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SUMMARY

This thesis describes a study into the torsional behaviour 

of r e i n f o r c e d  c o n c r e t e  members, in p a r t i c u l a r  solid L- 

s e c t i o n s  under pure torsion. It consists of three distinct 

b u t  l i n k e d  p h a s e s :  (1) d e v e l o p m e n t ,  a s s e s s m e n t  and

application of a three dimensional nonlinear finite element 

model for short-term behaviour of reinforced concrete, (2) 

an e x p e r i m e n t a l  p r o g r a m m e  and (3) a num e r i c a l  p a r ametric 

study. N o n l i n e a r  b e h a v i o u r  takes into account con crete 

cracking, n o n l i n e a r  triaxial st r e s s - s t r a i n  r e l a t i o n s  of 

c o n c r e t e ,  c o n c r e t e  c r u s h i n g  and y i e l d i n g  of s t e e l  

reinforcement.

C r a c k i n g  b e h a v i o u r  is m o d e l l e d  by a fixed orthotropic 

smeared crack approach, allowing up to three cracks to occur 

at any sampling point. Modelling of post-cracking behaviour 

a l l o w s  for shear t r a n s f e r  and tens ion s t i f f e n i n g  effects. 

C o n c r e t e  b e h a v i o u r  under all m u l t i a x i a l  stress states is 

governed by a short-term constitutive law and a peak stress 

f a i l u r e  criterion. A b i l i n e a r  u niaxial s t r e s s - s t r a i n  law 

a l l o w i n g  for iso t r o p i c  strain h a r d e n i n g  is used for steel 

reinforcement.

2 0 - n o d e d  i s o p a r a m e t r i c  brick e l e m e n t  is used to represent 

concrete, with s i n g l e  bars e m b e d d e d  within the concrete 

e l e m e n t s  to s i m u l a t e  reinforcement. A m o d i f i e d  Newton- 

Raphson approach was used for solving the nonlinear problem, 

based on the evaluation of a secantial elasticity matrix.

The program was a s s e s s e d  by s t u d y i n g  the b e h a v i o u r  of deep 

beams, s h a l l o w  beams s i m u l a t i n g  b e a m - c o l u m n  behaviour, 

rectangular beams subject to pure and combined torsion and
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L-sections under pure torsion. Through systematic study, the 

i n f l u e n c e  of some of the major n o n l i n e a r  mater i a l  and 

solution parameters was established for these applications 

and limits on their values were set.

The e x p e r i m e n t a l  p r o g r a m m e  i n v o l v e d  test ing a series of 

solid reinforced concrete models of L-shaped cross sections 

under pure torsion in a specially designed and built test- 

rig. The tests were d e v i s e d  to: (1) assess the current

B r i t i s h  Code de s i g n  p r o cedure for tors ion of so lid L- 

sections, (2) obtain an insight into the torsional behaviour 

of these types of sections and (3) provide detailed results 

to assess the reliability of the finite element model in the 

analysis of torsion of fully reinforced flanged sections.

A dual appro a c h  of c o m p l e m e n t i n g  the e x p e r i m e n t a l  results 

with a n u m e r i c a l  p a r a m e t r i c  study, using the d e v e l o p e d  

fi n i t e  e l e m e n t  model, is adopted where more v a r i a b l e s  not 

included in the experimental programme were investigated.

The c urrent Brit i s h  Code desi gn p r o c e d u r e  for torsion was 

found to be too conservative for solid flanged sections, and 

it is concluded that the code's rules can be less stringent. 

Some r e c o m m e n d a t i o n s  that might h e l p  bring the code's 

t o r s i o n  d esign p r o c e d u r e  in line with other major codes of 

practice are given.
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XV
NOTATION

Major symbols used in the text are listed below, others are

defi n e d  as they first appear. Some s y m b o l s  hav e  different

meanings in different contexts; these are clearly defined.

General symbols

[ ] Square brackets denote rectangular matrices, T

over the bracket denotes the transpose and -1

over the square matrices denotes the inverse.

The symbols is also used for column vectors.

Sea 1 ar s

Ag Cross sectional area of steel

b total width of flange for L-section

b^ width of web for L-section

dA Elementary area

dv Elementary volume

Eç. Modulus of elasticity for concrete

Eg Modulus of elasticity for steel

Strain hardening modulus for steel 

f Uniaxial compressive strength of concrete

f C u b e  strength of concrete 

fp Modulus of rupture of concrete

fg Stress in steel

fgp Cylinder splitting strength of concrete

f '^ Tensile strength of concrete

fy Yield stress of steel

fy 2 Yield stress of longitudinal reinforcement

fyy Yield stress of transverse reinforcement

G, g ' Shear modulus

h total height of web for L-section
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hf Height of flange for L-section

1 2 , 1 2 , I3 First, second and third invariants of the

symbol that follows in parenthesis 

J 2 Second invariant of the deviator of the

symbol that follows in parenthesis 

Pg Strain energy of.an element e

Pi, P j (&,%,&) Shape functions

R 2 Norm of the total applied load

Ty Ultimate (failure) torque of a reinfoced

concrete section 

U j , Wj Component of displacement at node i

u , V , w Component of displacement in x, y, z

x,y,z G l o b a l  three d i m e n t i o n a l  cartesian

coordinate 

x*,y*,z* Principal axes

«P Torsion plastic coefficient

P Shear retention factor

g Tension stiffening parameter

 ̂f} ̂  Normalized local curvilinear coordinates

E Strain

Concrete strain 

 ̂ Uniaxial cracking strain of concrete

g Uniaxial crushing strain of concrete 

Og Steel strain

© 1 , ® 2 » ®3 Principal stresses

, Eg, Principal strains

Pois s o n 's ratio for concrete

[=] Stress vector

Cylinder strength of concrete

Qy Yield stress of steel
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Vectors and Matr_ices2 

[B ] Strain matrix

[D], [Dg] Elasticity matrix

[F]g Nodal forces at nodes of an element e

[F]g N odal forc es vector due to initial

strains
[F]p N o dal forces v e ctor due to di s t r i b u t e d

load per unit volume 

[F]g No dal forces ve c t o r  due to boundary

pressure

[F] Nodal forces vector due to external load

[Fy] Unbalanced nodal forces vector

[J] Jacobian matrix

[ K ] , [Kg], [K] Overall stiffness matrix

[K]g Element stiffness matrix

[p]j Vector of total applied load

[p] V e c t o r  of d i s t r i b u t e d l o a d  per unit

Volume

[R] Rotation matrix

[6 ] Overall displacement vector

[ B] , [6 ] i , [&]y Nodal displacements

[&]g N o d a l  d i s p l a c e m e n t s  a s s o c i a t e d  with

element e

[y]2 Vector of residual nodal forces

[e], [cr]y Total stress vector

[Og] Initial stress vector

[6 ], [6]y Total strain vector

[6g] Initial strain vector
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Ten^ors^.
6 2 j Kronecker delta

6 2 j , Strain tensor

Volumetric strain tensor 

Stress tensorJ- J
E 2 j Deviatoric strain tensor

Finite Element Analysis

Incr. Increment number

Nalgo S o l u t i o n  a l g o r i t h m  to indicate when

the fu 11 sti ffness m atrix is to be 

reformulated 

Toler. Convergence tolerance

IS Tension stiffening used

NTS No tension stiffening used

0.5< p <0.1 Limits of the shear retention factor

N^B_^ 1 All dimensions in the figures are in mm units

unless otherwise stated.

N^B^ 2 ^cu = 0.0035 for all analyses unless otherwise

st a t e d .



CHAPTER ONE 

INTRODUCTION

1 ■ 1 General Background

This work is primarily concerned with torsional behaviour of 

reinforced concrete, where three approaches were followed to 

study its various aspects. A three d i m e n s i o n a l  n o n l i n e a r  

f i n i t e  e l e m e n t  m o d e l  for the a n a l y s i s  of s h o r t - t e r m  

behaviour of reinforced concrete, with particular reference 

to pure and c ombined torsion, was d e v e l o p e d  and tested. An 

experimental investigation on the pure torsional behaviour 

of reinforced concrete solid L-sections, designed to assess 

some aspects of torsion design procedure of current British 

C o d e s ,  was u n d e r t a k e n .  A d u a l  a p p r o a c h ,  in w h i c h  a 

numerical parametric study complements experimental results, 

was adopted as more variables were investigated on concrete 

L-sections subject to torsion, prior to offering additional 

conclusions and some design recommendations. Applications of 

the d e v e l o p e d  finite e l e m e n t  model i n c l u d e  a v a r i e t y  of 

reinforced concrete structures in addition to the torsional 

specimens tested in this study.

In the past 30 years s t r u c t u r a l  a n a l y s i s  has changed 

d r a m a t i c a l l y  w i t h  the a d v e n t ,  and t h e n  the e n o r m o u s  

expansion, of the power of d i g i t a l  c o m p u t e r s  in terms of 

b o t h  s p e e d  and s t o r a g e  c a p a c i t y .  T h i s  has a l s o  b e e n  

a c c o m p a n i e d  by c o n t i n u o u s l y  d e c r e a s i n g  u n i t  cos t  of 

computing. M o d e r n  t e c h n o l o g y  of computer h a r d w a r e  ensures 

that this trend is set to continue.

On the software front, the d e v e l o p m e n t  of programs for 

s p e c i f i c  a p p l i c a t i o n s  led to the d e v e l o p m e n t  of large



packages. Whereas these large packages do undoubtedly have 

their place, in g e n e r a l  the m a j o r i t y  of i n d u s t r i a l  users 

r e q u i r e  s m a l l e r  and more e f f i c i e n t  packages, and often 

i n d i v i d u a l  programs. The main a d v a n t a g e  of an i n d i v i d u a l  

program is that it can be easily understood and developed by 

a s i n g l e  programmer. Furthermore, the finer aspects of 

b e h a v i o u r  to be m o d e l l e d  can be better c atered for in an 

i n d i v i d u a l  p r o g r a m  and the p a r a m e t e r s  a f f e c t i n g  it can be 

e a s i l y  i n v e s t i g a t e d .  V a r i o u s  m ethods of a n a l y s i s  can be 

c o n v e n i e n t l y  p r o g r a m m e d  for the s t u d y  of d i f f e r e n t  

behaviours in various fields.

The finite e l e m e n t  m ethod is now r e c o g n i s e d  as a very 

powerful method of analysis in the field of structural and 

solid mechanics. Its basic concepts and methodology are well 

established and have been published widely. New applications 

are being developed continuously particularly in nonlinear 

analysis. It has p r o v e d  a r e m a r k a b l y  a d a p t a b l e  method, 

capable of including various levels of complex behaviour.

In s t r u c t u r a l  e n g i n e e r i n g  the b e h a v i o u r  of r e i n f o r c e d  

concrete members and structural systems has been the subject 

of i n t e n s i v e  i n v e s t i g a t i o n  since the b e g i n n i n g  of the 

p r e s e n t  century. Current design m ethods conti n u e  in many 

r e s p e c t s  to be based on the e m p i r i c a l  approach, using the 

r e s u l t s  of large amounts of e x p e r i m e n t a l  data. This is 

m a i n l y  b e c a u s e  of the c o m p l e x i t i e s  a s s o c i a t e d  with the 

development of rational analytical procedures. However, the 

f inite e l e m e n t  method lends itself to serve in these 

circumstances.

For example in the analysis of reinforced concrete, cracking



of concrete, t e n s i o n - s t i f f e n i n g ,  n o n l i n e a r  m u l t i a x i a l  

m a t e r i a l  properties, c o m p l e x  s t e e l - c o n c r e t e  int erface 

behaviour, and other effects previously ignored or treated 

in a very a p p r o x i m a t e  m anner can be m o d e l l e d  r a t ionally. 

Through such studies, in which the important parameters may 

be varied conveniently and systematically, new insights are 

g a i n e d  t h a t  m a y  p r o v i d e  a f i n e r  b a s i s  for c o d e s  and 

specifications on which ordinary design is based.

The reliability of the finite element models to be used in 

these studies must be carefully examined beforehand so that 

the e f f e c t s  of the i m p o r t a n t  m a t e r i a l  a n d  n u m e r i c a l  

parameters i nvolved are known. This is necessary to provide 

an acceptable level of quality assurance.

The need for e x p e r i m e n t a l  research co ntinues, both to 

provide a firm basis for empirical equations still likely to 

be used for many aspects of ordinary design, and to provide 

information for finite element analysis. It is necessary to 

obtain experimental information on material properties and 

interface behaviour, both of which are fundamental input for 

finite element analysis. Experimental results are required 

against which the finite element analysis must be compared. 

However, tests can be fewer in number and more f u n d a m e n t a l  

and the need for t e s t i n g  of members ov er the full range of 

variables is greatly reduced. Instead systematic parametric 

studies can be performed by finite element models. This will 

be both cheaper and quicker and will cover a larger range of 

important variables than laboratory or full-scale experiment 

alone .



A look into the l i t e r a t u r e  on r e i nforced c o n c r e t e  r e v e a l s  

that torsion is the most n e g l e c t e d  stress resultant; 

flexure, shear and axial forces are all better studied and 

c o n s e q u e n t l y  m o r e  c o d i f i e d .  It was u s u a l  to i g n o r e  

t o r s i o n a l  m oments and assume instead that they c ould be 

taken care of by the large safety factors used in f l e x u r e  

and shear design. Nowadays, design t e c h n i q u e s  are more 

refined and structures are being designed which frequently 

carry large torsional moments. So explicit torsional design 

is often necessary.

T o r s i o n a l  d istress has in fact been o b s e r v e d  in many real 

life situations. Figure (1.1) shows torsional cracks caused 

by the San Fernando earthquake of 1971, on the outer columns 

of a building (ref. 1). Major torsional cracks in a spandrel 

beam of a parking garage were also observed in South Florida 

(ref. 8 ), in 1964 (Figure 1.2). A c o m p l e t e  c o l l a p s e  of a six 

s t o r e y  building, in the United States, occur ed due to the 

shear and torsion failure of the ribbed reinforced concrete 

raft f o u n d a t i o n  as r e c e n t l y  as 1979 (Figure 1.3), as one 

corner of the building settled about 3.5 meters (ref. 8 ).

E x a m p l e s  of s t r u c t u r a l  members that carry si g n i f i c a n t  

torsional moments are many. In modern monolithic reinforced 

c oncr e t e  structures, the spandrel beams g e n e r a l l y  carry 

substantial torsional moments. Edge beams of shells and some 

girder syst ems a l s o  r e c e i v e  some t orsion that must be 

a c c o u n t e d  for in design. In highway engineering, curved 

beams h a v e  been in e x t e n s i v e  use in recent years. These 

beams are usually supported on minimum number of piers for 

e l e v a t e d  roadways. As a result, s i g n i f i c a n t  torsional



moments are created.

A more c o m p l e x  s i t u ation arises in n o n - r e c t a n g u l a r  three 

d i m e n s i o n a l  structures. S t a i r c a s e s  with o u t  i n t e r m e d i a t e  

supports and spiral stairs are n o t a b l e  e x a m p l e s  which can 

g i v e  rise to high t w i s t i n g  moments. In many of the a b ove 

examples the large torsional stresses are created because of 

s t r u c t u r a l  and/or a r c h i t e c t u r a l  reasons. Indeed, many new 

structural forms that introduce out-of-plane loadings have 

been d e v e l o p e d  and are in g r o w i n g  use. As a result, many 

stru c t u r e s  are r e q u i r e d  to f u n c t i o n  as three d i m e n s i o n a l  

frames. This often results in members that are subjected to 

torsional moments too large to be ignored.

Two w e l l  known e x a m p l e s  of major edge beams, from British 

practice, where torsional moments e x e r c i s e d  a c o n t r o l l i n g  

i n f l u e n c e  ov er the d esign are the W a t e r l o o  Bridge (Figure

1.4) and the b a l c o n y  of the Royal F e s t i v a l  H a l l  (Figure

1.5), both in Lond on (refs. 4, 5). The trans f e r  girders of 

the A m e r i c a n  H o s p i t a l  A s s o c i a t i o n  B u i l d i n g s  in Chicago, 

Figure (1.6), were the first to be d e s i g n e d  using the AGI 

d esign cr i t e r i o n  (refs. 8 , 11). These e x a m p l e s  i l l u s t r a t e  

the need for investigations into the torsional behaviour of 

reinforced concrete to help add sufficient code provisions 

to match those for shear and flexure.

A l t h o u g h  t o r s i o n a l  moments r a r e l y  act in isolation, many 

studies have been made to understand basic behaviour under 

th i s  c o n d i t i o n .  S t u d i e s  h a v e  a l s o  b e e n  m a d e  of the 

i n t e r a c t i o n  between torsion, shear and f l e x u r e  (ref. 2 for 

example). As a r esult design r e c o m m e n d a t i o n s  have been 

included in various national codes of practice. Enhancements



to these p r o v i s i o n s  are c o n t i n u o u s l y  made as new e v i d e n c e  

becomes available.

Codification of torsion provisions for reinforced concrete 

began in earnest in the 1950s (ref. 8 ). It generally started 

with par t i a l  p r o v i s i o n s  and some f u l l  specifications. For 

partial provisions only the permissible torsional stresses 

for co n c r e t e  were g i v e n  wher e a s  for full s p e c i f i c a t i o n s  

these were a c c o m p a n i e d  by the f o r m u l a e  for the design of 

t o r s i o n a l  reinforcement. The specifications were generally 

ba sed on Rausch's space truss a n a l o g y  or Cowan's theory 

(both discussed in more detail in Chapter Two). However, the 

validity of these theories had not then been substantiated 

by s y s t e m a t i c  t e s t i n g .  F u r t h e r m o r e ,  the m a j o r i t y  of 

experimental studies carried out since then to verify these 

e q u a t i o n s  h a v e  been done on r e c t a n g u l a r  sections (refs. 2 , 

8) .

In 1958, AC I C o m mittee 438 - Torsion, was c reated to study 

the torsion problem and to recommend suitable provisions for 

the 1963 A CI B u i l d i n g  Code. However, owing to the lack of 

knowledge on the torsional behaviour of reinforced concrete 

members, the committee decided that it could not recommend 

any d e t a i l e d  p r o v i s i o n s  for the 1963 code. So only one 

clause was included stating: "In edge or spandrel beams the

s t i r r u p s  p r o v i d e d  s h a l l  be c l o s e d  and at l e a s t  one 

longitudinal bar shall be placed in each corner of the beam 

section, the bar to be at least the diameter of the stirrups 

or 1/2 in., whichever is greater".

It was in 1969 when the ACI torsion c r i t e r i a  were first



formulated, based on extensive experimental research during 

the 1 960s pr o m o t e d  by AC I C o m m i t t e e  438. The c r i t e r i a  were 

i n c o r p o r a t e d  into the AC I B u i l d i n g  Code (ref. 9), and 

further enhancements have been made in the later versions of 

the document.

The B r i t i s h  Code i n c o r p o r a t e d  torsion p r o v i s i o n s  for the 

first time in 1972 (ref. 3). The provisions were immediately 

c r i t i c i z e d  as being too c o n s e r v a t i v e  (ref. 10). The same 

p r o v i s i o n s  are used in the new v e r s i o n  of the code (ref. 3) 

with o n l y  minor changes r e g a r d i n g  the m a x i m u m  p e r m i s s i b l e  

torsional stresses in concrete. These are increased by about 

6% which would not make any appreciable difference for most 

practical cross sections. The code recommendations are also 

n oted for their l imited nature, as c ompared to other major 

codes of practice, for e x a m p l e  the Russian, A m e r i c a n  and 

CEB-FIP Model Code. An example of this is the limit on the 

effective overhanging flange width in torsion. Both the AC I 

and the CEB-FIP codes specify the limit as 3 whereas no such 

provision is given in BS:8110 - 1985. Another example is the 

torsion provisions for box sections, which are very limited 

in the British code compared to the AC I specifications.

Torsional behaviour becomes inextricably three dimensional 

once cracking of concrete occurs and St. Venant's theory is 

no longer applicable. Previous studies have established that 

th e r e i n f o r c e m e n t  has no s i g n i f i c a n t  c o n t r i b u t i o n  to 

torsional stiffness prior to cracking of concrete and that 

the b e h a v i o u r  is e s s e n t i a l l y  linear up to the crack i n g  

stage. Great r e d u ction of sti f f n e s s  occurs after c r a c k i n g  

and the r e i n f o r c e m e n t  o n l y  then assumes its major share of
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r e s p o n s i b i l i t y  in r e s i s t i n g  the a p p l i e d  torque. The main 

feature of torsional cracking is its 45° helical nature, as 

d i s t i n c t  from f l e x u r a l  and shear types of cracks. All 

r e i n f o r c e m e n t  carries t e n s i l e  stresses and the concrete 

between the cracks carry the compressive forces.

T o r s i o n  differs from t r a n s v e r s e  shear in one important 

respect: diagonal tensile stresses exist on all four faces

of a r e c t a n g u l a r  section subject to torsion, whereas they 

e xtend over the two v e r t i c a l  faces in a section subject to 

transverse shear. Consequently U-stirrups and bent-up bars 

are unsuitable for torsional shear reinforcement, and closed 

hoops, p r o p e r l y  anchored at the end must be used. I n c l i n e d  

hoops, runn i n g  to resist the d i a g o n a l  tension on one face, 

would run in the wrong direction on the opposite face: hoops 

must t h e r e f o r e  be normal to the l o n g i t u d i n a l  axis of the 

member. S i m i l a r l y ,  the l o n g i t u d i n a l  r e i n f o r c e m e n t  must be 

suitably distributed over all the faces of the section. The 

a b o v e  i l l u s t r a t e s  the three d i m e n s i o n a l  nature, and hence 

the co m p l e x i t y ,  of the t r e a t m e n t  of torsional a n a l y s i s  of 

reinforced concrete.

M o s t  c o n c r e t e  e l e m e n t s  s ubject to torsion are f l a n g e d  

sections, more commonly L-beams comprising the external wall

b e a m s  of s t r u c t u r a l  f l o o r .  The g e n e r a l  p r o c e d u r e  of

designing such elements for torsion is to divide them into 

their c o m p o n e n t  r e c t a n g l e s  and design each r e c t a n g l e  

s e p a r a t e l y  e n s u r i n g  p r o p e r  i n t e r a c t i o n  b e t w e e n  the

r e i n f o r c e m e n t s  of all components. E x t e n s i v e  studies have

been conducted on torsion of reinforced concrete rectangular 

s ecti o n s  and to a much lesser extent on f l a n g e d  sec tions



(refs. 2 and 6 for example). This activity will be reviewed 

in Chapter Two in more detail.

The m a j o r i t y  of p r e v i o u s  studies on tors i o n  of r e i n f o r c e d  

c o n c r e t e  f l a n g e d  sections were c o n d u c t e d  on m e m b e r s  with 

either unreinforced flanges or flanges having only one layer 

of reinforcement. The c a t e g o r y  of f u l l y  r e i n f o r c e d  s olid 

flanged sections, i.e. with closed stirrups in all component 

r e c t a n g l e s  as r e c o m m e n d e d  by the codes of practice, s till 

lacks proper i n v e s t i g a t i o n  in c ontrast to r e c t a n g u l a r  

s e c t i o n s .  S t u d i e s  on s u c h  m e m b e r s  w i l l  p r o v i d e  the 

o p p o r t u n i t y  of d i r e c t l y  a s s e s s i n g  the c u r r e n t  c o d e s  

provisions for torsion design as well as giving more insight 

into the behaviour.

Torsion theories, mainly lower bound space truss analogies 

and upper bound skew-bending theories, have increased basic 

understanding. Indeed the truss analogy, first proposed by 

Rausch in 1929 (ref. 6 ), gives a very clear idea of the main 

function of reinforcement and concrete in resisting torsion. 

The skew-bending theory,originally proposed by Lessig (ref. 

7 ) and later u n d e r g o n e  many d e v e l o p m e n t s ,  is based on the 

p l a n e  d e f o r m a t i o n  a p p r o a c h  of plane s e c t i o n s  s u b j e c t e d  to 

bending and torsion.

The space truss a n a l o g y  is an ext e n s i o n  of the model used in 

the design of the s h e a r - r e s i s t i n g  stirrups, in which the 

d i a g o n a l  tension cracks, once they start to d e v e l o p ,  are 

res-isted by the stirrups. Because of the nonplanar shape of 

the cross sections due to the t w i s t i n g  moments, a space 

truss compo s e d  of the stirrups is used as the diago n a l  

t e n s i o n  members, and the i d e a l i z e d  c o n c r e t e  strips at 45*̂
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b e t w e e n  the cracks are used as the c o m p r e s s i o n  members. It 

is assumed that the c o n c r e t e  member b e h a v e s  in torsion 

similar to a thin-walled box with a constant shear flow in 

the w a l l  cross section, p r o d u c i n g  a c o n s t a n t  torsional 

m o m e n t .

The s k e w - b e n d i n g  t h e o r y  considers in de t a i l  the int ernal 

deformationa 1 behaviour of the series of transverse warped 

surfaces along the member. The basic characteristic of this 

t h e o r y  is the a s s u m p t i o n  of a skew f a i l u r e  surface. This 

surface is initiated by a helical crack on three faces of a 

rectangular beam, while the ends of this helical crack are 

c o n n e c t e d  by a c o m p r e s s i o n  zone near the fou r t h  face. The 

f a i l u r e  s u r f a c e  i n t e r s e c t s  b o t h  the l o n g i t u d i n a l  

r e i n f o r c e m e n t  and the c l o s e d  stirrups. The forces in this 

r e i n f o r c e m e n t  p r o v i d e s  the internal forces and mom e n t s  to 

resist the e x t e r n a l  forces and moments. At f a i l u r e  of a 

beam, the two parts of the beam sep a r a t e d  by the f a i l u r e  

surface rotate a g a i n s t  each other about a n e u t r a l  axis on 

the inside edge of the compression zone. More details on the 

truss analogy and the skew-bending theory will be given in 

Chapter Two.

In finite element terms certain special structures, such as 

thin walled sections, could be analysed by using membrane or 

plate finite elements, but in general, and in particular for 

s o l i d  sections, ful l  three d i m e n s i o n a l  a n a l y s i s  must be 

used. With d e c r e a s i n g  c o m p u t i n g  cost, three d i m e n s i o n a l  

n o n l i n e a r  finite e l e m e n t  a n a l y s i s  is b e c o m m i n g  a more 

f e a s i b l e  proposition. Yet it is s t ill i n h e r e n t l y  the most 

e x p e n s i v e  i d e a l i s a t i o n  and care must a l w a y s  be taken when
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setting up a model.

1.2 Objectives and Scope

The objectives of this study were:

(1) To develop a three dimensional nonlinear finite element 

p r o g r a m  for the a n a l y s i s  of the s h o r t - t e r m  b e h a v i o u r  of 

reinforced concrete. The model was to incorporate the basic 

causes of the n o n l i n e a r  b e h a v i o u r  which i n c l u d e  concrete 

cracking, post-cracking effects, m u l t i a x i a l  s t r e s s - s t r a i n  

b e h a v i o u r ,  concr e t e  c r u s h i n g  and steel yielding. Proper 

simulation of steel reinforcement was considered important 

in the a n a l y s i s  of the t o r s i o n a l  b e h a v i o u r  of r e i n f o r c e d  

c o n c r e t e  s e c t i o n s  w h i c h  n o r m a l l y  i n c l u d e  d i s c r e t e  

longitudinal bars and stirrups. The program was written so 

t h a t  it c o u l d  be u s e d  for o t h e r  r e i n f o r c e d  c o n c r e t e  

a p p l i c a t i o n s .  T h e r e f o r e  a c r i t i c a l  a s s e s s m e n t  of its 

p e r f o r m a n c e  in a v a r i e t y  of s t r u c t u r a l  a p p l i c a t i o n s  was 

u n d e r t a k e n  in order to e s t a b l i s h  a c l e a r  picture of the 

e f f e c t s  of the m a i n  n o n l i n e a r  s o l u t i o n  and m a t e r i a l ,  

parameters in each particular situation.

(2) To c o n d u c t  a s e r i e s  of e x p e r i m e n t s  to s t u d y  the 

b e h a v i o u r  of r e i n f o r c e d  c o n c r e t e  s p e c i m e n s  of L-shaped cross 

sections under pure torsion designed and detailed according

to the British Code (BS:8110 - 1985, formerly CPllO - 1972) 

specific a t i o n s .  The aim of this part was three fold: (a) to 

assess the code r e q u i r e m e n t s  for tors i o n  design, with 

particular reference to solid L-sections as a special case 

of solid flanged section, (b) to obtain an insight into the 

torsional behaviour of fully reinforced L-sections and (c) 

to p r o v i d e  d e t a i l e d  e x p e r i m e n t a l  r e s u l t s  to assess the
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c a p a b i l i t y  of the d e v e l o p e d  finite e l e m e n t  model in the 

analysis of these types of cross sections.

(3) To use the finite e l e m e n t  model, h a v i n g  set up limits 

and g u i d e l i n e s  on the imp o r t a n t  m a t e r i a l  parame ters, to 

perform a parametric study on torsional behaviour of solid 

r e i n f o r c e d  c o n c r e t e  L - s e c t i o n s  to c o m p l e m e n t  the 

experimental data. This was to provide more information on 

the e f f e c t s  of m a j o r  p a r a m e t e r s  not i n c l u d e d  in the 

experimental programme.

(4) To c o m b i n e  the r e s u l t s  of b o t h  the e x p e r i m e n t a l  

investigation and the parametric study to offer some design 

r e c o m m e n d a t i o n s  that might h e l p  bring the Brit i s h  Code 

design procedure for torsion in line with other major codes 

of practice.

1.3 Layout of Thesis

C h a p t e r  Two r e v i e w s  the tors i o n  p r o b l e m  of r e i n f o r c e d  

concrete. The historical background to the current knowledge 

r e g a r d i n g  the p r o b l e m  is summarised. The current two major 

methods of torsion analysis, namely the truss analogies and 

the skew-bending theories, are reviewed together with some 

of the relevant recent work reported in literature. Torsion 

design procedures in some of the major codes of practice are 

s u m m a r i s e d  and compared. The d i f f i c u l t i e s  r e g a r d i n g  the 

t o r s i o n  a n a l y s i s  of r e i n f o r c e d  c o n c r e t e  are a l s o  

h i g h l i g h t e d .

C h a p t e r  Three is c o n c e r n e d  m a i n l y  with the finite e l e m e n t  

method. As the method is now firmly established, it is only 

briefly reviewed. The main contribution in this area is the
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incorporation of embedded bars for the simulation of steel 

reinforcement. This a l l o w s  accurate r e p r e s e n t a t i o n  of 

s t i r r u p s  and l o n g i t u d i n a l  bars w i t h i n  the 2 0 - n o d e d  

i s o p a r a m e t r i c  e l e m e n t  chosen to s i m u l a t e  concrete. Ful l  

derivation of the matrices for their implementation is given 

and the advantages of using these types of embedded bars are 

discussed. The cha p t e r  a l s o  r e v i e w s  n o n l i n e a r  methods of 

solution and describes the methods used in this work.

The mathematical material models describing the behaviour of 

c o n c r e t e  and steel are p r e s e n t e d  in C hapter Four. These 

include cracking, three dimensional stress-strain laws and 

crushing of concrete and steel stress-strain behaviour. The 

post-cracking behaviour of concrete is also described which 

includes tension stiffening and shear retention effects.

Assessment of the capability of the developed finite element 

m o del in d i f f e r e n t  r e i n f o r c e d  concrete a p p l i c a t i o n s  is 

reported in Chapter Five. These include the following cases:

(1 ) deep beams, (2 ) s h a l l o w  beams s i m u l a t i n g  b e a m - c o 1 umn 

behaviour, (3) rectangular beams under pure torsion and (4) 

rectangular beams subjected to combined bending and torsion. 

Some basic aspects of m o d e l l i n g  were c a r e f u l l y  studied 

be c a u s e  they p r o v e d  cru c i a l  for better s i m u l a t i o n  of 

behaviour, such as the boundary conditions for the torsional 

applica t i o n .  The e f f e c t s  of some imp o r t a n t  n o n l i n e a r  

s o l u t i o n  and m a t e r i a l  p a r a m e t e r s  were s tudied and are 

reported. Major conclusions and general guidelines regarding 

the s u i t a b i l i t y  of th e m o d e l  for t h e s e  d i f f e r e n t  

applications are given.
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Chapter Six des c r i b e s  in detail the t e s t - r i g  which was 

d e s i g n e d  and built in order to carry out the tor s i o n  tests 

that form the e x p e r i m e n t a l  portion of this study. The 

i n s t r u m e n t a t i o n  e m p l o y e d  for m e a s u r e m e n t  of the various 

q u a n t i t i e s  is shown. The tes t  p r o g r a m m e  and the test 

specimens are f u l l y  d e s c r i b e d  and the c o n c r e t e  and steel 

characteristics given.

In Chapter S e v e n  the e x p e r i m e n t a l  r e s u l t s  are presented. 

S p e c i m e n  b e h a v i o u r  is d e s c r i b e d  and the r e s u l t s  are 

thoroughly discussed. The British code design procedure is 

c r i t i c a l l y  asses s e d  in the light of the test r e s u l t s  and 

als o  from repor t e d  work in literature. The c o n s e r v a t i v e  

nature of the current code recommendations is demonstrated 

an d  the m a i n  r e a s o n s  c o n s i d e r e d  to be c a u s i n g  it are 

discussed.

Chapter Eight presents analysis of the test specimens using 

the finite e l e m e n t  model d e v e l o p e d  and d e s c r i b e d  earlier. 

E x p e r i m e n t a l  and t h e o r e t i c a l  res u l t s  are compared. The 

applicability of the model in the torsion analysis of solid 

reinforced concrete L-sections is assessed.

A n u m e r i c a l  p a r a m e t r i c  study, d e v i s e d  to c o m p l e m e n t  the 

experimental work, is presented in Chapter Nine. The purpose 

of the study and the p a r a m e t e r s  chosen are g i v e n  and the 

r e s u l t s  are p r e s e n t e d  and analysed. The o utcome of the 

parametric study is combined with that of the experimental 

portion in an attempt to suggest improvements to the current 

British Code torsion design procedure.

The main conclusions drawn from the various aspects of this
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study are c o m p i l e d  in C hapter Ten. G eneral c omments are 

given and suggestions for further work are made.
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Longitudinal steel approx. Sin.pitch dia.iy* to2'/4
/ Construction jointPour 6 completion of deck

Pour 2

T Ceg
V  CDii

7-0' 7 '- 4'
Transversesteel

Pour I web of cross girders9'/» pitch
Corner and anchor bars

— Transverse steelPour 5 _ ZsectionRoot bars
25-0' 16-6'

Longitudinal steel: 3 layers dia. 2’’and 2 V4" V16 stirrups in each rib
Half cross section at crown

Figure (1.4) Half section through the crown of the Waterloo 
Bridge, London, showing the triple box girders 
(ref. 4)

Double walls of 
auditorium ^ Expansion joint

Raking slab

12*‘reinforced- 
concrete slab- Ledges for

pre-cast
steps

Main beam

Torque box

Main buttress

12“ R.C. wall
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Cantilever
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floor

Figure (1.5) Axonometric view of the main balcony beam of the
Royal Festival Hall, London, showing the triangular 
box girder which resists the twisting moments (ref. 5)
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CHAPTER TWO 

TORSION OF REINFORCED CONCRETE

2.1 introduction

A l t h o u g h  torsion r a r e l y  acts in isolation, -a t h o r o u g h  

understanding of this phenomenon is essential in structural 

e n g i n e e r i n g  and s e v e r a l  useful studies of b e h a v i o u r  under 

this condition have been made. These studies ranged from the 

purely theoretical to the purely experimental. Some of these 

studies c o n s i d e r e d  the case of pure torsion a l t h o u g h  the 

majority dealt with combined bending, shear and torsion. As 

a r e s u l t  of this w o r k  d e s i g n  r e c o m m e n d a t i o n s  w e r e  

i n c o r p o r a t e d  in v arious n a t i o n a l  codes of practice. Hsu 

(ref. 10) has t h o r o u g h l y  r e v i e w e d  this activity. In the 

following sections the background material relevant to this 

work is reviewed.

The basic aspects of the torsional behaviour of reinforced 

c o n c r e t e  are the p r e - c r a c k i n g  stiffness, the c r a c k i n g  

torque, the p o s t - c r a c k i n g  stiffness and the f a i l u r e  (or 

ultimate) torque.

2.2 Torsion of Plain and Reinforced Concrete 

2.2.1 Earl-y History

The tors i o n  p r o b l e m  of a h o m o g e n e o u s  c i r c u l a r  m ember was 

tho u g h t  about as e a rly as 1784 by C o u l o m b  (ref. 1), when he 

first found that the torque, T, is proportional to the angle 

of t w i s t , 9.

The c l e a r  u n d e r s t a n d i n g  of e q u i l i b r i u m ,  c o m p a t i b i l i t y  and 

s t r e s s - s t r a i n  equations, e n a b l e d  N a v i e r  (ref. 2), about 40 

years later, to derive theoretical equations for torsion of 

an elastic circular shaft and rectangular sections. However,
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the equations for rectangular sections were not supported by 

e x p e r i m e n t s  on iron square members c o n d u c t e d  by D u l e a u  in 

1820 (ref. 3) .

In 1855, and after development of the necessary mathematical 

tools which i n c l u d e d  the Four ier series and the t heory of 

elasticity, St. Venant (ref. 4) solved the puzzle regarding 

the tors i o n  p r o b l e m  of h o m o g e n e o u s  d.astic r e c t a n g u l a r  

members. The concept of warping and the so-called St. Venant 

c o n s t a n t  , C, were introduced. C o n s e q u e n t l y ,  t h e o r e t i c a l  

equations relating the applied torque to the angle of twist, 

and the resulting shear stresses to the applied torque were 

d e r i v e d .

A p p r o x i m a t e  torsion equations for t h i n - w a l l e d  f l a n g e d  

secti o n s  were s u g gested by Bach in 1911 (ref 5). A l t h o u g h  

these e q u a t i o n s  were o r i g i n a l l y  intended for s t r u c t u r a l  

steel sections, where the t h i c k n e s s e s  of the r e c t a n g u l a r  

c o m p o n e n t s  are s m a l l e r  than the o v e r a l l  dime n s i o n s  by an 

order of magnitude, they were later found to be useful for 

concrete flanged sections with rather bulky sections.

S i m p l e  equ a t i o n s  were d e r i v e d  by Bredt (ref. 6 ), in 1896, 

for p r i s m a t i c  thin tubes by a s s u m i n g  the cross sect ion 

r e m a i n e d  u n c h a n g e d  after twisting, and taki ng the w a r p i n g  

effect to be u n i f o r m  through the length. These equations 

were a l s o  found to be usef ul for torsion of r e i n f o r c e d  

concrete members.

The membrane analogy, which uses the similarity between the 

stress function in torsion problem and the deflection of a 

membrane under uniform loading, was discovered by Prandtl in
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1903 (ref. 7). The a n a l o g y  p r o v i d e d  a c o n v e n i e n t  tool for 

v i s u l i z a t i o n  of m a g n i t u d e s  and d i r ections of the e l a s t i c  

torsional shear stresses. This concept was later extended to 

the case of a plastic material by Nadai in 1923 (xef. 8 ) who 

proposed the sand heap analogy.

The attem p t s  h i g h l i g h t e d  a b ove g r e a t l y  a d v a n c e d  basic 

understanding of the torsion problem of homogeneous members. 

They invariably, however, used crude assumptions. It can be 

said that St. Venant's theory can r e a s o n a b l y  d escribe the 

torsion behaviour of plain concrete members at low torques. 

At high torques, there is a n o t i c e a b l e  gradual d e v i a t i o n  

from the theory. This may be a t t r i b u t e d  to the p r e s e n c e  of 

m i c r o c r a c k i n g  at this l e v e l  of loading. This n e c e s s i t a t e d  

the se a r c h  for d e v e l o p m e n t  of new theo ries or use of

previous ones with some modifications for torsion of plain 

and reinforced concrete.

2.2.2 Plain Concrete Members

Three theories have been, developed to predict the torsional 

strength of plain concrete members: elastic theory, plastic

theory, and skew-bending theory.

Th e  e l a s t i c  t h e o r y  is b a s e d  on St. V e n a n t  m e t h o d .  In

a p p l y i n g  this theory it is assumed that the t o r s i o n a l

failure of a plain concrete member occurs when the maximum 

principal tensile stress, g equals the tensile strengthtfUWC.
of concrete, f ' .j.. Since q ^ a x  i n pure shear, the

elastic failure torque, Tg, is given by:

Tg = axZyf't (2.1)
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w h e r e  oC is t e r m e d  St. V e n a n t ' s  c o e f f i c i e n t ,  and is a 

funct i o n  of the ratio y/x (see for e x a m p l e  ref. 10). The 

shear stress distribution for a rectangular section is shown 

in Figure (2.1), with the maximum v a l u e s  occur'ing at the 

mi d d l e  of the longer side. The e l a s t i c  theory was found to 

c o n s i d e r a b l y  u n d e r e s t i m a t e  the f a i l u r e  strength of p l a i n  

concrete beams by up to 5 0% in some cases (ref. 11).

A t t r i b u t i n g  the extra strength to the p l a s t i c  p r o p e r t y  of 

concrete, N y l a n d e r  (ref.9) proposed a p l a s t i c  coefficient, 

OCp , to r e p l a c e  St.Venant's e l a s t i c  coefficient. Hence the 

t o r s ional stren g t h  of a r e c t a n g u l a r  p l a i n  con crete beam 

becomes :

T p = OfpX^yf'^ (2.2)

where = (1/2 - x/6y). Although the plastic coefficient is 

about 50% gre a t e r  than the e l a s t i c  coefficient, whic can 

roughly account for the observed extra strength, the plastic 

theory suffers from the following two weaknesses: (1) it is

theoretically unsound as the principal tension is the prime 

cause of torsional beam failure, but no significant plastic 

b e h a v i o u r  has been o b s e r v e d  in tension of concrete. The 

torsional f a i l u r e  of p l a i n  concr e t e  members is quite 

brittle; there is no sign of p l a s t i c  rotation, and (2 ) the 

theory can not a ccount for a size effect; tests i n d i cated 

that for small torsional specimens the calculated plastic 

torques are u s u a l l y  s m a l l e r  than the test values, wher e a s  

the opposite is true for large specimens (ref. 10).

In view of the difficulties in using the classical elastic 

and p l a s t i c  t h e o r i e s ,  Hsu (ref. 11) r e - e x a m i n e d  the
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t o r s i o n a l  fai l u r e  process of r e c t a n g u l a r  p l a i n  c o n c r e t e  

b e a m s  w i t h  the aid of a h i g h  s p e e d  m o v i e  c a m e r a .  He 

indicated that, for such members under pure torsion, failure 

is caused by bend ing about an axis p a r a l l e l  ter the wider 

face and i n c l i n e d  at an a n g l e  of 45° to the l o n g i t u d i n a l  

a x i s  of the beam. T h e s e  c h a r a c t e r i s t i c s  w e r e  e a r l i e r  

s u g g e s t e d  by M a r s h a l  and Tempe (ref. 12) for pure torsion, 

and by Lessig (ref. 13) for combined torsion. These are the 

c h a r a c t e r i s t i c s  of the s o - c a l l e d  s k e w - b e n d i n g  f a i l u r e  

mechanism. Hsu also suggested the following equation, based 

on the bend i n g  m e c h a n i s m  of torsional failure, for the 

torsional strength of plain concrete rectangular members:

T . sfl ( 0 * 8 5 0  (2.3)np 3 ^

where f ̂  is the m o d u l u s  of rupture of concrete, and 0.85 is 

a r e d u c t i o n  f a c t o r  a c c o u n t i n g  for the e f f e c t  of the 

perpendicular compressive stress on the tensile strength of 

concrete. This is bec a u s e  on a typical e l e m e n t  on the 

surface of a rectangular beam, loaded in torsion, the shear 

stresses produce two principal stresses, one tensile and one 

compressive, perpendicular to each other.

C o m p a r i s o n  of the e l a s t i c  theory (Equation 2.1), p l a s t i c  

theory (Equation 2.2) and the skew-bending theory (Equation 

2.3) r e v e a l s  the f o l l o w i n g  points: (1) they all h a v e  the

same geometric parameter, x^y, (2 ) the only differences are 

the nondimensiona1 coefficient and the material constant. In 

both the elastic and plastic theories, the material constant 

is the direct t e n s i l e  s t r e n g t h  of concrete, f in the

s k e w - b e n d i n g  theory, it is the reduced modu l u s  of rupture,

0.85 f̂  . A comparison of the coefficients is shown in Figure
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(2 .2 ); the s k e w - b e n d i n g  c o e f f i c i e n t  (a const a n t  = 1/ 3 )

a l w a y s  lies b e t w e e n  the e l a s t i c  and p l a s t i c  coefficients, 

the latter two being functions of the ratio y/x.

For f l a n g e d  sections (I, T or L), an a p p r o x i m a t i o n  of the 

rectangular section equations is often adopted. This is done 

by assuming that the torsional strength of a flanged section 

is the sum of the torsional strength of its c o m p o n e n t  

rectangles .

2.2.3 Reinforced Concrete Members

Reinforced concrete members subjected to torsional moments 

can be d i v i d e d  into two g r o u p s  : (1 ) m e m b e r s  w i t h

longitudinal steel only, and (2 ) members with longitudinal 

steel and stirrups. The first group, in fact, does not have 

s i g n i f i c a n t  p r a c t i c a l  importance. M o r e o v e r ,  l o n g i t u d i n a l  

steel a l o n e  was found i n e f f e c t i v e  in r e s i s t i n g  torsional 

moments; the u l t i m a t e  strength may exceed the cracking 

torque, but seldom exceeds it by more than 15% (ref. 10)

For concrete members reinforced with longitudinal steel and 

stirrups, commonly used in practice, the torsional strengths 

and the post-cracking torsional stiffnesses (slopes of the 

t o r q u e - t w i s t  curves) are strong f u n c tions of the steel 

p e r c e n t a g e  (see ref. 14 for example). T o r q u e - t w i s t  curves 

for r e c t a n g u l a r  concr e t e  members h a v i n g  the same cross 

section with d i f f e r e n t  r e i n f o r c e m e n t  ratios, taken from 

r ef e r e n c e  14,are shown in Figure (2.3). Each c urve can be 

d i v i d e d  into two distinct regions - before and after 

cracking. Before c r a c k i n g  the p e r c e n t a g e  of steel has 

n e g l i g i b l e  effect on the torsional stiffness, i.e all
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memb e r s  b e have as p l a i n  concrete members. Therefore, St. 

Venant's torsional stiffness is applicable to members with 

longitudinal steel and stirrups before cracking.

After cracking, Figure (2.3) shows that the behaviour can no 

longer be predicted by St. Venant's theory. The main reason 

is that crack i n g  t e r m i n a t e s  the basic a s s u m p t i o n  of the 

theory of elasticity that the material must be continuous. 

Hence a new e q u i l i b r i u m  c o n d i t i o n  is e s t a b l i s h e d  after 

cracking, in which the steel picks up the t e n s i l e  stres s e s  

and the concrete carries the compression.

An interesting phenomenon was also observed (ref. 14) after 

cracking; the Length of the beam increases with i n c r e a s i n g  

torque. The unit l e n g t h e n i n g  of the beam r e s e m b l e s  the 

average longitudinal steel strain (Figure 2.4), indicating 

that the l e n g t h e n i n g  of the beam is due to the s t r e t c h i n g  of 

the l o n g i t u d i n a l  bars. The effect of this l e n g t h e n i n g  may 

h a v e  a f a v o u r a b l e  effect in a building's t o r s i o n a l  beam, 

wh ich is n o r m a l l y  l o n g i t u d i n a l l y  restrained by either 

c o l u m n s  or walls. A s e l f - g e n e r a t e d  c o m p r e s s i o n  w i l l  be 

induced in the beam acting like a concentric prestress which 

w i l l  inc rease the t o r s i o n a l  str ength of the beam. This may 

be a c o n t r i b u t i n g  factor in e x p l a i n i n g  that c o m p l e t e  

torsional collapse is seldom observed in the interior spans 

of continuous beams.

The lessons learned from the a c c u m u l a t e d  t h e o r e t i c a l  and 

experimental studies on torsion of reinforced concrete are 

many, and are no d o u b t  v e r y  u s e f u l  in any f u r t h e r  

investigation. Concrete in torsion fails with a 4 5° helical 

fracture, at right a n g l e s  to the direction of the d i a g o n a l
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ot e n s i l e  stress. C o n s e q u e n t l y ,  45 spiral r e i n f o r c e m e n t  

normal to the crack is the most effective. This is probably 

due to the better a n c h o r a g e  of the c o n tinuous spirals, as 

compared with individual hoops, particularly when there is 

no definite f l e x u r a l  c o m p r e s s i o n  zone. In s p e c imens of 

circular cross section spirals are easily made, even at 4 5° 

to the axis. In r e c t a n g u l a r  s p e c i m e n s ,  h o w e v e r ,  the 

m a n u f a c t u r i n g  as w e l l  as p l a c i n g  d i f f i c u l t i e s  are many. 

Furthermore,there may be a possibility of a reversal of the 

sign of the tor s i o n a l  moment; this requires two systems of 

spirals to be installed, creating additional manufacturing 

d i f f i c u l t i e s  and cost. A further obj e c t i o n  to the use of 

s p i r a l s  is that spiral r e i n f o r c e m e n t  is not the most 

s u i t a b l e  for r e s i s t i n g  bend i n g  shear, which n o r m a l l y  

combines with torsion shear in practical situations.

S i n c e  p r a c t i c a l  r e i n f o r c e d  c o n c r e t e  secti o n s  are not 

normally circular, or even square, and torsion is seldom the 

only important criterion, spiral reinforcement is mainly of 

a c a d e m i c  inte rest as the ideal torsion reinfor cement. 

N e v e r t h e l e s s ,  and b e c a u s e  of s i m p l i c i t y  of m a t h e m a t i c a l  

d e r i v a t i o n s ,  it may be n o t i c e d  that many of the torsion 

theories generally start by assuming spiral reinforcement, 

later taking closed stirrups as a special case (refs. 16, 17

for example).

The existing theories for calculating the torsional strength 

of members with l o n g i t u d i n a l  steel and stirrups can be 

roughly divided into two prominent categories: (1) the truss

a n a l o g y  type, and (2) the s k e w - b e n d i n g  type. A l t h o u g h  they 

have later undergone many improvements, as will be seen in
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the f o l l o w i n g  sections of this chapter, the original 

theories s erved to g r e a t l y  i m p r o v e  basic u n d e r s t a n d i n g  of 

the torsional phenomenon.

2.2.3.1 Space Truss Analogy

The first theory for r e i n f o r c e d  concrete s u b j e c t e d  to 

torsion was proposed by Rausch (ref. 17) in 1929. A concrete 

member, with an a r b i t r a r y  cross section, r e i n f o r c e d  with 

longitudinal and hoop steel is assumed to act like a hollow 

section, so that the applied torsional moment is resisted by 

the circulatory shear flow in the wall of the section.

# a
After cracking, the concrete is separated by 45 cracks into 

a series of helical members. These helical concrete members 

are assumed to interact with the longitudinal and hoop steel 

bars to form a space truss. Each of the h e l i c a l  members is 

i d e a l i z e d  into a s e r i e s  of 4 5̂  s h o r t  s t r a i g h t  s t r u t s  

c o n n e c t e d  at the joints. The c o m p r e s s i o n  force in the 

c o n c r e t e  struts w i l l  p roduce an o utward radial force (i.e 

p e r p e n d i c u l a r  to b o t h  the l o n g i t u d i n a l  and l a t e r a l  

directions) at each joint, that w i l l  be resisted by the 

lateral hoop reinforcement. These lateral hoop bars are also 

idealized as chains of short straight bars connected to the 

c o n c r e t e  struts at the joints. The chains of diago n a l  

co n c r e t e  struts and the chains of hoop bars thus form a 

mechanism that will lengthen under an infinitismal external 

t o r q u e .  T h i s  t e n d e n c y  to l e n g t h e n  is r e s i s t e d  by the 

longitudinal reinforcement. Each longitudinal bar is assumed 

to be a chain of short bars c o n n e c t e d  at the joints to the

d i a g o n a l  struts and the hoop bars. In tkis way a space
I

Qtruss, (Figure 2.5), that consists of 45 concrete struts in
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compre s s i o n  and l o n g i t u d i n a l  and hoop bars in tension, is 

formed. Thus the space truss formed w i l l  resist a large 

external torque.

Through e q u i l i b r i u m  of external and inte rnal forces and 

compatibility of deformations, Rausch derived the following 

equation for the torsional strength of a reinforced concrete 

section:

(2.4 a)

where = nominal torsional resistance of the member
i

A^= area bounded by the centre line o fa t r a n s v e r s e  

hoop bar = x^y^ for a r e c t a n g u l a r  section with 

c 1 osed stirrups 

A^ = cross s e c t ional area of a t r a n s v e r s e  hoop bar 

f g = steel strength of hoop bars 

s = spacing of transverse hoop bars

= total area of the longitudinal bars 

= steel strength of longitudinal bars 

u = p e r i m e t e r  of the area bounded by the centre line 

of a c o m p l e t e  hoop bar

Equation (2.4 a), based on the working stress design method, 

was adopted by several codes of practice in the 1950s. Using 

current u l t i m a t e  stre ngth concept, the nomi n a l  tor s i o n a l  

strength, T , can be expressed as:

T_ (2.4 b)
  i ^  ■  Ü---

where fgy = yield strength of transverse hoop bars 

fy 2 = yield strength of longitudinal bars
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It follows from Equations (2.4 a) and (2.4 b) that the total 

area of the l o n g i t u d i n a l  steel is r e l a t e d  to that of the 

hoop bars through the equation:

y . (2.4 c)
U S

On the assumption that both longitudinal and hoop steel has 

the same yield strength Equation (2.4 c) becomes:

(2.4 d )

which states that the v o l u m e  of all l o n g i t u d i n a l  steel 

wit h i n  the spacing s sh o u l d  be equal to the v o l u m e  of one 

c o m p l e t e  hoop bar. This is the s o - c a l l e d  equal v o l u m e  

p r i n c i p l e  e m p l o y e d  by many codes of p ractice for the

calculation of the longitudinal torsional reinforcement.

For a rein f o r c e d  r e c t a n g u l a r  section, for example, the 

ultimate torsional strength is given by:

T, .. ^ y i V a r  (2-5)
s

where x ̂  and y ̂  are the s m a l l e r  and larger d i m e n s i o n s  of the 

c l o s e d  stirrups, is the area of one leg of stirrup, f^y 

is the stirrup yield strength, and s is the stirrup spacing.

In the space truss formed, however, many a s s u m p t i o n s  were 

used. These are summarised and criticized in the following:

(1) The space truss is made up of 4 5^ diagonal concrete 

struts; longitudinal bars, and hoop bars connected at the 

joints by hinges. This may be a fair assumption to make easy 

mathematical derivations.

(2) A d i a g o n a l  c o n c r e t e  m e m b e r  c a r r i e s  o n l y  a x i a l  

compression; i.e., shear resistance is neglected. Torsion is
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primarily a shear problem. After cracking, which is normally 

very extensive, shear transfer becomes a major contribution 

in resisting the applied torque. Hence it should be, in some 

way, a c c ounted for in the d e r i v a t i o n  of the t o r s i o n a l  

equ ations.

(3) Longitudinal and lateral bars carry only axial tension;

i.e., dowel action is neglected. The dowel effect, near 

ultimate strength, has been widely observed in torsion (ref. 

14 for example). As it is a r e s u l t  of shear d e f o r m ations, 

its effects must be accounted for.

(4) For a s o l i d  s e c t i o n ,  the c o n c r e t e  core d o e s  not 

c o n t r i b u t e  to the u l t i m a t e  to r s i o n a l  resistance. A l t h o u g h  

t h i s  has b e e n  s h o w n  to be r e a s o n a b l y  a p p l i c a b l e  for 

r e c t a n g u l a r  sections (ref. 14), its v a l i d i t y  for b u l k y  

f l a n g e d  sections has not been reported. Furthermore, even 

for solid r e c t a n g u l a r  sections, the d e t e r m i n a t i o n  of the 

equivalent wall thickness is quite a problem. An empirical 

a ppro a c h  has been s u g g ested by Hsu (ref. 27), using his own 

r e s u l t s  on r e c t a n g u l a r  beams, to e v a l u a t e  this quantity. 

This will be described in section (2.2.3.5).

(5) Uni f o r m  stress d i s t r i b u t i o n  is assumed a l o n g  all the 

r e i n f o r c e m e n t .  Thi s  c o n t r a d i c t s  St. V e n a n t ' s  s t r e s s  

d i s t r i b u t i o n  of t o r s ional shear stress for all cross- 

s ections except circular. For a r e c t a n g u l a r  section, for 

example, the maximum shear stress occurs at the m i d d l e  of 

the l o n g e r  sid e  and d e c r e a s e s  to zero at the c o r n e r .  

