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STATEMENT

Chapter 1 covers basic material in geometric group theory and is

based to some extent on notes of S.J.Pride. Chapters 2.3.5 are

my own work. Chapter 4 involved some collaboration with S.J. Pride.

| had used the method of triangulation to solve the word problem

for T(6) -complexes. and had also investigated the conjugacy

problem. However. to complete the solution of the conjugacy problem

required a description of certain tesselations of the sphere. A

rigorous proof that my descrption was correct was supplied by

S.J. Pride. The suggestion to extend my formulae to try to solve

the dependence problems DP(n) (n33) was due to S.J. Pride.

Chapter 2 except 2.4 will appear in [2].

An outline of Chapter 3. and most of chapter 4 will appear in

a joint paper with S.dJ.Pride in [3].

After proving our result in Chapter 5 we discovered that Marcus

{71 had obtained a similar resuit.
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ABSTRACT

The main work of the thesis starts with Chapter 2,

Chapter 2 concerns free subgroups of C(4),T(4) groups. Collins

has investigated the free subgroups of groups with presentations

satisfying the GC(4).T(4) conditions. He has shown that such groups

contains a free subgroup of rank 2 except in some cases which he

lists explicitly. The exceptions are all two generator groups. In

Chapter 2 we give a simple proof. using star complexes. that if G

is a C(4).T(4) group and if G can not be generated by fewer than

three elements then G contains a free subgroup of rank 2. (In fact

we prove a slightly stronger resuit.)

Much work has been done for C(4)-T(4). and C(6)-complexes.

However T(6)-complexes have not so far been studied very much.

For that reason our main work in the thesis is to study

T(6) -complexes. This work is contained in Chapter 3 and Chapter 4.

in Chapter 3 we give some examples of T(6)-complexes and also

examples of related complexes called hyperbolic complexes.

In Chapter 4 we obtain new solutions to the word and conjugacy

problems for T(6)-complex. and we discuss the dependence
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problems in general. ( The word problem is DP(1). and the
conjugacy problem is DP(2).)

in Chapter 5 we introduce the idea of the degree of a
presentation, and also property-ST(m) and property-st(m). ( These
concepts are related to valences of vertices in star-complexes.)
We ask whether having a presentation of degree m. property-ST(m)
or property-st(m) (m>2) puts any restrictlﬁn on the group defined

by the presentation. We show that the answer is no.



NOTATIONS

Let G, H be groups:

H<G

HeG

G x H

G *H

sgpixy. .

o

means that H Is a subgroup of G.

means that H Is normal subgroup of G..

is the direct product.

is the free product.

. Xn}

denotes the subgroup of G generated by xj....

whare the x; belong to G.

We adopt the usual notation in set theory:

RusS

RnS

is the union of sets R, S.

is the intersection of sets R.S.

means that R is a subset of S,

means that r is a member of R.

denotes the cardinality of R.

is

is

the

the

the

the

the

the

the

the

The following

trivial group.

cyclic group of order n.

direct product of n copies of Z.
free group of rank n.

integers.

non-negative integers.

negative integers.

rationals.

notations are introduced in the text.

Let x be a 1-complex.

68

E(X)

set of vertices of 1-complex.

set of edges of 1-complex.

(v)

lxn
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P(X) soet of paths of 1-complex.

t(a) initial vertex of the edge e.

T(a) terminal vertex of the edge e.

a1 the inverse of a path a.

L(o) length of path «,

Tv the empty path for each v of V(¥).

Lg() number of times e.e” 1 appear In a path «.
ggla) exponent sum of e in «.

Star(v) ( e: 'eeE(:;:), t(e)=v }

Let K=< ¥ : pa(Aen) > be a 2-complex.

(D is the 1-skeleton ¥.

PA closed path in K called the defining path.

A the set of elements called indices.

R(K) the set of cyclic permutations of defining paths

and their inverses.

rx the set of all cyclic permutation of elements of
r and their inverses.

x(K) Euler characterstic of K.

ouip o ls équivalent to B ink.

cx,\ia a Is freely equivalent to B in f.

la]k the equivalences class of a path o with respect to ~

m1(K.v) the fundamental group of ¢ at v,

GNK] o Is contractible in t .

¢ = ¢ two mappings ¢.V¥ are homotopic.

g an element of Ap is called of level 2.

pSt star complex of 2-complex

St(y) first edge of .

S1(y) inverse of last edge of .



CviD)
k3Uv)  full subcomplex of £t on Star(v).
r(kshH star graph of kSt
kST extended star complex of 2-complex K.
ST(A,e.y) ftirst edge of .
ST(A,e.y) inverse of last edge of y.
C(p) condition : no element of R(K) is product of less
than p pieces.
T(q) condition : there are no non-empty cyclically reduced closed
path of length 2 (3<2<q) in star complexes.
A’F(q) condition : there are no non-empty cyclically reduced closed
path of length less than q in star complexes.
(wy,.... wn) }-Kwo wg is dependent on (wy,..., wp) Ink.
DP(n) dependence problem.
DP(1D) word problem.
DP(2) conjugancy problem.
KA' a t‘riangulation of 2-complex K.
m weight function on kSt
deg(}) degree of (.

CG@) connectivty graph of ¢.



CHAPTER 1

INTRODUCTION

1.1 Basic concepts and definitions.

Most of this section is collected from Pride's notes and also

can be found in Pride [9], (10]). {11].

1.1A.1. 1-complexes.

A 1-complex ¥ consists of two disjoint sets v, ED together
with three functions v: ECf) - VB, 1 E - v,

-1: E(P - EWO satisfying (e =7(e), (e"H~1=e, e 1o for all
ecE() . The elements of V(X) are called vertices. and the elements
of E() are called edges. We remark that 1-compiexes are often
called graphs in combinatorial group theory ( see [14], [15]1).

A non-empty path o in X is a finite sequence of edges o=ej...en
(n3*1) such that t(ej+1)=1C8)) for i=1,.... n-1. We define t(x).
7(x) to be L(e]). T(ep) respectively. The inverse path a1 of ais
the path en‘]. . .91‘]. The path « is sald to be closed If t(ax)=T(x).
The length L(x) of « is n. We say that « is reduced if eﬁ‘e;”']
for all i=1..... n-1. Morever. if « is closed we say that « is

cyclically reduced if all cyclic permutation are reduced. For
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each vertex v of . we introduce the empty path 1y. This path has
no edges (L(ax)=0). Morever. (1) =7(1y)=v and 1v"]='|v.
Sometimes we simply write 1 for an empty path if the particular
vertex is clear.

We say that the product ap of two paths a.pB /s defined if
T(x)=1(B). Then ap is the path consisting of the edges of «
followed by the edges of B.

The set of all paths in ¥ will be denoted by P(X).

If « is a path in 1-complex and e Is an edge then Lg(a is the
number of times e and e~ appear in o. The exponent sum of e In
a, denoted by og(x) . is the difference of the number of times e
appears In « and the number of times e ! appéars in «. We say that
e is involved in « if either e or e~ ! appears in «.

We say that X is connected if. given any two vertices u.v of X
there Is a path y such that v(y)=u. T(y)=v. A subcomplex of a
1-complex ¥ is a subset of V&)IUE(X) which is closed under O
If VQQV(%) then the full subcomplex on Vg consists of Vg
together with all edges e of ¥ where both t(e). T(e) belongs to Vq.

A maximal connected subcomplex of a 1-complex is called a



component. If v is a vertex in a 1-complex x then
Star(v)=( e:ecE(X). t(@)=v ).

A 1-complexes can be represented diagramatically as follows. A
vertex is represented by a point. For each geometric edge te.a™ 1},
we select one of the pair say e and a draw segment (labelled e)
joining the point corresponding to t(e) to the point corresponding
to 7(e).

Example 1.1A.1.

This represents a 1-complex with 3-vertices uj.up2.u3 and 10 edges
ej.8;"1 (141<5). We have t(e})=t(eg)=L(e5)=T(e5)=uy.
t(en)=T(ey)=T(e])=up, L(eg)=T(ep)=7(e3).

A tree is a connected 1-complex in which no non-empty closed
path is reduced.

A 1-complex with a single vertex is called a bouquet




1.1A. 2. Mappings of 1-complexes.

Let X . %Y be 1-complexes. A mapping of 1-complexes from¥ to §

is a function
& VIO UEXD - vi&hurh

which sends vertices of X to vertices of §. and edges in ito
paths in ¥ and satisfies for each eef ¢(L(e))=t(d(e)),
d(T(e))=T(dp(e)). d(e~N=¢(e)~ 1. We can extend ¢ to a function
(also denoted ¢ from VOO UPOD to VIPUP(Y as follows. Let «
be a non-empty path in ¥X. say o=eje2...epn (n>0). We define ¢(a)
to be the path ¢(ej)d(en)...d(en). For an empty path 1y we define
o(1y) to be lg(y).

