VL

Universit
s of Glasgowy

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.qgla.ac.uk/
research-enlighten@glasgow.ac.uk



http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

THE BEHAVIOUR OF AIR POCKETS IN HYDRAULIC
STRUCTURES WITH PARTICULAR REFERENCE TO
DROPSHAFT/TUNNEL BENDS

By

SAWSAN KHALID MOHAMAD HIMMO
B.Sc. (University of Baghdad) 1976

A thesis submitted to the University of Glasgow in
fulfillment of the requirements for the
Degree of Doctor of Philosophy

October 1986

Department of Civil Engineering
University of Glasgow
GLASGOW
UNITED KINGDOM

"(C) S.K.HIMMO,1986 "



ProQuest Number: 10995512

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.

ProQuest 10995512

Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 — 1346



PARENTS

IO




(i)

ACKNOWLEDGEMENTS

The author would like to express her gratitude to the Iraqi

Government for awarding a scholarship to pursue this research.

The author would like to express her grateful appreciation
to Professor H.B. Sutherland, Head of Department of Civil Engineer-

ing, for his help and encouragement.

The author is deeply grateful to Dr. D.A. Ervine for his
supervision, guidance, help and encouragement throughout the course

of this research.

Appreciation is extended to the technical staff, to Mr. A.
Gray for building the physical model and Mr. W. Henderson for his help
in carrying out the changes to the physical model during the course of
work. Thanks should also go to members of the Computer Advisory
Service for their help, and to members of the photography unit for

their help in part of this work.

The author expresses her thanks to Miss I.P. Campbell for

her excellent typing.

Finally, the author expresses her sincere thanks to her
husband, Adnan, her son, Mazin, and all her family, without whose

encouragement and support this work would not have been completed.

Sawsan K.M. Himmo
Glasgow, U.K.
October 1986



(ii)

ABSTRACT

This thesis investigates the behaviour of large air pockets
forming at the junction bend of a vertical dropshaft and a horizontal
or slightly inclined outlet tunnel. A secondary thrust of the work
concerns the behaviour of air pockets in straight pipe sections
inclined at a shallow slope both upwards and downwards from the
horizontal. These aims were achieved by constructing a physical
model of the situation and also by deriving theoretical models of
each physical situation arising. The experimental data is compared
with the derived theoretical models, and both are compared with past

research in this field.

The physical model was tested over a range of nine different
geometries. The radius of the junction bend (R'/D) was tested at
values 0.5, 1.0 and 1.5, the tunnel slope (©) was varied between
+1.5°, 0° and -1.5°, the water flow rate was varied from O to 0.04
m?/s, and the air flow rate, in the form of independent injection of

air bubbles down the dropshaft, was varied from O to 0.02 m?/s.

The ultimate aims of the work were as follows:

(a) to obtain a deeper understanding of air pocket behaviour at

vertical bends and in straight pipes.

(b) to ascertain if simplified theoretical models can be made
realistic enough to describe air pocket behaviour,
especially the chaotic behaviour of a two-phase flow at a

dropshaft/tunnel bend.

(c) to provide insight and information for the designers of such

hydraulic structures.



(iii)

In the first chapter an introduction to air presence in Civil
Engineering Hydraulic Structures is given, with reference to the
benefits and problems associated with air presence and the structures
which have experienced problems. A state-of-the-art review of past
research work on air pockets in closed conduit hydraulic structures

is given in Chapter (2).

Chapter (3) is concerned with producing theoretical models for
air pockets at the dropshaft/tunnel bend. This includes air pockets
blowing back, air pockets with a drowned jump, air pockets with a
hydraulic jump and air pockets clearing downstream from the bend.
Also, theoretical models are produced for air pockets in straight

pipes inclined above and below the horizontal.

Chapter (4) contains a description of the design of the
experimental apparatus, the instrumentation used, as well as details

of the experimental procedure.

Chapter (5) includes the experimental results for thg behaviour
of air pockets at the nine dropshaft/tunnel bend geometries tests.
The experimental results for each geometry tested are presented
graphically, covering the various flow regimes found to exist at the
bend, the depth of air pocket forming at the bend, the upper limits
of air pocket blowback up the dropshaft, the lower 1limits of air
pocket clearing downstream from the bend, as well as information on
the velocity and Froude number of flow under the air pocket forming
at the bend. A comparison is carried out between the three bend

radii used as well as the three angles of outlet tunnel.

Chapter (6) includes the results of air pockets in straight
pipes. Most of the data was obtained for air pockets rising in an
upward sloping straight pipe. The design of the experimental
apparatus permitted only a few data points to be taken for the case
of the downward sloping straight pipe, for reasons outlined in

Chapter (6).



(iv)

Chapter (7) contains the comparison between the theoretical
models and experimental data for both air pockets at the bend and in
straight pipes. Empirical equations are derived for the case of air
pockets clearing downstream from the bend, where no theoretical model
was attempted due to the flow complexities involved. A comparison
is also carried out between the author's data and theoretical models

and most of the available previous research data.

Chapter (8) includes a discussion on the findings of this work,

conclusions and suggestions for the future work.

In the broadest terms, this work shows that four stable regimes
of flow are identifiable at a dropshaft/tunnel bend and these regimes
can be represented with reasonable accuracy by theoretical models of
the flow, based on force-momentum and energy principles. The work
also shows that the bend radius (R'/D), the outlet tunnel slope (8),
the Froude number of the flow (Fry), and the ratio of air to water
(B) are all important parameters affecting whether or not an air
pocket will blow back, remain trapped at the bend or clear

downstream.

Air pocket behaviour can now be accurately predicted for the case
of upward sloping straight pipes, although further work is required

for the case of downward sloping straight pipes.
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Chapter One

INTRODUCTION TO AIR POCKET BEHAVIOUR IN
HYDRAULIC STRUCTURES

1.1 GENERAL INTRODUCTION

In many Civil Engineering Hydraulic structures there is an
interaction between the flowing water through the structure and the
adjacent air. Sometimes this interaction can be beneficial or it can

cause problems -and the alleviation of these problems can be costly.

The objective of this work is to study the interaction between
pockets of air and flowing water in closed conduits, with particular
reference to dropshaft/tunnel systems. Typical examples of
dropshaft/tunnel systems are illustrated in Fig. (1.1) and can be

used for the following purposes:

1. Diverting water from the main stream when building a dam,
where it is used later as a flood control device to reduce

the water level in the reservoir at times of high flood.

2. To transfer water from a high level to a lower level, such as
diverting a stream outside a catchment area through the
dropshaft/tunnel system to a reservoir, or transferring

water from a high reservoir to a low reservoir.

3. In the circulating water systems used in cooling water from



thermal power stations.

The interaction between the flowing water and the adjacent

air can develop in the following cases:

1. Morning-glory spillways which must be designed to have a
capacity to convey both of the design flood and its

entrained air, as in Fig. (1.1.a).

2. Vertical shafts where the falling jet of water will entrain
large quantities of air at small water discharges, as in

Fig. (1.1.b).

3. Measuring weirs that need adequate ventilation to prevent
sub-atmospheric pressures, false readings and to eliminate

surging.

4. Inverted siphons that can be damaged due to blowback of

entrained air, as in Fig. (1.1.c).

5. Long pipelines that require air release and vacuum relief

valves especially at high points in the pipeline.
6. Outlet gates that require adequate aeration to prevent the

development of low-pressures which can lead to cavitation

damaged, as.in Fig. (1.1.d).

1.2 PRESENCE OF AIR IN WATER LINES

Air present in water lines can take many forms, ranging from
minute bubbles to large air pockets. This presence can either be
beneficial or can cause problems in the water line. For each case

examples will be given with the causes of air presence in water



lines.

1

2.

1

(a)

(b)

(c)

Forms of Air in Water Lines

Air may be present in water lines in the following forms:

Minute bubbles which arise in a water line from a turbulent
action due to a falling nappe. These are generally very
small bubbles with a diameter of about 0.10 mm. Their
presence in water lines is considered to be insignificant,
because they can be removed out of the lines easily by the

flowing water.

Bubbles which arise also from the turbulent action of a
falling nappe, hydraulic jump, and air separation at low
pressures. The diameter of bubbles ranges between 1-5 mm
and are mostly ellipsoidal in shape. Their rising velocity
in stationary water is about 0.23 m/s which is independent
of conduit size(180), In moving water conditions, bubbles
with effective diameter less than 3 mm will have a velocity
which varies non-systematically with different flow rates.
Bubbles with effective diameter between 3-4.5 mm will have a
velocity which is slightly increased from that in stationary

water to about 0.26 m/s(16,180)

Pockets can be defined as air cavities formed as a result of
a coalescence of "bubbles" and "minute bubbles". They can
also be formed by entrapment of large quantities of air as
occurs during the filling of a pipeline, at high points of
pipelines where vents are used to reduce sub-atmospheric
pressure, and in siphons where the negative pressure allows

the dissolved air to come out of solution.



1

2.

2

Causes of Air Presence in Water Lines

The air can be present in a water line due to the following:

Vortices at the intake structure

Vortices generated at the intake often 1lead to air
introduction into the system, and the quantity of air
introduced depends on intensity of vortex. The formation
of these vortices at the intake depends on inlet geometry,
depth of submergence of intake and the flow rate. Such
vortices have a longitudinal axis parallel to the direction
of flow as in pump intakes (Fig. 1.2.a) and flow under a

sluice gate (Fig. 1.2.b).

The Pumps

The low pressures at pump impellers may be a source of air
introduction into the system. When a pipeline is supplied
by a centrifugal pump there 1is initially a physical
disturbance in the flow of water at pump impeller which

causes air to be extracted from water near the pump.

Dropshaft

Water allowed to fall freely some distance down a vertical
shaft entrains air when it impinges on an ambient water
surface. The lower part of the shaft will contain air
bubbles which will either rise up to the water surface and
be released, or will be transported down the shaft to the

tunnel system, depending on the flow rate (Fig. 1.3).

Filling of lines




Large quantities of air can be entrapped during filling a
pipeline, or when increasing the discharge of a pipeline

which is running partially full.

5. Air separation at low pressure

In areas of low pressure the dissolved air in water usually
comes out of solution, as is the case in topographic high
points in a pipeline or siphons, which are a typical example
of hydraulic structures working under negative pressure

(Fig. 1.4).

6. Vents
Vents used at high points to reduce sub-atmospheric pressure
are often a source of entrapment of large quantities of air

(Fig. 1.5).

7. Other causes

Leakage in water lines may be a source of air introduction
into the line. Steam power plants which circulate large
quantitites of hot water will introduce air into the system

due to the separation of dissolved air.

1.2.3 Benefits of Air Presence in Water Lines

The air present in water lines can be beneficial in reducing
cavitation, reducing large negative pressures, priming siphons and

supplying ventilation to water lines.

(a) Cavitation reduction




(b)

Cavitation is induced by surface irregularities and low
pressures in a turbulent shear layer, and can be reduced by
using steel 1linings, high quality surface finishes, and
using aeration devices. The first method is very expensive
so it is used only in special areas such as outlet gates.
The second method may present some difficulties during the
life of the hydraulic structure, in that defects may still
occur on the concrete surface. The only relatively cheap
method is the third one of using aeration devices, such as

air slot ramps.

The low pressures in the flowing water are used to induce
large quantitites of air from the atmosphere, which is
broken into small bubbles and dispersed over the full depth
of flow. When water reaches vapour pressure, vapour
bubbles (cavities) will start to form and move downstream,
until they reach an area of higher pressure where the
cavities will condense and suddenly collapse. This
collapse gives rise to extremely high pressures, which
causes cavitation erosion if it happens against a solid

boundary.

The entrained air in the flowing water affects the
compressibility of air-water mixtures so that as vapour
cavities collapse, the resulting pressures will be smaller
than those occurring in water without free air due to the

compressibility effect.

Priming siphons

A siphon is a pipe bent to form two limbs of unequal length
so that a liquid may be transferred from a higher to a lower
level at a rate proportional to the difference in head (Fig.
1.6). A siphon spillway is used to pass flood water from a

reservoir and can also act as a control for sudden surges in



(c)

canals and forebays(sa). The siphon will run full when all
the air in the siphon barrel is removed. The process of
removal of air and filling the siphon with water is called

priming.

Air in the siphon barrel can be removed by the natural flow
of water through the siphon, and is said to be self-priming.
It can also be removed by using air pumps, where the siphon
will run from zero discharge to full bore (black water

siphon) with no intervening stable range of flows.

When air is allowed to enter a siphon (in controlled
volumes) during the priming process, then the siphon will
prime in a slow controlled rate. This siphon is called an
air-regulated siphon, where it will automatically adjust its
discharge over the full range to maintain a virtually
constant water level on the upstream side. This type of
siphon is more flexible in its wuses, less violent in
operation, and safer than a black water siphon, both from
the point of view of preventing the inevitable flood wave
that results from sudden priming, to full-bore discharge,
and because air regulation eradicates the hunting and

vibration problems that occur in black water siphons.
Ventilation

Ventilation is the process of allowing air to enter or
escape from a closed hydraulic systenm. Air vents are
usually used at the base of dropshafts or morning-glory
spillways to remove air pockets (1.1.a), at high points in
water lines to reduce sub-atmospheric pressure and air
accumulations (Fig. 1.4),

and in outlets from high head dams to stabilise the
hydraulic jump in the outlet tunnel (Fig. 1.1.d). In this

case the flow is aerated, thus preventing the formation of



sub-atmospheric pressures and cavitation damage.

Air vent structures wused in pipelines have three

primary purposes:

1. Evacuation of air during filling
2. Removal of air during operation, and
3. Preventing pipe collapse during draining
.4 Problems Arising from Air Presence in Water Lines

The presence of free air in water lines may give rise to a

range of problems and may cause difficulties in operating hydraulic

structures. The following are the most important problems:

(a)

(b)

Reduction of capacity

The presence of air pockets in waterlines restricts the flow and
increases the head losses. This 1is especially true if an
hydraulic jump forms at the d/s end of an air pocket. This is
reflected in a reduction in the capacity of the flow of the
structure and reduction in its efficiency. Figure (1.7)
indicates the effect of the presence of an air pocket on the
energy line given by Richards(136) This problem is usually
common just downstream of high points in water lines, and also at

the junction of a dropshaft/tunnel system.

Surges and blow backs

The presence of air in water lines may also give rise to surges
and blow backs of considerable magnitude. When the water flows

under an air pocket present at a high point in a water line (Fig.



(c)

(d)

(e)

1.8), it may sweep some of the generated bubbles at the end of
the pocket. The swept bubbles may coalesce into large air
pockets which periodically blow back upstream to the high point

causing pressure fluctuation.

Oscillation of water in shaft/tunnel systems

This usually. occurs in power stations where a plunging water
nappe into the shaft entrains air bubbles which may be
transported down to the junction of the shaft/tunnel system.
These air bubbles usually accumulate at the bend forming an air
pocket which may periodically collapse and cause oscillation in
the water level in the shaft and may also cause vibration (Fig.
1.9).

White water
This is the water which has a milkyappearance due to the presence
of large quantities of minute bubbles and it is chemically

corrosive.

Reduction of pump efficiency

When a pump is pumping water which carries air, or when air-water
mixture is fed into a turbine, their efficiences are
significantly reduced. Supplying a turbine with air-water
mixture affects its operation by a drop in its output and hence
its efficiency, also it may cause water hammer pressures. Air
carried into a pump by a vortex at its inlet delays pump priming.
It was reported by Denny and Young(39) that a presence of 1% of
air reduces the pump efficiency by 15%. Tests were carried out
by Mitsukiyo et al(114) opn the performance of three centrifugal
pumps, which was reduced by increasing the entrained air. When
the entrained air reached 15% of water volume the three pumps

lost prime and ceased to function.
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(f) Difficulties in filter operation

Entrapped air in water lines may sometimes interfere with the
operation of filtration plants causing serious effects. The
surges produced by air presence make it difficult to maintain a
good filter cake. The settling basins, which are present before
the filtration plants, allow much of the dissolved air to come
out of solution forming minute bubbles which then get bound to

the sand filters and thus reduce the filter efficiency.