H owever, even St. Venant's d i s t r i b u t i o n  is q u e s t i o n a b l e  

after cracking and the situation is indeed complicated.
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(6 ) The theory has another weakness: it does not address the

question of post-cracking torsional stiffness, as only the 

ultimate torque is determined. Hsu (ref. 27) later combined 

the space truss a n a l o g y  and the thin tube t h e o r y  to d e r i v e  

an equation for the post-cracking torsional stiffness. This 

will be discussed later in section (2 .2.3.5).

Despite these comments Rausch's space truss a n a l o g y  has 

g i v e n  a very c l ear idea of the main functions of concrete 

and r e i n f o r c e m e n t  in res i s t i n g  torsion. The equation so 

d e r i v e d  is very si m p l e  and straightforward. For these 

reasons the space truss a n a l o g y  has p r o v i d e d  ve ry useful 

s e r v i c e  right up to the present time. N e v e r t h e l e s s ,  tests 

h a v e  shown that the theory o v e r - e s t i m a t e s  the tor s i o n a l  

strength of reinforced concrete members (ref. 10). This has 

led to subsequent efforts to modify the original equation.

Pointing out that the n o n - u n i f o r m  d i s t r i b u t i o n  of stress 

w o u l d  r e s u l t  in a less e f f e c t i v e  c o n t r i b u t i o n  by the 

reinforcement, A n d e r s e n  (ref. 18) suggested an e f f i c i e n c y  

coefficient, A . less than unity, for the reinforcement. 

F u r t h e r m o r e ,  a n d  a n a l o g o u s  to the d e s i g n  of w e b  

reinforcement of beams to resist flexure and shear (common 

American practice), he suggested that concrete contribution 

to the u l t i m a t e  strength, i.e. a separate term in the 

equation, must be taken into account. A c c o r d i n g l y  Rausch's 

equation (Equation 2.4 b) becomes:

\  - Tg (2 .6 )

where Tg = St. Venant's elastic torque for plain concrete 

(= x^yf  ̂ for a rectangular section)
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A= efficiency coefficient for reinforcement, which 

v aries from 2/3 to 1.0, d e p e n d i n g  on the shape of the cross 

section and the number of bars

However, Andersen’s coefficient is tedious to calculate and 

lacks rigour in d e r i v a t i o n  (ref. 1 0 ) and so has not been 

w i d e l y  accepted. Using a strain energy method, Cowan (ref. 

16) was able to overcome Andersen's difficulty in obtaining 

a logical and simple efficiency coefficient. Based strictly 

on St. Venant's stress and strain distribution, he d e r i v e d  

the following equation for the torsional strength:

= Tg + 1.6 (2.7)

In the above equation the factor 1.6 impl ies that Cowan's 

efficiency coefficient, A , is taken as 0.8 for all cases (in 

fact it varies between 0.798 and 0.844 for y^/x^ less than 

3). Because Cowan's e f f i c i e n c y  coefficient is based on St. 

Venant's stress and strain distribution, its validity after 

cracking is questionable. Nevertheless, the concept of using 

an effi c i e n c y  c o e f f i c i e n t  to improve Rausch's torsional 

r e s i s t a n c e  has been w i d e l y  accepted (for e x a m p l e  the ACI 

Code uses it, as will be shown later).

A second approach was s u g g ested by Lampert and T h u r l i m a n  

(ref. 19) for members s u b j ected to torsion or combi n e d  

torsion and bending. In trying to reduce the area A ^ , in 

order to bring down the sum of the two terms of E q u a t i o n  

(2.7), an arbitrary d e f i n i t i o n  for thé centre line of the 

shear flow was adopted; it was assumed that the centre line 

of the shear flow coincides with the lines c o n n e c t i n g  the 

cent res of the corner bars. Furthermore, the a ngle of the
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co ncrete struts was taken as variable, , instead of 45 

o r i g i n a l l y  used by Rausch. Also, a v a l u e  for the concrete 

contribution different from Tg was used. Hence the torsional 

strength of a reinforced concrete member becomes:•

“ Tq + 2 cot a (2.8 )
s

where Ag = area bounded by the lines connecting the centres 

of the corner bars

(X = angle of inclination of the concrete struts 

Tg = concrete contribution:

2.5 T^td(2A 2 ) when T^ <3Tg>Tg = 0 when T^ > 3Tg

Tj. = f  ̂/ 4 where f ^ is taken as 0.214(f'^)2/3.  ̂ ^

and f ' g in N/mm^ 

t̂ j = e f f e c t i v e  w a l l  thickness, taken as one - s i x t h  of 

the diameter of the largest circle which can be contained 

within the area A 2 .

For all practical purposes Equation (2 .8 ) will be less than

E q u a t i o n  (2.4 b) even with the i n c o r p o r a t i o n  of Tg and cota

In the CEB- FIP M o d e l  Code (which adopts this approach and

will be discussed later), the concrete struts are assumed to
obe inclined at a variable angle not necessarily 45

More recently, C o l l i n s  and M i t c h e l l  (ref. 20) adopted a 

third approach to modify Rausch's equation. The approach 

als o  tries to reduce the area Â  by m aking an arb i t r a r y

assumption. They suggested:

Tn . 2 joVtjr, oota (2.9 a)

where A^ is defined as the area boun ded by the centre line 

of the shear flow, which is assumed to coincide with the
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centroidal line of the equivalent compression stress block 

in the c on crete struts. The concrete cover, outs i d e  the 

centre line of a hoop bar, is assumed to be ineffective for 

the d e t e r m i n a t i o n  of the e q u i v a l e n t  stress black. So the 

value of Aq is approximated by;

*0 ” *1 ■ ̂  (2.9 b)

where a^=depth of the e q u i v a l e n t  rectangular c o m p r e s s i o n  

stress b 1ock

P 1 = perimeter of the centre line of a hoop bar 

In E q u a t i o n  (2.9 b) the depth â  is found from e q u i l i b r i u m  

and compatibility as:

It is to be p o i n t e d  out tha t  C o l l i n s  a n d  M i t c h e l l ' s  

approach, yet again, involved crude assumptions (for example 

neglecting the concrete cover) to bring the theory closer to 

experiments. Furthermore, a difficulty stems from the fact 

that the depth a^ , as c a l c u l a t e d  from Equation (2.9 c), is 

too small, because the stand a r d  c y l i n d e r  s t r e n g t h  of 

concrete has been used for the concrete struts (ref. 21). In 

fact, the strength of c oncrete is g r e a t l y  reduced by the 

presence of diagonal cracking.

Hsu and Mo (refs. 21, 22 ) termed the reduction of stren g t h  

in the s t r u t s  due to d i a g o n a l  c r a c k i n g  " s o f t e n i n g  of 

concrete". They pointed out that this softening effe ct can 

e x p l a i n  why Rausch's equation o v e r e s t i m a t e s  the tor s i o n a l  

stren g t h  of reinforced concrete members. Using a softened
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concrete compressive stress-strain curve, they derived a set 

of 8 equations, based on the truss model, for the prediction 

of the torsional strength as well as the angle of twist and 

s t e e l  and c o n c r e t e  s t r a i n s  at any l o a d i n g  st age. The 

equations were a p p l i e d  to 108 beams a v a i l a b l e  in the 

l i t e r a t u r e  and were c o n sidered satisfactory. How ever, the 

proposed equations failed in four cases due to the following 

reasons (ref. 2 2 ):

(1) I n s u f f i c i e n t  reinforcement; the member fails in a 

brittle manner upon cracking.

(2) O v e r r e i n f o r c e m e n t ;  c r u s h i n g  of c o n c r e t e  p r e c e d e s  

yielding of longitudinal steel and stirrups, resulting in a 

tfltfele failure.

(3) Excessive stirrup spacing; the theoretical derivations 

assu m e d  the struts to be c o n t i n u o u s l y  smeared a l o n g  the 

length of the member.

(4) E x c e s s i v e  or i n s u f f i c i e n t  c o v e r ;  if the c o v e r  is 

excessive it may spall before the maximum torque is reached, 

or if it is too small t'he actual t o r s i o n a l  strength may 

exceed the predicted value to an undesirable degree.

The set of equations offered by Hsu and Mo, however, need to 

be s o l v e d  by trial and error. This is c e r t a i n l y  a serious 

d i s a d v a n t a g e  as far as design is concerned.Because of this 

the same authors (ref. 23) made simplifications to arrive at 

a set of d e s i g n  r e c o m m e n d a t i o n s .  T h e r e c o m m e n d a t i o n s  

i n c l u d e d  l i m i t a t i o n s  on o v e r r e i n f o r c e m e n t ,  i n s u f f i c i e n t  

reinforcement and concrete cover.

2. 2.3. 2 Skew-Bend i.ng Strength Theory
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The other prominent categ o r y  of theories for r e i n f o r c e d  

c o n c r e t e  members subjected to torsion is the s k e w - b e n d i n g  

type. The basic characteristic of skew-bending theories is 

the a s s u m p t i o n  of a skew f a i l u r e  surface. This f a i l u r e  

surface is initiated by a helical crack on three faces of a 

rectangular beam, while the ends of this helical crack are 

c o n n e c t e d  by a c o m p r e s s i o n  zone near the fourth face as 

shown in Figure (2.6). The fail u r e  surface intersects both 

the longitudinal reinforcement bars and the closed stirrups. 

The forces in this reinforcement provide the internal forces 

and moments to resist the external a p p l i e d  loads. At the 

f a i l u r e  of a beam, the two parts of the beam s e p arated by 

the f a i l u r e  surface rotate against each other about a 

neutral axis on the inside edge of the compression zone. It 

is often assumed that both the l o n g i t u d i n a l  steel and 

stirrups will yield at the collapse of the beam.

The first s k e w - b e n d i n g  theory was proposed by L e ssig (ref. 

13) for combi n e d  load i n g  in conjunction with two modes of 

failure; mode (1) where the compression zone is near the top 

face of the beam, and mode (2) where the compression zone is 

a l o n g  a sid e  f a c e  (see F i g u r e  2.6). By t a k i n g  two 

equilibrium conditions and a minimization of the strength of 

the section, she was a b l e  to offer a set of three basic 

eq u a t i o n s  which c o uld be s o l v e d  by a trial and error 

p r o c e d u r e .  The t h e o r y  was f u r t h e r  s i m p l i f i e d  and 

i n c o r p o r a t e d  in the Russian Code of 1962 (ref. 32) with 

empirical limits to prevent crushing of concrete before the 

yielding of steel and also to avoid partially overreinforced 

beams. However, the procedure was quite tedious and lengthy.
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M o r e o v e r ,  it was found to o v e r e s t i m a t e  the t o r s i o n a l  

strength in the case of pure torsion (ref. 14).

An o v e r r e i n f o r c e d  beam is r e i n f o r c e d  with an u n b a l a n c e d  

amount of longitudinal bars and stirrups. Therefore only the 

longitudinal bars or only the stirrups yield before crushing 

of concrete. This f ailure could be ductile, but not as 

ductile as underreinforced beams where a moderate amount of 

steel is p r o v i d e d  r e s u l t i n g  in a d u c t i l e  fai l u r e  (much 

d esired in practice) caused by t e n s i l e  y i e l d i n g  of both 

types of reinforcement. A third group can be defined, namely 

completely overreinforced beams, where an excessive amount 

of steel has been provided. B r i t t l e  f a i l u r e  caused by the 

c r u s h i n g  of c o n c r e t e ,  b e f o r e  y i e l d i n g  of e i t h e r  the 

longitudinal bars or stirrups, is expected in this case.

R e - e x a m i n i n g  the failure process and mechanism, Hsu (refs. 

14, 15) conducted experimental studies on a series of solid

and h o l l o w  r e c t a n g u l a r  s e c t i o n s  u n d e r  p u r e  t o r s i o n .  

C o n f i r m i n g  the s k e w - b e n d i n g  nature of the torsion f a i l u r e  

and s u g g e s t i n g  that the source of the first term of the 

torsional strength equations, (Equation 2.8 for example), is 

the shear r e s i s t a n c e  of the concrete struts which was 

n e g l e c t e d  in Rausch's theory, he s u g g e s t e d  the f o l l o w i n g  

eq u a t i o n  for the torsional strength of an under r e i nforced 

rectangular beam:

x^y (2.4 yr* ) + (0.66m 0.33
3 o t.

' . '
“ t (21°)

where x,y = smaller and larger overall section dimensions

^I'^l ” smaller and larger dimensions of c/c dimensions 
of the closed stirrups



42

f ' = cylinder crushing strength of concrete 

m = ratio of volume of longitudinal steel to volume 

of stirrups = Aj s/lA|.2(X]L^y = nAj =

total area of longitudinal bars 

(n = total number of bars and A ̂  = area of one

bar )

fly, fty = yield strength of longitudinal bars and stirrups 

respectively 

A = area of one leg of stirrup 

s = stirrup spacing

It can be seen that the proposed equation, 2.10, (adopted by 

the AC I Code), takes the same form as Equations (2.6 - 2.8) 

o f f e r e d  by the truss analogies. However, after some more 

test r e s u l t s  became known, Hsu (ref. 24) updated Equat i o n  

(2 .1 0 ) to;

(2.U/P ) + yiT  ̂ ly (1+0.2 ̂ 1 > (2.11)
^ty *1

-----------V"---------

It is clear, however, that the o n l y  difference b etween 

E q u a t i o n s  (2.10) and (2.11) is the coefficient , which 

still remains a function of m, fiy/fty y^/x^.

In view of the differences between various codes of practice 

as to the effect of the aspect ratio y/x of r e c t a n g u l a r  

sections (particularly in the range 1.0 - 2.0), M c M u l l e n  and 

Ra n g a n  (ref. 25) c o n ducted an e x p e r i m e n t a l  study on 10 

rectangular reinforced concrete beams. They correlated their 

r e s u l t s  and others from l i t e r a t u r e  using the ACI design 

criterion ,(Equation 2.10), to offer the following modified
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equation:

T ^ - 2 A / p ~  + 1 . 4 / T "  At (2 .1 2 )
c s

w h e r e k  = 0 . 5 / ( l + x / y ) < 0 . 3  3

The equation is an improvement of Equation (2.10), a little 

s i m p l e r  and appeared to have predicted well the u l t i m a t e  

torque of the beams tested. H o w e v e r , i t  is r e s t r i c t e d  to 

square or r e c t a n g u l a r  u n d e r r e i n f o r c e d  beams with stirrup 

spacing less than (x^+yj)/4 .

2 .2.3.3 Classif i c a t i o n

In s t r u c t u r a l  analysis, p l a s t i c i t y  theory p r o v i d e s  the 

following two general approaches:

(1) Th e s t a t i c  a p p r o a c h ,  w h i c h  s e a r c h e s  for a s t r e s s  

distribution that is everywhere in equilibrium internally 

and balances the external loads without violating the yield 

criterion. As a result, it produces a lower-bound solution.

(2) T h e  k i n e m a t i c  a p p r o a c h ,  w h i c h  s e a r c h e s  f o r  a 

deformation mechanism that satisfies the geometric boundary 

conditions and for which' the internal dissipation of energy 

equals the expenditure of energy due to external loads. This 

approach produces an upper-bound solution.

In general, all the skew-bending theories, that assume the 

y i e l d  of both l o n g i t u d i n a l  r e i n f o r c e m e n t  and stirrups, 

b e l o n g  to the kinematic approach, and hence s h o u l d  g i v e  

upper-bound solutions. In contrast, the truss model theories 

belong to the static approach and theoretically should give 

lower-bound solutions.
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Pre-çraçking Stiffness 

St. Venant's theory has widely been regarded as suitable for 

the d e s c r i p t i o n  of torsional b e h a v i o u r  of r e i n f o r c e d  

concrete members before cracking (refs. 10, 14, 15). This is

because reinforced concrete members before cracking behave 

like p l a i n  concrete members and the steel has n e g l i g i b l e  

ef f e c t .

For r e c t a n g u l a r  sections, the r e l a t i o n s h i p  betw een the 

a p p l i e d  torque, T, and the r e s u l t i n g  a ngle of twist, q , is 

given by:

T = G/3x3y e (2.13)

where G = shear modulus = 0 .5Ej,/(l+r)

Eg = Young's modulus of concrete 

V = Poisson's ratio

^ = St. Venant's coeffi c i e n t  de p e n d i n g  on the aspect 

ratio y/x a p p r o x i m a t e d  by Hsu (ref. 14) for 

rectangular sections as 0.155 y/x < 0.29 

X ,y = smaller and larger dimensions of the cross section

For f l a n g e d  sections, however, Weinberger's a p p r o x i m a t i o n  

(ref. 26) is used. This states that the overall stiffness of 

a f l a n g e d  section can be taken as the sum of the stiffnesses 

of its rectangular components. Thus Equation (2.13) becomes;

T - (2.14)

where x,y = smaller and larger dimensions of each component 

rectangle.

Equations (2.13) and (2.14) give linear relationship between 

the a p p l i e d  t o r q u e  and the r e s u l t i n g  a n g l e  of twist.
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However, they are only a p p l i c a b l e  before cracking starts. 

Once c racking is initiated, the basic assump t i o n s  of St. 

Venant's theory are broken and the r e l a t i o n s h i p  is no more 

linear. Substantial loss of stiffness has been reported 

(refs. 15, 48) as a new e q u i l i b r i u m  condition is reached

where the steel begins to c o n tribute to the stiffness and 

carry significant stresses.

2.2.3.5 Post-cracking Stiffness

As discussed in the previous sections, all the equations are 

for the u l t i m a t e  s t r e n g t h  p r e d i c t i o n s .  Few a t t e m p t s ,  

however, have been made to evaluate the torsional stiffness 

after cracking. Hsu (ref. 27) d e r i v e d  an equation for the 

p o s t - c r a c k i n g  torsional stiffness of reinforced con crete 

sections, using Rausch's space truss i d e a l i z a t i o n  and the 

thin tube theory. Figure (2.7) shows a typical torque-twist 

c u r v e  for a reinforced concrete member. The first part of 

the curve is a straight line, the stiffness of which can be 

o b t a i n e d  by St.Venant's theory (Equations 2.13 or 2.14). 

After cracking, the stiffness is on ly a fraction of that 

before cracking. The curve starts out as a straight line and 

then g r a d u a l l y  curves towards the h o r izontal when the 

m a x i m u m  torque is approached. The slope of the initial 

straight port ion is taken as the p o s t - c r a c k i n g  torsional 

stiffness, the equation of which is g i v e n  by (assuming a 

tube of thickness h) :

°or°or -   (2 15)

uh t h
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where Gercer ~ post-cracking torsional stiffness

Eg = Young's modulus of elasticity of steel

A 2 = area bounded by the centre line of the hoop

reinforcement

A g = solid cr OSS sectional area within theouter

perimeter of concrete

u = per i m e t e r  of the area bounded by the centre

line of a c o m p l e t e  hoop bar

m*= ratio of steel Young's modulus to the

concrete Young's modulus = Eg/Eg

h = wall thickness of the tube

= ratio of longitudinal steel area to the area

of the cross section = nA^/A^S

^h = r e i n f o r c e m e n t  ratioof the h o o p s t e e l

= A[,u/(ApS)

~ area of one longitudinal bar

n = number of longitudinal bars

Ajj = area of a hoop bar (area of one leg of 
stirrup)

s = stirrup spacing 

For a rectangular section Equation (2.15) becomes:

V » »  . - J eÜ î --------------

* i  * i
w h e r e x . y  = shorter and longer dimensions of the cross 

section

Xi,yi = shorter and longer dimensions of a rectangular 

closed stirrup
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Equation (2.15) has been further simplified by Hsu (ref. 10) 

by neglecting the contribution of the concrete struts, and 

assuming that the vertical intercept of the p o s t - c r a c k i n g  

portion of the curve passes through the origiri. This is 

because of the observation that the pre-cracking rotations 

are very small compared to those after cracking, hence can 

be ignored. The simplified equation becomes:

G C '"«8*1cr cr • ----------  (2.17)

It can be noticed that in Equations (2.15) and (2.16) an 

arbitrary thickness is assumed for the wall of the thin tube 

representing the solid section. There is an obvious, though 

serious, question here; what is the effective wall thickness 

for solid sections or thick hollow sections ? Using his own 

experimental results, Hsu (ref. 15) suggested the following 

empirical equation:

hg = 1.4( ^)x (2.18)

Eq u a t i o n  (2.17) has been used by Hsu et. al. (réf. 28) for 

p o s t - c r a c k i n g  a n a l y s i s  of h o r i z o n t a l l y  cu r v e d  beams, an 

important e x a m p l e  in high way e n g i n e e r i n g  of members that 

carry significant torsional moments.

It has to be pointed out that the p o s t - c r a c k i n g  portion of 

the torque-twist curve is not a straight line. So Equations 

(2.15) - (2.17) are an over-simplification. Equation (2.18),

on the other hand, has been described by Hsu h i m s e l f  (ref. 

1 0 ) as"an e m p i r i c a l  quantity that fitted test results and 

s h o u l d  not be c o n s t r u e d  as the a c t u a l  r e q u i r e d  w a l l
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thickness at ultimate strength". Furthermore, the simplified 

equation, (2.17), has been checked on r e c t a n g u l a r  sections 

(refs. 15,28) only. Its validity for bulky flanged sections 

remains to be investigated.

Us ing an energy method, Sandegren and Yu (ref. 29) d e r i v e d  

an expression for the torsional stiffness of rein f o r c e d  

concrete r e c t a n g u l a r  members at the end of the state of 

t r a n s i t i o n  that f o l l o w s  first cracking. A p p r o x i m a t i n g  the 

s o l i d  r e c t a n g u l a r  section by an e q u i v a l e n t  box section 

(Figure 2.8) and assuming plastic shear stress distribution 

on the w a l l  thickness, the f o l l o w i n g  e x p r e s s i o n  was put 

f orward:

Kt . ''(Vo)/" (2.19,
S - 4- u + 4

c

where b̂  = distance between the centres of reinforcement

hq = vertical distance between two longitudinal bars

u = 2 (boXho)

s = spacing of stirrups

Ag ̂  = area of cross section of one leg of a stirrup 

Esw ~ Young's modulus of web reinforcement 

Agjt = total area of longitudinal steel 

Eg 2 = Young's modulus of longitudinal steel 

t = equivalent box wall thickness, taken as 

b/6 0r b^/5 whichever is less 

b = overall breadth of section

Eg = Young's modulus of concrete

Equation (2.19) was applied on the rectangular sections of a 

r e i n f o r c e d  c o n c r e t e  f r a m e  (ref. 29) and was f o u n d
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reasonable. Its validity for other types of cross sections 

was not, h o w e v e r ,  s u b s t a n t i a t e d .  F u r t h e r m o r e ,  and as 

mentioned before, the post-cracking portion of the torque- 

twist c u rve is in no part of it a straight line. This is 

because of the continuous process of crack p r o p a g a t i o n  

before steel yielding and/or concrete crushing.

2.3 Torsion of Flanged Sections

The m a j o r i t y  of torsion tests of r e i n f o r c e d  con crete h a v e  

been cent erd on r e c t a n g u l a r  sections. The t h e o r e t i c a l  

outcome of the investigations, however, is considered to be 

applicable to flanged sections by summing up the behaviour 

of their rectangular components. This procedure is adopted 

by many current codes of practice, for exam p l e  the AC I and 

the British codes, as will be discussed later.

The m a j o r i t y  of s t u d i e s  mad e  on f l a n g e d  s e c t i o n s  

c o n c e n t r a t e d  on the comb ined b e h a v i o u r  and i n teraction of 

bending, shear and torsion (refs. 39, 40 for example).

The prediction of the pure torsional strength of a concrete 

section and its g eneral b e h a v i o u r  are needed m a i n l y  as a 

basis for its strength and behaviour under combined loading. 

For L-sections, as a special case of flanged sections, some 

useful studies hav e  been made to unde r s t a n d  the basic 

b e h a v i o u r  under both pure and comb ined torsion. A l t h o u g h  

they undoubtedly enhanced basic understanding, they did not 

represent all cases of L-sections commonly used in practice.

E r o s y  and F e r g u s o n  (ref. 41) r e p o r t e d  t e s t s  on s m a l l  

s e m i c o n t i n u o u s  reinforced concrete L-beams , loaded and 

supported by diaphrgam-type cross members to prevent section



50

w a r p i n g  so as to simulate an edge beam, under combined 

torsion, shear and flexure. Their test program was designed 

to study the effect of the percentage of longitudinal steel, 

f l ange wi dth and eccentricity of loading. No t r a n s v e r s e  

reinforcement was used and welded wire fabrics were placed 

at the centre of the flanges to p r o v i d e  for the slab 

reinforcement. This was made to account for slab shrinkage 

and temperature changes. Placement of the slab reinforcement 

is u n r e a l i s t i c ,  however, as the normal case is that either 

top or bottom steel is used. Furthermore, the longitudinal 

steel a l o n e  w o u l d  not add s i g n i f i c a n t  strength to the 

section (ref. 14, 15).

Osburn et. al. (ref. 42) tested L-beams, designed a c c o rding 

to an e a r l i e r  proposal (ref. 43), under comb ined torsion, 

shear and bending. They c o n c l u d e d  that the ACT procedure, 

based g e n e r a l l y  on Hsu's approach (ref. 14, 15), and the

pr o c e d u r e  pr e s e n t e d  in reference (37) are both r e a s o n a b l y  

c o n s e r v a t i v e .  They also suggested that the slab f l e x u r a l  

r e i n f o r c e m e n t  in the f lange of an L -beam does not act to 

increase the torsional strength of the beam. However, this 

last point needs further investigation because it was based 

on L-beams in which the flange reinforcement was provided at 

the top only and it did not form a closed stirrup with that 

of the we b .

R e s u l t s  on L-beams subjected to pure and combined torsion 

were repor t e d  by Liao and Fergu s o n  (ref. 3 7 ).The influence 

of stir rups was studied, and their marked influence on the 

behaviour and the ultimate' load was reported. The stirrups, 

however, were provi d e d  in the web only. The flanges were
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reinforced with mesh cages placed at the centre. Yet again, 

this may r e s u l t  in a case that does not represent the n ormal 

p r a c t i c e  of L - b e a m  r e i n f o r c e m e n t .  T h e y  i n d i c a t e d  an 

important point, in the author's view, which is that the 

t o r s i o n a l  design procedures for beams with stirrups may 

ev entually be less restrictive.

B e h a r a  an d F e r g u s o n  (ref. 44) e x a m i n e d  L - b e a m s  u n d e r  

c o m b i n e d  b e n d i n g ,  s h e a r  and t o r s i o n .  The a m o u n t s  of 

l o n g i t u d i n a l  steel and stirrups were varied. However, and 

similar to the previous studies, the flanges were reinforced 

at the top only. They indicated the insignificant influence 

of the steel amount on the pre-cracking torsional behaviour.

They clearly indicated the complexity of Lessig's approach 

(ref. 13), which r e s u l t e d  in the s k e w - b e n d i n g  f a i l u r e  

mechanism, if a p p l i e d  to a f l a n g e d  beam. Indicating also 

that no theoretical solution was available, they proposed an 

e m p i r i c a l  three d i m e n s i o n a l  i n teraction surface for the 

p r e d i c t i o n  of u l t i m a t e  strength of a beam under c o m b i n e d  

bending, shear and torsion.

In an attempt to study the effect of the flange width on the 

t o r s i o n a l  c apacity of r e i n f o r c e d  concrete f l a n g e d  beams, 

V i c t o r  (ref. 45) tested T - and L-beams under dif f e r e n t  

c o m b i n a t i o n s  of torque and moment. The primary v a r i a b l e s  

were f l a n g e  width and t o r q u e /moment ratio. He indicated 

that, a l t h o u g h  the design r e c o m m e n d a t i o n s  treat T - and L- 

beams alike, the perfor m a n c e  of T-beams is superior. A 

s t r o n g  c o n c l u s i o n  of h i s  s t u d y  is t h a t  t h e  A C I 

recommendation (ref. 31) to, restrict the flange overhang to 

three times the f lange thickness for both T - and L-beams



52

appears to be too c o n s e r vative. A s imilar point is als o  

c o n c l u d e d  in a more recent study by Zararis and P e n e l i s  

(ref. 52), who r e p o r t e d  r e s u l t s  of an e x p e r i m e n t a l  

investigation aimed at studying the contribution of properly 

r e i n f o r c e d  f langes (i.e. h a v i n g  c l o s e d  stirrups) to the 

t o r s i o n a l  capacity of reinforced concrete T-beams. They 

found that the effect of properly reinforced flanges is much 

m o r e  t h a n  t h a t  c o n s i d e r e d  by the e x i s t i n g  cod e s ,  and 

proposed an effective flange width of six times the flange 

thickness.

An e x p e r i m e n t a l  programme on T-beams subjected combined 

b e n d i n g  and torsion was u n d e r t a k e n  by Kirk and Lash (ref. 

36). Based on the s k e w - b e n d i n g  fail u r e  mechanism, methods 

for the prediction of ultimate strength of T-beamssubjected 

to combined bending and torsion were proposed. However, the 

s u g g e s t e d  equations were limited to the case of T-beams 

containing the same longitudinal steel in the bottom as in 

the top. This may not alw a y s  be the case in p r a c t i c a l  

situations. The p roposed equations require the steel to be 

p r o p o r t i o n e d  so that f a i l u r e  w o u l d  be c h a r a c t e r i s e d  by 

yielding of the steel rather than crushing of the concrete, 

which makes sense as ductile failure is desired.

L-beams were tested by R a j a g o p a l a n  et al. in pure torsion 

(ref. 46). Ratios of l o n g i t u d i n a l  to stirrup r e i n f o r c e m e n t  

above the boundaries set up by previous investigators (refs. 

13, 14) were studied, and an empirical method for the

p r e d i c t i o n  of the u l t i m a t e  torsional strength of such 

" p a r t i a l l y  o v e r r e i n f o r c e d  b e a m s "  was p r o p o s e d .  The 

reinforcement of the tested beams was provided only in the
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web. This might have resulted in the flange not sufficiently 

contributing towards the overall stiffness of the section.

S y a m a l  et al. (ref. 47) p r e s e n t e d  r e s u l t s  on L - b e a m s  

subjected to combined flexure, shear and torsion. The skew- 

b e n d i n g  mechanism of f a i l u r e  was observed, and s i m p l i f i e d  

interaction surfaces were constructed. They pointed out that 

a t r a n s i t i o n  from a tor s i o n a l  failure mode to a f l e x u r a l  

shear failure mode may occur in combined loading, depending 

on loading combination, beam cross section and longitudinal 

and transverse reinforcement. No measurements on steel were 

made, however, to indicate the cause of failure.

To check Behara and Ferguson's interaction surfaces (ref. 

44), Rajagopalan tested L-beams with web height-to-breadth 

ratio > 3.0 under combi n e d  torsion, bending and shear (ref. 

48). However, the f l a n g e  was u n r e i n f o r c e d  as steel was 

p r o v i d e d  in the web only. A substantial r e d u ction of the 

t o r s i o n a l  stiffness after diagonal cracking was observed, 

a s s o c i a t e d  with e x c e s s i v e  tension in the l o n g i t u d i n a l  

reinf orcement.

To obtain information on torsional behaviour of thin-walled 

reinforced concrete structures, Krpan and Collins (ref. 49) 

r e c e n t l y  reported a test on a large reinforced concr e t e  

thin-walled channel section. The experiment was conducted to 

c ompare the results with the predictions of an a n a l y t i c a l  

p r o c e d u r e  suggested by the same author's (ref. 50). It was 

found necessary, for good strain predictions in the two legs 

of the t r a n s v e r s e  s t e e l ,  to take into a c c o u n t  the 

i n t e r a c t i o n  of both c i r c u l a t o r y  and w arping torsions. 

A l t h o u g h  a r e a s o n a b l e  p r e d i c t i o n  of l o n g i t u d i n a l  steel



strain was possible, that across the wall thickness was more 

di fficult.

2.4 Code Formulations

2.4.1 Introduction

Compared to flexure and shear, torsion was the late in being 

codified. In a literature survey by Fisher and Zia (ref. 30) 

it was revealed that by 1960 there were only eight countries 

in the w o r l d  that had "full" s p e c i f i c a t i o n s  and five 

countries that had "partial" specifications (see Table 2.1). 

"Full" s p e c i f i c a t i o n s  imply that the p r o v i s i o n s  give both 

the p e r m i s s i b l e  torsional stresses for concr e t e  and the 

f o r m u l a e  for the d e s i g n  of t o r s i o n a l  r e i n f o r c e m e n t .  

"Partial" specifications give the former. The specifications 

were g e n e r a l l y  based on either Rausch's theory (Equation 

2.6) or Cowan's theory (Equation 2.7), both of which were 

not then systematically tested.

Based on e x p e r i m e n t a l  tests carried out during the 1960s, 

the f i r s t  d e t a i l e d  ACI t o r s i o n  d e s i g n  c r i t e r i a  w e r e  

f o r m u l a t e d  in 1969. These criteria were first embodied in 

the "Tentative Recommendations for the Design of Reinforced 

Concrete M e m b e r s  to Resist Torsion" (ref. 31). With minor 

modifications these recommendations were incorporated into 

the 1971 ACI B u i l d i n g  Code (ref. 33). T h e y  w e r e  a l s o  

continued, though in a s l i g h t l y  d i f f erent format, in the 

1977 and 1983 codes, with the addition of a new torsional 

limit design for spandrel beams.

The British Code, on the other hand, i n c o r p o r a t e d  some 

c l a u s e s  d e a l i n g  with torsion for the first time in 1972
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(ref. 34). T h e s e  r e c o m m e n d a t i o n s ,  h o w e v e r ,  w e r e  s o o n  

critisized as being conservative (ref. 35). This aspect will 

be d i s c u s s e d  in d e t a i l  in C h a p t e r  S e v e n .  The sam e  

r e c o m m e n d a t i o n s  were co ntinued with a minor change (an 

increase of about 6% on the maximum permissible shear stress 

of concrete) in the updated version of the code (ref. 34). 

The CEB-FIP Model Code (ref. 53) also contains some advanced 

provisions for torsion.

In the next sections a description of these recommendations 

is given.

2.4.2 ACI Procedure

The ACI design c r i t erion for torsion f o l l o w s  very c l o s e l y  

the design p h i l o s o p h y  for f l e x u r a l  shear in that the 

reinforcement is assumed to carry the torsional stresses in 

excess of the concrete capacity.

Equation (2.10), based on the s k e w - b e n d i n g  theory, is 

s i m p l i f i e d  for p r a ctical design by assum i n g  m = 1 , fly = f t y 

=  f y .  The v a l u e  m = 1 implies b a l a n c e d  ratio a c c o r d i n g  to 

Rausch's space truss analogy (equal volume principle). For 

rectangular sections the torsional strength is given by;

-"t (2.4/;
C u c s

where = 0.66 + 0.33 y^/X} < 1.5

Tjj = nominal torsional moment strength of the section 

Tg = nominal torsional moment strength provided by 

concrete

Tg = n o m i n a l  torsional moment strength p r o v i d e d  by 

torsion reinforcement



For p r a c t i c a l  design, the a p p l i e d  factored torque, T ̂ , 

s h o u l d  satisfy the con dition = 0 =d>(T^ + T g ) ,  wh e r e q)

is the strength reduction factor dep e n d i n g  on the type of 

loading (equals 0.85 in this case). The second terra of the 

e q u a t i o n  is u s e d  for the c a l c u l a t i o n  of s t i r r u p  

reinforcement. The principle of equal volume is utilized for 

the calculation of the longitudinal steel, as ra is assumed 

to be unity in Equation (2.10). Hence the total area of 

longitudinal steel, A ̂ , is given by:

.  (3.21,
s

The following limitations are stated:

(1)A minimum torsional reinforcement is specified to ensure 

d u c t i l i t y  of the beam when it cracks; this is based on 

theoretical considerations and is given by:

y

(2) T o r s i o n a l  moment strength due to reinforcement, T̂ , , is 

specif ied as :

Tg < 4Tg (2.23)

This is based on test results on pure torsion (refs. 54, 55)

an d a i m s  at a v o i d i n g  o v e r r e i n f o r c e d  s e c t i o n s ,  as

underreinforced beams are desirable in practice.

(3) To a v o i d  a drastic drop of shear or torsional str ength 

when stirrup spac ing is too large, and to control crack 

widths, based on theoretical considerations later supported 

by test r e s u l t s  (ref. 1 0 ), the maximum stirrup spacing is 

limited to:

^max ^  ^ — or 12 in • (2.24)
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For an arbitrary bulky section without re-entrant corners, a 

more general equation for the maxi mum stir rup spa c i n g  is 

given as :

s = 2  or 12 in. (2.25)max G

where u is the p e r i p h e r y  of the stirrup. Equation (2.25) 

reduces to (2.24) in the special case of a r e c t a n g u l a r  

section. The maximum limit of 12 in. for the stirrup spacing 

was introduced to control crack width in large size girders 

(ref. 1 0 ).

(4) It is required that the yield strength of the torsional 

reinforcement shall not exceed 60,000 psi (about 415 N/mm^). 

This is to ensure y i e l d i n g  of steel before failure, since 

all torsional design provisions are based on this criterion.

(5) The torsional reinforcement is to be provided at least a 

distance (d+b) beyond the point theoretically required. This 

requirement is more stringent than the corresponding one for 

flexure (ref. 10), but important to account for the helical 

nature of torsional cracks.

(6 ) Spacing of l o n g i t u d i n a l  bars, d i s t r i b u t e d  around the 

perimeter of the closed stirrups, shall not exceed 12 in.

(7) Torsion can be n e g l e c t e d  if the factored torsional

moment, T^, is less than 1.5( / f  ̂ x^y), or, in terms of2

stresses, if the t o r s ional stress is less than 1.5X

f C-

For f l a n g e d  sections, the assumption that the tor sional 

strength of the section is the sum of the strengths of its
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r e c t a n g u l a r  compon ents is adopted. Hence Equation (2.20) 

becomes :

( 2 . 4 ^  ) + - 1 ^ 2 . 4 ^

(2.26)

As the quant i t y  x^y i n f l u e n c e s  the arran g e m e n t  of the 

c o m p o n e n t  r e c t a n g l e s ,  the ACI code s p e c i f i e s  the 

m a x i m i z a t i o n  of this q uantity when d i v i d i n g  the f l a n g e d  

s e c t i o n  to its c o m p o n e n t  r e c t a n g l e s .  To d e s i g n  the 

r e i n f o r c e m e n t  for each i n d i v i d u a l  rectangles, the total 

stirrup strength, Tg, is distributed among the rectangles in 

p r o p o r t i o n  to the p a r a m e t e r  x^y; i.e. for a t y p i c a l  

component rectangle the allocated torsional strength will 

be :

(2 27)

Thereafter, the design con t i n u e s  in the same way as for 

rectangular sections, ensuring proper detailing to tie the 

va r i o u s  reinfocements together. An eff e c t i v e  f l a n g e  wi dth 

equals three times its t h i ckness is specified. However, a 

recent study (ref. 52) r e v e a l e d  that this limit is too 

conservative for properly reinforced T-beams and a value of 

6 is s u g g e s t e d .  T h e  p r o c e d u r e  of a d d i n g  up t h e  

r e i n f o r c e m e n t s  of the i n d i v i d u a l  rectangles, on the other 

hand, was also found conservative (refs. 36, 37).

For box sections, if the wall thickness h is at least equal 

to x/ 4 , the torsional strength is taken as equal to that of 

a s o l i d  section. If h < x/4, however, the first term of 

E q u a t i o n  (2 .2 0 ) is mo d i f i e d  by a reduction factor of 4h/x,



based on theore t i c a l  conside r a t i o n s  using the thi n - t u b e  

t h e o r y  (ref. 10 for e x a m p l e ) .  T h e r e f o r e  the e q u a t i o n  

becomes :

' "̂ n - ^  ^ (2.28)

Equation (2.28) was checked directly by torsion tests on box 

sections with longitudinal steel and stirrups (refs. 56, 57)

and was found reasonably valid for h down to 0.15x. However, 

in v i e w  of the l a c k  of e n o u g h  tes t  r e s u l t s  and the 

p o s s i b i l i t y  of local wal l  f ailure when h < O.lx, the ACI 

code limits the a p p l i c a b i l i t y  of the equation to h > x / 1 0 .

The ACI code d i s t i n g u i s h e s  between two cases of design for 

torsion, namely:

(a) E q u i l i b r i u m  torsion, where the torsional moment is 

r e q u i r e d  for the str ucture to be in equilibrium; a t ypical 

example is a cantilever canopy supported on a portal frame 

(Figure 2.9 a). In this case the design torque may not be 

reduced, because moment redistribution is not possible, and 

the restr i c t  design p r o cedure discussed a b o v e  must be 

followed.

(b) Compatibility torsion, where the torsional moment can be 

reduced by redistribution of internal forces after cracking; 

a t ypical e x a m p l e  is that of an edge beam into which f l o o r  

beams or a slab are framed from one side only (Figure 2.9 

b). In this case torsion arises from the beam twisting in 

order to maintain c o m p a t i b i l i t y  of defo rmations, and the 

desi gn torque may be reduced. If moment is tran s f e r e d  to 

such a torsional member from a uniformly distributed loaded 

slab or closely spaced beams, the torsional moment will be



zero at midspan. Therefore, the torsion reinforcement may be 

redu ced toward the midspan a c c o r d i n g  to a straight line 

d i s t r i b u t i o n  of torsional moment, but not less than the 

minimum reinforcement specified (ref. 54).

The code a p p a r e n t l y  accepts that large p e r c e n t a g e  of 

torsional stiffness is lost after cracking, up to 80% to 90% 

in s o m e  c a s e s  (ref. 54), and a l l o w s  for r e a s o n a b l e  

assumptions to be made for analysis purposes.

2.4.3 BS:8110 - 1985 (previously CPllO - 1972) Procedure 

The B ritish code, CPllO - 1972, has now become B S : 8110 -

1985. The same torsion design pro c e d u r e  has been c o n t inued 

in the new code apart from a slight increase (about 6%) in 

the m a x i m u m  p e r m i s s i b l e  torsional shear stress, ' The

code considers torsion, like shear and bond, in terms of the 

limit state of collapse. The torsional rigidity, GC, may be 

c a l c u l a t e d  taking G as 0.42E^, where E ̂  is the Young's 

modulus of uncracked concrete, implying a Poisson's ratio of 

about 0.2 in the e l a s t i c i t y  equat i o n  G = E/2(l+^). The

torsion constant, C, is taken as half the St. Venant's value 

c a l c u l a t e d  for p lain concrete section, to a l l o w  for the 

likely cracking of concrete.

The sand-heap analogy which assumes plastic distribution of 

the t o r s i o n a l  shear stress (refs. 8 , 38) is utilized.

A c c o r d i n g l y ,  for a r e c t a n g u l a r  section, the torsion shear 

stress, V|-,is calculated as:

, ̂ ____
''t 5) <2-29)

where T = torsional moment due to ultimate loads
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x,y = minimum and maximum di mensions of the cross 

section

If exce eds the u l t i m a t e  torsional shear stress, '^tmin, 

s p e c i f i e d  by the code for the concrete grade used, then 

torsional reinforcement must be provided. If it exceeds the 

m a x i m u m  p e r m i s s i b l e  value, ^tu, then the section has to be 

redesigned. Unlike the ACI Code, and in a c c o r d a n c e  with 

current European thinking (refs. 57,58), BS:8110 con s i d e r s  

the total torque, T, for the design, implying the neglect of 

c o n c r e t e  contribution. The space truss a n a l o g y  is adopted 

and the stirrups area is calculated from:

® (2.30)
O.Sxy f0.87f )t 1 yvyv

w h e r e A g y  = area of the legs of c l o s e d  stirrups at the 

section 

s = stirrup spacing 

Xf.yi = smaller and larger dimensions of the stirrup 

fy .y = characteristic strength of the stirrups

The area of l o n g i t u d i n a l  r e i n f o r c e m e n t  , Ag^, is g i v e n  by 

the v o l u m e  of s t e e l  w h i c h  e q u a l s  tha t of the l i n k s  

( p r i n c i p l e  of equal volume) suitably a djusted for any 

differences in the yield strength; hence:

Asv t
‘si" " T "  (2.31)

71

The following limitations are stated:

( 1 ) The sum of the shear stresses r e s u l t i n g  from shear and 

torsion, v+v^, should in no case exceed the limiting value, 

, specified for each concrete grade.
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(2) In case of small sections, when yl<550, the value of vt 

s h o u l d  not exceed v.j.yyl/550, a p p a r e n t l y  to a l l o w  for the 

size effect.

(3) The stirrup spacing should not exceed the lesser of x ̂ , 

y 2 / 2 or 200 mm, to control crack spacing and to resist the 

tendency for the corners to spall (ref. 57, 59).

(4) neither fy^ nor fyj sh o u l d  exceed 425 N/mm^, to a v o i d  

premature failures caused by concrete crushing.

(5) The l o n g i t u d i n a l  steel should be d i s t r i b u t e d  e v e n l y  

inside the per i m e t e r  of the links. The clear d istnace 

b etween these bars s h o u l d  not exceed 300 mm and at least 

four bars, one at each corner of the links, sh o u l d  be 

provided.

(6) The torsion r e i n f o r c e m e n t  must extend a dista n c e  at 

least equal to the largest dimension of the section beyond 

where it ceases to be required.

Flanged sections are treated in a similar fashion as for the

ACI p r o c e d u r e ,  i.e. as c o m p o s e d  of t h e i r  c o m p o n e n t

r e c t a n g l e s .  But the t o t a l  t o r s i o n a l  s t r e n g t h ,  T, is

p r o p o r t i o n e d  a c c o r d i n g  to the ratio x^y^^^y instead of

x^y/^^y as in the ACI's case. This is b a s i c a l l y  beca use

the BS:8110 considers the component r e c t a n g l e s  for an 
StfWS

elastic^distribution instead of plastic.

Box sections are treated as solid sections if the wal l  

thickness exceeds one quarter of the width. However, unlike 

the ACI procedure, the code does not suggest any treatment 

for box sections when this condition is not fulfilled.
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2.4.4 CEB-FIP Model Code Procedure

The 1978 C EB-FIP Model Code (ref. 53) separates torsion to 

e q u i l i b r i u m  torsion and c o m p a t i b i l i t y  torsion, using the 

same definitions as the ACI code. For equilibrium torsion it 

is required that the full torsional moment s hould be used 

for the design. C o m p a t i b i l i t y  torsion, on the other hand, 

can be i g n o r e d .  The code's p r o c e d u r e  is b a s e d  on the 

va r i a b 1 e-truss model (Equation 2.8).

The terms "circulatory torsion" and "warping torsion" appear 

in the code to d i s t i n g u i s h  between two types of t o r sional 

resistance. In c i r c u l a t o r y  torsion (known also as St. 

Venant’s torsion) the torsional resistance is generated by 

the shear str esses f l o w i n g  in a c i r c u l a t o r y  manner on the 

cross section of a member. In contrast, warp i n g  tors ion 

furnishes the torsional resistance from the d i f f e r e n t i a l  

i n - p l a n e  b e n d i n g  and shear in the c o m p onent w a l l s  of a 

m e m b e r .

G e n e r a l l y ,  b o t h  c i r c u l a t o r y  and w a r p i n g  t o r s i o n a l  

r e s i s t a n c e s  occur side by side in any member subjected to 

torsion; circulatory torsion predominates in members with 

solid or h o l l o w  b u l k y  sections, w h i l e  warping tors ion 

p r e d o m i n a t e s  in t h i n - w a l l e d  sections. U n l i k e  the p r e v i o u s  

two codes, which ignore warping torsion, the CEB- FIP code 

provides brief instructions for the design of open sections 

h a v i n g  three w a l l s  in separate planes, i.e. subject to 

warping torsion.

Simplifications were made in defining the centre line of the 

shear flo w  and the e f f e c t i v e  wa ll thickness in a solid or
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hollow section. The centre line of the shear flow is assumed 

to coincide with the perimeter connecting the centroids of 

the corner longitudinal bars as shown by the dotted polygon 

in Figure (2.10) for an arbitrary section. From this dotted 

p o l y g o n  the area, A ̂  ̂ , and the p e r i m e t e r ,  u g ̂ , are 

determined.

The e f f e c t i v e  w a l l  thickness is defi ned in the f o l l o w i n g  

manner. Draw the largest circle that can be contained within 

the e f f e c t i v e  perimeter, u^f, and denote the diame t e r  of 

this circle, dgf. Then the e f f e c t i v e  w a l l  thickness, hgf, 

w i l l  be g i v e n  by hg^ = dgf/6.

The d e s i g n  of web r e i n f o r c e m e n t  is g o v e r n e d  by the 

equation :

cota (2.32)

where T^ = nominal to r s i o n a l s t r e n g t h  ( t he s a me ACI 

definition is used for comparison)

A^ = area of the link 

ffy " y i e l d  strength of the links

Agf = area of the poly g o n  co n s t r u c t e d  by joining the 

centres of all longitudinal bars 

s = spacing of links

OC = assumed inclination of the concrete struts to the 

longitudinal axis of the member ( 3/5<cotoC <5/3 )

The limits of cotOC are p r u d e n t l y  chosen to a l l o w  for 

r e a s o n a b l e  control of concrete crack i n g  in the s ervice 

conditions (ref. 53)

This equation is applicable to the case of high torsion 

when Ty>3 <DTc. The q u a n t i t y ^ i s  the m a t e r i a l  reduction



factor, taken as 1/1.5 in the code, and T^ is an e m p i rical 

torsional resistance given by:

Tg hgf 2Agf (2.33)

whereXj^= f ^/4, the t e n s i l e  strength of concrete, f'^, is 

taken as 0 . 2 1 4 ( f ' ̂  ) 2 / 3 _ where f \  and f are in 

N/mm^. The values are also tabulated in the code, 

hef = e f f e c t i v e  thickness of the w a l l  = dgf/6 (defined 

above - see also Figure 2.10)

For the case of low torsion, i.e. T^<3(pTc, Equation (2.32)

is m odified by adding an empirical torsional resistance,

Tgy, so that:

T T + ^t^tv n « cv --i cotar (2.34)

The term T^^ is known as the concrete resistance, which 

actually includes all the effects that are neglected in the 

truss model, such as shear re sistance of concrete, dowel 

action of reinforcement, agg regate interlock, etc. (ref. 

10). In the above equation:

T,, for T „ <  T,

Tcv = 0 for Tu > 3

Intermediate values can be determined by interpolation.

E q u a tions (2.32) and (2.34) are used for the c a l c u l a t i o n  of 

the web r e i n f o r c e m e n t  (i.e. the c losed stirrups). For the 

design of the l o n g i t u d i n a l  reinf o r c e m e n t  the f o l l o w i n g  

equation is used:

. JLll 2A . tana (2.36)
"ef ®
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where A^ = total area of longitudinal reinforcement 

f 2 y = yield value of longitudinal reinforcement 

Uef = perimeter of the area Ag^

The code specifies an upper limit of resistant torque, based 

on c r u s h i n g  of c o n c r e t e  struts. T h i s  is o b t a i n e d  by 

considering the effective strength of concrete at failure as 

0.5f'c (ref. 10), and is g iven by:

■^n.nax ” ( 2 • 37 )

This equation was d e r i v e d  o r i g i n a l l y  from large size box 

s e c t i o n s  u s e d  in b r i d g e s  and was c a l i b r a t e d  for such 

structures (ref. 10). It was found, however, u n r e a s o n a b l y  

conservative for smaller size solid sections used normally 

in buildings. The source of difficulty is thought to be the 

de f initions of the area, A^^, and the e f f e c t i v e  wall 

thickness, hgf.

For large box sections, where the concrete cover and the 

size of the steel bars are small in c o m p a r i s o n  to the 

overall dimensions, the dotted polygon represents the centre 

of the shear fl ow with reas o n a b l e  accuracy. However, for 

small solid sections the concrete cover and the steel bars 

are q u i t e  s i g n i f i c a n t  w i t h  r e s p e c t  to the s e c t i o n  

dimensions; hence the area within the p o l y g o n  becomes 

considerably smaller than the area within the outer concrete 

perimeter, and the polygon (representing the centre line of 

the shear flow) may lie c o m p l e t e l y  outside the e f f e c t i v e  

wall thickness. Moreover, the maximum torque obtained by 

Equation (2.37) may become smaller than the cracking torque, 

resulting in an awkward situation.
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To o v e r c o m e  this s i t u a t i o n ,  Hsu (ref. 10) p r o p o s e d  a 

m o d i f i c a t i o n  for Equation (2.37). The modified equation, 

checked on the PCA test results (ref. 14), and claimed to be 

a p p l i c a b l e  to both large box sections used in bridges and 

small solid sections used in buildings, is given by:

I
’'‘n.max " 2» (2.38 a)

where ^ 0.45 ̂  (2.38 b)

In these two equations:

Aç = cross sectional area within the outer perimeter 

of concrete 

Pç = outer perimeter of concrete 

tg = wall thickness given by Equation (2.38 b)

The following points are provided in the code dealing with 

various aspects:

( 1 ) The code does not specify a minimum web reinforcement, 

but presumably the shear provisions are also applicable to 

tors i o n .

(2) The maxi m u m  spacing for the stirrups is limited to

Ugf/8. However, there is no such specific limit for the

longitudinal steel.

(3)An interesting provision is embodied in the code dealing 

with t orsion combined with a large bending moment. Such a 

c o m b i n a t i o n  may c a u s e  c r i t i c a l  p r i n c i p a l  c o m p r e s s i v e  

s tresses in the compre s s i o n  zone, p a r t i c u l a r l y  in box 

sections, because of the small wall thickness as compared to

solid sections. The principal c o m p r e s s i v e  stress can be

c a l c u l a t e d  from the mean lon g i t u d i n a l  compression due to



flexure and from the tangential stress due to torsion, taken 

as Ty/(Agfhgf). The combined stress so obt ained must not 

exceed 0.85f ^ .

(4) For open sections having three walls in separate planes, 

the following procedure is given:

The tangent stress components due to shear and torsion in 

each of the three w a l l s  should be determined from static 

e q u i l i b r i u m  c a l c u l ations. These components and the axial 

c o m p o n e n t s  due to the bending moments and axial forces 

determine the local effects in each wall. The ultimate limit 

state of the whole section is governed by the ultimate state 

of one w a l l  and can arise by:

(1) bending ( l o n g i t u d i n a l  r e i n f o rcement or c o m p r e s s i o n  

zone), or

(2) shear (reinforcement or compression struts).

E a c h  w a l l  can be t r e a t e d  as an i n d e p e n d e n t  beam; the 

calculations for which should be based on the ultimate limit 

state rules (sections 10 and 11 of the code, ref. 53).

(5) In the a b s e n c e  of any a c c u r a t e  m e t h o d s ,  the cod e

p r o v i d e s  the f o l l o w i n g  equations for c a l c u l a t i n g  the 

torsional stiffness:

Kj = 0.30 Eg C/(l+1.0a )

K^2 = 0.10 EgC/(l + 0.3a ) (2.39)

Km3 = 0.05 E g C / (1+0.3# )

where K^ = stiffness in state 1, uncracked

K ĵ 2 = stiffness in state 2, bending cracks



69

Kjus = stiffness in state 2, torsional and shear cracks 

C = torsional moment of inertia in the u n c r a c k e d  

state

OC = creep coeff i c i e n t  to be used for long term 

loading (tabulated in the code)

Eg = Elastic modulus of uncracked concrete

In Equat i o n  (2.39), the stiffness is g i v e n  as the rotation 

per unit length (d6/dx = T/K). The coeff i c i e n t  0.3 in the 

first equation takes account of the nonlinear behaviour of 

concrete before cracking. In the second and third equations, 

the influence of steel is neglected for simplicity. However, 

the f u l l  e x p r e s s i o n  w h i c h  takes a c c o u n t  of s t e e l  

contribution is also given as:

E ^
Kg - -----------------------  (2.40)

where Ag^, Ug ̂  and hg ̂  are p r e v i o u s l y  defined, A^ denotes 

the area of a stirrup or a fraction of that area which 

b a l a n c e s  the torsional moment (in the case of combined 

loading), s is the stirrup spacing and Eg is the steel 

elastic modulus.

(6) The code gives a brief guide for checking torsional 

deformations. In the usual type of b u i l d i n g s  c hecking of 

t o r s i o n a l  defo r m a t i o n s  is not necessary if the torsional 

r e s i s t a n c e  is not needed for equilibrium. However, if the 

e q u i l i b r i u m  of the structure depends on the torsional 

stiffness, checking of the rotations is n e c e s s a r y  if the 

principal tensile stress is such that:



^ >0.7 if c tko.05 (2.41)

where ^ctkO .05  ̂  ̂ v a l u e  less than the tensile strength of 

concrete tabulated in the cpde.
I

E q u a t i o n s  (2.39) can be used for the c a l c u l a t i o n  of the 

rotations. The code, however, does not set limits on the 

maximum rotations.

2.4.5 Genera], Comparisons and Çriti_çisms

On the w h o l e  the three documents, among other n ational 

c o d e s ,  c o n t a i n  u s e f u l  p r o v i s i o n s  for t o r s i o n  desi g n .  

H o w e v e r ,  t h e r e  are s e v e r a l  d i f f e r e n c e s  a m o n g  t h e s e  

pro visons, m a i n l y  because of the different criteria 

e m p l o y e d  in eac h  case. As can be se en f r o m  the a b o v e  

descriptions, the ACI code appears to contain more advanced 

p r o v i s i o n s  than the British code, a l t h o u g h  it has been 

criticized as being conservative in many situations (refs. 

