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INTRODUCTION

The importance of thin-walled structures in weight-critical design is evident from the
wide application that these have found in the naval, aeronautical and more recently the

offshore industry.

In the marine field, flat stiffened panels have formed the basic component of ship
construction since the early years of this century and as such they have been subjected
to the types of loading that a ship generally undergoes during its lifetime. The most
critical condition which a vessel normally experiences is compression of the strength
deck when in a sagging condition. Compressive loading in stiffened plates generally
leads to some form of buckling collapse which may involve the shell plating, the
stiffening elements, or both and consequently a thorough understanding of the various
modes of buckling failure is essential, particularly as during the past decade thin-walled
structures have found new fields of application in weight-critical design in the offshore

industry.

Buckling in stiffened panels has been the subject of extensive research over several
decades and foremost attention has been given to the analysis of plate behaviour. The
analysis of individual structural components has been supplemented with that of the
study of units consisting of plating combined with longitudinal and/or transverse

stiffening elements and to this end many techniques have been developed.

Initial imperfections which arise during production, fabrication and the later life of the
structure can lead to not insignificant reductions in strength and for this reason their
presence has been studied in detail and is allowed for in most rigorous formulations.
One other cause of deviations from perfect plate behaviour is the presence of residual
stresses which arise during production and fabrication. These are also associated with
the out-of-plane distortions which are caused by welding. Both factors have been

studied extensively and reasonably good understanding of their effects has been gained.

One of the aspects of stiffened plate behaviour under compressive loading which has

not however been given sufficient attention is flexural-torsional buckling; this involves
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the combined action of the plate and the longitudinal stiffening elements.

The analysis of the flexural-torsional buckling behaviour of stiffened plates presents
many problems because it is a complex mode of failure, characterised by a twisting of
the stiffener about its line of attachment to the plating. The deformation also involves
transverse and longitudinal flexure and is particularly likely to occur in short, flexurally
stiff girders and in stiffeners with low lateral-torsional rigidity such as flatbars and bulb

sections.

In conventional design procedures stiffener flexural-torsional (tripping) behaviour is
treated as a secondary mode of failure and is prevented from occurring by limiting the
proportions of stiffeners, to ensure that material failure becomes critical. Experimental
research 1 has shown that when tripping failure occurs, the buckling mode is a 'brittle’

one, demonstrating little ductility after its onset.

In the past, a wide variety of techniques have been used to tackle aspects of this
problem and to date the energy method has been used most effectively in providing
guidance in design. Closed form solutions to the equations which describe the
behaviour of the shell plating and the stiffener cannot be obtained and when interactive
behaviour arises, this complicates the analysis further since interactions with adjoining
structural elements have to be considered when vspccifying boundary conditions.
Irrespective of the problems peculiar to this mode of failure, the implementation of
realistic boundary conditions is still difficult, despite the progress achieved by the use
of numerical methods. The task becomes one of solving more than one set of coupled
partial differential equations and this presents formidable probiems when attempting to
obtain analytical solutions. Each type of stiffener cross-section (flatbar, teebar,
anglebar, bulb section) has its own flexural-torsional characteristics and has to be

considered separately.
It is common practice in the offshore and shipbuilding industry to fit tripping brackets
or other means of lateral support at regular spacings along the length of stiffeners. This

has been criticised 2 on several counts and in particular because:

- if lateral movement were to take place, it is doubtful whether the brackets would
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provide sufficient support against tripping.

- the determination of optimum spacings between lateral supports is at present
conducted in a simplified manner which ignores the detrimental effect of the
adjoining plating. In general, this would have buckled before tripping stress

levels were reached.

- the cost of production, installation and maintenance of tripping brackets may
well exceed that of stiffeners whose scantlings have been determined in a

rational manner.

Central to the aim of this thesis is the development of a method which can address itself
succesfully to the problems which are confronted when analysing stiffened plating. The
importance of this category of structural component cannot be overestimated as it forms
the building block upon which so much engineering construction is based. It is hoped
that the method will be shown to be capable of overcoming the problems mentioned
above and that it may prove to be a useful tool in gaining a better understanding of the

behaviour of flat stiffened plates and in particular of their flexural-torsional behaviour.

The thesis is subdivided into seven chapters. In the first of these current and past work
is reviewed. Stiffener tripping is considered and stiffened plates in general are
discussed as the various modes of failure are interrelated. The literature on the flexural-
torsional behaviour of stiffeners is not as extensive as one might expect and this reflects
in part the prevalent feeling that it is a secondary mode of failure and does not therefore

merit as much attention.

The equations used to describe the behaviour of the plate and stiffener are given in the
second chapter. The von Karman equations (allowing for initial imperfections) are used
for both the plate and the stiffener and incremental kinematic relationships are
implemented to relate strains to in-plane and out-of-plane deflections. Intermediate
levels of deformations are assumed and therefore large-deflection small-strain
behaviour is appropriate. The conditions along the boundaries are considered next and
the approach used to allow for material nonlinearity is described. The material

behaviour is modelled using the von Mises yield criterion on a multilayer basis, in
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conjunction with the Prandtl-Reuss flow rule. Elasto-plastic tangential multilayer
rigidities are obtained and used to relate multilayer strains to corresponding stresses. In
the final section of this Chapter, the equations which describe column type behaviour of

the whole cross-section are given.

Chapter 3 is concerned with the application of the numerical method. A brief discussion
on finite difference methods is followed by a description of iterative methods and in
particular gradient methods one of which is Dynamic Relaxation (DR), the method used
in this work. The numerical modelling of the boundary conditions is described in some
detail and validation exercises are carried out to check the overall accuracy of the

procedure.

Results from correlation studies with a series of tests carried out at Glasgow University
are presented in Chapter 4. Detailed results from the tests are found elsewhere, and in
this chapter a brief description of the experimental programme is followed by results
obtained from the numerical analysis. These are compared with the test data. In all,
seven model tests were considered all of which involved flatbar stiffeners. Of these,
four were subjected to axial compression, two were loaded under lateral pressure and

one was subjected to combined loading.

Studies concerning the effect of various geometrical and material parameters on the

local torsional failure of flatbar stiffeners are carried out in Chapter 5.

An extension of the method to study the dynamic behaviour of unstiffened and stiffened
plating is described in Chapter 6. Suitable modifications were made to the DR algorithm
in order to convert the method to a real-time procedure. It was found necessary to
include the effect of strain rate which can affect the overall behaviour significantly. The
modified procedure was used to determine the final deflection and other aspects of the
transient response of a series of impacted flat plates. These plates were tested at

Glasgow University as part of a study on ship collisions.

The thesis ends with a summary of the major achievements of the work, and indicates

where further effort is required.



CHAPTER ONE

LITERATURE REVIEW

A significant research effort has been carried out into the behaviour of flat stiffened
plating. In this Chapter the variety of approaches that have been implemented will be
indicated and in addition, certain of the more important aspects of stiffened plate
response with particular regard to the lateral torsional instability of stiffeners will be

considered.
1.1 Brief Historical Background

The foundations of structural mechanics were laid during the eighteenth century by
Hooke 3, Daniel 4 and Jacob Bernoulli 5 and Euler © who studied the strength and
deflection properties of elastic beams. These initial studies led to the consideration of
the more complex problem of plate stability which was tackled during the nineteenth
century by French mathematicians and scientists, following the work of Coulomb. In
1821, Navier published a paper containing the fundamental equations of the
mathematical theory of elasticity 7. Flexural and membrane effects were allowed for in
1877 by Kirchhoff 8, and by the end of the nineteenth century the governing equation
for thin isotropic plates was in the form commonly encountered today. Further
developments by Foppl 9, von Karman 10 and Marguerre 1! during the first part of the
twentieth century led to the formulation that enables the postbuckling response of
imperfect flat plates to be studied.

Solutions to this equation for particular boundary conditions were initially given by
Bryan 12 in 1891, Timoshenko 13 in 1907 and Hencky !4 in 1921. Hencky was one of



the first to apply a finite difference method to plate buckling problems. Other boundary
conditions and cases of loading were considered later by Way 15, Levy 16, Coan 17,
Yamaki 18 and Walker 19 amongst others.

Contemporary solution techniques may be broadly classified into two groups. Firstly
classical methods, originally developed during the nineteenth century and based on

either:

i) energy principles,
ii) direct integration of the governing differential equation,
iii) variational principles (Rayleigh-Ritz, Galerkin).

Secondly numerical techniques which employ any one of a large variety of methods.
Finite difference and finite element methods have nowadays become established tools
of the structural analyst and design formulations are increasingly based on results

derived from these.

The problem of material nonlinearity was first treated mathematically by Levy and Saint
Venant during the mid-nineteenth century. The concept of yield criterion was
introduced by Tresca in 1864 and following a period of experimental research various
other criteria were proposed by other researchers. The most successful one, based on
mathematical considerations, was that due to von Mises in 1913 20 and this is now
extensively used. Approximate criteria such as those due to Ilyushin 21, Ivanov 22 and
later Tlyushin's criterion as modified by Crisfield 23 have also been used in order to

reduce the cost of computational procedures.

Probably the most accurate formulation for the post-yield response of materials which
is in use today is that proposed by Reuss in 1930 24, following the work of Prandtl
during the 1920s.

1.2 Recent Developments in Stiffened Plate Research

The difficulties that arise in the analysis of stiffened plating stem from a variety of

sources. In this section, some of the most important of these are discussed against the



background of work carried out in recent years.

As mentioned in the previous section, the equations representing the large deflection
behaviour of unstiffened plates with initial imperfections have been derived and solved
for a number of different types of boundary conditions, using analytical and numerical
methods. For the analysis of stiffened plates, amongst the most commonly used

techniques are the following:

- Orthotropic plate theory 25

- Plate-beam analysis 26

- Beam-column (effective-width type approach) 27
- Effective-stress approach 28

- Finite element methods 29,30

- Finite difference methods 31

In all of the above, particular simplifying assumptions have been made or are implicit in

the equations used.

Orthotropic plate theory has been used to analyse plating bearing a number of stiffeners
in one or two orthogonal directions. For a small number of stiffeners however, the
method proves less accurate and since the stiffness properties of the stiffeners are

'merged’ with those of the plating, no detailed design data for them can be obtained.

Plate-beam analysis combines the large deflection equations representing plate
behaviour with beam equations to represent the action of stiffeners. The method was
first proposed by von Karman 10and has been used by Shade 32, Reissner 33 and
Odgvist 34 amongst others to analyse stiffened plates in conjunction with the effective
breadth concept. It has recently been used by Smith 26 in the folded plate analysis of
ship structures and elastic torsional buckling stresses have been obtained. In beam
theory, shear stress terms are not included and thus a rigorous treatment of stiffener

behaviour cannot be carried out.

In the beam-column (strut) approach, a plate bearing a number of stiffeners is divided

into strips consisting of one stiffener and associated width of plating which are



analysed in isolation in order to determine the bending, buckling and flexural response
of the cross-section. Recent research into steel box-girder bridge design has led to the
implementation of the Perry-Robertson formula 27.35, based on this approach, which

provides a simple yet reasonably rigorous design method.

Dwight and Little 36 however have criticised effective-width methods in general as
being based upon the assumption that local buckling always occurs, whereas it is well-
known that for high slenderness ratios local buckling may not occur until after the
process of overall collapse is well developed. They have used instead an effective-

stress approach, using the actual load-end shortening curves of plate elements.

Using finite element methods, Harris and Pifko 37 developed an elasto-plastic analysis
procedure for stiffened plates. This was based on compatible plate bending and beam-
column elements. Anisotropy and work-hardening were also allowed for. In their
analysis however, the beam-column element used did not have torsional-flexural
characteristics and was not used to study the torsional buckling behaviour of the
stiffeners. Finite elements methods have also been used in combination with analytical
techniques. Crisfield 30 developed a combined f.e.m./Rayleigh-Ritz elasto-plastic
formulation in which the torsional response of the stiffener was not allowed for.
Komatsu, Nara and Kitada 38 used a combined f.e.m./modal analysis method to study
orthogonally stiffened plates in the elasto-plastic range and compared their results with
a series of tests. The constraint method of analysis, applied to finite elements and
introduced by Szabo et al. 39 was applied to the study of stiffened plates by Rossow
and Ibrahimkhail 40. In this study, plate-stiffener behaviour was modelled as a plate-

beam.

From the mathematical point of view, the exact analysis of thin stiffened plates consists
of solving two or more simultaneous sets of coupled partial differential equations for
specified boundary conditions. Each set consists of two second order linear equations
and one fourth order linear equation. The boundary conditions along the plate and
stiffener edges may vary but are fixed along the unloaded, longitudinal edges of the
stiffener. Exact analytical solutions for this type of problem have not been carried out
and are not likely to be explored in the future because the advent of numerical

techniques means that solutions can be obtained much more readily.



The effects of initial imperfections and residual welding stresses have been studied
extensively for flat plates. For unstiffened compressed plates, increasing the magnitude
of initial imperfections causes a reduction in ultimate strength, whereas residual

welding stresses cause serious reductions only near yield strain levels 41,

Much less work is available on stiffened plates. A parametric study using a beam-
column approach by Moolani and Dowling 42 showed that for stiffened plates with a
slenderness ratio of around unity, increasing the initial imperfections causes significant
reductions in column strength, particularly for low values of the ratio of stiffener/plate
area. Murray 43 used the Perry-Robertson formula to predict collapse of axially
compressed stiffened plates and considered the effects of eccentricity of the applied
loading. A design method is outlined in his paper and the initiation of yielding is

proposed in order to estimate the maximum strength of the cross-section.

Classical finite difference methods have a long history of application in plate analysis
and during the past decade several f.d. based methods have been used. Djahani 44

carried out an analysis of stiffened plates under lateral pressure and edge compression

using a modified Newton-Raphson method in conjunction with Aitken's 82-method.
This formulation used thin plate and beam theory. Webb and Dowling 45 Jater used
dynamic relaxation in an elasto-plastic analysis of stiffened plates based on Djahani's
approach to the interaction of forces and at iiie plate-stiffener intersection. In this study
the torsional behaviour of the stiffener was approximated and a variety of stiffener

cross-sections were modelled.
1.3 Mode and Component Interactions in Stiffened Plates

Apart from questions concerning the equations used to describe stiffened plate
response, several other factors of importance have in recent years been receiving the
attention of researchers. Geometrical nonlinearity involves the process of interaction of
the different buckling modes of each member (local, overall) and also the interaction of
the components of the stiffened plate (stiffener and shell plating). The physical
complexity is reflected by the highly nonlinear equations that describe this type of

behaviour. On the other hand, a formulation that enables stiffener bending, twisting and



flexure to be studied necessitates the use of the Marguerre equations.

The first explicit study of mode interaction was that by van der Neut 46, A simplified
model based on overall buckling was proposed in order to study local and overall
column buckling in the elastic range, including the effect of initial imperfections. An
alternative approach by Koiter and Pignataro 47 using energy functionals has also been
presented and experimental work in Britain by Thomson, Tulk and Walker 48 has been
carried out on stiffened plates. In (49), Tulk and Walker reported that for a particular
geometry, although each panel component would individually exhibit stable
postbuckling response, they would interact to give unstable behaviour. Fok, Rhodes
and Walker 50 presented a simplified theoretical model of the local elastic buckling of
stiffeners and compared results with small-scale tests. This analysis was extended in
(51) to allow for initial imperfections. The coupling of local and overall modes was
modelled using linear and rotational springs by Croll 52, for box columns and stiffened
plates. The effect of initial imperfections has been studied by Tvergaard 53 who showed
that imperfections move the 'optimum'away from coincident buckling mode design.
More recently, Svensson and Croll 54 gave solutions to the equations governing mode

interaction for small imperfections in the van der Neut model.

In (55), Maquoi and Massonet reviewed the work carried out until that time on the mode
interaction problem. They concluded that, regarding box columns, from a theoretical
standpoint the formulation by Graves-Smith 56, which allowed for the plastic reserve of
strength, was the most accurate one although in practice the optimum could still be
determined by coincident buckling design since for box columns little variation is noted

near the optimum.

The 'exact’ boundary conditions at the intersection of two flat plates were first modelled
numerically by Frieze and Dowling 57 and Frieze 58 for the case of axially loaded box

columns in the elastic and elasto-plastic range.
1.4 Classical Methods for the Lateral Torsional Instability Analysis of Stiffeners

The problem of lateral torsional instability in beams and stiffened plates was recognised

during the previous century and following the work of Saint-Venant on torsion,



Prandtl, Mitchell and Timoshenko studied the lateral torsional behaviour of beams.
Their work concentrated on developing a method to determine the moment of inertia of
the cross-section in order to prevent elastic torsional buckling. Timoshenko 59 and
Barbre 60 later extended this work to stiffened plates. Before the Second World War,
extensive work was carried out in the U.S. by N.A.C.A. in order to provide structural
design data for aircraft. This concentrated mainly on stiffened and unstiffened plates
under various boundary conditions. Within this context, Seide 61 evaluated expressions
for effective moments of inertia of panels with Z-section stiffeners which are used in

aircraft structures.

Torsional buckling of open thin-walled sections was first considered by Wagner 62
based on the assumption that the centre of rotation of the cross-section during buckling
coincides with the shear centre. Since this was shown not to be correct 63 the results of

Wagner's analysis are not exact.

In 1936 Bleich and Bleich 63 treated the problem in a generalised manner by allowing
for the effects of bending, twisting and buckling. The fundamental differential
equations of the problem were derived from the theorem of stationary potential energy
and it was established that, in the general case, if the displacements of the shear centre
are used as co-ordinates instead of the displacements of the centroid, the usual
differential equations retain their validity %4. In this treatment however a term in the
expression for the potential energy was omitted; this was later included in a more

refined treatment by Kappus 65.

Theoretical results obtained by the above authors 62,63 were compared by Kappus 65
and are reproduced here in Fig. 1.1. In this diagram the effect of aspect ratio on the
elastic torsional buckling stress of a channel section with elements of equal breadth, i.e.
a=b, are indicated. It is seen that the differences that arise tend to become smaller with

increasing column length as the torsional buckling stress approaches the Euler stress.

Other authors working during the same period on the torsional buckling problem of

columns were Lundquist and Fligg 66, Timoshenko 67, and Goodier 8.

In all the above mentioned work, it was assumed that plane cross-sections may warp



but that the geometric shape did not change; the theories considered overall (primary)
column failure as opposed to local failure characterised by distortion of the cross-
section. It was only in later work that account was taken of overall and local failure

modes and their interaction, as described in the preceding section.

The theorem of stationary potential energy which was used by Kappus 65 and Bleich
and Bleich 63 states that "the amount of total potential energy U = V + Uy, does not
change when the structure passes from its configuration of equilibrium to an

infinitesimally near adjacent configuration". Thus,

U =V + U, = stationary 1.1
where U = total potential energy of the system

V = internal strain energy

U,, = potential energy of the external loads

According to the calculus of variations, for an integral of the form:
I= j F(x,y,y',y") dx (1.2)
the function y=y(x) which makes the expression I stationary is given by:

d &
F(y) - = F@y") + ;—2 F@y") =0 (1.3)
X

This is the Eulerian differential equation of I which may be used to obtain a solution to

the stationarity problem that has been posed.

Bleich 64 treated the stiffener using beam theory and applied the stationary potential
energy theorem in order to derive critical elastic buckling stresses under the following

assumptions:



i) Distortions of the cross-section are ignored
ii) The angle of twisting is small

iii) The energy of external shearing stresses is small.

The internal energy V consists of strain energy due to the longitudinal stress V; and

shearing stresses V5. Therefore,

—

1 2 2

V=% [Et(aIy+F)[3 ]dz (1.4a)

0

1
v. =1l ck '2]d 1.4b
2=7 T B Z ( )

0
and V=V +V, (1.5)

The potential energy of the external loads, Uy, is given by:

1

U, = -—;-J‘d[ Aa’+ 2Aay  + Ip] B'2 dz (1.6)
0
where B =angle of twist
E = Young's Modulus
t© = E,/E (E, = tangent modulus)
a = distance from shear centre to axis of enforced rotation
I, = principal moment of inertia about y-axis
G = shear modulus
I’ =longitudinal warping constant
K = torsional constant
o = compressive stress on end surfaces
A = area of cross-section

¥, = distance from centroid to neutral axis
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I, = polar moment of inertia with respect to shear centre
dz = incremental distance along length of column

I = polar moment of inertia with respect to axis of enforced rotation.
and consequently the total potential energy of the system, U, is:
1

J[E«: (a21y+1" ) B2+GTKB- 6 (Aa’+ 2Aay + D) B2 ] dz 1.7
0

U=

] —

Since Ip=Ix+Iy+Ay02, Iy, Iy being the principal moments of inertia of the cross-section,

the following form is obtained:
1
U= lj[Ex(a21+r)B"2+(GrK-cI )B'2]dz (1.8)
2) y pe

The corresponding Eulerian equation is:

Bt (a’L+T) B + (ol - GiK) B" =0 (1.9)
Letting B = Csin (nnz/l)
where C is the magnitude of the rotation

n is an integer (1,2,....)
z is the length along the column
1 is the length of the column

the equation can be integrated for simply supported boundary conditions to give:
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2
y15d 014
c_= +
cr 2 (1.10)
1 Ipc anIpc

where o, is the critical torsional buckling stress corresponding to the fundamental
buckling mode (n=1). The preceding approach forms the basis of the energy method
which has been used by several authors and implemented in classification society rules

69,70, Windenburg 7! considered the proportions of tee-bar stiffeners to ensure against:

i) Web local buckling
ii) Twisting instability
iii) Flange local buckling

The differential equation of the deflection surface of the web was integrated for simply
supported boundary conditions and elastic restraint at the intersection with the flange.
In this treatment, in-plane deflections were ignored and a reduced modulus was used
for the plastic range. Later work has shown that this treatment is optimistic due to
interaction effects. More complex cases of loading have been handled using interaction
curves 7273, Argyris and Dunne 74 have given detailed analyses for various failure
modes (flexural, flexural-torsional) for panels with several stiffeners. Critical elastic

stresses were obtained for aircraft-type structures.

Faulkner 72.75.76 has proposed several equations for the determination of elastic
tripping stresses, based on the energy method. The problem of interaction with the plate
and the complexities arising from this are acknowledged. A simplified treatment is
carried out in which it is assumed that the lowest tripping stress occurs when the plate
elements and the stiffener buckle with the same half wave lengths, leading to the

following equation:

2. =2 2, 22
G{J+(E/G)(mn/a) (Izz +1)}/ Io+ Coa /m’n I0

o (1.11)

cr 2
1+C.a*m*n2c 1
0 po0
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= Saint Venant torsion constant for stiffener

where J
m = number of half-waves along length
a = lengthof plate
I, = second moment of area about web cross-section (= dt3/3)
z = height of centroid
I' = longitudinal warping constant ( = IZ d2/4)
I, = polar moment of inertia about the toe ( = td3/12 +1,)
C,= rotational spring constant (= Et3/3b )

G, = plate elastic buckling stress ( = 0.903E(t/d)2{a/m+m/a}2)

In this equation the stiffener is assumed to have a constant rotational restraint C, along
the edge in contact . with the plate, the second term in the denominator representing
the destabilising effect of the plate. In theory, if the rotational restraint becomes
negative due to plate buckling effects the tripping stress is reduced. Inelastic effects are
allowed for by the use of the structural tangent modulus E,.

In an extensive study on the subject, Adamchak 73 employed the energy method and
presented a series of design-orientated equations for axial, lateral and combined
loading. Flatbar and tee-bar stiffeners were considered and plasticity effects were
allowed for, again using the structural tangent modulus. It was noted that since plate
effectiveness was dependent upon initial imperfections, critical torsional buckling
stresses could be significantly reduced in their presence. Adamchak also found that the
assumption that the web of a stiffener remained locally undeformed in its own plane led
to higher buckling stresses than those obtained from a finite element analysis. A
simplified treatment to allow for this in the case of symmetrical stiffeners was included
and resulted in a quadratic equation for the buckling stress. Examples of these and other

design equations are included in Appendix A.

In a paper by Bijlaard 77, longitudinally and transversely stiffened plates were studied
and elastic solutions obtained by direct integration of beam equations which were used

to represent stiffener action
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1.5 Numerical Methods

Of the general purpose finite-element packages available none has to date been used to
investigate the tripping problem. Det norske Veritas 7879, have compared the results
from two such packages (STAGSC, NV390) with test data on flatbar stiffeners used in
flat panels. Good agreement was found when the stiffener was assumed clamped to the
plate. When however a simple support was used, large discrepancies between the two

predictions were observed.

As mentioned in Section 1.2, plate-beam analysis 26 has also been used to obtain elastic
torsional buckling stresses. The method has not however been extended to the plastic
range. Skaloud and Kristek 80 have analysed stiffened plating and have considered a
variety of stiffener cross-sections. Folded-plate theory was applied in the elastic range
in order to obtain optimum stiffener spacings and dimensions. It was found that the

results did not differ appreciably from classical theory.

In (81) Guedes Soares and Soreide discuss the results of recent work on both stiffened
and unstiffened plates using numerical and analytical techniques. The more important
factors which affect behaviour are considered and results are given for flat plates under
axial compression. Design methods for stiffened plates based on the effective width

approach and the Perry-Robertson equation are also compared.

The elastic postbuckling range for stiffeners failing by torsional instability was
examined theoretically by Ellinas and Croll 82, The large deflection equations and
boundary conditions were linearised by employing a perturbation scheme. Finite
differences were subsequently employed and the resulting linear simultaneous algebraic
equations solved. Good agreement with test results was noted, although it is felt that
the method was cumbersome and any attempt at extending this type of analysis to the

elasto-plastic range could meet with mathematical as well as conceptual difficulties.

A theoretical model for simply supported stiffeners based on Wagner's original
equation was developed by Rogers and Dwight 83. Plasticity effects were included and

results compared with test data (described in Section 1.6). The stress-strain curves
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obtained were similar to equivalent ones for plates; at high depth/thickness ratios a
clearly defined post-buckled range was found. The effects of residual stresses and
initial imperfections were also studied. It was found that imperfections did not affect the
response appreciably although residual stresses caused a deterioration in strength in
lightly welded plating which however was not amplified significantly by heavy
welding. This is consistent with the behaviour of simply supported plates as found by
Dowling and Frieze 84. A strength formula, based on the Perry-Robertson equation

was proposed for long simply supported stiffeners.

In another study carried out at ARE (Dunfermline) 85, the behaviour of bulb and tee-bar
sections were compared using a folded plate analysis procedure. The study was limited
to the elastic range and it was found that bulb sections were less efficient, partly

because they are more susceptible to lateral-torsional instability.

The large-deflection plate equations were solved for flatbar stiffeners using simplified
boundary conditions by Bradfield 86, A constant rotational restraint along the
intersection with the base plate was assumed and a finite difference formulation
implemented to solve the equations. Plasticity was modelled using the Ilyushin yield
criterion, as modified by Crisfield. A study of the effect of rotational restraint showed

that strength is relatively insensitive to it, as demonstrated in the accompanying

diagram.
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The effect of initial distortions here seems greater than that found by Rogers and
Dwight 83,
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1.6 Experimental Research

Bleich 4 discusses the earliest results from tests carried out in this field. Experimental
work on torsional buckling was first conducted on aluminium panels used in aircraft
structures by Wagner and Pretschner 87. In the 1930s and 1940s further work was
carried out on panels with Z-section and bulb stiffeners 88, Later tests were conducted

using magnesium and steel alloys, also for aircraft-type structures.

More recently, tests have been performed for ship-type structures at Cambridge
University 89 and Det norske Veritas 79. An extensive series of tests relating to the civil
engineering field (box girder bridges) was carried out at Manchester University by

Horne and Narayanan 9091,

The work at Cambridge consisted of a series of axial compression tests on flatbars and
bulb flats. Fifty-eight flatbars were treated with their longitudinal centrelines supported,
thus providing two simply-supported webs with their common attached edge
constrained to stay straight by symmetry. The tests covered nine slendernesses in the
range 28 > d/t > 9. Twelve models consisting of sections 150mm widthx 7mm
thickness x 28mm bulb overall thickness arranged as cruciforms, were also tested. The
purpoée of these tests was to provide a means of comparison for a theoretical approach
that was developed in parallel. The effects of residual welding stresses and

imperfections were included.

At Manchester University 91 the tests were carried out on axially compressed stiffened
steel plating and both plate and stiffener induced failure was examined. It was found
that in general, rapid unloading was experienced following stiffener induced collapse.
Comparisons with the Merrison box girder bridge design rules indicated that the rules
were in general conservative except for simply supported bulb flats, and to a lesser

degree for wider flange angles, where they appeared to be optimistic.
1.7 Design Rules - Implementation and Present Practice

The traditional, empirical approach to the drafting of codes relies on the reappraisal of
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past recommendations in the light of new experience. The fundamental drawback to this
approach however, lies in the inability to obtain a real understanding of the basic
mechanics of the structure in question. Consequently, by not being able to accurately
interpret and generalise the data that has been obtained, rules which usually tend to be

conservative are adhered to.

Few practical structural mechanics problems can be solved in a quick and easy manner,
so when a situation involving a complicated structural arrangement coupled with a non-
idealised distribution of loading arises, simplifying assumptions are necessarily made in

order to provide guidance to the designer.

Progress in the past few decades is beginning to be reflected in design rules and the
attitudes of one particular group of engineers involved in drafting plate buckling rules

some years ago were expressed as follows:

"It is recognised that progress has been achieved in solving von Karman's nonlinear
differential equations for initially perfectly flat plates, in solving Marguerre's
nonlinear differential equations which have small initial geometrical imperfections and
in applying finite element methods to geometrical and material non-linearities in plate

problems" 92,

It should be added, however, that not all bodies responsible for the drafting of rules

follow an approach such as the above.

From Appendix A it is apparent that a variety of different approaches have been adopted
in some of the recently drafted design codes on the question of stiffener design. In
merchant vessels it is common practice to use flatbar and bulb section stiffeners

whereas in warships tee-bar stiffeners are extensively used.

Det norske Veritas provide a simple criterion for the design of flatbars; rearranging the

formula contained in the Appendix leads to B < 0.4 where B = (b/t) (GO/E)I/ 2 Webs
designed in accordance with this formula lie in the region where for simply supported
plates 6, = 693 (where o, is the ultimate strength). In other words, torsional

buckling is designed out of stiffeners and yielding becomes the failure criterion.
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Although the British steel bridge design code (BS 5400) has a different format 94,
results are close to those obtained using the DnV formula. The same is true of the
Lloyds' Register of Shipping Rules which also exclude tripping as a form of failure by
limiting the proportions of flatbar stiffeners 69, Strength of primary stiffening elements

is checked throughout by use of the section modulus of the cross-section.

