
 
 
 
 
 
 
 

https://theses.gla.ac.uk/ 
 
 
 

 

Theses Digitisation: 

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ 

This is a digitised version of the original print thesis. 

 

 
 
 
 
 
 
 

Copyright and moral rights for this work are retained by the author 
 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 
 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 
 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 
 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 
 
 
 
 
 
 
 
 
 
 
 
 

 
Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


NUMERICAL SIMULATION OF 
3D HYPERSONIC FLOW 

USING HIGH RESOLUTION SCHEMES

Zhi Jian WANG, B.Sc.

A thesis submitted to the Faculty of Engineering, 

the University of Glasgow for the degree of Doctor of Philosophy

July 1990

© 2.J. WANG, 1990



ProQuest Number: 10983547

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10983547

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to his supervi­

sor, Professor Bryan E. Richards, for his guidance in this research and

especially for his help in the writing of this thesis.

The author would like to thank Professor Henry Y. Wong for his help 

in many aspects , Dr. Jiang Dachun, Dr. Qin Ning and Mr. Shu Chang for 

their inspiring discussions and encouragement in the period of this

research. Thanks are also due to the staff of Glasgow University Comput­

ing Centre, especially to Mr. Paul Rosenberg, for their fruitful

service, to Miss Margaret Simpson, secretary of the department, for her 

effective help.

The author is indebted to many friends in Glasgow. Especially the 

author would like to express his appreciation to Z. Li, W. Qian, C. Hu, 

X. Chen, J. Cheng and Bob, Rhona, Betty who have either helped him in 

the research or made the life easier.

The author gratefully acknowledges the support by the SBFSS.

Finally, the author is grateful to his wife for her understanding 

and support, to his family for their encouragement during this period.

The work included in Chapter 3 has been submitted to and accepted by 

the Journal of Computational Physics for publication. Part of it has 

been published in the Proceedings of the International Conference on 

Numerical Methods in Engineering: Theory and Applications, Swansea,

1990. Part of the work in Chapter 5 has been published in the Proceed­

ings, Workshop on Hypersonic Flows for Reentry Problems, Antibes, 1990.



CONTENTS

SUMMARY................................................................. vii

CHAPTER 1 

INTRODUCTION

1.1 Demands of Three-Dimensional Hypersonic Flow Simulation........  1

1.2 Challenges Provided by This Task.................................. 2

1.3 Overview of Numerical Methods for High Speed Flow Simulations*••• 6

1.4 The Scope of This Study...........................................  8

1.5 Layout of the Thesis............................................... 10

CHAPTER 2 

MATHEMATICAL MODELS OF FLUID MOTION

2.1 Formulation of Conservation Laws in Integral.....Form............ 11

2.2 Formulation of Conservation Laws in Differential Form............ 13

2.3 Equation of State.................................................. 14

2.4 Non-Dimensional Form of Equations.................................  16

2.5 Generalized Coordinate System.....................................  19

CHAPTER 3

DISCRETIZATION OF HYPERBOLIC CONSERVATION LAWS

3.1 Introduction to Hyperbolic Conservation Laws.....................  25

3.2 High Resolution Schemes for Hyperbolic Conservation Laws........  27

3.2.1 Introduction................................................  27

iii



3.2.2 TVD Concept and Its Sufficient Conditions.................. 29

3.2.3 A General Form TVD Scheme................................... 32

3.2.3.1 The Scheme for Linear Scalar Conservation Laws  32

3.2.3.2 The Scheme for Nonlinear Scalar Conservation Laws-* 37

3.2.3.3 Linearization of the Implicit Scheme...............  39

3.2.4 Comparison of the Osher-Chakravarthy and the Yee TVD Schemes

and the Modified Yee TVD Schemes................   41

3.2.4.1 The Osher-Chakravarthy Scheme.....................  41

3.2.4.2 The Yee Scheme and the Modified Yee Scheme.........  44

3.3 Extension of TVD Schemes to System of Conservation Laws.........  48

3.3.1 Formal Extension............................................  48

3.3.2 Linearization of the Implicit Operator.......... *.........  50

3.4 Roe’s Approximate Riemann Solver................................. 51

3.5 Numerical Experiments and Discussions...........................  53

3.6 Conclusions ......  *.................. 64

CHAPTER 4 

AN EFFICIENT EXPLICIT SCHEME 

FOR MULTI-DIMENSIONAL STEADY FLOW CALCULATION

4.1 Introduction.......................................................  65

4.2 The Derivation of the First-Order X Scheme..............   66

4.3 Accuracy and Stability Analysis...................................  69

4.3.1 Accuracy Analysis...........................................  69

4.3.2 Stability Analysis..........................................  71

4.4 Extension of the X Scheme to High Order.........................  77

4.5 Extension of the X Scheme to System of Equations.................  79

4.6 Numerical Results and Discussions................................. 81



4.7 Conclusions...........................................................  95

CHAPTER 5

FLOW VISUALIZATION TECHNIQUES AND SIMULATION OF HYPERSONIC FLOW

5.1 Introduction .............      97

5.2 Flow Visualization Techniques....................................  99

5.2.1 Introduction...........   99

5.2.2 Presentation of Scalar Fields............................... 100

5.2.3 Presentation of Vector Fields............................... 103

5.3 Further Aspects about the Numerical Procedure...................... 106

5.3.1 Approximate Factorization Technique.........................106

5.3.2 Local Time-Stepping..........................................109

5.3.3 Grid Sequencing Procedure................................... 110

5.3.4 Boundary Conditions..................................... 110

5.4 Numerical Simulation of Three-dimensional Hypersonic Flows......... 114

5.4.1 Validation of the Method.................................... 114

5.4.2 Numerical Results and Discussion............................ 116

5.5 Conclusions........... ............................................ 132

CHAPTER 6 

CONCLUDING REMARKS AND FUTURE RESEARCH

6.1 Concluding Remarks.........   134

6.2 Prospect of Future Research....................................... 137

APPENDIX A............................................................  139

v



APPENDIX B ..............................................................142

APPENDIX C .....................................................  145

REFERENCES AND BIBLIOGRAPHY........................................... 149

vi



SUMMARY

The theme of this research is to simulate laminar three-dimensional 

hypersonic flow by an appropriate numerical procedure. Naturally two 

main topics are covered: 1) the development and evaluation of the nume­

rical algorithms, and 2) the simulation of the associated flow and the 

presentation of the numerical results.

The recently emerging high resolution Total Variation Diminishing 

(TVD) schemes are chosen to serve that purpose. The Osher-Chakravarthy 

and Yee TVD are particularly prominent in steady-state calculations. 

These schemes have an excellent shock-capturing ability when used to 

solve inviscid flow problems. However, it is still unclear whether they 

retain their high resolution properties for predicting viscous shear 

layers. Therefore detailed investigation has been conducted to evaluate 

their capacities to resolve shear layers and boundary layers occurring 

in viscous flow at high Reynolds number. During the study, it has been 

found, through both numerical analysis and experiment, that the Osher- 

Chakravarthy scheme possesses much lower numerical dissipation than the 

Yee scheme and thus is favoured in the simulation of viscous flows. 

Remedies to reduce numerical dissipation for the Yee scheme have been 

suggested. Excellent results have been obtained using the modified 

schemes.

Confidence gained with these high resolution schemes has led to 

their applications in the simulation of three-dimensional hypersonic 

flow. The resultant code has been tested on two simple cases, one invi­

scid and one viscous. Excellent agreement with the we 11-documented nume­



rical results has been found. Then the code is employed to solve a 

hypersonic flow around a double ellipsoid at a high angle of attack 

representing the forebody of a space vehicle including a canopy. Experi­

mentation on this case has been carried out to validate results of nume­

rical analysts. There are found excellent agreements between numerical 

and experimental results on almost every aspect including the Stanton 

number in the separation domain on the leeside direction. This case has 

fully demonstrated how successful a numerical simulation can be.

In parallel to the work stated above, much effort has been devoted 

to numerical flow visualization techniques which constitute an extremely 

important ingredient in the simulation of three-dimensional flow. Nume­

rical algorithms are discussed on the plot of iso-contours and the 

tracking of the streamlines or the oi1-flow pattern on a body surface. 

These techniques have been successfully used to display the numerically- 

simulated flow pictures.

In the applications of the high resolution schemes to the simula­

tion of three-dimensional flow, it has been found they are still quite 

time-consuming. Therefore, an effort has been made to seek more effi­

cient schemes which have almost the same level of resolution. This 

effort has resulted in the so-called X scheme developed by the author. A 

different grid pattern is employed to build up the X scheme so that it 

can be four times as fast as the conventional scheme while maintaining 

the some accuracy. The scheme has been tested on several cases. It has 

shown great promise for wider applications.



Chapter 1 Introduction

CHAPTER 1 
In t r o d u c t i o n

1.1 Demands of Three-Dimensional Hypersonic Flow Simulation

In recent years the understanding of flows at high Mach numbers and 

large angles of attack, occurring during the atmospheric reentry of 

spacecraft, has regained considerable attention because of the develop­

ment of new space vehicles and planning of future supersonic and hyper­

sonic airplanes [2,13]. The extreme physical conditions during this 

critical phase are prohibitively difficult to realize in wind tunnel 

experiments if at all possible, because of the rarefied atmosphere, the 

very high temperatures, and possible chemical reactions. If some rela­

tively feasible experiments can be done, they tend to be very costly. 

Numerical simulation of the associated flow, therefore, will play a 

major role in the process of the project validation leaving experiments 

mainly to serve as a validation procedure for numerical methods.

In order to model realistic and hence very complex flow conditions, 

the solution of the full three-dimensional fluid motion is demanded. 

This is due to the fact that many fluid dynamic phenomena such as cross 

flow separation and cross flow shock waves etc. can only be resolved by 

such a solution. With the increased capacities of the present super­

computers and the development of more robust and more efficient numeri­

cal algorithms, this has become entirely feasible. In fact, some useful­

ly accurate three-dimensional hypersonic viscous flow simulations have 

emerged in the literature [26,27]. However, they all demonstrated defi­

ciencies in one respect or another. For example, some are too expensive
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to be used routinely, and some others are not sufficiently robust to 

tackle difficult flow problems. Because of that, much research effort is 

directed towards seeking of even more efficient and/or more accurate 

numerical techniques. This effort will advance the knowledge of even 

more complicated flow phenomena.

1.2 Challenges Provided by This Task

The numerical simulation of three-dimensional hypersonic flow is a 

considerable challenge for a variety of reasons. In addition to the well 

known difficulties associated with the determination of transition and 

with the modelling of turbulence in compressible flows at high Reynolds 

number, problems are encountered associated with the special features of 

hypersonic aerodynamics, which are discussed in detail as follows:

a. The effect of high Mach number

The most striking difference between flow at subsonic and supersonic 

speeds is the formation of a shock wave ahead of vehicle shapes. The 

strength of the shock is decided by the free stream Mach number and the 

angle between the vehicle and the free stream direction. The flow behind 

the shock is usually a mixture of subsonic and supersonic fluids. There 

are large differences in the entropy rise of the fluid crossing the 

shock at different angles. This results in the generation of the so- 

called entropy layer, which plays an important part in determining the 

flow field.

The numerical modelling of the shock wave has been one of the most
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difficult problems encountered during the development of CFD. In theory, 

a shock is a discontinuity existing in the solution. In practice, it is 

either fitted by applying the Rankine-Hugoniot conditions or is captured 

as a steep gradient by adding numerical dissipation. Because of the 

difficulty in applying the shock-fitting technique to some complex flow 

situations, the shock-capturing procedure has gained favour in the CFD 

community during the past few years. Research in high-resolution shock 

capturing schemes [8,10,16,17,46-49] has attracted considerable atten­

tion. So far many excellent results have been achieved. On the other 

hand, the quality of the resolution of shock waves comes at a compara­

tively high cost because of the quite complicated features of the high 

resolution schemes used. Hence, research into more efficient schemes 

while maintaining their high accuracy is still under way.

b. Real gas effects

At the high temperatures which exist behind the shock for hypersonic 

flight, the temperature energy of the gas becomes comparable with the 

energies associated with various molecular and atomic processes, such as 

excitation of the vibrational modes of the molecules, dissociation and 

ionisation. Under these conditions the gas no longer behaves as a per­

fect gas having a constant value of the ratio of specific heats, and the 

energy which is involved in these processes must be taken into account 

when calculating the flow field.

As a first stage of the modelling of real gas effects, many app­

roaches are based on the use of a small constant value of y (the ratio 

of specific heats). This is an approximation for real gas effects which
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can hold for a wide range of hypersonic flight conditions. More accurate 

simulations require more accurate physical models to be built up.

c. Non-equilibrium effects

Thus far in the discussion of real gas effects, the assumption has 

been made that the gas is in thermodynamic equilibrium at all points in 

the flow field. However, the transfer of energy to vibration models, and 

the process of dissociation and ionisation, together with the recombina­

tion which occurs in regions where the temperature is falling all re­

quire a finite time, the so-called "relaxation time", before equilibrium 

is reached. If the rate processes are happening very rapidly, there may 

not be time for thermodynamic equilibrium to be established. These pro­

cesses will cause the non-equilibrium effects.

Numerical simulation of non-equilibrium flows has been explored 

recently. Generally speaking, it suffers from the lack of availability 

of accurate physical models. Much work is to be done on this aspect 

rather than the relevant numerical methods.

i

d. Viscous effects

At high Mach numbers very high temperatures will be developed in 

regions where flow is decelerated, such as in boundary layers close to 

surfaces. Very steep changes are thus expected in the temperature pro­

file, resulting in very strong kinetic heating processes within the vis­

cous layer. Separation effects, too, may become important in hypersonic 

flows, because of the prevalence of thick laminar boundary layers which

— 4—
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do not readily withstand adverse pressure gradients.

The successful simulation of a hypersonic flow is largely decided by 

the accuracy of the simulated heat transfer rate on the surfaces since 

the heating process is the key interest of aerodynamic designers. This 

requirement demands accurate resolution of the viscous layers, another 

one of the most difficult problems in CFD. In a viscous flow simulation, 

the approach hinges on the control of the numerical dissipation which is 

required to stabilize the numerical scheme. In principle, numerical dis­

sipation should be well below the physical dissipation for a successful 

simulation to be carried out. However, the complexity and the nonlinea­

rity of the employed mathematical models make it impossible to accurate­

ly analyze the embedded numerical dissipation. Hence the accurate solu­

tion of the viscous boundary layer is still far from complete.

e. Rarefied gas effects

At normal altitudes and velocities the air flowing past a vehicles 

can be treated as if it were continuum. At high altitudes, the air be­

comes less dense, and the motion of the individual gas particles becomes 

important. The parameter which determines the onset of rarefied gas 

effects is the Knudsen number, Kn, which is the ratio of the mean free 

path to a typical body dimension. The continuum flow model starts to 

break down when Kn is of the order unity.

The governing equations to be solved for rarefied gas flow are the 

Boltzmann equations. The problem is out of the range of this research. 

It will not be considered further.
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1.3 Overview of Numerical Methods for High Speed Flow Simulations

As pointed out in the last section, one of the most distinguishing 

features of a high speed flow is the strong shock wave, which represents 

a discontinuity in the solution. Since the very early days of the 

appearance of CFD, great effort has been devoted to the numerical simu­

lation of discontinuities. A brief survey on shock-modelling techniques 

is now given.

The first natural idea to model a shock wave is to treat the shock 

as an internal boundary of discontinuity. The evolution of the shock 

wave is governed by the Rankine-Hugoniot conditions. The technique

embracing these conditions is called the shocking fitting method (e.g. 

[22]). The advantage of shock-fitting is obvious. It gives an accurate 

resolution of the discontinuity. The difficulty is that the structure of 

the discontinuities and their interaction must be known or easily anti­

cipated. Special sensors must track each discontinuity and the programm­

ing logic becomes complicated.

Another possibility is to abandon the exact resolution of the shock 

wave and to allow the discontinuity to develop as a continuous steep

gradient in the solution. This shock capturing idea is now the most

common in engineering practice. The method is simple to program since a 

formula with the same structure is used over all the computational do­

main. No knowledge of the type and location of the discontinuity is

needed.

A practical shock-capturing scheme should satisfy three criteria.

— 6—
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First, the scheme should be dissipative. For some non-dissipative 

numerical schemes, artificial viscosity' should be introduced. Second, 

the scheme should be in conservation form. This is a necessary condition 

for correct positioning and strength assessment of the shock wave. 

Third, the scheme should satisfy an entropy condition to ensure the 

captured shock to be the physically relevant one.

The shock-capturing schemes can be divided into two main categories 

—  according to space differencing —  central difference and upwind 

schemes. Examples of central difference schemes are the Lax-Wendroff, 

MacCormack [21], Beam-Warming [3] schemes and the Jameson centered 

multi-stage Runge-Kutta method [19], etc. The central difference schemes 

all suffer from a lack of dissipation. Therefore, the success of these 

schemes depends largely on the detailed construction of the model for 

artificial viscosity. The amount of viscosity added to the scheme is 

usually problem-dependent, thus tending to make the scheme non- 

universal. On the other hand, upwind schemes follow the characteristic 

direction of the wavefield and reflect the physical interaction of the 

waves in the flow. They are essentially dissipative. These schemes 

include the Godunov scheme [14] which has been extended to second order 

accuracy by van Leer [39], the Boris and Book Flux-Corrected Transport 

method [4,5], the Steger-Warming [32] and van Leer [40] flux vector 

splitting, the Osher [24] and Roe [28] flux difference splitting and the 

high-resolution Total Variation Diminishing (TVD) [16] and Essentially 

Non-Oscillatory (ENO) schemes [11,173. In the past decade, these schemes 

have achieved great success in the modelling of shock waves. Particular­

ly the TVD and ENO schemes represent the state-of-the-art techniques for 

the modelling of discontinuous problems of the hyperbonic conservation
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laws.

