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i

Abstract

Magnetic skyrmions are two-dimensional, localized, particle-like, topologically non-
trivial magnetic spin textures. In recent years, they have attracted a lot of interest as
potential candidates for novel spintronics applications. Isolated skyrmions are meta-
stable excitations of the ferromagnetic ground state. They are separated from it by
an activation energy, which may be overcome at finite temperature under the effect of
thermal fluctuations. In this thesis, we study the thermal stability of metastable mag-
netic skyrmions on the two-dimensional square lattice, for which we use an atomistic
spin model.

This task is firstly carried out via a numerical implementation of Langer’s statistical
theory for the decay of metastable states. The paths of minimum energy that lead to the
skyrmion annihilation are computed via the geodesic nudged elastic band method. The
transition state at the barrier top, which is a saddle point (SP), is precisely identified
by a climbing image algorithm. We focus on chiral magnetic skyrmions and we look
at two types of annihilation mechanisms: collapse, in which the skryrmion progres-
sively shrinks in size until it annihilates, and escape through a boundary. We find that
the thermally significant modes are the modes localized to the skyrmion, in contrast
to the rest of the collective spin-wave modes, which extend to the entire lattice and
contribute weakly. Important variations of the attempt frequency over several orders
of magnitude are found, depending on the mechanism and on the value of the exter-
nal magnetic field. They originate from strong entropic effects which come from the
difference in configurational entropy between the metastable skyrmion state and the
saddle point. In the cases we studied, the configurational entropy decreases at the SP
(∆S < 0), which results in lowered attempt frequencies, and enhanced skyrmion stabil-
ity. We refer to this effect as entropic narrowing in the SP region. The strong entropic
contribution mainly originates from the skyrmion’s internal modes, and is generally
more pronounced for collapse mechanisms.

Next, we use forward flux sampling (FFS) to compute skyrmion collapse rates as a
function of the applied field, and compare them with the previous results from Langer’s
theory. This is an important step, because the use of Langer’s theory is based on many
assumptions. We obtain a good agreement between both methods, thus confirming the
strong dependence of the attempt frequency on the external field. While in magnetism,
it is common practice to only focus on activation barriers and assume a characteristic
value of the prefactor in the gigahertz regime, we conclude that due to a strong entropic
contribution, internal energy barriers are not enough in order to correctly predict the lifetime
of magnetic skyrmions, and it is essential to also evaluate a rate prefactor.

Lastly, we look at paths to annihilation of first- and second-order skyrmions and
antiskyrmions on the frustrated square lattice. Frustrated exchange has been found to
arise from interface effects in certain systems where nanoscale interface skyrmions have
been observed. We find that, in certain regions of parameter space, the annihilation
of skyrmionic solutions no longer occurs through an isotropic type of collapse, and
instead involves the injection of the opposite topological charge into the system, by
means of the nucleation of merons and antimerons. Alternatively, the second-order
(anti)skyrmion may split into a bound (anti)skyrmion pair, which involves no change
in the total topological charge.
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“So comes snow after fire,

and even dragons have their endings!”

J.R.R. TOLKIEN,

The Hobbit or There And Back Again.



Chapter 1

Introduction

Historically, a soliton phenomenon was first described in 1834 by civil engineer John

Scott Russell, in the Edinburgh and Glasgow Union Canal in Scotland [4]. He observed

a propagating water wave with great stability that travelled through a large distance

without loss of shape or velocity, and named it a “wave of translation”. He later repro-

duced the phenomenon in a water tank and, apart from their stability, described the

following properties of solitons: (i) their speed depends on their size and their width

on the water depth; (ii) waves do not merge, and instead a bigger and faster wave trav-

els through a smaller and slower one; (iii) a wave too big for the water depth separates

into two smaller waves. More generally, solitons correspond to localized solutions to a

nonlinear wave equation, and are the result of a balance between dispersive effects and

nonlinearities [5]. One example is the sine-Gordon equation, which we give in (1+1)

dimensions for the scalar field φ(x, t) [6],

∂2
tφ−∂2

xφ+ sinφ = 0. (1.1)

Eq. (1.1) admits solitons as some of its solutions. Solitons such as waves in water are

intrinsically dynamical objects, and simply relax back to the uniform state in the static

case. By contrast, in systems with strong couplings between the microscopic entities,

as is the case in magnetic materials, a class of solitons known as topological solitons

can be statically stable due to topological constraints. Examples of topological soli-

tons in magnetism, also known as topological defects, include domain walls, vortices,

skyrmions, and bubbles [7]. We show some typical spin maps of the aforementioned

structures in Fig. 1.1.

The term “skyrmion” originated from baryonic field theories, and initially desig-

nated a type of solitonic solutions derived by Skyrme [8] within his model for low

energy dynamics between mesons and baryons. The term “magnetic skyrmion” was

later introduced into the field of condensed matter physics to designate so-called “chi-
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(a) (b)

(c) (d)

Figure 1.1: Spin maps of some topological solitons in magnetism. (a) A (Bloch) domain
wall in a chain of spins. The magnetization undergoes a π-rotation, from one out-of-
plane orientation to the other. (b) A magnetic vortex. The magnetization goes from
out of plane in the centre, to in plane far from the centre, and thus undergoes a total
π-rotation along a radial cross-section. (b) A (Bloch) magnetic skyrmion. The magne-
tization rotates from one out-of-plane orientation far from the centre, to the opposite
out-of-plane orientation in the centre, resulting in a total 2π-rotation along a radial
cross-section. (c) A bubble domain. Similar to a skyrmion, the magnetization rotates
by 2π along a radial cross section, but the profile is different, with a more spatially ex-
tended core. It follows that domain walls and vortices carry a half-integer topological
charge, while skyrmions and bubbles carry an integer charge.

ral magnetic vortices” theoretically studied by Bogdanov et al. in the 1990s [9–11].

Magnetic skyrmions are two-dimensional, non-collinear magnetic spin textures which

are localized in space (Fig. 1.2a). Most commonly, the existence of skyrmion solutions

in magnets is made possible by the antisymmetric Dzyaloshinskii-Moriya interaction

(DMI) [12, 13] which favours non-collinear spin textures in systems lacking inversion

symmetry. DMI exists in non-centrosymmetric magnets, and can also be induced in

centrosymmetric crystals if the symmetry is broken by an external mechanism. In par-

ticular, interfacial DMI emerges in thin magnetic films due to the breaking of the inver-

sion symmetry at the interface [14, 15]. Magnetic skyrmions stabilized by the DMI are

known as chiral magnetic skyrmions, because the DMI selects a preferred chirality – or
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handedness – of the spin texture. However, they may be stabilized in centrosymmetric

magnets where long-range dipole-dipole couplings compete with the dominant short-

range isotropic exchange term (skyrmion bubbles) [16–21], or by introducing frustra-

tion in the exchange [22–27].

A skyrmion lattice was first detected in the bulk of the B20 chiral magnet MnSi in

reciprocal space, via neutron scattering [28]. Shortly after, Yu et al. reported the first

real space observation of a skyrmion lattice in a thin film of Fe0.5Co0.5 by means of

Lorentz transmission electron microscopy [29]. These observations initiated a strong

regain of interest in the community, and the existence of skyrmions was then confirmed

in many other types of materials [30–32], including thin films [33, 34]. Similarly to

domain walls [17], which have been used as information carriers in racetrack mem-

ories [35], magnetic skyrmions can be moved with spin torques associated with spin

polarized currents [36, 37], and have therefore been envisioned for potential spintron-

ics applications in data storage and logic devices [38–42]. Contrary to individual π-

domain walls, skyrmions are localized in two dimensions, and therefore leave the mag-

netization field intact far away from the centre. Their equilibrium sizes are determined

by the strength of the different competing energy terms, and it has been proposed that

skyrmion with sizes down to the nanometer scale may be stabilized by adequately tun-

ing material parameters [43, 44]. Additionally, they exhibit a particle-like behaviour

which finds its root in the topology, and is independent of the underlying stabilizing

mechanism [24, 45]. For technological applications, it it necessary to design structures

with great stability and robustness against external effects and deformations. Because

they are classified as “topologically stable”, and for all the reasons mentioned above,

skyrmions are compelling candidates to be used as movable information bits in future

spintronics devices.

Potential stability arguments for skyrmions are naturally found in the concepts of

topology (or homotopy), and winding number. Topologically nontrivial textures may

be seen as a knot in a rope, which cannot be untied without using the extremities, or by

cutting the rope. The stability of such textures thus stems from their resistance against

deformation. Configurations are said to be topologically (or homotopically) equiva-

lent if it is possible to continuously transform one into the other without introducing

point defects [7]. Topological stability arises if a structure is topologically nontrivial,

and therefore cannot be continuously deformed into the topologically trivial uniform

state. Mutually deformable configurations form a class of mappings, f : Sn → X of

the n−sphere Sn (the “base manifold”) into the order-parameter space X (the “target

manifold”), and yield equivalence – or homotopy – classes πn(X). The winding num-

ber, or degree of mapping, degf , counts the number of times the target manifold X
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(a) (b)

Figure 1.2: (a) Néel “hedgehog” skyrmion and (b) stereographic projection onto the
2-sphere S2.

wraps around the base manifold Sn. Formally, it provides a bijection of the homotopy

classes into the integers Z, and may be used to classify homotopy classes. That is to say,

configurations with different winding numbers do not pertain to the same homotopy

class and are therefore not topologically equivalent, and so they cannot be continuously

transformed into each other.

In magnetism, we are concerned with the mappings provided by the magnetization

field m(r). In an infinite system, two magnetic configurations are said to be topologi-

cally (or homotopically) equivalent if it is possible to continuously transform one into

the other without having to overcome an infinite energy barrier [45]. The uniformly

magnetized state, also referred to as the ferromagnetic (FM) state, has a vanishing

winding number, which makes it topologically trivial. On the other hand, topologi-

cal defects such as magnetic skyrmions are topologically non-trivial. In isotropic spin

systems with two spatial dimensions, the order parameter space is the 2-sphere S2. As

we assume that the magnetization takes a constant value at infinity, the base manifold

is the physical space R
2 with infinity compactified to a point, which may be stereo-

graphically projected onto S2 (Fig. 1.2b). We then have the map f : S2 → S2, which

corresponds to the homotopy class π2(S2) = Z. Skyrmions possess an integer wind-

ing number, and consequently cannot be continuously transformed into the uniform

state. For this reason, they are classified as “topologically stable”. Nevertheless, this

classification corresponds to an idealized viewpoint. The notion of topological stability

implies that the magnetization varies slowly with respect to the lattice, and thus may be

seen as a continuous vector field m(r, t). In physical systems, the energy barriers are not

infinite [45] because (i) the magnetization is defined on a discrete lattice and thus may,

in some cases, vary on the scale of the lattice parameter, and (ii) samples are finite in

size and so topological defects may be injected or ejected at the edges. The finite energy
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barriers imply that isolated skyrmions which exist as excitations of the ferromagnetic

ground state are, in fact, metastable states with a finite lifetime, τ . At non-zero tem-

perature, there is a finite probability that they eventually annihilate under the effect

of thermal fluctuations, and the uniformly magnetized configuration is recovered. In

order for skyrmions to be used in applications, one must be able to, firstly, predict their

average lifetime, and, secondly, understand it in order to potentially tune it to achieve

high stability in room-temperature conditions. For data storage applications, the tech-

nical requirement is an average lifetime of ten years at room temperature [46]. We are

thus faced with the problem of estimating the rate at which a metastable state decays.

The rate of decay of metastable states is an ubiquitous problem in physics. Ther-

mal activation processes across an energy barrier are found within fields as diverse as

solid state physics (Josephson tunnelling junctions), chemical reactions, electrical cir-

cuit theory (phase-locked loops), laser physics, and magnetization switching in ferro-

magnets [47, 48]. It can be described as originating from the nucleation and growth of

some characteristic disturbance within the system [49]. Amongst the most well known

examples of this phenomenon, one can cite the case of a supersaturated vapour, which

can exist as a metastable state for a long time, until the nucleation of a large enough

water droplet leads to the condensation of the entire system. Similarly, in a ferromag-

net, a magnetization reversal is initiated by a cluster of reversed spins. The rate of such

thermally activated processes may be generally described by the Arrhenius law [50],

k = f0e
−∆E/kBT , (1.2)

in which ∆E is the internal energy barrier, and the pre-exponential factor f0, commonly

referred to as the attempt frequency, corresponds to a fundamental fluctuation rate.

Eq. (1.2) laid the foundations for modern reaction rate theory. The mean lifetime of

a metastable state may be taken as the inverse of its decay rate, τ = k−1. To calculate

the rate, the following approaches are possible. On the one hand, a treatment of the

different terms on the right-hand side of Eq. (1.2) may be achieved by applying a form

of reaction rate theory [47, 50]. This requires the evaluation of the activation energy

∆E, and of the rate prefactor f0. Alternatively, a total rate k may be computed through

numerical integration of the system dynamics. In the rest of this discussion, we focus

on magnetic systems.

Historically, the rate of magnetization reversal in single-domain magnetic parti-

cles has been extensively studied [51]. Since their magnetization can be described by

a macrospin with only two degrees of freedom, they are well suited for an analyti-

cal treatment. In the case of inhomogeneous transitions, thermally activated mag-

netization reversals were treated analytically by Braun in nanowires [52], by Loxley
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and Stamps in soft/hard nanowires [53], and by Visscher et al. in nanowires with

graded anisotropy [54]. For more complex systems, one typically has to rely on nu-

merical methods. A systematic application of reaction rate theory may be realized in

two main steps. First, a path finding scheme, such as the nudged elastic band method

(NEB) [55–59] or the string method [60, 61], may be used to relax minimum energy

paths separating two energy minima, and identify the saddle point (SP) along the path.

A minimum energy path constitutes a path of highest statistical weight, and therefore

corresponds to a particular mechanism of a given transition. After that, the rate pref-

actor needs to be evaluated. This calculation tends to be tedious, and has rarely been

carried out [1, 62, 63]. Instead, estimating the stability of magnetic structures is often

synonymous with evaluating internal energy barriers, while assuming a typical value

of the prefactor in the gigahertz range [64–67].

An alternative approach lies in the numerical integration of the dynamical equa-

tions of motion at finite temperature, i.e., Langevin simulations. In magnetic spin sys-

tems, the magnetization dynamics is governed by the Landau-Lifshitz-Gilbert (LLG)

equation. For structures with lifetimes well above the nanosecond range, transitions

become rare events on the timescale of the simulation, due to the small timesteps (dt ∼
10−15 s) required to resolve the precessional dynamics [68]. Therefore, the “brute-

force” method that relies on direct Langevin simulations becomes unrealistic. One may

resort to temperature-accelerated dynamics [69, 70], but such simulations reproduce

the low-temperature behaviour only under the assumption that reaction rate theory

holds. For structures whose lifetime extends to the scale of years, temperatures well

above the Curie temperature are required in order to obtain the necessary acceleration,

and therefore a problem of consistency arises if one aims to study ordered spin states.

In this case, a better suited class of methods are path sampling methods [71–77]. In

particular, forward flux sampling (FFS) [74–77] may be used to compute rate constants

of rare events even in systems that are out of equilibrium. Forward flux sampling was

shown to be much more computationally efficient than brute force simulations [75,77].

It has, for instance, been successfully applied by Vogler et al. [78, 79] to obtain switch-

ing rates in magnetic microstructures.

The aim of this thesis is to study the thermal stability of metastable magnetic skyr-

mions in two-dimensional systems. This problem is difficult to solve analytically and

requires numerical tools. In micromagnetics simulations, where the magnetization is

treated as a continuous vector field, and within a three-dimensional physical space,

skyrmions typically decay via the formation of a Bloch point, a topological singularity

where the continuity of magnetism is broken [80]. While Bloch points do not strictly

exist in two dimensions, equivalent processes to the three dimensional ones have been
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reported (see discussion in [80] and subsequent refs.). The use of atomistic simula-

tions is therefore necessary in order to avoid a mesh-size dependency of the activation

rates [81]. The annihilation rates are thus calculated on an atomistic spin lattice via

two main methods. The first one is a form of reaction rate theory which corresponds to

Kramers’ method [82] for a multidimensional phase-space in the intermediate-to-high

damping (IHD) regime, namely Langer’s statistical theory of the decay of metastable

states [49]. The second one is forward flux sampling.

The present thesis is organized as follows. In Chapter 2, we give the different terms

in the magnetic Hamiltonian, and we discuss in detail two types of topological solitons:

ferromagnetic walls and magnetic skyrmions. In Chapter 3, we present Langer’s theory

and how it is applied to magnetic spin systems. We then provide details of the different

building blocks in the implementation of Langer’s theory on the atomistic spin lattice.

In particular, we present the geodesic nudged elastic band (GNEB) method, which al-

lows us to relax minimum energy paths on the energy surface. After that, Langer’s

theory is applied to obtain annihilation rates of metastable magnetic skyrmions via

collapse and escape processes in Chapter 4. In Chapter 5, we expose the principles

behind the forward flux sampling method, and we apply it to compute collapse rates

of metastable magnetic skyrmions in an infinite system. The obtained results are sub-

sequently compared with those from Langer’s theory. Next, in Chapter 6, we introduce

frustration in the exchange and, in that context, we look at paths to annihilation of

skyrmionic solutions in frustrated systems, and their stability is discussed. A general

discussion of the results and some perspectives are, lastly, given in Chapter 7.
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Chapter 2

Topological solitons in magnetic
systems

In this chapter, we begin by introducing the different terms in the classical Hamilto-

nian model for ferromagnets in Sec. 2.1. In Sec. 2.2, we give some elements of theory

for ferromagnetic domain walls, which we use to introduce the key notions of winding

number and topology. Finally, in Sec. 2.3, we define magnetic skyrmions and present

the different types of systems in which they can be stabilized.

2.1 The classical Hamiltonian model

A ferromagnet is characterized by a spontaneous magnetization associated with long

range magnetic ordering. This originates from exchange interactions between atoms,

which favour parallel orientations of neighbouring atomic spins, and constitute the

dominant energy contribution in magnetic materials. The different terms in the energy

of a magnetic system describe the interaction of the magnetic moments with an exter-

nal field, the crystal lattice, as well as interactions with the other magnetic moments.

These consist of short-range exchange interactions originating from quantum mechan-

ics, and long-range magnetostatic interactions. Equilibrium magnetization structures

are found by minimizing the total energy of a system, and correspond to the case when

the total effective field exerts no torque on the magnetic vectors.

We consider an ensemble of N atoms on a lattice with lattice constant a (Fig. 2.1a).

Each atom localized at site i carries a net magnetic moment that we write in the form

of a classical vector mi = Mi/Ms, in which Ms is the saturation magnetization and mi

is a unit vector. The magnetic moment is linked to the atomic spin Si by the relation

Mi = −gµBSi [83]. In the previous expression, g is the Landé factor and µB is the Bohr

magneton. In the rest of this thesis, we use the words spins and magnetic moments

9
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interchangeably. The total energy of the assembly of spins in its atomistic form is

E = Eex +EDM +EZ +Ean, (2.1)

where Eex is the isotropic exchange energy, EDM is the DMI exchange energy, EZ is

the Zeeman energy, and Ean is the anisotropy energy. Note that we neglect dipolar

couplings, although they are discussed later in this chapter.

Within the framework of micromagnetics theory [84], we assume only small angular

variations between the orientations of neighbouring spins, which allows us to write the

magnetization as a continuous vector field, m = M /Ms, with norm Ms. In the rest of

this work, micromagnetics quantities are symbolized with cursive letters – with the ex-

ception of the spin stiffness, A – while regular symbols represent atomistic quantities.

The micromagnetics Hamiltonian reads

E = Eex + EDM + EZ + Ean, (2.2)

where the indices have the same meaning as in Eq. (2.1).

In the rest of this section, we introduce the different terms in Eq. (2.1) within the

classical Heisenberg model, as well as their corresponding expressions in Eq. (2.2)

from micromagnetics theory. We give particular emphasis to the case of thin magnetic

films with perpendicular magnetic anisotropy (PMA), as this is a category of systems

which is currently the most envisioned for spintronics applications, as well as the type

of system that was studied in the present thesis.

Let us define here the spherical coordinate system (1,θ,φ) (Fig. 2.1b) which we shall

use throughout this thesis. θ is the polar angle of the magnetization with the z-axis,

and φ is the corresponding azimuth angle in the xy-plane, so that the unit magnetic

vector m = (mx,my ,mz) may be expressed as

m =
(
cosφsinθ,sinφsinθ,cosθ

)
. (2.3)

2.1.1 Exchange interactions

Isotropic Heisenberg exchange

The isotropic exchange interaction originates from the overlap of electronic orbitals

and was first proposed by Heisenberg in 1928 [85] to interpret the large molecular

field observed in ferromagnets. A year later, Dirac [86] showed that the interaction
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(a) (b)

Figure 2.1: (a) A simple cubic lattice, where J1 is the isotropic exchange coupling be-
tween nearest neighbours, J2 is between next-nearest neighbours, and J3 is between
next-next-nearest neighbours. Unless the exchange is frustrated, we restrict ourselves
to nearest-neighbour interactions. (b) The spherical coordinate system used through-
out this thesis.

energy between two neighbouring sites i,j can be expressed in its atomistic form as

−2Jijmi ·mj , where Jij is the exchange integral between sites i and j. It decreases rapidly

as a function of distance, which in turn explains the short-range nature of the interac-

tion. Isotropic exchange is referred to as ferromagnetic if it favours parallel spins, i.e.,

if Jij > 0, and antiferromagnetic if Jij < 0, which favours anti-parallel spins. The inter-

action is symmetric upon interchanging i and j, and isotropic as it is independent of

the direction of the change relative to the magnetization direction. The total isotropic

exchange energy of a system of N interacting spins is expressed as

Eex = −
∑
<ij>

Jijmi ·mj , (2.4)

in which the summation is done over pairs of neighbouring spins < ij >, with i, j =

1 . . .N and i , j. For the special case where Jij is constant for all pairs < ij >, we write

Jij = Jex = J1 if i and j are nearest neighbours, Jij = J2 if they are next-nearest neigh-

bours, etc (see Fig. 2.1a).

In the continuum limit, isotropic exchange may be expressed as

Eex =
∫

dVA
(
(∇mx)2 + (∇my)2 + (∇mz)2)

)
, (2.5)
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where ∇ = ∂xex + ∂yey + ∂zez is the Nabla operator, dV is an elementary volume, and

A = Jexn/a is the exchange stiffness in units of energy per unit length (J/m), with n the

number of atoms per unit cell. In all that follows, we restrict ourselves to the simple

cubic lattice shown in Fig. 2.1a, for which n = 1.

The Dzyaloshinksii-Moriya Interaction (DMI)

The Dzyaloshinskii-Moriya interaction, or DMI, is an antisymmetric, anisotropic ex-

change term which arises in low symmetry crystals due to spin-orbit coupling (SOC).

In the Heisenberg model, the total DMI energy of a system of N interacting spins is

expressed as

EDM = −
∑
<ij>

Dij ·
(
mi ×mj

)
. (2.6)

The DMI is typically a few orders of magnitude lower than isotropic exchange. In Eq.

(2.6), Dij is known as the Dzyaloshinskii vector. Its orientation depends on the sym-

metries of the crystal lattice and it vanishes if a centre of inversion is present between

sites i and j. It follows from Eq. (2.6) that the energy contribution associated with the

DMI is minimum when neighbouring spins are oriented normal to each other, with a

given sense of rotation determined by the orientation of Dij . As a consequence, the

DMI tends to rotate spins in competition with the other interactions to create a vari-

ety of non-collinear magnetic configurations, such as helicoids and skyrmions. It also

lifts degeneracies by favouring a particular chirality of existing spin textures, as is the

case for magnetic vortices and domain walls. This interaction was first theorized by

Dzyaloshinskii [12] who, using symmetry considerations, showed that a combination

of low symmetry and spin-orbit coupling gives rises to an antisymmetric term in the

exchange. Moriya [13] then identified a microscopic mechanism which accounts for

the presence of such a term in systems with spin-orbit coupling. DMI occurs in crys-

tals with low symmetry such as non-centrosymmetric magnetic crystals – i.e., crystals

lacking inversion symmetry. One of the first observations of its effect was weak ferro-

magnetism in antiferromagnetic compounds such as α-Fe2O3 and CrF3, in which a net

ferromagnetic moment emerges due to a small misalignment of the sublattice magne-

tization caused by antisymmetric exchange [13]. It was later found in chiral bulk mag-

nets such as MnSi, in which a helical phase was observed at low temperature [87, 88].

DMI can also be induced in centrosymmetric crystals if the symmetry is broken by

an external mechanism. This effect is weak in bulk materials, but becomes important

in small magnetic structures such as thin films, multilayers, nanowires and nanodots.

In thin films, the broken inversion symmetry at the surface is responsible for the emer-

gence of interfacial DMI [14, 15, 34, 89]. Strong DMI is these systems is engineered by
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(a)

(b) (c)

Figure 2.2: (a) DMI induced by the vertical breaking of the inversion symmetry along
z at an interface between a magnetic material and a material exhibiting strong spin-
orbit coupling. (a) and (b) show different symmetries of the DMI in the xy-plane on
a simple square lattice. (b) In the case where the DMI is induced at an interface via
breaking of the inversion symmetry along z, the D-vector is orthogonal to the displace-
ment vector between neighbouring sites. (c) In bulk materials with horizontal breaking
of the inversion symmetry induced by the crystal lattice, the D-vector is collinear to the
displacement vector between neighbouring sites.

combining a thin ferromagnetic film (e.g., Fe, Co) with a non-magnetic heavy metal

substrate exhibiting strong spin-orbit coupling (Pt, Ir, etc). The orientation of the D-

vector depends on the symmetries of the system. For a thin film lying in the xy-plane,

such that the vertical inversion symmetry is broken along the z-axis, as is the case in

Fig. 2.2a, the D-vector is orthogonal to the displacement vector between atomic sites,

and is expressed as Dij =Dez×rij , where rij = rj−ri is the in-plane displacement vector

between sites i and j [89] (Fig. 2.2b). On the other hand, in bulk materials where the

horizontal inversion symmetry is broken by the crystal lattice, the D-vector is aligned

with the displacement vector between atomic sites, and is expressed as Dij = Drij (Fig.

2.2c).



14 2.1. The classical Hamiltonian model

In the continuum approximation, the DMI is described by combinations of Lifshitz

invariants [89],

L
(k)
ij =mi

∂mj
∂xk
−mj

∂mi
∂xk

, (2.7)

where i, j,k denote Cartesian indices. The interfacial form of the DMI with symmetry

breaking along z can be written as

EDM =
∫

dVD
(
L

(x)
zx +L(y)

zy

)
=

∫
dVD

[mz∂mx∂x
−mx

∂mz
∂x

]
+ id.(x→ y)

. (2.8)

D is the continuum form of the DMI coupling constant expressed in units of energy

per unit area (J/m2), with D = 2D/a2 on the simple cubic lattice.

2.1.2 Zeeman Energy

The Zeeman energy contribution comes from the interaction of the system with an

external magnetic field B = µ0H, where µ0 is the magnetic permeability of vacuum. It

is expressed as

EZ = −Ms

N∑
i=1

mi ·B. (2.9)

This term is minimized by aligning the magnetic moments along the external field. The

continuous form of Eq. (2.9) is simply

EZ = −Ms

∫
dVm ·B. (2.10)

2.1.3 Magnetic anisotropy

Magnetocrystalline anisotropy

In magnetic crystals, some crystallographic axes are more favourable than others

for the magnetization to align along. This effect is known as the magnetocrystalline

anisotropy. It originates from the interplay between spin-orbit coupling and magne-

tostatic interactions in the following way: the spins interact with the orbital motion

by means of spin-orbit coupling, and the orbital motion in turns interacts with the

crystal structure by means of the electrostatic fields and overlapping wavefunctions of

neighbouring atoms [90]. We focus on systems in which the main magnetocrystalline

anisotropy contribution gives rise to an easy axis, so that the associated energy takes

on the form,

Ean = −Ku
N∑
i=1

(mi · ean)2, (2.11)
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where Ku > 0 is the anisotropy constant, and ean is known as the easy axis. In the

continuum limit,

Ean = −Ku

∫
dV (m · ean)2, (2.12)

with Ku = Ku/a3 expressed in J/m3 on the simple cubic lattice. In magnetic thin films

lying in the xy-plane with a perpendicular easy axis such that ean = ez, the interaction

energy of mi with the easy axis can simply be expressed as −Kum2
z,i .

Magnetostatic contribution

Another contribution to the total anisotropy comes from dipole-dipole couplings

between magnetic moments. Each magnetic moment constitutes a magnetic dipole and

therefore contributes to the total dipolar field of the sample. Formally, the interaction

potential that arises from the dipole-dipole coupling between two magnetic moments

mi and mj takes the form

Eij,dip =
Idip

|rij |3

mi ·mj − 3(mi · r̂ij)(mj · r̂ij)
, (2.13)

where rij = rj − ri , r̂ij = rij / |rij |, and Idip is the strength of the dipolar coupling. The

combined effect of theN−1 other magnetic moments on mi constitutes the local dipolar

field Hi
d = −µ−1

0 ∂Edip/∂Mi . In the continuum limit, the coupling of the magnetization

with the dipolar – or demagnetizing – field Hd generated by the material constitutes

the magnetostatic contribution to the energy. Combining B = µ0(H+M ) and Maxwell’s

equation, ∇ ·B = 0, it follows that Hd is the field that arises from the divergence of the

magnetization:

∇ ·Hd = −∇ ·M . (2.14)

In ferromagnets, the interplay between magnetostatic energy and isotropic exchange

is responsible for the emergence of uniformly magnetized domains with different ori-

entations. This translates a tendency towards demagnetization, and is the reason why

bulk magnets which have not been subjected to a magnetic field are usually found in a

state of zero magnetization. Hd couples to the magnetization, M , like an external field,

in the form −µ0
2 Hd ·M . In uniformly magnetized ferromagnets, the demagnetizing field

may be expressed in terms of the demagnetizing tensor N as Hd = N ·M .

In thin magnetic films, the pseudo magnetic charges on the surface are minimized

if the magnetization lies in the plane of the film, so that the demagnetizing field can

be approximated in the form Hd = −Mzez [91]. In the zero-thickness limit of ultrathin

films, where dipolar couplings become local, this can be thought of as shape anisotropy,
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and the effective anisotropy constant becomes Keff = Ku−µ0M
2
s /2 [92]. Keff > 0 defines

an easy-axis and corresponds to perpendicularly magnetized thin films, while Keff <

0 corresponds to an easy-plane configuration. In the rest of this work, we focus on

the former case, and we write Keff = K , and K = K a3, to simplify the notation. In

the end, in its atomistic form, the sum of the magnetocrystalline and magnetostatic

contributions to the anisotropy in a thin magnetic film with perpendicular easy axis

reduces to:

Ean = −K
N∑
i=1

m2
z,i , (2.15)

and

Ean = −K
∫
dVm2

z . (2.16)

2.1.4 Summary of atomistic and micromagnetics quantities

In Table 2.1, we give a summary of the different physical quantities defined in this

section with their corresponding symbol, unit, and the relations between the atomistic

and micromagnetics quantities. We also define the following reduced dimensionless

atomistic quantities that we shall use throughout this work: jα = Jα/J1 in which (α =

1,2,3) ; d = |Dij |/J1; k = K/J1 ; b = BMs/J1. In the previous relations, Jα corresponds

to the the isotropic exchange coupling constant between αth nearest neighbours, with

Jex = J1 for first nearest neighbours. The atomistic exchange coupling constants, Jα and

D, are given per site so that, for instance, the total isotropic exchange energy between

two parallel spins is −2Jex.

2.2 Ferromagnetic domain walls

The state of a ferromagnetic crystal which has not been subjected to an external

magnetic field is usually that of zero magnetization. This is explained by the fact that

crystals are divided into a finite number of regions of uniform magnetization, known as

magnetic domains, such that, in the demagnetized state, the resulting magnetization of

the crystal is zero . The domain boundaries, or domain walls, are regions usually much

smaller than the domains themselves, in which the magnetization gradually rotates

from one orientation to the other (Figs. 2.3a and 2.3b). They pertain to a class of so-

lutions known as (static) topological solitons, i.e., solitonic solutions that are statically

stable due to topological constraints. The formation of domains lowers the magneto-

static energy of the sample by reducing the magnetic charges on the surface, but raises

the exchange energy by creating regions where the spins are not collinear. For that

reason, domains are favourable if the size of the system is big enough as to ensure that



Chapter 2. Topological solitons in magnetic systems 17

Quantity Atomistic (simple cubic) Micromagnetics Relation
Symbol Unit Reduced Symbol Unit

Lattice constant a m - - -
Saturation

magnetization
Ms A.m2 - Ms A/m Ms =

Ms/a
3

Isotropic exchange
strength

Jex = J1 J 1 A J/m A = J1/a

DMI strength D J d =
D/J1

D J/m2 D =
2D/a2

Anisotropy constant K J k = K/J1 K J/m3 K =
K/a3

Magnetic field
(induction)

B T b =
BMs/J1

idem atomistic -

Magnetic
permeability of

vacuum

µ0 N/A2 - idem atomistic -

Table 2.1: Symbols, corresponding units and relation between atomistic and micro-
magnetics quantities. The atomistic exchange couplings are given per site.

-5 0 5

x ( )

0

/2

 Atomistic

 Analytical

(c)

Figure 2.3: (a) Bloch π-wall in which the magnetization rotates in the plane of the wall,
(b) Néel π-wall in which the magnetization rotates perpendicular to the plane of the
wall, (c) analytical micromagnetic and numerical atomistic π-domain wall profiles as
a function of the spatial displacement from the wall centre expressed in units of the
characteristic wall width, δ (Eq. (2.31)). The micromagnetic analytical expression of
θ(x) is given in Eq. (2.32), where θ is the angle of the magnetization with the easy-axis.
Here, it corresponds to the polar angle with the z-axis, as defined in Fig. 2.1b and Eq.
(2.3).
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the reduction in magnetostatic energy is higher than the gain in exchange energy.