For plating bearing tee-bar stiffeners the Royal Navy uses a weighted average of the
stiffener torsional buckling stress and the plate buckling stress. Following comparisons
of theoretical predictions with experimental results obtained from full-scale tests 1, it
was decided to specify that torsional buckling stresses at the preliminary design stage
should not be less than the panel average compressive failure stress, this being
calculated using an iterative method developed by Faulkner et al. 73. Final design
would involve a finite-element program developed at ARE (Dunfermline) 83,

Drymakis 95 compared the results obtained from several elastic torsional buckling
design formulae for tee-bar stiffeners including some of those mentioned above. He
found that Bleich's formula predicted generally higher stresses than any of the other
methods. Overall, an appreciable amount of scatter was noted when buckling stresses

were plotted against several geometrical parameters.

One of the underlying assumptions that has been made in deriving explicit expressions
for stiffener torsional buckling stresses is that the stiffener is attached to the plating in a
simply supported manner. The thinking behind this goes back to the earliest work on
the subject, namely Windenburg, Bleich, et al. At first glance this may appear to be a
conservative criterion, especially when the stiffener is considered in isolation.
However, since plate flexural buckling stresses are generally lower than stiffener
torsional buckling stresses, when the plate approaches its limit it will act in a
destabilising manner on the stiffener (provided interframe buckling does not occur), so
that the torsional buckling stress will be reduced. In actual practice interaction effects
will come into play, particularly those relating to stiffener interframe buckling,
considerably complicating the response. Classical methods cannot at this stage provide
an exact solution and few design equations make any attempt at allowing for this,

although in certain treatments the effect of the rotational restraint arising from the plate
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is allowed for 72:73, In a folded plate analysis 85, Smith also allowed for the
destabilising effect of plating and found that for relatively slender stiffeners, the simply
supported condition was more accurate. He concluded however that since the plating
exerts a substantial restraining effect on the torsional buckling of tee-bars, neither the
simply supported nor the clamped condition provide satisfactory results. In other
words, the 'true’ condition will depend on the slenderness of the stiffener relative to

that of the plate.
1.8 Concluding Remarks

It is thus seen that the study of the torsional response of stiffeners attached to flat
plating has over a period of fifty years attracted the application of a variety of
approaches, of which probably the most important has been the energy method which
has been based on small-deflection theory. The tangent modulus concept has been used
to allow for plasticity while various simplifying assumptions concerning buckling
modes and interaction effects have been made. The complexity of the problem
necessitates the use of a method capable of successfully allowing for the more
important effects that govern stiffener torsional behaviour, namely large deflections,
plasticity and mode and component interactions. Numerical techniques have proven to
be powerful tools in the nonlinear analysis of structures, the most successful of which
have been the finite element method (FEM) and the finite difference method (FD). In
this thesis, a large-deflection FD elasto-plastic formulation has been used and 'exact'
boundary conditions at the plate/stiffener intersection have been modelled. Local and

overall failure modes are modelled and thus full interaction effects may been studied.



CHAPTER TWO

ELASTO - PLASTIC ANALYSIS OF FLAT STIFFENED PLATING

The equations used to describe the behaviour of flat stiffened plating are presented in
this Chapter. The modelling of the behaviour of the material is described in detail and
the yield criterion is derived from conditions of plane stress, following Hill 96, The
Prandtl-Reuss flow rule is also described and used to obtain the elements of the matrix
of multilayer rigidities, in a manner similiar to Harding 97. Finally the boundary
conditions acting along the panel edges and the plate-stiffener intersection are described

for the general case in which the panel forms part of an orthogonally stiffened grillage.
2.1 Equilibrium Equations for Thin Flat Plates

As mentioned earlier a large variety of formulations have been developed in order to
represent both unstiffened and stiffened plate behaviour. The von Karman equations are
obtained when the analysis of unstiffened thin flat plates is based on coupled direct
force and moment terms. A variety of approaches may be used to derive these and are
available in the literature 98. Analytical and numerical solutions in conjunction with
corresponding kinematic relationships and constitutive relations have beeﬁ obtained for
several types of boundary conditions. The equations which were originally derived by
von Karman, and later modified by Marguerre to allow for initial geometrical

imperfections, are as follows:
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where‘
X,y are the cartesian coordinates defining the plane of the plate
w is the deflection in the direction normal to the plate

Ny,Ny are the in-plane forces per unit width of plate (stress resultants) acting in

the x and y directions.
Nyy is the inplane shear force/unit width of plate acting tangentially along the

faces of the element.

M,,M, are the bending moments/unit width of plate acting in the (x-w) and (y-
w) planes respectively.

My is the twisting moment/unit width of plate acting in the plane of the faces
of the element (using reversed signs).

Wo is the initial deformation of the plate in the w-direction, and

q is the (external) pressure acting on the plate in the 'w' direction as

shown in Fig. 2.1.

It is seen that these form a set of linear partial differential equations which are coupled
since, in the first of these, in-plane direct and shear stress resultants are included. These

terms are required when studying postbuckling behaviour and when omitted lead to

linear plate theory. In a more rigorous treatment, the effect of plate thickness also needs
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to be considered. This complicates the analysis considerably and the additional terms
are of practical importance only near the edges and around holes which are not large in
comparison with the thickness of the plating 99. Thus in thin plate theory transverse

forces are neglected and the usual assumption of isotropy is no longer valid.

The Marguerre equations are used to describe local buckling in thin flat plates. As such
they are the appropriate equations to use in order to describe the local torsional
behaviour of flatbar stiffeners when solved in conjunction with the corresponding
boundary conditions. In this analysis they have been used to model the response of
both the base plate and the stiffener. In existing analyses of stiffened plating, the beam-
column equations have been used to model stiffener behaviour but these however
cannot allow for the torsional mode of failure which depends on the local bending and
twisting of the stiffener about its line of attachment to the plating. The third failure
mode, column buckling, is described by the beam-column equations and therefore in a
full analysis the interaction between local and overall failure modes needs to be

considered.
2.2 Kinematic Relationships

The strain-displacement relations used are based on classical plate theory and again,
terms of second order are ignored. Donnell 100 has derived exact expressions based on
the Kirchhoff assumption but justifies the omission of higher order terms on the basis
that strains and slopes are small compared with unity. The present analysis deals with
intermediate levels of deformations and thus the use of the approximate expressions is
justified. Since an incremental formulation is required in the flow theory of plasticity
used to model material behaviour, the kinematic relationships are cast in the following

form:

ow
A@:(EE-EH% .a_vl-.aﬂ)(a_w.J,% +2_.a_x2) (2.2a)

X ox ox dx oJx Oox
ow
A@:(ﬂ-aﬂh.zl.(iw_-?_w_p)(a_wﬁiw_? +2—2) (2.2b)

dy dy dy dy dy
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where
Aex, Agy are incremental strains in the x,y directions
Any is the incremental shear strain
Ad,, A¢y are incremental curvatures in the x,y directions
Aq)xy is the incremental twisting curvature
du du gdv ov
< » %> =~ are strains arising from in-plane deflections
ox dy Jx dy
2w I?w
NN are curvatures in the plating in the x,y directions

(2.2¢)

(2.3a)

(2.3b)

(2.3¢)
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2w

oxay

is the twisting curvature in the plating

The subscipt p indicates values of the displacements at the end of the previous
increment. The above expressions (2.2) give the membrane strains acting at the neutral
axis of the plate. In order to obtain strains at other positions through the thickness of

the plate, use is made of the Kirchhoff assumption. Thus

€ =€+z9 2.4)

»Z

where €, is the strain at a distance z from the neutral axis. This linear relationship
simplifies the analysis since forces and moments acting on the plate can be found
directly from the deflection of the middle surface of the plate, because in classical plate
theory this is assumed to be a function of the coordinates x,y only. In explicit form the

strains become:

Az—:x,Z = Ag, +z AQ, (2.5a)
Aey’z = Aey +z Ad)y (2.5b)
Any,z = Ayxy +2z A¢xy (2.5¢)

The multilayer strains are required to model the material behaviour in conjunction with

the yield criterion, attributed to von Mises et al., as described in the next section.

2.3. Material Behaviour - The Ideal Plastic Body

During the past decade, the von Mises yield criterion has increasingly been combined
with the Prandtl-Reuss flow rule to model the material behaviour of steel structures.
Computer storage capacity and processor speed limitations have forced researchers in
certain cases to use approximate theories to overcome these problems. It may be
expected however that in future, developments in computer hardware will lift these

restrictions and make the application of rigorous theory more widely possible.
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It is recognised that at any point in a structure, the growth of plasticity proceeds
gradually through the thickness of the plate, making use of a multilayer approach
desirable. In this treatment, the material is considered to possess the properties of an

ideal plastic body 96 for which the following assumptions are made:

i) The effects of time and temperature are neglected. Thus creep and thermal
phenomena are ignored although in a dynamic analysis the strain rate effect

may be included.

ii) The material is treated as being uniform on the microscopic scale , i.e. the
Bauschinger effect and hysteresis are not allowed for. The material is further
assumed to be isotropic although the treatment may be readily generalised to
allow for the effects of anisotropy. It is not intended to be used to study the
effects of plastic anisotropy. ‘

iii) Size effects are neglected. These may be due to grain size, inclusions, or the

irregular propagation of slip fields.
2.4 Yield Criterion

The von Mises yield criterion was proposed in 1913 20 following a period of
experimental research during which numerous other criteria were put forward. In
general, a law defining the limit of elasticity under any possible combination of stresses
is required; this is called a criterion of yielding. Since, for an isotropic material, plastic
yielding depends only on the magnitudes of the principal applied stresses, and not on
their directions, any yield criterion may be expressed as

£(J1.02.03) = 0 (2.6)

where J;,J5 and J3 are the first three invariants of the stress tensor °'ij- They are
defined by:

Jij=0,+0,+0; (2.7a)
Jz=-(610'2+0'20'3 +030;) (2.7b)
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J3=0,0,03 2.7¢)

where 0, 0, and 05 are the three principal stresses. Experimental data show that
yielding is, to a first approximation, unaffected by hydrostatic pressure, either applied
alone or superimposed on any other state of stress. For the ideal plastic body therefore,
yielding depends only on the deviatoric or reduced stress tensor. Thus,

0;;"=0;; -08 (2.8)

ij ij
where ¢ = Gij / 3 is the hydrostatic component of stress and Sij is the Kronecker
delta. The principal components are not. independent since 6;'+ 6, '+ o4 is identical

to zero. The yield criterion reduces to the form:

f(J,J5) =0 (2.9)
where |
' v r 1, 2,2, 2, 1 vt
= - + === + + = . .
I, (0102 6,0, + 0361) 2(61 S, 03) > % 5 (2102
v [] ] L 1 '3 '3 I3 __1_ ] 1 '
I'= o, 0,0, = 3 ( ¢ +0,+0, )—3 Ci; %k Cki (2.10b)

Most of the yield criteria that were suggested during the latter part of the nineteenth
century conflict with experimental data in that they predict that hydrostatic stress always

influences yielding. Von Mises proposed that yielding occurred when J5' reached a
critical value, in other words that it was independent of J5'. His criterion can be written

in the following alternative forms:

2 2

24 6° = 2K 2.11a)

2).'=0.."0.'=06°+ 06°+ 0
2 ij ij 1 2 3

] 1 2
5, =€[(°1 -02)2+ (0,- 03)2+( G- 01)2] =K (2.11b)
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where K depends of the amount of pre-strain. Hencky suggested that the physical
implication of the above criterion was that yield begins when the recoverable elastic
energy of distortion reaches a critical value. A complementary interpretation, due to
Nadai, is that yielding begins when the shear stress acting over the octahedral planes
reaches a certain value. This may be shown to be mathematically equivalent to the

above interpretations, since:

T =0 .. L1 2.12)

ns ij 'injs
where T;,¢ is the shear stress acting over the octahedral plane, lying at equal angles to
the three principal axes and I, ljs are direction cosines. Expressing equation 2.12 in

vector form,

T2 —(0,-0,2 2m2+ (63-065)2m?n2+ (05 -06,)2n2 12 (2.13)

where 1, m and n are direction cosines. Since I=m=n for an octahedral plane and 12 +

m2 +n2 = 1, then 12 = 1/3. Hence,
' 1n2s =2/9[(oy —0'2)2+(02 —03)2+(03 —01)2]
and substituting in equation 2.11b the following form is obtained:
612 =[ (0} ~0)2+ (0, = 63)2 + (03 —07)2] =972 1"nzs

Therefore t 2 231, (2.142)
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2
and thus K2=371 /2 (2.14b)

In this analysis the transverse stresses are assumed to be zero (0,=0). The yield

criterion therefore becomes:

2 2
0,2 +0,2-06,0,+31,2<3K2<0, (2.15)
The representation of this equation in two dimensions is shown in Fig. 2.2a and it is

seen that it is an ellipse. Permissible stress and strain paths are indicated in Fig. 2.2b.
2.5 The Flow Rule

The flow theory of plasticity is based on the fact that unique relations do not exist in
general between stress and strain components in the plastic region; the strain depends
not only on the final state of stress, but also on the loading history. Stress-strain
relations which are valid in the theory of elasticity have to be replaced by relations

between increments of stress and strain 101,

Within the framework of behaviour of the ideal plastic body and having accepted the
validity of the yield criterion it is possible to obtain a flow rule describing the plastic

behaviour of the material 101. For a non-workhardening material,

Ac.. Ae® _o (2.16)

when plastic deformations occur. In the above equation,

Ao ijz & the increments in elasto-plastic stress at any distance z from the

neutral axis

A e lfp)z are the increments in plastic strain at any distance z.
’
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The von Mises yield function f is a function of the total stresses Gjj,z and not of the

strains eij’z such that f(()'ij,z

must therefore satisfy the relation:

) < 0 prevails. Any change in stress during plastic flow

T
of
df = Ac .. =0 (2.17)
1),
[a" ii]z ,

where T denotes transpose. From equations 2.16 and 2.17 it is evident that

® _ of
A By =R 20, 2.18)

,Z

1

where A is a constant of proportionality termed the plastic strain rate multiplier. The
above expression gives the rule of plastic flow, generally known as the Prandtl-Reuss

flow rule.
If A > 0 loading on the yield surface is occurring

A = 0 pure plastic flow is occurring -

A < 0 unloading from the yield surface takes place.
2.6 Elasto-Plastic Tangential Multilayer Rigidities

Hooke's law may be applied to the difference between the total and plastic strain

increments in order to obtain a stress-strain relation valid in the elastic range:

_ ®
e = By (A8y;, - Aey0) (2.19)

where Ejj is the matrix of elastic rigidities which for an isotropic elastic material is given

by:
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[ 1 \Y 0 ]
E 1
B =— v 0 (2.20)
1-v2 AEY
0 o
! 2
By substituting from equation 2.18,
of
AC =By (Mg - 50| 2.21)
1)

The plastic strain rate multiplier A is obtained by substituting equation 2.21 in equation

2.17 to give:
T
of of
—| E.(Ae . - )=0
dc..| Y 1,z 90 ..
1) )
,Z ,Z
T
giving A= 1 o E.. Ae. . (2.22)
oo, 4 % '
1)
Z
T
of of
where r = Eij ——
20 .. 90 ..
ij | ij
Z z
Substituting back in equation 2.21
*
Ao . =E. Ae . (2.23)
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» 1
so Ejz=E;j(I-7 0 Eyj), (2.24)
| In the ab of oA [T
at any layer z. e above equation, ¢ =
v d 00 i o0 ij
vz Z

Explicit expressions for the elements of the tangential modular matrix of multilayer

rigidities will now be obtained. Using equation 2.15, the elements of the vector

T
of
do .. | ae
1)
L -2
Ak
00
X
o T | 2| o ]
[ac ] =36 _____2_[ Zox-cy 20y-ox 61:xy] (2.25)
. y c
lJ 0
- of
ot
L XY

»Z

Combining with equation 2.20 expressions for r and G are obtained:

of of of of _y  of
_ El-af(afd’_V )+ (v + )+1v(
l_vzl 9 dc, 9o d, o, 3, 2 or,,

r 2|  (2.26)

y
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o , o of of of |
(ac) d0_d0 d0_ ot

x x Xy

of of of 5 of of

S =13 3 (ac) 3, o, (2.27)

of of of of of 9
Jc o1 Jdc ot (a’t )

X xy y  xy xy |

G is seen to be symmetrical.

Substituting from equations 2.26 and 2.27 into 2.24 the elements of the tangential
multilayer elasto-plastic modular matrix are obtained.

" . 1 [ 1 1) 1] h
Eu E12 E13 1'Eu 'Elz ‘E13
* ] ] _ ]
Eij .= Ey By Byl = Eij Eyy 1-E,, Exi' | (2.28)
E31 E32 E33 'E31' 'E32' 1'E33'
L 42 L 4,2
Where E, ', E,,', ... Eq;' are the elements of the ‘plastic reduction’ matrix resulting

from the evaluation of (1/r)o- These become zero when unloading takes place.

Substituting equation 2.20 in the above, the matrix of multilayer elasto-plastic rigidities

is obtained:
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l_E ' ' - ! _ ' - 1 '
1" \zE21 Elzw(l Ezz) E13 vE23

-E ] - (] - q_ - ] - l_ 1

+ __E|By+VU-E ) E, A 2.29)

lv. ., v | 1-v .
By By FEy)

A

for an isotropic elastic rigid-plastic material obeying the von Mises yield criterion. The

plastic strain rate multiplier is found using equations 2.24, 2.25 and 2.26.

of

f of 1-v
3o (A5x+ VAEy) +£(A8y+ VAex) +T ny
X
A= £ = (2.30)
of of of Oof of o 1y of ,
+ (—/

+ +Vv
30 90 V3536 Go. Ve T2 e
| Px Tx y y Ty x

xy

»Z

-1
: of
A is seen to have units of
oo i ’

The multilayer elasto-plastic stress-strain relations (equation 2.21) are:

p= - _ - * Ae “

ac E, E, Ejs x

Ao, | = E, Ep Ep Ae, (2.31)

E
At B Pn Fm)fay
xy A XY
L -z »Z
cular load

at any layer z. The total stress acting at any point in the plate during a parti

increment is thus given by:
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=( o, )+E. Ae (2.32)

where p denotes the value obtained during the previous increment. Numerical

integration is used to obtain stress resultants at any node. Typically,

+v/2

Ney= J o,y 4z (2.332)
W2

+t/2

Mx’y = ch,y zdz (2.33b)

-2

2.7 Boundary Conditions along Stiffened Plate Edges

As mention in section 2.1 the von Karman equations have been adopted to represent the
behaviour of the base plate and the stiffener. Thus, boundary conditions corresponding

to the solutions of equations 2.1a, 2.1b, 2.1c have to be specified.

Equation 2.1a can be shown to be of fourth order in w, the out-of-plane deflection, for
which two boundary conditions are required along each edge. Equations 2.1b, 2.1c
which yield solutions describing the in-plane behaviour require another two conditions.
The actual choice of conditions adopted along each edge corresponds to the behaviour
of that edge, which will thus be described in an exact manner, within the limitations of
thin plate theory. In total, four conditions are required and in this section each edge of
the stiffened plate will be considered in turn. The following sketch shows the four

degrees of freedom for which boundary conditions are specified along each edge.
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x (u)

In practice, stiffened panels do not exist in isolation. They form part of a continuous
system of shell plating, which in most cases is stiffened in orthogonal directions.
Stiffening in the direction of the principal applied external loading normally
predominates. In the case of a hull girder the bending moments due to static and

dynamic loads usually dominate, so ship structures are usually stiffened longitudinally.

The stiffened panel which is treated here in isolation experiences in real conditions
different restraints along each edge. For example, the longitudinal edge of a panel
adjacent to a deck side will be subject to substantially different transverse in-plane
conditions compared with the other three edges. In the present analysis, the same
conditions are assumed to hold along opposite edges of a panel which is considered to
form part of uniformly compressed grillage. Such a grillage is composed of deep
transverses and longitudinal stiffeners of various cross-sections. The longitudinal
stiffeners are attached to the plating and to deep transverses at the intersections indicated
in Fig. 2.3; both the plating and the stiffeners are generally continuous through the

transverse girders.

It is reasonable to assume that out-of-plane deflections of the plating along the lines of
attachment to the deep transverse are zero (w = 0), since the relative deflections of the
transverses will be significantly smaller than those of the plating. The magnitude
however of the rotational restraint along these edges is unknown and therefore a lower
bound condition is chosen. The edges are thus treated as being simply-supported, i.e.
M, =0.
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External loading is applied in such a way that the edges are uniformly compressed. This
condition holds true for panels which are located near the centreline of the grillage. The
alternative to applying a uniform edge displacement would be to apply an appropriate
stress distribution along the boundary. In the linear elastic range, good estimates of the
magnitude and distribution of this could be obtained. Following buckling, however,

and when interaction effects come into play, it would become more difficult to achieve.

The boundary conditions just described are also valid for the loaded edges of the
stiffener. The last condition along the loaded edges which requires consideration is that
of transverse in-plane behaviour. This is governed by the shear restraint provided by
the deep transverses to both elements of the stiffened plate. From considerations of

continuity, symmetry can be applied and thus, for the plate,

X
L =0 (2.34a)

Similarly, for the stiffener,
d nyw
ox

=0 (2.34b)

The transverse movement of the stiffener at its junction with the transverse girder and
the shell plating must also be consistent with the out-of-plane deflection of the plating at

that position, which is here assumed to be zero (w = 0). Therefore at that point,
v =0 (2.35)

The unloaded, longitudinal edges of the plating are considered as lying halfway
between adjacent stiffeners. Assuming that the shell plating exhibits identical behaviour
for each panel, symmetry can be used to determine out-of-plane deflections, rotations

and shear restraints along these edges. Therefore,

o —L=o N _=-0 (2.36)
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The in-plane behaviour perpendicular to the edge is treated as being 'constrained'. For
this type of boundary, the edge is allowed to move transversely in a straight line in such
a way that the total transverse force acting along the edge is zero,

1
v = constant such that JNY dx=0 .37
0

Apart from the plate-stiffener intersection which is to be described in the next section,
the remaining boundary which requires to be considered is the unattached edge of the
stiffener. For a flatbar this consists of one free edge while for a tee-bar it consists of

two free edges. In both cases the following conditions hold :

M, =0 N,, =0 N, =0 (2.382)
oM, M,
Q=5+ 5 M, =0 (2.38b)

Qy being the shear force acting along the boundary edge.

This provides five conditions whereas only four are admissible in thin plate theory.
Reduction to four is achieved by combining the two conditions represented by 2.38b.
This is accomplished by replacing the in-plane forces represented by Myy by an

equivalent system of forces which act as shown in the diagram overleaf.
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Mxy + ( dMxy /dx ) dx

Mxy dx + ( dMxy /ox ) dx

This is based on the assumption that the behaviour of the stiffener will not be changed
if the forces which give rise to the twisting couple My dx which acts on an element dx,
are replaced by two forces perpendicular to the edge, of magnitude Myy and distance dx
apartm'l'his substitute force is equivalent to a shear force given by:

Q' =—7 | (2:39)

so that the joint requirement regarding twisting moments and shearing forces Qy

becomes:

Qy + Qy = Vy =0 (2.40a)

M, M,
n V=g 2t = 0 (2.40b)

As in section 2.1, reversed signs have been used for the twisting moments. The term

Vy is known as the Kirchhoff force which acts perpendicularly to the edge; it is zero



-38 -

when the edge is free.
2.8 Boundary Conditions along the Plate-Stiffener Intersection

It was seen previously that out-of-plane displacements along the panel edges were set
equal to zero (w = 0). This was based on the assumption that the effects of interaction
of the panel edges with adjacent structural elements can be ignored; it was necessary to
make this assumption so as to be able to model one section of an orthogonally stiffened
grillage. When modelling the intersection of the base plate with the stiffener, in order
that the intersection may be represented correctly, the effects of edge deformations and
forces have to be allowed for. The boundary conditions along a plate edge can be
expressed in terms of either displacements or forces. Therefore, along the intersection,

eight conditions in total have to be specified.

Structural continuity dictates that the out-of-plane deflections of the base plate and
stiffener are set equal to the corresponding in-plane deflections of the other element.

Thus, for the co-ordinate system used in Fig. 2.4a.

W=~y (2.41a)

Wy =+ Vp (2.41b)
Compatibility of deflections in the longitudinal direction gives:

up = Uy, (2.42)
In this treatment it is assumed that the plate and stiffener remain at right angles during
deformations. This is valid insofar as the weld along the junction does not permit any

rotation, which seem reasonable considering the relative stiffness of double fillet welds.

For intermittent welds this will not necessarily be true. Along the intersection therefore,

- -4 (2.43)
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The out-of-plane displacements of the plate and stiffener along the intersection give rise
to interaction forces acting in the plane of the other component. In the previous section

it was seen that for a free edge,

oM oM,
M ral .44

where Vy is the Kirchhoff shear force acting in a direction perpendicular to the plate
edge. When the components of the stiffened plate interact, Vy, # 0 and now represents
the interaction force along the junction. Since the edges remain at right angles along the
intersection, the interaction force is identically equal to the in-plane force acting along

the corresponding edge. Therefore,

M, oM,
y» 9y +2 X (2.452)
oM dM
_ 2 Xyw
Nyw- 3y + 2- 3x (2.45b)

where Ny, Ny, are forces acting in the planes of the web and stiffener respectively, as

shown in the following diagrams.
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yp = Vyw

Shear flow requirements imply equilibrium of shear forces across the plate-stiffener

intersection as shown below:

For the coordinate system chosen, the following relationship holds:

nyw = nyr - nyl (2.46)

Finally, in order to introduce flexural continuity, equilibrium of the transverse bending
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moments has to be satisfied. A discontinuity in the base plate moments M, arises, as

shown below:

Myw

The presence of the stiffener gives rise to a line of moments My, which act along the

intersection with the base plate. These are introduced using the following relations :

M,

M =M, -—— (2.47a)
M,,

M, =M, +—~ (2.47b)

In this way, the discontinuity can be modelled in an exact manner. More details
concerning this and the preceding equations shall be given in the next Chapter in which

the application of finite differences and interlacing meshes shall be described.

Finite differences have already been used in conjunction with dynamic relaxation to
model the nonlinear interaction of plate elements. Stiffened plates and box-columns

have been studied and the present work is an extension of these applications.

Using plate and beam theory, Basu, Djahani and Dowling 102 developed a large
deflection elastic analysis for thin plates bearing flatbar stiffeners. The interaction was
modelled by deriving line forces representing stiffener action and including them in the
equation of equilibrium of the plate. Finite differences and a modified Newton-Raphson
method were used to solve the matrix equation. Aitken's 52—extrapolation method was
also incorporated to accelerate convergence. The line force terms used to represent

stiffener action consisted of components acting in the longitudinal and tranverse
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directions and a couple simulating the torsional moment. These components were

obtained from beam theory and thus local buckling effects were not allowed for.

Djahani 44 later extended this analysis to the elasto-plastic range in a study of stiffened
plating. The same interaction formulation was used by Webb and Dowling 45 who used
dynamic relaxation to solve the equations of equilibrium for the stiffened plate. The
analysis was valid in the elasto-plastic range and tee-bar and angle-bar sections were

also considered.

Lamas 103 analysed shear lag effects arising from point loads on box girders. He also
considered the effects of discrete longitudinal stiffeners in the compression flange. In
describing plate-stiffener interaction, the approach proposed by Basu, Djahani and
Dowling 102 was used, with some simplifications. Lamas drew attention to the fact that
due to the way in which the plate-stiffener boundary was modelled, the line forces were
treated as though they were distributed over a finite width equal to the mesh spacing.
The discontinuities actually present at the intersection were consequently not modelled

in an exact manner.

Work on box-columns has progressed along different lines, however, and it is with an
approach adopted in this field that the procedure used here most closely relates. Frieze
and Dowling 57 and Frieze 38 analysed the behaviour of short rectangular box-columns
in the elastic and elasto-plastic range respectively. The Marguerre equations were used
to represent the action of the web and flange elements of the column and interaction

equations analogous to 2.41-2.47 were used.
2.9 Local - Overall Buckling Mode Interaction

The importance of interaction between local and overall buckling modes in stiffened
plates has already been highlighted in Chapter 1 in which current and past work in this
field was discussed (Section 1.3). It was mentioned that mode interaction can lead to
lower buckling loads than if only one failure mode prevailed; consequently it is
necessary to examine to what extent this affects the behaviour of stiffened plates and
also to evaluate over what range of geometries it is important. For long panels, column

effects become significant and have to be included in the analysis.
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The equilibrium equations which describe local behaviour in thin plates cannot be used
to allow for column action and it becomes necessary to introduce an additional beam-
column equation to accomplish this. To model the interaction of modes in an 'exact'
manner, the equations describing local and overall behaviour have to be solved

simultaneously.

The equations which describe beam-column behaviour of a cross-section can be derived
by considering equilibrium perpendicularly to the axis of the cross-section and

rotationally about one end of it, as shown below:

M+ dM
P+ dP
ds/ox 3s/dx + dlox (ds/ox) Q+dQ
The resulting equations are:
2 2
: d d’s
9-2-1\—2/[-+P(—-—82-+—2°-)+'q=0  (248a)
dx dx dx -
P ,
—_— = 2.48b
= 0 ( )
where M = moment about the neutral axis of the cross-section
P = axial force
s = deflection perpendicular to axis of beam-column

S, = initial lateral deflection of beam-column

The constitutive relations from which the values of P and M can be found are:
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P = .[N" dy
(2.49a)

M = Jny dy
(2.490)

where N, are stress resultants acting in the longitudinal direction; these are found from

the constitutive equations for local behaviour. For column action, the appropriate
incremental kinematic relationships are:

s _,0u Odu 1 ds Os os aso os aso
Ag = (5 - 5=P)+ 5(8_x~§;p)($+g+2&__3;) (2.50a)
S % 9%
Ad,=—- ("5 - —3Pp) (2.50b)
ox ox

s . .
where A€, - incremental strain along axis of column

A¢i = incremental curvature of column arising from lateral deflections s.

The above relations apply to a general cross-section. In the case of a flatbar stiffened

plate, the axial force and moment are found from:

b

d P
P =J wa dy + f pr dy (2.51a)
0 0

d
M= Jwaydy + Ppl Zy (2.51b)
0

where N,;, Ny, are the plate and stiffener local stress resultants and Py is the total
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axial force on the base plate. Having established the relations which describe beam-

column action it is necessary to consider how the interaction with local behaviour is to

be achieved.

To model the interaction between the two types of behaviour it is necessary to use a
global formulation in which the terms describing the individual modes are included.
This formulation is obtained by combining the kinematic relationships for the strains in
the longitudinal direction, in which coupling occurs. The total, global axial strain along

the neutral axis is therefore given by:

E:c;_au l(aw)z 8waW°+1(as)z+ asaso
T TV T x T T 0x 0x (2.52)

where the first term is the strain arising from pure compression, the following two
terms arise from local out-of-plane behaviour and the last two arise from column action.
The global strain increases by -2(92s/0x2) at a distance z from the neutral axis of the
cross-section. It is not necessary to consider strains in the other directions because
beam-column action does not affect these. Additionally, equilibrium in the longitudinal
direction is achieved using the equation describing local behaviour (2.1b) and thus

equation 2.48b is not included in the analysis.

