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Abstract

This thesis concentrates on phenomena associated 

with waves propagating in an inhomogeneous medium, in 

particular the transmission and reflection of wave 

motion in a non-uniform plasma, and the process of 

exciting secondary wave motion, termed mode

conversion.

To this end, a thorough treatment of the phase 

integral, or WKBJ, method is given in Chapter II, 

together with a careful statement of under what 

circumstances it is applicable, and, if so, to what 

accuracy.

As a novel example of this powerful technique 

being applied in a specific physical context, WKBJ

theory is used in Chapter III to solve for the

transmission characteristics of an acoustic guide 

with varying cross-section.

Building on this experience, the phenomenon of 

mode conversion is defined in Chapter IV, and a

critical review is undertaken of the various 

historical and contemporary approaches to quantifying 

this effect. Specific examples are cited as evidence 

of the inadequacy of the reverse Fourier transform 

technique, including a complete solution of the same 

non-uniform waveguide problem using this method. The
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result is contrasted with the previous self- 

consistent analysis in support of the contention that 

such reverse transforms are not generally correct.

Since most mode conversion theories depend to some 

extent on the concept of a spatially dependent 

dispersion relation. Chapter V embarks on a self- 

consistent analysis of particular mode conversion 

events, deriving the' coupling directly from the 

behaviour of the eigenvalues of the governing 

ordinary differential equation. Such analysis 

recovers some of the more desirable features of the 

other theories, but in a more rigorous mathematical 

setting.

Finally, wave propagation in a non-uniform mhd 

fluid plasma is studied, using only the appropriate 

fluid equations with the inhomogeneity present at the 

earliest possible stage. Computer algebra is used to 

perform the necessary algebraic manipulations, and 

full details are given in Chapter VI.

Extra physical effects of interest concerning the 

Alfven resonant layer are revealed.

Chapter VII summarises the conclusions, and 

suggests further work in the field.
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iüiapter I Introduction

Recent years have seen a dramatic escalation of 

interest and effort in the area of plasma physics, 

specifically on the feasibility of power generation 

by controlled thermonuclear fusion.

Although the basic properties of highly ionised 

gases have been studied in many devices over the 

years {1} (see table 1), this decade has seen the 

construction of very much larger and more 

sophisticated machines dedicated to solving the 

particular problems associated with plasmas of 

sufficient size and complexity as those considered 

necessary to contain in any prototype power station 

(see table 2). In fact, the Joint European Torus has 

the specific objective of an investigation of the 

physics of large volume plasmas close to fusion 

conditions {2}.

Motivation behind fusion

Nuclear fusion will be a very attractive means of 

generating electricity, not just for economic 

reasons, but also for environmental considerations 

{3} .
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The economic argument in support of nuclear fusion 

is quite simple: the fuel resources are virtually

unlimited; and are readily obtainable on a globally 

equitable basis. A power station of this type would 

use the following reactions to release the enormous 

stored energy by fusing together light nuclei:

D + I  -► ^He + n + 17.6MeV Fusion reaction

^Li + n -  ^He + T + 4 .8MeV . 
^Li + n ^He + T + n — 2.5MeV '

Tritium producing 
reactions

D + Li -*• 2*He + Energy Overall reaction

Deuterium, a hydrogen isotope, can be obtained 

from the oceans, and iS| consequently practically
I

limitless in supply. The lithium can be extracted 

from the sea, but occurs in abundance in the form of 

natural ores distributed evenly across the planet.

As a guide to the fuel requirements, fusion 

engineers estimate that a typical fusion power plant 

with 1GW capacity, as envisaged by today’s standards, 

would have an annual fuel requirement of 150kg of 

deuterium (extracted from 5000m^ of sea water) and 

around half a tonne of lithium (3).

The environmental arguments are equally 

impressive. A fusion reactor would be inherently safe 

in operation, having only a few seconds worth of fuel 

at fusion conditions, thus eliminating the chance of 

an uncontrollable reaction. In addition, the reaction
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products, whilst still radioactive, have the great 

advantage over fission products in that the half-life 

of fusion waste is measured in tens of years, rather 

than thousands.

However, in common with current nuclear power 

plant, a fusion device will have to be shielded 

against fast neutron release into the environment, 

and the reactor vessel will need to be decommissioned 

in a similar fashion.

Problems

Great technical problem^ still stand in the way of
I

practical fusion. Since the energies required to 

overcome the repulsion of the nuclei are so great, 

the fuel must be in the plasma state. This presents 

great difficulties in containment, since any gas at 

such temperatures would vapourise the material of a 

containment vessel on contact.

There are numerous ingenious devices designed to 

overcome this difficulty.

Inertial confinement contains the fuel when it is 

cold, in the form of small pellets. These micro­

balloons are then heated rapidly by laser pulses, in 

order to achieve sufficient resulting compression

that the fusion reaction can take place before the

disintegration of the pellet.
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The main emphasis of this thesis, however, will be 

on magnetic confinement. This uses the basic result 

that charged particles will spiral along magnetic 

field lines; if the magnetic field forms a closed 

loop, then the plasma may be contained by the field 

without coming into contact with the vessel walls. 

The simplest device based on this concept is the 

tokamak, first invented in the Soviet Union. The 

operational principles of a tokamak are shown in 

figure 1. Despite many variations on this theme, the 

tokamak is still the most promising machine for 

nuclear fusion, and the largest and most successful 

plasma device is of this type, namely the Joint 

European Torus at Culham laboratories in the United 

Kingdom (see figure 2).

In order to n|easure degrees of success in the 

performance of prototype fusion device, J D Lawson 

first proposed criteria {4} summarised in the famous 

inequalities

T  ^  iO K, ^

These parameters have proved elusive; even today, 

devices such as JET have failed to achieve 

simultaneously all the required values (see figure 

3). The fundamental problem is reaching and 

maintaining sufficiently high temperatures to exceed 

the Lawson criteria.
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It was always planned that JET would require extra 

forms of energy input over and above the simplest 

ohmic heating, where the plasma is heated simply by 

passing a current through it. Despite the fact that 

JET recorded the highest ever temperatures by this 

method, ohmic heating alone cannot bring a plasma to 

fusion conditions. The reason for this is simple: as 

the temperature increases, the resistivity decreases, 

and then so too does the ohmic heat dissipated by the 

current. In fact, the resistivity for a stationary, 

source free plasma takes the form {5}

Eeff
“7

and consequently, the power dissipated saturates with 

temperature. This is a very well known and 

documented feature of magnetically confined plasmas. 

This being the case, most tokamaks have some form of 

additional heating to elevate the temperatures beyond 

those achievable by ohmic heating.

Add it  lap91 Meeting Schemes

neutral beam injection
By injecting a stream of highly energetic and 

electrically neutral particles into the plasma, 

energy from the beam can be dissipated throughout the 

background plasma by collisional processes.
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The neutrality of the particles allow them to 

negotiate the containing magnetic fields, but as soon 

as the beam penetrates the plasma, it rapidly becomes 

ionised and is absorbed into the background gas of 

ions and electrons. Multiple coulomb collisions

ensure beam energy is shared with the background

plasma, and so heating takes place. The very recent 

performance ‘ of neutral beam injection in JET 

experiments show the promise of this technique as an 

effective heating mechanism.

radio frequency heating
Since a plasma can sustain a wide variety of 

complicated wave modes, excitation of these can 

provide a means of transferring energy from an 

external source into the plasma.

The basic idea is that an externally launched wave 

penetrates the plasma and couples to a natural 

internal plasma mode. This natural mode then

propagates deep into the plasma, at some stage 

converting its energy into plasma thermal energy and 

thus raising the overall temperature.

It is this latter stage which is the most

complicated and difficult to model. Since most 

fusion plasmas are non-uniform, any wave propagating 

in it will not retain a simple form, but will have a 

continuously varying wavelength and amplitude. This
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feature is exploited in rf heating schemes. Having 

penetrated the plasma, the wave may encounter a

region in which it has a similar wavelength to

another internal plasma mode, and so may lose some of 

its energy by exciting that other wave. If it is the 

case that the secondary, excited wave is more readily 

damped than the first, then this is potentially an

efficient heating technique. This process is termed 

mode conversion, and its mathematical description 

forms the main content and motivation of this thesis.

The actual process by which any secondary wave 

loses energy to the plasma is not considered here, 

but possibilities are damping by collisionless or 

collisional processes, which include Landau damping 

and wav e-particle interactions.

The candidate wave for rf heating is usually the 

fast magnetosonic wave, known also as the fast or 

compressional Alfven {6}. This is actually a cold 

plasma mode, which has its wavevector perpendicular 

to the magnetic field and causes bulk fluid motion

parallel to Ji. It is this latter feature which 

results in the term magnetosonic; in actual fact, the 

cold plasma is pressureless and so has no sound 

speed. Any resulting ambiguity is resolved by the 

fact that the fast magnetosonic mode of the warm 

plasma reduces to the cold compressional Alfven as

T* —> O ,
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other methods
There are other wave heating schemes, such as ion 

hybrid resonance and electron cyclotron heating (the 

latter requiring microwave generators). In addition, 

plasmas may be heated by adiabatic compression, where 

the plasma is rapidly moved into a region of 

increased magnetic field.

Conclusion

Whilst impressive progress towards nuclear fusion 

has been made, there is still some considerable way 

to go. One of the most important phenomena in this 

context is the behaviour of waves in a non-uniform

magnetised plasma, in view of the need for additional

heating defined above. Given the technological

importance and the physical significance of 

propagation and mode conversion in inhomogeneous 

media, it is this aspect of plasma physics which this 

thesis explores and hopefully makes some 

contribution.

For this reason, the next chapter gives detailed 

consideration to one of the most useful solution

techniques in non-uniform wave propagation problems.
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TABLE 1

Representative Medium-Sized Tokamaks

Machine Country R(m) a(m) K B(T) Ip(MA)
T-3 USSR 1 .0 0.17 1.0 2 1 0.1
PLT USA 1.3 0.4 1 .0 3.5 0.6
T-10 USSR 1.5 0.37 1.0 3.5 0.5
ASDEX FRG 1.6 0.4 2.0 2.6 0.5
D III USA 1.4 0.4 1.4 - 1.8 2.6 1.0
PDX USA 1 .4 0.4 1.0 2.4 0.5
FT Italy 0.8 0.23 1.0 8.0 0.6
Alcator C USA 0.64 0.16 1.0 12 0.8

R « Major radius of toroid 
a * Minor "horizontal” radius of plasma 
K - Elongation - vertical/horizontal radius of plasma 
B - Toroidal field strength at plasma centre 
I - Plasma current

TABLE 2

Large Tokamak Parameters

Machine Country R(m) a(m) K B(T) I (MA) 
P.. .

Operating Discharge First 
Gas Duration(s) Operatioi

JET EEC 2.96 1.25 1.6 3.5 5 H/D/D-T 1 0 - 2 0 June *83
TFTR USA 2.55 0.85 1.0 5.2 2.5 H/D/D-T 1 - 3 D e c  *82
JT-60 Japan 3.0 0.95 1.0 4.5 2.7 H 5 - 1 0 April *85
T-15 USSR 2.4 0.70 1.0 4.0 2.0 H 5 *86

TORE-SUPRA France 2.4 0.70 1.0 4.5 1.7 H/D 30 *87
0 H I D USA 1.67 0.67 1 - 2 2.2 2 - 3 H 2 - 5 *86
FT-U Italy 0.92 0.31 1.0 8.0 1.6 H/D 1.5 *87
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II

Chapter 2 WKBJ Theory.

The technique for the asymptotic solution of 

certain ordinary differential equations, first 

proposed by Jeffrey in 1926 {?}, and later developed

by Wentzel, Kramers and Brillouin, is still one of 

the most powerful analytic tools of its kind 

available. Unfortunately, the full theory is not 

well known: the phase integral method tends to be

treated superficially and with some ambiguity in many 

texts (see for example reference {8}). For this 

reason, this chapter sets out the fundamental 

concepts of the theory, and illustrates how 

connection formulae generally arise.

WKBJ aims to solve ODEs of the type
iZ

(2 .1 )
subject to the following conditions (9):

(I) q(x) is continuous for all x;

(II) h^q(x) constant as h «o, with 

arbitrary, but fixed, x.

(ill) (VAI% >  X c  , fora»«< ,
The approximate independent solutions of (2.1) for

sufficiently large x take the well-known form
XL

IT t 4- ( 2  2)Ü|;2. <>'''■ 1 f 0(Vh‘-)]

where
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II

The asymptotic solutions of (2.1) will be 

expressible in terms of these solutions (2.2) to an 

arbitrary accuracy, provided the conditions (i)-(iii) 

hold. It is this feature which makes WKBJ methods so 

attractive; its objective is to analytically continue 

these solutions into the complex plane, beyond their 

originally retricted domain of validity, in order 

that the asymptotic form of the solution for x >> 0 

may be related self-consistently to that for x << 0. 

In doing so, a connection formula is established 

which enables the correct mixture of each asypmtotic 

solution of type (2.2) to be prescribed in a 

particular domain for a specific example 

(incorporating the relevant boundary conditions).

The great advantange of this technique is that the 

approximate solutions (2.2) can be readily evaluated, 

and that as a consequence of the connection formulae, 

the full ODE need not be solved explicitly in those 

regions in which the asymptotic form is not valid. 

However, there are certain complications involved in 

establishing the connection formulae, difficulties 

which are inherent in the very nature of the 

asymptotic solution procedure itself, 

best estimate
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II

One fundamental feature of an asymptotic series 

expansion is that it is unconditionally divergent 

{10}: in every case there is a finite number of

terms which progressively decrease in magnitude, the 

remainder increasing continuously thereafter. It 

turns out that the best estimate of a quantity from 

an asymptotic expansion involves only those terms 

from the appropriate series which have magnitude less 

than unity, 

stokes phenomenon

Another crucial aspect of asymptotic analysis is 

the phenomenon of Stokes' multipliers, and their role 

in the associated discontinuities in the expansion. 

An asymptotic series is one which tries to 

approximate to a function for large values of the 

function argument. The candidate function however 

possesses its own unique Taylor series representation 

(together with appropriate outer terms to accomodate 

branch points or poles). Thus the asymptotic series 

attempts to mimic this Taylor series, but using 

different coefficients and powers of the function 

argument. Since two different power series cannot 

indefinitely keep pace in magnitude and phase, the 

asymptotic one must have periodic corrections in 

order to ensure its accuracy. These jumps in value 

are referred to as Stokes discontinuities, and 

play a fundamental role in the evaluation of 

connection formulae.

- 14 -
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However, any such behaviour must inevitably 

involve an error in the series. In order to minimise 

this inherent mismatch, any Stokes discontinuity is 

constrained to occur in the region of the complex 

plane where the relative error so introduced is 

minimal. These regions turn out to be lines in the 

complex plane, called Stokes rays, and the 

asymptotic series is then invalid on these rays, 

since it is ambiguously defined there.

In order to crystallise these concepts, an example 

involving all these effects is fully worked in the 

following section.

An example: the overdense potential barrier.

A fundamental example in wave propagation problems 

is that of waves penetrating a finite barrier, where 

there is a region of solution space in which all 

waves are evanescent in nature. This happens when the 

local wavenumber (or equivalently, the refractive 

index) passes through zero, remaining negative for a 

finite region of space before returning to positive 

values.

A specific example of this type of behaviour is 

the following ODE,

4-^ +  hfx. - a  ) u  = o
( 2 .3 )
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where, in the previous notation, q(x) has zeros at 

±a. The function q(x) is sometimes referred to as 

the wave potential, and its zeros are termed 

transition points.

Note that in this particular example, the 

transition points are of order unity, that is q(x) 

goes linearly through zero as x-^±a. This simplifies 

the analysis considerably, since the order of the 

transition points has a significant effect on the 

nature of the barrier and any associated 

calculations. Higher order transition points can 

involve considerably more complicated analysis 

{1 1,12}.
We wish to use only the WKBJ solutions

(2.4)

but these are invalid at and near the transition 

points, since they are singular there, together with 

the error terms. As indicated earlier, we proceed by 

analytically continuing these expressions into the 

complex plane, and avoiding those regions where the 

approximations break down, viz the real axis close to 

the transition points. In order to do this, we must 

first find the Stokes rays and associated 

multipliers. In the interest of clarity, we adopt 

Heading's notation {9}, and define some rules 

necessary for progress.
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notation

(i) 1  ©cptb|<i'''-ds .
±a

,b
(ii) [a,bj =  exp chj

A

(iii) A dominant solution is a WKBJ solution 

which possesses a positive real part in its 

exponential; the opposite behaviour is termed 

subdominant. Dominancy and subdominancy are 

designated by the respective suffices d and s.

Note however that, given the existence of

transition points, a particular solution is dominant

only in certain sectors of the complex plane, being

subdominant in others. These sectors are delineated

by lines of constant phase emanating from each

transition point and defined by
2

&0
Such lines are termed Anti-Stokes lines (ASL) or 

rays; along them, neither solution dominates. The 

complementary behaviour occurs along the Stokes lines 

(SL) or rays, defined by

-  17 -
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Here solutions achieve maximum dominancy; for this 

reason, the Stokes discontinuities are introduced on 

these rays in order to minimise the consequent 

relative error.

rules

Clearly a recipe is required for crossing Stokes 

lines in order that the Stokes discontinuity may be 

correctly evaluated and assigned. The required 

formula is summarised in the next two rules.

(iv) If an Anti-Stokes line is crossed in the 

complex plane, the dominancy of a solution is changed 

to sub-dominancy, and vice versa.

(v) If a Stokes line is crossed, a subdominant 

term changes its coefficient to the sum of its 

original plus S times that of the dominant, where S 

is the associated Stokes multiplier (to be 

evaluated).

A further 2 rules are needed before the barrier 

problem can be solved.

(vi) If the branch cut emanating from the 

transition point of order n is crossed, then the 

solutions are matched across it accordingly:

-  18 -
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(A,£) I ► n oJd

(a,i) I— *• (-1)"'̂  (o,z) rt eü«o
(vii) Heading’s rule: if waves are taken to be

of the form exp (-iwt), then along an Anti-Stokes 

line on the real axis, (x,a) represents a wave to the 

right if (z,a) is subdominant below the real axis 

(and vice versa).

We are now ready to solve the full problem by WKBJ. 

First of all, we must find the location of the Stokes 

and Anti-Stokes lines.

Consider a transition point of order unity. Then 

it possesses three ASLs, since

^  ar^Ci) =• ann/s , (2.5)
and therefore also has three SLs.

The geometry of these lines in the complex plane 

is as given in figure 2.1.

In the case of the overdense barrier, which

possesses two such points, the geometry must be 

similar in the neighbourhood of any one. Moreover,

the number of such rays is n + 2 ,  where n is the

order of the transition point. At very large

distances from the transition points the separation 

between them becomes negligible, and the barrier

- 19 -
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problem becomes one having a single transition point 

of order 2. We therefore expect only 4 Stokes rays to 

be present asymptotically {11}.

