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ABSTRACT

There 1is considerable need for the application of
system identification techniques to helicopters. These
include their wuse in the validation and improvement of
existing theoretical flight-mechanics models, and for
vdevelopment flight testing. In both cases, estimates of
stability andv control parameters are sought. Most
applications of system identification techniques to
helicopters have involved time-domain methods which use
reduced-order mathematical models representing
six-degrees-of-freedom Trigid-body motion. In this
document, an identification methodology which uses the
frequency-domain to obtain estimates of the stability and
control parameters is advocated.

For applications to helicopters, the use of the
frequency domain has some considerable advantages for the
identification. For example, in the identification of
six-degrees-of-freedom rigid-body models, where an
adequate description of the fuselage motion is required,
the ability to use a restricted frequency range (i.e. one
which excludes the higher-order frequencies associated
with faster rotor dynamics) i1s advantageous. In addition
to providing a basis for establishing reduced-order
models valid over a defined range of frequencies, the use
of the frequency domain also results in a significant
data reduction in comparison with time-domain methods,

thus resulting in a speedier identification. The fact



- xi -

that the model 1is represented in terms of Fourier
transformed quantities is advantageous for the
development of expressions required for the minimisation
algorithm, and also facilitates the incorporation of time
delays 1into the model. A suitable means of symbolically
representing the model equations in the frequency-domain
is presented. Models valid for small perturbations about
a nominal trim state are used in the identification.

The identification methodology_is based upon the use
of three distinct identification stages similar to those
advocated by Fu and Marchand in their paper presented at
the Ninth European Rotocraft Forum at Stresa, Italy, in
1983. Firstly, a frequency-domain equation-error type
identification 1is wused to provide initial ’parameter
estimates. Secondly, a frequency-domain output-error type
estimation is wused to provide under ideal <conditions
unbiased estimates of the stability and control
derivatives. And finally, a time-domain output-error type
estimation is used to obtain initial state conditions and
zero offsets, and to provide a time-domain verification
of the identified model.

For the identification methodology developed in this
document, additional features to the basic identification
methods are advocated. 1In broad terms these relate to
the form of the model used, to the determination of a
suitable model structure, and to the implementation of
the identification algorithms. An important and original

feature of the identification methodology developed here



- xii -

is the incorporation and estimation of time delays in
some of the controls. This is seen primarily as a means
of accounting for the effect of rotor-transient effects
which are ignored in the quasi-static formulation of the
rigid-body motion. It is known from previous studies
that unmodelled rotor effects can have a corrupting
influence on some important parameters when a simplified
form of model 1is wused in the identification; the
improvement in the identification resulting from this new
approach is demonstrated using real flight-data from a
Puma helicopter.

The wuse of techniques (singular-value decomposition
for the equation-error method and rank deficiency for the
output-error method) that enable the analyst to explore
the effects, and likely improvements, as a result of.
effectively changing the model structure through the
introduction of constrained relationships between
parameters within the model, is an approach advocated
here. It 1s Dbelieved that these techniques have not
“previously found an application in helicopter system
identification. Results demonstrating the usefulness of
these techniques are presented, and are obtained using
real flight data. For the frequency-domain output-error
method, additional means of introducing constraints into
the identification are considered.

The identification results are discussed in terms of
a comparison between the estimated wvalues and those

suggested by theory, as well as through the frequency-



- xiii -

domain fits obtained and the time-domain verifications of
the identified model. Results are presented for real
flight-data, corresponding to the application of
test-input signals on both longitudinal and lateral
controls.

Some recommendations that can assist in overcoming
some of the practical difficulties traditionally
associated with helicopter system identification are
made. In addition, some new theoretical results and
observations relating to the frequency-domain formulation

of the identification are made.



CHAPTER 1

1.0 INTRODUCTTON: THE HELTCOPTER SYSTEM IDENTIFICATION

PROBLEM.

1.1 Introduction.

1.1.1 The Nature of System Identification.

In a large number of branches of science, the
requirement for a mathematical formulation of the
behaviour of a system basedbon measurements of the
response to various inputs, has led to the development of
system identification. System identification is commonly
referred to as an inverse problem, because instead of
computing the response of a system with known character-
istics, an attempt is’made to solve the opposite problem:
that of obtaining the system characteristics from
measured responses. In the reference MAIN002, it is
suggested that the inverse problem might be phrased as:
"Given the answer, what was the question?"

In successfully applying the techniques of system
identification, the analyst must be able to draw upon
results and analytical tools from a wide range of
different fields of mathematics (categorized under such
titles as probability, statistics, optimization,
numerical analysis, linear algebra, mechanics etc.). In

addition, the analyst needs to be familiar with the



details of the data collection, such as: the
characteristics of the “instrumentation;_the level of
noise on the measurements; the limitation of information
content as a result of the sampling rate, or record
length, etc. Even in the case of familiarity with all
these aspects, much more is still required if the analyst
is to be successful in applying the techniques of system
identification. Insight into the system under
consideration 1s important, and subjective Jjudgements
(i.e. engineering judgement) have an important role to
play in the work.

System identification, it could be said, is as much
an art as a science - that is, knowledge acquired through
experience and intuitive insight is important, and is
complimentary to the more exact aspects of this applied
subject. In this context, the following sentence taken
from MAIN002, relating to the Jjustification for the
application of a particular algorithm (axial iteration,
discussed infact in Chapter 4) is relevant: "...Often
with 1little more Justification than it seems to work
well. This is, of course, the final and most important
Jjustification.”

The term: system identification, is the most general
description of the inverse modelling procedure, involving
both the determination of an appropriate model structure,
and the estimation of the coefficients (i.e. parameters)
within that model structure; the latter process is known

more commonly as parameter estimation, though the terms



are often used to mean the same thing. The term,
parameter identification may also be used, but this has
come to imply a situation where the form of the system

model is assumed to be known.

1.1.2 The Need for System Identification in Helicopter

Applications.

In the context of helicopters, system identification
techniques have considerable potential for the
validation, or improvement, of theoretical flight
mechanics models; this in turn leads to its usage as an
aid to the testing of new designs. In addition, during
development flight-testing using clinical flight
qualities tests, measurements made can be used to
estimate stability and control parameters of interest, in
order to demonstrate compliance with requirement
specifications. A further application involves the use of
an on-line identification procedure in an adaptive
flight-control system; this however, has yét to be fully

exploited.

1.2 The Helicopter Model.
1.2.1 The Nature of a Model.

Since the purpose of system identification 1is +to

obtain models of a particular system (in the current



context, the system is a helicopter), it would be useful
to define what i1s meant by a model. In the reference
KRAM00O1, the following words are said on the subject of
models: "The essence of using models is that a material,
or formal image of a system is made which is easier to
study than the system itself. This image is then used as
a model of the system. The model must then obviously
contain information about the system. Hence there must
be a certain resemblance [emphasis added by fhe current
author] between the model and the system." The same
feference gives the following formal definition of a
model: "If a system M, independent of a system S, is used
to obtain information about system S, we say that M is a
model of S."

The last definition begs the question as to what is
a system. The same reference gives the definition of a
system (actually before defining a model): "A system is a
set of interrelated entities, of which no subset 1is
unrelated to any other subset.” The system M - that 1is
the model shall in the case of the current investigation
be an abstract model, consisting of constant-
coefgécient, coupled, ordinary differential equations.
Although the form of the equations used arise from
linearisations of the equations of motion, use of the
adjective linear is avoided to allow for time delays in
some of the terms, rendering the description as 1linear,
inexact. The models identified, however, are based.on the

réquirement of small-scale perturbations in the states,



and so it would be equally inexact to talk of non-linear
models; instead I shall henceforth refer to them as

state-space models (e.g. GELB00l) with delays.

Model Simplifications.

In the reference MAINO002, it is pointed out that a
system is never described exactly by the simplified
‘models used for analysis, and unexplained sources of
modelling will always be present, since there is no
unique correct model. The models used for the helicopter
system identification in this document, for example, are
based on the rigid-body motion (with six degrees of
freedom: three of body translation, and three of body
rotation). The most important aspect of the helicopter
apparently excluded from this type of model, is that
involving the behaviour of the main and tail rotors, and
their interaction or influence on the rigid-body motion.
However, by using rigid-body models, in conjunction with
a new modeiling technique developed in this document (viz
the use of time delays in some of the controls), an
attempt can be made to model the influence of the
rotor(s) on the rigid-body motion. The dynamics of the
states associated with the rotor(s) (i.e. flap, lag,
torsion etc.) are excluded from the state-space
representation of the model. This approach is consistent
with another feature of the rigid-body models used in the

identification work presented in this document: that of



using some state variables as "pseudo-controls" in a
reduced-order model. For example, in the identification
of the longitudinal subset of the six-degrees-of-freedom
model, important lateral states may be included as
forcing terms along with the controls and this
facilitates the formulation of the identification problem
in_a manageable form. Examples showing the wuse of this
form of model reduction are presented in Sections 2.3.3
and 4.3.2.

Most models require simplifying assumptions, and the
analyst is forced by practical constraints to define the

system boundary at "some point, that is, where the

relations between entities are "less concentrated”
(KRAMO001) ; in the present context, we might say: "almost
decoupled.”

1.2.2 Adequate Models.

As a result of the practical constraints imposed on
the model (e.g. its size), it can be appreciated that
there is no such thing as a "true" model. Consequently,
the emphasis should be on the estimation of an "adequate"
model (i.e. one that is suitable for the purpose
required) and not on the estimation of the "true” model.
The myth of the "true" model is Qery strong, and in
MAIN002, the authors quote the comments made by someone
on this matter: "A favourite form of lunacy among

aeronautical engineers produces countless attempts to



decide what differential equation governs the motion of
some physical object, such as a helicopter rotor... But
arguments about which differential equation represents
truth, together with their fitting calculations, are
wasted time."

In the context of the work carried out in this
document, some degree of validation of a theoretical
model is the primary motivation for the identification
work. The theoretical model concerned 1is HELISTAB
(SMIT001). This has six degrees-of-freedom, and assumes
that the rotor-disc tilts instantaneously for a given
stick input (and similarly for the tail-rotor following a
pedal input). Consequently, the most adequate model for
the purpose of the identification (and validation) will
have six degrees-of freedom (with the same states as the
theoretical model, so that direct comparisons can be made
easily between parameters). However, since the real
system, i.e. the helicopter, has a rotor-disc which does
not respond instantaneously to pilot stick inputs, but
has a finite transient response (which is, in fact, very
quick 1in comparison to the transient behaviour of the
rigid-body), it suggests some further modifications to
the basic model are required in order to have an adequate
representation of the system for identification. In fact,
results have indicated that by ignoring the short term
transient effects of the rotor on the rigid-body states,
the unmodelled "contaminating"” effects will result in

physically unrealistic (biased, or wrong, call them what



you may) estimates of some parameters; the most striking
example of which, 1is in the case of the primary-rate
pitch-damping parameter Mq (this 1s considered, in
detail, in Section 2.3.4).

Accuracy of Estimates

To make effective use of parameter estimates we must
be able to gauge their accuracy, and in order to define
accuracy, it 1s necessary to have an assumed model
structure. Once we have decided upon an adequate model
structure to use in the identification, then several
measures of accuracy can be found. A commonly wused
statistical measure is the estimated standard deviations
of the parameter estimates, also known as the Cramer-Roo
bound (MAINOOl). As pointed out in the reference, this
measure combines two commonly used indicators of
parameter accuracy, that of'sensitivity of a parameter,
and correlation between any two parameters. The estimated
deviation 1is the measure of parameter accuracy used for
the work covered in this document. It should be stressed
that the derivation of these error bounds is based on
assumptions regarding the noise characteristics on the
model; these assumptions will be pointed out in due
course for the equationjerror and output-error techniques

used here.



1.2.3 Model Structure.

It is said in the reference MAIN002, that thé real
model-structure determination problem is not to determine
some non-existent "correct" model structure, but to
determine an adequate model structure. If too detailed a
model structure is demanded for a data set containing
insufficient information, then the result will be a model
which appears to fit the given data set <closely, but
which may be, in reality, a poor and inadequate model,
with poor predictive qualities when extrapolated to data
different from that wused in the estimation. The
inclusion of more and more parameters to get a better fit
to the observed data, with the additional parameters not
really reflecting any physical effect, is known in
identification parlance as "over parameterization.”

Sometimes it is wiser to use a simple, rather than
detailed, model; this 1is known as the ‘"principle of
parsimony.” In the reference KLEI003, the authors speak
of a "parsimonious model"”, and seek to obtain, using the
equation-error approach, a model (i.e. an equation) that
has good predictive qualities, and is  not
over—-parameterized. They define a criterion for testing
the predictive quality of a model (the prediction sum of
squares), and use it in conjunction with an automatic
model structure determination process known as optimal
subset regression.

In the optimal subset regression procedure, the
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"best” model is selected from a pool of possible
candidate models. On the Dbasis of statistical tests
performed on the model £fit and individual parameter
estimates, variables‘ can be incorporated into, or
removed from, a model structure. Hence the '“optimal"
model will <consist of a sﬁbset of the available
variables. In most implementations of the method, it is
usually possible to force wvariables into the model
(sometimes called modified stepwise regression; e.g.
KLEIOO2) regardless of whether or not they would be
included by the statistical tests, thus introducing a
subjective element into the model selection procedure.
The subset regression procedure 1is discussed in more
detail in Section 3.2.2.

There are many other methods for determining the
adequacy of a model structure (e.g. SODE001). One such
method is the testing of residuals; this has been used
successfully by the current author in studies using
simulated data, to show the superiority of one model
structure over another. Plots of the residuals and their
autocorrelation function (which should be impulsive in
appearance for uncorrelated stationary Guassian noise)
are used (BLAC003).

