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To my Father and Elana



Oh, thick target electron beam,

Please go unstable;

Generate those Langmuir waves, 

as fast as you are able.

Then give us microwaves 

Bremsstrahlung X-rays too 

To help the beam relax 

To equilibrium.

A.G. Emslie, D. Alexander and K.G. McClements, 1987 (to the tune 

of fto be a pilgrim*).
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SUMMARY

Hard X-rays, observed during the impulsive phase of solar 

flares, are commonly believed to be produced by the 

bremsstrahlung of collimated beams of electrons, which lose 

their energy collisionally in the dense chromosphere. This 

thesis is concerned with the generation of Langmuir waves by 

such beams.

In Chapter 1 we review observations of solar flares across 

the electromagnetic spectrum. Particular emphasis is given to 

the impulsive phase, and to those observations which provide 

strong evidence for the existence of electron beams. Solar flare 

theory, insofar as it is pertinent to the original work of this 

thesis, is reviewed in Chapter 2. After briefly discussing 

models of primary energy release and particle acceleration, we 

consider in detail the theoretical interpretation of hard X-ray 

and microwave observations. Emissions at these wavelengths are 

believed to contain the most direct information on the electron 

distribution function in the flaring region.

In Chapter 3 we use the quasi-linear theory to determine the 

conditions required for the stability of a steady state electron 

beam propagating in the solar corona. The growth rate for 

electron plasma waves in a magnetized plasma is evaluated, with 

the electron distribution being given by an analytic solution of 

the linearized Fokker-Planck equation. A stability boundary in 

parameter space is determined, indicating that electron beams 

must be highly collimated at injection to be Langmuir unstable 

at any point in space. The implications of this result for



I X

alternative models of hard X-ray emission are discussed and it 

is argued that Langmuir instability will not occur in either the 

trap model or the dissipative thermal model. Such models would 

therefore be refuted by the detection of a large flux of plasma 

microwave emission associated with hard X-ray emission.

In Chapters 4 and 5 we investigate the quasi-linear dynamics 

of thick target electron beams, using a combination of 

analytical and numerical techniques. In Chapter 4, one 

dimensional quasi-linear equations are derived from the general 

three dimensional equations for an axisymmetric beam in a 

magnetized collisional plasma. Asymptotic analytical solutions 

are discussed, and it is shown that the energy density of 

Langmuir waves excited by a steady state thick target beam is 

negligible compared with the beam energy density, although the 

waves heat the plasma at a rate which is comparable to that of 

the fast electrons. We also describe an approximate method of 

incorporating quasi-linear interactions into the collisional 

treatment of thick target beam evolution, based on the 

assumption that the asymptotic state is a plateau distribution.

Numerical computations of the thick target electron 

distribution and the associated Langmuir wavelevel are presented 

in Chapter 5. It is shown that the energy deposition rate and 

bremsstrahlung X-ray signature of a thick target beam are 

essentially unaffected by the presence of Langmuir turbulence. 

We also show that reverse current energy losses can reduce the 

wavelevel by as much as a factor of 2, depending on the beam and 

plasma parameters. Finally, we consider the possible plasma 

radiation signature of a relaxed beam, and show that an
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observable flux of 2nd harmonic radiation will be produced if 

the Langmuir waves are close to being isotropic.

In Chapter 6 we consider Langmuir wave generation by a time 

dependent beam. It is shown that the steady state model remains 

valid if the electrons are injected on a timescale greater than 

about Is. If the injection timescale is as short as 100ms,

however, the energy density of Langmuir waves produced by a

given instantaneous flux of electrons may be amplified by as

much as an order of magnitude. We argue that the wavelevel is 

nevertheless unlikely to exceed the threshold for strong 

turbulence (i.e. the modulational instability), and that the 

propagation of thick target beams can therefore be adequately 

described using the quasi-linear theory.

In Chapter 7 we briefly discuss two possible ways of

extending the work described in previous chapters. Specifically, 

we consider thick target beam relaxation in an inhomogeneous 

plasma, and the induced scattering of Langmuir waves on thermal 

ions.



CHAPTER 1

REVIEW OF SOLAR FLARE OBSERVATIONS

1.1 Introduction

Solar flares are transient phenomena in the atmosphere of the 

Sun which manifest themselves by greatly enhanced radiation

across virtually the entire electromagnetic spectrum, and also 

by energetic particles in the interplanetary medium. The 

physical processes occuring in flares are common to many other 

types of astrophysical object, but the relative proximity of the 

Sun (and the consequent wealth of observational detail) means 

that a much greater demand is placed on theoretical models. In 

addition, the physical conditions in flares are similar to those 

in nuclear fusion devices, and the study of one field can 

therefore shed light on the other. Despite nearly 130 years of 

observations, a definitive theoretical model of the solar flare 

does not yet exist, and it continues to provide a stimulating 

challenge to the astrophysicist.

Solar flares were first observed in integrated white light by 

Carrington (1859) and Hodgson (1859). With the advent of optical 

spectroscopy, radio astronomy and finally space astronomy, a

vast quantity of flare observational data has been accumulated.

A flare occurs in essentially two stages. First there is the

impulsive (or flash) phase, consisting of a rapid rise and fall 

in radiation flux at microwave, Ha, ultra-violet, hard X-ray and 

y-ray wavelengths. This phase lasts for up to a few hundred 

seconds. Almost invariably, the impulsive phase is followed by a 

gradual phase, which is observed as a slow rise and fall in
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radiation intensity at Ha, ultra-violet and soft X-ray

wavelengths. This lasts for between several minutes and several

hours. A schematic illustration of flare intensity as a function

of time at various wavelengths is shown in Figure 1.1. In a
32large flare, the total energy released is ^ 10 ergs: a large

fraction of this appears in the form of bulk plasma motion (e.g.

Svestka 1976). The energy is released over a period of about
3 1910 seconds, and over an area of no more than about 10 cm2 .

Spatially resolved observations of flares on the solar limb

indicate that the flaring region has a vertical extent of the 
9order of 10 cm.

The majority of solar flare theoreticians have concentrated 

their efforts on modelling large flares (in particular the 

impulsive phase), since such events place the most severe

demands on acceleration mechanisms. There are two fundamental

problems associated with solar flares: first, what is the

primary energy release mechanism? Secondly, how is energy 

transported through the atmosphere, thus giving rise to the 

observed radiation, particle emissions, and mass motion? In 

particular, observations indicate that a large amount of energy 

is deposited in the chromosphere, although the primary energy 

release is believed to occur high in the corona. One possible 

method of transporting energy from the corona to the 

chromosphere is by means of high energy electron beams. This 

thesis is primarily concerned with the generation of Langmuir 

waves by such beams.

In the following sections of this chapter we review solar 

flare observations across the electromagnetic spectrum.
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Figure 1.1 Schematic plot of flare intensity as a function of 
time at various wavlengths (from Svestka 1976).
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Particular emphasis is given to the impulsive phase, and to 

those observations which provide evidence for the existence of 

electron beams. Theories of the primary energy release, and of 

hard X-ray and microwave emission, are reviewed in Chapter 2.

1.2 Optical Emission

With the exception of a few rare events, flares cannot be 

observed in integrated white light, thus implying that the 

flaring process occurs well above the photosphere. In the 

majority of cases, optical flare radiation consists of enhanced 

line emission from the chromosphere. The most important lines 

are those of the hydrogen Balmer series (particularly Ha), and 

the singly ionized calcium H and K lines. Flares are classified 

in importance according to the area of the solar disk which 

shows a brightening in Ha emission (cf. Svestka 1976), although 

this scheme is somewhat anachronistic since the total energy 

radiated in a flare is only poorly correlated with Ha 

brightening.

In the course of a large flare, the Ha line develops an 

emission profile, which is both broadened and slightly 

redshifted. The broadening is almost certainly due to the Stark 

effect, and this allows an estimate of the chromospheric 

electron density to be made (Svestka 1972). The cause of the 

redshift is less certain, but it may be due to the impact of an 

electron beam on the chromosphere (Zirin and Tanaka 1973; 

Ichimoto and Kurokawa 1984). The electron beam interpretation is 

supported by theoretical modelling of impulsive Ha profiles, 

using parameters inferred from simultaneous hard X-ray
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observations (Canfield et al. 1984; Canfield and Gunkler 1985).