1.4 The Scope of This Study

The current research represents the first step towards the accurate 

simulation of three-dimensional hypersonic flow. Because of that, the 

flow simulation is based on the following assumptions:

a. The flow is thermally and calorically perfect without any chemi­

cal reactions. As mentioned earlier, accurate universal models account­

ing for the real gas effects are yet to be found. Furthermore, a perfect 

gas assumption will allow the numerical results to be readily compared 

with the we 11-documented experimental data so that the numerical tech­

nique can be easily validated.

b. The flow is in the continuum regime. The reason for this are two 

fold. First, hypersonic flight occurs mostly in this regime. Secondly, 

rarefied gas flow simulation leads to a different problem from the one 

the author is interested in, i.e., the solution of the Navier-Stokes 

equations.

c. The flow is laminar. It was estimated that accurate simulation of 

turbulence is beyond the reach of modern supercomputers, while the solu­

tion of the Reynolds averaged Navier-Stokes equations is largely restri­

cted by the quality of turbulence models available.

The success of such a flow simulation lies in the accurate informa­

tion of both pressure loading and particularly kinetic heating on body
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surfaces. This again necessitates the high resolution of the strong 

shock wave and the viscous boundary layer —  two key features of hyper­

sonic flows. Both are concerned with very steep changes in the flow 

variables. It is well known that the associated numerical scheme plays 

the most important role in the whole simulation. Its accuracy, effi­

ciency and robustness greatly affect the quality of the solution. 

Because of that, considerable attention is paid to the evaluation of the 

numerical algorithms.

The successful application of the high-resolution TVD schemes in the 

solution of supersonic inviscid flow [34,42] tempted many people to use 

them directly to the solution of the Navier-Stokes equations. Although 

some good results are achieved, it has been found that the dissipation 

pattern within each TVD scheme is quite different [43,44]. Blind appli­

cations of TVD schemes to solutions of viscous flow can cause unrepre­

sentative results. In some cases, the dissipation embedded in a TVD 

scheme may be more than required to resolve the boundary layer and may 

overwhelm the physical dissipation. This phenomenon is studied and a new 

approach is suggested which has been proven to be superior to the origi­

nal technique. Confidence gained in the numerical schemes has resulted 

in their applications to three-dimensional flow simulations. It is, 

however, found that they are still too costly to be put into routine 

calculations. The work has therefore started to search for more effi­

cient numerical schemes while not compromising their robustness and 

accuracy. This work has resulted in the new high-order X scheme deve­

loped by the author. The X scheme is far more efficient than TVD 

schemes. It also demonstrated very good resolution for shock waves. 

Further work is to be done to extend its application to hypersonic flow
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simulation though it has already shown great promise.

1.5 Layout of the Thesis

The main topics of this research are the development of robust, 

accurate and efficient numerical algorithms and the simulation of three- 

dimensional hypersonic flows. Accordingly, the thesis is naturally divi­

ded into six chapters. In Chapter 1, we have already given a brief 

introduction to this study. The mathematical models of fluid motion are 

discussed in Chapter 2. Then detailed investigation into the discretiza­

tion of hyperbolic conservation laws is conducted in Chapter 3, and 

Chapter 4 is devoted to an efficient explicit scheme for multi­

dimensional flow problems. Later the simulation of hypersonic flows and 

the flow visualization techniques are presented in Chapter 5. Finally, 

conclusions from the research and recommendations to future work are 

given in Chapter 6.

— 10—
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CHAPTER 2 
Ma t h e m a t ic a l  Models of Flu id  Mo t io n

2.1 Formulation of Conservation Laws in Integral Form

The movement of matter in nature is governed by three universal 

principles, which are conservation of mass, conservation of momentum, 

and conservation of energy. Fluid motion is no exception. Let the posi­

tion vector r of a point and time t be defined with respect to an iner­

tial reference frame represented by the Cartesian coordinates x,y,z. If 

the flow region is divided into small subregions called cells, the 

general form of a conservation law for a given cell is then [41]

* ft ' ft
Hdv= HdV- 2<> n*fdSdt+ 2J V ( t 2 ) J v ( t x ) t %1S(t) t . 1 PdVdt (2.1)

V(t)

where V(t) is the cell volume, ndS is a vector element of surface area 

with outward normal n, H is a conservative variable per unit volume, f 

is the flux of H per unit area per unit time, and P is the rate of pro­

duction of H per unit volume per unit time. The cells are assumed to be 

fixed in space and time. The conservative variable H can be both scalar 

and vector. Examples are density p, total energy per unit volume E^, and 

the momentum per unit volume m=pv. If H is a scalar, then f is a vector; 

while if H is a vector, f is a tensor. If we assume all variables are 

continuous in time, then Eq.(2.1) reduces to

_d
dt HdV+o n •fdS= PdV (2 . 2 )

— 11—
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This is the usual statement of a conservation law. If it is assumed that 

there is no mass and energy production and there is no body force in the 

fluid flow (P=0), the following conservation laws can be obtained by 

substituting the corresponding conservative variables into Eq.(2.2),

_d
dt pdV+o n*pvdS=0

_d
dt pvdV+o n ’ (pw-II)dS=0

_d
dt E dV+o n* (E v+q-TT*v)dS=0

(2.3)

(2.4)

(2.5)

where II is a tensor representing the stress subject to the surfaces of 

the cell, and q is a vector indicating the rate of heat lost per unit 

area by conduction through the cell surface. Let u, v, w be the veloci­

ties in the x, y, z directions respectively, and if the fluid is Newton­

ian, the stress takes the form

✓du 5u Su
V " pV H ^ g  + (i, j,k=i,2,3) (2.6)

where 8 is the Kronecker delta function; u , u , u and x , x , x ij 1 2  3 1 2 3
stand for u, v, w and x, y, z correspondingly; p is the pressure and fi 

is the coefficient of viscosity and fi* is the second coefficient of vis­

cosity. Usually, it is assumed that

The stress tensor is frequently separated in the following manner
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(2.7)

where

3x Sx ■ J i k*
(2.8)

Fourier’s law for heat transfer by conduction will be assumed so that 

the heat transfer q can be expressed as

where k is the coefficient of the thermal conductivity and T is the 

temperature. Generally speaking, the integral formulation is convenient 

for finite volume discretisation.

2.2 Formulation of Conservation Laws in Differential Form

The differential formulation is obtained by applying Eq.(2.2) to a 

differential cell in physical space dxdydz. Let i,j,k be unit vectors in 

the x,y,z direction respectively. Eq. (2.2) then takes the form

q=-kVT (2.9)

StHdxdydz^dU *fdydz) ̂  .dCj-fdxdz)^ 3(k*fdxdy)
at 55 dx+ 5y-----dy+— §5-----dz=Pdxdydz (2. 10)

or simplified further (assuming P=0)

3H+ a(i-f) a(j-f) a(k-f)
at 3x dy 3z (2 . 11)

•13—
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The differential form of the conservation laws of mass, momentum, and 

energy can then be expressed as

ap + apu + apv + apw
3 t  dx dy 3 z

+  o ~ (  p u 2+ p —t  ) + ^ - ( p u v - x  ) "*■ o ~ (  p u w —t  ) = 0  ( 2 . 1 3 )
a t  dx xx 3 y  xy 3 z  xz

+  ^ - ( p u v - x  ) +  o ^ ( p v 2 + p - r  ) + ^ - ( p v w - x  ) = 0  ( 2 . 1 4 )
o t  OX  xy  o y  yy  OZ yz

+  A p u w - x  ) + A p w v - x  ) + A p w 2 + p - T  ) = 0  ( 2 . 1 5 )
o t  O X xz  O y  z y  OZ z z

aEt a
-£7—  + j-(E u + p u - u r  - V T  -W T  +q ) +
O t  OX t  xx  xy  x z  x

d d(E v + p v - u x  - v t  - w t  +q ) + ^ —(E w + p w -u x  - v t  - w t  +q ) = 0  ( 2 . 1 6 )
3 y  t  xy yy  yz  y  5 z  t  ^  xz  y z  z z  Mz

where the components of the viscous stress are given by Eqs.(2.8). This 

form of equations is particularly useful for finite difference discreti­

zation.

2.3 Equation of State

In order to close the system of fluid dynamic equations it is nece­

ssary to establish relationships between the thermodynamic variables 

(p,p,T) as well as to relate the transport properties (p,k) to the 

thermodynamic variables. Since a perfect gas assumption is used in this 

research, we can easily establish the following relations. The perfect 

gas equation of state is

p=pRT (2.17)

where R is the gas constant. For air at standard conditions,
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2 2R=287m /s K. Also for a perfect gas, the following relationships exist:

e=c T h=c T r=—  c c = ^ _  (2.18)
v p c v ^ - 1  p ^ - 1

V

Here e is the internal energy per unit mass; h is the enthalpy per unit 

mass; c is the specific heat at constant volume; c is the specific
v p

"Vheat at constant pressure and ^ is the ratio of specific heats. Further 

equations can be derived from Eqs.(2.17)-(2. 18). For example

p=(y-l)pe T=— |l1- 0 (2.19)

The coefficients of viscosity and thermal conductivity have been 

related to the thermodynamic variables using kinetic theory. For 

example, Sutherland’s formula for viscosity is given by

3/2
(2-20)2

where C^ and C^ are constant. For air at moderate temperature,

C =1.458x10 6 kg/(m s i/K) and C =110 K. The Prandtl number 1 2

c n
Pr=-£—  (2.21)

is a constant (Pr=0.72 assumed) for air at standard conditions. This 

equation can be used to get the value for k once p. is decided from 

Eq.(2.20).
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2.4 Non-Dimensional Form of Equations

To obtain the flow behavior around bodies of similar shape with 

minimum computational effort, it is desirable to put the governing equa­

tions into nondimensional form. Many nondimensionalizing procedures are 

available. The following procedure is adopted here

where the nondimensional variables are denoted by an asterisk, free- 

stream conditions are denoted by co and L is the reference length used in 

the Reynolds number

If the nondimensionalizing procedure is applied to Eqs.(2.12)-(2.16) and 

if the equations are given in a vector form, the following nondimension­

al equations are obtained

CO

00 00 00 00

e* e
V',2oo 00
00

p V L00 00Re=
00

(2 . 22)

where U is the vector of conservation variables; E , F and G are the

inviscid flux vectors and E , F , G are the viscous flux vectors
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r * _
P
* *

P u
* * *U = P V

* *p w

*EL t
r * * _
P u 0

2* * *p u +p XXX
* * * * *p U V E XV xy

* # * *p u w X
x z

* * * « * * * * * *(E +p )u u T +V X +W T -qL t J xx xy xz xJ

r * * 
P v ' 0

* *  *p U V *T
xy

» *2 * p v +p *F =
V

*Tyy
* * *p V w *T

y z

, * *. * _(Et +p )v * * * * * * *
U  T +V T +W X -q 

L xy yy yz y J

r  * * p W r 0

*  *  *p u  w *
X

x z

*  *  p V w *  G =
V

*
X

y z

*  * 2 *  p w +p *
X

z z

, *  *  *  
_ (E t  +p ) w _ # *  *  * *  * *  u x +v x +w x -q

xz yz zz  z J

and
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2 2 2 » * »
EtV [ e % u- +X_ +w- ] (2.23)

The components of the shear-stress tensor and the heat-flux vector in 

nondimensional form are given by

*T
ZZ

* / _ 2 m  r *
2^ -  - *Sv Sw*'

: 3Re [ *■ Sx *
ay Sz*

* /■ _ 2  m  r *
2—  - *Su Sw**

- 3Re [ *■ Sy *Sx *Sz -
* r_ 2 p  r *0Sw *Su Sv**

: 3Re [ *Sz *Sx *Sy -

- f a u  +  £ ^ _ 1
ax* jy

, - * *.
- - V  fa u  +
xz R e W *  ax*)
yz Re *>y Sz
_p_|’dw_ + dv  j

* * 

q* K  ^
* (y-l)M2 Re Pr 3x00

* *q*=______ p______  ST_
y (3—  1)M2 Re Pr Sy* 00

* *
*  I I STq  = -------------- -------------------------
2 (r-l)M2 Re Pr Sz* 

00

where M is the freestream Mach number 00

V
M =---—
00 VvKI~ 

00

and the perfect gas equations of state become

— 18—
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2 * 
. *m m p

T =— -—

(2.24a)

(2.24b)

If Re=xo, Eq. (2.22) returns to the Euler equations

* * * *
+ + (2.25)* * * *St Sx Sy Sz

For convenience, the asterisk will be dropped from the nondimension- 

al equations from now on.

2.5 Generalized Coordinate System

When realistic problems are solved, the geometries concerned are 

usually very complex. It would be extremely difficult to enforce bound­

ary conditions if the Cartesian coordinate system is used. Therefore a 

body-fitted grid is highly desired. This kind of grid can be generated 

by means of an algebraic method or the solution of partial differential 

equations. Appendix B gives some information on this topic. If it is 

supposed that the computational space (£,i?,C) has the following unique, 

single-valued transformation relation with the physical space (x,y,z)

€=£(x,y,z)

7)=7)(x, y, z) (2.26)

C=<(x,y,z)

and by implication then

— 19—
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3(x,y,z)

€

7) 7) 7)

c < cx y z

*0

Under this condition, the transformation is able to be inverted, i.e.,

x =x (£,t],C)

y=y(£ ,'n ,C )

Z=z(^,7),C)

(2.27)

and

T-i_S(x,y,z)_
3(C,tj,C)

X̂ . X X.

Z <r Z z >-€ T? C

It is much easier to evaluate the Jacobian matrix numerically in the 

following manner

J = 1 /J "1 = 1 /[x 5 (y 'nzC_yCZTi) "XD(y €2C_yCz S)+xC(y ?2r)"yr)ZC) 1 ( 2 ' 28)

where

x^ = [x(i+l,j,k)-x(i-l,j,k)3/2

x^ = [x(i,j+l,k)-x(i,j-l,k)]/2

— 20—
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x^ = [x(i,j,k+l)-x(i,j,k-l)]/2

etc. Here i, j,k denote indices in the £, i), C direction respectively and 

A£=At?=A£=1 is implied. Other geometry parameters can be calculated 

according to the following formulae

£ =J(x z -X z ) y C T7 V C

V » W ys V
7) =J(X^Z -X^ZOy € C C €

7) =J(x yt-xcy )z C € € C

C =J(y~z -y Z/.)^x 7? 7̂? ^

C =J(x z^-x^z ) y t? £ £ 7j

<z=JC^ % _i'rJzC )

If we apply the generalized transformation to the compressible Navier- 

Stokes equations written in vector form [Eq.(2.22)], the following 

transformed equation is obtained

off op op op 3E d F 9G
8t + ^ + ^ + S< = s r + ^ r + acr (2.29)

where

— 21—
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U = U/J

E = i(E? +FC +G£ ) E = i(E £ +F ? +G 5 )
J x y z  v J v x  v y v  z

F = i(ET) +Ft) +G7) ) F = i(E T) +F tj +G t) ) (2.30)
J x y z v J v x v y v z

G = I(EC +FC +GC ) G = i(E C +F C +G C )
J x y z  v J  v  x v  y v  z

In many numerical schemes, the inviscid flux is split according to the 

characteristic direction. This is fulfilled by dividing the Jacobian 

matrix of the inviscid flux into two sub-matrices, which correspond to 

two different characteristic directions, either positive or negative. 

Let A,B,C denote the Jacobian matrix of E,F,G with respect to U respec­

tively, i.e.,

A = 2? B = 2E c = 25au au au

then the Jacobian matrices A, B, C of E, F, G with respect to U are 

determined from

A = £ A  + £ B  + £ C  (2.31a)
x y 3Z

B = 7)A + T)B + 7)C (2.31b)
x y 2

C = C A + C B  + < C  (2.31c)
x y Z

It is apparent that the matrices of (2.31) can be cast into the follow­

ing matrix

M = k^A + k2B + kgC (2.32)

— 22—
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It can be shown that M has real eigenvalues a and a complete set of 

right eigenvectors r1, 1=1,•••,5. Hence the matrix

R = {r1, • • • ,r5}

is invertible. The rows l1, •••,1s of R 1 constitute an orthonormal set 

of left eigenvectors of M; thus

R_1MR = A or M=RAR-1 (2.33)

where A is a diagonal matrix

A =

0

0

Any eigenvalue a can be expressed as

l i + ̂ i-a = a + a

where

i.i i i+ a + aa =  i—
i i i l- a - a a =  i—

Using the above formula, the diagonal matrix A can be split as

A = A + A"

— 23—
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where A+ and A have diagonal elements a1+ and a 

now divided in the following manner

M = M+ + M"

with

M+= RA+R-1 and M- = RA~R~

respectively. M is

The specific expressions of M, R, R 1 and A can be found in appendix A.
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CHAPTER 3
D is c r e t iz a t io n  of Hy p e r b o l ic  Co n s e r v a t io n  Laws

3.1 Introduction to Hyperbolic Conservation Laws

Consider the following equation written in conservation form

where U is an m-vector of unknowns, and the flux function, F(U), is 

vector valued, having m components. Let A denote the Jacobian of F, that 

is

1 oThe system is hyperbolic if A has real distinct eigenvalues, a , a , 

•••, am. For each eigenvalue a1, there is a corresponding right eigen­

vector r1 and a left eigenvector l1, that satisfies

When m-1, (3.1a) reduces to the scalar hyperbolic conservation laws,

A 1 1 1Ar =a r 1*A =lV (1=1,• ■ - ,m)

i.e. ,

(3.lb)

where a(u)-Sf/du, and u and f are scalars. It is well-known that the 

solution of (3.1) may develop discontinuities in finite time, even when
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the initial data are smooth. In this case, (3.1) ceases to be valid. A 

different kind of solution of (3.1) has to be sought. For simplicity of 

discussion, we only consider scalar hyperbonic conservation laws (3.1b). 

