

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

COMPUTER AIDED ANALYSIS OF PERIODICALLY

SWITCHED LINEAR NETWORKS

A Thesis submitted to the

Faculty of Engineering

of the University of Glasgow

for the degree of

Doctor of Philosophy

by

LIONEL BEREL WOLOVITZ

August 1987

@ L .& . WOUOViTZ, l°l&7.

ProQuest Number: 10995584

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10995584

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

I dedicate this thesis to my parents, Maurice and Eve Wolovitz, for

whom my education has been of utmost importance and have always

encouraged me to take the opportunities they did not have.

SUMMARY

Interest in analysing periodically switched linear networks has

developed in response to the rapid development of sampled data

communications systems. In particular, integrated circuit switched

capacitor networks play an important part in modern analogue signal

processing systems.

This thesis addresses the problem of developing techniques for

analysing periodically switched linear networks in the time and

frequency domains that are suited to computer implementation and

therefore facilitate the development of efficient computer aided analysis

tools for these networks.

Systems of large sparse complex linear equations arise in many

network analysis problems and efficient techniques for solving these

systems are crucial to the analysis methods developed in this thesis.

By extending the concept of sparsity to include the type of the

nonzero elements, very efficient solution and optimal ordering

algorithms are developed.

A new method for computing the time domain response of linear

networks is presented. The method is based on numerical inversion of

the Laplace transform and polynomial approximation of the excitations.

This high accuracy method is well suited to solving large stiff systems

and is extremely efficient. The method is extended to periodically

switched linear networks and provides the basis for frequency domain

analysis.

A new frequency domain analysis method is presented that is orders

of magnitude faster than existing techniques. This efficiency is

achieved by developing a formulation such that AC analysis is not

required, which allows the system to be solved as a discrete system. A

special system compression reduces the solution of this discrete system

to the solution of the network in one phase only. This solution step,

which ordinarily requires 0 (N 3) operations, is made more efficient by

reducing the system to upper Hessenberg form in a preprocessing step,

which then reduces the solution cost to 0 (N 2) operations.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Professor J.I.

Sewell, for the opportunity to undertake this research and for his

support and guidance during the course of this work. I am especially

grateful for his help in registering for this degree. Many thanks are

due to the Department of Electronics and Electrical Engineering for

the facilities provided.

I wish to thank Robert Henderson and Li Ping for many useful

discussions and assistance during this work. A special thanks is due to

Alistair Meakin for his help in validating part of this work and many

helpful discussions. In particular I wish to thank Oliver Pun who first

introduced me to some of the problems addressed in this work and

for many early discussions.

I wish to acknowledge the financial support from the Science and

Engineering Research Council and also acknowledge financial support

for part of this work by the Ministry of Defence — Procurement

executive.

Finally I would like to specially thank Jane for her love and patience

during the course of this work; for being there if not always here.

TABLE OF CONTENTS

SUMMARY i

ACKNOWLEDGEMENTS i i

TABLE OF CONTENTS i i i

CHAPTER 1: INTRODUCTION

1 .1 I n t r o d u c t io n 1

1 .2 N otes 6

1 .3 O u tl in e o f th e t h e s i s 6

1 .4 S ta tem en t o f o r i g i n a l i t y 9

R e fe re n c e s 10

CHAPTER 2: SOLVING SPARSE SETS OF COMPLEX

LINEAR EQUATIONS

2 .1 I n t r o d u c t io n 13

2 .1 .1 Domain ty p e s 15

2 .1 .2 Sym bolic and num eric f a c t o r i s a t i o n 16

2 .1 .3 R e o rd e rin g th e e q u a tio n s 18

2 .2 Domain i n t e r p r e t a b l e code ap p ro ach 20

2 .2 .1 I n te r p r e ta b l e code i n s t r u c t i o n s e t 21

2 .2 .2 I n te r p r e ta b l e code g e n e ra t io n 27

2 .3 O ptim al o rd e r in g 29

2 .3 .1 Domain m inim al m u l t i p l i c a t i o n a lg o r i th m 30

2 .3 .2 Domain m inim al f i l l a lg o r i th m 30

2 .3 .3 Domain h y b r id a lg o r i th m 31

2 .3 .4 E f f i c i e n t im p lem e n ta tio n s t r a t e g i e s 33

2 .4 R e s u l ts 35

2 .4 .1 O ptim al o rd e r in g 35

2 .4 .2 Com parison o f o v e r a l l m ethod 38

R e fe re n c e s 55

CHAPTER 3: TIME DOMAIN SOLUTION OF LINEAR NETWORKS

3 .1 I n t r o d u c t io n 57

3 .2 S te p p in g in v e rs e L ap lace t ra n s fo rm m ethod 61

3 .3 P o lynom ial a p p ro x im a tio n 63

3 .4 D e te rm in in g th e y c o e f f i c i e n t s 64

3 .5 Com puting th e in v e r s e L ap lace t ra n s fo rm 67

3 .5 .1 E f f i c i e n t im p lem e n ta tio n s t r a t e g i e s 69

3 .6 R e s u l ts 70

3 .6 .1 A ccuracy and s t a b i l i t y 70

3 .6 .2 C om parison w ith o th e r m ethods 76

3 .7 A p p l ic a t io n to p e r i o d i c a l l y sw itc h e d ne tw orks 80

R e fe re n c e s 81

CHAPTER 4: FREQUENCY DOMAIN ANALYSIS OF PERIODICALLY

SWITCHED LINEAR NETWORKS

4 .1 I n tr o d u c t io n 84

4 .2 D e f in i t io n s 87

4 .3 Time domain a n a ly s i s 89

4 .4 Com puting th e in v e r s e L ap lace t ra n s fo rm 91

4 .5 Z-dom ain a n a ly s i s 91

4 .6 S o lv in g th e d i s c r e t e sy stem 93

4 .7 F requency a n a ly s i s 94

4 .8 R e s u l ts 96

4 .8 .1 V e r i f i c a t io n 96

4 .8 .2 Perfo rm ance 98

R e fe re n c e s 106

iv

CHAPTER 5: EFFICIENT METHODS FOR SOLVING (z I - E)x - b

5 .1 I n t r o d u c t io n 109

5 .2 D ire c t m ethods 111

5 .2 .1 C rout m ethod 111

5 .2 .2 Gauss e l im in a t io n 112

5 .3 I t e r a t i v e m ethods 113

5 .3 .1 G a u ss -S e id e l m ethod 113

5 .3 .2 L eas t sq u a re s ap p ro ach 114

5 .4 R e d u c tio n to s im p le r form s 116

5 .4 .1 H essenberg ap p ro ach 116

5 .4 .2 T r id ia g o n a l ap p ro ach 118

5 .5 A p p l ic a t io n and r e s u l t s 121

R e fe re n c e s 129

CHAPTER 6: CONCLUSION

6 .1 C o n c lu s io n s 131

6 .2 S u g g e s tio n s o f f u r t h e r work 134

R e fe re n c e s 138

v

CHAPTER ONE

INTRODUCTION

1.1) INTRODUCTION

Interest in analysing periodically switched linear networks developed in

response to the rapid development of sampled data communications

systems. These discrete time systems used switched linear filters in

time division multiplex systems that used pulse amplitude modulation

(PAM) or pulse code modulation (PCM) techniques. Before these

developments the most widespread application of periodically switched

networks was in modulators and demodulators for frequency translation

in frequency division multiplex systems [1].

Today by far the most common application of periodically switched

linear networks are switched capacitor (SC) networks. The use of SC

networks has become widespread in recent years. The primary reasons

for this popularity are that they can be fully integrated using MOS

technology and are VLSI compatible. Recently interest has grown in

gallium— arsenide (GaAs) implementations of SC circuits for high

frequency applications. Other attractive properties of these networks

are small chip area requirements, low power consumption and ease of

achieving high precision (<0.5%) filter specifications. As the state of

the art has progressed, larger and more complex networks have been

realised and the frequency of operation of the filters has been pushed

into the megahertz range. Consequently applications have grown from

audio frequency filtering to high frequency communications systems.

This thesis addresses the problem of developing techniques for

analysing periodically switched linear systems in the time and

frequency domains that are suited to computer implementation and

therefore facilitate the development of efficient computer aided analysis

tools for these networks. The analysis which is developed is applicable

to arbitrary periodically switched linear networks although the

techniques are intended primarily for the analysis of nonideal SC

networks.

1

The foundation for the exact analysis of periodically switched networks

was given by Bennett [2]. His method, though exact, cannot be easily

applied to general switched networks because it requires analytic time

domain responses of the network variables and is therefore not easily

implemented on a computer. A more efficient method was developed

by Desoer [3] which used the successive approximation scheme for

circuits with a very small ratio of switch closure time to switching

period. This condition severely restricts the applicability of this

approximate approach. Desoer developed an exact analysis [4] using

the state space formulation similar to Bennett's approach and

consequently also not suited to computer implementation. An entirely

different approach based on a pole— zero description, together with the

Fourier analysis, is given by Fettweiss [5]. This novel approach only

considers networks with a single switch and therefore is of limited

practical use. Sandberg [6] presented an approach to solve a more

general class of time varying circuits which is similar to the approach

of Desoer [4]. Sun and Frisch [7] extended these approaches to

include an arbitrary number of switches based on the state space

formulation.

The first major step in developing techniques suited to computer

implementation was taken by Liou [8]. This state space based

formulation gave explicit closed form solutions for both time and

frequency domain solutions. The method is applicable to arbitrary

circuit configurations with an exponentially modulated cisoidal input

and can handle cases in which discontinuities in state variables occur

at the switching instants. The method is however limited to systems

with only two different periodic states, called phases. This method was

generalised to include an arbitrary number of phases and arbitrary

deterministic or stochastic inputs [1]. Unfortunately both these

methods, though implemented in computer programs, are not efficient

and are therefore limited to analysing small networks.

Many different methods of analysing SC filters have been proposed

and a number actually implemented in computer programs [9]. The

need for these CAD tools becomes more essential as the networks

being designed grow in size and complexity. The majority of these

programs are designed for the analysis of ideal SC networks, that is

2

all switches are assumed to have infinite off— resistances and zero

on— resistances and the amplifiers are assumed to have infinite

bandwidth (modelled as ideal controlled sources). Because these ideal

networks do not have any resistive elements, these networks can be

very efficiently modelled using difference equations [9]. A number of

very efficient programs that use a compaction process to reduce the

size of these systems have been developed. These programs are

capable of analysing very large networks with an arbitrary number of

phases and circuit configuration [10], [11], [12]. These programs

provide a useful design facility for verifying and evaluating alternative

design techniques. The facilities provided are usually a subset of time

domain analysis, frequency domain analysis, sensitivity analysis,

optimisation and symbolic analysis. However the overiding disadvantage

of all these programs is that they fail to model real integrated

networks accurately due to the assumption of ideal elements and

therefore are used only as initial design aids.

When SC networks are implemented in integrated circuits (usually

MOS technology) various imperfections occur. These imperfections are

usually characterised as linear, nonlinear and statistical. Different

analysis techniques are needed for these different imperfections.

The most common linear imperfections of SC networks are the

parasitic capacitances associated with the switches, finite amplifier gain,

switch resistances and finite amplifier gain bandwidth product [9],

Design techniques have been developed that can overcome the effects

of the parasitic capacitances, which are however dependent on high

gain amplifiers, and in some cases, matching of the parasitic

capacitances [13]. The effects of parasitic capacitances and finite

amplifier gain can be modelled by the ideal analysis techniques.

The nonlinear imperfections of SC networks are the nonlinear

characteristics of the switches and amplifiers. The most important

effect in the amplifiers are finite slew— rate and amplifier limiting

which can introduce distortion and limit the frequency of operation of

the networks. The switches introduce signal dependent nonlinear

distortion and also clock feedthrough distortion due to nonlinear

coupling of the clock signals into the main signal path. To model

3

these effects a nonlinear time domain analysis program and nonlinear

models of the devices are required. Techniques for nonlinear time

domain analysis are well developed and distortion products can be

obtained using the FFT algorithm [14]. By taking into account the

characteristics of SC networks, an efficient program for the time

domain analysis of SC networks was developed, which includes a

distortion analysis capability [15], [16]. However these programs require

very large amounts of computation time and therefore are of use only

in final design stages.

The statistical imperfections of SC networks are the noise sources

associated with the switches and amplifiers. To simulate the noise

response of a SC network a noise analysis program is needed that

takes into account the noise sources, the resistive +><ne-constants

(transient effects) and the noise spectrum foldover due to the sampling

of the switches [9]. A number of approximate techniques have been

proposed that are of varying applicability [9]. Two programs of

general applicability have been developed, both based on nonideal

frequency domain analysis techniques [17], [18], requiring a substantial

amount of computation.

To accurately model the effects of arbitrary on and off switch

resistances, finite amplifier gain bandwidth, amplifier input and output

impedances, analysis methods are required that take into account the

transient effects caused by these imperfections. These methods must be

suited to computer implementation to provide designers with efficient

tools for evaluating these effects and to help in the design of

networks that circumvent these imperfections. The most useful tools

are time and frequency domain analyses and multiparameter sensitivity

analysis. Other tools may be needed depending on the application. In

particular high frequency and low power consumption applications

require special attention to finite amplifier gain bandwidth and switch

on resistance values. These parameters need to be carefully calculated

to optimise overall performance, which requires the use of optimisers

in conjunction with the analysis programs. Recently attempts have

been made to include some of these imperfections into the design

process [19] and it is anticipated that future design methods will

incorporate these resistive imperfections and other effects such as

4

sinx/x droop into the SC networks. However the resistive tiwe-constants

are not designable parameters as variations from chip to chip are very

large, so Monte Carlo analysis and design centering tools will be

required to provide a practical overall design procedure.

For a fto.videal analysis method to be usable within the context of

Monte Carlo analysis, design centering or optimisation, the cost in

terms of computation time must be low for both calculating the

network response and the preprocessing required for the method. With

the increasing use of large and complex networks, the analysis

methods must be applicable to large networks, that is the method

must be accurate and numerically stable even for large networks and

the computation cost should increase modestly with increasing network

size.

The non-ideal SC analysis methods that have been proposed to date do

not meet these requirements. Even the formulations that are best

suited to efficient computer implementation are inherently slow due to

the need for AC analysis at each frequency point, in addition to the

Z— domain analysis. The objective of this work was to overcome these

limitations and develop a very fast method for analysing noi-ideal SC

networks that could provide the basis for very efficient sensitivity and

noise analysis and be efficiently used with an optimiser. This thesis

presents the new approaches to time and frequency domain analysis of

r»*n-ideal SC networks, formulated as general periodically switched

linear networks. Central to these analyses is a new method for

computing the time domain response of linear networks. This new

method requires the development of efficient algorithms for computing

the extended state transition matrix and excitation response vectors.

The efficiency of these algorithms derives from a new approach

developed for solving large sparse sets of complex linear equations.

All the above analyses are implemented in a computer program and

extensive results on the performance of the algorithms are given.

5

1.2) NOTES

The term 'flop' (floating point operation) is used extensively

throughout this thesis. The definition of a flop was defined more

precisely [20] to be the time required for a particular computer system

to execute the FORTRAN statement

A(I , J) = A (I , J) + T * A (I,K) (1 .1)

which involves one floating point multiplication, one floating point

addition, a few subscript and index calculations and a few storage

references. This definition of a flop is used throughout this thesis.

The network equations used in this work are formulated using the

MNA approach [21] and an efficient row swapping algorithm that

ensures a nonzero diagonal [22]. This formulation has many advantages

[22], notably that it preserves the inherent sparsity in the network and

allows the inclusion of voltage sources using topological values.

No typographical distinction is made between matrices, vectors and

scalars. The usual conventions of capital and lowercase letters are

used. Where a new quantity is introduced for the first time, it is

explicitly stated whether the quantity is vector or scalar. Other

notation that is used is introduced where needed.

All the algorithms discussed in this thesis were implemented in a

FORTRAN 77 program called FOOLSCAP. This name was chosen as

a play on the words Full Switched Capacitor Analysis Program. This

program was implemented on a /*VAX II under VMS. All the results

presented in this thesis were obtained from this implementation.

1.3) OUTLINE OF THE THESIS

Chapter One introduces the subject of periodically switched linear

networks and discusses the computer aided analysis tools that are

required for analysing them. General notation and terms that are used

throughout the thesis are briefly discussed. The outline of the thesis is

presented and areas of the work which are novel and original are

highlighted.

6

Chapter Two addresses the problem of solving sparse sets of complex

linear equations and introduces the concept of domain types which is

key to the efficient techniques developed to solve these equations. The

interpretable code generation scheme and optimal ordering algorithms

developed are discussed in detail and extensive practical results are

used to compare the various algorithms and indicate the massive gains

in efficiency made possible by these techniques.

Chapter Three is concerned with the efficient time domain solution of

linear networks. The problem is formulated mathematically and the

characteristics of the equations that make the solution difficult are

discussed. The numerous methods that have been proposed to solve

this problem are discussed in light of these difficulties and their

suitability evaluated. A new approach to this problem is developed that

makes use of the extended state transition matrix and polynomial

approximations of the network excitations. Methods of calculating these

matrices and approximations are presented and efficient computer

implementation strategies are discussed. Finally the accuracy and

stability of the new method is evaluated and the approach compared

with other methods in terms of accuracy and efficiency.

Chapter Four considers the frequency domain analysis of periodically

switched linear networks. Many different methods have been proposed

and a number actually implemented in computer programs. The most

important and successful approaches are discussed and compared on

the basis of their limitations of generality and computational efficiency.

A new method is developed to overcome the drawbacks of these

methods, which requires the development of a number of different

techniques. The time domain solution technique presented in Chapter

Three is generalised to periodically switched linear networks. This

solution is transformed to the Z— domain and a discrete system

constructed. An efficient method for solving this discrete system is

presented. The frequency analysis algorithm is presented, based on the

solution of this discrete system. Finally the verification of the theory

and its implementation in a computer program is discussed and the

performance of the implemetation is compared with other methods.

7

Chapter Five is concerned with methods that can efficiently solve a

particular form of complex linear equations that arises in the

frequency domain analysis method presented in Chapter Four. Three

approaches, the direct approach, the iterative approach and reduction

to simpler forms are considered and discussed in detail. The

performance of all three approaches is compared on the basis of

results obtained from the implementation of the approaches in the

frequency analysis program. Detailed comparisons of the three most

effective methods are given and clearly show the substantial savings

afforded by these techniques.

Finally the conclusions and suggestions for further work are presented

in Chapter Six.

1.4) STATEMENT OF ORIGINALITY

The following most significant results of the research work presented

in this thesis are, to the best of our knowledge, original:

— In Chapter 2, the introduction of the concept of domain types

which extends the concept of sparsity from simply a zero/nonzero

structure to include the type of the nonzero elements. The

development of methods for taking advantage of the domain type

structure using interpretable code generation and an associated numeric

interpreter. The three optimal ordering algorithms designed to take

into account the domain type structure. The modification of the

numeric interpretor to accumulate operation statistics, which is a very

useful symbolic tool for comparing different solution algorithms.

— In Chapter 3, the development of a time domain solution technique

based on polynomial approximation of the excitations and numerical

Laplace transform inversion. The derivation of polynomial

approximation formulas which calculate the coefficients of the

polynomial explicitly. The technique used to calculate the extended

state transition matrix and excitation response vectors, which makes

optimal use of the sparsity of the matrices.

— In Chapter 4, the development of the overall frequency domain

analysis method. The use of polynomial approximation of the

excitations, which avoids the need for AC analysis at each frequency

point. The derivation of the method for calculating the time domain

response of periodically switched linear networks with arbitrary input.

— In Chapter 5, the extension of the Hessenberg approach to

multiphase SC networks and incorporation into the block Gauss

elimination solution method used to efficiently solve the discrete system

in Chapter 4. The development of the tridiagonal approach and its

application to multiphase SC networks.

9

REFERENCES FOR CHAPTER ONE

[1] T. Strom and S. Signell, "Analysis of periodically switched linear

networks", IEEE Trans. CAS, Vol. CAS—24, Oct. 1977,

pp.531— 540.

[2] W.R. Bennett, "Steady state transmission through networks

containing periodically operated switches", IRE Trans. Circuit

Theory, Vol. C T -2 , Mar. 1955, pp .17-21 .

[3] C.A. Desoer, "A network containing a periodically operated

switch solved by successive approximations", Bell Syst. Tech. J .,

Vol. 36, pp.1403—1428, Nov. 1957.

[4] C.A. Desoer, "Transmission through a linear network containing

a periodically operated switch", 1958 Wescon Conv. Rec., pt. 2,

pp.3 4 - 41.

[5] A. Fettweis, "Steady state analysis of circuits containing a

periodically operated switch", IRE Trans. Circuit Theory, Vol.

C T -6 , pp.252— 260, Sep. 1959.

[6] I.W. Sandberg, "The analysis of networks containing periodically

variable piecewise constant elements", Proc. 1961 Nat. Electron.

Conf., Vol. 17, pp.81— 97.

[7] Y. Sun and I.T. Frisch, "Transfer functions and stability for

networks with periodically varying switches", Proc. 1st Asilomar

Conf. Circuits and Systems, Nov. 1967, pp.130—142.

[8] M.L. Liou, "Exact analysis of linear circuits containing

periodically operated switches with applications", IEEE Trans.

CT, Vol. CT—19, Mar. 1972, pp.146-154.

[9] M.L. Liou, Y.L. Kuo and C.F. Lee, " A tutorial on computer

aided analysis of switched capacitor circuits", Proc. IEEE, Vol.

71, No. 8, Aug. 1983, pp.987-1005.

10

[10] J . Vanderwalle, H. De Man and J. Rabaey, "Time, frequency

and z— domain modified nodal analysis of switched capacitor

networks", IEEE Trans. CAS, Vol. CAS—28, No. 3,

pp.186-195, Mar. 1981.

[11] A.D. Meakin, J .I. Sewell and L.B. Wolovitz, "Techniques for

improving the efficiency of analysis software for large

switched— capacitor networks", Proc. 28th Midwest Symposium on

Circuits and Systems, pp.390—393, Aug. 1985.

[12] J . Vlach, K. Singhal, and M. Vlach, "Computer oriented

formulation of equations and analysis of switched— capacitor

networks", IEEE Trans. CAS, Vol. CAS—31, Sept. 1984,

pp.753- 765.

[13] G.S. Moschytz, ed., "MOS switched capacitor filters: analysis

and design", IEEE Press Selected Reprint Series, 1984.

[14] L.W. Nagel, "SPICE2 : A computer program to simulate

semiconductor circuits", ERL Memo ERL— M520, University of

California, Berkeley, 1975.

[15] L.B. Wolovitz and J.I. Sewell, "Advanced switched capacitor

analysis software", Final Report, Dept. Electronics and Electrical

Engineering, University of Glasgow, 1986.

[16] L.B. Wolovitz and J.I. Sewell, "Efficient computer techniques

for the exact analysis of all nonideal effects of

switched— capacitor networks in the time— domain", Proc. IEEE

Int. Symp. on Circuits and Systems, pp.373—376, May 1986.

[17] J . Rabaey, J . Vanderwalle and H. De Man, "On the frequency

domain analysis of switched capacitor networks including all

parasitics", Proc. IEEE Int. Symp. on Circuits and Systems,

April 1981, pp.868—871.

11

[18] C.K. Pun, A.G. Hall and J.I. Sewell, "Noise analysis of

switched capacitor networks in symbolic form", Proc. 29th

Midwest Symposium on Circuits and Systems, Lincoln, 1986.

[19] M.A. Tan, C. Acar and M.S. Ghausi, "Design of switched

capacitor filters using nonideal op amps", Journal of the

Franklin Institute, Vol. 323, No. 1, pp.55—72, 1987.

[20] C.B. Moler and C. Van Loan, "Nineteen dubious ways to

compute the exponential of a matrix", SIAM Review, Vol. 20,

No. 4, pp.801—836, Oct. 1978.

[21] C.W. Ho, A.E. Ruehli and P.A. Brennan, "The modified nodal

approach to network analysis", IEEE Trans. CAS, Vol.

C A S -22, No. 6, June 1975, pp.504-509.

[22] L.B. Wolovitz, "Improved techniques for time domain analysis of

switched capacitor networks", M.Sc. Thesis, University of Hull,

1986.