The arrangement of the rays for this problem is 

then as portrayed in figure 2.2. Note that ASLs may 

not cross, but can merge asymptotically. Also note 

that the ASLs align along the real axis for |x|>a, 

since there we expext oscillatory, not evanescent, 

solutions. The branch cuts, represented by wavy 

lines, may be inserted as shown without loss of 

generality.

To solve the problem, we impose only a transmitted 

wave on the far right, so that for x >> a, the 

solution is

U “  (I,a)

Now trace this solution back through the complex 

plane, keeping (z|>>a, in order to discover what form 

the asymptotic solution must take for x << -a, and so 

establish a connection formula.

Using the notation of figure 2.2, and proceeding 

sector by sector following the rules defined earlier, 

we can write down the appropriate asymptotic 

solutions:

1. (z,a). (by Heading's rule)

-  20 -



II

2. (z,a)g (since no dominant term is present, the

subdominant coefficient is unchanged)

3. (z,a) = {-a,a}(z,-a)* o

4. {-a,a}(z,-a) - S{-a,a}(-a,z) (S is the StokesO 5
multiplier for an 

anti-clockwise crossing)

5. i{-a, a} (-a, z)̂  - iS{-a, a} ( z,-a)^

Thus the solution for x << -a is

where the second term represents the incident wave, 

since it is a solution travelling to the right. 

Consequently the reflection and transmission 

coefficients R and T may be expressed in the form

1 ?  ,^.6>

It remains only to evaluate S. To do this, we note 

that C^U)elk, • Returning to the original

equation,

(2.3)

we may take the complex conjugate:

h o«) u* =■ Q
(2.7)
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Multiplying (2.3) by u*, (2.7) by u and subtracting 

yields

u'u* - a"’" Ü = O

f ru*u'-ü*'u) = o (2.8)
If Im ) = constant, üd the real axis. This

extra relation, amounting to conservation of energy 

in a loss-free medium, allows S to be determined self 

consistently.

Thus for X >> a, we may write

u'u* = = -ih, (2,9)
where the term arising from differentiating has

been ignored compared to that from the exponential; 

in examples where q — ► constant as this

approximation is excellent.

In the same way, for x << -a,

U'U* =

= th [-a,aj \i-t>,x) f 5 (x,-a) - 5*

= ill f 1 - ISl'-t ( y S*(-o,xfl
L J (2.10)

Now since
t -a

2
then

Ke. « o.

Consequently, Im(u*u') = constant implies
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- h = h (1 - I Si*) ̂

i«- ” ■ ,2.„,

and so the reflection and transmission coefficients 

take the form

ii^r=

Summary

1 + (2.12)

(2.13)

11-

In this chapter, a technique of asymptotic 

analysis has been presented in considerable detail in 

order that the procedure by which connection formulae 

are constructed can be explicitly derived. Since 

asymptotic analysis is an important feature in mode 

conversion theory, this presentation of WKBJ analysis 

serves to illuminate the nature of the calculations 

involved.

In the next chapter, a particular example of a 

non-uniform wave propagation problem is solved using 

precisely the theory detailed in this chapter, so 

that the accuracy of WKBJ may be tested in a 'real* 

situation.
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HJiapter III------ Non-Unlform Waveguide

One of the simplest problems in which to study 

non-uniform wave propagation, with its consequent 

mode conversion in the form of reflected waves, is 

the waveguide with varying cross-section.

In' this chapter, such a system will be solved 

using WKBJ methods to discover the transmission 

properties of a guide with asymptotically uniform 

cross section. This problem is relatively simple 

because only one mode of vibration is involved, the 

characteristics of which vary by virtue of the effect 

of the non-constant boundary on the transmitting 

medium.

Non-uniform guides have been widely studied in the 

past. Most analysis concentrates on piece-wise 

constant variations in width {13) or on slowly 

changing cross-sections {14}. More recently, 

technological considerations have stimulated interest 

in sinusoidally varying waveguides as possible mode- 

convertors {16-18}. However, in this chapter, we 

shall concentrate on a straightforward illustrative 

exampl e.
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acoustic guide
Consider a simple acoustic guide, and take the 

wave equation with the longitudinal displacement Ç of 

the gas as the scalar independent variable.

Consider then the relevant differential equation 

{18} :
d
dx + 5 = o

L  =co/c, (3 -1)
where A is the cross-sectional area.

Now consider the case where the width varies with 

axial position, ie,

A  -  Acx) .
The full ODE then is

f ' +  = <2 , ç =  A ' / A  . (3  2)

The first derivative term may be eliminated by 
changing the dependent variable to u, where

SO that the resultant ODE for u is

u" + [^ * ie'-ip*ju = o. (3 3)
In order that we might apply the WKBJ analysis of the 

previous chapter, we choose a simple cross sectional 

behaviour which involves a necking of the guide at 

the origin, returning to uniform cross section 

asymptotically. To this end, let
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where L is a typical length over which the guide is 

non-uniform, and Q is the maximum depth of the 

constriction ( 1 ). Figure 3.1 shows a typical

example of such a guide. Then

Ç A o C. — (’Ao -A)/L,
so that

and

Thus

p = f  = l [ a  - ^ 1 ,

(3.4)

So we may write (3.3) in the form

u"+ =0, (3.5)

where the wave potential 'Y is defined by

"H* =  to +  i p ' -

which can be written, using (3.4), as

^  ^ ̂  j , «•= 4t°L- (3.6)

Note that asymptotically, A(x)-»A*, so that the guide 

attains uniform cross-section. Moreover, u f and

^  -  ê  = t : .
Thus for large |x|, we expect waves of the form

S ~
- 27 -
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asymptotic solution

The independent approximate WKBJ solution, valid far 

from the transition point, is
X

(3.7)

Thus we are concerned with evaluating the integral

A change of independent variable ensures that this 

integral can be solved in closed form. Considering 

x>0 without loss of generality, let

3  . e ' " - ,
SO that

Af«j) =  Ati 9) / tj

Then

where R is the quadratic

r» 4-

Then
fK. . (A.

iLty-e) y
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'• z  " • (3.9)

Under this transformation, I becomes a standard 

integral {19}. In the interest of clarity, we detail 

the steps in the evaluation of I in the comprehensive 

Appendix A, rather than in the main text. Instead, 

we merely quote the result:

I r -64 [ i ( K./? + - eO+K,*) ) ̂

+ i  -tri I ^  -1 ■+

( NB we have assumed K* > \ : this is not a

limitation at this stage, but the size of K. will be 

discussed later, when it is important.)

Note that as x y -► ^  » t -♦ O and y . Then

^ (0456 ,

ie
X  feo JC 4- (Ot̂ t  ̂ (U) -» ao .

Thus the expected wave solution is recovered, viz.

-  29 -
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transition points

It now remains to specify the coupling between the 

eigenstates (3.7). In order to do this, we require 

the connection formula for this example. This 

involves the nature and location of the transition 

points, which are the zeros of Y , or equivalently, 

the roots of R. These are given by

) , r = j'î+aiZT' (3.11)

In order that we can use the analysis of Chapter 2, 

we wish to encounter only 1 root of R for y > 1 ( ie 

X > 0). This ensures that there are precisely two

transition points in the range x 6 ] - «o , L • Clearly 

then we require

(3 .1 2)

- ^ ( 1 D  <  1 . (3.13)K,‘-
These equations impose a range of theta values.

namely

1 + k-v p

Now, since_____________ ______
r  = j I f  ifc*-' ?  1,

K.'/ [i+k'-rj ;> 1,

then (3.12) and (3.13) are satisfied simultaneously 

if, given ,

e e j 6 ^ .  1[. (3.I'D
where

6mm = K.'- /[l + X‘+/’]
— 3 0 “
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Note that a restriction on the smallest value of the 

constriction is to be expected, since the analysis

demands that the constriction be overdense for all K, 

of interest.

Hence the guide has transition points ±a defined by 

ixi =. a = 9, ,

9, =  . (3.15)
From the previous working in Chapter II, we must

calculate the integral

P  ’ à
(3.16)

Making the same change of variable as before, this 

reduces to

(3.17)

Whilst the procedure is similar to that adopted for 

the solution of I, J  has solutions which are 

different because of the reversal in sign of the 

coefficients of R. Because of this, it is necessary 

to state whether K  >1. Now

K, >  1 4=e>2 t , L > 1 <é=> fee >  a L  '
ie, the asymptotic wavenumber is greater than half 

the reciprocal of the scalelength describing cross 

sectional variation. In fact, this may be too 

severe: at distances where the asymptotic wavelength
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is meaningful, the guide is almost uniform. There 

seems to be no prima facie case for assuming K> *> i ; 

therefore the calculation will proceed for both cases 

of K, > 1 and K, < 1.

Again, the lengthy details involved in the 

explicit calculation of 3 are laid out in the 

appendix. Instead, we merely quote the result, which 

i s

(3.18)

where

+ (Kb‘‘)sj

(*<*-l)‘̂ Si4*’[l - , K > 1

A  - -R.,

(J = -»o'-4-2©t +

However, the evaluation of the indefinite integral is

only the first stage: noting the formula (2.12) of

chapter II, the desired term is
-a

- «P j

= exp = 

r  exp
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where we have used the symmetry of the guide and the 

integral about the origin. The integral is then 

evaluated between the limits given by the half-width 

of the barrier, that is at the points 

%  ' 1 ,
•y s. 6 / Omin

On substitution of these values into (3.18), the 

result is 

a. [ ̂  (x » aj]

= «•[ + 5  I

R> >■ f ’-6-. fi.3(eVae -@M+ze+i'
I ' - ®  [ +1 (3.19)

> 1 : [ *  ’  ( l  -  V  6 - " ) )  -  2  j

and so the term {a,-a} is given by

< y ' A
K,c1 : =  A B e.

K,>1 : -4^ - A^  ̂  ^

where

A =
1 -e
i -Q

4- 1
3? +26+1

(3.20)

(3.21)

g  =. [ ( l - K ') G t  1 + K,̂  + /z e  -  [(*l+0©-k>][(K.-i)©-i6f j  /f«
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t ' - '

- 2
JL

The reflection and transmission coefficients R and T 

follow using (2.12) and (2.13):

(3.22)

T " =  or R' (3.23)

Discussion

Note that as ©  —• 1, R -» 1 and T —►0, as expected. 

This shows that as the constriction becomes narrower, 

the transmission falls ( for a given wavelength).

Moreover, as © -► R^T*—»1/2: this is a standard

feature of all such barriers, being the result of the 

merger of the transition points (see equation 

(3.15)). In fact, this barrier problem is unusual in 

this respect, in that the width of the barrier

depends on its depth, as well as on other parameters.

This is then a feature of the reflection and 

transmission coefficients. The barrier width is the 

distance between transition points, and so is defined 

by

iaJ =. A L
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This expression contains all the key parameters, 

©  » K* and L. In order to compare reflection and 

transmission coefficients for varying depths of 

constriction, care must be taken to ensure a constant 

barrier width, so that valid comparisons may be made. 

The resulting analysis is best displayed graphically 

in figures 3.2 and 3.3 .

Summery

This chapter has presented a fully worked example 

illustrating the value of the WKBJ technique in a 

real, physical problem. The transmission properties 

of the guide are deduced by constructing a connection 

formula which prescribes the correct mixture of 

asymptotic solutions far from the interaction region.

However, note that the approximations involved 

depended on knowing the exact form of the wave 

potential in the interaction region, even though wave 

propagation is not solved in that area of solution 

space. The consequent estimation involved in the 

form of the asymptotic solutions themselves, and 

their relative mixtures via the connection formula, 

is only as accurate as the supplied wave potential.

In the next chapter, mode conversion proper is 

defined and the various current theories are briefly 

reviewed, with comments on their theoretical bases
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and underlying assumptions. The concept of a 

parametrised dispersion relation is introduced, and 

its relevance and accuracy is critically examined 

using two explicit examples.

TYPICAL GUIDE VARIATIONS

0.4

0.2

-2.5 7.5-7.5 2.5 5. 0-10. 0 10. 0
X AXIS

F i 6 U K e  3 - 1

— 3 6 —
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Chapter lY Review of Mode Conversion

The study of waves in inhomogeneous media Is 

particularly relevant to the fusion community, now 

that the need for additional heating schemes in 

fusion devices has been clearly established.

In this chapter, a review and critique* of existing 

theoretical effort in this field is undertaken. The 

fundamental assumptions embodied in parametrised 

dispersion relations are examined critically, and 

their inadequacies exposed in two simple examples. In 

addition, each of the leading theories is outlined 

briefly, and their theoretical foundations commented 

upon.

Definition af mode conversion

In a plasma, many different oscillatory states are 

possible, and where the plasma is spatially non- 

uniform, some of these different modes may have a 

similar wavelength in a particular region of the 

solution space, due to the variation in wavelength of 

each mode as an inevitable consequence of the 

inhomogeneities. This being the case, it should be 

possible to propagate one such mode into an 

appropriate region of the non-uniform plasma, and in
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doing so, excite at least one other form of wave 

motion in the medium.

This phenomenon is termed mode conversion.

(Note that the transmission and reflection of waves 

through a barrier is a special case of mode 

conversion, so that there was already an historical 

background to the theory.)

dispersion relation

Early attempts to describe mode conversion

quantitatively quickly found that the greatest

difficulty lay in deriving suitable, appropriate

differential equations to govern the process in a

consistent way.

The first work in the field attempted to overcome

this by using the homogeneous model's dispersion

relation as a starting point.

In such a model, all the parameters p̂  (for

example £, n etc) are constants. Thus the equations

defining the model may be Fourier transformed in 

order to yield the algebraic quantity D(oJ,'fe;|’J - the 

dispersion relation. D(«0̂ t;|»-) =0 defines all possible 

wave motions exp i(k.f -cot) permitted as oscillatory 

solutions of the equations, by establishing a

relationship between the allowed frequencies and

wavelengths. For different values of the constants
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p. , the permitted waves have different, but constant, 

characteristic w and throughout the entire solution 
space.

In an attempt to generalise this notion to non- 

uniform media, the concept of a 'local* dispersion 

relation is created, in which the parameters p̂  now 

vary with position in the desired locality. This new, 

restricted quantity D(<u,̂  is used in an attempt

to account for the local behaviour of waves whose 

characteristic features now vary continuously with 

position.

In this way, the parametric spatial dependencies 

are prescribed after the event, and an ODE with 

varying coefficients is then constructed by 

identifying powers of the wavenumber with a 

differential operator via the mapping

. L .__^ A
^  3 %  ' (4.1)

That this type of approach is desirable is without 

doubt; complicated systems of partial differential 

equations are at once reduced to a simple algebraic 

relation, which then generates an ordinary 

differential equation with minimal effort.

However, whilst it is possible to describe 

inhomogeneous media using very simple assumptions and 

ignoring parameter gradients, these only apply in 

those regions of solution space where such
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approximations are valid. Since these regions 

necessarily exclude (in general) the particular 

interaction areas where phenomena such as reflection 

or mode conversion occur by virtue of those very 

gradients, it would be naive to use the same 

techniques in such contexts and expect accurate 

results. In his basic text book, Stix {20} 

acknowledges the particular difficulties associated 

with this procedure (pp 240 - 241, p 258), given that 

the parameter gradients are inadequately treated, 

either by omission or by ambiguous assignment.

As elementary examples of how the mapping (4.1) 

may be inadequate in real systems, consider the 

following two problems.

waveguide revisited

We return to the case of an acoustic waveguide of 

varying cross-section, but this time we solve the 

problem using the mapping (4.1) in conjunction with a 

parametrised dispersion relation.

As a starting point, we require the dispersion 

relation for a simple uniform cross-section acoustic 

guide. The required expression is {18,21}

 ̂ e/W
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where the guide has uniform cross-section 

In a more convenient notation, this can be written as

(4.2) 
where

.
g, = ^  • (4-3)

At this stage, ‘we demand a variable cross-section. 

In keeping with the previous treatment, let

A a dcx) = do[ ̂ ®

so that the parametrised dispersion relation now 

takes the form

Note that asymptotically, we have

and so in order that the asymptotic solutions are 

purely oscillatory, we require

< 1 .
Now use the mapping (4.1) to construct an ODE to 

govern propagation down the guide:

^  •'Pa) u = o  ̂
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Note that this is not the same as (3.5): although 

superficially of the same form, the consequent 

transmission characteristics are fundamentally 

different because of the altered wave potential"^.

In order to quantify this difference, (4.4) can be 

solved in a similar fashion. Following the same 

change of variable as before.

t- , y = e*'''- ^>o)_

Moving straight to the reflection and transmission 

calculations, the required integral takes the form

(4.5)

where

The transition points are given by the roots of R. 

Following the previous calculation, we choose the 

larger root to define the transition point on either 

side of the origin, and use the fact that only one 

root must be accessible to place a limit on the 

minimum constriction. Thus the transition point at 

x=a is defined by

"3 0  _
w, = &  = i-p ’ (4.6)
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Now }  can be written as

# ■ i k  ’ (4.7)
and so using the same standard integrals, we have

(4.8)

A, =  i f h i h z î
p &

e) / ̂ 5,

A j  = •4A© [/7+-^et 4-^] ̂

d = f-1 +-̂ A'et +^©V, t = -'/(a - e)
Evaluating the arguments at the origin and at the 

transition point yields

A, = ( P - ' + ® ) / ^ e ,

K  = (<"^) /p ,

Ai c if>e (f-e)’-'+|8]/(i-e)

A  = - 1 .

Ai = 1 _

Ai = ,
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Consequently

(Æ.

"" [ - y - l - i
I j

+ SlO

and so

fa-a] r D** e" , (4.10)
where

1 -  S
V  =  r = = = ----^I f* ’

i) z: ( ^9 ) '*■

+ 2.1L [ sw"’ f '-J j - j-j
comparison of results

Note that the expected behaviour is present, in 

that transmission falls with increasing depth of 

constriction, ie T-> 0 as G -» 1.

However, the most significant differences are the 

definition of the minimum possible overdense 

constriction (that is, the expression for 6^) and the 

exponent involving the scalelength L. The departure 

of (4.10) from the results of Chapter III can be very 

significant in these respects. As before, the results 

are best displayed in graphical form (see figure 

4 .1), because of the complicated nature of the
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formulae involved.

perpendicular propagation in ^ cold plasma

Consider the propagation of electromagnetic waves 
orthogonal to the magnetic field in a cold, 

inhomogeneous plasma. Let £ = iB(x). Then the 

starting equation is the usual one {20,22},

V/TTkE - lo E = 0, (4.11)

where K is the standard cold plasma dielectric 

tensor, defined by

K. =

(4.12)

cOp;.

Jlj -

C O ?

Ô  - i, L) , D

= 1" “  oj** V 

F = 1 - j .