2.2.1 Characteristic wall profile

The width of a domain wall results from the competition between anisotropy and

isotropic exchange energies. The more gradual the rotation of the magnetization, the

lower the exchange energy. On the other hand, the anisotropy favours particular orien-

tations of the magnetization along the easy axes and/or easy planes of the material. In

what follows, we derive the characteristic quantities in a one-dimensional wall – i.e.,

wall profile, wall width, and wall energy. The derivation is based on that of Ref. [83].

We consider a one-dimensional chain of magnetic moments along the x-axis, with

an easy-axis along the z direction. We look at a π-wall separating two domains in which

the magnetization goes from +z to −z, as shown in Fig. 2.3. θ = cos−1mz is the angle

between m and the z−axis (Fig. 2.1b), and we assume that the rotation occurs in a

great enough number of steps for θ(x) to be considered a continuous variable. In this

context, the interactions can then be written in the continuum approximation. If f (θ)

is the anisotropy energy per unit volume, the total energy density per unit area of the

wall is given by the sum of the exchange energy contribution, σex, and the anisotropy

energy contribution, σan,

σ = σex + σan =
∫ +∞

−∞

A(
∂θ
∂x

)2

+ f (θ)

dx. (2.17)

A small change, δθ, in θ induces the following change in σ :

δσ =
∫ +∞

−∞

2A∂θ∂x ∂
∂x
δθ +

∂f (θ)
∂θ

δθ

dx. (2.18)

We integrate the first term by parts:

∫ +∞

−∞
2A
∂θ
∂x

∂
∂x
δθ =

2A∂θ∂x δθ
+∞

−∞
−
∫ +∞

−∞
2A
∂2θ

∂x2 δθdy, (2.19)

and notice that 2A∂θ∂x δθ
+∞

−∞
= 0, (2.20)

since θ(x) is assumed constant inside the domains. The condition for the wall to be

stable is obtained by minimizing the energy: δσ = 0, that is to say,

δσ =
∫ +∞

−∞

∂f (θ)
∂θ

− 2A
∂2θ

∂x2

δθdx = 0. (2.21)
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Eq. (2.21) is true for any arbitrary δθ if

∂f (θ)
∂θ

− 2A
∂2θ

∂x2 = 0, (2.22)

which is the Euler equation of the one-dimensional variational problem. Multiplying

Eq. (2.22) by ∂θ/∂x and integrating, we obtain an expression for the anisotropy energy:∫
∂f (θ)
∂θ

∂θ
∂x
dx = 2A

∫
∂2θ

∂x2
∂θ
∂x
dx, (2.23)

f (θ) = A
(
∂θ
∂x

)2

, (2.24)

which is the same as the exchange energy, and from Eq. (2.24),

dx =
√
A

dθ√
f (θ)

(2.25)

The energy per unit area of the wall is therefore

σ = 2
∫
f (θ)dx,

= 2
∫
f (θ)

∂x
∂θ
dθ,

= 2
√
A

∫ √
f (θ)dθ,

(2.26)

where we have used Eq. (2.25) in the last step. With an uniaxial anisotropy, f (θ) =

K sin2θ, and so the energy of a π-wall is

σ0 = 2
√
AK

∫ π

0
sinθdθ = 4

√
K A. (2.27)

We note that with the above choice of f (θ), Eq. (2.22) becomes

sinθ − A
K

∂2θ

∂x2 = 0, (2.28)

which is the static sine-Gordon equation (Eq. (1.1)). By choosing the origin at the centre

of the wall, it follows from Eq. (2.25) that the wall profile is expressed as

x(θ) =

√
A
K

∫ θ

π/2

dθ′

sinθ′
=

√
A
K

ln

 tan
θ
2

. (2.29)
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The characteristic (asymptotic) width of the wall δ emerges from Eq. (2.29),

exp

 x
√
A/K

 = exp

xδ
 = tan

θ
2
, (2.30)

where

δ =
√
A/K , (2.31)

and

θ(x) = 2arctan
(
ex/δ

)
, (2.32)

which we plot as a continuous blue line in Fig. 2.3c.

We distinguish between Bloch walls [93], in which the magnetization rotates in the

plane of the wall (Fig. 2.3a), and Néel walls, in which the magnetization rotates per-

pendicular to the wall plane (Fig. 2.3b). Depending on the sample’s shape and the mag-

netization direction inside domains, the type of wall that minimizes the magnetostatic

energy is favoured against the other. In thin films magnetized out-of-plane, and in the

absence of DMI, Bloch walls are more favourable as they minimize volume charges –

i.e., the magnetic charge density ρm = −∇ ·m reduces to ρm = −dmx/dx = 0 in the Bloch

wall, where x is the propagation direction. This result, however, becomes less true in

ultrathin films, since the energy difference between Bloch and Néel walls decreases

with the film thickness [94]. Additionally, in the absence of chiral couplings, clock-

wise and counterclockwise directions of the magnetization rotation inside the wall are

degenerate.

2.2.2 Effect of chiral couplings

In thin films with perpendicular anisotropy, the competition between the DMI and

magnetostatic energy results in a progressive transition from Bloch walls at D = 0, to

Néel walls with increasing D . The DMI also selects a preferred handedness, or chirality,

of the wall. The wall energy in the presence of DMI becomes σ = σ0±πD [95,96]. When

the chirality of the wall is the one favoured by the DMI, σ = σ0−πD and the wall is more

energetically favourable than its counterpart of opposite chirality. Domain walls in

PMA materials under uncompensated DMI have been named Dzyaloshinskii walls [96].

Above a certain critical value Dc of the DMI, expressed as Dc = 4K δ/π = σ0/π, the spin

spiral state replaces the collinear state as the ground state of the system.
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(a)
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(b)

>

>

(c)

…
(d)

Figure 2.4: (a, b) Pair of Néel π-walls under a perpendicular applied field with fixed
sense of rotation where (b) shows the stereographic projection onto the unit circle, S1.
The magnetization rotates in two-dimensional space from θ = 0, to π, then from π to
2π, which results in a winding number n = 1, and thus a topologically nontrivial spin
texture with respect to the easy plane (soliton-soliton pair). In this case, the domain of
down-magnetization in the middle can be reduced in size by a magnetic field applied
along +z. (c, d) Pair of Néel π-walls at zero applied field with two different senses
of rotation where (c) shows the stereographic projection onto the unit circle, S1. The
magnetization rotates in two-dimensional space from θ = 0, to π, then from π to 0,
which yields a vanishing winding number, n = 0, associated with a topologically trivial
state (soliton-antisoliton pair). In this case, applying a magnetic field along +z tends
to destroy the walls and results in a single uniformly magnetized state along the field
direction.

2.2.3 Winding number and topology

We now consider two π-walls, separating three magnetic domains. In the previously

considered planar spin model, the spins are arranged along a one-dimensional chain

and rotate strictly into the easy plane, such that θ(x) describes the magnetization. The

order-parameter space is the unit circle, S1. In this configuration where θ(x→±∞) = 0,

the one-dimensional physical space, R1, is topologically equivalent to S1, and we have

the map f : S1→ S1, which may be classified by the homotopy class π1(S1) = Z. Topo-

logically distinct configurations are then defined by how many times the magnetization
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wraps the unit circle S1. This is measured by the winding number – or degree of map-

ping – degf = n, defined as [7]

n =
1

2π

∫ +∞

−∞
dx∂xθ. (2.33)

If the two π-walls exhibit the same sense of rotation – or chirality – as is the case in Fig.

2.4a, the magnetization rotates from θ = 0 to π, and then from π to 2π, and therefore

wraps around the unit circle one time. This can be visualized through the stereographic

projection of the chiral wall shown in Fig. 2.4b. In this case, the winding number is

n = ±1, and the structure is topologically nontrivial with respect to the easy plane. This

configuration is referred to as soliton-soliton pair. In the continuum limit, it is topolog-

ically stable since, within the strict planar rotation model, there exists no continuous

path in parameter-space that leads to the destruction of the wall. In particular, adding

a DMI contribution to the present structure results in the selection of a specific sense

of rotation – or chirality – which in turn favours topologically nontrivial pair of walls.

On the other hand, in the absence of chiral couplings and if both π-walls possess an

opposite sense of rotation, θ goes from 0 to π, and back to 0, which in turn yields n = 0.

This configuration is shown in Fig. 2.4d, and Fig. 2.4c shows the corresponding stereo-

graphic projection. The achiral pair of walls is topologically trivial, as it is topologically

equivalent to the collinear state, and is not robust against deformations. It corresponds

to a soliton-antisoliton pair. Nevertheless, within an atomistic description, the chiral

pair of walls can also be destroyed by strong enough external effects. Additionally, we

can note that in real systems, anisotropies are finite, and so the strict planar model does

not hold. The order parameter space is, in fact, the 2-sphere S2, and the pair of chiral

walls may be destroyed if the spins rotate along y (case of “escape via the third dimen-

sion” [97]). Indeed, in a one-dimensional chain, topologically nontrivial solutions do

not exist, since π1(S2) = 0.

While the notion of topological protection applies to the continuum limit, it can-

not be exactly transposed to a discretized description of space. In real systems where

magnetic moments are localized at atomic sites, energy barriers are finite, and so topo-

logical protection is not strict. Topologically nontrivial states can be destroyed if the

energy barrier than separates them from the uniform state is overcome by external

effects and/or thermal fluctuations.



Chapter 2. Topological solitons in magnetic systems 23

(a) (b)

(c) (d)

Figure 2.5: (a, b) A Néel “hedgehog” skyrmion with (n,φ0) = (1,π) where (b) shows
its stereographic projection onto the unit sphere, S2. The magnetization along a ra-
dial cross-section resembles that of a chiral 2π Néel wall. (c) A Bloch skyrmion with
(n,φ0) = (1,π/2). The magnetization along a radial cross-section resembles that of a
chiral 2π Bloch wall. (d) An antiskyrmion with (n,φ0) = (−1,π). The magnetization
along a radial cross-section alternates between Bloch-like and Néel-like, depending on
the value of the spatial polar angle ϕ (see also Fig. 2.6).

2.3 Magnetic skyrmions

2.3.1 General characteristics

Magnetic skyrmions are topologically nontrivial, particle-like, solitonic magnetic

textures which are exponentially localized in space. They typically exist in two di-

mensions, but can extend to three dimensions as skyrmion strings. Fig. 2.5 shows

spin maps of some typical skyrmion configurations which we will describe later in this

section. Originally, skyrmions were solitonic solutions derived by Skyrme [8] within

his model for low energy dynamics between mesons and baryons. Skyrmions from

the initial Skyrme model live on the three-dimensional space, and the term “baby

skyrmions” was later introduced as solutions of the two-dimensional so-called “baby

Skyrme” model [98, 99]. In that sense, magnetic skyrmions are similar to baby skyr-
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mions. Within a skyrmion, the spins smoothly rotate in three dimensional space and

their norm remains fixed, such that the order-parameter space is now the unit sphere,

S2. For an isolated skyrmion configuration, we assume that the magnetization tends

asymptotically to a uniform value at infinity, i.e., m(ρ→∞) = cst. The physical space

R
2 may then be stereographically projected onto the punctured unit sphere S2 with

the missing point corresponding to ρ →∞, and we have the map f : S2 → S2, which

may be classified by the homotopy class π2(S2) = Z. [7, 100]. In Fig. 2.5b, we show

the stereographic projection of the Néel skyrmion, as shown in Fig. 2.5a, onto S2. We

define the skyrmion number, or topological charge [101],

Ns =
∫

dr2ρs =
1

4π

∫
dr2m · (∂xm×∂ym), (2.34)

which corresponds to the degree of mapping, Ns = degf , and counts the number of

times the spin configuration wraps the unit sphere, S2. Skyrmions carry an inte-

ger topological charge, which implies that they are robust against small deformations

and cannot be continuously unwound into the topologically trivial ferromagnetic state

(Ns = 0). ρs, as defined by Eq. (2.34), is the local topological charge density.

We can use the polar coordinates ρ = (ρcosϕ,ρ sinϕ) to describe the spatial position,

in which ρ =
√
x2 + x2 is the in-plane distance from the skyrmion core, and ϕ is the cor-

responding azimuth. The orientation of the spin vector m can be expressed in terms of

spherical angles (θ,φ) as given in Eq. (2.3). In the continuum limit, θ(ρ) only depends

on ρ, and the in-plane skyrmion profile is

φ(ϕ) = nϕ +φ0. (2.35)

In the previous expression, φ0 is the helicity, and n is the vorticity, or the S1- winding

number along the domain wall delimiting the skyrmion, defined as [100]

n =
1

2π

∫ 2π

0
dϕ∂ϕφ. (2.36)

Solutions that verify n > 0 are called skyrmions, as shown in Figs. 2.5a and 2.5c, while

solutions with n < 0 are called antiskyrmions, as shown in Fig. 2.5d. In other words,

when travelling around a circular contour at a fixed distance ρ to the (anti)skyrmion

core, the winding direction of the spins in a skyrmion matches the travelling direction

along the contour. In an antiskyrmion, the spins rotate in a direction opposite to that

of the travelling direction. From the symmetric ansatz θ(ρ) and φ(ϕ) (Eq. (2.35)),

it follows that the skyrmion number in Eq. (2.34), which is the S2-winding number,
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becomes

Ns =
n
2

(
mz(0)−mz(∞)

)
. (2.37)

Given the conditions mz(0) = −1 and mz(∞) = 1, we have Ns = −n. Amongst first or-

der skyrmions (n = 1), we distinguish between Néel – or hedgehog – skyrmions with

helicity φ0 = 0 or π, as shown in Fig. 2.5a, and Bloch skyrmions with φ0 = π/2 or

3π/2 (Fig. 2.5c). Néel skyrmions exhibit a cycloidal magnetization texture along the

radial direction, ρ, which is reminiscent of a chiral pair of Néel walls, such as the one

discussed in Sec. 2.2.3 and shown in Fig. 2.4a, while Bloch skyrmions exhibit a heli-

coidal spin texture along the radial direction, which resembles that of a chiral pair of

Bloch walls. In antiskyrmions (n = −1), on the other hand, the spin texture along the

radial direction alternates between a Néel-type and a Bloch-type pair of walls depend-

ing on the spatial angle ϕ. We show the detail of the spin texture of an antiskyrmion

on the simple square lattice in Fig. 2.6, in which the radial directions corresponding

to lattice axes x and y (ϕ = {0,π/2}) display clockwise- (CW) and counter-clockwise-

(CCW) rotating Néel-type profiles, while along the lattice diagonals (ϕ = {π/4,3π/4}),
the magnetization is that of CW and CCW Bloch-type profiles. In higher-order skyr-

mion solutions (|n| > 1), in which the magnetization wraps the unit sphere more than

once, the radial profile also alternates between Néel and Bloch. For instance, typical

spin textures corresponding to a second-order skyrmion (n = 2), and a second-order

antiskyrmion (n = −2) are shown respectively in Figs. 2.9d and 2.9e.

Magnetic skyrmions are stabilized in ferromagnets by the introduction of a char-

acteristic lengthscale via competing interactions. This is typically achieved in non-

centrosymmetric magnets, in which chiral couplings arise in the form of DMI. That par-

ticular type of solution, commonly referred to as chiral skyrmions, were theoretically

predicted and investigated in the 1990s [9–11]. In magnets with inversion symmetry,

skyrmions can be stabilized via dipolar interactions (skyrmion bubbles, also referred

to as bubble domains) [16–21], as well as frustrated exchange couplings [22–27]. In the

rest of this section, we firstly define the topological charge on the discrete spin lattice.

After that, we give details on the different categories of magnetic skyrmions according

to their stabilization mechanism.

2.3.2 Topological charge definition on the atomistic spin lattice

In a continuum model, the topological charge is defined as its integral expression

that we gave in Eq. (2.34), and corresponds to the number of times m(x,y) wraps the

unit sphere S2. On the discretized atomistic spin lattice, the topological charge needs

to be redefined. A lattice of spins m(xi , yi) can be thought of as a net on S2, with
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Figure 2.6: Anatomy of the antiskyrmion spin texture. The winding direction of the
spins in the direction of increasing ϕ is negative (i.e., clockwise (CW) rotation of the
magnetization for a counter-clockwise (CCW) rotation along the contour), yielding a
negative winding number, n = −1. Depending on the value of ϕ, the spin texture along
the radial direction ρ alternates between Néel-type and Bloch-type with CW and CCW
rotation of the spins.

(a) (b)

Figure 2.7: (a) Mapping of the spin configuration for an isolated skyrmion onto the
unit sphere. Vertices correspond to the tip of the magnetic vectors with their origin in
the centre of the sphere, and the edges represent the exchange coupling between first
neighbours. The solid sphere inside the net represents the unit sphere. (b) Elementary
triangles on the simple square lattice (image source: [102]).
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vertices m(xi , yi) = mi , and rubber bands connecting mi and mj whenever sites i and j

are nearest neighbours (Fig. 2.7a). In that case, the topological charge can be defined

as the number of times the net winds around S2 [103]. Following the expression given

in Ref. [104] whose derivation was based on Ref. [103], we give the topological charge

on the discrete spin lattice,

Ns =
1

4π

∑
l

ql , (2.38)

with

tan

ql2
 =

[mi ,mj ,mk]

1 + mi ·mj + mi ·mk + mj ·mk
. (2.39)

The notation [mi ,mj ,mk] = mi · (mj ×mk) corresponds to the scalar triple product. The

index l runs over all the elementary triangles of the lattice, where mi , mj , mk define

the vertices of a triangle (Fig. 2.7b). The indices i, j,k are attributed by rotating coun-

terclockwise about the z-axis.

Ql =
ql
4π

(2.40)

is a discrete equivalent to the topological charge density ρs (Eq. (2.34)) and may be

interpreted as a local topological charge. The topological charge on the discrete spin

lattice defined through Eqs. (2.38) and (2.39) should hold for all types of lattices.

In Fig. 2.7a, we show a “ball in a net” representation of the Néel skyrmion in Fig.

2.5a, which was also somewhat inspired by Fig. 3 in Ref. [80]. Vertices correspond

to the tip of the magnetic vectors with their origin in the centre of the sphere, and

the edges represent the exchange coupling between first neighbours. The solid sphere

inside the net represents the unit sphere. The ferromagnetic background (spins along

+z) is found at the north pole of the sphere, while in this thesis, the core of a skyrmion

typically points along the south pole (along −z). The view is set just below the south

pole, looking axially towards the +z direction, so that the spin in the centre of the view

corresponds to the core of the skyrmion. Annihilating a nontrivial topological texture

to recover the uniformly magnetized state involves bringing the mesh back to the north

pole by moving the vertices on the sphere. This can be thought of as taking a ball (solid

sphere) out of a net (dark blue mesh) by deforming the rubber band net.

2.3.3 Chiral skyrmions in non-centrosymmetric magnets

The first theoretical prediction that the DMI can stabilize two-dimensional solitons

dates back to 1989 [9]. Initially labelled “(chiral) magnetic vortices”, they were later

renamed “chiral magnetic skyrmions” to mark the distinction with vortices, in which

the magnetization only spans over half of the unit sphere, yielding a half-integer topo-



28 2.3. Magnetic skyrmions

(a) (b)

(c)

Figure 2.8: Numerical profile obtained from atomistic simulations (squares) and corre-
sponding spline interpolation (line) for skyrmions solutions with different stabilization
mechanisms, as a function of the radial spatial displacement from the skyrmion core,
ρ, expressed in units of the characteristic domain wall width, δ (Eq. 2.31). θ is the po-
lar angle with the easy axis, z. The spin maps at the top show the spin texture along a
radial cross-section of the skyrmion. (a) Profile of a chiral Néel skyrmion stabilized by
the DMI. The core is strongly localized, with linear variations of the polar angle, while
the asymptotic profile of the tail far from the centre resembles that of a ferromagnetic
domain wall. (b) Profile of a Néel skyrmion stabilized by frustrated exchange. The
core is strongly localized. In the tail, the polar angle oscillates as a function of dis-
tance, indicating a reversal of helicity. (c) Profile of a Néel skyrmion bubble stabilized
by dipolar couplings. The core is spatially extended and not strongly localized.



Chapter 2. Topological solitons in magnetic systems 29

logical charge (see Fig. 1.1b). A skyrmion lattice was first detected in the bulk of the

B20 chiral magnet MnSi in reciprocal space, via neutron scattering [28]. Shortly af-

ter, Yu et al. reported the first real space observation of a skyrmion lattice in a thin

film of Fe0.5Co0.5 by means of Lorentz transmission electron microscopy (TEM) [29].

These observations opened the way of potential spintronics applications of skyrmions

in data storage and logic devices [38–42]. The existence of skyrmions was then con-

firmed in many other types of materials [30–33]. In particular, some well-studied

transition-metal thin films and multilayers that give rise to a substantial interfacial

DMI in which individual skyrmions were experimentally observed are Ir/Co/Pt [105],

Pt/Co/AlOx [106, 107], and Pd/Fe/Ir(111) [33, 43, 63, 108, 109]. In chiral magnets, in

the absence of any other effect, the competition between isotropic exchange and DMI

results in a ground state of spatially modulated spin spirals (SSs) with a fixed sense of

rotation. Additional couplings such as anisotropies and external field can suppress the

SS state in favour of the uniformly magnetized ferromagnetic (FM) state, from which

isolated skyrmions can be stabilized as (meta)stable excitations. In the presence of per-

pendicular applied magnetic field, a thermodynamically stable skyrmion lattice phase

appears at intermediate field values [11, 110].

The symmetries of the DMI favour a single class of solutions with fixed chirality and

helicity. For instance, interfacial DMI favours Néel skyrmions (Fig. 2.5a), and bulk

DMI favours Bloch skyrmions (Fig. 2.5c). Antiskyrmions (Figs. 2.5d and 2.6) can be

stabilized by anisotropic DMI [111,112]. This has for instance been reported in tetrag-

onal Heusler compounds, in which antiskyrmions were observed via Lorentz TEM [31].

Replacing D with −D results in skyrmion solutions of the opposite chirality. Nonethe-

less, the possibility to stabilize structures with an arbitrary integer topological charge

in chiral magnets (“skyrmionic sacks”) has recently been explored [113]. Far from the

skyrmion core, the asymptotic behaviour of the spins along the radial direction ρ is

that of a ferromagnetic wall, θ(ρ) ∼ κe±ρ/δ, in which δ is the characteristic domain wall

width (Eq. (2.31)) and κ = πD /4
√
AK , whereas the core is strongly localized, arrow-

like shaped, with linear variation of the polar angle: θ(ρ) ∼ ρD /A [114,115]. We show a

typical chiral skyrmion profile along a radial cross-section in Fig. 2.8a, where the spin

texture is shown at the top. It follows that the characteristic size of chiral skyrmions

is similar to that of ferromagnetic walls, while being spatially localized in all direc-

tions. Besides δ, the other characteristic lengthscale in the system is ζ = 2A/D [21,107],

which characterizes the period of the spatially modulated states that arise from the

competition of isotropic exchange and DMI. There is no exact analytical expression for

skyrmion profiles, however the double soliton ansatz of two overlapping π-walls at
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positions ±c works well [97, 108, 116]:

θ(ρ,c,δ) =
∑
+,−

arcsin

 tanh
(−ρ ± c

δ

), (2.41)

in which the sum is carried out over the two π-wall profiles with spatial displacement

given respectively by ρ+ c and ρ − c.

2.3.4 Skyrmions in frustrated magnets

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 2.9: Different skyrmion solutions stabilized in a frustrated magnet with in-
version symmetry: (a) antiskyrmion with (n,φ0) = (−1,0), (b) skyrmion with (n,φ0) =
(1,π/2) (Bloch), (c) skyrmion with (n,φ0) = (1,π) (Néel), (d) 2nd order skyrmion with
(n,φ0) = (2,3π/2), (e) 2nd order antiskyrmion with (n,φ0) = (−2,π/2), (f) skyrmion pair,
(g) skyrmion/antiskyrmion pair, (h) antiskyrmion pair.

Frustrated isotropic exchange corresponds to the case where the coupling constant Jα
changes sign depending on the shell of neighbours α = 1,2,3 . . . , resulting in alternat-

ing ferromagnetic (Jα > 0) and antiferromagnetic (Jα < 0) couplings. For clarity, α = 1

corresponds to nearest neighbours, α = 2 to next-nearest neighbours, etc (see Fig. 2.1a).

Exchange frustration has been shown to arise from interface effects in certain systems.

Pd/Fe/Ir(111) is an experimentally well-studied system that was reported to host inter-

face nanoscale skyrmions [33, 108]. Density functional theory (DFT) calculations have

shown that for fcc stacking of the Pd layer, the isotropic exchange is ferromagnetic

between first neighbours, but antiferromagnetic beyond first neighbours, leading to a



Chapter 2. Topological solitons in magnetic systems 31

SS ground state even without the inclusion of SOC (i.e., DMI) in the calculations [43].

More recently, a strong exchange frustration was reported in Rh/Fe/Ir(111), which was

found to be a driving force behind the SS ground state [117]. Strong exchange frus-

tration was also very recently revealed in Rh/Co/Ir(111) by spin-polarized scanning

tunneling microscopy (SP-STM) measurements combined with DFT calculations [118].

In this system, skyrmions of approximately 5 nm in diameter were observed at 4K at

zero magnetic field in the virgin FM state. The exchange frustration was found to play

an important role in their stabilization. For these reasons, studying skyrmion solu-

tions stabilized by frustrated exchange is important for technological applications. In

exchange-frustrated magnets, spatially modulated states can arise without the need for

chiral couplings. For certain specific values of the exchange parameters, a spin-spiral

ground state is realized in the absence of other interactions [22–27]. Similar to the

case of chiral magnets, the SS state is suppressed by additional couplings such as exter-

nal field and/or magnetic anisotropies, and the uniformly magnetized ferromagnetic

state is recovered via a second-order phase transition [25]. From that state, metasta-

ble skyrmion solutions can be stabilized. In the presence of a perpendicular easy-axis

anisotropy, the skyrmion lattice becomes thermodynamically stable at an intermediate

applied field [25].

In comparison to chiral skyrmions stabilized by the DMI, where the type of the DMI

determines the helicity and winding direction of the spins, exotic spin textures with

various winding numbers and helicities can coexist in frustrated magnets, as seen in

Fig. 2.9. In the absence of inversion symmetry breaking, skyrmions (Figs. 2.9b, 2.9c)

and antiskyrmions (Fig. 2.9a) with opposite winding numbers are degenerate in energy.

Additionally, the skyrmions possess a spin degree of freedom (where “spin” refers to

the spin of the skyrmion as a particle), associated with a rotation of helicity. In Fig.

2.10a, we show the profile of the mode corresponding to the rotation of helicity in a

Néel skyrmion. In the absence of DMI, this mode is a mode of zero energy fluctua-

tions, also known as a Goldstone mode. Goldstone modes and their implications are

discussed later in Chapter 3. Bloch-type skyrmions (Fig. 2.9b), Néel-type skyrmions

(Fig. 2.9c), and all intermediate helicity states are therefore, in the absence of DMI,

degenerate in energy [25]. The skyrmion profile is also different from that of a chi-

ral skyrmion. The polar angle θ(ρ) goes from θ(0) = π at the centre, to zero, and

then oscillates around zero, indicating a reversal of helicity, as shown in Fig. 2.8b. As

a consequence, the pairwise interaction potential of skyrmions is non-monotonic as

a function of distance, and is found in turn positive (repulsive) and negative (bind-

ing) [22, 25], and depends on the relative helicities. It is therefore possible to stabilize

a bound (anti)skyrmion/(anti)skyrmion pair (Figs. 2.9f, 2.9h, 2.9g).



32 2.3. Magnetic skyrmions

(a)
(b)

Figure 2.10: (a) Profile of the Goldstone mode associated with the rotation of helicity
in the Néel skyrmion in the absence of inversion symmetry breaking (d = 0). At zero-
DMI, Bloch and Néel skyrmions, as well as all skyrmion solutions with intermediate
values of the helicity are degenerate in energy. (b) Isotropic exchange energy, Eex(q),
in units of J1 in the two-dimensional Brillouin zone of the simple square lattice for
(j2, j3) = (−0.35,−0.15). This particular choice of exchange coupling parameters gives
rise to a minimum in the exchange energy around q0x ≈ q0y ≈ 0.23, which corresponds
to a SS ground state.

We now focus on the frustrated J1 − J2 − J3 magnet on the square lattice under a per-

pendicular applied field, and (d,k) = (0,0). The upcoming derivation is based on that

of Ref. [25]. The competing interactions can stabilize a state with non-zero ordering

wave vector q as a ground state. At zero-temperature and below a critical applied field

Bc, the ground state is a homogeneous spin spiral, and the orientation of spin mi at site

ri is expressed as

mi =
(
sinθ cos(ri ·q),sinθ sin(ri ·q),cosθ

)
, (2.42)

where the canting angle θ is determined by cosθ = Bz/Bc. We express the wave vector

of the two-dimensional Brillouin zone as

q =
2π
a

qxqy
 , (2.43)

where a is the lattice constant. Setting mi = ex at position ri = (0,0), its first nearest

neighbours are located at

{rj} = {(a,0), (−a,0), (0, a), (0,−a)}, (2.44)
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so that the total exchange energy between mi and its first neighbours is

E1 = −2J1
(
cos(2πqx) + cos(2πqy)

)
, (2.45)

where we have chosen θ = π/2. Proceeding analogously for the second and third shells

of neighbours, we obtain

Eex(q) =− 2J1
(
cos(2πqx) + cos(2πqy)

)
− 2J2

(
cos(2

√
2π(qx + qy) + cos(2

√
2π(qx − qy)

)
− 2J3

(
cos(4πqx) + cos(4πqy)

)
.

(2.46)

We then look for a set of (j2, j3) for which there exists a non-zero wave vector q0

that minimizes Eex(q0). In order to obtain skyrmions with sizes larger than the lat-

tice parameter, we must limit the search to the large wavelength limit qa� 1, where

q =
√
q2
x + q2

y . In Ref. [25], the exchange energy is expanded in small values of q. The

spin lattice introduces a spatial anisotropy, which is minimized by tuning (j2, j3). This

yields the following reduced coupling parameters: j2 = −0.35 ; j3 = −0.15, with a min-

imum in the spin spiral energy around q0x ≈ q0y ≈ 0.23. Fig. 2.10b shows the value

of Eex(q) as given in Eq. (2.46) in the first Brillouin zone. The darker area around the

center corresponds to the SS ground state. The value of q0 gives the period of the spin

spirals and determines the equilibrium sizes of isolated skyrmion solutions.

2.3.5 Skyrmion bubbles in dipolar magnets

(a) (b) (c)

Figure 2.11: Examples of skyrmion bubbles: (a) Bloch-type bubble with (n,φ0) =
(1,3π/2), (b) Néel-type bubble with (n,φ0) = (1,π), (c) antiskyrmion bubble with
(n,φ0) = (−1,π/2).
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Bubble domains, or skyrmion bubbles [91], originate from the tension of domain

walls and surface depolarization as an effect of the sample’s shape. In most cases, the

profile consists in a spatially extended core with θ = π, separated by a domain wall

from the uniformly magnetized background where θ = 0. Contrary to chiral skyrmions

and skyrmions stabilized by exchange frustration, the core does not exhibit strong lo-

calization, with a typically flat or quasi-flat θ(ρ) profile around the centre [114]. Al-

though bubbles carry an integer topological charge, their typical sizes are found in the

micrometer range and, unlike skyrmions, they usually cannot be reduced to nanoscale

sizes. We show the spin maps of some bubble skyrmions in Fig. 2.11. In Fig. 2.8c, we

plot the profile of the Néel bubble in Fig. 2.11b along a radial cross-section. It shows

that the core is much more spatially extended than that of the two skyrmions in Figs.

2.8a and 2.8b, with a smaller slope in the centre. Although it is not flat in this case, this

seems to be due to the fact that the bubble is constrained inside the 50× 50 simulated

surface. The phase diagram in dipolar magnets is similar to that of chiral magnets,

with the helical ground state at zero applied field, the bubble lattice at intermediate

field and the uniformly magnetized state at higher field, from which metastable iso-

lated bubbles may be stabilized [91,119]. Contrary to the DMI, the dipolar interactions

do not select a single value of the helicity, so that solutions with φ0 = π/2 or 3π/2 are

degenerate (Fig. 2.11a), and so are solutions with φ0 = 0 or π (Fig. 2.11b) [21]. Winding

numbers of n = ±1 can also coexist (Fig. 2.11c).

2.4 Summary

In this chapter, we have seen that the main energy contributions in magnets are

short-range exchange interactions and long-range dipolar interactions between mag-

netic moments, as well as interactions of the spins with the crystal lattice and external

magnetic fields. The main contributions to the exchange interactions considered in this

thesis are the isotropic Heisenberg exchange favouring collinear orientations of neigh-

bouring spins, and the antisymmetric, anisotropic Dzyaloshinskii-Moriya interaction,

which favours orthogonal orientations of neighbouring spins with a particular sense of

rotation. The DMI arises from spin-orbit coupling in systems with broken inversion

symmetry and is responsible for the emergence of noncollinear chiral magnetic order-

ings. DMI is found in the bulk of noncentrosymmetric crystals such as MnSi, but can

also be generated in small centrosymmetric magnetic structures such as thin films, by

structural breaking of the inversion symmetry.

On our way to understanding magnetic skyrmions, we have looked at their one-

dimensional counterpart in the form of ferromagnetic walls in a chain of spins. Do-
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main walls are a form of topological solitons which arise as solutions to the static sine-

Gordon equation in one dimension. In ferromagnets, they extend to higher dimensions

between uniformly magnetized domains. Using a variational method, we derived the

characteristic quantities in a domain wall, i.e., profile, width, and energy. We made

the distinction between Bloch walls, in which the magnetization rotates in the plane of

the wall, and Néel walls, in which the magnetization rotates perpendicular to the wall

plane. We showed than a chiral pair of π-walls is topologically nontrivial with respect

to the easy-plane, that is, if the spins in both walls rotate in the same direction, re-

sulting in a soliton-soliton pair. Nevertheless, within a discretized description of space

in which the spins are localized at atomic sites, this configuration can be destroyed by

strong enough external effects. Therefore, in reality, topological protection does not

hold. Additionally, the strict easy-plane model is not realistic because anisotropies are

finite, and so the chiral pair of walls may also be destroyed if the spins rotate in the

third dimension.

