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ABBREVIATIONS.

Abbreviations are those recommended in the Instructions to Authors

of the Biochemical Society (1986), with the following additions:

{1) Culture conditions: media and sera.

Elac: Glasgow's modification of Eagle's Minimal Essential Medium,
supplemented with 0.5% (w/v) lactalbumin hydrolysate.

EMEM: Eagle's Minimal Essential Medium with Earle's salts.

EMEM w/o phosphate: EMEM without phosphate.

GMEM: Glasgow's modification of Eagle's Minimal Essential Medium. .

GMEM w/o methionine: GMEM without methionine.

HEPES: NLZ-hydroxyethylpiperazine—N—Z—ethanesulphonic acid.

FCS: foetal calf serum
hiFCS: heat-inactivated foetal calf serum.

NHS: normal human serum.

hiNHS: heat-inactivated normal human serum.

{2) Analysis of protein svynthesis.

cpm: counts (of radioactivity) per minute.

hsp: heat-shock protein.

hsp 70: heat-shock protein of molecular weight 70 000.
Mr: relative molecular weight. |
Ref: relative mobility.

SDS: sodium dodecyl sulphate

SDS-PAGE: sodium dodecyl sulphate-polyacrylamide gel electrophoresis.

\



TCA: trichloroacetic acid.

TEMED: N,N,N'N-tetramethylenediamine.

PMSF: phenyl methyl sulphonyl fluoride. Protease
TPCK: L-1-tosylamide-2-phenylethylchloromethyl ketone }inhibitors
TLCK: N-O-p-tosyl-L-lysine chloromethyl ketone.

(3) Analysis of phospholipid synthesis.

Pi: inorganic phosphate.

PA: phosphatidic acid.

PC: phosphatidylcholine

PE: phosphatidylethanolamine
PG: ‘ phosphatidylglycerol

PI: phosphatidylinositol.
PS: phosphatidylserine.

TLC: thin-layer chromatography.

(4) Analysis of antigen expression.

4(i) Antisera

Anti-coat 1)rabbit antisera raised against 2 fractions of the

Anti-coat ZEcercarial glycocalyx. (Preparation described in 2.6.3.1.).

Anti-CMAG: rabbit antiserum raised against cercarial membrane antigens.
(Preparation described in 2.6.3.1.)

IHS: Infected human serum.

NMS: normal mouse serum.

NRS: normal rabbit serum.



4(ii) Lectins
Con A: concanavalin A.

FBP: fucose binding protein (from L. tetragonolobus)

PNA: peanut agglutinin.

UEA: Ulex europaeus agglutinin.

WGA: wheatgerm agglutinin.

4(iii) Other abbreviations.

A492: absorbance reading at 492 nm.

E.M.: electron microscopy |

ELISA: enzyme-linked immunosorbent assay.

FITC: fluorescein isq}hiogyanate.

FITC-antibody: fluorescein isothiocyanate-conjugated antibody,
FITC—lectin,\etc.:lectin, etc.

HRP: horseraéiéh peroxidase.

HRP-antibody: horseradish peroxidase-conjugated antibody.
6-IAF: 6-iodoacetamidofluorescein.

OPD: ortho -phenylene diamine.

PI: sodium meta -periodate (context makes it clear when PI refers to

~ phosphatidylinositol - see (3) above).

(5) Mouse protectioﬁ experiments.

i.d.: intradermal |

i.v.: intravenous | routes of administration of antigen
p.c.: percutaneous or organisms.

s.c.: subcutaneous



(6) Immunological terms.

Ab : antibody
Ag : ‘antigen. |
ADCC: antibody-dépendent Cell—mediated_cytotoxicity;

BCG: Bacille Calmette Guérin.:

Fc: Portion of an antibody which binds to antibody receptors on cells,
and to the Clq component of complement.

Cla, Cbha: componénts of the complemgnt system.

Ig: immunogiobulinr

MHC: Major Histocompatibility Complex.

(7) Miscellaneous

5-AF: 5—amin9f1uorescein.

C1l, C2, etc: ciones number 1, 2, etc.

CYS: cysteine.

E.R: endoplasmic reticulum.

GSH: glutathione.

