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SUMMARY

The theme of this research is to simulate laminar three-dimensional
hypersonic flow by an appropriate numerical procedure. Naturally two
main topics are covered: 1) the development and evaluation of the nume-
rical algorithms, and 2) the simulation of the associated flow and the

presentation of the numerical results.

The recently emerging high resolution Total Variation Diminishing
(TVD) schemes are chosen to serve that purpose. The Osher-Chakravarthy
and Yee TVD are particularly prominent in steady-state calculations.
These schemes have an excellent shock-capturing ability when used to
solve inviscid flow problems. However, it is still unclear whether they
retain their high resolution properties for predicting viscous shear
layers. Therefore detailed investigation has been conducted to evaluate
their capacities to resolve shear layers and boundary layers occurring
in viscous flow at high Reynolds number. During the study, it has been
found, through both numerical analysis and experiment, that the Osher-
Chakravarthy scheme possesses much lower numerical dissipation than the
Yee scheme and thus is favoured in the simulation of viscous flows.
Remedies to reduce numerical dissipation for the Yee scheme have been
suggested. Excellent results have been obtained using the modified

schenes.

Confidence gained with these high resolution schemes has led to
their applications in the simulation of three-dimensional hypersonic
flow. The resultant code has been tested on two simple cases, one invi-

scid and one viscous. Excellent agreement with the well-documented nume-

vii



rical results has been found. Then the code is employed to solve a
hypersonic flow around a double ellipsoid at a high angle of attack
representing the forebody of a space vehicle including a canopy. Experi-
mentation on this case has been carried out to validate results of nume-
rical analysts. There are found excellent agreements between numerical
and experimental results on almost every aspect including the Stanton
number in the separatioﬁ domain on the leeside direction. This case has

fully demonstrated how successful a numerical simulation can be.

In parallel to the work stated above, much effort has been devoted
to numerical flow visualization techniques which constitute an extremely
important ingredient in the simulation of three-dimensional flow. Nume-
rical algorithms are discussed on the plot of iso-contours and the
tracking of the streamlines or the oil-flow pattern on a body surface.
These techniques have been successfully used to dispiay the numerically-

simulated flow pictures.

In the applications of the high resolution schemes to the simula-
tion of three-dimensional flow, it has been found they are still quite
time-consuming. Therefore, an effort has been made to seek more effi-
cient schemes which have almost the same level of resolution. This
effort has resulted in the so-called X scheme developed by the author. A
different grid pattern is employed to build up the X scheme so that it
can be four times as fast as the conventiqnal scheme while maintaining
the some accuracy. The scheme has been tested on several cases. It has

shown great promise for wider applications.

viii



Chapter 1 Introduction

CHAPTER 1

INTRODUCTION

1.1 Demands of Three-Dimensional Hypersonic Flow Simulation

In recent years the understanding of flows at high Mach numbers and
large angles of attack, occurring during the atmospheric reentry of
spacecraft, has regained considerable attention because of the develop-
ment of new space vehicles and planning of future supersonic and hyper-
sonic airplanes [2,13]. The extreme physical conditions during this
critical phase are prohibitively difficult to realize in wind tunnel
experiments if at all possible, because of the rarefied atmosphere, the
very high temperatures, and possible chemical reactions. If some rela-
tively feasible experiments can be done, they tend to be very costly.
Numerical simulation of the associated flow, therefore, will play a
major role in the process of the project validation leaving experiments

mainly to serve as a validation procedure for numerical methods.

In order to model realistic and hence very complex flow conditions,
the solution of the full three-dimensional fluid motion is demanded.
This is due to the fact that many fluid dynamic phenomena such as cross
flow separation and cross flow shock waves etc. can only be resolved by
such a solution. With the increased capacities of the present super-
computers and the development of more robust and more efficient numeri-
cal algorithms, this has become entirely feasible. In fact, some useful-
ly accurate three-dimensional hypersonic viscous flow simulations have
emerged in the literature [26,27]. However, they all demonstrated defi-

ciencies in one respect or another. For example, some are too expensive
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to be used routfnely, and some others are not sufficiently robust to
tackle difficult flow problems. Because of that, much research effort is
directed towards seeking of even more efficient and/or more accurate
numerical techniques. This effort will advance the knowledge of even

more complicated flow phenomena.
1.2 Challenges Provided by This Task

The numericai simulation of three-dimensional hypersonic flow is a
considerable chailenge for a variety of reasons. In addition to the well
known difficulties associated with the determination of transition and
with the modelling of turbulence in compressible flows at high Reynolds
number, problems are encountered associated with the special features of

hypersonic aerodynamics, which are discussed in detail as follows:
a. The effect of high Mach number