Lastly, we have presented some characteristics and properties of magnetic skyrmions.

These topological solitons arise in a system from the introduction of a lengthscale via

competing interactions. In two dimensions of space, they are localized, topologically

nontrivial spin textures. If a spin spiral ground state can be realized from only in-

terspin interactions, additional couplings such as magnetic anisotropies and external

magnetic fields can then suppress the SS state to recover the uniform FM state, from

which isolated skyrmions may be stabilized as metastable excitations. Under an exter-

nal magnetic field, a skyrmion lattice arises at intermediate field values. Depending

on the helicity of the spin texture, we distinguish between Néel and Block skyrmions.

Néel skyrmions possess a magnetization profile similar to that of a chiral pair of Néel

walls along any radial direction, resulting in a helicity of φ0 = 0 or π, while Bloch skyr-

mions possess a profile similar to a chiral pair of Bloch walls, with helicity φ0 = π/2

or 3π/2. Amongst topologically nontrivial spin textures in two dimensions, solutions

formally called skyrmions corresponds to the case where the winding direction of the

spins matches the spatial travelling direction when travelling around a circular contour

at a fixed distance to the skyrmion core, yielding a positive vorticity, n > 0. In the case

in which the spins rotate in the direction opposite to the travelling direction, the spin

texture is an antiskyrmion with negative vorticity, n < 0. In that case, the magnetization

profile along a radial direction alternates between Néel-type and Bloch-type.

Chiral magnetic skyrmions are skyrmions stabilized by the DMI, and are there-

fore characterized by a given sense of rotation of the spins along a radial direction.

The type of the DMI also selects a particular category of skyrmion solutions. Néel

skyrmions are stabilized by interfacial DMI, which is typically found in systems such
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as Ir/Co/Pt, Pt/Co/AlOx, and Pd/Fe/Ir(111). Bloch skyrmions are stabilized by bulk

DMI, reported, for instance, in the bulk of MnSi, and antiskyrmions are stabilized by

anisotropic DMI, which was reported in tetragonal Heusler compounds. Chiral skyr-

mions possess a strongly localized core, with linear variations of the polar angle along

the radial direction, while the asymptotic profile of the tail far from the centre resem-

bles that of a ferromagnetic domain wall.

Another stabilization mechanism of skyrmions is found in frustrated Heisenberg

exchange, in which case, for instance, the exchange is ferromagnetic between first

neighbours, but antiferromagnetic beyond first neighbours. Skyrmions stabilized by

frustrated exchange possess a helicity degree of freedom, and in the absence of DMI,

skyrmions and antiskyrmions are degenerate in energy. The skyrmion core is strongly

localized, while, in the tail, the polar angle oscillates as a function of distance, indicat-

ing a reversal of helicity. While the interaction potential between chiral skyrmions is

only repulsive, the oscillations of the polar angle entails that the pairwise interaction

potential between skyrmions in frustrated magnets alternates between repulsive and

attractive.

Finally, skyrmion bubbles, or bubbles domains, can be stabilized by dipolar cou-

plings. Although they carry a topological charge, they do not exhibit the same topo-

logical properties as skyrmions and tend to be much bigger, with a weakly localized

core.

In the rest of this thesis, we will focus on ultrathin, perpendicularly magnetized

films, so that, in simulations, we can restrict ourselves to two spatial dimensions, and

the dipolar energy contribution may be taken as an effective anisotropy. In thin mag-

netic films (Co, Fe), the breaking of the structural inversion symmetry at an interface

with a heavy-metal exhibiting a strong SOC (Ir, Pd) gives rise to an interfacial type

of DMI, which in turns favours cycloidal magnetic textures and Néel skyrmions. This

is the type of system currently most envisioned for future spintronics applications, in

which isolated magnetic skyrmions are to be used as movable data bits. For such tech-

nological applications, a precise knowledge and understanding of the average lifetime

of isolated skyrmions at room temperature is necessary. Hence, in what follows, we

tackle the task of estimating the thermal stability of metastable magnetic skyrmions,

with particular emphasis on nanoscale chiral skyrmions stabilized, in most cases, by

interfacial DMI. The material parameters used in Chapters 4 and 5 of the present the-

sis partially correspond to Pt/Co/AlOx samples, which is one of the extensively studied

systems where nanoscale skyrmions have been experimentally observed. Additionally,

frustrated exchange was predicted to arise at certain types of interfaces by DFT calcu-

lations, most notably in Pdfcc/Fe, Rh/Fe, and Rh/Co bilayers on Ir(111). Therefore, we
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shall also study the thermal stability of skyrmions in a frustrated magnet in Chapter 6,

as it may well be relevant for applications.
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Chapter 3

Langer’s theory and application to
magnetic spin systems

3.1 Introduction

3.1.1 Preamble: on the theory of Brownian motion

The first account of Brownian motion is attributed to the botanist Robert Brown in

1827 [120] who observed aqueous suspensions of pollen grains under a microscope,

and found that the grains were performing “rapid oscillatory motion”. Throughout the

nineteenth century, this motion of a so-called Brownian particle immersed in a solvent

sparked many investigations and speculations regarding its origin, and the following

properties emerged:

• the trajectories are highly irregular and non-differentiable;

• the motion is independent of the nature of the particle: it is a universal phe-

nomenon of mechanical origin;

• the motion never ceases as constant energy is injected into it, and thus pertains to

the realm of out-of-equilibrium dynamics;

• the smaller the particles, the higher the temperature, and the higher the viscosity

of the fluid, the more active the motion.

As is well-known, it was Einstein who, in 1905, initiated the theory of Brownian

motion by combining the random walk process with the Maxwell-Boltzmann distri-

bution [121]. He attributed the cause of the motion to the thermal fluctuations of the

molecules of the solvent. In a frictionless fluid, a collision with a molecule of the sol-

vent would modify the velocity of the particle. However, in a viscous fluid, the change

39
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in velocity is rapidly dissipated, and the result is a change in the position of the parti-

cle. Einstein assumed that the overall result of the collisions is a kind of random walk

of the particle. The interplay of the injection of energy through collision, followed

by its dissipation through the fluid viscosity, is an example of what is known as the

fluctuation-dissipation theorem [122].

Consider a small particle of mass M immersed in a solvent at temperature T . The

following discussions are carried out in one dimension without loss of generality, and

the extension to higher dimensions is straightforward. Formally, the microscopic treat-

ment of the system would involve the Brownian particle and all the molecules of the

solvent. This is an N -body problem, where N ≈ 1023, which therefore cannot be solved

analytically. From the equipartition theorem in one dimension, the mean energy of the

particle is [48]
1
2
M〈v2〉 =

1
2
kBT , (3.1)

where v is the velocity of the particle, kB is Boltzmann’s constant, and T is the absolute

temperature. Let the the molecules of the solvent be of mass m, with m�M, then the

thermal velocity of the Brownian particle satisfies

vBP =
√
〈v2〉 =

√
kBT /M = vsolvent

√
m/M � vsolvent. (3.2)

If follows that the position, x, of the particle is a slow variable on the timescale of the

solvent. Einstein introduced a “coarse-graining” which eliminates the rapid degrees of

freedom of the solvent and leads to the apparent stochastic nature of the motion. The

solvent is then treated as a structureless medium with only a temperature T . Stochas-

ticity emerges because, if we were to consider a second system of the particle immersed

in the fluid, identical to the first system in all aspects but the initial conditions of the

molecules in the fluid, then the motion of the particle would be different. We consider

an ensemble of such systems, known as a Gibbs ensemble. While we cannot predict

the time-evolution of the (stochastic) macroscopic observables of the system, we can

predict that of ensemble averages. For instance, the probability to find the position of

the particle in the interval (x,x + dx) is equivalent to the number of systems of the en-

semble with positions found in the interval (x,x+dx) divided by the number of systems

in the ensemble. Since x is a continuous variable, let W (x, t) be a probability density,

also known in the literature as a probability distribution function of the variable x. Its

time evolution obeys a class of equations known as the Fokker-Planck equation (FPE),

which, in one dimension, takes the form [48]

∂W
∂t

=
[ ∂
∂x
D(1)(x) +

∂2

∂x2D
(2)(x)

]
W. (3.3)
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In Eq. (3.3), D(1)(x) is the drift coefficient, of deterministic origin, and D(2)(x) is the

diffusion coefficient, of stochastic origin. The FPE represents an equation of motion for

the distribution function.

In 1908, Langevin [123] postulated that the velocity v = dx/dt = ẋmust also be a slow

variable on the timescale of the solvent, and thus proposed a mechanistic description of

Brownian motion. A Brownian particle in a solvent will, first of all, feel a friction force,

whose expression is given by Stokes’ law, Fc = −ζv, where ζ is the friction coefficient.

Furthermore, Langevin introduced a stochastic fluctuating force Ff (t) in the form of

Gaussian white noise. That force contains all contributions from the rapid degrees of

freedom eliminated by the coarse-graining. Using Newton’s second law of motion and

dividing by the mass M of the particle, we arrive at Langevin’s equation for the motion

of a free Brownian particle,

v̇ = −γv + Γ (t), (3.4)

where v̇ = dv/dt, γ = ζ/M, and Γ (t) = Ff (t)/M is a fluctuating force per unit mass called

the Langevin force. Its statistical properties are as follows. Firstly,

〈Γ (t)〉 = 0, (3.5)

because on average, 〈v(t)〉 should obey the deterministic version of Eq. (3.4) obtained

by setting Γ (t) = 0. The symbol 〈. . .〉 corresponds to an ensemble average. Secondly, we

suppose that the collisions with different molecules of the fluid should be independent,

so that if we multiply two Langevin forces at different times, t and t′, the average value

is zero if the time difference | t − t′ | is larger than the average duration of a collision,

τ0, i.e., τ0 �| t − t′ |. Furthermore, τ0 is usually much smaller than the relaxation time

τ = 1/γ, and so we take the limit τ0→ 0, which yields,

〈Γ (t)Γ (t′)〉 = 2γkBT δ(t − t′), (3.6)

where δ(t−t′) is the Dirac distribution. Since Γ (t) is a Gaussian process, it is completely

characterized by (3.5) and (3.6). We can note that, although Einstein assumed that

the trajectory is non-differentiable, Langevin could define a velocity v by considering

a finer timescale for the coarse-graining. If the noise Γ (t) does not depend on x, it is

called additive. On the other hand, if it does depend on x, it is called multiplicative

noise, and requires an appropriate interpretation.
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Figure 3.1: Example energy surface of a system possessing a metastable local minimum
A and a lower energy minimum B, separated by an energy barrier at S. The case (a)
can be viewed as the one dimensional system treated by Kramers, or a projection of (b)
along the reaction coordinate. The case (b) is an example energy landscape for a system
possessing two degrees of freedom. In that case, the top of the barrier is a saddle point.
The reaction coordinate corresponds to the path of minimum energy connecting A, S
and M. If the saddle point is of first order, it constitutes a maximum of the energy
along the reaction coordinate, but a minimum along all the other degrees of freedom.

3.1.2 Reaction rate theory

Modern reaction rate theory initially developed independently from the theory of

Brownian motion. Its origin dates back to the 1880s, when Arrhenius [50] first de-

scribed the rate coefficient of a chemical reaction as

k = f0e
−∆E/kBT , (3.7)

where ∆E is the activation energy, and f0 is a prefactor. This equation subsequently

led to the representation of chemical reactions as an ensemble of particles situated

at the bottom of a potential well A (Fig. 3.1a). Over time, under the influence of

thermal agitation, rare particles may escape over a barrier of height ∆E � kBT at S,

and never return to A. In the context of transition state theory (TST), the Arrhenius

law is expressed as [50],

kTST =
ωA
2π
e−β∆E , (3.8)

where β = 1/kBT is Boltzmann’s constant. The attempt frequency ωA is the angular

frequency of a particle performing oscillatory motion at the bottom of the potential

well. The exponential Boltzmann factor weighs the escape from the well.

Reaction rate theory was set in the context of non-equilibrium statistical mechan-

ics in 1940 by the work of Kramers [82]. He chose to model a chemical reaction as a
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classical particle moving in a one dimensional potential E(x), in which x is the reac-

tion coordinate. The particle is coupled to its environment in the form of a heat bath

which remains in perpetual thermal equilibrium at temperature T . The coupling to the

heat bath is modelled by the Brownian motion performed by the particle [121], which

represents all the remaining degrees of freedom of the total system consisting of the

particle and the heat bath. Kramers assumed that a (Gibbs) ensemble of particles are

initially trapped in the potential well near A. They receive energy from their surround-

ings, such that a Maxwell-Boltzmann distribution is rapidly attained in the well. That

is, W (x, t) ∼ e−βE(x), so that, in other words, the number of particles with energy found

between E and E + dE is proportional to e−βE(x)dE. Over time, rare particles may gain

energy in excess of the barrier height and escape over the barrier at S to reach the lower

energy minimum B, never to return. The diffusion over the barrier is assumed to be a

quasi-stationary process, so that the disturbance to the Maxwell-Boltzmann distribu-

tion can be neglected at all times. The rate constant corresponds to the average number

of particles of the ensemble that cross the barrier per unit time. Kramers’ objective was

to derive a prefactor from a microscopic model of the reaction system, and insert it into

the TST result. The Kramers formula for the escape from an isolated well (no returns

from B) takes the form,

kKr = A
ωA
2π
e−β∆E , (3.9)

where A contains non-equilibrium effects caused by the disturbance to the Maxwell-

Boltzmann distribution at the barrier top, and describes deviations from the TST rate

in Eq. (3.8). That model is purely classical, and yields explicit formulas for the rate for

very low, and intermediate-to-high dissipative coupling to the heat bath.

In 1969, Langer [49] proposed the most complete treatment of the extension of

Kramers theory to a multidimensional phase space in the intermediate-to-high damp-

ing (IHD) regime [47]. His treatment is a generalization of a 1935 calculation by Becker

and Döring of the rate of condensation of a supersaturated vapour [124]. According to

Langer, if the characteristic disturbance that leads to the transition appears sponta-

neously as a thermodynamic fluctuation, it is an intrinsic property of the system and is

classified as a homogeneous disturbance. On the other hand, if it is caused by a foreign

object that is not part of the system, such as the presence of defects in the wall of the

container, it is classified as inhomogeneous, of lesser fundamental interest. It is the

former that was treated by Langer in his statistical theory for the decay of metastable

states. The extension to many degrees of freedom makes the theory applicable to mag-

netic spin systems, with interactions such as exchange and dipole-dipole couplings.

Within a multidimensional energy surface, (meta)stable states correspond to (local)

energy minima with respect to all degrees of freedom. The internal energy barrier, ∆E,
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is linked to the most probable path(s) through the energy landscape, in the form of

minimum energy paths (MEPs), which usually traverse a first-order saddle point (SP).

First-order saddle points represent a minimum of the energy with respect to all de-

grees of freedom, except one – the reaction coordinate, which connects states A, S, and

B. This is illustrated in Fig. 3.1b. If several saddle points are present in the energy

landscape, and the different transition processes can be considered independent from

one another, the total escape rate out of A is a priori given by the sum of the escape

rates over each saddle point.

The exponential Boltzmann factor in equation (3.7) shows that the decay of a meta-

stable state takes place over time scales which are much longer than the time scales

linked with the intrinsic dynamics of the system. For this reason, solely understanding

the dynamics of a system is not enough in order to predict the process(es) by which it

decays, and it is essential to study and understand the decay mechanisms themselves.

For systems with many degrees of freedom and many-body interactions such as mag-

netic spin systems, this is often an arduous task, and relying on numerical schemes

becomes almost unavoidable. The difficulty in computing transition rates for such a

class of systems thus lies in the precise identification of the first-order saddle point(s)

on the energy landscape on the one hand, and on the correct evaluation of the rate

prefactor, f0, on the other hand.

In this chapter, we firstly give the scope of Langer’s theory and how it can be applied

to magnetic spins systems in Sec. 3.2. In that context, we detail the calculation of the

main contributions entering in the rate prefactor. We then describe the GNEB method

[59] in Sec. 3.4, which enables the numerical computation of a minimum energy path

on the complex multivariable energy surface, and the precise identification of the first-

order saddle point on the path. Finally, in Sec. 3.5, we give details of the numerical

implementation of the different building blocks in Langer’s theory on the atomistic

spin lattice.

3.2 Langer’s theory in the IHD regime

3.2.1 Framework for the derivation of the rate expression

Langer’s theory describes the rate of decay of a metastable state under the effect

of thermal fluctuations, provided certain conditions are fulfilled. It is set within the

IHD regime, and the other main assumptions essentially mirror that of Kramers [82].

The barrier height must be large compared to thermal fluctuations, ∆E � kBT , so that

the diffusion over the barrier is slow enough as to ensure that a Maxwell-Boltzmann
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distribution is rapidly attained and maintained in the metastable well at all times. It

follows that the contribution to the flux over the saddle point will come mainly from

a small region around S [47]. This also ensures that barrier re-crossing events are

negligible, so that state B is viewed as a sink of probability. According to Ref. [47],

∆E ≥ 5kBT seems to be a reasonable lower bound for the energy barrier. Additionally,

we postulate small amplitudes of the fluctuations about the extrema states A and S,

so that the energy surface in their vicinity can be approximated as a quasiharmonic

potential. This assumption becomes more accurate at low T .

The Hamiltonian E(η) is function of 2N variables η = {η1,η2, . . .η2N }, which could be

coordinates and associated conjugate momenta of a point in phase space, or coordinates

describing the orientation of magnetic vectors. E(η) possesses two minima, A and B,

separated by a saddle point S, and E(ηA) > E(ηB). We assume that the energy in the

vicinity of the extrema states can be approximated as a Taylor series truncated to the

second order term,

E(η) ∼ E0(η̃) +
1
2

(
η − η̃

)
Hη̃

(
η − η̃

)T
, (3.10)

where η̃ = (η̃1 . . . η̃2N ) are the coordinates of a local extremum (the local minimum A or

saddle point S). At the extrema,
∂E
∂η

∣∣∣η̃ = 0, (3.11)

in which the notation ∣∣∣η̃ means the expression is evaluated at η̃, and

Hη̃ =



∂2E

∂η2
1
∣∣∣η̃ . . .

∂2E
∂η1∂η2N

∣∣∣η̃
...

...
∂2E

∂η2N∂η1
∣∣∣η̃ . . .

∂2E

∂η2
2N

∣∣∣η̃


, (3.12)

is the energy Hessian evaluated at η̃, which contains the second derivatives of the en-

ergy with respect to all degrees of freedom. It is symmetric and real, and therefore

Hermitian by construction, which ensures that it admits only real eigenvectors and

eigenvalues. The Hessian can be diagonalized by expanding small fluctuations about

the extrema in the eigenbasis,

ηi − η̃i = aiχi , (3.13)

where {ai}, i = 1 . . .2N is a set of eigenbasis coordinates characterizing the amplitudes

of the fluctuations, and {χi} is a set of orthonormal eigenvectors forming a complete
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basis in the space of configurations. They satisfy the eigenvalue equation,

Hχi = λiχi , (3.14)

where the {λi} are the eigenvalues of the Hessian. Because H is evaluated at energy

extrema, the {λi} correspond to the 2N curvatures of the energy landscape. From Eqs.

(3.10), (3.13), and (3.14), the energy of small deviations from an extremum can be

linearized as

E(η) ∼ E0(η̃) +
1
2

∑
i

λia
2
i . (3.15)

In what follows, we mainly follow the notations from [47, 50, 125]. The following

assumptions are made about the density of states of the system, ρ(η, t).

1. The time evolution of of the density of states ρ(η, t) obeys a Fokker-Plank equa-

tion,
∂ρ(η, t)
∂t

=
2N∑
i=1

2N∑
j=1

∂
∂ηi

Mij

[ ∂E
∂ηj

+ kBT
∂
∂ηj

]
ρ(η, t), (3.16)

where M = (Mij) is the transport matrix, which we assume to be constant. M
has a symmetric part D = 1

2(M + MT ), referred to as the diffusion matrix, which

characterizes the thermal fluctuations due to the heat bath, and an antisymmetric

part A = 1
2(M−MT ), which describes the motion in the absence of the heat bath.

Eq. (3.16) is linearized about the saddle point ηS by inserting (3.10) into (3.16),

which yields

∂ρ

∂t
=

∑
ij

∂
∂ηi

Mij

[∑
k

HS
jk(ηk − η

S
k ) + kBT

∂
∂ηj

]
ρ(η), (3.17)

in which the HS
jk are entries in the Hessian matrix evaluated at S. The FPE (Eq.

3.17) can be interpreted as a continuity equation of the 2N -dimensional proba-

bility current density Ji(η, t) as

∂ρ

∂t
=

∑
i

∂Ji
∂ηi

, (3.18)

where

Ji =
2N∑
j=1

Mij

[∑
k

HS
jk(ηk − η

S
k ) + kBT

∂
∂ηj

]
ρ(η, t). (3.19)
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Since we assumed quasi-equilibrium,

∂ρ

∂t
= 0. (3.20)

2. The high barrier ensures that, in the vicinity of A, the density of states corre-

sponds to the Maxwell-Boltzmann distribution,

ρ(η) = ρeq(η) =
1
Z
e−βE(η), η ∼ ηA, (3.21)

where

Z =
∫ ∞
−∞
. . .

∫ ∞
−∞
e−βEdη1 . . .dη2N (3.22)

is the partition function.

3. Practically no particles have reached the lower minimum S, so we have the sink

boundary condition

ρ(η) = 0, η beyond ηS . (3.23)

Although the system is assumed to be at quasi-equilibrium, there is a weak current

of rare particles over the barrier, in which case the density of states is written as

ρ(η) = ζ(η)ρeq(η). (3.24)

ζ is the crossover function which characterizes the diffusion over the barrier. It is

expressed as an error function of a single variable u as

ζ(η) = ζ(u) =
1

2πkBT

∫ ∞
u

exp
(
−
βz2

2

)
dz, (3.25)

where u is a linear combination of the ηi ’s,

u =
2N∑
i=1

Ui(ηi − ηSi ), (3.26)

with the Ui ’s chosen as constants. The rate k depends on j, the flux of particles over the

barrier, and nA, the number of particles in the metastable well, that is,

k =
j

nA
. (3.27)

The expression for the flux of particles is calculated [47, 49] by integrating the current
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Metastable
region

Saddle
region

Stable 
region

!" = 0 dividing surface

Current

!" - axis

Figure 3.2: Schematic view of the energy surface where a metastable region located at
a0 < 0 is separated from a more stable region (a0 > 0) by a saddle. a0 is the eigenbasis
coordinate associated with the unstable mode at the top of the barrier and represents
the reaction coordinate. A weak current of particles moving in the direction of increas-
ing a0, where each particle represents the entire system, originates from a small region
around the saddle point and reaches the more stable region. The rate k of the transition
is given by the ratio of the current over the barrier and the number of particles in the
metastable region.

density (Eqs. (3.18) and (3.17)) through the plane u = 0 as

j =
∑
i

∫
u=0

Ji(η)dSi . (3.28)

u is, in fact, parametrized by a0, which is the eigenbasis coordinate associated with the

unstable mode at the top of the barrier, and corresponds to the reaction coordinate.

By convention, the dividing surface defined by a0 = 0 passes through the saddle point,

while the metastable (saddle) region is found at negative (positive) values of a0. This is

represented in a schematic view of the energy landscape in Fig. 3.2. The corresponding

eigenvector χ0 gives the direction of the current.
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The number of particles in the well, nA, is calculated by integrating the density of

states in the well (Eq. 3.21),

nA =
∫
. . .

∫
ρeqdη1 . . .dη2N

= Z−1
∫
. . .

∫
e−βEAdη1 . . .dη2N ,

(3.29)

in which the partition function, Z, was previously defined in Eq. (3.22). In the previous

expression, EA = E(ηA) is subsequently linearized according to Eq. (3.15). This term,

as well as (3.28), yield products of Gaussian integrals of the form,

2N∏
i=1

∫ +∞

−∞
exp

− β2λia2
i

dai =
2N∏
i=1

√
2π
βλi

. (3.30)

In the end, the total rate of escape out of state A is expressed as

k =
λ+

2π
Ω0e

−β∆E =
λ+

2π

√
detHA

|detHS |
e−β∆E , (3.31)

where Ω0 is the ratio of energy curvatures in the metastable well and at the saddle

point, and λ+ is the dynamical contribution that takes into account the dissipative dy-

namics of the system at the top of the barrier, and constitutes a correction from TST

rates. This results pertains to the IHD regime due to the quasiharmonic approximation

of the energy that was performed in the vicinity of the extrema. At high damping, the

system relaxes faster and explores less of its phase space. Low damping, on the other

hand, implies that the system takes longer to relax back to the equilibrium state after

a perturbation, and consequently visits a wider area of its phase space. At very low

damping, the region where the density of states deviates from the Maxwell-Boltzmann

distribution – i.e. the region where the system deviates from equilibrium – extends be-

yond the small region around the saddle point in which the potential may be replaced

by a quadratic approximation, so the theory fails.

The meaning and derivation of the terms in Eq. (3.31) for magnetic spin systems are

discussed in what follows. The escape rate may also be written in terms of the partition

functions around the states A and S, respectively ZA and ZS as [126]

k =
λ+
2π

ZS
ZA
. (3.32)
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3.2.2 Ratio of energy curvatures: interpretation and the case of Gold-

stone modes

When evaluated at an extremum, the {λi} correspond to the 2N curvatures of the

energy surface in normal mode space. A positive (negative) curvature corresponds to

a mode of stable (unstable) fluctuations. A zero-curvature corresponds to a Goldstone

mode of zero energy fluctuation, and is associated with a continuous unbroken global

symmetry [49, 52]. In the case of a first-order saddle point, all curvatures at A and

S are either positive or zero-curvatures, aside from a single negative curvature at the

top of the barrier. This unstable mode is the one that will eventually allow the system

overcome the barrier and reach the lower energy minimum.

In the absence of Goldstone modes, the factor Ω0 in Eq. (3.31) is obtained from the

square root of the product of the curvatures of the energy at states A and S,

Ω0 =

√
detHA

|detHS |
=

√√ ∏
i λ

A
i∏

j |λSj |
. (3.33)

The case of zero-curvatures

If the Hessian contains one or several zero-eigenvalue(s) at A and/or S, the contri-

bution of the zero-mode(s) to the prefactor needs to be handled separately. The zero-

eigenvalue is removed from the determinant of the Hessian, and instead of a Gaussian

integral (Eq. (3.30)), we get a contribution of the type∫
dal , (3.34)

where al is the eigenbasis coordinate associated with the zero-eigenvalue λl , and the

integration is performed over the domain of al . If this domain is finite, we get a finite

contribution to the prefactor. If we assume we have k zero-eigenvalues in the Hessian,

we get,

v =
∫
dal1

∫
dal2 . . .

∫
dalk , (3.35)

where v is the volume of the k-dimensional subspace associated with the variables {alj },
j = 1 . . . k, that correspond to zero-eigenvalues. Additionally, a factor (2π/β)−1/2 appears

for each Goldstone mode at S, and (2π/β)1/2 appears for each Goldstone mode at A.

This is because the (2π/β)1/2 factors in Eq. (3.30) no longer cancel out if the number of

Gaussian integrals entering in the final expression of Ω0 differs between A and S. In

other words, if the number of Goldstone modes is non-zero and different at A and S,

the attempt frequency obtains a temperature-dependence. Hence, in the more general
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case where there are kA zero-curvatures at A and kS zero-curvatures at S, Eq. (3.33)

becomes

Ω0 =

2π
β

(kA−kS )/2
√

det′HA

| det′HS |
vS
vA
, (3.36)

where det′ is a determinant calculated after removing the zero-eigenvalues, and vA, vS
are the volumes associated with the Goldstone modes at A and S.

Langer’s theory treatments of rotational and translational Goldstone modes in mag-

netic spin systems were previously carried out in works by Braun [52] and Loxley [126].

We can also mention the more recent Refs. [63, 109] where it was done numerically in

the context of skyrmion lifetimes. Although the authors used a different version of

reaction rate theory, namely Harmonic TST (HTST) [127], the extension of HTST to

include Goldstone modes is the same as that of Langer’s theory. Eq. (3.36) should

also come with some form of criterion for when an eigenmode should be treated as a

Goldstone mode. Numerically – and experimentally – an energy curvature of exactly

zero will in principle not exist. An intuitive idea for such a criterion is that a curva-

ture will appear flat to the system if it is small compared to the amplitude of thermal

fluctuations. For translational Goldstone modes, the limit [109, 128]

1
2
λtrv

2 / kBT , (3.37)

where λtr ≈ 0 is an eigenvalue associated with a translation mode, was proposed.

Change in entropy

To interpret the physical meaning behind Ω0, we examine Eq. (3.33). The product

of curvatures evaluated at an extremum in the energy surface,
(∏

i λ
A,S
i

)−1
, can be seen

as a measure of the total volume of configuration space (η-space) accessible to ther-

mal fluctuations in that particular state. The ratio of eigenvalues thus corresponds to

the change in that volume induced by the transition from A to S. In other words, it

characterizes the relative volume of the saddle point region. Ω0 � 1 is interpreted as

a large volume of the metastable well, and/or a narrow saddle region in η-space (eg:

Fig. 3.1b). As a consequence, the probability that the system will visit the saddle re-

gion is low. These considerations bring us to the notion of entropy, which measures the

number of micro-realisations which exist for a given macrostate, and is also commonly

interpreted as a measure of disorder. As entropy is normally defined for a stable equi-

librium state, we define the change in configurational entropy ∆S with respect to stable
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fluctuations only. If the saddle point is of first order, this corresponds to [126]

e∆S/kB ≡
√

β

2π

√√∏
i λ

A
i∏′

j λ
S
j

, (3.38)

where
∏′ is defined for positive curvatures, and an additional (β/2π)1/2 factor is needed

to keep the dimension consistent. The total activation energy corresponds to the change

in Helmholtz free energy, and takes into account the change in internal energy, ∆E, and

the change in entropy, ∆S, such that ∆F = ∆E − T∆S. It follows that Eq. (3.33) can be

expressed as

Ω0 =

√
2π

β|λS1 |
e∆S/kB , (3.39)

in which λS1 is the negative curvature at S. The factor Ω0 is thus a measure of the num-

ber of available configurations, and gives the entropic contribution to the prefactor.

More generally, if the saddle point is of order k, i.e., if k unstable modes exist at S, Eqs.

(3.38) and (3.39) may be generalized as

e∆S/kB ≡
 β2π

k/2
√√∏

i λ
A
i∏′

j λ
S
j

, (3.40)

and

Ω0 =

2π
β

k/2√∏′′

j

|λSj |−1e∆S/kB , (3.41)

in which
∏′′ is a product over negative curvatures.

3.3 Application to magnetic spin systems

In what follows, we consider a system of N magnetic spins on a lattice, for which the

change in their magnitude is generally much faster than the change in their orienta-

tion. This separation of timescales justifies the assumption that the amplitudes of the

moments remain constant. The system can thus be described in terms of orientations

of the moments alone, and the energy surface reduces to a 2N -dimensional landscape.

Below, we provide details of the derivation of the different contributions to the rate

prefactor of Langer’s theory, in the context of its application to a system of magnetic

spins. The restriction to the IHD regime means that the scope of the theory is limited

to cases where the precessional dynamics can be neglected, in the sense that it does not

significantly impact the transition path, and the time scale of the transition is set by

the dissipation rate.
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One requirement of Kramers’ method – and subsequently Langer’s theory – is that

the system may be modelled by the theory of Brownian motion. For magnetic systems,

the environment acts a heat bath of constant temperature T . The magnetic vectors

interact with the fast degrees of freedom of the environment in the form of phonons,

conducting electrons, nuclear spins, etc. [68], leading to fluctuations in their orienta-

tion. The interactions of the spins with the environment may be modelled by a fast,

fluctuating, stochastic magnetic field. The equation that governs the dynamics of the

magnetic vectors, namely the Landau-Lifshitz-Gilbert equation (Eq. (3.46)), may be

cast into a Langevin equation with multiplicative noise by including this term. This

will be explored in more details in Chapter 5.

In the past, Langer’s theory was successfully applied to the analytical treatment of

incoherent magnetization reversals by Braun in nanowires [52], and by Loxley and

Stamps in soft/hard nanowires [53]. The first numerical implementations of the theory

for magnetic spin systems are more recent and were performed in conjunction with

the finite element method [62] for magnetization reversal problems in graded media

grains.

3.3.1 Construction of the energy Hessian in spherical coordinates

The total energy of the system may be expressed in terms of spherical coordinates

on the unit sphere E(θ,φ), where θ = (θ1 . . .θN ) is the polar angle with respect to the

Cartesian z-axis and φ = (φ1 . . .φN ) is the corresponding azimuth in the xy-plane (see

Sec. 2.1). In principle, it is necessary to define canonically conjugate variables (p,q)

[47, 49, 62], such that

p = cosθ

q = φ. (3.42)

According to Langer’s initial definitions, the total energy is a function ofN coordinates

and N canonically conjugate momenta [49]. However, even if the energy is only a

function of the coordinates, the equipartition theorem holds [125]. The use of variables

such as the ones defined in Eq. (3.42) ensures the Jacobian

Ji = det
∂(mix,miy ,miz)

∂(pi ,qi ,1)
= dpidqi (3.43)

is not a function of (θi ,φi) [62]. In this thesis however, the Hessian matrix is con-

structed in spherical coordinates. This choice is simply a matter of convenience, as

analytical expressions of the energy derivatives become heavy when using the change
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of variable p = cosθ. The choice of spherical coordinates requires corrections in the

Hessian to take into account the spherical Jacobian, which we give in what follows. We

define the spherical Hessian as

H =

Hθθ Hθφ
Hφθ Hφφ

 , (3.44)

in which

Hθiθj =
∂2E
∂θi∂θj

,

Hθiφj =
1

sinθj

∂2E
∂θi∂φj

,

Hφiθj =
1

sinθi

∂2E
∂φi∂θj

,

Hφiφj =
1

sinθi sinθj

∂2E
∂φi∂φj

.

(3.45)

Even though the total Hessian remains symmetric, it is necessary to remain cautious

with the introduction of a DMI contribution as it makes theHθφ submatrix non-symmetric.