NEM: N-ethylmaleimide

_pgsffphéséﬁqyéébﬁfferedfsaliné;j;j:.

X ;JS:E;QQ;;ﬁ;'éﬁd standafd érfdr about the méah

Other abbreviations are occasionally used, and are accompanied by

explanations in the text.
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Summary: Biochemical Effects of Irradiation on Larvae of

Schistosoma mansoni.

Irradiation of §. mansoni cercariae causes parasite death well
before maturity, yet the attenuated larvae stimulate potent protective
immunity in experimental hosts. 1In contrast, resistance following a

normal infection depends upon development of a mature, egg-laying worm

burden. This study aimed to investigate how irradiation alters the
biochemistry of schistosome larvae to enhance their immunogenicity so
effectively.

The results presented in this thesis suggest that U.V.- or
gamma-irradiated schistosomula may induce effective resistance because
they express antigens in modified, non-native conformations. Such
denatured antigens may be generated in a number of ways:

(1) by the normal environmental stresses brought to béar on the
parasite during transformation from cercaria to schistosomulum.

(2) by the direct effects of irradiation on molecular structure.

(3) as a vresult of irradiation-induced inhibition of parasite
metabolism, including synthesis of proteins and phospholipids and
protein glycosylation.

(4) following synthesis on mRNA templates damaged or altered by

irradiation.

These aberrant molecules are predicted to accumulate to especially
high 1levels because irradiated schistosomula synthesize  severely
reduced amounts of heat-shock proteins. These enzymes  assist
non-native proteins to attain their maturé conformations, or,

alternatively, ensure their degradation and removal from the cell.

XLiX



It is postulated that the altéred conformation of antigens from
irradiated 1larvae modifies the pattern of processing by host
antigen~presenfing cells, resulting in  presentation of novel
determinants to T-lymphocytes. In consequence, the T-cells stimulated
by exposure to irradiated and normal cercariae are likely to differ in
both antigen specificity and affinity. The characteristics of the
immune response induced by irradiated parasites apparently ensure
particularly effective elimination of a challenge infection.

Analysis of the changes in parasite protein synthesis and antigen
expression during the four to five days following transformation made
it possible to divide the abbreviated lifespan of irradiated
schistosomula into several stages. It is proposed that, at each stage,
different antigens may activate host immune responses in either the
skin or the lungs. However, considerable variability is apparent, ~both
in the potential of separate pools of irradiated cercariae to induce
immunity at each of the postulated stages, and in the susceptibility of
challenge larvae to the various immune responses.

The model presented in this thesis suggests that a successful
vaccine might need to comprise antigens from several stages in larval
development, stimulating multiple immune mechanisms which can eliminate
challenge schistosomula at a number of points in their migration.
The key to induction and expression of protective immunity at each

stage appears to be effective presentation of the immunising antigens.



CHAPTER ONE

INTRODUCTION



1. INTRODUCTION

1.1 Prevalence of schistosomiasis.

Human schistosomiasis is caused by helminths of the genus

Schistosoma, which live within .the blood@ vessels of the hepatic

portal system around the gastrointestinal tract (S. mansoni,

S. japonicum) or of the vesical plexus around the urogenital system

(S. haematobium). The life-cycles of the three species are basically

similar, and involve freshwater snails as intermediate hosts. It has
been estimated that over one thousand million people living in tropical
and subtropical countries are exposed to schistosomiasis, and that 200
million are actually infected (Iarotski and Davis, 1981). It is
generally accepted that schistosomiasis is becoming more prevalent
because of increased snail habitats created by water fespurce
developments, of both large man-made lakes for irrigation ~schemes and
generating hydroelectric power, and small dams to conserve water for
use by humans and their livestock. Such developments attract increasing
human populations that aggravate the spread and transmission of
schistosomiasis (W.H.0., 1985). Current strategies for control of
schistosomiasis are based on chemotherapy and snail control. Although
these methods are undoubtedly useful, they suffer from some intrinsic
disadvantages that render highly desirable the development of

alternative measures; in particular, vaccination.

