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1.

" S T U D I E S  i n  n a t u r a l  P R O D U C T S  "

John A. Akinniyi

SUMMARY

This thesis consists of a General Introduction dealing briefly 

with the biogenesis of terpenoids and ten chapters. Chapters I to VI 

are concerned with the chemistry of tetranortriterpenoids, a group 

of modified triterpenoids from the Meliaceae and Rutaceae families.

The present state of knowledge of these compounds is reviewed in 

Chapter I. This is followed by discussions of the result of an 

investigation into the attempted conversion of the tetranortriterpenoid 

geduninr to a simple decanortriterpenoid related to quassin (Chapter II), 

Although the desired compound was not obtained some success was 

achieved in the introduction of an oxygen in ring C (C-12). Chapter III 

describes the structural elucidation of two new 3,4-secotirucallane 

derivatives and 2'-hydroxyrohitukin from the bark of Guarea cedrata.

A partial synthesis of the seco-acids from elemonic acid is also 

described. The structures of four complex tetranortriterpenoids 

from Trichilia dregeana form the subject matter of Chapter IV. This 

is followed by a discussion of an investigation into the tetranortriter

penoid constituents of the bark of Turrea floribunda. Two new compounds 

were isolated from this source (Chapter V ) . A reexamination of a 

rearrangement of mexicanolide is the subject matter of Chapter VI.



Chapter VII is concerned with the structure of roxburghilin 

and compound (13), both bis-amides of 2-aminopyrrolidine, from the 

leaves of Aglaia roxburghiana and Chapter VIII with the structure of 

a labdane dialdehyde from Afromomum daniellii (Zingiberaceae).

Detailed consideration of spectroscopic properties of these compounds 

and correlation with synthetic derivatives led to the structures 

indicated.

Three sesquiterpenoid lactones, aguaianolide and two germacranolides 

from Vicoa indica form the subject matter of Chapter IX. Detailed 

consideration of the spectroscopic properties of these compounds led 

to biogenetically acceptable structures. The final details of 

conformation and stereochemistry remain to be determined.

The last chapter deals with neolignans from Myristica fragrans.
1 13The structures were assigned by H and C n.m.r. and those of the 

phenyl coumarane type compounds were confirmed by partial synthesis 

from isoeugenol.
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3.

Natural product chemistry has continued to grow rapidly since the 

middle of this century. The potential use of natural compounds and their 

biogenetic relationship make the study of natural products and of terpenoids 

in particular, a subject of fascination for organic chemists. Structural 

elucidation, with its inherent tendency to diverge, has provided many

interesting inroads into the chemistry of carbocyclic compounds in general.
5Despite the vituperative assertions of Cookson, this type of research 

will continue to be pursued with undiminished vigour owing to Nature's 

unique ability to construct exotic structures. The wealth of information 

derived from studying the diverse structural types and biosynthetic path

ways has played a significant role in the development of general chemical 

concepts.4

In the terpenoid field, findings led to the generalization known as 

the 'Isoprene rule', first proposed by Wallach in 1887 and later developed 

by Robinson,^ which states that terpenoids have a carbon skeleton formed 

by isoprene units linked head to tail. This was later modified by
7Ruzicka who proposed a 'Biogenetic Isoprene Rule' to account for a number 

of substances whose skeleta cannot be constructed from intact isoprene 

units. The 'Biogenetic Isoprene Rule' proposed that they can arise from 

isoprenoid precursors by removal or addition of one or more fragments or 

by molecular rearrangements or by a combination of these processes.

To attempt an exhaustive classification of natural products which 

covers almost all types of organic molecules would be beyond the scope of 

this work. It is sufficient for our purpose to say that classifications 

are generally based on either one or a combination of the following

criteria. (a) Molecular skeleton1 (b) Physiological activity
2 . 3 1 5(c) Taxonomy and (d) Biogenesis. '
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8 15Terpenoid biosynthesis. ' The recognition of acetic acid, in the

form of acetyl coenzyme A, as the fundamental biogenetic progenitor of

all terpenoids is now well-established, and a major breakthrough in the

search of the proposed C precursor was provided by the discovery of 
9mevalonic acid (3) in 1956. It was found that the labelled R-isorner

is incorporated quantitatively into cholesterol on incubation with cell
14free rat liver homogenate. Under anaerobic conditions 2- C-mevalonic 

acid is converted to squalene (10). In all cases it was observed that 

C-1 is lost as C O ^ • Decarboxylation is known to occur prior to the 

formation of the terpenoid chain and a discrete five-carbon unit is 

formed.
14The biosynthesis of mevalonate from C-acetate has been the subject

1 0of many biochemical studies. The current view can be summarised as

follows - (Scheme 1). Mevalonic acid (3) is derived from S-3-hydroxy-3-

methylglutaryl coenzyme A (2) by NADPH reduction. (2) arises by an aldol

condensation of acetoacetyl coenzyme A (1) with acetyl coenzyme A. The

formation of isopentenyl pyrophosphate (IPP) (4) and the isomeric dimethyl

allyl pyrophosphate (DMAPP) (5) from mevalonic acid (3) can be visualised

as in Scheme 2. The subsequent conversion of (4) and (5) to acyclic

terpenoid precursors is represented by Scheme 3. It is noteworthy that
11most natural acyclic polyisoprenoids are 'all trans1. For the purpose

of this work it would be pertinent to discuss briefly, only the accepted

biogenesis of the triterpenoids in general and the diterpenoids with

particular reference to labdane.

The cyclisation of geranylgeraniol to diterpenoids probably conforms
1 2with the stereochemical postulates of Eschenmoser et al. These were 

originally applied to triterpenoids, but in principle can be extrapolated



to the other polyisop renoids. The main conclusions derivable from 

Eschenmoser's work are:

i) The acyclic precursor is folded at the enzyme surface, into a 

specific conformation.

ii) Concerted cyclisation occurs by trans-planar addition to the 

double bonds.

iii) All subsequent rearrangements and/or eliminations proceed in 

accordance with optimal stereoelectronic requirements, i.e. the affected 

groups are trans-antiparallel. Thus cyclisation of geranylgeraniol or 

the isomer geranyllinalool can occur to form the antipodal bicyclic 

alcohols (8) or (9) (Scheme 4). The naturally occurring labdanes are 

based on the enantiomeric bicyclic alcohols (8) and (9) with a trans- 

anti backbone.

Squalene (10), the progenitor of triterpenes and steroids, is

derived from two farnesyl pyrophosphate (11) units joined in the unusual
13 10head to head fashion. ' The process is believed to occur via the

14intermediate presqualene alcohol (12) and its stereochemistry has been

elucidated by tracer studies. A reasonable mechanism is shown in Scheme 5.

The polycyclic structures formed from squalene can be rationalized in

terms of the ways in which squalene may be folded on the enzyme surface.

For instance, the formation of euphol (13) (or tirucallol), the putative

precursor of the tetranortriterpenoids, involves cyclisation of squalene

in the chair-chair-chair-boat conformation (14) (see Scheme 6). The

corresponding chair-boat-chair-boat folding leads to lanosterol (15) and

hence the steroids. Cyclisation is usually initiated by acid opening of

squalene monoepoxide (14). Only the (3S)-enantiomer is used by a wide
11variety of biological systems.
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C H A P T E R  I

R E V I E W 0 F T E T R A N O R T R I T E R P E N O I D S



The tetranortriterpenoids or limonoids form a class of diverse

structural types based on a C ^  carbon skeleton containing a 6-substituted
1 2furan. They are found mainly in the -Rutaceae, Cneoraceae and Meliaceae '

and some have interesting biological activity. Investigations in this
3field were stimulated by the elucidation of the constitution and con

figuration of limonin (1) in 1960.
4By 1964 it had become apparent that quassinoids, a group of C and19

5C 20 compounds related to quassin (2) whose structure was established

in 1962, probably share a biosynthetic pathway with limonin and its

relatives. The first direct evidence for this hypothesis came in 1966

from the incorporation^ of labelled mevalonate into glaucarubinone (3)

and glaucarubolone (4).

A biogenetic derivation of limonoids from euphol (5) (or tirucallol)

was first proposed by Arigoni, Barton, Corey, Jeger, and their collaborators 
7who suggested that limonoids are formed from the hypothetical apoeuphol 

intermediate (6) which arises from euphol by a skeletal rearrangement, 

during which a methyl group migrates from C-14 to C-8 and oxygen is intro

duced at C-7. Oxygenation of the side chain may precede or follow the
g

apoeuphol rearrangement, since both melianone (7) and grandiofoliolenone
9 . . . .(8) have been isolated. However, oxidative modification eventually

results in removal of the four terminal side chain carbon atoms and 

formation of a (3-substituted furan ring. The simple tetranortriterpenoid

(9) thus formed can undergo further oxidations, Baeyer-Villiger ring

cleavages and rearrangement to produce the wide variety of structural

types which have been reported. Further degradation of (9) can lead to

pentanortriterpenoids e.g. (10) found in the Cneoraceae and quassinoids
1 1 1e.g. (2) found in the Simaroubaceae ' (see Scheme 1). The subject 

divides naturally into three major areas: tetranortriterpenoids,



^2^ compounds related to limonin (1); pentanortriterpenoids, C ^  compounds

related to cneorin C (68); and decanortriterpenoids, C or C^q compounds

related to quassin (2). Several reviews dealing with certain aspects of
12the subject have appeared: Limonoids in the Citrus Species, Limonoid

1 3 .  . 14Bitter Principles, Simaroubaceous Bitter Principles and Beitr&ge zur
75Biologie der Pflanzen.

This short review is intended to give a broad picture of the present 

state of knowledge in these series. For convenience these compounds will 

be considered in groups according to the extent of ring cleavage. It is 

pertinent to discuss beforehand some of the C tirucallol and apotirucallol 

derivatives which often co-occur with the tetranortriterpenoids and 

which appear the likely forerunners.
1 5(1) £39 Precursors.- T u r r e a n t h m  (11) is one example of the group

of compounds with a pattern of side chain oxygenation which may represent

an intermediate stage between tirucallol and the furan ring of tetranor-
16triterpenoids. The isolation of (12), and several other apotirucallol

derivatives, with an intact side chain suggests that skeletal rearrangement
17precedes furan formation. Halsall and his colleagues demonstrated the 

possible intermediacy of these compounds in the biogenesis of tetra

nortriterpenoids by the in_ vitro conversion of turreanthin into the simple 

limonoid (13) (see Scheme 2). The 7 a ,8a-epoxide (14) is smoothly converted, 

by Lewis acid, into the apo-derivative (15) with the desired oxygen 

substituent at C-7.

(2) Intact Skeleton.- At the stage of the simplest limonoid (13), 26 ----------
further oxidations can occur in ring D giving rise to a variety of compounds

22with oxygen functions at carbons 14, 15, 16 and even 17. Epoxidation
18of the ring D double bond as in trichilenone (16) is sometimes accompanied
19

by a ketonic carbonyl at C-16 as in nimbinin (17). The isolation of 

azadiradione ( 1 8 ) ^  and other similar compounds (e.g. 17B-hydroxyazadiradione



(21) ) suggeststhat functionalization of the C-16 occurs prior to epoxi-

dation of the double bond. Other oxidations can occur in rings A, B and
23C at carbons 1, 2, 6, 11 and 12. Examples include (19) and (20) ,

24vepinin (22) with an ether between C-7 and C-15, and the highly oxygen-
25 26ated compounds sendanin (23) from Melia azedarach, amoorstatin (24),

12a-hydroxyamoorstatin ( 2 5 ) ^  and the related aphanastatin ( 2 6 ) , from

Aphanamixis grandifolia. These aphanamixis compounds are of considerable

interest because of their antitumour activity. The presence of a hydroxyl

group at C-6 may lead to the formation of an ether bridge with the 4a
28 16methyl group, as in nimbidin (28) and vilasinin 1,3-diacetate (27).

(3) Ring D Cleaved.- The next step in the elaboration of the

tetranortriterpenoids skeleton leads to the formation of the character

istic ring D epoxy lactone by biochemical Baeyer-Villiger oxidation of a

16-oxo-precursor. Two of the most abundant tetranortriterpenoids gedunin
29 30(29) and khivorin (30) belong to this group. Both have been prepared

in vitro by Baeyer-Villiger oxidation of the supposed precursors nimbinin
3 1 3 2(17) and khayanthone (31) ' respectively. They often co-occur with

complex ring B cleaved tetranortriterpenoids. It is therefore reasonable 

that compounds of this type represent an intermediate stage in their 

biosynthesis.

(4) Ring B Cleaved.- Many members of this group have also undergone

cleavage of ring D. The typical ring B cleaved system exemplified by
31 . . . .andirobin (32) can arise by formal Baeyer-Villiger oxidation of a

7-oxo-compound followed by hydrolytic opening of the lactone and dehydration

of the tertiary hydroxyl group to give the 8,30 exomethylene group. The
32corresponding diene lactone deoxyandirobin (33) has also been isolated. 

Methyl angolensate (34)33 has the interesting 1,14 ether which presumably 

arises by addition of a 1a-hydroxyl group to the a ,3~unsaturated ring D



lactone. Both andirobin and methyl angolensate have been prepared _in vitro
34by partial synthesis from khivorin.

The first examples of simple ring B cleaved tetranortriterpenoids

with an intact ring D are toonacilin (35) and its 6-acetoxy derivative

(36) from Toona ciliata. They are of special interest because of their
35potent antifeedant activity against the Mexican bean beetle.

This group of tetranortriterpenoids is unique in that the initial

cleavage of ring B can be obscured by subsequent carbon-carbon bond

formation between C-2 and C-30 to give the bicyclononane ring system as

in mexicanolide (37).3^'3^ The first representative of the latter group
37is swietenine (38) from Swietenia macrophylla. The residual double bond

is also found at 8,14 as in mexicanolide (37) and swietenolide (39) and
3 8at 14,15 as in carapin. Increasing oxidation level in this series is

39 40represented by 2a-hydroxyangustdienolide (40) and xyloccensin A (41)
41and leads to the highly complex compounds like utilin (42) and bussein 

42(43). Two new features apparent in these structures are (a) the

formation of a new carbocyclic ring between the 4a-methyl group and C - 1 ;

and (b) the introduction of the orthoacetate at 1, 8 and 9 or 8, 9 and

14. The reaction of an unactivated methyl group and a ketonic carbonyl

is unusual and finds analogy in photochemistry. The occurrence of compounds
4of this type is so far restricted to Entandrophragma and Chukrasia species.

(5) Ring A Cleaved.- Compounds in this group have the characteristic
12ring D epoxylactone system and most came from citrus species. This 

group is of historic significance, since the development of the chemistry 

of the tetranortriterpenoid dates from the elucidation of the structure 

of limonin.3 In limonin, the initial ring cleavage is obscured by

subsequent reactions. The simple Baeyer-Villiger cleavage of ring A is
44 . 45 46more obvious in obacunone (44) and nomilin (45) . H a r r i s o n m  (46)
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from Harrisonii abyssinica has an interesting hemiacetal function at C-7.
. . . . 47N o m i l m i c  acid (47) represents the opened form of the ring A e-lactone

and may be regarded as a precursor of the C-19 oxidised derivatives inchangin
48 . 49(48) and limonin (1). Veprisone (49) is a simpler example of the

C - 1 , C-4 ether which is probably formed by addition of the C-4 tertiary

hydroxyl group to the unsaturated ester [or lactone as in limonin (1)].
50Alternatively, dehydration and epoxidation leads to spathelin (50)

(6) Ring C Cleaved.- This group of compounds is restricted to
51 52Melia azedarach and Azadirachta indica. Nimbin (51), nimbolide (52)

53 54and salaninin (53) illustrate the common features. Sendanal (54)

isolated from M. azedarach, has the appropriate functionality for trans-
55formation into the above compounds. O c h m a l  (55) is biogenetically 

interesting since it represents simple ring C cleavage of a 12-hydroxy 

precursor (e.g. sendanal). The most interesting and most complex member 

of this group is azadirachtin ( 5 6 ) ^  a powerful locust antifeedant.

(7) Rings A and B Cleaved.- The first member of this interesting
57group is prieurianin (57) from Tri-chilia prieuriana. Other members of 

this group, isolated from Trichilia and Guarea species have also been

4- 58reported.

(8) Modified Side Chains.- A growing number of tetranortriterpenoids

with modification of the usual furan ring have appeared recently. These
59include the isomeric y-hydroxybutenolides (58) and (59), the methoxy-

69 61 62 butenolide (60), the butenolide (61) and the y-lactone (62). It is

uncertain whether all these compounds are genuine natural products or

artefacts formed by the action of light and oxygen on the furan ring.

Photooxidation of several tetranortriterpenoids is known to give the
63corresponding y-hydroxybutenolides.



(9) Pentanortriterpenoids.- This is a fascinating group of highly
7 6cleaved C terpenoids which has been isolated from the Cneoraceae.Z d

Initially these compounds e.g. cneorin C (73) were considered to be
77sesterterpenoids, but with the structural elucidation of cneorin B (74)

the biogenetic relationship with tetranortriterpenoids became more

apparent. More representatives of this group of compounds are beginning

to emerge. Further structural variants are represented by tricoccins 
69(75), (76), S ^ (77) and (78). The latter was transformed

into cneorin B j j j  (79). The carbon framework (80) helps to illustrate

the relationship between this group and the tetranortriterpenoids; and
77it has now been proposed that the cneorins and related compounds are 

pentanortriterpenoids with the same biogenetic origins as the tetranor

triterpenoids with which they co-occur.

(10) Decanortriterpenoids, Compounds related to Quassin.-

Further degradation of an apo-tirucallol precursor leads to quassin (2)
74and related C ^  and C compounds. Simarolide (72), the corresponding

74ring A diosphenol methyl ether and soulameolide (63), recently isolated
64from Soulamea tomentosa, represent an intermediate stage on this path

way. There has been a recent revival of interest in quassinoids because
65of their biological activity. Undulatone (64) from Hannoa undulata,

6 66a-tigloyl chapparinone (65) from Ailanthus integrifolia and 6a-senecioyl 

chapparinone (66) from Simaba multiflora66 have antileukemic activity 

which is due in part to the presence of the 6a-oxygen function. Other 

active compounds include bruceoside A (67) and bruceoside B (68) from 

the seeds of Brucea javanica.68 The structural requirements for anti-
, n 68neoplastic activity have been disclosed.



Quassinoids have a clear structural relationship with merogedunin 

(70) and it is tempting to view (70) as a convenient starting material 

for partial synthesis. Our efforts in this area are described in the 

sequel.
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I N T R O D U C T I O N

1
The chemistry of quassinoids dates back to the isolation of

2q u a s s m  (1) from Quassia amara and since that time many quassinoids 

have been isolated. Apart from their inherent chemical interest the

quassinoids are important because of their biological activity.
. 3  4B r u c e a n t m  (2), undulatone (3) from Hannoa undulata, 6a-tigloyloxy-

5chapparinone (4) from Ailanthus integrifolia, 6a-senecioylchapparinone
g

(5) from Simaba multiflora, bruceoside A (6) and bruceoside B (7) from
7the seeds of Brucea javanica are some examples of antileukemic quassinoids.

The quassinoids are complex molecules and this probably accounts

for the limited number of synthetic studies which have appeared.
9Recently Grieco et al have synthesised 16-hydroxy-98-picras-12-en-16-one

(8) using a Diels-Alder strategy. The key intermediate dienophile (9) 

was obtained via a six step sequence from the decalol (10) and subsequently 

converted to the tricyclic ketone (11). Various 5-lactones, e.g. (12),
g

have been prepared from D-ring secoderivatives of cholic acid. An
10approach which involved the Robinson annulation of bicyclic 6-ketoester

g
(13) to give the tricyclic enone (14) a potentially useful intermediate 

was unsuccessful.

It is well established that limonoids with a ring D epoxylactone
11 12 . 13as in gedunin (15), khivorin (16) and limonin (17) rearrange on

treatment with alkali. For example gedunin is converted into merogedunol

(18). This is structurally related to the quassin skeleton but has an

extra methyl group at C-4 and lacks oxygen functionality. It was our

intention to use gedunin or merogedunol (18) as starting material for a

partial synthesis of the simple quassinoid (19) and (20) using recorded

procedures14'15 and subsequently to introduce oxygen functionality at C-11

and C-12. Further modification would lead finally to quassinoid (21).
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D I S C U S S I O N

The proposed plan (Scheme 1) was to monodemethylate dihydrogedunin 

and rearrange the demethylated compound (22) with alkali to the mero- 

derivative (23). It was anticipated that functionality could be intro

duced at C-12 by allylic oxidation or bromination or by migration of the 

double bond to the 12 (13) position followed by epoxidation. The 

target molecule of this scheme was the enone (20).

Monodemethylation of 4,4-dimethyl systems has received much
14 15 15attention in the literature. ' Cohen et al had converted dihydro-

lanosterol into the corresponding desmethyl-derivative using the sequence

of reaction in Scheme 2. The method makes use of the 'abnormal'

Beckmann reaction which 3-hydroxyimino-4,4-dimethyl steroids undergo

to yield 3,4-seco-nitriles. Epoxidation of the 4 methylene group,

followed by treatment of the 3,4-seco-epoxy-nitrile with boron trifluoride

in refluxing toluene afforded the desmethyl compound.

The initial efforts to demethylate gedunin were based on the above 

method. 'Abnormal' Beckmann reaction of dihydrogedunin (25) using 

toluene p-sulphonyl chloride in pyridine afforded the seconitrile (26) 

which was converted to the epoxynitrile (27) with m-chloro perbenzoic 

acid. Unlike the lanostane series above there was no evidence for the 

presence of a mixture of C-4 epimeric epoxides. The epoxide protons and 

the C-4 methyl group appear as singlets at 6 2.65 and 6 1.23 respectively. 

Unfortunately treatment of the epoxynitrile (27) with boron trifluoride 

etherate in refluxing toluene under nitrogen followed by aqueous acid 

work up resulted in decomposition. The explanation for this probably 

lies in the sensitivity of the ring D epoxide and the furan ring to 

boron trifluoride. Successful conversion to the desired aldehyde (28)



was achieved using toluene-p-sulphonic acid in refluxing benzene, but

the yield was so low that this route had to be discarded.

An alternative approach followed the method published by Kazlauskas 
14et al, using the sequence of reaction in Scheme 3. This involved the

1 9Baeyer-Villiger procedure of Rosenthal, Niedermeyer and Fried to

convert 3-oxo-4,4-dimethyl-compounds to 4-methyl-4-methylene-3,4-seco

acids. Esterification followed by selenium dioxide oxidation in

refluxing dioxan resulted in a conversion of the 4-methyl-4-methylene

moiety into the a ,3-unsaturated aldehyde, which was further oxidised into

the carboxylic acid by treatment in t-butyl alcohol with selenium
1 8dioxide and 90% hydrogen peroxide. Esterification followed by treat

ment of the diester with sodium hydride in refluxing tetrahydrofuran, 

hydrogenation and alkaline hydrolysis led to the desmethyl compound. 

Dihydro gedunin was converted into the methyl ester (29) in almost 

quantitative yield by Baeyer-Villiger oxidation followed by treatment 

of the resulting lactone (30) with 10% sulphuric acid in glacial acetic 

acid and methylation with diazomethane.