12

CHAPTER TWO

SOLVING SPARSE SETS OF COMPLEX LINEAR EQUATIONS

2.1) INTRODUCTION

Systems of large sparse linear equations arise in many numerical

problems, notably network analysis and design. Sparse matrix

techniques have enabled the solution of large problems and provided

the efficiency to make optimisation and Monte Carlo analysis of large

networks feasible [1].

This chapter addresses the problem of developing techniques that can

efficiently solve large sparse sets of complex linear equations. These

equations arise in network analysis when analysing networks in the

complex frequency domain. Here the definition of a sparse matrix is

one in which advantage can be taken of the percentage, distribution

and type of nonzero elements [1].

The problem then is the solution of the N x N system of linear

equations

Ax = b (2 .1)

where matrix A and vectors x and b are in the complex domain.

The matrix A has an arbitrary zero/nonzero structure, where the

nonzero elements are real, complex or imaginary as arises in network

analysis. Furthermore, with the widespread use of modern tableau

equation formulation methods [2], the topological elements + 1 and —1

are also considered. The 'type' of an element refers to whether the

element is a topological, real, imaginary or complex.

The methods discussed here are all based on the direct LU

decomposition method of solving equation (2.1). This approach consists

of factoring A into the product

A = LU (2 .2)

of a lower triangular matrix L and an upper triangular matrix U, then

solving the triangular system

Ly = b (2 .3)

13

by forward elimination, and the triangular system

Ux = y (2 .4)

by backsubstitution.

Sparse matrix methods gain their efficiency by avoiding redundant

arithmetic operations in computing (2.2), (2.3) and (2.4). This is

achieved by organising the computations such that access to and

multiplication by zero valued elements are avoided. Similarly

multiplication by a topological is replaced by an addition/subtraction.

Although computational speed is the primary consideration and

motivation, sparse methods also have an obvious benefit in storage

requirements, in that only the nonzero elements (plus indexing

information to access these elements) need be stored. These savings

can be of importance for very large problems, though today computers

with large main store and virtual memory operating systems are

common and therefore storage is generally of secondary concern.

The solution of the triangular systems (2.3) and (2.4) by forward

elimination and backsubstitution respectively, does not alter the sparsity

structure of the L and U matrices and therefore the number of

arithmetic operations involved is only dependent on the nonzeros in L

and U. For this reason sparse methods generally concentrate primarily

on the first stage of factoring A into LU. This problem involves three

basic steps: reordering the equations based on sparsity and solution

efficiency considerations, a symbolic stage that prepares data structures

and information for the last step, the actual numeric factorisation.

In the applications mentioned above, the solution of equation (2.1)

must be repeated many times, where the numerical values of A

change (due to frequency variance or parameter changes), but the

sparsity and type structure remain fixed. Steps one and two are done

only once, while the third step (the solution process) is repeated many

times.

14

2.1.1) DOMAIN TYPES

Standard sparse methods only consider the zero/nonzero structure of

the problem. However as mentioned previously by taking into account

topological elements, further computational savings can be achieved [3].

The category of different elements was broadened by Hachtel [4], who

pioneered the concept of 'variab ility' type. In this case the application

was time domain optimisation of nonlinear networks, which has various

levels of looping and the system (2.1) is solved at the innermost loop.

The system thus has entries that are constant, topologicals, vary only

with each optimisation step, each time— step or each nonlinear

iteration. By taking advantage of these different variability types the

scope of avoiding redundant arithmetic operations was extended to the

various levels and achieved impressive savings [4].

In this work we consider complex equations which vary with frequency

and therefore the matrix A has entries that are topologicals, constants

or frequency dependent. To efficiently solve these kind of systems a

new 'domain' type is introduced. The motivation for this domain type

is best explained by means of example.

Consider the following fragment of code

Sum = Sum + A(47) X A(93) (2 .5)

which is the most frequent operation in the numeric factorisation

stage. Writing the complex values explicitly i.e.

A(47) = Re(47) + jlm (4 7)

Sum = SumR + jSuml (2 .6)

code fragment (2.5) becomes

SumR = SumR + Re(47) X Re(93) - Im(47) X Im(93)

SumI = SumI + R e(47) X Im(93) + Im(47) X R e(93) (2 .7)

which requires 4 additions/subtractions, 4 multiplications and 4 array

accesses. Now consider the case where A(47) is real and A(93) is

imaginary, i.e.

15

A(47) = R e(47)

A(93) = jIm (93) (2 .8)

Code fragment (2.5) now reduces to

SumI = SumI + R e(47) X Im(93) (2 .9)

which only requires 1 addition, 1 multiplication and 2 array accesses.

Finally consider the case where A(47) is a topological of value + 1 ,

which then reduces (2.5) to

SumI = SumI + Im(93) (2 .1 0)

Quite clearly dramatic savings can be achieved by taking advantage of

the domain types, which are listed in Table 2.1.

Type 1 e lem en ts which a re +1
Type 2 e lem en ts which a re -1
Type 3 e lem en ts which a re r e a l i . e . x = a
Type 4 e lem en ts which a re im ag in a ry i . e . x = jb
Type 5 e lem en ts which a re com plex i . e . x = a + jb

Table 2.1 Description of domain types

2.1.2) SYMBOLIC AND NUMERIC FACTORISATION

The three stages outlined above for factorising matrix A are discussed

with an emphasis placed on methods that take advantage of the matrix

type structure.

The first stage, reordering the equations, is independent of the other

two stages and is therefore considered separately and discussed after

the solution stages. The symbolic phase and the numeric factorisation

phase, though two distinct steps, are intimately related and thus

treated as one when discussing various approaches to the LU

factorisation. Three standard approaches are identified [3], though

there are many variants and hybrids of the methods. These approaches

are: generated machine code (MC), looping index (LI) and generated

interpretable code (IC).

The first approach, generated machine code, analyses the matrix

16

structure in the symbolic phase and generates a loop free code that

implements the factorisation [6]. The third phase, numeric

factorisation, then simply involves executing this code, which has the

advantage of being extremely fast since no testing or branching is

performed and every variable is accessed directly. Another major

advantage of the MC approach is the ease with which it can handle

typed problems. The MC approach has been effectively used to solve

variability typed problems [4], and could be easily adapted for domain

type problems. However the MC approach has a number of important

disadvantages. The first is that the compiled code can be very long

[1], growing rapidly for large systems. The problem is even worse for

complex equations [3]. Because the code is executed sequentially it

does allow the code to be held in secondary store but this slows

execution substantially [1]. The second disadvantage is that for

efficiency the code is often generated in machine code, which makes

implementations machine dependent. The third disadvantage is that this

code has to be translated into machine code (in the case of high level

language or assembler implementations) and then linked to the rest of

the application program, which can be quite slow and is again

machine dependent. For these reasons this approach was rejected as a

viable method of handling domain types.

The second approach, looping index, analyses both the initial and

decomposed matrix structures in the symbolic phase and generates a

data structure for holding the nonzero entries plus indexing

information for efficiently accessing rows and columns of the matrix

[7]. The third phase then performs the numeric factorisation by using

this indexing information to access elements involved in the elimination

steps. The advantages of this approach are that it is readily

implemented in a high level language (and is therfore machine

independent), the symbolic phase is significantly quicker than the MC

approach and the information generated requires much less storage. It

has the disadvantage of being much slower than the MC approach

because of the looping and two levels of indirect addressing for

accessing entries. However its main disadvantage is the difficulty of

taking advantage of typed problems. These difficulties, discussed in [3],

of handling variablilty types are even worse for the domain types and

therefore this method was also rejected.

17

The third approach, generated interpretable code, is similar to the MC

approach in that it also generates a loop free code that implements

the factorisation. It differs from MC in that this code is not a

machine or high level code but is designed to be interpreted in the

third phase by an interpretor that interprets the sequence of

instructions and performs the numeric factorisation [8]. It shares with

MC the advantage of being very fast, though it is slower because of

the overheads of the interpretor and the indirect addressing of entries,

and the ease of handling types problems. Although, as for MC, the

code can grow quite large, this is less of a problem as the instructions

are much shorter. In the case of complex equations this is an

important advantage as the instructions are exactly the same length as

for real instructions, whereas they are at least four times longer for

MC [3]. Compared to the LI approach, IC still requires more storage

but is significantly faster. Perhaps the only disadvantage of the IC

approach is the need for an interpretor. Though it is relatively

straightforward to implement, great care is needed to ensure that it

executes efficiently. For utmost efficiency it is desirable to implement

the interpretor in assembler, which has the disadvantage of being

machine dependent, time— consuming and error prone. However well

coded high level language implementations are perfectly adequate and

have the advantage of being portable. Based on these considerations,

the IC approach was selected to be used for solving the domain type

problem.

This solution is presented in section 2.2, where the design of the

interpretable instruction set and the efficient implementation of the

code generation and interpretor are discussed. Results of this

implementation are presented in section 2.4.

2.1.3) RE-ORDERING THE EQUATIONS

As mentioned previously the first step in solving the equations (2.1) is

to re-order the equations. The objective of an ordering algorithm is to

try and minimise the number of fills produced during the factorisation

or to minimise the number of arithmetic operations for this

factorisation. In general an algorithm that minimises the fill minimises

the amount of computation for the factorisation, though the reverse is

18

not necessarily true, as is shown in the results presented at the end

of this chapter. Therefore the objective in this work is to specifically

minimise the amount of computation, which is proportional to the

execution speed of the solution process, which after all is what one

wants to minimise.

The algorithms for reordering the equations are generally called

optimal ordering algorithms, which is misleading because no known

practical algorithm can ensure a global optimum ordering. This is

because of the combinatorial explosion of the problem [1]. All

practical algorithms are local methods in that they select at each step

the pivot which has a minimum cost for the next pivot step. It has

been shown [9], that no ordering based solely on local criteria can be

guaranteed to produce a globally best ordering. The various algorithms

differ essentially in the way they calculate these costs. The most

widely used algorithms are the Markowitz [10] which attempts to

minimise the number of multiplications and the minimal fill [11], [12]

which attempts to minimise the amount of fill, though many others

have been suggested [1]. Most algorithms tacitly assume that numerical

stability is not adversely affected by the reordering. In many problems

this assumption is justified and in fact diagonally dominant matrices

allow the algorithms to restrict pivot selection to the diagonal, which

makes the algorithms far more efficient than if a full pivot search

were used. In the context of network analysis, the formulation of the

equations is such that diagonal pivoting may be used and therefore the

ordering algorithms presented here are restricted to diagonal pivot

selection, though they are applicable to the more general case.

Even though many different methods have been proposed, only one

has been specifically developed to handle typed matrices. This

algorithm, OPTORD [4], is based on the Markowitz algorithm and is

applicable to variability type problems. The algorithm which uses

weighted costs dependent on variability type attempts to re-order the

equations to minimise the number of multiplications at each of the

different variability levels. Though effective, this algorithm is not

applicable to domain type problems. Therefore three new algorithms

have been developed that take account of the domain type structure

of the matrices and attempt to minimise the arithmetic operations for

19

the factorisation stage, assuming that this stage takes full advantage of

the domain type structure. The algorithms are based on the

Markowitz, minimal fill and a hybrid of the two algorithms and are

presented in section 2.3. The efficient practical implementation of

these algorithms is discussed and extensive comparisons with other

approaches are presented in the results of section 2.4.

2.2) DOMAIN INTERPRETABLE CODE APPROACH

There are two algorithms that may be used to LU decompose the

matrix A. The algorithms are equivalent in that they require the same

number of arithmetic operations and produce the same factorisation.

They differ only in the organisation of the factorisation steps. The

first is the Gauss elimination method with row normalisation,

a, . = a. . / a. , j = k + 1 , . . , N
k j k j k k J ’ ’

a . . = a . . - a . , X a. . i>j = k + 1 , . . , N (2 . 1 1)
i j i j l k k j , J

and the second is the Crout method

J - l

eu - a . j - £ * ikukj *>J <2 1 2 >

i - 1

a . . - L ^ . , u . .
1J k= l J

u = i<j (2 . 13)
J a . .

11

Because the two methods produce the same LU factors, the same

algorithms may be used to solve the triangular systems (2.3) and

(2.4). The system (2.3) is solved by forward elimination,

i - 1

b . - I 2 . .y .
1 J - l 1 J J

y = (2 . 14)
2 ..

11

and the system (2.4) by backsubstitution,

20

N

x = y - I u x (2 .1 5)
j= i+ l J J

The Gauss elimination method is most widely used with the looping

index approach whilst the Crout method is most commonly used with

the generated code approaches. There are a number of reasons why

the Crout method is more suitable for code generation. They all

derive from the fact that although the two solution methods require

the identical number of arithmetic operations, the Crout method

requires fewer accesses to the matrix as element values are only

updated once, whereas the Gauss elimination method requires multiple

updates. Therefore the amount of code generated by the Crout

method is less than the Gauss elimination method. This fact also

makes the updating of the type structure of the matrix much simpler

for the Crout algorithm and it is therefore potentially faster. Another

advantage of the Crout algorithm is that the inner loop form allows

the accumulation to be implemented in higher precision arithmetic

which can reduce roundoff errors. However in this application this

higher precision was not required and therefore this factor was not

considered in deciding between the two methods. The Crout algorithm

was selected primarily because of its ease of implementation and

because it facilitates the generation of very efficient code.

2.2.1) INTERPRETABLE CODE INSTRUCTION SET

A set of instructions must be developed that can implement the LU

decomposition formulae (2.12) and (2.13) and the solution formulae

(2.14) and (2.15). There are a number of requirements of such an

instruction set. The first is that it must be able to handle all the

domain types given in Table 2.1. The second is that the organisation

of the instruction set should be reqular to make implementation of the

code generation algorithms simple and efficient. The third requirement

is that the instructions be simple so that they can be efficiently

implemented in an interpretor with minimal overhead (for example no

looping or multiple operations which require any testing or branching).

A desirable feature, though not a strict requirement, is that the

instruction set should be small, which makes the interpretor shorter

and simpler.

21

I n i t i a l i s e

Sr
Sr
Sr
Sr
Sr
Sr

0
1
-1
Re (a)
0
Re (a)

Si
Si
Si
Si
Si
Si

0
0
0
0
Im(a)
Im(a)

In n e r p ro d u c t

Sr = Sr - 1 7
Sr = Sr + 1 8
Sr = Sr - Re (a) 9 i
Si = Si - Im(a) 10 a
Sr = Sr - Re (a) Si = Si - Im (a) 11 a
Sr = Sr + Re (a) 12 a
Si = Si + Im (a) 13 a
Sr = Sr + Re (a) Si = Si + Im (a) 14 a
Sr = Sr - Re (a) X Re (b) 15 a
Si = Si - Re (a) X Im(b) 16 a
Sr = Sr - Re (a) X Re (b)
Si = Si - Re (a) X Im(b) 17 a
Sr = Sr + Im(a) X Im(b) 18 a
Sr = Sr + Im(a) X Im(b)
Si = Si - Im(a) X Re (b) 19 a
Sr = Sr - Re (a) X Re (b) + Im (a) X Im(b)
Si = Si - Re (a) X Im(b) - Im (a) X R e(b) 20 a

N orm alise and s to r e

Re (a) = -S r 21
Im (a) = -S i 22
Re (a) = -S r Im (a) = -S i 23
Re (a) = Pr 24
Re (a) = -P r 25
Re (a) = Sr X Pr 26
Im (a) = Si X Pr 27
Re (a) = Sr X Pr Im(a) = Si X P r 28
Im (a) = Pi 29
Im (a) = -P i 30
Im (a) = Sr X Pi 31
Re (a) = -S i X Pi 32
Re (a) = -S i X Pi Im(a) = Sr X Pi 33
Re (a) = Pr Im(a) = Pi 34
Re (a) = -P r Im(a) = -P i 35
Re (a) = Sr X Pr Im(a) = Sr X Pi 36
Re (a) = -S i X Pi Im(a) = Si X Pr 37
Re (a) = Sr X P r - Si X Pi
Im(a) = Sr X Pi + Si X Pr 38

m ore . . .

T a b le 2 .2 In te rp re ta b le co d e in s tru c tio n se t

22

S to re

R e(a) = Sr 39
Im (a) = Si 40
R e(a) = Sr Im (a) = Si 41

P iv o t

P r = 1 / Sr R e(a) = P r 42
Pi = -1 / Si Im (a) = Pi 43
P r - Sr / (S r X Sr + Si X S i)
P i = -S i / (S r X Sr + Si X S i)
R e(a) = P r Im (a) = P i 44

Load

Sr = B r(a) Si - B i(a) 45 a
Sr = X r(a) Si = X i(a) 46 a

C ross p ro d u ct

Sr = Sr - X r(a) Si = Si - X i(a) 47 a
Sr = Sr + X r(a) Si = Si + X i(a) 48 a
Sr = Sr - R e(a) X X r(b)
Si - Si - R e(a) X X i(b) 49 a b
Sr = Sr + Im(a) X X i(b)
Si = Si - Im(a) X X r(b) 50 a b
Sr = Sr - R e(a) X X r(b) + Im(a) X X i(b)
Si = Si - R e(a) X X i(b) - Im(a) X X r(b) 51 a b

M u ltip ly and s to r e

Xr (a) = Sr Xi (a) = Si 52
Xr (a) = -S r X i(a) -----Si 53
Xr (a) = Sr X Re (b)
Xi (a) = Si X Re (b) 54 b
Xr (a) = -S i X Im(b)
Xi (a) = Sr X Im(b) 55 b
Xr (a) = Sr X R e(b) - Si X Im(b)
Xi (a) = Sr X Im(b) + Si X Re (b) 56 b

R e tu rn 57

T a b le 2 .2 (continued)

23

An instruction set that meets these requirements was developed and is

given in Table 2.2. The instruction set consists of 57 operations which

includes the RETURN instruction. This set is therefore not small,

though it is believed to be close to a minimal set that implements

formulae (2.12) through (2.15) taking into account domain types.

The method by which this instruction set was constructed is now

described. By analysing the Crout formulae (2.12) and (2.13) four

different operations can be identified. They are:

1) i n i t i a l i s a t i o n sum = a j j

2) in n e r p ro d u c t sum = sum - ajj^ X a ^ j

3) n o rm a lise sum = sum / a j j

4) s to r e a j j = sum

Considering the 5 domain types the initialisation operation is then

implemented by instructions 1 through 6. Note that instruction 1 is

introduced for the case where a fill is introduced and therefore the

variables that accumulate the inner product are initialised to zero.

Next consider the inner product operation. There are 25 poss ible

combinations of the domain types for a ^ and a^j, though about half

of these are symmetric and therefore can use the same instruction. To

meet the requirement of regularity these instructions are grouped

systematically as is shown in Table 2.3. The negative signs in the

table are for the symmetric operations and denote that the operands

are reversed.

Looking at the normalise and store operations it is seen that the two

operations can be combined into one step, which simplifies and

reduces the size of the instruction set. However looking at formula

(2.12) it is seen that a seperate store operation is still needed.

Fortunately the instructions needed for this operation are a subset of

the instructions for the combined normalise and store operation. This

subset corresponds to the case where ajj = 1. Applying the domain

types to these operations, 21 instructions are needed which are

regularly grouped as is shown in Table 2.4. The instructions are

described in Table 2.2 where the store operation is shown seperately

24

for reasons of clarity. There are four null operations for the

topologicals as no instructions are actually needed, only the type

structure of the matrix need be updated. This updating procedure is

discussed in the next section.

From the instruction set in Table 2.2 it is seen that there is a group

of instructions for pivoting. This group was introduced as it is more

efficient to hold the diagonal (the pivots) inverted for complex

numbers, as then division by the pivot is implemented with at most 4

multiplications (compared to 6 multiplications and 2 divisions).

A similar procedure to the above is used for the forward elimination

(2.14) and the backsubstitution (2.15) formulae. Again 4 different

operations can be identified, which are:

1) lo ad

2) c ro s s p ro d u c t

3) n o rm a lise

4) s to r e

sum = Xj
sum = sum - a jj X xj

sum = sum / aj j
xj = sum

A compromise between ultimate efficiency and instruction set size was

made when implementing these operations. This compromise concerns

the allowable domain types for the vector x. If all domain types were

allowed then 40 new instructions would be needed to implement the

solution formulae. Now in practice it is found that generally the RHS

vector (b) is complex and even if it contains a range of domain

types, the solution vector x rapidly becomes overwhelmingly compex

during the solution steps. Therefore it was decided to restrict the RHS

vector to being type 5 (complex). Although the implementation of the

formulae is not optimal, the difference is insignificant and in

return a massive reduction in the number of instructions is obtained.

Applying the techniques described above, 12 instructions are required

to implement the 4 operations. These are instructions 45 through 56

in Table 2.2.

25

OPERAND B

1 2 3 4 5
0
p

1 7 8 -9 -10 -11

E
R

2 8 7 -12 -13 -14

A
N
D

3 9 12 15 16 17

4 10 13 -16 18 19

A 5 11 14 -17 -19 20

T a b le 2 .3 In n e r p ro d u c t in s tru c tio n lo o k u p ta b le

OPERAND B

1 2 3 4 5

0
p

1 - - 24 29 34

E
D

2 - - 25 30 35

A
N
D

3 39 21 26 31 36

4 . 40 22 27 32 37

A 5 41 23 28 33 38

T a b le 2 .4 N o rm alise a n d s to re in s tru c tio n lo o k u p ta b le

26

2.2.2) INTERPRETABLE CODE GENERATION

Having constructed the interpretable code instruction set, algorithms

are required that will generate the code for a given sparse domain

matrix. Two sets of information are required for this code generation

process. The first is the type of each nonzero element and the second

is the address (or location) of these elements. Exactly how this

information is organised or what data structures are used to hold the

information is not important to the functioning of the algorithm,

though it obviously has an impact on the efficiency of the algorithm

as regards storage and speed. Usually the nonzero elements of the

matrix are stored contiguously in a vector (or two vectors in the case

of complex matrices) and the addresses then correspond to the

position of the elements within these vectors.

The algorithm proceeds in the same manner that a numerical

implementation of the Crout algorithm does, except that instead of

performing the numeric operations, instructions are generated that

implement these operations. Therefore efficient techniques for

implementing the Crout algorithm [13] may be used to reduce

searching and testing thereby speeding this part of the algorithm up.

The procedure for generating the appropriate instructions is simplified

if lookup tables are used. This has the added benefits that the

instruction set may then be easily modified and it is a very efficient

method. The lookup table for the normalise and store operations has

already been presented in Table 2 .4 . Given the two operands A and

B, the appropriate instruction is found from the table and the

addresses of A and B then complete the instruction. In the case of a

negative instruction the addresses are reversed and obviously the

positive valued instruction is generated.

As well as generating the instructions at each step of the Crout

algorithm, the type structure of the matrix must be updated. For this

two lookup tables are used. The first gives the resultant type of a

multiplication operation and is shown in Table 2.5. The second, given

in Table 2.6 is the resultant type after an additive operation.

27

OPERAND B

1 2 3 4 5

0
p

1 1 2 3 4 5

E
R

2 2 1 3 4 5

A
N
D

3 3 3 3 4 5

4 4 4 4 3 5

A 5 5 5 5 5 5

T a b le 2 .5 R e su lta n t ty p e a f te r m u ltip lic a tio n

OPERAND B

0 1 2 3 4 5

0
p

1 1 3 3 3 5 5

E
p

2 2 3 3 3 5 5

A
N
D

3 3 3 3 3 5 5

4 4 5 5 5 5 5

A 5 5 5 5 5 5 5

T a b le 2 .6 R e su lta n t ty p e a f te r a d d itio n /su b tra c tio n

28

At the initialisation of an inner product, the type of the summation is

set to that of the element ay. As each inner product is formed, the

type of the multiplication (from Table 2.5) is used to update the type

of the summation (from Table 2.6). Similarly the type is updated

when multiplied by the pivot and finally the matrix is updated with

this new type when the store operation is generated.

Various other bookkeeping tasks are required for allocating fill and

avoiding redundant loads and subsequent stores in the cases where

elements are not altered by the factorisation. The code generation

algorithms for the forward elimnation and backsubstitution formulae are

developed using the above techniques, except they can be simplified

because of the fixed type of the RHS.

The above algorithms have been implemented in the program

FOOLSCAP using FORTRAN 77. The algorithms are designed in a

modular fashion and the total length of code (including comments) is

700 lines, which is a very modest size considering the complexity of

the problem which they solve.

