the procedure and the diversity from the 

main objective of the investigation, this intention was abandoned. 

Nevertheless the phenomena of back surface dimpling may provide a suitable 

technique for detection and evaluation of those surface cracks which are 

present on the inside surface of pressure vessels and which, therefore, may 

not be conveniently approached by direct detection methods.

The appearance of the crack tip damaged regions at 0 = 90, 60 and 15 

degrees for all three specimens can be seen in Figs. 6.10 to 6.12. The 

mode of fracture in the specimen interior is Mode I ductile tearing as 

opposed to ductile shearing on the specimen surface (Fig. 6.7).

Results of COD and Aa measurements on the entire crack front, are 

given in Table 6.1, where x is the distance of each section profile from 

the crack centre line and 0 is the angular position of each point on the 

crack front from the crack surface line. The symmetry of the problem 

allows the evaluation of only one half of the crack plane. For test 2 

however, the complete crack front data is presented which validates the 

symmetry assumption. The COD at the crack tip on the specimen surface was 

determined from the clip gauge corrected for the elastic unloading 

component to allow comparison with the other COD results measured using the 

sectioning technique.

In Fig. 6.13 the variation of COD and Aa along the whole crack front 

are plotted against the angular position. Fig. 6.14 shows the same data

plotted as a function of distance from the crack centre line.



As can be seen in Fig. 6.13 the crack extension Aa is almost constant 

for 0^30°. As 0 decreased below 30° Aa increases to a maximum before 

approaching a lower value on the surface. The observation of crack front 

profile and the results presented in Fig. 6.13 indicate that for a given 

amount of loading, the crack extension at the positions some distance 

beneath the surface is greater than that at the deepest point. Assuming 

that the material is isotropic and homogeneous with respect to the crack 

extension through the thickness, this behaviour may be modelled as 

discussed below.

In part through surface cracks, the state of stress varies from that of 

plane stress on the specimen surface to plane strain in the interior. 

Thus the deepest point of the crack is in a region of relatively high 

plastic constraint. It has been shown^ that the resistance to crack 

extension under this condition is low and hence a greater crack extension 

is expected at the deepest point than on the front surface. Comparison 

between Aa values at 0 = 0  and 0 = 90 degrees (Fig. 6.13) illustrates 

this tendency. Also experimental results of You^ for a shallow surface 

crack (a / 1 = 0.2) show the same behaviour. With a deep semi-elliptical 

crack however (similar to that used in this work), the proximity of back 

surface produces a reduction of triaxiality in the crack tip flow field and 

results in higher crack growth resistance. Thus larger displacements 

(COD) are required at the deepest point both to initiate and continue crack 

extension. This requires further crack extension in the regions of higher 

triaxiality further from the back surface, to provide adequate 

displacements for crack extension at the deepest point. Furthermore there 

may be a small bending moment associated with a deep surface crack in a 

finite size plate loaded under uniform tension. This may affect the 

stress and strain fields along the crack front and thus the crack growth 

resistance.



m / .

Fig. 6.13 also shows the variation of COD along the crack front for all 

the tests. COD decreases from the deepest point towards the specimen 

surface with a mimimum value near the specimen surface (approx. 0 = 15°). 

the intensity of this reduction increases as the amount of crack extension 

is increased i.e. from test 3 to test 1. In test 1 (maximum load), the 

development of considerable crack extension at the deepest point results in 

an elevation of crack growth resistance of the remaining ligament and thus 

a steeper variation of COD is expected.

From the data presented in Fig. 6.13, the crack opening displacement at 

the initiation of crack extension 6 £, is determined by constructing COD 

R-curves (described in section 1.6.4) for seven positions 0 = 0 ,  15, 30, 

45, 60, 75 and 90 degrees on the crack front as shown in Fig. 6.15. The 

<5̂  values are obtained from the intersection of the R-curves and the 

blunting lines (6 = 2Aa) which assumes a semi-circular shape for an opening 

and blunting crack tip. In Fig. 6.16 the variation of along the

entire crack front is shown.