44, 45, 52 for example). The CEB- FIP Model Code, on the

other hand, defines clearly the various types of torsion 

for the d e s i g n ,  n a m e l y  e q u i l i b r i u m ,  c o m p a t i b i l i t y ,  

circulatory and warping torsions and goes further than the 

other two codes in giving some provisions for open sections 

having three walls in different planes. However, it permits 

the designer to neglect the compatibility torsion, and this 

has been criticized as dangerous (ref. 10).

The ACI code has seen continuous enhancements since its 

torsion provisions first appeared. In contrast, the British 

code p r o v i s i o n s  continued in the new version of the code 

(ref. 34) without any significant change despite the earlier 

criticizms (ref. 35) of being too conservative. This aspect



w i l l  be e l a b o r a t e d  l a t e r  in C h a p t e r  S e v e n  w h e n  the

e x p e r i m e n t a l  results are discussed. The code s t ill lacks

proper treatment of box sections. Both BS:8110 and the ACI

code adopt the principle of equal volumes in determining the

amount of l o n g i t u d i n a l  steel to try and ensure that both

stirrups and l o n g i t u d i n a l  bars yield s i m u l t a n e o u s l y .  Hsu

(refs. 10, 14) have shown that this ratio can va ry between

0.7 and 1.5. Other criticizms have already been mentioned in 
the p r e v i o u s  sections with the description of each code

provisions.

2.5 Summary of Previous Work

The theories presented in the previous sections invariably 

involved mathematical difficulties. There were also several 

assumptions introduced to make derivation of the respective 

m a t h e m a t i c a l  formu l a e  possible. This r e s u l t e d  in the 

d i s c r e p a n c i e s  often reported between e x p e r i m e n t a l  and 

p r e d icted u l t i m a t e  torques and justifies the e n h a n c i n g  of 

e x i s t i n g  t h e o r i e s  or i n t r o d u c i n g  n e w  m e t h o d s  of 

analysis/design.

As most of these theories attempt to predict u l t i m a t e  

t o r sional moments, they omit the prediction of some basic 

b e h a v i o u r a l  c h a r a c t e r i s t i c s  such as the pre- and p o s t ­

c r a c k i n g  stiffnesses, r e i n f o r c e m e n t  response and unit 

lengthening of members at every stage of loading. These are 

often important to assess the performance of the structure 

at important stages, for exam p l e  the s e r v i c e a b i l i t y  and 

ultimate conditions. Moreover, the torsion problem is mainly 

a cracking problem. Hence a reliable theory must essentially 

provide for good treatment of shear transfer across cracks, 

involving both aggregate interlocking and dowel action.



A l l  p r e v i o u s  work on torsion of r e i nforced concrete has 

u n d o u b t e d l y  resulted in better u n d e r s t a n d i n g  of the basic 

problem. Some of this work helped directly in codification; 

the PCA - Portland Cement Association studies (ref. 14, 15)

for example, when combined with other test results available 

at the time, led to the ACI t o r s i o n  d e s i g n  c r i t e r i a .  

However, in general, and as a l ways exp ected with limited 

number of v a r i a b l e s  in each i n d i v i d u a l  study, the res u l t s  

are often insufficient for major changes in the codes of 

p r a c t i c e  despite the v arious criticisms raised. Hence the 

need for further studies on this particular topic.

In general, the majority of tests on solid flanged sections 

were carried out on models either reinforced in the web only 

or else having one layer of reinforcement in the flange. The 

codes of practice, however, rec ommend the use of "full" 

r einforcement; i.e. c l o s e d  stirrups in all r e c t a n g u l a r  

components of a flanged section, properly tied together to 

ensure that the section w i l l  act as one unit and to a v oid 

p r e m a t u r e  or brit t l e  failures. This category of section 

received little attention so far (ref. 52).

For s o lid r e c t a n g u l a r  and b u l k y  flan g e d  sections, the 

torsion p r o b l e m  becomes e s s e n t i a l l y  three d i mensional, 

p a r t i c u l a r l y  after cracking of concrete. This further 

c o m p l i c a t e s  the si tuation for any n o n l i n e a r  a n a l y t i c a l  

treatment and require careful attention.

A p p l i c a t i o n s  of the finite element method of r e i n f o r c e d  

concrete n o n l i n e a r  be haviour, however, were m a i n l y  on 

f l e x u r e  and shear. This is because most of the finite 

element models developed were two dimensional. Very limited



work has been reported on torsion, reference (51) being the 

onl y  one known to the author. In that p a r t i c u l a r  reference 

no detailed results were presented.

Because of these reasons, this thesis offers on one hand a 

nonlinear three dimensional finite element method for short­

term loading of reinforced concrete. The method is applied 

to a range of reinforced concrete beams under various load 

types including pure and combined torsion. On the other hand 

an e x p e r i m e n t a l  part was u n d e r t a k e n  in which a series of 

r e i n f o r c e d  concrete m odels of L - s h a p e d  cross section 

d esigned to d i r e c t l y  assess the Brit ish Code (B S : 8110) 

desi gn procedure for torsion, were tested to d e s t r u c t i o n  

under pure torsion in a special test-rig designed and built 

especially for this purpose.

To complement the experimental data, a numerical parametric 

study was also performed on L-sections, using the developed 

finite e l e m e n t  model, to i n v e s t i g a t e  more parameters not 

included in the experimental programme. This dual approach 

is h i g h l y  a t t r a c t i v e  and effective, once limits on the 

effects of the important numerical and material parameters 

on the finite element model's performance, were established. 

Valuable time and effort is thus saved at a reasonable cost 

and certainly a lot more variables can be investigated than 

at all p o s s i b l e  within an exp e r i m e n t a l  programme alone. 

Indeed this approach can provide, much quicker, results that 

can be useful for the purpose of drawing code specifications 

in a time when the new n o n l i n e a r  methods of a n a l y s i s  are 

becomming increasingly acceptable by the codes of practice.

The new British Code, B S : 8 I 10 - 1985 (ref. 34), states in
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clause 2.3.3 that nonlinear analysis can be used to confirm 

the s u i t a b i l i t y  of the design. This is a very encouraging 

sig n  for suc h dual a p p r o a c h .  No s p e c i f i c  m e t h o d s  are 

s u g g ested apart from m e n t i o n i n g  that the method must suit 

the structure under consideration. The nonlinear analysis of 

reinforced concrete is nowadays, however, carried out by the 

finite element method where various sources of non linearity 

can be r a t i o n a l l y  mod elled. Mor e o v e r ,  modern t e c h n o l o g y  

ensures that high speed digital computers with very large 

storage capacities are i n c r e a s i n g l y  a v a i l a b l e  to perform 

these tasks. Three d i m e n s i o n a l  n o n l i n e a r  finite elem e n t  

analysis of reinforced concrete, largely avoided in the past 

only because of the prohibitively unjusifiable high cost, 

is gaining grounds and becomming viable nowadays.
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Figure (2.1) Shear stress distribution in a rectangular plain 
concrete section according to St. Venant's 
method (ref. 4)
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Figure (2.2) Comparison of elastic, plastic and skew-bending 
coefficients (ref. 11)
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Table (2.1) Survey of torsion design specifications during the 
1960s (ref. 50)

(1)”Pull specifications”
(2)

Permissible stress 
only

(3)No mention

France,1960 Netherlands,1962 ACI 318-6), 1963
Egypt,1960 
(provisional)

Norway,1962 Canada NBCC,1960

Germany,1959 Brazil,196O Canada CSA,1959

Aus tralia,1958 Austria,1957 Japan,1958
GSA (USA),1956 Switzerland,1956 India, 1957
Poland,1956 Greece,1950 Great Britain, 1957

Russia,1955 Sweden,1949 Denmark,1949
Hungaiy,1953
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CHAPTER THREE 

DEVELOPMENT OF THE FINITE ELEMENT METHOD

3.1 Introduction

In recent years, the finite element method has emerged as 

the most powerful general method for structural analysis and 

h a s  p r o v i d e d  e n g i n e e r s  w i t h  a t o o l  of v e r y  w i d e  

a p p l i c a b i l i t y .  For reinforced concrete, in particular, 

cracking, tension stiffening, nonlinear multiaxial material 

properties, complex interface behaviour, creep, shrinkage 

and other effects previously ignored or treated in a very 

a p p r o x i m a t e  manner can now be considered rationally. The 

finite e l e m e n t  approach can provide not only new insights 

into b e h a v i o u r  and design of ordinary reinforced concrete 

structures such as beams, columns, frames, slabs, and shear 

w a l l s  and panels but is an essential tool to be used 

directly for the analysis and design of complex structures 

such as offshore oil platforms, hyperbolic cooling towers, 

and nuclear containment structures.

The a p p l i c a t i o n  of the finite element method to n o n l i n e a r  

p r o b l e m s  is a s s o c i a t e d  with an i n c r e a s i n g  n u m e r i c a l  

o p e r a t i o n s  as compared with linear problems. However, 

development in the last two decades have ensured that high 

s p e e d  d i g i t a l  c o m p u t e r s  w h i c h  mee t  this n e e d  are now 

available .

A n o n l i n e a r  struc tural problem must obey the fundamental 

c o n d i t i o n s  of continuum mechanics, n a m e l y  equilibrium, 

c o m p a t i b i l i t y  and the c o n s t i t u t i v e  r e l a t i o n s  of the 

material. As the finite element method a u t o m a t i c a l l y  

satisfies the compatibility requirements at any stage, the
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s o l u t i o n  p r o c e s s  mus t  s a t i s f y  the g i v e n  n o n l i n e a r  

relationships whilst maintaining equilibrium . During each 

stage, "out-of-balance" residual forces will generally exist 

due to departure from linear behaviour, resulting in a lack 

of equilibrium. The removal of these residuals by successive 

linear solutions is the basic step in the methods used.

In this and the next chapter, a three dimensional nonlinear 

f i n i t e  e l e m e n t  t e c h n i q u e  for r e i n f o r c e d  c o n c r e t e  is 

presented,based on the displacement approach. Only material 

nonlinearity is considered. Because the developed computer 

prog r a m  is intended to be used for dif ferent types of 

r e i n f o r c e d  c o n c r e t e  s t r u c t u r e s ,  an a p p r a i s a l  of its 

a p p l i c a t i o n  on a range of reinforced concrete structures 

r e p o r t e d  in l i t e r a t u r e  was u n d e r t a k e n .  Th is w i l l  be 

presented in Chapter Five.A study of the different material 

and s o l u t i o n  pa rameters affecting the dif ferent types of 

a n a l y s e s  is also reported in the same chapter. The p rimary 

objectives of the study were to check the reliability of the 

d e v e l o p e d  model as well as to identify limits on those 

p a r a m e t e r s .  T h e r e a f t e r  the m o d e l  is use d  to a n a l y s e  

r e i n f o r c e d  concrete L-beams subjected to pure torsion. 

T h e o r e t i c a l  r e s u l t s  and their c o m p a r i s o n s  w i t h  the 

experimental results are reported in Chapter Eight.

As the main procedure of the finite elem ent method is now 

w e l l  d o c u m e n t e d  (refs. 1, 2) no attempt wi ll be made to

describe it in detail. But in order to define terms for the 

sake of c o m p l e t e n e s s  a brief review of the method wil l  be 

p r e s e n t e d  i nstead. E m b e d d e d  bars to s i m u l a t e  s t e e l  

r e i n f o r c e m e n t  in three dimensions were developed. Their
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features and theoretical derivations will be presented in 

this chapter.

The s u c c e s s f u l  a p p l i c a t i o n  of a n o n l i n e a r  finite e l e m e n t  

model to the a nalysis of reinforced concrete structures 

depends much upon proper modelling of the complex behaviour 

of concrete under multiaxial stress states, initiation and 

p r o p a g a t i o n  of cracks, shear transfer across the cracked 

concrete, tension stiffening effects, bond-slip, yielding of 

r e i n f o r c e m e n t  and time-dependent effects (if long-term 

behaviour is considered).

3.2 The F_ini,te Element Discretisation Technique 

The finite e l e m e n t  method started as an extension of the 

s t i f f n e s s  m e t h o d  and was a p p l i e d  to two- and t h r e e -  

d i m e n s i o n a l  probl e m s  in structural mechanics. However, 

unlike skeletal structures, there are no well-defined joints 

w h e r e  e q u i l i b r i u m  of f o r c e s  can be e s t a b l i s h e d  and, 

therefore, the continuum must be discre t i s e d  into a number 

of elements of arbitrary shapes and also artificial joints 

or nodes must be created.

For s t r u c t u r a l  applications, one c o n v e n i e n t  method of 

o b t a i n i n g  the g o v e r n i n g  e q u i l i b r i u m  e q u a t i o n s  is by 

m i n i m i z i n g  the total potential energy of the system. The 

total potential energy, 7l , can be expressed as:

i> - i  f to]^ ItldV - [ [«]T [p] dV - I [6]T [q] dS (3.1)
Jy 'V 'S

w h e r e  [a] and [£] are the s t r e s s  and s t r a i n  v e c t o r s

r e s p e c t i v e l y  , [6] the displac e m e n t  at any point, [p] the

body force per unit volume, and [q] the applied surface

tractions. Integrations are taken over the vol u m e  "V" of
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the structure and loaded surface "S".

The first term on the right hand side of Equ ation (3.1) 

represents the internal strain energy; and the second and 

third terms are respectively the work contributions of the 

body forces and the distributed surface loads.

In the finite element displacement approach, which is used 

e x e c l u s i v e l y  in this work, the d i s p l a c e m e n t  is assumed to 

have u n k n o w n  va l u e s  only at the nodal points so that the 

v a r i a t i o n  within any element is described in terms of the 

nodal values by means of interpolation functions. Thus:

U  ] * [N ] [6®] (3.2)

where [N] is the set of i n t e r p o l a t i o n  functions termed as 

the s h a p e  f u n c t i o n s ,  and [Ô] is the v e c t o r  of n o d a l  

di splacements.

The strains within the elements can be expressed in terms of 

the element nodal d i s p l a c e m e n t s  as:

[£ ] - [-R ] [6® ] (3.3)

where [B] is the strain matrix g e n e r a l l y  composed of

derivatives of shape functions.

F i n a l l y  the stresses may be related to the strains by use of 

an elasticity matrix [D] as follows:

[* ] . [D ][£] (3.4)

Provided that no singularities exist in the integrals of the

functional, the total potential energy of the continuum will 

be the sum of the energy contribution of the indi v i d u a l
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e 1ements Thus

: % (3.5)

where represents the total potential energy of element e 

which, using Equation (3.1), can be written as:

'e ■ I f tB [D ][B][«*]dV -

L I«®]^ [H]^ [p] dV - I [6*]? [N]T tq]ds
(3.6)

where Vg is the element vo l u m e  and Sg the loaded e l e m e n t

surface area. Performance of minimisation for e l e m e n t  e

with resp ect to the nodal d i s p l a c e m e n t  6 ^ for the e l e m e n t

results in:
9 ir

[N] [p]dV -

where :

[F®] * I [N]^[p]dV + I [N]^ [qldS

[N] [q]ds

(3.7)

(3.8)
e e

are the equivalent nodal forces for the element, and

[K®] [B]^[D][B]dV (3.9)

is termed the element stiffness matrix. The summation of the 

terms in Equation (3.7) over all the elements, when equated 

to zero, r e s u l t s  in a system of e q u i l i b r i u m  equations for 

the complete continuum. These equations are then solved by 

any standard technique to yield the nodal displac ements. 

The strains and thereafter the stresses within each element 

can be c a l c u l a t e d  from the d i s p l a c e m e n t s  using Eq uations



9 6
(3.3) and (3.4).

3.3 The 20-Noded Isoparametric Brick Element

3.3.1 Introdu c t i o n

The selection of the element type is always related to the 

type of p r o b l e m  to be s o l v e d .  As t h r e e  d i m e n s i o n a l  

n o n l i n e a r  a n a l y s i s  is the prime concern of the a n a l y t i c a l  

portion of this study, the 20-noded i s oparametric brick 

e lement (ref. 1), i l l u s t r a t e d  in Figure (3.1), is used 

throughout this work to represent concrete. R e i n f o r c i n g  

steel is s i m u l a t e d  by bars embedded inside the concrete 

element at their actual locations in the structure without 

i m p o s i n g  any r e s t r i c t i o n s  on the m e s h  choice. The 

mathematical derivations of these bars will be shown later.

The elem e n t  is chosen to consider the effect of the six

stress components a a a t t t as shown in FigureX y z ‘xy yz zx
(3.2). Each nodal point has three degrees of freedom, 

namely:

translation in x-direction = u,

translation in y-direction = v, and

translation in z-direction = w.

Each element has its own local coordinate s y s t e m , ,shown

in Figure (3.1), with the origin at the centre of the 

element such that each local coordinate ranges from -1 to +1 

only .

3.3.2 Shape Functions

Shape functions are i n t e r p o l a t i o n  functions that define 

the v a r i a t i o n  of the field variable, and its der i v a t i v e s ,  

through an e l e m e n t  in terms of its va l u e s  at the nodes.
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Therefore, the shape functions are closely related to to the 

number of nodes and hence type of elements. Therefore, in 

the displacement finite element approach

[«) - Z (3.10)
i-1  ̂ 1

where N^ is the shape function at the ith node at which the 

nodal displacement is 5,

The efficiency of any particular element type will depend on 

how well the shape functions are capable of representing the 

true d i s p l a c e m e n t  field. The isoparametric f a m i l y  are a 

group of e lements in which the shape functions are used to 

define the geometry as well as the displacement field. This 

leads to reduced c o m puting effort and efficiency. The 

isoparametric elements are better known for their accuracy 

and v e r s a t i l i t y  over simpler type of elements. M o r e o v e r  a 

c o n s i d e r a b l e  saving of computer effort is obtained, even 

though a comp l e x  e l e m e n t  requires more time to formulate. 

This is because it requires fewer elements compared with 

more simple elements.

For three dimensional applications, the displacement field

at a p a r t i c u l a r  local coordinate are u(^,^,^) ,

V (&,%,&) , w(^,»?,^) and are defined using three d i s p l a c e m e n t

degrees of freedom u- , v. , w- , at each of the twenty nodesL L t
and a quadratic interpolation scheme.

The coordinate v a l u e s  x ( ̂ , V , ̂  ) , y(^,U.O  ̂rid z ( ̂ , V , ̂  ) at any 

point ( ̂  , 77 , ^ ) within the element may be defined by the 

expressions :



20
x(C,n,c) - z N.(c,n,(). X.

20 (311) 
yCe.n.ç) - Z N.(ç,n,ç). y.

i-l 1  ^20
z(C,n,c) • Z N.(c,n,c). z.

i-l  ̂ ^
where (x^, y ̂ , z ̂  , ) are the coordinates of node i and Nj^(^, 

r/, ̂ ) are three dimensional quadratic shape functions. In 

this work the shape functions for the 20-noded isoparametric 

brick e l e m e n t  used are gi ven by :

For corner nodes C . * ± l  n * * ± l  * + 1
(3.12)

Ni(C,n,c) " ^ ( 1 +  (1 nh£)(1 + CC£)(CC£ + nn^ + CC£ - 2)

For mid-side node ^£ * ® h£ "±1 C£ • - i

N£(E,n,c) • ^  (l--c2)(l + nh£)(l + Ct£>

For mid-side node « ± 1 n£ ■ 0 * ± 1

Ni(Ç.n.c) - 7  (1 + ççp(l-n^)(l + cCi>

For mid-side node * ± 1 * ± 1 ^£ * 0

Ni(E»n,() • y  ( 1 + +  nn£)(l-i^)

(3.13)

(3 .14)

(3.15)

Each of the twenty shape functions has a v a l u e  of unity at 

the node to which it is related. They also have the property 

that their sum at any point within an element is also equal 

to unity, s i n c e  it is r e q u i r e d  tha t a r i g i d  bod y  

displacement of the element results in no element straining.

To c a l c u l a t e  the displ a c e m e n t s  u(^,%,^), v(^,%,^) and w(&,

%, &) at any point within the element, use is made of the 

express ions :
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u(C,n,C) " 

v(C,n,C) - 

w(C,n.O -

3.3.3 Strain Matrix

• 20
I N;(C,n,C) . u. 
i-1
20
E N. (C,n,0 . V.
i-1  ̂ ^
20
.Ej N.(C,n,C) . W.

(3.16)

From theory of elasticity, and for the t h r e e - d i m e n s i o n a l  

case, the strain-displacement relationships may be written

as ;

xy

yz

zx

9u/9x

3v/3y

3w/3z

9u/3y + dv/dx

3v/9z + 9w/9y

9w/9x + 9u/9z

(3.17)

in which £ , 6 , 6  are the normal strain components and yX y z xy
\z  and^jr are the shear strain components. Equations (3.17) 

may be wri t t e n  in matrix form as follows:

U

V

W
l€ ]

'"x" " 9 / 9 X 0 0

cy 0 9/9y 0

cz 0 0 9/9z

^xy 3/9y 9/9x 0

0 9/9z 3/3y

Yzx 9/9z 0 9/9x

(3.18)

using the finite element idealisation we can write:



[€] 20
i*l

or simply:

3N£/9x
0
0
9N^/9y

0
9N./9Z

9N./9y

9RU/9X

9NU/9Z

9NL/9Z

9N./9y

9N£/9x

100

20
f € ) . r Ib.3 16,1 

i-1  ̂ ^

Ü.1

"i

(3.19)

(3.20)

where [B^] is the 6x3 strain matrix in Equation (3.19), 

which contains the car tesian d e r i v a t i v e s  of the shape 

f unctions.

Since the shape functions N-̂ are defined in terms of the 

local coordinates of the element  ̂ a t r a n s f o r m a t i o n

from local to global coordinates is required to obtain the B 

ma t r i x  in Equation (3.19). This is done through the well 

known Jacobian matrix which is written as:

3x/9C 3y/3C 3z/9C

C J ] - 3x /9tj 9y/9n 3z/9n (3.21)

_3x/9C 3y/3; 3z 9C_

thus :

20
[ J ] - I 

i-1

9N.

9N.

9N£

9N^
T tT

9N.1
3C

3N.
FtT  **i
3N.
S T - ' i

(3.22)
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the inverse of which is:

I J ]-1
1£ an lidx dx 3x

2i an li
ay ay ay

li an
dz 9z 9z

(3.23)

Therefore the cartesian derivatives will be given by:

l u ^ / a x "

a N ^ / 3 y -  [  J 3 N j / 3 n

3 N . / 3 Z 3 N . / 3 C

(2.24)

3.3.4 Three Dimensional Stress-Strain Relations 

From theory of elasticity, for isotropic material ,and in 

the abse nce of initial stresses and strains, the stress- 

strain relationship may be written in the form:

[cr] = [D] [e] (3.25)

where [D] is the elasticity matrix which takes the form

 ̂  ̂ (l+v)(l-2v)
symmetric

0
0
0

(l-2v)
2(l-v)

0
0
0

0
(l-2v)
2(l-v)

0
0
0

0

0

(3.26)

(l-2v) 
2(i-v)_

where E is the Young's modulus of elasticity, and is the 

Poissons' ratio. As the concrete nonlinearity considered in
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this work is only the material nonlinearity all changes in 

material properties enter through the material property 

matrix [D ]. This will be fully discussed in Chapter Four.

3.3.5 Element Stiffness Matrix

So far all the information needed to evaluate the stiffness 

matrix [K®] have been explained. Hence from Equation (3.9):

[K®] = W  [sf [D][B] dv (3.27)

where dv = dxdydz (3.28)

Again transformation from global to local coordinate system 

results in:

dv = det[J]d& dri d^ (3.29)

where the limits of integration become -1 to 1 in each one

of the three directions.

3.3.6 Numerical Integration

A n a l y t i c a l  integration of Equation (3.27) is impossible. 

T h e r e f o r e  some form of numerical integration must be 

resorted to. In this study Gauss-Legendre quadrature rules 

h a v e  b e e n  u s e d  e x e c l u s i v e l y  b e c a u s e  of t h e i r  h i g h e r  

e f f i c i e n c y  o v e r  o t h e r  f o rms of q u a d r a t u r e .  T h e y  can 

integrate exactly a polynomial f(^) of degree (2n-l), where 

n is the number of sampling points. Also they are suitable 

for i s o p a r a m e t r i c  elements because the range of these 

i n t e g r a t i o n  rules are ±1 which coincides with the local 

c o o r d i n a t e  system limits of +1 on e lement boundaries. A 

3x3x3 Gauss rule has always been used for m o n i t o r i n g  

nonlinear behaviour especially cracking, as shown in Figure

(3.3), although 2x2x2 and 4x4x4 are also available.



103

3^3_^7 E v a J ^ u a t q o n  of the Principal^ S t r e s s e s  and T h e j. r 

Directions
The e v a l u a t i o n  of the p r i n c i p a l  s t r e s s e s  and t h e i r  

respective directions in the global cartesian system of axes 

is important for the determination of the occurance and 

o r i entation of cracking in concrete. The solut i o n  of the 

r e s u l t i n g  set of l i n e a r  e q u a t i o n s  y i e l d s  the n o d a l  

d i s p l a c e m e n t s  and hence the strains. The strains are used 

to o b t a i n  the s t r e s s e s  at ea ch s a m p l i n g  p o i n t  in the 

structure. From Equation (3.25) there are six c a r t esian 

s t r e s s  c o m p o n e n t s  at ea ch G a u s s  p o i n t  tha t can be 

evaluated, namely:

(3.30)

The values of the principal s t r e s s e s , c a n  be obtained by 

solving the following cubic equation:

r3 - h  °i - 1. (3.31)

where I} ,12 , and I3 are the stress invariants (ref. 3)

which can be expressed as follows:

"y * *y "x • ■'ly " ''y* " i .

(3.32)

(3.33)

I = determinant of the stress tensor:

^xy

^yx ®y

^zx ^zy

xz

yz (3.34)
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Therefore the cubic equation{3f.31), upon substitution, 

becomes :

+ \)°l
2 2 2 .
V  V2

T + 2  T T T )xy %y yz zz'

(3.35)

The principal direc t i o n s  which determine the p r i n c i p a l  

planes can be expressed through the direction cosines such 

that :

1 £ = cos ; mj_ = cos0y£ ; n^ = cosGgi

Therefor the direction cosines of aj are 1 ̂  , m ̂ , n ̂  , those 

for G 2 are 1 2 , m 2 , n 2 , and those for Gg are I3 , n g , ng.

The d e t a i l e d  method for the eval u a t i o n  of these d i r e ction 

cosines is f u l l y  d e s c ribed elsewhere (ref. 3), but w i l l  be 

briefly illustrated here.

The three direction cosines for can be d e t e r m i n e d  by

solving Equation (3.35) in its determinant form:

- ^yx

^xy Gy - T,

■̂ xz ^z ■

zx

zy (3.36)

calling

G -0 , T T T T G - 0 .y 1 zy xy zy xy y 1A * • B - - • c -
G -G. T a -Cl. T Tyz z 1 xz Z 1 XZ yz

(3.37)



105

it can be shown that the three direction cosines can be 

expressed as;

l£ m. n.
(3.38)

where K is a non-zero constant to be determined. The

subsidiary trigonometric condition;

+ n| - 0 (3.39)

determines K, upon substitution from Equation (3.38), as:

(3.40)

therefore

1 A.K ni£ - B.K , ou . C.K (3.41)

3.4 Simulation of Steel Reinforcement 

General

In modelling reinforced concrete by finite element methods 

at least the following three alternative representations of 

the reinforcement have been used:

(a) distributed

(b) discrete

(c) embedded

For a distributed representation (Figure 3.4), the steel is 

assumed to be distributed over the concrete element, with a 

p a r t i c u l a r  orien t a t i o n  angle @ A composite cone rete- 

reinforcement constitutive relation need to be used in this 

case. To der i v e  such a relation, perfect bond must be 

assumed between the concrete and steel (refs. 4, 5). This
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type of representation, though easy to implement, is very 

u n r e a l i s t i c  in the sense that the reinf orcing bars are no 

longer uniaxial members embedded inside the c oncrete and 

bonded to it.

A discrete representation of the reinforcement, using one­

di m e n s i o n a l  elements (Figure 3.5), has been w i d e l y  used 

(ref. 5). Axial force members may be used and assumed to be 

pin connected with two degrees of freedom at the nodal 

points (ref. 6 for example). A1ternativ è l y , beam elements 

assumed to be capable of resisting axial force, shear, and 

bending can be used; in this case three degrees of freedom 

are a s s i g n e d  at each end. In e i t h e r  case, the o n e ­

dimensional reinforcement element is superimposed on a two- 

dimensional finite element mesh representing concrete. The 

approach is simple and it is possible to account for 

possible displacement of the reinforcement with respect to 

the surrounding concrete. A serious disadvantage, however, 

is that the location of steel often dictates the concrete 

mesh. This may re s u l t  in slender elements, where the 

re i n f o r c i n g  bars are too close together, v i o l a t i n g  the 

concept of aspect ratios being close to unity as possible. 

This is s p e c i a l l y  u n a d v a n t a g e o u s  with the powe rful higher 

o r d e r  i s o p a r a m e t r i c  e l e m e n t s  o f t e n  used to represent 

concrete.

An emb edded r e p r e s e n t a t i o n  (Figure 3.6) may be used in 

c o n n e c t i o n  w i t h  h i g h e r  o r d e r  i s o p a r a m e t r i c  c o n c r e t e  

elements. The reinf o r c i n g  bar is considered to be an axial 

member built into the isoparametric element such that its 

d i s p l a c e m e n t s  are consistent with those of the element.
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Perfect bond was used in the original d e r i v a t i o n s  of such 

bars (refs. 7, 8 ).

3.4.2 Embedded Bars for Three Dimensional Analyses

The concept of e m b e d d i n g  i s o p a r a m e t r i c  e l e m e n t s  w i t h  

reinforcing bars was first suggested for plane stress, plane 

strain, and axisymmetric analysis (refs. 7, 8 ). It allows an 

i s o p a rametric e l e m e n t  to cover a large v o l u m e  w h i l s t  

i n c l u d i n g  the finer detail of reinforcement. Indeed the 

r e i n f o r c i n g  steel can be placed in its exact position 

without imposing any restrictions on mesh choice.

In this study, reinforcing bars are embedded in the 20-noded 

isopa r a m e t r i c  brick elem e n t  used for concrete. The basic 

t w o - d i m e n s i o n a l  t h e o r e t i c a l  formu l a t i o n  (refs. 7, 8 ) is

extended here to the three-dimensional case. The derivation 

requires that bars are restricted to lie a l o n g  the local 

coordinate lines , and  ̂ of the basic element as shown

in Figure (3.7).

3.4.3 Theoretical Derivations

Consider a bar lying along a direction parallel to the local 

coordinate axis I as shown in Figure (3.7), i.e. lying 

along the line of constant 7 = ^  and  ̂ . Bars lying

along directions parallel to 1 and  ̂ axes will obviously 

f o l l o w  a s i m i l a r  derivation. It is further assumed that 

bars are c a p a b l e  of t r a nsmitting axial forces only. The 

line of the bar is defi ned by using the same shape functions 

as the main element. Thus the cartesian co-ordinates of any 

point P are given by:
20

X - ^ N^(C) x^ (3.42)
i*l
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Full compatibility between the bar and the basic element is 

a s s u m e d ,  t h e r e f o r e  the d i s p l a c e m e n t s  of the bar are 

obtainable from the displacement field of the basic element, 

i . e :

[ 6 1 -
u

V
w

[N (c) 1 [« ] (3.43)

For bars, only one component of strain contributes to the 

strain energy and is defined locally by:

3u'/a%' (3.44)

where x, y , z are a local coordinate system at point P 

with y and z being normal to the line of the bar, and u, v, 

w are the corresponding displacements.

Now at any point it is p o s s i b l e  to define a d i s t o r t i o n  

matrix [j] as:

j ]

d v d w
( • d N ^ 3 N .

1

3 x d x d x d 7 “ •  d x  • ~ d 3 T  • • • •

d u d v d v
d N ^ d N . d N

— a ....
3 y 3 y 3 y 3 ? " * “l y  • 3 y

d u d v d w
d N , d N . ....

d z d z j z “ d z * d z

“i

“ j  " j

m
V w

m m

(3.45)

and, as mentioned earlier, a Jacobian matrix given by:

y,-

]

3 x

3Ç

3 x

9 x

3;

i z d z
9 N ^ d N j

3 E d T  • ”  • dE

i Z d z
d N .

X
d N .

Ü Edn d n d n  ’ d n  • d n

i Z d z
9 N ^ 3 N .

d c dC d ;  • d c

X . 1

m

z .
J

m

(3.46)
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9N. 3N. dN dN. dN. dN1 m 1 -J. . m
H  • dC * dC dx ’ dx • dx

3N. dN. dN dN. dN. dN1 -J. , m -  [ J 3 1 m
dn ’ dn ’ dn * “ 3y ’ 3y • 3y

9N. dN. dN 33. dN. dN1 m 1 -U. . m
d ; • d ; • d ( " " dz • dz • d i“  • • •

(3.47)

it f o l l o w s  t hat

[ j 3 - C J] -1

9 N . d N .  d N
1 - J .  ,

3 C  •

d N . d N .  d N
X*

d n  • d n  *  d n

d N . d N .  9 N
1 — i  ,  — 5

d c  • dC  •  3 4

u.
J

m
(5.48)

As [j ] is a second order tensor, it transforms on coordinate 

rotation from x, y, z to x, y , z a c c ording to;

I  i ' 3

"d u ' d v ' dw'
dT" d l7 dT*

3u ' d v ' dw'
3 y ' 3 y ' d y '

3 u ' d v ' dw'
d z ' d z ' d z '

[ R 3 [j 3 [a 3 ( 3 .49 )

where [R] is the rotation matrix of d i r e ction cosines at 

point P, given by:



3xaTT & 3z

C R I- 3x
I F &

3z
w

3x37»- & 3z

noting that X and ?

(3.50)

magnitude, can be shown to be;

3x
3C IZ3(

32
35

113Ç
3x
3Ç iz35

32 32 3x
3C 35 35

(3 49 ) and

(3.51)

that:

1
h2

9N. 3N. 3N. 3N. 3N. 3N.
("=1 * "=2 aT * "=3 ' (=2 aT * "=4 aT * "=5 aT ̂3y

3N. 3N. 3N.
+ i r >

“i

w.1

(3.52)

where

/ (g)' + #)'
35'

(3.53)

and
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<=1 •

^2 ■ . IZ

dx dz
'3 ■ dC • H

%  "

=5 * If'ff
<=6 "

(3.54)

For bars lying along a direction parallel to the local co 

ordinate axis V . the following formulae can be derived in a 

similar fashion;

C R ]

where h wi ll be;

dx dx
3n dn dn

dx iz dz
3n dn dn

IZ dz dz
3n 3n dn

/  (|i)" + (|i)" + (3£)"

(3.55)

(3.56)
'3n' '3ri'

and for bars lying along a direction parallel to  ̂ ,

[ R ]

dz dx dx
3; 3; 35

iz dz iz
3( 3Ç 35

dx iz dz
-  H 3( H  _

(3.57)

and h wil l  be;
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/  <lfl‘ . . (Ii)=H '  "ac‘
For all the three cases of bar directions, Equations (3.54) 

hold.

I eThe stiffness matrix [k ] of the bar is evaluated from:

[ K]* t B']T t D'] [ BT d(vol) (3.59)
V

where [B] = strain matrix obtained from Equation (3.52)

and [D] = Eg (3.60)

where Eg is the modu lus of e l a s t i c i t y  of steel.

The elemental volume d(vol) is given by:

d(vol) = Ag dx'= Ag h d^ for bars parallel to ̂  (3.61)

d(vol) = Ag dy'= Ag h d'H for bars parallel to rj (3.62)

d(vol) = Ag dz'= Ag h d^ for bars parallel to ̂  (3.63)

where Ag = bar cross-sectional area, and h is taken from 

Eq u a t i o n s  (3.53) or (3.56) or (3.51) depending on the bar 

direction. C l e a r l y  numerical integration must be used 

again, but now applied in one direction only.

The v a l u e  of stress which will be induced in the steel bar 

will be :

o' * €' . E (3.64)P p 8

The equivalent nodal loads contributed by the steel bar will

I be:

[ B']T t <>i d(vol) (3.65)
V

where [O'llgteel the bar stresses
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It is a major content of this study to incorporate these 

embedded bars in three-dimensional isoparametric elements.

3.5 Nonlinear Method of Solution

3.5.1 Introduction

A nonlinear structural problem must obey the basic laws of 

continuum mechanics, i.e. equilibrium, compati b i l i t y ,  and 

the c o n s t i t u t i v e  r e l a t i o n s  of the material. D i s p l a c e m e n t  

compatibility is automatically satisfied in the displacement 

finite element technique. Common nodes between e l e m e n t s  

ensure continuity and compatibility of displacements along 

internal element boundaries, and polynomial shape functions 

e n s u r e  c o n t i n u i t y  and s i n g l e  v a l u e d  d i s p l a c e m e n t s  

internally. Therefore it becomes only necessary to enforce 

that the n o n l i n e a r  c o n s t i t u t i v e  relations are c o r r e c t l y  

satisfied whilst at the same time preserving the equilibrium 

of the structure.

There can be s e v e r a l  causes of nonlinear b e h a v i o u r  in a 

structure, which can be divided into three categories (ref. 

9) :

1 - Material nonlinearity

2 - Geometric nonlinearity

3 - Mixed material and geometric nonlinearity

Stress-strain relations are a major source of nonlinearity. 

These can vary from short-term n o n linear r e l a t i o n s h i p s  

between stress and strain such as plasticity, cracking, 

nonlinear elasticity, etc. , to time-dependent effects such 

as creep and shrinkage.
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Only nonlinearity caused by short-term nonlinear behaviour 

of concrete and steel is considered in this study. These 

i nclude the tens ile cracking of concrete, the n o n l i n e a r  

s t r e s s - s t r a i n  relations of concrete, and the y i e l d i n g  and 

work-hardening of steel. Details of the laws representing 

these behaviours will be discussed later in Chapter Four.

A n o n l i n e a r  solution is obtained by s o l v i n g  a series of 

l i n e a r  p r o b l e m s  such that the a p p r o p r i a t e  n o n l i n e a r  

conditions are satisfied at any stage to a specified degree 

of accuracy. This technique is required because contrary to 

linear equations there is no general method which uniquely 

s o l v e s  n o n l i n e a r  e q u a t i o n s .  In fact it is u s u a l l y  

impossible to obtain the explicit form of these equations in 

the first place. One way of a c h i e v i n g  this goal is to 

ensure that at any loading stage the solution res u l t s  in 

s t r e s s e s  c o n s i s t e n t  with the d i s p l a c e m e n t  f i e l d  and 

satisfying the given constitutive equations. These stresses 

will be s t a t i c a l l y  e q u i v a l e n t  to a set of internal nodal 

forces which s hould be in eq u i l i b r i u m  with the external ly 

applied loads. In general these equivalent nodal forces are 

not equal and the differences between the external and 

i n t e r n a l  f o r c e s  are t e r m e d  " r e s i d u a l  forces". T h e s e  

residuals must be removed by repeatedly applying them on the 

structure until an acceptable tolerance is achieved (refs. 

1 , 1 0 ) .

3.5.2 Numerical Techniques for Nonlinear Analysis 

The s o l u t i o n s  of nonlinear problems by the finite e l e m e n t  

method are usually attempted by one of the following three 

basic techniques :
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(a) Incremental (step-wise procedure)

(b) Iterative (Newton methods)

(c) Incremental-Iterative (mixed procedure)

where the n o n l i n e a r i t y  occurs in the stiffness matrix [K]

which, in the case of short-term behaviour of r e i n f o r c e d

concrete, is a function of nonlinear material properties.

The general basis of each method is similar. For p r o b l e m s  

where only the material b e h a viour is nonlinear, as in our 

case, the relationship between stress and strain is assumed 

to be of the form:

f ( 0 , 6 )  = 0 (3.66)

The element stiffness matrix is a function of the material 

properties and can be written as:

[K] = k ( O, e ) (3.67)

The external nodal forces [R] are rela ted to the nodal 

d i s p l a c e m e n t s  through the element stiffness and can be 

expressed by:

[R] = [K] [&] (3.68)

which on inversion becomes:

-1 - I
[&] - [K] [R] (3.69)

— I
or [5 ] = [k( J ,E )] [R] (3.70)

This derivation illustrates the basic nbnlinear relationship 

between [Ô] and [R], due to the influence of the material 

1 aws on [K ].

E q u a t i o n  (3.70) is s o l v e d  by a s u c c e s s i o n  of l i n e a r
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ap proximations. The three methods mentioned a bove are now 

b r i e f l y  discussed. Further details can be obtained from 

r e f erences (1, 6 , 9, 10).

3 .5 . 2 ■ 1 Incremental^ Method

The basis of the incremental method is the s u b d i v i s i o n  of 

the total applied load vector into smaller increments, which 

do not n e c e s s a r i l y  need to be equal. Duri ng each load 

increment Equation (3.68) is assumed to be linear, i.e. a 

fixed value of [K] is assumed using material data existing 

at the end of the previous increment. Nodal displacements 

can be obtained for each increment and these are added to 

the p r e v i o u s i y  a c c u m u l a t e d  displacements. The process is 

repeated until the total load is reached. No account is 

taken of the force redistribution during the application of 

the increm e n t a l  load (i.e. no iteration process exists to 

restore equilibrium).

The accuracy of the incremental method can be i m p r o v e d  by 

using s m all increments size, but this results in a more 

c o m p u t a t i o n a l  effort. The mid-point Ru n g e - K u t t a  scheme 

(ref. 9) is a m o d i f i c a t i o n  of the incremental method which 

u t i l i z e s  the addi t i o n a l  computational effort, where two 

cycles of a n a l y s i s  are performed for each load increment. 

The first step is to a p p l y  half the load increment and to 

c a l c u l a t e  new stiffnesses corresponding to the total 

stresses at this value. These stiffnesses are then utilized 

to compute an approximation for the full load increment.

3.5 . 2 . 2 Iterative Method

In this method, the full load is applied in one increment.
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S t r e s s e s  are e v a l u a t e d  at that load a c c o rding to the 

material law. Then the equivalent nodal forces are computed 

using these stresses. These may not be in e q u i l i b r i u m  with 

the externally applied loads. The unbalanced nodal forces 

[Fy], i.e. the difference between the external and internal

forces, is calculated. These unba l a n c e d  forces are then

used to compute an additional increment of displacement, and 

hence new stresses, which give a new set of equivalent nodal 

forces. This process is repeated until e q u i l i b r i u m  is 

approximated to some acceptable degree. When this stage is 

reached the total d i s p l a c e m e n t  is taken as the sum of the 

accumulated displacements from each iteration.

3.5.2.2.1 Computation of the Unbalanced Nodal Forces 

In general, the linear cons t i t u t i v e  law can be written in 

t h e  f o r m  :

[a]  ̂ [D]( [&]-[%] ) + [ % ]  (3.71)

where [D] is the rigidity matrix, [ô ] and [6 ]̂ are the 

initial stress and strain vectors. Equation (3.71) is in 

essence the linear approximation of the nonlinear relation

between stress and strain :

f( a , e ) = 0 (3.72)

Ad j u s t m e n t s  to any of the quantities [D], [ j ] , or [ 6 ]o o
Equation (3.71) can be made so that Equation (3.72) can be 

approximated. If [ ] is adjusted the process is called the

"initial strain" method (ref. 1) and is used when strains 

are expressed in terms of stresses. If [o^] is adjusted the 

process becomes the "initial stress method (ref. 1) and is 

used when stresses can be given in terms of strains.
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In the present work the initial stress method was used and 

therefore will be discussed. Equation (3.71) can be simpli­

fied to :

[a] = [D] [6 ] + [aj (3.73)

Assuming [ ^ ] = 0 initially, Equation (3.73) is s o l v e d

with an appropriate [D] matrix and [6^] to obtain a certain 

l e v e l  of stress [0̂ ]̂ where:

= [D] [ (3.74)

The stress which should have occurred is:

[ = [D ] [ £ ] (3.75)

The difference between the stresses:

° (3 76)

is used as an initial stress in Equation (3.73) and the

equivalent unbalanced nodal forces [ ]  are calculated from:

X[Fy] = - ) [B3* [a^] dv (3.77)

These forces are removed by applying them to the structure 

to obtain a correction to [&]. This process is repeated

until [a ] or [F,. ] become negligible.O U"

3.5.2.2.2 M ethods of Computing Stiffnesses (ref. 2, 7, 9) 

General 1̂  ̂ the stiffness can either be constant or variable 

throughout a solution. In the constant stiffness method 

(Figure 3.8) the initial linear stiffness [K ] = k ( J , 6 ) is

used at every stage in the analysis. The unbalanced nodal 

forces are c a l c u l a t e d  using either the initial stress or 

strain method.
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Because c a l c u l a t i n g  the stiffness and f u l l y  s o l v i n g  the 

resulting set of equations is an expensive operation, this 

method has economical advantages as the stiffness is 

c a l c u l a t e d  only once. Its main disadvantage, however, is 

that u s u a l l y  a large number of iterations is required to 

obtain equilibrium, particularly when nonlinearity caused by 

concrete cracking and steel yielding occurs. Attem p t s  to 

use a c c e l e r a t o r s  to overcome this d i s a d v a n t a g e  h a v e  been 

tried (refs. 10, 11), although they have not always met with

success especially when cracking is involved.

In the v a r i a b l e  stiffness method (Figure 3.9), a linear 

solution is performed but the material property matrix [D] 

is ad j u s t e d  d u r i n g  the iteration process. The a d j u s t m e n t  

can be done by using either a tangential or secant ial 

modulus approach. Yet again the unbalanced nodal forces are 

calculated using either the initial stress or strain method. 

In this work the concrete material law presented in Chapter 

Four requires the use of the secantial modulus.

If the stiffnesses are updated during all iterations, then 

the m ethod is a form of the we li known "Newton-Raphson" 

method. Com pared to the constant stiffness method, the 

variable stiffness method requires considerably less number 

of iterations, but the full solution is more expensive than 

a resolution with a constant stiffness.

A cheaper variation of the variable stiffness approach can 

be obtained by using a modified "Newton-Raphson" technique, 

where the stiffnesses are only updated occasionally during 

certain iterations. Hence retaining the a d v a n t a g e s  of 

quicker convergence with a lesser number of full solutions.
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3.5 .2 .3 Mixed Method (Incremental-Iterative^

The step-iteration or mixed method utilizes a combination of 

the increm e n t a l  and iterative schemes. In this case the 

load is a p p l i e d  in increments, but after each increment 

s u c c e s s i v e  iterations are performed until e q u i l i b r i u m  is 

achieved to the acceptable level of accuracy. Because the 

mixed method combines the advantages of both the incremental 

and i t e r a t i v e  p r o c e d u r e s  and t e nds to m i n i m i z e  the 

d i s a d v a n t a g e s  of each (ref. 9), the method is w i d e l y  used. 

The additional computational effort is justified by the fact 

that the i t e r a t i v e  part of the procedure permits one to 

assess the q u a l i t y  of the approximate e q u i l i b r i u m  at each 

stage. Further di scussions on the merits and deme rits of 

each technique can be found in references (1, 2, 9). Figure

(3.8) illustrates schematically the various techniques.

3 . 5. 2 . 4 Methods Used j.n Thqs work

A modif i e d  v e r s i o n  of the mixed procedure is used in the 

present work. The modified "Newton-Raphson" app roach is 

used to e v a l u a t e  the stiffnesses. The stiffnesses are 

e v a l u a t e d  using a secant material property matrix; and 

different optional algorithms are programmed to be chosen at 

will, these are :

(1) Initial Sti ffness method: The element stiffnesses are 

c o m p u t e d  at the b e g i n n i n g  of the a n a l y s i s  and r e m a i n  

unchanged thereafter.

(2) Variable stiffness method: The element stiffnesses are 

recomputed during each iteration of each load increment.

(3) C o m b i n e d  a l g o r i t h m :  The e l e m e n t  s t i f f n e s s e s  are 

recopmutedfor the first iteration of each load increment 

only .
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(4) C o m b i n e d  a l g o r i t h m :  The e l e m e n t  s t i f f n e s s e s  are

recomputed for the second iteration of each load increment

(of c o u r s e  for the f i r s t  lo ad i n c r e m e n t  the e l e m e n t  

stiffn e s s e s  must be c a l c u l a t e d  for the first iterartion 

also) .

(5) C o m b i n e d  a l g o r i t h m :  The e l e m e n t  s t i f f n e s s e s  are

recomputed for the first and eighth iteration of each load 

increment.

(6 ) C o m b i n e d  a l g o r i t h m :  The e l e m e n t  s t i f f n e s s e s  are

r e c o m p u t e d  for the first, sixth, e l e v e n t h  and fifteenth 

iteration of each load increment. A maximum number of 

it e rations of 15 was used in this work if c o n v e r g e n c e  has 

not been a c h i e v e d  by then. More about the results obtained 

using different a l g o r i t h m s  will be presented in Chapter 

Five.

For the c a l c u l a t i o n  of the u n b a l a n c e d  nodal forces, a 

m o d i f i c a t i o n  of the initial stress method is used, termed 

the method of "Residual Forces" (refs. 6 , 10, 12). The

b a s i c  t e c h n i q u e  is that, at any s t a g e  a l o a d  s y s t e m  

e q u i v a l e n t  to the total stress level is e v a l u a t e d  and 

checked against the applied loading system. The difference 

b etween the two wil l  result in a set of residuals that are a 

measure of lack of equilibrium. These residuals are then

a p p l i e d  to the str ucture to restore equilibrium. The

process is then repeatedly continued to dissipate the out-

of-balance forces (or the residuals) to a sufficiently small

value. Thus for equilibrium it is required that:

[\] ■ X  [®f [*] AT - [a] - 0 (3.73)
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w h e r e  [ or ] are the a c t u a l  s t r e s s e s  d e p e n d i n g  on the 

constitutive law being used, [R] lists all forces due to the 

e x t e r n a l  l oads, i n i t i a l  s t r e s s e s ,  etc., and [F^ ] the 

residual forces.

3.6 Convergence Criteria 

3^6_^% General

Since the main purpose of the iteration process is the 

r e d i s t r i b u t i o n  of the out - o f - b a l a n c e  residual forces, a 

reliable convergence criterion must be used to monitor this 

gradual elimination and terminate the iterative process when 

the desired accur a c y  has been achieved. The a ccuracy is 

specified by the user through what is c a l l e d  "conver g e n c e  

t o l e r a n c e s "  (refs. 1, 6 , 10, 12). T h e s e  c o n v e r g e n c e

t o l e r a n c e s  are q u a n t i t a t i v e  values that determine the 

a c c u r a c y  of e q u i l i b r i u m  a c c e p t a b l e  to the user. The 

convergence tolerances must be realistic: if generally they

are too loose, inaccuracy may result, if they are too tight, 

much expensive effort is spent to obtain needless accuracy.

One p o s s i b l e  method of checking c o n v e r g e n c e  is to compare 

each i n d i v i d u a l  n o d a l  v a l u e  ( d i s p l a c e m e n t )  w i t h  th 

corresponding value obtained on the previous iteration (ref. 

12). Then, p r o v i d e d  that this change is n e g l i g i b l y  small 

for all nodal points, convergence can be deemed to hav 

occured. This local process is d i f f i c u l t  and expensive, 

th erefore a g l o b a l  check based on some norm is preferable. 

The convergence criteria can be based oh various quantities; 

either directly on the unbalanced forces, indirectly on dis­

p lacements, on energy changes or on changes in stress 

values .

e

e
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Three types of convergence criteria have been in common use 

for structural analysis, namely:

(1) Force convergence criteria

(2) Displacement convergence criteria

(3) Energy convergence criteria

Each of the three a l t e r n a t i v e s  has its merits, and the 

selection of a suitable one depends on many factors. In the 

d i s p l a c e m e n t  c r i t e r i a  inconsistencie,s in u n i t s  (e.g. 

displacements and rotations) may occur and must be avoided. 

The same holds true for force criteria (i.e. inconsistencies 

of f o r c e  and m o m e n t  units). A l t h o u g h  the use of a 

combi n a t i o n  of d i s p l a c e m e n t  and force criteria may seem 

ideal and has been recommended by some investigators (refs. 

13, 14), the equilibrium of forces is sometimes difficult to

a c h i e v e  even when i t e r ative d i splacements are c o n v e r g i n g  

within tight tolerances. This is particularly true for rein­

forced concrete structures when cracking of concrete usually 

makes it very difficult to achieve equilibrium because large 

residual forces are released.

This observation is supplemented by the findings of Cope and 

Rao (ref. 15), in their study on the monitoring indices for 

n o n i i n e a r  analy s i s  of reinforced concrete. However, the 

rate of c o n v e r g e n c e  depends on the method used in the 

solution (e.g. constant or variable stiffness). It is also 

r e q u i r e d  to s p e c i f y  a m a x i m u m  n u m b e r  of i t e r a t i o n s ,  

i r r e s p e c t i v e  of the state of convergence. The maxi mum 

number of iterations may inf luence the predicted shape of 

the load-deflection curve, but it is an important safeguard 

against unlimitted and often unneeded cycles of resolutions
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or full solutions.

An energy c o n v e r g e n c e  criterion has been used by Cope and 

Rao (ref. 15), where they found that a convergence tolerance 

of 1-2.5% was appropriate to yield acceptable results in an 

a n a l y s i s  of reinfo rced concrete skew slabs. However, 

w h a t e v e r  criterion is chosen, care must be taken to a v oid 

spending much effort trying to obtain u n a t t a i n a b l e  and 

perhaps needless accuracy. Special attention must be given 

to the c r a c k i n g  stage when tensile forces are s u d d e n l y  

released onto the system. The author's experience with such 

situation together with some numerical studies in this 

phenomenon will be compiled in Chapter Five.

3.6.2 Convergence Criterion Used in This Work

In this study the convergence process is based on a force 

c o n v e r g e n c e  criterion because it is a direct measure of 

e q u i l i b r i u m  between the internal and external forces. A 

global approach is adopted, where convergence is monitored 

using norms as follows:

/ X 100 < Toler (3 .7 9 )

/1-1
where N is the total number of nodal points in the system, r 

denotes the iteration number, F ^ is the the residual force 

at node i and R is the total external a p p l i e d  load at node i

This c r i t erion states that the c o n v e r g e n c e  occurs if the 

norm of the residual forces becomes less than a spe cified 

tolerance times the norm of the total applied forces.
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3.7 Analysis Termination Criterion

The a n a l y s i s  program must be provided with some means of 

d etecting the c o l l a p s e  of the analysed structure. The 

failure of the structure takes place when no further loading 

can be sustained. This is indicated in the n o n l i n e a r  

solution by successively iterative displacements. The growth 

of iterative displacements results in a lack of convergence 

of the nonlinear solution. It also results in the growth of 

the w o r k  d o n e  by the out of b a l a n c e  f o r c e s  on t h e s e  

displacements.

A maximum deflection can be used as a criterion to stop the 

analysis at failure (ref. 22). An emperical expression can 

be used to detect m aximum deflection, but o b v i o u s l y  this 

n e e d s  g r e a t  c a r e  and no one e x p r e s s i o n  can fit a l l  

situations.

The maximum number of iterations can also be used. When a 

specified number of iterations has been performed without 

a c h i e v i n g  convergence, the structure is deemed to have 

failed and the failure load can then be estimated. It must 

be m e n t i o n e d  h e r e  that this c r i t e r i o n  is no t a l w a y s  

sufficient to indicate the failure of the structure, since 

it c o u l d  be s a t i s f i e d  w h i l e  the s o l u t i o n  is s l o w l y  

converging when severe discontinuity occurs due to extensive 

cracking or in the event of large displacements. It may 

also occur when large load increments are used or very tight 

convergence tolerances are specified. However, if realistic 

maximum number of iterations (which may be expensive) is 

used and the s o l u t i o n  continued not to converge, for a 

number of load increments, then this can be a r e a listic
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indication of failure.

A sca l a r  quantity, termed the current stiffness parameter 

Sp, has a l s o  been suggested by Bergan et. al. (ref. 23) to 

serve as a way of characterizing the o v e r a l l  structural 

s t i f f n e s s  d u r i n g  load a p p l i c a t i o n .  The n o r m  of the 

i n c r e m e n t a l  load and the c o r r e s p o n d i n g  n o r m  of the 

i n c r e m e n t a l  d i s p l a c e m e n t s  are used to obtain this scalar 

quantity. The stiffen the structure, the greater Sp will be 

and vice versa.

In this study, however, the maximum number of iterations is 

used to detect failure. This is c oupled with a search 

through the diagonal terms of the stiffness matrix to detect 

zero or n e g a t i v e  values, in which case the a n a l y s i s  is 

terminated. It was found, as will be shown in Chapter Five, 

that n e g a t i v e  or zero pivots were always associated with 

very large d i s p l a c e m e n t s  at or i m m e d i a t e l y  beyond the 

fail u r e  loads and always occured after 2-3 u n c o n v e r g e d  

(sometimes diverged) increments. This was also associated 

with s e v e r e  cracking, y i e l d i n g  and e v e n t u a l l y  crushing 

s ituations.

3 .8 The Frontal Solution Technique

Workers in the finite element field are now more interested 

in using e l e m e n t s  with high number of degrees of freedom. 