Therefore in general, Hφθ =HT
θφ ,Hθφ, contrary to the way it was treated in Ref. [47].

3.3.2 Determination of the dynamical prefactor λ+

The dynamical prefactor takes into account the dynamics of the system at the saddle

point and is derived from the set deterministic Landau-Lifshitz-Gilbert (LLG) equa-

tions associated with each spin mi , i = 1 . . .N [47],

dmi

dt
= −

[
g ′mi ×

∂E
∂mi

+ h′
(
mi ×

∂E
∂mi

)
×mi

]
, (3.46)

where

g ′ =
γe

(1 +α2)Ms
(3.47)

corresponds to the gyromagnetic ratio γe modified by a dimensionless damping factor

α = ηγeMs, in which Ms is the saturation magnetization and η is a damping parameter

characterizing the coupling to the heat bath, and

h′ = αg ′. (3.48)

It follows that the first term on the RHS of Eq. (3.46) is the Larmor equation describing

the precession of the magnetization vector mi , and the second term is an alignment

term whose effect is measured by h′. The following derivation was adapted to spherical
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coordinates from [125]. We begin by reformulating Eq. (3.46) within the local spherical

basis (er ,eθ,eφ) in the following way:

dmi

dt
=
der
dt

=
∂er
∂ri

ṙi +
∂er
∂θi

θ̇i +
∂er
∂φi

φ̇i ,

= θ̇ieθ + sinθiφ̇ieφ,
(3.49)

mi ×
∂E
∂mi

= er ×
( ∂E
∂θi

eθ +
1

sinθi

∂E
∂φi

eφ
)
,

=
∂E
∂θi

eφ −
1

sinθi

∂E
∂φi

eθ,
(3.50)

mi ×
∂E
∂m i

×mi =
( ∂E
∂θi

eφ −
1

sinθi

∂E
∂φi

eθ
)
× er ,

=
∂E
∂θi

eθ +
1

sinθi

∂E
∂φi

eφ.
(3.51)

By inserting Eqs. (3.49), (3.50), and (3.51) into Eq. (3.46), and equating the terms along

eθ and eφ respectively, we obtain the following set of differential equations:

dθi
dt

=
g ′

sinθi

∂E
∂φi
− h′ ∂E

∂θi
,

dφi
dt

=
−g ′

sinθi

∂E
∂θi
− h′

sin2θi

∂E
∂φi

. (3.52)

The next step consists in approximating the energy close to the saddle point

(θ̃, φ̃) = (θ̃1, . . . θ̃N , φ̃1, . . . φ̃N ) as a Taylor series truncated to the second order term,

E(θ1, . . .θN ,φ1, . . .φN ) =ES(θ̃1, . . . θ̃N , φ̃1, . . . φ̃N )

+
1
2

∑
i,j

{
HS
θθij

(θi − θ̃i)(θj − θ̃j) +HS
φφij

(φi − φ̃i)(φj − φ̃j)

+HS
θφij

(θi − θ̃i)(φj − φ̃j) +HS
φθij

(φi − φ̃i)(θj − θ̃j)
}
,

(3.53)

where ES is the energy at S andHS
θθ,HS

φφ,HS
θφ ,HS

φθ are the submatrices in the spherical

Hessian defined in Eq. (3.45) and evaluated at S. Taking the derivative of Eq. (3.53) in

θi and φi then yields

∂E
∂θi

=
∑
j

(
HS
θθij

(θj − θ̃j) +
1
2

(
HS
θφij

+HS
φθji

)
(φj − φ̃j)

)
,

∂E
∂φi

=
∑
j

(
HS
φφij

(φj − φ̃j) +
1
2

(
HS
θφji

+HS
φθij

)
(θj − θ̃j)

)
. (3.54)
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By noting that Hφθji =Hθφij and Hθφji =Hφθij , the above equations reduce to

∂E
∂θi

=
∑
j

(
HS
θθij

(θj − θ̃j) +HS
θφij

(φj − φ̃j)
)
,

∂E
∂φi

=
∑
j

(
HS
φφij

(φj − φ̃j) +HS
φθij

(θj − θ̃j)
)
. (3.55)

Finally, by inserting (3.55) into (3.52) evaluated at S, and defining small deviations

from the saddle point as Θ = θ − θ̃ and Φ = φ − φ̃, we obtain the following system of

equations linearized about the saddle point, which we write in matrix form,Θ̇
Φ̇

 = T
Θ
Φ

 , (3.56)

in which the dot notation is a time derivative and

T =

Tθθ Tθφ
Tφθ Tφφ

 (3.57)

is the transition matrix of LLG, where

Tθiθj = g ′HS
φiθj
− h′HS

θiθj
,

Tθiφj = sin θ̃j
(
g ′HS

φiφj
− h′HS

θiφj

)
,

Tφiθj = − 1
sin θ̃i

(
g ′HS

θiθj
+ h′HS

φiθj

)
,

Tφiφj = −
sin θ̃j
sin θ̃i

(
g ′HS

θiφj
+ h′HS

φiφj

)
,

(3.58)

define its submatrices. Similarly to the Hessian, the transition matrix is a 2N × 2N

matrix, but the number of positive eigenvalues it possesses equates to the order of

the saddle point. The diagonalized transition matrix contains the eigenfrequencies of

the system at the saddle point. In the most common configuration where the saddle

point is of first order, the single positive eigenvalue of T is taken as the dynamical

contribution to the attempt frequency, λ+, and is interpreted as the growth rate the

dynamically unstable deviation at the saddle [47]. In the case of a higher-order saddle

point, it is not clear whether Langer’s theory still applies. In [125], it was proposed that

if several unstable modes are present at S, λ+ should be chosen as the biggest – i.e., most

positive – eigenvalue of T , thus giving the rate of the fastest growing instability. We

can note that the transition matrix is not symmetric and can in principle admit complex

eigenvalues and eigenvectors. Although we have only encountered real eigenvalues in
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this thesis, one example of a complex λ+ can be found in Ref. [125] in the case of the

antiferromagnetic reversal of two ferromagnetic particles. In that case, λ+ should be

taken as the largest real part amongst the eigenvalues. Rewriting Eq. (3.57) in the

eigenbasis yields Θ̇′
Φ̇ ′

 = T ′
Θ′
Φ ′

 , (3.59)

where (Θ′,Φ ′) are the eigenbasis coordinates and T ′ is the diagonalized transition ma-

trix. In particular, the unstable mode evolves as(
Θ′+(t),Φ ′+(t)

)
= eλ+t

(
Θ′+(t = 0),Φ ′+(t = 0)

)
. (3.60)

If λ+ is real, the instability grows exponentially. On the other hand, if λ+ is a complex

number, λ+ = σ + iω with σ,ω ∈R, i2 = −1, and σ > 0, so(
Θ′+(t),Φ ′+(t)

)
= eσteiωt

(
Θ′+(t = 0),Φ ′+(t = 0)

)
, (3.61)

in which eiωt is a phasor. In that case, the time evolution of the instability is a sinusoid

inside a growing exponential envelope. In all cases, the timescale of the transition is

set by the damping and the characteristic precession time, Ms/(J1γe).

3.4 The geodesic nudged elastic band method

The nudged elastic band method (NEB, or NEBM) [55,56] is a numerical scheme de-

signed to compute paths of minimum energy through the (often complex) multidimen-

sional energy landscape of a system connecting two energy minima. The NEB method

has been most commonly used for transitions involving atomic rearrangements. The

method consists in specifying a discrete representation of an initial path between the

two minima corresponding to the initial and final states of the system for the transi-

tion of interest, and iteratively bringing the path to the nearest minimum energy path

(MEP). Each discretization point along the path corresponds to a state of the complete

system in the space of configurations, and is referred to as an image. Adjacent images

are connected with springs that allow control over the resolution of the path and pre-

vent the images from sliding down towards energy minima. A considerable advantage

of the NEB method over similar methods of finding a MEP is that it does not require

an initial guess of the reaction coordinate. Instead, it is naturally found as the path

relaxes to a MEP, at which point the tangent to the path provides a good estimate of

the reaction coordinate. A MEP is a path of highest statistical weight and therefore

corresponds to a particular mechanism of the considered transition. As was touched

upon in the previous section, there can be one or several MEP(s), each of them associ-
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(a) (b)

Figure 3.3: (a) Illustration of an elastic band in the GNEB method for a single spin
system m. The unit sphere S2 corresponds to the space of configurations. The path
between the initial state mI and the final state mF is discretized into a series of images
{mν}, ν = 1 . . .Q, marked as orange dots. (b) Illustration of the NEB method on a two-
dimensional energy landscape. The elastic band is a chain of images represented by
small spheres. The initial path is shown in black. After minimization, the path relaxes
to the MEP shown in white, which passes over two first-order saddle points separated
by a local minimum (image source: [67]).

ated with a specific mechanism and transition rate. In particular, the NEB method can

be combined with a scheme that allows a precise identification of the first-order sad-

dle point along the path, such as the climbing image (CI) NEB, known as CI-NEB [58],

and thus constitutes an important building block for a numerical implementation of

reaction rate theory.

The geodesic NEB method (GNEB) is a variant of the NEB method adapted to mag-

netic systems which was developed by Bessarab et al. [59]. It solves potential conver-

gence problems of the NEB method when applied to magnetic spin systems, by taking

into account the curved geometry of the space of configurations. Its key features lie in

the use of geodesics to calculate distances between images, and in the projection of the

tangent to the path and of the force acting on the images onto the space tangent to the

space of configurations. In what follows, we expose the principles of this method and

provide details of its implementation.

3.4.1 Projections onto the tangent space to the manifold

The rest of this section is based on [59]. As we have assumed that the amplitude

of the magnetic vectors remains fixed, each magnetic vector mi thus lives on the unit

sphere associated with site i, S2
i , with its orientation specified by two coordinates (Fig.

3.3a). For instance, one may choose the spherical angles (θ,φ). The configuration space
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of a system of N spins is the 2N -dimensional Riemannian manifold R obtained from a

direct product of the N two-dimensional unit spheres S2
i ,

R =
N∏
i=1

S2
i . (3.62)

In the GNEB scheme, the local tangent to path, as well as the total force acting on each

image, are projected onto the tangent space to the manifold. We define the tangent

space to the unit sphere, S2
i , at mi , as the span of all vectors x normal to mi , that is,

Tmi
S2
i = {x : x ·mi = 0}. (3.63)

The tangent space to the 2N -dimensional Riemannian manifold R is simply defined as

the product of the tangent spaces to each sphere,

Tmi
R =

N∏
i=1

Tmi
S2
i . (3.64)

The projection of a three-dimensional Cartesian vector ai onto Tmi
R is carried out by

substracting its component along mi ,

ai,T = ai − (ai ·mi)mi . (3.65)

In this section, we choose the following convention: while all vectors remain in bold,

local three dimensional vectors a will be represented by a lowercase letter, while 3N -

dimensional vectors are written as the corresponding uppercase letter as A = (a1,a2, . . .aN ).

We can now define the projection of a 3N -dimensional vector A onto the tangent space

to the R-manifold as

PT A = (a1,T ,a2,T , . . .aN,T ). (3.66)

3.4.2 The GNEB method

We construct a chain of Q images, [M1,M2 . . .MQ] (Fig. 3.3a), where each image

Mν = (mν
1 ,m

ν
2 . . .m

ν
N ), with ν = 1 . . .Q, is a 3N -dimensional Cartesian vector. The chain

of images constitutes the elastic band. The first and last images, M1 = MI and MQ =

MF , are chosen as energy minima corresponding to the initial and final states of the

transition, and remain fixed. The remaining images are iteratively brought to a MEP

through minimization of the total GNEB force acting on them (Fig. 3.3b). That force is

the sum of the negative energy gradient perpendicular to the path, i.e., the true force,

and a spring force acting along the path. This requires an estimation of the tangent to



60 3.4. The geodesic nudged elastic band method

the path at each image.

The tangent to the path at image ν, τν , is evaluated as detailed in Sec. 3.4.3, and

projected onto the tangent space according to Eq. (3.66),

τνT =
PT τν

| PT τν |
. (3.67)

The true force acting on image ν originates from the transverse (perpendicular) com-

ponent of the negative gradient, and is obtained by subtracting the component of the

gradient along the tangent to the path,

∇E(Mν)⊥ = ∇E(Mν)−
(
∇E(Mν · τνT

)
τνT . (3.68)

The spring force, on the other hand, only has a component along the path tangent and

its magnitude depends on the geodesic distances between adjacent images, that is,

FνS‖ = κν
[
L(Mν+1,Mν)−L(Mν ,Mν−1)

]
τνT . (3.69)

In the previous expression, κν is the spring constant at image ν, which can be chosen

to be constant at all images, or it may be adjusted to gain resolution in critical areas,

typically around a saddle point. We give details on the variable spring scheme [58]

later in this section. L(Mν ,Mµ) is the geodesic distance between two images ν and µ on

the R-manifold. It is defined as

L(Mν ,Mµ) =
√

(l
ν,µ
1 )2 + (l

ν,µ
2 )2 + . . .+ (l

ν,µ
N )2, (3.70)

where the l
ν,µ
i is the local geodesic distance between ν and µ on the unit sphere S2

i ,

which we evaluate as

l
ν,µ
i = 2arcsin

√
1−mν ·mµ

2
. (3.71)

This projection of the true force and the spring force using the tangent to the path is

referred to as “nudging”. Finally, the total GNEB force acting on image ν needs to

be projected onto the tangent space. In the end, the force applied to the images is

expressed as

FνGNEB = PT
(
−∇E(Mν)⊥ + FνS‖

)
. (3.72)

The projection of the tangent to the path onto the tangent space to the curved manifold

allows a decoupling of the spring force and the true force, so that they do not interfere

with each other. If this procedure is not carried out, the control over the distribution of

images is lost and the scheme becomes sensitive to the value of the spring constant [59].
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The path will usually converge to the MEP closest to the initial path. If several transi-

tion mechanisms exist, several runs of the GNEB scheme with different initializations

of the path must to be carried out, until all possible MEPs are identified. An example

run of the GNEB scheme is shown in Fig. 3.4 for a single spin reversal with a hard-axis

along z. The path is initialized out of plane with some random noise added to the ini-

tial distribution of the images. The scheme iteratively brings the path to the xy-plane

and uniformly redistributes the images.

3.4.3 Evaluation of the tangent to the path

An appropriate definition of the tangent to the path at image ν, τν , is one key aspect

to the stability of the method. We used the definition from [59],

τν =

τ
ν
+, if Eν+1 > Eν > Eν−1,

τν−, if Eν+1 < Eν < Eν−1,
(3.73)

where τν+ = Mν+1 −Mν and τν− = Mν −Mν−1, and Eν = E(Mν). If the image is close to a

maximum or a minimum in the energy,

τν =

τ
ν
+∆E

ν
max + τν−∆E

ν
min if Eν+1 > Eν−1,

τν+∆E
ν
min + τν−∆E

ν
max if Eν+1 < Eν−1,

(3.74)

where ∆Eνmax = max
(
|Eν+1−Eν |, |Eν−1−Eν |

)
and ∆Eνmin = min

(
|Eν+1−Eν |, |Eν−1−Eν |

)
. Eq.

(3.74) provides a smooth transition between the forward and backward definitions, τν+
and τν−. The above definition of the tangent to the path according to Eqs. (3.73) and

(3.74) enhances the stability of the method by preventing the formation of kinks in the

path [129].

3.4.4 Initialization of the path along geodesics

The initialization of the GNEB scheme requires an initial path between the initial

states to be generated. If a good guess cannot be made, a solution is to evenly dis-

tribute the images along the geodesic path connecting the first and last image. We

have followed the procedure described in [59], which makes use of Rodrigues’ rotation

formula to generate the orientation of the local magnetic vector mν
i at image ν as

mν
i = mF

i cosωνi + (ki ×mI
i )sinωνi , (3.75)
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where ωνi is the rotation angle and ki is the rotation vector. The angle of rotation ωνi is

a fraction of the total angle ωi between mI
i and mF

i ,

ωνi =
(ν − 1)ωi
Q − 1

, (3.76)

and ωi = arccos(mI
i ·m

F
i ). Finally, the normalized axis of rotation is defined by

ki =
mI
i ×mF

i

|mI
i ×mF

i |
. (3.77)

3.4.5 Search for the first-order saddle point: the CI-GNEB scheme

If one is only looking to estimate the energy barrier, this can in principle be done by

interpolating the energy along the relaxed path. However, the use of Langer’s theory

to calculate a rate prefactor, like any modern form of reaction rate theory, requires

a precise identification of the saddle point along the MEP. This can be achieved by a

climbing image (CI) scheme [58]. After the regular GNEB scheme has relaxed down to

a certain tolerance on the GNEB force, the highest energy image becomes a climbing

image. The spring force on this particular image is dropped, and instead the CI is

made to move uphill in energy along the reaction coordinate, which is defined by the

tangent to the path, and downhill in energy along all other degrees of freedom. For

that purpose, the force acting on the CI takes the form,

FνCIGNEB = PT (−∇E(MνCI ) + 2(∇E(MνCI ) · τνCIT )τνCIT ). (3.78)

By minimizing the force acting on it, the CI will, in most cases, relax to the highest

energy first-order saddle point on the path. If an energy interpolation reveals the ex-

istence of multiple saddle points along the path, two or more climbing images may be

specified. During the CI-GNEB procedure, the rest of the images still need to be dis-

placed according to Eq. (3.72). Like previously, the procedure ends once the force on

all images is relaxed below a set tolerance. We can verify that we have indeed found a

first-order saddle point by checking that the Hessian evaluated at that point possesses

only a single negative eigenvalue.

3.4.6 Variable spring constants

The spring force in Eq. (3.69) that controls the distribution of images along the path

may be adjusted as to increase the resolution of the path in certain areas of interest.

Typically, a better resolution around the saddle point will increase the accuracy of the

path tangent and provide a better estimate of the reaction coordinate for the climbing
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Figure 3.4: Illustration of the GNEB scheme for a single spin m undergoing a mag-
netization reversal from mx = −1 to mx = 1 with easy-axis anisotropy along ex, and
hard-axis anisotropy along ez. The initialization is done out-of-plane with a random
noise added to the distribution of the images and the scheme iteratively brings the
images in-plane and redistributes them uniformly along the path.

image to follow. Because the true force and the spring force are decoupled, the use of

different springs between different pairs of images does not affect the convergence to

the MEP, as long as the number of images is sufficient. We have used the scheme pro-

posed in [58] which results in lower energy images being connected by weaker springs,

as follows,

κν =


κmax −∆κ

(Emax −Eνmax

Emax −Eref

)
if Eνmax > E

ref,

κmax −∆κ if Eνmax ≤ Eref.
(3.79)

κν is the spring constant associated with spring ν (where ν = 2 . . .Q) connecting images

ν − 1 and ν, Eνmax = max(Eν−1,Eν) is the highest energy of the two images connected by

spring ν, and Emax is the maximum value of Eν amongst all images. Eref is a reference

value for the energy, which we set as the highest energy of the initial and final states,

Eref = max(EI ,EF) as suggested in [58]. This results in a maximum value of the spring

constant of κmax between highest energy images, and a minimum value of κmax −∆κ
for images with energy Eref or lower.

We have found that in certain cases, possibly when two MEPs exist close to each

other, using variable springs might even lead to a different MEP with a different sad-

dle point, compared to the same GNEB run with constant springs. This occurs, for

instance, when relaxing the paths to collapse of chiral skyrmions. While the regular

GNEB scheme with constant springs along the elastic band relaxes the path where the

skyrmion core remains centred on a lattice site (mechanism no1), the addition of vari-

able springs when the path is initialized as geodesics according to Sec. 3.4.4 leads to a

separate mechanism being relaxed, in which the skyrmion core shifts to an interstitial

position (mechanism no2). These two mechanisms will be described in more details in

Sec. 4.3.
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3.5 Implementation of Langer’s theory on an atomistic

spin lattice

3.5.1 Atomistic simulations and search for local minima

The following methods were implemented by the author as an atomistic code in C++

language over the course of this thesis. The calculations were carried out in Cartesian

coordinates, with the exception of the rate prefactor. All quantities are dimensionless,

in units of the isotropic exchange coupling constant between first neighbours, J1 = Jex,

as defined in Sec. 2.1.4. The atomistic Hamiltonian on the two-dimensional square

lattice is calculated from Eq. (2.1). The reduced local effective field acting on spin mi

at site i is

bieff = − 1
J1

∂E
∂mi

. (3.80)

We relax local energy minima by the simple iterative energy minimization procedure

described in Sec. 11.2 of Ref [130]. The system is initialized close to a local energy

minimum of interest. For instance, we initialize a central square of reversed spin on

a ferromagnetic background in order to relax a skyrmion. After that, a normalized

effective field at spin i,

b̂
i
eff = bieff/ | b

i
eff |,

is calculated according to Eq. (3.80), and mi is aligned onto the local field by simply

setting mi = b̂
i
eff. We then move on to another spin and proceed analogously. The

iterations end when the largest component of mi × b̂
i
eff falls below a set tolerance ε. In

general we set ε ∈ [10−8−10−15]. This method converges to the minimum that is closest

to the initialization state, and is therefore well adapted to the search for metastable

states. While it may fail for very simple cases (eg: a single macrospin), it works well

for N−spin systems (N > 1) and yields the same results as the integration of the LLG

equation (Eq. (3.46)) at zero temperature.

3.5.2 Implementation of GNEB

Overview of the GNEB algorithm

We give an overview of the GNEB and CI-GNEB algorithm:

• The first and last images, MI and MF , are initialized as energy minima. These are

usually previously generated via the method described in Sec. 3.5.1, or they may

also be relaxed through integration of the LLG equation (3.46), or via the GNEB

scheme [59].
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• An initial path [M2,M3 . . .MQ−1] between MI and MF is generated, either along

geodesics as described in Sec. 3.4.4, or it is manually implemented as part of an

initial guess.

• The GNEB scheme begins and runs until all Cartesian components of the local

force on each spin at each image falls below a set tolerance Ftol.

• The highest energy image is selected as the climbing image and the CI-GNEB

scheme runs until the force falls below the set tolerance.

• The energy between the images is interpolated by a piecewise cubic interpolation,

as described in [59].

Choice of solver

Although one could choose to integrate a precessionless version of the LLG equation

at each timestep, in our case the force minimization during the (CI)-GNEB procedure

was done as suggested in [59], by simply integrating Newton’s equations for the motion

of a fictitious point-mass on the unit sphere (Fig. 3.4), where the total force is the GNEB

force, i.e.,

FνGNEB =mΓν . (3.81)

In the previous expression, m is an arbitrary mass that controls the inertia of the im-

ages, which we set to m = 1, and Γν = d2Mν/dt2 = (γν1 ,γ
ν
2 . . .γ

ν
N ) is the acceleration of

image ν. The value of the spring constant κmax is not critical in GNEB [59], but large

values tend to make the path longer in certain cases, so we set κmax = 1 and ∆κ = 0.1.

Depending on the problem at hand, we typically use Q = 8− 15 images. The tolerance

on each Cartesian component of the GNEB force at each image and each spin is set

around Ftol = 10−10 − 10−12. Although Ref. [59] recommends the use of spherical co-

ordinates so that the constraints on the magnetic vectors are automatically fulfilled, in

practice, because the spherical coordinate system has singularities at the poles of the

sphere (i.e., the azimuth φ is not defined for θ = 0 or π), a special treatment is required

in these areas. Therefore, we use Cartesian coordinates instead, and re-normalize the

magnetic vectors at each iteration. We use the velocity Verlet integrator [131], whose

global error is of order 2, with an integration step ∆t = 0.01.

The convergence is aided by the velocity projection optimization (VPO) procedure

[59]. It consists in damping the velocity at each time-step by keeping only its compo-

nent along the force. That is, unless the velocity is pointing in a direction opposite to

that of the force, in which case it is set to zero. A similar method was used for NEB
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calculations in unconstrained Euclidian space [56]. We define the velocity at image ν,

Vν =
dMν

dt
= (vν1 ,v

ν
2 . . .v

ν
N ). (3.82)

Let

F = [F1
GNEB,F

2
GNEB . . .F

Q
GNEB] (3.83)

be a 3N ×Q-dimensional vector of the force, and

V = [V1,V2 . . .VQ] (3.84)

a 3N ×Q-dimensional vector of the velocity. For convenience, we define a = V ·F /Q

and b = F ·F /Q as vector projections in 3N ×Q-dimensional space. At each timestep,

the velocity is revised according to [59, 132],

V =

aF /b if a > 0,

0 if a ≤ 0,
(3.85)

and used in the next iteration. As a result, if the force keeps pointing in the same

direction, the system accelerates and approaches the minimum faster. Then, if the

system overshoots the minimum, the velocity is set to zero.

Force minimization algorithm

The aim of the GNEB method is to relax the initial path onto a MEP by minimizing

the GNEB force acting on the images. One proceeds as follows. First, the scheme is

initialized as described below. At each image ν = 1 . . .Q:

• the energy Eν = E(Mν) is calculated;

• the tangent to the path is calculated as described in Sec. 3.4.3, and projected onto

the tangent space according to Eq. (3.67);

• the total force FνGNEB is calculated and projected onto the tangent space according

to Eq. (3.72);

• the acceleration is initialized as Γν = FνGNEB/m;

• the velocity Vν is set to zero.

This completes the initialization. After that, the following procedure is iterated until

the set tolerance on the components of the GNEB force has been reached:
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• the position of each image Mν is updated according to

Mν(t + dt) = Mν(t) + Vν(t)dt +
1
2
Γν(t)dt2, (3.86)

and renormalized;

• then, at each image:

– the new energy Eν(t + dt) = E(Mν(t + dt)) is calculated;

– the new projected tangent to the path τνT (t + dt) is calculated;

– the new projected GNEB force FνGNEB(t + dt) is calculated and its local com-

ponents are compared to the set tolerance;

– the acceleration is updated as Γν(t + dt) = FνGNEB(t + dt)/m;

– the velocity is updated according to

Vν(t + dt) = Vν(t) +
1
2

(
Γν(t + dt) +Γν(t)

)
dt; (3.87)

• the velocity Vν(t + dt) is revised at each image according to the VPO procedure.

3.5.3 Computation of the rate prefactor

Once the CI-GNEB scheme has relaxed to a low tolerance, we have in principle iden-

tified the configuration of the (highest) first-order saddle point S along the reaction co-

ordinate to high accuracy. This gives us a straightforward value for the internal energy

barrier as ∆E = ES − EA. One can now compute the pre-exponential factor in Langer’s

theory, as given in Eq. (3.31). Since the space of configurations is 2N -dimensional, we

found the use of spherical coordinates to be a better choice at this point in the com-

putation. We thus begin by converting the positions of states A and S into spherical

angles (θ,φ). If at least one spin mi lies in the vicinity of the poles of the sphere, i.e.,

| sinθi |< ε, where ε is chosen as ε ≈ 10−8, the whole system is rotated about the y-axis

by an arbitrary angle, until there are no spins close to the poles. This includes a rota-

tion of the external magnetic field, the anisotropy axis, and the Dzyaloshinskii vector,

as well as all the magnetic vectors.

After that, we can construct the submatrices in the Hessian matrix evaluated at A

and S, as previously defined in Eqs. (3.44) and (3.45). In order to keep numerical

noise to a minimum, these were implemented with analytical expressions for the sec-

ond derivatives of the different terms of the Hamiltonian. The Hessian is then diag-

onalized using the eigensystems functions for real symmetric matrices from the GNU
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scientific library [133]. The library uses the symmetric bidiagonalization and QR re-

duction method. The 2N eigenvalues {λi} are then sorted by increasing value, and we

also store the corresponding eigenvectors {χi}. It is a good idea to check that there is

indeed only one negative eigenvalue at S, a sign that we have found a first-order saddle

point.

Next, the determination of λ+ is carried out. We use the submatrices of the Hessian

to construct the transition matrix T , as defined in Eqs. (3.57) and (3.58). To extract λ+,

we can take advantage of the fact that, as long as longe-range dipolar couplings are not

included in the Hamiltonian, T is a sparse matrix. For that purpose, we use the Spectra

library [134] built on top of the open source linear algebra library Eigen [135].

Finally, one has to test for possible zero-eigenvalue(s) in the Hessian. If some eigen-

values are close to 0, their contribution to the prefactor needs to be handled separately,

as described in Sec. 3.2.2. Otherwise, the ratio of eigenvalues can be calculated, and

we obtain the rate prefactor of the transition.

3.5.4 Numerical tests

One dimensional domain wall profile

We first of all relaxed a one dimensional domain wall, and checked the profile against

the theoretical expression (Eq. 2.32). Both the atomistic and theoretical profiles are

plotted in Fig. 3.5a and show excellent agreement.

Skyrmion profile

The relaxed skyrmion profile was compared with the output of the micromagnetic

simulation program MuMax3 [136]. We give the following reduced parameters, as de-

fined in Sec. 2.1.4: (d,k,b) = (0.36,0.4,0.0), which allow the existence of small isolated

skyrmions at zero applied field [102]. We simulated a square lattice of 50 × 50 spins

with open (non periodic) boundary conditions. The profile is plotted in Fig. 3.5b and

agrees well with the output of MuMax3. Here, we used a continuous definition of the

skyrmion radius, as given in Ref. [102], which is the intersection of the largest gradient

of the interpolated skyrmion profile with the θ = 0 axis. The largest gradient line is

shown in blue in Fig. 3.5b and intersects the horizontal axis at rsk = 5.83 a.

Test for the Hessian implementation

A straightforward way to test for the correct analytical implementation of the Hes-

sian is to compare it with a numerical implementation using finite differences. Let dθ
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Figure 3.5: (a) Analytical micromagnetic and numerical atomistic π-domain wall pro-
files as a function of the spatial displacement from the wall centre, expressed in units
of the characteristic wall length δ. The analytical profile was previously derived in
Sec. 2.2.1 and its expression was given in Eq. (2.32). (b) Comparison of the relaxed
skyrmion profiles at zero temperature and reduced parameters (d,k,b) = (0.36,0.4,0.0),
as computed by our atomistic implementation and the micromagnetic program Mu-
Max3. The skyrmion radius is given by the intersection of the largest gradient line of
the interpolated profile (shown in blue) with the horizontal θ = 0 axis.

and dφ be small angular variations about a given state (θ,φ), with energy E(θ,φ) = E0.

We set, for instance, dθ = dφ = 0.001. We give the expressions for the submatrices in

the Hessian, as defined in Eq. (3.45), using finite differences,

Hθiθj ≈


E(θi+dθ,θj+dθ)−E(θi+dθ,θj−dθ)−E(θi−dθ,θj+dθ)+E(θi−dθ,θj−dθ)

4dθ2 if i , j,
E(θi+dθ)−2E0+E(θi−dθ)

dθ2 if i = j,
(3.88)

Hθiφj ≈
E(θi + dθ,φj + dφ)−E(θi + dθ,φj − dφ)−E(θi − dθ,φj + dφ) +E(θi − dθ,φj − dφ)

4dθ sinθjdφ
,

(3.89)

Hφiθj ≈
E(θj + dθ,φi + dφ)−E(θj + dθ,φi − dφ)−E(θj − dθ,φi + dφ) +E(θj − dθ,φi − dφ)

4dθ sinθidφ
,

(3.90)

Hφiφj ≈


E(φi+dφ,φj+dφ)−E(φi+dφ,φj−dφ)−E(φi−dφ,φj+dφ)+E(φi−dφ,φj−dφ)

4dφ2 sinθi sinθj
if i , j,

E(φi+dφ)−2E0+E(φi−dφ)
dφ2 sinθi sinθj

if i = j,
(3.91)
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Note that notations of the type E(θi + dθ,φj + dφ) are a compact way to write

E(θ1,θ2, . . . ,θi + dθ, . . . ,θN ,φ1,φ2, . . . ,φj + dφ, . . . ,φN ).

The above expressions are not sufficiently accurate to compute a prefactor, and one

should in principle go to higher orders, as is for instance the case in Ref. [62]. However,

they are sufficient to provide a good mean of verification for the analytical Hessian

implementation.

Magnetization reversal in a perpendicular applied field

(a)

0 0.2 0.4

h

200

400
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f 0
 (
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)

 Numerical

 Analytical macrospin

(b)

Figure 3.6: (a) Initial state and saddle point of the magnetization reversal in a perpen-
dicular field applied along y (image source: [62]). (b) Attempt frequency of coherent
magnetization reversal for different values of the reduced perpendicular applied field
h. The analytical expression is derived for a single macrospin using Langer’s theory.
The numerical expression is calculated for a lattice of 4× 4 spins.

Next, the complete implementation of Langer’s theory was tested against a simple

analytical case, which we reproduced from Ref. [62]. We looked at magnetization re-

versal of a small magnetic square in two dimensions. The Hamiltonian contains an

easy-axis anisotropy term and an external magnetic field perpendicular to the easy

axis. Analytically, the system can be approximated by a single macrospin, as long as

the size of the system remains small, so that the contribution from collective modes

leads to a negligible error in the attempt frequency. We write the Hamiltonian of the

single macrospin in spherical coordinates,

E = −K(sin2θ cos2φ+ 2hsinθ sinφ), (3.92)

where

h =
BMs

2K
, (3.93)
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is the reduced perpendicular field. Note that we are using atomistic quantities as de-

fined in Sec. 2.1.4, in contrast to Refs. [62, 137] where the quantities are micromag-

netic. The degeneracy in the angle θ is lifted by the perpendicular field, so in this case

θ = π/2 = θA = θS = θB. The potential is symmetric, with two minima of the energy at

φA = arcsin(h) and φB = π−arcsin(h). The saddle point is found at φS = π/2 (Fig. 3.6a).

