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Abstract

Users in Location-Based Social Networks (LBSNs), such as Yelp and Foursquare, can search
for interesting venues such as restaurants and museums to visit, or share their location with
their friends by making an implicit feedback (e.g. checking in at venues they have visited).
The users can also leave explicit feedback on the venues they have visited by providing rat-
ings and/or comments. Such explicit and implicit feedback by the users provide rich infor-
mation about both users and venues, and thus can be leveraged to study the users’ movement
in urban cities, as well as enhance the quality of personalised venue recommendations. Un-
like traditional recommendation systems (e.g. book and movie recommendation systems),
making effective venue recommendations is more challenging because we need to take into
account the users’ current context (e.g. time of the day, user’s current location as well as his
recently visited venues).

Two common techniques that are widely used in the literature for venue recommen-
dation systems are Matrix Factorisation (MF) and Bayesian Personalised Ranking (BPR).
MF is a popular Collaborative Filtering (CF) technique that can leverage the users’ explicit
feedback (e.g. the numerical ratings) to predict the users’ ratings on the venues and hence
relevant venues can be suggested to the users based on these predicted ratings. On the other
hand, BPR is a pairwise ranking-based model that can leverage implicit feedback to generate
effective top-K venue recommendations. In this thesis, based upon MF and BPR models, we
aim to generate effective context-aware venue recommendation that a user may wish to visit
based on the user’s historical explicit and implicit feedbacks, the user’s contextual informa-
tion (e.g. the user’s current location and time of the day) and additional information (e.g.
the geographical location of venues and users’ social relationships). To achieve this goal,
we need to address the following challenges: namely (C1) modelling the users’ preferences
and the characteristic of venues, (C2) capturing the complex structure of user-venue inter-
actions in a Collaborative Filtering manner, (C3) modelling the users’ short-term (dynamic)
preferences from the sequential order of user’s observed feedback as well as the contextual
information associated with the successive feedback, (C4) generating accurate top-K venue
recommendations based on the users’ preferences using a pairwise ranking-based model and
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(C5) appropriately sampling potential negative instances to train a ranking-based model.

First, to address challenge C1, we leverage the users’ explicit feedback (e.g. their rat-
ings and the textual content of the comments) and additional information (e.g. users’ social
relationships) to effectively model the users’ preferences and the characteristics of venues.
In particular, we propose a novel regularisation technique and a factorisation-based model
that leverages the users’ explicit feedback and the additional information to improve the rat-
ing prediction accuracy of the traditional MF model. Experiments conducted on a large scale
rating dataset on LBSN demonstrate that the textual content of comments plays an important
role in enhancing the accuracy of rating prediction.

Second, we investigate how to leverage the users’ implicit feedback and additional in-
formation such as the users’ social relationship and the geographical location of venues to
improve the quality of top-K venue recommendations. We argue that the potential negative
instances can be effectively sampled based on the social correlations between users and their
friends as well as the geographical influences between the users’ and venues’ geographi-
cal location. In particular, to address challenges C4 and C5, we propose a novel pairwise
ranking-based framework for top-K venue recommendations that can incorporate multiple
sources of additional information (e.g. the users’ social relationship and the geographical
location of venues) to effectively sample the potential negative instances. Experimental re-
sults on three large scale checkin and rating datasets from LBSNs demonstrate that the social
correlations and the geographical influences play an important role to the quality of sampled
negative instances and hence can improve the quality of top-K venue recommendations.

Finally, to address challenges C2 and C3, we propose a framework for context-aware
venue recommendations that exploits Deep Neural Network (DNN) models to effectively
capture the complex structure of user-venue interactions and the users’ long-term (dynamic)
preferences from their sequential order of checkins. In particular, within the framework,
we propose a novel Recurrent Neural Network (RNN) architecture that can effectively in-
corporate the contextual information associated with the successive implicit feedback (e.g.
the time interval and the geographical distance between two successive checkins) to gener-
ate high quality context-aware venue recommendations. Experimental results on three large
scale checkin and rating datasets from LBSNs demonstrate the effectiveness and robustness
of our proposed framework for context-aware venue recommendations. In particular, the
results demonstrate that the sequential order of users’ implicit feedback can be leveraged to
effectively improve the effectiveness of context-aware venue recommendation system. In
addition, the time intervals and the geographical distances between two successive checkins
play an important role in capturing the users’ short-term preferences.
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Chapter 1

Introduction

1.1 Motivations

With the advance of technology such as Global Positioning System (GPS) and mobile net-
works in smartphones, users are increasingly interested in location-based recommendations
(Narayanan and Cherukuri, 2016). An increasing number of tourists who travel to unfamil-
iar cities nowadays use their smartphones to find interesting places to visit or activities to do
based on their current location detected by their smartphones (Yao et al., 2016). An example
scenario could be a Londoner who is travelling to Glasgow and looking for a nearby local
restaurant for a dinner with his family. With the emergence of Location-Based Social Net-
works (LBSNs) such as Yelp1 and Foursquare2, the users can download and install the mobile
applications of various LBSNs into their smartphones. Within a given application, users are
able to find various types of interesting venues to visit, share their location with their friends
by making a check-in at the venue they are visiting, leave their feedback in the form of
ratings as well as explicitly share their opinions by commenting/reviewing the venues they
visited (Liu et al., 2013; Narayanan and Cherukuri, 2016). Large amount of feedback such
as checkins, ratings and comments are generated by the users in these LBSNs. This feedback
can be categorised into two types based on the users’ intent when they leave the feedback,
namely explicit and implicit feedback. Ratings and comments represent explicit feedback, as
users explicitly specify whether they like or dislike the venues they visited. In contrast to rat-
ings and comments, the checkin behaviour of users in LBSNs can be categorised as implicit
feedback, as it is derived from the users’ real-world activities (i.e. visiting venues) and does
not explicitly indicate whether the users like that venues. These implicit and explicit feed-

1https://www.yelp.com
2https://foursquare.com
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back provide rich information about users and venues and can be leveraged to investigate
many areas including: understanding the user’s movements in urban cities (Noulas et al.,
2011; Ying et al., 2012), modelling the user’s preferences and the characteristic of venues
to enhance the quality of personalised venue recommendations (Preoţiuc-Pietro and Cohn,
2013; Liu et al., 2013), as well as provide an insight into why users visit venues, which is
beneficial for businesses to find potential customers (Eravci et al., 2016).

Making effective recommendations of venues that a user may wish to visit relies on
the user’s feedback (e.g. his/her historical checkins) and the contextual information about
the user (e.g. the user’s location and time of visit). In contrast to the implicit feedback of
traditional recommendation systems (e.g. item purchase feedback in Amazon3), making a
checkin at a venue in LBSNs is a physical activity that involves various types of physical
context such as the geographical influences and specific temporal characteristics. For exam-
ple, users are likely to checkin at parks and museums nearby their hotels in the daytime while
they might later checkin at bars in the evening. These geographical influences (e.g. visiting
venues nearby their hotel) and temporal characteristics (e.g. visiting different types of venues
at different times of the day) make the venue recommendation task more challenging than
traditional recommendation systems. Using traditional recommendation systems that do not
take various types of real-word contexts into account to generate venue recommendations
may not be effective as previous works (Zhang and Chow, 2015; Zhang et al., 2015a) have
shown that contexts play an important role in improving the quality of venue recommen-
dations. As a result, Context-Aware Venue Recommendation (CAVR) has gained a lot of
attention from researchers in academia and industry and has become a key functionality for
users in LBSNs (Liu et al., 2013; Ying et al., 2012; Yao et al., 2016; Zhao et al., 2016; Cheng
et al., 2013; Deveaud et al., 2014). Dey et al. (2001) defined context as “any information
that can be used to characterize the situation of an entity that is considered relevant to the
interaction between a user and an application”. In the CAVR task, the involved entity is the
user, whose context can be explicitly provided by the user (e.g. preferred time of the day) or
implicitly detected by sensing devices (e.g. the user’s location automatically detected from
GPS in his/her smartphone).

Collaborative Filtering (CF) is a widely used technique to suggest relevant venues to
users based on an assumption that similar users, who share similar preferences (i.e. visiting
similar venues), are likely to visit similar venues (Koren, 2010b). Venue recommendation
systems (Ma et al., 2011; Hu et al., 2014; Cheng et al., 2012) have been proposed extend
Matrix Factorisation (MF), a CF-based technique that is widely used to effectively predict a
user’s rating on venues by exploiting explicit feedback (e.g. ratings and comments) (Koren

3https://www.amazon.com
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et al., 2009), to generate venue suggestions. In particular, MF-based approaches typically
aim to embed the users’ preferences and the characteristics of venues within latent factors,
which are combined with the dot product operator to estimate the user’s preference for a
given venue. Then, a ranked list of venues is generated based on the predicted user-venue
rating generated by the MF model. However, explicit feedback is relatively sparse in LBSNs,
which can lead to a degradation of the effectiveness of the MF-based approaches (Hu et al.,
2008). In addition, in practice, users only focus on the top-K ranked list of venues (Yuan
et al., 2016; Ying et al., 2016; Li et al., 2015). This implies that effective ranking-based
models (e.g. learning-to-rank) that aim to generate accurate top-K venue suggestions are
more useful than effective rating prediction-based models (i.e. regression models) (Rendle
et al., 2009). From this point of view, MF-based approaches are not expected to perform as
effectively as learning-to-rank models for the CAVR task (Shi et al., 2012). For these reasons,
Bayesian Personalisation Ranking (BPR) (Rendle et al., 2009) was proposed to leverage
implicit feedback, which is more abundant than explicit feedback and largely available in
LBSNs, to generate accurate ranked lists of venues. A challenge of implicit feedback from
observing checkins is that only positive feedback can be observed (i.e. we only know that
users visited venues but we do not know whether they liked those venues or not), and BPR
models trained on only positive feedback are likely to be biased to positive instances (Rendle
et al., 2009; Zhao et al., 2014; Yuan et al., 2016). To address this challenge, various negative
sampling approaches have been proposed (Rendle et al., 2009; Yuan et al., 2016; Zhao et al.,
2014; Wang et al., 2016). For example, the negative sampling approach proposed in BPR by
Rendle et al. (2009) uniformly and randomly selects venues that the users have not visited
as negative instances. Moreover, users’ preferences extracted from implicit feedback are not
static and change dynamically over time (e.g. users may prefer to visit shopping malls during
the daytime but prefer to visit bars in the evenings) (Koren, 2010a). Unfortunately, traditional
BPR models (e.g. (Rendle et al., 2009; Wang et al., 2016; Zhao et al., 2014; Yuan et al.,
2016)) can only capture the users’ long-term (static) preferences and not their short-term
(dynamic) preferences. Since the traditional BPR models assume that the users’ preferences
are static, users who have visited similar sets of venues in different orders would get similar
venue suggestions (Yu et al., 2016; Zhang et al., 2014b). However, the previous literature
have shown that recent observed feedback can have more influence on users’ behaviour than
historical feedback (Zhu et al., 2017; Liu et al., 2016c; Cheng et al., 2013; Rendle et al., 2010;
Yu et al., 2016). For instance, consider a user who has recently visited several art museums
and a restaurant, sequentially. Models that only capture the user’s long-term preferences
will recommend other museums to visit, whereas a model that can capture the user’s short-
term preferences might recommend a bar to visit instead. In this thesis, we argue that the
sequential properties of observed checkin feedback can be leveraged to effectively capture
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the users’ static and dynamic preferences.

Another challenge of CAVR is the problem of cold-start users (i.e. users who have
typically only visited and checked in a very small number of all venues in the LBSNs). The
existing literature have shown that traditional BPR models typically suffer from the cold-start
user problem, which hinders the quality of the personalised venue suggestions. To mitigate
the cold-start user problem, various approaches have been previously proposed to leverage
additional information such as social information (Zhao et al., 2014; Wang et al., 2016; Ma
et al., 2011), temporal influence (Gao et al., 2013), textual content of comments (Zhang
et al., 2015a) as well as geographical information (Cheng et al., 2012; Yuan et al., 2016;
Zhang and Chow, 2015; Lian et al., 2014; Ying et al., 2016; Li et al., 2015). In particular, a
common approach that enhances the performance of BPR models under cold-start conditions
is to extend the sampling criterion and pairwise ranking function of BPR to incorporate
additional sources of information (e.g. social links (Wang et al., 2016; Zhao et al., 2014) and
the geographical information of venues (Yuan et al., 2016)). However, the sampling criterion
and pairwise ranking function of BPR do not take the sequential properties of observed
feedback into account and still assume that the users’ preferences are static.

To leverage the sequential properties of implicit feedback in order to capture the users’
dynamic preferences, existing approaches in the literature (e.g. (Cheng et al., 2013; Rendle
et al., 2010)) have been proposed based on Markov Chains. However, such Markov Chains-
based approaches have a well-known limitation in that they can only model local sequential
behaviour between each pair of adjacent observed feedback (Yu et al., 2016). To effectively
capture the users’ dynamic preferences from their observed implicit feedback, various ap-
proaches (Tang et al., 2017; Yu et al., 2016; Zhang et al., 2014b) have been proposed to
exploit Recurrent Neural Network models (RNN) for recommendation systems. There are
several limitations of these existing RNN-based approaches. First, they still rely on the dot
product of latent factors of users and venues to estimate the user’s preference for a given
venue. However, He et al. (2017) argued that the dot product of latent factors may not be
sufficient to capture the complex structure of user-venue interactions. To address this chal-
lenge, they proposed a Neural Matrix Factorisation (NeuMF) framework that replaces the
dot product operation with a neural architecture that can learn an arbitrary function from
user-venue interactions. However, the NeuMF framework is not sufficiently flexible to in-
corporate the sequential properties of observed implicit feedback. Second, these RNN-based
approaches are not suitable for CAVR because they can only take the sequential order of
checkins into account and ignore the contextual information associated with the sequences
of checkins (e.g. time interval and geographical distance between two successive checkins).
Indeed, such contextual information have been shown to play an important role in generating
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effective CAVR systems (Beutel et al., 2018; Liu et al., 2016b,c; Zhu et al., 2017; Smirnova
and Vasile, 2017).

1.2 Thesis Statement

The statement of this thesis is that the quality of the personalised ranked list of venues based
on the user’s preferred context, Context-Aware Venue Recommendation, can be effectively
enhanced by leveraging the additional information such as the users’ social relationships,
the textual content of comments and the geographical information of venues, the sequential
properties of the users’ implicit feedback and the contextual information associated with the
sequences of users’ implicit feedback, which can be achieved by a framework that consists
of the following four functionalities/components, namely (1) capturing the complex struc-
ture of user-venue interactions in a collaborative filtering manner using an effective neural
architecture to learn an arbitrary function from the user’s implicit feedback, (2) modelling
the users’ long- (static) and short-term (dynamic) preferences from the sequential order of
user’s checkins and the contextual information associated with the successive checkins, (3)
generating accurate top-K venue suggestions based on the user’s static and dynamic prefer-
ences using a pairwise ranking function and (4) sampling potential negative instances that
take into account the additional information such as the geographical information of venues,
the users’ social relationships and the sequential order of users’ checkins.

1.3 Contributions

The main contributions of this thesis are the following. Our first contribution is to enhance
the effectiveness of Collaborative Filtering-based (CF) approaches such as the traditional
Matrix Factorisation (MF) and Bayesian Personalised Ranking models. In particular, we
propose a novel regularisation technique and a factorisation-based model that leverage the
additional information (e.g. the users’ social relationships and the textual content of com-
ments associated with users’ ratings) to improve the rating prediction accuracy of the tra-
ditional MF model. Then, we propose a Personalised Ranking Framework with Multiple
sampling Criteria (PRFMC), an extension of the traditional BPR model, that can incorporate
multiple sources of additional information during the negative sampling and ranking process.
The summary of our first contribution, which consists of two sub-contributions, is described
below:
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• Enhanced MF-based Approaches: We propose a Social-Textual Regularisation (STReg)
technique that leverages the users’ social links and the textual content of comments
associated with the users’ ratings to enhance the effectiveness of the traditional MF
model. In particular, the STReg technique exploits word embeddings to estimate a se-
mantic similarity of friends based on their textual comments to regularise the complex-
ity of the traditional MF model. Moreover, we propose a novel textual factorisation-
based model (MFw2v), an extension of the traditional MF model, which exploits word
embeddings to effectively model users’ preferences and the characteristics of venues
from the textual content of comments left by the users. Experiments conducted on a
large user-venue rating dataset from a commercial LBSN demonstrate that the textual
content of comments play an important role in enhancing the effectiveness of tradi-
tional MF model. In addition, our experimental results demonstrate that our proposed
STReg technique and MFw2v model can outperform various state-of-the-art rating
prediction approaches.

• Enhanced BPR-based framework: We propose a novel Personalised pairwise Rank-
ing Framework with Multiple sampling Criteria (PRFMC) that can leverage multiple
sources of additional information to enhance the quality of venue recommendation of
the traditional BPR model. In particular, the PRFMC framework exploits state-of-
the-art geographical and social probabilistic models that can effectively capture the
users’ geographical movements and social influences to effectively sample negative
instances during the training process. We empirically evaluate the effectiveness of the
PRFMC framework in comparison with various existing BPR-based models on three
public large-scale datasets from commercial LBSNs. Our comprehensive experiments
demonstrate the effectiveness of the PRFMC framework, which are superior to the
current state-of-the-art BPR models.

Our second contribution is to propose a CF-based framework for sequential-based top-
K venue recommendations. Firstly, we propose a Deep Recurrent Collaborative Filtering
framework (DRCF) that leverages the sequential order of users’ checkins to capture the
users’ static and dynamic preferences to effectively generate the ranked list of personalised
venues. The DRCF framework consists of two components, namely (1) the neural architec-
ture that models the complex structure of user-venue interactions in a Collaborative Filtering
manner and (2) the pairwise ranking function and dynamic geo-based negative sampling ap-
proach that aim to enhance the quality of sequential-based venue recommendations as well
as alleviate the problem of cold-start users. A summary of our second contribution, which
consists of two sub-contributions, is described below:
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• Neural Network Architecture: Within the DRCF framework, we propose the Gen-
eralised Recurrent Matrix Factorisation (GRMF), Multi-Level Recurrent Perceptron
(MLRP) and Recurrent Matrix Factorisation (RMF) models that exploit Deep Neural
Network models to capture the complex structure of user-venue interactions from ob-
served checkins in a Collaborative Filtering manner. In particular, the GRMF, MLRP
and RMF models use the element-wise, concatenation and dot product operations, re-
spectively, to combine the latent factors of users and venues. Then, these combinations
of latent factors are weighted by using a Deep Neural Network architecture. We eval-
uate the effectiveness of our proposed models in capturing the complex structure of
user-venue interactions in comparison with various MF-based Deep Neural Network
approaches previously proposed in the literature (He et al., 2017; Yu et al., 2016). In
particular, our comprehensive experiments on three public large-scale datasets from
commercial LBSNs demonstrate the effectiveness of the DRCF framework, which are
superior to the current state-of-the-art Deep Neural Network approaches.

• Pairwise Ranking Function & Negative Sampling Approach: Within the DRCF
framework, we propose a novel dynamic geo-based negative sampling approach that
takes the sequential order of users’ checkins as well as the geographical information of
venues into account to effectively sample negative venues, which are used in the pair-
wise loss function. In particular, the pairwise ranking function aims to rank venues that
the users have previously visited higher than the venues they have not visited before,
while our proposed dynamic geo-based negative sampling approach aims to sample
venues that users have never visited before but are located nearby the venues they pre-
viously visited in their sequence of checkins. We conduct experiments to investigate
the effectiveness of our proposed ranking function and our negative sampling approach
in enhancing the quality of personalised ranked list of venues and alleviating the prob-
lem of cold-start users. The experimental results show that our proposed dynamic
geo-based negative sampling approach can significantly improve the effectiveness of
the DRCF framework as well as alleviate the cold-start problem.

Next, our last contribution is to propose a CF-based framework for context-aware
sequential-based top-K venue recommendations. We propose a Contextual Attention Re-
current Architecture (CARA) that effectively captures the users’ dynamic preferences from
the sequential properties of users’ checkins and the contextual information associated with
the successive checkins. Finally, we propose a Contextual Recurrent Collaborative Filtering
framework (CRCF) that aims to generate effective ranked lists of venues to the users based
on their preferences as well as their preferred context. In particular, the CRCF framework is
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built upon both the DRCF framework and the CARA architecture for CAVR. A summary of
our third contribution is described below:

• Contextual Attention Recurrent Architecture: We propose a novel Contextual At-
tention Recurrent Architecture (CARA) for CAVR that leverages both sequences of
user’s observed feedback and the contextual information associated with these se-
quences to capture the users’ static and dynamic preferences. Within the CARA ar-
chitecture, inspired by the gating mechanism of Gated Recurrent Units (GRU), we
propose two refined gating mechanisms: a Contextual Attention Gate (CAG) and a
Time- and Spatial-based Gate (TSG). The CAG controls the influence of the user’s
preferred context and previous visited venues, while TSG controls the influence of the
hidden state of the previous RNN unit based on the time interval and geographical dis-
tances between two successive checkins. In particular, TSG assumes that the shorter
the time interval and geographical distance between two successive checkins, the more
likely the previous checkin influences the users’ dynamic preferences on the next visit
venues. To the best of our knowledge, CARA is the first RNN architecture that can
incorporate multiple types of contextual information associated with the successive
checkins. Our thorough experiments on three large checkin and rating datasets from
commercial LBSNs demonstrate the effectiveness of our proposed CARA architecture
by significantly outperforming various state-of-the-art matrix factorisation approaches
and existing RNN architectures, respectively.

• Contextual Recurrent Collaborative Filtering Framework: We propose a Contex-
tual Recurrent Collaborative Filtering framework (CRCF) that combines the DRCF
framework and the CARA architecture for CAVR. In particular, we first modify the
GRMF, MLRP and RMF models of the DRCF framework to effectively capture the
users’ dynamic and contextual preferences from their sequence of checkins by exploit-
ing the CARA architecture. Then, we modify the pairwise ranking function of the
DRCF framework to take the users’ preferred context into account. We evaluate the
effectiveness of our proposed CRCF framework in comparison with the state-of-the-art
CAVR systems on three large-scale datasets from commercial LBSNs. Experimental
results demonstrate that CRCF can significantly and consistently outperform both the
DRCF framework and the CARA architecture as well as the state-of-the-art CAVR
systems across the three used datasets.
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1.4 Origins of Material

Most of the material presented in this thesis has been published in various international con-
ferences during the course of the PhD programme. The following lists various publications
that form the basis of research detailed in the following chapters:

• Chapter 4: We propose the Social and Textual Regularisation (STReg) technique and
the textual MF-based model (MFw2v) that both exploit word embeddings to effec-
tively model users’ preferences and the characteristics of venues from the textual con-
tent of comments on LBSN. These works were published at CIKM 2016 (Manotum-
ruksa et al., 2016) and ECIR 2017 (?). In addition, we propose Personalised pairwise
Ranking Framework with Multiple sampling Criteria (PRFMC) for venue recommen-
dation that exploits probabilistic models to effectively sample negative examples and
generate personalised venues to users. This work was published in CIKM 2017 (Man-
otumruksa et al., 2017b)

• Chapter 5: We propose the Deep Recurrent Collaborative Filtering framework (DRCF)
for venue recommendation that exploits a Deep Neural Architecture to effectively cap-
ture the users’ static and dynamic preferences from their sequence of checkins. We
also propose the novel dynamic geo-based negative sampling and the pairwise ranking
function that take the sequential order of users’ checkins as well as the geographical
information of venues into account. These approaches were first published at CIKM
2017 (Manotumruksa et al., 2017a). These works were also presented at the Doctoral
Consortium of SIGIR 2017 (Manotumruksa, 2017).

• Chapter 6: We propose the Contextual Attention Recurrent Architecture (CARA),
which leverages the sequences of users’ checkins and contextual information asso-
ciated with the successive checkins to capture the users’ dynamic preferences. This
architecture was first published in SIGIR 2018 (Manotumruksa et al., 2018).

• Chapter 7: We propose the Contextual Recurrent Collaborative Filtering framework
(CRCF) for context-aware venue recommendation, which integrates both the CARA
architecture into the CRCF framework. This framework is in press for a special issue
on Deep Learning for Information Retrieval in the Information Processing and Man-
agement (IPM) journal.
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1.5 Thesis Outline

The remainder of this thesis is organised as follows:

• Chapter 2 introduces important collaborative filtering concepts for Recommendation
Systems (RS) that are used all throughout the thesis. In particular, we begin by describ-
ing two different types of methods that are commonly used in Collaborative Filtering,
which are referred to as memory-based methods and model-based methods. Moreover,
we describe types of users’ feedback in LBSNs and the evaluation of recommendation
systems. Furthermore, we discuss more advanced research areas in Deep Neural Net-
work (DNN) that are used or extended in the later chapters of this thesis to tackle
specific Context-Aware Venue Recommendation (CAVR) tasks.

• Chapter 3 discusses related work in venue recommendation systems previously pro-
posed in the literature. In particular, we review various existing MF-based approaches
that leverage additional information (e.g. the users’ social links and textual content of
comments associated with the users’ ratings) to enhance the prediction accuracy of
the traditional MF models. Then, we describe the state-of-the-art Matrix Factorisation
framework that exploits Deep Neural Network (DNN) to model the user-venue inter-
actions in a Collaborative Filtering manner. Moreover, we review the existing negative
sampling approaches and ranking functions that aim to enhance the effectiveness of
Bayesian Personalised Ranking (BPR) for top-K venue recommendations. Further-
more, we review existing RNN-based factorisation approaches and extensions of RNN
architectures that capture the users’ short-term (dynamic) preferences from the sequen-
tial order of users’ checkins. Finally, we identify the knowledge gap in these existing
approaches that this thesis aims to address.

• Chapter 4 describes our proposed Social and Textual Regularisation (STReg) tech-
nique and our textual MF-based model (MFw2v) that exploit word embeddings to
model the users’ preferences and the characteristic of venues from the users’ textual
comments. In addition, we describe our proposed Personalised Ranking Framework
with Multiple sampling Criteria (PRFMC), which can leverage multiple sources of ad-
ditional information to generate top-K venue recommendations. Then, we investigate
the effectiveness of our proposed STReg technique and MFw2v model in enhancing
the prediction accuracy of the traditional MF model in comparison with existing MF-
based approaches previously proposed in the literature. In addition, we evaluate the
effectiveness of our proposed PRFMC framework for top-K venue recommendations
in comparison with the existing state-of-the-art venue recommendation systems (e.g.
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He et al. (2017); Yuan et al. (2016); Yu et al. (2016)) on three large-scale checkin and
rating datasets from commercial LBSNs.

• Chapter 5 describes our proposed Deep Recurrent Collaborative Filtering (DRCF)
framework that exploits the Deep Neural Network (DNN) architectures to capture the
complex structure of user-venue interactions from their checkin feedback. Our pro-
posed framework consists of three components, namely Generalised Recurrent Ma-
trix Factorisation (GRMF), Multi-Level Recurrent Perceptron (MLRP) and Recurrent
Matrix Factorisation (RMF) models. In particular, GRMF, MLRP and RMF use the
element-wise, concatenation and dot product operations, respectively, to combine the
latent factors of users and venues. We postulate that using these different operations is
more effective in capturing the user-venue interactions than the dot product operation,
which is widely used in MF-based approaches. Moreover, we describe our proposed
pairwise ranking function and dynamic geo-based negative sampling approach that
takes the sequential order of users’ checkins as well as the geographical information
of venues into account to effectively sample negative instances. We hypothesise that
venues that have not been visited by users but are nearby to venues that the users pre-
viously visited are more likely to attract the user’s preferences. Then, we investigate
the effectiveness of the DRCF framework and its components in comparison with var-
ious matrix factorisation approaches on three large-scale checkin and rating datasets
from commercial LBSNs. Furthermore, we empirically evaluate whether our proposed
ranking function and our negative sampling approach can enhance the effectiveness of
the DRCF framework in producing a higher quality personalised ranked list of venues
as well as alleviating the problem of cold-start users.

• Chapter 6 describes our proposed Contextual Attention Recurrent Architecture (CARA),
an extension of the Recurrent Neural Network models, that effectively captures the
users’ dynamic preferences by taking the contextual information associated with the
sequences of users’ checkins into account. The proposed architecture consists of two
gating mechanisms that aim to control the impact of context associated with the suc-
cessive checkins that influences the users’ dynamic preferences. Then, we evaluate the
effectiveness of our proposed architecture in capturing the users’ dynamic preferences
and alleviating the cold-start user problem by comparing with various state-of-the-art
RNN architectures (e.g. (Zhu et al., 2017; Smirnova and Vasile, 2017; Beutel et al.,
2018)).

• Chapter 7 describes our proposed Contextual Recurrent Collaborative Filtering (CRCF)
framework, which is built upon both our proposed Deep Recurrent Collaborative Fil-
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tering framework (DRCF) and Contextual Attention Recurrent Architecture (CARA)
for CAVR. In particular, we propose to integrate the CARA architecture into the DRCF
framework to effectively capture the users’ dynamic preferences from their sequences
of checkins. Finally, we investigate the effectiveness and robustness of the CRCF
framework in comparison with various matrix factorisation approaches on three large-
scale checkin and rating datasets from commercial LBSNs.

• Chapter 8 closes this thesis by highlighting the contributions and the conclusions of
each chapter. We also discuss some possible future directions for our research.
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Chapter 2

Background

In this chapter, we provide an overview of the recommendation systems in general and ba-
sic architectures of deep neural networks that this thesis builds on. Indeed, we describe the
existing work that our proposed framework relies on as a basis for modelling the complex
structure of user-venue interactions in a collaborative filtering manner, generating accurate
top-K venue suggestions using a pairwise ranking function, sampling potential negative in-
stances and modelling sequential properties from the users’ observed sequence of checkins
using deep neural networks. In particular, we first describe the general background of rec-
ommendation systems including the goals and formulations of recommendation systems in
Section 2.1. Then, we provide basic models of collaborative filtering algorithms such as
Matrix Factorisation (MF) and Bayesian Personalised Ranking (BPR) widely used in the lit-
erature (Rendle et al., 2009; Koren et al., 2009) in Section 2.1.1. Although these CF-based
models (i.e. MF and BPR) were not originally proposed for venue recommendations, they
are sufficiently flexible to be applied to the venue recommendation task. From now on, we
explain these models in the context of venue recommendation for reasons of uniformity. The
evaluation methodology and metrics used in recommendation systems are provided in Sec-
tion 2.1.2. Finally, in Section 2.2, we describe basic architectures of deep neural networks
such as Multi-Layer Perceptron (MLP), Convolutional Neural Networks (CNN) and Recur-
rent Neural Networks (RNN), which are used by advanced recommendation approaches,
including those proposed in this thesis.

2.1 Overview of Recommendation Systems

Recommendation Systems are software tools and techniques that provide personalised sug-
gestions for users about a catalogue of items such as products, video, songs, venues, or other
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resources (Resnick and Varian, 1997; Ricci et al., 2015b; Aggarwal et al., 2016). In scenarios
where there is an overwhelming amount of information, the recommendation systems aim
to help the users to explore and select information based on their preferences. Personalised
suggestions generated by the recommendation systems have been shown to be effective in
enhancing users’ satisfaction and improving the revenues of many e-commerce and media
streaming platforms such as Amazon, Netflix, Youtube or Spotify as well as commercial LB-
SNs such as Foursquare and Yelp (Aggarwal et al., 2016; Yang et al., 2015; Narayanan and
Cherukuri, 2016). In general, recommendation systems are built based on a set of multidis-
ciplinary theories including technologies and algorithms from various fields such as Infor-
mation Retrieval, Machine Learning, Human Computer Interaction, Marketing, Economics
and many others (Vargas, 2015). Recommendation Systems are an interesting research topic
that has attached tremendous amount of attention from both industries and academics in the
last decade.

With the emergence of e-commerce and Location-Based Social Networks (LBSN)
platforms, users can explicitly or implicitly provide feedback whether they like or dislike
services/venues provided by the platforms. User feedback can be categorised into two cate-
gories: namely explicit and implicit feedback. With explicit feedback, the users consciously
and explicitly express their preferences for the service/venues in the form of preference as-
sessments such as a simple binary feedback (i.e. like or dislike), numerical ratings (typically
1-5 starts) as well as textual content of comments. In contrast, with implicit feedback (e.g.
click, view and checkin), the users’ preferences in the services/venues are indirectly observed
and estimated by other variables that do not require the active involvement of the users. In-
deed, the type of users’ feedback largely determines the choice of algorithms and evaluation
methodologies for the development of recommendation systems. Next, we describe several
ways in which the recommendation systems can be formulated. The two primary approaches
are described as follows:

• Rating prediction-based approaches: These approaches aim to predict the numerical
rating score (e.g. 1-5 scale rating stars) of a user for a given venue. They require train-
ing data that indicates user-venue ratings to model the users’ preferences for venues.
Traditionally, the user-venue ratings are represented as a matrix Rm⇥n where m and n

are the number of users and venues, respectively. ri,j indicates the observed 1-5 scale
rating feedback by user i on venue j. These ratings are used for training, while the
missing or unobserved values in the user-venue rating matrix R can be predicted using
the trained model. This problem can be referred to as the matrix completion problem
because we have an incompletely specified matrix of values, and the remaining values
are predicted by the trained model.
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• Ranking-based approaches: In practice, users only focus on the top-K recommenda-
tions generated by the e-commerce and social networks platforms. Unlike the rating
prediction-based approaches, the ranking-based approaches are designed to directly
optimise for ranking venues (i.e. focusing on getting the top-ranked venue sugges-
tions that are relevant to users). In general, the ranked list of venue suggestions can
be obtained based on the predicted user-venue rating scores generated by the rating
prediction-based approaches. However, previous works (Rendle et al., 2009; Shi et al.,
2012) have shown that effective ranking-based approaches that aim to generate accu-
rate top-K venue suggestions are more useful than effective rating prediction-based
approaches. We will further discuss this aspect through several empirical studies con-
ducted in Chapter 4

2.1.1 Basic Models of Recommendation Systems

The basic models for venue recommendation systems generally leverage two types of data
to generate effective venue suggestions to the users, which are (1) the user-venue interac-
tions (i.e. user-venue ratings or checkins) and (2) the information about the users and venues
such as the textual content of comments of venues left by the users. Approaches that use the
former are referred to as Collaborative Filtering-based recommendation systems whereas
approaches that use the latter are referred to as content-based recommendation systems (Ag-
garwal et al., 2016).

2.1.1.1 Collaborative Filtering-Based Recommendation Systems

Collaborative Filtering-based (CF) recommendation systems use the collaborative power to
make recommendations, by leveraging the observed user-venue interactions, such as the rat-
ings and checkins of multiple users. The main challenge in designing CF-based approaches
is that the user-venue rating and checkin matrix is generally sparse, because the users only
explicitly rate or checkin a small fraction of the large universe of available venues on LBSNs
(i.e. most of the rating and checkin values in the matrix are unobserved). The basic idea of
the CF-based approaches is that these unobserved ratings/checkins can be estimated based
on the observed ratings/checkins, which are likely to be correlated across various users and
venues (Aggarwal et al., 2016). In particular, CF-based approaches assume that users who
share similar preferences (e.g. rating positively or negatively the same venues or checking in
at similar venues) are likely to prefer similar venues (Koren et al., 2009). From the techni-
cal perspective, CF-based approaches can be categorised into Memory-based (Linden et al.,
2003) and Model-based (Koren et al., 2009) approaches.
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2.1.1.1.1 Memory-based Collaborative Filtering Approaches Memory-based CF ap-
proaches are the earliest collaborative filtering algorithms (Sarwar et al., 2001; Linden et al.,
2003), which are widely used to predict the user-venue ratings. The memory-based ap-
proaches can be categorised into user- and item-based collaborative filtering approaches.
User-based CF approaches leverage the ratings of like-minded users of a target user to pre-
dict the rating of the target venue for the target user. The basic idea is to determine the
like-minded users who have similar preferences to the target user and predict the rating of
the target venue by computing weighted averages of the ratings of the target venue observed
from those like-minded users. For instance, users A and B have similarly rated venues in the
past, then one can use A’s observed rating on a target venue to predict B’s unobserved rating
on the target venue. In contrast, item-based CF approaches first determine a set of venues
that are most similar to a target venue. Then, the ratings of the set of venues, which are pro-
vided by the target user, are used to predict whether the target user prefers the target venue or
not. Intuitively, the user’s rating on a target restaurant can be estimated based on the ratings
of other restaurants specified by the user. Both User- and Item-based CF approaches (e.g.
Linden et al. (2003); Sheugh and Alizadeh (2015)) rely on similarity metrics such as cosine
similarity and Pearson correlation, which have been widely used to determine similar users
and venues, respectively. For example, in the User-based CF approaches, we can estimate
the cosine similarity between two users, A and B, as follows:

similarity(a, b) = cos(a, b) =
ab

k a kk b k (2.1)

where a and b correspond to rows the from user-venue rating matrix of user A and B, re-
spectively. Then the predicted rating score of target venue i for target user u, r̂u,i, can be
estimated as follows:

r̂u,i =

P
j2Pu(i)

similarity(vu, vj) · rj,iP
j2Pu(i)

| similarity(vu, vj) |
(2.2)

where Pu(i) denotes the set of the top-k similar users of target user u, for which ratings of
venue i have been observed and vu and vj are the corresponding rows from the user-venue
rating matrix of user u and j, respectively. The advantages of Memory-based CF approaches
are that they are simple to implement and the resulting recommendations are often easy to
explain. However, the effectiveness of such approaches can be markedly degraded when the
user-venue rating matrix is sparse. An example scenario can be if there are no users whose
preferences are similar to the target user and have rated a target venue, then such an approach
can fail to predict the rating of the target venue for the target user.
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2.1.1.1.2 Model-based Collaborative Filtering Approaches Unlike the Memory-based
CF approaches, the Model-based CF approaches exploit machine learning techniques to au-
tomatically learn parameters in order to capture the users’ preferences from the observed
user-venue interactions. Well known and effective example of the Model-based CF ap-
proaches is Matrix Factorisation (MF), proposed by Koren et al. (2009). Traditional MF-
based approaches assume that users can influence each other if they share similar preferences,
i.e. who rate venues similarly. In particular, the MF-based approaches aim to approximate
the matrix R by finding a decomposition of R into two lower dimensional matrices, namely
the latent factors of users P 2 Rm⇥d and venues Q 2 Rn⇥d where d is the number of latent
dimensions, such that the predicted rating of user u on venue i can be computed as follows:

r̂u,i = pT
u
qi = pu } qi =

dX

k=1

pu,kq̇i,k (2.3)

where } denotes the dot product and pu and qi are the latent factors of user u and venue i,
respectively. Indeed, MF behaves as a linear model of latent factors by assuming that each
dimension of the latent factor is independent and linearly combining those dimensions with
the same weight (He et al., 2017). The objective of MF is to minimise the pointwise loss
between the predicted rating r̂u,i and the observed rating ru,i and hence the loss function of
MF is defined as follows:

L(⇥) = min
⇥

1

2

mX

u=1

nX

i=1

Iu,i · (ru,i � r̂u,i)
2 +

�

2
k⇥k2

F
(2.4)

where Iu,i is an indicator variable that is 1 if user u leaves a rating at venue i, otherwise
0. To avoid overfitting, i.e. P TQ = R, a traditional regularisation technique is added into
Equation (2.4), where � � 0 is a regularisation parameter, ⇥ = {P,Q} denotes all the pa-
rameters to be learnt and kAk2

F
=
qP

m

i=1

P
n

j=i
|ai,j|2 denotes the Frobenius norm of matrix

A 2 Rm⇥n. Next, Stochastic Gradient Descent (SGD) is applied to find a local minimum of
the loss function, by optimising each of the latent factors, pu and qi, while fixing the other,
until convergence.

@L
@pu

=
nX

j=1

Ii,j(ri,j � pT
u
qi)qi + �pu

@L
@qi

=
mX

i=1

Ii,j(ri,j � pT
u
qi)pu + �qi

(2.5)

Previous works by Cheng et al. (2012); Lee and Seung (1999); Griesner et al. (2015); Lian
et al. (2014) have shown that the traditional MF model can accurately predict the users’ rat-
ings on LBSNs. To generate a ranked list of venues to the users, a common approach is to

17



2.1. Overview of Recommendation Systems

rank the venues based on the predicted ratings generated by the MF model. In the next sec-
tion, we discuss why the traditional MF model is not effective for venue recommendations
and then describe an extension of the MF model that focuses on generating effective ranked
list of venues.

2.1.1.1.3 Bayesian Personalised Ranking (BPR) In practice, as mentioned in Sec-
tion 1.1, users only focus on the top-K ranked list of venues, hence effective ranking-based
models that aim to generate accurate top-K venue suggestions are more useful than effective
rating prediction-based models (i.e. MF models) (Rendle et al., 2009). From this point of
view, MF-based approaches are not expected to perform as effectively as learning-to-rank
models for the venue recommendation task (Shi et al., 2012). In addition, explicit feed-
back is relatively sparse in LBSNs, which can degrade the effectiveness of the MF-based
approaches (Hu et al., 2008). To address these challenges, various ranking-based approaches
(e.g. (Rendle et al., 2009)) have been proposed to leverage implicit feedback (e.g. check-
ins), which is more abundant than explicit feedback (Eravci et al., 2016; Preoţiuc-Pietro and
Cohn, 2013; Yu et al., 2014; Li et al., 2016), to generate accurate venue suggestions. In
particular, Rendle et al. (2009) proposed Bayesian Personalised Ranking (BPR), a popular
pairwise ranking-based approach that is widely implemented and extended to leverage im-
plicit feedback to generate the top-K venue recommendations (e.g. (Yuan et al., 2016; Wang
et al., 2016; Zhao et al., 2014; Loni et al., 2016)). Using the venue recommendation ter-
minology, the pairwise ranking criterion of BPR assumes that a user prefers visited venues
observed from their historical checkins over the non-visited ones. In particular, for each user
u 2 U , the likelihood function of BPR, which aims to maximise the probability that user u
will checkin at venue i (ĉu,i) is higher than the probability that user u will checkin at venue
j (ĉu,j), can be expressed as follows:

L(⇥) =
Y

u2U

Y

i2V+
u

Y

j2V�
u

P (ĉu,i � ĉu,j | ⇥) (2.6)

This likelihood function aims to optimise the value of Area Under the ROC Curve (AUC) (i.e.
maximising the probability that venue i 2 V+

u
is ranked higher than venue j 2 V�

u
). To opti-

mise the AUC likelihood function, Rendle et al. (2009) approximated the probability function
P using the sigmoid function �(x) = 1

1+e�x , where x is a numerical value, so that the like-
lihood function is differentiable. Then, the objective function of BPR, J (⇥), which aims to
learn the latent factors of users and venues, ⇥ = {P,Q}, can be formulated as follows:

J (⇥) = argmax
⇥

X

u2U

X

i2V+
u

X

j2V�
u

ln(�(ĉu,i � ĉu,j)) � �p

X

u2U

kpuk2F � �q

X

i2V

kqik2F (2.7)
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In Equation (2.7), regularisation terms are added to avoid overfitting, where �p,�q are reg-
ularisation parameters. Rendle et al. (2009) used matrix factorisation to predict ĉu,i, the
checkin frequency of user u on venue i based on their historical checkins, obtained by cal-
culating the dot product of the latent factors of the user pu and the venue qi (similar to
Equation (2.3)). Finally, Stochastic Gradient Descent (SGD) is applied to find the latent
factors that give a local maximum of the objective function (Equation (2.7)). More details
about the optimisation of BPR is described in Algorithm 2.1. In particular, for each iteration
(Algorithm 2.1, Lines: 6-7), given a random feedback tuple of user u who has visited venue
i, but not visited venue j, (u, i, j) 2 D = {(u, i, j)|i 2 V+

u
^ j 2 V�

u
}, the parameter ✓ 2 ⇥

is updated based on the gradient of its corresponding parameter @J
@✓

, while fixing the others,
until convergence, as follows:

✓(T +1) = ✓(T ) + ⌘(T ) · @J
@✓

(✓(T )) (2.8)

where T is the iteration number. The gradients of the latent factor matrices pu, qi, qj are
calculated as follows:

@J
@pu

= �(ĉu,j � ĉu,i)(Qi �Qj)� �pPu (2.9)

@J
@qi

= �(ĉu,j � ĉu,i)Pu � �qQi (2.10)

@J
@qj

= � � (ĉu,j � ĉu,i)Pu � �qQj (2.11)

Algorithm 2.1: An Optimisation Algorithm of BPR
1 Input: users U , venues V and visited venues V+

u
and unvisited venue V�

u
for each

u 2 U .
2 Output: ⇥ =

�
P 2 Rm⇥d, Q 2 Rn⇥d

 

3 P ⇠ U(0, 1), Q ⇠ U(0, 1)
4 repeat

5 for u 2 U do

6 i draw a random visited venue from V+
u

7 j  draw random unvisited venues from V�
u

8 Compute gradients of pu, qi, qj as per Equations (2.9 - 2.11)
9 Update the above parameters as per Equation (2.8)

10 until convergence;

In this section, we have described the basic Collaborative Filtering-based (CF) ap-
proaches for recommendation systems including the memory-based and model-based CF
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approaches. The memory-based CF approaches predict the rating of a target user on a given
venue based on the cosine similarity between the target user and his/her like-minded users
who rate similar venues, while the model-based approaches (i.e. MF and BPR) aim to max-
imise (minimise) their objective (loss) function based on the users’ observed feedback. In the
following section, we describe several types of evaluation methodology as well as metrics
commonly used to evaluate the effectiveness of recommendation systems.

2.1.2 Evaluation of Recommendation Systems

The evaluation of recommendation systems plays an important role in the information re-
trieval development and has been an active research topic (Ricci et al., 2015a; Cañamares and
Castells, 2018; Bellogı́n et al., 2017). In the past decade, various collaborative filtering-based
approaches have been proposed in previous literature (Koren et al., 2009; Rendle et al., 2009;
He et al., 2017; Ma et al., 2011). Making a decision to select the most appropriate approach
for recommendation systems from a large variety of candidate algorithms is a challenging
task. In general, such a decision is based on experiments by comparing the performance of
a set of candidate algorithms. Furthermore, researchers who propose new recommendation
algorithms must also compare the performance of their proposed algorithms with existing
approaches. In this section, we discuss how to compare different recommendation algo-
rithms based on comparative studies. In particular, we describe several types of evaluation
methodologies commonly used in the recommendation system research communities. We
also review various well-known evaluation metrics proposed in previous literature, which
are used to select the best performing candidate algorithm for a recommendation system.

2.1.2.1 Evaluation Methodology

There are three types of evaluation methodology for recommendation systems: namely user
studies, online and offline evaluations. User studies and online evaluations usually require
real users during the evaluation, although they are conducted in different ways. The main dif-
ference between these two settings is how the users are recruited. With a user study, a small
number of users are asked to interact with the system and asked for feedback before, during
or at the end of the study. An online evaluation is usually conducted on a deployed system
where a large number of real users are using the system. In contrast, offline evaluations do
not require real users and are often easier and less expensive to conduct than those afore-
mentioned two settings. In the following, an overview of these different types of evaluation
methodologies is provided.
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2.1.2.1.1 User Studies Many recommendation systems require the interactions of users
to evaluate their performances. In order to properly evaluate such systems, real users’ in-
teractions with the systems must be collected. A user study is conducted by recruiting a
small group of users to perform particular tasks and interact with the recommendation sys-
tems (Knijnenburg et al., 2012; Sinha et al., 2001). While the users are performing the tasks,
their behaviour data with the systems is usually collected and later analysed. Furthermore,
the users can be asked to fill questionnaires before, during and after the tasks are completed.
A typical example of a user study could be the testing of the influence of a recommendation
algorithm on the browsing behaviour of recommendation systems (e.g. (Amatriain et al.,
2009; Cosley et al., 2003; Miller et al., 2003; Pu and Chen, 2007)). The users may be asked
to check the quality of the ranked list of venues and whether the recommended venues are
relevant to their preferences. It is also possible to collect the users’ interactions such as how
many times a recommendation was clicked as well as their eye movement to track which
part of an interface the users was looking at. The advantage of user studies is that we can
collect a wealth of information about the users’ interactions with the system in a controlled
environment. Various experiments can be conducted to evaluate the performance of different
recommendation algorithms as well as the effectiveness of the user interface of the recom-
mendation system. However, the main disadvantage of user studies is the active awareness of
users about the experiments, which can bias their actions and decisions (Knijnenburg et al.,
2012; Sinha et al., 2001). In addition, it is difficult and expensive to recruit a larger group of
users. In many cases, the recruited users may not be representative of the intended audiences
of the recommendation system. Therefore, the results from such user evaluations cannot be
fully trusted (Ricci et al., 2015a). In this thesis, we will not evaluate the effectiveness of our
proposed approaches using user studies due to its aforementioned disadvantages.

2.1.2.1.2 Online Evaluations Online evaluations bear some similarities with user stud-
ies, except that the users are typically real users in a fully deployed or commercial system.
Therefore, there is less bias from the recruitment process, unlike the user studies, because
the users directly use the system in the natural course of their activities. Hence, these users
can be representative of the general population. With online evaluation, we can evaluate the
comparable effectiveness of recommendation systems by comparing various recommenda-
tion algorithms (Kohavi et al., 2009). In particular, users can be sampled randomly and each
recommendation algorithm can be evaluated with each sample of users. This method is re-
ferred to as A/B testing, and it measures the direct impact of the recommendation algorithms
on the end user. User engagement metrics such as page views, click-through rate (Garcin
et al., 2014) and the economic benefit of the system (Shani et al., 2005) can be used to eval-
uate the effectiveness of such recommendation algorithms. The basic idea in A/B testing is
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to compare two algorithms as follows:

1. Randomly divide the users into two groups (A and B)

2. Deploy one recommendation algorithm for group A and another algorithm for group
B for a period of time, while keeping all other conditions across the two groups (e.g.
user-interface) as similar as possible.

3. At the end of the period of time, compare the performance of the two algorithms using
particular metrics.

However, the main disadvantage of A/B testing is the risk involved in performing evalu-
ations on the real system, as a tested under-performing recommendation algorithms may
affect negatively the experience and satisfaction of real users. Another disadvantage of this
type of evaluation is that we can only get a comparable evaluation between two systems
rather than an absolute evaluation (Kharitonov, 2016).

2.1.2.1.3 Offline Evaluations In the offline evaluations, pre-collected historical data
such as ratings and checkins data collected from real-world commercial LBSNs are used to
evaluate the effectiveness of recommendation systems. Such historical data may also be as-
sociated with additional information such as the textual content of comments associated with
the ratings left by the users and temporal information (e.g. timestamp) about when each user
has rated the item. Using these data, we can simulate the users’ behaviour when interacting
with a recommendation system. An assumption of the offline evaluations is that the user be-
haviour when the data was collected and when the recommendation system is deployed are
similar, so that we can make reliable decisions based on the simulation (Ricci et al., 2015a).
Offline evaluations have been the most widely accepted techniques for recommender system
evaluation because the statistical robustness and explainable quantifications provided by the
offline evaluations (Aggarwal et al., 2016; Vargas, 2015). The main advantage of the use of
historical data is that they do not require real user engagement and thus allow us to compare
various recommendation algorithms at a low cost. Once the data has been collected, it can be
used as a standard benchmark to compare various recommendation systems across various
settings. Furthermore, historical data from various platforms that exhibit difference user’s
behaviour (e.g. rating dataset from Yelp and checkin dataset from Foursquare) can be used
to investigate the generalisation of the recommendation systems. However, unlike the online
evaluations, the main disadvantage of offline evaluation is that it cannot not guarantee the
actual preferences of the users in the future. For instance, the collected data is static and
the current recommendations may not reflect the most appropriate recommendations for the
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future as the actual preferences of the users evolve. Ideally, the goal of the offline evalua-
tions is to filter out under-performing recommendation algorithms, leaving a relatively small
set of candidate algorithms to be tested by the more costly user studies or online experi-
ments (Ricci et al., 2015a). Moreover, we can use offline evaluation to turn the parameters
of the algorithms and then further conduct either user studies or online evaluation to evaluate
the algorithm with the best tuned parameters. In this thesis, we evaluate the effectiveness
of our proposed approaches using the offline evaluations due to its simplicities. In the next
section, we describe various evaluation metrics widely used to evaluate the effectiveness of
recommendation systems.

2.1.2.2 Evaluation Metrics

A large number of evaluation metrics have been proposed to evaluate the effectiveness of
venue recommendation systems (Järvelin and Kekäläinen, 2002; Deshpande and Karypis,
2004; Hurley and Zhang, 2011; Lu et al., 2012). The effectiveness of venue recommenda-
tion systems can be evaluated by measuring the accuracy of predicting rating values (e.g.
with Root Mean Square Error and Mean Absolute Error) or by measuring the accuracy of
the recommended ranked lists of venues (e.g. Precision, Recall and Normalised Discounted
Cumulative Gain). Apart from the accuracy metrics, there are several aspects to evaluate
the recommendation systems such as novelty, serendipity as well as diversity (Hurley and
Zhang, 2011; Lu et al., 2012; Vargas, 2015). However, these metrics are not appropriate to
evaluate the effectiveness of our proposed approaches. In this thesis, we focus on enhancing
the recommendation accuracy of recommendation systems. Indeed, Vargas (2015) argued
that the recommendation systems that are optimised for the accuracy metrics do not neces-
sarily improve the novelty and diversity of the recommendations. Since all of our proposed
approaches are optimised for the accuracy metrics, using the novelty, serendipity and di-
versity metrics to evaluate the effectiveness of our proposed approaches in comparison with
baselines are not appropriate because our proposed approaches as well as the baselines are
optimised for the accuracy metrics.