This i n e v i t a b l y  results in a large set of s i m u l t a n e o u s  

equations to be solved, thus creating greater demand for 

computer core storage. This is pri m a r i l y  true in the case 

of this study, where the 20-noded isoparametric brick 

element has been used.
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In engineering practice, costs for productive computer runs 

are u s u a l l y  small compared with the cost of man - h o u r s  

required for input preparation and output in terpretation, 

unless solutions of very large equation systems with several 

thousand degrees of freedom are involved. This point may 

not always be true in work of academic nature. However, it 

is a l w a y s  g o o d  e n g i n e e r i n g  p r a c t i c e  to use the bes t  

t e c h n o l o g y  a v a i l a b l e .  In a state-of-the-art report Meyer 

(ref.16) summarized the most common solution techniques for 

equation systems used in engineering problems.

The three main s o l u t i o n  strategies for large equation 

systems are bandsolvers, partitioning methods, and frontal 

s o l u t i o n s  (ref. 17). The definition of those systems of 

equations as large is in itself computer-dependent, and with 

good reason, because a set of equations that can be s o l v e d  

in the core of a large machine may require e l a b o r a t e  

p e r i p h e r a l  p r o c e s s i n g  if s o l v e d  on a small computer. 

Further d i s c u s s i o n  on various techniques can be found in 

references (16, 17).

In this work a version of the frontal solution, originally 

introduced by Irons (ref. 18), and later modified by Hinton 

and O w e n  (ref. 12), is used. The main f e a t u r e  of the 

f r o n t a l  s o l u t i o n  t e c h n i q u e  is that it a s s e m b l e s  the 

equ ations and e l i m i n a t e s  the variables at the same time. 

This means that the total stiffness matrix of the structure 

is never formed as such, since after elimination the reduced 

equations c o r r e s p o n d i n g  to the el iminated v a r i a b l e s  are 

stored in core in a temporary array c a l l e d  a buffer area 

(ref. 1 2 ). As soon as this array is full, the information
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is then tra nsfered to disc. This process results in a

considerable efficiency in the way core storage is handled.

Thus much v a l u a b l e  computer time is saved through proper

housekeeping. The sav i n g  due to use of buffer- area may

amount to about 5 0% compared with the use of ordinary

backing disc store (ref. 6 ). Another important feature of 
the frontal technique is that, in contrast to a banded

solver, node numbering is irrelevant and it is the element

n u m b e r i n g  that matters (refs. 19, 20). This is so because

in a banded solver the storage allocation is determined by

the order in which the nodes are presented for assembly,

wh i l e  in the front s o l v e r  the storage is determined by the

order in which the elements are presented. Further details

about the frontal method can be found in references (6 , 1 2 ,

16, 17, 19, 20).

A broad idea about the distribution of computing effort for 

a typical application has been given by Brockman (ref. 21), 

as shown in Table (3.1 ) . The proportions of total computing 

effort associated with various operations in a three 

dimensional nonlinear solution are summarized in the table. 

The perce n t a g e s  quoted are based upon a number of compl e t e  

a n a l y s e s  of moderate size (" 1000 DGF), all using three

d i m e n s i o n a l  h i g h - o r d e r  e l e m e n t s  and N e w t o n - R a p h s o n  

i t e r a t i o n .  It is e v i d e n t ,  from the t a b l e ,  that the 

com p u t a t i o n s  performed at the element level (stiffness,

strains, stresses, internal f o r c e s  etc) often represent

the bulk of the computing effort in three di m e n s i o n a l  

applications. Equation-solving effort, which is typically 

the m o s t  e x p e n s i v e  o p e r a t i o n  in a l i n e a r  or a two- 

d i m e n s i o n a l  n o n l i n e a r  a n a l y s i s ,  a s s u m e s  a s e c o n d a r y
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importance in the context of a nonlinear three dimensional 

solution.

3.9 Computations Procedure

C onsider the analy s i s  at a p a r ticular iteration within a 

load increment

(1) For every Gauss point, evaluate the incremental values 

of strains [ AE^] and stresses [ Aa^] using the ap p r o p r i a t e  

material property matrix [D].

(2) Check whether the Gauss point under c o n s i deration has 

previously suffered crushing, if so execute step (8 ).

(3) Check whether this point has p r e v i o u s l y  suffered from 

tensile cracking, if so execute step (8 ).

(4) Using the stress-strain relationships described in the

c oncrete material law, e v a l u a t e  the total stresses in

concrete [a^] which correspond to the linearly calculated

total strains. 6 , =» 6 . . + A ̂1 1-1 1

(5) Check for crushing of concrete using the chosen crushing 

criterion for the new total stress [ ], if crushing occurs

then set all co mponents of stress to zero at this Gauss 

point and set an indicator to ensure they remain zero for 

all subs e q u e n t  load cycles; i.e. [o^] = 0.0. Also the

m a t e r i a l  p r o p e r t y  m a t r i x  w i l l  be set to zero; i.e.

=  0.0

(6 ) Check for crac king of concrete using the cracking 

criterion previously discussed. If a crack occurs then the 

o ffending pri n c i p a l  stress is indicated and set to zero 

while its direction is fixed in the cartesian x y z space. A
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new ma t e r i a l  property matrix [Dc^x.y.z wil l  be f o r m u l a t e d  

depending on the number and directions of cracks.

(7) If the G a u s s  p o i n t  is p r e v i o u s l y  c r a c k e d  in one 

direction, it is required to check for further c racking as 

follows :

(a) For the previ o u s  load cycle, the p r i ncipal stresses 

o^, had the direction cosines 1 ̂  , m ̂  , n ̂ ; 1 2 , m 2 , n 2

; 12 , m 2 , n 2 - These direction cosines are used for the

stiffness c a l c u l a t i o n  in the present load cycle to obtain 

the new stress vector [a^], with regard to the ap p r o p r i a t e  

material property matrix [D^]-

(b) Now for principal stress c a l c u l a t i o n  in cracked 

material, the new stress vector will be transformed 

form X, y , z space to the principal stress space using the 

a p p r o p r i a t e  t ransformation matrix p r e v i o u s l y  mentioned.

(c) Because 1 ̂  , m ̂  , n ̂ , correspond to (T̂  (which caused 

the crack) which are known and already fixed, Equ ations 

(4.25) must be simultaneously solved to obtain the remaining 

six direction cosines corresponding to o g ^nd a^.

( d ) ĉ'2 and g are then used to c h e c k  for f u r t h e r  

c racking by direct comparison with the a l l o w a b l e  t ensile 

strength of concrete. If further c racking occurs, the 

corresponding offending stress is indicated, its direction 

fixed and the a p p r o p r i a t e l y  modified material p roperty 

matrix must be used.

(8) Evaluate the equivalent nodal forces contributed by the 

concrete element as:

This yields (Tp ,

[Pilconc = X toll dv
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(9) Add the equivalent nodal forces by concrete elements to 

those contributed by steel reinforcement to obtain the total 

equivalent nodal forces:

[Pĵ ] = [Pi] cone [Pi]steel

(10) Check for convergence.
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(a) Local coordinates (b) Cartesian coordinates

Figure (3.1) 20-Noded isoparametric brick element

zz

zx

xz

Figure (3. 2) Cartesian stress components
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Figure (3.3) Location of Gauss points for the 3x3x3
integration rule; those for the 2x2x2 and 
4x4x4 rules follow the some order

Reinforcement 

-►X

Figure (3.4) Distributed représentâtian of steel
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Axial Elements 

Flexural Elements

Figure (3.5) Discrete representation of steel

Reinforcements

X

Figure (3. 6) Embedded representation of steel

Figure (3.7) Embedded bars within the 20-noded 
isoparametric brick element



134

P ( Load

(Displacement) 8 8 8

Constant stiffness 
procedure

Variable stiffness Variable stiffness
procedure 
Secant Modulus 
Approach

procedure 
Tangent Modulus 
Approach

(a) Iteration process

8 8 8

Constant stiffness 
procedure

Variable stiffness 
procedure 
Secant Modulus 
Approach

Variable stiffness 
procedure 
.Tangent Modulus 
Approach

(b) Mixed procedure

Figure (3.8) Basic procedure for nonlinear solution
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ble_X3^jLj_ Distribution of computing times in three 

dimensional nonlinear analysis (ref. 2 1 )

Function % of CPU time

Input and setup 1-2
Element Calculations 45-75

Equation Solutions 25-50

Loads Calculations 2-10

Checkpoints/Restarts 0-5
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CHAPTER FOUR

MATHEMATICAL MODELLXNG OF THE MATERIAL BEHAVIOUR OF

REINFORCED CONCRETE

4.1 Introduction

A r e l i a b l e  prediction of the behaviour of r e i n f o r c e d  

concrete requires a knowledge of the behaviour of concrete 

in its elastic, inelastic, and nonlinear ranges, c o u p l e d  

with a k n o w l e d g e  of the reinforcing steel behaviour. 

Although the steel behaviour is better defined and generally 

a g r e e d  upon, c o n c r e t e  b e h a v i o u r  shows c o n s i d e r a b l e  

statistical scatter. Furthermore, the bond between concrete 

and the reinforcing steel is also not well defined.

Nowadays more and more experimental knowledge is becomming 

available regarding the deformationa 1 behaviour and strength 

properties of concrete under various loading systems (refs. 

1 , 2, 3). The accuracy of these data, however, is often in 

q u e s t i o n  b e c a u s e  of the u n c e r t a i n t i e s  r e g a r d i n g  the 

efficiency of the various testing systems. The differences 

among test methods are p r e d o m i n a n t l y  a function of the 

specimen boundary conditions as determined by the different 

loading systems. So, basically the scatter of results can 

be a t t ributed to two pri ncipal factors: variation of the

materials tested, and the variation in the test methods. A 

comparative study (refs. 2, 3) has recently been undertaken

Jiy-,-S e V e r a 1 r^asearclt labor at or ias which had been active in 

m u l t i a x i a l  concrete testing for the purpose of i s o l a t i n g  

these two variables. This effort has, at least, indicated 

the p o s s i b i l i t y  of conducting more systematic testing of 

concrete, particularly in the multiaxial stress states.
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H a v i n g  o b t a i n e d  such e x p e r i m e n t a l  data, it mus t  be 

transformed into sets of mathematical formulae, adequately 

describing the basic characteristics, to be of real use to 

reinfo rced concrete analysts. This process might also be 

reversed. These mathematical formulae are normally called 

" c o n s t itutive equations" or, sometimes, "cons t i t u t i v e  

models" for concrete. In recent years a lot of work have 

been carried out on this front, resulting in different 

mod e l s  being offered (refs. 4, 5, 6 , 7, 8 for example) for 

the description of the behaviour of concrete under different 

stress states. These can be broadly grouped as : (1)

uniaxial and equivalent uniaxial models; (2) linear elastic- 

fracture models; (3) nonlinear elastic and variable models; 

(4) e 1astic-perfec11 y plastic-fracture models; (5) elastic- 

s t r a i n  h a r d e n i n g  p l a s t i c  and f r a c t u r e  m o d e l s  and (6 ) 

endochronic theory of plasticity for behaviour of concrete. 

An attempt at critically evaluating these models, within the 

context of their use in the numerical analysis of concrete 

structures, is g i v e n  by Chen and Ting (ref. 9). A good 

summary is also given by Chen (refs. 10, 11).

The power of modern computers have ensured that more 

sophi s t i c a t e d  and complex, but reas o n a b l y  "accurate", 

c o n s t i t u t i v e  laws can be incorporated into theoretical 

models without much difficulty. One such set of laws, used 

in this w o r k  to m o d e l  c o n c r e t e  c o m p r e s s i v e  t r i a x i a l  

behaviour, is due to Ottosen (refs. 12, 13). The features

of the model and its attractiveness will be discussed later.

As cracking of concrete is probably the major cause of 

n o n l i n e a r i t y  in most reinforced concrete structures, a
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separate three dimensional cracking model is developed and 

incorporated in the finite element program. This will be 

d e alt with in section (4.3). Particular attention is paid 

to proper m o d e l l i n g  of shear transfer across a cracked 

concrete surface, tension-stiffening phenomenon of the sound 

concrete between cracks, and dowel action of the reinforctug 

steel crossing these cracks.

A b iaxial s t r e s s-strain law is used for reinforcing steel 

a c c o u n t i n g  for strain hardening effects. Full bond is 

assumed between concrete and steel as demanded by the 

t h e o r e t i c a l  d e r i v a t i o n s  of the embedded bars pre s e n t e d  in 

Chapter Three. These aspects will be presented in detail 

later on.

4.2 Ottosen Constitutive Laws for Concrete

4.2.1 General

The structural behaviour of concrete is complex because both 

its s trength and stiffness are strongly dependent on all 

stress components. In the ideal case, a constitutive model 

for c oncrete should r eflect the strain hardening before 

failure, the failure itself and the strain softening in the 

p o s t - f a i l u r e  region. The p o s t-failure beh a v i o u r  is of 

particular importance. An ideal plasticity formulation with 

i n d efinite ductility, for example, might result in an 

improper redistribution of stresses. It is desirable if the 

m o d e l  is eas y  to i n c o r p o r a t e  in a c o m p u t e r  p r o g r a m .  

Moreover, it should be applicable to all stress states and 

s h ould als o  be easy to cal i b r a t e  for a particular type of 

concrete. It would be an important advantage if a model 

would be calibrated, for example, by means of uniaxial test
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data, as these are readily obtainable for concrete. The term 

"failure" is used to indicate the peak of the stress-strain 

curve in this discussion.

A constitutive model, for short-time loading, that embodies 

all the above features, proposed by Ottosen (ref. 12), is 

chosen to simulate concrete compressive behaviour. The model 

is based on nonlinear elasticity, where the secant values of 

Y o u n g ' s  m o d u l u s  a n d  P o i s s o n ' s  r a t i o  a r e  c h a n g e d  

appropriately. The model is able, in a simple fashion, to 

represent most of the concrete behavioural characteristics. 

The main features of the model can be stated as: (1) the

inclusion of all three stress invariants; (2 ) consideration 

of d i l a t i o n  of concrete; (3) stre ss-strain curves are 

c o m p l e t e l y  smooth; (4) prediction of rea listic fai l u r e  

s t r e s s e s  ; (5) s i m u l a t i o n  of d i f f e r e n t  p o s t - f a i l u r e

b e h a v i o u r s  and (6 ) a p p l i c a b i l i t y  to all stress states 

in c l u d i n g  those where tensile stresses occur. The most 

attractive features of the model, in addition to the above, 

are that it is simp le to incorporate in a computer prog ram 

and its c a l i b r a t i o n  requires concrete data obtained from 

standard uniaxial tests.

The implementation of the model in the computer program can 

be a c h i e v e d  through the f o l l o w i n g  basic four steps: (1 )

failure and cracking criterion; (2) nonlinearity index; (3) 

change of secant value of Young's modulus and (4) change of 

secant v a l u e  of Poisson's ratio. It must be mentioned here 

that the model can be used in conjunction with any failure 

criterion. In this work two failure criteria have been 

incorporated so that any one can then be chosen at will.
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These are: (1) the more recent and sophisticated Ottosen

failure criterion (ref. 14) and the comparatively old, well 

known, but simple modified C oulumb criterion. These are 

p resented in sections (4.2.4) and (4.2.5).

A d e s c r i p t i o n  of the model is g i v e n  in the f o l l o w i n g  

sections. References (11, 12, 13) give fuller de s c r i p t i o n  

with verification of the model against experimental results.

4.2.2. Nonlinearity Index

For the construction of the c o n s t i t u t i v e  equations for 

c oncrete a measure of the actual loading, termed the 

n o n l i n e a r i t y  index, p , is introduced by Ottosen. For an 

a r b i t r a r y  choice of failure criterion, the n o n l i n e a r i t y  

index is defined as:

8 = °2_ (4.1)

where a_ = the actual largest compressive principal stress; 
5

and is the corresponding failure value, provided that

other p r i n c i p a l  stresses, Cg and , are unchanged (â î Og

> ). It is thus noted that the non linearity index, p

depends on all three stress invariants, if the f a i l u r e  

criterion does so. Moreover, the values of p <1, P =1, and 

P> 1 c o r respond to stress states located inside, on, and 

outside the failure surface respectively.

W h e n  t e n s i l e  s t r e sses occur, a m o d i f i c a t i o n  of the 

n o n l i n e a r i t y  index is required; as concrete b e h a v i o u r  

becomes more linear with the presence of tensile stresses. 

In this case, i.e. whe n  at l e a s t  is t e n s i l e ,  a

hydrostatic pressure -o.j is to be superposed on the stress 

state ( a.| , Gg, Gj ). This results in a new stress state
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f * ^2' ^5  ̂ ~ ’ ^3*^1  ̂' i.e, a biaxial c o m p r e s s i v e

stress state. The non linearity index, p , is then defi ned 

as :

A = (4.2)
^3f

* f t
where is the failure value of provided that and Og

are unchanged. This procedure has the required effect of 

reducing the value appropriately when tensile stresses occur 

and p <1 w i l l  always apply. Contour surfaces of p va l u e s  

are smooth, except for points where tens ile stresses have 

just become involved.

4.2.3 Stress-St rain Re _lati.ons

Full derivations of the stress-strain relations are given in 

references (12, 13). In this section, however, they will be

presented in order to define terms and. discuss their merits. 

For tr i a x i a l  compressive loading the secant modulus of 

concrete, E^, is given by

■ /  -  /5(iE j^-Ep ^ + EjjS D (l-/3 ) -1  ( 4 . 3 )

in which the positive and negative signs correspond to the 

ascending and descending parts of the curve, respectively. 

In Equat i o n  (4.3) the parameter value, E ̂  , denotes the 

s e c a n t  v a l u e  of Young's m o d u l u s  at g e n e r a l  t r i a x i a l  

compression failure, replacing E^ which is the secant value 

at uniaxial compression failure (see Figure 4.1). D (0.0 < D 

< 1 .0 ) is a parameter affecting m ainly the descending part 

of the c u r v e  in the p o s t - f a i l u r e  region, w i t h o u t  a 

significant effect on the ascending part as shown in Figure

(4.1). E j is the initial uniaxial Young's modulus and the
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n o n l i n e a r i t y  index. The figure shows a uniaxial stre ss- 

s t r a i n  c u r v e  d e m o n s t r a t i n g  E q u a t i o n  (4.3). The b a s i c  

features of the curve are: (1) A correct initial slope; (2) 

, a zero s lope at failure; (3) the correct failure stresses 

when the f a i l u r e  strains are given; (4) a realistic p o s t ­

failure behaviour. The value of E^ remains to be determined 

before the a p p l i c a t i o n  of Equ ation (4.3) is possible. In 

general, the v a lue of E ̂  is a function of the type of 

loading, the type of concrete, etc. A sufficiently accurate 

expression, in general compressive loading, is

■ T+5(a- i ) x

in which x represents the dependence on the actual loading 

and is given by:

(4 S'

where the term ( •< )̂  denotes the failure value of the

invariant ̂ ______ , and A a parameter given by:

A » (4.6)

where Ec is the secant uniaxial modulus at failure. Equation

(4 .4 ) a p p l i e s  for compressive stress states, where the 

n o n l i n e a r i t y  index is determined by Equation (4.1) and Ef 

value is given by Equation (4.4). A realistic value for the 

parameter A normally lies between 2.0 and 2.5. When tensile 

stresses occur, however, the behaviour becomes more linear 

and it is assumed that E|i = Eg holds in this case, while the 

nonlinearity index is given by Equation (4.2).

The model must be augmented by a cracking model. If cracking 

occurs, the sit uation will be dealt with in the manner
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described in section (4.3). However, a situation in the 

p o s t - f a i l u r e  region might occur in which there are s mall 

tensile stresses present but there is neither cracking nor 

crushing of concrete. Such a situation has a p p a r e n t l y  not 

been determined e x p e r imentally, but the f o l l o w i n g  hybrid 

p r o c e d u r e  was s u g g e s t e d  by O t t o s e n  (ref. 12) for the 

determination of the secant value of the Young's modulus. A 

f ailure v a l u e  of the non linearity index P , less than 

unity, is determined by Equation (4.2). Then, as in Figure 

(4.2), the post - f a i l u r e  curve AB is assumed to be obt ained 

by a tr a n s l a t i o n  of the part MN of the original d e s c e n d i n g  

branch of the curve p a r a l l e l  to the horizontal axis. The 

secant value, Es, corresponding to some actual P value can 

be determined by:

B \  ^  (4 7 )
+ ("A n

in which , dep ending on p , is the secant v a lue a l o n g

the ori ginal p o s t - f a i l u r e  curve MN obtained by means of 

e q u a t i o n  (4) u s i n g  the n e g a t i v e  sign. L i k e w i s e ,  the 

constants E^ and ^  are secant values at failure als o 

o btained by equation (4) using the positive and n e g a t i v e  

signs, respectively, and the non linearity index v a lue at 

failure, i.e. p = Equation (4.7) implies a gradual

change of the post-failure behaviour, both when the stress 

state is changed towards purely compressive, or towards 

stress states where cracking occurs.

The variation of the secant value of the Poisson's ratio, on 

the other hand, is determined by the equation:

%  ~

_________  (4.8)
^ ^ -(
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in wh ich is the initial Poisson's ratio; and is the

secant v a l u e  of Poisson's ratio at failure. Equation (4 .8 )

is shown in Figure (4.3). The second of these equations,

which represents one-quarter of an ellipse, is v a l i d  o n l y

until failure. Very little is known of the increase of ins
the post-failure region, but it is an experimental fact that 

dilation of concrete continues in this region. In this work, 

and according to Ottosen's suggestions, the values of and 

are t a k e n  as 0,8 and 0.36 r e s p e c t i v e l y ,  for

concrete, however, is n o r m a l l y  taken between 0.15 and 0.2. 

As before, the p value to be applied in Equation (4.8) is 

determined by Equation (4.1) when only compressive principal 

s tresses occur and by Equ ation (4.2) when at least one 

principal stress is tensile.

Experimental verification of Ottosen's model can be found in 

r e f e r e n c e s  (12, 13) for uniaxial, biaxial and triaxial

loading. In summary it is concluded that the model provides 

r e a l i s t i c  predictions over a wide range of stress states 

also i n c l u d i n g  tensile stresses ; that it is c a l i b r a t e d  by 

parameters obtainable from simple uniaxial test data; that 

it r e f l e c t s  the d ilation which occurs when concrete is 

load ed in compression; that it considers all three stress 

invariants; and that it is suita b l e  for use in computer 

codes. Application of the model have also been reported in 

r e f e rences (15, 16r 17, 18) where reasonable predic t i o n s

have been obtained.

These laws, however, have been modified in this study to cut 

off p o s t - p e a k  stress b e h aviour by a triaxial von Mises 

f a i l u r e  surface in strain space to simulate crushing of
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concrete because it was noticed that some overestimation of 

u l t i m a t e  l o a d s  o c c u r  w i t h o u t  such t r e a t m e n t .  This 

modification will be discussed in detail in section (4 .6 ).

For rea l i s t i c  predictions of failure loads of reinforced 

c o n c r e t e  s t r u c t u r e  an a c c u r a t e  f a i l u r e  c r i t e r i o n  is 

important. At present there are seve ral proposed failure 

criteria and reference (1 1 ) contains a review of the most 

important ones.

It was stated earl i e r  that Ottosen's model can be used in 

conjunction with any concrete failure criterion. In the 

computer program d e v e l o p e d  in this study two concrete 

failure criteria have been incorporated, namely: (1) Ottosen

fo u r - parameter f ailure criterion and (2 ) the modified 

Coulumb criterion, which will now be discussed.

4.2.4 Ottosen's Four-Parameter Failure Criterion (ref. 14)

The criterion i n v o l v e s  the three stress inva r i a n t s  Î  , 

and cos36 , where:

° 2 +  * 3 "  °11 

Jg - Ks^ + Sg + Sj) - (4.9)

^ .3/2

where .jg, %  are the three principal stresses (tensile 

stresses are considered positive) and is defined as:

J, - (i) (s? + s3 + sp - (4.10)

where s^j is the stress de viator tensor, i.e. s ̂  j -

(4)5..CT,, and s 1 , So, So = the principal stress de via tors
3 ' ij kk 1 ^
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The octahedral normal stress, â. , and the shear stress, r ,

are r e l a t e d  to the pre ceding invariants by g = I / 3 and 
2 2^2
T = Figure (4.4) shows the Haigh.-Westergaard Coordinate

System and the deviatoric plane where the various' invariant 

relations are illustrated.

The failure surface is given by the following equation

Jn . , rrr- . . If(l^,J2,cos30) =a 2 +À / Jg + b - 1 - 0 (4 1 1 )

where A =  f (cos39) > 0 , a and b are constants. The v a l u e  of 

f(I;j^,J2 »cos3 0) < 0 corresponds to stress states inside the 

f a i l u r e  surface, i s the uniaxial compressive c y l i n d e r  

strength. The function A = f (cos30) is given by:

A = k^cos[ ̂ aro cos (k2Cos3ô)] for cos39 ^  0

A = k^cos^ ̂  - iaj-QQQg (-kgCos3e)] for cos3e ^  0

in which k ̂ and kg are parameters (k ̂ is a size factor, 

w h i l e  k 2 is a shape factor, with 0 < kg < i ) - The p a r a meter 

and the constants a, b are functions of the uniaxial tensile 

to compressive ratio, k, of the concrete in question. Tables

(4.1) and (4.2) show their v alues for k values of 0.08, 0.1

and 0 .1 2 .

The c h a r a c t e r i s t i c s  of the failure surface, g iven by 

E quations (4 .1 1 ) and (4.12) are : (1) only four pa rameters

a , b , k 2 and kg are used which are functions of uniaxial

p r o p e r t i e s  of c o n c r e t e  ; (2 ) use of i n v a r i a n t s  m a k e s

determination of the principal stresses unnecessary: (3) the

surface is smooth and convex with the exception of the 

vertix; (4 ) the meridians are parabolic and do not intersect
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the n e g a t i v e  h y d r o s t a t i c  axis; (5) the t r a c e  in the 

deviatoric plane changes from nearly triangular to circular 

shape with increasing hydrostatic pressure; (6 ) it contains 

seve r a l  e a r l i e r  proposed criteria as special case, in 

particular, the criterion of D rucker-Prager (ref. 19) for 

a = 0 , A =constant and the well known von Mises criterion for 

a = b = 0 and A =  constant. Figure (4.5) i l l u s t r a t e s  the above 

propert ie s .

V e r i f i c a t i o n  of Ott o s e n ' s  f a i l u r e  c r i t e r i o n  a g a i n s t  

e x p e r i m e n t a l  test data for various loadings is shown in 

Figure (4.6). Further details of that can also be found 

e l s e w h e r e  (refs,11, 12, 13, 14). The agreement between the 

experimental and predicted values is considered satisfactory 

and t h e r efore the ability of the criterion to represent 

realistic experimental values is good.

The m a t h e m a t i c a l  form of the criterion, on the other hand, 

is f e a s i b l e  for computer applications. The sophisticated 

f o rmulation, however, requires internal iteration in its 

implementation (see Apendix C). This results in additional 

computer effort when compared with other simpler, but less 

accurate, failure criteria. However, it is incorporated in 

this work because a better simulation of concrete behaviour 

in the multiaxial stress states is sought.

4.2.5 Modified Coulomb Criterion

The other opt ional failure criterion, incorporated in the 

d e v e l o p e d  com puter program, is the more simpler c l a s s i c a l  

modified Coulomb criterion which reads:
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(4.13)
»  o.t

w h e r e  > o g ^ ^3 are the p r i n c i p a l  s t r e s s e s  ( t e n s i o n  

positive). The criterion contains three parameters and does 

not consider the intermediate principal stress. It also 

includes a cracking criterion given by the second of the 

above two equations.

The coefficient m is related to the friction angle , ^  , by 

the relation;

- il.±
( 1  - sin<D) (4.14)

Different m values have been suggested for concrete, but a

v a l u e  of about 4.0 is adopted corresponding to a friction 
oangle of 37 proposed by Cowan (ref. 20) and Johansen (ref. 

2 1 ) .

As can be seen from Figure (4.7) the modified Coul o m b  

criterion correspond to an irregular hexagonal pyramid with 

straight m e r idians and with tension cut-offs. The trace in 

the deviatoric plane is shown in Figure (4.8) together with 

the Ottosen criterion. It appears from the figure that, for 

most stress states of practical interest, the modified 

Coulomb criterion underestimates the failure stresses. This 

is quite obvious when considering, for instance, the case of 

p la n-e.-s t r ̂  s s ( F i g u re 41 6 ). Ho we ver, it is important to note 

that the m o d i f i e d  C o u l o m b  c r i t e r i o n  p r o v i d e s  a fair 

ap p r o x i m a t i o n  that is compar able in accuracy to many 

recently proposed failure criteria with a unique simplicity. 

It is a l s o  important to mention that its c a l i b r a t i o n
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requires only the r eadily a v a i l a b l e  uniaxial tensile and 

c o m p r e s s i v e  strengths of the concrete in question. Figure 

(4.9) shows further verification of both criteria against 

experimental results.

In conclusion, each of the two failure criteria incorporated 

in the c o m p u t e r  p r o g r a m  p r o v i d e s  r e a l i s t i c  f a i l u r e  

predictions for general stress states. W h i l e  Ottosen 

c r i t e r i o n  is s u p e r i o r  whe n  c o n s i d e r i n g  a c c u r a c y  and 

sophistication the modified Coulomb criterion possesses an 

attractive simplicity.

The cracking model d e v e l o p e d  in this work to accompany 

Ottosen's c o n s t i t u t i v e  equations will now be d i s c ussed in 

detail .

4.3 Mode3.lj.ng of Concrete Cracking in Three Dimensions

4.3.1 introduction

The tensile weakness of concrete results in cracking which 

is regarded as a major factor contributing to the nonlinear 

behaviour of reinforced concrete structures. Early studies 

on m o d e l l i n g  r e i n f o r c e d  c o n c r e t e  n o n l i n e a r  b e h a v i o u r  

resul t e d  in two methods of representing the cra cking of 

c o n c r e t e .  The f i r s t  a p p r o a c h ,  te r m e d  d i s c r e t e  c r a c k  

re p r e sentation (ref. 2 2 ), uses a predefined discrete crack 

system. The major drawbacks of this procedure, however, are 

that the t o p o l o g y  of the structure has to be c o n t i n u o u s l y  

altered as cracking progresses and that a previous knowledge 

of the crack pattern might be necessary. There is als o a 

lack of generality in the possible crack directions as these 

are dictated by element boundaries rather than the resulting 

principal stresses or strains.
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The second approach, known as the smeared crack model (refs. 

23, 24, 25), a s s u m e s  the c r a c k e d  c o n c r e t e  r e m a i n s  a

continuum. This implies that an infinite number of parallel 

cracks occur at a specific point if a certain cracking 

c r i t e r i o n  is satisfied. By using the smeared crack i n g  

appro a c h  the problem of changing the topology of the 

structure with crack propagation is overcome. Moreover, the 

initiation, orientation and propagation of cracks at the 

s a m p l i n g  points are a u t o m a t i c a l l y  generated r e s u l t i n g  in 

c o m p l e t e  g e n e r a l i t y .  F i g u r e  (4.10) i l l u s t r a t e s  b o t h  

cracking models as applied in two dimensional analysis.

The selection of which cracking model to use depends largely 

upon the purpose of the finite element study undertaken and 

the nature of the output desired (ref. 26). Generally, if 

overall 1 oad-disp1acement behaviour, without regard to local 

stresses and c o m p l e t e l y  realistic crack patterns, is 

desired the smeared crack representation is p r o b a b l y  the 

be s t  c h o i c e .  If, on the o t h e r  hand, d e t a i l e d  l o c a l  

behaviour is of prime importance adaptations of the discrete 

cr a c k i n g  model are useful. The element type, size and grid 

pattern hav e  significant effects on both models. The 

smeared crack approach is the most commonly used because it 

is easy to implement. Further details on this aspect can be 

found elsewhere (refs. 11, 26).

In this study the o v e r a l l  structural behaviour is of 

particular importance. Furthermore, the efficient 20-noded 

is o p a r a m e t r i c  brick element is used to represent concrete 

with e m b e d d e d  bars d e v e l o p e d  to a d e quately simulate the 

reinforcing steel at its exact locations in the structure.
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Therefore, the smeared crack simulation is adopted.

4.3,2 Three Dimensional Smeared Cracking Model

In three dimensional stress space ; g , g^  g ;  cracks might
I 6 V

occur normal to any of the principal stresscsas shown in 

Figure (4.11). It is also quite possible for any point to 

be cracked in more than one direction. Up to three cracks 

are a l l o w e d  at a point in this study, provided that they are 

orthogonal as shown in Figure (4.12). Once a crack occurs, 

its direction in the cartesian xyz space is fixed and 

retained as such in all subsequent loading.

A crack is said to have occured at a Gauss point if either :

(1 ) the fail u r e  criterion described in sections ( 4.2.4) i s

v i o l a t e d  or (2 ) the maximum principal stress, , exceeded 

the ten s i l e  strength of concrete. In the first case (i.e. 

v i o l a t i o n  of the failure criterion) the first crack is

assigned perpendicular to g^. All subsequent cracks at the 

same point are checked by the second criterion using the 

other two "principal" stresses Gg and g.

4.3.2. Material Property Matrix for Cracked Concrete

It was shown in chapter Three that the material property

matrix for three dimensional isotropic uncracked concrete is

given by: l v/l“V v/l”V 0 0 0

1 v/l"v 0 - 0 0

1 0  0 0

[ D ]- ^n-v)
(1+v)(I-2v)

l-2v 0 0

s y m m e t r i c  i _ 2 v

l-2v
2(l-v)

( 4.15)
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Now, in the principal stress space and depending on the
jadopted cracking criterion, if the Gauss point^concrete is 

cracked in direction 1 (Figure 4.11 a), then the m a t e r i a l  

property matrix becomes:

= 1 1  ® 0 0 0  0

= 2 2 ®23 0 0  0

-

=33 0 0  0

“c U  - symmetric BG 0  0  

D5 5  0

BG

(4.16)

where Djij are the corresponding values in the [D] matrix as 

obtained from the constitutive equations and ^  is the shear 

retention factor which will be dealt with in section (4.4.2) 

G is the shear modulus for uncracked concrete.

If the point is cracked in direction 2 (Figure 4.11 b), then 

the material property matrix becomes:

11 0 =13 0 0

*
0 0 022
^33 • 0 0

BG 0

symmetric
BG

(4.17)

66

and if it is cracked in direction 3 (Figure 4.11 c), then 

the material property matrix will be;
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[ “c h

11 ®12 0 0 0 0

°22 0 0 0 0
*
^ 3

0 0 0

“44 0 0
symmetric 8G 0

BG

(4.18)

Multi-directional cracks may be achieved by combinations of 

the material prope r t y  matrices [ D ̂   ̂ ] 2 and [ D ^

as foilows :

if cracked in directions 1 and 2 , then:

' V , . :

D 11

[ “ch.3

11

0 0 0 0 0
*
“22 0 0 0 0

“33 ° 0 0

BG 0 0
symmetric BG 0

BG

ons 2 and 3, then:

0 0 0 0 0

4 0 0 0 0

“33 “ 0 0

symmetric BG 0

BG

0

0

BG

(4.19)

(4.20)

if cracked in directions 3 and 1, then



[ ”c h.l

11 0  0 0 0 0

® 2 2  0
0 0 0

*
“ 33 0 0 0

symmetric BG 0 0

BG 0

BG

is cracked in al 1 three
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(4.21)

directions, then:

'11
22

symmetric

0

33

0
0
0

0
0
0
0
PG

0
0
0
0
0
PG

(4.22)

In Equations (4.16) through (4.22) the terms Djj are g i v e n  

very small value if no tension stiffening is used, allowing 

the s t i f f n e s s  n o r m a l  to the c r a c k e d  p l a n e  to v a n i s h  

i m m e d i a t e l y  upon cracking a n d r e m a i n s  zero thereafter. 

Their values will be determined from the descending branch 

of the uniaxial stress-strain curve if tension-stiffening is 

used. Tension stiffening will be dealt with is section

(4.5) .
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Depending on the number of cracks occuring at any load level 

the appropriate material property matrix will be evaluated 

at e v e r y  stress sampling point (Gauss point), and for 

simplicity of discussion the material property matrix will 

be termed [D^] from now on.

The m a trix [D^] is for an orthotropic material and can be 

d i r e c t l y  u s e d  in s t i f f n e s s  c a l c u l a t i o n s  o n l y  in the 

d i r e c t i o n s  of the c r a c k s  at the G a u s s  p o i n t  u n d e r  

c o n s i d e r a t i o n .  To be us ed in the g l o b a l  xyz s p a c e  a 

t r a n s f o r m a t i o n  p r o c e s s  must be p e r f o r m e d .  This is a 

standard procedure and is given by the equation (ref. 27):

t D 1 c x,y,z (4,23)

where [T̂ ] is the strain transformation matrix which takes 

t h e  f o r m  :

4 4 4 V l

4 “ 2 4 h"2 V 2 "2*2

4 h"3 V 3 ”3*3

2m̂ m2 :°i=2 (Î m2+l2®l̂ ("l*2+°2*l)
2*2*3 2m2oy 2*2°3 - (m2n̂ *Hn̂ n2) (n2&2*̂ 2*2̂

2*3*1 2m̂ m̂ 2“3“i (“3^*”ih)

(4.24)

where 1 ^ , m ̂ , n ̂ are the direction cosines of the first 

pr i n c i p a l  stress; 1 2 , m 2 , n 2 are those for the second 

p r i n i c p a l  s t r e s s  ; a n d I 3 , m 3 , n 3 are for the t h i r d  

principal stress.
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The three principal planes are and must always be orthogonal 

to each other. This is checked by satisfying the following 

set of equations (ref. 28):

4 ♦ 4 *4 - 14 ♦ 4 + 4 - 14 . + m| *4 - 1

*1 * 2
+ “l" 2 + • 0

*2*3 + =2=3 + - 0

♦ =3=1 * "3“l - 0

(4.25)

The three principal directions at any point can vary during 

loading before cracking is initiated, but they are fixed if 

at least two cracks exist at that point. One crack fixes 

only one principal direction but constraints the other two 

cracks, when they occur, to be perpendicular to it.

The process described earlier in section (3.3.7) for the 

evaluation of the principal stresses and their directions in 

three dimensional stress analysis applies to concrete before 

cracking when none of the principal stress directions is 

fixed. Once a crack occurs due to any principal stress, say 

, this stress will be rendered zero (or obtained from the 

t e n s i o n  s t i f f e n i n g  law) and the c r a c k  p l a n e  must be 

perpendicular to the direction of this principal stress. In
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subsequent loading the crack direction will be fixed and a 

procedure of transforming the normal and shear stresses is 

fo l lowed, as explained in section (3.9), to obtain

the other two principal stresses for checking' new crack 

formation. In actual fact these will not be "true" principal 

stresses as some shear stresses will result, following the 

transformation process, on the crack planes.

Another fact in this particular situation is that the 

principal strain directions may not coincide with those of 

the principal stresses after cracking. The principal strains 

e v a l u a t i o n  is required for the tension stiffening, shear 

retention and the crushing models as will be shown later. In 

this study, and because of the diff i c u l t y  of e v a l u a t i n g  

their values for a cracked point, the principal strains (can 

be termed ficticious principal strains) are obtained by 

transforming the normal and shear strains into the principal 

stress space using the relationship:

[Ep] = [T^] [ e ] (4.26)

where [ £p] is the "ficticious" principal strain vector which 

contains six components (due to the transformation process). 

The first three of them are the principal strains ^2'

Eg, w h i l e  the remaining three are some shear strains which 

inevitably result. These shear strains vanish in the ideal 

case of the "true" principal strains being obtained. In 

Equation (4.26), [ e ] is the normal and shear strains vector

and [ ] is the stress transformation matrix given by (ref.

2 9) as:
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4 4 4 “ i= i 2=1*1 2*1*1

4 4 ”2 212=2 2=2*2 2*2*2

4 "3 4 " 3=3 2=3*3 2*3*3

4 ”l“2 “l"2 (m̂ n2+m2n̂ ) (*1*2+*2*i)

S =2=3 “2̂ 3 (1203+4302) Cm2n̂ -hn̂ n2) (*2*3*°3*2)
4 ”3=1 “3*̂1

(4-27)
If the m a t e r i a l  cracks in two directions, say ai and ap > 

all p r i n cipal directions will be fixed and the v a lues of 

these two principal stresses will be set to zero.

4.4 Mod elling of Shear Transfer Across Cracks

4.4.1 G e n e r a l

After c r a c k i n g  of concrete two main mechan isms d e v e l o p  

through which shear is transferred from the weak cracked 

section to the surrounding sound concrete; na m e l y  (1) 

aggregate interlocking on the two adjacent surfaces and (2) 

dowel action of any reinforcing bars crossing these cracks. 

The two m e c h a n i s m s  are interrelated and several factors 

govern their relative contribution towards the total shear 

transfered. The main known factors are: (1) crack spacing,

(2) presence or otherwise of reinforcement crossing the 

cracks, (3) bar size, (4) total number of bars crossing, (5) 

bar o r i e n t a t i o n  r e l a t i v e  to the c r a c k  d i r e c t i o n ,  (6) 

aggregate size and roughness, (7) concrete strength, (8) 

crack width and (9) mode of failure. Other factors, not yet

fully defined, may probably also have some influence.
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The m e c h a n i s m s  of shear transfer have been i n v e s t i g a t e d  

e x p e r i m e n t a l l y  and c o n s e q u e n t l y  s e v e r a l  a n a l y t i c a l  

expressions hav e  been suggested. In the finite e lement 

modelling, however, these expressions can not be d i r e c t l y  

used. In the smeared cracking approach the shear transfer is 

modelled through the so-called "shear retention factor", p , 

which varies between 0 and 1, and is defined as:

P = g '/G (4.28)

where G is the redu ced shear modulus for cracked concrete 

and G is the shear modulus for the uncracked concrete. Many 

i n v e s t i g a t o r s  have used a constant value for p (refs. 25, 

30, 31, 32 ), the v a l u e  of which was n o r m a l l y  determined by 

trying s e v e r a l  reduction factors and f i n a l l y  choosing the 

value that gave predictions closest to the experimental 

results of the problem in question. Others used a gradually 

d e c r e a s i n g  v a l u e  for P (refs. 33, 34), f o l l o w i n g  either

linear or nonlinear curves. In both cases it seems that the 

shear ret e n t i o n  factor has been used more as a numerical 

device to obtain good results to match experimental data 

than a real p hysical phenomenon. This seems i n e v i t a b l e  

b e c a u s e  of the f o l l o w i n g  reasons: (1) the a c t u a l

c o n t r i b u t i o n  of the s hear t r a n s f e r  m e c h a n i s m s ,  i.e. 

aggregate i n t e r l o c k i n g  and dowel action is not pre c i s e l y  

known yet, (2) more experimental data and also a unification

of exis ting data is needed, (3) even if all that is done,

the treatment of shear transfer with all its components is

still uncertain to produce a single finite elements model to 

suit a l l  s t r e s s  s t a t e s  at one s t r o k e  b e c a u s e  of the



16 3

vari&tion of the r e i n f o r c e d  concrete b e h a v i o u r  under 

different l o a d i n g  conditions, (4) the shear transfer is 

interrelated with the other aspects of nonlinear behaviour 

of reinforced c o n c r e t e  such as tension st i f f e n e i n g  and 

b o n d - s l i p  b e h a v i o u r  and ( 5 )  in n o n l i n e a r  finite e l e m e n t  

analysis n u m e r i c a l  factors, e.g. co n v e r g e n c e  tolerance, 

maximum number of iterations, increment size etc., also 

affect results obtained using whatever shear retention model 

is used (ref. 32). More d i s c u s s i o n  on these points will be 

presented when applying the developed finite element model 

in Chapters Five and Eight.

4.4.2 Shear Retention Factor Used in This Work 

To achieve an aim of i n c o r p o r a t i n g  a rea l i s t i c  shear 

retention factor to model shear transfer across cracked 

concrete a q u a d r a t i c  f u n c t i o n  is used, based on of the 

"ficticious" direct strain 6 normal to the crack as shown 

in Figure (4.13). This is g i v e n  by:

for 1# P“ 1.0; uncracked concrete

for 1 < e/ e' <  Pa >
p -  Pi -P 4K 1-2P 3) + 2P3(‘ A , '  ) - ( ‘ A t  f  ]  (4 .2 9 )

where (Pi-p^X/Cl-Paf and dp/de -0 atA'.-Pa!

for e/e' > P3 , p - Pg*

In Equation (4 .2 9 ) £* is the uniaxial cracking strain of

concrete, g i v e n  by c! = f; /E , where f ' is the uniaxials t c X
tensile strength of concrete and Ec is the concrete Young's 

Modulus. p^,p^ and p ^ a r e  s h e a r  r e t e n t i o n  p a r a m e t e r s



defining the shape of the curve. represent the sudden

loss of s t i f f n e s s  at crack formation; p^ r e p r e s e n t s  the 

residual shear sti f f n e s s  due to dowel action of any steel 

once a c r a c k  has o p e n e d  s u f f i c i e n t l y  for a g g r e g a t e  

interlocking to cease; and p^ r e p resents the rate of decay 

of stiffness as the crack widens and the crack s urface 

deteriorates .

The exact v a l u e s  of p̂  , p^ and p^are d i f f i c u l t  to obtain 

e x p e r imentally. N e v e r t h e l e s s ,  the fact that the

retention factor is based on the strain normal to the crack 

can be j u s t i f i e d  on the basis that this can be taken as a 

measure of the crack width. The use of a quadratic function 

can also be s u b s t a n t i a t e d  by the crack width m e a s u r e m e n t s  

made in this study as reported in Chapter Seven. N o n l i n e a r  

variation of creak width with applied load was observed.

Studies h a v e  s h o w n  tha t  p can m a r k e d l y  i n f l u e n c e  a 

solution, especially if shear behaviour dominates (ref. 25, 

32, 33, 34, 35, 36). T h e r e f o r e  a study of p was made for

each a p p l i c a t i o n  of the finite e l e m e n t  model as w i l l  be 

presented in Chapter Five.

Another us e f u l  n u m e r i c a l  ro le for the shear r e t ention 

factor, p , is to suppress the singularity that might result 

when all the e.lements s u r r o u n d i n g  a p a r t i c u l a r  node h a v e  

cracked in the same direction. S u ch— a node w o uld then be 

fcee to mov e  n o r m a l  to the crack direction because the 

resulting extensional and shear deformations do not give any 

restraint without such a shear retention factor (ref. 26).



165

4^ Tension Stiffening Phenomenon and its Modelling 

4^^1 Introduction

The physical s i t u a t i o n  in the vicinity of a crack in 

reinforced concrete is illustrated in Figure (4.14). As the 

concrete reaches its tensile strength primary cracks form. 

The number and extent of these cracks is mainly controlled 

by the size, p o s i t i o n  and orientation of any r e i n f o r c i n g  

bars crossing the crack. At the position of the primary 

crack the stress in c o n c r e t e  drops to zero and the steel 

carries the full load. The concrete between the cracks, 

however, can still carry some tensile stress. This tensile 

stress d r o p s  as the l o a d  i n c r e a s e s  and this d r o p  is 

associated primarily with bond deterioration between steel 

and concrete. This phenomenon is termed tension stiffening 

and has seen l i m i t e d  e x p e r i m e n t a l  studies (ref. 37 for 

example) to verify its importance and effects, although it 

is being normally included in finite element models.

In modelling tension stiffening effect two procedures have 

normally been used. In the first procedure the tensile 

portion of the c o n c r e t e  s t r e s s -strain curve is g i v e n  a 

descending t a i l  (ref. 32, 36, 38, 39, 40). The s e c o n d

procedure treats tension stiffening by increasing the steel 

stiffness (ref. 41. 42). The additional stress in the

reinforcement represents the total tensile force carried by 

both the steel and the sound concrete between the cracks.

L U ,  Tension Stiffening Model Used in This Work 

tension S t i f f e n i n g  is m o d e l l e d  by a gradual release of 

stress normal to the c rack plane and by a gradual decrease 

stiffness. This is sp e c i f i e d  by a linear d e s cending
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stress-strain curve beyond the uniaxial cracking strain 

shown in Figure (4.15) and given by:

for t/cj ^  1# linear-elastic conditions exist; 

for 1 < €/£,' ^  *2
o - -2dL._ (o2-e/e;) (4.30)

(«2-1)
and Ej «S o/e , the secant modnlus at strain € ; 
for e/e' y  â t a = 0.0 and Ey = 0.0

where o^and o^are the tension stiffening parameters which 

define the shape of the curve, represents the sudden loss 

of stiffness at crack formation; Cg represents the rate of 

decay of stiffness as a crack spreads and widens, and as 

bond and concrete deteriorate in the vicinity of the crack. 

The v a l u e  of E y is e v a l u a t e d  from Equation (4.29) at any 

iteration during the loading process and is used in the 

mater i a l  property matrix [D^,] dep ending on whether the 

crack is caused by , CFg ora^.

T h e r e  are no g e n e r a l l y  a c c e p t e d  v a l u e s  for andttg . 

Studies have shown that they can have a strong influence on 

the b e h a v i o u r  e s p e c i a l l y  when flexure dominates (ref. 32, 

35, 36, 38, 39, 40). This g r e a t l y  depends on the type of

structure and loading conditions and can be i m p e r i c a l l y  

derived. Cope (ref. 40) used a v a l u e  ofeCg = 15 for concrete 

slabs. He argued that accuracy in predictions of behaviour 

may be an i l l u s o r y  goal and sug gested the use of simple 

models for such phenomenon. Al-Manaseer (ref. 32) reviewed 

various tension stiffening models. He argued that tension 

s t i f f e n i n g  can p r o d u c e  s a t i s f a c t o r y  results to match
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experimental curves, but is very much i n t e r r e l a t e d  to the 

convergence tolerance and other factors.

There has been some strong discussions as to whether the 

retention of the shear modulus meets the same numerical 

goals as the addition of tension stiffening even though they 

represent different phenomenon (ref. 26). Furthermore, a 

recent numerical approximation has also been put forward by 

P h i l l i p s  and A l - M a n a s e e r  (ref. 38) suggesting the use of 

coarse residual force convergence tolerances and ignoring 

the effect of tension stiffening altogether. However, there 

is no unified reported evidence of adequate depth to support 

e i t h e r  of the two a r g u m e n t s  to f i n a l l y  s e t t l e  the 

discussion. In Chapter Five a study of the above two aspects 

is reported for different a p plications in an attempt to 

contribute to the above discussions and also identify limits 

on those parameters for the finite element model developed 

in this study.

4.6 Crushing Model

Crushing indicates the complete rupture and disintegration 

of the material under compressive stress states. In physical 

terms, the material after crushing can no longer sustain any 

stresses and the current stresses drop a b r u p t l y  to zero. 

Concrete is assumed to lose its resistance to further 

d e f o r m a t i o n s .  In f i n i t e  e l e m e n t  m o d e l l i n g  this is 

accomplished by releasing all current stresses at the Gauss 

(sampling) point, once crushing is detected, and setting the 

whole of the [D] matrix to almost zero in all subsequent 

loading.
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In order to cut-off the post-peak c o m p r e s s i v e  stress 

behaviour, m o d e l l e d  by Ottosen's c o n s t i t u t i v e  laws as 

previously described, the following two crushing criteria 

were used:

111 The First Crushing Model

In this model a uniaxial criterion is used. A Gauss point is 

cons i d e r e d  crushed if the minimum principal c o m p r e s s i v e  

strain exceeds (in absolute value) the uniaxial crushing 

strain of concrete, , regardless of whether the Gauss 

point is already cracked or not.

m The Second Crushing Model 

In this m o d e l  a c o m b i n a t i o n  of two c r i t e r i a  is used 

dep e n d i n g  on the state of cracking at the Gauss point in 

consideration. It states:

(a) If the point is cracked in at least one d i r e ction then 

the first crushing criterion is used.

(b) If the point is uncracked then the von Mises triaxial

f a i l u r e  s u r f a c e  in s t r a i n  space is u s e d  to c h e c k  for 
crushing. This is given by the following equation:

where tj, Eg , are the three principal strains and 6^^i s 

the uniaxial crushing strain of concrete, the value of which 

is often taken as 0.0035 but a c t u a l l y  depends on con crete 

strength.

4.7 Bond Anchorage

It is w e l l  r e c o g n i z e d  that the c a r r y i n g  c a p a c i t y  of 

reinforced concrete structures depends on the bond behaviour 

between concrete and the reinforcing steel. Several studies
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have been made to determine the mechanisms of bond, bond- 

slip and bond-splitting of deformed reinforcing bars (refs. 

44-49). Bond between smooth bars and concrete depends on 

chemical adhesion and friction. On the other hand, the bond 

behaviour of deformed bars, which are in extensive use 

nowadays, is fundamentally different and depends primarily 

on the bearing of the steel ribs against the i n t e r v e n i n g  

concrete keys. Bond conditions at a rib on a deformed bar 

differ s i g n i f i c a n t l y  from those at locations between the 

ribs, therefore it is impossible to obtain a bond stress 

distribution which is applicable to all points (ref. 26).

P u l l - o u t  tests are g e n e r a l l y  used for the d e v e l o p m e n t  of 

bond f o r c e - d i s p lacement relations base on either the 

anchorage app roach or the transfer approach. In the former 

the load is applied at one side of a steel bar embedded in a 

concrete cylinder, while in the latter the force is applied 

on both sides of the bar (Figure 4.16). To be useful in 

f i n i t e  e l e m e n t  m o d e l l i n g ,  h o w e v e r ,  the c o n s t i t u t i v e  

relations between bond stress and bond-slip must necessarily 

be expressed on a local basis, i.e. at r e p r e s e n t a t i v e  

locations along the stee 1 / c o n c r e t e  i n t e r f a c e  b e c a u s e  

stresses and strains are calculated at sampling points along 

the reinforcing bars.

A comparison of the bond stress-slip by a number of workers, 

shown in Figure (4.17), reveals the staggering variation of 

results obtained by different tests. This seems to strongly 

indicate the need for further research in this area in order 

to get more insight into this important property.

S o - c a l l e d  linkage e l e m e n t s  were introduced by Ngo and



170

S c o r delis (ref. 22) to model b o n d - s l i p  be h a v i o u r  in a two- 

di m e n s i o n a l  no n l i n e a r  finite e lement model. The linkage 

element, shown in Figure (4.18), consists of two orthogonal 

springs which connect and transmit shear and normal forces

between two adjacent nodes. The stiffness matrix of the

linkage e l e m e n t  is c a l c u l a t e d  in the local coordinates, 

transformed to the global system of coord inates and then 

added to the overall stiffness matrix of the structure. The 

l i n k a g e  e l e m e n t ,  t h e r e f o r e ,  l u m p s  a l l  the i n t e r f a c e  

behaviour at a nodal point in a discrete manner in contrast 

to the actual distributed behaviour. This was soon realised 

as a serious drawback and was later improved by the so- 

c a l l e d  "bond-interface elements" (refs. 50, 51), being

arranged along the stee 1/concrete interface (Figure 4.19).

However, due to the lack of enough evidence to aid modelling

the b o n d - s l i p  behaviour, and as dict ated by the embedded

bar's formulations, presented in Chapter Three, full bond is

assumed between concrete and steel. Also its overall effects 
are taken into account in the tension stiffening model.

4.8 Steel Constitutive Laws

In contrast to concrete behaviour, r e i nforcing steel is a 

comparatively well behaved material. Its properties can be 

determined within close tolerances and there does not seem 

to be much p r o b l e m  in m o d e l l i n g  its beh a v i o u r  in finite 

e l e m e n t  codes. Its p r e s e n c e  in r e i n f o r c e d  c o n c r e t e  

structures is normally in the form of slender bars and thus

the behaviour is essentially uniaxial.

Typical steel stress-strain curves in tension are shown in

Figure (4.20). The steel b e h aviour is g e n e r a l l y  assumed to
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be identical in tension and compression. Figure (4.21) shows 

four different finite element idealiz ations in common use 

for r e i n f o r c i n g  s t e e l  b e h a v i o u r .  For each cas e  it is 

necessary to determine, experimentally, the v a l u e  of the 

stresses and strains at the onset of yield, strain hardening 

modulus after yield and at the ultimate tensile strength as 

well as the elastic modulus.

In conjunction with reinforcing steel simulation presented 

in Chapter Three, the first two idealizations of Figure 

(4.21) were incorporated in the finite element program. The 

i d e a l i z a t i o n  of steel behaviour as an e 1 a s t i c -p e r f e c t 1y- 

plastic is quite acceptable particularly for mild steel. For 

high yield steel, however, a strain-hardening effect may be 

important. Elastic unloading is not included.