Ha observations are useful as indicators of flare geometry.

During the impulsive phase, two or more bright localized regions

of Ha emission called 'kernels’ are observed. They are closely

correlated with impulsive emission at other wavelengths. In

large disk flares, the region of Ha brightening consists of two

ribbons, expanding and moving apart, on either side of a

magnetic neutral line (revealed by Zeeman splitting of

photospheric spectral lines). From Skylab soft X-ray

observations (Cheng and Widing 1975), it has been established

that Ha ribbons are the 'footpoints' of an arcade of loops, each

loop being a magnetic flux tube. This conclusion is confirmed by

the observation of Ha flares on the solar limb, which often have

a loop structure (Bruzek 1964; Zirin 1978). Such loops are of

course confined to the chromosphere, but EUV and soft X-ray

observations indicate that flaring loops extend into the corona
9to a height of typically 10 cm (e.g. Vorpahl et al. 1975). Ha 

observations of limb flares also provide direct evidence of high 

velocity mass ejections (e.g. Svestka 1976).

Observations of the Call H and K lines can be used to infer 

the temperature and density structure of the flaring 

chromosphere (e.g. Ayres and Linsky 1976). In particular, 

Machado et al. (1978) used Call K line observations to show that 

there is a considerable temperature enhancement during a flare 

even at photospheric depths. In a few events, this enhancement 

may be enough to produce optical continuum emission, i.e. a 

white light flare. However, the mechanism for white light events 

remains uncertain. Their observed properties have recently been
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1.3 Radio and Microwave Emission

Radio emission from flares extends from the metric down to 

the millimetric range. Early observations indicated that metric 

radio bursts from the Sun can be divided into five types, 

according to their ’dynamic spectra' (a dynamic spectrum is a 

plot of radiation intensity contours on the frequency-time 

plane). Metric radiation from flares has been discussed in 

detail in the book edited by McLean and Labrum (1985): we shall 

concentrate on bursts of type III, which are most closely 

associated with the impulsive phase.

A type III burst is observed as an intense, narrow band of 

emission, drifting to lower frequency at a rate of typically 

lOOMHzs Such bursts frequently have a 2:1 harmonic structure, 

and are closely correlated with impulsive hard X-ray emission 

(e.g. Benz and Kane 1986). The emission mechanism is generally 

accepted to be plasma radiation (at the fundamental and second 

harmonic), produced by electron streams as they propagate out 

through the corona along open magnetic field lines. The electron 

stream develops a 1 gent1e-bump’ instability (due to fast 

electrons overtaking slow ones), and consequently generates 

Langmuir waves which are then converted to plasma radiation. The 

exact mechanism of the conversion process is, however, 

controversial (see e.g. Melrose 1985). The plasma physics 

involved in the propagation of type III streams is of central 

importance for the subject matter of this thesis: this will

become clear in later chapters.



7

Impulsive microwave bursts in flares are closely associated 

with hard X-ray emission and are of crucial importance for 

inferring the physical conditions in the flaring region: this 

will be discussed in detail in Chapter 2. A typical microwave 

spectrum in a large flare is shown in Figure 1.2. The peak
4intensity of a microwave burst generally lies in the range 1-10

-19solar flux units, 1 solar flux unit (s.f.u.) being 10 ergs 
- 2 - 1 -1cm s Hz The spectrum turns over at a frequency which is 

typically 10GHz: recently, however, a burst was observed by 

Kaufmann et al. (1985a) with a peak frequency in excess of 

90GHz. Microwave bursts very often exhibit extremely fast time 

structures: spikes of duration £l0ms have been detected (Slottje 

1978; Benz 1986; Stahli and Magun 1986), indicating brightness 

temperatures as high as 10^K. In general, the time profiles of 

microwave bursts are closely correlated with those of hard X-ray 

bursts, although there is some evidence for time delays between 

the two (e.g. Kaufmann et al. 1983).

Recently, evidence has emerged of a new class of microwave 

burst in the range (3-5)GHz which is qualitatively similar to 

the metric type III burst in duration, bandwidth and 

polarization, but which drifts towards higher frequencies with 

time (Stahli and Benz 1987). These are (somewhat confusingly) 

referred to as 'reverse drift' events. Similar phenomena have 

been detected at decimetric wavelengths, again closely 

associated with hard X-ray emission, showing both positive and 

negative frequency drift rates (Benz et al. 1983). The 

significance if these observations will be discussed in later 

chapters.
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1•4 Ultra-Violet Emission

Ultra-violet emission from flares has been observed in the 

range 1150-3600$ by the UVSP instrument on the Solar Maximum 

Mission (SMM) satellite (Woodgate et al. 1980), and in the EUV 

range (10-1000$) by the 0S0 satellites and the ATM instrument on 

Skylab (Widing and Cheng 1974). Flares are observed to produce 

both continuum and line UV emission, in both the impulsive and 

the gradual phase. EUV bursts are closely correlated with hard 

X-ray emission, although as with the microwave emission there is 

a time delay between the two (e.g. Emslie et al. 1978).

UV lines such as those of OV (1371$) are extremely useful 

because they can only be formed in the transition region 

(T^IO^K), and can thus be used to provide sensitive diagnostics 

of the temperature and density structure of that part of the 

atmosphere during the impulsive phase of a flare. The flaring 

transition region lies deeper in the atmosphere than the quiet 

Sun transition region, because of chromospheric heating. The OV 

intensity depends on both the plasma density and the temperature 

gradient, and Emslie and Nagai (1985), on the basis of a 

hydrodynamic model, have argued that the observed time profiles 

of UV lines and hard X-rays are consistent with electron beam 

heating, but not conductive heating. This conclusion is 

supported by Mariska and Poland (1985).

As indicated previously, spatially resolved ultra-violet

observations confirm the existence of loop structures. Poland et
oal. (1982) used the FeXXI line (1354A) to study the morphology 

of a limb flare as a function of time, and showed that
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transition region line emission is strongly concentrated at the 

footpoints of the loop.

1.5 Soft X-Ray Emission

Soft X-ray emission from flares (photon energies in the range

l-10keV) is associated with the gradual rather than the

impulsive phase. Soft X-ray continuum is generally assumed to be

thermal bremsstrahlung emission from the flaring corona - this
2enables the temperature T and emission measure n V (where n is 

the plasma density, and V the volume) of the emitting region to 

be inferred (assuming the region to be homogeneous). V can be 

estimated from spatially resolved observations, such as those 

made with the Hard X-Ray Imaging Spectrometer (HXIS) instrument 

on SMM (Van Beek et al. 1980), thus yielding values for n. The 

plasma density can also be inferred directly from soft X-ray 

line ratios, particularly those of high ionization states of 

iron (see Svestka 1981). Using these methods, it has been shown

that the plasma density in the flaring corona lies in the range
10 12 - 2  10 - 10 cm (e.g. Hudson and Ohki 1972; Wolfson et al.

1983), while the temperature rises from 1-4x10 K before the

flare to greater than 10^K during the impulsive phase (Moore et

al. 1980). The thermal energy in the flare plasma is a

significant fraction of the total energy released in the flare.

In reality, of course, the emitting region is inhomogeneous

and the observed soft X-ray spectrum is a convolution of the

temperature and density structure of the source. In principle,

one can use spectral data to determine an emission measure

differential in temperature £(T), which may yield information on
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the physics of the flaring plasma (Craig 1981). It can be shown, 

however, that the problem of inferring S(T) from soft X-ray 

spectra is mathematically ill-posed, in the sense that C(T) is 

extremely sensitive to small perturbations in the data (Craig 

and Brown 1976, 1986). The spatial information contained in the 

(spatially unresolved) soft X-ray spectrum is therefore 

extremely limited.

Soft X-ray imaging has revealed a great deal of information 

about the morphology of flaring loops, particularly in the 

highest temperature (T>10^K) region of the flare. For a review 

of the different kinds of structure observed, see Svestka 

(1981).

Soft X-ray observations raise several theoretical problems. 