The accuracy metrics can be categorised into two categories: namely rating prediction-
and ranking-based metrics. Rating prediction-based metrics are used to evaluate the predic-
tion accuracy of users’ ratings on particular venues by recommendation systems. Let ru,i be
the value of the rating of user u on venue i, which is used in the test set, (u, i) 2 E, (i.e.
ground-truth data) and r̂u,i be the predicted rating by a specific training algorithm. Two rat-
ing prediction-based metrics widely used in previous literature (Ma et al., 2011; Guo et al.,
2015b; Hu et al., 2014; Koren et al., 2009) are Mean Absolute Error (MAE) and Root Mean
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Square Error (RMSE) (for both metrics, lower is better), which are calculated as follows:

MAE =

P
(u,i)2E | r̂u,i � ru,i |

| E | (2.12)

RMSE =

vuut
X

(u,i)2E

(r̂u,i � ru,i)2

| E | (2.13)

Ideally, MAE measures the average magnitude of the errors in a set of predictions, while
RMSE is the square root of the average of squared differences between the predicted ratings
and the actual ratings (i.e. errors). Taking the square root of the average squared errors has
some interesting implications for RMSE over the MAE metric. Since the errors are squared
before they are averaged, the RMSE gives a relatively high weight to large errors. In par-
ticular, RMSE tends to disproportionately penalise large errors because of the squared term
within the summation, while MAE does not disproportionately penalise larger errors. In
particular, as RMSE sums up the squared errors, it is more significantly affected by large
error values (i.e. a few severely inaccurate predicted ratings can markedly increase the er-
ror value reported by the RMSE measure). In a scenario where the robustness of prediction
across various ratings is important, RMSE is more appropriate than MAE (i.e. RMSE is
more useful than MAE when large errors are particularly undesirable.). However, the main
disadvantage of RMSE is that it cannot reflect average errors, which can lead to misleading
results (Willmott and Matsuura, 2005; Chai and Draxler, 2014).

In contrast to the rating prediction-based metrics, which focus on the errors between
the predicted ratings and the ground-truth ratings, the ranking-based metrics focus on the
accuracy of the ranks of the top-K venues. Indeed, the evaluation of the quality of rankings
is generally measured by Information Retrieval metrics such as Precision, Recall, Mean Av-
erage Precision (MAP), Normalized Discount Cumulative Gain (NDCG), Mean Reciprocal
Rank (MRR) and Hit Ratio (HR).

Precision is the fraction of the recommended venues that are relevant to the user’s
preference, while recall is the fraction of relevant venues that have been recommended over
the total amount of relevant venues. In particular, precision measures how good our recom-
mended venues are and recall measures how many of the good venues are recommended, in
comparison to how many there are. Both precision and recall are binary metrics (i.e. con-
sidering whether a given item is relevant or not) and the higher is the better. As mentioned
in Section 1, users on the LBSNs only focus on venues ranked at the top positions (Yuan
et al., 2016; Ying et al., 2016; Li et al., 2015), we calculate precision and recall for the first
K venues instead of all venues for each user, denoted as Pre@K and Rec@K, which are
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calculated as follows:

Pre@K =

P
i2Ru

relu(i)

|Ru|
(2.14)

Rec@K =

P
i2Ru

relu(i)P
i2Vrelu(i)

(2.15)

Let Ru be the set of top N recommendations for user u where Ru is the set of top-K rec-
ommendations of user u, relu(i) returns 1 if venue i is relevant to user u, otherwise 0. Both
precision and recall do not consider the actual rank of the correct recommendations among
those recommended. MAP is the mean of the Average Precision (AP) values averaged over
all users. The AP for a user is the average of all precision values calculated after each item
is recommended (Voorhees and Harman, 2003). Note that MAP is a top-heavy measure, i.e.
venues ranked correctly near the top of the ranking contribute more to the MAP performance
than venues ranked near the bottom. MAP is calculated as follows:

MAP =
X

u2U

P
K

k=1 Pre(R(u), k) ·Rec(R(u), k)

| U | (2.16)

where k is a rank of the recommended item R(u) for user u, Pre(R(u), k) is the precision
at cut-off k and Rec(R(u), k) is the change in recall between rank k � 1 and k.

Another ranking-based metric widely used in recommendation systems is the Mean
Reciprocal Rank metric (MRR) proposed by Voorhees et al. (1999) that measures the rank
of the first relevant item in the item list averaged over all users, U , which is calculated as
follows:

MRR =
1

| U |

|U |X

i=1

1

ranki
(2.17)

where ranki is the rank position of the first relevant item for i-th user and U is a set of all
users. However, MRR shows some strange behaviour in some scenarios as reported by Fuhr
(2018). For example, given three users, system A recommends the first relevant venue for
these three users at ranks 1, 2, and 4, respectively, while system B recommends the relevant
venues for each user at rank 2. Therefore, the average of the first relevant venues of system
A is 2.33 (13(1+2+3)), which is worse than that system B does (i.e. rank 2 on the average).
However, the MRR score of system A is 0.58 (13(

1
1 +

1
2 +

1
4))), while the system B’s MRR

score is 0.5 (13(
1
2 +

1
2 +

1
2))), hence system A outperforms system B on MRR and is outper-

formed by system B on the average rank. A simplification of MRR is the Hit Ratio (HR), a
recall-based metric proposed by Deshpande and Karypis (2004), in which the rank reciprocal
weighting is not used, and the value of HR for each user is either 1 or 0. The HR metric has
been commonly used in top-N evaluation for recommendation systems (He et al., 2017; Xi-
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ang et al., 2010; Lee et al., 2011) when the ground-truth data are extracted from the implicit
feedback. In particular, HR is simply the fraction of users for which the relevant item is
included in the recommendation list of length K (i.e. HR@K = 1

|U|
P

u2U Hu, where Hu re-
turns 1 if at least one relevant venue appears in the recommendation of user u, Ru, otherwise
0). Ideally, if a ground-truth item appears in the recommended list, it is deemed to be a hit.

The main disadvantage of MAP and MRR for the evaluation of recommendation sys-
tems is that they are built upon a binary relevance grade (i.e. each recommended item is
considered either relevant or non-relevant). Hence, these metrics are not suitable to evaluate
the effectiveness of recommendation systems when multiple relevance grades are available in
the ground-truth data. For example, venues might be considered in terms of 1-5 rating scales
from explicit feedback or in terms of binary scales from implicit feedback. To evaluate rec-
ommendation systems with multiple relevance grades within ground-truth data, we can use a
Discounted Cumulative Gain (DCG) metric as proposed by Järvelin and Kekäläinen (2002)
to measure the performance of recommendation systems based on the graded relevant of the
recommended venues, which is calcuated as follows:

DCG =
KX

i=1

2reli

log2 i+ 1
(2.18)

where reli represents the ground-truth relevance score of the candidate venue at the position
i, where reli = 1 if the candidate venue is relevant, otherwise reli = 0. Then, the normalised
NDCG (NDCG) is calculated as follows:

NDCG =
DCG

IDCG
(2.19)

where the ideal DCG (IDCG) is a score that would have been achieved by the perfect rank-
ing according to the ground-truth data.

In this section, we have described a number of evaluation metrics that have been widely
used in the literature to evaluate the effectiveness of recommendation systems (Järvelin and
Kekäläinen, 2002; Deshpande and Karypis, 2004; Hurley and Zhang, 2011; Lu et al., 2012).
Later in Chapters 4-7, we use these metrics to evaluate the effectiveness of our proposed
approaches in comparison with various existing venue recommendation baselines. In the
next section, we describe several basic architectures of Deep Neural Networks such as Multi-
Layer Perceptron, Convolutional Neural Networks and Recurrent Neural Networks.

26



2.2. Basic Architecture of Deep Neural Networks

2.2 Basic Architecture of Deep Neural Networks

Deep Neural Network (DNN) models are popular machine learning techniques that simulate
the mechanism of a human nervous system, which are referred to as neurons. Each neuron
is connected to each other in order to transfer information and learn complex correlation of
given data. Previous literature have been shown to be promising and impressive successes
of DNN models have been observed in domains such as speech recognition, computer vision
and natural language processing (e.g. (He et al., 2016a; Zhang et al., 2014a; Kim, 2014)) as
well as recommendation systems (e.g. (Yu et al., 2016; He et al., 2017; He and Chua, 2017;
Cheng et al., 2016; Liu et al., 2016b). In this section, we provide an overview of the basic
architecture of various DNN models including Multi-Layer Perceptron (Section 2.2.1), Con-
volutional Neural Networks (Section 2.2.2) and Recurrent Neural Networks (Section 2.2.3).

2.2.1 Multi-Layer Perceptron (MLP)

In this section, we describe single-layer and multi-layer neural networks. In a single-layer
network, a set of inputs is directly mapped to an output by using a linear function (Aggarwal,
2018, p.5). This simple architecture of neural network is also referred as a perceptron, which
is defined as follows:

ŷ = a(Wx+ b) (2.20)

where a() is called the activation function. In a Multi-Layer Perceptron (MLP), the percep-
trons are arranged in multiple layers and they are connected to each other (i.e. the output of
perceptron in the first layer is the input of perceptron in the next layer), which is defined as
follows:

ŷMLP = aL(WL(...a1(W1x+ b1)) + bL) (2.21)

where L is a number of layers of MLP. Note that different types of activation functions such
as the sigmoid and hyperbolic tangents may be used in different layers. The choice of activa-
tion function plays an crucial role for neural network design. For example, if it is a regression
task where the predicted values are real numbers, a linear activation function (f(x) = ax,
where a is a numerical parameter) is preferred (Aggarwal, 2018, p. 11-14). Unlike the lin-
ear activation, nonlinear activation functions can map the outputs from an arbitrary range
to bounded outputs. For example, the sigmoid activation (f(x) = 1

1+e�x ) outputs a value
between 0 and 1, which is suitable for computing probabilities (Aggarwal, 2018, p. 11-14).
The hyperbolic tangent (tanh) function is similar to the sigmoid function, except that it out-
puts a value between -1 and 1. The tanh function is preferable to the sigmoid function when
the outputs of the computations are desired to be both positive and negative.
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In a single-layer neural network, the training process is relatively straightforward be-
cause we can apply the Stochastic Gradient Descent (SGD) technique to update the parame-
ters of the network, W1, b1, ...,WL, bl. However, for multi-layer networks, the loss function
is a complicated composition function of the parameters in earlier layers. Therefore, to
compute the gradients of MLP, a back-propagation algorithm that exploits the chain rule
of differential calculus is needed. In particular, the back-propagation consists of two main
phases, namely the forward and backward propagation phases. Given training instances, the
forward phase computes the predicted values and the local derivatives with respect to the
weights of all layers. Then, in the backward propagation phase, we accumulate the products
of these local gradients over all layers in a backward direction (i.e. from the output layer to
the first layer) in order to update the weights of each layer with respect to the local gradi-
ents. Later, in Chapter 5, we will demonstrate how to exploit MLP to effectively capture
the complex structure of the user-venue interactions in order to enhance the quality of venue
recommendations.

The main advantage of MLP over a single-layer neural network is that MLP can effec-
tively capture the dependencies between each dimension of input vector. In addition, with
the variety of activation functions of each layer in Equation (2.21) (i.e. a1...al) MLP can
map the outputs of previous layers from an arbitrary range to bounded outputs, which are
suitable for computing probabilities (Skansi, 2018). Note that MLP supports both regression
and classification problems by using appropriate loss function and activation function. For
example, sigmoid function and binary cross entropy loss function are appropriate for binary
classification problem, while linear function and mean square error loss function are appro-
priate for regression problem. However, MLP is not suitable to model the dependencies
between each dimension of 2D and 3D matrix inputs. In the next section, we describe the
Convolutional Neural Networks that are suitable for such matrix inputs.

2.2.2 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) are biologically inspired networks that are used in
computer vision for image classification and object detection (Aggarwal, 2018, p. 40-44).
CNN are originally designed to work with grid-structured inputs, which aim to capture spa-
tial relationship in local regions of the grid. The most obvious example of grid-structured
data is a 2-dimensional image. This type of data also exhibits spatial relationship between
the regions because adjacent spatial locations in an image often have similar colour values
in their individual pixels. Apart from image processing tasks, CNN have also been applied
to text classification problems in the literature (e.g. (Kim, 2014; Yang et al., 2016; Zhang

28



2.2. Basic Architecture of Deep Neural Networks

Figure 2.1: The architecture of Recurrent Neural Networks. This figure is inspired from
Teow (2017)

et al., 2016)). In recommendation systems, various approaches (Tang et al., 2015; He and
McAuley, 2016; Zheng et al., 2017)) have been proposed to exploit CNN to leverage tex-
tual information and images to enhance the accuracy of rating prediction and the quality of
recommendations. For simplicity, we describe the basic architecture of CNN using the digit
handwriting image classification problem as an example scenario where the input of the CNN
is 32x32 matrix and the task is to predict a digit of a given image (i.e. a multi-class classi-
fication problem). The basic architecture of a CNN is illustrated in Figure 2.1. A CNN is
relatively similar to MLP, except that the operations in its layers are spatially organised with
sparse connections between layers. The architecture of a CNN consists of four main types
of layers including convolution, pooling, fully-connected and prediction layers. The convo-
lution layer maps each region of the given image into the smaller matrix (i.e. from 32x32
to 16x16 feature map) using a kernel/filter. Then, each feature map is passed to the pooling
layer, which essentially downsample a number of neurons in the feature map based on the
pooling operation (e.g. max or min pooling). Next, the pooled feature maps are passed to the
fully-connection and output layer, sequentially. The prediction layer is often fully connected
and maps in an application-specific way. For example, with the classification problem, the
softmax activation can be deployed.

2.2.3 Recurrent Neural Networks (RNN)

All of the aforementioned neural architectures such as the Multi-Layer Perceptron (MLP)
and the Convolutional Neural Networks (CNN) were originally designed for multi-dimensional
data in which the attributes are largely independent of one another. However, these neural
architectures are not suitable for certain data types such as time-series and text data, which
exhibit sequential patterns. For example, in time-series data (e.g. currency exchange rates
and house prices), the values on successive timestamps are closely related to one another. If
one uses the values of these timestamps as independent features, then the information about
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Figure 2.2: The architecture of Recurrent Neural Networks

the relationships among the values (i.e. sequential properties) might be missing. Recurrent
Neural Network (RNN) models are neural networks that take information about the previ-
ous neural network unit into account. RNN models are suitable and have been incredibly
successful when applied to problems where the input data on which the predictions are to
be made is in the form of a sequence (e.g. a sequence of words for question answering or
a sequence of checkins for next venue prediction) (Yu et al., 2016; Beutel et al., 2018; Liu
et al., 2016c; Donkers et al., 2017; Smirnova and Vasile, 2017). In the following, we describe
the basic architecture of three popular recurrent neural networks: namely traditional RNN,
Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU).

2.2.3.1 Architecture of Traditional Recurrent Neural Networks

The basic architecture of a traditional recurrent neural network is illustrated in Figure 2.2.
The illustration shows a recurrent unit R (a rectangle) and the arrows between each unit R
to indicate sequential information that is passed to the successive units. Circle x⌧ and h⌧

indicate the input and output of the recurrent unit at time step ⌧ , respectively. In particular,
given an input vector x⌧ 2 Rd at each time step ⌧ , where d is the dimensions of the input
vector, the output of the recurrent unit, h⌧ is calculated as follows:

h⌧ = �(Wx⌧ +Rh⌧�1) (2.22)

where h⌧�1 is the output of previous recurrent unit, �(x) is the sigmoid function and W is
a transition matrix and R is a recurrent connection weight matrix that captures sequential
signals between every two adjacent hidden states h⌧ and h⌧�1.

The main advantage of RNN models is that they take the inputs from the previous units
into account, which might capture useful sequential properties. However, traditional RNN
models usually suffer from the vanishing gradient problem when the models are trained
on long sequences of inputs (Hochreiter and Schmidhuber, 1997; Chung et al., 2014). In
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Figure 2.3: The architecture of Long Short-Term Memory

particular, as the gap between the recurrent units1 increase (i.e. recurrent unit ⌧ and ⌧ + 6 in
Figure 2.2), RNN models become unable to learn to connect the information. Note that the
vanishing gradient problem is a common problem in neural network parameter updates where
successive multiplications of the matrix W of successive recurrent units is not stable (see
Equation (2.22)). This can cause either the gradient to disappear during the back-propagation
or gradient values are fluctuated.

2.2.3.2 Long Short-Term Memory (LSTM)

As discussed in Section 2.2.3, traditional RNN models usually suffer from the vanishing
gradient problem when dealing with long sequences of inputs (Hochreiter and Schmidhuber,
1997; Chung et al., 2014). To alleviate the vanishing gradient problem of the traditional RNN
models, Hochreiter and Schmidhuber (1997) introduced Long Short Term Memory networks
(LSTM), which are an extension of the traditional RNN models, which uses gating mech-
anisms to learn long- and short-term dependencies in long sequences of inputs. Figure 2.3
illustrates the architecture of LSTM. The green and blue circles denote the input and output
of each LSTM unit, respectively. An important component of LSTM is the cell state, C⌧ ,
the top red horizontal line running through the LSTM units. The cell state can be seen as a
long-term memory that retains at least a part of the information from previous LSTM units.
The gating mechanism of each LSTM unit consists of a forget gate (f), an input gate (i), a
candidate cell state (c) and an output gate (o), denoted as red circles inside the LSTM unit.
These gates carefully regulate the flow of information to the cell state. The first step of the
gating mechanism is to decide what information can be ignored or throw away from the cell

1The gap between two recurrent units is a number of recurrent units located between those two recurrent
units.
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state. This decision is made by the forget gate as follows :

f⌧ = �(Wfx
⌧ +Rfh⌧�1 + bf ) (2.23)

where W,R, b are the transition matrix, the recurrent matrix and the corresponding bias pa-
rameters and �() is the sigmoid function. The inputs of the forget gate are input x⌧ at current
unit at time step ⌧ and hidden state of previous unit h⌧ . The output of the forget gate is
between 0 and 1, where 1 represents “completely keep the current input and the hidden state
from previous unit”, while 0 represents “completely ignore them”. The next step is to decide
what new information will be memorised in the cell state. This step requires the input gate
and candidate cell state, which are defined as follows:

i⌧ = �(Wix
⌧ +Rih⌧�1 + bi) (2.24)

ec⌧ = tanh(Wcx
⌧ +Rch⌧�1 + bc) (2.25)

where tanh() is a hyperbolic tangent function. Then, the previous cell state, C⌧�1, can be
updated into the new cell state, C⌧ , based on the outputs of the forget and input gates as well
as the candidate cell state, which is defined as follows:

C⌧ = f⌧C⌧�1 + i⌧ec⌧ (2.26)

Ideally, the values of new cell state C⌧ are determined by the candidate cell state ec⌧ and the
cell state of the previous LSTM unit C⌧�1, while the influences of ec⌧ and C⌧�1 are controlled
by the input gate i⌧ and forget gate f⌧ , respectively. Finally, the output of the current LSTM
unit at time step ⌧ , h⌧ is calculated based on the updated cell state, C⌧ and the output of the
output gate, which are defined as follows:

o⌧ = �(Wox
⌧ +Roh⌧�1 + bo) (2.27)

h⌧ = o⌧ · tanh(c⌧ ) (2.28)

Using the gating mechanisms that include the forget gate, input gate, candidate cell state
and output gate, LSTM can effectively control the influences of the hidden state of previous
LSTM unit, and hence can alleviate the vanishing gradient problem when dealing with long
sequences of inputs (Hochreiter and Schmidhuber, 1997). Recently, LSTM has been suc-
cessfully applied in many areas where the inputs are long such as text classification (Zhou
et al., 2015; Lee and Dernoncourt, 2016; Zhou et al., 2016). In the following section, we
describe an extension of LSTM that can alleviate the vanishing gradient problem, while has
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Figure 2.4: The architecture of GRU units

less parameters than the LSTM.

2.2.3.3 Gated Recurrent Units (GRU)

The Gated Recurrent Unit (GRU) proposed by Chung et al. (2014) can be viewed as a simpli-
fication of the LSTM, which does not require the cell states. Unlike LSTMs, which directly
use the forget and output gates to control the amount of information changed in the hidden
state, the GRU unit uses a single reset gate to achieve the same goal. However, the basic
idea of the GRU is relatively similar to that of LSTM, in terms of how it partially resets the
hidden states. Although GRU is a closely related simplification of LSTM, it should not be
seen as a special case of LSTM. Comparisons of LSTM and GRU have been conducted in
(Chung et al., 2014; Jozefowicz et al., 2015), which both showed that these two models are
similar in performance, and the relative performance seems to depend on the task at hand.
Indeed, the main advantage of GRU over LSTM is its memory and training efficiency (i.e.
less parameters) as well as its ease of implementation. In addition, GRU is more effective
than LSTM when the training data is not largely available because of a smaller parameter
footprint (Chung et al., 2014; Greff et al., 2017), although LSTM would be preferable with
an increased amount of training data. Figure 2.4 illustrates the architecture of GRU units.
Similar to LSTM, GRU consists of gating mechanisms that control the influence of the hid-
den state of the previous unit h⌧�1 in the current unit at time step ⌧ . Indeed, GRU can learn
to ignore the previous units if necessary. The gating mechanism of GRU unit is defined as
follows:

z⌧ = �(Wzx
⌧ +Rzh⌧�1 + bz) (2.29)

r⌧ = �(Wrx
⌧ +Rrh⌧�1 + br) (2.30)

eh⌧ = tanh(Wx⌧ +R(r⌧ � h⌧�1)) (2.31)
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h⌧ = (1� z⌧ )h⌧�1 + z⌧eh⌧ (2.32)

where z⌧ , r⌧ are update and reset gates, respectively, and eh⌧ is a candidate hidden state.
respectively. R is a recurrent connection weight matrix that captures sequential signals be-
tween every two adjacent hidden states h⌧ and h⌧�1, using �, which denotes the element-
wise product. Later, in Chapter 3, we will review a number of existing approaches proposed
in the literature (e.g. Zhu et al. (2017); Smirnova and Vasile (2017); Beutel et al. (2018))
that exploit the GRU units to model the users’ preferences from their sequences of observed
feedback in order to improve the quality of context-aware venue recommendations.

2.3 Conclusions

In this chapter, we have provided a summary of the key concepts of recommendation systems
and described some basic architectures of deep neural networks that this thesis builds upon.
In particular, in Section 2.1, we described the general background of recommendation sys-
tems including the goals and formulations of recommendation systems, while Section 2.1.1
detailed collaborative filtering algorithms. In Section 2.1.2, we discussed evaluation in rec-
ommendation systems, including the evaluation methodologies and metrics used for eval-
uating the effectiveness of recommendation systems that we use in later chapters. Finally,
Section 2.2 described the basic architectures of deep neural networks such as Multi-Layer
Perceptron (MLP) and Recurrent Neural Networks (RNN), which will be used in later tech-
nical chapters. In the next chapter, we discuss related work that exploits both collaborative
filtering techniques and deep neural networks for venue recommendation system. We also
identify the knowledge gap of these related work that this thesis addresses.
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Chapter 3

Related Work

3.1 Introduction

In the previous chapter, we provided an overview of recommendation systems including ba-
sic collaborative filtering approaches and the used evaluation methodologies as well as basic
architectures of deep neural networks that we build on in this thesis. In this chapter, we
review related works on venue recommendation systems that have been previously proposed
in the literature. We first review several Matrix Factorisation-based approaches that lever-
age additional information such as the users’ friendships, the geographical information of
venues and the textual content of comments to enhance the user-venue rating prediction ac-
curacy. Then, we describe the state-of-the-art Matrix Factorisation framework that exploits
Deep Neural Networks (DNN) to model the user-venue interactions for the user-venue rating
prediction task. On the other hand, as mentioned in Section 1.1, users in LBSNs only focus
on the top-K ranked list of venues for obtaining recommendations, and hence the MF-based
approaches that aim to minimise Root Mean Square Errors between the predicted ratings
and the observed ratings may not provide an effective top-K ranked list of venues. We dis-
cuss the existing negative sampling approaches and ranking function that aim to enhance
the effectiveness of Bayesian Personalised Ranking (BPR) for effective top-K venue recom-
mendations. Next, we provide details of existing RNN-based factorisation approaches that
exploit RNN models to capture the users’ short-term (dynamic) preferences for the sequential
order of checkins. Finally, as mentioned in Section 1.1, the users’ current context (e.g. their
location and time of the day) play an important role in Context-Aware Venue Recommenda-
tion (CAVR), as it can influence the users’ decision to visit venues. We discuss extensions of
the traditional GRU architectures proposed in previous works that enable the GRU units to
incorporate contextual information associated with the sequence of checkins for CAVR. Note
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that, although some of these factorisation-based approaches, negative sampling approaches
and recurrent architectures were not originally proposed for CAVR, they are sufficiently
flexible to be applied to the CAVR task. For consistency, in this section, we explain these
approaches in the domain of CAVR. Apart from the description of these approaches, in this
chapter, we also discuss their advantages and disadvantages and thereby identify a series of
limitations of these approaches that we aim to address in the later chapters. The outline of
this chapter is detailed as follows:

• Section 3.2 formalises the problem statement of rating prediction, top-K venue rec-
ommendation and context-aware venue recommendation. This section also introduces
notations used in this chapter and the remaining chapters of this thesis.

• Section 3.3 reviews the MF-based approaches previously proposed in the literature (Hu
et al., 2014; Jin et al., 2016; Ma et al., 2011) that leverage additional information,
such as social and textual information, to enhance the prediction accuracy of a tradi-
tional MF model. These MF-based approaches can be categorised into two categories:
namely regularisation techniques (Section 3.3.1) and factorisation approaches (Sec-
tion 3.3.2). We also identify the limitations of these MF-based approaches.

• Section 3.4 discusses the key limitation of traditional MF-based approaches, identified
by previous work (He et al., 2017), which rely on the dot product of latent factors
to generate the venue recommendations. Then, we review the Neural Matrix Factori-
sation framework (NeuMF) proposed by He et al. (2017) that aims to address this
key limitation of the traditional MF-based approach. In particular, the NeuMF frame-
work consists of two models: namely the Generalised Matrix Factorisation (GMF)
(Section 3.4.3) and the Multi-level Perceptron (MLP) (Section 3.4.4) models that both
exploit DNN to capture the complex structure of user-venue interactions. Thereafter,
we identify the limitations of the NeuMF framework in Section 3.4.5

• Section 3.5 reviews existing negative sampling approaches and pairwise ranking func-
tions for BPR proposed in previous literature (Wang et al., 2016; Yuan et al., 2016;
Zhao et al., 2014). Their proposed negative sampling approaches leverage additional
information such as the geographical information of venues and social links between
the users of LBSNs to enhance the effectiveness of BPR for venue recommendation.
Section 3.5.3 discusses the limitations of these approaches.

• Section 3.6 describes the existing RNN-based factorisation approaches (Yu et al.,
2016; Zhang et al., 2014b; Tang et al., 2017) that combine RNN models and the tra-
ditional MF-based approach to capture the sequential properties of users from their
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Table 3.1: Summary of venue recommendation tasks

Task Input Output
Rating prediction user u and venue i predicted rating r̂u,i
Top-K venue recom-
mendation

user u ranked list of venues

Context-aware venue
recommendation

user u and context such as his/her
current geographical location, time
of the day and historical sequence
of checkins su,t

ranked list of venues

checkin sequences. Next, in Section 3.6.2, we discuss the limitation of traditional
GRU architecture identified by previous works (Zhu et al., 2017; Beutel et al., 2018;
Smirnova and Vasile, 2017) and their proposed extensions of the GRU architecture
that incorporate the contextual information associated with sequences of checkins for
CAVR. Section 3.6.3 summarises a number of elicited limitations of these RNN-based
factorisation approaches and the extensions of GRU architectures.

• Section 3.7 summarises all the elicited limitations of the approaches described in this
chapter and discuss how we address these limitations in the later chapters of this thesis.

• Section 3.8 provides concluding remarks for this chapter.

3.2 Problem Statement and Notations

In this section, we describe the problem statement of several venue recommendation tasks
as well as introduce the notations used in this thesis. As mentioned in Section 2.1.1.1, venue
recommendation can be categorised into two tasks: namely user-venue rating prediction and
top-K venue recommendation. Table 3.1 summarises these tasks in details. The task of rating
prediction is to predict the rating the user might give to a given venue. Let U and V denote
the set of all users and venues, respectively, and R 2 Rm⇥n be the explicit user-venue rating
matrix, where m = |U| and n = |V| are the number of users and venues, respectively. ru,i 2
R indicates the explicit rating feedback by user u 2 U on venue i 2 V , typically 0 < r  5.

In contrast to the rating prediction task, the top-K venue recommendation task aims to
generate a ranked list of venues that a user might prefer to visit based on his/her historical im-
plicit feedback (e.g. previously visited venues from checkin data). As described in Table 3.1,
the top-K venue recommendations and context-aware venue recommendations are similar ex-
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Table 3.2: List of notations used in this thesis.

Notation Meaning
R user-venue rating matrix
C users’ checkin matrix
F users’ social link matrix
U set of users
V set of venues
V+
u

list of venues that user u has visited
Su sequence of checkins of user u
ru,i rating of user u on venue i
cu,i,t checking of user u on venue i at time t
su,t sequence of checkins of user u up to time t
latj, lngi latitude and longitude of venue i
P the latent factors of users
pu, �uu the latent factors of user u projected from P
Q the latent factors of venues
qi �vi the latent factors of venue i projected from Q
�t the latent factors of time
⌧ particular time step of the recurrent unit
h hidden state
�t the time interval between two checkins
�g the geographical distance between two checkins
� the sigmoid activation
tanh the tangent activation
� the dot product operation
⌦ the element-wise product operation
� the concatenation operation

cept that the context-aware venue recommendation task takes into account the users’ context,
while the top-K venue recommendation task does not. Let C 2 Rm⇥n be the implicit users’
checkin matrix, where each entry cu,i,t denotes a user u 2 U who has checked-in into venue
i 2 V at timestamp t. Note that cu,i,t = 0 means that user u has not made a checkin at venue
i at time t. Social links are represented as a matrix F 2 Rm⇥m where Fu is the set of user
u’s friends. Let V+

u
denote the list of venues that the user u has previously visited, sorted by

time and let Su denote the set of sequence of checkins (e.g. Su = {[c1], [c1, c2], [c1, c2, c3]}).
su,t =

�
c = (u, i, t̀) 2 C | t̀ < t

 
⇢ Su denotes the sequence of checkins of user u up to

time t. We use s⌧
u,t

to denote the ⌧ -th checkin in the sequence. t⌧ denotes the timestamp of
⌧ -th checkin. lati, lngi denote the geographical position, in terms of latitude and longitude
of checkin/venue i.
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3.3. Extensions of Matrix Factorisation Models

3.3 Extensions of Matrix Factorisation Models

Matrix Factorisation (MF) is a collaborative filtering-based approach widely used to predict
ratings that users give to venues (Hu et al., 2014; Cheng et al., 2012; Yuan et al., 2016). As
described in Section 2.1.1.1.2, traditional MF models assume that users who share similar
preferences (i.e. rating positively or negatively the same venues) are likely to prefer similar
venues. Such MF models usually treat all users equally, i.e. the predicted rating of a target
user for a given venue can be influenced by any other user, as long as they share similar pref-
erences, and regardless of their relationship. However, when the users’ rating data is sparse
in nature, i.e. users/venues have very few ratings, the rating prediction accuracy of tradi-
tional MF models can be significantly degraded. To alleviate the sparsity problem, various
MF-based approaches have been proposed to incorporate additional information such as the
users’ friendships (Ma et al., 2011; Guo et al., 2015b; Ma, 2014; Li et al., 2016) and textual
content of comments the users leave for venues (Hu et al., 2014; Jin et al., 2016; Chen et al.,
2015; Tang et al., 2015). Indeed, those MF-based approaches can be categorised into two
categories: namely regularisation techniques and factorisation approaches. In this section,
we review both regularisation (Section 3.3.1) and factorisation (Section 3.3.2) approaches
that incorporate additional information to improve the accuracy of the rating prediction of
traditional MF models.

3.3.1 Social Regularisation Technique

As mentioned in Section 2.1.1.1.2, the traditional regularisation technique based on the
Frobenius norm (Equation (2.4)) is commonly used to ensure that the traditional MF models
are simple and to avoid over-fitting. Ideally, the traditional regulariser aims to control the
magnitudes of the latent factors of users P and venues Q such that P and Q would give a
good approximation of user-venue rating matrix R without being too complex. Ideally, the
loss of MF in Equation (2.4) will increase if the Frobenius norm of the latent factors is large.
Another advantage of the regularisation technique is to alleviate the sparsity problem of MF
models. Previous works have shown that when the users’ rating data is sparse in nature, i.e.
users/venues have very few ratings, the rating prediction accuracy of traditional MF models
can be significantly degraded (Ma et al., 2011; Guo et al., 2015b; Hu et al., 2014; Jin et al.,
2016). To alleviate the sparsity problem, Ma et al. (2011) proposed a Social Regularisation
technique (SoReg) that incorporates social information (e.g. users’ friendships) to enhance
the prediction accuracy of MF models. They assumed that users are likely to be influenced
by their friends who rate similar venues with similar scores. In particular, SoReg aims to
minimise the distance between latent factors of target user pu and his/her friends pf (i.e.
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3.3. Extensions of Matrix Factorisation Models

if the latent factors of two users are close in the latent space, they are likely to get similar
recommendations). Ma et al. (2011) introduced their proposed SoReg technique into the
traditional MF regularisation (Equation (2.4)) as follow:

L(⇥)
SoReg

= L(⇥)
MF

+
↵

2

mX

u=1

X

f2F(u)

pcc(u, f)kpu � pfk2F (3.1)

where F(.) is the set of friends of user u, ↵ is a parameter that controls the influences of the
SoReg technique. pcc() estimates the similarity between the ratings of two users using the
Pearson Correlation Coefficient (PCC), calculated as follows:

pcc(u, f) =

P
i2Vr(u)\Vr(f)

(ru,i � ru) · (rf,i � rf )

r P

i2V+
u \V+

f

(ru,i � ri)2 ·
r P

i2V+
u \V+

f

(rf,i � rf )2
(3.2)

where V+
u

are the venues that user u has rated and ru is his average rating. This regularisa-
tion ensures that friends who have rated venues similarly (e.g. pcc(u, f) = 0.9) are predicted
to give similar ratings to other venues (i.e. pT

i
V ⇡ pT

f
V ). Following Ma et al. (2011), we

employ a mapping function f(x) = (x+1)
2 to bound the range of the PCC score into [0, 1].

There are three benefits to the SoReg technique. First, similar to the traditional regular-
isation technique, SoReg can avoid over-fitting and obtaining a factorisation model that is too
complex. Second, SoReg ensures the latent factors of similar friends are close to each other
in the latent space, whereas latent factors of non-similar friends are allowed to differ. Finally
SoReg indirectly models the propagations of tastes (i.e. if user u has a friend f and user f
has a friend g, suppose g is not a friend of u, it actually indirectly minimises the distance
between the latent factors of pu and pg. However, we argue that users are not only influenced
by their friends who visit similar venues and provide similar ratings to that venues, but are
also influenced by friends who share similar tastes, which can be extracted from the explicit
textual comments they have left for each venue. An intuitive scenario for this assumption
could be that u, f and g are friends who all enjoy a visit to a restaurant. u and f are im-
pressed by the service and quality of food at the restaurant, but g is only impressed by the
setting of the restaurant. Estimating user similarity using Pearson Correlation Coefficient
(PCC), as exploited by the SoReg technique (Equation (3.1)), can only capture the similarity
of the users based on their ratings (Limitation M1). However, in the scenario mentioned
above, although u, f and g all enjoy visiting the restaurant and have positive ratings about
the restaurant, the taste of g is quite different from the others (i.e. he prefers the setting of
the restaurant over the service and food). In particular, the limitation of the SoReg technique
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can be defined as follows:

Limitation M1: There is a disadvantage of the SoReg technique that still relies on the
Pearson Correlation Coefficient to estimate the similarity between users.

Later in Chapter 4, we propose a novel Social and Textual Regularisation technique (STReg)
that incorporates both social and textual information to address Limitation M1.Moreover,
although social information such as the users’ friendships can alleviate the sparsity problem
and enhance the prediction accuracy of traditional MF models, such social information may
not be available due to privacy concerns. In the next section, we describe previous works
(e.g. (Hu et al., 2014; Jin et al., 2016)) that improve the quality of the rating prediction of the
traditional MF model by incorporating the textual content of comments the users left on the
venues they visited.

3.3.2 Textual-based Matrix Factorisation Models

As mentioned in Chapter 1, the explicit textual comments associated with ratings on venues
left by users can provide insights about why users rated a given venue positively or nega-
tively, while also reflecting the characteristics of each venue. Indeed, the users’ ratings can
be influenced by several aspects: namely the characteristics of venues and users’ preferences.
For example, with respect to the rating scale range from 1 to 5 stars (where 1 star denotes
that the user does not like a venue and 5 stars are the most positive ratings), the reason that
a user rated a restaurant 4 stars rather than 5 stars could be that he/she was impressed by the
food and price but disappointed by the service.

Apart from the social information such as the friendships between users, the explicit
textual comments associated with the ratings have been leveraged by previous works to en-
hance the prediction accuracy of traditional MF models (Hu et al., 2014; Huang et al., 2014;
Fu and Li, 2015; Musto et al., 2015; Ozsoy, 2016; Musto et al., 2016; Jin et al., 2016). For
instance, Hu et al. (2014) showed that by incorporating the comments left by the users on
venues, a more effective rating prediction MF model can be achieved. They assumed that
terms that occur in the comments for venue i provide a better description about the venue
than the learned latent factors qi (as obtained in Equation (2.3). To incorporate such the
textual contents of comments into the traditional MF model, these terms have to be mapped
into the d-dimensional vector space. In particular, inspired by the topic-level decomposition
of textual documents proposed by Chen et al. (2012), Hu et al. (2014) decomposed the la-
tent factors of a venue qi in Equation (2.3) into a combination of latent factors of terms that
occurred in the comments of venue i and modified the prediction function of traditional MF
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model (Equation (2.3)) as follows:

r̂u,i = pT
u

0

@ 1

|Mvi |
X

mu,i2Mvi

X

t2mu,i

qmt

1

A (3.3)

where Mvi is the set of comments the users left for venue i, t is a term that occurs in comment
mu,i and qmt 2 Rd are the latent factors of the comment’s term t. Although the Comment-
based MF model (CMF) proposed by Hu et al. (2014) can alleviate the sparsity problem for
venues that have few ratings by leveraging the textual content of comments, the CMF model
lacks flexibility. First, the CMF model requires the latent factors of the comment’s terms qmt

to be in the same space as the latent factors of venue qi (i.e. the dimension d of two latent
factors, qu and qmt , need to be equal). However, we argue that those two latent factors do
not necessarily share the same space due to different nature of venues and comments. In-
tuitively, similar venues can be recognised by the services provided by those venues, while
similar comments can be recognised by terms appearing in the comments and their seman-
tics. Therefore, the latent factors of venues and comment’s terms should not share the same
dimensions, indeed the latent factors of comments should be larger due to the complexity of
comments (Limitation M2). To alleviate this limitation, Jin et al. (2016) proposed a Joint
MF-based approach (JMF) that jointly models the textual content of comment by exploiting
the RNN models to encode a sequence of terms in comment mu,i to a ds-dimensional vector,
s 2 Rd

s
. In particular, given comment mu,i, the predicted rating of user u on venue i can be

estimated as follows:
r̂u,i = pT

u
qi + pT

m
smu,i (3.4)

where smu,i is a ds-dimensional vector that represents comment mu,i, which is encoded by
the RNN models pre-trained on the large corpus of venues’ comments. pm 2 Rds is the latent
factors of comments that are learnt jointly with the latent factors of user pu and venue qi.

The advantage of JMF over CMF is that the latent factors of a venue qi do not neces-
sarily share the same dimensions as the latent factors of a comment su,i (i.e. the dimension of
latent factors is not equal to the dimension of semantic latent factors, d 6= ds, respectively).
Later in Chapter 4, we demonstrate that JMF is more effective than CMF in the rating pre-
diction task. However, we argue that there are two limitations of JMF. First, given rating
ru,i and its corresponding comment mu,i, JMF aims to capture the preference of user u, the
characteristics of venue i and the semantic properties of comment mu,i by jointly learning
the latent factors of user pu, venue qi and comment pm. However, instead of leveraging a
single comment like the JMF model does, we argue that we can leverage all of the comments
that each user left on venues to effectively model his/her preferences. Similarly, we can
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Figure 3.1: An illustration of the similarity between users and vectors representing the latent
factors of each user in user latent space P . Note that these figures are regenerated from He
et al. (2017).

also leverage all of the comments for each venue in order to better model its characteristics.
Jointly learning a user’s preference and the characteristics of a venue from a single comment
as the JMF model does may not be effective (Limitation M3). In addition, JMF treats the
latent factors of user pu, venue qi and comment pm equally, which is counter-intuitive. In-
deed, we argue that a more effective model should treat these latent factors independently
because they capture different aspects (Limitation M4). For example, pu and qi capture the
user’s preferences and the characteristics of venue, while pm captures the semantic properties
of the comments. To address these limitations, in Chapter 4, we propose a novel MF-based
approach that leverages all comments to effectively and independently model the users’ pref-
erences, the characteristics of venues as well as the semantic properties of comments. In the
next section, we describe the state-of-the-art collaborative filtering framework previously
proposed in the literature that exploits Deep Neural Networks to effectively model the users’
preferences and the characteristics of venues.

3.4 Neural Matrix Factorisation (NeuMF)

In the previous section, we described existing approaches that extend the traditional MF
model to incorporate additional information to improve the rating prediction accuracy. Note
that these existing MF-based approaches rely on the dot product of the latent factors of user
and venue to estimate the rating of user u and venue i, r̂u,i. However, He et al. (2017) ar-
gued that the dot product of the latent factors may not be sufficient to capture the complex
structures of user-venue interactions and can degrade the accuracy of user-venue rating pre-
dictions. In the next section, we describe the limitation of the dot product operation used
by traditional MF-based approaches and explain what the complex structures of user-venue
interactions are.
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3.4.1 Limitation of Traditional Matrix Factorisation

Figure 3.1 illustrates a limitation of the dot product operation previously explored by He
et al. (2017). The left table in Figure 3.1 shows the cosine similarity between the latent
factors of pairs of users. The right vectors in Figure 3.1 represent the latent factors of each
user and the geometric relative angles of each user in a 2-dimensional latent factor space.
For example, the p1 and p2 vectors represent the latent factors of user u1 and u2, respectively,
and the cosine similarity between these two users is 0.5. Let us first consider users u1, u2 and
u3. From the angles of the vectors, we can see that u1 shares more common preferences with
u2 than u3 (i.e. indeed the closer the latent factor of two users in the latent factor space, the
more similar their preferences are). Next, let us consider u4, the highlighted row in the table.
In fact, u4 is most similar to u1, followed by u3 and u2. Since u4 is most similar to u1, we
can place p4 either on the left or right hand side of p1 (the two possible geometric positions
between p1 and p4 in the latent factor space are presented as red-dashed lines). However,
either way, this causes p4 to be closer to p2 than p3, which contradicts the fact that u4 is
more similar to u3 than u2. This scenario can lead to a large error in Equation (2.4) (i.e. u4

gets similar venue suggestions to u2, rather than u3). Modelling such complex structures of
user-venue interactions is a challenging problem.

3.4.2 General framework of NeuMF

He et al. (2017) postulated that the dot product of latent factors used by traditional MF-
based approaches may not be sufficient to capture the complex structures of user-venue in-
teractions. To address this challenge, they proposed a Neural Matrix Factorisation Filtering
framework (NeuMF) that exploits a Multi-Layer Perceptron (MLP) and non-linear activation
functions (described in Section 2.2.1) to model the complex structures of user-venue inter-
actions. In particular, instead of the dot product operation, NeuMF uses the element-wise
product and the concatenation of latent factors where the influences of each dimension of
the latent factors are captured independently using Deep Neural Networks. Note that, as
described in Section 2.1.1.1.2, the dot product operation multiplies and sum the dimensions
of the latent factors, which treats each dimension of the latent factors equally, to estimate the
rating prediction r̂u,i (see Equation (2.3)).

Figure 3.2 illustrates the multiple layers of the NeuMF framework; the output of one
layer serves as the input of the layer above. Starting at the bottom of the figure, the input
layer consists of a binary sparse vector with one-hot encoding that represents user uu and
venue vi, respectively. The sparse vectors of the users and venues are fed into the embedding
layer. The outputs of the embedding layer can be seen as the latent factors of user u, �uu =
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Figure 3.2: The diagram of Neural Matrix Factorisation (NeuMF) framework.
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P Tuu, and venue i, �vi = QTvi, in the context of factorised model. Next, these latent
factors are fed into the Neural Collaborative Filtering layers (i.e. hidden layers) in order
to discover latent structures of user-venue interactions. The Neural CF layers consist of
two models, namely Generalised Matrix Factorisation (GMF) and Multi-Level Perceptron
(MLP), which are further described in Section 3.4.3 and Section 3.4.4, respectively. The
connections between layers in the GMF and MLP models are represented using red and blue
lines, respectively. The final output layer provides the predicted rating r̂u,i, which is defined
as follows:

r̂u,i = aout(h(�
GMF � �MLP )) (3.5)

where aout denotes the particular activation function,� denotes the concatenation of the out-
puts of the GMF and MLP models, �GMF and �MLP , and h(x) = W Tx + b is the hidden
layer – W and b are the weight matrix and bias vector, respectively. Overall, ✓h = {W, b} de-
notes a set of parameters of the hidden layers. h(x) ensures that each dimension of the latent
factors from �GMF and �MLP are treated independently. He et al. (2017) proposed to use the
sigmoid function �(x) = 1/(1+e�x) as the activation function aout. The combination of the
GMF and MLP models enables NeuMF to model user-venue interactions as non-linear latent
factor models. In particular, the GMF and MLP models capture user-venue interaction using
element-wise product and concatenation of latent factors, respectively. Similar to MF’s loss
function (Equation (2.4)), the NeuMF framework aims to minimise the Root Mean Square
Error (RMSE) between the predicted rating r̂u,i and the observed rating ru,i.

3.4.3 Generalised Matrix Factorisation model (GMF)

In this section, we describe the first component of the NeuMF framework, a Generalised
Matrix Factorisation model (GMF), proposed by He et al. (2017), which aims to mimic the
traditional MF model, defined as follows:

�GMF = �uG

u
⌦ �vG

i
(3.6)

where ⌦ denotes the element-wise products of the latent factors of user u and venue i,
�uG

u
= P T

G
vU
u

and �vG
i

= QT

G
vI
i

are projected from the GMF user and venue embedding
layers, QG 2 R|V|⇥d and PG 2 R|U|⇥d, respectively 1. The GMF embedding layers are de-
noted as the red nodes in the Embedding layer of Figure 3.2. Under the NeuMF framework
with GMF model (see Equation (3.5) without �MLP ), MF can be easily generalised and ex-
tended. Intuitively, if we use an identity function for aout and enforce h to be a uniform

1The embedding layer is equivalent to the latent factors of MF-based approaches.
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vector of 1 in Equation (3.5), we can exactly recover the traditional MF-based approaches.
Moreover, if we allow h to be learned from the element-wise products of two latent fac-
tors, �uG

u
and �vG

i
, without the uniform constraint, it will result in a variant of MF-based

approaches that captures the importance of each latent dimensions. Furthermore, by using a
non-linear activation function such as the sigmoid function for aout in Equation (3.5), NeuMF
can generalise MF-based approaches to a non-linear setting, which may be more expressive
than the traditional MF-based approaches that solely rely on the dot product operation. Later
in Chapter 5, we extend the GMF model to incorporate the sequence of users’ feedback to
effectively capture their short-term (dynamic) preferences.

3.4.4 Multi-Level Perceptron model (MLP)

In this section, we describe the second component of the NeuMF framework, a Multi-Layer
Perceptron model (MLP), which exploits Deep Neural Networks to capture the complex
structure of user-venue interactions by using the concatenation of the latent factors. Indeed,
the concatenation operation has been widely used in multimodal deep learning work (Sri-
vastava and Salakhutdinov, 2012; Zhang et al., 2014a; Cheng et al., 2016). However, unlike
the dot product operation, a vector concatenation of latent factors does not account for any
interactions between user and item in a Collaborative Filtering manner. To address this issue,
He et al. (2017) proposed to add multiple hidden layers on the concatenated latent factors,
using a standard MLP (described in Section 2.2.1) to learn the interaction between the user
and venue latent factors, which is defined as follows:

�MLP = aL(hL(...a1(h1(�u
M

u
� �vM

i
)))) (3.7)

where L is the number of hidden layers, hx and ax denote the hidden layer and activation
function for the x-th layer’s perceptron, respectively. �uM

u
= P T

M
vU
u

and �vM
i

= QT

M
vI
i

are
the latent factors of user u and venue i that are projected from the MLP user and venue em-
bedding layers, PM and QM , respectively (as illustrated by the blue nodes in the Embedding
layer of Figure 3.2). Unlike the GMF model and the traditional MF-based approaches, by
concatenating �uM

u
and �vM

i
, the MLP model is more flexible than GMF and the factorised

models since both the dot-product and element-wise product operations require the dimen-
sion d of the latent factors to be identical. Regarding the design of hidden layers, a common
solution is to follow a pyramid structure, where the hidden layer at the bottom, h1 is the
widest and each successive layer has smaller number of neurons, as illustrated within the
MLP layers in Figure 3.2. Indeed, by using a smaller number of hidden units/neurons for the
higher layers, they can learn more abstractive features of the latent factors (He et al., 2016a).
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Although the activation function aL can be the sigmoid, hyperbolic tangent (tanh) or
Rectified Linear Unit (ReLU), as described in Section 2.2.1, He et al. (2017) argued that
ReLU is the most suitable activation function for the hidden layers h1...hL for the follow-
ing reasons. First, the sigmoid function restricts the outputs of each hidden layer between
0 and 1, which may limit the performance of MLP in capturing the complex structure of
user-venue interactions. In addition, the sigmoid function usually suffers from the saturation
problem, where neurons in the hidden layer stop learning when their output is near either 0
or 1. Although tanh is more preferable than the sigmoid function and widely used in pre-
vious literature (Elkahky et al., 2015; Wu et al., 2016), it can be seen as a rescaled version
of sigmoid (i.e. tahn(x/2) = 2�(x) � 1), which still suffers from the saturation problem.
Unlike the sigmoid and tanh functions, Glorot et al. (2011) showed that ReLU can effec-
tively alleviate the saturation problem. Moreover, empirical studies conducted by He et al.
(2017) demonstrated that ReLU yields slightly better performance than tanh, which in turn
is significantly better than sigmoid.

3.4.5 Limitations of NeuMF framework

Experimental results conducted by He et al. (2017) showed that the NeuMF framework is
more effective than various traditional MF-based approaches in top-K venue recommenda-
tion. However, there are a number of limitations of the NeuMF framework that we need to
address in order to generate effective context-aware venue recommendation system. First,
as mentioned in Section 3.1, users in LBSNs only focus on the top-K ranked list of venues
for obtaining recommendations, and hence we argue that by training of NeuMF while aim-
ing to minimise the Root Mean Square Errors between the predicted ratings and observed
ratings may not provide an effective top-K ranked list of venues (Limitation N1). More-
over, we argue that both the GMF and MLP models can only capture the users’ long-term
(static) preferences, while previous works (Yu et al., 2016; Zhang et al., 2014b; Tang et al.,
2017; Rendle, 2012; Cheng et al., 2013; Koren, 2010a) have shown that users’ short-term
(dynamic) preferences also play an important role in generating effective venue recommen-
dations (Limitation N2). Furthermore, although GMF and MLP can capture different struc-
tures of user-venue interactions by using both an element-wise product and a concatenation
of the latent factors, we argue that the NeuMF framework should not ignore the structure of
user-venue interactions that can be captured by the dot-product of latent factors (Limitation

N3). Finally, as discussed in Section 3.4.2, (He et al., 2017) proposed to apply traditional
negative sampling, as defined in BPR (see Algorithm 2.1), to randomly select unvisited
venues as negative instances. However, we argue that such a traditional negative sampling
approach is not effective and not suitable for CAVR because it does not take the contextual in-

48



3.5. Negative Sampling Approaches and Ranking Functions for BPR

formation associated with the observed feedback into account and not all venues are equally
likely to be negative instances (Limitation N4). We will further discuss this limitation in
Section 3.5. Note that Limitation N1-N3 will be addressed by our proposed Deep Recurrent
Collaborative Filtering framework (DRCF), while our proposed dynamic geo-based nega-
tive sampling approach addresses Limitation N4. Our proposed framework and sampling
approach are discussed in Chapter 5. Note that these limitations do not only belong to the
NeuMF framework and its components but can belong to another approaches. To conclude,
in the above analysis, we have identified four limitations of NeuMF and it components as
follows:

Limitation N1: There is a disadvantage in the NeuMF framework for identifying the
top-ranked venues to present to users as it focuses on rating prediction.

Limitation N2: MF-based approaches for which this limitation applies (GMF, MLP,
NeuMF (He et al., 2017)) assume that the users’ preferences are static and do not account
for the sequential properties of observed feedback.

Limitation N3: The MF-based approaches for which this limitation applies (GMF,
MLP, NeuMF (He et al., 2017)) ignore the dot product of latent factors that capture user-
venue interactions.

Limitation N4: There is a disadvantage in the NeuMF framework that applies the tra-
ditional BPR negative sampling approach, in which the contextual information of observed
feedback are ignored by the negative sampling approach.

3.5 Negative Sampling Approaches and Ranking Func-

tions for BPR

To generate effective venue recommendations that take the users’ context into account, var-
ious ranking-based approaches (e.g. BPR proposed by Rendle et al. (2009), discussed in
Section 2.1.1.1.2) have been proposed to leverage implicit feedback. As described in Sec-
tion 2.1.1, Bayesian Personalised Ranking (BPR) is a pairwise ranking-based model that is
widely implemented and extended to leverage implicit feedback to generate the top-K venue
recommendations (e.g. Yuan et al. (2016); Wang et al. (2016); Zhao et al. (2014); Loni et al.
(2016)). Applying the pairwise ranking criterion of the BPR model for venue recommenda-
tion assumes that a user prefers visited venues observed in their historical checkins over the
non-visited ones. This idea results in a pairwise ranking loss function that tries to discrimi-
nate between the set of visited venues and the set of all unvisited venues.
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Since users have typically only visited a very small proportion of all venues in LB-
SNs (Zhang and Chow, 2015; Wang et al., 2016), traditional BPR models typically suffer
from the sparsity problem2 that degrades the quality of the personalised venue suggestions.
To enhances the performance of BPR models under such sparsity conditions, various ap-
proaches have been proposed in the literature to extend the sampling criterion and pair-
wise ranking function of BPR to incorporate additional sources of information (e.g. social
links (Wang et al., 2016; Zhao et al., 2014), geographical information of venues (Yuan et al.,
2016) as well as sequential properties of checkins). In the following sections (Section 3.5.1
and Section 3.5.2), we describe the extended BPR models from the literature, which incorpo-
rate additional information and identify the limitations of these models. Finally, Section 3.5.3
summarises their elicited limitations. Later, in Chapter 5, we describe our proposed approach
that addresses these limitations.