1 72

Desayi  & Krishnan

0.4
Hognestad

0.0 -0.5 1.0 1.5 - 2.0 2.5 -3.0 3.5

Figure (4.1) Uniaxial stress-strain curve illustrating
Ottosen's parameters A and 0, and in particular 
the effect of the parameter D on the post-failure 
behaviour
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Figure (4.2) Post-failure behaviour for intermediate stress 
states that do not result in cracking or 
compressive crushing of concrete



173

0.8 ----

0.6

0.4  —

0.2

0.2 0.4

Figure (4.3) Variation of secant value of Poisson's ratio
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Figure (4. 4) Hoigh-Westergoord coordinate system
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'able_X4_i.lJ. Parameter values and their dependence on the a^j-Za^ 

ratio for Ottosen's concrete constitutive laws 

(ref. 12)
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for Ottosen's failure criterion (ref. 14)
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Figure (4.5) Schematic failure surface of concrete in 
three dimensional stress space
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Figure (4.6) Verification of Ottosen's failure criterion 
against biaxial test results (ref. 13)
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Figure (4.9) More verification of Ottosen''s and the modified 
Coulomb criteria against test results (ref. 13)
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Figure (4.10) Discrete and smeared cracking model.
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Figure C4. 14) Physical situation in the vicinity of a crack 
in reinforced concrete (ref. 26)
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Figure (4.15) Tension stiffening model
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Figure (4.16) Types of pull-out tests used for bond studies 
(ref. 26)
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Figure (4.17) Comparison of bond slip relations (ref. 26)
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Figure (4.18) Linkage element for modelling of bond behaviour 
of reinforced concrete (ref. 22)

Ms»'

Figure (4. 19) Bond interface elements (ref. 51)
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Figure (4.20) Typical steel stress-stroin curves (ref. 11)
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Figure (4.21) Different idealizations for ttie stress-stroin curve 

of steel in tension or compression:
(a) elastic perfectly plastic, (b) trilinear 
approximation, (c) complete curve, Cd) bilinear 
approx i mot i on
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ÇHAPTER_FIVE

APEEAISAL_0F_THE_DEVEL0PED_N0NLINEAR_FINITE_ELEMENT_PR0GRAM 

5^1_introduçtion

The three dimensional nonlinear finite element program

developed as part of this study is applicable to many types 

of reinforced concrete structures. The full nonlinear 

torsional behaviour of solid rectangular or flanged sections 

is only one application. Therefore the object of this

chapter is to present an examination of the reliability of 

the developed method on a variety of reinforced concrete 

structures under different loading types. This is done prior 

to applying the model for the analysis of L-sections 

subjected to pure torsion which will be presented later.

One objective of this appraisal, in addition to testing the 

model reliability, is to identify the important material and 

solution parameters which affect the types of applications 

considered. Experimental results reported elsewhere are used 

to carry out this appraisal. Use was also made of literature 

to provide previous finite element models for comparisons

(for example refs. 1, 2, 3, 4 ,5).

Numerical parameters can be classified into three groups: 

solution parameters, quasi-material parameters, and actual 

material parameters. The quasi-material parameters are 

factors which are treated as if they were material 

parameters but in fact are really numerical devices used to 

produce a required effect (ref. 5). The most important of 

these parameters are:

(1) Solution parameters

(a) Convergence tolerances
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(b) Number of iterations

(c) Method of updating the stiffness

(d ) Mesh size

(2) Quasi-material parameters

(a) Shear retention parameters

(b) Tension stiffening parameters

(3) Actual material parameters

(a) Crushing criterion for concrete

(b) Tensile strength of concrete

(c) Young's modulus

Some of these parameters are investigated in the present

work and will be reported in this chapter for the following

applications :

{1 ) Deep beams

(2 ) Shallow beams simulating beam-column connection

(3) Rectangular beams subjected to pure torsion

(4) Rectangular beams subjected to combined bending and

torsion

5^2_Ap£lication_to_Dee£_Beams

5^2^1_Introduction

When the span/depth ratio of simply supported beams is less

than 2, or less than 2.5 for any span of a continuous beam,

it is customary to define these beams as deep (ref. 6 ).

Most commonly, these structures are encountered in

foundation walls supported by strip footings or raft slabs.



194

in parapet walls, in shear wall structures that resist 

lateral force in buildings and in tall buildings.

The traditional principles of stress analysis are neither 

suitable nor adequate to determine the strength of 

reinforced concrete deep beams. Plane sections in these 

beams do not remain essentially plane under loading; but 

this is also true at the end of every simple span beam (ref. 

7). The dimensions of deep beams promote shear deformations 

to become more important in comparison to pure flexure. 

Furthermore, deep beams are rather sensitive with respect to 

the loading at the boundaries. The length of the bearings at 

the beam supports or load application would affect the 

principal stresses, which can be very critical in the 

immediate vicinity of these bearings.

There is no intention to review deep beams behaviour in the 

following sections. The main aim is to assess the 

reliability of the developed three dimensional nonlinear 

finite element model when applied to this category of 

structures. In recent years a good deal of analytical and 

experimental work has been undertaken in attempts to study 

reinforced concrete deep beams behaviour (refs. 8 , 9, 10,

11, 12, 13, 14). The complexity of their behaviour was

highlighted as were the limitations of the various proposed 

methods of treatment.

5^2^2 Beam Chosen for the_Study

The beam chosen for this analysis, denoted beam 101, was 

experimentally investigated by Lin (ref. 13) as part of a
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series of tests on eleven simply supported normal weight

concrete deep beams. The beams were loaded by a central

concentrated load and were divided into two main groups. 

One group with a span/depth ratio of 1.8 and one group with

0.9. The main objective of the test was to examine the

effect of concrete strength and orientation of reinforcement 

directions. Concrete strength was found to be very important 

in these beams as an increase of its value produced an 

increase of the ultimate strength. An increase in the 

amount of reinforcement was found not to have an important 

influence on the load at which diagonal cracks appear, but 

has the advantage of restricting the crack width and thus 

increasing the ultimate load.

2^2^3_Beam_Des c r i_£t i on_and_Ou 11 ine_qf _the_Numer ical_S tudy 

The beam's dimensions and reinforcement details are shown in 

Figure (5.1). The beam was simply supported on an effective 

span of 900.0 mm and was loaded at the centre. Bearing 

plates were provided at the two supports and the load point. 

Local reinforcement cages were provided to increase the 

bearing capacity at the supports and the load point, details 

of concrete and steel properties are given in Tables (5.1) 

and (5.2). While all reported material properties were used 

in the analysis, some additional ones had to be assumed, 

when demanded by the material laws incorporated in the 

model .

Because of symmetry only half of the beam was considered in 

the analysis. Two finite element meshes were used as shown 

in Figures (5.2) and (5 .3 ). The first mesh consisted of 9
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elements and the other of 12 elements. All reinforcing bars 

were placed at their exact locations in the actual structure 

without imposing any restrictions on mesh choice.

It can be seen that in the 9-element mesh only the 

effective span (i.e. from the beam centre line to the middle 

of the supports) was considered and the loading was applied 

as a concentrated point load. On the other hand, the 

12-element mesh was constructed to account for both bearing 

plates at the support and at the load point. This was a more 

realistic modelling as these plates have a significant

effect in deep beam behaviour as already mentioned. In this 

particular beam their dimensions are quite considerable in 

comparison with the beam span. Because of this a study on 

the effects of boundary conditions and load application was 

undertaken using elastic analysis.

Figure (5.4) and Table (5.3) summarise the results of this 

study. The results show clearly the great difference that 

can be produced by using different boundary conditions 

and/or different load application which, on the face of it, 

might seem to be applicable for the same problem. Case 4 of 

Figure (5 .4 ) was finally chosen for the full nonlinear

analysis using the 12-element mesh because it gave the 

closest elastic deflection when compared to the experimental 

value. This choice is also justified by the fact that the

applied load was actually distributed over the area under

the loading plate in the experiment. Although a similar 

argument may apply to the reactions, the difference between 

the two is that the plates at the supports can allow some
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rotation of the beam ends.

Further study on numerical parameters effecting the 

behaviour of this deep beam included the following:

(1) The effect of shear retention parameters

(2) The effect of tension stiffening parameters

(3) The effect of the convergence tolerance associated with 

both the above parameters

The following assumptions/parameters were used in the 

analys is :

(1) A 3x3x3 Gauss rule was used throughout

(2) The load was applied in small equal increments of 40.32 

KN until failure.

(3) The stiffness is recomputed at the beginning of each 

load increment

The comparison of the theoretical and experimental results 

are based on the load-deflection curves, steel response and 

crack patterns as will be discussed in the following 

sections .

2̂ 2.4 Effect of Shear Retention Parameters

Because shear stresses are dominant in deep beams it was 

considered important to first investigate the effect of the 

shear retention parameters on the behaviour of this 

particular beam. The 12-element mesh was employed (case 4 of 

Figure 5.4). Different values of shear retention parameters 

were examined, coupled with two values for the convergence 

tolerance, namely 10% and 1%. In order to isolate other
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effects, the tension stiffening model was set inactive and 

equal increments of load were applied in all cases. For 

discussion of results, the shear retention parameters 

and ) together with the tension stiffening parameters(#^ 

and @2 )» discussed in Chapter Four, are recalled here.

Figure (5.5) shows the results of this study. The

experimental and predicted pre-cracking parts of the

load-deflection curves are almost identical, confirming the 

adequacy of the boundary conditions, load application and 

the various assumed material properties necessary for 

concrete stress-strain laws. After cracking and up to a load 

of about 330.0 KN (57.4% of the experimental ultimate load) 

all theoretical curves are very close to each other, 

probably because the spread of cracking was not enough to 

produce significant differences due to the shear components 

in the stiffness matrix. All curves up to this stage are 

predicting the post-cracking stiffness reasonably well, 

despite all giving slightly higher displacement than the

experimental curve (about 12% on average) for the same

applied load.

The effect of the limits on the shear retention parameters 

and the value of the convergence tolerance are more profound 

beyond this load level. Higher limits on and ^2 resulted 

in higher ultimate load, higher stiffness and also closer 

curve to the experimental. The values = 1.0, and

Toler = 10% gave the best ultimate load prediction (98.17% 

of the experimental) but it is not clear whether these 

limits are reasonable, particularly P2 ~ 0.5 because this
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implies that 50% of the shear stiffness is assumed to have 

been retained by the dowel action beyond a normal tensile 

strain across the cracks of 4000 microstarin.

However, the lower values ofp^= 0.5 and pg= 0.1, used with a 

convergence tolerance of 10%, produced an ultimate load of 

91.16% of the experimental, judged as fairly acceptable 

given the complexity of deep beam behaviour and the too many 

solution and material parameters involved with not enough 

experimental evidence to support or suggest any particular 

combination. The curve for ^ = 1 . 0 ,  ^  = 0.1 and a

convergence tolerance of 10% produced only little effect, 

with the curve only slightly stiffen than the previous one, 

indicating probably the small effect of the upper limit on 

the shear retention factor, P . Similar reduction of p.j from

1.0 to 0.75 for the same values of pg (=0.1) and Toler (=1%) 

produced only a mild effect apparentley near ultimate 

conditions. An ultimate load of 84.15% of the experimental 

was predicted in this case. This may confirm the previous 

observation regarding the upper limit on the shear retention 

factor.

The strong influence of the convergence tolerance, for the 

same combination of shear retention parameters, is clearly 

evident from the first two theoretical curves in Figure 

(5.5), with = 1.0 and p^ = 0.1 where two values of

convergence tolerance were used, namely 10% and 1%. 

Noticeably higher displacement was obtained at the same 

applied load for Toler = 1%. Furthermore, after the load of 

330 KN the curve for 1% Tolerance deviates considerably
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giving even much higher displacement for the same applied 

load than the curve for 10%. More importantly, the ultimate 

load predictions were considerably different, being 98.17% 

and 84.15% of the experimental respectively.

The above observations demonstrate clearly the difficulties 

associated with nonlinear finite element analysis as the 

same results could be obtained using different combinations 

of parameters and also illustrate the care that should be 

exercised when dealing with any particular application

especially if the behaviour itself is complicated.

It is reported that the beam failed experimentally in a 

diagonal compression failure. The experimental

load-deflection curve seem to suggest that crushing occured 

at a load of about 500.0 KN as can be seen in the sudden 

sharp decrease in stiffness beyond this load. The slope of 

almost all theoretical curves beyond a load of about 400.0 -

450.0 KN is practically the same as the slope of the 

experimental curve after the sharp reduction of stiffness, 

indicating that even at this critical stage the failure

mechanism was apparently predicted well. This is coupled

with the reasonable prediction of the crack propagation and 

final pattern which will be presented later.

Horizontal stress and strain distributions at a section near 

the midspan are shown in Figure (5.6) at four different load 

levels. It can be seen that at elastic load level there was 

minor nonlinearity in the stresses at the top of the beam. 

However, as cracks started to appear the stresses dropped to



201

zero in the cracked region as the compressive stresses 

increased in the top of the beam.

A more interesting behaviour is seen from the strain 

distribution. Again, before cracking and similar to the 

stresses minor nonlinearity is present at the top the beam. 

The neutral axis is located practically at the mid-depth of 

the cross section. On further loading, both tensile strains 

(below N.A.) and compressive strains (above N.A.) increases 

as expected, resulting in a continuous shift of the neutral 

axis upwards. This observation, coupled with the previous 

one regarding stress distribution, gives a certain degree of 

satisfaction on the performance of the finite element model 

as cracking spreads upwards, indicating that the tensile 

stresses are well redistributed onto the structure and that 

the neutral axis moves upwards as expected with increasing 

load. At a load of 403.2 KN (70.1% of the experimental 

failure load) the tensile strain at the bottom fibre is 

about 3600 microstrain, the compressive strain at the top 

fibre is about -2000 microstrain and the neutral axis depth 

is about 100 mm (20% of the total depth of the section 

approximately).

5^2^5 Effect of Tension Stiffening Parameters

The 12-element mesh was used in this study. All reported 

concrete and steel properties were used. Al-Manaseer (ref.

15), using a two-dimensional plane stress model, used a 

constant shear retention factor of 0.5 for this beam. This 

value was chosen for in this study to simulate the

sudden drop of the shear stiffness immediately upon
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cracking. The value pg=0.1 was chosen to simulate the effect 

of dowel action after the cracks open widely enough for 

aggregate interlocking to cease. =0.004 determined

the rate of decay of shear stiffness and also the normal 

strain at which aggregate interlocking was assumed to cease 

(i.e. at 4000 microstrain).

There was not enough experimental evidence to give precise 

choice of p.| , Pg 9ind p^E^ . However, experimental results 

(ref. 26) indicated significant loss of shear strength of 

beams in hogging regions of up to about 40% depending on 

various parameters such as the position of the top and 

bottom reinforcement and whether or not the main bars are 

curtailed or lapped. It must be pointed out that such 

results are not immediately ready for use in finite element 

models, but they can serve at least to indicate the 

directions to follow when setting up models for different 

aspects of behaviour. Hence the choices of the three shear
t

retention parameters at p̂  = 0.5, Pg = 0.1 and p^E^ = 0.004. 

The value of 4000 microstrain amounts roughly to twice the 

yield strain (or the proof strain) of most types of steel 

which seem to be high enough to allow the cracks to open 

sufficiently wide for dowel action to assume the main share 

of shear stiffness of the cracked section.

Having thus fixed the values of the shear retention 

parameters, the tension stiffening parameters ( and oCg ) 

and the convergence tolerance (Toler) were systematically 

varied. The results are shown in Figure (5.7) where the load 

deflection curves are compared. It is clear from the figure
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that the use of tension stiffening has a significant effect 

in the early nonlinear part of the load-deflection curve. 

However, the ultimate load predictions did not suffer an 

appreciable increase when tension stiffening was used. This 

can be attributed to the fact that the ultimate failure is 

normally brought about by the effects of yielding of 

reinforcement, shear and diagonal cracking, and concrete 

crushing all of which have a stronger effect than tension 

stiffening at higher load levels.

It is interesting to note that the tension- and no-tension 

stiffening curves in Figure (5.7) formed two distinct groups 

with the experimental curve in between for the early 

nonlinear part of the curve. This tend to suggest that some 

element of tension stiffening takes place in this type of 

structure at early loading. However, it may be extremely 

difficult to quantify. From the figure the values of OOj=0.5 

and 0C'j^=5.0 with Toler = 1 % gave the best fit to the

experimental curve. The predicted ultimate load was 91.16% 

of the experimental.

Figure (5.8) shows the effect of tension stiffening on the 

steel strains. It seems from the curves that the no-tension 

stiffening results are in better comparison with the 

experiment unlike the load-deflection curves. The effect of 

tension stiffening in underestimating the steel strains is 

clearly seen here. This seems to suggest that although 

tension stiffening can be used to enhance comparison of 

load-deflection curves it may produce undesired effects on 

the steel response. It follows that low values of tension
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stiffening parameters are recommended when using this model 

for deep beams, <0.5 and G2 <5.0 for example. It would be

extremely difficult, in the author's view, either to set 

exact values for such parameters or to generalize such

conclusions once particular values are offered.

The policy adopted here, from the different cases studied 

and presented in this chapter, is to derive conclusions 

regarding numerical parameters for each category of problems

individually. This is because of the differences in stress

distributions resulting from different loading types on 

different types of structures. Therefore conclusions 

regarding effects of certain parameters on one category of 

problems may not necessarily suit the others.

Because of the reason that analyses are always carried out 

for reinforced concrete structures in order to provide the 

deformations and forces in concrete and steel at various 

loading stages, conclusions in this study will always be 

drawn from results that show good comparisons for overall 

behaviour (load-deflection curves, torque-rotation curves 

etc.) as long as the basic behavioural characteristics, such 

as steel response, crack propagation and patterns and 

failure loads are predicted within reasonable accuracy. The 

fact that reinforced concrete is a complex material is 

always in m i n d .

It can also be seen from Figure (5.8) that after yielding of 

steel the theoretical curves show a more flexible response 

than experiment. Very high steel strains were obtained. This
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could bG a t t r i b u t G d  to t h G fact that in. thG GxpcriniGnt a

grGat deal of bond was lost at this stagG w h i l G  in thG 

a na ly si s full bond was a ss uma d up to failura. D G t a r i o r a t i o n  

of bond bG t w G G n  co n c r a t G  and steel rasults in slip and hc n c G  

r e l a x a t i o n  of stool strains.

Thoorotical crack patterns are shown in Figure (5.9)

together with the final experimental crack pattern. It can 

be observed that vertical cracks appeared near the midspan 

at low load levels. On further loading these cracks spread 

first off-centre towards the supporté and later upward. The 

cracks within the midspan were vertical, those off-centre 

were continually inclined towards the centre line of the 

beam forming struts between the supports and the load point. 

Yielding of steel occured upon further loading near midspan 

followed by crushing of concrete, which first occured along

the diagonal struts closer to the support points before

causing the final collapse of the beam. The final 

theoretical crack pattern agrees reasonably well with that 

from the experimental results.

The effect of tension stiffening can also be illustrated by 

studying the rate of decay of the residual forces during the 

iteration process. Figure (5.10) shows such a study where it 

is clear that tension stiffening reduces the amount of 

residual forces. This is because the tensile stresses in

concrete are not completely released onto the structure 

unless the limiting strain, after which the tension

stiffening ceases, is exceeded. The gradual release of 

concrete tensile stresses is responsible of the stiffen
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load deflection curves when using tension stiffening than 

when no tension stiffening is used.

5^ 2^ 6_Çonçlusions

The conclusions drawn from this part are as follows:

(1) The developed finite element model provided fairly 

satisfactory agreement with experimental results for the 

deep beam chosen.

(2) The shear retention parameters affect the behaviour of 

the deep beam studied particularly after about 50% of the 

failure load, however, this is very much interrelated with 

the convergence tolerance. The results indicated that care 

must be exercised when dealing with these parameters. The 

same results could be obtained using different combinations 

of shear retention parameters and convergence tolerance. The 

most sensitive aspect of behaviour to these parameters is 

the ultimate load.

(3) The theoretical strain and stress distributions obtained 

showed satisfactory behaviour as did the predictions of the 

post-cracking stiffness. This might seem to illustrate the 

adequacy of the orthogonal smeared cracking model employed 

in this study for this type of behaviour.

(4) Use of tension stiffening seems to enhance the early 

portion of the theoretical curve without significantly 

increasing the predicted ultimate load. Its use is generally 

not desirable for this type of structure. If it is used, 

however, low values of tension stiffening parameters (
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0  ̂— 5*0 recommended, coupled with low values

of convergence tolerance, say Toler = 1%.

(5) Proper modelling of boundary conditions and load

application was found important in this type of analysis. 

However, although this aspect was studied for linear elastic 

conditions, it showed considerable effect. This is basically 

because the bearing plates used at the supports and under 

the applied load are usually long in comparison to the beam 

dimensions. This greatly affect the stress distributions 

near the support and at load application.

5^ 3_A2£l. i.cat ion_to_Shal^j[ow_Bearas_S^mulat^ng_Beam-Co ].umn 

C o B R G C t ^ o n  

5^3^1_lntroduction
Beam-column connections are a common feature of reinforced

concrete structures. Although the individual behaviours of 

the beam and column are relatively simple, the local

behaviour of the junction makes the whole system much more 

complicated. A study was conducted by Burns and Siess (ref.

16) to investigate the 1 oad-deformation behaviour of

beam-column connections of reinforced concrete frames. Tests 

were made on beams simply supported and loaded through a 

column stub at midspan.

§^3^2 Beam Chosen for the Study

Beam J4 of the test series was chosen for the purpose of 

this study. The beam has also been analysed by various 

authors (refs. 15, 17, 18) and so gives additional

comparisons. Details of the beam are shown in Figure (5.11)
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and the material properties are shown in Table (5.4). Two 

load-deflection curves were reported by the authors for this 

beam. The first one is a curve cut—down just beyond the 

yield point and up to a 2 in. (50 mm) central deflection. 

The second curve is one which gives the complete behaviour 

up to the ultimate load and in which the first part of the 

curve up to the yield point is approximated by a straight 

line. This is because the authors were concerned with the 

four main points of change in the behaviour of the structure 

namely cracking, yielding, first crushing and ultimate 

stage. Therefore the theoretical results of this study will 

be compared with both those curves for better judgement and 

understanding.

Because of symmetry, only half of the beam will be analysed. 

The finite element mesh used is shown in Figure (5.12). All 

steel reinforcement was placed at the exact locations and a 

3x3x3 Gauss integration rule was used. The load was applied 

in equal increments of 16 KN until failure occured. Enough 

load increments were provided to ensure failure will occur.

5^3.3 Discussion of Results

In the analysis of this beam the values of the shear 

retention parameters were first set at = 0.5, Pg  ̂ 0 - 1

and p^C^ = 0.004, and tension stiffening was set inactive to 

start with, following the observations of the previous 

section. The maximum number of iterations was taken as 15 

and the stiffness was recomputed at the beginning of each 

load increment.
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Figures (5.13) and (5.14) show load-deflection curves for 

different yield strengths of steel, f̂  . This was reduced by 

9% and 15% because it was noticed that it had the major 

effect on the behaviour at the yielding stage, following the 

reasonable prediction of both the cracking load and the 

post-cracking stiffness for the chosen values of shear 

retention parameters as can be seen in the above figures. In 

the experimental curves the yield point is the most definite 

of all four points along the load-deflection curve. It marks 

a complete change in behaviour.

The ultimate load predictions were higher than the 

experimental value by 12.2% and 4.2%, for the two reductions 

in the yield value of steel, respectively. The reduction of 

^  can be arguably justified on the basis that a major part 

of bond between steel and concrete is usually lost near 

ultimate conditions, a behaviour not accurately handled in 

the present finite element model as full bond is assumed 

leading to overestimation of the ultimate load. This can be 

compared with the reasonable predictions of both the 

cracking load and the post-cracking stiffness as the first 

one is independent of bond-slip characteristics and the 

second one is mildly affected by bond deterioration

especially in the early stages.

Because of the dominance of flexural stresses and the belief

that tension-stiffening is more associated with flexural

behaviour, an attempt to study the effect the tension

stiffening parameters was also made to clarify this point 

for the present finite element model. Several values of



2 10

i€-A.Sto‘̂ parameters, o.j. and oCg , were examined using

two values of convergence tolerance (Toler), namely 10% and 

1%. The coarse value of 10% is considered enough fof a

reasonably accurate equilibrium whereas 1% is tight enough

for equilibrium for all practical purposes.

Figures (5.15) and (5.16) show the results of this study. On 

the whole, all values of tension stiffening parameters 

regardless of the value of the convergence tolerance

produced a very clearly stiff post-cracking response and a 

gross overestimation of the ultimate load. However, the

effect of the smaller value of the convergence tolerance is

evident near ultimate conditions but it was not enough to 

give appreciable reduction on the ultimate load. Reduced

values of c.̂ and resulted in less stiffen post-cracking 

response but still with overestimation of both the 

post-cracking stiffness and the ultimate load. Both

parameters seem to affect the behaviour markedly

particularly after the yield point.

A load-deflection curve from the previous set, i.e. with no 

tension stiffening, is also included in Figures (5.15) and 

(5.16). It is clearly evident that the no-tension stiffening 

curve is better in predicting both the post-cracking 

stiffness and the ultimate load. More importantly, the main 

points along the load-deflection curve, in particular 

cracking and yielding points are more clearly defined in 

this case than when tension stiffening is at all used. It is 

not apparent, however, which combination of these parameters 

best suit this particular problem apart from the conclusion
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that tension stiffening might not give accurate results. 

Clearly further study on this problem is needed but that 

falls beyond the scope of this study.

The following paragraphs describe the results with tension 

stiffening inactive and compares them with the experimental 

behaviour. It was observed during the experiment that the 

cracking started at a load level of about 40.0 KN while the 

reinforcing steel yielded at a load of 156.0 K N . In this 

analysis, cracking started at a load of 48.0 KN while 

yielding of reinforcement started at a load level of 144.0 

K N . when f̂  was reduced by 15%.

Analytical crack patterns and propagation are shown in 

Figure (5.17). The beam cracked first at the region of the 

maximum bending moment near midspan. Cracks then propagated 

upwards and outwards, those near the centre line remaining 

vertical while the ones nearer to the support inclined 

towards the centre of the beam. The experimental crack 

propagation was only described as no figure was provided in 

reference (16). The theoretical crack propagation agrees 

reasonably well with that description. The marked changes of 

stiffness at cracking and in particular at steel yielding 

are well predicted. Crushing was observed at elements 3 and 

4 indicating the local behaviour, due to stress 

concentrations at the junction near the ultimate load, which 

agrees well with experiment.

Theoretical steel response is shown in Figure (5.18) at 

different points along the main reinforcement. Although
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there wer-e no experimental results to compare with, the 

general behaviour follows that of the load-deflection curve 

indicating an expected response. After thé yield point very 

high steel strains were carried by the bottom bars, which 

lead to the redistribution of considerable amount of 

stresses onto the structure leading to concrete crushing and 

the final failure soon afterwards. Very small stresses were 

carried by the main bars near the supports as might be 

expected .

5.3.4 Conclusions

From the results discussed above the following points were 

coneluded:

(1) Although the pre-cracking stiffness, post-cracking 

stiffness and crack propagation were reasonably predicted, 

the ultimate load was overestimated by the chosen values of 

shear retention parameters when no tension stiffening is 

used .

(2) A basic material property, namely the yield strength of 

steel proved to be far more important than the use or 

otherwise of tension stiffening. Tension stiffening resulted 

in gross overestimation of both the post-cracking stiffness 

and the ultimate load when used with either a coarse (10%) 

or a tight (1%) convergence tolerance.

(2) Analysis with no-tension stiffening and a reduced yield 

value of steel (15% reduction) was closer to the 

experimental results than those with tension stiffening 

included. The reasons were not apparent and further
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investigation of this point is suggested.

5^4_A£Eliçation_on_Reçtangular_Beams_Subieçted_to 

Pure Torsion

5.4.1 Introduction

As a major part of this study is devoted to torsion of 

L-bearas an investigation on the reliability of the developed 

computer program for torsional analysis was undertaken. The 

aim of this section is to set guidelines for the analysis of 

the complicated flanged solid sections (T, I and L) using 

the relatively simple case of pure torsional behaviour of 

rectangular sections as a starting point. Reported 

experimental results were used to assess the capabilities of 

the theoretical model. Later on the case of combined torsion 

and bending is dealt with using the information and

experience obtained from the pure torsion study.

5.4.2 Beams Chosen for the_Study

A series of tests on plain and reinforced concrete 

rectangular sections subjected to pure torsion were

conducted by Hsu (refs. 19, 20). The tests were used to

calibrate, among other tests, the first AC I torsion design 

criterion (ref. 21). 10 plain and 53 reinforced concrete

beams were tested in all, covering a range of parameters

including the effects of the following variables: concrete

strength, beam size and scale effect, amount of

reinforcement, solid beams versus hollow beams, ratio of 

volume of longitudinal bars to volume of stirrups, 

depth-to-width ratio of cross-sections, arrangement of 

longitudinal bars and spacing of stirrups.
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Beams were selected from this series because: (1) a wide

range of variables were investigated and (2 ) detailed 

information of all aspects of the behaviour were readily 

available. Thus a good range of beams could be analysed 

which illustrate different aspects of behaviour. Four beams 

were selected for the analysis, designated B 2 , B 4 , G4 and N2 

by Hsu. Dimensions and material properties are given in 

Figure (5.19) and Table (5.5). Beams B2 and B4 are of the

same size with D/B=1.5. Beam G4 is larger with D/B=2.0 and

beam N2 is smaller, also with D/B=2.0. The reinforcement 

ratios were different in each beam.

Different finite element meshes were used for the analysis. 

Very little previous work on torsion of reinforced concrete 

using finite elements has been reported to assist in this 

study, reference (22 ), which does not contain detailed

information, being the only one known to the author. Because 

of this lack of information linear elastic studies of the 

following aspects were undertaken : mesh convergence,

boundary conditions and load application.

5-i^3_Mesh_Çonvergençe_Study

Figure (5.20 ) shows different finite element meshes used

for an elastic analysis of beam B4 for a mesh convergence

study. The boundary conditions selected for this study were

those termed B/Cs 3 as will be shown later in section

(5.4.6). The angle of twist per unit length was evaluated 

using the procedure described in section (5.4.5). The 

loading was applied as four nodal point loads to produce the
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desired pure torque following the conclusions of section 

(5.4.4). Figure (5.21) shows the average angle of twist 

plotted against the total number of degrees of freedom for 

8 , 12, 16, 20 and 27 elements. It is clear from the plot

that the angle of twist for 20 elements increases by only 

2.25% over that for 8 elements; the difference between the 

two meshes being the number of elements along the beam span. 

Upon further subdivison of the mesh across the section, the 

angle of twist for 27 elements is higher by only 1.02% over 

that for 12 elements; the difference being the number of 

elements along the sides of the cross-section. This clearly 

indicates that if adequate number of elements is used along 

the three directions, the variation of the angle of twist 

with the total number of elements used is very small.

Following the above observations the 12-element mesh was 

chosen for the nonlinear analysis as it contains sufficient 

number of elements along all three axes of the beam. A 3x3x3 

Gauss rule was used for this study resulting in a total of 

27 sampling points per element. This is considered adequate 

for proper monitoring of concrete and steel nonlinearities, 

especially cracking.

5^i^i_Load_A££lication

To properly simulate the experimentally applied torque a set 

of different nodal loads, shown in Figure (5.22), was

studied for elastic analysis. Boundary conditions B/Cs 3 

were used, (see section 5.4.6). Table (5.6) shows the

resulting angles of twist for all different cases. Clearly

the best results, in terms of the minimum difference between
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the angles as evaluated from both sides of the 

cross-section, are those when the torque is applied as a set 

of two equal couples (case 1 in the figure).

Another important observation concerns the effect of the 

concentrated loads on the calculated angles of twist per 

unit length. The results indicate clearly that it is more 

accurate to evaluate the angles of twist from the lateral 

displacements of the nodes that are unaffected by the 

concentration of the applied loading, i.e. when St. Ve n a n t 's 

principle is satisfied.

5^4^5 Eva^uat^on £ f _t he Angj^e of Twist and E f f e c t of

Depth-to-

Width (D/B) Ratio 

The theoretical angle of twist is calculated from the 

lateral displacements of the cross-section. In Figure (5.23) 

a typical cross-section is shown. The section is assumed to 

undergo rigid rotation and the warping of the sides of the 

cross section was neglected to simplify calculation. Thus, 

angles ®1, %, %  and ®4 are calculated from ®1, ^  , %  and

%, associated with nodes A, B, C and D, as follows:

e.

0- =» tan ^ _ )2 L a

(5.1)

03 tan“^ ( ^  )
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where L is the length over which the angles are evaluated.

To compare the angles %  , and ®4, as evaluated from

the two sides of the cross-section, and to check the effect 

of the ratio D/B on their calculation, a theoretical study 

was performed using an elastic analysis for different D/B 

ratios. Boundary conditions B/Cs 3 were used and the torque 

was applied as two equal couples as discussed earlier. All 

cross-sections have the same area and were subjected to the 

same torque. Figure (5.24) shows the results of the study 

expressed in terms of the %DIF versus D/B ratio; %DIF being 

the percentage difference between the angles %  and (or

and %). Jhe same results are listed in Table (5.7).

It is evident from Figure (5.24) that it is important to 

evaluate the angles away from the load application. If this 

is done it is clear, from the same figure, that if the 

torque is applied as two equal couples then reasonably 

accepted %DIF results for all practical values of D/B (say 

<5.0). It must be mentioned that these conclusions were 

applicable to elastic analysis (i.e. before cracking of 

concrete). In the post-cracking region the %DIF may slightly 

increase due to differential cracking between the two sides 

of the beam. This point will be further elaborated when 

discussing the results of the full nonlinear analysis in the 

following sections.

->i-§-|fIect_of_Boundary_Conditions

Members under torsion usually provide two types of internal

II...
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torsional resistance to withstand the externally applied 

torques, namely circulatory torsion and warping torsion. 

Circulatory torsion (also known as St. Venant s torsion) 

provides resistance by generating shear stresses flowing in 

a circulatory manner on the cross section of a member. The 

warping torsion, on the other hand, establishes its 

resistance from the differential in-plane bending and shear 

in the component walls of the member. Warping basically 

means that the sections become distorted after twisting, a 

phenomenon which happens in all sections subjected to 

torsion except circular.

Generally, both types of torsion resistance occur side by 

side in a member subjected to torsion. Circulatory torsion

predominates in solid or hollow bulky sections, although

warping torsion also exists. In open thin-walled sections

warping torsion predominates and circulatory torsion is very 

insignificant. Reinforced concrete members generally belong 

to the first group, hence some warping torsional resistance 

is expected, the amount of which depends mostly on the type 

of cross section and its dimensions.

Accurate modelling of warping behaviour of a cross section 

is coupled directly with the boundary conditions as the 

stress distribution at the section is affected by its 

distance from the supports according to St. Venant's 

principle. A study of this aspect of behaviour is undertaken 

using the developed finite element program in order to 

determine the most suitable boundary conditions for the 

problem in hand, using elastic analysis, before applying the



2 19

full nonlinear solution.

Hsu's beam B4 was chosen for the study of the effect of 

boundary conditions. Half the beam was considered with the 

12-element mesh (Figure 5.20). A set of five different 

boundary conditions were examined. These are shown in Figure 

(5.25): (1) all nodes at one end were completely fixed to

prevent any warping of the cross-section, (2) the four 

corner nodes were completely fixed to allow symmetrical 

warping to occur, (3) was similar to (2) but instead the 

four middle nodes were fixed, (4) two nodes only were 

completely fixed, this being the minimum to prevent 

unconstrained movement, and finally (5) all nodes at the end 

fixed in the x- and z-directions with only three nodes fixed 

in the y-direction, this being an attempt to simulate the 

skew-symmetry nature of the problem. The five sets of 

boundary conditions were designated B/Cs (1) through B/Cs

(5) respectively. A torque of 4.6 K N .m was applied in each 

case. The elastic solutions produced the twists per unit 

length shown in Table (5.8).

Figure (5.26) shows the nonlinear torque/twist curves for 

all boundary conditions except B/Cs (4) which produced 

erratic results in terms of twist angles and crack patterns. 

Boundary condition B/Cs (1) gives a too stiff post-cracking 

response and a large overestimate of the ultimate torque. 

Furthermore, the crack pattern was not satisfactory, being 

initiated at the load application propagating towards the 

end support. B/Cs (5) produced slightly less stiff response 

but erratic results were observed when considering the
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distortion of the cross section at the support as shown in 

Figure (5.27). Moreover. the axis of the beam was 

continuously shifting its position with loading resulting in 

a considerable difficulty in computation of the twist angle. 

B/Cs (2) and B/Cs (3) are fairly similar, both producing 

acceptable crack propagation and patterns, with B/Cs (2) 

slightly stiffer in the post-cracking region. Because of 

these reasons in addition to the fact that B/Cs (3) produced 

the closest fit to the experiment it was therefore used for 

all subsequent analyses. Clearly the selection of the 

appropriate boundary conditions is important and the use of 

the minimum constraint, B/Cs (4) for example, would not seem 

to be sufficient. The problem of correct simulation of 

boundary conditions for this type of problem is not 

straightforward and proved to be a difficult task.

5.4.7 Effect of Shear Retention Parameters

The shear retention factor can strongly influence a 

nonlinear solution, especially if shear is prominent. The 

torsion problem is primarily a shear dominant problem and 

because of this dominance, and in order to isolate the 

effects of shear retention from those of tension stiffening, 

tension stiffening was assumed inactive for the study 

reported in this section. Its effect will be studied in the 

following section.

For ease of discussion of results, the shear retention 

parameters ( and p^6  ̂ ) are recalled here. The

parameter p^was set at 0.5, implying an assumption that 50% 

of the shear stiffness is lost immediately upon cracking
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following the results of the deep beam previously presented. 

This figure has often been used before (sometimes even as 

a constant shear retention factor). The parameters and p^€* 

were then systematically varied to study the effect of shear 

retention. Figure (5.28) shows torque/twist curves for beams 

(B4) and (G4). Results for beam (G4) show the marked effect
t

of varying p ^ f r o m  0.003 to 0.0035. This confirms the 

importance of the rate of decay of p with increasing crack 

width, and of the point at which dowel action effects are 

assumed to act alone, after cracks widen enough for

aggregate interlocking to cease, as given by p ^ . The effect 

of pg can be seen from the results of beam (B4). This seems 

to have most influence closer to ultimate conditions, as can 

be seen from comparing p^ =0.1 and P2=0.08 for p^6^=0.003.

Optimum values for these parameters are difficult to discern 

because not enough experimental data is available, and so 

many other unknown factors are at play. Moreover, the 

effects of all numerical and material parameters are

interrelated and it is always extremely difficult to 

completely isolate them from each other in any study. From
t

this study, however, (3.̂ =0.5, Pg=0.1 and p^6̂ = 0.003 gave

satisfactory comparisons with the experimental results for

both beams and so were used in all subsequent analyses. The 

convergence tolerance was set at 10% which reasonably 

maintains equilibrium. The maximum number of iterations was 

set at 15 for all load increments in this study, following 

the suggestions of Al-Manaseer (ref. 15), which proved 

reasonable as convergence was generally obtained within the 

specified number of iterations.
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Crack propagation with increasing torque and final crack 

pattern is shown in Figure (5.29) for beam (B4). In 

reference (5) a general description of the crack 

propagation is given with the final crack pattern for one 

beam only. The final crack pattern for this particular beam 

is not provided. By comparison to the given description the 

theoretical propagation and final pattern are both 

considered satisfactory and compare reasonably well with 

experiment .

Figure (5.30) illustrates steel stresses in all four beams. 

Experimental results have been predicted reasonably well. 

Neither longitudinal steel nor stirrups carry any 

significant stresses prior to cracking, confirming that the 

steel percentage has negligible effect on the torsional 

rigidity of the beam at the pre-cracking stage. The sudden 

jump in the steel stresses immediately after cracking is 

well predicted. Note also the irregular stresses in the 

short legs of the stirrups, a phenomenon also observed 

experimentally..Hsu (ref. 20) emphasised this phenomenon 

giving no reasons as his theory could not explain this 

peculiarity. In some way it could be attributed to the 

redistribution of excess stresses on the structure in the 

progressive cracking stage; being released more on the 

longer faces of the cross-section. This keeps the longer 

legs of the stirrups under increasing stresses while 

relieving the shorter legs.

Lengthening of the beam with increasing torque is another
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experimental observation. Figure (5.31) shows this for all 

four beams. Again comparison between analysis and experiment 

is very satisfactory. The theoretical lengthening of beam 

was evaluated along the beam axis as was measured 

experimentally. The close resemblance of the unit 

lengthening curves and the average strain in the 

longitudinal steel indicates that the lengthening of the 

beam is due to stretching of the longitudinal bars.

The stress distribution along a typical longitudinal bar is 

shown in Figure (5.32) for different load levels. It can be 

seen that before cracking no significant stresses are 

carried by the bar. After cracking, stresses increase 

considerably. The distribution is generally uniform along 

the bar, as expected from a uniform torque throughout the 

beam. The slight increase at the ends can be attributed to 

the concentration of nodal forces due to the applied loads 

and resulting reactions. The distribution is considered 

quite satisfactory and consistent with the expected 

behaviour.

The stress distribution around a typical stirrup, after 

cracking, is shown in Figure (5.33). The distribution 

resembles the shear stress distribution for a rectangular 

section under pure torsion, with maximum values occuring at 

the middle of the longer side. St. Venant's distribution is 

not applicable after cracking as tests have shown that the 

stress is roughly uniform along the longer legs of the 

stirrups (ref. 20). However, the complete picture may be 

more complicated. Probably the continuity requirement
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imposed by the finite element model and the number of 

elements used across the section have caused the nonuniform 

prediction.

Figure (5.34) compares torque/twist curves and Table (5.9)

gives ultimate torques for all beams. The agreement is 

acceptable. Comparing beams (B2) and (B4) it can be seen 

that the ultimate torque and post-cracking rigidity are 

strong functions of steel percentage. A comparison of beams 

(G2) and (N2) indicates the influence of the beam size. The 

D/B ratio for these beams is the same and the reinforcement 

ratios are nearly the same, but (G4) has a cross-sectional 

area 2.8 times that of (N2) producing an ultimate torque

about 4.5 times higher. Hsu (ref. 20) pointed out that the

law of similitude does not hold in the case of torsion of 

rectangular reinforced concrete sections and suggested 

further research in this phenomenon. Its study is of 

importance because in model testing the ultimate torque of a 

model is usually assumed to be linearly related to that of 

the prototype.

5^4^8 Effect of Tension Stiffening_Parameters

To discuss the effect of tension stiffening on this type of 

analysis, the tension stiffening model described in Chapter 

Four is recalled. With shear retention parameters adopted
t

from the previous section as =0.5, =0*1 and p^S^

=0.0035, several values for the tension stiffening 

parameters ( @^and ) were examined. The maximum number of 

iterations was specified as 15 and two values for the 

convergence tolerance were considered, namely 10% and 1%.
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The value of 1% was used because It was noticed that using 

any values of tension stiffening parameters a stiff response 

was obtained as reflected in the torque/twist curves.

Figure (5.35) shows torque/twist curves for Hsu's beam (B4) 

using different values for the tension stiffening parameters 

and two values for the convergence tolerance. It is 

evidently clear from the figure that all values of tension 

stiffening parameters produced unacceptably stiff initial 

post-cracking response. However, at a later stage the curves 

seem to compare reasonably well with the experiment and the 

no-tension stiffening curves. Furthermore, the ultimate 

torques predicted with the inclusion of tension stiffening 

were only slightly higher than those predicted with 

no-tension stiffening. This can probably be attributed to 

the nature of the torsional cracking as distinctly different 

from flexural cracking.

Consider a simple beam subjected to an increasing central 

load. The flexural cracks starts at the bottom surface in 

the region of maximum moment, spreading out-wards. If the 

same beam was subjected to an increasing pure torque, 

"spiral" cracks are expected which can spread all over the 

span much quicker than flexural cracks. So, in flexural 

cracking the top part of the beam acts a compression zone 

until, possibly, very late stage of loading. Thi 

compression zone is capable of taking a great amount of 

stresses as a result of redistribution of tensile stresses 

from the cracked tensile zone during the loading process 

until yielding and/or crushing takes place. In torsional

s
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cracking, on the other hand, no definite compression zone 

exists and cracks occur in all faces almost simultaneously. 

Therefore the compression zone is only represented by the 

planes parallel to the crack directions, where concrete is 

already weakened by the cracks.

Hsu and Mo (refs. 23, 24) refer to this phenomenon as

softening of concrete. Hence, this explains the importance 

of the shear transfer model rather than the tension 

stiffening model in torsion analysis. Indeed the results of 

using a convergence tolerance of 1% (considered enough for 

tight equilibrium) shows clearly that tension stiffening 

would still .result in overestimation of the torsional 

response anyway.

The stiff response of tension stiffening can be further 

demonstrated by studying the steel response. Figure (5.36) 

shows the steel response for beam (B4) with different 

tension stiffening parameters. The underestimation of the 

steel stresses is very clear when using tension stiffening 

at all.

ë^4^9_Effeçt_of_So%ut^on_Algor2thm
As mentioned earlier in Chapter Four, several algorithms can 

be chosen at will as to when to recalculate the stiffness 

during each load increment. This has its effect on the final 

results, depending on the type of the structure, type of 

loading, increment size etc. In all results discussed so far 

the stiffness is calculated at the beginning of each load 

increment where it remains unchanged during that increment
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(Nalgo - 3). It was noticed that this procedure needed many 

iterations (sometimes the maximum specified number) at crack 

initiation despite the good behaviour following that up 

until failure. This is due to the severe nonlinearity that 

results from the quick spread of torsional cracking as 

already described in the previous sections. Indeed this has 

been reported by Hsu (ref. 20) where a horizontal plateau 

was noticed upon cracking.

It can be argued, however, that the clarity and existence of 

this horizontal plateau, depends largely on the beam size, 

D/B ratio and the reinforcement ratio. It is clearer in 

beams with lesser amount of reinforcement and/or with 

smaller cross-section. This trend is markedly reflected in 

the predicted curves and so on these basis the difficulty of 

solution convergence, as reflected in large number of 

iterations performed at crack initiation, is considered 

satisfactory and far from worrying. It is also well known 

that the steel, in the torsion problem, does not contribute 

to the stiffness and does not carry any significant stresses 

until after concrete cracks. As this was well, as shown 

earlier, the performance of the model was considered

satisfactory.

But in order to improve the convergence process at crack 

initiation and further study the effect of the solution

algorithm on the overall response, another solution

algorithm was applied (Nalgo = 5). Here the stiffness is

updated at iterations 1 and 8 of each load increment. Figure 

(5.37) shows the results of using this algorithm against the
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previous one. Although the convergence process at cracking 

totally improved, it is evidently clear that there is no 

much improvement on the overall response despite the fact

that better ultimate torque is now predicted. As

recalculation of the stiffness costs much more than the

resolution of the resulting simultaneous equations, and

after comparing the cost of both analyses (Nalgo = 3 and 

Nalgo = 5) it was clear that the first is advantageous to

use

5.4.10 Conclusions

From the results presented in the previous sections the 

following points are concluded:

(1) The developed three dimensional nonlinear finite element 

model simulates the pure torsional behaviour of reinforced 

concrete rectangular beams within acceptable accuracy. In 

particular, torque/twist curves, ultimate strenghts, beam 

lengthening and steel behaviour were all predicted well.

(2) This indicates that the smeared fixed orthotropic crack 

model, used in this work, is an adequate approximation as 

long as proper attention is paid to selecting appropriate 

shear transfer properties through the shear retention 

factor.

(3) The results demonstrate the importance of proper 

modelling of shear transfer and illustrate the 

overestimation of the structural response that may result if 

tension stiffening is used where torsional shear is 

dominant.
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(4) It is very important that the correct boundary 

conditions are chosen to allow appropriate warping behaviour 

to occur. This might seem a basic and straightforward task. 

However, it proved to be crucial for accurate predictions of 

torsional behaviour especially after concrete cracking. 

Improper modelling of boundary conditions results in 

unexpected basic responses, such as the crack propagation, 

because of its effect on the stress distribution near the 

support.

(5) The results of this section, combined with the previous 

two sections, indicate clearly that although the nonlinear 

finite element model reasonably predicts the behaviour of a 

variety of reinforced concrete problems, care and proper 

judgement must be used to identify what parameters affect 

the particular situation in question. Generally, when shear 

dominates the shear retention factor is more important and 

tension stiffening may be neglected alltogether or used

with very small values of its parameters. On the other hand, 

when flexure dominates the tension stiffening may be more

important and hence could be used. However, the tension 

stiffening parameters proved to be very difficult to assess 

us demonstrated by the results of the shallow beam

simulating beam-column behaviour.

5j.5_A££l ica t i on_on_Rectangul,ar_Beams_Sub j_ected_t o_Comb i ned

Loading
^-^-i-Introduction

Combined loading is the reality of most reinforced concrete
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structures. Many experimental studies have been conducted to 

investigate the behaviour of reinforced concrete beams 

sustaining combined bending, torsion and shear. However, 

this combined behaviour has apparently not been investigated 

by finite element models. This is mainly because of the

presence of torsion which idea&y needs full three 

dimensional modelling for complete treatment compared to 

flexure and shear which can be satisfactorily dealt with 

using two dimensional models. Therefore, the

capability of the finite element model developed in this

work has also been checked for such type of loading.

5.5.2 Beams Chosen for the Study

Collins et. al. (ref. 25) tested two series of rectangular 

reinforced concrete beams under combined bending and

torsion. All beams contained both longitudinal and 

transverse reinforcement. Beams of one series (series RE )

had equal top and bottom longitudinal reinforcement while 

those of the other series (series R ) had unequal top and

bottom reinforcement. Of the first series . the beams

designated (RE4) and (RE2) were chosen for this study, 

because they had the same cross section and amount of 

reinforcement but differ only in the torque/moment ratio. 

There was also reasonable amount of information on their 

behaviour .

— j^3_Bearns_Descri^£t_ion_and_F_in_i te_EIcement_Mesh

The beams have a 10x6.5 in. (254x165 mm) cross-section. They 

had been tested over an 8-ft (2438 mm) span, one end being 

clamped against torsion and the other end being free to
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t wi s t . The bending load was applied at the one-third points 

and the torsion was applied at the free end by means of 

hydraulic jacks. The jacks were hydraulically interconnected 

so that during the test the ratio of torsion to bending 

remained constant. The load was experimentally applied in 

about 10 increments up to failure. The only difference 

between the two beams was the torque to moment ratio, being 

0.88 for (RE4) and 2.61 for (RE2).

Figure (5.38) and Table (5.10) show the beams details and 

material properties. The figure also shows different finite 

element meshes used in the analysis. All bars were placed at 

their exact positions. For Beam (RE4) the load was applied 

in equal increments of T=0.666 KN.m and M=0.757 KN.m (to 

give about 15 load increments up to the experimental failure 

load), the ratio T/M being automatically maintained the same 

during the analysis at 0.88. For beam (RE2) the load was 

applied in equal increments of T=0.744 KN.m and M=0.285 KN.m 

(for the same reason as RE4) maintaining the T/M ratio at 

2.61.

Results and Discussions 

Beam (RE4) was analysed first using 12 elements, a mesh 

found suitable for Hsu's beams (previously discussed). The
t

shear retention parameters were set at =0.5, and

=0.0035 for all analyses, the values found suitable for pure

torsion problems. Tension stiffening parameters could have 

actual influence in this situation because of the presence 

of the flexural loading, therefore a study of its effect was

undertaken, following the conclusions of the previous
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section. Figure (5.39) shows a comparison between the 

reported experimental curve and the predicted curves,for 

beam RE4, using different values for the tension, stiffening 

parameters. The no—tenstion stiffening curve shows very 

flexible behaviour after cracking. It is also clear that 

different tension stiffening parameters (a.̂  and ) produced 

different post-cracking response. =0.25 and =5.0

seemed to have given the best fit to the experimental curve. 

However, it can be clearly seen that the ultimate load

prediction was not much affected. Even the no-tension 

stiffening model predicted almost the same ultimate load.

In order to study the mesh size effect the 24-element mesh 

shown in Figure (5.38) was used. Figure (5.40) shows

torque/twist curves for different tension stiffening 

parameters. The effect of increasing the number of elements 

is insignificant in the early part of the curves. However, 

near ultimate conditions the mesh with higher number of 

elements produced a more flexible response. This may well be 

expected. But the difference was not considered significant. 

It can also be seen that =0.25 and 0^=5 O» Tor the

24-element mesh, predicted a failure load close to that

predicted by the 12-element mesh.

The longitudinal steel response is shown in Figure (5.41) 

for all four corner bars at a cross-section within the 

constant moment region. It can be seen that initially the 

top bars carried compressive stresses while the bottom ones 

carried tensile stresses. The magnitudes of these stresses 

were practically equal. This agrees well with the fact that
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torsion does not produce any steel stresses before cracking 

and hence the steel stresses were only due to flexure. So 

before cracking top and bottom bar stresses are expected to 

be the same in magnitude but of different signs (compressive 

top and tensile bottom). After cracking and upon further 

loading the torsion induces tensile stresses in all four 

bars. These stresses increase the bottom bar stresses

(tension + tension) and decrease the top bar stresses 

(tension + compression). At a certain load level, very close 

to failure, the stresses in the top bars become tensile, 

though of small magnitudes. The experimental steel response 

was not provided in reference (25) and hence detailed

comparison was not possible.

Theoretical crack pattern for the 12-element

mesh is shown in Figure (5.42). When compared to the 

predicted crack pattern for Hsu's beam (Figure 5.29), the 

difference is markedly clear. The pure torsion cracking tend 

to spread fairly quickly all over the beam soon after crack 

initiation. In the case of combined loading, the top surface 

of the beam within the constant moment region remains 

intact, serving as a compression zone, until very close to 

failure. These distinct behaviours seemed to have been well 

predicted. No experimental crack pattern was given for 

either of the two beams to compare with.

The beams were reported to have failed by yielding of the

bottom steel and formation of compression hinge at the top 

surface (termed mode 1 failure by the authors). The 

theoretical analysis showed yielding of both bottom bars and
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crushing of concrete at the top Gauss points in concrete 

within the constant moment zone, a clear indication of good 

prediction of the failure mode.

Figure (5.43) shows the torque/twist curves for beam (RE2). 

Again the behaviour was predicted with reasonable accuracy. 

Only the 24-element mesh was used for this beam. Figure 

(5.44) shows the predicted steel response. No experimental 

curves were provided, however, but the predicted response 

was considered satisfactory. Similar to the response of beam 

(RE4), the bottom longitudinal bars carried tensile stresses 

for the whole loading stages, while the top bars carried 

compressive stresses first which changed sign at the 

ultimate conditions.

5.5.5 Conclusions

The following conclusions are drawn from the results 

discussed in the previous section:

(1) The finite element model predicts the behaviour of 

reinforced concrete rectangular beams under combined loading 

reasonably well. Proper attention must be paid to selecting 

the adequate material parameters. The choice of the shear 

retention parameters follows that for the case of pure 

torsion whereas tension stiffening parameters have been 

studied.

(2) The overall behaviour (torque/twist curves) is predicted 

within a reasonable accuracy. The distinct difference 

between the pure and combined loading cracking behaviour is
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demonstrated.

(3) Although no experimental steel response was. provided,

the theoretically predicted response is reasonable. No

i 11-behaviour is noticed.

(4) The tension stiffening parameters can influence the

post-cracking stiffness markedly with no great effect on the 

predicted ultimate load. Use of tension stiffening may be

important in the case of combined loading because of the

presence of flexure. However, low values of tension

stiffening parameters are recommended (typically o^=0.25 

and @2 = 5  0 )-

5.6 General Conclusions and Overall Assessment

From the results presented and discussed in this chapter,

the following main conclusions are re-stated:

(1) The three dimensional nonlinear finite element model 

offered has the capability of being used for different 

applications. But, as well expected with nonlinear models, 

care must be taken when applying it to a particular type of 

analysis. Each type of application is sensitive to, and more 

affected by, different solution and material parameters. 

These have been investigated and discussed for each of the 

applications considered.

(2 ) Partially intended for the analysis of torsion of 

reinforced concrete, the model was found quite capable to 

handle both cases of pure and combined torsion.
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(3) The three dimensional smeared fixe<l orthotropic crack 

model, employed throughout this work, is an adequate 

approximation when proper modelling for shear retention and 

tension stiffening is incorporated.

(4) The proper choice of boundary conditions for torsion is 

also important and must be taken care of to allow for proper 

warping effects to take place.

(5) In Chapter Three the analysis termination criterion was 

mentioned. For all analyses presented in this chapter, the 

maximum number of iterations of 15 was found adeqaute with a 

global search through the diagonal of the stiffness matrix 

for detection of zero or negative pivots. A zero or negative 

pivot was always detected beyond the ultimate load and was 

always associated with very large displacements, severe 

cracking, yielding and/or crushing. The criterion is, 

therefore, considered satisfactory.

(6 ) In all applications considered, cracking of concrete is 

found to be the major source of nonlinearity in the 

structural response which significantly modifies the 

behaviour, in particular greatly reduces the post-cracking 

stiffness .