(g) Corrosion
The presence of air in ferrous water lines causes corrosion by
making more oxygen available for the process. The corrosion
deteriorates the pipe wall and increases friction which increases

the head losses through the line.

(h) Biological effects

Constant air presence in water lines encourages the growth of

certain aeroboic organisms.

1.3 SOME _HYDRAULIC STRUCTURES WHICH EXPERIENCED THE
PROBLEM OF AIR PRESENCE

In the previous section some general problems caused by air
presence in water lines have been outlined. It is also important to
look at some practical examples of hydraulic structures where damage

has been caused to either the structure itself or its operation.

The main problems seem to be oscillation, surges and

blowback, blowout and vibration.
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(a) Hunterston "B" Power Station outfall

The Hunterston "B" Power Station outfall in Scotland (Fig. 1.10)
exhibited flow instability in the water filled shaft/tunnel
system which took the form of oscillations in both land and seal

pit shafts. This was reported by Townson(165) 1975, These
oscillations increased gradually until the seal pit weir was

submerged and spillage occurred at the land shaft. The problem
was not excessive but nevertheless warranted model
investigations. The fall from the seal pit weir crest to the
standing water level in the shaft below caused entrainment of air
bubbles. From model scale tests it was found that this
entrained air was the main cause of the oscillations. In the
shaft, air bubbles circulated in a vertical downward direction
according to their size and position in the flow. Some of this
air returned to the surface while the rest was carried around the

bend into the roof of the tunnel.

This air tended to form a cavity downstream of the bend. The
oscillation occurred due to the periodic collapse of the cavity
frontal head when the cavity reached a certain size. The cavity
collapse also caused a variation in shaft density and oscillation
of the cavity interface. In order to avoid oscillation, model

tests showed that this may be achieved by the following:

- Adjustment of 1length of shaft sizes so that natural
frequencies are small compared to cavity oscillation in

separating zones.

- Control of separation zone size by local conduit geometry

and/or venting.

- Allowing the air to be swept through the system to a point

where it could be released.
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(b) The Canadian River project

In 1966 Colgate(ss) reported on the Canadian River project.
This Project included an aqueduct system, pumping plants and

regulating reservoirs. In one of the main pipelines from a
regulating reservoir water was flowing under gravity. This
pipeline was designed so that at normal flow the hydraulic
gradient will be parallel to the average ground profile and the
water pressure will be less than 30 m head. While filling or
draining the pipeline, or discharging less than normal flow
through the system, there was a danger of surging, air

entrainment and water hammer.

A tower-type check structure was designed to prevent adverse
conditons such as over-pressures and water hammer when
discharging less than normal flow, and to maintain the proper
hydraulic gradient during normal flow (Fig. 1.11). Each tower
consisted of 90° bend to turn the water vertically upwards, a
180° return bend with a pipe open to atmosphere at the top, and a
90° bend at the bottom of the downstream leg to return the flow
to the main conduit. These towers were installed so that during
normal operation the hydraulic gradient will be above the top of

each tower causing the system to run full.

For flow less than normal, or no flow, this alignment also kept

the conduit full between towers. The open pipe at the top of
the tower prevented overpressure damage when there was surging
in the conduit during changing flows and also allowed air
entrainment at low discharges in downstream leg of tower.
Model studies were carried out to devise a vent structure to
remove the entrained air downstream the check tower when the
tower is flowing partially full. Air which ©passed the
vent formed bubbles. These bubbles moved either upstream

or downstream, depending on the pipe slope, discharge,
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and bubble size. Studies were carried out to get the best
conduit slope to allow the air bubbles to move upstream to the
vent and to be removed from the line. It was found that a
downward conduit slope of 0.087 downstream from the vent will
ensure the return upstream of the amount of air which may pass

the air vent, or to be pumped into the conduit.

Littlebrook 'D' Power Station

In 1979, Goldring(ez) reported on Littlebrook 'D' Power Station.
The cooling water system of the power station draws its condenser
cooling water from a body of water and pumps it through the
condenser to be heated by the condensing steam. The top of the
condenser was about 10-20 m above the lowest water level and the
cooling water in the condenser's water box was at sub-atmospheric
pressure. Thus the cooling water system was run as a siphon,
see Fig. (1.12). It was necessasry to provide a seal at the
outlet, both to limit the minimum pressure in the condenser's
outlet water box to a value above vapour pressure of the cooling

water, and to prevent air moving back into the condenser and
breaking the siphon. The siphon seal at Littlebrook 'D' is
shown in Fig. (1.12).

Air was drawn into the siphon as dissolved air in the incoming
water. This air came out of solution in sub-atmospheric pressure
areas in condensers. Also air leakage from faulty joints was
possible. The air started to form an air-void on the sloping
roof of the down leg, and to grow in size, thus causing
additional head loss across the siphon which was approximately
equal to the drop in water level from the crest to the free

surface.

Model studies were carried out to specify the ability of the

siphon to pass this air with minimum head los. It was found
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that air-void removal from the siphon crown could be achieved by

either:

1. Entrainment by the plunging nappe, which is similar to the
void length adjustment process. or

2. Entire void removal from the siphon, making wuse of

Gandenberger's(sg) experimental results on the minimum water
velocity needed to clear an air-void from a high point in a
pipeline for various slopes of the pipe downstream of the

high point.

San Pablo Dam in California

Hal1(86) reported on San Pablo Dam near Oakland, California,
which was constructed in 1917-1920 and was provided with both an
open-channel spillway and an auxiliary vertical shaft spillway
equipped with outlet gates below full reservoir level. The
horizontal leg of the shaft spillway was laid on a re-entrant
grade, and a weir was built below the outlet to assure
submergence of the tunnel. The falling water down the shaft
entrained air into the horizontal leg when it impacted the water
surface. The behaviour of the entrained air was considered
dangerous. The lower part of the shaft contained air bubbles
which either rose up the shaft or were transported to the tunnel
system. These air bubbles accumulated as air pockets at the
roof of the tunnel and moved slowly along the grade of the tunnel
toward the outlet, discharging periodically with explosive
violence, throwing water as spray in the air to a height of 15 m.
This explosive violence caused vibration in the tunnel which was

also a serious problem.

Chabot Dam near Oakland

Hal1(86) also reported on the tunnel spillway at the Chabot Dam,
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constructed of masonry in 1889 and has a side-channel spillway
discharging into a tunnel. The operation of the tunnel spillway
under full discharge has never been satisfactory because of the

poor hydraulic properties of the tunnel inlet and outlet.

When the maximum carrying capacity was approached, the tunnel
mouth was submerged, and air entrained in the water at the drop
over the weir was carried into the tunnel. This air rose up to
the roof of the tunnel within 122 m of the inlet, and a portion
escaped through the downstream portal. A section of the tunnel,
30-60 m long below the inlet, was under pressure of the air and
water mixture, and when sufficient pressure was created, a
portion of the air accumulated along the roof discharged
violently back through the inlet, throwing spray into the air.
The water which was rushing in to replace the discharged air,

caused severe vibrations in the masonry of the tunnel.

1.4 FLOW PATTERNS IN CLOSED CONDUITS

Flow patterns in closed conduits depend on the air flow rate
relative to the water flow rate and the slope of the conduit(5%),
Flow patterns which can occur in a horizontal conduit were described
according to the physical appearance of flow by Alves(8) as follows,

see Fig. (1.13):

- . Bubble Flow: The air forms in bubbles at the upper surface
of the pipe. The bubbles and water velocities are about
equal.

If the bubbles are dispersed through the water, the flow is
called "Froth quw".

- Plug Flow: For increased air flow rates the air bubbles
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coalesce with plugs of air and water alternately flowing
along the top of the pipe. This represents typical air
pocket flow regimes as experienced in Civil Engineering

structures.

- Stratified Flow: Increasing air flow rates produces a

horizontal interface separating the air and water flows.

- Wave Flow: As the airflow rate is increased, surface waves

appear on the stratified flow interface.

- Slug Flow: Wave amplitudes are large enough to seal the
conduit. The wave forms a frothy slug where it touches the

roof of the conduit.

- Annular Flow: For greater air flow rates the water flows

as a film on the wall of the pipe, while the air flows in a

high speed core down the axis of the pipe.

- Spray Flow: For very great airflow rates, the annular film
is stripped from the pipe walls and is carried in the air as

entrained droplets.

In hydraulic structures, conduits are often placed on a
slope, which will cause changes in the flow patterns and shape of the
flowing air pockets. Flow patterns in horizontal conduits also have
been defined by Baker(16) as in Fig. (1.14). The given correlation
can be wused for other gases and liquids by substituting the

appropriate quantities into the following parameters:

Gg = mass velocity of gas, Kg/(m2-s)
Gy = mass velocity of liquid, Kg/(m2-s)
X = [(pg/pa)(pg/pw)]l/2 , » =.1.0 for air water mixtures
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u = dynamic viscosity, Pa.s (N-sec/m2)

Pg = gas density, Kg/m3

Pa = air density (at 101.3 KPa and 20°C) = 1.20 Kg/m3

Y = liquid density, Kg/m3

ow = water density (at 101.3 KPa and 20°C) = 988 Kg/m3

o = interfacial surface tension, N/m

Saw = air-water surface tension (at 101.3 KPa and 20°C)
= 0.0728 N/m

v = (pw/P2) [ulpw/pg)211/3 pal/3.s1/3

0.10 Pa1/3.81/3 if the liquid used is water.

<
]

Typical values of Gg/x and Ggxv/Gg, shown in Fig. (1.14), are worked
out below for the case of air/water mixtures in a pipe of 152 mm
inside diameter. The value of Ggxv/Gg varies from 4116.65 for B =
0.02 to 164.66 for B = 0.50, where B = air water ratio, i.e. QA/Qu-
Oon the other hand, the value of Gg/» varies from 0.011027 for Qp =
0.1667 x 10-3 m3/s to 0.9922 for Qq = 15 X 1073 m3/s. The above
values indicate that the expected flow regimes can be bubble flow,

plug flow and stratified flow, depending on the airflow and waterflow

rates.

Wallis(]77) presented flow patterns for vertical upward flow
of air and water for a 25.4 mm diameter tube, as shown in Fig. (1.15).
Wallis notified that different flow patterns can be obtained for
different variables. The areas covered by a particular regime can
alter in size and shape when some variables are changed, such as

pressure and pipe diameter. For certain combinations of parameters,
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an entire regime may disappear from the graph altogether.

1.5 THE _OBJECTIVE OF THE INVESTIGATION

To investigate the behaviour of a two phase bubbly mixture
descending a vertical dropshaft and subsequently entering a
horizontal or slightly inclined tunnel section via a right angled
bend. The major thrust of the work is to investigate the nature of
air pocket (or air cavity) formation and behaviour at the
dropshaft/tunnel bend, including air-pocket blow-back, air-pocket
trapped at the bend and air-pocket clearing along the tunnel section.
Secondary thrusts of the work include an investigation of the rise
velocity of air-pockets in the straight tunnel section and also the
conditions necessary to clear air-pockets along straight pipes
inclined slightly downwards. In all cases experimental results are

compared with simple theoretical models.

A schematic representation of the physical system is shown

in Fig. (1.1.b). A total of four independent parameters will be

varied in the experimental work. These are:
1. The air flow rate through the system which will vary between
zero and 20 £/s. This is adequate to give an air/water

ratio up to 50% which is comparable to that found in the

prototype.

2. The water flow rate through the system which can be
increased up to 60 £/s, the 1imit flow capacity of the pump

used.

3. The tunnel inclination to the horizontal which will be

changed from:
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+1.50  for an upward slope of tunnel

0° for a horizontal tunnel
-1.50° for a downward slope of tunnel
The radius of the 90° bend where three bends will be tested
for each angle of inclination of tunnel with the horizontal,
The non-dimensional bend radius R/D used will be 0.5, 1.0,

1.50.

There are other physical parameters which will not be varied

in the experimental work. These include: Pipe diameter, tunnel and

dropshaft lengths, othér gases and liquids apart from air/water, and

surfactants.

For each experimental test run the author has attempted to

establish:

i)

ii)

iii)

iv)

V)

vi)

The regime of flow

Physical dimensions of the air-pockets such as length and

depth of the pockets

Stability of the air-pocket, i.e. if the pocket is

stationary, blowing back or clearing

Air-pocket velocity in the tunnel section

water velocities acting upstream, downstream and under the

pocket

The relationship between experimental data and quasi-steady

theoretical models based on energy, force-momentum and

continuity principles
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The ultimate aim of the work is:

i)

ii)

iii)

iv)

To develop an understanding of the behaviour of such

hydraulic systems

To recommend design criteria for similar systems, such as

dam outlets, power station outlets

To obtain an understanding of scale effects involved in

modelling such systems

To determine the effectiveness of simple theoretical models

in predicting such complex two phase flow problems.
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Chapter Two

REVIEW OF PREVIOUS RESEARCH ON THE
BEHAVIOUR OF AIR-POCKETS

2.1 INTRODUCTION AND DEFINITION OF TERMS

In this chapter a review of previous research on the
behaviour of air pockets will be carried out. This will include the
behaviour of air pockets in both stationary and moving water, for
vertical, horizontal and inclined conduits. The review will also
include the effect of the direction of the flowing water on the air
pocket and other factors which affect the air pocket rising velocity

such as inertia, viscosity and surface tension forces.

The review will also include air pocket behaviour at the
junction of dropshaft/tunnel systems, which essentially is the
subject of this thesis, as well as blowing back of air pockets and

clearing of pockets in inclined conduits.

The following are definitions of terms used in this review
for the rising velocity of air pockets and related parameters, given

in a schematic form:

An air pocket, sometimes referred to as an air cavity,
plug flow,or slug flow if H/D > 0.5.
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Continuous air pocket Single air pocket

Air pocket rising in
moving water

Air pocket rising in
stationary water
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0\

Vo o= VC
Air pocket rising in water Air pocket clearing in
moving in the opposite the downward direction
direction, i.e. blowback by bodily sweeping

Air pocket gradually Air pocket speed in
clearing by entrainment stationary water for a
horizontal conduit
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Vo

Air pocket rising in
stationary water for a
vertical conduit

=~

Air pocket trapped at the
junction of a dropshaft/
tunnel system

/"

|

Vo>0

- —

Air pocket rising in
upward water flow, and
ascending or descending
in downward waterflow

Air pocket trapped at a
high point in a pipe-
line



32.

2.2 THE __BEHAVIOUR OF AIR POCKETS 1IN VERTICAL PIPES

Many investigators have studied the rising velocity of air
pockets in vertical pipes, although mainly in the field of Chemical
Engineering. In this context most of the work has been done using
liquids of different viscosities and pipes of very small diameter.
Some investigators have proposed theoretical models for the pocket
itself, including the shape of the pocket and have given extensive
details of the nose region of the pocket, which appears to have a
significant effect on the rise velocity of the air pocket. The
review will include; the rise velocity of air pockets in stationary
and moving water, the behaviour of expanding air pockets, and also
the effect of the direction of the flowing liquid on the rising
velocity of air pockets. The general 'solution for the rising
velocity of air pockets will be given and to what extent this

solution can be applied for the case of Civil Engineering structures.

2.2.1 The Rising Velocity of Air Pockets in Stationary Water

The behaviour of an air pocket in a vertical conduit depends

on the size of the bubble. When the bubble is quite small it will
be spherically shaped and will rise along a vertical rectilinear
path(lsl). Larger bubbles become ellipsoidal in shape and tend to
rise along helical paths. A further increase in the bubble size

gives the bubble a spherical capped shape and will rise along a
rectilinear path. Any further increase in size will cause the
bubble to have a cylindrical shape and to be an air pocket or

sometimes called slug flow.