Let 7i(x,t) be a smooth scalar function that vanishes for |x| sufficient­

ly large, then

If u and f are smooth, the steps can be reversed. Eq.(3.2) is called the 

weak form of the conservation laws. Any function u that satisfies (3.2) 

is called a weak solution of the conservation laws. If u is smooth, then 

it is also called a strong solution of the conservation laws.

It is important to note that equation (3.2) remains valid even if u 

is not smooth because u can still be integrated. Consider a disconti­

nuous weak solution u of (3.1b), which has a finite jump u -u at a
R L

certain time and position. Here u and u are the states on the left and
L R

right of the discontinuity. Then the Rankine-Hugoniot condition must be 

satisfied, i.e.,

)dxdt=0

Using the divergence theorem

+ f|H )dxdt + J; 7T(x, 0)fdx=0 (3.2)

(3.3)

where |V| is the speed of the propagation of the discontinuity.

— 26—
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The class of weak solutions of the weak form of the conservation 

laws (3.2) is too large in the sense that there is no uniqueness in 

general. An additional principle is needed for determining the physical­

ly relevant solution. There is a variety of conditions for this purpose. 

Here the following condition is given: for every u between u and u ,
L R

the entropy condition

f(u)-f(u ) f(u)-f(uj
u-u '

L R

must be satisfied. The weak solution satisfying the entropy condition

(3.4) is uniquely determined by the initial data.

with initial conditions given by the 

x<0
(3.5)

x>0

Such a problem is called a Riemann problem. The Riemann problem plays an 

important part in the derivation of some numerical algorithms. For a 

system of hyperbolic conservation laws, see appropriate reference (e.g. 

Numerical Methods in Fluid Dynamics by Sod) for more detailed 

information.

3.2 High Resolution Schemes for Hyperbolic Conservation Laws

Consider the equation (3.lb) 

step function

u(x,0)=j L

u-u (3.4)

3.2.1 Introduction
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The concept of TVD schemes introduced by Harten [16] has provided a 

unifying framework for the study of shock capturing methods originating 

from the discretization of the hyperbolic conservation laws. TVD schemes 

preserve the monotonicity of an initially monotone profile, because the 

total variation would increase if the profile ceases to be monotone. 

Consequently, they prevent the formation of spurious oscillations. This 

is a very valuable property of a successful shock-capturing scheme 

because all classical high-order schemes demonstrated deficiencies in 

the vicinity of a shock wave because of severe numerical oscillations.

TVD schemes were originally designed for transient applications. 

However, the theory has also been successfully employed to construct 

schemes for steady flow calculations. It is well known that even if 

explicit schemes are easy to implement, they suffer severe restrictions 

in the choice of time step and thus are less efficient than their impli­

cit counterparts. It is also true that it is inappropriate to extend the 

second-order Lax-Wendroff method to implicit schemes because the steady 

state solution is found to depend on size of the time step. This 

research addresses only steady state calculations, so only acceptable 

implicit schemes are considered.

Osher and Chakravarthy derived a family of high order upwind TVD 

schemes which can be third order accurate [8]. More recently, Yee [47] 

generalized the works of Davis [12] and Roe [29] and introduced the 

concept of the symmetric TVD scheme, which in some cases is easier to 

implement than the Osher-Chakravarthy family. Both schemes are more 

suitable for steady state flow simulation than Harten’s second-order TVD 

scheme. Numerical experiments choosing the one dimensional inviscid flow

— 28—
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problem have demonstrated that these schemes have the capacity to give 

high resolution for shock waves and have the advantage of giving satis­

factory solutions on even coarse grids. A straightforward extension of 

this approach of applying the one-dimensional scheme for each direction 

in multi-dimensional problems has also given quite satisfactory results. 

Comparisons have been made between a variety of the different TVD 

schemes [33,34]. The conclusion is that they are almost identical in 

their shock capturing abilities when applied to inviscid flow 

computations.

The high level of success of TVD schemes in the simulation of invi­

scid flow with shock waves has inspired their applications in viscous 

flow calculations. They are very attractive due to the fact that no 

coefficient of artificial numerical viscosity needs to be decided. How­

ever, blind use of these schemes can sometimes cause unrepresentative 

results. Therefore much has to be done to evaluate their capacities of 

resolving the viscous shear layer before they can be fully applied to 

the solution of viscous flows. For that purpose, efforts are made to 

unify both the Osher-Chakravarthy and the Yee TVD schemes, to identify 

their differences and features and to make modifications if necessary. 

This remains the main topic of the next sections.

3.2.2 TVD Concept and Its Sufficient Conditions

In this section we begin the discussion of the numerical solution of 

the hyperbolic conservation laws (3.lb) with appropriate initial 

condition
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where u (x) is assumed to have bounded variation. The total variation of o
the solution is defined as

(
TV(t) = J

oo i „ , , %Su(x,t)
Sx dx (3.7)

It is well-known that any weak solution of (3.6) has a non-increasing 

total variation provided that any discontinuity in the solution 

satisfies an entropy condition, i.e.,

s t v u ) ^ 0
St

Let u n be the numerical solution of (3.6) at x=jAx and t=nAt, with Ax
J

the spatial mesh size and At the time step. Consider a general explicit 

and implicit scheme in conservative form

un+1 + A#(hn+1 -hn+1 )=un -A(l-#)(hn -hn ) (3.8)j j+l/2 j-l/2 j j + l/2 j-1/2

where O^^l, A=At/Ax, h j + i/2=h(u^ ^, u^, u^ + i, u^ +g), and h is a numerical 

flux function consistent with the conservation law in the following 

sense:

h(u ,ujfu ,u )=f(u ). (3.9)

These general schemes contain explicit as well as implicit schemes. 

When #=0, (3.8) reduces to an explicit scheme. When #*0, (3.8) is an

implicit scheme. For example: if #=1/2, the time differencing is the

trapezoidal formula, and if #=1, the time differencing is the backward 

Euler method.

— 30—
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In analogy with the definition of the total variation of continuous 

solution in (3.7), the total variation of the discrete solution is 

defined as

TVCu11) = £
j=-co

n n U -U j+1 j (3.10)

When a numerical solution is sought, it is also required that the 

variation of the discretised solution is non-increasing or diminishing. 

That is

TV(un + 1) == TV (un) (3. 11)

If the numerical flux h in (3.8) is Lipschitz continuous and (3.8) 

can be written as

un+1-A#(C Au -D Au )n+1=j j+l/2 j+l/2 j-l/2 J-l/2

u%A(l-#)(C „ Au -D Au )n (3.12)j j+l/2 j+l/2 j-l/2 j-l/2

where Au =u -u and C , D are some bounded function ofj+l/2 j+l j j+l/2 j-l/2
{u^>. Then Harten further showed that sufficient conditions for (3.11)

are

(a) if for all j

A(1-#)C ^ 0 and A(1-#)D £ 0j+l/2 j+l/2

A(1-#)(C + D ) < 1 (3.13)j+l/2 j+l/2
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and

(b) if for all j

-oo <C ^ -A#Cj+l/2 ^ 0 and —oo < C — -A#D (3.14)j+l/2

for some finite C. Conditions (3. 13) and (3. 14) are very useful in 

guiding the construction of second-order accurate TVD schemes which do 

not exhibit the spurious oscillation associated with the more classical 

second-order schemes. In the next section, we will employ these 

sufficient conditions to build up a high-order general TVD scheme which 

is particularly useful for steady state problem solutions.

3.2.3 A General Form TVD Scheme

3.2.3.1 The Scheme for Linear Scalar Conservation Laws

For simplicity of discussion, first we consider a=9f/5u=constant, 

i.e., the linear wave equation

For steady state computation, the following numerical flux function is 

considered.

j+l/2) ]Auj+l/2 (3.16)

with
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Au
r j-l/2 (3.17)j+l/2 Auj+l/2

and q is some function of r called a limiter. Several special schemes 

included in (3.16) are noted as follows.

If q(r)=0, the resultant scheme is a first order upwind scheme. We call

If q(r)=l, the resultant scheme is a central difference second order 

scheme (in space). Let this limiter be called q°.

If q(r)=r, the resultant scheme is an upwind second-order scheme. Let 

this limiter be called qu.

If q(r)=2/3+r/3 , the resultant scheme is third order accurate. Let this 

limiter be called qfc.

According to the physics of wave propagation, only the upwind stream 

affects the current position. Upwind schemes, therefore, are highly 

desirable in wave modelling. In fact, any upwind-biased second order 

scheme utilizing u ,u , u ,u is a weighted average of the centralJ“2 j j+l
difference and upwind second order scheme. Thus for any upwind-biased 

second order scheme, the limiter should satisfy

ithis limiter q .

q(r)=^(r)qc(r)+[l-^(r)]qu(r)

=*(r)+[l-%(r)]r=r+%(r)(1-r) (3.18)
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with 0 ^ %(r) ^ 1 i.e., interpolation. Numerical experiments have shown 

that extrapolation causes over-compression and/or instability.

This family contains implicit as well as explicit schemes and also 

first as well as second-order schemes. As a result of the fact that time 

differences and space differences are discretised separately, they also 

have the advantage that the solution is independent of the time step and 

that the order of accuracy in space is solely decided by the numerical 

flux functions when the steady state is achieved. Now we further look 

into the numerical flux function (3.16). When (3.16) is substituted into 

(3.8), the first term contributes to the discretization of aAx9u/9x to 

second-order accuracy without any numerical dissipation. The second term 

acts as a numerical dissipation term. When q(r)<0, the scheme would be 

more dissipative than the first-order scheme. When q(r)>l, the added 

numerical dissipation term is negative. Hence waves are usually com­

pressed by the scheme. Possible non-physical solutions would result. It 

is noticed that when q(r)=l no numerical dissipation is embedded in the 

scheme. This is a very desirable property when it is used to model a 

viscous flow at high Reynolds number, where the physical dissipation is 

very low. In fact, equation (3.8) with numerical flux function (3.16) 

can be rewritten in the form as (3.12) with

Cj+l/2 =0 j+l/2 j+l/2 2

Now sufficient conditions for this scheme to be TVD are

1 + (rj+l/2 j+l/2 2 (3.19a)
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and

aA(l-#)[l + Jjq(r )/r - iq(r ) ] ss 1 (3.19b)2 j+l/2 j+l/2 2 j-l/2

If we assume

q(r) = 0  r ^ 0

q(r) > 0  r > 0

Then we always have

q(r)/r ^ 0

Under these conditions, the following sufficient conditions are obtained

0 :£ q(r ) ^ 2j+l/2

0 ^ q(r )/r ^ — -r—  -2j+i/2 j + i/2 Aa(l-#)
(3.20)

Denoting

2 - 2 =k,Aa(l-0)

it is always required that

k * 0  i.e., A S  (3.21)
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q=2/3+r/3  
(third order)

q r
(upwind second order)

■ % * *. • •. • % • •. • • , • •. •

•• V > *• V : •• V •• V *• V • V • V • V * V : *• ; *«V • V •• V *•.v; .*• • •• • .*.• .* • .,V .*,* .,V

second order 
TVD domain

q=1
(central second order)

TVD domain

Fig. 3.1 TVD domain

Fig. 3.1 shows the TVD region with a=tan-1(k). Also displayed are 

the q functions needed to give the central difference and upwind second- 

order schemes, and the third order scheme. It is clear that for any 

upwind-biased second-order schemes, their limiters should lie between 

the two lines q=l and q=r. The intersection of the second-order domain 

and TVD domain would give the second-order TVD domain, which has been 

specified in the figure. It is noticed that the upper boundary of the 

second-order TVD domain results in the most compressive second-order TVD 

scheme, i.e.,

0

kr

1

r ^ 0

0 £ r ^ 1/k 

1/k ^ r ^ 1

1 ^ r == 2

r > 2

(3.22)
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In fact, this limiter is an analogue of Roe’s Superbee in his Lax- 

Wendroff TVD scheme [29,30]. We also call this limiter Superbee, indi­

cated by qs.

In Fig. 3.1, it is obvious that the most compressive TVD-satisfying 

limiter function is

- 0 r ^ 0

- kr 0== r < 2/k (3.23)

* 2 r > 2/k

Usually this limiter is too compressive. It will turn the sine wave into

a square wave when it is applied to the linear wave equation (see

section 5). This limiter is thus named "Supercompressive", denoted by

qp. Another limiter which is of particular interest in this paper is the 

following one

- 0 r :£ 0

- kr 0< r ^ 1/k (3.24)

- 1 r > 1/k

When fully implicit schemes are employed, k — > co. In that case, the 

resultant scheme would possess no dissipation away from local extrema 

when limiter (3.24) is utilized.

3.2.3.2 The Scheme for Nonlinear Scalar Conservation Laws

To extend the scheme to the nonlinear scalar problem (3.6), one has 

to define the local characteristic speed first. This is done simply by
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j+l/2

(f -f )/Auj + l j j+l/2

SfCu^/du

Au 9s 0j+l/2

Au = 0j+l/2
(3.25)

Following the sign of the characteristic speed, the parameter r is 

now redefined as

Au j-<r+i/2
j+i/2 Auj + l/2

and cr=sign(a ) & J+l/2 (3.26)

The numerical flux function for the nonlinear case is now

h = -̂(f +f ) — i I a |[l-q(r )]Auj+l/2 2 j j+i 2 1 j+l/21 M j+l/2 j+l/2 (3.27)

Modification has to be made concerning the conditions (3.20) due to the 

fact that a is not always the same sign as a or a . Thej+l/2 * & j-l/2 J+3/2
new set of conditions are now found to be

rq(r ) < 2 ^  j+l/2

q(r )/r < ,^ j+l/2 j + l/2 [A(1“  r ~ Aaj-l/2 1 J

*  W /rJ + l,2 < i -2]

j-l/2
aj+l/2

j+3/2
j+l/2

j+l/21 (l-tfjA.

(3.28)

It is clear that if and only if the scheme is fully implicit, the TVD 

scheme is unconditionally stable.

Notice that when a =0, the scheme has zero dissipation. This canj+l/2 r

sometimes cause entropy-violating solutions. One way to modify the 

scheme is to add a small dissipation to the flux function. For example,
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instead of using (3.27), the following flux function

j+1/2 2 j j+i 2 j+l/2H 1 'q(rj+1/2)1AUj+l/2 (3.29)

can be used. Here \fi is a function of the following form

z Z 2: £
0(z) = (3.30)

£ Z < £

where £ is a small positive number. This procedure is called entropy 

enforcement.

3.2.3.3 Linearization of the Implicit Scheme

From conditions (3.28) one sees that whenever #*1, the scheme is 

conditionally stable under the CFL-like restriction. For a steady-state 

calculation, the fully implicit scheme is highly recommended since it is 

unconditionally stable. However, it should be linearized before it can 

possibly be used to solve any problem. The fully implicit scheme can be 

expressed as

Substituting (3.29) into (3.31a), one obtains

un+1+ ^A{f -ip( a )[l-q(rj 2 j + i j+l/2 M j+l/2 j+l/2

- |x{f. -ifj(a )[l-q(r )]Au }n+1=un2 j-i j-l/2 M j-l/2 j-l/2 j (3.31b)
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Using the Taylor expansion about time level n, we get

fn+l _ n + an(un+l_un } + 0 (At2) (3.32)
J J J J J

Applying the first-order approximation of (3.32) to (3.31b) and locally 

linearizing the coefficient of ^Uj+1/2 by changing the time level from 

(n+1) to n, the following equation is obtained

n+l . 1- n , n+1 n n 1. n , n+1 n ■.u + a (u -u )-~Aa (u -u )j 2 j + i J+I j+i 2 j-i j-i j-i

“ A^/(an )[l-q(rn )](Aun+1 -Aun )2 ^ j+l/2 M j+l/2 j+l/2 j+l/2

+^A^(an )[l-q(rn )](Aun+1 -Aun )2 ^ j-l/2 M j-l/2 j-l/2 j-l/2

=un -A(hn -hn ) (3.33)j j+l/2 j-l/2

Denote d =u"+1-u”. Then Eq.(3.33) can be further written as

e d  + e d + e d = -A(hn -hn ) (3.34)1 j-l 1 j 3 j+l j+l/2 j-l/2

where

er  5<-aj-r'',(aj-i/2)[1-q(rj-i/2)1>n (3-35a)

e2= 1+5 < ^ aJ-1/2)[1-q(aJ-1/2,]^ (aJn/ 2)tl-q(aJ.1/2)J>n (3'3Sb)

e3= S {V " * (aj«/a)tl"q(rJ*i/i,]>n (3'35c)

This linearized form follows Yee’s conservative linearization technique 

[48]. When steady state is achieved, the solution is non-oscillatory 

because the steady solution is decided solely by the right-hand-side of
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(3.34). For the same reason, the implicit operator of (3.34) can be 

simplified further. For example, the first-order backward Euler scheme 

can be used as the implicit part by letting q(r)=0; i.e., redefine

(3.35) as

e = ^-[-a -t/»(a )]n (3.36a)l 2 j-i j-l/2

e = 1 + ^ W a  )+tfr( a )]n (3.36b)2 2 j-l/2 ^ j+l/2

e = —0( a. ) ] n (3.36c)3 2 j+1 j+l/2

In fact this linearization approach is employed throughout this 
research.