1.2 Geographical distribution.

The distribution of schistosomiasis is determined by that of its
intermediate host - freshwater gastropod snails. For the main

schistosomes of man, Biomphalaria species are the molluscan hosts of

S. mansoni, Oncomelania hupensis of S. japonicum, and Bulinus of




S. haematobium. The most important snail genera and species, and their

geographical distribution, are shown in table 1.1. Table 1.2 summarizes
the broad geographic distribution, also the intermediate and definitive
hosts of a number of schistosome species. As well as the three
principal schistosomes of humans, details of some zoonotic schistosomes
are listed. Species normally found in animals or birds may occasionally
penetrate human skin and, in some cases, successfully reach maturity.
Although these zoonotic infections are not of major clinical importance
for humans, schistosomiasis in 1livestock is a significant economic
problem in developing countries. Moreover, field trials with irradiated

larvae of S. bovis and $S. japonicum in cattle have demonstrated the

potential of radiation-attenuated vaccines to stimulate protective
immunity in the definitive host.

S. mansoni is the most .extensively"studied schistosome, and
forms the subject of this project. This pathogen cauées intestinal
schistosomiasis, being unique among the schistosomes™ in  that
schistosomiasis mansoni is prevalent in both the New and 014 Worlds.
Rollinson and Southgate (1987) describe the geographical distribution
of this species in detail: "The parasite occurs in Libya, Oman, Saudi
Arabia, Yemen, People's Democratic Republic of Yemen, and is
distributed discontinuously over the greater part of Africa, south of
the Sahara and Madagascar. In South America, intestinal
schistosomiasis exists in Brazil, Surinam and Venezuela. In the
Caribbean, it is endemic in Puerto Rico, St. Lucia, Guadeloupe,
Martinique, Dominican Republic, Antigua and Montserrat." Figure 1.1

illustrates the global distribution of §S. mansoni.
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Table 1.2. Schistosomes of man and some related parasites.
Intermediate and definitive hosts, and geographical

distribution.
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Fiqure 1.1: Global distribution of schistosomiasis due to

Schistosoma mansoni.

(wvith modification, from WHO Technical Report Series No. 728 (1985)).






1.3 The Parasite.

1.3.1. Life-cycle.

(see figure 1.2).

Schistosomes are digenetic trematodes of the family
Schistosomatidae, transmitted by freshwater snails. Their name derives
from the groove (schist) within which the adult male clasps the female.
Adult worms mate in the mesenteric veins, and the female 1lays eggs
which pass through the walls of the blood vessel and the intervening
tissues to enter the lumen of the intestine or wurinary system. The
eggs are voided in the excreta, and mustireach fresh water to continue
the cycle by hatching to release a free-living 1larval form -~ the
miracidium. This larva must then penetrate the exposed soft parts of a
suitable snail, where it develops near the site of penetration into a
primary (mother) sporocyst which, in turn, produces, by asexual
reproduction, a variable number of secondary (daughter) sporocysts that
migrate to the digestive gland or gonads of the snail. These secondary
gporocysts ultimately produce numerous cercariae that escape from the
snail into the water, and penetrate human skin. The cercaria undergoes
a substantial metamorphosis during and immediately after penetration to
become a schistosomulum. The schistosomulum enters the blood system and
pésses through the right heart to the capillary beds of the lungs, then
migrates to the liver, where it begins feeding and grows into an adult
worm. Pairing takes place as the adults approach maturity, and the
cycle is completed when the male, clasping the female, migrates against
the venous blood flow to the veins around the bladder or intestines.

Thus, the schistosome life-cycle comprises two free-living stages
which pass through hypotonic fresh water as they move Dbetween
conditions of a higher osmotic pressure within the definitive host

(human) and intermediate host (snail). During these two free-living



Figure 1.2 Life-cycle of human schistosomes: S. haematobium,

S. mansoni and S. japonicum.
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transmission phases - vertebrate to snail, and snail to vertebrate -
the parasites undergo significant reductions in  number. These
reductions are counterbalanced by the two parasitic, reproductive
stages - asexual reproduction within the snail; sexual reproduction
within humans. The success of these reproductive stages appears
essential for restoring a population 1level adequate to maintain
endemicity.

Estimated daily female egg production ranges from about 300 for.