An air pocket will rise through a denser liquid due to its
buoyancy. There are some factors which will affect this movement,
such as liquid inertia, air compressibility, 1liquid viscosity and
surface tension. The velocity (V,) with which a single air pocket

will rise is governed by the interaction between buoyancy and the
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above mentioned factors which are acting on the air pocket as a
result of its shape and motion. wallis(177) expressed the balance
between buoyancy and these three factors in terms of the following

three dimensionless groups:

2
Inertia 1 Ve (2.1)
buoyancy Dg(p1 - Py
. . V u
Viscosity o 1 (2.2)
buoyancy D*g(e,~ py)
Surface tension o (2.3)
buoyancy D*g(e, - p,)

Solutions were obtained when only one dimensionless group
governs the motion, and subsequently a general solution was obtained

incorporating all three parameters.

First if viscosity and surface tension were considered
negligible, then from equation (2.1) the rising velocity will be as

follows:

Vo, = Kg —— /gD (2.4)
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For the case of air pocket in water ps << p; so equation (2.4)

becomes:

Vo, = Ky /gD (2.5)

An approximate analytical solution for vertical flow in a

circular tube was obtained by Dumitrescu(42) and by Davies and

Taylor(38). Values of the constant (K;) obtained by these authors
were:
Dumitrescu Ky = 0.851 (2.6)
Davies & Taylor Ky = 0.328 (2.7)

Experimental results obtained by Dumitrescu(42) and White

and Beardmore(181) were as follows:

Dumitrescu K4 0.346 (2.8)

White & Beardmore Ky

0.345 (2.9)

Experiments done by Nicklin et a1(123) for air pockets
rising relative to the liquid ahead of them gave a value of the
rising velocity of air pockets equal to that found by Dumitrescu.
Fig. (2.1) shows the experimental results found by Nicklin where the
rising velocity is plotted as a function of the air pocket length.
It can be noted from the results that the non-expanding pockets where
the liquid take-off is below the pocket, 1i.e. there is no liquid
velocity, all rise at the same velocity and according to the

following equation:

V, = 0.35 /gD (2.10)
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For the case of single air bubbles rising in an infinite
body of water, Davies & Taylor(38) found that bubbles have a
spherical shape, based on a series of successive photographs for
bubbles rising in nitrobenzene. This spherical shape enabled them
to find the conditions which must be satisfied at its surface, and by
applying Bernoulli's equation to steady flow relative to the bubble,
they found the equation for the rising velocity of the bubble related

to the radius of curvature of the bubble nose as follows:

v, = VT (2.11)

This equation is applied only near the stagnation point
where an assumption is made that the flow over the forward part of
the bubble is the same as that calculated for a sphere moving in a
frictionless liquid. Further calculations based on the pressure
distribution measured over the surface of a solid of nearly the same

shape as the bubble, produced the following equation:
Vo, = 0.78 JgR. (2.12)

In their experimental values for (V,), which is plotted in
Fig. (2.2), against YR, , it is noted that they lie closely around
the line of equation (2.11) which means that the flow near the front
of a bubble is close to the theoretical flow near the front of a

complete sphere in an inviscid fluid.

Davies & Taylor(38) also introduced an expression for the

rising velocity in terms of the bubble volume ¢V), as follows:

v, = 24.8 v1/6 (2.13)

Collins(36) found that the radius of curvature (Rg) can be

correlated to the bubble volume (V) in the following equation:
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Re = 1.465 v1/3 (2.14)

Collins examined this result with equation (2.13), after

rearranging it as follows:
V, = 0.792 (g v1/8)1/2 (2.15)

Substituting the value of (V) from equation (2.14) into equation
(2.15) the following is obtained:

V, = 0.654 /gR, (2.16)

It is noted that equation (2.16) is very close to equation

(2.11), and that (V,) is a function of the bubble volume.

For the case when viscosity is the dominant force, as the
case in highly viscous flows, from equation (2.2) the rising velocity

will be as follows:

gDz(p1 - pz)
Vo = Ky (2.17)
51

From experimental results the value of the constant (Kp) for

vertical round tubes was as follows:

Wallis(177) Ko 0.010 (2.18)

White & Beardmore(181) g, 0.0096 (2.19)

When surface tension is the dominant force equation (2.3)

can be arranged as follows:
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gDz(p1 - pz)
Ngg = (2.20)
O

where Ng; is a surface tension parameter, known as the EStvds number.
It is a type of Weber number for air/water mixtures. Bretherton(ZB)
found that for vertical round tubes surface tension will dominate if
the E6tvds number Ngg < 3.37 which, for air/water mixtures, gives a
pipe diameter up to 4.95 mm below which surface tension is the

dominant force.

Zukoski(192) combined the effect of viscosity and surface
tension on the rising velocity of air pockets. Zukoski gave the

surface tension parameter in terms of the radius of tube as follows:

(o]

L = » (2.21)
grRe(py - 92)

where he gave I £ 1.20 as the criterion for surface tension to be the
dominant force. For air/water thiscorresponds to pipe of 4.93 mnm
diameter, as suggested by Bretherton(za). For the criterion of
viscosity dominance Zukoski used the Reynolds number as a parameter,
which can be obtained by dividing equation (2.1) by equation (2.2) as

follows:

plvm D
Re = ——m—— (2.22)

M1

Zukoski found that a value of Reynolds Number greater than 400 was
required for independence from viscous effects. When using equation
(2.10) to substitute for (V,) in equation (2.22) for the suggested
value of (Re), the required pipe diameter for the rising velocity to

be independent of viscous effects is about 5 mm.
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To obtain a general solution wallis(177) rearranged the
three parameters in equations (2.1),(2.2) and (2.3) in order to get a
two dimensional plot of any two parameters with the third one as the
independent parameter. The dimensionless bubble velocity defined by
equation (2.9) is plotted versus a dimensionless inverse viscosity
(N¢) (obtained from equations (2.1) and (2.2)) and is shown in Fig.

(2.3), where Nf is given as:

(D3g(p, - p.)p, 1172
N¢ = ! 2’ 1 (2.23)

1l
1

Another dimensionless parameter was obtained by Wallis by eliminating
both (V.,) and (D) from equations (2.1), (2.2) and (2.3). This is
called the Archimedes Number (Npp) as:

c3/2 e,
Nar = (2.24)
2,1/2 _ 1/2
uig (91 92)

Experimental data shown in Fig. (2.3) yields three solutions

equivalent to equations (2.9), (2.18) and (2.21). They are:

Inertia dominant N¢ > 300 , Ngg > 100
Ky = 0.345
Viscosity dominant Nf < 2 , Ngg > 100
K1 = 0.01 Nf (2.25)
Surface tension Ngg = 3.87
dominant

Nf = 6.2 Npp (2.26)



39.

If we calculate the pipe diameters required for each of the
three criteria above, it 1is <clear that inertia is the main
consideration in the Civil Engineering context as viscous effects are
only important up to a pipe diameter of 2 mm (for air/water mixtures)
and surface tension up to 27 mm diameter pipe. Neither size would
be used even in model studies of vertical pipes and thus is of
academic interest only. It may be of interest here to refer to Fig.
(2.4) indicating the surface tension effect for vertical, horizontal
and inclined pipes, the latter two categories showing surface tension
effects up to diameters of 150 mm to 200 mm corresponding to an Eotvis
Number of 3000. This is an order of magnitude greater than vertical
pipes, and mainly due to the fact that in vertical pipes the rising

air pocket is assumed to have no contact with the pipe wall.

White and Beardmore(181) ysed an alternative method for
plotting their results using another parameter called the property

group (Y).

Y = — (2.27)

which is a ratio of surface tension/viscosity and is constant for
air/water mixtures. (Y) is equal to (l/NzAr) when the gas density is
low compared to liquid density. A plot of (Kyp) versus (Ngg) as a
function of (Y) is shown in Fig. (2.5), indicating that when (Y) is
reduced the inertia force will dominate the air pocket rising
velocity. When considering the effect of all parameters (K;) could

be expressed by the following equation given by wallis(177) as:

-0.01 N./0.345 (3.87 - N_.)/m

Ky = 0.345(1 - e )(1-e )
(2.28)
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where (m) is a function of (Ng) and takes the following values:

m = 10 250 < Ng

m = 69 N.0-3° 18 < N. < 250
£ £

m = 25 N, < 18

It is of interest to note the equations of the rising
velocity of air pockets obtained by Brown(sl) which correlates the
velocity to the film thickness, and accounts for liquid viscosity.
Brown found that, although the air pocket shapes are different in the
transition region, they are similar in the nose region. He also

found that the frontal radius of the pocket is equal to 0.75 of the

equilibrium cylindrical radius (RE). Brown defined R& as:
R = R - &g (2.29)
where 6, is the equilibrium film thickness. Then Brown presented a

correlation for the pocket velocity independent of liquid velocity

using (R;) instead of tube radius (R) as follows:

V, = 0.496 /gR, (2.30)

and to get a general solution Brown derived acorrelation for the film

thickness (6,) as follows:
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5 = (2.31)

where

2
s / Py B (2.32)
N = 14.5

Substituting into equation (2.30) the rising velocity of an

air pocket can be written as:

_ e R
vV, = 0.496 /gR J/»- 1+ J1+2 IR (2.33)
NR

The limits to which equation (2.33) can be applied were derived
empirically as:

Surface tension:

2
P, ER _ /115 NR.
17 (L2 MR 5550 (2.34)

o NR

Viscosity:
2 NR > 60 (2.35)

and the minimum size of pocket which behaves according to equation

(2.33) must satisfy the following condition:

-1 + /1 + 2 NR)
NR

ry > 0.75 R (1 - (2.36)

where (rg) is the equivalént radius of pocket.
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It can be noted from the previous research on the rise
velocity of air pockets in vertical pipes that for the case of Civil
Engineering structures, inertia forces will only dominate. Most of
the research above was carried out for Chemical Engineering where
small diameter tubes were used and also liquids of different

viscosities.

For most Civil Engineering structures the diameters of
conduits or tunnel systems are large enough to neglect the effect of
surface tension, also the liquid used is water so viscosity effects
can also be neglected. Therefore, for this case the only equation
which will be applied to the rising velocity of an air pocket in

stationary water for vertical conduit is equation (2.10), i.e.
V, = 0.35 /gD (2.10)

However, the general equation (2.28) should be applied in
modelling air pocket movement, especially when the model conduit is

less than 150 mm diameter.

Equation (2.10) represents the rising velocity of air
pockets in vertical shafts for stationary water, and at the same time
gives an indication for the minimum downward water velocity in
vertical dropshafts to prevent an air pocket from blowing back.
Hence we might say that the minimum non-dimensional water velocity
VO/JEB-to prevent air pocket blowing back is approximately 0.35, and

it should be greater than 0.35 in order to transport the air pocket
down the vertical dropshaft. Equation (2.10) can be applied for air

pockets in the range 0.4<Dg/D<1.0,where D is the equivalent pocket diameter.

2.2.2 The Rising Velocity of Expanding Air Pockets

Dumitrescu(42) and Davies and Taylor(38) derived equations
(2.6) and (2.7) respectively as a theoretical result for the rising
velocity of a non-expanding pocket using potential flow theory.

This velocity is determined by the conditions near the nose of the
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pocket, and hence the theory should be applicable to finite pockets,
provided the flow around the nose does not affect the shape of the

nose region.

Griffith and Wallis(77) found that finite pockets do in fact
follow equation (2.10) except that for tubes of small diameters,
viscous effects became important, and the velocity of rise increased

with slug length.

Experimental work carried out by Nicklin et al (123) ghowed
that the increase of rising velocity with slug length is due to the
expansion of the rising pocket. Fig. (2.1) shows the experimental
results found by Nicklin et al, where it can be noted that the rising
velocity of expanding pockets increases with slug length. When any
expansion of the pocket causes a displacement of liquid above the
pocket, the pocket will be rising in moving liquid, and thus will move
faster. If the liquid displaced by the expansion is taken below the
pocket, the nose will be rising in stationary liquid and will follow
equation (2.10). In the case of expanding slugs in which the liquid
is taken off above the slug, the increase in the rising velocity with
slug length varies with the absolute pressure of the system. It was
found that this increase is related to the rate of expansion of the
slug, that is, to the mean velocity VL of the 1liquid across any
section in front of the slug. From their experimental results for

expanding slugs the following expression was found for the rising

velocity:

Vg = 1.48 Vp + V, (2.37)

Griffith and Wallis(77) found that the mean velocity of water VL is:

v = X (2.38)
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2.2.3 The Rising Velocity of Air Pockets in Moving Water

In section (2.2.1) the rising velocity of air pockets in
stationary water was given in equation (2.10). For the case of air
pocketsrising in moving water a modification is required for equation

(2.10) in order for it to be applied.

Nicklin et al(123) indicated that an air pocket rising in
moving liquid stream will move at a velocity made up of its basic
rising velocity in stationary water, plus a component due to the
motion of the liquid. This component depends upon the mean velocity
and the form of the velocity profile. The rising velocity was given

as follows:
Vg = Vi, + T Vg (2.39)

where (r') is a factor determined experimentally and shown in Fig.
(2.6) plotted against 1liquid velocity with air pocket lengthasa
parameter. It can be noted that there is a scatter in the value of
(r). For downward flows of water (indicated as negative
velocities), the motion of the air pocket in this region was unsteady
and the pocket had great changes in shape avoiding the fast moving
liquid in the centre of the tube. For small upward flows there is
also a scatter in the values of (I') due to experimentaldifficulties
in this region(lzs). For values of water velocity Vy > 0.3 m/s (Re
> 8000), (r) has a constant value of 1.2, and independent of both the
air pocket length and the liquid velocity. The absolute velocity of
(123)

the pocket therefore for upward flows was given by Niclin et al

as:

Vg = 1.2 Vp + 0.35 /gD (2.40)

-~

where Vj is given in equation (2.38).
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For upward flow case, wallis(177) ysed the drift flux model
to obtain the slug velocity when there is net flow, the slug velocity

is:
Vg = J + Vg, (2.41)

where j is the volumetric flux given as:

j = — (2.42)

which is exactly the same as VL given in equation (2.38).
wallis(177) applied improvements to equation (2.41) because the
bubble drift velocity is not strictly constant since it is influenced
by the velocity profile in the liquid. This profile is a function
of Reynolds Number, and is influenced by the wake of a preceding
pocket. These effects may be taken into account by applying
correction factors to equation (2.41). Thus the upward air pocket

velocity is given by:
VS = (4 j+ Co Vg, (2.43)

The coefficient (Cy) is a measure of the fact that the air pocket
does not move relative to the average liquid velocity but relative to
a weighted average value. (Co) is a measure of the change in
relative velocity due to the approaching velocity profile. For the
case of fully developed turbulent flow in the liquid (Reynolds Number

greater than 8000) the results is as follows:
Rej > 8000 , Cl =1.20 , Cp = 1.0 (2.44)

where

Re, = 1 (2.45)
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it can be noted that equation (2.44) is exactly the same as equation
(2.40).