From the work on the fatigue crack growth of semi-elliptical cracks

presented in Section 5, the distribution of stress intensity factor around

the periphery of this particular crack geometry has been evaluated and is 

presented in Fig. 6.17. It can be seen in Fig. 6.16 that on the surface

(0=0°) 6^ has the highest value. The same feature exists in the

distribution of Kj (Fig. 6.17). This observation in both cases is 

expected since the tip of the crack on the specimen surface is in a region 

of plane stress. In the interior however, the distribution of <$£ and Kj 

vary markedly. Under SSY condition where plasticity is confined to the 

crack tip, Kj decreases from 0=15° towards the deepest point (0=90°) and 

as/
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discussed in Section 5, it is an indication that the crack maintains its 

preferred shape. In the post-yield regime the fracture toughness

parameter $£, is a minimum at locations beneath the specimen surface > 

(6= 15?)and increases towards the deepest point (0 =90°) suggesting that 

failure initiation occurs first at locations corresponding to 0 in the 

range 10 to 20°, Hence the crack profile deviates markel ly from the 

preferred LEFM shape. This behaviour is clearly shown in Fig. 6.18 where 

the sequential development of crack profile, from test 3 to test 1, is 

graphically illustrated. The fracture surface of an aluminium alloy 

specimen containing a semi-elliptical fatigue crack of a/c * 0.6 8 and 

a/t = 0.35 also shows this type of profile development under monotonic 

tensile loading (Fig. 6.19).

A comparison between the metallographic studies of the present results 

and those for SECT and DEC geometries reported in Section 4, provides some 

insight into the fracture characteristics of semi-elliptic cracks. The 

crack tip morphology at the deepest point for all three tests, shown in

Figs. 6,10a, 6.11a and 6.12a, is very similar to that of an extending crack 

in the SECT geometry (e.g. Fig. 4.13).' In both cases the crack tip blunts

during opening by a two vertix mechanism producing a wedge shaped tip.

The crack extends directly ahead of the fatigue crack tip, in the crack 

plane, with little evidence of any macroscopic hole growth and coalescence 

process. Furthermore the measured 6j[ of 0.550 mm at deepest point agrees 

well with the measured for the SECT geometry at the same temperature 

(6 £ = 0.580 mm, Table 4.2). These similarities suggest that the stress 

and strain fields at the deepest point are very similar to and may be 

represented by that of SECT geometry. By recalling the results of

numerical analysis reported in Section 4.7, it can be deduced that a low 

level/



of triaxiality associated with plane strain condition exists at the deepest 

point, with a confined region of high triaxiality and plastic strain very 

close to the crack tip (x/^ ’= 0.6).

The morphology of the crack tip at 0=15° is shown in Figs. 6.10c, 6.11c

and 6.12c for all three tests. The crack tip shape and the mechanism of

crack extension in this region is very similar to that for the DEC geometry

shown in Fig. 4.10a in which the crack blunts during opening into a 

smoothly curved shape and extends directly ahead by a hole growth and 

coalescence mechanism. Also the measured value of 6£ at 0=15° (0.340 mm) 

is very close to the 6i obtained for the DEC geometry (6 £ = 0.325 mm, 

Table 4.1). Indeed these similarities indicate that the flow field at 

0=15° may be similar to that associated with DEC geometry, with a high 

triaxiality.

White et al^^ investigated the correlation between the tearing 

characteristics of semi-elliptical cracks in bending and the compact 

tension (CT) geometry. They used a multi specimen procedure to determine 

the J-resistance curve for the semi-elliptical cracked geometry with 

initial fatigue cracks of a/c ranging from 0.35 to 0.49 and a/t from 0.35 

to 0.4. J was calculated using the line spring analysis of Parks and 

White*^. For the CT geometry J was measured from the area under

load-displacement curve. White et a l ^  reported that in bending the crack 

extension, Aa, along the crack front from 0=20° to 0=90° is constant, 

(although the observation of a variation in Aa might have been hindered by 

a large scatter in their results), therefore only the result at 0=90° was 

compared with CT geometry. It was concluded that J at initiation of 

crack extension was the same for the CT geometry and the semi-elliptical 

surface/
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cracked geoemtry. This agreement can be attributed to the effect of crack 

geometry and loading configuration. The analogy between the deepest point 

of a semi-elliptical crack with a/t = 0.35 (as in Whites study) loaded in 

bending and that of a through crack bend specimen of a/y = 0.35 implies 

that the crack tip at 0=90° is in the position of high constraint. Also 

experimental work of You^ has shown that under bending, the blunted crack 

tip at 0=90° has a semi-circular shape and crack extension occurs, by the 

void growth and coalescence mechanism which is representative of highly 

constrained geometries. Therefore it is not unexpected that a J£ similar 

to the CT geometry is obtained. In the tension case and for the crack 

geometry investigated here (a/c = 0 .69 , a/'̂  =0.7) however, the flow field 

at the deepest point represents a region of low constraint and thus a 

higher 6̂  (or J^) than that expected for a CT geometry is achieved.

White et al^. reported that despite a close agreement between j£ at 

0=90° and the CT geometry, the J tearing resistance, differed

considerably, being higher for semi-elliptical cracked geometry.

