

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Graphical Manipulation in Programming
Languages: Some Experiments.

John Livingstone.

For the degree of M.Sc.

Department of Computing Science.

University of Glasgow.

© John Livingstone, 1986.

ProQuest Number: 10995536

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10995536

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Contents

Contents. 2.

Acknowledgments. 3.

Organisation of Thesis. 4.

Introduction. 6.

1. A description of the PS-algol system............................... 10.

2. Some Other Graphics Languages....................................... 25.

3. Programming Experiments. 52.

4. Implementation Experiment... 62.

5. Implementation Changes. 72.

6. Language Definition Changes... 78.

7. Evaluation of Changes Made... 89.

8. Suggested Further Changes to the Language................... 93.

Conclusions. 101.

Bibliography. 112.

Appendix A. 116.

2

Acknowledgments

I am extremely grateful to Professor Malcolm Atkinson for his guidance

and support during my work and for his proof reading and assistance
during the write up.

I would also like to thank all the members of the PISA project team
at the Universities of Glasgow and St. Andrews for their assistance
throughout my work.

I acknowledge the work done by Iain Armour in implementing the
print statement, on the Perq computer, and adding the edge violation
handler, and also the programming done by Richard Cooper to test out

the new implementation.

™ UNIX is a trademark of Bell Laboratories.

Organisation of Thesis.

A survey of graphics programming languages was conducted to identify

the current provisions for graphics. In particular, P S -a lg o l
[PPRR12], a persistent programming languages which includes bitmap

graphics facilities, was analysed. A review of the graphics of this
language is given in chapter 1. The findings of the survey as a whole are
discussed in chapter 2.

The investigation into graphics language facilities was continued
by the implementation, in PS-algol, of various example programs

previously written for the W h ite c h a p e l MG-1 w orksta tion

[WCWM85] in C. A comparison was made of the facilities provided by
the two systems and of the approach to provision of graphics in a
language. The work done and conclusions drawn are discussed in

chapter 3. This looks at the graphics side of the language from the
programmer's point of view.

The investigation was continued by looking at the machine
independence of PS-algol. This was done by porting the full PS-algol
system to the Whitechapel MG-1 workstation. Further points could
then be made about the design of the language pointing out its weak and
machine dependent parts. The work required to port the system and
conclusions drawn from the work are discussed in chapter 4. The
MG-1 implementation of PS-algol has several differences in the user
interface from the original ICL Perq [ICLP84] implementation. These

changes are discussed in chapter 5.

After the porting was complete changes were suggested and made

4

to the language’s input / output facilities allowing these functions to
operate via the graphics screen. These changes were intended to
improve the language’s usability and machine independence. The

changes made are outlined in chapter 6.

These changes are reviewed in chapter 7, here experiences with the

new constructs and other user s'thoughts are discussed and techniques of

use are outlined.

5

Introduction

Today in the computing world the trend of machine size is moving away

from the large mini or main frame computer towards the workstation.

Most workstations have a bitmap screen which supports a window

manager and input devices such as a mouse or tablet. Making full use of
these systems allows the user to build a user interface into programs
which is superior to that which could previously have been provided on

a keyboard driven system. Output can be presented in a clear and

interesting way and input can be limited to that relevant to the current
state, and consequently can require little effort by the end user. Output
can be formatted and, visual cues, which help the user's perception, can
be presented using a variety of fonts, highlighting, boxes etc. Selections
can be made by use of the mouse through menus rather than by entries

from the keyboard. Programs, which use these effects well, are easier
to learn about, more interesting and faster to use. A good example of
increased usability provided by a mouse based system is an editor which
takes commands from the mouse through the use of menus and relies on
the keyboard for text input only. Most users of such systems rapidly
come to like them and feel their old keyboard driven systems are

inadequate by comparison.

The graphics facilities provided by a workstation can be accessed

through a system language such as C. This allows the programmer to

use all the operations at the lowest level. Direct access is allowed to all
parts of the system, such as the structures used to hold bitmaps and

changes may be made to these in any way desired in order to build up the
required display. The methods used to implement graphics on the

6

machine can be used directly and full access to the machine model allows

the user to write efficient fast running programs which make full use of
the machine and graphics implementation. This type of language is
currently used by the serious graphics programmer intent on producing

elaborate pictures. Such programs must be as efficient as possible due to
the amount of processor time required to run them and since use of a

system language is the only access such programmers have to the power

required they are forced to make use of the machine's graphics facilities
this way.

It is becoming increasingly necessary for programming languages

other than systems languages to allow access to the graphics facilities of
the workstation. Use of system languages leads to errors more readily
than a high level language (HLL) and requires users to be experienced
and trained in their use and also to be trained in the use of the particular
machine, since each type of workstation has a different interface to its
graphics facilities. Retraining programmers to use a different graphics

machine is costly in time and money and would not be required if the
same graphics language could be used on all machines. This indicates
the need for a machine independent graphics language. In principle high

level languages may provide easier programming by abstraction of
operations to a higher ’cleaner' level. Strongly typed languages provide
more reliable programs since the programmer is forced to consider

different objects as being differently typed and cannot use incompatible
types in an expression, for example a character cannot be manipulated as
an integer. Operations carried out in a weakly typed language can be

implemented in a strongly typed language but may have to be expanded
to make explicit the required operation which does not break the type

rules since the strongly typed language disallows many short cuts
frequently used in the weakly typed language. Preventing the use of
such short cuts and forcing requirements to be stated explicitly gives

7

more predictable behaviour from the code produced by compilers
which leads to more reliable programs. However, norm al (or
commonly occurring) operations should be expressed more succinctly

in a HLL. High level and strongly typed languages are machine
independent which means that the user does not require the expensive
retraining for each new machine used and can make use of experience

and software gained from previous work. It is now desirable to
introduce graphics facilities into these high level and strongly typed
languages. These intend to provide all the facilities the user needs in a

simple and concise manner, and allow programs to be transferred,

almost unchanged, from one machine to another. The serious graphics
programmer, discussed above, may not yet find such systems provide

the computation speed required. However, the support and
performance can be expected to improve via the following two
mechanisms:

(i) the formulation of facilities in an HLL, and the feedback
from their use, should lead to a better understanding of the

best constructs with which to formulate graphics programs;
(ii) well identified constructs give a precise target for

implementers focusing their attention appropriately.

The latter mechanism stimulates both language implementors and
machine designers to provide efficient support. (Earlier examples of
this effect are the support for a standard number manipulation system,
embodied in the IEEE floating point chip standard [FATR82] and the
support for procedure calls in hardware design.) It is particularly

important, therefore, that language designers should explore the

graphics facilities required by the HLLs now, as their is much interest in
the design of hardware to support graphics at present, and since support

8

is more likely to be generally applicable if it has been shown to fit well
in a HLL.

The graphics facilities a HLL provides should allow for easy

programming by saving the programmer the problem of constantly
keeping track of screen positions, sizes and other tasks unconnected with
the application. They should give a high level of performance for a
small amount of work on behalf of the programmer. This implies that
the language facilities must hide all the machine dependent features such
as mouse event queues or memory allocation, and provide the

programmer with a clean and simple set of operations allowing full
concentration on the problems of the application and of data

presentation. The designer of the graphics facilities in the language
must predict the needs of the programmer and produce a system which
is an appropriate compromise between feasibility of implementation and

convenience for the programmer. This thesis attempts to set out the

requirements of a graphics programming language and to begin the

exploration of that compromise.

9

1. A Description of the PS-algol System.

PS-algol is primarily a persistent programming language, which means

that data objects can persist from one run of a program to the next. This

allows data structures, such as binary trees, to be used during execution
of a program without being built each time, or to be shared by several
programs. The databases allow storage of any objects within the

language such as vectors, structures, images and procedures as well as
the base types integer, real, string and boolean. The language treats

procedures as first class data objects [ATKM85] meaning they can be
assigned, executed and stored in the databases.

The language is a block structured object oriented language based
on the language S-algol[COLA82]. It is an extension of this language

allowing the persistent facilities and presenting procedures as first class
data objects.

A full description of the language can be found in [PPRR12]. After
presenting a minimal background, only the graphics facilities will be

described.

1.1 General Features of the Language.

Objects variables and constants are declared by use of the let
statement. This allows the introduction of an object to the program,
specifies its type and gives it an initial value in order to eliminate the
problem of undefined variables from the language. The let statement, in
effect, contains the first use of an object. Two uses of the let statement

are given in fig. 1.1.

10

let days.per.week = 7

let days.per.month := 31
days.per.month := 28

fig. 1.1 Example use of the let statement.

Since the number of days per week will always be 7 it is appropriate to
declare it as a constant. This is done by using an "=" in the declaration as
opposed to a in the declaration of a variable, days.per.month

declared as a variable can be changed as is done in the third line of the

example. An attempt to change the value of days.per.week would
produce a compilation error since it is a constant implying it may not be
changed.

A frequent cause of confusion to new users of the language is the
inclusion of dots in the identifier syntax, as seen in fig. 1.1. People used

to working in Pascal assume this implies field specification within
records whereas dots are used to separate parts of the PS-algol
identifiers to improve clarity and readability.

1.2 O utput Facilities.

Output can be displayed in two ways in PS-algol. Images can be

displayed on the screen by the use of raster operations, screen being a

predefined image. Text, made up of strings, integers and reals, can be
output to standard output by the write statement which was designed for

use on character output devices.

11

1.2.1 Output of Images.

Images can be thought of as two dimensional arrays of pixels,
where pixels can consist of one or more planes, which allows the

programmer to manipulate coloured images or to group several

monochrome planes in the one structure. Images of only one plane are
monochrome as each of their pixels can have the value on or off. An
image declaration specifies the size of the image and the initial value of
each of its pixels, an example is given in fig. 1.2.

let example.image = image 50 by 70 of off

fig. 1.2 An Example image declaration.

This would initialise a 50 by 70 pixel image to off, implying it
should have one plane. It will also be a constant image with variable
pixels, which implies it can not be made to refer to another image but its

contents may be changed.
A lim it operation can be carried out on an image in order to

produce a sub-image. An example of the limit syntax is given in fig. 1.3.

let a.window = limit screen to 100 by 120 at 50, 50

fig. 1.3 An example of a limit operation.

The variable a.window can be used in the same way as any other

image but any changes made to it will also be seen on the image which
has been limited at the position specified in the at clause of the limit
operation. In the example case any changes made to a.window will be

seen on the screen.

12

Raster operations can be executed between two images, they take

each pixel of a source image and combine it with the corresponding
pixel of the destination image using the specified logical combination
rule. The raster-op function is discussed in [NEWW79]. By using the

limit operation raster-ops can be carried out between parts of images.
PS-algol provides eight raster operation rules. These are given in//g.
1.4.

copy dest = source
xor dest = source xor dest.
ro r dest = source or dest.
not dest = not (source).
rand dest = source and dest.
nand dest = not (source and dest).
nor dest = not(source or dest).

fig. 1.4 The PS-algol raster operations.

The syntax of the raster opration is given in fig. 1.5.

<raster.clause> ::= <raster.op> <IMAGE-clause> onto <#pixel-clause>

fig. 1.5 The syntax of the raster operation expression.

Two predefined images, referenced by the global identifiers screen

and cursor, can be accessed in any PS-algol program. They can be used
in the same way as any image declared within the program but the
changes made to them will be displayed on the workstation screen. The
cursor is a 57 by 64 pixel image in every instance of the system, and the
screen is of variable size depending on the size of the window which has

13

been used to run the process.

PS-algol provides various functions for manipulating images and
obtaining input from the mouse. The functions X.dim and Y.dim
return the size of an image which is passed to them as a parameter. Pixel
takes an image and the co-ordinates of a pixel within the image and
returns the value of the specified pixel. The function//// takes a point
within a specified image and a pixel value and fills the image with that
value until either the edge of the image or a boundary of the specified
value is found. A function called menu can be used to create popup
menus. This function takes all the menu entries as images, a vector of

procedures and a vector of actions to be taken on selection of a

corresponding entry and it returns a procedure which, when called will
display the menu and execute one of the procedures if an entry is chosen.

The language allows the user to determine the position and state of
the cursor on the screen. This can be done by a function locator which
returns a structure containing an x and y co-ordinate of the cursor on the
screen image, a boolean stating whether or not the screen is selected for

keyboard input and a vector of booleans indicating which mouse buttons
are pressed. An example of a simple PS-algol program is given in fig.
1.5. This is intended to demonstrate the text output raster operations
and limit expressions. The program starts off by creating a limit on the
screen and drawing a box round it, by clearing an area round the limit to
black and then clearing the limit itself by the xor raster operation. An
image containing the string "text on an image" is then produced by the
string.to.tile function using the font fix l3 . This is copied onto the limit
at the position 20 pixels from the top. In this copy operation the
dimensions of the limit which specify the destination of the copy are not
included since the size of the area in question can be derived from the
source image a.word. An image of 20 by 20 pixels is then declared
being initialised to black which is then copy-td onto 5 positions on the

14

limit. Note the use of the variable xpos which is declared in a block

outwith the declaration of ypos. It is initialised to zero indicating that it

is an integer and then subsequently changed inside the next loop,
whereas the constant ypos is declared at the start of the block which uses,

but never changes it, and may therefore be declared as a constant. This
is not the most efficient. m ethod of programming this operation but has
been done this way to demonstrate the difference between variables and
constants in the language.

xor screen onto screen ! cl ear the screen.

let the.limit = limit screen to 320 by 200 at 40, 40

not limit screen to 322 by 202 at 39, 39 onto
limit screen to 322 by 202 at 39, 39

xor the.limit onto the.limit

let a.word = string.to.tile("text on an image", "fixl3")
copy a.word onto limit tt&limit at 20, Y.dim(the.limit) - 20

let a.square = image 40 by 40 of on

let xpos := 0
for pos = 1 to 5 do

begin
xpos := 5 + 5 * pos
let ypos = 50 + 5 * pos
copy a.square onto limit the.limit to 40 by 40

at xpos, ypos

end

fig. 1.6 A simple PS-algol program.

15

The output from the program in fig. 1.6 is given in fig. 1.7. This

shows the bottom left hand comer of the graphics window to contain a
black box, which is the line drawn round the limit.

I
I
i

text on an image

fig. 1.7 Output from the program in fig. 1.6.

1.2.2 Output of Text.

The second form of output provided by PS-algol is text output.
This can be achieved through the language in two ways, the first places

the text on an image, the other places the text on standard output.
Text output onto images is implemented by a function

string.to.tile, as described above, which takes a string and a font name

16

and returns an image containing a bitmap representation of the string.

This returned image can be copied, or combined in any way required,

with any other image the user wishes, using one of the raster-op rules.
Alternatively the user can achieve text output to images by retrieving a

font structure from the FONTS database and use the character images
this contains to build text images.

This form of output requires that the user must keep track of the
screen positions and calculate the space required to hold the tiles
produced by string.to.tile. This implies extensive manipulation of
screen positions.

The second type of text output on offer to the programmer is
provided by the write statement, which writes any combination of
strings, integers, reals and booleans to standard output. The syntax of
this statement is described in fig. 1.7.

<write.list> ::= <SIMPLE-clause> {:<int-clause>}{,<write-, list >}
<write> ::= write <write.list>

fig. 1.7 Syntax of the write statement.

This does not display characters as images but just as ascii
characters as on the terminal screen. The write statement allows the
user to set out text in an organised way, specifing field widths, as an
integer clause, for each item written, which make it particularly easy to

use. Since it was originally designed for S-algol, which only required
output on character devices, it produces problems in the PS-algol
implementation in that the output from write statements must share the
screen with any graphical output from the program, causing problems
since the write output may appear in any position on the screen and

17

possibly scroll the graphics screen. These problems make the statement
unusable in many programs. The problems associated with text output
are discussed further in chapter 6.

1.3 Picture Manipulation.

In addition to image manipulation operations in integer space
PS-algol allows the user to create pictures in real space. Pictures are
stored as points which can be joined to each other or to a group of

points. A new point or picture can be joined to an existing picture by
one of two operations, "A" joins the two pictures and includes a line in
the picture between the joining points and joins the pictures without
including a line between them. Once a picture is built it may be scaled,
shifted and rotated. At any time a part of a picture can be displayed on
an image the joined points being represented by lines. This operation is
carried out by the draw function.

1.4 The PS-algol System.

Since PS-algol is a persistent programming language, allowing

procedures to be stored in databases, most of the standard procedures
provided by the language have been written in PS-algol itself and stored
in the system database. These procedures are extracted from this
database each time a program is run. This is done by the poms code
(persistent object management system code) executed by the interpreter
before a program is run. This code opens the system database and

extracts the standard functions.
To allow these procedures to be treated as any other PS-algol

18

procedures they must be declared in the same way any other procedure

is. This is done by the compiler which opens and compiles the contents

of a standard declarations file. This file contains all the standard
functions declared as nullprocs. The user code is then compiled, any

mention of a standard function being treated as legal since it has already

been declared. When the code is executed by the interpreter the poms
code is employed to give the standard functions, previously given a
nullproc value, the value contained in the system database. The language
also provides some standard structure definitions which are dealt with in
the same way as the functions in that their declarations are compiled
from the prelude file processed by the compiler before the users source
code.