Selenium dioxide oxidation of (29) in refluxing dioxan resulted in 

a smooth conversion (90%) into the a,B-unsaturated aldehyde (31). This 

compound was resistant to all known reagents for the oxidation of alde

hydes. Treatment with selenium dioxide and (90%) hydrogen peroxide in 

t-butyl alcohol resulted in total loss of starting material. Since, again, 

the furan ring seemed the likely source of the problem it was decided 

to remove it prior to the oxidation step. The lactone (30) was allowed 

to undergo the mero-rearrangement by refluxing with 20% ethanolic KOH. 

Acidification, esterification with diazomethane, and dehydration of the

ensuing ester with 10% H„SO„ conc. in glacial acetic acid afforded the2 4
methyl ester (33) which was resubmitted to the procedure described above.



The resulting aldehyde (34) proved to be as stubborn to oxidation as 

compound (31) above. Selenium dioxide, hydrogen peroxide afforded a 

mixture of esters■, after treatment with diazomethane, which was difficult 

to purify by preparative t.l.c. Attempted ring closure of the mixture 

with sodium hydride in THF was unsuccessful. However the carboxylic 

acid (32) cyclised on treatment with hot acetic anhydride containing 

sodium acetate. Esterification of product with diazomethane and hydro

genation afforded compounds (35) and (36) in sequence. These compounds 

were not useful for our purpose.

While the monodemethylation experiments were going on, functional- 

isation of the 11 and 12 positions of merogedunol (18) was being explored. 

The mero compound (18) or its acetate or its dihydro derivative was 

resistant to all known reagents capable of inducing allylic oxidation 

or halogenation. The reason for this is not very clear. In separate 

experiments, the diene (38), obtained quantitatively from dihydromero- 

gedunol (39) by treatment of the latter with 10% H 2S°4 '*‘n 9laci-al acetic 

acid, an improvement on the pOCl^ route, afforded the 12a,13a epoxide 

(39) on treatment with anhydrous sodium chromate in acetic acid acetic

anhydride mixture. Evidence for (39) being a mixture could not be found.
1Analytical t.l.c. showed a single spot; and in the H n.m.r. spectrum,

the epoxide ring proton appears as a triplet at <5 3.26 (J 3Hz). The

signal due to C-18 methyl group is a singlet at 1.50. On treatment with

trifluoroacetic acid in thiophene free benzene compound (39) yields

the alcohol (40). This was readily identified by the appearance in
1the l.r. spectrum of a band at 3620 for the OH. The H m.r. spectrum 

shows the disappearance of the signal at <5 3.26 and 1.5 and the appear

ance of new signals 6 5.18 and 5.09 (brs, each) for the C-18 exomethylene 

and 6 4.52 (1H, t, J 3Hz CH^CH-Q H , H-12). When treated with Jones



reagent compound (40) afforded two compounds (41) and (42). Both
1compounds were identified by the H m.r. spectra [(41) 6 9.58 (1H, s 

C H O ) , 6.96 (1H, t, J 4Hz, vinyl proton H— 12); (42) 6 3.92 (2H, brs, 

CH^QH), 3.60 (1H, narrow doublet, J 3Hz, epoxide ring proton, H-12)] 

Lack of material prevented further work.
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E X P E R I M E N T A L  

11(1) Dihydrogedunin (25) To gedunin (1 g) in ethyl acetate

(70 ml) was added 10% palladium charcoal (100 mg) and hydrogenation

was allowed to continue at room temperature until there was no more

uptake of hydrogen. Filtration and evaporation of solvent under reduced

pressure afforded dihydrogedunin (25) (980 mg);- [6 0.93, 0.95, 1.0, 1.05H
and 1.18 C-Me; 2.05 acetate, 3.48 (1H, s, epoxide ring proton), 4.52 

(1H, t, J 3 Hz, H -7), 5.58 (1H, s, H-17) and the usual furan protons at 

6.30 and 7.36.]

(2) Dihydrogedunin oxime (43).- Dihydrogedunin (3.6 g) in dry

ethanol (372 ml) was added to anhydrous sodium acetate (1.19 g) and

hydroxyl amine hydrochloride (744 m g ) . The mixture was refluxed over

night. Work up afforded the oxime (43) (2.24 g ) , recrystallised from

ethanol. M.p. 231°-232°C, m/e = 499. (Found: C, 67.24; H, 7.50;

N, 2.79; C H O N  requires C, 67.31; H, 7.47; N, 2.80.)zo 37 /
[<S„ 1.0 (9H) , 1.05, 1.16 (C-Me); 2.03 acetate, 3.48 (1H, s, epoxide H

ring proton), 4.52 (1H, t, J 3 Hz, H-7), 5.58 (1H, s, H-17) and the 

furan protons at 6.30 and 7.36.]

(3) Gedunin 3,4-seconitrile (26).- The oxime from above (3.47 g) 

was dissolved in anhydrous pyridine (216 ml). To the solution was added 

tosyl chloride (10.78 g) and the mixture was refluxed overnight. Treatment 

with 3N hydrochloric acid (540 ml) and extraction 3 x with ether (50 ml) 

followed. The ether extract was dried over Na^SO^ anhydrous and evapor

ated under reduced pressure to give the seconitrile (26) (3.0 g ) , an oil.

M/e = 4 8 1 .  [6 0.92, 1.1, 1.23 (C-Me), 1.7 vinyl methyl, 2.1 acetate,H
3.5 (1H, s, epoxide ring proton) 4.48 (1H, t, J 3 Hz, H-7), 4.7 and

4 284.88 (brs, each 1H, A ' exomethylene), 5.58 (1H, s, H-17) and the furan 

protons at 6 6.3 and 7.38.]



(4) Seconitrile epoxide (27).- To the seconitrile (26) (1.5 g)

in methylene chloride (199 ml) was added m-chloroperbenzoic acid (1.42 g) 

and the mixture kept at 0°C for 2 days. The mixture was then flooded 

with water, extracted with chloroform and filtered through a column of 

grade IV alumina to remove m-chlorobenzoic acid. Evaporation of solvent

under reduced pressure afforded the epoxide (27) (1.42 g ) , an oil.

M/e = 497; [5u 1.0, 1.06, 1.2 (C-Me), 1.23 (3H, s, C-29 methyl), 2.08n
acetate, 2.65 (2H, s, 2H-28 epoxide ring proton); 3.5 (1H, s, H-15

epoxide ring proton), 4.53 (1H, t, J 3 Hz, H - 7 ) , 5.56 (1H, s, H-17) and

the furan ring protons at 6.32 and 7.38.]

(5) Dihydrogedunin ring A e-lactone (30).- To dihydrogedunin (1.1 g) 

in dry methylene chloride (20 ml) was added anhydrous disodium hydrogen 

orthophosphate (800 mg) and peroxyacetic acid (2 ml) at 0°C, and the 

solution allowed to stir for 8 hrs at room temperature. The reaction 

mixture was then flooded with water and extracted with chloroform. The 

chloroform extract was dried over anhydrous sodium sulphate, and then 

evaporated under reduced pressure to give the lactone (30) (1.06 g) after
“I"recrystallisation from methanol. M.p. 155°-156°C, m /e = 500. (Found:

C, 54.62; H, 6.03; C._H_ O .H O.CHC1. requires C, 54.58; H, 6.12%).28 36 8 2 3
[6u 1.06, 1.10, 1.18, 1.33 and 1.36 (C-Me), 2.1 (acetate), 3.48 H

(1H, s, H-15), 4.48 (1H , t, J 3 Hz, H-7), 5.58 (1H, s, H-17) and the 

furan ring proton at 6.30 and 7.36.]

(6) 3,4-Secodihydrogedunin methyl ester (29).- The ring A lactone 

from above (407.8 mg) was treated with a 10% H^SO^/glacial acetic acid 

mixture at room temperature for 15 minutes, with good stirring. The 

mixture was then flooded with water, extracted with chloroform, dried

in the usual way and evaporated under reduced pressure. The crude product, 

on treatment with diazomethane in methanol gave the secocompound (29)



(383.8 mg) after preparative t.l.c. (1.5% MeOH/CHCl3 ). This was an oil; 

m/e = 514.

0.9, 1.08, 1.2 (C-Me), 1.68 (3H, brs, vinyl methyl), 2.08 (acetate),

3.5 (1H, s, H-15 epoxide ring proton), 3.63 (3H, s, CC^Me), 4.46 (1H, t,

J 3 Hz, H-7), exomethylene protons at 6 4.7 and 4.83 (brs, each), 5.58

(1H , s, H-17) and the furan ring protons at <5 6.3 and 7.36.]

(7) The epoxide (44) .- To the solution of the ester (29) (100 mg)

in methylene chloride (20 m l ) , was added m-chloroperbenzoic acid (60 mg) 

and the mixture kept at 0°C for 2 days. Work up afforded the epoxide (44)

(72 mg) after preparative t.l.c. (2% MeOH/CHCl^). This is an oil. M/e = 530.

[6__ 1.0, 1.05, 1.16 for (C-Me); 1.20 (3H, s, C-29 methyl), 2.06 H
(acetate), 2.65 (2H, s, 2H-28 epoxide ring protons), 3.50 (1H , s, H-15),

3.66 (3H, s, CO^Me), 4.53 (1H, t, J 3 Hz, H-7), 5.56 (1H, s, H-17), 6 6.3 

and 7.36 for the furan ring protons.]

(8) SeO^ Oxidation of the 3 ,4-secodihydrogedunin methyl ester (29).- 

To the methyl ester (29) (472.4 mg) in dioxan (25 ml) was added 3 drops

of de-ionized water and selenium dioxide (103.6 mg) and the mixture stirred

mechanically at 90°C for 4 hrs. Work up, and preparative t.l.c.

(2% MeOH/CHCl^) afforded compound (31) (328 mg) as an oil. M +/e = 528.

[6 0.85, 1.1 and 1.23 (C-Me), 2.1 (acetate) 3.5 (1H, s, H-15H
epoxide ring proton), 3.63 (3H, s, CO ^Me), 4.46 (1H, t, J 3 Hz, H-7),

5.58 (1H , s, H-17), two exomethylene protons at 6.16 and 6.28 (1H, s) 

respectively, the furan ring protons at 6.30 and 7.38, 6 9.43 (1H, s, CHO 

aldehyde)].

(9) The cyclised compound (35).- The ester (29) was initially 

hydrolysed to the acid (32) by treatment with anhydrous K 2C03 in wet 

methanol at room temperature for 18 hr. A mixture of the crude 

acid (200 mg) with acetic anhydride (5 ml) and anhydrous sodium



acetate (100 mg) was maintained at 100°C overnight. Work up followed 

by preparative t.l.c. (16% EtOAc/CCl4 ) afforded compound (35) (198 mg) 

recrystallised from ether, after esterification with diazomethane.

M.p. 181°-182°C; m/e 510. (Found: C, 67.99; H, 6.87; C ^ H  O re<3u;*-res

C, 68.22; H, 6.71).

[6„ 0.78, 1.06, 1.23 (C-Me), 2.06 (acetate), 3.52 (1H, s, H-15H. —

epoxide ring proton), 3.73 (3H, s, CO ^Me) , 4.58 (1H, t, J 3 Hz, H-7),

5.08 (brs) and 5.26 (brs) (exomethylene protons), 5.60 (1H, s, H-17),

the furan ring protons at 6.33 and 7.40, 6 7.22 (1H, m, H-3 vinyl proton)].

(10) Hydrogenation of compound (35).- Compound (35) (200 m g ) , in

an ethanol-benzene mixture (1:0.2 v/v) containing 10% palladinized

charcoal (40 mg) was hydrogenated until uptake of hydrogen had ceased.

Filtration and evaporation of solvent under reduced pressure afforded

compound (36) (180 mg) recrystallised from ether. M.p. 202°-203°C,

m / e  = 512. (Found: C, 67.68; H, 6.80; C H 0 requires C, 67.95;zy 3b o
H, 7.08.)

[6 0.85, 1.06, 1.22 (C-Me), 0.98 (3H, d, J 7 Hz, secondary methylH
attached to C - 4 ) , 2.06 (acetate), 3.50 (1H, s, epoxide ring proton H-15), 

3.70 (3H, s, CO^Me) , 4.52 (1H, t, J 3 H z ,  H-7), 5.58 (1H, s, H-17), furan 

ring protons at 6 6.30 and 7^36, <5 6.95 (1H, m, vinyl proton H-3)].

(11) 3 ,4-Secoanhydrodihydromerogedunol methyl ester (33).- The 

dihydrolactone (30) (800 mg) was refluxed with 10% ethanolic KOH (200 ml)

for 2 hrs. The ensuing solution was acidified with dilute sulphuric 

acid and extracted with chloroform. The chloroform extract was dried, 

and evaporated under reduced pressure. Esterification with diazomethane, 

followed by treatment with 10% H 2SC>4/AcOH afforded compound (33) (468 mg)

after work up and column chromatography of the crude product over



grade IV alumina. The fraction collected at elution with 50% CHCl^/ 

petroleum ether contains (33), as an oil. M +/e = 358.

0.98, 1.13 (C-Me), 1.80 (3H, brs) and 1.86 (3H, brs) (for twori
vinyl methyls), 3.66 (3H, s, CC>2M e ) , 4.30 (1H, t, J 3 Hz, H-7), 4.68 and 

4.98 (1H, each, brs, exomethylene protons), 5.66 (2H, brs, vinyl protons 

H-12 and H-15)].

(12) Se02 Oxidation of (33).- Compound (33) (224 mg) in dioxan (25 ml)

containing selenium dioxide (68 mg) was oxidised as described for (29).

Work up and purification by column chromatography over grade IV alumina,

elution with 80% CHCl^/petroleum ether afforded the aldehyde (34) (186 mg)

crystallised from chloroform light petroleum. M.p. 165°-166°C, m/e = 372.

(Found: C, 71.2; H, 7.59; C H 0 requires C, 70.94; H, 7.58%).22 28 5
[6 0.90, 1.13 (C-Me), 1.85 (3H, brs vinyl methyl), 3.60 (3H, s,H

C Q 2M e ) , 4.30 (1H, t, J 3 Hz, H-7), 5.76 (2H, brs, vinyl protons H-12 and

H-15), 6.23 and 6.33 (exomethylene), 9.46 (1H, s, CHO aldehyde)].
11(13) Alkaline hydrolysis of gedunin .- Gedunin (1.5 g) was refluxed

with 20% ethanolic KOH (600 ml) for Ah hrs. The mixture was allowed to

cool, and then acidified with dilute hydrochloric acid. Extraction with

chloroform and column chromatography over grade IV alumina (eluate from

50% CHCl^-light petroleum) gave the desired mero compound (18) (600 mg).
11(14) Anhydromerogedunol (45) .- To compound (18) (117 mg), dissolved

in pyridine (26 m l ) , was added phosphorous oxychloride (POCl^) (4 ml) and 

the mixture was refluxed for 2 hrs. Solvent was evaporated to dryness 

under reduced pressure, and azeotroping three times with chloroform,

the anhydro compound (45) (69 mg) identical with authentic sample was

obtained. Yield was improved to (102 mg) by the use of 10% H ^ O ^ / A c O H  

at room temperature for 15 minutes as described for compound (33).



[<$H 1.08, 1.13, 1.18 (6H) (C-Me), 1.85 (3H, brs, vinyl methyl),

4.36 (1H , t, J 3 Hz, H-7), 5.73 (1H, s, vinyl proton H-15), 5.8 (1H, brs, 

vinyl proton H-12), 5.85 ~ 6.88 (ABq, 2H, J 9 Hz, H-1 and H-2 conjugated 

enone)].
11(15) Anhydrodihydromerogedunol (38) .- To anhydromerogeduncl (45)

(406 mg) in dry methanol (30 ml) was added NaBH (50 mg) and the mixture4
allowed to stir at room temperature for 3 hrs. Excess borohydride was 

destroyed with acetic acid. Addition of water, and extraction with 

chloroform followed by evaporation of solvent under reduced pressure, 

after drying over anhydrous sodium sulphate, gave the alcohol which was 

oxidised with Jones reagent in acetone at ice temperature. Preparative 

t.l.c. of the crude product (2% MeOH/CHCl^) afforded the dihydro compound 

(38).

[6__ 1.03, 1.10 (9H) (C-Me), 1.82 (3H, brs, vinyl methyl), 4.35 (1H,H
t, J 3 Hz, H-7), 5.70 (2H, brs, vinyl protons H-12 and H-15)].

(16) Anhydrous sodium chromate oxidation of anhydrodihydromerogedunol. 

To the dihydro compound (38) (180 mg) was added 3 ml of glacial acetic

acid-acetic anhydride mixture (2:1 v/v) and sodium chromate (140 mg) 

which had been predried at 150°C under vacuum for 18 hrs. The mixture

was allowed to stir at 30°C overnight; then flooded with water and

extracted with chloroform. Solvent was dried and evaporated under reduced

pressure. Preparative t.l.c. of product (50% EtOAc/CCl^) afforded the

12 a ,13a-epoxide (39) (126 mg) recrystallised from ether. M.p. 253°-254°C,

m /e = 344, i.r. (CCl^) showed absence of an OH. (Found: C, 73.05;

H, 8.12; C H O requires C, 73.22; H, 8.19%).21 28 4
[5„ 1.02, 1.03, 1.06, 1.13 (C-Me), 1.50 (3H, s, H-30), 3.25 (1H, brt,H

epoxide ring proton H-12), 4.35 (1H, t, J 3 Hz, H-7), 6.10 (1H, s, vinyl 

proton H-15)].
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(17) Trifluoroacetic acid ring opening of the epoxide (39).- The 

epoxide (39) was dissolved in thiophene free benzene (20 ml), containing 

trifluoroacetic acid (0.02 ml). The mixture was refluxed overnight.

The solvent was evaporated to dryness under reduced pressure and the crude

product was refluxed with aqueous methanol (20 ml) (methanol:water 20:0.5 v/v)

for 6 hrs. Evaporation of solvent and preparative t.l.c. (56% EtOAc/CCl^)

afforded the allylic alcohol (40) (30 mg) which was recrystallised from

ether-light petroleum. M.p. 192°-193°C, m/e = 344, 326 (P-18). (Found:

C, 73.30; H, 8.08; C H oo0. requires C, 73.22; H, 8.19%). I.r. (CC1J
Z I Zo 4 4

3620 (OH), 1730 and 1715 cm- 1 .

[6 0.98, 1.03, 1.06 and 1.10 (C-Me), 4.33 (1H, t, J 3 Hz, H-7),H --
4.52 (1H, t, J 3 Hz, H-12) 5.09 (brs) and 5.18 (brs) (exomethylene),

5.74 (1H, s, vinyl proton H-15)].

(18) Jones oxidation of the alcohol (40).- The alcohol (40) (14.3 mg)

was dissolved in acetone, Jones reagent (2 drops) added and the solution 

allowed to stir for 5 minutes at 0°C. Work up afforded a mixture of

two compounds (12 mg). This was separated by repetitive preparative t.l.c. 

(56% EtOAc/CCl^) . The less polar compound (41), C 21H 26°4' WaS an 

m/e = 342.

[6u 1.10 (6H), and 1.15 (6H) (C-Me), 4.46 (1H, t, J 3 Hz, H-7), 6.37H
(1H, brs, vinyl proton H-15), 6.96 (1H, t, J 4 Hz, vinyl proton H-12),

9.58 (1H, s, CHO)].

The more polar compound (42), C H O ,  was also an oil; m/e = 360.
Z I Zo b

[6 1.07, 1.09, 1.13, 1.17 (C-Me), 3.60 (1H, narrow d, J 3 Hz, H-12H
epoxide ring proton), 3.92 (2H, brs, GH^OH), 4.39 (1H, t, J 3 Hz, H-7),

6.19 (1H , s, vinyl proton H-15)].
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I N T R O D U C T I O N

The Meliaceae family embraces many species, which can be conveni

ently grouped into tribes. The Guareae is one such tribe. This tribe

has been considerably investigated.
1

Cabralea eichleriana contains dammarane triterpenoids related 
2to aglaiol, protolimonoids and a range of limonoids with a ring D

epoxylactone as gedunin (1) and khivorin (2) and with ring B cleaved.
3Guarea t n c h i l i o d e s  yielded fissinolide (3). A series of interesting

cyclopropanoid triterpenoids related to glabretal (4) has been obtained
4 5 6 7from G. glabra. Previous work on G. thompsonii and G. cedrata ' '

produced several highly oxygenated compounds of the prieurianin (5)

and rohitukin (6).

This chapter is concerned with the structural elucidation of

three new compounds, the ring A secotirucallane A (7) and B (8) and

2 ’-hydroxy rohitukin (9), isolated from the bark of G. cedrata.

Prieurianin (5) and rohitukin (6) belong to the small group of

complex tetranortriterpenoids from Trichilia, Guarea and Aphanamixis

species, which unexpectedly exist in solution as a mixture of slowly

interconverting sterically hindered conformational isomers. This
13 1results in broadening of the C and H n.m.r. spectra (and even m  the 

13absence of some C resonances) at room temperature and makes interpre

tation more difficult. No progress was made with this group until it 

was realised that a conformational problem existed and the spectra were

run at elevated temperature. Prieurianin, from the wood of
16T. prieuriana, was isolated in 1965, but its structure remained

17unresolved until 1975 when it was assigned the structure (5) on



1 8the basis of chemical and spectroscopic evidence, and X-ray analysis.
1 13The functional groups revealed spectroscopically ( H and C n.m.r.) 

include a ketone, two acetates, a formate, a carbomethoxy, a lactone, 

a 2 1-hydroxy-31-methylpentanoate, and an exomethylene. The remaining 

oxygens are accounted for by a 3-substituted furan ring and a tertiary 

hydroxyl group. Thus prieurianin is bicarbocyclic and has two rings 

of the typical tetracyclic apotirucallol nucleus cleaved.

At ambient temperature only one tertiary methyl signal is apparent
1 17m  the H n.m.r. spectrum of prieurianin. However at 67°C in deuterio-

acetone, the spectrum is well defined and three tertiary methyls are 

observed. Detailed analysis, with spin decoupling, of the high tempera

ture spectrum suggested the partial structure (10) for rings C and D.

It is perhaps not without significance that several uncleaved tetranor-

triterpenoids from other Trichilia species also have oxygenation at C- 1 1
19and C-12. These include the heudelottins [e.g. heudelottin F (11)]

20from T. heudelottii and hirtin (12) from T. hirta. Other features of
1the H n.m.r. spectrum of prieurianin include two acetates, one primary

and one secondary and two ABX spin systems, one involving the secondary

acetate. These structural units taken in conjunction with the carbo-

methoxyl and lactone were readily assembled to give the biogenetically

reasonable structure (5) for prieurianin. An X-ray analysis of

prieurianin 2'-p-bromobenzenesulphonate confirmed structure (5) and
18established the full stereochemistry.

The reasons for the conformational problems of prieurianin and 

related compounds are not yet clear. The atoms whose n.m.r. resonances 

are affected are all in the vicinity of the C-9, C-10 bond. The simplest 

explanation is that of restricted rotation about this bond. The ring A



e-lactone seems to be necessary for this effect since ring B cleaved 

compounds with a carbocyclic ring A, e.g. toonacilin (13), have not 

been reported to suffer from conformational problems.

Rohitukin (6) from T. rokka is very similar to prieurianin with the 

C -1  carbonyl lactonised to C-29 to form a 6-lactone. The ester attached 

to C-12 was identified as 3-methylbutanoate.

Cleavage of ring A is a common feature in terpenoid chemistry. 