With the frequency-domain identification methodology
developed in this document, one important means for
determining an adequate model structure, both for the
equation-error and output-error techniques, is based on

the "degree of singularity" (i.e. the condition number-
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see Section 3.2.5) of the information matrix. In the case
of the equation-error method, use is made of the
singular-value-decomposition technique to enable
solutions to be found, that correspond to a fit obtained
using, in effect, a parameter sub-space; this is
discussed 1in detail in Section 3.2.5. There is a direct
analogy with the method of subset-regression mentioned
earlier (and discussed in Section 3.2.2) in the sense
that the "best" model is arrived at using only a subset
(or subspace) of available variables. However, in the
case of the singular-value-decomposition approach,
orthogonal variables - constructed as linear combinations
of the original model variables - are used, and it is
combinations of variables rather than individual
variables, which in general, are excluded from the model.
An interpretation that the exclusion of insignificant
orthogonal variables from the model, corresponds to the
introduction of relational constraints between the
parameters in the original model, is offered by the
current author in Section 3.2.5. For the equation-error
identification technique, using singular-value
decomposition, the decision as to what constitutes the
"best"” model can be based (as with most practical
applications of the subset-regression procedure), on both
objective and subjective criteria.

Both the subset-regression and the singular-value-
decomposition approaches, ultimately use the correlations

that exist between the responses of the variables
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considered, in the selection of a suitable model structure,
and any attempt to say that one method i1s more correct than
another would be inappropriate. The most striking
difference between the two approaches, however, 1is that
estimates are provided for all the parameters stipulated to
be 'in the model in the case of the singular-value-
decomposition approach (regardless of the dimension of the
parameter sub-space used in the estimation), whilst in the
case of the subset-regression approach estimates are only
provided for those parameters incorporated into the model
on completion of the algorithm. For example, for the
pitching-moment equation we know from the physics of the
system that an appropriate equation has the form:

-

(i = Mou+ Myw + M” + Muv + Mep + Mp, g, (1.2-1)

For the singular-value-decomposition approach, we
will obtain estimates of Mu, Mw, Mg, Mv, Mp and My, ,
regardless of the model structure ( defined by the
constraints relating dependent sets of parameters, and
determined on the basis of the data wused in the
identification).

Applying the subset-regression procedure to the same
set of data, we may find that the proposed adequate model

structure is:

Zt = Mov + Myw « Mgq + My, s (1.2-2)
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Thus providing estimates of the parameters Mu, Mw, Mg,
and Mn,, , but not of Mv and Mp (except that is it implied
that they can be considered to be zero for the data used
in identification).

The equation-error method 1is seen, for the
identification methodology developed in this document, as
a means of providing initial guesses for the more
advanced output-error method. The singular-value-
decomposition approach provides a full set of parameter
values for wuse in the output-error method, whereas the
subset-regression procedure, in general, does not. It is
also of interest to point out that the speed of
application of the singular-value decompostion procedure
to the problem of helicopter system identification, is
greatly facilitated by the use of the frequency domain,
because of the small number of data used.

The equation-error approach, in addition to
providing initial estimates for the output-error method,
can also assist in the determination of a suitable model
structure through the use of some measures of parameter
significance, as defined and described in Section 3.2.4.
In addition, some investigation into the use of different
model structures for the output-error identification
stage can be performed using rank deficiency. This 1is
described in Section 4.2.3, where the method is
implemented using a singular-value decomposition of the
information matrix. Here, it is found that it may be

appropriate to reduce the effective dimension of the
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parameter space used in the iterative estimation
technique. This amounts to introducing relational
constraints on the update increments.

The preferred techniques for obtaining a suitable
model structure for both the equation-error and output-
error methods (referred to by the current author
thorughout this document as singular-value-decomposition
and rank-deficiency respectively, for the purpose of
distinction) are demonstrated in Sections 3.3.4 and 4.3.2

using real flight data.
1.2.4 the Helicopter Model.

The helicopter equations of motion used for the work
in this document, correspond to the form of model defined
in the reference PADF009. Here the applied forces and
moments acting on the vehicle are incorporated into
equations, with a right-hand set of body-fixed axes X,Y,Z2
defining the rigid body, having vehicle translational
velocity components u,v,w, and vehicle rotational
componenets p,q,r, along and about the X,Y and Z axes
respectively. The Euler anglesY,® ,9 represent the
transformation from earth to rigid-body axes.

The six-degrees-of-freedom rigid-body equations of
motion are used in linearised form for the identification
work carried out in this document. Here, the equations of
motion are linearised about a given trimmed £flight

condition, and small perturbations about this nominal
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level are assumed. The linearisation is presented in
Appendix 1, and allows a suitable state-space form of the
helicopter model to be written as:

X

~

1]

AX + By
(1.2-3)

114

X

~

(Uﬂ&,q,e,v,P,¢,r)T ) 9 S (No,Nws, Nie, ﬂgf

(The stateslx in the model, and the measured quantities Z
are in general, related in a non-linear manner; this 1is
discussed in Section 2.2.4).

A more general representation of the helicopter,
will also include equations with states representing the
behaviour of the rotor, and its coupling with the rigid-
body motion of the helicopter. It 1is convenient to
represent the rotor by means of the attitude and shape of
the tip-path plane, with respect to the shaft, instead of
considering individual blade motions (whose description
requires a system of coordinates rotating with the
rotor). This is achieved using a multi-blade coordinate
transformation (e.g. PADF009) and corresponds to the\
representation of the rotor as a continuous and periodic
function of azimuth position. For a four-bladed rotor,
the three terms of a Fourier series representation,
corresponding to the average, and first harmonic sine and
cosine terms, and a fourth term corresponding to the
average of the second harmonic sine and cosine terms, can
be obtained. In the case of blade flap, these correspond

to ﬁ% (coning angle); ﬁ%c(tip—path plane tilt in pitch);
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/35 (tip-path plane tilt in roll); and /ii(differential

coning) . They are obtained using (PADF009):

Bo = Vo Li i

™
P - 2/, Zz PionmY:
- (1.2-4)

™y
Y Z Bicos s

/3:c
PBa

& L
Ve 2 Bi (-1
for a four-bladed rotor, with individual blade
flapping measurements BL, and rotor azimuth position ¥ .
Identical expressions can be defined for the lagging
motion of the rotors.
If we define the rigid-body states to be 5} , and
the rotor states to be Xap, then we can write the

following linear constant coefficent model (KALEOO1):

Ke = A Xe + Ara Xp * Bel (1.2-5)

1><

R = ARFXF + A\\RK& + BRQ (1.2-6)

Where the matrices Arr and ARR represent the
uncoupled systems for the fuselage and rotor. The
matrices ‘AFR and Am=represent the coupling between the
fuselage and the rotor; E@ and.{BRare the fuselage and
rotor control dispersion matrices.

It 1s pointed out in the reference KALE0O1l for a

model with 14 degrees of freedom (i.e. 6 rigid-body, 4
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rotor flap, and 4 rotor lag), with the rotor modelled as
a second-order system, that there are 326 state matrix
coefficients (of which, - about 300 have to be identified).
And this 1s after two approximations have been made:
'namely the small perturbation assumption, and the
averaging of periodic terms in (1.2-5) and (1.2-6) to
give cohstant coefficients. This 1s obviously an
unrealistic number of parameters to even consider
attempting to estimate. The comments made in Section
1.2.1 about the practical constraints which force the
analyst to make necessary simplifications, are relevant
in this context. The simplifications which can be carried
out here include neglecting lead-lag states (on the basis
that the frequenc;es associated with them are well
separated from those associated with the rigid-body
states), thus representing the rotor dynamics in terms of
flapping motion only. In turn, the rotor flap motion can
undergo a series of simplifications, whereby the second-
order system can be simplified to a first-order systenm,
and ultimately to a zeroth order system. The final
simplification (i.e. zeroth order system) is a form of
quasi-static model. It assumes an instantaneous response
of the rotor following a pilot control input, and is a
form of model which has found applications in real time
helicopter simulations (e.g. PADF009). Again, this
assumption is justified on the basis that the frequency
seperation between the rotor modes and the fuselage

rigid-body modes is high: for the time scales typical of
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the rigid-body motion, the behaviour of the rotor states

appears to be instantaneous.

The Quasi-Static Assumption.

Using the assumption that the rotor disc tilts
instantaneously following the application of a pilot
control input, a form of the model given in (1.2-5) and
(1.2-6) can be written which considers fuselage states

only. Setting XR in (1.2-6) to zero gives (KALEO0O1):

-3 -3
X = - Ace - Are X - Ags-Br Y (1.2-7)

~

And substituting for XR in (1.2-5) we have:

.

&(F = (A¢r = Asge AR:\‘“ Aes) e +

(B - Are Ass - Ba) U (1.2-8)
= Aske t BFU (1.2-9)

The contribution to the rotorcraft motion made by the
rotor is lumped into the fuselage coefficients. The point
can be made that the derivatives, identified for a model
of the form given in (1.2.9), but with data which is not
quasi-static, will in general Dbe different to the
theoretical quasi-static wvalues.

The effects of rotor/fuselage coupling on derivative

estimation was demonstrated in MOLU0O03, by attempting an
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identification of a six-degrees-of-freedom model from
simulation data that included rotor flapping modes.
Substantial differences existed between the predictions
and the quasi-static values. However by including the
multiblade flapping coordinates S,, B, and B , in the
assumed model, and performing the identification, and
then reducing to a six-degrees-of-freedom form (as in
1.2-8), the wvalues obtained agreed very well with the
calculated quasi-static values. The conclusion was that
the quasi-static mode was quite adequate in representing
the long~-term \helicopter motion, but that profound
difficulties could be expected in trying to estimate
quasi-static model paiameters using fuselage states only,
in the estimation. The most serious discrepancy was the
underestimation of primary-rate damping derivatives such
as Mqg.

The inclusion of rotor states in the estimation 1is
one possibility suggested by the above conclusion.
However, this would require a fairly 1large increase 1in
the number of parameters to be estimated. The technique
developed by the current author in the following section,
requires only the inclusion of one extra parameter,
namely a time delay, for an improved estimation of quasi-

static derivatives.
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1.2.5 A Suitable Model for the Identification of Quasi-

Static Derivatives.

The quasi-static model containing fuselage states
only is given in (1.2-8), and 1is written compactly in
(1.2-9). To be exact, an additional term is required in
(1.2-9) to represent the transient rotor effects. We may

rearrange (1.2-6), to obtain (c.f. 1.2-7):
-1 -1 -\ . )
Ka = = A AaeXr = Aras Ba Wl » Ara Xa (1.2-10)

substituting for Xs in (1.2-5), and rearranging as in

(1.2-8), we have:
v * * LY
2_(‘.- = AFF Z(F * BF Y - AFR'ARR xR (1.2-11)

Hence it is the wunmodelled input - Ags- Ass XR

representing the rotor transient effects, which is
responsible for the poor estimates of some quasi-static
parameters in the matrices Aép and Eé. It can be
appreciated that the unmodelled input ‘AFR-/\QQ XR will
become significant fof a small time following a movement
of the stick (or pedal) by the pilot: the time span' of
this transient term will be characterized by the time-
constants of the corresponding important main rotor (or
tail rotor) modes. There is clearly a requirement for a
remodelling of the effective control ihput. We require

XV
the estimates of the quasi-state derivatives: }AFF and
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* -
BF for direct comparison with theory, and we shall seek

a model for the identification with the following form:

.

X
Xe = AwXe + B Ve (1.2-12)

where &Lﬂ is the effective control input to the model. A

comparison of (1.2-11) and (1.2-12) implies that:

% -1 . % '
Bed + AwAgefa = Belee (1.2-13)
When Xﬁ = 0 (or near enough) then we have the effective

control input deequals the measured pilot input U; this
will be the case for a step input after a time-span of
the order of the time constants of the important main
rotor (or tail rotor) modes has elapsed. When.‘XR¢-0, the
only meaningful interpretation of (1.2-13) is a
least-squares solution for .. The dimensions of‘i%? are
n x m (for n fuselage states and m controls). Since n >
m, we have an overdetermined system of equations which
may be solved for y@'using the following pseudo inverse

(e.g GELBOO01);

# S
X - ¥®T *
[&;]" = (BI"B.) B/ (1.2-14)
Hence using (1.2-14) in (1.2-13), we have:

) -1 T RS
U = U+ (BB BF A Ase Ko (1.2-15)

N
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An improvement on the assumption of an instantaneous
response of the rotor states KR, following a pilot
control input, 1s to use a first-order model. If we
ignore all but the most important element in X (assuming
Xﬁ represents rotor flapping states), this will 1leave,
for example, Em; for a longitudinal cyclic input s

Hence (1.2-15) can be written as a scalar equation. ,
The effective input is composed of the pilot input and an additional,

transient term . related to the rotor states.

T U = U bXa "'(1‘".‘2_16)

An éppfoximate 7approach adopted 'here, incorporatihg transient and
| steady-state behaviour, involved modelling  the effective control

input Ue as a first-order lag, driven by the applied or
measured pilot input U. The time constant would be
expected to have a value characteristic of the important

-main rotor (or tail rotor) modes. We can thus write:

* \ \
Ue + /T VU = /TU (1.2-17)

Transforming (1.2-17) into the frequency domain (see
Section 2.2.2) and for a periodic measurement window of

length T (U(o) = U(T) = 0 ) we have

A - .
Uee () = Q1 +jmt) U () (1.2-18)

where Ug(0) = 0, since U(0) = 0 and using (1.2-16).