A mapping ¢ is sald to be rigid if it preserve length, that is,
L(¢Cx) )=L(ax) for all paths a ( ¢ takes edges to edges ).

Suppose ¢: ;é - X is rigid. and let hv'e’;: It "eeStar(V) then
&(@) eStar((V)) . thus ¢Star(V € Star(a(V)). We say that ¢ Is
locally injective ( resp. locally sutjective, locally bijective )
if &¢: Star(v) - Star(e(W)) is injective ( resp. surjective,

bijective) for all VeX.



Let u be a vertex of ¢ and let U be a vertex of X such that
~ ~
¢(u)=u. We say that u lies over u. If « Is a path in X with t(a)=u
~ ~ AN~ ~
then a path « in X such that ((a)=u and ¢(x)=a is called a lift
of « at u.

temma 1.1A.1. Let ¢ be a rigid mapping of 1-complexes from’; to
¥. The following are equivalent.

(/) For any path a in X and any vertex V of z with &(V) =t ()

there is at least one lift of « at’v.

(ii) ¢ is locally surjective.
Proof.
~ ~
(1) implles (i). Let veV(X) and let eeStar(¢(v)). Then by (D).
the path consisting of e has a lift at V. This edge will be an
edge in star(v). So ¢ Is locally surjective.
(i) implies (i). We use induction on L(ax). If L(ax)=0 there is
nothing to prove. Suppose L(x)>0 and write a=pe with e an edge.
~ ~ ~ N

By induction hypothesis there is a lift g of B at v. Suppose T(p)=u.
Since éeStar(Mﬁ)). and since ¢ is locally surjective, we have an

~ ~ ~ Ll ~
edge eeStar(u) with ¢(e)=e. Then pe is a lift of o at v.

Ltemma 1.1A.2. Let ¢ be a rigid mapping of 1-complexes from 2 to

X. The following are equivalent.



~ ~ ~
(1) For any path « in ¥ and any vertex v of )% with &(v)=t(
~
there Is at most one lift of « at v.

(ii) ¢ is locally injective.
o~ ~ -~ ~ ~
Proof. (1) implies (i). Let veV(X) and let @7.e2eStar(v). Suppose
~ ~ ~ ~
¢(e1)=¢(e2)=a. Then ej.e2 are lifts of the path in X consisting of
P o
e. so @j=ep which implies that ¢ is locally injective.
(i) implies (D). We use Induction on L(a . If L(c)=0 the result
is obvious. Suppose L(ax)>0, and write a=pe with e an edge. Let
P4 ~ . ~ ~ ~ ~ o~ N
aj.ao be lifts of a at v. Then a1=pje|. ao=pgep where
~ ~ ~ lad ~ ~F ‘
(B =¢(B2) =p, d(e})=¢(ep)=e. Since p7.B2 are both lifts of p at

~ o ~ o~ ~ A~ ~
V. B1=B2 by Induction hypothesis. Let u=7(By). Then e1.eg€eStar(u)

~ o~ ~ o~
and since ¢ Is locally injective we have ej=e2. Thus aj=a2.

Thus the locally bijectively of ¢ is equivalent to the condition

that all possible lifts of paths exist and are unique.

1.1B. 1 2-complexes.

A 2-complex K Is an object < ¥ : pp (red) > where X is a
1-complex ( called the 1-skeleton of K. and often denoted by K1)
and the p) are a closed paths inK. The p) are called defining

paths. The elements of A are called indices.



For a 2-complex K. we define R(A) to be the set of cyclic
permutation of non-empty defining paths and their inverses. We
say that a 2-complex K Is finite If V(K). ECK). A are all finite.

We then define the Euler characterstic X(K) to be

IVK) -1/ 21E(K) 1 +1A].

A 2-complex with a single vertex is called a presentation. If
<8 : pA(ren) > is a presentation and if the edges of ¥ are
y].y1'].y2.y2‘1. ... then we will often use the more standard
notation <y1.y2..... pa(ren) > for the presentation. Also we use
<y : r>if pp(ren) Is a set and where y is the set of edges
Y1-Y2.Y3. . ... Instead of R(P) we sometimes use r*. As an
example, consider the presentation <a.b:a2.b2a" b~ la>. The

2-complex associated with this presentation is

éb ‘\OC\ @L

1.1B. 2 Fundamental group of 2-complexes.

Let K be a 2-complex. There are two elementary transformations
of paths in K
() Deletion of an inverse pair ee” ! of succesive edges:

(i) If we have a path a=xjyaxo and p=y8 where peR(K) . then replace



y by 571 In a.

Two paths a,p are equivalent written ouva (or simply a~ B if
is understood) If there Is a sequence of paths a=o0g.daj.....%n=R
where one of «j.aj+] Is obtained from the other by operation 14}
or (). The equivalence class of a given path « with respect to
this equivalence relation is denoted by [<x]K . (or simply lal)

Let v be a fixed vertex of}(. We define the fundamental group

m1(K.Vv) at v to have underlying set

{flal: o a closed path with t(x) =v).
The vertex v is called the base vertex. The multiplication is
defined by [alipl=lapl. the inverse [k~ Is defined to be [a 11,
and the identity 1 is defined to be [1y]. The multiplication is
readily checked to be well defined. If K is connected then the
fundamental group obtained is independent of our choice of ‘the
base vertex v. that is. if vi.vo are two vertices of K then. it
can be shown that my1(K.vy)2mj(K.vo). (Consequently, we sometimes
talk about the fundamental group of a connected 2-complex. that is.
if K Is connected we refer to the fundamental group of K and write

m1 ().



Two paths «.«’ are freely equivalent. wtitten a,J «’ if there

is a sequance of paths «=ug. 7. . .an=«’ where one of aj, Xj+]
is obtained from the other by an operation of type (.

A path which is equivalent to an empty path is s_ald.to be
contractible. :If « is contractible we define the degree of a.
denoted by deg(«). to be the smallest number of operations of type
() used in any transformation of « to 1.

Lemma 1.1B. 1. If « is contractible with deg (x)=n then
& ~ (y1B1y1=1) (yaBaya~1) ... CynBnyn™1) where the y; are suitable

paths, and th_e BicR(K).
Proof. We use Induction on deg(x). If n=0, then « Is freely
equivalent to 1. Now let n>o. Then we have a finite sequence of
paths oc=ag.a®]..... ap=1 where for i=0.1.....p~1 one of ., a+]
is obtained from the other by operation of type (1) or (I). Let
k be the first value of i for which an operation of
type (1) is used. Then deg(ak+1)=n-1. Then by induction
hypothesis we have

oks] ~ (Y1B171" D) . .. (yn=1Bn-17"Tn=1) for suitable paths ¥ and
BjeR(KY . J=1.....n=1. Now let ak=AjpAr2 and

ag+1=A1vA2 where pv~TeR(K)
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We have
(x,JO(k (since all operation of type (1))
=)\]u)\2,~37\1 vv""u)\gvv' A vAg[A2‘1 (v~ a0l
~ 181717 D p=18n-1y Te-n T T Tl
= (18171 V. .. (rp=1Bn=17" Tn-1) (¥nBn¥n™ D

where Ao~ l=y, and v~ lu=p,.

1. 1B.3 Mappings of 2-complexes.

Let K. £ be 2-complexes. A mapping of 2-complexes ¢ K-L s
a mapping of 1-complexes from KD 10 L) with the property that
the image of each contractible path of K is a contractible path
of £. If &: K =L is a mapping of 2-complexes then sometimes for

emphasis we will denote the underlying mapping of 1-complexes from

K 10 LD py o,

~
We say that a mapping of 2-complexes ¢: K - K is strong If it
~
does not map any edge to an empty path. and if SR(K) SR(K) .
We say that ¢ is [locally bijective if (1) is also locally
~ ~
bijective and o~ 1R(X)=R(K). If. in addltion, K and K are connected

then ¢ is called a covering.



n

Y
Theorem 1.1B.1. Let ¢: K - K be locally bijective, let «, B be
paths in K with L(«)=u(B), and let & B be lifts of o, B with
(0= (B). If 0w B then et B,
K

Proof. Let «.B be two paths in K with () =L(pB), and 5. B are lifts
of a. B with (D =u(B. We will show that It % then a~B. For let
K
a~pB. that is, there is a sequence of paths o=0g.x}..... an=p where
one of . «j+] Is obtained from the other by an operation of type
() or (). We use induction on n. If n=o there is nothing to prove.
Now let n>o. Suppose first apn-1=mym2. and B=n1ee“1n2 and let’ih
denote the unique lift of my at v. and let '17,2 be the unique lift
~ ~ ~
of mo at the vertex T(my). so that an-j=mjm2. But the lift of g at
~ ~ o ~ ~
v Is then 1r1ee“]1r2, where e is the unique edge such that
~ ~ ~ A s~ ~ ~
v(e)=1(n}) and ¢(e) =e therefore B=mijee” 'mo~z mim2=an-] and by
K

~

< . « ~ ~
induction an-~1 ~x and so o~ B.