Note that in constructing K, no assumption is made 

as to the uniformity or otherwise of the plasma. Thus 

K may have spatially dependent elements. Setting 

i^= tO/o and choosing V=(9*,:\),0), the components of 

(4.11) are

X   ̂ - & y j 21 1)8̂ ) = O,
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t - to 5j[ = 0  .
(4.13)

ct, f-ct̂ Éy) - (^^-k^)L^ - C6T)Er^5£3),0,

- y  - L &Eç, + 1 Ex - c' lo P £i = 0 . (4.14)

From (4.13);

Gx =•  ̂ *r ( i ^ p J  / ^   ̂ (4.15)
where

^ I C s ^ i z ^  .

Consequently

-<tyû')£^ t (to  ̂ (4.16)

and this may be substituted into (4.14) to yield 

an equation for E^ alone:

" ^  %*- ^  ^ (4^ Dô - Ô + (o ̂ p'ô- ̂ D)5y j

’ t̂ o ' ̂  ̂  D Éçj j =• 0;

that is,

(i+^)£ç^'- * . ^ e ^ 4 - C  s+ ^  £j = 0,(4.i7)
Multiplying through by ^  , and noting that

A S  , we have

- 4y f fĉ [6£.-(te D+c^^(0-I>|)]£y s o. (4.18)

g '  ^  y  = ^ L

Thus (4.18) may be written
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2  S' + C [ < « V l -*3*5 +*,(0'.d£ ) | £ = o

^ ■ (4.19)
Note that in the inhomogeneous plasma, (4.19) 

recovers the correct dispersion relation{20}:

" L  ^ +- [Cê L̂ - - o,

- C e . L ,

or, writing 4/+ ,

.
(4.20)

However the technique of associating

d/éx i.4x to arrive at the equation

. iCa)L(.y 1
S  =  O  (4.21)

holds only for the special case of perpendicular 

propagation with zero wavevector in the y-direction. 

For general orthogonal propagation, (4.19) is the 

correct equation, not (4.21) implied by Swanson. 

Note also that while (4.21) is the correct equation 

for a special case, it nevertheless describes the 

electric field in the y direction, which is 

orthogonal to the direction of inhomogeneity. The 

expression for E^, when substituted for Ey, contains 

parameter gradients regardless of wavevector 

components.

more advanced approaches

The examples above illustrate the inadequacies
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inherent in the simple mapping (4 .1) when 

constructing ODEs to describe complicated wave 

phenomena in non—uniform media. In order to address 

these problems directly, more sophisticated 

techniques of constructing the equations were 

recently developed. In the following sections, the 

leading theories are briefly reviewed, and examined 

in the light of experiences with the dispersion 

relation.

- a dispersion relation approach

The theory of Fuchs, Ko and Bers, (24-26) places 

its main emphasis on the dispersion relation derived 

from the homogeneous model, taking a lead from the 

very early attempts.

Again, the homogeneous dispersion relation is made 

position dependent by direct substitution of the 

required spatial variations of the parameters. 

Therefore, the starting point is the expression 

D( w ,Ji;p̂  ( z) ).
However, this theory attempts to avoid the 

pitfalls of the simple mapping (4.1) by trying to 

assign parameter gradients in a consistent manner.

Since in the context of fusion plasma heating, the 

frequency W  is a constant determined by the driving 

source (an rf antenna), the local dispersion relation 

is here written as D(k,z), the implication being that
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(4.22)
yields solutions for waves having spatially 

dependent wavelength.

With this information, solutions k^(z) given by

(4.22) are examined to reveal those in particular 

which are almost equal over some finite region, that 

is,

(«) ^k^(z)  ̂ ^  , j X

where ^  is a finite locus lying within the region 

of solution space over which the approximating 

dispersion relation D(k,z) is deemed to be valid.

Mode conversion in the FKB theory is defined to be 

the redistribution of energy flow amongst the 

possible branches k^(z) of (4.22).

Restricting attention to pairwise events (in order 

that only a two-wave interaction need be considered) 

means extracting an appropriate embedded dispersion 

relation
P

from the full D(k,z), the former restricting 

attention to only those two branches for which mode 

conversion is deemed desirable. The FKB theory then 

prescribes a recipe for constructing a suitable ODE 

with which to mathematically describe the resulting
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redistribution of energy between the branches, 

nficipe

A.
In order that D(k,z) actually describes a raode- 

conversion event, FKB proposes that the following 

equations describing the locations z« of saddle
A

points of D(k,z) and the consequent critical

wavenumbers k^ be satisfied simultaneously:

(i) D(k,,zp = 0

subject to (4.23)

(ii) S^(k,,zp = 0 -

In addition, the theory requires

* 0  . (4.24)

The crucial ODE is then given to be

7 ^  + = O , (4.25)

where
2.

Q(i) =  -
64k (<(4),:) (4.26)

and where y is postulated to be the power flow in the 

branches (modes).

This summary states the essentials of the FKB 

theory; much greater detail concerning the motivation 

behind the above concepts is given in the relevant 

publications, but the equations (4.23) and (4.25) are 

its fundamental basis.
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comment

The most fundamental objection to any theory of 

this type must be the importance attached to the 

function = D(k,z). Since the dispersion

relation exists precisely because the parameters are 

assumed constant throughout the domain of interest, 

it is a contradiction in terms to postulate the

existence of a dispersion relation incorporating 

spatially dependent parameters. Even if this

proposed function were considered to be a good 

approximation, the recipe for constructing the 

differential equation fails to account properly for 

the parameter gradients which must be present, since 

any such gradients by the definition of the Fourier 

transform have been omitted, and cannot be

unambiguously restored after the event (in the 

general case).

It is no argument to state that the gradients are 

small in this limit, and so are negligible: the

crucial role they play will be explicitly shown in 

the next chapter.

Another possible flaw in this kind of theory is 

the parametrisation by only one independent variable; 

such dependencies may in fact be forbidden by the

original model equations, but since this information 

is lost in the dispersion relation, the omission of 

curvature in the construction of an ODE may hide a
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serious inconsistency. (Chapter VI gives an explicit 

example of such a mistake arising in MHD 
publications.)

Finally, in common with most of these theories, 

the power flow ODE will be solved asymptotically, 

calling into question the validity of the resulting 

asymptotic solutions, given the context of a local 

model and a restricted dispersion relation. No

attempt is made to clarify the inherent relative 

error of the assumed approximations.

£ L H  - a coupled equation theory
The theoretical approach developed by Cairns and 

Lashmore-Davies {27-30} builds on the basic premise 

that if two modes are to be involved in a mode- 

conversion event, then there must exist distinct 

differential equations which separately govern the 

independent propagation of each, except in a certain 

region of solution space where the equations are

coupled. This local coupling provides the mechanism 

by which power can flow from one mode to the other in 

the mode conversion region.

To this end, the dispersion relation for the 

homogeneous model is again the starting point, and 

the candidate modes for conversion are factored out. 

However, the difference in this theory is that the

factorisation is not exact; rather the modes are only
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approximated locally, leaving a remainder term which 

multiplies the rest of the full dispersion relation, 

and which plays a central role in the conversion 
process.

The CLD theory proceeds as follows. In the 

neighbourhood of a designated mode conversion point, 

the dispersion relation is assumed to take the form

(to-03, )(cO-uJt) ^  (4.27)

where tOj(k, x), u\(k,x) are the frequencies of the

candidates, and ^  is a 'small' quantity, arising 

from the approximate factorisation of the full 

dispersion relation and containing the remaining 

modes. In CLD, 'small' implies that it is only

relatively significant in the conversion region. As 

in FKB, this local form ( is expanded about Xo and 

ko, the mode conversion point and its associated 

communal wavenumber, defined by ui, (’Ae.Xe) cz )

Writing

we have, on a Taylor expansion,

^ ^ (4.28)

Xe
Then in the locality of x^, k has the spatial

dependence defined by
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where z .
(4.29)

The coupling inherent in (4.29) is then equally 

divided between an appropriate pair of ODEs, each 

governing the propagation of one of the candidates:

tie.

(4.30)

li - ' (4.31)

0  ̂ representing the ith wave amplitude, and

P t = ( x A f ) ' ‘- (4.32)
The pair (4.30,4.31)» on elimination of one of the 

^  ( say 0^), yielding

-  2 l | ) s j g  + -  0.

This expression may be transformed to the Weber 

equation.

ip «= o
(4.33)

where

(̂s) = jK,rs). «.pf i - ( a  + ^

<vf -c hXX/Ar

The asymptotic analysis of the Weber equation, after 

some algebraic manipulation, can then be interpreted
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as showing the resultant redistribution of energy 

between the modes after a mode conversion event,

comment

Again the concept of a local, position dependent 

dispersion relation has been invoked, but this time 

with a different emphasis from FKB theory. In CLD, 

the dispersion relation is imperfectly factored using 

only a local approximation for the candidate modes, 

and the remainder, viz. the term involving higher 

order corrections to the candidates, together with 

the other non-participant modes, becomes the crucial 

factor in determining the degree of coupling. This 

term ■*) is then set to a constant evaluated at the 

appropriate mode conversion point.

The consequent splitting of A  between the ODEs to 

produce a constant symmetric coupling is rather 

arbitrary; there is no reason why the inhomogeneous 

term in each ODE should be equal and independent of 

position.

In fact, the principle that the coupling take 

place in a 'small', finite region, implicit in the 

approximation (4 .27) and the asymptotic expansion of

(4 .33), should suggest a strongly localised 

interaction term, rather than a constant.

Moreover, the concept of 'locally significant' as 

expressed in (4 .27) is not related to the wave
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amplitudes of the candidates, and so the inference 

that A is the coupling term seems unjustified. (The 

mechanism by which coupling self-consistently arises 
will be shown in chapter V.)

Furthermore, this coupling must clearly apply 

throughout the region of solution space in which both 

the local approximation and the asymptotic expansions 

are deemed to hold.

Finally, in common with FKB, the parameter 

gradients are inadequately treated; the presence of a 

term impl ies that parameter gradients may be

extracted from the dispersion relation after 

prescribing the letter's spatial dependence. That 

this is incorrect is clear; whether it is a 

reasonable estimate will be discussed in chapter V.

Note that in CLD, energy conservation is 

identified with the constancy of the sums of the 

squares of the wave amplitudes, ie 

10,1̂  t 10̂ .1̂  - cô ôt.

Contrast this with the usual conservation law for 

a loss-free medium:
^  = CMt _

The above quantity is the one used in WKBJ theory 

to extract connection formulae. That CLD opts for 

another form has been noted by Swanson {31} who 

comments on the divergence of the CLD solutions from 

those expected from WKBJ.
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Swanson ând stix

This theoretical work {23,31-35} tackles one

dimensional local approximations where the

coefficients of the governing ODE are no worse than 

linear. The basic premise here is that mode

conversion arises from fourth or higher order 

differential equations, which describe two or more

wave solutions.

By solving certain types of these equations

analytically, a basis set of mode-conversion

solutions is constructed. These known solutions are 

then used to solve other ODEs which arise in specific 

models.

In this way, an analytic method of solving higher- 

order mode conversion equations is constructed, and a 

systematic way of coupling the relevant asymptotic 

solutions is proposed. Thus fourth order ODEs are 

studied analytically using Laplace integration 

techniques and matched asymptotic expansions.

Mode conversion here is concerned with the 

splitting of energy flow between the various branches 

of the local dispersion relation. Without detailing 

extensively the intricacies of this theory, a basic 

description is that it is mainly concerned with 

reducing the equation governing the mode conversion 

to one of two basic types, viz.
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■'P 4- Ae.'V" + » ̂  = 0 ,  (4.22)

•V”"+  A*i4>"+ « A > ' +  (A*a4y)HJ = c,

A, ot conifekOfc . (4.23)
The authors treat these equations by matching

their asymptotic solutions across the complex plane 

(and so deriving appropriate connection formulae). 

These equations then become the kernels for an 

analytic attack on any mode conversion equation, for 

if any such equation is not already of the form

(4.22) or (4.23)» one of the kernel equations is 

extracted from it, and any remaining terms are 

written on the right-hand side. The resulting 

equation is then treated as though it were an 

inhomogeneous equation, with the non-conforming terms 

appearing as a driving term on the right, modifying 

the already known solutions of the kernel on the 

left.

comment

The technical treatment of an equation in this way 

is very complex, treating the same dependent variable 

in two fundamentally and logically different ways.

However, the principle that the equations must 

first be put into the kernel form is very 

restrictive, and is hard to justify given modern 

numerical methods. Despite Swanson’s claim that such
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systems are numerically unstable due to the possible 

presence of evanescent solutions {33}, Appert {36} 

has overcome these difficulties and presents 

numerical solutions for the same mode-conversion 
scenarios.

The moulding of model equations into one of the 

types (4.22), (4.23) can be particulary difficult in 

certain contexts, as will be evident in the MHD 

analysis of chapter VI,

These authors are not really concerned with the 

construction of the candidate ODE, rather they 

present an analytic technique for any equation so 

arising. However, they show clearly in their 

publications (eg {34}) that they are content with the 

early notions of Stix, in that appropriate ODEs are 

generated from the dispersion relation directly, 

using (4.1).

Summary

In this chapter, a very brief review was given of 

some of the the existing theories which claim to 

describe mathematically wave phenomenon In non- 

uniform media. These methods, together with other 

theories, are detailed extensively in the recent 

review article by Swanson {31}* The extent of the 

effort in this field underlines the importance of 

mode conversion to the fusion community.
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However, the adequacy of the work in this field is 

open to question. That some of the various theories 

reach agreement in particular problems {26} reflects 

more their common theoretical basis, rather than 

serving as an independent test of their veracity.

It should be noted that some disquiet concerning 

the nature of the approximations and their relevance 

is being expressed in the publications, for example 

references {37-39} question the lack of parameter 

gradients despite their demonstrable significance.

In contrast, the straightforward approach of 4th 

order ODEs directly from dispersion relations, using

only the mapping (4.1), is still in use (eg {40})

without any apparent reservations.

Since the solution of these types of problems 

would be useful in a wide range of scientific

applications, further efforts should be made to study 

these effects in a self-consistent manner, and point 

out the pitfalls in making too many simplifying 

assumptions.

The latter aim has been the main goal of this 

chapter; the next will tackle the self-consistent

problem.
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£hgpter Y Mode Conversion Theory

Linear mode conversion in inhomogeneous media

describes the process whereby energy is redistributed 

amongst the various possible eigenstates (or 'modes’) 

of the system as a direct result of the spatial 

variation of the model parameters.

As was explained in the previous chapter, much 

effort has been expended in extracting desirable 

differential equations from dispersion relations 

which can be used to quantify this phenomenon. In

this chapter, a more straightforward and consistent 

theoretical approach is developed, building on 

earlier work of Heading {41} and incorporating some 

of the more satisfactory features of the less 

rigorous approaches.

governing equation

The most fundamental aspect of mode conversion 

must be the existence of coupled equations describing 

the interaction of the modes in question. In the 

simplest possible case, where only two modes are 

involved, such a binary interaction in its most

elementary form will be governed by a second order
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ordinary differential equation. In other words, the 

simplest case will be a restriction to precisely two 

modes in the absence of any curvature.

Clearly an elemental ODE of this type will possess 

coefficients which vary with position, since the 

medium of propagation is inhomogeneous. Let such an 

equation be the following:

(5.1 )

So far, we have used the vague term 'mode' in the 

discussion. It is apparent from the equation above 

that we cannot mean mode in the sense of a Fourier 

component, since Fourier transformation of this 

equation is not meaningful. How then are the 'modes' 

of the system to be identified? This difficulty is 

resolved unambiguously in the following analysis.

coupled equationg

We can write (5.1) as a pair of coupled equations 

by expressing the ODE in matrix form:

9 -rO
y
y = 3̂ , M  =  f-V» -b/a

We may now extract the eigenvalues 

characteristic matrix:
•L

b c

of the
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We shall see that these eigenvalues, the roots of 

the characteristic equation, play the same role in 

inhomogeneous media as do the wavenumbers extracted 

from the roots of the dispersion relation (or secular 

determinant) for problems with uniform media.

To show this generalisation, and to reveal the 

coupling inherent in such systems, make the

transf ormation

= A ii, A :
1 1

,

% 0.'
A, A.

where the A is actually a diagonalising matrix for M. 

Thus substituting for x produces the matrix equation
.1 I

U r A ^ A u -  A A U ,
that is.

A, 0

0 Ai A
-a; -a: 

A: a ;
(5.2)

where
A(x) = A, - A i  .

To emphasise the main features, we may write (5.2) in 

the form

, ~ (Ti, (Ji
(5.3)

where

c,i - ' Al/h ,

Q, - AI /a

(5.4)
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At this stage, we can compare these equations with 

those of Cairns and Lashmore - Davies (see (4.30),

(4.31)). The latter description has much the same 

form as (5.3) but with two important differences :

(i) the ’ wavenumbers’ i?,̂ /Oare derived from the 

eigenvalues, pvt from a ’dispersion relation’, and 

contain an extra term dependent on the gradient of 

and difference between those same eigenvalues ;

(ii) the coupling terms are self-consistent 

functions of position, not externally supplied 

constants.

It is interesting to note the role of the parameter 

gradients at this early stage. Where the eigenvalues 

are well separated, or have negligible gradients, the 

coupling terms are small, and the system then has the 

quasi - uniform states

ru exp jtfGJdb . (5 ,5 )

These recover the expected behaviour for distinct 

modes (of equations (2.2) ). However, recalling the

procedure involved in WKBJ analysis, in order to 

describe the relative mixture of these asymptotic 

states, the full system must be studied.

single mode equation

Note that u_̂  ̂ can be eliminated from (5*3) in order to 

yield a single second order ODE for û  alone. Since

— 67 “



i [ ( t t , ' - fe ,u , ) /c . i ]  -  u' ,

subtracting these equations produces

r 4l_lAÿ»] fer
L 1 ■ Z ; K -  t,u,] = Cl, u, ,

le

U,' - (ku,)' - S  =
' - 0,

or
II

where

"  , . c.i/c. ,

The change of variable

tr r u, ejp[-iĴ ç+o-)<ii>̂
will eliminate the first derivative term, finally 

producing the equation

15 = 2̂.̂2.! +^(Q4<r)*j\r (5.6)

Now
;̂ (ç+0')*’- i ~ -4, p +-4,

— 4 - 4,4̂  f £pa*— “ i p’-i o"'-r 4,

= ^(ç-é)^ ̂   ̂ icM̂ re e$-

Thus setting

/(j=. i ( ̂  - <̂ )
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we can write (5.6) in the form

u" =- [(C,*+<o' + C,j.Ci,]v . (5.7)
This elimination technique is the same as that 

used by CLD (see p.56, and ref.{28}), and so a 

comparison of the two equations can be made to see 

the differences arising from the inclusion of all 

parameter gradients.

However, recall that the basic starting equation 

was already a second-order ODE; the procedure 

detailed above is lengthy and complicated, producing 

an equation which may be even more complicated than 

the original. In fact there is a simpler 

transformation which retains the fundamental features 

and interpretations of the preceding one, but is 

simpler and more symmetric in its treatment of the 

two states.