3.5.1 BPR with Geographical Influences

As mentioned in Section 1.1, the geographical information is an important factor that in-
fluences the users’ decision on visiting novel venues. For example, previous works have
shown that users are likely to visit venues nearby their office or home (Cheng et al., 2012;
Zhang and Chow, 2015). Yuan et al. (2016) proposed to extend the BPR model to incor-
porate geographical information (GBPR). In particular, they modified the sampling criterion
and pairwise ranking function of BPR based on an assumption that a user is likely to visit a
venue g if it is nearby venues that the user has previously visited, V+

u
. Given a user u and a

venue they have visited i 2 V+
u

, GBPR samples venue g from the potential feedback Vg

u,i
, a

set of geographical neighbours of venue i within a µ threshold distance that the user u has
not visited before, as a negative example to enhance the effectiveness of the traditional BPR
model. In doing so, they proposed a pair ranking function that prefers an unvisited neigh-
bourhood venue g 2 Vg

u,i
over an unvisited venue j 2 V�

u
. The pairwise ranking function of

GBPR is defined as follows:

ĉu,i � ĉu,g ^ ĉu,g � ĉu,j, i 2 V+
u
, g 2 Vg

u,i
, j 2 V�

u
(3.8)

Ideally, the above pairwise ranking function of GBPR aims to rank a visited venue i higher
than an unvisited neighbourhood venue g and rank the unvisited neighbourhood venue g

higher than an unvisited venue j. Next, for each user u 2 U , inspired by the objective func-
tion of BPR (Equation (2.7), described in Section 2.1.1.1.3), the objective function of GBPR

2A common challenge in recommendation systems when training data is sparse (i.e. users/venues have very
few checkins)
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can be defined as follows:

J (⇥) = argmax
⇥

X

u2U

"
X

i2V+
u

X

g2Vg
u,i

ln(�(ĉu,i � ĉu,g)) +
X

g2Vg
u,i

X

j2V�
u

ln(�(ĉu,g � ĉu,j))

#
�

�p

X

u2U

k�uuk2F � �q

X

i2V

k�vik2F

(3.9)

Similar to BPR, GBPR (Yuan et al., 2016) applies Matrix Factorisation to predict ĉu,i, the
checkin frequency of user u on venue i, by calculating the dot product of the latent factors
of user u and venue i, as in Equation (2.3). Finally, Stochastic Gradient Descent (SGD) is
applied to find a local maximum of the objective function (Equation (3.9)). Algorithm 3.1
describes an optimisation algorithm of GBPR. In particular, for each iteration (Algorithm 3.1
Lines: 6-8), given a random feedback of user u who has visited venue i, but has not visited
neighbourhood venue g and venue j3, the parameter ✓ 2 ⇥ is updated based on the gradi-
ent of its corresponding parameter @J

@x
while fixing the others, until convergence, as defined

in Equation (2.8). Next, the gradients of the latent factor matrices �uu,�vi,�vg,�vj are
calculated as follows:

@J
@�uu

= �(ĉu,i � ĉu,g)(�vi � �vg) + �(ĉu,g � ĉu,j)(�vg � �vj)� �p�uu (3.10)

@J
@�vi

= �(ĉu,g � ĉu,i)�uu � �q�vi (3.11)

@J
@�vg

= �(ĉu,j � ĉu,g)� �(ĉu,g � ĉu,i)�uu � �q�vg (3.12)

@J
@�vj

= ��(ĉu,j � ĉu,g)�uu � �q�vj (3.13)

The advantage of GBPR over the traditional BPR model is that GBPR can leverage
the geographical information of venues to effectively sample negative instances based on the
pre-defined sampling criterion that users prefer to visit the unvisited neighbourhood venues
nearby those venues they previously visited. These are more realistic negative examples
than randomly selected distant venues, and hence the effectiveness of the GBPR model is
enhanced. Experimental results conducted by (Yuan et al., 2016) showed that GBPR can
significantly outperform BPR on several ranking metrics such as Precision and Recall. How-
ever, we argue that there are several limitations of GBPR, which are further discussed in
Section 3.5.3.

3(u, i, g, j) 2 D =
�
(u, i, g, j)|i 2 V+

u ^ g 2 Vg
u,i ^ j 2 V�

u
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Algorithm 3.1: An Optimisation Algorithm of GBPR
1 Input: users U , venues V , visited venues V+

u
, unvisited neighbourhood venue Vg

u,i
and

unvisited venue V�
u

for each u 2 U
2 Output: ⇥ =

�
P 2 Rm⇥d, Q 2 Rn⇥d

 

3 P ⇠ U(0, 1), Q ⇠ U(0, 1)
4 repeat

5 for u 2 U do

6 i draw a random visited venue from V+
u

7 g  draw random unvisited neighbourhood venue from Vg

u,i

8 j  draw random unvisited venue from V�
u

9 Compute gradients of �uu, �vi, �vj , �vg
10 Equation (3.10) - (3.13)
11 Updated the above parameters
12 Equation (2.8)

13 until convergence;

3.5.2 BPR with Social Correlations

Apart from the extended BPR model that incorporates geographical information mentioned
in the previous section, there are other works (Wang et al., 2016; Zhao et al., 2014) that have
incorporated social information (e.g. social links between users) to sample negative exam-
ples based on different criteria. Zhao et al. (2014) proposed a social BPR model (SBPR)
that leveraged social links to sample negative examples. Their assumption is that users are
likely to visit venues previously visited by their friends. The negative sampling criterion, the
ranking function as well as the objective function of SBPR are similar to GBPR’s (Equa-
tions (3.8) - (3.9)) but substitute V g

u,i
with V s

Fu
(i.e. a set of venues visited by the user u’s

friends but which user u has not visited before). In doing so, instead of ranking the unvisited
neighbourhood venues higher than the unvisited distant venues, SBPR aims to rank unvisited
venues that are previously visited by user’s friends higher than venues his/her friends never
visited before. Recently, Wang et al. (2016) proposed a finer-grained social BPR that extends
SBPR by taking the relationship between friends into account, which is referred to as Strong
and Weak-ties (SWBPR): strong-ties are friends who share mutual friends while weak-ties
are friends that do not share mutual friends. Their assumption is that venues previously vis-
ited by weak-tie friends might be preferred by the user than venues previously visited by
strong-tie friends because weak-tie friends are more likely to introduce novel venues. To il-
lustrate their assumption, Wang et al. (2016) assumed that strong-tie friends could be friends
from the same high school so they share mutual friends and their preferences are likely to be
similar. In contrast, weak-tie friends can introduce new venues that are more interesting. We
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summarise their proposed ranking criteria as follows:

ĉu,i � ĉu,j, if

8
>>>><

>>>>:

i 2 V+
u
^ j 2 Vjoint

u
or

i 2 Vjoint

u
^ j 2 Vweak

u
or

i 2 Vweak

u
^ j 2 Vstrong

u
or

i 2 Vstrong

u
^ j 2 Vnone

u

(3.14)

where Vjoint

u
is the set of venues visited by at least one strong-tie and weak-tie friends of

user u, Vweak

u
and Vstrong

u
are the sets of venues visited by at least one of weak-tie friends

and strong-tie friends, respectively and Vnone

u
is the set of venues visited by neither user u

nor his/her friends. Note that Vjoint

u
, Vweak

u
, Vstrong

u
and Vnone

u
are all sets of venues that user

u has never visited before. Based on their proposed ranking criteria in Equation (3.14), the
pairwise ranking function of SWBPR is defined as follows:

ĉu,i � ĉu,j ^ ĉu,j � ĉu,w ^ ĉu,w � ĉu,s ^ ĉu,s � ĉu,k,

i 2 V+
u
, j 2 Vjoint

u
, w 2 Vweak

u
, s 2 Vstrong

u
, k 2 Vnone

u

(3.15)

Next, for each user u 2 U , the objective function of SWBPR is defined as follows:

J (⇥) = argmax
⇥

X

u2U

"
X

i2V+
u

X

j2Vjoint
u

ln(�(ĉu,i � ĉu,j)) +
X

j2Vjoint
u

X

j2Vweak
u

ln(�(ĉu,j � ĉu,w))+

X

w2Vweak
u

X

s2Vstrong
u

ln(�(ĉu,w � ĉu,s)) +
X

s2Vstrong
u

X

k2Vnone
u

ln(�(ĉu,s � ĉu,k))

#

� �p

X

u2U

k�uuk2F � �q

X

i2V

k�vik2F

(3.16)

Similar to BPR and GBPR, SWBPR still relies on the dot product of the latent factors of
user u and venue i to predict the checkin of user u on venue i, ĉu,i, and Stochastic Gradient
Descent is applied to find a local maximum of the objective function (Equation (3.16)). Al-
gorithm 3.2 describes an optimisation algorithm of SWBPR. In particular, for each iteration
(Algorithm 3.2, Lines: 6-8), given a random feedback of user u who has visited venue i,
but has not visited joint friend venue j, weak-tie friend venue w, strong-tie friend venue s

and venue k, the parameter ✓ 2 ⇥ in Equation (3.16) is updated based on the gradient of its
corresponding parameter @J

@x
while fixing the others, until convergence, as defined in Equa-

tion (2.8). Next, the gradients of the latent factors �uu,�vi,�vj,�vw,�vs,�vk are calculated
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as follows:

@J
@�uu

=�(ĉu,i � ĉu,j)(�vi � �vj) + �(ĉu,j � ĉu,w)(�vj � �vw)+

�(ĉu,w � ĉu,s)(�vw � �vs) + �(ĉu,s � ĉu,k)(�vs � �vk)� �p�uu

(3.17)

@J
@�vi

= �(ĉu,j � ĉu,i)�uu � �q�vi (3.18)

@J
@�vj

= �(ĉu,w � ĉu,j)� �(ĉu,j � ĉu,i)�uu � �q�vj (3.19)

@J
@�vw

= �(ĉu,s � ĉu,w)� �(ĉu,w � ĉu,j)�uu � �q�vw (3.20)

@J
@�vs

= �(ĉu,k � ĉu,s)� �(ĉu,s � ĉu,w)�uu � �q�vs (3.21)

@J
@�vk

= ��(ĉu,k � ĉu,s)�uu � �q�vk (3.22)

Algorithm 3.2: An Optimisation Algorithm of SWBPR
1 Input: users U , venues V , visited venues V+

u
, joint friend venues Vjoint

u
, weak-tie friend

venues Vweak

u
, strong-tie friend venues Vstrong

u
and unvisited venue Vnone

u
for each

u 2 U
2 Output: ⇥ =

�
P 2 Rm⇥d, Q 2 Rn⇥d

 

3 P ⇠ U(0, 1), Q ⇠ U(0, 1)
4 repeat

5 for u 2 U do

6 i draw a random visited venue from V+
u

7 j  draw a random joint friend venue from Vjoint

u

8 w  draw random weak-tie venue from Vweak

u

9 s draw random weak-tie venue from Vstrong

u

10 k  draw random unvisited venue from Vnone

u

11 Compute gradients of �uu, �vi, �vj , �vw, �vs, �vk
12 Equation (3.17 - 3.22)
13 Updated the above parameters
14 Equation (2.8)

15 until convergence;

The advantage of SBPR and SWBPR over the traditional BPR model is that both SBPR
and SWBPR can leverage the users’ social information to effectively sample negative in-
stances based on the pre-defined sampling criterion that users prefer to visit the venues pre-
viously visited by their friends. Their experiments showed that by incorporating the users’
social information during the negative sampling process, more effective ranked list of venue
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recommendations can be obtained. In the next section, we discuss several limitations of both
SBPR and SWBPR models.

3.5.3 Limitations of Existing Negative Sampling Approaches and
Ranking Functions for BPR

In this section, we analyse the limitations of the existing negative sampling approaches and
the ranking functions for BPR proposed in previous literature (Wang et al., 2016; Zhao et al.,
2014; Yuan et al., 2016). Although experimental results obtained by Wang et al. (2016);
Zhao et al. (2014); Yuan et al. (2016) all demonstrate that their various proposed negative
sampling approaches and ranking functions can significantly improve the performance of
BPR in venue recommendation compared to the traditional BPR negative sampling approach
proposed by Rendle et al. (2009), there are limitations we need to address to further improve
the quality of venue recommendation. First, their proposed negative sampling approaches
and ranking function (GBPR, SBPR and SWBPR) are not sufficiently flexible to incorporate
multiple types of contextual information (Limitation S1). For example, SBPR can only in-
corporate social information between users but cannot leverage geographical information of
venues during the sampling process. In particular, these negative sampling approaches rely
on the pre-defined ranking criteria (e.g. SWBPR’s ranking criteria in Equation (3.14)), which
determines how to compute the gradients of the latent factors. Including additional types of
contextual information is relatively difficult because it requires to modify the ranking criteria,
the negative sampling approach as well as the gradient computations. Second, the sampling
criteria and the ranking function of GBPR, SBPR and SWBPR are based on pre-defined
assumptions and not motivated by the characteristics of users’ movement and the social in-
teractions in LBSNs that have been observed in previous checkin studies (Cheng et al., 2012;
Zhang and Chow, 2015; Zhang et al., 2015a) (Limitations S2). We will further discuss this
limitation in Chapter 4. Finally, we argue that these negative sampling approaches do not
take the sequential order of checkins into account during the sampling approach. However,
previous works (Yu et al., 2016; Zhang et al., 2014b; Tang et al., 2017; Zhu et al., 2017;
Beutel et al., 2018; Smirnova and Vasile, 2017) have all shown that such the sequential prop-
erties of checkins can enhance the quality of venue recommendation (Limitation S3). Later
in Chapter 4, to address Limitations S1 & S2, we describe our proposed Personalised Rank-
ing Framework with Multiple sampling Criteria (PRFMC) that can leverage multiple types of
additional information to effectively sample negative examples to enhance the performance
of the BPR model. In addition, Limitation S3 is addressed by our proposed dynamic geo-
based negative sampling discussed in Chapter 5. Note that these limitations only belong to
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the negative sampling-based approaches. The limitations of GBPR, SBPR and SWBPR are
summarised below:

Limitation S1: The sampling approaches for which this limitation applies (GBPR (Yuan
et al., 2016), SBPR (Zhao et al., 2014) and SWBPR (Wang et al., 2016)) are built upon pre-
defined sampling assumptions and are not sufficiently flexible to incorporate different types
of additional information.

Limitation S2: The sampling approaches for which this limitation applies (GBPR (Yuan
et al., 2016), SBPR (Zhao et al., 2014) and SWBPR (Wang et al., 2016)) is based on pre-
defined assumptions, which are contradicted to the previous studies (Cheng et al., 2012;
Zhang and Chow, 2015; Zhang et al., 2015a) that examine users’ geographical movements
and social influences in LBSNs.

Limitation S3: The sampling approaches for which this limitation applies (GBPR (Yuan
et al., 2016), SBPR (Zhao et al., 2014) and SWBPR (Wang et al., 2016)) do not take the se-
quential order of checkins into account.

Limitations S1 & S2 will be addressed by our proposed Personalised Ranking Framework
with Multiple sampling Criteria framework (PRFMC) discussed in Chapter 4. Moreover,
Limitation S3 will be addressed by our proposed sequential-based negative sampling ap-
proaches discussed in Chapter 5.

3.6 Recurrent Neural Network Models for Recommenda-

tion Systems

Recurrent Neural Networks (RNNs), as described in Section 2.2.3, represent a specific form
of DNN models that possess several properties that make them suitable and attractive for
sequence modelling (Goodfellow et al., 2016). In particular, RNNs are capable of incorpo-
rating input from past interactions, allowing to derive a wide range of sequence-to-sequence
mappings. In the past decade, RNNs have been widely applied with considerable success in
several domains such as speech recognition, computer vision and natural language process-
ing (e.g. (He et al., 2016a; Zhang et al., 2014a; Kim, 2014)). Recently, various approaches
have been proposed to enhance the effectiveness of MF-based approaches for recommenda-
tion systems by exploiting RNNs (Yu et al., 2016; Zhang et al., 2014b; Tang et al., 2017; Zhu
et al., 2017; Beutel et al., 2018; Smirnova and Vasile, 2017) to leverage the sequential prop-
erties of observed implicit feedback. In this section, we describe common techniques that
integrate RNN models into MF-based approaches (Section 3.6.1). Then, in Section 3.6.2,
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we discuss state-of-the-art gating mechanisms for recurrent architectures that take contex-
tual information associated with the sequences of observed checkins (e.g. the time interval
and the geographical distance between two successive checkins) into account for CAVR.
Finally, Section 3.6.3 summarises the elicited limitations of these RNN-based factorisation
approaches and recurrent architectures.

3.6.1 Recurrent-based Factorisation Approaches

Recently, various approaches (e.g. Zhang et al. (2014b); Tang et al. (2017); Yu et al. (2016))
have been proposed to leverage the sequence of users’ feedback to capture their dynamic
preferences by exploiting the traditional RNN models, described in Section 2.2.3.1. Note that
these RNN-based approaches have not been originally proposed for venue recommendation
but are sufficiently flexible to do so without any disadvantages. For example, Zhang et al.
(2014b) proposed a RNN-based factorisation approach (RNN-MF) for click prediction for
sponsored search that models users’ short-term (dynamic) preferences from their sequences
of clicks. For simplicity, we explain RNN-MF in the context of venue recommendation as
follows:

h⌧ = �(X�vi +Rh⌧�1) (3.23)

where �vi denotes the latent factor of venue i, the user visited at time step ⌧ and h⌧�1 is
the dynamic preferences of the user at previous time step ⌧ � 1. R is a recurrent connec-
tion weight matrix that captures the sequential properties between every two adjacent hidden
states h⌧�1 and h⌧ and X is a transition matrix between the latent factors of venues. Then,
similar to the traditional MF-based approaches, they apply the dot product to estimate the
probability that user u will checkin at venue i given his recent sequence of checkin Su,⌧ (i.e.
ĉu,i = h⌧ } �vi, where } denotes the dot product operation). Another example of RNN-
based factorisation approach is proposed by Tang et al. (2017). Instead of traditional RNN
models, they proposed to exploit a Bidirectional LSTM (BiLSTM) – which is a variation
of a LSTM that incorporates the hidden units of LSTM in both forward and backward di-
rections – to model users’ short-term preferences from sequences of checkins. Tang et al.
(2017) preferred BiLSTM over the traditional RNN models because they assumed that the
user’s short-term preferences can be effectively captured by considering his/her sequence of
checkin in both forward and back directions. Note that both RNN-MF and BiLSTM-MF aim
to predict the next checkin and do not take the time of the predicted checkin into account. In
particular, their proposed approach (BiLSTM-MF) estimate the probability that user u will
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checkin at venue i given his recent checkin sequences Su,⌧ as follows:

ĉu,i = (�uu + h⌧ )} �vi (3.24)

where h⌧ is the output of the BiLSTM and �uu is the latent factors of user u. The advan-
tage of BiLSTM-MF over RNN-MF, apart from the use of more advanced RNN models, is
that BiLSTM-MF takes the latent factors of users into account, while RNN-MF does not
and solely relies on the user’s dynamic preference h⌧ captured from the RNN models. The
objectives of RNN-MF and BiLSTM-MF are similar to that of MF (Equation (2.4)), in that
they aim to minimise the pointwise loss between the predicted checkin ĉu,i and the observed
checkin cu,i. Moreover, Yu et al. (2016) proposed a Dynamic REcurrent bAsket Model
(DREAM), an extension of RNN-MF that incorporates BPR for ranking optimisation. Their
experimental results demonstrated that DREAM can significantly outperform various RNN-
based approaches including RNN-MF.

We argue that there are three limitations that need to be addressed for RNN-MF,
BiLSTM-MF and DREAM. First, RNN-MF does not take the user’s long-term (static) pref-
erences into account (Limitation R1). Although sophisticated RNN-based models such as
LSTM and GRU are capable of dealing with long sequences of observed feedback, such
models are computationally expensive with respect to the length of sequence. Indeed, a
venue that the user has visited a couple of months ago has less impact on the user’s short-
term (dynamic) preferences than a venue recently visited but still has large impact on the
user’s long-term (static) preferences. With long sequence of checkins, LSTM and GRU are
not able to capture the large impact of venues the users visited long time ago to model the
user’s static preferences - indeed they likely ignore such historical checkins (Limitation

R1). Hence, we argue that an accurate model able to capture both the static and dynamic
preferences of users is more likely to generate better venue recommendations. Second, to
model the complex structure of user-venue interactions in a Collaborative Filtering manner,
RNN-MF and DREAM still rely on a dot product of the latent factors of users and venues
�uu,�vi and the user’s dynamic preferences h⌧ . However, as mentioned in Section 3.4, He
et al. (2017) showed that the dot product of latent factors may not be sufficient to capture the
complex structure of user-venue interactions (Limitation R2). However, the operations that
combine latent factors (�ui,�vj) and hidden state h⌧ in Equation (3.24) need not be limited
to the dot product and summation. Finally, we argue that these RNN-based factorisation
approaches, RNN-MF, BiLSTM-MF and DREAM, which exploit traditional RNN models
to capture the users’ dynamic preferences, are not effective, because they only consider the
sequence of previously visited venues and ignore the contextual information associated with
the checkins (Limitation R3). Indeed, the traditional RNN models are not sufficiently flexi-
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ble to incorporate the contextual information associated with the checkins, which can hinder
the performance of modelling the user’s dynamic preferences. In the next section, we dis-
cussed several extensions of the traditional RNN models previously proposed in the literature
that aim to address Limitation R3 by extending the gating mechanism of the RNN architec-
ture to incorporate the contextual information of checkins.

3.6.2 Gating Mechanism of RNN Architectures

As discuss in the previous section, traditional RNN models cannot incorporate the contextual
information associated with the sequence of checkins (Limitation R3). Consider an illustra-
tive example in Figure 3.3, where user A and B have both visited a museum and a restaurant
in the same order. User A visited the museum and restaurant at 9:00 and 18:00, respectively,
while User B visited the museum and restaurant at 9:00 and 12:00, respectively. The user’s
dynamic preferences captured by traditional RNN-based models for these two users are sim-
ilar regardless of the time gaps between successive checkins, hence they are likely to receive
similar recommendation. However, we argue that these two users should be presented with
different recommendations. Regarding user A, the time interval between checkins at the mu-
seum and restaurant is very large, hence the checkin at museum is less likely to influence
his/her decision on the next venue to visit. In contrast, the time gap of checkins between
the museum and restaurant of user B is shorter, hence the checkin at museum is more likely
to influence his/her decision. An example recommendation for these users can be a bar for
user A and another museum to visit for venue B. To address Limitation R3, various gating
mechanisms of RNN architectures have been proposed in previous works (e.g. Zhu et al.
(2017); Beutel et al. (2018); Smirnova and Vasile (2017)). In this section, we discuss exten-
sions of the LSTM and GRU architectures 4 proposed by these previous works that aim to
incorporate contextual information associated with the sequence of checkins. Although these
recurrent architectures were not originally proposed for CAVR, they are sufficiently flexible
to be applied to the CAVR task. From now on, we explain their proposed architectures in the
context of venue recommendation for reasons of uniformity and use the GRU architecture
(see Section 2.2.3.3) to explain their proposed architectures, due to its relative simplicity (i.e.
less parameters compared to LSTM).

3.6.2.1 Time-aware GRU architecture (TimeGRU)

As discussed in Section 2.2.3.3, the main advantage of the GRU architecture is that it can
alleviate the vanishing gradient problem that is usually suffered by traditional RNN models.

4Comprehensive details of LSTM and GRU architectures can be found in Section 2.2.3.
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Figure 3.3: An illustration of the user’s sequence of checkins, where each timestamp of the
checkin is highlighted in blue, �t and �g are the time interval and the distance between
checkins at time step ⌧ , respectively (red text).

Figure 3.4: Diagrams of existing recurrent architectures for CAVR

However, the GRU architecture is not flexible enough to incorporate the contextual informa-
tion associated with the sequences of checkins. To address this challenge, Zhu et al. (2017)
proposed to extend the GRU units, namely Time-aware GRU architecture (TimeGRU), to
incorporate the time interval (i.e. the transition contexts) between successive checkins5. The
left box of Figure 3.4 illustrates their proposed TimeGRU architecture. In particular, they
modified the candidate hidden state eh⌧ of the traditional GRU unit (see Equation (2.31))
with their proposed time gate T⌧ , which is defined as:

T⌧ = �t(W�v⌧
j
+ �(�t⌧Wt) + b (3.25)

eh⌧ = tanh(W�v⌧
j
+R(r⌧ � T⌧ � h⌧�1) + b) (3.26)

where �t⌧ = t⌧ � t⌧�1 is the time interval between checkins s⌧
i,t

and s⌧�1
i,t

. t⌧ captures the
correlation between the current venue v⌧

j
and the time interval �t⌧ . Intuitively, the time gate

T⌧ is used to control the influence of previous hidden state h⌧�1 in Equation (3.26). In par-
ticular, the previous hidden state h⌧�1 is not only controlled by the reset gate r⌧ but also by
their proposed time gate T⌧ . Then, to predict the probability that user u will checkin at venue
i, given his recent sequence of checkins Su,⌧ , TimeGRU estimates the predicted checkin ĉu,i

5Note that although Zhu et al. (2017) used the LSTM architecture to explain their proposed recurrent units,
they claimed that their proposed architecture is sufficiently flexible to apply to the GRU architecture.
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as follows:
ĉu,i = h⌧ } �vi (3.27)

We argue that there are two limitations of the TimeGRU architecture. First, TimeGRU can
only incorporate the time intervals between successive checkins, �t⌧ , (i.e. the transition con-
text) ) but not the current context of the user, (i.e. the ordinary context, such as the time of the
day when the user makes a checkin) (Limitation G1). Second, their proposed time gate can
incorporate only one type of transition context (i.e. the time interval) and is not flexible to
incorporate multiple types of transition contexts associated with the checkins, such as adding
the geographical distance between two successive checkins (Limitation G2).

3.6.2.2 Context-aware GRU architectures

As mentioned in the previous section, one of the limitations of TimeGRU is that it can-
not incorporate multiple types of contextual information associated with the sequences of
checkins. To address Limitation G1, Smirnova and Vasile (2017) proposed a Contextual
GRU architecture (CGRU) that can incorporate multiple types of contextual information of
served checkins (i.e. both the transition and ordinary context)6. Their contributions were
two fold: context-dependent venue representations and contextual GRU units. As shown in
the second box in Figure 3.4, they proposed a concatenation integration function to model
context-dependent venue representations. In particular, at a given time step ⌧ , the input of
the GRU unit is the concatenation of the latent factors of the ordinary and transition contexts
as well as the latent factors of the venue. Since both the ordinary and transition contexts for
the time dimension are continuous values (e.g. the timestamp t⌧ , time interval �t⌧ and geo-
graphical distance �g⌧ ), previous works (Jing and Smola, 2017; Zhao et al., 2016; Smirnova
and Vasile, 2017; Beutel et al., 2018) have relied on mapping approaches to represent such
context. For example, a source of ordinary context, such as the timestamp t⌧ of a venue
checkin can be split into discrete features (e.g. month of the year, hour of the day and day of
the week). Next, 12, 24 and 7 bits are used to represent the month, hour and day, respectively,
and convert to the binary code into a unique decimal digit - a timestamp id. Similarly, the
transition context (e.g. the time interval �t⌧ ) can be quantised into a time interval id using
the following function ind(�t⌧ ) = d�t

⌧

�T
e, where �T is a 1-hour interval. This technique

can be similarly applied to quantise the geographical distance �g⌧ . Then, the timestamp t⌧ ,
the time interval �t⌧ and the geographical distance �g⌧ can be represented as latent factors
of time, time interval and distance, �t⌧ ,��t⌧ ,��g⌧ 2 Rd, respectively. Next, Smirnova
and Vasile (2017) extended the transition matrix W of the GRU unit in Equations (2.29) &

6Note that although CGRU was proposed and evaluated in the context of e-commerce item recommendation,
it is sufficiently flexible to be applied in the task of CAVR.
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(2.31) to be context-dependent, thereby aiming to capture the users’ short-term (dynamic)
contextual preferences. In particular, they introduced the contextual matrix U , to condition
the transition matrix W of a GRU unit as follows:

z⌧ = �(Wx⌧ � Uuxc
⌧ ) +Ruh⌧�1

r⌧ = �(Wx⌧ � Urxc
⌧ ) +Rrh⌧�1

eh⌧ = �(Wx⌧ +Rh(r⌧ � h⌧�1)� Uhxc
⌧ )

(3.28)

where x⌧ = [�v⌧
i
;�t⌧ ] and xc⌧ = [�t⌧ ;��t⌧ ;��g⌧ ] are their proposed context-dependent

venue and context representations, respectively.

Recently, building upon the approach of Smirnova and Vasile (2017), Beutel et al.
(2018) explored various approaches to effectively incorporate the latent factors of context
xc⌧ into GRU units. They proposed LatentCross, a technique that incorporates contextual
information in GRU, by performing an element-wise product of the latent factors of context
xc⌧ with the model’s hidden states h⌧ . The third box in Figure 3.4 illustrates how LatentCross
works. The inputs of the GRU unit are the concatenation of all latent factors x⌧ (black line)
and the concatenation of latent factors of context xc⌧ (red line). In particular, they modified
Equation (2.32) with the latent factors of context, xc⌧ , as follows:

h⌧ = (1 + xc⌧ )� [(1� z⌧ )h⌧�1 + z⌧eh⌧ ] (3.29)

Both CGRU and LatentCross still rely on the dot product between the hidden layer h⌧ and
the latent factors of users and venues to estimate the predicted checkin cu,i, which are similar
to RNN-MF and BiLSTM-MF. However, as previously mentioned in Section 3.4.1, He et al.
(2017) showed that the dot product operation is not effective to capture the users’ preferences
and the characteristics of venues from the latent factors of users and venues.

CGRU and LatentCross are the most recent approaches that explore various techniques
to incorporate contextual information associated with the sequences of checkins into GRU
models. However, we argue that there are two limitations in their proposed GRU architec-
tures. First, both CGRU and LatentCross treat the ordinary and transition context similarly.
We argue that different types of context might influence the user’s dynamic preferences dif-
ferently (Limitation G3). For example, the ordinary context such as time of the day and
user’s current location should influence the user’s contextual preference on the next venue
he/she is going to visit, while the transition context such as the time interval between last
visited venue and the current time should influence the correlation between the current and
previously visited venues. Second, there is a loss of granularity from the quantisation map-
ping functions used to represent the transition context (Limitation G4). For example, instead

62



3.6. Recurrent Neural Network Models for Recommendation Systems

of representing the timestamp t⌧ of a venue checkin as a continuous value, the quantisation
mapping functions map the timestamp into discrete features (e.g. month of the year, hour of
the day and day of the week).

3.6.3 Limitations of RNN models

In this section, we summarise three limitations of RNN-based factorisation approaches (Zhang
et al., 2014b; Tang et al., 2017; Yu et al., 2016) and four limitations of the gating mechanism
of the GRU architectures (Zhu et al., 2017; Beutel et al., 2018; Smirnova and Vasile, 2017)
for CAVR. The limitations of RNN-based approaches are denoted as Limitation R, while the
limitations of the gating mechanism of the GRU architectures are denoted as Limitation G.
Note that Limitation G1-G4 only belong to the gating mechanism of the GRU architectures.
The limitations of these approaches and architectures are summarised below:

Limitation R1: The RNN-based factorisation approaches for which this limitation
applies (RNN-MF (Zhang et al., 2014b)) do not take the users’ long-term (static) preferences
into account.

Limitation R2: The RNN-based factorisation approaches for which this limitation
applies (RNN-MF (Zhang et al., 2014b), BiLSTM-MF (Tang et al., 2017) and DREAM (Yu
et al., 2016)) still rely on the dot product operation to combine the latent factors of user �u
and venues �v as well as the hidden unit h⌧ when predicting a user’s checkin.

Limitation R3: There is a disadvantage in the RNN-based factorisation models that
model the user’s dynamic preferences from sequential order of checkins by leveraging only
the sequence of previously visited venues and ignoring the context associated with the check-
ins.

Limitation G1: The GRU architecture for which this limitation applies (TimeGRU (Zhu
et al., 2017)) can only incorporate the transition context (e.g. the time interval between suc-
cessive checkins) and is not flexible to incorporate the ordinary context (e.g. user’s current
location).

Limitation G2: The time gating mechanism proposed by Zhu et al. (2017) is not
sufficiently flexible to incorporate multiple types of transition contexts associated with the
sequence of checkins.

Limitation G3: The GRU architectures for which this limitation applies (CGRU (Smirnova
and Vasile, 2017) and LatentCross (Beutel et al., 2018)) treat the ordinary and transition con-
text similarly. As argued in Section 3.6.2.2, these two types of contexts influence the users’
preferences differently and should be treated independently.
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Table 3.3: Summary of existing works and their limitations

Rating prediction-based approaches

Model Additional Info Context Sequential Limitations Chapter
SoReg users’ social links ⇥ ⇥ M1 4
CMF comments ⇥ ⇥ M2-M4 4
JMF comments ⇥ ⇥ M2-M4 4
NeuMF ⇥ ⇥ ⇥ N1, N4, S3 5
GMF ⇥ ⇥ ⇥ N2-N3 5
MLP ⇥ ⇥ ⇥ N2-N3 5

Top-K venue recommendation-based approaches

Model Additional info Context Sequential Limitations Chapter
GBPR venues’ location ⇥ ⇥ S1-S2 4
SBPR users’ social links ⇥ ⇥ S1-S2 4
SWBPR users’ social links ⇥ ⇥ S1-S2 4
RNN-MF ⇥ ⇥ X R1-R3 5
DREAM ⇥ ⇥ X R2-R3 5

Context-aware venue recommendation-based approaches

Model Additional info Context Sequential Limitations Chapter
TimeGRU ⇥ only time X G1-G4 6
CGRU ⇥ X X G3-G4 6
LatentCross ⇥ X X G3-G4 6

Limitation G4: There is a disadvantage in the GRU architectures (CGRU (Smirnova
and Vasile, 2017) and LatentCross (Beutel et al., 2018)) that rely on the quantised mapping
procedures to represent the transition context.

Limitations R1 & R2 will be addressed by our proposed Deep Recurrent Collaborative Fil-
tering framework (DRCF) discussed in Chapter 5. Note that Limitation R3 has already been
addressed by the gating mechanisms of GRU architectures proposed in previous works (e.g.
TimeGRU, CGRU and LatentCross). Moreover, Limitation G1 has already been addressed
by the CGRU architecture, while Limitations G2-G4 will be addressed by our proposed
Contextual Attention Recurrent Architecture (CARA) discussed in Chapter 6.

3.7 Roadmap of Addressing Limitations of Previous Works

In this section, we describe a roadmap of this thesis that aims to address the elicited limita-
tions of the previous works. Table 3.3 provides a summary of existing works, their limitations
and technical chapters in this thesis that aim to address these limitations. First, regarding
Limitations M1-M4 of the existing rating prediction-based approaches (i.e. SoReg, CMF
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and JMF), in Chapter 4, we propose several MF-based approaches that aim to address these
limitations. In particular, to address Limitation M1 of the SoReg technique, as mentioned
in Section 3.3.1, we propose a novel Social and Textual Regularisation technique (STReg)
that can incorporate both the users’ social information and the textual content of comments.
Unlike the SoReg technique that only relies on the ratings of users’ friends to estimate the
similarity between the users and their friends, our proposed STReg technique leverages the
users’ friends’ textual information to effectively estimate the similarity between the users
and their friends. Moreover, to address Limitations M2-M4 of the CMF and JMF models,
we propose a novel MF-based approach that leverages all comments to effectively and inde-
pendently model the users’ preferences, the characteristics of venues as well as the semantic
properties of comments. Furthermore, as discussed in Section 3.5.3, we argue that the ex-
isting negative sampling approaches (e.g. GBPR, SBPR and SWBPR) are not sufficiently
flexible to incorporate different types of additional information. In particular, to address
Limitations S1-S2 of GBPR, SBPR and SWBPR, in Chapter 4, we propose a novel Per-
sonalised Ranking Framework with Multiple sampling Criteria framework (PRFMC) that
can incorporate multiple types of additional information to enhance the effectiveness of the
traditional BPR model for top-K venue recommendations.

In Section 3.4.5, we have identified various limitations of the existing NeuMF frame-
work. Indeed, we argue that by addressing Limitations N1-N4 of the NeuMF framework,
more effective top-K venue recommendation can be obtained. In Chapter 5, we propose
a novel Deep Recurrent Collaborative Filtering framework (DRCF), an extension of the
NeuMF framework, which exploits Recurrent Neural Networks to effectively capture the
users’ dynamic preferences from their sequences of checkins. Our proposed DRCF frame-
work consists of three components: namely Generalised Recurrent Matrix Factorisation
(GRMF), Multi-Layer Recurrent Perceptron (MLRP) and Recurrent Matrix Factorisation
(RMF) models. In addition, within the DRCF framework, we propose novel dynamic and
static geo-based negative sampling approaches that take the sequential properties of checkins
and geographical location of venues into account to enhance the effectiveness of the DRCF
framework, and to alleviate the cold-start user problem. In particular, the DRCF framework
aims to address Limitations N1-N3, while our proposed dynamic and static geo-based neg-
ative sampling approaches aim to address Limitations N4 & S3. Moreover, within the three
components of the DRCF framework, the GRMF and MLRP models aim to address Limita-

tions R1-R2 of the existing RNN-based factorisation approaches, described in Section 3.6.3.

Next, regarding Limitations G2-G4 of the existing gating mechanisms of GRU archi-
tecture, in Section 3.6.3, we argue that there are different types of contextual information
associated with the sequence of checkins (i.e. the ordinary and transition context). However,
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these contexts are treated equally by the existing gating mechanisms of GRU architecture.
In Chapter 6, we propose a novel Contextual Attention Recurrent Architecture (CARA) for
context-aware venue recommendation that effectively incorporates different types of con-
textual information associated with the users’ sequence of checkins. Our proposed CARA
architecture consists of two types of gating mechanisms: namely Contextual Attention Gate
(CAG) as well as Temporal and Spatial Gates (TSG). The CAG and TSG gates aim to effec-
tively capture the users’ contextual preferences from the ordinary context associated with the
users’ checkins and the transition context associated with two successive checkins. Finally,
in Chapter 7, we combine our proposed DRCF framework with the CARA architecture to
effectively generate effective context-aware venue recommendation.

3.8 Conclusions

In this chapter, we first reviewed an extension of the MF-based approach for venue recom-
mendation, NeuMF framework (He et al., 2017), which exploits Deep Neural Networks such
as Multi-Layer Perceptron and non-linear activation functions. In particular, in Section 3.4,
we discussed the limitations of traditional MF-based approaches that rely on the dot product
operation to capture the complex structure of user-venue interactions. Then, we described
the NeuMF Framework (Section 3.4.2) as well as its components: namely Generalised Ma-
trix Factorisation (GMF) (Section 3.4.3) and Multi-Layer Perceptron (MLP) (Section 3.4.4)
that exploit the element-wise product and concatenation operation, respectively, to capture
the complex structure of user-venue interactions. We also identified four limitations of the
NeuMF framework (Limitations N1-N4) in Section 3.4.5, which we aim to address in Chap-
ter 5. In Section 3.5, we reviewed existing negative sampling approaches and ranking func-
tions for Bayesian Personalised Ranking (BPR) and identified their limitations (Limitations

S1-S3). Finally, in Section 3.6.1, we reviewed several existing RNN-based factorisation ap-
proaches that exploit traditional RNN models capture the users’ dynamic preferences from
the sequential order of checkins. However, such RNN-based factorisation approaches cannot
incorporate the contextual information associated with successive checkins due to the limita-
tion of the traditional RNN models. To address this limitation, we described existing gating
mechanism of GRU architectures proposed in previous literature (Zhu et al., 2017; Beutel
et al., 2018; Smirnova and Vasile, 2017) that can effective incorporate such contextual infor-
mation. The limitations of RNN-based factorisation and these gating mechanisms of GRU
architectures (Limitations R1-R3 and (Limitations G1-G4)) are analysed in Section 3.6.3.

In the next chapter, we describe our proposed STReg technique, a textual-based MF-
based approach and Personalised Ranking Framework with Multiple sampling Criteria (PRFMC)

66



3.8. Conclusions

that aim to address Limitations S1 & S2, Limitation M1 and Limitations M2-M4, respec-
tively.
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Chapter 4

Enhancing Collaborative
Filtering-based Approaches with
Additional Information

4.1 Introduction

In Chapter 2, we provided an overview of basic Collaborative Filtering approaches from the
literature such as Matrix Factorisation (MF) (Koren et al., 2009) and Bayesian Personalised
Ranking (BPR) (Rendle et al., 2009) that are widely used to leverage the users’ observed im-
plicit and explicit feedback to effectively generate recommendations to users. As we previ-
ously discussed in Chapter3 for a LBSN, the users’ observed explicit and implicit feedback,
such as the ratings and checkins, respectively, are sparse in nature, i.e. users/venues have
very few ratings/checkins, which can degrade the accuracy of the rating prediction of the
traditional MF models (Ma et al., 2011; Ma, 2014; Jin et al., 2016; Hu et al., 2014) and the
quality of the ranked lists of venues made by Bayesian Personalised Ranking (BPR) (Zhang
and Chow, 2015; Wang et al., 2016; Yuan et al., 2016; Zhao et al., 2014). To alleviate the
sparsity problem and enhance the effectiveness of traditional MF and BPR models, as de-
scribed in Chapter 3, a common technique is to leverage additional information such as the
social information (e.g. users’ friendships and the ratings of each user’s friends), the geo-
graphical information of venues and the textual information (e.g. the textual content of com-
ments associated with the users’ rating). To leverage such additional information, various
approaches (Ma et al., 2011; Hu et al., 2014; Guo et al., 2015b; Jin et al., 2016) have been
proposed to enhance the accuracy of rating prediction of the traditional MF models. Indeed,
these approaches can be separated into two categories: namely regularisation techniques and
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factorisation approaches (see Chapter 3, Sections 3.3.1 & 3.3.2). In addition, to enhance the
quality of venue suggestions of BPR, a common approach in previous works (Wang et al.,
2016; Zhao et al., 2014; Yuan et al., 2016) is to extend the traditional negative sampling
approach and the ranking function of BPR to take those additional information into account
(see Chapter 3, Sections 3.5.1 & 3.5.2).

In this chapter, we propose a novel regularisation technique and a textual factorisa-
tion approach, which aim to enhance the accuracy of the rating prediction of traditional MF.
In particular, our proposed regularisation technique aims to address Limitation M1 of the
Social-based Regularisation (SoReg) technique identified in Section 3.3.1, while our pro-
posed factorisation-based approach aims to address Limitations M2-M4 of the Comment-
based Matrix Factorisation (CMF) and the Joint Matrix Factorisation (JMF) models identi-
fied in Section 3.3.2. The description of Limitations M1-M4 are summarised as follows:

Limitation M1: There is a disadvantage in SoReg in that it still relies on the Pearson
Correlation Coefficient to estimate the similarity between users.

Limitation M2: There is a disadvantage in CMF where the dimensions of latent factors
of venues and comment’s terms are similar.

Limitation M3: There is a disadvantage in JMF for jointly learning a user’s preference
and the characteristics of a venue from a single comment.

Limitation M4: There is a disadvantage in the CMF and JMF models, which treat
different latent factors dependently, although these latent factors capture different aspects.

Moreover, we propose a novel Personalised Ranking Framework with Multiple sam-
pling Criteria framework (PRFMC) that can leverage multiple types of additional informa-
tion to enhance the effectiveness of the traditional BPR model for top-K venue recommenda-
tions. The PRFMC framework aims to address Limitations S1-S2 of existing extension of
the BPR models (i.e. the SBPR1, SWBPR2 and GBPR3 models) identified in Section 3.5.3.
The descriptions of Limitations S1-S2 are summarised as follows:

Limitation S1: The existing BPR models approaches for which this limitation applies
(GBPR, SBPR and SWBPR) are built upon pre-defined sampling assumptions and are not
sufficiently flexible to incorporate different types of additional information.

Limitation S2: The sampling approaches for which this limitation applies (GBPR,
1The Social-based Bayesian Personalised Ranking (SBPR) proposed by Zhao et al. (2014), described in

Section 3.5.2
2The Strong and Weak social-based Bayesian Personalised Ranking (SWBPR) proposed by Wang et al.

(2016), described in Section 3.5.2
3The Geo-based Bayesian Personalised Ranking (GBPR) proposed by Yuan et al. (2016), described in

Section 3.5.1
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SBPR and SWBPR) are based on pre-defined assumptions (e.g. assuming that venues that
both the user and his/her friends have never visited can be sampled as negative instances),
which are contradicted by the previous studies (Cheng et al., 2012; Zhang and Chow, 2015;
Zhang et al., 2015a) that examined the users’ geographical movements and the social influ-
ences in LBSNs.

The remainder of this chapter is as follows:

• Section 4.2 describes our proposed Social and Textual Regularisation (STReg) tech-
nique and our textual factorisation-based approach (MFw2v) that both exploit the word
embeddings to capture the semantic properties of comments to improve the prediction
accuracy of the traditional MF model. Later, in Section 4.2.4, we evaluate the ef-
fectiveness of the STReg technique and that of the MFw2v model for the user-venue
rating prediction in comparison with various existing MF-based approaches.

• Section 4.3 describes our proposed Personalised Ranking Framework with Multiple
sampling Criteria (PRFMC), an extension of the traditional BPR model that can in-
corporate multiple sources of additional information to effectively sample negative
instances. Section 4.3.6 reports the effectiveness of the PRFMC framework in generat-
ing high quality venue recommendations in comparison with state-of-the-art extended
BPR models.

• In Section 4.4, we summarise the conclusions of this chapter.

4.2 Enhancing the Rating Prediction of MF with Word

Embeddings

As mentioned in Section 3.3, the textual content of comments associated with the users’
ratings on venues can provide insights about why the users rated a given venue positively
or negatively, while the content of comments also reflects the characteristics of each venue.
Hu et al. (2014) and Jin et al. (2016) showed that such comments can be leveraged to en-
hance the prediction accuracy of the traditional MF model. To incorporate comments into a
MF model, typically, the comments are represented using a Bag-of-Words (BoW) approach.
However, such a BoW approach may not be effective in capturing the semantic properties
of comments, because they ignore the ordering and the semantics of the words. An exam-
ple of two comments about a venue that are semantically similar are delicious sushi bar in
Illinois and best Japanese restaurant in Chicago. While these two comments have no words
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in common, their semantic properties are similar. However a similarity measure based upon
the BoW representations would fail to capture these properties.

To effectively capture the semantic properties of words, Mikolov et al. (2013a,b) pro-
posed a word embedding technique that represents a term within a multi-dimensional vector
space based on the contexts surrounding the term. Word embeddings are being increasingly
applied in many applications due to their effectiveness in capturing the semantic properties
of textual content, such as text classification (e.g. (Kim, 2014; Yang et al., 2018; McDonald
et al., 2017)) as well as recommendation systems (e.g. (Musto et al., 2016; Fu and Li, 2015;
Musto et al., 2015)). For example, Musto et al. (2016) applied several word embedding
techniques to enhance the effectiveness of content-based collaborative approaches for tasks
such as book and movie recommendation. In addition, Fu and Li (2015) showed that using
word embeddings to analyse comments not only captures the semantic properties but also
the sentiment expressed in the comments.

In this section, we propose a Social and Textual Regularisation (STReg) technique
(Section 4.2.1) and a textual-based factorisation approach (MFw2v) (Section 4.2.2) that both
exploit word embeddings to capture the semantic properties of the textual content of com-
ments, in order to enhance the accuracy of the rating prediction of a traditional MF model.
In particular, our proposed STReg technique aims to address Limitation M1 of the SoReg
technique described in Section 3.3.1, while the MFw2v model aims to address Limitations

M2-M4 of the CMF and JMF models described in Section 3.3.2. Later in Section 4.2.4,
we evaluate the effectiveness of our proposed STReg technique and our MFw2v model in
enhancing the prediction accuracy of the traditional MF model in comparison with various
MF-based baselines.

4.2.1 Social and Textual Regularisation Technique

As mentioned in Section 3.3, although previous works have shown that both social informa-
tion (Ma et al., 2011) and textual information (Hu et al., 2014; Jin et al., 2016) are important
sources of evidence to enhance the accuracy of the rating prediction of the traditional MF
model, a model that seamlessly incorporates these two additional sources of information has
not been previously proposed. In this section, inspired by Social Regularisation (SoReg)
proposed by Ma et al. (2011), which has been described in Section 3.3.1, we propose the
novel Social and Textual Regularisation (STReg) technique that extends the traditional MF
model by seamlessly incorporating both social information and textual comments by ex-
ploiting word embeddings to estimate a semantic similarity of friends based on their explicit
textual comments about venues. Similar to the traditional regularisation technique in Equa-
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tion (2.4), our proposed STReg technique aims to regularise the complexity of the traditional
MF model, hence avoiding over-fitting and improving the effectiveness of the MF model.
Moreover, as previously discussed in Section 3.3.1, friends who left positive ratings on a
venue may have different reasons why they enjoyed visiting the venue (e.g. a user is im-
pressed by the service and quality of food at a restaurant, but his/her friend is only impressed
by the setting of the restaurant). Unlike the SoReg technique, our proposed STReg technique
aims to address Limitation M1 by exploiting word embeddings to effectively estimate the
semantic similarity of friends based on the textual comments they have left for venues. In
particular, following a common technique used by Musto et al. (2015), for a comment mu,i

left by user u on venue i, we obtain a word embedding representation of comment mu,i by
summing the vectors of the terms that occurred in comment mu,i as follows:

w2v(mu,i) =
X

t2mu,i

~⌫t (4.1)

where t is a term that occurs in the comment mu,i and ~⌫t 2 Rk is a vector representation of
term t obtained from a word embeddings model. k is the number of dimensions in the word
embedding space. Thereafter, the similarity between two users based on their comments
about venues, which they have both visited, is estimated as:

simw2v(u, f) =

P
i2Vm(u)\Vm(f)

sim(w2v(mu,i), w2v(mf,i))

|Vm(u) \ Vm(f)|
(4.2)

where sim() denotes the cosine similarity between two vectors and Vm(u) is the set of venues
for which user u has left a comment. Next, inspired by the SoReg technique proposed by Ma
et al. (2011) (Equation (3.1)), we integrate our proposed STReg technique into the traditional
MF model as a component of the regularisation (but using comments rather than ratings to
identify similar friends):

↵

2

mX

u=1

X

f2F(u)

simw2v(u, f)kpu � pfk2F (4.3)

where ↵ is a parameter that controls the influence of the STReg technique. Note that, similar
to the traditional regularisation technique in Equation (2.4) and the SoReg technique, our
proposed STReg technique can be easily incorporated with various MF-based approaches.
For example, we can add our proposed STReg technique (Equation (4.3)) to the loss func-
tion of the traditional MF model (Equation (2.4)) and perform Stochastic Gradient Descent
(SGD) on latent factors pu to obtain a local minimum of the loss function while SGD on the
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latent factor qi remains the same as in Equation (2.5):

@L
MF+STReg

@pu
=

@L
MF

@pu
+ ↵

X

f2F(u)

simw2v(u, f)(pu � pf ) (4.4)

The main advantage of our proposed STReg technique over the SoReg technique for the tra-
ditional MF model is that the latent factors of similar friends who have similar tastes, which
are extracted from their textual comments instead of the numerical ratings, will be close to
each other in the vector space, whereas the latent factors of dissimilar friends will be more
different. Later in Section 4.2.4, we empirically evaluate the usefulness of our STReg tech-
nique in enhancing the prediction accuracy of the traditional MF model in comparison with
the SoReg technique discussed in Section 3.3.1.

As we mentioned earlier in Section 4.1, apart from the regularisation technique, we can
also enhance the effectiveness of the traditional MF model for the rating prediction by jointly
combining the MF model and word embeddings in a collaborative filtering manner. In the
next section, we describe our proposed factorisation-based approach that exploits word em-
beddings to capture both the semantic preferences of users and the characteristics of venues
from textual comments.

4.2.2 Textual-based Matrix Factorisation Approaches

As mentioned in Chapter 3, the users’ explicit textual comments can provide insights into
why users rate a venue positively or negatively and can also reflect the characteristics of the
venues in LBSNs. In Section 3.3.2, we described MF-based approaches previously proposed
in the literature, CMF (Hu et al., 2014) and JMF (Jin et al., 2016), which leverage the users’
explicit textual comments to model their preferences and to improve the prediction accu-
racy of the traditional MF model. In this section, we propose a novel MF-based approach
(MFw2v) that exploits word embeddings to effectively model the users’ preferences and the
characteristics of venues from the textual content of comments left by the users in LBSNs.
As mentioned in Section 4.1, our proposed MFw2v approach aims to address Limitations

M2-M4 of the Comment-based Matrix Factorisation (CMF) and the Joint Matrix Factorisa-
tion (JMF) models, which are identified in Section 3.3.2. We first describe how our proposed
MFw2v approach addresses Limitation M2 of CMF and JMF. In particular, following an
approach that is common in the literature (Musto et al., 2016), we exploit the word embed-
dings to model the user’s semantic preferences suu 2 Rk and the semantic characteristics of
venue svi 2 Rk from the comments in a low-dimensional word embedding space, where k is
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the dimensions of the word embedding vectors, as follows:

suu =
X

mu,i2Muu

X

t2mu,i

w2v(t)⇥ ru,i svi =
X

mu,i2Mvi

X

t2mu,i

w2v(t)⇥ ru,i (4.5)

where Muu and Mvi are the sets of user u’s and venue i’s comments and w2v(t) 2 Rk

is a function that returns a word embedding representation of term t. Note that the w2v()

function in Equation (4.5) can be replaced with a word representation generated by more
complex Convolutional Neural Networks (CNN) or Recurrent Neural Networks (RNN) (e.g.
(Kim, 2014)).