1.5 The PS-algol private functions.

In addition to the standard functions there is a set of procedures
called private standard functions which are to be used only by the system
implementor. They include system functions not intended for inclusion
in the language but required by the compiler and the other system
software. The file handling routines, for example, are required by the
compiler for the reading of source files and the creation of object files
but are not to be used by the average PS-algol user since they do not

comply with the principles of the language. The private functions
include a number of graphics functions, pnx.line takes two points on an
image and joins them with a single straight line of pixels. The name of
this function came from the fact that it was first implemented on the
Perq running the PNX 5 operating system which provides a line
function which can be accessed through C. The name pnx.line indicates
that the function calls the operating system function directly. This

19

function is private since it has a poorly defined user interface. The

operation of the locator function, described earlier, can be altered by a
function set.locator which changes the conditions under which locator
returns. The default locator "mode" is to return from the function only

when an event occurs, an event being, by default, a movement of the

mouse by three or more pixels, a click of a mouse button or a key stroke
from the keyboard. These default values can be changed by the
set.locator function to instruct locator to return immediately with a

manufactured screen position or to return when different types of events
are raised. Unfortunately the set.locator function passes four integers

directly to the Perq operating system and so, being difficult to use, it is
also defined as a private function. The cursor mode can be changed by
use of a similar function set.cursor. This function is used by the higher
level public functions cursor.on and cursor.off.

The internal representation of an image contains a vector of

integer vectors. It is useful to get access to one of these integer vectors,

or planes, in some cases to allow fast loading or dumping of the contents
of an image. To allow access to this facility the function plane.of is
provided which takes an image and returns one of the planes as a vector.

This function is utilised by the build font program which has to load an
image from a font file. Since this function is machine dependent and
requires that its users know the internal structure of an image before
they can use the function successfully it has been classified as a private

function.
All the private functions of PS-algol are documented in [PPRR11].

20

1.6 The system’s failings.

The private functions are classified as such since they are not
intended for use by the average programmer. This may be because they

have a badly defined user interface or they implement facilities not
intended to be included in the final PS-algol system but are required for
the initial system implementation. The private functions are declared in
a system standard declaration file which the system implementor can
access when compiling his programs. This is meant to prevent a
programmer accessing the private functions. Since the private functions

allow access to extended file input/output routines a fast line drawing
function, functions which allow access to the operating system and other
routines which the programmer feels are required in programs, many

programs produced depend on use of the private functions for speed and
access to facilities not provided by the public PS-algol system. This will
continue until the public routines are changed inorder that they provide
the user with the power and speed required in programs.

1.7 The Abstract Machine.

The PS-algol system is built on top of an abstract machine which

implements some of the lower level standard functions. Since a large
number of the graphics functions are written in PS-algol the abstract
machine is required to provide the basic functions raster-ops, pnx.line,
locator, set.locator, s et.curs or, plane.of, X.dim, Y.dim and Pixel. All

these functions are implemented in C as part of the runtime system,
which in most implementations is merged within the interpreter. Their
implementation makes use of the existing machine library functions for

raster-ops, line drawing and mouse control.

21

The
Bits

No Lines

Offset

Dim Y

Dim X

Upb

Lwb

Header

Vector Of Integers.

Vector Of Pointers.

Image Descriptor.

fig. 1.8 A PS-algol image descriptor.

Every object in the PS-algol abstract machine starts with a header
word which contains information on the type of the object followed by
several bits indicating changes to the object, used by the poms, and a
mark bit used by the garbage collector. The contents of the second half
of the header word depend on the type of the heap object and generally

indicate its size and, in the case of structures, gives the number of

22

pointers within the structure, information needed by the garbage
collector.

The image object, shown in fig. 1.8, may refer to an image or a
limit on an existing image and the image refered to may be an internal

bitmap or a device. The image descriptor points at a bitmap, from the
Bitmap field, and specifies the rectangular area of that bitmap it refers
to by giving the co-ordinates of the starting point within the bitmap
(.X_offset,Y_offset) and the dimensions XJDim by Y_Dim. In the case

of the actual image as opposed to a limit, the dimensions will be the same
as that of the bitmap and the offsets will both be zero. The image

descriptor may refer to a device such as the screen or cursor in which
case the file descriptor of the device is stored in the Window field of the
descriptor and changes are sent to the device rather than to an internal
bitmap.

The bitmap portion of the image consists of a vector of ’’planes",
the number of which can vary from one upwards to allow "coloured"

images to be declared in the language. The vector has the upper and
lower bounds fields which indicate the number of pointers to planes it
contains followed by the pointers themselves. A plane is, in reality, a
vector of integers which has been used to hold information on a bitmap
and its associated pixel information. The first header word is followed
by the upper and lower bounds of the vector, which in this case are used
to calculate the size of the vector. The first four integer entries in the
vector have been used to hold its dimensions, the offset from the start of
the pixel information and the number of lines in the image. The rest of

the entries are used to hold pixel values.

let example.image = image 40 by 60 of on & off & on

fig. 1.9 A declaration of a multi plane image.

23

A declaration of an image with three planes is given in fig. 1.9, the

bitmap of the image structure produced by this image will have three
planes represented by a vector of three integer vectors. Each of the

integer vectors contain a monochrome bitmap which starts after the

entries indicating the dimensions of the bitmap.
Objects such as the image descriptor described above are stored

and manipulated in the PS-algol heap. They may be moved at any time
by the garbage collector to provide space for new heap objects. In
addition any object may be stored in a PS-algol database. This heap

organisation is essential to allow the dynamic allocation of the PS-algol
data objects and the easy manipulation of data structures from within the

language.

24

2. Some Other Graphics Languages.

In an attempt to find the requirements of a graphics programming

language, several languages and extensions to languages were considered.
Outlines of some of these are given in this chapter. The reviews range
from early extensions to higher level bitmap oriented languages, where
the graphics facilities are designed as an integral part of the language for

the purpose of building a system. The first languages presented were
implemented for line drawing displays, they are followed by those

designed for bitmap displays. The order in which the languages are

considered follows hardware trends as these are away from calligraphic
systems towards the bitmap workstation.

2.1 Euler-G.

Euler-G [NEWW70] is an extension of the language Euler to permit

interactive graphics.
All graphical operations are carried out in real space, the

programmer therefore must specify a window onto this space and its
associated viewport on the screen, an operation carried out as described in

[NEWW79].
Line drawing may be done relative to the current beam position or

to an actual point by the operations LINE and LINETO. In addition to
plain line drawing there are two operations DOT, for drawing dotted
lines, and ZIP used when curves are being drawn since it rounds the ends
of lines. To allow operations relative to the current beam position the

language supplies the MOVE and MOVETO statements for the

25

manipulation of this current position. All the operations described take
one co-ordinate pair which refers to real space.

Text output on the graphics screen is produced via the DISPLAY
statement, designed to take the same parameters as the language's PRINT

statement used to output text to a teletype. DISPLAY outputs text, at the
current beam position, formatted in the specified manner.

In order to allow repeated objects to be manipulated the language
provides a display procedure facility. A display procedure creates and
draws an object, allowing calls with a specified position and possibly
operations such as rotations or enlargements in order to produce the
required display.

The library function SMOUSE when called returns a five element
list containing the status of the three mouse buttons and the screen

co-ordinates of the cursor. The function returns only when a mouse
button has been pressed. The two screen co-ordinates returned from
SMOUSE may be passed to the HIT function which will indicate which
object, if any, has been pointed at. To allow objects to be manipulated by
name each call of a display function can be associated with a unique name,

it is this name which may be accessed through HIT.

Euler-G has been designed with a refresh display in mind,
producing several interesting effects. Display procedures produce

"objects", rather than plain output, allowing easy object manipulation
abstracting away from screen positions. The locator functions provide
access to object names rather than screen co-ordinates which saves the
programmer working out this information from the co-ordinate pair; but
the locator function is limited to returning a value when the button is

pressed.
As an early graphics language Euler-G has not got the powerful

attributes found in many more recent languages but has the basic facilities

26

still present in most languages today.

2.2 LOGO - an extension for graphics.

This system [NEWW73], based on the LOGO language, was
designed for teaching in such a way as to be simple, flexible and

inexpensive, it therefore has reduced power of expression and speed of
execution.

LOGO attempts to provide the user with a full programming

environment. The language itself keeps the number of available

constructs as few and simple as possible, a trend which is demonstrated in
the graphics facilities.

The LOGO screen is accessed as a 1000 by 1000 integer grid, since
real space was found to complicate the language excessively.

The line drawing facilities are a subset of those provided by

Euler-G, previously described, continuing the notion of current beam

position with relative and absolute moves. Text output is handled by the
DISPLAY statement which may only take strings.

Display procedures are implemented allowing a procedure to
"draw" in its own space which can subsequently be mapped onto any
specified space by the DRAW statement which specifies a window on the
screen intended to hold the output of the procedure. This facility allows
the programmer to specify the bounding box of a shape on a procedure
call rather than actual points to be used by the procedure and allows
procedures to be used without any knowledge of the space they were

defined in. An example LOGO program is given in fig. 2.1.
When the final line of the example is entered to the system the

HOUSE procedure is called and any output, specified to be between (0,0)
and (1000,1000) in the procedure declaration, is mapped onto the area of

27

the screen between the points (300,300) and (700,800).

TO HOUSE

10 MO VETO 0 500

20 LINETO 500 1000

30 LINETO 1000 500

40 DRAW BOX IN ”0 0 1000 500M
END

DRAW HOUSE IN "300 300 700 800”

fig. 2.1 An example LOGO program.

The draw command creates a new segment which contains the
output from the procedure. If another ’’DRAW HOUSE" statement

were executed, in fig. 2.1, the original house would be replaced by the
new output. New instances of HOUSE can be created by use of the ADD
statement, which allows a new segment to be created. Segments may be
changed or removed without effecting other segments.

Input to the program is provided by REQUEST which takes a string
from the keyboard and PENPOINT which reads a co-ordinate pair from
the tablet when the pen is pressed on the surface, a restriction similar to
that imposed by Euler-G but in this case due to inabilities of the target

machine.
The language intends the programmer to make use of files to store

pictures as a list of records, each record would contain the parameters of

a procedure call. For this purpose a file handling system is provided
allowing reading and writing of records, test for end of file and file

creation and deletion.

Again this language was designed with a refresh display in mind and

28

so provides the expected object manipulation and locator functions. The

graphics are simple and concise, in accordance with the rest of the

language, but some operations are nevertheless limited by the intention
of running the system on a low power machine. The simplicity of the

language would make it easy to learn and use but could become limiting

if an attempt was made to write complex programs. Although Euler-G

and other languages had used the idea of display procedures previously

LOGO was the first language to bring this method of picture building

into popular use, due to the simple, succinct implementation represented
by the language.

2.3 M IRA - A graphical Pascal extension.

Mira [MAGN81] is an extension to Pascal to allow the building of

graphical output by the use of graphical types. It is designed in such a

way as to fit in with the existing type system of Pascal.
The two basic graphical types introduced to the language, which

may be used to build more complex types are :

The vector type - A vector consists of two real co-ordinates and may
be manipulated as any other variable. Full vector arithmetic
has been implemented using vector addition and scalar

product. Vectors may be read and written, and are declared

as follows.

VAR
VI, V 2 : VECTOR;

29

The figure type - This is the most important addition to the language.

A figure type contains the definition of a shape i.e. the

commands required to draw the shape. The syntax being
similar to that of a procedure. A type quad and two
variables of this type are declared below.

TYPE

QUAD = FIGURE(X 1 ,X2,X3,X4 :VECTOR);
BEGIN

CONNECT(XI, X2, X3 ,X 4)
END

VAR

Ql, Q 2 : QUAD;

Two statements specific to figure type definitions are CONNECT,
which joins any number of vectors in order that a shape may be built,

and INCLUDE which joins the output of one graphical type to that of the

calling type. The INCLUDE allows a graphical type to be built from

many sub types.
Since variables of figure types are held on the heap they must be

created in order that their representation may be added to the heap. The
statements described below are provided for heap manipulation.

CREATE <figure> (<actual parameter list>)

DELETE <figure variable>

The create statement requires the variable type to be stated together

with the actual parameters declared in the figure type declaration. An

example is given below :

30

TYPE

CIRCLE = FIGURE(CENTRE : VECTOR; RAD: REAL);
BEGIN

END
VAR

ACIRCLE : CIRCLE;

APOINT : VECTOR;

BEGIN

APOINT := « 2.5, 3.5 »;

CREATE ACIRCLE(APOINT, 10.5);
DRAW ACIRCLE

END.

The DRAW statement is required to display the figure.

The program’s window and viewport may be changed via the

standard procedures SCALE, FORMAT and MAP. These have the
functionality described in [NEWW79] but only control one window and

viewport.

The language abstracts well from the low level routines described

in Euler-G but lacks the functionality required by a graphics language,
in that, for example, the line drawing routines are limited, no graphical
text output has been included in the language, an essential part of any
graphics language, and no proper provision for a locator input has been

made, only the function inputg, which returns structures of different
type in different implementations of the system. A consistent locator

function is required before this part of the language can be used for

serious programming.

31

2.4 Graphical Kernel System.

The Graphical Kernel System (GKS) is a standard machine
independent graphics package. It has been designed in such a way as to
treat different types of display and input device in a consistent manner.

Implementations have been produced for systems ranging from refresh
displays with light pens to mouse based bitmap systems. The system is
described in [HOPF86] and defined in full in [IS082].

Every GKS facility is accessed via function calls which either

execute graphics operations or manipulate global variables which alter
the result of the graphics routines.

GKS implements line drawing by the function polyline which

draws lines between a number of points provided in arrays. The x and y
co-ordinates of a specified number of points are passed to the function,
all points being actual co-ordinates, as opposed to relative co-ordinates,

since GKS does not support the notion of current screen position. The
type of line produced by polyline may be changed by making a change to
the polyline index via the function set polyline index. An integer is

passed to this function rather than a machine dependent line description.
The actual meaning of the integer passed to this function may be set by
the function set polyline representation which allows the colour, the

workstation name, the line type and line width to be associated with a
particular index. The two functions are kept separate by GKS to allow
machine dependent parameters to be kept at a different level from the

actual graphical operations.
GKS allows specified areas to be filled. The area bounded by an

array of points is filled with the current colour, specified by the fill area
index. This index may be manipulated in a similar manner to the

32

polyline index, in order to achieve different interior patterns and styles,
bounding line styles etc.

Text output is performed by a function text which places a string at
the desired point. The character height, slope direction and alignment

may be set globally by function calls in order to achieve the required
results from the text function. Text may be output at any angle in any
font or orientation by a combination of function calls.

Graphical input in GKS is obtained from a combination of six
logical input devices. These may be mapped onto the existing physical
input devices in order to provide device independent input. The use of

logical devices is the method used by GKS to enable the same

functionality to be displayed by each implementation. The string device

returns a text string, this device will usually be implemented by the

keyboard. The pointing devices are represented by logical devices
locator , stroke and pick. Locator returns a single pair of screen
co-ordinates and could possibly be implemented by a mouse, tablet,
light-pen or other such device. The pick device returns an object rather

than a position, this object will be produced from a segment and may be
manipulated by name. The pick device is idealy suited to machines

which store displayed data in segmented storage. The stroke device
returns a sequence of positions passed over by the pointing device since
the last call to the function. Stroke could possibly be implemented by

most of the physical input devices already mentioned.
The GKS view of input devices removes the machine dependence

from devices and allows different types of device to be viewed in the
same manner e.g. a tablet may be treated in the same way as a mouse at

the program level.
Since GKS is required to cater for all types of display, segmented

storage manipulation has been included in its operations. A segment
may be created and filled with a drawing, once closed it may be

33

manipulated through function calls which change its visibility, priority
or highlight the resulting drawing. The contents of a segment may be

transformed by allowing every point to be changed by a transformation
matrix allowing drawings to be enlarged, moved etc. before being
displayed.

GKS attempts to provide device independent access to graphics
facilities. In doing this it "hides'* the capabilities of some machines. The
full potential of bitmap machines are not realised by the package in that
many algorithms for bitmap manipulation, as described in [GUIL82],

require additional internal bitmap storage in order that they may be

implemented efficiently. GKS does not allow this facility therefore is
not fully suited to bitmap manipulation.

The text function and its associated control functions presents a

fully device independent text primitive. The functionality of this
operation covers a lot of the possibly envisaged requirements of text
output; it is therefore one of the successes of GKS.

The methods the package uses to abstract from input devices,
especially the locator type, "hide” the physical characteristics of
particular machine implementations effectively. Considering the

different functions of the locator device as the two logical devices
locator and stroke separates the possible functions of one physical device
well and reduces the problems associated with locator mode discussed in

chapter 8.
GKS is a step towards a high level graphics language, but cannot be

considered as a final solution. Possibly its difficulties arrise from
attempting both caligraphic and raster graphics in one interface. The
package avoids the concepts, such as raster combination rules, not
implemented by the two types of machine, therefore users loose the
possible advantages gained through use of this facility. A similar

34

graphics package, providing operations solely for bitmap machines,

which could therefore make full use of a typical workstation's potential
might be very useful.

2.5 Amber.

Amber, as a whole, is an attempt to produce a complete
programming environment for a bitmap personal computer with a
pointing device. The whole system will be written in terms of the

language Amber itself. Amber contains many advanced features such as

concurrency, persistence and graphics. "Graphics is an essential part of
the language." [CARL84]. The inclusion of graphics routines is to
allow the writing of the system support environment including the
editor and windowing system.

