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SUMMARY

The geology of the kMidland Valley and tne
Southern Uplands is outlined with special reference to
the Ballantrae ophiolite complex whnich crops out close
to the boundary between them. In this stuay, several
seismic refraction proriles, with different azimuths,
were recorded across tne complex and the surrounding
regions. These lines constitute a network, covering
the south-western part of Scotland, for the investigation
of the areal extension oI the complex at depth.

Laboratory velocity measurements were
carried out, at confining pressures of up to 200 bars,
upon samples of the Ballantrae complex and greywackes
of the Northern kelt of tae Southern Uplands. Serpen-
tinite is found to have the lowest velocity in the
Ballantrae complex (circa 4.0 xm/sec) and gabbro anas
velocities as nigh as 6.3 km/sec at 200 bars. At the
same pressure, the greywackKes have an average velocity
of 5.7 km/sec. These determinations were used to con-
strain the intergretation oi near surface velocities in
the study area. High-pressure velocity imeasurements
(up to 5 kbar) on two greywacke samples suggest that
some mafic grejwackes could have velocities of >0.0 km/
sec., The nigh velocities, previously interpreted as
crystalline basement, could be a cnaracteristic of the
Northern Eelt mafic greywackes.

The velocity-depth structure of the Ballantrae
complex has been inferred from measurements directly on
the complex by applying time-term and wWiechert-Herglotz-
Bateman (wHB) analysis. The seilsmic structure below
the complex is similar to that of "basement" incorporated
in ray-tracing modelling on tne wider net of profiles.
This implies that the basement may be the same below the
complex as around it., Basement is shallowest (1.7 - 2.0
km) under the Ballantrae complex and the Craighead
Inlier, with P-wave velocity of 6.0 km/sec, which increases

XV




rapidly to 6.35 -~ 6:40 km/sec at a depth of 6 km. It
extends from the Midland Valley underneath the Northern
Belt of the Southern Uplands at about 1.8 - 2.3 km and
deepens with an unknown dip under the Central and
Southern Belts, giving way to thicker overlying Lower
Palaeozoic sediments.

No conclusive statement on the thickness or
extent of the complex can be made. However, a study
of recorded S-waves yielded a Poisson's Ratio of 0-31.
Combining this result with two-dimensional gravity
modelling across the area suggests that the gabbroic
components of the Ballantrae complex constitute the
basement in the area covering a triangle between Troon
(N), Loch Doon (SE) and Portobello (SW). These
gabbroic rocks are predicted to be partially hydrated
on the basis of a P-wave volocity of only 6:35 - 640
km/sec at 6 km depth. The basement may be regionally
extensive though the correlation of the seismic
refraction line (Colmonell line) where the S-wave
velocity is determined with an aeromagnetic anomaly
might suggest its restriction to a strip parallel to
the Southern Uplands Fault.,

Travel-time delays of about 0-2 sec are
associated with the Southern Uplands, Kerse Loch and
Stinchar Faults. The geological and geophysical poss-
ibilities that can generate such delays are reviewed.
From reversed recording on one of the profiles, the
delay is attributed to vertical zones of low velocity
rocks in the fault zone, postulated to be either ser-

pentinite or sheared, fractured rocks.

Xvi .




CHAPTER ONE

Introduction (Geology of the Study Area and Previous
Geophysical Work)

1.1 Introduction

The study area is tne south-western parts of
both the Midland Valley and the Southern Uplands of
Scotland (fig 1.1).

The Midland Valley lies between two Caledonian
fold belts: the Southern Highlands to the north and the
Southern Uplands to the gouth. The bounding faults, the
Highland Boundary and the Southern Uplands Faults are
typical of 0ld faults reactivated through a younger cover.

The earliest movement of the Southern Uplands
fault may have been 01ld Red Sandstone or Silurian at the
earliest and it is made up of three discontinuous
segments, slightly ofiset from one another. The south-
west segment Iforms the Glen App Fault, the central sector
is the Southern Uplands Fault, and in the north-east
(beyond fig 1.1) lies the Lammermuir Fault. These
fractures form the southern margin of the Midland Valley
and the general impression from the Upper Palaeozoic
rocks to the north is of downtnrow in that direction.

The Midland Valley outcrop comprises rocks
mainly of Upper Palaeozoic age (table 1.1) which are
now disposed in a rather complex syncline, subjected to

much faulting.

The Southern Uplands (mainly Lower Palaeozoic
outcrop) contains mainly greywacke, siltstone and shale
of Upper Ordovician (Nb) and Silurian age (Cb & Sb)
which rest on the Arenig foundation of spilite, black-
shale and radiolarian chert. All these rocks are




Fig 1.1 Geological map of S5.W Scotland

Locations: A: Ayr, ©: Ballantrae, Ba: barr, bh:
burrow Head, C: Colmonell, CE: (offsnore): Culzean
Bay, CB: Central Eelt, CC: Cairnsmore oi Carspnairn,
CF: Cairnsmore of Fleet, CG: Crirfel granite, Cn:
Craighead Inlier, D: Dalmellington, Lh: Distinknorn,
Dy: Dailly, rC: rFirtn of Clyde, G: Girvan, HA: Heads
of Ayr, LG: Loch Dcon Granite, In: Lesmahagow Inlier,
Lk: Loch Ryan, #: pduirkirx, Mb: Maybole, Ma: bdMaicen,
n: Mauchline, k: New Cumnock, NB: northern Belt, F:
Patna, Pb: rortobello, S: Stranraer, SE: Southern
Eelt, SF: 3Solway kirtn, s5SG: Spango Grano-alorite,
Sq: Sanquhar, St: Straiton, T:Troon, Tb: Turnberry.

Faults: GAF: Glen App Fault, K¥F: Kingledorse rauit,
KLF: Kerse Locn Fault, Sr: Stinchar rFault, StF:

Straiton Fault, SUr: Soutnern Uplands rault.

Key Abbreviations: CinB: Carvoniferous, Dev. Intrus:

Devonian Intrusions, L.Falz: Lower ralaeozoic, Lst:
Limestone, 0.K.S: 0ld Red Sandstone.
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complexely folded and faulted but have suffered little
metanorphism, and McKerrow et al (1977) have proposed

that they are part of an accretionary prism formed on

the landward edge of a northerly subducting plate.

On the southern margin of the Midland Valley,
the basic and ultrabasic rocks of the Ballantrae
Ophiolite Complex are the Arenig foundation and represent
remnants of an older obducted plate. They form the
basement to the northward overstepping Caradocian sedi-
ments of the Girvan district. The complex is one of
the important tectonic elements in understanding the
Palaeogeography of the area, and whether it is local or
has lateral extensions under the Northern Belt of the
Southern Uplands remains a moot point.

The geological succession in the study area

1s discussed in this chapter, along witn a summary of
Previous geophysical interpretations.

1.2 Geological Succession See table (1.1).

Aspects of the geology which bear on the
problem studied in this thesis, are outlined in this
section in a stratigraphical manner,

1.2.1 Permian

The Permo-Triassic rocks of Scotland were
formed at a time of major regression (withdrawal of
Carboniferous sea to the south). They are found in
isolated and largely unfossilferous outcrops.

In the Midland Valley, these are represented
by the Ballantrae Breccias (small outcrop on shore),
and about 700m of sandstone and basalt are lying in the




Mauchline Basin, north-east of the area studied.

In the Southern Uplands, geophysical work
indicates that the Stranraer Basin closes northwards,
and is asymmetrical with thickness of up to 1.2 km of
breccia and sandstone, at the south-eastern margin of
Loch Ryan (Lovell in Craig 1983),

In the Firth of Clyde, sediments of this age
cover most, or possibly all of the western part, and
also much of the eastern half where it oversteps Upper
Palaeozoic rocks to rest on Lower Palaeozoic, south-
west from Girvan (McLean and Deegan 1978).

1.2.2 Carboniferous

Faults like the Kerse ILoch Fault are very
well known for their control on Carboniferous sedimen-
tation. Rocks of this age occupy the greater part of
the ridland Valley with fewer outcrops in the Southern
Uplands. The subdivisions are:

Coal Measures mainly coal, shale, sandstone and seat-

clay. MacGregor (1960), redesignated this group into
Upper and Lower and Middle Coal Measures. At most places
the coal-bearing sequence follows conformably on Passage
Group. Few data are available on the variation in thick-
ness of the Lower and Middle Measures, with a maximum
thickness of 420m occuring in South Ayrsnire near
Dalmellington. The Upper Coal Measures are thicxest in
Mauchline Basin (up to 550m ).

Across the Southern Uplands Fault in Sanquhar,
Upper Carboniferous rocks overlie QOrdovocian greywakes
and are folded into a gentle syncline with a NW-SE trend.
The total thickness of the Carboniferous rocks known is

approximately 500m.

[0}




Passage Group in Ayrshire, it is complicated by vol-
canism. North-west of the Kerse Loch Fault, the volcanic
rocks consist mainly of lavas reaching a maximum thickness

of over 150m at Troon. The lavas are overlapped by
Lower Coal Measures and rest on Upper Limestone strata
(Richey et al 1930).

South-east of the Kerse Loch Fault the lavas
give way to a sedimentary sequence 128m thick, originally
termed "Millstone Grit" by Eyles et al (1949). The
total thickness of sediments ranges from 125m at
Dalmellington, to a few metres at Troon.

Upper Limestone Group it contains a number of thick

beds of shale, four to eight limestones and a few thin
coals. It ranges in thickness from 200m at Patna in
south Ayrshire, to 90m at Dalry (19 km north of Troon)
in the north,

A thin layer, about 10m, of rocks presumed
to belong to this group is present at the south-east of
the Sanquhar Basin. This basin suggests southerly down-
throw at this part of the Soutnern Uplands Fault.

Limestone Coal Group consists of alternating sandstones

and shales, with subordinate coals and ironstones. It
shows signs of attenuation towards tune west margin of
the midland Valley. It is 77m thick at Machrihanish in
Kintyre, and less than 90m in Dailly (vertical section
in Limestone Coal Group, p265, in Craig 1983).

Lower Limestone Coal Group mainly shales and limestones.
In Ayrshire it is no where more than 30m thick, with

abrupt variations across lines of major north-easterly
disturbance.

In the Heads of Ayr, a vent of pyroclastic
rocks with ultrabasic fragments is emplaced in gently-




dipring sediments at the end of Calciferous Sandstone
times., It is the deeply eroded remnant of a volcano
which was in existence at that time (Whyte 1961). From
Iherzolite fragments and peridotite xenoliths in the
vent, Whyte indicated the presence of an ultrabasic
layer at depth, both during the volcanism and the later
period of intrusion.

Calciferous Sandstone Measures mainly shales and arg-

illaceous dolomite. In Ayrsanire, the measures are
thickest in the south-west around Dailly and Straiton;
where they amount to over 560m in a section recorded by
Freshney (1961, fig 1.2).

The base of tie measures is indistinguishable
from the underlying Upper 0ld Red Sandstone sediments,
therefore, Carboniferous and Upper 0l1d Red rocks are
considered as one seismic unit in this study.

1.2.3 Upper 0ld Red Sandstone

It consists of sandstone, marls, conglomerates
and beds of cornstone which laid down unconformably on
an irregular surface of older sediments and lavas.

In tne Southern Uplands, it crops out in the
eastern borders (fig 1.3) and rests on an irregular
landscape of Lower 0ld Red Sandstone and Lower Palaeozoic
rocks.,

It is thickest in the west of the Midland
Valley where it may reach over 1 km (Bluck 1978). 1In
Ayrshire, the thickness ranges from 100m near Ayr to

over 3%00m near Straiton.
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The narrow, generally fault-bounded, out-
crops in South Ayrshire (Eyles and others 1949) fall
into two groups:- a western group extending from the
coast at the Heads of Ayr south-eastwards to the Kerse
Loch Fault, and then south into the area around Straiton;
and an eastern group around Muirkirk (fig 1.1).

Upper 0ld Red is characterised by much fault-
ing and relatively gentle folaing with uplift in the
Midland Valley. It rests with marked unconformity on
older rocks, and volcanic rocks are absent in this period.
Both the Southern Uplands Fault at New Cumnock, and the
Straiton Fault appear to have undergone considerable
movements before deposition of the Upper 01d Red
Sandstone.

1.2.4 TITower 0ld Red Sandstone

In Lower (0ld Red Sandstone times the topo-
graphy of the Scottish area was largely controlled by
contemporaneous normal faults, giving rise to major
fault scarps and rift valleys. By far thne greatest
amount of deposition took place within tne Midland
Valley Rift which, it is deduced, contained two major
parallel river valleys (fig 1.4) flowing to the south-
west, with intervening volcanic uplands. The terrestrial
sediments of 0ld Red Sandstone accunulated in alluvial
fans, on the floodplains of braided and meandering
rivers, and in shallow lakes along the foot of the emerg-

ing Caledonian mountains.

Distinctive conglomerates, lavas and sand-
stones rest unconformably on a group of Silurian rocks
in the southern Midland Valley in the Pentland Hills
and at Girvan, although they may be conformable with the
Silurian at Lesmahagow.

1
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Thick conglomerates with lava cherts and with
a south-east dispersal lie adjacent to the Highland
Boundary Fault. Similar relationship occurs along the
Southern Uplands Fault with conglomerates lying along-
side the fault, having a north-west dispersal (fig 1.4).
Both these relationships imply lava fields north of the
Highland Boundary Fault and south of the Southern Uplands
Fault, providing substantial source of volcanic detritus.

In the Midland Valley, tne southern outcrop
is discontinious and dissected by sub-parallel north-
east trending faults. In the Maybole area, the lower
sedimentary group is up to 1.2 km thick. The overlying
volcanic rocks form the Carrick Hills as well as two
smaller coastal outcrops at Culzean Castle and Maidens
(Geikie 1897, Tyrrel 1914). 1In the Carrick Hills, the
volcanic sequence is 300m to 450m thick and consists of
olivine-basalts, augite and andesites (Eyles et al 1949).
The sequence in the Dalmellington area is similar to
that of Maybole, but it is much more disturbed by faulting.
The sedimentary group may be up to 700m thick and the
overlying volcanic group consists of nearly 600m of
olivine-basalt. South of Girvan, a small outlier of
01ld Red Sandstone appears to be tue remains of a valley
infilling.

In the eastern part of the Southern Uplands
(fig 1.4), greywacke-conglomerate, red feldspathic
sandstones and a volcanic succession, are ascribed to
this age.

A feature of the volcanic rocks within the
study area, is their association with an extensive suite
of contemporaneous minor intrusions, which include
sheets and laccoliths of felsite and quartz porphyry,
and sills and dykes of biotite-porphyrite, plagiophyre,
kersentite, pyroxene-porphyrite, quartz-dolerite and
basalt.

13




At a late radiometric ages available of the
Caledonian orogeny, granite bosses were intruced in the
Southern Uplands. Large granite complexes of Loch
Doon, Cairnsmore of Carsphairn and Cairnsmore of Fleet
occupy much of the Southern Uplands with the small
Distinkhorn intrusion in the Midland Valley (fig 1.1).
The Loch Doon mass was formed by three phases of intru-
sion, successively more acid in composition (Gardiner
and Reynolds 1931). Norite represents the first phnase,
tonalite the second (occupies much of the present out-
crop), and the final phase is granite. The plutonic
boss of grandiorite and diorite forming the Distinkhorn
in east Ayrshire, cuts the lower sediments and is pro-
bably the same age as the Lower 0ld Red Sandstone
volcanic group.

Geophysical results indicate tnat tne 01d Red
Sandstone crops out off the coast near Turnberry and in
an inlier between there and south-east of Arran. It is
probably absent, apart from small patches preserved in
the area lying more than 6 km to the south of Ailsa
Craig.

No detailed stratigraphic correlations have
been established in the Lower 0l1d Red Sandstone of the
Southern Midland Valley (Mykura in Craig 1983). The
Lower 0ld Red Sandstone rests conforuwably on Silurian
rocks in the Lesmahagow area but oversteps south-westwards
to overlie ordovician with a basal unconformity.

1«2.5 Lower Palaeozoic

Such rocks are found in small inliers in
the Midland Valley and over much or the Southern
Uplands (fig 1.1 and 1.5). Sedimentary facies and
structure invite comparison with modern trenches and
subduction zones, and lead to the interpretation of the

14
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Southern Uplands as an accretionary prism; a model
promoted vigirously by kcKerrow and his co-workers
(McKerrow et al 1977, Leggett et al 1979). On this
model the fault blocks of the Southern Uplands are
successive thrust masses formed from trench sediments
(fig 1.6). Sedimentation and deformation proceeded
simultaneously, the earlier, inner sequences being
deformed and thrust up to establish the source for
subsequent sediment. The appearance of Silurian
Cockburnland is simply the expression of deformation
leading to the formation of an emergent trench-slope
break; the Midland Valley inliers then become examples
of upper-slope basins.

Ordivician and Silurian conglomerates of the
Midland Valley and the Southern Uplands share a suite
of quartzite, basic-ultrabasic and granitic clasts
(Bluck 1983). This implies a similarity in provenance
which argues against lateral displacement of the
Midland Valley relative to the Southern Uplands. 3Bluck
stated that the source of the Silurian conglomerates is
unlikely to be found in the Ordivician rocks of the
Southern Uplands. With the evidence for a missing fore-
arc sequence in Ordivician times, he inferred the
accretionary prism was not in its present position
during the Silurian, and that the Midland Valley basement
extended beneath the Southern Uplands to the region
where Wenlockian trench deposits now outcrop (Southern
Belt). On this model, the accreted Southern Uplands was
thrust in from SE over the projected Midland Valley and
the Girvan fore-arc sequence (fig 1.7).

Silurian rocks are in contact with Ordivician;
south of Girvan, on the coast and inland to the south
of Girvan Water. The main outcrop is separated from the
Craighead anticlinal inlier to the north, by the Kerse
Loch Fault along the Girvan Water (fig 1.8).

16
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The Central Belt (fig 1.1) is defined by
the boundary of the Silurian with the Ordivician
rocks to the north, and by the Wenlock rocks in the
south., The northern part of the belt is occupied by
greywacke sequences; the rest is comprised of shales,
conglomerates, grits and greywackes (Pringle 1935).
The boundary between the top Ordivician and Silurian
has been faulted (Kingledores Fault fig 1.1).

Ordivician sequences younger than Arenig
occur in three main areas; Girvan, including the
Craighead inlier, the Northern Belt and small isolated
inliers in the Central Belt. The sequence in Girvan
has many of the features of the Southern Uplands,
although it operated as a different basin during the
Silurian., Movement along the Southern Uplands Fault
during Ordovician is still uncertain (B J Bluck, personal
communications 1985) and evidence of movement of the
faults in south-west Scotland during Lower Palaeozoic
time is poor (Kelling 1961).

The uppermost Ordovician beds are found in
Craighead inlier. Here the Drummuck Formation is mainly
mudstone above a basal conglomerate. The succession
at Craighead is important in its lower members including
the Craighead Limestone, which lies unconformably on
Ballantrae volcanics and cherts (Arenig).

South-west, towards the Stinchar Valley, the
Ardmillan and the Upper Barr Group represent Ashgillian
and Caradocian times. The Lower Ardmillan series 1is

composed of:=-

A. Shalloch Formation: fine grained, laminated sand-
stones,

B. Whitehouse Beds: 200m of shale, sandstone and lime-
stone members.

C. Ardwell Formation: some 1.5 km of mudstones with



thin sandy bands.
D. Balcatchie Formation: at the base of the Ardmillan

Group.  Mainly mudstone with some sandy and conglom=-
eritic lenses (fig 1.9).

The sequence of the Barr series is transgress-
ive with younger rocks overlapping the earlier in a
northerly direction (fig 1.10). The arrangement from
top to bottom in the Barr Series is as follows (fig 1.9):

A. Benan Conglomerate: shows large changes in taickness
(max, is 640m) due to overstep over a topographically
variable Arenig basement and partly due to channel-
ing which has sometimes removed ali the Superstes
Mudstones bringing the conglomerate to rest on the
Stinchar Limestone. In the north-west of the area
near the coast, it is on top of the Ballantrae
Complex (Walton in Craig 1983).

B. Superstes Mudstones: mainly siltstones and mudstones.

C. Stinchar Limestones: interbedded with shales,

D. Confinis Flags: shales and mudstones,

E. Kirkland Conglomerate: ophiolitic clasts in sandy
matrix,

Although there is some variation in conglom-
erate composition witnin the Kirkland and Benan con-~
glomerates, the earliest (Kirkland) contains mainly
basic and ultrabasic clasts, but with some granitic,
porphyritic and metamorphic rock fragments. The younger
Benan conglomerate have a predominance of granite in the
coarser sizes and basic and ultrabasic rocks in the
finer sizes. This suggests the unroofing of a major
igneous complex (Bluck 1983). ZILongman et al (1979)
reported the presence of boulders of metaquartzite,
amphibolite and sheared granite in the northerly derived
Ordivician conglomerates with southerly derived Silurian
conglomerates of the southern Midland Valley. They
pointed that this evidence supports the existence of

21
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Precambrian basement under the Midland Valley.

The Lower Barr segquence seems to extend into
the Llandelio (Williams 1972).

' The early Ordovician Ophiolites are separated
from the greywackes of tne Southern Uplands by the
Stinchar Fault. Thick sequences of greywackes, shales
and mudstones occur to the south of the Stinchar Fault,
which may pernaps represent tne westerly continuation
of the Southern Uplands Fault (Leggett et al 1979).