The most striking difference between flow at subsonic and supersonic
speeds is the formation of a shock wave ahead of vehicle shapes. The
strength of the éhock is decided by the free stream Mach number and the
angle between the vehicle and the free stream direction. The flow behind
the shock is usually a mixture of subsonic and supersonic fluids. There
are large differences in the entropy rise of the fluid crossing the
shock at different angles. This results in the generation of the so-
called entropy layer, which plays an important part in determining the

flow field.

The numerical modelling of the shock wave has been one of the most
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difficult problems encountered during the development of CFD. In theory,
a shock is a discontinuity existing in the solution. In practice, it is
either fitted by applying the Rankine-Hugoniot conditions or is captured
as a steep gradient by adding numerical dissipation. Because of the
difficulty in applying the shock-fitting technique to some complex flow
situations, the shock—capturing procedure has gained favour in the CFD
community duringvthe past few years. Research in high-resolution shock
capturing schemes [8,10,16,17,46-49] has attracted considerable atten-
tion. So far many excellent results have been achieved. On the other
hand, the quality of the resolution of shock waves comes at a compara-
tively high cost because of the quite complicated features of the high
resolution schemes used. Hence, research into more efficient schemes

while maintaining their high accuracy is still under way.
b. Real gas effects

At the high temperatures which exist behind the shock for hypersonic
flight, the temperature energy of the gas becomes comparable with the
energies associated with various molecular and atomic processes, such as
excitation of the vibrational modes of the molecules, dissociation and
ionisation. Under these conditions the gas no longer behaves as a per-
fect gas having a constant value of the ratio of specific heats, and the
energy which is involved in these processes must be taken into account

when calculating the flow field.

As a first stage of the modelling of real gas effects, many app-
roaches are based on the use of a small constant value of ¥ (the ratio

of specific heats). This is an approximation for real gas effects which
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can hold for a wide range of hypersonic flight conditions. More accurate

simulations require more accurate physical models to be built up.
c. Non-equilibrium effects

Thus far in the discussion of real gas effects, the assumption has
been made that the gas is in thermodynamic equilibrium at all points in
the flow field. However, the transfer of energy to vibration models, and
the process of dissociation and ionisation, together with the recombina-
tion which occurs in regions where the temperature is falling all re-
quire a finite time, the so-called "relaxation time", before equilibrium
is reached. If the rate processes are happening very rapidly, there may
not be time for thermodynamic equilibrium to be established. These pro-

cesses wWill cause the non-equilibrium effects.

Numerical simulation of non-equilibrium flows has been explored
recently. Generally speaking, it suffers from the lack of availability
of accurate physical models. Much work is to be done on this aspect
rather than the relevant numerical methods.

3

d. Viscous effects

At high Mach numbers very high temperatures will be developed in
regions where flow is decelerated, such as in boundary layers close to
surfaces. Very steep changes are thus expected in the temperature pro-
file, resulting in very strong kinetic heating processes within the vis-
cous layer. Separation effects, too, may become important in hypersonic

flows, because of the prevalence of thick laminar boundary layers which
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do not readily withstand adverse pressure gradients.

The successful simulation of a hypersonic flow is largely decided by
the accuracy of the simulated heat transfer rate on the surfaces since
the heating process is the key interest of aerodynamic designers. This
requirement demands accurate resolution of the viscous layers, another
one of the most difficult probiems in CFD. In a viscous flow simulation,
the approach hinges on the control of the numerical dissipation which is
required to stabilize the numerical scheme. In principle, numerical dis-
sipation should be well below the physical dissipation for a successful
simulation to be carried out. However, the complexity and the nonlinea-
rity of the employed mathematical models make it impossible to accurate-
ly analyze the embedded numerical dissipation. Hence the accurate solu-

tion of the viscous boundary layer is still far from complete.

e. Rarefied gas effects

At normal altitudes and velocities the air flowing past a vehicles
can be treated as if it were continuum. At high altitudes, the air be-
comes less dense, and the motion of the individual gas particles becomes
important. The parameter which determines the onset of rarefied gas
effects is the Knudsen number, Kn, which is the ratio of the mean free
path to a typical body dimension. The continuum flow model starts to

break down when Kn is of the order unity.