There is some controversy regarding the mechanism whereby the 

coronal plasma is heated to a temperature in excess of 10^K. One 

proposal is that coronal heating occurs as the direct result of 

Ohmic dissipation in the primary energy release region (e.g. 

Spicer 1977). Another scenario involves nonthermal electron 

beams, which impact on the chromosphere and heat the footpoints 

of the loop. This results in hot material 'evaporating' from the 

chromosphere, filling the loop and giving rise to the observed 

temperature and emission measure (Antiochos and Sturrock 1978). 

Chromospheric evaporation is certainly observed to take place, 

and there is evidence that, during the impulsive phase at least, 

it is indeed produced by electron beams (Acton et al. 1982; 

Antonucci and Dennis 1983). The cooling of the coronal plasma, 

as revealed by the decay phase of the soft X-ray flare, is 

believed to take place due to a combination of thermal
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conduction and radiation (Moore et al. 1980).

1.6 Hard X-Ray Emission

The wealth and quality of hard X-ray observations of flares 

have improved dramatically in the past few years with the launch 

of SMM and the Astro-A (Hinotori) satellite. In particular, the 

Hard X-Ray Burst Spectrometer (HXRBS) instrument on SMM has been 

used to obtain observations of several thousand flares, with a 

time resolution of 128ms. The instrument can also be used to 

obtain total flux measurements with a time resolution of 10ms 

(Orwig et al. 1980). SMM results have been reviewed recently by 

Dennis (1985). Only a brief review of hard X-ray burst 

observations will be given in this section: their theoretical

interpretation will be discussed in Chapter 2.

As photon energy is increased, the impulsive phase 

increasingly dominates over the gradual phase, the transition 

occuring at an energy typically lying in the range (10-20)keV. 

Prior to the launch of SMM, it was known that an impulsive hard 

X-ray burst consists of a series of spikes, typically of a few 

seconds duration and certainly longer than one second in 

duration (Hoyng et al. 1976; de Jager and de Jonge 1978). The 

apparent non-existence of faster variations was almost certainly 

due to the rather poor time resolution (>ls) of the observations 

available at that time. Using HXRBS results, Kiplinger et al. 

(1983a) claimed to have detected individual spikes with 

e-folding times of the order of 20ms. Brown et al. (1985) showed 

that these features may in fact be due to Poisson noise in the 

data, and concluded that only spikes with timescales in excess
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of about 100ms have yet been shown to be statistically

significant. In any case, a majority ( ^90%) of the events 

analysed by Kiplinger et al. (1983a) did not exhibit 

fluctuations on timescales of less than a second. This

conclusion has important implications for models of hard X-ray 

burst emission (see Chapter 2), and also for the level of

Langmuir waves produced by a hard X-ray-emitting electron beam 

(see Chapter 6 and McClements 1987a).

Hard X-ray burst spectra are generally parametrized using a

power law representation

1(e) = I e"Y (1.1)o

- 2 - 1where I(e ) is the observed radiation flux (photons cm s 

keV *) and e is photon energy. Spectra with high resolution have 

been obtained using balloon-borne detectors (e.g. Lin et al.

1981a) and HXRBS, which has fifteen photon counting channels in 

the range (20-260)keV. The value of the spectral index Y ,

averaged over the spectrum, varies between 3 and 10, although 

the majority of events have spectral indices in the range 3-5

(see Figure 4 of Dennis 1985). Several authors (e.g. Hoyng et

al. 1976) have reported a steepening ('softening’) of the

spectrum towards higher photon energy, the break occuring around 

50-60keV, y increasing by between 1 and 2. This may be regarded 

as evidence in favour of a thermal interpretation. Kiplinger et 

al. (1983b) and Wiehl et al. (1985) have found that some hard

X-ray spectra can be fitted more accurately by an isothermal

bremsstrahlung curve
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1(e) = I exp ( - e/k T) /e (1.2)O rS

than by a power law (in (1.2) T is the source temperature and k
.D

is Boltzmann’s constant). Brown (1974) has shown that a 

multi-thermal interpretation may be valid for any hard X-ray 

spectrum. The qualitative behaviour of y as a function of time 

seems to vary between different events, but in the majority of 

impulsive bursts the spectrum hardens (i.e. Y decreases) during 

the rise phase, and softens during the decay phase (Hoyng et al. 

1976; Dennis 1985). Figure 1.3 shows the flux time profile in 

various energy bands, together with the time dependence of Y , of 

a typical large hard X-ray burst.

Hard X-ray polarization measurements have been confined, for 

technical reasons, to comparitively low photon energies 

(e<20keV). Tindo et al. (1976) found degrees of polarization in 

the range 0-5%, at a photon energy of 15keV. More recently, 

Tramiel et al. (1984), using an instrument on the space shuttle 

Columbia, obtained similar results for photon energies in the 

range 5-20keV. The significance of these results will be 

discussed in Chapter 2. Related to polarization observations are 

those of directivity, i.e. the systematic variation of hard 

X-ray emission across the solar disk. There are theoretical 

grounds for believing that the observed directivity of hard 

X-ray emission will be rather small (Henoux 1975), and in fact 

no statistically significant centre-to-limb variation has yet 

been detected (e.g. Datlowe et al. 1977).

The HXIS instrument on SMM enables hard X-ray images to be 

obtained up to an energy of 30keV. HXIS images typically consist
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1985).
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of 2 or 3 bright patches, coincident with Ha kernels, which 

brighten simultaneously to within a few seconds of each other 

(e.g. Duijveman et al. 1982). These areas can be identified as 

the footpoints of magnetic loops. MacKinnon et al. (1985) have 

shown, however, that the hard X-ray flux at HXIS energies is 

much less localized than was previously thought, and in fact 

only a small fraction of the X-rays are produced by the

footpoints. This conclusion is supported by the fact that the 

footpoint X-ray flux is much less than would be expected from an 

extrapolation to energies less than 30keV of HXRBS data.

HXIS observations of limb flares have also been used to infer

the height structure of hard X-ray emission. Haug and Elwert

(1985) claim to have detected a systematic softening of the 

X-ray spectrum with increasing height during the flare of 1980 

November 18, 14:51UT. It appears doubtful, however, that the

data justify such a conclusion. Height structure observations 

have also been made using two spacecraft widely separated in 

heliocentric longitude (Kane 1983). Results indicate a decrease 

in X-ray brightness with increasing height above the 

photosphere.

1.7 Gamma-Ray Emission

Both y-ray continuum and nuclear line emission are observed 

in solar flares. The theory of gamma-ray emission has been 

treated in detail by Ramaty et al. (1975): more recently,

nuclear line production has been reviewed by Hudson (1985) and 

Ramaty (1986).

Gamma-ray continuum from flares was first observed by
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Peterson and Winckler (1959), below IMeV. This is generally 

believed to be relativistic electron bremsstrahlung: there are, 

however, alternative mechanisms for continuum emission at both 

X-ray and y-ray energies which will be discussed in Chapter 2. 

In many events there seems to be a hardening of the spectrum at 

e^500keV, above which the spectral index is typically y ̂  2 

(Ramaty et al. 1975).

The fact that y-ray line emission is observed during the

impulsive phase indicates the presence of energetic nuclei. The

most intense y-ray lines are those of neutron capture by protons

(2.223MeV) and positron annihilation (0.511MeV). Many other

lines are produced by the deexcitation of nuclear levels of

elements such as C, N and 0 (e.g. Chupp et al. 1973). In the

range 4-7MeV the Doppler broadening of these lines creates a

quasi-continuum. The theory of line production is fairly well

established, and this has made it possible for the number of

energetic protons accelerated in a flare to be measured. The

total energy in protons with energies greater than 30MeV in a
28large flare is typically of the order of 10 ergs, a small 

fraction of the total flare energy (Hudson 1985).

Significant time delays have been found between y-ray line 

emission and X-ray emission in the tens of keV range (e.g. Bai 

1982), suggesting that there is a second stage of acceleration 

occuring after the impulsive phase (Bai and Ramaty 1976).