Peach and Horne (1899) read the succession
as:

Glen - App Conglomerate Age equivalence Benan Conglomerate

Tappins Group Age equivalence Superstes Mudstones
Mudstones and Cherts Age equivalence Stinchar Limestone
conformable on Arenig Group

Cherts

In place of the Tappins Group, Williams (1962) recog-
nised three divisions:

A. The Albany: resembles the Ardwell Formation in
lithology.

B. The Traboyak: mudstones with spilites and cherts.

C. The Dalreoch: greywackes, siltstones and mudstones.

The last two may be lateral facies variants. On the
coast, they pass down conformably into the Glen App
Conglomerate (fig 1.11).

A similar sequence to that of the south of.
Stinchar occurs along the strike in the Rhinns of
Galloway, where Kelling (1961) separated a lower
Corsewall divisions of conglomerates., In both areas,
the minerals and/or rock fragments of greywackes and
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conglomerates are basic, thus serving to distinguish
these beds from the Dalreoch rocks.

The predominantly greywacke sequences con-
tinue in the Northern Belt. In addition to the
Corsewall Formation found to the north of Glen App
Fault, in the Rhinns, Kelling recognised three main
divisions; the Galdenoch, Kirkcolm and Portpatrick
(fig 1.11). The Kirkcolm make up the northern part of
the Belt with two small areas of the Galdenoch, while
the Portpatrick sequences occupy the southern half, up
to the Silurian boundary.

Along the strike, Iormations corresponding
to these in the Rhinns have been traced to Moorfoot
Hills soutn of Edinburgh.

Volcanic episodes, usually with cherts, are
of various ages in the Northern Belt. Arenig volcanics
are undoubtedly basal to the greywacke sequence at
Raven Gill, elsewhere pillow basalts and cherts may be
underlain by greywackes, as in Glen App area and along
the Southern Uplands Fault near New Cumnock.

1.2.6 Cambrian and Early Ordovician (Arengian)

The Girvan-Ballantrae area in south Ayrshire
exposes under the transgressive base oI the Barr Series
(fig 1.9), early Ordovician rocks; the Ballantrae
Igneous Complex (fig 1.12).

The complex forms a typical ophiolite
assemblage including the Steinmann Trinity of serpentin-
ite, pillow lavas and cherts. Serpentenite make up
approximately half of the outcrop area and predominates
two belts; Northern and Southern. The main rock type
forming the serpentinite was a peridotite. 1In the
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basal (southern) part of the nortnern serpentinite
belt, Iherzolites have layers of abundant clinopyrox-
ene and orthopyroxenes., In a similar position at
Laigh Knocxiauch, coarse bronzitites also represent
pyroxenite cumulates. Anotner distinctive rock at
this locality is garnet ariegite, with garnet, pyroxene,
amphibole and spinel. Micro-prove analyses of the
pyroxenes, amphiboles ana garnet show tnem to have
relatively iron-rich compositions (Church & Gayer 1973).
The mineral compositions are very similar to tnose of
tne ampnibolite aureole at Trout kiver, Western
Newfoundland. Church and Gayer inferred from tne
similarity in petrograpny, chemistry, and above all
geologic disposition, that the ampuaibolites occuring
at the base of ultramarlic sequences in Western
Newfoundland and Ballantrae, have tne same origin,
Unfoliated gabbros which pass turough a dioritic com-
position into trondjemite form the north-west margin
of the northern sefpentinite belt. An intrusive mass
near Millenderdale has been claimed as a sheeted-dyke
complex (Dewey 1974, Bluck 1978). The main rock-type
is a foliated gabbro with a NW-SE trend.

The volcanic rocks comprise lavas, agglomer-
ates and tuffs. They are massive or pillowed. Both
porphyritic and non-porphyritic basalts are found
(Balsillie 193%2). On Mains Hill, near Ballantrae, a
coarse-grained agelomerate has masses large enough to
be lava flows and it has very close resemblance to the
Bail Hill mass in tne Northern Belt. It seems to be
significant in representing an important source for
the succeeding greywackes.

The sedimentary rocks, associated with the
Ballantrae Igneous Complex are-mostly cherts, conglomer-
ates (previously identified as agglomerates) and black
shales. The clasts reported from the conglomerates
include all rock types making up the lgneous complex:



serpentinite, gabbro, dolerite, pyroxenite, granulite,
spilite, amphibolite, glaucophane schist, epidote schist,
chert and black shale. In addition, there are blocks

of limestone and greywacke (Church and Gayer 1973).

The Ballantrae Complex, although containing
most of the components of an ophiolite, has an unproven
sequence (Bluck 1978). It has been greatly disturbed
by post-emplacement Caledonian deformation (fig 1.13).

The area underwent six significant metamorphic
stages: Blueschist facies regional metamorphism, thermal
(ocean-ridge) metamorphism, spilitisation (ocean-floor)
metamorphism, metamorphism during obduction (dynamo-
thermal aureole), serpentinisation and rodingitisation
(post-obduction metamorphism) and finally burial meta-
morphism (Smellie 1984).

1.2.7 Origin of the Ballantrae Ophiolite & Tectonic
Setting of the Area

Wilson (1966) indicated a probability that
an early Ordovician proto-Atlantic ocean had existed
until shortly before the end of the Ordovician. The
bases of Wilson's suggestion were, 1, that the proto-
Atlantic (Iapetus) was bounded by an "American Continent"
which included most of Scotland and northern Ireland,
and a "Europe" which included the rest of Britain, Z,
that it closed in late Ordovician times to Iorm a single
continent. It began to open again during the late
Mesozoic but along a different suture to form our present
day Atlantic.

Dewey (1969, 1971) extended the hypothesis
and suggested that Scotland, north of the Southern
Uplands and the northern part of Ireland had been on the
plate edge of a north-western American continent. The
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Midland Valley was considered to be a continental
margin, transitional between continental and oceanic
crust, and composed largely of sediments resting on
Dalradian and mantle wedges. south of this, the
Girvan-Ballantrae opniolite region was interpreted as
an upthrust relic of an ancient northward-dipping
Benioff zone composed of oceanic crust and mantle with
a marginal basin origin. The "sSoutnern Uplands" was-
believed to have been the final remnant of the proto-
Atlantic ocean and was composed of oceanic crust. The
"BEuropean" continent to the south, was believed to be
similarly bounded by earlier and later Benioff zones,
here dipping south-eastwards beneath the island arc of
Wales and the Lake District (fig 1.14a).

Church and Gayer (1973) concluded that the
Ballantrae ophiolite could be equated with those in
northern Newfoundland. In this respect, the tectonic
setting of the Midland Valley and the Soutnern Uplands
emerge as one of the important points of speculation
which divides opinion about the nature and history of

the Caledonian orogeny.

Many workers (eg Leggett 1980) endorsed

Dewey's model by taking the view that the iMidland Valley
was a fore-arc basin dividing the accretionary prism to
the soutn from a basement-arc terrain to tne north and
that the Southern Uplands Fault approximates to site of
a former northerly dipping subduction zone. Others nold
an alternative view (eg lMoseley 1977, Longman 1980,
Bluck et al 1980) by seeing the lMidland Valley, at least
for part of its history, as an arc which supplied det-
ritus to the basins to the immediate south (fig 1.14d).

The interpretation of thne origin of the
Ballantrae complex ranges from a simple ocean-crust
sequence (Lambert & FcKerrow 1976), to an island-arc pile
(Lewis & Bloxam 1977). Bluck et al (1980) and Hamilton et

al
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(1984) interpreted the complex as representing tectonic
fragments of an island arc - marginal basin assemblage
which was thrust (obducted) onto the continental mass,
now beneath tne Midland Valley. Subsequent work by
Bluck (1984) indicates that this island arc - marginal
basin assemblage was thrust onto the products of earlier
subduction, and the whole complex obducted onto a con-
tinental mass. The obduction event was succeeded by
dyke intrusions which cut the rocks of the thermal
aureole (Holub et al 1984).

1.3 Previous Geophysical Work

Geophysicists' contributions to the solution
of geological problems in the Midland Valley and the
Southern Uplands regions, has been condensed in the last
decade. Crustal models were defined on the bases of
gravity, magnetic and seismic studies., Interpretations
of particular interest as well as those which could be
related to this study are discussed below.

1.3.1 Magnetic and Gravity Surveys

A. McLean (1966), made a semidetailed gravity survey
of Ayrshire. Some of his geological conclusions

are:

1. The synclines at Dailly, Kerseloch and Dalleagles
(fig 1.15) are probably sags on the downthrown
sides of the Kerse Loch and Southern Uplands
Faults, which were initiated before deposition
of the Upper 0ld Red Sandstone, and moved again
as essentially normal faults in Hercynian
stages.

2. Resolution of the anomalies at Kerseloch is
complicated by igneous intrusions and otner

33



2 \’|f,’\’\'.,\?$_l'\’\_’-x
A= ATWIN D S
[P VI X
YA AL,

U h -
Q“r' 1332338

FIRTH

OF

GIAYAN

U

T——
o~ o) szl-_.
%KFT%‘O rnock=—u

\\
oY Permian rocks
. B3 Upper Carboniferous

(] tow Carb-Up. QRS. seds
Clyde Plateau Lavas

: ' Lower Old Red Sandst,
OT\Y St et (D Lower Palaeozoic rocks

A A grasiiey

Fig 1.15—Generalized geological map of Ayrshire and its surroundings (after the Goological Survey) showing the more imports

post-Carboniforous structures.

Tho axes of the principal folds and the regional dips in the Upper Old Red Sandatons, and Carbonifero
rocks, and the New Rod Sandstono are indicated.

(after McLean 1966)

34



dense shallow masses, but the results favour an
increased thickness of Upper 0ld Red Sandstone
and Carboniferous rocks in the down-faulted
block.

5. The Kerse Loch Fault, SW of Dailly, and the sub-
parallel Straiton Fault, btoth end against or
trail into a structural high NWE. - SSW. This
structure 1s apparently continuous from the core
of Arenig rocks at Byne Hill, SW of Girvan, to
the Arenig outcrops of Craighead and beyond.

Analysis of regional gravity field across the western
part of the Midland Valley (McLean & Qureshi 1966)
reveals tnat the crust here coula be 5 km thinner
than under the Grampians and Southern Uplands, whefe
it is referred to be thickened by Dalradian and
Lower Palaeozoic rocks less dense than tuose below.
The regional Bouguer anomalies in the area exhibit

a westerly rise in gravity (fig 1.16).

From aeromagnetic anomalies (fig 1.17) and high
gravity (fig 1.18) over the western part of the
Southern Uplands (Galloway), Powell (1970) modelled
a dense Lewisian basement under the Lower Palzaeozoic
sediments. Strong magnetic "highs" over the
Ballantrae Igneous Complex are due mainly to serpen-
tinite which contains secondary magnetite derived
from olivine. DPowell attributed the extension of
the high magnetic eastward, as far as Dalmellington,
to red and purple greywackes derivea Irom the

complex and deposited along the southern flank against

active fault scarps.

Powell (1971) had criticized the conclusions of
Dewey that the Southern Uplands could represent a
remnant of the proto-Atlantic ocean. He referred

to a number of different geophysical investigations,
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magnetic, seismic, resistivity and gravity, all

of which combined to provide powerful evidence that
there was as much as 30 km of continental crust in
the region. His model (fig 1.14b) shows that the
Lower Palaeozoic sediments and the Caledonian
granites extend to depths of about 12-15 km. Under-
neath these the pre-Palaeozoic basement is taken to
consist of high-grade schists and gneisses, probably
Lewisian,

Gunn (197%), using existing aeromagnetic data,
suggested that the didland Valley is a "remnant" of
the proto-Atlantic ocean, with the Highland Boundary
and Southern Uplands Faults marking the position of
diverging Benioff zones. Sediments eroded from the
flanking continental areas of the Highlands and tne
Southern Uplands rest directly on oceanic crust (fig
1.14c).

Elvbatrouk (1975) and Lagios & Hipkin (1979), from
regional interpretations of Bouguer anomalies in
the Southern Uplands, suggested that the granite
plutons are concealed at depth as a single massive
batholith along the Caledonian trend.

Powell (1978a) made a magnetic study along the

LISPB seismic refraction line, and inferred that any
granulites under the Midland Valley are less
magnetic than their counterpart in the NW Highlands.

Following detailed magnetic and gravity survey over
the ophiolites of the Girvan area, Powell (19780b)
gave a probable distribution of these rocks but no
final conclusions about their origin. A snallow:
ultrabasic body under the southern Serpentinite
Belt, suggested by him, was expected to be detected

~

by seismic refraction measurements (profiles of =
1 km).
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Powell states that the results were inconclusive
even in revealing the velocities expected for the
exposed rock units. Recorded velocities were

4.0 - 5.0 km/sec., up to 1 km range.

From a magnetotelluric study in southern Scotland,
Jones and Hutton (1978 part 1) indicated marked
lateral variations in conductivity structure across
the region. The authors took the interpretation
further (see part II), to conclude that there is a
conducting zone under the kidland Valley at a depth
greater tnan 12 km, and that the crust under the
Southern Uplands is mainly resistive. They stated
that the conductivity variations beneatn eastern
Canada can be strongly correlated with tnose beneath
the Midland Valley and the Southern Uplands, and
proposed tnat the Iapetus suture-zone in Britain is
now represented by the Southern Uplands.

Hutton et al (1980) presented results of two
dimensional modelling of voth magnetotelluric and
geomagnetic response function, obtained along a
traverse which follows roughly the course of LISPB.
They indicated that sharp changes in depth oI seismic
boundaries, for example, at Great Glen, Highland
Boundary and Southern Uplands raults, have their
counterparts in the electrical model.

Hall (1980) integrated Hutton et al model with

NASP and LISPB results to conclude thnat the
Caledonian crust contain lateral and vertical cnanges
in physical properties that can be related to

surface geology.

1.3,2 Seismic Investigations

A.

Agger & Carpenter (1964-65), in their crustal
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studies in the vicinity of Eskdalemuir, analysed
records of shots fired in tne Irish Sea, and which
were received at EKA (a seismological array of
continuous operation). They obtained a mean
velocity of 6-.09 + 0-06 for first arrivals from
ranges <130 km. The nature of thne experiment
excludes details about the snallow structure.

Jacob (1969) analysed apparent velocities of local
events recorded at EKA; the seismic array as noted
above. lMost of the events were quarry blasts. The
analysis indicated a gradual increase in velocity
from 5+54 km/sec at the surface to 5:94 km/sec at
12 km at which depth the velocity jumps to 6+4 km/
sec.

Grampin et al (1970) studied explosions and natural
events recorded on a permanent radio-linked short
period seismometer network (LOWNET). The network
is operating with nine stations scattered in the
Midland Valley. A three layer model is represented
by their time travel diagram. An assumed thin top
layer with P-velocity of 3.0 km/sec followed by a
middle layer, 54 km thick with 5-.65 km/sec velocity
which is overtaken by a velocity of 645 km/sec
beyond ranges of 50 km.

In a review of seismic studies around the Eritish
Isles, Willmore (1973) concluded that the Moho
shallows toward the west,

After the North Atlantic Seismic Project (NASP 1972),

Smith & Bott (1975) derived the following model for
crustal structure beneath the Caledonian foreland.
1. sedimentary layer of variable velocity and not
present everywhere. 2. a thin upper crustal layer

with estimated velocity of 6+10 km/sec interpreted as

either Lewisian rocks of lower metamorphic grade or
Caledonian belt metamorphic rocks and varies in



thickness up to 10 km. 3. an undulating refractor

of estimated P-velocity of 6.48 occurs at variable
depth between 2 and 16 «m and identified as granulite
facies Lewisian basement rocks.

In 1974, the Lithospheric Seismic Profile in Britain
(LISPB) was completed. It is a reversed 1000 km
seismic refraction line across Britain (Bamford et
al 1976). LISPB crossed the eastern half of the
Midland Valley and the Southern Uplands on a NS

line (fig 1.19a). Their P-wave velocity structure
is shown in fig 1.19b. Under the Midland Valley,
the model is:

A velocity of 4.5 = 5.0 km/sec for a surface layer
of upper Palaeozoic sediments, to a depth of 2-3
kms, The layer is shown continuous across the
Southern Uplands where rocks of Lower Palaeozoic
outcrop (cracked shallow Lower Palaeozoic rocks).
LISPB is not designed to detail surface layers.

5.8 = 6+0 km/sec for Lower Palaeozoic sediments, to
a depth of 7-8 kms. This layer interpreted by
analogy with the Southern Uplands segment between
these velocity limits.

6.4 km/sec for an inferred crystalline basement
underlying the sedimentary sequence. This layer
has been compared with NASP granulite facies
Lewisian basement (see previous section E). The
model for the Southern Uplands is still three
layered:

A top superficial layer of 5.0 km/sec (<25 km
thickness), and not a distinct geological unit
being the Lower Palaeozoic outcrop.

An upper crustal sequence contains material of
5.8 = 60 km/sec to depths greater than 10km.
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Mid crustal rocks with Vp=6-3 km/sec to an undefined
depth.

According to Bamford et al (1978), the

granulite Lewisian basement extends from Caledonian
foreland into the Midland Valley, but appears to term-
inate at the Southern Uplands Fault,

El-Isa (1977) analysed observations of quarry blasts
and other seismic sources at EKA and the Broughton
array (BTN), which is located on the Nortanern belt
of the Southern Uplands. He noticed higher apparent
velocities from sources along strike (paraliel to
S.U.F.) at BEKA and in the Midland Valley to the
north and west, but low apparent velocities (546 -
58 km/sec) from sources at similar ranges (25-50
km) to the north and ezst. El-Isa concluded that
P-wave velocities within tre Lower Palaeozoic rocks
of Scotland around EKA increase with depth and vary
with azimuth.

In order to add to tne understanding of the physical
properties and structure oI tue crust ana upger
mantle in Northern Britain, Assumpcao and BamIord
(1978) presented data on tne distribution of Poisson
ratio (¢’ ) in the region, LISFB Poisson's ratios
are generally close to the conventional 0-.25 except
for layer 1 in the Southern Uplands (&’ = 0-231) and
layer 2 under the Midland Valley (&’ = 0-224). These

's

low values of & were said, by tne authors, to indicate

some anomalous properties of tne layers, possibly
to confirm tne region of the Soutnern Uplands rault
as a major point of interest.

Warner et al (1982) gave a brief interpretation of
the Southern Uplands Seismic Profile (SUSF). It is
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a reversed 120 km seismic refraction line along the
Northern Belt, from Dunbar to Sanquhar in the
Southern Uplands. They derived a three layer upper
crust model for tne Northern Belt (fig 1.20):-

Lower Palaeozoic greywackes extend from the surface
to a depth of no more than 1 km, with velocities of
575 - 580 km/sec.

A refractor with velocity of 6.0 km/sec, which is
suggested to be an igneous or metamorphic boay.

At depths of 2 - 3.8 km, another refractor with
velocity of 6-32 km/sec.

From field and-laboratory velocity measurement on
Lower Palaeozoic greywackes, idesanya (1982) con-
cluded that the high velocity observed in the
Soutnern Uplands (> 60 km/sec), are not Palaeozoic
greywackes but crystalline roccks.

Hall et al (1983) have recently used seismic data
from SUSP, BTN, EKA and LISPB, to propose that the
Southern Uplands contain crystalline rocks of contin-
ental affinity at shallow depths (1 - 5 kms). They
suggest that the high velocity crust of the Midland
Valley (6.0 km/sec) continues south of the Southern
Uplands Fault but deepens rapidly to the south-east
of SUSP and BTN. They infer that the same basement
underlies EKA as a block (10-20 km wide), and another
block is to underlie LISPB shot 2 in the Southern
Belt till the boundary of the Central Belt in the
Southern Uplands (fig 1.21a). Their re-interpretation
of LISPB shots E and 2 is shown in fig 1.21b.

Shallow and deep structure interpretation of the
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M.

Western Isles - North Channel deep seismic reflection
line (WINCH), is provided by Hall et al (1984).
"WINCH" .runs through the North Channel across the
extension of the Midland Valley and into the Firth
of Clyde. Hall et al. stated that no margins to the
Midland Valley were observed equivalent to bounding
faults on land. They supposed thnat the Midland
Valley basement continues below the Southern Uplands
since no contrast in seismic cheracter on either
side of the projected Soutnern Uplands Fault was
noticed.

More information on tne range of distribution of
P-wave velocities in the Palaeozoic sedimentary
sequence in the Midland Valley were provided by

Sola (1985) and Davidson (1985). Their investigation
areg 1s the centrali and scuthern Midland Valley.
Velocity groups recognised by them as Carboniferous
and Upper 0ld Red Sandstone, witn Vp=3.0-3¢37 km/sec
and higher velocities of 4:0-5-5 kmn/sec for Lower

01d Red Sandstone and Lower Palaeozolic sediments.

Fig 1.22 shows the interpretation of Davidson et al
(1984) of an 80 km E-W seismic refraction line (Troon-
Broughton), in wnich the Palaeozoic sedimentary
sequence can be traced to a common boundary at around
3 km. Beneath the sedimeantary sequence, thney
recognised an undulatory refractor characterized by

a P-wave velocity of ©6.0-6+1 km/sec, which was
interpreted to represent quartz-feldspathic gneisses.
By this, they revised LISPB layer 2 to be a structure
on the crystalline basement. A north-soutnh section
(fig 1.23) from the dighland Boundary Fault across
the Bathgate area to Carmicnael Fault near the
Southern Uplands Fault, represents the main conclus-
ions of Sola (1985). Across the Southern Uplands
Faults, the SUSP velocities are integrated in tais

section.
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1.4 Review of Previous Geophysical Aspects

McLean and Qureshi (1966) derived their
crustal model for Scotland depending on gravity cover-
age then available, and which did not include all gravity
data from the Highlands and the Southern Uplands (see
Section B in 1.3.1). With a complete gravity coverage
of nortnern Eritain now available, it seems that the
gravity gracients do not closely relate to the boundary
faults defining tune Midland Valley .