Accepted correlations for Cy and Cp, in the laminar flow
region are not available. Griffith and Wallis(77) observed that
equation (2.10) is not applicable for low air pocket velocity
Reynolds Number, even when the liquid is stationary. Griffith and
Wallis(77) observed that V., depends on water velocity, or the shape
of the liquid velocity profile. In an attempt to rationalize the
effect of low Reynolds Number and velocity profile, the constant of
Taylor and Dumitrescu was split up into two parts C;y Cs, so the

expression for the rising velocity was given as:
Vo = CqCo VgD (2.46)

Cqy is the governing coefficient in static water, it is a function of
the Reynolds Number based on air pocket velocity, tube diameter and
liquid viscosity. The relationship between C; and Reynolds Number

NrRe is shown in Fig. (2.7).
b

Co depends both on air pocket velocity and the velocity
profile of the liquid. Its variation has been rationalized by
plotting values of C, against a Reynolds Number based on liquid
velocity with a Reynolds Number based on air pocket velocity as a
parameter. This plot is shown in Fig. (2.8). It was observed from
experimental results that for NReb < 3000, the results agree with the
curve. For 3000 < NReb < 5000 there was a scatter in the results
possibly due to a transition region where turbulent flow is starting
to be initiated. At higher NReb the results are more consistent
and C, tends to approach unity. This means that it is very

difficult to separate the effects of the two correction factors.

For the case when a string of air pockets follows one
another, Moissis and Griffith(lle) found the air pocket rise velocity

is a function of separation distance between the pockets (Lg) and the
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pipe diameter. Fig. (2.9) shows a plot of the air pocket velocity
against separation distance for three circular pipes of 1 inch, 3/4
inch and 2 inches diameter. Moissis gave the following relationship

for the rising velocity of a string of bubbles:

= 1 + 8 exp(-1.06 Ls/D) (2.47)

< ’ <

8

This means that the following air pocket is continually tending to

catch up the preceding one and coalescing with it.

Martin(107) analysed vertically downward slug flow and
compared the results with upward flow. Martin used an expression
similar to equation (2.39) for the rising velocity in upward flow of

water as follows:

v =¢c WA | o /geeD (2.48)

which can be written as:
Vg = Cg < j>+Cqy /gD (2.49)

where C, is a distribution parameter, Cy is a factor that depends on
fluid properties, and <j> is the average volumetric flux for the
entire mixture and similar to VL given in equation (2.38). The
coefficient C, has been defined by Zuber and Findlay(lgl) to be a
distribution parameter, which reflects both the flow and

concentration distribution across the pipe, and given as:

c = S=i> (2.50)
0 <ae><j>

where « is the local void fraction, and j the local volumetric flux

density. Zuber and Findlay(191) demonstrated that by using equation
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(2.50), (Cy) will be greater than unity if the void fraction at the
wall is less than it is on the pipe axis, and that (Cy) is less than
unity if the wall void fraction is greater than that on the pipe

axis.

Experiments carried out by Martin(107) gave the value of C,
= 1.2 only for upward water flow. The value of the constant (Cp)
was the same as given by the previous investigators (i.e. Cq, = 0.35)
only when the air pocket remains in the centre of the pipe. If the
pockets tend to move away from the middle of the conduit, the rising
velocity will increase above that for an air pocket rising in
stationary water. In certain cases of air pockets rising in
fluidized beds, Kehoe and Davidson(107) found that the pockets tended
to move up the wall at a velocity greater than that given by equation
(2.10) and Cqy = 0.35. They were able to correlate these results
only if (D) in equation (2.10) was replaced by (2D), resulting in an
effective value of C; = 0.495. That means air pockets rising

vertically along the pipe wall have a rising velocity of:

Q, +Q
Ve = 1.2 ——— + 0.495 /gD (2.51)
A

For downward water flow the air pocket may either rise or
descend, depending on the relative magnitudes of air and water
velocities. Martin(107) indicated that equations (2.48) and (2.49)
may be valid, but the coefficients (Cy,) and (Cq) will only be
identical to the values of upward flow if the air pockets remain
centred on the pipe axis. If the air pockets move away from the
centre of the pipe, C, will decrease because the pocket is travelling
relative to a fluid velocity less than the maximum on the pipe axis,
while Cy will increase because the drift velocity increases as the

pocket becomes closer to the boundary.
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Martin(107) carried out his experiments on three different
pipe diameters for vertically downward flow, where the air pockets
will either descend, ascend or remain stationary. Fig. (2.10) shows

a typical result for a pipe of 0.14 m diameter, where the air pocket

velocity is plotted against total volumetric flux. Both Vg and <j>
are positive for upward directed velocities. It can be noted from
Fig. (2.10) that for D = 0.14 m, Co = 0.86 and Cy = 0.58. The

results for a pipe of 0.026 m diameter are shown in Fig. (2.11), where
both ascending and descending air pockets in downward flow and
ascending air pockets in upward flow are included for comparison.
It can be seen from Fig. (2.11) that C, = 1.20 for upward flow
ascending air pockets and that C, = 0.93 for descending air pockets
in downward flow. It can be concluded from Martin's experimental

resuits that:

a - Co < 1.0 for downward flow and descending air pockets
b - Cy > 0.35 for descending air pockets in large diameter pipes
c - A stable Taylor bubble is only possible for downward flow

for small pipe diameters, an average value of C, = 1.14 is
obtained from the results of three investigators for D =

0.026m

d - The air pockets become more eccentric relative to the pipe
axis as the downward flow is increased and the pipe diameter

is increased

e - Above a certain pipe diameter the rising velocity becomes

independent of (D) as in the case of air bubbles movement

f - From the results of ascending air pockets in a downward
water flow, it can be noted that a balanced air pocket can
be obtained if the term accounting for effect of water

velocity equals that of buoyancy, i.e. 0.86 < j > =



50.

0.58 vgD. When substituting for the mixture velocity <j>

by Vo(1+B), it can be noted that the non-dimensional water

velocity V,/v/gD required to prevent the air pocket from
blowing back is approximately 0.674/(1+B) in a downward

flowing water.

Combining the result notified in (f) above with that
notified at the end of section (2.2.1), we find that the
non-dimensional water velocity required to keep the air
pocket from blowing back in a vertical shaft should be in
the following range:

\Y

0.35 < 0 P 0.674

JgD 1+

The behaviour of air pockets in vertical pipes for

stationary and moving water, for water flowing upwards or downwards,

and for pipe diameters greater than 27 mm so that surface tension and

viscosity effects are negligible, can be summarized as follows:

(1)

(ii)

For stationary water:

(a) - Air pocket at the centre of pipe:

V, = 0.35 VgD (2.10)
(b) - Air pocket at pipe wall:

V, = 0.495 /gD

For upward flowing water with (Re > 8000):
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(a) - Air pocket at the centre of pipe:

Vg = 1.2V, (1+B) + 0.35 /gD (2.40)
(b) - Air pocket at pipe wall:

Vg = 1.2 Vg (1+B) + 0.495 /gD (2.51)

(iii) For downward flowing water with (Re > 8000):

(a) - Air pocket ascending the pipe:

Vs

= 1.2 V, (1+B) + 0.35 /gD (2.40)

where V, is (-ve) for downward flowing water

(b) - Air pocket descending:

2.3

Vs

= 0.86 V, (1+B) + 0.58 vgD (2.49)

where V, is also (-ve)

THE BEHAVIOUR OF AIR POCKETS IN HORIZONTAL CONDUITS

In horizontal conduits the air pocket velocity is not

affected by buoyancy. In stationary water the air pocket will not

move unless there is a transient effect such as raising a gate at the

end of a horizontal conduit where the water will start emptying from

the end of the conduit and air pockets start advancing into the

conduit.

Past

research work in horizontal conduits hasbeen in-

vestigated mainly for detailed studies of gravity currents. The

effect of surface tension will also be illustrated, where a minimum

size of conduit is given for both circular and rectangular conduits.

The air pocket velocity in moving water will also be given which, as
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is the case in vertical conduits, is higher than the average liquid

velocity.

2.3.1 Air Pockets Moving Under Transient Effects

In order to analyse the movement of air pockets in
horizontal conduits, the theory developed by Benjamin(24) for gravity
currents will be considered. A gravity current consists of a wedge
of denser fluid intruding into an expansion of 1lighter fluid. If
the effects of viscosity and mixing of the fluids at the interface
are ignored the hydrodynamical problem is formally the same as that
for an air cavity advancing along the upper boundary of a liquid.
Fig. (2.12) shows a gravity current where a stream of heavy fluid is
flowing along the horizontal bottom and replacing the lighter fluid.
The front of the current is observed to progress with a nearly
constant speed and maintain its shape which means that the motive
force is balanced by the hydrodynamic drag. This means that the
balance between momentum and hydrostatic force can be used to analyse
the problemn. Benjamin (24) ysed continuity and force-momentum
balance to derive an expression for the cavity speed which is shown
in Fig. (2.13) for a steady flow with a free boundary. The analysis
was carried out for the flow with and without energy losses, and
assuming that viscosity and surface tension can be ignored. Upstream
of the cavity the liquid has a depth (d), and a constant relative
velocity (Cq). Downstream, the flow under the free cavity boundary
is uniform and of depth (h) and velocity (C»). The cavity shown in
Fig. (2.13) is similar to a continuous air pocket, such as the case
of liquid emptying from a long horizontal two-dimensional conduit.

For the case of flow without energy losses, Benjamin(24)
assumed that point (0) in Fig. (2.13) is a stagnation point, and the
pressure is zero along the free boundary. Then, by applying

Bernoulli's theorem along the free boundary, it follows that:
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c; = 2g(d-h) (2.52)

Then the flow forces for upstream and downstream flows are derived by
adding the pressure forces to the momentum flux. The flow forces
are represented as follows:

1 2 2
8¢ = —-91(01 d + gd ) (2.53)
2
2 1 2
Sy = p1(02 h +=gh) (2.54)
2
But Sy = Sy, because the flow force is an invariant in any steady
flow in the absence of external horizontal forces. Equating

equations (2.53) and (2.54) and considering the. following equation of

continuity where:
Cqyd = Czh (2.55)

the following expression is obtained:

c3 - _g(d*- h?)d (2.56)
(2d - h)h

From equations (2.52) and (2.56) the following two solutions are
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obtained, the first root being h = d and the other:

h = =4d (2.57)

Equation (2.57) is the only solution for the flow to be steady and
free from energy dissipation. Using the result of equation (2.57)

the following is obtained from equations (2.52) and (2.55):

Cy 1
f= — == (2.58)
/gd 2
€
F=— - /3 (2.59)
/gh

Equation (2.58) gives the speed of an air pocket propagating in a
horizontal conduit to be C; = 0.5/gD, for the case of zero energy
loss. Equation (2.59) means that the receding stream is
supercritical, indicating that stationary waves cannot rise upon the
stream without energy loss, but a dissipative hydraulic jump may

occur.

This type of flow can be realized in a long rectangular box
filled with liquid, closed at both ends and fixed horizontally as in
Fig. (2.14). If one end is opened, the liquid will flow under the
action of gravity. After the initial transient effects disappear,
the air filled cavity replacing the ejected liquid will move steadily
along the box. when a reference is travelling with the front of the
cavity, the liquid motion will appear to be steady, as in Fig.
(2.13). If the effects of viscosity and surface tension are
ignored, the velocity of the cavity relative to a stationary observer

will be (Cy) as given in equation (2.58). Since h = d/2 the liquid
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will discharge from the open end with the same velocity. The rate
of discharge will be the same as the rate at which the volume of

cavity increases. The discharge per unit span is as follows:
Qw = Cj(d - h) (2.60)

Benjamin(24) extended his work to the flow with energy loss

and found that the velocity far downstream will be as follows:

C; = 2g(d-h-a) (2.61)
Equating equations (2.56) and (2.61) the following is obtained:

(2h-d)(d-h)?

(2.62)
2h(2d-h)
Equation (2.62) confirms that:
(a) - A =20 for h = 1/2 d, i.e. steady flow with no energy loss

when the receding stream fills half the space between

planes.

(b) - & is positive for h > 1/2 d, i.e. steady flow is possible
when the receding stream fills more than half the conduit

depth but with energy loss.

(c) - A is negative for h < 1/2 d, i.e. steady flow is impossible
when the cavity occupies more than half the conduit depth
unless an external supply of energy is used to sustain

steady flow.

From equations (2.55) and (2.56) it follows that:

21- _ [hgdz _h22]1/2 (2.63)
Jed d?(2d-h)
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combining equation (2.63) with equation (2.60) it follows that:

% - [(d—h)z h(dz-hz)]1/2

R (2.64
vgd? d* (2d-h) )

Fig. (2.15) presents graphs of the dimensionless quantities a/d,
C1/v/gd and Q,//gd® plotted against h/d in the range 0.5 < h/d < 1.0.

The maximum value of Cq/Ygd is 0.5273 when h/d is equall to
0.6527. This is the highest air cavity speed in a two-dimensional

conduit with energy losses included.

Equation (2.63) can be expressed in terms of the depth of
cavity H = d-h as follows:

C

[(d_ﬂ) (Zd_ﬂl]vz (2.65)

1
vgH d(d+H)
This equation is plotted against H/d in Fig. (2.16) which shows that
Cy/YgH varies from 1/¥2 3 /2 as H/d varies from 0.5 to zero.

For a liquid emptying from a horizontal pipe with a circular
cross section, as in Fig. (2.17), Benjamin(24) assumed the flow to be
uniform far wupstream and far downstream. The free surface
downstream has an angle 2a at the axis, so that the breadth b = 2R

Sina and the cross section area is given by:
Ap = (m - a+ 1/2 Sin2a) (2.66)

and continuity will have the following form:

c A
A _2 (2.67)

C2 ﬂRz



Applying Bernoulli's theorem along the free surface, between the

stagnation point 0 and the asymptotic level far downstream, the
following is obtained:

Co? = 2gR(1 - Cosa) (2.68)

For a circular section the flow force upstream and downstream are
given as follows:

S; = eq(gR + =+ ci)mR’ (2.69)
2
2 2., 3 2
S2 = pi1l[gR(AsCosa + = R Sin a) + AjCs] (2.70)
3

When equating the flow forces, it was found that the only solution
for zero energy loss is when the angle a = 82.78°. The following

values are obtained:

Co/Y/gR = 1.322 (2.71)
Ci/vgR = 0.767 (2.72)

Equation (2.72) can be written in terms of the pipe diameter (D) as

follows:
ci//gD = 0.542 (2.73)

It can be noted from equation (2.73) that the air pocket
speed in horizontal pipes is higher than the rising velocity of air
pocket for vertical pipes (V, = 0.35/gD) which is given by equation
(2.10).

Zukoski(192) observed long bubbles for different angles

including horizontal conduits where he studied the effect of
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viscosity and surface tension on the air pocket velocity. Zukoski
found the surface tension parameter (L) given in equation (2.22)
still has an effect on the pocket velocity until it reaches a value
of £ = 0.001 for horizontal conduits. This corresponds to pipe
diameters of the order 150-200 mm diameter. His result for a pipe
of 17.8 cm diameter was comparable with the theoretical result found
by Benjamin(24) and given in equation (2.72). Zukoski found
experimentally that for a 17.8 cm diameter horizontal pipe the pocket

velocity is:
C1/JgR = 0.752 (2.74)

which is only 2.2% less than the theoretical value predicted by
Benjamin. Zukoski also found from his experiments that the cavity
will not propagate steadily along emptying horizontal pipes. The
reason for the non-steady flow, which was observed when C]//§§'< 0.5,
is due to the velocity of the fluid passing under the cavity near the
pipe exit. If this velocity is less than half the critical speed
for the flow, disturbances originating at the exit can overtake the
cavity and hence prevent steady flow from being established. When
the exit velocity 1is greater than half the critical speed,
disturbances from the exit move upstream slower than the cavity and
hence steady motion can be maintained at least at the front nose of
the cavity. The critical speed was given roughly by Zukoski, when
the fluid occupies the lower half of the tube, to be equal to J/gR
which means that the Froude Number there is equal to (1.0). Von
Karman(96) discussed a model for gravity currents at great depths of
submergence. Fig. (2.18) shows the shape of the surface separating
larger density (p;) muddy water and lower density (po) clear water.
The front of the muddy water progresses with approximately constant
speed and keeps its permanent shape. He considered the flow
relative to a co-ordinate system moving with the heavier fluid, which
means that it can be assumed to be at rest while the lighter fluid
(of density pp) to be moving steadily over the interface with a

velocity Cjy. Von Karman applied Bernoulli's theorem after
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determining the shape of the discontinuity surface in a similar
method used by Stokes for determination of the steepest slope
occurring in waves of finite height. That is, if the frictional
effects are neglected, the slope of the discontinuity surface at the
intersection with the bottom must be equal to #/3 (or 60°). Thus by
applying Bernoulli's theorem between the stagnation point and points
on the interface downstream, supposing that the interface becomes
horizontal and the velocity of flow along it tends towards a constant

value Cy, Von Karman found that:

(e, - p,)

Po

A similar result was obtained by Benjamin(24) but wusing
different reasoning. For great depths, the flow velocity cannot
have a uniform distribution with depth, because the liquid in the
upper layer has a considerable loss of head when passing through the
breaking or hydraulic jump zone just downstream of the cavity nose.
The velocity distribution will have the form of a wake, with the
maximum velocity defect at the free surface, as shown in Fig. (2.19).
To find the velocity (Cy) in terms of cavity depth (H), a path which
starts at the upstream boundary is taken to great depths and brought
up again to the free surface through the wake zone. The pressure
variation along this path is hydrostatic and equating the pressure
upstream with the cavity pressure results in a value of C; as

follows:

Benjamin argued that the model suggested by Von Karman is not
theoretically possible because the hydrostatic forces far upstream
and downstream are not balanced by a hydrodynamic drag in Von
Karman's model to obtain a steady state of flow. To obtain the

balance the head wave must break and produce turbulence to form a
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wake which has the required momentum. This is the case realised in

practice.