~

K s

~ ~

,’; iy NLPY

©

T, T

Now suppose that apn-1=mjyrs and 13=rr]8"]tr2 where p=y8eR(K).

Consider the lift &’nq of ap-1 at V. We can wrile this as '171371?2
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~ o~ -~ ~
where 71 is the lift of my at’Vv. ¥ is the lift of y at T(my). m2
is the lift of mo at T(A)"). Now by assumption the llft?S of p at

~ ~ ~ AN ~
T(m)) belongs to R(K). We have p=y& where & is the lift of & at

~ A~

-r(';). Now ;16‘11;;_.\ starts at v and Is mapped onto B. so B=1118'11r2
by uniqueness. Since ’171;3"1172 is obtained from 'c‘fn.q by an operation

A ™ ~ ~ A
of type (I}, then we have p=w 8'1'1}, ~117o and by induction &~ ap-
] 2~ M2 ~.%n-1
K A

~3 ~
and so a- 3 as required.

~

~

& N
T‘ /)\ 7]’;

Y x>

<2

k - Ty /-’—)—\ . ™,
_ S
Theorem 1.1B.2. If ¢: K - K Is locally bijective and 7 is a

vartex of ﬁ then the induced homomorphism
dx: g K.V = my (kW)

defined by eslal=I6(] ([aemq (£ V) is injective.
Proof.

Suppose [aleKerds. Then [6(@1=[1y1. that is. (@~ 1y. Now &
and 1y are the lifts of (. 1y respectively. Thus &'~1\7' by
Theorem 1.1B.1 above. Hence féx]=[1v].

Theorem 1.1B.3. Let ¢: /’qv—' K be locally bijective and let « be a
closed path at v and suppose & Is the lift of « at "\: Then & is

closed if and only if [xlebx1y (E.V).
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Proof.

If & Is closed then [a]=[¢('&)]=¢x['&']e¢xn1(/€’\7). Conversely if
la]ecpxm(z.g) . then [l=I#(P] for some closed path B at V. Thus
a~¢(§) . and so G’~E by Theorem 1.1B.1. In particular

(D =r(B) =v.

1.1B. 4 Representing subgroups by coverings.

Consider a connected 2-complex, K= < X; p)(Aeh) > with basepoint
v. Let H be a subgroup of my(Kv). We will construct a covering
oH ¢ Ky.ov) = (Kv)

su‘ch that ¢z my (K, V) = H.

We first construct the 1-skeleton %4 of Ky. Let

X = {1l tlx)=v],

We say that two elements [«l.[B] of X are equivalent mod H if
(o =7(p) and lop~lleH. We will show that "equlyalent mod H" is
an equivalence relation. For since [aa‘1]=[1v]eH then {ad=[al
mod H. that is. it is reflexive. Let [«l=[g] mod H. then by the
definition T(a)=7(B), lap~lleH. Since H is closed under Inverses

then [B‘]a]eH. Thus [Bl=lal mod H. Then it is symmetric. Also it
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is transitive for. if [«d=[B] mod H. [Bl=ly] mod H. We have

(0 =1(B) . [op~lleH. T(B®=T(y), [By lleH which Iimplies that
(@ =r(y), o8~ 18y N=lay lleH. Then "equivalent mod H" is an
equivalence relation,

The equivalence class of lal Is the set of all elemeants [BleX
such that [a«l=[g] mod H. that is, (I8l e~ 11eH) we will call
this set E1. We show that Ey is equal to Ep={ [ylla] : [yleH 1.
For let [gleE] then [ap~lleH. that is. [Bo~lleH then [Bl=[pa™Tlial
which lmplies that [BleEs. We have EjSEz. Now let [yllaleEp. then
[yleH. We have [yllaleEy since [yl=[yllalla™leH. Then Ep<Ejq.
Thus E1=Ea. We denoted the set ({[ylla«d: [yleH) by Hiad.

We define the 1-skeleton %4 of Ky as follows:
vertices Hlal. («deX.
edges (Hiad.e). ecEX). [aleX. T(x)=t(@).

For an edge (Hiod.e). we set t(Hlal.e)=Hlxl. T(Hlal.e) =Hlxeo].
(HI«d. @ ~1=(Hlxel.e™ 1.

Xy Is a 1-complex. For since “1(Hlal. ) =Hlo¥],
(r (HIal, @) ~1=<(Hloel, e~ ) =Hlod), that is.

4 (Hial. @ =¢ (Hiad. @~ 1. Now ((HIal, &~ 1)~ 1=(Hlael.e" 1) "1
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=Hlxee~ 11, @) =(Hload. @) . that is, ((Hiad, @)~ ~1=(Hlal.e).
Also (Hial. ) ~1=(Hlael, e~ #(Hial. 8) since exe™!.

We take v to be the vertex H[1yl. Note that X4 is connected.
For if Hlal Is a vertex of Xiq. let a=eje2...epn. Then .
(HI1yl. 1) (Hleql. e2) (Hlejegl.e3) ... (Hlej.. .en_‘ﬂ.en) is a path in
SH from vy to Hial.

There is a locally bijective mapping of 1-compiexes

¢H(”1 Iy ~ %

which takes Hial to T(x® (HlaleV(%y)) and (Hlal.e) to e ((Hial.e)
an edge of %{). For first we show that ¢4¢1) Is a mapping of
1-complexes. We have ¢14¢1) (L(HIol. @) =y 1) (HlaD) =1(a) .
L(¢H“)(H[q].e))=c(e). Since t(e)=1(a) we have that
on¢ P (L(HIal, @ =t(oy( V) (Hlal.e)). Also since
T(oH ¢V (Hial. @) =1(e).
on ¢V (T(HIxl. ) =¢ 1) (HioeD =r(ae)=T(e) . Then we have
oH <V (r(HIal, @) =r(on 1) (Hial. ©).
Now o< (Hial. @~ =¢on¢ 1) (Hiael. e~ =e"1,
and (on¢1? (Hiad. @)~ 1=(e)"1=e~1. Then

on (D (Hiad. @~ =(en P (Hial. @)~ 1. Now we show that op'1) is
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locally bijective. For let Hla] be a vertex of *H. and let
eeStar(T(w)). Then (HIlad.e) eStar(HiaD) . that Is. ¢1‘1) is locally
surjective. Also oq¢1) is locally injective for, let Hial be a
vertex of XH and let (Hial, @) . (Hial. @) eStar(Hlal) . Suppose
oH( " (Hial, e =0 1) (Hicl. e2) . Then we have that ej=ez by the
definition. We have (HIlol.e]) =(Hlal.ep). that is, ey(1) is locally
injective. Thus ¢H{1) is locally bijective.
it g=f1in...1n is a path in ¥ and if Hlal lies over (p). then
the lift of g at Hlal is
(Hiod, 1) (Hiof]. f2) (Hiafq12].13) . . . (Hlofy. . . Ta=11.1n) .
Note that this lift is closed if and only If Hlal=Hlxgl. that is.
if and only If [ad{Blla~ eH.
Let
‘AH = { (A, HloD) : Aepn, laleX, T(a)=1(py) }.
For (A.Hlal) €Ay 16t p(a, Hiol) be the lift of py at Hial. This lift
Is closed. By the perivous paragraph the lift ends at Hlapxl. Then
this lift will be closed since Hiapal=HIal.
We let

kH = < Kq : pP(A.Hlal) ((A.HloD) ey >
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Then we have a mapping of 2-complexes
on : Ku = K

which is locally bijective since ¢4¢1? is locally bijective and
on~V(R(K))=R(K4y by the construction.

To show that ¢xmj(KH.vy)=H. We have by Theorem 1.1B.3 It
sufficles to show that if « Is closed path at v then the liit & of

o at vy Is closed if and only if laleH. Suppose a=eje2...en then
%=(HIlal. e7) (Hloejl.e2) ... (Hlxey...en-1l.ep). Since T(a) =Hlal. SO

'&‘ is closed if and only if [aleH.

IN b

As an example let K=< M ; ab3a~1b3 ».

Consider the homomorphism of m1(K.0) onto S3 defined by a-(12),
b-(123). Let H be the kernel of this homomorphisn. A transversal
for H in m1(£.0) is [1], [al. [bl. b2}, fabl, [ab2l.

Then kH has vertices

u1=HO1l. up=HIal, ug=HIbl. us=HIb2]. us=Hlabl, ug=Hlab?]. and
the edges are

aj=(H[{1l,a), ag(Hlal.a). aaz=(HIbl.a). aa=(HIb2], a) .
ag=(Hiabl.a). ag=(Hlab?l,a).

bi1=(HI1.b). bp=(Hlal.b). ba=(HIbl.b). b4=(HIb2].b),



bs=(Hlabl,b) . bg=(HlabZl.b).