Consequently, LISPE discrimination between
the Midland Valley arnd tne Southern Uplands could be
questioned on tne sane pasis as well as tne following
facts:-

1« With shotpoints at least several tens of kilometres
apart and reccrding units on average 3 «m apart, tne
LISPB data czn maxe little contribution to knowledge
of tne uppermost layers (the top 2-3 km). This could
produce a misleading image for solution of deeper
problems, such as whether the Midland Valley 6-4 km/
sec layer is the same or dirfferent from the Southern

Uplands 6-3 km/sec,

2. LISPB was recorded across tne sirike, tnerefore,
seismic measurements parallel or near enough to the
trend of the geological strike, would produce better
estimates for the seismic layering. Of these are,
Sola (1985) and Davidson (1985) who revised LISFB
layer 2 from 5-8-6-0 km/sec Lower Palaeozoic
sediments to down and up-dip on a ©.0-6-1 km/sec
crystailine basement, as well as SUSP, wnicn crosses
LISPB with a completely different velocity structure
of shallow high velocities comparable to tnose in

the Midland Valley.

3. Bamford (1979) favours the view that the 6.3 km/sec
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layer is distinct from the 6-4 km/sec to the north
of the Southern Uplands Fault, although he states
that it is possible that the velocity variations are
within the range that might be expected from a
single rock unit due to different metamorphic grade,
micro-cracking, anistropy, etc. LISPB does not
provide definite evidence to this question. The
time-distance graph for LISPB shot E-Southward, shows
an apparent velocity of 6.4 - 6.5 km/sec, extending
across the Southern Uplands Fault (fig 1.24a).

Sola (1985) has ray-traced this part of LISPB by
combining his results with SUSP model (fig 1.24b).

Bamford (1979) considered LISPB 6.4 km/sec
as an extension of the 648 km/sec of the Caledonian
foreland (granulite-facies Lewisanian basement), although
it is not recognised for certain between the Great Glen
and Highland Boundary Faults. In the Southern Uplands,
he did not identify the rock type associated with the
interpreted 6+3 km/sec different basement. There are
few clues as to the nature of the underlying basement in
both the Midland Valley and the Southern Uplands. A
certain amount of information and inference can be
derived from the occurence of crustal xenoliths within
Carboniferous vents which suggest a similarity in crustal
composition between the Midland Valley and the Southern
Uplands (Upton et al 1983).

There is accumulative geophysical evidence
supporting the view of an unbroken basement for the
Midland Valley and the Southern Uplands, at least under
the Northern Belt which LISPB did not exclude by saying
that the basement boundary under the Southern Uplands
FPault may dip at quite a low angle (Powell 1970, 1971;
Warner 1982; Hall et al 1983, 1984; Davidson et al 1984;
Sola 1985; Davidson 1985).
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The Ballantrae ophiolite on the bounaary
between the Midland Valley and the Southern Uplands
constitutes the basemeut for the Lower Palaeozoic
succession in the Girvan District. This succession
in turn resembles the succession in the Southern
Uplands Northern Belt (see 1.2.5), therefore, the
ophiolites might constitute a basement for the Northern
Belt. The occurence of ultrabasic rocks in the Heads
of Ayr vent (see 1.2.2) could involve a northerly
extension of the ophiolites underneath it.

1.5 Aims of the Present Investigation

The present work is an extension of the
continuing investigation of the upper crustal structure
in the Midland Valley and the Southern Uplands, with
particular emphasis on the Ballantrae ophiolite complex
at the boundary between them,

The objects of this thesis are tareefold:-

1., To determine the range of p-velocities attiributive
to the Ballantrae ophiolite complex, ana hence to
provide more conclusive information on the nature
of the crystalline basement(s) in the study area.

2. To investigate the areal extensions oI the ophiolites

in the Midland Valley and the Southern Uplands.

3, The previous two points could be better achieved by
having the velocity distribution of the surrounding
and/or overlapping rocks. Then, it is one of the
objects to have velocity measurements on such rocks.



CHAPTER TWO

Data Acquisition, Processing and Presentation

2.1 Introduction

The acquisition of the seismic refraction
data used to attempt to solve the problems outlined at
the end of Chapter 1 took place over a number of years.
The seismic sources used included shots fired as parts
of other seismic experiments, quarry-blasts, and a
single dedicated shot. The seismic refraction data were
acquired as follows:

Year sSource Recording Section

1. 1979 WISE Lendalfoot Array 2.2

2. 1982 CSsSP Galloway Line 2.3%.3A

3. 1983 Hillhouse Girvan Line 2.3%.3B
Quarry

4. 1984 Hillhouse Loch Doon Line . 2.3.3C
Quarry

5. 1984-85 Benbain Open Colmonell Line 2.%.3D
Cast

6. 1985 Rough Hill West Ayrsh;re 2¢3.38
Open Cast (fan shooting)

7. 1985 Navy Shot Portobello-Troon  2.3.3F
(off Corsewall =~ Line (reversal
Point) of Girvan Line)

Seismic data studied in this thesis fall into
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two categories in relation to the writer's involvement,
which began in 1980:-

A. Pre-existing, but uninterpreted data. These include
marine shots (explosive & airguns) of the Western
Isles Seismic Experiment (WISE), and some land shots,
all recorded on the Lendalfoot Array in 1979 (fig
2.1, 2.2 and tables 1-3 of appendix 1).

B. Subsequently acquired dzta which can be summarised
as:

1. Laboratory velocity measurements of samples from
the Ballantrae ophiolite suite and greywackes
from the Southern Uplands. These results are
presented in appendix 3 and will be discussed
in chapter 3.

2. Field velocity measurements by means of refrac-
tion profiles 40-65 xm long, recorded across the
study area (tables 4-9 of appendix 1).

It should be noted tnat in order to simplify
the description and discussion oI the aata, names were
ascrived to shots and recording stations according to
the nearest locality. This chapter is devotea to the
presentation and discussion of data acquisition, ana to
the methods used in enhancing tne signal-to-noise ratio
of the data of part (A) above. The pre-existing data
will be discussed in section 2.2 and subsequent data
acquired in tais researcn will be discussed in section

2-30

2.2 The Western Isles seismic Experiment anc the

Lendalfoot Array

An eight station seismic array, sited on the

Bailantrae Ophiolite Complex and adjacent Lower



WESTERN ISLES SEISMIC EXPERMENT
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Palaeozoic sediments, was in operation during the
Western Isles Seismic Experiment (WISE) in November
1979, and recorded a line of marine explosive shots

from the Clyde to Barra, and an air-gun line in the
Clyde (fig 2.1).

The recording array was formed by two lines
of vertical seismometers at 2 km spacings convergent on
the ILendalfoot ghore station. One line was in-line with
the WISE shot line, across the local geological strike;
the other was parallel to strike (fig 2.2). The Clyde
air-gun shots presented a range of azimuths and offsets
into the array. Three land shois were fired at receiver
stations and three more on the landward extensions of
the lines (to 5 km offsets). The intent was that such
a pattern of shots would permit the calculation of
change in velocity with depth to several kilomeires
below the array.

2.2.1 NWISE Data
Analogue records adequate for picking arrival

times, were made up of all the land and marine explosive
shots received at the Lendalfoot array. Such records

were not prepared for the air-gun snots, as it was thought

that the amount of data to be examined required the use
of a computer. The air-gun data were digitised, and

computer expanded-time records were prepared after apply-

ing a number of sophisticated filtering techniques (see
section 2.2.1) to improve the first arrivals.

The WISE data extracted from the Lendalfoot

array are as follows: .

A. Land shots: all six shots were recorded successfully
on most of the seismometers. Table 1 of appendix 1

1
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is a list of tne time-distance relationships for
shot-seismometer pairs. Blank time columns are a
result of either the signal being obscured by a
high noise level, or a seismometer did not record
that particular shot. The shots make different
azimuths with ranges between 0«1 - 10 km into the
array, with an extra seismometer (Pinbraid Bridge)
recording two shots only. Short ranges provide
information on the near surface velocities of the
present rock types. Comparable ranges in different
directions give an idea on any lateral variation in
velocity., This could be seen on fig 1 appendix 2,
wnich represents a reduced time-distance graph of

each shot received on the array. Marked differences

in the arrival times could be noticed on the
Millenderdale shot (ranges of 2:2 and 25 km),
Knockormal shot (ranges of 33 and 34 km) and
Cundry Mains snct (ranges of 4.4 and 45 km).

Marine explosive shots: WISE marine snots 1,2,3 & 4
recorded at the Lendalfoot array (table 2 appendix
1) give four discrete clusters on the reduced time-
distance graph (fig 2 appendix 2). Therefore, a
continuous picture of the apparent velocity depends
upon considerable interpolation. High apparent
velocities (> 6-4 km/sec) are observed on eacn of
the last three clusters. The four shots could be
aligned with the across-strike recording arm of the
array, and high apparent velocities (> 6+4 km/sec)

are obvious in fig 2.3.

Air-gun shots: only air-guns fired within 14 km of
the Lendalfoot array could be evaluated after the
computer analysis. These shots were very closely
spaced (200m apart) and representative shots at
different ranges are listed in table 3 appendix 1.
Currarie and Millenderdale seismometers did not
record the air-gun shots. At other stations

0



Numbers refer to seismometers involved from the Lendalfoot array

(see table 2 appendix 1).
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Fig 2.3 Reduced time distance plots of first arrivals from
the WISE explosive shots recorded on the across-strike

arm of the the Lendalfoot Array.
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occasional shots were observed by high background
noise levels.

A reduced time-distance plot of five selected
air-gun shots in alignment with the across-strike
recording arm shows a continuous increase of apparent
velocity with range, and different delay times under the
shots (fig 3 appendix 2). The apparent velocity
approaches 6.0 km/sec at ranges of 8-10 km.

2.2.2 Digitisation of the WISE Air-gun Data

The large number of air-gun shots and the
use of advanced techniques (see 2.2.4) to enhance the
P-wave signals, prompted the digitisation of the air-gun
data. The Lendalfoot data were digitised by Durham
University at the British Geological Survey, Edinburgh.
Channel relationships between analogue and digitised data
are shown in table 2.1.

First Tape Channel Second Tape
Int. Clock 1 Int, Clock
Flutter Channel 2 Flutter Channel
Letterpin 3 Cundry Mains
Bargain Hill 4 Knockbain
H. Long 5 Currarie

E Vertical 6 Millenderdale
3

$| H. Transv. 7 Breaker Hill
M.S.F. 8 M.S.F

Table 2.1 Channel number on digitised tapes and
its relation to analogue recording.
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A sampling rate of 64 samples/sec was used, since this

was the maximum possible for the recording speed used

for WISE. Occasional corruption of the radio signal

and internal clock caused problems during the digitisation
process, since the computer program that controls the
digitisation relies on being able to read the time code.
This was overcome by using a manual digitisation opera-
tion and starting and stopping the tape at the points
about the region to be digitised.

2.2.3 Processing of the Air-gun Data

The digital conversion of tne air-gun data
is schemed in fig 2.4. To run the data on the ICL 2976
computer at Glasgow University (known as GVME), it was
first transcribed by a compatible format by the Data
Transfer Service of the University Computer Centre.
Conversion of the large number of air-gun data files
from binary to character format would have cost consider-
able expense to the Computer Centre. To half these ex-
penses, the Lendalfoot digitised data were transferred
directly to the GVME in their binary format (fig 2.5a),
and then program "CHARACTERVAR" was used to decode
binary integers into characters. The program calls the
subroutine CV which was kindly provided by Dr R
MacKenzie of the Computer Service. The character data
(fig 2.5b) are then passed through program "TRANSLATE"
to decode into actual numbers (the amplitude coefficients,
fig 2.5¢).

The plotting program "DRAW" has been adopted
to display the data in absolute or reduced time-distance
sections (Ali 1983%). The program provides a comprehensive
choice of processing in the time domain and written to
allow processing with a wide choice of filters. Necess-
ary adaptations were made by the author to suit the

WISE Geostore data.

63



ANALOG TAPE

NOILVSILIDIa

MULTITPLEXED
BINARY DATA

TRANSCRIPTION

TO GVME

HVAHILOVHVHD
NYHDOHd

y

MULTIPLEXED
CHARACTERS

VISNVH 1
VHOOHd

DATA

STORAGE ACTUAL NUMBE

MULTIPLEXED

A

RS

Fig 2.4 Dlagram showing the main steps of

digitising the analogue air-gun data.
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Fig 2.5 Showing the steps of processing the digitised

data into real numbers.

A:Binary data B:Character data C:Real numbers
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A plot of the nearest air-gun shots to the
Lendalfoot station (fig 2.6) has shown that the seismo-
grams and the time channel are dominated by abnormal
high amplitude spikes. Initially, they were thought of
as being generated by a faulty Geostore recording set
or a damaged tape. Whilst revising the data files, the
sporious big numbers (eg, 11111 in fig 2.5c) were found
to be not a feature of the original data, but were
generated by unbalanced subroutines within the software
upon GVME which catalogued files on magnetic tapes.
Dr P Rosenberg has amended the subroutines, and the whole
data files were recatalogued.

2.2.4 Filtering Techniques Used on the Air-gun Data

The air-gun profile provided only a limited
amount of data that could be picked by eye (fig 2.7).
It can be clearly seen from the records that on most of
the traces, the signal-to-noise ratio is very low, and
on many the signal cannot be seen at all. To improve
the data quality, the main steps followed by Durham
University in processing other WISE air-gun data, were
adopted. These are different band-pass filters, cross-
correlation and predictive deconvolution technigues.
Subroutines to perform these operations were obiained
from Durham University and adapted fdr use on GVME within

the program DRAW.

The object of a band-pass filter is to trans-
mit a required frequency band and to attenuate frequencies
outside this pass-band. Two kinds of band-pass filters

were applied:

A. Robinson's band-pass filter (Robinson 1966): gives
complete transmission of the pass-band and steep
attenuation outside (fig 2.8a). The poor effect of
this filter on the air-gun data is shown in fig 2.9.
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B. Hanning band-pass filter (Blackman & Tukey 1958):
shows a distinctive feature of gradual roll-off on
either side of the central frequency within the pass-
band (fig 2.8b). Improved resolution can be expected
in case of appropriate adjustment of central frequency
of the filter with central frequency of the signal.
P-wave signals of the air-gun shots occupy a low
frequency range, and with reference to some shots
recorded on the Lendalfoot seismometer (fig 2.10), it
is observed that central frequencies lie between 7-9
Hz, so the filter cut-off frequencies were designed
to be 4-12 Hz. This filter proved to be more efrect-
ive in attenuating the noise (fig 2.11).

After tane initial processing, it was expected
that the onset might be picked reliably on an increased
number of records. The maximum range of good arrivals
did not exceed 12-14 km. It was noped that the arrival
could then be found on the poorer traces by use of cross-
correlation,

Cross-correlation filtering as applied to
.seismic data, has been described by Jones and Morrison,
(1954), Schneider and Backus (1969) and Kanasewich (1981).
Briefly, cross-correlation riltering consists of searching
a trace for the occurence of an expected wave form by
the mathematical (or electrical) operation of cross-
correlating the trace with the expected wave form (Smith
1958). The estimate of the signal was obtained by add-
ing the windowed first arrivals on the Lendalfoot array,
from a near air-gun shot, and finding the average. The
position of addition was determined by finding the pos-
ition of maximum cross-correlation between the traces.
The average wave form was then correlated with traces of
farther snots and the position of maximum correlation
was deemed to be that of tne onset of tne signal. This
filter d4id not give significant improvement in signal
quality, since the cross-correlation of the noise and
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the signal was as high as the autocorrelation of the
signal. The effect of tnis filter is shown in fig
2.12. One of tne problems was that the number of
cycles of the wavetrain varied from trace to trace, so
if correlation was attempted in such a situation, then
an incorrect position for the onset of the signal may
have resulted. Warren (1981) suggested tnat predictive
deconvolution could be used to truncate the signal and
leave the same number of cycles on eacn trace to give

a distinctive character to the signal for its detection
by matched filtering. Summers (1982) has shown that
the use of predictive deconvolution is inappropriate in
that the air-gun data do not conform to the assumptions
upon which the technique is based. It was not developed
for enhancing signals immersed in noise of equal or
greater amplitude.

2.3 Field Velocity Measurement

2.3.1 Instrumentation

The system used to collect seismic data was
the Glasgow F.M. seismic instrument, designed and con-
structed by Mr G Gordon in the Geology Department, to
the specification of Dr J Hall.

The field-system comprised of 7 recording
instruments (now 50 sets) with integral amplifier/
modulator and tuned radio receiver to record M3F time
signals from Rugby. The recorders have a remote-start
mechanism and electronic clock that allows them to be
deployed up to 24 hours, tefore a recording window.

Using a C120 tape, the maximum recording period is one
hour. 1In this system, the seismic signal is pre-amplified
and 60 Hz low-pass filtered. The signal is tnen presented
to two independent variable gain amplifiers that have a
set gain difference of 18 dB. The 'A' amplifier has a
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gain range of 82 - 112 dB in 6 dB steps and the "B"
amplifier a gain range of 64 - 96dB (fig 2.13).

A frequency modulation system is used so
that a bandwidth of 2-60 Hz can be recorded on standard
magnetic tape. In F.M. system the carrier frequency
deviation is directly proportional to the frequency and
amplitude of the seismic signal. A carrier freguency
of 3 kHz was used as this ideal for tape recording. The
maximum amplitude for the seismic signal after amplifica-
tion is 8V peak-to-peak and this produces a deviation of
+ 80% of the carrier signal.

At maximum gain the dynamic range is amplifier
limited to 52 dB increasing directly with gain reduction
until limited to about 60 dB by modulator/demodulator
noise,

A tuned-radio receiver is built into each
seismic recoraer. when the 60 kHz MSF signal transmitted
from Rugby is present, the output from the radio is a
square wave in synchronisation with the transmitted time
code (fig 2.14). This square wave signal is used to gate
a 3 kHz oscillator to produce tone bursts trnat can be
recorded on the same tape as the seismic signal. On
playback, the time signal can be decoded and displayed
in digital form so that events can easily be located on

the tape.

The playback system consists of a cassette
player, demodulator, filters and ultra-violet recorder.
The cassette player reproduces the F.M. signals free of
instrument noise and then it is amplified and clipped to
provide a suitable signal for demodulation. The demod-
ulator has a buffered input and is followed by a low-pass
filter to remove any residual F.M. signal from the
demodulated seismic signal. Filtering used was between
4-20 Hz. The filtered demodulated signal can now be
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amplified for driving the galvanometers on a UV
recorder series with a selected speed. The galvo-
amplifier can amplify the seismic signals over the
range of 0-01v/cm to 20v/cm, and a hard copy of the
seismic traces can be obtained.

2.3.2 Fixing a Recording Site

Seismometers at sites near to the quarry
can be planted or buried into the ground if rock out-
crop is not available. As the distance between the
shot and seismometer increases the need for fixing the
seismometer on rocks becomes crucial, since the seismic
energy would be expected to be more attenuated with
range.

Quarry blasts were recorded on buried seis-
mometers up to a range of 15 - 20 km. Beyond this
range, the arriving energy is too weak to be detected
unless the seismometer is on rock. Finding a rock is
not always easy, especially in South Ayrshire where the
land is thoroughly cultivated. Dip and strike arrows
on solid geological maps, as well as drift maps helped
in locating rock sites. Such sites were used up to +
1-2 km on either side of the intended seismic profiles.
Most of the rock exposures have no sizeable joints or
fractures within which the seismometer spike could be

located., Cracks are invariably either larger or smaller

than the optimum wznted, or do not allow vertical
mounting of the geophone. The conventional method is
either to widen narrow cracks using a chisel and hammer,
or to narrow the width of them by forcing wood or metal
wedges around the seismometer spike. This may not
always be successful, but if so, to occupy many sites

on a firing day would be prolonged.

A new simple technique to overcome this



problem was designed by Mr G Gordon during the course
of this study, which can be summarized as follows:

A seismometer mounting tripod is made in
light alloy to replace the conventional seismometer
spike. The tripod mount can then easily be located on
most outcrops and adjusted to ensure that the seismo-
meter is vertical., Close-coupling to the rock is
achieved by waxing the mount to the rock using an
engineering material, wax type A-46 from Brunner Machine
Tools Ltd. A small gas blow-lamp is used as a heat-
source to melt the wax over the feet of the tripod onto
the rock. This method of mounting the seismometer was
found to be effective even on wet rock, but it is nece-
ssary to remove dust and loose material from the rock
surface to ensure firm coupling.

At the conclusion of the survey, the seismo-
meter can be unscrewed from the tripod mount leaving the
tripod on the rock to be used on another occasion.

Sites prepared in this way have been re-occupied over a
two year period with good results.

2.3.3 Recorded Seismic Refraction Lines

Six seismic refraction profiles were record-
ed during the course of this study (fig 2.15). The
layout and the spacing between the recording stations
was dictated by the locations of the source of energy,
and the access and availability of rock sites for

recording.