S. mansoni to greater than 3 000 for S. japonicum. A high

proportion of newly laid eggs fail to escape from humans. These eggs
become trapped, either locally in the organ where they were laid, or in
the 1liver or lungs, where they are carried by the venous blood flow.
The host tissue reactions to these eggs give rise to pathological
lesions responsible for the principal disease manifestations of

schistosomiasis {(Jordan and Webbe, 1982).

1.3.2. Morphology and Biology of S. mansoni

Figure 1.3 shows the principal features of adult worms, eggs,

miracidia, cercarjae and schistosomula of S. mansoni.

1.3.2.1. Adult worms.

The male and female worms of §S. mansoni are slender, elongated
parasites, 1-2 cm. in length. The female tends to be longer and more
slender than the male, and is "entirely cylindrical in shape. The
lateral margins of the male worm curve ventrally and overlap to form a

gynaecophdric canal encompassing the female.



Fiqure 1.3. Principal features of adult worms, eggs, miracidia,

(1) to (5) cercariae and schistosomula of S. mansoni.
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a) The Surface

Scanning electron microscopy has revealed the surféce topography
of the adult worm. The dorsal surface of the male bears numerous large
tubercles, each equipped with pointed spines. The entire surface of the
female is pitted, with a few spines, but the tubercles of the male are
absent (McLaren, 1980). The ventral surface of both sexes is
characterized by an oral sucker, perforated by the mouth, and a ventral
sucker which is more strongly developed in the male.

Transmission electron microscopy indicates that the adult worm
body is covered with an aceilular, syncytial tegument. Using a wuranyl
acetate fixation method, Hockley and McLaren (1973) showed that the
tegumental outer membrane is heptalaminate, apparently consisting of
two closely apposed trilaminate membranes. These workers subsequently
demonstratéd that this double outer membrane is an adaptation
characteristic of helminths which reside in intravascular habitats
(McLaren and Hockley, 1977). Biochemical studies indicate that, as
befits the interface between parasite and host environments, the
schistosome tegument displays not only absorptive and secretory
functions, but also protects the parasite against host immune attack
(reviewed by McLaren, 1980). The tegumental outer membrane seems to
turn over rapidly, replacement and repair being effected by membranous

bodies within the tegument.

b) Role of the tequment in nutrition.

Glucose, amino acids, purines and pyrimidines from host blood can
be absorbed transtegumentally across the exposed dorsal surface of male
worms (Chappell, 1974; Levy and Read, 1975; Podesta, 1983; Rumjanek,
1987). Facilitated and simple diffusion are known to occur across the

tegqument, and simple diffusion is also assumed to function at the level
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of the gut lining. The male appears to boost female nutrition by
transferring glucose, iron, cholesterol and other nutrients to her
across the ventral surface of his tegument (Haseeb et al, 1985;

Silveira et al, 1986; Smyth and Halton, 1983).

¢) Role of the tequment in immune evasion.

- see section 1.5.7.

d) Internal structure.

Circular and longitudinallmuscles, together with a network of
nerve fibres, underlie the tegument, allowing body contractions and
movement.

The digestive system of adult worms consists of a short
oesophagus, leading from the oral sucker to the intestine, which
divides in front of the ventral sucker to form two lateral gut caecae
that reunite behind the reproductive organs to form the posterior gut
caeca. Host blood is ingested via the mouth; cells 1lining the gut
secrete a globinase enzyme which digests serum proteins and haemoglobin
to release tyrbsine. Residue containing a black haematin-like pigment
is regurgifated as a waste-product.

The reproductive organs are located between the two lateral gut
caecae. S. mansoni males have 6-9 testes, located behind the ventral
sucker. The testes lead to a seminal vesicle which the vas deferens
connects to the gonopore. The female has a single ovary which lies in
front of a seminal receptacle, and a pair of vitelline glands near the
posterior union of the lateral gut caecae. The oviduct and vitelline

ducts open into the uterus, which usually contains one or two eggs.
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1.3.2.2. The Eqg stage

S. mansoni eggs have average dimensions 142 Pm. x 60 Ym
(Jourdane and Thé}on,'1987). The eggshell consists of sclerotin-tanned
protein. Eggs of all species bear a spine, in either a 1lateral ( S.

mansoni and S. japonicum ) or a terminal (S. haematobium) position.