Gardner and Crow(60) investigated large air pockets moving
into stationary water in a horizontal channel of rectangular
cross-section. They studied the influence of surface tension on the
air pocket velocity and also the variation of the radius of curvature
of the air pocket interface with varying depth of channel. The
channel used was 1830 mm long, 100 mm wide and with a variable depth
from zero to 175 mm. They used the surface tension parameter (L) in

the following form:

4
r = —=2 (2.77)

apgd?

where d is the channel depth. They found that for deep channels
with £ < 0.02 or d > 38.7 mm the flow was the same as given by
Benjamin(24) except for the curved nose near the top wall. For
between 0.02 - 0.105 or 16.9 mm < d < 38.7 mm, large waves formed
downstream of the bubble nose, beyond the point at which the bubble
attained its maximum depth. For £ > 0.105 the flow was much more
quiescent and the fraction of the channel depth occupied by the
liquid downstream of the bubble nose increased. The channel finally
blocked and Cl//ga—equalled zero when [ reached a critical value of
0.368 which corresponds to d = 9 mm. The blocked system is shown in
Fig. (2.20) where a substantial layer of water of depth hg remained
undrained from the bottom of the channel due to surface tension.
Their experimental results are shown in Fig. (2.21) for square-ended
and chamferredsills, where F = Cl//Ea-is plotted against the surface
tension parameter L. The bubble nose profiles found by Gardner and
crow(60) are shown in Fig. (2.22), and compared with the profile
predicted by Benjamin(24). It can be seen that for the case of h =
107 mm, when the air pocket speed is in close agreement with that
predicted by Benjamin, that the front nose of the cavity is not

identical to Benjamin's model. This is a surface tension effect.
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Gardner and Crow(60) followed Benjamin(24) in using momentum and
energy principles but they also included the terms involving surface
tension. They solved the equations to find the radius of curvature
for the bubble nose and the effect of surface tension on it. They
found that surface tension still has a substantial effect upon the
bubble velocity for air-water system in channels as deep as 175 mm,
i.e. £ = 1074, given by equation (2.77). This result agrees with
that found by Zukoski(192) and shown in Fig. (2.4), where it is clear
that a pipe diameter of 150 mm to 200 mm is required in order to have
negligible effect of surface tension. In Civil Engineering
structures pipe diameters used are usually large enough to neglect
the effect of surface tension. It seems that the analysis used by
Benjamin(24) might provide a useful tool, at least for horizontal or
slightly inclined conduits. If Benjamin's analysis can be modified
to take into account velocity profiles, the inclination angles of
conduits, single air pockets, rather than continuous air pockets,
both for the case of stationary and moving water, then a useful tool

for analysis has been provided.

Extension of Benjamin's work has been carried out recently
by Bacopolous(14) who derived theoretical models for both single and
.continuous air pockets in slightly inclined and horizontal pipes.
Considering only the case of horizontal pipes, Bacopolous analysed
the case of rectangular and non-rectangular velocity profiles with
energy losses also introduced into the analysis. For the case of
rectangular velocity profile, Bacopolous applied Bernoulli's theorem
between the stagnation point and the free surface far downstream in

the same way as Benjamin(24), also introducing the head loss term (a)

into the equations. His theoretical result is shown in Fig. (2.23)
where C4/vgD is plotted against H/D. It is noted from the figure

that a maximum value of C4/v/gD = 0.567, which is obtained for a
cavity depth H/D = 0.319. This is different from the results found
by Benjamin for a liquid filling the space between two horizontal
boundaries where, for two dimensional flow (Cl//Eﬁ) max. = 0.5273,

and for circular pipe cl/Jéﬁ = 0.542 for the case of no energy loss.



62,

Bacopolous then assumed that a non-rectangular velocity profile
appears downstream, which he confirmed using photographs from his
experimental work. Bacopolous adjusted the terms of the velocity
downstream and the momentum according to this non-rectangular
velocity profile in the Force momentum equations, and solved the

equations to end with a result similar to the case of a rectangular

velocity profile. His results are shown in Fig. (2.24) where the
maximum air cavity velocity Cy/Y/gh = 0.563 for H/D = 0.315. This

means that air cavity velocity exhibits negligible change due to the
change in velocity profile far downstream from rectangular to

non-rectangular.

2.3.2 Air Pocket Velocity in Moving Water

In Civil Engineering structures the behaviour of air pockets
in horizontal conduits under moving water conditions is of great
interest. Usually single air pockets appear'in such structures
rather than continuous cavities described by Benjamin(24) and
Bacopolous(14). This sitwation has not yet been analysed, but it
seems that the application of force-momentum equations could yield a
solution for the air pocket velocity for different air pocket depths

and different water velocities.

Wallis(177) analysed horizontal slug flow with H/D > 0.5
which involves much larger air pockets than those found in Civil
Engineering. He used the continuity equation to find the air pocket
velocity, and indicated that the air pockets do not move at the same
speed as the average liquid velocity. A sketch is shown in Fig.
(2.25). Since there is no pressure drop along the length of pocket,
the liquid film on the wall will be stationary. If this film has a

thickness of 6,, the air pocket area will be:

A, = 7(D/2 - 60)? (2.78)
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Then from continuity at this section:

Vp A, = Vi A (2.79)
and if the film is very thin:

Vp = (1 + 4§,/D) V, (2.80)

which means that Vp > VL or that the air pocket speed is greater than
the average liquid velocity. It was found for high velocities and

high Reynolds Numbers that:
Vp = 1.19 Vp (2.81)

The value of the coefficient in equation (2.81) is very close to the
value of (C, = 1.20) for vertical upward flow at high Reynolds
Numbers. A simple expression for the air pocket velocity in terms

of the overall flow rates for Re > 3000 can be given as:

Vp = 1.2 (—) (2.82)

It is not known if the above equation can be applied to the velocity
of air pockets which are usually found in Civil Engineering

structures, when the air pocket depth H/D is generally less than 0.5.

The behaviour of air pockets in horizontal conduits for

stationary or moving water can be summarized as follows:

1 - The speed of air pockets is not affected by buoyant forces.

In stationary water the air pocket will only move under

transient effects.
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The air pocket speed is a function of the maximum depth of

the air pocket and is affected by viscosity and surface

tension, i.e.

= f(H/D , Re , Wh)

8] o

If viscosity and surface tension are neglected, which is the
case for pipes with diameters > 150 mm - 200 mm, and water as

the flowing liquid, the speed of air pockets is:

(@]
-

= f(H/D)

S

The speed of air pocket for two dimensional flow is

represented by equation (2.65) as:

C
_l__ - [(d'H)(Zd“H)]i/z (2.65)
JgH d(d+H)

The maximum speed of an air pocket for two dimensional flow

with energy loss in stationary water is as follows:

C1 H
(—) = 0.5273 for - = 0.8473
vgd max d

The maximum speed of an air pocket for three dimensional

flow in stationary water is:

(a) for flow without energy loss:

(]

1

—— = 0.542
/gD
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(b) for flow with energy loss:
Cq

H
- = 0.567 for = = 0.319
/gD D

The speed of air pockets in moving water is greater than the
average liquid velocity, and for Re > 3000 and large air

pockets with H/D > 0.5 it is given by equation (2.82) as:
) (2.82)

In Civil Engineering the air pockets are usually with H/D <
0.50 and it is not known if equation (2.82) can be applied.
But it is thought that the speed can be represented as:

Cq Q +Q
— = e 12 2y
/gb D A
for flow with energy loss. The constant (1.2) might also

be different and a proper value for the above speed can be
obtained experimentally if air fed pockets were introduced

in the flowing water.

The speed of air pockets increases with increasing the depth
of air pocket until a maximum speed is reached and then it

starts decreasing, which is clearly shown in Figs. (2.15)

and (2.23).

THE BEHAVIOUR OF AIR POCKETS IN INCLINED CONDUITS

Most of the past research work done on air pocket behaviour

in inclined conduits has been experimental, with the analysis mainly

concerned with air pocket

s blowing back or clearing out of the

conduit rather than the rise velocity of the air pocket itself. In

this section the available information about the rising velocity of
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air pockets will be illustrated for both stationary and moving water
conditions. This will be related as far as possible to part of the

investigation carried out in this research.

2.4.1 The Rising Velocity of Air Pockets in Stationary Water

An air pocket will rise in an inclined conduit due to its
buoyancy. In order to find the rise velocity most theoretical
expressions assure the pocket is stationary and the water is moving
at the air pocket rising velocity. Falvey(55) derived an equation
for the rising velocity of an air pocket by equating the buoyant
force to the drag force on a stationary pocket, shown in Fig. (2.26).

This gives:

7 D? 7 D2 (p, V?)
1 r
(py = Py) (g8,) = Cg — (2.83)
6 4 2
where Do = -equivalent pocket diameter
Cq = drag coefficient on the pocket
So = pipe slope = Sine
and Vp = rise velocity in pipe inclined at angle © above
horizontal

Rearranging terms and dividing by pipe diameter:

D S

v? p o
T e N (2.84)
D c
gD 3 4 a
Eq+ (2.84) -indicates that the rising velocity depends on the
drag coefficient and the pocket shape. Kent(97) used the same

principal of holding the pocket stationary in a moving water to get a
minimum water velocity to clear an air pocket out of a downward

sloping pipe. This model can also be used to represent the rising
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velocity of air pockets in stationary water. By equating the
buoyancy and the drag forces on a stationary pocket the following was

obtained:

C, A p, V?
Vo gSine = d b1 r (2.85)
2

where V is the air pocket volume and Ay the air pocket area exposed

to oncoming flow.

By substituting for the drag force C4q from his experimental
results, Kent was able to reduce equation (2.85) into the following

equation:
V. = Kv/gDSine (2.86)

where K is a constant given as a component of two constants, the
first is the drag coefficient and the second is a shape factor, where

K can be written as:
K = 1.62/¢ (2.87)

Kent suggested from his experimental results that ¢ becomes constant
and equal to 0.58 for L/D > 1.50. (L is the air pocket length and D

the pipe diameter).

Runge and wallis(189) studied slug flow H/D > 0.5 in
inclined pipes and indicated that the parameters which describe this
regime are precisely those which were used to describe vertical flow
together with angle © made between the axis of the pipe and the
vertical. They suggested that for bubble rise velocity one can
obtain curves similar to those in Fig. (2.3) at each value of 6.
The rising velocity is given by using the dimensionless parameter K;
as follows:

K1 = Ky (Nf » Ngg » 0) (2.88)
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where N¢ and Ngg are the same as given in equations (2.23) and (2.20)

respectively.

The ratios of the rising velocity in inclined conduit to the
rising velocity in vertical pipe were plotted against angle of
inclination for different values of Nf and Ngg. A typical plot is
shown in Fig. (2.27) for N¢ > 300 and Ngg > 100, which is the case in
Civil Engineering structures, when inertia force is the dominant

factor and viscous and surface tension effects are negligible.

Zukoski (192) gtudied the rising velocity for continuous air
pockets in inclined conduits. He indicated that the air pocket
velocity is complex because of the change in air pocket geometry in
response to change in inclination angle. He obtained the bubble
rise velocity for a wide range of the surface tension parameter (L)
and Reynolds Numbers (Re), defined by equations (2.21) and (2.22)
respectively. His experimental results are shown in Fig. (2.28) for
various pipe diameters and different angles of inclination, where
Vr/JEB has been plotted against (©) the angle of inclination with the
horizontal. Also in Fig. (2.28) the experimental results found by
Runge and Wallis(139), Bonnecaze(zs), Davies and Taylor(sg) and White
and Beardman(181) are plotted to give a clearer idea about the effect
of surface tension and angle of inclination on the rising velocity of

air pockets.

Zukoski(192) indicated that viscous effects are not
important for Vr/JEE > 0.10, because in this region the Reynolds
Number Re > 400 and hence the rising velocity is 1likely to be
independent of viscous effects as for the vertical case. The effect
of surface tension has already been shown in Fig. (2.24) where the
rising velocity is plotted against pipe diameter for three different
angles of inclination. It can be noted that surface tension still
has an effect on the rising velocity up to a pipe diameter between

150 mm and 200 mm as for the horizontal case.
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Wisner et al(187) carried out experimental work for the
clearing velocities of air pockets from downward sloping pipes, but
he also studied the rising velocity of air pockets in stationary
water. The experimental work was performed in a pipe inclined at
18.5° with horizontal and a pipe diameter of 244 mm. The results
are shown in Fig. (2.29), where the non-dimensional rise velocity is
plotted against the Reynolds Number for different air pocket volumes
{(n) defined as Air Volume/AwD?3/4). Wisner's results indicate that the
rising velocity V./v/gD will be independent of viscous effects for Re
> 10° where Re = VpD/v. When substituting for V. value as 0.5/gD, a
diameter in excess of 159 mm will be required for the rising velocity
to be independent of viscous effects. This value of Re > 10° is far
away from the value suggested by Zukoski(192) for Re to be in excess
of 400 to get a velocity independent of viscous effects. Also, it
can be noted that for larger air pockets with n 2> 0.80, where n = air
pocket volume/rD®/4) and Re > 10%, the rising velocity will be a
function of the angle of inclination only. It is of interest that
Wisner correlated his data with the air volume rather than H/D as

Benjamin and Bacopolous, or the air pocket length L as Kent.

