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Abstract

A theoretical and experimental investigation of the buckling and
postbuckling response of laminated composite plates under uniform, inplane
shear load is presented.

The laminate under consideration is generally layered, thin, flat, of
rectangular planform and it is clamped along all four edges. It may consist
of layers of different materials, that are assumed to be homogeneous and
orthotropic and to behave in a linearly elastic manner.

The nonlinear Von-Karman type governing differential equations are
formulated in terms of two unknowns; namely an Airy stress function, &, and
the lateral deflection, w.

No exact, closed form solution of the above problem exists, so the
governing system is solved by the Galerkin method, assuming that the two
unknown functions can be adequately described by generalised double Fourier
series, involving beam characteristic functions.

An extensive parametric study, including the effect of fibre
origntation, lay-up, aspect ratio, number of layers, different materials,
combinations of inplane loading and initial geometric imperfections on the
response of laminates is presented.

In the experimental part of the project, eight quasi-isotropic
(90,—45,+45,0)s, 913C-XAS, square laminates and three L72 aluminium alloy
plates were tested under shear load, in a "picture frame" loading fixture.

Four of the 1laminates had a centrally located circular hole, of
different diameter in each case, so that an experimental assessment of the

effect of such a stress raisor on the response of the 1laminate could be



iii
made. The hole diameter to width ratio varied from 0.0375 to 0.15.

The experimental results showed that the shear direction affects
greatly the buckling load of the laminates, but its effect on the ultimate
load is rather limited.

It was also found that the buckling load of the, admittedly, thin
laminates tested was very sensitive to initial geometric imperfections.

All the laminates displayed considerable postbuckling stiffness and
strength. Repeated loading to several times the buckling load did not
affect their postbuckling stiffness.

The presence of the centrally located hole appeared to cause a
reduction in the shear buckling 1loads and, for all but the smallest
diameter hole, it altered the failure mode from compression to tension and
significantly reduced the strength of the laminates.

Although the response of the aluminium alloy plates was overall more
consistent, on an equal weight basis the laminates compare very favourably

to their isotropic counterparts.
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Nomenclature

plate extensional stiffnesses

plate reduced extensional stiffnesses

plate nondimensional reduced extensional stiffnessgs
plate length in x direction

plate bending-stretching coupling stiffnesses -
plate reduced coupling stiffnesses

plate nondimensional reduced coupling stiffnesses
plate width in y direction

lamina transformed redpced stiffnesses

circular hole diameter

plate bending stiffnesses

plate reduced bending stiffnesses

plate nondimensional reduced bending stiffnesses
modulus of elasticity |

modulus of elasticity along the fibres

modulus of elasticity normal to the fibres
nondimensional stress function

Fourier coefficients of stress function

inplane shear modulus

plate thickness

bending curvatures

nondimensional bending curvatures

general, compression & shear buckling coefficients
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ratios between inplane loads

resultant external moments per unit area about
the middle surface

bending and twisting moments per unit length
nondimensional bending and twisting moments

per unit length

‘constants obtained by integration

constants obtained by integration

number of layers in the laminate

membrane forces per unit length

nondimensional membrane forces per unit length
eg- Nep = Nyy b?/ A,, h?

nondimensional(?) membrane forces per unit length
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Xy
nondimensional applied loads per unit length
nondimensional loading parameter per unit length
applied loads per unit length

general loading parameter per unit length
applied load

transverse load per unit area

resultant external forces per unit area,
tangential to the plate

transverse shear forces per unit length
nondimensional transverse shear forces per

unit length

lamina reduced stiffnesses
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Rys Rg ratios of buckling load under combined loading to
buckling load under simple compressive & shear
loading, respectively

Se ultimate shear strain

u, Vv, w displacements in the x, y, z directions

u®, v°, w° displacements at the midplane

W, initial deflection (imperfection)

w nondimensional lateral deflection

W, nondimensional initial deflection (imperfection)

Wix s Wiy slopes of the deflected surface of the plate

Woe s Wip nondimensional slopes

wpq Fourier coefficients of lateral deflection

Wors Fourier coefficients of initial imperfection

X, ¥V, 2 plate Cartesian coordinates

X;(x), Yj(y) beam eigenfunctions

Xet ultimate tensile strain along the fibres

Xee ultimate compressive strain along the fibres

Yoo ultimate tensile strain normal to the fibres

Yeo ultimate compressive strain normal to the fibres
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Subscripts
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imp

perf

vii

constants in beam eigenfunctions

lateral deflection

constant, relating to the imperfection amplitude

normal & shear strains in the plate

normal & shear strains at the midplane
transverse normal & transverse shear strains
nondimensional coordinates

fibre orientation (degrees)

aspect ratio, a/b

Poisson's ratios

normal & shear stresses in the plate

transverse normal stress

stress function

critical or buckling condition

layer identification

lay-up symmetric with respect to midplane
total lay-up

of plate with initial geometric imperfections

of perfectly flat plate



Chapter 1: Introduction

1.1 Introductory Comments.

Over the 1last two decades, advanced composite materials have been
employed in an ever incréasing wide variety of structural applications.
High stiffness to weight ratios as well as high strength to weight ratios
have made composite materials very attractive alternatives to more
traditional structural materials, such as aluminium alloys etc.,
particularly for weight sensitive structures.

The éonsiderable cost involved in manufacturing fibres/laminates, as
well as handling the finished product also means that advanced composites
are more cost effective and hence mostly employed, in éxpensive structural
applications, most particularly in aerospace.

One of the most popular stFuctural forms to which composite materials
have been applied, is plates.

Laminated composite plates are made up of 'prepregs', ie. layers of
unidirectional fibres held together by a matrix material. These layers ‘are
oriented and stacked in a certain sequence so that the plate can most
efficiently suppért the applied load, in a particular application. And this
is another great advantage possessed by composite materials. That is, they
allow the designer to tailor the structure to the particular application,
so that the best use of the material can be made.

Laminated composite plates, due to the directional nature of their



stiffness and strength, are far more complicated to analyse that are
isotropic plates. The properties of a laminate as a whole depend on the
properties and orientation of its constitutive layers, as well as the
stacking sequence. Laminates that are symmetrically layered with respect to
their geometric midplane, can be analyséd either as homogeneous orthotropic
or as homogeneous anisotropic. Unsymmetrically layered laminates, however,
display coupling between the inplane stretching and out of plane bending
and thus require a far more complicated theqry.

To effectively utilise the full potential of 1laminated composite
plates, a clear understanding of their behaviour is necessary. Of
particular interest is their response under inplane compressive and shear
loading. The ability to predict buckling loads, postbuckling stiffness and,
finally, strength is essential for optimum and safe design and hence a fair
amount of research work has been and is being performed in that general
direction.

Although the stability of 1laminated plates under compression has
received a great deal of attention, shear buckling and postbuckling, as
well as the response of laminates with centrally located holes have
received much less attention and, hence, it is these topics that the

current work is attempting to investigate.



1.2 Literature Review.

1.2.1 Buckling.

The stability analysis of isotropic plates is a very complex subject
that has been deveioped, somewhat disorderly 152 over the last century.
During that time, great advances have been achieved and a vast amount of
literature has been published.

The behaviour of orthotropic plates was considered as far back as 1922,
by Huber ? . Since then, a considerable amount of research work has been
done, mainly for the purpose of analysing plywood plates, although
stiffened isotropic and/or corrugated plates, have also been analysed as
orthotropic plates.

Seydel #, developed an exact analysis for the shear buckling of
orthotropic, infinitely long plates, with edges elastically restrained
against rotation. He adopted a formulation similar to that employed by
Southwell and Scan ® for the analysis of the shear buckling of infinitely
long isotropic plates.

Smith © used the Rayleigh-Ritz method to analyse the shear buckling of
orthotropic, clamped plates. Finite plates, as well as infinite strips‘were
considered. By comparing his results for isotropic plates to those of
Iguchi 7, who had wused a series method, Smith conluded that the
Rayleigh-Ritz method is superior.

Thielemann 8

considered the shear and compression buckling of
infinetely long anisotropic plates with simply supported and clamped long

edges. An exact and an approximate method of solution were developed.



Significant developments in the theory of elasticity of an anisotropic
body were made in the USSR and one of the leading pioneers was Lekhnitskii

9912 who since the 1930s and for many years developed the basic theory and

solved a large variety of problems.

Further references on the shear buckling of orthotropic, as well as
isotropic, plates can be found in the review paper of Johns 11!,

The foundations for the analysis of arbitrarily layered laminated
plates were laid in 1961, when Reissner and Stavsky !? identified the
existence of bending-stretching coupling in an antisymmetric angle ply
plate and proposed a theory that could account for the effects of such
coupling. Further work by Stavsky !?:!% established the theory for
generally unsymmetric laminates.

Ashton and Waddoups '!® presented an energy formulation for the
vibration, bending and buckling analysis of plates, including those under
inplane shear 1load. The plates considered were flat, anisotropic and
rectangular with various boundary conditions. Solutions were obtained by
the Rayleigh-Ritz method, employing generalised series, involving bean
eigenfunctions, for the 1lateral deflection. They pointed out that
anisotropic plates have a preferred direction with respect to shear
buckling.

That was verified by a series of shear buckling experiﬁents on flat,
rectangular, boron epoxy plates with clamped edges that was performed by

16

Ashton and Love . Good agreement between theory 1'%

and experiment was
observed (see section 3.4). Ashton and Love also investigated the stability

of laminates under compression '7.

Whitney and Leissa '® presented closed form, exact solutions for two

special cases of unsymmetric laminates with simply supported edges under



uniform biaxial compression; namely cross ply plates with S2 edges and
angle ply plates with S3 edges. (Definition of these boundary conditions
can be found in Appendix 1).

A few years later, Jones, Morgan and Whitney !2, published similar but
more accurate solutions for antisymmetric angle ply, graphite epoxy plates
with simply suppqrted (S3) edges.

Whitney 2° also examined the shear buckling of unsymmetric cross ply
plates with simply supported (S52) edges, employing the Galerkin method. He
reported that, in that case, the buckling load does not depend on the shear
direction and that although bending—étretching coupling significantly
reduces the buckling load for a 2 layer laminate, particularly for very
anisotropic materials, its influence dissappears quickly as the number of
alternate layers increases.

21

Chamis considered the stability of rectangular, anisotropic plates

with simply supported edges. The plates were under compression and shear
load, as well as combinations of inplanelloading. The governing equation
was developed from energy considerations and it was solved by the Galerkin
method. For anisotropic plates (D,g#0, D,g#0) the assumed deflection
function did not satisfy the =zero moment requirement at the simply
supported edges. The above requirement was satisfied in the mean by
including, in the governing equilibrium equation, two line integrals that
represented the effect of the unbalanced edge moments.

Some errors 22

in Chamis' formulation were pointed out by Hsu 23.
In the meantime Wang 2% had showed that no mathematical separable
functions can be found to represent deflection shapes of simply supported,

hombgeneous anisotropic plates if the Kirchhoff hypothesis of non-

deformability in the normal direction is adopted, thus raising questions on



the applicability of separable functions to the buckling problem of simply
supported anisotropic plates.

25

Chamis used the theoretical formulation he had proposed in reference

2% to examine the buckling response of unidirectional, off-axis, simply
supported boron aluminium and graphite epoxy laminates under single and
combined inplane loads. The boron aluminium laminates were found to resist
buckling more efficiently.

Whitney and Leissa ?€

used a Fourier series method and a procedure
employed by Green 27 for isotropic plates, to analyse the bending,
~vibration and compression buckling of rectangular, unsymmetric cross ply
and angle ply plates with simply supported (S2) boundaries. The method is
general and can be applied to other boundary conditions.

Whitney 22, in fact, also used it to analyse the response of the above
laminates under various clamped boundary conditions. The accuracy of his
results, however, for unsymmetric angle ply plates is questionable, as the
rigidly clamped condition (Cl) appeared to reduce the stiffness of thg
laminates as compared to the less rigid clamp (C3).

Further examples of the application of the method, also by Whitney, can
be found in 2° for the analysis of clamped anisotropic plates and in 3°
where it was shown that the Fourier method is superior to the Ritz energy
method for the analysis of simply supported anisotropic plates.

Frazer and Miller 3!

used the generalised Ritz method, using Fourier
series with the Lagrange multiplier technique of minimization, to obtain
upper and lower bounds for the buckling load of anisotropic plates with
various different boundary conditions. They found the approach was rather

limited and only directly applicable to clamped boundary conditions.

Results for clamped plates under shear load and compression were presented.



Housner and Stein 22

examined the stability of flat, rectangular,
orthotropic plates with general boundary conditions, including elastic
.rotational restraints wusing an energy formulation and employing a
trigonometric finite difference procedure for the solution. They presented
shear buckling results for the complete range of orthotropic parameters for
plates with simply supported and clamped edges.
The stability of symmetric sandwich panels, with graphite epoxy angle
ply skins was analysed ignoring the bending-twisting stiffnesses (D, =D, =
0) and assuming that the core carried no load and suffered no shear
deformation. Results, in the form of buckling loads, interaction curves and
optimum filament orientations, were presented for a wide range of aspect
ratios, boundary conditions and inplane loads.

The effect of the rotational restraint at the boundaries on the
buckling load was assessed and it was found that a rather small increase in
the stiffness from zero, ie. the simply supported case, would cause the
buckling loads to attain 80-907% of the fully clamped value.

The shear buckling of simply supported orthotropic sandwich panels with
uniform cylindrical curvature was analysed by Davenport and Bert 27,

Zhang and Matthews 2%, presented an energy formulation for the buckling
analysis of generally layered cylindrically curved panels under inplane
loading. The governing equations, in terms of 1lateral deflection and a
stress function, were solved by the use of Fourier series for clamped,
simple supported as well as combinations of these two boundary conditions
(see also section 2.6). Results for an extensive range of parameters,
namely, different curvatures, materials, fibre orientation, lay-up, aspect

ratio, under single and combined inplane loads were presented.

Zhang and Matthews °% also examined the buckling of flat, rectangular,



arbitrarily layered laminates with restrained in plane simply supported
edges, under combined shear load and compression.

In both studies 2%33% it was found that, for combined shear load and
compression, application of the shear load in a certain direction, would
stabilise symmetric anisotropic 1laminates against compression. For
antisymmetric laminates and isotropic and orthotropic plates the shear
direction makes no difference and combined 1loading always has a
destabilising effect (see section 3.6.4).

Hui 36

examined the stability of simply supported, unsymmetric cross
ply, rectangular 1laminates under uniform shear 1load. Solutions were
obtained by the Galerkin method. His findings regarding the effects of
bending-stretching coupling are similar to those reported by Whitney 2°.
Hui also examined the initial postbuckling response of the laminates,

employing Koiter's theory ?7 and found it to be imperfection sensitive, in

an asymptotic sense, for non square plates.

1.2.2 Postbuckling.

Turvey and Wittrick 28

used Dynamic Relaxation, a finite difference
method, to analyse the bending and postbuckling of symmetric and
unsymmetric laminates. They found that, for simply supported, antisymmetric
angle ply plates under compression, although a significant reduction in
buckling load is caused by the Bij terms, the postbuckling stiffness is not
affected. For fully clamped, unidirectional off-axis laminates under shear

load, bending twisting coupling caused a significant drop in the buckling

load and the postbuckling stiffness of the laminates.



Kaminski and Ashton °3°

made an experimental study of the postbuckling
response of thin, flat, rectangular, boron epoxy laminates with clamped
edges under shear load. They found that the direction of the applied shear
load influenced greatly the buckling load bﬁt not so much the ultimate
load. All the laminates tested showed considerable postbuckling strength.
The failure was mainly induced by stress concentrations at the corners of
the laminates and interlaminar strength was not a limiting factor.

Shear buckling and postbuckling tests, carried out by the U.S. Air
Force as part of a theoretical and experimental program for the evaluation
of graphite epoxy laminates, are discussed by Hayes et al 4°.

. Harris exaﬁined the buckling and initial postbuckling stiffness of
simply supported, antisymmetric, angle ply laminates under uniaxial 41 and

42

biaxial compression employing a modification of Koiter's theory. The By

J
coupling terms were found to affect the stiffness at buckling mainly by
changing the buckling mode.

Prabhakara and Chia analysed the postbuckling behaviour of simply
supported, rectangular orthotropic laminates, employing nonlinear Von
Karman type governing equations and assuming as solutions double Fourier
series for the 1lateral deflection and double series, involving beam
functions, for the stress function. Uniaxial and biaxial compressive

43

loading , as well as combined uniform transvere pressure and compressive

loading 44

were examined.

Chia and Prabhakara %% also considered the postbuckling behaviour of
rectangular, unsymmetric laminates under uniaxial énd biaxial compression.
Solutions were obtained for antisymmetric cross ply and angle ply laminates

with clamped edges and antisymmetric angle ply laminates with simply

supported edges, employing a multiple Fourier series approach and using
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beam characteristic functions.

45 46

The approach proposed in was used by Chia and Prabhakara to
analyse rectangular orthotropic plates with simply supported and clamped
edges under various types of transverse loading, ie. central patch load,
eccentric patch load and hydrostatic pressure, combined with inplane
compression.

Prabhakara 47

also examined the postbuckling response of simply
supported, unsymmetric cross ply rectangular laminates under biaxial
compression. The Von Karman type nonlinear equations were solved by a

Fourier series method. It was pointed out that because of the By coupling

J
there was bending in the laminate right from the start of the loading. This
bending quickly disappeared as the number of 1layers in the laminate
increased.

A variant of the Rayleigh-Ritz method was used by Banks 2, to examine
the postbuckling behaviour of orthotropic plates, with simply supported
loaded edges and elastically restrained unloaded edges, under compression.
Banks et al *° 1later on extended the method to include initial
imperfections. Rectangular, orthotropic, E-glass polyester laminates were
tested by Banks °° and satisfactory agreement between theory and experiment
was observed.

51

Prabhakara and Kennedy examined the postbuckling behaviour of simply

supported, unsymmetric angle ply laminates under shear load. Some results

for clamped boundary conditions were also presented. A method of solution

47

similar to that used by Prabhakara in was adopted and the zero moment

condition at the boundary was again satisfied by the procedure suggested by

27

Green . The effect of different materials, number of layers, orientation

and aspect ratio on the response of the laminates was examined.
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Kobayashi, Sumihara and Koyama 52

analysed theoretically and
experimentally the buckling, postbuckling and failure of thin, flat,
square, symmetrically layered, graphite epoxy laminates with clamped edges
under shear load. A hybrid finite element method was used for the analysis.
Failure estimates were obtained from three different criteria. The overall
agreement between theory and experiment was reasonable, although the
theoretical model appeared to be rather overstiff in the postbuckling
range. All laminates tested showed significant postbuckling strength and

only a small decrease in shear stiffness in the postbuckling range.

Agarwal ®? examined theoretically and experimentally, the postbuckling
of three bay, composite graphite epoxy, shear webs. Theoretical analysis of
the square, essentially simply supported, middle bay was performed by the
MSC/NASTRAN code. Very good agreement between theory and experiment was
observed.

Bhattacharya 34

considered the postbuckling of symmetric cross ply
laminates with elastically restrained edges under compression. Perfectly
flat as well as laminates with small initial geometric imperfections were
examined. Solutions were obtained by the Galerkin method. The effects of
initial imperfections were found to be very pronounced only near the
critical load.