Kadsurdic acid (14), a secolanostane isolated from the stem of Kadsura
g

japonica, eichlerianic acid (15) and the lactone (16) isolated from
9 . . 10Cabralea e i c h l e n a n a  and sebiferic acid (17) from Sapium sebiferum

are representative examples. Entandrolide (18) isolated from the seeds
11of Entandrophragma species is a simple tirucallane ring A lactone.

Alnuseric acid (19) has been obtained in vitro from the 3-oxo compound
1 2(20) with which it cooccurs.

The biogenetic derivation of these ring A cleaved compounds presum

ably involves Baeyer-Villiger oxidation of a 3-ketone followed by 

hydrolytic ring opening of the lactone and the dehydration of the 

tertiary hydroxyl group to give the 4,28-exomethylene group (Scheme 1).
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D I S C U S S I O N

Chromatography of the extract of the bark of G. cedrata afforded 

three new compounds A, B and C which were assigned structures (7), (8) 

and (9) respectively on the following evidence.

Compound A (7), C 3oH 46°4' ^as sP ectroscoPic properties consistent
- 1with the presence of two carboxyl groups [i.r.: 3200-2500 (br), 1709 cm ;

6 183.5 and 181.3], an exomethylene [6 4.80 (2H, bs) ? <s 132.4 (s)C H C
and 114.1 (t)] and two trisubstituted double bonds [s 5.23 (m, H-7)H
and 5.09 (bt, H-24); 6 C 123.5 (d, C-24), 147.5 (s, C-25) and 118.0 (d, C - 1 ) ,

145.8 (s, C —8)]. The molecule is therefore tricarbocyclic. In addition

there are three tertiary methyls (6 0.81, 0.87 and 0.95) and three vinylH
methyls (6 1.55, 1.65 and 1.75). Hydrogenation over palladium charcoalH
of the dimethyl ester (21) obtained by reaction of (7) with diazomethane,

13afforded the tetrahydro-derivative (22) whose C n.m.r. spectrum

[§c 118.3 (d, C - 1 )  and 145.6 (s, C-8)] clearly showed that one of the

trisubstituted double bonds was resistant to hydrogenation under normal

conditions. On treatment with dry hydrogen chloride in chloroform the

tetrahydro dimethyl ester (22) was converted into the isomeric compound
13(23) with a tetrasubstituted double bond C n.m.r. spectrum [Sc 147.3

and 137.6 (C-8 and C-9)]. Under similar conditions the dimethyl ester

(21) gave the chlorodiene (24) [5^ 70.8 (s, C-25), 147.3, 137.6 both s,

C-8 and C-9), 129.8 (s, C-4), 113.8 (t, C-28)]. This acid-induced

isomerisation of a hindered trisubstituted to a tetrasubstituted
7double bond is reminiscent of the behaviour of A tetracyclic triter

penoids, e.g. odoratol (33), and, taken in conjunction with the above 

spectroscopic evidence, led us to (7) as a biogenetically acceptable 

structure for compound A. This was confirmed in the following way.



Methyl 3-oxotirucalla-8,24-dien-21-oate (25), isolated from elemi
14resin according to the procedure of Halsall and his colleagues was 

hydrogenated over palladium charcoal to give the non-crystalline 

24,25-dihydro-derivative (26). Baeyer-Villiger oxidation of (26) with 

peracetic acid afforded a mixture of the lactone (27) and the epoxy

lactone (28), separable by preparative t.l.c. The former was converted 

into the diene dimethyl ester (30), via the hydroxy dimethyl ester (29) 

by alkaline hydrolysis, methylation and dehydration with thionyl chloride. 

Hydrogenation of (30) yielded dimethyl 3,4-secotirucall-8-en-3,21-dioate 

(23) identical in all respects with the product of acid isomerisation 

of dimethyl tetrahydro-A (22). This series of transformations confirmed 

that compound A is 3 ,4-secotirucalla-4(28),7,24-trien-3,21-dioic acid 

(7). Hydrolysis, methylation and dehydration of the epoxylactone (28) 

in sequence afforded (30) and (32) respectively.

The spectroscopic properties of compound B (8) C g - j ^ g ^  suggested 

that it is a mono methyl ester of compound A. This was readily estab

lished by methylation with diazomethane to give the dimethyl ester (21).
13Comparison of the C n.m.r. spectra of the three compounds (7), (8) and 

(21) indicated that the free carboxyl group of B (5 183.5) is associated

with the downfield carbomethoxyl group (5 176.4) of the dimethyl ester

(21). It is therefore assigned as the C-21 carboxyl group on the basis
13 15of normal C substitution rules. Thus compound B is 3,4-secotirucalla-

4(28), 7,24-trien-3,21-dioic acid 3-methyl ester (8).

Compound C from the extract is a new complex tetranortriterpenoid,

2 ’-hydroxyrohitukin (9), C 34H 42° 14' belon9in9 to the small group of
7compounds, related to prieurianin (5) and rohitukin (6) which give

1broad H n.m.r. spectra at room temperature as a result of conformational



processes occurring at an intermediate rate on the n.m.r. time scale.
1

At 60°C the H n.m.r. spectrum of (9) is well resolved and readily

revealed the structural features. Thus it has resonances for a 8-

substituted furan, an acetate, a formate, two hydroxyl groups (6 5.21

and 2.45, exchangeable with D 2° ) , 2H-29 (8 4.17, bs ) , H-17 (8 3.98, t,

J 9Hz), an exomethylene (8 5.90 and 5.49, both s, 2H-30), H-1 (8 5.10,

m ) , H - 2 ' (6 3.13, d, J 4Hz), three tertiary (8 0.95, 1.73 and 1.78)

and two secondary methyl groups (6 0.83 and 0.65, both d, J 7Hz).

Decoupling experiments identified the characteristic ring C system

involving H-9 (8 3.76, d, J 7Hz), H-11 (8 5.45, dd, J 12, 7Hz) and
13H-12 (8 6.13, d, J 12Hz). The C n.m.r. spectrum confirmed the presence

of the e- and 8-lactones and the ketol system in ring D. The above

data suggested that (9) only differed from rohitukin (6) in the nature

of the ester function attached to C-12. This was confimed by comparison 
13 22of their C spectra (Table 1) which are virtually identical with

the exception of the resonances associated with the ester functions.
15It is apparent that the 3-methyl butanoate (34) of rohitukin has been 

replaced by a 2-hydroxy-3-methylbutanoate (35) in (9). As expected the 

introduction of a hydroxyl substituent on C - 2 1 causes a large downfield 

shift of C-2", smaller downfield shifts of C - 1 ' and C-3' and differential 

upfield shifts of C - 4 1 and C-5'.
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G E N E R A L  E X P E R I M E N T A L

All melting points were determined on a Kofler hot-stage apparatus

and are uncorrected. Proton nuclear magnetic resonance spectra were

recorded on Varian XL-100 or Perkin-Elmer R-32 spectrometers using

tetramethylsilane as internal reference in deuteriochloroform, except
13where otherwise stated. Proton noise decoupled pulsed FT C n.m.r. 

spectra w i d t h -  1.52 Hz per data point were obtained at 25.2 MHz on a 

Varian XL-100 spectrometer, operated by Dr. D.S. Rycroft, for solutions 

in CDCl^ at room temperature (ca 25°C), unless otherwise stated.

Shifts are given as positive downfield (p.p.m.) from internal tetra

methylsilane. Assignments are based on chemical shift rules, multi

plicities in the Off-resonance-decoupled spectra, correlation with 
1 H chemical shifts using two off-resonance-decoupled spectra, and by 

comparison with similar compounds.

Mass spectra were routinely determined by Mr. A. Ritchie and staff 

on an AEI-GECMS-12 mass spectrometer. Microanalysis were carried out 

by Mrs. W. Harkness and staff.

U.V. and I.R. were carried out by Mrs. F. Lawrie and staff.

Columns were run using Grade IV acid alumina and t.l.c. on silica 

gel plates of 0.5 mm thickness, except where otherwise stated.
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E X P E R I M E N T A L

Extraction.- Powdered bark (6 kg) of G. cedrata collected in

Okonolinga (Cameroon) was extracted with hexane in a Soxhlet. A solid

(1.2 g) which separated during extraction was shown by preparative t.l.c.

(benzene-ethyl acetate, 3:1), to be mainly one compound. Crystallisation

from methanol afforded 2'-hydroxy-rohitukin (9) (0.6 g ) , m.p. 231-237°C;

m/e 614 (P-60); i.r. (CC1 ); 3620, 3440, 1750, 1740 and 1720 cm"1;
13[ C n.m.r. 6 (60°C) see Table I]. (Found: C, 58.9; H, 6.3;

C 34H 42°14 *H 2° re<3u ^res C ' 58.95; H, 6.35%). A further crop of solid

(0.5 g) was shown by t.l.c. (methylene chloride-methanol, 19:1) to

contain a second compound as a major component. Chromatography over

silica gel and elution with hexane-ether (19:1) yielded compound B,

3 ,4-secotirucalla-4(28),7,24-trien-3,21-dioic acid 3 methyl ester (8)

(300 mg) m.p. 190° (ex methanol), [a^] + 11° (c, 0.5 in methanol);

m/e 484; i.r. (CC1 ): 3500-2500, 1741, 1703 and 1640 cm " 1; [1H n.m.r.

6 0.78, 0.89 and 0.97 (C-Me), 1.75, 1.65 and 1.55 (vinyl Me), 3.62

(C°2Me) , 4.8 (2H, bs, CH_2= C <( ), 5.09 (1H, bt, H-24) and 5.23 (1H, m, H-7);

13C n.m.r. 6 183.4 (C-21), 174.4 (C-3), 147.3 (c-25), 123.6 (C-24),

145.9 (C-8), 118.3 (C-7), 132.3 (C-4), 113.9 (C-28), 51.4 (CO M e ) ,

51.3, 43.3 and 36.8 (s), 50.0, 49.3, 47.5 and 40.6 (d), 33.6, 32.2,

32.0, 30.2, 30.1, 28.1, 27.4, 26.1 and 18.1 (t) and 27.4, 25.7, 22.5,

21.7, 17.6 and 15.8 (q).] (Found: C, 76.85; H, 9.70; C o1H.o0. requiresj I 4 o 4
C, 76.8; H, 10.0%). Concentration of the hexane extract gave an oily 

solid which was washed with benzene and chloroform. The solid residue 

(8 g) was dissolved in methanol-chloroform and adsorbed on a silica gel 

column. Elution with benzene gave compound A, 3,4-secotirucalla-4(28),

7,24-trien-3,21-dioic acid (7) (5.75 g) m.p. 170° (ex benzene),



[aD ] + 18° (c, 1.4 in methanol); m/e 470; [13C n.m.r. 6 51.4, 43.3 and 

36.4 (s), 50.3, 50.0, 48.8, 40.7 (d), 33.6, 32.2, 30.5, 30.1, 30.1 

and 27.2, 27.2, 26.0 and 18.1 (t), 27.0, 25.7, 21.7, 21.4, 17.7 and

16.2 (q)]. (Found: C, 75.0; H, 10.3; c 3oH 460 4 -H 20 rec3uires C ' 7 5 -3 ;

H, 10.0%).

Dimethyl,3,4-secotirucalla-4 (28),7,24-trien-3,21-oate (21).-

Reaction of either compound A (7) or compound B (8) with diazomethane

in methanol followed by purification by preparative t.l.c. yielded
1the non-crystalline d imethyl ester (21); m/e 498; [ H n.m.r. 6 0.78,

0.83 and 0.94 (C-Me), 1.74, 1.64, and 1.53 (vinyl Me), 3.63 (2 x CO^Me) 

4.80 (2H, bs, (CH2= C ^ ) ,  5.05 (1H, bt, H-24) and 5.23 (1H, m, H-7);

13C n.m.r. 6 176.5 (C-21), 174.3 (C-3), 147.3 (C-25), 123.7 (C-24),

145.9 (C-8) , 118.3 (07), 132.0 (04) , 113.9 (028) , 51.5 and 51.1 

(2 x C O JVIe) , 51.1, 43.1 and 36.8 (s) , 49.8 49.4, 47.6 and 40.6 (d) , 33.

32.4, 31.8, 30.2, 30.2, 28.1, 27.4, 26.1 and 17.8 (t) and 27.1, 25.7,

22.4, 21.9, 17.6 and 15.9 (q)].

Dimethyl 3,4-secotirucall-7-en-3,21-dioate (22).- The dimethyl 

ester (21) (146 mg) in ethyl acetate solution was hydrogenated over

10% palladium charcoal until uptake of hydrogen ceased. Normal work

up afforded the non-crystalline tetrahydro dimethyl ester (22) (140 mg)
1 13m/e 502; [ H n.m.r. 6 3.64 (2 x C Q ^Me) and 5.26 (1H, m, H-7); C n.m.r

5 176.6 (021), 174.6 (C-3), 145.6 (C-8), 118.3 (C-7) , 51.5 and 51.1

(2 x C02Me)].

Dimethyl 3 ,4-secotirucall-8-en-3,21-dioate (23).- Dry hydrogen 

chloride gas was bubbled through a chloroform solution of the tetra- 

hydrodimethyl ester (22) (100 mg) for ten minutes and the reaction left

for one hour at room temperature. Dimethyl 3,4-secotirucall-8-en-3,21- 

dioate (23) (90 mg) obtained on work up, was crystallised from ether-



light petroleum and had m.p. 92-94°C, m/e 502; cd Ae value -2.37
1

(223 nm) -4.75 (200 nm); [ H n.m.r. 6 3.64 (2 x CO ^Me) no vinyl protons.]

(Found: C, 76.3; H, 10.85; C 32H 54°4 requires C, 76.45; H, 10.85%).

Dimethyl 25-chloro-3,4-secotirucall-4(28),8-dien-3,21-dioate (24).-

On treatment with dry hydrogen chloride gas under the above conditions

the dimethyl ester (21) (100 mg) was converted into the chlorodiene (24)

(87 mg); m.p. 114-115°C (ex ether-light petroleum). M/e 498 (P-HC1);
1
[ H n.m.r. 6 0.80, 0.86, 0.90 (C-Me), 1.52 (6H, C l - C M e J , 1.73 (vinyl

Me), 3.68 (2 x CQ^Me) , 4.68 and 4.89 (each 1H, bs, CH2=C ) ] .

(Found: C, 71.85; H, 9.8; Cl, 6.7; C onH r O C 1  requires C, 71.85;32 51 4
H, 9.55; Cl, 6.65%).

Methyl 3-oxotirucall-8-en-21-oate (26).- Methyl 3-oxotirucall-

8,24-dien-21-oate (25) (150 mg) m.p. 110-113°C isolated from elemi

resin, was dissolved in ethyl acetate and hydrogenated over 10% palladium

charcoal. Normal work up afforded the non-crystalline methyl
13-oxotirucall-8-en-21-oate (26) (130 mg). M/e 470; [ H n.m.r. 6 3.66

(C02M e ) ].

Baeyer Villiger Oxidation of (26).- Acetic anhydride (20 ml) 

was added dropwise over a period of twenty minutes to a stirred, ice- 

cold solution of methylene chloride (20 ml) containing hydrogen peroxide 

(90%, 6 ml) and a drop of concentrated sulphuric acid. Stirring was 

continued for thirty minutes at room temperature. Excess of this 

peracetic acid was added dropwise to a stirred, ice-cold solution of the 

dihydro derivative (26) (130 mg) in dry methylene chloride (20 ml) in

the presence of anhydrous disodium hydrogen phosphate (160 mg) and 

the reaction allowed to stand overnight at room temperature. The 

mixture was flooded with water and extracted into chloroform which 

was evaporated under reduced pressure. Analytical t.l.c. of the crude
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product showed the presence of two products which were separated by 

preparative t.l.c. (13% ether-benzene). The lactone (27) (50 mg) was

crystallised from ether-light petroleum and has m.p. 135-137°; m/e 486;
1 13[ H n.m.r. 6 3.66 (CO M e ) ; C n.m.r. <5 176.7 (C-21), 174.3 (C-3),

134.2 and 133.5 (C-8 and C - 9 ) , 86.0 (C-4) and 51.0 (CO M e )].

(Found: C, 76.5; H, 10.45; C H 0 requires C, 76.5; H, 10.35%).
6 I bu 4

The epoxy lactone (28) (40 mg) was crystallised from ether-light
1petroleum and has m.p. 169-170°C; m/e 502; [ H n.m.r. 6 3.63 (CO M e ) ,

13C n.m.r. 6 176.6 (C-21), 173.3 (C-3), 85.5 (C-4), 69.6 and 68.8

(C-8 and C-9), 51.5 (CO Me)]. (Found: C, 74.25; H, 10.0; C„.,Hr O2—  31 50 5
requires C, 74.05; H, 10.05%).

Dimethyl 4-hydroxy-3,4-secotirucall-8-en-3,21-dioate (29).- 

The lactone (27) (50 mg) was refluxed in ethanolic KOH (5%) for

two hours. Acidification with acetic acid, extraction with chloroform,

methylation with diazomethane in methanol and purification by prepara

tive t.l.c. (13% ether-benzene) yielded the hydroxy dimethyl ester (29)

(40 mg) m.p. 97-98°C (ex ether-light petroleum); m/e 500 (P— 18);
- 1 1i.r. (CCl^): 3501 and 1735 cm ; [ H n.m.r. <S 3.66 (2 x CO^Me);

13C n.m.r. 6 176.8 (C-21), 176.0 (C-3), 138.5 and 130.8 (C-8 and C-9),

75.3 (C-4), 51.7 and 51.0 (2 x CO M e )]. (Found: C, 74.4; H, 10.6;

C O requires C, 74.1; H, 10.5%).32 54 5
Dimethyl 4-hydroxy-3,4-secotirucall-8a,9a-epoxy-3,21-dioate (30) .- 

The epoxylactone (28) (40 mg) was treated as described above. This

afforded compound (30) (36 mg) m.p. 104-106°C (ex ether-light petroleum),

m/e 516 (P-18). (Found: C, 71.81; H, 10.29; C 32H 54°6 requires C, 71.87;

H, 10.18%). I.r. (CC1 ): 3501 and 1735 cm"1.
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Dimethyl 3,4-secotirucall-4(28),8-aien-3,21-dioate (31).- An ice-

cold solution of the hydroxy dimethyl ester (29) (28 mg) in dry pyridine

(3 ml) was treated with thionyl chloride (three drops) and allowed to

stand for five minutes. Water was added and the solution extracted

with chloroform and evaporated to dryness under reduced pressure.

The crude product was purified by preparative t.l.c. (13% ether-benzene)

to give the diene dimethyl ester (31) (25 mg) m.p. 105-106°C (ex ether-
1light petroleum); m/e 500; [ H n.m.r. 6 4.68 and 4.89 (each 1H, bs, 

C H 2=C<(), 3.66 (2 x CO^Me) , 1.72 (vinyl M e ) ]. (Found: C, 74.2;

F, 10.5; ^32H 52°4*H 2° rec2u;*-res C ' 7 4 *4? H, 10.5%).

Dimethyl 3,4-secotirucall-4(28)-en-8a,9a-epoxy-3,21-dioate (32).- 

The hydroxy dimethyl ester (30) (30 mg) was treated as described for

(31), and resulted in (32) (25 mg). M.p. 119-120°C (ex ether-petroleum

ether); m/e 516. (Found: C, 74.15; H, 9.96; C 32H 52°5 re(2uires

C, 74.37; H, 10.14%).

Hydrogenation of compound (31).- The diene dimethyl ester (31)

(25 mg) was dissolved in ethyl acetate and hydrogenated over 10% palladium 

charcoal as above. Preparative t.l.c. of the crude product and crystal

lisation from ether-light petroleum gave dimethyl 3,4-secotirucall- 

8-en-3r21-dioate (23) (21 mg) m.p. 92-93°C, cd, Ae -1 .89 (223 nm) ,

-5.50 (203 nm) identical in all respects (n.m.r., mass spectrum, cd, 

mixed m.p., and t.l.c.) with the compound obtained by hydrogenation and 

acid isomerisation of the dimethyl ester (21) derived from compound A 

(7) and (8). (Found: C, 76.4; H, 11.0; C 32H 540 4 requires C, 76.45;

H, 10.85%).
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Table 1

C n.m.r. spectra of rohitukin and related compounds.

Carbon
No. 6h 9h

Carbon
No. 6h 9h

1 71.8 71.3 1' 172.2 175
2 37.6 37.5 2 ’ 42.9 73
3 169.5 169.4 3' 24.9 31.2
4 81.2 81.1 4' 22.5 19.1
5 42.8 42.7 5' 22.5 15.5
6 32.2 32.1 HC (0) 160.3 160.3
7 173.3 173.3 OAc 21.2 21.2
8 139.2 138.9 C-Me 23.3 23.3
9 52.0 51.9 21.4 21 .4

10 49.7 49.8 12.9 13.0
11 75.7 74.9 CH COO 169.3 169.4
12 75.8 75.6
13 46.4 46.3
14 79.5 79.4
15 206.6 206.4
16 42.0 42.0
17 35.4 35.4
20 124.7 124.9
21 140.8 140.9
22 110.8 110.6
23 142.9 143.3
29 78.0 78.1
30 123.0 122.8

(h) at 60°C
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I N T R O D U C T I O N

The Trichiliae is one of the genera of the Meliaceae family. It

is apparently the second most widely studied. Representative compounds
1include havenensin (1) from Trichilia havanensis, heudelottin (2) from

2 3T. heudelotti, hirtin (3) from T. hirta and prieurianin (4) from
4T. p n e u n a n a . T. dregeana, also known as T. splendida, a medium to

large tree often planted for shade, is found extending northwards from

South Africa to tropical Africa. The timber from the tree has been
5 6found to contain dregeanin (5), ' and the bark has been found to yield 

a similar compound, which has not yet been identified.

This chapter is concerned with four more compounds which were 

isolated from the seed of T. dregeana. The seeds were collected from 

the shade trees of the cricket ground of Durban High School (S. Africa). 

The hexane extract of the seeds is a formidable mixture but repetitive 

preparative t.l.c. eventually afforded small amounts of four compounds, 

dregeana 1 (6), dregeana 2 (7), dregeana 3b (8) and rohituka 7 (9) 

whose structures are based entirely on the spectroscopic evidence 

described below.
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D I S C U S S I O N

Dregeana 1 (6), C 33H 4 o° 12' ^as sP ectroscoPic properties (see

Tables 1 and 2) which are very similar to those of polystachin (10)
7 1from Aphanamixis polystacha. Its H n.m.r. spectrum shows resonances

for a 8-substituted furan, a formate, an exomethylene, an AB quartet

(6 4.26 and 4.09, J 12 Hz, 2H-29) and three tertiary methyls. Decoupling

experiments readily revealed the characteristic H-9, H-11, H-12 coupled

system. The presence of a 2-hydroxy-3-methylpentanoate is suggested

by two unresolved methyl signals at 5 ca. 0.8 and a secondary carbinol
13proton at 6 3.36 (d, J 4 Hz, H - 2 1)* The C spectrum of (6) has 

appropriate resonances for this ester moiety and, in addition, shows 

characteristic carbonyl signals associated with a C-15 ketone, two 

lactones (C-3 and C - 7 ) , a formate and the C-12 ester. These functional 

groups account for all but one of the oxygen atoms. This oxygen must 

be present as an ether to accommodate the remaining double bond 

equivalent. The secondary-tertiary nature of this ether follows from

the fact that there are two unassigned oxygen-bearing carbons, a singlet
13 1and a doublet, in the C off-resonance spectrum. The H resonance

for the secondary terminus appears at 5 3.87 (m). These functional

groups can be assembled to give the biogenetically acceptable structure

(6) for dregeana 1 which is, therefore, closely related to polystachin

and differs only in the nature of the C-12 ester function. Unlike most

of the other compounds in this series dregeana 1 gives sharp spectra at

room temperature presumably because the 1,14-oxide prevents rotation

about the C-9, C-10 bond. There is no firm evidence for the configuration

at C-1 which is drawn in the biogenetically usual a-configuration.