The stress resultants used in the local formulation now become global stress resultants
104, The total axial force P and the moment M are found by integrating along the
breadth of the cross-section, at each node. This integration is performed numerically

using an approximate method (e.g. Simpson's First Rule).



CHAPTER THREE

SOLUTION OF GOVERNING EQUATIONS

USING DYNAMIC RELAXATION

As mentioned in Chapter 1, from the mathematical point of view, the task that has been
posed involves the solution of two or more simultaneous sets of partial differential
equations, each of which describes the behaviour of a panel component (plate, web,
flange). Each set consists of two second order linear equations and one fourth order
linear equation in three variables (u,v,w). This becomes apparent when compatibility
relations valid in the elastic range are substituted in equations 2.1 . Coupling of the sets
of pde's occurs along common boundaries where the solutions obtained have to be
compatible. A set of 'dependent’ boundary conditions therefore exists along the
intersection of the panel components, for each of which compatibility of displacement

and forces is required.

Systems of pde's have been solved using any one of a large number of numerical
techniques developed during the past fifty years. Satisfactory results, however, depend
partly on the choice of method employed. Experience has shown that good results are
obtained by 'natural’' methods, i.e. those in which a direct mathematical analogy to the
physical situation exists 105, It will become apparent in this Chapter that Dynamic
Relaxation is in this sense very much a 'natural' method; the method was originally
conceived to represent the undamped harmonic motion of tidal waves. Its application to
structural mechanics static problems was made possible by adding a damping term
which ensures that a steady state solution is obtained. This solution is the same as that
of the statical problem that has been set although a formal proof of this has not yet been

given.
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3.1 Finite Difference Methods and Dynamic Relaxation

One of the earliest applications of finite differences was carried out by Richardson 106
who obtained approximate solutions to differential equations describing stresses in a
dam. In 1921, Hencky !4 employed finite differences to solve the large deflection
equations of flat plates into which a stress function had been introduced (Foppl). The
importance of numerical methods was recognised, but only after the Second World War
with the advent of high-speed computing could they realise their true potential.

The power of finite differences lies in their ability to provide solutions to differential
equations for which analytical solutions cannot be obtained. This, however, is achieved
at the expense of accuracy because the continuum is replaced by a grid at the nodes of
which the equation is solved. The approximate solution approaches the exact solution
when the number of grid points is increased. In classical finite difference methods, the
solution of a set of simultaneous equations is thus required, each of which describes the
behaviour at one grid point . It becomes evident that for a large number of points the
amount of computation becomes excessive for hand-calculation and at this stage
computing facilities become indispensable. The problem often becomes one of matrix

inversion and to this end many algorithms have been developed to generate solutions.

In 1960, Otter and Day gave analytical and computer solutions to the equations
describing tidal flow 107, Physical considerations led to the implementation of a
procedure which forms the basis of Dynamic Relaxation. Day later applied this to the

analysis of concrete pressure vessels 108 and the small deflection behaviour of plates
109

Although the DR algorithm is applied with a finite difference representation, it differs
from classical finite difference methods in a fundamental way. It is not necessary to
carry out a matrix assembly and subsequent inversion because DR uses an iterative
procedure which follows a process of substitution. The available computer storage is
thus utilised more efficiently and the solution can be obtained more quickly. When
using DR, considerations involving matrix bandwidth do not arise, as in finite element

methods. Nonetheless, DR has been combined with a finite element representation 110,
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It was concluded, however, that the finite difference representation is more suitable

because in this case the algorithm converges more rapidly.

During the past 20 years DR has been used to solve progressively more complex
problems. Geometrical 111,112,113,114 and material 97,115,116 nonlinearities have been
successfully incorporated and a variety of structural configurations have been analysed
115,116,117, In nearly all these cases, static solutions have been obtained. At the same
time, significant advances have been made in making DR more efficient from the point

of view of 'numerical performance', i.e. stability and convergence
118,119,120,121,122,123,

3.2 Theoretical Basis of DR - Gradient Methods

In Dynamic Relaxation, the equations of equilibrium of flat plates are treated as damped

equations of motion, i.e.

pX+CX =P @EB.1)

where p, C, P are mass densities, damping and forcing functions respectively. When
solving the thin plate equations, P is in each case set equal to the L.h.s. of equations
2.1. Therefore,

pw% + C,w = P_ (=out-of-balance force, equation 2.1a) (3.2a)

P, a—;+ C,u= Pu ( = out-of-balance force, equation 2.1b) (3.2b)

Py §§t.—+ C,v = P, ( = out-of-balance force, equation 2.1c) (3.2¢c)
where Py, Py Py are mass densities

Cw> Cu» Cy are viscous damping coefficients
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w, u, Vv are velocities in the three orthogonal directions

t is time.

Taking central finite differences in time, equation 3.2a becomes:

w -w w +
t+At2 t-At/2
+C t+At/2

w
t-Av2
pw At W 7] = Pw(t) (33)

Introducing a non-dimensionalised viscous damping coefficient

k =— 3.4

After rearranging, equation 3.3 becomes:

l-kw/2 . At
w = w + ——
t+At/2 1+k“/2 t-At/2 pw a +kw/2)

P w(t) (® (3.5)

The velocity is then integrated to give the displacement at time t+At:

= W, + At w (3.6)

w
t+At t+At/2

In the next cycle of calculations, wg, ¢ becomes wyand corresponding forces and
moments may be obtained. It is apparent from equation 3.6 that the DR algorithm is an
explicit three-term recursion formula since three time levels are involved (t, t+At,
t+At/2). Explicit operators are conditionally stable and thus suitable time step and

density parameters have to be chosen.

It was mentioned earlier that solutions using classical finite difference methods involve
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the inversion of the (stiffness) matrix relating deflections to forces and moments. The

problem can be seen to be of the type:

Ax+b =0 (3.7)

where A is symmetric with positive definite coefficients
b is the vector of constant terms

x is the vector of unknowns.

The linear system 3.7 may be interpreted as a minimising problem, because the

quadratic form

Q = -;-(x,Ax)+(b,x) (3.8)

has its only minimum at the point -A-1 b 120, This can be presented graphically if it is
assumed that the generally multi-dimensional vector x is reduced to one dimension.

Thus the following representation is obtained.

Q=12xAx +bx
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The minimum value of Q occurs when dQ = 0, i.e.

x=Ab 3.9)

Iteration methods generally start with an arbitrary initial vector X and generate from it a
sequence of approximants Xy, X3, X3, ... which under certain conditions, converge to
the solution A-1b . The way in which xy, is computed from its predecessors is
characteristic of the method. The results of substituting an approximant X into the

original equation is called the residual vector ry of xj.

n, = Axk + b ‘ (3.10)
-1 -1
Thus, A'r =x + A'b (3.11)

It follows that limg_, ., Iy = O is a necessary and sufficient condition for the
convergence of an iteration method. From the preceding diagram it is seen that the

magnitude of the residual vector is equal to the gradient of the tangent to Q, namely

r,= Ax,+ b = grad Q ' (3.12)

If an iteration method computes the next approximant Xk in such a way that Axy ( =
Xk+1 - Xk ) is a linear combination of the gradient vectors of Q taken at the preceding

points, Xg, X1, X3, ..., X, then the method is called a gradient method.

Stiefel 120 has shown that for optimum convergence, the recursion formula:

X = X+ Ax, (3.13)
. 1
is of the form X = Xt -(Tk- (rp+e,  Ax 4) k=12,.
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=0 k=0 (3.14)

where qy, ey are relaxation coefficients.

Various types of recursion formulae have been proposed, the earliest being that of
Richardson. Frankel proposed the following method:

a+b
=7 e1=0 k=0

(3.15)

I
[J

Ja+bo Ja-ib e
=) =)

qk k-1

where a, b are the minimum and maximum eigenvalues of the stiffness matrix. This
method was termed the "second order Richardson process”. Rearranging equations

3.13 and 3.14 as:

- X =—(l‘ + € AX ) (3.16)

and substituting from equation 3.15, the following form is obtained:

2 -Jb
] ‘m>2[’k+<£2—f->2 -

(JJ: JJ:)A (ﬁ+f)2 r (3.17)

Since for the DR algorithm
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Aw =W -w
t+At/2 t+At t

- k“/2 w + At2 P
1+k w/z t-At/2 o, (1+ k“/2) w(t)

(3.18)

it becomes apparent that the DR algorithm is identical to Frankel's method. Comparing

coefficients,

1-k, /2 J— 5 2
1+k /2 Ji; N J‘ (3.192)

—_At2 — (3.19b)
= 2 .
P, (1+k,/2) (2 + Jb)
the following condition for numerical stability is obtained:
AC 4
o axb (3.20)
w

Consequently it becomes necessary to find a, b which are the minimum and maximum
eigenvalues of the stiffness matrix. The maximum eigenvalue, b, is found using

Gershgorin's theorem which states that

Ibl < by = max, iISijl (3.21)
j=1

where bg is the Gershgorin bound and S;; are the coefficients of individual rows. In
order to obtain Sj; numerical differentation is used, an example of which is given in

Appendix B. Although it is not easy to find the minimum eigenvalue a, in most cases
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a«bhb (3.22)
A 4

and thus — =% (3.23)
p G

ensures stability of the procedure. Cassell quotes values of a and b for a square plate
for which a/b < 0.0006 for 70 degrees of freedom 116, One case in which the present
author found that the above condition did not give a stable iteration was in the elastic
solution of an axially compressed column. For this case, stability was obtained by

multiplying bg by 1.25.

In order to minimise computational costs, various researchers studied the problem of
convergence when analysing statics problems 119,120,122,123 If the real density of the
material, p, is used in equation 3.2, the structure vibrates in its fundamental mode,
which corresponds to the natural period. In order to obtain a fully damped solution , it
is necessary to perform at least 3T/2 iterations, where T is the natural period 112.

Since in static analyses the true transient response is of no interest, suitable values of At
and p can be chosen in order to accelerate the rate of convergence. In recent work, most
researchers have arbitrarily given At the value of 1 and have used equation 3.23 to

determine p. Thus,

bg (3.24)

Having established conditions for numerical stability , the sequence of calculations
within each iterative cycle has to be considered. The output from the DR algorithm
consists of deflections at the nodes of the plate and stiffener grids; these are used as

input for the subsequent cycle. Calculations typically proceed as outlined below:

a. Kinematic relationships are used to obtain incremental strains.

b. Total stresses are found using equation 2.31.
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c. Nodal stress resultants (force/unit width, moment/unit width) are found by
integrating numerically the total stresses.

d. Boundary conditions for stress resultants are applied.

e. Fictitious densities (p, p,, etc.) are found.

f. Equations of equilibrium are applied and out-of-balance forces (P, Py, etc.) are
found.

g. Nodal velocities are determined using equation 3.5.

h. The velocities are integrated using equation 3.6 to give displacements.

i. Displacement boundary conditions are set.

Calculations are performed at each stage for both plate and stiffener nodes so that the
equations of equilibrium for each panel component are relaxed simultaneously. Thus,
when convergence is achieved, the boundary conditions along the common edges are

satisfied. Convergence is checked by monitoring

- deflections at critical locations
- velocities
- the total kinetic energy content of the structure, given by:

imax, jmax ) ) )
x (mass) x @ + v+ w)
ij=1

K.E. =

(Y T

During the first few cycles of an increment the velocities generally increase. They then
gradually decrease and the deflections reach steady values about which small
oscillations take place; that is, the velocities still fluctuate but with much smaller values.

At this point, the kinetic energy reaches a minimum.
3.3 Choice of Finite Difference Grid - Interlacing Meshes

When an equation involving two or more dependent variables is discretised using a
finite difference grid, in certain cases it becomes advantageous to use interlacing
meshes. Each variable is evaluated at the nodes of one or other of the meshes. It is

possible to use two or more interlacing grids.
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Gilles 124 has shown that the use of interlacing meshes enables one to deal with
differential equations of lower order than if one variable is first eliminated between the
governing equations. This is the case when a stress function is introduced into the von
Karman equations. A second advantage is that the 'coupling' effects between dependent
variables (u, v, w) can be more accurately represented. This becomes evident when
comparing the finite differences expressions for various terms in the equations.
o)

Consider, for example, equation 2.16 which describes longitudinal equilibrium in the
plate. If expressions for large deflection elastic strains (ignoring initial imperfections)

are substituted, the equation takes the form

2 2 2 2 2
du oJwodw du Jdv Jdw odw ow
Cl—+ =———|+ C + + (=—+=—)| =0 (325
[ 552 ox ax xy ayz Oxdy O0xdy dx oy (3-25)
o o o v
The corresponding finite difference expressions for w T3 mobtamed when

using a non-interlacing square grid as shown below are:

17% YU (3.26)

7 4 8 32v

oxdy 2a 2a 2a

where the orders of the errors involved are proportional to the squares of the
denominators (size of mesh). It is thus evident that the use of the above approximation
for the third term introduces larger errors in the equation than the other terms since the
effective length is doubled.
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The use of a second interlacing mesh, at the nodes of which v is found, reduces the
error since the effective mesh length becomes 'a' when evaluating the finite difference

expression for 92v/0xdy.

Gilles also noted that a disadvantage associated with using more than one mesh is that
the independent variables are not found at the same points. In the past this has not
proven to be a serious drawback although when considering the finite difference
representation of the junction of two plate elements (e.g. plate-stiffener junction), this
has to be borne in mind when deciding how the intersection is to be represented

(Section 3.7).

Following past practice 97-115 the von Karman equations were solved on interlacing

grids as shown in the diagram

¢« W, N, N, MM,

. — .

o N /M
T o T Xy Xy
. «~- . T u

«— A4

where the » nodes are used to define the edges of the plate.

The calculation of the yield function, however, involves stresses ( ©,, Oy txy) at both
» and o nodes ('w' nodes and 'shear’ nodes). The arrangement described above
generates values of G, o, at * nodes and Tyy At O r;odes. The remaining values which
are required can be obtained either by averaging existing stresses or by calculating first
the required strains (g, Eys Yxy) and then using corresponding elasto-plastic relations.
In order to reduce storage requirements, Frieze 115 chose the first alternative. In the
present work, however, the second alternative was followed since computer facilities

which are now available do not pose such restrictions.

3.4 Finite Difference Form of Equations
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Before embarking on the derivation of finite difference expressions using the mesh
scheme described previously, it is necessary to consider the calculations carried out
within each relaxation cycle. These involve discretisation in space and time as specified
by the DR algorithm. The discretisation in time uses a central difference scheme, while

in this section expressions for the spatial discretisation will be given.

The kinematic relationships (equations 2.2 and 2.3) are linear combinations of strains
due to in-plane and out-of-plane deflections. In order to derive finite difference
expressions for these, the Taylor series can be used and simple central difference forms
obtained. Direct strains Ag,, Aey are required at the w-nodes and shear strains Any are
required at the shear nodes. The resulting expressions for the discretised component
strains are given in Table 3.1 together with their associated orders of error. It is seen
that the maximum error is of the order of AxAy, and that this is directly dependent on
the type and size of mesh used. If non-interlacing meshes were used the error would

have been of the order of (AxAy)2.

Table 3.1 Finite Difference Expressions for Strains and Curvatures

Strain Discretised Form Approximation Order of Error
du/ox Au/Ax (uj - uj.q,j/Ax | Ax
ov/dy Av/Ay (vij - Vij-1/Ay Ay
ow/ox Aw/Ax (Wis1,j - Wi-1,j)/2Ax Ax2
ow/dy Aw/Ay (Wij+1 - Wij-1)/24y Ay?
92w/ox?2 A2w/Ax2 (Wip1,j - 2Wij +Wi_1,j)/Ax? Ax2
92w/dy2 A2w/Ay? (Wije1 - 2Wij +Wjj.1)/Ay? Ay?
du/dy Au/Ay (v j41- Ui j)/Ay Ay
av/ox Av/Ax (Vie1,j - Vij)/Ax Ax
ow/0x Aw/Ax (Wisl,j - Wij + WitLjel ~Wij+1)/2AX Ax2
ow/dy Aw/Ay (Wig1jol = Wisl,j + Wije1 “Wij)/24y Ay?

02w/oxdy  A2wiAxAy (Wis1,j+1 - Wisl,j “Wijs1 + Wijl/AxZhy  AxAy

In the above table expressions are given for ow/dx and dw/dy at both 'w' and shear
nodes. The strains which result are substituted in equations 2.3 to obtain corresponding
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incremental multilayer strains. Previous researchers, 77104 have found that the
improvement achieved by increasing the number of levels beyond five is outweighed by
the accompanying increase in computational cost. For this reason the number of levels

in the present work was limited to five.

The multilayer strains are then used to obtain total multilayer stresses which are
subsequently integrated numerically using Simpson's First Rule. The stress resultants
which are obtained are substituted in the equations of equilibrium which are cast in

finite difference form.
3.5 Discretisation of Boundary Conditions

The application of non-interlacing and interlacing meshes in modelling plate boundaries
using DR has been described in several papers. Rushton used non-interlacing meshes
and considered several types of edges (simply supported, rotationally clamped, free) in
the elastic range 110, 112,113,114, Frieze has given a generalised formulation valid in the
elasto-plastic range 115, This description, however, was intended only for a single-
layer representation, using the Ilyushin criterion. Harding utilised a multilayer approach
but used integrated rigidities 97. In his method the description of the edges was similar
to that of Frieze. In this thesis, multilayer rigidities have been used and consequently it

is necessary to reconsider the representation of the edges.

Of importance in buckling problems is the out-of-plane behaviour and in this section a
generalised description suitable for rigorous multilayer solutions will be given. It will
seen that this reduces to fairly simple forms in the usual cases of simply supported,

rotationally clamped and free edges.

The slope of the edge x = 0 of a flat plate is in general governed by:

ow
M= -k5 (3.27)

where k; is a rotational spring stiffness ( ee 2k, 2 0 ). At any level of loading, the

current value of the stress resultant is given by:



+t/2

Mx = I Oz Z dz (3.28)
-t/2

where o, , are the total stresses acting at a distance z from the mid-thickness layer of

the plate. The stresses O, , are found from equation 2.31 and thus
+t/2

M, = j (of, + 4o, )zdz (3.29)
-t/2

where p denotes the value at the end of the previous increment. Elasto-plastic relations
are used to obtain incremental stresses from incremental strains and at any distance z

from the neutral axis:

Ao-x,z = Ell,z A&:x,z + 1:‘;‘12,2 Aey,z + E13,z A'ny,z (3-30)

— -—P) (3.31)
X

T dw ow
%™ Py | A8, 7(3x_2_ gx?p) *Bp, 88y, * B, My, (332)

Similar expressions can be obtained for z = 2, 4, 5 and these are substituted in equation
3.29 to give:
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1
— MP 1= - - —
= Mx + 3 [ > (Acrxb1 Acsxhs )+ A(sz=2 AGXM]

M+ DL e ae, IO TV LE, A
= Motz bt Bty Eg g P) + By, A8 4
2 2
T dw OJOw
E13z-1 A’YXYH B b P (Ae"hs "2 2 2p)) 12 ASYH_ E13z,—sA xy,s 4 T
X~ 0X
E A T 3w dw E. A E. A
112%2 ( axz=3 -4_ ( ax2 ) ax2 p)) + 12 =2 € z=2 + 131-2 nyz=2 B
T o’w o'w
E11z=4 (As"m i Z( 2 L2 P) - By , A€ - E13z=4 ’YXYH ]
ox~ ox
(3.33)
[ 1
where l\df‘=l_2[5(czz-l—o§z-s)+o£z-e- OI’)""]
dw &
The coefficients of ___“21, —v—:p are equal to the integrated elasto-plastic rigidity, D*,
ox
given by
w2
2
D* = J‘ Eu’zz dz | (3.34)

-t/2

After substituting equation 3.34 into equation 3.33, rearranging and letting the
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remainder of the r.h.s. of equation 3.33 equal to o, equation 3.27 becomes:

2

d Iw
-k, '32 = o —D*
X x> (3.35)
dw ow
Using finite difference expressions for -5—, -8_2— , equation 3.35 becomes :
X X
W, -W W, -2w + W
_ int ext o, int b ext
“—ar - %P 2 (3.36)

Collecting terms and dividing by (k,Ax/2 +D*) an explicit form is obtained for wey;.

[k Ax . 2
B 2 2D* Ax" o
Wext = krAx Wint ¥ k-rAx Wy kr Ax (3.37)
3 + D* 5 + D* 5— + D*

This expression gives in generalised form the fictitious out-of-plane deflections along
the edge x = 0 in the elasto-plastic range. It is based on the use of multilayer rigidities
and strains and is an approximate result because second order terms involving shear
strains and curvatures have not been included and the incremental strains which are
used are obtained in the previous cycle. The effect of this is to reducb:tg/‘cg;;vé;gence
although accounting for it more rigorously would considerably complicate the analysis.
The cases which are of practical interest are the simply supported, clamped and free

edges. In the elastic range, equation 3.37 reduces to:
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kr Ax D
2 2D*
Wiy + | ———| W, (3.38)
kr Ax . k rAx .
5 +D 3 +D

For simply supported edges, wp, = 0, k; = 0. Hence

Wext = -~ Wint (3.39)
Along clamped edges, wy, = 0, k; = «. Hence

Wext = Wint (3.40)

In the elasto-plastic range, out-of-plane deflections along simply supported edges are
given by:

2
X
Wext = - Wint + -—D*—O‘ (3.41)

Along clamped edges deflections are given by equation 3.40. Out-of-plane deflections

along free edges are found from:

2

) AX
Wext = 2Wh - Wint + o
(3.42)

Different values of spring stiffness k;, may be used to represent conditions of

intermediate rotational restraint.

Conditions of in-plane restraint act parallel and perpendicular to each plate edge.
Displacements parallel to the plate edges shall be considered first. For the unloaded
longitudinal edges of an axially compressed panel forming part of an orthogonal
grillage, the displacements u are determined from the equation of equilibrium (equation

2.1b). The condition dNyy / dy = 0 is satisfied by setting Nyyey; = Nyyiq - Similarly
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the displacements along the transverse edges are found using equation 2.1c and any /

ox = 0, giving Nyyex = Nyyiq -

For panels which are loaded under lateral pressure with edges that are fully built-in, the
displacements along the edges are zero, i.e. v = 0 (u = 0). For the elastic range this
condition is sufficient to fully define the problem. In the plastic range, however, the
tangential shear condition has to be determined along the edge in order to evaluate the
yield function. This is accomplished by rearranging the equation of equilibrium along
the edge. Thus, along the edge y =0,

3N, oN,
=% Ty 0 (3:43)
N N Ax —-aNy

Vow W Jy (3.44)

The shear stress resultant can then be found by averaging internal and external values:

2
1
nyb -2 lexyi‘j (3.45)
i,j=

The displacements perpendicular to each plate edge depend either on the condition of
loading or on the restraint across that edge. For a uniformly compressed edge, the

displacement along the boundary is constant:

(u_ . +u_)
u, = int > ext (3.46)
Therefore Uext = 2ub- Yint ’ (3.47)

For a fully built-in edge loaded under lateral pressure, this becomes:
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Yext =~ Yint (3.48)

On the other hand, the longitudinal unloaded edges can be either:

- restrained (v =0)
- constrained (v = constant such that INydx =0)
- unrestrained Ny =0)

The first of these conditions is achieved by setting

( vint + vext)

Vp=—7—— =0 (3.49)

Vext = ~ Vint (3.50)

The constrained edge is described by equation 2.37. Frieze 4! satisfied this condition
by treating the expression containing the integral sign as an equation of equilibrium

which was then relaxed using the DR format. Thus,

1k 2 !
GHAV2 _ Vo AV At J’ N dx X
b - b S51a
1+k"b/2 pVb(1+ka/2) ] y ( )
t+At t . t+AL
=V, + At
b b Vb (3.51b)
Vext = 2 Y ™ Vine (3.52)

The total force acting on the edge was found by numerical integration using the

trapezoidal rule.



For unrestrained edges, the constitutive equation relating Ny, to the in-plane strain Aey

was used and an explicit expression for vey obtained.

+t/2
N, = I 6, dz = 0 (3.53)
-t/2
Using equation 2.3ia,
+t/2 +t/2 +t/2
N, = j(o‘;moy) dz = jc‘y’ dz + jog dz
-t/2 -2 -t/2
+t/2
P
Therefore, N+ I Ac,dz = 0 (3.54)
-t/2
+t/2
and since Ny =N, =0, _[Aoy dz =0 (3.55)
-t/2

Applying Simpson's Rule for five ordinates,

Ao+ Acy + 2A(}'yz=13 + 4(A0’yl=2+ AGYH) =0 | (3.56)

Yz z=5
The incremental stress at the mid-thickness position is given by

AO’y = E Ae + E Ae + E A’nyz=3 (357)

z3 2 1:-3 X,3 22z=3 Y23 23z=3

where the incremental strains are given by equation 2.2. Substituting for Az-:y

z=3

A()'yk3 = E21z=3A£xz=3 + E221.=3 [(-a-;—a—y-p) +'§' (3)',—' 3y P) (ay + ayp +2 3y

ov av . 1 ow ow _ 9w ow awo)J+
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+ E,, Ay (3.58)

) ov _ Vint ™ Vext
and since 'a—y' = T

Vext can be found by rearranging equations 3.57, 3.58 and 3.59. For the edge y =0,

(3.59)

Ay[{AG. -E. Ae. -E.. Ay YE v, Low ow
Vext= Vi~ AY I Gyz,s' 21,4 sxﬁ' 23,3 ’YX)’st} 222=3+§)7p —f(ay i ayp)
ow  ow aWo
( 3y + ayp +2 3y )] (3.60)

Having described how fictitious deflections are obtained along the edge of the panel, it

is necessary to consider how the forces act in the three types of conditions considered.

For simply supported edges, the appropriate condition is, for edges parallel to the y-
axis, M, = 0. The other conditions which are usually associated with the simply
supported edge are w = 0, Ny, = 0, and any one of the conditions perpendicular to the
edge. The free edge is satisfied by setting, for edges parallel to the x-axis,

M, =0 N, =0 Nyy =0 (3.61)
d )
and al\;[y +2 1;’“’ =0 (3.62)

The last condition is rearranged and applied as follows:

aMxy

M)'ext = MYim + 2Ay ax : (363)
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The value of aMxylax is required along the edge and therefore My y.y;. This is obtained

by extrapolating internal values at the shear nodes since interlacing meshes are used.
3.6 Isolated Flatbar Stiffeners

In marine structures, stiffeners are usually attached to the shell plating by some type of
welding process. In order to model the rotational restraint provided to the stiffener by
the shell plating and vice versa, various simplifying assumptions have been made (See

Chapter 1).

Before considering the problem of interactive buckling, a limited study of the behaviour
of isolated stiffeners was conducted and is reported in this section. For the study, two
computer programs were prepared. The first, STATEL, performs a static elastic
analysis of a flat plate loaded under edge displacement and/or lateral pressure. The
second, STAPL, is an extension of the first and allows for the effects of material non-
linearity. Both programs use a large deflection formulation of the von Karman
equations and plasticity is treated according to the von Mises yield criterion, as
described in Chapter 2. The equations of equilibrium are solved using Dynamic
Relaxation on an interlacing finite difference grid. The boundary conditions that were

considered are given in the table below.

Table 3.2 Isolated Plate - Boundary Conditions

Loaded edges Loaded edges
Simply supported * Clamped
S-S-S-S C-C-C-C
S-S-S-F C-C-C-F
S-C-S-F C-S-C-F

where S is simply supported, C is clamped, and F is a free edge.

The solution obtained for an imperfect, square plate of moderate slenderness and
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simply supported on all sides is compared in Fig. 3.1 with that derived analytically by
Yamaki 18. An 8 x 8 mesh was used and it is seen that good correlation was obtained

with respect to both the buckling load and the postbuckling response.

The simply supported plate is compared with a plate having one unloaded edge free and
the other unloaded edge simply supported or clamped in Fig. 3.2. The buckling loads
were checked against Timoshenko's solutions 9° and good agreement was obtained.
From Fig. 3.2 it is seen that, as expected, the effect of the free edge is to reduce the
buckling load. The stiffness of the plate is not however noticeably affected in the
postbuckling range for this particular geometry (square plate), and the plate continues to
carry further load. It is of interest to note that the rotational restraint has comparatively
little effect on the buckling load and also that only in the postbuckling range do the out-
of-plane deflections begin to differ appreciably. Similar conclusions can be drawn in
relation to clamped plates, as depicted in Fig. 3.3. Comparing the results presented in
Figs 3.2 and 3.3 shows however that the rotational restraint along the loaded edges

affects the buckling stress level considerably.

The effect of slenderness ratio on the behaviour of simply supported square plates with
one unloaded edge free is shown in Fig. 3.4. It is noted that even though for the more
slender plates the buckling loads are considerably reduced, in the postbuckling range all
plates exhibit a substantial reserve of strength.

One parameter however which does affect the postbuckling behaviour of the plates is
the aspect ratio. In Fig. 3.5, a series of plates with b/t = 60 and wy/t = 0.10 are
examined and it is seen that, as a/b is increased, the buckling load decreases and
becomes more clearly defined. For these plates, the initial imperfection profiles chosen

were:
Table 3.3 Isolated Plate Imperfection Profiles
Aspect Ratio Imperfection Profile

0.875 single half-sine
1.0 single half-sine
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Table 3.3 (cont'd)
1.5 single half-sine
2.0 double half-sine
3.0 triple half-sine

The deflections which are plotted were in all cases measured midway along the free

edge of the plate.

Elasto-plastic solutions using the second program, STAPL, are presented in Figs 3.6a
and 3.6b. The plate analysed was identical to that for which solutions have been

obtained by Harding 97 and Frieze 115, The properties of this plate are as follows:

Table 3.4 Isolated Plate particulars for Elastoplastic Analysis

Aspect ratio a/b 0.875
Slenderness ratio b/t 55
Max initial imperfection Wo b/1000
Young's Modulus E 207
Poisson's ratio \Y 0.3
Yield stress o, 250

The stress-strain curve for the simply supported case (S-S-S-S) was indistinguishable
from that of Harding, who also solved the von Karman equations using dynamic
relaxation. In his case the von Mises yield criteria and the Prandtl-Reuss flow rule were
employed but he did not correct for penetrations of the yield surface. Presumably small
enough load increments were chosen to ensure that (i) the numerical stability was not

jeopardised and (ii) the spread of plasticity was correctly monitored.

The peakiness of the simply supported plate response does not arise in the other two
cases for which the ultimate strengths (6/0,,) are 0.60 and 0.52 for the free-clamped
and the free-simply supported plate respectively. In these two cases elastic buckling
occurred at average stress ratios of 0.38 and 0.30, i.e. at much lower levels than the

corresponding peak loads, in contrast with the S-S-S-S case in which elastic buckling
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and yielding coincided.