2.3) OPTIMAL ORDERING

The general aims of an optimal ordering algorithm have been

discussed in the introduction. As mentioned in the introduction three

new algorithms have been developed to take into account the domain

type structure of the equations. All three algorithms assume that the

equations will be solved using a method that takes advantage of the

domain structure and therefore attempt to minimise the operations

required by such methods. The performance of the algorithms when

such methods are not used are discussed in the results section 2.4.

A common feature of all the algorithms is that the pivots are

restricted to the diagonal which greatly simplifies the algorithms and

therefore speeds up their execution. The search for a pivot along the

diagonal may be done in either direction, forwards or in reverse. In

this particular application it is known that the equation formulation

method produces topologicals along the diagonal, which are ordered

towards the bottom of the matrices [13]. Therefore better results are

29

expected if the orderings are done in reverse order. This result was

confirmed by numerous experiments and again the results are discussed

in section 2.4.

2.3.1) DOMAIN MINIMAL MULTIPLICATION ALGORITHM

The aim of the domain minimal multiplication (MM) algorithm is to

minimise the number of multiplications needed to implement the

formulae (2.12) and (2.13) using domain type techniques. To take into

account the domain types the multiplication costs are weighted

according to the actual number of multiplications needed to perform

the multiplication of the two domain type operands. These

multiplication costs are given in Table 2.7. The divisions required in

the pivot step are considered as multiplications in forming the cost of

the step.

This cost could be extended to include the number of

additions/subtractions, but because multiplication operations require

more time to execute they generally dominate the computation time.

However a more accurate cost could be obtained by using a weighted

cost of multiplications and additions, which is weighted according to

their actual execution speeds. This extra sophistication was not tried

and indeed it is suspected that it would not produce better orderings

because by minimising multiplications the number of additions are also

minimised, which is confirmed by experimental results.

If the matrix does not have different domain types, then this

algorithm is identical to the Markowitz algorithm.

2.3.2) DOMAIN MINIMAL FILL ALGORITHM

The aim of this algorithm is to minimise the amount of fill produced

when the formulae (2.12) and (2.13) are implemented using domain

type techniques. This algorithm was developed primarily out of

academic interest in comparing its performance with the ususal

minimal fill (MF) algorithms. However, as in the case of the MF

algorithm for untyped matrices, a good MF ordering generally

produces a good ordering in terms of the number of multiplications.

30

To take into account the domain types, the concept of a fill has to

be extended. Normally a fill is used to denote a zero element that

becomes nonzero during the factorisation process. In the context of

domain types, the two parts of a complex number (real and

imaginary) are treated as seperate entities and therefore count as two

locations which can be filled independently. Thus for example a real

element has an imaginary part of zero and if it becomes complex

then the imaginary part is treated as a fill.

So taking the above into consideration, the fill cost is then weighted

accoring to the number of fills that are produced when the type of

an element (operand B) is updated to a new value (operand A).

These fill costs are given in Table 2.8. From the table it is evident

that the topologicals are treated (from a fill point of view) as

equivalent to a type 3 element. This is because they are in fact

equivalent in terms of fill as defined above. Although this will have

no impact on the performance of the algorithm in terms of fill, it is

expected that in terms of multiplications this is a drawback, because

of the failure to distinguish between topologicals and type 3 elements.

This feature of the algorithm is clearly demonstrated in the results of

section 2.4.

In the case where the matrix does not have different domain types,

this algorithm is identical to the usual minimal fill algorithm.

2.3.3) DOMAIN HYBRID ALGORITHM

The aim of this algorithm is to minimise the number of

multiplications needed to implement the formulae (2.12) and (2.13)

using domain type techniques. This algorithm combines the domain

minimal multiplication and minimal fill algorithms to try and achieve

an even better algorithm.

31

OPERAND B

1 2 3 4 5
0
p

1 0 0 0 0 0

E
R

2 0 0 0 0 0

A
N
D

3 0 0 1 1 2

4 0 0 1 1 2

A 5 0 0 2 2 4

T a b le 2 .7 M u ltip lic a tio n co s t ta b le

OPERAND B

0 1 2 3 4 5

0
p

1 1 0 0 0 1 0

E
p

2 1 0 0 0 1 0

A
N
D

3 1 0 0 0 1 0

4 1 1 1 1 0 0

A 5 2 1 1 1 1 0

T a b le 2 .8 F ill co s t ta b le

32

The motivation for this combination is provided by two features found

in each of the algorithms respectively. It is found that even though

the MM algorithm performs very well in terms of minimising

multiplications, it produces more fill than one would expect. This

property is discussed further in the results section. By combining the

two algorithms it is hoped that the multiplication cost would still be

kept low due to the MM algorithm, but the amount of fill would be

reduced by the MF algorithm, thereby reducing the overall number of

multiplications even further.

Similarly it is found that even though the MF algorithm performs very

well in terms of minimising fill, it produces orderings which are

clearly not optimal in terms of multiplications. One of the reasons for

this has already been discussed. By combining the algorithms it is

hoped that the MM algorithm would overcome this drawback.

To compute the cost of a pivot step, a weighted sum of the costs of

the individual algorithms as outlined above is used. Experimental

results conclusively showed that the best results were obtained when

equal weights were used. The performance of this hybrid algorithm is

discussed in the results of section 2.4.

2.3.4) EFFICIENT IMPLEMENTATION STRATEGIES

It is crucial that an optimal ordering algorithm be efficiently

implemented because if it is poorly implemented then the time taken

to execute the algorithm can quite easily wipe out any benefit gained

from using the algorithm.

All three algorithms are based on essentially the same Gauss

elimination form of algorithm and therefore share many common

features. The first technique used is to take out the pivot row and

put it into a compact form that can then be efficiently processed [13].

At the same time the cost of the row normalisation is calculated. This

technique can lead to substantial improvements in performance.

The second shortcut is to put a check inside the loop that

accumulates the costs of the pivot step and to exit if the partial cost

33

exceeds the current minimal cost found so far. This technique then

saves subsequent calculations which are redundant because it is already

known that this pivot will be rejected, and can obviously save a lot of

computation. To avoid processing elements that have already been

processed and to speed up the search for candidate pivots, a list of

remaining pivots is kept and only rows and columns corresponding to

these pivots are considered. Although this technique necessitates an

extra level of addressing, it avoids having to do any testing and

therefore quickly recoups any loss of speed.

To update the type structure of the matrix, the lookup Table 2.6 is

used. This updating step is time consuming and there does not appear

to be any way of speeding it up. If a pivot of zero cost is found, the

pivot is selected immmediately and therefore any subsequent processing

is saved. Since such pivots will not alter the matrix in any way, no

updating is necessary and therefore this stage is bypassed.

To calculate the cost of a pivot step for the minimal multiplication

algorithm the cost of each domain multiplication is evaluated using

Table 2.7. However this is very time consuming as nr x nc such

evaluations are required for each pivot, where n r and nc are the

number of nonzero elements in the row and column respectively.

Inspecting Table 2.7 it is seen that the costs for a multiplication

involving a type 5 element is double that for a type 3 or 4 element.

This then suggests that individual evaluations are not needed, as the

cost of multiplying the pivot row by a type 3 element can be

evaluated once and thus the costs for the other rows is simply equal

to this cost for type 3 and 4 elements, or double this cost for type 5

elements. This technique then only requires nr cost evaluations, which

dramatically improves the efficiency of the algorithm.

Unfortunately this technique is not applicable to the minimal fill

algorithm and therefore individual fill cost evaluations are stil needed.

A very clever technique for the untyped minimal fill algorithm was

presented in [14]. This technique avoids having to re—evaluate all the

individual fill costs for each pivot by retaining these costs and

updating the costs after a particular pivot has been selected. However

this technique is not applicable to this algorithm because the

34

domain fill costs cannot be updated in this way. The algorithm is

therefore relatively slow. Because the hybrid algorithm is dependent on

the minimal fill algorithm, it too suffers from this drawback and its

execution speed is therefore dominated by the speed of this algorithm.

2.4) RESULTS

To be able to quantitatively compare the various ordering algorithms

and the effectiveness of the domain code generation method a means

of calculating the various operation costs is required. The interpretable

code method provides a very attractive and simple solution to this

problem. All that is required is to write a special interpretor program

that instead of performing numeric operations accumulates statistics for

the operations. This provides a very powerful tool for evaluating

different ordering and code generation algorithms. The interpretor

accumulates seperate totals for the number of multiplications, divisions,

additions, subtractions, loads, stores and the various categories of fills.

In the following two sections, results are presented for a particular

example matrix which is derived from the 9th order filter given in

Fig. 2.1 [2, p.142]. This example is typical of the intended application

of the methods described here. This particular example was chosen as

it is of medium size (35 X 35) and complexity and therefore achieves

a balance between a trivial and overwhelmingly complex example.

Although the results are presented using this one example, the general

performance of the algorithms is also discussed as one example can

often be misleading.

2.4.1) OPTIMAL ORDERING

In the following comparisons, the statistics are accumulated assuming

that full advantage is taken of the domain structure of the ordered

matrices. For each algorithm a lot of detailed information is provided,

so this information is briefly discussed. The type structure of the

matrix is given after it has been ordered, but before LU

decomposition. The dots indicate zero elements and the nonzero

elements are indicated by their actual type numbers. Below this the

statistics for the LU decomposition are given. The totals at the right

35

are for the total number of multiplicative operations, additive

operations and array accesses respectively. Below this the total statistics

are given which include the LU decomposition, forward elimination

and backsubstitution statistics. Therefore these totals are the total

number of operations required for solving the equations and therefore

are perhaps the best criteria for comparing the algorithms. Finally the

fill statistics are presented in a table giving the number of fills for

each of the fill categories. The first total corresponds to the usual

nonzero fill that is used for comparative purposes [14].

The type structure of the orginal matrix corresponding to the network

in Fig. 2.1 is given in Fig. 2.2 as well as the various other

information. This provides a basis for comparing to what extent the

ordering algorithms improve on these results. Looking at the type

structure of the matrix the grouping of topological 1 's along the

diagonal is clearly seen. This is due to the equation formulation

method used [13].

The results of the Markowitz algorithm are given in Fig. 2.3. From

these results it is clear that an ordering algorithm can provide

dramatic savings. Note how this algorithm orders all the singletons first

and then the pivots with the lowest number of off diagonals next.

Because this algorithm does not take advantage of the domain type

structure, a number of topologicals are ordered way down in the

matrix. Although the total number of zero fills is very low, 8 type 1

and 19 type 3 fills occur because domain types are not taken into

account.

The results of the minimal fill algorithm are given in Fig. 2.4. The

number of fills are lower than the Markowitz (just), but the other

operations show a slight increase. Generally one would expect the MF

algorithm to outperform the Markowitz algorithm but exceptions are

not uncommon. Again one sees the effect on the fills of not taking

type into account (particularly type 3).

The results of the domain minimal multiplication algorithm are given

in Fig. 2.5. The first thing to note is how this algorithm orders all

the toplogical 1 's first and thereby eliminates the possibility of type 1

36

fills. Looking at the operation statistics, one sees a significant

improvement over the two previous algorithms, particularly in the LU

decomposition. Note the big reduction in the number of divisions,

again due to the ordering of the topologicals. Looking at the fill

information a surprising result is obtained. The zero fill produced by

this algorithm is over double that of the other two, yet the number

of operations is still significantly lower. This appears to be a general

property of this algorithm, that is it orders to minim ise multiplications

at the expense of fills. These extra fills do not seem to imply an

increase in the number of operations. This feature only applies if

domain types are taken into account for these operations. The case

where domain types are not taken into account is discussed in the

next section.

The results of the domain minimal fill algorithm are given in Fig.

2.6. From the operation statistics one sees that this algorithm performs

on a par with the Markowitz algorithm. However quite surprisingly it

produces more zero fill than the untyped algorithms, but does reduce

the type 3 fill. Compared to the domain MM algorithm this algorithm

halves the fill, but in terms of operations the former algorithm is

significantly better. It has been found that the two algorithms generally

perform similarly, neither consistently outperforming the other, though

as expected the MF always produces less fill. Inspecting the type

structure one sees that the topologicals are not all ordered first, even

though a domain algorithm is used. It is this feature that motivated

the hybrid algorithm.

The results of the domain hybrid algorithm are given in Fig. 2.7. The

results are virtually identical to the domain MM ordering, except that

slightly fewer operations are needed for the solve stages. The influence

of the domain MM algorithm is clearly seen by the ordering of the

topologicals. In fact for this example the domain MF algorithm does

not seem to have much influence. In general it has been found that

the performance of the hybrid algorithm lies between the two

algorithms, sometimes one algorithm influencing the ordering more

than the other dependent on the domain structure of the matrix.

37

The previous algorithms all search for pivots in the reverse direction

for reasons discussed previously. To evaluate the effect on the

algorithms of searching in the forward direction, the above evaluations

were repeated with the algorithms operating in the forward mode.

These results are presented in Figs. 2.8 to 2.12. From these results it

is seen that this change does not have much influence on the domain

or minimal fill algorithms, but has a strong influence on the

Markowitz algorithm. Similar results for other examples seem to imply

that the domain algorithms are more stable than the Markowitz

algorithm (that is given the same matrix with a different ordering, the

algorithms produce orderings that do not differ much from each

other). This has important implications for applications in network

analysis as it is desirable to have a method that is independant of the

order in which the circuit nodes are numbered.

2.4.2) COMPARISON OF OVERALL METHOD

To evaluate the effectiveness of the domain interpretable code

approach and its effectiveness together with the domain hybrid

ordering, a number of tests were run. These evaluated particular

orderings taking no types, topologicals or full domain types into

account. For comparative purposes the statistics for the full matrix

solution which does not take type into account are given in Fig. 2.13.

Taking into account the sparsity structure of the matrix (but not the

type structure) leads to a massive reduction in operations as shown in

Fig. 2.14. The number of operations are even further reduced by the

Markowitz algorithms, the results of which are given in Figs. 2.15 and

2.16.

Comparing these results with the results obtained with full domain

types taken into account (Figs. 2.2, 2.3 and 2.8) it is clear that the

domain type approach leads to very large computational savings (in this

case virtually halving the number of operations). Therefore the extra

effort required in handling the domain types is more than justified by

the significant savings that can be achieved.

The performance of the hybrid algorithm when no types are taken

into account is given in Fig. 2.17. As expected this algorithm

38

performs poorly (compared to the Markowitz algortithms) when domain

types are not taken advantage of. This is because the domain ordering

algorithms are specifically designed to work in conjunction with domain

solution algorithms. The effect of taking topologicals into account is

shown in Fig. 2.18. From these results it is seen that this step

virtually halves the computation. However looking back to Fig. 2.7

where full domain types are taken into account, one sees that these

results are further reduced by a factor of 2. These results conclusively

show the need for using domain solution methods with the domain
no t

ordering algorithms. In fact it is clear that if domain types a reA taken

into account in the solution operations, the domain ordering algorithms

are actually not to be recommended. Note that this is different to the

case when the matrix itself is untyped, because then the domain

algorithms are equivalent to their untyped counterparts and the

solution phase is identical to the usual sparse matrix solution methods.

To compare the overall improvement using the domain techniques,

Figs. 2.7 and 2.16 should be compared. The forward Markowitz

ordering with no types taken into account is a fair representation of

the typical performance of a general sparse matrix code. Comparing

the statistics one sees that using the overall domain technique leads to

about a factor of 3 saving in computation. This factor has been found

to vary from 1 (where the problem is untyped) to as high as 10.

Therefore it can be concluded that the domain type approach is a

very effective method for problems that consist of domain types, but

works equally well for untyped problems.

39

O
UT

PU
T

H3Q.
Z

Figure 2.1 Network from which example matrix is derived

40

9th

or
de

r
el

lip
tic

lo

w
pa

ss

fi
lte

r

TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
56
7
8 91 0

1 1
1 2
1 3
1 4
1 5 1 6

2 0 2 1
2 2
2 3
2 4
2 5 2 6
2 7
2 8
2 9
3 0
3 1
3 2
3 3
3 4
3 5

1 ...
3 3 3 . . . 3 ...
. 3 3 3 3
. . 3 3 3 3
. . . 3 3 3 ..3
. . . . 3 5 ...
. 3 5 4 .. 1 3 . 3
.......................3 3 3 ..
.................. 3 . 3 1 ...
 3 5
. . 35 4

3 3

1 3 . 3 ..
................... 3 3 3 ..
...............3 . 3 1 ...
 3 5 ..
................................. 5 4 ..
..................................... 1 3 . 3 ..
..................................... 3 3 3 ..
.................................3 . 3 1 ...
 3 5 ..
... 5 4
..1 3 . 3
... 3 3 3
... 3 . 3 1
 3 5
. . 3 3 3 ... 1
4 5 3 ..1
.......................3 3 3 .. 1
............... 4 5 3 ..1
...3 3 3 1 . . .
................................. 4 5 3 ... 1 . .
... 3 3 3 1 .
... 4 5 3 1

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 1196
ADDITIONS 195
LOADS 1374

DIVISIONS 34
SUBTRACTIONS 906
STORES 410

TOTAL 1230
TOTAL 1101
TOTAL 1784

TOTAL STATISTICS

MULTIPLICATIONS 1830
ADDITIONS 320
LOADS 2079

DIVISIONS 34
SUBTRACTIONS 1381
STORES 512

TOTAL 1864
TOTAL 1701
TOTAL 2591

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 24 0 0 0 0

4 0 0 0 0 0

5 148 4 0 12 4

TOTALS 172 4 0 12 4

Figure 2.2 Original ordering

41

TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
56
7
8 gi o

i 1 1 2
1 3
1 4
1 5
1 6
1 7 1 81 9
2 0 2 1
2 2
2 3
2 4
2 5 2 6
2 7
2 82 9
3 0
3 1
3 2
3 3
3 4
3 5

1 .
. 1 . 3 5 . 4

3 3 . 3 .
3 5 . 4
3 . 3 .

3 5 . 4
3 . 3 .

4 3 5 .
. 3 . 3

...................3 3 3 ...

...............3 3 1 ...

...................3 . 1 3 ...

...................... 4 . 5 3 ..

. . . . 3 3 3 3

.....................................3 3 3 ...

. 33 1 ..

.....................................3 . 1 3

.. 4 . 5 3

................................. 3 . . . 3 3 3

... 3 3 3

. . 3 .. 3.1

... 3 . 1 3

...4 . 5 3

..3 . . . 3 3 3
3 .. 3 3 3 . . .
..3 5 . 4 .
...3 3 3
. . . 3 .. 3 1 .
... 3 3 . 1

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 152
ADDITIONS 24
LOADS 155

DIVISIONS 42 TOTAL
SUBTRACTIONS 63 TOTAL
STORES 101 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 326
ADDITIONS 55
LOADS 362

DIVISIONS 42 TOTAL
SUBTRACTIONS 200 TOTAL
STORES 175 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 3 4 0 0 0

4 0 0 0 0 0

5 8 4 0 19 1

TOTALS 11 8 0 19 1

Figure 2.3 Markowitz ordering

194
87

256

368
255
537

42

TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
5
6
7
8
9

1 0 1 1 1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5 2 6
2 7
2 8
2 9
3 0
3 1
3 2
3 3
3 4
3 5

3 5 . 4
3 . 3 .

3 5 . 4
3 . 3 .

3 5 . 4
3 . 3 . ,

4 . 3 5.3 3 .

...............3 3 3 ...

. 3 . . . 3 1 ..

...............3 . 1 3 ...

...................4 . 5 3 ..
! 3 3 3

................................. 3 3 3 ...

. . 3 3 1 ...

................................. 3 . 1 3

.....................................4 . 5 3

..............................3 . . . 3 3 3

... 3 3 3

. . . 33 1

... 3 . 1 3

...4 . 5 3

..3 . . . 3 3 3
3 ...3 3 3 . . .
..3 5 . . 4
... 3 1 3 .
... 3 3 3
. . . . 3 ...31

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 155
ADDITIONS 25
LOADS 159

DIVISIONS 41 TOTAL
S UBTRACTIONS 6 7 TOTAL
STORES 100 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 343
ADDITIONS 59
LOADS 382

DIVISIONS 41 TOTAL
SUBTRACTIONS 213 TOTAL
STORES 178 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 3 3 0 0 0

4 0 0 0 0 0

5 7 4 0 21 1

TOTALS 10 7 0 21 1

Figure 2.4 Minimal fill ordering

196
92

259

384
272
560

43

TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
5
6
7
8
91 0 1 1

1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0 2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
3 0
3 1
3 2
3 3
3 4
3 5

1 . .
. 1 .
. . 1 3 3

3 3

3 3

3 3 .
3 . 4
3 3 .

3 . 3
3 3 .

3 . 3
3 3

3 . 3
3 3 .

3 3
3 .

3 3

5 3
3 3

3 3
3 .

5 3 .
3 3 .
. . 3

3 .

3 3
3 .
. 4

. . . 53
3 . . 3 3 3 . . .
. . . . 3 3 . . 3
...................3 . .
.........................5 .
............... 3 . . 5

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 130
ADDITIONS 17
LOADS 166

DIVISIONS 30 TOTAL
S UBTRACTIONS 68 TOTAL
STORES 74 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 298
ADDITIONS 39
LOADS 382

DIVISIONS 30 TOTAL
SUBTRACTIONS 210 TOTAL
STORES 146 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 12 0 0 0 0

4 8 0 0 0 0

5 4 0 0 12 0

TOTALS 24 0 0 12 0

Figure 2.5 Domain minimal multiplication ordering

160
85

240

328
249
528

44

TYPE STRUCTURE BEFORE LU DECOMPOSITION

3 3 3
4
5 .
6
7
8
9

1 0
3 3 .

1 1
1 2 3 3 . .
1 3
1 4 3 3 . .
1 5
1 6 3 3
1 7
1 8
1 9
2 0
2 1
2 2 3 3
2 3
2 4
2 5
2 6
2 7
2 8 . . . 3 . . .
2 9
3 0
3 1 . 4 5 3 . . .
3 2
3 3
3 4
3 5 3 3 .

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 152
ADDITIONS 23
LOADS 157

DIVISIONS 41 TOTAL
S UBTRACTIONS 65 TOTAL
STORES 98 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 338
ADDITIONS 51
LOADS 386

DIVISIONS 41 TOTAL
S UBTRACTIONS 213 TOTAL
STORES 176 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 4 4 0 0 0

4 0 0 0 0 0

5 9 4 0 13 1

TOTALS 13 8 0 13 1

Figure 2.6 Domain minimal fill ordering

193
88

255

379
264
562

45

TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
56
7
8 91 0 1 1

1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5 2 6
2 7
2 8
2 9
3 0
3 1
3 2
3 3
3 4
3 5

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3
3

3 .
3 3

3 3
3

3 3

3 3
3 .

. 5 . 3 . . .

. . 5 . . 3 .
3 3 . 3 . 3 .

.. 3 3 . 3 . 3 .

.......................... 4 ..5 . 3

..3 3 . 3 3
3 ... 3 3 3

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 130
ADDITIONS 17
LOADS 166

DIVISIONS 30 TOTAL
S UBTRACTIONS 68 TOTAL
STORES 74 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 292
ADDITIONS 38
LOADS 375

DIVISIONS 30 TOTAL
S UBTRACTIONS 207 TOTAL
STORES 144 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 12 0 0 0 0

4 8 0 0 0 0

5 4 0 0 12 0

TOTALS 24 0 0 12 0

Figure 2.7 Domain hybrid ordering

160
85

240

322
245
519

46

TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
56
7
8
91 0 1 1 1 2

1 3
1 4
1 5 1 6
1 7
1 8
1 9
2 0 2 1
2 2
2 3
2 4
2 5 2 6
2 7
2 8
2 9
3 0
3 1
3 2
3 3
3 4
3 5

1 .. 4 3 5
• 13

4 3 5

4 3 5 . .3 3 .
4 3 . 5

5 3
3 3

5 . 4 . 3
3 3

3 3 3 .3 1 .
3 3 . 1
3 . . . 3

5 . 4 . 3
3 3 3 . . 31 .

. 3 3 . 1
3 3 . . . 3 . 3 .

5 . 4 . 3
3 3 3 . . 31 . . .3 3 .1 .