Zhang and Matthews °>°

presented an analysis of the postbuckling
response of thin, generally layered, cylindrically curved panels with
simply supported edges, under compression. The governing equations were
obtained by the stationary potential energy principal, in terms of the
lateral deflection and a stress function. The assumed deflection function

did not satisfy the zero moment requirement at the edges. To satisfy the

requirement in the mean, terms that accounted for the effect of the
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unbalanced edge moments were ihcluded in the equilibrium equation. An
extensive parametric study was presented.

The same theoretical formulation was also employed by Zhang and
Matthews 5% for the analysis of the postbuckling response of symmetric,
anisotropic, flat laminates with simply supported edges under shear 1load
and combinations of shear and compressive loading.

Stein %7

analysed the postbuckling of isotropic and orthotropic 1long
plates under combined compression and shear load. The 1long edges were
simply supported and held straight. He pointed out that the inplane
boundary conditions are very important for plates loaded in shear.

Craig and Matthews °® considered the postbuckling of thin cylindrically
curved laminates under shear load and compression. Earlier work °%356 yas
éxtended to include clamped and combinations of simply supported and
clamped boundary conditions. The effect of initial geometric imperfections
was also examined.

Leissa closely monitored the developments in the stability analysis of
laminated plates and presented a comprehensive review %% in 1985, as well

as several review papers, eg. 2:50,61,

1.2.3 Cutouts and other Complicating Features.

The stability analysis of laminated plates is greatly complicated by
the presense of cutouts. The stress distribution in the 1laminate, even
under uniform inplane load(s), is rather complex and needs to be evaluated
before the stability problem can be solved.

The subject of shear stability of laminated plates with holes is
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virtually nonexistent in the literature to date. Even for isotropic plates,
rather few references can be found.

Wang %2 developed theoretical solutions for the stress distribution in
rectangular plates with circular holes under shear load.

The shear stability of square plates with a circular hole was examined

by Rockey 672

with a finite element method and Uenoya and Redwood &% who
used a finite element method for the inplane stress distribution and a
Rayleigh-Ritz method for the bifurcation analysis. Although their findings
do not entirely agree, a drop in shear buckling load with increasing hole
diameter’to plate width ratio was observed.

Solutions for the stress distribution around cut outs in orthotropic

and anisotropic plates have been obtained by Savin 5° and Lekhnitskii 1!°.

;

k &6 67

More recently Greszczu extended Green's and Zerna's

early work and
developed theoretical solutions for the stress concentrations and the
failure stresses in orthotropic and anisotropic laminates.

Németh 68 developed an approximate solution for the compression
buckling of a rectangular orthotropic plate with a centrally located
cutout.

Marshall et al ®° analysed the compression buckling of rectangular
orthotropic plates with a centrally locatgd circular hole, employing an.
approximate energy method. Good agreemenﬁ between theory and experiment was
observed for hole diameters to width ratios £0.4. An extension of the aone
method was also used to analyse the effects of eccentrically Jlocated
holes 7°.

Knauss et al 7! made an experimental study of the compression buckling

and postbuckling behaviour of graphite epoxy laminates with circular holes.

They found that the major factors determining whether or not a panel
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buckled before failing were the far-field strain level and the strain
concentration factor around the hole.
Further relevant work can be found in references 72»73,74,75

Very recently Lin and Ko 7°

suggested an analytical method for the
determination of stress concentrations and failure stresses in rectangular

anisotropic laminates with elliptical holes.

The stability analysis of laminated plates is further complicated by
nonlinear stress-strain relationships, transverse shear deformation,
hygrothermal effects as well as localised defects 1like delaminations,
debonds etc.

The nonlinearity in the stress-strain relations of fibre reinforced
composites is mainly due to the nonlinear behaviour of the matrix
materials. The fibres usually display linear elastic behaviour to failure.

Methods for predicting the material nonlinear response of composites

have, among others, been proposed by Petit and Waddoups 77, Hahn and Tsai

78 79

, Jones and Nelson - A brief review of macromechanic approaches, as
well as an alternative approach is given by Nahas 8°,

The buckling of laminates with nonlinear stress-strain response has

been considered by Hahn 8!, Morgan and Jones 2%, while Arnold and Mayers 22

examined the postbuckling and failure behaviour too.

It is by now well established that the transverse shear effects are
much more pronounced in anisotropic laminated plates than in isotropic
plates, due to the high ratios of inplane modulus of elasticity to shear
modulus that can exist in the former.

A fair amount of researh work has been done in analysing the transverse
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shear effects on the stability of laminated plates, eg. %4385, Further
relevant references can be found in Bert %% and Leissa 59.

Transverse shear deformation essentially reduces the bending stiffness
of a laminate, thus reducing the buckling 1load and increasing the
deflections. However, as many studies have shown, even for highly
anisotropic laminates, its effects are negligible for laminates of width to

thickness ratios greater than 40.

l.2.4 Strength - Failure.

The strength analysis of laminated plates is also a very complex
subject as failures may occur in many, often intéracting, modes and involve
fibre failure, matrix failure, interfacial failure, delamination and
buckling.

Inspite of considerable research effort, as a fairly recent survey 27
has shown, there is little agreement on what constitutes failure, let alone
how to predict it.

Strength can be determined from failure criteria that are based on the
assumption that the material is homogeneous and its strength can be
measured experimentally.

Based on the Von Mises distortional energy theory for failure in
isotropic materials, Hill 82 proposed a failure criterion for anisotropic
materials. The main disadvantage of Hill's criterion is that it does not
differentiate between tension and compression strength.

89

To account for that, Marin proposed an extension to Hill's

criterion, which is, unfortunately, difficult to apply, as strengths must
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be known in other directions than the main directions of the material. A

simplified version of Hill's criterion was suggested by Azzi and Tsai °°

Hoffman °!, based on the same principles too, proposed a criterion for

brittle orthotropic materials, that avoids the above mentioned drawbacks.
Based on a purely mathematical description of the failure criterion,
9z

Tsai and Wu suggested a tensor polynomial criterion. Although fairly

general and consistent mathematically, this criterion is difficult to
apply, mainly due to problems in evaluating a stress interaction term,
usually denoted by F,,.
Among the most popular failure criteria 27, despite the fact that they
allow no interaction between the various modes of failure, are the maximum
strain and maximum stress criteria.
Further relevant information can be found in references %3:9%:95,
Finally, it should be noted that all these failure criteria are mainly

regarded as design criteria rather than criteria giving precise predictions

of the actual failure stresses.



17

1.3 Project Guidelines.

The literature survey confirmed that shear buckling and postbuckling'of
flat, generally layered composite plates has attracted only limited
attention. It also became obvious that, in general, far fewer experimental
results than numerical/analytical results are available.

It was decided that a theoretical model would have to be developed, so
that a parametric study of the shear stability of laminated composite
plates could be carried out.

Also, it was decided that a series of experiments.should'be undertaken
to examine the validity of the theoretical approach. Admittedly, given the
limited resources of the department in that respect, only a rather small
series of experiments could be performed.

Discussions with Westland Helicopters, who supplied the laminates,
highlighted the practical significance of quasi—isotrépic lay~ups, so it
was decided that testing should concentrate on such laminates.

Also, given the scarcity of relevant published results, the shear
stability of quasi-isotropic laminates with centrally 1located circular

holes would be studied experimentally.
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Chapter 2: Theory

2.1 Introduction.

A general noqlinear theoretical model is developed, to analyse the
response of laminates with clamped edges, under uniform inplane load(s).
The main concern of the current work is inplane shear load, but the
response of the laminates under compression, as well as combinations of
inplane loads is also considered.

The laminate under consideration is thin, flat, of general lay-up and
is supposed to be in a state of plane stress. Transverse shear effects are
negligible, and the Kirchhoff's hypotheses apply. Hence the strain
variation, through the thickness of the laminate, is linear.

The strain~displacement relations, as suggested by Von-Karman, are
employed and the general form of lamina constitutive relations is utilised,
assuming the material is homogeneous and behaves in a 1linearly elastic
manner. Hence only geometric and not material nonlinearities are accounted
for. Note that the elastic moduli are assumed to be the same in tension and
compression.

Laminates of perfect geometry, as well as with initial imperfection
from flatness can be analysed.

The governing equations are obtained by considering the three
dimensional equilibrium of an element of the laminate, adopting the
Lagrangian coordinate description. By the introduction of a stress

function, the governing system is expressed as two coupled, nonlinear,
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partial differential equations, in terms of the stress function and the
lateral deflection.

The solution of the eighth order governing system is obtained by using
generalised Fourier series, employing beam characteristic functions that
satisfy exactly the boundary conditions and by applying the Galerkin

method.

2.2 Development of the Governing Equations.

To analyse the buckling and postbuckling response of thin, flat,
generally layered anisotropic plates the following nonlinear theory is
utilised.

At first the laminate will be assumed to be of perfect geometry. The
effects of initial geometric imperfections from perfect flatness will be
incorporated in the formulation, later on.

The laminate (figure 2.1) is of rectangular planform and of length, a,
in the x direction and of width, b, in the y directi&n and of thicknesé, h,
in the z direction. It is made up of n layers of homogeneous anisotropic
sheets,' perfectly bonded together. The bonds are assumed to be
infinitesimally thin as well as non shear-deformable. Each layer can have
arbitrary thickness, elastic properties and orientation of the principal
material axes with respect to the plate axes.

The laminate is assumed to be homogeneous and to behave in a linearly
elastic manner.

The laminate is supposed to undergo lateral deflections that are of the

same order of magnitude as its thickness, ie.|w]|=0(h), but much smaller
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than a characteristic laminate dimension, ie.|w|<€a,b. To describe the large
deflections of the laminate, in its deformed configuration, the Lagrangian
approach is used.

The =xyz Cartesian coordinate reference éystem employed is for
convenience located at the midplane of the undeformed laminate, which is
assumed to be of uniform thickness.

Furthermore, it is assumed that the slope of the deflected surface is
everywhere small, ie. |w,, |«1 and |w,y|<1.

As already mentioned, the laminate is thin, ie. hga,b and hence the
Kirchhoff hypothesis is assumed to apply. This states that a 1line
originally straight and normal to the middle surface of the laminate will
remain straight, normal to the middle surface and inextensional when the
laminate is deformed under load, so that the transverse normal and shearing

strains are negligible, ie. € 0.

z2"7%z7yz2"
Following from Kirchhoff's hypothesis, it can be shown °%:%7 that the

inplane displacements u, v and the deflection w, in the x, y and =z

directions respectively, at any point of the laminate are given by:

u(x,y,z) = u’(x,y) - z. W',
v(x,y,2z) = v'(x,y) - =z. w°,y (2.1)
w(x,y,z) = w'(x,y)

where u°,v°’,w° are the values of u,v,w at the reference plane, ie. at the

midplane (z=0); and W',y and w",y are the slopes of the laminate midplane

in the x and y directions. Since w is independent of z, for simplicity the

superscipt (°) will henceforth be omitted.

Now assuming that the tangential displacements u, v are infinitesimal,
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only those nonlinear terms that depend on W,y and w,y are retained in the

strain-displacement relations (Green's strain tensor). So we have:

€x T U,y + 1/2 (Wyx)z

= 2
€y = V,y + 1/2 (w,y) (2.2)
Txy = Usy + Vg * W,y Wiy

Substituting (2.1) into (2.2) we have:

€x = U,y + 1/2 (w,x)2 - Z Wygy
= ° 2z _
€y Vg + 1/2 (w,y) z Wyyy (2.3)
7xy = u°,y + VT, oW,y Wiy = 2 z Wixy
where the strains at the midplane (z=0) are:
€°y = u’,, + 1/2 (w,x)2
° — ° 2
€'y =V + 1/2 (w,y) (2.4)
7°xy = uo:y + V°sx + W,y W’y
and the curvatures are:
ky = ~Wixx ky = Wiyy kxy = "2Wsxy (2.3

So far we have derived expressions that relate the deformations of the
laminate to strain. Now, in order to introduce stresses in the solution,
expressions that describe the stiffness of the laminate are required.

The laminate is essentially composed of layers of wunidirectional
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composite and it is assumed to be in an approximate state of plane stress,
following a second Kirchhoff hypothesis, which states that the transverse

normal stress, o,, is very small compared to other normal stress components

and may be neglected in the stress-strain relations °%8.
When the principal material axes of a unidirectional laver coincide

with the plate axes then the layer is orthotropic. And its stress-strain

relations under plane stress are:

ox Q14 Q1. 0 €x
Oy = 04, Q;, Y €y (2.6)
Txy 0 0 Qs 7xy
where Qij » the reduced stiffnesses are:
Quy = Ey /(1 = vy,v,,)
Qu, = vy, By /(1 = vy,v,3) = vy Ef /(1 = vy,v,,)
Qrz = E, /(1 = vy,v,y) 2.7)
Qss = G
in which E,, E, are the Young's moduli along and normal to the fibre

direction, respectively; v,,, v,; are Poisson's ratios and G,, is the
inplane shear modulus. |

However, more often than not, the material axes of a layer, do not
coincide with the plate axes and then the layer is called 'generally

orthotropic' and behaves exactly as if it was anisotropic %7. For this

general case, the stress-strain relations, under plane stress, can be shown

to be:

Ox Ciy Ciz Cis €x
oy =lc,, C,, GCye ey (2.8)
Txy? (k) €16 C26  Casl(iy ' Txyd (i)
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where the subscript (k) indicates that we are dealing with the kth layer of
the laminate and Cij are the transformed reduced stiffnesses. These can be
obtained from the reduced stiffnesses, Qij’ via standard transformation

relations 100,126,

The stress resultants and moments are defined in the usual manner as:

 h/2
[ Nx, Ny, ny ] = [ Oxs Oy, 'rxy ](k) dz (2.9)
J-h/2
f h/z2
[ My, My, Mxy ] = [ oy Oys Txy ](k) z dz (2.10)
J=h/2
~ h/z
[ st Qy ] = [ Txzs ‘ryz ](k) dz (2'11)
J-h/z
where N, Ny’ ny are the membrane forces, Q, Qy are the transverée shear
forces and My, My, Mxy are bending and twisting moments, all per unit

length. The positive sense of the above forces and moments can be seen in
figure 2.1.

Now substituting the stress-strain relations (2.8) into equations (2.9)
and (2.10) and performing the required mathematical operations, taking into

account equations (2.3), (2.4), (2.5), the laminate constitutive equations

are obtained:
(x)-12 o] {¥} (2:12)

Ny My €°x
where N = Ny , M= My , €° = e°y , k =
ny Mxy ¥°
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and

[ Ay Ars Ayg]

A = A, A, Asg are the extensional stiffnesses
L A6 Aze Age
[ By, By, Bis|

B = B,, B,, B,g are the coupling stiffnesses (2.13)
| Bss B;s Bgsl]
[ Dy, Dy, Dy

D= D,, D,, D,e are the bending stiffnesses
L D6 D;s D¢l

where the elements of the above matrices, are defined as:
h/2
(813 Bigs Dij ) = N Cijr) (1, z, z%) dz (2.14)
~h/2

where 1i,j=1,2,6

Note that evaluation of the various stiffnesses is carried out in steps
through the laminate, as the transformed reduced stiffnesses are different
from layer to layer. Hence integration is possible only through the
thickness of each layer and the stiffnesses of the laminate as a whole are
obtained by summation.

Also, note that the Bij stiffnesses display coupling between transverse
bending and inplane stretching. The coupling will disappear when Cij (k) is

an even function of =z.
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Following from Kirchhoff's hypothesis and the assumed strain

96,101

displacement relations, it can be shown that the equations of

equilibrium, in Lagrangian coordinates, can be written as:

+ fy =0 (2.15a)

+f =0 (2.15b)

Wy, + T Wy, + 0, )y, + £, =0 (2.15¢)

where f., f f_ are body forces per unit volume.

y* “z
Now, if we apply equations (2.15a),(2.15b),(2.15¢c) to the kth layer,
multiply by dz and integrate through all the layers from -h/2 to h/2 we

obtain:

Nysx + Ngysy * Qg = 0 (2.16)
ny,x + Ny,y + qy = 0 (2.17)
Ny Wygy + 2 ny way + Ny Ysyy + Qpyy + Qy’y +

wsx (NX’X + ny:y) + w)y (ny9x + Ny!y) + q = o (2'18)

Further, if we apply equations (2.15a) and (2.15b) to the kth layer,
multiply by zdz and again integrate through all the layers from -h/2 to

h/2, we obtain:

Mysx ¥+ Mxy’y tmy - Qg =0 (2.19)

M + M -Q, =0 (2.20)

Xy*x yry + My y
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r h/z
where Ay & Tox - Tzx + fx(k) dz
z=h/2 z==h/2 J-h/2
r h/z
qy = -rzy - sz + fy(k) dz
z=h/2 z=-h/2 J-h/2

z=h/2 h/2
q = (0, + Tyy Wy + Tzy W,y + fo(k) dz
z=-h/2 ~h/2
_ - ‘ h/2
_h
my = 5 Tox + Ty + z fx(k) dz
L z=h/2 =-h/z | J-ht2
" i i f h/2
my = 5 Tzy + Tzy + z fy(k) dz
1 z=h/2 z=~h/2z | J-h/2
where q is the lateral load per unit area; q, q, are the resultant

external forces, tangential to the laminate, per unit area and m,, m, are

o

resultant external moments per unit area about the middle surface.
Solving equations (2.19) and (2.20) for Qy, and Q, respectively and
substituting the resulting expressions into equation (2.18), we obtain:

M + 2

X2 XX Myyoxy T Mysyy T Nx Waxx + 2 Nyy Wayey + Ny wayy
- Weyg 9y -~ WSy qy + mX’X -+ My, + q =0 (2.21)

So the equilibrium of the plate in the x, y, z directions is described
by equations (2.16), (2.17), (2.21) respectively.
These equations are further simplified by the fact that the body forces
will be ignored and the bounding surfaces of the plate, ie. z=h/2 and
z=-h/2, are assumed to be free from shearing stresses.

So the transverse shear forces become:



Qp = Mysy + Mxy’v (2.22)

y Xy X yry (2.23)

and the equilibrium equations become:

Nysx + Ngysy =0 (2.24)
Ngysx ¥ Nygoy =0 (2.25)
Mysxx 12 Myysxy Mysyy Ny Wogy +2 Nyy Woyy Ny w0y +q = 0 (2.26)

So now if we substitute the plate constitutive equations (2.12) as well
as equations (2.4) and (2.5) into the equilibrium equations (2.24) to
.(2.26), an eighth order system of three governing equations in terms of the
three displacements u°,‘v°, w can be obtained.

On the other hand, the governing equations can be set up in terms of a
stress function and the lateral deflection. For this work, the latter

approach was chosen.

A stress function is defined as:

N, = é’yy y = 2, wx xy ~®5xy (2.27)
and it can be easily shown that it satisfies equations (2.24) and (2.25).
Furthermore the plate constitutive equations (2.12), need to be
modified in such a manner that the midplane strains and moments are given
12

as functions of the membrane forces and the curvatures .