Stress-strain curves for plates having the same geometrical and material properties but
with clamped edges are presented in Fig. 3.6. For these cases, both the loaded edges
and the unloaded supported edges are also restrained in the transverse direction. The
plate with all edges clamped reaches the squash load (0/0,, = 1.0) and plastic buckling
ensues. The load then gradually drops off but the plate is seen to be capable of carrying
a substantial load well into the postfailure region. The slight increase in strains
preceding the squash load is due to first yield. The plates with one edge free also fail by
plastic buckling, very soon after first yield is reached. In none of these cases does

elastic buckling occur.

Comparing Figs 3.6a and 3.6b it is observed that in the linear elastic range the stiffness
of the plate depends on the boundary condition along the loaded edges. Furthermore,
the rotational restraint along the unloaded supported edges is of secondary importance
for square plates and only really affects the response in the postfailure regime.

3.7 Discretisation of Plate-Stiffener Intersection

The equations describing conditions of equilibrium along the junction have been
presented in Section 2.8. To implement the finite difference scheme in the most efficient
manner possible, it is necessary to consider the various options that are available when

representing the intersection.

For non-interlacing meshes, the obvious arrangement is to have plate and stiffener
nodes coinciding along the boundary. This ensures that compability of deflections and
stress resultants (forces, moments) is achieved with the minimum amount of error. For

interlacing meshes on the other hand, the following additional factors have to be

considered:

- the representation of the discontinuities in the distribution of the stress resultants
(M,,Nyy)
- the ease with which the finite difference expressions can be incorporated in the

numerical procedure
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- the minimisation of errors resulting from the use of finite difference
approximants

- the minimisation of computation time.

It is possible to have either 'w' or 'shear nodes along the intersection, giving rise to two
finite difference schemes. Both options were considered and it was decided to position
'w' nodes from each grid along the intersection. The use of intersecting shear nodes
gives rise to larger discretisation errors in the equations of longitudinal equilibrium
(2.42 and 2.46). In addition, the representation of the discontinuities in My, N,y is

more complicated.

To improve the accuracy a stage further, 'auxiliary' nodes located in the plate on either
side of the stiffener were introduced. These were used to improve the representation of
equations 2.45a, 2.45b and 2.47 describing the distributions of in-plane forces and the

torsional moment. The resulting arrangement is shown in Fig. 3.7.

In the remaining part of this section, each condition shall be examined in turn and the
corresponding finite difference representation described. The principle upon which the
equations were introduced into the numerical procedure is that, if a displacement
condition is adopted for one panel component, then force equilibrium is used for the

corresponding condition on the adjoining panel component 57,58,
3.7.1 Longitudinal Equilibrium

The equations of equilibrium in the longitudinal direction are:

N,  ON,

wx "oy ~ O (3.64a)
ON, N,

et oy " O (3.64b)

for the plate and web, respectively. These are solved in discretised form at the 'u'

nodes of each grid (up, uy,). Along the intersection, up and uy, coincide and the total
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force acting at either 'u' node consequently consists of contributions from both panel
components. Equilibrium is achieved by summing the longitudinal forces acting at the
'u’ nodes, solving the equation of equilibrium for u,, and then setting the displacements

in the plate equal to those in the web (up, = uy,).

The stress resultants N, acting on each panel component are shown in separated form
in Fig. 3.8. It is seen that the longitudinal force arising along the intersection due to
stiffener action is Ny Ay,/2. The corresponding force in the base plate is NypAyp and
therefore the total longitudinal force at any point along the intersection arising from

direct stresses is:

Nx ( Ayp+ Ayw/2) = prAyp + waAyw/Z (365)

where N, is the mean longitudinal stress resultant at any position along the intersection.

A Ay /2
DN, = N (—2 ) ¢ N, (—2
P AyP + Ay, /2 AyP + Ay, /2
oON_ apr ( Ay, ) awa Ay /2 )
= + (3.66)
d d F)
X X Ay, + Ay, /2 X Ay, + Ay,/2

The shear forces acting along the intersection due to plate and stiffener action are

NyypAx and N,y Ax respectively (Nyyp = (Nxypl + Nyxypr)/2). Summing as previously
and differentiating with respect to y,

N,y N,y , Ay, )+3nyw( Ay 2

3.67
dy dy Ay, +8y,/2 dy Ay, + Ay /2 .67

The equation of equilibrium along the intersection therefore becomes:
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( 9% + ay )( ) +( ox + ox ) ( ) =0 (368)
Ayp+ Ay /2 Ayp+ Ay /2

It is seen that if either panel component is considered alone, the equation reduces to the
usual form. In order to satisfy shear flow requirements along the boundary the external
fictitious shear stress resultant is required (Nyywexy)- This is obtained by substituting:

1
wab 5 ( Nwaint * Nwaeat )

in equation 2.46, where Nyywb 18 the shear stress resultant along the boundary giving:

S nypr) B nyvim (3.69)

A better approximation for (Nyyp) - Nyyy,) along the intersection is obtained by linear
extrapolation of the shear stress resultants on either side of the stiffener as shown in the

following diagram.

Nxypl'

Nxyp (3) Nxyp (4)

O
A4

Nxyp Nxyp
(6)) )

Plate shear nodes




-75 -

Ny, = (3N, -N y2
N,y ' = Ny -N, )2
VN, = 3(NXY;;; - nypr") + nyplz- nym; nywiw’t (3.70)
& 4 g

The equation obtained above is used to satisfy shear flow requirements along the plate-

stiffener interface.
3.7.2 Equilibrium Normal to the Stiffener

Equilibrium in the direction normal to the stiffener is governed by a) the action of a
Kirchoff force, Q,,, on the plate arising from out-of-plane movement of the stiffener
along the intersection and b) by compatibility of deflections in this direction (equations
2.41b and 2.45a). The Kirchoff force acts in the plane of the plate and represents a
body force (Figs 3.9a, 3.9b). This gives rise to a discontinuity in the distribution of in-
plane forces, Ny, The terms required for the calculation of Q,, are indicated in Fig.
3.9c. The twisting moments Myy,, which are determined at the shear nodes are in this

case required at the 'w' nodes and are obtained from the expression :

+t/2

M, v =J Ty 29 (3.71)
-t/2

where T, are multilayer shear stresses along the edge of the stiffener. To represent

the disco);ltinuity in the distribution of plate transverse forces Nyp due to the body
forces Q,,, auxiliary nodes on either side of the stiffener were introduced. In this
manner, the 'smearing’ effect which arises when nodes at a distance Ayp are used is
avoided. The Kirchhoff force Q,, acts on the left-hand and right-hand side sections of

the plate and is introduced using the following equations:
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(3.72a)

ypr y 2 (3.72b)

allowing for the directions of the co-ordinate axes. The conditions of equilibrium
normal to the stiffener are implemented in the numerical procedure in the following

order:

1. Force and moment stress resultants along the stiffener edge are found using
numerical integration.

2. Kirchhoff force terms are found from equation 2.45a.

3. In-plane forces acting on the plate on either side of the stiffener are found using
equation 2.45b.

4. Transverse in-plane displacements in the plate, v, are found from the equation
of equilibrium (2.1c).

5. Stiffener out-of-plane deflections, wy,, are found at the intersection using the

displacement compatibility equation. (: -
3.7.3 Equilibrium in the Plane of the Stiffener

Equilibrium in the plane of the stiffener is similarly governed by the action of the
Kirchhoff force Qp due to the out-of-plane deflections of the plate and by compatibility
of deflections (wp, V). The sign convention for the coordinate axes used is indicated

in the following diagram.
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y
Z
. + Qpr
y \4
+Q,
z
+ Qpl
From the diagram, Q-p= Q%' Qpl/r
oM oM
where, Qpr= —aym’- + 2 ——a”-‘(m (3.73a)
aMypl aMxypl
W= " (3.73b)

The force acting perpendicularly to the attached edge of the stiffener, Nyw, is equal to
Qp, the Kirchhoff force. Thus,

N = agtym: 2 aN;"””é - al:yypﬂ -2 BN;‘XYP”Y (3.74)
X

yw

along the intersection. For compatibility of deflections,
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(v

wb = - wint + vwext (3.75)

where vy, is determined by rearranging the force-strain equation perpendicular to the
attached edge. In this manner, compatibility of forces and deflections is achieved. The

sequence of calculations in the numerical procedure is as follows:

1. Force and moment stress resultants in the base plate are determined.

2. Kirchhoff forces Q, acting along the plate-stiffener intersection are then
obtained.

3. The stiffener in-plane vertical force, N yw» along the intersection is set equal to
the Kirchhoff force. b

4. The fictitious value for the stiffener vertical deflection, vy, is obtained as
described above.

5. Compatibility of deflections is achieved by employing equation 3.75.
3.7.4 Rotational Equilibrium

The conditions governing rotational equilibrium involve the transversely acting bending
moments My, and the rotations ow/dy at the intersection. The rotational action of the
stiffener produces a discontinuity in the distribution of the bending moments in the
plate, as shown schematically in Chapter 2 (Section 2.8). To reproduce this using the
finite difference scheme use is made of the auxiliary nodes located on either side of the
stiffener. Since the geometry of the plate does not change on either side of the stiffener,
it may be assumed that the bending moments My, are distributed equally between the

two plate sections.

Myw

- S
Mypl  Mypr
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Thus, from the diagram,

M
= I A4
Mwl Myp 2 (3.76a)
MYW
Mypr = Myp 5 (3.76b)

where My, , My, act on the left-hand and right-hand sides of the base plate

respectively. Geometrical compatibility is represented by equation 2.43. Casting in

finite difference terms and rearranging, this becomes:

awp
Yo =~ Vg, = 2487, oy (3.77)

Wext Win

The use of th‘is equation ensures that the plate and stiffener always deform at right

angles.

To ensure numerical stability of the equations derived in this section, the Gershgorin
bounds of the additional terms were included in the expressions for the fictitious

densities along the intersection.
3.8 Elastic Response of Flat Stiffened Plating

Results obtained using the equations derived previously will now be described and
compared with beam and plate theory. Before considering the combined interactions
which arise when lateral torsional buckling occurs, each condition will be examined

separately.

Lateral pressure loading on the base plate of a stiffener- plate combination gives rise to
interaction forces in the plane of the stiffener, as described in Section 2.7. In order to

check equilibrium in the longitudinal and transverse directions, a stiffened plate whose
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particulars are given in Fig. 3.10 was analysed. Lateral pressure loading was applied to
the plate whose longitudinal edges were free to move out-of-plane, the whole cross-
section being supported at each end in such a way that the displacement of the
intersection in the plane of the stiffener was zero, although different conditions could be

applied to the transverse edges of the stiffener.

In-plane movement of the supported edges was allowed and the axial force at each node
along the edges was set equal to zero (N, = 0, N,, = 0). The transverse displacement

of the stiffener at the supported edges was treated in the following ways:

i) N XYy = 0 (unrestrained)
oN,

ii) x = =0 (partially restrained)

1ii) Ve =0 (fully restrained)

Case (i) represents an isolated cross-section receiving no support from the adjoining
structure at the propped edges other than at the plate-stiffener intersection. In case (ii), a
symmetrical shear stress distribution is assumed along the transverse esges and case

(iii) corresponds to a fully restrained edge (upper bound).

The results showed minimal differences for cases (ii) and (iii) since for case (ii) the
transverse displacements v, along the stiffener edge were several orders of magnitude
smaller than at any other location. The curves produced in Figs 3.11a and 3.11b

correspond to case (ii).

The longitudinal stresses in the plate and stiffener are compared with beam theory in
Figs 3.11b, and 3.11c. Figure 3.11a shows the Kirchﬁoff force acting along the
stiffener in the range L/2 > x > 0. It is seen that for the range x > L/4 end-effects are
negligible and the magnitude of the interactive force agrees well with the analytical
result (Q, = 6480 N/m). In Fig. 3.11b the longitudinal force along the stiffener tip is
plotted for the range L/2 > x > 0 and compared with linear beam theory (N, = o,t=
Myt/T). The distribution across the depth of the stiffener at x = L/2 is plotted in Fig.

3.11c, and again good agreement is observed. The distribution of shear flow in the
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cross-section at x = L/4 is compared with beam theory in Fig. 3.12. In deriving the
exact shear flow distribution, sections at x = 7L/32 and 9L/32 were considered and
numerical integration performed. The distribution of longitudinal stress resultants (N,)
in the plate at x = L/2 is plotted in Fig. 3.13. From this, the effective breadth of the
section was calculated and compared with that given in Table EB1 126. The data
contained in this table were produced in a study of shear lag using a finite element

program.

Rotational and transverse equilibrium along the intersection in the base plate were
examined using an alternative arrangement. In order to apply a known load to the plate
along the intersection in the transverse direction, the stiffener was treated as a cantilever
subjected to a uniformly distributed load, as shown in Fig. 3.14. In this manner, the
bending moment and reaction force along the attached edge can be readily compared

with beam theory.

The combined effects of the interactions when lateral torsional buckling of the stiffener
occurs are illustrated in Figs 3.16a and 3.16b. A rectangular cross-section whose
particulars are given in Table 3.5 was loaded in axial compression. The stiffener was

analysed

i) isolated
ii) attached to a flat plate

When considering (ii), the stiffened plate was modelled as being either simply
supported or rotationally clamped. The unloaded edges of the base plate were treated as
being either constrained (v = const, dMy/dy = 0) or rotationally clamped and supported
against out-of-plane displacement (Ny = 0, w = 0). For the stiffened plate when
clamped, the longitudinal unloaded edges of the base plate were restrained from
deflecting in the out-of-plane direction (w = 0).

Table 3.5 Stiffener and Base Plate Particulars

Length/depth ad 7.8125
Depth/thickness dity, 40



-82 -

Table 3.5 (cont'd)

Initial imperfection Wow/tw 1/20
Buckling stress o, (N/mm?) 155
Buckling strain €., (L£) 749
Aspect Ratio (plate)  a/b 1.67
Slenderness b/t, 7

The buckling stress given above was obtained using the standard equation developed
using plate theory 9 in which the constant k had the value 1.328. This corresponds to
the solution of a long plate with S-C-S-F edges. The following observations may be

made in relation to Fig. 3.16:

1) For the aspect ratio considered, (a/d = 7.8125) the effect of rotational restraint
along the loaded edge for the isolated stiffener (C-C-C-F versus S-C-S-F) is of
secondary importance. This may be contrasted with the previous case described

in Section 3.6 in which a square plate was considered.

ii) The pre-buckling behaviour follows the same path in all cases, although the S-
I-S-F (I designates intersecting edge) plate exhibits a slightly lower stiffness,
which is to be expected since in this case the base plate is simply supported
along the loaded edges and partially restrained against out-of-plane movement
along the longitudinal edges (dw/dy = 0).

iii) Buckling occurs at approximately the same stress levels in all cases. The
calculated values were determined from Fig. 3.16 and are compared with plate
theory in Table 3.6.

iv) Following buckling, substantially different paths are followed by the isolated
and attached stiffeners. In the former case, torsional buckling leads to collapse
of the cross-section whereas the attached stiffener continues to carry further
load.

Figure 3.16 shows the corresponding average stress-deflection behaviour. In all cases,
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buckling is characterised by a sudden, sharp increase in lateral deflection. This may be
contrasted with plates which do not have a free edge and which buckle more gradually,
notwithstanding the effect of initial imperfections.

Table 3.6 Buckling Stresses and Strains

Stress Strain

(N/mm?2) (ue)
Plate theory S-C-S-F 155.0 749.0
Isolated S-C-S-F 155.2 750.2
Isolated C-C-C-F 158.2 813.4
Attached S-I-S-F 127.1 660.1
Attached C-I-C-F 154.3 746.0

It is seen from Table 3.6 that the numerical procedure predicts elastic buckling of the
stiffener quite accurately. It is also apparent from (iv) that it is necessary to study the
effect of interaction in more detail, since stiffener design based on isolated plate
equations does not allow for the presence of the shell plating. In the next section the
elasto-plastic behaviour of stiffened plating is briefly considered and some of the

problems that arise when using dynamic relaxation are discussed.
3.9 Elasto-plastic Response of Flat Stiffened Plating

The behaviour of thin-walled structures under axial compression is affected by plasticity
to such an extent that the load at which the plastic regime is entered is usually identified
with the collapse of the section. Flat structures generally exhibit little post-yield strength
since yielding spreads rapidly reducing the effective area of the section. The load
carried is then shed to adjoining members with the possibility of buckling being

precipitated and/or leading to overall failure.

Consequently, when performing an ultimate strength analysis it is necessary to allow
for material non-linearity. In the case of stiffened plating, the overall behaviour can be
classified according to the relative load-carrying capacity of the stiffener to that of the

plate, i.e:
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i) stiffeners which are torsionally weak
ii) stiffeners which are torsionally strong

iii)  stiffeners whose load-carrying capacity is similar to that of the plating

In the first category, stiffener lateral torsional buckling occurs first, usually followed by
yielding which leads to local collapse. The load is at each stage shed to the plate which
may continue in a stable condition although generally this is unlikely particularly after
yielding of the stiffener.

Torsionally strong stiffeners continue carrying load after local failure of the shell
plating. Design codes generally ensure that the stiffener torsional failure load is greater
than the shell plate buckling load.

The third category comprises stiffeners whose cross-sectional area is similar to that of
the associated plate. Under these conditions, the failure of either section may lead to
overall collapse of the plate stiffener combination, since the load shed by a weaker

member will be sufficient to cause failure in the stronger member.

Beam-column behaviour has not been mentioned since it is generally associated with

overall collapse of the cross-section and concerns panels of higher aspect ratios.

In the next two Chapters, the behaviour of stiffened plates with flatbar stiffeners will be
considered. Chapter 4 is concerned with correlation studies of a series of small scale
tests carried out at Glasgow University.In Chapter 5 the results from a series of
parametric studies will be presented, the emphasis being on short panels with flatbar
stiffeners. The use of dynamic relaxation to solve the equations of equilibrium proved
not to be without its problems; when analysing a panel described by category (iii)
numerical instability arose when plates of high aspect ratios buckled elasto-plastically,
to be followed immediately by stiffener collapse. It was not found possible to obtain an
accurate picture of the buckling phenomenon using the numerical procedure in its
conventional form and it became necessary to develop a method capable of treating
buckling as a dynamic phenomenon. The theoretical basis for a real-time simulation
capable of describing the dynamic aspects of interactive elasto-plastic buckling is given

in Chapter 6.



CHAPTER FOUR

EXPERIMENTAL PROGRAMME AND CORRELATION STUDIES

WITH NUMERICAL ANALYSIS

A series of tests on flatbar stiffened plating was carried out in order to provide a basis
for comparison with the numerical procedure. The tests were conducted in the Civil
Engineering Structures Laboratories at Glasgow University. In previous experimental
work, the local buckling of flat stiffeners in steel plating has not been considered in the
elasto-plastic range, although test results are available for materials of high elastic strain
capacity (Araldite epoxy resin) in which interactive effects were studied 49.

4.1 Experimental Programme
4.1.1 Description of Models and Test Rig

In order to evaluate the capability of the numerical procedure to predict local torsional
buckling of a stiffener, it was decided to use a plate bearing a torsionally weak
stiffener. This would ensure that failure of the stiffener preceded failure in the base
plate; in addition, interaction effects would not significantly influence the overall
behaviour of the panel. The geometry that resulted was not representative of stiffened
plating used in practice but this does not detract from the general applicability of the
procedure since other geometries can be analysed equally well. Other factors which

were taken into account in designing the models were:

- axial compression, lateral pressure and combined loading could be applied



- 86 -

- the overall length should be such that the models could be fitted into an
existing pressure chamber

- the test specimens should be readily amenable to numerical analysis.

The above considerations led to the configuration shown schematically in Fig. 4.1. The
test specimen consisted of a base plate of dimensions 250 x 150 x 3 mm and a stiffener
of dimensions 250 x 32 x 0.8 mm welded to the base plate along its centreline. The
stiffened plate was welded to a rectangular box section and formed one side of it. The
elastic buckling stresses for the stiffener and base plate were checked to confirm that
stiffener buckling would precede that of the base plate. The dimensions and material
properties of the box were chosen so that it would not fail in the range of applied

loading.

Two box sections were constructed and each whole model was stress-relieved prior to
testing. Tensile test specimens were also stress-relieved under the same conditions. In
addition to the stiffener dimensions specified above, a narrower stiffener of height 25
mm was used. Details concerning test specimen dimensions are given in the following

table.
Table 4.1 List of Model Tests

Model No. Applied Loading Stiffener Height (mm)

1 Axial 32
2 Axial 32
3 Combined 32
4 Pressure 32
5 Axial 25
6 Pressure 25
7 Combined 25
8 Axial 25
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4.1.2 Preliminary Measurements and Test Procedure
Prior to testing, detailed measurements regarding the following were carried out:

- overall model dimensions

- plate and stiffener thicknesses

- plate and stiffener initial imperfections

- tensile tests of coupons extracted from plating used in each model

component.

Model overall dimensions, thicknesses and yield stresses are summarised in Table 4.2

overleaf.

It is observed that stiffener yield stresses are higher than corresponding base plate yield
stresses. The original specifications sought the opposite but it is felt that overall
behaviour of the stiffened plate would not be substantially affected since the stiffener
was designed to fail by lateral buckling before the base plate reached its elastic limit.

Initial distortions were measured in both the stiffener and the base plate. Similar trends
were observed in all models, although the profile of the stiffener free edge differed in
each case. The profile of the base plate in the longitudinal and transverse directions
appeared to have been affected by the welding along the transverse edges and the plate-
stiffener junction respectively. As a result, the ends of the base plate were pulled
upwards towards the stiffener. In the transverse direction, a 'hogs-back’' type effect

was observed 127,

The stiffener initial distortions were small and evidently not seriously affected by the
welding. A certain amount of twist was noted and several half-sine waves were

detected along the free edge. Maximum distortions for all models lay in the range:

0.11 mm > wgy, > - 0.50 mm

0.50 mm > wg, > + 0.35 mm

Following the above measurements, electrical strain gauges were attached to the
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stiffener and base plate. The model was then positioned on a steel block to which
linearly variable displacement transducers (LVDTs) used to measure deflections, were
attached. The layout is shown in Figs 4.2a and 4.2b and the locations of strain gauges
and transducers are indicated in Figs 4.4 and 4.5. The steel block with the model in
position was then placed between the upper and lower plattens of the compression
machine (axial load tests) or inside the cylindrical pressure chamber (Fig. 4.6). The
1000-ton Losenhausen compression machine used, with the model in position, is
shown in Fig. 4.4. During the tests, results from the strain gauges and transducers

were processed by an MBM 5000 data logger interfaced to a PDP-8 mini-computer.

The preliminary measurements described above were used as input data for the
numerical procedure in the correlation studies. The incorporation of yield stress and
overall dimensions presented no difficulty. However, the use of the initial imperfection
measurements required a preliminary procedure to be carried out, which was necessary
because the measurement points and grid co-ordinates did not coincide. The procedure
followed for the development of component 'surfaces' is indicated in Fig. 4.7.
Standard routines in which Chebychev polynomials are implemented were used to give
values for the initial imperfections at the required positions. A series of trial runs was
performed to choose the polynomial degrees which gave the best fit and for the base
plate values of 8 and 6 in the longitudinal and transverse directions respectively were

used; for the stiffener, values of 8 and 3 gave satisfactory results.

4.1.3 Representation of Boundary Conditions

In this section, the numerical representation of the plate and stiffener edges under test
conditions will be described. Idealised conditions are summarised in Fig. 4.8 and the

actual model is shown in Fig. 4.2.

As is apparent from Fig. 4.8, the stiffened plate was welded continuously to the box

section along the longitudinal and transverse edges. Appropriate conditions are
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therefore those of a rotationally clamped, isolated panel, since any rotation along the
edges would necessarily involve concurrent rotation of the box section. The dimensions
of the box were such that for the applied range of loading rotations along the edges
could effectively be ignored. For the plate and stiffener in the longitudinal direction,

therefore

ow ow,,
x = =0 @D

and for the plate in the transverse direction,

- =0 (4.2)

The base plate and stiffener were further assumed not to deflect in the out-of-plane
direction along- the welded edges. During the actual tests (axial compression in
particular), the box section components moved perpendicularly to the direction of
loading. It was considered reasonable to assume that any translation of the edges was
such that deflections in one part of the stiffened plate relative to those in another would
be small and not cause any premature failure or other unintended effects (i.e. rigid body

translation does not give rise to any internal strains). Thus,

w=0 Wy =0 (4.3)

along all edges (except for the free edge and the plate-stiffener junction).The transverse
edges were further assumed to be partially restrained by a symmetrical shear stress

distribution described by:

ox ox (4.4)
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Along the longitudinal edges of the base plate, translations also depend on the shear
restraint provided by the box section. Since (for axial compression) the whole cross-
section was uniformly loaded, the effects of shear along the edge would be small and

thus the equation

N._=0 (4.5)

was used to approximate the shear condition along the longitudinal edges. Finally, the
transverse in-plane condition along the same edges has to be considered. The in-plane
forces, Ny, give rise to out-of-plane deflections in the box. Since however the bending
restraint in the box is relatively small, it can be assumed that the edges are free to move

and therefore

N =0 (4.6)

The transverse deflections are thus governed by the external loading and Poisson's
effect. For specimens loaded in axial compression the external loading was applied as a
uniform displacement of the transverse edge, as described in Chapter 3. For Model
Nos. 4 and 6 to which only lateral pressure was applied, the transverse edges were

assumed to be fully built-in.
4.1.4 Convergence Studies

A study involving a stiffened plate of similar geometric and material properties to the
models was performed to determine the effect of mesh size on convergence. The elastic
buckling load for the stiffener was chosen as a criterion for this study and four different

mesh sizes were considered, as shown in the following table.
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Table 4.3 Convergence Studies

Mesh No. Plate  Stiffener ax Ax No. of Nodes
Mesh Mesh Ay Ay,
1 14x 8 14x 4 0.952 2.230 210
2 16x10 16x4 1.042 1.953 272
3 18x10 18x6 0.926 2.604 342
4 20x12 20x6 1.000 2.344 420

The results from this study are summarised in Figs 4.9a and 4.9b which correspond to
cases of axial compression and lateral pressure. The stiffener buckling loads
corresponding to Mesh no. 4 have been used as datum points. It is seen that for an
increase in 76 nodes (Mesh 3 to Mesh 4) that the corresponding changes in the buckling
loads are approximately 1%. Discretisations corresponding to Mesh no.4 were thus

used in all correlation studies.
4.2 Correlation Studies of Axial Compression Tests

Model Nos. 1, 2, 5 and 8 were loaded under axial compression, consisting of a
uniformly applied displacement of the transverse edges. Test results were presented in
the form of load-strain and load-end compression diagrams and these were used to
determine critical buckling and plastic collapse loads an d strains 127. The features of
the load-strain response for the stiffener tip are shown in Fig. 4.1c from which critical

loads and strains may be obtained.

Upon application of the load, the strains along the stiffener tip increase in compression,
the divergence betwen them depending on the initial imperfections. When buckling
occurs, the strains diverge noticeably and continue doing so until plastic collapse
occurs. At plastic collapse, the local behaviour of the stiffener changes as load begins to

be shed to the base plate and/or the box, and a change in gradient occurs in the load-
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strain diagram. The post-failure path depends on the shape adopted by the stiffener and
the magnitude of the load carried locally.

To be able to compare the analytically and experimentally determined loads directly, it
was necessary to calculate theoretically the load carried by the model cross-section for
each load increment. Since only the plate and stiffener were analysed numerically, an
approximate method had to be employed to estimate the load carried by the box section.
The dimensions and yield stress of the box were chosen so that failure would not arise
before failure of the stiffened plate. Therefore the box could be treated as behaving in
the linear elastic range (yield stress = 430 N/mm2, thickness = 10 mm). The load was
thus estimated from:

Ppox =E Ay, @.7)

and the total load carried by the model was obtained from:
Prod = Ppox + Pp1 + Pyif (4.8)

This is an approximate method and it is possible a more refined technique would lead to

better correlation of the critical loads. The analytical results for each study are presented

in diagrams of:

- load-end shortening curves for the stiffener, base plate, stiffened plate and model

cross-section.
- load-strain curves for local longitudinal strains along the stiffener tip

- load-deflection diagrams for stiffener and base plate out-of-plane deflections

The positions at which local strains and deflections were measured were those at which

strain gauges and transducers were placed during the tests.
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4.2.1 Model No. 1
4.2.1.1 Stiffener Response (d/t,, = 38.5)

The theoretical and experimental results obtained relate to overall and local stiffener

behaviour. The theoretical response seen in Fig. 4.11 demonstrates three phases of

behaviour:
- elastic pre-bifurcation (0 -3991N)
- postbuckling ' (3991 - 5547 N)
- unloading (5547-5511N)

The geometrical initial imperfections consisted of a three half-sine wave along the
stiffener tip, with a tilt whose magnitude increased slightly towards the free edge.
Stiffener misalignment in the longitudinal direction along the line of attachment to the

base plate. was 0.05 mm (small).

During the initial stages of loading, the out-of-plane deflections increased in the same
direction as the initial imperfections. The stiffener tip adopted a three half-sine
waveform which it maintained until the postbuckling range was reached. Elastic
buckling commenced at a load of 3991 N and an end shortening of 0.193 mm (Fig.
4.11). At this load, the average buckling stress and strain along the loaded edge were
149.3 N/mm?2 and 775 pe respectively. The Timoshenko buckling load for a S-C-S-F
plate is 167.2 N/mm?2 and the corresponding strain is 808 pie. The model load at 3991
N was predicted to be 569.7 kNN.

Following buckling, the analysis indicated that the stiffener tip maintained the three
half-sine waveform which persisted throughout the rest of the load history. Plastic
collapse was predicted to occur at a load of 5547 N and an end shortening of 0.421
mm. At this load the total load on the model was predicted to be 1172 kN and the
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corresponding strain 1688 €. Plasticity was first detected in the stiffener after elastic
buckling and developed in way of the buckle at the mid-length position. Following
plastic collapse a slight drop in the load carried by the stiffener was observed and
plasticity redistributed about the quarter points. Theoretical and experimental local

buckling loads are compared in the following table.

Table 4.4 Model No. 1 - Comparison of Critical Strains and Loads

Strain Gauge 172 3/4 5/6 7/8 11712 13/14 15/16
Pair

Critical Strain 725 804 800 744 800 760 750
(ue) 850 825 650 660 675 760 900

Critical Buckling 580 550 525 475 550 550 550
Load (kN) 450 525 350 340 320 325 350

Plastic Collapse 925 925 760 775 890 900 800
Load (kN) - - - - - - -

In the table the lower values are the test results given in (127) while the upper values are
the theoretical results derived using Figs 4.12a and 4.12b. Detailed information
concerning local plastic collapse loads was not given for the test data. As is evident
from the table, the predicted buckling strains are fairly constant at approximately 769
He. The test results however indicate that some bending arose which precipitated earlier
buckling at 660 pe at the midlehgth position. For gauge nos 3/4 and 13/14, the critical
strains agree quite well but the differences increase towards the midlength position. The
mean value of the test buckling strains along the stiffener tip was 760 e, and the

corresponding buckling load was 320 kN. The test plastic collapse load was found to
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be 935 kN although collapse commenced at 890 kN 127, At 935 kN the average test
strain was 1203 €.