3 3 . . . 3

. 3 3 3
3 3 1 .
. 3 . 1

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 206
ADDITIONS 32
LOADS 198

DIVISIONS 42 TOTAL
SUBTRACTIONS 101 TOTAL
STORES 120 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 416
ADDITIONS 71
LOADS 444

DIVISIONS 42 TOTAL
S UBTRACTIONS 260 TOTAL
STORES 202 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 0 4 0 0 0

4 0 0 0 0 0

5 19 4 0 16 4

TOTALS 19 8 0 16 4

Figure 2.8 Markowitz ordering (forward)

248
133
318

458
331
646

47

TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
56
7
8 91 0

1 1
1 2
1 3
1 4
1 5
1 6
1 7 1 8
1 9
2 0 2 1
2 2
2 3
2 4
2 5 2 6
2 7
2 8
2 9
3 0
3 1
3 2
3 3
3 4
3 5

3 5 . 4

3 5 . 4

3 5 . 4 .
3 3

4 5 3

..3 3 3 ...
 3 . . . 3 1 ..
..3 . 1 3 ...
... 4 . 5 3 ...

! ...3 3 3
..3 3 3 ...
..................................... 3 3 1 ..
..3 . 1 3
... 4 . 5 3
.. 3 . . . 3 3 3
..3 3 3
...33 1
..3 . 1 3
... 4 . 5 3
.. 3 . . . 3 3 3
3 ... 3 3 3 . . .
.. 3 5 4 . .
..3 ... 1 3 .
..3 3 3
.. 3 . 3 1

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 155
ADDITIONS 25
LOADS 159

DIVISIONS 41 TOTAL
S UBTRACTIONS 67 TOTAL
STORES 100 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 349
ADDITIONS 60
LOADS 390

DIVISIONS 41 TOTAL
SUBTRACTIONS 214 TOTAL
STORES 182 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 3 3 0 0 0

4 0 0 0 0 0

5 7 4 0 21 1

TOTALS 10 7 0 21 1

Figure 2.9 Minimal fill ordering (forward)

196
92

259

390
274
572

48

TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
56
7
8
91 0 1 1

1 2
1 3

2 0
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
3 0
3 1
3 2
3 3
3 4
3 5

1 • .
. 1 .
. . 1

3 3
3 . •

3 3

3 3
3 . :

3 3

3 3
. 3

3 3
. 3

3 3 .
3 . 4

3 . 3
3 4 .

3 3 .
3 . 3

3 . 3
3 3 .

3 3
. 3
4 .

5 3
3 3

3 3
4 .
. 3

5 3 . . .
3 3 3 . .
. 3 3 . 3
. . . 3 .
. . 3 . 5

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 130
ADDITIONS 15
LOADS 171

DIVISIONS 29 TOTAL
S UBTRACTIONS 71 TOTAL
STORES 74 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 328
ADDITIONS 40
LOADS 427

DIVISIONS 29 TOTAL
SUBTRACTIONS 230 TOTAL
STORES 158 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 14 0 0 0 0

4 7 0 0 0 0

5 5 0 0 9 0

TOTALS 26 0 0 9 0

Figure 2.10 Domain minimal multiplication ordering (forward)

159
86

245

357
270
585

49

TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
56
7
8
91 0 1 1

1 2
1 3
1 4
1 5 1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5 2 6
2 7
2 8
2 9
3 0
3 1
3 2
3 3
3 4
3 5

3 3
3

3 3
3

5 . 4

3 3

3 .
5 . 4

1 . 3
. 5 .

3 3
3 .

5 . 4
. . 3
4 5 .

3 3

3 3
. 3

3 3

3 3
3 .

3 3
. 3

3 3
3 .

. 1 3
4 . 5 1

3 3
3 .

. . . 1 3

. . 4 . 5 3

. . . . 3 3 . . . 3 . . .
 113
.....................4 . 5 3 . . .

... 3 . . 3 3 3 . .
3 .. 3 3 3 .
... 3 5 4
............................3 3 .. 1
.......................... 3 .. 3 .

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 152
ADDITIONS 23
LOADS 160

DIVISIONS 41 TOTAL
S UBTRACTIONS 6 5 TOTAL
STORES 101 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 350
ADDITIONS 56
LOADS 400

DIVISIONS 41 TOTAL
SUBTRACTIONS 216 TOTAL
STORES 185 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 4 4 0 0 0

4 0 0 0 0 0

5 9 4 0 16 1

TOTALS 13 8 0 16 1

Figure 2.11 Domain minimal fill ordering (forward)

193
88

261

391
272
585

50

TYPE STRUCTURE BEFORE LU DECOMPOSITION

1
2
3
4
5
6
7
8
91 0

1 1
1 2
1 3
1 4
1 5 1 6
1 7 1 8
1 9
2 0 2 1
2 2
2 3
2 4
2 5 2 6
2 7
2 8
2 9
3 0
3 1
3 2
3 3
3 4
3 5

1 .
. 1 3 3

3
3 3
3

3 3

3 3
3 .

3 3

3 3
3

3 3

3 3

3 3
3 .

3 3
. 3

3 3

.. 3 3 3

..35

... 5 . 3 ...4 5 3

... 3 3 3 . 3

..4 ..5 3

...3 3 3 . 3 . .

...4 .. 5 3 . .

..3 3 3 3 .
3 ..3 3 3
................................. 4 ...3 5

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 130
ADDITIONS 17
LOADS 166

DIVISIONS 30 TOTAL
S UBTRACTIONS 68 TOTAL
STORES 74 TOTAL

TOTAL STATISTICS

MULTIPLICATIONS 298
ADDITIONS 39
LOADS 384

DIVISIONS 30 TOTAL
S UBTRACTIONS 210 TOTAL
STORES 148 TOTAL

FILL STATISTICS

FILL ORIGINAL TYPE

TYPE 0 1 2 3 4

3 12 0 0 0 0

4 8 0 0 0 0

5 4 0 0 12 0

TOTALS 24 0 0 12 0

Figure 2.12 Domain hybrid ordering (forward)

160
85

240

328
249
532

51

LU DECOMPOSITION STA TISTIC S

MULTIPLICATIONS 57190
ADDITIONS 14315
LOADS 57122

DIVISIONS 70
SUBTRACTIONS 41650
STORES 2382

TOTAL 57260
TOTAL 55965
TOTAL 59504

TOTAL STATISTICS

MULTIPLICATIONS 62090
ADDITIONS 15540
LOADS 62022

DIVISIONS 70
SUBTRACTIONS 45255
STORES 2520

TOTAL 62160
TOTAL 60795
TOTAL 64542

F ig u re 2 .1 3 S ta tis tic s fo r fu ll m a tr ix (n o ty p e s ta k e n in to acco u n t)

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 1966
ADDITIONS 509
LOADS 1814

DIVISIONS 70
SUBTRACTIONS 1302
STORES 502

TOTAL 2036
TOTAL 1811
TOTAL 2316

TOTAL STATISTICS

MULTIPLICATIONS 2790
ADDITIONS 715
LOADS 2618

DIVISIONS 70 TOTAL 2860
SUBTRACTIONS 1866 TOTAL 2581
STORES 604 TOTAL 3222

Figure 2.14 Statistics for original matrix (no types taken into
account)

52

LU DECOMPOSITION STA TISTIC S

MULTIPLICATIONS 442 DIVISIONS 70 TOTAL 512
ADDITIONS 128 SUBTRACTIONS 171 TOTAL 299
LOADS 326 STORES 192 TOTAL 518

TOTAL STATISTICS

MULTIPLICATIONS 686 DIVISIONS 70 TOTAL 756
ADDITIONS 189 SUBTRACTIONS 346 TOTAL 535
LOADS 568 STORES 266 TOTAL 834

F ig u re 2 .1 5 S ta tis tic s fo r M arkow itz o rd e r in g (n o ty p e s ta k e n in to

acco u n t)

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 502 DIVISIONS 70 TOTAL 572
ADDITIONS 143 SUBTRACTIONS 210 TOTAL 353
LOADS 372 STORES 206 TOTAL 578

TOTAL STATISTICS

MULTIPLICATIONS 790 DIVISIONS 70 TOTAL 860
ADDITIONS 215 SUBTRACTIONS 410 TOTAL 625
LOADS 658 STORES 288 TOTAL 946

Figure 2.16 Statistics for forward Markowitz ordering (no types
taken into account)

53

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 558 DIVISIONS 70 TOTAL 628
ADDITIONS 157 SUBTRACTIONS 242 TOTAL 399
LOADS 410 STORES 218 TOTAL 628

TOTAL STATISTICS

MULTIPLICATIONS 818 DIVISIONS 70 TOTAL 888
ADDITIONS 222 SUBTRACTIONS 433 TOTAL 655
LOADS 668 STORES 288 TOTAL 956

F ig u re 2 .1 7 S ta tis tic s fo r h y b rid o rd e r in g (n o ty p e s ta k e n in to

acco u n t)

LU DECOMPOSITION STATISTICS

MULTIPLICATIONS 354 DIVISIONS 34 TOTAL 388
ADDITIONS 97 SUBTRACTIONS 200 TOTAL 297
LOADS 290 STORES 98 TOTAL 388

TOTAL STATISTICS

MULTIPLICATIONS 610 DIVISIONS 34 TOTAL 644
ADDITIONS 161 SUBTRACTIONS 390 TOTAL 551
LOADS 546 STORES 168 TOTAL 714

Figure 2.18 Statistics for hybrid ordering (topologicals taken into
account)

54

REFERENCES FOR CHAPTER TWO

[1] I.S. Duff, "A survey of sparse matrix research", Proc. IEEE,

Vol. 65, No. 4, pp.500— 535, 1977.

[2] J . Vlach and K. Singhal, "Computer methods for circuit analysis

and design", Van Nostrand Reinhold, 1983.

[3] B. Dembart and A.M. Erisman, "Hybrid sparse— matrix

methods", IEEE Trans. Circuit Theory, Vol. CT—20, No. 6 ,

pp.641— 649, 1973.

[4] G. D. Hachtel, R.K. Brayton and F.G. Gustavson, "The sparse

tableau approach to network analysis and design", IEEE Trans.

CT, Vol. CT—18, No. 1, pp.101—113, Jan. 1971.

[5] R.A. Willoughby, Ed., "Proceedings of the symposium on sparse

matrices and their applications", IBM Res., Yorktown Heights,

N.Y., IBM Report RA1 (#11707), 1969.

[6] F.G. Gustavson, W.M. Liniger and R.A. Willoughby, "Symbolic

generation of an optimal Crout algorithm for sparse systems of

linear equations", J. ACM, Vol. 17, pp.87—109, 1970.

[7] A. Chang, "Application of sparse matrix methods in electric

power systems analysis", in [5, pp.113—122],

[8] H. Lee, "An implementation of Gaussian elimination for sparse

systems of linear equations", in [5, pp.75—83].

[9] A. Douglas, "Examples concerning efficient strategies for

Gaussian elimination", Computing, Vol. 8 , pp.382—394, 1971.

[10] H.M. Markowitz, "The elimination form of the inverse and its

application to linear programming", Management Science, Vol.

3, pp.255-269, 1957.

[11] W.F. Tinney and J.W . Walker, "Direct solutions of sparse

55

network equations by optimally ordered triangular factorization",

Proc. IEEE, Vol. 55, pp .1801-1809, 1967.

[12] R.D. Berry, "An optimal ordering of electronic circuit equations

for a sparse matrix solution", IEEE Trans. CT, Vol. CT—18,

No. 1, pp.40—50, Jan. 1971.

[13] L.B. Wolovitz, "Improved techniques for time—domain analysis

of switched capacitor networks", M.Sc. Thesis, University of

Hull, 1986.

[14] I.S. Duff and J.K. Reid, "A comparison of sparsity orderings

for obtaining a pivotal sequence in Gaussian elimination", J.

Inst. Math. Appl., Vol. 14, pp.281—291, 1974

56

CHAPTER THREE

TIME DOMAIN SOLUTION OF LINEAR NETWORKS

3.1) INTRODUCTION

This chapter considers the problem of calculating the time domain

response of linear, lumped time invariant networks. Many methods of

computing the time response of linear networks have been proposed

[1]. but few have received widespread acceptance. This is because the

problem poses great computational difficulties and few methods can

provide accurate and reliable solutions whilst claiming to be

computationally efficient. This introduction discusses the underlying

difficulties in calculating the time response and methods that have

been proposed to overcome them.

Using modern tableau equation formulation methods [2], a linear

network is represented by the algebraic— differential system,

C x (t) + G x (t) = w(t) x (0) = Xq (3 . 1)

where x(t) is the unknown response vector

w(t) is the excitation vector

C and G are constant real matrices

Matrices C and G are generally sparse and therefore any method

striving for maximum efficiency has to be capable of taking advantage

of this fact. Generally matrix C is singular and therefore equation

(3 .1) cannot be written in normal form, on which many methods

depend. A state— space equation formulation method can be used

(which produces normal form equations), but then the simplicity of the

tableau approaches and the sparsity of the equations is lost. Even in

cases where matrix C is not singular, the formation of C— *G is not

desirable as again sparsity is lost because generally the inverse of a

sparse matrix is not sparse.

The problem then is to calculate the response vector x(t) at intervals

(grid—points) over the time period of interest. These intervals need

not necessarily be equal and the time difference between successive

57

points is called the time— step. The analytic solution to equation

(3.1) is derived in section 3.2 but is not practical from a

computational point of view as it involves a convolution which is

difficult and computationally expensive to compute. Furthermore the

convolution is time dependent and therefore needs to be re— evaluated

at each time— step. However the analytic solution approach does

provide the basis for a number of methods which are termed the

inverse Laplace transform methods. These methods together with the

most common approach to solving (3 .1), numerical integration

methods, are discussed below and compared on the basis of certain

requirements.

Two of the main requirements are accuracy and stability. Clearly it is

desirable to have a method that can meet prescribed accuracy

specifications, even better if this accuracy can be controlled. Generally

most methods can improve accuracy by decreasing the solution

step— size, increasing the order of the approximations used in the

method, or both. However decreasing the step— size and increasing the

order can dramatically increase the computation time of a method and

therefore the trade— off between accuracy and computation time is

probably the major criteria by which a method is judged, as it is this

factor that determines whether a method is useful or not.

The requirement of stability is a requirement of reliability; that is if

the system itself is stable, then the method must ensure a stable

solution, irrespective of the step— size used. This definition of stability,

called A— stability, was introduced by Dahlquist [3]. Many of the

methods discussed do not meet this requirement, but can still ensure

stable solutions if the step— size is kept smaller than some constant

(which is determined by the characteristics of the system).

A major difficulty posed in solving equation (3.1) is when the system

has a wide spread of eigenvalues, known as a 'stiff' system. This

situation commonly arises in linear networks due to parasitic elements

and a large range of time—constants in the networks. Stiff systems

pose numerical difficulties because the smallest eigenvalues (largest

tim e- constants) determine the dominant network response and thus

the total length of time for which the solution must be calculated to

58

characterise this response, but for many methods the largest eigenvalue

(smallest time— constant) controls the maximum allowable step— size

that insures numerical stability. So for example if there is a 1000 to 1

ratio of largest to smallest time— constant, then a method that does

not overcome this 'minimum time—constant barrier' [1], needs about

1000 more time—steps to obtain the same solution as a method which
does.

However, even methods that overcome this problem face further

difficulties. Dahlquist [3] has shown that the maximum order of an

A—stable multistep integration method is 2, and that the trapezoidal

method has the smallest error coefficient amongst all order 2

A—stable methods. This maximum order of 2 severely limits the

accuracy of these methods as is shown in the comparison in section

3.6.2 with SPICE2 [4], which uses the trapezoidal method. A novel

method of order 2 has been proposed [5] that improves on the

efficiency of the trapezoidal method for very stiff problems, but

nonetheless is limited by 2nd order accuracy.

To try and overcome this limitation, Gear relaxed the requirement of

A—stability by introducing the concept of stiff stability [6], and

showed that a set of methods up to order 6 are stiffly stable. In

order to benefit from the higher accuracy avaliable, these methods,

known as backward differentiation formulas (BDF), are implemented in

a variable time— step, variable order scheme. An algorithm is then

needed that attempts to optimally select the step— size and order that

maximises the accuracy whilst minimising the computation time. These

methods have provided the basis for a number of successful

'stiff—solver' packages, some of which have been specially modified to

exploit any structure inherent in the system [7]. However in practice

the higher order methods are not used [8] and therefore higher order

methods are potentially far more efficient.

Compared to the above limitations of the numerical integration

methods, the inverse Laplace transform methods have many advantages

[9]. These methods compute the inverse Laplace transform by

evaluating the response of the system in the complex Laplace domain

and using a quadrature formula. They are applicable to stiff systems,

59

systems with multiple poles, are A— stable and equivalent to high

order integration methods (> 6). The method was first proposed for

homogeneous systems [10], which though very efficient is of limited

use. A method for nonhomogeneous systems was presented in [9]

which uses the same method for numerical inversion of the Laplace

transform. The accuracy of these methods decreases with increasing

time, therefore a technique of 'resetting' the problem was developed

in [9]. This technique effectively makes the method equivalent to

numerical integration methods, though without their limitations.

However the method as presented only allows for non— periodic

excitations, which is a major limitation. Even though the method has

very high order, it requires a number of evaluations of the system

response in the frequency domain at each time— step, which makes the

method less efficient than a well implemented BDF method [2],

A new approach based on the above methods is presented in this

chapter. This method shares all the advantages of the inverse Laplace

transform methods, but overcomes the limitations of non— periodic

excitations and inefficiency. The method uses the inverse Laplace

transform and the stepping technique, hence the name Stepping

Inverse Laplace Transform (SILT) method. The method hinges on the

use of polynomial approximations for the excitations and efficient

techniques for evaluating the inverse Laplace transform, which are

discussed in detail. The results of this method are then presented and

the accuracy and stability are evaluated. The SILT method is then

compared with other methods for accuracy and efficiency. Finally the

extension of the method to periodically switched linear networks is

discussed.

60

3-2) STEPPING INVERSE LAPLACE TRANSFORM METHOD

Taking the Laplace transform of equation (3.1),

and taking the inverse transform,

x (t) = P (t) C x (0) + L~ 1 { [sC + G]" 1W(s) } (3 .4)

where P (t) = L~1{ [sC + G]"1}

henceforth called the extended state transition (EST) matrix.

Analytic methods continue one step further and write equation (3.4)
as,

As discussed in the introduction, the major difficulty is then the

evaluation of the convolution in equation (3.5) which is

time—dependent and therefore renders this formulation impractical.

The approach developed here is to approximate the excitation w(t) in

equation (3.1) by a mth order polynomial

The motivation for this approach is that the inverse Laplace transform

in equation (3.4) may then be readily computed. The approximation

need not necessarily be a polynomial approximation. A rational

polynomial or even trigonometric approximation could be used, as long

as the inverse Laplace transform may be readily determined. The

polynomial approximation was chosen because it has a well

characterised approximation error and the inverse Laplace transform

can be computed exactly.

(sC+ G) X(s) = C XQ + W(s) (3 . 2)

after re— arranging,

X(s) = [sC + G 1{ C XQ + W(s) } (3 .3)

t

x (t) = P(t) C x(0) + P (r) w(t - r) dt

0

(3 . 5)

m

(3 . 6)

giving the new system differential equation

m

x(0) = XQ (3 . 7)

61

Taking the Laplace transform of equation (3.7),

m i .
(sC+ G) X(s) = C X_ + L

0 k+1k=0 s

after re—arranging,

m k >
X(s) - [sc + C]’ 1 { c x0 + I >

k = 0 S

Taking the inverse Laplace transform,

(3 . 8)

(3 .9)

m

x (t) = P (t) C x (0) + I a , B . (t)kBk (t) (3 .1 0)
k=0

where BR(t) = L ~ \ [sC + G] -1 }
s

henceforth called the excitation response (ER) matrix.

To evaluate the time response of x(t) for t e [0,T] the time axis is

divided into equal steps At, where t = nAt.

From equation (3.10) we then have,

m

x(nA t) = P(nA t) C x (0) + Z a ,B .(n A t) (3 .1 1)
k=0

In lumped linear networks, time zero can be arbitarily selected by

taking into account the initial conditions of the network, which

effectively takes into account all previous history of the network, thus

m

x(nAt + At) = P (A t) C x(nA t) + I a" B (A t) (3 .1 2)
k=0

where are the coefficients of the polynomial approximation of w(t)

in the interval [nAt, nAt+ At].

Noting that P(At) and Bk(At) are independent of n (and therefore

constant), equation (3.12) gives the recurrence relation,

m

x ((n + l)A t) = P x(nA t) + I a ” B, (3 .1 3)
k=0

where P = P(A t)C and B^= B^(At)

Inspection of equation (3.13) shows that m + 2 m atrix-vector

multiplications are required at each step. Normally the excitation

62

vector has only a few nonzero entries (typically 1) and therefore only

one column of the matrix is required, corresponding to each

nonzero entry. The computation is then reduced to one matrix— vector

multiplication and m+ 1 vector— scalar multiplications, which compares

very favourably with other methods.

3.3) POLYNOMIAL APPROXIMATION

From equation (3.13), a procedure is required to determine the

coefficients which determine the polynomials

m

t e [n A t, (n + l)A t] (3 .1 4)P (m t) - I of t k
k=0

such that Pm(t) is a 'best fit' in some sense to w(t) in the specified

interval. Depending on the definition of 'best fit' various polynomial

fitting procedures may be used, for example polynomial splines or

Chebychev polynomials. The method derived here is based on fitting

polynomials through the muequispaced points,

nA t, nAt+At/m, nAt+2At/m, nAt+At

such that they are exact at these points, that is,

« / k-At . . , kAt . . _ / o t c \P (t + -----) = w(t +) k = 0, . . . ,m (3 .1 5)
m' m m

This approach has the advantage of being simpler to implement than

the other methods as well as having a correspondence with numerical

integration methods e.g. the trapezoidal method (m = l).

Define the divided differences

.in,
m m

= f - f n +m
. 1 .

rn-1 . 2 .

/ kAt x where f . = w(t + — —) k m

f m-2 +

(3 .1 6)

and | j d e n o te s th e b inom ial c o e f f i c i e n t s

Using the Newton—Gregory interpolation formula,

Writing equation (3.17) in compact notation and expanding the
binomial terms,

m

p (t) - Zm , _k=0
Ak f,

m k -1
Ak f.- Z [TT (t - i h) | - j - 5 (3 .1 8)

k=0 L j =Q J h^c!

Collecting terms in powers of t, equation (3.18) becomes

m m

P (t) m 1 [1 V f -] 4M) L i =0 k i l J hK
(3 .1 9)

where 7^ are constants independent of h or t.

From equation (3.19) we then finally have

\ = L V f -
K i =0 k l 1

m

- Z 7 w(nAt +)
i =0 k i

(3 .2 0)

3.4) DETERMINING THE 7 COEFFICIENTS

The 7 coefficients can be computed by noting that there is a

recurrence relationship

P (t) = P - (t) + D
m m-1 m

(3 .2 1)

where D - Mm ImJ Amf 0

so that the problem reduces to one of finding for Dm the coefficients

of t in terms of f^.

Define coefficients b^ and p^ by

m

Amf 0 ” ^ bk f kk- 0

ra

fc] - J 0 Pk k! (3 .2 2)

64

These coefficients are easily computed using the following algorithms.

t l : = (- l) m
12 : = m

b 0 : = t l

FOR j := 1 TO m DO

t l = - t l X t2 /

t 2 = t 2 - 1

END

= t l

(3 .2 3)

Pm •“ 1
FOR j := m-1 DOWNTO 1 DO

p j := (1 -m) x p j + p j_ x

END

(3 .2 4)

The y coefficients of order m are then obtained by adding the

cross— product of the p^ and b^ coefficients to the y coefficients of

order m—1. If the y coefficients are multiplied through by m! then

the algorithms may be implemented using integer arithmetic.

Combining the division by k! in equation (3.22) and the

premultiplication of the coefficients by m!, the algorithm for

calculating the y coefficients is then,

t l := m!

FOR k := 1 TO m DO

c a l c u l a t e b^ c o e f f i c i e n t s o f o r d e r k

c a l c u l a t e p^ c o e f f i c i e n t s o f o r d e r k

t l := t l / k

FOR i := 1 TO k DO (3 .2 5)

FOR j := 0 TO k DO

Y i j : = Y i j + p j X b j X t l

END

END

END

The y coefficients for orders 1 through 4 are given in Table 3.1.