Next, to incorporate the representations of the preferences of each user su and the
characteristics of venues sv within the traditional MF model, we introduce the semantic
latent factors of users and venues, Ps 2 Rm,k and Qs 2 Rn,k, respectively. We then modify
the prediction function of the MF model in Equation (2.3) as follows:

r̂u,i = ↵pT
u
qi + (1� ↵)(pT

su
suu + qT

si
svi) (4.6)

where psu 2 Rk and qsi 2 Rk are the semantic latent factors of user u and venue i pro-
jected from Ps and Qs, respectively, and ↵ is a parameter that controls the influence between
the latent factors (pu and qi) and the semantic latent factors (psu and qsi). Finally, since we
update the prediction of the traditional MF model, the local minimum of the loss function
of the MF model (Equation (2.4)) based on the Stochastic Gradient Descent (SGD) is re-
calculated by optimising each of the latent factors, pu, qi, psu and qsi , while fixing the other,
until convergence as follows:

@L
@pu

=
nX

j=1

Iu,i(ru,i � r̂u,i)↵qi + �pu
@L
@qi

=
mX

i=1

Iu,i(ru,i � r̂u,i)↵pu + �qi (4.7)

@L
@psu

=
nX

j=1

Iu,i(ru,i� r̂u,i)(1�↵)svi +�psu
@L
@qsi

=
mX

i=1

Ii,j(ru,i� r̂u,i)(1�↵)suu +�qsi

(4.8)
@L
@suu

=
nX

j=1

Iu,i(ru,i� r̂u,i)(1�↵)svi+�psu
@L
@svj

=
mX

i=1

Iu,i(ru,i� r̂u,i)(1�↵)suu+�qsi

(4.9)

Next, we describe how our proposed MFw2v approach addresses Limitations M2-M4

of CMF and JMF, which are previously discussed in Section 3.3.2. In particular, there are
three main advantages of our MFw2v approach over the CMF and JMF approaches. First,
unlike the CMF model (Limitation M2), the latent factors of users P and venues Q do
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not necessarily share the same dimensions as the semantic latent factors of users Ps and
venues Qs (i.e. d 6= k). Second, with respect to Limitation M3, our proposed MFw2v
approach leverages all comments on venues to model the users’ semantic preferences and
the semantic characteristics of venues, whereas the JMF model only learns to factorise using
single comments. Finally, with respect to Limitation M4, unlike the JMF model, MFw2v
treats all the latent factors P , Q, Ps and Qs independently, while the influences of these latent
factors are controlled by the ↵ parameter.

With respect to our proposed STReg technique, described in Section 4.2.1, MFw2v
differs from STReg in several aspects: First, the STReg technique is only beneficial to users
who have friends and for LBSNs that record friend relationships. However, the rating pre-
diction of users who do not have any friends will be similar to the rating prediction generated
from traditional MF models. In contrast, users who do not have any friends will benefit from
the MFw2v approach because (1) users who have similar tastes (i.e. sui ⇡ suj ) are likely to
rate venues similarly regardless of their relationship and (2) qT

si
svi ensures that venues that

are commented similarly (i.e. svi ⇡ svj ) are likely to share similar semantic characteris-
tics. Second, the MFw2v approach is finer-grained than the STReg technique. In particular,
MFw2v learns which dimensions k of the user’s semantic preferences suu are important via
the user’s semantic latent factors psu . Hence, similar users are likely to have similar semantic
latent factors. In contrast, STReg does not learn the semantic latent factors between users
but solely relies on the cosine similarity to estimates similarity between two users. Regard-
ing the advantages of the MFw2v approach over the STReg technique discussed above, we
expect that MFw2v is more effective than STReg in enhancing the rating prediction of the
traditional MF model.

In the next section, we conduct experiments to evaluate the effectiveness of both our
proposed STReg technique and our MFw2v approach in enhancing the prediction accuracy
of the traditional MF model in comparison with state-or-the-art Social-based Regularisation
technique (SoReg) and the existing factorisation-based approaches described in Section 3.3.

4.2.3 Experimental Methodology

In this section, we evaluate the usefulness of our proposed Social and Textual Regularisation
technique (STReg) in enhancing the prediction accuracy of the traditional MF model and
evaluate the effectiveness of our proposed MFw2v approach in comparison with state-of-
the-art MF-based rating prediction approaches. As mentioned in previous section, our pro-
posed STReg aims to address Limitation M1 of the Social-based Regularisation (SoReg)
technique (see Section 3.3.1), while our proposed MFw2v approach aims to address Limi-
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Table 4.1: Summary of each research question and its corresponding success decision and
the limitations of the existing approaches.

Research Question Limitation Success Decision
RQ4.1 M1 STReg is more effective than SoReg.
RQ4.2 M2-M4 MFw2v is more effective than CMF and JMF.

tations M2-M4 of the existing textual MF-based approaches: namely the Comment-based
Matrix Factorisation (CMF) and the Joint Matrix Factorisation (JMF) (see Section 3.3.2). In
particular, we aim to address the following research questions:

• RQ4.1: Can we leverage the users’ social links and the textual content of comments
left by users for venues to enhance the prediction accuracy of the traditional MF
model?

• RQ4.2: Can we exploit word embeddings to effectively model the user’s semantic
preferences and the semantic characteristics of venues from the comments to improve
the prediction accuracy of the traditional MF model?

Table 4.1 summarises the research questions we aim to address in this section and their
corresponding success decision. In particular, to demonstrate that our proposed STReg tech-
nique framework can address Limitation M1 of the SoReg technique, we aim to answer
research question RQ4.1 by comparing the performances of STReg and SoReg. Next, by an-
swering research question RQ4.2, we aim to demonstrate the usefulness of word embeddings
in modelling the user’s semantic preferences and the semantic characteristics of venues from
the users’ comments.

To answer these research questions, we conduct experiments using the publicly avail-
able Yelp dataset4, which consists of 2,225,214 ratings by 552,339 users for 77,079 venues.
It also contains social network information, with ⇠3.5M friend links. Following common
practice (Hu et al., 2014), we remove standard stopwords from comments in the Yelp dataset.
We conduct experiments using a 5-fold cross-validation setting, where each fold has 60%
training, 20% validation and 20% testing. We implement all experiments using LibRec (Guo
et al., 2015a), a Java library for recommendation systems. For each fold, the ↵ parameter
in Equation (4.3) and Equation (4.6) is determined using the validation set. Following (Hu
et al., 2014; Jin et al., 2016; Ma et al., 2011), we set the dimension of latent factors d to 10
and � = 0.0015. An experiment conducted by Ma et al. (2011) showed that the value of the

4www.yelp.com/dataset challenge
5� is a parameter that controls the influence of regularisation (see Equation (2.4)).
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↵ parameter6 has a significant impact on the prediction accuracy of a traditional MF model.
Setting ↵ extremely high can degrade the prediction accuracy as users are fully influenced
by their friends (i.e. users are predicted to prefer every venue that their friends like). Follow-
ing Ma et al. (2011)’s approach, we vary 0.000001  ↵  1, multiplying ↵ by 10 at each
iteration. For each fold, the value of ↵ that minimises Root Mean Square Error (RMSE) on
the validation set is used for testing. For word embeddings, we use the Word2Vec tool7, to
train a skip-gram model (Mikolov et al., 2013a) using the default settings (window size 5 and
word embedding dimensions k = 100) on the Yelp dataset. Previous work by Mikolov et al.
(2013b) showed that the skip-gram model performs better than or equally to the Continuous
Bag-of-Words model. Finally, we report the user-rating prediction accuracy in term of Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE) described in Section 2.1.2,
which are widely used in the literature (Guo et al., 2015b; Hu et al., 2014; Ma et al., 2011;
Jin et al., 2016). Recall that for both MAE and RMSE, lower is better.

Next, we compare our proposed STReg technique and our MFw2v approach with a
number of baselines, which can be grouped into 3 categories: traditional Matrix Factorisation
model (MF), regularisation techniques and textual MF-based approaches. The baselines
are summarised below, while their parameters and sources of evidence are highlighted in
Table 4.2.

MF (Koren, 2010b) is the traditional Matrix Factorisation model, which only considers the
user-venue matrix to predict the ratings (described in Section 2.1.1.1.2).

SoReg (Ma et al., 2011) is a state-of-the-art social regularisation technique that leverages
the users’ friendship F(.) to enhance the prediction accuracy of the traditional MF model
(Equation (3.1)), which is described in Section 3.3.1.

BoWReg: Building upon the SoReg technique, BoWReg represents the user’s comments
using Bag-of-Words (BoW) similarity, and hence considers both the users’ friendships and
their comments. In particular, this model is similar to our proposed STReg technique but
instead the similarity between two users is estimated using an average of the cosine similarity
of the user’s BoW comment vectors, as follows:

simbow(u, f) =

P
i2Vm(u)\Vm(f)

sim(bow(mu,i), bow(mf,i))

|Vm(u) \ Vm(f)|
(4.10)

where bow(mu,i) returns a vector that represents the term frequency of terms occurring in
comment mu,i. Note that the BoW representations are more sparse than the W2V represen-

6↵ is a parameter that controls the influence of the STReg technique (see Equation (4.3))
7code.google.com/archive/p/word2vec
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Table 4.2: Overview of regularisation techniques and MF-based approaches for the user-
venue rating prediction. + indicates an addition to the intuition of the traditional MF model.

Models Social Comments Params Intuitions
MF ⇥ ⇥ � Users are likely to prefer venues

rated that other similar users rate
highly.

CMF, JMF ⇥ X � + Users are likely to prefer venues
that share similar characteristics
(according to textually similar com-
ments).

SoReg X ⇥ �, ↵ + Users are likely to prefer venues
that their friends rate highly.

BoWReg, STReg X X �, ↵ + Users are likely to prefer venues
visited by their friends who have
similar tastes.

MFw2v ⇥ X �, ↵ + Users’ preferences can be ex-
tracted from their comments on
venues and users are likely to prefer
venues that share similar character-
istics.

tation. We use BoWReg as a regularisation baseline that considers both social and textual
information without using the word embeddings.

CMF (Hu et al., 2014) is a MF-based approach that leverages the textual content of com-
ments to enhance the effectiveness of the traditional MF model, described in Section 3.3.2.
In particular, CMF decomposes the latent factors of a given venue into a combination of
latent factors of terms that occurred in the comments of the given venue.

JMF (Jin et al., 2016) is a state-of-the-art rating prediction approach that jointly models com-
ments and user’s ratings by exploiting skip-thought vectors (Kiros et al., 2015)8 to represent
the textual content of comments, described in Section 3.3.2. Instead of skip-thought vectors,
we re-implement their approach to exploit word embeddings to permit a fair comparison
with our proposed MFw2v approach.

8a state-of-the-art deep learning approach.
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4.2.4 Experimental Results & Discussion

In this section, we report and discuss the experimental results of our both proposed STReg
technique and our MFw2v approach in comparison with the baselines mentioned above on
the Yelp dataset. In particular, we aim to answer research questions RQ4.1 and RQ4.2.
Table 4.3 reports the user-venue rating prediction accuracy, in terms of MAE and RMSE, of
our proposed STReg technique and our MFw2v approach as well as other baselines. Firstly,
on inspection of our re-implementations of the state-of-the-art regularisation and MF-based
baselines in Table 4.3, we note that the relative prediction accuracy of the baselines on the
Yelp dataset are consistent with the results reported in (Ma et al., 2011; Jin et al., 2016; Hu
et al., 2014), namely that the SoReg technique and the CMF and JMF models outperform
the traditional MF model, while JMF outperforms CMF in terms of the MAE and RMSE
metrics.

With regard to research question RQ4.1, we observe that our proposed STReg tech-
nique can enhance the prediction accuracy of the traditional MF model by 7% for MAE
(1.160 ) 1.0781) and 11% for RMSE (1.5243 ) 1.3456). These results imply that the
social information and the textual content of comments are useful in enhancing the accuracy
of the rating prediction of the traditional MF model. Moreover, by comparing the STReg and
SoReg techniques, the MAE and RMSE results in Table 4.3 show that by addressing the lim-
itation of the SoReg technique (Limitation M1, identified in Section 3.3.1, in which SoReg
still relies on the Pearson Correlation Coefficient (PCC) to estimate the similarity between
users), more accurate rating predictions are obtained. In particular, these results demonstrate
that minimising the distance between latent factors of friends based on the semantic simi-
larity of their comments is more effective than estimating user similarity solely based upon
similar ratings (i.e. PCC, as per Equation (3.2)). Next, comparing STReg with BoWReg, we
find that the prediction accuracy is again enhanced (2% for MAE (1.1004) 1.0781) and 6%
for RMSE (1.4354) 1.3456)). These results show that word embeddings are a more effec-
tive representation for the textual content of comments than a Bag-of-Words representation.
In particular, word embeddings offer a more useful, semantic space for modelling comments
by users upon venues that results in a more effective regularisation.

In addressing research question RQ4.2, we compare the prediction accuracy of MFw2v
in comparison with state-of-the-art textual MF-based baselines. Overall, by addressing the
limitations of CMF and JMF approaches (Limitations M2-M4)9, identified in Section 3.3.2,
we observe that our proposed MFw2v approach can outperform all textual MF-based base-
lines, CMF and JMF, in terms of MAE and is as effective as the STReg technique in terms of

9The description of Limitations M2-M4 are summarised in Section 4.1.
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Table 4.3: Prediction accuracy in terms of MAE and RMSE of various approaches. Percent-
age differences of prediction accuracy are calculated with respect to the best performance
achieved for that metric, which are highlighted in bold.

Metrics MF CMF JMF SoReg BoWReg STReg MFw2v
MAE 1.1640 1.2198 1.1795 1.1260 1.1004 1.0781

1.0188
� 12.47% 16.48% 15.77% 9.52% 7.42% 5.50%

RMSE 1.5243 1.5006 1.5073 1.3870 1.4354
1.3456

1.3458
� 11.72% 10.33% 12.02% 2.99% 6.26% 0.01%

RMSE. In particular, comparing with the traditional MF model, the prediction accuracy of
MFw2v is ⇠12% more effective than MF for both MAE and RMSE. In addition, comparing
MFw2v with the textual MF-based baselines, CMF and JMF, we find that the prediction ac-
curacy is again improved by approximately 15% and 10% for MAE and RMSE, respectively.
These results imply that the users’ semantic preferences and the semantic characteristics of
venues extracted from the textual content of comments using word embeddings can enhance
the rating prediction accuracy of the traditional MF model. Furthermore, note that the textual
content of comments of venues are publicly available in LBSNs, while social information
such as users’ friendships may not be available due to privacy concerns. By comparing our
MFw2v approach and STReg technique, the experimental results demonstrate that MFw2v
is more effective than STReg in terms of MAE (i.e. 5.5% more accurate than STReg), while
it is as effective as STReg in terms of RMSE. Note that the MFw2v approach only takes
the users’ comments into account, while the STReg technique considers both social infor-
mation and users’ comments. Although the improvements in Table 4.3 are relatively small
(e.g. 5.5% improvement in MAE of MFw2v in comparison with STReg), we note that small
improvements in MAE and RMSE can lead to marked improvements in the quality of recom-
mendations in practice (Koren, 2010b). Moreover, the observed performances are evaluated
over 2.2M ratings. Note that, we expect that the MFw2v approach is more effective than
the STReg technique in improving the effectiveness of the traditional MF model due to its
advantages over the STReg technique, which are previously discussed in Section 4.2.2.

4.3 Personalised Ranking Framework with Multiple Sam-

pling Criteria

In the previous section, we described our proposed Social and Textual Regularisation (STReg)
technique and our textual MF-based approach (MFw2v), which aimed to enhance the effec-
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tiveness of the traditional MF model for user-venue rating prediction by exploiting word
embeddings to model the textual content of comments. However, as mentioned in Sec-
tion 3.1, users in LBSNs only focus on the top-K ranked list of venues, while explicit rating
feedback can be difficult to collect. For these reasons, Bayesian Personalisation Ranking
(BPR) (Rendle et al., 2009), which aims to generate accurate ranked lists of venues, lever-
ages implicit feedback such as users’ checkins, and is considered to be more effective than
the rating prediction MF-based models.

A challenge of obtaining implicit feedback from observed checkins by users is that
only positive feedback can be observed. Training the MF and BPR models on only positive
feedback is not effective because the model is likely to be biased to positive instances. To
address this challenge, the negative sampling approach (see Algorithm 2.1) was proposed
by Rendle et al. (2009) to uniformly and randomly select venues that the users have not
interacted with as negative instances. In Section 3.5, we reviewed several negative sampling
approaches from the literature (Wang et al., 2016; Yuan et al., 2016; Zhao et al., 2014),
which incorporate additional information such as the users’ relationships and geographical
information of venues to enhance the effectiveness of the BPR model. However, we argue
that these existing negative sampling approaches are not effective due to their limitations
(Limitations S1-S2), which were identified in Section 3.5.3 and summarised in Section 4.1.

In this section, to address Limitation S1, we propose a novel Personalised Ranking
Framework with Multiple sampling Criteria (PRFMC) that incorporates multiple types of
additional information to further improve the quality of top-K venue recommendation of the
BPR model. We first describe the overview of our proposed PRFMC framework for venue
recommendation in Section 4.3.1. Then, we describe the two components of the PRFMC
framework, which aim to address Limitation S2 in Sections 4.3.2 & 4.3.3, respectively.
Later, in Section 4.3.6, we demonstrate the effectiveness of the PRFMC framework and
that of its components in comparison with various state-of-the-art venue recommendation
systems.

4.3.1 An Overview of the PRFMC Framework

As mentioned in Section 3.5.3, existing negative sampling approaches (e.g. (Yuan et al.,
2016; Wang et al., 2016; Zhao et al., 2014)) are not sufficiently flexible to incorporate differ-
ent types of additional information (Limitation S1). To address this limitation, we propose
the novel Personalised Ranking Framework with Multiple sampling Criteria (PRFMC) that
can incorporate multiple types of additional information. Inspired by the BPR model, the
PRFMC framework consists of a user’s preference model, a pairwise ranking function and a
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negative sampling approach that supports multiple sampling criteria. The overview process
of PRFMC framework is described in Algorithm 4.1. Starting with the user’s preference
modelling, for a given user u and an unvisited venue i, we calculate the user’s preference
score pu,i based on the product rule as follows:

pu,i =
Y

a2A

Pa(i|u) (4.11)

where A denotes sources of additional information (e.g. the users’ friendship and the geo-
graphical location of venues) and Pa(i|u) is the estimated probability that user u will visit
venue i, which takes a source of additional information a into account. The higher the score,
the more likely user u will visit venue i. Note that the product rule has been widely used
to fuse different probabilistic models for recommendations in previous works (Zhang and
Chow, 2013; Zhang et al., 2015a; Zhang and Chow, 2015; Cheng et al., 2012) and has shown
high robustness. Unlike those previous pointwise approaches (e.g. (Zhang and Chow, 2015;
Zhang et al., 2015a)) that rank venues based on the score pu,i computed in Equation (4.11),
we propose to leverage this score to effectively sample negative examples to enhance the ef-
fectiveness of the BPR model. The main advantage of the user’s preference score pu,i is that
it is sufficiently flexible to be extended to incorporate different types of additional informa-
tion (e.g. social links, geographical information of venues and venue’s categories) within A.
Indeed, we can include weighting parameters into Equation (4.11) that control the influence
of each probabilistic model Pa(i|u). However, following the previous literature (Zhang and
Chow, 2013; Zhang et al., 2015a; Zhang and Chow, 2015; Cheng et al., 2012), we use the
product operation to combine different probabilistic models. Later in Sections 4.3.2 & 4.3.3,
we discuss the probabilistic models that can be combined into Equation (4.11).

Next, for a given checkin cu,i, which indicates that the user u visited venue i, we
uniformly sample two venues j, k 2 V�

u
that user u has not visited before and then calculate

the user’s preference scores pu,j and pu,k (see Algorithm 4.1, Lines: 9-11). Then, the pairwise
ranking function of the PRFMC framework is defined as follows:

ĉu,i,j,k(⇥) :=

(
ĉu,i � ĉu,j ^ ĉu,j � ĉu,k, if su,j > su,k

ĉu,i � ĉu,k ^ ĉu,k � ĉu,j, otherwise
(4.12)

Based on the above pairwise ranking function, for each user u 2 U , inspired by the objective
function of BPR described in Section 2.1.1.1.3, the objective function of PRFMC can be
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defined as follows:

J (⇥) = argmax
⇥

X

u2U

"
X

i2V+
u

X

j2V�
u

ln(�(ĉu,i � ĉu,j)) +

X

j2V�
u

X

k2V�
u

ln(�(ĉu,j � ĉu,k))

#
�

�u

X

u2U

k�uuk2F � �v

X

i2V

k�vik2F

(4.13)

where �(x) is the sigmoid function, �u,�v are regularisation parameters, k.k2
F

denotes the
Frobenius norm and ⇥ = {P,Q} denotes all the parameters of the PRFMC framework to
be learnt. Similar to the BPR, SBPR, SWBPR and GBPR models, we apply Matrix Factori-
sation to predict the checkin frequency of user u on venue i by calculating the dot product
of the latent factors of user u and venue i (i.e. ĉu,i = �uT

u
�vi). Note that our proposed

PRFMC framework is sufficiently flexible to use more-sophisticated MF-based checkin pre-
diction approaches for estimating ĉu,i in Equation (4.13). For example, instead of the dot
product operation, we can apply the prediction function of the NeuMF framework that relies
on the concatenation and element-wise product of latent factors of users and venues (see
Equation (3.5), page 46). However, for simplicity, we apply the traditional MF model to pre-
dict the users’ checkins. Finally, we use Stochastic Gradient Descent (SGD) to find a local
maximum of the objective function (Equation (4.13)). In particular, for each iteration (Al-
gorithm 4.1, Lines 13-15), given a random feedback tuple of user u who has visited venue
i, but not visited venues j and k, (u, i, j, k) 2 D = {(u, i, j, k)|i 2 V+

u
^ j, k 2 V�

u
}, we

update the model parameter ✓ 2 ⇥ based on the gradient of its corresponding parameter @J
@x

while fixing the others, ⇥� ✓, until convergence, as follows:

✓(T +1) = ✓(T ) + ⌘(T ) · @J
@✓

(✓(T )) (4.14)

For the purpose of SGD, the gradients of the latent factors �uu, �vi, , �vj , �vk are calculated
as follows:

@J
@�uu

= �(ĉu,j � ĉu,i)(�vi � �vj) + �(ĉu,k � ĉu,j)(�vj � �vk)� �u�uu (4.15)

@J
@�vi

= �(ĉu,j � ĉu,i)�uu � �v�vi (4.16)

@J
@�vj

= (�(ĉu,k � ĉu,j)� �(ĉu,j � ĉu,i))�uu � �v�vj (4.17)
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@J
@�vk

= ��(ĉu,k � ĉu,j)�uu � �v�vk (4.18)

Algorithm 4.1: An Optimisation Algorithm for PRFMC
1 Input: users U , venues V , visited venues V+

u
and social links Fu for each u 2 U

2 Output: ⇥ =
�
P 2 Rm⇥d, Q 2 Rn⇥d

 

3 P ⇠ U(0, 1), Q ⇠ U(0, 1) T  0 // iteration number
4 repeat

5 for T  1 to |U| do

6 u draw a random user from U
7 i draw a random visited venue from V+

u

8 j, k  draw random unvisited venues from V�
u

9 if pu,k > pu,j then

10 swap j and k
11 Compute gradients of �uu, �vi, �vj , �vk
12 Equations (4.15 - 4.18)
13 Update the parameters (�uu, �vi, �vj , �vk)
14 Equation (4.14)

15 until convergence;

There are two main advantages of our proposed PRFMC framework over the SBPR,
SWBPR and GBPR models. First, the PRFMC framework is more flexible than those ex-
isting BPR-based models in incorporating additional sources of information. Note that, to
incorporate additional information within the SBPR, SWBPR and GBPR models, we need to
(1) adjust their sampling criterion, then (2) adjust their pairwise ranking function and (3) re-
calculate the gradients of the latent factors of users and venues. However, with PRFMC, we
only need to extend the user’s preference score function su,i in Equation (4.11) to incorporate
additional probabilistic models. In particular, we can simply add a new probability model
Pa(i|u) that takes the new additional source of information a into account in Equation (4.11).
In addition, unlike SBPR, SWBPR and GBPR, our proposed PRFMC framework does not
need to revise the gradient calculations when the new additional sources of information are
introduced to the framework (i.e. Equations (4.15) - (4.18) remain the same). However, note
that, this advantage of PRFMC no longer applies if more advanced DNN libraries such as
Tensorflow10 and Keras11 are deployed because these libraries support automatic gradient
calculations.

Another advantage of the PRFMC framework is its efficiency. The computational com-
plexity of our proposed PRFMC framework consists of the calculation of the rating predic-
tion from the traditional MF model, the pairwise learning algorithm as well as the preference

10https://www.tensorflow.org/
11https://keras.io/
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score function (Equation (4.11)). In particular, the training time of the traditional MF model
scales linearly with the number of checkins in C (Koren et al., 2009). Regarding the com-
plexity of our proposed pairwise learning algorithm, the computation of each gradient is
O(d) (Equations (4.15)-(4.18)), where d is the dimensions of latent factors. Note that the
probabilistic models, which are described in Sections 4.3.2 & 4.3.3, can be pre-computed,
hence the complexity of the scoring function at training and testing time is O(1). Overall, the
total complexity of PRFMC is O(T · |U| · d), where T is the number of iterations and |U| is
the number of users. Indeed, the computational complexity of our proposed PRFMC frame-
work is equivalent to the BPR, GBPR, SBPR and SWBPR models. Therefore, the efficiency
and scalability to large datasets of the PRFMC framework is similar to those of the BPR-
based models. In the next section, we describe how to integrate state-of-the-art probabilistic
models into the PRFMC framework to effectively sample negative instances.

4.3.2 A Negative Sampling Criterion with Geographical Influence

As discussed in Section 3.5.1, Yuan et al. (2016) proposed an extension of the BPR model
(GBPR) that leverages the geographical information of venues to sample negative exam-
ples from unvisited venues nearby a previously visited venue i, Vg

u,i
. As discussed in Sec-

tion 3.5.3, we argue that the negative sampling approach of GBPR is not effective. In partic-
ular, GBPR’s sampling criterion is contradictory to previous studies (Cheng et al., 2012; Ye
et al., 2011; Yuan et al., 2013; Zhang and Chow, 2013; Zhang et al., 2015a; Zhang and Chow,
2015) that examined users’ geographical movements on LBSNs. In particular, these previ-
ous works have shown that users in LBSNs are likely to visit new venues nearby to venues
that they often visit (e.g. their home, office and travel places). However, GBPR’s sampling
criterion uniformly samples negative venues nearby to any previously visited venues, re-
gardless of how often they have visited other venues in the same area. To illustrate the
users’ geographical movements in LBSNs observed in previous studies, Figure 4.1 shows
the checkin characteristics of a particular user in different cities (centres) of the USA. In
centre 1 (recently visited area), the user has only visited one venue, while he/she has visited
various venues in centre 2 (his/her home area). Hence, the user is more likely to visit venues
nearby to venues in his/her home area (centre 2) rather than the recently visited area (cen-
tre 1). However, we argue that the negative sampling criterion of GBPR, which ignores the
users’ geographical movements – as widely explored in previous literature – can lead to a
non-optimal sampling approach (Limitation S2).

To address Limitation S2 of the GBPR model, we propose a novel sampling criterion
that takes the users’ geographical movements into account, which are captured by a geo-
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Figure 4.1: A typical user’s multi-centres checkin behaviour sampled from the Brightkite
dataset. This figure is obtained from Manotumruksa et al. (2017b).

graphical probabilistic model. Note that, previous works (e.g. (Cheng et al., 2012; Zhang and
Chow, 2015; Zhang et al., 2015a)) ranked venues based on the probabilistic scores generated
by the geographical probabilistic model. In contrast, we use the geographical probabilistic
model to estimate the preference score pu,i in Equation (4.11) to effectively sample negative
instances, instead of ranking venues. Later in Section 4.2.4, we demonstrate that exploiting
the probabilistic scores to sample negative instances is more effective than using the scores
to rank unvisited venues in enhancing the quality of top-K venue recommendation. In addi-
tion, we demonstrate that the PRFMC framework with the geographical probabilistic model
significantly outperforms GBPR.

To effectively capture the users’ geographical movements on LBSNs, we apply the
Multi-centre Gaussian model (MGM) proposed by Cheng et al. (2012) to calculate the prob-
ability of a user u, visiting venue i, given a pre multi-centre of the user Cu, Pm(i|Cu), (i.e. a
pre-calculated list of frequently visited areas/centres) as follows:

Pm(i|Cu) =
X

c2Cu

P (i 2 c)
f↵

cP
j2Cu

f↵

j

N (i|µc, �c)P
j2Cu

N (i|µj, �j)
(4.19)

Equation (4.19) consists of a marginalisation of the product of three terms, namely:

• P (i 2 c), / 1/dist(i, c), is inversely proportional to the distance between venue i and
the centre c, dist(i, c).

• f
↵
cP

j2Cu f↵
j

denotes the normalised effect of checkin frequency fc in the centre c, where
↵ 2 (0, 1] controls the checkin frequency property (i.e. the smaller ↵ is the less signif-
icant effect on the checkin frequency).
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• N (i|µc,�c)P
j2Cu N (i|µj ,�j)

denotes the probability of a venue belonging to the centre c, where
N (i|µc, �c) is the probability density function of a Gaussian distribution, while µc

and �c correspond to the mean and covariance distances of venues located around the
centre c.

Next, we use a greedy clustering algorithm proposed by Cheng et al. (2012) to find the multi-
centres of a user u, Cu. For each user u, we start from the most visited venue of the user
in V+

u
, and combine all other visited venues from V+

u
whose distance is less than  kilome-

tres from the selected venue, into a given region. If the ratio of the total checkin number of
venues in this region to the user’s total checkin number is greater than a threshold �, we set
these checkin venues as a region and determine the most visited checkin venue as the centre
of the region. Algorithm 4.2 shows the procedure for discovering the multiple centres of
all users. In this section, we have described how to integrate the geographical probabilistic

Algorithm 4.2: Multi-centre Discovering Algorithm (Cheng et al., 2012)
1 for u 2 U do

2 Sort all venues in V+
u

according to visiting frequency
3 8i 2 V+

u
, vi.centre = �1

4 centre list = ;, centre no = 0
5 for i = 1! |V+

u
| do

6 centre no++, centre = ;
7 centre.total freq = 0
8 centre.add(vi), centre.total freq += vi.freq
9 for j = i+ 1! |V +

u
| do

10 if vi.centre == �1 ^ dist(vi, vj)   then

11 vj.centre = centre no, centre.add(vj)
12 centre.total freq += vj.freq

13 if centre.total freq � u.total freq ⇥ � then

14 centre list.add(centre)

15 return centre list for u

model into the PRFMC framework to effectively sample negative instances. In particular,
by applying the Multi-centre Gaussian model (MGM), the PRFMC framework can take the
users’ geographical movements (e.g. users are likely to visit venues nearby their centres)
into account during the sampling process, which is more effective than the negative sam-
pling approach of the GBPR model. As mentioned in Section 4.1, the existing extension of
the BPR models (e.g. the SBPR, SWBPR and GBPR models) can only leverage one type of
additional information. In the next section, we describe how to integrate a state-of-the-art
social probabilistic model to the PRFMC framework to leverage different types of additional
information in order to effectively sample negative instances.
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4.3.3 A Negative Sampling Criterion with Social Correlation

In Section 4.2.4, our experimental results showed that our proposed Social and Textual Reg-
ularisation technique (STReg) that leverages the users’ social information can enhance the
effectiveness of the traditional MF model. Similarly, previous literature (Wang et al., 2016;
Zhang and Chow, 2015; Zhao et al., 2014; Zhang et al., 2015a; Cheng et al., 2012) have
shown that social influences play an important role in venue recommendation systems be-
cause users are likely to visit similar venues their friends visited. For instance, Zhang and
Chow (2015) shown that users are more likely to visit venues that their friends often visited
and similarly friends are also likely to visit similar venues and such social influences follow
the power-law distribution.

However, as mentioned in Section 3.5.3, we argue that the negative sampling approach
of SBPR and SWBPR models do not take the social influences previously observed in pre-
vious studies into account, which may lead to a non-optimal negative sampling approach
(Limitation S2). Indeed, the sampling criterion of SBPR and SWBPR are based on their pro-
posed pre-defined sampling assumptions, which are contradictory to previous studies (Zhang
and Chow, 2015; Zhang et al., 2015a) about social influences on LBSNs. For instance, the
negative sampling approach of SBPR uniformly sample venues a given user has not visited
before but have been visited by the user’s friends and negative instances, regardless of the
degree of their friendship (e.g. how many similar venues friends have visited and how often
they have visited those venues).

To address Limitation S2 of SBPR and SWBPR models, we propose to integrate the
social relevance model based on the power-law distribution proposed by Zhang and Chow
(2015) into the PRFMC framework. By doing so, our proposed PRFMC framework will
take the users’ social information into account during the negative sampling process. Again,
we note that our contribution in this section differs from that of Zhang and Chow (2015).
Indeed, we apply the social relevance model to effectively sample negative examples, while
they used the probabilistic scores generated by the social relevance model to rank unvisited
venues. Later in Section 4.2.4, we demonstrate that the social relevance scores to sample
negative instances are more effective than using the social relevance scores to rank unvisited
venue in enhancing the quality of top-K venue recommendation. In addition, we demonstrate
that the PRFMC framework with the social relevance model significantly outperforms several
social-based BPR approaches (SBPR and SWBPR).

The social relevance model proposed by Zhang and Chow (2015) consists of three
steps: social aggregation, distribution estimation of social checkin frequency and social rel-
evance score computation.
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Step 1: Social aggregation. Given a user u and an unvisited venue i, we aggregate the
checkin frequency of the user’s friends Fu on venue i, as follows:

xu,i =
X

f2Fu

cf,i (4.20)

Then we transform the social checkin frequency into normalised relevance based on the
social checkin frequency distribution, which is learned from the historical checkin of all
users.

Step 2: Distribution estimation of social frequency. In real-world datasets, the social
checkin frequency random variable x follows a power-law distribution (Zhang and Chow,
2015), the probability density function of which is defined by:

fSo(x) = (� � 1)(1 + x)��, x � 0, � > 1 (4.21)

where � is estimated by the checkin matrix R and the social links matrix F , as follows:

� = 1 + |U||V|
"
X

u2U

X

i2V

ln(1 +
X

f2Fu

cf,i)

#�1

(4.22)

Step 3: Social relevance score computation. The estimated probability density func-
tion fSo in Equation (4.21) is monotonically decreasing with respect to the social checkin
frequency x, but the social relevance score should be monotonically increasing with regard
to the social checkin frequency, because users who have friends with whom they share com-
mon visited venues should have high social relevance scores. Thus, we define the social
relevance score of xu,l in Equation (4.20) based on the cumulative distribution function of
fSo, given by:

Ps(i|u) =
Z

xu,i

0

fSo(z)dz = 1� (1 + xu,i)
1�� (4.23)

such that P (i|u) is monotonically increasing with respect to the social checkin frequency
xu,i. Moreover, based on the cumulative distribution probability P (i|u) in Equation (4.23),
the social checkin frequency xu,i is transformed into a social relevance score that reflects
the relative position of xu,i in all the social checkin frequencies of users on venues. Fi-
nally, by adding the social relevance model (Ps(i|u) in Equation (4.21)) and the geograph-
ical probabilistic model (Pm(i|Cu) in Equation (4.19) into the user’s preference model in
Equation (4.11), our proposed PRFMC framework can leverage both users’ geographical
movements and social influences to effectively sample negative instances. We therefore ar-
gue that the PRFMC framework is more flexible than the SBPR, SWBPR and GBPR models
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in incorporating multiple sources of additional information. In the next section, we evalu-
ate the effectiveness of the PRFMC framework in comparison with various state-of-the-art
BPR-based approaches.

4.3.4 Experimental Methodology

In the previous section, we described our proposed Personalised Ranking Framework with
Multiple sampling Criteria (PRFMC), which aims to address the limitations of existing BPR-
based approaches (Limitations S1 & S2). In this section, we evaluate the effectiveness of our
proposed PRFMC framework for top-K venue recommendations in comparison with state-
of-the-art BPR-based baselines, namely the SBPR, SWBPR and GBPR models. Note that
Limitation S1 of the baselines (i.e. they are not sufficiently flexible to incorporate different
types of additional information) has been addressed in the PRFMC framework and does
not require experimental verification because PRFMC is sufficiently flexible to incorporate
different types of additional information (see Section 4.3.1). In particular, we aim to answer
the following three research questions:

RQ4.3 Can we effectively sample negative venues by leveraging the users’ geographical move-
ments previously observed in the literature?

RQ4.4 Can we effectively sample negative venues by leveraging the social influences previ-
ously observed in the literature?

RQ4.5 Is a negative sampling approach based on multiple criteria more effective than a sam-
pling approach with a single criterion in improving the quality of top-K venue recom-
mendations?

Table 4.4 summarises the research questions we aim to address in this section and their
corresponding success decision. In particular, to demonstrate that our proposed PRFMC
framework can address Limitation S2 of the existing social-based negative sampling ap-
proaches (i.e. SBPR and SWBPR), we aim to answer research question RQ4.3 by comparing
the performances of the SBPR and SWBPR models with our proposed PRFMC framework
that incorporates the SPLD model during the sampling process. Next, by answering research
question RQ4.4, we aim to demonstrate whether the PRFMC framework that incorporates
the MGM model during the sampling process can address Limitation S2 of the geo-based
negative sampling approach (i.e. GBPR). Finally, by answering research question RQ4.5, we
can demonstrate the usefulness of the multiple sampling criteria in enhancing the quality of
top-K venue recommendations.
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Table 4.4: Summary of each research question and its corresponding success decision and
the limitations of the existing approaches.

Research Question Limitation Success Decision
RQ4.3 S2 PRFMC with the Social Power-Law Distri-

bution model (SPLD) is more effective than
the existing social-based negative sampling ap-
proaches.

RQ4.4 S2 PRFMC with the Multi-centre Gaussian Model
(MGM) is more effective than the existing geo-
based negative sampling approaches.

RQ4.5 S2 PRFMC with both SPLD and MGM is more
effective than social- and geo-based negative
sampling approaches.

To answer these research questions, we conduct several experiments using publicly
available large-scale LBSN datasets. In particular, to show the generalisation of our proposed
PRFMC framework across multiple LBSN platforms and sources of feedback evidence, we
use two checkins datasets from Gowalla and Brightkite12, and a rating dataset from Yelp13.
For each dataset, we conduct experiments using a 5-fold cross-validation, where each fold
has 60% training, 20% validation and 20% test instances (checkins/ratings). Due to the high
sparsity of the datasets, we follow the common practice from previous works (e.g. (Rendle
et al., 2009; He et al., 2016b; Yuan et al., 2016; Zhang et al., 2015a; Li et al., 2016)) to filter
out users/venues with less than 10 interactions. Table 4.5 summarises the statistics of the
filtered datasets.

For each dataset, we measure the quality of the top-K venue recommendations in terms
of Mean Average Precision (MAP), Normalised Discounted Cumulative Gain (NDCG) and
Mean Reciprocal Rank (MRR), which are widely used for venue recommendation in the lit-
erature (Yuan et al., 2016; Wang et al., 2016; Zhao et al., 2014; Loni et al., 2016). These
ranking-based metrics were previously described in Section 2.1.2.2. In particular, given the
ground truth venues of each user, MAP and MRR consider the ranking nature of the task, by
taking into account the rank(s) of the ground truth venues in the produced rankings, while
NDCG goes further by considering the checkin frequency/rating value of the user as the
graded relevance label. Note that, significance tests are conducted using a paired t-test with
p < 0.01.

12https://snap.stanford.edu/data/
13https://www.yelp.com/dataset_challenge
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Table 4.5: Statistics of three datasets

Yelp Brightkite Gowalla
Number of users 40,228 25,063 72,953
Number of venues 34,932 48,177 131,328
Number of ratings or checkins 987,050 3,309,555 3,487,258
Number of social links 1,598,096 33,290 330,762
% density of User-Venue matrix 0.0702 0.2740 0.0363

4.3.5 Baselines and Parameter Setup

In this section, we summarise all the baselines used in the experiments to compare the effec-
tiveness of our proposed PRFMC frameworks and its two components: namely the Multi-
centre Gaussian and Social power-Law distribution models. Then, we describe the parame-
ters setup for the used baselines in details. We use subscripts to indicate which component
is deployed within the PRFMC framework. For example, PRFMCM and PRFMCS indicate
the PRFMC framework that incorporates the Multi-centre Gaussian model and the Social
power-Law distribution model, respectively. PRFMCMS denotes that the two components
of PRFMC are deployed. We compare the effectiveness of each component (i.e. PRFMCM

incorporates the users’ geographical movements and PRFMCS incorporates the social in-
fluences) with state-of-the-art venue recommendation approaches that incorporate similar
additional sources of information. PRFMCMS incorporates both the users’ geographical
movements and social influences. In particular, we compare PRFMCMS , with a number
of baselines, which can be grouped into four categories, namely: traditional BPR, geo-
based approaches, social-based approaches and hybrid approaches combining social- and
geo-based BPR. All baselines and our proposed PRFMC framework are implemented using
LibRec (Guo et al., 2015a), a Java library for recommendation systems. In the following, we
summarise our re-implementation of each baseline in details.

4.3.5.1 Traditional BPR

BPR (Rendle et al., 2009) is the classical pairwise ranking approach, coupled with matrix
factorisation for user-venue rating/checkin frequency prediction (see Section 2.1.1.1.3 for
further details).

4.3.5.2 Geo-based approaches

MGM (Cheng et al., 2012) is a Multi-centre Gaussian Model that incorporates the users’
geographical movements. Recommendations are generated by ranking all venues according
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to the scores computed by Equation (4.19) (see Section 4.3.2 for further details).

GBPR (Yuan et al., 2016) is a state-of-the-art BPR model that leverages the geographical
information of venues to sample negative instances. The ranking function of the GBPR
model assumes that neighbourhood venues of venues previously visited by users should be
ranked higher than the distant ones (see Section 3.5.1 for further details).

4.3.5.3 Social-based approaches

SPLD (Zhang and Chow, 2015) is a Social Power-Law Distribution model that incorporates
social influences. In particular, venue recommendations are generated by ranking all venues
according to the scores computed by Equation (4.23) (see Section 4.3.3 for further details).

SBPR (Zhao et al., 2014) is a Social BPR model that leverages the users’ social links to
sample negative instances. The ranking function of the SBPR model assumes that venues
previously visited by the user’s friends should be ranked higher than venues neither the user
nor his/her friends have visited (see Section 3.5.2 for further details).

SWBPR (Wang et al., 2016) is a state-of-the-art BPR model that is extended from SBPR.
This model considers the Strong- and Weak- Social ties of the user’s friends. The ranking
function of the SWBPR model assumes that venues visited by weak-tie friends should be
ranked higher than venues visited by strong-tie friends, because weak tie friends are likely
to introduce novel and diverse venues (see Section 3.5.2 for further details).

4.3.5.4 Hybrid (social & geo)-based approaches

GeoSo (Zhang and Chow, 2015) is a state-of-the-art probabilistic model that incorporates
both the users’ geographical movements and social influences. To permit a fair evaluation,
we have re-implemented their GeoSoCa approach to consider only geographical and social
information, and ignore the categorical properties of venues, in common with our proposed
approach that also does not consider categories. Essentially, the probabilistic scores gen-
erated by the GeoSo model is the product of Ps(i|u) in Equation (4.23) and Pm(i|Cu) in
Equation (4.19).

GSBPR is our proposed baseline that combines GBPR and SBPR together by assuming
that the neighbourhood venues visited by the user’s friends should be ranked higher than the
distant ones. The optimisation criterion of this model is BPROpt(Dgs), where:

Dgs =
�
(u, i, k, j) | i 2 V +

u
^ k 2 V g

u,i
\ V s

Fu
^ j 2 V �

u

 
.
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Indeed, Dgs contains tuples (u, i, k, j) where user u has visited venue i, k is neighbouring
venue of venue i that the user has not visited but his/her friends have visited, and j is a venue
never visited by neither user u nor by his/her friends.

BPRMC (Loni et al., 2016) is a state-of-the-art BPR model that can simultaneously incorpo-
rate multiple sampling approaches (i.e. GBPR and SBPR) based on a pre-defined weight for
each sampling approach. This approach is a suitable baseline, as it permits a fair comparison
of our proposed PRFMC framework with another model that considers multiple sampling
approaches.

To permit a fair comparison, the PRFMC framework and all of the BPR-based base-
lines deploy the traditional Matrix Factorisation (MF) as the rating/checkin prediction func-
tion. Following common practice (Ma et al., 2011; Yuan et al., 2016; Wang et al., 2016;
Zhao et al., 2014; Koren et al., 2009), the hyperparameters of the traditional MF model are
set as follows: the dimension of the latent factors d = 10, and the regularisation parameters
�u = 0.001,�v = 0.001. To the fullest extent possible, we apply the parameters used by
the baselines and the probabilistic models (MGM, SPLD and GeoSo) when these were ap-
plicable, i.e. when the values reported in the corresponding papers were recommended for
the datasets we use in our experiments. For instance, following Cheng et al. (2012), we set
the hyperparameters of MGM as follows: � = 0.02, the distance threshold  = 15 and the
frequency control parameter ↵ = 0.2. The parameters of the SBPR, SWBPR, GBPR models
are determined using the validation set for each fold. Similarly, for other approaches not
previously reported on these datasets, we determine the values for their parameters using the
validation set for each fold.

4.3.6 Experimental Results & Discussion

In this section, to answer research questions RQ4.3-4.5 described in Section 4.3.4, we evalu-
ate the effectiveness of the PRFMC framework (PRFMCMS) and its components (PRFMCM

and PRFMCS) in comparison with various baselines. We present the results of our exper-
iments in Table 4.6, which reports the effectiveness of various approaches in term of the
MAP, NDCG and MRR measures on the three used datasets. The grouped columns of the
table correspond to the grouping of baseline approaches based upon the sources of additional
information, as discussed in Section 4.3.5, along with the corresponding implementation of
PRFMC. To further report the effectiveness of PRFMC in comparison with the baselines, Ta-
ble 4.7 reports the mean percentage differences across the MAP, NDCG and MRR measures
of various approaches compared to BPR on the three different datasets. On inspection of our
re-implementations of the baselines in Table 4.6, we note that the relative top-K venue rec-
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ommendation quality of the baselines on the three datasets in terms of the three effectiveness
measures is consistent with the results reported for the various baselines in the correspond-
ing literature (Loni et al., 2016; Wang et al., 2016; Yuan et al., 2016; Zhao et al., 2014).
For instance, GBPR outperforms BPR by 3-9% across the three datasets (Yuan et al., 2016)
and SWBPR outperforms SBPR by 0.22-25% across the three datasets. Note that previous
works (Loni et al., 2016; Wang et al., 2016; Zhao et al., 2014) used different datasets, while
our re-implementations of their proposed approaches obtain relatively similar improvements.
We now analyse each group of approaches in turn based upon the source of additional infor-
mation employed.

To answer research question RQ4.3, within the geo-based group of columns in Ta-
ble 4.6, we compare PRFMCM with the MGM and GBPR models, which correspond to the
probabilistic baseline and the extended geo-based BPR baseline that leverage the geograph-
ical information of venues to sample negative instances, respectively. Note that the GBPR
model does not take the users’ geographical movements previously observed in the literature
into account, while PRFMCM and MGM do. First, we observe that the MGM model that
leverages the users’ geographical movements to generate venue recommendations is less ef-
fective than the traditional BPR model in recommending ranked list of venues to the users
across all three datasets. This observation is consistent with the literature (Rendle et al.,
2009) and is expected as the MGM is a pointwise-based approach, which is likely to be
less effective than pairwise-based approaches (e.g. the traditional BPR model) (Rendle et al.,
2010). Furthermore, note that the BPR model is only trained on the user-venue interac-
tions and ignores the geographical information of venues. These results demonstrate that
the probabilistic model, MGM (pointwise), is largely outperformed by the BPR model (pair-
wise), which is consistent with the results reported in previous works (Rendle et al., 2009;
Liu, 2009).

Next, we observe that PRFMCM consistently and significantly outperforms the MGM
and GBPR models for MAP, NDCG and MRR across all datasets. This implies that our pro-
posed PRFMC framework, which leverages the users’ geographical movements captured by
the Multi-centre Gaussian model (MGM) to effectively sample negative instances, is more
effective than the GBPR model (Yuan et al., 2016), which itself relies on a pre-defined as-
sumption on the likely relevance of neighbouring venues during the negative sampling pro-
cess, as summarised by Limitation S2 in Section 3.5.3. In addition, within the geo-based
group of columns in Table 4.7, PRFMCM can enhance the effectiveness of the BPR model
by 8%, 26% and 21% on the Yelp, Gowalla and Brightkite datasets, respectively. In contrast,
the GBPR model can only improve the performance of the BPR model by 6%, 5% and 4% on
the Yelp, Gowalla and Brightkite datasets, respectively. The high margin of improvements
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4.3. Personalised Ranking Framework with Multiple Sampling Criteria

Table 4.7: Mean percentage differences across MAP, NDCG and MRR of various approaches
compared to BPR.

Dataset
Geo-based Social-based Hybrid geo- & social-based

MGM GBPR PRFMCM SPLD SBPR SWBPR PRFMCS GeoSo GSBPR BPRMCGS PRFMCMS

Yelp -79% 6% 8% -87% 4% 7% 11% -80% 4% 7% 11%

Gowalla -2% 5% 26% -85% 3% 13% 30% -16% 5% 5% 44%

Brightkite -53% 4% 21% -38% -2% -2% 7% -15% -5% -1% 22%

over the BPR model that are achieved by our proposed PRFMCM framework demonstrate
the usefulness of the users’ geographical movements, as previously observed in the literature.
Therefore, in response to research question RQ4.3, we conclude that the users’ geographical
movements captured by the MGM model can 1) be leveraged to effectively sample nega-
tive instances and 2) improve the quality of venue recommendations of the traditional BPR
model.

To answer research question RQ4.4, we consider the social-based column group, to
compare the effectiveness of the PRFMCS framework with the SPLD, SBPR and SWBPR
models. Trends that are similar in nature to those observed for the geo-based approach group
are observed. First, the probabilistic SPLD model that leverages the social influences to gen-
erate the venue recommendations is outperformed by the traditional BPR model in recom-
mending ranked lists of venues to the users on the three datasets in terms of three measures.
Again, these results are consistent with previous works (Rendle et al., 2009; Liu, 2009) where
the pointwise model (i.e. SPLD) is observed to be less effective than the pairwise model (i.e.
BPR) in generating high quality venue recommendations. Similar to PRFMCM , we observe
that PRFMCS can consistently and significantly outperform the extended social-based BPR
baselines that leverage the users’ social links (i.e. SBPR and SWBPR models) to sample neg-
ative instances based on the pre-defined sampling assumption that venues previously visited
by friends are likely to be visited, as summarised by Limitation S2 in Section 3.5.3.

Interestingly, the relatively low results for SBPR and SWBPR across MAP, NDCG
and MRR on the Brightkite dataset are likely due to the sparsity of the social links between
the users in the Brightkite LBSN (see Table 4.5). In contrast, PRFMCS can improve the ef-
fectiveness of BPR, whereas SBPR and SWBPR both do not. Indeed, we find that sampling
negative venues using the power-law distribution model is more effective than the pre-defined
sampling criteria proposed by Wang et al. (2016); Zhao et al. (2014). Moreover, exploiting
the Social Power-Law Distribution (SPLD) model to sample negative venues is more useful
to enhance the quality of venue recommendations than simply ranking venues according to
the score computed by the SPLD model. In particular, PRFMCS can enhance the effective-
ness of the BPR model by 11%, 30% and 7% on the Yelp, Gowalla and Brightkite datasets,
respectively. In contrast, the state-of-the-art SWBPR model that leverages similar additional
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4.3. Personalised Ranking Framework with Multiple Sampling Criteria

information as PRFMCS can only improve the performance of the BPR model by 7%, 13%
and -2% on the Yelp, Gowalla and Brightkite datasets, respectively. The large improvements
over the BPR model that are achieved by our proposed PRFMCS framework demonstrate
the usefulness of the social influences previously observed in the literature. Therefore, in
response to research question RQ4.4, we conclude that the social influences captured by the
SPLD model can (1) be leveraged to effectively sample negative instances and (2) improve
the quality of venue recommendations of traditional BPR model.

With respect to research question RQ4.5, we consider the deployment of hybrid mod-
els that leverage both geo- and social-based additional sources of information (the Hybrid
geo- & social-based group of columns in Table 4.6). We compare our proposed PRFMCMS

framework with the GeoSo, BPRMC and GSBPR models. In particular, we compare our
proposed framework that is comprised of geographical and social components PRFMCMS ,
with the state-of-the-art probabilistic GeoSo model and the state-of-the-art extended BPR
models that can incorporate multiple sampling criteria, namely the GSBPR and BPRMC
models. Again, trends that are similar in nature to those observed for the geo- and social-
based approach groups are observed. First, the state-of-the-art probabilistic GeoSo model
that leverages both the users’ geographical movements and social influences to generate the
venue recommendations is outperformed by the traditional BPR model on the three used
datasets in terms of MAP, NDCG and MRR. This confirms that even the state-of-the-art
probabilistic model (pointwise) is less effective than the simple pairwise model (BPR) for
venue recommendations. Next, we clearly observe that our proposed PRFMCMS framework
can consistently and significantly outperform all the hybrid geo- and social-based BPR base-
lines, namely GSBPR and BPRMC. In particular, within the Hybrid geo- & social-based
group columns in Table 4.7, the PRFMCMS framework can improve the effectiveness of the
BPR model by 11%, 44% and 22% on the Yelp, Gowalla and Brightkite datasets, respec-
tively. In contrast, across the three used datasets, the GSBPR and BPRMC can only enhance
the performance of the BPR model by approximately 4% and 5%, respectively. The large
improvements of the BPR model that are achieved by our proposed PRFMCMS framework
demonstrate the usefulness of the user’s preference score in Equation (4.11) and the pairwise
ranking function in Equation (4.12) of PRFMCMC that leverages both the users’ geographi-
cal movements and social influences captured by the probabilistic MGM and SPLD models,
respectively, to effectively sample negative instances.