The structure of rohituka 7 (9), , is readily assigned

from its spectroscopic properties. It gives broad spectra at room 

temperature which are characteristic of prieurianin (4) and related 

compounds. At 60°C the spectra are well resolved. The functional 

groups include two lactones, one a ,8-unsaturated, a formate, an exo

methylene, a 2 1-hydroxy-3-methylpentanoate, a tertiary hydroxyl and a 

B-substituted furan. These indicate a close relationship with D-4 (11), 

an a ,B-unsaturated ring A lactone from T. prieuriana.6 The only 

difference concerns C-14 and C-15. The epoxide of D-4 (11) is absent 

in (9) and is replaced by a tertiary hydroxyl and a secondary acetate 

group. Thus rohituka 7 has structure (9). Unlike the other compounds 

discussed in this chapter rohituka 7 is crystalline. It has also been
Q

isolated from Aphanamixis polystacha.

The third compound dregeana 2 (7) has the molecular formula C 33H 42° 13*

Its n.m.r. spectra are broad at ambient temperature indicating that

it is a ring B cleaved tetranortriterpenoid related to prieurianin.

The structural units revealed spectroscopically include a ring A lactone,

a carbornethoxyl, an exomethylene, a coupled system involving H-9, H-11,

and H-12 with ester functions attached to 11 and 12, a ring D ketol and

a B-substituted furan. Dregeana 2 is distinguished from prieurianin by
13the absence of a formate and a C-29 methylene group. The C spectrum 

has resonances for three acetates and four tertiary methyl groups. Thus 

dregeana 2 must have a gem-dimethyl system at C-4 and acetates at C - 1 ,

C-11 and C-12. The chemical shift of one of the acetates is at abnormally 

high field (6 1.63). This is consistent with a 12a-acetate which is 

shielded by the furan ring. Other examples of this type of shielding 

have been reported. f  ̂ The above evidence leads to structure (7) for 

dregeana 2 which is the first example of this group of highly oxygenated 

tetranortriterpenoid without oxygenation at C-29.



The fourth compound, dregeana 3b (8) has a parent ion at m/e 642

corresponding to the molecular formula C ^ H  o„rt. Its lack of an36 50 10
exomethylene group suggested an intact C skeleton. The methyl region26
of the proton spectrum is complex but contains at least five tertiary

methyls and two secondary methyls. Its complexity is due to the fact

that dregeana 3b is a mixture of esters. Two acetates are present and

therefore dregeana 3b must have a ester group attached, presumably,
1 3to C-12. The C spectrum clearly shows four carbonyl groups, including

a C-3 lactone, a ring D double bond, and four secondary oxygen bearing
1carbons in addition to the tertiary lactone terminus. In the H n.m.r.

spectrum the four secondary carbinol protons (C— 1, C-7, C-12 and C - 2 1)

appear as triplets and thus suggests that the Ĉ _ ester is a 2'-hydroxy-

4-methylpentanoate instead of the more common 2 1-hydroxy-3-methyl-
13pentanoate. The methyl region of the C spectra is complex and suggests 

that some of the latter is also present. The above evidence leads to 

the tentative structure (8) for dregeana 3b. A compound, dregeana 3 

(12), with the same carbon skeleton but bearing a 2 1-acetoxy-3'-
7methylpentanoate at C-12 has been reported from the same extract.
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E X P E R I M E N T A L

Isolation.- Minced seeds of T. dregeana were extracted with hexane. 

The extract, an oil, was partitioned between light petroleum and methanol 

to give a limonoid fraction. A sample (3 g) of this fraction was sent 

to us by Professor D.A.H. Taylor, University of Natal. It was subjected 

to repetitive preparative t.l.c. (40% EtOAc/CCl^). Four bands were 

detected on spraying with water. The least polar band, band 1, was a 

mixture of esters which was discarded because of the small quantity.

Band 2 afforded impure dregeana 2, band 3 a mixture of dregeana 3b 

and dregeana 1 and band 4 impure rohituka 7.

Dregeana 2 (7).- Band 2 from above was resubmitted to repetitive 

preparative t.l.c. (40% EtOAc/CCl^) and afforded dregeana 2 (7) (30 mg)

C 33H 42°13' m//0 646' aS an 0;̂ *  (Found M+ 646.2674, C 33H 42°13 recluires

646.2674).
1 13H and C n.m.r. chemical shifts (see ^Tables 1 and 2).

Dregeana 1 (6) and dregeana 3b (8).- Band 3 from the previous

separation was resubmitted to repetitive preparative t.l.c. (60% EtOAc/

CCl^) . The less polar band afforded dregeana 3b (8) (30 mg) C 36H 5q°iq'
1m/e 642, as a fluffy solid which could not be crystallised. [ H and 

13C n.m.r. data (see Tables 1 and 2)].

The more polar band yielded dregeana 1 (6) (45 mg) C 33H 4q°-|2 '

m/e 628, again as a fluffy solid which could not be crystallised.
1 13H and C n.m.r. chemical shifts (see Tables 1 and 2).

Rohituka 7 (9).- Repetitive preparative t.l.c. of band 4 of the

initial separation gave rohituka 7 (9) (60 mg), C 35H^4°^3  ̂ m /e 672,

as a crystalline solid m.p. 237-238°C (ex methanol-chloroform).
1 13H and C n.m.r. data (see Tables 1 and 2).



Table 1

H n.m.r. chemical shifts of dregeana 1 (6) and related compounds.

1H (6) (7) (8) (9)

1 3.87 5.51 4.72 7.46
(m) (bt, 7) (t, 3) (AB, 12)

2 - - - 6.04
- - - (AB, 12)

7 - - 5.38 -
- - (bt, 3) -

9 2.73 3.65 - ca. 3.85
(d, 6) (d, 9) - (obs)

11 5.37 5.22 - ca. 5.5
(dd, 11, 6) (dd, 11, 9) - (obs)

12 6.15 5.94 5.07 6.16
(cl, 11) (d, 11) (t, 7) (d, 11)

15 - - 5.50 ca.5.5
- - (bt) (obs)

17 3.82 3.95 - ca.3.85
(dd, 9, 6) (t, 9) - (obs)

CH = 5.52 6.07, 5.77 - 5.22, 5.20z (s) (each s) - (each s)
29 4.26, 4.09 - - 4.25, 4.02

(AB, 12) - - (AB, 12)
2' 3.36 - 4.03 3.19

(m) - (bt) (m)
CO^Me - 3.76 - -
t-Me 1 .02 1.56 1.48 1.63

0.90 1 .49 1.36 1 .23
0.86 1.45 1.22 0.97

0.92 1.18
0.92

Formate 8.09 - - 7.88
OAc - 2.08 2.04 2.07

2.01 1.90
1 .63

OH N.A. 4.52 N.A. N.A.
Sec-Me - - 1 .04 -

- - (d, 7) -
- - 0.83 -
- - (d, 7) -

Furan 7.38 7.32 7.30 7.31
7.25 7.21 7.25 7.15
6.22 6.26 6.22 6.22
esters esters
obscured obscured

obs = obscured 
N.A. = not assigned
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Table 2
13C n.m.r. chemical shifts of dregeana 1 (6) and related compounds

Carbon Type

C-15 
C-7 
C-1 '
C-3
HCO (d) 
CH3CO (s)

C-21
C-23
C-20
C-22
C-8
C-30
C-1
C-2
C-1 5
C-14
OMe
C - 2 1
C-3'
C-4'
C - 5 1 
C-6 1
-C-0

CH-0

-ch 2-°
(s)

«3)

(t)

(q)

205.0
174.9
172.4
167.5 
160.4

143.3 
140.7 
121.9
110.3
134.3
119.3

75.1 
36.9
23.2
11.5
15.2
87.3
78.6
75.1
74.3
73.6
72.2
74.4
50.1
49.2

55.2

40.8
32.8
38.4

32.8

r  29.1 
22.2

12.3

v. -

206.4 
176.0

169.6

170.8
170.4
142.6
140.5 
123.4
110 .8  
138.9
125.6

(x 2)

52.9

83.7 
80.9.
72.9
72.7 
71.0

49.2 
47.9

51.5
49.0 
35.4

38.0
34.3
41.3

31 .9
21.4 
21 .1
20.4
19.0 
1 2 . 8

173.9
170.8

169.9
169.6
142.2
140.3 
124.2
1 1 1 . 6

1 2 2 . 2
155.4

75,4
37.2
23.7
11.7
15.3 
85.1

75.4
70.8 
76.7

51.23
49.9

44.2
51.2
44.0
38.4
37.2
36.7
34.9
34.4
29.7
28.3 
26.2
25.2
22.8
21.3
20.7
19.3
15.7
15.0 
14.6

174.9
172.0
166.7
159.9
169.5

143.1
140.8
123.7
110.7
140.6
119.4
153.2
120.5

76.2 
37.9
23.3
11.4 
15.3 
84.8 
79-2
75.1
72.5
71.5

74.7
51.0

44.0 
52.3
51.0
39.7 
37.9
36.8 
30.2

27.1
24.1

20.8
13.5
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I N T R O D U C T I O N

Although the Turreae is a tribe of the widely investigated

subfamily, Melioideae, of the Meliaceae, its study has been seemingly
1neglected. Only Naregamia alata has been examined and has not 

yielded limonoids or protolimonoids.

In this chapter, we report the isolation of two new compounds 

A (1) and B (2) from the bark of Turrea floribunda and discuss the 

spectroscopic and chemical evidence that led to their structural 

elucidation.
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D I S C U S S I O N

Column chromatography of the extract of the bark of Turrea

floribunda followed by careful repetitive preparative t.l.c. and

crystallisation afforded two crystalline compounds A and B which were

assigned structures (1) and (2) respectively on the following evidence.

Compound A (1) C 33H 44°-|2 ' ^as bands in arising from
_ 1ester and hydroxyl functional groups [v (CC1„) 3600, 1730 cm 1.max 4

1 13Its H and C n.m.r. spectra (see Tables 1 and 2)indicate the presence

of a B-substituted furan, two hydroxyl qroups (6 3.43; exchangeable

with D ^ O ) , a carbomethoxyl group, a trisubstituted epoxide, three acetates

and four tertiary methyls. These functional groups account for all

the oxygens in the molecule which is therefore tetracarbocyclic. This

eliminates the possibility of a cleaved ring system and suggests a

normal uncleaved tetranortriterpenoid carbon skeleton with a ring D

epoxide and one tertiary methyl group oxidised to a carbomethoxyl. The

structural problem is thus reduced to one of establishing the oxygenation

pattern (i.e. the placing of five secondary oxygen functions and a

carbomethoxyl group).

The two secondary hydroxyl protons overlap at 6 3.75. However
u H

addition of a few drops of benzene causes differential solvent shifts

and reveals them as narrow triplets (6 3.79 and 3.69, J 3 Hz).H
Double resonance experiments indicate that one of these (H— 11) is 

coupled to a secondary acetate proton at 6 4.36 (d, J 3 Hz, H-12) and 

to a methine doublet (J 3 Hz, H-9) at 6 3.00. The remaining two 

secondary ester protons are also narrow triplets [6 5.12 (J 3 Hz, H-1) 

and 4.65 (J 3 Hz, H-7)]. The observed coupling pattern can be



satisfactorily accommodated by placing the oxygen functions at carbons 

1 , 3, 7, 11 and 12. The alternative arrangement 1, 3, 6, 7, 12 can be 

excluded on the basis of the oxidation product (5) to be discussed 

below. The size of the coupling constants indicates the usual configur

ation of the oxygen substituents at C-1, C-3 and C - 7 . The coupling 

constants of the H-9, H-11, H-12 system are consistent with 113 and 12a 

oxygen substituents. Precedent for such an arrangement can be found

in the heudelottins, which are esters based on the alcohol (9), from
2Trichilia heudelottii , and which have the same coupling constants for 

H-9, H-11 and H-12. These data suggest structure (1) for compound A.

The carbomethoxyl group is assumed to be attached to C-4 and is equatorial

(a) in view of the absence of the usual downfield signal for a 4a-methyl

• 13~ group m  the C spectrum.

Acetylation of compound A afforded the pentaacetate (3) in which

the resonances for H-1 and H-11 have, as expected, moved downfield

to 64.97 (t, J 3 Hz) and 6 5.2 (t, J 3 Hz) respectively. Valuable

structural evidence was obtained by Collins' oxidation of compound A.

The product was the diketone (5) whose spectroscopic data readily

revealed the presence of a ring A enone [6 7.82 (d, J 10 Hz, H-1) andhi
5.92 (d, J 10 Hz, H-2)] and a C-11 keto group [6r  5.32 (s, H-12) and 

3.56 (s, H-9)]. In addition to this change in multiplicity the resonan

ces for H-12 and H-9 move downfield from 6 4.88 and 3.38 respectively in 

the pentaacetate (3). The chemical shift of H-1 (6 7.82) is at lower 

field than normal (ca. 6 7.3) for similar ring A enones as a result of 

the deshielding effect of the 11-ketone. This observation confirms the 

oxygenation pattern as in (1) and excludes the alternative 1, 3, 6, 7, 12 

arrangement. The formation of the enone is readily rationalised in terms 

of oxidation of the 3a—hydroxyl group followed by 8—elimination of the 

1a-acetate.



Unsuccessful attempts were made to prove the presence of the 

carbomethoxyl group at C-4 by alkaline hydrolysis of (5). It was not 

possible to determine whether decarboxylation occurred since no charac

ter isable product was obtained. The reasons for this lack of stability 

to alkali are not clear. Fortunately the oxidation product of compound 

B (see below) proved more amenable to this reaction.

Treatment of compound A (1) with mineral acid afforded a rearranged 

ketone whose spectroscopic properties accord with structure (8). This

rearrangement is well documented for other 148,158-epoxides in this
4 3series e.g. h a v a n e n s m  (10) and the heudelottins.

The spectroscopic properties (see Tables 1 and 2) of compound B (2),

C__H_,,C> [v (ccl„) 3600, 1740, 1745 sh, 1760 sh cm 1 ] indicate37 50 13 max 4
that it is closely related to compound A (1). Thus it has resonances

for four tertiary methyls, three acetates, a secondary hydroxyl group

(6 3.43 exchangeable with D O ) ,  a carbomethoxyl, a trisubstitutedH Z

epoxide and a B-substituted furan. The presence of an isobutyrate is 

obvious in both the and spectra [5^ 176.4, 34.3 (d), 19.0 (q) 

and 18.8 (q)]. Decoupling experiments revealed H-9 (6 3.3, d, J 3 Hz),H
H-11 (6 5.15, t, J 3 Hz) and H-12 (5 4.86, d, J 3 Hz). The chemicalH H
shifts indicate that both C-11 and C-12 bear ester substituents. The 

isobutyrate is placed at C-12 by biogenetic analogy. Comparison of the 

chemical shifts of the remaining oxygen substituent with those of A 

(1) suggested that the free hydroxyl group is attached to C-3. Thus 

compound B was assigned structure (2).

Acetylation of B afforded the tetraacetate (4) whose spectroscopic 

properties are virtually identical to those of A pentaacetate (3), 

with the exception of the resonances associated with the isobutyrate, 

thus confirming that both A and B have the same carbon framework and



oxygenation pattern. Oxidation of B (2) with Collins' reagent yielded

the enone (6) which has the expected spectroscopic properties. Alkaline

hydrolysis of (6) followed by acetylation gave the desired product (7)

which lacks the carbomethoxyl group. Although the new compound was

crystalline it was accompanied by a small amount of a second product

which could not be removed by crystallisation or preparative t.l.c.
1The obvious features of the H n.m.r. spectrum of (7) include a

secondary methyl group (5 1.05, d, J 7 Hz) and a doublet of quartetsH
(<5 4.14, J 7, 3 Hz) which must arise from H-4. The formation of therl
decarboxylated product (7) provides definite evidence for the attachment

of the carbomethoxyl group to C-4 in compounds A and B.
1 3The C chemical shifts of compounds (1) to (6) are listed in 

Table 2. The assignments are based on chemical shift rules, multiplici

ties and residual splittings in off resonance spectra, and comparison 

with related molecules. Comparison of the shifts of A (1) and its 

acetate (3) reveals normal acetylation shifts of C-2 (A6 - 3.2 ppm),

C-4 (A6 - 1.9 ppm) and C-9 (A6 - 1 ppm). The more dramatic shift of 

C-12 (A6 - 8.1 ppm) must be due to the removal of H-bonding effects.

A similar explanation accounts for the shift of the carbomethoxyl 

carbonyl group (A6 - 1.5 ppm) and the anomalous acetylation shifts of 

C-3 (A6 - 1.1 ppm) and C — 11 (AS + 0.4 ppm).

Others esters isolated from the extract are mixtures, as shown 

by their n.m.r. spectra. Acetylation afforded compounds identical in all 

respects to the acetylated products of either compound A or B. This 

suggests that the components of the mixtures have the same skeletal 

framework, but differ from one another in the number and type of 

acyl groups attached to the secondary hydroxyl groups. For example, 

the most polar material consists of several diacetates. On acetylation 

it gave the pentaacetate (3).
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E X P E R I M E N T A L

Isolation.- The extract (30 g) from the bark of Turrea floribunda

was chromatographed over a column of Spence alumina grade H, deactivated

by treatment with aqueous acetic acid (acid: H 20, 1:9, v/v; 5 ml for

every 100 g of alumina). The column was eluted with light petroleum

ether containing increasing amounts of chloroform. The fraction eluted

with 60% chloroform-light petroleum ether contained a mixture of

compounds A (1) and B (2). This fraction (1.5 g) was subjected to

careful repetitive preparative t.l.c. (44% EtOAc/CCl^). The major band

was subjected to partial crystallisation from ether. The first crop

was compound A (268 mg) and the second crop was compound B (158 mg).

Compound A (1): m.p. 251-252°C (ex ether), m/e 632, 614 (P-18),

572 (P—60) . (Found: C, 62.34; H, 7.34. C 33H 44°-|2 rec3u;*-res

C, 62.65; H, 6.96%).

Compound B (2): m.p. 233-234°C (ex ether), m/e 702, 642 (P-60),

614 (P-88) , 554 (P-148) . (Found: C, 63.06? H, 7.60. C ^ H c o _J / bU IJ
requires C, 63.23; H, 7.17%).

Acetylation of compound A (1) and B (2).-

(a) Compound A (1) (40 mg) was acetylated in the usual way at room

temperature overnight- The crude product on preparative t.l.c.

(44% EtOAc/CCl^) afforded the pentaacetate (3) (38 mg) which was recrys

tallised from ether. M.p. 290-291°C, m/e 716, 656 (P-60), 596 (P-120),

536 (P-180). (Found: C, 62.13? H, 6.49. C 37H 48°14 re(3uires c r 62.01;
1 13H, 6.70%). H and C n.m.r. data (see Tables 1 and 2).

(b) Compound B (2) (40 mg) was acetylated in the usual manner. This

gave the tetraacetate (4) (38 mg) which was crystallised from ether.

M.p. 214-215°C; m/e 744, 684 (P-60), 624 (P-120) and 656 (P-88)
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596 (P-148). (Found: C, 62.72? H, 6.78. requires C, 62.89;
1 13H, 7.04%). H and C n.m.r. data (see Tables 1 and 2).

Collins' oxidation of compounds A (1) and B (2).-

(a) Compound A (1) (60 mg) was dissolved in freshly distilled DMF

(1 m l ) , and pyridinium dichromate complex (238 mg) added. The mixture

was allowed to stir at room temperature for 30 hrs. The crude product

was purified by preparative t.l.c. (40% EtOAc/CCl4 ) and afforded the

diketone (5) (33 mg). M.p. 204-205°C (ex ether); m/e 568, 508 (P-60),

448 (P-120); i.r. v (CC1J 1680, 1725, 1 7 5 5 c m " 1. (Found: C, 65.20?max 4
1 13H, 6.45. ^3iH 36°10 re<3u;*-res C ' 65.48; H, 6.38%). H and C n.m.r.

data (see Tables 1 and 2).

(b) The solution of compound B (2) (60 mg) in freshly distilled 

DMF (1 ml) was treated with pyridinium dichromate complex (360 mg) as 

described from compound A (1). Work up and preparative t.l.c. afforded 

the enone (6) which was recrystallised from ether. M.p. 209-210°C; 

m/e 640, 580 (P-60), 552 (P-88) and 492 (P-148); i.r. v ( C C 1 4 )

1680, 1745 c m " 1. (Found: C, 65.72? H, 6.98. C ocH 0 requiresJD 44 1 j
C, 65.61; H, 6.92%). H and ' C n.m.r. date (see Tables 1 and 2).

Alkaline hydrolysis of the enone (6).- Enone (6) (50 mg) was

refluxed with 1.2% ethanolic KOH (25 ml) for 1% hrs. The solution was

allowed to cool, and was then acidified with acetic acid and extracted

into chloroform. The crude product was acetylated and purified by

preparative t.l.c. (50% EtOAc/CCl4 ) to give the decarboxylated product

(7) (28 mg), m.p. 135-136°C (ex ether); m/e 554, 494 (P-60); i.r.

v (CC1J 1748, 1685 cm” 1. (Found: M+ , 554.251 19. c -}.,h -,o0 qmax 4 3/ y
requires M + , 554.25155). (Found: C, 66.82; H, 7.18. C 31H 380 9

requires C, 67.13; H, 6.91%).

[6 7.27 (1H , d, J 10 Hz, H-1), 5,92 (1H, d, J 10 Hz, H - 2 ) , 5.94H
(1H , t, J 5 Hz, H-11), 5.12 (1H , t, J 5 Hz, H-12), 4.77 (1H, t, J 3 Hz,
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H-7), 4.17 (1H, dq, 3  1 , 2  H z , H-4) , 3.68 (1H, s, H-15), 2.95 (1H, d,

J 5 Hz, H-9), 7.33, 7.14 and 6.40 (furans), 2.17, 2.15 and 2.09 (acetates),

1.40, 1.41, 0.98 (t-methyls) and 1.08 (3H, d, J 7 Hz, C-4 methyl)].

Acid rearrangement of compound A (1).- Compound A (1) (100 mg)

was heated in 0.05 M-HC1 in methanol (80 ml) and allowed to reflux for

1 hr. The solution was extracted with ether. The crude product was

purified by preparative t.l.c. (50% EtOAc/CCl^). This afforded the

rearranged ketone (8) (18 mg). M/e 632, 572 (P-60), 554 (P-78, loss of

H O  and AcO H ) , 494 (loss of two moles of AcOH and 1 mole of H O ) .
- 1I.r. v (CC1 ) 3590, 3510, 1735, 1740 sh, 1715 sh cm . (Found: max 4

M+ 632.28298. C ^ H ,  „ 0 „ r e q u i r e s  M+ 632.28324.) [6 (at 60°C) 5.1633 44 12 H
(1H , t, J 3 Hz, H-1), 4.60 (1H, t, J 3 Hz, H-7), 4.43 (2H, m, H-11

and H-12), 3.85 (1H, br, H-3), 3.55 (3H, s, CO^Me), 3.2 (1H, d, J 3 Hz, 

H-9), 2.18, 2.10 and 2.0 (acetates), 1.38, 1.33, 1.23 and 1.03 (t-methyls) 

and 7.26, 7.13 and 6.43 (furans)].