By applying Langer’s theory, the attempt frequency for the magnetization reversal was

derived in Ref. [137] and is expressed as

f0 =
1

2π
λ+Ω0 =

1
2π

 γeK

Ms(1 +α2)

(
α(1− 2h) +

√
α2 − 4h(h− 1)

)
√

1 +
1
h
. (3.94)

In the previous expression, the gyromagnetic factor for the free electron, γe, and the

damping factor, α, are as defined in Sec. 3.3.2. We used the following parameters:

N = 4 × 4, a = 0.1 nm, α = 0.5, K = 1 MJ/m3, Ms = 0.5µ−1
0 A/m, and γe = 1.76 × 1011

rad.T−1.s−1, where the anisotropy constant and saturation magnetization were chosen

to match that of Ref. [62] and correspond to a small single-domain magnetic cube. We

varied the reduced field h in [0.01,0.4] and computed an attempt frequency f0 for each

value of h. We obtained the graph in Fig. 3.6b, which shows good agreement with the

analytical formula. This calculation was repeated with the perpendicular field applied

along z, in order to validate the treatment of the poles, and yielded the same result.

Skyrmion collapse

We used the same parameters as given above for testing the skyrmion profile. The

energy barrier for the isotropic collapse of the skyrmion was compared to one obtained

with the implementations from Refs. [138] and [132]. The same barrier of ∆E = 2.83

Jex was found in all cases with good accuracy. The process of skyrmion collapse will be

studied in more details in Chapter 4.

3.6 Summary

In this chapter, we presented the extension of Kramers’ method to a multidimen-

sional phase space in the intermediate-to-high damping regime, as originally derived

by Langer. Langer’s theory provides an analytical expression of the attempt frequency

for the rate of decay of a metastable state within the framework of reaction rate the-

ory. The two main contributions to the attempt frequency are an entropic contribution,

Ω0, which characterizes the change of phase space volume available to thermal fluc-

tuations upon reaching the transition state, and a dynamical contribution, λ+, which

corresponds to the rate of growth of the (fastest growing) instability at the barrier top.
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We showed how the theory applies to magnetic spin systems and we derived an ex-

pression for the transition matrix of the LLG equation, from which λ+ is extracted as

its largest positive eigenvalue.

Next, the principles behind the GNEB method were exposed. The GNEB method is

a numerical scheme to relax paths of minimum energy between two energy minima on

an energy surface. It is a version of the NEB method adapted to magnetic spin systems,

in the sense that the curved manifold is taken into account by the use of geodesics to

calculate distances, and by the projection of the tangent to the path and of the GNEB

force onto the tangent space to the manifold. A minimum energy path constitutes a

path of highest statistical weight, and therefore corresponds to a specific transition

mechanism. Using a climbing image scheme, it is possible to precisely identify the

highest first-order saddle point along the path. Once the saddle point is known, the

internal energy barrier is known, and Langer’s theory can be a applied in order to

calculate a rate prefactor.

Finally, we gave some details on the numerical implementation of GNEB and Langer’s

theory into an atomistic code. The rate calculation was successfully tested against the

analytical expression of the rate of reversal of a single macrospin under a perpendicu-

lar magnetic field within the IHD regime. The methods presented in this chapter will

be used in the rest of this thesis to compute annihilation rates of metastable magnetic

skyrmions.



Chapter 4

Thermal stability of chiral magnetic
skyrmions from Langer’s theory

4.1 Introduction

In what follows, we apply Langer’s theory adapted to magnetic spin systems to com-

pute annihilation rates of chiral metastable magnetic skyrmions within the atomistic

framework. The computation is carried out in two main steps. Firstly, the GNEB

method is used to compute a minimum energy path through the energy landscape,

and the saddle point is identified with high accuracy. Secondly, a rate prefactor is cal-

culated according to Eq. (3.31). The results presented in this chapter are based on

original publications [1] and [3].

The chapter is organized as follows. In Sec. 4.2, we present the system under study

and give the material parameters. In Sec. 4.3, we show paths to annihilation and

corresponding energy profiles of isolated skyrmions via collapse and escape processes.

After that, we compute transition rates associated with each mechanism in Sec. 4.4, and

we consider the role of local eigenmodes and the entropic contribution to the prefactor.

Finally, the results are discussed in Sec. 4.5.

4.2 Simulated system

We simulate a two-dimensional system representing a thin magnetic film. The atom-

istic Hamiltonian is as defined in Sec. 2.1. The total simulated domain contains 50×50

spins, or 80 × 80 spins in the configuration involving two skyrmions, and we keep

open (non-periodic) boundary conditions. The exchange interactions are limited to

first nearest-neighbours. As we explained in Sec. 2.1.1, Néel-type skyrmions are sta-

bilized by interfacial DMI, and Bloch-type skyrmions are stabilized by bulk-type DMI.

73
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As for antiskyrmions, they are favoured by modifying the interfacial DMI such that

Dij = −Drij × ez when rij = ey [139]. We use an isotropic exchange constant of Jex =

1.6 × 10−20 J (∼ 100 meV), which corresponds to an exchange stiffness of A = 16 pJ/m

with lattice constant a = 1 nm, and the saturation magnetization is set to Ms = 1.1×106

A.m−1. These values correspond to typical Pt/Co(0.6 nm)/AlOx samples, in which in-

terfacial DMI arises from the symmetry breaking at the interface [96]. The reduced

parameters are then adjusted in order to stabilize small isolated metastable skyrmions

at zero-field, with a diameter of approximately ten lattice sites, and are the following:

(b,d,k) = (0, 0.36, 0.4) [102]. In what follows, we keep the external magnetic field to

zero unless stated otherwise. The damping term in the LLG equation (Eq. (3.46)) is set

to α = 0.5, which corresponds to commonly found values for ultrathin magnetic films

with DMI [96], while pertaining to the IHD regime of Langer’s theory. The gyromag-

netic ratio is that of the free electron, γe = 1.76×1011 rad.s−1.T−1. The GNEB scheme is

used on Q = 10 or 15 images of the system for single-skyrmion mechanisms, and Q = 6

images for the two-skyrmion mechanism.

4.3 Paths to annihilation

4.3.1 Collapse mechanisms

Isolated skyrmion

We first study the case of the collapse of a single isolated skyrmion. At zero-field, the

core of the skyrmion coincides with a lattice site (image (im.) 1 in Fig. 4.1a). In that

context, we report two separate mechanisms for the collapse of the Néel skyrmion. We

show the spin profiles at selected images in Figs. 4.1a and 4.1b, and the corresponding

energy profiles in Figs. 4.2a and 4.2b.

In the first case, which we refer to as mechanism no1, the skyrmion progressively

shrinks in size without breaking the cubic symmetry, while its core remains centred

on a lattice site (Fig. 4.1a). This is accompanied by a slow increase in energy (Fig.

4.2a). At the saddle point (im. 8 in Fig. 4.1a, and inset in the middle in Fig. 4.2a),

which we refer to as S1, the core spin still points along −z, while its first neighbours

are aligned in-plane. Once the core begins to reverse, the cubic symmetry is broken:

the remaining spins flip, the energy drops dramatically and the system reaches the

ferromagnetic ground state. The corresponding energy barrier is ∆Ecol,1 = 2.83 Jex.

This corresponds to about 10kBT300 with the present value of Jex, where the notation

T300 is used to indicate T = 300 K.

Alternatively, if mechanism no2 is realized, the skyrmion core may shift to an in-

terstitial position in the centre of a square unit cell and, from there, the skyrmion
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(a)

(b)

(c)

(d)

Figure 4.1: Spin maps of the isotropic collapse mechanisms. The index in the top left-
hand corner corresponds to the image index of the GNEB method. We show (a, b) for a
Néel skyrmion, (a) collapse mechanism no1, and (b) collapse mechanism no2, followed
by (c, d) mechanism no1 for (c) an antiskyrmion and, (d) a Bloch skyrmion.

uniformly shrinks in size (Fig. 4.1b). The saddle point configuration, which we call

S2, corresponds to the four central spins pointing towards the centre of the unit cell

(im. 8 in Fig. 4.1b, and inset in Fig 4.2b). The energy profile is similar to that of the

first mechanism. This particular path to collapse was first reported in Ref. [59]. In the

present case, however, the translational modes at the SP become unstable, resulting in

a third-order saddle point. For that reason, while the GNEB scheme is able to relax the

path down to a low tolerance, the CI-GNEB scheme tends to shift it back to the first

mechanism. We still manage to relax the path down to a tolerance on the GNEB force of

Ftol = 9×10−7. The influence of the set tolerance on the energy barrier and the attempt

frequency is briefly discussed in Appendix A. The corresponding energy barrier is sim-

ilar to that of the first mechanism: ∆Ecol,2 = 2.90 Jex. Since the translational modes at

the saddle point are not Goldstone modes [1, 63], S1 and S2 should indeed be treated
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Figure 4.2: Interpolated energy profiles along the normalized reaction coordinate. Each
dot corresponds to an image of the system on the energy surface. The insets show a
closeup of the spin configuration at the saddle point. We show (a, b) collapse mecha-
nisms (a) no1 and (b) no2 of a single skyrmion, (c) collapse in the presence of a single
non-magnetic defect, (d) collapse in the presence of another skyrmion and, (e) escape
through a flat boundary. In (a) and (e), the inset respectively shows the saddle point
configurations of the antiskyrmion, the Néel skyrmion, and the Bloch skyrmion.

as separate states, and they are therefore associated with different activation rates. S2

is found above S1 on the energy surface, by advancing along the eigenbasis coordinate

associated with a translation mode.

Lastly, the collapse of an antiskyrmion and of a Bloch skyrmion, following a similar

path to that of mechanism no1, are shown in Fig. 4.1c and 4.1d, respectively. They both

exhibit a very similar behaviour to that of the Néel skyrmion, with a breaking of the
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(a)

(b)

Figure 4.3: Spin maps of the collapse mechanisms of a Néel skyrmion in the presence of
(a) a non-magnetic defect, where the position of the defect is indicated by a red circle,
and (f) a second skyrmion. The conventions are the same as in Fig. 4.1.

symmetry past the saddle point corresponding to the flipping of the spin at the core.

The energy profile along the path and the activation energy are the same for all three

types of skyrmions. We did not calculate the collapse of the Bloch skyrmion and of the

antiskyrmion via mechanism no2, but we believe it would also be similar to that of the

Néel skyrmion.

Effect of a non-magnetic defect

The effect of a single non-magnetic defect on the collapse was studied. This is im-

portant, because real systems are not perfect, and it has been experimentally observed

that atomic defects are preferred sites for nucleation, pinning, and annihilation of skyr-

mions [33, 140]. In Pd/Fe/Ir(111), the interaction of skyrmions with atomic-scale de-

fects was studied via SP-STM [140]. Native inlayer defects were found in the Pd layer

and were assumed to be single Fe atoms due to intermixing. The defects were reported

to be slightly off-centre compared to the pinned skyrmion. This was shown to be the

case in bigger skyrmions either due to reduced spin stiffness or reduced DMI at the

defect position, or due to reduced anisotropy for any skyrmion size. Here, we chose

to follow Ref. [141] by simulating a non-magnetic defect. This is done by setting the

anisotropy to zero at a given site, as well as all exchange interactions with the neigh-

bouring sites. Im. 1 in Fig. 4.3a shows that the skyrmion relaxes such that the defect

sits where the spins lie in-plane, which reproduces experimental observations [140].

The simulated skyrmion is small, so the off-centre pinning is likely due to a reduction
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in the anisotropy energy. We show spin maps at selected images in Fig. 4.3a, and the

corresponding energy profile in Fig. 4.2c. As the core moves towards the defect – which

takes place along the diagonal of the square lattice – the skyrmion shrinks in size. This

costs little energy compared to the isotropic collapse mechanism, as seen on the energy

profile of Fig. 4.2c. The saddle point is im. 5 on the path and corresponds to a larger

skyrmion than in the defect-free configuration, but the skyrmion is deformed and ren-

dered asymmetric by the defect. Consistent with results presented in Ref. [141], the

presence of the defect significantly lowers both annihilation and nucleation barriers,

and we obtain ∆Edef = 0.38 Jex, which is one order of magnitude lower than ∆Ecol,1,2.

Effect of a second skyrmion

We consider what happens when two skyrmions get close to each other. We show

spin maps at selected images in Fig. 4.3b, and the corresponding energy profile in Fig.

4.2d. When the skyrmion cores are initially aligned along the lattice directions x or y,

we observe that they rotate in order to approach each other along the lattice diagonal.

Presumably, this is more energetically favourable due to the choice of first-neighbour

interactions on the simple square lattice. Consequently, we simply initialize the skyr-

mions diagonally from each other. Note that this may be less true in real systems with

corrections in the exchange to include interactions beyond the first neighbours, and in

systems where the skyrmions are big compared to the lattice parameter and decouple

from the lattice. Additionally, interface skyrmions tend to be observed in systems with

a hexagonal lattice, for instance Pd/Fe and Rh/Co on Ir(111) [33, 118], in which these

considerations do not apply. We set the transition path for a merging of the two skyr-

mions into one, as observed experimentally in the case of the decay of a skyrmion lattice

into the helical state [46]. However, the search for a first-order SP consistently results

in a switch in mechanism, and the collapse of one of the skyrmions is relaxed instead

of the merging (Fig. 4.3b). This behaviour hints at the fact that the merging mecha-

nism involves a higher-order SP, which may therefore involve a higher barrier and be

less favourable than the collapse. It was confirmed by a mode following method [142]

that, with our present set of parameters, the merging mechanism is indeed associated

with a higher order SP. However, for other parameters, merging may in fact traverse a

first-order SP [142].

The mechanism is as follows. The skyrmions initially approach one another, which

at first costs almost no energy (im. [1-3] in Fig. 4.2d), until a critical distance is reached

at which the collapse of the upper skyrmion is initiated. The saddle point is the same

as that of collapse mechanism no1 for the upper skyrmion, while the other one remains

stable (im. 4 in Fig. 4.3b, and inset in Fig. 4.2d). At finite temperature, isolated skyr-

mions perform a diffusive Brownian motion on the lattice under the effect of thermal
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fluctuations [143]. Although the interaction potential between chiral skyrmions is re-

pulsive at all distances [25], some fluctuations may bring them close to each other. In

that case, it is interesting to study how the collapse rate is affected. The activation

energy for collapse remains the same: ∆E2sk = 2.82 Jex. We shall see how the attempt

frequency is modified in Sec. 4.4.

4.3.2 Escape through a boundary

(a)

(b)

(c)

(d)

Figure 4.4: Spin maps of the escape mechanisms. The conventions are the same as in
Fig. 4.1. On all the subfigures, the saddle point is im. 11, which is the state where
the skyrmion sits tangent to the boundary. We show (a) a Néel skyrmion, (b) an anti-
skyrmion, (c) a Bloch skyrmion, and (d) a Néel skyrmion escaping through a curved
boundary.
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Flat boundary

Escape through a boundary is another possible path in finite-sized systems. We show

spin maps at selected images in Figs. 4.4a, 4.4b and 4.4c respectively for a Néel skyr-

mion, an antiskyrmion and a Bloch skyrmion, and the corresponding energy profile

in shown in Fig. 4.2e. Because of DMI, the spins are tilted at the boundary with the

same chirality as that of the skyrmion. For the same reason that chiral skyrmions repel

each other, the boundary is also repulsive to the skyrmion [36, 107], such that the total

energy increases as the skyrmion leaves the centre of the lattice and moves towards

an edge (ims. [1-11] in Fig. 4.2e). For the Néel skyrmion, the antiskyrmion, and the

Bloch skyrmion, the saddle point corresponds to a position where the skyrmion sits

adjacent to the boundary (im. 11 in Fig. 4.4a, 4.4b and 4.4c, respectively, and insets

in Fig. 4.2e), as was also shown in Ref. [141]. Past the saddle point, the skyrmion de-

forms and elongates as it comes in contact with the edge and begins to disappear. This

is accompanied by a large decrease in the energy. Im. 13 in Fig. 4.4a, 4.4b, 4.4c and

4.2e corresponds to a half-skyrmion – or meron – sitting on the edge. In the vicinity of

this point, the decrease in energy appears to slow down, before speeding up again as

the rest of the remaining skyrmion disappears. The activation energy obtained for this

mechanism is the highest one of the three processes studied here, although they are

all of a similar magnitude of 2-3 Jex: ∆Eesc = 3.28 Jex, once again for all three types of

skyrmions. While it should be noted that in the present configuration, this mechanism

possesses four equivalent realisations (one at each side of the square), we shall not in-

clude a factor of four in the attempt frequency, as the escape rate through through one

edge is potentially more relevant that the total escape rate out of a square sample.

Curved boundary

Fig. 4.4d shows the escape of a Néel skyrmion through a curved boundary. For

that purpose, a disc-shaped system is obtained from the square system by converting

outer spins into non-magnetic sites. The nature of the discrete lattice means that the

boundary exhibits a staircase effect, and so the spin lattice as a whole only exhibits a

cubic-type of symmetry, as opposed to a radial symmetry. Note that the boundary is

considered curved if the curvature is perceived at the scale of the skyrmion, which is

the case here. The escape process is similar to that of the flat boundary configuration,

but the activation energy is found to be slightly higher: ∆Ecurv = 3.60 Jex. The energy

profile is similar to that of Fig. 4.2e, and so we do not show it.
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Figure 4.5: Interpolated energy profile and evolution of the topological chargeNs along
the reaction coordinate for collapse mechanisms (a) no1 and (b) no2. Ns is calculated
according to Eq. (2.38).

(a)

(b)

Figure 4.6: “Ball in a net” representation of the spin configuration at selected images
along the path for collapse mechanisms (a) no1 and (b) no2. The image index is given in
the top left-hand corner. The topological charge on the discrete spin lattice is defined
as the number of times the magnetization net wraps around the unit sphere, so this
representation shows the evolution of the topological charge.
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4.3.3 Paths to collapse and evolution of the topological charge

We compare the evolution of the topological charge Ns along the path for collapse

mechanisms no1 and 2. To do so, we compute a value of Ns at each image using the

definition from Eqs. (2.38) and (2.39). We plot the result in Fig. 4.5 as well as the

energy profiles. We now use Q=15 images to improve the definition of the path in the

area where the topological charge drops. In Fig. 4.6, we use the “ball in a net” type

of representation from Sec. 2.3.2 to show the spin configuration at different images

along the MEP. As previously described in Sec. 2.3.2, vertices correspond to the tip of

the magnetic vectors with their origin in the centre of the sphere, and the edges repre-

sent the exchange coupling between first neighbours. The ferromagnetic background

(spins along +z) is found at the north pole of the sphere, while the core of a skyrmion

typically points along the south pole (along −z). The view is set just below the south

pole, looking axially towards the +z direction, such that the core of the skyrmion is at

the centre of the view. Since we defined the topological charge on the discrete lattice as

the number of times the magnetization “net” wraps around the unit sphere, this type

of representation provides an intuitive way to visualise the evolution of the topological

charge.

For mechanism no1, we find that the topological charge is conserved past the saddle

point, which is im. 7 (Figs. 4.5a and 4.6a), and until im. 8. At ims. 9 and 10, the core

spin starts to flip, and we find a half-integer topological charge: Ns = −0.5. After that,

the topological charge vanishes and the configuration becomes topologically trivial.

On the other hand, during the second mechanism, the topological charge drops

from Ns = −1 to 0 at im. 12, which is the image directly following the one at the saddle

point (im. 11 in Figs. 4.5b and 4.6b). However, a half-integer value may exist as a

punctual state for this mechanism (punctual in the sense that this state would have

zero-length along the reaction coordinate) and would correspond to the case where the

four spins in the centre point exactly in-plane.

Therefore, the two collapse mechanisms provide an example of two different ways

through which an integer topological charge may be annihilated without using the

edges.

4.4 Transition rates from Langer’s theory

4.4.1 Overview

Once the saddle point is accurately identified along a path, the corresponding rate

prefactor can be calculated according to Langer’s theory (Eq. (3.31)). All terms entering
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(a) Collapse

Mechanism ∆E (Jex) Ω0,int Ω0,tot
(×10−5)

Ω0,int

Ω0,tot
λ+

(GHz)
f0

(MHz)
k300

(kHz)
single sk. 1 2.83 0.0015 3.51 43 1200.47 6.70 0.12
single sk. 2 2.90 0.00048 1.05 46 2124.23 3.54 0.05

defect 0.38 0.0214 116 18 145.41 26.90 6190.40
two sk. 2.82 0.0009 2.32 42 1200.23 4.43 0.08

(b) Escape

Mechanism ∆E
(Jex)

Ω0,int Ω0,tot
(×10−3)

Ω0,int

Ω0,tot
λ+

(GHz)
f0

(MHz)
k300

(kHz)
flat bound. 3.28 0.0349 12.4 2.8 522.94 1036.2 3.25

curved bound. 3.60 0.0198 4.48 4.4 501.45 357.2 0.32

Table 4.1: Terms of the rate prefactor and total annihilation rate at T=300 K for (a)
collapse processes and (b) escape processes. From left to right, we give the internal
energy barrier, ∆E, in units of the isotropic exchange constant, Jex, the entropic con-
tribution to the prefactor, Ω0 = Ω0,tot, the dynamical contribution to the prefactor,
λ+, the Arrhenius prefactor, f0, and the total rate of annihilation at room temperature,
k300 = k(T=300 K). Ω0,int gives the contribution of internal modes to the prefactor and
Ω0,tot gives the total contribution of all modes. Their ratio shows that the main contri-
bution comes from the internal modes. f0 and k300 are calculated using Ω0 = Ω0,tot. The
entropic contribution, Ω0, is found to be much smaller than one, which is a stabilizing
contribution. This is the reason why the obtained attempt frequencies are typically
found in the MHz regime, which is uncharacteristically low for magnetic structures.

in the calculation of activation rates are summarized in Table 4.1 for each mechanism.

In Fig. 4.7, we show the evolution of the average lifetime of the skyrmion, τ = k−1, as-

sociated with each annihilation mechanism as a function of temperature. We find that

the collapse on a non-magnetic defect yields by far the shortest lifetime. At low tem-

perature, collapse mechanisms are found more probable than escape, but this trend re-

verses at higher and room temperature, where the longest lifetimes are associated with

collapse. In the absence of defects, the average lifetimes at room temperature (300 K)

are found between 0.3 ms, which is associated with the escape through a flat boundary,

and 21 ms, which corresponds to collapse mechanisms no2. Collapse mechanism no1

and escape through a flat boundary were studied for the Néel and Bloch skyrmions, as

well as the antiskyrmion, and yield the same results. In the cases of escape through a

curved boundary, collapse mechanism no2, and collapse on a defect, we studied only

the Néel skyrmion, but it seems reasonable to assume the following results also hold

for other types of skyrmion solutions. A possible issue of non-negligeable numerical

rounding errors affecting the accuracy of the ratio of eigenvalues was previously men-
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Figure 4.7: Average lifetime of a skyrmion as a function of temperature with respect
to all considered mechanisms calculated via Langer’s theory as given in Eq. (3.31).
The energy barriers and the detail of all the different contributions to the prefactor
are given in Table 4.1. Here, the collapse on a non-magnetic defect yields by far the
shortest lifetime. At low temperature, collapse mechanisms are found more probable
than escape, but this trend reverses at room temperature, where the longest lifetimes
are associated with skyrmion collapse. In the absence of defects, the average lifetimes at
room temperature (300 K) are found between 0.3 ms (escape through a flat boundary)
and 21 ms (collapse mechanisms no2).

tioned in [62]. In Table A.1 of Appendix A, we gather results of simulations performed

for different lattice sizes. We find that, as long as the skyrmion is not constrained by

the boundary, the size of the lattice does not significantly affect the computed attempt

frequencies, and therefore there seems to be no significant error originating from nu-

merical noise in our results.

4.4.2 The thermal role of internal eigenmodes

Mode classification

For each mechanism considered here, the curvatures of the energy surface at A and

S are ordered by increasing amplitude with corresponding index i, and plotted in Fig.

4.8 for all i and in Figs. 4.9( a – c, j – l ) for the first 15 or 25 values of i. Figs. 4.9(d –

f, m – o) show the ratio of individual curvatures, λAi / |λ
S
i |, plotted in semilog scale. The

value of

Ω0,i =

√√√√ i∏
j=1

λAj

|λSj |
(4.1)
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Figure 4.8: All energy curvatures at A (in blue) and S (in red) ordered by increasing
amplitudes for the case of the collapse of a single skyrmion via mechanism no1. The
other mechanisms exhibit the same profiles which we interpret as the dispersion of
spin-wave excitations, with the exception of the first few eigenvalues. These are found
below the main curve and are shown in Figs. 4.9(a – c, j – l)

is plotted in a similar fashion in Figs. 4.9(g – i, p – r), where all the curvatures are

shown in the inset. We note that for all mechanisms, the ratio of curvatures only shows

significant variations for small i and weak variations for i � 1. Consequently, the

value of Ω0,i shows a strong i-dependence at small i and a weak dependence for larger

i. More specifically, for all collapse mechanisms, Ω0,i shows a strong i-dependence for

small i, a medium dependence for intermediate i and a weak dependence for large i.

In the case of escape mechanisms, the i-dependence decreases at low and intermediate

indices, and goes up again in the domain of highest curvatures.

From Eq. (3.13), the relative amplitudes of small fluctuations about the extrema for

each mode i are given by the components of the corresponding eigenvector, χi . This

allows us to plot the spatial profiles for the θ-eigenmodes at A and S in Figs. 4.10 and

4.11. The φ-profiles exhibit similar behaviour and do not provide any further informa-

tion for the following analysis. In recent years, the eigenmodes of skyrmions have been

extensively investigated [144–154]. Localized modes were reported to exist below the

magnon continuum, with excitations such as translational motion, uniform breathing,

elliptic and triangular distortions, etc. Classifications based on the azimuthal num-

ber m were proposed, which is linked to the number of nodes 2|m| encountered when

going around the skyrmion centre in the direction of increasing azimuth angle ϕ. In

this work, we use the i-index of the ordered eigenfrequencies (Fig. 4.9) to classify

the modes. While some relation to spin waves calculated in previous work could be

made, our classification scheme is useful because it allows comparison of eigenvalues

and eigenfunctions of the fluctuations around both the metastable state and the saddle

point.
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Figure 4.9: Detail of the computation of the entropic contribution to the prefactor, Ω0,
for different annihilation mechanisms. The mechanism in question in indicated at the
bottom of each set of three graphs. (a – c, j – l ) We show the first 15 or 25 eigenval-
ues of the Hessian matrix of the energy evaluated at A (in blue) and S (in red). The
eigenvalues are in unit of the isotropic exchange constant Jex and ordered by increasing
amplitudes, where the index i is attributed accordingly. A negative eigenvalue corre-
sponds to an unstable mode of fluctuations. The red dotted line marks the separation
between localized and collective eigenmodes. (d – f, m – o) Ratio of individual eigenval-
ues in semilog scales. The ratio of eigenvalues associated with local modes (left-hand
side of the red line) is typically different from one, while for collective modes (right-
hand side of the red line) it is close to one. (g – i, p – r) Cumulative Ω0,i as defined in
Eq. (4.1) in semilog scale, where the inset shows its value for all i = 1 . . .2N . The value
of Ω0 used in the prefactor is Ω0,2N . The local modes contribute the most to Ω0, and
Ω0� 1, which is a stabilizing contribution to the attempt frequency.
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(a) (b)

(c) (d)

Figure 4.10: Eigenmodes associated to the θ variable for a single skyrmion in a sim-
ulated system of 50 × 50 spins. The blue and green colour scheme is associated with
metastable states and the blue and red one with saddle points. Negative amplitudes
are plotted in blue and positive ones in green/red. The range of the colour map is ad-
justed on each plot so that zero-amplitude fluctuations coincide with white. Modes are
designated via the i-index of the corresponding ordered eigenfrequencies of Fig. 4.9.
We designate by icol (short for “collective”) the index of the first non-local mode. We
show (a) the metastable single-skyrmion state with icol = 8, (b) the saddle point of col-
lapse mechanism no1 with icol = 6, (c) the saddle point of collapse mechanism no2 with
icol = 4, and (d) the saddle point of the escape mechanism with icol = 7.
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(a)

(b) (c)

(d)

(e)

Figure 4.11: Eigenmodes associated to the θ variable. The colour code is the same as in
Fig. 4.10. We show (a) some modified internal modes for the escape through a curved
boundary at S, (b, c) some modified internal modes for the collapse on a defect at A
and S, and (d, e) some internal and collective modes of two coupled skyrmions on a
50× 50 lattice at A and S.

Local and collective modes

In Figs. 4.10 and 4.11, and in agreement with previous studies, the first clear obser-

vation is that for all cases, the lowest energy eigenmodes are localized, internal skyr-

mion modes. The rest of the modes are collective modes extended to the entire lattice

and can be thought of as amplitudes corresponding to spin-wave (SW) excitations.

Firstly, from Fig. 4.10a, the first two modes of the metastable skyrmion state are

translational modes (m = ±1). These are not zero-modes because the lattice breaks the

translational invariance in this case, however the corresponding eigenvalues are close

to zero (see Fig. 4.9a, where the eigenvalues at A are shown as blue triangles). Mode 3

is the uniform breathing mode (m = 0) and is a low energy mode slightly above modes
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1 and 2 in Fig. 4.9a. The next two modes directly above them correspond to elliptic

distortions of the skyrmion shape (m = ±2) and the final two local modes are triangular

distortions (m = ±3). Therefore, there are seven local states of the metastable well. The

subsequent modes are part of the magnon continuum.

At the saddle points S1 and S2 of the collapse mechanisms (Figs. 4.10b and 4.10c),

the breathing mode becomes unstable. At S2, the translational modes are also unstable.

In total, five local states exist at S1, and three at S2.

At the escape saddle point (Fig. 4.10d), the unstable skyrmion exhibits similar

modes to that of its metastable counterpart, but they appear distorted by the pres-

ence of the edge. Six local modes are found. The unstable mode (mode 1) is a mode of

translation towards the boundary, and is the mode that enables the escape of the skyr-

mion. The edge lifts the degeneracy of the translational modes: mode 2 is a mode of

translation parallel to the boundary, and the associated eigenvalue is close to zero (see

Fig. 4.9k, where the eigenvalues at S are shown as red circles) as this displacement costs

little energy. Whether the boundary is flat or curved (Fig. 4.11a), the same number of

internal modes exist at A and S, and they appear similar. There are, of course, fewer

collective modes associated with the circular sample, since there are fewer magnetic

sites and therefore fewer degrees of freedom in that case.

Next, Figs. 4.11b and 4.11c display examples of how the presence of a defect mod-

ifies some of the internal modes. In particular, the unstable breathing mode at the

saddle point is significantly affected by the defect (Fig. 4.11c). The defect also lowers

the total number of internal modes, as six internal modes survive at A, and four at S.

Lastly, in the system of two metastable coupled skyrmions, which we show in Fig.

4.11d, the internal modes are the same as that of a single skyrmion and both skyrmions

are excited simultaneously, which results in a total of 16 internal modes. This is no

longer the case at the transition state (Fig. 4.11e) where all the amplitude is localized

to only one of the two skyrmions in each of the internal modes. Note that Figs. 4.11d

and 4.11e show modes on the 50× 50 lattice, whereas calculations were carried out on

the 80× 80 lattice to prevent the skyrmions from being constrainted by the edge.

Contribution of the modes to the prefactor

The internal modes that we have described above correspond, in fact, to the modes

found below the magnon continuum in Figs. 4.9(a – c, j – l). The separation between

localized and collective modes is shown by a dashed line in Fig. 4.9, and also coincides

with the transition between strong and low i-dependence of Ω0,i (Figs. 4.9 (g – i, p

– r)). The contribution of the internal modes to the prefactor is given in Table 4.1 by

Ω0,int, while the complete contribution of all the modes corresponds to Ω0,tot. For the

collapse mechanisms, the values differ by a factor of ≈ 40 between them, or 18 when
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a defect is present. In the case of the escape processes, the ratio is a factor of three

(flat boundary), or four (curved boundary). In other words, the relative contribution of

internal modes varies depending on the annihilation process, and is found to be higher

for collapse processes compared to escape processes. It is reduced if a defect is present,

and increases if the boundary is curved. Hence, the relative contribution of internal and

collective modes is strongly linked to the nature of the annihilation and the geometry

of the transition state. Most importantly, internal modes play the most significant role
in the thermally activated annihilation of a skyrmion. Each of the collective spin-wave

modes brings a weak contribution, but because there are many more collective modes

than there are internal modes, their contribution to the attempt frequency should not

be neglected.

Broken symmetries

Finally, we note that the eigenmodes at the saddle point tend to display broken sym-

metries compared to the metastable states. In the single metastable skyrmion case (Fig.

4.10a), the internal modes in particular possess symmetries of types two-fold, four-fold,

six-fold, and radial. At the saddle point of the collapse (Fig. 4.10b ), the four-fold and

six-fold symmetries are absent. As for the saddle configuration at the boundary (Fig.

4.10d and 4.11a), symmetries are broken by the edge. Lastly, in the case of the two

skyrmions, the symmetry breaking at the SP in Fig. 4.11e is striking, since each inter-

nal mode involves only one skyrmion, in contrast to the metastable eigenmodes in Fig.

4.11d, which involve both skyrmions.

4.4.3 Entropic contribution to skyrmion stability

Variation of the rate between different paths to annihilation

From the results shown in Table 4.1 and Fig. 4.7, a striking observation is that the

most probable mechanisms do not necessarily correspond to the lowest energy barri-

ers. For instance, for the small skyrmions considered here, escape mechanisms involve

a higher barrier than collapse mechanisms, yet, at room temperature, escape is more

probable. Therefore, activation energies alone do not allow the lifetime of skyrmions to be
properly estimated. Characteristic times at the transition state were found to lie in the

GHz-THz regime, which remains in the range of typically assumed values for estimates

of the prefactor in magnetic spin systems [64–67]. However, a large difference is ob-

served here due to the contribution of the ratio of curvatures, Ω0, which significantly

lowers the attempt frequency. As was explained in Sec. 3.2.2, Ω0 characterizes the

entropic contribution to the prefactor. By inverting Eq. (3.39), we can plot the change

in configurational entropy, ∆S = SS − SA, as a function of temperature. This is shown
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Figure 4.12: Calculated change in configurational entropy induced when the system
goes to the saddle point ∆S/kB = (SS −SA)/kB as defined in Eq. (3.38) over a broad range
of temperatures for all mechanisms. The highest entropic barrier corresponds to the
most negative ∆S, i.e. the collapse involving the saddle point S2.

in Fig. 4.12 for all previously considered mechanisms. In all cases, we find ∆S < 0: the

configurational entropy of the metastable state is higher than that of the saddle point.