After partial inversion, the constitutive equations become:
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e* A* B* N
= .28
{M} [~(B*)T D*]{k} (2.28)
where A = A~ B* = -A"'B , p* = D - BA™!B (2.29)

The above stiffnesses are usually referred to as reduced laminate
. . * * 3 3 * . .
stiffnesses and in general A and D are symmetric matrices, but B is not
a symmetric matrix.

From equation (2.28) the bending and twisting moments can be written

%
B g, &

+

My = -B ,;, &, -B 21 @ixx X
yy y

* * %*
D g1 Woxx "Dy Wiyy = 2 D yp Wiy
% * %
My = =By, ®iyy B 2z Cixx * Baz Suyy
* * : *
D"y, Wyxx —D 5> Wsyy = 2 D ,4 Ws xy (2.30)
% * %*
Myy = "B 16 ®syy "B 25 ®yxx * B s Pixy

* *
“D 46 Wixx ~D 26 Wsyy ~ 2 D gg Wixy

Substituting equations (2.27) and (2.30) into (2.26) and assuming that
no transverse load is acting onto the plate, the equation of equilibrium of

the laminate in the z direction, in terms of & and w is obtained:
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* *

* *
11 Woxxxx T 4 D g Wixxxy * 2(D 1, + 2 D gp) Wiyyyy

%* * *
+ 4D 56 Wixyyy ¥ D 22 Weyyyy ¥ Bay ®yixxxx

* * * *

*
+ (2 B 26 B 51) q>’xxxy + (B 11 + B 22 ~ 2B 55) <I>!Xxyy

*

* *
+ (2 B g = B'gy) ixyyy + B

12 ¢’yyyy

&

= Wixx Poyy T Wayy = 2 Wixy Pixy (2.31)

P XX

The second equation comes from the requirement of compatibility of
deformation. From equations (2.4), eliminating u°’ and v°, the compatibility

condition is:

° ° o - 2
€xoyy T yrxx T Yxyrxy T Yoxy' T Waxx Wayy

Again substituting leads to:

* *

* %* *
22 ®rxxxx ~ 2 A ;6 <I>9xxxy + (2 A 12 T A 6s) &

A -2 ATy ®ixyyy

>XXyy

*

* * *
Ay - B oy Woxxxx ~ (2 B o5 = Big) Wiyyxy

¢’yyyy

*

* * * *
= (B gy + By, = 2 B gg) Wixxyy ~ (2 By = B gz) Wsxyyy

* - 2
= B yr Wiyyyy T Waxy' T Wixx Wayy (2.32)
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2.3 Nondimensionalisation of the Governing Equations.

Before proceeding with the solution, the governing equations are
nondimensionalised.

Let us define the following nondimensional parameters:

W=wh, F=2%/A,, h? , ¢=x/a, n=y/b, X\ =a/b
(2.33)
by = dj: = D* 2
s byjj =B i3/h , djj =D ;j/A,, h
Introducing equations (2.33) into the governing equations (2.32) and (2.31)

we obtain, respectively:

Compatibility Equation

_ 2
8,2 Fycece 2 3,6 NFypren + (2 a,, + agg) A Fyseenn

2 4 _
- 283 M Fyennn 7 211 N Fapnnn — Pas Wsreee

- (2 byg = bgy) NWoereen = (byy + by, =2 bgg) \? Wy cenn

3 4
= (2 by = bga) X Werpnn = P12 A Wspnnnn

2 wW,,.2 - W

’en 2L W

!nn) (2.34)
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Equilibrium Equation

, » ,
diy Woreee ¥ 4 dig M VWyrren + 2(dy, + 2 dgg) N Woeenn

+

3 4
4 dzg X Wignnn * dzz N Wapnnn * P21 Faeee

+ (2 by - bgy) X Facgen + (by; + by, =2 bgg) z? Fycenn

+ (2 byg = bg2) A Fyennn + b1z X Funnnn

i

2
A (W’CC F’ﬂﬂ + w’nﬂ F’CC -2 w’Cﬂ F’Cﬂ) (2.35)

Nondimensionalising the rest of the parameters involved we have:
= Fann Ny = Foge 1/2° Nen = ~Fagn 1/ (2.36)

€n = —ZW,C“ l/k (2.37)

NC ] b2 NX
ST S v L A (2.38)

&ne Xy
QC ] b2 Qx

= T = (2.38a)

o, }  f2 Qy

kc ] b kx
kC'ﬂ’ k'xy _
MC b2 MX
A N vos A B (2-40)
M zz M.

&n Xy
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And the nondimensional applied loads are:

Nl ' bZ PX
N, = ey P (2.41)
A,, h Py
S » Xy
where P, Py, ny are applied loads per unit length and their positive

sense can be seen in figure 2.2 .
For general inplane combined locading, assuming that there are given
ratios among the inplane forces, it is useful to introduce a nondimensional

loading parameter:

P, b?
Ny = —e (2.42)
A,, h?

Qhere P, is related to the applied loads by the following relations:

P, Py = 2, P, Pyy = Pxy Po (2.43)

So by selecting the ratio between Rx, Qy, ny any required combination of

inplane loading can be considered.
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2.4 Laminates with Initial Imperfection from Flatness.

It has been well established over the years, that initial imperfections
from flatness can have quite a detrimental effect on the buckling response
of flat isotropic plates.

Laminated plates, too, given their very nature -different thermal
expansion coefficients between fibres and matrix, dependence on symmetric
stacking sequence to avoid warping after curing, etc.- , as well as their
complex manufacturing process, are very likely to possess initial geometric
imperfections.

So it was decided to study the effect of these imperfections on the
overall résponse of the laminate.

Denoting by w, the initial deflection (imperfection from flatness), it

can be shown 1©25101 that the midplane strains can be written as:

2
U,y F 1/2 (W) + Wy Wosy

M
kg
[}

]
"

°y Vi, F 1/2 (w,y)2 + W,y Wouy (2.44)

° °
Xy u sy + v ' x + W,y w,y + W,y wo,y + w,y Wosx

Then proceeding as for the perfectly flat laminate and introducing

Wy=wy,/h, the nondimensional governing equations are obtained as:
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Compatibility Equation

2
322 Faceee = 2 226 N Fageen + (2 @52 + 2660 N Fipenn

3 4
= 2236 N Faennn ¥ 211 N Fonnnn — P21 Wareee

= (2 byg = bgy) N Wypren = (byg + by =2 bgg) 2% Worenn

(2 byg = bgz) N Woennn - b1z V¢ Ysnnnn

il

A (w’cn2 -~ Wi Wann

+2 W’Cﬁ WO’C‘I\ - w"l’\‘ﬂ wO’Cc - w’CC woann) (2.45)

Equilibrium Equation

dig Waccee * 4 dig N Wogpen + 2(dy, + 2 dgg) A2 W

roonn

. 3 N 4
T b4 dog N Wornnn F doz N Wopnnn * Yoy Fapege

+ (2 byg = bgy) N Fyppen + (byy + by, =2 bgg)d 2 |

+ (2 byg = bga) A Fogpnn + Pz 2 Fapnnn

22 (W F + W F -2 w F

266 Tann mn T gL sen Fagn

* Wosee Forn ¥ YWosnn Foce ™2 Wosen Fopn ) (2.46)

NB. The underlined terms on the right hand sides of equations (2.453) and
(2.46) are due to the initial imperfections. Otherwise the equations are

identical to equations (2.34) and (2.35) for a perfectly flat laminate.
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2.5 General Solution of the Governing Equations.

In the previous section the nondimensional form of the laminate
governing equations, including initial imperfections from flatness, was
derived, ie. equations (2.45) and (2.46). These nonlinear partial

differential equations are coupled through the b terms, ie. the

ij
nondimensional form of the reduced coupling stiffnesses, as well as through
the nonlinear terms on their right hand sides, hence they have to be. solved
simultaneously.

The governing equations form an eighth order system, with unknowns the
stress function, F, and the lateral displacement, W. Hence, to define the

problem mathematically, four boundary conditions need to be specified on

each side of the plate.

In this work, only one type of boundary condition will be considered.
Namely, all four edges of the laminate are clamped. So for general inplane

loading (see figure 2.2), the boundary conditions may be expressed as:

W=W,, =0, F,.o=-N, , F,.n=-x5 at ¢=0,1

(2.47)
sce = 2N Ny, Foeq =-)S at n=0,1
There is no classical, closed form solution to the above problem, so an

approximate method will have to be employed.
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The stress function, F, and lateral deflection, W, as well as the
initial deflection, W,, of the laminate will be assumed to be adequately

described by the following generalised double Fourier series:

© [>]
2 2
n [
F = -2y No » -8y Nog A% 5 —2yy No X ¢ n +m21 nzl Fin X¥m(¢) Yp(n)
(2.48a)
[e<] <]
W =pzl qzl Wpq ¥p&) Yq(n) (2.48b)
o« [2¢]
Yo =rzl szl Wors Xp(€) Yg(n) (2.48c)

Note that the initial imperfection of the laminate is assumed known and the
Worgs coefficients are given. The X (¢), Y, (n), Xp(t), Yq(n), Xp(&), Yg(n)
are characteristic eigenfunctions for the ith  mode of wvibration

(i=m,n,p,q,r,s) of a uniform clamped-clamped isotropic beam:

X;(¢) = coshBj¢ - cosBj¢ - 74 (sinhBic - sinBic)
(2.49)

Y;(n) = coshByn - cosBjn - ¥4 (sinhBjn - sinBin)
and 73y = (coshBj - cosB;)/(sinhB; - sinfB;) (2.50)

The constants B; & y; take the following values

i
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Table 2.

1

4.73004074486270

7.85320462409584

10.9956078380016

14.1371654912575

17.2787596573995

20.4203522456260

23.5619449020404

26.7035375555082

29.8451302091033

0.982502214576238
1.000777311907269
0.999966450125409
1.000001449897656
0.999999937344383
1.000000002707595
0.999999999882994
1.000000000005056

0.999999999999781

The above values of Bj; and »; have been adopted from reference

104

bl

and

with these values the eigenfunctions and their derivatives satisfy certain

important mathematical relations:

and

also

X (0)

¥; (0)

Xi(l) = X'i(O) = X’i(l) =0
Y(1) = ¥'5(0) = Y'4(1) =0
X""i = Bi4 Xi . Ynni = ’314 Yi
1 0 i3
X; (0 Xj(() de¢ =
JO 1 i=J
1 0 i%j
Y (n) Yj(ﬂ) dn = .
0 1 i=j

(2.51)

(2.52)
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Thus the eigenfunctions are said to be orthogonal. This particular
property greatly assists the procedure for solving the governing equations.

It can be shown that the assumed series for the stress function, F, and
the lateral deflection, W, satisfy all the boundary conditions.

Then to solve the governing equations, the Galerkin method is employed.
The derivatives of W and F and W, are substituted into the governing
equations and both equations are multiplied by Xi(c).Yj(n) and integrated
over the whole plate area, ie. from 0 to 1 with respect to ¢ and n.

After a rather involved mathematical manipulation, the governing system

becomes

Compatibility Equation

Fij (a2 Bi* + ap, Bj4 )

Fon (=2 8,6 N M,AM NID 4 (2 a,, + agg) 2% M,im g jn

+
g0~ 8
30V 8

-2 a;g 22 M im y,dny

wij (by, 514 + by, 5j4 A

Wpq ((2b,5 = bgy) X MiP N 39 + (b, + b,, -2 bge) 2% M, 1P x, 3a

1
o T8
Q18

+(2 b,g - bg,) 2 MIP N, I =

wrs wkl (MAirk N4j51 —_ Msirk stlS)

[}

>

N

—
LI o I

~
108
D18

8
8

© o

+ z 2 z z wOrS wk}. (2 M(birk N4j51 - Msil‘k st].S - Msikl‘ stsl ]
r s k1l

(2.53)
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Equilibrium Equation

Fij (byy ﬁ14 + by, Bj4 NS

an (2 bZS_bBI) A lem Najn + (b11 + bzz

+
g 01 8
=T s B

+(2 b,g - bg,) N2 M,Im y,Jn)
+ wij (d11 Bi4 + dZZ Bj4 x“)

© o

+2 2 Wpq (4 dig N MIP N 39 + 2 (dy, + 2 dgg) A2
P q

+ 4 d,g 2?7 M;IP N,ID) =
© ©
= XZ[—RX NO z ij Mlip _fy NO N z wiq Nqu * 29Xy NO
q

©
2 Fun Wpq (MgIPM N Ind 4 M imP y Jan
q

[oo] =)

+ XZ[—QX Noz wOpj Miip -Qy N0 xzz woiq Nqu + foy N0
b q

where the constants M; (i=1,2,3,4,5) are

M,1s = f; X; Xg' ' de
M,1i8 = fz X; Xg' ' de
M,is = I: Xi Xs' de

M, ims = f; X X Kg d¢
gime = Jooxg %' %g de

foe)
z an Wopq (Msipm stnq + Msimp stqn
q

- 2 bgg) N2 MM N, I

Mlip N1jq
o

N Z Z Wpq M, 1P N, 39
P q

-2 Mdimp N4an)]

o«

D) Wopq MpiP N,3d
P q

- 2 m imp N4j“Q)]

(2.54)

(2.55)
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in which the (') indicates differentiation with respect to ¢. The anstants
N; are obtained in the same way by replacing M,i,m,s,¢ in the above
expressions by N,j,n,t,n.

Thus the governing system of nonlinear partial differential equations
has now become a system of infinite simultaneous algebraic equations with

unknowns Fys

3 and Wy

j*
In practice, only a finite number of terms is retained in the series
(2.48). An evaluation of the convergence (see section 3.3), suggested that
only a 1limited number of terms need to be employed. Certainly results
obtained with m=n=9 (81 terms) can be treated as exact, how;ver in most
cases even m=n=3 (9 terms) could provide a fairly accurate prediction.

In order to calculate the minimum buckling load and the corresponding
buckling mode, of a laminate that displays the bifurcation type of
buckling, the nonlinear terms in the governing equations are set to zero
and an eigenvalue problem is set up. The eigenvalue problem is solved by a
standard NAG routine (FO02BJF) using the QZ algorithm.

The postbuckling analysis starts from the buckling load and the full
nonlinear governing equations are used. The applied load is prescribed to
increase by a certain steplength and the initial approximation to the true
solution comes from the eigenvector.

The solution proceeds in the following fashion. Given the initial
approximation wij, the compatibility equation is solved for F;.:. Then Wi

J J

and Fij are substituted into the equilibrium equation and the convergence

is tested.
The solution is assumed to have converged if the sum of the squares of
the 'residuals' of the equilibrium equations is less or equal to 0.000001.

If the convergence criterion is not satisfied then the Jacobian is
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calculated and a Newton-Raphson method is used to find a new estimate of
the true solution. The partial derivatives -Jacobian- are calculated using

the following formula :

£'(xg) = (1/2h).[£(xg+h)-f(xo-h)] - (h?/6).£'"''(£) (2.56)

Convergence is tested for every new estimate and once the convergence
criterion is satisfied the iteration ends. Then the applied 1load is
increased and the solution of the last step becomes the initial guess for
the next step. After three postbuckling points are obtained, a Lagrangian
extrapolation scheme is introduced to give an initial guess for the
solution at the next step using the true solution in the last three steps.
Convergence is very quick, usually 4 iterations per step.

For laminates that do not display the bifurcation type of buckling, but
deflect 1laterally as soon as the inplane 19ad is applied, the general
nonlinear form of the governing equations is used, right from the start of
the loading. The solution proceeds in a fashion similar to that described
above for the calculation of the postbuckling path of a laminate that

displays bifurcation buckling behaviour.



2.6 General Comments on Beam Eigenfunctions.

Beam characteristic functions have been used by many researchers to

analyse the buckling and postbuckling behaviour of isotropic !°?, as well

as composite plates 13,101,511

‘The success of the beam eigenfunctions in providing an accurate
solution to the above problems, depends greatly on the conditions of
orthogonality being satisfied.

Most formulations have employed the constants B;, »; with 6 significant
figures accuracy. Zhang !°% however, evaluated the orthogonality conditions
and found that, as the number of terms in the series increased, the
accuracy by which the orthogonality conditions were being satisfied was
falling off. He then proposed that constants B;, »; with 15 significant
figures accuracy should be used and showed that certain improvement in the
accuracy of the predictions could thus be achieved.

Howeyer popular and effective the approach is, it must be pointed out

that great’ care should be exercised when using beam eigenfunctions.

Regardless of the accuracy of the constants B; and 7; and due to the very

nature of the functions, involving, as they do, positive exponentials that
can assume really large values, numerical instabilities are likely to occur
as more terms in the series are used, unless proper numerical safeguards

‘are employed.
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2.7 Importance of Shear Direction on Composites.

As it has been pointed out by Pagano et al 1°6

» although for isotropic
materials the direction of the applied shear load is not important, fgr
laminated composites, given the variation in stiffness and strength with
orientation, it is very important.

Given that the effect of shear direction on the response of quasi-
isotropic laminates was investigated in the experimental part of this work,
it was felt'appropriate to elaborate a little on the particular topic.

Consider the cases of an off-axis (45) unidirectional laminate under
positive shear load (fig. 2.3a) and negative shear load (fig. 2.3b). When
the applied shear load is resolved into tension and compression components,
it canbbe easily observed that the response of the laminate in the two
cases would be vastly different.

For positive shear the compressive component of the applied shear load
is acting inAa direction normal to the fibres, while for negativé shear
load the reverse occurs. That is, the compressive component of the applied
shear is acting along the fibres, ie. it is along the direction of highest
stiffness in the laminate. So, assuming that the laminate is large enough
to buckle, it would be expected that, in absolute terms, the buckling load
would be considerably higher under negative shear than under positive
shear.

On the other hand, as far as strength is concerned, after buckling has
occurred and as the applied load is further increased the laminate operates
under diagonal tension. For positive shear, the tension is acting along the

direction of the strong fibres, while, for negative shear, it is acting
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normal to the fibres and it is thus reacted mainly by the weak matrix. So,
it would seem that the laminate would fail at a much higher load under
positive shear than under negative shear.

Although the situation can  be complicated by several factors, for
example, the strength of the above laminate may be controlled mainly by the
properties of the matrix rather than the fibre, it becomes obvious from the
above reasoning that the effect of the shear direction on the response of

laminated plates is significant and warrants investigation.
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Chapter 3: Buckling

3.1 Introduction.

Thin-walled structures under compressive inplane loads fail through
buckling and although the ultimate load may be several times greater than
the buckling 1load, as indeed is the case for thin isotropic plates,
-provided the buckling deformation is constrained in some way, for example,
by edge constraints- the determination of the wminimum buckling locad is
very important, as at this particular load, the stable and flat form of
equilibrium ceases to exist and now the plate starts to experience lateral
deflections. This of cource has a profound -if not critical- influence on
the overall behaviour of the plate and it is naturally the starting point
for any further analysis, attempting to establish its postbuckling
characteristics.

Isotropic plates, provided they are of perfect geometry and that they
are loaded without any eccentricities, display a bifurcation type of
buckling behaviour.