The inside of the eggshell is lined with a vitelline membrane which
adheres to the shell by means of vacuoles pressing on the miracidium
anteriorly and posteriorly (figure 1.3(2)).

A number of factors have been suggested to assist passage of
schistosome eggs through the wall of blood vessels and the parenchyma
of the intestine. Blood pressure, peristalsis, proteolytic enzymes
secreted by the miracidia, and the spine of the egg, may all contribute
(Bloch, 1980).

Certain environmental conditions are required to initiate hatching
of schistosome eggs. Hypotonicity of the water appears to be the
limiting factor (Kassim and Gilbertson, 1976), though 1light and
temperature may also act as stimulants (Erasmus, 1972).

Hatching appears to occur by a purely physical mechanism. As
water enters the vacuoles, increased turgor pressure causes the

eggshell to split, and the miracidium escapes (Kusel, 1970 a).

1.3.2.3. The Miracidium.

The morphology of the miracidium has been investigated by both
light and electron microscopy (Pan, 1965; 1980). A newly released
miracidium varies between 150 and 180 Jun. in 1éngth, and 70 to 80 Jm,
in width. It is covered by a series of tequmental plates bearing
numerous cilia which, in concert with the 1longitudinal and circular
muscles underlying the ciliated cells, propel the miracidium through

the water. An anterior apical papilla or terebratorium bears various
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sensory organelles. Ducts from the paired cephalic, or penetration,
glands emerge at this point. These penetration glands secrete proteases
involved in both passage of the egg thrbugh mammalian host tissues and,
later, in penetration of the snail by the miracidium. The posterior
region of the larva is occupied by some twenty germinal cells.
Miracidial behaviour is directed towards location and penetration
of a suitable aquatic snail. S. mansoni miracidia display negative
geotaxis and positive phototaxis (Chernin and Dunavan, 1962), thus

tending to locate to the water surface, where Biomphalaria species

are most often to be found. The proximity of snails causes an increase
in velocity and rate of turning by the miracidia, which improves their
chance of encountering a snail (Chernin, 1970). This behaviour seems to
be a response to chemical stimuli from the smnail host. Miracidia of S.
mansoni may remain infective for 8 to 12 hours after hatching (Prah
and James, 1977). |

During penetration, the apical papilla becomes attached to the
epithelium of the exposed soft parts of the snail, wusually the foot,
the other penetration points being either the tentacle or the edge of

the mantle (Jourdane and Théron, 1987).

1.3.2.4. Intramolluscan stages.

As the miracidium penetrates the snail, the tegumental plates and
cilia are shed. The ciliated epithelium is replaced by a syncytial
tegumeht, and the body reorganises into a 1long sac - the mother
sporocyst. The germinal cells of the miracidium grow and multiply, then
individual daughter sporocysts comprising somatic and germinal cells
develop. At the end of their differentiation in the mother sporocysts,
the daughters look like vermiform larvae, 150-250 Jm in length.

'Between the tenth and seventeenth days after infection, the young

sporocysts break through the tequmentary wall and migrate to the
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digestive gland of the snail. Each daughter sporocyst contains between
50 and 100 germinal cells. Once settled in their permanent location in
the digestive gland, daughter sporocysts increase greatly in size, and
differentiation of cercarial embryos occurs.

Cheng and Bier (1972) described in detail the différent stages in
cercariogenesis for §. mansoni. Successive divisions of the germinal
cells within daughter sporocysts lead to formation of the morula stage,
comprising many somatic cells and a few germinal cells. This morula
stage then develops into germ balls, covered by a primitive epithelium
formed by fusion of the somatic cells. The embryonic mass divides into
two unequal parts. The larger, anterior part develops into the
cercarial body; the small posterior part into the tail. Complete
development of S. mansoni cercariae takes about a week.

Jourdane et al (1980) demonstrated that the productivity of
daughter sporocysts was not solely directed towards cercariae. They
may also multiply to producé new generations of sporocysts. This
aspect of intramolluscan development will be discussed in more detail
in chapter 8.