Then KH has 1-skeleton

The lifts of defining path p=ab3a~1b3 are

a]b2b5b681‘1b1b3b4.
a2b1b3b432’]b2b5b5.
agb5b6b233'1b3b4b1,
a4b6b2b5a4’1b4b]b3,
35b3b4b1a5']b5b5b2.

a6b4b]b336']b5b2b5.

18
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1.1B. 5. Equivalence of complexes.

Two mappings ¢.¥: K - are said to be homotopic (written ¢=¢)
if (A Y(ax) for all paths « in K.

A mapping ¢: K ~L Is called an equivalence If there Is a mapping
0:.f - K such that ¢e=id . ed¢~id

L K

Two complexes are said to be equivalent if there is an
equivalence between them.
The Level Theorem. (10}, [11]

Let K=< ¥: pa(Aed) >. Consider a partition of A

An element of Ag will be said of level 2. Assume that the
following condition is satisfied: If A has level >0. then some
cyclic permutation of pp has the form e;\a;\"1. where e) is an edge.
Lex(or;\) =0, and Le,\(pp) =0 (u#A) with p of level k. o<ksf. We call
e, the edge associated with p). Let

"¥o = ¥- (ext! : A has level >0
and for 2>0 let

{g = *g—] u { e)\‘ﬂ ! Aehg ).
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We note that if A is of level £2>0. then a, Is a path In *!_]. For

oy Is a path In Xg—1 If none of its edges are in tey*1:p of level»).
so we must show that there is no edge of this set occurs in a). We
have by the definition that any edge of this set does not appear

in any other defining paths of level k<2 with k>o. Thus oy Is a path
in Xg-q.

Define ¢: X - Xo as follows. First define ¢ on Xo to be the
identity. Suppose ¢ has defined on ¥9-1 (£>0). Extend ¢ to ¥ by
setting ¢(e)) =d(axn) (AeAp). We note that
(h o(py Is freely equal to an empty path’lf g has level>o.

(i) for any path « in K. ¢(a)~&a.

To prove (). We have ¢(py) =¢(eua,[1)~‘1 (since ¢(ey) =dlay)).

To prove (ii). We prove by induction. Suppose « is a path in %o
then ¢(x) ~ « since ¢ is the identity. Now suppose the resuit hold
for all paths in ¥p-1 (2>0). Let « be a path in ¥p. For each edge
e) in % (A of level #) replace e) by aj. This gives a path
o in Xp-1. Since e;\a;\'] is a cyclic permutation of p, then 9;\~Ka;‘
which implies a~a’. Now by definition of ¢ we have ¢(o) =¢(ax’), and

by induction hypothesis ¢(a’)~Ka‘. We have ¢(u)~Ka.
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Let &,=<‘ X, : o(pp) (rehg) >. We have a mapping of 2-complexes

¢ K~ Ko. For if Aenp (£>0) then &(p)) 7(1 by (1) (that s,
©

contractible paths in K maps into contractible paths in ko).
Also the inclusion of Xg in X gives rise to a mapping of
2-complexes 6. Ko = K. since e(d(p)))=dl(p)) 4~//<1 where Aehg (by
(N, It Is clear that 9«1’~~—IdK and ¢e=ldk . For if « a path In K we

@

have 9¢(u)=¢(a)r7<cx (by (ii}). Also <x>€9=ld’< . Thus ¢ Is equivalence.
]

We mention some special cases of the above.

(1) If there are no defining paths of level o then K will be
equlvalent to a 1-complex. In particular. m (K.v) will be free

for any vertex v.

(2) Suppose
K =< ¥: gj CieD. ejoq” 1 (jeb) >
where
1 k=j
Le(eiaj'1)=g
K
0 k#|.
Let X, be the 1-complex obtained from ¥ by removing all the edges~

ej*1 (jed). For lel. let g’ be the path In ¥, obtained from g; by
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replacing each edge ej*! (jel) by the path ol (je). Let

Ko=¢ ¥¢o : B} Cieh >,
Then the inclusion of ¥ into X induces an equivalence between Ko
and .
level 1 ai'1 (jeh
level o B;i Cieb
¢: ¥ ~ X Is the identity on ¥o and maps ej to aj (Jed). Then
&(BP =g} Uleh .
(3) Let

Ko=¢< %o : Bj UeD >,
Let ] be an element of | and suppose that y8 is a cycllc permutation
of Bj. Adjoin to ¥o a new edge pair e.e” 1 with t(e)=u(y),
T(e)=T(y), giving a new 1-complex ¥, and let

K =< X: g Gel, i#). yo~ 1, o8 >.
We say th.at K is obtained from Ko by subdividing the defining path

Bj; dually. Ko Is obtained from K by coalation of defining paths.




The inclusion of o into X induces an equivalence between Kqg

and XK.
level 1 ‘s
level o B Uel, ). yeo !

. X - Xo Is the identity on o and maps e to s~1. Then
¢('ye“1)=y8.

(Note that this is more or less a special case of (2)).

23
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1.1C. 1 Star complexes of 2—complexes.

Let K be 2-complex. We associate with K a 1-complex kst, called
the star complex of K as follows:
vertices : EWK):
edges : R(K).

if ¥ Is an edge of KSt, then we define the inverse edge to be
the Iinverse path y“. Also we need to define initial and terminal
points of ¥ which usually would be denoted by t(y)., T1(y¥) but this
has another meaning (see 1.1A. 1), so we use Sty 'rSt('y). We
define 5t(y) to be the first edge of y and 75! to be the Inverse
of the last edge of y.

We have that kSt is a 1-complex provided no element of R(K) is
equal to its inverse. For let yeR(K) be an edge of kst and suppose
that y=aqes...en. We have St(y 1) =rSt(y)=en~1. Also (y~1) 1=y
Since no element of RK) is equal to its inverse then y"1¢y. So
kSt is a 1-complex.

NOTE THAT WHENEVER WE WRITE kSt IT IS ASSUMED THAT NO

ELEMENT OF R(K) IS EQUAL TO ITS INVERSE.
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4
Example 1.1C.1. Let K=< @l; (ab-1 2, d3, a~lbdc 'bd2 >

<

Kst;
~N/ /
c
Example 1.1C.2. Let K=< w : a~1p2ab~3 »
e N L . a

P P
kst \V
L"'

Example 1.1GC.3.

Let K= « : abca~ b~ 11 >

Q'\
kst:
A ’ -1 -\
b« ¢ A,

N

-
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Example 1.1C. 4.

Let K= < : abc2b2a~1 >

Kst:

Note that.the vertices e.e~! of star complex has the same
valence, that is, there is a bijection from Star(e) - Star(e™ 1.
This bijection is defined as follows. Let yeStar(e) so that y=ex
for some path «. Then e~ la~leStar(e™1). The mapping
Star(e) - Star(e~1) defined by ex~e~la~1 is surjective for. let
'yeStar(e"‘) then y=e‘1l3 for some path B then ep~leStar(e). Also
it is injective for, let exy.expeStar(e) for some paths «i.oQ.
Suppose e;]a1"=e"a2’]. We have a1~ l=an~!, that is. «j=ap then
exj=eap. Then it is injective. Thus it is bijective.

Note also that if two vertices e.f of kSt lie in the same
component then t(e)=u(f) . that is. there a vertex v of K such that

o.feStar(v). For since e.f in the same component then there is a
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path 7 In kSt such that Sttm=e., TSHm=f. Let m=yy¥2...yn. We
use induction on n. If n=0 there is nothing to prove. Suppose

n>o. We have that St(yy...yn-1) =6, 1St(¥q.. . vn-1)=en-1.

Sty )=ep-7. TSUyp) =f. Since yp Is closed path in R(K) then
yn=en-1...1"1, that Is, there is a vertex v of K with

t(en-1)=u(f. By induction hypothesis we have t(e)=1(epn-7). Then

t(e)=u(f) as required.

For a vertex v of K we denote the full subcomplex of kst on

Star(v) by KSt(v). Then KSt(v) is a union of components of KSt.

1. 1C. 2 Star graphs.

Associated with a star complex KS! we have the star graph
r(kSYH. This is obtained from k3! by identifying all edges with
the same end points. that is. if yy.y2 are edges of KSt then
b
we identify y7.yo if either Sty =8ty Sty =rSt(y2) o
l.vt (,“’).‘ ZV\(J‘,)
and 75t(y1) =tSt(yp). Thus r(k8H is undirected. r(kSH is a graph

in the sense of graph theory.

In Example 1.1C. 1, we obtain

A\ A
L L a

rsh:
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In Example 1.1C.2, we obtain

| b
a a
r(ksh:
\ /
in Example 1.1C. 3. we obtain 4
c C
\
rosh: \ "
i -\ o de - A
N \ k‘ *
in Example 1.1C. 4, we obtain
-\
r(ksh: g O
a e !

in passing from 8t to r( kS some information Is lost. Inform-
ation which is not lost is which edges of K can be predecesors of

a given edge in a defining path of k. It we have an edge °©

in I‘(KSt) this tells us that in some defining paths of K, ¢ Is

preceded by 1.
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1.1C. 3. Extended star complexes.