There are several reasons as to why discrepancies exist between the predicted and
observed results. Bending of the stiffener in its own plane occurred because of
eccentricity of the applied loading and rotation of the loaded edges. It was not possible
to know the distribution of strains across the loaded edges and in addition the load
carried by the model cross-section was estimated in only an approximate manner. The
fact that bending occurred is supported by the lower than expected midlength buckling

strain and load.

The predicted buckling loads given in Table 4.4 were checked against load-deflection
curves (Fig. 4.13) for the stiffener. This figure shows that buckling developed
gradually as a result of initial imperfections and that in the post-failure regime a large

buckle developed in way of gauge nos 5 and 6.
4.2.1.2 Base Plate Response

Since the base plate was designed so as not to buckle in the elastic range, failure was
governed by material response. The material was modelled as elastic-rigid plastic and as
a result the load carried increased until the squash load was reached. The onset of
yielding was predicted at a load of 110.9 kN and an average strain of 981 pe (yield
strain =1097 pe). Plasticity developed as a full-depth phenomenon from the central
region and covered approximately three quarters of the plate area, the loaded edges

remaining elastic.

The squash load was predicted to be 118.5 kN and from that point onwards the load

L

TR NS g

remained constant (Fig. 4.14). A limited amount of out-of-plane deflections but no
buckling were predicted by the numerical procedure.
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4.2.1.3 Stiffened Plate Response

Because of the relatively slender stiffener compared with the plate (A,/Ap = 0.057) the
applied load was carried substantially by the plate, overall failure depending on plate

failure.

The load-end shortening curve (Fig. 4.15) demonstrates this, when compared with Fig.
4.14. The relatively small contribution of the stiffener to the strength of the cross-
section is evident by the small drop in the drop in load which occurred when the
stiffener buckled. With increasing end shortening, the load carried remained constant at
123.7 kN, any further applied load being carried by the box section (theoretical squash
load = 126.9 kN).

The effects of stiffener-plate interaction were secondary and did not affect the overall

behaviour. This was in agreement with the general response noted during the test.
4.2.1.4 Overall Model Response

The behaviour of the model cross-section is shown in Fig. 4.16. It is seen that the load
increases linearly until stiffened plate failure, at which point a slight reduction in
gradient is noted. Stiffener buckling at 570 kN could not be detected in the model
response curve. At 820 kN, however, a noticeable change in gradient is observed. The
corresponding load on the stiffened plate was 123 kN and at that point the base plate
resulted in load being shed to the stiffener which had already buckled and the box
section, which continued carrying additional load. The load that was shed to the
stiffener led shortly after to its plastic collapse. Thus the discontinuity in the load-end
shortening curve for the model section arises from yielding in the base plate which also

precipitated plastic collapse in the stiffener.
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4.2.2 Model No.2
4.2.2.1 Stiffener Response (d/t,, = 38.5)

The initial distortions of the stiffener for this model were characterised by a large very
localised deflection at a distance of 14 mm from the lower loaded edge. This was
produced accidentally prior to testing and had a magnitude of approximately 0.50 mm
(0.6 x thickness). The correlation of this test was thus made more difficult because of

the presence of

- an exceptionally large very localised initial distortion

- an associated residual stress distribution

The distribution of residual stresses in way of the damage could not be quantified and
therefore was not modelled whereas the initial distortions were reproduced quite

satisfactorily using the Chebychev polynomial method.

The theoretical load-end shortening response of the stiffener is shown in Fig. 4.17. The
behaviour is linear up to a load of 2751 N (end shortening = 0.13 mm). Elastic
buckling commenced at 2751 N and the average stress and strain across the loaded edge
were 102.7 N/mm? and 549 pe. Load continues to be carried up to 5151 N,
corresponding to an end shortening of 0.499 mm. At this point plastic collapse occurs,

the average stress and strain being 192.4 N/mm?2 and 1013 pe respectively.

Compared with Model No. 1 it is noted that in this case the initial buckling strain is
much lower and this can be attributed to the differences in initial distortions. For this
model, surface plasticity was induced following buckling. The stiffener plastic collapse
load of 5151 N was slightly lower than in the previous test but in the post-failure

regime the load-end compression curve had a similar shape.

During the test, buckling developed from 191 kN (load on model) and became fully
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developed in way of gauge nos 11/12. After critical buckling two buckles grew at
distances of 95 mm and 155 mm from the top of the stiffener (gauge pairs 5/6, 11/12
respectively). The predicted profile consisted of a three half-sine waveform which is

apparent from Fig. 4.19.

The local longitudinal strains determined analytically are shown in Figs 4.18a and

4.18b and are compared with test results in the following table.
Table 4.5 Model No. 2 Comparison of Critical Strains and Loads

Strain Gauge 1/2 3/4 5/6 7/8 11/12 13/14 15/16
Pair

Critical Strain 700 707 725 611 723 589 615
(1e) 1020 800 750 700 625 650 785

CriticalLoad 543 525 562 457 600 437 500
(kN) 600 375 380 350 300 345 375

Plastic Collapse 950 1025 843 955 937 1010 1000
Load (kN) 950 950 950 975 950 950 950

From the above table it is apparent that the critical buckling strains agree quite well.
Buckling of the stiffener is predicted in way of gauge nos. 13/14, which are the closest
to the localised initial distortion. The critical loads appear to be overestimated by the

theoretical approach as for the previous model.

The possibility of nonlinear behaviour of the box section did not arise because after
each test the model retained it's original overall dimensions. Therefore the approximate
method described earlier in this Chapter can be expected to give satisfactory results. On
the other hand there is good agreement in the plastic collapse loads, the maximum

difference being 8%, in way of gauge nos. 7/8.
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The numerical procedure predicted the onset of plasticity in the stiffener along the tip
and the intersection with the base plate at a strain of 1007 g, i.e. after elastic buckling.
The number of yielded zones increased until the plastic collapse load was reached,
following which gradual unloading occurred. During unloading, the spread of plasticity

decreased very slowly.
4.2.2.2 Base Plate Response

The general remarks made concerning Model No.1 apply also to Model No.2. The plate
deflected away from the stiffener, in sympathy with the initial imperfections and no

local buckling was observed (Fig. 4.20).

The onset of plasticity occurred at an average strain of 1007 pe (yield strain = 1097 pe)
and a load of 105.5 kN. The plate failed at 114.6 kN, i.e. just before the theoretical
squash load of 114.75 kN was reached. Following failure, the load carried by the plate
remained constant and the yielded zones spread throughout the volume of the plate

which thus behaved as a plastic membrane.

4.2.2.3 Stiffened Plate Response

Comparison of Figs 4.15 and 4.21 shows that the response of the stiffened plate in
Model No. 2 was similar to that of Model No. 1. This was to be expected considering
the generally similar geometric and material properties of both models. The load
increased until yielding of the base plate caused failure of the whole cross-section at
119.64 kN (theoretical squash load = 122.93 kN). Following failure the load carried

remained constant without producing overall collapse of the cross-section.
4.2.2.4 Overall Model Response

The response of the model cross-section is shown in Fig. 4.22. It is seen that this is
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similar to Model No.1 and the slight reduction in slope precedes stiffened plate failure.
This is because failure was identified with the condition of maximum load rather than
the point of change of gradient of the curves in Figs 4.20, 4.21. The theoretical squash
load for the model was calculated to be 1413 kN and the corresponding strain was 2069
pe (end shortening = 0.517 mm). '

4.2.3 Model No. §
4.2.3.1 Stiffener Response ( d/t,, = 29.3)

The stiffener for this model was stockier than in the previous cases. It was therefore
expected that the buckling load would be higher since linear theory states that it is
inversely proportional to the square root of the slenderness ratio (d/t,,). This was

indeed confirmed by both the theoretical and the experimental results.

For this case, the geometrical initial imperfections consisted of a tilt of increasing
magnitude towards the free edge and a two half-sine waveform of amplitude 0.15 mm
along the stiffener tip. Misalignment along the longitudinal direction was 0.1 mm along

the intersection with the base plate.

The theoretical average load-end shortening response is shown in Fig. 4.23 and can be

subdivided into three sections:

- elastic pre-bifurcation (0 -4504N)
- postbuckling (4504 - 5037 N)
- post-collapse (5037-4934 N)

During the initial stages of loading, the lateral deflections followed the shape of the
initial imperfections. At higher loads the stiffener profile changed to a six half-sine

waveform which became fully apparent at 3500 N and remained stable until the
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postbuckling range was reached.

The change in gradient associated with elastic buckling occurred at 4504 N (end

shortening = 0.285 mm). The average stress and strain across the loaded edges at this

load were 211 N/mm?2 and 1145 pe. The corresponding load on the model was 828
kN.

The test results showed that it was difficult to detect buckling from the strain
distributions along the stiffener tip because no great changes were noted before 828
kN. It appeared that a series of local buckles were produced along the length of the
stiffener and that these became fully formed at 446 kN 127, This seems to agree with
the change in profile predicted by the analysis at a model load of 641 kN (stiffener load
= 3500 N).

The analysis indicated that yielding arose in the stiffener at 4760 N. The postbuckling
range is seen to be reduced in comparison with that of the slenderer stiffeners (Figs
4.11 and 4.17). Load continued to be carried up to 5037 N, at which point the total
load carried by the model was predicted to be 952.4 kN. Plastic collapse from test data
was found to be in the range 950-1000 kN.

The variations in longitudinal strain with model load are indicated in Figs 4.24a and
4.24b. 1t is apparent that elastic buckling cannot be clearly detected in way of these
gauges. A detailed examination of additional results revealed that a local plastic buckle

appeared 40 mm from the clamped loaded edge and could be detected at 815 kNN.

Following buckling the strains along the stiffener tip continued to increase without
noticeable divergence until the yield strain (1396 j.e) was reached. For gauge nos 3/4,
this occurred at 937 kN and at this point the strains diverged noticeably. This is also
apparent in Fig. 4.25 which demonstrates that following failure a plastic buckle
developed in way of transducer nos 5,6. At plastic collapse, strain reversal took place at

the outer surface still in the elastic range whilst the strain along the inner surface
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continued to increase. Similar behaviour was exhibited by some other gauges (Figs
4.24a, 4.24b). Plasticity developed in way of the local buckle near the clamped edge
and along the stiffener tip.

4.2.3.2 Base Plate Response

In a similar manner to Model Nos. 1 and 2 the program predicted that the base plate
would deflect away from the stiffener during the initial stages of loading. Yielding
commenced at a load of 106.3kN at an average applied strain of 1013 pe (yield strain =
1101 pe) i.e. before buckling occurred in the stiffener. The volume of yielded zones
increased until nearly the whole plate became plastic. Following stiffener buckling at a
load of 112.75 kN, a buckle developed in the plate near midlength. At this load level
the plate was behaving as a plastic membrane. Failure occurred at a load of 112.89 kN,
i.e. just below the theoretical squash load of 113.01 kN. The plate subsequently carried
load at the same level (Fig. 4.26).

During the test, plastic buckling was detected in the plate at a model load of 1230 kN.
This is a much higher load than predicted by the analysis and it is possible that buckling

had arisen earlier but was not detected.

4.2.3.3 Stiffened Plate Response

The theoretical load-end shortening curve for the stiffened plate is given in Fig. 4.27.
For Model No. 5, as in the previous cases, a substantial part of the load was carried by
the plate and this increased until it developed as a plastic membrane. At 1013 pie the
plate started yielding. This was followed by stiffener buckling at 1145 pe. The local
buckle in the plate developed at this point and at 1233 pe the stiffener commenced
yielding. It appears therefore that the load shed by the base plate precipitated failure of
the stiffener. Following failure of the cross-section, the load continued to be carried at

the same level since column failure did not arise.
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4.2.3.4 Overall Model Response

Figure 4.28 shows that the load carried by the model cross-section as predicted
theoretically increased linearly up to 828 kN. A slight change in gradient is noted at that
point, following which the response continues as a straight line. At that point local
buckling in the stiffened plate occurred (end shortening = 0.285 mm). At higher loads
the end shortening curve increased linearly and reductions associated with yielding and

failure of the stiffened plate could not be detected.

4.2.4 Model No. 8

As a result of the Model No. 7 test, local buckling was produced in the stiffener.
Following renumbering, this local buckling became an (enlarged) initial distortion for
Model No.8. The strains arising from the buckling were measured along the stiffener
tip and are illustrated in Fig. 4.29 from which it is evident that the strains are elastic
throughout. In correlating this test, the initial imperfection measurements taken after the
test on Model No. 7 were used as initial distortions. These are indicated in Figs 33 127
and 35 127, It is seen that the effect of the combined loading test did not produce any
significant changes in the base plate profile. Comparison of Figs 32 127 and 35 127
shows however that two local buckles were produced in the stiffener by the combined
loading test at 50 mm and 130 mm from the top loaded edge. The general profile of the

stiffener was not otherwise significantly affected.

The effect of the residual strains in the stiffener and base plate arising from the buckling
was not allowed for in correlating Model No. 8, because their magnitudes and
distributions were not known. In principle, it would have been possible to generate the
strain distributions produced by the Model No. 7 test, but certain strain gauges used to
determine axiality did not operate correctly. It was therefore not possible to determine
with sufficient accuracy the distribution of longitudinal strains so no simulation was

attempted.
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The differences in initial conditions produced departures between the theoretical and

experimental results and these are considered in further detail in the next section.

4.2.4.1 Stiffener Response (d/t,, = 30.7)

From Fig. 4.30 it is seen that the predicted response consists of:

- elastic pre-bifurcation (0 - 4609 N)
- post-buckling (4609 - 4936 N)
- unloading (4936 - 4855 N)

The geometry of the stiffener cross-section for this model was similar to that of Model
No. 5 (d/ty, = 29.3) which was also tested under axial compression. Comparison of

Fig. 4.30 with Fig. 4.23 shows that the overall response of both models is similar.

The initial imperfection profile of the stiffener shows that apart from the two localised
buckles there also existed a slight tilt whose magnitude increased towards the stiffener

tip. The longitudinal profile along the tip consisted of a five half-sine waveform.

During the initial stages of loading the stiffener deflections followed this profile until
elastic buckling occurred at 4609 N, a slightly higher load than for Model No. 5 (4504
N). A direct comparison between the load-axial strain curves obtained experimentally
and numerically (Figs 4.31a and 4.31b) cannot be made since residual strains were not
allowed for in the latter case. Comparing Fig. 4.24a, 4,24b with Figs 4.31a, 4.31b for
Model No. 5 shows that the effect of the larger initial imperfections is to produce a
greater divergence before buckling. At buckling, no further divergence is noted and the
critical buckling load which was determined from Fig. 4.30 (3951 N) corresponds to a
total model load of 791 kN. The five half-sine wave profile of the stiffener did not
change at this point. The test results however indicate the presence of a localised buckle
near the clamped loaded edge (gauges 13/14) at a load of 345 kN. This was not

predicted theoretically, possibly because of the differences in initial strain distributions.
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Following elastic bucklirig, the stiffener continued to carry load up to 4936 N,
corresponding to a plastic collapse load of 1047 kN (Fig. 4.30). At peak load, the total
axial load on the model was estimated from Figs 4.31a and 4.31b to be 929 kN. During
this part of the response stiffener deflections continued to increase. From Fig. 4.32 it is
seen that no local buckling was predicted in the stiffener at mid-length before the peak
load was reached. As in the case of Model No. 5, the reserve of post-buckling strength

was lower than that observed in Models Nos 1 and 2.

Following peak load, the load carried by the stiffener decreased gradually for larger
values of end-compression. The load end-compression curve (Fig. 4.30) was noted to
be similar to that of Model No. 5 (same slenderness ratio). Stiffener deflections at mid-
length decreased at higher applied strains and a local plastic buckle developed at a
distance of 75 mm from the clamped loaded edge. It's appearance was already evident

when the peak load was reached.

Plasticity was entered following stiffener buckling at 4609 N and was first apparent
along the free edge, at midlength. In the post-buckling range plasticity developed
further along the intersection with the base plate and as deflections increased further it
became concentrated about the quarter points. The local buckle which had already
developed became plastic as higher loads were applied. During the unloading part of the
response, plasticity was evident in way of the local buckle and along the intersection
with the base plate, the remaining volume of the stiffener behaving elastically. Overall
failure was thus characterised by the appearance of a local plastic buckle; as in the case

of Model No. 5, the loaded edges remained elastic throughout the loading history.
4.2.4.2 Base Plate Response
The theoretical response of the base plate was similar to that of the previously described

cases (Model Nos 1, 2 and 5). The plate deflected away from the stiffener in sympathy

with the initial imperfections. At midlength, a shallow sinusoidal shape was produced
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whereas near the loaded edges twin peaks arose. The load carried by the plate increased
until yielding occurred and then remained constant (elastic rigid-plastic material) as
shown in Fig. 4.33. Following stiffener buckling, a local plastic buckle appeared in the
plate. With increasing load, deflections near the stiffener buckle increased away from
the stiffener as the plate deformations continued to grow. During the test, the base plate
buckled plastically in two locations, both in way of the two stiffener buckles which had
been produced during the testing of Model No. 7. As in the case of the other axial
compression tests, plasticity arose in the central region of the plate. For Model No. 8
the onset of plasticity occurred before stiffener buckling. The loaded edges of the plate
became plastic and for larger values of end compression the whole area of the plate

became plastic apart from the clamped loaded edges (Fig. 4.34).
4.2.4.3 Stiffened Plate Response

The theoretical response of the stiffened plate is shown in Fig. 4.35. It is seen that
since a small proportion of the load was carried by the stiffener (A,/A, = 0.038),
failure was dependent on plate collapse. The stiffened plate carried load until the base
plate yielded; following this, the load remained constant. Overall collapse did not occur
for the range of applied loading, in agreement with test results. It is seen that stiffener
failure gave rise to a localised plastic buckle in the plate which was not however
extensive enough to produce overall collapse. With increased loading it is expected that
plastic hinges would have developed along the loaded edges leading to overall collapse

of the cross-section.

4.2.4.4 Overall Model Response

The load-carrying capability of the model as predicted theoretically is shown in Fig.
4.36. A substantial part of the load was carried by the box and the failure of the base

plate at 952 kN produced only a small change in the load end-compression curve.

When failure of the stiffener occurred the model load was 929 kN. The experimental



- 108 -

result was 950 kN. It is thus seen that reasonably close correlastion was achieved using

the simple linear relationship described in Section 4.2.

4.3 Correlation Studies of Lateral Pressure Tests

The two models tested under lateral pressure (Nos. 4 and 6) were placed inside a
cylindrical pressure chamber filled with water. The test set-up is shown in Fig. 4.6. It
is seen that the pressure chamber was positioned on an I-section column supported by
the lower platen of the axial compression machine. Following the fitting of the model
inside the chamber, the upper piston was moved into position. Access holes for strain

gauge and transducer wires, air bleed and water fill are shown in the diagram.

Water was fed to the chamber using a hand-operated pump and at the same time air was
bled using a valve located on the upper piston. At zero pressure, a small gap was
maintained between the disc and the upper surface of the model. The axial compression
machine was operated in displacement control during the test and thus a constant
displacement could be maintained between the upper and lower platens. During the test,
measurements were taken at pressure intervals of 50 kN/m2. A small pressure load was
exerted on the upper surface of the model since the applied loading was hydrostatic.

During the initial stages of loading and prior to buckling the stiffener and plate can be
considered as a beam clamped at both ends. Under these conditions, the longitudinal
strain in the stiffener tip varies from compressive at midspan to tensile at the ends. At
buckling, the parabolic shape of the strain distribution changes because redistribution
occurs. The strain measurements obtained during the test were thus used to determine
the lateral buckling pressure for the stiffener. The same approach was used to interpret
the results from the numerical analysis and comparisons between the predicted and
experimental local distributions for the two models are given in Tables 4.6 and 4.7. The

results obtained from the numerical analysis procedure are presented in the form of :
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- Pressure - longitudinal stiffener tip strain diagrams
- Pressure - lateral deflection diagrams (stiffener, base plate)
- Growth of plasticity with pressure (stiffener, base plate)

4.3.1 Model No. 4
4.3.1.1 Stiffener Response (drt,, = 37.5)

A brief description of the behaviour of a stiffener whose associated plating is loaded
under lateral pressure is given in 127, Section 5.3. For pre-bifurcation loads, the
longitudinal strains along the stiffener tip vary from compressive at midspan to tensile
at the ends. Figure 4.37 shows the distribution obtained numerically at various stages
of loading. The variation of longitudinal strain along the stiffener tip and lateral
deflections in way of the transducers is given in Figs 4.38 and 4.39 respectively.
Compressive strains of increasing magnitude develop during the pre-buckling range
and minimal divergence is observed. This indicates that tensile strains acting at the
clamped ends reduced the effect of initial imperfections. Figure 4.39 confirms that
negligible lateral movement of the stiffener is predicted in the pre-buckling range. The
observed deflections were however much larger and this may be due to differences in
initial imperfections, although symmetry would suggest any lateral deflections should
be minimal.

During the test, buckling occurred at midspan at a pressure of 440 kN/m2 and a local
strain of 950 pe. Corresponding theoretical results are 515 kN/m2 and 1045 HLE
respectively. A full comparison for the remaining strain gauges is given in the

following table.



- 110 -

Table 4.6 Model No.4 Comparison of Buckling Strains and Pressures

Strain Gauge 12 34 56 8 1112 13/14 15/16
Pair

Critical strains +334 477 909 1045 909 477 +363
(LE) * 360 875 950 950 38 *

Critical Buckling 552 549 530 515 521 549 602

Pressure (kN/mm?2) * 440 465 440 440 440 *

Plastic Collapse 890 890 890 * 894 894 890
Pressure (kN/mm2) 710 710 * 610 710 * 780

Unless indicated otherwise, strains are compressive.

During the test, two alternating local buckles were produced at midspan, of total length
approximately 80 mm. The predicted profile consisted of a two half-sine waveform
with nodes at approximately 100 mm from each other. This difference in buckled
shapes may have contributed to the differences between the observed and predicted
values of the local strains. The predicted buckling and plastic collapse pressures are

consistently larger than the test values.

The onset of plasticity in the stiffener was predicted to occur at the ends adjacent to the
free edge. At these positions high tensile local strains developed in the longitudinal
direction. Yield grew to a full through-thickness phenomenon at 250 kN/m? but did not
spread to other parts of the stiffener. At 475 kN/m?2, full-depth yielding had spread
along the clamped ends. Following buckling, plasticity developed across the stiffener

breadth at midspan, covering a triangular region with one apex at the intersection with

the base plate (Fig. 4.40).

The effect of pressure on the longitudinal strains in the plastic range is shown in Fig.
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4.37. With increasing load the magnitudes of the local strains increased but the regions
of compressive/tensile strains remained essentially unaltered. Following buckling,
tensile strains developed on either side of the buckle at midlength (Figs 4.37b and
4.37c).

4.3.1.2 Base Plate Response

Since the expected failure mode was torsional buckling of the stiffener, it was
anticipated that following its suffering elastic lateral buckling, an additional load would
be carried by the base plate. That is, following stiffener buckling, overall response
would be governed by plate response and the contribution of the stiffener would be
small. The plate dimensions were chosen such that it's failure would precede any
failure in the supporting box and in addition, it was expected that any longitudinal in-
plane movement in the stiffened plate boundaries would be small. On this basis, the
plate end boundaries were modelled as being rotationally clamped and restrained.
During the test, a small amount of in-plane movement in the longitudinal direction was
observed (0.07 mm) but following removal of the load, the ends of the stiffened plate

returned to their original positions.

The failure mechanism of a thin long plate clamped at the edges and fully built-in has
been established and described in detail in earlier work 128:129,130, The importance of
membrane stresses in carrying additional loads has been demonstrated theoretically and
experimentally and it has been shown that collapse is resisted at pressures considerably
in excess of those at which first yield occurs. Initial yield commences at the plate edges
midway along the length. With further load, plasticity spreads towards the corners and
a centre plastic hinge then forms. The centre hinge subsequently expands towards the
edges of the plate until finally a pure plastic membrane is formed. Even at this stage,

however, additional load may be carried due to the action of the membrane stresses.

The predicted change in gradient in the pressure-lateral deflection curve (Fig. 4.41)

associated with the formation of edge plastic hinges occurs at approximately 600
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kN/m2. The corresponding test value was 620 kN/m?2. Following this, it is seen that
the load continues to be carried until 1000 kN/m2 but with increasing lateral deflections.
Figure 4.42 shows the spread of plasticity in the base plate at various stages of loading,
following first yield. At 850 kN/m2, (Fig. 4.42b) the centre hinges have grown along
each edge. The effect of further loading is seen in Fig. 4.42c in which approximately
half the plate area is elasto-plastic with plasticity spreading towards the ends. It is seen
that the growth of plasticity is inhibited along the intersection with the stiffener, since a

certain proportion of the total load is borne by it.

Figure 4.38b shows the variation in longitudinal strains at gauge nos 17 and 19 which
were located at midspan in the plate at positions equidistant from the stiffener. A change
in gradient is noted at 600 kN/m2 and the axial strains start decreasing until
compressive strains arise. An examination of the complete strain field confirmed that
tensile longitudinal strains acted at other parts of the plate. Along the longitudinal
edges, however, and in way of gauge nos 17 and 19 a local compressive strain field
developed. This is attributed to the action of shear forces along these edges which

restrained the movement of the plate.
4.3.2 Model No. 6
4.3.2.1 Stiffener Response (d/t,, = 29.6)

Model No. 6 was also tested under lateral pressure and differed from Model No. 4 in
that a stockier stiffener was used. Although the external loading was only lateral
pressure, a small amount of axial compression also acted on the model. For this model,
this caused difficulties in correlating the distributions of longitudinal strains along the
stiffener tip in the elastic range which was further complicated by the fact that since the
box was not completely rigid, a limited amount of rotation of the stiffener ends took

place.

Figures 4.43a and 4.43b which show the variation of longitudinal strain with lateral
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pressure are used to obtain critical local buckling pressures. The results are summarised

in the following table.

Table 4.7 Model No.6 Comparison of Buckling Strains and Pressures

Strain Gauge 12 3/4 5/6 7/8 11/12 13/14 15/16
Pair

Critical strains +409 723 1363 1568 1318 704 +409
(ue) * * 590 1070 1100 1100 *
Critical buckling 600 600 600 570 600 600 600
pressure (kN/mm?2) * x 675 675 675 650 *

The diagrams show that little divergence occurred prior to buckling since the
magnitudes of the initial distortions were small. At midspan, elastic buckling was
predicted to occur at a pressure of 570 kN/m2 and a strain of 1568 pe . The

corresponding test results are 675 kN/m? and 1070 pe.

The critical buckling pressures and strains were obtained from the test results using the
lateral pressure-longitudinal strain diagrams and also by observing the change in shape
of the strain distribution along the stiffener tip. Using this last criterion, the buckling
pressure was estimated to be 682 kN/m2. Both results appear to agree reasonably well
with the average predicted buckling pressure of 595 kN/m2, although the predicted
local critical strains are greater. From Fig. 4.44 lateral buckling appears to have
occurred at 570 kN/m2. The spread of plasticity in the stiffener is indicated in Fig.

4.45.

No further load increments were applied beyond 1000 kN/m?2 because divergence of the

numerical procedure occurred; the plastic collapse level for the stiffener was thus not
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reached (test result = 1550 kN/m?2).
4.3.2.2 Base Plate Response

It was expected that the plate behaviour for this test would be broadly similar to that of
Model No. 4. The increase in lateral deflection is plotted against pressure in Fig. 4.46.
It is seen that at midlength (transducer no.8) a change in gradient occurred at
approximately 600 kN/m2. At this pressure the stiffener buckled and load was shed to
the base plate. The edges of the base plate became elasto-plastic and at 850 kN/m? the
central portion of the plate also became elasto-plastic. Further loads were accompanied
by additional increases in lateral deflections and large deflection effects meant that the

lateral pressure load was carried by membrane strains in the plate.

A comparison of predicted and measured deflections showed however that the
measured values were substantially smaller than the predicted ones. This may have
occurred because of differences between the actual and theoretical load distributions at
the ends which caused plasticity to spread in the theoretical model at lower pressure

levels, leading to earlier failure.
4.4 Correlation Study of Combined Loading Test

Two models were originally scheduled for combined loading tests. Due to problems
that arose during the testing of Model No. 7 however, this was not carried out to
completion and the same stiffened plate was re-tested under axial compression alone, as
Model No. 8. Thus in this section only one combined loading test, Model No.3, is

reported. The layout of the test rig used is shown in Fig. 4.6.

For Model No.3 the stiffener depth/thickness ratio was 38.3. The effects of initial
imperfections and yielding were included in the numerical procedure in the same
manner as for the previous analyses. Boundary conditions are as shown in Fig. 4.8 and

are described in detail in Section 4.1.3. Results from previous tests were used to
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determine a linear relationship between the lateral pressure and applied edge
compression (Fig. 4.9) which was implemented during the test. The same relationship

was used in the theoretical analysis.

4.4.1 Model No. 3

4.4.1.1 Stiffener Response

In this test the loading on the stiffener consisted of the following:

- a component of the total axial compression applied to the model by the upper and

lower platens.

- an interactive force along the line of attachment to the base plate due to the out-of-
plane behaviour of the plate, resulting from the lateral pressure and amplified by

the axial load.

From Fig. 4.6 it is seen that the model was totally immersed in water inside the
pressure chamber. In calculating the axial load on the model during the test, account
was taken of the effect of hydrostatic loading on the model (reference (127), Appendix
2). During preliminary runs it was found that the longitudinal strains along the stiffener
tip did not agree well with those measured during the test. This was attributed to,
firstly, the fact that the applied compressive load was not distributed uniformly along
the transverse edges of the stiffener and secondly, that the box section to which the

stiffened plate was welded to was not infinitely rigid.

Both factors contributed to a limited amount of rotation of the ends of the stiffener. In
order to overcome the discrepancies that were observed, a modified, linearly varying
distribution of displacements was applied and adjusted so that reasonable agreement

between the theoretical and experimental strain distributions was obtained in the pre-
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buckling range. The same linear distribution was then applied throughout the complete
load cycle. The resulting strain distributions at other loads are also indicated in the same

diagram.

Theoretical results for the growth of longitudinal strain along the stiffener tip are given
in Fig. 4.47. The locations of the gauges are as for the other tests (Fig. 4.4). The
results obtained for local buckling are summarised in the following table and are

compared with test results.

Table 4.8 Model No.3 Comparison of Buckling Strains and Loads

Strain Gauge 34 56 78 1112 13114
Pair
Critical Strains 580 * 627 651 604
(ue) 510 500 * 425 475
Critical Buckling 191 * 191 191 191
Load (kN) 150 150 * 150 150
Critical Buckling 78 78 78 78 78
Pressure (kN/m2) 61 51 * 61 61
Plastic Collapse 320 * 344 332 344
Load (kN) 325 325 (325) 325 325
Plastic Collapse 130 * 140 135 140

Pressure (kN/m2) 131 131 (131) 131 131

The theoretical critical stiffener strains are seen to be larger than those obtained
experimentally. It was also noted that the theoretical profile of the strains changed when
plastic collapse occurred and gave rise to two dips near midlength which did not appear
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in the corresponding test distribution. It is possible that such reductions did arise but
were not detected because the strain gauges were not positioned at appropriate

locations.