Amber allows the programmer access to the bitmap representation
of the screen since it is intended to be used on a bitmap workstation. An
Amber bitmap is a rectangular array of pixels which can have one of the
two values true or false, black or white. They are produced by the
function bitmap which when passed four integers, dimensions and the
co-ordinates of the top left hand corner, returns a new bitmap with all
the pixels set to false. The four integers passed to bitmap may be
retrieved at a later date by the function bitmapTile. The pixels of a
bitmap may be indexed individually by their co-ordinates, these may be
passed to the pixel function together with the bitmap to determine the

boolean value of a particular pixel.
The raster-op facilities of Amber are provided by the bitblit

function which takes two bitmaps and the six integers required to specify
a rectangular area on each one, a width and height and two sets of
co-ordinates. The final parameter, an integer called op, specifies which

35

one of the eight raster combination rules is to b6 used during the
operation.

In order to allow "shading” of regions on a bitmap a function
texture is provided. Texture takes a pattern bitmap and a destination

bitmap together with the four integers specifying a rectangle within the

destination. Again a combination rule must be specified. The result of a
call of the function is that the pattern bitmap is replicated, in a correctly

aligned manner, throughout the destination area specified.

Line drawing is accessed by another function, line, which takes a
bitmap and five integers specifying the co-ordinates of the end points
and the combination rule. A line is drawn between the specified points
on the bitmap.

Graphical output from the language is achieved by gaining access
to the screen bitmap through a call to the function screen and the cursor

bitmap via cursorlcon. These two bitmaps may then be changed as any
other, with the results of the operations displayed on the screen. The

cursor tip, or hot spot, and the actual screen position of the cursor may

be changed by calls to the functions cursorTip and setCursor.
Graphical input may be obtained from the mouse by use of the

functions cursor, which returns the screen position of the cursor and
button, which returns a boolean indicating the pressed state of the mouse

button.

Amber's graphics provide the minimum set of facilities required
for writing serious bitmap manipulation programs, since "higher level"

operations could possibly be written in terms of these "primitives" as
required, a difficult task when the operation of the locator is considered.
This function may be too low level for serious use, although the

concurrency of the language may be used to control the locator input.
In order to keep the Amber compiler as simple as possible all the

36

operations have been included in the language as functions, which can, in
the case of bitblit, require the programmer to specify many integer

parameters. This has the effect of producing unclear code and makes the
task of programming even harder.

2.6 Graphics Libraries on Single User Systems.

Single user machine designers and software teams provide the user
with a set of libraries of window management and graphical operations
accessible through the system language.

Here such an extension, to the system language C, which is
provided with the Whitechapel MG-1 workstation is reviewed. The
libraries are defined in full in [STEN85] and discussed in [NEWW85].
The libraries used for graphics and window manipulation on the MG-1
are considered to be typical of such machines. The Apple Macintosh and

Sun workstations come with similar language extensions.

Some of the work described in chapter 3 and the implementaion in
chapter 4 was carried out using the MG-1 graphics facilities and so it
seems appropriate to describe the facilites used in this section.

The user of the graphics libraries is given the option of accessing
the functions at several levels of abstraction. The highest level allows
comparatively easy creation of windows and bitmap manipulation.
These higher level operations are built from the low level routines
which are closer to the actual machine implementation of the bitmap

screen. The user may wish to use the lower level routines to avoid

overheads incurred by the window manager or avoid the restrictions

imposed by this higher level view of the machine s capabilities.
The upper level operations are contained in a library, called the

tool library, as a set of functions. These include operations which allow

37

the creation of a window and interaction with the window manager to

change the size and position of the window. Stow and unstow routines

reduce the window to an icon and then recover it on request. The
WinCreate routine has ten parameters which describe all attributes of
the window - its initial size and position, the window title and title font

and a set of parameters describing its associated icon. To use this one
routine requires extensive knowlege of the window manager if full
advantage is to be made of the possible options. Default values may be
assumed in some parameters of the function call by passing null
parameters but the complexity of the function is never hidden from the

naive user, who may only wish to specify the size and initial position of
the window. The package is not designed to cater for such a "naive" user
but for one who requires as much power as is possible and the highest
functionality available from the machine. This system enables any
specifiable attribute of a window to be set and maniplated from
programs in a fully explicit way. Before a created window is displayed
it must be associated with a Raster, a bitmap, which may be dynamically

allocated for this purpose. This operation which, it seems, could have
been done automatically by the window creation routine is left to the

user in order to allow several Rasters to be associated with one window.
One of these bitmaps is "selected", to be displayed, at a time allowing
switching between several displays easily. This lower level of abstraction
has been provided here again to allow a more flexible functionality.
Unfortunately a user not concerned with multiple displays has to do as
much work as one intent on using the full facility. For reasons of
implementation efficiency the lower level of access is not hidden from
the tool library. The user must explicitly "update" areas of the window
raster which have been changed before these changes are displayed on
the screen, a property of the system which allows a large number of
changes to be made before the over head of communicating the new

38

Raster to the screen is suffered.

The tool package provides enough power for most users by
allowing full access to the machine’s window manager, abstracting away
from the machine level as far as possible without seriously effecting
efficiency. Users who do not require the provided window manager or

who are willing to Jose the functionality of the tool package in order to
gain higher program efficiency may access graphics functions at the

panelist level, a package, which was used to write the tool package
routines, gives a view of the screen at a much lower level. Panels are
created instead of windows, they are not as flexible and are limited in

size and shape by machine constraints, but have the advantage of not
requiring explicit updating and other overheads so provide a faster
graphics display.

The user is not constrained from using inappropriate mixtures of
graphics calls from the different levels of software. For example
panelist and tool library functions could be mixed with unpredictable

results.
The graphics routines, provided by a graphics library, may be

accessed at either level of abstraction described since they act upon the
Raster structure associated with a panel of a window. The library

supplies routines which draw lines, arcs and circles on rasters at

specified points, flood fill shapes or bounded areas. Text output is
provided by functions similar to those of C, with the additional
requirement that a destination Raster, font, combination rule and start
position are specified. The font passed to these functions must be
explicitly read from a font file holding a particular format of font. Any
user wishing to output a simple string in any font must still go through
the process of reading a font file, thus complexity is forced into every
program. The graphics library includes a RasterOp function which
takes seven parameters explicitly describing two Rasters and associated

39

areas to be processed in addition to a combination rule. The function

provides all the functions of the standard raster-op but again assumes no

defaults. The graphics library provides a reasonable set of functions but
can be complex to use since the full functionality of the operations is not
defined.

The MG-1 libraries are not designed to provide a clear, concise
environment for its users but to allow access to the machine's

capabilities at a reasonably high efficiency. Programs may be written

which communicate with the window manager, enabling users of
programs to interact with dynamically created windows, while still

exibiting tolerable runtimes. New users to the system find the reasons

for the various levels of abstraction obscure and the use of functions
error prone. Simple programs are made complex by the necessity to

specify and set up facilities irrelevant to the user's application, and

indeed there is no easy way of doing simple graphics.
The MG-1 libraries do in fact allow access to excellent graphical

manipulation facilities, despite the overhead, in programming terms,

required to set many of them up. Programmers are allowed to integrate
their created displays with the MG-1 window manager, thus presenting a

familiar environment to their users. It is the richness of the facilities

potentially provided that attracts so many programmers to such
packages, they are willing to put up with disadvantages of such a system

in order to experience the advantages.

2.7 Smalltalk-80.

Smalltalk-80 [GOLA83] is an object oriented language supporting
a complete programming environment. The language allows actions to

be taken on objects by sending messages to them, having the effect of

40

returning some other object or producing a change in the target object.
An example of an object declaration is given below.

| examplelmage |

examplelmage <- Form new extent: 80@40.

The first line declares a temporary variable. New is a message which is

sent to the object class Form (a bitmap type of Smalltalk). New tells
Form to create a new bitmap, the sizes of which are indicated by the
extent: message. The result of this operation is that Form returns a new

bitmap of 80 by 40 pixels and assigns it to the object examplelmage.

Further messages may now be sent to examplelmage in order to display

it or change areas within it.

examplelmage displayAt: 100@20. "shows the contents of
examplelmage on the screen
at the specified position.”

examplelmage reverse displayAt: 100@20. "displays the image, as
before, but reverses each
pixel before doing so. ”

examplelmage darkGray. "shades the image with a
halftoned pattern."

| colourBox |
colourBox <- Rectangle origin:20@20 extent:50@100.
examplelmage lightGrayxolourBox. shades the area of

examplelmage specified
by the colourBox variable."

41

If no area is specified in such a statement, as in the previous example,
the whole image is operated upon by default. Several other shading

messages are available to the user, allowing a choice of halftoned patterns:

black, white, gray, lightGray, darkGray, and veryLightGray. The

operation carried out above should be considered in the following way.
The object colourBox, a rectangle, is being used as a mask by

examplelmage, changes occur only on the area where the mask overlaps

examplelmage. The user may provide his own mask bitmap, if this is
smaller than the area specified it is tiled over the destination.

displayOniat: may be sent to an image indicating that it is to be

displayed on another image. Rectangular areas within the two images may

be indicated along with a mask bitmap and combination rule. An example

is given below.

examplelmage displayOn anotherlmage at: aPoint
clippingBox:aRect rule:bitOp mask:maskRect

The full form of the displayOn:at:clippingBox:rule:mask message given is

equivalent to the raster-op functions found in many languages, but the fact
that most implementations allow default values to be assumed by omission

of clauses, simplifies it greatly.

Line drawing in Smalltalk is done by the use of objects of Class Pen.

A Pen is formed as below:

I bic |
bic <- Pen new defaultNib:2.

defaultNib: tells Pen to use the default nib pattern, a 2 by 2 image, this is

42

then assigned to bic. Messages may now be sent to bic to draw lines, home
moves bic to the start of the image, up and down control whether or not

movements of bic leave a trail, turn:, north, south etc. change direction of

bic, goto, moves bic to a specified point and place changes the current

position of bic without leaving a trail on an image. If a line is drawn it is
made up of many instances of the image held in the nib.

Mouse input in Smalltalk is accessed through the object Sensor.

Appropriate messages may be sent to Sensor to obtain the type of input
required.

| box mouseAt |

box <- Form new extent: 5@5.

[Sensor redButtonPressed] while True:[

mouseAt <- Sensor mousePoint.
box displayAt: mouseAt].

The code starts by declaring box and mouseAt as variables, then
makes box a 5 by 5 image. The while loop continues as long as the Sensor
returns a true value for the pressed status of the red button. The block of
code inside the while loop sets mouseAt to the current mouse position and
places a box at this position, so a box will be displayed at each mouse

position returned while the red button is pressed.
The two other mouse buttons, yellow and blue, may be accessed in the

same manner as the red button. waitButton waits for any button to be

pressed and then returns with the current mouse position as a co-ordinate
pair, waitNoButton waits for any button to be released and then returns the
release position. These two messages may be used together to allow the
user to specify a rectangular area on the screen, an operation also provided

as an abstraction from the Sensor object by the Rectangle object.

43

area <- Rectangle fromUser.

will prompt the user, by changing the cursor, to indicate a rectangle on the

screen by dragging the mouse with a button pressed over the required area.

This abstraction hides the Sensor object from the programmer and has the
effect of making his code concise and more readable.

Sensor accepts further messages which change the current cursor
image and cursor tip.

Keyboard input is obtained one character at a time also via the Sensor
object.

| name index temp |

name <- String new:20.

index <-1.

[index < 20] while True:[
temp <- Sensor keyboard,
name at:index put:temp.

index <- index +1].

This code will read in a 20 character string from the keyboard. Other
Sensor messages allow inspection and manipulation of the keyboard buffer
flushKeyboard, keyBoardEvent - returns true if a key has been pressed and

keyboardPeek - returns next character without removal from buffer.

Text may be output from Smalltalk by sending a string the

displayOn:at or displayAt messages.

44

I name |

name <- String new.

name <- 'John'.

name displayOn: examplelmage at:10@100.

has the effect of writing name onto the Form exam plelm age . The

Macintosh implementation used allows multifont output. The notions of
current font, style and point size are used. These current values may be
changed by commands such as:

Mac textFace: Mac bold ; drawString: 'Bold'.
Mac textFace: Mac shadow; drawString: 'Shadow'.
Mac textFont:4 ; drawString: 'A new Font'.

Smalltalk provides a large range or graphics facilities, only a subset
of which are described here, allowing the programmer to manipulate

bitmaps and receive input any way required. The programmer will be able
to express any requirements in the language and not be forced to change

these requirements to fit the language.
The Smalltalk technique of considering objects to be changed by

message passing allows the full capabilities of an object to be hidden from
any user not requiring all the functions, resulting in a system which is only

as complex as the user requires. Users of the system require only a little
knowledge at first and may build on this with experience. The graphics

facilities of Smalltalk may be accessed at several levels of abstraction
allowing irrelevant options to be omitted. The example of the raster-op
given above demonstrate this, at the top level no combination rule need be

stated since this is irrelevant in most uses. Smalltalk, by providing such a
large number of facilities, makes its use without a decent manual difficult.

45

It seems that in order to provide all the users requirements in full, a
language must grow to this size.

2.8 Andrew: A distributed personal computing environment.

Andrew [MORJ86] is an attempt by The Information Technology

Center (ITC) at Camegie-Mellon to provide a complete machine

independent programming environment. As part of the environment it
presents the users with a fully functional window manager and a set of

utility programs exploiting the systems capabilities. One of the main

features of the system is to allow the programmer to use the window
manager and manipulate graphics via a set of primitives. There are about

70 procedures for this purpose presenting text output, drawing

primitives, input primitives and multiple window creation. Externally
the window manager tiles a set of windows onto the bitmap screen in such

a way as to avoid overlaps, it may have to change the size of windows to

enable all open windows to be displayed. Application programs run
under the system must detect these size changes and redraw their display

to fit the new size of display. The user of the Andrew system, on creating

a new window, will see the existing windows being moved and their size
and the size of their content being changed in order to accomodate the

new window.
Andrew, in addition to the ’'primitive'' graphics facilities, provides

graphics facilities at a higher level tool-kit interface which presents easy
access to facilities, through data types, such as a scroll bar and considers
text displays as documents. Using such facilities simplifies the job of the
applications programmer, preventing various programmers duplicating
the same work in different programs. If all application programs make
use of the same output packages the users of these programs will be

46

continually presented with the same concepts and terminology,
introducing consistency to the user interface of the system. The

consistent user interface in system programs will simplify a new user's

learning task, once one program is mastered some of the skills gained are

relevant in the use of other programs. Workstations running the system

can be finely tuned to run these particular operations as efficiently as
possible, whereas it could not be tuned to run each of a large number of
operations quite so efficiently.

Andrew demonstrates the advantages which could be gained from a

standard window management package in both implementation efficiency

and user efficiency. The two level approach to graphics library routines
allows system programs to be written very easily, in that all the common

operations have been factored out and implemented by library routines,
while still allowing complex, lower level, graphical manipulation
programs to be written under the same system. Most graphics

programmers require, or see it as advantageous, to use a window

manager to allow several processes to share the bitmap display or to
organise their output in a hierarchical manner. Andrew presents a novel
approach to window management; by disallowing overlapping windows
and introducing automatic resizing, the complexity presented to the user
is reduced but the complexity seen by the programmer is increased.
Some rearrangements of windows will require many processes to resize

their displays which could take a great length of time. Window
management should pose a very low overhead on the system while
presenting a display of maximum flexibility and simplicity to both the
programmer and the user of the system. A more usable system could
possibly be provided by the overlapping window approach. Window
resizing would be a lot less frequent since the user, or programmer,

would only do this when it was essential, and indeed in many cases

47

windows not being used may simply be placed in the background until

required rather than be reduced in size to fit on an unused area of the

display. Overlapping windows allow the user of the system a larger

number of windows open at any one time and are thus a lot more flexible
than that proposed by Andrew.

Andrew is an interesting development and possibly presents the best
type of access to graphics on a workstation seen so far. The interface

with the window manager is an essential part of any graphics

programming language and should be incorporated as efficiently as
possible. Andrew may not be the ultimate solution to the problems of

graphics programming but goes part of the way to solve them. The

facilities of Andrew have been expanded in a recently developed

descendant of the system called X.

2.9 Conclusions.

The early languages described, Euler-G and LOGO, only provided
the programmer with the very basic facilities required for drawing

pictures resulting in a "low level" programming style. GKS takes the
ideas developed in the early languages further and presents them in a
standard form together with some of the operations for bitmap machines

used today. The later languages, Amber and Smalltalk-80, have been
designed in such a way as to provide the basic facilities necessary for
building a system which could provide higher level operations in terms

of the language. Andrew incorporates full window manager access in a

graphics environment designed to make the most of bitmap workstations
in every respect. The operations provided by these later, high level

languages, give the programmer the power in graphics programs which

other, non graphical, attributes of a high level language provide for

48

conventional programs. The user need not be concerned with irrelevant

details and may use the provided operations at any level of abstraction

required in order to gain access to the type and complexity of operations
needed.

Smalltalk attempts to provide an abstraction away from the

conventional view of bitmaps and raster-ops which hides the machine

representation and simplifies the users view allowing concentration on

the main function of the program being written. Many users will be able

to use the system at the higher level of abstraction avoiding use of the

raster-op facilities directly, but these still have to be accessed to write

display operations and so are not completely hidden.