Noting that the original equation (5.1) may be 

written as

■y" - (jc) t) - o ,

where

= A,4 Z *  , = A.Ai =

the dependent variable may be changed from y to

W  =: y eatp j ’i
yielding the equation
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W*' = ^  - 1 ZL + v\j ̂
ie

VO*' =r iil'J W  ,
(5.8)

This equation serves as an easily derivable 

'master’ equation for describing binary mode 

conversion. Note again the importance of̂  the 

parameter gradients, and also that the difference 

between the eigenvalues will be an important feature.

Let the ’wave potential’ be defined by

itl
Then the nature of the coupling between 

eigenstates is dependent both on the zeros of and 

on its turning points, since these define the barrier 

width and depth.

the Weber equation

At this stage, recall that most of the 

contemporary mode conversion theories rely on the 

Weber equation {42} as the typical comparison 

equation for this binary interaction. This confluent 

hypergeometric equation takes the form

Y" + = 0 . (5.9)

It is favoured in mode conversion because it 

contains two transition points

Xki = * (ife+i)'*-
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and because its asymptotic behaviour is well known 

{43} (see Appendix B).

If the Weber equation is to be used in this 

analysis, a polynomial representation of the

eigenvalues must be taken, in the form

i S  ■= ■5. + S.x t r A)

^ s do + d|X + (=6*)

in order that ’'f may be written as 

Ĵrx) - ^
where

= (fo- 5,, R = Ri = .

Now can be written in the required standard form 

by employing a change of independent variable. Noting 

that

Î P  (Xo) = 0  •=> J o  =

and that

(z- Xo) = #»o + ^ (X - Xo)'-

changing from x to **7 » where “7 is defined by

= ±. (x-x.)
allows (5.8) to be written as

W , (5 .1 0)
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which is of the required form (5.9). Note that the 

Weber equation describes a barrier problem with 

transition points defined as

In general; will be complex. In terms of the 

original coordinate X» these barrier points are given
as

Clearly, the spatial dependence of "4̂ is a crucial 

factor in determining the consequent barrier and thus 

the transmission and conversion coefficients. With 

this in mind, we take particular examples of the wave 

potential deemed to be relevant in rf heating 

analysis and examine the resulting behaviour.

polynomial representations

Note that the Weber equation applies when the 

eigenvalues take the form

or lower order variations.

linear eigenvalues
Consider the simplest case of a and ^ linear, in 

particular
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« Ao+-û,X , ĉ*.) s- b,X. fenit.

Thus the eigenvalues are equal at x=0. Now

(t) - fte ,
and so we are dealing with the case

Tp (jc) * -a, + bf 
Thus choosing

^ = f  4

(5.11 )

yields

w

(5 .1 2)
If we apply the asymptotic expansion, with full 

detailed working in the appendix, we find the 

following result:

x5?>c : ya) exp 1 û p X -h

o  : t j(x )  _  ^ ( 5 . 1 3 )

tBexp ^

where the coefficients Ij., I _ and B are defined as

X .

6 f(-k)

with

k - - i ( +i)
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Since we are really interested in oscillatory 

eigenstates (at least asymptotically), the simplest 

such case would require ajja,. and purely

imaginary; this would result in 7  ̂ being purely 

imaginary, but k real. In such a situation,

X - = I txp(ckn)\ - i .

In this example, mode conversion is negligible. 

This has a direct analogy in the underdense potential 

barrier, where to a first approximation, mode 

conversion is zero. This conclusion is in 

qualitative agreement with the ideas of Fuchs et al 

{25} in that 'only saddle points of the dispersion 

relation can lead to mode conversion'. However, this 

contradicts the prediction of CLD, whose theory is 

centred on a 'local' linear approximation for the 

'wavenumbers'. That CLD has non-negligible conversion 

is due entirely to the fact that the coupling is 

externally supplied, and is not a consequence of the 

self-consisent variation of the eigenvalues.

nonlinear eigenvalues
The next most complicated case of interest is that 

where depends quadratically on the independent

variable x. Thus we consider eigenvalues of the form

A,,2. ~
where

X = «iX ^
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A r ( fco <■ b, * t- k, Jt'-
(5.14)

For this case,

= - a, 4" ( bo 4“ b,x +

’'PUc) = - - a, + bo - b,̂ /4bj_

Consequently, the 'k’ in the Weber equation must be

‘ = - 1
a, -  h’- .

where

- be - Abi. .

Note that is actually the minimum separation of 

the eigenvalues, and %o is the point of closest

approach. This is similar to the local behaviour

ansatz of CLD, in equation (4.27).

The transition points for this problem are given as

. . . .
“ Xo i-

and these are clearly roots of the potential :

Tp(%vz) = - o,
= ^  ±.i ̂1+ " A,
= G.

Moreover, should the eigenvalues be purely imaginary, 

for example, 0 > , dj s t 0/j , then the barrier

is indeed complex.
A graph of typical eigenvalues for this example 

is shown in figure 5.1. Since they show the kind of
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behaviour most often considered to be relevant to 

mode conversion problems in plasma physics (for 

example see figure 1 of {28}), it is worth examining 

in detail the structure of this example.

detailed analysis

Returning' to the coupled-mode form of the 

equation, (see equations (5.3) and (5.4)), the 

coupling functions C ,2̂(%) and Ĉ /x) which control the 

interdependence of the eigenstates, take the form

Since

we can write

-d( ̂ d i  b 4- ̂
C{̂ (x.) r , Q, (%) =

Thus as ixi-#oo, Cî  fx) -► O and so the coupling 

becomes negligible far from the interaction region, 

implying that the asymptotic solution is expressible 

in terms of the approximate independent eigenstates.

extrema
It is useful to know where the extrema of the 

coupling functions occur, in relation to the 

transition points.
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Consider first C,j^(x). Then

^^i2_ - t r

= (j,i f û|2T + ra,̂ -f-y)j

- -zyi]

Thus the extrema of C,̂  occur at the roots of the 

polynomial

hl̂  - A ,  =r o  .
l b . I D )

Similarly, Ĉ , possesses extrema a positions defined 

by the roots of

^  A -+- — 2ÏT* X O. (5.17)

We can solve for all four roots simultaneously by 

multiplying (5.16) and (5.17) together, and solving 

the quartic equation in x,

- ( i , m ^  = 0.

Substituting - x* + & into (5.18) yields a

biquadratic in 6 . The full details of this

calculation are not essential to the main text, and 

so are laid out in full in Appendix B. Stating only 

the result in the interest of clarity, we have

(5.19)

where

bi - Ai*- L (5.203
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Therefore the coupling is at a maximum on either 

side of the conversion point. In addition, note that

<̂2- = /^ - -TI

Hence

Now

and so

) — b/b̂X - 1%.%̂

Cu. •*'^2 , h&b tithm a at -  ^  ^  ( 4bobt
Furthermore,

:= T  = t  '
thus

^^2 - Ci,)’ - - p
Hence

Cii-Ci| ext/fMiun at Xo .

If o,=o ; then Ci, = C12. , and the various extrema 

would coalesce; non-zero a, introduces the evident 

fine structure.

Graphs of ( x) and C», (x) for the typical 

eigenvalues of figure 5.1 are shown in figure 5.2. It 

can be seen that they exhibit the desired behaviour 

for a mode conversion problem, in that the coupling 

is negligible far from the conversion point, but 

peaking around the critical region.
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Since these functions are the 'driving' terms in 

the coupled system, they can be viewed as the 

mechanism which 'switches on' the complementary mode 

when the original propagates through a certain region 

of solution space.

It must be emphasised that this behaviour derives 

consistently from the intrinsic variation of the 

eigenvalues, and does not appear as a consequence of 

artificial coupling induced from a 'dispersion 

relation'.

asymptotic solution

With these points in mind, we return to the form 

of the Weber equation appropriate to this example, 

and write down its asymptotic solution. The 

appropriate ODE is

i’-VO

The usual asymptotic expansion, when written in 

terms of the original variables y=y(x), takes the 

f orm

x > o  ^

X «X©, x < 0 ;

•+B U-*ol exp J

...
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X. . Mb.)** , I. . ,

In order to see that these expressions are

meaningful, we need to consider the appropriate 

eigenstates for large (x).

approximate eigenstates

Consider the form of the eigenvalues far from the 

interaction region. Now

^ = Jl>o + b,x 4-

-- C x  [t. ^ jpj'-

- b-*- - si: X-

that is, for large |x|,

bi*" ( x - x , )  + ^  ,

where = /S(x,) ,

Consequently,

Aj^JL 2xJfo) 4" , X =»î> 0
Moreov er,

= -ij IT =

Combining these results, we may evaluate the

approximate uncoupled solutions given by

J sr -'CnJ? + j

GÎ ecp ± ib /rx *^£ x ;T c )j

where jp̂ „ o/ -1 (k+i) =  -&-1 ov t  ,
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By comparison with (5.21), it is clear that these 

approximate eigenstates are precisely the important 

components of the asymptotic expansion, enabling the 

latter to be interpreted as a superposition of the 

two independent eigenstates existing far from the 

interaction region. This is a satisfactory result, 

given the nature of the problem and the behaviour of 

the coupling terms.

With this interpretation, we can identify a 

transmission factor of

%  = • (5.22)

In a realistic problem, we would be concerned with 

oscillatory eigenstates. Thus assuming complex 

eigenvalues here implies that k is complex. 

Consequently, we are dealing with a complex potential 

barrier, in which there is significant mode 

conv ersion.

accuracy of uncoupled eigenstates

Since much of the theory so far has centred on 

reducing the solution to a superposition of the 

uncoupled approximate eigenstates
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it is appropriate to comment upon the accuracy of 

such solutions.

In order to assess how well these forms estimate 

the correct solution, consider the relevant

eigenstates of the Bessel equation.

(5.23)^  4 (t- c= 0 .

The eigenvalues in this case are

where ^

ot= - h .  >

The desired expressions are the uncoupled approximate 

eigenstates of (5.5), namely
. X  ,

top j4-(6)<ls r= ccp j

Now

X- 4X'*J7CP X

Choosing x>d, we have
X

 ̂> a l y ‘--8'-. (5 24)

These integrals are of a standard form {19}, thus

X
- ‘f-sec-'VvdJ - iu . (5.25)
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Hence the solution is

(5.26)

Compare this with the usual asymptotic formula {44}

~  s j  (5.27)

For a more quantitative comparison, see Figure 5.3, 

which graphs the full eigenstate approximation 

against Bessel functions generated by a standard 

numerical package {45}.

.Summary

In this section, the self-consistent form of the 

mode conversion equations has been considered, 

without relying on ad-hoc dispersion relations or 

arbitrary, externally imposed coupling coefficients.

In this context, two simple examples were studied: 

one in which the eigenvalues varied linearly with 

position, sharing a common value at the origin, and a 

more complex case where the eigenvalues converged, 

then diverged without necessarily crossing. In the 

former example, mode conversion was found to be 

negligible, in contrast to the local linear theory of 

Cairns and LashmoreDavies. This discrepancy arises 

wholly from the lack of self-consistent coupling in 

the CLD model: there, mode conversion occurs only by 

virtue of a purely imaginary constant supplied
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independently of the spatial dependence of the modes 
in question.

In the second example, however, mode conversion is 

not negligible, and arises naturally as a consequence 

of localised coupling functions derived self- 

consistently from the candidate eigenvalues. The 

resulting solution can then be expressed as the 

superposition of the asymptotic uncoupled quasi­

uniform states, as in WKBJ.

Note that the analysis is not restricted to 

considering these special cases: variations such as

CU6IC t f^üÂ^^ïic 
can be studied within the same framework and using

the Weber equation. Such eigenvalue behaviour may

prove of interest in special applications. Moreover,

mode conversion need not (and should not) be

restricted to the solutions afforded by only the

Weber equation. Higher order ODEs can be studied

using the same techniques, the only difference being

that the matrix yielding the pair of equations (5.3)

will produce instead n ODEs. By considering each of

the coupling functions in turn, a quantitative

judgement can be made on whether the mode conversion

involves two or more waves, and on the validity of

the ensuing asymptotic solutions.

Indeed, such systems lend themselves readily to

computational solution, given that the coupling is

1ocalised.
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Finally, note that only ODEs were studied here: 

real physical systems are described by partial 

differential equations, and the underlying problem of 

tackling mode conversion in this context has not been 

addressed here.

In the next chapter, a simple mhd plasma is 

studied self-consistently as an example of the 

dangerous over-simplifications involved in analysing 

inhomogeneous media by any means other than the 

correct differential equations.
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Chapter VI Marm Plasma Model

The ideal mhd plasma model has a long history in 

plasma physics, and enjoys wide ranging popularity 

and applicability.

The particular version under consideration in this 

chapter is the one-fluid model with zero resistivity 

and viscosity, and a scalar pressure.

We will analyse the case of a plane stratified

non-uniform magnetic field in a warm fluid plasma, by

including the inhomogeneity from the very beginning, 

and self consistently generating the resulting

equations governing the behaviour of the perturbed 

plasma.

In so doing, we reveal extra physical effects of 

interest, and show that dispersion relation

approaches compare poorly with consistent analysis.

The fluid equations

The fluid equations defining the model are derived 

from an appropriate kinetic equation for each 

species, by integrating out the velocity dependence 

in a series of moment equations.

The resulting fluid equations are then combined in 

a consistent manner to yield a set of bulk fluid 

equations for the plasma. This procedure is detailed 

extensively in well known texts, eg {46-48}.
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The relevant model equations under these conditions 
are

Dp

=  o  .

& = o, 

V-B =0,

(6 .1 )

(6 .2 )

(6.3)

(6.4)

(6.5)

(6 .6 )

%  = - V X Ê  . (6.7)

where D/Dt = ^ u 'V  denotes the advective

derivative, and the dependent variables are 

a : the fluid bulk velocity

p : the scalar pressure of the single fluid

p : mass density

jI : the total current in the fluid 

£ : the magnetic induction

£ : the electric field

y = 5/3 - the adiabatic constant for a simple gas 

with 3 degrees of freedom.
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Note that (6.4) is the Ohm’s Law for the model, 

and is derived from the charge flow analogue of the 

momentum equation (6.2). Each of (6.1) to (6.4) are 

derived from moments in velocity space of the Vlasov 

equation. The full form of (6.4) is in fact {47}

T> -y
Dt

where q is the electronic charge appropriate for 

the model species. Thus if the simple Ohm’s Law (6.4) 

holds, we see that the energy equaiton in the form of 

the adiabatic law (6.3) must hold to the same 

approximation. Thus the system is closed and self- 

consistent .

Perturbation analysis

For any fruitful analytic study of the model 

properties, the full set of equations (6.1-6.7) are 

linearised, so that small amplitude behaviour may be 

analysed.

linearised equations

We adopt the static equilibrium quantities 

Po » given by

y « = 0 ,  (6.9)

(6 .10)
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K.Po = certstant , ^ 1 2 )

( 6 . 1 3 )

Note that (6.9) and (6.12) are postulated: the

remaining equations then are the consequences of 

these assumptions as dictated by the model equations. 

Given these, the first order, perturbed quantities 

then obey

p, » U.-S't + = 0 ,  (6.14)

(6.15)

(6 .1 6)£i -o ~

He.-" - irH/re, = o,

; yk X'-*■ M = IT f, . (6.17)

É, = (6 .1 8)

(6.19)

where dot denotes b .
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magnetic field geometry

Throughout this chapter, the magnetic field is

taken as lying in the x,y-plane, making angle ©  with 

the X axis (similar to Boyd and Sanderson {A7}). Thus

^  -  x B odQ 4- S B&ih G .

Homogeneous plasma

In the uniform plasma, where the equilibrium

quantities are constant in space (and time), the

system of equations may be Fourier transformed in all 

dimensions. The secular determinant of the resulting 

system of algebraic equations then yields the

familiar dispersion relation {49,50},

Cof- )(03^- it + tc 6 (e'CJ" cjt>t>̂e) =- o ̂ ’ (6.20)
in which the wavevector ^ is taken to lie in the

x,z plane, and

^  £tx 4-

M .

+ .

The normal modes of the system, that is, the 

possible oscillatory solutions exp i(ii»x - oJt), are 

the roots of (6.20), viz..
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(6 .2 1 )

"X'- = iV"" ± i[v*- 4-!^ mb'e]'''
(6.22)

Equation (6.21) gives the shear Alfven wave 

solution; (6.22) represents the fast and slow 

magnetosonic modes.

Inhomogeneous rl'asma

A more realistic model is one in which the 

magnetic field is not spatially uniform. The simplest 

possible case is where £ is plane stratified in the 

z-direction, ie

5  (t) = X S +.yswe]_ 4 a -1 . (6.23)

Note that this is the simplest possible variation 

that satisfies This imposed magnetic field

now determines the permitted pressure variation by 

virtue of equation (6.11):

H> ~ ' COMîSWt , (6.24)
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Moreover, the adiabatic law (6.12) now fixes the
density behaviour:

f
= _ XxJ , \  fonefiit . (6.25)

Consequently the entire equilibrium is 

characterised by the field variation 2o(z) and the

two constants and

Following on from this, the Alfven and sound

speeds have the functional dependences determined by

and

p.% /.O _ B,V*; . (6.26)

(6.27)

an equation for y,

Returning to the master system governing the

perturbed quantities, we may eliminate all first-

order terms except by differentiating (6.15) with

respect to time, and using (6.14), (6.17) and (6.18) 

to eliminate , p̂ and :

P.Ü, = -vl’ jr. + ('7xê.)xÊ|]

= (<4'P,) + jr.[('?’x(c7x{t!,xê.)))xB . +

= (Zf.'i-P.V U,)] + ;k̂ [(C’x(c7x(y,xii.)))xfe. (6.28)
+ (lyxgojxf?/ (u,xi.;) ]

To simplify this expression, first note that
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» =  P o - H -

so that

^  .
(6.29)

Thus the first term in (6.28) may be written

(6.30)

Also, using the vector relation {51},

^ (c7xa) =. T'. fâb)- (A-c7)b - (fe-c7ja,

we have

B^x [ v x ( v x ^  [<7xrw,y8(,)]x f^xêo)

- - (g..C7)ï  ̂ (6.31)

where
Î = Vx fu,x 6.)

= u,-(17-Bo)- ê»(c-a,)r (g.-cx)y,-Cy,-i7)B.

= (6.-v)u, _ 6o(c’-a,)-(ü.-^)êo. (6-32)
Thus combining (6.30), (6.31) snd (6.32), (6.28) may 

be written in the form

P.Ü, , v[u,-V^ +

ie

-05\u, = V  [u,'i7f>. + !rH(?-y, + (;'7)g.-t(&-r;) (6.33)
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Note that since the magnetic field depends only on 

z, we may Fourier transform in all other dimensions.

At this stage the algebraic manipulation system 

REDUCE {52} is employed, in order to simplify the 

algebra and minimise both the effort involved, and 

the chance of error.

The full REDUCE output is detailed in Appendix C.

* However, in the main text, we confine ourselves to 

outlining the method of calculation, and the 

intermediate answers at each stage. This allows the 

heavy algebraic manipulations to be followed without 

unnecessary detail.