In the present investigation the COD tearing resistances ^ / d a *  a^i 

along the crack front measured from the slope of COD R-curves in Fig. 6.15 

are given below:

0° d6/da
15 0.625

30 0.7

45 0.775

60 0.82

75 0.85

90 0.85

I



A = 0.75 for the SECT geometry at room temperature is obtained

from the resistance curve shown in Fig. 4.4. For the DEC geometry it is 

not possible to calculate the tearing resistance from the results presented 

in Section 4, due to the fact that initiation of crack extension was 

readily detected without the need to construct the resistance curve. 

However a value of ^ / d a  = 0*61 for a structural steel similar to the one 

used here has been reported^ using the three point bend geometry which has 

a slightly lower constraint flow field than that for the DEC geometry. 

These results indicate that the tearing resistance at 0 =15° and 0=90° is 

only slightly higher than that of laboratory DEC and SECT specimens 

respectively, which from an engineering point of view it may be considered 

a fortunate circumstance.

From the above observations it may be concluded that the progressive 

increase of from 0=15° to 0=90° (Fig. 6.16) is an indication of the 

variation of the constraint along the crack-front. .Thus in order to 

prevent excessive conservatism or unsafe designs during defect assessment 

for structures containing part-through surface breaking cracks, care must 

be taken to use an appropriate fracture toughness value which has been 

evaluated from small standard laboratory test pieces with constraint 

appropriate to the defected structure in question.

There are currently two commonly used methods in the U.K. for defect 

assessment in elastic-plastic situations, R6̂ -̂  and the COD Design Curve 

(PD649317). The PD6493 determines a tolerable defect parameter, from

a knowledge of the fracture toughness of the material and the applied 

stress via the COD design curve described in section 1.6.6. In the 

elastic-plastic regime fracture toughness is taken as a critical COD 

measured by testing highly constrained three point bend specimens in 

accordance/



with BS5762^®. A surface defect is regarded acceptable if the effective 

size, determined from its actual size^, £s smaller than the tolerable 

defect parameter. For elastic-plastic situations where slow stable crack 

extension occurs BS5762 recommends that the selection of the critical COD 

should be by agreement between the parties involved. The critical COD 

could for example be that at the initiation of crack extension (6̂ .) or at 

the attainment of maximum load plateau, 6m .

The results of the present work indicate that crack initiation occurs 

first at locations beneath the plate surface (9=15°) where the crack tip is 

in a region of relatively high constraint. Therefore when no crack 

extension is allowed and 6£ is selected as the fracture toughness 

parameter, PD6493 defect assessment procedure may be used without excessive 

conservatism outwith the limits of safety accounted for^-^.

By selecting 6m (from standard laboratory tested pieces) as the 

fracture toughness parameter, some crack extension is thus allowed for.

In this case the results presented here indicate that the crack profile is 

changed by considerable crack extension at 0=15° relative to the deepest 

point, as shown in Fig. 6.18 (and Fig. 6.19 for an aluminium alloy). This 

implies that the instantaneous tip of the crack at 0 =15° moves towards 

lower constraint regions and it is expected that the tearing resistance 

^ / d a  at this location increases, approaching the resistance associated
v

with the deepest point. This suggests that the crack advances in a manner 

in which it develops an almost straight front. Provided that the

structure containing such a crack sustains the level of crack advance from

the fatigue profile to the preferred tearing profile, then the crack 

behaviour may be conveniently characterized by the tearing resistance of

the SECT geometry. In this case the use of 6 m obtained from highly 

constrained/



three point bend geometry introduces unnecessary conservatism into the 

defect assessment process. It appears that the appropriate critical COD 

for defect tolerance with respect to a PTC in a tensile field is that 

associated with maximum load in the SECT geometry provided that the 

associated tearing can be shown to be stable. Although the results of the 

present work are insufficient to be regarded as definitive, they do however

provide valuable experimental evidence to support this hypothesis.