For laminated plates though, the situation is not as straight forward.
Symmetric laminates, for conditions similar to those mentioned above for
isotropic plates, display bifurcation buckling, but until recently there
seemed to be certain ambiguity as to whether unsymmetric laminates too

display the bifurcation type of buckling at all, as, through the non-zero
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bending-stretching coupling stiffnesses, it was apparent that there was
bending in the laminate as soon as the inplane load was applied.

The question was eventually resolved by Leissa !°7, who proved that
provided certain conditions are satisfied, unsymmetric plates do display
bifurcation type of buckling.

Of relevance to this work, in which only clamped boundary conditions
are considered, it can be shown that provided the inplane 1loads are
uniform, laminates with unsymmetric lay-up and clamped edges will display
the bifurcation type of buckling. This is because the clamped edges can
provide the necessary restraint to resist the internal bending and twisting
moments, arising from the bending-stretching coupling, and thus keep the
- laminate flat until the buckling load is reached.

So, in this chapter, buckling loads are obtained for symmetric and
unsymmetric laminates, with clamped edges; mainly under shear load, but
compressive as well as combined inplane loads, are also considered.

The effect of fibre orientation, stacking sequence, aspect ratio and
number of layers on the buckling load is examined. Also several different
material properties are considered. These include typical material data
pertaining to thermosets like, boron epoxy (BOE), carbon epoxy (GRE), glass
epoxy (GLE), as used by several other workers #5:%1:55 35 yell as data for
APC2, a thermoplastic composite. Also, since the laminates tested in the
experimental part of the project were made of 913C-XAS, most of the

calculations are performed for that data.
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3.2 General Form of Laminate Buckling Equations.

In order to locate the minimum buckling load of a generally layered
laminate, of perfect geometry, an eigenvalue problem is set-up.

The nondimensional nonlinear governing equations (2.34) and (2.35),
that describe all bend énd flat equilibrium configurations of the laminate
are linearised, that is the nonlinear terms on the right hand side of
equation (2.34) are set to zero and the second derivatives of the stress
function on the right hand side of equation (2.35) are replaced by the
applied loads acting on the laminate just prior to buckling, and they can

be written in the following form:

Compatibility Equation

2
a,, F'cccc - 2 a,6 A F’C(cn + (2 a,, + agg) ™ F’ccnn-

_ C. . 4 -
2 316 2 Fornnn F 211 2 Fopnnn = P21 Warcee

- (2 b,g - bgy) AW (by, + by, =2 bgg) A2 W

roen T sgenn

3 4
- (2 byg = bg,p) N Wsennn — b,, A Wy nann

= 0 (3~1)
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Equilibrium Equation

diy Wapcee ¥ 4 dig XN Woppen + 2(d;, + 2 dgg) 2w

roenn

3 4
+ 4 dyg N Wapnnn ¥ d22 N Wonnnn T P2y Fageee

+ (2 byg = bgy) XN Fyeen + (byy + by, =2 bgg) N2 Fycenn

+ (2 byg = bge) A Fygnnn + Prz M Fognnn

£\% (-N, Woee = N, A Wopn + 2 85X W) (3.2)

As buckling occurs, inplane stress components proportional to the
lateral deflections develop, but they are initially very much smaller than
the stresses due to the applied load and are therefore not included in the
equations.

To obtain the minimum buckling load, equations (3.1) and (3.2) as well
as the boundary conditions have to be satisfied.

For clamped edges, the boundary conditions can be expressed as:

, F

oo =0 s Foepq =0 at ¢=0,1

(3.3)

WwW=0, W, =20, Fice = o, Fien = 0 at n=0,1
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To proceed with the solution, the unknowns F and W are expressed in

terms of generalised Fourier series as:

F = mzl nzl Fiin ¥m(Q) Yp(n) (3.4)
W= pzl qzl Wpq Xp(a) Yg(n) (3.5)

Where Xm(c), Yn(n), Xp(c), Yq(n) are characteristic eigenfunctions for
the if*P mode of vibration (i=m,n,p,q) of a uniform clamped-clamped

isotropic beam:

Xi(c) = coshB ¢ - cosBj¢ ~ ¥7; (sinhﬁic - sinBic)
(3.6)

Y;(n) = coshByjn - cosBjn - ¥4 (sinhﬁin - sinBin)
and 7i = (coshﬁi - cosBi)/(sinhBi - sinBy) (3.7)

The constants By & 7§ take the values shown in table 2.1 and it can be
easily shown that the assumed solutions, (3.4) and (3.5), satisfy exactly
all the boundary conditions.

Then, substituting the partial derivatives of the stress function, F,
and of the 1lateral deflection, W, into the buckling equations and by

applying the Galerkin method (see also at section 2.5), the governing

system becomes:
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Compatibilitv Equation

Fij (822 By® + a;, B3* %)

Fin (=2 a6 X Mpi™ N 0 4 (2 a,, + ag) 2% M,im y Jn

+
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Qa i~ 8
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Equilibrium Equation
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Note that equations (3.8) and (3.9) can be obtained from equations (2.53)
and (2.54) respectively, by a) deleting all terms relating to the initial
imperfection of the laminate and b) deleting all the remaining nonlinear
terms on the right hand side of the equations.

The constants M;, Nj (i=1,2,3) are defined by equations (2.55).

By appropriately selecting £, Qy, fxy any type of inplane loading or
combinations of inplane loading can be examined. For example, by letting
Bx=2y=0 and Qxy=1 the laminate in under shear load only; while for £,=1 and
2y=2xy=0 the laminate is under uniaxial compression in the x direction.

Equations (3.8) and (3.9) form an infinite system of linear algebraic
equations to be solved simultaneously for the determination of the minimum
buckling load. In practice, only a finite number of terms in the series
(3.4) and (3.5) and hence a finite number of equations needs to be
employed. An evalution of the convergence of the solution, for increasing
number of terms, is presented in section 3.3.

The above system of algebraic equations forms a standard eigenvalue
problem and the solution is obtained by a standard NAG routine (FO02BJF).
This routine can 1locate all the eigenvalues and the corresponding
eigenvectors using the QZ algorithm. The minimum buckling load is then
obtained as the minimum eigenvalue and the buckling mode as the
corresponding eigenvector. For shear load, the minimum eigenvalues occur in
'pairs', for positive and negative shear. Depending on the lay-up of the
laminate these can be equal and opposite or quite different, in absolute
value. FO2BJF can cope very well with that situation.

In their general form, the buckling governing equations (3.8) & (3.9)
are coupled through the nondimensional reduced coupling stiffnesses, bij‘

For symmetric laminates however, all the coupling stiffnesses are zero and
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so the equations uncouple. Hence for the determination of the minimum
buckling load only the equilibrium equation (3.9) will be used.

Note that in this case the problem is greatly simplified, as instead of
the eighth order system that has to be tackled in the general unsymmetric
case, only a fourth order equation needs to be solved. Accordingly, to
define the problem only two (transverse) boundary conditions can be
specified along each clamped edge and these are that the lateral deflection

and the normal slopes are zero everywhere.
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3.3 Assessment of the Theoretical Model.

Before proceeding with the parametric studies, regarding the shear
buckling behaviour of 1laminated plates, it is necessary to assess the
accuracy of the current formulation against known 'classical' solutions.

The buckling stress for isotropic plates, under inplane 1loading 1is
given by o..= K D (1/h)(w/b)? , where D=Eh?/12(1-v?) is the bending
stiffness of the plate and K i; the buckling coefficient.

Budiansky and Connor '°%® have analysed the shear buckling of isotropic,
flat plates, with clamped edges and they have proposed the following
approximate formula:

K =8.98+5.6/7\% for A>1  and KRg=14.71 for \=1.

For uniaxial compression of an isotropic plate with clamped edges, the

following buckling coefficients were used:

Ky=10.12,8.39,7.89 for 2=1.0,1.5,2.0 respectively.
These were obtained from Bulson '°®, and they are due to Levy '!°. Bulson
points out that Levy's is one of the most accurate solutions available.

For the comparison, typical aluminium alloy (L72) material data was
employed (see also section 5.1.4). The Young's modulus was E=72.4 GPa, the
Poisson's ratio v=0.316 and the plate was of width b=0.254 m and of
thickness h=0.8636 mm. The effect of the number of terms retained in the
series for the lateral deflection on the accuracy of the solution, for
several aspect ratios, A\, was examined.

The results are presented in table 3.1. It can be seen that for both
loading cases, the predictions obtained from the current formulation are in

excellent agreement with the classical solutions.
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Note that convergence is very good and for square plates (A=1.0) in
particular, even m=n=3 provides a very accurate prediction. However as the
aspect ratio increases more terms in the series are required to describe

accurately the more complex buckling modes.

Table 3.1

Current Classical

A m=n=3 =n=5 m=n=7 m=n=9
Shear Load, T., (MPa)
Zexy Zexy zZexry

1.0 11.30 o.s 11.22 o.2 11.20 o.o0 11.20 11.25
1.5 8.89 1.5 8.77 0.1 8.76 0.0 8.76 8.77
2.0 8.49 8.3 7.87 0.4 7.84 0.0 7.84 7.94

Uniaxial Compression in the x direction, oy ., (MPa)

Zerr zerr serr
1.0 7.73 0.4 7.71 0.1 7.70 o.o0 7.70 7.74
1.5 6.61 3.4 6.40 o0.2 6.39 o.o0 6.39 6.42
2.0 6.14 z.0 6.03 o0.2 6.02 0.0 6.02 6.03

Note: The 7 error shown above, as well as in the remaining tables in this

section, has been calculated with respect to the m=n=9 solution.

The shear buckling stress of orthotropic plates was also compared to
available solutions. The following laminates were considered (90,0)s s
(0,0)g , (90,90).

Following from the work of Smith 6, the shear buckling stress of
orthotropic plates can be expressed as 7., = Kg (w?/ab?)(D, DZE’)I/4

where D,, D, are the bending stiffnesses of the laminate in the x, vy

directions respectively (D,=E,h®/12(1-v,,v,,) ,D,=E,h?®/12(1-v,,v,,) ).
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Shear Buckling Coefficients, K_

(90,004 (0,005
8.20 7.53
7.20 8.63
6.80 10.30

90,90)
7.53
6.93
6.70

Note that the above Kg were actually obtained from Johns '!' (fig.8).

For the comparison, the material data was that of 913C-XAS (see section

3.5), while b=0.234 m and h=0.55 mm. Again the convergence of the solution

for different number of terms in the series was examined.

The results are presented in table 3.2.

Table 3.2
Current Classical
A m=n=3 m=n=5 m=n=7 m=n=9
Shear Load, 7., (MPa) Lay-up: (90,0)4
rery %erxr zerxr
1.0 2.94 4.3 2.83 0.4 2.82 o.0 2.82 2.83
1.5 2.92 1s3.2 2.46 0.4 2.45 0.0 2.45 2.48
2.0 3.44 47,6 2.39 2.8 2.34 0.4 2.33 2.35
Shear Load, 7., (MPa) Lay-up: (0,0)g4
jexrr zerr zerr
1.0 2.44 13.5 2.16 o.s 2.15 o.o0 2.15 2.19
. 1.14 1.8 1.12 o.0 1.12 o.0 1.12 1.12
2.0 0.765 1.2 0.756 0.0 0.756 0.0 0.756 0.755
Shear Load, 7., (MPa) Lay-up: (90,90)4
zZerr zery zery
1.0 2.44 13.5 2.16 o.s 2.15 0.0 2.15 2.19
1.5 2.95 46.8 2.06 2.5 2.02 o.s 2.01 2.02
2.0 3.73 so0.3 2.23 13.8 1.96 0.0 1.96 1.95
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Again, the convergence of the solution is very good and so is the
agreement between the current solution and Smith's.

From the isotropic results, it became obvious that increasing aspect
ratio affects the convergence of the series adversely. Careful examination
of the orthotropic results suggests that the directional nature of the
stiffness is even more significant as far as convergence is concerned. For
example, for the (90,90); it can be seen that m=n=3 produces a sizeable
error for A=1.0, while for larger aspect ratios the predictions are very
ﬁoor.

Again, the problem is the complexity of the buckling mode. Consider for
example the laminates (0,0)g and (90,90), , both of aspect ratio, %=2.0
under uniform shear load. From the m=n=7 solution it can be seen (fig.
3.1a) that (0,0)4 buckles in 3 halfwaves along the compression diagonal and
in 1 halfwave along the tensioﬁ diagonal. But (90,90), (fig. 3.1b) buckles
in 5 halfwaves along both the compression and the tension diagonal. This is
to be expected given that (0,0); is much stiffer in bending along the
longer side (ie.along the x direction) than is the (90,90)8. Now if we
compare the buckling modes obtained from m=n=3 (figs. 3.lc & 3.1d) with
those obtained from m=n=7, it can be seen that for (0,0)g the buckling
modes are almost identical, while for (90,90) they are completely
different. So the more complex the buckling mode, the more terms are
required to produce an accurate prediction.

To conclude this section the nondimensional shear buckling loads of
four laminateé are presented,vfor increasing number of terms in the series.
The first two, (+45,-45), and (+45,+45)5 , presented in table 3.3, are
symmetric but anisotropic laminates, so they have different, in absolute

magnitude, buckling loads under positive and negative shear 1load. The
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Table 3.3
2
Pyy cr b° / E, h?
Lay-up: (+45,—45)S +ve shear
IN m=n=3 m=n=5 m=n=7 m=n=9
zZery %erxr zZerr
1.0 40,3924 8.5 38.4267 1.3 38.0531 o.3 37.9376
1.5 31.5141 8.4 29.3619 1.0 29.1263 o.:2 29.0608
2.0 31.1535 20.3 26.1577 1.0 25.9489 o.2 25.8868
Lay-up: (+45,-45)¢g -ve shear
PN m=n=3 m=n=5 m=n=7 m=n=9
Zerr sery zZerr
1.0 127.0595 2.9 124.3793 o0.7 123.7064 o.2 123.5034
1.5 93.9347 2.0 92.6303 o.s6 92.2567 0.1 92.1189
2.0 84.4700 1.3 83.6194 o0.3 83.4708 o0.1 83.4087
Lay-up: (+45,+45)4 +ve shear
IN m=n=3 m=n=5 m=n=7 m=n=9
zerr 7err szerr
1.0 24,5977 31.8 19.2301 2.8 18.8062 o.s 18.6914
1.5 20.2016 39.1 14.8769 2.4 14.6073 o.6 14.5234
2.0 21.5676 66.1 13.3944 3.2 13.0552 o.6 12.9831
Lay-up: (+45,+45)g4 -ve shear
IN m=n=3 m=n=5 m=n=7 m=n=9
1.0 140.15337 3.2 136.8021 o.s 136.0120 o.2 135.7804
1.5 103.4292 2.3 101.7873 o.s 101.3209 o.2 101.1500
2.0 92.6563 1.3 91.7724 0.3 91.5914 0.1 91.5057
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remaining two, (90,0), and (+45,-453), , presented in table 3.4, are
unsymmetric laminates and their shear buckling loads are independent of the

shear direction.

Table 3.4
Pyv cr b? / E, h?
Lay-up: (90,0),
A m=n=3 m=n=5 m=n=7 m=n=9
serr zZery Jerr
1.0 60.2018 1.3 59.4886 0.1 59.4345 o.0 59.4271
1.5 50.2625 5.2 47 .9046 o0.3 47.7796 o.0 47 .7630

2.0 48.5097 14.2 42.5560 0.2 42.4849 o.0 42.4730

Lay-up: (+45,-45),

by m=n=3 m=n=5 m=n=7 m=n=9
zexy zery zery

1.0 73.0614 1.9 72.0455 o.s 71.7729 o.1 71.6826

1.5 54.6427 1.5 54.0516 0.4 53.9105 o0.1 53.8589

2.0 50.2371 3.0 49.0722 o.s 48.8505 0.1 48.7858

From both sets of results, tables 3.3 & 3.4, it can be seen that the
solution converges quickly. For the (+445,+45); , the more anisotropic of
the two symmetric 1laminates, it can be seen that m=n=3 results in
predictions with large errors. However, as more terms are employed the
accuracy of the solution appears to be very good.

Possibly a brief comment is appropriate here, in order to justify
describing (+45,+45),. as a more anisotropic laminate than (+45,—45)ZS.

As can be seen from table 3.3, the shear buckling response of

(+45,+45)ZS is more sensitive to shear direction - hence more anisotropic -
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than the response of (+45,—45)ZS. This is due to the different bending
stiffnesses of the two laminates.

Rough comparisons between laminates are possible by keeping in mind the
comments in section 2.7, as well as that the higher bending stiffness along
a given direction is obtained when the outside layers of the laminate are
oriented in that direction, and that the more directional the bending
stiffness the more anisotropic the response of a laminate is likely to be.

Consider now the unsymmetric lay-ups and note that the unsymmetry does
not appear. to inhibit the convergence of the solution. In fact, if we
compare (90,0)s (from table 3.2) to (90,0), , it can be seen that the
convergence of the solution for the unsymmetric laminate is quicker than
that of the symmetric one.

Overall, solutions obtained with m=n=9 (ie. 9x9=81) terms in the series
should be treated as exact. Also, as the above data indicate, m=n=7 results
in predictions that are virtually identical to those obtained by m=n=9.
With m=n=5, reasonably accurate predictions can be obtained. Although in
the vast majority of cases, the improvement in accuracy by using larger
series is minimal, the above results have highlighted some 'extreme' cases,
where certain improvement can be attained (eg. for x=2.0, (90,90), under
shear load). Employing m=n=3 can result in reasonably accurate predictions,
in particular if A=1.0. However as aspect ratio increases or for highly
anisotropic laminates, the accuracy of the predictions falls off
dramatically.

To summarise, following from the above results, it was decided that for
the buckling studies, m=n=7 terms in the series would be employed, as they
offer virtually the same accuracy as m=n=9, but at the same time require

2.5 times less CPU time. In the ICL3980 mainframe used, for m=n=7 it takes
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=13 seconds of CPU time for the buckling load to be obtained.
For the postbuckling studies however, m=n=3 terms were mostly used, as

the computer time for any more terms in the series was rather large (for

more details see p.79).

3.4 Comparison with Available Experimental Data.

As a further check on the formulation's effectiveness in dealing with
the buckling of laminated plates, it was decided to compare the current
predictions against experimental results available in the open literature.

Ashton and Love '® have presented an analytical and experimental study
of the shear buckling of symmetric laminates with clamped edges. They used
an energy approach to develop the governing equations which were solved
using the Ritz method and employing generalised Fourier series,
incorporating beam eigenfunctions to describe the lateral deflection. In
other words, the same series as in the current formulation was employed for
the lateral deflection.

They tested two aluminium and fourteen boron epoxy plates. The plates
were of a=0.4572 m and b=0.1524 m and the elastic moduli were, for the
boron epoxy : E ,=213.74 GPa, E,=18.616 GPa, G,,=5.1711 GPa, v,,=0.28 and
for the sluminium plates : E=72.395 GPa, v=0.33. Note that for both
analytical formulations, m=n=7 terms in the series for the lateral
deflection were used.

The results of the comparison can be seen in table 3.5.