Now for |wT| << 1, (i.e. for small frequencies and small

time constants) we can write (1.2-18) as:
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ercc.b < ‘(\—ch + OCoo‘t‘))GCco) (1.2-19)

Since for WT| << 1 it is true that

SIRT - \-—jc\)’t + OCQLC2> (1.2-20)
we have:

IS ‘j‘d":"

Uesle) = & U (1.2-21)

In the reference ISER001, and in the context of
transfer-function representatiohs, the replacement of
small time constants in the denominator by delays in the
numerator, is a suggested simplification; this
corresponds to the approximation given by (1.2-20) .

Converting (1.2-21) back into the time domain we have.

Uer (&Y = UCt-T) (1.2-22)

Hence a more suitable model for the identification of
quasi-static derivatives (ZA:} and B: ) using fuselage
states and the measured or applied pilot control input,
~is given by:

.

Xe = Are Xe + sz)(t—t) (1.2-23)

where T is an unknown parameter to be estimated alongside
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* *
elements of Agr and Br . The estimated time delay T may

also contain a "transport" component in the control.
1.2.6 The Theoretical Model (HELISTAB).

The helicopter flight-mechanics software package-
HELISTAB, developed at the Royal Aircraft Establishment,
Bedford (SMIT001), 1is used to provide the theoretical
quasi-static parameter values for comparison with
estimates obtainéd from flight data. In addition, the
package can be used to generate simulated non-linear or
linear time responses, which is useful both for the
validation of estimation techniques and software. It has
‘options for a range of different degrees of freedom (DOF)
in the model: ©6DOF (quasi-static model); 9 DOF (with
first order modelling of main rotor flap); 12 DOF (with
second order modelling of rotor flap).

The theoretical non-linear model (PADF009) - for a
specified helicopter configuration - is linearised.for a
given flight condition in order to provide the
theoretical quasi-static 1linear model values. A trim
routine calculates the control settings for the given
flight condition,. and then the force and moment
derivatives are calculated numerically using forward and
backward differencing about the trim point. These are
then combined with the 1linearised kinematic  and
gravitational effects to produce the complete linear

model.
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1.3 Difficulties Associated with Helicopter System

Identification.
1.3.1 General Discussion of Identification Difficulties.

The application of system-identification techniques,
especially in the time domain, has a relatively long
history of success in the context of fixed-wing aircraft
(e.g. ROSS001, KLEIOO07, FOST002, FOST003). The pioneering
work of Molusis in helicopter system identification
(MOLU001,  MOLU002, MOLU003), and work published by
subsequent authors (e.g. PADF002, PADF005, BLAC007,
DUVAQO1l), highlighted some of the difficulties of
applying identification techniques to helicopters. These
difficulties, including those encountered for the
frequency-domain methodology developed in this document,

will be considered now:

1. System Complexity: As was discussed in Section 1.2.4,
the helicopter represents a complex, and highly coupled
system. Strong coupling exists between the longitudinal
and lateral fuselage dynamics. Consequently a 1large
number of parameters are required for a model approaching
something of a global representation of the helicopter.
It is pointed out in KALEQOOl that such "global" models
may be very inefficient for use in problems such as

control system design, stability and control analysis,
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and direct correlation with flight test data for
validation purposes. There 1is therefore a need for
simplifications in the model representation.

The Jjustification for the aesumed form of model used
in the identification work covered in this document, has
been given 1in the ©previous sections. It was also
mentioned that a further reduction in the model
complexity can be obtained by excluding lateral dynamics,
but incorporating lateral states in an extended control
vector for a longitudinal input (and vice versa). This
reduces the identification problem to a manageable size
for the output-error method, and is an approach advocated
ih theh helicopter system identification methodology
developed in this document.

Identification problems resulting from fuselage-
rotor interaction were discussed in Section 1.2.4, and a
new feature of the assumed model structure, namely the
use of a time delay, was presented as a means of
overcoming to some extent these problems; this
circumvents the need for introducing the additional
complexity 1in the estimation model that would occur with

the inclusion of rotor states.

2. High-Vibration Environment: Helicopter vibration 1is
caused mainly by the higher harmonic components of the
blade flapping and lagging motion, in addition to blade
bending modes. The high-vibration environment reduces

the signal-to-noise ratio. A high degree of uncertainty
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or noise in the measurements results in a greater degree
of wuncertainty in the parameter estimates finally

obtained.

3. Instabilities: The inherent instability of the

helicopter restricts the 1length of the data records
available for estimation. Data records which are short
in comparison to long-period modes, may result in
identification problems; the convergence of parameter
estimates with record length is discussed and
demonstrated in Section 3.3.3. The smallest frequency
which can be used in the identification is determined
solely by the length of the data record; an artificial
means of reducing the spacing between frequencies, namely
by the use of zero pads, is shown in Section 3.2.7 to be
worthless for identification purposes.

Because of the instab ility of the helicopter,
difficulties can be experienced in the practical
application by the pilot, of test input signals which may
have desirable spectral properties for system
identification work, but which may " result in an
unacceptable response of the aircraft.

The use of stability augmentation systems can enable
longer data records to be obtained. However a decreased
accuracy in the estimates of the parameters can be
expectéd because of the 1likely existence of strong
correlations between the states and the controls, when

feedback loops are used. The identification of a highly
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augmented alrplane 1s considered in the reference
BATT001, where time-domain stepwise regression and
maximum-likelihood procedures are used; it was concluded
for the identified modei, that some degree of correlation
between the parameters must be accepted. The use of
rank-deficiency as a means of establishing a suitable
model structure when strong correlations or nearly
perfectly defined relationships exist between groups of
parameters, 1s one aspect of the identification
methodology used by the current author. The use of rank-
deficiency, together with the longer data records that

would be possible as a result of wusing a stability

augmentation system, may well offer some new
possibilities for -improved helicopter system
identification.

The use of a stability and control augmentation
system in obtaining response data for system
identification work, is also mentioned in TISC001l, where
it 1is stated as a key requirement that the total surface
deflection (i.e. the control input signal) must contain a
significant = component from the pilot which. is

uncorrelated with the output.

4, Non Linearities: One of the drawbacks of the

frequency-domain identification methodology is that it is
restricted to linearised state-space models with time
delays. As a result there is a need to avoid large

excursions of the helicopter from the trim, in order not
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to violate the small-perturbation assumptions on which
the model is based. Consequently there is a requirement
at the data-collection stage to use control input signals
which will induce a favourable type of response in the
helicopter. The effect of control input shape and the
effect of non-linearities is considered in more detail in

Sections 1.4.1 and 1.4.2.

5. FErrors Associated with Measurement Devices: Some

measurement devices (e.g vanes measuring sideslip and
incidence angles, and the speed probe) are susceptible to
rotor wake and fuselage flow-field effects. Dynamic lags
may also be present in some measurement devices, such as
accelerometers, and as such, should be taken into
consideration when the measurement system 'is modelled.
If measurement channels with lags were to be used in an
identification,vthen for the frequency-domain output-
error program: OUTMOD, developed by the current author,
the corresponding measurement channel could be modelled
with a time delay, for both small frequencies and small
accelerometer time constants (See Equations 1.2-17 to
1.2-22 in Section 1.2.5 for some justification of this).
It may be the case that scale factor or bias errors
are present in the data; these are considered in more
detail in Section 2.2.4. For the use of frequency-domain
data, constant biases have no effect on the estimation,
when the @ =0 frequency is excluded from the stipulated

range. In addition, it 1is ©possible to estimate
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measurement scale factors occurring in the linearised
measurement transition matrix (relating measured
responses to states in the model) using the
frequency—domain output-error program: OUTMOD.

The 1locations of measurement devices, relative to
the centre of gravity, have to be taken into
consideration when ﬁodelling the measurement systen,
although these can also be estimated as unknown
parameters. Offsets relative to the centre of gravity are

discussed in Section 2.2.4.

6. Correlations in the Data: A specific difficulty

resulting from highly correlated lateral response
variables, associated with a "Dutch-Roll" type mode, 1is
considered in Section 4.3.2. This is thought to be
largely responsible for the physically unrealistic
estimates obtained for some lateral parameters in
previous studies (PADF(002). The use of rank-deficiency in
the output-error method is demonstrated in Section 4.3.2,
as a technique, which through the establishment of a more

appropriate model structure, leads to improved estimates.

Some Further Remarks: A list of further, and possibly

insidious, sources of error in the identification would
be endless. However, some additional problems encountered
by the current author include: errors in the calibration
(introduced at the data preparation stage); the use of

incorrect measurement units (i.e. a scale- factor type
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error) the use of an inappropriate data window for the
identification (e.g. the inclusion of a portion of data,
usually at the end o0of a measurement data file,
corresponding to the pilot recovery period, and which is
not adequately modelled using only one control input in

the identification model) .
1.3.2 Kinematic Consistency Checking.

Errors in the flight due to instrumentation failure,
or errors introduced at the pre-estimation processing
stage (i.e. conversion into standard measurement units
using calibration values) can cause a lot of wasted hours
at the estimation stage. However, the presence of such
errors can be revealed by performing a Kinematic
consistency <check (REID001, FEIK002) on the data. A
Kinematic-consistency check program was developed by the
current author (KINECON) for use in such cases.

The Kinematic equations of translational motion and
associated Euler equations of rotational motion, shown

below, from the basis of the computer program - KINECON.

U = -Wcl + Vo o+ Qg

V = -Ur « Wp + q

W = -Vp + Ug + a; (1.3-1)
D = p o+ q SnPtan© + rCos¢%qq®

© - gCosd - rong

Y = clSngS Sec © (‘Cos¢ Sec ©
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The above set of equations may be integrated (using
Euler’s method or a Runge-Kutta method) to obtain time
histories of the velocity components: U,V,W, and Euler
angles: QﬁAQ,Y/. The integration is driven by measure-
ments of the accelerations: ax, ay, az, and rbtational
velocities: p, q, r. A comparison is made with estimates
of U, V, W, obtained independently of ax, ay, and az, by
solving iteratively the following non-linear set of
coupled equations (shown in a form that includes the
offsets relative to the <centre of gravity in Section

2.2.5, and implemented in the program in such a form).

0

(U*= V2 s w‘)yZ
kan (V/U)
Fan (W/U)

Measurements of speed, flank angle and incidence

v,

B
X

(1.3-2)

W

11

angle: \/SF'B ,D{, are obtained for wuse in the above
procedure.

A graphical comparison of "measured”" time histories
of: U, V, W, ¢, &, VSP’ B , X and the corresponding
quantities obtained by integration of (1.3-1) can then be
made. This can highlight bias errors which show up as
drifts in the computed time history (see Figure 1-1).

A procedure for estimation of accelerometer Dbiases
is also a feature of the program KINECON. The biases are
estimated by >an iterative regressive procedure which

attempts at each stage to fit a least squares regression
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line through the residuals obtained for the U, V and W
comparisons. Using the slopes obtained, estimates for the
biases are found, and the corresponding accelerometer
measurements are corrected. Integration of Equations (1.
3-1) 1is then repeated, and a new comparison of the
observed and estimated quantities U, V and W is made. The
procedure 1is repeated until a satisfactory match between
the observations and the estimates is obtained. The use
of the technique is illustrated in Figure 1-1, and has
proven its worth in application to a large number of
flight test records. A more general facility for handling
bias and scale factor errors is given by the

identification methodology developed in this document.

1.3.3 The Role of Extended Kalman Filtering Technigues.

A problem encountered in the application of system
identification techniques to helicopters, is the presence
on some measurement channels of large amounts of noise.
State estimation, or Kalman filtering techniques seék to
reduce the amount of uncertainty associated with a given
signal. A computer program specifically for rotorcraft
state estimation was developed by NASA, called DEFKIS
(HALL002) . The program represents the implementation of
an Extended Kalman filter and smoother (e.g. GELBO0O01l),
where the non-linear model is based on the Kinematic
equations of motion, similar to those given in (1.3-1),

but supplemented by further equations incorporating
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additional states. The program can also be seen to play
the role of a Kinematic consistency checker, and in
addition, allows for the reconstruction of unmeasured
states and state time derivatives. The DEFKIS program 1is
an integral part of the time-domain helicopter system
identification package PEP, currently implemented at the
Royal Aircraft Establishment Bedford, and outlined in the
reference PADF005.

A significant disadvantage in the use of DEFKIS 1is
the sheer complexity of the‘ input data required for
successful operation of the progran. The user is
required to specify certain noise statistics (measurement
and process) which may not be known apriori with
confidence. Execution time of the program may also be
considerable.

The frequency-domain methodology developed here 1is
capable of using the untreated measured flight data,
where it 1is transformed directly into the frequency
domain. For the frequency-domain equation-error method,
it is shown in Section 3.2.1 that measurements of time
derivatives need not be available for the estimation to
proceed; in addition, the Fourier transforms of states to
be included in the model, are easily obtained from the
transformed measurements.

The possible need for the use of an Extended Kalman
Filter/Smoother Program, such as DEFKIS, within the
frequency-domain identification methodology, is discussed

in Section 4.2.5 1in the context of noisily observed



inputs to the output-error method.

1.4 ¢Obtaining an Adequate Response for Helicopter System

Identification.
1.4.1 The Design of Suitable Test Inputs.

Mode Participation

In order to be able to perform a satisfactory
identification, it is necessary for the measured
responses to contain sufficient information about the
system. For a linear system of the form given in 1.2-3,
with n states, the following expression can be written
for the free response (PADF003):

o - AL
XCO = E‘CVL'Z_((O))Q U (1.4-1)
where. Ka» is the value of the state vector following the
application of the test-input signal; Ui are the
eigenvectors of the system matrix A; V. is the ith row of
U, where Jis the n x n matrix formed by closing
together in ordered form the n eigenvectors of A. |

The terms in (1.4-1), in parenthesis, are scalars
known as mode participation factors. If 'X(d) is
proportional to one of the gh, then only that mode will
respond. For the free response, the relative degree to

which each mode participates in the motion is determined
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by the participation factor.