Table 1

H n.m.r. chemical shifts of compounds A (1) and B (2) and related compounds.

1 2 3 4 5 6 Protons

5.12 4.86 4.97 4.98 7.82 7.30 H-1
(t, 3) (t, 3) (t, 3) (t, 3) (d, 10) (d, 10)

- - - - 5.92 5.95 H-2
- - - - (d, 10) (d, 10)

3.75 3.75 4.65 4.66 - - H-3
(t, 3) (brs) (brm) (brs) - -
4.65 4.68 4.65 4.66 4.72 4.68 H-7
(t, 3) (t, 3) (t, 3) (t, 3) (t, 3) (t, 3)
3.00 3.30 3.38 3.39 3.56 2.96 H-9
(m) (d, 3) (d, 3) (d, 3) (s) (d, 3)
3.75 5.15 5.20 5.20 - 5.88 H- 1 1
(t, 3) (t, 3) (t, 3) (t, 3) - (t, 3)
4.36 4.86 4.88 4.88 5.32 5.06 H-12
(d, 3) (d, 3) (d, 3) (d, 3) (s) (d, 3)
3.60 3.63 3.60 3.60 3.62 3.61 H-1 5
(s) (s) (s) (s) (s) (s)
3.65 3.63 3.55 3.56 3.65 3.65 co Me

- 2.13 2.10 2 . 1 0 (x 2) 2.08 2.22 2.10 OAc

2.12 2.12 2.13 2.15 2.08 2.02
2.05 2.02 2.03 2.05 - -

_ - 1 .90 1.92 - -

f  7.26 7.23 7.26 7.26 7.26 7.25 6-substitu1
furan

7.13 7.03 7.08 7.08 7.10 7.06

L 6.43 6.38 6.40 6.40 6.30 6.35
_ 1.18 — 1.20 - 1 .26 3H-3 ’
- (d, 7) - (d, 7) - (d, 7)
_ 1.16 _ 1.16 - 1.16 3H-41
- (d, 7) - (d, 7) - (d, 7)

1.4 1 .30 1.30 1.32 1 .40 1.41 C-Me

1.32 1.21 1.20 1 .23 1.35 1 .35

1 .20 1.15 1.16 1.18 1 .30 1.31
1.0 1.02 1.03 1 .08 1.0 0.95

Note: Letters and figures in parenthesis represent the multiplicities
and coupling constants respectively. Coupling constants (J) are in Hz.



Table 2
13 .C n.m.r. chemical shifts of compound A (1) and B (2) and related compounds.

Carbon No. 1 2 3 4 5 6

1 (d) 74.3 74.2 73.3 73.3 159.6 156.3
2 (t) 27.8 27.1 24.6 24.6 125.0 (d) 125.5 (d)
3 (d) 73.4 73.2 72.3 72.3 196.9 (s) 197.2 (s)
4 (s) 51.5 51.5 49.6 49.6 58,3 58.1
5 (d) 32.2 32.5 33.3 33.3 42.0 43.8
6 (t) 25.5 25.4 25.2 25.2 24.7 24.0
7 (d) 74.6 74.2 74.0 74.1 71.3 73.4a
8 (s) 41.0 40.7 40.6 40.4 40.8 40.9
9 (d) 41 .4a 40.7a 40.4a 40.4a 54.7 43.8

10 (s) 40.1 40.2 40.3 40.1 38.9 39.8
11 (d) 74.0 74.0 74.4 74.3 204.1 (s) 73.1a
12 (d) 87.3 79.2 79.6 79.2 77.9 78.4
13 (s) 48.0 48.9 48.7 49.0 48.6 48.9
14 (s) 74.0 73.8 74.0 74.0 74.9 74.3
15 (d) 63.2 63.3 63.2 63.3 63.2 63.4
16 (t) 32.5 32.5 32.6 32.6 33.6 32.7
17 (d) 41 .2a 40. 2a 40.3a 40.1a 42.6a 39.8
20 (s) 128.3 128.1 128.1 128.2 127.0 128.0
21 (d) 140.6 140.6 140.7 140.6 140.4 140.5
22 (d) 112.4 112.3 112.4 112.4 111.7 112.1
23 (d) 142.4 142.5 142.4 142.4 142.9 142.6
29 (s) 175.3 175.2 173.8 173.8 172.5 172.5

MeCOO [12] 173.3 - 170.9 - 170.4 -
[1] 170.2 170.1 170.0 170.0 - -
[7] 169.5 169.3 169.6 169.4 169.4 169.5
[3]
[11]

—
168.8

169.0b 
169.3b

169.1
169.1

_

170.2
MeCO (q) 21.4 21.4 21.5 21.4 - -

(q) 21 .4 21.4 21.3 21.4 - 21 .1
(q) 20.9 21 .4 21 .2 21.2 21.1 21 .1

- - 20.9 20.9 20.5 -
- - 20. :9 - - -

C-1 1 (s) - 176.4 - 176.4 - 176.7
C - 2 ' 
C - 3 ' 
C-4'

(d)
(q)
(q)

-
34.3 
19.0b 
18.8b

-
34.3 
19.0b 
18.8b

-
34.3 
19. 2b 
18.6

MeC (q) 24.0 23.8 23.7 23.7 25.3 25.2
18.3 17.7 17.8 17.8 21.4 21 .5
16.8 16.7 17.0 17.0 16.5 16.7
16.8 16.7 16.5 16.6 16.5 16.3

Note:- (i) a, b, means interchangeable.
(ii) Letters in parenthesis are multiplicities in the off 

resonance spectra.
(iii) Figures in square brackets refer to the carbon bearing the 

secondary hydroxyl function of the ester.
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I N T R O D U C T I O N

1
In 1966 Taylor reported that treatment of mexicanolide (1) with

1% methanolic sulphuric acid afforded the methoxy methyl ester (2)

which presumably arises by acid induced opening of the lactone ring

and replacement of the allylic C-17 oxygen by a methoxyl group.

Reduction of (2) with sodium borohydride gave a mixture of the 30 and

3a-hydroxy derivatives (3) and (4), the former in major amount. Attempted

acetylation of (3) with toluene-p-sulphonic acid in acetic acid and

acetic anhydride resulted in the formation of a rearrangement product

which was assigned the cyclopropanoid structure (9). We decided to
13repeat these reactions and to examine the C n.m.r. spectra of the 

products with a view to confirming or otherwise the structure (9).
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D I S C U S S I O N

Reduction of the methoxy methyl ester (2) with sodium borohydride 

gave as expected a mixture of the 36-alcohol (3) and the 3a-alcohol (4) 

whose spectroscopic properties accorded with the published values.

These two compounds are readily distinguished by the size of the coupling 

constant of H-3. In the 33-alcohol this proton appears as a broad 

doublet (J 10 Hz) at 6 3.75 whereas in the 3a-alcohol it is a narrow 

doublet (J 3 Hz) at 6 3.4. A small amount of a third compound was 

obtained during the preparative plate separation of the crude reaction 

product. Its proton n.m.r. spectrum indicated the presence of three

protons attached to oxygen-bearing carbons [6 4.15 (s, H-17), 3.78H
(d, J 6 Hz, H-3) and 4.39 (dd, J 4, 2 Hz, H-1)] and only one carbomethoxyl

group. It is tempting to suggest that this compound has the structure

(6) and arises by the reduction of the carbonyl group at C-1 followed

by lactonisation with the C-7 carbonyl group. Inspection of models

favours structure (6) over the alternative structure with a lactone

between C-7 and C-3 (a). The probability of a long range W  coupling

between H-1 and H-5 is apparent. This would explain the multiplicity

of H-1 (dd, J 4, 2 Hz) which, at first sight, is unexpected. The
13assignment of structure (6) is also supported by its C n.m.r. spectrum 

(see Table 1). Reduction of the C-1 carbonyl as in (3) results in n.m.r. 

y-gauche interactions between the resultant hydroxyl group and C-3 and 

C - 5 . These carbons move upfield with respect to (1). Reduction of the 

carbonyl also causes upfield shifts of C-2 and C-10. Reduction of the 

C-1 carbonyl group in this series is unusual in view of its hindered 

environment.



Acetylation of the 38-hydroxyl compound (3) with acetic anhydride

in pyridine on the steam bath yielded the normal acetate (5) [6 4.93H
(d, J 10 Hz, H-3)]. In the previous work Taylor reported that (3)

was stable to these reagents. The results of acetylation with toluene-

p-sulphonic acid in acetic acid-acetic anhydride varied with the quantity

of the acid catalyst. Using the published procedure acetylation of

(3) afforded the rearranged product (9) with the expected spectroscopic

properties. It was readily identified by the resonance properties.

[6,, 7.39 and 6.36 (both d, J 2 Hz) and 2.46 (3H, s, CH.CO) ] for the acetyl li  3
furan.

The reaction was repeated using one-fifth of the quantity of
1toluene-p-sulphomc acid. Two new compounds were obtained. The H n.m.r.

spectrum of the less polar product, C H 0 , was similar to that of the
Zo 34 /

rearrangement product (9) above. The major difference was the replace

ment of the signals for the acetyl furan by those of the normal 

8-substituted furan. This compound was therefore assigned structure (8). 

This result showed that the reduction in the amount of toluene-p-

sulphonic acid had permitted the rearrangement to occur without acylation
13of the furan. The virtual identity of the C n.m.r. spectra (see 

Table 1) of (8) and (9), with the exception of the furan resonances, 

supports this conclusion.
i

The H n.m.r. spectra of the more polar product, C 32H42° i o ' showed the 

presence of two acetates, one of which is attached to C-3 (8) [6 4.93 

(d, J 10 Hz)]. The downfield chemical shift of H-17 [6 6.32 (s)] and 

H-21 [6 7.72 (brs)] suggested that the second acetate is attached to 

C-17. Thus the more polar compound was assigned structure (7). Its 

formation involves simple acetylation of the 38-hydroxyl group and 

replacement of the C-17 methoxyl by an acetate.



13The C chemical shifts of compounds (1), (3), (5), (6), (8) and

(9) are shown in Table 1. The assignments are based on chemical shifts,

multiplicities in off resonance spectra and comparison with literature
1 13values for (1) and (5). The C data support the previously assigned 

structure for the rearrangement product (9) and hence its desacetyl 

derivative (8). The formation of the 38,88-ether is confirmed by the 

chemical shifts of C-3 and C-8. This results, in addition, in upfield 

y-effects on C-11 and C-5 and a downfield 8-effect on C-9. The high- 

field chemical shift values of C-13, C-14 and C-17 provide good evidence 

for the presence of the cyclopropane ring.
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E X P E R I M E N T A L

Methoxy methyl ester (2).- Mexicanolide (1) (200 mg) was dissolved

in analaR methanol (20 ml) and concentrated sulphuric acid (0.2 ml)

was added. The mixture was refluxed for thirty minutes and distilled

water (20 ml) was added to the hot solution. On cooling crystals of

the methoxy methyl ester (2) were deposited, and were recrystallised

from methanol. M.p. 171-173°C identical in all respects with the 
1 1reported compound. ( H n.m.r.)

Sodium borohydride reduction of (2).- Sodium borohydride (195 mg) 

was added to a solution of compound (2) (130 mg) in anhydrous ethanol

(6 ml) and analaR chloroform (3 drops). The mixture was stirred for 

two hours at 25°C. Water (4 ml) was added and the product extracted 

with chloroform ( 5 x 2  ml). The extract was then washed with water, 

dried and evaporated to dryness. Preparative t.l.c. of the crude 

product (40% EtOAc/CCl^) afforded three compounds, (3), (4) and (6).

(i) The 36-hydroxyl compound (3). [<STT 7.47 (1H, brs) 7.42 (1H, m)H
and 6.53 (1H, m) (8-substituted furan protons), 4.5 (1H, s, H-17),

3.6 (3H, CO Me) and 3.65 (3H, CO^Me), 3.23 (3H, OMe), 1.1, 0.97, 0.90,

and 0.73 (C-Me)]. M.p. 179-180°C (lit.1 179°).

(ii) The 3a-hydroxyl compound (4). C 29H40°8* 7,43 ^2 H ' brs^

and 6.48 (1H, brs) (3-substituted furan), 4.65 (1H, s, H-17), 4.6 and

4.7 (3H, each, CO M e ) , 3.23 (3H, OMe) , 1.1, 1.0, 0.95 and 0.65 (C-Me) 3 .

M.p. 188-189°C (lit.1 188-196°).

(iii) The lactone (6). [6 7.4 (1H, m ) , 7.25 (1H, m) and 6.35■ 1—■ - — n
(1H, brs) (6-substituted furan), 4.15 (1H, s, H-17), 3.66 (3H, s, CO ^Me) ,

3.02 (3H, OMe), 1.3 (6H), 1.15 and 0.85 (C-Me)]. C 28H 38°7 m^ e 486‘
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+(Found M 486. C H 0_ requires 486.)
O  J o  /

Acetylation of the 38-alcohol (3).

(a) With acetic anhydride in pyridine.- The alcohol (3) (32 mg) was 

dissolved in acetic anhvdride-pyridine mixture (10 ml), (2:1 v / v ) , and 

the mixture kept at steam temperature for 2 hrs. Usual work up afforded 

the 36-acetate (5) (30 mg); m.p. 195-196°C (ex chloroform-light petroleum 

ether). c 31H 420 g' m /e 558* f6H 7 *6 O H ,  m ) , 7.42 (1H, m) and 6.55

(1H, m) (8-substituted furan), 4.93 (1H, d, J 10 Hz, H-3), 4.70 (1H, s,

H-17), 3.63 (3H, s, CC^Me), 3.53 (3H, s, CC^Me), 3.15 (3H, O M e ) , 2.12

(acetate), 1.10, 1.0 and 0.76 (6H) (C-Me)]. (Found M+ 558. C _ 1H /to0 o31 42 9
requires 558) .

(b ) W ith a catalytic amount of toluene-p-sulphonic acid in acetic acid/ 

acetic anhydride mixture.- To the solution of the 33-alcohol (3) (32 mg)

in a mixture of acetic anhydride (2 drops) and glacial acetic acid

(1.3 ml) was added toluene-p-sulphonic acid (32 mg). The reaction 

mixture was allowed to stand at room temperature overnight. Work up 

and preparative t.l.c. of the crude product afforded compounds (7) and 

(8), (21 mg) and (9 mg) respectively.

(i) diacetate (7): C 32H 42°10 m *P ‘ 178-180°c <ex ether), m/e 586.

[6 7.72 (1H , brs), 7.40 (1H, m ) , 6.60 (1H, m ) , (3-substituted furan),H
6.32 (1H , s, H-17), 4.93 (1H, d, J 10 Hz, H-3), 3.66, 3.56 (3H, each, 

C°2M e ) , 2.13 and 2.02 (3H, each, acetate), 1.12 (6H), 0.80 (6H) (C-Me)].

(ii) rearrangement product (8): recrystallised from chloroform-

light petroleum ether, m.p. 161-162°C. ^28^34^7' (Foun<3 M

482.23099. C.oH_.0 requires 482.23042). [6 7.3 (1H, m ) , 7.2 (1H, m)28 34 7
and 6.25 (1H, m) (8-substituted furan), 3.93 (1H, d, J 7 Hz, H-3), 3.65, 

3.60 (3 H , each, CO M e ) , 1.06 (6H), 0.85 and 0.56 (C-Me)].



(c) With published amount of toluene-p-sulphonic acid in acetic acid/

acetic anhydride mixture.- The 36-alcohol (3) (54.7 mg) was dissolved

in a mixture of glacial acetic acid (2 ml) and acetic anhydride (0.6 ml).

Toluene-p-sulphonic acid (54.7 mg) was added and the mixture was stored

at 22°C overnight. The mixture was flooded with water and extracted

with chloroform ( 4 x 6  m l ) . Evaporation of the solvent afforded the

rearrangement compound (9) (32 m g ) , recrystallised from benzene-light
1petroleum ether, m.p. 199-200°C (lit. 196-199°C).
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Table 1

C n.m.r. spectra of mexicanolide and related compounds.

Carbon
No. 1 3 5 6 8 9

1 212.0 221 218.9 87.4 216.7 216.8
2 58.0 56.1 56.5 51.4 58.0 57.5
3 210.9 78.8 77.4 73.0 87.2 87.4
4 49.4 39.5 38.1 37.0 37.5 37.5
5 50.5 49.7 47.7 44.0 43.2 43.3
6 32.3 32.8 33.4 32.2 33.0 32.9
7 173.5 173.9 173.8 172.6 173.7 173.2
8 133.8 135,0 133.8 136.9 82.8 82.7
9 40.2 40.1 41.1 40.6 51.7 51.7

10 54.3 52.0 51 .7 33.5 51 .4 51 .7
11 18.6 20.4 20.1 20.1 17.8 18.3
12 28.8 34.2 35.7 33.3 33.7 33.2

13 37.8 42.9 43.1 42.7 29.9 29.8
14 125.3 133.7 133.7 126.5 26.7 27.9
15 32.9 35.0 35.5 33.3 34.9 35.1
16 169.7 172.5 172.0 171.7 174.5 174.3
17 80.6 78.8 79.0 81 .1 20.5 22.6
20 120.4 123.3 123.9 122.9 120.7 129.8
21 142.7 142.9 143.0 142.8 142.4 151 .0
22 109.8 110.7 110.7 110.7 112.9 115.6

23 141.5 141.8 142.1 141.3 140.5 144.2
30 36.4 36.2 34.2 37.8 43.5 43.3

OMe 52.1 56.6 56.2 56.6 51.8 51.7
- 51 .7 51 .8 51.9 51 .8 51 .7
- 51.7 51.7 - - -

MeCO - - 170.4 - - 187.8

C-Me 21.9 25.1 23.7 27.8 20.5 27.1
17.8 x 2 20.8 21 .1 27.8 19.0 20.6

17.4 20.1 20.8 25.5 16.9 17.7
- 17.5 19.4 24.6 - 17.0

- - 16.6 - - —
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I N T R O D U C T I O N

Despite the intensive investigation of the Meliaceae family over

the past twenty years very few nitrogen containing compounds have been

reported. One example is phragmalin (23) which occurs as an ester of 
. 1nicotinic acid. This chapter is concerned with an investigation of the

leaves of Aglaia roxburghiana. Previous work had resulted in the isolation
5of 8-sitosterol from the roots of this plant. In the present work 

two bis-amides, roxburghilin (1) and the closely-related compound (13), 

have been isolated. Roxburghilin has been shown to be N-cinnamoyl-2- 

(2'S-methylbutanoylamino)-pyrrolidine (1) by a combination of chemical 

and spectroscopic evidence and by synthesis of the corresponding dihydro

derivative (4) from L-proline. The structure of (13) is based on 

spectroscopic evidence and comparison with roxburghilin.

While the paper describing this investigation was in press,

Shienthong et al. published the structure of odorin and odorinol from
g

the leaves of A. odorata. These are undoubtedly identical to roxburghilin 

and compound (13) respectively.
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D I S C U S S I O N

Roxburghilin (1), C i b H 24°2N 2' + haS bands ;*-n the i ,r’ at
- 1  1 3442, 3280 (NH), 1686 and 1660 cm (amide). The H n.m.r. spectrum

indicated the presence of cinnamoyl [6 6.94 and 7.64 (ABq, J 16 Hz)

and ca. 7.4 (5H, m) ] and 2-methyl-butanoyl [5 0.76 (t, J 7 Hz, C H JVIe) ,

1.12 (d, J 7 Hz, CHMe) and 1.49 (2H, m, CHjyie) residues and one NH

(56.60, d, J 8 Hz; disappeared on addition of D^O-CF^CO^H]. Alkaline

hydrolysis of (1) afforded cinnamic acid and (+)-2-methylbutanoic acid.

The latter was characterised as its p-bromoanilide. The two acid

residues and the remaining carbons were also readily identified in the 
13C n.m.r. spectrum of (1). The shifts of the 2-methylbutanoyl moiety

[5 175.9 (s), 42.9 (d), 27.0 (t), 17.6 (q) and 11.9 (q)] are in perfectc
7agreement with literature values (see Table 1)* while those of the

cinnamoyl group [<S 165.7 (s) , 142.8 (d) , 118.2 (d) , 134.8 (s) , 129.9(2)

(d), 128.8(2) (d) and 128.2 (d)] accord with the values observed in

model compounds. The remaining carbons appear at 6 62.8 (d) (C-2)1,

46.2 (t) (C-5), 34.5 (t) (C-3) and 21.6 (t) (C-4) (see Table 2). Thus

roxburghilin is a secondary-tertiary bis-amide of a monocyclic unit

C H N , comprising two methylenes, a methylene bearing nitrogen and a 4 o 2
1methine bearing two nitrogens. The corresponding H resonances appear 

at 6 2 (4H, m ) , 3.62 (2H, m, CH^N) and 6.12 (1H, m, N-CH-N). Irradiation 

at 6 2, the methylene resonance, resulted in simultaneous collapse of 

the CH^-N multiplet to an AB quartet (6 3.48 and 3.74, J 12 Hz) and 

the N-CH-N signal to a doublet (J 8 H z ) , coupled with the NH doublet at 

5 6.60. These results can be satisfactorily interpreted in terms of a 

2-aminopyrrolidine nucleus and lead to structure (1) or (2) for roxburghilin.



The mass spectrum of roxburghilin has strong peaks at m/e 169 and 

131, and 215 and 85 resulting from loss of the cinnamoyl and 2-methyl- 

butanoyl fragments. In addition there is a peak at m/e 199 (M+ , 199.09968. 

C 13H 13NO requires M + 199.09970) corresponding to loss of 2-methyl- 

butanoic acid amide, presumably by a McLafferty rearrangement (Scheme 1). 

This result indicated that the 2-methylbutanoic acid is associated with 

the secondary amide function and confirmed the structure of roxburghilin 

as N-cinnamoyl-2-(2'-methylbutanoyl-amino)-pyrrolidine (1). The config

uration at C-2 was not determined. The isolation of (+)-2-methylbutanoic

acid on hydrolysis of (1) indicated that the configuration at C-.2* is 
2(s). The biogenetic origin of roxburghilin is not known, but it may be

derived from ornithine via an acylated putrescine intermediate (Scheme 2).

On standing in chloroform solution roxburghilin underwent partial
1e p i m e n s a t i o n  at C-2. This is apparent m  both the H n.m.r. spectrum

1 3which shows two sets of methyl signals and in the C n.m.r. spectrum
*

which exhibits doubling of some of the resonances. For example, C-2

appears as two signals at §c 62.8 and 62.7, C-4 (5c 21.6) has an

unresolved shoulder and the secondary amide carbons C - 2 1 and C - 5 1 appear

at Sc 42.9, 42.7 and 17.6 and 17.3 respectively. In addition two spots

are observed on analytical t.l.c. The equilibration is accelerated by

addition of a drop of trifluoroacetic acid, and presumably proceeds via

a ring-opened intermediate e.g. (3). Careful preparative t.l.c. of the

equilibrium mixture resulted in the isolation of 2-epiroxburghilin which 
13has the same C spectrum as roxburghilin as a result of equilibration 

at C-2 during spectrum accumulation.