Equation (6.33) is first split into its 

components, resulting in the system of equations

i -h a, 4-Ai - o, (6.34)

5 : be ÜX + by 4- bi = O , (6.35)

- ' 4- 4-üi t +-d4.ai 4 dsUcj 4-cltby - 0, (6.36)

where the coefficients are as follows:

= 03*' - itCt!- Stxi’ô ,

&, = - (&*■ 4- it Ca' ccbOstÀB ,

Al - - L&yCk-fGaGswG,
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fco = û, ,

b, = w*-- fcyCs'--

bi = [(& + (^(O&'e]

d. r - ((»x Cos‘C ««(9sw6)f4 _ (o'-- (&;W:i9 + (̂ *(MG)%̂

d, -  (^->^)C% , ^  = ^ p / 8 ^ y  =

^2 =. 4 ^

T=- "i *2.tx [ — yj (̂  - LÛ Ca (0&66üi6 ^

4̂ — Aj ,

- I z(y [coŝ © - y ̂  - t4x C& ttft© 6cx© ̂

4  - ẑ. .

uncoupling the equations

In order to arrive at independent ODEs for each 

velocity component, (6.34)-(6.36) may be manipulated 

in a straightforward manner to achieve the necessary 

eliminations.

Firstly, u^ can be given in terms of û ,̂ using the

procedure
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(6 ' 34") —-  ̂(6 )

- (*®2. -̂Ai.loo)ax + (ûvbi-ûilû,) - o

which yields

(Xî o - Ack
= J U x  , f = — -----—  • (6.37)' A|kt -Otb,

Next, if (6.37) is substituted into (6.35), û  ̂can 

be expressed as a function of u'̂  alone:

(Ax   Ut I: - AUÎ (6.38)

Finally, using both (6.37) and (6.38) in the z- 

component equation (6.36), a single second order 

equation in u^ can be found:

[<d^- t[dr

ie

[ k - ( ^  + 4f)9]üi + [dr^S* ̂ 5*' d s - f - J o U i - C .
•* (6.39)

Note that we now have three ODEs governing the 

perturbed bulk velocity of the plasma in three 

dimensions. Equation (6.39) governs the velocity in 

the direction of the inhomogeneity; ODEs for the x 

and y components are calculated using (6.38) and 

(6.37) in combination with (6.39).
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evaluating the coefficients
Since (6.39) is the key ODE to solve, REDUCE is 

again enlisted in order to calculate the coefficients 

of this equation. As a simplification, we set ky=0, 

and refer to Appendix C, from which the algebra 

steps can be read directly.

Consider each of the coefficients in turn.

u" coefficient

From (6.39); and the Appendix, we have

4 -  ^ - a)'

t (C4-ai‘®+Cs,‘-)(0<-5 /  { /w

-tx-Uu>*+ (0^3 J $

which can be written as

(6.40)

X Ax. Xco*-- C e t

where

<j =. - tx.u)*’ +- "Ax (&Ca (os'8

(6.41)

(6.42)

Thus defining

u
(6.43)

(6.44)
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we may write

cy (6.45)

u* coefficient

In order to simplify the calculation, we use the 

notation

g = ^  [tAx. [ CO*-(<;sVCa‘'su *̂0)- Cc3^Cdtos'©]] = A. ,

and also

fa, I -i/cj. ,
where

j = S>Ü\ÔCJÛŜ 6 .

Then the coefficient can easily be split into two 

parts, as follows:

d, - di ̂  -dgPg _  4g' - 4  (f))

- +<i5j+4j')j+ i  [4 k + 4jJ

We proceed by evaluating separately the coefficients 

of 1/q and q'/q^.
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From the REDUCE output,

4 fd3h 4 44h 4- 4 kj ')

== [a<(Ax - Ac (5 ] (cl Qv* do3* 6

+ iuoXf-C^(J:-zci)s^^Q - cy-i)w‘(Cc^^-w') 
- i^co*- fci s.i^e - <* j j

'  [  (<ti(4«o»G+wXC(Q,%»G-w)( %=5»;"e + j

ACaG. \  l(^x(i*u>X^xCi-ai)smec^-^-

“ (<&6(A^e 4- cg-soM̂ -ej u3̂  J

-  Co. [ fee [cx (ŷi}<o5*G“2<5̂fo&*©] 4 iAx CiCv'’qô̂ ©J

^ C5 [ (ci)̂ -fcx )( Ci*-5CK*G4Cb’jj

4- d!' [ Cü*\/ts(̂ Ĝ - Al(^ ( C a W ©  4^)Co5^e^

For convenience, we use the notation

di,y - ̂ d^hn-d^hVds'i-tkj'j =  f  . (6.46)

In a similar fashion, we use REDUCE to calculate the 

other part of the coefficient of u’. Thus
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+ Jtj •= [ ( tc Ci Ca (os'© - <̂ 5i»i'e üf -<* w*-)((i6(n'et<ÿj

—  cO^GjTs^  ©toî5*e]

[  ie.KCtci ccet6 (cisiitS '̂ ĉ )

[ ( ^ ^ ‘'6 +<̂5"Xci600̂ 8 -hfl ) 4 0 ? * Cte'e] ̂

- ix [Aic*Cs^6C6^© (ci W ©  4̂ 5̂ )
^  (6.47)

- CüM C<xSo^^8+c^ 4- ^

which we denote by A .

Finally, we can write the coefficient of the first 

derivative as

cj, (6.48)

u coefficient

The last remaining term to be calculated is the 

coefficient of the zeroth derivative. Clearly, from 

the definition of d* on page (98), and equation 

(6.43), we identify

do ~ ^

the full equation

Using equations (6.43) to (6.48), we may write the
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full ODE for the perturbed velocity in the direction 
of the inhomogeneity as

or

^ = o. (6.49)

Note that this equation has been generated by 

other authors - see for example {49,53-57}. However, 

few of these publications give the warm plasma ODE in 

as general a form as (6.49). Moreover, most interest 

centres on the Alfven resonance effect as a plasma 

heating mechanism; we will avoid specialising to that 

degree, and embark on as comprehensive as possible a 

study of the qualities of (6.49).

Special Cases

Now that the full ODE is known, special cases of the 

parameters may be considered in detail.

Homogeneous plasma
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As a check on the accuracy of (6.49), take the 

magnetic field to be constant, and Fourier transform

(6.49) in the z direction. This yields

t- =0,

Substituting for q, "Ÿ and | then gives

= (u)*-  ̂u)' -t 4x (oi'S )

=  O,

which is the familiar dispersion relation for the 

homogeneous warm plasma model (see equation (6.20)).

Homogeneous, k% ẑO

Note that in the particular case of k*=0, the ODE 

reduces to

4 = O,

which on Fourier transforming, yields the dispersion 

relation for the propagation of the Fast Magnetosonic 

mode normal to the x,y-plane:

-

This agrees with k%=0 in (6.20).
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Inhomogeneous, kx=0

Now consider the same scenario as above, but this 

time with a non-uniform magnetic field. Then (6.49) 
yields

V V ^i-y)Cv UÎ 4 s o.
(6.50)

By changing the dependent variable to v, where 

or = e«p i  ]  (z-r) i  t '  ^

equation (6.50) can be written in normal form as

By so arranging the magnetic field variation that 

the wave potential can go to zero, (6.51) may 

describe a barrier problem involving at least partial 

reflection of the Fast Magnetosonic mode. Depending 

on the nature and order of the transition points, 

WKBJ methods may be useful in determining the 

transmission characteristics without the relevant 

analysis becoming prohibitively complicated (see 

comment on page 16).

In the previous two sections, we have considered 

uniform and non-uniform plasmas with zero wavevector 

in the x-direction. The consequence of k%=0 is that 

UoL, u,y = 0 (from equations (6.37 ) , ( 6. 3 8) and (6.41)).
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For the most general behaviour, we take k%^ / 0 for 

the remaining analysis.
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IhS General Case

In this section, the full ODE (6.49) is studied, 

with nonzero kx* In the following analysis, there 

will be no asssumption of very low beta, as in 

{55,56}, neither will there be an arbitrary density 

variation independent of the pressure profile, as in 

{54}, since we assume the adiabatic law in 

equilibrium as well as in the perturbed state.

Instead, we will analyse the most general 

behaviour, in Cartesian coordinates, for all 9 of 

interest.

Recall that the equation takes the form 

Ua 4 r )u'̂  4 Ug = o.

Thus there are four possible singularities in this 

ODE, namely

(6.52)^ - O : CO*- - CottQ

"Y =z o : W*- - (6.53)

o : (6.54)

These 4 roots have some physical significance. In

choosing kx. ̂  0, the bulk velocity of the plasma is
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now truly three dimensional, and it is the flow of 

plasma in directions perpendicular to the 

inhomogeneity which causes these singular points to 

occur in the differential equation.

The root defined by (6.52) is often referred to as 

the cusp singularity in astrophysics literature (see 

{5?}); it is the dispersion relation for a strongly 

localised surface wave.

The shear Alfven wave dispersion relation is given 

by (6.53); again a well-known singularity in the 

literature {49,53-56}.

Equation (6.54) defines two singularities, 

corresponding to the roots of the dispersion relation 

for the Fast and Slow Magnetosonic modes in the plane 

perpendicular to the inhomogeneity (and so in the 

plane of the equilibrium magnetic field). Note that 

they are not the actual magnetosonic modes, since 

they do not involve the total wavevector.

For 6 =0, the roots of q become

=L Cjr or Ax

thus sharing a root with , so that there is a 

singularity at the Alfven resonance of twice the 

previous order.
However, at G = , only one singularity remains,

viz.

- 109 -



VI

since neither the cusp nor the Alfven root exist at 
this angle.

solutions

Consider the neighbourhood ^  of a zero of q.

In this immediate locality, we may make the

following approximations to arrive at a local

solution for the velocity in ^ .

From an initial suggestion by Cairns {58}, we

assume qt^z near each of its zeros. Then equation

(6.49) reads

4 ' V i O e  «  O.

Making the further assumption that ^ and A

are constant in ̂  , we may write (6.49) as

U g  4  ^  4 C o i O *  •=■ O,

Oo = t b)o = Ao/jo'̂ Po / ^o* '
Eliminate the first derivative by the usual change of

variable ^

nj = Ug exp ij(aD+ ,

to arrive at the normal form

TJ" = [- + i  (Oc+ t) -

or

E.'V" 4- [A+ B t +  C£*-+ O,
(6.56)

- 110 -



VI

where

4 ^ 0  ,  D  =s -  Ct> .

further approximations

(i) Discard terms higher than linear in the 

potential of (6.56), and solve the equation

4 "U" = O  .

This can be transformed to a standard form (see 

example 251 of {42}) using changes of dependent and 

independent variable. Setting

A 4^ =- 0 ,

produces the equation

^  I w"f w' + 4.(4-i) = o,

ie
2 kj" 4 zAvvj' 4 B W  = O.

This can be transformed (using example 198 of {42}) 

by the mapping

Ï" = zJÏÏ"

to the equation

5 ^  t fdfe-t) ^  SW -  o ,

which has solution

w =
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where Ip&)= c  ̂ (tS) is the modified Bessel function of 

the third kind, of order p.

Thus under these assumptions, the velocity behaves 
like

in the vicinity of a zero of q.

(ii) Retain the quadratic term in (6.55), and 

solve the equation

tt" 4 -f C g*] ir = 0.

Using the same initial change of variable as above 

results in the equation

2 w" 4 aAkj' 4 (64 Ce)w = 0 .

Now form the new dependent variable W via

W  = = (̂Xc
to arrive at an equation for W of the form

2. W "  4  W  * 4  (Xo(^-ikjkJ = 0 .

This is in fact one form of the confluent 

hypergeometric equation, with confluent

hypergeometric or Pochammer—Barnes functions as 

(series) solutions.
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Note that so far, all the approximations have

depended on q going linearly to zero, and have

depended intricately on the local values of ^ ^
and A  .

The approximation of a zero of order unity, while

convenient, may also be poor, given the parameter

dependencies defined in equations (6.26) and (6.27).

Given that q is small in ^ , it should be possible 

to approximate (6.49) by

assuming Ug remains finite. Then defining v by

V= u4
we can solve the equation by integrating directly : 

ir’ 4 * 0,

'U' ^  exp - (&0+ bo js

Note that the sign of b© is now crucial: where 

b*<0, as z-4z,^. However, b*>0 implies u^ «o ,

though Ug may still remain finite over ^  depending 

on the order of the transition point.

In all of the local solutions, the behaviour of 

j , cf and A  has been ignored. This is not a good 

approximation for small B , since as & 0, the 

Alfven root approaches one of the roots of q.
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violating the approximation of relatively constant â  
and b^.

Nevertheless, all of the local estimates could be 

of some use in enabling a numerical solution to 

negotiate these singularities for moderate 6 .

The Alfven singularity has been studied in 

considerable detail by Tataronis and Grossman {56} 

and Chen and Hasegawa {55}. These authors found that 

the resonant layer at the Alfven singularity is 

modified by the inclusion of physical effects 

external to the fluid model, for instance finite ion 

Larmor radius and non-zero electron mass. However, 

these additional effects raise the order of the 

differential equation, and analysis close to the 

singularity shows that the energy absorbed at the 

resonant layer excites these extra wave solutions in 

a mode conversion process {56,23}.

Global yiea

In the general case, although individual local 

solutions for each singularity is an essential part 

of the analysis, the full solution must account for 

all singular points arising in the solution space in

a global treatment.
Since most attention has focussed on the Alfven 

resonance in the low beta limit, the remainder of
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this chapter will concentrate on the preliminary 
analysis of the entire ODE (6.49).

eigenvalues

Note that the eigenvalues of (6.49) are given
by

(ft 4‘lif‘s ' 
AS'-V'

= [ZS'4>] I f+ + j ’ j
'(6.57)

In order that there exists an oscillatory

component in the solution, we must have

>  'P+ ^  •
Clearly this is not satisfied in the neighbourhood 

of a root of q. Thus we expect to see evanescent 

solutions in a region of solution space over which 

Q ^  0 .
Moreover, note that q has its roots at positions 

z,,z% such that

Compare these with the Alfven root z^:

u3■y. - Ca e

Clearly the Alfven singularity lies between the 

two other roots. Thus we have the interesting case of 

an overdense potential barrier defined by the zeros
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of q, which are singular points, and containing in 

its interior a further singularity defining the 
Alfven resonance layer.

numerical work

In order to quantify this behaviour, consider the 

particular model with the following initial parameter 

values, typical of a current fusion device:

IBcl = 3 - 5 T

A. = 10“

T  = IO‘k.

= ID̂  ms '

(Note that a relatively high number density has been

taken in order to lessen the sensitivity of (6.24) to

magnetic field variations.)

Allowing a linearly increasing magnetic field of 

the type

&,(%) - Bo +

where B3 = 0.1T, and = k*z, produces the graphs

given in figures 6.1-6.5.
These plots show the eigenvalue behaviour in those 

regions of relevant solution space where they are

purely real.
There are several points of interest to note.
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1. As predicted above, the oscillations cease 

ÜSfore reaching the first root of q ( the 'fast 

magnetosonic') , and therefore no oscillatory 

solutions are present near the Alfven singularity.

2. The real part of each eigenvalue, viz

( ‘ft /zjiy

changes sign with Q  , that is

6 6 [o, 0'?], o  Vie[oj2:,]

Q  e [of) ]'h] , 02g. C O  V 26 [o, .

The effect of this behaviour is shown in the 

graphs of the partial solutions, figure 6.6. For 

^  <0.7, the growth in envelope of the oscillation is 

greatest; for larger values of 6 , the envelope grows 

much more slowly.

This is in keeping with the WKBJ solutions, which 

have an envelope factor of

if the eigenvalues take the form % o(± i ̂  .

3. Note that between singularities, the 

eigenvalues converge then diverge. Recalling the 

theory of Chapter IV, and the fact that the Weber 

equation is a local form in the area, we might infer 

that mode conversion is present to some degree, with 

the consequence that the system inevitably finds 

itself in a singular eigenstate at each singular

point.
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4. Finally, we find that the second, smaller root 

of q is not present with these parameters, because of 

the restriction on the range of independent variable 

represented by (6.27): we cannot go far enough to 

pick up the second zero.

dispersion relation approaches

Since we have the full consistent treatment of 

this model, we should be able to contrast the 

implications of the dispersion relation approaches 

for the same model.

FKB

Recall the dispersion relation for the homogeneous 

model (6.20):

Extract from this an expression governing wave 

propagation in the direction of the proposed 

i nhomogeneity:

A-
V

Now insert into the parameters the appropriate 

spatial dependencies, ie

~ ĈCir') , 6a - 6».ft)
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Now, for a mode conversion point, we have to 
satisfy the criteria

S i ' * - " * » -

and

Clearly, if

±

then the roots z,,z^ of q satisfy all the relevant 

conditions, and have the appropriate critical

wavenumber k^ = 0 (as expected for a reflection 

point).

Thus we have the operator (4.25):

s ] (6.58)

which acts on the energy flow.

Note that this fails to recover even the famous 

Alfven singularity, ipr Q , let alone the singular 

behaviour at q=0.

Figure 6.7 graphs the wave potential q/j of (6.58) 

as a function of position: contrast this graph with 

the earlier plots of eigenvalue behaviour. (Note 

that q/S is almost independent of 0 ).

Clearly, (6.58) is an inadequate approximation. 

Although FKB theory was designed to tackle wave

- 119 -



VI

problems involving ODEs of fourth order and above, by 

reducing the relevant equation to second order, in 

those cases where the entire problem is described by 

a second order ODE anyway, FKB should be able to 

recover the exact equation. In this instance, it has 

not.

CLD

In reference {28}, the authors cite a Russian 

paper on wave transformation (59) as an example of 

the excellent agreement of the coupled equation 

approach with the fully worked solution. The example 

chosen was mode conversion involving the fast and 

slow magnetosonic modes in a plane stratified 

magnetic field.

However, the fourth order ODE derived by the 

authors Moiseev and Smilyanskii is in fact wrong, 

since its construction depends on the assumption of 

an isothermal law,

together with the imposed equilibrium

e. - .
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That these conditions are mutually contradictory 

is clear from (6.10) and (6.11), since Ho = constant 

^  = constant.

That the coupled mode theory agrees with the 

conversion coefficients so derived is a warning that 

such approaches may infer mode conversion where it is 

not actually permitted by the governing master 

equations of the model.

In a final comment, note how difficult the actual 

model equations are compared to the ideal equations 

of the Swanson technique; given the parameter 

variations in this model (see (6.26) and (6.27)) i it 

would be impractical to attempt to extract either of 

(4.22) and (4.23) from any 4th order (partial) 

differential equation arising.

■Summary

This chapter has set out the equations for an 

i nhomogeneous warm plasma model with a plane 

stratified, unidirectional magnetic field.