For some purposes it is necessary to consider the extended star
complex.

Let K=« £: pA(Aeh) > be a 2-complex. We define the extended
star complexes ST as follows:
vertices : EK):
edges . (A.e.y) ( Aeh, e=tl1, vy is a cyclic permutation of pAS ).
We define (ST(A.e.y) to be a first edge of y and 15T(A. €.y to be
the inverse of the last edge of y. and (A.e.y) " 1=(A.-e.y"hH. We
have that k8T is a 1-complex. For let (A.€.¥) (reh, e=t1, y is
a cyclic permutation of pp\€) be an edge of KST. Suppose
y=e7e2...en. We have ST(x.-e.y =ep~1. 78T(r.e.y)=en~1. Then
ST(ar.-e.y 1H=18T(r, €.y . Since by the definition
(he.y~1=(n.—e.~y) then ((A.e, ¥~ H1=(r,—e.-» " 1=(r. e, . Then
((h, e, "D~ 1=(r.e.9). Also we have
(A €.~ 1=(Ar,~e.—-y) #(A, €. %) since they have distinct second

coodinates. Then /(ST is a 1-complex.

Example 1.1C. 5. Let ®=< a.b.c : abcc™Tb"'a"1 >. We have
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ST .
. - 3
A - L < L@«

Note that St is not defined.

Example 1.1C.6. Let £=< a.b : ab. ab >. We have

Note that in this case 85! looks as follows.

6)51 :

Aoy &, L

~

If KS" is defined then there is a mapping of 1-compiexes
n: KST ..}et
which is defined to be the identity on vertices, and which takes
an edge (r.e.7) ofKST to the edge ¥ of k5. This mapping Is
obviously surjective. Thus it is an isomorphism if and only if it
is injective on edges. We say that K is slender if [(St is defined

and n is an isomorphism.
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Theorem 1.1C. 1. The following are equivalent.

(1) K is slender.

(2) Kk satisties the two conditions (i), (ii) below:

() ir A.uelA with A#u, then py Is not a cyclic permutation of PAE.

(i) no p) has a cyclic permutation of the form oo 1.
Proof. (1) implies (2). Suppose K is slender. To show that (i)
holds let A.u be distinct elements of A and let ¥ be a cyclic
permutation of pp€ (e=+1). We want to show that y#py. Now
(u.1.pp) and (A.€.y) are edges of KST and are distinct since they
have distinct first coodinates. Thus their images py.y under n
must be distinct. (ii) holds. for otherwise kS! would not be
defined.

(2) implies (1). Suppose (i), (ii) hold. Then no element of
R(K) is equal to its inverse (by (ii)), so kSt is defined. Let
(A €,9). (A.€'.y) be distinct edges of KST, we must show that
their imaggs under n are distinct. Now ¥ is a cyclic permutation
of pp€. and ¥y is a cyclic permutation of P e‘. Thus if A#A’then
y#y' by (). Suppose A=A". If e=¢’ then y#y’ since
(A e.)#(N . €. y). Suppose €'=-c. Now if y=y' then we would have

that pp would be a cyclic permutation of pa~ V. The only way this
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can happen is if some cyclic permutation of p, has the form a1

which is excluded by (iD).

1.1C. 4 Induced mappings_of star complexes.

Let ¢: K - L be a strong mapping of 2-complexes. Then we have

an induced (rigid) mapping of 1-compiexes
¢st: KSt - xst

defined as follows:
on vertices of kSt #5t(e) Is the first edge of ¢(e)
on edges of kSt ¢St(y) =e(y).

Now ¢St: kSt - fSt js a mapping of 1-complexes. For, let ¥
be an edge of kS!, suppose that y=ejea...epn. (e =fj1... fir(p
Gi=1.....n). We have ¢5t(.St(y))=05t(e) =first edge of ¢(ey)=f1y.
(St(eSt(y) ) =1Stpley) ... dlep)) =17, that is,
St(eSt(y)) =¢S5ty . Also ¢St Sty I=0Sten D =thr(ny .
TSt(eSt(y)) =rSt(eley) ... dlen)) =fur(n) ~!. that is,
St(¢St(y) ) =¢St(TSt(y) ). Now we have
oStiy~ 1y =y~ 1 =¢(y) ~1=¢5t(» ~1. Then ¢St is a mapping of

1-complexes.
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Example 1.1C.7.

Let ¢: k=< a.b.c : ab2c > ~f=¢ a.b.c : a?b?c? >
be a strong mapping of 2-complexes given by a~a2, b-b, c~c2.
Then we have a induced mapping of 1-complexes from )(St to
5t which takes the vertices of ¢St into vertices of L5t as
follows a~a, b-b, c~c. a~l-a~!, b~1-b~1, ¢c~l-c~). for edges

takes abZc-a2b2c2., b2ca-b2c2a2. bcab-bc2alb, cab2-c2a2b2, where

a Sy C
L N ol t
Kst‘ LS . \
L
v
-\
L

Example 1.1C.8. Let ¢: K=<a,b,c.d:abcd> - L=<a,b,c,d:a’b2c2d?
be a strong mapping of 2-complexes given by a—~ab. b-bc. c-cd.
"d-da. Then we have induced mapping of 1-complexes from Kt - st
which takes the vertices of KSt into vertices of £S5t as follow

a-a., b=b., c-c. d-d. a~1-b~1, b~1-c~1, c71-d"1, d-1-a~1; for the
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edges abcd-a2b2c2d2, beda-b2c2d2a2, cdab-c2d2a?b?,

dabc~d2a2b2c2 where

A >
L P L’(
KSt: C—y

~
in (1.18.3) we defined a mapping ¢: K - K to be locally
bijective if ¢¢1) is locally bijective. and o~ 1R(K) =RK) .
The next Theorem show that we could equally well have defined ¢

to be locally bijective if both (1) and ¢St g1 locally

bijective.

Theorem 1.1C. 2. Llet ¢: R’ - K be a strong mapping, and suppose
that <1 is locally bijective. Then the following are equivalent.

(1) ¢St is locally bijective;

2) o 1R =R

(3) for each vertex v of E, ¢St maps "é"(v) isomorphically

onto K3t(o(V)).

Proof.
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(1) implies (2). Let yeR(K) and suppose ¢(y =y. Let St(y)=e.
and let @ be the unique edge of Star(t(;)) .lying over e. By the
~ ~ ~
local surjectivity of ¢St there is an edge 5eR(K) with (St(&)=e
r~ -~ ~ ~ ~ ~
and ¢5t(&) =y. Thus (P =u(s) and ¢(y)=¢(8)=y. Hence y=6 by
Y ~ ~
uniqueness of lifts, so yeR(K). We have ¢~ 'R(K)SR(K). Since ¢ Is
strong mapping then ¢"1R(/§)2R(E). So we have ¢~ 1R(K) =R(/'<v).
(2) implies (3). Since ¢{1) is locally bijective. ¢3! maps the
vertex set Star(V) of M[@t(V) bijectively onto the vertex set
~ ~ ~ ~ -~
Star(o(v)) of KStH@(V)). For edges. let ¥71.72 be edges of kSt(v)
~ ~ ~ ~ ~ ~ ~
such that ¢5t(77)=¢5ty2). Then (¥ =u(y2)=v and &(y])=6(y2) so
o st
¥1=v2 by uniqueness of lifts. Thus ¢! is injective on edges of
Ssty st. kSUT) - kSte(y
KSUv). To see that 5! KSU(v) - kSUe(V)) Is surjective on
edges, let y be an edge of KSt(q:(V/)). By (2) the (unique) lift
% of v at v belongs to R(K) and Is thus an edge of KSt( v ).
-t
Moreover ¢St(y) =y.
(3) implies (1). This is a consequence of the following.

Let A and ® be 1-complexes. each expressed as disjoint union

of subcomplexes: A=ud . B=vu @
lel jed

Let ©: lA -‘65 be a rigid mapping such that for each iel @ maps
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o‘i Isomorphically onto some (h(;). Then e is locally bljective.

This complaete the proof of Theorem 1.1C. 2.

Let ¢: K ~L. W L -M be two strong mappings. We have that
v K -M s strong mapping. Consider the induced mappings of
1-complexes. ¢St St~ 25t st st . st (ggrst: St~ L8t
it can be shown that (y¢) St=ySteSt. Thus St is a covariant functor
from the category of 2-complexes where the morphisms are strong

mappings to the category of 1-complexes.

Let ¢: K - Z be a strong mapping of 2-complexes. Then we have
an induced extended (rigid) mapping of 1-complexes
¢ST: kST . gst
defined as follows.
On vertices of \ST: ¢5T(e) is the first edge of ¢(e).

On edges of KST: ¢ST(r. €.y =0(7.