Release of §. mansoni cercariae from the snail follows a
circadian rhythm, occurring upon exposure to light during the

photophase.

1.3.2.5. The Cercaria.

The cercarial tegument is a single continuous 'cytoplasmic
structure covering the body and tail. The outer membrane is
trilaminate, and invested with a 1-2 . thick, fibrillar glycocalyx.
Beneath the tegument are, consecutively, a basal lamina, a thick layer
of interstitial material, and circular and longitudinal muscle fibres.

A strong muscular terminal oral sucker and a weaker ventral sucker

{acetabulum) are present on the Thead. Pre-acetabular and
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post-acetabular gland cells open via ducts into apertures within the
oral sucker. The pre-acetabular glands secrete enzymatic material; the
post-acetabular ones, mainly mucus.

The principal means of movement for cercariae is by bursts of
swimming - rapid lashing of the tail pulls the body along behind it.
After a period of swimming, the cercariae sink slowly, body first.
Another burst of activity then causes them to rise upwards through the
water again. Cercariae change their activity pattern in response to
shadows or turbulence, stimuli suggesting approaéh of a possible host
through the water.

The lifespan and infectivity of cercariae is determined by their
energy reserves, chiefly in the form of glycogen. Glycogen content
declines in an exponential manner after shedding, diminishing rapidly
after 6 hours (Olivier, 1966).

Having located their host, cercariae adhere to human skin by their
suckers, aided by mucus secretions from the post-acetabular glands.
Discharge of proteases from the pre-acetabular glands may occur when
the oral sucker penetrates into the keratogenous zone of the skin. Free
fatty acids in skin secretions, in particular, linoleic acid, seem to
act as stimulants for penetration. Muscular contractions of the Dbody
carry the parasite into the dermis. The tail is shed as the free-living
cercaria transforms into a parasitic schistosomulum adapted to life in

the isotonic medium of the human bloodstream.

1.3.2.6. The Schistosomulum.

¥

The schistosomulum is derived from the cercarial head, and
develops over some four weeks into the adult worm. The invading
cercarial head passes into the dermis, where it may remain for up to
120 hours (mouse model - Miller and Wilson, 1978). During this period,

the organism adapts to parasitism in the vertebrate bloodstream. In
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particular, the surface membrane changes from a single 1ipid bilayer
into the typical adult double bilayer. The morphological and
biochemical changes occurring during the transformation process will be
described in detail in section 1.5.2. -

Dynamic studies using isotope-labelled cercariae in experimental
hosts show that schistosomula begin leaving the skin within a few hours
of penetration, and that few remain after the fourth day. They are
believed to migrate, mainly via the circulatory system, to the right
heart, and on to the lungs, where they are delayed as they traverse the
alveolar capillary beds. Pegk numbers reach the lungs between 4 and 9
days after skin penetration. The first schistosomula reach the 1liver
via the left heart, the systemic circulation and the hepatic portal
system, about six days after penetration. Others, however, traverse
different capillary beds, and return to the heart-lung circﬁlation for
a second circuit. The numbers of schistosomula in the liver build up
over the 7 to 10 days after they first arrive. Schistosomula which do
not reach the liver within three circuits probably die (Wilson and
Coulson, 1986; Wilson et al, 1986).

Schistosomula start to elongate upon arrival in the  1lung.
Metabolic studies of worms recovered from experimentally infected hosts
suggest that parasite dgrowth begins upon arrival in the 1liver (Lawson
and Wilson, 1980a). However, it may be noted that, in vitro, signs of
growth are detectable after as few as 4 days of culture (Clegg and
Smithers, 1972). When growth begins, the gut becomes functional,
extending to form two lateral caecae which reunite behind the ventral
sucker. The parasites ingest red blood cells, and black haematin
accumulates in the gut. By day 20 to 30, differentiation of the
reproductive organs begins. Male and female worms mate, and start to
lay eggs. The lifespan of worm pairs in humans has been variously
estimated to average 3.5 to 12 years, with some worms surviving for 30

years or more (Vermund et al, 1983). Consequently, schistosomiasis is



20

a disease of long chronicity.