Depending on the conditions, hydrogenation of roxburghilin yields 

not only dihydroroxburghilin (4) but also the ring-cleaved product

*
In a "non-acidic" solvent like CD^OD doubling of signals is not 
observed (see Table 2).
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tetrahydroroxburghilin (5). Reductive cleavage of a similar system (6)
3with sodium borohydride, to give compound (7) has been reported recently.

Treatment with acid caused equilibration at C-2 in dihydroroxburghilin,
13and the presence of epimers was detected by C n.m.r. In the tertiary

amide moiety C - 3 1 appears at 6c 31.3 (t) and 31.0 (t) while carbons

C-3' and C - 4 1 of the secondary amide group resonates at 6 27.2 and 27.0
1and 17.6 and 17.3 respectively. The epimers have identical H n.m.r. spectra

and chromatographic properties and could not be separated. Hydrogenation of

an equilibrium mixture of roxburghilin afforded an apparently single dihydro
1product indistinguishable from dihydroroxburghilin (4) (t.l.c. and H n.m.r.)

1 3The C n.m.r. spectrum of dihydroroxburghilin (4) unlike that of

roxburghilin exhibits two sets of signals for the pyrrolidine ring

carbons due to restricted rotation about the tertiary amide (see Table 2).
2As expected only one set of signals was observed at 100°C in [ H^]toluene.

It is interesting to note that in dihydroroxburghilin and the simple 

amides N-cinnamoyl- and N-dihydrocinnamoyl-pyrrolidine the chemical shift 

difference between C-3 and C-4, (AS 1.8 and 1.7) of the rotameric form 

is greater than that between C-2 and C-5, ( A S  0 and 0.2). The corres

ponding piperidine derivatives show the opposite effect (see Table 3).
4Derivatives of 2-aminopyrrolidine have been synthesised but

roxburghilin (1) appears to be the first example isolated from a natural

source. In their approach Murato et a l . employed a modified Curtius

rearrangement of N-benzyloxycarbonyl-L-proline (21) with diphenyl-

phosphorazidate (DPPA) in tertiary butanol containing triethylamine.

This afforded the allophanate (22) accompanied by the carbamate (6).

Similar results were obtained using a normal Curtius rearrangement of

the azide of (21) in tertiary butanol. The azide was prepared using the
8mixed anhydride method developed by Weinstock.
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The structure of roxburghilin was confirmed by synthesis of its

dihydro-derivative (4) following the route summarised in Scheme 3.

L-Proline (20) was converted in good yield into the azide (8) by acylation

with dihydrocinnamoyl chloride, methylation with diazomethane, treatment

with hydrazine hydrate and reaction of the resulting hydrazide with

nitrous acid. Curtius rearrangement of the azide (8) yielded the optically

active isocyanate (9) which was immediately subjected to a Grignard

reaction with 2-butyl magnesium bromide. Chromatography of the crude

product gave dihydroroxburghilin identical in all respects with an

authentic sample derived from roxburghilin. It is probable that the

synthesised compound is totally racemic as a result of equilibration

at C-2 during the acidic conditions of the work-up of the Grignard

reaction. A second product of the reaction was the urethane (10)-- The

butan-2-ol necessary for the formation of (10) presumably arose by reaction

of the Grignard reagent with oxygen. In the course of this work model

compounds (11) and (12) were also prepared by standard methods. Their 
13C data appear in Table 2.

A second bis-amide, C H N O (m/e 316); v (CC1 ) 3622, 3420,Io 24 2 o max 4
-13300, 1680 and 1660 cm , isolated from the extract m  minor amount has 

been assigned structure (13). Its spectroscopic properties are similar 

to those of roxburghilin (see Experimental). The obvious differences 

in the H n.m.r. spectra are the replacement of the secondary methyl 

signal of (1) by a methyl singlet at 6 1.33 and the appearance of a 

tertiary hydroxy proton (exchangeable with D^O) at 6 2.48. The above 

data clearly indicate the presence of a 2 1-hydroxy-21-methylbutanoyl 

residue.
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(1) Extraction.- Coarsely powdered leaves of Aglaia roxburghiana 

were successively extracted with hexane and chloroform in the cold.

The hexane extract contained 8-sitosterol and several tetracyclic 

triterpenoids. The chloroform extract was chromatographed over Grade IV 

alumina in benzene. The fractions eluted with benzene were combined

and crystallised from ethyl acetate to give roxburghilin (1), m.p. 205°C.

(Found: C, 71.8; H, 8.2; N, 9.2. C 1oH_.0 N requires C, 72.0; H, 8.0;1 o 24 2 2
N , 9.3%). Preparative t.l.c. of the mother liquors afforded a small

quantity of compound (13) [6 0.90 (t, J 7 Hz, CH^Me), 2.0 (4H, m, ring

methylenes), 3.62 (2H, m, CH - N ) , 6.12 (1H, m, N-CH-N), 6.94 and 7.66

(ABq, J 16 Hz, Ph-CH=CH-CO) and ca. 7.4 (5H, m, phenyl)]. (Found:

M+ 316.17849. C. H .0 N requires M+ 316.17867).Io 24 J 2
(2) Hydrolysis of roxburghilin.- Roxburghilin (300 mg) was refluxed 

for 6 hrs in 5% ethanolic potassium hydroxide solution (15 ml). The 

ethanol was removed în vacuo and the residue acidified with 5 M 

hydrochloric acid, extracted with dichloromethane and the crude product 

was chromatographed over silica gel. The fraction eluted with benzene 

yielded a solid which was crystallised from water to give cinnamic acid, 

m.p. 133°C, identical with the authentic specimen.

Roxburghilin (1 g) was hydrolysed as above. The dichloromethane

extract was distilled off and the fraction boiling at 180°C was redistilled

to give 2-methylbutanoic acid, b.p. 177°C. This was characterised as

its p-bromoanilide, prepared in the usual way and recrystallised from

ether-hexane, m.p. 132-134°C, [a]D + 32° (c 0.08, acetone); m/e 257 and
1255, identical with authentic specimen [lit. m.p. 132-134°C, [a]D + 32° 

(acetone)].



(3) Hydrogenation of roxburghilin.- Roxburghilin (37 mg) in ethyl

acetate (20 ml) was hydrogenated over 10% Pd-C for 5 minutes. The

catalyst was filtered off and the solvent removed to give a quantitative

yield of dihydroroxburghilin (4) which was crystallised from chloroform-

ether m.p. 105-106°C; [oe] D ± 0; m/e 302; v (CC1 ) 3442, 3300, 1685

and 1662 cm” 1; [S 0.78 (3H, t, J 7 Hz, MeCH ), 1.02 (3H, d, J 7 Hz, M e C H ) ,H   2 --
ca. 2.6 and 2.95 (each 2H, m, PhCH CH C O ) , 3.45 (2H, m, CH -N ) , 5.65 

(1H, m, N-CH-NH), 6.06 (1H, m, NH) and 7.18 (5H, brs, phenyl)]. (Found:

C, 71.5; H, 8.8; N, 9.3. C 0H O N requires C, 71.5; H, 8.7; N, 9.3%).i o 26 2 2
Prolonged hydrogenation under the above conditions afforded tetrahydro

roxburghilin (5) which was crystallised from ethyl acetate-ether,

m.p. 133-137°C. v (CC1J 3560, 3325, 1681 and 1672 (sh) cm” 1; max 4
[6 0.91 (3H, t, J 7 Hz, MeCH ), 1.15 (3H, d, J 7 Hz, MeCH), 2.47 andH 2 --
2.96 (each 2H, m, PhCH2CH 2C O ) , 3.2 (4H, m, 2 x CH2N ) , 5.95 (2H, m, 2 x NH,

exchangeable with D^-CF^CC^H) , and 6.19 (5H, m, phenyl)]. (Found:

M + 304.21482; C 1oH_o0 oN. requires M + 304.21507). The amount of tetrahydro 18 28 2 2
compound formed varied with the batch of catalyst used. In some experiments

the yield was very low even after overnight reaction.

(4) Equilibration of roxburghilin.- Roxburghilin (20 mg) in 

chloroform solution was stirred with trifluoroacetic acid (2 drops) in 

water (5 drops) for a few minutes. Analytical t.l.c. of the product 

showed two spots of similar Rp values. Careful repetitive preparative 

t.l.c. afforded two compounds. The more polar was roxburghilin. The less 

polar was 2-epiroxburghilin (7 mg) which was recrystallised from chloroform- 

light petroleum, m.p. 171-172°C; [6^ 0.9 (3H, t, J 7 Hz, MeCH2) , 1.06

(3H, d, J 7 Hz, MeCH) , ca. 1.97 (4H, m, CH2CH 2 ) , 3.54 (2H, m, C H ^ )  ,

6.14 (1H, m, N-CH-NH), 6.86 (1H, brd, J 8 Hz, N H ) , 6.92 and 7.68 (ABq,

J 16 Hz, PhCH=CHCO) and ca. 7.4 (5H, m, phenyl)]. (Found: M+ 300,



C 18H 24°2N 2 re<3u;*-res 300). Hydrogenation of the equilibrium mixture

afforded a product identical with dihydroroxburghilin (4) (t.l.c. and 
1 H n.m.r.).

(5) Synthesis of dihydroroxburghilin (4).- (-)-L-Proline (20) (8.7 g)

was dissolved in 7 M sodiumhydroxide solution (20 ml) and dihydrocinnamoyl-

chloride (12.8 g) added with stirring. After 5 minutes the mixture was

acidified and left overnight in the refrigerator. The precipitated

N-dihydrocinnamoyl-L-proline (14) (8 g) was filtered off and recrystallised

from chloroform-light petroleum, m.p. 98-100°C; [a ]D - 110° (water);

[5 2.1 (4H, m, CH -CH ), 2.65 and 3.0 (each 2H, m, PhCH CH C O ) , 3.45H 2 2 2-- 2
(2H, m, 2H-5), 4.58 (1H, m, H - 2 ) , 7.25 (5H, brs, phenyl) and 10.3

(1H, s, CO^H)]. The corresponding methyl ester (15), prepared in the

usual way by reaction with diazomethane in methanol, was obtained as

an oil, m/e 261; v (thin film) 1737, 1640 cm 1; [6 2.0 (4H, m, CH CH );max H z z
2.58 and 3.0 (each 2H, m, P h C H ^ H ^ O )  , 3.51 (2H, m, 2H-5) , 3.71 (3H, s,

CO M e ) , 4.48 (1H, m, H-2) and 7.3 (5H, brs, phenyl)]. The methyl ester 2—
(6.0 g) in ethanol solution, was allowed to stand overnight at room 

temperature with an excess of hydrazine hydrate. The hydrazide (16)

(5.4 g ) , obtained on removal of solvent in vacuo was suspended in a 

mixture of concentrated hydrochloric acid-acetic acid (10:1, v/v) and 

cooled in a salt-ice bath. An aqueous solution of sodium nitrite was 

added dropwise with stirring. The reaction mixture was extracted with 

ethanol free chloroform and the organic layer dried over anhydrous 

sodium sulphate-sodium carbonate. The formation of the azide (8) (5 g)
- 1was confirmed by the presence of a band in the i.r. spectrum at 2130 cm 

Conversion of the azide into the isocyanate (9) was achieved by warming 

the chloroform solution at 50-60°C in an oil bath for 2.5 hr. The 

reaction was monitored by the appearance of the isocyanate band in the



1 2 1 .

-1  _ i
l.r. at 2,260 cm , and the disappearance of the azide band at 2130 cm 

The isocyanate (9) (4.8 g) [ [<*] - 17.6° (ca0.7,chloroform)], in dry

tetrahydrofuran, was treated with 2-butylmagnesium bromide in a nitrogen 

atmosphere and refluxed overnight. The reaction was worked up by 

addition of saturated aqueous ammonium chloride solution and extracted 

with chloroform. The crude product was chromatographed over Grade IV 

alumina. Elution with 30% chloroform-light petroleum afforded dihydro

roxburghilin (4) (500 m g ) , which was further purified by preparative t.l.c.

and crystallised from chloroform-light petroleum as needles, m.p. 108-109°C

[a]^ 0°. The spectroscopic properties of the synthetic product were 

identical with those of naturally derived compound. A less polar product 

from the column, eluted with 20% chloroform-light petroleum, was the 

non-crystalline urethane (10) (200 mg); m/e 318; ^max (C<“-1^) 3450, 3300,

1664, and 1724 cm"1 ; [<5 0.87 (3H, t, J 7 Hz, MeCH ) , 1.2 (3H, d, J 7 Hz,H ^
M e C H ) , 3.5 (2H, m, 2H-5), 4.8 (1H, m, CH-O, H - 2 1), 5.16 (1H, m, N H ) , and

5.53 (1H, m, H-2)].

(6) Model compounds (11) and (12).- N-Acetyl-L-proline (17) was

subjected to Curtius rearrangement as above. The resulting isocyanate

(28) was reacted with ethanol to give the urethane (11); m/e 228;

v (CC1J 3340, 3282, 1725 and 1660 cm"1; [6 (at 65°C in CDC1 ) 1.20max 4 H 3
(3H, t, J 7 Hz, MeCH ), 2.07 (3H, s, MeC O ) , 3.45 (2H, m, 2H-5), 4.11

(2H, q, J 7 Hz, MeCH^O), and 5.5 (2H, m, H-2 and NH) ] . In a separate

experiment the isocyanate was treated with 2-butyl magnesium bromide to

yield the bis-amide (12) which was crystallised from chloroform-light

petroleum, m.p. 118-120°C; m/e 212; v (CC1 ) 3445, 3300, 1680 and 
c ^ max 4
1664 c m " 1 . [6 0.90 (3H, t, J 7 Hz, MeCH ), 1.13 (3H, d, J 7 Hz, M e C H ) ,H ^
2.08 (3H, s, MeC O ) , 3.47 (2H, m, 2H-5), 5.85 (1H, m, H-2) and 6.93 (H, 

brd, J 8 Hz, N H ) ] . (Found: C, 62.05; H, 9.25; N, 13.15. C 11H 20N 2°2

requires C, 62.25; H, 9.5; N, 13.2%).
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(7) N-Acetyl-L-proline (17).- Procedure as described for N-dihydro- 

cinnamoyl-L-proline. The product was crystallised from ethyl acetate 

and had m.p. 104-105°C (lit.5 103-104°C).
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Table 1

CONH

Carbon No. 4c A 6c B

1' 175 . 9 176.31

2' 4 2 . 9 41 . 62

3' 27 . 0 26 . 67

4' 11 . 9 11 . 5 2

5' 17 . 6 16. 40



Table 2

C n.m.r. spectra of roxburghilin and related compounds 

(in CDCl-j at room temperature).

1 1C 4 4b 12Y 11Y

C-2 62.8 
62.7X

64.0 63.5
(65.0)

64.6 64.3 66.2

C-3 34.5 35.0 34.4
(36.7)

34.0X 34.6 34.6

C-4 21 .6X 22.5 21.5
(23.8)

22.4X 21.6 21 .4

C-5 46.2 47.2 47.2
(45.7)

46.5 45.8 45.5

Tertiary 165.7 s 167.5 172.1 171.8 170.4 170.5
amide 142.8 d 

118.2 d

134.8 s
129.9 d

143.8
119.6

136.3
131.1

35.6 
31.3 
31.0X 

140.9 
126.1

36.2
31.7

142.0
126.0

22.0 22.0

128.8(2) d 129.9 128.4 (4) 128.9(2)
128.3(2) d 129.3 128.7(2)

Urethane
Secondary 175.9 s 178.3 175.6 175.4 175.6 155.3
amide 42.9 d

„ _ _x 42.7
43.6 42.9 43.0 42.8 61.0

f 27.3 t 28.1 27.2 27.4 27.0 14.6
\  27.0 27.0X 27.7

r  17.6 17.9 r17.6 r 17.5 17.4

ll7.3X q tl7.3X ll7.4X

11.9 q 12.3 11.9 11.9 11.9

(a) Figures in parentheses represent minor rotamer.
2(b) [ H ] T o l u e n e  at 100°C. (c) CD OD at room temperature.O

(x) Presence of epimers indicated by two resonances or unresolved shoulder, 
(y) Major rotamer.



Table 3

C n.m.r. chemical shift differences of ring carbons 

in amide rotamers.

Compound C-2,
C-5 A6 C-3,

C-4 A6

Dihydroroxburghilin3 64.6 0.8 36.9 2.1

63.8 34.8

46.9 0.8 23.8 2.2

46.1 21.6

N-Dihydrocinnamoyl- 46.0 0.2 26.1 1.7
pyrrolidine

45.8 24.4
aN-Cinnamoylpyrrolidme 46.0 0 26.2 1.8

24.4

C-2 C-3

C-6 C-5

N-Di hyd roci ngamoy1- 47.0 3.7 26.7 1.0
piperidine

43.3 25.7

N-Cinnamoylpiperidine 46.6 3.9 26.4 0.9

42.7 25.5

3 [2H Q ]Toluene. b In CDC1 . The A6 value for NN-dimethyl-8 3
acetamide in is 3.0 ppm.
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COoEi

MeCO =NHC02Et

M e ,

12) R = NHfco

17)R-C02H
18)R=C02Me
19)R=C0NHNH.

P hC H 2OCO

21)R = CO?H

22)R =nHC0NHC02S u1

8) R=CON.

9) R = N C O

10)R=NHCO

14)R = C02H
15)R=C02Me
16)R=CONHNH2

13)

H
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I N T R O D U C T I O N

The plant Afromomum daniellii (Zingiberaceae) is a perennial herb

which grows in many regions of Cameroon. It is known locally as

"Achoh" and the seeds produce a hot taste on chewing. Like other members

of its family which have been found useful, the roots of this plant are

used as a purgative. Afromomum angustifolium from the same locality,

and Curcuma angustifolia, a native of East India, are known to be a

rich source of arrowroot. The medicinal properties of other members

of this family, and this species in particular, stimulated our interest.

Extraction of the seeds with hexane afforded a diterpenoid dialdehyde

C 20H 30°3 tC> we assigned the structure (E) -8B, 17-epoxylab-12-ene-

15,16-dial (1) on the basis of its spectroscopic properties and by

correlation with cis-12-norambreinolide (6). Natural dialdehydes are

not very common, though in general they have interesting biological
1activity. Linaridial (3), a cis-clerodane from Linaria japonica,

warburganal (9), ugandensidial (10), and poligodial (11) from the bark
2of East African Warburgia species (W. stuhlmannii and W. ugandensis)

are representative examples. Compounds (9), (10) and (11) exhibit

strong insect antifeedant activity in African army worms Spodoptera
3 4littoralis and S. exempta and have been synthesised, ' albeit in low 

yield. It is attractive to regard (1) as a starting point for partial 

synthesis of the above sesquiterpenoid dialdehydes. Unfortunately 

preliminary attempts to cleave the C-11, C-12 bond proved unsuccessful. 

The biological activity of (1) is, however, under investigation.
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D I S C U S S I O N

1The H n.m.r. spectrum of (1) has signals for three tertiary

methyls (6 0.9, 0.87, and 0.84), an epoxide methylene [5 2.27 and 2.42H
(ABq, J 3.5 Hz)], an allylic methylene [(5 3.38 (brs)], a saturated

aldehyde [6 9.58 (t, J 1 Hz)] and an a6-unsaturated aldehyde [6 9.36 (s);

6.64 (brt, J 7 Hz, vinyl H-12)]. The i.r. tvmax (CCl^) 2712, 1731 , 1690,
- 11640 cm ] and u.v. [X 234 nm (e 14,400)] spectra confirmed themax

presence of two aldehyde groups. The above data account for the function

ality of (1) which is therefore bicarbocyclic. The relationship between 

the two aldehyde groups was established by double resonance experiments. 

Irradiation of the allylic methylene resonance at 6 3.38 caused the 

collapse of the saturated aldehyde triplet at <5 9.58 to a singlet and 

simultaneously sharpened the vinyl proton triplet at 6 6.64. This 

suggested the partial structure (2). Irradiation at 6 6.64, the resonance 

frequency of the vinyl proton, resulted in a 20% increase in the integrated 

intensity of the unsaturated aldehyde proton and thus established the 

(E)-configuration of the double bond. The partial structure (2)

corresponds to .the side chain of linaridial (3), a cis-clerodane from 
1Linaria japonica, and there is a good agreement between the above

spectroscopic data and those reported for linaridial. The remaining

features of the dialdehyde were readily accommodated in a labdane
13skeleton, leading to structure (1). The C resonances of rings A and

5B of (1) (see Table 1) were similar to published data. Confirmation 

of the structure and absolute stereochemistry was obtained as follows 

(Scheme 1).



1Reduction of (1) with LiAlH^ afforded the triol (4). The H 

spectrum [6 0.83, 0.86, 0.96, 1.09 (C-Me), 2.44 (t, J 6 Hz, 2H-14);H
3.73 (t, J 6 Hz, CH OH, 2H-15), 4.0 (brs, CH -OH, 2H-16) and 5.48 

(t, J 6 Hz, H-12)] fully supported its structure. Reaction of (4) with 

OsO^ and periodate cleavage of the resulting pentaol yielded the non

crystalline hemiacetal (5) [6 4.95 (t, J 5 Hz, H-12)]. This was converH
by Jones oxidation into cis-12-norambreinolide (6) ([a lD “ 28°^)

m.p. 94-95°C (lit. 93-94.5°C). 1H n.m.r. [6 0.86, 0.92 (6H) C-Me, 1.32H
(C-8 . Me) and 2.55 (2H, m, 2H-11)]. Trans-12-Norambreinolide (7)^

g
was obtained by chromium trioxide oxidation of sclareol (8) and was 

epimerised under acidic conditions^ to cis-12-norambreinolide (6)

([ot]^ - 33°), identical in all respects with the degradation product 

of (1). This correlation confirms the structure and absolute configur

ation of the labdane dialdehyde (1).

Compound (7) probably arose via an initial dehydration of the 

tertiary hydroxyl group of sclareol to give the diene (14), followed 

by oxidative cleavage of the C-12, C-13 double bond with formation of 

the carboxylic acid (15) which lactonised with the C-8 hydroxyl group 

under the acidic conditions. It is reasonable to assume that the 

epimerisation occurred by acid opening of the lactone ring to generate 

the exomethylene derivative (16), protonation and relactonisation.
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E X P E R I M E N T A L

Extraction.- Dried seeds (1 kg) of A. daniellii collected from 

Evodoula in the Central South Province of Cameroon in December were 

powdered and Soxhlet-extracted with hexane for 24 hrs. The extract 

was concentrated and set aside for several days. The solid which was 

deposited was filtered off through a column of alumina in hexane to give 

(1) (20 g ) . Recrystallisation from chloroform-light petroleum afforded

the pure (E)-88,17-epoxylab-12-ene-15,16-dial (1) m.p. 90-92°C;

[a] + 28.1° (C 1.41). (Found: c, 73.65; H, 9.65. c 2oH 30°3*^H 2°

requires C, 73.4; H, 9.55%).

Reduction of (1).- (a) The aldehyde (1) (300 mg) in dry ether 

(20 ml) was treated with excess of LiAlH^ (500 mg) and the solution 

refluxed for 4 hrs. The excess of LiAlH^ was destroyed by dropwise 

addition of saturated brine and the inorganic residue removed by filtration. 