We will say that a strong mapping ¢ Is reduced if ST is

locally injective.
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1,2. Suwév of thesis.

Putting restrictions on the star complex of a 2-complex will
effect the structure of the 2-complex and hence will effect the
fundamental group of the 2-complex.

We will consider three structural restrictions.

(1) Assigning numbers ("weights®) to the edges. where these
numbers satisfy certain conditions.
(2) Imposing restrictions on lengths of paths.

(3) Imposing restrictions on valence of vertices.

(1) If we consider the first restriction we are led to the
concept of a hyperbolic complex [10] which we now define.

A weight function m on a 1-complex is a mapping from the edge
set Into R such that m(x " 1)=m(x) for all edges x. If xx2...Xp Is
a path in the 1-complex (where the x; are edges) then the weight

[
of the path is defined to be L m(xj
i=1

The situation we will be interseted in is when we have a
2-complex and a weight function m on kSt. We will use the

notation (K, m) to denote this situation.
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Let K be 2-complex and let m be a weight function on kst.
Associated with m we have another weight function m* on kst
defined as follows. Let yeR(K) and write y=e1ég. .. 0n where the eoj
are edges of K. Then

m*(y)=m(ej...epn)+m(esn...e1)+...+m(ep...68pn-1)

We say that (K. m) is hyperbolic [10] if
(HD m*(y) < L(y)-2 for all yeR(K .

(HI) The weight of any non—-empty cyclically reduced closed path
in k5t is at least 2.

(HIID There exists a non—-negative number N such that every
reduced path in k8t has weight greater than or equal to -N.

We will say that a 2-complex K Is hyperbolic if there is an m
such that (K. m) is hyperbolic.

in [10] it was mentioned that the surface presentations

n
< X1.¥Y].-X2.¥2..... Xn-¥Yn :i="1 xj.yjl > (n32)

n
< Xy.%2,....%n ¢ W xi2 > (n¥3)

and the presentations of triangle groups

<a,b,c: aP, b4, c'. abc > where 1/p+1/q+1/r<1

are hyperbolic.
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in 3.3 we consider arbitary F-presentations {6.pp. 126-133l.

An orientable F-presentation is a presentation

6=< a1.b1.32.b2,...,ag bg.e1..... er
a]b]a]_]b']—-‘. - agbgag—1bg—]e]. .. 8r, e]n‘ ¢ . n .ern"' >
where g.r*o and ny.....np»2,

A non-orientable F-presentation is a presentation
M=<ay..... ag.ey.....ey : ajfap?...ag%ey...er. 1M, ..., o>
where g.r*0 and nqy.....np2,
There is a standard parameter associated with these
presentations

n
ul@® =2g-2+ £ (1-1/np
i=1

p=g-2+ £ (1-1/np
i=1

In Theorem 3.3.1 we show that a necessary and sufficient
condition for an F-presentation & to be hyperbolic is that
u(@)>0.
(2) Now if we consider the second restriction we are led to the
o~
definition of small cancellation condition T(q) (T(q)). A

2-complex k where each defining path is cyclically reduced

satisfies the T(g) condition if and only it there are no
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cyclically reduced closed path in ¢St of length 2, 3<f<q. A
2-complex £ where each defining path is cyclically reduced
satisfies Af(q) condition if there are no non-empty cyclically
reduced closed path in (8! of length less than q.

WE EMPHASISE THAT WE ONLY DEFINE THE CONDITIONS T(q).
/'i/'(q) FOR COMPLEXES IN WHICH EACH DEFINING PATH IS
CYGLICALLY REDUCGED.

Now if K satisfies T(q) then, it will be also satisfy "l{(q)
provided there are not distinct edges v.8 In Kt with

Sty =(St(s) ., TSl(y) =7Sl(5)
~

<, >
b

Note that if q35 then T(q) and ”F(q) are the same property. For
suppose K satisfied T(q) but not "F(q) (g»*5). Then In kSt there
would be a cyclically reduced closed path of length 2. The square
of this would then be a cyclically reduced closed path of length
4, co.ntradicting T(Q).

The condition T(q) ("F(q)) is only of use when considered in

conjunction with small condition C(p) where 1/p+1/q€¢1/2. To

define C(p) condition we first give the following definition.
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A non-empty path 7 in K Is called a piece If there are distinct
elements ma. mBeR(K) . K satisfies the small cancellation condition
C(p) (p a positive integer) if no element of R(K) is the product
of less than p pieces.

For adr(q) —complex the only pieces are of length 1, that is,
there are no pieces of length 2. For if we suppose that we have a
plece of length 2 say f~le, that Is f~lea,t"lepeR(K) where a.p are
distinct paths in K. We have edges eaf™!, egf~! In kS! with
(Staaf~T)=1St(epr-T1=e, 7St(eaf~1)=rSt(epr-1)=t. that is. we have
a reduced closed path of length 2 which is a contradiction to "I:I(q).

We note from above that T(6) —complexes have no pieces of length
2. that is. the only pieces are of length 1.

FOR THE T(6)-COMPLEXES WE ALWAYS ASSUME THAT DEFINING
PATHS ARE OF LENGTH 3.

Now we mention some results concerning T(q)-complexes in the
thesis.

Collins in [1]1 investigated the free subgroups of groups with
presentations satisfying C(4).T(4) conditions. He has shown that

such a group contains a free subgroup of rank 2 except in some
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cases which he lists explicitly. The exceptions are all two
generator groups.

In [4] the T(4) condition was investigated graphically. In
chapter 2 we give a simple proof. in the spirit of (4], that if
G is the fundamental group of a C(4),T(4)-presentation and if G
can not be generated by fewer than three elements then G contains
a free subgroup of rank 2. In fact our proof actually shows that
the group defined by a slender T(4)-presentation (V=<x1 ..... Xn P
has a free subgroup of rank 2 provided there is a subset {a.b.c)
of (xy..... Xn) with the property that any non-empty freely reduced
contractible word in a.b,c has a subword of length 2 contained
in an element of r*.

Recently M. Edjvet, and J. Howie have investigated free
subgroups of T(6)-groups.

Much wo'rk has been done for C(4)-T(4)., and C(6)-complexes.
However T(6)-complexes have not so far been studiéd very much.
For that reason our main work in the thesis is to study

T(6) —complexes.

Now we give some results concerning T(6)-complexes.
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In chapter 3 we give some examples of T(6)-complexes. In 3.1
we consider certain complexes whose star complexes are
"trisected”. Roughly speaking a trisected 1-com.plex is obtained by
taking a 1-complex and trisecting each edge (making each edge of

length 3).

More formally we define a trisected 1-complex as follow:
(1) The set of vertices is partitioned into two non-empty disjoint
sets called type(1) and type(2), each of type(2) has valence 2.
(2) Call an edge a (1,2)-edge if one of its end point is of
type(1) aﬁd the other of type(2), and call an edge a (2, 2)-edge if
its end points are of type(2). We require that if v is of type(1)
then all edges in Star(v) are (1,2)-edges and if v is of type(2)
then one edge in Star(v) is a (1,2)-edge and the other is a
(2.2)-edgse.
(3) There is no reduced closed path of length 3.

It follows from (2) that every cyclically reduced closed path
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has length a multiple of 3, and so by (3)., every non-empty
cyclically reduced closed path has length at least 6.

We say that a 2-complex K is an X-complex if
(h KSt is a trisected 1-complex.
(i) e.e”! are the same type (eeE(K)),
(iii) each defining path of K has length 3.

It follows from the definition of X-complex that X-complexes
are T(6)-complexes. We will describe the structure of X-complexes
(Theorem 3.1.2). The class of X-complexes is rather interesting
and we will obtain other results concerning these complexes

(Theorem 3.1.1, Theorem 3.1.3).

In 3.2 we give further examples of T(6)-presentations which we
call positive T(6)-presentations. A presentation < x : r > is
sald to be positive if each defining path per is a positive
path in x (that Is, no element of x~1 occurs In p). In Theorem
3.2.1 we give a way of combining positive
T(6) -presentations to get new ones. that is. if we have at |east
three positive T(6)-presentations @ =«x7y..... Xn. .

R=<y1.....¥n:S..... S=<21.....zn: b then
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®=x1.....Xn Y1, .0 Yne oo 020000 Zn:r.8.....L2z. .. yx(1<i¢n)>

is a positive T(6) -presentation.

In [10] a sequence of decision problems (the dependence

problems) were investigated. which we define.

Lot (wg.wy..... wk) be a sequence of closed paths In a 2-complex
K. We say that wg Is dependent on (wy.....wk) In K written
(wy,....,0K kwo (or simply (wy.....wg) Hwg) If there is a subset
(y.,....0g) of (1.2,....K and paths njy.....ng §uch that

wo(ma M. . . (nguj ng™ D)

is contractible inK.