In both methods (R6 and PD6493) recommendations are given for the 

evaluation of plastic collapse condition prior to the detailed fracture 

mechanics assessment. The analysis in PD6493 is based on the assumption 

that plastic collapse occurs when the net stress on the cross section 

ligament reaches the flow stress. For hardening materials the flow stress 

is taken as the average of the yield and ultimate tensile stress. If such

a criterion is satisfied, a part-through surface crack should then be

assessed as a through crack as a result of the ultimate fracture of the PTC 

ligament. For surface cracks in tension, PD6493 suggests that the limit 

load condition is achieved when:

Pm = °o(l-| ) (6.2)

where ^m is the average membrane stress and a 0 is the flow stress. In 

this analysis the crack is assumed infinitely long and no allowance is made 

for the load carrying capacity of the uncracked ligaments either side of 

the crack, associated with short cracks. This is clearly a conservative 

approach.



stress
For the specimen loaded to maximum load (test 1), the failure A is 

evaluated as Pm = 36 8MPa. By using the collapse analysis in PD6493

(equation 6.2) a failure stress of 140 MPa is predicted i.e. an

underestimation by a factor of 2.6. W i l l o u g h b y ^ ®  investigated the plastic 

collapse phenomena for a variety of steels containing surface cracks of 

different geometries and found that PD6493 under-predicts the failure 

stress by a factor ranging from 1.2 to 5. Furthermore he observed that 

the severity of this over-conservatism increases by increasing crack aspect 

ratio. As mentioned above this excessive conservatism is attributed to 

the fact that PD6493 ignores the load distribution on the side ligaments. 

For the specimen geometry used in this investigation, the ratio of the 

remaining cross section ligament to the ligament considered by PD6493 is 

about 2.3. If therefore the predicted failure stress is elevated by this 

factor, a close agreement with experimental results is obtained. It

should be noted however that the collapse analysis, considers only the

initial defect size and hence should be sufficiently conservative to allow 

some crack extension if in the subsequent fracture assessment the maximum 

load COD is used. It should also be noted that the PD6493 defect 

assessment analysis has a built in factor of safety of 2-2.5 for evaluation 

of a tolerable defect size^. Therefore it is expected that a similar 

degree of conservatism is assumed for collapse analysis, although the 

scatter in plastic collapse data is usually smaller than fracture toughness 

da ta.

In the CEGB R6 method allowance is made for the uncracked ligaments on 

either side of short part through cracks. This is done by assuming that 

the defect is semi-elliptical in shape and that the stresses on the defect 

are redistributed over a length equal to (2c+t). In tension the R6 

prediction of the membrane stress at collapse is given by:



°0 (1-C)2 
m " “ + ( ( C ) 2 \  ,( l -c2 j jl*-i (6 .3 )

where C is the ratio of the area of the semi elliptical crack to the area 

of the containing rectangle defined by R6. For slender cracks, the effect 

of side ligaments is ignored.

C = for f ,  0.2 (6.4)

C = ~  for -  < 0.2 (6.5)t c

In this analysis R6 assumes a freely rotating pin joint at the back wall 

and thus incorporates a bending moment applied to the net section which 

reduces the collapse stress. Using this analysis the failure stress for 

test 1 in the present study is predicted at Pm = 169MPa which is 

approximately half of the experimental result. Willoughby^® obtained a 

safety factor between 1 and 4 for a variety of crack geometries contained 

in different steel plates. However for the crack geometry studied here R6 

is less conservative than PD6493. By removing the pin-joint assumption 

and considering rigid restraint^-® i.e.:

Pm = cj0 (1 -c ) (6.6)

then a value of 292 MPa is predicted for the failure stress which 

underestimates the experimental result by a factor of only 1.2. Thus it 

appears that the assumption of a pin-joint in R6 is over conservative for 

surface breaking cracks in practical tensile loading situations, especially 

for short cracks where the side ligaments provide certain degree of 

restraint. The finite crack length correction however seems to be

justified.
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Table 6.1(a) Values of COD and Aa around one half of the
crack front in test 1. Distance x and angle Q
are defined in Fig. 6.1.

x 0 6 Aa
mm_________________ degree_____________________ mm_______________ mm

-1.58 96.2 2.77 2.84

0.65 87.8 2.81 2.95

2.48 81.8 2.80 2.92

4.94 74.0 2.79 2.94

6.68 68.2 2.69 2.90

9.13 60.3 2.68 2.94

10.9 54.5 2.66 2.92

13.35 46.5 2.58 2.94

15.06 39.7 2.50 2.96

17.53 31.4 2.51 3.00

19.33 25.0 2.40 3.07

21.14 16.3 2.35 ■ 3.24

(



Table 6.1(b) Values of COD and Aa around the entire crack front
in test 2. Distance x and angle Q are defined in
Fig. 6.1

x 0 6 Aa
mm degree mm mm

-20.49 1.07 1.29

-18.89 1.08 1.25

-16.64 1.06 1.16

-14.35 1.15 1.12

—i1.87 1.14 1.06

-9.59 1.11 1.04

-7.28 1.16 1.07

-5.06 1.18 1.02

-2.53 1.16 1.05

0.25 89.1 1.19 1.07

2.26 82.8 1.19 1.06

4.55 75.2 1.18 0.98

7.04 67.0 1.16 1.03

9.23 60.0 1.17 1.02

11.77 51.3 1.09 1.05

13.90 44.5 1.13 1.08

16.20 36.8 1.09 1.08

18.43 28.9 1.06 1.19

21.18 16.5 1.01 1.28



Table 6.1(c) Values of COD and a around one half of the crack front
in test 3. Distance x and angle Q are defined in Fig. 6.1