Using simultaneous Ha observations, y-ray flares can be 

located on the solar disk, and Rieger et al. (1983) determined 

the spatial distribution of fourteen flares observed at e >10MeV 

(presumably electron bremsstrahlung continuum). It appears that
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such events can only be observed close to the limb, implying 

that the relativistic electrons are highly anisotropic (Dermer 

and Ramaty 1986).

1.8 Interplanetary Particles

Electrons, protons, heavier nuclei and neutrons associated 

with solar flares have been detected in the interplanetary 

medium. Observations of such particles can in principle yield 

direct information on the acceleration mechanisms operating in 

flares, but this requires an accurate knowledge of the physical 

conditions in the interplanetary medium (i.e. density, 

temperature and magnetic field). Such knowledge is lacking, 

especially in the case of large flares which eject a substantial

quantity of matter from the Sun and thereby affect the

propagation properties of the medium.

Observations of flare-produced electrons using the ISEE-3 

spacecraft have been reviewed recently by Lin (1985) (see also 

the review papers by Lin (1974) and Simnett (1974)). 

Non-relativistic electrons are the most commonly observed 

particles from the Sun: they are impulsive in character, and 

exhibit a velocity dispersion which implies simultaneous

acceleration. They have a power law energy spectrum up to about

lOOkeV, with a spectral index of typically 3-4. At higher

energies, the spectrum either steeper sharply or continues as a

power law with the same spectral index up to highly relativistic 

energies (at least lOMeV). The latter only occurs if protons are 

also observed, which is comparatively rare. In such a mixed

event, the total number of electrons with energies above 20keV
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36may be as high as 10 : this represents only a small fraction of

the total flare energy, and implies a low escape probability 

(about 0.1-1%).

Interplanetary protons are associated with large flares, and 

have been observed up to relativistic (>lGeV) energies. The 

escape probability of protons in an impulsive event is of the 

order of 0.1% (cf. Table 1 of Hudson 1985). Like electrons, the 

protons accelerated in a large flare constitute a significant 

fraction of the total flare energy. Both relativistic electrons 

and protons are believed to be associated with the second stage 

acceleration referred to in the previous section. Support for

this hypothesis lies in the fact that proton events are

associated with type II radio bursts, which indicate the

presence of a shock wave propagating out through the corona (cf. 

Svestka 1981).

Turning now to nuclei heavier than hydrogen, there is an
3 4anomalous abundance of He (compared with He) associated with

3small flares. He and electron events are closely correlated in 

time and have a similar spectrum, implying a common acceleration 

mechanism (Reames et al. 1985). Other heavy nuclei enhancements 

have been observed, in particular that of Fe (e.g. Dietrich and 

Simpson 1978). The preferential acceleration of heavy nuclei is 

discussed by Ramaty et al. (1980).

Neutrons produced by nuclear reactions in flares were first 

detected by Chupp et al. (1982) using the Gamma Ray Spectrometer 

instrument on SMM. The energy spectrum and total number of 

accelerated protons implied by these events are consistent with 

those inferred from gamma-ray observations (Ramaty et al. 1983).
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REVIEW OF RELEVANT THEORY

2.1 Introduction

In this chapter we consider those aspects of solar flare

theory which have the most direct bearing on the original work

of this thesis. The problem of primary energy release is 

fundamental, and must be discussed for that reason. We will, 

however, concentrate on the theoretical interpretation of those 

impulsive phase observations which give the most direct 

information on the distribution function of the radiating

particles and on the physical conditions in the flaring 

atmosphere. Such information is believed to be contained in hard 

X-ray and microwave data.

It is virtually certain that the energy released in a flare 

originates in the magnetic field. Nuclear processes (responsible 

for the overall radiative output of the Sun) are not a viable

energy source since the density in the solar atmosphere is far 

too low, and it can be easily shown that gravitational and 

thermal sources are also inadequate (Brown and Smith 1980). The 

magnetic field in the low corona, where the primary energy 

release is believed to take place, cannot be measured directly, 

but the observed photospheric field can be extrapolated to the 

corona using various physical models. The simplest of these is 

the potential field approximation, in which the current is 

prescribed to be zero and the magnetic field is obtained as the 

solution of Laplace's equation. The magnetic field energy above 

an active region inferred by this method is comparable to or
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greater than the energy required to power a flare (e.g. Sakurai

and Uchida 1977). More sophisticated models employ the

force-free approximation, which involves a nonzero current

flowing parallel to the magnetic field (so that the Lorentz

force is zero). Using this model, Gold and Hoyle (1960) showed

that a single, suitably twisted magnetic flux tube can store the

energy released in an average-sized flare. Tanaka and Nakagawa
32(1973) showed that as much as 6x10 ergs can be stored in a

18twisted force-free field over an area of 3x10 cm2 . However, 

potential fields and linear force-free fields (such as those 

invoked by Tanaka and Nakagawa) represent a minimum energy state 

of the plasma (Woltjer 1958), and therefore cannot yield the 

energy required to power a flare. Nevertheless, it appears that 

even a small departure from the equilibrium configuration should 

be enough to provide the necessary free energy. It may be 

mentioned in passing that models of coronal arcades have been 

developed which generalize the force-free assumption, including 

pressure gradient and gravity terms in the magnetohydrostatic 

force equation (e.g. Zweibel and Hundhausen 1982).

There is compelling evidence, therefore, that flare energy is 

released via some form of magnetic reconnection (i.e. a change 

in magnetic field topology). In the next section we briefly 

review the various reconnection theories which have been 

proposed.

2.2 Magnetic Reconnection

Models of energy release in flares have been based on the 

interaction of two (or more) flux tubes, or on MHD instabilities
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of a single flux tube. Theories of the former type postulate the

creation of a current sheet at a magnetic neutral line in which

field dissipation can take place. The evolution of the magnetic 

field in this process is described by the induction equation

3B 2
—  = V x (v x B) + ~  V2 B (2.1)3t - - - 4TT - -

where B is the magnetic field, n is the plasma resistivity and c 

is the speed of light (throughout this thesis cgs Gaussian units 

are used). Under normal circumstances, the diffusion term can be 

neglected since the corona is highly conducting (more 

specifically, it has a very high magnetic Reynolds number), so 

that the magnetic field is ’frozen' into the plasma. Thus, for 

example, motions of the photosphere can bring about the approach 

of two bipolar sunspot groups, and the creation of an X-type 

neutral point in the corona, as shown in Figure 2.1.

This idea forms the basis of the current sheet flare model 

proposed by Sweet (1958) and Parker (1963). In the vicinity of a 

neutral point the diffusion (i.e. dissipative) term in (2.1) can 

dominate, thus converting field energy into plasma kinetic 

energy. The rate of energy release in the Sweet-Parker model is, 

however, extremely slow, the physical reason for this being that 

the accelerated plasma is constrained to flow along a very 

narrow current sheet. One possible solution to this problem was 

suggested by Petschek (1964), whose model forms the basis of 

most subsequent work on steady-state current sheet reconnection. 

Petschek proposed that there is a small central diffusion region 

which bifurcates into 2 standing MHD shock waves, across which 

most of the inflowing plasma is accelerated. Fast reconnection,



Figure 2.1 The formation of an X-type neutral point due to the 
interaction of 2 bipolar magnetic fields.
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3consistent with the observed energy release timescale of <10 s, 

is then possible.

Petschek1s original analysis was not mathematically rigorous, 

and was criticised by several authors (e.g. Green and Sweet 

1966). The basic mechanism has, however, been placed on a sound 

mathematical basis by Soward and Priest (1977), and has been 

generalized to compressible plasmas (Soward and Priest 1982). 

The model is also supported by the results of numerical 

simulations (Ugai and Uchida 1977).

Comprehensive flare models which invoke Petschek reconnection 

include those of Sturrock (1968) and Heyvaerts et al. (1977). In 

the Sturrock model, a Y-type neutral point is formed due to the 

presence of both open and closed field lines above a bipolar 

magnetic region. In the model of Heyvaerts et al., magnetic flux 

tubes emerge from below the photosphere and reconnect with the 

overlying field. Microinstabilities in the resulting current 

sheet cause it to expand, inducing an electric field which 

accelerates electrons towards the chromosphere (giving rise to a 

hard X-ray burst) and along open magnetic field lines (producing 

a type III burst). The model also attempts to explain the 

gradual phase by invoking marginal stability in the current 

sheet.