It is because of the fact that the application of a
test input signal, on a given control, may not adequately
excite all the required rigid body modes, that the
combination of several data sets for the identification
is advocated, and even stated as necessary, Dby some
authors (e.g. KALEQ0O1l). This is not, however, a
universally held belief: a methodology based on single
run equation-error evaluation in the time domain is
described in the reference (DUVAOOl), and is considered
in Section 3.2.3. The wuse of multirun data for the
equation-error method is demonstrated in Section 3.3.6

using real flight data.

Multi Step Inputs

The design of suitable control inputs for aircraft
system identification studies is an area which has
receirved considerable attention (e.g. GUPT002, STEP001,
AGAR(001). The object of these test inputs is to excite
the system so that the modes of interest are
participating significantly in the response. In the
context of helicopter system identification, the use of
pseudo-stochastic multistep inputs has been proposed
(e.qg. MURRO0O02) . Originally developed for fixed-wing
applications, these signals can be tailored so that the
frequency components of the signals span the passband of

the system under test. However, it should also be pointed
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out that sharp-edged inputs might excessively excite the
higher-order rotor modes, which is an undesirable feature
for the identification of rigid-body models (DUVAQOO1).

A commonly used signal of this type is.the "3211";
this 1s shown in Figure 1-2, together with its auto
spectrum, for clock periods of 1.0 and 0.5 seconds. The
"3211" input is often favoured as a test input because it
has an auto spectrum which closely approximates that of
a band-limited white noiée source, which has an equal
power distribution over a certain frequency range, and so
excites all modes within the band equally.

For the flight data sets analysed by the current
author, the "3211" inputs occurred with a 1.0 second
clock period. It can be appreciated that as the clock
period of a multi-step is increased, there will be an
increase in the overall power content of the signal; this
is shown in Figure 1-2 for a "3211" input. The problem
with applying a signal which has a relatively high power
level throughout the range of frequencies associated with
the rigid-body modes (0-3 rads/s), is that it will induce
large excursions of the aircraft, invalidating the small-
perturbation assumptions of the model. This is likely to
be a significant reason why better results were obtained
for doublet inputs (shown in Figure 1-3, together with
auto spectrum), of shorter duration, by the current
author, for the flight data sets considered.

- The above findings have been supported by some

additional research, subsequently carried out at Glasgow

~
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University (LEIT001), in which it was shown that the
"3211" input, with a 1.0 second clock period had a lower
coherence function (BENDOOl) than the 1.0 second clock
period doublet, over the range of frequencies associated
with the rigid-body motion. A lowering of the coherency
at particular frequencies can be caused by insufficient
excitiation and non linearities; both of which are
undesirable features from the point of view of
identification.

An identificatipn carried out by the current author
(BLAC003) wusing simulated data generated by the HELISTAB
program, sought to compare the 0.5 second "3211" input
and a doublet of similar duration. For the regression
fits obtained, it was concluded by examination of the
residuals (and their auto-correlation functions, where
for wuncorrelated Guassian residuals it is an impulse
function) that the 0.5 second "3211" was the better of
the two. This conclusion was also backed up by
consideration of the coherency functions of the two
inputs, shown in (LEITO001).

Another factor which has to be taken into account,
for avgiven multistep shape, 1is the amplitude of the
signal; increasing the amplitude, for a given clock
period, has the effect of scaling the autospectrum. A
large-amplitude input will thus also induce an
undesirably large response of the helicopter. Some
results of an investigation carried out by the current

author (BLACO003) into the effect of amplitude and clock
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period on estimates of lateral derivatives, using
non-linear simulation data generated by ’HELISTAB, are
showﬁ in Figure 1-4. The dgteriorating effect of Dboth
increasing 'clock—period and increasing amplitude for
"3211" input is demonstrated, where normalised lateral
\derivative estimates (normalised with respect to the
correspdhding linear model wvalues) are shown. | In
reality, of course, very smali amplitude inputs will be
unrealistic in that they need to be large enough to
overcome the dead zone of the control; in addition, a
very small response would be overwhelmed by measurement
noise.

It 1is clear from the aforegoing discussion, that in
the design of suitable test inputs for helicopter system
identification,'more consideration than has been given in
the pasf is needed of the factors likely to induce severe
non-linearities in the response. Previously, Frequency
characteristics based on the general shape of the input
have been given primary consideration. Recently, however,
a procedure for the design of multi- step inputs that are
suitable for helicopter system identification, has been
developed, which takes into consideration such factors,

and some new input types have been designed (LEIT001)

Other Test Inputs Used -

In addition to multistep inpués, some other types of

test input signals have Dbeen used in the past. 1In
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(TISCO001l) the authors use frequency sweeps (or swept sine

waves) in the 1dentification of single-input single-
output transfer functions for the XV-15 tilt rotor
aircraft; these inputs are cited as ideal because they
result in bounded and reasonable excursions of the
airgraft, and suitably excite the important rigid-body
modes over the entire frequency range of interest.

However it is believed that fatigue problems may
arise with frequency-sweep inputs when applied manually
through the pilot’s controls. With manual inputs it 1is
difficult to limit the magnitude of the perturbation at
the resonant frequencies of the aircraft. With an
appropriate control input device, these problems can be
overcome by limiting the amplitude of the test signal at
critical parts of the frequency range. |

In the context of time-domain helicopter system
identification, the .authors in the reference. DUVAQOO1l
consider a "3211", a doublet, and a 1low frequency
sinusoid as test-input signals. Simulated data
~ representing the Rotor Systems Research Aircraft, with
rotor degrees of freedom was wused. The simulations
included cases with a stability augmentation system (SAS)
switched on. It was found that the use of a "3211" and
doublet, both of which have significant high frequency
components capable of excessive excitation of rotor
modes, resulted in considerable SAS activity. (The
detrimental effect of the use of stablility augmentation

systems on an identification was discussed in Section
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1.3.1). In contrast, the sinusoid input provided only low
frequency excitation, reducing the SAS activity, which in
turn lead to better regression estimates of longitudinal
parameters. However, it was also concluded in DUVA001,
that 1in the event that the SAS can be left off for
lateral excitation, it may prove more effective to use

inputs with higher frequency components (i.e. a "3211").

1.4.2 The Problem of Identifying a Linear Model from

Non—-Linear Data.

The extent to which the response of a helicopter in
flight-test conditions is non-linear is determined, to a
large extent, by the test input signal uséd; this was
considered in the last section. A disadvantagé of the
frequency-domain methodology advocated here, is that it
is limited to the identification of small-perturbation
models. However, for the state—spéce formulation assumed
for the identification, it is possible in theory to

~include  specific non-linear terms in the model by

including non-linear states in an extended control input

vector. The state-space model would have the form:

. %)
X = AX® + [B:8lgw® (1.4-2)
where E;CE) is the non-linear input vector

(corresponding to higher-order terms in the Taylor

X
Expansion of the non-linear model); and B is the
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corr eéponding partition of the enlarged control
dispersion matrix. The use of higher-order aerodynamic
terms in time-domain fixed-wing system identification is
discussed 1in KLEIOO02Z using stepwise regression and in
ROSS001 for the output-error approach where a formulation
of the model identical to that given in Equation (1.4-2)
is considered. The inclusion of such non-linear terms in
the model will mean an increase in the number of
parameters to Dbe estimated. In the case of helicopter
system identification, an increase in the number of
parameters should be avoided at all costs, and it is thus
better to reduce non-linear effects at the outset than to
introduce additional complexity into the estimation.

Non linearities corresponding to the known kinematic
terms (see Equations 1.3-1) and gravitational effects
(known components of the accelerations ax,ay and az given
in Equations 1.3-1) could also be included as non-linear
inputs (assumed to be noise-free). This would mean that
linearisations of the aerodynamic force and moment terms
only are considered in the identification.

An investigation was carried out by the current
author using non-linear simulation data from the HELISTAB
package, 1in order to gain an appreciation of any
difficulties that can be expected in the estimation of
a linearised version of a non-linear system. The

‘results are presented in detail in the reference BLAC003.
The general conclusions were although the 1linearised

reponse (when added to the trim wvalues) may be very
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similar in appesrance to the non-linear response, for a
given control input, the estimates obtained, wusing the
equation-error approach, can be quite different for some
of the weakly-defined iparameters. Differences were
observed in both sign and order of magnitude.

The time-domain fesiduals from model-fits when there
was a substantial amount of non-linearity were quite
deterministic in form. The presence of deterministic
unmodelled non-linear effects is effectively the same as
having a correlated equation-error term, and as shown in
Section 3.2.1, will lead to biased parameter estimates.
It was demonstrated in the simulation study, that small
non-linear effects have a much more detrimental effect on
the estimates of parameters, than a ’larger’ amount of
white measurement noise on the variables. When estimates
obtained either from non-linear simulation studies or
from actual flight data are compared with the theoretical
HELISTAB linear model values, it should be noted that the
HELISTAB values are obtained by numerical differencing of
~the non-linear model and as such, are dependent on the
prescribed perturbation values used in the differencing.
The perturbation values used in the linearisation can be
varied.

One obser&ation which 1s encouraging for the
identification of small-perturbation models, was that for
the longitudinal derivatives considered for the
investigation, important derivatives such as the pitching

moment derivatives: Mu, Mw, Mg, Mv, Mp, M,, , and the
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normal force derivative Zw, gave estimates which were
close to the calculated linear model values. A reduction
in the amplitude of the control input used, brought about
an even closer match between the two sets of wvalues.
Estimates of the aforementioned parameters obtained from
flight data, wusing the frequency-domain  estimation
techniques developed in this document, are presented in

Chapters 2 and 3.

Summary of Chapter 1.

/

The general concept of system identification was
discussed for the specific application considered here,
namely the identification of quasi-static helicopter
models involving fuselage states only.,-. System
identification was presented as a means of verifying, and
updating,a theoretical helicopter simulation model.

‘A form of model was proposed for wuse in the

identification which was considered to be more

appropriate  than = those used ~Thitherto for the

identification of quasi-static derivatives from real
flight-data. For the model, which involves fuselage
states only, justification was given for the
incorporation and estimation of a time delay in some of
the controls as a means of accounting for contaminating
rotor-transient effects.

The role of the helicopter flight-mechanics package

HELISTAB in the identification methodology as a source of
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theoretical values for comparison with those obtained
from flight-data, and its facility for the generation of
simulated responses corresponding to known models which
can be then used to test identification techniques and
their software implementations, was pointed out.

Some of the difficulties which are associated with
the application of system identification techniques to
helicopter flight data were enumerated, and some means of
alleviating them were suggested. For example, it is
possible to derive very comprehensive and high-order
linear models for a helicopter; however, their
complexity precludes the use of such models for system
identification purposes. It was stated that
modifications, such ~as the use of a subsystem in the
identification (e.g. longitudinal motion states only)
driven Dby, in addition to the pilot control, pseudo
control terms (e.g. lateral states), could allow the
identification problem to be cast in a manageable form
for an output-error identification. The removal of rotor
states from explicit representation in the model, and the
use of time delays to model the influence ,Of rotor-
transient effects, represents a simplification to the
model which is suggested here.
| Some means of checking the flight data, prior to
identification, were outlined. The role of an Extended
Kalman Filter Procedure in the context of helicopter
system identification was discussed, particularly as a

means of constructing unmeasured states and removing
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noise levels prior to a time-domain identification. It
was stated that the frequency-domain approach advocated
here, also has the facility to effectively construct
unmeasured states, and that the ability to successfully
apply the identification techniques using raw flight-
data, thus avoiding the complexities of an Extended
Kalman Filter, is advantageous.

Finally, the problem of obtaining a response from
the helicopter which would facilitate a successful
identification, were discussed. These included the need
for adequate model excitation in addition to the
requirement that the small-perturbation assumptions,
underlying the form if model used, were not to be
violated. Some commonly wused test-input signals were
described, and it was argued that more attention should
be paid to the undesirable effects on the motion of the
helicopter of large amplitude and large clock periods for

multistep inputs, such as the commonly used ’3211’'.
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CHAPTER 2
2.0 Some Prewmmanies on Yhe vse of tae Fre‘zoe.m.x Domain

2.1 Introduction

2.1.1 An Outline of the Previous Use of the Frequency

Domain in Aircraft System Identification Work.

Most published accounts of applications of system
identification techniques to helicopters have been
concerned with time-domain methods using a reduced-order
mathematical model representing six degrees-of-freedom
rigid-body motion (e.g. MOLU0OOI1, HALLOO1L, DUVAQO1,
PADF005). However, interest in the use of the frequency
domain for aircraft and helicopter system identification
~has increased recently as evidenced by published work
(e.g. KLEI005, FUKH001, TISC00l1, BLACO007).

In the reference TISC001l, transfer function models
are used for the modelling of XV-15 tilt-rotor aircraft
dynamics, and the identification in the frequency domain
is approached using spectral-analysis techniques which
are considered briefly in Section 2.2.1. For the
identification work carried out in this document, the
problem was formulated in terms of a state-space model
with stability and control derivatives explicitly
represented; it can be shown that an equivalent state-
space representation can also be found for a
trénsfer-function model.

A frequency-domain maximum-likelihood method of
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system identification, based on a state-space model
representation is developed in KLEIO005, with a view to
application to aircraft system identification problems.
The frequency-domain output-error method developed in
this document in Chapter 4 is similar, in many respects
to the method developed in KLEIO05, in that the same form
of cost-function is used, whose frequency-domain residual
terms are calculated wusing a state-space type model.
Also, a quasi-Newton method is used in the minimisation
of the cost-function in both cases,b though some
additional useful features for introducing various types
of constraints into the identification are available for
the software implementation written by the current
author. The main differences between the method developed
in KLEIOO5 and the method developed in this document, are
asociated with both the form of the frequency-domain
state-space model used and the way in which it 1is
represented symbolically.