Mira hides the display device being used from the programmer by

allowing access to it via graphical types which abstract away from the
machine level view of graphics. Mira allows a user to express shapes and

produce various instances of them simply and succinctly. The language is

ideal for producing diagrams but lacks the input/output power required
for serious interactive graphics. The writers of Mira produced a second

language Mira-3D [MAGN83] which allows vectors to be considered in 3

dimensional real space enabling the user to produce representations of
solids easily. This was the best 3-D vector processing language reviewed

allowing solids to be manipulated as easily as 2-D shapes. The original

Mira was written in such a way as to make this extension, a natural

progression in the language, easy to develop.

Andrew considers the workstations capabilities as a whole, and

rather than consider a subset of the users needs, makes available window

management operations usually only accessed from within a system

language extension such as that described for the Whitechapel MG-1.

49

Several languages considered have not been described in this
chapter since they were thought to present no new constructs or ideas not
covered by other languages. These are described below.

[YIPC84] presents an extension to Pascal based on the CORE
graphics package. This extension gives the user a lot of power allowing a

variety of texts, text orientation styles, line styles and intensities. These

options are chosen by setting global values by use of procedure calls
before calls to the line drawing and text output procedures. The large

number of procedures provided by this extension give it good expressive

power while the operation carried out by each is simple and can be
clearly defined. However the large number of procedures may make
their interactions hard to understand and define. The language allows

interactive graphics by the use of menus and a locator.

[NAMN78] proposes a graphical extension for high level languages

which is demonstrated to be language independent by describing how it
may be accessed through several languages. The consistency in the
primitives presented in the various extensions allows new graphics
programmers access to graphics through the language they are familiar
with, saving retraining in a new language as well as the graphics

extension.

[DENE75] describes GRAPHEX68 which allows the building of

graphical data structures via an extension to Algol-68. Pictures, once
built, may be rotated, scaled and combined with others in order to

produce new pictures.

These language extensions have a similar functionality to that of

50

Euler-G and LOGO but obviously achieve the same ends by use of

different syntax and build types of data structures specific to their host
language.

The graphics facilities provided by either an extension to an existing
language or by a language designed with graphics in mind must allow

access to a large variety of functions allowing operations to be carried
out in a variaty of styles and modes, otherwise programmers will be
forced to simplify the specification of their program to allow it to be

expressed in the language being used, which has the effect of encouraging
inferior software and reducing the power of programs implemented in
the language. The syntax of the operations and language constructs
which allow access to the graphical operations must be readable and
preferably allow the user to consider them at various levels of abstraction
as described earlier, allowing default values in operations to be assumed

where the user is not concerned with their value or perhaps even their

existence. Accessing operations at a variety of levels makes simple
operations a lot more concise than the equivalent operations expressed at
more primitive level. Early programming languages, such as
FORTRAN, required that the format of text and numerical output be
specified precisely whether or not the user was concerned with the layout
resulting in unnecessarily complex code and wasting the programmer's
time. Pascal allows the user the option of specifying field widths but
assumes default values on their omission, giving the same functionality as
FORTRAN, but producing a system which is tidier and easier to use. The

same type of progression must be made in graphical operations to
simplify graphics programming, making the languages easier to learn

and use.

51

3. Programming Experiment.

In order to evaluate the existing PS-algol system it was necessary to

carry out a project which made use of the facilities provided by the

language. An implementation of a preview program for the typeseting

system TgX [KNUD84] was decided upon. The TgX typesetting

system takes an input file containing type setting commands and text and

produces a device independent output file, or dvi file, which contains the
necessary information required to display the desired output on any
device, whatever the output method or resolution. The project involved
writing a processor for this dvi file which translated the commands it

contains into a bitmap representation of the required text; a task which
involved reading in the characters from the correct font files and

copying these onto the screen at the required places. Since the fonts

could be stored in a database the chosen project gave a good insight into

PS-algol from the programmer’s point of view.

Such a system had previously been implemented in C on the MG-1
workstation so comparisons between the two languages could be drawn

during the work.

3.1 The Problem.

The dvi file produced by TEX contains information on the fonts

used in the file and some other general information on text layout, page
numbering etc. The rest of the file consists of commands which describe
the output in a device independent form, for example SET 10 means

52

that character 10 of the current font must be placed at the current
position on the page, RIGHT 6 means that the current position must be

moved to the right by 6 units. Neither of these commands make any

mention of pixels or any particular device and indeed this is the case in
all the commands, thus the device independence of the dvi file.

The job of the TEX preview program is to go through the file and

interpret each of those commands in turn translating the device
independent units to pixels, a conversion which will depend on the

resolution of the display device. When a font definition is found in the

dvi file a calculation must be done to determine which font file should be
read. The previewer takes the name of the font from the dvi file and
decides which of its own font files contains it, since each font comes in
several sizes for use on different devices and in order to represent
different magnifications.

3.2 Implementation In PS-algol.

Most of the PS-algol program could be obtained by translating
directly from the C version written earlier allowing full concentration

on the peculiarities of PS-algol rather than on the design of the system.
The major difference between the two programs was to be the structure
used to hold the fonts when read in from the font file. In the PS-algol
implementation each font was held in a structure which contained a

vector of characters. A character was a structure which contained a few
integers and an image containing the bitmap representation of the
character. This structure was built in such a way that it contained all the

information in the font file in an organised easy-to-follow manner.
The preview program read in all the fonts required from the font

53

files at the start of each run, a process which involved building the

structure described above from each of the font files, a slow process, as
each character, stored in the font file as a bitmap, had to be read in byte
by byte and an image representation of each byte produced by using the

raster-op facility to copy a pixel onto the character image each time a

one was found in the file, thus a raster operation has to be executed for
almost every bit in the file.

Since the building process was time consuming it was decided to

write a program which would read a font into the structure which could
be stored in a database. The preview program was then converted to

take the required font structure straight out of the database rather than

building it from the font file itself. The result of this was that there was
no delay while fonts were read in and the total execution time of the
program was greatly reduced, in fact it approached the execution speed
displayed by the version written in C despite the fact that the PS-algol
system is implemented by an interpreter. The favourable performance

of the new version of the PS-algol program is an example of the high

level language allowing major global optimisations by presenting the
user with design constructs which give help in producing efficient

programs. The HLL makes approaches simple which would not be
considered in a system language because of their complexity. This
particular optimisation is one commonly made possible by persistence
provision; that is, an activity is factored out of each program run, by
building a data structure which holds the result of that activity, and

preserving it in the database.

54

3.3 Implementation in C.

The C version of the preview program built a font data structure
from each of the font files required in the processing of the dvi file at the
start of a run. The reading in process was fairly quick since the data

structure built to contain each font was simple, in that the bitmap for
each character was stored as a string of bytes of pixel information rather

than in an organised structure such as an image used in the PS-algol

version. The effect of the simplified data structure may have produced a
fast building algorithm but the use of the data structure in displaying

characters on the screen was slow because significant processing was

required for each character displayed compared with just copying in the
PS-algol version.

3.4 Comparison of C and PS-algol.

Several major differences were found between the styles of C and
PS-algol. The major differences found in the preview program were in
the handling of data structures. The example of the building of the

character image from the font file is used again here. Since C represents
the image, or raster structure as it is called on the MG-1, as a pointer to
an area of memory and the programmer can freely change memory

locations, it was easy to access any byte of the image and change it,
therefore bytes could be copied from the font file directly into the image
without any computation. This easy access to data structures allows fast
building which makes the most efficient use of the capabilities of
conventional machines. PS-algol on the other hand restricts access to

data structures, such as images, to conventional methods such as
raster-ops. This leads to tidy programs which are easy to follow and

55

maintain, although they will not give quite the speed of execution
allowed by C.

C on the whole is a far more complex language than PS-algol in
that operations such as raster-ops take several lines of code to set up

since each position and size must be specified in the correct manner,

whereas a raster-op can be specified in one line of PS-algol code.
Images can be created with relative ease in PS-algol whereas the

comparable operation in C requires explicit creation of structures and
memory allocation rather than a mere declaration.

struct char_entry {
unsigned short wp, hp;

short xoffp, yoffp;

int tfmw;
int pxlw;
*/
char *pixels;

/* width and height of smallest
bounding box of character */

/* offsets of start of bounding box
from start of character */

/* device independent width */
/* actual width on MG-1 in pixels

/* pointer to start of pixel info */

struct font_entry{
int k,c,s,d,a,l;
char n[STRSIZE]; /* parameters of font definition in

dvi file */
int font_space;
int font_mag;
char name[STRSIZE]; /* fall path name of font file */
Int magnification;
int designsize;
struct char_entry ch[NPXLCHARS];

/* an array of characters */
struct font entry *next; /* a pointer to next font in list */

fig 3.1 The font data structure definition in C

56

The declaration of the font data structure used in the C version of
the preview program to hold all the fonts used in a dvi file is given in

fig. 3.1. The data structure consists of a list of fon t entries which
contain information on one font and an array of char entries for the

characters of the font. Each char_entry contains its dimensions, layout
and pointer to the start of its associated pixel information.

structure font.structure(int NbrFonts ; *pntr fonts)

s tru c tu re a.font(string name ; int fontspace , number ; *pntr
chars)

structu re a.character(int xoffp, yoffp, tfmwidth ; #pixel ch)

fig. 3.2 The font data structure declaration in PS-algol.

The PS-algol declaration of the data structure is given in fig. 3.2.
This data structure is contained in a font.structure as a vector, or array,
of a fon t structures, which in turn contain a vector of a.char structures.
No redundant information has been stored in this data structure unlike
the C version and information on the dimensions of characters is
obtained by inspection of the image width rather than being stored

explicitly, this has the effect of producing a tidier data structure and

tidier algorithms acting upon it.
The PS-algol version of the data structure holds the information at

a "higher level" than the C version, by omitting information required
only in building the data structure and storing the characters in the more
useful way, as images, rather than just bytes of pixel information. The
redundant information only used in the building process is included in
the C version since, in order to omit it, a temporary data structure must
be built to hold this information until building of the font structure is
finished. The C language would require that the user allocate memory

57

for this temporary structure, which would reside in memory for the full

execution time of the program. The user will see no advantage in

separating the temporary information from the essential data since no

memory will be saved and the building algorithm will become more

complex. The PS-algol data structure contained none of the building

data since it could be stored in a temporary data structure easily, and the

memory used is reallocated by the heap management system once the

building is complete. This leads to a greatly simplified structure

producing easier programming and more readable code.

The factor which limited the execution speed of the program was

the building of the font structure from the font file, the persistent

capabilities of PS-algol, when utilised to store these font structures in a

database, called TEX.FONTS, allowing the preview program to get

access to the ready built font data structure by executing a lookup using

the name of the font as a key. This method gave fast and tidy access to
the fonts, since most of the work had been done by the building

program, and made up for any speed lost due to the high level language

access to data structures.

The C version made better use of the facilities provided by the

existing MG-1 architecture in that it gave direct access to the machine

capabilities in the way they were meant to be accessed. The PS-algol

program ran at a comparable speed to the C version once it was

converted to take full advantage of the persistent databases. The
PS-algol system is built on top of the Unix™ system as an interpreted

abstract machine and therefore has not got the same hardware backup

which the MG-1 graphics routines have, but if a machine architecture

were designed with the PS-algol persistence and graphics in mind the

programs run on it would have a vastly reduced execution time.

Therefore a system could be produced which provided the desirable

58

facilities of a high level language, discussed earlier, as well as the

execution speed of the existing systems, such as the MG-1. This would

lead to more reliable programs, better programming styles and
programs which would be easily ported from one machine to another.

3.4 A Comparison Of Implementation Efficiency.

Since the two languages considered were designed with different
aims in mind, one to produce efficient code and the other for

programming efficiency, the styles, ease of programming and the code
produced were interesting to compare.

Since all the research into the TgX system was carried out during

the initial C implementation, the production times for each program
cannot be fairly compared, but the ease of programming can be looked

at. C requires the user's needs to be specified explicitly in that a
program must allocate the memory it requires by function calls,

manipulate structures through pointers and deal with memory locations
directly and indeed may use one location as an integer in one line of code
and as a pointer in the next. This leads to confusing programs and some
potentially " illegal” statements can compile, which builds unreliability
into many programs. PS-algol, on the other hand, deals with a lot of the
repetitive work which is left up to the programmer in C, in that
memory allocation is handled automatically by the program on

declaration and structures, images and other data types are considered as
objects rather than just areas of memory. This leads to clearer
programs and allows thorough type checking done mainly at compile

time.
C allows access to data structures at a low level and does not insist

59

on initialisation of declared variables. This increases the number of run

time errors produced and means that such errors do not have a specific

typ£> the structure involved in the error cannot be deduced which makes

debugging of programs particularly laborious. Such errors in PS-algol

are not so frequent since the compiler's type checking mechanism

catches many of the potential errors and the initialisation at declaration
policy reduces the instances of illegal access to memory. Thus the

number of run time errors experienced in program development is
greatly reduced and correction of any which do occur is made easier. It
was found that these differences in the HLL lead to easier and faster

implementation of programs and the finished system is hopefully more

robust and reliable than its equivalent C implementation.

3.5 Conclusions.

The experiences with both the languages considered demonstrated

the power of high level language programming. Contrasting PS-algol
and C, the PS-algol program was easier to write and the result was more

comprehensible. The stricter type checking, mandatory initialisations,

high level data structuring and persistence of values made PS-algol a
more productive language. C however can be more efficient, although

PS-algol proved to be fast enough. Any new programmer introduced to

the code could possibly understand it a lot easier and make more
reliable changes a lot sooner than could be done if considering a C

program.
Currently many graphics programmers must access graphics

facilities of a machine through a low level system language such as C,
since there is a lack of high level languages which provide such facilities.
Bitmap graphics machines are increasing in number due to falling

60

hardware prices, therefore it is becoming increasingly necessary for

languages to give the high level support to graphics programmers which

conventional programmers currently enjoy having the desirable effect

of producing an increase in the amount of graphics software available,

due to ease of production, and allow many more programmers to

incorporate a graphics interface in their programs.

61

4. Implementation Experiment

The initial task in working with the PS-algol run time system was to port

the compiler and interpreter onto the Whitechapel MG-1 workstation.

This involved implementing the machine dependent graphics routines
within the interpreter and deciding how to set up the graphics display. It

was hoped this would give an insight into the language's weaknesses and

machine dependencies, so changes and extensions to the language

graphics routines could be considered in order to provide a better
environment for the programmer, and a better implementation which
would be easier to port and faster to implement.

4.1 Porting of the Compiler.

The existing PS-algol system on the Perq workstation consists of a
compiler written in S-algol, which produces PS-algol abstract machine

code or PS-code, and an interpreter for the PS-code written in C. To
simplify the job of producing a working PS-algol compiler on the MG-1

the existing compiler, written in S-algol was changed to PS-algol. This

was purely an editing job since the S-algol language is a subset of
PS-algol differing only in the syntax of procedure headings and calls.
The editing produced a full PS-algol compiler written in PS-algol. This
compiler source could then be compiled on the VAX , the PS-code
produced copied over to the MG-1 and run. Since the compiled code is
interpreted it is machine independent, assuming the two machines have
the same byte order. Porting the compiler in this way saved the
additional task of porting the S-algol system and was only possible since

the VAX and MG-1 have the same byte order.

62

The PS-algol interpreter source was then copied to the MG-1 and
compiled with the existing VAX options set. The chosen options were to

produce an interpreter which would run object files containing integers

stored in VAX byte order and would skip operations concerned with the
graphics facilities of PS-algol.

The only problem encountered in producing the non-graphical

implementation of the interpreter was in the implementation of the digit
function. This problem was found to be due to a slight difference in the

MG-1 C compiler from other C compilers. Once the problem was

sorted the interpreter was used to run the compiler already produced on

the VAX. The programs compiled using this system produced identical
code to that produced by the VAX PS-algol compiler.

4.2 Introduction of Graphics Facilities.

The compiler produced for the MG-1 would generate full code for
graphics routines included in a source, but the interpreter being used to
run the compiler, since it had been taken from the VAX, could not
interpret the graphics operations encountered in the object code, but

would just skip the operations merely changing the stack pointers
appropriately in order that execution of the object code could continue.

The next task of porting the PS-algol system to the MG-1 was to
introduce operations to the interpreter which would allow the graphics

routines to be executed with the expected results and displayed on the
bitmap screen of the MG-1. These routines made calls to the existing
MG-1 graphics library routines in order to implement the PS-algol

raster operations, line drawing, locator functions, image formation and
initialisation as well as some other image manipulation functions. The
major change made, as seen by the user, from the Perq implementation

63

was in the way the screen was presented. The Perq displayed the

graphical output in the window from which the program had been

called, whereas the new MG-1 implementation dynamically created a

graphics window. A page showing the screen displayed by running a

program is included in Appendix A. The creation of a second, graphics,

window kept the standard output and graphical output separate allowing

the user to make use of the standard output and preventing this output
from corrupting the graphics display. The problem on the Perq was

caused by the positioning of the standard output text at a point unknown

to the programmer and the fact that it was forced to share the screen

with the graphical output. Any text produced by a program would
appear on top of any existing graphics previously output, in a position

determined by the terminal emulator. If the standard output were to
reach the bottom of the screen and then continue, the contents of the
screen would be scrolled upwards, behaviour expected from a terminal

window but not from a graphics window. This scrolling had the effect
of moving any graphical output on the screen upwards with the scrolled

text thus corrupting the display.