In contrast to current sheet models are those which invoke 

ideal or resistive MHD instabilities of a single loop. The first 

detailed model of this type was proposed by Spicer (1977). In 

this case reconnection results from the cylindrical tearing (or 

resistive kink) instability of a twisted flux tube. One 

advantage of such a mechanism is that field dissipation can
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occur at every point in the loop, whereas in a current sheet the 

field dissipation region is necessarily small (Brown and Smith 

1980).

Recent work on reconnection has been mostly numerical, and

has linked up the Petschek mechanism with the tearing mode

instability. Van Hoven et al. (1983) and Steinolfson and Van

Hoven (1984a, 1984b) included the effects of optically thin

radiation in a time-dependent calculation, and identified a

previously unknown radiative mode which, for typical coronal
2parameters, is 10 times faster than the tearing mode. Other 

numerical simulations of time-dependent reconnection have 

revealed the limitations of the Petschek model. In particular, 

Forbes and Priest (1982) and Biskamp (1982) have shown that when 

the speed of the plasma flowing into the diffusion region

exceedes a critical value, the current sheet grows and 

eventually becomes unstable to secondary tearing and 

coalescence, as magnetic islands are created and destroyed,

giving an enhanced rate of energy release. In fact Biskamp

(1986) has claimed that there is no regime in which the Petschek 

mechanism is valid, and that fast reconnection in 2 dimensions 

will invariably give rise to the secondary instabilities 

identified by Forbes and Priest.

We may conclude by saying that there exist plausible modes of 

reconnection which are capable of accounting for the total

energy released in a flare, and the rate at which it is

released. The process whereby individual particles are 

accelerated to high energies will be considered in the next

section: clearly the nature of the acceleration mechanism will
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depend on the mode of reconnection.

A concise review of the physics of reconnection has been 

given by Cowley (1985). Recent developments in this field have 

been reviewed by Priest (1986) and Priest et al. (1986).

2.3 Acceleration Mechanisms

The first point to note is that particles in flares can only 

be accelerated by electric fields: magnetic fields do no work on 

charged particles, and the solar gravitational field is 

completely inadequate as a particle accelerator. Essentially 2 

kinds of electric field have been invoked in theories of 

particle acceleration: DC and stochastic. We will deal with each 

of these in turn. The requirements of acceleration mechanisms 

are that they account for the total number and velocity 

distribution of particles inferred from hard X-ray and type III 

bursts, and observed directly in the interplanetary medium. 

There are several competing models of hard X-ray emission which 

will be discussed in detail in the next section, and which place 

very different requirements on acceleration mechanisms.

The creation of an electric field E in a reconnecting plasma 

follows from the Maxwell equation

If we now consider the simplest case of a steady E-field 

parallel to the B-field (the perpendicular component of E merely 

causes a drift of the guiding centre of the particlefs Larmor 

orbit), the behaviour of a given electron depends on the 

competing effects of the DC field and Coulomb collisions. Since
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the collision frequency varies inversely as the cube of the 

electron velocity (e.g. Trubnikov 1965), electrons of 

sufficiently high initial energy can be freely accelerated out 

of the thermal distribution. An electron at the thermal speed ve
can escape if E exceedes the Dreicer field 

e £n A
 ^  (2.3)

D
where e is the electronic charge, A is the electron Debye

D
length and £n Aq is the Coulomb logarithm for a thermal plasma 

(Spitzer 1962). For an arbitrary field E, the fraction of 

escaping particles is given by (Norman and Smith 1978)

f - A e x p  [ - £ ( ( ^ > *  - f o 2 ] (2.4)

and therefore depends critically on the ratio E/E^. Order of 

magnitude calculations indicate that E^E^ can result from the 

tearing mode instability (Van Hoven 1979, Heyvaerts 1981). 

However, such calculations neglect the role of 

microinstabilities, many of which have thresholds at currents 

corresponding to E<<E^, and which may greatly increase the

effective collision frequency of the plasma (thus rendering the 

acceleration process ineffective).

A systematic study of particle acceleration and the

associated Ohmic heating in the presence of a prescribed DC 

electric field has been carried out by Holman (1985). This

author pointed out that the nonthermal interpretation of hard 

X-ray emission implies a current with a corresponding induced 

magnetic field >10^G, compared with a known coronal field
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2
'V' 10 G. Holman concluded from this that DC field acceleration is

only consistent with a nonthermal hard X-ray model if there 
4exist at least 10 separate counterflowing current channels in 

the acceleration region. The heating and acceleration required 

by a thermal hard X-ray model, on the other hand, can be 

acheived with a single current sheet and a comparitively modest 

electric field, 0.02 < E/E^ < 0.1. Holman also found, in 

agreement with previous authors (e.g. Smith 1980), that DC field 

acceleration results in more energy going into heating than 

anisotropic fast particles.

Moghaddam-Taaheri et al. (1985) have studied DC field 

acceleration using the quasi-linear theory, allowing for Coulomb 

collisions. They find that for E/E^ > 0.2, electrons accelerated 

along the field are rapidly isotropized due to the Cerenkov and 

anomalous Doppler resonance instabilities, and therefore 

conclude that effective electron acceleration can only be 

acheived with E/E^ < 0.2. This conclusion depends, however, on 

the assumption that the gyrofrequency is appreciably greater 

than the plasma frequency, which may not be true in the energy 

release region (see Chapter 3).

Stochastic (or Fermi) acceleration is a generic term for any 

process in which a charged particle interacts with a randomly 

varying field, and gains energy on average. One way of acheiving 

this is by means of a turbulent spectrum of Langmuir waves: 

electrons with speeds in excess of the phase velocity of the 

waves may be accelerated, depending on the particle distribution 

function (e.g. Melrose 1980a). The basic problem with such a 

mechanism is that it is difficult to produce a Langmuir wave
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spectrum which is capable of particle acceleration. The most 

obvious way of generating Langmuir waves is by means of a 

pre-existing distribution of anisotropic fast particles, so that 

one is faced with a 'bootstrapping1 problem. One solution, 

proposed by Tsytovich et al. (1975), is that electrons emit 

Langmuir waves as the result of scattering on ion-acoustic 

waves, excited by some current-driven instability. There are 

several arguments against the feasibility of this mechanism (see 

e.g. Heyvaerts 1981). Indeed, Kuijpers and Melrose (1985) have 

argued, on the basis of a quantum electrodynamic calculation, 

that the scattering process does not even exist, although this 

claim has been challenged by Nambu (1986).

Other kinds of stochastic mechanism have been proposed to 

explain the 2nd phase acceleration of relativistic electrons and 

protons, involving resonant scattering on Alfven waves (e.g. 

Barbosa 1979) and magnetosonic waves (e.g. Achterberg 1981), and 

hydrodynamic shock waves (e.g. Ellison and Ramaty 1985). Decker 

and Vlahos (1986) have shown that shock acceleration of ions (to 

energies of around 50MeV) can occur on a timescale as short as 

10ms, and it is therefore possible that shocks play an important 

role in impulsive phase acceleration as well. Reviews of recent 

work in this field have been given by Forman et al. (1986) and 

Vlahos et al. (1986).

2.4 Models of Hard X-Ray Emission

The three basic mechanisms which have been invoked to account 

for the production of cosmic X-ray continuum are bremsstrahlung, 

synchrotron radiation and inverse Compton radiation. Korchak
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(1967, 1971) concluded that electron-proton bremsstrahlung is 

likely to be the dominant process in the case of solar hard 

X-ray bursts: the synchrotron interpretation places prohibitive 

demands on electron acceleration mechanisms, while the inverse 

Compton process (i.e. scattering of relativistic electrons on 

thermal photons) would require a density lower than that 

generally found in the flaring atmosphere in order to be 

dominant over bremsstrahlung. Kaufmann et al. (1986) proposed 

that hard X-ray bursts and microwave bursts with very high 

turnover frequencies (such as those observed by Kaufmann et al., 

1985a) may be explained by a single mechanism involving the 

inverse Compton scattering of relativistic electrons on 

synchrotron microwave photons. McClements and Brown (1986) 

showed that both the thermal/inverse Compton and synchrotron/ 

inverse Compton models require exceptional source parameters, 

and are not any more attractive than the conventional 

bremsstrahlung model in terms of efficiency. It appears, 

therefore, that some form of bremsstrahlung is the most 

promising candidate for impulsive hard X-ray emission, although 

the contribution of inverse Compton emission may be 

non-negligible.