3.2.4 Comparison of the Osher-Chakravarthy and the Yee TVD Schemes 

and the Modified Yee TVD Scheme

3.2.4.1 The Osher-Chakravarthy Scheme

Osher-Chakravarthy derived a family of high order TVD schemes suit­

able for steady state problems. For the linear scalar equation (3.15), 

the numerical flux function takes the form

hJ+1/2 auj + [d?J+i/2] + T 2 (3-37a)

where tp is a parameter and The symbols ~ and - shown over df

denote flux-limited values of df and are computed as follows:

df = minmod(aAu , £aAu ) (3.37b)j + l/2 j+l/2 ' j-l/2

df = minmod(aAu , fiaAu ) (3.37c)j-l/2 j-l/2 j+l/2
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where the minmod function is defined as

minmod(x,y) -Csign(x)min(|x|, |y|)

xy < 0 

xy 2: 0
(3.38)

Actually, Eq.(3.37) can be written as (3.16) with

q(rJ+l/2) “ ^ T(r ) + r r \— — 1j+i/2 2 j+i/2 r̂ j+l/2J
(3.39a)

where

T(r ) = minmod(l, |3r )j+i/2 ' j+l/2 (3.39b)

It is now necessary to decide the range of (3 which makes the scheme TVD.

Obviously, the following can be obtained from (3.39)

q(r) =
1+(p +2 2
1+<P 1 -(p2 IT

r ^ 0 

0 < r ^ 1//3

1/(3 < r < |3 

r > (3

(3.40)

Hence it is quite clear that

max[q(r)] = (3.41a)

and
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max[q(r)/r] = -?r-£ + (3.41b)

But the following should be satisfied

max[q(r)] £ 2

and

max[q(r)/r] s -2 = k

Thus it is required that

(3-y 2k-l+yl
[I-?) * 1+<p J0 £ min ,=- T . - (3.42)

For & = 1, i.e., the backward Euler scheme, k — > co , then

0 (3.43)max 1 ~(p

This is actually the condition given by Osher and Chakravarthy in their 

original paper [8]. For & = 0, i.e., the explicit scheme,

k=2(- - 1) 
v

where

v = cA

Thus, k depends on v, and so does (3 . If the CFL number is fixed to,max
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say, 1/3, then k = 4 and

0 = minf?-^ , (3.44)max \l-(p 1+̂ J

Table 3.1 shows the maximum 0 for different value of <p (i>=l/3). For 

each value of <p, the respective limiter function is plotted in Fig. 3.2. 

It is shown that all the limiters are within the upwind-biased second 

order domain.

<f> Underlying Scheme 3max
1/3 Third-order 4

-1 Fully Upwind 2

0 Fromm’s 3

1/2 Low TE Second-order 5

1 Central 4

-1/3 Un-named 5/2

Table 3.1 0 for explicit Osher-Chakravarthy schememax
with v=l/3 (TE —  Truncation Error)

3.2.4.2 The Yee Scheme and the Modified Yee Scheme

Yee [47] generalized the works of Davis [12] and Roe [29] more 

recently, and introduced the symmetric TVD scheme. Again, for the scalar 

wave equation, the numerical flux function of the Yee scheme is
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h = ^a(u + u ) - Ja(l-Q)Au (3.45a)j+l/2 2 j+l j 2 j+l/2

with

Q=Q(r+ , r" ) (3.45b)j+l/2 j+l/2

and

Au Aur+ = 5+3/2 r- = J-i/2 (3.45c)
J+l/2 Au J+l/2 Auj+l/2 j+l/2

It is clear that r is identical to the previously defined rj+l/2 ^ J j + l/2
Yee’s typical limiter functions are

Q(r+ , r ) = minmod(r+, r~, 1) (3.46a)

Q(r+, r~) = minmod(l, r+) + minmod(l, r~) - 1 (3.46b)

Q(r+, r~) = minmod(2,2r+, 2r~, 0. 5(r++r~)) (3.46c)

The difference in the definition of the limiter functions is obvious. 

Yee’s limiters are equally dependent on the upwind and downwind 

gradients which makes the name symmetric TVD natural. Comparing (3.45) 

and (3.16), it is easy to see that

q = Q(r , r" ) (3.47)n j+l/2 j+l/2

Obviously, with a proper choice of CFL-like conditions, that is, 

Aa^constant, these limiters satisfy the conditions (3.20). If the 

backward Euler scheme is used for time discretization, the Yee scheme is
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unconditionally TVD. It needs to be pointed out that Q in (3.46b) can be 

negative. So Q should return to zero once a negative value is obtained 

from (3.46b). Because of the symmetric property of Yee’s TVD scheme, 

limiter functions (3.46) introduced extra dissipation even if the 

solution is relatively smooth. Take limiter (3.46a) for example. If 

0<r+<r <1, then Q will be equal to r+ instead of r-. That means

q < r (3.48)^ j+l/2

Hence this function lies outside of the upwind-biased second order TVD 

region. The result of this is that it includes extra dissipation because 

the dissipation coefficient (l-r+) is larger than (l-r~). The extra 

amount of dissipation the Yee scheme possesses usually does no harm to 

the solution of Euler equations. However when it is used to solve the 

Navier-Stokes equations, especially for problems at high Reynolds 

number, caution needs be exercised to ensure that the numerical 

dissipation does not exceed the physical dissipation. Otherwise, the 

solution would be meaningless.

Remedies to make Yee’s TVD scheme less dissipative while maintaining 

its TVD property are now presented. The limiter functions are formulated 

according to the specific wave direction, i.e.,

Q(r+,r-)=1— s3'̂ n â ^minmod( 1, r ) +-- S-* ^ a ^minmod(1, r+) (3.49a)

Q(r+, r-)=-1+- *^n â ^minmod( 1, wr )+-* S ^ n â ^minmod( 1, wr+) (3.49b)

where KaKoo for fully implicit schemes. Limiters (3.49a) and (3.49b) are 

called MY1 and MY2 respectively. MY2 is expected to be very useful for
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viscous flow calculations because of its low dissipation property. 

Numerical experiments as outlined in later section do show that the 

modified Yee schemes give better results.

3.3 Extension of TVD Schemes to System of Conservation Laws

In this section we describe how to extend our general TVD schemes to 

a system of conservation laws. The basic idea is to extend the scalar 

scheme to the system by applying it to each of the m scalar 

characteristic equations.

3.3.1 Formal Extension

First we consider Eq. (3. la) with A=5F/5U=constant. Let R be the 

matrix whose columns are the right eigenvectors {r1} of the Jacobian 

matrix A. Then

It follows from (3.50) and (3.51) that (3.1a) decouples into m scalar 

characteristic equations,

R-1AR = A =diag(a*) (3.50)

- iwhere R is the matrix the rows of which constitute a complete set of 

left eigenvectors {l1} of A. The characteristic variables are defined as

w = {w1} = R_1U (3.51)

l^l^m (3.52)
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This offers a natural way of extending a scalar scheme to a constant 

coefficient system by applying it in a scalar fashion to each of the m 

scalar characteristic variables.

Now a similar idea is exploited to extend the scalar schemes to a 

system of nonlinear conservation laws. Let Uj+1/2 denote some symmetric 

average of U and U . Let a1 , R , R 1 denote the quantitiesj j+l j+l/2 j+l/2 j+l/2 n
1 -la , R, R evaluated at U . Definej+l/2

a = R"1 AU (3.53)j+l/2 j+l/2 j+l/2

as the difference of the local characteristic variables. With the above 

notations, the general TVD schemes (3.8) in the system case can be 

written as

l f +1 +  A # ( l f +* -  l f +* ) =  i f  -  A (  1 - # )  ( i f  -  i f  ) (3.54a)j j+l/2 j-1/2 j j+l/2 j-1/2

The numerical function H can be expressed as

H = i(F +F -R 4> ) (3.54b)j+l/2 2 j j+l j+l/2 j+l/2

where the element of $ denoted by 01, 1=1,•••,m are

(j)1 = \p( a1 )[l-q(r1 )]a2 (3.54c)j+l/2 r j + l/2 M j+l/2 j+l/2

with ^(z) defined in (3.30) and
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1 1a -al j + i-o* j-<r , l . [r>r = — ------  —  <r = sign(a ) (3.54d)
J+1/2 Aa1 j+i/2j + l/2

Here a1 are the elements of a . The function q(r) can be the Yeej + l/2 j+l/2 ^
limiters, the modified Yee limiters or the Osher-Chakravarthy limiters.

3.3.2 Linearization of the Implicit Operator

The linearization of the resultant implicit scheme is done in a 

similar fashion as the scalar case. Denote D j=Uj+1"Uj* The corresponding

conservative linearized form for the system case can then be expressed 

as (#=1 implied)

where

E D  + E D  + E D  = - A d f  -H11 ) (3.55)1 j-l 1 j 3 j+l j+l/2 j-1/2

E = ^{-A -K )n (3.56a)

with

l 2 j-l j-1/2

. = I+^(K +K2 2 j-1/2 j+l/2

: = ^{A -K 3 2 j+l j+l/2

E = I+^(K +K )n (3.56b)

E = ^{A -K )n (3.56c)

K = (RfiR-1) . (3.57)j±l j±l/2

and
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n ,  = diagl^Ca1 Ml-qfr1, )]>j±l/2 e r j±l/2 n j±l/2 (3.58a)

or for the first order left-hand side

°j±l/2 “ dia8 ['',(aj±l/2)1 (3.58b)

Here diag(z ) denotes a diagonal matrix with diagonal elements z . The

resultant scheme encompasses five points generally, but it forms only a 

block tridiagonal system.

3.4 Roe’s Approximate Riemann Solver

The extension of the TVD schemes to a nonlinear system of hyperbonic 

conservation laws demands an averaging procedure of the two neighbouring 

states. This is fulfilled by Roe’s approximate Riemann solver [28]. Let
L RU and U be the right and left dependent variables of a certain inter­

face. The Riemann solver is a mechanism to divide the flux difference 

between them into component parts associated with each wave field. 

Generally speaking, the associated waves in a nonlinear system are 

highly nonlinear. They require very expensive procedures in order to

calculate them. Roe proposed an approximate solver which simulates these 

nonlinear waves by a kind of linear wave pattern. These waves have 

similar features to the original nonlinear waves to some extent.

Consider the nonlinear system

(3.59a)
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with initial condition

f U x < 0
U(x,0) = \ L (3.59b)

[  R x > 0

Instead of solving (3.59), Roe suggested the following approximate 

problem

(3-60)

with the same initial condition. Here AdJ^U1*) is a constant matrix 

which satisfies

a. FdJ*) - Fdjh = A(UL,UR)(UR-UL)=A(U)(UR-UL)

b. the eigenvectors of A(UL,UR) being linearly independent

c. A(U,U)=A(U)

d. l^-U^RCUJa

where a represents the vector of the jump in the characteristic 

variables, and U is an average state between UR and U1". The most 

valuable property of Roe’s approximate solver is that it returns the 

exact solution whenever UL and if1 lie on opposite sides of a shock wave 

or a contact continuity. For one-dimensional Euler equation of perfect 

gas, Roe gave the following unique averaging values of density, 

velocity, and enthalpy:
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(3.61a)

L _  R u +Duu  =  . _ — (3.61b)

- hL+DhR 
h = ~ITb -

(3.61c)

c = (r-i) (3.61d)

with

(3.61e)

3.5 Numerical Experiments and Discussions

To demonstrate the performance of the numerical schemes, a variety 

of numerical experiments have been conducted. Both linear and non­

linear, inviscid and viscous problems have been solved using these high- 

resolution schemes. The results are presented as follows.

3.5.1 The first numerical experiment is performed on the linear wave 

equation (3.15). Both square waves and sine waves are chosen to repre­

sent discontinuous and smooth wave propagation. The explicit schemes 

(#=0) are used. The limiters employed are the Osher-Chakravarthy, Yee, 

and the modified Yee scheme limiters. As a result, the schemes are only 

first-order accurate in time but second order in space. However, some of 

the results obtained are strikingly good. For the following calcula­

tions, a fixed CFL number of 1/3 is used throughout. For the square-wave 

calculation, fifty-one time steps and for sine wave calculation, twenty-
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seven time-steps are propagated.

For the Yee scheme, two limiters are employed, i.e., those given by 

(3.46a) and (3.46c). They are called Y1 and Y2 respectively. For the 

Osher-Chakravarthy scheme, different values of (p are selected, and 

various values of 6 are used.max

Also present are results using Superbee and Supercompressive. For 

the linear advection problem, the modified Yee scheme with limiter 

(3.49a) is identical to the Osher-Chakravarthy scheme with <p=l and |3=1.

Fig. 3.3 shows results for the square wave calculation. The solid 

line represents the exact solution. It can be seen that the Super­

compressive limiter gives the best result and cannot be differentiated 

from the exact solution. The next best result comes from the solution 

utilizing Superbee, followed by the Osher-Chakravarthy scheme with 

y=l/2, /S = 5 and <p = 1/3, /3 = 4 respectively.

As expected, the Osher-Chakravarthy scheme with any value of <p gives 

better results than the Yee scheme as far as the resolution of the 

discontinuity is concerned. Comparing the results from Yl, Y2 and the 

results from the Osher-Chakravarthy schemes, it is found apparently that 

the Yee scheme gives the most dissipative results downstream of steep 

gradients. This is due to the fact that q(r)<r at such places. The modi­

fied Yee schemes give superior results than the original schemes. It is 

also obvious that Y2 gives better results than Yl and the Yee scheme 

gives better results than the first-order scheme.
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Fig. 3.4 illustrates the results for the sine wave calculation. It 

is clear that both Supercompressive and Superbee are over compressive. 

This is due to the fact that some "negative" dissipation is built into 

these schemes (q>l). It is also found that for any value of <p, £max
results in a "squared" sine wave as can be seen in Fig. 3.4. It appears 

that the results given by Yl and Y2 have a better agreement with the 

exact solution than those given by the Osher-Chakravarthy scheme. The 

reason behind this phenomenon is believed to be that the time-stepping 

approach is only first-order accurate so that a negative second-order 

dissipation term is embedded. This explains the slight "squaring" effect 

on top of the sine wave even in the results given by MY1 and MY2.

3.5.2 The second test problem is the inviscid quasi-one-dimensional 

nozzle problem. The governing equation for this problem is

where

* P pv 0

*IID pv II 75 (p+pv2) E = pdic/dx

EL t J (Et+p)v 0

with k (x ), the cross area of the nozzle, and p, p, E and v are density, 

pressure, total energy and velocity respectively. The configuration 

considered (see Fig. 3.5) is a divergent nozzle with

k ( x ) = 1 . 398+0.347tanh(0. 8x-4) ( 3 . 6 4 )
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SHOCK
0

Fig. 3.5 Divergent nozzle

The flow condition is supersonic at the entrance and subsonic at the 

exit divided by a normal shock. The computational domain is selected to 

be O^x^lO, and a very coarse evenly-spaced mesh of Ax=0.5 is used to 

evaluate the resolution capacity of the scheme. The schemes are extended 

to system of conservation laws according to the technique in section 

3.3. Roe’s approximate Riemann solver is employed to define the local 

characteristics. For objective comparisons no entropy enforcement is 

applied, i.e., e=0 in (3.30).

Fig. 3.6 presents the results for the Yee, modified Yee and Osher- 

Chakravarthy schemes with different choices of limiter and relevant 

parameters. In the experiments with ^>=0.5 and ^>=1/3, it is found that 

^max ®*ves slightly oscillatory results. It is speculated that these 

schemes are over compressive with the result that instability has set in 

resulting in the overshoot near the shock wave. The upstream of the 

shock is seen to be smeared by the first-order scheme. All the rest of 

the schemes demonstrated almost equally good quality in their shock 

resolution capacities.
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Fig. 3.6 Density distribution

3.5.3 The last experiment chosen is to test the ability of the 

different TVD schemes to resolve a boundary layer. For this purpose, a 

shock wave/boundary layer interaction problem is chosen. The flowfield 

representing this interaction is sketched in Fig. 3.7. An oblique shock 

wave is generated externally and is incident upon a boundary layer on a
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Fig. 3.7 Sketch for shock-boundary layer interaction

flat plate. If the shock is strong enough, the boundary layer would 

separate from the surface of the plate and reattach downstream. The 

separation region is a demanding one to calculate and therefore serves 

as a good test for a numerical method. The computational domain is 

chosen to be -0.02^x^0.3 and 0.0=^0.1215. The grid is composed of 33x33 

points, and is clustered near the wall using the following stretch 

function

Here and 0=1.001. The Reynolds number based on a reference length

of 0.16 (the unit of length being foot) is taken to be 296000. The free 

stream Mach number is 2.0. The flat plate is introduced from x=0.03. A 

shock is imposed at x=0, y=0. 1215 such that it slopes to the flat plate 

at 32.6 degrees. The governing equations are the two-dimensional Navier- 

Stokes equations.