1.4 Pathology of human schistosomiasis.

The clinical manifestations of schistosomiasis in humans follow a
time-course which corresponds, firstly, with parasite migration and
development, then with establishment and persistence of an egg-laying
infection. The pathology of chronic schistosomiasis is caused by
schistosome eggs, rather than the worms themselves. Adult worms are
impervious to host immune attack, giving rise to few focal lesions
compared with the millions of eggs generated in the course of
infection. Von Lichtenberg (1987) has reviewed the aetiology of
schistosomiasis. Some of the immunopathology states are described
below.

Cercarial dermatitis in human patients is characterized by a mild
pruritis, followed 10 to 15 hours 1later by development of 3-5mm
papules, erythema, oedema and severe pruritis (Cort, 1950). These
symptoms appear to accompany cercarial reinvasion of the skin of
already sensitized hosts. Using the mouse as an experimental model, it
has been shown that primary exposure to cercariae elicits a mild
inflammatory response; neutrophils being the predominant infiltrating
cells. Secondary exposure, either to 1live cercariae or isolated
cercarial antigens, stimulates an earlier, more intense and more
durable cellular response, enriched in eosinophils (Von Lichtenberg et
al, 1976).

As in the skin after cercarial penetration, schistosomula of a
primary infection appear to cause few perturbations during their
migration through the lungs of experimental hosts, whereas secondary
and subsequent migrations through 1lung tissue elicit more intense
cellular reactions (Von Lichtenberg, 1987). Reports of asthma-like

episodes occurring in human patients within two weeks of exposure to
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S. mansoni may correspond to this stage of immunopathology.

However, the onset of the symptoms characteristic of acute
schistosomiasis - "Katayama fever" - coincides with the time of first
appearance of eggs in the stools. Symptoms include fever, abdominal
pain, nausea, diarrhoea, arthritic péins and swollen 1lymph nodes.
Hepatosplenomegaly is often present. Blood counts show leucocytosis
with pronounced eosinophilia. As the infection becomes chronic, these
symptoms clear, while egg excretion rates remain unchanged.

No well-characterised experimental model for Katayama fever
exists, and the pathogenesis of this state is wunclear. Egg granulomas
are very large at this time; lymphocyte blastogenic responses are high,
and non-selective hypergammaglobulinaemia may be present, suggesting
polyclonal B-cell activation. Circulating immune complexes may also
occur. It has been suggested that this massive stimulation of the host
immune response consequent upon egg-laying may induce the symptoms of
’acutev schistosomiasis. Development of suppressive responses, and
restoration of a degree of homeostasis as the disease progresses, may
account for remission of these acute symptoms.

It may be noted, however, that comparatively few infected patients
develop this acute febrile illness. Most infected children have only
minor early symptoms. Their health may continue to appear satisfactory
during the subsequent chronic phase of the disease, even while, in some
individuals, lesions of the internal organs may be progressing as
evidenced by objective clinical observations.

Chronic schistosomiasis mansoni may be either subclinical, or
severe and symptomatic. Subclinical stages may present no definite
disease manifestations, although hepatomegaly or hepatosplenomegaly may
occur. Granulomatous lesions are frequently present in the 1liver and
instestine, and generally contribute . to pathogenesis.

Eventually, five or more vyears into infection, predisposed

individuwals with heavy parasite burdens begin to suffer advanced
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fibrovascular lesions of the liver. In heavily infected populations,
the prévalence of severe, symptomatic schistosomiasis may reach 5% or
higher. The majority of infected persons, however, continue
indefinitely in the subclinical state. |

Portal fibrosis‘ begins with diffuse inflammatory infiltration
around portal radicles, proximal to presinusoidal vessels containing
egg granulomas. Portal vein branches become blocked by granulomas, and
disrupted by inflammation and fibrosis. Eggs and egg granulomas
accumulate around these blockage sites, further contributing to portal
enlargement. At the same time, the hepatic arteries enlarge, and send
out neovascular branches. In this way, the presinusoidal portal
hypertension resulting from fibrosig is compensated for by increased
arterial flow. During this “compensated stage", liver cell function
tests show few abnormalities, but splenomegaly and variceal haemorrhage
occur as the result of portal hypertension.

Beyond this stage, hepatic decompensation and coma slowly develop.