Using only these equations, the most general case 

of wave propagation in the direction of the non­

uniformity was constructed, without restriction to 

low beta plasmas or non-zero wavevector along the 

equilibrium magnetic field.
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The resulting second order ODE describing the 

fluid velocity is found to have 4 singularities, two 

of which can have a profound effect on the nature of 

the Alfven resonant layer, in that their presence 

excludes the possibility of wave motion reaching the 

Alfven resonant layer.

Finally, the contrasting results of using 

parameterised dispersion relations to describe wave 

motion serve as a warning of the restricted validity 

of such theories.

- 122 -



-123-

+BOOT =

-ROOT =  " "
FiGrURE 6-1

2

0
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■Chapter YII Conclusions and Possible Future Work

Conclusions

This thesis has been concerned mainly with the 

rigorous description of wave propagation in non- 

uniform media, in particular, with the analysis of 

linear mode conversion in an inhomogeneous plasma.

Most theoretical approaches to mode conversion 

have relied on the accuracy of the spatially 

dependent dispersion relation as a means of deriving 

the behaviour of waves in a mode conversion region. 

We have shown that this is not an acceptable general 

technique, by supplying explicit examples where this 

method fails to recover the characteristics derived 

from rigorous analysis. The waveguide of varying 

cross-section and the warm plasma model are prime 

evidence against using reverse Fourier transform 

techniques in such circumstances.

The main difficulty in assessing the accuracy of 

the various mode conversion theories and their

predictions has been that they are applied to wave 

propagation examples which are extremely complicated, 

and in which a rigorous analytic solution is

impratical. Since numerical models are not yet

sufficiently sophisticated to predict mode conversion
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coefficients for realistic tokamak simulations, we 

can only analyse the accuracy of such theoretical 

work by critical comparison with simpler, but more 

rigorous, examples.

This thesis has presented several such cases, and 

the conclusion must be that the three main theories 

of mode conversion depend too much on simple 

assumptions, and pay little regard to the actual 

effects of the inhomogeneities. By including 

parameter gradients. Chapter VI reworks special cases 

in mode conversion to show how the coupling potential 

arises naturally and self-consistently.

It cannot be emphasised too strongly that the 

accuracy of any asymptotic solution of a wave problem 

is crucially dependent on knowing the exact wave 

potential in the interaction region. Thus theories 

which postulate approximate scattering potentials and 

then embark on asymptotic expansions may yield 

seriously inaccurate results (consider the waveguide 

problem, for example).

Moving on to the warm plasma model, it is clear 

that including the inhomogeneities at the earliest 

possible stage (that is, in the master equations for 

the model) is the only way to guarantee rigorous 

analysis.

Moreover, computer algebra is clearly one of the 

most powerful computational tools available, allowing
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very complicated and tedious analysis to be tackled 

with maximum accuracy and confidence.

The fact that analysis using REDUCE allowed a full 

study of the warm plasma model with a plane

stratified magnetic field is evidence of this, 

particularly when extra physical effects are 

discovered, such as the possibility of the Alfven 

resonance layer being inaccessible to oscillatory 

solutions of the equations.

The extra singularities in this model for general 

propagation may prove very significant in plasma 

heating schemes, particularly since most use the fast 

magnetosonic mode as the mode conversion candidate.

Future work

There are two main obstacles to progress in the 

field of mode conversion: the dependence on the Weber 

equation, and the restriction to one independent 

variable.

The former arises as a result of confining

attention to binary conversion events, which reduces 

the order of the differential to two (in this 

context). The next step is to assume linear

transition points and proceed with the asymptotic

solution via the well-known parabolic expansions.
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For more realistic cases, such as the mhd problem, 

the parabolic cylinder equation may be a poor 

comparison equation. Moreover, physical problems are 

likely to involve partial differential equations.

It may be possible to convert an approach of 

Chapter V to cope with more than one independent 

variable by extending the matrices to tensors, and 

incorporating many more cross-coupling terms.

Analysis like this may also make any numerical 

attack easier to implement and interpret, thus 

freeing further progress from impractical 

restrictions.

In addition, the q=0 singularities of the warm 

plasma model deserve much more detailed analysis. 

The concept of the Alfven resonance being trapped 

within a potential barrier is intriguing, and will 

require a numerical solution to fully exploit its 

consequences.

Again, it should be possible to exploit the power 

of computer algebra in all these endeavours, both in 

the analysis, and in the construction of computer 

codes for quantitative simulations.
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Appendii A

Calculations for the non-uniform waveguide (Chapter 
III)

For convenience, we quote the following standard 

integrals from Gradshteyn and Ryzhik {19}:

using the notation

(2.261)
X
a +-2CX-t-bj ^

C < 0  , O

(2.266)
- f - , a > 0

ôûrï̂
2a4-hK
x f ? ]

(2 .2 8 1)
l - i 5 -
J (x+p/* R

t*'’ 8k
C* (fc-if>c)t+(i>-fep+

(2 .282(1))

j x-fp  ̂ 1- (a-hp+cf^J
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(2.282(3))

(x+pXx^) t-pj +  (>-<].) - l ^
iféix

evaluation of indefinite integrals

We calculate the indefinite integral I defined in 

equation (3.9),

i

(? - - 29(nic-)cj f. a ca‘+^ta
Now by 2.282(3),

Using 2.282(1) we have

X.

so that

26 X  - c e j  ^ —  <x

Now

Thus
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Taking each integral in turn,

j% '

  _ __ f t I
~ J f s  ' J S ~

= , r - /7küc^

h
~ 'g/7Z? f Â:-'X 4 , K. >1

Finally, combining these calculations yields

e x  = iC fy\ (kI^ 4-e^y- e6+K y ) j  

- JÎ siA"'* [-

reflection and transmission coefficients

The first step is to evaluate the integral of (3-17),

-  J \ r g _  , .

As before, we have
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Again, following the procedure for I, each integral 

is evaluated in turn:

^  I — ë r

.. 8y __ r A J
Cy-eJ/R = J

= - +é©'-t+2ej

-- - A l & r  ^  H  ^&vô->2̂ ))lV

Thus we have that

where the arguments #2,- are given as

=- Z<3[i/3^ e35tt-l]

i/s = -2.© [Cf'^4 & t-

"t = [c'+^Vy-e a'-i;J

The algebra may be simplified as follows. Noting that
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then and can be written in terms of :

( ± * f  _  © ( « - 0  ( 9 ( K ‘- 0
- r - r ^

-> -̂  - !±X=_[±i!Zi^r  ̂  (I.^y
G  OVc-i)

so

The next stage is to evaluate ^ at x=0 and x=x^. 

x=0:

[L̂ ~ij -1

__ /cVl-^jV ZG-tO^
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^ C+K'-jy- [2»- --O] '"]

- 1 - 6»^']

U

x=x k -
9 ([-

o<f, •=• -1

Note that 0, by definition. Hence

=

Ô i = z e  C(-t-lĉ) ,j. '^^

= 2 ©  +-o+Ki)J _ 2,9 /’

- 1 .
Consequently,

s i-stu.--r/OCeVô-K'O-oJ*) tks+il ( Jj
(i <1 r + ^  k(fi-'('e) + i+tv ((-x'j"* / ie-C(«o«-(cj(fx-ije-K;|
k>i (x'-i)*- ^5ca' ^ ^ / - _ £
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Thus

{û-aj - k.>\

A  - Z G maM *f “I

-&<x^ I i/Js^+i^-ic^u-ey) +2S1-1

5 m ' V  - 4  -  ÎT

5ik'’A “ :))

5  =- J ^ j  ('"*-V6-k i+/tV (fwcV'"/i®-f«+0i9-(oj[(x-06)-<j'|
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expansions of the Parabolic Cylinder Functions

The Weber equation

is satisfied by the parabolic cylinder functions D^, 

which have the following asymptotic expansions {43}

Dk(ê) -  i- 6(6-1 r
2-4-2*^  J

Dwfi) -  ^  k ^
 ̂ 2 .^  & 1 j

‘ z.4.g4 J

expansion for linear eigenvalues

Note that here,

- 141 -



B

and so

'«. 2 » o : y  -

Similarly, 

1 z K<0:

'2'

Thus finally,
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expansion for linear ±J(quadratic)

Here,

di -

Assume ' - k ,  < = 0 , i>, 6/E,
Then a, - c'ô,

1 =  ^'K.

= - W 4 .

IaJ C.

. 6 .  -.’t» '*■*•'

Thus we have

•tj 3^ I (ĉ t I

^(f> -V. (i~io)^ C»f> f ~ (i'i»)‘')
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1

B

^  I -  - i / 5a.C i - a . ) ' - )

with

i _

B

t/4-

6/̂  V TT
(4k^j e

/în -1 2(fT
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Appendix £

REDUCE listing and output

The first part of this Appendix lists a computer code 

written in REDUCE 2 for the calculation of 

coefficients in the warm plasma fluid equations.

The second part gives the (edited) output of this

code, showing the calculation of the coefficients a 

b^ and d^.

The third part is an (edited) account of an

interactive session of REDUCE 3.2, used to tidy up

the algebra involved in the coefficient of the first

deriv ative.
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£grt s m

//PL12WDN JOB PL12,DIVER,CLASS=E,TIÆ=( 1,59)

// EXEC FVLG,PRINT='SYSQUT=T’

//L.LIB DD DSN=GU1. PACKAGES, DISP=3iR 

INCLUDE LIB(LISP)

//G.REDUCE W  DSN=GU1.REDUCE,DISPrSHR 

//G.LISPOUT DD SYSOUTzT 

//G.LISPIN DD *

RESTORE(REDUCE)

BEGIN NIL 

COMMENT

THIS PROGRAM TACKLES THE RHS OF THE WARM fLASMA MDDEL hfiD EQUATION 

IN CARTESIAN GEOMETRY. THE MATRIX W IS A GLOBAL ONE, WHERE THE FIRST 

TWO ROWS ARE THE VELOCITY AND MAGNETIC FIELD, AND THE REMAINING RCWS 

CONTAIN ALL THE INTERMEDIATE CALCULATIONS USED TO DERIVE THE FINAL ANSWER 

AS STORED IN ROW 12. EACH PROCEDURE IS SELF EXPLANATORY. H  IS INTENDED 

THAT THE FIRST ARGUÆNT AND THE SECOND ARGUMENT OF A VECTOR PROCEDURE 

SHOULD BE IN STRICT ORDER, FOR INSTANCE DOTGRAD(U,B,N) MEANS U.GRADB WITH 

THE ANSWER BEING WRITTEN IN THE NTH RCW OF W. $

ON NERO;

OFF ECHO;

ARRAY UXCFT(3),UYCFT(3),UZCFT(3),

DUXCFT(3) ,DUYCFT(3) ,DUZCFT(3) ,D2UZCFT(3) ;

MATRIX Q(13,3);
OPERATOR UX,UY,UZ,BO,P,RO,CA,CS,TERM,L,F,GG,QQ ;

INTEGER U1,B,PSI;
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FACTOR UX,UÏ,UZ,DF(UX(X,Y,Z),Z),DF(UY(X,Y,Z),Z),DF(UZ(X,Y,Z),Z)Î 

FACTOR DF(UX(X,Y,Z),X),DF(UX(X,Y,Z),Y),DF(UX(X,Y,Z),X,Y), 

DF(UX(X,Y,Z),X,Z),DF(UX(X,Y,Z),Y,Z)$

FACTOR DF(UY(X,Y,Z),X) ,DF(UY(X,Y,Z),Y),DF(UY(X,Y,Z),X,Y), 

DF(UY(X,Y,Z),X,Z),DF(UY(X,Y,Z),Y,Z)$

FACTOR DF(UZ(X,Y,Z),X) ,DF(UZ(X,Y,Z),Y),DF(UZ(X,Y,Z),X,Y), 

DF(UZ(X,Y,Z),X,Z),DF(UZ(X,Y,Z),Y,Z)$

U1::1;B:=2;PSI := 3;

UX:=UX(X,Y,Z);

UY:zUY(X,Y,Z);

UZ:=UZ(X,Y,Z);

BO:=BO(Z);

P:=P(Z);

RO:=RO(Z);
DF(BO,X):=DF(BO,Y):=DF(BO,X,Y):=DF(BO,X,Z):=DF(BO,Y,Z):=0;

DF(P,X):=DF(P,Y);=DF(P,X,Y):=DF(P,X,Z);=DF(P,Y,Z);=0;

DF(CA(Z),X):=DF(CA(Z),Y);=DF(CA(Z),X,Y):=

DF(CA(Z),X,Z):=DF(CA(Z),Y,Z):=0;

DF(CS(Z),X):=DF(CS(Z),Y):=DF(CS(Z),X,Y):=

DF(CS(Z),X,Z):=DF(CS(Z),Y,Z)::0;

Q(1,1):=UX;Q(1,2):=UY;Q(1,3):=UZ;

0(2,1):=BO*COS(T);Q(2,2):=BO*SIN(T) ;

PROCEDURE GRAD(F,J);

BEGIN

Q(J,1):=DF(F,X);

Q(J,2):=DF(F,Y);

0(J,3):=DF(F,Z);

RETURN;
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END;

PROCEDURE DIV(N);
BEGIN

DIV:=DF(Q(N,1),X) + DF(Q(N,2),Y) + DF(Q(N, 3), Z) ;
RETURN DIV;

END;

PROCEDURE DOT(M,N);

BEGIN

DOT:= FOR J: = 1:3 SUM ( Q(M,J)»Q(N,J) );

RETURN DOT;

END;

PROCEDURE DOTGRAD(M,N,J);

BEGIN

FOR K:=1:3 DO Q(J,K):=Q(M,1)«DF(Q(N,K),X) + Q(M,2)»DF(Q(N,K),Y)

+ Q(M,3)*DF(Q(N,K),Z);

RETURN;

END;

% WE NCW LOAD THE ENTIRE Hid EQUATION INTO THE CODE. $

ON RAT,DIV;

BSQ := DOT (B,B) / 2 $

GRAD ( BSQ,4 ) ; % GRAD (- P) IN ROW 4 $

DOTGRAD ( B, U1, 5 ) ; % B . GRAD U IN ROW 5 $

DOTGRAD ( U1, B, 6 ) ; % U . GRAD B IN ROW 6 $

FOR J: = 1:3 DO Q( PSI, J ) := Q(5,J) - ( Q(6,J) + DIV (U1)»Q(B,J) ) $ 

% QUANTITY PSI NOW IN HOW IDENTIFIED BY INTEGER PSI=7 $

XTERM2 :z GA*P»DIV ( U1 ) - DOT (U1, 4) - DOT ( B, PSI ) $

TERM2 := GA»P»DIV(U1) - DOT( U1,4) - DOT ( B, PSI ) $

%TERM2 := ( GA*P + DOT(B,B) )»DIV(U1) - DOT (B,5) $
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GRAD (TERM2, 8) ; % 1ST MAJOR TERM IN RCW 8 $

DOTGRAD ( B, PSI, 9 ); % B . GRAD PSI IN ROW 9 $

DOTGRAD ( PSI, B, 10 ); % PSI . GRAD B IN ROW 10 $

% WE ARE READY TO CONSTRUCT THE ENTIRE MID EQUATION & STORE IN RCW 13 $ 

FOR J:= 1 : 3 DO 

BEGIN

Q(13,J) := Q(8,J)/R0 + Q(9,J)/R0 + Q(10,J)/RO

+ Q(U1,J)«W«2 $

WRITE Q(13,J):=Q(13,J);
END $

% NCW MAKE A FEW SIMPLIFICATIONS : DEFINE THE ALFVEN AND SOUND SPEEDS, 

AND FOURIER TRANSFORM IN X,Y... $

% FOR ALL Z LET BO(Z) = CA(Z)«(RO(Z)«( 1/2)) ;

% FOR ALL Z LET P(Z) = R0(Z)»CS(Z)«2 / GA;

DF(UX,X):= I*KX*UX $

DF(UY,X):= I*KX*UY$

DF(UZ,X):= I»KX»UZ$

DF(UX,Y):= I»KY»UX$

DF(UY,Y):= I»KY*UY$

DF(UZ,Y):= I*KY*UZ$

% —    ;

FOR J: = 1:3 DO WRHE Q(13,J) := Q(13,J) $
%------------------------------------------------------------------- ;

% NOW SPLIT OFF THE VARIOUS COEFFICIENTS OF THE DERIVATIVES OF THE 

VARIOUS COEFFICIENTS. ;

FACTOR CS(Z), CA(Z)$ ON ALLFAC$

% NOW INITIALISE ALL THE FOLLCWING VARIABLES TO ZERO, SO THAT THEY 

WILL NOT APPEAR IN THE OUTPUT UNLESS THEY ARE RESET: $
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UXD0:=UXD1:=UXD2:=UYD0:=UYD1:=UyD2:rUZD0:=UZD1:=UZD2:= 0$

DUXD 0 : =DUXD1 : =DUXD2 : =DUYDO : zDUYD 1 : zDUYD2 : zDUZDO : zDUZD 1 : zDUZD2 : z 0$ 

D2UXD 0 : =D2UXD 1 : zD2UXD2 : zD2UYD0 : zD2UYD 1 : zD2UYD2 : z 

D2UZD0:zD2UZD1:zD2UZD2:z 0$

MATCH K X **2  = K»»2 -  KY»»2 $

FOR J :z  1 : 3 DO BEGIN

COEFF ( Q( 13,J), U X (X ,Y ,Z ), UXD )$ UXCFT(J) ;=  UXD1

COEFF ( Q (T 3 ,J ) ,  U Y (X ,Y ,Z ), UYD )$ UYCFT(J) := UYD1

COEFF ( 0(13,J ) ,  U Z (X ,Y ,Z ) , UZD )$  UZCFT(J) := UZD1

COEFF ( Q (1 3 ,J ) ,  D F (U X (X ,Y ,Z ),Z ),D U X D )$  DUXCFT(J):= DUXD1;

COEFF ( Q(13,J), DF(UY(X,Y,Z),Z),DUYD)$ DUYCFT(J):z DUYD1;

COEFF ( Q(13,J), DF(UZ(X,Y,Z),Z),DUZD)$ DUZCFT(J):= DUZD1;

COEFF ( Q (1 3 ,J ) ,  D F (U Z (X ,Y ,Z ),Z ,2 ),D 2 U X D )$  D2UZCFT(J):= D2UXD1;

WRITE U XC FT(J):=U XC FT(J);

WRITE U Y C FT(J):zU Y C FT(J);

WRHE U ZC FT(J):=U ZC FT(J);

WRITE DUXCFT(J):=DUXCFT(J)

WRITE DUYCFT(J):zDUYCFT(J)

WRCTE DUZCFT(J):zDUZCFT(J)

WRITE D2UZCFT(J):zD2UZCFT(J);

END;

$
NOW MAKE THE NECESSARY CANCELLATIONS IN ORDER TO GENERATE COMPLETELY 

THE WARM fLASMA ODES
$

MATCH B0(Z)«*2 z R0(Z)«CA(Z)«2;

MATCH P(Z) z R0(Z)*CS(Z)**2 / GA;