This result implies that the number of micro-realisations of the metastable skyrmion

state is higher than that of the transition state. A potential source of stability of indi-

vidual skyrmions might therefore lie in lowered attempt frequencies due to entropic

narrowing in the saddle point region, rather than in high internal energy barriers. The

smaller reduction in entropy between A and S in the boundary annihilation may be

explained by the fact that the transition state is a full skyrmion, which remains some-

what similar to the metastable skyrmion state. From Eq. (3.39), Ω0(i) plotted in Figs.

4.9( g – i, p – r) in semilogarithmic scale behaves as ∆S(i). Hence, the change in entropy
is primarily associated with the internal modes of a skyrmion.

The results in Table 4.1 and Fig. 4.7 show that at room-temperature, escape pro-

cesses tend to be more probable than collapse, with the exception of the collapse on

a defect. This occurs because, even though the energy barriers for collapse are lower,

the attempt frequencies are also lower. While, at low temperature, the rate is domi-

nated by the internal energy barrier, at higher temperature entropic effects contained

in the attempt frequency are more important. If the attempt frequencies for all mecha-

nisms were of a similar order of magnitude of a few gigahertz, collapse processes would

remain the most probable mechanisms at all temperatures, and the average lifetime as-

sociated with collapse in the absence of defects would span between about 50 to 70 µs.

In reality, it lies between 8 and 21 ms, which differs from the predicted result by three

orders of magnitude.

The escape through a curved boundary was found to be less likely than through a
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flat boundary, due to both the internal energy barrier and the entropic barrier being in-

creased at the curved boundary. We also stress that the skyrmions we have considered

so far only span over a few lattice sites and are stabilized at zero-field. For different

stabilization processes involving an external field and lower perpendicular anisotropy,

escape processes may be found more favourable also in terms of the internal energy

barrier [141]. Interestingly, the collapse in the presence of another skyrmion exhibits

the same internal energy barrier as in the case of a single skyrmion, but a higher en-

tropic barrier. The presence of a second skyrmion thus results in a lowered attempt

frequency for collapse: f col
0 = 4.43 MHz for the collapse via mechanism no1 when a

second skyrmion is present, as opposed to f col
0 = 6.70 MHz for a single isolated skyr-

mion. This may be explained by the fact that the two skyrmion modes are coupled in

the metastable state, and so 16 internal modes exist in total, which results in a larger

configurational entropy in the metastable well, and consequently a lowered attempt

frequency for collapse compared to the single skyrmion case. Finally, the presence of a

non-magnetic defect significantly affects all terms of the transition rate. Firstly, as seen

in Fig, 4.2c, it lowers the internal energy barrier by almost one order of magnitude,

rendering it practically flat. It also decreases the entropic contribution to the prefactor

by two orders of magnitude, that is, the entropic barrier is lowered (see also Fig. 4.12).

Thirdly, the rate of growth of the unstable mode at the saddle point is decreased by one

order of magnitude. This effect could, in theory, be stabilizing, but we find it is negli-

gible against the significantly lower value of the total activation energy. It can also be

noted that the internal energy barrier for the nucleation is lowered as well. This is con-

sistent with experimental observations that skyrmions tend to nucleate and annihilate

near defects [140].

Variation of the collapse rate as a function of applied field

We now consider the effect of an external magnetic field applied along the +z direc-

tion, so that it points opposite to the core of the skyrmion and therefore has a destabi-

lizing effect. We focus on the collapse processes of a single skyrmion. For reduced field

values bz ∈ [0,0.05], we relax the corresponding collapse mechanisms no1 and 2. With

our present set of parameters, this corresponds to a field variation from 0 to about 730

mT. The relaxed metastable skyrmion core may either be centred on a site (State A in

Fig. 4.13a), or at an interstitial position (State A in Fig. 4.13b). This is determined by its

equilibrium size and its commensurability with the underlying lattice. If, for a given

field value, we attempt to relax the skyrmion at a different position on the lattice – i.e.,

centred on a site if it initially relaxed at an interstitial point, and vice versa – it will

relax back to its initial position. Therefore, there seems to exist only one type of stable

skyrmion state A per field value, although if we apply periodic boundary conditions,
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Figure 4.13: Spin maps (zoomed) of the metastable state A and saddle points S1 and
S2 of the skyrmion collapse for (a) bz = 0, and (b) bz = 0.05. S1 corresponds to the
skyrmion core centred on a lattice site, while S2 corresponds to the core located at an
interstitial point.

the skyrmion may of course be indistinguishably located at either of the N possible

sites. If the metastable skyrmion is pinned at an interstitial point, the realisation of

mechanism no1 requires the core to firstly shift onto a lattice site. For all field values,

S2 is found to be of order three. With this in mind, the rate associated with mechanism

no2 will contain some degree of error (see Table A.3), as we are not able to relax the CI-

GNEB force below a certain tolerance. That tolerance varies depending on the applied

field strength (9× 10−7 < Ftol < 6× 10−5).

As we increase the field, the stable skyrmion size decreases – in agreement with

theoretical and experimental studies [108, 155, 156] – and so does the internal energy

barrier for both collapse mechanisms, which we show in Fig. 4.14a. The energy barriers

associated with S1 and S2 are almost identical and decrease smoothly with the applied

field. Note that the barrier at S2 is slightly higher than at S1.

In Fig. 4.14b, we plot the change in entropy, ∆S1,2 = SS1,2
− SA, induced by respec-

tively reaching S1 and S2, as defined in Eq. (3.38) for a first-order saddle point such

as S1, and more generally in Eq. (3.40) for a kth-order saddle point. This latter case is

relevant for S2, for which k = 3. ∆S1,2 is found to increase as the field increases. Since

∆S1,2 < 0 for all field values, the entropic contribution remains stabilizing, as it lowers

the attempt frequency, but this stabilizing contribution decreases at higher field values.

We also find that ∆S2 < ∆S1 < 0, so SS2
< SS1

: from an entropic perspective, S1 is more

likely to be visited by the system.

In Fig. 4.14c, we show the value of the dynamical contribution to the prefactor at
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saddle points S1 and S2, namely λ+,1 and λ+,2, as a function of the applied field. We

find that they decrease weakly when the field increases. λ+,2 is slightly larger than λ+,1

and decreases more than λ+,1. For both of them, we consistently obtain a value in the

range of a few terahertz, with little variation as a function of the applied field, i.e.,

0.8 < λ+,1 < 1.2 THz and 1.15 < λ+,2 < 2.12 THz. Following the discussion in Sec. 3.3.2,

since S2 is a third-order saddle point, λ+,2 is chosen as the rate of growth of the fastest

growing instability [125].

If we assume that collapse mechanisms no 1 and 2 are independent, the total rate of

collapse of the skyrmion can be expressed as

kcol
tot (T ) = k1(T ) + k2(T ) = f01e

−β∆E1 + f02e
−β∆E2 , (4.2)

where f01 and f02 are the attempt frequencies respectively associated with mechanisms

no1 and 2. We should note that since the difference in internal energy between S1

and S2 is quite small (around 0.08 Jex at zero field), the mechansisms are probably not

completely decoupled. In Fig. 4.14d, we plot the total collapse rate calculated with Eq.

(4.2), as well as the individual rates k1 and k2. For each field value, we set the value of T

such that β∆E1 = 10. We find that k1 is much larger than k2, so that k1 +k2 ≈ k1, despite

the fact that the internal energy barriers are almost identical. In the higher field region

(0.04 ≤ bz ≤ 0.05), the configuration at S1 loses cubic symmetry (i.e., invariance under

π/2-rotations of the system about the z-axis) as seen in Fig. 4.13b, and possesses four

equivalent realisations. They can be visualized by picturing rigid π/2−rotations of the

system. However, the non-symmetric state S2 corresponds to a small deviation δ from

the symmetric state. If the amplitude of the thermal fluctuations exceeds δ, then the

four states cannot be resolved at finite temperature and, on average, should correspond

to a single state. For this reason, we do not include a factor of four in the rate. This

choice will be further confirmed in Chapter 5.

Lastly, since the energy barriers involved in both mechanisms are very similar (Fig.

4.14a), we can recover an approximate total attempt frequency for the collapse as

f col
0,tot ≈ f01 + f02, where the energy barrier is approximated as ∆E1 ≈ ∆E2 ≈ ∆Ē, with

∆Ē =
∆E1 +∆E2

2
. (4.3)

The attempt frequencies f01, f02, and f col
0,tot are plotted in Fig. 4.14e as a function of the

reduced field. f col
0,tot spans over three orders of magnitude, that is, 10.2 MHz ≤ f col

0,tot ≤
23.24 GHz. In particular, 6.7 MHz ≤ f01 ≤ 22.8 GHz, and 3.5 MHz ≤ f02 ≤ 2.68 GHz.

This shows a strong dependence of the attempt frequency on the applied magnetic

field. The dynamical contribution is bound in the THz region and does not explain why

the attempt frequency extends from the MHz to the GHz regime. This effect has also
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been discussed in Refs. [46,63,157] and once again finds its origin in the strong entropic

contribution to the prefactor, as shown in Fig. 4.14b. Additionally, we typically obtain

f0,2 � f0,1, which in turns explains why the total rate kcol
tot is dominated by k1 even

though ∆E1 ≈ ∆E2. Once again, since λ+,1 < λ+,2, this is a direct consequence of the

different entropic contributions, more specifically ∆S2 < ∆S1 < 0. We note that, since

the skyrmions are not decoupled from the lattice, we observe strong lattice effects that

result in non-monotonic variations of the entropic contribution (Fig. 4.14b), which

are in turn found in the variations of the attempt frequency (Fig. 4.14e) and the total

collapse rate (Fig. 4.14d).
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Figure 4.14: As a function of the reduced destabilizing field bz and for collapse mech-
anisms no1 and 2, we show the following quantities. (a) Internal energy barriers. They
both decrease smoothly with increasing field. We find ∆E1 / ∆E2. (b) Change in con-
figurational entropy when the system goes from states A to S1,2 at T = 300 K. We find
∆S2 < ∆S1 < 0. Since the change is negative in both cases, the entropy decreases at the
SP, which is a stabilizing effect. The non-monotonic variations were attributed to lattice
effects. (c) Dynamical contribution to the prefactor. For both mechanisms, it decreases
only weakly with increasing field, with λ+,1 / λ+,2 ≈ THz. (d) Total rate of collapse
at a temperature such that β∆E1 = 10 calculated from Eq. (4.2), where k2(T )� k1(T )
despite the internal energy barriers being almost identical. (e) Attempt frequency for
the collapse. Since ∆S2 < ∆S1 < 0, we have f0,2 � f0,1, which in turns explain why
k2(T )� k1(T ).
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4.5 Discussion

In this chapter, we applied Langer’s theory to compute annihilation rates of meta-

stable chiral magnetic skyrmions with respect to collapse and escape processes. Two

separate mechanisms were identified for the collapse of a single skyrmion. They in-

volve different saddle points, and so each of them is associated with its own rate. We

identified the thermally significant modes as the skyrmion’s internal modes, while the

other modes pertain to collective fluctuations that can be interpreted as spin-wave ex-

citations, which contribute weakly. By changing the underlying symmetry of the DMI,

we were able to check that the present results hold for not only Néel skyrmions, but

also Bloch skyrmions and antiskyrmions. We found that collapse on a non-magnetic

defect yields the shortest lifetimes, with τ ≈ 0.1µs at room-temperature. In the absence

of defects, collapse mechanisms were found more probable than escape at low temper-

ature, but this trend reverses at room temperature, at which escape processes are more

probable. The largest lifetime at 300 K was found to be 21 ms, and is associated with

collapse mechanism no2. The presence of a second skyrmion was shown to decrease

the probability of collapse. Finally, escape through a flat boundary was found more

probable than through a curved boundary.

We used a simple Heisenberg model limited to first-neighbour exchange interac-

tions and no dipole-dipole couplings, but which should nevertheless capture the essen-

tial physics behind skyrmion annihilations in ultrathin films. Similar stability studies

where the exchange was parametrized by DFT calculations and went beyond the first

nearest-neighbour approximation reached very similar conclusions concerning the im-

portance of the prefactor [63, 109]. In systems were dipole-dipole interactions were

found to play an important role in the skyrmions’ stability, it was also demonstrated

that an effective anisotropy is enough to reproduce similar energy barriers [158]. While

this is valid in two-dimensional systems, it may however not be the case in three di-

mensions. Moreover, the effect of dipolar interactions on the attempt frequency has not

been studied, since dipolar couplings yield non-sparse matrices which are difficult to

diagonalize in large systems.

The important result of this chapter is the strong entropic contribution to skyrmion

stability. In the configurations studied here, the configurational entropy decreases be-

tween the metastable state and the saddle point, which results in lowered attempt fre-

quencies. This therefore constitutes a stabilizing effect, which we have referred to as

entropic narrowing in the saddle region. The strong entropic contribution is primarily

associated with the skyrmion’s internal modes, and is more pronounced for collapse

mechanisms. The aforementioned effect has two main consequences.

i. When considering different types of processes, the rates of annihilation, k(T ), are
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not necessarily ordered like the internal energy barriers. A mechanism with a

higher energy barrier might turn out to be less probable because it possesses a

low attempt frequency. One example is collapse and escape mechanisms at zero-

field. In the present case, collapse processes have a lower energy barrier than

escape, but also a much lower attempt frequency. As a consequence, escape pro-

cesses are more probable than collapse at room temperature. Another example

is the case of collapse mechanisms no 1 and 2. They have almost the same inter-

nal energy barriers, but the attempt frequency associated with mechanism no2 is

much lower, so the total rate is dominated by mechanism no1.

ii. The attempt frequency, and therefore the rate, displays a strong dependence on

external parameters, such as external magnetic field. This was also discussed in

Refs. [46, 63, 157].

For these reasons, internal energy barriers are not enough to correctly predict the life-

time of skyrmions, and it is essential to also evaluate a rate prefactor.

In principle, the total rate of annihilation of an isolated skyrmion in a finite-size

system is given by the sum of the rates due to collapse and escape through a boundary,

ktot = kcol + kesc. However, the escape rates we compute here through Langer’s theory

seem to be instantaneous rates. Since they do not depend on the size of the system (see

Table A.1), they do not take into account the time it takes for the skyrmion to diffuse

to the boundary. In Ref. [63], the skyrmions are decoupled from the lattice in the

metastable state, which results in the emergence of translational Goldstone modes, and

a system-size dependence of the rate. This is not satisfactory either, since the breaking

of the translational invariance would also result in the loss of system-size dependence.

The escape rate we compute therefore corresponds to the probability that a skyrmion

which is found close to the boundary, and which cannot diffuse back inside the sample,

will escape. The Brownian motion performed by an isolated skyrmion under thermal

fluctuations was shown to be diffusive, i.e., with a linear time-dependence of the mean

square displacement [143],

〈∆R2〉 = 〈
(
R(t)−R(t = 0)

)2
〉 ∼ Dskt, (4.4)

where R(t) is the position of the skyrmion at time t, and Dsk is the diffusion coefficient

of the skyrmion as a particle. The diffusion time ∆tdiff to reach the boundary at a

distance Rb from the initial skyrmion position should in principle behave as ∆tdiff ∼
R2
b/Dsk, so the full probability that the skyrmion may escape through the boundary

should also depend on T , R2
b, etc, without the need for translational invariance.
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Lastly, the results in this chapter were obtained by applying Langer’s theory to the

problem of skyrmion lifetime. As we have seen in Chapter 3, this theory is based

on many assumptions concerning the damping regime, the energy landscape, and the

thermodynamical state of the system. Moreover, whenever we are faced with several

mechanisms for a single process, as is the case of the skyrmion collapse, we can only

assume the mechanisms are independent in order for the rates to add up (e.g., Eq.

(4.2)), which may not hold. We are also faced with the existence of higher-order saddle

points, and the question of whether they should contribute to the total rate. An alter-

native approach is therefore required in order to validate the present results. This will

be explored in the next chapter.
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Chapter 5

Skyrmion collapse rate computation via
forward flux sampling and comparison
with Langer’s theory

5.1 Introduction

Generally speaking, the problem of annihilation rates of skyrmions pertains to the

realm of rare events. That is, in a direct Langevin dynamics simulation, few – if any –

annihilation events are observed. That is because the small timesteps [68] required to

properly resolve the precessional dynamics of magnetic spin systems entails that direct

simulations are, in practice, limited to a few hundred nanoseconds. Since skyrmions

are required to be stable on the scale of ten years at room temperature for data storage

applications, a better method than brute force simulations is required. In this chapter,

we demonstrate the use of a path sampling method for the simulation of rare events,

namely the forward flux sampling method, to compute collapse rates of magnetic skyr-

mions. We compare the obtained results with the ones calculated in Chapter 4 from

the application of Langer’s theory. The results presented in this chapter are based on

an original publication [3].

The chapter is organized as follows. In Sec. 5.2, we begin by exposing the principles

of Langevin spin dynamics and its implementation. In Sec. 5.3, we present the forward

flux sampling method, which we then apply in Sec. 5.4 to compute collapse rates of

isolated skyrmions. The results are compared with the ones previously obtained in

Chapter 4 from the application of Langer’s theory and are, lastly, discussed in Sec. 5.5.

101
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(a) (b)

Figure 5.1: Damped precession of a single magnetic spin (coloured arrow) about the
effective magnetic field (dark arrow) (a) at zero temperature (deterministic LLG), (b) at
finite temperature (stochastic LLG). In stochastic LLG, the coupling to the environment
is modelled by a stochastic fluctuating magnetic field in the form of white noise.

5.2 Langevin dynamics

5.2.1 Principle

A prerequisite for the implementation of the forward flux sampling method is the

ability to properly solve the Brownian dynamics of the magnetic spin system at finite

temperature T . At zero temperature, the dynamics of each spin mi is governed by

the LLG equation (Eq. (3.46) and Fig. 5.1a), which, at finite temperature, may take

the form of a Langevin equation (Eq. (3.4)) through the introduction of a stochastic

magnetic field, as given in Ref. [159]

dmi

dt̄
=

1
α

mi ×
[
bieff + bifl(t̄)

]
−mi ×

(
mi ×

[
bieff + bifl(t̄)

])
. (5.1)

Eq. (5.1) is the dimensionless stochastic LLG equation. As in previous chapters, the

quantities are in units of the isotropic exchange coupling constant between first nearest-

neighbours, J1 = Jex, such that in the above expression, bieff is the reduced local effective

field, as defined in Eq. (3.80), and bifl is a stochastic fluctuating field in the form of

white noise, which accounts for fluctuations of the orientation of mi caused by interac-

tions with microscopic degrees of freedom of the environment such as phonons, con-

ducting electrons, nuclear spins, etc. It is assumed to be Gaussian distributed, with the

following statistical properties, in agreement with the fluctuation-dissipation theorem,

〈bil (t̄)〉 = 0, 〈bil (t̄)b
j
m(t̄′)〉 = 2Dδlmδijδ(t̄ − t̄′), (5.2)



Chapter 5. Skyrmion collapse rate computation via forward flux sampling and comparison
with Langer’s theory 103

where l,m are Cartesian indices, i, j are site indices, and

D =
α2

1 +α2
kBT
J1

(5.3)

is the reduced diffusion coefficient. 〈. . .〉 denotes an average over different realizations

of the fluctuating field (see Sec. 3.1.1). The Dirac distribution, δ(t̄ − t̄′), translates the

fact that, above a certain temperature, the autocorrelation times of bifl is much shorter

than the rotational response of the system. The Kronecker symbol δlm comes from the

assumption that the different components of bifl are uncorrelated, while δij means that

the fluctuating fields at different sites are uncorrelated. The reduced time t̄ is linked to

physical time t via

t =
Ms

αγeJ1
t̄. (5.4)

In Fig. 5.1b, we show an example of the precession of a single spin about the determin-

istic effective field obtained by solving Eq. (5.1) at finite temperature. The inclusion of

the stochastic fluctuating field results in a stochastic trajectory. As the stochastic field

enters in a multiplicative way, an interpretation rule is needed in order to properly de-

fine it. This is because the noise has zero correlation time (Eq. (5.2)), so mi will jump

at every time the noise is realized, and so it is not clear which value of mi should enter

on the RHS of Eq. (5.1). Since the white noise is an idealisation of physical noise with

short autocorrelation time, the Stratonovich interpretation is the better choice in this

case [120]. The Dirac δ(t) may be approximated by a function δε(t) of very small width

ε, as [48]

δε(t) =


1
ε if − ε2 < t <

ε
2 ,

0 otherwise.
(5.5)

One then takes the limit ε→ 0 in the final result.

5.2.2 Numerical implementation

The stochastic Heun scheme

For convenience, we drop the i-index associated with magnetic sites, as well as the

overbar on the reduced time in this section. The system of stochastic dimensionless

LLG equations (Eq. (5.1)) at each spin is cast into a system of Langevin equations (Eq.

(3.4)) along each Cartesian axis l,m,n = {1,2,3} as [68]

dml
dt

= Al(M , t) +
∑
n

Bln(M , t)bfl,n(t), (5.6)
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in which M = [m1, . . .mN ]. In the previous expression,

Al =
∑
n

Blnbeff,n (5.7)

is the deterministic right-hand side of Eq. (5.1), and

Bln =
1
α

∑
m

εlmnmm + (δln −mlmn), (5.8)

where εlmn is the Levi-Civita symbol. We use the stochastic generalization of the deter-

ministic Heun integrator [68], where the value of ml at time t + dt is given by

ml(t + dt) =ml(t) +
1
2

[
Al(M̃ , t + dt) +Al(M , t)

]
dt

+
1
2

∑
n

[
Bln(M̃ , t + dt) +Bln(M , t)

]
∆Wn(t).

(5.9)

In the above expression, dt is the integration time step, and M̃ = [m̃1, . . . ,m̃N ] are the

Euler-type supporting values, with each Cartesian component m̃l,i = m̃l of m̃i expressed

as

m̃l =ml(t) +Al(M , t)dt +
∑
n

Bln(M , t)∆Wn. (5.10)

Lastly,

∆Wn =
∫ t+dt

t
dt′bfl,n(t′) (5.11)

are Gaussian distributed random numbers of first and second moments

〈∆Wn〉 = 0, 〈∆Wl∆Wm〉 = 2Ddtδlm, (5.12)

where D is defined by Eq. (5.3). The scheme converges to the solution of (5.6) when

interpreted in the sense of Stratonovich.

Implementation

The stochastic Heun integrator for Eq. (5.1) was implemented by the author in C++

following Ref. [68]. At each time step, the Cartesian components of the stochastic field

are drawn from a normal distribution defined by Eq. (5.12) using the Mersenne Twister

19937 pseudo-random number generator (MT19937) [160].
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Temperature (K) 〈mz〉t,th 〈|mz|〉t,num
10 0.98979 0.98978
50 0.94268 0.94282

200 0.71976 0.71686

Table 5.1: Theoretical and numerical time average of the component of the magnetiza-
tion parallel to the anisotropy axis for different temperatures at thermal equilibrium.

5.2.3 Numerical tests

Single macrospin

Based on the tests carried out in Ref. [161], we simulate a single rigid magnetic mo-

ment in the presence of an easy-axis anisotropy along z, and the following system pa-

rameters taken from Ref. [161]: Ms = 1.3 MA/m ; K = 6.9 MJ/m3 ; α = 0.1 ; a = 1 nm.

The reduced time step was set to dt̄ = 0.001, which corresponds to a physical time step

of dt = 4.55× 10−15 s.

The first test concerns the correct resolution of the deterministic precessional dy-

namics of the single-spin system. We initialize the simulation with a tilt angle θ = π/4

with respect to the z-axis, and we let the magnetization relax along the anisotropy axis

at T = 0 K. The resulting dynamics is shown in Fig. 5.1a. In Fig. 5.2a we plot the time

evolution of the Cartesian components of the single spin. The corresponding theoreti-

cal precession period is [161]

Tth =
2π
γeBeff

= 3.32 ps. (5.13)

We measure the time interval between five maxima ofmy in Fig. 5.2a and obtain Tnum =

3.39 ps, which shows good agreement with the theoretical value.

The second test aims to validate the implementation of the stochastic fluctuating

field. The theoretical time average for the z-component of the magnetization at ther-

mal equilibrium, 〈mz〉t,th, is given in Table 5.1 [161]. We compute 〈mz〉t,num over a time

period ∆t = 108 dt, starting from t0 = 106 dt in order to allow the system to thermal-

ize. Magnetization reversal events may occur, which are not taken into account in the

theoretical average. We thus compute 〈|mz|〉t,num to reduce the error due to reversals.

However, at T = 200 K, reversals are rather frequent, and the numerical average is thus

slightly under-evaluated. The results are gathered in the last column of Table 5.1 and

plotted in Fig. 5.2b, where the theoretical value is shown as dotted lines. We obtain a

good agreement with the theory.
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Figure 5.2: (a) Precessional relaxation of the magnetization for the single rigid mag-
netic moment at T = 0 K, (b) numerical and theoretical time average value of |mz|
calculated after thermalization for different temperatures, (c) attempt frequency of co-
herent magnetization reversal in a perpendicular applied field, comparison between
the analytical result from Langer’s theory for a single macrospin (Eq. (3.94)), and, for
N = 7 × 7 spins, Langer’s theory implementation and direct Langevin simulations at a
temperature which verifies β∆E = 5.

Magnetization reversal in a perpendicular applied field

Finally, we go back to the case of coherent magnetization reversal under a perpendic-

ular applied field treated in Sec. 3.5.4. We now aim to compare the attempt frequency

obtained from direct Langevin simulations with previous results from Langer’s theory.

For three arbitrary values of the reduced field h, as defined in Eq. (3.93), we set the

temperature T such that β∆E = 5, where ∆E is the activation barrier for the reversal.

The system parameters are the same as in Sec. 3.5.4, but we now simulate a square

system of N = 7 × 7 spins. In that case, the numerical result of Langer’s theory begins

to deviate slightly from the theoretical macrospin case, due to the contribution of col-

lective modes. This can be seen in Fig. 5.2c, where the values of f0 computed with

the numerical implementation of Langer’s theory (shown as blue circles) do not match

exactly with the theoretical formula (shown in red). The system is initialized in state A
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with φA,i = arcsin(h) ∀i. We launch 400 Langevin simulations and compute an average

waiting time for the reversal – i.e., the average time it takes for the system to reach

state B, which corresponds to φB,i = π−arcsin(h). We consider a reversal has happened

if [78]

|M(t)−MB| < λB, (5.14)

where MB = [mB,1, . . .mB,N ], the vertical bars denote the (N -dimensional) Euclidian

norm, and λB defines the boundary of region B. λB must be chosen such that it does

not impact the value of the reversal rate kAB. According to [78], 0 < λB ≤ 0.5 is within

acceptable values, so we set λB = 0.5. For higher values of λB, U-turn events might

be counted as reversals, that is, events where the magnetization precesses around MB

with a small angle, but ends up returning to A, in which case the reversal rate gets

over-estimated. The attempt frequency f0 is linked to the average waiting time τAB via

f0 = τ−1
ABe

β∆E . (5.15)

The results of Langevin simulations are shown in Fig. 5.2c as yellow triangles and agree

well with Langer’s theory.

5.3 The forward flux sampling method

Forward flux sampling (FFS) is a path sampling method for the simulation of rare

events in systems with stochastic dynamics. It was initially developed by Allen et
al. [74, 75] to simulate rare switching events in biochemical networks. It has, since

then, been applied to a wide range of rare event problems [77]. In particular, it was

used by Vogler et al. [78] to obtain switching rates in magnetic microstructures. In that

context, FFS was shown to be significantly more efficient than direct Langevin simula-

tions, while enabling an exploration of phase space free from prior assumptions. The

method generates trajectories between two (meta)stable states A and B in a ratchet-like

manner, which makes it well adapted for the simulation of rare to very rare events.

Compared to other path sampling methods, it does not require prior knowledge of the

phase space probability distribution function, which makes it suitable for both equilib-

rium and non-equilibrium systems – that is, systems that do not obey detailed balance.

For equilibrium systems, detailed balance entails that the stationary phase space prob-

ability distribution is given by the Boltzmann distribution (Eq. (3.21)), and the dynam-

ics is time-reversible. In non-equilibrium systems, on the other hand, the probability

distribution function is not known a priori. Lastly, FFS requires the rate constant kAB to

be time-invariant, which is verified if the transition occurs between two time-invariant

steady states A and B, and is itself fast compared to k−1
AB. Following the initial work of
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(a) (b)

Figure 5.3: Illustration of the FFS method where interfaces correspond to the isotropic
collapse of a skyrmion. (a) During the first simulation starting from state A, trajecto-
ries (in purple) that exit region A and cross λ0 are stored (marked as X’s). (b) Langevin
trial runs are performed at subsequent interfaces. The trajectories that successfully
cross the next interface before returning to A are stored (marked as dots) and serve as
starting points for the firing of new trial runs at the next interface. For the skyrmion
collapse, we chose the order parameter defining the interfaces between states A (meta-
stable skyrmion) and B (ferromagnetic state) as the monotonically decreasing size of
the skyrmion.

Allen et al. [74,75], many variants of FFS were developed [77]. In this work, we stick to

the original algorithm, known as Direct FFS (DFFS), which we simply refer to as FFS.

5.3.1 Principle

The FFS method employs a set of n (+1) non-intersecting interfaces in phase space

to sample the transition path ensemble and compute a transition rate. The interfaces

{λA,λ0, . . .λn = λB} are defined as isosurfaces of a monotonically varying order parame-

ter, λ(x) = λi , such that λA < λ0 < . . . < λB, as illustrated in Fig. 5.3. State A is defined as

λ(x) < λA, and state B as λ(x) > λB. The other interfaces {λi}, i = 0 . . .n− 1 must satisfy

λi < λi+1 ∀i. Any trajectory going from A to Bmust cross all the interfaces at least once.

The boundaries of regions A and B, i.e., λA and λB, require appropriate definitions

to ensure that the final rate is independent of the way they are defined, and only the

efficiency of the method is affected.

The rate of transition from A to B within the FFS method is expressed as [74]

kAB = ΦA,n = ΦA,0P (λn|λ0). (5.16)

Eq. (5.16) translates the fact that ΦA,n, which is the flux of trajectories leaving state A

and reaching interface λn = λB, is given by the product of ΦA,0 – the flux of trajectories

leaving A and crossing the first interface λ0, and the probability P (λn|λ0) that a trajec-
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tory that crosses λ0 coming from A will subsequently cross λn before returning to A.

The flux ΦA,0 can be computed easily, since trajectories coming from A will frequently

cross λ0. On the other hand, the probability PB = P (λn|λ0) will typically be small for

rare events. It is made easier to calculate by decomposing it into a product of flux

through each interface, that is

PB = P (λn|λ0) =
n−1∏
i=0

P (λi+1|λi). (5.17)

The conditional probabilities P (λi+1|λi) correspond to the probability that a trajectory

coming from A that crossed interface λi for the first time will cross interface λi+1 before

returning toA. Eq. (5.17) does not involve a Markovian approximation, since P (λi+1|λi)
depends on the history of trajectories that reached λi . Eqs. (5.16) and (5.17) correspond

to an “effective positive flux” formulation of the rate constant. One can note that state B

is not required to be a (meta)stable state, and FFS may be used to predict the probability

of arbitrary rare fluctuations starting from a stable state A [162]. The terms in Eq.

(5.16) are computed by firing Langevin trial runs at successive interfaces. The protocol

is illustrated in Fig. 5.3 and detailed below.

First, a single Langevin simulation is started in state A. This initial simulation is

used to generate a collection of N0 configurations corresponding to crossings of λ0, as

well as to compute a value of ΦA,0. Following an equilibration period, each time the

system successfully exits region A and crosses the next interface λ0, its configuration is

stored. This is illustrated in Fig. 5.3a, where the system trajectory is shown in purple,

and stored configurations are marked as X’s. The simulation ends after N0 crossing

configurations have been stored at λ0, and the flux of trajectories out of state A in Eq.

(5.16) is obtained as ΦA,0 = N0/∆tsim, in which ∆tsim is the total simulated time. Note

that ∆tsim should not include the time the system may have spent in the B-basin.

After that, a configuration stored at λ0 is selected at random, and used as a starting

point for a new simulation. That new simulation ends when the trajectory either crosses

interface λ1, in which case the crossing configuration is stored, or the system returns

to A. This is shown in Fig. 5.3b, where trajectories starting from λ0 are shown in blue.

If they cross the next interface, the stored configuration is marked as a dot. To obtain

a flux through interface λ1, this procedure is repeated M0 times. If N s
0 trajectories

successfully crossed λ1, we can compute P (λ1|λ0) = N s
0/M0, where M0 corresponds to

the number of trial runs started at interface λ0. One then proceeds analogously at

subsequent interfaces, until λn is reached. This results in the system being driven in

a ratchet-like manner from the initial to the final state, without imposing any bias on

the microscopic dynamics. This is achieved by “capitalizing” on fluctuations in the
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direction of the order parameter. The FFS run terminates successfully if at least one

trajectory reached state B, otherwise the interface definitions need to be improved. A

collection of transition paths may be reconstructed a posteriori from the connectivity

history of all the trial runs. Note that the obtained transition paths are branched, since

many paths may start from a single configuration at λ0.