In FUKHO00l1, the authors apply the frequency-domain
output-error method, developed in KLEI005, to some
helicopter flight data. A modification term for non-
periodic measurement windows, to be included in the state
equation, 1is presented as a means of improving the basic
method (this modification term is discussed in Section
2.2.3). The results for the application reported in
FUKH001, are presented only in terms of the final
frequency-domain fits obtained, without any discussion of

the parameter values found. Nevertheless, the work
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presented by the authors in FUKHO01 (and in a similar
paper: MARC002) was very important for the development of
the frequency-domain methodology presented in this
document. To the knowledge of the current author, no
applications of a frequency-domain output-error method to
helicopter flight data have been reported, with an
accompanying assessment of the estimated stability and
control derivatives, other than those given in this
document (and by the current author in the referencs
BLAC005 and BLAC007).

The authors 1in the paper FUKH001l . advocate an
identification methdology which uses both an équation—
error and a frequency-domain output-error method, with
the former used to provide initial estimates to the
latter. A final stage involving a fime-domain output-
error identification of biases and =zero-offsets leading
on to a time-domain verification of the identified model
is also part of the methodology.

The three identification stages given above also
form the Dbasis of the identification methodology
developed in this document. However, it is believed that
the additional features described in this document
relating to model representation, model-structure
determination, computer—implementation and the software
facilities developed, constitute a significantly improved

methodology for helicopter system identification.
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2.2 The Use of Fregquency—Domain Data.

2.2.1 The Spectral—-Analysis Approach.

Some of the early approaches to the extraction of
airplane stablility and control parameters were carried
out using frequency-domain data, (a brief outline of the
earlier work 1is provided in the reference KLEIO005).
Frequency-response functions, formulated as rational
polynomials of Jjo, were estimated by least-square
minimisation of the equation-errors, (e.g; MARC001) . The
frequency-response values for the measured data were
obtained through the wuse of auto and c¢ross spectral

densities. The equation-error term can be written as:

Ef\)\(,‘w)i
Fes\' () - Fcey = (ny(co)/sxx(w) - EDK(jw)K (2.2-1)

ch»(co) = 5xy(co)/5xx (w) : (2.2-2)

N, and D, are the coefficients in the numerator and
denominator polynomiais, and Sxx(w) and Sxy(w) are the
calculated auto and cross spectral density functions.
Windowing techniques can be used to help reduce the
errors introduced as a result of using finite-length
records - 1i.e. 1leakage of power from different
frequencies, or smearing (loss of resolution) (e.qg.

PAPO0O1, BENDOO1).
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The frequency-response errors are:
AFC) = Foi(w) - T (2.2-3)

AFG) = Re LAFC] + J Tm LAFCaD) (2.2-4)

The least-squares criterion is defined as the

minimisation of:

T

i

> Var)\ (2.2-5)

a3

Frequency-dependent weights can also be incorporated into
the above equation.

The majority of texts, when defining frequency-
domain estimation, use approaches like the one outlined
above (e.g. BENN0Ol), where there is a requirement for
the accurate estimation of power-spectral-density
functions. The estimated models are in the form of
frequency-response functions, characterised by the

identified poles and zeros.
2.2.2 An Alternative Use of Fourier Transforms.

There is an alternative way of wusing the Fourier
Transform, and frequency-domain data, to that given in
Section 2.2.1. Fourier’s thereom (e.g. PAP0O001l) states

that any periodic function f(t), with period T, consists
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of a sequence of impulses, separated from each other in
the frequency domain by wWe = Zﬂ/T . The Fourier-

series expansion of f(t) is given by:

Flo = 2aq, exp(jnaot) (2.2-6)
n= -oQ
where the coefficients Un are given by:

T/2

Q, = ‘/T é/F(D exp(—dnwot) dk (2.2-7)
“lp

This is a common example of a more general result for
expansions using orthogonal functions (e.g. WYLIO0O01),
where the length of the interval 1is T seconds, and
defines the fundamental frequency fb = G%/2x= 1/T.

For a periodic function f(t), it can easily be shown

that for At = T/N (e.g. PAPO0O1):
n-l
Flmoe) = 2 Qn exp (j2rmn/W) (2.2-8)
) =0

where Q. are known as the aliased coefficients, and are
related to the Q. in (2.2-6), which is defined in

(2.2-7), by

[~

0o = 2 Qaren (2.2-9)
r= -0d .

The finite Fourier-series expansion is a name often given

to Equation (2.2-8). From (2.2-8) we see that determining

the Fourier series 1s reduced to the solution of system
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of N equations; this corresponds to the well known result

(PAPO0O01) :
- -\
Qo = /v sz(mat) exp (=) 2xmn /1) (2.2-10)

Taken together, Equations (2.2-8) and (2.2-10) correspond
to the well-known finite Fourier~-transform pair.

It is perhaps more enlightening to rewrite (2.2-8)
in a form which explicitly includes the frequencies .,

defined below.

-~y
F(mar) = ZOEL“ exp ( jon mat) (2.2-11)

>

W n2x /Nat (2.2-12)

Folding Fregquency

From Shannon’s sampling thereom, the highest
frequency which can be uniquely distinguished is givenuby
half the sampling frequency 1/At (e.g. OTNE0QOl); this
corresponds to the frequency Wy, defined in (2.2-12),
and frequencies above this are aliased into a lower

value. It can also be shown that:

Re T4l = ReCda.dl | (2.2-13)

L1}

Im E(_lr] - Xm [_d.t\)-r]
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Average Value

The G = 0 (i.e. Wo) value represents the estimated
average, or D.C. level, of the data. From (2.2-10) we

have:

n-
d. = ‘v Z £ (mar) (2.2-14)
For the current application, these represent approximate
values of the trim levels of the measured variables
transformed into the frequency domain; that is, the
points about which the small perturbation model is being
considered. In addition, constant biases or zero off-
sets in the measurements, will manifest themselves in
this term. The c>= o value is excluded from the range of
frequencies wused in the identification; this reduces the
number of parameters that have to be identified wusing

frequency-domain data.

Application of Fourier Transforms to State-Space Model

For a state-space model given by:
X@® = A + By (2.2-15)

we can apply the discrete Fourier transformation to

obtain a frequency-domain representation of the model:
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):ECcon) = I"\chn) + BQCQ).\) (2.2-16)
where the notation * signifies the transform of a time
derivative. The model given in (2.2-16) is defined for
discrete values of frequency given by (2.2-12).

The frequency-domain estimation techniques
subsequently developed, and used in the work covered in
this document, use complex-valued frequency-domain
quantities, such as those given in (2.1-16) in the

estimation algorithms.

Errors Due to Finite Measurement Window Length and Non-

Periodicity

Within the 1limits of machine accuracy, a set of
measured data transformed into the frequency domain using
Equation (2.2-10), can be obtained once again in its
original time-domain form using Equation (2.2-8) (i.e.
inverse Fourier transformation). It can be seen, however,
using Equation (2.2-8) and the expressions in (2.2-13),
that we could perform some sort of filtering operation by
setting to zero those calculated Fourier coefficients
which correspond to a particular freqﬁency range. For the
removal of frequencies in the range Gh'to W/, , we have

for the "filtered" signal fq:

) (2.2-17)

]

v n-g,
RLCMAB = nz Qn exp(jrrnm/n) - 2. G exp (j zﬂgm/m\)

° 1
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By performing an estimation with a restricted
frequency range, the effective time-domain response, with
which the model is being fitted to in the identification,
is given by (2.2—17);

In representing a function in the form of a Fourier-
series expansion such as Equation (2.2-6) with an
infinite number of terms, or as Equation (2.2-8) for - a
finite number of terms (with aliased coefficients) it was
assumed that the function was periodic. However, in the
present context we have to note that helicopter responses
are transient, and can be considered to be periodic
functions with an infinite period. If the transient
response of a state has decayed to a value near zero
(assuming the response to be that of a stable system) at
the end of the record, then we can consider it tebe
approximately a periodic function within the measurement
window. For the test-input signal, we can ensure that it
is zero (i.e. its perturbed value above the trim setting
is zero) prior to the application of the input, and at
the end of the record; thus it is periodic within the
measurement window.

For a finite measurement window, the Fourier series
approximation assumes that the function duplicates itself
at regular intervals, for all times outside the
measurement window (i.e. assumes a periodic function). In
order to overcome this problem, we would require records
of infinite length for the responseé)and the test-input

signal, corresponding to the limiting case of functions
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with infinite period. In reality, we <can only use
finite-length data records. This 1is equivalent to
multiplying the "true infinite" signal by a box-car
function, amounting to a convolution of the true Fourier
coefficients with the transform of the box-car function
(e.qg. BENDOO1) . Moreover, the use of a series
representation is an approximation, since an infinite-
period function can only be described using a continuous
range of frequencies (i.e. an integral expression).

The effect of wusing a finite window - and by
implication the assumption of periodicity in the analysis
- 1is appar:ent when "filtering" operations, as defined by
Equation (2.2-17) are performed. This is shown in Figure
2-1 using real flight-data, where the original signal and
the "filtered" signal are superimposed for a test-input
signal and some measured responses. Uncharacteristic
oscillations are present at the beginning and the end of
the "filtered"” signals 1in cases where the original
unfiltered signals are not periodic within the
measurement window. This corresponds to the discrete
equivalent of Gibb’s phenomenon (e.g. PAPO001) which
occurs in analytical work wusing continuous Fourier
integrals, when a restricted low frequency range is used
in describing a piecewise continuous function in the
vicinity of a discontinuity: the function begins to
oscillate rapidly as the discontipuity is approached from
both directions, and the concentration of the ripple

increases as the frequency range used increases.
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The above effects represent the second main
disadvantage of the indicated use of the frequency domain
in helicopter system identification: namely, the
effective approximation of the response using a Fourier-
series representation, whose coefficients are calculated
using a finite-length record. (The other disadvantage
was the restriction of the technique to small
perturbation systems represented by a state-space model
with delays).

Hence, for the identification, it 1is desirable to
have - for a stable system - 1long data records, and
periodicity in the measurement window, resulting in a
representation more characteristic of the real system.
However, as was pointed out in Section 1.3.1, obtaining
sufficiently-long records,” without the use of a stability
augmentation system, is a méjor problem for helicopter

system identification.

Least-Squares Sense of Orthogonal-Function Approximation

It is a property of the discrete Fourier-series
expansion obtained for a given data set, that it
represents uniquely the "best" - in the least-squares
sense - trigonometric (and hence periodic) approximation
for a specified order (ISAAQO0l). The maximum order is
determined by ghe number of data points available, and
all other orders of approximation,bwhich are also best in

the least-squares sense, correspond to Equation (2.2-17).
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This is a consequence of the well known, and more general
result for orthogonal series approximations, whereby
increasing the order of the approximation does not
require the re-calculation of any coefficients, only the
inclusion of an additional term. Hence, for the use of a
given data set in an identification, carried out over a
stipulated frequency-range, the effective time-domain
response, to which the model is being fitted, is the

"best" periodic approximation in the least-squares sense.

(NAG) TLibrary Routines Used to Obtain Fast Fourier

Transforms

The identification software developed by the current
author: vses Fhe: NAG - (FFT) routine CO6FAF
(NAG001l) to obtain the discrete transforms. The
Fourier-transform pair so defined are similar to (2.2-8)

and (2.2-10) except for multiplicative factor of 1/JN;

they are:

Fima) = VU Zoﬂn exp(j 2xan/N) m= o, we (2.2-18)

-y

Un = /I8 Z Fimae) exp (-j 2@ mn/N) neo,iomat (2.2-19)

Equivalence of Time and Frequency-Domain Approaches

Using all the available frequency-domain points in

~an identification is equivalent to using the original
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time- domain sequence. The cost functions which are
minimised for the identification techniques (i.e.
équation error or output error) can be represented as
functions inVolving sums of squares. Parseval’s theorem
(PAP0001) states that the following relationship = exists
between the squared frequency-domain and squared
time-domain quantities (it is written in terms of the

fourier transform pairs defined in 2.2-8 and 2.2-10):

N-A

208\ = Yy Z 1 PCmanl (2.2-20)

m:o

The equivalence between the time and frequency domain
approaches no longer holds if a restricted frequency
range is used. This is, however, one advantage in wusing
the frequency-domain: the frequency range over which the
cost function is minimised can be varied as required,
within the estimation algorithm, and there 1is only' the
requirement for the storage of the original data set.
Time-domain estimation for a variety of different
frequency ranges would require the production and storage

of at least one additional data set.

Some Further Advantages of Using the Freguency Domain

The ease with which the frequency range used in the

identification <can be restricted was cited above as one
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advantage in using the frequency-domain; this is
particularly advantageous for helicopter system
identification when models for rigid-body dynamics, valid
for low frequencies, are to be obtained. The exclusion of
high frequencies, representing unmodelled effects, is
also beneficial from the point of view of data reduction.

Another advantage is that transformation of the
model equations into the frequency-domain has some
important implications for the estimation algorithms
themselves: operations in the time-domain such as
differentiation are replaced by mnmultiplication; and
equations, which in the time domain require numerical
integrations over the entire time record for each
iteration (such as the equations for the partial
derivatives of the cost function with respect to the
unknown parameters), are replaced by expressions which
can Dbe solved by algebraic manipulation. This is brought
out in Section 4.2.2, where the expressions are
developed.

In addition, by formulating the estimation problem
in the frequency-domain, it is easy to include time
delays 1in the set of parameters to be estimated; this is

also brought out in Section 4.2.2.