Bremsstrahlung models of hard X-ray emission fall into two 

broad categories, depending on the distribution function of the 

emitting electrons: thermal and nonthermal. Essentially three

kinds of nonthermal model have been proposed: the thin target

model, the thick target model and the trap model.

In the thin target model (Datlowe and Lin 1973), electrons 

are accelerated continuously and injected upwards along open
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field lines, as shown in Figure 2.2a. The X-ray emission is then 

proportional to the column depth of plasma traversed by the 

electrons (Brown 1975). The model was originally proposed by

Datlowe and Lin to account for the appearance of X-ray bursts

behind the solar limb. However, Brown and McClymont (1974)

showed that a thin target interpretation of such events would 

imply an extremely low radiative efficiency and would place

unacceptable constraints on the number and total energy of 

accelerated electrons. In addition, the thin target picture is 

inconsistent with the observed synchronism of hard X-ray bursts 

with emissions which could only have originated from the 

chromosphere, such as UV and Ha.

The thick target model postulates that electrons are injected 

from the low corona into the chromosphere where they lose 

essentially all their energy through Coulomb collisions with 

ambient electrons, and where most of the hard X-rays are 

produced (Brown 1971). The rate of injection may be either 

1 impulsive', meaning that the duration of the X-ray burst is 

determined by the collisional lifetime of the electrons, or 

'continuous', meaning that the collisional lifetime is much less 

than the burst duration, and the X-ray time profile is therefore 

determined by the acceleration process. The latter case is 

sometimes referred to as the thick target model, and enables one 

to treat the electron distribution as if it were in a steady 

state. In such circumstances the integral equation relating the 

injection rate of electrons per unit energy 3^(E) to the observed 

photon spectrum 1(e) can be solved analytically (Brown 1971). In 

the case of a power law photon spectrum (equation (1.1)) one
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(a) Thin Target Model (b) Thick Target Model

(c) Trap Model

Figure 2.2 Alternative nonthermal models of hard X-ray
emission. The spatial distribution of emission is 
indicated by the shading. Electron trajectories are 
indicated by heavy arrows, and in (a) and (b) the 
acceleration region is denoted by a star (from Brown 
1976).
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obtains the result

3(E; = 4* 15 x 1033 y(Y-l)2B(.y-%,%)lo e"Y_1 (2 .5 ;

where B is the beta function, E is in keV and 2^(E) is in 

electrons s * keV * (for a given injected electron flux, the 

X-ray spectrum is independent of the density of the source). 

Taking a lower cutoff of (20-30)keV in the observed photon 

spectrum, (2.5) implies that at least a large fraction of the 

total energy released in a flare lies in nonthermal electrons 

(Hoyng et al. 1976). The thick target interpretation therefore 

implies an improbably high acceleration efficiency, particularly 

in view of the problems associated with both DC and stochastic 

acceleration mechanisms described in the previous section (see 

Smith 1980). The situation is aggravated when one considers that 

the thick target calculation neglects energy losses due to 

collective processes, and therefore (2.5) represents a minimum 

electron flux requirement for a given X-ray yield.

Notwithstanding the acceleration problem, the thick target 

model has attracted a great deal of theoretical interest. The 

predicted spatial distribution of thick target hard X-ray 

emission was computed by Brown and McClymont (1975), Emslie 

(1981a) and Leach and Petrosian (1983). The latter authors used 

the results of a numerical Fokker-Planck calculation, allowing 

for dispersion in pitch angle scattering and a converging 

magnetic field (Leach and Petrosian 1981). They found that, with 

plausible source parameters, they could get good agreement with 

the stereoscopic observations of Kane et al. (1979, 1982). Thick 

target polarization calculations have been carried out by Brown
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(1972), Leach and Petrosian (1983) and Kel’ner and Skrynnikov

(1985). Brown (1972), using a mean scattering rate treatment, 

estimated degrees of polarization as high as 30% at 15keV, 

contrary to the observations of Tindo et al. (1976) and Tramiel 

et al. (1984). Leach et al. (1985), using the more physically 

realistic numerical calculations of Leach and Petrosian (1983), 

showed that the observed degrees of polarization are consistent 

with thick target electron beams injected with a hard energy

spectrum. This result is independent of the degree of

collimation of the electron beam at the point of injection. In

the case of an initially highly collimated beam, the effect of a 

converging magnetic field is to reduce even further the 

predicted polarization.

The assumption of a steady state in the standard thick target 

model requires reevaluation in the light of high time resolution 

HXRBS observations. The important quantity in this respect is

the collisional decay time of a fast electron, given by

(Trubnikov 1965)

-4 E 3'*r , = 10 4 - s (2.6)coll n 12

where E is the electron energy in keV and n ^  is the plasma
12 -3density in units of 10 cm . As previously stated, most of the

thick target X-rays are ' produced in the flaring chromosphere 
12 -3where n > 10 cm Putting E=30keV in (2.6) then gives 

x ^  < 20ms, which implies that even the shortest time

structures detected by HXRBS (t - 100ms) are consistent with the 

continuous injection model. Emslie (1983) has pointed out that 

time-of-flight effects alone can smear out the X-ray time
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profile, even in the case of instantaneous injection. For the 

majority of events, however, with e-folding times in excess of 

Is, the steady-state assumption is certainly justified.

Perhaps surprisingly, it is only in the past few years that 

the electrodynamics of electron beams in flares has been studied 

in detail. Kane and Anderson (1970) noted that the magnetic 

self-energy of an unneutralized thick target beam is several 

orders of magnitude greater than the total energy released in a 

typical flare. Knight and Sturrock (1977) therefore proposed 

that the beam current is compensated by a reverse current 

carried by thermal electrons. Due to the finite resistivity of 

the plasma, the reverse current gives rise to an enhanced rate 

of dissipation of beam energy. Such energy losses may be greatly 

enhanced if the resistivity is anomalous. The importance of 

reverse current energy losses has been assessed by Emslie (1980, 

1981b) and Brown and Hayward (1982). These authors assumed a 

steady state in which the electric field driving the reverse 

current is purely electrostatic. Spicer and Sudan (1984) pointed 

out that this assumption is unphysical since it neglects 

inductive effects. Brown and Bingham (1984) agreed that 

inductive processes must take place, but showed that they occur 

on a sufficiently long timescale that the steady state treatment 

is essentially valid. Even in the absence of anomalous 

resistivity, reverse current energy losses may be greater than 

collisional losses near the point of injection, in the case of 

high beam flux and low plasma density. The thick target energy 

requirement is considerably increased in such cases. McQuillan 

et al. (1987) have considered the problem of ion-acoustic wave
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generation by an unstable reverse current, and the consequent 

anomalous heating of the plasma. They show that rapid heating to
g

T>10 K can occur, and that the resulting thermal hard X-ray 

emission can exceed the thick target emission due to the beam.

Thick target beams may also be unstable to the generation of 

Langmuir waves. Hoyng et al. (1979) studied numerically the 

combined evolution of beam electrons and Langmuir waves using a 

Legendre series expansion method developed previously by Hoyng 

and Melrose (1977). Hoyng et al. found that Langmuir wave 

generation had a negligible effect on the thick target hard 

X-ray signature. Emslie and Smith (1984) pointed out that the 

inverse cubic velocity dependence of the Coulomb collision 

frequency means that a positive gradient can be produced in 

electron beam distributions which are monotonic decreasing 

functions of velocity at injection. Such distributions may be 

unstable, and a high level of Langmuir waves may therefore be 

produced. Emslie and Smith did not consider, however, the effect 

of such wave generation on the propagation of the beam. Vlahos 

and Rowland (1984) and Rowland and Vlahos (1985) claim that the 

Langmuir waves excited by an unstable thick target beam will be 

strongly turbulent, giving rise to a number of nonlinear 

processes (notably soliton formation) which take the waves out 

of resonance with the beam electrons and thereby allow the beam 

to propagate without significant energy loss, except through 

Coulomb collisions. The problem of electron beam stability in 

three dimensions in a magnetized plasma has been investigated by 

McClements (1987b): the quasi-linear relaxation of a one

dimensional beam has been studied by McClements et al. (1986)
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and McClements (1987a, 1987c). These papers contain the bulk of 

the original work of this thesis.