One restriction of the new implementation was that the user did not

have total control over the size of graphics window created. This was

due to the fact that the size of the window was determined by the size of

the console window, which itself could be varied in size before a
program was run, so altering the size of the graphics window produced.
This approach did not take full advantage of the machines capabilities

and indeed was very restrictive in some cases. Since many programs
required a larger window a method was developed by which the user
could specify window position and dimensions at run time. At the start

of a run the cursor would change and wait for the user to press a button
and drag the mouse diagonally over the required window rectangle.

64

When the window was created it would be positioned where the user had

indicated. The method of window creation used in the Perq window

manager was copied as closely as possible. This approach seemed to be a
lot more popular with users than the original method used.

The new implementation made several differences within the
interpreter. The Perq accesses the screen as a device, opening this as a
file, so it is distinguished from the internal bitmaps, whereas the MG-1
represents a window internally as a bitmap which the user must change

to display graphics. Originally the method used in the Perq interpreter

was mirrored in that the screen was considered as a unique bitmap,
storing the MG-1 raster structure associated with the screen bitmap and

using this to gain access to the window. This approach lead to problems

in heap allocation and so it was eventually decided to store the screen
raster in the same way as any other internal bitmap, which satisfied the

heap and garbage collector routines and produced tidier and more
efficient code. Changes to this screen bitmap had to be detected and the
screen updated accordingly since the MG-1 software is designed in such

a way as to require changes to the screen bitmap to be "announced” to
the window manager before they are displayed. Another problem
encountered was found to be due to the garbage collector. On garbage

collection the screen image descriptor was moved as are other objects to
allow compaction, this had the effect of losing some of the subsequent
changes to the screen as the operating system continued to update the

screen from the previous area of memory. This was solved by

redefining the screen at the end of a garbage collection if its image
descriptor had been moved. Similar problems were found with the

cursor bitmap, eventually it was decided to store it in the same way as
the screen although it had to be redefined completely every time it was
changed, a reasonable overhead since the cursor is not changed nearly as

65

frequently as the screen.

PS-algol provides a function fill which fills an enclosed area on an
image in a certain colour. The Perq implementation had written this in
PS-algol and extracted the code from the system database at the system

setup. This routine called a function line.end which was implemented

in the interpreter. The line.end routine was replace with a. fill function

written in C. This had the effect of increasing the speed and producing a
usable function.

Several programs were written to compare the speed of execution
of the MG-1 implementation of PS-algol to that on the Perq. The

programs were run, on both implementations, several times and the

average taken in order to compare execution times. Fig. 4.1 below

gives the results of these tests.

66

Program \ Machine
Perq MG-1

!
Factor

Execution time in seconds P e r q /MG-11

Raster.ops onto screen 102 119 0.86

Raster .ops onto bitmap 349 153 2.28

lines onto screen 3 16.5 0.18

lines onto bitmap 21.5 11.5 1.87

5,000 integer multiplications 56.5 33 1.71

Store images in database 82 101 0.81

Compile time for db. program. 87 112 0.78

fig. 4.1 Results of speed tests.

The programs all repeated one function several hundred times in

order that the efficiency of the implementation of that part of the

language could be measured. A short description of each program is

given below :

(1) An image of dimensions 20 by 20 was xor-ed onto the screen
10,000 times. Each raster-op was done to a different part of

the screen to allow the program's activity to be observed.

(2) An image of dimensions 20 by 20 was copied onto an internal
image, declared in the program rather than the screen as

above. This was executed 40,000 times before the image was

copied onto the screen.

67

(3) The function pnx.line was used to draw 400 lines onto the
screen.

(4) The function pnx.line was tested again but the 4,000 lines in
this case were drawn onto an internal image.

(5) The speed of the processor was tested by executing 5,000
integer multiplications.

(6) A 30 by 30 image was created and stored 30 times in a

database. This program would compare the commit times of
the two machines.

(7) The compilation times on each system of program number 6
were measured and compared.

The results showed the MG-1 to be faster at internal operations such as

raster operations from one image to another but slower when operations
were to be displayed on the screen. The reason for this is due to the
implementation of the screen window on the MG-1. Each operation on

the screen image has to be carried out as any internal image operation

would be then the changed part of the screen image has to be "updated"

or changed on the actual screen. The internal operations are faster
because the MG-1 library functions can be used on any image structure,
positioned anywhere in memory, and so do not require that tests be

carried out on the positioning of a bitmap before it is used in a raster
operation. This had the effect of simplifying the operations within the
interpreter and so producing faster running code. The code of the
program used to test the raster operations from memory to screen is
given below as an example of the type of program used. The other tests
were similar to this so it was felt to be unnecessary to include the source

code for each test. See fig. 4.2 below.

68

let square = image 20 by 20 of on
let bleep =""

write "return to start’n"

let wait := read.a.line()
for i = 1 to 100 do

for j = 1 to 100 do

begin

xor square onto limit screen at i, j
end

write bleep

write "stop the clock'n"

wait := read.a.line()

fig. 4.2 The source of the first test program.

The time difference in the multiplication program must be due to
the existence of faster hardware operations for multiplication.

The compiler used on the MG-1 was implemented differently from

the Perq compiler, in that the MG-1 version was written in PS-algol as

opposed to S-algol on the Perq and is therefore run on the PS-code

interpreror rather than the S-code interpreter. Since the MG-1

compiler is seen as just another program by the interpreter which runs it
the PS-algol standard functions must be read in from the system database

and all the other initialisations required before any program is run by
the system must be carried out. The Perq PS-algol compiler, being

written in S-algol, does not have such an overhead and can therefore

start the compilation immediately thus saving time. This fact accounts
for the time difference in the compilation of program number 6 on the

69

two machines.

4.3 Conclusions.

The graphics routines were implemented on the MG-1 by use of
the Whitechapel graphics library routines [STEN85]. These provided

access to the machine facilities at several levels of abstraction, allowing

the functions on the Perq, which were only the fairly limited library,

routines, to be implemented. It seems that an interpreter written for the

M G -1 would have been harder to port to the Perq. The final

implementation gave the same displayed images as the P erq

implementation but did not use the MG-1 to its M l potential. Examples

of this are the locator function and the line drawing function of
PS-algol, whose functionalities are limited to that of the Perq. The
locator function in MG-1 PS-algol was functionally equivalent to that
provided by the Perq, which is a subset of the capabilities potentially

provided by the MG-1 and indeed would be looked upon as restrictive
by the average MG-1 programmer in that the facilities provided would
not allow programming of some operations done easily by the MG-1

when accessed via C. The line drawing routine of PS-algoVs pnx.line

which takes two points on an image, the image itself and a style

consisting of an integer 1..3 for black, white or inverse, and draws a line
between the two points. This function is a direct implementation of the

Perq function wline, which takes the same parameters. The equivalent

MG-1 graphics library routine GLine can take any one of sixteen

raster-ops instead of the Perq's three styles. The lack of a fully
implemented line drawing system in the language is a regretfahle

omission since many, if not all, graphics programs require the use of
line drawing. The importance of line drawing was demonstrated by the

70

inclusion in the new Angel graphics software recently produced by

Whitechapel [STEN86] of facilities which allow lines to be drawn in a

variety of styles. Lines can be dotted where the style of dotting can be

specified or alternatively can consist of a repeated pattern rather than

just a line of dots. This facility could potentially give the user great

freedom in the specification of style of lines required. These are

facilities a user would find potentially useful but would be denied access
to from PS-algol since the Perq cannot provide them. A PS-algol
standard function Line attempts to produce these functions but is rarely

used since it runs slowly and is complex to use. To make use of the

desirable line drawing facilities provided by the Angel graphics library,

or to provide an equivalent system through PS-algol, a line drawing

statement should be included in the language which would provide the

facilities required by all graphics programmers. This suggestion is

expanded in chapter 8.

If all the graphics routines of the language use the same format and

conventions then programs would be easier to write and tidier once

written. The language must provide the user with suitably powerful
tools to allow programming of required functions, otherwise programs

will become increasingly complex to achieve their aim.

71

5. Implementation Changes

The completed version of PS-algol on the MG-1 had several major

differences from the original implementation on the Perq, most of

which are due to Perq specific attributes of the original implementation.

Some of these changes were to eliminate machine dependencies and

others were to make improvements in the PS-algol environment. The
changes made are discussed below.

5.1 Font Changes.

The font files used on the Perq were transfered to the MG-1 and
used the existing build.font program, written in PS-algol, to place the

fon t structures built from them in the FONT database. Each word of

bits in the font file had to be mirrored before it was displayed on the

MG-1 screen. This is due to the MG-1 having a "small end" screen as
opposed to the Perq "big end" screen meaning that the least significant

bit of each word is displayed furthest left. This problem was solved by a

simple addition to the build.font program which mirrored each byte.
This machine dependency was produced by the function used to build the

image structure from the Perq font file. To increase the speed of
loading the font into the PS-algol font structure the function get.plane
was used, which allows access to one plane of the image as a vector of

integers. The words of the font file can then be copied into the image.

This gives access to the machined representation of the image structure
leading to machine dependent programs. An alternative approach could

be used to build the fon t structure which does not use the function

72

get.plane but would involve reading one byte at a time from the font file

and executing up to eight raster operations onto the image depending on

the number of ones in the byte. This would hide the different

implementation of images but produce an extremely slow running
program at present.

5.2 Locator Changes.

PS-algol has a locator function which returns the position of the

mouse within the PS-algol graphics window. A structure is returned by
the function giving the screen position of the cursor, a vector of four
booleans which indicate the status of the mouse buttons and another
boolean stating whether the window is selected or not. It was decided

that this function was machine independent in that its functionality is
what would be expected to be provided by any machine. The number of

buttons on the mouse can vary from one machine to another, usually
between one and four, which would result in the need to alter the size of
the boolean vector "buttons” returned, making one entry for each

button. The "selected" field is meaningful on the Perq since the graphics

window can be selected for keyboard input which has the effect of
setting the cursor to the PS-algol cursor and displaying any changes

made to it from within the program. It is therefore advantageous, on the
Perq, for the programmer to know whether or not the window is
selected. The MG-1 implementation, on the other hand, by creating a

second window (see chapter 4) for graphical output made the selected

field meaningless since the graphics window cannot be selected for
keyboard input and the PS-algol cursor is always displayed while the
mouse is over the window. The MG-1 implementation always returns

the selected field with a value of false.

73

5.3 Set.Locator Changes.

The existing PS-algol system allows the programmer to change the

mode of operation of the locator, the circumstances which prompt a
return of the function call, through a function set.locator which passes

the four parameter values directly to the Perq operating system. This

function was particularly difficult to implement on the MG-1 since it is
so Perq dependent. The full range of facilities were not implemented

but only the ones felt to be required by the programmer. It is obvious

that a set.locator function of some sort is required, but its user interface

should be changed in order to make the function machine independent.

It is reasonable to assume that any machine would be capable of providing

a locator function with the modes of use required by the programmer.

5.3 Cursor Changes.

PS-algol has a standard image, called cursor, predefined in every

program. Changes to this image, which can be changed in the same way
as any other image, are displayed on the mouse cursor associated with

the PS-algol window. The Perq implementation specified this to be a 57

by 64 pixel image, a size which is determined by the Perq operating
system PNX. The MG-1 operating system specifies a 64 by 64 image

which can be accessed through the MG-1 implementation of PS-algol.

Programmers using the language should take into account the different

cursor sizes provided by various machines. The decision to use the size

of cursor provided by the MG-1 was made since the original 57 by 64
size provided by the Perq implementation was not decided upon by the

74

language designers to be a desirable size but to be the easiest to

implement. Although the previous size could have been provided easily
on the MG-1 the larger size was preferred.

The fully implemented PS-algol system will possibly provide a
database of useful cursor images which would be read and copied onto

the cursor image when required. Useful images could possibly include a
clock, an area input prompt, a text positioning prompt and various

arrows and crosses for a variety of occasions. Each implementation of

the PS-algol system may provide differently sized cursor images but
since they will be copied directly onto the cursor the size is irrelevant

and may thus be made transparent to calling programs. Each new

implementation of the system when set up will require a new set of

images to be drawn to take full advantatge of the size of the cursor.

Programs may be kept machine independent despite the fact that the

cursor bitmap is of unpredictable size.

5.4 Conclusions.

The remaining graphics functions of PS-algol were found in

general to be reasonably machine independent although it was evident
that they had been originaly designed with the Perq facilities in mind.

An example of this is the range of raster operations provided by the

language which correspond directly to the operations defined in the
Perq. These operations are not as complete as those provided by most

machines, in particular the functions 'clear to black and clear to white

were omitted but these operations can be achieved by use of existing
raster-ops although the code required for these operations is not
immediately understandable, fig . 5.1 shows the code for a clear screen
operation. A new programmer introduced to the system may not realise

75

immediately this is the conventionally accepted method of clearing an
image.

xor screen onto screen

fig. 5.1 A clear screen operation.

Since the graphics facilities of PS-algol were originally designed

and implemented on the Perq many of the facilities provided are direct
copies of the facilities provided by this machine. Porting the language to

the MG-1 demonstrated this to a certain extent. Many small differences,

such as the value returned by locator when the cursor is outside the

window, could be found by a programmer whose programs depend on

such implementation eccentricities. These differences must be removed

by including their definition in the language description. Designing the

graphics on the Perq also limited the designers to functions specific to a

tablet based system as opposed to a mouse based system. Functions to

control the speed of movement of the mouse on the screen and to

position the cursor over a desired location could be useful in a mouse

based system but have not been included in the language since they are

meaningless when a tablet is being used.
Most of the functions which demonstrate machine dependence are

currently classed as private functions indicating that they are not for

general use but only for the system implementer. Some of these
functions are required by the average programmer so must be given an
improved user interface in order that they may be reclassified as public

functions. Suggested changes are given for some of these functions
which would make the improvements required but in general they must

be changed in such a way as to eliminate the direct link with the
operating system, such as the parameters of the pnx.line routine

76

discussed in chapter 8. It is commonly the case that programmers gain

access to these functions in order to use their functionality or power.

This has the effect of producing machine dependent programs.

77

6. Language Definition Changes.
r

Any PS-algol language definition changes considered were to have the

effect of making the language more machine independent, increasing the

usability of the language from the programmer's point of view, making
the job of programming easier and helping to produce tidier programs.

Changes to the language where decided upon after consideration of
the existing graphics languages described in chapter 2.

6.1 Text Output.

When thinking about improvements to the language it was decided

that text output could be improved. The language facilities currently

existing allow the user to output text in two ways

(1) Strings, integers, reals and booleans can be written to

standard output using the write statement.
(2) Strings can be written onto an image using the string.to.tile

function. This is done in a specified font, taken from the
database, and the image returned from the function is then

"pasted" onto the screen anywhere the user chooses by use of

one of the raster operations.

6.1.1 The write statement.

The w rite statement has the disadvantage of producing

non-graphical output in that the text it produces is displayed as text by

78

the terminal emulator on the graphics screen in a position unknown to

the programmer, making the statement difficult to use in a tidy manner.

It was felt this was inconsistent with the rest of the language in that all
output should be explicitly to the bitmap screen. The write statement

allows the programmer to set out the output in an organised way by

stating field widths for integers and strings. This makes it extremely

convenient to use in that it allows the use of newlines, line overflow,

layout characters and the positioning for successive writes needs no

explicit effort on the part of the programmer. Unfortunately the

statement is spoiled by the lack of control of absolute positioning of the

output text, a lack of facility to write to stored (not displayed)

structures, and a lack of choice of character font, style and size. Perhaps
its worst drawback is the interference between write statement output

and bitmap output causing the bitmap output to scroll, in some cases, on

the Perq; this was avoided on the MG-1 implementation by sending the

standard output to a separate window. Since the write statement has

these drawbacks it is often used (in the context of graphics programs)

only as a debugging aid, to print out intermediate values of strings and

integers.

6.1.2 The string,to ,tile function.

The second method of text output presented to the user is the

string.to.tile function. This is passed two strings, one containing the

string to be printed, the other containing the name of a font which

specifies the style and point size in which the string is to be presented.

The function looks up the font in the database and returns an image of
the required dimensions containing a bitmap representation of the string

passed to it. The user can then combine this image with any other by use
of the raster-op functions. In practice this function is slow since the

79

FONTS database has to be opened each time it is called and any
characters used taken out. It also complicates the program since the user

must position the returned image on the destination image, a process

which usually requires tedious programming computation, except in the

case where the programmer is anotating a diagram where such precise

user control over position is necessary. The additional computation

work should be avoided since a task as simple as text output should be

straight forward and automated. Most of the text positioning should be

done automatically, to keep the programmer's job as simple as possible,
allowing concentration on the real application of the program. Further

limitations of this approach include the method used to output numerical

values. Each numerical value must be converted to a string before being
passed to the string.to.tile function. The user is also left to work out

field widths which in some cases could unnecessarily complicate a

program, string.to.tile allows the user to place multi-font text on the

bitmap screen in a controled manner but does not present the simplicity

of the write statement.