Next, we discuss the effectiveness of the GSBPR, BPRMC & PRFMCMS models in
comparison with each of their constituent geo- and social-based component baselines. In
particular, from Table 4.6, we observe that the results of the GSBPR model are generally not
higher than both of its constituents that each consider only one sampling criterion (i.e. the
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4.3. Personalised Ranking Framework with Multiple Sampling Criteria

GBPR and SBPR models). This implies that simply combining the sampling criteria (as done
by GSBPR) is not a suitable approach. In contrast, the BPRMC model is more effective than
GSBPR at combining multiple sampling criteria. Moreover, by comparing BPRMC with the
GBPR and SBPR models, we find that, for all three metrics in the Yelp dataset, BPRMC
outperforms the extended BPR models that consider only a single sampling criterion (i.e.
GBPR and SBPR). However, for the Gowalla and Brightkite datasets, the effectiveness of
BPRMC greatly decreases when one of the constituent sampling criterion is not effective. For
instance, regarding the results of the GBPR, SBPR and BPRMC models in terms of MAP and
MRR in the Brightkite dataset, we observe that when the performance of the SBPR model
decreases, the effectiveness of the BPRMC model also decreases. A similar observation
is found for BPRMC in terms of MRR in the Gowalla dataset. These results suggest that
BPRMC cannot fully leverage the effectiveness of its combined sampling criteria.

Next, we compare the effectiveness of PRFMC, which considers different sampling
criterion (i.e. PRFMCM , PRFMCS and PRFMCMS). The results show that our proposed
PRFMCMS framework, which samples negative examples based on both the users’ geo-
graphical movements and social influences – captured by the Multi-centre Gaussian (MGM)
model and the Social Power-Law Distribution (SPLD) model, respectively – significantly
outperforms both PRFMCS and PRFMCM , across all three metrics on all three datasets.
Overall, the strong results displayed by PRFMCMS demonstrate the effectiveness of PRFMC
in combining different types of sampling criteria. In addition, unlike BPRMC, the effective-
ness of PRFMCMS does not decrease if one of the fused sampling criteria is not effective.
For example, on the Brightkite dataset, PRFMCMS consistently and significantly outper-
forms its constituents (PRFMCM and PRFMCS) across the three metrics, while BPRMC is
outperformed by one of its constituents (GBPR). Overall, regarding the generalisation of the
PRFMCMS framework, the experimental results on the three used datasets reported in Ta-
ble 4.6 demonstrate that our proposed PRFMC framework appears to be more generalised
than the state-of-the-art hybrid geo- and social BPR model, BPRMC. Finally, in response to
research question RQ4.5, we find that our PRFMC framework provides a significant benefit
across various datasets and measures, compared to various existing state-of-the-art single
criterion negative sampling approaches (i.e. GBPR, SBPR, SWBPR models), multiple crite-
ria negative sampling approaches (i.e. GSBPR and BPRMC models) as well as probabilistic
models (i.e. MGM, SPLD and GeoSo). Indeed, among the results reported in Table 4.6, all of
the highest improvements over the traditional BPR model, for all three measures on all three
datasets, are observed for the PRFMCMS hybrid negative sampling approach. Indeed, for the
Gowalla dataset, PRFMCMS attains a 71% improvement over the MRR of BPR, as well as
37% and 59% improvements in MRR over the recently proposed SWBPR (Wang et al., 2016)
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and GBPR (Yuan et al., 2016) approaches (Table 4.6: 0.1098!0.1510; 0.0951!0.1510), re-
spectively.

4.4 Conclusions

In this chapter, we proposed the Social and Textual Regularisation (STReg) technique and
the textual MF-based approach (MFw2v) that exploit word embeddings to model the seman-
tic properties of the textual content of comments associated with the users’ rating to enhance
the effectiveness of the traditional MF model for the user-venue rating prediction. Our pro-
posed STReg technique and our MFw2v approach aim to address the limitations of existing
works: namely Limitation M1 of the state-of-the-art Social Regularisation (SoReg) tech-
nique and Limitations M2-M4 of the state-of-the-art textual MF-based approaches (CMF
and JMF models). In Section 4.2.4, we empirically evaluated the effectiveness of STReg
and MFw2v on the Yelp dataset, which consists of over 2.2 million ratings from 500k users.
Our comprehensive experiments demonstrated the usefulness of our prosed STReg technique
in improving the prediction accuracy of the traditional MF model. In addition, the STReg
technique can outperform the SoReg technique by 3-4% in terms of the RMSE and MAE
metrics. Moreover, our proposed MFw2v model is shown to be more effective than the CMF
and JMF models and as effective as the STReg technique, while only requiring the venues’
comments as auxiliary information and not taking the users’ social links into account.

Moreover, in this chapter, we further proposed the Personalised Ranking Framework
with Multiple sampling Criteria (PRFMC) that can leverage multiple types of additional
information to enhance the effectiveness of the traditional BPR model for top-K venue rec-
ommendations. Our proposed PRFMC framework aims to address Limitations S1 & S2 of
existing extended BPR modes (i.e. SBPR, SWBPR and GBPR models). To alleviate these
limitations, the PRFMC framework exploits the state-of-the-art probabilistic models (i.e.
multi-centre gaussian and the power-law distribution models) that take the users’ geograph-
ical movements and social influences into account to effectively sample negative instances.
In Section 4.3.6, we empirically evaluated the effectiveness of PRFMC in comparison to
various BPR-based models on three large-scale datasets: namely the Yelp, Gowalla and
Brightkite LBSNs. Our comprehensive experiments demonstrate the effectiveness of our
proposed PRFMC framework, which is markedly superior to the state-of-the-art BPR mod-
els. For example, the PRFMC framework can improve the effectiveness of the traditional
BPR model by approximately 7-71% in terms of MAP, NDCG and MRR, while the re-
cently proposed GBPR, SWBPR and BPRMC models can only enhance the performance
of the BPR model by approximately 3-8%, 4-24% and 1-9%, respectively. Moreover on
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the Gowalla dataset, PRFMC attains a 37% improvement in MRR over the SWBPR model.
Moreover, the improvements of the PRFMC framework are attained without increased com-
putational complexity compared to the BPR baselines.

In our thesis statement (see Section 1.2), we hypothesised that the quality of person-
alised ranked list of venues can be effectively enhanced by leveraging additional information
such as the users’ social relationships, the textual content of comments and the geographical
information of venues. Based upon our experiments in this chapter, we conclude that our
proposed STReg technique, our MFw2v model and our PRFMC framework that all lever-
age these additional information can generate high quality venue recommendations. Note
that there is also other type of additional information that can be leveraged to improve the
quality of venue suggestion such as temporal and seasonal information14. In addition, as
we have previously discussed in Chapter 1, the users’ observed checkins usually exhibit se-
quential properties, which can also be leveraged to capture the users’ short-term (dynamic)
preferences. In the next chapter, we propose a novel Deep Recurrent Collaborative Filtering
(DRCF) framework that exploits Recurrent Neural Network (RNN) models to effectively
capture the users’ dynamic preferences from the sequence of their checkins.

14Later in Chapter 6 and Chapter 7, we will demonstrate how to leverage the temporal information to improve
the quality of venue recommendation.
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Chapter 5

Deep Recurrent Collaborative Filtering
Framework

5.1 Introduction

In Chapter 3, we argued that the users’ recent observed checkins can have more influence
on their decisions on the next venues that they will visit than their historical checkins (e.g.
6-month-old checkins). As mentioned in Section 3.6.1, the literature on sequential-based
recommendation systems (Yu et al., 2016; Tang et al., 2017; Zhang et al., 2014b; Koren,
2010a; Rendle, 2012; Cheng et al., 2013) has already shown that the sequential properties
of the user’s interactions (e.g. the sequences of checkins, click and purchases) play an im-
portant role in improving the quality of recommendations. For example, consider a user
who visited several art museums a few months ago and has recently visited a museum and
a restaurant, sequentially. Models that only capture the user’s long-term (static) preferences
will recommend other museums to visit, whereas a model that can capture the user’s short-
term (dynamic) preferences might recommend a nearby bar to visit instead. However, tradi-
tional MF-based approaches, described in Section 2.1.1.1.2, can only leverage the historical
checkins of the users to model their static preferences, and therefore ignore the sequential
properties of their checkins. We argue that the quality of venue recommendations can be
further improved by leveraging the sequential properties of observed checkins to effectively
capture the recent so-called dynamic preferences of users.

In Section 3.4, we described the state-of-the-art Neural Matrix Factorisation (NeuMF)
framework proposed by He et al. (2017), an extension of traditional Matrix Factorisation
that exploits Deep Neural Networks (DNN) to capture the complex structure of user-venue
interactions. Indeed, the NeuMF framework aims to address the limitation of traditional
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5.1. Introduction

MF-based approaches, as discussed in Section 3.4.1, which rely on the dot product of la-
tent factors of users and venues to estimate the user’s preference on the venues. However,
we argue that there are four limitations related to the NeuMF framework (Limitations N1-

N4, as elicited in Section 3.4.5), which need to be addressed in order to effectively capture
the complex structure of user-venue interactions from their sequential order of checkins for
venue recommendations. Limitations N1-N4 of the NeuMF framework are summarised
again below:

Limitation N1: There is a disadvantage in the NeuMF framework for identifying the
top-ranked venues to present to users due to its optimisation.

Limitation N2: There is a disadvantage in the NeuMF framework assuming that the
users’ preferences are static and do not account for the sequential properties of observed
feedback.

Limitation N3: There is a disadvantage in the NeuMF framework that ignores the dot
product of latent factors, which capture user-venue interactions.

Limitation N4: There is a disadvantage in the NeuMF framework that applies the tra-
ditional BPR negative sampling approach, in which the sequential order of observed checkins
is ignored by the negative sampling approach.

Although several RNN-based factorisation approaches have been proposed in the liter-
ature, as previously discussed in Section 3.6.1, those approaches still rely on the dot product
operation and can only capture the dynamic preference of the users, which may be not suf-
ficient to capture the complex structure of user-venue interactions from their sequences of
checkins (Limitations R1-R2, as identified in Section 3.6.3). Moreover, these RNN-based
factorisation approaches still rely on the traditional negative sampling approach, described
in Section 2.1.1.1.3, Algorithm 2.1, which does not take the sequential order of checkins
into account during the training process (Limitation S3). Table 5.1 provides the summary
of these existing approaches and their corresponding limitations. Limitations R1-R2 and
Limitation S3 can be summarised below:

Limitation R1: The RNN-based factorisation approaches for which this limitation
applies (RNN-MF (Zhang et al., 2014b), described in Section 3.6.1) do not take the users’
long-term (static) preferences into account.

Limitation R2: The RNN-based factorisation approaches for which this limitation
applies (RNN-MF (Zhang et al., 2014b) and DREAM (Yu et al., 2016), described in Sec-
tion 3.6.1) still rely on the dot product operation to combine the latent factors of users and
venues as well as the hidden unit when predicting a user’s checkin.
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Table 5.1: Summary of existing factorisation approaches and its corresponding limitations

NeuMF RNN-MF DREAM DRCF
Deep Neural Network X X X X
Sequential-based ⇥ X X X
Limitations N1-N4 R1,R2,S3 R1,R2,S3 -

Limitation S3: The sampling approaches for which this limitation applies do not take
the sequential order of checkins into account.

In this chapter, we propose a novel Deep Recurrent Collaborative Filtering framework
(DRCF), an extension of the NeuMF framework, which exploits Recurrent Neural Networks
(RNN) to capture the users’ dynamic preferences from their sequences of checkins. The
DRCF framework consists of three components: namely (i) a Generalised Recurrent Ma-
trix Factorisation (GRMF) model, (ii) a Multi-Layer Recurrent Perceptron (MLRP) model
and (iii) a Recurrent Matrix Factorisation (RMF) model. Within the DRCF framework, we
propose novel dynamic and static geo-based negative sampling approaches that take the se-
quential properties of checkins and geographical location of venues into account to enhance
the effectiveness of the DRCF framework, as well as alleviate the cold-start user problem.
In particular, the DRCF framework aims to address Limitations N1-N4, while our proposed
dynamic and static geo-based negative sampling approaches aim to address both Limita-

tions N4 & S3. Moreover, within the components of the DRCF framework, the GRMF and
MLRP models aim to address Limitation R1 and Limitation R2 of the existing RNN-based
factorisation approaches, respectively. The remainder of this chapter is structured as follows:

• Section 5.2 provides an overview of the DRCF framework with a pairwise ranking
function and the dynamic geo-based negative sampling approach for venue recom-
mendation.

• Section 5.3 describes our proposed dynamic and static geo-based negative sampling
approaches that take the geographical information of venues into account during the
negative sampling process. In particular, our proposed dynamic geo-based negative
sampling approach takes the sequential order of the users’ checkins during the negative
sampling process, whereas static geo-based negative sampling approach does not.

• Section 5.4 provides details of the first component of the DRCF framework, the Gen-
eralised Recurrent Matrix Factorisation (GRMF) that exploit the RNN models and the
element-wise product operation to capture the dynamic preferences of users.

• Section 5.5 provides details of the second component of the DRCF framework, the
Multi-Layer Recurrent Perceptron (MLRP), which exploits the Multi-Layer Percep-
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tron, the RNN models as well as the concatenation operation to model the dynamic
preferences of users.

• Section 5.6 provides details of the third, an final, component of the DRCF framework,
the Recurrent Matrix Factorisation (RMF), which exploit the dot product operation to
model both the static and dynamic preferences of users.

• Section 5.7 presents our experimental methodology in terms of datasets and measures
as well as algorithm parameters.

• In Section 5.8, we empirically evaluate the effectiveness of our proposed DRCF frame-
work in comparison with the state-of-the-art NeuMF framework and the RNN-based
factorisation approaches discussed in Chapter 3.

• Section 5.9 provides a summary of this chapter.

5.2 Overview of Deep Recurrent Collaborative Filtering

(DRCF) Framework

In this section, we provide an overview of our proposed Deep Recurrent Collaborative Fil-
tering (DRCF) framework, which is illustrated in Figure 5.1. The DRCF framework consists
of five layers: namely input, embedding, Recurrent Neural Network (RNN), Neural Col-
laborative Filtering (CF) and output layers. These layers are connected to each other using
blue-dashed and red-dotted lines. The DRCF framework differs from the NeuMF framework
in several aspects. First, starting at the bottom of Figure 5.1, at the input layer, we extend
the NeuMF framework to leverage the sequential order of checkins of each user u at time
t, su,t. Then, in the embedding layers, there are four additional embedding layers that are
indicated in green circles in Figure 5.1: these are the Generalised Recurrent Matrix Factori-
sation (GRMF) and the Multi-Layer Recurrent Perceptron (MLRP) embedding layers that
are used in the Recurrent Matrix Factorisation (RMF) model, PGd, QGd, PMd and QMd. The
third layer of the DRCF framework consists of the RNN layers that encapsulate the user’s
dynamic preferences, which are highlighted in pink and purple in Figure 5.1. The Neural
CF layers are similar to the NeuMF framework except that we include the RMF layers to
discover certain latent structures of user-venue interactions, which will be described in Sec-
tion 5.6. Finally, the output layer of the DRCF framework is the predicted checkin ĉu,i, which
is defined as follows:

ĉu,i = aout(hout(�
GRMF � �MLRP � �RMF )) (5.1)
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Figure 5.1: Deep Recurrent Collaborative Filtering Framework. The connections of each
layer linked by the red-dotted lines illustrate the NeuMF framework. This figure is obtained
from Manotumruksa et al. (2017a)

where aout is the activation function, hout is the hidden layer and �GRMF , �MLRP and �RMF

denote the GRMF, MLRP and RMF models that will be described in Sections 5.4, 5.5 and
5.6, respectively.

As previously described in Section 3.4.5, the NeuMF framework is trained to minimise
the pointwise loss between the predicted checkin ĉu,i and the observed checkin cu,i, as in
Equation (2.4). However, as mentioned in Section 1.1, users in LBSNs only focus on the
top-K ranked list of venues, and hence we argue that the training of NeuMF, which aims
to minimise a regression metric (e.g. Root Mean Square Error (RMSE)), may not provide
an effective top-K ranked list of venues (Limitation N1). To address this limitation, we
propose to apply Bayesian Personalised Ranking (BPR), described in Section 2.1.1.1.3 (see
Equation (2.7)), to learn the parameters ⇥ = {✓e, ✓r, ✓h}, where ✓e, ✓r, ✓h are the parameters
of the embedding, RNN and Neural CF layers of the DRCF framework, respectively, as
follows:

J (⇥) =
X

u2U

X

su,t2Su

X

i2su,t

X

j2V�su,t

log(�(ĉu,i � ĉu,j)) (5.2)
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where i is the venue most recently visited in su,t, j is an unvisited venue sampled from
V� su,t. Finally, the gradients of ✓r, ✓e, ✓h can be estimated by the back propagation through
time algorithm proposed by Rumelhart et al. (1988). In the next section, we describe our
proposed sequential geo-based negative sampling approaches that leverage the geographical
information of the venues as well as the sequential order of the users’ checkins.

5.3 Sequential Geo-based Negative Sampling Approaches

As investigated in Section 4.3.6, various existing negative sampling approaches (i.e. the
SBPR1, SWBPR2 and GBPR3 models), which can incorporate additional information, play
an important role in enhancing the effectiveness of the traditional BPR modelRendle et al.
(2009) (Section 2.1.1.1.3) for top-K venue recommendations. However, as identified in Sec-
tion 3.4.5, the NeuMF framework still rely on the traditional negative sampling approach,
which during the training process. As a consequence, this may degrade the effectiveness of
the NeuMF framework (Limitation N4). Moreover, previous works (Yu et al., 2016; Zhang
et al., 2014b; Tang et al., 2017; Zhu et al., 2017; Beutel et al., 2018; Smirnova and Vasile,
2017) have shown that such sequential properties of checkins can enhance the quality of
venue recommendation. However, these existing negative sampling approaches as well as
our proposed PRFMC framework described in Section 4.3 do not take the sequential order
of users’ checkins into account during the sampling process, which can lead to a non-optimal
sampling approach (Limitation S3, identified in Section 3.5.3).

To address Limitations S3 & N4, in this section, we describe our proposed negative
sampling approaches that leverages both the geographical information of venues and the
sequential order of the users’ checkins to effectively sample negative instances to train the
DRCF framework. In particular, in contrast to the traditional negative sampling approach of
the traditional BPR model (Rendle et al., 2009), which randomly selects negative instances
from a static pool of negative venues V�

u
= V �V+

u
, we propose a novel dynamic geo-based

negative sampling approach, denoted as DRCFdgeo, which can enhance the effectiveness of
the DRCF framework and alleviate the cold-start user problem by taking the sequences of
checkins su,t at time t and the geographical location of venue i, i.e. its neighbour venues Ni,
into account. In particular, we modify the objective of the DRCF framework (Equation (5.2))

1The Social-based Bayesian Personalised Ranking (SBPR) model proposed by Zhao et al. (2014), described
in Section 3.5.2

2The Strong and Weak social-based Bayesian Personalised Ranking (SWBPR) model proposed by Wang
et al. (2016), described in Section 3.5.2

3The Geo-based Bayesian Personalised Ranking (GBPR) model proposed by Yuan et al. (2016), described
in Section 3.5.1
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to incorporate the geographical information of venues and the sequential order of the users’
checkins during the sampling process as follows:

J (⇥) =
X

u2U

X

su,t2Su

X

i2su,t

X

k2Ni�su,t

X

j2V�su,t

log(�(ĉu,i � ĉu,k))� log(�(ĉu,k � ĉu,j)) (5.3)

where i is the most recently visited venue in the sequence of checkins of user u up to time
t, su,t. k is an unvisited venue that is nearby to venue i and Ni is a set of venues that are
nearby to venue i. Algorithm 5.1 describes the optimisation algorithm of the DRCF frame-
work as well as the sampling process of our proposed dynamic geo-based negative sampling
approach. The dynamic negative sampling approach (see lines 8-11 in Algorithm 5.1) sam-
ples an unvisited neighbouring venue k and an unvisited distance venue j from a dynamic
pool of negative venues Ni � su,t and V � su,t not visited by the user in the sequence of
checkins su,t up to time t, respectively, rather than a static pool of negative venues as in the
traditional negative sampling approach (V � V+

u
).

Moreover, we also propose a static geo-based negative sampling approach, denoted as
DRCFsgeo, which samples an unvisited neighbouring venue k and a distant negative venue j

from a static pool of negative venues Ni�V+
u

and V � su,t not visited by the user in the cur-
rent sequence of checkins su,t, respectively. Later, in Section 5.8, we evaluate the usefulness
of our proposed dynamic and static geo-based negative sampling approaches (denoted as
DRCFdgeo and DRCFsgeo, respectively) in enhancing the effectiveness of the DRCF frame-
work as well as alleviating the cold-start problem. In the following sections, we describe
the three components of our proposed DRCF frameworks: namely the Generalised Recur-
rent Matrix Factorisation (Section 5.4), Multi-Layer Recurrent Perceptron (Section 5.5) and
Recurrent Matrix Factorisation (Section 5.6).

5.4 Generalised Recurrent Matrix Factorisation (GRMF)

In this section, we describe the first component of the DRCF framework, the Generalised Re-
current Matrix Factorisation (GRMF) model, which is an extension of the GMF model of the
NeuMF framework (Section 3.4.3) that exploits Recurrent Neural Network models (RNN)
to effectively capture the users’ short-term (dynamic) and long-term static preferences in the
collaborative filtering manner. Previous works (Yu et al., 2016; Tang et al., 2017; Zhang
et al., 2014b; Koren, 2010a; Rendle, 2012; Cheng et al., 2013) have shown that the users’
dynamic preferences captured from the sequential order of their implicit feedback plays a
crucial role in improving the effectiveness of factorisation-based models. For instance, in
the evening, users are more likely to visit a bar directly after they have visited a restaurant.
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Algorithm 5.1: An Optimisation Algorithm of the DRCF framework
1 Input: U , V , sequences of visited venues S and neighbour venues of each venue N
2 Output: ⇥ = {✓r, ✓e, ✓h}
3 initial ✓r, ✓e, ✓h
4 T  0 // iteration number
5 repeat

6 for T  1 to |U| do

7 u draw a random user from U
8 for st in Su do

9 i a venue most recently visited in su,t
10 k  draw a random unvisited venue from Ni � su,t
11 j  draw a random unvisited venue from V � su,t
12 Compute gradients of ✓r, ✓e, ✓h
13 Update the above parameters

14 until convergence;

However, such behaviour cannot be captured by the GMF model of the NeuMF framework
because it does not take the sequential properties of checkins into account during the training
process (Limitation N2, identified in Section 3.4.5).

Various RNN-based factorisation approaches (e.g. RNN-MF (Zhang et al., 2014b) and
DREAM (Yu et al., 2016), described in Section 3.6.1) have been recently proposed to exploit
RNN-based models (e.g. the RNN, LSTM and GRU models, described in Section 2.2.3) to
capture the users’ dynamic preferences. However, these existing RNN-based factorisation
approaches still rely on the dot product operation to model the complex structure of user-
venue interactions in a Collaborative Filtering manner (Limitation R2, identified in Sec-
tion 3.6.3), which is not effective as identified by He et al. (2017) 4. Therefore, to address
Limitation N2 of the GMF model of the NeuMF framework and Limitation R2 of RNN-
based factorisation approaches, we extend the GMF model to leverage the user’s sequence
of checkins su,t, by exploiting an RNN model as follows:

�GRMF = dG
u,t
⌦ �uG

u
⌦ �vG

i
(5.4)

where dG
u,t

is the user’s dynamic preferences of user u at time t that are projected from the
RNN layer. �uG

u
are the latent factors of user u that are projected from the GRMF user em-

bedding layer, PG, shown in a black circle in Figure 5.1. �vG
i

are the latent factors of venue
i that are projected from the GRMF venue embedding layer, QG.

Unlike the RNN-based factorisation approaches described in Section 3.6.1, to capture
4More details are described in Section 3.4.1
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the complex structure of user-venue interactions in a Collaborative Filtering manner, instead
of the dot product operation, our proposed GRMF model relies on the element-wise product
⌦ to combine the latent factors of user �uG

u
and venue �vG

i
as well as the user’s dynamic pref-

erences dG
u,t

. Later, in Section 5.8.2, we demonstrate that by addressing Limitations N2 &

R2, our proposed GRMF model can significantly outperform the GMF model of the NeuMF
framework as well as the existing RNN-based factorisation approaches.

5.5 Multi-Layer Recurrent Perceptron (MLRP)

In the previous section, we described our proposed GRMF model, the extension of the GMF
model of the NeuMF framework that exploits the RNN models to capture the users’ dynamic
preferences from the users’ sequence of checkins. In this section, we describe the second
component of the DRCF framework, the Multi-Layer Recurrent Perceptron (MLRP) model,
which is an extension of the MLP model of the NeuMF framework that exploits the RNN
model to capture the users’ dynamic and static preferences. As previously mentioned in Sec-
tion 3.4.5, similar to the GMF model, the MLP model is not sufficiently flexible to leverage
the sequential order of the users’ checkins to capture their dynamic preferences (Limitation

N2). However, we argue that the effectiveness of the MLP model can be enhanced by lever-
aging the users’ sequential properties of checkins.

As mentioned in Section 3.6, various RNN-based factorisation approaches (i.e. the
RNN-MF, BiLSTM-MF and DREAM models) have been proposed to leverage the sequential
properties of the users to capture their dynamic preferences. However, we argue that these
existing RNN-based factorisation approaches are not effective in capturing the users’ long-
term (static) preferences (Limitation R1). For example, a venue that a user has visited a
couple of months ago has less impact on the user’s short-term (dynamic) preferences than a
venue recently visited but still has a large impact on the user’s long-term (static) preferences.
However, given a long sequence of checkins for a user, sophisticated RNN-based models
such as the LSTM and GRU are not able to capture the impact of venues the user visited long
time ago to model the user’s static preferences. In particular, LSTM and GRU that include
the forget gate are likely to completely ignore the impact of venues the user visited long time
ago because these venues have less impact to the user’s recent visited venue (Chung et al.,
2014; Yu et al., 2016). However, we argue that an accurate model need to effectively capture
both the static and dynamic preference of users in order to generate high quality top-K venue
recommendations.

In particular, to address Limitation N2 of the MLP model of the NeuMF framework
and Limitation R1 of the existing RNN-based factorisation approaches, we propose to ex-

110



5.5. Multi-Layer Recurrent Perceptron (MLRP)

tend the MLP model to exploit the RNN model to effectively capture the users’ dynamic and
static preferences. In particular, we exploit multiple hidden layers to independently learn the
impact of the user’s dynamic and static preferences as follows:

�MLRP = aL(hL(...a1(h1(d
M

u,t
� �uM

u
� �vM

i
)))) (5.5)

where dM denotes the user’s dynamic preferences of user u at time t that is projected from
the RNN layer, �uM

u
and �vM

i
are the latent factors of user u and venue i that are projected

from the MLRP Embedding layer, respectively (illustrated in Figure 5.1 by the connection
between the red-dashed and blue lines under the MLRP layer with the concatenation oper-
ation �). Note that the latent factors of user u, �uM

u
, represent the user’s long-term (static)

preferences, which are similar to the users’ latent factors used by the traditional MF-based
approaches. Unlike the existing RNN-based factorisation approaches that combine the user’s
dynamic and static preferences (dM

u,t
and �uM

u
, respectively) using the summation operation

(see Equation (3.24)), by using the concatenation operation �, our proposed MLRP model
can treat dM

u,t
and �uM

u
independently, while the dependencies of dM

u,t
and �uM

u
are seamlessly

captured by hidden layers h1..hL.

We note that there are differences between �uG

u
(�vG

i
) (dG

u,t
) and �uM

u
(�vM

i
) (dM

u,t
) in

Equations (5.4) & (5.5). Inspired by He et al. (2017), we exploit different embedding and
RNN layers for the GRMF and MLRP models in order to independently learn the complex
structures of the dynamic user-venue interactions from different models. In particular, by
having different embedding and RNN layers, the GRMF model can independently capture
the interactions using the element-wise product operation, while the MLRP model indepen-
dently captures the interactions using the concatenation operation. In fact, He et al. (2017)
showed that the effectiveness of the NeuMF framework can be improved by allowing dif-
ferent models (i.e. its GMF and MLP models) to learn from different sets of embedding
layers. Later, in Section 5.8.2, we show that our proposed GRMF and MLRP models, which
use different embedding an RNN layers to independently learn the complex structures of
the dynamic user-venue interactions, can improve the effectiveness of the DRCF frame-
work. Moreover, we demonstrate that by addressing Limitation N2 of the MLP model of the
NeuMF framework and Limitation R1 of the existing RNN-based factorisation approaches,
our proposed MLRP model can significantly outperform the MLP model and the existing
RNN-based factorisation approaches.
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5.6 Recurrent Matrix Factorisation (RMF)

Thus far, we have described two components of the DRCF framework: namely the Gener-
alised Recurrent Matrix Factorisation (GRMF) and Multi-Layer Recurrent Perceptron (MLRP)
models, which rely on the element-wise product and concatenation operations, respectively,
to capture the complex structure of user-venue interactions in a Collaborative Filtering man-
ner. Note that the GRMF and MLRP models are built based on the GMF and MLP models
of the NeuMF framework, which rely on the element-wise product and concatenation oper-
ations, respectively. However, as argued in Section 3.4.5, the dot product operation may be
useful to capture the complex structure of user-venue interactions, which cannot be captured
by the element-wise product and concatenation operations (Limitation N3).

In this section, we describe the third and last component of the DRCF framework,
the Recurrent Matrix Factorisation (RMF) model that relies on the dot product operation to
capture the complex structure of user-venue interactions as follows:

�RMF =
⇥
(dGd

u,t
⌦ �uGd

u
)} �vGd

i

⇤
�
⇥
(dMd

u,t
� �uMd

u
)} �vMd

i

⇤
(5.6)

where dGd

u,t
and dMd

u,t
are the dynamic preferences of user u at time t that are projected from

the RNN layer. �uGd

u
(�uMd

u
) and �vGd

i
(�vMd

i
) are the latent factors of user u and venue i

that are projected from the embedding layer, respectively. Note that, in order to allow the
GRMF, MLRP and RMF models to learn independently, we follow He et al. (2017) to train
the RMF model by using different sets of embedding and RNN layers (see the green circles
in the embedding layer and the purple circles in the RNN layer of Figure 5.1). In doing
so, the complex structures of user-venue interactions are independently captured by these
three models using different operations (i.e. the GRMF and MLRP and RMF models use the
element-wise product, concatenation and dot product operations, respectively). Although
our proposed DRCF framework allows different models (i.e. the GRMF, MLRP and RMF
models) to learn independently, in the output layer, we concatenate the outputs of the GRMF,
MLRP and RMF models and exploit the hidden layer hout to seamlessly and independently
integrate the outputs of those models to effectively generate the ranked-list of venues to the
users (see Equation (5.1)).

In summary, our proposed DRCF framework, which consists of the GRMF, MLRP
and RMF models, can capture the complex structures of user-venue interactions by lever-
aging the sequential properties of checkins using the dot product, element-wise product and
concatenation operations. To the best of our knowledge, the DRCF framework is first to ex-
ploit these three operations to capture both the users’ dynamic and static preferences. In the
next section, we describe the experimental methodology used to evaluate the effectiveness
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of the DRCF framework as well as its components in comparison with various baselines.

5.7 Experimental Methodology

In the previous section, we described our proposed Deep Recurrent Collaborative Filtering
(DRCF) framework, which consists of three components: namely the Generalised Recurrent
Matrix Factorisation (GRMF), Multi-Layer Recurrent Perceptron (MLRP) and Recurrent
Matrix Factorisation (RMF) models. We also described our proposed dynamic geo-based
negative sampling approach that takes the sequential properties of users’ checkins as well as
the geographical information of venues into account during the sampling process. Our pro-
posed DRCF framework aims to address Limitations N1-N4 of the state-of-the-art NeuMF
framework (see Section 3.4.5) and Limitations R1-R2 of the existing RNN-based factori-
sation approaches (see Section 3.6.3), while the dynamic geo-based negative sampling ap-
proach aims to address Limitation S3 of the existing negative sampling approaches (see
Section 3.5.3). In this section, we describe the experimental methodology used to validate
whether our proposed DRCF framework and the dynamic negative sampling approach can
address Limitations N1-N4, R1-R2 and S3. In particular, we aim to answer the following
research questions:

RQ5.1 Can we enhance the effectiveness of the components of the DRCF framework for venue
recommendation systems, namely the GRMF and MLRP models, by (a) leveraging the
sequential properties of checkins to capture the users’ dynamic and static preferences,
(b) incorporating the dot product of latent factors into the models and (c) training
those models to generate accurate ranked lists of venues for users?

RQ5.2 Are the MF-based models that capture both users’ dynamic and static preferences
using either the element-wise product or the concatenation of latent factors more ef-
fective than state-of-the-art RNN-based approaches that model both users’ dynamic
and static preferences using a dot product of latent factors?

Furthermore, as discussed in Section 3.5.3, no previous attempt has proposed negative
sampling approaches that take both the sequential order of the users’ checkins and the geo-
graphical location of venues into account to address the cold-start problem. Hence, our third
research question:

RQ5.3 Can our proposed dynamic geo-based negative sampling approach that leverages both
the sequential properties of checkins and geographical location of venues (a) enhance
the effectiveness of DRCF and (b) alleviate the cold-start problem?
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Table 5.2: Summary of each research question and its corresponding success decision and
the limitations of the existing approaches.

Research Question Limitation Success Decision
RQ5.1 N1-N4 DRCF is more effective than NeuMF.
RQ5.2 R1-R2 GRMF, MLRP and RMF are more effective

than GMF and MLP.
RQ5.3 S3 Our proposed dynamic geo-based negative sam-

pling approach can enhance the effectiveness of
DRCF.

Table 5.2 summarises the research questions we aim to address in this chapter and their
corresponding hypothesis. In particular, to demonstrate that our proposed DRCF frame-
work can address Limitations N1-N4 of the NeuMF framework, we aim to answer research
question RQ5.1 by comparing the performances of DRCF and NeuMF. Next, by answer-
ing research question RQ5.2, we aim to demonstrate whether the components of the DRCF
framework: namely GRMF, MLRP and RMF can address Limitations R1-R2 of the exist-
ing RNN-based factorisation approaches. Finally, by answering research question RQ5.3,
we can demonstrate the importance of the sequential order of users’ checkins in improving
the effectiveness of the negative sampling process.

In the remainder of this section, we describe the experimental setup in terms of datasets
and measures (Section 5.7.1), baselines (Section 5.7.2) and algorithm parameters (Section 5.7.3).
The experimental results and analysis follow in Section 5.8.

5.7.1 Datasets & Measures

We conduct experiments using publicly available large-scale LBSN datasets. In particu-
lar, similar to the experimental setup described in Section 4.3.4, to show the generalisation
of our proposed DRCF framework across multiple LBSN platforms and sources of feed-
back evidence, we use two checkin datasets from Brightkite5 and Foursquare6, and a rating
dataset from Yelp7. Following the common practice for recommendation tasks from the lit-
erature (Rendle et al., 2009; He et al., 2016b; Yuan et al., 2016; Zhang et al., 2015a; Li et al.,
2016), we remove venues with less than 10 checkins/ratings. The summary of the statistics
of the filtered datasets is shown in Table 5.3. We follow previous works (He et al., 2017;
Rendle et al., 2009; He et al., 2016b) and adopt a leave-one-out evaluation methodology to
evaluate the effectiveness of our proposed DRCF framework. In particular, for each user, we

5https://snap.stanford.edu/data/
6https://archive.org/details/201309_foursquare_dataset_umn
7https://www.yelp.com/dataset_challenge
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Table 5.3: Statistics of the three used datasets.

Brightkite Foursquare Yelp
Number of normal users 14,374 10,766 38,945
Number of venues 5,050 10,695 34,245
Number of ratings or checkins 681,024 1,336,278 981,379
Number of cold-start users 5,578 154 6903
% density of User-Venue matrix 0.93 1.16 0.07

select her most recent checkin/rating as a ground truth and randomly select 100 venues that
she has not checked-in/rated before as the testing set, where the remaining checkins/ratings
are used as the training set. The venue recommendation task is thus to rank those 101 venues
for each user, aiming to rank highest the recent, ground truth checkin/rating.

We conduct two separate experiments, namely: Normal Users (those with 10 checkins
or more) and Cold-start Users (those with less than 10 checkins) to evaluate the effectiveness
of our proposed DRCF framework and its components in the general and cold-start settings.
For instance, for the cold-start setting, we only consider users who have less than 10 checkins
in the testing set during the evaluation. The number of cold-start users for each dataset is
shown in Table 5.3. We use the Hit Ratio (HR) and Normalized Discounted Cumulative Gain
(NDCG) metrics, which are widely used in previous works (He et al., 2017; Yu et al., 2016;
Yuan et al., 2016; He et al., 2016b), to measure the quality of the generated top-K venue
recommendation. Both HR and NDCG have been previously described in Section 2.1.2.2. In
particular, HR considers the ranking nature of the task, by taking into account the rank(s) of
the venues that each user has previously visited/rated in the produced ranking, while NDCG
goes further by considering the checkin/rating value of the user as the graded relevance label.
Lastly, significance tests are conducted using a paired t-test with p < 0.05 and p < 0.01.

5.7.2 Baselines

In this section, we describe all the baselines we use in comparison with our proposed DRCF
framework and its components. These baselines can be categorised into trivial sanity-check
baselines, traditional MF-based approaches, RNN-based approaches and Deep Neural Network-
based approaches. Note that such approaches may have not be originally proposed for venue
recommendation but are sufficiently flexible to do so without any disadvantages. Our base-
lines are summarised below.
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5.7.2.1 Trivial Sanity-Check Baselines

MostPop is a baseline that ranks venues in descending order of the venues’ popularities,
calculated across all users.

MostVisit is a baseline that ranks venues for a given user in descending order of the venues’
popularity for that user.

RecentVisit is a baseline that takes the user’s sequential order of checkins into account and
recommends the most recently visited venue to the user.

MF (Koren et al., 2009) is the traditional matrix factorisation approach that aims to accu-
rately predict the users’ checkin on the unvisited venues.

5.7.2.2 Traditional MF-based approaches

MF (Koren et al., 2009) is the traditional matrix factorisation approach that aims to accu-
rately predict the users’ checkin on the unvisited venues (see Section 2.1.1.1.2).

BPR (Rendle et al., 2009) is the classical pairwise ranking approach, coupled with matrix
factorisation for user-venue checkin prediction (see Section 2.1.1.1.3).

GBPR (Yuan et al., 2016) is the state-of-the-art BPR model that incorporates geographical
influence. This model assumes that the neighbourhood venues of venues previously visited
by users should be ranked higher than the distant ones. It uses a static negative sampling
approach that incorporates the geographical location of venues (see Section 3.5.1).

5.7.2.3 RNN-based approaches

RNN-MF (Zhang et al., 2014b) is the MF-based approach that exploits RNN-based models
to predict the user’s sequential clicks for sponsored search (see Section 3.6.1).

DREAM (Yu et al., 2016) is the state-of-the-art RNN-based factorisation model that incor-
porates BPR for ranking optimisation. As DREAM is originally proposed for next shopping-
basket recommendation, to permit a fair comparison with our proposed DRCF framework,
we reimplement DREAM to treat a single checkin as the shopping-basket purchase (see
Section 3.6.1).

116



5.7. Experimental Methodology

5.7.2.4 Deep Neural Network (DNN)-based approaches

NeuMF (He et al., 2017) is the state-of-the-art Neural Matrix Factorisation framework8,
which consists of two components: namely Generalised Matrix Factorisation (GMF) and
Multi-Layer Perceptron (MLP) (see Section 3.4.2).

GMF is the component of the NeuMF framework, which models the user-venue interaction
using the element-wise product of latent factors (see Section 3.4.3).

MLP is the component of the NeuMF framework that models the user-venue interaction
using the concatenation of latent factors (see Section 3.4.4).

We implement all baselines and our proposed approach using Keras9, a deep learning
framework built on top of Theano10. Note that, we do not include the Markov Chain-based
baselines (e.g. (Rendle et al., 2010)) into our experiments, as experimental results reported by
Yu et al. (2016) showed that RNN-based models are more effective than the Markov Chain-
based ones. Similarly, we omit state-of-the-art MF-based approaches (e.g. an element-wise
Alternating Least Squares (eALS) approach (He et al., 2016b)) since He et al. (2017) showed
that the NeuMF framework significantly outperforms such approaches.

5.7.3 Recommendation Parameter Setup

In this section, we describe how we set the parameters of our proposed DRCF framework
and the baselines to permit a fair comparison. First, following common practice in previous
works (Ma et al., 2011; Yuan et al., 2016; Wang et al., 2016; Zhao et al., 2014), we set the
dimensions of the latent factors d of our proposed DRCF framework and all of the MF-based,
RNN-based and DNN-based baselines to be identical: d = 10 across three datasets 11. Then,
we follow He et al. (2017) and randomly initialise all hidden, embedding and RNN layers’
parameters, ✓r, ✓e, ✓h, with a Gaussian distribution (with a mean of 0 and standard deviation
of 0.01). We apply the mini-batch Adam optimiser (Kingma and Ba, 2014) to optimise those
parameters, which yields a faster convergence than the Stochastic Gradient Descent (SGD).
In addition, the Adam optimiser automatically adjusts the learning rate for each iteration.
We set the learning rate to 0.00112 and set the batch size to 256. For a fair comparison,
the choice of recurrent models for the RNN-based factorisation baselines and our proposed
DRCF framework is fixed to the traditional RNN model (Zhang et al., 2014b). Note that

8https://github.com/hexiangnan/neural_collaborative_filtering
9https://github.com/fchollet/keras

10http://deeplearning.net/software/theano/
11Later, in Chapters 6 & 7, we revisit this setting.
12The default learning rate setting of the Adam optimiser in Keras.
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we omit varying the choice of recurrent models (e.g. LSTM (Hochreiter and Schmidhuber,
1997) and GRU (Chung et al., 2014)) and RNN settings, which have already been explored
in the literature (e.g. (Tan et al., 2016; Tang et al., 2017)). Finally, to permit a fair comparison
between MF-based approaches that exploit a Multi-Layer Perceptron architecture to capture
the user-venue interactions using the concatenation of latent factors (i.e. the MLP and MLRP
models), we employ three hidden layers, L = 3. As the impact of the hidden layer’s size
L, batch size and dimension size d have been explored in previous work (He et al., 2016b,
2017), we omit varying the size of the hidden layers, batch size and the dimension of the
latent factors. Indeed, larger sizes of hidden layers and embedding dimensions may cause
over-fitting and degrade the generalisation of the models (He et al., 2016b, 2017).

5.8 Experimental Results

In this section, to answer research questions RQ5.1-RQ5.3 identified in Section 5.7, we eval-
uate the effectiveness of our proposed DRCF framework and its components: namely the
GRMF, MLRP and RMF models in comparison with various baselines described in Sec-
tion 5.7.2. First, we compare the DRCF framework with the state-of-the-art NeuMF frame-
work and the traditional MF-based and RNN-based baselines under the Normal Users and
Cold-Start Users settings in Section 5.8.1. Then, we investigate the effectiveness of each
component of the DRCF framework (i.e. the GRMF and MLRP models) in comparison with
each component of the NeuMF framework (i.e. the GMF and MLP models) in Section 5.8.2.
Finally, we investigate the usefulness of our proposed static and dynamic geo-based negative
sampling approaches in enhancing the effectiveness of the DRCF framework and alleviating
the cold-start user problem is investigated in Section 5.8.3.

5.8.1 The Effectiveness of the DRCF Framework

Table 5.4 reports the effectiveness of our proposed DRCF framework in comparison to the
baselines, including the NeuMF framework as well as the MF-based and RNN-based ap-
proaches in term of HR@10 and NDCG@10 on the three used datasets for the Normal Users
setting. Firstly, on inspection of our reimplementations of the baselines in Table 5.4, we note
that the relative venue recommendation quality of the baselines on the three used datasets in
terms of the two measures are consistent with the results reported for the baselines in the cor-
responding literature (He et al., 2017; Yu et al., 2016; Zhang et al., 2014b). For instance, the
NeuMF framework consistently outperforms the traditional MF and BPR models across the
three datasets. These results demonstrate that the element-wise product and concatenation
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Table 5.4: Performances in terms of HR@10 and NDCG@10 of various approaches for the
Normal Users setting. The best performing result is highlighted in bold; � and ⇤ denote a
significant difference compared to the best performing result, according to the paired t-test
for p < 0.05 and p < 0.01, respectively.

Brightkite Foursquare Yelp
Model HR NDCG HR NDCG HR NDCG
MostPop 0.1462* 0.1010* 0.2009* 0.1167* 0.0739* 0.0334*
MostVisit 0.4032* 0.3473* 0.4733* 0.4290* 0.1083* 0.0528*
RecentVisit 0.4809* 0.4370* 0.4584* 0.4037* 0.1096* 0.0542*
MF 0.6206* 0.3470* 0.6656* 0.3818* 0.3539* 0.1734*
RNN-MF 0.6368* 0.3824* 0.8040* 0.5459* 0.3814* 0.1891*
BPR 0.6890* 0.4333* 0.7550* 0.4834* 0.4963* 0.2676*
DREAM 0.7041* 0.4839* 0.8147* 0.6081* 0.4349* 0.2235*
NeuMF 0.7073* 0.5358* 0.8361* 0.5842* 0.4934* 0.2729*
GRMF 0.7363 0.5670* 0.8805* 0.6814* 0.5209* 0.2890*
MLRP 0.7291* 0.5790* 0.8873* 0.7046* 0.4771- 0.2652*
DRCF 0.7419 0.6048 0.8952 0.7223 0.5162 0.2963

of the latent factors are more effective than the dot product of the latent factors in capturing
the complex structure of the user-venue interactions. Moreover, regarding our reimplemen-
tations of the RNN-based factorisation baselines, we observe that the RNN-MF (DREAM)
model can consistently outperform the traditional MF (BPR) model across the three datasets.
In particular, these results show that the sequential properties of the users’ checkins captured
by the RNN layer can improve the quality of top-K venue recommendations, which are con-
sistent with results reported in the literature (Yu et al., 2016; Zhang et al., 2014b). It is of
particular note that, although the experiments in previous works (He et al., 2017; Yu et al.,
2016; Zhang et al., 2014b) were conducted using different datasets, our reimplementations
of their proposed approaches and framework obtain similar relative improvements.

Comparing the DRCF framework with the various baselines in Table 5.4, we observe
that the DRCF framework consistently and significantly outperforms all the baselines for
HR and NDCG, across all three datasets. In particular, DRCF improves NDCG by 12%
(0.5358 ! 0.6048), 23% (0.5848 ! 0.7223) and 8% (0.2729 ! 0.2963) over NeuMF for
the Brightkite, Foursquare and Yelp datasets, respectively. These results imply that, using
the same source of information, our proposed DRCF framework that takes both users’ dy-
namic and static preferences as well as the dot products of latent factors into account is more
effective than the NeuMF framework (He et al., 2017) that considers only the users’ static
preferences. In addition, we observe that the DRCF framework, which combines both the
GRMF and MLRP models consistently and significantly outperforms its individual compo-
nent, GRMF and MLRP, for both measures across the three datasets, except for HR on the
Brightkite dataset, where GRMF is statistically indistinguishable from DRCF (difference in
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HR < 1%). As mentioned in Section 5.6, although DRCF allows the GRMF and MLRP
models to learn independently by using different embedding and RNN layers, as already
explained in Section 5.5, these results show that DRCF can seamlessly and dependently in-
tegrate the outputs of these models by exploiting the hidden layer hout (Equation (5.1)) to
effectively generate the ranked-list of venues to the users. In particular, the hidden layers hout

of the DRCF framework learn the importance of the outputs of GRMF and MLRP models.

Comparing with the state-of-the-art RNN-based factorisation baseline, DRCF con-
sistently and significantly outperforms DREAM in term of NDCG by 24.98% (0.4839 !
0.6081), 18.78% (0.2235 ! 0.6048) and 32.57% (0.7223 ! 0.2963) for the Brightkite,
Foursquare and Yelp datasets, respectively. These high improvements of DRCF over DREAM
are likely due to the element-wise product and concatenation of the latent factors used in
DRCF. In contrast, DREAM only relies on the dot product of the latent factors, which has
already been previously shown in previous work (He et al., 2017) not to be effective in cap-
turing the complex structure of the user-venue interactions. Hence, DREAM is less effective
than DRCF in capturing the users’ dynamic and static preferences from their sequence of
checkins. Next, we note that unlike the Brightkite and Foursquare checkin datasets, the Yelp
dataset consists of only user-venue ratings, and hence the sequential properties of visits to
venues are less likely to be observed. We observe that the RNN-based approaches (RNN-MF
and DREAM) that consider the users’ dynamic preferences are more effective than the tra-
ditional MF-based approaches (MF and BPR) across the Brightkite and Foursquare checkin
datasets, while they are outperformed by BPR on the Yelp dataset since those RNN-based
approaches cannot leverage the sequential properties of the Yelp rating data. However, our
proposed DRCF framework, which considers both the users’ dynamic and static preferences,
is still the most effective across the three types of datasets.

Finally, we demonstrate the effectiveness of the DRCF framework in comparison with
the baselines over different iterations at the testing time. Figure 5.2 reports the test perfor-
mances of DRCF and the baselines on the three used datasets, with respect to the number
of iterations. Overall, from the figure, across the three datasets, we observe that DRCF out-
performs all of the baselines at every iterations and converges faster than the others. For
example, on the Brightkite dataset, DRCF outperforms all of the baselines at every itera-
tion. Moreover, DRCF converges faster than RNN-MF, DREAM and NeuMF, where DRCF
converges at 15 iterations, while RNN-MF, DREAM and NeuMF converge after 50 itera-
tions. Similar trends can be observed on the Foursquare dataset, where DRCF consistently
outperforms all of the baselines at every iteration in terms of HR and NDCG. Again, DRCF
converges faster than all baselines, since DRCF converges at around 25 iterations, while
all baselines get converge after 50 iterations. Regarding the performances of various ap-
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Figure 5.2: Test recommendation HR & NDCG of various approaches with respect to the
number of applied iterations. 121
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proaches on the Yelp dataset, where the sequential order of the user-venue rating feedback
is less likely to be observed in Figure 5.2, we observe that DRCF can still outperform all the
baselines in terms of NDCG at every iterations. Interestingly, BPR and the state-of-the-art
NeuMF framework, which can only capture the users’ long-term (static) preferences, outper-
form RNN-based factorisation baselines (RNN-MF and DREAM) that can only capture the
users’ dynamic preferences at every iteration. These results are intuitive because the users’
short-term (dynamic) preferences are less likely to be present on the Yelp dataset. In contrast,
our proposed DRCF framework, which can effectively capture both the users’ dynamic and
static preferences, outperforms BPR and NeuMF in term of the NDCG metric. DRCF is also
as effective as BPR and NeuMF in terms of the HR metric.

Overall, the results from Table 5.4 and Figure 5.2 demonstrate that our proposed
DRCF framework is more effective and generalisable than various existing state-of-the-art
approaches across the three used datasets in terms of the HR and NDCG measures. In the
next section, we investigate the effectiveness of the individual components of the DRCF
framework, the GRMF and MLRP models in comparison with the GMF and MLP models of
the NeuMF framework, respectively.

5.8.2 The Effectiveness of DRCF’s Components

In this section, we further analyse the effectiveness of our proposed DRCF framework by
comparing its components (GRMF and MLRP) with the corresponding components of the
NeuMF framework (GMF and MLP) as well as the RNN-based approaches (RNN-MF and
DREAM). Recall that our proposed GRMF and MLRP models both consist of three compo-
nents: the RMF layer that incorporates the dot product of latent factors; the RNN layer that
models the users’ dynamic preferences; and BPR for pairwise ranking optimisation (instead
of using a pointwise loss function). Hence, to determine the importance of the GRMF’s and
MLRP’s components, we follow an ablation methodology, by recording the effectiveness of
the GRMF and MLRP models when each of those three components is removed in turn. For
simplicity, we denote d as the RMF layer, r as the RNN layer and b as the BPR optimiser. For
example, GRMFrb denotes that the RMF layer is removed from the model, while GRMFrdb

denotes that the GRMF model consisting of all three components.

Similar to Table 5.4, Table 5.5 reports the performances of the components of our pro-
posed DRCF framework (GRMFrdb and MLRPrdb) in comparison with the components of the
NeuMF framework (GMF and MLP), the RNN-based approaches (RNN-MF and DREAM)
as well as the corresponding component ablation of GRMF and MLRP. First, we observe
similar tends as for the DRCF framework reported in Section 5.8.1. Indeed, we observe that
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Table 5.5: Performances in terms of HR@10 and NDCG@10 of various approaches. The
best performing result is highlighted in bold; � and ⇤ denote a significant difference com-
pared to the best performing result, according to the paired t-test for p < 0.05 and p < 0.01,
respectively.