A. Galloway Line:

This line was recorded by placing seven
recording stations across the Galloway region, to
record explosive shots M5-M12 (fig 2.16) of the



rig 2.15 Network of the recorded profiles in

relation to rfig 1.1

At Ayr, AC: Ailsa Craig, b: Ballantrae, Eb: benbain
open-cast, BH: Burrow Head, U: Dalmellington, FC:
Firth of Clyde, G: Girvan, hA: Heads of Ayr, HG:
Hillhouse wJuarry, K: xZirkoswald, Kb: Kirkcudbright,
1D: Loch Doon, LR: Loch Ryan, wsb: [aybole, Mn:
Mauchline, k: Newton 3tewart, r: ratna, rb:
Portobello, RH: Rough Hill open-cast, 5: Stranraer,
Sq: Sanqunhar, St: Straiton, SUF: Southern Uplands

Fault, W: wigton,
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LD: Loch Doon, P: Portobello, SF: Stinchar Fault,

SUF: Southern Uplands Fault, T: Troon.

Numbers indicate seismometer stations listed in appendix 1.



Fig 2.15b Network of the recorded profiles as shown in 2,.15a
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Girvan Line (Hillhouse Quarry - Ballantrae)

Cammercial quarries in the study area are
scanty and the only one available in the Girvan
district (Tormitchell), blasts infrequently and has
not enough range to record across the ophiolite out-
crop. Hillhouse Quarry (Troon) was used to record
two seismic refraction lines across the area. QOne
line was 64 km long, although the first 16 km were
covered by the Firth of Clyde (fig 2.4), therefore,
the first recording station was at the Heads of AyT,
a distance of 17 km., Seventeen recording stations
were sited on Lower O0ld Red Sandstone and Lower
Palaeozoic outcrops, with an azimuth =235°, and the
last 25 km cover the ophiolite outcrop. Time-
distance relationships are listed in table 5
appendix 1.

The reduced time-distance graph (fig 5
appendix 2) starts with a high apparent velocity
(6+4 km/sec) over tne Lower 0ld Red Sandstone,
followed by a delay of = 0.2 sec at 35 km range at
the Kerse Loch Fault. Tne nigh apparent velocity
is observed again over tne opniolite outcrop.

Loch Doon Line (Hillhouse Quarry - Loch Dee)

This line was recorded in order to have more
control on the Carboniferous rocks which were not
covered by the previous line, and to investigate the
velocity structure across the Southern Uplands Fault
and the Loch Doon Granite. It was apiroximately
55 km long, trending perpendicular to tne local geo-
logical strike with an azimutn of 127°., ~rifteen .
stations were recorded between the quarry and Loch
Dee at the south end of tne Loch Doon pluton.
Carboniferous outcrops of the iidland Valley occupy
the first 30 km of the prorile; the rest of the



profile traversed Lower 0ld Red Sandstone and Lower
Palaeozoic outcrops.

The reduced time-distance graph (fig 6
appendix 2) resembles that of the previous line
since a high apparent velocity (6+4 km/sec) starts
at a comparable range (20 km), followed by a delay
of about 0-1 sec, again at 35 km (at the Southern
Uplands Fault)., The high apparent velocity is then
repeated followed by an obvious deceleration over
the outcrop of the pluton. Time-distance relation-
ships are listed in table 6 appendix 1.

Colmonell Line (Benbain Opencast - Ballantrae)

The National Coal Board open-cast at Zenbain,
3 km NE of Dalmellington, was the source used to
build up this seismic refraction prorile. The line
is 45 km and is parallel to the local geological
strike just north of the Southern Uplands Fault. The
line is formed of twenty three seismometers spaced at
about 2 km intervals. It crosses Carboniferous and
Lower 01ld Red Sandstone rocks, and then steps north-
west (to the nortnh of the Stinchar Fault) before
resuming the south-westerly trend, crossing Lower
Palaeozoic outcrops and ending on the RBallantrae
ophiolite (fig 2.4).

Frequent shifting of the blast position
prompted frequent updating of the origin time and
the Grid Reference of the blast (see table 7 appendix
1). The main objectives for recording this line
are, firstly, to investigate the nature of the delay
which has occured on the two previous lines, secondly,
traverse tne opniolites in along strike, and thirdly,
the line is parallel to SUSP, which was recorded
along the Nortnern Belt of the Southern Uplands, and
therefore, a comparison between the two areas can be
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made.

Fig 7 (appendix 2) shows high apparent vel-
ocity (6.3 km/sec) starting at 12-20 km. A delay
of 0:27 sec follows and tnen the high apparent vel-

ocity continues with evident acceleration on the
ophiolite outcrop.

Portobello-Troon Line (Reversal of Girvan Line)

This line is literally a reversal of the
Hillhouse Quarry - Ballantrae line. The same sites
were reoccupied with some new ones inbetween, to
minimize the spacing. The original line was extended
south~-eastward, across Ioch Ryan to record an off-
shore blast (% 2 km SE of FPortobello), fired by the
Royal Navy on 7th June 1985.

The reduced time-distance sraph (fig 8
appendix 2) shows an apparent velocity of 6.0 km/sec
starting over the ophiolite outcrop, although the
arrival is affected by consecutive delays and accel-
erations. A delay of = 0-.16 sec occurs at a distance
of 39 km (Fauldribon Station), followed by a marked
acceleration culminating at Craignead Quarry station
(47 km). The 6.0 km/sec apparent velocity starts
again over the Lower 0ld Red Sandstone outcrops, but
is delayed by about 0-1 sec, in relation to the
arrival at Craighead Quarry station. A high apparent
velocity (6+4 km/sec) takes over at 50 km range till
the Heads of Ayr. Information on the time-distance
relationships are found in table 8 appendix 1.

The origin time of the Dlast was not recorded
on board the ship as it was assumed that it could be

interpreted from the regional geology (see chapter
4).



F. West Ayrshire (Fan Shooting)

Whilst occupying the recording sites of the
previous line (in West Ayrshire), a blast at Rough
Hill NCB open-cast (Dalleagles) was recorded on
most of the stations. The reduced time-distance
graph (fig 9 appendix 2) shows a continuous increase
of velocity with range, reaching a maximum observed
velocity of 6.6 km/sec. The arrival at Fauldribon
station suffered a delay of 0+4 sec relative to
adjacent stations (see interpretation in chapter 4).
Time-distance relationships are listed in table 9
appendix 1.

2,4 Shot-Station Distances

Land shots and recorder sites were easily
Positioned using large scale ordinance survey maps
(1:10560), with an error estimation of + 20m. The LCB
shot positions were provided by their own surveyors.

The location of WISZE marine explosive shots
was provided by Decca fixes, which could be plotted on
a Decca lattice, to calculate the grid reference., Due
to the large number of air-gun shots involved, however,
this could not be done for the air-guns and an automatic
method of processing was preferable. The Decca fixes
first had to be corrected for fixed and variable errors.
Variable errors are caused by interference between the
direct radio signals from the Decca stations and the
signals reaching the ship by way of a "Skywave"
refraction path. In general, their effect is small and
can, therefore, be ignored. The fixed error is due to
the distortion of Decca signals passing over ground of
low electrical conductivity. Since the distortion does
not alter, it is possible to correct thne error. The
fixed errors for tne region were available in a manual
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provided by Decca and corrzsction was achieved by adding
and subtracting them from the readings. A Hewlett -
Packard program (Bacon 1978) was acquired witn the input
consisting of corrected Decca main chain fixes along the
ship's track, and the output in latitude and longitude
and/or UTM grid co-ordinates.

The distances between shot and station pairs
were calculated by applying Pythagoras Theorem after
converting all the co-ordinates to national grid co-
ordinates.

2.5 Picking of First Arrivals, Data Quality and Error
Estimates

For the purpose of picking P-wave arrivals
from the WISE air-gun shots, the data were subjected to
a 4-12 Hz Hanning band-pass filter, and presented using
a reduction velocity of 6.0 km/sec and an expanded time
scale. The most crucial point of Hanning band-pass
filtering is the generation of ringing effect about the
onset, due to large and slowly decaying side lobes of
the filter, and is a major source of confusion in iden-
tification of onsets, and needs special care in picking.

Paper records direct from the analogue tapes
were made for the WISE marine and land explosive shots
and all the subsequently acquired data using a paper
speed of 10 cm/recorded sec. This is quite adequate for

picking arrival times.

The Hillhouse Quarry and Benbain NCB open-
cast refraction lines were built up using many blasts
with different depths and charges, and different gain
settings for the recording sets. Therefore, no amplitude
range relationship could be clearly studied. However,
it could be shown on the Girvan line (Hillhouse -
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Ballantrae line), that the last four seismograms nave

a relatively lower signal-to-noise ratio (fig 10 appendix
2).

A sudden attenuation of the amplitude occurs
on the delayed segment on the Benbain-Ballantrae line
(fig 12 appendix 2).

It could be stated that seismograms on the
Portobello-Troon line display the best quality of rec-
orded data, which is probably related to the size of
the blast and the effectiveness of marine shots in
comparison to commercial guarry blasts.

The main components of error affecting the
travel time accuracy are:

1. Picking of onset time which could be in the range
of + 0:02 seooﬁd.

2. Irregularities in speed of paper feed on the UV
recorder result in difrerent spacings between uSF
second pulses. This makes it difficult to inter-
polate the precise onset of the second pulse, and
the incurring error is estimated to be + 0-007
second.

3, The uncertainty in locating the snotpoints is
estimated to be + 30 metres, which gives an error
of + 0-006 second.

Therefore, the overall accuracy of travel
times is calculated to be + 0.02 seconds.

2.6 Conclusions

The set of data presented in this thesis
involves several seismic refraction profiles recorded
across the Ballantrae ophiolite from all directions:
east, west, north and south. It is characterized by
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two main features:

e A delay_of 0«2 - 0+26 sec occuring at different
geographical and geological localities.

2. High apparent velocities (> 6:0 km/sec) recorded at
short ranges (19-20 km) with the minimum at Lendalfoot
Array (8-10 km). This is significantly different
from LISPB ranges for such velocities (> 50 km).

Such high velocities are typical of crystalline
basement. These velocities and their variation with
azimuth should bear on the problems and aims mentioned
in chapter 1.



CHAFTER THREE

Laboratory Velocity ileasurements

2.1 1Introduction

Lavoratory measurements of tane velocities of

elastic waves in rocks are needed to allow interpretation

of velocities determined from field refraction measure-
ments. Unless the depth extent of formations in the

field are known, it is not possivle to resolve velocity

increase due to crack closure on the one nand, Irom that
due to change in rock type on tne other. The lavoratory

measurements over a range of conIining pressure provide
a basis for thnis resolution,

A low pressure steel vessel (avzilable in thne
Department) was used to measure P-wave velocities across

representative rock units of the Ballantrae opniolite
D

and selected greywacke samgyles irom the Horthern zelt of

the Southern Uplands in scotland.

Such measurements (even thougn only to 200
bar) should nelp give a better picture of ine near
surface velocity distribution in the Southern Uplands
and the Girvan-Rallantrae arez, and impose certain con-
straints on the various lithologies at depth, tunat are
to be interpreted from tne retfraction profiles.

3,2 Rock Sampling and Core Freparation

By studying Geological survey of Scotland
Map sheet 7, it was possible to pick out outcrop sites
of the major ophiclite rock units. Considerable help
in finding suitatble sites was gained from rersonal

comuunication witn Dr B J Bluck.
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Greywacke samples from the lorthern Belt
were «indly provided by Dr J Floyd, who gTouped them
into five formations according to petrograpnical
criteria: Marchourn, Afton, Scar, Shinnel and Black-
craig (Floyd 1982),

Once in the laboratory, cylindrical cores
were obtained from each sémple using a diamond bit, tne
diameter 25<4mm being selected to matcn the transducer
size. ZEach core was trimued using a "Buehler Isomet"
low-speed saw, to avoid the induction of cracks caused
by faster cutting. Cutting cores this way leaves two
parallel faces which do not require any grinding, but
only a brief nandlap with 400 grade carborundum to pro-
duce a satisfactory finish.

For clear observation of the compressional
arrival, the length to diameter ratio (L/D) should be
less than about 5 (Anderson & Lieberman 1968), because
as L/D increases, more of the initial compressional
energy is destroyed by voundary reflection and eventually
Vp reduces into the noise level., Lengths of specimens
range from 276 to 58.8mm and were measured by a micro-
meter screw gauge at several poinits on eacn core with
standard deviations or about 0-:004 to C-0O2mm. The
greywacke cores were numbered in tne same metnod used
by Floyd (1982).

3.3 Saturation of Samples

The presence of water in pores and microcracks
of rocks is common in tne earth. It constitutes one of
the environmental factors tnat must be considered wnen
in-situ seismic velocities are investigated. It 1is,
therefore, necessary to measure velocities in saturated
or dry samples according to the likely condition oI the
rocks in-situ. At confining pressures up to 200 bar,
the rocks are unlikely to be wateriree, so our measurements

were confined to saturated samples only.



Samples were placed in water in an evacuated
dessicator. The air in the dessicator was removed
using a vacuum pump and left in this condition for
approximately eight hours, to ensure tnat the samples
were fully saturated.

5.4 Density Measurement

Measurement of density is useful, since
seismic velocity is strongly dependent on density and
mineral composition., Based on airchimedes' principle,
densities of all tne core samples were determined by
measuring three parameters: weight of dry sample in air
(W), weight of saturated sample in air (wS) and weight
of saturated sample in water (wW). Weighing of dry
cores was achleved after the samples had been over-dried
at 110%°¢ for 24 hours. Bulk densities, porosities and
grain densities were calculated from the following
formulae (Holmes 1930):

WS
Saturated bulk density fbw = ——
WS - WW
- WS - W
Porosity @ - x 100%
WS - WW
W
Grain density pAg = —
W - WW

3,5 Method and Instumentation

Velocities are measured by Birchn's method -
(Birch 1960); the pulse transmission technigue. This
is based on the measurement of the travel time of a high
frequency acoustic pulse across the specimen. Each core
is placed between 1 MHZ barium titanate ceramic trans-



ducers (set 003), activated by a Velonex 345 high
voltage pulse generator. Grease was used as a coupling

agent petween the faces of the specimen and the trans-
ducers.

Prior to the actual measurement of velocity
through the samples, the core-transducers assembly was
swathed by plastic tubing to prevent the pressure medium
(hydraulic o0il) from penetrating the sample at higher
pressure. 40-mesh copper gauze was placed between the
core and the jacket to provide void space into which pore
water from the sample could drain during comgression.

The mesh was soldered tightly around the core to prevent
the heated plastic jacket from forcing it off.

The transmission time is measured by matcning
the onset of the pulse transmitted through the specimen,
with that of a pulse transmitted simultaneously through
a variable-length mercury delay line. The matcning is
done on a dual-trace oscilioscope. FPressure is generated
by a hand-pump with a Bourdon gauge mounted above it.
Velocity readings were taken at 20-30 bar intervals up
to a maximum confining pressure of 200 bars, at room

temperature.

The velocity of propagation tnrough the
sample is simply obtained Irom the length of the mercury
column (L Hg), Vp in mercury (V Hg = 1-453mm/AMsec) and
the length of the sample (L rock):

V rock = L rock. V Hg/L Hg

Electronic and transducer delays make the recorded time
longer than the actual transit-time through the specimen,
therefore, calibration of the mercury delay line 1is
essential. The zero-setting of the delay line was det-
ermined by finaing the settings that would correspond to

the first arrivals, through steel samples of lengtns

97



ranging from 25 to 60mm, and extrapolating to zero-
length (Bircn 1960). Calibration values have to be
subtracted from the length of the mercury column
required in the onset matching. As a precautionary
measure to ensure that the mercury column was function-
ing in its normal manner, calibration was repeated
periodically (fig 3.1).

3.6 Results and their Implications

The results of laboratory seismic velocity
measurements are given in table 3.1 and 3.2. Velocities
listed are the mean of measurements during increasing and
decreasing pressure cycles. At higher pressures, there
is a better transducer-rock contact, so that the first
arrival 1is more easily detected pecause of its higher
amplitude and frequency. In many cases, an accurate
reading could notl te taken pelow a gressure of 20 bars,

Accuracy of the measurement depends on tine
quality of the signal, tne calibration values of the
mercury delay line, parallelism of the core faces and
the reading of the confining pressure. Repetitive
measurements on some samples with different sets of
transducers (ie. different calibration values), give an

overall error estimate of + 0-08 km/sec.

3.6.1 The Ophiolite Samples

All of the graphs (appendix 3a) show a
gradual increase of velocity with increasing pressure.
The average increase of velocity over the full range of
pressure (0-200 bar) is 018 + 0-10 (0+3 km/sec/km).
The chert shows a slight increase of 003 km/sec (0:05
km/sec/km), whereas in foliated gabbro, it is highest
at 0.25 km/sec (0-42 km/sec/km).
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Fig 3.1 Zero-length delays for P-wave velocity measurements

Both graphs are for two different sets of transducers.
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;Jgf'e /]\tr{‘ugi. 20 50 80 100 160 200
No21 517 5-90  5.92  5:95  5.93 5-94 594
AX192 _ 556 5:61 5:65 5:66 5.68 5-70 5:M
/K297 5.28 5+40  9.43  5.43  5.43 b .44 5-44
£X309 5.2% 5-40 543 5.45 .45 546 546
L526 5-29 5:48 549 5:91 5:51 - 551
AX201 5-30 5:60 5.61 5.62 5.62 5.63 5.63
%565 5.0 5:73  5-76  5.77  5-77  5.79  5.79
L5&8 5.18 5-29 534  5.36  5.38 5+39 5-40
AX3 5-72 5:75  5:77  5.79  5.79 5.80 580
AX270 539 5:58  5.62 5.62 5.62 5.63 5:63
DI'TA290  5-41 5.76  5.78 . 5.80 5.30 5.80 5.81
AX473 5:62 5.70 5.172 573 5:73 5:74 5-74
AX532 5:73 5.82 5.84 5.84 5.85 5-85 5.87
AX534 5.67 5.-70  5-73 5.75 5.76 5:77 5.78
AX644 5.58 5:73  5:75  5.77 5-77  5.77  5.78
AX664 5-20 5:38 5:43  5.46  5-47 5.48 5.48
AXB62 - 5.75 5.76  5.76 5.76 5.76 . 5.76
AXB63 - 5:60 5-61  5.62  5.62 5:62 5.62
AX159 - 5-84 5-86 5.87 5.87 5.87 5.87
AX160 - 5:96  5-97 5-97  5-97 5:98 5.98
AXBT - 569 5.70 5.70 5-.70 5.70 5.71
AXET3 - 5:63 S5-63 5:63 5:63 5-64 5-64
AX205 - 5-81 5.83 5.83 5.83 5.84 5.85
AXB56 - 5.65 566  5.67 557 5-67 5.67
AXT55 - 5.86 5-86 586 5:87  5-88  5-88
AX659 - 5.85 5.85 5.85 5.86 5.86 5.86
AXT8 1 _ 5.76 5.81 5.82 5.82 5.82 5.83
AX861 - 5.86 5.87 587 5-87 5-87 5.87
AXES 1 - 5.45 5.46  5-47 5:48 5-50 5:52
AXB4T - 5.138 5.138 5-38 5-38 5-39 5+39
X840 - 5.56 5:57 5:59 559 5.59 5.59
X604 _ 5.77 5.78 5.78 5.78 5-79 579
AX981 - 5.59 5-60 5-61 5-61  5-62  5-63
X983 _ 5.90 5.90 ° 590 5-91 5-92 5.93
%969 N 5.75 5-76  5:77 5-77 577 .5-78
AX990 - 5.94 5-96 5-97 597  5-97  5-98
5 ; 5.72  5-73 5-74 5-74 5-74 5:74

Table 3.2 P-wave velocities in greywackes from the

Northern Belt of the Southern Uplands.



Gabbro from Millenderdale showed some
foliation in the field, therefore, anisotropy was
investigated using two cores cut at right angles to
one anotner: FG1l to the banding and FG2//to it. The
difference in velocity across the two cores at 200 bar

is 0+03 km/sec, showing that the rock is almost iso-
tropic,

Locality, porosity and density of each core
is listed in table 3.3. Fig 3.2 shows the correlation
between bulk density and the velocity at 200 bar. 4
straight line is applied to the data by linear regression
and the scatter in the data points yields a correlation
coefficient of 0.84, so that 70% of the variation in Vp
can be accounted for by variztion with bulk density.
Foliated gabbros have the nighest density and velocity
values, whereas serpentinites nave the lowest values.

A difference of 05 xm/sec in the velocity of the two
gabbro samples is related to the fact tuat one of them
is more serpentinised and so gave lower velocity and
density values. The three .ranite samples exhibit very
similar densities and velocities, and the cnert sample
is emoraced witanin their field on tne graph. The cal-
culated density Ifor tne spilitic lava 1is sligntly

higher than that recorded by Christensen (1966; 2.70 -
2+74), although its velocity (537 km/sec) is within his
range (4-85 - 5:74).