65

1 0

-1 1

2 0 0

1 - 2 1

6 0 0 0

1
6

-11 18 -9 2

6 -15 12 -3

-1 3 -3 1

24 0 0 0 0

-50 96 -72 32 -6

35 -104 114 -56 11

-10 36 -48 28 -6

1 -4 6 -4 1

T a b le 3.1 G am m a co effic ien ts fo r o rd e rs 1 to 4

66

These tables have many interesting properties, two of which are

discussed here. The first property is

m

I 7 = 0 i = 1 . .m (3 .2 6)
k=0 ik

that is (except for the first row) rows of the table sum to zero. This

property is expected as given a constant excitation i.e. f (p f |= ...= fm,

the higher order terms for the polynomial approximation should be

zero i.e. og = 0 for k > 0 .

The second property is

m

Z 7 m* = 0 k = 0 . .m-1
i =0 ik

m

1 7 m1 - 1 (3 .2 7)
i - 0 im

This property is derived by evaluating equation (3.19) for t = At,

which then evaluates to exactly fm , which is the exact result.

3.5) COMPUTING THE INVERSE LAPLACE TRANSFORM

The SILT method presented in section 3.2 depends on having a

reliable, efficient and accurate method for computing the extended

state transition matrix

P (t) = L~1{ [sC + C]" 1} (3 .2 8)

and the excitation response matrices

Bk (t) - L - ' { [sC + G] - ' - j ^ T > (3 - 2 9)

In a review of methods for computing the matrix exponential [11],

Moler and Van Loan describe the difficulty of finding reliable and

efficient methods. Out of 19 different methods reviewed only one

(scaling and squaring with diagonal Pade approximation) [12] is

recommended as reliable. However most of the methods in the

literature are unable to compute the extended state transition matrix

where matrix C is singular, let alone the excitation response matrix.

The method developed here uses the I ^ n approximant [13] and has

been found to be both reliable and efficient. The use of the Ij^ n

67

approximant to compute the matrix exponential was first reported in

[14]. Using the Iĵ in approximant to compute the extended state

transition matrix was first suggested in [15] and was successfully

implemented, though in a different way to the method presented here.

The approach used here is based on the derivation in [9], which uses

a numerical approximation of the Laplace Transform inversion integral
. C + j 0 0

V(t> ' 2~T2 ttj
V (s) e St ds (3 .3 0)

C -joo

The quadrature approximation is derived in [9] as

M

v(t) - I I K v<z. / t) (3 .3 1)
1 i -1 1 1

where K j and zj are tabulated complex constants. Various strategies

may be used to derive the constants Kj and zv the optimum set is

derived from the Pade approximation of the exponential function. The

ImN constants for M = l,..,1 0 are tabulated in [16]. A program for

generating the constants to higher precision is presented in [17] and

constants for various orders are tabulated in [2 , p .286].

Inspection of these tables reveals that for M even the constants occur

in M/2 complex conjugate pairs. Therefore the computation required

can be halved by using

M/2

v (t) = i I Re [2K .V (z . / t)] (3 .3 2)
i= l

Applying equation (3.32) to (3.28), we get the extended state

transition matrix approximation,

M/2

P (t) * I Re [2K / t [z / tC + G]"1] (3 .3 3)
i -1

and applying (3.32) to (3.29), we get the excitation response matrix

approximation,

M/ 2 2k / t k '

Bk (t> - l » [/ * <3 - 34>
K i= l (z . / t)

68

It has been shown [9] that the approximation (3.31) is exact for a

polynomial of degree up to N + M + l. To achieve maximum accuracy,

whilst avoiding roundoff error problems, M =10 and N= 8 were

selected for the Ij^n constants. Therefore equation (3.34) is exact for

k= 0,..,19 , which is more than adequate for practical use.

3.5.1) EFFICIENT IMPLEMENTATION STRATEGIES

If equation (3.33) were implemented directly using full matrix

techniques, it would require 2MN 3+ 2MN2 flops where N is the size

of the matrices. This cost is obviously excessive and therefore sparse

matrix techniques must be used.

An efficient method for computing the inverse of a sparse matrix was

first suggested by Takahasi, et al., [18] and refined in [19]. However

this method has 3 drawbacks when used to implement equation (3.33).

The first is that it is still necessary to multiply the inverse by Kj

(which requires 2MN2 flops) though the method can be easily adapted

to absorb this factor, only requiring an extra 2MN flops. The second

disadvantage is that the method cannot selectively compute columns of

the inverse, which is required for evaluating equation (3.34). The third

disadvantage is that the method is not suited to interpretive code

generation and therefore cannot take advantage of domain types as

presented in Chapter Two.

The method used in this work is based on the direct approach of

computing the LU factorisation and then backsubstituting the unit

vector to get a column of the inverse. This approach has the major

advantage that the methods developed in Chapter Two can be used to

perform the LU decomposition and backsubstitution, thus achieving

near optimal efficiency. Furthermore the multiplication by Kj is

achieved by multiplying the unit vector by Kj which does not require

any multiplications, thus saving 2MN2 flops. Finally as the method

computes a column at a time, only columns that are required need be

calculated, leading to further savings.

The computational cost of the method is difficult to ascertain as it is

dependant on the sparsity of the matrices in (3.33), which vary

69

substantially from problem to problem. However timing results indicate

that the method generally exhibits 0 (N 2) computational complexity.

The method used to compute equation (3.34) is similar to that

described above, except for the method of including the factor

(zi/t) 1). Two different approaches are used. The first is to

combine this factor with Kj and proceed as above. The second

approach uses the result computed for k— 1 and divides this by zj/t,

giving the required result. The latter approach requires 4N flops

whereas the former depends on the number of flops required for the

backsubstitution and is therefore problem dependant. The cheapest

method is then selected as the appropriate technique. In practice it is

found that the first method is generally superior, though the difference

between the two is insignificant compared to the overall cost of the

method.

3.6) RESULTS

The SILT method was implemented in the computer program

FOOLSCAP, using 16 digit double precision arithmetic throughout. A

number of different and independent tests were used to verify the

implemetation of the theory and determine the accuracy and stability

of the method. These tests were carried out on a number of networks

that differed in size, complexity and range of time—constants. In the

following SILTm is used to denote the SILT method that uses a

polynomial approximation of degree m.

3.6.1) ACCURACY AND STABILITY

The first test was to evaluate the accuracy of the extended state

transition matrix approximation. This was done by evaluating the time

response of the network from specified initial conditions and with no

excitations. Where possible analytic solutions were used for comparison,

otherwise SPICE2 was used. However it was soon found that the low

accuracy of SPICE2 meant that these results could not be used for

objective comparison, but rather subjective comparison i.e. visually

inspecting that the responses compared favourably. The poor

performance of SPICE2 is discussed in a later section. The tests

quickly verified that the method is indeed very accurate (18th order)

70

and efficient. To try and verify the order of the approximation, the

tests were run with different step— sizes and the errors compared.

However because of the high order, the change in accuracy is then

proportional to the change in step—size raised to the power of 18,

which is orders of magnitude change. In practice it was found that

roundoff errors then dominate and are then the limiting factor of the

maximum accuracy attainable. For most networks the accuracy attained

is about 11 decimal places, though dropping to between 9 and 10 for

large networks.

The second test was to evaluate the accuracy of the SILT method for

polynomial excitations. The excitations used were degree 0 (step input)

and degree 1 (ramp input). The results for these inputs should be

exact (to within the 18th order approximation of the ER vectors).

Again analytic solutions were used where available, otherwise SPICE2

was used for subjective verification. The results again showed that

roundoff errors dominate for small steps, limiting the maximum

achievable accuracy to about 10 decimals. The method again proved to

be highly accurate and efficient, in fact the step— size required for

producing the plots of the responses always provided more than

sufficient accuracy, therefore the computation time was not determined

by accuracy considerations, but the number of points to produce a

visually smooth curve!

For the case of a step input, the SILTO method is of sufficient order

to provide the exact response and higher order methods are then

superfluous as a£= 0 for k>0 (see equation 3.26). Similarly for a

ramp input the SILT1 method provides the exact response and higher

order methods are again superfluous as c$= 0 for k> 1. These two

cases were tested in FOOLSCAP by printing out the ag, which

verified the above, and by comparing the results using the higher

order methods.

The third set of tests was to evaluate the accuracy of the SILT

method for non-polynomial excitations using a sinusoidal input. In

this case accuracy is controlled both by step-size and the order of

the method. The Newton-Gregory interpolation formula has an error

term of 0 (hm +1), and therefore we expect the error of the

71

polynomial approximation in equation (3.12) to be 0((At/m)rn"1' 1). The

first stage was to verify that the method did in fact work and that

accuracy increased for increasing order and decreasing step— size.

Again analytic solutions were used where available, otherwise SPICE2

was used for subjective verification of the response. A further check

that was found to be useful was to monitor the response at the input

node. This response should be identical to the input excitation and

therefore does not require an analytic solution or results from some

other source. These tests verified the implementation of the SILT

method and were found to be very accurate and efficient. As in

previous tests, it was found that roundoff errors dominate for small

step— sizes, but this was further complicated by the extra degree of

freedom provided by the selection of different orders. For a fixed

step— size it was found that for high order methods, roundoff errors

become dominant and were found to grow without bound. The

maximum order that was found to be reliable is order 10, though the

results produced by order 10 and order 9 are generally

indistinguishable. Therefore it is suggested that orders 0 through 9 be

used in practice.

The second stage was to check the behaviour of the error as a

function of step— size and order to see if the predicted patterns are

obtained. An example of one of these tests is presented here. The

network used is shown in Fig. 3.1, with a sinewave excitation of

500Hz and zero initial conditions [2, p .142]. The methods are applied

for one time— step only so that only the contributions from the

excitations are evaluated and thus any possible roundoff errors from

the EST matrix are excluded. Methods of order 1 through 5 were

used for step-sizes of 0.5mS, 0.25mS and 0.125mS. The results of

this experiment are given in Table 3.1.

From this table it is evident that the error decreases with decreasing

step—size. To verify the order of the approximations, the ratio of

successive errors are compared to the predicted ratio. Calculating the

average for the two steps, we get for successive orders; 4.47 (4), 8.05

(8), 15.6 (16), 34.8 (32) and 66.4 (64). The numbers shown in

brackets are the theoretical results. The agreement is very good and is

typical of the results obtained for other networks. It is also evident

72

from Table 3.1 that the error decreases with increasing order, however

the ratio of decreases between successive orders do not conform to a

regular pattern as in the case of decreasing step— size.

The final test was to test the method for numerical stability. The

stability of the Laplace transform inversion formula (3.31) is proved in

[2, pp.305— 306] for N= M— 1 and N= M— 2, therefore the SILT

method for the homogeneous case is also stable. Ideally one would

like to be able to rigourously prove that the SILT method is stable

for the non— homogeneous case. This however is difficult and is left

as an open problem. Therefore the stability had to be verified

experimentally. The procedure to do this was as follows. For each

network tested the step response was calculated. From this response

the largest time— constant of the network can be estimated. The

networks were then re— analysed using step— sizes larger than the

estimated maximum time— constants. Although, as expected, accuracy

deteriorated for these large step—sizes, stable responses were obtained

in all cases. On the basis of these tests it is therefore conjectured

that the SILT method is A— stable.

73

O
U

T
PU

T

a.z

Figure 3.1 Network used for examples

74

9th

or
de

r
el

lip
tic

lo

w
pa

ss

fi
lte

r

ORDER

STEP—SIZE

5 X 10- 4 2 .5 X 10- 4 1 .2 5 X 10"4

1 2 .094 X 10" 1 3.873 X lO - 2 1.095 X lO "2

2 9.732 X 10"3 1.159 X lO "3 1.505 X 10"4

3 7.281 X 10"4 5 .454 X 10" 5 3.112 X 10" 6

4 3.753 X 10" 5 1.293 X 10"6 3 .194 X 10"8

5 6.071 X 10"8 4 .676 X 10"8 1 .574 X 10"8

T a b le 3.1 E r r o r a f te r o n e s tep fo r d if fe re n t o rd e rs a n d s te p —sizes

75

3.6.2) COMPARISON WITH OTHER METHODS

A major difficulty in comparing a number of methods is that generally

methods are presented together with only one or two examples and

computer programs implementing the methods are not available. Of

the methods discussed in the introduction, the only program available

for comparison is the trapezoidal method implemented in SPICE2. The

general comments made about the methods in the introduction still

hold, but cannot be experimentally compared with the SILT method.

The example used to compare SPICE2 and the SILT method is shown

in Fig. 3.1. The response of this network to a sinewave of 1kHz was

evaluated from 0 to 2mS. This response is shown in Fig. 3.2. The

SILT1 method has the same order as SPICE2 and therefore these two

methods were compared for step—sizes of 5 x 10“ ^, 5 x 1 0 " ^ and

5 X 10— 7. The error of the two methods was evaluated at 40 points

over the 2mS interval and are plotted in Figs. 3.3, 3.4 and 3.5. As

can be seen from these results, the SILT1 method has a consistently

smaller error and the error varies far more smoothly than is the case

for SPICE2. The SILT method of orders 2 to 5 were then applied

with a step—size of 5 X 10“ 5. The error of these methods are

shown in Fig. 3.5. The rapid reduction in error for increasing order

is clearly shown in this graph. Even more impressive is that the

SILT4 method has a smaller error than the SPICE2 method with a

step—size 1000 times smaller. Therefore one expects the SILT

methods to be vastly more efficient than SPICE2. This is in fact the

case as the run-tim es in Table 3.2 clearly show.

To be fair, SPICE2 does solve a set of linear equations at each

grid— point, which could be avoided if the fact that a fixed step size

was being used was taken into account. This however would only

decrease the run—times by some factor (about 5 in this case), it

would not solve the problem of requiring step-size 1000 times smaller

than the SILT4 method for similar accuracy. The SILT method is

therefore seen to be a very efficient method, orders of magnitude

more efficient than SPICE2.

76

ER
RO

R
*

1E
2

1.2
9th order elliptic lowpass

0.8

0 .4

H
3
Q.h- 0.0

-0 .4

- 0.8

- 1.2 X X X X
0 .0 0 .5 1 .0 1 .5 2 .0

TIME (mS)

F ig u re 3 .2 R esponse o f n e tw o rk used fo r ex a m p le s

4
SPICE2 (5E-5)

2 SILT1 (5E-5)

0

2

•4
1 .5 2.01.00 .50.0

TIME (mS)

F ig u re 3 .3 C om parison o f S PIC E 2 an d SILT1

77

ER
RO

R
*1

E6

ER
RO

R
*1

E
4

5

SPICE2 (5E-6)

3 SILT1 (5E-6)

1

1

3

5
0.0 0.5 1.0 1.5 2.0

TIME (mS)

Figure 3.4 Comparison of SPICE2 and SILT1

5
SPICE2 (5E-7)

SILT4 (5E-5)
SILT3 (5E-5)3

1

1

SPICE2 (5E-8)

3 SILT 1 (5E-7)

5
2.00.50.0

TIME (mS)

Figure 3.5 Comparison of SPICE2 and SILT method

78

METHOD STEP--SIZE MAX. ERROR CPU TIME

SPICE2 5 X 10“ 5 3.81 X 10"2 1 2 .1 3 s

SPICE2 5 X 10"6 4 .4 4 X 10~A 1 :0 3 .9 9 s

SPICE2 5 X 1 0 ~ 7 4 .86 X 10-8 6 :5 2 .6 2 s

SPICE2 5 X 10~8 2 .44 X 10-7 1 :0 4 :4 9 .7 3 s

SILT 1 5 X 10~5 8.51 X 10-3 2 .5 1 s

SILT 1 5 X 10-6 8 .55 X 10-5 6 .6 1 s

SILT 1 5 X 10-7 1 .17 X 10"8 4 7 .7 9 s

SILT 2 5 X lO"5 1.61 X 10"5 2 .5 5 s

SILT 3 5 X lO" 5 1 .55 X 10-8 2 .5 7 s

SILT 4 5 X l o -5 4 .0 0 X 10"9 2 .8 0 s

SILT 5 5 X 10“ 5 7.24 X 10-1 0 2 .82s

T a b le 3 .2 C o m p ariso n o f S PIC E 2 a n d S IL T m e th o d s

79

3 -7) APPLICATION t o p e r io d ic a l l y s w it c h e d n e t w o r k s

The SILT method developed can be applied to periodically switched

linear networks by treating the network as a finite periodic sequence

of networks, each unique switched state being treated as a different

network. The final conditions of each network then determine the

initial conditions for the next network in the sequence. The derivation

of consistent initial conditions are discussed in detail in [20]. The

generalisation of the SILT method to periodically switched networks is

developed in Chapter Four, which then lays the basis for frequency

domain analysis of these networks.

The SILT method for periodically switched linear networks was

implemented in the computer program FOOLSCAP. To confirm the

theory and verify that it had been implemented correctly in

FOOLSCAP, comparisons were made with other computer programs

designed to analyse switched— capacitor networks.

The first two programs, SCNAPIT [21], [22], [23] and SWITCAP [24],

assume that the network has ideal switches, infinite bandwidth

amplifiers and no resistors. Therefore the correct simulation of

transient effects cannot be tested with these programs. Nonetheless

they do provide a very useful test of the correct functioning of the

switching mechanism and consistent formulation of initial conditions at

each switching instant. Extensive comparisons with these two programs

showed that the theory as implemented in FOOLSCAP provides a very

efficient and accurate method for the computation of the tim e-dom ain

response of periodically switched linear networks.

To test the correct simulation of transient effects in these networks,

the computer program SCNAPNIT [25], [26] was used. This program

can deal with finite bandwidth amplifiers, resistors in the network and

nonideal switches. The switches, however, are modelled as nonlinear

devices and therefore nonlinear switching effects are taken into

account. Nevertheless by selecting parameters for the switches such

that their behaviour is near ideal, comparisons could be made for the

other transient effects due to nonideal amplifiers. These comparisons

verified that FOOLSCAP correctly simulates these transient effects.

80

REFERENCES FOR CHAPTER THREE

F.H. Branin, "Computer methods of network analysis", Proc.

IEEE, Vol. 55, No. 11, p p .l787-1801, Nov. 1967.

J. Vlach and K. Singhal, "Computer methods for circuit

analysis and design", Van Nostrand Reinhold, 1983.

G. Dahlquist, "A special stability problem for linear multistep

methods", B.I.T., Vol. 3, No. 1, pp .27-43 , 1963.

L.W. Nagel, "SPICE2 : A computer program to simulate

semiconductor circuits", ERL Memo ERL-M 520, University of

California, Berkeley, 1975.

F. Maloberti, "An efficient method for the numerical analysis

of transients in linear dynamic circuits", IEEE Trans. CAS,

Vol. C A S -32, No. 8 , pp.848-851, Aug. 1985.

C.W. Gear, "Simultaneous numerical solution of

differential—algebraic equations", IEEE Trans. CT, Vol.

CT—18, No. 1, pp.89-95 , Jan. 1971.

W. Enright, "On the efficient and reliable numerical solution

of large linear systems of ODE's", IEEE Trans. Automatic

Control, Vol. AC—24, No. 6 , pp.905—908, Dec. 1979.

R.K. Brayton, F.G. Gustavson and G.D. Hachtel, "A new

efficient algorithm for solving differential- algebraic systems

using implicit backward differentiation formulas", Proc. IEEE,

Vol. 60, No. 1, pp.98—108, Jan. 1972.

K. Singhal and J. Vlach, "Computation of the time domain

response by numerical inversion of the Laplace transform",

Journal of the Franklin Institute, Vol. 299, No. 2,

pp.109—126, Feb. 1975.

V. Zakian, "Solution of homogeneous ordinary linear

differential systems by numerical inversion of Laplace

transforms", Electronic Letters, Vol. 7 , No. 18, pp.546-548,
Sep. 1971.

C.B. Moler and C. Van Loan, "Nineteen dubious ways to

compute the exponential of a matrix", SIAM Review, Vol. 20,

No. 4, pp.801— 836, Oct. 1978.

R.C. Ward, "Numerical computation of the matrix exponential

with accuracy estimate", SIAM Journal of Numerical Analysis,

Vol. 14, No. 4, pp.600-610, Sep. 1977.

V. Zakian, "Properties of the Ijypsj and JjyjN approximants and

applications to numerical inversion of Laplace transforms and

initial value problems", Journal Maths, and Appl., Vol. 50,

1975, pp.191— 222.

V. Zakian, "Rational approximants to the matrix exponential",

Electronic Letters, Vol. 6 , No. 25, pp.814—815, Dec. 1970.

C.K. Pun and J.I. Sewell, "Symbolic analysis of ideal and

nonideal switched capacitor networks", Proc. IEEE Int. Symp.

on Circuits and Systems, pp.1165—1172, 1985.

V. Zakian and M.J. Edwards, "Tabulation of constants for full

grade Ij^N approximants", Mathematics of Computation, Vol.

32, No. 142, pp.519— 531, Apr. 1978.

K. Singhal and J. Vlach, "Program for numerical inversion of

Laplace transforms", Electronic Letters, Vol.7, No.14,

pp.413-415, July 1971.

K. Takahashi, J. Fagan and C. M o-Shing, "Formation of a

sparse bus impedance matrix and its application to short circuit

study", Proc. 8th PICA Conf., June 1973, Minneapolis, Minn.

A.m . Erisman and W.F. Tinney, "On computing certain

elements of the inverse of a sparse matrix", Comm. ACM,

Vol. 18, No. 3, pp.177—179, Mar. 1975.

[20] A. Opal, J. Vlach and K. Singhal, "Time— domain analysis of

switched networks", Proc. IEEE Int. Symp. on Circuits and

Systems, May 1987, pp.60-63 .

[21] L.B. Wolovitz, "Improved techniques for time— domain analysis

of switched capacitor networks", M.Sc. Thesis, University of
Hull, 1986.

[22] A.D. Meakin, J.I. Sewell and L.B. Wolovitz, "Techniques for

improving the efficiency of analysis software for large

switched— capacitor networks", Proc. 28th Midwest Symposium

on Circuits and Systems, pp.390—393, Aug. 1985.

[23] L.B. Wolovitz and J.I. Sewell, "Advanced switched— capacitor

analysis software", Annual Report 1, Department Electronic

Engineering, University of Hull, 1984.

[24] S.C. Fang, "Switcap users guide", Dept. Electrical Engineering,

Columbia University, 1982.

[25] L.B. Wolovitz and J.I. Sewell, "Efficient computer techniques

for the exact analysis of all nonideal effects of

switched-capacitor networks in the tim e-dom ain", Proc. IEEE

Int. Symp. on Circuits and Systems, pp.373-376, May 1986.

[26] L.B. Wolovitz and J.I. Sewell, "Advanced switched-capacitor

analysis software", Final Report, Dept. Electronic Engineering,

University of Hull, 1985.

83

CHAPTER FOTTR

FREQUENCY DOMAIN ANALYSIS OF PERIODICALLY

SWITCHED LINEAR NETWORKS.

4.1) INTRODUCTION

This chapter considers the problem of calculating the frequency

response of periodically switched linear networks. The methods

developed are applicable to general switched networks, but the

methods were developed specifically for switched capacitor networks.

The derivations are perfectly general as no assumptions are made

about the type or characteristics of the networks.

Many different methods for calculating the frequency response have

been proposed and a number actually implemented in computer

programs [1]. However because of the difficulty of the problem, many

have limitations on applicability or other considerable drawbacks.

Consequently no method or program developed to date has received

widespread acceptance, unlike the situation for ideal switched capacitor

analysis programs and techniques.

The main linear imperfections of switched capacitor networks are the

parasitic capacitances, finite amplifier gain, switch resistances and finite

amplifier gain bandwidth products [1]. The first two imperfections can

be modelled by ideal analysis programs, but different techniques are

required to take into account the transient effects caused by the latter

two imperfections.

A number of techniques have been developed to model the effects of

amplifier finite gain bandwidth product. One approach is to use the

equivalent circuit approach and then use continuous time frequency

analysis (AC) programs [2]. However this approach suffers from the

general limitations of the equivalent circuit method [1], the main

limitation being that the method is only applicable to 2 phase 50%

duty cycle networks. The second approach is to include the analytic

solution of the time domain response of single pole amplifiers in the

analytic solution of the ideal SC network in which the amplifier is

84

embedded. Because this analysis is done by hand, it is extremely

difficult to extend the method beyond 2nd order networks. Indeed all

the methods presented to date are limited to 2 phase 2nd order

filters. The results obtained using this approach are quite good [3], [4]

and are particularly useful for obtaining insight into the behaviour of

these networks. The third approach, which allows computer

implementation, was to derive an admittance matrix in the Z — domain

for the amplifier poles [5], [6]. This admittance matrix is then

imbedded in a definite nodal admittance matrix formulation for ideal

SC networks. However this approach models the imperfections due to

the amplifier approximately and is limited to 2 phase networks.