Brightkite Foursquare Yelp
Model HR NDCG HR NDCG HR NDCG

Component Ablation of GRMF
RNN-MF 0.6368* 0.3824* 0.8040* 0.5459* 0.3814* 0.1891*
DREAM 0.7041* 0.4839* 0.8147* 0.6081* 0.4349* 0.2235*
GMF 0.7072* 0.4500* 0.7753* 0.4874* 0.4809* 0.2570*
GRMFdr 0.7380* 0.5199* 0.8523* 0.6126* 0.4383* 0.2232*
GRMFdb 0.7460 0.5326* 0.8281* 0.5765* 0.5164- 0.2864-
GRMFrb 0.6704* 0.4772* 0.8273* 0.5984* 0.5210 0.2841*
GRMFrdb 0.7363* 0.5670 0.8805 0.6814 0.5209 0.2890

Component Ablation of MLRP
RNN-MF 0.6368* 0.3824* 0.8040* 0.5459* 0.3814* 0.1891*
DREAM 0.7041* 0.4839* 0.8147* 0.6081* 0.4349* 0.2235*
MLP 0.6780* 0.4805* 0.7638* 0.4846* 0.4656* 0.2492*
MLRPdr 0.7185* 0.4536* 0.8755* 0.5627* 0.4121* 0.2131*
MLRPdb 0.6851* 0.4923* 0.8012* 0.5326* 0.4740* 0.2604*
MLRPrb 0.6985* 0.5390* 0.8709* 0.6737* 0.4917 0.2705

MLRPrdb 0.7291 0.5790 0.8873 0.7046 0.4771* 0.2652*

our proposed GRMF and MLRP models consistently and significantly outperform the RNN-
MF, DREAM, GMF and MLP models for the two measures across the three datasets. For
example, GRMF (MLRP) improves NDCG by 26% (28%), 39% (45%) and 12% (6%) over
GMF (MLP) for the Brightkite, Foursquare and Yelp datasets, respectively. These results
show that the models that can capture both users’ dynamic and static preferences (GRMF
and MLRP) are more effective that the models that can only capture the users’ static prefer-
ences (GMF and MLP).

Regarding the specific impacts of the three components of GRMF and MLRP (c.f.
research question RQ5.1), in general, we observe that all three components play important
roles in the effectiveness of the GRMF and MLRP models since significant decreases are
often observed when each component is removed. More specifically, regarding the research
question RQ5.1(a), with respect to the impact of the sequential properties of the users’ feed-
back as modelled by the r RNN layers, significant decreases for both GRMFrdb and MLRPrdb

are consistently observed compared to GRMFdb and MLRPdb, respectively. These results
suggest that the users’ dynamic preferences can significantly improve the effectiveness of
the GRMF and MLRP models. In particular, we observe the largest decreases in term of
NDCG by approximately 25% in the Brightkite and Foursquare datasets, when the r RNN
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layers are removed from the MLRP model (see MLRPdb in Table 5.8.2). Moreover, as men-
tioned earlier, since the sequential properties of users’ rating feedback on the Yelp dataset
are less likely to be observed compared to the Brightkite and Foursquare checkin datasets,
we observe that the performances of GRMFrdb and MLRPrdb are significantly decreased by
approximately 1.7% in terms of NDCG on the Yelp dataset, when the r RNN layers are
ablated.

Next, regarding the research question RQ5.1(b), which concerns the impact of the dot
product operation (d) in capturing the complex structure of user-venue interactions, similar
trends are observed as in research question RQ5.1(a) where significant decreases for both
GRMFrdb and MLRPrdb are consistently observed compared to GRMFrb and MLRPrb. In
particular, we observe the largest decrease when the RMF layer (d) is removed from the
GRMF model for the checkin datasets. For example, the performances of GRMFrdb and
MLRPrdb are significantly decreased by 18% and 21% (0.4772 ! 0.567) and (0.539 !
0.579), respectively, in terms of NDCG on the Brightkite dataset when the RMF layer is
ablated. In response to research question RQ5.1(b), these results show that the RMF layer
plays an important role in both the GRMF and MLRP models and can significantly improve
the effectiveness of the GRMF and MLRP models.

Regarding the research question RQ5.1(c), concerning the impact of the BPR opti-
miser (b) in generating the top-K venue recommendation, similar trends are observed as in
research questions RQ5.1(a) and RQ5.1(b) where significant decreases for both GRMFrdb

and MLRPrdb are consistently observed across the three used datasets when these two mod-
els are degraded into pointwise-based approaches (c.f. GRMFdr and MLRPdr). These results
demonstrate that the BPR optimiser plays an important role in enhancing the quality of top-K
venue recommendation in both the GRMF and MLRP models.

Finally, to answer research question RQ5.2, we compare the effectiveness of GRMFrb

and MLRPrb with a state-of-the-art pairwise sequential-based approach (i.e. DREAM). First,
comparing GRMFrb and DREAM, we observe that GRMFrb can outperform DREAM on the
Yelp dataset in terms of both metrics, while GRMFrb is as effective as DREAM on the
Foursquare dataset. However, among the three models, MLRPrb is the most effective model,
as it can effectively capture both the users’ dynamic and static preferences from the users’
sequence of observed feedback. Unlike the GRMF and DREAM models, as described in
Section 5.5, by using the concatenation operation, the MLRP model treats the users’ dynamic
and static preferences independently, while the dependencies between the dynamic and static
preferences are seamlessly captured by hidden layers (see Equation (5.5)). In response to
research question RQ5.2, we find that the concatenation is the most effective operation to
effectively combine both users’ dynamic and static preferences, compared to the element-
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Table 5.6: Performances in terms of HR@10 and NDCG@10 between various approaches.
The best performing result is highlighted in bold; � and ⇤ denote a significant difference
compared to the best performing result, according to the paired t-test for p < 0.05 and
p < 0.01, respectively.

Brightkite Foursquare Yelp
Model HR NDCG HR NDCG HR NDCG
DRCF 0.7419* 0.6048* 0.8952* 0.7223 0.5162* 0.2963*
GBPR 0.7339* 0.4672* 0.8216* 0.5395- 0.5570* 0.3032*
DRCFsgeo 0.7847 0.6047* 0.9086 0.7217 0.5682 0.3134

DRCFdgeo 0.7852 0.6210 0.9095 0.7214 0.5618* 0.3064*

wise and dot product operations.

Overall, the strong results from Table 5.5 for the GRMF and MLRP models demon-
strate that all the three components (i.e. the (r) RNN layer, the (d) RMF layer and the (b)

BPR optimiser) play important roles in the effectiveness of GRMF and MLRP models as
significant decreases are often observed when each component is ablated. Moreover, among
the three models that can capture both the users’ dynamic and static preferences, MLRP is
the most effective. In the next section, we investigate the usefulness of our proposed dy-
namic geo-based negative sampling approaches described in Section 5.3, in enhancing the
effectiveness of DRCF in comparison with the state-of-the-art negative sampling approach
(GBPR).

5.8.3 The Usefulness of Sequential-based Negative Sampling Ap-
proaches

Table 5.6 reports the improvements of the DRCF framework when incorporating our pro-
posed dynamic and static geo-based negative sampling approaches that take the geographical
location of venues into account. In particular, DRCFdgeo denotes the DRCF framework that
incorporates our proposed dynamic geo-based negative sampling approach, while DRCFsgeo

denotes the DRCF framework that incorporate our proposed static geo-based negative sam-
pling approach (see Equation (5.3) in Section 5.3). Note that DRCF denotes the DRCF
framework that uses the traditional BPR negative sampling approach (Equation (5.2). First,
we observe that our proposed dynamic negative sampling approach, DRCFdgeo, can signifi-
cantly improve the effectiveness of DRCF in terms of HR by 5.8% and 1.6% on the Brightkite
and Foursquare datasets, respectively. In contrast, for the Yelp dataset, where the sequential
properties of the users’ rating feedback are less likely to be observed, our proposed static
negative sampling approach, DRCFsgeo can significantly improve the effectiveness of DRCF
for the Yelp dataset by 8.8% and 3.4% in terms of HR and NDCG, respectively. Moreover,
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Table 5.7: Performances in terms of HR@10 and NDCG@10 of various approaches for
Cold-Start Users setting. The best performing result is highlighted in bold; � and ⇤ denote
a significant difference compared to the best performing result, according to the paired t-test
for p < 0.05 and p < 0.01, respectively.

Brightkite Foursquare Yelp
Model HR NDCG HR NDCG HR NDCG

DRCF vs. Baselines
MostPop 0.1155* 0.0778* 0.0584* 0.0286* 0.0714* 0.0316*
MostVisit 0.4285* 0.3789* 0.3506* 0.3175* 0.1044* 0.0489*
RecentVisit 0.4995* 0.4585* 0.3831* 0.3446* 0.1052* 0.0497*
MF 0.6768* 0.3913* 0.6623* 0.3650* 0.3748* 0.1868*
BPR 0.7519 0.4907* 0.7792- 0.4961* 0.5273- 0.2946*
RNN-MF 0.6486* 0.3694 0.5909 0.4041* 0.3856* 0.1901*
DREAM 0.7452 0.4969* 0.7987 0.5379* 0.4523* 0.2239*
NeuMF 0.7160* 0.5894- 0.7922 0.6227- 0.5102* 0.2734*
GRMFrdb 0.7409- 0.5618* 0.8442 0.6542 0.5399 0.3083
MLRPrdb 0.7418- 0.5779* 0.8377 0.6138* 0.4928* 0.2788*
DRCF 0.7526 0.5980 0.8377 0.6645 0.5330 0.3136

Dynamic and Static Geo-based Negative Sampling
DRCF 0.7526* 0.5980* 0.8377- 0.6645- 0.5330* 0.3136*
GBPR 0.8093 0.5262* 0.7468- 0.4717* 0.5802- 0.3202*
DRCFsgeo 0.8041 0.6009* 0.8636 0.6748- 0.5948 0.3410

DRCFdgeo 0.8094 0.6199 0.8896 0.7074 0.5877 0.3318-

the static geo-based sampling approach (DRCFsgeo) significantly outperforms the dynamic
sampling approach (DRCFdgeo) in terms of both metrics. Note that there is no significant
differences between DRCF, DRCFsgeo and DRCFdgeo in terms of NDCG for the Foursquare
dataset. Next, comparing with the state-of-the-art geo-based negative sampling approach
GBPR, we find that both DRCFsgeo and DRCFdgeo can significantly and consistently out-
perform GBPR in terms of the HR an NDCG metrics across the three used datasets, except
on Brightkite in terms of HR, where there is no significant difference between GBPR and
DRCFdgeo. Overall, in response to research question RQ5.3(a), our proposed dynamic and
static geo-based sampling approaches can significantly improve the effectiveness of DRCF
across three datasets and are more effective than the state-of-the-art geo-based negative sam-
pling approach (GBPR). In the next section, we evaluate the effectiveness of our proposed
DRCF framework and the dynamic and static geo-based negative sampling approaches in
alleviating the cold-start problem.
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5.8.4 Cold-Start Users Experiments

In this section, we evaluate the effectiveness of our proposed DRCF framework as well as our
proposed negative sampling approaches in alleviating the cold-start user problem. Table 5.7
reports the effectiveness of various approaches in terms of the HR@10 and NDCG@10 on
the three used datasets for Cold-Start users. The table contains two groups of rows. The first
group reports the effectiveness of the DRCF framework in alleviating the cold-start problem
in comparison with the NeuMF framework as well as RNN-based factorisation approaches.
The second group reports the improvement of DRCF framework that incorporates our pro-
posed sequential-based negative sampling approaches, which take the geographical location
of venues into account (i.e. DRCFsgeo and DRCFdgeo).

First, within the first group of rows in Table 5.7, we observe that DRCF can consis-
tently and significantly outperform all the baselines across the three used datasets in terms
of NDCG. In particular, DRCF improves NDCG by approximately 1% (0.5894 ! 0.5980),
6% (0.6227 ! 0.6645) and 14% (0.2734 ! 0.3136) over the NeuMF for the Brightkite,
Foursquare and Yelp datasets, respectively. Comparing with the state-of-the-art RNN-based
factorisation approach, DRCF improves NDCG by 20% (0.4969! 0.598), 23% (0.5379!
0.6645) and 40% (0.2239 ! 0.3136) over DREAM on the Brightkite, Foursquare and Yelp
datasets, respectively. Note that, although GRMF is the most effective model in alleviating
the cold-start problem in terms of HR metric on the Foursquare and Yelp datasets, there is no
significant difference between GRMF and DRCF. These results suggest that, using the same
source of information, our proposed DRCF framework is more effective than the state-of-
the-art NeuMF and DREAM in generating venue recommendations for the cold-start users.

Next, regarding research question RQ5.3(b), we investigate the usefulness of our pro-
posed sequential geo-based negative sampling approaches (i.e. DRCFsgeo and DRCFdgeo) in
alleviating the cold-start problem. Within the second group of rows in Table 5.7, by incor-
porating either our proposed dynamic or static geo-based sampling approach into the DRCF
framework, DRCF can be significantly improved for both measures, across all three datasets.
In particular, for the Brightkite and Foursquare datasets, DRCFdgeo improves NDCG by ap-
proximately 3.5% and 6.5% over DRCF, respectively. Moreover, we observe similar trends
to those previously observed in Table 5.6. For example, DRCFsgeo is more effective than
DRCFdgeo on the Yelp dataset, where the sequential properties of the users’ rating feedback
are less likely to be observed. In addition, DRCFsgeo can improve both HR and NDCG by
approximately 10% and 5.8% over DRCF, respectively, on the Yelp dataset under the Cold-
Start Users setting. Therefore, in response to research question RQ5.3(b), we find that our
proposed dynamic and static geo-based sampling approaches that take the geographical in-
formation of venues into account can effectively alleviate the cold-start problem of the DRCF
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framework.

5.9 Conclusions

In this chapter, we proposed a novel Deep Recurrent Collaborative Filtering (DRCF) frame-
work with a pairwise ranking function for venue recommendation. The DRCF framework
is an extension of the NeuMF framework that exploits Recurrent Neural Networks to effec-
tively capture the users’ dynamic preferences from their sequences of checkins. In particular,
the DRCF framework consists of three main components: namely the Generalised Recurrent
Matrix Factorisation (GRMF), Multi-Layer Recurrent Perceptron (MLRP) and Recurrent
Matrix Factorisation (RMF) models. By combining these three models, we showed that
the DRCF framework can effectively capture the complex structure of user-venue interac-
tions based on the element-wise product, dot product as well as the concatenation of the
latent factors. In addition, within the DRCF framework, we proposed two novel dynamic
and static geo-based negative sampling approaches that take the users’ sequential properties
of checkins and the geographical information of venues into account to further enhance the
effectiveness of the DRCF framework, as well as alleviate the cold-start user problem.

Our proposed DRCF framework and it components aim to address the seven elicited
limitations of the state-of-the-art approaches: namely Limitations N1-N4 of the NeuMF
framework and Limitations R1-R2 of the RNN-based factorisation approaches. Our pro-
posed negative sampling approaches aim to address Limitation S3 of the existing negative
sampling approaches. Our comprehensive experiments on three large-scale datasets from
the Brightkite, Foursquare and Yelp LBSNs demonstrate the significant improvements of our
proposed DRCF framework and its components as well as our proposed sequential geo-based
sampling approaches for venue recommendation in comparison with various state-of-the-art
venue recommendation approaches in both normal and cold-start settings. In particular, re-
garding the research question RQ5.1 (see Table 5.2), our experimental results demonstrate
that our proposed DRCF framework can effectively address Limitations N1-N4 of the state-
of-the-art NeuMF framework where DRCF can consistently and significantly outperform
NeuMF across the three used datasets in terms of the HR and NDCG metrics by approxi-
mately 8-23%. In response to research question RQ5.2, our ablation experiments showed
that each component of the DRCF framework: namely GRMF and MLRP can address Lim-

itations R1 & R2 of the state-of-the-art RNN-based factorisation approach (DREAM), as
GRMF and MLRP can significantly and consistently outperform DREAM across different
datasets. In addition, in response to research question RQ5.3, the experimental results in
Section 5.8.3 demonstrated that our proposed sequential geo-based negative sampling ap-
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proaches can address Limitation S3 of the existing negative sampling approaches by com-
paring the effectiveness of DRCF with or without our proposed dynamic and static neg-
ative sampling approaches and the state-of-the-art geo-based negative sampling approach
(GeoBPR). In particular, the obtained experimental results in Section 5.8.3 showed that
our proposed dynamic negative sampling approach can further enhance the effectiveness
of DRCF for both normal and cold-start settings by approximately 3-10% in term of NDCG.

In our thesis statement (see Section 1.2), we hypothesised that the quality of the per-
sonalised ranked list of venues can be effectively enhanced by leveraging the sequential
properties of the users’ checkins. To achieve this, an effective Collaborative Filtering-based
framework that models the user’s long- (static) and short-term (dynamic) preferences from
the sequence of user’s checkins is needed. Based upon our experiments in this chapter, we
conclude that our proposed DRCF framework as well as our two proposed two dynamic and
static geo-based negative sampling approaches that take the sequential order of the users’
checkins into account can generate effective top-K personalised venue recommendations.
So far, we have investigated how the sequential order of the users’ checkins play an impor-
tant role in improving the quality of venue recommendations and Recurrent Neural Networks
can effectively capture the users’ dynamic preferences from their sequence of checkins. Al-
though our proposed DRCF framework can effectively capture both the users’ dynamic and
static preferences from the users’ sequence of checkins, it does not take the contextual in-
formation associated with the users’ checkins into account. However, as mentioned in Sec-
tion 1.1, to generate high quality Context-Aware Venue Recommendation (CAVR), users’
contexts such as time of the day and the user’s current location need to be considered. In the
next chapter, we propose a recurrent neural network architecture that take the users’ context
into account to effectively generate high quality of CAVR.
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Chapter 6

Contextual Attention Recurrent
Architecture

6.1 Introduction

In the previous chapter, we described our proposed Deep Recurrent Collaborative Filtering
framework (DRCF), which exploits the traditional RNN models to effectively capture the
users’ short-term (dynamic) preferences from the users’ sequence of checkins. Our experi-
mental results in the previous chapter demonstrate the effectiveness of the DRCF framework
in generating effective top-K venue recommendations in comparison with various state-of-
the-art MF-based approaches. On the other hand, as mentioned in Section 3.6.2, we argue
that the traditional RNN models such as Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and Gated Recurrent Units (GRU) (Chung et al., 2014) are limited as
they can only take the sequential order of checkins into account and cannot incorporate the
contextual information associated with the checkins (e.g. timestamp of a user’s checkin and
the geographical location of the checkin). Indeed, such contexts can influence the users’ dy-
namic preferences, which have been shown to play an important role in producing effective
Context-Aware Venue Recommendation (CAVR) (Liu et al., 2016c,b; Zhu et al., 2017). For
example, a user is likely to visit a bar after he/she visited a restaurant. However, if the user
visited a restaurant last night, recommending a bar to visit in the next day at daytime might
not be appropriate. We argue that the traditional RNN-based factorisation approaches that do
not take the contextual information associated with the users’ checkins into account are likely
to generate less effective venue recommendations than models that take these contextual in-
formation into account (Limitation R3, identified in Section 3.6.3). Table 6.1 provides the
summary of these existing RNN-based factorisation approaches and their corresponding lim-
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Table 6.1: Summary of the existing RNN-based factorisation approaches and the GRU ar-
chitectures and their corresponding limitations

RNN-MF TimeGRU CGRU LatentCross CARA
Sequential-based X X X X X
GRU Architecture ⇥ X X X X
Ordinary Context ⇥ ⇥ X X X
Transition Context ⇥ only time X X X
Special Gates ⇥ X ⇥ ⇥ X
Limitations R3 G1-G4 G3-G4 G3-G4 -

itations. Limitation R3 of the existing RNN-based factorisation approaches (e.g. RNN-MF)
can be summarised below:

Limitation R3: There is a disadvantage in the RNN-based factorisation approaches
that model the user’s dynamic preferences from the sequential order of checkins by leverag-
ing only the sequence of previously visited venues and ignoring the context associated with
the checkins.

As described in Section 3.6.2, to incorporate the contextual information associated
with the sequence of users’ checkins, various Gate Recurrent Unit (GRU) architectures have
been proposed, namely TimeGRU (Zhu et al., 2017), CGRU (Smirnova and Vasile, 2017)
and LatentCross (Beutel et al., 2018). However, as discussed in Section 3.6.3, there are
four limitations associated to these existing GRU architectures (Limitations G1-G4), with
respect to how they treat the contextual information associated with the sequence of users’
checkins. Indeed, we argue that there are two types of contextual information, namely the
ordinary and transition contexts. For example, the ordinary context such as the time of the
day should influence the user’s contextual dynamic preferences on a current visited venue,
while the transition context such as the time interval between the last visited venue and
the current time should influence the correlation between the current and previously visited
venues. Unfortunately, the TimeGRU architecture can only incorporate the time intervals
between two successive checkins, (i.e. the transition context) ) but not the current context of
the users, (i.e. the ordinary context) (Limitation G1). In addition, the TimeGRU architec-
ture is not sufficiently flexible to incorporate multiple types of the transition context associ-
ated with the checkins such as the geographical distance between two successive checkins
(Limitation G2). Both CGRU and LatentCross are the existing state-of-the-art GRU archi-
tectures that aim to address Limitation G1 by incorporating both the ordinary and transition
contexts associated with the sequences of checkins. However, both CGRU and LatentCross
treat the ordinary and transition contexts similarly, which contradict to our assumption, in
which we assume that these two types of contexts influence the users’ dynamic preferences
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differently (Limitation G3). Furthermore, there is a loss of granularity from the quantisation
mapping functions used by both CGRU and LatentCross to represent the transition context
(Limitation G4) 1. Table 6.1 also provides a summary of these existing GRU architectures
and their corresponding limitations. Limitations G2-G4 of the existing GRU architectures
are summarised as follows:

Limitation G2: The time gating mechanism proposed by TimeGRU is not sufficiently
flexible to incorporate multiple types of transition contexts associated with the sequence of
checkins.

Limitation G3: The GRU architectures for which this limitation applies (CGRU and
LatentCross) treat the ordinary and transition contexts similarly, while these two types of
context influence the users’ preferences differently and should be treated independently.

Limitation G4: There is a disadvantage in the GRU architectures (CGRU and La-
tentCross) that rely on the quantised mapping procedures to represent transition contexts.

In this chapter, we aim to address Limitations G2-G4 of the existing GRU architec-
tures by proposing a novel Contextual Attention Recurrent Architecture (CARA) for context-
aware venue recommendation that can effectively incorporate different types of contextual
information associated with the users’ sequence of checkins. In particular, our proposed
CARA architecture consists of two types of gating mechanisms: namely a Contextual At-
tention Gate (CAG) as well as Temporal and Spatial Gates (TSG). The CAG gate aims to
effectively capture the users’ contextual dynamic preferences by taking into account the or-
dinary context associated with the users’ checkins, while the TSG gates aim to capture the
correlation between the users’ previous checkin and the current checkin from the transition
context associated with two successive checkins. The remainder of this chapter is structured
as follows:

• Section 6.2 provides an overview of our proposed Contextual Attention Recurrent Ar-
chitecture (CARA) with a pairwise ranking function that generates effective top-K
venue recommendations to the users based on their sequence of historical checkins
and context.

• Section 6.3 provides details of the first gating mechanism of the CARA architecture,
the Contextual Attention Gate (CAG), which aims to capture the users’ contextual
dynamic preferences based on their ordinary context.

• Section 6.4 provides details of the second gating mechanism of the CARA architecture,
the Temporal and Spatial Gates (TSG), which aims capture the correlation between the

1Further details have been already discussed in Section 3.6.2.2
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users’ previous checkin and the current checkin based on the users’ transition context
such as the time interval and distance between two successive checkins.

• Section 6.5 presents our experimental methodology in terms of datasets and measures
as well as describes algorithm parameters.

• In Section 6.6, we empirically evaluate the effectiveness of our proposed CARA ar-
chitecture in comparison with the state-of-the-art GRU architectures and RNN-based
factorisation approaches, discussed in Chapter 3.

• Section 6.9 provides a summary of this chapter.

6.2 Overview of the Contextual Attention Recurrent Ar-

chitecture (CARA)

In this section, we describe an overview of our proposed Contextual Attention Recurrent
Architecture (CARA), an extension of the traditional GRU architecture that can incorporate
both the ordinary and transition contexts associated with the users’ sequence of checkins to
effectively capture the users’ short-term dynamic preferences. In particular, CARA aims to
generate the ranked-list of venues that a user u might prefer to visit at time t based on his/her
sequences of checkins su,t. Figure 6.1 illustrates the overview of the CARA architecture. The
architecture consists of four layers: namely input, embedding, recurrent and output layers.
The output of one layer serves as the input of the layer above. Starting at the bottom of
the figure, at time step ⌧ , the input layer consists of binary sparse vectors that use one-hot
encodings to represent user u, venue i, and time t, respectively, as well as continuous values
of time intervals and distances between two successive checkins. We compute the time
interval and geographical distance between the given venue i and venue j previously visited
at time step ⌧ � 1, as �t⌧ = t⌧ � t⌧�1 and �g⌧ = dist(lati, lngi, latj, lngj), respectively,
where lati, lngi, latj, lngj are the geographical location of venue i and j in terms of latitude
and longitude, and dist() is the Haversine distance function. The sparse vectors of the user
uu, venue v⌧

i
and time t⌧ are fed into the embedding layer. In the embedding layers, there

are three latent factors of users P 2 Rm,d, venues Q 2 Rn,d and times M 2 Ro,d, where m,
n and o are the number of users, venues and time slots and d is the number of dimensions
of the latent factors. The outputs of the embedding layer can be seen as the latent factors of
user �uu = P Tuu, venue �v⌧

i
= QTv⌧

i
and time �t⌧ = MT t⌧ in the context of a factorised

model, which are denoted as the orange rectangles in Figure 6.1. ✓e = {P,Q,M} denotes
the set of parameters of the embedding layer. Note that we only consider the time of checkins
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Figure 6.1: An overview of Contextual Attention Recurrent Architecture (CARA) unit at
time step ⌧ .

as the ordinary context but our proposed architecture is flexible to support multiple types of
ordinary contexts (e.g. current weather of the day).

Next, the latent factors (embeddings) of venue �v⌧
i

and time �t⌧ as well as the time
interval �g⌧ and the geographical distance �t⌧ are fed into the recurrent layer. The output
of the recurrent layer is the hidden state of the recurrent unit at time step ⌧ , h⌧ , which is
defined as follows:

h⌧ = f(�v⌧
i
,�t⌧ ,�t⌧ ,�g⌧ ; ✓r) (6.1)

where ✓r = {W,R,U, b} denotes the set of parameters of the recurrent layer. We further
describe the details of the recurrent units in the recurrent layer that generates the hidden state
h⌧ in Section 6.3 and Section 6.4. Finally, in the output layer, we estimate the preference of
user u for venue i at timestamp t as follows:

ĉu,i,t = �uT

i
h⌧ (6.2)

where h⌧ 2 Rd is the hidden state of the recurrent layer. We apply the pairwise Bayesian
Personalised Ranking (BPR) (Rendle et al., 2009) to learn the parameters ⇥ = {✓e, ✓r}, as
follows:

J (⇥) =
X

i2U

X

su,t2Su

X

(u,i,t)2su,t

X

j2V�su,t

log(�(ĉu,i,t � ĉu,j,t)) (6.3)

where j is a venue the user has not visited before up to time t. Finally, the gradients of ✓r
and ✓e can be estimated by back-propagation through time algorithm proposed by Rumelhart
et al. (1988). In the next section, we describe the first gating mechanism of the CARA archi-
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Figure 6.2: The gating mechanisms of our proposed Contextual Attention Recurrent Archi-
tecture (CARA). The Rectangle symbols indicate inputs of the unit, a red-dashed rectangle
symbol indicates the output of the unit and the circle symbols are the unit’ gates. This figure
is obtained from Manotumruksa et al. (2018)

tecture, the Contextual Attention Gate, which aims to capture the users’ contextual dynamic
preferences based on the ordinary context associated with the sequence of users’ checkins
(i.e. the time of the checkins).

6.3 Contextual Attention Gate (CAG)

As mentioned in Section 6.1, we argue that the ordinary and transition contexts associated
with the users’ checkins can influence the users’ contextual dynamic preferences differently.
Indeed, the ordinary context (e.g. time t) influences the user’s preference on a current visited
venue, while the transition context (e.g. the time interval �T ) influences the correlation
between the current and previously visited venues. In this section, we describe how we
extend the gating mechanism of the traditional Gated Recurrent Unit (GRU), described in
Section 2.2.3.3, to effectively incorporate the ordinary context associated with the sequences
of users’ checkins. In particular, we further describe how to calculate the hidden state h⌧ in
Equation (6.1).

Figure 6.2 illustrates the gating mechanisms of our proposed CARA architecture. First,
inspired by Donkers et al. (2017), we propose the Contextual Attention Gate (CAG), ↵ 2 Rd,
denoted as the red circle in Figure 6.2, which controls the influences of the latent factor of
time �t⌧ at each time step ⌧ as follows:

↵⌧ = �(W↵,hh⌧�1 +W↵,t�t
⌧ + b↵) (6.4)

where W↵,h and W↵,t are the weight matrix of the attention gate for the latent factors of time
�t⌧ and the hidden state h⌧�1 of the previous unit, respectively, and b↵ is a bias parameter.
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The attention gate ↵⌧ aims to capture the correlation between the latent factor �t⌧ at current
time step ⌧ and the hidden state h⌧�1 of the previous unit. Then, we modify the gating mech-
anism of the traditional GRU (Equations (2.29)-(2.32)) by including the attention gate ↵⌧ as
follows:

[z⌧ , r⌧ ] = �(W�v⌧
i
+Rh⌧�1 +W (↵⌧ � �t⌧ ) + b) (6.5)

eh⌧ = tanh(W�v⌧
i
+R(r⌧ � h⌧�1) +W (↵⌧ � �t⌧ ) + b) (6.6)

h⌧ = (1 + (1� ↵⌧ )� �t⌧ )� [(1� z⌧ )h⌧�1 + z⌧eh⌧ ] (6.7)

Note that, unlike CGRU (Beutel et al., 2018) and LatentCross (Smirnova and Vasile, 2017),
described in Section 3.6.2.2, which combine the latent factors of the venue �v⌧

i
and time

�t⌧ using the concatenation operation, i.e. x⌧ = [�v⌧
i
;�t⌧ ] in Equation (3.28), we argue that

these two latent factors should be treated independently. Ideally, at time step ⌧ , the ordinary
context associated with the checkins (i.e. the latent factors of time �t⌧ ) represents the user’s
contextual preferences about the venue, while the latent factors of the venue �v⌧

i
represent

the characteristics of the venues. Indeed, we can include the ordinary context into the GRU
units in two ways: namely at the beginning and the end of the GRU unit. Cui et al. (2010)
described the inclusion of context features before the GRU unit as pre-fusion (blue box in
Figure 6.2), and the inclusion of context features after the GRU unit as post-fusion (yellow
box in Figure 6.2). In particular, by including the latent factors of time �t⌧ through pre-
fusion (Equations (6.5) & (6.6)), �t⌧ will affect the update of the hidden state of the current
GRU unit though the update and reset gates z⌧ , r⌧ as well as the candidate hidden state eh⌧ .
However, by including the latent factors of time �t⌧ through post-fusion (Equation (6.7)),
�t⌧ has more effect on the hidden state h⌧ , the output of the current GRU unit, and hence
affects the next hidden state of next step h⌧+1. Our proposed attention gate ↵⌧ controls the
influence of the latent factor of time �t⌧ on both pre- and post- fusion.

6.4 Time- and Spatial-based Gates (TSG)

In the previous section, we have explained how to extend the gating mechanism of the tra-
ditional GRU unit to incorporate the ordinary context associated with the users’ observed
checkins. As mentioned in Section 6.1, to effectively model the users’ sequential order of
checkins, we also need to take the transition context associated with the users’ observed
checkins into account. In this section, we describe how to further extend the gating mech-
anism of the traditional GRU unit to incorporate the transition context such as the time in-
tervals (i.e. �t⌧ ) and the geographical distances (i.e. �g⌧ ) between successive checkins. In
Figure 6.2, the purple circle illustrates our proposed Time- and Spatial-based Gates (TSG),
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while the green-dashed boxes illustrate the inputs of the TSG gates. Indeed, our proposed
TSG gates together with the CAG gate, previously described in Section 6.3, aim to address
Limitations G2-G4 of the existing gating mechanisms (TimeGRU, CGRU and LatentCross).
In particular, inspired by the time gate proposed by Zhu et al. (2017) (TimeGRU), described
in Section 3.6.2.1, we propose to extend their time gate to incorporate both the time interval
and geographical distance between two checkins as follows:

T⌧ = �t(Wtx�v
⌧

i
+ �(�t⌧Wt) + bt) (6.8)

G⌧ = �t(Wgx�v
⌧

i
+ �(�g⌧Wg + bg)) (6.9)

where �t⌧ and �g⌧ are the time interval and the distance between checkins c⌧ and c⌧�1, at
time step ⌧ , respectively. Wt and Wg are the weight matrix for each transition context (i.e.
the time interval and geographical distance, respectively). Similarly, bt and bg are the bias
parameters. Note that unlike the CGRU and LatentCross architectures, our proposed TSG
gates support using continuous values for a transition context, hence they do not rely on the
quantised mapping procedure to represent a transition context, while CGRU and LatentCross
do (Limitation G4). In fact, by considering the continuous values of the transition context,
the TSG gates are more effective than CGRU and LatentCross in capturing the correlation
between the users’ previous checkin and the current checkin based on the transition context
between these two successive checkins.

Next, we propose to combine these two gates, T⌧ and G⌧ , using the element-wise
product TG⌧ = T⌧ �G⌧ and modify Equation (6.6) as follows:

eh⌧ = tanh(W�v⌧
j
+R(r⌧ � TG⌧ � h⌧�1) +W (↵⌧ � �t⌧ ) + b) (6.10)

The TG⌧ gate and the reset gate r⌧ together control the influence of the hidden state of the
previous step h⌧�1. Unlike the TimeGRU architecture (Limitation G2), the TG⌧ gates can
effectively take both the time interval and the geographical distance of two successive check-
ins into account. Hence, even if the time interval between two checkins is long, the influence
of the hidden state from the previous time step h⌧�1 may not be decreased if the distance
between the two checkins is short. Based on the assumption we mentioned in Section 3.6.2,
for example, a user who visited a museum yesterday is likely to visit another museum nearby
the visited museum, although the time interval from the previous checkin is long. Later in
Section 6.6, we demonstrate that our proposed TSG gates are more effective than the time
gate proposed by Zhu et al. (2017) (TimeGRU) in capturing the correlation between the two
successive checkins based on the transition context. Finally, to address Limitation G3 of the
CGRU and Latent Cross architectures, together by combining the CAG and TSG gates, our
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proposed CARA architecture can effectively capture the users’ contextual dynamic prefer-
ences by treating the ordinary and transition contexts associated with the sequence of users’
checkins independently. In the next section, we describe our experimental methodology used
to evaluate the effectiveness of our proposed CARA architecture.

6.5 Experimental Methodology

In the previous section, we described our proposed Contextual Attention Recurrent Architec-
ture (CARA), which consists of two gating mechanisms: namely the Contextual Attention
Gate (CAG) and the Time- and Spatial-based Gates (TSG). Our proposed CARA architec-
ture aims to address Limitations G2-G4 of the existing Gated Recurrent Unit (GRU) archi-
tectures (see Section 3.6.3). In this section, we evaluate the effectiveness of our proposed
CARA architecture in comparison with state-of-the-art GRU architectures and factorisation
approaches. In particular, to address Limitations G2-G4, we aim to answer the following
research questions:

RQ6.1 Can we enhance the effectiveness of the traditional recurrent architecture (GRU) by
leveraging the ordinary and transition contexts associated with the sequence of check-
ins?

RQ6.2 Is it important to model the ordinary and transition contexts separately?

RQ6.3 Does the use of the absolute continuous values of the transition context preserve the
influence of successive checkins?

Furthermore, as discussed in Section 3.6.3, no previous work has proposed a gating
mechanism that can incorporate multiple types of transition contexts such as the time inter-
vals and geographical distances between two successive checkins. Hence, we initiate our
final research question as follows:

RQ6.4 Can our proposed Time- and Spatial-based Gates (TSG) that leverage multiple types of
transition contexts enhance the effectiveness of traditional recurrent units in capturing
the user’s contextual dynamic preferences?

Table 6.2 summarises the research questions we aim to address in this chapter and
their corresponding success decisions. In particular, we aim to answer research question
RQ6.1 by comparing the performance of CARA with the existing factorisation approaches
as well as the existing GRU architectures. Next, by answering research question RQ6.2,
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Table 6.2: Summary of each research question and its corresponding success decision and
the limitations of the existing approaches.

Research Question Limitation Success Decision
RQ6.1 - Our proposed CARA architecture that takes

both the ordinary and transition contexts into
account is more effective than the existing GRU
architectures and factorisation approaches.

RQ6.2 G3 Our proposed CARA architecture that treats the
ordinary and transition contexts separately via
its gating mechanisms (CAG and TSG gates) is
more effective in generating high quality top-
K CAVR than the existing GRU architectures
(CGRU and LatentCross) that treat both ordi-
nary and transition contexts equally.

RQ6.3 G4 Our proposed TSG gates of the CARA architec-
ture that rely on the absolute continuous values
of the transition context are more effective in
capturing the users’ contextual dynamic prefer-
ences than CGRU and LatentCross, which rely
on the quantised mapping procedures to repre-
sent the transition context.

RQ6.4 G2 Our proposed TSG gates of the CARA archi-
tecture are more effective than the time gate
of TimeGRU when multiple types of transition
contexts associated with the users’ sequence of
checkins can be observed.

we can demonstrate that our proposed CAG and TSG gates of the CARA architecture can
address Limitation G3 of the state-of-the-art GRU architectures (CGRU and LatentCross).
Hence, we can also show that the ordinary and transition contexts are different and should
be treated separately. Furthermore, by answering research question RQ6.3, we can demon-
strate that our proposed TSG gates of the CARA architecture, which rely on the absolute
continuous values of the transition context, can address Limitation G3 of the CGRU and
LatentCross architectures. Finally, by answering research question RQ6.4, we can show that
our proposed TSG gates can address Limitation G2 of TimeGRU by incorporating multiple
types of transition contexts.

In the remainder of this section, we describe the experimental setup in terms of datasets
and measures (Section 6.5.1), baselines (Section 6.5.2) and the algorithm parameters (Sec-
tion 6.5.3). The experimental results and analysis follow in Section 6.6.
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Table 6.3: Statistics of the three used datasets.

Brightkite Foursquare Yelp
Number of normal users 14,374 10,766 38,945
Number of venues 5,050 10,695 34,245
Number of ratings or checkins 681,024 1,336,278 981,379
Number of cold-start users 5,578 154 6903
% density of User-Venue matrix 0.93 1.16 0.07

6.5.1 Datasets & Measures

Similar to the experimental setup described in Chapter 5, we conduct experiments using
three publicly available large-scale LBSN checkin and rating datasets. In particular, to show
the generalisation of our proposed CARA architecture across multiple LBSN platforms and
sources of feedback evidence, we use two checkin datasets from Brightkite2 and Foursquare3,
and a rating dataset from Yelp4. We follow the common practice from previous works (Ren-
dle et al., 2009; He et al., 2017) to remove venues with less than 10 checkins. Table 6.3 sum-
marises the statistics of the filtered datasets. To evaluate the effectiveness of our proposed
CARA architecture and following previous works (He et al., 2017; Rendle et al., 2009), we
adopt a leave-one-out evaluation methodology: for each user, we select their most recent
checkin as a ground truth and randomly select 100 venues that they have not visited before
as the testing set, where the remaining checkins are used as the training set. The context-
aware venue recommendation task is thus to rank those 101 venues for each user given their
preferred context (i.e. time), aiming to rank highest the recent, ground truth checkin. We
conduct two separate experiments, namely: Normal Users (those with � 10 checkins) and
Cold-start Users (< 10 checkins) to evaluate the effectiveness of our proposed CARA ar-
chitecture in the general and cold-start settings. Recommendation effectiveness is measured
in terms of Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG) on the
ranked lists of venues – as applied in the literature (He et al., 2017; Yu et al., 2016). In par-
ticular, HR considers the ranking nature of the task, by taking into account the rank(s) of the
venues that each user has previously visited/rated in the produced ranking, while NDCG goes
further by considering the checkin frequency/rating value of the user as the graded relevance
label. Finally, significance tests are conducted using a paired t-test.

2https://snap.stanford.edu/data/
3https://archive.org/details/201309_foursquare_dataset_umn
4https://www.yelp.com/dataset_challenge
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6.5.2 Baselines

We compare our proposed Contextual Attention Recurrent Architecture (CARA) with vari-
ous baselines, which can be categorised as the trivial sanity-check baselines, the state-of-the-
art recurrent neural network architectures and the factorisation approaches. Note that some
approaches and frameworks may not be originally proposed for Context-Aware Venue Rec-
ommendation (CAVR) but are sufficiently flexible to be applied to this task without any dis-
advantages. We implement all baselines and our proposed CARA architecture using Keras5,
a deep learning framework built on top of Theano6. Our implementations are released as
open source7. For a fair comparison, the choice of recurrent models is fixed to the Gated
Recurrent Units (GRU) proposed by (Chung et al., 2014), described in Section 2.2.3.3. In
addition, compared to LSTM, GRU has less parameters yet is as effective as LSTM for rec-
ommendations(Smirnova and Vasile, 2017; Tan et al., 2016; Tang et al., 2017). The summary
of the baselines are described below.

6.5.2.1 Trivial Sanity-Check Baselines

MostPop is a baseline that ranks venues in descending order of the venues’ popularities,
calculated across all users.

MostVisit is a baseline that ranks venues for a given user in descending order of the venues’
popularity for that user.

RecentVisit is a baseline that takes the user’s sequential order of checkins into account and
recommends the most recently visited venue to the user.

MF (Koren et al., 2009) is the traditional matrix factorisation approach that aims to accu-
rately predict the users’ checkin on the unvisited venues.

6.5.2.2 Recurrent Neural Network Architectures

RNN-MF (Zhang et al., 2014b) is a traditional recurrent architecture that only takes the
sequence of users’ checkins into account and ignores the contextual information associated
with the sequence of checkins (see Section 3.6.1).

STGRU (Liu et al., 2016c) is a Spatial and Temporal recurrent architecture that incorporates
multiple types of transition contexts associated with the sequence of users’ checkins (i.e. the
time intervals and the geographical distances between checkins).

5https://github.com/fchollet/keras
6http://deeplearning.net/software/theano
7https://github.com/feay1234/CARA
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CAGRU (Liu et al., 2016b) is an extension of the STGRU architecture that can incorporate
both the ordinary and transition contexts associated with the sequence of users’ checkins.

TimeGRU (Zhu et al., 2017) is an extension of the GRU architecture that includes the time
gate to incorporate a time interval between successive checkins (see Section 3.6.2.1).

CGRU (Smirnova and Vasile, 2017) is an extension of the GRU architecture that can incor-
porate multiple types of contexts. (see Section 3.6.2.2).

LatentCross (Beutel et al., 2018) is an extension of CGRU that supports pre- and post-
fusion inputs (see Section 3.6.2.2).

6.5.2.3 Factorisation Approaches

MF (Koren et al., 2009) is the traditional matrix factorisation approach that aims to accu-
rately predict the users’ checkin on the unvisited venues based on their historical checkins
(see Section 2.1.1.1.2).

BPR (Rendle et al., 2009) is the classical pairwise ranking approach, coupled with matrix
factorisation for user-venue checkin prediction (see Section 2.1.1.1.2).

GeoBPR (Yuan et al., 2016) is the extension of BPR that incorporates the geographical
location of venues to effectively sample negative venues that are far away from the user’s
previous visits (see Section 3.5.1).

STELLAR (Zhao et al., 2016) is a Spatial-TEmporaL LAtent Ranking framework for CAVR
that aims to recommend the list of venues based on the user’s preferred time and last succes-
sive visits. Note that this is the only context-aware venue recommendation framework that
does not rely on the RNN-based models to model the users’ sequential order of checkins.

NeuMF (He et al., 2017) is the Neural Matrix Factorisation framework8 that exploits Multi-
Level Perceptron (MLP) models to capture the complex structure of user-venue interactions
(see Section 3.4).

DRCF is our proposed Deep Recurrent Collaborative Filtering framework, previously de-
scribed in Chapter 5, which extends the NeuMF framework to exploit the traditional RNN
models to capture the sequential order of users’ checkins. Recall that the DRCF framework
consists of two components, with each component having its own recurrent layer. Hence, to
permit a fair comparison, we only compare our proposed CARA architecture with its best-
performing component, the GRMF model (see Section 5.4), which uses an element-wise
product to combine the latent factors and the hidden units of the RNN model.

8https://github.com/hexiangnan/neural_collaborative_filtering
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6.5.3 Recommendation Parameters Setup

In this section, we describe how we set the parameters of our proposed CARA architecture
and baselines to permit a fair comparison. Following (He et al., 2017), we set the dimen-
sions of the latent factors d and hidden layers h⌧ of the CARA architecture and all of the
factorisation approaches to be identical: d = 10 across the three datasets. Following He
et al. (2017), we randomly initialise all embeddings and recurrent layers’ parameters, ✓e, ✓r,
with a Gaussian distribution (with a mean of 0 and a standard deviation of 0.01) and apply
the mini-batch Adam optimiser (Kingma and Ba, 2014) to optimise those parameters, which
yields a faster convergence than SGD and automatically adjusts the learning rate for each
iteration. We initially set the learning rate to 0.0019 and set the batch size to 256. As the
impact of the recurrent parameters such as the size of the hidden state, have been explored
in previous works (He et al., 2017, 2016b; Tan et al., 2016), we omit varying the size of the
hidden layers and the number of dimensions of the latent factors in this work. Indeed, larger
sizes of hidden layers and dimensions may cause over-fitting and degrade the generalisation
of the models (He et al., 2016b, 2017; Tan et al., 2016).

6.6 Experimental Results

In this section, to answer research questions RQ6.1-RQ6.4 identified in Section 6.5, we
evaluate the effectiveness of our proposed CARA architecture in comparison with various
baselines described in Section 6.5.2. In particular, to address research questions RQ6.1-
RQ6.3, we compare the CARA architecture with the state-of-the-art GRU architectures as
well as factorisation approaches under the Normal Users and Cold-Start Users settings in
Section 6.7. Next, to address research question RQ6.4, we further investigate the usefulness
of the gating mechanisms of the CARA architecture in enhancing the quality of the top-K
context-aware venue recommendations in several settings in Section 6.8

6.7 The Effectiveness of CARA Architecture

Table 6.4 reports the effectiveness of our proposed CARA architecture and various state-
of-the-art GRU recommendation architectures, in terms of HR@10 and NDCG@10 on the
three used datasets. This table consists of two groups of rows, which report the effectiveness
of various approaches under the Normal Users and Cold-Start Users settings, respectively.

9The default learning rate setting of the Adam optimiser in Keras.
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Table 6.4: Performances in terms of HR@10 and NDCG@10 of various approaches. The
best performing result is highlighted in bold; � and ⇤ denote a significant difference com-
pared to the best performing result, according to the paired t-test for p < 0.05 and p < 0.01,
respectively.

Brightkite Foursquare Yelp
Model HR NDCG HR NDCG HR NDCG

Normal Users
MostPop 0.1462* 0.1010* 0.2009* 0.1167* 0.0739* 0.0334*
MostVisit 0.4032* 0.3473* 0.4733* 0.4290* 0.1083* 0.0528*
RecentVisit 0.4809* 0.4370* 0.4584* 0.4037* 0.1096* 0.0542*
RNN-MF 0.6657* 0.4407* 0.8302* 0.5762* 0.4164* 0.2146*
TimeGRU 0.7005* 0.4816* 0.8570* 0.6167* 0.4342* 0.2240*
STGRU 0.6888* 0.5493* 0.8496* 0.6865* 0.4254* 0.2365*
CAGRU 0.7180* 0.5545* 0.8498* 0.6474* 0.3799* 0.1989*
CGRU 0.6969* 0.5659* 0.8592* 0.6985* 0.5194* 0.3005*
LatentCross 0.7063* 0.5727* 0.8616* 0.6964* 0.5210* 0.2991*
CARA 0.7385 0.6040 0.8851 0.7154 0.5587 0.3272

Cold-Start Users
MostPop 0.1155* 0.0778* 0.0584* 0.0286* 0.0714* 0.0316*
MostVisit 0.4285* 0.3789* 0.3506* 0.3175* 0.1044* 0.0489*
RecentVisit 0.4995* 0.4585* 0.3831* 0.3446* 0.1052* 0.0497*
RNN-MF 0.6959* 0.4550* 0.8247 0.5260* 0.2420* 0.4540*
TimeGRU 0.7314* 0.5071* 0.8182 0.5788* 0.2398* 0.4592*
STGRU 0.7081* 0.5686* 0.7273* 0.5722* 0.2543* 0.4404*
CAGRU 0.7628 0.6035* 0.8377 0.6353 0.2205* 0.4055*
CGRU 0.7054* 0.5788* 0.7662* 0.5996- 0.3325* 0.5524*
LatentCross 0.7108* 0.5811* 0.8052* 0.6600 0.3223* 0.5398*
CARA 0.7648 0.6220 0.8636 0.6505 0.3493 0.5748

Table 6.5 reports the mean percentage improvements of our proposed CARA architecture
over various GRU baseline architectures across the three used datasets. These percentage
improvements are reflected from the experimental results reported in Table 6.4. Similar to
Table 6.4, Table 6.5 consists of two groups of rows, which report the percentage improve-
ments of CARA over various approaches under the Normal Users and Cold-Start Users ex-
periments, respectively. Firstly, on inspection of our reimplementations of the state-of-the-art
GRU baselines, we note that the relative venue recommendation qualities of the baselines on
the three used datasets in terms of both HR and NDCG are consistent with the results re-
ported for the various baselines in the corresponding literature (Zhang et al., 2014b; Beutel
et al., 2018; Smirnova and Vasile, 2017; Liu et al., 2016c,b; Zhu et al., 2017). For instance,
the extensions of the GRU architectures that incorporate the contextual information (La-
tentCross, CGRU, CAGRU, STGRU and TimeGRU) outperform RNN-MF across the three
used datasets.
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Table 6.5: Mean percentage improvements of CARA over various baselines across the three
used datasets in terms of HR@10 and NDCG@10, which are obtained from Table 6.4.

Normal Users
Model HR NDCG
RNN 17.24% 37.89%
TimeGRU 12.46% 29.16%
STGRU 14.24% 17.51%
CAGRU 18.02% 27.98%
CGRU 5.52% 6.01%
Latent Cross 4.84% 5.86%

Cold-Start Users
Model HR NDCG
RNN 19.65% 28.99%
TimeGRU 18.59% 20.07%
STGRU 21.37% 9.78%
CAGRU 20.59% 15.74%
CGRU 8.73% 6.67%
Latent Cross 7.74% 4.03%

Within the first group of rows in Table 6.4 and Table 6.5, comparing CARA with vari-
ous GRU architectures on the Normal Users experiment, we observe that CARA consistently
and significantly outperforms all the GRU baselines, for HR and NDCG, across all datasets.
In particular, on the average across the three used datasets, CARA improves HR and NDCG
by 5-18% and 6-27%, respectively, over the recently proposed GRU architectures, CAGRU,
CGRU and LatentCross (see Table 6.5). These results suggest that our proposed CARA ar-
chitecture with Contextual Attention Gate (CAG) and Time-and Spatial-based Gates (TSG)
is more effective than the state-of-the-art GRU architectures in modelling the sequences of
users’ checkins. Therefore, in response to research question RQ6.1, the experimental results
reported in Tables 6.4 and 6.5 demonstrate that the effectiveness of a recurrent architecture
in capturing the users’ contextual dynamic preferences can be further improved by taking the
ordinary and transition contexts associated with the sequence of checkins into account.

Next, to answer research questions RQ6.2 and RQ6.3, we compare CARA with the
GRU baseline architectures that consider both the ordinary and transition contexts (CAGRU,
CGRU and LatentCross). Note that these GRU baselines treat the ordinary and transition
contexts similarly and rely on the quantised mapping procedures to represent the contexts.
However, as mentioned in Section 6.1, we argue that different types of contexts might influ-
ence the user’s dynamic preferences differently. In addition, using the mapping procedure
to convert the continuous values of the transition context can lead to a loss in granularity.
From the experimental results in Table 6.4, we observe that our proposed CARA architec-
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ture, which leverages the absolute continuous values of the transition context (i.e. the time
interval �t⌧ and the geographical distance �g⌧ – see Section 6.4) is more effective than the
CAGRU, CGRU and LatentCross baselines in capturing the transition effects between suc-
cessive checkins. In particular, our proposed Contextual Attention Gate (CAG) enables the
CARA architecture to treat the ordinary and transition contexts separately, while these GRU
baselines do not.

Within the second group of rows in Tables 6.4 and 6.5, we further analyse the ef-
fectiveness of our proposed CARA architecture by comparing with the GRU baselines in
the Cold-Start Users setting. Similar to the results observed from the Normal Users ex-
periment, CARA consistently and significantly outperforms all GRU baselines across the
three used datasets in terms of HR and NDCG, except for NDCG on the Foursquare dataset,
where LatentCross is statistically indistinguishable from CARA (difference in HR < 1.5%

(0.6505 ! 0.6600)). Next, we note that unlike the Brightkite and Foursquare checkin
datasets, the Yelp dataset consists of only user-venue ratings, and hence the sequential prop-
erties of visits to venues cannot be observed. Consequently, in both normal and cold-start
user settings, the performances of several GRU baselines (TimeGRU, STGRU and CAGRU)
that consider the contextual information of the ratings are as effective as the RNN baseline
that only considers the sequence of the user’s ratings. In contrast, our proposed CARA ar-
chitecture, which controls the influence of previous ratings based on both the time interval
and the geographical distance, is still the most effective across the different types of datasets.