Overall it can be seen that very good agreement is observed between the

current formulation and Ashton & Love's results, both theoretical and
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experimental. There is hardly any difference between the two sets of
theoreticai predictions. Only for the most anisotropic of the laminates
tested, ie. nos. 13 & 14, does the current formulation offer a small
improvement (=4%) in accuracy, although the agreement with the experimental
results is still not that good. This small improvement could well be due to
the improved accuracy (to 15 significant figures) of the constants used in

the beam eigenfunctions.

Table 3.5
Shear Buckling Load, ny cr

Ashton & Love Current

Lay~-up Thickness Theory Experiment Theory
mm KN/m zerr KN/m KN/m Zerr
ALO1 3.0734 805.6 4.5 770.9 795.3 3.2
ALO2 2.2352 309.9 7.6 288.1 305.9 6.2

1 (0,90,0,90),4 2.2352 295.1 2.2 288.6 295.3 2.3 ,

2 (0,0,0,0),4 2.2098 111.6 0.0 112.5 110.6 =-1.7
3 (0,0,0,0),4 2.2352 115.5 =-3.0 119.0 114.4 =-—3.3
4 (0,90,0,90),4 2.1590 265.9 10.1 241.4 266.2 10.3
5 (90,45,-45,0) ,4 2.1336 313.0 0.0 313.0 312.7 0.0
6 (90,45,-45,0),4 2.1336 313.0 -3.7 324.0 312.7 -3.7
7 (45,-45,45,-45),, 2.1844 293.7 8.2 271.4 292.9 7.9
8 (-45,45,-45,45),5 2.2352 396.5 13.2 350.3 395.4 12.9
9 (0,-45,45,90),4 2.2860 337.1 3.6 325.2 337.5 3.8
10 (0,-45,45,90),4 2.2606 326.0 -s8.7 349.4 326.4 -6.6
11 (45,-45,45,-45),, 2.2352 314.7 6.5 295.3 313.8 6.3
12 (45,-45,45,-43),, 2.2352 314.7 -s.8 333.3 313.8 -s.9
13 (45,45,45,45) ,4 2.2860 105.1 —-24.2 138.6 110.9 -zo.0

14 (45,45,45,45) ,4 2.1590 88.5 —-z26.9 121.1 93.4 -2z.9
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Unsymmetric laminates were also considered. However no relevant data on
shear buckling of unsymmetric laminates with clamped edges was known to the
author at the time, so the comparison was made for compressive loading.

Lagace et al '!! have presented an analytical and experimental study of
the buckling response of unsymmetric graphite epoxy laminates under
uniaxial compression, for various different boundary >conditions. The
governing equations were obtained from energy considerations and the
solution was achieved by employing the Rayleigh-Ritz method.

Td évoid postcuring warping, the unsymmetric laminates were
manufactured by bonding symmetric sublaminates together at room
temperature. Adopting the same notation as Lagace et al, the '//' in the
lay-up sequence indicates the room temperature bondline.

The laminates were square, with a=b=0.254 m. The average bondline
thickness was 0.03 mm, while the nominal ply thickness was 0.134 mm. The
bondline was modelled as a spacer incapable of carrying any load, while the
elastic moduli of the graphite epoxy were: E,=130 GPa, E,=10.5 GPa,
G,,=6.0 GPa, v, ,=0.28 .

From table 3.6, it can be seen that the agreement of the current
theoretical predictions with the experimental results, is very much better
than that of the predictions of Lagace et al. Certainly, the ‘overall
aéreement is nét as good as for the previous experimental results
considered, but of cource, the testing of unsymmetric laminates, is far
more difficult than the testing of symmetric laminates, so part of the

disagreement could well be due to experimental error.
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Table 3.6

Buckling Load, Py .,

—

Lagace & Jensen & Finch Current

Lay-up | Theory Experiment Theory
) KN/m Zerr " KN/m KN/m Zerr
1 (03/903)5 31.78 s51.1 20.89 31.68 s51.7
2 (0,5//905//03)¢ 33.63 23.0 27.34 34.56 26.4
3 (0,5//905//05//905) 31.92 27.9 24.95 30.61 2zz2.7
4 (0,//45,//0,//45,//0,) 20.73 —-19.0 25.60 22.09 ~13.7
5 (0,//45,//0,//-45,//0,)¢ 19.72 -17.1 23.78 20.34 -14.5
6 (0,//155)¢ 30.78 18.7 25.94 27.99 7.9
7 (0g//305)¢ 26.48 17.2 22.66 20.60 -s8.9
8 (04//656)¢ : 22.66 45.0 15.63 16.84 7.8
9 (05//604) 22.97 84,9 12.42 15.55 =2s5.2
0 (0g5//755)¢ 23.44 79.8 13.05 15.36 17.7

1

(06//906)t 24.38 138.3 10.23 15.40 s0.5
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3.5 Elastic Constants and Laminate Geometry.

As has already been mentioned, the parametric studies were mainly
performed with elastic constants pertaining to 913C-XAS, since the
laminates tested in this work were made up of that material. However
several other materials were also considered and their elastic constants

can be seen in table 3.7.

Table 3.7
E, (GPa) E, (GPa) G,, (GPa) v,,
913C-XAS 150.0 9.5 1.07 0.263
Boron Epoxy 206.9 20.7 5.2 0.3
Carbon Epoxy 206.9 5.2 2.6 0.25
Glass Epoxy 53.8 17.9 8.9 0.25
APC2 139.0 10.43 4.55 0.326

The laminates were of rectangular planform and of length, a, in the x
direction and of width, b, in the y direction (see fig. 2.1). For square
laminates a=b=0.254 m, while, to consider aspect ratios greater than x=1.0,
b was kept constant while a was increased. For all the cases considered,
including those where the number of layers in the laminate was variable,
the total thickness, h, of the laminate was kept constant at h=1.1 mwm,

resulting in a width to thickness ratio of 231.
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3.6 Buckling Parametric Studies.

3.6.1 Introduction.

In this section the effects of the various parameters, such as fibre
orientation, lay-up, aspect ratio, number of layers and wmaterial
properties, on the buckling load are examined.

All the results are presented in nondimensional form and pertain to
perfectly flat laminates with all four edges clamped. Unless otherwise
stated the results are for square laminates (ie. X\ or AR=1.0).

Initially, the buckling response of the laminates under shear load will
be considered and then briefly wunder uniaxial compression. Finally,

combinations of inplane loading will be examined.

3.6.2 Laminates under Shear Load.

To start with, let's consider the dependence of the shear buckling load
on the fibre orientation, 6. Data is presented for three different general
lay-ups, namely (+6,+0),, , (+6,-8),5 , (+6,-6), in figures 3.2, 3.3, 3.4
respectively. For each lay-up, data highlighting the effect of increasing
aspect ratio on the shear buckling load is also presented. For lay-ups
(+6,+6),5 and (+8,-6),5 , it can be seen that the direction of the applied
shear load is very significant. For example for (+45,+45)ZS and A=1.0, the
magnitude of the buckling load under negative shear is more than 7 times
greater than under positive shear. For (+9,-9)4 the shear direction is

immaterial.
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In all three cases, note that for 6360, the shear buckling load does
not appear to be so very sensitive to aspect ratio. ’

The same data that appeared in figures 3.2, 3.3, 3.4 are now plotted in
a different format to enable comparison of the three different general
lay-ups, for a given aspect ratio. So, in figure 3.5, the shear buckling
load against fibre orientation for A=1.0 is presented. Similar plots for
A=1.5 and A=2.0 are given in figures 3.6 and 3.7 respectively.

Overall, it can be seen that the unidirectional off-axis lay-up, ie.
(+9,+9)ZS for 0<6<90, results in the most anisotropic response. The
svmmetric angle ply lay-up (+9,—G)ZS, in comparison, although it displays a
much lower buckling load under negative shear, has a far better response
under positive shear. The buckling 1loads of the antisymmetric lay-up
(+6,-0), are independent of the shear direction and of a magnitude which is
just under the mean of the absolute magnitudes of the buckling loads for
positive and negative shear of (+6,-0),..

Next, the effect of the aspect ratio on the shear buckling load is
considered in more detail. The variation of the buckling load with aspect
ratio‘ for (+6,+96),, under positive and negative shear, can be seen in
figures 3.8, 3.9 respectively. Similarly, for (46,-8),, under positive and
negative shear in figures 3.10, 3.11 respectively, while similar results
pertajining to (+6,-0), are presented in figure 3.12.

In figures 3.8 to 3.12, it can be seen that, as the aspect ratio
increases from X=0.5 to x=2.0, all the curves 1level off, ie. further
increase of the aspect ratio would affect very little the shear buckling
loads. It can also be seen that, with the exception of (+6,+6),; under
positive shear, for all the remaining lay-ups and shear 1loading

combinations, as the aspect ratio increases, 0=60 appears to be the
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optimum orientation, followed closely by ©=45, which is in fact better for
A=1.0. Note, however, that the buckling load of (+45,+45),, under positive
shear is one of the lowest for the aspect ratios considered.

It is also worth pointing out that for (90,90),,, the shear buckling
load is not at all sensitive to aspect ratio and under positive shear, 6=90
is a rather efficient orientation, as the remaining off-axis orientations,
result in very anisotropic inplane laminates, which display rather low
buckling loads when the shear direction is such that the compression
component of the applied shear load is acting along the weaker-in-bending
stiffness diagonal of the laminate, ie. as is the case under positive
shear.

In order to compare the different lay-ups, the shear buckling loads for
(+6,+8),,, (+0,-8),5 and (+6,-6), against aspect ratio are presented in
figures 3.13 to 3.17 for ©6=15,30,45,60,75 respectively.

Again it is obvious that as © increases the dependence of the shear
buckling load on the aspect ratio, for all the 1lay-ups considered,
diminishes.

For 6=15 (fig.3.13), it <can be seen that, as the aspect ratio
increases, the response of all three lay-ups, under positive and negative
shear, becomes very similar. However as © increases, this effect gradually
disappears completely.

Next, the effect of the number of layers in the laminate on the shear
buckling load is examined. In figure 3.18, the shear buckling load against
fibre orientation, for lay-ups with increasing number of 1layers, 1is
presented. It can be seen that the single layer 1laminate is the most
anisotropic. As the number of layers increases to four in (+e,—e)s and then

to eight in (+6,-8),, the solution approaches the orthotropic case, which
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would be obtained by employing an infinite number of layers, ie. (+6,-6), .

From the above results, attention is being concentrated on 6=45 which
results in the most anisotropic response. Symmetric and antisymmetric
lay-ups are considered in figure 3.19, where it can be seen that as the
number of layers increases the orthotropic solution is approached. For
symmetric angle ply however, even for 20 1layers, ie. (+45,-45).4, the
presence of the bending-twisting coupling stiffnesses (D,4z, D,g) causes the
shear buckling loads to be =10%Z off the orthotropic solution. For the
antisymmetric lay-up, for which D, =D, =0 and, also, because the clamped
edges can provide the necessary twisting moments to keep the laminate flat
(note: B, =B, =Bg,=B,,#0), it can be observed that the shear buckling load
approaches the orthotropic solution much more rapidly. For example the
shear buckling load of (+45,-45),, 1is only =1%Z off the orthotropic
solution.

Next, the effect of material properties on the shear buckling load is
examined. For clarity, the results are presented in two figures, ie. 3.20
and 3.21 and correspond to laminates of the same dimensions. Only one type
of lay-up was considered, namely (+6,-8),..

In figure 3.20 it can be seen that the more anisotropic the material,
the more significant is the shear direction. So, for graphite epoxy, with
E,/E,=40, the buckling 1load under positive and negative shear is
considerably different, while for glass epoxy, the least anisotropic
material with E,/E,=3, the effect of the shear direction on the buckling
load is minimal.

In figure 3.21 APC2 is compared to 913C-XAS and it can be seen that the
thermoplastic's (APC2) shear buckling response is very similar to that of

913C-XAS and, overall, compares very favourably with the rest of the
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materials too.
Note that, for the 1lay-up considered, and for every possible
orientation, all composites display a higher shear buckling load than a

typical aluminium plate of the same dimensions.

3.6.3 Laminates under Uniaxial Compression.

Next, uniaxial compression is considered. Just as before for shear
load, the dependence of the x direction compression buckling load on the
fibre orientation, O, is examined. Data is presented for three different
general lay-ups, namely (+9,+G)ZS s (+9,-—9)ZS s (+6,-8), in figures 3.22,
3.23, 3.24 respectively. Again, data for increasing aspect ratio i=1.0,
1.5, 2.0 is presented in each figure.

For (48,+0),; it can be seen (fig.3.22) that for *=1.0 the optimum
orientation is ©6=0. But the buckling load drops rapidly as © increases. For
A=1.5, 2.0 again 6=0 is the optimum orientation, but the buckling load is
significantly lower than that for X=1.0. This time however, the buckling
load drops very little with increasing orientation.

For (+9,—9)Zs (fig.3.23), note that for x=1.0 again 6=0 is the optimum
orientation and as © increases to =45-50 very little change in the buckling
load is observed, while a rapid drop in the magnitude of the buckling load
can be seen for any further increase in 6. For A=1.5, 2.0 the response is
considerably different, with the optimum orientation shifting towards ©=45
as the aspect ratio increases.

The response of the antisymmetric laminates (40,-0), (fig.3.24), is

very similar to that of the symmetric angle ply laminates (+6,-86),4-
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Rearranging the above data so that the different lay-ups can be
compared, we obtain figures 3.25, 3.26, 3.27 that show the variation of
compression buckling 1load against orientation for a=1.0, 1.5, 2.0
respectively.

In figurgs 3.25, 3.26, 3.27 it can be clearly seen that (+0,-8),, is by
far a better arrangement than (+0,+0),; for resisting compressive loads.

In figure 3.28 the wvariation of compression buckling 1load with
increasing aspect ratio can be seen. Results are presented only for
(+6,-8),5, although orientations 6=0 & 90 are also considered. Again, it
can be seen that as the aspect ratio increases, all the curves level off,
therefore the buckling load would be 1little affected by any further
increase in aspect ratio. Orientations 6360 appear to be fairly insensitive
to aspect ratio in general.

Next the effect of the number of layers on the compressive buckling
load was examined. Only one orientation was considered, 9=45, for symmetric
and antisymmetric lay-ups. The results are presented in figure 3.29, where
it can be seen that the solution approaches that for the orthotropic case

much quicker than under shear load as, in this case, the bending-twisting

coupling stiffnesses (D,,, D,5) do not enter the problem.
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3.6.4 Laminates under Combined Inplane Loading.

Now consider the effect of combined inplane loading on the laminate's

11,109

buckling response. It is well known, that for isotropic as well as

orthotropic plates 3%, the simultaneous application of inplane shear 1load
and uniaxial or biaxial compression, always has a destabilising effect on
the plate. In other words, under combined inplane loading the plate would
buckle at a compression or shear load that is less than its buckling load
under compression only or shear load only.

It was Zhang !°%, who first discovered that for certain cases of
anisotropic laminates, the application of shear load, of appropriate sign,
can stabilise the laminate. It was observed that, when the shear direction
was such that the tension component of the applied shear load was acting
along the weaker-in-bending stiffness diagonal of the laminate, the
laminate was stiffened and its compression buckling load was then higher
than under compression only. Zhéng mainly examined the response of curved
laminates with clamped edges and flat laminates with simply supported
edges. In the current work, flat laminates with clamped edges are
considered.

The results are presented in figures 3.30 to 3.43, as plots of Ry

against Rg, where Ry=(P$ /Py op) and R =(Pg /

% er Xy cr cr) are the ratios of

ny
the buckling loads for éombined loading to the buckling loads for simple
compressive and shear loading.

For completeness, an orthotropic laminate (0,90)S is also examined. It

can be seen (fig.3.30) that in this case the application of shear load has

a destabilising effect on the laminate.
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For a quasi-isotropic lay-up (90,—45,+45,0)S it can be seen (fig.3.31)
that under positive shear load, some stiffening of the laminate occurs.

In figure 3.32, for unidirectional off-axis laminates it can be seen
that a remarkable stiffening of the laminates occurs under negative shear
load. For example, for (+45) under negative shear, the compression>buckling
load can be more than double its value under compression only. For
symmetric angle plies (fig.3.33) under negative shear, stiffening is also
observed but on a considerably smaller scale than for the off-axis
laminates.

In figure 3.34, it can be seen that for symmetric angle ply laminates,
the stiffening effect quickly disappears as the number of layers in the
laminate increases.

Then, in figure 3.35, for (+45,-453)g, it can be seen that a small
increase in stiffening is observed as aspect ratio increases from A=1.0 to
A=1.5. Further increase in aspect ratio does not appear to have much of an
effect on the stiffening observed.

In figures 3.36 and 3.37, the effect of the material properties is
examined. Note that for GRE, 913C-XAS, APC2, BOE, GLE the ratios of the
elastic moduli along and normal to the fibres are E,/E,=40,16,13,10,3
respectively. Hence, it can be seen that the more anisotropic the material
the greater is the stiffening of the laminate.

For an antisymmetric laminate (+45,-45) in figure 3.38, it can be seen
that no stiffening occurs. The same is true for an unsymmetric quasi-
isotropic laminate (+60,0,-60) in figure 3.39. However for unsymmetric
anisotropic laminates, such as (+45,+30,+60,+45) and (-45,+30,+60,+45), in
figure 3.40, stiffening can be observed to occur. Just as for the symmetric

laminates, the effect of the stiffening is more pronounced for the most
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anisotropic of the two unsymmetric lay-ups considered, ie. for
(+45,+30,+60,+45).

Next, the general case of biaxial compression and shear 1load was
considered. Results are presented only for (+45,-45)g. In figure 3.41, the
ordinate axis is labelled as Rx+Ry, which denotes that equal compressive
loads in the x and y directions were applied simultaneously, while in
figures 3.42 and 3.43, R, against Ry is plotted for several different Ry,
under positive and negative shear respectively. Again, stiffening of the
laminate under negative shear load is observed. The stiffening is falling

off considerably as the magnitude of the compressive load in the vy

direction increases.
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3.7 Conclusions.

From the parametric study of the buckling response of generally layered
laminates with clamped edges, under shear load or compression load, as well
as combined inplane loading, the following conclusions can be made:

1) The direction of the applied shear load is very important, as reversal
of the direction results in very different magnitudes of buckling load for
unidirectional off-axis laminates and symmetric angle ply laminates as well
as for unsymmetric laminates. The more the inplane anisotropy of the
1ahinate, either due to lay-up or because of the material properties, the
more significant is the shear direction.

2) The shear buckling load of the largest magnitude is obtained when the
compression component of the applied shear is acting along the diagonai
with the highest bending stiffness.

3) The shear buckling response of orthotropic and antisymmetric laminates
is independent of the shear direction.

4) For the lay-ups considered, ie. (+6,+0),, (+6,-8),4, (+96,-08), and for
orientations 63260, both shear and compression buckling loads vary 1little
with increasing aspect ratio. Also, it is observed that for small 6 (apprx.
0£6£30), as the aspect ratio increases the shear buckling response of all
the above general lay-ups examined, becomes rather similar.

5) For shear load, as well as compression, the results overall suggest
that as the aspect ratio increases to A»2.0, its effect on the buckling
load is diminishing.