(3.65)
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In the numerical experiment, the inviscid flux vectors E and F are 

discretised using a TVD scheme, and the viscous terms (E and F ) are
V  V

discretised using central differences. Roe’s approximate Riemann solver 

is employed to define the local characteristics. No entropy modification 

is employed. Then the implicit factorization method is utilized to solve 

the resultant system.

0. 005

0. 000
X 0.30.0

« PRESENT (Yl)
0. 0020 T - MACC0RMACK
0.0015 ■■
0 .0 0 1 0  -

0. 0005
0. 0000
-0.0005 ■■
-0. 0010

X 0.30.0 0. I 0.2

0. 005

0. 000
X 0.30.0

PRESENT (Y2)
- MACC0RMACK0. 0020 T

0. 0015
0.0010 -

0. 0005
0.0000 -
-0.0005 •-
-0. 0010

X 0.30.20. 10.0

Fig. 3.8 Plots of velocity direction and skin friction 
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Fig. 3.8, Fig. 3.9 and Fig. 3.10 show plots of the velocity direc­

tion, and skin friction coefficient for calculations with the Yee, modi­

fied Yee and Osher-Chakravarthy schemes respectively since these two 

physical properties are the most distinguishing. The results are com­

pared with the results from MacCormack [21] which appeared to agree well 

with experimental results. From the velocity plot, we can see clearly 

that both the modified Yee scheme and the Oshei— Chakravarthy scheme
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resolve the separation very well while the Yee scheme does not. The Yl 

limiter gives an unseparated flow pattern. Y2 gives a slightly separated 

flow, but is not at all satisfactory. It is noticed that limiter MY2 is 

very promising to attack the viscous flow problem at high Reynolds 

number. It is much better than limiter MY1. In the test, the same basic 

computer code is used. Only the inviscid flux subroutine is changed. 

Thus it seems reasonable to conclude that the Yee scheme does introduce
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extra numerical viscosity, and that this viscosity exceeds the physical 

viscosity such that an unrepresentative result is obtained.

3.6 Conclusions

Although TVD schemes have been applied in the solutions of inviscid 

flows very successfully, their capacity to resolve viscous shear layers 

is still quite unclear. By unifying and comparing two TVD schemes, name­

ly the Osher-Chakravarthy and the Yee scheme, it can be concluded that 

the former is much less dissipative than the latter. Modifications are 

made to reduce the embedded dissipation in the Yee scheme. The differ­

ences in the dissipation pattern among these schemes may not affect the 

inviscid flow region very much. However, when a viscous solution at high 

Reynolds number is sought, they could result in dramatically different 

solutions. This study demonstrates that the dissipation embedded in the 

schemes may be the cause. When physical dissipation is overwhelmed by 

numerical dissipation, the solution will be unrepresentative. A 

’numerical solution’ in this case will be valueless. The goal then is to 

resolve the problem with the least numerical dissipation possible. The 

modified Yee scheme is therefore suggested to approach that goal.
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C HAPTER  4  

An Efficient Explicit Scheme 
for Multi-Dimensional Steady Flow Calculation

4.1 Introduction

In the previous chapter, the high-resolution TVD schemes are dis­

cussed. In the application of these schemes, it has been found that they 

are very expensive in processor time because of the splitting of the 

local characteristics and the TVD mechanism. Therefore, an effort has 

been made to seek more efficient schemes which have almost the same 

resolution. This effort has resulted in the preliminary work included in 

this chapter.

As pointed in Chapter 1, numerical schemes for fluid flow calcula­

tions can be divided primarily into two categories, depending on space 

discretization—  central difference schemes and upwind schemes. General­

ly speaking, central difference schemes are more efficient than upwind 

schemes due to the fact that the least possible grid points are involv­

ed. However, appropriate artificial dissipation needs to be added to 

achieve stability because they possess very low or even no dissipation. 

Upwind schemes, though, do have proper embedded dissipation. Therefore 

they are much more stable than the central difference schemes. However, 

they suffer more operational counts because more grid points are con­

cerned. In practical applications, therefore, especially in three- 

dimensional flow calculations, central difference schemes are still 

widely used because of their low costs.
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Numerical schemes contain two different types of time-stepping tech­

niques —  explicit or implicit scheme. It is well-known that explicit 

schemes have restrictions on time step because of the CFL condition. As 

a result of this fact, usually implicit schemes are preferred in steady 

state calculations. With the development of computer hardware, the 

vectorization technique can be applied to the computer— code to greatly 

speed up the iteration process. It is commonly known that an explicit 

scheme can be readily vectorized while it is difficult to vectorize an 

implicit algorithm, if at all possible. A question arises from a consi­

deration of this new environment: is the implicit or explicit scheme

more efficient? The answer is not straightforward. Some favour implicit 

schemes while some others prefer explicit schemes.

In this chapter, a new scheme suitable for steady multi-dimensional 

flow calculations is proposed. The new scheme is more efficient than the 

conventional central difference schemes. Explicit time-stepping is em­

ployed so the scheme can fully exploit the features of modern computer 

hardware. The scheme is second-order accurate in the smooth domain while 

it is first-order at local extrema to suppress oscillations. Preliminary 

results are shown to demonstrate its accuracy and efficiency.

4.2 Derivation of the First-Order X Scheme

Consider the linear two-dimensional wave equation

5u 5u 9u , .+ a—=— ■ + b— —  =0 (4.1)St dx dy

where a>0, b>0. Suppose
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(4.2)

where i and j are unit vectors in the x and y direction respectively,

This equation describes a wave propagating in direction 1 with speed c. 

Now we use this principle to obtain the first-order scheme.

Consider a uniform grid with Ax=Ay=h in Fig. 4.1. The stencil 

(E,W,C,N,S) is used to construct conventional schemes, whereas the sten­

cil (NE, SE,C,NW,SW) is utilized to build our new scheme. For descriptive 

convenience, the new scheme will be called the X scheme, and convention­

al schemes will be called + schemes in the following text. It is assumed 

that at time t, the solution in the whole domain is known. Now the solu­

tion at time t+At needs to be determined. We trace along the minus 1 

direction to P, with |CP|=cAt and from the earlier stated principle, it 

is known that

0 2 2 1/2 and |l |=1, cosa=a/c, and c=(a +b ) . Obviously

grad(u) (4.3)

Then (4.1) becomes

+cl°-grad(u)=0

or

5u
St (4.4)
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NW NE

SW SE

Fig. 4.1 Grid points diagram

t+At t f A c yu =uD (4.5)C r

Hence it is now required to decide Up Assuming a>b, it is obvious that 

a<45°. Linear interpolation is used in the triangle AC-NW-SW. Simple 

algebraic derivation leads to the following formula

u =u + ^  [ (a+b) (u -u ) + (a-b) (u -u ) ] (4.6)p c 2h SW C NW c

If it is assumed that P must lie in AC-NW-SW, the following condition is 

obtained

At<—  = y - (4.7)a max(a, b)

It will be shown later that this is also the stability condition for the 

scheme (4.6). If we are only concerned with the space difference, the 

following half-discretized scheme can be obtained
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sr = - gEl ( a + w < v V + ia-b >(uc-u*>i (4'8)

It is found that the modified equation for (4.8) is

3u 3u ,5u 1 ,5 u 1 , a u d u
or ~ “ao—  -ba— +^ah---+~ah-- +bh--a— 6— +0(h ) (4.9)5t dx dy 2 Q 2 2 2 dxdy

Using exactly the same approach, the first-order + scheme is found to be

= - £[a(u-u )+b(u -u )] (4.10)at h c w c s

It is actually the well-known first-order upwind scheme. Its modified 

equation is

3U 3U ,3U 1 fA A7̂ - a — -b— +;-ah— -+-bh— -+0 (h ) (4.11)at 3x 9y 2 . 2 2  „ 2
dx dy

It is noticed that both these first-order schemes have the same order of 

accuracy of 0(h).

4.3 Accuracy and Stability Analysis

4.3.1 Accuracy Analysis

The question arises as to which of the + scheme or the the X scheme 

is more accurate. From the modified equations it is known that the 

first-order X scheme has the same order of truncation error as the first 

order + scheme (that is exactly what the order of accuracy means). We 

need to make detailed comparison between the truncation errors of both 

schemes to decide which one is more accurate.
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For both X and + first order schemes, when the steady state solution 

is obtained, it should satisfy

-a|H - b|^ = 0+0(h) (4.12)ox ay

The following formulae can be easily obtained from (4.12)

s 2 u  a S \ o ( h )  (4.13)axay b ax2

^  ** 9\ o ( h )  (4.14)2 , 2 a 2Sy b dx

Substituting (4.13) and (4.14) into (4.8), noticing that at steady- 
d u
atstate, ^  = 0, we get the following modified equation for (4.8).

-a |H  -b |H + ia h (2 - -1 )2 -H  = o+0(h2) (4.15)
8X 3y 2 b2 dx

Substituting (4.13) and (4.14) into (4.11), we get the following 

modified equation for (4.11).

-a!£ -bs H ah(!fl)r i = 0+0(h2) (4-161dx

From (4.15) and (4.16), it is obvious that a first-order dissipation 

term is embedded in both the x and + schemes.

2
When 1+ ^ -1 or ^ = 2 (4.17)

b

the X scheme has the same amount of dissipation as the + scheme. Almost
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identical results would derive from (4.8) and (4.10). If l^a/b^2, the X 

scheme has less dissipation than + scheme, in other words, it is more 

accurate. In fact if a/b=l, the modified equation of the X scheme would 

be

-a|H -b|H=o (4.18)
dx dy

This is the exact differential equation and the X scheme would thus 

recover the exact solution of (4.1). If a/b>2, the X scheme has more 

dissipation than the + scheme, and thus it is less accurate than the + 

scheme.

4.3.2 Stability Analysis

Up to now we still have not explained why in the first place we want 

to use this X scheme, and what the advantages are of using the X scheme 

instead of the conventional + scheme. From the accuracy analysis, it is 

clear that the two first order schemes have the same order of accuracy 

although the amplitudes of the truncation errors are different. In some 

situations, the X scheme is more accurate than the + scheme, and vice 

versa. Now we come to the point to justify our motivation to utilize the 

X scheme.

Here we again consider the uniform grid in Fig. 4.2. We claim that 

the X scheme needs only half the points of a conventional grid in the 

calculation. In Fig. 4.2 grid A is required for the + scheme, while grid 

B is employed for the X scheme. When a steady state solution is achiev­

ed, the accuracy of the solution on grid B may be as good as that on
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9x9 grid 5x5+4x4 grid
T ----------

x-----

----------

--x
----------

X

.----- o

X

x — ---- X X X

X X X X

X
I------ <

X X X

grid for + schemes Grid for X schemes

Fig. 4.2 Different grids

grid A. However, only half of the grid points are used to achieve that 

accuracy. This alone reduces the computational effort by half. In addi­

tion, if the solutions at points "<>" are known at time level n, only the 

solutions at points "x" need to be calculated at time level n+1. This 

cuts the amount of calculation by another half. Therefore the X scheme 

is expected to have far less operational counts than the + scheme. If 

somehow the limit l/2^|a/b|^2 is retained, results utilizing the first- 

order X scheme are at least as accurate as those using the first-order + 

scheme. Numerical experiments do need to compare the overall accuracy 

between them for the limit 0<|a/b|<co. Preliminary results appear to 

favour the X scheme when both accuracy and efficiency are considered.

In the following discussion, indices i,j are employed to denote grid 

points in the x and y direction respectively. As a result of the stencil 

used in the implementation of the X scheme, it is seen that at one time 

level only one "layer" of the solution in the whole domain is available,
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either the layer “x", or the layer "o”. Hence the time stepping is a 

three level procedure. Since our interest is in the the steady state 

solution only, this approach does not at all affect the final solution. 

The first-order X schemes can be expressed as follows:

n t  1 1 At I f . \ / xi” 1 xi \ t t . \  / IX” 1 n v ju =u —r- (a+b)(u -u ) + (a-b)(u -u ) (4.19)i,J i*J h [  i,j i,j i-i,j+i J

This scheme is second order accurate in time. Assume that the numerical 

scheme has the solution

Un =G ne i ( l x « , y )
i»J

where i-y/-1, 1 and m are wave numbers and G is the amplification fact­

or, and that at time (n+l)At, the solution is

u ^ = G u "  (4.21)* > J * > J

Substituting (4.20) and (4.21) into (4.19), the following expression

1G =~r( l-2Aa)+A(a+b) (cosa-isina)+A(a-b) (cos/3-isin£) (4.22)

is obtained. Where a=lh+mh, /3=lh-mh and A=At/h. At present it is still 

not possible to develop a stability condition from this formula. How­

ever, another approach is used to analyze the following two-level scheme

u"+*=u" - §^|"(a+b)(u" .-u" ) + (a-b) (un -un )1 (4.23)i,j i, j 2h|_ i, j 1-1,j-i i, j i-i, j+i J

Now the amplification factor is
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. A \  / 2 1 h~ 2 nih . w  *"21 2inh . . 1G=l+— (a+b)(e -l)+(a-b)(e -1)

=1-Aa+^( a+b) cosa+(a-b) cosp j 

-g-i j\a+b)sina+(a-b)sin|3j (4.24)

Then from (4.24),

 ̂2 -2■ — 12 , .. 2 2 A f 2 ,2> A . -2 ,2. . -%|G[ =1+A a -2Aa+ ^“(a- +b )+ 2~^a “k )cos(a-|3)

+A( 1-Aa) [ (a+b)cosa+(a-b)cos/3]

If it is assumed that

Aa>l and a=rr/2 (3=n/2

then

| G12=l+A2a2-2Aa+A2a2=l+2Aa(Aa-1)>1 

i.e., the scheme is unstable. If we suppose Aa^l, then

| G12^l+A2a2-2Aa+A2a2+2aA(1-Aa)=l

This means that the scheme is stable if

Aa^l or Ats—  (4.25)a

Numerical tests suggested that (4.19) has the same stability condition 

as this two-level scheme analysis, i.e.,
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max(a,b)

The first-order + scheme can be put as

n + l n At , n n , At, , n n *u =u - —r—a (u -u J- -T-b(u -u )i,j i»J h i,j i-l,j h i,j i,j-l

The amplification factor G is

G= 1 -Aa-Ab+Aacos (<p) +Abcos (&) -i [ Aasin(<p) + Absin(#) ]

where #>=lh and #=mh. Supposing

a+b=d a-b=c

then

d+c d-c a=— c~— —

Substituting (4.28) into (4.27), the following is obtained

id+^ £( d+c) cos cp+ (d-c) cosfl] 

-^i £(d+c)sin?>+(d-c)sin#J

Comparing (4.29) with (4.24), it is seen that the stability 

for (4.26) is Ad^l, i.e.,

A(a+b)^l or At^ ^a+b
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Comparing the stability conditions of both schemes, it is easy to see 

that the X scheme can have larger time-steps than the + scheme for the 

same grid interval h.

It is interesting to include the "central difference" second-order X 

scheme in the discussion. The scheme can be expressed as

ai 11 11 11 i+u -u -u ) +i+1,j + 1 i+1,j-1 i-1,j+1 i-1,J-l

b(un + u -u -ui+1,j + 1 i-1,j+1 i+1,j-l i-1,j-l
n -Un -Un ) (4.31)

The amplification factor of (4.31) is

1G = £ —iA[ (a+b)sina+(a-b)sin/3)) (4.32)

If we put

A=A[(a+b)sina+(a-b)sin£]

then

(4.33)

providing |A|^2. That means

|A[(a+b)sina+(a-b)sin£]|^2

But
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|X [ (a+b)sina+(a-b)sin£]|^A|a+b|+A|a-b|=2Amax(|a|, |b|)

Thus if

2Amax(|a|, |b|)^2 or A^l/max(|a|, |b|) (4.34)

then formula (4.33) is correct. In this case

|G|=1

No dissipation is embedded in the scheme. However it is stable similar 

to the leapfrog scheme. This analysis is fully demonstrated by the 

central difference second-order X scheme result shown in Fig. 4.7.

4.4 Extension of the First-Order X Scheme to High Order

From the stability analysis of the second-order central difference X 

scheme, one sees that there is no embedded dissipation. Hence dissipa­

tion terms should be added to damp unwanted error modes. However,if the 

dissipation is too much, the accuracy of the solution is deteriorated. 

To do no damage to the accuracy while at the same time maintaining a 

good damping capability, only high-order dissipation terms can be added. 