X
m m

0
degree

6
m m

Aa
m m

0.08 89.7 0.94 0.73

2.08 83.1 0.91 0.73

4.58 75.0 0.92 0.70

7.03 67.1 0.88 0.68

9.53 58.9 0.88 0.71

11.75 51.74 0.87 0.70

14.26 43.6 0.86 0.68

16.47 32.3 0.82 0.72

18.98 26.5 0.81 0.76

21.2 16.5 0.78 0.85
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Fig. 6.1 Semi-elliptical surface cracked geometry.

Fig. 6.2 Schematic illustration of the sectioning procedure.
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Fig. 6.3 Load-displacement record for tests 1,2 and 3.
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Fig. 6.6 Pattern of plastic zone development at the crack tip on the specimen 
surface in test 2.

t
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Fig. 6.7 Damaged area at the crack tip on the specimen surface in
test 1 indicates that the failure is Mode II ductile shear.



Fig. 6.8 Morphology of surface depression on the back of specimen 
in test 1.

Fig. 6.9 Morphology of surface depression on the back of specimen 
in test 2.
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Fig. 6.10 Crack tip damaged area at (a) $=90 ,(b) $=60 and
(c) $=15 in test 1.
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Fig. 6.11 Crack tip damaged area at (a) 6=90 ,(b) 0=60 and
(c) 6=15 in test 2.
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Fig. 6.12 Crack tip damaged area at (a) 0=90 ,(b) 0=60 and
(c) 0=15 in test 3.
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Fig. 6.13 Variation of crack opening displacement, COD , and crack 
extension, Aa , along the crack front as a function of 
angle Q .
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4 Variation of COD and Aa along the crack front, as a function 
of distance x from the crack centre line.
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Fig. 6.16 Distribution of COD at the initiation of crack extension 
as a function of angle Q around the crack front.
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Fig. 6. 17 Distribution of stress intensity factor around the periphery 
of a semi-elliptical crack of a/c=0.69 and a/t=0.7. (from 
data presented in section 5.7.2 )
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Fig. 6.18 The extent of the ductile tearing around the crack front 
measured in (a) test 3, (b) test2, and (c) test 1. This 
Fig. shows the development of crack profile under monotonic 
tensile loading for the limited amount of crack extention studied.
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Section 7

CONCLUSIONS

7.1 The dependence of the ductile failure initiation strain on the stress 

state observed at ambient temperatures, is insensitive to temperature 

in the ductile-brittle transition region for the range of stress states 

studied.

7.2 At ambient temperatures, the post yield fracture initiation 

characterizing parameters are sensitive to the stress state in the 

crack tip region. This sensitivity decreases with decreasing 

temperature in the ductile-brittle transition region.

7.3 In the transition region when the brittle fracture criterion is 

satisfied, as a result of local stress level elevation at the crack 

tip, the cleavage mechanism interrupts the progress of the ductile 

failure mechanism. This results in a mixed mode failure initiation 

and propagation mechanism.

7.4 The morphology and mechanism of post yield failure on the upper shelf 

associated with the low constraint SECT geometry is different from that 

associated with more highly constrained flow fields at the same 

temperature.

7.5 The distribution of stress intensity factor around the boundary of a 

part-through crack, subjected to remote tensile loading is a function 

of the crack profile and is relatively well described by the Newman and 

Raju solution for fractional depths in the range 0 .22£a/ts0.6.



7.6 The distribution of initiation COD around the periphery of a 

part-through surface crack subjected to remote tensile loading is 

different from the distribution of stress intensity factor.

7.7 The initiation of post yield failure from pre-existing part-through 

defects, subjected to monotonic tensile loading, occurs first in 

regions of high constraint. The subsequent failure propagation 

modifies the crack profile considerably.' Failure initiation may be 

correlated with fracture parameters measured in different types of 

standard laboratory through-crack test pieces.

7.8 The defect tolerance of part-through surface cracks in tensile fields 

may be characterized by the SECT crack geometry provided that the 

significant amount of tearing can be accommodated.

7.9 The limit loads predicted by defect assessment procedures commonly used 

in the U.K. have been found to be excessively conservative for the 

defect geometry studied.