Several investigators nave made laboratory
measurements on different ophiolite samples at elevated
pressures. Table 3.4 represents a summary oI some of
their results ana the values listed in taole 3.1 co:apare
well with them. It can be seen from both tables taat
serpentinite has lower velocities than tne rest or the
ophiolite components, therefore, any seismic reIraction
profile across the Ballantrae couaplex would not yield
smooth velocity segments, because of the ligely mixture

of serpentinite in adjaceant rocxs; eacn unit thick
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Rock Type Pressure Velocity Density Refecrence
(bar) km/sec gm/cind
Serpentinite| 200 4.89 - 6-44| 2:513 - 2.6t5| Christensen 1978
200 4.20 2+520 Christensen 1966
10 - 10,000 4.23 - 5.57| 2:467 - 2.546 | Christensen 1972
10 - 10,000 4:70 - 6:82| 2601 - 2.710 | Birch 1960, 1961
Spilite 200 4:85 - 5.74| 2.704 - 2.738 | Christensen 1978
Gabbro 200 6:63 - 7-16 | 2.835 - 3.013 | Christensen 1978
10 - 10,000 3-80 - 7-23} 2-931 - 3.054 | Biren 1960,1961
600 - 4,000 | 694 - 7-05| 2-830 - 2.880 | Salisbury & Christensen 1978
500 - 3,000(6-78 - 7-47| 2880 - 3.-010 | Christensen 1982
1,500 610 - 7-80| 2:900 - 3.200 | Peterson et al 1974
Metagaboro 600 - 4,000 {6-30 - 7:06 | 2-810 -~ 2.950 | Salisbury & Christensen 1978
200 6-07 - 7-082.721 - 3.070 | Christensen 1978
500 - 3,000 {638 - 6.75| 2-620 - 2:890 | Christensen 1982
Granite 10 - 10,000 | 380 - 6:5T{ 2:619 - 2-679 | Birch 1960, 1961
200 5:77 - 6.14| 2.609 - 2:636 | Hughes & Maurette 1956
Trondhjemite | 200 6.00 - 6-11]2:648 - 2-751 | Christensen 1978
1,300 606 2-570 Salisbury & Christensen 1978
Dolerite 1,500 610 - 6-90 | 2.800 - 3.000 | Feterson et al 1974
500 - 3,000 {6-10 - 696 | 2.760 ~ 2-930 | Christensen 1982
600 - 4,000 |6:43 - 6.79 | 2-840 - 2.960 | Salisoury & Christensen 1978
Basalt 600 - 4,000 {5.67 - 6.22 | 2:720 - 2-880 | 3alisbury & Christensen 1978
500 - 3,000 [ 95-28 - 5:74 | 2-960 - 2-850 | Christensen 1982
10 4:90 - 5-40 -—- Nichols et al 1980
Diabase . 200 5:95 2:857 Christensen 1978
10 - 10,000 | 6-14 - 6-93 | 2:964 - 3-012 | Bircn 1960,1961
Amphibolite | 10 - 10,600 | 689 - 735 | 3-120 Birch 1960,1961
60C - 4,000 | 7-06 - 7-38 | 2-960 - 3-010 | Salisbury & Christensen
10 - 10,000 | 5:50 - 7-22} 3-030 - 3.040 | Christensen 1965
500 - 3,000 |6-78 - 6-84 | 2:960 - 3.010 | Christensen 1982
Pyroxenite 200 773 - 7-74 | 3.209 - 3.267 | Christensen 1978
10 - 10,000 | 6-80 - 8-01} 3.247 Birch 1960,1961
2,400 74640 5230 Salisbury & Christensen 1978

Table 3.4 Summary of some laboratory velocity measurements

on different ophiolite samples.



enough to afrect the travel times. Velocities in
chert, granite and spilite are indistinguishable, and
velocities well over 6.0 km/sec in the field are expect-

ed to be due to gabbro, or a mixture of dolerite and
gabbro,

3.6.2 The Greywacke 3Samples

The P-wave velocity as a function of elevat-
ing pressure up to 200 bar, across 37 greywac«e samples
from the Northern Belt in tne Zouthern Uplanas, is
given in table 3.2 and appendix 3t. Density and porosity
were measured for all the available greywacke samgples
(67) listed in table 3.5,

Density values range from 2.68 to 288 Mg/ma.
Adesanya (1982), obtained a density of 2+69 + 0-04 ig/m”
for Lower Palaeozoic greywackes from the Girvan district
(more acidic tnan those of the Hortnern Belt). «cliean
(1961b), calculated a mean of 2.75 + 0G-05 for tue Lower
Palaeozoic greywacxes of Ayrsnire., 3Zott and Hasson-smith
(1960) measured the density of 63 3Zilurian greywacke
samples from tne Southern Uplands, and derived z mean of
2«71 + 0-06 Mg/mj. Tae autnor obtazinea z mezn density
of 2-73 + 0-04 Hg/m>.

The density effect on tue measured veloclties
is shown in fig 3.3%a, wnich sugsests taat atout 3Z% of
variation of velocity can be accounted Ior by correlation
with density, and it poes down to <€k wnen grain density

is considered instead of bulk density (fig 3.3u).

Fig 3.4 snows the correlation between toe
reciprocal of tne mezsured veiccity or transit time and
porosity. Tne correlation coefficient implies tual ©4%
of the velocity variation is due 1o ine porosit, effect,
and it can be postulated from the equation of the best

eV
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Sample Fo. Locality Formation Vel. xu/sec Density Porosity Grain

U0 var Denaity
N621 Cver Cairn, ifarcnburn 5:94 2.-812 G-181 2.815
New Cumnock
AXB62 Turkey }ilil, u 5.76 2.2 o 2.7,
lagsis Rock 121 0-340 2.726
AXB63 Turkey Hill " 62 7. . .
Coulter ' ° 2-131 0-358 2 746
DTIA290 Frigg Gas Pyroxeuous 5-.81 2:.753 0-491 2726
Trench Group
AX473 Raesnow " 5.74 2.758 0-388 2.764
Quarry
AX532 Hazelbank " 5.87 2-751 0257 2.755
Quarry .
AX659 Quarry, N Side " 5.36 2. 0.2 .
Rty 744 207 2:747
AXT781 Badlieu Quarry " 5.83 2+1790 0-317 2796
1526 Glenimshaw 5-55 2.708 0509 2:717
Burn, Mennock Scar
AX201 Grains Burn " 563 2710 0472 2-718
Camps
AX565 Eroadlaw Road " 5-79 2:7T3 0.224 2735
cutting ’
AX160 Culter wWater " 5.98 2:.772 0-325 2778
AX159 Culter Water, scar 5-87 2-.769 O.271 2174
roadside
AX8T1 i'fisbet Burn " 571 2:746 0302 2:.751
AX373 Histet lurn " 5:64 2+759 0.726 2-772
AX205 “ings Leck, " 5-85 2-791 0+ 345 <797
Coulter vnater
AX856 Fair Burn, " 567 2793 0-254 2.797
Cowgill .
AXT53 Dreva 4ill Shinrel 5-74 2-709 0.260 2.713
Drougnton 7 .
1553 Lime Clench Sninnel 5-40 2-715 0-828 2730
AX3 Eowbeat Rurn " 5-80 2-682 0-268 2687
AX270 Burnsands " 563 2-691 0.621 2:701
Eurn
AX534 Cramalt Road Intersed  5-78 2-708 v-397 2
Section
" . . « 322 272
AX644 iienzian >-18 ¢:720 0322 5
" . 2 0‘ 2' 17
AX664 “ewzian 5-48 2:708 497 ni

Table 3.5 Localities,P-wave velocities and other physical
properties of greywackes from the Northern Beilt

of the Southern Uplands. 107



Sample No. [Locality forwation  Vel. xm/sec UDensity Porosity Grzin i
200 oar Densit,
AX866 Wwool Gill, Gair  Harchourn ;
Gill, Coulter l 2124 0:616
AX657 yuarry ,' Fyrozer . J
Tweedsmuir yroxenous 2:708 0-166 :
AX973 Cross Water, Alton . . :
Barrhill 217 0-217
|
AX974 High Altercannoch " 2472 .
Quarry, barrnill ’ 725 v-233
AX975 Cross ‘iater, " 2.721 .
Barrhill 7 0-257
AX976 Pollpowan Eurn, " 2-'112 0-104
Barrnill
AX977 Loch Nanhinie n Z2-713 0-314
Quarry, Barrhill :
AX979 Cross Water, " 2.715 0-143
barruill
AX980 " " 2701 0361
AX981 " " 5-03 2:.310 0.541
AX982 Pollgowan Burn, " 2.707 0+109
Lagpish, Barrhill »
AX983 Forestry Quarry, 3 Alton 5+93 2860 0.267 2:865
km SW of Barrhill ‘
AX851 Powskein Burn, Intermed. 5.52 2685 0-480 2:693
Earlshaugh
AX847 Whitehope Burn, " 5-39 2-687 0.588 2-697
Earlsnaugh
AXB49 Aunanhead Hill, " 5-59 2-696 0257 2.708
Devil's Beei Tub
AX604 Talla Linn, " 5-79 2-697 0-149 2-698
Tweedsmuir
AX790 Fingland Burn, byroxenous 2:.747 0-199
Tweedsmwuir ?
AX835 Muckle Powskein " 2:-710 0.253
Burn, Badlieu
AX842 Priest Burn, Intermed. 2+690 0-474
Tweedhope Foot
AXB44 ¥irknope Burn, Px/Int. 2.720 0-178
Manor Water ?
AX857 Shank Houp, Al'ton 2-720 '0-224
Cowglll
\ " 2.7117 0-475
AX858 ! 7
AXB64 Snaip Hill, Marcnoburn e-T721 0712
Coulter ?
o as 2. O-
AX865 Cowgill, “*B,/;A-' ¢ >33
Coulter

Table 3.5 continued
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San:le ,o. Locatity rormation vel. xw/sec Deusity 1orosivvy srain
20uv var Density
AX984 Folliowas Xurn, Alton 2-156 0-311
Barrhill
AX985 1km NW Knockycoid " 2.73%4 0-145
larrnill
AX986 Polisowan Furn " 2.695 U413
Bridze, Barruill
AX987 n7027 Kirkcalla, n 2.721 0-493
Barrhill
AX988 100m SE or Eridge Scar 2.756 0-160
Knowe, Barrnill
AX989 Glassoch Bridge Scar 5:78 2.722 0040 2723
]
AX990 AT14, 0O-5km NW Alton 5.98 2876 0-241 2-580
of Barrnill
AX991 ‘Pollgowan Burn, " 2:717 0-248
Barrhill
AX993 Dochroyle, Afton 2130 0-213
Barrhill
AX998 1-7km SE of Knock- " 2+729 0-142
ycoid, Barrnill
AX1000 Blair :ill wood " 2.722 0-387
Quarry, Barrnill
AX1501 Laggan, Barrhill n 2:710 0-350
AXT55 A701 S3tanhope Sainnel 5-88 2.713 0-218 2:7117
AX1507 Alty Burn, Afton <710 0-277
Barrnill
AX192 " " 571 2731 0'458 2.139
AX297 " " 5.44 2.720 0754 2-7133
\ 1 S . 4.0 ¢+716 G788 2-129
AX309 ' | 5-40 e7

Table 3.5 continued
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fit line: Y= 0-167 + 0-021X, that the velocity expected for a
crack-free greywacke is 5:99 km/sec (1/0-167). This is

gimilar to the maximum velocity value proposed by Adesanya
(1982), where he concluded that velocities above 6 km/sec will
represent lithologies other than greywackes (crystalline rocks),
in the Southern Uplands.

As the velocity across some of the samples approaches
6-0 km/sec (see table 3.2) at the maximum applied pressure
(200 bar), the question arises: Is velocity through the Northern
Belt greywackes liable to exceed the 60 km/sec at higher
pressures?

The high pressure vessels of the Experimental Petrology
Unit of Edinburgh University were used to measure velocities
with increasing confining pressure up to 5 kbar. After deriving
new calibration values for the mercury delay line (fig 3.5),
only two samples (N621, AX201) were run successfully. Whilst
preparing the third sample, the vessel screw-lid failed and hence
further measuremehts could not be taken. More safety precautions
and improved sample-transducer design are needed for high
pressure measurement in Edinburgh. A full description of the
system is found in Adesanya (1982).

High pressure results are shown in fig 3.6. Sample AX201
reaches a maximum velocity of 6:01 km/sec at 5 kbar confining
pressure, while the second sample, N621 achieves a velocity as
high as 6.29 km/sec at the same pressure. The Edinburgh data
for N621 does not correlate satisfactorily with the Glasgow
measurements oi the same specimen, though the measurements of
AX201 do match. This suggests that either the Edinburgh data oxr
the Glasgow data are unreliable. Since the low pressure data
from Glasgow were repeatable with different transducers, it is
more likely that the Edinburgh data are unreliable, but this is
not yet confirmeds However, since some of the low pressure
measurements do approach 6 km/sec at only 200 bars, it is likely

that velocities over 6 km/sec will be achieved in some mafic
greywackes at shallow depth. |

warner (1982), from refraction measurements along the
Northern Belt (SUSP, see 1.%.2), interpreted a 6.0 km/sec vel-
ocity segment as arrivals from a crystalline basement underlying
the sediments there. His

13
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interpretation followed Adesanya's conclusions mentioned
before, Having the high pressure velocities above, it
seems possible to envisage that Warner's high velocity
might be through the Northern Felt greywackes.

Owing to data and instrumental limitations,
it cannot necessarily be assumed that measurements
made in the laboratory are directly applicable to the
interpretation of velocity data obtainea under field
conditions. Further high pressure velocity measurement
especially across those samples showing high velocities
at 200 bar, are essential for Iirm conclusions concern-
ing the Northern Belt velocities.

In addition to pressure, density and porosity
discussed above, another important factor affecting
elastic wave velocities in roc«s, is tne mineral compos-
ition. ©Point-counting of seven of the examined samples
was made available by Dr J Floyd (table 3.6), and corr-
elation of some of the dominanit minerals with the vel-
ocities measured, is shown in fig 3.7. It is possible
to postulate tnat the velocities measured, are almost
independent of the feldspars content, wnere, on the
other hand, quartz and basic minerals and rock Iragments

can reduce and increase the velocity respectively,

From the percentage proportion of each
mineral, an agsgregate velocity could be predicted for
the crack-free rock, using crack-free P-wave velocities

(of each mineral);
n . -
Vp = 1/ Z%' (Wj/V3)
J:

where Wj is the fractional volume of the rock occupied
by the jth mineral (of n), of which the 'effective’
velocity is Vj (Hall & Al Haddad 1979).

11¢
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With the indiscriminated broad terms of
table 3.6 (eg. matrix, feldspars, rock fragments...),
some averaging is expected before calculating the
aggregate velocity. According to Floyd (1975), the
feldspars are plagioclase (albite or andesine). Ferro-
magnesian minerals are pyroxene and amphibole with the
presence of biotite, muscovite and chlorite. He des-
cribed the basic igneous rock fragments in the Horthern
Belt greywackes as: gabbro, diorite, dolerite, kerato-
phyre, andesite, spilite, serpentinite and porphyrite.
The acidic rocks are granite, grano-diorite, quartz-
porphyry, ryodacite, rhyolite and quartz-keratophyre.
The metamorphic rock fragments are low-medium grade,
eg. phyllite, epidozite, quartzite, schists and thne
sedimentary fragments are, greywacke, siltstone, shale,
chert and limestone. From the available geophysical
literature (especially Christensen 1982), the velocities
assigned to each group are as follows: gquartz = 610
km/sec; feldspars = 6+44 km/sec; basic igneous rock
fragments and ferromagnesian minerals = 6+30 km/sec and
metamorphic, sedimentary and acidic igneous rock

fragments = 5.80 km/sec.

The selection of the proper matrix velocity
to be used in the aggregate velocity determination 1is
highly dependent en its composition. The matrix of the
Northern Belt greywackes is highly compacted shale or
slate (B J Bluck, personal communication). An estimated
density value for the matrix can add to the understanding
of the matrix composition. This was achieved by
assigning a density of 2+65 Mg/m3 for quartz, 3-00 :/Zg/m3
for basic minerals and rock fragments and 3+00 Mg/m3 for
the rest of the components in table 3.6:

}o=fh. A% + fB. B% + fmatrix. matrix% + ...etc.
Where‘fis tne measured density of each sample (table

3.5) and A% is the fractional proportion of mineral A
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which has a density of AA. A density of 2.818 +

0-164 Mg/m3 was derived from seven equations. Fowell
(1956) obtained 2.68 - 2+83 Mg/m’> with a mean of 2-77
+ 0.05 Mg/m3 for Ordovician shales, sandstones and
slates from Wales. Anderson & Lieberman (1968) quoted
densities as high as 3.07 Mg/m3 for shale and slate.
Considering the matrix as slate and shale, an averaging
velocity of 5.6 km/sec is taken from Christensen &
Salisbury 1972, Christensen 1965, Wyllie et al 1956 and
Birch 1960, The aggregate velocity for the seven
samples in table 3.6 is calculated (see table 3.7),
according to the avove estimations.

The predicted velocities correlate very well
with the measured grain density, if the feldspathic
greywacke sample (L526) is not taken into account (fig
3.8a). The predicted velocity for sample L526 reduces
the correlation coefficient considerably (fig 3.8b).

This supports the previous conclusion that the velocities
are almost independent of feldspars content. It is still
possible that this feldspathic sample contains feldspars
other than plagioclase (with lower velocities), therefore,
the predicted velocity could be considered as an over-
estimation,

The calculated velocities are expected to be
higher than those measured at 200 bar confining pressure,
because they represent crack-free greywackes, If this
is true, then a good correlation would be expected
between the velocity difference (O V= predicted-measured)
and the porosity values (fig 3.9a). Fig 3.9b shows how
the correlation is completely lost when sample L526 was

included.

Conclusions

1. In the Ballantrae ophiolite, serpentinite, spilitic
lava, chert and granite have a range of velocities
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from 4.0 to 5.7 km/sec. They are much lower than
those measured for dolerite and gabbro in the same
suite.  Accordingly, any velocity in the field
higher than 6.0 xm/sec is expected to be for
gabbroic rocks or a mixture of gabbro and dolerite.

Velocities across the Northern Belt greywackes are
higher than those of similar rocks in the Girvan
district. Some very mafic preywackes reach over
6.0 km/sec,

These velocities are highly
depéndent on the percentage of basic minerals and
quartz but are less dependent on the feldspar con-
tent, Average Northern Belt greywacke is likely to
have a velocity of 5.7 km/sec at 200 bars (equivalent
to a depth of about 1000 m).
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CHAPTER FOUR

Field-derived Velocities Associated with Geological
Formations and the Seismic Interpretation

4.1 Introduction

Refraction interpretatior is often based on
first arrivals, primarily because these provide the
most readily determined travel times. From a kKnowledge
of the velocities of geological formations in the area,
one attempts to reconstruct tne paths of the seismic
waves. This depends mainly on analysis of the T-X
graphs. Each interpretational metunod is in turn con-
strained by certain conditions.

There are three main seismic and geological
units in the study area (Carboniferous and Upper 01d
Red Sandstone, Lower 0ld Red Sandstone and Lower
Palaeozoic and Crystalline Basement)., The recorded
seismic profiles (presented in chapter 2) provide direct
and indirect measurements of each of these units. The
apparent velocities encompassed on each line may be

summarised as follows:

Profile Carboniferous Lower (ld red Crystalline

and Upper 01d Sandstone and Basement
Red Sandstone Lower FPalaeozoic 6:0-6+4 km/sec
3e6=4+2 km/sec 5-0-5-8 km/sec

Lendalfoot Continuous increase of velocity with range,

Array 5.0 - 6+1 km/sec

Galloway _ _
line - 5«77 km/sec -
Girvan line - - 6+44 km/sec,

6+55 Km/sec
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Profile Carboniferous Lower 01d Red Crystalline
and Upper 01d Sandstone and Basement
Red Sandstone Lower Palaeozoic ©6:0-0¢4 km/sec
3+6-4.2 km/sec 5+0-5.8 km/sec

Portobello- - 5«31 km/sec 6.0 km/sec,
Troon line 6+4 km/sec

Loch Doon 362 km/sec . 5+57 km/sec 6+39 km/sec,
line ©+55 km/sec
Colmonell 4.04 km/sec 5+06 km/sec 6+28 km/sec,
line 7+08 km/sec

A1l of the recorded profiles provided high
velocities (>6-C km/sec) wnich are likely to be from
crystalline basement, except the Galloway profile.
This chapter is devoted to the analysis of the T-X
graphs, velocities of geological formations as well as
the methods applied in interpreting the data sets.

4,2 Velocities of Geological Formations

Velocities of those rocks likely to be
present in the study area are discussed in detail in
this section to provide a tasis for better understanding

of the T-X graphs.

4.,2.1 Carboniferous

Direct measurements on Carboniferous rocks
are obtainable on the first parts of the Loch Doon and
Colmonell lines, where the energy sources are located
in a Carboniferous dolerite sill and Productive Coal
Measures respectively (fig 2.1). The velocity recorded
on the Loch Doon line is 3-62 + 004 km/sec. Results
from the WHB integral (fig 4.1) show a surTface velccity
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of 3.61 km/sec, increasing to 3.:88 km/sec at about 500m
depth. A tnickness of 780m is obtained for the
Carboniferous and Upper 0ld Red Sandstone by planar-
layer interpretation waich is similar to that estimated
by McLean (1966), where he fixed a thickness of 800m
for Carvoniferous and Upper 0ld Red Sandstone in his
gravity interpretation in the area.

On the Colmonell liie, the recorded velocity
is 4.04 km/sec, with the WHB integral results in a
velocity of 3.91 - 4.15 km/sec over = range of depth
O+«0 to 800m. By planar-layer interpretation, « thickness
of 900m is achieved.