If n Is a positive integer or w, then the dependence problem
DP(n) asks for an algorithm to decide for any sequence
(wo.wj. ....wg) (o€k<n) whether or not (w},...,wk) "I:"o- The
problems DP(1), DP(2) are usually called the word problem and
conjugancy problem for K respectively.

It was shown in [10] that DP(w) is solvable for hyperbolic
complexes ([10.Theorem 3D .

if ¢ satisfies the small cancellation condition T(7). then

is hyperbolic ([10, Theorem 4, Corollary). On the other hand there
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are T(6)-complexes which are not hyperbolic (for example
@.xy.....xp:axi2,....axp2. <a.b.c:a3,b3,c3, abe (see 4.1)).
Then the natural question to ask is whether or not DP(w) is
solvable for T(6) ~complexes. In chapter 4 we try to solve fihe
above question.

There is an intimate connection between the dpendence problem
DP(n) and diagrams on sphere a S with n distinguished regions
(Theorem 4.1.1). In 4.3 we examine the geometry of spheres. We
find in 4.3 a formula (*) concering palrs (S,8), where S is a
finitely tesselated sphere and © Is a subset of the set of
regions of S. One of the terms in this formula is 2-]e|. Since
this term Is required to be non-negative gives [©]<¢2 which will
allow us to give solutions to DP(1). DP(2) for T(6)-jcomplexes.
Solutions of these problems are already known '[6,§§V.6.V.7l. but
our treatment is new and simpler. The fact that 2-16| becomes
negative when |©]>2 means that we are not able to extend our

argument to solve DP(m)., m33.

(3) Now if we consider the third restriction we are led to

property-ST,‘ and property-st which we define. Consider a
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presgntatlon 6’=< X . pan (Aed) >. We say that 0’ has property—ST(m)
if each vertex in@®ST has valence m. We say that e has‘
property-st(m) if each vertex in ¢ st has valence m. We say that
(® has degree m, denoted by deg(@)=m If each xexux~ appears
exactly m times in the totality of paths pj. p)\"] (ren) . We say
that @ is rootless if no defining path is a propervpower. We note
that if @ is rootless with degree m then@® has property-ST(m). We
note also that property-ST(m). property-st(m) coincide if and only
if G’ST is isomorphic to §St, that is, if and only it @ is slender.
Let§=< x . pa(Aed) > be a presentation of degree 2. As is well-
known the structure of the group G defined by ¢® is rather
special. (see 5.2)
The natural question to ask is whether having a presentation
of degree m, property-ST(m) or property—-st(m) (m>2) puts any
restriction on the group defined by@?. The answer is no by our
result in Theorem 5.3.1. After we proved the resuilt we found that
Marcus (7] héd also obtained a similar result, though his

treatment is more complicated than ours.
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CHAPTER 2

FREE SUBGROUPS OF SMALL CANCELLATION GROUPS

2.1 Introduction.

Collins [1] investigated the free subgroups of groups. with '
presentations satisfying C(4).T(4) conditions (see also
Johnson [56]). He has shown that such a group contains a free
subgroups of rank 2 except in some cases which he lists explicity
(see 2.4 below). The exceptions are all two generators groups.

in [4] the T(4) condition was investigated graphically. Here we
give a simple proof, in the spirit of (4], that is if G is the
fundamental group of a C(4),T(4)-presentation and if G can not
be generated by fewer than three elements then G contains a free
subgroup of rank 2. In fact we prove a slightly stronger resuit
which will be stated in Theorem 2.1.1 .

Let' @¢. 5 be two presentations with the same 1-skeiton X. An
equivalence ¢: P- 9 will be called a permutational equivalence
if it maps R({) to R&) and if it permutes the edge set of X.

We have the following.
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Theorem 2.1.1. Let <x1,x2....,Xp; T > (n»3) be a slender C(4),
T(4) -presentation not permutational equivalent to a presentation

(*) . CX1,X2,.. ., X X101 ,X262, ... ,Xp-2Cn-2, 8>
where 8 € r and Lx;(W)=o (Wefaj.ao,....0n-2}Us, I=1,2..... n-2).
Then the group defined by the presentation has a free subgroup

of rank 2.

Remark: Our proof actually shows that the group defined by a
slender T(4)-presentation P=<xy.x2..... Xn.r has a free subgroup
of rank 2 provided there is a subset {a.b.c} of (x3.x2.....xp)
with the property that any non-empty freely reduced contractible
word in a.b,.c has a subword of length 2 contained in an element
of r". It will be seen tsee 2.2) that a presentation satisfying

the hypotheses of Theorem 2.1.1. has such a subset.

2.2 Preliminaries.

Let P=<x7.x2..... xpn: > be a slender presentation satisfying
the assumption of Theorem 2.1.1 . We want to show that there is
a 3-element subset {a.b.c) of xy1.x2..... xp} with the property:
Any non-empty freely reduced contractible word on a,b,c has

189
a subword of length 2 contained in an element of r*.
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Lemma 2.2.1. A 3-element subset {(a,b,c} of {xy1,x2,...,xp} satisfies

(1) except possibly If there is an element pger where for some

tefa, b,c}, Lg(pg) =1, Lg(p)=0 for po#p.

Proof. Suppose there is a non-empty freely reduced word W on
a.b.c which is contractible but which does not have a subword
of length 2 contained in an element of r". Let M be a reduced
Van Kampen diagram with boundary label W. By standard small
cancellation theory ([6. ChapterVl M has a boundary region

A (labelled by pg say) such that A has at most two interior edges.
8A N aM is a consective part of M, the label u on 8A n aM is a
subword of W. By assumption u has length 1. Since the label on
the interior edges of A are pieces. the C(4)-—conditlon implies
that u is not a piece. Then u cannot occur in any defining path
except py. Also It occurs once in pg because it cannot be part

of a label of an Interior edge of A.

Now suppose (x7.x2.x3) does not satisfy (). Then by Lemma
2.1.1. we can assume (relabelling if necessary) that for some
piler. Lx(py)=1 and Lx(p)=0 for p#p’. Some cyclic permutation of

i '

mﬂ will then have the form xjay where Lx'(a1)=o. Now consider
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{x2.x3.x4) and so on. if we do not eventually find a subset
satisfying (1) then we wiil have that <«j.x2.....Xp:P Is
permutational equivalent to a presentation of the form (*)

which contradicts the assumption.

2.3 Proof of Theorem 2.1.1.

Let {(a.b.c} be a subset of {x7.x2.....xp} satistying (1) and
.consider the full subgraph r(a.,b.c) of the star graph of the
presentation <xj7.xs.....Xn:P on the vertices a.a~1,b.b~1,c.c”1.
Let 03 be the subgroup of the symmetric group on
{a.b.c.a"1,b"1.c" 1) generated by the elements (xy) (x Ty~ 1. (x~1)
(x.yela.b.c)). Then it is shown in [4] that, up to permuting the
vertices by an element of n3. r'(a.b.c) is a subgraph of one of

the following.

a a1 a b a
b b1 a=} b~-1 ¢ c
c ¢l ¢ c ! be

Fig(D Fig(2) ' Fig(3)
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a"‘]

Fig(4) Fig(5) Fig(6) Fig(7)

it therefore sufficies to assume that r(a,b,c) Is a subgraph
of one of the above.

Note that a word xy of length 2, (x.ye(a,a‘7.b.b'1,c.c'1l) is
a subset of an element of r" if and only if (x~1.y} Is an edge
of r(a.b.c).

Suppose I'(a.b.c) is a subgraph of the first graph (Fig(1)).
Then the words ¢~ 'b.b~la.c"la.ba"1.ca~1.cb~1 do not occur as
subwords of elements of r*. It follows that (a~1bl.[a"c] freely
generate a subgroup of the group G defined by the presentation,
for no non-empty freely reduced word in a~1b.a"lc has (after
freely reducing in terms of a.b.c) a subword of length 2 contained
in an element of r. For the remaining cases similar argument
- apply. For each case we list two words U.V in a.b.c and we leave

it to the reader to verify that if W(U.V) is a non-empty freely
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reduced word in U.V then after freely reducing W(U,V) In terms of

a.b.c. we obtain a non-empty word with no subword of length 2

contained in an slement of re.

Fig( ) | u Vv
2 cbc™] a
3 bab~1 a
4 cbc™! b
5 ab~lcba™! cbe™1
6 cbe™1 aba™!
7 aba~! cbc™!

2.4 2-generator groups.

A presentation as in (*) is obviously equivalent to
< Xpn-1:Xn & 8 ?

( by taking xj~~ j=1.2,...,n-2 see p.20 ).

For convenience. we write a.b for xp—1.xn respectively. Let G
be the group defined by the presentation.

If one of a.b (say a) is not a piece then

s*=((abP) ™, pM"

and G is a free product Zm*Zpn which has no free subgroup if

m=n=2 or one of m.n equal to 1.
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Now suppose that a and b are both pieces. Then Collins [1]
" has shown that G has a free subgroup of rank 2 unless <a.b:s>
is permutational equivalent to one of the following.