We now turn to the nonthermal trap model. The basic picture, 

as depicted in Figure 2.2c, is that magnetic field lines 

converge rapidly towards the chromosphere, thereby confining 

nonthermal electrons in a coronal magnetic bottle. Takakura and 

Kai (1966) proposed that electrons are accelerated up to the 

maximum of the hard X-ray burst, and then decay collisionally on 

the same timescale as the burst itself. Since slow electrons 

lose energy first, one would expect the X-ray spectrum to harden 

with time, contrary to observations (cf. Figure 1.3). This 

problem may be overcome by invoking a time-dependent magnetic 

field (e.g. Brown and Hoyng 1975), so that acceleration 

continues after the burst maximum. Hudson (1972) pointed out 

that some initially confined electrons are scattered into the 

loss cone by Coulomb collisions, and consequently escape from 

the trap. The rate at which this occurs may be greatly enhanced 

by the presence of waves excited by the loss cone instability 

(Wentzel 1976). This led Melrose and Brown (1976) to develop the 

trap-plus-precipitation model, in which escaping electrons 

produce thick target X-ray emission in the chromosphere. Melrose 

and Brown estimated that collisional scattering results in about 

one third of the initially trapped particles escaping. The model 

has the advantage over the original trap model of explaining the 

heating of the chromosphere revealed, for example, by Ha 

observations. The analysis of Melrose and Brown has been 

challenged, however, by MacKinnon (1987) on the grounds that the 

collisional energy loss associated with scattering into the loss
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cone was neglected. The flux of precipitating electrons may 

therefore have been grossly overestimated, depending on the 

energy distribution of electrons in the trap.

Before leaving nonthermal models we briefly discuss proton 

beams. Boldt and Serlemitsos (1969) proposed that solar hard 

X-ray emission might be produced by the interaction of fast 

protons with thermal electrons, rather than fast electrons with 

thermal protons ('inverse bremsstrahlung'). Protons are 

certainly accelerated in flares, as observations of y-rays and 

interplanetary particles indicate. Emslie and Brown (1985) 

showed that, for a given X-ray yield, thick target proton beams 

are slightly more efficient than thick target electron beams, 

and carry a much smaller current. It appears, however, that the 

proton beam model is inconsistent with both Y-ray line 

observations and hard X-ray height structure observations.

We finally consider thermal models. The basic attraction of a 

purely thermal hard X-ray interpretation is energetic 

efficiency: essentially all the available energy goes into

radiation, as opposed to <0.01% in the case of the thick target 

or trap model. In addition, bulk heating is easier to acheive 

than acceleration (cf. previous section), and on general 

thermodynamic grounds thermal models are more credible than 

nonthermal models.

Fitting (1.2) to hard X-ray burst spectra generally yields
8 9temperatures in the range 10 - 10 K and emission measures in

the range 1 0 ^  - 10 ^  cm ^ (e.g. Wiehl et al. 1985). Kahler

(1971) pointed out that these parameters, combined with a
8 —3coronal density n > 10 cm , imply a conductive cooling time of
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a fraction of a second. Kahler concluded from this that 

impulsive hard X-rays are unlikely to be thermal. The thermal 

model was consequently ignored for several years, but was 

revived by Brown et al. (1979) who showed that free streaming of 

thermal electrons may generate a conduction front of 

ion—acoustic turbulence, which propagates at the ion sound 

speed. This model was subsequently developed by Smith and 

Lilliequist (1979) and Vlahos and Papadopoulos (1979). The 

latter authors showed that electrons with speeds in excess of 

about 3 times the thermal speed are not confined by the 

conduction fronts, so that about 1% of the particles escape. 

These precipitate towards the chromosphere, producing thick 

target hard X-ray emission, as in the trap-plus-precipitation 

model.

The energy requirement of the thermal model, as proposed by 

the above authors, is typically a few per cent of that of 

nonthermal models. There are difficulties reconciling it with 

observations, however. For example, conservation of energy 

requires that the temperature should fall as the emission

measure increases, thus producing a spectral softening during 

the rise of the impulsive phase. In fact the opposite is

generally observed to take place (cf. Figure 1.3). To overcome

this shortcoming, Brown et al. (1980) proposed the multiple

kernel thermal model, in which the energy release occurs in a 

large number of sources with sizes and lifetimes below current 

instrumental resolution. Such a scenario enables the thermal 

model to be reconciled with most observations, although it 

cannot explain the hardest observed spectra and is energetically
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more efficient than the thick target model.

2.5 Models of Microwave Emission

The close correlation of microwave and hard X-ray time 

profiles suggests that a common population of particles is 

responsible for both emissions. The broad bandwidth of microwave 

bursts such as the one depicted in Figure 1.2 further suggests 

an incoherent radiation mechanism. The two candidates for such a 

mechanism are thermal bremsstrahlung and gyrosynchrotron 

radiation. A thermal interpretation may be applicable to some 

gradual microwave bursts (e.g. Shimabukuro 1972), but there are 

several compelling reasons for rejecting it in the case of 

impulsive events. In the first place, an optically thin thermal 

bremsstrahlung spectrum is essentially flat whereas impulsive 

microwave bursts fall off rapidly at high frequency, with a 

spectral index of typically between 1 and 4 (e.g. Wiehl et al.

1985). In addition, a thermal interpretation of simultaneous 

hard X-ray emission would imply a temperature so high that the 

source would be optically thin at microwave frequencies, for any 

reasonable source size (e.g. McClements and Brown 1986). 

Finally, a thermal source would be unpolarized whereas microwave 

bursts have a high degree of circular polarization (e.g. 

Kaufmann et al. 1985b).

The only viable continuum emission mechanism is therefore 

gyrosynchrotron radiation. The electrons producing this 

radiation are mildly relativistic (E ^lOOkeV), and the theory of 

the emission process is considerably more complicated than it is 

at extremely relativistic energies (see e.g. Ramaty 1969). As a
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result of this, several authors have developed simplified 

expressions for the gyrosynchrotron emission and absorption 

coefficients, valid in a limited parameter regime (Petrosian 

1981; Dulk and Marsh 1982; Klein 1987). Gyrosynchrotron emission 

in flares is complicated by a number of essentially unknown 

source parameters (such as the structure of the magnetic field), 

and therefore microwave observations place less unambiguous 

constraints on flare models than hard X-ray observations.

Holt and Cline (1968) estimated that the number of electrons 

inferred from a nonthermal interpretation of hard X-ray emission 

ought to produce a gyrosynchrotron flux several orders of 

magnitude in excess of that observed. A large part of the 

discrepancy may be accounted for, however, when one takes into 

account gyrosynchrotron self-absorption (Takakura 1972), Razin 

suppression, gyroresonance absorption, free-free absorption 

(Ramaty and Petrosian 1972) and inhomogeneities in the magnetic 

field (Klein et al. 1986). In addition, the gyrosynchrotron 

emission is produced by electrons with higher energies than 

those producing the bulk of the hard X-ray emission, and one 

might therefore expect some discrepency if the two populations 

of electrons have different energy spectra (MacKinnon et al.

1986). Gyrosynchrotron radiation is produced by electrons with 

large pitch angles, whereas thick target beams are collimated in 

the direction of the magnetic field. Holman et al. (1982) have 

suggested that a highly anisotropic electron beam will be 

isotropized on a collisionless timescale due to the anomalous 

Doppler resonance instability. Those electrons with sufficiently 

large pitch angles are trapped in the corona, thus giving rise
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to the observed spatial structure of microwave emission (e.g. 

Marsh and Hurford 1980). This would require, however, a rather 

strong coronal magnetic field (see Chapter 3).