5.3.2 Error estimation and optimization

Error estimation

The FFS method involves many adjustable parameters: the number and position of

the interfaces, {λi}, the definition of the order parameter, x, the number of trial runs

fired at each interface, {Mi}, and the number of configurations stored at the first in-

terface, N0. The computed rate constant should, in principle, not depend on these

parameters, and only affect the efficiency of the method [77]. In order to estimate the

efficiency and the error of a given FFS run, a relative variance of the rate, V , was de-

rived in Ref. [76]. V is defined as the variance V [kAB] in the estimated value of the rate

constant, kAB, per starting point at λ0, divided by the square of the expectation value

of the rate:

V =N0
V [kAB]

k2
AB

≈N0
Φ2
A,0V [PB]

(ΦA,0PB)2 =N0
V [PB]

P 2
B

. (5.18)

In the previous expression, we have used the general formula

V [ax] = a2V [x], (5.19)

where a is constant. In what follows, let pi ≡ P (λi+1|λi), qi ≡ 1− pi , and ki ≡Mi/N0. To

obtain an expression for the variance of PB, we use the following propagation formula:

V
[
f {xi}

]
=

n∑
i=1

( ∂f
∂xi

)2
V [xi], (5.20)

where f {xi} is a function of n uncorrelated variables (x1,x2, . . .xn), and the partial deriva-

tives are evaluated with all variables at their mean values. We identify

f {pi} =
n−1∏
i=0

pi = PB, (5.21)

and, by noting that
∂
∏n−1
j=0 pj

∂pi
=
PB
pi
, (5.22)
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we obtain

V [PB] = V
[ n−1∏
i=0

pi

]
= P 2

B

n−1∑
i=0

V [pi]

p2
i

. (5.23)

If we launch Mi trial runs at interface i, and N s
i are successful in reaching the next

interface, then, by using Eq. (5.19) once more,

V [pi] = V
[N s

i

Mi

]
=
V [N s

i ]

M2
i

. (5.24)

According to [76], N s
i is binomially distributed, and so V [N s

i ] = Mipiqi . By inserting

the previous expression and Eq. (5.24) into (5.23), we obtain

V [PB] =
P 2
B

N0

n−1∑
i=0

qi
piki

, (5.25)

and from Eq. (5.18),

V =
n−1∑
i=0

qi
piki

. (5.26)

Eq. (5.26) holds as long as Mi is large enough that there is always at least one trial

run that reaches the next interface. V is assumed to arise only from the trial runs

for the computation of PB (Eq. (5.17)), and not from the computation of the initial

flux ΦA,0. This is justified for a large enough flux out of region A and a long enough

simulation time in the A basin. In practice, we must chose N0 so that the value of ΦA,0,

and subsequent value of kAB, do not strongly depend on it. Finally, we note that Eq.

(5.26) was obtained by assuming that the number of successful trial runs at different

interfaces are uncorrelated. In other words, the probability pi of a successful trial run

at λi does not affect the probability pi+1 of a successful trial run at λi+1. In reality, this

assumption may not hold for highly correlated systems, and/or if the spacing between

interfaces is small.

Statistical errors on the obtained transition rates can be extracted from the relative

variance (Eq. (5.26)), or by repeating several FFS runs. In the former case, the error on

kAB may be estimated as [76, 77],

σk = kAB

√
V
N0
. (5.27)
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The statistical error on the attempt frequency f0 is easily derived from Eq. (5.27), and

we obtain

σf0 = f0

√
V
N0
. (5.28)

Note that [78] shows that the standard deviation of the attempt frequency obtained by

repeating five separate FFS simulations tends to be much bigger than the one computed

with Eq. (5.28), as least in the case where N0 = 100 was used. Apart from estimating

a standard deviation, the relative variance is also useful to evaluate the computational

efficiency of the method, and compare it with that of “brute force” direct Langevin

simulations [76].

Optimization

Some iterative procedures were designed by Borrero and Escobedo [163] to optimize

the parameters of FFS. The principle consists in minimizing the variance V [PB] under

the constraint that the total transition probability PB remains constant. Varying Eq.

(5.25) with a Lagrange multiplier yields the condition [163]

Mipi = cst, (5.29)

that is to say, a constant flux of partial trajectories through all interfaces is the optimal

configuration to minimize the variance of the rate. From there, two main approaches

are possible:

• optimizing the number of trial runs {Mi} while keeping the interfaces fixed;

• optimizing the interface placement {λi} at fixed {Mi}.

In this work, we have maintained a constant number of trial runs per interface,Mi =M0

∀i, but, when judicious, we optimized the placement of interfaces. The principle is

explained in what follows.

After choosing a fixed value ofMi through all interfaces, the condition (5.29) implies

that

pi = cst = (PB)
1
n . (5.30)

The value of the transition probabilities {pi} can be adjusted by changing the placement

of the interfaces {λi}. To do so, an interpolation function is needed in order to establish

a correspondence between the {pi} and the {λi}. A possible choice of such a function

is [163]

f (λi) =

∑i−1
j=0 lnpj∑n−1
j=0 lnpj

, (5.31)
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which reduces to

f (λi) =
i
n

(5.32)

when {pi} = cst. The optimization procedure is as follows:

• perform a run of FFS with a non-optimized set of interfaces {λi} and compute

{f (λi)} from Eq. (5.31);

• compute the optimum values of {f (λi)} according to Eq. (5.32);

• invert the interpolation function to determine the new set of optimized {λi};

• iterate the procedure if necessary.

5.3.3 Numerical implementation

Implementation of parallel trial runs

Although a linear implementation of FFS is straightforward, the method is more

efficient when many trial runs at a given interface λi can be performed simultaneously.

This requires the simulation to wait for all trial runs started at interface λi to terminate,

in order to launch the next series of trial runs at interface λi+1.

All the code was written by the author, unless stated otherwise. The core code was

implemented in C++ and performs a given trial run k, where k = 1 . . .Mi , at interface

λi , until the system trajectory either returns to A or crosses λi+1. In the latter case, the

configuration is stored in a file. The next layer is managed by a Bash script. The script

stores the indices and the number N s
i of crossing configurations saved from the trial

runs fired at interface λi−1, and selects one at random to launch a trial run at interface

λi . If λi = λ0, it simply selects a random configuration in [1,N0]. The FFS simulations

were performed across several nodes – typically 10 nodes, with 16 tasks per node and

two tasks per core, for a total of 320 simultaneous tasks – on the Vienna Scientific

Cluster (VSC). Running parallel trial runs on multiple nodes requires the use of MPI

(Message Parsing Interface) to allow the trial runs to wait for each other before moving

on to the next interface. An MPI for Python script initially written by Dr. Christoph

Vogler was modified by the author and used in that effect. The Python script calls

the Bash script with some given parameters and manages the global FFS run over all

interfaces and all trial runs on the VSC.

Numerical test

Once more, we test the implementation against the rate of coherent magnetization

reversal in a perpendicular field (Fig. 3.6a). We reproduce the low damping case of
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Ref. [78], for which we use the same parameters describing a single-macrospin particle

with α = 0.002, K = 3 MJ/m3, a = 1 nm, N = 1, Ms = 0.5µ−1
0 A/m. Region A and B are

defined according to Eq. (5.14), with λA,B = 0.45. The other interfaces are defined as

hyperplanes in the space of configurations in the following way. We use the collection

of images along the MEP, [M1 . . .MQ], previously found with the GNEB scheme. Note

that we may skip the images that lie past the saddle point, since the flux of trajectories

starting from the saddle point that subsequently reach state B is high. Therefore, if

the climbing image is at the saddle point, we can restrict ourselves to [M1 . . .MνCI ,MQ],

where MQ = MB. At each spin i, and each image ν, we define the local vector to the

previous configuration,

nνi = mν
i −mν−1

i . (5.33)

Interface ν is defined as the hyperplane normal to Nν = [nν1 . . .n
ν
N ] that passes through

Mν . At each time step, we compute the dot product

Nν · [M(t)−Mν]. (5.34)

We consider that interface ν has been crossed if the dot product in Eq. (5.3) has changed

its sign. Note that, for the problem of magnetization reversal, one may also use Eu-

clidian norm definitions (Eq. (5.14)) for all interfaces [79]. We use eight interfaces,

N0 = 100, and Mi = M0 =3840 at all interfaces. The temperature in the Langevin trial

runs is chosen such that β∆E = 14. For a reduced field h = 0.1 (Eq. (3.93)), we obtain

an initial flux of ΦA,0 = 1.06 GHz, and an attempt frequency of f0 = 147.5 GHz, with

a relative variance V = 0.48. This matches the result from Ref. [78] and the analytical

formula derived in [164].

5.4 Application to skyrmion collapse and comparison with

Langer’s theory

5.4.1 Interface definition

We aim to compare the collapse rates of an isolated skyrmion previously calculated

via Langer’s theory, with the rates computed via FFS simulations. A natural choice of

interfaces for the skyrmion collapse is the decreasing size of the skyrmion, where state

A is the equilibrium skyrmion size, and state B – corresponding to the ferromagnetic

state – is associated to a zero-size. Arbitrarily, we consider that magnetic sites mi that

satisfy mz,i ≤ 0 are part of the skyrmion, and we define the order-parameter x as the
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(integer) number of sites inside the skyrmion,

x =
N∑
i=1

mz,i≤0

1. (5.35)

The interfaces λi = λ(x) are isosurfaces of x (Fig. 5.3). We set λA = λ(xA), where xA is

the number of sites in the metastable skyrmion, and λn = λB = λ(x = 0). From there,

we may choose, for instance, the first interface to be λ0 = λ(xA − 3). This ensures that

the first simulation out of the A basin will span over a long enough simulated time.

The rest of the interfaces may be evenly spaced out between λ0 and λB. However,

the efficiency of FFS is increased if the flux of partial trajectories remains as constant

as possible through all interfaces. Therefore, we usually saturate the interfaces (one

interface every integer value of x) in the region preceeding the saddle point, since the

flux typically tends to drop in that region. The rest of the interfaces can be more spaced

out. After a first run of FFS has terminated, it can be helpful to run the interface

optimization procedure described in Sec 5.3.2. However, this scheme is designed for

a continuous order parameter, and is not as effective if the order parameter only takes

integer values. Although we did not implement it, a good solution in this case would

be to also optimize the number of trial runs per interface {Mi} while maintaining a

constant set of {λi}. Lastly, for higher field values, at which the metastable skyrmion is

small, we simply saturate the interfaces between λ0 and λB.

The number of stored configurations at λ0 was chosen to be N0 = 1000, or 1500

for bz = 0. Since the trajectories are branched, we have found that the exhaustiveness

of this initial sampling is crucial. If not enough crossing configurations are sampled,

the fluxes of trajectories through subsequent interfaces are also not accurate. As for the

number of trial runs per interface, it is chosen constant and equal toM0 at all interfaces,

and is iteratively increased until the variance (Eq. (5.26)) verifies V / 1. In some cases,

the variance was decreased also by increasing the number of interfaces (pi increases).

In the end, the number of interfaces spans from 34 at zero-field, to 14 for bz = 0.05.

For each value of the reduced field at β∆E1 = 10, Table 5.2 shows the corresponding

number of interfaces, as well as the values of the absolute temperature of the trial runs,

the number of trial runs performed at each interface,M0, the number of configurations

stored at the first interface, N0, and the relative variance of the rate, V .

5.4.2 Results

For each value of the reduced field, we compute a total collapse rate kAB through

forward flux sampling, and an attempt frequency is recovered by using the value of ∆Ē
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bz (Jex) 0.000 0.005 0.010 0.015 0.020 0.025
Number of interfaces 34 32 24 22 20 17

∆E1/10kB (K) 327.5 283.2 245.1 210.0 182.1 156.1
N0 1500 1000 1000 1000 1000 1000
M0 34560 27520 37760 38080 39680 25920
V 1.01 0.86 0.76 0.70 0.58 1.00

bz (Jex) 0.030 0.035 0.040 0.045 0.050
Number of interfaces 17 17 14 14 14

∆E1/10kB (K) 132.8 111.8 92.9 76.2 61.2
N0 1000 1000 1000 1000 1000
M0 39680 39680 39680 39680 39680
V 0.66 0.73 0.73 0.84 0.85

Table 5.2: For the FFS runs at β∆E1 = 10 and for each value of the reduced field bz, we
give: the number of interfaces, the absolute temperature, the number of configurations
stored at the first interface, N0, the number of trial runs per interface, M0, and the
relative variance of the rate, V .

i 1 2 3 4 5 6 7 8 9 10 11 12
x 26 23 20 19 18 17 16 15 14 13 12 11
pi−1 0.18 0.27 0.35 0.70 0.68 0.67 0.65 0.63 0.59 0.57 0.54 0.52

i 13 14 15 16 17 18 19 20 21 22 23
x 10 9 8 7 6 5 4 3 2 1 0
pi−1 0.49 0.48 0.43 0.39 0.39 0.37 0.40 0.28 0.53 0.77 0.99

Table 5.3: For bz = 0.010 and β∆E1 = 10, we give the interface index, i, the number of
sites inside the skyrmion, x, and the flux pi−1 = P (λi |λi−1) through λi .
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Figure 5.4: We show the following quantities as a function of the reduced destabiliz-
ing applied field bz: (a) Attempt frequency f0 for the skyrmion collapse obtained via
Langer’s theory calculations, FFS simulations, and direct Langevin simulations at 300
K, (b) skyrmion lifetime against collapse, τ = k−1

AB, obtained via Langer’s theory and FFS
simulations. The results from Langer’s theory are the ones presented in Chapter 4. The
errorbars on FFS calculations are respectively given by Eqs. (a) (5.37) for the attempt
frequency and (b) (5.27) for the average lifetime. Note that whenever the errorbars are
smaller than the size of the square marker, they are represented as two unconnected
parallel lines.
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Figure 5.5: Examples of (zoomed) spin configurations from FFS stored at the inter-
face(s) at which the order-parameter equates that of a saddle point (a) at interface
λ9 = λ(x = 4), for bz = 0.05 and T = 61 K (β∆E1 = 10), (b, c) for bz = 0 and T = 218
K (β∆E1 = 15), at interface (b) λ28 = λ(x = 5), and (c) λ29 = λ(x = 4).

(Eq. (4.3)). Throughout each FFS run, we maintain a temperature T such that β∆E1 =

10 or 15, so that Langer’s theory holds [47]. For bz = 0.010, we get ΦA,0 = 104.39

GHz with λ0 = λ(x = 29). For this particular field value, FFS matches really well with

Langer’s theory, and so we give in Table 5.3 the values of the order parameter x, and

the corresponding flux pi−1 through each interface λi , in the case where β∆E1 = 10.

The results from both FFS and Langer’s theory are shown in Fig. 5.4a for the attempt

frequency f0, and the skyrmion lifetime in an infinite system, τAB = k−1
AB, is plotted in

Fig. 5.4b. The standard deviation on the lifetime is derived from Eq. (5.27) and is

expressed as

στ =
1
kAB

√
V
N0
. (5.36)

For the attempt frequency, the formula is modified to account for the error on the

internal energy barrier in the following way:

σf0 = f0
(√ V

N0
+ βσ∆E

)
, (5.37)

where σ∆E is the standard deviation associated with ∆Ē. At higher applied field values,

where the attempt frequency is found within the 1− 10 GHz range, we also compute a

collapse rate via direct Langevin simulations at 300 K. In that case, we proceed simi-
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larly to the FFS method, by counting the number of sites x inside the skyrmion at each

time step, as defined in Eq. (5.35). A collapse is recorded when x = 0. We obtain an

average lifetime out of 400 collapses, and once again we use the value of ∆Ē to recover

an attempt frequency.

Overall, we obtain a good agreement between Langer’s predictions and FFS. The

three data points obtained from direct Langevin simulations match the result of FFS.

The prefactors obtained at two different temperatures in the FFS runs agree well, which

validates Langer’s result that, in the present case, the attempt frequency does not ex-

hibit any significant temperature dependence. Over the range of applied field strengths

studied here, FFS confirms the prediction that the prefactor f0 varies by four orders of

magnitude, which is the result of a strong entropic contribution.

In Fig. 5.5, we plot some examples of stored configurations at interfaces at which the

order-parameter is that of a saddle point. We report both S1 and S2 types of configura-

tions, as well as some other configurations that don’t clearly pertain to either category.

This occurs for two reasons. Firstly, the crossing configurations correspond to an order

parameter which is either equal to, or smaller than that of the saddle point (x ≤ xSP).

Even in cases where x = xSP, this does not imply that the configuration is indeed a sad-

dle point. Secondly, the saddle point is the lowest energy configuration at the barrier

top. Under the effect of thermal fluctuations, the system does not usually cross the

barrier exactly at the SP, but deviates from it by a more or less small amount. Note that

Langer’s theory is in principle valid only for small deviations.

5.5 Discussion

In this chapter, we have compared the rate of collapse of an isolated skyrmion com-

puted via Langer’s theory and forward flux sampling simulations. Overall, both meth-

ods agree well, thus, in general, the choice of either method should yield the correct

order of magnitude for the skyrmion lifetime. Therefore, we can confirm the result

previously obtained from Langer’s theory that the stability of skyrmions is subject to a

strong entropic contribution, and that internal energy barriers are not enough to prop-

erly predict their lifetime.

For some values of the applied field (most notably, bz = 0.02), the attempt frequency

predicted by Langer shows a discrepancy of one or two orders of magnitude with the

FFS result. In general, since the application of Langer’s theory is bound by many hy-

potheses concerning the thermal fluctuations, the energy landscape, and the lack of
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coupling between different mechanisms, the result of FFS should be more trustworthy.

On the other hand, FFS is less computationally efficient and less systematic in its appli-

cation, because the interfaces need to be adjusted to reflect different sets of parameters.

The computational cost of both Langer and FFS will obviously increase with the sys-

tem size, and if non-local dipolar couplings are included, but the cost of FFS will in

principle increase faster. For different types of processes, such as escape processes, the

nature of the order parameter should be modified accordingly.

As far as we are aware, the results in this chapter constitute the first comparison

between forward flux sampling and Langer’s theory in a complex, nontrivial magnetic

system that cannot easily be treated analytically (i.e., beyond the macrospin approx-

imation). In particular, in addition to the path over the first-order saddle point, S1,

we included the contribution of a path involving a third-order saddle point, S2, to

Langer’s result in Chapter 4. Multidimensional formulations of reaction rate theory

are typically found for a transition path involving a first-order saddle point, and only

Ref. ?? proposed an extension of Langer’s theory to include higher-order saddle points.

Nevertheless, the activation energies associated with S2 are almost the same as the ones

associated with S1, and configurations similar to S2 are observed in FFS, so we could not

justify neglecting it a priori. Only through the computation of the attempt frequencies

in Chapter 4 did it transpire that the mechanism involving S2 should not contribute

as much as the one involving S1, because the attempt frequencies for mechanism no2

tend to be much lower (see Fig. 5.4a). This is because the configurational entropy at

S2 is lower than at S1, which implies that S2 is less likely to be visited by the system.

This result seems to be confirmed by FFS simulations, since the obtained attempt fre-

quencies tends to match Langer’s prediction. This is further proof of the importance

of the prefactor, because, even though ∆E1 ≈ ∆E2, k1(T )� k2(T ) (see Fig. 4.14d). We

should also note that the energy barriers between S1 and S2 are likely to be quite low,

therefore, in reality, both mechanisms are probably coupled in some way.

Finally, at zero-field and T = 200 K, the skyrmion’s average lifetime against collapse

approaches one second, which may be encouraging for applications. In multilayers,

where the layers are stacked along the z-direction, the energy barriers should increase

if the spin texture is homogeneous along z, thus enhancing stability [105]. Additionally,

in Pd/Fe bilayers on Ir(111), frustrated exchange has also been shown to increase the

height of the activation barriers against collapse [165]. In the next chapter, we will look

at the paths to annihilation of skyrmions under frustrated exchange couplings.



Chapter 6

Paths to annihilation of first- and
second-order (anti)skyrmions under
frustrated exchange

6.1 Introduction

As we have seen in Sec. 2.3.4, skyrmionic solutions can exist in centrosymmetric sys-

tems when, for instance, a characteristic lengthscale is introduced via exchange frustra-

tion. Systems with frustrated exchange are particularly interesting, as they allow many

different kinds of topological defects to coexist. Frustrated exchange was shown to arise

from interface effects in Pd/Fe/Ir(111) for fcc stackings of the Pd layer by DFT calcu-

lations. This system was also shown to host nanoscale interface skyrmions stabilized

primarily by the DMI [33,43]. The ab initio calculations in Ref. [43] were in good agree-

ment with the different phases of the system reported from SP-STM experiments [33].

More recently, a strong exchange frustration was observed in Rh/Fe/Ir(111), which was

found to be a driving force behind the SS ground state [117]. Lastly, during the writ-

ing phase of this thesis, strong exchange frustration was reported in Rh/Co/Ir(111) by

SP-STM measurements and DFT calculations [118]. In this system, skyrmions of ap-

proximately 5 nm in diameter were observed at zero magnetic field at low temperature

in the virgin FM state. The exchange frustration was found to play an important role

in their stabilization. These results demonstrate the importance of understanding the

effect of exchange frustration on skyrmion stability. The frustrated J1 − J2 system on

the hexagonal lattice was extensively investigated in Ref. [22] and, in general, the frus-

trated hexagonal lattice is the most commonly studied [23, 26, 43, 139, 165]. Although

skyrmions decouple from the lattice in the long wavelength limit, we can note that this

is typically not true for saddle point configurations of collapse processes [1, 63]. Col-

lapse mechanisms of skyrmions and antiskyrmions in chiral thin films with frustrated

121
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exchange were previously investigated [63, 165], and appear similar to the isotropic-

type of collapse calculated in non-frustrated chiral systems [1, 59, 67, 141, 158, 166].

In Pd/Fe/Ir(111), the energy barriers of isolated skyrmions with respect to isotropic

collapse were found to be enhanced by the exchange frustration, compared to a Hamil-

tonian limited to first nearest-neighbours [165]. A third annihilation mechanism in-

volving the injection of a singularity with opposite topological charge was reported

in [67], but the path appears to go over a higher order saddle point. Additionally,

this mechanism seems to emerge for larger skyrmion sizes. Lastly, asymmetric paths

to collapse similar to the ones we present in this chapter were very recently reported

via GNEB calculations for first-order skyrmion solutions on the frustrated hexagonal

lattice [118, 167].

In this chapter, we look at paths to annihilation of first- and second-order skyrmions

and antiskyrmions on the frustrated J1− J2− J3 square lattice previously studied by Lin

et al. [25], which we presented in Section 2.3.4. We relax skyrmionic solutions spanning

over only a few sites in diameter that, once again, do not exhibit translational invari-

ance on the lattice, and instead experience pinning at particular lattice points. By using

the GNEB method, we compute a new type of asymmetric path to collapse. A weak in-

terfacial DMI is added to break the invariance with respect to the rotation of helicity

(i.e. the “spin” degree of freedom, where “spin” refers to the spin of the skyrmion as

a particle [25]), as well as the degeneracy between skyrmions and antiskyrmions. The

results presented in this chapter were initially published in Ref. [2].

The chapter is organized as follows. In Sec. 6.2, we give regions of existence of meta-

stable first- and second-order skyrmions and antiskyrmions in parameter space. In Sec

6.3, we present different mechanisms by which they annihilate, which we then vali-

date by means of direct Langevin simulations in Sec. 6.4 . We subsequently compute

attempt frequencies associated with the different mechanisms by applying Langer’s

theory in Sec 6.5, and the average lifetimes of the stuctures are discussed. Finally, the

results are discussed in Sec. 6.6.

6.2 Coexistence of skyrmion and antiskyrmion solutions

The system we study is similar to the one described in Chapter 4, but the isotropic

exchange is now extended to the third shell of neighbours, with the following reduced

coupling parameters: (j1, j2, j3) = (1,−0.35,−0.15) [25]. The reduced perpendicular uni-

axial anisotropy constant is set to k = 0.1 for the rest of this chapter. We introduce

a weak DMI to the system in order to break the invariance with respect to the rota-
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Figure 6.1: For k = 0.1 and different values of the reduced DMI constant d and the
reduced applied field b, existence of (a) an isolated skyrmion solution, (b) an isolated
antiskyrmion solution, (c) an isolated second-order skyrmion solution, (d) an isolated
second-order antiskyrmion solution. Only metastable solutions of interest correspond-
ing to excitations of the ferromagnetic ground state are marked with an orange dot.
The spin maps are zoomed in to show the topological defects.
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tion of helicity, as well as the degeneracy between skyrmions and antiskyrmions. We

look for a set of parameters that allow metastable skyrmion and antiskyrmion solu-

tions to co-exist. To do so, we initialize the system close to a(n) (anti)skyrmion state

and run the iterative energy minimization procedure described in Section 3.5.1. If a(n)

(anti)skyrmion solution exists, it is relaxed. We vary the perpendicular destabilizing

applied field b in [0,0.4], and the DMI coupling constant d in [0,0.07]. We obtain the

diagrams of Fig. 6.1 for skyrmions (Fig. 6.1a) and antiskyrmions (Fig. 6.1b).

At low field or high DMI, a spiral state is relaxed. Above a critical applied field, the

spin-spiral state becomes the fully polarized ferromagnetic state via a second-order

phase transition [25]. Within the FM phase, metastable skyrmion solutions can be

stabilized. In the presence of a perpendicular easy-axis anisotropy, the skyrmion lattice

becomes thermodynamically stable at intermediate applied field [25]. In this region,

skyrmions are more favourable than the FM state. They are metastable in the sense

that they are local energy solutions, but not the ground state. At finite temperature,

the isolated skyrmion state is rapidly destroyed by the nucleation of many topological

defects in its vicinity. By contrast, the metastable solutions we are interested in are

isolated skyrmionic defects as excitations of the ferromagnetic ground state, which we

mark as orange dots in Fig. 6.1. Since the symmetry of the DMI favours Néel skyrmions,

degeneracies are lifted, and antiskyrmions become progressively less stable than their

skyrmion counterparts as the DMI increases. They also relax diagonally on the square

lattice, such that their Bloch-type axes, which we showed in Fig. 2.6, are along the first

nearest-neighbour axes, which are the only ones that are coupled by the DMI. This is

due to the fact that one of the Néel-type axes of the antiskyrmion exhibits the opposite

chirality to the one favoured by the DMI, as was illustrated in Fig. 2.6 and discussed in

Sec. 2.3. This introduces frustration in the orientation of the antiskyrmion solutions,

which is not present in first-order skyrmion solutions with cubic symmetry.

Lastly, Figs. 6.1c and 6.1d show the range of existence of second-order skyrmion and

antiskyrmion solutions (see Figs. 2.9d and 2.9e), respectively. They exist as metastable

solutions at low d in the skyrmion lattice phase, where they are more favourable than

the FM state. By increasing the DMI at constant applied field, a bound skyrmion pair

is relaxed instead of the second-order skyrmion, but the second-order antiskyrmion

solution persists. Metastable solutions are found within a small window of the fer-

romagnetic phase at sufficiently low field and DMI. We find second-order skyrmions

and antiskyrmions to be quasi-degenerate in energy whenever they both exist, with

small differences most likely caused by the underlying lattice. However, the range of

existence of the antiskyrmion appears to be wider.
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6.3 Paths to annihilation

Transition mechanisms correspond to minimum energy paths on the 2N -dimensional

energy surface. Once more, we compute them via CI-GNEB [59] calculations with

a climbing image scheme [58]to precisely identify the first-order saddle point on the

path. In the GNEB method, successive states of the system along the reaction coordi-

nate are referred to as images. In what follows, we present the annihilation mechanisms

of a skyrmion (Fig. 6.2), an antiskyrmion (Fig. 6.4), and a second-order skyrmion (Fig.

6.6). For each mechanism, we plot the spin maps at selected images and the corre-

sponding topological charge density, ρs. Note that the topological charge density was

obtained by interpolating the skyrmion profile and using the continuous definition of

Eq. (2.34). However, the discrete form of ρs, which we gave in Eq. (2.39), is the more

correct definition that should be used on the atomistic spin lattice. The total energy

along the path is plotted in Figs. 6.3, 6.5, and 6.7 for the skyrmion, the antiskyrmion,

and the second-order skyrmion, respectively, in units of the isotropic exchange cou-

pling constant between first neighbours, J1, as well as the total topological charge, Ns,

at each image, which was calculated according to the discrete definition in Eq. (2.38).

6.3.1 Skyrmion

The first set of parameters we examine is (b,d) = (0.2,0.03). It is a region of param-

eter space where both metastable skyrmion and antiskyrmion solutions exist. In this

context, we observe an annihilation mechanism which is different from the usually re-

ported isotropic type of collapse. We show spin maps at selected images along the path

in Fig. 6.2a, and the corresponding energy profile is shown in red in Fig. 6.3a, where

the evolution of the topological charge is shown in Fig. 6.3b. The mechanism is as

follows. One half of the skyrmion unfolds, and a half-antiskyrmion, or antimeron, is

nucleated in its place (ims. [1-6]). The injection of the opposite topological charge in

the system constitutes the first-order saddle point on the transition path (im. 6 in Fig.

6.2a and inset on the right in Fig. 6.3a), and, as shown in Fig. 6.3b, also coincides with

the loss of the topological charge. This state possesses four different realizations, equiv-

alent to rigid π/2-rotations of the whole system. The remaining meron and antimeron

then naturally annihilate (ims. [7-10]). We found that the isotropic type of collapse

also exists in this system, but it involves a higher order saddle point.

The second set of parameters is (b,d) = (0.3,0.07). In the space of parameters, it is

situated just above the limit at which antiskyrmion solutions no longer exist. We show

spin maps at selected images along the path in Fig. 6.2b, and the corresponding energy

profile is shown in pale blue in Fig. 6.3a, where the evolution of the topological charge
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(a)

(b)

(c)

Figure 6.2: Spin maps (zoomed) and corresponding topological charge density along
the transition path for a skyrmion annihilation. The parameters are (a) (b,d) =
(0.2,0.03) (metastable antiskyrmion solutions exist), (b) (b,d) = (0.3,0.07) (close to the
existence of antiskyrmion solutions), (c) (b,d) = (0.7,0.2) (antiskyrmions solutions do
not exist). The image index is given in the top left-hand corner. When antiskyrmion
solutions exist, the skyrmion annihilates via the nucleation of a half-antiskyrmion, or
antimeron. The meron-antimeron state constitues the saddle point (im. 6). When anti-
skyrmion solutions do not exist, the isotropic collapse is recovered.
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Figure 6.3: For the skyrmion annihilation at different values of the reduced applied
field b and reduced DMI constant d, we show the evolution along the transition path
of (a) the internal energy barrier in units of J1, (b) the topological charge. The reaction
coordinate is normalized by the largest path length. The insets show the spin configu-
ration and the topological charge density at the saddle point. In all three cases, the SP
has a vanishing topological charge.

is shown in Fig. 6.3b. In this case, the skyrmion undergoes a regular collapse involving

a first-order saddle point (im. 6 in Fig. 6.2b and inset in the centre in Fig. 6.3a), but the

core at the SP displays a weak asymmetry in a way that is reminiscent of the mechanism

in Fig. 6.2a. For this reason, the saddle point is different from the saddle point config-

urations S1 and S2 that we reported in Chapter 4 in the case of the isotropic collapse

of a chiral skyrmion. Since we are close to the region of antiskyrmions’ metastability,

this mechanism can be considered as intermediate between antimeron nucleation and

isotropic collapse.

Finally, we select a region of parameter space with high DMI, far from the metasta-

bility region of antiskyrmions: (b,d) = (0.7,0.2). We show spin maps at selected images

along the path in Fig. 6.2c, and the corresponding energy profile is shown in dark blue

in Fig. 6.3a, where the evolution of the topological charge is shown in Fig. 6.3b. As ex-

pected, we obtain a perfectly isotropic collapse similar to the ones reported in Chapter
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4, and without the injection of an opposite topological charge. In all three cases, the

topological charge seems to fall to zero at the saddle point, although a higher resolution

in the SP region could potentially reveal a state with a half-integer charge preceeding

the SP.

Similar findings were reported very recently in Ref. [118]. In this work, the au-

thors observed 5-nm skyrmions at zero magnetic field in the virgin FM phase of Rh/Co

on Ir(111) via spin polarized STM. DFT calculations revealed a strong exchange frus-

tration in this system. Subsequent atomistic GNEB simulations with a Hamiltonian

parametrized by DFT showed that at zero field, the preferred collapse mechanism is

similar to the one we reported here at low field and DMI in Fig. 6.2a, where the bar-

rier results mainly from the strong isotropic exchange coupling between first nearest-

neighbours, J1, more than from the DMI. At a higher applied field of 1T, the isotropic

collapse was recovered, in agreement with the mechanisms that we presented in Figs.

6.2b and 6.2c at higher field and DMI. In that case, isotropic collapse was preferred as

it lowers the anisotropy and the Zeeman energy contributions. The existence of anti-

skyrmions in the system was not reported.

6.3.2 Antiskyrmion

We consider again the first set of parameters, (b,d) = (0.2,0.03), which allows meta-

stable antiskyrmions to coexist with skyrmions. We look for paths to annihilation

of an antiskyrmion, and we relax two different mechanisms passing through a first-

order saddle point, for which we show spin maps at selected images in Figs. 6.4a and

6.4b, where the corresponding energy profiles are shown in Figs. 6.5a and 6.5b. In

both cases, the annihilation process begins with the rotation of the helicity of the anti-

skyrmion, such that its Néel-type axes are aligned along the first-neighbour axes (ims.

[1-7]). This configuration constitutes an energy maximum as it is unfavoured by the

DMI, and the antiskyrmion can reach this state either as a full antiskyrmion with full

integer topological charge (SP2 at im. 7 in Figs. 6.4b and 6.5b), or the spins may begin

to unwind, which leads to a half-integer topological charge (SP1 at im. 7 in Figs. 6.4a

and 6.5a). Past the saddle point, similarly to the annihilation mechanism of its skyr-

mion counterpart, the topological charge drops to zero as a meron is nucleated (im. 8)

and annihilates with the remaining antimeron (ims. [9-10]). SP1 exists in four possi-

ble realizations (π/2-rotations), while SP2 exists in two (π-rotation). Therefore, even

though the barrier associated with SP2 appears very small, it is necessary to compute

an attempt frequency before drawing any conclusion on whether or not the mechanism

involving SP1 should contribute to the total rate. It is interesting to note that the fact

that the antiskyrmion displays frustration in its helicity suffices to distinguish between
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(a)

(b)

Figure 6.4: Spin maps (zoomed) and corresponding topological charge density along
the transition path for an antiskyrmion annihilation with (b,d) = (0.2,0.03) where (a)
shows the path over SP1 and (b) shows the path over SP2. The image index is given
in the top left-hand corner. The antiskyrmion annihilates via the nucleation of a half
skyrmion, or meron. The saddle point is im. 7 in both cases and preceeds the meron
nucleation, which occurs at im. 8.
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(a) (b)

Figure 6.5: Internal energy barrier in units of J1 (filled blue dots) and topological charge
Ns (unfilled red squares) along the transition path for an antiskyrmion annihilation
with (b,d) = (0.2,0.03) for (a) the path over SP1, (b) the path over SP2. The inset shows
the spin configuration and the topological charge density at the saddle point. SP1 car-
ries a 1/2 topological charge, while SP2 carries a full integer charge.

a metastable solution and a saddle point. In other words, the saddle point SP2 cor-

responds to the same configuration as the metastable antiskyrmion state, but with a

π/4-rotation of helicity.