Hall (1970 and 1978a), from refraction
measurements in the western riidland Valley and Firth
of Clyde quoted velocities of 3:61 + 0-10 km/sec and
¢80 + 0-05 km/sec for Carboniferous sediments respect-
ively. Allsop (1974) gives a velocity of 3:78 + 0+32
¥km/sec from borehole velocity-log in Carboniferous sed-
iments (in East Lotaian: Spilmersford No.17 borenole).
Sola (1985) derived a velocity of 363 + 0-08 km/sec at
a mean depth of 0¢5 km for the same sediments in the
central Midland Valley.

The Carboniferous velocity on tae Colmonell
line is higher than that expected for the Coal lMeasures,
where the NCB open-cast and the receivers are sited.

The measured velocity is even higher than that for
Lower Limestone Group (3.57 - 396 km/sec) quoted by
Hall (1970), furthermore, the geological section shows
that no Lower Limestone Group exist in the area (see
fig 1.1). The velocity value may match with those of
Carboniferous lava but again none of it exists in the
southern Midland Valley. A hidden sill is a possible

cause of such high velocity.
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4,2,2 Upper 01d Red Sandstone

. The recorded seismic profiles provide no
direct measurements on tnis geological unit. Hall
(1970) derived hammer-line velocities of 2:0 = 4.0
km/sec for the Upper 0ld Red Sandstone. Sola (1985),
from density, porosity and velocity relationships,
estimated a velocity of 3.70 - 410 km/sec for the
Upper 0ld Red Sandstone in the Midland Valley.

Seismically, the Upper 0ld Red Sandstone

has been considered here as part of the Carboniferous
velocity group with which it is conformable.

4.2,% TLower 0ld Red Sandstone

The apparent velocity of the second segment

is 557 + 0+07 km/sec on the Zoch Doon line and 5-06

+ 0+06 km/sec on the Colmonell line (fig 4.2). None

of the profiles distinguish Lower 0Old Ked Sandstone
from Lower Palaeozoic rocks in terms of velocity.
Davidson (1985) and Sola (1985) indicated thnat vel-
ocities in Lower 0l1d Red Sancdstone and Lower Falaeozoic
overlap at depths between 1 and 3 km, and thatl neither
of the two groups will exceed 575 km/sec at deptis

less than 5 km.

The uneven distribution of Carboniferous
rocks around the Benbain Open-Cast source precludes
valid WHB analysis of underlying Lower 0ld Red
Sandstone. Such analysis is more valid for the
northern end of the Loch Doon line wnere Carboniferous
of moderately uniform thickness extends 30 km south
of Hillhouse quarry. By applying the WHB integral
z (V) = 1/cOsh T (v ax  (where I = ( dt ) and
X=4, see Grant & wWest 1965), the derlvea velocity-
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depth structure is shown in fig 4.1. Carboniferous
velocities could be traced to a aepth of about 900m
(as mentioned in 4.2.1), then the velocity increases
to 4.6 km/éec at 1+1 km deptn, and steadily increases
to reach 5-75 km/sec at 3+4 km depth where the vel-
ocity markedly increases to above 6.0 km/sec.

Hall (1970) indicated a surface velocity
of 4.0 km/sec for Lower 0ld Red Sandstone. Davidson
(1985), from direct refraction measurements in the
Southern pMidland Valley obttained a velocity of 4.2 -
5.0 km/sec to 1 km depth, but he indicaties that these
values are nigher than those expected, due to a
number of sills in the area (X Davidson, personal

communication).

4,2.4 Silurian and Ordovician

New direct measurements on Lower Palaeozoic
outcrops have been made on the Galloway line and
Portobello-Troon line (fig 2.1). A velocity of 5:31 +
0«04 km/sec is recorded for the Lower ralaeozoic rocks
on the Portobello-Troon line (fig 4.2c), from the
Rhinns of Galloway to the Stinchar Fault. In the
Southern Uplands, close (10 kum range) shots into EKA
show an increase in velocity from 4.5 to 5-6 km/sec
wituin a ko from the surface (El-Isa 1977). This
extends back to the surface a velocity of 5.8 km/sec,
achieved by inversion of apparent velocities Irom more
distant shots in various azimuths (Jacob 1969), Travel
times across the Soutnern Uplands on LISPB (shot E and
2 into segment Beta) are the basis for tne 58 = 60
km/sec Lower Palaeozoic layer to over 10 xm depth on
that model (Bamford 1977, 1978). Higher along strike
velocities on SUSP and into EKA suggest that the previous
deep velocity projections are averages across unresolved

structure (Hall et al 1983). The Lower Palaeozoic
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interpretation of the same layer, 5.8 - 6.0 km/sec,
under the ¥idland Valley in the LISPB model was
questioned.by Sola (1985) and Davidson (1985) on the
same basis. Davidson (1985) did not question the
geometrical interpretation of the LISPB refractor,

but he disproved its geological interpretation as being
due to Lower Palaeozoic sediments. He concluded that
this refractor must be due to a quartz-feldspar rich
crystalline rock (either igneous, metamorphic or a
mixture of both).

The Lower ralaeozoic velocity on the
Galloway line is not different from that of LISFB (5-76
+ 0-04), at ranges of 40-67 km. In order to invest-
igate the shallow velocity structure along this line,
time and location of one of tne nearest air-gun shots
to the recording sites (fig 2.1b) were acquired Irom
Durham University. This particular snol was recoraed
on most of the rebording stations (appendix 1 table 10)
and gives a velocity of 5.77 + 0-03 km/sec, over a
range of 13-37 km across tne Southern Uplands. This
means that there is no change in tne 5-77 km/sec vel-
ocity along the Galloway line (13 - 67 km), and it
suggests a great thickness of Lower rzlaeozoic sediments
in this area.

4.2.5 Crystalline Rocks

There is very little exposure of 'basement'
in the Midland Valley, though numerous Carboniferous
vents include xenoliths of basement rocks (eg, magnesian
peridotites, Fe-rich ultramafics, basic pyroxene
granulites, gquartzofeldspathic granulites and gneisses,
miscellaneous rocks of presumed igneous origin, see
Upton et al 1984). Thus the only field seismological
data on basement velocities is derived from measurements
across the Ballantrae Complex, discussed overleaf. In
a wider regional context the following points are

relevant.
134



The travel-times on LISPB across the
Dalradian outcrop have been modelled by a layer with
velocities:rising very slowly with depth to about
6:05 km/sec at approximately 10 km. Another potential
crystalline outcrop, the Lewisian basement complex in
NW Scotland, was studied by Hall 1978. He raytraced
a velocity of 6.0 km/sec at 1 km depth for the northern
belt amphibolite-facies quartzo-feldspathic gneisses,
and 6+5 km/sec for the granulite facies at the same
depth. Similar velocities were achieved Ifrom laboratory
measurements on the same rocks by Hall and Simmons,
1979. Adesanya (1982), derived laboratory measured
velocity values under different confining pressures for
a granodiorite sample from the Southern Uplands. His
values are about 6.0 km/sec at 3 km depth.

4,3 Velocity Structure at the Lendalfoot Array

First arrivals of snots at comparable ranges
(land shots, air-guns and WISE explosive shot No. 1,
fig 2.2) have been subjected to time-term analysis
(Willmore & Bancroft 1960). Thnis method assumes that
the travel-time data between a system of shots and
stations for a single refractor of velocity V, but
varying depth can be fitted by a series of equations
of the type;

tij = A4ij/V + ai + bj

where Aij is the shot-station distance and the time-
terms ai and bj are the delays introduced by the over-
lying layers at shot and station respectively. The
observational equations can be solved by least-squares
for the unknown velocity and time-terms provided that
1, there are more equations tnan unknowns, and 2, at
least one shot point and station nave a comumon position

(otherwise the equations are singular).

To carry out tne analysis, the author used
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a computer program written by Mechie (1980). Con-
dition 2, was satisfied since 3 of the land shots

were fired at seismometer positions (see fig 2.2).

The total number of equations is 113 for 29 sites:

9 seismometers, 6 land shots, 13 air-gun shots and

the first marine explosive shot (fig 2.1). The ranges
involved are<15 km. The average time-term for the

15 land sites is 0+11 sec, and for the 14 marine sites
is 0+%5 sec, with a refractor velocity of 5+19 km/sec.
The standard error of the solution is 0-04 sec.

A WHE analysis of variable velocity under
the array is obtained by inversion of & mean T-X curve
drawn tﬁrough a series of airgun shot-recorder T-X
curves (fig 4.3%), shifted in time to allow for variable
delay under the shots (see fig 3 appendix 2). The
result shows a continuous increase of velocity with
depth (fig 4.1), reaching 6 km/sec at a depth of 1-75
km and increases to 621 km/sec at 2-10 km depth.

Attempts to incorporate more distant WISE
shots (eg, shots 2.3.4 running NW across the Firth of
Clyde) are unhelpful since there is insufficient data
to resolve the shot location delay from the refractor
velocity.

The land shots (fig 4.4) make a range of
azimuths into the Lendalfoot array, crossing different
lithological units. The average velocity in general
increases with range, but there are noticeable except-
ions. The Millenderdale shot has an average velocity
of 5-93 km/sec to the Knockbain seismometer, across the
lava outcrop, and 4.82 km/sec at a similar range along
the southern serpentinite belt to the Breaker Hill
seismometer (fig 4.4). The Dinvin shot has its lowest
average velocity at the furthest seismometer (Lendalfoot)
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FIRTH OF CLYDE

SERPENTINE

LAVA

SEDEMENTARY ROCKS

Craigconnachie Shot

Station Average Vel.km/sec
LF .
L 5.42
C 527
K 544
8 522
8r 5.60
P .

Cundry Mains Shot Millenderdale Shot

Station Averdge Vel.km/sec

Station Average Vel.km/sec

LF 3.48 ‘L'F 438

L 448 ¢ 4.62

c 3.81 K 593

K 332 8 521 .
4, -

8 63 Br 482

Br 4.33 p e

P 4.01 M

M 3.84

Knockormal Shot

Station Average Vel.km/sec

i hot - -

Pinmore Sho LF 433 Dinvin Shot
Station Average Vel. km/sec L -
Tr C 4.6
L K 4.27 Station Average Vel.km/sesc
c 5.2 8 47 LF 4.62
K 504 8 5.28 é 4.09
8 4.80 P w ‘

M

S’ 491 B 512
M 510 8r 5.02

Fig4.4 WISE land shots-average velocities In relation to

the Lendalfoot array. For abbreviated selsm‘ometerv‘

sites see table 2.1, 138



along the southern serpentinite belt. These could be
explained on the basis that there are slow and fast
Paths across the ophiolite (as was concluded in chapter
3); the slowest is the longest for the wave to travel
along the serpentinised rocks. Serpentine is not the
only reason for low velocities, as Iracturing (open
near the surface) is a strong reature of the Ballantrae
Ophiolite and is expected to lower the velocities.
Evidence supporting tnis, is that the scatter in fig

1 appendix 2 affects points mostly at<€4 km range.
Furthermore, LISPB considered the fracture effect by
having a top layer of - 5.0 km/sec in the Southern
Uplands, where Lower Palaeozoic rocks are outcroping.
El-Isa (1977), from shots of 10 km ranges into EKA
showed an increase of velocity from 4.5 to 5.6 km/sec,
for the same reason,

For all the land shots recorded on the
Lendalfoot array,'interval velocities (pairs of seismo-
meters or shot-seismometer) were plotted against range.
Velocities between tne Breaker Hill ana Bargain Hill
seismometers are mucia higher than those between other
pairs of seismometers. By taking the log oI the station
distances, linear regression is possible and the data

could be represented as
V = Vo + a logX

Fig 4.5 shows that the surface velocity (Vo) is 4-21
km/sec and the constant (a) is equal to 1+3. The vel-
ocities between Breaker Hill and Bargain dill stations
are well above the standard deviation of the points Irom
the best fit line. These two seismometers are situated
on the gravity culmination in the area (fig 4.6a) and
the high velocities confirm Powell's conclusion (1978)
of the existence of a shallow ultrabasic body (velocity
>6.0 km/sec) under the southern serpentinite belt of

the Ballantrae ophiolite (fig 4.6b).
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(after Powell 1978)

Figd 6a Map of residual Bouguer gravity and vertical component magnetic anomalies of the Ballantrae region; lines of scction refer to figure b

Br: Breaker hill
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4.4 The Delay Modelling

. A delay of 0-20 - 0.27 sec has affected the
central parts of the Girvan line, Loch Doon line and
the Colmonell line (see chapter 2 and fig 4.2). The
seismic and geological possibilities that can cause
such a feature are discussed in this section. Three
models were envisaged to cause the delay. The reversal
of the Girvan line (Portobello-Troon line) will be
discussed later in this chapter, after elaborating on
the dimensional possibilities of each model.

4.4.,1 Basement Step

Occurence of the delay at Kerse Loch Fault
(Girvan line, fig 4.2c) and the Southern Uplands Fault
(Loch Doon line, fig 4.2a) produces the possibility
that these faults may cause a step in the basement,
down-throwing lower velocity rocks to the south (fig
4,7a). Taking the upper layer velocity (Vo) as 5+3 km/
sec and the basement velocity (V1) as 6+4 km/sec, the
throw ZT
tne intercept times of the two linear segments

can be determined from the difference between

= (ri2 - 7i1) LYo (see Dobrin 1976)

Z PR
T -
JV12 Vo2

The throw is calculated to be 0:8 - 1.0 km, The facts
which may argue against this model are: (1) the down-
throw of lower velocity rocks to the south is against
the geological outcrop likelihood, where older rocks
crop out southwards (see fig 1.1, though inversion is
common across these faults to the NE of this area).
(2) The shallowness of the basement on the Colmonell
line (fig 4.2b), whicin is situated at the south of the
Midland Valley, provides further evidence against this

model.
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4.4,2 Fractured Rocks in a Fault Zone

~This model involves lateral changes in the
velocity structure where sheared or fractured rocks
in a fault zone can cause the delay by having rocks of
higher velocity on either side (fig 4.7b). The app-
arent velocity (VA) is approximately equal to the
true velocity of the slow zone, but must be greater
than the velocity of overlying formations. Tnis app-
arent velocity is a value which might be reduced by
closer spacing of recording stations, corresponding in
position to a narrower lower velocity zone wnich would
produce tne same nett delay as that modelled with actual
spacing (see arrows on fig 4.7b).

Rays passing underneath the low velocity
zone will be delay-free, and will continue the trend
of the T-X graph for those rays arriving at the surface
before the low velocity zone.

4.,4,3 Velocity Inversion with Lepth

The occurence of a low velocity zone at
depth (fig 4.7c) can also cause the delay effect (see

Goguel 1951). The apparent velocity of the low vel-

o Wid T 1
ocity layer (VA) could be derived by VA= Width of Delay ’

Time of Delay

and then the true velocity of the layer (VL)=\VH.VA
where VH is the velocity surrounding the low velocity
layer (ie, nigh velocity). Furthermore, the tnickness

of the layer (L) could be calculated from the formula
2L. VH

VL \[(VH)2 - (VL),

Delay (sec)=

After calculating the true velocity and the
thickness of the low velocity layer, program LAUFZEIT
was used to matcn a depth-velocity structure for the
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Girvan, Loch Doon and Colmonell line (fig 4.8a,b,c).
The input to the program is estimated depth-velocity
values andrthe output is time-distance values. The
program is simply a ray-tracing technique with horizon-
tal layering (ie, no lateral velocity changes are
accommodated). The same velocity structure could be
fitted for both the Girvan and Locn Doon lines, with
the low velocity zone narrower on the latter. Although
the results match reasonably well with tne T-X% graphs,
certain limitations are to be considered. Firstly,
lateral variation in the velocity structure is well
expected in tne study area (see fig 4.2), secondly,
according to this model, no arrivals are expected in
the shadow zone produced by the low velocity layer (see
fig 4.7c); whereas, on the Girvan and Colmonell lines
many recordings were ootained along the slope of the
low velocity segment., Kormal field procedures provide
only a limited number of points on the time-distance
curve; consequently a small snadow zone could very
easily be missed. However, sites situated in the
shadow-zone field witn the minimum spacing that could
be achieved in the field, nave proved theat Iirst arriv-
als could be recorded aiong tuls area and subsequently

this model coula be questioned on tais Dasis.

Nevertheless, two r-wave arrivals on some
delayed seismograms could be explained on the basis of
fig 4.7c, where undelayed arrivals could overtaxke the
delayed ones. These seismograms are at 37 Kkm range on
the Loch Doon line (fig 11 appendix 2) and 40 km and
4% km on the Girvan line (fig 10 appendix 2).

The depth of the low velocity zone controils
the range at which it affects the measurements at the
surface. The occurence of the delay at 35 km on botn
the Cirvan and Loch Doon lines supports this model,
but having it at shorter range (22 «m) on the Colmonell
line may be explained by the low velocity zone shallow-
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ing eastwards.

4.5 The Reversal of the Girvan line (Portobello-
Troon Line)

The unavailability of productive quarries
in the south of the study area obstructed the reversal
of any of the recorded seismic profiles. At a late
stage in this study, use was made of an offshore shot
fired by the Royal Navy (see chapter 2) to reverse
the Girvan line. The reversal was important to sort
out the following:

1. The nature of the delay that took place on the
Girvan line., Three possibilities were anticipated
before the reversal, in relation to the delay
models in section 4.4.

A. If model 4.4.1 is the case, then an acceleration
is expected after passing the Craighead station,
crossing from the hanging wall to tne footwall
of the fault.,

Craighead
N f S

//Foof Wall W%\
‘ ////Hanging Wall v

B. A delay in either direction across a fractured
zone is expected, if model 4.4.2 is true.
Therefore, the area between Fauldribon and
Byne Hill stations will be delayed if this
line is reversed.

C. A delay at about 35 km should occur according
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to model 4.4.3, since this is tne range for
the delay when recording from Hillhouse quarry.

To idehtify the nature of the high apparent vel-
ocity (about 6+4 km/sec) which has been recorded

at short ranges (13-20 km). A velocity of 6.0 km/
sec has been recognised by Sola (1985) and

Davidson (1985) at comparable ranges in the central
and southern Midland Valley. Therefore, the 6.4
km/sec might be an updip on 6.0 km/sec, especially
since LISPB suggested a rise in the basement south-

wards.

The T-X graph of the reversal line (fig
4.2c) shows an apparent velocity of 6:0 km/sec across
the Ballantrae ophiolite, witn its points sufrfering
delays and accelerations due to the rays travelling
along low velocity (serpentinite) and high velocity
(gabbroic) rocks. This fluctuation in the T-X points
is not seen when recording across the opuniolite from
Hillhouse quarry. It seems possible to explain this
phenomena on the basis of the geological structure in
the area, where the general picture of tane formations
is dipping southwards. Therefore, rays travelling
northwards along the structure (fig 4.9) would be
expected to spend more time in eitner low or high
velocity formations, whereas tnose travelling south-
wards (from Hillhouse quarry ) would have compensation
in their travel times by crossing low and high vel-

ocities successively.

The distributed 6.0 km/sec segment suffers
a big delay of 0.16 sec at the Fauldribon station and
then an acceleration takes place, making a slope on
the T-X graph quite parallel to the aeceleration
segment on the Girvan line (fig 4.2c). A conclusion
can be drawn that tne Fauldribon station is situated
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on a low velocity zone, justifying hnaving the peak
delay value from both directions in the same place,
Further confirmation of this conclusion comes from the
fan-shooting (fig 9 appendix 2) where the same station
suffers a delay of 0+4 sec in reference to others.

Model 4.4.2 is therefore ravoured for tne
delay and models 4.4.1 and 4.4.3 are disregarded. The
delay on the Loch Doon line and Colmonell liines could
be explained on the same basis, although reversing
them is essential for final confirmation.

The parallel acceleration and deceleration
mentioned above could be explained as updip (reversal
line) and downdip (Girvan line) on the refractor, and
the Craighead station is located on an anticlinal
structure since it maintains tne earliest reduced time
from both directions. At 50 «m range on the reversal
line (Portobello-Troon), after passing the Craighead
station, the 6.0 km/sec apgears again to confirm that
the 64 km/sec recorded at 20-50 km Irom nillhouse
quarry, is an updip velocity on a refractor whicn has
a velocity between 6.0 and 6+4 km/sec. The 6+4 km/sec
velocity takes over at 55 km from tne Royal Navy shot,
as that of LISPB (Bamford 1977) and parts of recent
seismic profiles across the Midland Valiey (Dr J Hall,

personal communication).

4.6 Modelling by Ray Tracing

The velocity structure underneath the
reversed Girvan line, Loch Doon line and Colmonell
line is derived by applying the ray-tracing technique,
using a computer program written by Cerveny and
Psenick (1981). As different input of velocity-mesh
along each line can produce similar travel times 1o
the observed ones, tight geological and geophysical



controls are needed when applying the ray-tracing
method,

Ray-tracing on the reversed Girvan line
(fig 4.10) was controlled as follows:

1. Velocities of 3.7-3%+8 km/sec for Carboniferous
and Upper 01d Red Sandstone were taken from the
direct measurements of tae Loch Doon line (see
section 4.2.1). The thickness of this layer is
estimated from published geological literature
(see cnapter 1).

2. Velocities of 5+0-5+5 km/sec for Lower (Cld Red
Sandstone and Lower Palaeozoic sediments were
mainly Ifrom direct measurements from the Royal
Navy shot in the south (see section 4.2.4),
laboratory measureme:ils (see cnapter 3), Sola
(1985) and Davidson (1355). Tne tnicsness of
this layer was adjusted to matca with tne second
segments on the T-X graph of tne Loch Doon and
Colmonell lines, walcn snare parts oI the vel-

ocity-structure oi tais line.