2.2.3 An Expression for the Discrete Fourier Transform

of a Time Derivative

From the state-space model given in Equation
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(2.2-15), we <can write the equation shown in (2.2-21)
involving the finite Fourier integral, for an interval of
T seconds. The reason for displacing the integration
limits from their wusual valves Dby half a sampling

increment, will be indicated shortly

T-ot
AB 2(:_(!:) exp C'\')cot) dv = 2 X(I:) exp (—\‘)cotj d¢ +
= = ' (2.2-21)

T-2F
z

S V) exp-jot)ak

The integral expressions in Equation (2.2-21) are known
as finite Fourier integrals (BEND0O1l), and can be defined
for a continuous range of frequency values w.

By integrating the left-hand side of Equation
(2.2-21) Dby parts we can obtain an expression for the
f%gite Fourier integral of a quantity differentiated with
respect to time, in terms of the integral of the original
quantity. For periodic functions, the result is well
known. In the references FUKHO01l and MARC002, the authors
present an expression for the discrete Fourier transform
of a quantity that is differentiated with respect to time
which involves both the discrete Fourier transform of the
original quantity and some additional points not used in
the transformation. An important feature of the result is
that it does not assume the measurement data window to be
periodic (which is the usual case for helicopter flight
data) .

The justification for the non-periodic measurement -
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window result given in the references FUKH00l and MARC002
relies on wusing an approximation between a discrete
Fourier transform and a Fourier integral defined between
the 1limits (-At/2, .T-At/2) as its starting point. No
mention 1is made of the numerical integration technique
implied in making the approximation (given in 2.2-24), or
why the integration limits are so defined. A
justification for the approximation, which 1is the
starting point of the derivation, will be provided by the .
current author 1in due course. Firstly, however, let us
consider the derivation of the result itself. For the

discrete Fourier transform defined by (2.2-10) we have:
o N -\ .
X(.wﬂ = ZWXCmAt) exp (- jonmat) (2.2-22)

we will write:

T- 08

Xy = '/t SLXCt)exp(—gwnt)dL— ©(2.2-23)

-4k

—

2

and similarly we can write:

T-8t

X = V1 _St).((t)cxp(-jwnt) Ak (2.2-24)

Integrating the right-hand side of (2.2-24) by parts, and
using the fact that we are considering only discrete
values of frequency: @, (defined in 2.2-12) we thus

have:
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Jjwa Ak

XCcon) = Jmn)?(o,\) + AXe z (2.2-25)

AX & LX(T-4/) - X(-ét/zﬂ /T (2.2-26)

Taken together, (2.2-25) and (2.2-26) represent the
result for the transform of a quantity which is
differentiated with respect to time, where the
measurement window ié non-periodic (i.e. X(T-At/2) X (-
At/2)) .

Returning now to equations (2.2-23) and (2.2-24),
which represent the starting point of the derivation, and
which were not justified in the original references; 1if
the Fourier integrals are closely approximated by the
discrete Fourier transforms as shown, then the frequency-
domain model representation given in (2.2-21) is
equivalent to the discrete formulation given in (2.2-16).
Now for the mid-point quadrature method (e.g. ISAA001),
it turns out that the appropriate formula for a Fourier
integral 1is the same as the discrete Fourier transform
summation. Hence equation (2.2-23) strictly speaking,
represents an approximation to the integral on the right-
hand side, wusing the mid-point method. The interval of
integration is defined as (-At/2, T-at/2) to enable the
mid-point values to coincide with the discrete measured
values at times t=0, At, 2At....N-1At, for. an interval of
length T=Nat seconds. This idea is illustrated in Figure
2.2.

The rectangular method for the numerical evaluation
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of the integrals on both sides of the equation (2.2-21)
is less accurate than the midpoint method. However, the
trape%ﬂ%dal method is of comparable accuracy to the mid-
point method, and it can be formulated so that the
interval of integration is (O,T). It can be shown easily
(e.g. ISAAQ0O0l) that for an integral of time-span T, that
the errors incurred are proportional to At for Dboth
methods. However, the quadrature formula for the
evaluation of a Fourier integral using the trapeziodal
method no longer coincides with the discrete Fourier
transform summation,. but would require an additional
correction term (At/z (X(W) - X)) ) to be written on the
left-hand side of (2.2-23). Hence the result given in
(2.2-25) and (2.2-26) 1is Jjustified wusing mid-point
integration to evaluate the Fourier integral defined over
the interval (-At/2, T-At/2).

The result given in (2.2-25) and (2.2-26) immediately
extends to vector quantities. The model representation
given in (2.2-16) for discrete Fourier-transformed

quantities can be re-written as:
J@a Ko = AR + Bl - Gewn  (2.2-27)

where §1®ﬂ) is the correction term given in (2.2-25) and

(2.2-26) .

~ » wa AT
Gead 2 DX(T-2)- X292 /T = (2.2-28)

[
e
3

>
I

=
1<

o

?\V
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It can be seen that the term @ % could be considered
to be a frequency-domain control, with the wvector ZBX
incorporated as an additional column of the control
dispersion matrix B. Thus, AX could be estimated as an
unknown set of parameters. The authors in the original
references cited earlier advocated the use of a 1linear
interpolation scheme, based on the use of measured values
not included in the transformation. To avoid the
requirement for the estimation of additional parameters,
the same approach was used here. The approximate

formulation given in (2.2-29) is thus used for AX:

AK = [X(Nﬂaﬂﬂ-X(mAQ..

(2.2-29)
X(-a0)-X (o)) /2T

where X(NAt) and X(-At) are the two additional points not

used in the original transformation.

Formulation of the Modification Term

Using the discrete Fourier transform pair defined in
equations ‘(2.2—18) and (2(2?19) for the NAG mathematical
library, it immédiately follows that the appropriate
formulation of the correction term for software
implementation, differs from (2.2—29) by a factor of Jﬁ.

AXono = Jv LX (u-128) + X (0¥ -

; (2.2-30)
X209 - Xl 2t

This form of the modification term is therefore used in
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all subsequent work.

2.2.4 A Frequency-Domain Representation of the Model

A Fregquency-Domain Representation of the State Eguation

By equating the real and imaginary parts of both
sides of the frequency-domain state equation given in
(2.2-27), we can write the frequency-domain
representation of the state equation in detail (after

rearrangement) as:

-A -wl) [Re Eg(m)] B O Rctg(co)l

—
—

wI -A / \Tm L) 0 B/\TwL{)

/nv - 1\ (2 .2-31)
M) Coseoarfz)  (2:2731)
-IN/T
AX Sinwat/2 frix

Given the state matrix A, the control disper§ion matrix
B, the known transforms of the inputs:Ucw), and the

modification term for non-periodic measurement windows
(last term on the right-hand side), the above 1linear
matrix equation can be solved at each of the stipulated
(discrete) frequency values to obtain the frequency-

domain state-equation vector:

Re [ X (“3-]
T L f]
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A Frequency-Domain Representation of the Measurement

System

As has already been stated, the frequency-domain
approach 1s Dbasically limited to linear models, though
some non- linearities - notably time delays, can be
incorporated. This is because practical difficulties are
encountered 1in applying linear transformations, such as
the Fourier transform, to equations which are generally
non-linear. Because the measured quantities and states in
the model, are in general, non-linearly related, there is
a requirement- for some linearisations to be carried out.
The point about which the linearisation is carried out
corresponds to the aircraft trim state. The fact that the
measurement devices may be displaced relative to the
centre of gravity, has to be taken into consideration in
this context. Consider for example, the measurements of
speed, flank angle, and incidence angle (V&,E%,&;). These
quantities are related to the states (u,v,w,p,q,r) in the

model by the following set of non-linear equations:
Vo = Lluse s qla -ely) s (vave s ey - pli)*
+ (w+We + P\.; —ql; )z]

Y]

%
Bn= For L(veVe + el -pla) [ (usUe +gf - r5)] (2.2-32)

. X X B B
K = YFan [i.w+Wc*P\y-q_lx)/(u+ue+q_Lz-rly)] ,
where L:,J;)\;)lf,lyi Qil;)L;;l: are the offsets from
the centre of gravity of the speed, flank and incidence

measurement devices respectively, and where Ue, Ve,
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We represent the trim values of the velocity components
in the body-fixed axes along the X, Y, 2 directions
respectively

The (time-domain) linearised measurement equations,
obtained wusing a first-order Taylor expansion about the
trim, are as follows for a typical set of flight
measurements, where measurement bias terms:
( bvxbﬂ,bu,tq;be,bp>b¢)br ), and measurement noise terms

( Nv, Np, Ny Ngy Ney Npy Ng, Ne ), are included.

1
)

A I o L o o o o -Yllu
Bm o] 0 (o] o '/Ue 'Lf/uc o l5’/”: w
o o Ye-lille 0 o UG o ‘0 q
fm|=|© © 1 0 o o o 0 |8 4
Gm (o] o o l. Q O (o] (o] \%4
P o o 0 o o | o o |[|p
Pen o 0o 0 o o o 1 o ||g
| Fm Lo O o o o o 9 I JUrd
Ue + bv 1 f\\,
Ve/Ue * bp Ng
Wg/Ug"'bo( Ny
by, + | M (2.2-33)
Oe + be Ne
bp Np
Pe + bg Ng
L br‘ J an
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It should be pointed out that the vector, corresponding
to the second-last term on the right-hand side of
equation (2.2-33) includes constant terms that arise from
the linearisation (i.e. trim constants); these terms add
to any constant measurement biases present, and it 1is
only the resultant sum which can be identified. The
resultant sum is referred to in this document as a zero-
offset. By excludingcw =0 from the range of frequencies
used, the =zero-offset vector is uncoupled from the
frequency-domain identification, and can be identified at
a later stage in the time-domain; this 1is explained in
detail in chapter 5.

Measurement scale factors can also be incorporated
into (2.2-33) by multiplying the left-hand side by a
diagonal matrix consisting of these quantities; a change
of measurement units could also be represented here.
Additional measurement sets could also be used to obtain
quantities in the state equation: for example, the
accelerations Qy ,Qy,Q; could be used to obtainu, Vv, w .
In general, the/number of measured variables and states

i

need not be equal.

The time-domain measurement system can be written in

vector form as:
Z@E) = HX®) + K+b +V® | (2.2-34)

where K. is a vector of trim constants, Q is a constant

vector of measurement biases, and \/(t) is the measurement
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noise. We can consider the measurement scale-factors to
have been incorporated intb the %\matrix.

Transforming (2.2-34) into the frequency domain, and
excluding W =0 from the allowable discrete values of

frequency, we have:
L) = H {Cco) * Q(co) ) G #O (2.2-35)

The set of unknown parameters for which estimates can be
sought, can be extended to include elements of the
measurement transition matrix H. The measurement system

can be written as:

Re E ZCGJ)] H 0 Re [ X(ooﬁ Re [ Q(w)l

A~ ~ + N
T L2 (e O H/ \TnlX@)] \TwDVc))

(2.2-36)

Representation of the Full Model

We now have the following system of equations

representing the full model in the frequency-domain:

(w) = /\X(co) + BUW (2.2-37)

1<

L = Hf@) + Ve (2.2-38)

where we have
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o ~ A
zkhﬂ = JG}XC&D + Gl
(2.2-39)
@ = K2r/vak ;K o= 1,2,3 ... /2
If there are any unmodelled effects present in the real
system, then an additional process noise term can be

included in equation (2.2-37); more consideration 1is

given to this matter in sections 4.2.1 and 4.2.5.

The Use of Measurement Data to Obtain the Modification

Term

It was explained in Section 2.2.3 that the
modification term for the discrete Fourier transform of a
quantity which is differentiated with respect to time can

. . ) wae .
be written in the form AXMGQ Z . The originators of

this expression in the references (FUKH001, MARC002)
suggested that AX be obtained formally by interpolation,
using values of the state vector as in 2.2-29 (or 2.2-30
for NAG FFT’S). However;x is not directly measured, and
the approach used by the current author is to solve the
following set of linear equations for AXwye, given the

analogous expression ZXZNm,obtained from the measurements

and a measurement transition matrix H.

AZmﬂe— = H A,)Snm& (2.2-40)
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DZwne & INLZ(V-128)+ Z (V4D - ZC-48) - Z63] | 2T
(2.2-41)

Equation (2.2-40) follows from (2.2-34). It should also
be pointed out that for the computer implementation of
the frequency-domain output-error method developed by the
current author, the most up-to-date estimate of H, for
the iterative procedure, 1is wused to solve equation

(2.2-40) .
2.2.5 The Modelling of Noise in the Frequency Domain

In equation (2.2-34) the measurement system is
modelled with additive noise terms associated with the
measured response variables; these are represented in the
time domain as Y(t).'When transformed into the frequency
domain this term is represented as QWw), as in equation
(2.2-38).

A recent paper (SCHOOOl) analysed the noise influence
on the Fourier coefficients obtained from a discrete
Fourier transform. For a given quantity subject to a
random noise source the following equation was derived,
where (i, represents a Fourier coefficient of the
measured quantity subject to random noisé source in the
time domain with mean//, and Q; represents the true wvalue

of the corresponding Fourier coefficient:
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Ela..) = a, + p o2 e (2.2-42)

This shows that the expected wvalues of the Fourier
coefficients go to the exact values, except for the zero
frequency component which 1is subject to a systematic
error. It is also shown in SCHO001 that the discrete
Fourier transform of an uncorrelated Gaussian whitevnoise
variable in the time domain produces an uncorrelated
Gaussian random variable in the frequency domain; in
addition, if the original noise source is not
uncorrelated-Gaussian in the time domain, then through
the central-limit theorem of statistics (e.g. MOOD001l) it
tends to an uncorrelated Gaussian distribution as the
sample size N tends to infinity. In the paper: SCHO001 it
.is concluded that:

"the distribution of the discrete Fourier transform
components of additive noise is Gaussian regardless of
the distribution of the noise”.