To include the effects of finite switch resistances, as well as nonideal

amplifiers, the behaviour of the networks has to be modelled in

general by differential difference equations. The exact time domain

solution of these type of systems was first obtained in [7]. Closed

form frequency domain solution for cisoidal input were also derived.

The method is based on the state space formulation which makes

general computer implementation difficult and inefficient. The method

is also limited to 2 phase networks. This approach was generalised for

multi— phase networks and arbitrary deterministic inputs [8], However

this algorithm is also based on the state space approach and therefore

not compatible with traditional CAD tools. A computer algorithm was

presented in [9] which is equivalent to this approach and allows a

simpler implementation. However this method is still very complicated

and does not appear to be very efficient. Another state space based

method is presented in [10]. This method uses intricate manipulations

to derive the state space forms from nodal equations and is limited to

2 phase networks. The method also assumes that the input signal is

sampled and held in each phase and therefore does not consider the

effects of continuous input-output coupling. However this method is

of interest as it uses a similarity transformation to reduce the

computation at each frequency point to 0 (n 2) operations. A similar

approach is developed in Chapter Five and is applied to the frequency

analysis method developed in this chapter.

A number of MNA based methods have been developed which

overcome the problems of equation formulation encountered with the

85

state space approaches. The first method to use the MNA formulation

[11], is based on the generalisation of the method presented in [8].

This approach is orientated to computer implementation and uses

many of the efficient methods developed for ideal SC analysis. The

major drawback of this approach is the poor method used to evaluate

the extended state transition matrix. Two methods were proposed. The

first assumes that all transients in the network have died out at the

end of each time— slot, which is invalid for many networks, especially

high frequency networks. The second method uses a very dubious and

low accuracy technique which cannot be considered to give reliable

results. A method based on the above MNA formulation, but

overcoming the problem of accurately determining the extended state

transition matrix, was presented in [12], This approach derives the

transfer function of the network in the S and Z domains in a

symbolic form. These symbolic polynomials may then be used to

evaluate the frequency response and have been used for evaluating the

noise response [13]. The main drawback of this approach is that it is

very slow, mainly due to the method of deriving the symbolic

polynomials. It also suffers from inaccuracy for large networks. A

method using the same extended state transition matrix evaluation

method and using the theory developed in [11] was presented in [14].

This method suffers the same drawback as the method in [11], namely

that AC analyses are required in each clock phase at each frequency

point, which makes the method very slow. To try and overcome this

problem, a novel method was presented in [15], which also uses the

MNA formulation. This approach, instead of tackling the complete

spectral analysis, restricts the method to solving the discrete system

associated with a nonideal SC network. However an inefficient and

inaccurate method is used for calculating the transition matrices. The

advantage of this approach is that it allows a very efficient technique

developed for ideal SC analysis [16] to be used. This technique is also

used to great effect in the method developed in this chapter.

The method developed in this chapter is an attempt to overcome the

problems of the previous methods. This approach uses the MNA

formulation and the accurate and reliable method presented in Chapter

Three for calculating the extended state transition matrices. To avoid

the computation of AC responses at each frequency point, the time

86

domain method developed in Chapter Three is used as the basis for

the frequency domain method. This approach leads to a discrete

system similar to that derived in [15] which can be very efficiently

solved, except that the restriction of sampled and held inputs is not

required and therefore full spectral analysis is possible.

Finally the results of this method are compared with other techniques

to verify the theory and implementation. The performance of the

algorithm is also compared with these other techniques to evaluate

whether the efficiency of the method meets the requirements for use

in a productive CAD environment.

4.2) DEFINITIONS

Consider a periodically switched linear network controlled by clock

signals ^ (t) with a common switching period T, i.e.

^>j(t+T) = y9j (t) U t , i (4 .1)

where ^ is the state of clock i, either on or off.

Each period T is partitioned into N time—slots,

I , = (nT+cr. nT+o.] k = 1 , . . , N (4 . 2)n , k k - 1 ’ k

such that the clock signals (and therefore the network) does not vary

in i k. Here k denotes the kth tim e- slot. As seen from Fig. 4.1

these tim e-slots are not necessarily of equal duration. The switching

frequency is defined as,
2ir

0) = ~s T
(4 . 3)

Other important definitions from the figure are

o

II 0

T

Tk " *1 k -1
(4 . 4)

Define the signals

Vk (t) - v (t) t 6 I n k

v k (t > - v k (n T +<rk . 1 + t) 0 ^ t ^

87

n,N

N-l

nT+o-̂ = nT nT+o\ N-l

F ig u re 4.1 D efin itions fo r a N - s i o t sw itched lin e a r n e tw o rk

88

* v <nT+<rk “Tk+ t) (4 . 5)

Vk (nT+ffk) " v(nT+<7k) - (4 . 6)

That is vn k̂(t) are functions of time, whilst vk(nT+ (rk) are sequences
of values at the instants just prior to switching.

Define the Z— transform

\ (nT+\) z n = VR(z) k - 1 N - 1

-nI v (nT)z “ - V (z) (4 .7)
n=0 w

and therefore

00 00

I vN(nT+ffN)z~n - I vN(nT+T)z'n - zV (z) (4 .8)
n=0 n==0

4.3) TIME DOMAIN ANALYSIS

In each time—slot In>k of the nth switching period [nT ,(n+l)T] a

periodically switched linear network can be represented by the system

differential equation

Ck V k (t> + Gk Vn , k (t) - wn , k (t) k ^ - 9)

where wn k(t) is the vector of excitations

vn k^) *s tke vector unknown system variables
Ck and Gk are constant matrices

In the following, the range of subscripts for k (k = 1,..,N) is

dropped for brevity but is assumed throughout unless otherwise stated.

Using the approach developed in Chapter Three we approximate the

excitations by mth order polynomials
m

»n k (t) « I an k t ‘ (4 .1 0)
n ’k i -0 ’

where d f k are the coefficients of the polynomial approximations of

89

wk(t) in the interval In Substituting the approximation (4 .10) in the

system (4.9) gives the new system differential equation

m

Ck Vn , k (t) + Gk Vn , k (t) = ^ a " k ** (4 ‘n)
i =0 ,K

Following the steps in Chapter Three, the solution of equation (4 .11)
is,

m

Vn , k (t) " Pk (t) Ck vk - l< nT+<rk - l) + J “ " ,k Bi , k (t) (4 1 2)

where pk (t) ■ L~ ' ([s c k + Gk r ' > (4 . i 3)

Bi . k (t) “ L~ ' ([sCk + Ck l " 1- TTl) <4 -14>
S

vk _ i (nT+ak - l) a re t îe i n i t i a l c o n d i t i o n s

The sequence v ^ - i(nT+ 1) which are the initial conditions of the

system for interval In>k are by definition the final states of the system

for interval In_ j k- Therefore a recurrence relation giving the

sequence of final states of the system within each time— slot is

obtained by substituting t = in equation (4.12),

m

vk (nT+V " pk vk - i (nT+V i) + . ^n “ " ,k Bi , k (4 -15)1=0

where Pk = C (4 .16)

Bi , k - Bi , k (V <4 - 17>

This recurrence relationship is similar to equation (3.13) derived for

nonswitched linear systems in Chapter Three, except that in this case

the time—steps are not necessarily equal. Thus the same efficient

computational techniques may be used to evaluate (4.15). This formula

only provides solutions of the system (4.11) at the switching instants,

which for many applications gives sufficient information. However if

intermediate results are required, for example to observe transients

within each tim e-slot, then the tim e-slots may be subdivided into

equal subintervals and (4.15) modified to take these subintervals into

account. This approach provides a technique for efficiently evaluating

the time domain response of periodically switched linear systems

described in Chapter Three.

90

As in Chapter Three a procedure is required to determine the
coefficients a p k. Defining

Tk
hk = H (4 .18)

f £ , k = wn , k (^ hk> <4 *19>

and applying equation (3 .20), gives

k = i 0 f " , k <4 -20>

4.4) COMPUTING THE INVERSE LAPLACE TRANSFORM

The formula (4.15) requires the matrices Pk, given by equation (4.16),

and the vectors B ^ , given by the equation (4.17). Using the

definition of the extended state transition matrix (4.13) and applying

the approximation (3.33) gives,

M/2

w - E Re 1 2Ki/rk [v v * + ck r 1] (4.2D1=1

Similarly applying the excitation response approximation (3.34) to the

definition (4.14) gives,

M / 2 2 K / t i '

- I Re t r r ^ 1 b / 7kc k + Gk r 1] (4 . 22)
J - l (z j / Tk)

The efficient implementation strategies discussed in section 3.5.1 are

equally applicable to these approximations. In this case because the

calculations are repeated for each slot, the benefits of the sparse

matrix methods of Chapter Two are even greater.

4.5) Z-DOM AIN ANALYSIS

To obtain the Z—domain series of final states Vjj(z) for l ^ l , . . ^ , we

need to take the Z - transform of equation (4.15) and solve for Vk(z).

The Z - transform of (4.15) is,

V z) “ Pk Vk - l <z) + EWk (z) (4 ' 23>

91

where

<» m

» k (z) - I [I a« B.] z - “ (4 . 24)
n=0 i =0 ,K 1,R

To evaluate IW k(z), substitute equations (4.19) and (4.20), which

05 m m

<z) - I [I < I y.V k(«h.)) B.] z ‘ n
n- 0 1=0 j8-0 n ,k k 1 »k

(4 .25)

From definition (4.15) this becomes,

00 m m
a r .*k(z) - I [I (I 7 f l , W k (n T - * r k + < h k - T k)) B f f c] z ' "

n=0 i -0 j8=0 K k k k 1>k (4 .26)

And finally applying definition (4.6) and using the shifting theorem,

m m
HZ (z) - I B (I z ^ hk -rk)/T J (4 27)

K i _0 1,K t - 0 K

The system (4.23) can be represented in matrix form as,

I - z “ 1P, V,(Z) i w , (z)

- p 2 1 V2 (z)

-

I W 2 (z)

~PN 1 zVN(z) . . zIWN(z) .

nation (4.28) can be rewritten to remove the factor

r *P, as,

J -Pi V, (z) IW, (z)

- P 2 I V2 (z)

=

IW2 (z)

- pN < i J V„(z) J zIWN(z) .

(4 . 28)

(4 .29)

This modification which puts the variable z into the bottom right

Stihmatfix of the system matrix is necessary for the efficient solution

method developed In the next section.

92

4 -6) SOLVING THE DISCRETE SYSTEM

A substantial amount of frequency independent preprocessing can be

performed in solving equation (4.29). The approach used is based on

the approach developed in [16] for ideal SC networks. Firstly all the

Pjc are frequency independant and therefore are pre— computed using

equation (4.21) and stored. Similarly the Bj ^ in equation (4.14) are

independent of frequency and are pre— computed using equation (4 .22)

and stored.

Performing a block Gaussian elimination on equation (4.29),

N

(z l - E) VN(z) - I Ek IWk (z) (4 .3 0)
k=l

where E = P / ^ • . . P ^ (4-. 31)

Ek -
PNPN - 1 " ' Pk+1
I k - N (4 .3 2)

Matrices E and E^ are frequency independ nt and are only computed

once prior to frequency analysis. The multiplication by E^ can be

distributed over the summation in the excitation IWj^z) as a

preprocessing step, giving,

m m

DyP(z) = I f k I T e i V 20 *(*hk~Tk)/T (4,33)
k i =0 ’ 5=0

where F . k = (4 *34)

Equation (4.30) then reduces to
N

(z l - E) V (z) = I Bv£(z) (4 . 35)
N k- l k

which can be very efficiently solved for V ^ z) using methods

presented in Chapter Five. The solutions for Vj^z) for k = l , . . , N - l

are then obtained by block backsubstitution,

V1 (z) = P-l VN(z) + LW1 (z)

V z) " pk V i (z) + Iwk (z) k = 2> • • ’N_1 (4 -36)

93

4.7) FREQUENCY ANALYSTS

To solve the discrete system (4.29) for a particular frequency a),
substitute,

jCi)T
z “ e (4 . 37)

Closely following the development in [16], applying Poisson's formula
to EWk(z)^ gives

00 m m

BIT (eJ"T) - I [I (I 7 W (nT+ff +«h -r)) B] e‘Jn“T
n=0 i=0 5=0 i , k

oo m m

- i I [I B. I
n=0 i =0 5=0 S (4 .38)

Consider a complex exponential input signal of frequency o>0

w(t) = e * ^ 1 (4 . 39)

which has a Fourier transform

Now
W(o>) = 2ir 5(o)-o)) (4 . 40)o

W(c»)-no)s) = 2x 5(a)-coo-na)s) (4 .4 1)

so IW j^eJ0̂) consists of an infinite number of - terms occuring at

frequencies

o) = o) + no) (4 . 42)o s

Now it is shown in [16] that,

I W(u-nu) e J (“ ' n“ s><rk - 2* eJ“»CTk (4 . 43)
n-0 S

which is independent of n. Applying this result to equation (4.38)

gives,
m m

a (e j “ oT) . 2 r I B I y (4 . 44)
k T i=0 ’ 5=0

With input frequency co0 an infinite number of output frequencies

co = Ci) + no) (4 .45)o s

are defined. However as noted above the discrete system (4.29) need

1* e.<juatior* (t+.lk)

94

only be solved once for o>0 as the solution is independent of n.

However switched linear networks are not discrete systems so window

functions have to be used to obtain the frequency domain response of

the systems [17]. Applying the window functions to the output signals

and taking into account the sinx/x sampling effect and possibly unequal

time—slots, the frequency response of the system is given by [16],

N

S = I D, V ,(e jil,°T) (4 . 46)n k . n k v Jk=l

- j ^ k - 1 _ -3<*rk
where Dk , n " ------------] 3 f ------------- k * N <4 -47)

D.. - eJ“»T
-jw o'N -l _ - J ^ N

(4 . 48)N,n jo)T

The individual phase responses Vj^eJ^07) are obtained for input

frequency o>0 by substituting equation (4.44) into (4.29) and using

(4.35) and (4.36) to solve the system.

The overall algorithm for frequency domain analysis is then,

A Preprocessing independent o f frequency and n

1) Formulate the matrices Gk and Ck and the vectors Wk

2) Calculate Pk matrices using equation (4.16) and (4.21)

3) Calculate Bj k vectors using equation (4.22) for i = 0,..,m

4) Calculate matrix E using equation (4.31)

5) Calculate F* k vectors using equation (4.34) for i = 0,..,m

B Frequency analysis independent o f n

1) Prepare matrix (eia)oTI — E)
2) Build RHS of equation (4.35) using equation (4.33)

3) Solve equation (4.35) for VN(ejwoT)

4) Calculate V ^eJ^07) using equation (4.36)

C Spectral analysis
1) For selected n calculate weights Dk n using equations (4.47)

and (4.48)
2) Calculate Sn using equation (4.46)

(4.49)

95

4.8) RESULTS

The theory developed above was implemented in the program

FOOLSCAP, using 16 digit double precision arithmetic throughout. To

verily the implementation of the theory and determine the efficiency

of the approach presented, the program was compared with a number

of switched capacitor analysis programs. The programs which were

available and which were used are the ideal SC analysis programs

SWITCAP [18] and SCNAPIF [14], and the nonideal SC analysis

program SCNAPNIF [14]. The ideal analysis programs have been

independently verified and both agree exactly with one another. The

nonideal program SCNAPNIF has been verified by comparison with the

program SCNAP3 [12].

A number of papers describing various nonideal SC analysis techniques

that give worked examples were also used. Many of these papers also

compare their results with experimental measurements which provides

another useful source for verification.

All the programs were implemented on a /xVAX II under VMS and

are written in FORTRAN. All the run statistics given are for these

implementations.

4.8.1) VERIFICATION

The first step of the verification process was to perform a comparison

with the ideal SC analysis programs. Because these programs do not

take switch resistances into account, it is necessary for comparison

with FOOLSCAP to set the switch resistances to values such that their

effect is negligible. In general there is no unique set of on/off values

which is suitable as the sensitivities of the various networks to the

switch values vary from network to network. However 'on' resistances

(Ron) of 1 ohm and ’off' resistances (Roff) of 1010 ohms proved in

general to be satisfactory. A bit of experimentation with slightly

perturbed values was used to quickly ascertain whether these values

were suitable. If not then higher/lower values were tried until a

suitable set was found.

96

The results from FOOLSCAP generally agreed with the other programs

to between 2 and 6 decimal places. For a few examples it was found

that small constant differences in the passband of the filters were

obtained, with good agreement in the stopband. The cause of this

could not be ascertained and therefore it is not known whether this is

a real characteristic of the filters or due to inaccuracies in the

program. However the nonideal analysis program SCNAPNIF showed

similar behaviour, so it seems unlikely that the problem is due to

inaccuracies (unless of course this program suffers from the same

inaccuracy). Given the above results it was concluded that the theory

as implemented is correct, at least for very small Ron and large Roff.

The second step of the verification process was to compare the results

from FOOLSCAP for networks where the effects of switch Ron/Roff

and finite amplifier gain— bandwidth are taken into account. The

program SCNAPNIF was used for comparison. Generally the agreement

between the two programs was very good, between 2 and 5 decimal

places. Better agreement is unlikely to be obtained as the two

programs use different methods for calculating the extended state

transition matrix (besides the fact that very different approaches are

used overall). Comparisons of the EST matrices showed that on

average about 5 figure agreement is obtained.

The third set of tests carried out were comparisons with results

presented in the literature for nonideal SC networks. In all cases the

results are presented in graphical form so that exact numerical

comparison is not possible. However the graphs provide a good visual

check of whether the correct trends are obtained, for example peaking

at passband edges or shifting of centre frequency. Two hand analytical

methods were presented in [3], [4] and both compare their results

with experimental measurements. The results obtained from

FOOLSCAP agreed very well with these measurements. Unfortunately

both papers considered only 2nd order bandpass filters, which limits

the degree to which the program is tested for accuracy. The other

comparisons were obtained from papers describing other analysis

methods [9], [10], [11], [15] of which two also had experimental

comparisons. Again, unfortunately, all but one considered 2nd order

bandpass filters, the other network considered was a 6th order

97

bandpass filter. The results obtained from FOOLSCAP compared very
well with these results.

Considering the above results it is concluded that the theory as

implemented in FOOLSCAP is able to correctly analyse nonideal SC

networks taking into account all linear imperfections.

4.8.2) PERFORMANCE

To compare the performance of FOOLSCAP with the other analysis

programs, the programs were used to analyse a number of example

networks. The examples used, given in Table 4.1, were selected to

cover a broad range of network size, order, complexity and number of

clock phases. The statistics for FOOLSCAP, SCNAPIF, SWITCAP and

SCNAPNIF are presented in Tables 4.2, 4.3, 4.4 and 4.5 respectively.

From the results it is seen that in terms of storage requirements

FOOLSCAP compares favourably with the other programs. For larger

networks the storage requirements are fairly high but present no

problem for most minicomputers. Comparing the FOOLSCAP

run- times with those of SCNAPIF, it is seen that FOOLSCAP is

about twice as slow as SCNAPIF, though the difference between the

two reduces as the network size increases. However the time required

for preprocessing for FOOLSCAP is very much greater than that for

SCNAPIF. Similarly comparing the results with SWITCAP, it is seen

that FOOLSCAP is approximately twice as fast as SWITCAP. This is

quite remarkable considering that FOOLSCAP performs a full nonideal

analysis whilst SWITCAP only performs an ideal analysis. The

preprocessing times for FOOLSCAP are comparable for smaller

networks, but the preprocessing times for FOOLSCAP increase more

rapidly than those for SWITCAP for larger networks.

Comparing the results of FOOLSCAP with the nonideal analysis

program SCNAPNIF, it is seen that FOOLSCAP is as much as 200

times faster. The preprocessing times also show a speedup of about

10. The main contributory factors to this speedup is the efficient

solution method developed in Chapter Five, but the block solution of

the system also contributes significantly. Another important factor is

98

that SCNAPNIF performs an AC analysis for each phase at each

frequency point, which is not required by FOOLSCAP. The speedup

in preprocessing is mostly due to the highly efficient solution method

developed in Chapter Two.

To graphically illustrate the relative performances of the programs

which were compared, the run— times per frequency point for 2 phase

networks are given in Fig. 4.2. From this graph it is seen that the

run time for SCNAPNIF increases dramatically for larger networks,

whereas FOOLSCAP increases apace with the ideal analysis programs.

To obtain an overall comparison of efficiency it is necessary to

compare the total time required for a typical analysis run, which

includes preprocessing time. Therefore the run times for 2 phase

networks which include the total preprocessing time and the time

required for 150 frequency points are given in Fig. 4.3. From this

graph it is seen that the same observations as above apply and

FOOLSCAP clearly performs very favourably compared to the ideal

analysis programs and is significantly better than the nonideal analysis

program.

99

1

2

3

4

5

6

7

8

9

10

11

12

DESCRIPTION

5 th o r de r e l l i p t i c lowpass f i l t e r [19]

6 th o r de r Chebyschev bandpass f i l t e r [19]

2nd or de r bandpass f i l t e r , Q = 20 [20]

5 t h o r der e l l i p t i c lowpass f i l t e r [21]

11 th or der e l l i p t i c lowpass f i l t e r [2 1]

7t h o r der Chebyschev lowpass f i l t e r [22]

3rd o r der e l l i p t i c lowpass f i l t e r [22]

15th or der e l l i p t i c lowpass, l ea p f r o g de s i gn [23]

15th o r der e l l i p t i c lowpass, LUD de s i gn [23]

6 t h o r de r e l l i p t i c bandpass f i l t e r [24]

SPFT e l l i p t i c bandpass f i l t e r sys tem [24]

18th o r der e l l i p t i c bandpass f i l t e r [25]

Table 4.1 Examples used for comparison

100

FOOLSCAP RUN STATISTICS

EXAMPLE
NO.

NODES
NO.

SLOTS
PRE-Pr.
(secs)

TIME/PT
(secs)

STORAGE
(words)

1 22 2 4.25 0.075 12288

2 28 2 5.55 0.114 16890

3 11 2 1.14 0.034 3664

4 20 4 5.26 0.092 11032

5 41 4 22.7 0.320 39944

6 30 6 12.4 0.234 27002

7 12 12 4.82 0.099 8520

8 70 2 47.4 0.701 94564

9 69 2 47.6 0.679 95210

10 27 2 6.21 0.104 17184

11 86 36 14:52 13.44 824944

12 77 5 93.4 1.512 145854

Table 4.2 Statistics for FOOLSCAP

101

SCNAPIF RUN STATISTICS

EXAMPLE
NO.

NODES
NO.

SLOTS
PRE-Pr.
(secs)

TIME/PT
(se c s)

STORAGE
(words)

1 22 2 0.61 0.042 50217

2 28 2 0.64 0.046 51849

3 11 2 0.37 0.027 48020

4 20 4 0.80 0.063 49941

5 41 4 1.94 0.161 57162

6 30 6 1.32 0.137 53276

7 12 12 1 .6 6 0.336 50429

8 70 2 1.93 0.169 74369

9 69 2 2.33 0.237 74415

10 27 2 0.77 0.050 51794

11 86 36 1:43 17.48 456383

12 77 5 5.88 1.156 410674

Table 4.3 Statistics for SCNAPIF

102

1

2

3

4

5

6

7

8

9

10

11

12

SWITCAP RUN STATISTICS

NO.
NODES

22

28

11

20

41

30

12

70

69

27

86

77

NO.
SLOTS

12

36

PRE-Pr
(secs)

5.51

6.14

2.53

24.6

25.9

7.50

TIME/PT
(secs)

0.219

0.207

0.108

1.135

1.621

0.279

Table 4.4 Statistics for SWITCAP

103

SCNAPNIF RUN STATISTICS

EXAMPLE
NO.

NODES
NO.