For mildly sloping pipes, Bacopolous(14) formulated a
theoretical model for both single and continuous air pockets by
extending Benjamin's analysis(24). He also carried out experimental
work to confirm his model for a pipe slope of 1.65%. Fig. (2.30)
illustrates the motion of a single air cavity with its front moving
at a velocity Cj. The cavity was divided into four zones to
simplify the analysis, where zone OA is a second degree curve with
maximum cavity depth H at point A. The second zone is AE where
something between a hydraulic jump and undular jump occurs. The
third zone EZ has an arbitrary length Lz = 2D, so that force-momentum
equation can be applied between sections AA; and ZZ,. Finally, the

fourth zone has a horizontal interface and is the tail of the pocket.
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The velocity profile at section AAq in Fig. (2.30) is assumed to be
rectangular, and the drag force between water pipe wall is included
in the force balance equations. Three conditions for resistance

were examined between 00; and AA; as follows:

a - no resistance present

b - the resistance balances 2/3 of water weight component

between 00; and AA; sections

c - the resistance determined by shear stress from turbulent

flow formula for steady incompressible flow

T = = — y? with £ = 0.009

The velocity profile at section Z2ZZy; in Fig. (2.30) is
assumed parabolic. The analysis was carried out by applying
continuity equation between sections AA; and BBy, applying
Bernoulli's theorem between points B and O, and also incorporating
the force balance equation between sections BBy and AA;. In the
analysis consideration for angle of inclination, weight of water, and
three different kinds of resistance mentioned above, was taken into
account in solving the equations for C1//§ﬁ in terms of H/D. The
final result is given in Table (2.1) below, which illustrates the air
cavity velocity for different values of H/D and for three different

resistance conditions for a pipe slope of 1.65%.
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TABLE 2.1: Variation of dimensionless air cavity velocity
Cy4/vgD with resistance condition

H/D > 0.10 0.20 0.30 0.40

a.| no resistance 0.4239 0.5367 0.5716 0.5597
present

b.| 2/3 of water weight 0.4213 0.5335 0.5682 0.5565

component is bal-
anced by resistance

c.| resistance is given 0.4239 0.5367 0.5716 0.5597
by the equation of
turbulent flow

It can be noted from Table (2.1) that the flow resistance makes no
differenteto the cavity velocity. Bacopolous also showed that the
cavity velocity is more related to H/D than other parameters such as
the cavity volume or the cavity length. The theoretical results
will be plotted in Chapter (7) for comparison with experimental
results from the author's research. Bacopolous continued his
theoretical analysis and found the length of the air cavity in terms
of cavity depth H/D. His results for a pipe slope of 1.65% are
shown in Fig. (2.31) for three different resistances. Finally,
Bacopolous fitted a second degree curve for his results of C1/JEﬁ and

H/D for "no resistance present". where the equation is as follows:

For H/D varying from 0.06 to 0.49

(@]
-t

= 0.259 + 1.9292 x L. 2.9036 x (g)z : (2.89)
D D

0
(=}
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In his experimental work for the rising velocity of single
air cavities in stationary water, Bacopolous tested the pocket rise
velocity for different slopes of 1.25%, 1.5%, 1.65% in a pipe of
0.219 m inside diameter. His results are shown in Fig. (2.32) where
Cl//Eﬁ is plotted against H/D. It can be noted that the maximum
rising velocity is very close to the result obtained by Zukoski (192)
shown in Fig. (2.28) for the same angle, and higher than the velocity

obtained by Benjamin(24) for a horizontal conduit.

2.4.2 The Rising Velocity of Air Pockets in Moving Water

The rising velocity of an air pocket in moving water in an

inclined conduit has similar characteristics to that for vertical
flow, in the sense that it is composed of two components, the first

due to air pocket buoyancy and the seccnd due to liquid velocity.

Bonnecaze et a1(26) gstudied slug flow (H/D > 0.5) in pipes
inclined at + 10° with horizontal. It was found that slug flow
regime predominates in upward and horizontal flows, while stratified
flow tends to dominate in the downward situation, but even for this
situation slug flow can exist if the flow rate is sufficiently large.
Bonnecaze et al gave the following expression for the rising velocity

of an air pocket in moving water:

\Y 6 Vw
e (2.90a)
VL VL
which can be written as:
Vp = CqVp + 6V, (2.90D)

where 6 indicates the direction in which the buoyancy force is

acting. For horizontal pipe, 6 = 0 because the buoyancy force does
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not act in the direction of flow. For upward slug flow, & = +1
because the buoyancy force is acting so as to force the air pocket up
the pipe. In downward slug flow the same phenomenon occurs, but in
this case the flow is down the pipe and therefore 6 = -1. The value
of Cy found in this work was (1.20) for pipes inclined from +10° to
-10° with horizontal, which is very similar to the constant for
vertical conduits found by Nicklin et a1(123) and for horizontal
conduits found by wallis(177) The term V, in equation (2.90b) is
the same as that for vertical conduits which is given in equation
(2.7) derived by Davies and Taylor(38). The experimental results of
Bonnecaze have shown this constant to be (0.35) which is close to the

value in equation (2.7) of (0.8328). The result can be written as:

V = 1.2(———)z 0.35 /gD (2.91)

It is interesting to note that the component due to buoyancy in
inclined conduits is the same as that for vertical conduits, while
the experimental results of Wisner et al(187) and Bacopolous(14) for
stationary water showed that the rising velocity depends on the angle
of conduit as well as either the volume of air pocket or H/D.
Wisner and Bacopolous both worked with air pockets with H/D < 0.5
whereas Bonnecaze' slug flow regime has H/D > 0.5. Parakh(125)
carried out slug flow experiments for air pocket speeds in moving

water for conduit angles up to 30°. The result was given by:

Ve = KpVp + 0.85 Kg gD (2.92)

where Ko was found to vary linearly with the mixture velocity and has

the following values for different angles of inclination:
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Ko 1.26 1.24 1.24 1.24 1.16 1.30 1.18

Ko does not vary systematically with inclination because it also
depends on flow rates, flow geometries and velocity distribution.
The parameter K3 allows for the effect of inclination, with
experimental values of (Kg) shown in Fig. (2.33) plotted against
angle of inclination. The curve between 0° and 5° is arbitrary as
there is no data in this region. Also, the experimental results of
the present research show that this parameter is higher than the
value of Kg given by Parakh and is dependent on the angle of
inclination and H/D. This will be shown in Chapter (6) where the

value of K3 varies between 1.14-1.66 for H/D between 0.1-0.35.

2.5 THE EFFECT OF ANGLE OF INCLINATION ON THE
RISING VELOCITY OF AIR POCKETS

Runge and wallis(139) noticed an interesting phenomenon
which arises when the pipe is tilted from the vertical position.
The air pocket velocity inam.inclined pipe exceeds that of the same
pipe placed vertically, provided the air pocket rises up the centre
of the vertical pipe. When the pipe is tilted from the vertical the
rising velocity increases until a certain angle is reached, then it
starts decreasing again. Experimental work carried out by
Bonnecaze(ze), Zukoski(192) and Spedding and Nguyen(154) defined this
phenomenon, with their results shown in Fig. (2.28) as the rising
velocity against inclination angle. Spedding and Nguyen(154)
carried out tests for bubble rise velocity for horizontal and
inclined pipes where they found that the air bubble volume can be
important in determining the actual bubble rise velocity, but it does
not affect the angle at which the maximum bubble rise occurs. Fig.
(2.34) shows the Fr = Vr/JEE plotted against angle of inclination for
different bubble volumes, where it can be noted that for any bubble

volume the maximum rise velocity is occurring at an angle of 35° with
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horizontal. The basic reason appears to be due to the shape of the
air pocket in the nose region. As the angle is increased from
horizontal the buoyancy force is also increased. The force is

opposed by the drag force originating from the draining of the liquid
past the rising pocket. When the inclination is under 30° the acute
contact angle of the air pocket to the wall, and the downstream
air/water interface which is parallel to the tube wall allows the
water to drain away from the pocket with little resistance. As the
angle is increased to 40° the pocket nose has an obtuse contact angle
with the wall and the interface tends to lie at an angle to the lower
tube wall in such a way as to restrict the down flow of water. In
the vertical position there is no contact angle but the pocket is
totally surrounded by water flowing down the tube. In this case the
vertical rise of the pocket is opposed by the liquid passing down the
annular space between the gas and the solid wall. The effect of the

tube inclination on the bubble shape is shown in Fig. (2.35).

Bonnecaze et al(26) defined the co-ordinates for the model
used in their experiments as shown in Fig. (2.36). The air pocket
is assumed to be at rest and liquid is flowing past the air pocket.
Applying Bernoulli's equation to a streamline defining the pocket

shape yields:

2
P o_an + L& - E. (2.93)
P4 2

where h = yCose + xSine, and equal to the vertical distance from the
nose of the pocket to a point on the air pocket surface, and q =

liquid velocity in the bubble. For the air pocket:

P _gh - E (2.94)
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subtracting equation (2.93) and (2.94) and recognising that at the
pocket nose there is a stagnation point with (q = 0), then the

following is obtained:

P,
@@ = 2(1--2)gh
Py
Py
= 2(1 - =)g(y Cosé + xSine) (2.95)
P

Equation (2.95) shows that the liquid velocity for a point
on the air pocket is proportional to its vertical distance from the
nose of the pocket. For small angles from vertical this vertical
distance is greater than that for the vertical case as shown in Fig.
(2.36). Since h' > h", then the liquid velocity at point (P) will
increase when the tube is tilted from the vertical. When the air
pocket is nearly horizontal, i.e. h < h" the liquid velocity at (P)
will be less than the vertical case. This gives an explanation of
why the rise velocity first increases and then decreases when the
pipe is tilted from the vertical position. One point should be
noticed here when the pipe is near the horizontal, and according to
the above explanation, the rise velocity should be less than that for
the vertical case while wallis(177) and Spedding and Nguyen(154)
noticed from their experimental work that the rise velocity for
angles of 2°-3° from horizontal was still greater than that for the
vertical case. This was also noticed by Bacopolous(14) for an angle
of 0.945° with horizontal for air pockets rising in stationary water,
and in the present research for an angle of +1.5° with horizontal for

air pockets rising in moving water.
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2.6 AIR POCKET BLOWBACK AND CLEARING PHENOMENA

In this section the behaviour of air pockets in sloping
conduits will be examined in the context of blow back up a sloping
conduit and air pocket clearing in downward sloping conduits.
Blowback generally occurs when a coalescence of air bubbles produces
an air pocket large enough to blowback in the opposite direction to
the oncoming flow. Clearing or "blow out" is the term generally
given to air pockets moving in the same direction as the flowing
water with most problems occurring in downward sloping pipes. Most
of the previous work in this area has been carried out for air pockets
at a high point of a sloping conduit where the minimum water velocity
required to clear the air pocket has been investigated. Little
attention has been given to air pockets blowing back, where these
pockets usually form due to the coalescence of small air bubbles
entrained at the end of a hydraulic jump and grow in size until the
water velocity is insufficient to overcome the pocket buoyant force.
Air pocket formation at a high point was studied by Kalinske and
Bliss(gs), Mohsen(113) | Wisner et a1(187) and Edmunds(43). Air
pocket formation below a sluice gate in a downward sloping conduit
was studied by Kalinske and Robertson(94) . Kent(97) and Ganden-
berger(sg) studied air pockets held stationary in a downward sloping
conduit. Fig. (2.37) shows a configuration of the air pocket at a
high point, below a gate and an equilibrium pocket. Each of the
above cases will be investigated in detail and a comparison between

different results will be shown.

Kalinske and Robertson(94) were the first to study the air
removal characteristics of a hydraulic jump formed at the end of an
air pocket which can be formed at the summit of a pipe line or beyond

a partly open gate (see Fig. 2.37). They outlined two methods for

removing the air:

(a) mechanically by using air valves; but this is not feasible

if the pipe is under sub-atmospheric pressure, and
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(b) hydraulically by the flowing water.

Their main concern was to study the ability of the hydraulic jump to
entrain air and pump this air along the conduit beyond the jump.
Their experiments were carried out using a transparent "Lucite"
circular pipe of 0.49 ft (0.149 m) inside diameter, which was laid at
different angles ranging from 0° - 16.70° with the horizontal.
Kalinske and Robertson (94) noticed that for any given initial depth
of flow and slope of pipe, there is a point up to which the air
entrained into the jump will exceed the rate at which the air is
carried along the pipe beyond the jump. The air entrained by the
jump will form a large bubble just beyond the jump, where it
periodically blows back over the jump causing the jump to drop
downstream; then another jump forms and the process will be
repeated. They suggested that for discharge below critical value
the average rate of air removal is controlled by the flow conditions
below the jump and not by the jump itself. They found that the rate
of air entrainment was mainly dependent on the Froude Number below
the jump, where their results are shown in Fig. (2.38) as air water
ratio (B) against the Froude Number (Fry = V1//E§;). The
relationship of Fig. (2.38) can be expressed by the following

equation:

B = — = 0.0066 (Frq - 1)'-* (2.96)

Their experimental results for the limiting Froude Number, beyond
which equation (2.96) applies, are shown in Fig. (2.39), where y,/D
is plotted against Frq. For any value of yy/D, there is a value of
Froude Number Fri below which the pipe line will carry only a part of
the air pumped into the water by the jump. This means that blowback

can occur up to this limiting value of Froude Number Frj.
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Sailer(143) reported on the problem of blowbacks in the San
Diego Aqueduct which incorporates several long siphons. Fig. (2.40)
shows a typical plan and profile of a long siphon where a hydraulic
jump occurs near the point of intersection of inlet leg and hydraulic
gradient for partial flow. This hydraulic jump may cause trouble in
long siphons, because the entrained air accumulates into large air
pockets downstream the jump blowing back with great force taking
water up with them. These forces, on the Belle Fourche Project in
South Dakota, were sufficient to completely destroy the reinforced
concrete platform on the inlet structure. Sailer(143) analysed 21
different siphons ranging from 24 inches (0.61 m) to 111 inches (2.82
m) diameter, and plotted the results on the same graph of Kalinske
and Robertson(94), His results are shown in Fig. (2.41) where he
indicated that siphon inlets with upstream Froude Number values
falling on or below Kalinske and Robertson's curves gave no trouble,
whilst the siphon inlets that fell above the curves had given trouble
with blowbacks. This is the reverse of Kalinske and Robertson's
findings who experienced blowback problems with upstream Froude
Numbers less than the curves shown on Fig. (2.41). Recently
Goldring(66) made an attempt to compare all the available results of
blowback, where he plotted all the comparable data on a common graph,
shown in Fig. (2.42). This graph includes only equilibrium void and
blowback data. The equilibrium void is the void which is held
stationary by flowing water in a downward sloping pipe, see Fig.
(2.87). Any small increase in water flow causes it to move
downstream, while a small decrease in water flow allows it to move
upstream. Sailer's prototype data shown on the graph, where the

upstream Froude Number has been translated into the pipe full Froude

Number (Fr, = V,//gD), indicates that blowbacks occur at non-
dimensionalised velocities (V,/vgD) of 0.99 and over. This means

that critical flow occurs when the pipe runs full, and a hydraulic
jump cannot form at the end of the air pocket. Hence the pocket
cannot be cleared by air entrainment at its end, and may only be

removed by bodily sweeping.
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Kalinske and Bliss(93) investigated air removal from a high
point by the flowing water, as shown in Fig. (2.37). Their main
concern was to indicate the water discharge required to maintain air
removal from any given size of pipe laid at any slope. Their
experimental work was performed using two pipes of 4 in. (0.102 m)
and 6 in. (0.152 m) diameter and laid at downward sloping angles up
to 30°. They found from their data that the rate of air removal was
controlled by two different hydraulic phenomena. For lower
discharges the air removal was controlled by the flow characteristics
beyond the jump which are described by sz /gD%. At higher
discharges the air removal was controlled by the hydraulic jump,
which gives Qa/Q, as a function of the Froude Number of the
supercritical approaching flow. To find the limiting conditon above
which blowback would not occur, Kalinkse and Bliss(93) equated the
buoyant and drag force on an equilibrium air pocket giving the
velocity required to clear the pocket downstream. This is given by

the following equation:

VZ
gD C

where K is a constant, S is the pipe slope and Cq is the drag

coefficient. Then replacing V. by the water discharge Qg, they
obtained:
Q3 K.S
< _ _Z2 (2.98)
S
gD Cd

indicating that the non-dimensional clearing discharge should vary
linearly with the downward pipe slope. Fig. (2.43) showing their
experimental data confirms that this is not the case, at least for

small pipe slopes, this being due to the fact that hydraulic jumps in
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this region do not fill the pipe. It can be noted from Fig. (2.42)
plotted by Goldring(ss) that there is a discrepancy between the
results of Kalinske and Bliss and Kalinske and Robertson and this may
be due to the fact that Kalinske and Robertson considered a long air
pocket formed by a sluice gate whose upstream end is already at the
high point of the pipe, while Kalinske and Bliss got a trapped pocket
at the summit of a pipe line when water flows over the summit. Also
in Kalinske and Bliss data there is no measurement of Y{/D in order
to compare their results for clearing with those obtained by Kalinske
and Robertson, where it is noted from Fig. (2.42) that their clearing

velocities are within the blowback data of Kalinske and Robertson.