The TVD schemes have suggested a guideline on how the numerical visco­

sity should be included in the scheme. At local extrema, high-order TVD 

schemes are only of first-order accuracy to damp the possible oscilla­

tion. In the smooth domain, the high-order accuracy is restored. In 

fact, the first-order X scheme can be written as a second-order scheme 

plus a dissipation term. If we use u and u to denote the first and1st 2nd
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second-order accurate X scheme respectively, then the following scheme 

is obtained.

fun+1l =fun+1l [" I a+b I (un +un -2un_1)
I I i,jj2nd 4h|_' 1 i+1,j+1 i-1,j-l i,j

+1a-bI(un +un -2un l ) 1 (4.35)1 1 i+i,j-l i-i,j+i i,j J

where a and b are any real numbers. From (4.35), the following high 

order X scheme is suggested

where

and

with

(un+1l =funtll 4 | L  I i.jjh i, j J 2nd 4 h  [ 1 a+bI(un +un -2un_1)1 i+i,j+i i-i,j-l i,j

+o> a 2 -b|(un +un -2un_1)l (4.36)1 i+i,j-i i-i,j+i i,j J

(a =o)(r ) it) =w(r )1 1  2 2

a>(r)=l- -lr 1+P (4.37a)
1+r2

u, , -u u -u
r = --1>-J+1— r =— — ,- j -— (4.37b) i u -u 2 u -u Ki,J i-1,j-l i,j i-1,j+1

It is obvious that at local extrema,
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r <0 r <0 then w =o) =1 1 2  1 2

Eq.(4.36) represents the exact first-order scheme. However in the smooth 

domain

u -u u -2u +u
r -1+ + 1 =1+0 (h)1 u -u u -ui,j i-1,j-l i,j i-1,j-l

2r (1-r )
w =1- ---—  =----- -—  =0(h2) (4.38a)
1 1+r 2 (1+r )2l l

For the same reason, we have

w2=0(h2) (4.38b)

From (4.38) and (4.36), it is obvious that the added dissipation is 

actually a fourth-order term. Scheme (4.36) is still second-order accu­

rate in the smooth region. It is found, through numerical tests, that 

the new high-order X scheme has the same stability condition as the 

first order X scheme.

4.5 Extension of the X Scheme to System of Equations

First we consider the extension of the X scheme to a constant 

coefficient system, i.e.,

au A dE  ̂dF _ au  ̂ Aau ^au „
at ax ay at Aax + ay (4.39)

where U, E,F are column vectors of m components, A=aE/aU and B=aF/aU are
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mxm matrices and are both constant. It is assumed that A and B have real 

eigenvalues a1 and b1 and they can be expressed as

A = R diagCa1) R-1 (4.40)a a

B = R diagCb1) R-1 (4.41)b b

where R and R 1 are composed of columns of right eigenvectors and rows 

of left eigenvectors of the corresponding matrices. If somehow R =R ,a b
and w=Ra1U, then Eq.(4.39) decouples into m scalar equations for the 

characteristic variables

Sw1 , lSw1 , ldw1 _ tn
at SjT ay^ (4-42)

In this case the X scheme can be directly applied to the scalar equa­

tions. However, usually R * R . That means Eq.(4.39) cannot decouple intoa b

(4.42). Hence other approaches have to be found. Here we present our 

procedure as follows. Let a and b be the average eigenvalues of A and B 

correspondingly. Then A and B are approximated as

A^R 1diag(a)R =diag(a)=al B^R Xdiag(b)R =diag(b)=bl (4.43)a a b b

and the X scheme is now written as
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l in+* = Tln - *_  (p n + F n - F  n —F  n J
i,j i,j 2h i+1,j+1 i+1,J-l" i-1,j+1 i-1,j-l

^ ( F n +Fn -Fn -Fn ) 2h i+1,j+1 i-1,j+1 i+1,J-l i-1,j-l

^ [ l a + b l n  (if +\f -2Un l 4h|_l 1 1 i+1,j+1 i-1,J-l i, j

-bln (if +lf —2Un~1) 1 (4.44)
1 2 i + i , j - i  i - i , j + i  i , j  J

+ ' a-

where Q and Q are row vectors whose components are u> 1 and u> 1 respec- 1 2  1 2
tively which are determined by

u> ^ ^ ( r  *) u> 1=u>(r *) (4.45)1 1  2 2

and

U1 -U1 U1 - u 1
r r 1=s..— t.J (4.46a)
1 u 1 - u 1 2 u 1 - u 1i,J i-1,J-l i,J i-1,j+1

w(r)=l- i L u S  (4.46b)
1+r

Extension of the X scheme to a nonlinear system of the conservation

laws is implemented by the so-called "locally frozen" technique. For

example, if A and B are not constant in (4.39), then A and B are
i,j i,J

used when the solution in point (i,j) is sought.

4.6 Numerical Results and Discussions

A variety of numerical experiments have been carried out to compare
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the performance of the X and + schemes. In all of the following calcula­

tions, the initial conditions are the same. After each iteration, the L

norm of the residual of the solution is calculated. The work unit repre­

sents the CPU time used in the calculation. A prescribed CFL=0.9 is used 

throughout to enable valid comparisons. The first two cases are chosen 

from [31]. The numerical experimental results are presented below.

4.6.1 The first test case is the solution of (4.1) on the square 

[0,l]x[0,l] with a=cos<p and b=sin<p, here #>e[0,7r/4]. The boundary condi­

tions are as follows

' u(0,y)=0 0<y<l
(4.47)

_ u(x,0)=1 0<x^l

The exact solution of the steady-state problem consists of a contact 

discontinuity in the direction (coŝ >, sin#>). Different <p leads to a dif­

ferent a/b. For the first-order + scheme, a 65x65 grid is used. For the 

first order X schemes, a variety of different grids are tested, i.e., 

a. 33x33+32x32 grid. b.47x47+46x46 grid. c.65x65+64x64 grid. The solu­

tions and the convergence histories are shown in Figs. 4.3-4.6. It is 

obvious that results using the first order X scheme are more accurate 

than those using the first order + scheme when a/b<2 and the X scheme is 

at least four times more efficient than the + scheme providing grid a is 

employed for the X scheme. When grid c is used, it takes almost the same 

amount of time to obtain a converged solution using the first order X 

scheme as that using the first order + scheme. This solution is more 

accurate than the corresponding + scheme solution up to a/b=3. The solu­

tion using the high order X scheme is displayed in the same figures. It 

takes much more time to achieve convergence because this scheme
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First order scheme on 6 5 X 6 5  g ri d  TVD scheme on 6 5 X 6 5  grid

Grid 33x33+32x32

First-order X scheme High-order X scheme

Fig. 4.3 The solutions with a/b=ctan(alf)

alf=15 degrees
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Grid 65X65

VORK UNIT
150 180120

-1 0

-1 2

-14

First-order + scheme

Grid 33x33+32x32
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Fig. 4.4 The solutions and convergence histories with a/b=2
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Fig. 4.4 Continued
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Grid 33x33+32x32

High-order X scheme

4
2

WORK UNIT0

-10

Fig. 4.4 Continued

possesses much less dissipation to damp the unwanted error modes. How­

ever, the solution is far more accurate than that of the first order 

scheme. An interesting phenomenon is noticed by the author. Even if the 

central difference second-order X scheme possesses no numerical dissipa­

tion, a "converged" solution is still possible. Fig. 4.7 shows such a 

solution for a/b=2. The contact discontinuity can be easily picked up. 

This fully verifies the stability analysis in section 4.3.2.

4.6.2 The second test case is still a linear wave equation but a and 

b are now functions of x and y. The governing equation is

5u 3u 5u
at ydx Xdy (4.48)

The solution domain is [-1,l]x[0,1]. It is obvious that |a/b|e(0,oo)
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First order scheme on 6 5X 65  gr i d TVD scheme on 65x65 grid

Grid 33x33+32x32

First-order X scheme High-order X scheme

Fig. 4.5 The solutions with a/b=ctan(alf)
alf=30 degrees
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First order scheme on 6 5 X 6 5  g rid

m < / ■

TVD sche m e  on 6 5 X65 grid

Grid 33x33+32x32

First-order Z scheme

Fig. 4.6 The solutions with a/b=l
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Fig. 4.7 The "steady solution" of the central difference 

second-order X scheme with a/b=2

Thus this problem is expected to be a good test case to compare the 

overall accuracy of the first-order X and + schemes. The boundary condi­

tions for the steady state solution are as follows

/-u(x,0)=0 x<-0.65

u(x,0)=1 -0.65<x<-0.35

<u(x,0)=0 -0.35<x<0 (4.49)

u(-l,y)=0 0<y<l

>u(x, 1)=0 0<x<l

The exact solution is

u(x,y)=l

u(x,y)=0

if 0.35</x2+y2<0. 65 

otherwise
(4.50)
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i r s t  o r d e r  s c h e m e  on  6 5 X 3 0  g r i d

LOG 10 (RES)

WORK UNIT

120 150 180

- 1 0

-14

Fig. 4.8 The solution and convergence history of
the first order + scheme on grid 65x33
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F i r s t  o r d e r  " X "  s c h e m e  o n  3 3 x 1 7  g r i d

VORK UNIT

180120 150

-1 0  ■■

-1 2

Fig. 4.9 The solution and convergence history of the

first order X scheme on grid 33x17+32x16
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-10  ••

-1 2  ■■

-U

Fig. 4.10 The solution and convergence history of the

first order X scheme on grid 65x33+64x32
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LQG10 (RES)

WORK UNIT

150 180120

- 1 0  --

-1 2  ■■

-14

Fig. 4.11 The solution and convergence history of the
high-order X scheme on grid 33x17+32x16
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For the first-order + scheme, a 65x33 grid is used, and for the X

scheme, two grids are tested: a. 33x17+32x16. b. 65x33+64x32. In

Figs.4.8-4.11 the computed results and convergence histories are

displayed. It is apparent that the first-order X scheme with grid a. 

leads to a solution of the same level of resolution as the first order + 

scheme. From the converged solution we see that at places where |a/b|-+0 

or oo, the solution using the + scheme is the most accurate. On the other 

hand, when |a/b|-»l, the solution using the X scheme is more accurate. 

The overall accuracy of both schemes is almost the same. Again the solu­

tion obtained using the high-order X scheme is as accurate as expected.

4.6.3 In the final test case, a transonic inviscid flow through a 

channel with a circular arc bump is calculated. The thickness of the 

bump is 4.2%. The geometry is shown in Fig. 4.12. The flow conditions

are M =0.85, and p =p . Over the bump, the flow in part of thein in out
domain is supersonic, and a shock is generated. The result using the 

modified Yee TVD scheme with limiter MY1 is calculated for comparison. 

The high-order X scheme is also tested. The results are displayed in 

Figs. 4.13-4.14. From the solution of the X scheme it can be easily seen 

that the the position of the shock is a little downstream of that formed 

from the TVD scheme although the resolution is sufficient. This is due 

to the fact that the X scheme is not in conservation form. The CPU time 

used to obtain the X scheme solution is less than quarter of that used 

by the TVD scheme. Again this case not only fully demonstrated the 

efficiency, accuracy but also the disadvantage of the X scheme. It can 

be expected that the X scheme can be fully applied to the solution of 

supersonic and hypersonic flows with an appropriate shock-fitting 

technique (e.g. the approach used in [22]).
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Fig. 4.12 The grid for the channel flow

Fig. 4.13 The C contour of the solution P
using a TVD scheme

4.7 Conclusions

A new explicit scheme is suggested for multi-dimensional steady flow 

computations. It has some outstanding advantages over the conventional
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Fig. 4.14 The C contour of the solution P
using the high-order X scheme

schemes. First, the new scheme is very efficient for hyperbolic prob­

lems. It maintains a very compact form, and can be four times as fast as 

conventional schemes and takes only half the storage. Secondly, it 

possesses the right amount of dissipation to suppress the oscillations, 

and this dissipation is not problem dependent. Preliminary results have 

fully demonstrated its potential for wider applications in the solution 

of physical problems. Thirdly, a multigrid procedure similar to the Ni 

method [23] can be readily applied to the X scheme to speed up the 

iteration process further. Finally, its extension to three-dimensional 

problems is straightforward when still more savings in both CPU time and 

storage are expected than for the two-dimensional problems. However, 

further work is needed to combine a shock-fitting technique into the 

scheme. Furthermore, a better damping model may be possible. These are 

the subjects of future work.
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CHAPTER 5 
Flow  V is u a l iz a t io n  T ec h n iq u es  

a n d

S im u l a t io n  of Hy p e r s o n ic  Flow

5.1 Introduct i on

Finally we come to the point of simulating realistic three- 

dimensional hypersonic flow. The simulation is based on the assumptions 

made in Chapter 1, the governing equations given in Chapter 2, and the 

numerical approaches presented in Chapter 3. Some other aspects which 

are not fully covered in these chapters will be specified in the follow­

ing sections.

The geometries around which flows are simulated are quite simple yet 

representative of future space vehicles. For example, the double ellip­

soid is a representative model of the forebody of a space shuttle in­

cluding a canopy. A successful simulation could provide reasonably accu­

rate information on the aerodynamic loading and heating for designers. 

In that process, the simulation would be carried out in three stages, 

which are:

1. validation; The numerical "simulation", in principle, is not the 

physical process. Therefore it is subject to errors. The question that 

arises is to what extent these errors affect the solution. This is not 

an easy question to answer. Furthermore, up to now some fundamental 

problems have yet to be solved. For example, the existence, the unique­

ness, and the convergence of the solution of a complex non-linear system
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can be extremely difficult to prove. Thus numerical testing seems to be 

the only tool available to validate numerical algorithms in this case. 

Usually this is done by comparing the numerical solution of a simple 

problem (simple enough to have an analytical solution) to the exact 

solution, or by comparing the numerical solution with experiment 

results, etc.

2. flow visualization; This is particularly desirable for multi­

dimensional flow problems, critically the three-dimensional cases. The 

massive amount of data is meaningless unless it is expressed in a com­

parative way. This is the aim of numerical flow visualization techni­

ques. Some flow features can only be exposed by detailed flow pictures, 

for example vortices, shock waves, separation, etc.

3. interpretation of the results. The flow pictures developed enable 

understanding of the physical flow field. This is the stage of interpre­

tation. Sometimes the pictures of different physical phenomena show 

similarities. In these cases, good physical insight may be required to 

provide the right answer. It is also possible that new flow phenomenon 

can be found in these pictures. The work is thus not only important but 

rewarding as well.

The next sections will discuss, respectively, flow visualization 

techniques, more aspects about the numerical procedure and detailed 

numerical results and discussions. Finally, some conclusions will be 

drawn.
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5.2 Flow Visualization Techniques

5.2.1 Introduction

With recent increase in supercomputer performance and improved 

numerical algorithms, the generation of large three-dimensional computa­

tional fluid dynamics solutions is becoming commonplace. One of the 

major issues emerging from this new capability is the difficulty of dis­

playing limited and appropriate data that will lead to a better under­

standing and evaluation of the flow being modelled. In three dimensions, 

flow phenomena such as flow separation, shocks, shear layers and 

vortices can often be difficult to identify and visualize. It is 

possible that more computer resources are expended on analyzing a solu­

tion and displaying it in a meaningful way than were needed to generate 

the solution in the first place [7].

Quantities describing a flow field can be either scalars or vectors. 

Scalar quantities such as pressure, density and Mach number, etc. are 

often displayed by profiles, contour lines and surfaces and variations 

of colour intensities. Flow directionality can be illustrated by dis­

playing vector fields and vector traces. Selecting particles within the 

flow and tracing their paths is an especially effective way of observing 

the direction of the flow. Tracing these particle motions , then key 

information on separation, vortex generation and/or breakdown, etc. can 

be easily detected.

The following sections describe the authors’s experience with the 

presentation of both scalar and vector fields.
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5.2.2 Presentation of Scalar Fields

The typical type of display used for scalar fields is contouring. 

Contours are used to indicate values of the function, but they also 

highlight the gradient regions by their proximity to each other. Con­

tours are always constructed in two dimensions because three-dimensional 

plots are very confusing and difficult to view. For three dimensional 

flows, contours are usually plotted in slices of solution planes.

A numerical solution only gives the values of physical variables on 

discrete points. Interpolation of the solution to the whole contour 

domain must be carried out first before the plotting of the contours. In 

this research, it has been found that the linear interpolation gives the 

most faithful representation of the original discrete solution and costs 

the minimum of computer resources. Because structured quadrilateral or 

hexahedral grids are employed in all the calculations, the interpolation 

can be easily implemented. For example, one quadrilateral can be divided 

into two triangles in the pattern shown in Fig. 5.1. The solutions 

(v,v ,v ) at the three vertices (x ,y ), (x ,y ), (x ,y ) of a triangle1 2  3 1 1 2 2 3 3
determine a unique interpolation

v = a x + b y + c  (5.1)

with
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Fig. 5.1 A division pattern of the grid

a =

v y 11 °i
v y 12 2

V3 y3 1
h —

X V 1 1
X V 2 2
X V 3 3

u
X. y. 1 * y 1 *1
x y 1 2 *2 * y 2 2
x y 13 3 x y3 *3

Following the calculation, the contours ape plotted on the area within 

the triangle. An alternative way is to use different colour to represent 

a different function value. In this approach, the boundaries of
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0 . 1785

1.3019

0 . 6 7 18

Fig. 5.2 Examples of contouring (above: a, below: b)

— — “
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different-coloured areas need to be selected. This can be done in a 

similar fashion to contour line drawing.