6.1.3 The new write statement.

An attempt was made to design one mechanism, meeting the

requirements currently met by both the above language features, having

the best properties of both of them and avoiding the above difficulties.
A new write statement was proposed and implemented which would

take the arguments of the existing statement but send its output to an

image rather than standard output. The old style of write statement
could still be accessed by use of the output statement, allowing existing

programs to be easily converted to run in the new system. Additional

arguments are specified within the new statement.

80

(1) the name of the image to be operated upon.

(2) the position on the image where the output should start.
(3) a font to be used.

(4) a raster combination rule, raster-op, used in placing the characters.

The syntax for the new statement incorporates the above information by
use of the syntax specified in fig. 6.1.

<write> ::= write <write.list>

{ onto <#pixel-clause> } { at <int-clause>, <int-clause>}
{ in <pntr-clause> } { using <raster.op> }

fig. 6.1 Syntax of the new write statement.

Any of the reserved words onto, a t, in or using and their

associated expressions can be left out. This has the effect of assuming

default values as follows. In the case of no image being specified the

output is sent to the screen image, if no position is given the output starts

at the "current position" in the specified image, the default font is taken

to be the "current font", discussed later, and the default raster-op is
copy.

The image current position is a co-ordinate pair stored as part of
the image descriptor within the abstract machine. Every image and

limit has an associated position which indicates the starting position of

the next write onto that image. This position is initialised to the top left
hand comer when the image is created allowing a whole "page of text

to be output before an error occurs. The current position is only a guide
to the position of the next character to be output; the actual position

81

depends on the size of the font used. The write statement attempts to

organise the output on the image by adjusting the co-ordinates of the

starting position of each character positioned on the image. The actions
taken to position each character are listed in fig. 6.2.

(1) If the character is to be placed in such a way as to put part or all

of it off the top of the image the y co-ordinate is reduced to

place the character on the ’’top line" of the image so that no part
of it is lost.

(2) If the character is to be placed off, or partly off, the bottom of

the image an error occurs - This will eventually raise an

exception to allow the user to move the current position to the

top of the image or to scroll the existing text up by executing a

scroll procedure in the exception handler.

(3) If the character is to be placed off the right hand side of the
image both the x and y co-ordinates are reduced to give the

effect of the character being placed on the "next line down" in

the image. The reduction in the y co-ordinate depends on the

font size.
(4) If the character is to be placed off the left hand side of the image

the x co-ordinate is increased in order to place the character at

the start of the line.

fig. 6.2. Considerations on positioning a character in an image.

The above alterations of the current position of each character has the

effect of outputting text onto an image in the same format as standard
output would do to the screen. This has the effect of reducing the

programmer's work by removing the need to work out the position for

each integer or string and calculate the space it will occupy before a

82

write to the image.

Two functions are provided to the user to enable the current
position in an image to be manipulated. The user would require to

examine the current position and change it to a specific value, the

operations are allowed by the following functions declared in fig. 6.3.

let get.current.pos = proc(#pixels the.image ■> pntr)

the pointer returned gives a point structure, one of the

PS-algol predefined structures, containing the co-ordinates
of the current position of the.image.

let set.current.pos = proc(#pixels the.image; int x, y)

changes the current position of the.image to (x, y).

fig. 6.3 The standard functions used to manipulate the image current
position.

If the write statement is used, without a font being specified by an

in clause, the "current” font is used. The current font is initialised by

the execution of the poms code (chapter 1) before, the user code, at the
start of each instance of the interpreter by extraction of the fix l 3 font

form the FONTS database. This font is used as a default until it is
changed by the function provided for the purpose, declared in. fig. 6.4.

let set.font = proc(pntr new.font-> pntr)

fig. 6.4. The procedure to change the default write statement font.

The default font is changed by passing a font structure taken from

83

the database to the set.font procedure which in turn returns the previous

default font. This is to enable the user to switch back to the previous

default easily. An example of the use of this procedure has been

included, in Appendix A, as an MG-1 screen dump, in order to
demonstrate its simplicity.

Using this proposed write statement would allow the programmer

to organise output with great ease. A text output "window" can be

defined on the screen by defining a limit on an area of the screen and

passing its name to the write statement. This area can be used only for

text output giving the impression of a window dedicated to this purpose.

Eventually the text in this window will be able to be scrolled, as
described above, allowing almost automatic text output.

The above statement was implemented on the MG-1 and

experimented with and discussed by several users. The actions taken in
an image edge violation (fig. 6.2) were viewed by many to be restrictive

and produced inconsistent results in its treatment of characters at

various sides of images. A more flexible, user controllable, system had
to be produced before the write statement could be accepted as part of

the language. The suggested alternative ties up the actions taken on an

edge violation in a variable PS-algol function. Since a variable function
is used, the user may produce an alternative edge violation strategy to

implement facilities such as scrolling text, which would be handled by a

"bottom edge violation" handler or allow text to be listed on the screen a

page at a time, in which case the handler for a bottom edge violation

would be able to prompt the user before erasing one page of text and

displaying the next. In both cases the right edge violation handler could

possibly be set up to provide double line spacing for text.
The function handling the edge violation strategy is described

below.

84

let edgeViolation proc(string character; pntr edges, font;

#pixel thelmage; int x, y -> bool)

edgeViolation is considered to be called by the write statement when a

character is going to be partly off one of the edges of thelmage if it is

placed in the proposed position. The character causing the violation and

the name of the edge are passed to the procedure as strings. The

destination image and the font being used are passed to the function
mainly to provide information on their sizes. * and y describe the

"proposed” co-ordinates of the character. A call to the function occurs

when an edge is violated, therefore the procedure must include code to
"correct" the position of the character for each type of violation i.e.

correct the position for violation of each edge. The procedure sets the

image current position to a point which will not cause an edge violation

and in addition may also carry out some other operations if the

programmer wishes.

Correcting one edge violation within the procedure may cause
another edge to be violated, a problem encountered if the character

causing the violation is wider or taller than the destination image. To

help solve this problem the edgeViolation procedure returns a boolean,

the value of which determines the action taken in such a situation. If the

value is true the interpreter will not attempt to recall edgeViolation

continually but will clip the offending character. Clearly the situation

could arise of an infinite loop caused by repeated calls to the procedure,

each in turn causing another violation.

A user wishing to change the treatment of edge violations will

write a procedure of the same type as that described in the declaration
above. If the new procedure was called d o u b l e .spaced.scroll the

85

statement below would insure that the required treatment was given to
text output.

edgeViolation := double.spaced.scroll

A PS-algol system could include a database of commonly used
procedures which could be easily assigned as above to provide the

required functionality without the user writing a new function allowing

the facility to be exploited to the whole by the casual user and not just the

experienced programmer willing to investigate the writing of an edge
violation procedure.

Since the edgeViolation view of text output presents a fully
flexible interface to the programmer while still being straight forward

to use it has been implemented in order that it may be experimented

with. This will be introduced to the standard PS-algol.

6.2 Text Input.

Once text output had been changed, it was felt necessary to

improve the text input facilities provided by the language in order to
bring them into line with text output. A function was required which

read in text from the keyboard and produced an echo on the bitmap

screen. A new standard function was written which does the required

operation. The declaration of this function is given in fig.6.5 along with

the read.a.line function which it could replace.
input.line reads a string from the keyboard, which it returns to the

program. The string typed in is echoed on the screen bitmap at the

current position in the current font. Any number of deletions can be
handled as for standard input. A demonstraton of this function is given

86

in Appendix A.

let input.line = proc(->string)

let read.a.line = proc(->string)

fig. 6.5 The new and old text input operations.

6.2 Functions Added to the Language.

After looking at the language Amber [CARL84] it was decided to

add a function texture to the language, the declaration of which is given
in fig. 6.5.

let texture = proc(#pixel the.pattem, the.image)

fig 6.5. The declaration of the texture function.

This function takes two images, the first containing a pattern the second

being the destination of the pattern. The function replicates the pattern

image throughout the provided destination image. This produces the

effect of shading the image by replicating the pattern throughout the
image in a tiled format, texture may be used by the programmer to
shade a header or boundary of the screen. Currently PS-algol forces the

user to achieve this effect by doing multiple raster-ops from the pattern

image to the destination. This is a worth-while addition to the language
since so many programs currently achieve its effect in inefficient ways.

Many application programs carry out this kind of operation at start up

therefore it is desirable that it may be done quickly in order to allow the

87

application to begin as soon as possible. The texture function provides

the required facilities in a tidy easy to use way and executes quickly

giving the fast setup required by programs. Several patterns could be

stored in a database for use by programs using this function. A

demonstration of this function is given in Appendix A.

The changes made to the language are discussed further in chapter

7 where the experiences of programming in the new system are

reviewed.

88

7. Evaluation Of Changes Made

Since the implementation of the prin t statement within the PS-algol

system several users have experimented with the extended version of the

language and have been able to comment on the extension and compare
the facilities provided with the previously available system of text
output.

Before the p rin t statement PS-algol had two methods of text

output, one being terminal output, the other produced text on the bitmap

screen (chpater 6). The write statement sent text to the standard output

thus allowing no text positioning and restricted the output to the default

keyboard font. The string.to.tile function allowed multi-font output but

was slow and required that a user calculated and kept track of the screen

positions of strings and required that the returned image be "pasted"

onto the screen explicitly. The functionality of these operations made it

necessary for the users to work hard to get the most out of the bitmap

screen.

7.1 Im proved Speed.

The p r in t statement allowed fast text output since it was

implemented by the interpreter rather than by being written in the

language itself. The improvement in speed was demonstrated by the
successful implementation of a game highly dependant on execution

speed and therefore required fast input/output. This consideration will

become less and less relevant as machine power and processor speed

89

increases but is currently important, since new facilities are partly
judged on their performance.

7.2 V ersatility of prin t.

Certain features of the p rin t statement were exposed in the

statement’s use, techniques which were not envisaged before the
implementation of the system.

Previously when a programmer was developing a program, in

order to pinpoint faults and follow the flow of control write statements

would be inserted to show the intermediate values of variables. The

output from these inserted statements would scroll up the screen in a

disorganised manner. The p r in t statement allowed improved

organisation of such output. If a value were to be output each time

round a loop, instead of each value being separated by many other lines
of such output each value could be printed at the same point on the

screen thus replacing the previous value and allowing the current state
of the program to be read from the screen easily. This use of the

statement allows "organised” debugging and verification of programs.
The raster combination rule which may be specified in the using

clause of the statement permitted easy programming of several useful

effects. Text can be output in inverse video easily by use of the not

raster-op.

p rin t "John Livingstone." at 10,10 using not

The above statement would produce the string with a black

backgraound and white letters, a format which is ideal for highlighting

page headings etc.

90

Text produced by the prin t statement can be underlined easily.
The following code demonstrates this.

prin t "John Livingstone." at 30, 5

Print "______________ " at 30, 5 using ror

An ro r raster-op, PS-algol’s "or" combination rule, is used in the

second statement to prevent the underscore characters overwriting the
text of the string.

Use of the xor raster-op in a print statement ensures that the text

will be visible against its background. White text will be produced if the

background is black and black text produced otherwise, xor would be

used when it is known that parts of a string will be overwriting both

possible backgrounds.

7.3 Readability.

It was found that code produced using the print statement was a lot

more readable than text output routines written under the old system.

This is due to the fact that a user may code an operation in one line which
would have previously taken many lines of code. The required

operations are explicitly and succinctly stated while the functionality

required is easily accessed.

7.4 Conclusions.

On the whole the response to the new implementation was

favourable and it was viewed to be a significant improvement over the

91

previously available systems of text output. The flexibility of the

edgeViolation procedure was considered to cover most envisaged uses

of the statement.

The only criticism of the extension aired was that it increased the

size of the language. One of the principles of PS-algol is that it must be

kept as small as possible to keep its complexity to a minimum. The
advantages gained from the statement would seem to outweigh this

disadvantage.
Overall the experiment seems to have been a success.

92

8. Suggested Further Changes to the Language

The graphics facilities provided by a language should be consistent

syntactically with the other language constructs, and manipulate the

graphical data structures in a similar manner used to manipulate other

types of data structure. This consistency allows the graphics facilities to

be considered as more than a library of routines added to the language as

an after thought, and leads to easy programming and easier
understanding of the language as a whole.

Any further changes to PS-algol suggested in this chapter are
thought to comply with the above requirements.

8.1 Line drawing.

Line drawing is an operation frequently used by all graphics

programmers, therefore must be supported fully by any graphics

language.
Currently line drawing in PS-algol is handled by a function Line

which may be used to execute any operation, provided as a function, a

specified number of times between two points on an image. An image,
two end points and the changes made to the current position before each
execution of the function are passed to Line as parameters. This

function could be used to program all line drawing requirements of the
programmer but presents an unnecessary degree of complexity in

attempting to cover all possible requirements. The programmer may
use this function to replicate a certain image at frequent intervals

between two points on the image.

93

A private function pnx.line, described already in chapter 1, draws

a straight line one pixel wide between two specified points on an image.

This function implements the simplest line drawing required by
programmers.

PS-algol has a line drawing package, described in chapter 1, which

draws lines in real space, allowing manipulations such as rotations^ and
then allows them to be mapped onto integer space and displayed on an

image. Such a line drawing package is required in situations where

transformations must be carried out on the lines before they are

displayed. The underlying data structure and transformation operations

are accessed easily when required which saves the user rewriting such

routines each time they are required. When drawing diagrams,
underlining text or performing other simple line drawing tasks there

would be no need to consider lines in real space before they are

displayed in integer space, therefore in these cases a simpler approach to

line drawing would be taken.
The operations provided by the two line drawing functions would

be easier to program and follow if they could be accessed via a language

construct rather than by a function call. The syntax of the construct

provided would be required to conform with the existing operations of

the language such as the raster-ops and the new print statement,
discussed in chapters 1 and 6 respectively. Replacement of the line
drawing functions by a language construct would have the desirable
effect of making line drawing simple to use and improve readability of

programs.
PS-algol requires a construct which presents the simplicity of

pnx.line but the power of Line. The syntax of the line drawing routine

proposed is given in//g. 8.1.

94

drawline {on <#pixel-clause>}

{from <int-clause>,<int-clause>} to <int-clause>,<int-clause>
{ by <int-clause>, <int-clause>} { with <#pixel-clause> }
{ using <raster.op> }

fig. 8.1 Proposed syntax for line drawing statement.

The drawline statement contains six clauses, five of which are optional.

Most calls of the statement will be able to omit one or more or the

optional clauses assuming the defaults. The destination image, specified

in the on clause, defaults to the screen as in the print statement, by

allows a step size to be specified, giving the number of pixels between

each operation on the destination image, it defaults to 1. The with

clause, if included, provides a "brush image" which will be replicated at

each point along the line, rather than an image containing one dot, which

would be the default. The using clause provides the user with the same

facilities as those provided by the equivalent clause in the new print
statement, described in chapter 6. It allows the user to specify the
combination rule used when adding new pixels to those already on the

image. No using clause implies a copy raster-op. The end points of the

line are specified by the from and to clauses each taking a co-ordinate
pair, from is optional since this may be taken from the current image

position introduced in chapter 6. After an execution of a drawline
statement the current position of the image will contain the co-ordinates

of the end point of the line drawn allowing another line to start at this

positions without the program explicitly stating the point. Since the

print statement also uses the current position it is suggested that users of

the system create a limit (chapter 1) on the whole of any images being

written and drawn on in order to keep the current write and current

drawing positions separate.

95

let draw.screen = limit screen at 0, 0

let print.screen = limit screen at 0, 0

drawline on draw.screen to 100, 200

prin t "John Livingstone" onto printscreen

fig. 8.2. Keeping the draw and print current positions apart.

All lines drawn onto the screen would be drawn onto draw.screen and

all text sent to print.screen, thus keeping the two current positions
separate.

All the line drawing operations a programmer would require could be
implemented easily by use of this operation. A procedure implementing

dotted line drawing is included in fig. 8.3 to demonstrate the statements
use.

let dotted.line = proc (int xl, yl, x2, y2;
int space.x, space.y;

int dash.x, dash.y)
! draws a dotted line between the points (xl, yl) and (x2, y2)

! in the first quadrant on the screen. The dashes will be of a

! size enclosed by a dash.x by dash.y rectangle and the spaces

! at least the size of a space.x by space.y rectangle,

begin
let pen.image = image dash.x by dash.y of off

! the image which will hold one dash.

! now draw the dash on the image.

96

draw line on pen.image from 0, 0 to x2 - xl, y2 - yl

! part of the line not on the image is clipped.

! now draw the dotted line onto the screen,
draw line from xl, yl to x2, y2

by dash.x + space.x, dash.y + space.y
with pen.image

end ! dotted.line

fig. 8.3. A dotted line drawing procedure using drawline.

A line of text displayed on the screen by the print statement may be
underlined in the manner proposed in fig 8.4 below.

let text.start = get.current.pos(screen)

p rin t "An example line of text" onto screen

let text.end = get.current.pos(screen)
draw line from text.start(x.pos), text.start(y.pos)

to text.end(x.pos), text.end(y.pos)

fig. 8.4. Underlining text.

8.2 Locator operations.

The locator operations of PS-algol, discussed earlier, provide all

the functionality the programmer requires, but the combination of the

functions locator and set.locator is complex to use, set.locator presents

extremely low level access to the machine s graphical input facilities and

97

the meaning of its parameters is far from intuitively obvious.

A combination of the two functions which it is hoped would be

easier to use and a lot more powerful than the existing facilities is
proposed below.