Kent (97) investigated the entrainment of air by flowing
water in circular pipes with downgrade slopes, as shown in Fig.
(2.37c). He studied the velocity of flow to remove air from the
pipe summit and indicated that accumulated air can be removed wither
bodily with enough water velocity so that the drag force can overcome
the buoyant force and hence moving the pocket downstream, or by the
formation of a hydraulic jump at the end of the air pocket where the
violent eddy action will entrain small bubbles into the conduit
beyond the jump. These bubbles are small and usually their buoyant
force is less than the drag force which enables them to move
downstream. During their movement they may coalesce to form a
larger pocket which may grow until it reaches a size where it will be
stationary and form a further jump similar to the original pocket.
He indicated that irrespective of the method used, the velocity of
flow must be above a certain minimum value or even small bubbles will
not move downstream. Kent{(97) carried out his experimental work

using two pipes of 1.5 in. (0.038 m) and 4 in. (0.101 m) diameter,

with the first pipe laid at angles ranging from 0° - 90° while the
second pipe was laid at angles ranging from 15° - 60° to the
horizontal. The analysis used by Kent was based on equilibrium

pockets, where he equated the drag force to the buoyant force to
obtain a theoretical model for the drag coefficient and the minimum

velocity for removal of air. He obtained the following for C4q and V;:
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L H

Cq = f(- , = , ©) for We < 40 (2.99)
D
L

Cd = f(- , E) for We > 40 and
D D 15° < © < 60° (2.100)

h _ 3 oL .
where We = Weber Number = VW— , L = air pocket length and

o
H = max. depth of pocket.

The minimum water velocity to transport an air pocket down the pipe

was given by:
Ve = K/gDSine (2.101)

where K = 1.62J/¢ and is dependent on the drag coefficient and the
shape of the air pocket. Equation (2.101) is the same as equation
(2.86) used for the rising velocity of air pockets in inclined pipes
for stationary water, where the same criteria has been used. Again
the value of ¢ = 0.58 for air pockets with L/D > 1.50. Kent produced
two graphs for the velocity to keep smaller air bubbles and larger air

pockets stationary in the larger pipe of (0.101 m) diameter for

different angles of inclination. These are shown in Figs. (2.44) and
(2.45) respectively. Kent indicated that for each angle there is a
critical size of air bubble in order to be swept bodily. Any size

greater than the critical will require removal by pumping action at
the end of the air pocket. This critical size is shown in Fig.
(2.44) in which the largest bubble diameter at each angle represents
the critical size for that angle. In Fig. (2.45) for larger air
pockets, equation (2.101) is also shown in addition to Kent's
experimental data. It can be noted from the Fig. (2.45) that for a
conduit angle of 60° with horizontal, a supercritical pipe-full

Froude Number is required to keep the pocket stationary. Kent(97)
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explained the effect of increasing the air flow rate (Qa) on the
pumping action of the jump, where he stated that increasing (Qy) will
increase the pumping action until the depth under the pocket reaches
the normal depth for that discharge and flow. When the normal depth
is reached any further increase in (Qa) will only increase the air
pocket length until it fills the whole length of pipe and separation
flow or stratified flow develops. Essentially this is using the

incoming air discharge to push the jump out of the conduit.

Mohsen{(115) and Wisner et al(187) investigated the removal
of air from a downward sloping pipe of an angle of 18.5° with
horizontal and a pipe diameter of (0.244 m). Using dimensional
analysis to define the factors that affect the sweeping velocity, the

following relation was obtained:

-t R , o) (2.102)
D

3 |~
w] |0
[w]

assuming that L/D can be replaced by the non-dimensional air volume,

n = V/(#D%/4), then for a given n and 6:

= f(Re) (2.103)

3
wm] o
o

Wisner et al proposed that data obtained for the rising
velocity of air pockets Fig. (2.29) could be assumed to be the same
velocity to bodily sweep air pockets down along a conduit. It can
be noted that the sweeping velocity becomes indpendent of Re (viscous
effects) when Re > 10°. This means that the clearing velocity will
only depend on angle of inclination (©) which agrees with the results
of Gandenberger(sg) for large air pockets. They also carried out
experiments to define the "limit bubble", originally discussed by
Veronese(174) where a large pocket is introduced into the downward
sloping pipe with flowing water. The water velocity was changed

continuously to keep the pocket in equilibrium, as disruption
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progresses, It was found that the pocket was reduced to a small size
where any increase in the velocity will sweep the pocket out of the
pipe. Their results are shown in Fig. (2.46) where the limit
velocity is plotted against the diameter of pipe. The results
confirm that for a particular diameter and slope there is one stable
length and corresponding velocity, and that the limit velocity does

not become a constant with increasing diameter.

Wisner et al(187) plotted all the available experimental
data on one graph, shown in Fig. (2.47), to provide an upper envelope
for the minimum velocity required to clear an air pocket in a

downward sloping pipe as the following:

= 0.25 /Sin® + 0.825 (2.104)

g o~

They suggested that the velocity required for removal of air pocket
should not be much higher than the upper envelope as this will
paradoxically introduce further problems of blowback. They
recommended that the clearing velocity should be kept within +5% of

the upper envelope.

Mohsen(115) indicated an important point about this type of
blowback, in that the air pocket is not completely steady at the
clearing velocity. There is some generation of air bubbles at its
downstream end, with some of the generated air swept out whilst the
remainder coalesces in a pocket and travels back to join the original
pocket. Thus the size of the air pocket at clearing velocity is
ranging between two limits and not completely steady. The
difference of volume at the two limits is equal to the blowback
pocket. It was observed that the size of the blowback pocket
increases with decreasing the depth of flow at clearing velocity.
In a subsequent discussion Wiser et a1(187) jindicated that increasing

the velocity much higher than the lower bound will develop a
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different flow pattern, where large parts of the air pocket would
tear quickly and rise up to the high point. This air at the summit
will again be forced down in smaller sizes, This movement up and down

the pipe causes significant pressure pulsations.

Gandenberger(sg) carried out experimental work after
developing theoretical expressions for the velocity of air pockets in
pipes with stationary and moving water. His work was published in
German (1953 and 1957) and a translation to his work is given by
Mechler(110) Gandenberger noted that the determination of all the
factors which affect air pocket movement requires extensive
experiments, and that the best way to represent his results will be
in the form of graphs. He carried out his experiments in glass
tubes of 45 mm, 26 mm and 10.5 mm diameter, and in a steel pipe of
100 mm diameter, having varying pipe inclinations between 0° and 90°,
and with water flowing upward and downward. Based on these
experiments, together with some prototype data, Gandenberger
developed a graph which gives the minimum average water velocity (VC1
) required to clear a given volume of air pocket from a high point in
the profile of a pipe of 1 m diameter for various angles of
inclination of the downstream leg, as shown in Fig. (2.48). The air
pocket is defined as a fraction or multiple of the air volume of a
unit pocket, n = 1, defined for any diameter (D) as having the volume
7D?/4. Gandenberger shows that, for pipe diameters greater than 0.1
m, the corresponding minimum velocity for transport of a pocket of
the same relative size in a pipe of diameter D (in meters) can be

calculated from:
Ve = VC1«/f)— (2.105)

The available experimental results have been plotted in a
non-dimensional form, as shown in Fig. (2.49) where V.//gD is plotted
against the angle from horizontal. It is noted that clearing from
high points is most difficult at downward slopes at 45° - 60° and for

large air volume pockets. This graph has also been plotted as
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Q:’/gDS against the angle from horizontal, as shown in Fig. (2.50),
together with the curve given by Falvey (USBR)(55) for the limit of
air pocket movement, where Qy is the minimum flow rate to clear the
air pockets. Falvey(55) indicated that additional studies are
required to define the bubble motion curve in Fig. (2.50) for slopes
greater than 45°, since Martin(105) had shown that a stationary air
pocket forms when Q,?/gD®> is equal to 0.30 for vertically downward
flow, this result is also shown in Fig. (2.50). This means that the
increasing trend of this curve probably does not continue past the
45° slope. In fact it could be argued that Falvey's graph is a
complete over-estimate of clearing discharges for angles greater than
about 10°. Falvey(55) has plotted different results for clearing,
blowback and stationary air bubbles and air pockets on one graph,
which is shown in Fig. (2.51), where the reverse flow region has been
delineated using the data of Colgate(35) and the slug flow curve
given by Runge and wallis(139) and shown in Fig. (2.27).

Gandenberger results have also been plotted in Fig. (2.42)
on Goldring's graph, for n = 1, where it can be noted that
Gandenberger limiting Froude Number is less than Kent's and Wisner's
et al data, and it fits very closely the results of Kalinske and
Robertson for Y{/D = 0.130. Unfortunately it is difficult to compare
the results directly because Gandenberger did not use depth of the

air pocket, instead he used total volume of the pocket.

It is noted from this review that there is no definite
answer for air pocket blowback and clearing phenomena. For air
pocket blowback mainly the air pockets were forming dueto coalescence
of entrained air bubbles and grow in size until their buoyant force
overcomes the water velocity when they then blow back. The
blowback phenomena was either defined from an equilibrium void or
based on prototype data where different criteria were used in each
case. For the case of air pockets clearing also different criteria
were used to define the water velocity required to clear an air

pocket down a sloping conduit. Some investigators used air
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entrainment at the end of the pocket as the criteria for reducing the
size of air pocket until the pocket reaches a size where the water
velocity can overcome the air pocket buoyancy and remove the pocket.
Other investigators used the equilibrium void to define the clearing
or bodily sweeping of the air pocket. It can be outlined that no

definitive answer has been produced because each investigator was:

(1) trying to solve a different specific problem, such as an air
pocket at a high point, an air pocket forming below a gate,

and air pockets fed into the flowing water.

(2) using different apparatus, with different dimensions and
using different physical configuration. Some investigators
were using the volume of the air pocket, others were using
either the depth of flow or the depth of the air pocket
itself.

To obtain a definitive answer, a more general and
comprehensive procedure must be used after defining the parameters
which affect the behaviour of air pockets in sloping conduits.
This will allow the use of more accurate procedures in obtaining the
required data such as the depth of flow below the air pockets,
velocity profiles, the angle the nose of the air pocket forms with

the conduit, the inclination angle of the conduit and the direction

of the flowing water.

2.7 AIR POCKET BEHAVIOUR AT THE JUNCTION OF A
DROPSHAFT/TUNNEL SYSTEM

Dropshaft/tunnel systems are usually used in the outlets of
dams, power stations and the outfall systems of nuclear power
stations. In Chapter (1) an outline of the problems caused by the
presence of air in dropshaft/tunnel systems has been given, together
with a description of some hydraulic structures which experienced the

problem of air presence. In this section a review of mainly the
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experimental work which has been carried out on the subject will be

outlined.

When water is allowed to fall freely some distance down a
shaft, it will entrain small air bubbles when the nappe impinges on
the standing water surface in the shaft. These entrained air
bubbles may descend the shaft and coalesce,formingan;airpocket at the
junction of the dropshaft/tunnel systen. The behaviour of these
pockets falls into three basic categories, namely, a trapped
stationary air pocket at the bend, blowback up the shaft, or clear
ing of the pocket along the tunnel. The presence of such air
pockets will usually reduce the capacity of the system, produce head
losses, and may also lead to mass oscillation, vibration and the

damage to the structure itself when they blowback.

Miller(llz) carried out model tests to investigate the
oscillations which occurred in Hunterston "B" Power Station.
Additional work on the same problem was reported by Townson(165) as
already outlined in section (1.3). A 1 to 11 scale model of outfall
with a 12 inch inside diameter tunnel was used and the tunnel was laid
at a down slope of 1 in 200. Operating the model with clear water
did not reveal any significant instabilities on a comparable scale of
prototype oscillations. This was largely because large air bubbles
were entrained whose rising velocity was similar to that of the
downward water velocity in the shaft and tunnel. Additives were
added to reduce the size of the entrained air bubbles which allowed
the bubbles to reach the bend, although the addition of additives
caused other problems in the transport of air along the tunnel.
Miller found from the tests that the entrained bubbles which
accumulate at the bend in the form of air pockets, cannot pass
through the system because of the adverse (downward) slope of the
tunnel, and the free surface disturbances at the air pocket pump the
air back to the vertical shaft. Entrapped air along the tunnel roof
represented a considerable store of energy which can only be

dissipated by the air escaping up the shaft. With low water
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discharges the only way that air could escape was by bringing the
system into oscillation close to its natural frequency. In some
cases the water velocities fell near to zero or even reversed during
part of each cycle. At higher flows the coupling between the
release of air from the tunnel and the systems natural period of
oscillation was destroyed as air release became dependent on surface
disturbances generated by the higher water velocities in the tunnel.
Introduction of air vents at the bend provided a means by which the
energy stored in the airpocket could be dissipated without disturbing

the systen.

Goldring, Mawer, and Thomas (63) carried out a preliminary
study of air void at the junction of dropshaft/tunnel system while
investigating air entrainment in Thameside Power Station. They also

noticed that the void will form at the dropshaft/tunnel bend at low

water discharges. Tests were conducted on a circular bend of radius
ratio (R/D) 0.75, with their results shown in Fig. (2.52). Water
velocities are scaled up to prototype values. They outlined two

situations, the first being when suddenly reducing the water velocity
below 3.0 m/s the air void will vent back up the shaft rising to the
free surface: the second situation existed under steady operation at
water velocities below 3.0 m/s where the void startsto form but vents
before it can reach a large size. As it vents and rises up the
shaft it breaks up into small bubbles and then these bubbles are
carried back down and around the bend by the flowing water. They
suggested that the problem at low discharges will only be of air
bubbles recirculating in the area of the bend, and the problems

associated with violent venting will not be present.

Goldring(64'65) has carried out tests to investigate the

behaviour of air pockets at the Bend which connects a vertical shaft

to a horizontal tunnel. The pipe sizes were 0.072 m, 0.10 m, 0.14 m
and 0.19 m inside diameter. Four bends were used with bend radii
R/D = 0.5, 0.75, 1.0 and 1.5. Air flow ranges between 0% - 2% of

water flow, which is much lower than the actual percentage of
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entrained air in dropshaft spillways where this percentage can be as
high as 40%.

Goldring specified four basic modes for the behaviour of the

air pocket at the bend:

(1) At low water flow rates, any void which starts to form on
the inside of the bend would vent back up the downshaft

before it could grow to an appreciable size.

(2) At higher water flow rates a stable void is formed at the
bend with its nose located somewhere on the curved inside
radius and its downstream end in the form of a hydraulic
jump. This void is called partly ventilated void (PVV),
which is usually a short air pocket with the jump at its end

drowning back to the bend.

(3) If the air flow at this stage is increased the void will
grow in length and passes the working section which is 1.2 m
from the bend and is called fully ventilated void (FVV).
Actually increasing air flow rate will increase the size of

the air pocket i.e. its length and depth as will be observed

in this research.

(4) Further increase in the water flow causes the FVV to be
swept away downstream and the conduit flows full of water,

with the air dispersed and carried along as small air

bubbles.