Two examples are given in Fig.5.2. They demonstrate both the 

coloured-area filling and contour line drawing technique. Fig. 5.2a is 

the contour of the pressure field of the shock boundary layer interac­

tion problem. The incident shock wave, the weak leading edge shock wave 

and the reflected shock wave are clearly illustrated. The expansion 

after the separation can be very easily detected. This contour represen­

tation thus gives a very clear picture of the interaction of the waves 

in the flow field. Fig. 5.2b is the Mach number contour of an inviscid 

transonic flow over a bump. It clearly shows that the flow accelerates 

on the bump from subsonic up to supersonic speed of maximum Mach number 

1.301. Then a shock wave is generated through which the flow decelerates 

to a subsonic speed.

5.2.3 Presentation of Vector Fields

When displaying a vector field, both direction and magnitude must be 

presented. Velocity is a typical parameter in this category as shown in 

Fig. 5.3. This plot shows both the direction and magnitude of velocity 

for the hypersonic flow around a sphere cone. The position of the shock 

wave ahead of the blunt body is indicated clearly by the change of mag­

nitude and direction of the velocity vector.

While plots of scalar variables or vector fields provide us a map of 

the fluid state, they often do not provide a clear picture of the struc­

ture of the flowfield, including flow separation and vortices. This is
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Fig. 5.3 Velocity field of the flow around a sphere cone

particularly true in three-dimensional flow simulation because only a 

two-dimensional projection of the vectors can be viewed at one time. In 

wind tunnel experiments, some key features of the flowfield can be beau­

tifully illustrated by smoke or dye injection techniques, or oil flow 

patterns. In CFD, several analogous techniques can be employed to pro­

vide the equivalent "flow visualization" for computed results. These 

methods have proved invaluable. This is particularly true for particle 

tracing.

The technique of particle tracing involves following the local 

vector direction through the whole vector field. It indicates where the 

fluid is going similar to the flow visualization technique in wind 

tunnel experiments. If the particles are constrained to remain along the 

surface of a body, then the oil flow pattern is simulated. This
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technique shows the direction of surface shear stress and the location 

of separation lines on the body. The basic idea of particle tracing is 

simple. However, the algorithm can be quite complex.

The algorithm in the context of a two-dimensional space is now pre­

sented. If a particle is started in the flow field at a certain point

(xQ,yo) within a triangular cell, interpolation is first used in the

cell to determine the velocity vector v at the point by means of the 

formula defined in (5.1). Then the particle moves to a new position

(X,Y) in speed v for a time step At

The time step At is chosen according to both smoothness and efficiency. 

Smaller At gives a smoother trace but costs more computer time and vice 

versa. Searching is then..started from the cell where the particle com­

mences its motion. If the particle remains in the cell, the stage is 

complete. Otherwise searching continues in the first and then successive 

layer cells until the cell in which the particle is newly located is 

found. For a triangle whose vertices are (x ,y ), (x ,y ), (x ,y ), the1 1  2 2 3 3
necessary and sufficient conditions for a point (X,Y) to be within this 

triangle are

X = x + v  iAto (5.2a)

Y = yQ + v j A t (5.2b)

(5.3a)

(5.3b)
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rY-y y - yi fy -y y -y ->
' - - 2 _ i  x _ S _ i  _ _ 2 _ 1  o (5.3c)X-x X -x X -x x -x1 3 1J V - 2 1  3 1J

The interpolation scheme is employed again to decide the velocity of the 

particle once that cell is found. This process continues until the boun­

dary or prescribed steps have been reached.

The extension of this algorithm to a three-dimensional space is 

straightforward. It should be pointed out that a quick searching proce­

dure is extremely important. Otherwise the approach may be too time- 

consuming to be of any practical value.

Examples are given in section 5.4 to demonstrate the usefulness of 

these techniques.

5.3 Further Aspects about the Numerical Procedure

5.3.1 Approximate Factorization Technique

For a general three-dimensional flow problem, the governing equation 

employed is Eq.(2.29). The one-dimensional subset of (2.29) can be 

expressed as

A basic implicit scheme for (5.4) can be written in the form

{numerics>D = -{physics} (5.5)
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where D=Un+1-lf1, and {physics} is the numerical approximation of -j^ -

af ^
0 ^- V. The discretisation of the {physics} part is done as follows

{physics} = 6TE - 5CE (5.6)
V

Twhere 5 is a TVD difference operator such as the Osher-Chakravarthy, 

Yee or modified Yee TVD schemes, and 8° is a central difference operat­

or. If in (5.5)

{numerics) = ai P-hyslcs} (5.7)
au

then the scheme is called a Newtonian method. Usually the count of oper­

ations in the evaluation of {numerics} in (5.7) is so large that the 

method is impractical. Hence a much simpler implicit operator is chosen 

for efficiency. In our calculation, the following implicit operator is 

utilized

{numerics} = \--J- + -rif# - H  ]1 (5.8a)[At A£^ i+l/2 i-l/2jj

where

H i+l/2 = ~ 0 1 (5.8b)2|_ i+l i+l/2J

The nonstandard notation

n  D = [a D - 0 d! ( 5 . 8 c )i+l/2 |_ i+l i+l i+l/2 J VO.WW
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is used together with

0 D = diag[^(ai+l/2 v i+l/2 (5.8d)

Scheme (5.5) with (5.8) can be written in the following form

= -AtlRHS of (5.6)}s (5.9)

where 0.. is the following difference operator s

0-= |"l + - H  }]£ [ A £ [  i+l/2 1-1/2JJi+l/2 (5.10)

This scheme is greatly simplified by ignoring the evaluation of the vis­

cous flux Jacobian and the complex TVD flux Jacobians. According to the

linear stability analysis, this scheme is stable providing Re is suffi-
00

ciently high. Furthermore this procedure does not affect the final 

steady-state solution at all. The steady-state solution is second-order 

accurate and independent of the final time step used.

For the three-dimensional equation (2.29), an approximate factoriza­

tion technique is adopted. The three-dimensional operator is split into 

three one-dimensional operators resulting in a very efficient solver. 

This approach is presented as follows:

0C D** = At{-5TE-5TF-5TG+5CE +5°F +5°G >
v v V'

(5.12a)

0 D = D *0 (5.12b)
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* (5.12c)0 < D " D

5.3.2 Local Time Stepping

Because only steady state solution is concerned in the calculation, 

the time step At can change according to the space interval and the 

speed of the wave in the flow. This technique can be interpreted as an 

attempt to use a uniform Courant number throughout the flowfield. In any 

event, changing At can be effective for grid spacings that vary from 

very fine to very coarse —  a situation usually encountered in aerodyna­

mic simulations where grids contain a wide variety of length scales.

A purely geometric variation of At has been used in some calcula­

tions [25]. It has been found in this research, though, that a changing 

At according to both spacing and characteristic speed is more meaningful 

and successful. Therefore the time step is based on a prescribed CFL 

number for the whole flow domain, such as in the following

with A^=At)=A^=1. Here maxCa^) (i =£,ti,C) are the maximum eigenvalues of 

the corresponding Jacobian matrix of the flux, and CFL is the prescribed 

CFL number.

At CFL (5.13)max(a..)+max(a )+max(a^)
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5.3.3 Grid Sequencing Procedure

It is common knowledge that a solution can be easily built up in a 

coarse grid. There are two obvious reasons for this. First less calcula­

tions are required in a coarse grid. Second, error modes are driven out 

of the solution domain much more quickly in a coarse than in a fine 

grid. Therefore in the initial phase of a solution process, a good ini­

tial start may be obtained by solving the equations in a coarse grid, 

and then interpolating the solution into the fine grid. In addition to 

that, because a coarse grid tends to damp high frequency waves, using a 

grid sequencing procedure can improve the overall robustness of the 

code [25].

The procedure described above is implemented in the code. The finest 

grid is generated first. Then the coarsened grid is cut from each pre­

vious grid by halving the number of points in each coordinate direction. 

The flow field calculation is first started in the coarsest grid. After 

a finite number of iterations, the solution is then interpolated to the 

next finer grid and more iterations are conducted on this grid before 

the solution is further interpolated to an even finer grid. This process 

is carried out up to the finest grid. The finest grid is then iterated 

to convergence. It has been found that this procedure speeds up the 

iteration process by a factor of about 2-4.

5.3.4 Boundary Conditions

There are four kinds of boundary conditions which we are concerned 

with: inflow, outflow, symmetry and wall boundary conditions. These
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J i

I

00

B C

Fig. 5.4 Sketch for boundary conditions

conditions can be clearly shown by using a two-dimensional sketch in 

Fig.5.4.

In this figure, AB is the inflow boundary. Because the inflow is 

supersonic, the flow ahead of the shock wave is not disturbed by the 

flow in the downstream. Therefore the flow variables are fixed on the 

free stream values, i.e.,

P = p = 1 u=l v=0 T = 1 (5.14)

BC is the symmetry boundary. On BC v=0, and all other variables have 

vanishing derivatives with respect to y, i.e.,

Sf
ay = 0 (f=p,u,p,T etc. ) (5.15)
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Then a second order one-sided interpolation is used to get f on BC

Boundary CD is a solid wall. The slip and no-slip boundary conditions 

are used for inviscid and viscous flow calculations respectively.

For inviscid flow problems, a special principle is utilized. The 

principle is based on the assumption that the flow is stagnated isentro- 

pically in the normal direction of the wall. Let subscript 1 and 2 

denote the solid wall and the first layer points from the wall. If the 

equation for the wall is

T?(x,y)=0

then

So the unit vector is

n = n/InO with

The velocity component in direction n is

v = v *n
n2 2

o f  3t)  drf) 1__ 1 y  • ^
2 dx 2 9 y J  | n |

The speed of sound is decided from
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*rp 1/2

So

v
M n2
n2 C2

The slip condition is actually v = 0, or M = 0 .  From the earliernl nl
stated principle, the following formulae are obtained

The velocity on the wall is then obtained by extrapolation through the 

first and second layer points from the wall.

the temperature of the wall is specified. After that the density is 

calculated from the pressure and temperature. Finally u=v=0 is implied 

by the no-slip condition.

DA is the outflow boundary. Usually the flow through this boundary is 

supersonic. Thus extrapolation is used to obtain the solution on DA,

For viscous problems, = 0 is employed provided Re is high. Thenon oo00

i.e. ,

f = 2f -f 
I,J I-l.J 1-2,j

(5.17)

where f=p,p,u,v,T.
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5.4 Numerical Simulation of Three-Dimensional Hypersonic Flow

For the purpose of universality, the 3D flow solver code is written 

in a general coordinate system employing the full Navier-Stokes equa­

tions. Therefore this code is expected to tackle any complex compre­

ssible laminar flow cases. A change can easily be made to solve inviscid 

flows by setting the slip boundary condition on the solid wall and

Re =00.00

5.4.1 Validation of the Method

The validation of the code in three dimensions has been carried out 

by solving two axisymmetric flow problems —  one inviscid and one vis­

cous. It has been firstly verified that the axisymmetric flow pattern is 

fully recovered. Then more detailed comparison on the accuracy of the 

solution is made to well documented numerical or experimental results.

The inviscid flow test case is the hypersonic flow around a sphere 

at Mach 8. The accurate numerical results of Lyubimov and Rusanov [20] 

are chosen for comparison. The computational grid includes 33 points in 

the mainstream direction, 33 points in the circumferential direction and 

33 points in the wall-normal direction. The direction of the free stream 

is deliberately set to an angle with the geometric axis of symmetry in 

order to check the symmetric property of the flow. Fig. 5.5a shows the 

pressure contour and Fig 5.5b displays the Mach number contour on the 

plane of symmetry and the . sphere surface viewed from different 

directions. It is clear that the solution has good symmetrical 

properties. The sonic line from the results of Lyubimov etc. is also
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(a)

- LYUBIMOV AND RUSANOV
♦ PRESENT RESULT

60-60 30-30 0•90

Fig. 5.5 Inviscid hypersonic flow around a sphere a) Cp contour, 

b) Mach contour AM=0.25 (• Lyubimov sonic line), c) surface pressure
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plotted in Fig. 5.5b. A very good agreement has been achieved. The 

pressure coefficient on the body surface is compared with the data from 

Lyubimov and Rusanov in Fig.5.5c. The agreement is indeed very good.

The second test case is the problem of the viscous hypersonic flow 

around a sphere cone with a cone half angle of 9.75° at T /T = 4.4,W 00
M =5.92, Re = 106 and T = 64.706 K. The emphasis is placed on the pre- 00 00 00

diction of the heat transfer rate on the wall indicated by the Stanton 

number which is defined by

St (T -T )Pr Re an (5.18)Ooo w oo

where subscript o denotes stagnation value; n is the wall normal direc­

tion. Results from Hsieh’s calculation [18] are used for comparison. 

Fig.5.6a shows the pressure contour. It is seen that the flow symmetry 

is recovered very well. Fig. 5.6b is the plot of St on the wall. The 

present calculation is seen to have a very good agreement with the 

results given by Hsieh.

Confidence gained from these two test cases has resulted in the 

application of the flow solver code to a more realistic hypersonic flow 

problem.

5.4.2 Numerical Results and Discussion

As an application to realistic spacecraft body shapes, hypersonic 

flow around a double-ellipsoid at a high angle of attack has been
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Fig. 5.6 Viscous hypersonic flow around a sphere cone 

a) pressure contour, b) St number on the surface
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simulated. The case is chosen from the Workshop on Hypersonic Flows for 

Reentry Problems co-organized by INRIA and GAMNI-SMAI, France [13]. 

Experimentation has been conducted to serve as a validation procedure 

[2]. Therefore the problem is expected to be an excellent test case for 

a flow solver or numerical algorithms.

The geometry of the body is a double ellipsoid extended by a trun­

cated cylinder which is defined by

2 r 2
if x ^ 0tw] * by * tra] - ■ 

toSsf * W *  -
2 r \2

1 i f X ^ O  Z 2: 0

if 0 ^ x ^ 0.03f_y_l + [_z_l = i
[. 025J [. 015J

(. 0175] + (7025] 1 if z 2: 0 (5.19)

A body-fitted computational mesh is generated using an algebraic method. 

It consists of 49, 41 and 25 points in the mainstream, circumferential 

and wall-normal directions respectively. For accurate resolution of the 

physical field near the wall, the mesh is clustered in the vicinity of 

the body surface by means of the stretch function as defined in 

Eq.(3.65) in the wall-normal direction. Detailed flow conditions and 

solutions are now presented.

The flow conditions for this case are: free stream Mach number

14̂ =8. 15, angle of attack a=30°, the free stream temperature ^ = 5 6  K and 

the wall temperature T =288 K. Both inviscid and viscous flows have been
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simulated. For the viscous flow solution, the Reynolds number is 

1.67xl06/m.

The meshes employed for both the inviscid and viscous flow problems 

are displayed in Fig. 5.7. Figs.5.8-5.10 display the Mach number, Cp and 

density contours on the plane of symmetry, the body surface and the 

plane X=0 respectively. It is obvious that the Cp contours of the invi­

scid and viscous flows are very similar. A very steep boundary layer 

appears for the viscous flow in both the Mach number and density con­

tours. It is seen that the shock wave is well captured with at most one 

intermediate grid point in the windward direction. The streamlines of 

the inviscid flow and the oil flow pattern of the viscous flow on the 

body surface are presented in Fig. 5.11. The appropriate experimental 

oil flow pattern is also shown in the figure for comparison. The posi­

tion of the calculated separation line agrees quite well with the expe­

rimental separation line. It is found, not surprisingly, that fundamen­

tal differences exist in the structure of the computed inviscid and vis­

cous flow. No separation appears in the inviscid flow while a distingui­

shing separation line exists in the viscous flow. This phenomenon can be 

seen even more clearly in Fig.5.12, which shows the streamline on the 

cross section plane X=0. A large separation exists near the intersection 

of the two ellipsoids in the solution of viscous flow whereas no separa­

tion occurs in the inviscid flow.

Experimental data are available for the pressure coefficient and 

Stanton number on the wall in selected planes. Hence more detailed com­

parisons are now made between the calculation and the experimentation.
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Fig* S.7 Meshes (a. for inviscid flow, b. for viscous flow)

— 120—



Chapter 5 Simulation of Hypersonic Flow

Fig. 5 8 Mach contour (above: inviscid, below: viscous)
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Fig. 5.9 Pressure contour (above: inviscid, below: viscous)
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Fig. 5.10 Density contour (above: inviscid, below: viscous)
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Fig. 5.11 Oil flow pattern 

a) inviscid, b) viscous, c) experiment

— 124—



Chapter 5 Simulation of Hypersonic Flow

Fig. 5.12 Streamlines on plane X=0 (above: inviscid, below: viscous)
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Figs. 5.13a and 5. 13b show Cp on the plane of symmetry and the plane 

X=0. It is obvious that the inviscid solution agrees very well with the 

viscous solution except in the separation domain near the intersection 

of the two ellipsoids where viscous effects dominate the flow property. 