Evaporation of the ether afforded the (E)-lab-12-ene-8,15,16-triol (4) 

which was crystallised from light petroleum as needles, m.p. 98-99°C

[6 0.83, 0.86, 0.96, 1.09 (C-Me), 2.44 (t, J 6 Hz, 2H-14), 3.73H
(t. J 6 Hz, CH OH, 2H-15), 4.0 (brs, CH^-OH, 2H-16), and 5.48 (t, J 6 Hz, 

H-12)]. (Found: C, 74.3; H, 11.10. c 20H 36O 3 rec3uires C ' 74.0;

H, 11.2%).

(b) The aldehyde (1) (200 mg) in dry methanol (20 ml) was treated

with a stoicheometric amount of NaBH^ (23.9 mg) and the mixture allowed 

to stir for 2 hrs, after which acetic acid was added. The solution was 

flooded with water and extracted with chloroform. Evaporation under 

reduced pressure gave the (E)-88,17-epoxylab-12-ene-15,16-diol (17), 

crystallised from benzene-light petroleum ether, m.p. 78-79°C, m/e 322; 

(Found: C, 74.3; H, 10.37. c 20H 34O 3 requires C 74.49; H, 10.63%).
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[<8 0.80, 0.86 (6H) (C-Me), am epoxide methylene <$ 2.22 and 2.55 fttt,
ill

J  3.5 Ha), 5.38 ffort, J ? Hi (vinyl 33-12); 4.0 ((hrs, C H J M ,  2H-1C); 2.

3.70 (t, J 6 Ha, CB^QII, 2H-15), and 2.35 ((t, J  6 Ha, 2H-14)).

Bemdacetal (5).- The trio! (4) Cl00 mg) was dissolved im ether C4© ml)

comtaimimg a few drops of pyridine and osmium tetroxide (100 mg) was

added. The reaction mixture was set aside in the dark for 24 hr., stirred

with aqueous sodium metabisulphite solution and extracted with ethyl

acetate. The product, a single polar spot on analytical t.l.c. without

further purification was stirred overnight in aqueous methanol C20 ml)

with excess MalG^. Addition of water and extraction with ethyl acetate

afforded the heraiacetal (5) as a gum, m/e 234; [S 0.86 (€H), 0.88, 1.27H
(C-Me) and 4.95 (t, J 5 Hz, H-12)].

Lactone ( 6 ) The heraiacetal (5) (20 mg) in acetone was oxidised

with Jones reagent. The lactone cis-12-noraiibreinolide (6) was obtained,

and was recrystallised from light petroleum as needles i.r. (CCl^)
-11780 cm ; m.p. 94-95°C.

Oxidation of sclareol (8).- A stirred solution of sclareol (8)

(2 g) in glacial acetic acid (20 ml) was treated with CrO^ (4.4 g) in 

10% aqueous acetic acid (20 ml) during 30 min.; and stirring was continued 

for 24 hrs. Extraction with ether and removal of acidic products with 

aqueous N a ^ O ^  afforded trans-12-norambreinolide (7) m.p. 123-125°C

(ex light petroleum) (lit.^ 123-125°C) v (CC1 ) 1778 cm ^ ; [6 0.85,max ii
0.88, 0,92 and 1.33 (C-Me)].

Epimerisation of trans-12-norambreinolide (7).- The trans lactone 

(7) (51 mg) was heated at 70°C in glacial acetic acid (2 ml) containing 

50% (0.2 ml) for 6 hrs. and set aside overnight. Addition of water

and attraction with ether gave cis-12-norambreinolide (6) which crystal

lised from light petroleum ether as needles, m.p. 9 3 - 9 4 . 5°C (lit.^ 95°C);



[a] - 33° (C, 0.57) identical in all respects with the degradation

product of the natural aldehyde (1).

A ttempted synthesis of warburganal (9) and related compounds.- 

Treatment of the diol (17) or its diacetate (18) with the following 

reagents resulted in total failure to isolate any products.

(a) Bromination of the double bond in CCl^, CHCl^, and ether 

respectively, with a view to generating the dibromide (22).

(b) Iodine and silver benzoate in dry benzene with the hope of 

obtaining the iodobenzoate, or dibenzoate (23) and (24) respectively.

(c) Selenium dioxide in dioxane which could lead to the 11-oxo or 

11,14-dioxo derivatives (25) or (26).

(d) Diphenyl diselenide in the presence of t-butyl hydroperoxide 

which might afford the allylic alcohol (27) or (28).

The epoxide is resistant to dilute sulphuric acid and metal- 

dialkyl amide complexes such as lithium diethyl amide.



Table 1

13C n.m.r. of compound (1) and related compounds

Carbon (1) (19)

1 39.6 (t) 39.8
2 18.4 (t) 18.5
3 42.0 (t) 42.1
4 33.6 (s) 33.3
5 52.8 (d) 56.2
6 20.0 (t) 20.6
7 39.6 (t) 40.9
8 57.6 (s) 74.4
9 55.2 (d) 62.5

10 40.0 (s) 39.2
11 22.4 (t) 24.0
12 161.2 (d) 44.3
13 136.0 (s) 30.6
14 36.0 (t) 39.8
15 198.0 (d) 60.3
16 194.0 (d) 20.1
17 48.8 (t) 23.2
18 33.6 (q) 33.5
19 21.6 (q) 21.5
20 14.8 (q) 15.5

Assignments are based on chemical shift rules, 
multiplicity in the offresonance spectra and 
comparison with published data.^
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I N T R O D U C T I O N

The vast field of sesquiterpenoid lactones has been the subject
1of a recent extensive review. Interest in these natural products is 

still great, probably because of their successful use as markers in
2biochemical systematic studies (Chemotaxonomy), mainly in the Compositae,

3and their various biological activities.

A detailed review of the biogenesis and chemistry of sesquiterpenoid

lactones will be beyond the scope of this thesis. It is sufficient

to repeat the generally accepted assumptions that these sesquiterpenoid
4lactones are derived from farnesyl-pyrophosphates and that the majority 

of the skeletal types are biogenetic derivatives of germacranolide (1). 

Some of the presently known structural classes and their presumed biogenet 

relationships are as shown in Scheme 1. The germacranolides are divided 

into subgroups on the basis of the configuration of the 1,10 and 4,5 

double bonds (see Scheme 2).

This chapter deals with three new sesquiterpenoid lactones isolated 

from Vicoa indica, a shrub belonging to a small tribe of the Compositae 

family. Extraction of V. indica, collected near Madras, afforded 

two sesquiterpenoid lactones A and B which are assigned the guaianolide 

structure (2) and the germacranolide structure (7) respectively on the 

basis of spectroscopic evidence. In-am effort to obtain more material 

the same plant, gathered in a different region near Poona, was extracted 

and yielded a third sesquiterpenoid lactone, the germacranolide (11).

The evidence for these assignments is discussed below.
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D I S C U S S I O N

Compound A (2), C H 0 , [m/e 360; v (CC1J 3605, 3460 b r , 1782, 20 24 6 max 4
-1

1727 sh, 1710 and 1649 w cm ; Xm 224 nm] has spectroscopic properties 

(see Tables 1 and 2) consistent with the presence of an a8~unsaturated
5

cyclopentenone, an angelate, a secondary hydroxyl group, an exomethylene 

y-lactone, a vinyl methyl group and a secondary methyl group. These 

functional groups account for all the oxygen atoms and hence the molecule 

is bicarbocyclic. Extensive homonuclear proton decoupling experiments 

at 360 MHz enabled the constitution of the entire molecule to be estab

lished as follows. Irradiation of H-5 (5 3.19, bdd, J 10.9, 7.2 Hz) 

resulted in the removal of a small allylic coupling to the vinyl proton 

H-3 (6 6.11, dq, J 2.0, 1.3 Hz), which is also coupled to the vinyl 

methyl group, and simultaneously removed doublet splittings from H-1 

(<S 2.90, dd, J 7.2, 3.9 Hz) and H-6 (6 4.43, dd, J 9.6, 10.9 Hz). H-6 

is coupled in turn to H-7 (6 2.94, tt, J 10.0, 3.1 Hz). On irradiation 

of H-7 the exomethylene protons collapsed to singlets by loss of their 

allylic coupling and doublet splittings were removed from H-6 and H-8 

(<S 4.04, ddd, J 10.4, 9.3, 4.4 Hz). The attachment of the secondary 

hydroxyl group to C-8 was confirmed by D 20 exchange which caused the 

disappearance of the hydroxyl proton doublet (6 2.49, J 4.4 Hz) and the 

loss of a doublet splitting from H-8. The third splitting of H-8 is 

due to coupling with H-9 (6 5.01, dd, J 9.3, 3.3 Hz), the position of 

the attachment of the angelate, which is in turn coupled to the methine 

H-10 (6 2.76, m) on the same carbon atom as the secondary methyl group. 

Decoupling of H-10, in addition to affecting H-9 and the secondary methyl 

removed a doublet splitting from H-1. This decoupling sequence is
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summarised in the diagram (3) and leads uniquely to the guaianolide

skeleton (4) for lactone A.

Evidence for the stereochemistry of lactone A is readily available

from the coupling constant information. The large allylic couplings

(2.9, 3.3 Hz) of the exomethylene protons together with the large value
1of J (9.6 Hz) are characteristic of a trans-fused lactone. The C-7 6,7 ------

substituent is assumed to be in the normal 3 configuration.^7^ The 

large values of J , J , and J (10.9, 10.4, and 9.3 Hz respectively)j f b I fo

are consistent with antiperiplanar arrangements. The cis nature of the

A,B ring junction is suggested by the magnitude of J (7.2 Hz) which is1/5
in good agreement with the corresponding value for the model system

(5)^ (see below). The configuration of the remaining centre C-10 is

not obvious at first sight. However an examination of models reveals

a conformation, with the secondary methyl group 6 and pseudo-axial,

which accommodates the observed values of J (3.3 Hz) and Jy z i u i u / i

(3.9 Hz). In this conformation the secondary methyl group lies close

to H-6. The observation of a nuclear Overhauser enhancement (~ 10%)

of H-6 on irradiation of the secondary methyl protons provides supportive

evidence for this assignment. The alternative arrangement with the C-10

methyl group a (pseudo-axial) and a trans AB ring junction (i.e. H - 1 6)

which could also accommodate the observed coupling constants is excluded

by the nuclear Overhauser effect. Thus lactone A is assigned the

structure and stereochemistry depicted in (2).

Acetylation of A afforded the monoacetate (6) in which the resonance

for H-8 has, as expected, moved downfield (A<5 1.44). Comparison of
1 3the C chemical shifts (see Table 2) of the acetate (6) m  relation 

to the parent compound (2) reveals B-acetylation shifts of C-9 (A5 - 3.6)



and C-7 (A6 - 2.7) although C-8 itself remains relatively unchanged.

An upfield shift (A<5 + 1.6) of the angelate carbonyl group is presum

ably due to H-bonding removal which may also negate the anticipated 

positive a-acetylation shift of C-8.

Lactone B (7), C__H-_0_, [m/e 362; v (CC1J 3612, 3518, 1780,20 26 6 max 4
- 11712, 1688 and 1634 cm ; X 221 nm] has spectroscopic properties

which are strikingly similar to those of A (2) and which indicate the

same functional groups. The two additional hydrogens in the molecular

formula together with the change in the enone carbonyl frequency suggest

that it is a germacranolide and not a guaianolide. This conclusion is 
13supported by the C off resonance spectrum which has two methylene

triplets and two methine doublets.

Decoupling experiments and consideration of coupling constant

values [see (8)] permitted the assembly of the part structure (9) on

the assumption that J_ is zero. This part structure is readily/, b
expanded to (7) for compound B which is thus the germacranolide equivalent

of lactone A. The same stereochemistry as (2) is assumed although further

work is required to determine the exact conformation of the molecule.

Acetylation of B (7) yielded the acetate (10) in which the

resonance for H-8 has moved to lower field (A6 1.62) and overlaps with
13H-9 to give a two proton singlet at 6 5.52. The C chemical shifts of 

B (7) and its acetate (10) (Table 2) are generally similar to those of 

A (2) and its acetate (6). The most striking change concerns C-4 which 

exhibits a dramatic upfield shift of 34 ppm on changing from the 

guaianolide to the germacranolide. The methyl groups are also affected, 

the vinyl methyl moving downfield by 6.3 ppm and the secondary methyl 

by 8.6 ppm. It is interesting to note that the ketonic carbonyl of
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lactone B appears at <5 206.2, a slightly lowfield position for an 

unsaturated ketone. This suggests that there may be some departure 

from planarity in the enone system. Comparison of the shifts of B (7) 

and its acetate (10) reveals upfield shifts of C-9 (A6 - 3.1) and 

the angelate carbonyl (AS - 1.8) although, in this case, C-7 and C-8 

are relatively unchanged. Small changes in the shifts of several other 

carbons suggest that a slight conformational change has occurred.

The spectroscopic properties (see Tables 1 and 2) of lactone C (11),

, [m/e 440? v (CC1J 3610, 3485, 1755 and 1790 cm " 1] revealed 22 32 9 max 4
the presence of two secondary esters, an acetate and a 2-methylbutanoate,

two secondary hydroxyl groups, a trisubstituted epoxide (6 2.83 (bs, H - 3 ) ;

<5̂, 70.0 (d, C-3) and 65.3 (s, C-4) , an exomethylene lactone, and

two methyl groups, one secondary and one tertiary. The molecule is
1 3therefore monocarbocyclic and presumably a germacranolide. The C 

spectrum shows only one methylene and two methine signals in addition 

to the carbons associated with the above functional groups.

Once again homonuclear proton decoupling studies provided useful 

information. The two secondary ester protons, H-8 and H-9, are vicinal. 

Irradiation at H-10 (6 2.5) causes the simultaneous collapse of the 

secondary methyl doublet and the sharpening of H-9. There is no evidence 

which permits a decision on which position bears the acetate and which 

the 2-methylbutanoate. For convenience and by analogy with the lactone 

A and B the 2-methylbutanoate is assumed to be attached to C-9. This 

leads to part structure (12). The allylic coupling (~ 3 Hz) of the 

exomethylene protons and the large 7 (9 Hz) indicates a trans-fused 

lactone. The proton attached to the lactone terminus (H-6) is coupled 

to a secondary hydroxyl proton (<5 4.36, d, J 9 Hz, H-5) which shows no
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further coupling. These results afford the part structure (13). The 

remaining secondary hydroxyl proton has a small coupling to the epoxide 

proton (H-3) and its major coupling (9 Hz) to one of the methylene 

protons. The chemical shift of the tertiary methyl group (5 1.44) 

indicates that it is also attached to the epoxide at C-4. The third 

part structure is therefore (14). On the assumption that there is a 

zero coupling between H-7 and H-8, as in lactone B (7), these part 

structures can be assembled to give (11) as the gross structure for 

lactone C.

Support for this gross structure was obtained from chemical trans

formation of lactone C. Acetylation gave the diacetate (15) and the 

triacetate (16). It is clear from its spectroscopic properties that, 

in the diacetate (15), acetylation has taken place at C-5 since H-5 

has moved downfield by 1.37 ppm. In the triacetate (16) both H-2 and 

H-5 resonate at low field. Formation of the diacetate (15) results 

in acetylation shifts of C-5 (AS + 0.8), C-4 (AS - 2.1) and C-6 (AS - 2.8). 

Similarly acetylation shifts of C-2 (A5 + 1.2), C-3 (A6 - 3.3) and C-1 

(AS - 2.1) are observed in the triacetate (16).

Oxidation of lactone C (11) with Jones reagent yielded the hydroxy-
1ketone (17). It was readily apparent from the H n.m.r. spectrum that

H-6 is still coupled to the secondary hydroxyl proton H-5 and hence

that the hydroxyl group attached to C-2 has been oxidised to a ketonic

carbonyl group. In addition the epoxide proton has moved downfield by

1.00 ppm as a sharp singlet and the resonances for the C-1 methylene

group are clearly visible [6 3.31 (dd, J 10, 15 Hz) and 1.99 (d, J 15 Hz)].

The carbon resonance of the C-1 methylene group also shows a large
1downfield shift (10.7 ppm). A closer examination of the H n.m.r.



spectrum of (17) discloses further information which is of considerable 

value in conformational and stereochemical terms. Both H-7 and H-5 

exhibit large upfield shifts (1.22 and 0.63 ppm respectively). This 

suggests a conformation of the molecule experience transannular shielding 

by the newly created carbonyl group. The conformational mobility of 

the medium ring makes it difficult to arrive at a unique decision for 

the conformation and further work is necessary. It is significant to 

note, however, that the coupling constants of ketone (17) are almost 

identical to those of lactone B (7) suggesting that they have the same 

stereochemistry.
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E X P E R I M E N T A L

The compounds were sent to us by an Indian colleague at Captain 

Srinivasa Murti Research Institute for Ayurveda in Madras.
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Table 1

H n.m.r. chemical shifts of sesquiterpenoid lactones from Vicoa indica.

u.
Proton 4 6 7 10 11 16 15 17

I 2.90 2.78
(dd,7.2, (dd,10.9,
3.9) 13.8)

1 -  2 . 1 1
(bd,13.8)

3 6.11 6.30 6.38 2.86 2.95 2.90 3.86
(dq,2.0, (b q ,1.2) (bs) (bs) (d,2) (bs) (s)
1.3)

5 3.19 3.17 4.36 5.65 5.73 3.73
(dd) (brdd, (d,9) (d,9) (d,9) (d,9)

12.4,7.7)
6 4.43 4.56 4.28 4.13 4.09 4.21 4.20 3.96

(dd,9.6, (dd,11,10) (ddt,3.3, (dt,9,3) (t,9) (t,9) (t,9) (dd,9,8)
10.9) 8.8,7.7)

7 2.94 3.11 3.92 3.57 4.08 2.70
(tt,10.0, (dt,8.8, (m) (m) (m) (dt,9,3)
3.1) 3.3)

8 4.04 5.48 5.52 5.23 5.25 5.25 5.21
(ddd,4.4, (t,10) (s) (d,10) (d,10) (d,10) (d,10)
9.3,10.4)

9 5.01 5.17 5.29 5.52 5.44 5.45 5.51 5.45
(dd,3.3, (dd,10.3) (dd,2.4, (s) (bd,10) (bd,10) (bd,10) (dd,10,2)
9 .3) 1 0.6 )

10 2.76 2.67 2.64 2.5 2.58
(tq,3.6, (m) (m) (m) (m)
7.5)

13 6.50 6.32 6.39 6.38 6.36 6.47 6.44 6.38
a (dd,1.1, (d,3) (d,3.5) (d,~3) (d,~3) (d,3) (d,~3) (d,~3)

2.9)
13 6.41 5.70 5.77 5.83 5.82 5.89 5.87 5.81

(dd,1.1, (d,3) (d,3.1) (d,~3) (d,~3) (d,3) (d,~3) (d,~3)
3.3)

15 2.34 2.30 1.93 1.97 1.44 1.5 1.52 1.57
(t,1.0) (bs) (b d , 1 .2) (bs)

Angel- 6.18 6.14 6.15 6.15 - - - “
ate 3 1 (qq,1.5. (m) (m) (m)

7.3)
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Table 1 (continued)

H n.m.r. chemical shifts of sesquiterpenoid lactones from Vicoa indica.

Proton 2 6 7 10 I ihII 16 15 17

Angel
ate 4'

2.03 
(dq,1.5, 
7.3)

1 .97 
(<3 ,7)

2.00 
(dq,1.5, 
7.3)

1 .97 0.78 
(t, 7)

0.79
(t,7)

0.80
(t,7)

0.75
(t)

5 ’ 1.92 
(dq , 1.5 , 
1.5)

1.79 
(d, 1.5)

1 .94 
(dq,1.5, 
1.5)

1.88 0.94
((3,7)

0.97
((3,7)

1.01
((3,7)

1.0
((3,7)

14 0.86
((3,7.5)

0.86
(d,7)

1 .09 
(d,6.9)

1 .06 
((3,7)

1.00 
(d,7)

1.01
((3,7)

1 .03 
(d,7)

0.98
((3,7)

-OH 2.49
(d,4.4)

- — 3.52

OAc 2.01 1 .88 1.98 2.02
2.1
2.15

2.03
2.15

2.01

2 4.64 
(b d , 9)

5.73 
(b d ,9)

4.71
(bd,9) -

5b 2.89
(b d , 1 2.4)

h = 60°
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Table 2

C n.m.r. chemical shifts of sesquiterpenoid lactones
from Vicoa indica.

Carbon 2 6 7 10 11 15 16 17

1 (t) 49.7 49.6 45.4 44.8 31 .4 31.2 29.3 42.1 (dd)
2 (s) 206.9 206.4 206.2 206.0 65.0(d) 64.9 (d) 66.2 (d) 207.4 (s)
3 (d) 132.8 132.9 131.0 131.2 70.0 69.6 66.7 64.4
4 (s) 179.1 178.5 145.5 145.6 65.3 63.2 62.5 65.8
5 (d) 52.0 52.0 34 r 1 34.7 74.5 75.3 74.3 73.7
6 (d) 77.1 77.3 77.2 76.1 79.2 76.4 76.3 77.6

7 (d) 48.7 46.0 46.4 45.8 41.8 42.2 42.9 42.4
8 (d) 71.3 71.0 70,5 69.9 70.4 70.4 69.6 69.2

9 (d) 80.5 76.9 77.2 74.1 75.7 75.5 74.8 74.2

10 (d) 35.9 36.0 33.3 33.9 27.1 27.2 28.4 33.7

11 (s) 135.3 134.2 133.4 132.7 132.9 132.3 131.7 131.9

12 (s) 169.4 168.6 168.8 168.7 169.8 168.4 167.9 167.7

13 (t) 126.9 125.4 123.2 124.1 124.1 124.2 124.9 125.1

14 (q) 11.8 11.8 20.4 20.2 22.2 22.2 22.0 20.0

15 (q) 19.8 19.6 26.1 25.9 17.9 18.6 18.6 16.8

1 ' (s) 167.5 165.9 168.4 166.6 176.2 176.3 176.1 176.3

2' (s) 127.0 126.8 127.3 127.0 40.9 (d) 41.0 (d) 40.9 (d) 40.9 (d)

3' 140.4 140.6 139.7 140.1 26.5(t) 26.5(t) 26.5(t) 26.5(t)

4' 20.5 20.4 20.6 20.5 11.6 11.6 11.6 11.6

5' 16.0 15.9 16.0 15.9 16.3 16.3 16.3 16.2

C H 3CO - 169.4 - 170.4 170.4 170.2 170.1 -
J

- - - - - 170.2 169.5 169.9
- - - - - - 169.1 -

MeCQ - 20.8 - 20.5 20.8 21 .0 21.0 20.6
20.7 20.8

20.7
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I N T R O D U C T I O N

1Neolignans have been the subject of a review by Gottlieb. The
2 3term "lignans" was first applied by Haworth ' to plant products based 

on carbon skeleta having two n-propylbenzene residues linked by the 

3-carbon atoms of the side chains. Unlike most of the "Haworth lignans" 

derived by the coupling of acid and/or alcohol, the neolignans are
5derived by the oxidative coupling of propenyl and/or allyl derivatives.

There are at least fifteen skeletal types based on the coupling pattern

of the monomeric precursor units.

Biogenesis. The biogenesis of most of the known neolignans can

be explained by oxidative coupling of a propenylphenol derived starter

with either a propenylphenol or an allylphenol derived termination unit.