Two PS-algol functions would be accessible to the user, one would
provide the same functionality as the current locator function, the other

would present a lower level view of the system. The lower level
function, primitive.locator, would be used to implement various locator
functions each presenting different modes of operation.

primitive.locator when called would return a pointer to a list of

"mouse records" which had been stored by the system since the last call
of the function. The system would store every record generated by

mouse movements, mouse clicks, keystrokes, window selection and

other such operations rather than being selective in which were stored.
Each "mouse record" in the list would contain information such as the

current screen position of the mouse when the record was created, the

status of the screen and the cause of the event, that caused the record to
be created. The higher level locator function would start with a call to
the primitive.locator function. It would then process the list of records

returned selecting which ones were required and storing any required in
the future. A locator function to return every point where button 1 was

pressed would look for mouse click records and examine the pressed

status of each button and only return those which satisfied the two

conditions.
A locator function implemented under this system required to

return all positions passed over by the mouse, in order that processing
could be done at each one by the calling program, would carry out the

following operations:

98

(1) A call to primitive.locator would return a list of new mouse

records, this list would be appended onto the global list of
unused, or unprocessed, records.

(2) Locator would now traverse the list of unprocessed records

looking for the first relevant record by examining the cause

of each record until one was found which was caused by a

mouse movement. Any records found to be irrelevant would
be removed from the list.

(3) The first record found to be relevant could be passed back to
the calling program in the usual mouse structure.

The current locator system could be implemented by this (method

easily. Currently a call to locator returns with the first record created

after the call, therefore in many cases a call to the locator function waits

for the user to move the mouse or click a button. To implement this

system a function which made several calls to primitive.locator would

be written. Any records returned from the first call would be

discarded, since they could be considered as old records, and the
function again called continually until a non empty list was returned.

The information in the first entry of the returned list would be passed

back by the function to the calling program and the rest of the list

discarded.

It is hoped that such a locator system would allow the user to

specify the functionality required a lot easier than by the current system.
The PS-algol system implementor would be able to provide a database of

locator functions thought to be the most frequently required.

99

8.3 Colour operations.

Currently PS-algol provides the facility of multi-planed images
which may either be considered as an image consisting of multiple

monochrome images or, on a coloured device, could notionally
represent coloured images. If the multi-planed images were to be

considered as coloured images, the colours displayed on the device can

be manipulated by the functions colour.map and colour.of which act on
the device's colour table.

Colour display devices, on the whole, consider an image to be a

two dimensional rather than three dimensional rectangle of pixels with

each pixel consisting of more than one bit of information, therefore all

the information associated with one pixel is held in the one place rather

than spread over several planes. To allow colour to be implemented in

PS-algol this second type of image may have to be introduced. The
"type" of an image could be specified at declaration.

When working with coloured images the existing raster-op rules

become meaningless as they do not produce any predictable results.

Additional operations would have to be introduced to the language

which would combine coloured images in a predictable and useful

manner. Colours have to be mixed, taking into consideration

transparent colours, and intuitively expected colours must be produced.

Suggested operations are made in [PORT84] and [STEN86].

100

9. Conclusions,

9.1 Introduction.

Bitmap graphics machines are becoming more readily available than the
previously popular calligraphic line drawing systems, a trend allowed

by the drop in price and increase in availability of the large amounts of

memory required to hold information being stored on the bitmap

display. The transition to bitmap machines is associated with an increase

in power and facility. Complex pictures may be displayed without the
limiting factor, inherent in calligraphic displays, of screen flicker
experienced when an attempt is made to display too many lines;

consequently areas may now be filled rather than shaded by multiple

lines. Pictures may now be manipulated internally in a display able

form, rather than as a list of co-ordinates and vectors, allowing increased

display versatility and production of "true to life" pictures. The old

system provided by calligraphic machines of model manipulation may
still be advantageous in some situations and can still be implemented on

bitmap machines to a certain extent.

High level languages capable of exploiting the full power of

calligraphic displays have been developed after much experiment. Some
of the languages produced during this work are discussed in chapter 2,

they range from Euler-G a very basic, almost low level, language to

Mira which allows manipulation of graphical objects through high level

constructs. This same process of experimentation is now under way for
the bitmap display, some languages and work contributing to this
process are also reviewed in chapter 2. Smalltalk-80 provides perhaps

101

the best attempt so far but by no means provides a complete solution to

the problems of bitmap graphics. It seems that since bitmap
workstations can potentially provide a very much larger range of

facilities than the calligraphic machines, the languages intended to access
these facilities must be a lot more complex than the previously designed

calligraphic languages. It is the job of the language designer to provide
easy access to the full facilities available.

9.2 Identification of the problem.

Usually a machine designer and operating system team will

provide a system programming language and a library of functions

accessible through it for the control and display of graphical data and
input related to that data (see chapter 2 for the description of such a
system language extension for the MG-1). Graphical programming by

calls to these libraries from the system language is the method used by

most programmers as it is all that is available or the only method of
obtaining all required effects. System languages, by their nature, do not

provide full support for type checking and high level data structures in

contrast with high level languages. They are often implemented
differently, and provide access to different library procedures on

different ranges of machines. Thus programs developed in a system

language, although they may work, take longer to develop and are prone
to hidden bugs as well as being difficult to transfer between different
types of machine. This thesis therefore identifies the need for a HLL
providing the abstractions which facilitate the programming of effects
achievable on bitmap displays. These abstractions must fulfil the three

objectives listed below.

102

(1) allow commonly required effects to be programmed
simply;

(2) give access with resonable efficiency to all the effects
achievable on a bitmap display;

(3) be defined without reference to, or influence of, specific
machines.

These requirements were derived in chapter 2 and proposed

implementations fulfilling them are presented in chapters 6 and 8. The

final requirement is studied in chapter 4 where the machine
independence of PS-algol is investigated.

The first specific problem that is identified and addressed by this
thesis is therefore to search for and design such abstractions. This

problem does not permit a single solution, since the requirements

conflict and the particular solutions given in the thesis are at best

appropriate to current technology and envisaged applications.

Therefore the final part of these conclusions, after the specific search

has been described, contain a suggestion of design principles which it is

hoped would prove helpful to others who perform the search in a

different context.

9.3 The high level language solution.

An approach to the stated problem is the development of graphics

in a general purpose high level language which gives the freedom of

expression and full functionality the programmer requires thus
reducing the dependence on system languages. A HLL is designed to
produce efficient programming, by checking for type consistency while

still allowing freedom of expression, and not to reflect the properties of

103

a particular machine, and ideally it will be implemented with precisely

the same definition on many machines. The machine independent

definition of a HLL is intended to allow all programs written in that
particular language to run with identical results on any machine capable

of supporting the language. The abstractions, formal definitions and

constructs supported by HLLs, since they are free from machine specific
attributes, are intended to lead to improved styles of programming and

speed of software production, with more reliable programs produced

that will run on a variety of machines. The precise definition of all
language attributes removes any ambiguity such as those which

sometimes occur in low level languages resulting in unpredictable and

inconsistent performance of certain language statements from machine

to machine. Also the programmer's skills are less machine dependent,

experience gained on one machine may be useful on a variety of

machines. The challenge of producing such HLL abstractions for
graphical input / output on bitmap displays is particularly difficult since

the properties of individual devices and supporting hardware are visibly

different from machine to machine. It is a challenge recently taken up
by a few HLL designers. It is an easily justified theme for this work, as

the benefits of success would be considerable. A high proportion of
programming is concerned with organising communication with the

user (estimated at 60%), therefore the facilities provided for

programming this interface must be carefully considered as an

important integral part of a bitmap language. As bitmap displays are
becoming increasingly common, the user's expectations of the quality

of this interface are rising, programming languages must improve in
order to enable easy production of the users expectations and
requirements and to allow efficient access to the full facilities of such

machines.

104

The limiting factor of existing high level graphics languages is that
they provide only a small subset of the functions potentially accessed at

the lower system language level. Simply adding large libraries of

functions, a solution offered by most system language extensions and

graphics packages, would result in programs written with the small

subset of the existing functions so far explored or understood by the

programmer. High level languages must develop powerful, easily

understood graphics facilities which will encourage the user to exploit

the full potential of bitmap graphics interaction rather than a mere

subset. The operations required may be determined by examination of

the functionality of existing graphics libraries as many of these have

been thoroughly used and have been shown to allow access to the
required operations.

High level languages must allow the production of succinct and

understandable, and therefore more easily maintained code by
introducing levels of abstraction into possible uses of the language

constructs, since they may be complex in some cases. Unnecessary
details can be omitted, by the use of defaults, an approach not possible
with library routines since they are accessed via function calls whose

parameters must all be included in each call whether or not they are
required. Language capabilities can then be used in a simple way by a

naive user. Their full power may be exploited by a more experienced
(or ambitious) programmer for the production of elaborate algorithms

or sophisticated non-standard effects.

105

9.4 High level language graphics requirements.

The primitive facilities of a graphical language must be designed in

such a way as to either directly provide a required visual effect or to

allow the easy definition of higher level functions which provide the

remaining effects. A description of the functionality required in terms
of visual effects is given below. These effects may be classed as either
input or output facilities.

9.4.1 Basic output facilites.

The graphical output facilities required by a user could all, in
principle, be provided via the two primitives which allow the value of a

single pixel to be read and written. Such a primitive approach is

rejected since all the remaining primitives and language facilities would

have to be provided in software, producing intolerably slow systems.
The machine hardware must be allowed to support the language

requirements at a higher level than the single pixel level, a compromise

must be made in the level of hardware and software support for

languages in order that a desirable implementation efficiency is

provided.

Three basic output facilities must be provided by languages
whether by primitives or by higher level operations built from existing

primitives. These three facilities are described below.

1. Text output. Text must be output to the screen and internal

bitmaps in the variety of fonts and styles available on a bitmap machine
in such a way as to allow the user as much control in the organisation and

106

format as is required. Text output is discussed in chapter 6 where the

old primitives of PS-algol are compared with the improved facilities.

2. Line drawing. The line drawing facilities of a language must

allow, in addition to simple line drawing, the production of textured

lines of various styles consisting of repeated patterns, and dotted lines.

Any lines drawn must be easily styled by the programmer in order that

the desired effects may be obtained in a straight forward manner.

Raster combination rules may also be specified if their inclusion is
relevant. The functionality of line drawing mechanisms are described in
chapter 8.

3. A rea shading. Bitmap displays allow easy shading of areas by

repetition of small "pattern" bitmaps over a large area, having the effect

of producing a halftoned colours (in the case of monochrome bitmaps).
Areas of an existing bitmap may be copied onto another bitmap, the

source being combined with the destination in a variety of ways. The

PS-algol implementaton of this is provided jointly by the raster-op

facilities (chapter 1) and the texture function (chapter 5). Smalltalk

provides an abstraction away from the raster-op which allows the

inclusion of mask bitmaps giving easy access to the operations described.

9.4.2 Basic Input Facilities.

Graphical input is intended to allow the user of programs to

indicate positions on the screen and provide strings and characters on
request from the keyboard. Text input is classified as graphical input

since the language may be able to control any echo of text on the bitmap

screen. Thus graphical input may be split into two classes .

107

1. Keybord input. Keyboard input could, in principle, be provided

by a single function which would read a single character from the

keyboard buffer and return this to the calling program. Probably a

function to inspect the state of the keyboard buffer could also be useful.

For bitmap machines it is desirable to provide text input at a
higher level. Strings or characters may be read from the keyboard

without any echo being displayed on the screen,or if the programmer so

chooses the string should appear on the screen as it is typed at a chosen

position in the required font and style before it is returned to the calling

program. The style of input used would depend on the requirements and
functionality of the particular program.

2. Locator input. A HLL must provide access to the full functions

potentially required by a programmer or provided by each locator

device such as a mouse or tablet in such a way as to hide the type of

device being considered. It is essential that the full potential of locator

input be accessed by the langauge since providing only a subset of

possible facilities could restrict the power of programs significantly.

The programmer must be able to control the cause of return of the

locator function, whether it be mouse movements, clicks or key strokes,

and unread mouse input must be able to be flushed or considered in its

entirety. A program which follows the mouse cursor around the screen

and outputs information at each position it crosses may not be capable of

executing the desired operations on each point fast enough to allow the

next call of the locator function to pick up the next point crossed by the

cursor, resulting in possibly important data being lost. The solution to

this problem is to consider the locator input as a queue of records which

may, on request, be returned sequentially by the locator function rather

than flushed from the queue. A similar program which is only required

108

to consider points at which a mouse button is pressed would be much

simplified if the locator function could be made to return only when a

button was pressed, therefore all input from the locator function seen by
the program would be relevant to the application.

This full functionality is required to be provided by a language.i
Locator input is discussed in chapters 4 and 8.

9.4.3 Access to environment.

One major attraction of system programming languages for the

purp ose of graphics is to allow the programmer access to the full

window management system capabilities of the workstation. Windows

may be created and manipulated on the screen to display the contents of

any bitmaps as they change. Windows may also be moved, reduced in

size or priority by the system user or the controlling program to display

the currently most important bitmap.

High level graphics languages must provide machine independent

access to such facilities possibly by making use of a standard window

manager or by accessing a language specific implementation. Since the

production of the standard window manager Andrew [MORJ86] the

former alternative has become a possibility in that any machine capable

of supporting the language would be able to run the window manager
also, allowing programs which made use of the window manager to be

machine indepwient.

109

9.5 Summing Up.

This thesis reviews several graphics languages and studies
implementation of language facilities in PS-algol. Implementation of

some of the above proposed essential attributes of graphics languages

were experimented with by attempting implementations in PS-algol and

were found to perform satisfactorily in that the changes made to the

langucvjjt improved its machine independence, consistency and usability.

The machine independence of PS-algol was examined by the

porting of the language from the ICL Perq workstation to the

Whitechapel MG-1. This presented several problems which led to

further discussion of the language facilities such as the standard output

and locator input primitives.

After the completion of the new text output routines the proposed

new write statement was renamed to p rin t to allow the existing

programs, which used standard output, to continue to compile and run

without change. The alternative edge violation approach to text output

(described in chapter 6) was implemented and considered to provide a

fuller range of options to the user and therefore seen as desirable. The

new system ported back to the Perq, requiring no changes to the user

interface, indicating that the extension was machine independent,
unlike the old write statement which used standard output inconsistently

on different machines producing machine dependent programs.

The final completed print statement has been added to PS-algol as a

standard facility since it was seen by other users to be beneficial and

consistent with the rest of the language.

110

The extensions to the language discussed in chapter 8 have not as

yet been implemented, but it is felt they have been justified on paper and

fit in with the existing language constructs and philosophy and provide

the functionality required from any graphics language.

All the work done with PS-algol and the consideration of other

existing languages is felt to have allowed a full description of the

requirements of a graphics language and gone part of the way to

demonstrate the viability of these propositions. A clear idea of the work

which will be carried out in this field in the future has been formed and

it is felt that this thesis will point the way for any person working

further in this field.

I l l

Bibliography.

[ATKM85]

[BROA86]

[CARL84]

[COLA82]

[DENE75]

[FATR82]

[GOLA83]

Atkinson, M.P. & Morrison, R., Procedures as persistent

data objects, ACM TOPLAS 7, 4, 539 - 559, Oct. 1985.

Brown, A.L. & Dearie, A. Implementation Issues In

Persistent Graphics, Universities of St. Andrews and

Glasgow, Persistent Programming Research Report 23.

Cardelli, L., Amber, AT&T Bell Labs., New Jersey.

Cole, A.J. & Morrison, R. An introduction to

programming with S-algol, Cambridge University Press,

1982.

Denert, E., Ernst, G. & Wetzel, H. Graphex68 Graphical
Language Features in Algol68, Technical University of
Berlin, Comput. & Graphics, Vol 1, 195-202, 1975.

Fateman, R.J., High-Level Language Implications of the

Proposed IEEE Floating-Point Standard, University of

California, ACM Transactions on Programming

Languages and Systems, Vol 4, 239-257, 1982.

Goldberg, A. Smalltalk-80, the language and its

implementation, Addison Wesley, 1983.

112

[GUIL82]

[HOPF86]

[ICLP84]

[IS082]

[KNUD84]

[MAGN81]

[MAGN83]

[MORJ86]

Guibas, L. & Stilfi, J., A Language fo r Bitmap

Manipulation, ACM Transactions on Graphics, Vol. 1
No. 3, 1982.

Hopgood, F.R.A. et al., Introduction to the Graphical
Kernal System, Academic Press, 1986.

International Computers Limited, ICL Perq User Guide,
1984.

ISO, Graphical Kernel System Functional Description,

Draft International Standard, 1983.

Knuth, D.E., TheTeXbook, Addison-Wesley, 1984.

Magnenat-Thalman, N. & Thalman, D., A Graphical
Pascal Extension Based on Graphical Types, Software

Practice and Experience, Vol 11, 53-60, 1981.

Magnenat-Thalman, N. & Thalman, D., A Three

Dimensional Graphical Extension o f Pascal, Software

Practice and Experience, 797-808, 1983.

Morris, J.H. et al. Andrew: A Distributed Personal
Computing Environment, The Information Technology

Center, Communications of the ACM., Vol. 29, No. 3,

184-201, March 1986.