(7) The force convergence criterion employed is adequate to 

monitor equilibrium and the nonlinear solution proved to be 

very stable. Different convergence tolerances were studied 

including the coarse 10% and the practically tight 1% 

values, and a value of 10% can be suitable for most 

applications.
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Figure (5.2) Finite element mesh for Lin's deep beam 101,
9-elements, one element across the width
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Figure C5. 3) Finite^emant mesh for Lin's deep beam 101.
12—element mesh* one element across the width
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table 15^11 Properties of concrete for L i n ’s deep beam (101)

L/D Width (b) 

( mm )

Depth 

(D ) (mm)
f cu 

(N/mm2 )
^'c 

(N/mm2 )
f't

(N/mm2 )
Ec

(KN/mm2)

1.8 100 . 0 500 . 0 47 . 0 36 . 0 3 . 07 19 . 0 0 . 20

Table^iSj.!! Properties of steel for Lin's deep beam (101)

Bar diameter 

(mm)

Es

(KN/mmZ)
fy

(N/mm^)
Ew%

(N/mm^)

6 217.3 245 . 8 10 . 0

8 188 . 7 225 . 9 10 . 0

10 293.6 229 . 7 10.0

12 263 . 5 323 . 0 10 . 0

16 276 . 7 322 . 5 10.0

lÊkle {5^32 Results of the effect of boundary conditions and load 

application on Lin's deep beam (101). Values of the 

central displacement for an elastic load of 40.3 KN

Case 1 Case 2 Case 3 Case 4 Case 5

8 0 . 0809 0 . 0421 0.0582 0 . 0572 0 . 0430

Ratio ---- 
*exp

1 .046 0 .760 1.051 1 . 032 0.7760
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Figure (5.4) Study ef boundary conditions and load application 
for Lin's deep beam 101
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Figure (5.5) Effect of shear retention parameters on the Load-defLeot ion 
behaviour of Lin's deep beam (101), ^  ^  = 0.004.
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Figure (5.8 a) Effect of tension st i ffening parameters on the Longitudinal 
bottom steel strain for Lin's deep beam (101)
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Figure (5.8 b) Effect of tension stiffening parameters on the longi tudi na I 
bottom steel strain for Lin's deep beam (101)
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bottom steel strain for Lin's deep beam (101)
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Figure (5, W  a) Study of rate of decay of residual forces for Lin's 
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Iable_{5^4j Details of material properties for Burns and Siess 

beam (J4)

f ’c f't
* *

As 4 Es
*

Ew
N/mm^ N/mm^ KN/mm^ mm^ N/mm^ KN/mm^ KN/mm^

53 . 0 3 . 77 28.4 0.20 1012.9 309 . 7 210.0 0 . 0

* assumed, values
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Figure (5. 13) Effect of sheer retent ion parameters and steel yield values 
on the load-deflect ion behaviour of Burns and Seiss beam (J4)
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Figure (5m 14) Effect of shear retention parameters and steel yield values 
on the load-deflection behaviour of Burns and Seias beam (J4)
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Figure (5.15) Effect of tension stiffening parameters on the load-deflect ion 
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Figure (5.16) Effect of tension st i ffening parameters on the load-deflect ion 
behaviour of Burns and Seiss beam (J4)
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Figure (5.20) Different finite element meshes examined
for Hsu's beams
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Table_15^6l Results of the effect of load application on 

Hsu's beam (B 4 )

Load

Case
1 2 3

Angles from 17 . 19 17.31 16.73

displacements 

at free end
18 . 94 19 . 33 18.88

%DIF 10 . 18 11.67 12.85

Angles from
19.44 19.56 18.53

di splacements ®2 19 . 53 20.13 19.37

at 305 mm from 

free end
%DIF 0 . 46 2 .91 4.53
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Table_15^Il Effect of ratio D/B on evaluation of the angles of 

twist of rectangular sections subjected to pure 

torsion. Applied elastic torque = 4.6 KN.m

Angles from displ­

acements 305 mm 

from free end

Angles from displ­

acements at free 

end

D/B «2 ®2 %DIF(1) %DIF(2)

1 . 0 18.36 18.36 16.99 16.99 0 . 0 0 . 0

1 . 5 19.44 19.53 17 . 19 18 . 94 0.46 9 . 24

2 . 42 23.90 24.32 20 . 37 24 . 33 1.73 16.28

4 . 3 34.82 36.47 29 . 45 36.71 4 .52 19.78

6 .72 48 . 70 53.01 41.76 53 . 28 8.13 21.62

10 . 0 ***** Beam cracked *****

%DIF(1) = % difference between the angles of twist evaluated from

the longer and shorter sides 305 mm from the free end 

(where the load is applied)

%DIF(2) = % difference between the angles of twist evaluated from 

the longer and shorter sides at the free end
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Figure (5.27) Distortion of cross section at the free i end
for different boundary conditions, Hsu's beam B4
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fabls 15 • §.i Values of twist per unit length for an elastic torque 

of 4.6 KN.m for different boundary conditions, Hsu's 

beam (B 4 )

B/Cs 1 2 3 4 5

«1 15.73 19 .51 19 .44 - -

% 15 . 82 19.61 19 . 53 - -

%DIF 0 .48 0 . 51 0 . 46 - -

Table_15^9l Comparison of ultimate torques for H s u ’s beams

Beam T y (E x p e r .) 

KN . m

T y (Theor.) 

KN.m

Ty(Theor.) 

Ty(Exper.)

B2 29 . 26 30 . 13 1 . 030

B4 47 . 33 48 . 64 1 . 028

G4 64 . 85 61 . 88 0 . 954

N2 14 . 39 13 . 82 0 . 960
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c h a p t e r  s i x

HPERiMENTAL_I NVE ST IG AT I ON

6 .1 Introduction

This chapter describes in detail the experimental set-up 

which was designed and constructed to study the strength and 

behaviour of the series of reinforced concrete L-sections 

under pure torsion. The instruments employed for 

measurements of the various quantities during the tests, as 

well as the test procedure, are also explained.

The aim of the experiments was to study the short-term 

torsional behaviour of reinforced concrete L-sections, 

containing longitudinal steel and closed stirrups, 

throughout all loading stages until failure. Information on 

the following aspects was sought;

(a) torque-twist behaviour

(b) crack initiation, propagation, and pattern

(c) strain distributions

(d) steel response

(e) failure characteristics

6^2_Test_Programme

6^&^l_Genera^

As already mentioned, part of the scope of this set of

experiments was to directly assess current British Code

procedure for torsion design of solid L-sections. It was 

considered that the direct approach of designing the 

specimens according to the code (BSrCPllO - 1972, now

BS:8110 - 1985) requirements would give a full and more

satisfactory assessment.
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e ŝ c r n_o f _T e^ t _Speç ĵ me n S _and_Pa r a me t e r S for

Investigation 
The test specimens form two groups as follows:

Group i B l l : consists of five specimens. One specimen,

designated Bll and termed the reference specimen, was 

designed strictly according to the British Code requirements 

(refs. I, 2). Two specimens, 312 and 313, were provided with 

reduced amount of stirrups. The reduction was made by 

reducing the number of stirrups, and hence increasing the 

spacing, keeping the diameter the same as the reference 

specimen at 6 mm. The fourth specimen, 314 , was reinforced

with a higher amount of stirrups. The increase was achieved 

through using 8 mm diameter stirrups keeping the spacing the 

same as 311. In all four specimens the amount of 

longitudinal reinforcement was kept the same so as to limit 

the number of parameters to one, namely the amount of 

transverse reinforcement.

The fifth specimen, designated 321, had the same amount of 

longitudinal and transverse reinforcement as the reference 

specimen 311. The difference between them was that 321 had 8 

mm diameter stirrups instead of 6 mm for 311. This was meant 

to check the effect of stirrup spacing on the post-crcaking 

behaviour and on the ultimate load.

Therefore the above covers a range of torsional 

reinforcement including that recommended by the current 

British Code of practice, for the chosen cross sectional 

dimensions .
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Group__iB3l: consists of four specimens with smaller cross

section. The steel variations of group (Bl) were typically 

repeated in this group with specimen B31, designed to the 

code requirements, being the reference specimen for this 

group. The purpose of this group was to assess the code's 

design procedure for smaller cross section and study the 

effect of varying the amount of transverse reinforcement for 

the same amount and distribution of longitudinal steel.

Figure (6.1) and Table (6.1) give full details of the test 

specimens. Design of the reference specimens is presented in 

Appendix (A).

G^G_To r s i^on_Tes t_Se t- up

6.3.1 General Description

A three dimensional steel test-rig, shown in Figures(6 .2) and

(6.3), was designed in which the reinforced concrete

specimen is placed vertically. The total length of a

specimen is fixed at 1550 mm as dictated by the height of 

the reaction frame. The rig can accommodate specimens of any 

cross section as long as their top and bottom ends are 

rectangular in shape. This imposes no practical difficulty 

whatsoever since the cross section of the test-zone can be 

made to any shape whilst making the ends rectangular. The 

specimen is fixed at the bottom and receives the applied 

torque at the top. A portal frame takes the resulting 

reaction at the top end. The rig was designed and

constructed for a maximum torque of about 60 KN.m. Attention 

was paid to its overall stiffness, in particular the bottom
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fixity and the top unit through which the torque is applied. 

The torque is applied independently through an arm of 

T-shape. All these parts will be separately described in the 

following sections.

Placing the beam vertically has practically no effect on the 

stress distribution or indeed the torsional behaviour, as 

very little stresses are induced, and can be directly 

compared with the effect of the self-weight in horizontal 

set-ups.

6.3.2 Bottom Fixity

The bottom supporting system (Figure 6.4) consists of a 

900x500x50 mm steel plate firmly fixed to the laboratory 

floor. No displacement or rotation of this plate is allowed. 

On top of this plate two adjustable clamps (parts A in 

Figure 6.4) are provided. They are made of steel plates 

welded together to give this shape. They can easily be moved 

towards each other on the fixed plate until the beam is 

fully clamped in between. They can then be firmly bolted to 

the fixed plate and to each other as shown in the figure. In 

order to make sure that no movement takes place in this 

part, steel channels are placed to fully fill the gap 

between these clamps and the portal frame vertical supports.

Although this bottom support system can accommodate up to 

500x500 rectangular sections, because of the freedom allowed 

through moving the clamps, the actual cross sectional size 

of the test specimen is normally dictated by the top unit as 

this is welded and has three sides fixed as will be shown
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afterwards. Because all specimens tested had 300x400 

rectangular ends with the 400 mm sides in the direction of 

the 500 mm dimension of the clamps, the remaining 100 mm gap 

was filled by two steel plates on the two sides of the 

specimen each being 50 mm thick. This ensures that the 

specimen under test is properly fixed on all four sides.

6^3^3_To£_Unit_and_Load_Ap£liçation

The top unit consists of a 860x460x50 mm steel plate (Figure 

6.5). On the bottom face three steel plates were welded to 

form three sides of a box into which the top of the specimen 

fits. The fourth side was an adjustable plate supported on 

another plate through two screwed steel bars as shown in the 

figure. The box was made such that it can accomodate a 

300x400 mm rectangular section with the centre of the box 

coinciding with the centre of the rectangular section. Two 

steel cubes were welded on the top face of the steel plate 

to transfer the reactions received from the loading arm. 

This assembly is termed the "loading cap".

The loading arm is a T-shape steel plate (Figure 6.5). This 

rests horizontally on the horizontal beam of the loading

frame and on the top of the loading cap. A groove was made

so that a spindle goes through to transfer the reaction to 

the portal frame over the specimen being tested. Another 

role of the groove was to allow the lateral displacements of 

the specimen's axis of rotation during twist. A typical 

arrangement of the loading cap and the loading arm when 

ready for testing is shown in Figure (6 .6 ). The figure also

shows the arrangement of the two 100 KN load cells for
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measurement of the two reactions that result when the load

is applied. Two horizontally placed hydraulic jacks (each

200 KN capacity) placed one behind the other were used to

apply the load (Figure 6.6 shows one of them). The reason of

using two hydraulic jacks was to achieve a longer travel of

210 mm total. This ensures a maximum angle of rotation of 
oabout 13 . The arrangement around the load cell allows

rotations to occur and ensures protection of the load cells 

from non-uniform pressure being applied.

Clearly the set-up as described is usable for pure torsion 

tests only . Further modifications could be made to allow 

application of combined loading if necessary. The size of 

the cross section to be tested could also be changed, if so 

desired, with only slight modifications to the loading cap.

6.3.4 Installation of Specimen 

This involves the following steps:

(a) removal of the portal frame passing over the specimen,

(b) placing the specimen vertically in position,

(c) tightening the bottom fixity,

(d) placing the loading cap on top of and gripping of the

s p e c i m e n .
(e) placing the T-arm in position,

(n placing the portal frame over the specimen making sure 

that the spindle is in position,

(s) placing the two hydraulic jacks,

(h) further checking of bolting all around, and finally

connecting the load cells, transducers, and strain 

S&uges to the datalogger for continuous measurements of the
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various quantities.

6.4 Instrumentation

All specimens were instrumented to measure the applied 

loads, lateral and longitudinal displacements, concrete and 

steel strains and crack widths.

6j:.4_^l_Measuremen t_of _the_A£pl i ed_Torque

As described earlier the loads were applied using two 200 KN 

hydraulic jacks in series and the reactions on the specimen 

were measured by two load cells of 100 KN capacity each 

placed at approximately equal distances from the spindle to 

give equal reactions R. The applied torque is then equal to 

the reaction (R) times the distance between the centres of 

the load cells (= 615 mm) as shown in Figures (6 .6 ) and 

(6.7). In practice, however, it was difficult to get

absolutely equal reactions but the difference rarely reached 

2%. The average of the two load cell readings was taken to 

calculate the applied torque.

6.4.2 Measurement of the Lateral Displacements_and 

Evaluation of Angles of Rotation 

One advantage of testing the specimens vertically is the 

ease of measurements and observation of behaviour on all

four faces. In order to obtain the angles of rotation the

lateral displacements over a fixed length of the 'test zone 

were measured. Two "levels" of linear voltage displacement 

transducers (LVDT) were used, each comprising of six 

transducers as shown in Figure (6.7). The transducers

(measuring to 0.0001 mm) were mounted on an independent
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frame which surrounded the specimen as shown in the figure. 

The frame was made of handy angles and sufficiently 

stiffened to prevent any movement.

Each pair of transducers was placed "over" each other so 

that the relative displacement is equal to the difference in 

their readings. Hence six relative displacements were 

obtained for each specimen as shown in Figure (6 .8 ). In 

calculating the angles of twist it is assumed that the two 

sides of the cross section remain undistorted as shown in 

the figure. This allows the following relationships to be 

derived using similarity of triangles:

S X-=   (6.1)
( + 3̂)

(6.2)
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(6.5)

e _ tan'l - tan"^ 1 _ (6.6)

The angles of twist, 0.j and 0^ were found to differ slightly

before cracking and in a more noticeable way after cracking. 

However, for practical purposes and also in comparing 

experimental with finite element results the average angle 

is considered as the differences did not suggest otherwise.

iJL3_Measurement_of_Unit_Lengthening

It was reported in Chapter Two that an important phenomenon 

associated with torsional behaviour of reinforced concrete 

members is unit elongation after cracking. To enable 

measurement of this quantity a vertical transducer was

placed on top of the loading cap and fixed on the portal

frame passing over the specimen such that it measured 

vertical displacement at the centre of the rectangular part.

Because of the stiff end rectangular parts of the test 

specimens, the elongation is assumed to have been due to the 

elongation of the L-section part of the specimens. In

support of this assumption no cracking of the specimen ends

WU8 observed as will be shown in Chapter Seven. This is 

because these ends were heavily reinforced and clamped along 

2/3 of their lengths in either the loading cap or the bottom 

fixity.

s u r e me n t s of Steel Strains
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strains in longitudinal and transverse steel were measured 

by means of 6 mm long electrical resistance strain gauges 

connected to a linear voltage processing data logger (Type 

Orion A ) . because two types of steel strains gauges were 

used during the course of the experimental programme, namely 

(Student E A .06.2401Z-120 and Jurvis Cu45Ni), due to 

availability, comparisons were made between these two types 

and the extensometer used for the standard tensile test of 

steel. Results of this comparison are presented in section

(6.5.3).

6^4_^5_Mea sur emen ts_of_Conçrete_Surfaçe_S trains 

Demec gauges were used for measuring concrete surface

strain. The average concrete strains were measured over a 

gauge length of 100 mm. Because the torsional cracking was 

expected to form at an angle of about 45 degrees with the 

longitudinal axis, two pairs of demec gauges were mounted at 

7 locations around the specimen as shown in Figure (6 .l6 ). 

The pair parallel to the crack direction would measure the 

compressive strain while the pair normal to the crack

measures the tensile strain.

^-l4_^6_Crack_Wj^d ths^_Spac i.ngs_and_I^nc 1,i.na t i.ons

Crack widths were measured by means of a hand crack width

measuring microscope (measuring to 0.02 mm). Two cracks were

selected on each face of the specimen, after crack

initiation, and their widths were measured at each load 

increment. The selection of the cracks, however, was based

on the most dominant cracks at the early stages of crack
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deve1opment.

Crack spacings were measured on all faces of each specimen. 

The spacing is taken as the normal distance between each two 

major cracks. It is often difficult to define the most major 

crack at failure of a specimen but as a general rule adopted 

here every well and distinctly defined crack is taken as a 

major crack. Five crack spacings were measured on each side 

of the specimen covering the whole test zone.

Angles of cracks on the faces of the specimens were recorded 

and the crack patterns were followed from the first stages 

up to failure and clearly marked. Every effort was made to 

record the failure characteristics of each specimen in order 

to identify the effects of the test parameters.

G-i.3_Ma t e r î a l̂ s

6.5.1 Concrete

The concrete mix consisted of rapid hardening portland

cement (RHPC) for all specimens except B14 where ordinary

Portland cement (OPC) was used because of availability.

However, B14 was tested at an older age to compensate for

the strength. 10 mm Hynford gravels and zone 2 Hynford sand,

obtained from Lanarkshire, were the coarse and fine

aggregates used. A mix proportion of 1:1.5:3 was designed
2

for an average cube strength of 40 N/mm at 7 days. A 

minimum slump of 100 mm was specified. Six cubes and at 

least four cylinders were cast with each specimen. The cubes 

were used to determine the cube strength, two cylinders for 

the splitting strength, and two cylinders for the concrete
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Young s modulus (and the stress-strain curve) and the 

cylinder strength. Figure (6.9) shows a typical concrete 

stress-strain curve obtained for specimen (B31).

6.5.2 Reinforcing Steel

High yield deformed bars of diameter 6 , 8 . 10. 12, and 16 mm

were used for longitudinal and transverse reinforcement. 

Random samples were cut off from the batches of steel bars 

for all different sizes and were tested in Tinus Olsen 

Universal Class A testing machine, fitted with an S-type 

electronic extensometer. The testing procedure followed the 

manufacturer's instruction manual. Stress-strain curves for 

all bar sizes used are shown in Figure (6.10). It can be 

seen from the curves that not all bars followed the 

behavioural characteristics expected from high yield steel. 

For 6 , 12 and 16 mm bars well defined yield points were

observed. For 8 and 10 mm bars, because the yield point was 

not well defined as shown in the figure, the yield stress 

was taken as the stress corresponding to 0 .2% proof strain. 

Table (6.2) shows the steel properties for all the bar sizes 

used .

ê-2^ 3_Com£arison_of_Extensometer_with_the_Two_Ty£es_of

Strain_Gauges

It was mentioned earlier that two types of strain gauges 

were used to record the steel strains due to availability at 

the time. Because of this and also because an extensometer 

was used for the steel tensile tests a comparison was 

carried out. This was done in the Olsen machine with an 8 mm 

diameter bar. Six strain gauges (three of each type ) were
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m o u n t e d  on the bar as shown in Figure (6 .11) together with 

the extensometer. The test followed the same procedure as 

for the standard tensile test of steel.

Figure (6.12) shows the results of the comparison which

indicates clearly that the three instruments measured the 

same strain up to a value of about 3500 microstrain. Between 

3500 and about 6000 microstrain there are deviations,

although of little practical significance. Beyond this value 

the extensometer curve is above the rest indicating smaller 

values of strain than that measured by the strain gauges for 

the same load. The value of 6000 microstrain is well beyond 

the yield value of steel and all specimens failed while the 

steel strains were well below this value. Therefore it was 

not thought necessary to make any correction to strain 

values obtained from the experiments.

6.6 Preparation of Specimens and Test Procedure 

6JLl_Strain_Gauging

Figure (6.13) shows the various levels of the measurement 

devices on a typical specimen. The first step towards 

specimen preparation was mounting of the steel strain gauges 

on the selected positions. Figure (6.14) shows the positions 

chosen on longitudinal bars and stirrups for all specimens, 

which give a total of 20 strain gauges per specimen. Of

interest is the positions on the closed stirrups in an

attempt to record the steel response on most legs of the 

stirrup. Two stirrups and six of the main bars were strain 

Snuged as shown in the figure.
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The preparation of the strain gauge installation area 

required the surface to be filed and smoothened with sand 

paper. Care was taken not to remove considerable area of 

steel during the operation. The surface was thereafter 

treated with M-prep conditioner and M-prep neutralizer (ref. 

^ )• To cement the strain gauge and terminal strip to the 

bar, M-bond 200 adhesive was employed. For gauge protection 

against moisture and mechanical damage during casting, air 

drying protective coating type M-coat D and epoxy resin were 

applied on the gauge and terminal. A final voltmeter check 

was carried out for each strain gauge.

6.6.2 Reinforcing Cages and Formwork

Figure (6.15) shows a typical reinforcing cage placed inside 

the formwork ready for casting. The net cover was normally 

20 mm. The formwork was made from 20 mm thick plywood 

strengthend by external 50x50 mm timber battens at the 

corners. The internal dimensions were 1550x400x300 mm. To 

achieve flexibility and reuse of one mould for more than one 

specimen, polystyrene blocks were used to give the desired 

L-shape at the test-zone and the rectangular ends. After 

removal of the specimen from the shuttering the polystyrene 

block could easily be removed. Hence the change in the 

cross-sectional dimensions was achieved through changing the 

polystyrene block dimensions.

^-â^3_Çasting_and_Çuring

Casting was normally done in two concrete batches because of 

the amount of concrete required. Care was taken to ensure 

distribution of the two mixes and collection of the control
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specimens (cubes and cylinders) from both batches. The

specimens were placed horizontally for casting because of 

practicality. Internal 12 mm poker vibrator was used during 

casting of all specimens for about 30 minutes until all the 

concrete was placed.

After casting, the specimens, cubes and cylinders were cured 

under damp hessian for the first three days before removing 

the formwork for final curing under laboratory conditions 

until the time of testing.

6.6.4 Demec Gauges on Concrete Surface

When cured the specimen was white painted in order to enable 

clear tracing of cracks and demec gauge were glued to the 

concrete surface using Araldite. Figure (6.16) shows the 

location of demec gauges on the cross section of a typical 

specimen. The specimen was then installed in position ready 

for testing (section 6.3.4).

6^6.5 Loading and Recording of Readings

About 15-20 load increments were applied on a typical

specimen. Two readings were taken for each load increment, 

one before the demec gauge readings were manually recorded 

and one afterwards. The process of reading all demec gauges 

took about 5 minutes, on average, before cracking. After 

cracking, however, this time increased to an average 10 

minutes. It was noticed that a slight drop in all readings 

took place between the two sets of readings for each load

increment. However, the first (higher values) were

considered for all analysis and comparison purposes because



that loading was considered to have been carried by the 

section anyway. Loading was continued until failure wan 

noted by either a continuous drop of applied load value or a 

sudden fall of that value combined by a physically 

noticeable failure.

During loading, crack propagation was closely followed and 

marked as the corresponding load Increment was recorded on 

the concrete surface at the tip of each crack. The total 

duration of a test averaged between Z to 3 hours depending 

on the total number of load increments applied. it wag 

noticed that the maximum travel provided by using the two 

hydraulic jacks was sufficiently enough for all specimens to 

reach their ultimate loads. A few more readings were taken, 

whenever possible, in an attempt to trace the falling branch 

of the torque-twist curve.
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Figure (6.1) Details of test spe cimens
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Fi gure (6.2) Isometric view of test-rig

(1) portai frame
(3) bottom fixity 
5̂) loading T — arm 
7̂) 2 hydraulic Jacks

(2) RC test specimen
(4) top unit (loading cap)
(6) support system for hydraulic Jacks
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Figure (6.3) Photograph of test-rig with specimen (814) after test
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Figure (6.4) Détails of bottom fixity
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Section AA

Figure (6.5) Continued
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Figure (6.6) A typical arrangement of loading cap, 
cells and hydraulic Jack (s)

T-arm. load
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Figure (6.7) Arrangement of transducers
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igure (6,9) Typical concrete stress-strain curve (for specimen 813)
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Bar size 

mm

Area

mm^
Es

KN/mm^
fy

N / m m ̂ mm/mm

0.2% proof 
stress 
N/mm^

Ew
KN/mm^

6 28.0 180.0 465 . 0 0 . 0026 - -

8 50 . 0 214.0 - - 536 . 0 10.0

10 79 . 0 206 . 6 - - 500 . 0 7 . 0

12 113.0 199 . 2 518.0 0.0026 - -

16 201.0 181.0 542 . 0 0 . 0030 - -
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Figure (6.10) Steel stress-strain curves
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Figure (6.10) Continued
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Figure (6.10) Continued
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•G (6. 11) Arrangement of extensometer and strain gauges for comparison
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Figure (6.12) Comparieon of extensometer with the two types of 

strain gauges
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CHAPTER SEVEN 

e x p e r i m e n t a l  RESULTS AND DISCUSSIONS

7.1 Introduction

In this chapter the experimental results are presented and 

discussed. For completeness, the objectives of the tests are 

restated as follows:

(1) To assess the validity of some aspects of the current 

British Code (BS8110) design procedure for torsion with 

special reference to solid L-sections. The reference 

specimen of each group was designed and detailed strictly 

a ccording to the code's recommendations as exp lained in 

Chapter Six.

(2) To obtain a better insight into the torsional behaviour 

of p r o p e r l y  reinforced concrete L-sections (i.e. having 

closed stirrups for both web and flange). The main variables 

for investigation were: (a) cross sectional size, (b) amount

of transverse reinforcement and (c) stirrup spacing.

(3) To use these results to check the relia b i l i t y  of the 

n o n l i n e a r  three dimensional finite element model for the 

analysis of these types of cross sections under torsion.

(4) To c o m p l e m e n t  these results with the results of a 

parametric study, to be presented in Chapter Nine, in order 

to make some recommendations for the torsion design of L - 

sections.

7.2 Results and Discussions

The principal test results are summarised in Table (7.1). 

Experimental curves will be presented while they are 

discussed .
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As described earlier the specimens Bll and B31 were designed 

and d e t a i l e d  according to the British Code procedure and 

were designated the reference specimens of their respective 

groups. The design torque for each of the two specimens was 

8 KN.m, assuming fy = 410 N/mm^ and concrete grade 40. At 

the time of experiment, however, the steel yield values were 

higher at fy^ = 465 N/mm^ and fy  ̂ = 525 N/mm^ (average). The 

concrete characteristics were slightly higher at f^^ = 42.8

N/mm^ ( f g = 33.4) for Bll and f^,y = 44.7 N/mm^ ( f ' ̂  = 35.0) 

for B31. The amount of stirrups provided was governed by the 

limitation on the maximum stirrup spacing and was therefore 

much higher than the values obtained from the code's design 

equation. To account for these variations and to adequately 

assess the code's provisions, the ultimate torques for the 

two sections were recal culated for the actual material 

properties and the amount of steel provided, with three 

different combi nations of the safety factors used in the 

Code's design equation. These are shown in Table (7.2) and 

are given by the following equations:

As VTp 2 = 2̂  (---- ) 0.8xj^yj(0.87fyy) (7.1)
s

Tp2 ~ ^  (---- ) Xjyj(0.87fyy) (7.2)
s

^R3 " ^  (----) XlVlfyv (7.3)

where :

Agy = area of tow legs of a stirrup 

s = stirrup spacing

y 1 = shorter and longer dimensions of the stirrup
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fyv = yield strength of the stirrups 

Group B 1

This group consisted of five specimens Bll, B12, B13, B14 

and B21 and had the same cross section. Specimen B12 and B13 

were rein f o r c e d  with less stirrups than Bll while B 14 had 

more stirrups. B21 was reinforced with the same volume ratio 

of t r a n s v e r s e  steel as Bll but 8 mm bars were used for the 

stirrups instead of the 6 mm bars used for Bll, resulting in 

a larger stirrup spacing. The amount and locations of 

l o n gitudinal reinforcement were kept the same as Bll 

throughout.

Reference Specimen B%1 

The load was applied in small increments of about 1.3 KN.m 

on a v e r a g e  resulting in a total of 19 increments up to the 

failure torque. For clarity of presentation, the sides of 

the section are designated "face" 1, 2, 3 and 4 as shown in 

Figure (7.1) with the interior as "inside".

The first visible crack was observed at a load of 12.4 KN.m. 

C r a c k i n g  s t a r t e d  on f a c e  2 (the l o n g e r  s i d e )  at 

a p p r o x i m a t e l y  4 5° to the l o n g i t u d i n a l  axis and soon 

propagated towards the junction where faces 1 and 2 meet at 

about the middle of the test zone. Upon further loading the 

crack spreaded almost simultaneously on the outer sides 

(face 1 and 2 ) maintaining the same angle of inclination 

while new cracks appeared within the test zone also on the 

outer faces. It was noticed that the steel strains started 

to increase after cracking and the disp lacements were 

c o n s i d e r a b l y  higher than their pre-cracking values. This 

occured one increment after cracks were seen by the naked
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eye, p r o b a b l y  indicating that the transfer of forces from 

concrete to steel is not a very sudden event as cracks start 

to appear and propagate.

As load i n g  increased, the "spiral" nature of torsional 

cracking became apparent as the cracks circulated on all 

faces; the last side to have suffered cracking was the 

interior side of the web . At a load of 23.95 KN.m the 

specimen failed as the load indicator began to drop with 

further loading. All the test zone had suffered severe 

cracking by this stage. Readings were also taken after the 

ultimate torque in an attempt to obtain the falling branch 

of the torque-twist curve.

Figure (7.2) shows the process of crack propagation on the 

four faces of a typical specimen, folded as indicated in the 

previous figure. The quick propagation of torsional cracking 

is clearly seen as loading progresses.

Figure (7.3) shows the final crack pattern on all faces of

s p e c i m e n  Bll. The i n c l i n a t i o n  of the c racks to the
0 0

l o n g i t u d i n a l  axis varied between 40 to 50 as can be seen 

from the figure. It can also be seen that cracking did not 

spread outside the test zone. This observation was important 

because it indicated that the rectangular ends had been 

sufficeintly reinforced.

At f a i l u r e  the cracks widths were large and some small 

cracks appeared on all faces connecting the major well 

defined inclined cracks, presumably as a result of bending 

of the sides of the cross section, in particular the flange. 

It als o  appeared that face 4 had apparently suffered
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crushing as can be seen in Figure (7 .3 ).

Crack widths are plotted in Figure (7.6) for specimen Bll. 

Four cracks were selected on face 1 and face 2 for the crack 

width measurements. It is clear from the figure that 0.3 mm 

crack width (for serviceability limit state according to 

BS8110) corresponds to an average applied torque of about

16.2 KN.m.

Figure (7.4) shows the torque-twist curve for specimen Bll.

It is c l e a r  from the figure that the b e h a v i o u r  is 

essentially linear up to the cracking torque. This confirms 

the well known observation that a reinforced concrete beam 

under pure torque behaves like a plain concrete beam up to 

initial concrete cracking. This is also reflected in the 

steel strains, both in the longitudinal bars and stirrups, 

as shown in Figure (7.5). All bars carried insignificant 

s t r a i n s  b e f o r e  cracking, i n d i c a t i n g  the n e g l i g i b l e  

contribution of steel towards the overall stiffness in the 

pre-cracking stage. Similar behaviour is also noted for the 

concrete surface strains which unfortunately were not 

properly recorded for this specimen but will be shown later 

for all remaining specimens.

Figure (7 .4 ) also indicates that the angles of twist as 

measured from the lateral displacements on the shorter and 

longer sides (faces 1 and 2 respectively), are not quite the 

same. The angle of twist from the shorter face is s l i g h t l y  

smaller than that from the longer face for the same applied 

torque. This indicates a stiffer response from the web 

compared to the flange and can be attributed to local
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It was also observed during the experiment that a wide 

discrete crack appeared on specimen B13, the one with the 

least total torsional reinforcement of all specimens of this 

group. The actual failure of this particular specimen was 

sudden, accompanied by a loud bang, and was caused primarily 

because of this crack opening very wide resulting in a 

sudden large rotation of the part above it relative to the 

lower part. These are characteristics of a brittle failure 

which have undesirable practical consequences as it occurs 

without enough warning signs. Figure (7.8) shows torque- 

twist curves of the first four specimens of group Bl, where 

generally similar behaviour as Bl 1 can be seen.

The dowel effect of the longitudinal reinforcement was clear 

as the f ailure load was approached. At the last stages of 

loading, roughly at about 85% - 90% of the failure torques, 

cracks were significantly wide. Also, the surfaces at both 

sides of major crack were no longer in the same plane, 

showing that the steel bars were subjected to dowel action. 

This can be c l e a r l y  seen for specimen B33, the results of 

which w i l l  be shown later on.

The steel response for specimens B 12, B 13 and B14 is given 

in Figure (7.9). Again, in general terms, similar behaviour 

as for Bll can be clearly seen.

Figure (7 .1 0 ) shows torque vs crack width for fovtT

specimens of this group. The crack width was larger for the 

specimens with small percentages of reinforcement It 

decreased with increasing reinforcement.

The demec gauges, for concrete surface strain measurements.
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were oriented at 45 to the longitudinal axis as shown 

e a r l i e r  in C h a p t e r  Six. The a n g l e s  of c r a c k s  wit h  

longitudinal axis were measured for all specimens and found 

between 40 and 50 , averaging 45 . Therefore demec gauges

parallel to the cracks recorded compressive strains while 

those perpendicular to the cracks recorded tensile strains. 

These v a l u e s  will be close to the principal stresses but 

because of the irregularity and variation in the angle of 

i n c l i n a t i o n  of the cracks they will be dealt with only as 

the c o m p r e s s i v e  strains parallel to the cracks and the 

tensile strains normal to the cracks and not as the true 

principal stresses.

F i g u r e  (7.11) shows the m e a s u r e d  c o n c r e t e  s u r f a c e  

compressive strains plotted against the applied torque for 

specimens B12, B13 and B14. The figure indicates c l e a r l y  

that their values were small before the cracking torques and 

increased suddenly upon cracking as was the case with steel 

stresses/strains. They also generally follow the o v e r a l l  

b e h a v i o u r  of the torque-twist curves, in that there is an 

initial straight part followed by a sudden change in slope 

after cracking and a continuous increase with loading up 

u n t i l  f a i l u r e .  T h e r e  are, h o w e v e r ,  n o t i c e a b l e  

irregularities, i.e. increase followed by a sudden temporary 

decrease and so on. This is due to crack propagation effect 

when a pair of demec gauges was affected, say, by a new 

crack/s forming nearby. It also reflects the instantaneous 

local i n s t a b ilities that occur at a position where cracks 

either propagate to or passes by during loading.

The concrete surface tensile strains, however, were measured
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but not plotted. They could be a reasonable measure for 

crack widths. But because the cracks chosen for the crack 

width measu rements were different from those propagated 

between the demec gauges, no direct comparison could be 

made. The reasons are that selection of the cracks, for 

measurements of crack widths, was always made at the early 

stages of crack initiation. Furthermore, the passing of a 

single crack between the two terminals of a particular pair 

of demec gauges was never a controlled event and could never 

be guaranteed.

For specimen B21 cracking started and propagated in a 

similar fashion as specimen Bll but it was clear that they 

were at a larger spacing. Figure (7.12) shows the final 

crack patterns for specimen B 21 where this is c l e a r l y  

evident by comparison with Figure (7.3).

The failure torque for specimen B 21 was 24.95 KN.m (about

3.9% higher than Bll). Several factors might have played a

part in bringing this about e.g. rate of loading especially

at the final stages, variation in steel yield values (6mm
2bars had 465 N/mm definite yield value, 8mm showed strain

2ha rdening behaviour and had 536 N/mm 0.2% proof stress). 

Also, there might be more contribution of dowel action near 

failure due to the larger 8mm stirrup diameter. The amount 

of this contribution is difficult to quantify from this 

limited observation.

Figure (7.13) shows the torque-twist curves for specimens 

Bll and B12. It can be seen that be f o r e  c r a c k i n g  the 

stiffness of both specimens is the same as might be

expected. In the post-cracking region, however, the curve
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for B21 is s lightly stiffer than that for Bll. The reasons 

stated above with regard to the variation of ultimate torque 

are also valid here. Furthermore, and more importantly, the 

Y o u n g ’s modu lus of elasticity of the 8mm stirrups is 214 

KN/mm^ while that for the 6mm stirrups is 180 KN/mm^, a 

difference of about 16%. This is a major factor because the 

post-cracking torsional stiffness is known to be a strong 

function of the steel properties (Chapter Two). The nature 

of cracking (spacing and width) might have also contributed. 

The main conclu sion from this comparison is that use of 

larger spacing caused wider spaced cracks but did not 

s i g n i f i c a n t l y  affect the ultimate torque for the same 

amounts of longitudinal and transverse reinforcements.

Figure (7.14) shows the steel response for specimen B 21 

w h e r e  a g a i n  s i m i l a r  b e h a v i o u r ,  as for a l l  p r e v i o u s  

specimens, is evident. The concrete surface principal 

compressive strains are shown in Figure (7.15) for the same 

specimen. These behaved linearly, and were small in value up 

to the cracking torque. A sudden increase is noticed after 

cracking. The general trend follows that of the torque-twist 

behaviour .

7_^2^3 Group B 3

This group consisted of four specimens designated B31, B32,

B33 and B34. The specimens had the same cross sectional 

area, which was smaller than the first group. B31 was the 

reference specimen for this group. The amount of transverse 

reinforcement was varied in a similar way as for group Bl 

for the same amount and distribution of longitudinal steel.
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For all specimens small load increments were applied until 

failure. The average increment size was 1.3, 1 .1 , 1.2 and

2.6 K.m for B31, B32, B 3 3 and B34, respectively. These

resulted in a total number of increments of 16, 16, 16 and 

11 up to the failure torque.

The observations during the experiments were fairly similar

to group Bl. The crack inclinations with the longi tudinal
o o

axes were between 39 and 49, in general. The same crack did 

not n e c e s s a r i l y  continue round the corner as a continuous 

crack during its propagation to form a helix; concrete is 

not an ideal material after all.

Figure (7.16) shows the torque-twist curves for all four 

specimens of this group. The ultimate torque increased with 

increase in reinforcement. The reference specimen, B31, 

failed at 20.88 KN.m.

A comparison of the final crack patterns for specimens B31, 

B 3 2 and B 3 3 is shown in Figure (7.17). The effect of the 

larger spacing of stirrups is clearly reflected in specimens 

B 3 2 and B 3 3 w h e r e  an i n c r e a s e d  crack s p a c i n g  can be 

observed.

The dowel effect can be seen in Figure (7.18) for specimen 

B33. The bending of the longitudinal steel bars, where they 

meet the stirrup, indicate this effect. Also the crushing of 

concrete is clearer for this specimen, being reinforced with 

the least amount of steel. Crushing occurred at the centre 

of the test zone in the flange as can be seen in the same 

figure.

The rein forcement response for all four specimens of this
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g r o u p  is s h own in Fig u r e  (7.19) wh ere again s i m i l a r  

response, as for the first two groups, can be observed. 

I n s i g n i f i c a n t  s t r a i n s  were r e c o r d e d  b efore c r a c k i n g ,  

followed by a large increase after cracking and a continuous 

increase thereafter until failure.

Figure (7.20) shows the concrete surface compressive strains 

plotted against the applied torque for this group. Torque vs 

crack width is presented in Figure (2.21). The applied 

torque corresponding to 0.3mm crack width is about 15.0 

KN.m, 12.64 KN.m and 9.64 KN.m for specimen B31, B32 and B33 

respectively.

7.3 Summary

This s e c t i o n  aims to s u m m a r i s e  the r e s u l t s  u n d e r  the 

following headings:

(1) Pre-cracking stiffness

(2) Cracking torque

(3) Post-cracking torsional stiffness

(4) Angles of twist at cracking and failure

(5) Crack propagation, spacing and width

(6 ) Steel response and unit lengthening

(7) Concrete surface strains

(8 ) Failure torques and failure modes

(9) A s s e s s m e n t  of Some Aspects of BS8110 Torsion Design 

Procedure.

Following the observed behaviour described above the torque- 

twist curve for a typical specimen is idealised as shown in 

Figure (7.22), with various important quantities defined. 

The slope of the initial linear part of the torque-twist
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curve is the pre cracking torsional stiffness (Kq) and the 

angle of twist at the end of this part is termed "angle of 

twist at craking ^cr"* After cracking of concrete the first 

part of the nonlinear curve is approximated by a straight 

line and the slope of this part is taken as the "post­

c r a c k i n g  t o r s i o n a l  s t i f f n e s s  K ̂  ̂ . The c u r v e  b e n d s  

afterwards up to the ultimate torque T^ (peak point) before 

descending again. The angle of twist at the peak 

point is termed "angle of twist at failure 0^".

lilil Pre-cracking Stiffness

As can be seen in all experimental torque-twist curves the 

b e h a v i o u r  is essentially linear before cracking. The 

reinforced concrete members of L-shaped cross section behave 

like plain concrete members before cracking, regardless of 

the amount of torsional reinforcement. Indeed, the p r e ­

c racking torsional stiffness was almost the same for all 

specimens with different reinforcement contents when the 

cross section was the same as shown in Table (7.3).

The effect of concrete strength might have resulted in 

slight variations. The variation obtained in this study does 

not suggest corrections, for comparison purposes, as the 

elastic m odulus of concrete varied within a limited range 

(20.0 KN/mm - 23.0 KN/mm ).

7.3.2 Cracking Torques

As the reinforcement has insignificant contribution to the 

behaviour before cracking, the cracking torque is mainly a 

function of concrete strength for the same size. However, it 

is found that the cracking torque does increase s l i g h t l y
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with the increase in the amount of transverse reinforcement. 

Table (7.1) lists cracking torques for all specimens of this 

series. These values are plotted against the percentage 

v o l u m e  of t r a n s v e r s e  r e i n f o r c e m e n t  in F i g u r e  (7.23). 

Examination of the figure reveals a mildly increasing trend. 

The effect of the size of the cross section is very clear as 

the cracking torques of the specimens of group Bl are higher 

than the corresponding specimens of B3.

7.3.3 Post-cracking Torsional Stiffness

Torsional stiffness is greatly reduced after cracking occurs 

(Figures 7.4, 7.8, 7.13 and 7.16). Table (7.3) compares the

post-cracking torsional stiffness expressed as a percentage 

of the pre-cracking value for all specimens. The p o s t ­

cracking portion of the torque-twist curve is never a full 

straight line, because of the continuous process of crack 

propagation followed later by yielding of steel and/or 

crushing of concrete. However, for the above comparison the 

post- c r a c k i n g  torsional stiffness is obtained from the 

early part of the post-cracking portion of the curve (as 

shown in the idealized torque-twist curve of Figure 7.22) 

approximated to a straight line so as to give a comparative 

measure of the sharp reductions that take place after 

concrete cracking.

The table reve a l s  that the ratio of the post- to p r e ­

cracking torsional stiffness ranges between 1% to 13%, a 

very sm all proportion. This is because of the nature of 

torsional cracking which spread all round the section fairly 

soon after crack initiation. It also reflects the role of 

reinforcement in taking over the major role, at this stage.
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of resisting the applied torque. The values of these 

stiffnesses, however, are approximate because of the nature 

of idealiz a t i o n  but generally fall within reas o n a b l e  

accuracy for this type of comparison.

Figure (7.24) shows the ratio of post- to pre-cracking 

torsional stiffness plotted against the volume ratio of 

transverse reinforcement for all specimens. The behaviour is 

fairly linear indicating a general trend which needs further 

e x p erimental evidence to a llow establishment of a more 

widely applicable relationship between these two quantities.

1 Æ J .  Angles of Twist at Cracking and Failure Torques 

In Table (7.3) the angles of twist at two significant stages 

during the loading process, namely the cracking and failure 

stages, are listed for all specimens. The ratios of the 

value at failure (peak of the torque-twist curve) to that at 

cracking give a clear indication of the very large rotations 

that are required for the section to deve l o p  its ultimate 

capacity. This ratio could be as high as 20 in some cases as 

can be seen in the table. For the specimens tested in this 

study the ratio varied between 12 - 21%. Figure (7.25) shows 

this ratio plot ted against the volume ratio of transverse 

reinforcement for the two groups of specimens, where an 

approximately linear relationship can be seen.

The high v a l u e  of the ratio of twist at failure to that <A

cracking is likely to play a major role in determining the

serv ice load. The code does not specify a value for the

service load (torque) based on rotation, as analogous to

d e f l e c t i o n  in case of flexure. Therefore a code pr ovision 

dealing with a limiting maximum rotation may be necessary.
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7.3.5 Çraçk Propagation^ Spacing and Width

Torsional cracks are distinguished by their "helical" nature 

and a l s o  by their rapid propagation compared to f l e x u r a l  

cracking. An inclination of 40 - 50 to the longitudinal

axis was o b s e r v e d  for a ll specimens tested in this series. 

The s p a c i n g s  of the c r a c k s  w e r e  f o u n d  to be d i r e c t l y  

influenced by the stirrups spacing. Closely spaced stirrups 

resulted in closer, but finer cracks whereas widely spaced 

stirrups produced w i d e l y  spaced cracks but with larger 

width. For specimens Bl 3 and B33, the least r e i n f o r c e d  in 

each group, the f a i l u r e  has a c t u a l l y  r e s u l t e d  from a 

distinct "helical" crack causing sudden collapse; a brittle 

type of failure.

As crack width p l ays an important role in d e t e r m i n i n g  the 

service load a c c o r d i n g  to the code, the appl i e d  torques 

corresponding to 0.3 mm crack width were determined from the 

torque vs crack width c urves (Figures 7.6 and 7.21) and are 

listed in T a b l e  (7.5). Comparison of these v a l u e s  with the 

design and e x p e r i m e n t a l  failure torques will be made in 

section (7.3.9) for a s s e s s m e n t  of some of the Code's 

provisions .

L W  Steel Response and Unit Lengthening

Both longitudinal bars and closed stirrups did not carry any 

«easureable strains before cracking. After cracking,large 

Increases in steel strains were observed as shown in Figures 

(7'5, 7.9, 7.14 and 7.19). This c o n f i r m s  the w e l l

«stablished fact that reinforced concrete members behave 

^ike identical plain concrete members before cracking. The 

increase in steel strains indicates that the equil i b r i u m
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condition that existed in the uncracked reinforced member 
was upset by cracking so that the member sought a new 

e q u i l i b r i u m  c o n d i t i o n  by t r a n s f e r i n g  loa d  to the 
reinforcement.

The s t e e l  strains, after cracking, were f o u n d  to 

continuously increase with loading on all legs of a closed 

stirrup. Although in most curves the behaviour can be 

a p p r o x i m a t e d  to a s t r a i g h t  line there are a lot of 

nonlinearities. The torque vs steel strain curves show that 

at failure of all specimens yielding had occured in at least 

one of the longitudinal or transverse reinforcement as also 

shown in Table (7.1). Better utilization of reinforcement 

was a c h i e v e d  when lesser amount of stirrups was used. This 

is clear when comparing the steel response of specimens Bll, 

B12 and B13 (Figures 7.5, and 7.9).

Hsu (ref. 2) tested rectangular reinforced concrete beams 

under pure torsion and reported that after cracking the 

stirrup stresses at the centre of the wider face increased 

approximately linearly with loading up to failure. The steel 

stresses in the shorter legs of the stirrup increased at 

first and then acted irregularly, often decreasing when 

u l t i m a t e  conditions were approached. In general no such 

peculiar behaviour was observed for the L-sections tested in 

the present series.

Comparison of steel response for specimens Bll and B21 

(Figures 7.5 and 7.14) shows that, although the failure 

torque is p r a c t i c a l l y  the same for both specimens the 

longitudinal steel strains at failure are much higher for
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B21. This may be attributed to the increased stirrup spacing 
or increased stirrup diameter, being the only differences 

between the two specimens. However, this point needs further 

i n v e s t igation as it is directly linked with the maximum 

limitation on stirrup spacing. The comparison seems to 

indicate that this limitation can be made less stringent as 

it only affected the crack spacing and width, but not to the 

e x t e n t  that p r e v e n t s  s l i g h t  r e l a x a t i o n s  in these 
limitations.

Because of the type of cross section and the fact that the 

longitudinal bars are of different diameter, as dictated by 

the design procedure, warping of the cross section is not 

expected to be the same in flange and web. Also differential 

cracking is expected, because of the different stiffnesses 

of web and flange, resulting in unequal strains in the 

longitudinal bars and also unequal lengthening along the 

cross section. Therefore, the unit lengthening of each 

specimen is plotted with the longitudinal steel strains 

without averaging these strains. These are shown in Figures 

(7.5, 7.9, 7.14, and 7.19). The similarity is evident as no 

measurable lengthening can be seen before cracking. A large 

increase foll o w s  after cracking of concrete and continues 

thereafter up to failure.

7.3.7 Concrete Surface Strains
As the demec gauges were oriented at 45 to the longitudinal 

axis, it was possible to record roughly both the compressive 

strains p a r a l l e l  to the cracks and the tensile strains 

n o r m a l  to the c r a c k s  on the c oncrete surface. The 

c o m p r e s s i v e  strains are shown in Figures (7.11, 7.15 and
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7.20) where, similar to steel strains, a large increase upon 
cracking is clear, resulting in two distinct regions, before 

and after cracking. The tensile strains could be quite 

useful to measure. They give an indication of the crack 

width. But it is extremely difficult to estimate crack width 
from these values because of the following reasons:

(1) The positions of the demec gauges were pre-selected to 

cover all sides of the cross section. As cracks propagated, 

either more than one crack passed between the terminals of 

the demec gauges or the terminal itself was affected by the 
process of crack propagation.

(2) Not all the deformation recorded by the demec gauge is 

due to the crack width alone, part of it must be due to the 

concrete strains in between the terminals being 100 mm 

apart. D e t a i l e d  study of this a spect of b e h a v i o u r  is 

important but may require small size specimen where such 

local behavior can be closely monitored.

7.3.8 Failure Torques and Failure Modes

The failure (or ultimate) torque is defined as the maximum 

torque which can be resisted by the member, in other words 

the peak of the torque-twist curve. Table (7.1) shows the 

measured ultimate torques for all specimens. These are also 

p l o t t e d  in F i g u r e  (7.26) a gainst the v o l u m e  r a t i o  of 

transverse reinforcement, where it is clear that the failure 

t o r q u e  i n c r e a s e d  with the incre a s e  in t r a n s v e r s e  

reinforcement.

Comparison of failure torques of specimens Bll, B12 and B13 

r e v e a l s  that a reduction of 26.4% and 47.3% of transverse 

reinforcement resulted in a reduction of only 5.0% and 18.0%
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in the failure torque, taking Bll as a reference. Similar 
comparison of B31, B32 and B33 shows that a reduction of

26.3% and 47.3% produced a reduction of only 13.1% and 

17.4%. Thi s  must be d i r e c t l y  c o m b i n e d  with the steel 

response where better utilization of longitudinal steel was 

achieved when largely reduced amounts of stirrups were used, 

as reflected in the longitudinal steel strains previously 

discussed. This tend to indicate that the principle of equal 

volume through which the longitudinal steel is determined 

(which is also employed by the AC I code) could be s l i g h t l y  
relaxed.

Hsu (ref. 2) investigated this particular point and reported 

that when the total reinforcement is less than about 2.3%, 

the volume ratio of longitudinal steel to stirrups, m, can 

vary between 1.0 and 1.5 and both reinforcements will 

n e v e r t h e l e s s  yield. Two of his beams ( B 2 and B9), for 

example, had roughly the same total amount of reinforcement 

(= 1.65% and 1.71%) but different values of m (=2.18 and

1.0). Yet they failed practically at the same torque (=259 

and 264 in-kips). This is interpreted as reasonable because 

both beams were underreinforced so that all reinforcement 

was u t i l i z e d .  He a l s o  found that a l t h o u g h  the f u l l y  

e f f e c t i v e  value of m can vary widely for beams with small 

percentage of reinforcement, it becomes very sensitive for 

beams with high percentage of reinforcement. As no variation 

of the longitudinal reinforcement was made in this study an 

attempt has been made to look into it using the d e v eloped  

finite element model as will be reported in CKcLpter 
Miae
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The failure modes of the test specimens can best be studied 
through the crack propagation and patterns together with the 

steel response. The skew-bending type of torsional failure 

has b e e n  w i d e l y  a c c e p t e d  as a t h e o r e t i c a l  m o d e l  to 

f a c ilitate c a l c u l a t i o n  of a section torsional capacities. 

The space truss model, on the other hand, serves the same 

p u r p o s e  by c l e a r l y  d e f i n i n g  the f u n c t i o n s  of both 

longitudinal and transverse steel and concrete in resisting 
the applied torque.

As already described the present experiments clearly showed 
othe spiral 45 nature of torsional cracking. Crushing of 

concrete was c l e a r l y  observed at the flange in two of the 

specimens, namely B13 and B33. This is an indication of a 

skew-bending failure. However, there is no clear cut signs 

in a l l  specimens as to the occurrence of crushing at that 

p a r t i c u l a r  location. It occured and was seen c l e a r l y  for 

specimens with reduced amonut of steel.

Assessment of Some Asgects of the Code’s Design Procedure in the
Light of the Present Test Results 

T a b l e  (7.5) and F i g u r e  (7.27) shows c o m p a r i s o n  of the

following torques:
(1) BS8110 design torque (Tj) of the reference specimens

(2) R e c a l c u l a t e d  values of the torque (T^i, T^ 2 ^R3^ 
using the actual material properties and the steel amount, 

for the three different combinations of the factors employed 

in the Code's design equation, previously defined .

(3) Cracking torques
(4) Experimental failure torques and
(5) Applied torque corresponding to 0.3 mm crack width
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Examination of the above table and figure reve a l s  the 
following points:

(1) The r e c a l c u l a t e d  torques of the reference specimens 

immediately indicate that the code's provisons are far too 

conservative. The root cause of this is the restriction on 

the maximum stirrup spacing as this was governed by the 

s m a l l e s t  d i m e n s i o n  of the f l a n g e .  T h i s  led to a 

substantially increased stirrups in the web as can be seen 

in Appendix (A). Column 15 of the table reveals that this is 

of lesser magnitude in the smaller cross section B13 as the 

s m a l l e s t  d i m e n s i o n  of web and f l a n g e  are c loser. 

A p p r e c i a t i o n  of this point can lead to a less stringent 

stirrup spacing and hence much more economical design. 

C u r r e n t l y  the stirrup spacing is based on the least of x ̂  , 

yj/2 or 200 mm, whichever the lesser. It is suggested that 

this l i m i t  c o u l d  be (xj+yj)/2, yj/2 or 200 mm. This 
suggestion is put forward among some "tentative design 

recommendations" later in Chapter Nine.

(2) The e x p e r i m e n t a l  f a i l u r e  t orque of the r e f e r e n c e  

specimen Bll is practically equal to T|̂ 2 whilst that of B31 

is cl o s e r  to T^g. This suggests that in principle the 

equation is reasonably applicable.

(3) The applied torques corresponding to 0.3 mm crack width 

for the two groups of specimens shows that these torques are 

a l l  h i g h e r  than the d e s i g n  torque (T^) e v e n  for the 

specimens with much reduced transverse reinforcement. This 

observation substantiates point (1) above.

(4) On the whole, the results indicate that the code s
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torsion design provisions can be improved to reduce its 
current conservative nature. Suggestions for improvements 

will follow after further variables are investigated through 
a parametric study reported in Chapter Nine.

7.4 Conclusions

The following conclusions are drawn from the present results 

on reinforced concrete sections subjected to pure torsion:

(1) The code procedure is found conservative as it grossly 

underestimates the section torsional capacity. An immediate 

reason for this is the limit on stirrup spacing as this is 

based on the smallest dimension of the component rectangles. 

Relaxation of this limit would result in a more economical 

use of reinforcement.

(2) The design equation is, in principle, quite a p p l icable 

but an increase in the permissible shear stresses and a 

m o d ification of the factor 0.8 appears to be necessary to 

reduce its present conservative nature e s p e c i a l l y  if the 

present procedure of calculating the amount of reinforcement 

from the total design torque is to be used.

(3) The a p p l i e d  torques at 0.3 mm crack width were found 

higher than the design torque of the reference specimen of 

each group even for the reduced volume ratios of stirrups, 

an observation that supports the above two points.

(4) The behaviour was found to be essentially linear until 

cracking of concrete. For all practical purposes the slope 

of this linear part of torque-twist curve is independent of 

the amount of torsional reinforcement. After cracking the 

steel strains/stresses and the concrete surface strains
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increased largely and continued to increase thereafter until 
failure.

(5) Reduction of transverse reinforcement, for the same 

amount of longitudinal steel, was found to reduce both the 

post-cracking torsional stiffness and the ultimate torque. 