Next, to further response to research question RQ6.1, we investigate the performance
of our proposed CARA architecture in comparison with the state-of-the-art factorisation ap-
proaches, described in Section 6.5.2.3. Table 6.6 reports the effectiveness of CARA and vari-
ous factorisation approaches, in terms of HR@10 and NDCG@10 on the three used datasets.
Similar to Table 6.4, Table 6.6 contains two groups of rows, which report the effectiveness of
various approaches under the Normal Users and Cold-Start Users settings, respectively. Ta-
ble 6.7 reports the mean percentage improvements of our proposed CARA architecture over
various factorisation baselines across the three used datasets. These percentage improve-
ments are summarised from the experimental results reported in Table 6.6. On inspection
of our reimplementations of the factorisation baselines, we note that the relative venue rec-
ommendation qualities of the baselines on the three used datasets in terms of both HR and
NDCG are consistent with the results reported for the various baselines in the corresponding
literature (Zhao et al., 2016; He et al., 2017; Yuan et al., 2016). In particular, we observe
the relative improvements of GeoBPR, STELLAR, NeuMF and DRCF compared to MF and
BPR across the three datasets. Note that, indeed, while previous works (Zhao et al., 2016;
He et al., 2017; Yuan et al., 2016) used different datasets, our reimplementations of their
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Table 6.6: As per Table 6.4; comparison between our proposed CARA architecture and
various factorisation baselines.

Brightkite Foursquare Yelp
Model HR NDCG HR NDCG HR NDCG

Normal Users
MostPop 0.1462* 0.1010* 0.2009* 0.1167* 0.0739* 0.0334*
MostVisit 0.4032* 0.3473* 0.4733* 0.4290* 0.1083* 0.0528*
RecentVisit 0.4809* 0.4370* 0.4584* 0.4037* 0.1096* 0.0542*
MF 0.6206* 0.3470* 0.6656* 0.3818* 0.3539* 0.1734*
BPR 0.6890* 0.4333* 0.7550* 0.4834* 0.4992* 0.2691*
GeoBPR 0.7339 0.4672* 0.8216* 0.5395* 0.5570 0.3020*
STELLAR 0.7267* 0.5635* 0.8751* 0.6984* 0.5356* 0.2969*
NeuMF 0.7073* 0.5358* 0.8361* 0.5842* 0.4927* 0.2734*
DRCF 0.7363 0.5670* 0.8805 0.6814* 0.5209* 0.2890*
CARA 0.7385 0.6040 0.8851 0.7154 0.5587 0.3272

Cold-Start Users
MostPop 0.1155* 0.0778* 0.0584* 0.0286* 0.0714* 0.0316*
MostVisit 0.4285* 0.3789* 0.3506* 0.3175* 0.1044* 0.0489*
RecentVisit 0.4995* 0.4585* 0.3831* 0.3446* 0.1052* 0.0497*
MF 0.6768* 0.3913* 0.6623* 0.3650* 0.3748* 0.1868*
BPR 0.7519 0.4907* 0.7792- 0.4961* 0.5273* 0.2946*
GeoBPR 0.8093 0.5262* 0.8312 0.5486* 0.5802 0.3202*
STELLAR 0.7406* 0.5580* 0.8052- 0.6007- 0.5537* 0.3147*
NeuMF 0.7160* 0.5894* 0.7922- 0.6227 0.5102* 0.2956*
DRCF 0.7409* 0.5618* 0.8442 0.6542 0.5399* 0.3083*
CARA 0.7648 0.6220 0.8636 0.6505 0.5748 0.3493

factorisation approaches obtain similar relative improvements.

From the first group of rows in Table 6.6, we observe that CARA consistently and sig-
nificantly outperforms all the factorisation baselines across the three used datasets in terms
of HR and NDCG. In particular, comparing with STELLAR, the state-of-the-art CAVR that
considers both the contextual information and the sequences of users’ checkins, CARA ob-
tains 7.19% (0.5635 ! 0.6040) and 10.21% (0.2969 ! 0.3272) improvements in terms of
NDCG on the Brightkite and Yelp datasets, respectively. The percentage improvements of
CARA over STELLAR on the average across the three used datasets in terms of HR and
NDCG are 2.36% and 6.61%, respectively (see Table 6.7). In addition, comparing with our
proposed DRCF framework, which exploits RNN models to capture the users’ dynamic pref-
erences (see Chapter 5), our proposed CARA architecture significantly outperforms DRCF
by 6.53% (0.5670 ! 0.6040), 5% (0.6814 ! 0.7154) and 13.22% (0.2890 ! 0.3272) in
terms of NDCG on the Brightkite, Foursquare and Yelp datasets, respectively. The mean
percentage improvements of CARA over DRCF across the three datasets in terms of HR and
NDCG are 2.69% and 8.24%, respectively (see Table 6.7). However, there is no significant
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Table 6.7: Mean percentage improvements of CARA over various baselines across the three
used datasets in terms of HR@10 and NDCG@10, which are summarised from Table 6.6.

Normal Users
Model HR NDCG
MF 36.61% 83.38%
BPR 12.11% 36.33%
GeoBPR 2.89% 23.41%
STELLAR 2.36% 6.61%
NeuMF 7.89% 18.29%
DRCF 2.69% 8.24%

Cold-Start Users
Model HR NDCG
MF 32.25% 74.72%
BPR 7.19% 25.48%
GeoBPR -0.84% 15.29%
STELLAR 4.78% 10.25%
NeuMF 9.50% 9.39%
DRCF 4% 7.82%

improvement between DRCF and CARA in terms of the HR metric for the Brightkite and
Foursquare datasets. In addition, we highlight that GeoBPR uses an advanced geo-based
negative sampling technique (see Section 3.5.1), while CARA uses the traditional negative
sampling, similar to BPR. CARA is as effective as GeoBPR in terms of HR on Brightkite
and Yelp (i.e. no significant differences are observed), while using a less advanced sampling
technique. We also underline that CARA can be adapted to use GeoBPR’s negative sam-
pling as well as our proposed dynamic and static geo-based negative sampling approaches
(see Section 5.3), which we further discuss in Chapter 7.

From the second group of rows in Table 6.6, we observe that CARA consistently
and significantly outperforms all the factorisation baselines across the Brightkite and Yelp
datasets in terms of NDCG. In particular, comparing with STELLAR, the percentage im-
provements of CARA over STELLAR on the average across the three used datasets in terms
of HR and NDCG are 4.78% and 10.25%, respectively (see Table 6.7). In addition, the mean
percentage improvements of CARA over DRCF across the three datasets in terms of HR
and NDCG are 4% and 7.82%, respectively. These results demonstrate that CARA is more
effective than the state-of-the-art STELLAR and our proposed DRCF framework in allevi-
ating the cold-start problem. Although, GeoBPR can outperform CARA in terms of HR on
the Brightkite and Yelp datasets, there are no significant improvements between GeoBPR
and CARA. Overall, in response to research question RQ6.1, the experimental results in
Table 6.6 and Table 6.7 show that our proposed CARA architecture, which leverages the
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sequences of users’ checkins as well as the ordinary and transition contexts associated with
the checkins, is effective for CAVR. Furthermore, the experimental results also show that our
proposed CARA architecture is more effective than various existing factorisation baselines
in alleviating the cold-start problem.

6.8 The Usefulness of Gating Mechanisms of the CARA

Architecture

In the previous section, we evaluated the effectiveness of our proposed CARA architecture in
comparison with various baselines in order to address research questions RQ6.1 - RQ6.3. In
this section, to further address the research questions RQ6.3-RQ6.4, we investigate the effec-
tiveness of our proposed CARA architecture and the existing GRU baselines under different
settings. In particular, Figure 6.3 presents the performances of various GRU architectures on
the three used datasets in terms of HR@10 and NDCG@10, by considering the users with
particular time intervals �t (hours) and geographical distances �g (km) between their last
checkin and the ground-truth checkin. Overall, the experimental results observed in Fig-
ure 6.3 demonstrate that CARA can consistently outperform all the baselines in different
settings across the three used datasets in terms of HR and NDCG.

With respect to research question RQ6.4, we first compare the performance of CARA
and TimeGRU, the existing GRU architecture that consists of the time gate, described in Sec-
tion 3.6.2.1. From Figure 6.3, we observe that CARA consistently outperforms TimeGRU
in terms of HR and NDCG across the three used datasets on every time intervals �t (hours)
and geographical distances �g (km). These results suggest that our proposed CARA ar-
chitecture, which consists of Time- and Spatial-based Gates (TSG), is more effective than
TimeGRU, the GRU baseline that considers only the time intervals. Therefore, by consid-
ering both the time interval and the geographical distance between two successive checkins,
CARA can generate better recommendations than TimeGRU. Next, to further address re-
search question RQ6.3, we compare CARA with CGRU and LatentCross, the GRU base-
lines that rely on the quantised mapping procedures to represent the transition contexts
(Limitation G4). The experimental results from Figure 6.3 on the three used datasets
demonstrates that our proposed CARA architecture, which supports the absolute continuous
values of the transition contexts by using the TSG gates, outperforms CGRU and LatentCross
on both settings (i.e. fixed geographical distances �g = 1 km and �g = 5 km).

Moreover, Figure 6.3 demonstrates that the effectiveness of all approaches for the
Brightkite dataset decreases as the time intervals between two successive checkins increase
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6.9. Conclusions

because users are less likely to be influenced by venues they visited less recently. However,
the experimental results from Figures 6.3 (a)-(b), (e)-(f) and (i)-(j) using a fixed geograph-
ical distance of �g = 1 km on the Brightkite, Foursquare and Yelp datasets, respectively,
demonstrate the ability of CARA in capturing the users’ contextual dynamic preferences (as
discussed in Section 6.1). In particular, even when the time interval between two checkins
is long (e.g. more than 864 hours) but the geographical distances are small (i.e. �g = 1

km), CARA still outperforms all baselines, demonstrating the value of learning using nearby
checkins as well as using the recent checkins.

6.9 Conclusions

In this chapter, we proposed a novel Contextual Attention Recurrent Architecture (CARA)
for Context-Aware Venue Recommendation (CAVR) that can effectively capture the users’
contextual dynamic preferences from the users’ sequence of checkins. In particular, the
CARA architecture consists of two gating mechanisms: namely (1) the Contextual Attention
Gate (CAG) that controls the influence of the ordinary context on the users’ contextual dy-
namic preferences and (2) the Time-and Spatial-based Gates (TSG) that control the influence
of the hidden state of the previous GRU units based on the time intervals and the geographi-
cal distances between two successive checkins. Together with the CAG and TSG gates, our
proposed CARA architecture aims to address the three elicited limitations of the existing
state-of-the-art GRU architectures: namely Limitations G2-G4 of TimeGRU, CGRU and
LatentCross. In particular, unlike the time gate proposed by (Zhu et al., 2017) (TimeGRU),
our proposed TSG gates are sufficiently flexible to incorporate multiple types of transition
contexts (e.g. the time interval and the geographical distance between two successive check-
ins). Moreover, unlike the previous state-of-the-art CGRU and LatentCross architectures
that treat the ordinary and transition contexts equally, with the CAG and TSG gates, our pro-
posed CARA architecture can effectively and independently control the impacts of ordinary
and transition contexts that can influence the users’ contextual dynamic preferences.

Overall, our comprehensive experiments on three large-scale datasets from the Brightkite,
Foursquare and Yelp commercial LBSNs demonstrated the significant improvements of our
proposed CARA architecture for CAVR in comparison with various previous state-of-the-art
GRU architectures, as well as various recently proposed factorisation approaches, in both
normal and cold-start settings. In particular, in answering research question RQ6.1, our
experimental results showed that our proposed CARA architecture can effectively address
Limitation G2 of TimeGRU, in which DRCF can consistently and significantly outperform
TimeGRU in terms of the HR and NDCG measures by 12.46% and 29.16%, respectively, on
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the average across the three used datasets (see Table 6.5). Next, by answering research ques-
tions RQ6.2 and RQ6.3, the experimental results demonstrated that CARA can address Lim-

itations G3-G4 of the existing state-of-the-art GRU architectures (CGRU and LatentCross).
In particular, the experimental results showed that CARA can address Limitation G3 of
CGRU and LatentCross where CARA can significantly and consistently outperform CGRU
and LatentCross across the three used datasets in terms of the HR and NDCG metrics by
approximately 5%. These results show that the transition and ordinary contexts are different
and should be treated separately (Limitation G3). Next, by answering research question
RQ6.3, we can show that the absolute continuous values of the transition context used by
CARA can preserve the influence of successive checkins more effectively than the quantised
mapping values of the transition context used by the state-of-the-art CGRU and LatentCross
architectures. Finally, by answering research question RQ6.4, we demonstrated that the TSG
gates of the CARA architecture can effectively incorporate multiple types of transition con-
text, thereby addressing Limitation G2 of TimeGRU.

In our thesis statement (see Section 1.2), we hypothesised that the quality of context-
aware venue recommendation can be effectively enhanced by leveraging the sequential order
of the user’s checkins and the contextual information associated with the successive check-
ins. To achieve this, an effective Recurrent Neural Network architecture, which captures the
user’s contextual short-term (dynamic) preferences from the sequence of user’s checkins is
needed. Based upon our experiments in this chapter, we conclude that our proposed CARA
architecture, which can effectively capture the users’ contextual dynamic preferences from
the users’ sequence of checkins can enhance the quality of context-aware venue recommen-
dations. This far, we have conducted that the sequential order of users’ checkins as well
as the contextual information associated with the users’ successive checkins play an impor-
tant role in improving the quality of context-aware venue recommendations. Although our
proposed CARA architecture can effectively capture the users’ contextual dynamic prefer-
ences from the users’ sequence of checkins, it still relies on the dot product of latent factors
(see Equation (6.2)) to estimate the preference of a user for a given venue at a particular
time context. However, previous work (He et al., 2017) and our experiments conducted in
Section 5.8 demonstrated that the dot product operation is not sufficiently effective to cap-
ture the complex structure of user-venue interactions. In the last of our technical chapters,
Chapter7, we will propose a Contextual Recurrent Collaborative Filtering framework that
integrates the CARA architecture into the DRCF framework to effectively generate higher
quality context-aware venue recommendations.
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Chapter 7

Contextual Recurrent Collaborative
Filtering Framework

7.1 Introduction

In the previous chapter, we described our proposed Contextual Attention Recurrent Architec-
ture (CARA), an extension of the traditional Gated Recurrent Unit (GRU) architecture that
effectively incorporates different types of contextual information associated with the users’
sequence of checkins for Context-Aware Venue Recommendation (CAVR). Our experimen-
tal results in the previous chapter demonstrated the effectiveness of the CARA architecture
in generating effective context-aware top-K venue recommendations in comparison with var-
ious state-of-the-art GRU architectures and factorisation approaches. Similar to the existing
GRU architectures in the literature (Smirnova and Vasile, 2017; Beutel et al., 2018; Zhu
et al., 2017), described in Section 3.6.2, the CARA architecture still relies on a dot product
of latent factors of users and venues to capture the users’ contextual dynamic preferences
in a Collaborative Filtering manner (Limitation C1). However, previous work (He et al.,
2017) and our experiments conducted in Section 5.8 demonstrated that the dot product oper-
ation is not sufficiently effective to capture the complex structure of user-venue interaction.
Limitation C1 of the CARA architecture can be summarised below:

Limitation C1: There is a disadvantage in the CARA architecture that still relies on
the dot product operation to combine the latent factors of users and venues when predicting
a user’s checkin.

In Chapter 5, we described our proposed Deep Recurrent Collaborative Filtering frame-
work (DRCF) that leverages the Multi-Layer Perceptron (see Section 2.2.1) and the tra-
ditional RNN models (see Section 2.2.3) to learn the complex structures of the users’ se-
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Table 7.1: Summary of the DRCF framework and the CARA architecture and their corre-
sponding limitation

DRCF CARA CRCF
Context-aware venue recommendation ⇥ X X
Rely on different operations X ⇥ X
Limitation D1 C1 -

quences of checkins. In particular, instead of relying on the dot product of the latent factors,
the DRCF framework relies on a neural architecture that can learn an arbitrary function from
the sequences of user’ checkins. However, the DRCF framework was initially proposed for
venue recommendation and not suitable for CAVR because it still relies on the tradition RNN
models, which are not sufficiently flexible to incorporate the user’s preferred context as well
as the contextual information associated with the user’s sequences of checkins (Limitation

D1). Limitations D1 of the DRCF framework can be summarised as follows:

Limitation D1: There is a disadvantage in the DRCF framework that models the user’s
short-term (dynamic) preferences from sequential order of checkins by leveraging only the
sequence of previously visited venues and ignoring the context associated with the checkins.

In this chapter, we aim to address Limitation D1 of the DRCF framework and Limita-

tion C1 of the CARA architecture by proposing a novel Contextual Recurrent Collaborative
Filtering framework (CRCF). The CRCF framework is an extension of the DRCF frame-
work that leverages the sequence of the users’ checkins, the users’ preferred context and the
contextual information associated with the sequence of the users’ checkins to effectively and
comprehensively capture the users’ contextual long-term (static) and short-term (dynamic)
preferences for CAVR. In particular, to effectively capture the users’ contextual dynamic
preferences from their sequence of checkins, we propose to integrate our proposed CARA
architecture into the CRCF framework. Table 7.1 provides the summary of the CRCF frame-
work, the DRCF framework and the CARA architecture and their corresponding limitation.
Although, later in Section 7.4, we will demonstrate that the proposed CRCF framework can
address the limitations of the DRCF framework and the CARA architecture, CRCF may in-
troduce new limitations. For example, one possible limitation of the CRCF framework is
that it is not sufficiently flexible to leverage the social information to improve the quality of
context-aware venue recommendation. Overall, our contributions are summarised below:

• Section 7.2 provides an overview of our proposed Contextual Recurrent Collaborative
Filtering framework (CRCF) for CAVR. In particular, we describe how to extend the
DRCF framework to take the users’ preferred context into account to and to integrate
the CARA architecture into the CRCF framework to effectively generate high quality
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Figure 7.1: A diagram of Contextual Recurrent Collaborative Filtering Framework. The
connections of each layer linked by the red-dashed lines illustrate the DRCF framework.

of context-aware venue recommendations.

• Section 7.3 presents our experimental methodology in terms of datasets and measures
as well as algorithm parameters.

• In Section 7.4, we empirically evaluate the effectiveness of our proposed CRCF frame-
work in comparison with the existing factorisation approaches as well as our proposed
DRCF framework (see Chapter 5) and our proposed CARA architecture (see Chap-
ter 6). Moreover, we investigate the robustness of the CRCF framework by leveraging
risk analyses techniques proposed by Wang et al. (2012) and Dinçer et al. (2014).

• Section 7.5 provides a summary of this chapter.

7.2 Contextual Recurrent Collaborative Filtering Frame-

work (CRCF)

In this section, we describe a Contextual Recurrent Collaborative Filtering framework (CRCF),
an extension of the DRCF framework, that can effectively incorporate different types of con-
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textual information associated with the sequential feedback (i.e. the time interval and geo-
graphical distance between two successive checkins) to model users’ short-term (dynamic)
preferences. In particular, the CRCF framework aims to generate a ranked-list of venues that
a user might prefer to visit at time t based on the sequences of checkins si,t. The CRCF
framework consists of five layers - the connections between these layers are presented us-
ing both blue- and red-dashed lines in Figure 7.1. The structure of the CRCF framework
is different from the structure of the DRCF framework including its inputs, embedding and
RNN layers because the CRCF can leverage the contextual information, whereas the DRCF
framework cannot. Starting at the bottom of the figure, at the input layer, at time step ⌧ , given
a user i, venue j and time t⌧ , we compute the time interval and the geographical distance
between the given venue j and the venue k, which was previously visited at time step ⌧ � 1,
as �t⌧ = t⌧ � t⌧�1 and �g⌧ = dist(latj, lngj, latk, lngk), respectively. dist() is the Haver-
sine distance function that returns the distance between the given latitudes and longitudes.
In the embedding layer, there are three additional embedding layers highlighted in yellow in
Figure 7.1 that are used to generate the latent factors of the time �t⌧ 2 Rd. Note that we
only consider the time of checkins as the user’s preferred context. However, our proposed
framework is flexible to support multiple types of context (e.g. the current weather of the
day). Next, the latent factors of venue and time (�v⌧

j
and �t⌧ ) as well as the time interval

�t⌧ and the geographical distance �g⌧ are fed into the RNN layer. In the RNN layer, we
exploit the CARA architecture rather than the traditional RNN models used by the DRCF
framework to encapsulate the dynamic user preferences. In particular, the main advantage of
the CARA architecture over the traditional RNN models is that it can effectively capture the
users’ dynamic preferences by taking the contextual information associated with the users’
two successive checkins into account. The output of the recurrent layer is the hidden state of
the recurrent unit at time step ⌧ , h⌧ 2 Rd, which is defined as follows:

h⌧ = fCARA(�v
⌧

j
,�t⌧ ,�t⌧ ,�g⌧ ; ✓r) (7.1)

where ✓r = {W,R,U, b} denotes the set of parameters of the recurrent layer. Further details
of the CARA architecture, fCARA, are described in Section 6.2. Then, similar to the DRCF
framework, the latent factors of user �ui, and the user’s dynamic preferences h⌧ are fed into
the Neural CF layer and the output layer, respectively. The objective function of the CRCF
framework is similar to DRCF’s, as described in Equation (5.2).

There are two advantages of the CRCF framework over either the DRCF framework or
the CARA architecture. First, CRCF allows to take the user’s context into account to gener-
ate effective venue recommendation based on his/her context, while DRCF cannot. Although
CARA can incorporate the user’ context during the recommendation process, it still relies
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on the dot product of the latent factors when making recommendations. Indeed, previous
work (He et al., 2017) and our experiments in Chapter 6 have shown that the dot product op-
eration is not effective in capturing the complex structure of user-venue interactions. Unlike
CARA, our proposed CRCF framework is built upon the DRCF framework, which exploits
the element-wise product and the concatenation operation to effectively capture the complex
structure of the user-venue interactions.

7.3 Experimental Methodology

In the remaining of this chapter, we evaluate the effectiveness and robustness of our pro-
posed Contextual Recurrent Collaborative Filtering (CRCF) framework in comparison with
various matrix factorisation-based approaches. In particular, the CRCF framework aims to
address Limitation D1 of the CRCF framework (see Chapter 5) and Limitation C1 of the
CARA architecture (see Chapter 6). To address Limitations D1 & C1, we aim to answer
the following research questions:

RQ7.1 Can we enhance (a) the effectiveness and (b) the robustness of the Contextual Re-
current Collaborative Filtering (CRCF) framework for CAVR, by exploiting the state-
of-the-art Contextual Attention Recurrent Architecture (CARA) to leverage the time
interval and the geographical distance associated with sequences of checkins?

RQ7.2 Can the dynamic geo-based negative sampling approach that leverages both the se-
quential properties of checkins and the geographical location of venues, enhance (a)
the effectiveness and (b) the robustness of CRCF and alleviate the cold-start problem?

Table 7.2 summarises the research questions we aim to address in this chapter and their
corresponding success decision. To demonstrate that our proposed CRCF framework can
address Limitation D1 of DRCF and Limitation C1 of CARA, we aim to answer research
questions RQ7.1(a) and RQ7.1(b) by comparing the performances of the CRCF framework
with the DRCF framework and the CARA architecture as well as existing factorisation ap-
proaches. Next, by answering research question RQ7.2(a), we can demonstrate that our pro-
posed dynamic geo-based negative sampling approach, described in Section 5.3, can enhance
the effectiveness of the CRCF framework in generating context-aware top-K venue recom-
mendations. Furthermore, we aim to answer research question RQ7.2(b) to demonstrate that
the CRCF framework with the dynamic geo-based negative sampling approach can alleviate
the cold-start user problem for Context-Aware Venue Recommendation (CAVR).
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Table 7.2: Summary of each research question and its corresponding success decision.

Research Question Limitation Success Decision
RQ7.1(a) D1, C1 The CRCF framework is more effective than the

DRCF framework and the CARA architecture
in generating context-aware top-K venue rec-
ommendations

RQ7.2(a) - The CRCF framework with our proposed dy-
namic geo-based negative sampling approach is
more effective in alleviating the cold-start prob-
lem than the CRCF framework with the tradi-
tional negative sampling approach used in BPR

RQ7.1(b) D1, C1 The CRCF framework is more robust (i.e. a
likelihood to underperform by a given base-
line model) than the DRCF framework and the
CARA architecture

RQ7.2(b) - The CRCF framework with our proposed dy-
namic geo-based negative sampling approach is
more robust in alleviating the cold-start prob-
lem than the CRCF framework with the tradi-
tional negative sampling approach used in BPR

In the remainder of this section, we describe the experimental setup in terms of datasets
and measures (Section 7.3.1), baselines (Section 7.3.2), algorithm parameters (Section 7.3.3)
and measures (Section 7.3.4). The experimental results and analysis follow in Section 7.4.

7.3.1 Datasets

Similar to the experimental setup used in Chapters 5 & 6, we conduct experiments using
three publicly available large-scale user-venue interaction datasets from LBSNs. In par-
ticular, to show the generalisation of our proposed framework across multiple LBSN plat-
forms and sources of feedback evidence, we use two checkin datasets from Brightkite1 and
Foursquare2, and a rating dataset from Yelp3. Following the common practice from previous
works (Rendle et al., 2009; He et al., 2017), we remove venues with less than 10 checkins.
Table 7.3 summarises the statistics of the filtered datasets. To evaluate the effectiveness of
our proposed CRCF framework, we adopt a leave-one-out evaluation methodology, previ-
ously used in our experiments in Chapter 5 and Chapter 6: for each user, we select his/her
most recent checkin as a ground truth and randomly select another 100 venues that the user

1https://snap.stanford.edu/data/
2https://archive.org/details/201309_foursquare_dataset_umn
3https://www.yelp.com/dataset_challenge
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Table 7.3: Statistics of the three used datasets.

Brightkite Foursquare Yelp
Number of normal users 14,374 10,766 38,945
Number of venues 5,050 10,695 34,245
Number of ratings or checkins 681,024 1,336,278 981,379
Number of cold-start users 5,578 154 6903
% density of User-Venue matrix 0.93 1.16 0.07

has not visited before as the testing set, where the remaining checkins are used as the training
and validation set. The context-aware venue recommendation task is thus to rank those 101
venues for each user, given his preferred context (i.e. time), aiming to rank the highest the
most recent ground truth checkin. Note that the context-aware venue recommendation task
allows to recommend venues that the user has previously visited, for example in a different
context. For instance, while a user may have visited a restaurant a week ago, recommend-
ing the same restaurant to the user to visit in the next few hours is acceptable. Moreover,
we conduct two separate experiments, namely: Normal Users (those with � 10 checkins)
and Cold-start Users (< 10 checkins) to evaluate the effectiveness of our proposed CRCF
framework in the general and cold-start settings.

7.3.2 Baselines

We compare our proposed Contextual Recurrent Collaborative Filtering (CRCF) framework
with various matrix factorisation-based approaches. We implement all baselines and the
CRCF framework using Keras4, a deep learning framework built on top of Theano5. Our
baselines can be grouped into two different groups: namely MF- and RNN-based approaches.
Our implementation of the CRCF framework is available as open source6. Note that some
baselines may not be originally proposed for venue recommendation but are sufficiently flex-
ible to be applied to such a task without any disadvantage. Similar to the experimental setup
in Chapter 6, for a fair comparison, the choice of recurrent models for the RNN-based fac-
torisation baselines is fixed to the Gated Recurrent Units (GRU) proposed by (Chung et al.,
2014), described in Section 2.2.3.3. In addition, compared to LSTM, GRU has less parame-
ters yet is as effective as LSTM for recommendations (Smirnova and Vasile, 2017; Tan et al.,
2016; Tang et al., 2017). Note that we omit varying the choice of recurrent models (e.g.
LSTM (Hochreiter and Schmidhuber, 1997) and GRU (Chung et al., 2014)) and RNN set-
tings, which have already been explored in the literature (e.g. (Tan et al., 2016; Tang et al.,
2017)). Our baselines are summarised below:

4https://github.com/fchollet/keras
5http://deeplearning.net/software/theano
6https://github.com/feay1234/CRCF
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MostPop is a baseline that ranks venues in descending order of the venues’ popularities,
calculated across all users.

MostVisit is a baseline that ranks venues for a given user in descending order of the venues’
popularity for that user.

RecentVisit is a baseline that takes the user’s sequential order of checkins into account and
recommends the most recently visited venue to the user.

MF (Koren et al., 2009) is the traditional matrix factorisation approach that aims to accu-
rately predict the users’ checkin on the unvisited venues.

BPR (Rendle et al., 2009) is the classical pairwise ranking approach, coupled with matrix
factorisation for user-venue checkin prediction (see Section 2.1.1.1).

GeoBPR (Yuan et al., 2016) is an extension of BPR that incorporates the geographical lo-
cation of venues to sample negative venues that are far away from the user’s previous visits
(see Section 3.5.1).

RNN-MF (Zhang et al., 2014b) is a sequential click prediction with recurrent neural net-
works approach (see Section 3.6.1).

DREAM (Yu et al., 2016) is a RNN model that incorporates BPR for ranking optimisation.
As DREAM is originally proposed for next shopping-basket recommendation, to permit a
fair comparison with our proposed CRCF framework, we reimplement DREAM to treat a
single checkin as the shopping-basket purchase (see Section 3.6.1).

NeuMF (He et al., 2017) is the Neural Matrix Factorisation framework7, which exploits
Multi-Level Perceptron (MLP) models to capture the complex structure of user-item interac-
tions (see Section 3.4.2).

DRCF is our proposed Deep Recurrent Collaborative Filtering framework for venue recom-
mendation that extends the NeuMF framework to exploit the RNN-based models to model
the sequences of the users’ checkins (see Section 5.2).

STELLAR (Zhao et al., 2016) is a Spatial-TEmporaL LAtent Ranking framework for CAVR
that aims to recommend the list of venues based on the user’s preferred time and last suc-
cessive visits. Note that this is the only context-aware framework that does not rely on the
RNN-based approaches to model the users’ sequential order of checkins.

CARA is our proposed Contextual Attention Recurrent Architecture8 for CAVR that lever-
ages the contextual information associated with the sequence of user’s checkins to model the
users’ contextual dynamic preferences (see Section 6.2).

7https://github.com/hexiangnan/neural_collaborative_filtering
8https://github.com/feay1234/CARA
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7.3.3 Recommendation Parameter Setup

Similar to the parameter setup in Chapter 5 and Chapter 6, we follow (He et al., 2017; Zhao
et al., 2016; Yu et al., 2016) to set the dimension of the latent factors d and hidden layers h⌧

of our proposed CARA architecture and all of the matrix factorisation-based approaches to
be identical: d = 10 across three datasets. Furthermore, we randomly initialise all embed-
dings and recurrent layers’ parameters, ✓r, ✓e, ✓h, with a Gaussian distribution (with a mean
of 0 and a standard deviation of 0.01) and apply the mini-batch Adam optimiser (Kingma
and Ba, 2014) to optimise those parameters, which yields a faster convergence than SGD and
automatically adjusts the learning rate for each iteration. We initially set the learning rate to
0.0019 and set the batch size to 256. Since the impact of the recurrent parameters such as the
size of the hidden state, have been explored in previous works (He et al., 2017, 2016b; Tan
et al., 2016), we omit varying the size of the hidden layers and the dimension of the latent fac-
tors in this work. Indeed, larger sizes of hidden layers and dimensions may cause overfitting
and degrade the generalisation of the models (He et al., 2016b, 2017; Tan et al., 2016)10.

7.3.4 Measures

We measure the quality of the ranked list of venues in terms of Hit Ratio (HR) and Nor-
malized Discounted Cumulative Gain (NDCG), which are similar to the measures used in
Chapter 5 and Chapter 6. In particular, HR considers the ranking nature of the task, by tak-
ing into account the rank(s) of the venues that each user has previously visited/rated in the
produced ranking, while NDCG goes further by considering the checkin frequency/rating
value of the user as the graded relevance label. Finally, as before, significance tests are
conducted using a paired t-test.

Furthermore, we experiment to determine the robustness of the CRCF framework, to
measure its likelihood to underperform. To this end, we use risk-sensitive evaluation mea-
sures to quantify any underperformance in comparison to an established baseline recom-
mender system. Throughout our robustness experiments, we use the Bayesian Personalised
Ranking (BPR) model, which we argue that BPR is equivalent to BM25 baseline in web
search, as the established baseline for venue recommendation system to evaluate the ro-
bustness of our proposed CRCF framework. To this end, we use risk-sensitive evaluation
measures to quantify any underperformance compared to a given baseline model (i.e. the
BPR model). All risk-sensitive measures are defined in terms of Risk & Reward (Wang

9The default learning rate setting of the Adam optimiser in Keras.
10The journal version of this chapter confirms that by increasing the size of hidden layers and dimension of

the latent factors cause overfitting and degrade the generalisation of the models.
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et al., 2012), where Risk is defined as the average reduction in effectiveness due to the use of
the new target model in comparison to the baseline CF ranking model. In contrast, Reward
is the positive improvement in effectiveness of the target model over the baseline model, av-
eraged across all users. We use NDCG as the primary effectiveness measure for comparing
the effectiveness of the new target model and the baseline CF ranking model. In particular,
given a baseline CF ranking model (i.e. BPR), the Risk and Reward scores of using a target
model (e.g. DRCF or CRCF) over the set of all users are measured as follows:

Reward =
1

|U|
X

i2U

max(0,Mt(i)�Mb(i)) (7.2)

Risk =
1

|U|
X

i2U

max(0,Mb(i)�Mt(i)) (7.3)

where Mb and Mt denote the effectiveness of the baseline CF ranking model and the target
model for a given user i, respectively, calculated using NDCG. Let the overall gain of a target
model be Gain = reward� risk. Next, a single measure that takes the risk-reward tradeoff
into account is calculated as Urisk = Gain�↵·Risk, where ↵ � 0 is a risk-sensitivity param-
eter (Wang et al., 2012). Note that with ↵ = 0, Urisk simply measures the average difference
in performances between the two models across all users. On the other hand, increasing ↵ >

0 places more emphasis on penalising models that underperform compared to the baseline.

Following Dinçer et al. (2014), for ↵ � 0, a t-statistic can be formulated based on
Urisk, which they called Trisk, and can be expressed as follows:

Trisk =
Urisk

SE(Urisk)
(7.4)

where SE() is the standard error of the paired sample mean. The advantage of Trisk over
Urisk is that it is easily interpreted for an inferential analysis of risk (i.e. if the system exhibits
a significant level of risk for a given ↵). Indeed, Trisk < 2 denotes a significant risk (Dinçer
et al., 2014). Later in Section 7.4.2, we test the significance of an observed risk-reward trade-
off score between a target model and a given baseline by using Trisk as the test statistic of
the Student’s t-test for matched pairs.

7.4 Experimental Results

In this section, we report the effectiveness and robustness of our proposed CRCF framework
in comparison with various state-of-the-art factorisation approaches. In particular, to address
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research questions RQ7.1(a) and RQ7.2(a), we conduct various experiments to evaluate the
effectiveness of the CRCF framework under the Normal and Cold-Start settings, which are
discussed in Section 7.4.1. Moreover, to answer research questions RQ7.1(b) and RQ7.2(b),
we further perform several risk analysis to investigate the robustness of the CRCF frame-
work, which are discussed in Section 7.4.2

7.4.1 Effectiveness Evaluation

In this section, we report the effectiveness of our proposed CRCF framework in comparison
with various state-of-the-art approaches. In particular, to answer research question RQ7.1(a),
Section 7.4.1.1 reports the performance of the CRCF framework and the used baselines un-
der the Normal and Cold-Start settings. In addition, to answer research question RQ2(a),
Section 7.4.1.2 demonstrates the usefulness of the dynamic geo-based negative sampling ap-
proach in enhancing the effectiveness of the CRCF framework and alleviating the cold-start
problem.

7.4.1.1 Effectiveness of the CRCF framework

Table 7.4 reports the effectiveness of the CRCF framework in comparison with various ma-
trix factorisation-based approaches in term of the HR@10 and NDCG@10 measures on the
three used datasets. In particular, the table contains two groups of rows, which report the
effectiveness of various approaches under the Normal Users and Cold-Start Users experi-
ments, respectively. Firstly, on inspection of the first group of rows of Table 7.4, we note
that the relative venue recommendation quality of the baselines on the three datasets in terms
of the two measures are consistent with the results reported for the various baselines in the
corresponding literature (He et al., 2017; Yu et al., 2016; Zhang et al., 2014b). For instance,
DRCF outperforms MF, BPR and NeuMF across the three datasets. Similarly, CARA out-
performs STELLAR across the three datasets. Note that previous works (He et al., 2017; Yu
et al., 2016; Zhang et al., 2014b) used different datasets, but our reimplementations of their
proposed approaches obtain similar relative improvements.

Comparing CRCF with the various baselines, we observe that CRCF consistently and
significantly outperforms all baselines for both HR and NDCG, across all datasets. In par-
ticular, comparing with DRCF and CARA, CRCF obtains 4.61%, 3-4.02% and 6.32-17.41%
improvements in terms of NDCG for Brightkite, Foursquare and Yelp datasets, respectively.
These results suggest that our proposed framework, an extension of DRCF that exploits the
CARA architecture instead of the traditional RNN models to leverage the user’s preferred
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context (i.e. time) and the contextual information associated with the sequence of checkins
is more effective than the DRCF framework, which ignores those contexts. Moreover, com-
paring CRCF with the CARA architecture, which both take the users’ context into account,
the results imply that the neural architecture in the CRCF framework (i.e. an element-wise
product and concatenation between the latent factors (see Figure 7.1)) can enhance the qual-
ity of venue recommendations. Such observation are consistent with the results reported by
He et al. (2017) and our experimental results in Chapter 5.

Next, we note that unlike the Brightkite and Foursquare checkin datasets, the Yelp
dataset consists only of user-venue ratings, and hence the sequential properties of visits to
venues are less likely to be observed. We observe that the RNN-based approaches (RNN and
DREAM) that take the sequential properties of checkins into account are more effective than
the traditional MF-based approaches (MF and BPR) across the Brightkite and Foursquare
checkin datasets. However, both RNN and DREAM are less effective than BPR for the Yelp
rating dataset because the sequential properties of rating data are less pronounced than the
other LBSNs. This is likely due to users writing Yelp reviews after visiting the venue. In
contrast, our proposed CRCF framework is still the most effective across the different types
of datasets, which is indicative of the generalisability of CRCF. In addition, we observe that
CARA, which incorporates the contextual information, is as effective as DRCF on the two
checkin datasets in terms of the two used measures11, while CARA outperforms DRCF on the
Yelp dataset. These results demonstrate that contextual information plays an important role
in enhancing the effectiveness of CAVR. By integrating CARA into CRCF, we can further
enhance the quality of CAVR across three datasets in terms of HR@10 and NDCG@10.

Within the second group of rows in Table 7.4, we further investigate the effectiveness
of the CRCF framework by comparing with the baselines in the Cold-Start Users exper-
iment. The results demonstrate that CRCF consistently and significantly outperforms all
baselines across Brightkite and Yelp datasets on both measures. In particular, comparing the
effectiveness of CRCF for cold-start users with DRCF and CARA, CRCF obtains 5.81-10%
and 3.69-15.49% improvements in terms of NDCG, for the Brightkite and Yelp datasets, re-
spectively. Although the performance of CRCF in alleviating the cold-start user problem is
statistically indistinguishable from CARA and DRCF in the Foursquare dataset in terms of
HR@10, CRCF significantly outperforms CARA in terms of NDCG@10 by 7%. This result
suggests that the element-wise product and the concatenation of the latent factors used by
CRCF play a more important role than the dot product of the latent factors used by CARA in

11Note that DRCF consists of three components (namely GRMF, MLRP and RMF models (see Section 5.2)),
with each component having its own recurrent layer. Although CARA consists only one recurrent layer, it is
as effective as DRCF. Moreover, in Section 6.6, we demonstrated that CARA significantly outperforms each
individual component of DRCF.

164



7.4. Experimental Results

generating more effective top-K venue recommendations for cold-start users. Furthermore,
the results reported in the second group of rows in Table 7.4 demonstrate that our proposed
CRCF framework is more effective than the DRCF framework and the CARA architecture in
alleviating the cold-start user problem. Overall, in response to research question RQ7.1(a),
we find that our proposed CRCF framework, which leverages the sequences of the users’
checkins as well as the contexts associated with the checkins, is effective for CAVR for both
the Normal and Cold-Start users.

7.4.1.2 Usefulness of Dynamic Geo-based Negative Sampling

In this section, to address research question RQ7.2(a), we evaluate the usefulness of the
dynamic geo-based negative sampling approach, denoted with the suffix dgeo) in enhancing
the robustness of our proposed CRCF framework that used the traditional BPR negative
sampling approach. Similar to Table 7.4, Table 7.5 reports the observed performances of
the CRCF and DRCF frameworks as well as CARA architecture when incorporating our
proposed dynamic geo-based negative sampling approach, described in Section 5.3, which
takes the geographical location of venues into account during the negative sampling process.

In the first group of rows in Table 7.5, we analyse the effectiveness of our proposed
CRCF framework by comparing with the state-of-the-art DRCF framework and CARA ar-
chitecture when incorporating our proposed dynamic geo-based negative sampling approach,
described in Section 5.3, in the Normal Users experiment. First, we observe similar results to
those reported in Section 5.8, namely that the negative sampling approach can significantly
improve the effectiveness of DRCF, CARA and CRCF in terms of HR@10 and NDCG@10
across the three datasets. For example, CRCFdgeo obtains over 6.65%, 3.1% and 11.72% im-
provements over CRCF in terms of HR@10 on the Brightkite, Foursquare and Yelp datasets,
respectively. Note that DRCFdgeo and CARAdgeo also obtain similar percentage improve-
ments over DRCF and CARA, respectively, across the three datasets. In addition, CRCFdgeo

consistently and significantly outperforms all baselines that consider the geographical loca-
tion of venues during the negative sampling process (i.e. GeoBPR, DRCFdgeo and CARAdgeo)
across all three datasets. These improvements and observed results demonstrate that the dy-
namic geo-based negative sampling approach plays a crucial role in enhancing the effec-
tiveness of DNN-based approaches. In addition, Figure 7.2 reports the test performances of
CRCFdgeo and the baselines for each of the three datasets with all users over each training
iteration. From the figure, we observe that CRCFdgeo outperforms all the baselines at every
iteration and converges faster than others across the three datasets. Moreover, we observe
that both DRCFdgeo and CARAdgeo are more effective that DRCF and CARA. However,
on the Yelp dataset, we find that CRCF, which relies on the traditional BPR negative sam-
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pling approach (Rendle et al., 2009), is more effective than DRCFdgeo at every iteration in
terms of HR@10 and NDCG@10. These results demonstrate that the users’ context plays an
important role in enhancing the quality of CAVR. Indeed, the dynamic geo-based negative
sampling approach may not be useful when the sequential properties of the users’ observed
feedback are less likely to be observed, as in the Yelp rating dataset. Hence, DRCFdgeo is
less effective than CRCF for both measures on the Yelp dataset.

Next, within the second group of rows in Table 7.5, we further investigate the effective-
ness of CRCFdgeo, DRCFdgeo and CARAdgeo, which all rely on the dynamic geo-based neg-
ative sampling approach, in the Cold-Start Users experiments. First, similar to the Normal
Users experiments, we observe that the dynamic geo-based negative sampling approach can
significantly improve the effectiveness of DRCF, CARA and CRCF in terms of HR@10 and
NDCG@10 across the three datasets in the Cold-Start Users experiments. In particular, the
results demonstrate that CRCFdgeo consistently and significantly outperforms all baselines
across both the Brightkite and Yelp datasets on both measures. In particular, comparing the
effectiveness of alleviating the cold-start users of CRCFdgeo with DRCFdgeo and CARAdgeo,
CRCF obtains approximately 5%, 4.42 - 12.5% improvements in terms of HR@10 for the
Brightkite and Yelp datasets, respectively. Although the effectiveness of CRCFdgeo for the
cold-start users is less than that of DRCFdgeo and CARAdgeo for the Foursquare dataset, there
is no significant difference between CRCFdgeo, DRCFdgeo and CARAdgeo in terms of HR and
NDCG on the Foursquare dataset. These results demonstrate that the dynamic geo-based
negative sampling approach can enhance the effectiveness of CRCF, DRCF and CARA in
generating effective CAVR for the cold-start users.

We further investigate the usefulness of the dynamic geo-based negative sampling ap-
proach and the CARA architecture in enhancing the effectiveness of CRCFdgeo under differ-
ent settings for CAVR. Note that CARA leverages the time interval and the geographical dis-
tance between two successive checkins to model the user’s dynamic preferences, motivating
the integration of CARA into our proposed CRCF framework (as described in Section 7.3).
In particular, the plots in Figure 7.3 present the performances on the Brightkite, Foursquare
and Yelp datasets – in terms of NDCG@10 – of various approaches, by considering the users
with particular time intervals �t (hours) and geographical distances �g (km) between their
last checkin and ground-truth checkin. For example, if a user checks in at venues A, B and
C in a sequence, his/her last checkin is at venue B and his/her ground-truth checkin is at
venue C. Then, we calculate the distance �g and the time interval �t between venues B and
C. Note that these two checkins may occur at the same venue, hence the distance �g = 0,
while the time interval �t between these two checkins is such that �t > 0.

First, the results from Figure 7.3 demonstrate that CRCF consistently outperforms

166



7.4. Experimental Results

Figure 7.2: Test recommendation performances in terms of HR & NDCG of various ap-
proaches with respect to the number of iterations. 167
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Figure 7.3: Performances of various approaches in terms of NDCG@10 on the Brightkite,
Foursquare and Yelp datasets by varying the time interval �t in terms of hours with the fixed
values of the geographical distances �g (1 and 5 km).
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CARA across the three datasets in terms of NDCG@10 on various time intervals �t and ge-
ographical distances �g. These results suggest that the neural architecture (i.e. the element-
wise and concatenation operations of latent factors, described in Section 7.3) in CRCF can
effectively integrate CARA, hence obtaining the improvements over CARA on both set-
tings. Moreover, the experimental results using a fixed geographical distance of �g = 5

km on the right hand plots in Figure 7.3 demonstrate that the effectiveness of all approaches
on the three datasets decreases as the time intervals between two successive checkins in-
creases. These observations suggest that users are less likely to be influenced by distant
venues they visited a long time ago, which are consistent with results previously reported in
Section 6.6. In contrast, the performances of all approaches on a fixed geographical distance
of �g = 1 km setting are relatively stable on the Brightkite and Foursquare datasets. In-
tuitively, nearby venues visited by users are more likely to influence the users’ preferences
for their next venues regardless of when those nearby venues were visited. As mentioned
above, the sequential properties are less likely to be observed from the user-venue rating
Yelp dataset. Hence, unlike the Brightkite and Foursquare checkin datasets, the dynamic
geo-based negative sampling approach may not be useful in enhancing the performances of
DRCF, CARA and CRCF on the Yelp dataset. Furthermore, comparing the approaches that
apply the dynamic geo-based negative sampling approach, we find that the effectiveness of
both CARAdgeo and CRCFdgeo across the three datasets on different settings can be enhanced
by the dynamic negative sampling approach. In particular, CRCFdgeo is the most effective
approach compared to all baselines across the three datasets on various settings. Overall, in
response to research question RQ7.2(a), we find that the dynamic geo-based negative sam-
pling approach can effectively improve the performances of the CRCF framework for CAVR
on various settings that consider different time intervals and geographical distances between
user’s two successive checkins.

7.4.2 Robustness Evaluation

In this section, we evaluate the robustness of the CRCF and DRCF frameworks as well as the
CARA architecture using the risk-sensitive measures (i.e. Reward & Risk and Urisk), pro-
posed by Wang et al. (2012) to quantify any underperformance of DRCF, CARA and CRCF
compared to the BPR model (Section 7.4.2.1).12 Apart from the risk-sensitive measures, we
also use the Trisk measure, proposed by Dinçer et al. (2014), to evaluate whether a given
framework or model exhibits a significant risk compared to the BPR model. In particular, we
test the significance of an observed risk-reward tradeoff score between a target model and

12Indeed, we argue that BPR is a widely used baseline in recommendation systems, which is akin to the use
of BM25 in web search, and hence is appropriate as our robust baseline for risk-sensitive evaluation.
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the BPR model by using Trisk as the test statistic of the Student’s t-test for matched pairs. In
addition, we evaluate the usefulness of the dynamic geo-based negative sampling approach
in enhancing the robustness of the CRCF framework (Section 7.4.2.2).

7.4.2.1 Robustness of the CRCF framework

Tables 7.6 & 7.7 report the robustness of the CRCF framework in comparison with the DRCF
framework and CARA architecture on the three datasets in terms of different measures un-
der the Normal Users and Cold-Start Users experiments, respectively. For instance, the
Wins/Losses row shows the ratio of the number of users that benefit or do not benefit from
a particular model compared to the BPR model. The lower the better for the Losses and
Risk measures, while the higher the better for the Wins and Reward measures. On analysing
Table 7.6, regarding the robustness of several approaches that do not apply the dynamic geo-
based negative sampling approach (i.e. DRCF, CARA and CRCF), we find that CRCF is
the most robust framework by consistently having the lowest Risk/Losses and the highest
Reward/Wins in comparison with DRCF and CARA across the three datasets. In particu-
lar, CRCF can generate a more effective ranked list of venues than BPR (i.e. NDCG@10
is improved by CRCF compared to BPR) for 45.48%, 54.58% and 33.33% of users on the
Brightkite, Foursquare and Yelp datasets, respectively. CRCF performs less effectively than
BPR (i.e. NDCG@10 is degraded by CRCF compared to BPR) for 10.32%, 6.60% and
18.14% of users on the Brightkite, Foursquare and Yelp datasets, respectively. In addition,
Figure 7.4 reports the wins-losses histogram of CRCF and the baselines on the three datasets.
From the figure on the Normal Users experiments, we observe that CRCF consistently has
consistently smaller changes in NDCG@10 on all bins on the left side (negative) of the ver-
tical line and larger changes in NDCG@10 on the right side (positive) of the vertical line
than the baselines across the three datasets. Moreover, we observe that, at ↵ = 1 (which
emphasises risk twice over reward), the calculated Urisk scores of DRCF, CARA and CRCF
are significantly higher than BPR, at p < 0.05 (as Trisk > 2), across the Brightkite and
Foursquare datasets, while only the Urisk score of CRCF on the Yelp dataset exhibits signif-
icant risk (Trisk < 2). These results demonstrate that it is highly likely that CRCF will not
perform worse than the BPR baseline across the three datasets, while both DRCF and CARA
have Trisk < �2 at ↵ = 1 may underperform on the Yelp dataset (i.e. perform worse than
BPR).

Next, Table 7.7 reports the risk measures for the Cold-Start Users, using the same
notation as Table 7.6. In Table 7.7, we observe that CRCF consistently has consistently
lower Risk/Losses and higher Reward/Wins than DRCF and CARA across the Brightkite
and Yelp datasets for the Cold-Start Users. For example, CRCF is more robust than DRCF
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and CARA in terms of Wins as it can generates more effective venue suggestions than BPR
for 2,394 users on the Brightkite dataset, while DRCF and CARA can only generate more
effective venue suggestions than BPR for 2,183 and 2,221 users, respectively. Similar results
in terms of Wins for DRCF, CARA and CRCF can also be observed on the Yelp dataset. In
addition, CRCF exhibits less risk than DRCF and CARA at generating less effective venue
suggestions than BPR. For example, on the Brightkite dataset, CRCF only generates less
effective venue suggestions than BPR for 661 users, while DRCF and CARA generate less
effective venue suggestions than BPR for 1,043 and 803 users, respectively. We observe
similar results for DRCF, CARA and CRCF in terms of Losses on the Yelp dataset.

Moreover, we observe that, at ↵ = 1, the Urisk scores of DRCF, CARA and CRCF
denote significant improvements across the Brightkite and Foursquare datasets. These re-
sults demonstrate that there is no significant risk that these three approaches will perform
worse than BPR baseline for the Cold-Start users for the Brightkite and Foursquare datasets.
However, these three approaches are likely to be under the real risk on the Yelp dataset for
both ↵ = 1 and ↵ = 5. Figure 7.4 shows that CRCF consistently has larger number of
positive changes over BPR than DRCF and CARA on Brightkite and Yelp datasets across
all positive bins, and likewise less for negative bins. However, for the Foursquare dataset,
CRCF has higher Reward and lower Risk than DRCF on the average, while the number of
Losses of DRCF is lower than CRCF. Likewise, the number of Wins of DRCF is higher than
CRCF. For example, there is only 13% of cold-start users (20 out of 154 cold-start users)
on Foursquare dataset whose recommendations generated by DRCF are less effective than
BPR, while 52% of cold-start users (81 out of 154 cold-start users) on Foursquare suffer
from CRCF’s recommendations. These results can be clearly observed in Figure 7.4 on the
Foursquare dataset for the Cold-Start Users experiments where CARA and CRCF obtain
large number of negative changes in terms of NDCG@10 over BPR for 0.1 < NDCG 0.2.
Overall, in response to research question RQ7.1(b), we find that our proposed CRCF frame-
work is robust and less likely to perform worse than BPR baseline for CAVR for the Normal
and Cold-Start users.

We further investigate the robustness of the CRCF framework in comparison with the
DRCF framework and CARA architecture using Trisk score. Figure 7.5 demonstrates the
change in the Trisk scores of the various approaches for various risk-sensitivity ↵ parameter
values from 0 to 15 under Normal and Cold-Start Users experiments. Note that, as mentioned
in Section 7.3.1, the risk-sensitivity ↵ parameter controls the risk-reward tradeoff of the
Urisk and Trisk. Indeed, as ↵ increases, the tradeoff between risk and reward for each model
changes in favour of risk compared to reward. Trisk scores greater than +2 (indicated by
red horizontal line in the figure) or less than �2 (indicated by blue-dashed horizontal line in
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Figure 7.4: Typical Wins-Losses histogram of target new models (DRCF, CARA and CRCF)
in comparison with the CF ranking baseline model, BPR, under the Normal and Cold-start
Users settings. The vertical line in the figures separates wins from losses. We omit to
report the number of users with no change in NDCG@10 over BPR (i.e. a target model is as
effective as BPR).
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the figure) exhibit significant differences from the baseline according to a two-tailed paired
t-test with p < 0.05. On analysing the left hand figures in Figure 7.5, with respect to the
Normal experiments, at ↵ = 1, we observe that all approaches (DRCF (BPR), CARA (BPR)
and CRCF (BPR)) are significantly less risky than BPR across the three datasets. Moreover,
we observe that as ↵ increases, on the Brightkite and Yelp dataset, CRCF is significantly less
risky than BPR when ↵ = 4 and ↵ = 1, respectively, while DRCF and CARA are not. On
the Foursquare dataset, CRCF and DRCF are significantly less risky than BPR until ↵ = 11,
while CARA is significantly less risky than BPR until ↵ = 7.