In summary, the chronic nature of schistosomiasis means that the
clinical manifestations of disease present a wide spectrum, ranging
from the mild symptoms reported in surveys of endemic children to
disablement or death in patients with advanced disease. This gradual
evolution of schistosomiasis over a period of years, and the
development of chronic pathology in a limited number of predisposed
subjects, open the way for environmental control measures,
chemotherapy, or immunomanipulation, to forestall development of the
chronic state, and perhaps, ultimately, to abolish transmission.

1.5 Transformation of cercariae to schistosomula: structural and

biochemical changes.

This project concentrates on a limited part of the schistosome

life~cycle - the transition from free-living cercaria to 1lung stage



23

schistosomulum. The biochemical, physiological and morphological
developments intrinsic to this transformation process are therefore

described in some detail.

1.5.1. Definition of transformation

According to Stirewalt (1974), the strict definition of a
schistosomulum is that stage of the schistosome into which a cercaria
transforms after penetration of skin. However, recovery of
schistosomula from skin is time-consuming and yields only limited
numbers of organisms. Various methods have therefore been developed for
producing schistosomula in quantity in vitro (reviewed by Stirewalt
et al, 1974, 1983; Cousin et al, 1986; Salafsky et al, 1988).
These technigues include penetration through excised skin membranes
(dried or fresh rat, mouse, hamster or human skin); chemical
stimulation using human of rat skin surface lipid, chloroform/methanol
extracts of human skin lipid, or linoleic acid; mechanical stimulation
by centrifugation and/or vortexing, and shearing off tails by syringe
passage. Comparisons of the morphology and function of these
artificially - derived schistosomula with in vivo forms have helped
to define, firstly, the characteristics which distinguish a tfue
schistosomulum, and secondly, the essential environmental triggers
vhich stimulate transformation.

Stirewalt (1974) 1listed at least 20 characteristics which
different investigators have used to define schistosomula. <Changes in
the structure of the surface tegument seem to be the major indicator of
transformation. In a subsequent study (Stirewalt et al, 1983), in
vitro- and in vivo-aerived schistosomula were examined with respect
to seven parameters selected as especially important. Loss of cercarial
glycocalyx as indicated by absence of the cercarienhiilllen reaction* and

ultrastructural studies, development of a heptalaminate surface
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membrane, migration of membranous vacuoles from subtegumental cells
into the tegument, development of water intolerance and of stability to
freezing, all indicated deVelopment of the surface structure
characteristic of schistosomula. Another suggested criterion of
transformation involved nuclear changes from heterochromasy = (inert) to
euchromasy (active). However, Salafsky et al  (1988) claimed that
euchromasy only occurred in damaged organisms containing necrotic
cells. Stirewalt et al (1983) and Cousin et al  (1986) concluded
that the essential stimulus for cercaria to schistosomulum transforma-
tion, as defined by the above criteria, was incubation in isotonic
medium at 37°C. Complex-culture media were not necessary: PBS or even
physiological saline were sufficient. Body¥tail separation by
mechanical stress, and gland exhaustion, were both irrelevant.

However, despite the apparent simplicity of the stimuli for
transformation, reservations must be borne in mind when considering the
in vivo relevance of chemically- or mechanically-transformed cercar-
iae. Although, overall, the same surface changes seem to occur in.
artificially-derived schistosomula as in skin forms, the developments
are significantly slower in the former. In vitro-prepared schistosomula
may take three hours or 1longer to display the morphological
characteristics evident witﬁin an hour of-skin penetration. (Stirewalt
et al, 1983; Cousin et al, 1983). The biochemical properties of
artificially transformed schistosomula may also fail to represent the
true in vivo situation. Salafsky et al (1988) showed  that
chemically- and mechaniéally—transformed schistosomula, identical by
morphological criteria, differed with respect to eicosanoid production,
RNA and protein synthesis. Although these workers did not perform
comparative studies with skin forms, they emphasized that biochemical
studies on in vitro-derived schistosomula should be interpreted with
caution until the biochemical characteristics of genuine in vivo

forms are better defined.
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* Note: The cercarienhiillen reaction tests for the presence of the
cercarial glycocal<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>