The governing equations to be solved for rarefied gas flow are the
Boltzmann equations. The problem is out of the range of this research.

It will not be considered further.
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1.3 Overview of Numerical Methods for High Speed Flow Simulations

As pointed out in thé last section, one of the most distinguishing
features of a high speed flow is the strong shock wave, which represents
a discontinuity in the solution. Since the very early days of the
appearance of CFD, great effort has been devoted to the numerical simu-
lation of discontinuities. A brief survey on shock-modelling techniques

is now given.

The first natural idea to model a shock wave is to treat the shock
as an internal boundary of discontinuity. The evolution of the shock
wave 1is governed by the Rankine-Hugoniot conditions. The technique
embracing these conditions is called the shocking fitting method (e.g.
[22]). The advantage of shock-fitting is obvious. It gives an accurate
résolution of the discontinuity. The difficulty is that the structure of
the discontinuities and their interaction must be known or easily anti-
cipated. Special sensors must track each discontinuity and the programm-

ing logic becomes complicated.

Another possibility is to abandon the exact resolution of the shock
wave and to allow the discontinuity to develop as a continﬁous steep
gradient in the solution. This shock capturing idea is now the most
common in engineering practice. The method is simple to program since a
formula with the same structure is used over all the computational do-
main. No knowledge of the type and location of the discontinuity is

needed.

A practical shock-capturing scheme should satisfy three criteria.
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First, the scheme should be dissipative. For some non-dissipative
numerical schemes, artificial viscosity should be introduced. Second,
the scheme should be in conservation form. This is a necessary condition
for correct positioning and strength assessment of the shock wave.
Third, the schemé should satisfy an entropy condition to ensure the

captured shock to be the physically relevant one.

The shock-capturing schemes can be divided into two main categories
—_ according> to space differencing — central difference and upwind
schemes. Exampleg of central difference schemes are the Lax-Wendroff,
MacCormack [21], Beam-Warming [3] schemes and the Jameson centered
multi-stage RungeQKutta method [19], etc. The central difference schemes
all suffer from a lack of dissipation. Therefore, the success of these
schemes depends largely on the detailed construction of the model for
artificial viscosity. The amount of viscosity added to the scheme is
usually problem-dependent, thus tending to make the scheme non-
universal. On the other hand, upwind schemes follow the characteristic
direction of the wavefield and reflect the physical interaction of the
waQes in the flow. They are essentially dissipative. These schemes
include the Godunov scheme [14] which has been extended to second order
accuracy by van Leer [39], the Boris and Book Flux-Corrected Transport
method [4,5], the Steger-Warming [32] and van Leer [40] flux vector
splitting, the Osher [24] and Roe [28] flux difference splitting and the
high-resolution Tétal Variation Diminishing (TVD) [16] and Esseﬁtially
Non-Oscillatory (ENO) schemes [11,17]. In the past decade, these séhemes
have achieved great success in the modelling of shock waves. Particular-
ly the TVD and ENO schemes represent the state-of-the-art techniques for

the modelling of discontinuous problems of the hyperbonic conservation
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laws.
1.4 The Scope of This Study

The current research represents the first step towards the accurate
simulation of three-dimensional hypersonic flow. Because of that, the

flow simulation is based on the following assumptions:

a. The flow is thermally and calorically perfect without any chemi-
cal reactions. As mentioned earlier, accurate universal models account-
ing for the real gas effects are yet to be found. Furthermore, a perfect
gas assumption will allow the numerical results to be readily compared
with the well-documented experimental data so that the numerical tech-

nique can be easily validated.

b. The flow is in the continuum regime. The reason for this are two
fold. First, hypersonic flight occurs mostly in this regime. Secondly,
rarefied gas flow simulation leads to a different problem from the one
the author is interested in, 1i.e.

, the solution of the Navier-Stokes

equations.

c. The flow is laminar. It was estimated that accurate simulation of
turbulence is beyond the reach of modern supercomputers, while the solu-
tion of the Reynolds averaged Navier-Stokes equations is largely restri-

cted by the quality of turbulence models available.

The success of such a flow simulation lies in the accurate informa-

tion of both pressure loading and particularly kinetic heating on body
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surfaces. This again necessitates the high resolution of the strong
shock wave and the viscous boundary layer — two key features of hyper-
sonic flows. Both are concerned with very steep changes in the flow
variables. It is well known that the associated numerical scheme plays
the most important role in the whole simulation. Its accuracy, effi-
ciency and robustness greatly affect the quality of the solution.
Because of that, considerable attention is paid to the evaluation of the

numerical algorithms.