FOR ALL Z LET DF(P(Z),Z) z -CT«RO(Z);
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FOR ALL z LET DF(BO(Z),Z) = CT»RO(Z)/BO(Z);

D0:= UZCTT(3)$ D1:= DUZCFT(3)$ D2:= D2UZCFT(3)$

D3:= UXCFT(3)$ D4:= DUXCFT(3)$

D5:= UYCFT(3)$ D6:= DUYCFT(3)$

OFF DIV, RAT $ ON ALLFAC, GCD $

KY:=0; K:=KX ;% « « « « « « « < « «  SPOT THE SIMPLIFICATION $

% CALCULATE FF, GG EXPLICITLY AND MAKE THE SUBSTITION: $

A0: = ‘UXCFT(1)$ A1 := UYCFT(I) $ A2:= DUZCPT(I) $

BBC := UYCFT(2) $ BB1 := UXCFT(2) $ BB2 := DUZCFT(2) $

WRCTE AO:=AO; WRCTE A1:=A1; WRCTE A2:=A2;

WRCTE BBOirBBO; WRCTE BB1:=BB1; WRCTE BB2:=BB2;

WRCTE DO:=DO; WRCTE D1:=D1; WRITE D2:=D2; WRCTE D3:=D3;

WRCTE D4:=D4; WRCTE D5:=D5; WRITE D6:=D6;

% = = = = = = = =

ON ECHO;

FF := ( A0*BB2 - A2*BB1) / ( A2*BB0 - A1«BB2 );

GG ;= A2 / ( AO + A1»FF );

% NCW SPECIFY THE SUBSTITUTIONS TO BE MADE BEFORE DEFINING THEM

EXPLICITLY: $

OFF GCD; FACTOR CT, CA(Z), CS(Z), DF(CA(Z),Z), DF(CS(Z),Z);

% DF(RO(Z),Z) := -CT»RO(Z)/(CS(Z)«2) ;

SECOND := D2 - D4»GG - D6«FF*GG;

H:= NUM(GG); QQ:= DEN(GG); J := WM( FF*GG);

FIRSTA := D1*QQ - (H«D3 + DF(H,Z)*D4 + J*D5 + DF(J,Z)»D6) ;

FIRSTB := H«D4 + J*D6 ;

ZEROTH := DO;
% NOW MAKE IHE ALTERNATIVE SUBSTITUTION WHICH ELIMINATES DF(CS**2,Z)
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WRT CT:

/» END OF JOB
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part iMQ

COMMENT

THIS PROGRAM TACKLES THE RHS OF THE

WARM FLASMA MDDEL MID EQUATION

IN CARTESIAN GEOMETRY. THE MATRIX W

IS A GLOBAL ONE, WHERE IHE FIRST

TWO RCWS ARE IHE VELOCITY AND MAGNETIC FIELD,

AND THE REMAINING FDWS

CONTAIN ALL THE INTERMEDIATE CALCULATIONS

USED TO DERHE IHE FINAL ANSWERr

AS STORED IN ROW 12. EACH PROCEDURE IS SELF EXPLANATORY.

n  IS INTENDED THAT THE FIRST ARGUMENT AND THE

SECOND ARGUMENT OF A VECTOR PROCEDURE

SHOULD BE IN STRICT ORDER, FOR INSTANCE

DOIGRAD(U,B,N) MEANS U.GRADB WCTH

THE ANSWER BEING WRITTEN IN IHE NTH RCW OF W. $

ON NERO;

OFF ECHO;

U1 := 1

B := 2

PSI := 3

UX := UX(X,Y,Z)

UY := UY(X,Y,Z)

UZ := UZ(X,Y,Z)

BO := BO(Z)

P := P(Z)
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RO := RO(Z)

0(1,1) := UX(X,Y,Z)

0(1,2) :z UY(X,Y,Z)

0(1,3) := UZ(X,Y,Z)

0(2,1) ;= COS(T)»BO(Z)

0(2,2) := SIN(T)*BO(Z)

2 (-1)
0(13,1) := UX(X,Y,Z)»W + DF(UY(X,Y,Z),X,Y)»GA»RO(Z) »P(Z) + DF(

(-1) 2 (-1)
UZ(X,Y,Z),X,Z)*(GA»RO(Z) »P(Z) + SIN(T) •RO(Z) »B0 

2 (-1)
(Z) ) - DF(UZ(X,Y,Z),Y,Z)*SIN(T)»œS(T)»RO(Z) »B0( 

2 2 (-1) 2 

Z) + DF(UX(X,Y,Z),Y,2)«SIN(T) •RO(Z) »BO(Z) - DF(UY

(-1) 2

(X,Y,Z),Y,2)*SIN(T)»œS(T)«R0(Z) •BO(Z) - DF(UY(X,Y,

(-1) 2

Z),X,2)»SIN(T)»œS(T)»R0(Z) »BO(Z) + DF(UX(X,Y,Z) ,X,

(-1) 2 ( 
2)»GA»R0(Z) »P(Z) + DF(UX(X,Y,Z),X,2)«SIN(T) •RO(Z)

-1) 2 

»BO(Z)

2 (-1)

0(13,2) := UY(X,Y,Z)*W + DF(UX(X,Y,Z),X,Y)«GA»RO(Z) *P(Z) - DF(

(-1) 2

UZ(X,Y,Z),X,Z)»SIN(T)«COS(T)«RO(Z) *BO(Z) + DF(UZ(X,

(-1) 2 (-1) 2

Y,Z),Y,Z)«(GA*RO(Z) »P(Z) + COS(T) •RO(Z) *BO(Z))
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(-1) 2

- DF(UX(X,Y,Z),Y,2)»SIH(T)»C0S(T)«R0(Z) »B0(Z) + DF

(-1)
(UY(X,Y,Z),Y,2)*GA*R0(Z) »P(Z) + DF(UY(X,Y,Z),Y,2)«

2 (-1) 2 2 

COS(T) «ROCZ) *BO(Z) + DF(UY(X,Y,Z),X,2)*œS(T) »R0( 

(-1) 2 (_1 

Z) »BO(Z) - DF(UX(X,Y,Z),X,2)»SIN(T)»œS(T)»R0(Z)

) 2 

•BO(Z)

2 (-1) 
0(13,3) := UZ(X,Y,Z)*W + DF(UZ(X,Y,Z),Z)»(DF(P(Z),Z)*GA*RO(Z)

2 (-1)

+ 2*DF(B0(Z),Z)»SIN(T) •RO(Z) •BO(Z) + 2*DF(B0(Z) 

2 (-1)

,Z)»COS(T) »RO(Z) »BO(Z)) + DF(UX(X,Y,Z),X)*(DF(P( 

(-1) 2 (-1) 
Z),Z)»GA»RO(Z) + 2»DF(B0(Z),Z)»SIN(T) »RO(Z) » 

BO(Z)) - 2»DF(UX(X,Y,Z),Y)»DF(B0(Z),Z)»SIN(T)»œS(T)» 

(-1) (-1)
RO(Z) »BO(Z) + DF(UX(X,Y,Z),X,Z)»(GA»RO(Z) *P(Z)

2 (-1) 2 

+ SIN(T) •RO(Z) »BO(Z) ) - DF(UX(X,Y,Z),Y,Z)«SIN(

(-1) 2
T)*COS(T)»RO(Z) »BO(Z) - 2»DF(UY(X,Y,Z),X)»DF(BO(Z),

(-1)
Z)»SIN(T)»COS(T)»RO(Z) »BO(Z) + DF(UY(X,Y,Z),Y)*(DF(P 

(-1) 2 (-1)
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(Z),Z)*GA»RO(Z) + 2»DF(BO(Z),Z)»COS(T) »RO(Z)

(-1)
•BO(Z)) - DF(UY(X,Y,Z),X,Z)»SIN(T)»COS(T)»RO(Z) •

2 (-1) 2 

BO(Z) + IF(UY(X,Y,Z),Y,Z)»(GA*RO(Z) »P(Z) + COS(T) * 

(-1) 2

RO(Z) »BO(Z) ) + 2»DF(UZ(X,Y,Z),X,Y)«SIN(T)«œS(T) 

(-1) 2 2 (-1) 
•RO(Z) *BO(Z) + DF(UZ(X,Y,Z),Y,2)*SIN(T) »RO(Z) » 

2 2 (-1) 2 

BO(Z) + DF(UZ(X,Y,Z),X,2)»C0S(T) *RO(Z) »BO(Z) + DF

(-1)

(UZ(X,Y,Z),Z,2)»GA»R0(Z) »P(Z) + DF(UZ(X,Y,Z),Z,2)«

2 (-1) 2 2 

SIN(T) *RO(Z) »BO(Z) + DF(UZ(X,Y,Z),Z,2)»œS(T) »R0( 

(-1) 2

Z) »BO(Z)

2 2 2 (-1) 2 2 

Q(13,1) := UX(X,Y,Z)«(W - KY »SIN(T) »RO(Z) »BO(Z) - KX *GA*RO 

(-1) 2 2 (-1) 2 

(Z) »P(Z) - KX »SIN(T) »RO(Z) »BO(Z) ) + UY(X,Y

2 (-1) 2 

,Z)»(KY *SIN(T)»œS(T)»RO(Z) »BO(Z) - KY*KX*GA»RO(Z) 

(-1) 2 (-1) 2 
•P(Z) + KX *SIN(T)*COS(T)*RO(Z) »BO(Z) ) +

(-1) 2

DF(UZ(X,Y,Z),Z)»( - I»KY»SIN(T)*COS(T)»RO(Z) *BO(Z)

(-1) 2 (-1)
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+ I*KX*GA»RO(Z) »P(Z) + I*KX*SIN(T) »RO(Z) «B0 
2

(Z) )

2 (-1) 2 

0(13,2) := UX(X,Y,Z)*(KY *SIN(T)»COS(T)*RO(Z) •BO(Z) - KY*KX*GA

(-1) 2 (-1 ) 2 

»RD(Z) »P(Z) + KX »SIN(T)»œS(T)»RO(Z) •BO(Z) ) 

2 2 (-1) 2 2 

+ UY(X,Y,Z)*(W - KY •GA»RO(Z) »P(Z) - KY *COS(T) # 

(-1) 2 2 2 (-1) 2 

RO(Z) »BO(Z) - KX »œS(T) »RO(Z) •BO(Z) ) + DF

(-1) 2 

(UZ(X,Y,Z),Z)»(I»KY«GA»RO(Z) »P(Z) + I*KY*œS(T) »R0( 

(-1 ) 2 (-1 ) 2 

Z) *BO(Z) - I«KX«SIN(T)«COS(T)»RO(Z) »BO(Z) )

(-1)

0(13,3) := UX(X,Y,Z)»( - 2*I*KY»DF(BO(Z),Z)*SIN(T)«œS(T)»RO(Z)

(-1)

•BO(Z) + I*KX»DF(P(Z),Z)*GA*RO(Z) + 2»I«KX»DF(B0( 

2 (-1)

Z),Z)»SIN(T) •RO(Z) »BO(Z)) + UY(X,Y,Z)«(I»KY»DF(P 

(-1) 2 
(Z),Z)»GA*RO(Z) + 2*I»KY»DF(BO(Z),Z)»COS(T) *RO(Z

(-1) ( 
) »BO(Z) - 2»I«KX*DF(BO(Z),Z)»SIN(T)»COS(T)»RO(Z) 

_1 ) 2 2 2 (-1 ) 
•BO(Z)) + UZ(X,Y,Z)»(W - KY »SIN(T) »RO(Z) «BO 

2 (-1) 2 2
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(Z) - 2«KÏ*KX»SIN(T)»C0S(T)«R0(Z) »BO(Z) - KX •

2 (-1) 2 

COS(T) »RO(Z) »BO(Z) ) + DF(UX(X,Y,Z),Z)»( - I*KY*

(-1) 2 (-1) 
SIN(T)*COS(T)»RO(Z) *BO(Z) + I»KX*GA»RO(Z) «P(

2 (-1) 2

Z) + I*KX«SIN(T) »RO(Z) »BO(Z) ) + DF(UY(X,Y,Z),Z) 

(-1) 2 (-1) 2 

•(I*KY*GA*RO(Z) *P(Z) + I»KY*COS(T) »RO(Z) *BO(Z)

(-1) 2

- I*KX*SIN(T)»COS(T)*RO(Z) »BO(Z) ) + DF(UZ(X,Y,Z)

(-1) 2 

,Z)»(DF(P(Z),Z)»GA»RO(Z) + 2»DF(B0(Z),Z)«SIN(T) »R0(

(-1) 2 (-1)
Z) »BO(Z) + 2«DF(BO(Z),Z)«COS(T) »RO(Z) *BO(Z

(-1)
)) + DF(UZ(X,Y,Z),Z,2)*GA«R0(Z) »P(Z) + DF(UZ(X,

2 (-1) 2

Y,Z),Z,2)»SIN(T) »RO(Z) »BO(Z) + DF(UZ(X,Y,Z),Z,2)»

2 (-1) 2 

COS(T) »RO(Z) *BO(Z)

2 (-1) 2 2 (-1) 2 

UXCFT(I) - K *GA*RO(Z) »P(Z) - K »SIN(T) *RO(Z) *BO(Z)

2 2 (-1)

+ W + KY »GA»RO(Z) »P(Z)

2 (-1) 2 (-1)
UYCFT(I) := K •SIN(T)»COS(T)»RO(Z) »BO(Z) - KY*KX*GA»RO(Z) *

P(Z)
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(-1) 2
DUZCFT(I) := - I*KY»SIN(T)»COS(T)»RO(Z) »BO(Z) + I*KX*GA*RO(Z) 

(-1) 2 (-1) 2 

»P(Z) + I»KX»SIN(T) »RO(Z) »BO(Z)

^ (-1 ) 2  (-1) 
UXCFT(2) := K *SIN(T)*COS(T)*RO(Z) *BO(Z) - KY*KX«GA»RO(Z) * 

P(Z)

2 2 (-1) 2 2 2 (-1)' 

UYCFT(2) := - K *COS(T) »RO(Z) »BO(Z) + W - KY *GA*RO(Z) * 

P(Z)

(-1) 2 (-1) 2

DUZCFT(2) := I»KY*GA»RO(Z) »P(Z) + I*KY*COS(T) *RO(Z) »BO(Z)

(-1) 2 

- I«KX»SIN(T)»œS(T)»RO(Z) *BO(Z)

(-1)

UXCFT(3) := - 2»I«KY*DF(B0(Z),Z)*SIN(T)»(X)S(T)«RO(Z) *BO(Z) + I

(-1)

»KX*DF(P(Z),Z)»GA»RO(Z) + 2«I«KX*DF(B0(Z),Z)»SIN(T) 

2 (-1)

*RO(Z) *BO(Z)

(-1)

UYCFT(3) := I»KY»DF(P(Z),Z)»GA*RO(Z) + 2*I»KY»DF(B0(Z),Z)«COS(T 

2 (-1)
) *RO(Z) *BO(Z) - 2*I*KX*DF(BO(Z),Z)*SIN(T)*COS(T)* 

(-1)

RO(Z) *BO(Z)

2 2 (-1) 2 2 2 2 

UZCFT(3) := - K *CX)S(T) *RO(Z) *BO(Z) + W - KY *SIN(T) *RO(Z)
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(-1) 2 2 2 (-1) 2
•BO(Z) + KY *COS(T) »RO(Z) *BO(Z) - 2»KY*KX*

(-1) 2 

SIN(T)*COS(T)»RO(Z) *BO(Z)

(-1) 2

DUXCFT(3) := - I*KY*SIN(T)»COS(T)»RO(Z) »BO(Z) + I*KX%A*RO(Z) 

(-1) 2 (-1) 2 

•P(Z) + I*KX»SIN(T) »RO(Z) »BO(Z)

(-1) 2 (-1) 2

DUYCFT(3) := I»KY*GA»RO(Z) »P(Z) + I*KY»œS(T) »RO(Z) *BO(Z)

(-1) 2

- I<?(X»SIN(T)»œS(T)»RO(Z) »BO(Z)

(-1) 2 ( 

DUZCFT(3) := DF(P(Z),Z)»GA»RO(Z) + 2»DF(B0(Z),Z)»SIN(T) »RO(Z)

-1) 2 (-1)
•BO(Z) + 2»DF(B0(Z),Z)»œS(T) »RO(Z) *BO(Z)

(-1) 2 (-1) 2 

D2UZCFT(3) := GA»RO(Z) »P(Z) + SIN(T) »RO(Z) *BO(Z) + COS(T) 

2 (-1) 2 

•RO(Z) »BO(Z)

K := KX

2 2 2 2 2 2
AO := - CS(Z) *KX - CA(Z) »KX »SIN(T) + W 

2 2

A1 := CA(Z) «KX *SIN(T)«œS(T)
2 2 2 

A2 := CS(Z) «I«KX + CA(Z) «I*KX*SIN(T)

2 2 2 2
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BBO := - CA(Z) »KX *COS(T) + W

2 2

BB1 := CA(Z) »KX »SIN(T)»œS(T)

2

BB2 := - CA(Z) *I»KX»SIN(T)»COS(T)

2 2 2 2 

DO := - CA(Z) «KX »COS(T) + W

2 2

D1 := Cr*( - GA + 2«SIN(T) + 2»C0S(T) )

2 2 2 2 

D2 := CS(Z) + CA(Z) «(SIN(T) + COS(T) )

2

D3 := I»KX»CT»( - GA + 2»SIN(T) )

2 2 2

D4 := CS(Z) »I»KX + CA(Z) «I»KX»SIN(T)

D5 := - 2»I»KX*CT*SIN(T)»C0S(T)

2

D6 := - CA(Z) *I»KX»SIN(T)»COS(T)

FF: = (A0*BB2-A2«BB1 )/(A2*BB0-A1*BB2) ;

2 2 2 2 2 2 

FF := ( - CA(Z) »W »SIN(T)«COS(T))/( - CS(Z) *CA(Z) *KX *COS(T) +

2 2 2 2 2 

CS(Z) *W + CA(Z) »W »SIN(T) )

GG:=A2/(A0+A1»FF);

2 2 3 2 2 2 2 

GG := ( - CS(Z) »CA(Z) *I*KX *COS(T) + CS(Z) »I*W *KX + CA(Z) »I«W 

2 2 2 2 4 2 2 2 2

*KX*SIN(T) )/(CS(Z) *CA(Z) *KX ♦COS(T) - CS(Z) *W *KX - (
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2 2 2 2 2 4 

CA(Z) »W *KX )«(SIN(T) + OOS(T) ) + W )

% NCW SPECIFY TOE aJBSTITUTIONS TO BE MADE BEFORE DEFINING TO EM 

EXPLICITLY: $

OFF GCD;

FACTOR CT,CA(Z),CS(Z),DF(CA(Z),Z),DF(CS(Z),Z);

NCW COÆ TOE COEFFICIENTS OF THE NTH DERIVATIVE: ‘

SECOND:=D2-D4»GG-D6»FF«GG;