6) The buckling response of a symmetric, angle ply laminate approaches the

orthotropic solution, as the number of alternate 1layers (£8) in the
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laminate increases, while keeping the total thickness constant. This occurs
much quicker under compression than under shear load. So unless a large
number of layers is employed, the orthotropic solution can not yield an
accurate prediction for the shear buckling load of fhe laminate.

7) The antisymmetric angle ply lay-up examined, (+45,-45), approaches the
orthotropic solution much quicker than does its symmetric counterpart as
the number of layers increases, under both shear loading and compressive
loading.

8) For combined shear and compressive loading of unidirectional off-axis
laminates, symmetric angle plies and unsymmetric laminates, it is found
that when the shear load is applied so that its tension component is acting
along the weaker-in-bending stiffness diagonal of the laminate, it will
stabilise the laminate. Hence the laminate's compression buckling load will
be higher then, than for pure compression only.

9) The stabilising/stiffening effect refered to in 8) is more obvious for
the more anisotropic, due either to lay-up or material properties, of the
laminates considefed, eg. (+43).

10) For orthotropic and antisymmetric lay-ups, combined shear load and
compression, always have a destabilising effect oﬁ the laminate.

11) For symmetric angle ply laminates fhe stiffening disappearé quickly as
the number of layers in the laminate is increased.

12) For ©biaxial compression too, application of shear 1load of the

appropriate sign, can stabilise the laminate.
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Chapter 4: Postbuckling

4.1 Introduction.

In chapter 3, the buckling response of laminated plates under shear
load, uniaxial compression, as well as cémbinations of inplane loading was
examined.

Thin plates usually possess considerable postbuckling strength and with
the development of lateral deflections, they can sustain loads several
times greater than their buckling loads.

Although composites offer much superior stiffness/weight ratios than
those of more traditional structural materials and, hence, offer
considerable weight savings, the possibility of utilising laminated plates
in the postbuckling range offers an incentive for further weight saving.
This is of particular significance to weight sensitive structures, eg. the
aircraft structure. Hence, postbuckling of laminated plates has received
considerable attention. However, by far the most of the research effort has
been devoted to compressive loading, while shear load has attracted much
less attention.

In this chapter, the postbuckling response of generally layered
laminates, mainly under shear load, is examined. Results for combined
inplane loading, as well as for a few examples of laminates under uniaxial
compression are also presented.

A similar range of parameters to those examined in chapter 3, ie.

lamination sequence, fibre orientation, aspect ratio, number of 1layers,
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and different material properties, are considered.
Initially, laminates of perfect geometry, that display bifurcation type
of buckling, are examined, but the effects of initial geometric

imperfections on the overall response of laminates are also investigated.

4.2 Governing System.

The system of governing equations that describes the overall response
of generally layered laminates, of perfect geometry, under inplane loading
is given in section 2.3, equations (2.34) and (2.35). Similarly, for
laminates with initial imperfections from flatness, the governing system is
given in section 2.4, equations (2.45) and (2.46). Furthermore, details of
the solution of the governing equations, in their general form, including
initial imperfections, are given in section 2.5 and need not be repeated
here.

It is sufficient to say that employing the Galerkin method the
governing system of nonlinear partial differential equations is reduced to
an infinite system of nonlinear, simultaneous algebraic equations
-equations (2.53) and (2.54)- with unknowns Fij and wij; ie. the
coefficients of the double Fourier series that are assumed to describe the
stress function F (eqn. (2.48a)) and the 1lateral deflection W (eqgn.
(2.48b)), respectively.

For a laminate of perfect geometry, all terms relating to the initial

imperfection, W,, are zero and the general governing equations (2.53) and

(2.54) simplify to:
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Compatibility Equation
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In practice only a finite number of the nonlinear, simultaneous
algebraic equations are considered and the solution is obtained by the
Newton-Raphson method.

Once Fij and wij are obtained, for a given load, the lateral deflection
and the forces and moments in the laminate can be found.

Most of the calculations in the postbuckling range are performed for
m=n=3 terms in the series for the stress function, F, and the lateral
deflection, W, aé for more terms the computer time required, on the ICL3980
maiframe computer, is rather large (see table 4.1). However for certain
cases, where the m=n=3 solution is not of sufficient accuracy, m=n=4 terms

are employed.

Table 4.1

Approximate CPU time per postbuckling point

m=n Time (secs)
2 , 1.2
3 5.0
4 33.0

By suitable choice of steplength, only relatively few postbuckling
points need to be considered (say 10).

Stepiengths canb vary considerably, depending on the laminate's
stiffness, geometry etc., but usually 2% of the critical load is a good

starting guess.
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4,3 Evaluation of the Accuracy of the Postbuckling Solution.

In this section the convergence of the solution in the postbuckling
range is briefly examined and a comparison is presented of the current
formulation against a few solutions that have appeared in the open
literature.

Three different lay-ups are considered, namely (tlS)zs, (i45)28 and
(90,-45,+45,0); in figures 4.1, 4;2 and 4.3 respectively.

The shear buckling modes of (£15),, and (%£45),g5 are given in figures
4.4 and 4.5 respectively. Note that (x15),. buckles into an antisymmetric
mode, while (téS)ZS buckles into a symmetric mode. The quasi-isotropic
laminate, buckles into a symmetric mode too (not shown).

In figure 4.1, for (115)Zs it can be seen that a certain improvement in
accuracy, particularly for large deflections, can be obtained by increasing
the terms in the series from m=n=3 to 5.

For the remaining two laminates, in figures 4.2 and 4.3, it can be seen
that the solution converges more rapidly and the difference in accuracy
between m=n=3 and 4 is minimal.

The antisymmetric mode in (fig. 4.4) is more complex than the symmetric
mode (fig. 4.5) and hence more terms in the series are required, in the
former case, in order to accurately describe the deflected surface of the

_laminate.

However, overall it can be seen that m=n=3 results in a fairly accurate
postbuckling solution.

Now compare the current formulation against results published in the

literature.
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In reference °!, Prabhakara and Kennedy have considered, among other

cases, the postbuckling response of antisymmetric graphite epoxy laminates
(+45),, of aspect ratio x=1.0,1.5,2.0 under shear load. The laminates were
clamped along all four edges and the elastic constants employed were those
pertaining to carbon epoxy in table 3.7 (section 3.5).

The governing equations were solved by the Galerkin method, employing
double Fourier series and incorporating beam eigenfunctions, for the stress
function F and the lateral deflection W. The solution was obtained for
m=n=3 terms in the series.

A comparison of the lateral deflection at the centre of the laminates

S1

between and the current formulation can be seen in figure 4.7.

Overall, good agreement between the two sets of results is observed.

Next in !!2, Sheinman and Frostig have presented a general formulation
for dealing with the buckling and postbuckling of stiffened laminates. A
mixed approach is proposed that employs beam eigenfunctions in the
longitudinal direction, ie. along the stiffeners and a finite difference
scheme in the transverse direction.

In one of the numerical examples presented in !!'?, the postbuckling
response of an unstiffened, (+45), boron epoxy laminate under +ve and -ve
shear was examined. The laminate was clamped along its edges and of square
planform and its initial imperfection from flatness was assumed to be

w’(y)=8sin(wry/b) where 6=0.00025 m amplitude. The following dimensions and

elastic constants were employed:

E, = 206.9 GPa side length, a=b=0.25 m,
E, = 20.7 GPa total thickness, h=0.0025 m,
G,,= 5.2 GPa
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Under -ve shear, when the compression component of the applied shear
load was acting along the fibres, buckling occurs at a much higher load
than under +ve shear, when the compression component is reacted mainly by
the weak matrix material. In !'!'? it was found that in the former case, ie.
-ve shear, convergence occurred quite rapidly and even the m=n=2 solution
was fairly accurate. For +ve shear however a large number of terms (m=n=6)
was required for an accurate solution (see fig.4.8).

For comparison, a laminate, identical in all other "aspects but
perfectly flat, is considered. The central deflection in the laminate‘for
+ve and -ve shear load, as predicted by the current formulation, using
m=n=2,3,4 terms in the series, is compared to the solution from !!Z for
m=n=4 and m=n=6 respectively, in figure 4.9.

Very good agreement between the two solutions is observed for -ve
shear. For +ve shear, again good agreement 1is observed for lateral
deflections w/hg2.0. Beyond that, the current solution appears to be less
stiff.

Increasing the number of terms to m=n=5, in the current formulation,
did not improve the agreement at all. The m=n=5 solution (not shown) is
virtually identical to the m=n=4 solution. No firm explanation can be given
for this difference, neither by the author nor Sheinman '!?, but overall
the results are encouraging and indicate that the current formulation works

fairly well in the postbuckling range too.
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4.4 Postbuckling Parametric Studies for Perfectly Flat Laminates.

4.4.1 Introductory Comments.

In this section the effect of the various parameters, ie. fibre
orientation, lay~-up, numBer of layers, aspect ratio and material properties
on the postbuckling response of laminated plates, mainly under shear load,
is examined.

The laminates are assumed to be thin, flat, of perfect geometry, with
all four edges clamped and, unless otherwise stated, they are of square
planform.

The results obtained are presented in nondimensional form, mainly as
load-deflection plots, where the maximum lateral deflection in the laminate
is plotted against the applied load. In most cases the buckling mode was
symmetric and hence the maximum deflection occurred at the centre of the
laminate (eg. see fig. 4.5).vThis was not, however, always the case, as

certain laminates buckled into an antisymmetric mode (eg. see fig. 4.4).

~

4.4.2 Symmetric Laminates under Uniform Shear Load.

To start with, the postbuckling response of unidirectional off-axis
laminates (+0,+0),., under shear load was compared to that of symmetric
angle ply laminates (+9,-9)ZS. Data pertaining to an orthotropic laminate
(0,0),5 is also presented and it provides a common reference for comparing

the different orientations considered. The results can be seen in figures



4.10 to 4.12 for orientations 6=15,30,45 respectively. Note that, since the
laminates are square, there is no need to consider orientations 45<6<90,
as, due to the symmetry of the loading, they would result in the same
response as the "complementary" orientation in the range 0£6£45 (eg. 6=15
or 75 would result in identical response).

The importance of the shear direction is immediately evident. The
off-axis laminates exhibit a very anisotropic response and, when the
compression component of the applied shear 1load is acting along the
diagonal of the laminate having the lower bending stiffness, that is, in
this case, for +ve shear load, their postbuckling stiffness is well below
that of the orthotropic laminate. However, in general, angle ply laminates
display a stiffer postbuckling response than the orthotropic 1aminaté for
both shear directions.

Then, in fig. 4.13, the postbuckling response of all those angle ply
orientations being considered are presented, along with the orthotropic
solution. It can be seen that, although for 6=453 the laminate buckles at a
higher load, its postbuckling stiffness is less than that of the remaining
orientations, and, once well into the postbuckling range and approximately
for w/h»2.5 for -ve shear and for w/h21.3 for +ve shear, 6=15 displays a
stiffer response than ©=45. ©Note that (+15,-15),, buckles in an
antisymmetric mode (fig. 4.4), while (+45,-45),, buckles in a symmetric
mode (fig. 4.5).

No change in buckling mode was predicted for those orientations and the
range of lateral deflections being considered. By employing wm=n=7 terms,
the initial buckling modes were checked and good agreement with the m=n=3
solution was observed. For (+e,-e)zs, it was discovered (with m=m=7) that

the change from antisymmetric to symmetric shear buckling mode occurs
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between orientations 6=23 and 8=24.
In fig. 4.14, the postbuckling response of several unidirectional.

off-axis laminates, (+6,+6),5, are given, along with the orthotropic

solution. Again the shear buckling mode is antisymmetric for 6=0,15 (fig.
4.15, ©6=0) and symmetric for ©=30,45 (fig.4.16, 6=45). It can be pointed
out that the shear buckling mode for (0,0),. is in good agreement with
similar results in 1% (page 66).

Then, in fig. 4.17, the response of a quasi-isotropic laminate
(0,45,~45,90)y is compared with (£45),5 and (x15),, laminates. The quasi-
isotropic laminate displays higher postbuckling stiffness than the rest and
although for -ve shear the (£45),g laminate buckles at a much higher load,
once well into the postbuckling range, that is for w/h»1.7 approximately,

the quasi-isotropic laminate displays the stiffer response.

Next, the effect of increasing the number of layers, while maintaining
a constant total thickness, on the postbuckling response of a (¢45)s
laminate is investigated. The results can be seen in fig. 4.18. As the
number of layers increases, the magnitude of D,z, D,gz, the so called
bending-twisting stiffnesses, 1is diminishing and hence the laminate's
response approaches the orthotropic solution, as obtained for an infinite
number of layers. The postbuckling deflections of a laminate with 20 layers
are approximately x10% off the orthotropic solution, for -ve and +ve shear
respectively. Note that this difference was calculated at the bifurcation
point, but, as can be seen in fig.4.18, it remains fairly constant over the
loading range considered.

Then the effect of different material properties on the postbuckling

response of a (x45) laminate is examined.
p 2s
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The elastic constants of the various materials considered are given in
section 3.5, table 3.7. The results are presented in two figures. In figure
4.19, results pertaining to carbon epoxy (GRE), boron epoxy (BOE), glass
epoxy (GLE) and APC2 can be seen, while in figure 4.20, a comparison
between 913C-XAS and APC2 is presented. For the above materials ie.
GRE, 913C-XAS, APC2, BOE, GLE the E,/E, = 40, 16, 13, 10, 3 respectively.
Again, it is obvious that the higher the E,/E, ratio, the more anisotropic
and stiffer is the response of the laminate. Consider, for example, the
response of GRE and GLE laminates. The GRE laminate (E,/E,=40) displays
considerably different response under +ve / -ve shear load, while, for the
GLE laminate (E,/E,=3), shear direction has only a limited effect on the
response of the laminate.

It is interesting to note, however, in fig. 4.20, that although the
buckling loads of the 913C-XAS laminate are greater than those of the APC2
laminate, later, well into the postbuckling range, the APC2 laminate

recovers and displays a stiffer response.

E, (GPa) E, (GPa) G,, (GPa) Vis
913C-XAS 150 9.5 1.07 0.263
APC2 139 10.43 4.55 0.326

By comparing the elastic constants of the two materials, it appears
that the reason for this behaviour is that the shear modulus of APC2 is
more than four times greater than that of 913C-XAS.

Indeed, that was verified by considering the response of two (x45),4
laminates having the same elastic constants as 913C-XAS, but with inplane
shear modulus, G,, increased to 4%1.07 GPa for the first one and to 8*1.07
GPa for the second one. The predicted lateral deflections are compared to

that of a (145)25, 913C-XAS laminate in figure 4.6. There it can be seen



that the effect of the shear modulus on the buckling load is very limited,
however it can affect the postbuckling response of the laminate quite
significantly. This behaviour is expected, given that the shear stiffness

of the material becomes more important as the lateral deflections in the

laminate increase.

Then the effect of the aspect ratio is examined. Several different

lay-ups are considered. An orthotropic lay-up (0,0),.; symmetric angle

plies (+6,-6),,, where 6=15,30,45,60,75; a symmetric cross ply (90,0),.; a
unidirectional off-axis lay-up (+45,+45),, and a quasi-isotropic lay-up
(0,—4S,+45,90)S. The results obtained can be seen in figures 4.21 to 4.29,
respectively.

For (0,0),., in fig. 4.21, it can be seen that increasing aspect ratio
()\) reduces the postbuckling stiffness of the laminate. Thus, for a given
lateral deflection a much higher applied load is required for A=1.0 than
for x=2.0.

The same applies to symmetric angle plies (+e,—e)zs (see figs. 4.22 to
4.26). Note, however, that different orientations display different
sensitivity to aspect ratio. For example, increasing aspect ratio from
A=1.0 to A= 2.0, has a more significant effect on the postbuckling response
of (¢15)ZS than on that of (x45),..

Figure 4.26, for (x75),5, appears not to agree completely with earlier
results, as the buckling load of the X=2.0 laminate appears to be greater

than that of the A\=1.5 laminate. Note, however, that employing m=n=7 terms

in the series, the following shear buckling loads are obtained:
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Pxy cr b?/ E, h?
Lay-up: (¢75)ZS +ve shear -ve shear
A=1.5 45.01 (-) 65.58
x=2.0 43.68 (=) 64.00

Therefore a small drop in the buckling load actually occurs as the
aspect ratio increases. However, even with m=n=4 terms in the series, the
buckling load of the A=2.0 laminate, for +ve and -ve shear load, appedrs to
be somewhat higher than that of the A=1.5 laminate, which is not right.

In fig.4.27, i£ can be seen that increasing aspect ratio does not
greatly affect the response of the symmetric cross ply laminate (90,0)25.

The effect of aspect ratio, on the response of (+45,+45),, (fig. 4.28),
is quite considerable for -ve shear and rather limited for +ve shear.
Again, increasing aspect ratio causes a reduction in the postbuckling
stiffness of the laminate.

Finally, in figure 4.29, the effect of aspect ratio on the response of

the quasi-isotropic laminate (0,-45,+45,90), is presented.

4.4.3 Unsymmetric Laminates under Uniform Shear Load.

Next, the postbuckling response of unsymmetric laminates under shear
load is considered.

To start with, an antisymmetric (x43), Ilaminate is examined. Its
lateral deflection is compared to that of (+45)4, (x45),; and (245), in
figure 4.30. Only one curve is given since its response is independent of
the shear direction and, although somewhat less stiff, is very similar to

that of the orthotropic laminate (%45).
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For an antisymmetric (x0) angle ply laminate, A, =A, =D, =D, =0.
However, the coupling stiffnesses B, =B, #0, while the remaining Bij terms
are zero. To assess the effect of the nonzero coupling stiffnesses on the

solution, several (x45) laminates are examined. In each case the number of

alternate layers in the laminate is increased. This causes the B;: terms to

k|
decrease in magnitude. Solutions for n=2,4,8,0 number of layers are

presented in figure 4.30a.

It can be seen that the effect of the bending-stretching coupling is
significant if only 2 layers are used, but as the number of layers
increases its effect disappears and the orthotropic solution (n=wx) is
rapidly approached.

Figure 4.30 also suggests that the influence of the bending-stretching

coupling stiffnesses, B B

163B2gs 18 mnot as significant as that of the

bending-twisting stiffnesses D D

16%Y26"

Then, a generally unsymmetric laminate, (45,30,60,45) is considered.
This laminate possesses genéral anisotropy, as all coupling stiffnesses Bij
are nonzero and also the extensional stiffnesses A g=A, %0 (extension-
shear coupling) and the bending stiffnesses D, =D, #0 (bending-twisting
coupling). In figure 4.31, its postbuckling response is compared to an
"orthotropic" solution obtained by setting all the coupling stiffnesses
Bij=0 and also A .=A, =D, =D, =0. Note that the response of the laminate is
greatly affected by the shear direction.

Then in figures 4.32 to 4.34 the response of some more, generally
unsymmetric laminates (0,,9,0¢, where ©6=15,30,45, is compared to
corresponding symmetric laminates (0,,0,)5. It can be seen that the shear

direction is significant and that the symmetric laminates are considerably

stiffer for both shear directions.
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4.4.4 Laminates under Combined Inplane Loading.

Next the postbuckling response of square 1amin§tes under general
inplane loading is examined.