The theoretical critical buckling strain along the stiffener tip at midspan is seen from the
table to be 627 L€; the relevant pressure is 78 kN/m2. Corresponding test results for the
midspan position were not available because of damage to the strain gauges. A re-
examination of Fig. 4.47 shows however that divergence arose in the strains at much
lower load levels, making it difficult to pinpoint accurately the critical buckling load.
This is also evident in Fig. 4.48 in which lateral deflections of the stiffener tip are

plotted against lateral pressure.

Another factor contributing to this discrepancy is the changing rotational rigidity of the
loaded edges of the stiffener. It is not possible to accurately model the behaviour of the

loaded edges since the conditions there change with increasing load.

The critical buckling load may alternatively be obtained from the load-end shortening
response of the stiffener (Fig. 4.49). A change in gradient is noted at approximately
2000 N corresponding to a model load of 198 kN and a lateral pressure of 80 kN/mZ2.
The applied compressive strain at this load was 250 e and 550 e at the lower and
upper edges of the stiffener respectively (mean = 400 UE). Differences in this case are
33% and 25% for the stiffener tip strains and buckling loads respectively and are larger

than those estimated previously.

During the test the stiffener buckled into three half-sine waves along its tip. The same
profile was generated by the numerical analysis. A comparison of the deflections
showed that in the pre-buckling range, the observed deflections were much larger than
the predicted ones. Following buckling, however, and in the plastic region, the
deflections agreed fairly well. At the peak load of 577 kN and 231 kN/m2 pressure, the
deflection of the stiffener tip at midlength was 3.45 mm (test) and 3.90 mm (theoretical)
(Figs 68 127 and 4.48). The average theoretical and observed plastic collapse loads
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(Table 4.8) are 141 kN/m? and 131 kN/m2 respectively and these differ by
approximately 7%.

Alternatively Fig. 4.49 may be used and from this the theoretical plastic collapse load is
found to be 2904 N at an end-compression of 0.137 mm. This corresponds to a total
load on the model of 581 kN (233 kN/m2) and is seen to be higher than the previously

determined result.

The longitudinal midlayer strains remained compressive during the whole load cycle
because the applied axial load dominated the response. Plasticity spread following
elastic buckling from the tip at midlength in the region of the buckle: it was first
observed at an axial load of 267 kN (pressure = 107 kN/m2). At peak load, the central
region of the stiffener was elasto-plastic, the loaded edges remaining elastic. During
unloading, the profile changed to a single half-sine wave which remained when all
loading was removed. Plasticity was confined to a narrow band at midlength the

remaining part of the stiffener behaving elastically (Fig. 4.50).
4.4.1.2 Base Plate Response

The combination of axial compression and lateral pressure that was applied to the model
ensured that the plate deflected away from the stiffener, in sympathy with the initial
imperfections. The plate profile consisted of a single half-sine wave form in both the
longitudinal and transverse directions. At the lower levels of loading, the shape of the
transverse profile was not noticeably affected by the presence of the stiffener. At loads
exceeding 250 kN and up to stiffener collapse however, a flattening was noted in the
vicinity of the stiffener. The variation of lateral deflection with pressure is shown in
Fig. 4.51. It is seen that the response is linear until stiffener failure, at which point a
change in gradient occurs. The longitudinal strains remained compressive throughout
the load cycle, the response being dominated by the axial compression. Plate buckling

did not occur and the same profile was maintained throughout.
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Plasticity was initiated along the loaded edges near the junction with the stiffener at a
load of 396 kN (the stiffener started buckling at 200 kN and 80 kN/m?2 pressure). A
limited number of nodes along the unloaded edges at mid-length also became elasto-
plastic. During unloading, all plate nodes behaved elastically. The residual deflection in

the base plate (Fig. 4.51) arises because of plastic straining during the loading path.

The load end-shortening response of the plate is shown in Fig. 4.52. It is seen that the
behaviour is linear up to approximately 58 kN at which point stiffener collapse
occurred. The relatively small effect of the induced plasticity is evident from the almost

complete recovery of the end shortening curve.
4.4.1.3 Stiffened Plate Response

The response of the stiffened plate was similar to that of the axially loaded test
specimens described previously. The effect of lateral pressure was seen to be of
secondary importance. The major part of the applied compressive load was borne by

the base plate which did not fail.

The load end-shortening response for the stiffened plate (Fig. 4.53) is similar to that
obtained for the base plate, the differences being attributed to the presence of the
stiffener which carried a small proportion of the load. Interaction effects for this model

were evident only in the transverse profile of the base plate but did not affect the overall

response of the stiffened plate.
4.4.2 Model No. 7

Model No. 7 was originally scheduled to be tested under combined loading involving
axial compression and lateral pressure. It was not possible however to carry out the test
as originally planned because of problems that became apparent at the initial stages of
loading, Failure of some strain gauges resulted in lack of axiality in the model and with

increased loading the top end of the model became indented by the hardened steel ball
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transmitting the load. The test was stopped and it was found that local buckling had
occurred in the stiffener. The resulting distribution of measured strains along the
stiffener tip is given in Fig. 4.29. It was decided to repeat the test and apply axial
compression alone because of the general difficulty in aligning the model axially within
the pressure chamber. Initial imperfections were measured and the test carried out as

Model No. 8, described in Section 4.2.4.
4.5 Concluding Remarks and Comparisons with Other Formulations

The response of seven flat stiffened plates has been compared in detail with results
obtained from a large-deflection elasto-plastic analysis procedure. Several aspects of the
behaviour of the stiffener and the base plate have been examined and critical buckling
strains and loads and plastic collapse loads have been compared with test
measurements. The results from the correlation studies are summarised in Table 4.9
overleaf. Theoretical buckling and plastic collapse loads and strains have been obtained

using:

load end: compression diagrams (overall behaviour)

strain distributions along the stiffener tip (local behaviour)

Theoretical and observed buckling modes have also been compared and the growth of
plasticity has been described. Of the seven cases studied, four involved axial

compression, two involved lateral pressure and one involved combined loading.

For the cases involving axial compression the predicted stiffener local buckling loads
were much larger than the test values. Much better agreement was obtained in the
estimation of the plastic collapse loads. A simple check was carried out on the test
results and it was found that the measured externally applied end-compressive loads
and the local strains at buckling levels did not satisfy the simple linear stress-strain
relationship as expected; as described earlier in this Chapter this was used to estimate

the total load on the model in the theoretical approach. At plastic collapse better
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Table 4.9 Correlation Studies - Summary of Results

Model No 1 2 5 8 4 6 3

Loading Axial Axial Axial Axial Lat. Pressure Combined

Critical Buckling 775(D 549 1145 1140 1045 1568 627

Strain (U€) 660 700 1200 1000 950 1070 472
Critical Buckling 475 457 815 863 - - 191
Load (kN) 340 350 480 345 - - 156
Critical Buckling - - - - 515 570 78
Pressure (kN/m2) - - - - 440 675 63
Plastic Collapse 775 900 952 914 - - 344
Load (kN) 935 975 975 950 - - 325
Plastic Collapse - - - -. 80 -@ 140
Pressure (kN/m2) - - - - 706 1550 131

Buckling Modes 3 3 2/6 5 4
3/4 5 2/6 4 4

Base Plate No No Yes Yes No No No
Failure No No Yes Yes No Yes No

Overall Collapse No No No Yes No No No
of Stiffened Plate No No No Yes No No No

(1) (theory/test results)

(2) plastic collapse pressure not reached
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agreement was obtained and this indicates that the fault may lie with the instrumentation
used. For this reason the measured critical local strains and the average applied edge
compressive strains were treated as a more reliable basis for purposes of comparison

with the predicted values.

In the case involving combined loading (Model No. 3) it was found necessary to allow
for stiffener end-rotation and this gave results which correlated better with the test
values. However other problems which have already been discussed did not allow the
buckling loads and strains to be predicted with the accuracy that was hoped for.
Nonetheless the plastic collapse loads were predicted to a satisfactory degree of

accuracy.

In the remaining part of this section a comparison of the critical buckling strains
measured during the axial compression tests with several analytical formulations will be
carried out. The results of this comparison are contained in Table 4.10. The analytical
approaches which were checked are included in Appendix A and have been proposed or
are currently in use in design codes to predict tripping. In all cases the loaded edges of
the stiffener are assumed simply supported and various assumptions are made for the

rotational restraint along the intersection with the base plate.

The data given in Table 4.10 represents elasto-plastic stiffener average buckling strains.
From the table it is apparent that the results fall into two distinct categories: those in
which some form of rotational restraint is assumed and those in which the stiffener is
treated as being simply supported. In the former case the prediction of tripping stresses

is significantly more accurate, for both slendernesses (30, 40).

In cases (4), (8) and (9) elasto-plastic collapse is allowed for by use of the Ostenfeld-
Bleich parabola and the structural proportional limit py, set equal to 0.5.



-123 -

Table 4.10 Comparison of Critical Buckling Strains for Several Design Formulae
with Test Results and Numerical Analysis

Case

Test Results

Numerical Analysis

R.N. code 141

Faulkner 72

Timoshenko 144 (S-S-S-F)
Timoshenko 144 (S-C-S-F)
Rogers and Dwight 83
Adamchak 72 (Co=0)

Adamchak 72 (Co>0)

d/it=40

680 (1)

662 (1)

253

1000 (913)®

267

750

322

269

956

d/t=30

1100 (O

1151 ()

440

1297

470

1338

466

439

1145

(1) This represent the average value for the two tests for this stiffener slenderness.

Average dimensions and yield stresses were used to determine tripping stresses

using the design formulae.

(2) The value in brackets is for a simply supported base plate.
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The Royal Navy code assumes that the stiffener is simply supported along the
intersection wih the base plate and consequently the mode shape consists of a single
half-sine wave. This leads to an unnecessarily conservative result which ignores the

support provided by the plating.

Faulkner's equation predicts elasto-plastic tripping at 207 N/mm? (1000 p€) and an
allowance is made for the rotational restraint (constant value, given by C, = Et3/3b).
Collapse depends upon plate behaviour and thus the plate boundary conditions affect
the response of the stiffener indirectly. Both clamped and simply supported edges were
checked and it was found that for the simply supported case the stiffener buckling load
was about 10% lower (Table 4.10).

The equation used by Rogers and Dwight contains a term which allows for pure torsion
and an additional term which includes the longitudinal slenderness (a/d) of the stiffener.
Simply supported edges all round are assumed and thus the result is similar to that

obtained using the R.N. code equation.

Timoshenko's two equations give fairly good estimates of the buckling stress although
no allowance is made for the presence of the shell plating. For the simply supported
case (S-S-S-F) there is no significant reduction in buckling stress (value of the constant
k) for long stiffeners (aspect ratios greater than 3). For the case in which the attached

edge is assumed clamped (S-C-S-F) a minimum value is reached for an aspect ratio of

1.6.

Adamchak's equations allow for plate behaviour and several approaches are suggested
with regard to estimating the rotational restraint. In the tabulated results a 'minimum’
restraint has been assumed. Nevertheless, Table 4.10 shows that the value of C, is
overestimated by both this approach and that proposed by Faulkner and consequently
the predicted buckling modes do not agree with the ones observed. During the tests, up

to 6 half-sine waves were noted along the stiffener tip for the four cases in question,
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whereas the analytical predictions gave values of 10 and 11. It is therefore necessary to
treat these formulations with caution since the tripping stresses which are predicted may
be higher than those which can actually occur. The comparison indicates that a
'minimum’ restraint approach is required in order to obtain realistic values for tripping
stresses and also to predict buckling mode shapes with some degree of accuracy. An
allowance for plate flexure may give more accurate results for the rotational restraint;

this can be included in formulations suitable for use at the preliminary design stage.




CHAPTER FIVE

PARAMETRIC STUDIES ON THE
LOCAL BEHAVIOUR OF

FLAT STIFFENED PLATING

In this Chapter, results from a series of studies on stiffened plates under axial
compression are presented. The aspect ratios considered were with one exception (a/b =
4) limited to a/b<2 (short panels) and the stiffener was proportioned so that lateral
torsional elasto-plastic buckling occurred. The panel analysed was treated as forming
part of a continuous section of plating bearing several stiffeners of identical profiles and
dimensions (orthogonally stiffened grillage). Out-of-plane support was assumed to be
provided by deep transverses along the loaded edges, as indicated in Fig. 2.8. A fuller
description of the boundary conditions used is given in Section 2.7. A 'standard’ panel

whose dimensions and material properties were varied was chosen, bearing in mind the

range of interest in practical cases.

Table 5.1 Properties of Standard Panel

Aspect Ratio a’b 1
Slenderness b/tp 60
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Table 5.1 (cont'd)

Stiffener Slenderness dit, 10
Young's Modulus E kN/mm?2 207.0
Poisson's Ratio \Y 0.3
Plate yield stress Sop N/mm?2 245.0
Stiffener yield stress Oy N/mm?2 245.0

The non-dimensional slenderness ratios for the plate and stiffener (Bp, B,,) based on the
above data are 2.064 and 0.344 respectively. The effect of residual stresses was not
studied, the purpose being to study stress-free plates initially. As indicated in Fig. 2.8,
axial compression is applied as a uniform displacement along the loaded edges;

compression is applied until the average strain reaches three times the yield strain.
5.1 Base Plate and Stiffener Aspect Ratio

Elastic theory states that unstiffened rectangular plates buckle such that each buckle has
an aspect ratio of approximately unity. When elasto-plastic buckling is considered, it
has been shown analytically by Ueda and Tall that for simply supported plates the
lowest ultimate load is carried when the aspect ratio lies in the range 0.8 > a/b > 0.7
131, Moxham 132 observed in large scale tests that as the deformation proceeded, there
was an initial buckling phase with several half-waves and afterwards only one plastic
buckled zone was developed, with an aspect ratio of 0.875. Longer plates in general are
stiffer and stronger but show a steeper post-collapse unloading. Frieze 41 found that the
effect of aspect ratio was dependent on the magnitude of initial distortions and the
boundary conditions. He concluded that the results for a square plate would generally
give conservative estimates of the strength and stiffness of long plates.

Concerning the stiffener, there appears to be a lack of understanding with regard to the
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effect of length on its lateral-torsional behaviour. It can be shown that the lowest
tripping stress occurs in one half wavelength and depends upon the length, as in the
case of columns. This provides a basis for choosing the spacing of intermediate lateral

supports 2 and has been used in design codes.

If however the effect of the plating is included in the analysis by assuming a rotational
restraint along the stiffener toe, the minimum tripping stress does not any more depend
upon the length 2. On this basis the usefulness of tripping brackets is brought into
question and it is therefore important to investigate further the effect of length on

stiffener behaviour.

Of the methods used in recent years to analyse stiffened plates, numerical analysis
routines and the Perry-Robertson effective width approach have been amongst the most
successful. Carlsen 133 used the program STAGS which employs the finite difference
method. In this, the stiffener is assumed to fail by an overall collapse mechanism and
torsional failure is not considered. For stocky panels, the program predicted failure in
the stiffener due to plastic squashing of the section and for high aspect ratios failure

with rapid unloading occurred shortly after yielding along the free edge.

In this study the value of a/b was varied by changing the length of the cross-section in
conjunction with the plate imperfections. This was done so as to maintain throughout
the same level of curvature in the plate. When considering plate aspect ratio a slender
stiffener (d/t,, = 40) was used and its out-of-plane imperfections were set equal to zero.
The purpose of this was to permit plate behaviour to be studied before introducing a
combined flexural- twisting mode of failure in the stiffener which would interact with
that of the plate. The ratio of stiffener/plate cross-sectional area was kept constant at

0.16.

When considering the effect of aspect ratio on the stiffener, the values of initial
distortions used were based on the average values specified in the 1982 edition of the
1977 DnV Offshore Rules 70, The base plate initial distortions are given as function
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of breadth, the maximum acceptable being b/100. For flatbar stiffeners the initial
distortions are specified as a function of length, the maximum acceptable being
0.0015a. In this study the values used were b/200 and 0.00075a respectively. For both

the base plate and the stiffener a sinusoidal profile was used.

The results obtained in each case are presented in terms of average stress-strain curves
and peak load-aspect ratio curves. Average stress-strain curves for the base plate are
given in Fig 5.1a. These cover the range 0.40 < a/b < 2.0, which includes the
minimum strength curve. Peak loads are plotted against aspect ratio in Fig. 5.1c and
extend up to a/b = 2.0. The curves included in Fig. 5.1a are seen to be of generally
similar shape and a reduction in stiffness due to yielding is noted above 0.60g,. No
sharp reduction is noted at the peak load and this is characteristic of the range of aspect
ratios considered. In the post-peak range the drop in load carried is not large and is
uniform throughout the loading range considered. Figure 5.1c shows that at aspect
ratios greater than 1.5 the peak load approaches the squash load although it is expected
that imperfection profiles with more than one half wavelength would reduce it. The
reduction in the peak load of the stiffener shown in Fig. 5.1c is due to longitudinal
flexural effects. Elasto-plastic collapse occurred at midlength along the free edge and
plasticity gradually spread in the transverse direction, towards the intersection with the
base plate. The curve given for the stiffened plate is similar to that of the base plate
because the stiffener was slender (d/t,, = 40) and carried a small proportion of the total

load (15%).

Corresponding strength curves for the stiffener are shown in Figs 5.2a and 5.2b. It is
seen that for the slender stiffener (d/t,, = 40) the peak load decreases as the length is
increased and the transition to the post-failure regime becomes more marked with
increasing panel length. Stiffener stress-strain curves for plates with aspect ratios of 1.0
and 2.0 and 4.0 are shown in Fig. 5.2b. It is seen that there is no substantial decrease
in the peak load between the three curves. The drop following peak load becomes much
sharper with increasing aspect ratio and for an aspect ratio of 4.0 the pre-peak stiffness

is higher as is the peak load. Similar results were obtained for an aspect ratio of 3.0
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(not included in the diagram).

These two diagrams show that stiffeners which do not fail by tripping but in a
longitudinal flexural mode can carry up to 90% of the squash load even for high
slenderness ratios (d/t,, = 40). However if a lateral-torsional mode is introduced, the
maximum load decreases considerably even for relatively stocky stiffeners; Fig. 5.1
shows that for a stiffener of slenderness of 10 the peak load is reduced to

approximately 50% of the squash load. Longer plates have not been studied because

- overall behaviour is then also affected by column effects and
- it is necessary to investigate further the effect of initial imperfections on the
response of plates in order to employ the appropriate profiles in the study of the

stiffened plate.
The effects of initial imperfections will be considered in more detail in the next section.

It has been seen that aspect ratios at which minimum strength curves are obtained for
the base plate and stiffener do not coincide and therefore if a design procedure is to be
based on this type of approach, it is necessary to consider the behaviour of the plate and
stiffener separately. On the other hand, if the minimum strength curve of the overall
cross-section is used this will lead to the choice of a unique aspect ratio for a particular
geometry. The main purpose of the studies which follow is to obtain comparative
results and for this reason the aspect ratio was kept constant and equal to the minimum
for that of a base plate of slenderness b/ty= 60. For stockier cross-sections the critical
value of a/b would be expected to decrease and for more slender stiffeners to increase.

For a stiffener/plate area ratio of 0.66 the minimum strength was predicted to occur for

at a value of a/b = 0.50.
5.2 Initial Imperfections

The initial imperfections considered were limited to sinusoidal out-of-plane distortions.
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Base plate and stiffener imperfections were examined separately and for the base plate
the range considered was 0.025 < Wop/tp < 0.25, with zero stiffener imperfections. For
the stiffener the range considered was 0.0 < w,/t,, < 0.0015a with an imperfection in
the base plate of b/200. These represent the range of values to be found in practical

panels used in the construction of offshore structures, as envisaged by the DnV Rules
70

The response of the base plate is, as expected, influenced by imperfections to a much
greater extent than that of the stiffener (compare Figs 5.3a and 5.3b). A reduction in
pre-peak stiffness was observed and this was accompanied by a corresponding
reduction in peak load. For an imperfection of 0.025t, the peak load was found to be
0.97 Cop and for an imperfection of 0.25t this dropped to 0.75 o, a reduction of
22%. In the post-collapse range, the load carried gradually reduced for the smaller
imperfections. For the larger imperfections, the strength curves flattened out and the
load carried for an imperfection of 0.15t, (average value) was 0.68 Opp At three times

the yield strain.

For the smaller imperfections, yielding commenced at 0.92¢, and developed over
approximately three quarters of the total area of the base plate. In the post-peak range,
some unloading was observed. For larger imperfections plate (surface) yielding
commenced at significantly lower compressive strains (0.60€, for an imperfection of

0.25t,,) indicating the influence of initial imperfections on material behaviour.

The effects of imperfections in the base plate on the stiffener, base plate and stiffened
plate are shown in Figs 5.3a-c. Figure 5.3b shows that, for slender stiffeners, with
increasing end-compression the effect of the imperfections increases. A reduction in
stiffness is observed before the peak load is reached. This drops from 0.98 G, (Wop =
0.025tp) to 0.90 o, for an imperfection of 0.25t; (a drop of 9%). In the post-failure
range, the effect of plate imperfections on the stiffener is seen to be much less

signficant and the strength curves converge to a value of 0.78 o,,,,. For stockier

stiffeners (d/t,, = 10), the influence of plate imperfections was found to be much
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smaller.

For the larger plate imperfections, the onset of yield in the stiffener occurred much
earlier, although the change was not found to be significant (from one yield strain at
wop = 0.025t, to 0.95¢, at 0.25t;), the uniaxial yield strain being 1184pe. For very
small plate imperfections the stiffener was capable of attaining full yield.

The strength curves of the stiffened plate (Fig. 5.3c) generally follow those of the base
plate (Fig. 5.3a) and the above-mentioned comments apply in this case also. For larger
values of A,/A, it would be expected that stiffener behaviour would affect overall

behaviour to a much greater extent, particularly for the larger initial imperfections.

The effect of imperfections on slender stiffeners (d/t, = 40) is indicated in Fig. 5.4.
The range of imperfections studied was 0.025 < Wy, /t,, < 0.25. There is a reduction in
pre-peak stiffness with increasing imperfections caused by earlier yielding and this is
followed by a corresponding reduction in peak load. After failure the load-carrying
~ capacity reduces uniformly for all the curves in question. The effect of stiffener
imperfections on plate behaviour is small, as shown in the adjacent diagram but for

higher values of A /Ap it would be expected to be more pronounced.

A study of the behaviour of stocky stiffeners (d/t, = 10) was also carried out over the
same range of imperfections. No noticeable reduction in load-carrying capacity was

observed in these and for slenderesses in the range 40 > d/t,, > 10 the effect could be

quantified by some form of interpolation.

Strength curves for stiffened plates designed to BS5400 and DnV Rules are shown in
Figs 5.5a-b. The stiffened plate with zero imperfections is included for purposes of
comparison. The DnV rules permit larger imperfections than the BS5400 rules and as a

result;
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i) the load-carrying capacity of the whole cross-section is reduced
ii) the stiffness of both the plate and the stiffener are also reduced.

The differences in ultimate strength noted from the diagrams are 30% and 20% for the
base plate and the stiffener respectively. The values of imperfections used have been
tabulated in the diagrams in non-dimensionalised form so that they can be compared

directly.
5.3 Base Plate Slenderness

The value of b/t;, is the one of the most important geometrical parameters in stiffened
plate design because it has direct influence on the overall load-carrying capacity of the
cross-section and also its mode of failure. The range of values considered here covers
those commonly encountered in marine structures (30 < b/t, < 85). Four values have
been used, namely 30, 40,60 and 85. The first two of these correspond to 'stocky’
plates, the latter two to 'slender’ plates. The aspect ratio of the cross-section was
maintained constant at 0.60, as discussed earlier. Three values of the ratio of
stiffener/plate area were considered, namely 0.11, 0.20 and 0.30 and results for these

are given in Figs 5.6-5.17.
The results for each case are presented as average stress-strain curves for the:

a) flatbar stiffener
b) base plate
c) stiffened plate

The effect of base plate slenderness is indicated for each stiffener slenderness and
stiffener/plate area ratio and strength curves for four values of b/tp are plotted in each
diagram. The peak loads obtained from these curves have been tabulated and are

included in Tables 5.2a-c. Each of these tables corresponds to one value of stiffener to
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Table 5.2a Effect of Base Plate and Stiffener Slenderness for Short Stiffened Plates

a/b =0.60 Ogp =245 N/mm?2 Oy =245 N/mm?2
A JAp=0.11 Wop = bp/200 Wow = 0.00075a
dny, b/tp Bp B, Oy/Oop  Ow/Oow O/00
8 30 1.03 0.275 1.0 0.98 1.0
8 40 1.376 0.275 0.91 0.77 0.89
8 60 2.064 0.275 0.73 0.71 0.73
8 85 2.924 0.275 0.48 0.65 0.48
10 30 1.03 0.344 1.0 0.97 1.0

10 40 1.376 0.344 0.91 0.79 0.89
10 60 2.064 0.344 0.73 0.70 0.73
10 85 2.924 0.344 0.49 0.62 0.49

16 30 1.03 0.55 1.0 0.94 0.98
16 40 1.376 0.55 0.91 0.82 0.90
16 60 2.064 0.55 0.73 0.79 0.73
16 85 2.924 0.55 0.48 0.72 0.50

20 30 1.03 0.688 1.0 0.93 0.99
20 40 1.376 0.688 0.91 0.83 0.90
20 60 2.064 0.688 0.73 0.79 0.73

20 85 2.924 0.688 0.48 0.74 0.50
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Table 5.2b Effect of Base Plate and Stiffener Slenderness for Short Stiffened Plates

a/b =0.60 Ogp = 245 N/mm?2 Oy =245 N/mm?2
A JAp= 0.20 Wop = b/200 Wow = 0.00075a
dity,  blty Bp By Oy/Oop  Ow/Oow  Ol0o
10 30 1.03 0344 1.0 1.0 1.0
10 40 1376 0344  0.93 1.0 0.94
10 60 2064 0344  0.68 1.0 0.72
10 85 2.928 0344  0.49 1.0 0.56
20 30 1.03 0688 1.0 1.0 1.0
20 40 1376 0688  0.95 1.0 0.96
20 60 2064  0.688  0.74 1.0 0.76

20 85 2.928 0.688 0.56 0.94 0.62

30 30 1.03 1.03 1.0 0.99 1.0
30 40 1376 103 0.96 0.99 0.96
30 60 2.064  1.03 0.76 0.90 0.78
30 85 2928  1.03 0.58 0.83 0.63

40 30 1.03 1.376 1.0 0.83 1.0
40 40 1.376 1.376 0.95 0.85 0.89
40 60 2.064 1.376 0.76 0.73 0.76



- 136 -

Table 5.2c Effect of Base Plate and Stiffener Slenderness for Short Stiffened Plates

a/b =0.60 Ogp = 245 N/mm? Oy = 245 N/mm?
A, /Ap=030 Wop = b/200 Wow = 0.00075a
d/ty, bit, [ip Bw Oy/Oop  Ou/Oow /o,
10 30 1.03 0344  0.99 1.0 1.0
10 40 1.376 0344  0.89 1.0 0.91
10 60 2.064  0.344 - (.o -
10 85 2.928  0.344 - (1.0) -
20 30 1.03 0.688 1.0 1.0 1.0
20 40 1376  0.688 - (1.0) -
20 60 2.064  0.688  0.72 1.0 0.77

20 85 2.928 0.688 0.54 >0.95 0.62

30 30 1.03 1.03 1.0 1.0 1.0

30 40 1.376 1.03 0.96 0.98 0.96
30 60 2.064 1.03 0.75 0.86 0.78
30 85 2.928 1.03 0.58 0.80 0.63

40 30 1.03 1376  0.98 0.95 0.98
40 40 1376 1376 0.95 0.88 0.92
40 2.064 1376  0.75 073 074

3
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plate area ratio. In general, with increasing plate slenderness the stiffness of the
stiffener reduces and is accompanied by a corresponding reduction in peak load.
Stiffeners attached to stocky plates (b/tp = 30, 40) reach the squash load whereas for
the slenderer plates there is a reduction in load-carrying capacity. For the stiffeners
failure is accompanied by a sharp transition to the post-failure region and a subsequent

loss in strength which is only secondarily affected by the slenderness of the base plate.

Similar comments apply also to the response of the base plate; in this case failure is
characterised by a more gradual transition and the loss in strength that follows is also
gradual, this being generally attributable to the boundary conditions used (simply
supported edges). The slenderness was found to affect the peak load and pre-peak
stiffness significantly and for the more slender plates departure from linear elastic

behaviour occurs well before yielding.

The results obtained from these diagrams have been summarised as maximum strength
- slenderness curves (Figs 5.21 - 5.22). The effect of base plate slenderness on
stiffener strength is evident in these diagrams and it seen that stiffeners attached to
stocky plates (b/t, = 30, 40) can reach the squash load for values of d/t, of up to 30.
Stiffeners attached to slender plating (b/t, = 60, 85) reach the squash load for lower
values of slenderness (d/t,, = 15-20), depending on the value of b/t,. The response is
similar for both cases of A,,/Ap considered (0.20, 0.30).

5.4 Stiffener Slenderness

Existing design codes ensure that torsional failure does not arise in stiffeners by setting
upper limits to the value of d/t,,. In this manner, failure by yielding is precipitated and
this is identified with overall failure of the cross-section. The present study has
confirmed previous results that initial yielding is closely followed by failure of the
cross-section. It has also been found that in ‘short' panels material failure is dominant
over the practical range of stiffener slendernesses and that torsional behaviour reduces

the strength by only a small amount. Lateral-torsional behaviour becomes more
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important in cases where interframe buckling occurs and thus rotation of the stiffener
loaded edge arises. It is also important for longer panels in which coupling with column
failure occurs. In order to investigate this, a separate study is required in which column

behaviour is included.

The effects of stiffener slenderness are apparent from Figs 5.21a and 5.22a in which
B, is plotted against stiffener peak load. For column-type behaviour the slenderness is
usually defined in terms of the length and the radius of gyration; in this case it is more
appropriate to use the equivalent 'plate’ slenderness since local behaviour is studied.
These diagrams show that for stiffeners attached to stocky plating the peak load is
reached, provided d/ty, < 30. For stiffeners attached to plating with b/t; = 60 the limit is
d/ty, = 20 and for b/t, = 85 stiffeners with a slenderness greater than 10 experience

reductions in peak load.