3. Velocities for tne Ballantrae ophiolite rocxks are
those derived in section 4.3 under tne Lendalrfoot
array. A similar velocity gradient was applied

to the basement along tnhe line.

On the Loch Doon liine (fig 4.11), the

basement nas tne same velocity gradient as taat of tae

previous line, and velocities for the Loch Doon granite

are mainly from Caristensen (1982).

The Colmonell line (fig 4.12) comes as a

very important means to checx on the velocity structure

of the previous two lines, witn its E-W azimuth
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crossing both of them,

:The low velocity zones that produce the
delay on the three lines were introduced after ray-
tracing for delay-free structure, and good metcning
with the undelayed observed travel times is acnieved,
The depth and width of the low velocity zones are
then decided from the delay-free output. Thne taree

models are very similar and incorporated tnree layers:

Layer 1 Carboniferous sediments/ of velocity 3.7-4.0
Upper 01ld Red Sandstone km/sec

Layer 2 Lower 0ld Red Sandstone/ of velocity 5+0~5.5

Lower Palaeozoic km/sec
Layer 3 Crystalline Basement of velocity 6+0-6+4
. km/sec

The Reversed Line

The basement on tnils line is aeepest under
Hillhouse quarry; 3.5 xm. Davidson (1985} estimated
a similar depth in the same arez. Thne baseuxent
shallows southwards to have iis shzllowest point under
the Craighead inlier, where it deepens again rapidly
to outcrop as tne Ballantrae opniolite., Tae boundary
at 1-75 km under the opniolite outcrop (fig 4.10a) is
taken to celimit the start of a ©6-0 km/sec velocity.
This boundary extends at the szme ceptn soutn of tae
Stinchar Fault, tnen dips sieepl; soutawzras alter
crossing tune Soutnerr Uplands Fault. Tae control on
the angle of the dip is poor, ocutl taoe sicpe 1is needed
to match the travel times on the Iirst segment Irom
the Royal Havy sunot ana to Te in agreement witla tae
thickening of tne Lower FPalaeozolc sediments suggested

O

O



by the Galloway line, which ends 30 km NE of this
shot, 5 km short of the Southern Uplands Fault. A
similar grqdient could be achieved for the basement
along the line and the observed and calculated travel
times are shown in fig 4.13.

Loch Doon Line

The basement under Hillhouse quarry is at
3¢5 km as in the previous line, and it starts to shallow
near Patna reacning a depth of 2.2 km at the Southern
Uplands Fault., Tne same depth and velocity gradient
of the basement extend underneath the Northern Belt
till the ooundary of the Loch Doon granite, where
lower velocities take over. The low velocity zone
affects the Lower Palaeozoic rocks of the Northern
Belt as well as the northern limit orf the Loch Doon
granite. Figure 4,14 shows the calculated and observed
travel times on tanis line, |

Colmonell Line

The basement on this line is at 2-2 km
depth under the Benbain NCB open-cast, NE of
Dalmellington. This depth continues westwards, cross-
ing the Ioch Doon line, and then it shallows to outcrop
as the Ballantrae opniolite. The low velocity zone is
wider on this line and it is within the boundary of
Lower Palaeozoic rocks as well as the basement. Figure
4,15 shows the ray-tracing results on this line.

4.7 Conclusions

1. A velocity of 577 km/sec is obtained for Lower
Palaeozoic rocks of the Southern Uplands from a
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5.

seismic refraction line which runs across the
strike from Burrowhead to 5 km short of the
Southern Uplands Fault.

An average surface velocity of 4.21 km/sec could

be assigned to the Ballantrae ophiolite, increasing
continiously with depth, reaching 6.0 km/sec at
1+75 km depth and 6+21 km/sec at about 25 kn
depth.

The high recorded apparent velocities presented

in chapter 2 are a structure on a basement with
velocity gradient similar to that of the Ballantrae
ophiolite, It is shallowest under the Craighead
inlier in the Xidland Valley and dips steeply
southwards in the rhinns of Galloway in the
Southern Uplands, wnereas it crosses tne Southern
Uplands Fault with the same depth (2.2 km) near

Dalmellington.

Rocks with a velocity of about 4.0 km/sec occur
at the fault zones of Kerse Loch rault, the
Stinchar Fault and the Soutnern Uplands rfault.
Any rays passing through these low velocity rocks
will be delayed in reference to other rays.



CHAXTER FIVE

Geological Constraints and Conclusions

5.1 1Introduction

Tne interpretation of seiswic aata in
&eological terms is tne oojective ana ena groauct
of seismic work. Tne analysis of velocity data
constitutes and ilmportant interpretation problem.
As with other interpretation problems, soume inter-
pretations can ve rulea out because tney imply

impossible or highly improvable situations.

Tnere 1s 1ittle aoupt that crystalline
continental pasement unaerlies the weakly aeformed
Falaeozoic rocks of the kidiand Valley. II the
southern Uplands is a Lower Palaeozolc accretionary
prism, then it would nave been underlain by oceanic
crust at thne time of its Ioruwation. Tne nature of
the present basement to tane Soutnern Uplands nas
been questioned ever since rowell (1970, 1971)
suggested that it is underlain vy rocks wita the
magnetic properties of continental crust (see
chapter 1). This opinion was consiaeraciy
strengtnened by the discovery of xenolitas of
gneissose rocks in Carboniferous vents sited on the
Irish equivalent of the accretionar, prism (Strogen
1974 ), and by tne discovery of xenoliths in vents
of the same age in tne Soutnern Uplands (Upton et
al 1983, 1984). Hall et al (1983, 1984) round
evidence from seismic experiments for crust of con-
tinental aifinity at 1-5 Km_Oelow tne present
surface in tne Southera Uplaunds (see cnapter 1).
This basement is indistinguishable seismologically
from the crust of the iialand Valley, ana Daviason
et al (1984) interpreted it as quartzo-feldspatnic

gneiss.,
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He traced its continuity from the iMidland Valley
across the Soutnern Uplands fault to z short
distance into tae nortnern margin of tue Soutnern
Uplands.

Tne basement uncerneath the wmidland
Valley 1is not necessarily nomogeneous (Aftalion et
al 1984) and the same could be said acout tne
Southern Uplands. The Ballantrae ophiolite on the
toundary tvetween tae midland Valliey anu the
soutnern Uplands constitutes tune vasement Ior the
Lower Falaeozoic succession in tae Girvan Uistrict.
fig 5.1 represents tae derived geologlical and geo-
Pnysicalr interpretations b, tne ray-trzcing tecunnique.
Unfortunately, the aata sets aveilable in tails tiesis
proviade no conclusive results about the taicxkness
of the r-aliantrae ophiolite ana tne basement below

it is still questionable.

Assimilation of the mass of data to
arrive at tne most plausible geological picture in
the south-western part of tne sidland Valley, is

the prime target of this chapter.

5.2 Low Velocit, Rocxks

Rocks in tne area of investigation that
are likely to have a velocity of about 4-:20 km/sec
at 2 km depth, producing the delay discussed in

section 4.4 can be:-

1. Carboniferous sediments (see 4.2.1).
2. 3Serpentinite (see chapter 3).
3, Fractured or sneared rocks.

The absence of Carboniferous strata from

the delay zones of the Loci Doon line (southern
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Uplands Fault), Colmonell line (Stinchar rault)

and the Girvan line (Kerse Loch Fault), rules out
the first possibility. Serpentinite and the wide
range of its velocities (see table 3.4) might
produce such seismic delay. It is abundant in the
study area and constitutes the commonest detrital
mineral in the Lower Palaeozoic components

(Williams 1962). 4is a result of the subduction of
oceanic crust, both tne continent or island arc

and the ophiolites attacned to 1t are underlain by

a subduction zone. Tne suvducting plate will taxe
water down into tne mantle in water-bearing metaior-
phic minerals such as zeolites ana ampniboles. On
being subductea, tnese minerais will ve neatea and
will release water, which will convert some oI the
peridotite in tae overlying wmantle into serpentinite.
The serpentinisstion of peridotite increases tne
volume and iakes it lignter, so tuat it tends 1o
rise. This process contributes to the uplift of the
overlying crust and mantle (Gass 19c2). According
to this, the delay localities aelimited in chapter 4
are expectea to nave serpentinite cumulates near the
surface. Thne magnetic anomalies assoclated with the
Southern Uplands Fault, Kerse Loch Fault and tae
Stinchar Fault (fig 5.2} support tnis possibility.

Another explanation for low velocity rocks
might be fault zones. Tnese are zones of numerous
discrete displacement planes on all scales. The
dislocation does not occur simply along a single

plane, it is a response t10:-

1. Many separate stress/strain fields along irregular

primary fault plane surfaces, producing nigh and
low stress fields (fig 5.3%a).

2. Dislocation propagation along any single plane.
As the dislocation propagates, 1t can meet
positions where it is easier (less resistaace/
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Fig 5.3 lllustration of fault plane development.

a)irregular fault planes meeting at high stress areas.

b)Migration of dislocation along less sesistant areas.
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less lowest energy required) to continue by

migrating to another norizon (fig 5.3b).

Such slicing and dislocation is expected
to reduce the velocity; of propagation of seismic
waves and to absorb most of its energy; therefore,
it may sometimes be located by amplitude effects
(note low amplitude first arrivals on fig 12 appendix
2).

Davidson (1985) indicatea that there is
good evidence that in some areas (in tae Lesmahagow
Inlier and the Southern Uplands rault near Biggar),
there has been no significant vertical movement of
the basement in response to large vertical movements
in overlying active faults. As tne delay afrects the
basement and extends beyond the boundaries of the
sedimentary cover, serpentinite is a favoured poss~-
ibility. ‘

5.3 The Basement

Geological eviaence concerning the nature
of the crystalline rocks below tne iidland Valley
has come Ifrom the study of inclusions in volcanic
rocks (Upton et al 1976). Upton et al 1984, have
indicated tnat foliated pyroxene granulite Iorms a
significant component of the lower crust togetner
with stratiform bodies of metacumulates which vary
from gabbroic to anorthositic in composition. Thney
interpreted the upper crust as being mainly foliated
quartzo-feldspathic rocks with some unfoliated plu-
tonic rocks; granites, tron@njemites, tonalites and
kinzigites. It is unlikely, nowever, tnat the xen-
0lith material would be representative oI a wide
range region, particularly since closely-spaced vents
may yield very difrferent rock types. The LISPB
experiment shows a Lewisian-like basement extending
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from northern Scotland and tne central Highlands at
a depth of 6-15 «m, and it rises to a depth of 6 km
beneath the Midland Valley. This basement was
interpreted by Smitn & Bott (1975) as being composed
of granulite facies.

On geophysical evidence, Powell (1971)
interpreted the Southern Uplands to be underlain by
granulites. QOliver and ricKkerrow (1984) accepted the
conclusion of Hall et al (1983) tnat there are cryst-
alline rocks at shallow depth in the sSouthern Uplands,
but they argued against its continental affinity.

Tney suggested tnat the rocks are greenschist facies
metagreywackes, part of an accretionary wedge occupying
nearly all the present crustal pile. The similarity

in the velocity structure (fig 5.4) between the
Colmonell line (SW of the midlana Valley) and SUSP
(along the Northern EBelt of the Southern Uplands),
suggest a unique basement across ithe Southern Uplands
Fault. The continuity of the basement across the
Southern Uplands Fault on the Loch Doon line, comes

as further support for the conclusions of Hall et al

(1983, 1984a).

It is impossible to differentiate the
rock type from P-wave velocity (Vp) only. Since
S-wave velocities (Vs) do not depend solely on Vp,
and tnere is quite a marxed variation in Vp/Vs ratios
among the mineral groups, a «nowleage of Vs can be a
useful indicator of rock type (Hall 1978b). Poisson's
Ratio (&) is directly calculable from Vp/Vs and is
unusually low in quartz and exceptionally nigh in
some of the hydrous minerals, particularly serpentine.
No S-waves could be clearly picked on all the recorded
profiles except the Colmonell line, wnere clear
arrivals of S-waves on six seismograms give a velocity
of 3. + 0+ km/sec, from a refractor equivalent to
that having a P-wave velocity of ©-28 + 0-03 km/sec.
A brief analysis oi this shear wave veliocity function

is given in appendix 4.
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The Poisson's Ratio is then calculated to ue O-31%0.03.

& = 1 (1- 1
2 (T9/Vs),

This is significantly higher than tnat of LISPB

(0+25) and might indicate inhomogenity in the base-
ment from E to W across the idland Valley. Such

high values of (&’) are expected for rocks bearing
basic minerals, such as gaboro, serpentinite,

dolerite, etc (see Chnristensen 1972 and dall 1978b)

A region in wnich tne crust is gravitationally dom-
inated by basic igneous intrusions runs Irom Arran
southwards, suggestec by nipxin and Hussain (1983).
They emphasised tnat these zre not localised to

obvious Tertiary centres, but occupgy a north-south
tract of land about 50 km wide. Tne eastern voundary
reachnes as Tar inland as tce Loch Doon ana Cailrnsmore
of Fleet granites. Two-dimensional gravity modelling
along tne Colmonell line, wcica runs almost vertical

to the high gravity structure, is snown in fig 5.5.

A basement thnat outcrops as tne Ballantrae ophiolite,
with a density of 285 could cve fitted unader tae sed-
imentary cover (Carboniferous, Lower (Cld ned Sandstone
and Lower FPalaeozoic) winicn rave tnicsnesses coumparable
to those of the seismic model (see fig 4.1ca). This
density is appropriate for tne gaboroic components of
the Ballantrae ophiolite. Tne gravity-modelling is

in agreement with tne seismic interpretation or a
basement that has a velocity gradient indistinguishable
from that of the ophiolite. Tune presence of ophiolitic
debris in tne Heads of Aiyr vent (whyte 19¢1) and
suspected by Mclean (1900) on gravity basis, as forming
the basement there, may come-as further support.

A conclusion could be drawn that either

the upper crust is thin, giving greater tuickness of
a basic lower crust of thne Midland Valley (Upton 1984),
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or the gabbroic components oif the EBallantrae

ophiolite extend underneath thne surrounding sed-

iments.

5.4 Suggestions for Future Work

1.

Laboratory-velocity measurements at higher
pressures on the greywacke samples (discussed
in chapter 3), to better define velocities at
depth.

Davidson's (1985) seismic refraction line
(Troon-Biggar, across thne Lesmahagow Inlier)
shows a thicker basement of quartzo-feldspathic
gneiss, therefore, a line tnat runs from Troon,
across tne lauchline basin to the Soutnkern
Uplands (i.e. incetween the Loch Doon iine and
Davidson's line), might impose more constraints
on the inhomogenity in tne basement.
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APPENDIX 1

List of P-wave travel times.

Shot-points and site co-ordinates. Distances are
in kilometres, and travel times zre given in total
and reduced (in seconds) with a reauction velocity

of 6.0 km/sec.
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APLENDIX 1. TAELE 1.
LAND ©SuCTS - LENDALFOOT ARmAY 1979

[Millenderdale Sunot Gria Reference:= 217.850/590-600

Station Grid Reference Distance Tine T-X/6
(km) (sec) (sec)
Lendalfoot 213.-600 590-760 4.253 C-970 0.261
Cundry Mains 215+220 590-920 2:.64G - -
Knockbain 216080 589.870 2432 0+410 0-005
Breaker iiill 217+750 589-050 1.553 0-322 0-063
Bargain Hill 219-000 528:410 24774 0475 0.063
Millenderdale <17.-830 590-850 Gg-112 0-035 0-016
Currarie 216.590 591-210 1400 0303 0-070
Letterpin 219+350 592-110 24128 - -
Knockourmal Shot Grid Refererice:- 214.500/588-530
Station Grid Reference Diiiggce ’%222) %;gé?
Lendalfoot As Above 2405 0+555 0-154
Cundry Mains " 2-496 - -
Knockbain " 2.072 0.485 0-14
Breaker Hill " - 3-291 0-626 0.078

Bargain Hill " 4-502 0-950 0.200




Station Grid Reference Distance Time T-X/6

(ki) (sec) (sec)
Millenderdale As Before 7.856 - -
Currarie n 3.3G99 0318 0252
Letterpin n 6028 - -
Pinbraid Bridge 214.500 5884530 0-244 0120 0079
Dinvin Shot Grid Refere.ce:- 220.250/593.160
Station Grid Referernce Distance Time T-X/6
(km) (sec) (sec)
Lendalfoot As Before 7.070 1-530 0-352
Cundry HMains g 5506 | - -
Knockbain " 54312 - -
Breaker Hill " 4811 0959 0157
Bargain Hill " 4-912 0-960 0<141
Millenderdale " 3+571 0737 0-142
Currarie " 4147 - -
Letterpin’ n - 1-383 0-338 0-108
Pinmore Shot Grid Reference;- 220:820/587-900
Station Grid Reference _ Difiiyce %égi) %;gé?
Lendalfoot hs Before 7+766 - -
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Station Grid Reference Distance Time T-X/6
(km) (sec) (sec)
Cundry Mains As BeIore 6+362 - -
Knockbain " 5+133 1019 0-164
Breaker Hill n 3.278 0-667 0.121
Bargain Hili L 1890 0394 0.079
Millenderdale n 4109 0-805 0120
Currarie " 5371 1050 0155
Letterpin U 4+459 - -
Craigconnachie Shot Grid Reference:- 223-700/586+200
Station Grid Reference Distance Time T-X/6
(km) (sec) (sec)
Lendalfoot As Beiore 11:082 - -
Cundry Mains " 9705 - -
Knockbain " 8458 1-549 0-139
Breaker Hill " 5597 1178 0+079
Bargain Hill " 5+194 U995 0-129
Millenderdale " 7-420 - -
Currarie n 8-698 1.652 0202
Letterpin " 7-338 1+355 0-132
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Cundry Mains 3hot Lrid Referviice:= 215.150/590-790

Station  Grid Reflereuce Distance Time T-X/6

(km) (sec) (sec)
Lendalfoot As Before 1550 0-446 0188
Cundry Mains " v 0148 0-116 0-091
Knockbain n A 13508 0-394 0-176
Breaker Hill " 5129 0722 0+201
Bargain Hill n 4+526 0-978 0-224
Millenderdale " 2596 0676 0.243
Currarie " 1-500 0-3G4 0-144
Letterpin wo 4+403 1+05% 0+319
Pinbraid EBEridge As Beiore 2512 0+626 0207
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APPENDIX 1. TABLE 2.
PARINE  ELPLOSIVL,  SHOTS - LENDALPOCT  ARRAY 1979

Wise Explosive (1). Grid Reference:- 211.019/589-841
Station Grid Reference Distance Time T-X/6
. (km) (sec) (sec)
Lendalfoot As Before 2-740 0-760 0-303
Cundry pains " 4537 1.069 0+346
Knocxbain " 5061 1133 0289
Breaker Hill " 6777 1416 0.286
Bargain Hill " 8.108 1.657 0-306
Millenderdale " - - -
Currarie " 5737 1320 0-364
Letterpin " 8.b34 1-814 0375

Wise Explosive (2). Grid nefcrence:=201:.1138/005-150

Station rid Reference Distance Time T-X/6

(ki) (sec) (sec)
Lendalfoot As Before 19:049 3-814 0-639
Cundry Mains " 20.034 4.062 0-723
Knockbain " 21-386 4-276 0-712
Brecsker Hill " - 23-148 4485 | 0-627

Bargain Hill L 24495 4.696 0-614
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Station Gria Reference Distaace ime T-X/6
(kin) (sec) (sec)

Millenderdale As Eefore - - -
Currarie " 20+826 4+145 0-674
Letterpin " 22+415 4407 0671

Wise Explosive (3). Grid Reference:;- 191.275/621.283
Station Grid Reference Distance Time T-X/6
(km) (sec) (sec)
Lendalicot AS Before 37-clo 0974 0671
Cundry HMains " S8e00Y 7-139 0744
Knocxbain n »0+0z0 1357 U-686
Breaker R1ill " 41712 T+536 0-584
Bargain Hill " 43+004 1732 0565
Millenderdale " 40,390 7-389 0-657
Currarie v 39-309 1143 0+591
Letterpin " 40+488 1+398 0650
Wise Explosive (4). Grid Reference:- 243/635.898

Station Grid Refere:ince i1stance “ime T-X/6
(icm) {sec) (sec)
Lendalfoot 54-961 9273 - 0-113
55772 9+469 0-174

Cundry Mains
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Station Grid Reference Distarnce Tiwe T-X/6
(km) (sec) (sec)
Knockbain - - -
Breaker Hill 58783 9.837 0040
Bargain Hill 60-052 106040 0.031
“illenderdale 57-409 9.761 0+193
Currarie 56363 9.597 0.203
Lettergin 57+390 9.689 0+123

N
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APPENDIX 1. TABLE 3.
AIRGUN SHOTS - LENDALFOOT ARRAY 1679

Airgun (224)  Grid Reference:- 204.296/587+413

~Station Grid Refereuce Distance Time T-X/6
‘ (km) (sec) (sec)
Lendalioot As Above 9.868 234 0-700

Cundry iMains " - - =

Knockbain " - - -

Breaker Hili . 15-578 5-010 0.750
Bargain Hill " 14-749 3+158 0.7
Millenderdale " - - -
Currarie " - - -