However, if this conclusion is accepted
superficially, then it could lead to some misleading
conclusions about the likely benefits gained, as a result
of transforming the data into the frequency domain, for
estimation purposes. An important point to appreciate is
that the wuncorrelated Gaussian nature is asymptotic -
i.e. tending to, but never reaching - for a large sample
size N. For a finite sample, a correlated time-domain
source will thus be transformed into a frequency-domain

variable which is correlated, or whose expected value is
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non-zero, over at least some of the frequency values. As
will be shown in Section 3.2.1 for the frequency-domain
equation-error method (and iﬁ Appendix 2 for the
frequency-domain output-error method) this 1leads to
biased parameter estimates, if over the frequency range
selected (assuming it 1is appropriate for the model) the
expected value of the noise is not zero.

The 1implications of the above for the practical
implementation of the frequency-domain identification
techniques 1is that for the stipulated frequency range
used in the estimation, the frequency-domain noise terms
should be closely modelled as uncorrelated Gaussian
variables, with a zero mean, whose expected mean-square
value is a constant, independent of frequency (i.e. white
noise - GELBO0Ol): this is an assumption on which the
frequency-domain estimation techniques are based.

An advantage of working in the frequency domain, is
that the analyst has available transformed residuals with
which the validity of the bandlimited white noise
assumption can be readily examined, and the extent to
which the whiteness assumption is true, appreciated. If
the band limit of the white noise lies within the range
of frequencies wused in the estimation, then the noise
will have been modelléd incorrectly. This error was first
appreciated in the context of time-domain aircraft
parameter estimation (MAINOOl), where it was observed
that the calculated Cramer—-Rao error bounds on parameter

estimates turned out to be smaller than the observed
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scatter of results. The explanation for this discrepancy
went undetected for some time (some analysts used 100

error bounds to increase the range of wuncertainty to
match the scatter of results) until it was observed by
the authors in the reference MAIN001l, that the assumption
of the band 1limit being equal to the Nyquist folding
Frequency (1/2pt Hz) was implicit, and had passed
unnoticed in the theoretical derivation of the maximum
likelihood method and in obtaining the errors bounds as
the inverse of the information matrix. For time-domain
estimation, a solution to the problem was shown in
MAINOO1l to Dbe given by multiplying the estimated error
bounds by VI7§E;EE, where B, is the approximate bandwidth
(in Hertz). This correction requires an estimate of B, to

be made.

Equidistribution of Power in a Transformed Variable

There 1s an equidistribution of power between the
real and imaginary parts of the transform of an
uncorrelated stationary random variable. Consider the
element V,(K) of the random real-valued vector V(L) which
is transformed into the frequency-domain. It is assumed
that the covariance matrix EﬁlY&K§\/(Kﬂ is diagonal
(i.e. no correlation between measurement channels, if the
vector yWK) is measurement noise). For the diagonal
elements we have (using the definition of the discrete

Fourier transform given by 2.2-19):
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ELRLH00T]= EL VB £V Cos zmi/n -
VAR :Z_:VL (7) Cos 2m k3 /N ]

-\
/N ;)E Vi Cof 2xks/N]

I

nN-1
ou/n 2 Cos'zaks/N = On /- /2
S:zo

= On/2 (2.2-43)

where ET Volp VL(@] | 0;: p=q

= 0 p#q

Hence EERQE\Z(K)]QJ O,':/Z; similarly it can be shown
that ELImLV.(0))*) = O3/R, and ELR.TV ] T. LUl = o

This equidistribution of powér between the real and
imaginary parts is of consequence to the calculation of

the frequency-domain error-covariance matrix discussed in

Section 4.2.2.
2.3 The Inclusion of Time Delays in the Model
2.3.1 Representation of Delays inAthe Model
The result for the Fourier transform of a time-

shifted quantity in terms of the transform of an

unshifted quantity is well known (e.g. BENDOO1l) :
FEXCe+T)] = FLX() - exp (Ta)) (2.3-1)

where F[[J] is the Fourier transform operator, and T is the
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time delay in seconds. This result is easily derivable
for the classical Fourier transform, defined in terms of

an integral between infinite limits:
00

FOX(e-D)] & sX(t+t)é°°’tdt =

T o (2.3-2)
“”_050 X(H e

However, as was shown in the case of the transform of a
time derivative, results from classical analysis may need
some modification when the discrete Fourier transform
(defined for a finite range of data) 1is wused. The
following justificatioh for using the same type of result
when the discrete Fourier transform is wused, as that
given by (2.3-1), is proposed by the current author. It
makes use of the result given by (2.2-25) and (2.2-26)
for the transform of a quantity which 1s differentiated
with respect to time, developed by the authors in the
references (FUKH001, MARC002). For a Taylor expansion of

X (iLak+T) we have:

XGak+T) = X(iaY) + X (AT + X (iad) /2" +

X(iar) T/3) ... (2.3-3)

Using the definition of the discrete Fourier transform,
and (2.3-3) we have that:

-1

Vw2 KCae s = Vi §3 Z Xiaw) S Z X e

LTOo

-3

/2! Zox (lav) €

‘\wnLAt -3WaL bk

N -
3
/31 e
/3_12XCLAEU + -"3(2.3—4)

an iat
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A

From (2.2-25) and (2. 2 26) we have the result for X (con) ,

and by repeated application for‘X (cdn) , etc. we have:
X(wd) = Jred X(eon) + jwnécwny - QG(Q).,) (2.3-5)

where X(am) is the discrete Fourier transform of the
second time derivative of X (t), and.éﬁahn is analogous to
é(oh) given by (2.2-8) but evaluated at‘the corresponding
time derivatives. Hence we may write the right-hand side

of (2.3-4) as:

Xcm + t(anxcm + Glan) + T/20 (ol Yo +
JC‘J\'\ C‘I(C«)n) + Ccs.)n)) ¥ oeee =

(1 + Tyon + TPwl/2t « )Xo + (T Tyl vean) Cr (o) *
QA )crcm + 0(T?)

(2.3-6)

Hence we have that

-\ . .
\ ) Ty@nrat T oon - ~jenLat
/n ?;OX(LAUt)e e I\ /n Z X(iap) e

{

(2.3-7)

where &JQ%) is a complex (both in form and in wvalue)
modification term. In the application of the time delay
to a control, 1t 1is ©reasonable to assume that the
(perturbed) control state is zero (corresponding to the

trim position) prior to the application of a test input
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signal, and is =zero at the end of a time record
corresponding to the free response, in both cases for a
time span of length at least T seconds: hence the signal
is periodic and EﬂJQh) is zero since all the higher
derivatives are zero. For time delays in the controls
(and for the test input signals used in practice) ahd for
delays in other quantities periodic in the measurement
window, we can use the result given by (2.3-7), with the

modification term G(w,) set equal to zero.
Changes to the Model Eguations

By formulating the estimation problem in the
frequency domain, the inclusion of time delays (in the
controls U and measurements {) results in a relatively
simple modification to the frequency-domain state
equations given by (2.2-37) and (2.2-38). Additional

diagonal matrices of the form:

a ~Tioon )
D,’,K(con\ = Cc = Cos(Tiwa) - J%m(t;.wn)} L=k

(2.3-8)

DLK (wn)

O ) L#Kk

are required to premultiply the corresponding vectors.
Using E&«n) and %ﬁ«n) as the diagonal matrices of delays
for the controls and measured responses respectively, the

frequency-domain model representation becomes:

X(m) = AXCC") + B’B:LC@)Q(QQ (2.3-9)
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Heed Zeed = Wl + e (2.3-10)

Iy .
with X (), and the discrete values of & used, defined by
(2.2-39). The implementation of the estimation
algorithm, with time delays in the model, is explained in

detail in Section 4.2.2.

Incorporating Delays into the Modification Term

For the inclusion of time delays in the measurement
system, the term AZ (occurring in equation (2.2-40) and
used to obtain AX for the modification term for a non-
periodic measurement window) must incorporate the current
values of the time delays in £. Linear interpolation is
used in estimating AX, and there is a requirement for the
storage of a small portion of time-history data
immediately before and after the transformed portion, in
order to accommodate time delays in the modification
term. For control terms which are time derivatives and
have time delays, linear interpolation is also used in

obtaining the appropriaﬁe modification term.

Some Further Remarks Regarding the Incorporation of

Delays in the Model

Some Jjustification for the use of a time delay in a

control 1in order to more correctly model higher-order
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rotor transient effects on the rigid-body model was
presented in Section 1.2.5. This potentially wuseful
innovation for helicopter system i dentification 1is
demonstrated using simulated data in Section 2.3.2, and
using real flight data in Section 2.3.3 ( as well as in
the results presented in various sections of Chapter 4).
The incorporation of time delays into the estimation
problem is facilitated by the frequency-domain
formulation used.

An interpretation of the time delays on the controi
input vector u(t) has been given. Time delays, or
relative phase shifts, may also be identified for the
measured observations -Z(t); these may be introduced by
pre- filtering procedures carried ou£ on the raw
flight-data, prior to the estimation. In adéition, time
shifts can be introduced into the measured observations
as a result of the data sampling interval: for a sample
interval of At seconds, the sampled value of one quantity
can be separated by up to At seconds from the sample of
another quantity in the same time frame.

As was pointed out in Section 1.3.1, there may be
some dynamic lags associated with some of the measurement
instrumentation; it was pointed out that under certain
conditions these could be adequately modelled using time
delays.

It is dimportant to bear in mind the point made at
the end of Section 1.2.5, that a component of the

identified delay associated with a control term may be
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due to the transmission of the signal from the pilot’s
control to the control surface (i.e. the main-rotor disc
or the tail-rotor disc): for the purpose of
identification the two components cannot be distinguished
separately. |

The sensitivity of the maximum-likelihood estimatof
to small time, or phase, shifts has been noted by some
authors (e.g. IL1F001); in this reference the author
presents a case from an aircraft parameter-estimation
problem carried out in the time-domain, where a positive
time shift of 0.1 seconds in an aileron control-surface
time history resulted in almost a 50% error in the
estimated value of the roll-rate to side-slip stability
derivative. There was, however, no facility, for the
identification of delays in the example presented in the

reference.

2.3.2 Effect of Sampling Interval on Estimates of the

Delay

A linearised model representing the coupled fuselage
and rotof states was given by equations (1.2-5) and
(1.2-6) 1in Section 1.2.4. The quasi-static model, which
assumes that rotor-dynamics can be neglected, was also
discussed 1in Section 1.2.4; in this type of model, it is
considered adequate to include only fuselage states and
controls in the identification with the contribution of

the steady- state rotor effects being lumped into the
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identified fuselage derivatives. In reality, however, the
effective neglect of rotor-dynamical effects can lead to
identification difficulties for some parameters. As was
discussed in Section 1.2.4, this is a well known and
reported problem in the application of system
identification techniques to helicopters. In Section
1.2.5, the basis for a new approach to accounting for
rptor—dynamical effects in the identification, was
developed by the current author, involving the use of 'a
time delay in the control used by the pilot in applying
the test-input signal.

In this section, an investigation into the
incorporation of a time delay in the applied control, for
the use of a six-degrees-of-freedom model in describing a
nine- degrees-of-freedom system will be carried out.
Simulated data from the HELISTAB program, briefly
described in Section 1.2.6, will be used to represent the
nine degrees-of-freedom system, and in addition, the six
degrees-of-freedom quasi-static linear model will also be
provided. The rotor states included in the model
represent the flapping states 2., B« and J3,, defined by
(1.2-4) in Section 1.2.4 (i.e. a first-order rotor
representation).

The flight condition used was for straight and level
flight at 80 knots. The eigenvalues of the 11 x 11 system
(8 fuselage states and 3 rotor states) are given in Table
2-1. The first three entries in the table correspond to

those modes of the eleventh order system for which the
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rotor states feature significantly. Mode 1 is a
subsidence mode for which the coning angle - ﬁ% is the
mode dominant rotor state. Mode 2 and 3 is an oscillatory
mode for which the 1longitudinal and 1lateral cyclic
flapping angles - /%g and ,65 are the most dominan£ rotor
states.

Using the frequency-domain output-error program -
QUTMOD, developed by the current author, and explained in
detail in Chapter 4 (and BLAC006), the helicopter
stability and control derivatives included in the
"estimated’ model were fixed at the
six-degrees-of-freedom quasi-static linear model values.
The only free parameter in the estimation was the time
delay. For the nine-degrees-of- freedom data generated,
the upper frequency value used in the estimation was 0.5
Hz., covering the range of the rigid-body modes. With
this experiment, some indication of the requirement for a
time delay in obtaining an improved model fit for the

reduced-order model, can be established.

Descriptions of Inputs and Results Obtained

The set of control inputs used initially were
longitudinal-cyclic doublets. The estimated time delay as
a function of sampling interval, is shown in Figure 2-3.
For one particular sampling interval of 0.015 seconds
(approximately equal to the sampling interval for the

flight data - 1/64th second - used in the work covered in
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this document), the estimated delay for each of the
controls when a ’3211’ test input signal is applied to
that control alone, is shown.