SLOTS
PRE-Pr.
(secs)

TIME/PT
(secs)

STORAGE
(words)

1 22 2 31.3 3.288 27760

2 28 2 35.7 5.367 39682

3 11 2 4.82 0.549 7590

4 20 4 41.7 4.244 27317

5 41 4 4:25 28.65 100489

6 30 6 2:21 18.32 71070

7 12 12 33.5 6.281 32561

8 70 2 7:15 74.54 233532

9 69 2 6:17 74.11 230217

10 27 2 47.3 5.407 41221

11 86 36 - - -

12 77 5 21:48 3:36 368254

Table 4.5 Statistics for SCNAPNIF

104

CP
U

TIM
E

(s
ec

)
4

SCNAPNIF
3

2

SWITCAP (IDEAL)
1 FOOLSCAP

SCNAPIF

0
10 20 30 40 50 60 70

SYSTEM SIZE

Figure 4.2 Comparison of run—times per frequency point

400

350

SCNAPNIF
300

oa>(o 250
LU

SWITCAP (IDEAL)p 200
z>
CL
o 150 FOOLSCAP

100

SCNAPIF

60 705040
SYSTEM SIZE

30

Figure 4.3 Comparison of overall run-tim es (150 frequency points)

105

REFERENCES f o r c h a p t e r fottr

[1] M.L. Liou, Y.L. Kuo and C.F. Lee, "A tutorial on computer

aided analysis of switched capacitor circuits", Proc. IEEE, Vol.
71, No. 8 , Aug. 1983, pp.987-1005.

[2] H. Kunieda, "Effects of finite gain— bandwidth products of op

amps on switched capacitor networks — Approached via

equivalent representations", Proc. IEEE Int. Symp. on Circuits

and Systems, pp.464-467, May 1982.

[3] B.B. Bhattacharyya and R. Raut, "Analysis of switched capacitor

networks containing operational amplifiers with finite DC gain

and gain—bandwidth product values", Proc. IEE, Vol. 130, Pt.

G, No. 4, pp.114-123, Aug. 1983.

[4] J.S. Martinez, E. Sanchez—Sinencio and A.S. Sedra, "Effects on

the performance of a pair of SC biquads due to the op amp

gain—bandwidth product", Proc. IEEE Int. Symp. on Circuits

and Systems, pp.373—376, May 1982.

[5] J. Lau and J.I. Sewell, "Inclusion of amplifier finite gain and

bandwidth in analysis of switched capacitor filters", Electronic

Letters, Vol. 16, No. 12, pp.462-463, June 1980.

[6] N.J. Cutland, C. Lau and J.I. Sewell, "General computer

analysis of switched capacitor networks including nonideal

amplifier", Proc. IEEE Int. Symp. on Circuits and Systems,

pp.17 -20 , May 1982.

[7] M.L. Liou, "Exact analysis of linear circuits containing

periodically operated switches with applications", IEEE Trans.

CT, Vol. C T -19, Mar. 1972, pp.146-154.

[8] T. Strom and S. Signell, "Analysis of periodically switched linear

networks", IEEE Trans. CAS, Vol. C A S -24, Oct. 1977,

pp.531-540.

106

[9] E. Wehihahn, "Exact analysis of periodically switched linear

networks", Proc. IEEE Int. Symp. on Circuits and Systems,
April 1981, pp.884-887.

[10] E.P. Rudd and R. Schaumann, "A program for the analysis of

high frequency behaviour of switched capacitor networks", Proc.

IEEE Int. Symp. on Circuits and Systems, pp.1173-1176, 1985.

[11] J . Rabaey, J. Vanderwalle and H. De Man, "On the frequency

domain analysis of switched capacitor networks including all

parasitics", Proc. IEEE Int. Symp. on Circuits and Systems,

April 1981, pp.868- 871.

[12] C.K. Pun and J.I. Sewell, "Symbolic analysis of ideal and

nonideal switched capacitor networks", Proc. IEEE Int. Symp.

on Circuits and Systems, pp.1165—1172, 1985.

[13] C.K. Pun, A.G. Hall and J.I. Sewell, "Noise analysis of

switched capacitor networks in symbolic form", Proc. 29th

Midwest Symposium on Circuits and Systems, Lincoln, 1986.

[14] A.D. Meakin, J.I. Sewell and L.B. Wolovitz, "Techniques for

improving the efficiency of analysis software for large

switched-capacitor networks", Proc. 28th Midwest Symposium on

Circuits and Systems, pp.390-393, Aug. 1985.

[15] D.B. Ribner and M.A. Copeland, "Computer-Aided analysis of

nonideal linear s w i t c h e d - capacitor networks for high-frequency

applications", Proc. IEEE Int. Symp. on Circuits and Systems,

May 1986, pp.1169-1172.

[16] J Vlach, K. Singhal, and M. Vlach, "Computer oriented

formulation of equations and analysis of switched— capacitor

networks", IEEE Trans. CAS, Vol. C A S -31, Sept. 1984,

pp.753— 765.

[17] J . Vanderwalle, H. De Man and J. Rabaey, "Time, frequency

and z - domain modified nodal analysis of switched capacitor

107

networks”, IEEE Trans. CAS, Vol. C A S -28, No. 3 ,
pp.186—195, Mar. 1981.

[18] S.C. Fang, Y.P. Tsividis and O. Wing, "SWITCAP, a switched

capacitor network analysis program", IEEE Circuit and Systems

Magazine, p p .4 -9 and pp.42-46, Dec. 1983.

[19] D.G. Haigh, B. Singh and J.E. Franca, "Filters for state of the

art microelectronics fabrication", Annual Report, Imperial
College, London, Sep. 1982.

[20] S.J. Harrold, I.A.W. Vance, J. Mun and D.G. Haigh, "A GaAs

switched—capacitor bandpass filter IC", Proc. 1985 IEEE GaAs

IC Symposium, Monterey, 4pp., November 1985.

[21] J.A . Nossek and G.C. Temes, "Switched—capacitor filter design

using bilinear element modelling", IEEE Trans. CAS, Vol.

C A S -27, No.6 , pp.488— 491, 1980.

[22] A. Fettweiss, D. Herbst, B. Hoefflinger, J. Pandel and R.

Schweer, "MOS switched-capacitor filters using voltage inverter

switches", IEEE Trans. CAS, Vol. C A S -27, No. 7,

pp.527— 538, 1980.

[23] P. Li, University of Glasgow, private communication.

[24] J .E . Franca, "Switched-capacitor systems for narrow bandpass

filtering", Ph.D. Thesis, Imperial College of Science and

Technology, London, 1985.

[25] J . Pandel, D. Bruckmann, A. Fettweiss, B.J. Hosticka, U.

Kleine, R. Schweer and G. Zimmer, "Integrated 18th order

pseudo N -pa th filter in VIS-SC technique", IEEE Trans. CAS,

Vol. CAS—33, No. 2, pp.158—166, Feb. 1986.

108

CHAPTER FTVK

EFFICIENT METHODS FOR SOLVING (zI - E) x = b

5.1) INTRODUCTION

This chapter is concerned with methods that can be used to efficiently
solve the system of equations

(z l - E)x = b (5 .1)
where z is a complex scalar

E is a constant, real N x N matrix and is full

x and b are complex vectors.

Matrices of this form commonly arise in frequency response

calculations [1], and in particular the formulation developed in Chapter

Four, which requires the solution of equation (4.35). In frequency

response calculations the frequency variable z is varied over the

desired range and equations of the form (5.1) have to be solved

repeatedly. The matrix E is constant (independent of z) and the

known RHS vector b can be frequency dependent or independent as

both cases are considered.

From these characteristics of the problem a number of methods are

explored that attempt to take advantage of these characteristics and

thereby reduce the overall amount of computation to solve (5.1) over

a range of values of z.

The first approach considered is the direct method of solving equation

(5.1). This approach uses the LU decomposition methods discussed in

Chapter Two. These methods have the distinct advantage that they are

reliable, accurate and easy to implement. However the major drawback

is that the solution requires 0 (N 3) flops and cannot take advantage of

the fact that matrix E is real, which necessitates the use of complex

arithmetic throughout. Although computationally expensive, these

methods do provide reliable solutions against which other methods can

be compared.

The second approach is to use iterative methods for solving equation

109

(5.1). The motivation for this approach is that these methods require

0 (N 2) flops per iteration and can take advantage of the fact that

matrix E is real. Another advantage of this approach is that the

solution of (5.1) for a particular frequency can be used as the starting

guess for the iterations at another frequency. Now in a frequency

sweep successive solutions generally do not vary greatly so the ability

to use previous information can dramatically reduce the number of

iterations. The last advantage of this approach is that because the

methods iteratively construct better approximations to the exact

solution the amount of computation is in proportion to the desired

accuracy. Therefore in cases where full machine accuracy is not

required this approach is able to reduce the number of iterations even

further. From the above it is clear that this approach is competitive,

provided that the number of iterations can be kept very low, certainly

much less than N and ideally constant (independent of N). The major

drawback of this approach is that the methods are not always

convergent or converge very slowly.

The third approach considered is to first transform equation (5.1) to a

simpler form where a direct method of solution requires significantly

less computation, for example 0 (N 2) or O(N) flops. This

transformation is only performed once, is independent of frequency

and requires 0 (N 3) flops. Because the transformation only involves

transforming matrix E, real arithmetic may be used. The major

advantages of this approach are that it reduces the computation to

0 (N 2) flops for each solution of equation (5.1) and may be

implemented to provide reliable and accurate solutions. The only

drawbacks are perhaps the 0 (N 3) flops required for the initial

transformation and the reliability of one of the methods presented (the

most efficient one).

To highlight the performance of these different approaches, results are

presented from an actual implementation of the different methods in

an analysis program. The application considered is the solution of

equation (4.35) which is crucial for the efficient frequency analysis

method presented in Chapter Four. The necessary modifications to the

algorithm (4.49) are presented and the results clearly show the

enormous gains in efficiency from the most efficient methods.

110

5.2) DIRECT METHODS

The direct method of solving equation (5.1) is to form the complex
matrix

A = zI " E (5 .2)
and then factor A into a product of triangular matrices

A = LU (5 .3)
The solution is then obtained by solving the triangular systems using

forward elimination and backsubstitution. As discussed in Chapter Two

there are two methods of obtaining the LU factors, the Crout and

Gauss elimination methods. Because the matrix E is full, sparse matrix

techniques are not applicable and full algorithms are used. Both these

methods are unable to exploit the fact that matrix E is real and that

only the diagonal of matrix A is complex. In fact the L and U

matrices obtained are both complex and therefore complex arithmetic

has to be used throughout, which effectively quadruples the number of

multiplications compared to the case where the matrices are real.

5.2.1) CROUT METHOD

The Crout method produces successive elements of the L and U

matrices using the formulae

J - l
4 . . - a . . - I ZiuUui i>J <5 -4)

i j U k==1 lk

i - 1

a . . - L £ . i ,
i j k=1 lk kJ

Ui j
i <j (5 . 5)

a . .11

This method has the advantage that the inner products in the

formulae may be accumulated in extra precision to avoid roundoff

errors [2], In general the method provides accurate solutions, but

suffers from instability for ill-conditioned matrices. To overcome this

partial pivoting may be used whereby at each pivot step the element

of largest magnitude in the pivot column is selected as the pivot. This

process ensures that the growth of errors is bounded [2], To further

111

increase the reliability of the solution, iterative refinement may be

used to reduce any potential errors in the solution down to the
machine precision of the computer [3].

The Crout method with partial pivoting, extra precision accumulation

and iterative refinement is implemented in the NAG library routine

F04ADF [4]. A library routine was used as this provides a thoroughly

tested and reliable method for obtaining solutions, which are accurate

to machine precision. The disadvantage of this approach is that it is

slow, requiring 4/3N3 flops for the LU decomposition, 2N2 flops for

the solution steps and 4N2 flops for each iterative refinement step.

The overheads for partial pivoting and extra precision accumulation

are quite considerable. However as this method is only used to

provide reference solutions and not for production use, the speed is

not important.

5.2.2) GAUSS ELIMINATION

The Gauss elimination method produces the L and U factors by

organising the computations in a different way to the Crout method,

though the Gauss elimination method with row normalisation produces

the same LU factors as the Crout method. The kth step of this

method is,
a, . = a. . / a, . i = k+1, . . , N

k i ki ' kk

a . . - a . . - a . , x a i , j - k + l , . . ,N (5 .6)
i j i j l k k j

This method was implemented without partial pivoting or iterative

refinement to investigate the stability of the method when applied to

matrices that typically arise from equation (4.35). It was found that

the solutions obtained by this method compared exactly with those

obtained by the NAG routine F04ADF. Therefore it was concluded

that for this specific application partial pivoting and iterative

refinement are not needed and this method could be used as a

reliable reference. Although this method was typically at least twice as

fast as the library routine (because there is much less overhead), the

method still requires 0(N3) flops and becomes impractical for large

matrices.

112

5.3) ITERATIVE METHODS

These methods attempt to solve equation (5.1) by successively

producing better approximations to the exact solution from an initial

guess. The main motivation for this approach is that each iteration

generally only requires 0 (N 2) flops and therefore if the number of

iterations can be kept low (prefably constant) then an overall 0 (N 2)

method is obtained. This approach has a number of advantages over

the direct approach. The first is that the direct approach modifies the

matrix and therefore an extra copy of the original matrix must be

kept, whereas the iterative methods do not alter the matrix and

therefore save this extra storage. The direct methods cannot exploit

the information given by the solution in a nearby frequency point

whereas the iterative approach can use these solutions as initial

guesses. Finally the direct approach does not allow computational

effort to be reduced when the desired accuracy is lower than the

machine precision related accuracy, whereas the iterative approach has

control over the accuracy. For this particular application the iterative

approach has a further advantage as it allows the structure of the

matrix (real with complex diagonal) to be exploited.

Two iterative methods are discussed, the first is the Gauss— Seidel

(GS) method and the second is the Least-Squares Approach (LSA).

5.3.1) GAUSS-SEIDEL METHOD

The Gauss-Seidel method is perhaps the most well known iterative

method as it is easy to implement and is quite effective for certain

classes of matrices. The method is described by the algorithm

REPEAT

FOR i := 1 TO N DO

i -1 N

bi ai j x xj L a u x xj1 j - i J J j= i+1
X. =

1 a i i

END
UNTIL converged

(5 . 7)

113

The convergence criteria is usually

n+1 n
x i “ x i < to le r a n c e i = 1 , . . , N (5 .8)

where xj1 is the value of xj at the nth iteration.

Applying algorithm (5.7) to equation (5.1), it is seen that a4j in (5.7)

is replaced by ejj and ay = z — ey. Therefore this algorithm can

take advantage of the fact that matrix E is real and thereby halve the

amount of computation. To further improve efficiency the values bj/ay

may be precomputed and stored in a temporary vector and the

division by ay replaced by multiplication by its inverse l/(z — ey),

which again may be precomputed and stored. Taking these savings

into account, each full iteration requires 2N 2 flops. So provided that

the method converges rapidly, it is potentially very efficient.

It can be shown [5, p.73] that a sufficient condition for the method

to converge is that the matrix is diagonally dominant, i.e.

N

| a . . | > I | a | i - 1 , . . , N (5 .9)
j= l J

It was conjectured that the matrices arising from equation (4.35)

would be diagonally dominant as the modulus of z is equal to 1 and

the elements of matrix E are generally bounded by 1. However actual

tests for diagonal dominance showed in fact that the matrices are not

diagonally dominant. However condition (5.9) is a sufficient condition

for convergence and not a necessary one and therefore the GS

method could still prove to converge. Unfortunately tests verified that

the GS method diverges for the systems of the form (5.1) which are

derived from equation (4.35) and therefore is not suited to solving

these equations.

5.3.2) I .HAST SQUARES APPROACH

The least squares approach [6] has the distinct advantage over the GS

method of being globally convergent, though convergence can

sometimes be very slow. Before presenting the algorithm, some

notation must be defined. Let a(i) denote the ith column of matrix A

114

and define the norm of the column a^) as the Euclidean length

a(i)Ta(i)>

N

" a (i) " 2 " ^ a i i (5 - 10)
j - 1 J

The LSA constructs successive approximations to the least squares

solution of the matrix equation such that the norm of the error is

reduced at each iteration and is therefore guaranteed to converge. The
algorithm is,

y/ = b - Ax

REPEAT

FOR i := 1 TO N DO

x. - x . + a (5 .1 1)

f - ol X

END

UNTIL converged

The convergence criteria (5.8) is used, except in this case the number

of iterations was limited to N (as then the algorithm requires 0 (N 3)

flops and ceases to be of any benefit). As in the case of the GS

method this algorithm can also take advantage of the fact that matrix

E is real, though not quite as effectively as the GS method. Another

slight disadvantage is that the vector ^ and scalar a. are complex

which doubles the amount of computation. The computation of the

norms ||a (i) ||2 can be precomputed and the reciprocals stored, which

leads to significant savings. A further saving is possible as all the

elements in a column a(k) are real (and therefore independent of

frequency) except for the diagonal elements (z - ejj). Thus the partial

sums excluding the diagonal elements may be computed before

frequency analysis, which saves N 2 flops for each solution. Taking

these savings into account, each full iteration requires approximately

4N 2 flops.

115

The algorithm was implemented and tested on matrices which were

known to converge rapidly and was found to perform very well.

However when the algorithm was applied to the matrices arising from

equation (4.35) it was found that the algorithm never converged within

N iterations (in fact was still wildely out after N iterations). Therefore

this algorithm too was found to be ineffective for solving equation

(4.35) and therefore the iterative approach had to be abandoned.

5.4) REDUCTION TO SIMPLER FORMS

The objective of this approach is to transform equation (5.1) into a

form such that the resulting system may be efficiently and accurately

solved. The two methods considered both depend on finding similarity

transformations of matrix E,

H = T"1ET (5 .1 2)

such that H is of a form which greatly simplifies the direct LU

solution process and thereby dramatically reduces the computational

cost. The requirement of such a transformation is that the matrix

(z l— H) retains the form of H, so that the transformation need only

be done once, independent of the frequency variable z. Two such

transformations are considered, the first reduces E to upper

Hessenberg form and the second to tridiagonal form. The application

of the Hessenberg approach to frequency analysis of linear systems was

suggested in [1] and was applied to SC frequency analysis in [9] . The

method has been very effectively applied to the solution of large

systems of linear ordinary differential equations [7].

5.4.1) HESSENBERG APPROACH

An upper Hessenberg matrix H is defined as

h . .= 0 j < i -1 i = 1 , . . , N (5 .1 3)
i j

A general matrix E can always be reduced to Hessenberg form by

stabilised elementary transformations [2],

H = T"1P "1EPT (5 .1 4)

where T is a triangular transformation matrix and

P is a permutation matrix.

116

The transformation matrix T and Hessenberg matrix H can be

determined in approximately 5/6N 3 flops using real arithmetic

throughout. A direct method analogous to the Crout method may be

used which allows extra precision accumulation of inner products, the

kth step of the direct method is [8],

N i-1

h . , = e . 1 + 1 e . , x t . . - l t . . x h i = 1 , . . , k + l
l k i k . ! , i i j i k . , i j j k ’ / c

j = k + l J J j = l J J (5 .1 5)

N k
e + l e . . X t 1 t . . X h

lk j=k+l1J Jk j_l ‘J Jk
t .i , k+1 (5 .1 6)

k+ 1 , k i - k + 2 , . . , N

To avoid numerical instability the pivot h ^ i ^ is selected as the

maximum of le ^ l for i = k + l , . . ,N and the respective rows and

columns interchanged. The algorithm determines the matrices in the

following form,

X X X X

X X X X

X X X X

X X X X

PT

1

0 1

0 X 1

0 X X 1

PT

1

0 1

0 X 1

0 X X 1

H

X X X

X X X

X X X

X X

where blank entries are zero. In a practical implementation the

triangular matrix PT is stored in the zero portion of the Hessenberg

matrix as the unity diagonal and first column need not be stored.

This then allows the algorithm to be performed inplace and no extra

storage is needed.

PT(zI - T_1P "1EPT)T“ 1P 1x = b

Applying the stabilised elementary transformation to equation (5.1),

(5 .1 7)

which may be written in a simplified form as,

(z l - H)y - bP

where H = T P EPT

v = T"1P "1x

(5 .1 8)

bP = T~1P '1b

117

Inspecting equation (5.18) one sees that this transformation satisfies the

requirement that (z \— H) is upper Hessenberg. To form the

preprocessed vector bP, the inverse of T is not actually calculated as

the equivalent operation is accurately and efficiently obtained by the

process of backsubstitution using matrix T. If vector b is independent

of z , then this need only be done once prior to frequency analysis

and requires approximately N 2 flops.

Equation (5.18) is solved using the direct approach discussed in section

5.2. By taking advantage of the structure of the Hessenberg matrix,

both in terms of zero/nonzero and real/complex structure, the

computation is reduced from 4/3N 3 flops to 2N 2 flops. The forward

elimination and backsubstitution steps together require approximately

2N 2 flops. Finally the required solution x is determined by multiplying

y by the transformation matrix which requires a further N 2 flops. The

total solution process then requires approximately 5N 2 flops which is a

dramatic improvement over the direct approach.

To ensure numerical stability partial pivoting may be used in the LU

decomposition process, which because of the structure of the

Hessenberg matrix only requires the comparison of two elements (the

diagonal and the element below it) and is therefore not too costly.

Similarly iterative refinement may be used to improve the accuracy of

the solution.

The simplified Gauss elimination algorithm was implemented without

partial pivoting and iterative refinement and the solutions were found

to agree exactly with those for the full approach. Therefore the extra

safeguard for stability is not needed for this particular application. The

Hessenberg method is therefore seen to be a very efficient method

that is reliable and accurate.

5.4.2) TRIDIAGONAL APPROACH

The tridiagonal approach is an attempt to improve on the efficiency

of the Hessenberg method. The motivation for this approach is that a

tridiagonal matrix T, defined as,
t « 0 j < i -1 , j> i+ l i = l , . . , N (5 .1 9)

i j

118

may be LU decomposed in O(N) flops and a tridiagonal system solved

in O(N) flops.

It can be shown, [2, p .396] that a lower Hessenberg matrix can

be reduced to tridiagonal form by a similarity transform,

T - Q_1 HT Q (5 .2 0)

This transform is identical to the transformation of a general matrix

to Hessenberg form, except that stabilisation is not allowed as this

destroys the structure of the matrix. Therefore the same algorithms

may be used by transposing all operations on the matrices, and may

also be implemented inplace.

Consider the stabilised elementary transformation of a general matrix

E to upper Hessenberg form

H = R"1P_1EPR (5 .2 1)

Transposing equation (5.20) gives,

T T T -1T - Q H(Q) (5 .2 2)

For notational simplicity the cumbersome (Q ^)— * is replaced by

Q“ T. Substituting equation (5.21) into (5.22) gives the transformation

of a general matrix E to tridiagonal form,

T T -1 -1 -TT - Q R P EPRQ (5 .2 3)

Applying this transformation to equation (5.1) gives,

PRQ"T (z l - QTR"1P“1EPRQ"T) QTR"1P "1x = b (5 .2 4)

which may be written in the simplified form,

(z l - TT)y - bp (5 .2 5)

T -1 -1
w here y ■ Q R P x

bP - QTR"1P“ 1b

The transpose of a tridiagonal matrix is still tridiagonal, so this

reduction to tridiagonal form satisfies the requirement that (z I - T T) is

tridiagonal. The transformation matrix QT and tridiagonal matrix TT

can be determined in approximately 1/6N 3 flops, so the total cost of

119

transforming a general matrix to tridiagonal form is then N 3 flops.

The elementary transformation algorithm presented in [2] is then

modified to work on the transposed Hessenberg matrix H ^.

The kth step of the algorithm is,

FOR i := k+2 TO N DO

qk + l , i = e k i / ek ,k + l

su b tra ct j x row (k+1) from row i

add <1̂ +1 j x column i to column (k + l)

END (5 . 2 6)

Because stabilisation is not allowed, the method is potentially unstable

and therefore accuracy cannot be guaranteed, though the use of

double precision arithmetic can improve the accuracy. If the pivot

ek,k+-1 zero then the algorithm fails as no row or column

interchanges are allowed. In practice this problem has not been

encountered for the many examples tested, but unfortunately this is

not a guarantee that such a matrix will not occur.

The algorithm determines the matrices Q t and T t in the following

form,

■ 1 0 0 0 ' ' X X ' X X ■ 1 0 0 0 '

1 X X X X X X X X 1 X X

1 X X X X X
as

X X X 1 X

1 _ X X X X X X 1

where blank entries are zero. As in the Hessenberg case, the matrix

q t may be stored in the upper zero portion of the matrix T T as the

unity diagonal and first row need not be stored.