The four basic modes are shown in Fig. (2.53) where the air/water
ratio (B) is plotted against upstream non-dimensionalised water
velocity (Froude Number). The "void vents" line and "void comes"
line were obtained by holding Q4 constant and decreasing the water

flow. While "FVV" line was obtained by holding the water flow

constant and increasing air discharge.
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Goldring investigated the effect of bend radius on behaviour
of the void at the bend, his results are shown in Fig. (2.54), for
0.14 m diameter pipe. It can be noted that the void will vent back
and clear out of the pipe at a lower water velocity for the bend with
R/D = 0.50 than that for the smoothest radius of K/D = 1.50. Thus
the sharpest possible bend is the most desirable situation.
Goldring derived empirical expressions for the void vents and void

comes lines as shown below:
Foy = 0.28 + 0.36 vR/D (2.106)
below which an air pocket will vent back up the shaft, and:

Q
(0.50 + 0.25/K/D + 20 —A)Ve

= Qu (2.107)
/gD

Foc
above which air voids will continuously clear from the bend.

Foy is non-dimensional velocity for venting and Fo. is a
non-dimensional velocity for clearing. Equation (2.107) is plotted
with experimental data in Fig. (2.54) and shows a deviation for the
tightest bend. This may be due to the fact that secondary currents
occurring at a sharp bend are stronger and allow the air bubbles to

be transported downstream, so that they will not contribute to the

growth of the void at the bend.

Tunstall and Harvey(172) had studied secondary currents in a
90° single-mitre bend (R/D = 0.5), and found that the secondary
currents downstream the bend had a periodic component, where swirling
flow occurs at the bend and closes the inner separation zone. This
swirling flow may be affecting the formation of the hydraulic jump

which closes the void, and thus delaying the formation of FVV.
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Goldring also studied the effect of the pipe diameter on the
behaviour of the air pocket at the bend. His results for different
diameters with a bend radius of R/D = 1.0 is shown in Fig. (2.55).
It is clear from this Figure that air pockets will clear at a lower
water velocity in large diameter than in small diameter pipes. The
effect of pipe diameter on clearing an air void is not clear yet,
because the results of Kent for 100 mmo and Wisner et al for 244 mmo
shown in Fig. (2.42) are roughly comparable. This might be due to
the face that clearing of the air pocket in Goldring's results was by
hydraulic jump entrainment at the tail of the pocket, while Kent's
and Wisner's data was for equilibrium void. Removal of the air void

by entrainment at the jump is more substantial at larger model sizes.

Ervine and Himmo(33) investigated the scale effect on
clearing an air pocket from the junction of a dropshaft/tunnel
system. They outlined that if clearing is by bodily sweeping the
pocket, and if the pocket can be accurately modelled in the first
place, then the water velocity required to bodily clear an air pocket
is correctly modelled by Froude scaling, or V./J/gD is constant, as
indicated by the results of Kent and Wisner et al. If the clearing
of an air pocket takes place by the air entrained from the hydraulic
jump at the end of the pocket, the clearing will be essentially a
velocity dominated phenomenon and not modelled accurately by Froude
Scaling alone. In order to get a hydraulic jump entraining air, a
combination of the underflow Froude Number Fryq, and the under flow
water velocity V;{ must be reached. It is more likely that a dual
combination of Fry > 1.0 and V; > 0.8-1.0 m/s is required as the
minimum condition for this type of void removal. The rate of air
removed at the end of the pocket was given by Goldring(65) who used
Thomas' equation(lez) for air-entrainment, shown below:

B = K(Fry - 1) [(1 - 292(1 - 2 vq)=1] (2.108)

Vi 3

The above equation includes a scale dependent term, which indicates

that for hydraulic jump removal of air, the prototype will remove



93.

much more air than the model. This will give an explanation for the
results in Fig. (2.55) where larger pipe diameter appears to clear at

lower velocities than smaller pipe diameters.

2.8 SUMMARY

Most of the previous work has concentrated on the rising
velocity of air pockets in stationary and moving water, with some
work done for the required water velocity to clear an air pocket out
of a downward sloping pipe. The main point which can be outlined is
that in Civil Engineering structures inertia forces and buoyancy will
dominate the behaviour of air pockets. Since the liquid is usually
water, viscous effects can reasonably be neglected, and for large
pipe diameter (D > 150 mm), surface tension can also be neglected.
Little work has been done for the case of an air pocket at the
junction of a dropshaft/tunnel system which relates to this research.
Most of the work has concentrated on clearing an air pocket from a
high point in a pipe line, and also on the behaviour of the air

pocket in the straight part of a sloping pipe.

For the case of air pocket rising in moving water through
inclined pipes, the rising velocity, as indicated in section (2.4.2),
will consist of two components, the first component is due to the
mixture velocity and the second component is due to angle of
inclination of the pipe and the size of the air pocket which is as
indicated by Bacopolous is best represented by the air pocket depth
(H). In inclined pipes the air pocket can ascend or descend for

downward water flow, depending on the drag on the pocket relative to

the buoyancy.

The most interesting aspect of the behaviour of air pockets
in sloping conduits is the analysis of blowback of air pockets and
the minimum velocity required to clear an air pocket downstream.
Little attention has been given to the case of blowback, as most of

the available experimental and prototype data has been generated for
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the case of the stationary equilibrium pocket. Even in the case of
tests giving data for blowback, details of the blowback pocket have
not been given, such as its shape, depth and the angle of the nose

with the conduit, etc.

Clearing air pockets from a downward sloping pipe can take
place either by bodily sweeping or by air entrainment due to the
hydraulic jump at the end of the air pocket. If the pocket is
clearing bodily it can be accurately modelled by Froude scaling,
while if it is clearing by entrainment it cannot be modelled
accurately. This means that at larger scale models the pocket will
clear at low Froude Numbers than smaller models if the clearing is by
air entrainment only. However, the air pocket can clear by both
entrainment at its downstream end and bodily sweeping. This is
almost similar to Veronese(174) and Lara(102) who noted that the air
pocket can be reduced by generation and entrainment at its end until
it reaches a size where it can be swept bodily and this size is
called "limit bubble". This result was also examined by Wisner et

al(187) and shown previously in Section (2.6).

The work carried out by Goldring(65) on air pocket formation
at the junction of a dropshaft/tunnel system is also the main subject
of this thesis. It appears that the radius of the bend has a great
effect on the air pocket which forms at the bend and that the tighter
bend is better than any other configuration df bend because blowback
occurs over a narrower range of Froude Number than other bends, and
also clearing of the existing air pocket requires less water velocity

than the radiused bend. Thus the aims of this thesis could be

summarised as follows:

(1) To investigate the formation and behaviour of air pockets at
a dropshaft/tunnel junction. This will include blowback up
the shaft, clearing along the tunnel, hydraulic jump

formation, comparison between theoretical simple models and



experimental results, and an investigation into the scale
effects occurring. This will be carried out by varying the
bend radius, the tunnel inclination to the horizontal, the

air flow rate and the water flow rate.

(2) To investigate the behaviour of air pockets in a straight
length of pipe sloping at an upward angle of +1.5°,
primarily to look at how air pockets behave in straight
tunnel sections and to see if Benjamin's analysis can be
extended to single air pockets under moving water

conditions.

(3) To investigate the clearing and blowback characteristics of
air pockets in a straight length of pipe sloping at a

downward angle of -1.5°.

Thus it is hoped to investigate several aspects of air pocket
behaviour in a single piece of apparatus and hopefully provide design

rules for such hydraulic structures.
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FIG. (2.14) ILLUSTRATION OF THE MOTION WHEN LIQUID FLOWS
OUT FROM A HORIZONTAL BOX (AFTER BENJAMIN)
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FIG. (2.15) GRAPHS OF NON-DIMENSIONAL PROPAGATION VELOCITY
Cl/ vgd, HEAD LOSS A/d, AND CAVITY EXPANSION RATE

Q//gd® CONSIDERED AS FUNCTIONS OF h/d (AFTER
BENJAMIN)
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FIG. (2.16) GRAPH OF cl//g'ﬁ AS A FUNCTION OF H/d
(AFTER BENJAMIN)
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FIG. (2.17) SPECIFICATION OF CAVITY FLOW IN HORIZONTAL
TUBE OF CIRCULAR CROSS-SECTION (AFTER
BENJAMIN)
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FIG. (2.18) THEORETICAL MODEL PROPOSED BY VON KARMAN
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HEAD WAVE AND VELOCITY PROFILE OF ENSUING
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FIG. (2.200  THE BLOCKED CONDITION, SHOWING UNDRAINED

WATER (AFTER GARDNER AND CROW)
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AND CROW)
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FIG. (2.27) SLUG FLOW IN INCLINED PIPE (AFTER WALLIS)
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PARAMETER (KB) (AFTER PARAKH)




116.

0-70

0-60} .
0-50
@,04.0 .‘
~~0-30
L
>
" 0'20
L
“0-10}

y/z

A ' L 'l | 1 1 A
0O 10 20 30 40 50 60 70 80 90
TUBE ANGLE , 6 DEGREES

FIG. (2.34) EFFECT OF TUBE INCLINATION ON THE BUBBLE
RISE VELOCITY IN WATER AT 20°C FOR DIFFERENT
BUBBLE  VOLUMES (AFTER SPEDDING AND NGUYAN)

f —

HORIZONTAL TUBE 0
INCLINED TUBE WITH e < 30°

-
e r}
~ ~7
INCLINED TUBE WITH 6>40° VERTICAL TUBE

EFFECT OF TUBE INCLINATION ON BUBBLE
SHAPE TAKEN FROM PHOTOGRAPHS BY

SPEDDING AND NGUYAN

FIG. (2.35)



117.

) J
y
u
h
1
p
R "
¢
(a) (b) (c)
FIG. (2.36)  EFFECT OF ROTATION ON AN AIR POCKET
RISING IN A TUBE (AFTER BONNECAZE)
GATE

FIG. (2.37)

AIR

AIR INLET

(a) AR VOID BELOW A GATE
( KALINSKE and ROBERTSON)

W,q TER

AIR

(b) AIR VOID AT A HIGH POINT
W, { KALINSKE and BLISS)
47‘5
R ( WISNER et al )
{ EDMUNDS )

AIR
(c) EQUILIBRIUM VOID
9 { GANDENBERGER )

ATeR [ KENT )

VOID CONFIGURATIONS (AFTER GOLDRING)




118,

0-70
0-60 ['d
0-50 Bo
SYMBOL SLOPE y o]
040}— | © 0
° 0°2% 5
° 2% ° ®q
030 }b—— ") 5%
° 10% L2
e 20%
o 30% o /o°
0-20
S o
0-15 0
14
o S
0-10
" 0-09
@ (.08 _ *
5 0-07 |—B = 0-0066 (Fr - 1113
W o0-06 o1\
2
g 005 o
(]
0- 04
o)
[ ]
0-03 a_ffa®
[«]
o :

3 4L 5678910 15 20 30
VALUES of Fr, —1

FIG. (2.38)  CORRELATION OF DATA ON RATE OF AIR
ENTRAINMENT BY HYDRAULIC JUMP (AFTER

KALINSKE & ROBERTSON)



119.

0-6F
SYMBOL SLOPE
° 30%
0-5f x  20%
o a 10%
>_ o S %
w 0-4F o 2%
o
wn
w
3 030
¢
>

o~26- \
\

0-10 - L L A A sT=——
0 S 10 15 20 25 30 35

VALUES OF Fr, =V, /\/gye

FIG. (2.39) EXPERIMENTAL VALUES OF CRITICAL FROUDE
NUMBER (AFTER KALINSKE & ROBERTSON)

HYDRAULIC GRADIENT FOR FULL FLOW
NT
g‘;g{‘,(‘ﬁmg 'g‘hEJNEEgR%F PN HYDRAULIC GRADIENT FOR PARTIAL
/- FLOW
N
f( FOR THIS DISTANCE DOWNSTREAM OPEN

— VENT STRUCTURE
10 PIPE DIA. APPROX 2

—_— e —— P
— —

PIPE PROFILE POOL |PROFILE

" VENT STRUCTURE PROFILE

PIPE ON TANGENT——a
FOR THIS DISTANCE [ '

L PiPE PLAN

VENT STRUCTURE HYDRAULIC GRADIENT FOR

“““ ~— — _/ FuLL FLOW

—

UNIFORM SLOPE

WATER
SURFACE AIR MAY ACCUMULATE OR

HYDRAULIC JUMP BLOW BACK

FIG. (2.40) PLAN AND PROFILE OF A TYPICAL LONG SIPHON
SHOWING THE HYDRAULIC JUMP (AFTER SAILER)



120,

0-70

0-60f

©

N

o
1§

Q
~

o
T

030

VALUE of y, /D

020

VALUES of Fr, = V,[Vgy,

FIG. (2.41) EXPERIMENTAL CURVES OF CRITICAL FROUDE
NUMBER OBTAINED BY KALINSKE& ROBERTSON
TOGETHER WITH THE RESULTS OF ANALYSING
21 SIPHONS, WHERE THE DARK CIRCLES IN-
DICATE THE SIPHONS WITH BLOWBACK CONDITION

(AFTER SAILER)



(ONIMATOD JYILAY) SIdId IVINDFID NI MDVEAMOTd ANV TVAOWIA dIOA

(¢h°2) *DId
g UISp
0-4 06-0 08-0 0L-0 09:0 0S-0 0%-0 0€:0 0Z:0 0L-0 0
| T . T : . T 1 T 1 0
OON OOF m Om ON OF
SSI18 PUD INSNITYM 7020
(9U1] M012Q SUNDI0 |} HOVEMOTE -—- (7€1-01V
(aul] @A0GD paAOW3Y ) QIOA WNINSIINDI —
(P1oa ‘1nb3 ) 10 33 YINSIM O
WO ¥3VS Y 4070
NOVEMOE mm._:pm o) v 9 v \d\ﬁmvo, v
a/% ) (LLL-0) (S8L-0) (%6} 0) A€ 0) (£95:0 ) e
: (0€-0 v . . 1
(061-0) amn&mzas\\ - \4\ o <
- p - - [e)
= %oz of: . ( SSE-0 ) ~
o y w, 2 v (££2:0)g - .w_
3 mm“zwozé\ — — — = T NOSLY380Y P INSNITVX do0s-0
o ——
l\l\
\o\
(818:0) O .-
P.zw% -\- o IOO w
\.\\ 0\\‘: s ﬁwhm.o -
{ @AJn2 3doaAul
10 33 ¥INSIM o
ﬁoom.o u = ON.F
(09Z2:0)0O
(@)
($9Z-0) o 4091
(69€.0)



- - -
N (o]

-
o

SLOPE OF PIPE So, PERCENTAGE
[« -]

122,

-
(<]

1
-
&~

Il
-
IN)

S
, PERCENTAGE

o 6'PIPE
0 4'PIPE

o
@

6 -t
40-6~

. FRICTION SLOPE -3

404
. .
2 J/ 7 - -1 02
rd / - ’D o
okee—— " L2 L 1 1 X 1 1 o
002 0:06 0-10 0-14 0-18 0-22

QCZ/QDS

EXPERIMENTAL DATA SHOWING RELATION
BETWEEN PIPE SLOPE, PIPE DIAMETER, WATER
DISCHARGE, AND HYDRAULIC GRADIENT WHEN
AIR REMOVAL STARTS (AFTER KALINSKE & BLISS)




SLOPE OF CONDUIT, DEGREES

123,

90
80}
LENGTH OF BUBBLE

SYMBOL IN INCHES
O 0-0-05

70} (~] 0-06-0-10
© 0'11-0-15
o 0-16-0-20

60 ceng © 0-21-0-25
® AS INDICTATED

SO

0-28 0-59
(o IO~  J ®
L0+
0-37 1.2
30000 o o
20t
0-38 1.0 2..25
000, ., )
10
0 | 1 | 1 1 1
0-7 0-9 11 1-3 1-5 17 1-9

VELOCITY #1/sec.
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(AFTER WISNER ET AL)
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