In the previous chapter the effect of combined inplane loading on the
buckling response of the laminates was considered. It was then shown that,
unlike isotropic or even orthotropic plates, where simultaneous application
of shear load and compression always has a destabilising effect on the
plate, anisotropic plates can, under certain circumstances, be stabilised.
That is, when shear load is applied so that its tension component is acting
along the diagonal of the laminate having the lower bending stiffnesé, then
the laminate can be stiffened against compression.

It was found that the observed stiffening is more evident for laminates
with a small number of layers. So it was decided to consider (+45,+45)S and
(+45,—45)s. Also, given its practical significance, a quasi-isotropic
laminate (0,-45,+45,90)g was examined.

The following loading conditions are considered:

Table 4.2
Case Py Py ny
1. 0.0 0.0 1.0
2. 1.0 0.0 1.0
3. 1.0 1.0 1.0
4. 1.0 0.0 0.4
5. 1.0 0.0 0.0

In case 4, ny=0.4 was chosen, as from the data presented in chapter

3, it can be seen that this resulted in considerable stiffening against

compression.
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For each laminate, the results obtained are given in two pairs of
figureé (a & b) for +ve and -ve shear load, respectively. The numbering of
the curves corresponds to the numbering in table 4.2, of the various
combinations of inplane loading.

The results obtained for (+45,+45), are given in figs. 4.35a and 4.35b.
It can be seen that; in general, combination of shear and uniaxial
compression greatly reduces the postbuckling stiffness of the laminate, as
compared to that under pure shear 1load. Further postbuckling stiffness
drop is observed for shear and biaxial compression.

Note, however, that for -ve shear load, a stiffer response is displayed
by the laminate under combinations of shear and uniaxial compression (fig
4.35b, curves 2 & 4) than under compression only (curve 5). Hence in that
case, shear has a stabilising effect on the laminate.

The results obtained for (+45,-45)g are given in figs. 4.36a and 4.36b.
The overall response is rather similar to that of the previous 1laminate,
although the stiffening of the laminate against compression by =-ve shear,
is not as great as before.

Finally, consider (0,-45,+45,90),. Note that, for this quasi-isotropic
lay-up, it is +ve shear that results in the tension component of the
applied shear load acting along the diagonal of the laminate having the
lower bending stiffness. Hence, if any stiffening occurs, it will be under
+ve shear. The results obtained are given in figs.4.37a and 4.37b.

In figure 4.37a, it can be observed that the stiffening of the laminate
against compression by the applied shear load, although limited, is still
identifiable. Note that the response of the laminate under P.=P, and

ny=0.490 (curve 4) is very similar to that under compression only P,=P,

(curve 5).
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4.4.5 Predicted Stress Distribution in a Quasi-Isotropic Laminate.

" As an example of the theoretically predicted distribution of forces and
moments in a laminate under uniform shear load, nondimensional results for
a square, clamped, quasi-isotropic (90,-45,+45,0); laminate are presented.

The nondimensional positive shear buckling load is N =13.2885.

Lner

Contour plots for the lateral deflection W, the inplane forces NC’ Ny s
Ncn, moments Mq, My Mcn and transverse shear forces QC’ Qn’ for an applied
load of P/P.,.=2.475 can be seen in figures 4.38 to 4.46.

In fig.4.40, it can be seen that N occurs at the n=0,1 edges of the

£max
laminate and it is compressive. The distribution of N, (fig.4.41) is very
similar. The Ncnmax (fig.4.39) occurs near the corners, in the tension
diagonal of the laminate.

The distribution of the bending moments MC’ Mn is similar (figs.4.42 &
4.43), although M, is considerably larger than M,. This is to be expected
given that the bending stiffness of the laminate in the n direction is much
greater than that in the ¢ direction. Again M., occurs at the n=0,1
edges, although the bending moments at the centre of the plate are not much
smaller. The twisting moments, M
M, M.

The distribution of the transverse shear forces QC’ Qn (figs.4.44 &

cns (fig.4.46) are a good deal smaller than

4.45) is very similar, although Q, is greater than Q.. Note, however, that
the transverse shear forces are approximately three orders smaller than the
inplane forces.

Having identified where the various forces and moments aquire their

maximum values, plots are presented highlighting their development as the
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applied shear load is increased.

The development of the lateral deflections and of the inplane shear
force along the diagonals of the laminate can be seen in figs.4.48 and
4.49, respectively. Note that N, 1is constant along the edges of the
laminate, so the applied shear load can be easily identified in fig.4.49.

The development of N, Mﬂ’ Qn along n=0, where they allvassume their
maximum values, and n=0.5 is presented in figures 4.47, 4.50 and 4.51

respectively.
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4.5 Effects of Initial Geometric Imperfection on the Response of Laminates.

4.5.1 General Comments.

For the type of loading and boundary conditions considered in the
current investigation, it has been shown in section 3.1, that an
arbitrarily layered laminate will display the bifurcation type of buckling,
provided it is perfectly flat and that the inplane load is applied without
any eccentricity.

A real laminate, however, has usually some imperfections from flatness
and it will deflect laterally as soon as the load is applied. The smaller
the initial imperfection, the more closely the actual load deflection curve
will approach the theoretical perfect case and the nearer the critical load
will be to the bifurcation load.

Although the response of imperfect laminates, particularly with large
imperfection amplitudes, is better described as bending rather than
buckling, a critical load can often be determined from the load deflection

curve, being the load at which the lateral deflections start to increase

109 42

rapidly . Such behaviour is also displayed by unsymmetric laminates R

when under certain conditions !%7, because of the bending-stretching
coupling, they begin to deflect as soon as the load is applied.

In order to assess the effect of the imperfection on the buckling load
of perfectly flat laminates, as well as possibly explaining the large

scatter in buckling loads observed during the experimental part of the

project (see chapter 5), it was required to have a fairly accurate estimate
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of the critical load of the imperfect laminates. As it is quite difficult
to pinpoint on the load deflection curves of imperfect laminates just where
the deflections actually start to increase rapidly, it was decided that the
criterion used in the experiments to determine the onset of buckling (see
section 5.1.5), should also be employed here.

So the surface strains at the centre of the laminates are monitored and
the critical load is taken as the applied load at which the extreme fibre
(coﬁpressive) strain on the convex side of the buckle crest stops
increasing and starts to decrease.

The imperfection is assumed to be described by equation (2.48c), in
section 2.5. By appropriately defining woij (i,3=1,2,3), different
imperfection patterns and amplitudes can be obtained. All the results
presented pertain to imperfect laminates under inplane shear load and they

are obtained by employing m=n=3 terms in the series.

4.5.2 TImperfect Laminated Plates.

To start with, the effect Qf initial imperfection on the response of a
quasi-isotropic laminate (0,-45,+45,90),, is examined.

The first type of imperfection to be considered is simple positive out
of plane bowing (see figure 4.52). To realise such an imperfection pattern,

Wo,;, 1s given a certain positive value while the remaining W are set to

oij
zero. The effect of increasing imperfection amplitude is also examined.
Details of the different imperfection amplitudes considered can be seen in

table 4.3. The critical loads of the imperfect laminates, as obtained from

the criterion described above (section 4.5.1), as well as the ratios of the
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critical loads of the imperfect laminates to that of the perfectly flat

laminates can also be seen in table 4.3.

Table 4.3
Lay-up: (0,-—45,+45,90)S

+ve shear

Case Woi1 Yo max Nyy er Ny er imp
No. (w/h) 3
/ny cr perf
1 0.016 0.0404 77 0.90
2 0.04 0.101 70 0.82
3 0.08 0.202 64 0.75
4 0.16 0.404 53 0.62
5 0.32 0.808 40 0.47
~ve shear
Case Wois Yo max ny cr ny cr imp
No. (w/h) 3
/ny cr perf
1 0.016 0.0404 55.5 0.88
2 0.04 0.101 49.5 0.79
3 0.08 0.202 45 0.72
4 0.16 0.404 37 0.59
5 0.32 0.808 27 0.43

NB. For a perfectly flat (0,-45,+45,90), laminate, using m=n=3 terms in the
series, the nondimensional critical 1loads, under +ve and -ve shear

respectively, are:

N = Pyy-b?/E,.h? = 85.64, (-)62.81

Xy cr
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A typical plot of the strain distribution at the centre of the
laminate, from which the critical load is located, is given in figure 4.53.

The load deflection curves of the imperfect laminates are compared to
those of the perfectly flat laminate in figures 4.54a and 4.54b, for +ve
and -ve shear load respectively.

From table 4.3, as well as figures 4.54a and 4.54b, it can be seen that
the effect of initial imperfection on the response of the quasi—isotropié
laminate can be quite sigﬁificant. The buckling load can be greatly reduced
even by very small imperfections, however, once well into the postbuckling
range the effect of the imperfections is limited. The total deflection of
the above, imperfect, laminates is always greater than that of the perfect
laminate. Similar findings have been reported in '!%® for isotropic plates

and in 5%3'%% for composite plates, under compression.

Next, the effect of different imperfection patterns on the response of

the quasi-isotropic laminate is examined. Three more cases are considered:

Case No.
6 Wo11=Wg12=Wg,=-0.04
7 Wy 1=Wo,,==0.04, W,,,= 0.04
8 Wo11=Wo,.= 0.04

While the remaining wOij in each case, are set to zero.

The imperfection patterns obtained can be seen in figures 4.55 to 4.57
respectively. Cases 6 and 7 somewhat resemble the measured imperfection
pattern of composite plates 1 and 3 (figures 5.5 and 5.6). Also note that
the two imperfection patterns are identical in all but orientation with
respect to the plate axes. Case 8 depicts an imperfection pattern that is

very similar to the prevailing buckling mode (figure 4.58). For all three
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patterns, the imperfection amplitude at the centre of the laminate is
|W,(0.5,0.5)|=0.101 w/h, however, for imperfection patterns 6 and 7,

Wo max=—0-202 w/h, while, for imperfection pattern 8, W, [5,0.125 w/h.

The results obtained can be seen in table 4.4.

Table 4.4
Lay-up: (0,-45,+45,90)4
Case Shear ﬁxy cr ﬁxy cr imp
No. Load =
/ny cr perf

6 +ve 70 0.82

6 -ve 53 0.84

7 +ve 74 0.86

7 ~-ve 49 0.78

8 +ve 49 0.58

8 -ve 37 0.59

For the moment, concentrate on imperfection patterns 6 and 7. Their
load deflection curves, for the centre of the laminate, are compared to the
solution for a perfectly flat laminate in figure 4.59. Note that in this
particular figure, the total deflectionv rather than the net one is
presented and that the actual central deflection is negative.

The results are very interesting as they suggest that the 'same'
imperfection pattern can either enhance or reduce the inherent anisotropy
of the laminate. This depends on the way the pattern is disposed with
respect to the laminate axes and, therefore, to the stiffnesses of the
laminate in the various directions.

For a perfectly flat (0,-45,+45,90), laminate, for m=n=3 terms in the

series, the ratio of the two shear critical loads is |85.64/62.81|=1.36.
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Now for <case 6, the ratio of the shear critical loads i; |70/53[=1.32,
while for case 7 the same ratio is |74/49]|=1.51. Hence in the former case
the imperfection has caused the 1laminate to appear somewhat 1less
anisotropic, while in the latter case the opposite occurred. This behaviour
is also well depicted in figure 4.59. Note that curves 1 and 2 are for
imperfection pattern 6 and curves 3 and 4 for imperfection pattern 7. The
effect of the imperfection can be clearly seen, particularly for small
deflections. Well into the postbuckling range, again the effect of the
imperfections on the response of the laminate is limited.

It should be mentioneq here, that similar observations were made during
the experimental part of this project (see section 5.2.4).

The 1load deflection curves, for the centre of the 1laminate, for
imperfection pattern 8 are compared to the perfect solution in figure 4.60.
From table 4.4, as wellyas figure 4.60, it can be seenvthat although the
maximum imperfection amplitudes for cases 6, 7 are greater than for case 8,
the drop in buckling loads is much more severe for case 8. A comparison
with the results obtained for laminates with a simple, positive, out of
plane bowing type of imperfeétion, also shows that the shape of the
imperfection is just as important, if not more so, as the imperfection

amplitude. For example, it can be seen that case 4, with W, o, twice that

of case 8, results in a more or less similar drop in buckling load for +ve
and ~ve shear load.

It appears that in cases where the imperfection pattern is very similar
to the prevailing (perfect) buckling mode a significant drop in buckling
load occurs (eg. as for case 8). On the other hand, if the imperfection
pattern is quite different from the prevailing buckling mode then the

imperfection can stiffen the laminate (eg. as for case 7, +ve shear).
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For a perfectly flat laminate, the buckling mode initially consists of
three halfwaves in the compression direction and one halfwave in the
tension direction of the applied shear load (figure 4.58). If the buckling
modes for case 7 and case 8 are examined, it can be seen that for case 7,
the imperfection has caused the laminate to buckle into an unsymmetric mode
with four halfwaves in the compression direction and one halfwave in the
tension direction (figure 4.61), while for case 8 (figure 4.62) the
laminate has assumed a mode very similar to that of a perfectly flat
laminate. In fiéure 4.63, it can be seen that, when well into the
postbuckling range, the unsymmetric mode of case 7, approaches the
'perfect' buckling mode.

Next, the effect of imperfection on (*45)25 laminates, made of
different materials, is examined. The elastic constants of the materials
considered can be seen in section 3.5. The laminates are assumed to possess
positive out of plane bowing (W, ..=0.1 w/h). The load deflection curves
obtained, compared to the solution for a perfectly flat laminate, can be
seen in figures 4.64 to 4.68, for graphite epoxy (GRE), 913C-XAS, APC2,
boron epoxy (BOE) and glass epoxy (GLE), respectively. For all cases, it
can be seen that the effect of the imperfections on the response of the
laminates is quite significant for applied loads 'near' the bifurcation
load, but, well into the postbuckling range their effect is limited.

In table 4.5, a comparison of the drop in critical 1load for each
laminate, caused by the imperfection, as determined from the criterion

described in section 4.5.1 is presented.
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Table 4.5

Lay-up: (+45,-45),, _ _
ny cr imp / ny cr perf

Material E1/E2 +ve shear -ve shear
GRE 40 0.64 0.78

913C-XAS 16 0.68 0.77
APC2 13 0.66 0.78
BOE 10 0.66 0.78
GLE 3 0.75 0.76

Overall, the above results suggest that, the higher the EI/E.2 ratio,
the more sensitive is the shear buckling response of the laminate to
imperfection. Admittedly, the results are somewhat approximate, however it
is believed that they indicate the true underlying trends.

Finally, positive out of plane bowing type of imperfection (W 0.1

o max"
w/h) is again employed in order to examine how imperfection affects the
response of laminates of aspect ratio greater than one, as well as the
response of square laminates with different lay-ups.

Two rectangular (x45),, laminates are considered, with aspect ratios
A=1.5 and A=2.0. The load deflection curves obtained can be seen in figures
4.69 and 4.70, respectively.

The different lay-ups considered are as follows; a symmetric cross ply

(90,0)28, a unidirectional off-axis (+45,+45)zs, an  antisymmetric
(+45,-45), and a generally unsymmetric (45,30,60,45).

Their load deflection curves are presented in figures 4.71 to 4.74,
respectively.

Overall, it can be seen (figures 4.69 to 4.74) that, initially,

imperfection affects quite considerably the response of the laminates, but

when well into the postbuckling range its effect is limited.
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4.5.3 TImperfect Isotropic Plates.

In this section, the effect of initial imperfections on the response of
isotropic plates, under inplane shear load, is examined.

The elastic constants employed in this study pertain to alclad L72
aluminium alloy (see section 5.1.4). The plates are assumed to posses
positive out of plane bowing. The range of imperfection amplitudes
considered is the same as those in iﬁ section 4.5.2 for the quasi-isotropic
laminates.

The load deflection curves of the imperfect plates are compared to that
of a perfectly flat plate in figure 4.75 and the critical 1loads, as
determined from the criterion described in section 4.5.1, are given in

table 4.6.

Table 4.6

L72 alclad aluminium alloy plates

Case Wo11 Yo max ﬁxy cr Xy cr imp
No. (w/h) 5
/ny cr perf
! 0.016 0.0404 12.2 0.90
2 0.04 0.101 11.8 0.87
3 0.08 0.202 11.0 0.82
4 0.16 0.404 10.2 0.76
5 0.32 0.808 9.0 0.67

NB. For a perfectly flat L72 plate, using m=n=3 terms in the series, the

nondimensional shear critical load, is:

N = Pyy-b?/E,.h? = 13.50

Xy Ccr
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A comparison of the results for L72 szluminium alloy plates with the
results of the quasi-isotropic 913C-XAS 1laminates, given in table 4.3,
suggests that composite plates are more sensitive than isotropic plates to
a given imperfection.

These results agree with earlier fin&ings, in section 4.5.2, suggesting
that, the higher the E,/E, ratio, the more sensitive the laminate's shear
buckling response is to imperfection.

As Dbefore, well into the postbuckling range the effect of the
imperfections is limited and the total deflection of the imperfect plates

is greater than that of a perfectly flat plate.
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4.6 Conclusions.

In this chapter, a parametric study of the postbuckling response of
generally layered, clamped laminates, loaded in their own plane, mainly
under shear, is presented. Perfectly flat laminates, as well as those with
initial geometric imperfections are considered.

From the results obtained, the following conclusions can be made:

,1> The shear direction is very important in the postbuckling range too,
resulting ‘in two very different postbuckling paths for any other than
orthotropic and antisymmetric lay-ups. The more anisotropic the laminate,
either due to lay-~up or because of the material properties (ie. high E,/E,
ratio), the more significant is the shear direction.

2) For all the lay-ups considered, increasing aspect ratio reduces the
postbuckling stiffness of the laminate. Different lay-ups, however, display
different sensitivity to aspect ratio.

3) Symmetric laminates display stiffer postbuckling response than laminates
identical in all respects but unsymmetrically layered.

4) The effect of the bending-twisting stiffnesses D,., D,g is very
significant and they should not be neglected unless a large number of
symmetrically stacked 6 layers are employed.

5) The postbuckling stiffness of a laminate is greatly influenced by the
shear modulus of the material.

6) For combined inplane loading, it is found that the shear load can
stiffén an anisotropic laminate against compression, right through the

range of postbuckling deflections considered, if the tension component of

the applied shear load is acting along the diagonal of the laminate having
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the 1lower bending stiffness. This effect is more prominent the more
anisotropic is the laminate and diminishes quickly as the number of layers
increases.

7) Initial geometric imperfections can greatly reduce the buckling load of
a laminate. It appears that the higher the E,/E, ratio, the more sensitive
the laminate is to imperfection.

8) The amplitude as well as the pattern of the initial imperfection is
significant. Imberfection patterns that resemble the prevailing buckling
mode can greatly reduce the buckling performance of the laminate, while
certain imperfection patterns can in fact 'stiffen' the laminate, resulting
in total deflections of the imperfect laminate being less than those of fhe
perfect laminate.