Equation (5.25) may be solved using Gauss elimination. In this case

the algorithm reduces dramatically and only requires 7N flops for the

LU decomposition and 8N flops for the forward elimination and

backsubstitution, giving a total of 15N flops. Partial pivoting may be

used and is even simpler to implement than the Hessenberg case, as

only two comparisons are required and only 3 elements per row are

120

swapped. Finally the required solution x is obtained by backsubstitution

of y with QT and then multiplying this result by PR which requires a

total of 2N 2 flops. Therefore it is seen that even though the solution

of the tridiagonal system only requires O(N) flops, the inverse

transformation of the results still requires 0 (N 2) flops and thus any

possible transformation method will always require 0 (N 2) flops. The

total tridiagonal method therefore requires approximately 2N 2 flops,

which is believed to be the lowest cost attainable.

The tridiagonal method was implemented and tested on a large

number of examples. It was found that for matrices of up to about

order 60 the tridiagonal method without partial pivoting produced

results which agreed exactly with the full LU methods. However for

larger matrices instability sometimes occurred (though not always and

some large matrices were successfully solved) and inaccurate results

were obtained. Partial pivoting did not affect these inaccuracies and it

was therefore concluded that the instability is introduced in the

reduction to tridiagonal form. Unfortunately nothing can be done to

eliminate this problem, except perhaps using extra precision arithmetic,

which would be very costly and is still not guaranteed. Therefore the

tridiagonal method cannot be unconditionally recommended and so the

Hessenberg method, though 2 \ times slower, is the preferred method.

5.5) APPLICATION AND RESULTS

All three above approaches were implemented in the program

FOOLSCAP as part of the frequency analysis presented in Chapter

Four. The frequency analysis algorithm (4.49) has to be slightly

modified to include the Hessenberg and tridiagonal methods. The

modified algorithm for the Hessenberg method is,

A Preprocessing independent o f frequency and n

1) Formulate the matrices and C^ and the vectors

2) Calculate P^ matrices using equation (4.16) and (4.21)

3) Calculate Bj ^ vectors using equation (4.22) for i = 0 ,..,m

4) Calculate matrix E using equation (4.31)

5) Calculate F̂ ^ vectors using equation (4.34) for i = 0 ,..,m

6) Transform matrix E to upper Hessenberg form H using

121

equation (5.14)

7) Transform vectors F j>k and Bj ^ using equation (5.18)

B Frequency analysis independent o f n

1) Prepare matrix (e l ^ ^ i — h)

2) Build RHS of equation (4.35) using equation (4.33)

3) Solve equation (4.35) for V ^ e J ^ 0̂) using the Hessenberg

method
4) Calculate Vk(ei^oT) using equation (4.36)

C Spectral analysis

1) For selected n calculate weights Dk n using equations (4.47)

and (4.48)

2) Calculate Sn using equation (4.46)

Similarly for the tridiagonal method the modified algorithm is,

A Preprocessing independent o f frequency and n

1) Formulate the matrices Gk and Ck and the vectors Wk

2) Calculate Pk matrices using equation (4.16) and (4.21)

3) Calculate B^k vectors using equation (4.22) for i = 0 ,..,m

4) Calculate matrix E using equation (4.31)

5) Calculate Fj>k vectors using equation (4.34) for i = 0 ,..,m

6) Transform matrix E to tridiagonal form T ^ using equation

(5.23)

7) Transform vectors F^k and B jk using equation (5.25)

B Frequency analysis independent of n

1) Prepare matrix (ei C00̂ I — T*)

2) Build MHS of equation (4.35) using equation (4.33)

3) Solve equation (4.35) for VN(eia)oT) using the tridiagonal

method

4) Calculate Vk(eJOJoT) using equation (4.36)

C Spectral analysis
1) Fpr selected n calculate weights Dk n using equations (4.47)

and (4,48)

2) Calculate Sn using equation (4.46)

122

The theoretical costs of the three different methods are determined

and compared to actual timings obtained for a number of typical

applications, given in Table 5.1. Apart from the preprocessing steps,

the different methods differ only in the time required for solving the

last slot as all the other slots are obtained by backsubstitution which

requires a total of 2(M—1)N2 flops, where M is the number of slots.

The LU decomposition method requires approximately 4/3N 3 flops for

the LU decomposition which swamps the 0 (N 2) flops required for the

solution. The results of this method are given in Table 5.2. A graph

of the CPU time required per frequency point for 2 phase networks is

shown in Fig. 5.1. From this graph the N 3 dependence is clearly seen

and the enormous benefit of the other methods is apparent.

The Hessenberg method requires a total of 5N 2 flops, and so for a 2

phase network the total is 7N 2 flops per frequency point. This

dramatic saving over the LU method is clearly seen from the results

in Table 5.3. The small increase in preprocessing time is for the

extra processing required for the reduction to Hessenberg form (5/6N3

flops) and the preprocessing of the excitation vectors (M N 2 flops).

The N 2 dependence of the Hessenberg method is shown in Fig. 5.1.

The tridiagonal method requires a total of 2N 2 flops, and so for a 2

phase network the total is 4N 2 flops per frequency point, which is

just slightly over half that required for the Hessenberg method. This

result is verified in the results of Table 5.4. There is a slight increase

in preprocessing time compared to the Hessenberg method, which

accounts for the reduction to tridiagonal form (1/6N 3 flops) and the

preprocessing of the excitation vectors (M N2 flops). The N 2

dependence of the tridiagonal method and the improvement over the

Hessenberg method is shown in Fig. 5.1.

From these results it is evident that the Hessenberg and tridiagonal

methods can reap enormous savings compared to the full LU method,

especially for large networks. Even though the tridiagonal method is

faster than the Hessenberg method, the latter is recommended as it is

thoroughly reliable even for large networks.

123

CP
U

TI
ME

(s

ec
)

RUN TIME PER FREQUENCY POINT

5

FULL LU METHOD

4

3

2

HESSENBERG METHOD

1
TRIDIAGONAL METHOD

5 0 6040 703020

SYSTEM SIZE

Figure 5.1 Comparison of execution speed of various methods

124

DESCRIPTION

1 5 th o rd e r e l l i p t i c low pass f i l t e r [10]

2 6 th o rd e r C hebyschev ban d p ass f i l t e r [10]

3 2nd o rd e r ban d p ass f i l t e r , Q = 20 [11]

4 5 th o rd e r e l l i p t i c low pass f i l t e r [12]

5 1 1 th o rd e r e l l i p t i c low pass f i l t e r [12]

6 7 th o rd e r C hebyschev low pass f i l t e r [13]

7 3 rd o rd e r e l l i p t i c low pass f i l t e r [13]

8 1 5 th o rd e r e l l i p t i c lo w p ass, le a p f ro g d e s ig n [14]

9 1 5 th o rd e r e l l i p t i c low p ass, LUD d e s ig n [14]

10 6 th o rd e r e l l i p t i c ban d p ass f i l t e r [15]

Table 5.1 Examples used for comparison

125

EXAMPLE
NO.

NODES
NO.

SLOTS
P R E -P r.
(s e c s)

TIME/PT
(s e c s)

STORAGE
(w ords)

1 22 2 4 .0 5 0 .2 5 9 12288

2 28 2 5 .1 3 0 .5 2 7 16890

3 11 2 1 .1 4 0 .0 5 4 3664

4 20 4 5 .1 0 0 .2 3 0 11032

5 41 4 2 2 .6 1 .819 39944

6 30 6 11 .8 0 .6 8 8 27002

7 12 12 4 .7 6 0 .1 2 8 8520

8 70 2 4 0 .6 8 .168 94564

9 69 2 4 1 .1 7 .871 95210

10 27 2 5 .7 9 0 .471 17184

Table 5.2 Run statistics (LU method)

126

EXAMPLE
NO.

NODES
NO.

SLOTS
PR E -P r.
(s e c s)

TIME/PT
(s e c s)

STORAGE
(w ords)

1 22 2 4 . 25 0 .0 7 5 12288

2 28 2 5 .5 5 0 .1 1 4 16890

3 11 2 1 .1 4 0 .0 3 4 3664

4 20 4 5. 26 0. 092 11032

5 41 4 22. 7 0 . 320 39944

6 30 6 12 . 4 0 . 234 27002

7 12 12 4 . 82 0. 099 8520

8 70 2 4 7 . 4 0 .701 94564

9 69 2 47 . 6 0 . 679 95210

10 27 2 6. 21 0 .1 0 4 17184

Table 5.3 Run statistics (Hessenberg method)

127

EXAMPLE
NO.

NODES
NO.

SLOTS
PR E -P r.
(s e c s)

TIME/PT
(s e c s)

STORAGE
(w ords)

1 22 2 4 . 37 0. 052 12288

2 28 2 5. 76 0 . 070 16890

3 11 2 1. 22 0 . 024 3664

4 20 4 5. 37 0. 072 11032

5 41 4 23. 5 0. 231 39944

6 30 6 12. 8 0 .1 8 9 27002

7 12 12 4 . 98 0. 093 8520

8 70 2 49 . 0 0 . 390 94564

9 69 2 49 . 5 0 .381 95210

10 27 2 6. 46 0. 067 17184

Table 5.4 Run statistics (Tridiagonal method)

128

REFERENCES FOR CHAPTER FIVE

[1] A .J. Laub, "Efficient multivariable frequency response

computations", IEEE Trans. Automatic Control, Vol. AC—26,

No. 2, pp .407— 408, Apr. 1981.

[2] J .H . Wilkinson, "The algebraic eigenvalue problem", Clarendon

Press, Oxford, 1965.

[3] J .H . Wilkinson and C. Reinsch, "Handbook for automatic

computation", Vol. II Linear Algebra, Springer— Verlag, Berlin,

1971.

[4] NAG FORTRAN Library Manual, Mark 11, Vol.5, Numerical

Algorithms Group, Oxford, 1984.

[5] R.S. Varga, "Matrix iterative analysis", Prentice—Hall, London,

1962.

[6] J . Staar, J . Vanderwalle and E. Van den Meersch, "An

efficient numerically stable algorithm for the computer aided

analysis of circuits and systems", Proc. IEEE Int. Symp. on

Circuits and Systems, pp.218—221, May 1983.

[7] W. Enright, "On the efficient and reliable numerical solution of

large linear systems of ODE's", IEEE Trans. Automatic Control,

Vol. A C - 24, No. 6, pp.905-908, Dec. 1979.

[8] R.S. Martin and J.H . Wilkinson, "Similarity reduction of a

general matrix to Hessenberg form", Numer. M ath., Vol. 12,

pp.349— 368, 1968.

[9] E .P. Rudd and R. Schaumann, "A program for the analysis of
the high-frequency behaviour of switched capacitor networks",
Proc. IEEE Int. Symp. on Circuits and Systems, pp.1173—1176,

May 1985.

129

[10] D.G. Haigh, B. Singh and J .E . Franca, "Filters for state of the

art microelectronics fabrication", Annual Report, Imperial

College, London, Sep. 1982.

[11] S .J. Harrold, I.A.W. Vance, J . Mun and D.G. Haigh, "A GaAs

switched—capacitor bandpass filter IC", Proc. 1985 IEEE GaAs

IC Symposium, Monterey, 4pp., November 1985.

[12] J.A . Nossek and G.C. Temes, "Switched—capacitor filter design

using bilinear element modelling", IEEE Trans. CAS, Vol.

C A S -27, No.6, pp.488— 491, 1980.

[13] A. Fettweiss, D. Herbst, B. Hoefflinger, J . Pandel and R.

Schweer, "MOS switched— capacitor filters using voltage inverter

switches", IEEE Trans. CAS, Vol. CAS—27, No. 7,

pp.527— 538, 1980.

[14] P. Li, University of Glasgow, private communication.

[15] J .E . Franca, "Switched— capacitor systems for narrow bandpass

filtering", Ph.D. Thesis, Imperial College of Science and

Technology, London, 1985.

130

CHAPTER SIX

CONCLUSION

6.1) CONCLUSIONS

This thesis has addressed the problem of developing techniques for

analysing periodically switched linear networks in the time and

frequency domains that are suited to computer implementation. The

motivation for this work, which was discussed in Chapter 1, was the

increasingly widespread use of switched capacitor networks and the

corresponding growing need for computer aided analysis tools capable

of efficiently analysing SC networks taking nonideal effects into

account.

Very fast methods for the time and frequency domain analysis of

periodically switched linear networks were developed and implemented

in a computer program. The per point computation cost of these

methods is 0 (N 2) flops, which allows very large networks to be

successfully analysed. It was demonstrated that these methods are

orders of magnitude faster than existing nonideal analysis programs.

This performance is due to the way in which the problem was

formulated, the analysis methods used and the techniques developed to

implement this analysis in a practical computer program. The thesis

was divided into chapters each of which covers aspects of this work

which are central to the overall efficient algorithms which were

developed.

Chapter 2 addressed the problem of solving large sparse sets of

complex linear equations. The concept of sparsity was extended to

include the type of the nonzero elements, called domain types. This

concept of domain types provided the key to the efficient approach

developed to solve these equations. This approach used an

interpretable code generation scheme capable of taking advantage of

the domain type structure of the matrix. Three new optimal ordering

algorithms were presented and were extensively compared with other

ordering algorithms. The very substantial savings that can be achieved

using domain type interpretable code generation in conjunction with a

131

domain type ordering algorithm was demonstrated.

Chapter 3 was concerned with the efficient time domain solution of

linear networks with arbitrary inputs. A new approach based on the

analytic solution, which uses numerical Laplace transform inversion and

polynomial approximation of the excitations, was developed. The

motivation for using polynomial approximations was to avoid the

convolution in the analytic solution, which would otherwise be required

for an arbitrary input. A new formula for polynomial approximation

which calculates the coefficients of the polynomial explicitly was

developed. An efficient technique for evaluating the numerical inverse

Laplace transforms needed to calculate the extended state transition

matrix and excitation response vectors was developed that makes

optimal use of the sparsity of the matrices using the approach

developed in Chapter 2.

Extensive results demonstrated that the time domain method is

A— stable and is equivalent to high order numerical integration

methods (which are not A—stable). The method is well suited to

solving large stiff networks, which frequently arise in network analysis,

and in particular SC networks with the large spread in resistance

values associated with the 'on ' and 'off' switches. This method was

shown to be extremely efficient and orders of magnitude faster than

numerical integration methods.

Chapter 4 presented the development of efficient time and frequency

domain analysis methods for periodically switched linear networks. The

time domain method of Chapter 3 was successfully generalised to

periodically switched linear networks. This solution provided the basis

for a very efficient technique for computing the time domain response

of nonideal SC networks. The efficiency of the frequency domain

method derives from three key aspects of the algorithm. The first is

that the method, based on the time domain solution, uses polynomial

approximation of the excitations, which avoids the need for AC

analysis at each frequency point. This formulation enables the network

to be modelled as a discrete system. A special system compression

algorithm reduces the solution of this discrete system to the solution

of the network in one slot only. This algorithm ensures that the

132

computational cost of the overall method increases linearly with the

number of slots. The third key aspect is the method used to solve the

compressed system. The cost of this solution, which is 0 (N 3) flops

using standard techniques, was dramatically reduced to 0 (N 2) flops by

using the Hessenberg method, presented in Chapter 5.

The detailed steps taken to verify the analysis methods and their

implementation in a computer program were discussed. The

performance of this implementation was compared with other methods.

These results showed that the frequency domain analysis method is as

accurate as the other analysis methods, yet is orders of magnitude

faster and is capable of analysing very large networks, which the other

methods fail to correctly analyse. This efficient method provides the

basis for efficient sensitivity, noise and optimisation analyses.

Chapter 5 was concerned with methods for efficiently solving the

complex linear equations derived from the compressed system produced

by the frequency analysis method. Three different approaches were

investigated and discussed in detail. The iterative approach was

rejected because the methods either failed to converge or converged

very slowly. The direct LU decomposition methods were found to be

very accurate and reliable, but require 0 (N 3) flops for each solution,

which makes the solution of large matrices impractical. The reduction

to simpler form approach proved to be very effective in transforming

the cost of each solution to 0 (N 2) flops. The Hessenberg method was

found to be numerically stable and very reliable, even for large

matrices. The tridiagonal method, though 2£ times faster than the

Hessenberg method, was found to be unstable for large matrices and

was therefore rejected. The frequency domain algorithms were

modified to include the Hessenberg and tridiagonal solution methods.

Detailed comparisons of these methods and the direct approach clearly

showed the substantial savings that can be achieved by the reduction

to simpler form methods and that they are crucially important in

transforming the per point computation cost of the frequency domain

analysis method from 0 (N 3) flops to 0 (N 2) flops.

133

6.2) SUGGESTIONS OF FURTHER WORK

The application of the adjoint method to the frequency domain

analysis method presented in this thesis would provide the basis for

efficient sensitivity calculations, which in turn provides the basis for

efficient optimisation, group delay and group delay sensitivity

calculations. The adjoint technique provides a convenient and efficient

means of simultaneously determining the transfer functions from every

node of the network to the output [1], which then provides the basis

for efficient noise analysis. Due to the sampled data nature of SC

networks, high frequency noise is aliased into the baseband and

therefore this noise foldover effect must be taken into account [2],

[3]. The analysis method presented in Chapter 4 is well suited to this

calculation as the frequency domain response may be calculated

independently of n (the frequency band number). The aliasing effects

are taken into account in a simple post processing step and therefore

many frequency bands may be evaluated at very little extra cost.

The adjoint method requires the solution of the transpose of the

discrete system used for frequency domain analysis. The block Gauss

elimination algorithm for solving this discrete system may be adapted

to efficiently solve the transpose system [4]. The Hessenberg method

will have to be similarly extended to provide the efficient solution of

the transposed system.

The sensitivity analysis requires the calculation of the sensitivities of

the extended state transition matrices and excitation response vectors.

These calculations could be efficiently performed by using the adjoint

method in conjunction with the numerical inverse Laplace transform

approximation. These sensitivities are frequency independent and may

therefore be calculated in the preprocessing phase.

Three years ago it was not contemplated that the speed of a nonideal

analysis program could be reduced as dramatically as has been

demonstrated in this thesis. Further dramatic savings could be achieved

by applying a compaction process [5] to reduce the size of the

discrete system. This compaction process, also known as pivotal

condensation, has been very effectively applied to the time and

134

frequency domain analysis of ideal SC networks [1], [6]. Pivotal

condensation is applicable to the formulation presented in this thesis

because the formulation does not use an AC analysis at each

frequency point (unlike all the other nonideal analysis methods), and

therefore the RHS vector may be compacted in a frequency

independent step. This compaction process could reduce the system

down to one row per slot corresponding to each output of interest,

for all but the last slot. This slot cannot be reduced because of the

frequency dependent diagonal in the matrix. This process would then

reduce the overall computation cost to approximately 5N 2 flops, the

cost of solving the last slot using the Hessenberg method. The

compaction algorithm would be of particular benefit for networks with

many time— slots, particularly if the outputs are only sampled at a few

slots, which would enable the intermediate slots to be effectively

eliminated from the calculations.

Polynomial symbolic analysis can be used to provide additional insight

into the behaviour of SC networks. Transfer functions can be

produced as H(z) in the ideal case and H(s,z) in the nonideal case

[7]. These polynomials have been used for frequency response and

noise calculations [3]. For the formulation presented in this thesis, the

transfer functions are functions only of z and therefore the complete

nonideal response is given by H(z). This is in contrast to other

formulations which require transfer functions in terms of z and the

continuous frequency variable s. The exact interpretation of the

symbolic transfer function H(z) will require further investigation and

could have interesting application in deriving Z— domain equivalent

circuit models of nonideal SC components. A number of different

symbolic forms are possible, which require different methods for

computing them. The polynomial interpolation method [8] can be used

to determine the coefficients of the transfer function, and root finding

procedures used to find the poles and zeroes. However this approach

suffers from accuracy problems for bandpass and high— Q networks.

An alternative approach is to use the QZ algorithm [9] to determine

the eigenvalues of the system directly. This algorithm has the

advantage that it is numerically stable and is well suited to this

application as the first step of the algorithm is to transform the

system to upper Hessenberg form, which is already done as part of

135

the preprocessing for the Hessenberg solution method. This algorithm

provides a quick and accurate method for computing the poles and

zeroes of the network. If required, the coefficients of the transfer

function polynomials can be obtained from the pole/zero information.

Further theoretical work is required to prove the A— stability of the

time domain solution method presented in Chapter 3. A thorough

error analysis of the algorithm is desirable to study the effects of

truncation errors and the propogation of roundoff errors. A detailed

study of the accuracy of the inverse Laplace transform approximation

used for the calculation of the extended state transition matrix and

excitation response vectors would be useful for obtaining strict bounds

on the error of the time domain method.

Other forms of approximation of the excitations could possibly provide

a more efficient or more accurate method, though perhaps at the

expense of the simplicity and ease of implementation of the

polynomial method. In particular a trigonometric approximation would

appear to be attractive for the special case of sinusoidal input as the

approximation would be exact and would only require one term. This

approximation could then have important implications for the frequency

domain analysis method which uses sinusoidal excitations.

The computation of the extended state transition matrices and

excitation response vectors using the Im N approximant is a relatively

costly process. It is unlikely that the efficiency of the present

algorithm could be improved much, therefore to significantly reduce

this computation other techniques could be investigated. The techniques

would be required to be numerically stable and able to handle large

stiff systems. Iterative methods or methods that can tradeoff speed and

accuracy would be of particular interest because sensitivity studies of

the influence of the approximations on the time and frequency domain

algorithms would allow the accuracy of the approximations to be

controlled, which could significantly reduce the computation cost.

Finally, with the increasing availability and use of vector and parallel

processors, the implementation of the time and frequency domain

algorithms on these processors could be considered. These algorithms

136

are highly suited to vectorisation as almost all calculations are vector

operations. The algorithms also have a high degree of parallelism,

which could be exploited on a parallel processor. The only part of

the algorithms which use strictly serial and scalar computations is the

sparse matrix computations used in the calculation of the extended

state transition matrices and excitation response vectors. Further

investigation would be required to establish whether vectorised full

matrix algorithms could be implemented that are faster than the scalar

sparse matrix algorithms.

:7X

.■K. Vk? ft?

jV*. s sS f , . .-/vo

137

REFERENCES FOR CHAPTER SIX

[1] J . Vanderwalle, L. Claesen and H. De Man, "A very efficient

computer algorithm for direct frequency, aliasing and sensitivity

analysis of switched capacitor networks", Proc. IEEE Int. Symp.

on Circuits and Systems, pp.856—859, 1981.

[2] J . Vanderwalle, H. De Man and J . Rabaey, "The adjoint

switched capacitor network and its application to frequency,

noise and sensitivity analysis", Int. J . Circuit Theory Appl., Vol.

9, pp.77— 88, 1981.

[3] C.K. Pun, A.G. Hall and J .I. Sewell, "Noise analysis of

switched capacitor networks in symbolic form", Proc. 29th

Midwest Symposium on Circuits and Systems, Lincoln, 1986.

[4] J . Vlach, K. Singhal, and M. Vlach, "Computer oriented

formulation of equations and analysis of switched— capacitor

networks", IEEE Trans. CAS, Vol. CAS—31, Sept. 1984,

pp.753— 765.

[5] L.B. Wolovitz, "Improved techniques for time domain analysis of

switched capacitor networks", M.Sc. Thesis, University of Hull,

1986.

[6] A.D. Meakin, J .I. Sewell and L.B. Wolovitz, "Techniques for

improving the efficiency of analysis software for large

switched—capacitor networks", Proc. 28th Midwest Symposium on

Circuits and Systems, pp.390—393, Aug. 1985.

[7] C .K. Pun and J.I. Sewell, "Symbolic analysis of ideal and

nonideal switched capacitor networks", Proc. IEEE Int. Symp.

on Circuits and Systems, pp.1165—1172, 1985.

[8] K. Singhal and J . Vlach, "Symbolic analysis of analog and

digital networks", IEEE Trans. CAS, Vol. CAS— 24,

pp.598— 609, Nov. 1977.

138

[9] C.B. Moler and G.W. Stewart, "An algorithm for generalized

matrix eigenvalue problems", SIAM J . Numer. Anal., Vol. 10,

pp .241— 256, Apr. 1973.