Letterpin " 15782 3+ 380 0+750

Airgun (228) Grid Reference:- 204-612/588-757

Station Grid Referc.ce Di.tance Tiue T-X/6
(ki) {sec) (sec)
Lendalfool LS AUOVE v 19U ¢+030 0500
Cundry Mains ! - - -
Knockbain " - - -
Breaker Hill " . 13-159 2716 0520
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Station Grid Reference Distance Time T-X/6
(km) (sec) (sec)
Bargain Hill As Lelore 14404 2+920 0+520
Millenderdale " - - -
Currarie " v - - -
Letterpin " 15.1¢8 3,030 0.510
Airgun(238) Grid Reference:- 205.870/592-079
Station Grid rReference Distance Time T-X/6
(km) (sec) (sec)
Lendalfoot As Above 7831 1.850 0-540
Cundry Hains " 9.410 2+180 0610
Knockbain " 10452 2350 0610
Breaker [iill n 12259 2+650 0-610
Bargain Hill " 13-047 . 2.880 0610
liillenderdaie ] - - -
Currarie " - - -
Letterpin " - 134497 2840 0590
Airgun (240) Grid Reference:- 206-192/592+839
Station Gria Reference _ Distance Time T-X/6
(km) (sec) (sec)
Lendalfoot As Above ' 7-684 1+860 0-580
Cundry Mains " 9-216 24180 0640




Station Grid Reference Distance Time T-X/¢€

(km) (sec) (sec’
Knockbain 4ts Before 10-327 2+370 0:65¢(
Breaker Hill n 12155 2670 0-64C(
Bargain Hill " ‘ 13-.564 2-890 063
Millenderdale " - - -
Currarie " - - -
Letterpin " 13+193 2820 0-62C

Airgun (242) Grid Reference:- 206-.501/593.598

Station Grid Reference Distance Time T-X/€
: (km) (sec) (sec’
Lendalfoot As Above 7637 1880 0-61¢(
Cundry Mains n 9108 2170 065(
Knockbain " 10.281 2370 0+66(
Breaxer Hill i 12070 2650 0+64(
Bargain £ill " 13544 2+910 0-65¢(
lillenderdale " ‘ - - . -
Currarie " - = -
Letterpin " 12-950 2-800 0-64(
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Alrgun (243) Grid Heferecnce:- 208.083/594-.419

Station Grid Reference Distance Time T-X/6
' (km) (sec) (sec)
Lendalfoot As Above 6600 1700 0600
Cundry Mains " _ 7-923 1+980 0660
Knockbain " ‘9188 2:-210 0-680
Breaker Hill " 11024 2+500 0660
Bargain Hill " 12463 2720 0640
Millenderdale n - - -
Currarie n - - -
Letterpin L 11.506 2+500 0640
Airgun (250) Grid Reference:- 208-725/594-105
Station Grid Reference  Distance Time T=X/6
(km) (sec) (sec)
Lendalfoot As Above 5397 1520 0-540
Cundry IMains " 7-212 1.810 0-610
Knockbain " -~ 8-479 2-020 0:610
Breaker Hill " 10-314 2+340 0+620
Bargain Hill g 11753 2560 0600
tiillenderdazxe " - - =
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Station Grid Reference Distance Time T-X/6
(km) (sec) (sec)
Currarie As Before - - -
Letterpin " 10.821 2+400 0+600
Alrgun (252) Grid Refererce:~ 209-244/593.827
Station Grid Reference Zisgtance Tiume T-X/6
(km) (sec) (sec)
Lendalfioot As Above 5+312 1140 0550
Cundry Mains " 6625 1700 0600
Knockbain " 7+891 1.920 0.600
Breaker Hill n 9.726 24220 0600
Bargzin Hill n 114165 2460 0+600
Millenderdale " - - -
Letterpin 1 10.262 2+311 0.-600
Currarie " - = -
Airgun (256) Grid Reference:~ 210-185/593.234
Station Grid Reference Distarnce Time T-X/6
(km) (sec) (sec)
Lendalfoot As Avove 4223 1+180 0+480
Cundry Mains " 5-544 1:460 0+540
Knockbain " - = -
Breaker Hill " 8:639 2-000 0-560

MM W 2 M

~ - -



Station Grid Reference Distance I'ime T-X/€
(km) (sec) (sec).
Bargain Hill As Before 10077 2+240 0+56C
Millenderdale " - - -
Currarie o - - -
Letterpin n 9.271 2+100 0«55C
Airgun (262) Grid Reference:- 211:614/592.548
Station Grid Reference Distance Time T-X/6
(ki) (sec) (sec)
Lendalfoot As Above 2670 0.830 0-+380
Cundry Mains n 5+939 1+140 0-480
Knockbain " - - -
Breaker Hill " 7-035 1.680 0510
Bargain Hill " 8473 1-920 0+510
Millenderdale " - - -
Currarie " - - -
Letterpin " 7759 1.800 0:510
Airgun (2v7) Grid Refercnce:- 212:357/591-.966
Station Grid Reference Distance Time T-X/6
(km) (sec) (sec)
Lendalfoot As Above 1719 0570 0.280
n 3.026 0.880 0.380

Cundry Mains
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Station Grid Reference Distance Time T-X/6

(km) (sec) (sec)

Knockbain As Before 4.264 1100 0-+390

Breaker Hill " 6-102 1470 0450

Bargain Hill " ‘ 7540 1.710 0450
Millenderdale " - - -
Currarie " - - -

Letterpin " 7-005 1620 0+450

Airgun (269) Grid Reference:- 211.970/591:662

Station Grid Reference Distance Time T-X/6

_ (km) (sec) (sec)

ILendalfoot As Above 1846 05490 0.280

Cundry Mains " 3.312 0-950 0400

Knockbain " 4477 1-190 0+440

Breaker Hill " 6-320 1-470 0420

Bargain Hill " 7752 1730 0-440
Millenderdale " - - -
Currarie " = - -

Letterpin " T+404 1670 Q<440

Airgun (276) Grid Reference:- 210:654/590.011
Station Gria Reference Diiii?ce E;gi) %;gé?
Lendalicot AS Above 3.024 0:860 0-360
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Station Grid Reference Distance Time T-X/6
(ki) (sec) (sec)
Cundry Mains As Before 4643 1250 0-480
Knockbain i 5+435 1350 0+440
Breaker Hill " - - -
Bargain Hill " 84511 1.860 0-440
Millenderdale n - - -
Currarie " - - _
Letterpin " - - -
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CALEDONIAN

RECORDE!

APPANDIX 1.

TABLE 4.

SUTURE

ACROSS THE  SCUT

SEISH

IC FROJECT

el UPLANDS

1982

(GALLOWAY ).

Shot (M 05) Grid Reference:- 269:508/529.731

Station Grid Reference Distance Time T-X/6
: (km) (sec) (sec)

Low Glasnick 2%4.975 561-000 46+59 8+46 0-69
Eldrig 234-430 565-850 50+35 9-13 0:74
Closes 232425 568-600 5372 9:65 0.70
Drumloskie 2303260 571955 57-58 10-38 078
Loch Dornal 228+950 576605 61.98 1112 0+79
Wood Park 227540 579810 65+ 34 11+65 076
Barmalloch 226+865 5384270 69-23 12426 0-72

Shot (i 06) Grid Reference:- 265-:076/528-.005
Station Grid Reference D{zi;?ce (222? %;gé?
Low Glasnick As Above 44466 8+18 0-74
Eldrig " 48-70 8-87 0-75
Closes " 52-10 9-45 0-77
Drumloskie " 56+01 10-14 0-80
Loch Dornal n 6056 1091 0-82
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Station Grid Reference Distance Time T-X/6

(km) (sec) (sec)
Wood Park As Before 6397 1157 0-91
Barmalloch n 68.01 12+16 0-82

Shot (M 07) Grid Reference:- 261.001/526+403

Station Grid Reference Distance Time T-X/6

(km) (sec) (sec)
Low Glasnick As AbDove 4329 7-98 0-76
Eldrig 3 47456 8-70 077
Closes " 50-96 9.29 0.80
Drumloskie " 54 -390 9.95 0-80
Loch Dornal d 59+56 10-77 0-84
Wood Park " 63.02 11-45 095
Barmalloch " 6719 1203 083

Shot (M 08) Grid Reference:- 257:296/524-.699

Station Grid Reference Distance Time T-X/6

(km) (sec) (sec)
Low Glasnick As Above 4261 7-80 0-70
Eldrig " 47.08 8+56 0-71
Closes " . 50:46 9«14 | 073
Drumloskie " 54«39 9.83 0«76
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Station Grid Reference Distance Time T-X/6

(km) (sec) (sec)
Loch Dornal As Before 59.14 10.65 0+79
Wood Park " 6263 11+26 0.82
Barmalloch " - - -
Shot (M 09) Grid Reference:- 253:639/523.220
Station Grid Reference Distance Time T~X/6
(km) (sec) (sec)
Low Glasnick As Above 42-14 763 0.61
Eldrig n 4676 8-48 0:69
Closes " 50.09 9.07 Q.72
Drumloskie i 5401 9.52 0.52
Loch Dornal " 58.82 1057 077
Wood Park - L 6232 1117 0.78
" Barmalloch " 6666 11.98 0.87
Shot (M 10) Grid Reference;- 249:499/521:592
Station Grid Reference _ Distance Time T-X/6
(km) (sec) (sec)
Low Glasnick As Above 4200 7465 . 0-65
Eldrig " 46-75 8+53 0-74
Closes " 50+01 9+07 073
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Station Grid Reference Distance Time T-X/6
(km) (sec) (sec)
Drumloskie As Before 5388 9.81 0+.83
Loch Dornal u 5873 1064 085
Wood Park 1 62422 1125 0-88
Barmalloch " bt « 64 1200 0-89
Shot (M 11) Grid Reference:- 245+137/519+.864
Station Grid Reference Distance Time T-X/6
(k) (sec) (sec)
Low Glasnick As Above 42.37 T71 0«65
Eldrig .o 47+22 8+54 0-67
Closes n 50+ 37 9.09 Q.69
Drumloskie o 54+15 977 074
Loca Dornal " 59-01 1062 0.78
Wood Park " be 48 11426 0.85
Barmalloch " 0o 55 12-01 0.85
Shot (M 12) Grid Reference:- 240:859/518-156
Station Grid Reference Distance Time T-X/6
(km) (sec) (sec)
Low Glasnick As Above 43.25 TT7 0«56
Eldrig " 48-13 864 0+62
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Station Grid Reference bistance Time T-X/6
(ki) (sec) (sec) |
Closes As Before: 51-15 9.14 0:61
Drumloskie " 54 +81 9.82 0-70
Loch Dornal n 59.65 10-67 0+73
Wood Park " 6308 1125 0+74
Barmalloch " 67.58 1201 075
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APPENDIX 1.

TABLE 5.

HILLHCUSE

Hillhouse:Quar:y

QUARRY - BALLANTRAE

Grid Reference:- 235-175/634+010

Station Grid Reference Distance Time T-X/6

‘ (km) (sec) (sec)
Perryston Iarm 229800 617780 17097 %+620 0«771
Sportfield 230100 ©615+965 18.745 3.990 0.866
Glenbay 228-140 613.680 21+513 4430 0845
Howmoor Cottage 227:940 611.897 2%+266 4730 0852
Mochrum Wood 227-150 610-125 25197 5-040 0-840
Knox Hill 223+715 606-308 29-979 5770 0774
Chapelton 22%.500 604.300 31.922 6-030 0-710
Craighead Quarry 223%.270 601375 34739 6+490 0-700
Brae 220-77CG 598-350 35+460 7.220 0810
Fauldribon 220+150 597-100 39.851 7-540 0-898
Byne Hill 218.200 594-780 42+745 8+020 0.896
Balkeachy 218-258 593.385 44.007 8+200 0.866
Knocklaugh 216700 591800 46076 8490 0-811
Moak Hill 214.200 587-950 50:611 9-170 Of735
Knockdhu Bridge 213+365 584-585 54.023 9+710 0+706
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Station Grid Reference Distance Time T-X/6

(k) (sec) (sec)

16 High Kilphin 211-540 580-200 58-772 10+440 0645

17 shallochwreck 207-270 577-120 63365 11150 0-589
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HILLHOUSE QUARRY - IOCH DEE

Hillhouse

APPENDIX 1.

TABLE 6.

Quarry Grid Reference:- 235:175/634.010
Station Grid Reference Distance Time T-X/6
(km) (sec) (sec) |
1 Hotel Backyard  234.940 632.110 1194 0-540 0.221 i
2 Hobsland Farm 235-790 629.600 44453 1.230 0'488;
3 St. Quivox 237480 624175 10+102 2450 0766
4 Roodland Farm 239.360 619-345 15223 3+390 0'853.
5 S. Craig Quarry 243.260 615.090 20575 4330 0.901
6 Patna Forest 240-8?0 609+570 25-095 5020 0-838
7 Red Burn Bridge 243-130 606-235 28892 5:620 0-805
8 Xnockdon Farm 24%3.550 600710 34 « 337 6480 0757
9 Loch Braden 243770 597-640 57372 7080 0+851
[0 Craigfionn 245.662 593-580 41-768 7740 0779
11 Wee Craigfionn  245:625 592-100 43193 7-950 0-751
12Riders Rig 248145 588-428 47+391 8-610 0-711
13 L. Craigtarson  247-608 3585-960 49-632 9-000 0.728
14 Backhill Bush 247-985 584-355 51281 9-260 0-713
15 Mcwhan Stone 249-155 580310 55-490 9-930 0-682
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12

14

AFPPE

NDIX 1.

TABLE 7.

NCB OPEN S

Benbain Shot

ITE (BENBAIN)

- BALLANTRAE

Grid Reference;- 250-.760/609.820

1 .

Station Grid Reference Distance Time T-X/6-

' (km) (sec) (sec).

Dalcairnie Brdg 246-530 604240 7.002 1660 0-49%.

Newt. Stewart Rd 240.3%40 600+080 14263 2.920 0:543%,

Garleflin 239135 568-250 16401 3+310 0'576:

River Sticher 237140 596-450 19.086 3.770 0-589.

Aldinna 234.290 595-360 21-917 44170 0+517.
Benbain Shot Grid Reference:;- 250-860/609+:840

Station Grid Reference Distance Time T-X/6.

(km) (sec) (sec)’

Pennyvenie 249.200 606920 3+359 0860 0-300

Auldcraighoch  245-305 604-175 7.934 1.790 0-468

Glenauchie 242060 601:520 - 12-110 2.6060 0.642
Benvain 3not Grid Reference:- 250-710/609-8350

Station Grid Reference ‘Distance Time T-X/6"

(km) (sec) (sec),

Loch Braden Rd  241-280 601-000 12.919 2.750 0-597

Tallaminnock 239.930 598-420  15+697 3.200  0-584;
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13

15

17

14

16

18

19

20

21

22

23

Station Grid Reference Distance Time T-X/6
(km) (sec) (sec)'
Forest waterrall 238.480 597.000 17725 3.520 0566
Elack Row 236-.050 595:565 20.455 3.980 0.571;
Knockeen 231-810 595:610 23-652 4-600 0-658 "
Barr 226-825 595-075  28-075 54450 0771
Benbain Shot Grid Reference:~ 251.065/609,882
Station Grid Reference Distaﬁce Time T-X/6:
(km) (sec) (sec)
Pennyvenie 249.200 606920 3500 0870 0.287 -
Craigengillan 247-460 605-953 5.332 1.320 0-431 -
Aldinna 234290 595-360 22138 4220 0.522
Daljedburgh 250.210 590470 244293 4-730 0681 -
Kirkland 224-570 5924520 31077 6020 0-741 -
Minuntion 222-285 591-270 544274 6-360 0-648 -
Asselfoot 220-61C 590515 36 -091 5:660 0.645 "
Aldons 219670 589-530 37415 6+800 0-564
Breaxer Hill 217750 589.050 39.292 6+990 0441
Balhamie 213-500 586000 44514 7-820 0+401
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Benbain Shot Grid Reference:- 250-720/609-790

Station - Grid Reference Distance Time T-X/6
‘ (km) (sec) (sec)
Forest Foot Path' 244-225 ©603-600 8+972 2:.060 0+565
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RC AL

Marine Shot

APPEADIX 1.

NAVY

5107

( FORT C R

Grid Reference:- 194.725/5604 030

Station Grid Reference Distance Time T-X/6 -
: (km) (sec) (sec)
Perryston Farm  229.800 617780 64182 11170 0473 .
Sportfield 2%0+.100 615.965 62338 10980 0.507
Glenbay 228.242 613718 59936 10+510 0.521
Howmoor Cottage 227.940 611.897 58262 10-250 0540
Mochrum Wood 227+150 610-125 56357 10-010 0:617
Kirkoswald 224+432 607-250 52470 9.370 0:625
Knox Hill 22%-715 606+308 51.263 9+160 0616 .
Chapelton 22%.500 604300 49494 8.870 0+621
Drummuck 223-470 603%.300 48666 8-730 0+619
Cr'head Quarry  223.270 601-375 47005 8+360 0526
Brae 220-770 598:350 43084 7-810 0629 °
Fauldribon 220.150 597-100 41714 7+650 0698
Byne Hill 218.200 594780 38+686 6+990 0542
Balkeachy 217-870 593%-090 37151 6-770 0-578"
Knocklaugh 216700 591.600 354413 6-410  0.508"
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Station Grid Reference Distance Time T-X/6

(km) (sec) (sec)
Currarie 215-807 590-530 33.863 6-250 0.606
Moak Hill 214200 587+950 30-845 5-640 0-499
Balhamie 213+363 586TOOO 28-811 5+370 0.568
Knockdhu Bridge 213%.365 584-585 27-748 5.130 0-505'
North Garphar 211.280 582-:902 25-104 4.670 OO486I
Big Park 208.221 580-938 21.634 4110 0.504
Shallochwreck 207-270 577-120 18+131 3+440 0-418
Fortnauchtry 202+.250 573+360 11986 2°440 0-442
East Kirkbryde 200410 570-760 8+810 1.860 0-392
Valleyfield 197-960 568¢375 5417 1210 0.307

196.100 566+380 2+723 0.700

Portobello

0246
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APPENDIX 1. TABLE Y.
CAST (DALLEAGLES) - WEST

NCB OPEN AYRSHIRE

Rough Hill Shot Grid Reference:- 259:500/611-300

Station Grid Reference Distance Time T-X/6

. ~ (km) (sec) (sec)
Perryston Farm 229.800 617-780 30399 5860 0794 -
Sportfield 230+100 615.965 29-768 5760 0-799 -
Glenbay 228242 613-718 31351 6-000 0-775
Howmoor Cottaze 227.940 611.837 31+566 6+050 0.789
Mochrum “Wood 227+150 610-125 32371 6+130 0735
Kirkoswald 224~4§2 607+280 35.298 6490 0607
Knox Hill 223+715 606+308 36+132 6760 0.738
Chapelton 223+500 604300 36:674 6780 0-668
Drummuck 223%3+470 603-300 36907 6700 0-549
Craighead Quarry 223.270 601-375 37565 6-780 0-519
Brae 220770 598-350 40838 7+250 0-444
Fauldribon 220+150 597-100 41-834 7-850 0-878
BEyne Hill 218+.200 594-780C 44 -481 7840 0426
Balkeachy 217870 593-090  45-439 8+100 0-527
Knocklaugh 216700 591800 47-033 8.180 0341
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Station Grid Reference Distance Time T-X/6

(km) (sec) (sec)
Currarie 215.807 590:530 48378 8+390 0327
Moak Hill 214.200 587.950 50964 8720 0226
Balhamie 213+365 586.-000 52619 8:960 0-190
Knockdhu Bridge 21%.365 584:585 5%.312 9-090 0+205
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APPENDIL 1.

CALEDONIAN

SUTURE

TABLE 10,
SEISHIC

FROJECT

Recorded across tne Southern Uplands (Galloway)

Alrgun Shot (14-.56 0-.58)

Grid Reference:- 247.706/531+43%

Station Grid Reference Distance Time T-X/6
' (km) (sec) (sec)
Eldrig 565.850 234430 36 +89 062 0«47
Black Park 557-975 237-.800 28+33 517 0+45
High Barness 554000 238790 24«26 4-44 0-40
Whaupnill 549.940 240.120 20-00 3.69 036
Doon Hill 547.200 241.640 16 -89 3.18 037
Moss Park 543.780 241-725 13-72 261 Q.32




APPENDIX 2

reduced time-distance graphs and record sections.
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Reduced record section from Benbain NCB open-cast, westwards to

Ballantrae.
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Fig 13.
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APPENDIX 3A

P-wave velocities in the main rock components of
the Ballantrae ophiolifte, in relation to increasing
confining pressure.

CH: Chert, D: Dolerite, FG: Foliated Gabbro, G: Gabbro,
Gr: Granite, S: Serpentinite, SP.LV: Spilitic Lava.
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APPENDIX 3B

P-wave velocities in greywacke samples from the
Northern Belt of the Southern Uplands, in relation
to increasing confining pressure.
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APPENDIX 4

Reduced time-distance plots of P and S waves

~

recorded on the Colmonell line. The S waves
are partly represented in fig 12 appendix 2.
The error affecting the S-wave travel time is

estimated to be + 0-04 sec. This is due to:

1.

2.

Picking of onset time + 0-04 sec.

Irregularities in playback paper speed +
0.007 sec.

" Uncertainty in locating the shot points and

recording sites + 0-006 sec.
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