() <a.b;a” b~ lab>

() <a,b:a"'bab>

(iiD  <a.b:;a?b?

(iv) <a.b:a%, b4 (ab)®

(v} <a.b:(ab)2,(ab~hH 2

The exceptions are as follows.

(i) This is a free abelan group on two generators.

(D . Ciil) These are presentations of the same group. Working

with the second presentation (iii). we see that sgp([a2l) is
central and the corresponding factor group is the infinite

dihedral group C2*Co.

(iv) The group is a Euclidean triangle group (1/74+1/4+1/2=1) and
so has an abelian normal subgroup of finite index.
(v) As a consequence of the two given relations
{a-Vi=labal=lb~'ab~ 1 so that [b2ab2l=lal. and (b~ Nl=la~Tba™1]
so that [a2ba2l=[bl. It follows that sgp{laZl.[b2]) is an abelian
normal subgroup with the Klein—four group as corresponding

factor group.
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CHAPTER 3

EXAMPLES OF T(8)-COMPLEXES AND HYPERBOLIC COMPLEXES.

3.1 X-complexes and Y—complexes.

In this section we consider certain complexes whose star
complexes are “trisected”. Roughly speaking. a trisected
1-complex is obtained by taking a 1-complex and trisecting

each edge (making each edge of length 3). For example

Note that if the original 1-complex has no closed path of
tength 1. then the trisected 1-complex will have no reduced
closed path of length less than 6.

More formally we define a trisected 1—-complex as follow:
(1) The set of vertices is partitioned into two non-empty disjoint
sets called type(1) and type(2). each of type(2) has valence 2.
(2) Call an edge a (1.2)-edge if one of its end point is of

type(1) and the other of type(2). and call an edge a (2,2)-edge
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if its end points are of type(2). We require that if v is of
type(1) then all edges in Star(v) are (1,2)-edges and if v is
of type(2) then one edge in Star(v) is a (1,2)-edge and the
other is a (2.2)~edge.

(3) There is no reduced closed path of length 3.

It follows from (2) that every reduced closed path has length
a multiple of 3, and so by (3). every non-empty reduced closed

path has length at least 6.

Class—X

A 2-complex K is in the class X. that is, K Is an X-complex. if
() k5t is a trisected 1-complex.
(i) e.e”! are the same type (eeE(k)).
(iih each defining path of K has length 3.

A group G is sald to be an X-group |f G= m)(K). where Kis a
connected X-complex.

It follows from the definition of X-complex that X-complexes
are T(8)~-complexes. We will describe the structure of X-complexes

in Theorem 3.1.2 below. First, however. we prove
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Theorem 3.1.1. If ¢: T( - K Is a locally bljective mapping of
2-complexes and if K is an X-complex then so is E

From this it follows that the class of X-groups is closed
under taking subgroups ( see 1.18.4 ).

in order to give a proof of Theorem 3.1.1. we give the
following:
Ltemma 3.1.1. Let ¥: i - £ be a locally bijective mapping of
1—éomplexes. If ¥ is a trisacted 1-complex then so is ;’Z
Proof. (1) We define a vertex Vegto be of type(1) or type(2) if
w&) is a vertex In X of type(1) or type(2). To show that a
vertex "\"e’i of typae(2) has valence 2. we have by the definition
that ¢(V) e X of type(2) has valence 2. Since v Is locally
bijective there is a bijection from the set of edges in Star(V)
to the set of edges in Star(w(@’)). Thus we have that v has
valence 2.
(2) Let U be a vertex of type (1) in 2 We must show that all
edges In Star(ﬁ) are (1,2)-edges. Let geStar(ﬁ) then
sv("e’) eStar(w(Nu)). Since w(ﬁ) Is of type(1). 1111(3) Is of type(2).

But —rw(i;)=w(1-e) ., SO re Is of type(2) by definition. Similarly
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if w of type(é) then one edge in Star(x) is a (1.2)-edge and the
other is a (2.2)-edge.

(3) Let ’E be reduced closed path in ’i Since ¥ Is locally

injective then W(E) is a reduced closed path in X, and since

in ¥ there Is not such a path of length 3. L(P) #3.

Proof of Theorem 3.1.1.

Let ¢! ﬁ - K be locally bijective. Since the defining paths
of fzare lifts of defining paths in K. then each defining path of
ﬁ has length 3. We want to show that "i(St is a trisected. For that
we use the fact that ¢St ist . kst is a locally bijective mapping
of 1-complexes ( see 1.1C.3 ) and then by Lemma 3.1.1 above kSt
is a trisected. Now we show that for each dek that @.9~1 have the
same typa. By definition of oSt: kst - kSt we have that
¢St(8) =o(8) =a. oSt(@=h=e(a~N=e"1, and since e.e~) have the

same type in kSt, then e.’e~1 have the same type in kSt. Thus we

~
have that K is an X-complex.

Now we state our main Theorem in this section, which gives a

charcterization of X-complexes.
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Theorem 3.1.2. Let K=< X; r > be a 2-complex where each defining
path has length 3. Then the following are equivalent

(1) Kis an X-complex.

(/1) k has the properties:

(i) The edge set of K is partitioned into two non—-empty disjoint
subsets A,B, each closed under inversion.

(ii) Replacing the defining paths by cyclic permutations if
necessary, we have that each defining path has the form aba’
(a,a’eA, beB).

(iii) Each aeA occurs exactly twice In the totality of paths
rur-1, once on the left, and once on the right (that is one
path in the set rur~! has the form aax and another (possibly
the same) has the form pa, and no other element of rur~1
involves a).

(iv) It ajbya, aba’, a'bpagerur~! then byzbp~1.

Example 3.2.1. Let §°be an X-presentation which has the star

complex

§ =<«c.d.x.y.z.t, u,v,w:xcy.yc"‘z'1 .z- et tc™ Tu~ Y, u= 1dv, vd~ 1x, wew>
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where A=(x.y.z.t.u.v.w), B={c.d). Note that the left occurence

and right occurence of w are both in the same defining path.

Proof of Theorem 3.1.2. (I) implies (1)

(i) Since K is an X-complex. then kSt is a trisected 1-complex
and by definition of trisected 1-complex kSt is partitioned

into two disjoint subsets called type(1) and type(2). We call

such sets B,A and by (i) of definition of X-complex A.B are
closed under inversion.

(i) To show that each defining path has the form aba’ (a.a’'eA.
beB). we first show that each defining path has at most one beB.
Let p=aba’ and assume a,beB. Then in (St there is an edge ba’a.
This edge belongs to Star(b). but is not a (1,2)-edge. since a.b
are of type(1)., a contradiction. Then each defining path has at
most one beB. Secondly we prove that each defining path has at

least beB. Lot a,a’eA we show that beB. In (St there are edges

-\ \
LY a aba

a1

5
7 4
o

We have that x is of type(1). since a,a’"! are of type(2). and

then by the first part we have that y is of type(2). Also we have

in kS the edges axy Laa
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Since y‘],a"1 are of type(2) by (ii) of the definition of
X-complex, then b is of type(1). which implies beB.’

(i To show that each aeA occurs exactly twice in the totality

of paths rur~1 once on the right and once on the left. Let p=aba’
S0 p"1=a"1b‘]a‘1. In KSt a has valence 2 and so we have

uniquely determined edges

- aa b, PL ‘\\“'\\ ’—
b] 1 < 4 a 1

Since a.a'"! are of type(2) then b]'] is of type(1) and hence
ay is of type(2). Thus we have ajbja, aba’.

(Iv) We suppose that ajbja. aba’, a’'bpap erur”! with by=bs~ 1.
Then in kSt we have edges

aa, b( al e

b]"1 )

<
~ 4 Y

which is a reduced closed path of length 3, a contradiction to

the fact that k8! is a trisected 1-complex. Then we have b1¢b2'1.

(i) implies (D

(i) First we show that kSt is a trisected 1-complex.
(1) We define an element beB to be of type(1) and an element acA
to be of type(2). Then each vertex of type(2) has valence 2

by H(iii) .
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(2) Let berSt be of type(1), and consider an edge b.,__-—g————
in Star(b). fhen y=bajas where aj.apeA by l(i), so 8y eA
that is 5ty Is of type(2). Then all edges In Star(b) are
(1.2)-edges. Now let ae |5t be of type(2). By il(liD, we have the
elements ab1a1.a2b2aerur‘1. Thus the two edges of kSt in Star(a)

are abjay.aagbo

b al
[\Qx . « .‘\l -1
Y

<\ 7

b2"1,wm
Then one of these is a (1,2)-edge and the other is a (2.2)-edge.
(3) To show there is no reduced closed path in.Et of length 3.
Suppose there was such a path. Then it would have to pass through

one vertex of type(1) and two vertices of type(2).

Then we gét a1b‘]a. abga"‘1.a"1ba2"] which a contradiction to

liGiv). Then there is no reduced closed