The successful application of the high-resolution TVD schemes in the
solution of supersonic inviscid flow [34,42] tempted many people to use
them directly to the solution of the Navier-Stokes equations. Although
some good results are achieved, it has been found that the dissipation
pattern within each TVD scheme is quite different [43,44]. Blind appli-
cations of TVD schemes to solutions of viscous flow can cause unrepre-
sentative results. In some cases, the dissipation embedded in a TVD
scheme may be more than required to resolve the boundary layer and may
overwhelm the physical dissipation. This phenomenon is studied and a new
approach is suggested which has been proven to be superior to the origi-
nal technique. Confidence gained in the numerical schemes has resulted
in their applications to three-dimensional flow simulations. It is,
however, found that they are still too costly to be put into routine
calculations. The work has therefore started to search for more effi-
cient numerical sohemeé while not compromising their robustness and
accuracy. This work has resulted in the new high-order X scheme deve-
loped by the author. The X scheme is far more efficient than TVD
schemes. It also demonstrated very good resolution for shock waves.

Further work is to be done to extend its application to hypersonic flow
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simulation though it has already shown great promise.
1.5 Layout of the Thesis

The main topics of this research are the development of robust,
accurate and efficient numerical algorithms and the simulation of three-
dimensional hypersonic flows. Accordingly, the thesis is naturally divi-
ded into six chapters. In Chapter 1, we have already given a brief
introduction to this study. The mathematical models of fluid motion are
discussed in Chapter 2. Then detailed investigation into the discretiza-
tion of hyperbolic conservation laws is conducted in Chapter 3, and
Chapter 4 1is devoted to an efficient explicit scheme for multi-
dimensional flow problems. Later the simulation of hypersonic flows and
the flow visualization techniques are presented in Chapter 5. Finally,
conclusions from the research and recommendations to future work are

given in Chapter 6.

—10—
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CHAPTER 2

MATHEMATICAL MobDELS oF FLuiD MoTioN

2.1 Formulation of Conservation Laws in Integral Form

The movement of matter in nature is goverﬁed by three universal
principles, which are conservation of mass, conservation of momentum,
and conservation of energy. Fluid motion is no exception. Let the posi-
tion vector r of a point and time t be defined with respect to an iner-
tial reference frame represented by the Cartésian coordinates x,y,z. If
the flow region is divided into small subregions called cells, the

general form of a conservation law for a given cell is then [41]

J Hdv=J HdV—J‘2§ n-£dsdt +r2J Pdvdt (2.1)
V(tz) V(ti) t1 S(t) t1 V(t)

where V(t) is the cell volume, ndS is a vector element of surface area
with outward normal n, H is a conservative variable per unit volume, f
is the flux of H per unit area per unit time, and P is the rate of pro-
duction of H per unit volume per unit time. The cells are assumed to be
fixed in space and time. The conservative variable H can be both scalar
and vector. Examples are density p, total energy per unit volume Et, and
the momentum per unit volume m=pv. If H is a scalar, then f is a vector;
while if H is a vector, f is a tensor. If we assume all variables are

continuous in time, then Eq.(2.1) reduces to

H%J Hdv+§ n-de=J PAV (2.2)
v s v

—11—
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This is the usual statement of a conservation law. If it is assumed that
there is no mass and energy production and there is no body force in the
fluid flow (P=0), the following conservation laws can be obtained by

substituting the corresponding conservative variables into Eq.(2.2),

E%J pdv+§ n- pvdS=0 (2.3)
A S
4 ;
EEJ pvdv+§ n: (pvv-M)ds=0 (2.4)
\ S
H%J Etdv+§ n'(EtV+q-H'V)dS=O (2.5)
A S

where T is a tensor representing the stress subject to the surfaces of
the cell, and q is a vector indicating the rate of heat lost per unit
area by conduction through the cell surface. Let u, v, w be the veloci-
ties in the %, y, z directions respectively, and if the fluid is Newton-

ian, the stress takes the form

J

= RN |
Hlj- paij+“[2xj+6x1

u Jdu du
] u’ (i, 3,k=1,2,3) (2.86)