Next, on analysing the right hand plots in Figure 7.5, regarding the robustness of
DRCF, CARA and CRCF under the Cold-Start experiments, we observe that, at ↵ = 1,
all approaches are significantly less risky than BPR. However, as ↵ increases to 3, CRCF
is the only one approach that is less risky than the BPR baseline across the Brightkite and
Foursquare datasets. Moreover, comparing CRCF with either DRCF or CARA, we observe
that CRCF is only significantly less risky than DRCF when ↵ = 1 on the Brightkite dataset
for the Cold-Start users. To further respond to research question RQ7.1(b), we find that our
proposed CRCF framework is less risky for deployment to users, in that it only exhibits real
risk compared to BPR for higher values of ↵ than the existing state-of-the-art, DRCF and
CARA, for both Normal and Cold-Start users experiments.

7.4.2.2 Usefulness of Dynamic Geo-based Negative Sampling for Robustness

In this section, in addressing research question RQ7.2(b), we evaluate the usefulness of the
dynamic geo-based negative sampling in improving the robustness of the CRCF framework
for the Normal Users experiments. In Table 7.8, we first observe that the dynamic geo-based
negative sampling approach can consistently enhance the robustness of the CRCF frame-
work across the three datasets. In particular, in comparison with DRCFdgeo and CARAdgeo,
CRCFdgeo is the most robust framework, as it generates more effective venue suggestions
than BPR for 49.94%, 59.16% and 40.55% of users on the Brightkite, Foursquare and Yelp
datasets, respectively. Moreover, comparing CRCFdgeo and CRCF, we observe that the dy-
namic geo-based negative sampling approach can enhance the Reward score of CRCF by
approximately 4-7% and can reduce the Risk score of CRCF by approximately 0.6-3%. In
addition, comparing the Trisk scores of CRCF and CRCFdgeo on the Brightkite dataset, at
↵ = 5, we observe that CRCFdgeo is less likely to exhibit a real risk of performing worse than
the BPR baseline, while CRCF is not. In addition, Figure 7.6 reports the robustness of CRCF
and CRCFdgeo on the three datasets. From the left figures in Figure 7.6 on the Normal Users
experiments, we observe that CRCFdgeo has consistently lower changes in NDCG@10 on all
negative bins (i.e. the left side of the vertical line) and higher changes in NDCG@10 on all
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Figure 7.5: The changes in standardised Trisk scores for DRCF, CARA and CRCF with
respect to the baseline, denoted inside the parentheses, over different ↵ values under the
Normal and Cold-Start Users experiments.
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positive bin (i.e. the right side of the vertical line) than CRCF across the three datasets. Fur-
thermore, Figure 7.7 reports wins-losses histograms of DRCFdgeo, CARAdgeo and CRCFdgeo

on the three datasets. From the left figures in Figure 7.7, on the Normal Users experiment,
we observe that CRCFdgeo consistently has lower changes in NDCG@10 on all negative bins
(i.e. the left side of the vertical line) and higher changes in NDCG@10 on all positive bins
(i.e. the right side of the vertical line) than DRCFdgeo and CARAdgeo across the three datasets.

Next, we evaluate the usefulness of the dynamic geo-based negative sampling approach
in improving the robustness of the CRCF framework for the Cold-Start Users experiments.
Similar to the results reported in Table 7.8, in Table 7.9, we find that the dynamic geo-based
negative sampling approach can consistently improve the robustness of CRCF on Brightkite
and Yelp dataset for the Cold-Start Users experiments. For example, CRCFdgeo obtains
approximately 7% and 3% improvements in the Reward and Risk scores over DRCF on the
Brightkite and Yelp datasets, respectively. Moreover, comparing between the Trisk scores of
CRCF and CRCFdgeo on the Brightkite dataset, at ↵ = 5, we observe that CRCFdgeo is less
likely to exhibit a real risk of performing worse than the BPR baseline, while CRCF is not.
Similarly, at ↵ = 1, on the Yelp dataset, we find that CRCF is likely to be under a real risk
of performing worse than the BPR baseline, while CRCFdgeo is not. Next, the right hand
plots in Figure 7.6 report that CRCFdgeo has consistently a larger number of positive changes
in NDCG@10 over BPR across all positive bins in comparison with CRCF across the three
datasets. These significant improvements in the Trisk scores of CRCFdgeo compared to CRCF
demonstrate that the dynamic geo-based negative sampling approach can significantly reduce
the risk of CRCF framework in performing worse than BPR baselines. Furthermore, on
analysing the right hand plots in Figure 7.7, we observe that CRCFdgeo consistently has larger
number of positive changes in NDCG@10 over BPR across all positive bins in comparison
with DRCFdgeo and CARAdgeo on the Brightkite and Yelp datasets. Overall, in response to
research question RQ7.2(b), we find that the dynamic geo-based negative sampling approach
can significantly reduce the risk of our proposed CRCF framework in performing worse than
the BPR baseline for both the Normal and Cold-Start users experiments.

Next, we evaluate the usefulness of the dynamic geo-based negative sampling approach
in enhancing the robustness of the CRCF framework using the Trisk score. Similar to Fig-
ure 7.5, Figure 7.8 demonstrates the change in the Trisk scores of the various approaches
with the dynamic geo-based negative under Normal and Cold-Start Users experiments. With
respect to the Normal experiments, as ↵ increases, we observe that CRCFdgeo is signifi-
cantly less risky than the BPR baseline until ↵ = 7,↵ = 12 and ↵ = 2 for the Brightkite,
Foursquare and Yelp datasets, respectively, while CRCF is not. These results suggest that the
dynamic geo-based negative sampling approach can significantly improve the robustness of
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Figure 7.6: As per Figure 7.4, typical Wins-Losses histograms of the CRCF framework with
or without the dynamic geo-based negative sampling approach (CRCFdgeo and CRCF) in
comparison with the CF ranking baseline model, BPR, under the Normal and Cold-Start
Users experiments.
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Figure 7.7: As per Figure 7.4, typical Wins-Losses histograms of target new models that
incorporates the dynamic geo-based negative sampling approach (DRCFdgeo, CARAdgeo and
CRCFdgeo) in comparison with the CF ranking baseline model, BPR, under the Normal and
Cold-Start Users experiments.
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our proposed CRCF framework (i.e. ensuring not to generate less effective recommendation
than BPR). Overall, in response to research question RQ7.2(b), we observe further evidence
that the dynamic geo-based negative sampling approach reduces the risk of proposed CRCF
framework, for both Normal and Cold-Start users.

7.5 Conclusions

In this chapter, we proposed a novel Contextual Recurrent Collaborative Filtering
framework (CRCF) for Context-Aware Venue Recommendation (CAVR). Our proposed CRCF
framework is built on top of two deep neural network recommendation approaches, namely
our proposed Deep Recurrent Collaborative Filtering (DRCF) framework, described in Chap-
ter 5, and our proposed Contextual Attention Recurrent Architecture (CARA), described in
Chapter 6. By combining DRCF and CARA together, CRCF aims to address Limitation D1

of DRCF and Limitation C1 of CARA. In particular, by exploiting both DRCF and CARA,
CRCF can effectively capture the complex structure of the users’ short-term (dynamic) and
long-term (static) preferences by considering their preferred context (i.e. time of the day) as
well as the contextual information associated with the sequence of the user’s checkins.

Overall, our comprehensive experiments on three large-scale datasets from Brightkite,
Foursquare and Yelp commercial LBSNs demonstrated the significant improvements of our
proposed CRCF framework for CAVR in comparison with various existing state-of-the-art
venue recommendation approaches in both the Normal and Cold-Start settings. In particu-
lar, in answering research question RQ7.1(a), our experimental results reported in Table 7.4
showed that CRCF significantly improved NDCG@10 by 5-20% over the DRCF framework
and the CARA architecture across the three used datasets. These experimental results sug-
gested that CRCF addresses both Limitation D1 of the DRCF framework and Limitation

C1 of the CARA architecture. Moreover, in answering research question RQ7.2(a), our ex-
perimental results reported in Table 7.5 and Figure 7.3 demonstrated the usefulness of our
proposed dynamic geo-based negative sampling approach, described in Section 5.3, (1) in
enhancing the effectiveness of CRCF in generating high quality context-aware top-K venue
recommendations and (2) in alleviating the cold-start problem. Moreover, our experimental
results reported in Figures 7.2 showed that our proposed CRCF framework with the dynamic
geo-based negative sampling approach converges faster than all baselines across the three
used datasets.

Apart from the effectiveness of our proposed CRCF framework, we also investigated
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Figure 7.8: The changes in standardised Trisk scores for CRCF and CRCFdgeo with respect
to the baseline, denoted inside the parentheses, over different ↵ values under the Normal and
Cold-Start Users experiments.
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the robustness of CRCF in comparison with state-of-the-art factorisation approaches us-
ing risk-sensitive evaluation measures in Section 7.4.2. In answering research question
RQ7.1(b), our experimental results reported in Tables 7.6 & 7.7 showed that our proposed
CRCF framework is more robust (i.e. less likely to perform worse than the factorisation
baseline (BPR)) than various factorisation approaches (e.g. DRCF and CARA) in both the
Normal and Cold-Start settings. Our experimental results reported in Figures 7.4 demon-
strated that it is highly likely that CRCF will not perform worse than the BPR baseline
across the three used datasets, while both DRCF and CARA are more likely to perform
worse than the BPR baseline on the Yelp dataset. Moreover, in respond to research ques-
tion RQ7.2(b), we further investigated the robustness of CRCF when incorporates with the
dynamic geo-based negative sampling approach. Our experimental results reported in Fig-
ures 7.6 and 7.7 demonstrated that the dynamic geo-based negative sampling approach can
significantly improve the robustness of our proposed CRCF framework (i.e. ensuring not to
generate less effective context-aware top-K venue recommendations than the BPR baseline)
under the Normal and Cold-Start settings.

In our thesis statement (see Section 1.2), we hypothesised that, to generate high quality
of context-aware top-K venue recommendations, a framework that consists of the following
four functionalities/components is needed, namely (1) capturing the complex structure of
the user-venue interactions in a collaborative filtering manner using an effective neural ar-
chitecture to learn an arbitrary function from the user’s implicit feedback, (2) modelling the
user’s long- (static) and short-term (dynamic) preferences from the sequential order of user’s
checkins and the contextual information associated with the successive checkins, (3) gener-
ating accurate top-K venue suggestions based on the user’s static and dynamic preferences
using a pairwise ranking function and (4) sampling potential negative instances that take into
account the additional information such as geographical information of venues, users’ social
relationships and the sequential order of users’ checkins. Based upon our effectiveness ex-
periments in this chapter, we conclude that our proposed CRCF framework, which consists
of the aforementioned four functionalities/components, can improve the quality of context-
aware top-K venue recommendations. Furthermore, based upon our robustness experiments,
we conclude that the CRCF framework is robust and less likely to generate less effective
context-aware top-K venue recommendations than the BPR baseline. In the next chapter, we
close this thesis by summarising the conclusions and outcomes from each of the individual
chapters, in addition to providing possible new research directions uncovered by this work.
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Table 7.4: Performance in terms of HR@10 and NDCG@10 between various approaches.
The best performing approach is highlighted in bold; � and ⇤ denote a significant difference
compared to the best performing result, according to the paired t-test for p < 0.05 and
p < 0.01, respectively.

Normal Users Experiments

Brightkite Foursquare Yelp
Model HR NDCG HR NDCG HR NDCG
MostPop 0.1462* 0.1010* 0.2009* 0.1167* 0.0739* 0.0334*
MostVisit 0.4032* 0.3473* 0.4733* 0.4290* 0.1083* 0.0528*
RecentVisit 0.4809* 0.4370* 0.4584* 0.4037* 0.1096* 0.0542*
MF 0.6206* 0.3470* 0.6656* 0.3818* 0.3539* 0.1734*
RNN 0.6368* 0.3824* 0.8040* 0.5459* 0.3814* 0.1891*
BPR 0.6890* 0.4333* 0.7550* 0.4834* 0.4963* 0.2676*
DREAM 0.7041* 0.4839* 0.8147* 0.6081* 0.4349* 0.2235*
STELLAR 0.7267* 0.5635* 0.8751* 0.6984* 0.5356* 0.2969*
NeuMF 0.7073* 0.5358* 0.8361* 0.5842* 0.4934* 0.2729*
DRCF 0.7419* 0.6048* 0.8952* 0.7223* 0.5162* 0.2963*
CARA 0.7385* 0.6040* 0.8851* 0.7154* 0.5587* 0.3272*
CRCF 0.7528 0.6319 0.8981 0.7442 0.5861 0.3479

Cold-Start Users Experiments

Brightkite Foursquare Yelp
Model HR NDCG HR NCDG HR NDCG
MostPop 0.1155* 0.0778* 0.0584* 0.0286* 0.0714* 0.0316*
MostVisit 0.4285* 0.3789* 0.3506* 0.3175* 0.1044* 0.0489*
RecentVisit 0.4995* 0.4585* 0.3831* 0.3446* 0.1052* 0.0497*
MF 0.6768* 0.3913* 0.6623* 0.3650* 0.3748* 0.1868*
BPR 0.7519* 0.4907* 0.7792- 0.4961* 0.5273* 0.2946*
RNN 0.6486* 0.3694* 0.5909* 0.4041* 0.3856* 0.1901*
DREAM 0.7452* 0.4969* 0.7987- 0.5379* 0.4523* 0.2239*
STELLAR 0.7406* 0.5580* 0.8052- 0.6007* 0.5537* 0.3147*
NeuMF 0.7160* 0.5894* 0.7922- 0.6227* 0.5102* 0.2734*
DRCF 0.7526* 0.5980* 0.8377 0.6645 0.5330* 0.3136*
CARA 0.7648* 0.6220* 0.8636 0.6505- 0.5748* 0.3493*
CRCF 0.7782 0.6582 0.8571 0.6967 0.5913 0.3622
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Table 7.5: As per Table 7.4. Performances in terms of HR@10 and NDCG@10 between
various approaches that apply our proposed dynamic geo-based negative sampling approach
(see Section 5.3), denoted as dgeo

Normal Users Experiments

Brightkite Foursquare Yelp
Model HR NDCG HR NDCG HR NDCG
MostPop 0.1462* 0.1010* 0.2009* 0.1167* 0.0739* 0.0334*
MostVisit 0.4032* 0.3473* 0.4733* 0.4290* 0.1083* 0.0528*
RecentVisit 0.4809* 0.4370* 0.4584* 0.4037* 0.1096* 0.0542*
GeoBPR 0.7339* 0.4672* 0.8216* 0.5395- 0.5570* 0.3032*
DRCF 0.7419* 0.6048* 0.8952* 0.7223* 0.5162* 0.2963*
CARA 0.7385* 0.6040* 0.8851* 0.7154* 0.5587* 0.3272*
CRCF 0.7528 0.6319 0.8981 0.7442 0.5861 0.3479
DRCFdgeo 0.7852* 0.6210* 0.9095* 0.7214* 0.5618* 0.3064*
CARAdgeo 0.7717* 0.6266* 0.9129* 0.7567* 0.6107* 0.3665*
CRCFdgeo 0.8029 0.6606 0.9260 0.7788 0.6548 0.3927

Cold-Start Users Experiments

Brightkite Foursquare Yelp
Model HR NDCG HR NDCG HR NDCG
MostPop 0.1155* 0.0778* 0.0584* 0.0286* 0.0714* 0.0316*
MostVisit 0.4285* 0.3789* 0.3506* 0.3175* 0.1044* 0.0489*
RecentVisit 0.4995* 0.4585* 0.3831* 0.3446* 0.1052* 0.0497*
GeoBPR 0.8093* 0.5262* 0.8312- 0.5486* 0.5802* 0.3202*
DRCF 0.7526* 0.5980* 0.8377* 0.6645* 0.5330* 0.3136*
CARA 0.7648* 0.6220* 0.8636* 0.6505* 0.5748* 0.3493*
CRCF 0.7782* 0.6582* 0.8571* 0.6967* 0.5913* 0.3622*
DRCFdgeo 0.8094* 0.6199* 0.8896 0.7074 0.5877* 0.3318*
CARAdgeo 0.8153* 0.6556* 0.8766 0.7225 0.6332* 0.3893*
CRCFdgeo 0.8557 0.6995 0.8701 0.7152 0.6612 0.4053
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Table 7.6: The robustness of various approaches in comparison with the BPR baseline in
terms of NDCG@10 on three datasets for Normal users. Trisk scores greater than +2 or less
than -2 indicate that a two-tailed paired t-test gives significance with p < 0.05. Trisk scores
greater than +2 are indicated with ⇤. The best score w.r.t. each risk-sensitive measure is
highlighted in bold.

Dataset Measure DRCF CARA CRCF

Brightkite

Risk 0.052 0.049 0.041

Reward 0.224 0.220 0.240

Wins/Losses 6297/1805 6159/1687 6538/1483

Wins%/Losses% 43.80/12.55 42.84/11.73 45.48/10.31

Urisk ↵ = 1 0.119 0.122 0.157
Trisk ↵ = 1 38.763* 40.390* 52.161*
Urisk ↵ = 5 -0.090 -0.073 -0.007
Trisk ↵ = 5 -24.066 -20.195 -2.051

Foursquare

Risk 0.019 0.029 0.022
Reward 0.258 0.261 0.283

Wins/Losses 5723/644 5450/910 5876/711
Wins%/Losses% 53.14/5.98 50.61/8.45 54.56/6.60

Urisk ↵ = 1 0.220 0.202 0.238
Trisk ↵ = 1 71.063* 60.024* 71.698*
Urisk ↵ = 5 0.142 0.084 0.147
Trisk ↵ = 5 44.010* 22.915* 42.049*

Yelp

Risk 0.071 0.075 0.070

Reward 0.097 0.133 0.148

Wins/Losses 9232/7311 11820/7518 12980/7064

Wins%/Losses% 23.70/18.77 30.35/19.30 33.32/18.13

Urisk ↵ = 1 -0.045 -0.017 0.009
Trisk ↵ = 1 -30.236 -10.322 5.025*
Urisk ↵ = 5 -0.330 -0.320 -0.272
Trisk ↵ = 5 -142.903 -126.541 -111.453
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Table 7.7: The robustness of various approaches in comparison with the BPR baseline in
terms of NDCG@10 on three datasets for the Cold-Start users. Trisk scores greater than +2
or less than -2 indicate that a two-tailed paired t-test gives significance with p < 0.05. Trisk

scores greater than +2 are indicated with ⇤. The best score w.r.t. each risk-sensitive measure
is highlighted in bold.

Dataset Measure DRCF CARA CRCF

Brightkite

Risk 0.082 0.060 0.047

Reward 0.190 0.192 0.215

Wins/Losses 2183/1043 2221/803 2394/661

Wins%/Losses% 39.13/18.69 39.81/14.39 42.91/11.85

Urisk ↵ = 1 0.025 0.071 0.121
Trisk ↵ = 1 4.871* 15.045* 25.832*
Urisk ↵ = 5 -0.304 -0.170 -0.067
Trisk ↵ = 5 -40.821 -27.581 -12.069

Foursquare

Risk 0.056 0.067 0.041

Reward 0.224 0.221 0.241

Wins/Losses 73/20 57/86 65/81
Wins%/Losses% 47.40/12.98 37.01/55.84 42.20/52.59

Urisk ↵ = 1 0.113 0.087 0.160
Trisk ↵ = 1 3.785* 2.813* 5.498*
Urisk ↵ = 5 -0.109 -0.181 -0.003
Trisk ↵ = 5 -2.955 -4.438 -0.092

Yelp

Risk 0.079 0.079 0.078

Reward 0.098 0.134 0.145

Wins/Losses 1593/1421 2119/1374 2266/1328

Wins%/Losses% 23.07/20.58 30.69/19.90 32.82/19.23

Urisk ↵ = 1 -0.059 -0.024 -0.010
Trisk ↵ = 1 -16.220 -5.982 -2.411
Urisk ↵ = 5 -0.374 -0.341 -0.321
Trisk ↵ = 5 -63.249 -55.016 -51.850
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Table 7.8: The robustness of various approaches that incorporate the dynamic geo-based neg-
ative sampling in comparison with the BPR baseline in terms of NDCG@10 on three datasets
for Normal users. Trisk scores greater than +2 or less than -2 indicate that a two-tailed paired
t-test gives significance with p < 0.05. Trisk scores greater than +2 are indicated with ⇤.
The best score w.r.t. each risk-sensitive measure is highlighted in bold.

Dataset Measure DRCF CARA CRCF DRCFdgeo CARAdgeo CRCFdgeo

Brightkite

Risk 0.052 0.049 0.041 0.049 0.044 0.031

Reward 0.224 0.220 0.240 0.237 0.238 0.258

Wins/Losses 6297/1805 6159/1687 6538/1483 6836/1677 6660/1568 7179/1139

Wins%/Losses% 43.80/12.55 42.84/11.73 45.48/10.31 47.55/11.66 46.33/10.90 49.94/7.92

Urisk ↵ = 1 0.119 0.122 0.157 0.138 0.149 0.196
Trisk ↵ = 1 38.763* 40.390* 52.161* 45.453* 49.212* 67.637*
Urisk ↵ = 5 -0.090 -0.073 -0.007 -0.059 -0.029 0.073
Trisk ↵ = 5 -24.066 -20.195 -2.051 -16.113 -8.170 23.171*

Foursquare

Risk 0.019 0.029 0.022 0.022 0.027 0.021
Reward 0.258 0.261 0.283 0.260 0.301 0.316

Wins/Losses 5723/644 5450/910 5876/711 5798/749 6153/821 6371/652
Wins%/Losses% 43.80/12.55 42.84/11.73 45.48/10.31 53.84/6.95 57.14/7.62 59.16/6.05

Urisk ↵ = 1 0.220 0.202 0.23 0.215 0.245 0.274
Trisk ↵ = 1 71.063* 60.024* 71.698* 68.998* 70.814* 80.755*
Urisk ↵ = 5 0.142 0.084 0.147 0.125 0.134 0.189
Trisk ↵ = 5 44.010* 22.915* 42.049* 37.960* 36.110* 53.524*

Yelp

Risk 0.071 0.075 0.070 0.072 0.067 0.059

Reward 0.097 0.133 0.148 0.109 0.165 0.183

Wins/Losses 9232/7311 11820/7518 12980/7064 10927/7184 14270/6721 15807/6117

Wins%/Losses% 23.70/18.77 30.35/19.30 33.32/18.13 28.05/18.44 36.64/17.25 40.58/15.70

Urisk ↵ = 1 -0.045 -0.017 0.009 -0.035 0.029 0.064
Trisk ↵ = 1 -30.236 -10.322 5.025* -22.989 16.783* 36.938*
Urisk ↵ = 5 -0.330 -0.320 -0.272 -0.323 -0.243 -0.174
Trisk ↵ = 5 -142.903 -126.541 -111.453 -137.942 -99.610 -76.218
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Table 7.9: The robustness of various approaches that incorporate the dynamic geo-based
negative sampling in comparison with the BPR baseline in terms of NDCG@10 on three
datasets for the Cold-Start users. Trisk scores greater than +2 or less than -2 indicate that
a two-tailed paired t-test gives significance with p < 0.05. Trisk scores greater than +2 are
indicated with ⇤. The best score w.r.t. each risk-sensitive measure is highlighted in bold.

Dataset Measure DRCF CARA CRCF DRCFdgeo CARAdgeo CRCFdgeo

Brightkite

Risk 0.082 0.060 0.047 0.078 0.051 0.033

Reward 0.190 0.192 0.215 0.207 0.216 0.241

Wins/Losses 2183/1043 2221/803 2394/661 2418/974 2489/706 2767/486

Wins%/Losses% 39.13/18.69 39.81/14.39 42.91/11.85 43.34/11.66 44.62/10.90 49.60/7.92

Urisk ↵ = 1 0.025 0.071 0.121 0.051 0.114 0.176
Trisk ↵ = 1 4.871* 15.045* 25.832* 9.871* 24.273* 39.980*
Urisk ↵ = 5 -0.304 -0.170 -0.067 -0.262 -0.090 0.046
Trisk ↵ = 5 -40.821 -27.581 -12.069 -35.896 -15.663 9.396*

Foursquare

Risk 0.056 0.067 0.041 0.043 0.049 0.049
Reward 0.224 0.221 0.241 0.254 0.275 0.268

Wins/Losses 73/20 57/86 65/81 71/75 73/73 70/78
Wins%/Losses% 47.40/12.98 37.01/55.84 42.20/52.59 46.10/48.70 47.40/47.40 45.45/50.64

Urisk ↵ = 1 0.113 0.087 0.160 0.168 0.178 0.170
Trisk ↵ = 1 3.785* 2.813* 5.498* 5.825* 5.796* 5.536*
Urisk ↵ = 5 -0.109 -0.181 -0.003 -0.004 -0.018 -0.024
Trisk ↵ = 5 -2.955 -4.438 -0.092 -0.115 -0.491 -0.674

Yelp

Risk 0.079 0.079 0.078 0.075 0.072 0.066

Reward 0.098 0.134 0.145 0.113 0.166 0.177

Wins/Losses 1593/1421 2119/1374 2266/1328 1962/1320 2548/1257 2724/1195

Wins%/Losses% 23.07/20.58 30.69/19.90 32.82/19.23 28.42/19.12 36.91/18.20 39.46/17.31

Urisk ↵ = 1 -0.059 -0.024 -0.010 -0.038 0.023 0.045
Trisk ↵ = 1 -16.220 -5.982 -2.411 -10.301 5.468* 10.617*
Urisk ↵ = 5 -0.374 -0.341 -0.321 -0.339 -0.264 -0.220
Trisk ↵ = 5 -63.249 -55.016 -51.850 -58.746 -44.224 -38.381
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Chapter 8

Conclusions

8.1 Contributions and Conclusions

In this thesis, we addressed the challenges of Context-Aware Venue Recommendation (CAVR),
namely, (1) modelling the users’ preferences and the characteristics of venues from the users’
explicit feedback (e.g. the users’ ratings and comments), (2) modelling the users’ long-
(static) and short-term (dynamic) preferences from the sequential order of the user’s implicit
feedback (e.g. checkins) and the contextual information associated with the successive feed-
back, (3) generating accurate top-K venue suggestions based on the user’s static and dynamic
preferences using a pairwise ranking function and (4) sampling potential negative instances
that take into account additional information such as the geographical information of venues,
the users’ social relationships and the sequential order of users’ checkins. In particular, in
Chapter 4, we proposed the Social and Textual Regularisation technique (STReg) and the
textual Matrix Factorisation-based approach (MFw2v) that leverage the textual content of
users’ comments to enhance the effectiveness of the traditional MF approach in modelling
the users’ preferences and the characteristics of venues. In addition, we proposed the Per-
sonalised Ranking Framework with Multiple sampling Criteria framework (PRFMC) that
could incorporate multiple sources of additional information to effectively sample negative
instances. In Chapter 5, we proposed the Deep Recurrent Collaborative Filtering frame-
work (DRCF) that could effectively model the users’ static and dynamic preferences from
the users’ sequence of checkins. We empirically showed that our proposed DRCF frame-
work could generate more effective top-K venue recommendations than existing Deep Neu-
ral Network-based approaches. To incorporate the contextual information associated with
the users’ sequence of checkins, in Chapter 6, we proposed the Contextual Attention Re-
current Architecture (CARA) for CAVR, which could effectively incorporate different types
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of contextual information to model the users’ contextual dynamic preferences. Our exper-
imental results in Chapter 6 showed that our proposed CARA architecture could generate
more effective context-aware venue recommendations than various previous state-of-the-art
recurrent architectures. Finally, in Chapter 7, we integrated our proposed CARA architecture
into our proposed DRCF framework to further enhance the quality of context-aware venue
recommendations.

In the remainder of this chapter, we first summarise the contributions of this thesis,
which are in Section 8.1.1 followed by the main achievements and conclusions drawn from
this thesis, which are presented in Section 8.1.2. We discuss some future research directions
for context-aware venue recommendations in Section 8.2. Finally, we present our closing
remarks in Section 8.3.

8.1.1 Contributions

The main contributions of this thesis are as follows:

• In Chapter 4, we proposed the novel Social and Textual Regularisation (STReg) tech-
nique and the textual MF-based approach (MFw2v) that exploit word embeddings to
model the semantic properties of the textual content of comments associated with the
users’ ratings to enhance the effectiveness of the traditional MF model for the user-
venue rating prediction. To evaluate the effectiveness of our proposed STReg tech-
nique and our MFw2v approach, we conducted experiments on a large-scale rating
dataset from the Yelp LBSN, which consists of over 2.2 million ratings from 500k
users. We compared the effectiveness of our proposed STReg technique and MFw2v
approach with the existing MF-based approaches (e.g. CMF and JMF). Moreover, in
this chapter, we proposed a novel Personalised Ranking Framework with Multiple
sampling Criteria framework (PRFMC), which can leverage multiple types of addi-
tional information to enhance the effectiveness of the traditional BPR model for top-K
venue recommendations. To evaluate the effectiveness of PRFMC for top-K venue
recommendations, we conducted several experiments using publicly available large-
scale LBSN datasets. We measured the quality of the top-K venue recommendations
in terms of ranking-based metrics, which were previously described in Section 2.1.2.2.

• In Chapter 5, we proposed the novel Deep Recurrent Collaborative Filtering frame-
work (DRCF), an extension of the NeuMF framework (described in Section 3.4),
which exploits Recurrent Neural Networks (RNN) to capture the users’ dynamic pref-
erences from their sequences of checkins. The DRCF framework consists of three
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components: namely (i) a Generalised Recurrent Matrix Factorisation (GRMF) model,
(ii) a Multi-Layer Recurrent Perceptron (MLRP) model and (iii) a Recurrent Matrix
Factorisation (RMF) model. Within the DRCF framework, we proposed novel dy-
namic and static geo-based negative sampling approaches that take the sequential
properties of checkins and geographical location of venues into account to enhance
the effectiveness of the DRCF framework, as well as alleviate the cold-start user prob-
lem. We conducted several experiments to evaluate the effectiveness of the DRCF
framework using publicly available large-scale checkin and rating datasets from the
Brightkite, Foursquare and Yelp LBSNs. We compared the effectiveness of our pro-
posed DRCF framework and its components with various existing baselines, which
could be categorised into traditional MF-based approaches, RNN-based approaches
and Deep Neural Network-based approaches (see Section 5.7.2).

• In Chapter 6, we proposed the novel Contextual Attention Recurrent Architecture
(CARA) for context-aware venue recommendations that could effectively incorporate
different types of contextual information associated with the users’ sequence of check-
ins. In particular, our proposed CARA architecture consisted of two types of gating
mechanisms: namely a Contextual Attention Gate (CAG) as well as Temporal and
Spatial Gates (TSG). The CAG gate aims to effectively capture the users’ contextual
dynamic (short-term) preferences by taking into account the ordinary context asso-
ciated with the users’ checkins, while the TSG gates aim to capture the correlation
between the users’ previous checkin and the current checkin from the transition con-
text associated with two successive checkins. In Section 6.6, we evaluated the effec-
tiveness of our proposed CARA architecture in comparison with state-of-the-art GRU
architectures and RNN-based factorisation approaches using three large-scale checkin
and rating datasets.

• In Chapter 7, we proposed a novel Contextual Recurrent Collaborative Filtering frame-
work (CRCF) that combines the DRCF framework proposed in Chapter 5 and the
CARA architecture proposed in Chapter 6. The CRCF framework leverages the se-
quence of the users’ checkins, the users’ preferred context and the contextual infor-
mation associated with the sequence of the users’ checkins to effectively and com-
prehensively capture the users’ contextual long-term (static) and short-term (dynamic)
preferences for context-aware venue recommendations. We empirically evaluated the
effectiveness of the CRCF framework in comparison with the existing factorisation ap-
proaches as well as both our proposed DRCF framework and our proposed CARA ar-
chitecture. Moreover, we investigated the robustness of the CRCF framework by lever-
aging risk analysis techniques proposed by Wang et al. (2012); Dinçer et al. (2014).
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8.1.2 Conclusions

In this section, we summarise the main conclusions and achievements of this thesis. Then,
we validate our thesis statement proposed in Section 1.2 based on our main conclusions and
achievements.

• Effectiveness of Word Embeddings for User-Venue Rating Prediction: In Chap-
ter 4, we proposed the Social and Textual Regularisation (STReg) technique and the
textual MF-based approach (MFw2v) that exploit word embeddings to model the se-
mantic properties of the textual content of comments associated with the users’ rating
to enhance the effectiveness of the traditional MF model for the user-venue rating pre-
diction. In Section 4.2.4, we empirically evaluated the effectiveness of STReg and
MFw2v on the Yelp user-venue rating dataset. We demonstrated the usefulness of our
proposed STReg technique and our MFw2v approach in improving the prediction ac-
curacy of the traditional MF model (see Table 4.3). By exploiting word embeddings
to extract the semantic properties of the users’ comments, both the STReg technique
and the MFw2v approach are more effective than Bag-of-Words MF-based baselines.
In particular, the results in Table 4.2 show that both STReg and MFw2v can outper-
form the Bag-of-Words MF-based baselines by 6-16% in terms of MAE and RMSE
on the Yelp dataset. Hence, we concluded that our proposed STReg technique and our
MFw2v approach were effective in predicting the users’ ratings on venues.

• Effectiveness of Multiple Sampling Criteria for Top-K Venue Recommendations:

In Chapter 4, we proposed the Personalised Ranking Framework with Multiple sam-
pling Criteria (PRFMC) that incorporates multiple types of additional information
to further improve the quality of top-K venue recommendations of the BPR model.
Experimental results in Section 4.3.6 showed that our proposed PRFMC framework,
which leverages both the users’ geographical movements and the users’ social influ-
ences, could effectively sample negative instances and improve the quality of top-K
venue recommendations compared to various state-of-the-art BPR-based approaches
(see Section 4.3.5). In particular, we found that our PRFMC framework provided sig-
nificant benefits across the Yelp, Brightkite and Gowalla datasets in terms of MAP,
NDCG and MRR, compared to various existing state-of-the-art single criterion neg-
ative sampling approaches, multiple criteria negative sampling approaches as well as
probabilistic models (see Table 4.6 and Table 4.7).

• Usefulness of a Recurrent Neural Network for Sequence-Aware Venue Recom-

mendation: In Chapter 5, we proposed a novel Deep Recurrent Collaborative Filtering
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(DRCF) framework, which exploits Recurrent Neural Networks (RNN) to effectively
capture the users’ dynamic preferences from their sequences of checkins. In Sec-
tion 5.8.1, we showed that the sequential order of users’ checkins plays an important
role in enhancing the quality of venue recommendation. The experimental results on
three large-scale checkin datasets demonstrated the effectiveness of our DRCF frame-
work that exploits RNN to capture the users’ dynamic (short-term) preferences for
venue recommendation compared to various RNN-based approaches (see Table 5.4).
In Section 5.8.2, we showed that the neural architectures such as the Multi-Layer Per-
ceptron were more effective in capturing the complex structure of user-venue interac-
tions than the traditional MF-based approaches (see Table 5.5). Moreover, within the
DRCF framework, we proposed the novel dynamic and geo-based negative sampling
approach that takes the users’ sequential properties of checkins and the geographical
information of venues into account during the negative sampling process. Through our
comprehensive analysis in Section 5.8.3 , we showed that our proposed dynamic nega-
tive sampling approach can significantly enhance the effectiveness of the DRCF frame-
work in terms of HR by 5.8% and 1.6% on the Brightkite and Foursquare datasets,
respectively (see Table 5.6). Furthermore, in Section 5.8.4, we showed that our pro-
posed dynamic negative sampling approach can alleviate the cold-start user problem
by significantly improving the effectiveness of the DRCF framework under the cold-
start setting by approximately 3.5% and 6.5% in terms of NDCG on the Brightkite and
Foursquare datasets, respectively (see Table 5.7).

• Effectiveness of the Recurrent Architecture for Context-Aware Venue Recom-

mendation: In Chapter 6, we proposed the Contextual Attention Recurrent Architec-
ture (CARA) that could effectively capture the users’ contextual dynamic (short-term)
preferences from the users’ sequence of checkins. In Section 6.7, we showed that the
contextual information associated with the sequences of users’ checkins such as the
time of the day as well as the time intervals and the distances between two successive
checkins play an important role in enhancing the quality of context-aware venue rec-
ommendation. In particular, we demonstrated that our CARA architecture, which in-
corporates the contextual information significantly outperformed various factorisation-
based approach and state-of-the-art recurrent architectures by 5-18% and 6-27% in
terms of HR and NDCG across the Brightkite, Foursquare and Yelp datasets (see Ta-
bles 6.4-6.7). Furthermore, in Section 6.8, we showed that, the users’ dynamic pref-
erences in LBSNs were determined by the transition context extracted from the time
intervals and the geographical distances between two successive checkins (see Fig-
ure 6.3).
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• Effectiveness of the Contextual Recurrent Collaborative Filtering Framework for

Context-Aware Venue Recommendation: In Chapter 7, we showed that our pro-
posed Contextual Recurrent Collaborative Filtering (CRCF) framework, which com-
bines our proposed DRCF framework (see Chapter 5) and our proposed CARA archi-
tecture (see Chapter 6), can effectively capture the users’ static (long-term) and dy-
namic (short-term) preferences by considering their preferred context (i.e. time of the
day) as well as the contextual information associated with the sequence of the user’s
checkins. The experimental results on the three used large-scale LBSNS datasets re-
ported in Section 7.4.1 showed that CRCF significantly improved the ranking metrics
over the DRCF framework and the CARA architecture across the three used datasets
(see Tables 7.4-7.5 and Figures 7.2-7.3). Furthermore, in Section 7.4.2, we showed
that our proposed CRCF framework is robust, as it is less likely to generate low qual-
ity context-aware venue recommendations than traditional BPR and other baselines
(see Tables 7.6-7.7 and Figures 7.4-7.5)

Next, we validate our thesis statement, proposed in Section 1.2, based on our empiri-
cal studies in Chapters 4-7. In summary, the key statement of this thesis is that the quality
of context-aware venue recommendation, could be effectively enhanced by leveraging the
additional information such as the users’ social relationships, the textual content of com-
ments, the geographical information of venues and the sequential properties of the users’
checkin feedback as well as the contextual information associated with the sequences of
users’ checkin feedback.

• We claimed that leveraging the users’ social information and the textual content of
comments could effectively enhance the user-venue rating prediction accuracy of the
traditional MF approach. We argue that we have validated this claim in Chapter 4
where we showed that regularising the traditional MF approach based on the seman-
tic similarity between the users and their friends extracted from their comments can
improve the prediction accuracy of the traditional MF approach (see Table 4.3). Fur-
thermore, we also showed that factorising the semantic properties of the users’ and
venues’ comments can improve the accuracy of user-venue rating prediction by 5-
16% (see Table 4.3). Overall, these empirical studies showed that both the users’
social information and the textual content of users’ comments play an important role
in enhancing the prediction accuracy of traditional MF approach.

• We postulated that the quality of personalised top-K venue recommendation could be
improved by negative sampling processes that take into account the users’ social in-
formation and the geographical information of venues. Our experiments in Chapter 4
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validated this claim by showing that our proposed Personalised Ranking Framework
with Multiple sampling Criteria (PRFMC) that incorporates the users’ social relation-
ship and the geographical location of venues could significantly improve the quality of
top-K venue recommendation (according to paired t-test with p < 0.01) in comparison
with various state-of-the-art BPR-based approaches (see Table 4.6 and Table 4.7).

• We claimed that leveraging the sequential order of the users’ checkin feedback to
model the users’ long- (static) and short-term (dynamic) preferences could improve
the quality of personalised top-K venue recommendation. To validate this claim, in
Chapter 5, we showed that exploiting deep neural network and recurrent model to
incorporate the sequential order of users’ checkins into the traditional Collaborative
Filtering-based approach led to signifiant improvement in top-K venue recommenda-
tions, according to paired t-test with p < 0.01 (see Table 5.4 and Figure 5.2). In addi-
tion, we further validated this claim by showing that negative sampling approaches that
take the sequential properties of users’ checkins into account could further enhance the
quality of top-K venue recommendation (see Tables 5.6 & 5.7)

• We claimed that leveraging the contextual information associated with the sequences
of users’ checkins to model the users’ short-term (dynamic) preferences could enhance
the quality of context-aware venue recommendation. We argue that we have validated
this claim in Chapter 7 where we showed that the recurrent architectures that incorpo-
rate the contextual information associated with the sequences of users’ checkins (e.g.
the time interval and distance between two successive checkins) to model the users’
dynamic preferences can significantly improve the quality of context-aware venue rec-
ommendation (see Tables 6.4-6.6 and Figure 6.3).

• We postulated that leveraging the geographical information of venues, the sequential
order of the users’ checkin feedback and the contextual information associated with the
sequences of users’ checkins to comprehensively model the users’ long- (static) and
short-term (dynamic) preferences could improve the quality of context-aware venue
recommendation. Our experiments in Chapter 7 showed that our proposed Contex-
tual Recurrent Collaborative Filtering framework (CRCF) that combines our proposed
DRCF framework (Chapter 5) and our CARA architecture (Chapter 6) to compre-
hensively leverage the aforementioned additional information leads to a significant
improvement in context-aware venue recommendation (see Tables 7.4-7.7 and Fig-
ures 7.2-7.5). Hence, we concluded that the geographical information of venues, the
sequential order of the users’ checkin feedback and the contextual information asso-
ciated with the sequences of users’ checkins are useful in enhancing the quality of
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context-aware venue recommendation.

Overall, we argue that we have validated all claims of our thesis statement using differ-
ent three large-scale datasets. In particular, we showed that our proposed CRCF framework,
which exploits deep neural networks, recurrent architectures as well as negative sampling
processes that incorporate the geographical information of venues, the sequential properties
of users’ checkin feedback and the contextual information associated with the sequences of
users’ checkin feedback significantly improves the quality of context-aware venue recom-
mendation.

8.2 Directions for Future Work

In this section, we discuss possible directions for future research related to context-aware
venue recommendation. In particular, we discuss future research directions that have become
apparent as a direct result of the work that we have presented in this thesis.

Modelling the Users’ Preferences and Characteristics of Venues from Textual In-

formation: In Chapter 4, we showed that the word embeddings are effective to represent the
semantic properties of the users’ textual comments, which could be exploited to effectively
model the users’ preferences and the characteristics of venues. In particular, to represent a
user’s preference from his/her comments, our proposed Social and Textual Regularisation
technique (STReg) and our textual MF-based approach (MFw2v) sum the word embedding
representations of each term occurred in the user’s comment. However, such approach ig-
nores the position of terms, which is not effective to capture the semantic properties of the
comments. Various deep learning techniques such as Convolutional Neural Networks (Kim,
2014; Zhang et al., 2015b), Recurrent Neural Networks (Liu et al., 2016a; Peters et al.,
2018) and Transformers (Vaswani et al., 2017; Devlin et al., 2019) have been proposed to
effectively capture the semantic properties of textual information by taking the terms’ posi-
tions into account. This could be interesting in the future work where we would explore the
effectiveness of these advanced deep learning techniques on user-venue rating prediction.

Sampling Negative Instances from Implicit Feedback: In Chapter 4, we proposed
the Personalised Ranking Framework with Multiple sampling Criteria (PRFMC), which ex-
ploits probabilistic models (i.e. the Multi-centre Gaussian model (MGM) (Cheng et al., 2012)
and the Social Power-Law Distribution mode (Zhang and Chow, 2015)) to effectively sample
negative instances. It will be interesting to investigate whether we can leverage textual infor-
mation to effectively sample negative instances. For example, Zhang et al. (2015a) proposed
a textual-based probabilistic model that captures the users’ preferences based on the textual
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content of their comments. Indeed, this textual-based probabilistic model can be seamlessly
integrated into our proposed PRFMC framework. In addition, in Chapter 5, we proposed the
dynamic geo-based negative sampling approach that effectively samples negative instances
based on the sequential order of users’ checkins and the geographical information of venues.
In particular, our proposed negative sampling approach uniformly samples venues the user
has never visited before, but located nearby to the venues he/she visited. Inspired by the
negative sampling approaches used in word embeddings (Mikolov et al., 2013b,a; Mnih and
Kavukcuoglu, 2013), a noise contrastive estimation techniques (Gutmann and Hyvärinen,
2010) have been widely used to sample words to learn the semantic properties of textual
contents. Instead of uniformly sampling nearby venues as negative instances, it will be in-
teresting to investigate whether we can further enhance the quality of context-aware venue
recommendation by applying a noise contrastive estimation technique to effectively sample
misclassified venues (i.e. the venues the model believes the users have visited but actually
they did not) as negative instances.

Modelling Users’ Short-Term Preferences from Sequential Feedback: In Chap-
ters 5 and 6, we explored the effectiveness of Recurrent Neural Networks (RNN) in mod-
elling the users’ short-term (dynamic) preferences from their sequences of checkins. Beside
RNN, various approaches (Liu et al., 2018; Kang and McAuley, 2018; Sun et al., 2019) have
been recently proposed to exploit self-attention based sequential models (Vaswani et al.,
2017; Devlin et al., 2019) to capture the users’ dynamic preferences. It will be interesting
to extend a self-attention based sequential model to incorporate the contextual information
associated with the sequence of users’ checkins to effectively capture the users’ dynamic
preferences. Furthermore, since we demonstrated earlier in Chapter 4 that the textual con-
tents of users’ comments are useful in modelling the users’ preferences, it would also be
interesting to explore the users’ dynamic preferences from the sequence of the users’ textual
comments.

Cross-Domain Venue Recommendation: In this thesis, we leveraged additional in-
formation within the individual LBSN to enhance the effectiveness of context-aware venue
recommendation. With the emergence of cross-domain recommendation systems, various
Cross-Domain Collaborative Filtering (CDCF) techniques have been proposed to leverage
additional information from different domains (Li et al., 2009; Zang and Hu, 2017; Shu
et al., 2018; Farseev et al., 2017; Hu et al., 2013). Recently, Manotumruksa et al. (2019)
have showed that CDCF models are promising for context-aware venue recommendations.
It will be interesting to investigate whether we can exploit those cross-domain techniques to
further enhance the effectiveness of our proposed Context Recurrent Collaborative Filtering
framework (CRCF). Furthermore, it will be interesting to study whether we can leverage
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contextual information from different domains to enhance the quality of venue recommen-
dation.

8.3 Closing Remarks

In this thesis, we have addressed a challenging task, namely Context-Aware Venue Recom-
mendation (CAVR). Suggesting interesting venues to the users is a challenging task for a
number of reasons. For example, unlike traditional recommendation systems (e.g. movie
and book recommendations), the users’ preferences on venues change over time (i.e. short-
and long-term preferences) and can depend on the current user’s context (e.g. the users’
current location and time of the day) (Zhang and Chow, 2015; Zhang et al., 2015a). Further-
more, unlike explicit feedback such as the user-venue ratings and comments, the negative
feedback cannot be capture from the users’ implicit feedback such as their checkins. The
lack of negative feedback can hinder the effectiveness of collaborative filtering-based ap-
proaches (Rendle et al., 2009). Another challenge of venue recommendation is the problem
of cold-start users (i.e. users who have typically only visited and checked in a very small
number of all venues in the LBSNs).

We have argued that effective context-aware venue recommendations can be generated
by leveraging additional information such as the geographical information of venues, the se-
quential order of users’ checkins and the contextual information associated with the succes-
sive checkins (e.g. the time interval and distance between two checkins). To achieve this, we
proposed a novel Contextual Recurrent Collaborative Filtering framework (CRCF), which
exploits deep neural network architectures to effectively model the users’ short-term and
long-term contextual preferences from their sequence of checkins. Throughout our compre-
hensive empirical studies on three large-scale LBSNs, we showed that our proposed CRCF
framework can generate more effective venue recommendations than existing venue recom-
mendation systems. Furthermore, to address the challenge of the users’ implicit feedback
and alleviate the cold-start problem, we proposed a novel negative sampling approach that
can effectively sample negative instances by incorporating the geographical information of
venues and the users’ sequential order of checkins. Our experimental results demonstrated
that our proposed negative sampling approach can effectively alleviate the cold-start prob-
lems.

We have made progress in addressing some of the main challenges of context-aware
venue recommendation. However, there are many interesting and challenging tasks that
need to be addressed in order to generate high quality venue recommendations, which we
highlighted in Section 8.2. In our various discussions throughout the course of this thesis, it
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has become apparent that deep neural network techniques are effective in capturing the users’
preferences and the characteristics of venues from the users’ explicit and implicit feedbacks
and alleviating the cold-start problem. We argue that this will continue to be an increasingly
important trend in future research on venue recommendation systems.
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Appendix A

Summary of Limitations of Previous
Works

Table A.1 provide a summary of existing works, their limitations, identified in Chapter 3
as well as technical chapters in this thesis that aim to address these limitations. The table
groups existing works into three different groups: namely rating prediction-, top-K venue
recommendation- and context-aware venue recommendation-based approaches. The de-
scription of the limitations of previous works are summarised below:

Limitation M1: There is a disadvantage in SoReg in that it still relies on the Pearson
Correlation Coefficient to estimate the similarity between users.

Limitation M2: There is a disadvantage in CMF where the dimensions of latent factors
of venues and comment’s terms are similar.

Limitation M3: There is a disadvantage in JMF for jointly learning a user’s preference
and the characteristics of a venue from a single comment.

Limitation M4: There is a disadvantage in the CMF and JMF models, which treat
different latent factors dependently, although these latent factors capture different aspects.

Limitation N1: There is an disadvantage in the NeuMF framework for identifying the
top-ranked venues to present to users as it focuses on rating prediction.

Limitation N1: There is an disadvantage in the NeuMF framework for identifying the
top-ranked venues to present to users as it focuses on rating prediction.

Limitation N2: MF-based approaches for which this limitation applies (GMF, MLP,
NeuMF (He et al., 2017)) assume that the users’ preferences are static and do not account
for the sequential properties of observed feedback.
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Table A.1: Summary of existing works and their limitations

Rating prediction-based approaches

Model Additional Info Context Sequential Limitations Chapter
SoReg users’ social links ⇥ ⇥ M1 4
CMF comments ⇥ ⇥ M2-M4 4
JMF comments ⇥ ⇥ M2-M4 4
NeuMF ⇥ ⇥ ⇥ N1, N4, S3 5
GMF ⇥ ⇥ ⇥ N2-N3 5
MLP ⇥ ⇥ ⇥ N2-N3 5

Top-K venue recommendation-based approaches

Model Additional info Context Sequential Limitations Chapter
GBPR venues’ location ⇥ ⇥ S1-S2 4
SBPR users’ social links ⇥ ⇥ S1-S2 4
SWBPR users’ social links ⇥ ⇥ S1-S2 4
RNN-MF ⇥ ⇥ X R1-R3 5
DREAM ⇥ ⇥ X R2-R3 5

Context-aware venue recommendation-based approaches

Model Additional info Context Sequential Limitations Chapter
TimeGRU ⇥ only time X G1-G4 6
CGRU ⇥ X X G3-G4 6
LatentCross ⇥ X X G3-G4 6

Limitation N3: The MF-based approaches for which this limitation applies (GMF,
MLP, NeuMF (He et al., 2017)) ignore the dot product of latent factors that capture user-
venue interactions.

Limitation N4: There is an disadvantage in the NeuMF framework that applies the tra-
ditional BPR negative sampling approach, in which the contextual information of observed
feedback are ignored by the negative sampling approach.

Limitation S1: The sampling approaches for which this limitation applies (GBPR (Yuan
et al., 2016), SBPR (Zhao et al., 2014) and SWBPR (Wang et al., 2016)) are built upon pre-
defined sampling assumptions and are not sufficiently flexible to incorporate different types
of additional information.

Limitation S2: The sampling approaches for which this limitation applies (GBPR (Yuan
et al., 2016), SBPR (Zhao et al., 2014) and SWBPR (Wang et al., 2016)) is based on pre-
defined assumptions, which are contradicted to the previous studies (Cheng et al., 2012;
Zhang and Chow, 2015; Zhang et al., 2015a) that examine users’ geographical movements
and social influences in LBSNs.
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Limitation S3: The sampling approaches for which this limitation applies (GBPR (Yuan
et al., 2016), SBPR (Zhao et al., 2014) and SWBPR (Wang et al., 2016)) do not take the se-
quential order of checkins into account.

Limitation R1: The RNN-based factorisation approaches for which this limitation
applies (RNN-MF (Zhang et al., 2014b)) do not take the users’ long-term (static) preferences
into account.

Limitation R2: The RNN-based factorisation approaches for which this limitation
applies (RNN-MF (Zhang et al., 2014b), BiLSTM-MF (Tang et al., 2017) and DREAM (Yu
et al., 2016)) still rely on the dot product operation to combine the latent factors of user �u
and venues �v as well as the hidden unit h⌧ when predicting a user’s checkin.

Limitation R3: There is an disadvantage in the RNN-based factorisation models that
model the user’s dynamic preferences from sequential order of checkins by leveraging only
the sequence of previously visited venues and ignoring the context associated with the check-
ins.

Limitation G1: The GRU architecture for which this limitation applies (TimeGRU (Zhu
et al., 2017)) can only incorporate the transition context (e.g. the time interval between suc-
cessive checkins) and is not flexible to incorporate the ordinary context (e.g. user’s current
location).

Limitation G2: The time gating mechanism proposed by Zhu et al. (2017) is not
sufficiently flexible to incorporate multiple types of transition contexts associated with the
sequence of checkins.

Limitation G3: The GRU architectures for which this limitation applies (CGRU (Smirnova
and Vasile, 2017) and LatentCross (Beutel et al., 2018)) treat the ordinary and transition con-
text similarly. As argued in Section 3.6.2.2, these two types of contexts influence the users’
preferences differently and should be treated independently.

Limitation G4: There is an disadvantage in the GRU architectures (CGRU (Smirnova
and Vasile, 2017) and LatentCross (Beutel et al., 2018)) that rely on the quantised mapping
procedures to represent the transition context.
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