However, a particular percentage reduction resulted in a 

lesser percentage reduction of ultimate torque, a l l o w i n g  

more u t i l i z a t i o n  of longitudinal steel. This is another 

demonstration of the uneconomical amount of steel according 

to the code, where even sections with the reduced amount of 

reinf o r c e m e n t  de v e l o p e d  ultimate torques well above the 

design torque of their corresponding reference specimens 

(designed and detailed according to the Code's provisions).

(6) The stirrup spacing was found to effect both the crack 

width and spacing. Closely spaced stirrups resulted in 

closely spaced fine cracks. Larger stirrup spacing resulted 

in widely spaced cracks but with larger crack widths.

(7) Use of larger stirrup diameter with larger spacing 

instead of smaller stirrup diameter, giving the same amount 

of t r a n s v e r s e  reinforcement, with the same amount and 

dis t r i b u t i o n  of longitudinal steel, was found to produce 

p r a c t i c a l l y  the same ultimate torque (specimens Bll and 

B21). Onl y  the crack width and spacing were affected as 

described above.

(8) The cracking torque was found to increase slightly with 

the i n c r e a s e  in the v o l u m e  r a t i o  of t r a n s v e r s e  

reinforcement.



3 4 9

(9) Large reduction of torsional stiffness occured after 
cracking of concrete. The ratio of post- to pre-cracking 
stiffness ranged between 7% - 13%.

(10) Very large rotations were necessary for the torsional 

members to d e v e l o p  their ultimate torques. The ratio of 

twist at failure to that at cracking was found to vary 
between 12 - 20.

(11) Finally, the experimental tests yielded sufficiently 

consistent data for assessing the developed finite element 

model in the analysis of reinforced concrete solid flanged 

sections subject to torsion.
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able_il^2j. ReCûlcwiAi of reference specimens using actual material 

properties and amounts of steel provided

Spec imen
BS8110 Design 

Torque (KN.m) T ri

Values

'̂ R2

(KN.m)

TR3

Bll 8 . 0 18.49 23 . 1 26.56

B31 8 . 0 13.48 16.85 19.37

ible_17^31 Pre- and Post-cracking torsional stiffness for all 

specimens

)ec imen KgXloG

K N .m m ^ / d e g .

K^xloG

KN.mm^/deg.

KcrXlflS

K N .m m ^ /deg.

Bll 87 . 8 69 . 5 7 . 1 10.2

B12 72.6 6 . 2 8 . 5

B13 67 . 4 4 . 8 7 . 1

B14 72.6 7 . 4 10.2

B21 67 . 6 8 . 9 13.2

B31 38.9 32 . 1 4 . 0 12.5

B32 35 . 9 2 . 7 7 . 5

B33 31.3 2 . 5 8 . 0

B34 40 . 1 5 . 0 12.5

K, St. VetUiv»vt̂ 5 elastic torsional stiffness assuming v^= 0.2

~ Experimental pre-cracking torsional stiffness 

Kqp = Experimental post-cracking torsional stiffness
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C o m p a r i s o n  of a n g l e s  of t w i s t  at c r a c k i n g  a n d  f a i l u r e  
f o r  a l l  s p e c i m e n s

S p e c i m e n

d e g ./mm

8^x1 oG 

deg./mm
®u/ ®cr

Bll 245 . 2 3825 15 . 6

812 249.6 3650 17.41

313 230.0 3350 11.55

814 275.0 4335 15 . 76

821 250.0 3500 14.0

831 296.7 4500 15 . 17

832 290.0 4100 14 . 14

833 265.0 5300 20 . 0

834 241.0 5075 21.58

= angle of twist at cracking torque 

8u = angle of twist at failure torque
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Face (4)

Inside

Face (1 )

Face (2 )
n

Outside

Face (3)

Figure (7. 1) Designation of specimen sides for clarity of 
crack propagation and patterns
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F a c e d )  F a c e  ( 2 )  F ace  ( 3 )  F a c e  ( 4 )

200ilOO

40 03 0 0300

T = 1 4.5 KN.m = 0.42 \ j

Figure (7.2) Crock propogotlon during the looding process for 
s p e c i m e n  CB14)
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Figure (7 .2 )  Continued
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F a c e d )  F a c e  ( 2 )  F a c e  ( 3 )  F a c e  ( 4 )

i100
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I 40 0

1100

400300

o
tn
cr-
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Figure (7 .2 )  Continued
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Figure \7.9 a) Torque vs longitudinal steel strains for 
specimen BJ2

25

20

15

Strain Gauga 
Strain Gauga 
Strain G a i ^  
Strain Gauga 
Strain Gauga 
Strain Gauga 
Strain Gauga

10

5

0 36002700 
Strain x 10

1800900
strain x iw

A g M  (7.9 bJ Torque vm top mtirrup mtrmins for spec i men BJ2



3 7 0

24

18

12

Strain Gauga 
Strain Gauga 
Strain Gauga 
Strain Gauga 
Strain Gauga 
Strain Gauga

6

0
900 1800 2700 

Strain x 10
3600

Figurm (7,9 c) Torquo vs bottom s timp strains for specimen B12

^ ^  A

j 8------ e Strair Guaga (1) 
Gauga (2) 
Gauga (3) 
Gauga (4) 
Gauga (5) 
Gauga (6)

----- <

(
1

\--------------- —
t

i

A-- - — A Strair
• —  ■ X Stra 1 r 

a «  Strair 
a--------B Strair

1

1
1

1

15

10

Strain x 10

Figure (7.9 d) Torque vs Longitudinal steel strains for

specimen B13



371

i 20

15

10 •------ a Strair Guaga (1) 
1 Gauga (2) 
Gauga (3) 
Gauga (4) 
Gauga (5) 
Gauga (61 
Gauga (71

A--- — A Stra II
X - -----« Stra If
a «  Str*air 
a------ a Str*air

-------------- - I-----------------

a----- -a Str*air

900 1800 2700 3600
Strain x 10

Figure (7.9 eJ Torque ve top etirrup etraine for apeoimen Bî3

24

18

— **-*
12

— e Strain Guaga (Il 
— A Strain Gauga (2) 

Strain (îauga (31 
- 4» Strain Gauga (41 
— a Strain Gauga (5) 
— ► Strain Gauga (7)

6

0 36002700 
Strain x 10

800900

i

Strain x lu
Figure (7.9 f) Torque ve bottom mtirrup mtrminm for mpeoimen BJ3



372

35

30

I ^  

20

15

10

a m'’t/  j/^t

>

I r 0------ o Strain (îuaga (1)
a--- — A Strain Gauga (2)

4 1

a «  Strair 
a------ a Strair

Gauga (4) 
Gauga (5) 
(îauga (6) 

.angthaning1

............. !

1 a----- -a Unit

900 1800 2700
Strains x 10

Figure (7.9 g) Torque ve LongitudinaL steel stra me and unit 
Lengthening for specimen B14

3600

35

____30

25

20

15
Strain Guaga (1) 
Strain Gauga (2) 
Strain Gauga (3) 
StraIn Gauga (4) 
Stra I n Gauga (5) 
Strain Gauga (6) 
Strain Gauga (70

10

5

0 36002700 
Strain x 10

1800900

Figure (7.9 h) Torque ve top etirrup strains for specimen 814



3 7 3

35

30

ir

20

• p

. • 7 / / 7
i i

. . 4  /  /

■ d. /
a é O p X

■

r a- .. a Strain Guage (1)
a--- — a Strain Gauga (2)
1̂ . — Strain Gauaa CO
a a  Strai 
a— — a Strai 

Strai

1 G a i ^  (4) 
n Gauga (51 
n Gauga (6) 
n Gauga (7)a----- -a Strai

15

10

900 1800 2700
Strain x 10 

Figure (7.9 i) Targue ve bottom atirrup etreine for epeoimen BJ4

3600



374

.-n

%
à

-e Craolc (1)

•A Craok (2)

*---- * Crack (3)

0.0 0.5 2.0 2.5
Craok width (mm)

Figure (7. W  a) Targue vs creck width for specimen B12

tx . - ' "
1

M  ----—
F  ^  ^

..... ^
<

a---- o Craok (1)

A--- -A Craok (2)

*---- X Craok (3)

« 24
I

18

12

0.0 0.5 1.0 1.5
Craok width (mm)

Figure (7. 10 bJ Torque vs crack width for specimen B13



375

35

30

20

-4
ù l
i l...
<

o---- 0  Craok (1)
A--- -A Craok (2)
M---- X Craok (3J
m m Craok (4)

15

10

0.0 0.5 1.0 1.5 2.0 2.5
Craok V i dth (am)

Figura (7. W  c) Torqua vs crack width for spaciman B14



3 7 6

20

15

10

-  j L ;
■

II
1*

0 ------e Oanao Gauga (1)
a--- — A Danao Gauga (2)
»------« Oamao Gauga (3)
» a Daaao Gauga (4)
■------a Damao Gauga (5)
4— — — + Damao Gauga (6) 
a----- a Danao Gauga (7)

f r

400 800 1200 1600
ComprvMiv* Strain x 10 

Figure (7,11 a) Torque vs concrete surface compressive streins for 
specimen B12

......— ^  ....

:a m

a------a Danao Gauga (1)
A--- — A Danao Gauga (2)
M------K Danao Gauga (3)
a . . a Danao Gauga (4) 
a—  . -a Danao Gauga 6)

a----- a Danao Gauga (7)

25

20

15

10

Compr###iv# Strain xIO

Figure (7.11 b) Torque vs concrete surface compressive strains for

specimen B13



377

I

a------ e 0«##o Gauga (1)
é  — A D m m o  Gauga (2)
M------ K Oaaao Gauga GO
a a Oaaao Gauga (4)
a—  ' -a Oaaao Gauga O
f ......... — » Oaaao Gauga (6)

1600
Coapraaaiva Strain xIO

800 1200400

Fi^jrm (7m J1 c) Torque ve concrete eurfece oompreeeive etreine fo r 

epeoimen BJ4



3 7 8

wI
sAm
8«H

ii

0)4»
I

u
o

t
C\J

S



3 7 9

io
CVJ

A



3 8 0

i

Ti

i•H+»
§O

C\J

S



381

CO ®o

: i(D-o

0 O)
1  -

§

00
CO
se
Üm
§■

?
b.0 
CO
■u1
?O'

g
n!
Q)

ir> in

(uu'igNij) enbuoj



3 8 2

20

15

10 Q------- 0 Strain Guage (1)
Strain Gauge (2)

X--------X Strain Gauge (3)
Œ - - - - Strain Gauge (4)
a------- Q Strain Gauge (6)
i-------- H Unit Lengthening

900 1800 2700
Strain x 10^

Figura (7.14 a) Torque vs longitudinal steel strains and unit 
lengthening of specimen 821

3600

25

o- 20

15

10
X---
■ ■ • -

Strain
Strain
Strain
Strain
Strain
Strain
Strain

Guago ( 1) 
Gauge (2) 
Gauge (3) 
Gauge (4) 
Gauge (5) 
Gauge (6) 
Gauge (7)

900 1800 2700
Strain x 10

Figure (7. 14 b) Torque vs top stirrup strains for specimen 821

3600



3 8 3

25

20

15

10 3 -------- e Strain Gauga (2)

A' — A Strain Gauga (3)

*-------- M Strain Gauga (4)

m «  Strain Gauga (5)

a-------- B Strain Gauga (7)

5

0 0 900 1800 2700 3600
Strain# x 10

Figure (7. 14 c) Torque vs bottom stirrup stsrins for specimen B21

3
§

— '

 -------G  Damao Gauga (1)
—  — A Damao Gauga (3)
 K Damao Gauga (4)
. a Damao Gauga (5)

 a Damao Gauga (6)

1600
Compraaaiva Strain x 10 

VO strains for

1200800400

Figure (7. 15) Torque vs concrete surface compressi

specimen B21



384

Oî O)
<

m O) CD en
8o00

s ro

oo

o

\ X oo
8

ooinK3 oin

CDmT3

O)cc

i  

I
§

g

s
%
sG
üQ)
8-

0)Q)
bÜ
■u>%
5èt»IQ)3cr

SD

(D

K

(W'N» enbjox



3 8 5

i

C\J

«

«

&
s

§+»
&

k

fd



3 8 6

%  : j

A t  /

Û

1•H
gO
t-

9



3 8 7

I
• H43
gü

I



3 8 8

Figure (7.18) Dowel effect on the longitudinal bars 
of specimen B53
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c h a p t e r  e i g h t  

ZliiilH e l e m e n t  a n a l y s i s  of t h e t e s t  s p e c i m e n s  

--- ^^^EARISON w i t h  e x p e r i m e n t a l  r e s u l t s

8.1 Introduction

The a i m  of t h i s  c h a p t e r  is to a n a l y s e  a l l  n i n e  t e s t  

s p e c i m e n s  u s i n g  the d e v e l o p e d  n o n l i n e a r  finite e l e m e n t  

program. Comparisons of theoretical and experimental results 

are performed to demonstrate the applicability of the finite 

e l e m e n t  m o d e l  in the analysis of r e i n f o r c e d  c o n c r e t e  

L - s e c t i o n s  subject to pure torsion. Use is made 

of the e x p e r i e n c e  ga ine d in Chapter Five for r e c t a n g u l a r  

reinforced concrete beams under pure and combined torsion. 

Part of t h e s e  r e s u l t s  has al ready been repor te d (ref. 1), 

where g o o d  a g r e e m e n t  between e xperim en tal and p r e d i c t e d  

r e s u l t s  was sh own for the cases studied. Tab le  (8.3) lists 

al l  p r e d i c t e d  u l t i m a t e  torques and the v a l u e s  o b t a i n e d  

experimentally. As already mentioned above, the predictions 

are quite satisfactory for all specimens except B14 and B34, 

for which the total volume reinforcement ratio (longitudinal 

steel - stirrups) is highest in each respective group.

In C h a p t e r  F i v e  it was shown that the shear r e t e n t i o n  

p a r a m e t e r s  a f f e c t  the torsional response of r e i n f o r c e d
I

conc ret e. The v a l u e s  of (3.j =0.5, 1 and -0.003 were

found to suit the case of pure torsion and were t h e r e f o r e  

adopted in this case. It was also concluded in that chapter 

that t e n s i o n  s t i f f e n i n g  results in stiff initial p o s t ­

c r a c k i n g  r e s p o n s e  in the case of pure torsion and was 

recommended to be set inactive. The case here is again pure 

torsion and so the tension stiffening model was set inactive
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for all analyses (i.e «g = 0.0).

The a n a l y s i s  will focus on the following aspects of the 

torsional behaviour; (1) overall behaviour as reflected In 

the t o r q u e - t w l s t  curves, (2 ) steel re s p o n s e  for both 

longitudinal bars and stirrups, (3) crack patterns and (4 )
failure m o d e s .

S p e c i m e n  Bll is a n a l y s e d  in detail, others w ill  f o l l o w  as 

they are si mi lar. The f o l l o w i n g  aspects of finite e l e m e n t  

analysis were studied using Bll before applying them to the 

rest of the specimens:

(1) Mesh s tudy

(2) Effect of boundary conditions and load application

In all ana lyses  a 3x3x3 Gauss integration rule is used. The 

element stiffnesses are recomputed at the beginning of each 

load i n c r e m e n t .  A ma xim um number of ite rat ions of 15 was 

specified and the convergence tolerance was set at 10%. All 

r e i n f o r c i n g  bars were embedded at their exact p o s i t i o n s  

w i t h i n  the 2 0 - n o d e d  iso par ametric brick e l e m e n t  used for 

concrete representation.

8.2 F^n^te Element Mesh Study

In C h a p t e r  F i v e  it was shown that a 1 2 -e l e m e n t  mesh was 

adequate for the analysis of Hsu's rectangular beams under 

pure torsion and Collins et al. rectangular beams subjected 

to c o m b i n e d  to r s i o n  and bending. The c o n c l u s i o n  there was 

that it is e s s e n t i a l  to isolate a group of e l e m e n t s  a l o n g  

the spa n to free them from the effects of both the load 

application and boundary conditions. While this conclusion 

is immedi ately employed here, further investigation on the
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mesh size effect Is undertaken because of the flanged nature
of the sections.

B e c a u s e  of the skew-symmetry, one half  of the s p e c i m e n  was

considered for analysis. Three different meshes of 9, 12 and 

32- elements, shown in Figure (8.1), were examined. They all 

had a group of isolated free elements between the boundary 

c o n d i t i o n s  at the centre line and the loaded nodes at the 

free end. The 9- and 12-element meshes are b a s i c a l l y  the 

same in the number of elements along the sides of the cross 

section but the number of isolated elements along the axis 

is different, being 3 and 6 for the two meshes respectively. 

The 3 2 - e l e m e n t  mesh differs from the other two in the 

f u r t h e r  s u b d i v i s i o n  across the section. This was to a l l o w  

more s a m pl ing points across the section to assess whether it 

is important to provide for this.

The t o t a l  pure torque was ap pl ied  as two equal c o u p l e s  

(Figure 8.2), s i m i l a r  to the case of r e c t a n g u l a r  sections. 

T a b l e  (8.1) and Figure (8.3) shows the r e s u l t i n g  a n g l e s  of 

twist for the three meshes for an el a s t i c  torque of 2.7 

KN.m. The results show slight increase of the angle of twist 

with the i n c r e a s e  in the mesh size, as expected. The 32- 

element mesh produced 8.7% higher angle than the 12-element 

mesh and 11.4% h i gh er angle than the 9 - e l e m e n t  mesh. The 

d i f f e r e n c e  b e t w e e n  the 1 2 -element and 9 - e l e m e n t  meshe s is 

o n l y  2.5% increase. It was thus con si dered s a t i s f a c t o r y  to 

use the 12-element mesh for the full nonlinear analysis as 

this wil l produce analyses considerably cheaper than the 32- 

element mesh whilst still giving reasonable predictions. The 

r e d u c e d  b o u n d a r y  conditions, discuss ed in the f o l l o w i n g
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section, were employed in this investigation. The angles of 

twist were evaluated using the procedure of section (8.4 )

8.3 Study of Boundary Conditions

The importance of proper modelling of boundary conditions, 

for t o r s i o n  a n a l y s i s  with finite ele ments, has been 

discussed in Chapter Five. It was shown that a set of 

reduced boundary conditions, where 4-centre nodes are 

restrained to a l l o w  for proper warping behaviour to take 

place, is the most suitable. To check this point further for 

L-sections, two sets of boundary conditions, designated case 

1 and case 2 as shown in Figure (8.4), were examined. The 

same ela s t i c  torque of 2.7 KN.m was applied to both cases 

using the 12-element mesh. The torque is applied as two 

equal couples.

Table (8.2) and Figure (8.5) shows the results of this part. 

The full fixity produced a 9.7% lesser angle of twist than 

the reduced fixity. This indicates the stiffen response when 

full fixity at the centre line is used and confirms the 

earlier finding on rectangular sections. Therefore, and 

similar to the case of rectangular sections, the reduced set 

of boundary conditions is chosen as it allows proper warping 

of the cross section to take place.

8 .4 Evaluation of Angles of Tw^st from Lateral^

Displacements

The approach followed here is similar to that adopted for 

the evaluation of the angles of twist from the experimental 

lateral displacements as reported in Chapter Six. The 

lateral nodal displacements were used for this purpose as 

shown in Figure (8 .6 ). For simplicity of mathematical



4 0 8

handling it was assumed that the edges of the cross section 

remain straight after twisting. This allows the fol l o w i n g  

set of equations to be derived (refer to Figure 8 .6 ) using 

similarity of triangles:

( 9 . 1 )
(Di + Dg)

tan'^ ( ) (8.2)
3

X D..3
2 ' t l   ( 8 . 3 )

(Dj + D^)

e ,  =  ^  t a n - ’  (  ^  )  ( 8 . 4 )

3 xg

«A -  )  ( 8 .5 )

where 0  ̂ = angle of twist per unit length obtained from the 

shorter side of the cross section 

02 = angle of twist per unit length obtained from the 

longer side of the cross section 

9^ = average angle of twist 

S^.Sp = dimensions of shorter and longer sides of the 

cross section 

S g = length over which the twist angle is to be 

computed

X 2 , X 2 ^dimensions along the shorter and longer sides 

shown in Figure (8 .6 )
D 2' D 2 , D 2 , = the relevant nodal displacements obtained

from the finite element analysis
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This procedure is considered adequate for the following two 

reasons: (1 ) it is fairly similar to that used for the

e v a l u a t i o n  of the e x p e r i m e n t a l  twist, t h e r e f o r e  the 

comparsions are straightforward and (2) with the adopted 

load a p p l i c a t i o n  it produced acceptably close twist as 

obtained from shorter and longer sides, the difference being 

about 11% maximum for elastic analysis as shown in Table

(8 .1 ).

Comparison of Theoretical and Exper i,men t a ], Results 

In the f o l l o w i n g  analyses the prediction of the o v e r a l l  

behaviour, i.e. torque-twist curves, cracking and ultimate 

torques, pre- and post-cracking torsional stiffnesses will 

be assessed first. Local behaviour, such as steel strains 

at the sampling points, will be considered second to that as 

it p r o v e d  difficult to obtain good predictions for all 

a s p e c t s  of the b e h a v i o u r  u s i n g  the s a m e  set of 

material/solution parameters.

Figure (8.7) shows torque-twist curves for specimen Bll. 

Ex a mination of the figure reveals that the torque-twist 

behaviour is well predicted. Indeed the early linear parts 

of the experimental and the predicted curves are practically 

identical. This confirms the earlier findings regarding the 

boundary conditions. It also provides satisfaction over the 

material modelling (i.e. the concrete stress-strain laws in 

particular) as the material properties experimentally 

obtained were all used for the finite element analysis. 

After cracking, the post-cracking torsional stiffness is 

predicted with reasonable accuracy, despite the fact that 

the predicted curves give slightly higher values of twist
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than the experimental curve for the same applied torque.

This difference is considered insignificant because of the 

difficulties and scatter associated with reinforced concrete 

behaviour. This deviation is mainly because of the earlier 

cracking in the theoretical curve. The ultimate torque is 

well predicted, the ratio of predicted to experimental 

torque being 1.035. Therefore, the overall assessment of the 

finite element model seems reasonable.

Steel strain predictions are examined for both longitudinal 

and t r a n s v e r s e  reinforcement, both of which were placed 

e xactly at their locations as in the experiments. Figure 

(8 .8 ) shows comparison of steel strains for longitudinal 

steel while Figure (8.9) shows that for a closed stirrup for 

specimen Bll. Again overall reasonable agreement can be 

seen, as neither the longitudinal steel nor the stirrups 

recorded any significant strains prior to concrete cracking. 

After cracking, there is a considerable increase in the 

recorded experimental strains and this is well predicted. 

However, the two figures indicate that the predictions vary 

between remarkable to fairly acceptable.

The s i m u l a t i o n  of steel reinforcement by single embedded 

bars has shown its importance very evidently in torsional 

applications. This is because in torsion of reinforced 

concrete both the longitudinal bars and stirrups have a 

major role after concrete cracking and indeed they act as 

indiv i d u a l  bars in a sort of framework, therefore their 

position within the concrete is of particular importance.

Crack propagation and final crack pattern is shown in Figure

(8.10) for specimen Bll. The quick propagation of torsional
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creaking is clear and the predictions are in reasonable 

agreement with the experimental behaviour described in 

Chapter Seven.

The process of steel yielding of a typical stirrup and 

concrete crushing for specimen Bll is shown in Figure

(8.11). Y i e l d i n g  started at the top of the flange near the 

junction and propagated first towards the free end and later 

inwards, indicating the greater bending of the flange. At 

ultimate conditions further yielding occured within the web 

and both flange and web crushed. This tend to indicate that 

although crushing was the eventual cause of fialure, it has 

been essentailly initiated by yielding of the stirrups for 

this particular specimen. However, this may not be the case 

for all Sp^clmeYus.

The a b o v e  r e s u l t s  show the adequacy of the b o u n d a r y  

conditions, load application and the material parameters, 

n a m e l y  the shear r e t ention and tension s t i f f e n i n g  

parameters, for the case in consideration. Hence these 

values will be used for the analysis of all subsequent 

spec imens .

Figure (8.12) shows torque-twist curves for specimens Bll, 

B12, 313 and 314. Fairly acceptable predictions are evident

for the first three specimens. Both the post-cracking 

st iffnesses and the ultimate torques were reasonably 

predicted. However, for specimen B14. the one with the 

highest torsional reinforcement, the ultimate torque is 

o v e r e s t i m a t e d  by about 13.2%. The volume ratio of stirrups 

for this specimen is 1.96% and the total volume ratio of 

steel is 2.83%. It is thought that this increased amount of
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s t i r r u p  r e i n f o r c e m e n t  is the reason behind the model not 

bei ng a b l e  to predict the beh av iour well, due to bond 

deterioration. In the experiment, a lot of bond is lost due 

to p r o g r essiv e torsional cracking at later stages of loading 

and as the u l t i m a t e  load is approached. In the fi nite 

e l e m e n t  m o de l, however, full bond is as sumed b e t w e e n  

c o n c r e t e  and steel. This obse r v a t i o n  is imp or ta nt when 

appl yin g the developed finite element for torsion analysis 

of members with high volume ratios of reinforcement.

Figures (8.13) through (8.18) show the comparisons of the 

predicted and experimental steel strains for specimens B12,

B13 and B14. Reasonable predictions are obtained but of a 

lesser accuracy than the torque-twist curves. The variation 

of the amount of stirrups did not affect the pre-cracking 

b e h a v i o u r  of steel as no strains were recorded in any of the 

specimens as also occured in the experiments. This is taken 

as a critical assessment of the model's behaviour for 

t o r s i o n  a n a l y s i s  because it is a d i s t i n g u i s h i n g  

characteristic of torsion behaviour of reinforced concrete 

members. It is also taken as a good sign of the reasonable 

b e h a v i o u r  of the embedded bars for simulation of steel 

reinforcement developed in the finite element model.

Model B 2 1 had the same cross section and reinforcement as 

Bll. The only difference being that the stirrups were 6mm 

diameter at 50 mm spacing for Bll and 8mm diameter at 90mm 

spacing for B21. The experiments showed that this difference 

affected only the crack width and spacing but not the 

ultimate torque, this increased by only 3.9%.

Figure (8.19) shows comparison of torque-twist curves for
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specimens Bll and B12. The finite element model seem to

predict the post-cracking behaviour of Bll better than 821, 

although the ultimate load predictions for both specimens 

are good. For 821 the post-cracking part of the theoretical 

curve shows a larger rotation than the experimental curve 

for the same applied torque. It is interesting, however, to 

notice that the two theoretical curves are more closer to 

each other than the two experimental curves, a reflection 

perhaps of how reinforced concrete is a rather far from 

perfect material.

Comparisons of steel strains for specimen B 21 are shown in 

F i g u r e s  (8.20) and (8.21). Strain gauge (6 ) on the 

longitudinal steel (Figure 8.20) shows strange response as 

it recorded very high strains soon after cracking. It is 

suspected that this was because the strain gauge itself was 

damaged or affected by friction against another steel bar 

and so the r e s u l t s  can be discarded. O t h e r w i s e  the 

predictions fall within acceptable limits and confirm the 

earlier observations.

Figure (8 .2 2 ) shows comparison of the torque-twist curves 

obtained for specimens B31, 8 3 2, B33 and 834. As can be

seen, the b e h a v i o u r  of the first three s p e c i m e n s  was 

predicted within acceptable accuracy similar to the first 

three s p e c i m e n s  of the p r e v i o u s  group. The p r e d i c t e d  

behaviour of B34, however, shows an overestimation of about 

14% of the ultimate torque for the adopted material and 

s olution parameters. Similar to specimen 814 of group Bl, 

this is attributed to bond effects not being catered for in 

the finite element model as full bond is assumed between
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concrete and steel. This overestimation occured despite the 

r e a sonable p r e diction of the p o s t - c r a c k i n g  t o r s i o n a l  

stiffness which tend to support the previous reasoning 

regarding the bond-slip behaviour at the late stages of 

loading. The specimen contained an amount of reinforcement 

higher than B14, being 3.5% for the total steel and 2.24% 

for stirrups per volume. Comparisons of the predicted and 

e xperimental steel strains are shown in Figures (8.23) 

through (8.30) where fairly reasonable agreements can be 

seen.

A r e a s o n a b l e  conclusion on the behaviour of the finite 

element program in the analysis of specimens B 14 and B 3 4 

would be that proper modelling of bond seem to be required 

if the program is to be used for such high reinforcement 

ratio. No attempt was made to vary the shear retention 

parameters to get closer prediction of the ultimate torque 

for these two specimens in favour of offering general 

c o n c l u s i o n s  as to the recommended values for the shear 

retention parameters. However, reduced values of shear 

retention parameters and/or convergence tolerance would 

result in better predictions. This needs further analyses in 

w h i c h  t h e s e  p a r a m e t e r s  are s y s t e m a t i c a l l y  v a r i e d  to 

e st a b l i s h  the proper combination to suit the case of high 

reinforcement ratios.

8.6 Conclusions

The following conclusions can be drawn from the analytical

study :

(1) The results indicate the applicability of the developed 

n o n linear finite element model in analysing the more
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c o m p l i c a t e d  case of pure torsion of solid reinforced L- 

sections. The basic characteristics of the behaviour, namely 

the pre-cracking torsional stiffness, cracking torque, post­

cracking torsional stiffness, ultimate torque and steel

response were all predicted with reasonable accuracy for the 

majority of the specimens analysed. All these results were 

obtained using the same material and solution parameters.

(2) The results demonstrate that all conclusions and 

g u i d e l i n e s  drawn from the parts dealing with torsional 

behaviour of rectangular sections, in Chapter Five, are also 

a p p l i c a b l e  to the more complicated situation of solid L- 

sections. These concern the boundary conditions, material 

parameters in particular the shear retention and tension 

stiff e n i n g  effects and mesh selection schemes. Reduced 

boundary conditions suit the case of pure torsion to allow 

proper warping to take place. Tension stiffening must be set 

i nactive ( = 0 .0 ), and the following values of shear

retention parameters are recommended: p^=0*5> ^2=0/1 and
= 0.003. The finite element mesh to be used needs to have 

sufficient number of elements, along the span, isolated from 

the e f f e c t s  of both boundary c o n d i t i o n s  and loa d 

application.

(3) A major observation is that for high reinforcement

ratios, say about 2 .5 % for the total amount of steel

( l ongitudinal + transverse steel) per volume, the finite 

element model tend to overestimate the ultimate torque 

despite the reasonable predictions otherwise. This is

attributed to the unsuitability of the full bond assumption

used in the finite element model. With high steel ratios the
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b ehaviour seems to be more sensitive to the bond-slip 

phenomenon which did not affect the analysis of all sections 

with steel ratios lower than 2.5%. This point needs further 

investigation both experimentally and with finite element 

analysis. With the present finite element model lower values 

of the shear retention parameters than those given in (3 ) 

above may be used to reduce the degree of overestimation. It 

may also be required to modify the program to provide better 

simulation of bond-slip behaviour. The modification can be 

achieved by incorporating a bond-slip law to substitute the 

assumption of full bond used to derive the governing 

equations for steel simulation presented in Chapter Three.

(4) The predicted steel response indicate the importance of 

the proper simulation of reinforcing steel, achieved here 

through embedded bars placed at their exact positions as 

they appear in the structure.

(5) Finally, it is concluded that the finite element program 

is adequate for use in parametric studies where actual 

physical testing can be substituted by numerical studies, 

provided clear guidelines are set and more importantly the 

effects of the important solution and material parameters 

are already established through comparisons of experimental 

and predicted results as has been done in this chapter.



oCSI

--- - —  TT- ̂
f -

--------

----- ------1__:
-----------k- -

I \
----- —  "T ̂

h ---------- M

A

l \
r - « T  ir-s -rr̂r d

1 V
r =—  —  -t_)

|\
J \

\  T ' \  l\l\ i' 'rA -------- 1 \
-  -  4-T

_ _  V j  -v
------------- A_JS

U-j-V ------- -j-A •
\  1 \________ y__\ ----------- it—

\
(_

\
--------------^

\
\

T)01
C
E0 X QJ
(/)
Œ
r
U)G)E
4->c
01 E 0)

01■p
c
t4-
pcGJL01M-

1 L _ --------- - (4-

I S 6 E Z   ̂ S l i Z  ' S U Z S A E Z Q

o
CM

 F ---

-  V \ —V
■ V J -  - ~ r ^

A 9 IE6 91E

00

OJLDCD



4 1 g

P,2

h
T/2

= T/2h

FiguPG (8. 2) Load application to produce the required pure 
torque

Ii

I
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Angle from Long Feoe
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 K Average Angle

0 8006004000 200
Total No. of D.O.F.

Figure (6.3) Mesh convergence study for model Bll
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Case (1) Case (2)

e Fixed node

F i g u p Q  (8.4) D i f f e r e n t  b o u n d a r y  c o n d i t i o n s  s t u d i e d

6

I

-e St. Venant' « stiffnese 
-A 9-m lement mesh 
X I2-element mesh 
«  32-slement mesh

600
Angle of twist (dsg./mm)xlO

600400200

Figure (8.5) Comparison of elastic stiffnesses for specimen Bl f
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Table_i8^il Effect of mesh size on the angles of twist 

for L-sections. Applied elastic torque =

2.7 KX.m, boundary conditions case 1 .

No. of 

elements

Dl

mm

D2

mm
D 3

mm
°4
mm

*1 02
"6D I F

9 0.0 99 1 0.0390 0.0352 0.1708 27.753 3 1.65 3 10.65
12 0.1003 0.0414 0.0352 0 . 1758 28 . 479 31.819 10.50

32 0.1182 0.0458 0.0426 0.1964 31 . 964 33.579 7 . 35

9^ andGg in deg./mm x lo'

Effect of boundary conditions on the angle of 

twist for L-sections, 12-element mesh

Boundary °1 D 2 D 3 D4 *1 02
%DIF

condi t ions mm mm mm mm

Cas el 0.1003 0.04 14 0.0352 0.1758 28.479 31.819 10.50

Case 2 0.0787 0.0497 0.0425 0.1509 25.817 29.156 11.25

I and®2 ^ d e g . / m m  x 10
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Figure (8. 6) Evaluation of angles of twist from lateral nodal 
displacements

8
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6000 8000
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Figure (8.7) Torque-twist curves
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F a c e d )  F a c e  (2) F a c e ( 3 )  F a c e  (4)

\

\

\
\
\

T « 5.4 KNm = 0.23 T,u

300 400 ,| 3 0 0 ^ 0 0  _]
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\ \

^ 0 0 _
.

300 4 0 0 3 0 0 , 4 0 0  J
T - 13.5 KNm - 0.56 \

Figure (8.IO) Predicted crack Propagation for specimen
(B11)
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T=18.9 KN.m T - 2 1 . 6  K N . m

• Yielding 

Crushing

Figure C8.ll) Process of yielding of reinforcement for 
specimen (Bll)
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TablÊ-iâ^Si Comparison of experimental and predicted ultimate 

torques of the test specimens

Group Specimen (Exper.) 

KN . m

Ty(Theor.) 

KN . m

Ty(Theor.) 

Ty(Exper.)

Bll 23.95 24 . 8 1 .035
B12 22.75 23.8 1 . 046

B1
B13 19.66 20 . 0 1.017

B14 34 . 54 39 . 1 1.132

B21 24 . 89 24 . 8 0 . 996

B31 20.88 23.8 1.106

B32 18.14 19 . 2 1 . 059
B3

B33 17 . 25 18 . 7 1 . 084

B34 28 . 43 32 . 4 1 . 140

Mean = 1.068 

S . D . = 0.048
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CHAPTER NINE 

PARAMETRIC STUDY AND DESIGN RECOMMENDATIONS 

Objectives and Scope

The aim of this chapter is to present and discuss results of 

a numerical parametric study on reinforced concrete solid L- 

sections subjected to pure torsion using the developed 

n o n l i n e a r  three dimensional finite element program. These 

r esults will be combined with the experimental results of 

Chapter Seven in order to investigate more structural 

v a r i a b l e s  which where not possible to include in the 

experimental programme for practical reasons and to clarify 

and amplify the experimental study.

The material and solution parameters, found suitable for 

torsion analysis in Chapters Five and Eight,are again used 

here. The 12-element mesh, "reduced" boundary conditions and 

method of load application are also used with a standard 

length of 950 mm. The total reinforcement ratio for all 

numerical models is less than 2.5% to avoid the undesired 

o v e r e s t i m a t i o n  of the ultimate torque observed in Chapter 

Eight for values of reinforcement volume ratios above this 

value .

9.2 Parameters Chosen for jnvestjgatJ.on

Table (9.1) and Figure (9.1) show details of the numerical 

models which include two specimens of the experimental 

p r o g r a m m e  to a i d  c o m p a r i s o n .  M o d e l s  d e n o t e d  N r e l a t e  to the  
n u m e r i c a l  s t u d y ;  t h o s e  d e n o t e d  B ar e  th e  o n e s  e x p e r i m e n t a l l y
tested. The main variables investigated are as follows.
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iilÊlfeei.of the size of cross section for the jame

ratios of longitudinal and transverse reinforcement 

This was chosen to check the applicability or otherwise of 

the law of s i m i l i t u d e  as it is customary to test the 

b e h a v i o u r  on small scale laboratory specimens and assume 

afterwards -that identical behaviour can be expected in real 

life, large scale structural elements. An example of this is 

the u l t i m a t e  torque which is normally taken as linearly 

related to the cross sectional size when the reinforcement 

ratios are the same. This aspect has been experimentally 

checked for rectangular sections by Hsu (ref. 1)

M o d e l s  Bll, N81, N31 and N41 have increasing size of cross 

section with the same side ratios (i.e. h/b^ etc.). The 

reinforcement ratios, both longitudinal and transverse, are 

p r a c t i c a l l y  the same for all models. Models B 13 , and N43 

study similar parameters except a smaller reinforcement 

ratio was used (same longitudinal reinforcement ratio as the 

p r e v i o u s  g r o u p  but h a l f  the r a tio of t r a n s v e r s e  

reinforcement). All material properties of Bll were used in 

the finite element analysis of N81, N31 and N41; those of 

B 13 were used for the analysis of N43.

i^ilffect of detailing of reinforcement for the same 

cross section and amouni of steei 

This aspect was considered because of the importance, 

stressed by the codes of practice, of the use of closed 

stirrups to resist torsional stresses for both flange and 

web of a solid flanged section. It has also been pointed out 

in Chapter Two that the majority of experimental studies on 

torsional behaviour of reinforced concrete flanged sections
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have been conducted on sections reinforced with only one

layer of steel in the flange or even with an unreinforced 
flange .

M o d e l s  N21 and No 1 have the same cross section and volume 

ratios of both the longitudinal and transverse reinforcement 

as Bll. The detailing of this reinforcement is, however, 

d i f f e r e n t .  N21 has the web properly r e i n f o r c e d  with 

longitudinal bars and closed stirrups while the flange has 

only one layer of steel provided at the top. No 1 has all the 

steel lumped in the web leaving the flange unreinforced. In 

the analysis of N21 and No 1 all material properties of Bll 

were used.

lÊlÇffeçt of varyjng the amount of longitudinal steej.

for the same amount of transverse reinforcement 

This particular parameter is considered because only the 

variation of the transverse reinforcement was studied in the 

experimental part of this work. Both longitudinal and 

transverse steel has an important role to play, a fact which 

has b e e n  w e l l  e s t a b l i s h e d  in this study as w e l l  as 

e 1 sewhere.

M o d e l  N 71 is of the same cross section and amount of 

stirrups as Bll, but the amount of longitudinal steel is 

halved. However, the distribution of reinforcement is the 

same, h a v i n g  been provided in both web and flange. All 

material properties of Bll were used in the analysis of N71.

9^3 Results and Discussions 

9^3.1 Introduction
The principal quantity to be considered in this parametric
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study will be the u l t i m a t e  torque. This wil l  be used for 

each group of models in order to establish the trend caused 

by the p a r t i c u l a r  v a r i a b l e  being considered. The other 

a s p e c t  w i l l  be the g e n e r a l  b e h a v i o u r  of e a c h  g r o u p  

(reflected in the torque-twist curve) which will be used for 

two purposes:

(1 ) to study the effect of the v a r i a b l e  in q u e s t i o n  on the 

overall behaviour, and

(2 ) to assess the degree of acceptability of the results so 

that the v a l u e s  of the u l t i m a t e  torques o b t a i n e d  can be 

s a f e l y  t a k e n  as if th e  m o d e l  h a s  a c t u a l l y  b e e n  

e x p e r i m e n t a l l y  tested. The predicted u l t i m a t e  to r q u e  of a 

n u m e r i c a l  model is accepted after its t o r q u e - t w i s t  c u r v e  

shows no peculiar behaviour during the various stages, i.e. 

pre-cracking, post-cracking and ultimate conditions.

9.3.2 Effect of the Size of the Cross Sectjon for the Same 

Ratios of Longjtudinaj and Transverse Reinforcement 

T a b l e  (9.2) s h o w s  c o m p a r i s o n  of the u l t i m a t e  t o r q u e s  

o b t a i n e d  for group 1 (models Bll, N81, N31 and N41) and

group 2 (models 813 and N43). Each of the models Bll and 813 

is c o n s i d e r e d  as a reference for its group to which the 

parameter Z.x^y and ultimate torque, Ty, of the other models 

are referred. The parameter Z.x^y (where x and y are the 

shorter and longer dimensions of the component rectangles) 

is chosen because it r eflects the concrete c o n t r i b u t i o n  

towards the u l t i m a t e  torque of the r e i nforced concr e t e  

section as it appears in the elastic, plastic and the skew- 

bending theories to predict the ultimate torque of a plain 

concrete section (Chapter Two). The table indicates clearly 

that for the same ratios of l o ngitudinal and t r a n s v e r s e
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reinforcement, a certain increase in the size of the section 

does not produce the same increase in the ultimate torque. 

This indicates that the law of similitude does not hold for 

r ein f o r c e d  concrete L-sections subjected to pure torsion. 

Hsu (ref. 1) found similar behaviour for reinforced concrete 

rectangular sections under pure torsion.

Figure (9.2) shows the results plotted against the line 

which indicates the applicability of the law of similitude. 

The upper- and lower-1imit of the numerical ultimate torque 

d e n o t e ,  r e s p e c t i v e l y ,  the numerical torque one load 

increment above and one increment below that predicted by 

the finite element model. This is because of the uncertainty 

associated with the finite element prediction of the failure 

torque. However, because small load increments are normally

apllied, the values taken are reasonably acceptable. The
* *

parameter Z.(x y) and the ultimate torque T^ are those of the

reference models Bll and B13. It can be seen from the figure 

that a certain increase in the size of the cross section 

produces a larger increase in the ultimate torque. This can 

be attr i b u t e d  to greater contribution of concrete to the 

ul t i m a t e  torque of the reinforced concrete section. The 

results of group 2 , despite being plotted with only two 

points, confirm this finding which is very clear from the 

results of group 1.

This o b s ervation can have important implications on the 

current British Code torsion design procedure. At present no 

concrete c o n t r i b u t i o n  is considered in the code's design 

equation as already mentioned in Chapter Two. This is one of 

the reasons behind the pncedure being far too conservative
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and a p p r e c i a t i o n  of this point will lead to less 
uneconomical designs.

Figure (9.3) shows the torque-twist curves obtained for 

group 1. The size increase is evident in other aspects of 

the behaviour, namely: the pre- and post-cracking torsional

stiffness and the cracking torque, all of which increased, 

as expected. The post-cracking stiffnesses, defined in 

Chapter Seven (Figure 7.22), are listed in Table (9.3) where 

it this clear that the post-cracking stiffness increases 

with the increase in the size of the cross section.

Effect of Detailing of Reinforcement for the Same 

Cross Section and Steel Amount 

Table (9.4) lists the ultimate torques and the post-cracking 

torsional stiffnesses obtained for models Bll, N21 and N51. 

Figure (9.4) shows the torque-twist curves for the same 

models. Examination of these results reveals the following:

( 1 ) P r o v i s i o n  of one layer of reinforcement in the flange 

resulted in a reduction of about 25% of the ultimate torque 

(model N 21) accompanied by a reduced post-cracking torsional 

s t i f f n e s s  and a reduced ductility. The p o s t - c r c a k i n g  

sti ffness is reduced to about 50%. The final failure of 

t h i s  m o d e l  was c a u s e d  by y i e l d i n g  of the f l a n g e  

reinforcement followed by crushing at the junction of web 

and flange.

(2) Completely unreinforced flange (model N31) reduced the 

p o s t - c r a c k i n g  stiffness to only about 18* and further 

reduced the ultimate torque. The reduction in the ultimate 

torque is about 33% resulting from a large rotation of the
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flange about the web causing crushing of concrete at the 

junction. This crushing can be expected but it emphasizes 

the need for closed stirrups in the flange. Acting as a 

short cantilever supported by the web, the flange will have 

c o mpression at the bottom and tension at the top, thus the 

crushing that resulted.

(3) The above gives clear evidence of the effect of improper 

detailing of torsional reinforcement for the same amount of 

s t e e l  in s o l i d  flan g e d  sections. The lack of p roper 

d e t a i l i n g  means uneconomical use of the t o r s i o n a l  

reinforcement. Use of closed stirrups in all component 

r e c t a n g l e s  is an important factor to ensure better 

performance of a flanged section after cracking of concrete 

and at ultimate conditions. The same amount of stirrups can 

be better utilized if it is well distributed.

Figure (9.5) shows strain distribution along all sides of a 

closed stirrup well after cracking of concrete for model Bll 

obtained from the finite element analysis. Plotting of this 

distribution involves the strain values at 30 Gauss points, 

a number practically impossible to mount as

strain gauges on the closed stirrup because of the small 

dimensions of some of the sides of the stirrup (being about 

50mm long), leaving aside economy considerations. The 

d i s t r i b u t i o n  resembles to a large extent the shear stress 

distrib u t i o n  on the sides of each rectangle. The most 

important observation, however, is that the junction 

provides a continuity of strain over the rectangle common to 

both web and flange. This may support the view expressed 

earlier in Chapter Seven concerning the "junction effect"
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tor flange sections, as codes of practice generally consider 

that the torsional capacity of a solid flanged section is

the sum of the torsional capacities of its rectangular 
components.

The strain continuity indicates that a flanged section 

a c t u a l l y  acts to a large extent as one unit and not as 

s e p a r a t e  r e c t a n g l e s  as implied by the codes. This is 

b e l i e v e d  to increase the torsional capacity of a flanged 

section. However, it may be extremely difficult to quantify 

the contribution of this "junction effect".

Effect of Varying the Amount of Longitudinal 

RÊlnforÇÊEÊHt
Figure (9.6) shows torque-twist curves for models Bll, B13 

and N7 1. B13 is similar to Bll except that the transverse 

reinforcement is 52.7% of that for Bll. It is clear from the 

figure that the curves for all three models are practically 

identical before cracking. This is expected as the steel 

does not contribute to the torsional stiffness at this 

stage. After cracking, however, B13 and N71 show practically 

i d e n t i c a l  b e h a v i o u r  until just before the u l t i m a t e  

conditions where N71 produced a slightly higher ultimate 

torque (only about 3.7% higher than B13).

These results are also shown in Table (9.o) where it can be 

seen that a 4 7 .3% reduction in the stirrup amount (model 

B13) resulted in 17.9% reduction of the ultimate torque, for 

the same cross section and longitudinal steel, Bll being the 

r e f e r e n c e .  A 49.9% reduction in the l o n g i t u d i n a l  

reinforcement (model N71) produced a 1^ 8% reduction of the 

ultimate torque, n.: U .  same cross section and transverse
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steel, Bll again being the reference.

Table (9.6) and Figure (9.7) show similar results for models 

N41 and N43, which have the same cross section (the largest 

of the c r o s s  s e c t i o n s )  and the s a m e  l o n g i t u d i n a l  

reinforcement. N43 has a reduced amount of t r a n s v e r s e  

r e i n f o r c e m e n t .  It can be seen f r o m  the t a b l e  t h a t  a 

reduction of 47.3% in transverse reinforcement (model N43) 

r e s u l t e d  in a 37.5% decrease in the u l t i m a t e  torque, N41 

taken as the reference.

The above results indicate the following points:

(1) R e d u c t i o n  of either of the l o n g i t u d i n a l  or t r a n s v e r s e  

reinforcement results in a reduction of the ultimate torque 

for the same cross section and material properties. The 

amount of the red u c t i o n  is hard to d e t e r m i n e  as it depends 

on m a n y  f a c t o r s ,  in p a r t i c u l a r  the s i z e  of the c r o s s  

section, reinforcement ratios and material properties.

(2) The reduction in r e i n f o r c e m e n t  also p r o d u c e s  a redu c e d  

post-cracking torsional stiffness, a quantity much dependent 

on the amount of torsional reinforcement. The pre-cracking
t

s t i f f n e s s ,  h o w e v e r ,  r e m a i n s  the s a m e  as s t e e l  p l a y s  

i n s i g n i f i c a n t  ro le before concrete c r a c k i n g  in t o r s i o n  of 

reinforced concrete.

(3) E q u a l  p e r c e n t a g e  r e d u c t i o n s  of l o n g i t u d i n a l  and 

t r a n s v e r s e  steel seem to result in p r a c t i c a l l y  the same 

post - c r acking b e h a v i o u r  for the same cross section and 

material properties. This tends to emphasize the importance 

of both l o n g i t u d i n a l  and t r a n s v e r s e  r e i n f o r c e m e n t  in
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r e s i s t i n g  the a p p l i e d  torque on a r e i n f o r c e d  co n c r e t e  

section. It is d i f f i c u l t  to determine the pre c i s e  ratio of 

l o n g i t u d i n a l  steel to stirrups for both of them to y i e l d  

simultaneously for better utilization of reinforcement. This 

ratio, n o r m a l l y  termed the balan c e d  v o l u m e  ratio, m^ , has 

been investigated on reinforced rectangular beams under pure 

torsion by Hsu (refs. 1 , 3) who found that m^ may vary

within a range d e p e n d i n g  on the total p e r c e n t a g e  of steel. 

He suggested the following approximate range:

0.7 < my fyi/fys < 1.5 (9.1)

where fyj, fyg = yield values of longitudinal and transverse

reinforcement respectively

The AC I and Brit ish codes determine the r e q u i r e d  area of 

l o n g i t u d i n a l  steel by e m p l o y i n g  the p r i n c i p l e  of equal 

v o l u m e  whereby the l o n g i t u d i n a l  r e i n f o r c e m e n t  is taken as 

equal in volume to that of the stirrups, suitably adjusted 

for any d i f f e r e n c e s  in y i e l d  strengths. A l t h o u g h  this is 

simple and hence attractive for design purposes it may not 

r e s u l t  in th e  m o s t  e f f e c t i v e  u t i l i z a t i o n  of t h e  

reinforcement. However, this point needs more investigation, 

in particular using physical experiments.

9^4 Conclusions and Design Recommendations 

9.4.1 Conclusions

From the main points d i s c ussed at the end of each of the 

previous sections, the following conclusions are drawn:

(1) Numerical parametric studies are some of the most useful 

applications of properly tried and tested nonlinear finite 

e l e m e n t  models. In a time of c o n t i n u o u s l y  d e c r e a s i n g
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c o m p u t i n g  cost the finite e l e m e n t  method can p r o v i d e  a 

powerful and relatively economical means of investigating 

the behaviour of reinforced concrete elements and structural 

systems subject to various stress result a n t s .  S t r u c t u r a l  

variables can be studied to complement experimental results 

to broaden the scope of the investigation before arriving at 

additional conclusions.

(2) Size effect is important in pure t orsion of r e i n f o r c e d  

c o n c r e t e  s o lid L-sections. The law of s i m i l i t u d e  is not 

a p p l i c a b l e  in this case. For the same r e i n f o r c e m e n t  ratio, 

same material properties and same ratios of cross sectional 

d i m e n s i o n s  (i.e. f lange w i d t h - t o - d e p t h  etc.), a p a r t i c u l a r  

percentage increase in the cross sectional area results in a 

higher percentage increase in the ultimate torque.

(3) Proper detailing of torsional reinforcement is vital for 

s o l i d  f l a n g e d  sections in order to ensure the d e s i r e d  

ductility and the ultimate torques. For the same quantity of 

longitudinal and transverse steel, one layer of steel in the 

f l a n g e  r e s u l t s  in a s u b s t a n t i a l l y  reduced d u c t i l i t y  and a 

considerably less ultimate torque than if the same amount of 

stirrups we re p r o v i d e d  as cl o s e d  stirrups in both web and 

flange. Completely unreinforced flange results in a brittle 

failure caused by crushing of the flange at the junction of 

web and flange.

(4) The v a r i a t i o n  of the l o n g i t u d i n a l  r e i n f o r c e m e n t  

indicated the importance of both l o n g i t u d i n a l  bars and 

stirrups in resisting the applied torque. For the same total 

volume ratio of reinforcement, the ultimate torque for two
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similar models was practically the same despite them having 

different allocations of longitudinal and transverse steel. 

This point, however, needs further investigation which must 

involve physical experiments, because the codes of practice 

g e n e r a l l y  use the p r i n c i p l e  of equal v o l u m e s  to d e t e r m i n e  

the amount of l o n g i t u d i n a l  r e i n f o r c e m e n t  from that of the 

stirrups. This may not n e c e s s a r i l y  r e s u l t  in the best 

utilization of reinforcement.

Design Recommendations

The following suggestions arise from both the experimental 

results and the results of the parametric study. Because of 

the limit t e d  number of the ex p e r i m e n t s  they are o n l y  

"Tentative Design Recommendations" associated directly with 

the current British Code (BS8110-1985) t orsion des i g n  

procedure and will certainly require additional supportive 

res u l t s .

(1) The p e r m i s s i b l e  torsional 3hear stress V y^^^ can be 

increased to become the s p l i t t i n g  s trength of c o n c r e t e  

divided by a factor of safety of say 2 .0 .

(2) The minimum stirrup spacing might be increased to become 

(Xi+yi)/2 , yi/2 or 200 mm whichever the less, instead of the 

present limit of Xj , yj^/2 or 200 mm for small sections.

(3) A separate term accounting for concrete contribution is 

n e c e s s a r y  sim i l a r  to the AC I Code and the CEB- F I P  M o d e l  

Code. This term c o u l d  be based on the e l a s t i c  u l t i m a t e  

torque of p l ain concrete. It is suggested that h a l f  the 

e l a s t i c  u l t i m a t e  torque is to be c o n s i d e r e d  ( I m p l y i n g  a
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factor of safety of 2). Therefore:

Tg = oC(x2yf’^)/2 (9.2) - J. 
.̂ 1

It follows that the code's design equation becomes: 

r  ^sv
Ts =2_(---) P.8xiyi(0.87fy) (9.3)

s V

where T^ is the steel contribution, i.e. the ultimate torque 

for the reinforced concrete L-section is given by:

T +%Te (9.4)

(4) For large sections, more concrete c o n t r i b u t i o n  is 

e x p e c t e d  as indicated by the results of the p a r a m e t r i c  

study. The r e f o r e  suggestion (3) becomes more n e c e s s a r y  in 

this case otherwise uneconomical use of steel will result.

(5) Use of closed stirups in all rectangular components is 

v i t a l  and hence it is important to f o l l o w  the code's 

recommendation of this type of stirrups.

* R e f e r e n c e  s pecimen Bll is r e d e s i g n e d  f o l l o w i n g  these 

suggestions and this is given in Appendix D.
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I&ble_^9^22 Effect of the size of cross section, for the same 

volume ratios of longitudinal and transverse 

reinforcement, on the ultimate torque

Mode 1 y xlO® 

mm^
Tu

KN . m
Tu

Tu
/̂ v 1̂ '"t

Bll 14.00 1 .00 23 . 95 1.000 1 . 073 0 . 927 2 . 000

N81 21.56 1.54 49 . 0 2 . 046 1 . 073 0 . 940 2.013

N31 29 . 23 2.09 80 . 0 3 . 340 1 . 073 0 . 929 2 . 002

N41 47.25 3 . 38 96 . 0 4 . 008 1 . 073 0 . 950 2 . 023

B13 14.00 1 . 00 19 . 66 1 . 000 1 . 073 0 . 565 1 .492

N43 47.25 3 . 38 76 . 0 3 . 866 0 . 950 0 . 565 1.515

Table (9*3) Pre- and post-cracking torsional stiffnesses of 
specimens B11, N81, N3I and N4I

Specimen Bll N81 N31 N41

K^j,x106 6.12 8.93 15.14 36.91
KN .m m ^ / d e g .

Kq x10^ , 
(St. Venant s) . 87.80 152.64 225.40 436.06

^0 x10^ 
(Predicted) 73.92 142.67 213.78 401.33
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Tab^e_^9^4^ Effect of detailing the same amount of reinforcement 

on the u ltimate torqu&andthe p o s t - c r a c k i n g  

torsional stiffness for the same cross section

Specimen Tu
KN . m

Tu
Tu(Bll)

Kcr  xl06 
K N .mm^/d e g .

Bll 23 . 95 1 . 000 7.100

N21 18 . 0 0 .752 3. 563

N51 16 . 0 0 . 668 1.281

Effect of varying the longitudinal and transverse 

reinforcement by the same amount on the ultimate

torque and the post-crcaking tors ional stiffness

Specimen Tu

KN . m

Tu
Tu(Bll)

Kcr K 106 
K N .mm^/deg.