_K
ijaxk

where 61; is the Kronecker delta function; ul, u, u and x, X, X

2 1 2 3

stand for u, v, w and x, y, z correspondingly; p is the pressure and p
is the coefficient of viscosity and p’ is the second coefficient of vis-

cosity. Usually, it is assumed that

The stress tensor is frequently separated in the following manner

—12—
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M =-pd +T (2.7)
1) 13 1)
where
ui auj 2 6uk
= _—] - — i, j. k= . (2.8
T, u[ 5§;+6Xi] §6156xk] (i, Jj,k=1,2,3) (2.8)

Fourier’s law for heat transfer by conduction will be assumed so that

the heat transfer q can be expressed as

q=-kVT (2.9)
where k is the coefficient of the thermal conductivity and T is the
temperature. Generally speaking, the integral formulation is convenient
for finite volume discretisation.

2.2 Formulation of Conservation Laws in Differential Form

The differential formulation is obtained by applying Eq.(2.2) to a
differential cell in physical space dxdydz. Let i, j,k be unit vectors in

the x,y,z direction respectively. Eq.(2.2) then takes the form

d(Hdxdydz) a8(i-fdydz) . 8(j-fdxdz) , d(k-fdxdy) . _
5T g dx+ 3y dy+——5_ —dz=Pdxdydz (2.10)

or simplified further (assuming P=0)

5€+ ox ay oz ’ (2.11)

GH 8(i-f) 8(j-f), a(k-£)_

— 13—
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The differential form of the conservation laws of mass, momentum, and

energy can then be expressed as

dp + dpu + dpv + 8pw

5t * 3x 3y 37 =0 (2.12)
dpu a 2 a _ 8 _ -
3% * 5§(pu +p txx)+5§(puv rxy)+52(puw sz) 0 (2.13)
apv e] o} 2, 8 _ _
5 * gi(puv Txy)+5§(pv +p Tyy)+5z(pvw ryz)—O (2.14)
dpw 3 _ 3 _ 8, 2 -
FT * G PINT, ) gy (PwveT J4m(pw pmT )=0 (2.15)
aEt 3
W * 5>"<( Etu+pu_urxx—vrxy—mxz+qx) *
g—(E V+pV-UT -VT =-WT +q )+—§{E w+pw—ﬁt -vT -wt +q )=0 (2.186)
dy 't Xy vy yz y 8z "t Xz yz zz 'z

where the components of the viscous stress are given by Egs.(2.8). This
form of equations is particularly useful for finite difference discreti-

zation.

2.3 Equation of State

In order to close the system of fluid dynamic equations it is nece-
ssary to establish relationships between the thermodynamic variables
(p,p,T) as well as to relate the transport properties (u,k) to the
thermodynamic variables. Since a perfect gas assumption is used in this
research, we can easily establish the following relations. The perfect

gas equation of state is

p=pRT (2.17)

where R 1is the gas constant. For air at standard conditions,
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R=287m>/s%Kk. Also for a perfect gas, the following relationships exist:

Cc

- = =P =R 2R
e=c T h—cpT r=Z e (2.18)

v

Here e is the internal energy per unit mass; h is the enthalpy per unit
mass; c, is the specific heat at constant volume; cp is the specific
heéi at constant pressure and ¥y is the ratio of specific heats. Further

equations can beé derived from Egs. (2.17)-(2.18). For example

T=(3’-1)e

R (2.19)

p=(7-1)pe
The coefficients of viscosity and thermal conductivity have been
related to the thermodynamic variables using kinetic theory. For

example, Sutherland’s formula for viscosity is given by

372

=C —e (2.20)
2

where C1 and C2 are constant. For air at moderate temperature,

C1=1.458><10-6 kg/(m s vK) and C2=110 K. The Prandtl number

c p

Pp:._{z_ (2.21)

is a constant (Pr=0.72 assumed) for air at standard conditions  This
equation can be used to get the value for k once p is decided from

Eq. (2.20).
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2.4 Non-Dimensional Form of Equations

To obtain the flow behavior around bodies of similar shape with
minimum computational effort, it is desirable to put the governing equa-
tions into nondimensional form. Many nondimensionalizing procedures are

available. The following procedure is adopted here

*X Y *_z bt
x= ys z=g t LAV
u=" v =y w=l M
v v =

[ve] o] [s4] o]
P W T e
p P P 2 T T € 2
© pwVw © Vc°

where the nondimensional variables are denoted by an asterisk, free-
stream conditions are denoted by » and <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>