Other cases involve the coupling of two allylphenol derived units

(Scheme 1). Couplings involving radicals (5) and (9), (7) and (9), and

(6) and (9) will result in prototype compounds related to surinamensin 
1 2(17), licarin (18) and eusiderin (19) respectively. While the ease 

of oxidation of propenylphenols is to be expected in view of the higher 

stabilization of the derived radical, there is no evidence that all

reactions represented in Scheme 1 proceed in vivo by radical pairing.
7 8Erdtman in his papers ' postulated that the coupling step should 

produce a quinone methide intermediate which may add water, hydroxide, 

hydride or carbanions.

The ArC^ residue is very common to lignins, lignans and neolignans 

and it is pertinent to assume that the monomeric precursors required for 

the formation of neolignans are derived from p-hydroxycinnamoylcoenzyme 

A (1) (see Schemes 2 and 3) via cinnamic acid (2). Biosynthetic studies



of simple neolignans are not known but there is enough evidence from

structural relationship between lignans and neolignans to suggest that

they are both a branch in the "shikimic acid pathway".

The function of neolignans in plants is not yet clear. This is

also the case with many other secondary metabolites. However some of

the plant sources of neolignans are used in native systems of medicine
9 10and have biological activity. '

This chapter is concerned with the structures of several neolignans,

from an unidentified plant source, which were sent by Indian colleagues

at the Captain Srinivasa Murti Research Institute for Ayurveda in

Madras. After the work was completed the plant source was identified

as Myristica fragrans and it was discovered that the compounds are
13already known. Some C data are reported for the first time.
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D I S C U S S I O N

The first compound MF1 has the molecular formula C H 0 . It20 22 4
readily formed a monoacetate and a methyl ether. Its spectroscopic

properties (see Tables 1 and 2) revealed the presence of two aromatic

rings, two raethoxyl groups, a phenolic hydroxyl, a propenyl residue

[<$H 6.38 (1H, d, J 16 Hz), 6.19 (1H, dq, J 16, 6 Hz) , and 1.85 (3H, d,

J 6 Hz)] and a coupled system consisting of a secondary carbon bearing

oxygen [6 5.12 (d, J 9.6 Hz)] and a secondary methyl group [6 3.48

(1H, dq, J 9.6, 6 Hz) and 1.36 (3H, d, J 6 Hz)]. The substitution

pattern of the aromatic rings was not clear from the proton spectrum 
13but the C n.m.r. spectrum confirmed that there are five aromatic

protons. It was obvious that the molecule consists of two phenyl

propane units linked together and the structural features identified

above were readily assembled to give structure (18). This is, of course,

dehydrodiisoeugenol and the assignment was confirmed by comparison with

an authentic sample prepared from isoeugenol. Dehydrodiisoeugenol occurs
12naturally as licarin A in the trunk wood of L i c a n a  arita.

The second compound MF85, c 2oH 20°4' haS similar sPectroscopic

properties to (18). The major difference concerns the replacement of

a methoxyl and a phenolic hydroxyl group by a methylenedioxy function

[6 5.9 (2H, s)]=. Thus MF85 was assigned structure (20) and is identical

to licarin B. Confirmation of this was obtained by conversion of

dehydrodiisoeugenol (18) into (20) following literature procedures, by

successive treatment with sodium periodate, sulphur dioxide, and
13diiodomethane sodium hydride. The C chemical shifts of both (18) and

4(20) are identical with those reported by Wenkert and his colleagues.



The mobile oil which remained after crystallisation of compounds

(18) and (20) was subjected to repetitive preparative t.l.c. Three

compounds designated MFG1 (26), MFG2 (27) and MFG3 (28) respectively

were isolated as oils in the ratio 2:4:1.
1The H n.m.r. spectrum of MFG1 (26) C„.H_-0_ is very informative ^ 24 30 7

(see Table 3). It shows the presence of an acetate, four methoxyl

groups, five aromatic protons, two of which are equivalent, an allyl

group and a coupled system consisting of a secondary acetate proton

[6 5.84 (d, J 4 Hz, H-7)] and a proton [<5 4.44 (dq, J 7, 4 Hz, H—8)]

attached to a carbon bearing a secondary methyl group. These assignments

were supported by double resonance experiments. The lowfield chemical

shift of H-8 suggested the attachment of oxygen to the same carbon.
1 3The presence of a second secondary carbon bearing oxygen in the C 

n.m.r. spectrum, in addition to the secondary acetate carbon, confirmed 

this. Benzene induced shifts of the methoxyl groups indicated that 

they each have an ortho aromatic proton (see Table 3). Thus it seemed 

likely that MFG1 has structure (26) consisting of two phenyl-propane 

units linked together via oxygen. The structure of MFG2 as (27) 

followed readily since.- on acetylation, it yields MFG1 .

Oxidation of MFG2 with Jones reagent afforded the ketone (29) 

which provided the first definite proof of the 1,3,4-substitution pattern 

of the aromatic ring A. Introduction of the ketone carbonyl in conjug

ation with the aromatic ring resulted in deshielding of the two ortho 

protons [6 7.7 (d, J 1 Hz, H-2) and 7.85 (dd, J 8, 2 Hz, H-6)] while 

the meta proton remained virtually unchanged [5 6.83 (d, J 8 Hz, H— 5)].

In addition H-8 appeared as a clean quartet (J 7 Hz) at 6 5.23 coupled 

to the secondary methyl group at 6 1.52. Further evidence for the



structure of MFG2 as 1-(3,4-dimethoxyphenyl)- 2 - (4-allyl-2,6-dimethoxy-
13phenoxy)-propan-1-ol (27) was obtained by examination of its C chemical

6 4shifts and comparison with (17), (19), (26) and other related systems.

Tentative assignments are presented in Table 4.

The last compound MFG3 (28), C 23H 30°6' -̂ac^s hydroxyl or acetate
1absorption m  the l.r. Its H n.m.r. spectrum shows the presence of a

secondary methyl, an allyl group, five methoxyl groups [one more than

(26) and (27)] and two aromatic rings each with two equivalent aromatic
11protons [6 6.38 and 6.45 (each 2H s)]. Benzene induced shifts of the

methoxyl groups indicated that only one of them lacks an ortho proton.

This information suggested that the "new" methoxyl group is attached
13to C-5 m  ring A. The C chemical shifts of MFG3 (28) provided

confirmation of the substitution pattern of the aromatic rings (see

Table 4) and in addition revealed the residual structural features. One

of the two secondary carbons bearing oxygen in MFG1 and MFG2 has been

replaced by a methylene group (5 43.7). The coupled system

rAr-CH^-CHfCH^J-O-Ar) is apparent in the proton spectrum. Thus MFG3

is the 7-deoxy-derivative,1-(3,4,5-trimethoxyphenyl)- 2 - (4-allyl-2,6-

dimethoxyphenoxy)-propane (28).

Subsequent to our work on these compounds and the discovery that

their plant source is Myristica fragrans, we learnt that Japanese
1 3workers had already published these structures. Our conclusions are

13m  complete agreement with the published work. In addition the C 

chemical shifts are tabulated.
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E X P E R I M E N T A L

Two crystalline compounds MF1 (18) and MF85 (20) and an oily

mixture from Myristica fragrans were sent from India. M F 1 , c 2oH 22°4
15had m.p. 128°C; [lit. m.p. for (±)-dehydrodiisoeugenol 133-134°C

1 13(EtOH)]; m/e 326. H and C n.m.r. spectra (see Tables 1 and 2).

MF85, C 20H 2QO 4 had m.p. 85°C (lit.12 91-92°C (MeOH)]; m/e 324.
1 13H and C n.m.r. data (see Tables 1 and 2).

Isolation of M F G 1 , MFG2 and M F G 3 .- The oily mixture was subjected

to a careful repetitive preparative t.l.c. (35% benzene-ether). Pure 

samples of three compounds, MFG1 (26), MFG2 (27) and MFG3 (28) were 

obtained in the ratio 2:4:1. All were non-crystalline.

MFG1 (26) (1-(3,4-dimethoxyphenyl)- 2 - (4-allyl-2,6-dimethoxyphenoxy)-

propan-l-ol acetate). ” 2.55° (c, 2.2, CHCl^), m/e 430, 237, 195,

194, 193, and 191. (Found: M+ , 430.19903. C 24H 30°7 rec2uires M + '
-1

430.19903), i.r. v (film): 1742, 1633, 1589, 1512, 1500 and 1459 cm .max
1 13H and C n.m.r. data (see Tables 3 and 4).

MFG2 (27) (1-(3,4-dimethoxyphenyl)- 2 - (4-allyl-2,6-dimethoxyphenoxy)-

prooan-1-ol). [oi] + 9.13° (c, 3.1, CHC1 ), m/e 388, 221 , 195, 193,± i ----------  £) j

179, 178. (Found: M+ , 388.18826. C 22H 28° 6 requires M + , 388.188575),
-1 1i.r. v (film): 3520, 1633, 1589, 1510, 1500, 1458 cm . H andmax

1 3C n.m.r. data (see Tables 3 and 4).

MFG3 (28) (1-(3,4,5-trimethoxyphenyl)- 2 - (4-allyl-2,6-dimethoxy-

phenoxy)-propane). [a]^ ~ 0.34° (c, 1.5, CHClq) , m/e 402, 288, 278, 221,' D ^
193, 192, 164. (Found: M + , 402.20406. C 23H 30° 6 requires M + , 402.204224).

1H and 13C n.m.r. data (see Tables 3 and 4).



1-(3,4-dimethoxyphenyl)- 2 - (4-allyl-2,6-dimethoxyphenoxy)-propan-

1-one (29). MFG2 (50 mg) was dissolved in acetone (20 m l ) . Jones

reagent was added dropwise at 0°C until the solution turned green.

Work up in the usual way afforded the ketone (29) (40 m g ) . This was

obtained as an oil and purified by preparative t.l.c. (35% benzene-ether).

I.r. v (film): 1680, 1638, 1595, 1580, 1516, 1503, 1458 cm"1 ; m/e 386,max
236 (P-150), 222, 221, 194, 193, 164. (Found: M + , 386,17259. 22 2b 6
requires M + 386.172926).

1H n.m.r. data (see Table 3).

Acetylation of MFG2 (27). Acetylation of MFG2 (50 mg) with acetic

anhydride-pyridine mixture in the usual manner and preparative t.l.c.

of the product (35% benzene-ether) yielded the acetate (26) (45 mg)
1 1 3as an oil, identical in all respects (t.l.c.; H and C n.m.r.) with 

MFG1 (26).

(t)-Dehydrodiisoeugenol (licarin A) (18).- Commercial isoeugenol

(7 ml) was added to a solution of ferric chloride (14 g) in distilled

water. The reaction mixture was left in the refrigerator overnight.

Dehydrodiisoeugenol (2.6 g) crystallised out. This was purified by

recrystallization from 95% alcohol and had m.p. of 131-132°C. This
1 13was completely identical with MF1 ( H and C n.m.r. spectra).

Dehydrodiisoeugenol methyl ether (21).- Dehydrodiisoeugenol (190 mg)

in dry DMSO (25 ml) was treated with sodium hydride (14 mg) followed by

methyl iodide (82 mg e 0.04 ml). Usual work up and purification by

preparative t.l.c. (25% chloroform-light petroleum) yielded the methyl

ether (21) (150 mg) m.p. 107-108°C (ex methanol) (lit.1^ 91.5-92°C);
1 13m/e 340. H and C n.m.r. data (see Tables 1 and 2).



Dehydrodiisoeugenol acetate (22).- To dehydrodiisoeugenol (212 mg)

in pyridine solution (5 ml) was added acetic anhydride (10 ml). The

reaction mixture was allowed to stand at room temperature overnight.

Evaporation of the solvent and preparative t.l.c., using 22% chloroform-

light petroleum as eluant, afforded the acetate (22) (200 mg). M.p. 110-

111°C (ex EtOH) (lit.14 124-125°C), m/e 368.
1 13H and C n.m.r. data (see Tables 1 and 2).

Dihydrodehydrodiisoeugenol methyl ether (23).- The methyl ether

(32 mg) in ethyl acetate (12 ml) was stirred in the presence of 10%

palladinised charcoal in a hydrogen atmosphere for 30 minutes. Filtration

and evaporation of solvent afforded the dihydro-derivative (23),

C 21H 26°4' ^24 ' m *P* 96-97°C (ex methanol), m/e 342.
1 13H and C n.m.r. data (see Tables 1 and 2).

A second product, separated from the mother liquors by t.l.c., was

the tetrahydro derivative (30), (-'2lH 28<̂ 4f °btained as an oil, m/e 344.

[6 6 . 7 - 6 . 5 6  (5H, m, Ar protons), 5.56 (1H, s, phenolic O H ) , 3.86 (9H,H
s, ArOMe) , 3.46 (1H, m, H-3) , 2.90 (2H,ABX J 15, 6 Hz, 2H-2) , 2.48 (2H, t,

J 7 Hz, 2H-a), 1.62 (2H, m, 2H-3), 1.16 (3H, d, J 7 Hz, C-3 M e ) , 0.88

(3H, t, J 7 Hz, y-Me)].

Acetate of tetrahydrodehydrodiisoeugenol methyl ether (24).-

Tetrahydrodehydrodiisoeugenol (30) (127 mg) was acetylated under the

usual conditions and allowed to stand overnight. The crude product

was purified by preparative t.l.c. (23% chloroform-light petroleum)

and gave the acetate (24), C_.H 0_, (120 mg) as an oil, m/e 386.23 3U b
1 13H and C n.m.r. data (see Tables 1 and 2).

Dihydrodehydrodiisoeugenol acetate (31).- Hydrogenation of the

acetate (22) (30 mg) over Pd/C (3 mg) for 10 minutes afforded the

dihydroderivative (31), C H _ O c , (28 mg) as an oil, m/e 370;
ZZ Z D D



[6 7.06, 6.96 and 4.58 (5H, Ar protons), 5.13 (1H, d, J 9.6 Hz, H - 2 ) ,H
3.88 and 3.80 (each 3H, s, Ar-OMe), 3.48 (1H, dq, J 9.6, 6 Hz, H - 3 ) ,

2.53 (2H, t, J 7 Hz, 2H-a), 2.28 (3H, s, acetate), 1.63 (2H, dq, J 18,

7 Hz, 2H-0), 0.92 (3H, t, J 7 H z , y-Me), 1.36 (3H, d, J 6 Hz, C-3 Me)].

Tetrahydro-MF85 (25).- Tetrahydro-MF85 (25) was obtained by

hydrogenation of MF85 as above. The product, C 20H 24°4' WaS an ° ^ '
- 1m/e 328, i.r. v (CC1.) 3375 cm , u.v. X (MeOH) 288 nm, shifted to max 4 max

293 nm on addition of NaOH solution. [6 6.65 ~ 6.55 (5H, Ar protons),H
5.88 (2H, s, methylene dioxy function), 5.56 (1H, s, Ar-OH), 3.85 

(3H, s, Ar-OMe), 3.36 (1H, dq, J 9.6, 6 Hz, H-3), 2.80 (2H, ABX, J 15,

6 Hz, 2H-2), 2.48 (2H, t, J 7 Hz, 2H-a), 1.62 (2H, m, 2H-0),

1.15 (3H, d, J 7 Hz, C-3 Me), 0.88 (3H, t, J 7 Hz, y-Me)].

MF-85 (20) (Licarin B ) .- To dehydrodiisoeugenol (521 mg) in

glacial acetic acid (42 ml) was added a solution of sodium metaperiodate 

(339 mg) in water (11 ml) and the solution left for 2 hours. Excess SO^

was then passed through; the resulting catechol (302 mg) was dissolved

in dry DMSO (30 m l ) , and sodium hydride (46 mg) and diidomethane

(0.08 ml) added in turn. The crude product was crystallised from

methanol to give MF-85 (20) (168 mg) m.p. 85°C.
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Table 1

Proton n.m.r. chemical shifts and coupling constants of MF1 
(licarin A) and MF85 (licarin B) and related compounds.

Licarin A 
12(lit. )

Licarin 
1 2(lit. )

B 18 20 21 22 23 24

Me-3 1.43 1 .35 1.36 1 .35 1.33 1.34 1.37 1 .15
d d d d d d d d
(6.7Hz) (7Hz) (7Hz) (7Hz) (7Hz) (7Hz) (7Hz) (7Hz)

H-2 5.14 5.04 5.12 5.08 5.07 5.06 5.10 2.75
d d d d d d d ABX
(9.2Hz) (8.9Hz) (9.6Hz) (9Hz) (9Hz) (9Hz) (9Hz) (15,6Hz)

H-3 3.43 3.39 3.48 3.38 3.33 3.35 3.47 3.10
dq m dq m dq m m m
(9.2, (9.6, (9.6,
6.7Hz) 7Hz) 6Hz)

d-CH 6.4 6.34 6.38 6.35 6.37 6.35 2.55 2.50
d dq d d d d t t
(15.5Hz) (16,

~ 1 H z )
(16Hz) (16Hz) (16Hz) (16Hz) (7Hz) (7Hz)

B-CH 6.11 6.09 6.19 6.13 6.13 6.12 1.65 1.60
dq dq dq dq dq dq m m
(15.5, (16, (16,6Hz) (16,6Hz) (16,6Hz) (16,6Hz)
5.2Hz) 6.5Hz)

Y-CH 1 .92 1 .84 1.85 1 .83 1.80 1.82 0.93 0.90
-- 3 d d d d d d t t

(5.2Hz) (6.5,
~ 1 H z )

(6Hz) (6Hz) (6Hz) (6Hz) (7Hz) (7Hz)

Ar-H 7.0- 6.92- 6.98- 6.90- 6.96- 6.90- 6.98- 6.75-
6.75 6.75 6.78 6.75 6.73 6.61 6.58 6.55
m m m m m m m m
5H 5H 5H 5H 5H 5H 5H 5H

Ar-OMe 3.95,
3.90

3.85 3.88,
3.85

3.86 3.80 3.95,
3.90

3.87 3.80
3 . 7 6 (6H)

s s s s s
3H each 3H 3H each 3H 9H 3H each 9H

Others 5.69 5.90 5.67 5.90 - 2.30 - 2.25
s s s s Acetate Acetate
OH ° 2S i 2 OH °2— — 2



Table 2

C n.m.r. chemical shifts of MF1 (licarin A) 
and MF85 (licarin B) and related compounds.

Carbons Licarin A 
4(lit. )

Licarin B 
4(lit. )

18 20 21 22 23 24

2 .93.3 93.0 93.8 93.4 93.6 93.0 93.5 35.1
3 45.2 45.5 45.6 45.8 45.6 45.8 45.8 43.0
3a 132.8 132.7 133.3 133.2 133.3 133.0 132.9 140.9
4 112.9 113.0 113.4 113.4 113.4 113.4 115.4 121.0
5 131.7a 131.8 132.2 132.2 132.2 132.4 136.3 135.5
6 109.0 109.2 109.3 109.5 109.4 109.5 110.8 111.0
7 143.6 143.7 144.2 144.2 144.2 144.2 143.9 150.7
7a 146.3 146.2 146.6 146.6 146.6 146.5 145.4 139.3

3-Me 17.2 17.6 17.6 17.9 17.6 17.9 17.4 19.9
OMe 55.5 55.7 55.9 56.0 55.9 55.9 55.9 55.7

- - 55.9 - 55.9 55.9 55.9 55.9
- - - - 55.9 - 55.9 55.9

1 ' 131.6a 134.0 132.1 134.4 132.7 132.7 132.9 133.3
2' 108.6 106.3 109.0 106.8 109.6 110.3 109.6 110.0

3' 146.1 147.5 146.7 148.0 149.2 151.3 149.1 148.6

4 ' 145.3 147.2 145.8 147.7 149.2 139.7 149.1 147.3

5 ’ 113.8 107.7 114.1 108.1 112.0 122.7 111.8 112.5

6' 119.3 119.7 119.9 120.2 119.2 118 „ 6 119.3 118.8

a 130.5 130.6 131.0 131.0 131.0 131.0 38.1 38.3

0 122.8 122.9 123.4 123.4 123.4 123.5 25.1 24.6

Y 18.0 18.1 18.4 18.3 18.4 18.3 13.9 13.9

CH^CO _ _ — - 168.9 - 169.1
J-----

CH CO _ - - - - 20.6 - 20.5
-----6
0CH_0 — 100.7 - 101.1 - - - -
—  2

(a) these values may be interchanged
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Table 3

H n.m.r. chemical shifts and coupling constants of several 
3-aryl ether-type phenylpropanoids

26 27 28 29

Me-8 1 .25 1.10 1.20 1 .52
d d d d
(7 Hz) (7 Hz) (7 Hz) (7 Hz)

exomethylene complex complex complex complex
2H-91 m m m m

ca. 5.05 ca. 5.10 ca. 5.02 ca. 5.08

H-7 5.84
d
(4 Hz)

4.82
brs

2.90
dd
(13f 6 Hz) 
2.59 
dd
(13, 7.5 Hz)

H-8 4.44 4.35 4.40 5.20
dq
(7, 4 Hz)

dq
(7, 4 Hz)

m q
(7 Hz)

2H-7' 3.30 3.36 3.32 3.30
d d d d
(7 Hz) (7 Hz) (7 Hz) (7 Hz)

H-8' 5.95 5.90 5.92 6.0
m m m m

Ar-OMe 3.82 3.85 3.78 (x 2) 3.70 (x 2]
3.84
3.75 (x 2)
3.44 
3.42 in 
benzene

3.88 (x 3) 3.82 (x 3)

3.42 (x 4)
3.82 in 
benzene

3.92
3.90

Ar-2,5 ,6 complex complex 6.45 6.83
m
ca. 6.85

m
ca. 6.88

brs d
(J 8 Hz) 
7.85 
dd
(J 8, 2 Hz; 
7.7 
d
(1 Hz)

A r - 3 ' t 5 1 6.38 (brs) 6.45 (brs) 6.38 (brs) 6.35 (brs

Others OAc OH - -
2.12 3.08
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Table 4
13„C n.m. r. chemical shifts of MFG 1-3 and related compounds •

17 19
Carbons (lit.6 ) 4(lit. ) 26 27 28

1 137.6 131.9 130.6 132.8 134.9
2 104.2 104.1 110.3 109.4 106.7
3 152.9 153.0 148.8 148.8 152.9
4 135.5 138.0 148.6 148.0 136.4
5 152.9 153.0 110.9 111.0 152.9
6 104.2 104.1 119.3 118.2 106.7
7 83.6 80.6 76.7 72.8 43.7
8 78.5 73.7 80.0 82.3 79.8
9 17.0 17.0 14.5 12.9 19.8
1 ' 133.3 132.1 133.8 133.1 134.5
2 1 109.1 104.3 105.5 105.6 105.5
3' 150.5 148.1 153.4 153.4 153.7
4 1 146.4 130.9 135.7 136.1 135.5
5' 118.6 143.8 153.4 153.4 153.7

6' 118.7 104.3 105.5 105.6 105.5
7* 130.2 39.7 40.5 40.5 40.5
8 1 124.6 136.9 137.2 137.3 137.3
9' 18.2 115.3 115.9 116.1 116.0

OMe 60.6 60.4 55.9 (x 4) 5 6.1(x 4) 60.8

56.0 (x 2) 55.8 (x 2) - - 56.08 (x

55.6 55.7 - - -
c h 3c o - - 170.0 - -

CH. CO - - 21 .2 - -
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MeO 9
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