The effect of stiffener slenderness on base plate response is indicated in Figs 5.21b and
5.22b. For a value of Ay,/A, of 0.20 it is seen that the more slender stiffeners provide
greater support to the base plate. For Ay/A, = 0.30 the stockiest stiffeners provide the
greatest support although the effect is in general less clear. In order to clarify this it is

necessary to generate results for higher values of Ay/Ap .
5.5 Stiffener/Plate Area Ratio

In practical cases the value of Ay/Apcan range up to 1.0, depending on the type of
stiffener and the panel in question. In this study, stiffened plates were considered over
the range 0.10 to 0.30. The effect of varying Ay/A, is evident from Tables 5.2b-c and
Figs 5.21a, 5.22a. It is observed that increasing the size of the stiffener produces:

- reductions in plate strength

- increases in stiffener strength

This occurs because the distribution of the load carried by the cross-section changes.
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The overall load carried is not significantly affected and the slender stiffeners (d/t,, =

30, 40) attached to stocky plating experience the largest increases in peak load.

The results from a second study for higher area ratios are plotted in Figs 5.18a-c and
the peak loads are included in Table 5.3 below. These show that when Ay/A} is
increased the strength of the cross-section increases; in this case the stiffener reaches

the squash load when the area ratio exceeds the value of 0.40.
Table 5.3 Effect of Stiffener/Plate Area Ratio for Short Stiffened Plates

a/b = 0.60 Gop = 245 N'mm2 Oy, =245 N/mm?2
Wop = b/200 Woy = 0.00075a

b/t d/ity, Ay/Ap OOy O0W/Cow /0o

60 20 0.11 0.73 0.79 0.73

60 20  0.20 0.73 0.90 0.76

60 20 0.40 0.73 0.97 0.80

60 20 0.60 0.74 1.0 0.84
5.6 Effect of Yield Stress

This study was undertaken to examine to what extent changes in yield stress affect the
maximum strength of the cross-section and the distribution of load between the base
plate and the stiffener. In all the cases analysed failure occurred by yielding. The values
of yield stress considered were in the range 200 N/mm? € 6, <355 N/mm?2 and results

are plotted in Figs 5.19a-b.
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Table 5.4 Effect of Yield Stress for Short Stiffened Plates

a/b =0.60 b/ty = 60 Wop = b/200
Ay/Ap=0.11 d/ty, =10 Wow = 0.00075a
Sop Oow Cp/Oop 0uw/Cow o/C,
200 200 0.78 0.93 0.80
245 355 0.74 0.86 0.77
355 245 0.66 0.91 0.68
300 300 0.76 0.95 0.79
355 355 0.66 0.88 0.78

It appears that for the base plate, increases in yield stress produce relative reductions in
the ultimate strength. For the stiffener the maximum decrease in peak strength is
relatively smaller and it can be expected that it would depend on the slenderness. All
strength curves exhibit the same characteristic transition to the postfailure regime for the
stiffener and base plate and the behaviour of the cross-section as a whole is dominated
by plate behaviour (Ay/Ap = 0.11). For constant plate yield stress decreases in O,
produce increases in G, /G, (cases 3,5). The same is observed in the case of the base

plate for constant stiffener yield stress.
5.7 Effect of Clamped Edges

In this section the response of simply supported plates forming part of a grillage is
compared with that of isolated clamped plates. The boundary conditions which were |
used are shown in Figs 2.8 and 4.8 respectively and the geometries are included in the
following table, in which maximum strengths are compared. The study concentrated on

the effect of the rotational restraint for different plate and stiffener slendernesses.
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Table 5.5 Comparison of Simply Supported and Clamped Stiffened Plates

a/b =0.60 Wop = b/200 Wow = 0.0
Opp = 245 N/mm? Oy = 245 N/mm?
Simply Supported Clamped

d/ty, bty Ow/Oow Op/Ogp  O/0p Ow/Oow OyCop  O/Co
10 30 0.97 1.0 1.0 0.98 1.0 1.0
10 40 0.79 0.91 0.89 0.93 1.0 1.0
10 60 0.70 0.73 0.72 0.96 1.0 1.0
10 85 0.62 0.49 0.49 0.70 0.83 0.81
8 60 1.0 0.81 0.90 1.0 1.0 1.0
16 60 0.98 0.81 0.86 0.99 1.0 1.0
20 60 0.98 0.81 0.85 0.99 1.0 1.0
40160 0.72 0.72 0.72 0.82 0.98 0.95

(1) in this case wg,, = 0.00075a

Fig. 5.20a shows that for a range of plate slendernesses the implementation of the
clamped condition leads to increased stiffness in the pre-peak range for the stiffeners as
well as to higher peak loads. The strength of stiffeners attached to plates with b/t, = 40
approach the squash load, the largest increase being observed for b/t, = 60 (26%). For
the base plate the effect of clamping produces increases in maximum strength,

especially for the higher slenderness ratios. For bit, = 85 the increase was found in

strength was found to be 0.340,,,, (70%).
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The effect of clamping for different stiffener slendernesses is not as important for
stiffener behaviour although an increase in strength was noted for d/t,, = 40 from 0.72

to 0.820,,, (Table 5.5).

It is thus concluded that for the practical range of slenderness ratios, the effect of
clamping produces more significant changes in plate behaviour than in stiffener

behaviour.




CHAPTER SIX

DYNAMIC RESPONSE OF UNSTIFFENED AND STIFFENED

FLAT PLATING

At the end of Chapter 3 it was stated that when analysing a stiffener whose load-
carrying capacity was of the same order as that of the plate, numerical instability can
arise if Dynamic Relaxation is used in its conventional, static form. This occurs
because rapid collapse may follow buckling in either the plate or the stiffener, the
proportion of load being shed to the adjoining member precipitating buckling in this
as well. As a result, the load-deflection path cannot be traced since rapid out-of-plane
motion causes the procedure to diverge. It would thus seem evident that it is

necessary to treat this type of interactive buckling as a dynamic phenomenon.

The implementation of Dynamic Relaxation to achieve this will be described in this
Chapter and results will be given for a dynamic analysis of a flat plate subjected to a

lateral impact load. The results will be compared with test data and a similar analysis

using a finite strip method 135.
6.1 Use of Dynamic Relaxation as a Real-Time Procedure

In conventional static solutions, when DR is used to analyse a structure a load

increment is imposed upon it and a number of iterations are performed until
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equilibrium is reached, i.e. the out-of-balance forces resulting from the imposed load
converge to zero. In these analyses, stability is governed by time increment and mass
density terms (At, p,, Py Py,) and convergence by damping constants. For example,

the out-of-balance force in the 'w' direction is given by:

ow .
P=p —+ Cw 6.1)

w Wat w

where Py, is identically equal to the left-hand side of equation 2.1a and p ., C,, are
mass density and damping terms. Because DR has not been concerned with the
dynamic behaviour as such, fictitious mass densities and unit time steps have been

introduced purely to achieve the most rapid convergence to the static solution.

In structural mechanics the majority of problems fall into one of three physical

categories: equilibrium problems, eigenvalue problems and propagation problems 105,

Equilibrium problems are those of steady state in which the equilibrium configuration
within the domain is to be determined by solving a particular differential equation
subject to certain boundary conditions. If the domain of integration is closed and
bounded, the problem is called a boundary value problem. It is apparent that the

determination of equilibrium stresses in an elastic plate falls into this category.

When critical values of certain parameters are to be determined in addition to the
corresponding steady state configuration the problem becomes an eigenvalue one, and

for flat plate equations eigenvalues correspond to buckling stresses.

The third category is that of propagation problems in which an unsteady or transient
response is analysed, given certain initial conditions (values). The solution of the
equations describing the dynamic behaviour of flat plates subjected to in-plane and/or

lateral loads belongs to this category and is achieved by satisfying the geometrical

boundary conditions and initial values.
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It is thus apparent that the implementation of a combined static/dynamic analysis
involves the solution of two essentially different types of problem. Nonetheless, the
means by which numerical stability is achieved in the DR static solution can also be
used in the dynamic case, provided the true material density and an appropriate time

step are used.

The time step used in other techniques is determined in various ways 112:117, For
methods which are unconditionally stable (implicit operators), no restrictions exist but
for explicit operators a maximum value is required otherwise convergence is not
achieved. In the past this upper limit has been determined by several authors by
considering the propagation velocity C of a plane stress wave within the plate. Since
C = Ax/At, the time increment can be found from At = Ax/C where Ax is the mesh
size. When DR is used to carry out a static analysis, stability is ensured by
determining the Gershgorin bounds of the equations of equilibrium at each node. This

analysis can also be used in a dynamic analysis since:

2
At'd
. 4p
Rearranging, At = Y (6.3)
G

where b is the maximum value of the Gershgorin bound calculated in the u, v and w
directions. For mild steel, the speed of propagation of a stress wave C=54x104

secs. The Gershgorin bound of the linear terms of the equilibrium equation of a flat

plate using equation 6.3 gives At = 0.1309 x 10-4 secs. Thus,

At & — (6.4)
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and when nonlinear terms are included, the time increment decreases further. From
physical considerations, therefore, the time taken for the stress wave to travel between
two adjacent nodes represents an upper bound to the time step which is used in a
numerical procedure involving an explicit operator. A dynamic analysis using Real-
Time DR can therefore be used to describe only a short period in the overall time
history of the structure. This does not pose any serious restrictions when analysing the
true dynamic behaviour, since the period of a plate transient response is short (a few
milliseconds). If however it as attempted to trace out a full load deflection static
response using the dynamic procedure, the number of iterations required increases to
such an extent that it becomes impracticable to perform such a calculation. The
dynamic analysis is therefore limited to the study of the range of loading in which
interactive buckling takes place, the rest of the response being treated in the

conventional manner.

6.2 Governing Equations

The dynamic behaviour is described by the modified von Karman equations assuming

rotary inertia can be neglected. Therefore,

‘pw%% +C,w=P_ (6.5)

N " 6.5b
pu-5t-+Cuu= P (6.5b)
Py 7&_4' va= Pv ¢

Since real densities are used throughout, py, = Py = Py = P- Constant acceleration is

assumed during a time interval At, and thus velocities .at t = t + At/2 are obtained in

terms of the previous velocities.
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Waaz = Wt-At/Z +—P, (6.6a)
Uaz = Yae T — Fu (6.6b)

Vearr = Vear T P, (6.6¢)

Using central differences in time, the velocities are then integrated to obtain

displacements at t =t + At as for the static solution.
6.3 Material Nonlinearity - Effect of Strain Rate

Geometrical nonlinearity is governed by the same equations as used in the static case.
Dynamic effects do however affect material behaviour since the yield stress is

dependent upon the strain rate 136,137,138,139_ For a stress increment to remain on the

yield surface, the total differential of the yield function f is equal to zero, i.e.:

x x71 |
— Aoy + [ — Ac= 0 6.8)
aoY 00
For the von Mises yield criterion,
of of of B 6.9
df = L A+ —A0. + —Ac, + — AT =0 6.9
Y x y xy
aGY acx acy &tx)'

The incremental stress-strain relation gives:

Ac:E[Ae—Ae"] (6.10)
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: of
and Ae=A [5:] (Prandtl-Reuss flow rule) (6.11)

Combining equations 6.8, 6.10 and 6.11 the plastic strain rate multiplier is obtained:

A= T 3 S (6.12
E
The modified incremental stress-strain relation therefore becomes:

Ao

= E* Ae + Ao, (6.13)
where Ag =-E X AGy 90 (6.14)
Jdo 00
On the von Mises yield surface,

2A0
of =
[_]A5Y=-——’i(c§+o§+3t§y—cx0y)—

dc, o

Y

— _ (6.15)
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Substituting from 6.15 in 6.11,

Ao = — 6.16)
HEES
E

The stress increments on the yield surface arising from the effect of strain rate

therefore are:

2A0. of X
Y E 1
AC. = —_— =+ V— (6.17a)
* oy 1% T|odo, aoy
2AG
s, = — L1 X (6.17b)
At = X B 11y X (6.17c)
We o, 1AT 2 3
T
where r= i E —?L (6.18)
Jd0 00

The above treatment is based on (135) in which the von Mises yield criterion was used

but shear stresses were not included (plate strip approach). The effect of strain rate

was seen to be of importance in previous work and was introduced using a

relationship originally proposed by Cowper and Symonds 139 and recommended by

Jones 137, In this the material is assumed elastic visco-perfectly plastic and the

dynamic stress is related to the static yield stress as follows:
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o e |p
= =1+|F
S (6.19)

0

where G, is the static yield stress and D and p are material constants which take
values of 40.4 s-1 and 5 for mild steel. The equivalent strain rate was obtained using a

relationship given by Jones 137:

2 . o2 6.20
g ) (6.20)

where i»:ij is the strain rate tensor given by :

ex 8xy exz
€
. 1] L
— —= = |t (N 6.21
-ezx €y ez_

For plane stress problems, c,= "cyz =Ty = 0 . Therefore ezy = eyz =&,=€,= 0 and

the expression (6.20) is evaluated using the Einstein summation convention to give:

2
+ &+ ¢
FE EFEE FEEFETE

- ¢ 2
iy €1y = €y +exyeyx+ L L, v EyxExy
Y, Y,
Si =—xy =—yx" i .
mce € 5 €y 5 this reduces to
= 2 2 +e+v.12 (6.22)
€1y By = By e te tr (§1E Y/
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A . .
where € = — E (o, + o0 y) in the elastic and the elasto-plastic range since the flow

rule shows that plastic strain increments are zero in the transverse direction.

At this stage it is necessary to consider how the DR cycle should be modified in order
that the dynamic transient response can be analysed and the effect of strain rate

included. The changes considered up to this point are:

i) the equations of equilibrium do not now contain damping terms and the

time increment is calculated using equation 6.3.

ii) the elasto-plastic rigidities which were previously found at the end of each
load increment now have to be calculated within each cycle. They are used

in the subsequent cycle to find the multilayer incremental stresses.

iii) the yield stress which is a function of strain rate is now calculated within

each cycle.

These changes are indicated in Fig. 6.1 which summarises the new sequence of
calculations leading to the evaluation of multilayer stresses and the yield function. It
is seen that the plastic strain rate multiplier, A, is now calculated before the yield
function f. The sign of A is again used to check whether loading or unloading is
taking place at the yield surface. In the dynamic analysis, if elasto-plastic loading is
occurring it is necessary to also evaluate the stress increments AG, which are added to

the static stress increments at each layer, as indicated by equation 6.13.

When dynamic unloading occurs, it is assumed that the yield surface contracts at the
same rate such that the value of the yield function remains equal to unity. During

unloading elastic rigidities are used as in the static analysis.
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6.4 Impact Analysis of Flat Plates

During the period 1982-84 a series of small-scale collision tests was conducted and

results were compared with a numerical procedure developed at Glasgow University
135

In this section, the application of the Real-Time procedure to simulate the test results
will be described. During the tests a flat plate was supported along its boundaries and
was hit by a rigid striker of known mass and velocity. Conditions along the
boundaries of the impacted plate were modelled in a simplified manner since no
accurate account could be taken of energy losses to the adjoining structure. The
boundaries were thus treated as rotationally clamped and restrained in the three

orthogonal directions.
The impact was simulated by applying uniform velocities to the plate nodes along the
line of contact, at time t = 0. The effect of the mass of the striker was allowed for by

increasing the mass of the struck nodes accordingly.

At time t, the total kinetic energy absorbed by the plate is given by:

U@ = ” (o(t) €t)) dxdydz (6.23)

where o (1) total stress at time t

€ (t)

total strain at time t

at any point in the plate. Since

U(t) = Ug(t) + Wp(t) (6.24)

where U, = recoverable elastic strain energy stored in the plate at time t
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Wp = plastic work dissipated in time t,

the recoverable elastic strain energy can be found from :

U0 = U® - W0 -

= U@ - (W (A + J.de(t) ) =

= U - (W (40 + JH o(t) AeP(t) dxdydz) (6.25)

where AeP is the incremental plastic strain at time t, evaluated using the flow rule.

It is assumed that following separation, the plate will continue to oscillate about what
is its permanent deflection, since the motion is undamped. The point at which
separation occurs is assumed to be that at which the recoverable (elastic) part of the
total kinetic energy imparted to the plate by the striker reduces to zero. Detailed
results for one impact test are given in Figs 6.2-6.7, as predicted by the numerical

procedure. Input data are given in the following table.

Table 6.1 Impact Test Data

Plate dimensions mm 243 x 243 x 0.79
Young's Modulus kN/mm?2 207.0
Poisson's ratio 0.30
Yield stress N/mm?2 220

Mass of striker kg 55.4
Velocity of striker m/s 20
Length of line of impact mm 145.0

Figure 6.2 shows that the central deflection of the plate increases monotonically until
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the peak deflection is reached. It then decreases regularly until separation occurs and
the analysis is terminated. The variation of the out-of-plane velocity at the same
position is shown in Fig. 6.3. During the initial part of the response the reduction is
small but after 3 milliseconds the velocity gradient increases and reaches a constant
value which is maintained until separation occurs (11 millisecs). The variation in
elastic kinetic energy absorbed by the struck plate is shown in Fig. 6.4. The plastic
work done is also illustr ated in this diagram and it is seen that at separation the plate

behaves elastically (de =0).

The material behaviour is described in further detail in Figs 6.5 and 6.6. The number
of nodes behaving elasto-plastically during the period of impact are shown in Fig. 6.5.
A peak occurs before the maximum deflection is reached (8.5 millisecs), following

- which unloading occurs.

The effect of strain rate is shown in Fig. 6.6. The average dynamic yield stress
increases rapidly following loading and levels off at nearly three times the static

value. During unloading, a slight decrease is noted.

Results for other cases are summarised in Fig. 6.7 in which test data are compared
with theory. In this diagram the maximum available energy to cause structural
damage is plotted against final deflection. It is seen that the test data lie between the
curves obtained using the present approach, a plate-strip approach and an analytical
method 140 in which rigid-plastic behaviour was assumed. The results obtained using
the present approach involving the complete plate are seen to lie closest to the test

data and quite good correlation is achieved.

The numerical approaches are seen to predict a response which is not as stiff as that
observed during the tests. Several factors contribute to this, probably the most
important being that energy losses to the adjoining structure are not accounted for.
One other difference between the theoretical and test results was observed in the final

transverse profile of the plate. The test results indicated that a local indentation was
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produced along the line of impact. This can be attributed to the knife edge of the
striker and could not be reproduced theoretically because a rectangular mesh of
constant dimensions is used in the finite difference representation. Energy dissipation
along the line of impact was not therefore modelled in an exact manner and some
differences in the distributions of elasto-plastic zones should be expected.
Nonetheless, good agreement is obtained in the global response and the method gives

results which overall are on the conservative side.




CHAPTER SEVEN

CONCLUSIONS AND PROPOSALS FOR

FURTHER WORK

7.1 Conclusions

The work presented in this thesis represents an effort to come to terms with the problem
of the flexural-torsional response of stiffened plates in the large-deflection elasto-plastic
range. In the past this has been handled in an approximate manner and analytical
solutions have been proposed for the elastic range. Inelastic effects have usually been
allowed for by use of tangent-stiffness relations (Ostenfeld-Bleich, Johnson). However
interaction effects complicate the behaviour and in certain cases can lead to premature
failure of the cross-section. This has not yet been taken fully into account although the
effect of plate failure on stiffener response has been included in analytical equations for

stiffener tripping.

* An extensive survey of stiffener tripping has been conducted. Although it was
found that the energy method has proved effective in solving design problems, it cannot
rigorously handle the effects of interaction nor the geometrical and material nonlinearities
needed to fully understand the failure mechanisms in stiffened plates, especially those
related to flexural-torsional behaviour. One study specifically concluded that the absence
of equations governing stiffener distortions was the most serious shortcoming of the

method although an allowance for stiff ‘ener distortions was included by assuming that
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the stiffener behaved as a cantilever beam. For axial compression good agreement was
obtained with finite element solutions but for lateral pressure the agreement was not as

satisfactory because of the more complicated failure modes and distortions.

* The primary objective of this work has been to develop a numerical model of the
behaviour of flat plates and attached flatbar stiffeners which includes the effects of
interaction between the two components. The Marguerre large-deflection thin plate
equations were used to represent both the plate and the stiffener so enabling the lateral-
torsional behaviour of the stiffener to be accurately modelled. Complete interaction was
achieved by satisfying the full set of equilibrium and kinematic conditions acting at the
stiffener-plate junction. Material nonlinearity has been modelled using the von Mises
yield criferion in conjunction with the Prandtl-Reuss flow rule on a multilayer basis.

. Interframe buckling was accounted for by the introduction of a coupled beam-column

equation.

The procedure was extended to include T-stiffeners via the plate equations to model local
buckling of the flange, full interaction between the web and the flange and the use of a

coupled beam-column equation for overall buckling of the flange.

Dynamic Relaxation was the numerical technique used to solve the governing equations
when written in a finite difference form. Although used successfully in studies of
isolated elements, interaction and the rapid growth of out-of-plane movement associated
with buckling in the stiffened plates raised difficulties when checking convergence. It
was found necessary to che‘ck convergence for each group of geometries to be analysed
particularly at buckling stress levels. Frequent load increments were required to
accurately monitor the spread of plasticity through the structure as the failure load was

approached.

The discretisation of the finite difference model was found to be affected by the geometry

of the structure.
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Other than choosing appropriate damping factors, load intervals and mesh spacings, two
other measures were taken to assist convergence. These were the factorisation of
displacements at the beginning of each load increment and a parallel shift of each line of
nodes at the intersection of the plate and the stiffener. The latter was introduced in order
to avoid the propagation of a 'flexural' wave arising from the imposition of the out-of-

plane boundary condition ('w' deflection) within each cycle.

It was found possible to analyse the dynamic behaviour of flat plates using the real-time
version of Dynamic Relaxation. In this case convergence problems do not arise and
stability is governed by the size of the time increment. This was determined using the
same criterion as for the static solution but involving actual densities rather than the
fictitious ones and unit time steps used in the static problem. The effect of strain rate on

 yield stress was modelled using an existing empirical relationship.

* Preliminary studies involving isolated stiffeners and stiffened plates were
performed to validate the procedure at each stage of its development and to provide a
basis for the direct comparison of the effects of different boundary conditions,
interaction and material behaviour. In a study of isolated flatbar stiffeners in the elastic

range it was found that:

- buckling stresses for simply supported stiffeners were found to closely model

those given by classical theory.

- clamping of boundaries not surprisingly increased buckling stresses particularly

for short stiffeners. Again these closely match classical results.
- for slender stiffeners a postbuckling reserve of strength was observed.
When including plasticity in the analyses of isolated flatbars it was found that:

- simply supported stiffeners showed no sudden drop-off after peak load.
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- clamped stiffeners demonstrated a rapid fall-off after peak load.

Flatbar stiffened plates were examined under various loading configurations and good
agreement was obtained with elementary beam and plate theory thus validating the

interaction equations.

This was followed by a study of the effect of the presence of attached shell plating on the
elastic behaviour of flatbar stiffeners behaving elastically. Plate buckling did not arise in
~ the cases considered and it was found that the présence of the plating did notaffectthe
buckling stress of the stiffener. However, in the postbuckling regime the isolated plate
experienced a rapid drop in load whereas the attached stiffener did exhibit a reserve of

_strength.

* A simulation of small-scale stiffened plates tested at Glasgow University under

axial compression and lateral pressure was undertaken. It was found that
- elastic buckling could not be predicted with great accuracy for individual test data
- elasto-plastic buckling could be predicted well primarily in relation to loads

With regard to the test programme in question,

- in some cases axiality of the load was not achieved and it was not easy to
determine the extent of eccentricity accurately. Although combined axial load and
moment were applied in the correlation studies it was only found to give similar
stress distributions at particular load levels.

- it was not possible to have detailed knowledge of the magnitude and distribution

of the load across the loaded edges of the cross-section because of the size of the

specimens and the necessity to weld the specimens to the box sections.
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In the case of the combined load test, careful monitoring of the axial load seemed

difficult because the tests were conducted in a pressure chamber and were not accessible.

A comparison of the test results for stiffener buckling under axial compression with
predicted values obtained using several analytical formulations showed that it is

necessary to allow for the effect of rotational restraint, particularly for slender stiffeners.

The correlation of the dynamic analysis procedure with a series of tests on flat plates
under lateral impact showed close agreement in the prediction of final deflections. These
were in general slightly larger than those observed the main reason for this being that

energy losses to the adjoining structure are not accounted for.

* Inaseries of studies on the local elasto-plastic behaviour of stiffened plates under

axial compression the following parameters were considered:

- aspect ratio

- initial geometrical imperfections

- base plate and stiffener slendernesses
- stiffener/plate area ratio

- yield stress

- boundary conditions

With regard to aspect ratio it was found that the value at which minimum strength is
observed in the base plate is 0.60. This is similar to the results obtained by other

researchers for isolated plates.

For short stiffeners it was seen that the peak load decreases with increasing aspect ratio
but reaches a constant value in the range 1 < a/b < 2. For larger plate aspect ratios (3, 4),
collapse was more sudden for both the plate and stiffener but no further decrease in the

peak load was observed. These findings support Faulkner's recent criticism of the
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prevailing belief that the tripping stress is dependent upon the length of the cross-section
and that therefore the use of tripping brackets should be questioned.

Imperfections have an important influence in this respect and this needs further study, in
conjunction with beam-column interaction. It was found that base plate and stiffener
imperfections cause reductions in both the stiffness and maximum strength and that

stiffener imperfections are less likely to affect plate behaviour than vice versa.

A comparison of stiffened plates designed to DnV and BS5400 rule tolerances showed
that the DnV rules permit weaker plates and stiffeners to be used (20% and 30%

respectively for the cases considered).

Subsequent studies were carried out for short panels (a/b = 0.60) for the practical range
of plate and slendernesses. For the plate the range considered was 85 > b/t; > 30 and for

the stiffener the range considered was 40 > d/t,, > 8.

A study on the effect of increasing base plate and stiffener slenderness showed that both
reduced the stiffener and plate stiffness. Increases in plate slenderness also cause

reductions in stiffener peak load.

For short panels it was found that for the practical range of stiffener slendernesses failure
is caused by yielding along the free edge of the stiffener at midlength which
progressively spreads towards the plate until the peak load is reached. In general failure
follows the onset of yielding fairly rapidly. The study of the effect of stiffener/plate area
ratio showed that increases in this ratio increased the stiffener strength. This was in

agreement with results obtained by other researchers.

The effect of plate and stiffener slenderness on stiffener behaviour is seen in the
maximum strength - peak load curves pfesented. When flatbar stiffeners are attached to
Stocky plates (b/t, = 30, 40) their strength reduces below the squash load when their

slenderness is increased beyond d/ty, = 30. For a plate slenderness of 60 the strength
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reduces for values of 20 and for b/t = 85 the value is 10. In the light of these findings

design rules in use are judged to be conservative, particularly for stocky cross-sections.

When the yield stresses of both the plate and stiffener are increased their relative
strengths decrease. The same is observed when only the yield stress of either the plate or

the stiffener is increased.

The effect of clamping along the transverse loaded edges and the longitudinal plate edges
gives rise to increases in stiffness for both the plate and stiffener. The maximum strength
is correspondingly increased, the largest increases occurring in the case of slender plates.
In general the stiffener strength is only marginally increased since for the simply

supported condition it is close to the squash load.
7.2 Proposals for Further Work

The stiffened plate program in its present form can examine both the static and the

dynamic response of stiffened plates as follows:

- local interactive buckling between flat plates and stiffeners of flatbar and teebar

cross-section

- local interactive and interframe buckling of flatbar stiffened plating by analysing
either short sections of stiffened plate subjected to combinations of axial load and
moment or complete spans between transverses.

- combined local interactive and interframe buckling of teebar stiffened plating, and

- any form of initial distortions and/or thicknesses in the plating and the stiffener.

Comprehensive parametric studies can therefore be performed with a view to derive

design guidance on such factors as:
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- flatbar and teebar flange depth to thickness ratios to ensure stiffener instability
does not affect stiffened plate strength

- the effect of plate and teebar web slenderness on this if any

- teebar web depth to thickness ratios to ensure stiffened plate strength is not
affected.

- for teebar stiffeners, ratios of elastic torsional buckling stresses to yield stress to

ensure stiffened panel strength is not compromised.
- strength curves for flatbar stiffeners
- closed form strength solutions for teebar stiffeners

The above would need to be conducted using appropriate levels of initial geometrical
distortions. To be of most relevance, however, welding residual stresses wduld also

have to be considered.

For the teebar stiffened plate, the effect of tripping brackets could be simulated by the
introduction of stiff springs acting transversely to the flange. The load on these could

then be evaluated so that tripping bracket design could be put on a rational basis.

The success of the isolated plate dynamic analysis indicates the stiffened plate program
could be implemented along similar lines so that the effect of impacts of one form or

another on stiffened plates could be considered.
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APPENDIX A : TRIPPING STRESS FORMULAE PRESENTED FOR DESIGN
PURPOSES

A.1 British Bridge Design Code (BS5400 Part 3) 94
For flatbar stiffeners, the proportions should be such that

where hy, tg are the depth and thickness of the stiffener.

For tee-bar stiffeners,

2o [2n o & [t S [ <
< 10 < 41 <7
t,\ 355 t, 355 t, \/ 355

where to is the average thickness of the flange outstand of width by,

ds is the effective stiffener depth, measured from the underside of the
flange plate
is the longitudinal stress for the ultimate state at the centroid of the

effective section of the stiffener.