As the results show, a positive time delay was
strongly identified for the longitudinal-cyclic and
lateral- cyclic inputs. For the longitudinal-cyclic
doublet inputs, it 1s shown that as the sampling interval
was increased, the estimatéd time delay decreased. This
is Dbecause increasing the sampling interval effectively
filters out the high-order rotor flapping effects. The
points in Figure 2-3 representing the doublet inputs are
extrapolated to zero time delay, and it can be seen that
the corresponding sampling interval is very near to the
time constant of 0.11 seconds, given in Table 2.1 for
mode 2 and 3);

The original estimation of the time delay was
carried out in the frequency-domain, and the time-domain
predictions of the data generated from the
nine-degrees-of-freedom model, for  the
six-degrees-of-freedom model, without and with the time
delay, are shown in Figures 2-4 a) and b). It can be seen
clearly that a much closer match with the
nine-degrees-of-freedom data is obtained, using the six-
degrees-of-freedom model, when the time delay is
included. An improvement in a model fit is to be expected
for the inclusion of an additional parameter; however,
some Jjustification that the extra parameter (i.e. the

time delay) represents an actual physical effect has been



-87-

provided, and its inclusion leads to a marked
improvement.

In the case of the collective input, the small value
estimated for the delay, is probably associated with mode
1 in Table 2-1 (of which the coning angle is the most
dominant rotor state), which in comparison to mode 2 and
3, has a very small time constant. For the tail rotor
control there are no dynamics modelled in the HELISTAB
program: the small delay estimated (less than the
sampling interval) 1s the result of numerical noise.
Results using real flight-data, however, have
demonstrated the importance of having a delay associated
with this control; these results are presented in Section
4.3.2. For the longitudinal-cyclic 73211’ input, the
estimated delay is almost identical to that obtained for
the doublet input.

It was also found that when activity was present on
both longitudinal and lateral-cyclic controls,
significant delays were identified for both controls. The
presence of noise on the controls was found to increase
the values of the identified delays.

These results have indicated that the inclusion of
time delays, 1in some of the controls, may be a useful
feature in the estimation of lower-order models, where
the sampling interval is significantly less than the time
constants of modes not included in the model. Increasing
the sampling interval to a value of the order of the time

constant of mode 2 and 3 (longitudinal and lateral cyclic
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flapping angles are the dominant rotor states), for
example, would seem- to be an alternative approach to
circumvent the difficulties caused by the rotor
transients. However, this can have some unpredictable
results, and as will be shown in Section 2.3.3 using real
flight-data, more satisfactory parameter estimates, and
model fits, are obtained using the delay in preference to
a larger sampling interval, for the frequency-domain

identification.

2.3.3 A Demonstration of the Use of a Time Delay Using

Real Flight Data

Description of Flight Data and Model'Structure Used

A flight-data set corresponding to a longitudinal-
cyclic doublet input applied to a Puma helicopter in
straight and level flight at a speed of 100 knots, was
used in the investigation. The length of the data record
was 13.3 seconds. The estimation of longitudinal, and
longitudinal/lateral-coupling parameters was carried out
(using the frequency-domain output—-error program -
OUTMOD) over a frequency range of 0.075 to 0.602 Hz: the
magnitudes of the Fourier transforms were very small
beyond this range. The structure of the model used was as
shown below, with the lateral states incorporated into an
extended control vector. As was pointed out in Section

1.2.1, this enables the identification problem to be cast
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in a manageable form for the application of a single

control input (See Appendix 1).
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The measure variables are related to the state variables
by the additional equation (i.e. the longitudinal portion

of Equation 2.2-33):
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The terms in the above equation were explained in Section
2.2.4.

A number of the parameters in these equations are
known to be insignificant (measures of parameter
significance as explained in Section 3.2.4 were used) and
were excluded from the estimation process. Initial

parameter estimates for the output-error method were
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obtained from equation-error fits for each of the rows.

Description of Results Obtained

Three different cases for the estimation were

considered:

(1) estimation without a time delay in the longitudinal-
cyclic control (i.e. the delay in the above model 1is
effectively fixed at a zero value), using the flight-data
sampling time of 0.015625 seconds;

(2) estimation with a time delay in the
longitudinal-cyclic control using the flight-data
sampling time of 0.015625 seconds; and

(3) estimation without a time delay, but wusing an
increased sampling' time of (6 x 0.015625 =) 0.09375
seconds. The final estimates obtained on convergence of
the estimation algorithm, are given in Table 2-2, along

with theoretical values from the HELISTAB program.

Examination of the results for cases (1) and (2)
reveals that the inclusion of the time delay resulted in
a smaller cost-function value (the frequency-domain
output- error cost function is derived in Section 4.2.1)
at convergence, for the sampling interval of 0.015625
seconds: that is to say a better fit with the observed
flight data was obtained for case (2). The estimate of

the important pitch-rate-damping parameter Mg without the
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delay is very much underestimated in comparison to
theory, Dbut with time delay estimated in the modél, the
agreement 1s excellent. The underestimation of this
parameter in helicopter parameter identification studies
is reported by some authors (e.g. PADF002), where the
assumption of quasi-static rotor dynamics in the
simplified six-degrees-of-freedom models is cited as the
most probable cause. The inclusion, and estimation, of
the time delay in the longitudinal-cyclic control appears
to have made a considerable improvement to the situation.
For the case with the time delay, excellent estimates are
obtained for the cross-coupling parameters: Mg and Mg.
The control sensitivify Mqﬁl agrees very well with theory
for the inclusion of the delay. The time delay itself is
estimated with confidence; its estimated value is of the
same order of magnitude as the time constant for
longitudinal and lateral cyclic flapping. For the
derivative M., it is seen that the theoretical HELISTAB
prediction represents a more stable aircraft that 1is
suggested by the results; the change in sign obtained for
this parameter, when the time delay is included in the
model, indicates that there may be some - strong
correlation between Mg and Muw. The -normal-force
derivative: Zw, 1is estimated with a small error-bound,
and is unaffected by the time delay.

Looking now at <case (3), it can be seen that by
'increasing the sampling interval to 0.09375 seconds, the

most significant features of the results obtained in case
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(2) are repeated: namely, the significant improvements in
the estimates of My and My, over those obtained for case
(1); and the reversal in4sign for the estimate: of M.
Improvements in the Qquasi-static estimates of some
parameters, such as pitch-rate damping and control
sensitivity, obtained by increasing the sampling
interval, were demonstrated in the reference PADF002
using simulated data and time~domain equation-error
estimation. These observations have now been confirmed
using real flight-data, and a more advanced
frequency-domain output-error technique. This improvement
is Dbecause, as was indicated in Section 2.3.3, the
higher-order rotor transient effects are effectively
filtered out for large sampling-intervals. It was also
pointed out, howevér, that this is not the approach
advocated here: the: use of a time delay with a small
sampling-interval 1is preferred - the superiority of this
approach will be made apparent in the rest of this
section.

The cost-function value at convergence for case (3)
is smaller than case (2); however, because the sampling
interval 1in case (3) is six times that in case (2), the
two values are not directly commensurable. Examination of
Table 2-2 reveals that the cross-coupling derivatives: Mg
and Mp, have a less satisfactory agreement with theory
than case (2). In fact, plots of the frequency-domain
fits for the three cases, shown in Figures 2-5a), b) and

c), reveal that case (2) (with the time delay in the
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control and the small sampling interval) gives the best
frequency-domain fit; this is especially true for the
pitch rate.

Using the parameters identified in the frequency-
domain, a time-domain output-error procedure can then be
used to estimate initial state conditions, and
measurement zero offsets - quantities not identifiable in
the frequency- domain because of the exclusion of the
zero frequency to obtain the time-domain fits of the
estimated model. This was done using the program: OFBIT,
developed by the current author; the theoretical basis of
the method, and the computer implementation, is explained
in detail in Chapter 5 and in the reference BLAC006. The
time-domain fits obtained for three cases above, are
shown in Figures 2-6 a), b) and c). Case (2) is again the
most satisfactory, having the best time-domain
reconstruction. The inclusion of the time delay results
in a much tighter fit between the observed and predicted
time-domain responses, especially for the pitch rate: g .
A comparison of the pitch—rate fits in Figures 2-6 a) and
b), shows clearly the improvement resuiting from the
inclusion, and estimation of, the time delay in the
longitudinal-cyclic control. The lateral variables used
as 'pseudo controls’ in the extended control vector,
along with the longitudinal- cyclic control are shown in

Figure 2-6 d).
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Summary of Chapter 2

The wuse of the the discrete Fourier transform as a
means of representing a linearised state-space model of a
helicopter in the frequency-domain, was presented. The
model was extended to include time delays in the
measurements and controls; and the ease with which the
time delays can be incorporated into the frequenCy—
domain model was emphasized.

In addition to the state-space equation,
consideration was given to the frequency-domain
representation of the measurement system: it was
explained that a linearised representation was necessary
because of the practical difficulties ‘encountered in
applying a linear transformation, such as the discrete
Fourier transformation, to non-linear equations in
general. It was pointed out that a drawback of the
frequency-domain approach was its limitation to
small-perturbation models (non-linear only in the sense
that time delays are permissible). Another drawback of
the frequency-domain approach was explained: namely that
errors are introduced into the identification as a result
of representing the response as a Fourier series whose
coefficients are calculated using a finite-length record.

However, the potential advantages for helicopter
system identification, gained by formﬁlating the problem
in the frequency domain are manifold. Some examples of

the advantages were given in both this and the previous
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chapter, and are brought out in detail, or demonstrated,
in the remaining chapters of this document. These

include:

1) Noisy flight data can be used directly in the system
identification. There 1s no pressing requirement for
pre-estimation techniques, such as Extended-Kalman-Filter
state estimation, in order to remove high-frequency
noise, or to construct unmeasured quantities, such as the
time derivatives of states; thus cutting down
considerably on the time required to perform an
identification.‘

2) The ability to easily introduce selectivity in the
frequencies used in the identification is wuseful for
models valid for a specified frequency range; however,
the resultant reduction in the number of data is also
computationally beneficial. For the helicopter flight
data wused by the current author, there was found to be
typically a 1:50 reduction in the amount of data actually
used in the frequency-domain identification algorithm, in
comparison to the original time-domain data. This kind
of reduction in the amount of data augurs well for
identification techniques based on cost functions
involving summations. It should also be pointed out that
obtaining the Fourier transforms of the measured time-
domain data can be done very quickly using standard FFT
routines, such as the NAG routine CO6FAF, mentioned in

Section 2.2.2. The availability of frequency-domain
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records provides a useful indication of the degree of
excitation of the system at frequencies of interest, and
there is no requirement for the creation of new data sets
each time the frequency range used in the identification
changes.

3) By excluding the zero frequency value from the range
used in the identification, there is a reduction in the
number of parameters that have to be estimated using the
frequency domain. Zero-offset terms are decoupled from
the rest of the model. These can be estimated at a later
stage, along with initial state conditions, wusing the
time domain.

4) Expressing the identification problem in the
frequency-domain has some important practical Dbenefits
for the estimation algorithms, and their computer
implementation. The problem of obtaining the estimated
model output, and other quantities, becomes algebraic; in
the time-domain, numerical integration is required for

the corresponding operations.

Finally in this chapter, the usefulness of a new
approach (i.e. the incorporation and identification of a
time delay in the control used) in overcoming some of the
problems associated with quasi-static derivatives was
demonstrated using both simulated data and real
flight-data. For real flight-data, the parameter
estimates obtained compared favourably, in most cases,

with the theoretical values provided by the HELISTAB
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program, when a time delay was identified 4in the
longitudinal c¢yclic input. The improvement was also
apparent in the time-domain reconstructions of the models
identified in the frequency-domain.

Results from simulated data indicated that in -some —
cases, there would be no requirement for the inclusion of
a time delay in the collective input channel because of
its association with high-frequency coning effects, and
because of the sampling interval used in the flight data;
results obtained by the current author using real flight-
déta, have confirmed  this. The HELISTAB program does not
include the modelling of tail-rotor dynamics, however,
results for pedal inputs using real flight-data, and
presented in Section 4.3.2, show the inclusion of a time
delay in the pedal control, to be an important modelling

requirement.
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CHAPTER 3

4

3.0 Initial Stages Inm The Tdentification Methodoloqgy,

And A Consideration Of Some Relevant Identification

Techniques.

3.1 Introduction And Overview Of The Methodology.

The three basic elements of the identification
methodology are developed and discussed separately in
each of the remaining chépters of this document,
culminating in a summéry of the salient points for each
stage in the final Sections of Chapter 5. These three
elements are: a frequency-domain equation-error method;
a frequency-domain output-error method; and a time-domain
output-error method (see Figure 5-1). The ordering of
the chapters represents the natural sequence of
application for each of these stages, where the results
from one stage are used to initiate the next stage.

Initial parameter estimates are obtained at the
equation-error stage; these estimates, which are biased
in the presence of noise on the independent wvariables
used in the equations, may then be wused as initial
guesses for the iterative frequency-domain output-error
method, which is capable of producing unbiased estimates
in the absence of process (or model) noise. Both the
equation-error and output-error identifications are

carried out over a restricted frequency range appropriate
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to the assumed form of model, namely one which describes
the rigid-body motions of a helicopter. Convergence of
the frequency-domain output-error method is assisted by
having good initial estimates of the unknown parameters;
the singular-value-decomposition implementation of the
equation-error method, presented in this Chapter, 1s seen
as a means of improving the estimates obtained at the
equation-error stage. For the frequency-domain output-
error method implemented here, options exist for
investigating the effects of different model structures
on the estimates. Results from the equation-error stage
can also assist in 1isolating weak, or insignificant,
parameters to be fixed, or excluded, from the state-space
model used in the output-error identification.

The final stage of the identification methodology
involves the estimation of initial conditions and zero-
offsets which are uncoupled from the frequency-domain
identification, but which are necessary for a final time-
domain verification of the model. Stability and control
derivatives, and time delays, estimated at the frequency-
domain output-error stage (together with those elements
of the model fixed for that identification) are fixed for
the time-domain output-error identification.

There are some issues which relate to both the
frequency-domain equation-error and output-error methods,
such as the selection of an appropriate frequency range,
and the selection of an appropriate length of time-domain

record for transformation. These are discussed in 