113

[NAMN78]

[NEWW70]

[NEWW73]

[NEWW79]

[NEWW85]

[PORTT84]

[PPRR11]

[PPRR12]

Nam, N. & Marsland, T.A., Introducing Graphics

Capabilities to Several High Level Languages, University

of Hong Kong, Software Practice and Experience, Vol 8
629-639, 1978.

Newman, W.M., Gouraud, H. & Oestreicher, D.R., A

programmers guide to PDP-10 Euler, Appendix VI,

University of Utah, June 1970.

Newman, W.M., An informal graphics system based on

the LOGO language, AFIPS Conference Proceedings,
Vol 42, 1973.

Newman, W.M., Sproull, R.F., Principles o f Interactive

Computer Graphics, Second edition, McGraw-Hill, 1979.

Newman, W., Stephens, N., Sweetman, D., A Window

Manager With A Modular User Interface., Whitechapel

Computer Works, London, July 1985.

Porter, T., Duff, T., Compositing D igital Images,
SIGGRAPH 84, July 1984.

Universities of St. Andrews and Glasgow, PS-algol
abstract machine, Persistent Programming Research

Report 11.

Universities of St. Andrews and Glasgow, PS-algol
reference manual, Persistent Programming Research

Report 12.

114

[STEN85] Stephens, N., MG-1 Genix 2.0A Manual, Whitechapel

Computer Works, London, 1985.

[STEN86] Stephens, N., New Whitechapel Angel Graphics Library

Manual, Whitechapel Computer Works, London, 1986.

[STED81] Stevenson, D., A proposed Standard for Binary Floating

Point Arithmetic, Computing, IEEE, March 1981.

[WCWM85] Whitechapel Computer Works, MG-1 Owner Operator
Manual, 1985.

[YIPC84] Yip, C.K., The Pascal Graphics System, Software

Practice and Experience, Vol 14, 101-118, Feb. 1984.

115

Appendix A,

Some examples of the MG-1 implementation o f PS-algol are

demonstrated on the next few pages by screen dumps produced on the

machine. These demonstrate the following situations:

(1) The output from a demonstration program showing the

graphics window created by the PS-algol system on the

MG-1 and showing the treatment of standard and graphical

output from the language.

(2) The PS-algol code which produced the output in the above

example.

(3) A demostration of the new write statement and the set.font

function used to change the default font used by write.

(4) A demostration of the use and the behaviour of the input.line

function which reads a string from the keyboard displaying

the characters on the screen at the current position in the

default font.

(5) Various uses of the texture function added to the language to

allow shading of parts of images.

116

<y it

LOo.
H 8

ill

0

<U
A+-»

o

<D
doP-*
Vi
w
a

I
V I
Ph

o

X
X L. X
L. P L_

P C P
C QJ C
QJ

P
m
L.

TJ
c
o
O

QJ

~D
U

■ — QJ _C
<P 1/1 P

♦

$ X p P P P P 3 3 3 3 3■• £1| £4 £l £1|
>14-) 4-) 4-) 4-) 4-)(033333P o o o o o
CO
•H 73 "O "U 7? 73
| i-| V-l 4̂ i-4 U

V) ca cd cd a) a)
£1, 73 73 73 73 73
'-<• c c c c c
n cd cd cd cd cd
rH co co co co co < w r—r l

P
co
co

cd

73 I <l)CO Cutu

♦I
♦
♦

co
*rt+ju
cd

c
cd

co
*H

u r \ J
cd * CM

• ■rH a CM
c CM 4-)
cd + CM d)

*> 4-> E
c 0 d) a

s 0 i n E
C H rH a ■>

/ - s g " 4 J a
= n = s u w •w *>rH

S n ^ n - cd c 8 C3
n i—1 X rH rH ■ O IS • E
rH X H X • H r - 1 C -H * ~ d)
X •H «M H cd 4 J •»H C d) 0 0
■H V-l 3 <M <i> m u n a O J C n < o
<t-l : a hJ - p * -- cd + C 4-J -IP
8 •H C ^ ■ Cd 1 1

•wg *> U <1)4J d) 0 4-) 0) C
5 > iS > C .J Z i n co d c 0 E E

5h >H ■“ ■••H j J rH * fin ■H M M
s i—1 4-J 5—1 ^ (M u - T~l 4-) > rH O Q

4-> C -P ■ H p - <D 4-) d •H O
S=> C d) C •H c rH d C cd - 0 J O)
53 d) d) d> d> 5-i O 0 •H
W ■D - P X - P c 0 ■0 c cd O O '
E 4-> C O c - H - d) ^ u £ 1 M1 M1

Cd O in •H 1—1 Cd O d) cd o w
< 5h U -H 0 4 J * <p 5h * • 0 •"3 Oh 4J 4J

• rl (1) SZ •“ C O H O U M1 c S 8 cd cd
s IH W j J •H (p w P i n cd * cdIIIIII U - P • n •P w w c c
w H u i O C > 1 4-) cn d) d) d) d)
(V WWW © H P 0) A •H •> a H H r-\ d) d)
H <D <D <D X d) O* - £ O *H ‘H p 54
■rH H H —I •H X 0 d) 0 ■H O d) + J 4J c U u
4-) ■i—1 ’H r l C p’H —1 00 rH n -P • ■ d) id id Cd

. 4J 4J 4J * 4-) •H 0 0 d) /—^ "H
o . • . O # O H 0 0 u p p u 4J 4J W r H
4-) 0 0 0 w O - P O) 4-) > • • u •H -iH O d) ■

CO ■ 4J 4J 4J 0 rH cd c c 0) 0) Cd £ E N c 0
■ CD . . . O w 0 J w £ 0 0 0 a) c c ’H *iH •H £

O C 0) 0 5 0) u 0 d •h -o ■O d) 0 •iH *H w *—1 *H O rH <P
£ *h C C C fit* 11 c <D 5h ■o 5-. in £ CM • • o
d) h •H -rH -H rH Cd d) 11 i n - h 0 0 4J 4J 0 0 cd A

■O 4 J u u u II QJ C £ cm o) i n w i n Cd Cd 0 4J P w *
CD 4J 4 J 4J C O <i) C • c c d O MH

4 J t m n u O II -H II rH O Cd O ' - ' 0 II II >H 0 0 c C d -P
cd II ■ H U P CD4J 4J 4J <D 4-) .. d) <p cd
u II II II 4-) cp 0 d c O c II CM rH £ Jh Cd

d) O H cd c Cd rH d) rH -H rH rH CM d) d) • II
■■ H H M D cd p ■ d) 4-) 5-1 rH d) d) E H H cd • p

X 4-) 4J 4J 4J ■ 4 J d) £ U II II * 11 H *H IH •H *H
U -H c c c C C S Z • <D U X •H *rH Q 4J 4J ll cd u
d 4 J d) d) d) cd <i)4-) cd 5h -h O n e X 4J 4J >-. u DS d
e X a * >H>1 E
1 4-) 4J 4J 4J 4J 4J P 4J • P U U u p p 4-) f i* f in 4J 4J 1

CO d) d) d) d) <D <L> <D <D <D O O 0 d> <u d) O O d) d) CO
p-l1—1 H H H rH IM <u •H •—I H U O ■H rH P-l H i♦

♦ 4=1
♦
♦

LD
Ql

QJ"0OU
in
£
Oa
QJ_c4->
X_Q

CT)

~0
CD
QJ
1_

m
T—I

X

±
♦

Od
Od+-><us
v
c01

_xu
CD

_Q

o
CM
3
0
0

•o-
nn = jd WD T? <7> 73

Od
Od
+->
<D
6

01-o0 U
01
Eo&

Od
Od+j
QJ) o)
0 I

Od
Od+-*
<D
&

4-1
c

♦
♦

H “ “ X * JZ o 4 \̂
W 5 5 S s <£> 5 4-1 <44

• O N O H O i N • S n CO
4-1 U4 CO CO -H O >1 4-1 > C +j +1 4-1
c s +i d <d x £.i c 01“ c c C
O 01 O E h o 1-4 o o o
<44 w £ <J 01 <44 C <44 o< n <44 <44 <44

. <D s s s s ■rH w W |-l w w w
U 01 4-1 4-1 X 4-1 4-1 4-1 S
3 (I j w w w w •H ■o c C -H c c c c
U £1 O* f t 04 O4H CO o O <44 o o 0 “

i d d d d d c d) <44 S <44 <44 S <44 S <44 0">
01 4-> X X X X u • c ■ O • c • c • X
^ (O O O O O II 4-1“ 4-) 4-1 4-1 “ 4-1 “ 4J<0
0 - 0 0 0 0 0 .. n 01 CO 01 0) o 01 CO 01 ■-i
P . H 1—1 1—1 H rH 01 CO oi y. 01 CO 01 co 01•—<

c • • ■ ■4-1 X 4-1 0 o 4-> CO
.. 01 01 01 01 01 C H II 01 II (0 II o II 01 II £
>104 O <44 ■■ £ •• £ i .. u ■■ E . . 01
co o it ii ii ii <44
■h c o n ^ r m . c 4-1 C 4-1 C 4-1 C 4-1 C 4-1 C
01 II 4-> 4-1 4-1 4-> > o O o C “ C “

-Ot4 c c c c <d s o s OS o s O s OS
<d i n o o o o ^ <44 <44 <44 <44 <44
O4W -O <44 <44 <44 <44 O4 01 ■ 01 . <p • 01 ■ 01 . <u
QiCU 4-1 > 4 -1 > 4 -1 > 4 J > -4) > 4 -1
O J ̂4-1 4-1 4-1 4-1 4-1 4-1 'rH <11 H 0) H 01 H 01 H 01 H
4J o 01 <D 01 <11 01 01 1-1 l-i U 1-4 1-4 14 1-1 1-4 14 1-4 1-4
W O ' ^ h h h h h 5 04 5 0 . 5 0 . 5 0 . 5 & 5

4-1
co

<44

>
<111̂04

w
4-1
c0

<44 S■ c
4-1
<11 N01 CO

4-1
II <11
- £

4-1 C
C “
O s
<44

• <11
> 4 J <11 -H
U ̂04 5

in
4-1
co

4-1
c0

<44 s
■ c

4-1 “
<1)01
01 o

XII H <1-1
4-1 C
c -
o s
<w

■ <11
> 4 J
<11 Hu u045

♦ *

p
re

v.
fo

n
t

:=
se

t.
fo

n
t(

p
re

v
.f

o
n

t)

w
ri

te

"'
n

m
et

22
'n

"

le
t

w
ai

t
:=

re
a

d
.a

.l
in

eC
)

9
1

)P
S

-i
sl

a
y

:
ss

tf

>
cf

.s
cr

ino.

QJ
c
o

H->
in
cnc

cJC
o

“ 5

D
CM
3
0
o • • • • •

O O O O O
a CM 01 CN CM CM

■rl 3 3 3 3 3
0 0 0 0
0 0 0 0

0
cn o
G

■ r|

-pm
'd

G
■r|

G
■rl

G
■rl

G
■r|

X
-p

it

ft tj\ cn &
G G G G G

• r | t H 'H ' r | - r |

. . U H U U M
g g g g g O H -P-P-P-P
o o o ° ° 0 ra n m m w
in in in in in 0rommrom M .Q rtf rfl rQ rfl

C Pi C C
0 0
0 0

r r r r r X ffl fl)OOOO O Q j j ^

> > > > >
0
0
0
w

0 0
0 0
0 0
CO H

♦
it

it

CDIIS>Q_

.q
-• •oZ w

s T5 ■* 4-> 01
W C S s c £
E- OITJ O 0 •H

^s, 55-h cO CO <44 •—< Ol
W O l i 01 d • • £ /—̂ 4-1
01 tH <44 l l 0 CO 4J •H d
£ s s s u w d l l 01 0

S tH s -p P i 4-1 £ ■
H O) w c £ 01 •rH 01

1. • c 01 v—* 0 •H • •—1 £
<11+j •rH 01 P i <44 ■u • •rH l l
c d 1h CO d • 11 £ co •-H u
•rH Ol 4-1 n x 4-1 ■> O • • 01
■H £ 01 c0 0 01 u ■D 4-1 >

•rH 0 ■ 4-1 0 01 Ui 0 01 (0 d •—H
aJ ■0 CO CO •—1 £ ■o 01 01 P i •rH

ll ■o • II ■rH l i £ A
a) .. in “ • 01 l l in “ •rH
p< s c 4-> S 4-1 s II <44
X D) 0 c 01 11 £ 01 O £ ■■ l l 4-1
-I-) £ 4-1“ Oh O •• • 4-1“ 01 01

■H s s O 4J <44 ■O S s 4-1 P i 01
a 1h i—(£ c • « £ 1—1 £ •H
o +j 01 ■k II 0 > O O 01 »• CO ■■
s 01 II 4-1 s <44 01 s U II 4-1 s 5 X u x

. •H n . l l 01 •iH • U 0) u
01 CO •rH l l 01 •o co P i 01 01 •H }-i 01 co d P id
4-1 5 4-1 4-> 5 4-1 £ P i£
•rH 4-> l i •rH 4-) 4J 4-» •rH 4-1 i i •rH 4-1 1 0 1
U 01 O ii 01 01 01 l l 01 0 l l 01 W N 4) W
5 '—1 <44 5 H H H 5 H <44 5 ■—H Ol< W Oi ±

♦

ocr

</>0. QJcn
QJ
E

c
L_
QJ

H->
-*->
CD
Q.

"0
Coo
QJin

-p
E

CD
C
L.
QJ

-PC

"O
QJ
L.
d

-P
X
QJ

•P

a

CNn îniOh-iom^nNrHOrH

pjjjjpppp-l-lpppipjjjj
d d d d d d d d d d d d d d

H rH rH iH rH rH iH rH rH rH rH rH iH rH

o o o o o o o o o o o o o o o
4-)4J+J+J4J+J-P4JjJ4J4-)4JP+J•W

CO Q H H H r H H H H H H H H H H H
4J 4J 4J 4-5 4 J 4- J 4-5 4 -5 4 -5 4 J 4-54 -5 4 5 4 - 5

> i r - \ d d d d d d d d d d d d d d
.Q fXiOjP-iC^OuO^OjO-iOjC^n-iO^n-in-i

>H
O O ^ P P - P P P - i J + J - t J j J P P + J + J j - J

«iH **H *H *H *rH *rH *rH *H *H *H *H *H *rH *H
Oh E E E E E E E E E E E E E E
CO *H *H H *H *H *H tH -H *H *H *H H ’H *H
(d 0 H H H H *H *H *H *H <H H *H H H H
E CD
H d O O O O O O O O O O O O O O

E+J+J+J-P+J-P-P-PjJ+J-P-P-P+J
l l - H C C C C C C C C C C C C C Co o o o o o o o o o o o o o

II
i—I 4-5 4J 4-5 4 J 4J 4-5 4-5 4-5 4-5 4-5 4-5 4J 4-5 4-5
4 - 5 4 - 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(d O D D D D D D D D D D D D D D Cn'O
4-5 4-5
0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-I-HUUUUUUUUUUUUUU

<►

0

O
0 0

■4

O
ID
1—1

O
1—1

O
rH

r—1

4-5
•4—1 O 0 d
4H rH 4-5 4-5 0O c d 0

4-5 O <7» <D<w d l> 0 ■v
O <75 ID >H 0

c 0 n
O <1) <* >1 4J rH O
ID <15 ■> JD c 0 0 0

l-i <?»4J ohcm 4 5 O rH>1 U d 0 rH d rHW 4-5 CM n * rH *■
d CM rH 0 0 = O

0 0) 4) ID 4-4 4-5 <15 -M1CM OD H CM O 4 - 1 0 4-5 0)0 rH
rH (0 E ID >14J 0 d C dM1

E -H .Q 4-5 <15 E H D
QJ *H •—1 C •w din 05 •h d
CD ■ jQ CM <15~ O U 45 1h(0 rH O CM <15 in >iu rH dS u
E aJ4J (M rH 1_| 4J 00 n cn d c cn
■H c c CM U-H >1 c = u •in 0 rH O W E >uq in 4-5 l-i 4-5 C5 4-5
11 a) 4-5 -rH .Q H C5 "H 4-5

4-5 <1) O 4-5 <-H in 0 e 4 J E 4 J A
© C C D 4-5 C H • 0 0 4.5 H C -H d
CD-H d <15 E d O rH •H rH 0 4̂-1
d E C <15 H 05 4-5 CM 4-5
£ -H <15 J-i <—1 ■> CD 4-) - 73 c V cn
■H ■ <15 U dCM d <15 <15 c W

• rH •—t i-i W || rH £ 4-5 D4(M 1h <15 O
-H 4-5 (0 U 4-5 ■H d 4-5 d U U
a5 CD C W4J 4-) d a . 4J d 40 U <15 >1
C CnU •h h a , II H 0 4 x w cn d
1h <15 4J E E 4-> £ <15 rH
d w j j •H *H *H w CM ’rl "H '—' 4-5 d d tn
4-5 05 C E H H d) 4J E H 05 III

II

II

C 1h H •H • J-i d 'rH l-i 1
•h d rH d d 0 4 rH d a5 a) ®w

4.) > 1 4-5 4-5 4-5 4J 4-5 P-i
4-> X O l 4-) 4-> X 4->4 J X •iH *H *H ^
<15 <15 0 O <15 <15 <15 O <15 1h U IhCM
-14J u C rH 4J rH C 4-5 O O O M a

! * ♦

■ JW