A2 Det norske Veritas Rules for Offshore Structures 70
Flatbar stiffeners should be proportioned such that

" cos [E
ty y

For flanged profiles, GTE 2 2.5 fy, where the torsional buckling stress is given by

GI, anhfI
Opp=T—+ —="
TE™ I

po I a
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where I is the Saint Venant torsional stiffness of the stiffener
Io 1s the polar moment of inertia of the stiffener about the toe
I,  is the momemt of inertia of the stiffener about the neutral axis
normal to the plate
a  is the length between transverse girders
hy  is the distance from the stiffener toe to the shear centre

y Is the yield stress

A3 Royal Navy 141

The maximum average stress across the edges of a stiffened plate is given by:

_ (oA + opbt)

18]

«= A, 7 b)
2 n2 N
where Or =7+ E(L,d + F)I 2 (longitudinal tripping stress)
0 K
2
G - °E t2la b

=) [-— + —J .
P o2(1-v2) b [b a (plate buckling stress)

and
A =  Stiffener cross-sectional area
a,b,t = Plate length, breadth, thickness
G =  Shear modulus
J = Saint Venant torsion constant for stiffener
I =  Polar second moment of area about axis of enforced rotation
L =  Second moment of area about stiffener toe
d =  Distance from shear centre to stiffener toe
r =

Torsional warping constant

A4 Lloyd's Register of Shipping Rules 6
For general cargo ships, the strength/weather deck longitudinals located outside lines of
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openings are to have a section modulus given by

Z = 001065k I K

where s is the spacing of secondary stiffeners
k is a higher tensile steel factor
le is the effective length of the stiffening member (not to be taken less than
1.5 m)
K s afactor dependent on freeboard

The thickness of flatbar longitudinals located outside lines of openings are to be not less
than

d

w
18k

where the longitudinal is continuous through the bulkhead.

t =

A5 U.S. Navy 142

The maximum ratio of stiffener span to flange width (a/fy,) for which support is only

required at the ends is given by:
' E
X [—
&y - Yo \/:o
£f7 t t , f
1+ =(7) ) - ¢ ) (=) (5P
31, 't 7.8, t, d
where E = Young's Modulus
Oy = Yield stress
dty,tf = Web depth, thickness, flange thickness
A6 Adamchak 73 |
i) Axial compressive loading

1 =2 mx ., a 2
For flanged stiffeners o, = ()| GI+ E(1z + 1))+ C (—n-)
o m



- 182 -

D d
For flatbars o, = L [ mr,2 42

() d 6(1-V)] =)’
L

mrn

ii) Constant moment loading

. =2 mn
For flanged stiffeners ~ M_= %) I:E(Izz +T) (= R+ GJ + (-:’L)ch
m7r

For flatbars = (—)[2{ GO+ 6(1- )} + () c]
' mn
iti) Lateral loading
121Gy H (k)
For flanged stiffeners q, = - 2 ﬁﬁ
F 414D, H (k)
or flatbars q, = _5;5_ o

where 'Hm(k), ﬁm(k) and F_(k) are quadratic functions of the scalar k.

iv) Combined axial compression and lateral loading

2
1 qa

) Ip(mi+ (m + 2) (k- 1)°)

q
— =1
Qe

Interaction formula: < M +
c M

Inelastic effects are considered by using the structural proportional limit, p;.
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A.7 Bleich 63

The elastic tripping stress is given by:

o_ﬁazly+l“+'gﬁk_

g 12 Ipc T2E Ipc
A.8 Faulkner et al. 74
O = E J + C32
TE I t an
0
where s = length of each half-sine wave
C=Et3/3b

J = stiffener twisting rigidity

I, = stiffener polar moment of inertia about its toe

A9 Faulkner "2

_ 32 .9 32, . 2
Oy = (GJt+ Et"'1"/3x b)/Io(l+Et1/31t bO'PEIO)

=2
where Jt= J+1t2E(Izz +I‘)/Gl2

Oy = 0.905 E (t/b)? (o + 1/0r)>

A.10 Mathewson and Viner 143
n2Et 2 2
Gcr= —7- [T]Ita + 0.0390 Jel ]
I1
p i
t 33

2 W
where Ip= Ata + 5 + If
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bt
I =

—£
£ 12
n = 1 for a symmetric flange
Inelastic effects are considered by use of the Ostenfeld-Bleich quadratic parabola for ¢

>0,/2.

A.11 Timoshenko and Gere 144.

The critical elastic buckling stress for an isolated plate (stiffener) with one edge free is
given by:

2D
=k —

cr b2h

where k depends on the stiffener and plate geometry. For long plates, the coefficient k
takes the following values:

S-S-S-Fedges k = 0.456 + (b/a)2
S-C-S-Fedges k = 1.328

A.12 Argyris and Dunne 74
Flexural fail 1 )| (& ZEI A 2 where k = 4E(-t—)2
ex ure o, = (re 1—) I + (n) b
Torsional failure o,= (B 61 + &y ET + Ay k]
2 L A T

Combined torsional and flexural failure:

1 . 2 2]
o, = 5[ °1+ °2+‘/(01 02) +4(S/1pR) Oy
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7?E 1
where c xy = Xy
A2 ( A + A JS)
p

ipR = polar radius of gyration

S = distance of shear centre
A.13 Rogers and Dwight 83
o, is the lower root of (05— 0. (Og =0 ) = NOEC,,

I

D= T° where D is the 'slenderness' of the flatbar stiffener

E E
D, =04 [— - 0.0012— = extent of plateau along flatbar stiffener strength
oO 0'0
curve
G
h o.= "5
where D<D; E- p?
D D D
_ 1y _}_4 _15
D>Dy GE—{(T)-) _(D) +(D)}°'o
D <D, n=0
Dy,<D <Dy n =ay(D-Dy)
D;<D N =0y (Dy-Dg)

0y= 0.01
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A.14 Carlsen, Shao and Fredheim 145

The plastic collapse bending moment is given by:

o h o c 2
Mp=—03ﬁ 1.2 _ bz P (142 2p
% t, h S t h
h 2= o) (AD 4 (A - A
e B AR SR




APPENDIX B : STABILITY BOUNDS FOR THE VON KARMAN AND BEAM -
COLUMN EQUATIONS OF EQUILIBRIUM

Gershgorin's theorem states that the largest eigenvalue, bg, is bounded by the
numerical sum of the absolute values of the coefficients of each row of the stiffness
matrix (Section 3.2). For the equation of equilibrium of a flat plate in the out-of-plane

direction at each node (i,j), the Gershgorin bound is given by:

M, M, M, R, dw,
bg, = 2+28x8y+ 2+Nx(|—2—|+| | ) +

ox dy ox ox

2 2 2

a\VO —_— 82W awo
- o’w
N, (|1 +1—21)
dy

where the horizontal bar denotes the Gershgorin bound of the individual term. In the
in-plane directions, stability is ensured if

ENx Eny
ba= ==+ EN , (A2.2)
}T‘Ny aN_ ]

Each Gershgorin term is obtained from the absolute values of the coefficients of the

corresponding finite difference term. For example,
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M, 1M Gl 1211 M G || 1IN -1 |

(A2.4)
x> , Ax?
— 82w 82w 1
where M, = |-D|( +V ) = 4D (— + =)
X 2 ax2 sz Ay2 (A2.5)
azMx_lﬁD( L, v, 426
Al AC A '

Formal requirements stipulate that in the elasto-plastic range it is necessary to consider
the full set of elasto-plastic coefficients. It has been found however that coefficients
valid in the elastic range ensure stability in the plastic range as well and for this reason

~ only the elastic terms have been used throughout the loading path.

The stability bound bgS for equation 2.48a which represents beam-column action, is
found at each node i from:

b (i) = —}7[ M(i+1) + 2M@) + MG-1) ] + lPi|—4—2 +
Ax

Ax
2

— & CI 4

F(| =1+ —21)+R(—) (A2.7)
ox ox Ax
max ___

where P, = Nf(i,j) . ( rule muitiplier ) (A2.8)

i=2
max __

M = g(i,j) . Z. ( rule multiplier ) (A2.8)
i=2

and NS (i,j) is the Gershgorin bound of the global longitudinal stress resultant. As

in the analysis of local behaviour, elastic expressions are used.
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(@) VERTICAL DEFLECTION OF CANTILEVER
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(b) BENDING MOMENT IN CANTILEVER (Myy)
AT X=L[2
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(¢) KIRCHHOFF FORCE IN BASE PLATE ALONG
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Fig355CANTILEVER-ANALYTICAL and NUMERICAL
RESULTS.
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Transducer support ‘*“‘—"“l Spherical bearing.
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T Stiffener under test.
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Lower platten
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l

Transducer.

Fig. 4-2(a) SCHEMATIC DIAGRAM OF AXIAL LOAD TEST RIG.

Fia 4-2(b) AXIAL LOAD TEST RIG.
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Fig_4-3(a). COMBINED LOAD SET UP FOR MODEL 7
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Fig.4°3(b) DETERMINATION OF LOAD _COMBINATIONS.




’O Identifies strain gauge numbers for models 1-5 & 8
2 Identifies additional gauges for models 6 & 7

Fig, &4 FLAT BAR STIFFENERS -
STRAIN GAUGE IDENTIFICATION




Top end

D- ——» —— - Identifies transducer number.

Transducer N° 7 is fitted along the line of the
stiffener and is clamped to the bottom end plate.

Fig.k- 5. FLAT BAR STIFFENERS -
TRANSDUCER IDENTIFICATION
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Fig.46. TEST RIG-FOR PRESSURE_LOADING
AND COMBINED LOADING TESTS
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1/ (b) b (a) -

" Collapse load

Bifurcation load

" ¥~ [Critical buckling load)

Load

Strain

Critical strain

Fig 4-10(a) FLAT BAR STIFFENERS
GENERAL STRAIN - LOAD RESPONSE.

Increasing
Imperfections

Bifurcation load

(Critical buckling toad )

End shortening

4-10 {b) GENERAL LOAD-END SHORTENING RESPONSE.

A

" (Elasto-Plastic buckling)

Plastic collapse load



3AUNT ONINILYOHS~-ONI OvVO1 Y3AN3JHILS - | °ON 1300W LL°Y 914

(WW) SNIN3LYOHS-ONI

070 5570 0570 sz°0 0z 0 5170 0170 5070 0070
e T R = T e L S A . 0
0001
N ¥1€8 = QV¥0T HSYNDS ¥3INIILILS - oooz
N Z¥S5 = OVOT 3SdYTI00 J11SYd . :
N 166 = OY0T ONITNING J1lsy 13
- ooog
INITNONG JIiSV1d
- 000%
SNOLMIN
avol
-1 0005 WIXY

4
e

35dYT100 311sYd

-1 0009




SNIYYIS dIl ¥INIJJILS

Y307 - | “ON 1300WDZL Y914

NIVALS VIXY NIVMIS WIXY
000%- 0002~ 0001~ 0o 0001 000g- 0002~ 0004~ 0 0001
' v v V) + r - > ————— i} '
#'¢ SON 39nV9 \ Z'l SON 39nYD
\ 1 00s 1 00s
/ \
AN e
' -~
«
i o?/ N < 000
\ \
4 ooslt 4 00S1
N avol o) avol
NIVALS TVIXY NIVAIS WVIXV
000s- 0002- 0001~ 0 . 0001 000~ 0002~ 0001~ 0 0001
y 5 ; o - - o .
8°2 SON 3onvo Y. 9’S SON F9nVD
e 4 oos 4 o0s
_~
~ /
\
& ™
~——
4 —
AN 000 P
N\ yd
\ 7
4 oos1 00s1
o) avol (ND avol




SNIVHLS dIl ¥3INI44I1S VI0T - | "ON 1300WAZL 9°91d

NIVYLS -VIXY NIVYIS TVIXY
0008~ 0002~ 0001~ 0 0001 000g- 0002~ 0001~ 0 0001
- ; . 0 - - ~ - 6 :
¥1¢1 SON 3onVD \ Z1"11 SON 39nyD
( 005 / 1 oos
~ \
~
// /
\.éon / 4 o001
~ 00stL 4 oost
N avoi N avo
NIVHLS WVIXY NIVHLS IVIXY
00o0g- 0002~ 0001~ 0 0001 000s- 0002- 0001- 0o 0001
. - - o . ; : - o -
61°21 SON 3onVD 91761 SON 39NV9 \
. 00S \ I 00s
- - 1 0001 / 7 oooL
\
—
\
-
1 00S1 < 00S!1
N avo N avo




S°

SNOILJ37430 IVH3LYT dI1 ¥3N34411S

(WW) NOILO3T430 TIvydLiv)

1 "ON T1300KW €1 % *914

0°t S0 0°0 S 0~ 01~

1 T ©

-1 00%lL

(NX) avol

T



0570

3AUNI ONINILYOHS-ONI Y01 3LVd 3SVE - 1°ON 1300W 41 7°91d

S%¥°0

(WW)  ININ3LYOHS-ON3

ov-0 5£°0 0g°0 SC 0
T I 1 T

0c o

S0°0

00°0

N 0S¥8L1 = QvO1 FNTIVE 3Lvid
N 819811 Qy01 Hsvynos 3Lvid

i

073IA 40 NOILVILINI
ANTIV4 31Vd

¥

0000¢

0000%

00009

00008

000001

0000c!

SNOLMaN

avon

VIXY



JAUNT ONINILYOHS-ONI OV01 31Vid O3NIJHILS - | °ON 300K SU'%7°914

(WW) ONINILHYOHS-ON3
0s°0 S¥°0 0%°0 5870 0£°0 SC°0 0Z°0 5170

T T T T

0L"0 S0°0

N 08°gcl = @v0T FWNTIYH 31V1d G3aN3JLILS
NJ £6°921 = QY07 HSYNDS 31V1d 03N344ILS

ONITTHING ¥3ANILTLS

31V1d NI ONIQI3IA

NIV YINIIFTLS FINTIV4 31vid 3svg

00°0

-1 001

-1 0Cl

o%l

(NM)

avo

VIXY



SAUNT ONINILYOHS-ONI V0T 1300W ~ 1 °ON 1300W 9L4°91d

(WW)  ININILYOHS-ON3

S¥°0 0%°0 GE°0 05°0 s2 0 020 S1°0 010 S0°0 00°0
T T T T T T Ra T ! 0
- o0e
NY 2Lyl = aY0T1 HSYNDS 300K
NN 2211 = Qv0T RNTIVL ¥3INIIASIILS 1 ooy
N €6 = OVDT JwNIV4 3LY1d 3sve
N 045 = aYOT ONITNONG ¥INIJJILS ONITONG ¥INIHILS
. -1 009
4 o (N
avol
NIV 31Yd JSve VIXY
| ooo!
3dNIV4
YINIISILS
-1 0021

00yl



SAUNT ININ3LYOHS-ONI OVOT ¥3INIJJILS - 2°ON 13A0W LUY°D1d

(WW)  ONINILHOHS-ONI

05°0 S7°0 0%°0 S£°0 0£°0 T 02°0 S1°0 0L-0 50°0 00°0
T T - T T T T T ' T ! A 0
~ 0001
N 92€8 = OOl HSYNDS ¥aN3-H1LS - o002
N ISIS = OVOT 36dVTI09 J1LSVd
N IS2Z = OVOT ONITONE JIISYH INITNING ol ij\
s
: | ooog
-1 000%
. _— ~ 000S
35dYTI00 JI.SVd

0009

SNOLINSN
avol

VIXY



SNIVYLS dIl ¥3aN34411S VA0 - 2 “ON 1300WDeL 4914

NIVHLS “IVIXY NIVAIS “WIXY
0002~ 000%~ 0 000} 0008~ nooe- 0001~ o 0001
o ﬁ;v? : - o LA, A
2L SON 390VD
\\\
e 4 o00s
\ \
Vel -
G o
///
}
1 oo0 avol
4
NIVHIS “VIXY ‘ . NIVMIS TVIXY
0 0001~ 0 0001
000%™ 000z~ 0 e o
9's SON 39nVD
7
A 00s
~__ J
\\ \IU.‘\.\,I!.I[. 0001
2
e T
\ { /
\\ AN




SNIVHUIS dIl ¥3N34411S V0T - 2 °"ON 71300WA8l 4"91d

NIVHLS TVIXY NIVAIS WVIXY
000s- 0002~ 0001~ 0 0001 0002~ 0002~ 0001~ 0 0001
r v v 0 v — Y ey - 0] v
¥1S1 SON 39NnVD R\ Z1711 SON 39nve
. OOm - 005
N //
N
//
10000 > N 4 0001
/ \
. xm— / -2 00St
oD avon eg/s
!
NIVMIS TVIXY NIVAIS “VIXY
oogs- 000z~ o001~ 0, 000 000z 0oce- o001~ LI S
6121 SON 290V 9LS1 SON BNVo \\
00s ye 005
/
/7
— 0001 4 ) 0001
—
\\\ /
— - /
< 00Sl / 1 00s1
oo avo | o h“




571

SNOT1337430 VALY dIl ¥3INISHILS 2°ON 300K 61°9°91d

(WA) NOILJ37430 Ivd3LY]

0°1 S°0

1 v

(NN QvoT /



3ANNT ININILYOHS-ONZ av01 31vid 3Sv8 - 2°ON 300K 0Z'°914

(WW) ININ3LHOHS-ON3

05°0 SY°0 oy°0 Se0 0g°0 sc°0 0c°0 S1°0 010 S0°0 00°0
T T 1 T T T i e T 1T T 0
) =1 00002
-1 0000%
N 009%L1 = QY01 JuNIIvd 3Lvid
N 0SZ%L1 = QY071 HSYNDs 3ivid -1 00009
=1 00008
= 00000!
INTIVd 31Vd -1 000021

SNOLAIN
avol

VIXY



SAUNT ONINILYOHS-ON3 QYO 31Yd 03N34-4ILS — Z2°ON 1300W 179 °DI1d

(W) DNINILYOHS-ON3

05°0 590 0v°0 580 080 520 02°0 5170 01°0 50°0 00°0
T T | B 7 T T 1 T T T 4]
\\\\ 4 oz
NY 957611 = VO SUNIIVH 3Lvd GINIJHILS \\\\
N £6°221 = QYOT HSYADS 31Y1d 0INIWILS \\\\ 4 oy
ONITHONG MINIILS + 4 o9
- o8
N
- o001 avon
TVIXY
. . - ozl
JUMITYS YINSSHTLS 3¥MIV4 31Yd 35vE

g 0¥l



JAUNT ONINILYOHS-ONI OY0T 11300W ~ 2°ON 300K 22°9°914

(WW) ONIN3LHOHS-ON3

S7°0 0%°0 s£°0 0£°0 520 02°0 51°0 0170 500 000
T T T T T 1 T 1 T
—
NY 1YL = QY0 HSYNDS T3A0W
NN 0ZE1 = QY07 NIV HINIAILS INITHONE ¥INTHHTLS .
N¥ 126 = QvOl 3unIvd 31vid 3sva
N¥ 10% = QvO1 ONITNONG MIN3-LILS
JNTIV4 31vd 35y
——

002

00y

Qo9

0os

0001

0o0ct

oo¥l

(NX)

avol
VIXY



JAUND ONIN3LNOHS~-ON3I OYO1 ¥3NIJ4ILS ~ S'ON T1300W €2°9°91d

(WW) ININIIHOHS—-ONI

S¥°0 0¥°0 5£°0 0s°0 52°0 020 Si°0 0L-0 50°0 00°0
T T T (] T T — ¥ T P 0
y
v
..\.\ ~ 0001
Ve
yd
\ g
N 0219 = QYO HSVNOS dENSHILS o 4 oooe
N £0S = Qv0 3SdvTI0 LISV \\
N %0S% = Qv01 ONITNONG J1LSYH /
- ooos
- oooy
SNOLAIN
avo
- 0005 WIXY
35dYTI09 JLISVd
i
- 0009

——————



SNIVHIS dIl ¥3INIJHILS IVI0T - S “ON “HO0KDYZ 4914

NIVALS TVIXY NIVHIS TVIXY
0002~ 0001- 0 000! 0008~ 0002~ 0001~ 0 0001
- v o e — - - R Ca ' +
/
¥ SON 39nVD 2”1 SON Vs

7 005 Y 1 008

/ A\,
—~ B
~ 0001 ~ 0001
~, A
00s1 00SL
000 avoll a0 avon
NIVALS VIXY NIVMLS “VIXV
0002- 0001~ 0 0001 ooo%- 000z~ 0001~ - 0001
- i 0 - p : - -
8”2 SON 39NV 9 SON 3onVD
00s 00s
N 0001 Pl
<
a0 avol




SNIVYHLS dIl ¥3IN344ILS VA0 - S °ON 300K 972 *91d

NIVYLS TVIXY NIVALS TYIXY
0002 0001~ 0 0001 000¢- 0002~ 0001~ 0 0001
-+ B -0 - — ~ T gt o e O v
¥1°€l SON 39NVD Z1°11 SON 39nvD
0o0s 005
4 0001 ’ /Ae 1 0001
4 00s1 . . < 00S1
oY avol , oD avol
NIVHLS WIXY NIVALS VIXV
0002~ 0001~ 0o 0001 0008~ 0002~ 0001~ 0 0001
v — o . v . - o -
41721 SON 3onYD 91’61 SON 39nVD
00S < 005
\ 0001 1 0001
L \
1 00Sl1 .‘ oost
oaod avol oD avol ;




SNOIL337430 VALY dIl ¥3NIFHILS S°ON 1H00W SZ9°914

(WW) NOILJ37430 V3LV

LAY

870~ 0°t- ci- ¥oi- 91~ 8- 0°e-
-

-1 00¥1

(N avol



JAUNT ININILNOHS-ONI QY01 31Yd 3SYE - S°ON 300K 9C7°9I4

(WW) ONIN3LHOHS—-ON3

0s°0 S%°0 0%°0 S£°0 0£°0 S2°0 020 1 o) 01°0 S0°0 00°0
T -7 1 1 T T T T - T 0
= 00002
\.\\ - 0000Y
N 068211 = VO FUNIIVA 3LV
N 010ELl = QVOT HSYNDS 3LVid - 00009
-1 00008
SNOLMAN
-1 000001 QYO
. | WIXY
NIYL I1Vd
~ g000z1




JAUND ONINILYOHS-ONI OVOT 31Vd O3NIIHIIS - S°ON 300K L7 *D1d

(WW) ININILHOHS-ON3

050 s1°0 0v°0 g0 050 520 020 S1°0 010 5070 000
T T T T T T T T T T 0
-4 oz
\\\\\\ -1 oy
N S67ZLL = QVOT SMNTIVY 3L¥d CENSHILS
N¥ 907611 = QVO HSYNDS 3L¥1d GANI-HILS 4 o9
| -+ o8
INITNONG HINIHILS
~ ool
TV ¥INIJHILS 3 J1Vd 3s5vE 1 oet

i

Q ort

N

avol

IVIXY



3AUND ININILYOHS-ONI QYO T1300W — S°ON 300K 8Z°9°9I4

(WW) ONIN3LHOHS—-ON3

S%°0 o0 5£°0 00 Sz 0 0z°0 S1°0 010 S0°0 00°0
T T T T T T 1 T T 0
\ 1.
N 6Lyl = OvV071 HSYNBS T1300W \
N 286 = QVO01 NIVL ¥3NISLILS \\ - 00
NX 256 = QvV01 3¥NIv4 3LVid 3sve
NN 628 = QY01 ONITIONG ¥3NIJJILS
: , -+ 009
INITDIONG HaN3IILS -1 008
WMIIVE YINIIIILS
RNIY4 3LVd 35VE
-1 0001
-1 oozt

|w 00%1
w,.

(N)

avol
VIXY



(S1INS3d 1S31) dIL ¥3IN344ILS DNOTV SNIVYLS TvNdiS3y 40 NOILNGIdLSIa

‘80N 1300W — AQNLS NOILV13d¥0]6Z-7615 & (3SN3L) 4
_ .\O loom
Q9 -
® 9
g\\\\ -
o oL W0L1108
4005
(3IAISSIUdWOD )
(31)
(3SNIL A
o—————" -
@ W / \\@ T T
\ ® |
dol AN WoLlog 1005

"ON 3A9DNVD 31VvIIaN
SATNDIHLID NSO

( JAISS3IHAWOI )
(31)




3AUNI ININILAOHS-ONI OVOT ¥3NIS4ILS - 8°ON 1300W 0S°% 914

(W)  ONINILMOHS—~ON3

S7°0 0%°0 SE°0 0£°0 S2°0 02°0 S1°0 01°0 S0°0 00°0
=T T o T T 1 T T T T \ 0
\ - o001
N S6Z9 = QYO HSYNBS ¥aN3dHILS \ 4
o002
N 926 = OVOT 3SdvTI03 JILSVd y
N 609% = OVO SNITNONG JLISVH \
-1 000g
-1 000%
SNITHONE JILSVH
* - 000s
35dVTI03 JILSVd

|

0009

SNOLAZN
avol

VIXY




SNIVYLS dIl ¥3IN344ILS V301 - 8 °ON T300W (V) IE€°% *91d

NIVALS YIXY NIVHLS TVIXY
0008~ 0002 0001~ 0 0001 0008~ 0002~ 0001~ 0 0001
- v - -0 T — T -e e ey — " T
¥'c SON 39NV 2°1 SON 33nva \\
V/ 00S / 4 o0s
7
/ (
oo
“\ - 0001 - /|/§~
N
{ \
<4 00St = 00SlL
1
NIVNIS TVIXY NIVAIS “TVIXV
000£- 0002~ 0001- 0 0001 - 0008~ 0002~ 0001~ o 0001
v v — -0 - ' - - o r
8’2 SON 39nVD 9’S SON 39nVD
74 005 7 00s
f’ /
v
L < 5 ]
~ 0001 .ll 0001~ ‘
/ — ~
\
4 00S! <1 00S1
o avo Ny avol




SNIVULS dIl ¥3N344ILS V301 - 8 °ON 300K @ 1€y °914

NIVLS TvIXY NIVALS WVIXY
0008~ 0002~ 0001~ 0 0001 000g- 0002~ 0001~ o 0001
r — t aad 0 n g r——— L} T -y U - T ——
*1°el SON 39nVD 21711 SON 39nvD
V4 4 oos V4 00s
\ \

——— ¢

= 4 ooo1 ﬂ/ 0001

\ \
4 00si 4 00s1
o avol oY avon
NIVALS WIXY NIVHLS WVIXY
000g- 0002~ 000!~ 0 000! 000s- 0002- 0001~ 0 0001
r T T L v ol - r v e 1] Gind T
61°21 SON 3onvo 91Sl SON 39nVD
00S 00s
- h\V

—_— 0001 0001
— _
|

4 o0s1 A\oom,
o~ ovol ™0 avol |




SNOTLJ37430 TH3LYT dIL ¥3ANIJHILS 8°ON 300K 25°% HIE

(WW) NOILJ37430 vy3Lyl
8! 971 ¥l (3 0"l 8°0 9°0 ¥°0 20 0°0

v 1 T T T L

9 °ON

S"ON

(NX) avo1



3AUNT ININILYOHS-ON3I QY01 31vid 3SVE — 8°ON 1300W SS°% *914

(WW) ONIN3LIHOHS-ON3

SY°0 0Y°0 S0 0g°0 S0 00 S1°0 oL°o S0°0 00°0
T T R Sian T T T T T T 0
-1 00002
g = 0000%
N 006gll = QY01 38N11vd 31Yd
N 482¥%l1 = Qv01 HSYNDS 3JiYid -1 00009
-1 00008
=1 000001
JNTIV4 3Lvd I

SNOLAIN

avol

VIXY



( 3IDONVY DNITMING—3dd ) NOILI3YIa
ISYIASNVAL NI 3dVHS (313371430 40 S311303d J1V'ld 3ISvd
80N TJ0OW — AQNLS NOILV13d¥0] €+ big

ww+0-0+ 0
——

ERLAN

M3IA NVId — T3INVd

<+l lllllllllll -|»<




3AUNI ONINILYOHS~-CON3 GVO1 31V1id 03IN3-4-4ILS ~ 8°ON T1300W Se°y "3ld

(WW) ONINILYOHS-ONd

0s°0 S¥°0 oY°0 se°0 0e°0 SC°0 0c 0 Sl0 0t°0 S0°0 00°0
T T 1 T 1 T T T 1 T 0
-1 0¢
\\
/
-1 0%
M ) NM 22°811 = avol 3ANTIvd 3Lvd G3N34LILS
o NM 85°02! = Qv01 HSVYNDS JLYd 03N34HILS -1 09
-1 08
ONITNING d3INIHHILS

- 001

" - ozl

J¥NTIVLS ¥3N344I11S 8 31Yd 3SvE
-1 0%l

(N

avo'

VIXY



HIAYND ONINILYOHS-ON3 OY01 1300W - 8°ON 300K 9£°% °DId

(WW) ININILAJOHS~ONI

Sv°0 0%°0 SE°0 0£°0 S2°0 0z°0 S1°0 0170 S0°0 00°0
- A = 2 e K L : . —= 0
\\ -4 ooz
P
NY LIyl = avo1 HSYNDS 13a0KW v
NJ 626 = QY01 3¥NTIVd ¥3INISLILS P yd = o0
NN 626 = OVO1 3¥NTIV+ 3Lvid 3sve N .
NY €58 = QYO DNITMONG ¥3INIIHILS \\ L
P -1 009
§
4 ooe (N2
ONITIONE YIN3IHILS avol
JHAIVL ¥NIJLILS B 3LVid 3sve | VIXY
- 0001
- ooct

00%!




EDGES AB,CD ARE WELDED TO BOX
EDGE BC IS WELDED TO THE BASE PLATE

EDGE AD IS FREE

s L2272 /7/f/77c
(a) PREBUCKLING RANGE (250kN/m2)

/277 /‘//Avﬂﬁif

(b) STIFFENER POSTBUCKLING RANGE (725 kN/n?)

v L 7/'/_
(c) POST FAILURE (850 kN

/27 INDICATES REGIONS OF C(OMPRESSIVE STRAIN
Fig.4-37. CORRELATION STUDY — —MODEL No. 4
DISTRIBUTION OF LONGITUDINAL MEMBRANE_STRAINS
N STIFFENER AT VARIOUS STAGES OF LOADING
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EDGES AB,CD ARE WELDED TO THE BOX
EDGE BC IS WELDED TO THE BASE PLATE
EDGE AD IS FREE

T
C
(a)PREBUCKLING RANGE (250 kN/m?)

A

(b) STIFFENER POSTBUCKLING RANGE (600 kN m?)

Vil

(c) POST PLATE FAILURE (850 kN m? )

Fig 440 CORRELATION STUDY MODEL No. &

GROWTH OF PLASTICITY N STIFFENER AT
VARIOUS STAGES OF LOADING
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(b) 850 kN /m?

%////Z/////////L//
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/77//////////////

() 1000 kN /m?

‘Figh-42 CORRELATION STUDY—MODEL No.k
GROWTH OF PLASTICITY IN_BASE PLATE AT
VARIOUS STAGES OF LOADING
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EDGES AB,CD WELDED TO THE BOX

EDGE BC IS WELDED TO THE BASE PLATE
EDGE AD IS FREE

/7 /" INDICATES ELASTO-PLASTIC REGIONS

Ag QD

B C
(a) PREBUCKLING ~RANGE (306 kN /m?)

\ 74

(b)  BUCKLING (620 kN [m?)

|

(c) POSTBUCKLING RANGE {750 kN 2)

NN
NN

NN

x\\\\\

Fig.4-45 CORRELATION STUDY —MODEL N° 6
GROWTH OF PLASTICITY IN STIFFENER AT
VARIOUS STAGES OF LOADING
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EDGES AB,CD ARE WELDED TO THE BOX

EDGE BC IS WELDED TO BASE PLATE
EDGE AD IS FREE

N A A

WSS s V0.0
B

C
(@) INITIATION OF PLASTICITY (126 kN /m2- 317kN)

A

(b) PEAK LOAD (233kN/m2- 581kN)

I

(c) RESIDUAL DISTRIBUTION FOLLOWING UNLOADING

Fig.4-50 CORRELATION STUDY — MODEL No.3

GROWTH OF PLASTICITY IN STIFFENER AT
VARIOUS STAGES OF LOADING
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PLATE , ELASTIC,
VISCO-PERFECTLY PLASTIC

200, (5) (1) (4)
(3)
1757
150-
1254
100-
15+
€Y
50- A A (1) piate strip, elastic /visco-perfecHy plastic.
(2) Ppiate strip, elastic perfectly plastic.
(3) Beam, elastic perfectly plastic.
(14) Beam, rigid plastic.
;3) (5) Plate, rigd plastic.
251 Experimental results:-
O Wet tests centre.
[\ Wet tests eccentric
O Ory tests.
0 v L A ¥ A T
0 S 10 15 20 25 - 30
Wf (mm)

Fig.6-7 Comparison of experimental and theoretical results.
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