4 2 4  4 4 2 2  2

SECOND := (CA(Z) *CS(Z) «KX »COS(T) - (CA(Z) «W *KX »COS(T) )»(SIN 

2 2 2 2 2 2 2 

(T) + OOS(T) ) - 2»CA(Z) »CS(Z) *W «KX *COS(T) + CA

2 4  2 2 2 4  2 2

(Z) «W »(SIN(T) + COS(T) ) + CS(Z) «W )/(CA(Z) *CS(Z) * 

4 2 2 2 2 2 2 

KX »COS(T) - (CA(Z) «W «KX )«(SIN(T) + COS(T) ) - CS

2 2 2 4

(Z) «W «KX + W )

H:=NUM(GG);
2 2 3 2 2 2 2

H := - CA(Z) *CS(Z) »I»KX »COS(T) + CA(Z) »I«W «KX»SIN(T) + CS(Z

2 2 

) »I«W «KX 

QQ:=DEN(GG);
2 2 4  2 2 2 2  2

QQ := CA(Z) »CS(Z) *KX »COS(T) - (CA(Z) *W *KX )*(SIN(T) + COS(T)
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2 2 2 2 4
) - CS(Z) «W «KX + W 

J:=NUM(FF«GG);

2 2

J := - CA(Z) «I«W *KX«SIN(T)«COS(T) 

FIRSTA:=D1«QQ-(H«D3+DF(H,Z)«D4+J«D5+DF(J,Z)»D6);

2 2 4  4 2 2 2  2

FIRSTA ;= 2«CT«CA(Z) »CS(Z) «KX «COS(T) + CT»CA(Z) «W «KX «COS(T)

2 2 2 2 2 
«(GA - 2«SIN(T) - 2«C0S(T) ) - 2»CT«CS(Z) «W «KX «COS(T) 

2 4 2 2 4
+ Cr«W «( - GA + 2«SIN(T) + 2«C0S(T) ) - 2«CA(Z) «CS(Z 

4 2 2 3 2

)«DF(CS(Z),Z)«KX «SIN(T) «COS(T) - 2«CA(Z) «CS(Z) «DF(CA 

4 2 2 3 2 2

(Z),Z)«KX «SIN(T) «COS(T) + 2«CA(Z) «DF(CA(Z),Z)»W «KX « 

2 2 2 2 3 

SIN(T) «(SIN(T) + œS(T) ) - 2«CA(Z) «CS(Z) «DF(CS(Z),Z) 

4 2 2 2 2 2 

«KX «COS(T) + 2«CA(Z) «CS(Z)«DF(CS(Z),Z)«W «KX «SIN(T)

4 4 2

_ 2«CA(Z)«CS(Z) «DF(CA(Z),Z)«KX *COS(T) + 2«CA(Z)«CS(Z) 

2 2 2 2 3 2

«DF(CA(Z),Z)«W «KX «SIN(T) + 2«CS(Z) «DF(CS(Z),Z)«W «KX

2

FIRSTB:=H«D4+J«D6;
l| 2 4  2 2 4 2 2

FIRSTB := CA(Z) «CS(Z) «KX «SIN(T) «COS(T) - (CA(Z) «W «KX «SIN(T)
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2 2 2 2 4 4 2 
)»(SIN(T) + œS(T) ) + CA(Z) »CS(Z) *KX *COS(T) - 2

2 2 2 2  2 4 2 2

»CA(Z) *CS(Z) *W «KX *SIN(T) - CS(Z) «W «KX 

ZEROTH:=D0;

2 2 2 2
ZEROTH := - CA(Z) «KX »COS(T) + W

% NCW MAKE THE ALTERNATIVE SUB^ITUTION WHICH ELIMINATES DF(CS»*2 

,Z) WRT CT: ;

%DF(CS(Z),Z) := (1-GA)«CT/(2*CS(Z));

♦»« END OF DATA
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Dart three

REDUCE 3.2, 15-Apr-85 ...

1:

d1:= ct*(2-ga);

D1 := CT«( - GA + 2)

2:

d2:= cs(z)««2 + ca(z)«*2;

Declare CS operator ? (Y or N)

y

Declare CA operator ? (Y or N)

y

2 2 
D2 := CA(Z) + CS(Z)

3:

d3 :=i»kx«ct*(2«sin(t)*»2 - ga);

2

D3 := I»CT«KX«(2»SIN(T) - GA)

4:

d4:= i«kx*(ca(z)««sin(t)«*2 + cs(z)«*2);

(2«SIN(T)) 2

D4 := I«KX«(CA(Z) + CS(Z) )

5:

clear d4;

6:
d4:= i«kx»(ca(z)«»2»sin(t)«*2 + cs(z)«2);

2 2 2
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D4 := I«KX«(SIN(T) »CA(Z) + CS(Z) )

7:

d5:=-2«i«kx*ct«sin(t)*cos(t) ;

D5 := - 2»C0S(T)«SIN(T)«I«CT*KX

1

8:

d6:= -cos(t)«sin(t)*ca(z)*«2«i*kx;

2

D6 := - COS(T)»SIN(T)«CA(Z) »I«KX 

9:

h:= i*kx*w««2(ca(z)«2«sin(t)«*2 + cs(z)»«2) 

-i«kx««3*cs(z)*»2«ca(z)«*2«cos(t)«2;

H:=I«KX«W«*2(CA(Z)««2»SIN(T)«2+CS(Z)«»2)-I«KX«3*CS(Z)«2»CA(Z)«»2»

C0S(T)«2;

«*«** Missing Operator 

10:
-i«kx»«3*cs(z)«2«ca(z)«*2*cos(t)«2;

2 2 2 3

- COS(T) »CA(Z) *CS(Z) «I«KX 

1 1 :
h:= i»kx»w««2«(ca(z)«2*sin(t)«*2 + cs(z)«2) 

-i«kx»*3«cs(z)««2«ca(z)«»2*cos(t)«2;
2 2 2 2 2 2 2 

H := I«KX*( - COS(T) *CA(Z) «CS(Z) «KX + SIN(T) »CA(Z) «W +

2 2 
CS(Z) «W )

12:
j:=-ca(z)»»2«i*w««2»kx«sin(t)«cos(t);
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2 2

J := - COS(T)»SIN(T)«CA(Z) »I«W «KX 

13:

q:= w**4 - w»»2*kx«2*(cs(z)*«2+ca(z)«2)+(kx»«2«cs(z)«ca(z)»cos(T))«2;

2 2 2 4 2 2 2  2 2 2 4
Q := COS(T) »CA(Z) *CS(Z) »KX - CA(Z) «W *KX - CS(Z) «W «KX + W 

14:

dl;

CT»( - GA + 2)

15:

d2;

2 2 
CA(Z) + CS(Z)

16:

dS;
2

I*CT*KX*(2*SIN(T) - GA)

17:

d4;

2 2 2 
I*KX*(SIN(T) *CA(Z) + CS(Z) )

18:

d5;
- 2*C0S(T)*SIN(T)*I*CT*KX

19:

d6;
2

- COS(T)»SIN(T)«CA(Z) *I*KX
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20:

h;

2 2 2 2  2 2 2  2 2  
I*KX*( - COS(T) *CA(Z) *CS(Z) *KX + SIN(T) *CA(Z) *W + CS(Z) *W ) 
2 1:

j;

2 2

- COS(T)»SIN(T)»CA(Z) »I*W «KX 

22:

q;

2 2 2 4  2 2 2  2 2 2  4

COS(T) »CA(2) »CS(Z) «KX - CA(Z) «W «KX - CS(Z) «W «KX + W 

23:

firsta:= d1«q - (h«d3+df(h,z)«d4+j«d5+df(j,z)«d6);

2 2 3 2 4

FIRSTA := - 2«DF(CA(Z) ,Z)«COS(T) «SIN(T) «CA(Z) «CS(Z) «KX + 2«DF

2 2 3 2 2
(CA(Z),Z)«œS(T) «SIN(T) «CA(Z) «W «KX - 2»DF(CA(Z) ,Z)«

2 4 4 4 3

COS(T) «CA(Z)«CS(Z) «KX + 2«DF(CA(Z),Z)«SIN(T) «CA(Z) «

2 2 2 2 2 2 
W «KX + 2«DF(CA(Z),Z)«SIN(T) «CA(Z)«CS(Z) «W «KX - 2«DF 

2 2 4 4

(CS(Z),Z)«œS(T) «SIN(T) «CA(Z) «CS(Z)«KX - 2*DF(CS(Z),Z 

2 2 3 4 2

)»COS(T) «CA(Z) «CS(Z) «KX + 2«DF(CS(Z),Z)«SIW(T) «

2 2 2 3 2 2 
CA(Z) «CS(Z)«W «KX + 2«DF(CS(Z),Z)«CS(Z) «W «KX - 2«
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2 2 2 2 4 2 2

COS(T) »SIN(T) *CA(Z) *CS(Z) »CT»KX + 2*C0S(T) *SIN(T) * 

2 2 2 2 2 2 4 

CA(Z) «W *CT«KX + 2«C0S(T) *CA(Z) *CS(Z) »CT»KX + 2* 

4 2 2 2  2 2 2  2

SIN(T) *CA(Z) «W »CT«KX - SIN(T) *CA(Z) «W «GA»CT«KX + 

2 2 2 2 2 2 2 
2*SIN(T) *CS(Z) «W «CT«KX + CA(Z) «W «GA»CT«KX - 2* 

2 2 2  2 2 2 4 4 
CA(Z) «W «CT«KX - 2*CS(Z) «W «CT»KX - W «GA«CT + 2«W » 

CT

24: 

on factor;

25:

firsta;

2 2 4 2

- (2*(((CS(Z)*KX + W)*(CS(Z)*KX - W)«SIN(T) »CA(Z) + CS(Z) »KX )* 

2 4 2 2 2 2 2

COS(T) - SIN(T) *CA(Z) «W - SIN(T) *CS(Z) «W )«DF(CA(Z) ,Z) 

2 2 2 
*CA(Z)*KX + 2*((CS(Z)*KX + W)*(CS(Z)*KX - W)*SIN(T) - CS(Z) * 

2 2 2 2 
KX )«COS(T) *CA(Z) *CT*KX + 2*(C0S(T)*CA(Z)*KX + W)»(COS(T)

2 2 2 
*CA(Z)*KX - W)«(SIN(T) »CA(Z) + CS(Z) )*DF(CS(Z),Z)*CS(Z)* 

2 2 2 2 2 2 
KX + (CA(Z) «GA - 2*CS(Z) )«SIN(T) *W «CT*KX - (CA(Z)*KX + W)

2 4 2 2 2
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*(CA(Z)*KX - W)»(GA - 2)*W »CT - 2»SIN(T) »CA(Z) *W *CT«KX + 2 
2 2 2 

*CS(Z) «W *CT«KX )

26:
coeffCfirsta,ct,r);

««« R1 RO are non zero 

27:

r1;

2 2 2 2 
- (2*((CS(Z)*KX + W)*(CS(Z)*KX - W)»SIN(T) - CS(Z) »KX )»COS(T) » 

2 2 2 2 2 2 2 
CA(Z) «KX + (CA(Z) *GA - 2*CS(Z) )»SIN(T) #W *KX - (CA(Z)*KX

2 4 2 2 2

+ W)*(CA(Z)*KX - W)«(GA - 2)«W - 2*SIN(T) *CA(Z) «W *KX 

2 2 2 
+ 2*CS(Z) «W «KX )

28:

saveas poly;

29:

coeffCpoly,w,rw);

*** RWO is non zero 

0 

30:
clear poly;

31:

firstb := h*d4+j*d6;
2 2 2 2 2 2 2  2 

FIRSTB := ((COS(T) *CA(Z) *CS(Z) »KX - SIN(T) *CA(Z) «W - CS(Z)

- 170 -



2 2 2 2 2 2 4

W )»(SIN(T) »CA(Z) + CS(Z) ) - COS(T) »SIN(T) *CA(Z) * 

2 2
W )*KX

32:
bye;

*** END OF RUN

- 171 -



{1} R.J. Bickerton, B.E. Keen: Proc. of the Course 

and Workshop on Basic Plasma Processes of Toroidal 

Fusion Plasmas, Varenna, 1985.

{2} D. Willson, '1 European Experiment'. Adam

Hilger, Bristol, 198I.

{3} J.H.C. Maple: Report number JET-P(84)10, 'The

JET Nuclear Fusion Project'.

{4} J.D. Lawson: Proc. PhysrSoc. B, 7Û_, 6, 1957*

{5} W.M. Stacey: 'Fusion Plasma Analysis', Wiley,

New York, 1981.

{6} J. Jacquinot: Report number JET-P(85)12,

'Heating and Current Drive Scenarios with ICRF'.

{7} H, Jeffreys: Proc. London Math. Soc. , 23., 428,

1926.
{8} L.I. Schiff: 'Quantum Mechanics', 1st Edition,

McGraw-Hill, New York, 1949.

{9} J. Heading: 'An Introduction JLû Phase Integral

Methods'̂  Methuen, London, 1962.

{10} R.B. Dingle: 'Asymptotic Expansions: their

Derivation and Interpretation'. Academic Press, 

London, 1973.

{11} J. Heading: Quart. Jour. Mech. and App. Math.,

12, 281, 1977.
{12} J. Heading: Quart. Jour. Mech. anc App. Math,,

15., 215, 1962.
{13} 'Waveguide Handbook', Edited by N. Marcuvitz,

MIT Laboratory Series, vol 10, 1st Ed., McGraw-Hill, 

New York, 1951.

- 172 -



{14} F.P. Bretherton: Proc. Roy. Soc. A, 2Û2, 555,

1 9 6 8 .
{15} N.F. Kovalev, I.M. Orlova, M.I. Petelin: 

Izvestiya Vuz. Radiofizika, 11(5), 783, 1968.

{16} A.M. Mallick, O.S. Sanyal: IEEE Trans. on

Microwave Theory and techniques, vol MTT-26C4), 243, 

1978.

{17} O.P. Moeller: 2nd US Gyrotron Conference,

Washington DC, June 1983.

{18} C.A. Coulson, A. Jeffrey: 'Waves'. 2nd

Edition, Longman, London, 1977.

{19} I.S. Gradshteyn, I.M. Ryzhik: 'Tables ^

Integrals,Series and Products'. 4th Edition, Academic 

Press, New York, 1965.

{20} T.H. Stix: 'The Theory sil Plasma Waves' .

McGraw-Hill, New York, 1962

{22} R.D. Gill: 'Plasma Phvsics ani Nuclear Fusion

Research', Academic Press, London, 1981.

{23} T.H. Stix, D.G. Swanson: 'Handbook üf Plasma

Physics', Edited by A. Galeev and R.N. Sudan, North- 

Holland, Amsterdam, Vol 1, 1983

{24} V. Fuchs, K. Ko, A. Bers: Phys. Fluids,

2&, 177, 1985.
{25}V. Fuchs, A. Bers, L. Harten: Phys. Fluids,

23., 177, 1985 (and 2928: Erratum).

{26} C.N. Lashmore-Davies, V. Fuchs, R.A. Cairns: 

Phys. Fluids, 23, 1791, 1985.

- 173 -



{27} R.A. Cairns, C.N. Lashmore-Davies, Phys. 

Fluids, 25., 1605, 1982.

{28} R.A. Cairns, C.N. Lashmore-Davies: Phys.

Fluids, 2Û, 1268, 1983.
{29} R.A. Cairns, C.N. Lashmore-Davies: Preprint CLM

P740 (submitted to Phys. Fluids, March 1985).

{30} R.A. Cairns, C.N. Lashmore-Davies, A.M. Woods:

Proc. 4th International Symposium on Heating in

Toroidal Plasmas, Vol 1, p655, Rome, 1984.

{31} D.G. Swanson, Review Article: Phys. Fluids, 28, 

2645, 1985.
{32} Y.C. Ngan, D.G. Swanson: Phys. Fluids, 22,

1920, 1977.
(33} D.G. Swanson: Phys. Fluids, 21, 926, 1978.

{34} D.G. Swanson: Nuclear Fusion, 22,949, 1980.

{35} D.J. Gambier, D.G. Swanson: Phys. Fluids, 28,

145, 1985.

{36} K. Appert, T Hellsten, J. Vaclavik, L. Villard: 

Comp. Phys. Comm., 42, 73, 1986.

{37} L. Friedland: Phys. Fluids 28, 3260, 1985.

{38} L. Friedland: Phys. Fluids 22, 1105, 1986.

{39} D.A. Diver, E.W. Laing: Proc. 8th Europhysics

Conference on Computational Physics: Computing in

Plasma Physics, Eibsee, 1986, p139-142.

{40} G.J. Morales, S.N. Antani, B.D. Fried: Phys.

Fluids, 28, 3302,1985.

- 174 -



{41} J. Heading: Jour. Nat. Bur. Stand., 65D, 595,

1961.

{42} G.M. Murphy: 'Ordinary Differential Equations

and Their Solutions', Van Nostrand, New York, I960. 

{43} E.T. Whittaker, G.N. Watson: 'Modern

Analysis', 4th Edition, Cambridge University Press, 

Cambridge, 1946.

{44} M. Abramowitz, I. A. Stegun, ' Handbook jaf

Mathematical Functions',

{45} Numerical Algorithms Group, NAGFLIB Mark 11,

1984.

{46} S.I. Braginskii: 'Reviews of Plasma Phvsics*,

2, 1-102, New York: Consultants Bureau, 1966.

{47} T.J.M. Boyd, J.J. Sanderson: 'Plasma

Dynamics', Nelson, London, 1969.

{48} G. Bateman, 'MHD Instabilities'. MIT Press,

Mass.,1980.
{49} J.P. Goedbloed: Lecture Notes on Ideal

Magnetohydrodynamics, Rijnhuizen Report 83-145. 

{50} N.J. Van Kampen, B.U. Felderhof, 'Theoretical

Methods in Plasma Phvsics', North Holland, Amsterdam, 

1967.
{51} J. Van Bladel, 'Electromagnetic Fields',

McGraw-Hill, New York, 1964.

{52} A.C. Hearn, 'REDUCE 2 User's Manual'. 2nd

Edition, University of Utah, 1973, and ' REDUCE 3..2 

User's Manual *. The Rand Corporation, Santa Monica,

1985.

-  175 -



{53} H. Grad: Proc. Nat. Acad. Sci. USA, 12, 3277,

1973.

{54} K.V. Appert, R. Gruber: Phys. Fluids, 12,1471,

1974.

{55} L. Chen, A. Hasegawa: Phys. Fluids, 12, 1399, 

1 974.

{56} J.A. Tataronis, W. Grossmann: Nuclear Fusion,

12, 66r7, 1976.

{57} B. Roberts: Solar Physics, 22,27 and 39, 1981. 

{58} R.A. Cairns: private correspondence, 22nd May, 

1 985.

{59} S.S. Moiseev, V.R. Smilyanskii, Magnitnaya 

Gidrodinamika, 1, 23, 1965.

— 176 —