A strong shock wave appears in the inviscid flow solution while there is 

only a slight rise in pressure in the viscous flow solution. The numeri­

cal results for Cp are in excellent agreement with the experimental 

results, which is demonstrated in both Figs. 5.13a and 5.13b. Fig. 5.14 

displays the calculated Stanton number on the plane of symmetry and the 

plane X=0. Experimental results on the windward side of the wall are 

also plotted. The comparison of Stanton number on the leeward side is 

made in Fig. 5.15. The computed and experimental results agree very well 

indeed. In the simulation of hypersonic flow, the heat transfer rate is 

usually very difficult to predict correctly especially in the viscous 

separated flow domain. It is found that the numerical simulation has 

excellent agreement with the experiment even on the leeward side. To 

verify that this result is not a coincidence, the temperature and velo­

city profiles on the plane of symmetry are plotted in Fig. 5. 16. From 

this figure it is convincing that sufficient grid points exist in the 

viscous regions to expect good resolution, and that these regions are 

simulated very satisfactorily.

No experimental data on the skin friction coefficient is available. 

However, for convenience of comparison with other calculation, the Cf on 

the plane of symmetry is plotted in Fig. 5.17. The separation and re- 

attachment point can be easily determined from this figure.
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Fig. 5.13 Cp on the surface 

a) Cp on the plane of symmetry, b) Cp on plane X=0
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Fig. 5.14 St number on the surface ( • experiment, —o— present) 

a) St on the plane of symmetry, b) St on plane X=0
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Fig. 5.15 St number on the leeward direction 

C— experiment —<>— present)
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(b)

Fig. 5.16 Temperature and velocity profile on the plane of symmetry 

a) temperature profile, b) velocity profile
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5.5 Conclusions

In this chapter, several aspects on the simulation of three- 

dimensional hypersonic flow have been explored, particularly of the flow 

visualization techniques and the numerical procedure. Several conclu­

sions arising from this study are drawn in the following:

1. The present numerical procedure, involving TVD schemes combined 

with Roe’s Riemann solver, is an excellent tool in the simulation of 

three-dimensional hypersonic flow with very strong shock waves and se­

vere viscous shear layers. Shock waves and shear layers are captured 

with high resolution. Therefore, reasonably accurate simulation of 

hypersonic flows can be expected even on coarse grids. This point has 

been fully demonstrated by the solution of the hypersonic flow around a 

double ellipsoid.

2. Flow visualization techniques are demanding in the solution of 

realistic three-dimensional flow problems. Because of the huge amount of 

data emanating from the solution process, the presentation of the nume­

rical results is as important as the numerical simulation itself. The 

understanding of the flow structure hinges on the quality of flow pic­

tures provided by the visualization procedure.

3. There are fundamental differences between the solutions of invi­

scid and viscous flow. These differences indicate that the Euler equa­

tions are not suitable for the simulation of hypersonic flow over shapes 

at a high angle of attack because the viscous effects emerge as large 

domains of separation. In that situation, the Navier-Stokes equations
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appear to be the correct mathematical models for this flow field.
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CHAPTER 6 
Concluding Remarks and Future Research

6.1 Concluding Remarks

In this research, two main topics have been pursued. One is the 

development and evaluation of numerical algorithms. The other is the 

numerical simulation of three-dimensional hypersonic flows. More speci­

fically, detailed investigation into the performance of the high- 

resolution TVD schemes with application to both inviscid and viscous 

flows are conducted. Confidence gained in this study resulted in their 

applications in the solution of three-dimensional inviscid and viscous 

hypersonic flows. In parallel to that, efforts to improve efficiency 

lead to the development of a very fast, robust explicit numerical 

scheme. Several conclusions resulting from the research are listed as 

follows:

1) TVD schemes are excellent shock-capturing approaches in both 

inviscid and viscous flow simulations for both one-dimensional and 

multi-dimensional flow problems. If they are combined with Roe’s appro­

ximate Riemann solver, shock waves are usually resolved with one or, in 

some cases, even no intermediate grid point, thus improving the accuracy 

of the overall solution by a large margin. Their application to three- 

dimensional general coordinates does not seem to degrade the quality of 

the captured shock.

2) When TVD schemes are employed to solve Navier-Stokes equations 

at high Reynolds number, care needs be exercised to ensure that the
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numerical dissipation is well below the physical dissipation. Otherwise 

the numerical solution may be meaningless. Two very popular TVD schemes 

—  the Osher-Chakravarthy TVD and the Yee TVD scheme —  are explored in 

detail. It is found, through both numerical analysis and experiments, 

that the former in comparison with the latter can be viewed as an 

upwind-biased second-order scheme. As a result of this feature, the 

former possesses much lower numerical dissipation. A modified form of 

the Yee TVD scheme, which is then an upwind-biased second-order scheme, 

is proposed to tackle viscous flows at high Reynolds number. Very 

favourable numerical results have been obtained.

3) When an accurate and robust numerical algorithm such as a high- 

resolution TVD scheme combined with Roe’s approximate Riemann solver is 

chosen to solve practical problems, a coarse grid may be used to achieve 

at minimum reasonably good and at best excellent results. This has been 

fully demonstrated in the case of the hypersonic viscous flow around a 

double-ellipsoid shape at high angle of attack representing a fore body 

with a canopy of a re-entry space-plane. It is however also shown that 

there needs to be sufficient grid points (at least 10 to the author’s 

experience) within the viscous shear or boundary layers for a successful 

simulation. The reasons behind this are believed to be two fold. First, 

TVD schemes have high-resolution properties which extend to three- 

dimensional viscous flows. Secondly, Roe’s approximate Riemann solver 

takes into account all the different waves, and faithfully reflects 

physical interactions of waves in the fluid motion.

4) It has been found that the three-dimensional approximate 

factorization technique, the grid sequencing procedure, and the local
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time-stepping approach are very effective ways to simplify the solution 

process or speed up the convergence of the solution to the steady state. 

At intermediate or high Reynolds number, the expensive viscous Jacobian 

matrices can be completely ignored from the implicit operator, resulting 

in a very efficient algorithm. This method does not affect the stability 

properties of the scheme or the final solution.

5) Numerical flow visualization techniques are extremely important 

for multi-dimensional flow simulations, especially for three-dimensional 

flow problems. Illustrations of iso-contours, velocity field plots, 

particle tracing and oil-flow patterns are key items for the understand­

ing of the physical phenomena. Good flow pictures give clear indications 

of detailed flow behaviour and even lead to new findings in some compli­

cated configurations. They can also play a role in locating possible 

errors in the simulations themselves.

6) The efficient, robust newly developed X scheme developed in this 

thesis has shown great promise in its preliminary investigation. Compar­

ed with the conventional first-order scheme which is called the + scheme 

for comparative reasons, the first-order X scheme can be four-times 

faster and in some cases more accurate. The high-order X scheme has 

almost the same high resolution as TVD schemes, and costs much less 

computer resources for equivalent accuracy. Because the X scheme is 

explicit, it can be readily vectorized. Hence even more saving in CPU 

time is expected. The drawback of the X scheme is its non-conservative 

property. Therefore some kind of shock-tracking technique should be 

introduced if it is used to solve hypersonic flow problems with strong 

shock waves.
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6.2 Prospect of Future Research

The research work carried out so far is by no means complete, even

in the aspect of the simulation of hypersonic flows. However, this

research has certainly laid a solid foundation for more future research 

in both the development of numerical algorithms and simulations of 

realistic flows. Some areas of likely concentration for future research,

I believe, can be identified. These include:

1) The improvement and application of the high-order X scheme to 

systems of hyperbolic conservation laws is expected to provide one of 

the most profitable research directions. Effort will be made to express 

the X scheme in conservation form. If it fails, then some kind of front 

tracking techniques needs to be introduced into the method to tackle 

problems with strong discontinuities such as shock waves, etc. The 

application of the X scheme to three-dimensional flow simulations is 

expected to have even more advantages. Obviously, its application to 

viscous flow problems is another interesting research topic.

2) The time-marching general 3D Navier-Stokes approach is still

quite expensive. Ways to improve convergence and to reduce CPU time have 

to be pursued for its routine application. For example, a multi-grid 

approach may be utilized to speed up convergence rate; a vectorization 

technique may be applied to the code to reduce the CPU time to converg­

ence. Another way to improve efficiency is expected through the use of a 

time-marching procedure only in subsonic flow region and a space-

marching procedure in the supersonic flow domain. This necessitates the 

so-called parabolized Navier-Stokes method to be adopted in the code.
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3) To attack flow problems at very high Reynolds number, appropriate 

turbulence models must be introduced into the code. This demands the 

development of more advanced usable yet effective turbulence models.

4) The simulation of hypersonic flows at very high Mach number 

requires the introduction of real gas effects and realistic chemical 

reaction models. Because of that, the governing equations would have 

stronger non-linear interactions. The resultant non-linear system would 

thus have increased stiffness. Therefore new numerical algorithms may be 

needed to solve the system of equations.

5) Mesh generation techniques for complex three-dimensional geome­

tries is another important branch of research. Multi-zone techniques, 

adaptive mesh redistribution and refinement, and unstructured triangular 

grid generation, etc. can be deciding factors to obtain adequate resolu­

tions of all the important features of really complex flows. They all 

offer opportunities for future research to be done.

Nearly three years work in CFD has been a great experience to me, 

unlike any other one in my life. This is particularly true since I am in 

a country where I have never been before and speak a totally different 

language from my mother tongue. In the process of this research, I have 

had moments of difficulty, frustration, and disappointment as well as 

moments of excitement, self-achievement and personal reward. I believe 

that is a common character of any research work. I feel it is fortunate 

for me to have reached the current state. If anyone finds information of 

value in this thesis, I would be satisfied.
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APPENDIX A

The Jacobian Matrix of the Inviscid Flux

The inviscid Jacobian matrix M can be expressed in the following form 

(see Chapter 2):

M = k A + k B + k C= 1 2  3

k L-U#1
k l-v #2
k L-W&3

-#(yEtp_1-2c)

#-k (y-2)ul
k v-k (y-l)u 1 2
k w-k (y-l)u 

k ( y E tp"1-c)-(y-l)u#

k2U~ki
#-k2(y-2)v

k w-k (y-l)v 2 3

k (yE p^-t)-(y-l)v#

k u-k (y-l)w3 1

k V-k (y-l)w 

^-k3(y-2)w 
k (yE p-1-(. )-(y-l)w&

k (y-1)l
k2(y-l)

k3(y-l)

y#

where

# = k u + k v + k w1 2  3

l = (y-1)
2 2 2, U + V + W

M can be expressed as

M = RAR-l
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with

A =

•&

#+ka

#-ka

where

=  /k^+ i 2  ̂i 2k + k1 2  3
. Pia = \^\

1/2
and

R =

k ul
k v + k p1 3k
k w - k p 1 2

[k t/(y-l)+p(k v-k w)]1 3 2

k v - k p2 3
k v 2

~k w +~k p 2 1 K
[k2t/(y-l J+pCk^w-^u) 3

a a

k u + k p3 2 a(u+k a)l a(u-kia)
k v - k p 3 r a(v+k a) 2 a(v-k a) 2

k w3
[k t/(y-l)+p(k u-k v)]3 2 1

a(w+k a)3 a(w-k a)3
a [ U + a  )/(y-l)+#a] a [ U + a  )/(y-l)-#a]

where

1 k k k 1 r 1 r 2 i~ 3  ~ ®a = ---— , k =r-, k =— , k =;— , •&= -2 2 i k ’ 2 k ’ 3 k ’ k
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and

R"1 =

k^l-c/a )-(k3v-k2w)/p 

k (l-c/a2)-(k w-k u)/p2 1 3
k (l-t/a2)-(k u-k v)/p3 2 1

U-tfa)

(t+#a)

k (y-l)u/al
k (y-l)u/a2-k /p2 3
k (y-l)u/a2+k /p3 2
- [(y-l)u-kia]

- [(y-l)u+k a]l

k (y-l)v/a2+k /p1 3
k2(y-l)v/a2 

k (y-l)v/a2-k /p3 1
- [(y-1)v-k a]2
- [(y-l)v+k a]2

k (y-l)w/a2-k /p 1 2
k (y-l)w/a2+k /p 2 1 r
k3 (y-1)w/a2

- [(y-l)w-k3a]

- [(y-l)w+k a]3

-k (y-l)/a2l
-k2(y-l)/a2 

-k (y-l)/a23

(y-1) 
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APPENDIX B

Grid Generation Technique by Solving the Laplace Equation

Thompson et al. [36] have worked extensively on using elliptic 

partial differential equations (PDE) to generate grids. Source terms are 

introduced to control the distribution of the grid lines. In this 

research, an alternative method is suggested to control the distribution 

of the grid points, which is in some way more straightforward.

Let Cartesian coordinates (x,y) denote the physical space and (£,7)) 

denote the computational space. An intermediate space is introduced 

which is denoted by (£,i7). Assume that the physical space is related to 

the intermediate space (£,77) by the Laplace equation

€ + € = 0  xx yy
(B.l)

7} +77 =0.
xx yy

The computational space (£,17) relates to the space (£,77) by a stretch 

function which controls the grid point distribution in the physical 

domain. For example, if we require that the grid points are clustered at 

i7=i7o, the following function can be used

d(tm7 ) -D(77-17 )
77 = f (77) = e - e 0

(B. 2)
€ = 5

where D is a parameter which controls the degree of the clustering of
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the grid points to 77 = t7q. Eqs. (B. 1) and (B.2) are now transformed to 

the computational space by interchanging the roles of the independent 

and dependent variables. This yields the following equations

a x ^  - 2(3x^ + yx - yx D tanh[D(77-77 )] = 0qq q7) 7J7) 7) 0

a y ^  - 2/3y + yy - yy D tanh[ D( 77-77̂) ] = 0qq q77 7777 77 0

(B. 3)

where

2 ^ 2  a = x + y77 7J
P = xcx^ + y*y„ q 1? q 77

2 ^ 2r - + y

Eq. B.3 can be solved using available finite difference method subject 

to appropriate boundary conditions. In practice, orthogonal mesh is 

preferred especially on the boundary. We thus consider a boundary deter­

mined by the following equation

T(x,y) = 0 (B.4)

On the computational space, this boundary is represented by a coordinate 

1 ine

7)(x, y) = 0

If coordinate line £ is vertical to 77 on the boundary, the following 

equation must be satisfied
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or

(i? i + 77 j) • (£ i + £ j) = 0x y x y

£ 77 + £ t? = 0  (B. 5)x x  y y

But

y„ -x( r  , r  ) oc (77 , 77 ) and € = 4  ? = — 2*x y  x y  x J y J

where J is the Jacobian matrix of the transformation. Hence

r y - T x = 0 (B. 6)x 77 y 77

Eqs. (B.4) and (B.6) can be used to decide the distribution of grid 

points on the boundary.
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APPENDIX C

Stability Analysis

In the research included in this thesis, the viscous flux Jacobian 

matrices are dropped from the implicit operator. It will be shown here 

that at high Reynolds number, this procedure would not affect the stabi­

lity condition of the original scheme by the study of the one­

dimensional linear Burgers’ equation.

First the linear wave equation in one dimension is considered,

Scheme (C.3) is unconditionally stable and is second-order accurate in 

space.

i.e. ,

(a>0) (C.l)

The following implicit scheme is employed to tackle (C.l)

(C. 2)

Eq. (C.2) can be written in A form as

(C.3)

where D = u j J
n + 1 Unj
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Consider the first-order upwind scheme

n+l n n+1 n+1U -U U -u
+ a J A J-1 = 0At Ax

or

(l+r)D - rD = - i>(un - un ) (C.4)j j-i j j-i

This scheme is also unconditionally stable. However the steady-state 

solution of (C.4) is only first-order accurate in space. If we use the 

following hybrid scheme

(1+1>)D - 1>D, = - "(u“ , - u" ) (C.5)j j-i 2 j+i j-i

then the steady-state solution would be second-order accurate in 

space. The amplification factor of (C.5) is found to be

r _ (1+r) ~ rcos/3  f .
(1+y) - vcosfB + ivsinp

It is obvious that |G| ^ 1. So scheme (C.5) is also unconditionally 

stable.

Now if we solve

du 5u _ 1 S2u . .
st + as s - R ? r ¥  (c-7)5x

then the following scheme is used
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(l+y)D - vD = - %{un - un ) + —^ — (un - 2un + un )j J-I 2 J + 1 j-1 ReAx2 3+1 j 3-1

The amplification factor of (C.8) is

G _ (l+i>) - vcos/3 - 2At(l-cos£)/(ReAx2) 
(1+r) - vcosfB + irsin/3

Eq. (C.9) can be written as

q  - l+^(l-cos/3)[!-2/(aReAx)]
” (1+y) - rcos/3 + ivsinp

Because v > 0, so if

1+v(l-cos/3)£l- ajfe^x]| “ l+i>( l~cos/3) or 

-1-v(l-cos/3) =£ 1+r(l-cos/3) |l- - l+v( l-cos/3)

scheme (C.8) is stable. If the following inequalities

1 - - =£ 1 and ss 1 + 1aReAx aReAx r( l-cos/3)

are satisfied, (C.ll) is true. If

1 - 1 1 + s—aReAx 2v

is correct, then (C.12) is true. That means

At(1-aReAx) s

— 147—

(C.8)

(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)



Appendices

iIf Re ^ Ĉ. always true.

1If Re < — r— , for (C.14) to be satisfied, we should have aAx

.. ^ ReAx2/2 At ^ 1-aReAx

1Thus it has been proved that whenever Re £ — r— , scheme (C.8) is uncondi-aAx
tionally stable.
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