9) Although initial imperfections affect greatly the response of a laminate
for applied loads in the vicinity of the bifurcation load, once well into

the postbuckling range their effect is limited.
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Chapter 5: Experiments

5.1 Experimental Set-up.

For the experimental part of the work, eight laminated (913C-XAS) and
three aluminium plates were tested under edge shear load. Four of the
laminated plates had a centrally 1located circular hole, of differeﬁt
diameter 'in each case. Critical buckling loads were located and the
postbuckling stiffness and strength of the plates was investigated. The
strain distribution in the plates was monitored by several back-to-back
pairs ofistrain gauges and the lateral deflection at the centre of the

plate was monitored with a displacement transducer.

5.1.1 General Comments.

To start with, there were two major considerations about the
experimental set-up and both were related to the "picture frame" used for
the shear testing.

The first one was, how it would be best to attach the plate inside the

frame? The option of bonding the plate rather than bolting it in the frame
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was considered. At the time it was felt that the possible advantages of
bonding did not outweigh the fact that this approach would have been far
more elaborate and time consuming to implement. So for ease of assembly,
bolting was chosen. It was then considered whether it would be advantageous
to make the surface of the edge members, the fittings that formed ﬁhe
picture frame, serrated in order to eliminate any likelihood of the plate
slipping inside the frame. It was decided not to implement this
modification as it would increase the chance of the fittings digging into
the very thin laminate and possibly inflicting considerable damage.

The second consideration was whether to use the picture frame with pins
in all four corners or to opt for the two pin arrangement used for example
16,398,52

in In what follows the pins at the two 'unloaded' corners of the

frame, ie. pins B and D in figure 5.1, will be referred to as "side pins",
while pins A and C as "loading pins".

Before buckling, the plate is experiencing almost uniform shear stress
and the strain distribution is accordingly uniform, with equél tension and
compression strain components along the two principal loadind directions,
ie. along the two diagonals of the plate. Before the critical 1load is
reached, it should not make any difference whether there are side pins in
the frame or not, but, after buckling and as the load is further increased,
the strain distribution in the plate changes significantly. With the plate
effectively incapable of carrying any further compression, the 1load is
carried in some form of diagonal tension. Thus the plate is experiencing
large tensile strains and rather small compressivebstrains. This asymmetry
means that the forces on the heavy members that form the picture frame are
no longer tangential, ie. they are not acting along the edge of the plate,

but at an angle, and tend to rotate the fittings about the loading pins,
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thereby inducing additional shearing onto the plate. If side pins are
employed, this can be prevented. The diagonal tension developing in the
plate after buckling would now tend to bend the fittings in their own
plane. Given that the fittings are very heavy and stiff, this bending will
be minimal, very nearly nonexistent.

So it was felt that using all four pins in the shear frame would result
in a more realistic and uniform strain distribution. However, several tests
were carried out’without the side pins in the frame in order to study their

effect in the overall behaviour of the plates.

5.1.2 The Test Rig.

Overall, the test rig was of conventional construction. Following from
the above reasoning, each plate was bolted into a "picture frame'", formed
by two heavy members (fittings) along each edge of the plate and having
pins in all four corners. The fittings were made of mild steel and each had
two staggered rows of attachment holes. The diameter of the attachment
holes was 9.525 mm (3/8 in) and the pitch was 38.1 mm (1.5 in). That
resulted in six holes for the outside row and seven holes for the inside
row. Further details of the whole set up are shown in figure 5.3.

The plate was suspended in the rig from one of the corners, and a
tensile load was applied along the vertical diagonal onto the frame, by a
hydraulic jack controlled by two hand operated pumps, one having a small
delivery enabling a fine adjustment of the applied load. The tensile load
was transmitted through the frame onto the plate as uniform shear load. The

maximum load capacity of the rig was 100 KN (10 tons). An approximate
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estimate‘of the applied load could be read directly from a pressure gauge,
connected to the hydraulic jack. Meanwhile the output from the 1loadcell
provided an accurate figure.

It should be mentioned that the plate carried some 'dead' weight before
any load was applied. The picture frame weighed 26 Kg, while the weight of
the connecting rod and the loadcell (see fig. 5.3) was 11 Kg. Although not
included in the calculation of the critical load, it was estimated that the
plate carried approximately half the weight of the picture frame and the
whole of the weight of the connecting rod and the loadcell,

ie. (26/2 + 11)Kg * 9.81 m/sec? = 235.4 N .

5.1.3 The Plates.

The laminated plates were made of Fibredux 913C-XAS and were
manufactured by Westland Helicopters Ltd. They had eight layers arranged
in a quasi-isotropic lay-up, ie. (90,-45,+45,0); and they were of square
planform. The length of each sideiwas 0.381 m (15 in). To accomodate
installation of the plate in the picture frame, each plate had two
staggered rows of attachment holes drilled along each edge. Also =44.5 mm
(=13/4 in) nearly square notches were cut at each corner of the plate. The
dimension of the plate inside the frame was 0.254 m (10 in) square. For
more details see figure 5.2. A diamond tipped drill and cutter were used
for the preparation of the plates.

As it has already been mentioned, four of the plates were tested with a

centrally located circular hole, of different diameter in each case. The

diameters considered were
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d = 9.525 mm, 19.05 mm, 25.4 mm, 38.1 mm,
resulting to the following diameter-to-width ratios :

d/b = 0.0375 , 0.075 , 0.1, 0.15 respectively.
To drill these holes, diamond coated holeshaws were used. In order to avoid
any splindering of the fibres around the edge of the hole, the drilling was
done in two stages. The hole was partly drilled on the one face and then
completed with the drill being driven from the other face of the plate.
Test drilling showed that this particular approach was marginally better
than taking the holeshaw straight through. However, for the largest
diameter hole considered, ie. d=38.1 mm, problems with alignment of the
holeshaw resulted in a hole with slightly damaged edges.

The thickness of the plates was measured in several locations and
proved to be fairly uniform. The typical variation in measured thickness
was apprqximately +1.8% of the mean value of each plate. On average the
laminate thickness was h=1.06 mm. Therefore the width-to-thickness ratio
was =240. Note, however, that for the theoretical analysis of the laminates
a nominal thickneés, h=1.1 mm, was employed.

The alclad L72 alumipium plates tested were of similar dimensions, wiéh
the only exception that they were thinner. Their average thickness was
0.8636 mm resulting in a width-to-thickness ratio of =295.

Details about the lay-up, thickness and central hole diameter of each
plate, are given in Table 5.1 and the positive fibre orientation with

respect to the coordinate axes can be seen in fig. 5.4



Table 5.1
913C-XAS Central Hole
Plate No. Lay-up Thickness (mm) - Diameter (mm)
1 (90,-45,+45,0)4 1.065 -
2 (90,-45,+45,0) ¢ 1.064 -
3 (90,-45,+45,0)4 1.058 -
4 (90,-45,+45,0) 4 1.053 -
5 (90,-45,+45,0) ¢ 1.056 9.525
6 (90,-45,+45,0) 1.060 25.4
7 (90,-45,+45,0) 1.062 38.1
8 (90,-45,+45,0) 4 1.055 19.05
Aluminium Alloy
Plate No.
ALl - 0.8636 -
AL2 - 0.8636 -
AL3 - 0.8636 -

Visﬁal inspection of the laminates, before the start of the testing,
revealed that all of them possessed some initial curvature. The two edges
normal to the direction of the fibres of the outside layers were bowing in
the same manner. The other t&o edges were almost straight. This pattern was
common for all the platesf It was noticed that one face of the plate was
more resin rich than the other one. So given that resin's thermal expansion
coefficignt is greater than that of the carbon fibres, it is not surprising
that the resin rich face expands more and particularly in the direction
normal to the fibres in the outside layer. Along the direction of the
outside fibres the bending stiffness of the 1laminate appears to be

sufficient to prevent any significant bending, so these edges remained

almost straight.
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No nondestuctive evalution was performed, in order to check for any
variation in the quality of the eight laminates, before the start of the
experiments.

However after testing was completed, the plates were C-scanned by
Westland Helicopters Ltd. The results of the scans were inconclusive,
largely as a result of problems in calibrating the equipment resulting from
the extensive damage already sustained by most of the specimens.

A micro section from an area of one of the laminates (plate 8), that
was outside the test section, was prepared in order to give some idea of
the quality of the original plate. This revealed that the plate was of good
quality, with good consolidation and a low level of voiding (less than
0.5%Z). Given that all the plates were cut from one original laminate and
that the visual inspection did not reveal any abnormalities, it was deduced

that the remaining plates must have been of similar quality.

5.1.4 Material Properties.

Fibredux 913C-XAS is an advanced thermosetting composite, manufactured
by Ciba-Geigy. It is made up of unidirectional, continuous, high tensile
strength, surface treated, Graphil carbon fibres in a low cure (120°C)
epoxy resin matrix.

The following physical properties and elastic moduli and strength
data, at room temperature, are reproduced from a manufacturer's information

sheet.



Typical prepreg physical properties:

Density
Carbon fibre volume

Epoxy resin by weight

Fibre orientation,
Fibre orientation, 9

Through-the-thickness

1630

60

34

Coefficient of thermal expansion:

0°

Oo

Tensile modulus
Compressive modulus
Tensile modulus
Compressive modulus
Shear modulus

Poisson's ratio

Tensile strength
Compressive strength
Tensile strength
Compressive strength
Rail Shear strength

Rail Shear strength

ic
90°, E,,
2c
12

12

Interlaminar Shear strength ,ILSS

KRg/m?>
%

%

-0.1*1078/°C

30.0%1078/°C

25.0*%1078/°C

n

i

GPa

GPa

GPa

GPa

GPa

0.263

1990

1200

57

155

49

47

100

MPa

MPa

MPa

MPa

MPa

MPa

MPa



Strains to failure:

Tensile strain o°, Xep = 13500 pe
Compressive strain 0°, Xeo = 8500 e
Tensile strain 90°, Y. = 5700 pe
Compressive strain 90°, Y. = 18000 ue
Shear strain s S¢ = -

The properties pertaining to the alclad L72 aluminium alloy plates

were as follows :

Density. 2700 Kg/m?

Tensile modulus R E = 72.4 GPa

Shear modulus s G = 27.5 GPa

Poisson's ratio s v = 0.316

0.1%Z proof strength = 220 MPa

Ultimate tensile strength = 370 MPa

Elongation to failure = 15 7% or 150000 ue

Finally for the APCl piece that was used for attaching the dummy gauges :
Coefficient of thermal expansion:
Fibre orientation, 0° 0.6%1078/°C

Fibre orientation, 90° 29.0*10"%/°C
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5.1.5 Method of Determining the Critical Load.

Several back-to-back pairs of strain gauges were employed té monitor
the strain distribution in the plate,.as well as to detect the onset of
buckling.

For the particular method of determination of the critical load
employed, it was the output from the strain gauge‘pairé that measured the
vcompression component of the applied shear load, that was the most useful.

In general, what happeﬁs is that at the start of the loading, both
gauges give more or less the same compression strain reading. But, as the
applied load is increased and the critical load is approached, the readings
from the two gauges start to diverge.

At the onset of instability and with the development of the buckling
mode, the portion of the plate on the convex side of the buckle crest
starts going into tension, while the concave side starts carrying
additional compressive loading. And this behaviour is clearly depicted by
the output of the back-to-back strain gauges.

So the onset of buckling can be identified by monitoring the strain
distribution in the plate and the critical load is defined as the load at
which the output from the gauge on the convex side of the buckle crest

stops increasing and starts to decrease.

As an extra check, on the accuracy of the critical loads as determined
by the afore mentioned criterion, some of the critical loads were also
calculated using the Southwell Plot.

In 1931 Southwell !!® proposed a method that utilised test data, ie.
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the applied 1load and the corresponding lateral deflection, from the
compression test of an elastic strut with initial curvature, to determine
the critical load the strut would have if it were perfectly straight.

He showed that nmnear the critical buckling load, the following

relationship is valid :

6 = — (5.1)

Per

—_— =1

P
where 1) = lateral deflection

8° = constant, relating to the imperfection amplitude
P = applied load
P., = critical load

From the above we obtaiﬁ:

&
6= — Pg -6 (5.2)

So by plotting &/P against & a straight line will be obtained whose
slope will be equal to P.,. However care must be taken when applying the
method to general instability problems, like buckling of plates, as it is
only applicable as long as the lateral deflection and the imperfection are
small compared to the thickness.

In general the data points formed gentle curves rather than straight
lines. But this was expected as the postbuckling behaviour of the
structure under consideration affects the linearity of the Southwell line
and strictly speaking postbuckling behaviour other than neutral, would give

rise to a curved Southwell line ''7.
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A variation of the method has been suggested by Donnell *'® yhere

starting from eqn.(5.1) again and solving for P.. we obtain:

P
P == 8 + Py (5.3)

So by plotting P/& against P a straight line is again obtained and the
critical load is its intercept on the P axis. This particular variation
will be referred to as "Modified Southwell Plot" and was mainly used in
this work.

Further, the method has been extended and it can also be used with

strain data 119,120,

5.1.6 Strain Gauges.

As it has already been mentioned, for the determination of the critical
load, the back-to-back pairs of strain gauges should be positioned along
the direction of the compression component of the applied shear 1load.
Furthermore, since the laminated plates were to be tested under positive
and negative shear load, in order to locate the two different critical
loads, strain gauges would have to placed on both diagonals of the plate,
because, as the shear direction reverses the tension diagonal becomes the
compression diagonal and vice-versa. Also, it is the centre of the plate
that suffers the largest deflections and it is there that buckling would be
more easily detected.

Following from the above considerations, the strain gauges were mainly

positioned along the two principal loading directions, ie. along the two
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diagonals of the plate, with a bias towards the centre of the plate.
Similar reasoning was adopted for the plates with the centrally located
hole. Although, in this case, more gauges were utilised, in general, in
order to examine the effect of the hole in the strain distribution in the
plate. Thé exact location of the strain gauges for each plate is given in
figures 5.5 to 5.8.
Two types of SHOWA foil strain gauges were used on the laminates.
Single element gauges (N11-FA-8-120-11) and two-element stacked rosettes
(N22-FA-8-120-11). The foil material was Cu-Ni alloy and the base material

was polyester. Further details about the gauge specification are given in

Table 5.2 .

Table 5.2
Type N11-FA-8-120-11 ©N22-FA-8-120-11 N11-FA-5-120-23
Gauge Length mm 8 8 5
Resistance Q 119.9 120.0 120.0
Gauge Factor 2.08x17% 2.07x17% 2.10+1%
Thermal Output pe/°C =2 x2 +2
Temp.Comp.For STEEL STEEL ALUMINIUM
Thermal Exp. PPM/°C 11 11 23

The surfaces of all the laminates were fairly even and smooth. So to
prepare the composite surface for attaching the strain gauges was not too
difficult at all. The surface was lightly abraded with a silicon-carbide
paper of 320 grit. Then, for degreasing the surface, acetone was used.

Finally, for attaching the gauges, a cyanoacrylate adhesive was used

(Loctite 496).
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Dummy gauges, on a quasi-isotropic piece of APCl, were used to form the
other arm of the half-bridge arrangement that was used for the measurement
of the strains.

For the aluminium plates, only two back-to-back pairs of strain gauges
were used and their arrangement, identical for all the plates, can be seen

in figure 5.9. The specification of these strain gauges is given in table

5.2,

- 5.1.7 Data Aquisition System.

The strain ~gauges and the loadcell wére connected onto a data
aquisition system, Intercole Systems Ltd Spectra-ms, that enabled rapid
sampling and recording of the outpﬁt from all the channels.

Spectra-ms is a microprocessor based precision measurement and control
system, that employs a master instrumentation amplifier and analogue to
digital converter, operating in conjuction with reed-relay selectors. With
features such as autocalibration, autoranging and programmable integration,
the meésuring system was able to provide accurate readings with good noise
rejection.

For the strain.‘measurement a half-bridge arrangement was used. The
connections for the strain gauges and the loadcell can be seen in figure
5.10. The system provided full conditioning, twin constant current
energising and initial bridge balance as standard. And with the use.of user
defined constants the actual data was recorded as Newtons and microstrain.

It is worth pointing out some of the advantages the constant current,

half-bridge arrangement’ used, has over more traditional constant voltage
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arrangements.

To start with, as the strain gauge was only energised for a short
period of time, during which a reading was taken, there was extremely low
gauge heating. So no inaccuracies were introduced due to gauge self-
heating. Note that gauge self-heating is more of a problem with composites,
as they are poor heat conductors, unlike more traditional structural
materials. Also by the very nature of constant current, long connecting
leads induce negligible errors and do not decrease measurement sensitivity.

An outline of the system is given in figure 5.11. As it can be seen
there, the system was operated in conjuction with a BBC model B micro-
computer with a 6502 second processor. The experimental data was stored in
floppy discs and then it was transferred to the University's ICL 3980

mainframe computer for analysis.

5.1.8 lateral Deflection Measurements.

In order to form a better idea of how the plates responded, it was
decided that the lateral deflection, near the centre of the plate, would
also be monitored. To do that a Linear Variable Differential Transducer
(LVDT) was used.

The displacement transducer could measure lateral deflections of up to
7 mm. Unfortunately this transducer could not be connected to the data
aquisition system, so, instead, it was connected to a PEEKEL unit and the
deflection readings were recorded manually.

The calibration chart for the displacement transducer is shown in

figure 5.12.



121

The transducer was mounted on a bracket that was bolted onto one of
the edges of the picture frame (see figures 5.45, 5.3). It was felt that in
this way any rigid body movement of the picture frame would not affect the
accuracy of the reading. The rod of the transducer was kept in contact with
the plate by a light compression spring.

The displacement transducer was usually positioned near the centre of
the plate. For the plates without a hole, there was a strain gauge at the
centre of the plate (see figures 5.5 & 5.6), so the transducer was
positioned roughly 12.7 mm off the centre. A similar arrangement was used
for the plates with the centrally located hole, except for plate 7 with the
38.1 mm diameter hole, where the transducer was positioned at the edge of
the hole. When comparing the results, it should be kept in mind, that the
actual locations somewhat varied from plate to plate and also the readings

are net values of deflection.

5.1.9 Imperfection Measurements.

Since the plates were rather slender, it was felt right from the start,
that the imperfections would affect their response quite significantly. So
it was decided that once the plates were positioned in the picture frame,
readings of the imperfection pattern should be made. That data would then
be used as part of the input data for an imperfect plate analysis.

Two methods were tried out in order to obtain the necessary
information.

In both, the plate was divided in a 11*11 grid. Each grid was 25.4 mm

(1 inch) square. Readings were then taken at all the inside grid points
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(9*%9), as well as at grid points along two opposite edges of the plate.
Then imaginary 1lines were drawn connecting the two corresponding edge
readings, at the opposite edges of the plate. The difference of the actual
measurements, of the inside grid points of the plate, from the imaginary
line, was taken as the imperfection amplitude at that grid point.

Initially the picture frame was positioned on a surface table and the
imperfection readings were taken using a dial gauge that was moved about
the surface table on a stand.

It was felt that this was a rather inaccurate method and after some not
too encouraging test runs of the measured imperfections for composite
plate 1, it was decided that another approach of measuring the imperfection
should be tried.

A square aluminium frame was built, that could be clamped onto the
picture frame. It had 9 holes, of 6.35 mm diameter, drilled in 25.4 wmm
pitch, along two of its opposite sides. Two ground steel rods were then
used to form a rail, along which a square block that housed a displacement
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