/ I p.

Bll 23 . 95 1 . 000 7.100 1.073 0 . 927 2 . 000

B13 19.66 0.821 4 . 800 0 . 565 0.927 1 . 492

B71 20.4 0 . 852 4 .438 1 . 073 0 . 464 1 . 537

Îâble_i9^61 Ultimate torque for specimens N41 and N43

Spec imen Tu
KN . m

Tu
Tu(M4l) 1

N41 96 . 0 1 . 0 1 .073 0 . 950 2 . 023

N43 76.0 0 .625 0 . 565 0 . 950 1 .515
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c h a p t e r  t e n

CONCLUSIONS^, COMMENTS AND SUGGESTIONS FOR FURTHER WORK 
lOJ, General Conclusions

On the basis of the different analyses carried out it is 

c o n c l u d e d  that the n o n linear three d i m e n s i o n a l  finite 

e l e m e n t  model d e v e l o p e d  in this work predicts within 

acceptable accuracy the short-term behaviour of a variety of 

reinforced concrete structures as long as certain conditions 

are observed. In particular the pure and combined torsional 

b e h a v i o u r  of re c t a n g u l a r  beams and the pure torsional 

behaviour of L-sections were all predicted well.

From the experimental investigation it is concluded that the 

current British Code torsion design provisions are too far 

on the conservative side. It results in underestimation of 

the torsional capacity of properly reinforced concrete L - 

sections and therefore an uneconomical use of reinforcement.

N u m e r i c a l  parametric studies are some of the most useful 

applications of properly tried and tested nonlinear finite 

element models, where structural variables can be studied to 

complement experimental results to broaden the scope of the 

investigation before arriving at additional conclusions.

1 0 . 2  D e t a i l e d  C o n c l u s i o n s
The main d e t a i l e d  conclusions from the various aspects of 

this study are summarised as follows:

Làï Apfilications of the Finite Element Model

(1) S a t i s f a c t o r y  predi ctions can be obtained by the finite 

e l e m e n t  model provided that attention is paid to the 

guidelines set regarding tension stiffening, shear retention
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p a r a m e t e r s  and other numerical parame ters e.g. increment 

size, c o n v e r g e n c e  t o l e r a n c e ,  mes h  size and b o u n d a r y  

conditions.

(2) For torsional applications the boundary conditions must 

be carefully chosen to allow for proper warping behaviour to 

take place. "Reduced" boundary conditions at the supported 

end of a b e a m  a l l o w  such b e h a v i o u r  to o c c u r  and are 

th e refore recommended. For example, four nodes one at the 

centre of each side of a rectangular section are adequate.

(3) The shear retention factor plays a major role in the 

analysis of structures subjected to torsional stresses, and 

for the shear retention model used the following values are 

recommended: =0.5, P2 = 0 1 and p^e^ = 0.003.

(4) Care must be exercised when a p p l y i n g  the model in a 

particular situation. In general, when shear dominates the 

shear retention factor is more important and the tension 

s t i f f e n i n g  model can be made inactive or used with very 

small val u e s  of its parameters (a-^<0 .o and <%^5.0 ) . When 

flexure dominates the tension stiffening parameters may be 

i m p o rtant and hence could be used but again with small 

v a l u e s  of ol̂  and «2 • Tension stiffening o v e r e s t i m a t e s

the sti ffness in the early part of the l o a d - d e f l e c t  ion 

c u r v e s  (or torque — twist curves) and u n d e r e s t i m a t e s  steel 

strains without significantly affecting the ultimate load 

predictions

(5) The smeared fixed orthotropic crack model is an adequate 

a p p r o x i m a t i o n  as long as the above points r e g a rding the 

tension stiffening and shear retention models are observed.
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(6) A l l  c o n c l u s i o n s  a n d  g u i d e l i n e s  f o r  t o r s i o n  a n a l y s i s  of 
r e c t a n g u l a r  s e c t i o n s  a r e  a l s o  a p p l i c a b l e  to t h e  m o r e  

c o m p l i c a t e d  s i t u a t i o n  of s o l i d  L - s e c t i o n s .  T h e s e  c o n c e r n  t h e  
b o u n d a r y  c o n d i t i o n s ,  m a t e r i a l  p a r a m e t e r s  in p a r t i c u l a r  t h e  
s h e a r  r e t e n t i o n  a n d  t e n s i o n  s t i f f e n i n g  e f f e c t s  a n d  m e s h  

s e l e c t  i o n  s c h e m e s  .

( 7 )  A  m a j o r  o b s e r v a t i o n  i s  t h a t  f o r  h i g h  v o l u m e  

r e i n f o r c e m e n t  r a t i o s ,  a b o v e  a b o u t  2 . 5 °ô f o r  t h e  t o t a l  a m o u n t  

o f  s t e e l ,  t h e  f i n i t e  e l e m e n t  m o d e l  t e n d  to o v e r e s t i m a t e  t h e  
u l t i m a t e  t o r q u e  d e s p i t e  t h e  r e a s o n a b l e  p r e d i c t i o n s  

o t h e r w i s e .  T h i s  is a t t r i b u t e d  to t h e  u n s u i t a b i l i t y  o f  t h e  
f u l l  b o n d  a s s u m p t i o n  u s e d  in t h e  f i n i t e  e l e m e n t  m o d e l .  W i t h  
h i g h  s t e e l  r a t i o s  t h e  b e h a v i o u r  s e e m s  to b e  m o r e  s e n s i t i v e  

t o  t h e  b o n d - s l i p  p h e n o m e n o n  w h i c h  d i d  n o t  a f f e c t  t h e  

a n a l y s i s  of a l l  s e c t i o n s  w i t h  s t e e l  r a t i o s  l o w e r  t h a n  2.5%. 
W i t h  t h e  p r e s e n t  f i n i t e  e l e m e n t  m o d e l  l o w e r  v a l u e s  o f  t h e  
s h e a r  r e t e n t i o n  p a r a m e t e r s  t h a n  t h o s e  r e c o m m e n d e d  a b o v e  m a y  
b e  u s e d  to r e d u c e  t h e  d e g r e e  of o v e r e s t i m a t i o n .  It m a y  a l s o  

b e  r e q u i r e d  t o  m o d i f y  t h e  p r o g r a m  t o  p r o v i d e  b e t t e r  

s i m u l a t i o n  of b o n d - s l i p  b e h a v i o u r .  T h i s  n e e d s  r e f o r m u l a t i o n  

o f  t h e  e m b e d d e d  b a r s .

(8) T h e  p r e d i c t e d  s t e e l  r e s p o n s e  i n d i c a t e  t h e  i m p o r t a n c e  of 
t h e  p r o p e r  s i m u l a t i o n  o f  r e i n f o r c i n g  s t e e l ,  a c h i e v e d  h e r e  

t h r o u g h  e m b  e d  d e d  b a r s  p l a c e d  a t  t h e i r  e x a c t  p o s i t i o n s  a s  

t h e y  a p p e a r  in t h e  s t r u c t u r e .

H i  Experimental Study

(1 )  T h e  c o d e  t o r s i o n  d e s i g n  p r o c e d u r e  i s  f o u n d  t o o  

c o n s e r v a t i v e  a s  it g r o s s l y  u n d e r e s t i m a t e s  t h e  s e c t i o n  

t o r s i o n a l  c a p a c i t y .  A n  i n s t a n t  r e a s o n  i s  t h e  l i m i t  o n
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stirrup spacing as this is based on the smallest dimension 

of the component rectangles. Relaxation of this limit would 

result in a more economical use of reinforcement.

(2) The design equation:

, *sv
T =(---) 0.8x^y^(0.87fy^)

Sv

is, in principle, quite applicable but modification of the 

factor 0.8 appears to be n e c essary to reduce its

present conservative nature. The results indicate that the 

factor 0.8 may be eliminated.

(3) The a p p l i e d  torques at 0.3 mm crack width were higher 

than the design torque of the reference specimen of each 

group even for the reduced v olume ratios of stirrups, an 

observation that supports the above two points.

(4) B e h a v i o u r  was e s s e n t i a l l y  linear until c racking of 

concrete. The slope of this linear part of torque- t w i s t  

c u r v e  is i n d e p e n d e n t  of the a m o u n t  of t o r s i o n a l  

reinforcement. After cracking the steel strains/stresses and 

the concrete surface strains increase rapidly and continue 

to increase thereafter until failure.

(5) R e d u c t i o n  of transverse reinforcement, for the same 

amount of longitudinal steel, reduces both the post-cracking 

tor s i o n a l  stiffness and the ultimate torque. However, a 

p a r t i c u l a r  p e r c e n t a g e  r e d u c t i o n  r e s u l t s  in a l e s s e r  

p e r c e n t a g e  reduction of ultimate torque, a l l o w i n g  more 

utilization of longitudinal steel.

(6 ) S t i r r u p  s p a c i n g  e f f e c t s  both the c r a c k  w i d t h  and
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spacing. Closely spaced stirrups results in closely spaced 

fine cracks. Larger stirrup spacing results in widely spaced 

cracks but with larger crack widths. Sudden failu r e s  and 

crushing of concrete may occur in torsional specimens with 

large stirrup spacing (larger than about 100 mm for s m all 

sections) .

(7) Use of larger stirrup diameter with larger spac ing 

instead of smaller stirrup diameter, giving the same amount 

of t r a n s v e r s e  reinforcement, with the same amount and 

distribution of longitudinal steel, produces practically the 

same ultimate torque.

(8 ) The cracking torque increases slightly with the increase 

in the v o l u m e  ratio of transverse reinforcement, for the 

same cross section and longitudinal steel. A 1% increase in 

the v o l u m e  ratio of transverse r e inforcement res u l t s  in 

about 15%-25% increase in the creaking torque.

(9) Large reductions of torsional stiffness occur after 

cracking of concrete. The percentage ratio of post- to pre­

cracking stiffness may fall within the range 1% - 13%.

(10) V e r y - l a r g e  rotations are necessary for the tor sional 

members to d e v e l o p  their ult imate torques. The ratio of 

twist at fail u r e  to that at cracking was found to vary 

between 12 and- 20.

H i  Parametric Study

(1) The size e f f e c t  is i m p o r t a n t  in pure t o r s i o n  of 

reinforced concrete solid L-sections. The law of similitude 

is not applic a b l e .  For the same reinforcement ratio, same 

m a t e r i a l  proper ties and same ratios of cross sectional
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d i m e n s i o n s  (i.e. flange width-to-depth etc.), a p a r t i c u l a r  

percentage increase in the cross sectional area results in a 

higher percentage increase in the ultimate torque.

(2) Proper detailing of torsional reinforcement is vital for 

s o l i d  flan g e d  sections in order to ensure the desired 

ductility and the ultimate torques. For the same quantity of 

longitudinal and transverse steel, one layer of steel in the 

f l a n g e  res u l t s  in a s u b s t a n t i a l l y  reduced d u c t i l i t y  and a 

considerably less ultimate torque than if the same amount of 

stirrups were provi d e d  as closed stirrups in both web and 

flange. Completely unreinforced flange results in a brittle 

failure caused by crushing of the flange at the junction of 

web and f 1 ange.

(3) Th e v a r i a t i o n  of the l o n g i t u d i n a l  r e i n f o r c e m e n t  

i ndicates the importance of both l o n g i t u d i n a l  bars and 

stirrups in resisting the applied torque. For the same total 

volume ratio of reinforcement, the ultimate torque for two 

similar models was practically the same despite them having 

different allocations of longitudinal and transverse steel. 

This point, however, needs further investigation which must 

involve physical experiments, because the codes of practice 

g e n e r a l l y  use the p r i n ciple of equal v o l u m e s  to determine 

the amount of longitudinal reinforcement from that of the 

stirrups. This may not ne c e s s a r i l y  result in the best 

utilization of reinforcement.

10^3 Suggestions for Further Work

E x t e n s i o n s  of this study can be c o n v e n i e n t l y  grouped as 

follows :
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X â J. Further Applications of the Finite liement Program^
(a) The p rogram in its present state is readily a v a i l a b l e  

for d e t a i l e d  s t u d y  of v a r i o u s  r e i n f o r c e d  c o n c r e t e  

structures. In particular, the influence of many parameters 

can be isolated and studied.

(b) D e t a i l e d  parametric studies can also be performed to 

i n v e s t i g a t e  other parameters not c overed in Chapter Nine. 

One imm e d i a t e  suggestion is the case of combined torsion 

and bending where the ratio of moment to torque is varied.

(c) Applications to other cases of pure and combined torsion 

include T- and I-sections. The guidelines regarding boundary 

condi tions, load application, shear retention and tension 

stiffening parameters will be very useful in these cases.

(2) Developments of the Finite Element Program:

(a) The program requires a fully automatic mesh generator to 

be incorporated. This will considerably reduce time spent in 

data p r e p a r a t i o n  and serve as a first step for automatic 

p l o t t i n g  of crack patterns and distorted shapes of the 

structure during the various loading stages.

(b) The vari o u s  plotting routines, which are now separate 

programs, ca.n also be incorporated in the analysis program.

(c) Some of the recent numerical techniques can be used in 

conjunction with the material models instead of the Newton- 

R a p h s o n  method. Eexamples of such techni ques are the so- 

called BFGS method and the arc-length method.

(d) A re-start facility would also be of good benefit as it 

allows intermediate checkpoints during the analysis process.
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(e) Proper m o d e l l i n g  of b o n d -slip b e h a v i o u r  can be tried. 

This might be done by either modifying the set of matrices 

d e r i v e d  in C h a p t e r  T h r e e  for s i m u l a t i o n  of s t e e l  

reinforcement or incorporating a suitable bond-slip law.

(f) The reinforcement is at present restricted to run 

parallel to the local coordinates of the embedded concrete 

e l e m e n t .  A l t h o u g h  this did not a f f e c t  any of the 

applications undertaken, it may be necessary to include for 

the l i k e l y  case of i n c l i n e d  bars or w h e n  the m e s h  

subdivision requires some element boundaries to make angles 

with the embedded bars. Such a d e v e l o p m e n t  requires a new 

d e r i v a t i o n  of the g o v e r n i n g  equations of Chapter Three 

assuming the general case of inclined embedded bars.

(g) Automatic load incrementation scheme might be a useful 

inclusion for monitoring behaviour near ultimate conditions.

Ex2 er_imenta 1̂ Studies

(a) More variables to expand the present set of experiments 

include variation of longitudinal reinforcement, size effect 

for the same volume ratio and distribution of longitudinal 

and transverse steel, concrete strength and detailing of the 

same amount of reinforcement.

(b) Combined torsion and bending is u n d o u b t e d l y  the first 

obvious expansion after (a) above.

(c) Other prope r l y  reinforced flan ged sections (I and T) 

need d e t a i l e d  experimental studies under both pure and 

combined torsion.
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APPENDIX A 

DESIGN OF REFERENCE SPECIMENS

Sfiecimen Bll

Design ultimate torque = 8.0 KN.m 

Assume :

high y i eld steel = 4 10 N/ m m ^ ,

6 mm stirrups (area of two legs = 56 mm^)

concrete grade 40 - Vtmin=0.42 N/mm^ and N/mm^

Flange

= 100-2x20-6 = 54 mm, y  ̂ = 200-2x20-6 = 154 mm

h^nin hmax = 1003x200 - 2.0 x 10»
Tj = (2/25.2) X T = 0.635 KN.m

2Î 2 X 0.635 X 10 6
0.762 > V.

min(^max"^min/3) ^D0 [200 - 100/3]

.. torsion reinforcement required 

y 2 = 154 < 550 i.e. section is small 

vtu X yi/550 = 4.75 x (154/550) = 1.33 N/mm^

. . V^ < 1.33 .. section is feasible

Agy Ti 0.635x10®
Links: ---- > -------------------  =   = 0.268

Sy 0.8xiyi(0.87fy) 0.8x54x154(0.87x410)

. . Sy < 56/0.268 = 209 mm

but s y should be least of x^ , y / 2 or 200 mm

•• Provide_6_mm_links_@_50_mm_ç/ç

Longitudinal Steel: Agj > ( Ag^/s ̂  ) ( f y^/f y 2 ) ( x + y ̂ )

> (56/50)x lx(54+154) = 233 mm^

•• ££2ïlle_4_bars_8_mm_dia^_iA_=_20 0_mm^l
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Web

x^=200-2x20-6 = 154 mm, y^^SO0-2x20-6 = 2 54 mm

h^minhmax = 200^x300 = 23.2 x 10®

Tg = (23.2/25.2) x T = 7.365 KN.m

2T 2 X 7.365 x 10®
= "2 = ---- ; ------------------  = 1.578 > Vtmin

^ min(hmax-hmin/3) 2002[300 - 200/3]

.. torsion reinforcement required 

y 1 = 254 < 550 i.e. section is small 

Vtu X yi/550 = 4.75 x (254/550) = 2.194 N/mm%

.. < 2.194 .. section is feasible

Agv 7.365x10®
Links : ---- > -------------------  =   = 0.660

Sy 0.8xiyi(0.87fy) 0.8x154x254(0.87x410)

.. Sy < 56/0.687 = 84 mm

but sv should be least of x l , yl/2 or 200 mm 

.. Provide 6 mm links § 50 mm c/c

Longitudinal Steel: Agj > { Ag ̂ /s ̂  ) ( f y y/^ y 1 ) ( x i-̂ y 1 )
> (56/50)x lx( 154-254 ) = 457 mm^

. . Pr ov i.de_4_bar s_l 2_mm_d i.a_^_XA_=_452_mm-J^

A r r a n g e m e n t  of l o n gitudinal steel reinf o r c e m e n t  i n v o l v e d  

provision of a 16 mm bar instead of (8mm + 12mm) bars at the 

junction of web and flange.

Specimen B31

Design ultimate torque = 8.0 KN.m 

Assume:

high y i e l d  steel fy = 410 N/mm^,

6 mm stirrups (area of two legs = 56 mm^)

concrete grade 40 - = 0.42 N/mm^ and v^^ = 4.75 N/mm^
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Eiange

= 100-2x20-6 = 54 mm, y  ̂ = 260-2x20-6 = 214 mm

^ min ^max ~ 100®x260 = 2.6 x 10®
Ti = (2.6/10.65) X T = 1.953 KN.m

2T 2 X 1.953 X 10®
^ t 2 ~ ô ~ 1.723 > Vf— f-

m  i n   ̂H jjiax ~ / 3 ) 100 [260 - 100/3]

.. torsion reinforcement required 

y 1 = 214 < 550 i.e. section is small 

Vfu X y%/550 = 4.75 x (214/550) = 1.848 N/mm^

.. Vf < 1.848 .. section is feasible

Agv Ti 1.953x10®
Links :  >---- -----------  = ----------------------- = 0.592

Sy 0.8x^y^(0.87fy) 0.8x54x214x0.87x410)

.. Sy < 56/0.592 = 95 mm

but s y should be least of x ̂ , y ^/2 or 200 mm

. . Proyide_6_mm_l i,nks_@_50_mm_c/c

Longitudinal Steel: Ag^ > (Ag^/s^)(fy^/fy 1)(x^+ y ^ )

> (56/50)X lx(54+214) = 300 mm^

. .Provide 4 bars 10 mm dia. (A = 31,4 Jnin-)

Web

X 2 = 140-2x20-6 = 94 mm, y  ̂ = 300-2x20-6 = 254 mm

h^mln h m a x =  1403x300 = 7.96 x 10®

Tg = (7.96/10.56) X T = 6.030 KN.m

2T 2 X 6.030 X 10®
Vf =  -------------------- = ”  ̂ 2.429 > Vfmin

h'minlhmax-hmln/S) 14o2[300 - 140/3]

.. t o r s i o n  r e i n f o r c e m e n t  r e q u i r e d  

y  ̂ = 254 < 550 i.e. sec t i o n  is small 

Vfu X y^/550 = 4.75 x (254/550) = 2.107 N/m m ^

Vf > 2.107 but only slightly
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Asv Tj 6.030x106
Links : ---- > -------------------  =   = 0 . 885

Sy 0.8x^y^(0.87fy ) 0 . 8x94x254x( 0.87x410 )

sy < 56/0.885 = 63 mm 

but Sy should be least of x ^ , y^/Z or 200 mm 

• • Provide_6_mm_links_@_50_mm_ç/ç

Longitudinal Steel: Agj > (Ag^/ Sv)(fy^/fy 1 )(x^-y^)

> (56/50)x lx(94^254) = 390 mm^

.. Provide 4 bars 12 mm dia. (A = 452 mm-)

Arrangement of longitudinal steel involved the provision of 

a 16 mm bar instead of (10mm 4- I2mm) bars at the junction of 

web and f lange.
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AfPENDIX_lB)
ÊRIÇP_DESCRIPTION_OF_THE_DEVELOPED_FINITE_ELEMENT PROGRAM

The program analyses nonlinear three dimensional stress 

problems using 20-noded isoparametric elements for concrete 

and embedded bars for reinforcing steel. The bars can be of 

any number and can be embedded anywhere within the concrete 

elements, the only restriction being that they must be 

parallel to the local coordinates (  ̂ >^>^) of the basic 

concrete element.

The incremental-iterative method is used to solve the 

nonlinear equations. The resulting linear equations are 

solved by a Frontal technique, earlier described(l) and 

later modified(2) by Hinton and Owen to include buffer 

storage area in order to reduce the cost of the analysis. 

The program includes a triaxial short-term constitutive 

equations for concrete, due to Ottosen, a three dimensional 

cracking model, and a bilinear stress-strain law for steel 

which accounts for strain-hardening effects. Post-cracking 

behaviour of concrete is treated through shear retention and 

tension stiffening models.

Fully automatic mesh generation is not included. Instead a 

semi-automatic generator is included for regular solid 

meshes only. Coordinates of midside nodes are always 

automatically generated. Because of the enormous amount of 

output that can result, the output required is generally 

left to be chosen at will. The displacements of all nodal 

points are always printed. The cracking situation, crushing
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situation and steel strains and stresses are printed for all

elements. Output of normal, shear and principal stresses and

strains in concrete can be chosen for each element at will 

within a very flexible scheme, this being the major source 

of the lengthy output.

A list of all subroutines is shown next, followed by a brief 

description of their role. A chart illustrating the 

relationship between each subroutine is provided at the end 

of this section followed by a data

preparation user manual. The program is full of comment

statements to ensure easy follow-up of all operations for

any future developments.

(1) Hinton, E. and Owen, D.R.J, "Finite Element 

Programming", Academic Press, 1977.

(2) Owen, D.R.J. and Hinton, E ., "Finite Elements in 

Plasticity - Theory and Practice", Pineridge Press, Swansea, 

1980.
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1. N0NL3D

2. INPUT

3. ZERO

4. CORNER

5. MIDSID

6 . ALGOR

7. GAUSSQ

8 . STIF3D 

9 . BASTIF

10. L0AD3D

11. INCREM

12. SFR3

13. JACOBS

14. BMAT3D

15. MOD3D

16. DDE

17. FRONT

18. RESIDU

19. LINEAR

20. SECYP

21. BASTSS

22. SURFl

23. SURF2

24. PR I NCI

25. PSARR

26. DIRECT

27. CRACRU

28. CONVER

29. TRANSF

30. OUTPUT

31. CHECKl

32. ECHO

33. CHECK2
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lll-Program N0NL3D

This is the master subroutine from which all other 

subroutines are called.

iil.Subroutine_INPUT

This reads the required information for geometry, boundary 

conditions, material properties for concrete and steel, and 

calls the required subroutines for data checking. The 

initial values for all material property constants are also 

set up and stored for later use.

(3) Subroutine ZERO

This initializes various arrays to zero for accumulation of 

loads, reactions, displacements, stresses etc.

(4) Subroutine CORNER

This generates coordinates of corner nodes for a solid 

regular mesh in a semi-automatic fashion.

(5) Subroutine MIDS%D

This computes the coordinates of the midside nodes for the 

20-noded isoparametric brick elements.

i6l_Subroutine_ALG0R

This sets the equation resolution index. The index indicates 

whether or not the system of equations is to be accompanied 

by a full reformulation of the element stiffnesses depending 

on the algorithm chosen, the current load increment and the 

current iteration.
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iZl_Subroutine_GAUSSQ

This sets up the sampling (Gauss) point positions and 

weighting factors for numerical integration. The order of 

Gauss rule is restricted to either 2x2x2, 3x3x3 or 4x4x4.

l82_Subroutine STIF3D

This computes the stiffness matrix for the 20-noded 

isoparametric brick element accounting for the cracking, 

crushing and the material laws of concrete, as dictated by 

the components of the D-matrix passed on by subroutine 

M0D3D, and yielding of reinforcement treated in subroutine 

B A S T I F .

(9) Subroutine BASTIF

This computes the stiffness of all the bars embedded within 

the basic concrete element and adds them into the 

appropriate places in the stiffness matrix before returning 

control back to subroutine STIF3D for storage.

(10) Subroutine L0AD3D

This computes the consistent nodal forces after reading the 

relevant data for any combination of five load types, 

namely: (1) nodal point loads, (2) gravity loading, (3)

distributed loads on element edge, (4) thermal loading and

(5 ) distributed loads on element face.

(11) Subroutine INCREM

This increments the load applied in subroutine L0AD3D. The 

total load applied during a typical load increment is the 

accumulative load of all the previous increments including
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the current one. 

iiil^Subroutine_SFR3

This calculates the shape functions and their derivatives 

for the 20-noded element.

il3l_Subroutine_JAC0B3

This calculates the coordinates of all Gauss points, and the 

Jacobian matrix, its determinant and inverse for the the 

20-noded element.

(14) Subroutine BMAT3D

This subroutine calculates the strain matrix [B] for the

20-noded element. It is also used for the bar elements as a 

special case of the main element.

Il2l _ 3ubr ou t i, ne_M0D3D

This subroutine evaluates the material property matrix, [D] , 

accounting for the stress state prevailing at the Gauss 

point in question ready for stiffness calculations.

(16) Subroutine DBE

This calculates the stress matrix [DB] for the 20-noded 

element.

(17) Subroutine FRONT

This solves the simultaneous equations by means of Gauss 

elimination and back substitution. The Frontal technique is 

used with a buffer storage facility to reduce the cost.
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il§l_Subroutine_RESIDU

This subroutine reduces the stresses to the failure surface 

and evaluates the equivalent nodal forces.

ii9l_Subroutine_LINEAR

This evaluates incremental stresses and strains assuming 

linear elastic behaviour.

l20l_Subroutine_SECYP

This reads in the current state of stress then computes and 

store secant values of Young's modulus and Poisson's ratio 

of concrete using Ottosen's constitutive equations.

(21) Subroutine BASTSS

This evaluates reinforcing bar stresses and brings down the 

stresses to the yield value or along the strain-hardening 

part in case yielding of steel occured.

(22) Subroutine SURFl

This evaluates, by direct internal iteration, the value of 

the third principal stress, ®3f, and the second invariant of 

the deviatoric stress tensor at failure for the current 

state of stress using Ottosen's failure criterion.

(23) Subroutine SURF2

This evaluates the value of the third principal stress, *3f, 

and the second invariant of the deviatoric stress tensor at 

failure for the current state of stress using the Modified 

Coulomb failure criterion. This is an economically cheaper 

alternative to Ottosen's failure criterion (subroutine
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SURFl), as no iteration is needed, though with lesser 

accuracy.

iâii.Subroutine_PRINCI

This calculates the principal stresses and strains and their 

directions at all Gauss points of the element.

l25%_Subroutine PSARR

This simply arranges the principal stresses so that ®1> ^2> 

^3, required for Ottosen's constitutive equations.

l261_Subroutine_DIRECT

This solves the three simultaneous equations needed for the 

evaluation of the direction cosines of the second and third 

principal stresses ( ^2 and ^5 j had the material cracked in 

one direction due to the first principal stress ^1 .

l2 72_Subroutine_CRACRU

This deals with cracking and crushing of concrete using the 

appropriate criteria. For cracking, the offending principal 

stress is set to zero and the appropriate crack directions 

are fixed. For crushing, all stresses are set to zero.

(28) Subroutine CONVER

This checks the convergence of the iteration process using 

the residual forces method.

(29) Subroutine_TRANSF

This subroutine sets up the transformation matrices used to 

transform the stresses and strains to the required
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directions.

i 3 01_S ub ro utine _0 UTPUT

This outputs displacements, reactions, stresses in concrete 

and steel. Gauss point coordinates, concrete cracking and 

crushing situations, and yielding situation of 

reinforcement. To avoid excessive amount of output selective 

items can be chosen at will.

131) Subroutine CHECKl

This checks the control parameters read in subroutine INPUT 

to ensure that they all have values ranging within the 

specified description in the manual. Any error detected is 

given an appropriate number which can be checked to indicate 

the so u r c e .

132) Subroutine ECHO

This is called if any error is detected in CHECKl or CHECK2 . 

The main purpose is to stop the program execution and to 

print any remaining unread data cards.

(33) Subroutine CHECK2

This checks any identical information given with regard to 

coordinates and nodal connections. The most useful check in 

this subroutine is the one which ensures that the maximum 

frontwidth does not exceed the value specified in subroutine

F R O N T .
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5ATA_PREPARATI0X_MANUAL_F0R_PR0GRAM_X0NL3D
I0P_ÏHREE_DIMEXSI0XAL_X0XLIXEAR_AXALYSIS

2F_REIXF0RCED_C0XCRETE_STRUCTURES

ÇARD_SET_l_TlTLE_CARD112A6%-0ne Card
Cols. 1-72 TITLE Title of the problem - limited to 72

alphanumeric characters

ÇARD_SET_2_Ç0XTR0L 
Cols. 1-5 XPOIX 

6-10 XELEM 
11-15 XVFIX

16-20 XMATS
21-25 XGAUS

26-30 NALGO

31-35 NCRIT

36-40 XIXCS 

41-45 NCORN

.ÇARDX13151-One Card
Total number of nodal points 
Total number of elements
Total number of restrained boundary 
points - where one or more degrees 
of freedom are restrained 
Total number of different materials 
Order of integration formula for 
numerical integration (2, 3 or 4
Gauss Rules can be used but 3 is 
recommended for monitoring nonlinear 
behaviour especially cracking)
Parameter controlling nonlinear 
solution algorithm:
1-Initial stiffness method. The 
element stiffnesses are computed at 
the beginning of the analysis and 
remain unchanged thereafter
2-Secantial stiffness method. The 
element stiffnesses are recomputed 
during each iteration of each load 
increment
3-Combined algorithm. The element 
stiffnesses are recomputed for the 
first iteration of each load increment 
only
4-Combined algorithm. The element 
stiffnesses are recomputed for the 
second iteration of each load 
increment,only (of course for the 
first load increment, the element 
stiffnesses must be calculated for 
the first iteration also)
5-Combined algorithm. The element 
stiffnesses are recomputed for the 
first and eighth iteration of each 
load increment. For the purpose of 
this work a maximum number of 
iteration of 15 was adopted
6-Combined algorithm. The element 
stiffnesses are recomputed at the 
first, sixth, eleventh and fifteenth 
iteration of each load increment.
The failure criterion to be employed in 
conjunction with Ottosen Constitutive 
Equations for concrete:
1-Ottosen four-parameter failure 
criterion
2-Modified Coulumb criterion
The total number of load increments 
to be appli ed
Parameter for semi-automatic mesh
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46-50 NSTYP

51-55 XREPL

56-60 XTSTI

61-65 XCMOD

general ion :
0-When the mesh is for irregular solid 
structure (I,L,T beams, or rectangular 
beams and slabs when irregular mesh is 
to be used). In this case the 
coordinates of all corner nodes must be 
input and Card Sets 5 and 6 must be 
omitted
1-When the mesh is for regular solid 
structure (rectangular beams and 
slabs). In this case no nodal 
coordinates of any point are to be 
input, instead Card Sets 5 and 6 must 
be used
Number of steel types used (different 
bar diameters or different material 
properties)
Parameter controlling the use of the 
whole program for plain or reinforced 
concrete :
0-For plain concrete. In this case 
Card Sets 8 and 11 must be omitted
1-For reinforced concrete. In this 
case Card Sets 8 and 11 must be used

controlling the use or 
of the tension stiffening

stiffening model not to be

Parameter 
otherwi se 
model :
0-Tension 
used
1-Tension stiffening model to be used 
Parameter controlling the crushing 
model to be used :
1-The first model where crushing is 
assumed when the minimum principal 
compressive stress exceeds the 
uniaxial value for concrete regardless 
of whether the Gauss point has already 
cracked or,not
2-The second model where crushing is 
checked by using Yon Mises failure 
envelope in strain space for any Gauss 
point with at most one crack present, 
otherwise the uniaxial value is used 
as in the first model

ÇARD_SET_3_ELEMEXT_Ç0XXEÇTI0N_^_REINF0RÇEMEXT_^_AXD_0UTPUT 
ÇARDSlJ,615j_-Two cards for each element, from column 1 to 80 

in the first card and from column 1 to 55 in the 
second, card. Total = 2*XELEM cards.

£imi._car dj_
Cols. 1-5 NÜMEL Element number

6-10 MATXO(XUMEL) Material property number
11-15 LNODS(N U MEL,1) 1st Nodal connection number
16-20 LNODS(NUMEL,2) 2nd Nodal connection number
21-25 LNODS(NUMEL,3) 3rd Nodal connection number

76-80 L N O D S (NUMEL,14)14th Nodal connection number 
Second card:



Cols. 1 5 LN0DS(NUMEL,15)15th Nodal connection number 
6-10 LNODS(NUMEL,16)16th Nodal connection number
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36-40 MATX02(NUMEL) 

41-45 MATX03(NUMEL) 

46-50 MATX04(NUMEL) 

51-55 NRESU(NUMEL)

26-30 LNODS(NUMEL,2 0 )20th Nodal connection number 
31-35 MATNOl(NUMEL) Element reinforcement identifier;

0-The element contains no bars passing 
through
1-The element contains bar(s) passing 
through
Number of reinforcing bars parallel 
to the X-direction
Number of reinforcing bars parallel 
to the y-direction
Number of reinforcing bars parallel 
to the z-direction
Element output control parameter:
(This is because the amount of output 
from a full nonlinear run is 
enormous and usually the output of 
certain elements is of more interest 
than others )
0-Output element cracking and crushing 
situation, reinforcement stresses and 
strains and yielding situation
1-Output element Gauss point 
coordinates, normal and shear stresses 
and strains, cracking and crushing 
situation, reinforcement stresses and 
strains and yielding situation
2-Output element Gauss point 
coordinates, principal stresses and 
strains and their directions, 
reinforcement stresses and strains 
and yielding situation
3-Output element Gauss point 
coordinates, normal and shear stresses 
and strains, principal stresses and 
strains and their directions, 
cracking and crushing situations, 
reinforcement stresses and strains
and yielding situation

Note: The nodal connection numbers for each element must be
listed in the anticlockwise sequence shown in Figure (1) 
starting from any corner node.

ÇARD_SET_4_N0DAL_çggRD%NATES_ÇAR0SlI5^3F10^3j-0ne card for 
each node whose coordinates are to be input. If 
NC0RN=1 in Card Sets 2, omit this set and instead 
Card Sets 5 and 6 must be used to generate the mesh. 

Cols. 1-5 IPOIN Nodal point number
6-15 COORD(IPOIN,1) X-coordinate of the node

16-25 C00RD(IP0IN,2) Y-coordinate of the node
26-35 COORD(IPOIN,3) Z-coordinate of the node

Notes: 1) The coordinates of the highest numbered node must be
input, regardless of whether it is a midside node or 
not.
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2) The total number of cards in this set will generally 
differ from XPOIX in card set 2 since for element 
sides which are linear it is only necessary to specify 
data for corner nodes; intermediate nodal coordinates 
being automatically interpolated if on a straight 
line.

AR_S OLID _MESH_G EXE RATION CONTROL 
S^^ElZE12^3^3Iô2-0ne card (used for regular solid mesh

NCORN=0 in Card Set 2, omit this set.
only), if

Cols 1-10 
11-20 
2 1-30 
31-35

XINCR
YINCR
ZINCR
NDIVX

36-4 0 NDTVY

41-45 NDIVZ

Increment of length in x-direction
Increment of length in y-direction
Increment of length in z-direction
Number of equal divisions in 
x-direction 
Number of equal 
y-direction 
Number of equal 
z-direction

divisions in

divisions in

ÇARD_SET_6_REGULAR_SgLID_MESH_GENERATigN_N0DE_ÇARDSiI5l-0ne
card for each corner node. If NCORN=0 in Card Set 2, 
omit this set. Total = number of corner nodes.

Cols. 1-5 IPOIN Nodal point number

ÇARD_SET_7_RESîRAINED_NgDE 
each restrained 
in Cars Set 2. 
NOFIX
IFPRE(IVFIX,1)

IFPRE(IVFIX,2)

Cols. 1-5 
8

10 IFPRE(IVFIX,3)

11-20 PRESC(IVFIX,1) 

21-30 PRESC(IVFIX,2) 

31-40 PRESC(IVFIX,3)

_Ç6RDSlI5^2X^3I1^3F10^3%-0ne card for 
node. Total of NVFIX cards specified

Restrained node number 
Condition of restraint on 
X-displacement
0-No displacement restraint
1-Nodal displacement restraint 
Condition of restraint on
y-d i splacement
0-No displacement restraint
1-Nodal displacement restraint 
Condition o,f restraint on 
z-displacement
0 -No displacement restraint
1-Nodal displacement restraint 
The prescribed value of the x 
component of the nodal displacement 
The prescribed value of the y 
component of the nodal displacement 
The prescribed value of the z 
component of the nodal displacement

ÇARD_SET_8_ELEMENT_REINF0RCEMENT_ÇARDSl2I5^3F10^3^2I5}-0ne card 
for each bar passing through the element. Total in 
each element = NBARE = MATN02(IELEM)+MATN03(IELEM)- 
MATN04(lELEM) as specified in Card Set 3. If NREPL=0 
in Cars Set 2 (i.e. when the whole structure is plain
concrete), omit this set. If NBARE = 0 for a certain 
element then omit the cards corresponding to that 
element in this set.

Cols. 1-5 lELMR Reinforced element number
6-10 N B ARN(lELMR,IBARE) Bar number

11-20 BARXP(IELMR,I BARE) X-local coordinate of the bar
(=0.0 if the bar is parallel to
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the x-direction)
21-30 BARYP(IELMR,IBARE) Y-loacl coordinate of the bar

(=0.0 if the bar is parallel to 
the y-direction)

31-40 BARZP(IELMR, I BARE) Z-local coordinate of the bar
(=0.0 if the bar is parallel to 
the z-direc tion )

41-45 NBMAT(IELMR,I BARE) Bar material number 
46-50 NBDIR(IELMR,IBARE) Bar direction;

1-If the bar is parallel to the 
local x-axis
2 -1f the bar is parallel to the 
local y - ax is
3 -1f the bar is parallel to the 
local z-axis

ÇARD_SET_9_Ç0NÇRETE_MATERIAL_ 
2F7^3^2F12^8^F5^3J_ 
of concrete. Total 
Set 2.

Cols. 1-5 NUMAT
6-15 PROPS(NUMAT,1)

16-25 PROPS(NUMAT,2)

26-30 PROPS(NUMAT,3) 
31-35 PROPS(NUMAT,4)

36-42 PROPS(NUMAT,5)

43-49 PROPS(NUMAT,6 ) 
50-61 PROPS(NUMAT,7) 
62-73 PROPS(NUMAT,8 ) 
74-78 PROPS(NUMAT,9)

PR0PERTY_CARDS1I5^2F10^3_^2F5^3^
-One card for each different type 
of NMATS cards specified in Card

Material property number 
Initial modulus of elasticity,Ei, 
from uniaxial stress-strain curve 
Secant value of Young's modulus 
at uniaxial compressive failure 
Initial value of Poisson's ratio 
Secant failure value of Pois s o n 's 
ratio
Cylinder crushing strength of 
concrete
Tensile Strength of concrete 
Mass density of concrete 
Coefficient of thermal expansion 
Ratio of uniaxial tensile to 
compressive strength of concrete 
(this must be 0.08, 0.1 or 0.12
as Ottosen constants are tabulated 
for these three values only)

1) The initial Young's modulus is about (2.0-2.5) x secant 
failure value.

Note

ÇARD_SET_10_FIRST_ADDITigNAL_çgNÇRETE_PR0PERTIES_ÇARDi4F8^ 5i 
One card. Data for Ottosen model, modified Coulumb 
criterion and uniaxial crushing strain of concrete. 

Cols. 1-8 OTTOD Ottosen parameter,D, for concrete
constitutive equation (0.0 to 1 .0 ) 
Ottosen Parameter,B a , for concrete 
constitutive equation (=0 .8 )
Angle of internal friction for 
the modified Coulumb criterion 
for concrete (=37.0 degrees)
The value of the uniaxial crushing 
strain of concrete

9-16 OTTBA

17-24 PHIMC

25-32 UCRSN

CARD SET 11 SEC0ND_ADD%T%gNAL_C0NCRETE_PR0PERTlES_CARDl6F8^5 
One~card. Data for shear retention factor, tension 
stiffening and the ratio of allowable cracking 
strength of concrete to its tensile strength.

Cols. 1-8 BETAl The value to which the shear
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9-16 BETA2

17-24 BETAS

25-32 ALFAl

33-40 ALFA2

41-48 RATFT

retention factor drops immediately 
upon cracking (0.0 - 1 .0 )
The value to which the shear 
retention factor finally settles 
(0.0 - BETAl)
The ratio of the final normal tensile 
strain, after which the shear 
retention factor remains a constant 
(=BETA2), to the cracking strain 
The ratio of the value to which the 
normal stress across the crack drops 
immediately at cracking to the 
tensile strength of concrete for the 
tension stiffening model 
The value of the final tensile strain 
at which the tension stiffening 
effect becomes zero to the cracking 
strain
Ratio of the allowable (cracking) 
stress to the tensile strength of 
concrete

ÇARD_SET_12_REINFORCEMENT 
for each type 
in Card Set 2 
when the whol 
this set. 

XREIN 
6-20 STPRO(XREIN,1) 

21-35 STPRO(XREIN,2) 
36-50 STPRO(NREIN,3) 
51-65 STPR0(NREIN,4)

Cols. 1-5

_PRpPEEIÏ_ÇARDSlI5^4F15^8j-0ne card 
of steel. Total of NSTYP specified 
. If NREPL = 0 in Card Set 2 (i.e.
e structure is plain concrete), omit

Reinforcing steel type number 
Young's modulus of elasticity 
X-sectional area of the bar 
Yielding stress 
Work hardening factor after 
yielding (specified as the 
percentage ratio of Young's 
modulus after yielding to that 
before yielding)

Note; 1) If two steel types (i.e. mild and high tensile) having 
the same diameter are used they can be input as two 
different materials. In fact this is a more versatile 
representation of steel behaviour, as each bar is 
individually modelled and hence follows its own 
stress-strain law.

ÇARD_SET_13_L0AD_TITLE_ÇARD11 2A6j_-0ne card
Cols. 1-72 TITLE Title of the load - limited to

72 alphanumeric characters

CARD SET 14 LOAD TYPE_%NDICAT0R_CARDl5I5j-0ne card
Cols. 1-5 IPLOD

6-10 IGRAV

11-15 lEDGE

Applied point load control 
parameter ;
0 -No applied nodal point loads to 
be input
1-Applied nodal point loads to be 
input
Gravity loading control parameter;
0-No gravity loads to be considered
1-Gravity loads to be considered 
Distributed edge load control 
parameter;
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0-No distributed edge loads to be 
input
1-Distributed edge loads to be 
input

16-20 ITEMP Thermal loading control parameter:
0-No thermal loading to be input
1-Thermal loading to be input 

21-25 IFACE Distributed loads on the face
control parameter:
0-No distributed loads on the face 
to be input
1-Distributed loads on the face to 
be input

E T_15_ AP P LIE D__P 01NT_L 0 AD_ C ARD S H  5_j_3 F 1 5 . 2 ) - 0 n e card for 
each loaded nodal point.

Cols. 1-5 LODPT Node number
6-20 POINT(1) Load component in x-direction

21-35 P0INT(2) Load component in y-direction
36-50 P0INT(3) Load component in z-direction

Notes: 1 ) The last card should be that for the highest numbered
node whether it is loaded or not.

2) If IPLOD = 0 in Card Set 14, omit this set.

ÇARD_SET_16_GRAVITY_LgADING_ÇARDl3F10^3j_-0ne card 
Cols. 1-10 GRAVX Component of gravity in

x-direction
11-20 GRAVY Component of gravity in

y-direction
21-30 GRAVZ Component of gravity in

z-direction

Notes: 1) The component of the gravity loading must be specified
as multiple of the gravitational acceleration g .

2) If IGRAV = 0 in Card Set 14, omit this set.

pARD_SET_17_DISTRIBUTED_EDGE_L0AD_CAR^DS 
16(a) CONTROL CARD(I5)-0ne card
Cols. 1-5 NEDGE Number of element edges on which

distributed loads are to be 
appl led

i3lbJi_ELEMENT_EDGE_T0P0LgGY_CARDSl4 152
Cols. 1-5 NEASS The element number with which the

element edge is associated 
6-10 NOPRS(l) List of nodal points, in an

anticlockwise sequence, of the 
nodes forming the element edge on 
which the distributed load acts 

1 6 (c2 DISTRIBUTED L0AD_CARDSl9F8^42
Cols. 1-8 PRESS(1,1) Value of x-component of the

distributed load at node NOPRS(l) 
9-16 PRESS(2,1) Value of x-component of the

distributed load at node N0PRS(2)
17-24 PRESS(3,1) value of x-component of the

distributed load at node N0PRS(3)
25-32 PRESS(1,2) Value of y-component of the

distributed load on node NOPRS(l) 
33-40 PRESS(2,2) Value of y-component of the

distributed load on node N0PRS(2)
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41-48 PRESS(3,2) 

49-56 PRESS(1 ,3 ) 

57-64 PRESS(2 ,3) 

65-72 PRESS(3,3)

Value of y- 
distributed 
Value of z- 
distributed 
Value of z- 
distributed 
Value of z- 
distributed

component of 
load on node 

component of 
load on node 

component of 
load on node 

component of 
load on node

the 
NOPRS(3) 

the 
NOPRS(1) 

the 
NOPRS(2) 

the 
NOPRS(3)

Notes; 1 ) Suosets 17(b) and 17(c) must be repeated in turn for 
every element edge on which a distributed load acts. 
The element edges can be considered in any order.

2) If lEDGE = 0 in Card Set 14, omit this set.

CARD_SET 18_TEMPERATURE_CARDS1I5^F10^31
Cols. 1-5 NODPT Node number

6-15 TEMPE(NODPT) Temperature at node

Notes: 1) Datum temperature is taken to be zero.
2) Only nodal temperature which are non-zero need be 

input. The card set must terminate with the highest 
numbered node regardless of the temperature value at 
this n o d e .

3) If ITEMP = 0 in Card Set 14, omit this set.

ÇARD_SET_19_DXSTRTBUTED_L0AD_0N_ELEMENT_FACE_CARDS
19(a) CONTROL CARD(I5)-0ne card
Cols, i-5 NFACE Number of element faces on which

distributed loads are to be input
i9lbl_ELEMENT_FACE_TgpgL0GY_CARDSX925)
Cols. 1-5 NEASS

6-10 NOPRS(l)
11-15 N0PRS(2) 
16-20 NOPRS(3)
21-25 NOPRS(4)
26-30 NOPRS(o) 
31-35 NOPRS(6 ) 
3 6-40 N OPRS(7) 
41-45 NOPRS(8 )

The element number with which the 
element face is associated

List of nodal points, in an 
anticlockwise sequence, of the 
nodes forming the face on which 
the distributed load acts

for each loaded face as clear in the format.
FlZsl_Card
Cols. 1-10 PRESS 1 ,1 )

11-20 PRESS 2 ,1 )
2 1-30 PRESS 3,1) Values of x-component of the
31-40 PRESS 4,1) distributed load at nodes NOPRS(l)
41-50 PRESS 5,1) NOPRS(2),NOPRS(3),......NOPRS(8 )
5 1-60 PRESS 6 ,1 )
61-70 PRESS 7,1)
7 1-80 PRESS 8 ,1)

Second Card :
Cols. 1-10 PRESS 1 .2 )

11-20 PRESS 2 ,2 )
21-30 PRESS 3,2) Values of y-component of the
3 1-40 PRESS 4,2) distributed load at nodes NOPRS(l)
4 1-50 PRESS 5,2) NOPRS(2),NOPRS(3),......NOPRS(8 )
51-60 PRESS 6 ,2 )
6 1-70 PRESS 7,2)
71-80 PRESS 8 ,2 )
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Values of z-component of the 
distributed load at nodes NOPRS(l), 
N0PRS(2) ,N0PRS(3)....... NOPRS (8 )

11-20 TOLER

21-25 MITER

26-30 NOUTP(l)

Third Card:
C o l s . 1-10 PRESS(1,3)

11-20 PRESS(2 ,3 )
21-30 PRESS(3,3)
31-40 PRESS(4,3 )
41-50 PRESS(5,3)
51-60 PRESS(6 ,3 )
61-70 PRESS(7,3)
71-80 PRESS(8 .3 )

Notes: 1 ) Subsets 19(b) and 19(c) must be repeated in turn for
every element face on which a distributed load acts. 
The element faces can only be on the x-y plane.

2) If NFACE = 0 in Card Set 14, omit this set.

ÇARn_SET_20_L0AD_INCREMENT_C0NTR0L_ÇARDSl2Fig^5^3I5}-0ne card 
for each load increment. Total of NINCS cards as 
specified in Card Set 3.

Cols. 1-10 FACTO Applied load factor for this
increment specified as a factor 
of the loading input in Card Sets 
14 to 19
Convergence tolerance factor as 
a percentage
Maximum number of iterations 
allowed for this load increment 
Parameter controlling output of 
results after the first iteration 
(may be needed for investigation):
0-No output needed
1-Output displacements
2-Output displacements and 
reactions
3-Output displacements, reactions 
and stresses
Parameter controlling output of 
the converged results (and the 
results, after the last iteration 
had the solution not converged at 
maximum number of iterations):
0-No output needed
1-Output displacements
2-Output displacements and 
reactions
3-Output displacements, reactions 
and stresses

Notes: 1) The applied loading factors are accumulative. If FACTO
is specified as 0.6, 0.3, 0.2 for the first three load
increments, then the total load acting during the 
third increment is 1.1 times that specified in Card 
Sets 14 to 19.

2) The output control parameters NOUTP(l) and N0UTP(2) 
must not be mixed up with the element output control 
parameter NRESU specified in Card Set 3. NRESU is only 
relevant when NOUTP(l) or N0UTP(2) is equal to 3.

31-35 N0UTP(2)
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APPENDIX Ç

The following set of equations is used to obtain the value 

of 03  ̂ (the minimum c o m p r e s s i v e  stress at failure) for a 

particular stress state (o^, 03, ) using Ottosen's failure

criterion described in Chapter Four.

Il = *1 - *2 " ®3 (1)
1

Jg = - [(a^-<^)2 + (J2-<^3)^ " ( ̂ -*3)2] (2)6

2 G, - Gp - Q q
cose  --------- :------   (3 )

2 / s ' / j T
c o s 3 0 = 4 c o s ^ e - 3 c o s e  (4 )

' I  J 2 'J 2 i 1F(I q'-J 2'Cos30) = a —  — + —  ̂ •b —  — 1 (5)
c ^c ®c

The computation procedure involves internal iteration and

this is performed as follows:

(1) Start with a value DELIN = ( Og - 10)/2

(2) Assume an arbitrary value for @ 3  ̂ = ég 4- DELIN

(3) Calculate I^ using Equation (1)

(4) Calculate J g using Equation (2)

(5) Calculate cos0 from Equation (3)

(6 ) Calculate cos30 using Equation (4)

(7) Check if cos30> 0 then = K j^cos ( arccos ( K2cos30 )/3 )

(8 ) Check if cos30< 0 then = K^cos( H/3-arccos(-K2cos30 )/3 )

(9) Obtain f(I^,j'2,cos30) from Equation (5)

(10) Check if f (I '^ ,J '3 ,cos30) < 10~® then execute step (15)
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(11) Make DELIN = DELIN/2

(12) Check if f ( I ^.j'g.cosSS) > 0 then a gf = à - DELIN

(13) Check if f ( I '  ̂. J ' 3 . cos3 0) < 0 then 3f " DELIN

(14) Back to step (3) for a new value of a'gf

(15) terminate the process and accept last value of Og^
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APPENDIX D

DESIGN OF r e f e r e n c e  SPECIMEN B 11 ACCORDING TO THE 

^TENTATIVE DESIGN RECOMMENDATIONS^ - Chapter Nine

Two e x a m p l e s  w il l  be given here; the first example is a

redesign of reference specimen Bll for the design torque of 

8.0 KN.m. used in the experim e n t a l  programme, w hilst the 

second example is a calculation of the ultimate torque for 

the s a m e  s p e c i m e n  f o l l o w i n g  the " T e n t a t i v e  D e s i g n  

Recommendations" using the actual amount of steel provided.

Steel and concrete characteristics:

high yield steel of fy = 410 N/mm^

6 mm stirrups (area of two legs = 56 mm^)

concrete grade 40 -

v t m i n  = f g p / S . O  = 3 . 0 / 2  = 1 . 5  N / m m ^
(fgp is the e x p e r i m e n t a l l y  obtained value). This v a l u e  is 

also used as the tensile strength of concrete f

Example H I

Flangej.

Xj = 100-2x20-6= 54 mm. y  ̂ = 200-2x20-6 = 154 mm

h^min h„ax = 10o3x200 = 2.0 x 10»
Tj = (2/25.2)xT = 0.635 KN.m

2T 2x0.635x 10®
V .   ----------------------------------------------------------= -------------    =  0.762 <  v^Qin

h2mln(hmax-h.in/3) 100^(200-100/3)
torsion reinforcement not required 

St. V e n a n t 's coefficient*a= «(y/x) = «(1.5) = 0.246 

Tg = 0.5 (0.246x100^x200x3.0x10“®) = 0 . 7 3 8  KN.m

Webj^

x^ = 200-2x20-6 = 154 mm, y % = 300-2x20-6 = 254 mm

•Jt See d io p te r 2^ def. lo fo r  exorvpLe
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^ min I^max ~ 200^x300 = 23.2x 10® mm^

Tg = (23.2/25.2)xT = 7.365 KN.m

2T 2x7.365x10®
_ -      = 1.578 > Vf-in

mln ̂ I^max~I^mln^® ̂ 200 (300-200/3)
.’. torsion reinforcement required

y 1 = 254 < 550 .'. section is small 

Vtu%^l/550 = 4.75x(254/550) = 2.194 N/mm^

.’. < 2.194 .". section is feasible

St. V e n a n t 's coefficient a= a(y/x) = a (2.0 ) = 0.2305 

.*. Tg = 0.5 ( 0 . 2305x200^x300x3 . 0x10"® ) = 4.149 KN.m 

.'. Tg = 8.0 - 4.149 - 0.738 = 3.113 KN.m

Agy Tg 3.113 X 10®
Links: --- >    =    0.279

Sy 0 . SXj^yj ( 0 . 87f y ) 154x254x0.87x410

.'. s^ < 56/0.279 = 2Ô1 mm

but Sy must be < (%i+yi)/2 , y^/2, 200 mm

< 204mm, 127mm, 200mm

say Sy = 100 mm .'. Provide 6mm links at 100 mm c/c

Longitudinal s^eeli Ag^ > (Ag^/s^) (fyv/Tyi)(Xj+yi)

> (56/100) (1) (154+254)

> 229 mm^

.*. Provide 4 bars 10 mm dia. (A 314 mm^)

Coagarison of volume ratios of reinforcement ;

^  = 0.301%

= 0.393%

= 0.694% This is about 35% of the total r e i n f o rcement 

ratio of specimen Bll which only cracked at a torque of 

12.43 KN.m and failed at a torque of 23.95 KN.m.
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.. s a v i n g  in steel amount of specimen Bll is 65%.

Example 121

Calculation of the ultimate torque of specimen Bll using the 

actual amount of steel provided according to the suggested 

provisions .

T = + T 3 ) . (T3 + + (T^ +

0.5x(0.2305x200^x300x3.0x10"®)+ 

(56/50)x0.8x154x254x0.87x410x10"® 

0.5x{0.246x100^x200x3.0x10"® +

( 56/50)x0.8x 54x154x0. 87x410x10"® 

4.149 + 12.502 + 0.738 + 2.658 = 20.05 K N .m

C o m p a r i s o n  of this torque and the e x p e r i m e n t a l  ul t i m a t e  

torque (23.95 KN.m) r e v e a l s  that this procedure is still 

reasonably conservative.

The following table shows comparisons of the ultimate torques for 
all specimens according to the above procedure and the experimental 
failure torques. It can be seen that the procedure is still reasonably 
conservative.

Table (B.1)

Specimen T.
KN.m

T(Exper.) 
KN.m

B 11
B12
BI3
BI4
B21
B31
B32
B53
B34

20.05
15.72
12.47
31.96
19.93
14.58
11.14
8.72

25.40

23.95
22.75
19.66
34.54
24.89
20.88
18.14
17.25
28.43

1.19
1*45
1.58
1.08
1.25
1.45
1.63
1.98
1.12

rm