6.3.3 Second-order skyrmion

We select parameters that allow both the first- and second-order skyrmions to be

metastable: (b,d) = (0.14,0.005). We initially set the final state of the GNEB calculation

to a Néel skyrmion, and we obtain the mechanism in Fig. 6.6a, with the corresponding

energy and topological charge profiles shown in Fig. 6.7a. The second-order skyrmion

first undergoes a rotation of helicity (ims. [1-3]), and reaches the saddle point (im. 3).

The nucleation of an antimeron along the Néel axis follows at image 4, at which point

the energy drops, and the topological charge goes from Ns = −2 to Ns = −1 + 1
2 −

1
2 =

−1. The antimeron subsequently annihilates with part of the second-order skyrmion,

leaving a first-order Néel skyrmion in its place (ims. [4-8]).

Another route to annihilation for the second-order skyrmion corresponds to its divi-

sion into a bound skyrmion pair, as shown in Fig. 6.6b. The corresponding energy and

topological charge profiles are shown in Fig. 6.7b. The bound skyrmion pair is a meta-

stable solution, since the interaction potential of skyrmions in frustrated magnets is

non-monotonic as a function of distance, and is found in turn positive (repulsive) and

negative (binding) [22, 25]. This behaviour is not present in chiral magnets, in which

the interaction between skyrmions is always repulsive. This mechanism does not in-

volve any significant change in the topological charge of the total system, but instead

results in a redistribution of the topological charge density. The saddle point in this
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(a)

(b)

Figure 6.6: Spin maps (zoomed) and corresponding topological charge density along
the transition path for (a) the decay of a second-order skyrmion into a first-order skyr-
mion via antimeron nucleation, with (b,d) = (0.14,0.005), (b) the division of a second-
order skyrmion into a bound skyrmion pair, with (b,d) = (0.1,0.005). The image index
is given in the top left-hand corner. In (a), the SP is im. 3 and preceeds the antimeron
nucleation. In (b), the SP is im. 4 and preceeds the separation of the two skyrmions.

case is the state preceeding the separation of the two skyrmions (im. 4). Both of the

above mechanisms possess four realizations, corresponding to π/4 rigid rotations of

the system. As for the fate of the skyrmion pair, the binding potential is quite shallow

compared to the activation barrier for annihilation (from the results of Ref. [25], we

can estimate the unbinding barrier to be ∼ 10−4 J1). Therefore, the skyrmions will, in

most cases, separate before annihilating individually.

Similar processes were reported in Ref. [27] from dynamics simulations, in which the

second-order skyrmion division was triggered by both a driving current at zero tem-

perature, and thermal fluctuations at finite temperature. The finite temperature simu-

lations also showed the decay of the second-order skyrmion into a first-order skyrmion.
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(a) (b)

Figure 6.7: Internal energy barrier in units of J1 (filled blue dots) and topologi-
cal charge Ns (unfilled red squares) along the transition path for (a) the decay of
a second-order skyrmion into a first-order skyrmion via antimeron nucleation, with
(b,d) = (0.14,0.005), (b) the division of a second-order skyrmion into a bound skyr-
mion pair, with (b,d) = (0.1,0.005). The inset shows the spin configuration and the
topological charge density at the saddle point.

6.3.4 (Anti)meron nucleation and evolution of the topological charge

In order to visualize the evolution of the topological charge, we show the “ball in a

net” representations of some annihilation mechanisms presented above in Fig. 6.8. As

previously described in Sec. 2.3.2, vertices correspond to the tip of the magnetic vectors

with their origin in the centre of the sphere, and the edges represent the exchange

coupling between first neighbours. The ferromagnetic background (spins along +z) is

found at the north pole of the sphere, while the core of a skyrmion typically points

along the south pole (along −z). The view is set just below the south pole, looking

axially towards the +z direction, so that the core of the skyrmion is found at the centre

of the view.

We show a skyrmion annihilation via antimeron nucleation (Fig. 6.8a) and isotropic

collapse (Fig. 6.2b), an antiskyrmion annihilation via meron nucleation (Fig. 6.4b,

which is the path that traverses SP1), and the decay of a second-order skyrmion via an-

timeron nucleation (Fig. 6.8d). Annihilations that occur via the injection of the oppo-

site topological charge (Figs. 6.8a and 6.8c) involve a rearrangement of the spin-mesh

in a way that allows the entire net to be removed along a single direction. By contrast,

an isotropic collapse consists in progressively spreading the mesh open by an equal

amount along all directions (Fig. 6.8b). Lastly, a second-order skyrmion corresponds

to a spin configuration in which the magnetization wraps the unit sphere twice, there-

fore, in Fig. 6.8d, it looks like the ball is inside a double net. The decay into a first-order

skyrmion via the injection of an antimeron consists in the removal of one of the nets,

again along a given direction, so that only a single net remains.
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(a)

(b)

(c)

(d)

Figure 6.8: “Ball in a net” representation of the spin configuration at selected images
along the path to annihilation. The image index is given in the top left-hand corner.
We show (a) a skyrmion annihilation via antimeron nucleation (Fig. 6.2a), (b) a skyr-
mion annihilation via isotropic collapse (Fig. 6.2c), (c) an antiskyrmion annihilation
via meron nucleation (Fig. 6.4a), (d) a second-order skyrmion decay into a first-order
skyrmion (Fig. 6.6a).

6.4 Langevin simulations

In order to validate the previous paths calculated with GNEB, we perform direct

Langevin simulations at low temperature. Details on the method are given in Sec. 5.2.

The values of the parameters are the same as in Chapters 4 and 5: J1 = 1.6 × 10−20 J,

Ms = 1.1× 106 A.m−1, α = 0.5, and γe = 1.76× 1011 rad.s−1.T−1. We record annihilation

mechanisms for which we show snapshots of the spin configuration in Fig. 6.10.

For the antiskyrmion, at T = 80 K and (b,d) = (0.2,0.03), which we show in Fig.

6.10a, we observe the meron-nucleation type of annihilation that we reported in Fig.

6.4. Since we have short lifetimes within the nanosecond time scale, we can estimate

the antiskyrmion’s stability directly from Langevin simulations. We use the topological
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Figure 6.9: Probability density distribution of the lifetimes of the antiskyrmion com-
puted over 390 direct Langevin simulations at T = 80K. The red curve is the theoretical
PDF obtained with k = kLanger given in Eq. (6.1).

charge of the system to track the collapse of the antiskyrmion, that is, a collapse is

recorded when Ns = 0. We record 390 collapses and obtain an average lifetime τLgv(80

K) = 0.49 ns, with a standard deviation of the order of the mean lifetime, σ = 0.46

ns. The fact that the standard deviation is approximately the same as the mean value is

coherent with the properties of an exponentially distributed variable such as τ . Fig. 6.9

shows the probability density distribution of the computed lifetimes, which matches

the probability density function (PDF) f (k,τ) = ke−kτ plotted in red, where we have

used k = kLanger given in Eq. (6.1).

As for the second-order skyrmion and antiskyrmion, as they overall exhibit lower

activation energies, we perform simulations at T = 50 K, and (b,d) = (0.14,0.005). The

division of the second-order skyrmion into a bound skyrmion pair seems to occur along

at least two different paths that we show in Figs. 6.10b and 6.10c, in which the latter

corresponds to the MEP in Fig. 6.6b. In Fig. 6.10b, the division occurs through excita-

tion of one half of the second-order skyrmion, which eventually leads to the separation

of the two halves. On the other hand, in Fig. 6.10c, we witness a more symmetric kind

of division. For the same set of parameters, we also observe the decay into a single

skyrmion shown in Fig. 6.10d, which corresponds to the path in Fig. 6.6a. Finally, in

Fig. 6.10e, we show the division of a second-order antiskyrmion into a pair of first-

order antiskyrmions. Since the pairwise interaction potential between antiskyrmions

depends on their relative helicities in addition to their distance [25], this mechanism is

difficult to relax with GNEB due to the overall complexity of the energy landscape, so

we only observed this particular mechanism via Langevin simulations.
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Figure 6.10: Langevin simulation snapshots (zoomed) of (a) an antiskyrmion annihi-
lation, (b, c) the division of a second-order skyrmion into a bound skyrmion pair, (d)
the decay of a second-order skyrmion into a first-order skyrmion, (e) the division of a
second-order antiskyrmion into a bound antiskyrmion pair. The antiskyrmion annihi-
lation is shown at T = 80 K, (b,d) = (0.2,0.03), while the other simulations are carried
out at T = 50 K, (b,d) = (0.14,0.005).

6.5 Thermal stability

We use Langer’s theory to compute a complete rate for each of the mechanism pre-

sented above. The results are gathered in Table 6.1. To account for all equivalent

realizations of a given mechanism (rigid rotations of the spin configurations at the sad-

dle point), the prefactor f0 is multiplied by a factor two or four when it is appropriate,
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Mechanism b (J1) d (J1) ∆E (J1) f0 (GHz)
Skyrmion

Antimeron nucleation 0.2 0.03 1.27 109.9 × 4
Isotropic collapse 0.3 0.07 1.62 3639.5
Isotropic collapse 0.7 0.2 1.80 1247.5

Antiskyrmion
Meron nucleation SP1 0.2 0.03 0.43 10.6 × 4
Meron nucleation SP2 0.2 0.03 0.022 1.4 × 2

2nd. order
sk.

Antimeron nucleation 0.14 0.005 0.0011 -
Division 0.14 0.005 0.062 -

Table 6.1: Internal energy barrier, ∆E, and rate prefactor, f0, for the annihilation of a
skyrmion, an antiskyrmion, and a second-order skyrmion with different values of the
reduced applied field b and reduced DMI d.

Figure 6.11: Average lifetime of a skyrmion and an antiskyrmion under frustrated ex-
change as a function of temperature with respect to all considered mechanisms calcu-
lated via Langer’s theory as given in Eq. (3.31). k = 0.1 in all cases. The value of b, the
energy barriers and the value of the prefactor are given in Table 6.1.



Chapter 6. Paths to annihilation of first- and second-order (anti)skyrmions under
frustrated exchange 137

in accordance with Sec. 6.3. In the case of the decay of the second-order skyrmion

into a first-order skyrmion, we find a Goldstone mode at both the metastable and tran-

sition states, which do not seem to clearly correspond to a translational or rotational

invariance, hence we cannot give a definite value for the attempt frequency in this case.

Based on these results, we can estimate the lifetime of the antiskyrmion calculated with

Langer’s theory, and compare it with the average lifetime previously obtained from di-

rect Langevin simulations. Assuming independent processes, we have

kLanger(80 K) = f01e
−β∆E1 + f02e

−β∆E2 ,

= τ−1
Langer(80 K),

= 2.08 GHz,

(6.1)

and τLanger(80 K) = 0.48 ns. Although we are not completely within the scope of

Langer’s theory (β∆E1 = 0.3, as opposed to the recommended β∆E ≥ 5 [47]), this shows

an excellent agreement with the result from direct Langevin, τLgv(80 K) = 0.49 ns (see

also the agreement of the probability density in Fig. 6.9).

In Fig. 6.11, we show the average lifetimes of the skyrmion and the antiskyrmion

as a function of temperature with respect to the different mechanisms. Overall, the

structures are much less stable than the chiral solutions in Chapter 4. The average life-

times at room temperature are typically less than a nanosecond. This is not surprising,

because the barriers are small compared to the exchange strength (∆Esk < 2J1 for the

skyrmion and ∆Eantisk < 1J1 for the antiskyrmion), and the attempt frequencies are of

the order of 1 - 1000 GHz. The more stable skyrmion is the skyrmion at higher DMI

(d = 0.2) which annihilates via isotropic collapse. This is because it has the highest

barrier, and second lowest attempt frequency. At 300 K, its lifetime is 0.84 ns. At low

temperature, the least stable skyrmion is the one annihilating via antimeron nucleation

at low DMI (d = 0.03), although, at room temperature, even though it has the lowest

energy barrier, it is more stable than the solution at intermediate DMI (d = 0.07) which

undergoes a collapse with a small asymmetry. This is because the attempt frequency

associated with meron nucleation is one order of magnitude smaller than the ones asso-

ciated with collapse mechanisms. The antiskyrmion also provides an interesting exam-

ple where the attempt frequency plays an essential role. The energy barrier associated

with SP2 is very small compared to the exchange strength (0.022 J1) and much smaller

than the one associated with SP1, so one would typically assume that the mechanism

involving SP2 should dominate the rate. However, the attempt frequency associated

with SP2 is not only ten times lower than the one associated with SP1, but SP2 can be

realized in two different ways, i.e., whenever the helicity of the antiskyrmion is 0 or

π, while SP1 can be realized in four different ways, that is, the inset in Fig. 6.4a and
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three π/4 rotations. It follows that the total attempt frequency associated with SP1 is

15 times larger than the one associated with SP2. Consequently, SP2 dominates the rate

at very low temperature (T� 100 K), but the lifetimes intersect around 175 K. Beyond

that limit, the mechanism involving SP1 is the most probable one. Even at 80K, the

contribution from both saddle points is necessary for Langer’s result to match the av-

erage lifetime and the probability density distribution of the lifetimes obtained from

direct Langevin simulations (see Fig. 6.9).

6.6 Discussion

We have seen that, under frustrated exchange couplings, and in regions of parameter

space for which both metastable skyrmion and antiskyrmion solutions can be realized,

the most probable paths to annihilation appear to be the paths involving the injection of

the opposite topological charge into the system, by means of the nucleation of merons

and antimerons. The injection of the opposite charge usually happens shortly after the

system has passed the saddle point configuration, or at the saddle point in the case

of the skyrmion, and also coincides with the loss of one unit of topological charge.

The state preceding the injection of the opposite charge may also possess a half-integer

topological charge, as is the case of the antiskyrmion in the annihilation path involving

the saddle point SP1 (im. 7 in Figs. 6.4a, 6.5a, and 6.8c).

Overall, the skyrmionic solutions in this system were found to be rather unstable,

as they possess low internal energy barriers compared to the exchange strength, com-

bined with many possible paths to annihilation with attempt frequencies in the range

of several gigahertz to several hundreds of gigahertz. The existence of many possible

paths is a direct consequence of the exchange frustration, which drastically complex-

ifies the energy landscape and is responsible for the emergence of many (meta)stable

and saddle point states, as well as many possible paths connecting them. At room tem-

perature, the average lifetimes were calculated to be under a nanosecond. We conclude

that this specific set of exchange parameters on the square lattice derived in Ref. [25]

does not seem to yield isolated skyrmion solutions that could potentially be used in

applications. In the present case, it seems that the skyrmion stabilized at higher DMI

which undergoes isotropic collapse is a more stable solution than the low DMI solu-

tion whose annihilation occurs via antimeron nucleation. Additionally, the low DMI

skyrmion might also undergo isotropic collapse. This mechanism is associated with

a higher-order saddle point which we did not relax here, and it would contribute to

the reduction of the skyrmion’s lifetime. From there, one may conclude that the low

DMI region of parameter space where metastable skyrmions are primarily stabilized
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by exchange frustration and antiskyrmions are also metastable solutions is not a region

where isolated skyrmions will be the most stable, and so the existence of antiskyrmions

should be an indicator of lower stability of the skyrmions. However, the attempt fre-

quency of the meron nucleation is one order of magnitude lower than that of isotropic

collapse processes. Therefore, as is often the case, things are not that simple, and the

above conclusions only apply to the specific set of parameters we have studied in this

chapter. In Ref. [2], we concluded that skyrmions undergo annihilation via antimeron

injection in the region of parameter space where low DMI allows antiskyrmions to co-

exist with skyrmions as metastable solutions. With the selected set of parameters, we

also had to increase the applied field with increasing DMI in order to be able to relax

isolated (anti)skyrmion solutions (see the position of the orange dots in Fig. 6.1). At

higher DMI and applied field, antiskyrmion solutions disappear and we recovered an

isotropic type of collapse. In Ref. [118], small skyrmions were observed at zero field

in Rh/Co/Ir(111) via SP-STM. A strong exchange frustration in this system was found

from DFT calculations. GNEB simulations revealed that in Rh/Co/Ir(111), skyrmions

at zero field undergo a similar annihilation to the one we have reported in this chapter,

involving the injection of the opposite topological charge – which the authors referred

to as “chimera” [26] collapse. At higher applied field, the isotropic collapse is favoured.

This conclusion agrees partially with the results of this chapter. We did not find here

a limit where, by increasing the field at constant DMI, the annihilation mechanism

would change, however this still may be the case in a very small window of increas-

ing applied field before skyrmions are no longer solutions, in which case it is possible

that we missed it. Instead, we had to increase both the field and DMI to recover the

isotropic collapse. The existence of antiskyrmions was not mentioned in Ref. [118]. We

note that the system studied by the authors of Ref. [118] used a Co magnetic layer and

sub-10-nm skyrmions were reported in the FM state at zero field. This configuration

resembles the type of stabilization conditions of we have studied in Chapter 4 for DMI

stabilization, and in the present chapter for the effect of exchange frustration. In all

cases we used material parameters of Pt/Co/AlOx for J1 and the saturation magnetiza-

tion. The energy barriers we have found here for the skyrmion are of a few hundreds

of meV (127 - 180 meV), while in [118], they were calculated to be around 250-290

meV, which is similar to the barriers we reported for chiral skyrmion collapse in Chap-

ter 4. This hints at a potential higher stability of the skyrmions in Rh/Co/Ir(111) than

what we have reported in this chapter. However, a rate prefactor was not computed in

Ref. [118].

The low stability of the studied solutions allowed for a direct comparison of the av-

erage lifetime of the antiskyrmion at 80 K computed from direct Langevin simulations

with Langer’s theory calculations, and we obtained a very good agreement. Neverthe-
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less, in this context, the direct use of reaction rate theory to estimate an overall lifetime

for any given structure seems ill-advised and unreliable, as it is difficult to account for

all possible mechanisms. As for the low activation energies and not particularly low

attempt frequencies, we can once more relate them to the skyrmions being very small,

and possessing only a few internal modes [1, 109]. Lastly, this chapter yet again con-

tained some interesting examples where the attempt frequency plays an important role

in the stability, especially in the higher temperature region. The most striking case is

that of the antiskyrmion, which annihilates in this system via meron nucleation. One

of its annihilation mechanisms involves a very small activation barrier of 0.022 J1 at

saddle point SP2, yet, above a temperature of 175 K, this mechanism yields a longer

lifetime that the other mechanism over SP1, which corresponds to an activation energy

of 0.43 J1. Even at 80K, we found that both mechanisms should be taken into account

in Langer’s theory calculations in order to match the results of direct Langevin simula-

tions.



Chapter 7

Conclusion and outlook

In this thesis, we have studied the stability of metastable magnetic skyrmions on

the two-dimensional square lattice. This task was firstly carried out via a numerical

implementation of Kramers’ method for a multidimensional energy landscape set in

the intermediate-to-high damping regime, i.e., Langer’s statistical theory for the decay

of metastable states. The paths of minimum energy that lead to the skyrmion annihi-

lation were computed via the geodesic nudged elastic band method. Chiral magnetic

skyrmions stabilized at zero magnetic field by the Dzyaloshinskii-Moriya interaction

were found to annihilate via two distinct isotropic collapse mechanisms, respectively

passing through a first-, and a third-order saddle point on the energy landscape. In

both cases, the loss of the topological charge occurs past the saddle point. Alterna-

tively, the skyrmions may diffuse to the edge of the system and escape through the

boundary. The computation of a rate prefactor revealed that the thermally signifi-

cant eigenmodes are the modes localized to the skyrmion, in contrast to the rest of the

collective spin-wave modes, which extend to the entire lattice and contribute weakly.

Important variations of the rate prefactor, also known as the attempt frequency, were

found between different mechanisms on the one hand, and between different values of

the destabilizing applied magnetic field on the other. These variations originate from

strong entropic effects, which come from the difference in configurational entropy be-

tween the metastable skyrmion state and the saddle point. In the system we studied,

the configurational entropy was found to decrease between the metastable state and

the saddle point (∆S < 0), which results in lowered attempt frequencies. This there-

fore constitutes a stabilizing effect, which we have referred to as entropic narrowing

in the saddle point region. The strong entropic contribution mainly originates from

the skyrmion’s internal modes, and is generally more pronounced for collapse mech-

anisms. One important consequence of this result is that, at room temperature, the

most probable mechanism is not necessarily the one with the lowest internal energy

barrier, because it may also possess a low attempt frequency. We used material pa-

141



142

rameters of Pt/Co/AlOx thin films, in which we tuned the effective anisotropy and

strength of the DMI to stabilize isolated skyrmions of about 10 nm in diameter at zero

applied magnetic field. The activation barriers were calculated to be around 300 meV.

At room temperature, the skyrmion was found to be more stable with respect to col-

lapse mechanisms, due to uncharacteristically low attempt frequencies for collapse in

the megahertz regime. Far away from edges and structural defects, the average lifetime

of the skyrmion against collapse was found to be of the order of a few milliseconds.

Next, we used forward flux sampling, which is a path sampling method for the sim-

ulation of rare events, to compute collapse rates of metastable skyrmions in an infinite

system. The goal was to compare the FFS results with the ones obtained from Langer’s

theory. This was an important step, because the use of Langer’s theory is based on

many assumptions. In particular, it requires the different mechanisms that exist to

be independent from one another in order for the individual rates to add up, which

may not hold. An overall good agreement was found between Langer’s theory and FFS,

thus confirming the strong dependence of the attempt frequency on the external field.

Within our range of studied applied field values (0 ≤ B ≤ 730 mT), the attempt fre-

quency for the collapse extends from a few megahertz at zero-field, to a few gigahertz

– or a few tens of gigahertz – at higher field, thus spanning over three to four orders of

magnitude. This leads to the following conclusion: due to a strong entropic contribution,
internal energy barriers are not enough in order to correctly predict the lifetime of magnetic
skyrmions, and it is essential to also evaluate a rate prefactor. This constitutes the main

result of the present thesis.

Lastly, we looked at paths to annihilation of first- and second-order skyrmions

and antiskyrmions on the frustrated J1 − J2 − J3 square lattice. Frustrated exchange

was shown to arise at certain types of interfaces by DFT calculations, most notably

in Pdfcc/Fe, Rh/Fe, and Rh/Co bilayers on Ir(111). We found that, under frustrated

exchange couplings, and in certain regions of parameter space, the annihilation of

skyrmionic solutions no longer occurs through an isotropic type of collapse, and in-

stead involves the injection of the opposite topological charge into the system, by means

of the nucleation of merons and antimerons. We added a weak interfacial DMI into the

system to break degeneracies, and we found that the antimeron injection was a pre-

ferred mechanism for the annihilation of skyrmions in the low DMI and low magnetic

field region of parameter space, where antiskyrmion solutions also exist. The injection

of the opposite charge usually happens shortly after the system has passed the sad-

dle point configuration, or at the saddle point in the case of the skyrmion, and also

coincides with the loss of one unit of topological charge. Alternatively, the second-

order (anti)skyrmion may split into a bound (anti)skyrmion pair, which involves no

change in the total topological charge. In all cases, the skyrmions in this particular
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system only span over a few lattice sites and were found to be quite unstable, both in

terms of activation energy and rate prefactor. By using the first-neighbour exchange

coupling constant and saturation magnetization of Pt/Co/AlOx, internal energy barri-

ers were calculated to be below 200 meV for the skyrmion – or below 50 meV for the

antiskyrmion – and the prefactor was found in the range of a few gigahertz to a few

thousands of gigahertz. In all cases, the (anti)skyrmion lifetimes at room temperature

were under one nanosecond. The most stable skyrmion was found to be the one stabi-

lized at high DMI which annihilates via isotropic collapse. For the system we studied,

this implies that the existence of antiskyrmions may be an indicator of lower skyrmion

stability. This is not necessarily true in other systems. For instance, in Ref. [118], higher

internal energy barriers were typically associated with the antimeron injection, which

is preferred over the isotropic collapse at low applied field. However, a prefactor was

not computed in Ref. [118].

The existence of a strong entropic contribution to the thermal stability of skyrmions

was initially proposed in [157], but the treatment only compared the entropy of the

skyrmion state to that of the ferromagnetic state without considering the saddle point

configuration, and was therefore incomplete. The following works mentioned below

were published over the duration of this thesis. Experimentally, strong entropic ef-

fects were observed by Wild et al. in the case of the decay of the skyrmion lattice

in the B20 chiral magnet Fe1−xCoxSi [46]. The authors measured a variation of the

attempt frequency over 30 orders of magnitude when the applied field changed by

about 20 mT. Meanwhile, a similar methodology to the one presented in this thesis was

used by Bessarab et al. [63], in which the rate prefactor was calculated through har-

monic transition state theory [127]. The aforementioned work proposed a treatment

of the translational Goldstone modes of the skyrmion in a case where the metastable

skyrmion state decouples from the lattice, which yields a temperature-dependence of

the prefactor, as well as a system size-dependence for escape processes. This was not

treated in this thesis, in which the coupling of the skyrmion to the underlying lattice

breaks the translational symmetry, and leads to lattice effects in the rate prefactor. In

line with the above discussion, the different choice of material parameters in Ref. [63],

which were obtained via ab initio DFT calculations for Pd/Fe/Ir(111), yielded attempt

frequencies and skyrmion lifetimes vastly different from the ones reported here, with

attempt frequencies for collapse spanning from tens of gigahertz, to hundreds of tera-

hertz. From what we understand, HTST is similar to Langer’s theory and also pertains

to the IHD regime. However, it does not explicitly depend on the damping value, and

should therefore give an upper bound of the attempt frequency over the range of pos-

sible dampings. Interestingly, we have found that skyrmion collapse rates calculated
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with Langer’s theory are not strongly affected by the choice of damping, although the

theory is, of course, only applicable to the IDH regime. Apart from collapse and es-

cape processes, duplication and merging of skyrmions were also reported as possible

transition mechanisms by a mode following method [142]. Lastly, Ref. [109] reported a

drastic change in the attempt frequency of up to seven orders of magnitude per change

in magnetic field of one tesla for skyrmion collapse, which is consistent with the main

results of this thesis. The authors found that, above a certain size of the metastable

skyrmion, the entropy difference between the skyrmion and the saddle point seems to

decrease linearly (become more negative) with the surface area r2 of the skyrmion. For

very small skyrmions (r2 / 6nm2), ∆S > 0, thus leading to a destabilizing effect. This

confirms the somewhat intuitive result that smaller skyrmions are less stable, which

we have also seen in Chapter 4 by varying the destabilizing magnetic field. This is ex-

plained by the fact that the internal energy barrier decreases with the skyrmion size

(fewer spins to reverse), and, concurrently, the attempt frequency increases under the

effect of the entropic contribution.

Technological applications require sub-10-nm skyrmions to be stable at room tem-

perature in order to compete against existing solutions [38,168]. Despite the somewhat

pessimistic conclusions drawn above, some other factors may allow for the stabiliza-

tion of such small skyrmions. Small skyrmions are generally more stable at higher

DMI and lower effective anisotropy [169]. Frustrated exchange, which arises from in-

terface effects, was shown to increase the activation energy for skyrmion collapse in

Pd/Fe/Ir(111) [165]. In Rh/Co/Ir(111), skyrmions of 5 nm stabilized at zero mag-

netic field were recently observed at 4 K in the virgin FM state via spin-polarized STM

[118]. A combination of DFT calculations and atomistic GNEB simulations showed

that Rh/Co/Ir(111) exhibits a strong exchange frustration, which in turn plays an im-

portant role in the stabilization of small skyrmions. Additionally, one may attempt

to tune the different interactions in order to decrease the entropy of the saddle point

configuration, thus resulting in a more negative ∆S and enhancing the effect of en-

tropic narrowing. Last but not least, the prefactor of the skyrmion collapse rate has, so

far, only been theoretically predicted in two-dimensional systems. Skyrmion stability

should, in principle, increase in multilayers, for the following reasons: (i) the energy

barriers increase if the spin texture is homogeneous along z (for a stacking of the lay-

ers along the z-direction) [105] ; (ii) if the change in entropy scales like the skyrmion

volume in three dimensions [109], then the attempt frequencies may decrease even fur-

ther. To this day, the smallest skyrmions observed at room temperature were 30 to 40

nm in diameter, and were reported in multilayer asymmetric stackings of magnetic and

non-magnetic heavy metal layers [105, 170].
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Nonetheless, predicting skyrmion stability in multilayers is challenging. With the

increase in the system size, the computational cost increases as well. Additionally,

dipolar interactions should, in that case, be treated more accurately than via an effec-

tive anisotropy approximation [92, 158]. Hybrid chirality effects may arise from the

interplay of dipolar interactions and DMI [171] and have complex consequences on

the thermal stability. For methods based on reaction rate theory, three-dimensional

systems with dipolar interactions require the diagonalization of very large, non-sparse

matrices. In direct Langevin or path sampling simulations, the cost – and therefore

the CPU time – of each iteration increases a lot. These issues will require innovative

solutions, such as analytical models that may enable the fitting of the ratio of eigenval-

ues [62] in large systems, combining existing methods, or a different class of methods

altogether.

In the past, estimating the stability of magnetic structures has often been synony-

mous with estimating internal energy barriers, while assuming a typically constant

value of the prefactor within the gigahertz range [64–67]. Hence, it has been well ac-

cepted within the magnetism community that aiming for internal energy barriers of

the order of 40− 50kBT at room temperature is a sufficient and necessary condition in

order to achieve the desired 10-year stability of magnetic storage bits. This is no longer

valid in the case of magnetic skyrmions, and the search for small, room-temperature

stable skyrmions must also necessarily involve some “entropic engineering” to tune the

attempt frequency, in addition to the activation barrier.

Finally, concerning skyrmion activation rates, some problems are yet to be tackled.

One of them is the rate of thermally activated skyrmion nucleation. Although the en-

ergy barriers to skyrmion nucleation tend to be much larger than that of annihilation,

one could, using entropy arguments, expect much larger attempt frequencies [157].

While the scope of Langer’s theory is in principle limited to the decay rates of metasta-

ble states, nucleation rates can be obtained with a tool such as forward flux sampling.

Another problem is the effect of current-induced spin transfer torques on skyrmion sta-

bility. This is relevant to potential technological applications, since skyrmions should

be moveable information bits. Under spin transfer torques, skyrmions are deformed

compared to their static profile [172]. This may have some important effects on the

skyrmion stability.

In fine, magnetic skyrmion may, or may not, constitute the future of magnetic data

storage. Nevertheless, with their unique properties, they remain a rich and fascinating

topic for fundamental research.
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Appendix A

Numerical accuracy in Langer’s theory
implementation

A.1 Checking for numerical noice: influence of the lat-

tice size

It should be noted that numerical rounding errors can affect the accuracy of the ratio

of eigenvalues, as previously mentioned in Ref. [62]. In Table A.1, we gather results

of simulations performed for different lattice sizes. For processes involving a single

skyrmion and 30 × 30 simulated sites, the skyrmion is confined by the boundary and

less stable. However, at 50 × 50 sites and above, we observe very little variations in

the different terms of the prefactor. In the case of the two-skyrmion process, the rate

loses its lattice-size dependence for 70 × 70 simulated sites and above. If significant

numerical noise were contained within the ratio of eigenvalues, the prefactor would

change when varying the number of simulated sites in the system. This does not seem

to be the case here, which increases confidence in the present results.

A.2 Influence of the tolerance on the GNEB force

When the order of the saddle point involved in a particular mechanism is higher than

one, the CI-GNEB scheme will usually make the path change to a different path involv-

ing a first-order SP. This is the case even when the path was previously well relaxed to a

low tolerance by the GNEB scheme without a climbing image. This occurs because the

CI is only designed to climb uphill along the reaction coordinate. If other degrees of

freedom are unstable at the SP, the CI will move downhill along these directions, and

will therefore usually not converge to a higher-order SP. However, we might still want

to estimate the contribution of paths involving higher-order SPs to the total rate. In
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(a) Collapse (mechanism no1).

N ∆E (Jex) Ω0(×10−5) λ+ (GHz) f0 (MHz)
30× 30 2.76 3.79 1198.73 7.24
50× 50 2.83 3.51 1200.47 6.70
70× 70 2.83 3.49 1200.48 6.67

(b) Escape (flat boundary).

N ∆E (Jex) Ω0(×10−2) λ+ (GHz) f0 (GHz)
30× 30 3.23 1.20 521.60 3.80
50× 50 3.28 1.24 522.94 4.14
70× 70 3.28 1.24 522.94 4.13

(c) 2 sk. collapse.

N ∆E (Jex) Ω0(×10−5) λ+ (GHz) f0 (MHz)
50× 50 2.82 1.86 1198.11 3.56
60× 60 2.82 2.49 1200.22 4.76
70× 70 2.82 2.33 1200.23 4.44
80× 80 2.82 2.32 1200.23 4.43

Table A.1: Terms of the rate prefactor calculated for different number of sites N =
Nx ×Ny (here Nx =Ny).

Ftol ∆E (Jex) Ω0(×10−5) λ+ (GHz) f0 (MHz) τ (300 K)
(ms)

1× 10−12 2.8256343320 3.51 1200.473 6.70 8.2
6× 10−5 2.8256343324 3.76 1200.474 7.18 7.7

Table A.3: For collapse mechanism no1, energy barrier, terms in the rate prefactor and
lifetime comparison for different values of the set tolerance on the (CI)-GNEB force.

that case, we have to set a lower tolerance on the GNEB force, so that the scheme will

terminate before the path changes. In Table A.3 we compare the energy barrier and

the terms of the prefactor for low and high tolerance on the GNEB force in the case of

collapse mechanism no1. Although we lose some accuracy in the rate, the results still

remain close so that, on the scale of skyrmion stability, the skyrmion lifetime obtained

at higher tolerance is still acceptable. Alternatively, one could interpolate the energy

in the vicinity of the SP with a high enough density of interpolation points, and choose

the highest energy point as the SP.
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