Analysis of simultaneous microwave and hard X-ray bursts
8 10 -3indicates electron densities in the range 10 - 10 cm and

magnetic fields in the range 100-500G (Crannell et al. 1978; 

Wiehl et al. 1985). Microwave observations do not unambiguously 

discriminate between thermal and nonthermal models of hard X-ray 

emission. MacKinnon and Brown (1984), for example, show that the 

gyrosynchrotron interpretation is consistent with the multiple 

kernel thermal model of Brown et al. (1980).

We now consider coherent emission mechanisms. Coherent 

processes must be involved to account for the detection of 

brightness temperatures as high as 10^K. Melrose and Dulk 

(1982) proposed that narrowband microwave bursts of short 

duration (<100ms) could be produced by the electron cyclotron 

maser instability (e.g. Melrose 1986). The instability is driven 

by an anisotropy in the electron distribution, such as a loss 

cone anisotropy. The growth rate for the process is extremely 

fast, and it rapidly saturates due to the radiation-induced 

diffusion of electrons into the loss cone. The model can thus 

account for the very short duration of microwave spikes. It also 

predicts very high degrees of circular polarization (as 

observed, for example, by Slottje, 1978), and brightness 

temperatures as high as 1 0 ^  - 10*^K. Maser emission is produced 

at harmonics of the gyrofrequency: low harmonics are

gyroresonance absorbed, resulting in heating of the corona 

(Melrose and Dulk 1984), while higher harmonics escape to
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produce the observed radiation. The theory of cyclotron maser 

emission has been further developed by Winglee (1985) and 

Winglee and Dulk (1986).

The other coherent mechanism which has been proposed for 

impulsive microwave emission is plasma radiation. Smith and 

Spicer (1979) suggested that observable fluxes of fundamental 

and 2nd harmonic plasma radiation may be produced in the primary 

energy release region if the acceleration process involves 

Langmuir turbulence. Fundamental emission is produced due to the 

scattering of Langmuir waves by ion-acoustic waves or thermal 

ions, while 2nd harmonic emission results from the coalescence 

of two Langmuir wave quanta. Emslie and Smith (1984) estimated 

the flux density of 2nd harmonic radiation produced by a thick 

target electron beam to be several orders of magnitude greater 

than the microwave flux observed in a typical event. There are 

several reasons for doubting the accuracy of this estimate, 

however, which will become clear in later chapters. The reverse 

drift microwave bursts described in Section 1.3 have been 

interpreted by Stahli and Benz (1987) as 2nd harmonic radiation, 

produced by a beam of downward propagating electrons. However, 

the flux densities involved (% 50sfu) are very much less than 

those predicted by Emslie and Smith. Plasma radiation generated 

by electron beams in the low corona also appears to be the most 

likely explanation of the decimetric bursts observed by Benz et 

al. (1983). The majority of these bursts drift towards lower 

frequency with time, and therefore cannot be due to downward 

propagating electrons. A few events could, however, be the 

plasma radiation signature of thick target beams. We will
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discuss this further in Chapter 5. Benz (1986) has argued that 

the microwave spikes observed by, for example, Stahli and Magun

(1986) are probably not plasma radiation, on the grounds that 

the observed brightness temperature is too high and the observed 

bandwidth is too small. He concludes that cyclotron maser 

emission is the more likely mechanism.



CHAPTER 3

45

THE STABILITY OF ELECTRON BEAMS IN THE FLARING CORONA

3.1 Introduction

In this chapter we examine the possibility that electron 

beams producing hard X-ray burst emission are unstable to the 

generation of Langmuir waves. Emslie and Smith (1984) pointed 

out that the temperature and density in the flaring chromosphere 

are such that, for any reasonable beam density, the collisional 

damping rate of Langmuir waves is much larger than the 

quasi-linear growth rate. We shall therefore be concerned only 

with the propagation of fast electrons through the (hot and 

tenuous) flaring corona, where the collisional damping rate is 

much smaller than it is in the chromosphere.

Emslie and Smith claimed that the collisional degradation of 

a thick target beam will inevitably result in instability, and 

consequently a high level of Langmuir turbulence. An electron 

beam distribution is only two-stream unstable, however, if it is 

sufficiently well-collimated. Since collisional pitch angle 

scattering occurs on a comparable timescale to collisional 

energy loss (Trubnikov 1965), it is by no means clear that the 

collisional degradation of an electron beam will necessarily 

give rise to Langmuir instability. Emslie and Smith only 

considered Langmuir waves propagating along the magnetic field, 

and neglected the possible role of the field in destabilizing 

the beam (cf. Holman et al. 1982).

In general, a necessary condition for Langmuir instability is 

that the quasi-linear growth rate y is positive. Although
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collisional wave damping plays a crucial role in the dynamics of 

the Langmuir waves (see Chapters 4 and 5), the conditionY >0 is 

in practice both necessary and sufficient for instability. The 

growth rate in a magnetized plasma depends on the electron 

distribution function, the evolution of which is in turn 

determined partly by the level of plasma waves. Unless 

instability occurs, however, wave-particle interactions have a 

negligible effect on the electron distribution compared with 

Coulomb interactions (see Chapter 5). For the purpose of 

determining a stability boundary in parameter space

(corresponding to y =0) it is therefore sufficient to prescribe 

an electron distribution whose spatial and temporal evolution is 

determined by collisions alone, provided one neglects any other 

forces, such as those arising from a converging magnetic field 

and the electric field required to drive a beam-neutralizing 

reverse current. In practice both of these will tend to reduce 

the degree of anisotropy of the distribution, thereby

stabilizing it.

In this chapter we will consider the stability of a steady 

state electron beam: this precludes the possibility of a

positive slope developing in the electron distribution as the 

result of velocity dispersion, which is unlikely to be important 

provided the injection timescale is greater than the time of 

flight across the propagation region (see Chapter 6). The 

transit time of a fast electron from the acceleration region to 

the chromosphere is <0.3s, compared with an e-folding time of 

>ls in the majority of hard X-ray events. Leach and Petrosian 

(1981) obtained an analytic solution of the time-independent
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Fokker-Planck equation describing the collisional interaction of 

a dilute electron beam (axisymmetric about a uniform magnetic 

field) with a hydrogen plasma, in the limit of small pitch 

angle. Leach and Petrosian showed that their analytic solution 

is in good agreement with the results of a numerical 

calculation, even for large pitch angles.

In Section 3.2 we use the Leach and Petrosian solution to 

evaluate numerically the electron plasma wave growth rate as a 

function of wave pitch angle for prescribed beam and plasma 

parameters. The normal and anomalous Doppler resonances are 

taken into account. In Section 3.3 the conditions required for 

the stability of an electron beam are established, under the 

assumption that the maximum growth rate occurs along the 

magnetic field. The results are applied to the 

trap-plus-precipitation model and the dissipative thermal model 

in Section 3.4.

3.2 Wave Growth Rate in a Magnetized Plasma

The growth rate (s of electron plasma waves ('generalized 

Langmuir waves') in a magnetized plasma is given by (e.g. Harris 

1969)
+00 o 3 28 ezy = a) I

s=-oo m k 2 |k,,|

k. v. 2 , 1 1dv. v. J ( 1 1 s  to. )

_ h af 3f
v^ 9v^ + " 3v„

(3.1)

0) -  S0JT

kM

where f(x,v,t) is the electron distribution function, Jg is the 

Bessel function of the first kind of order s, ^ is the wave
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frequency, k is the wavevector and g o  is the electronH
gyrofrequency. The parallel direction is that of the magnetic 

field (f is assumed to be axisymmetric with respect to the field 

line), m denotes the mass of the electron, f is normalized such 

that

/ f(x, v,t) d3 v = n (3.2)

where n is the plasma density. To first order in the thermal 

correction, the wave frequency is given by (Melrose 1980b, 

Section 12.1)
g o 2  ( G O 2  -  GO2 )  k2 V2 GO -u2 = (02 ± P * H------ ^  _H (3.3)

+  GO G 0 Z  G O ?  °  ( 0  *+ ± ±

where

g o 2  = \ [ g o 2  + g o 2  ±((w2 + “2)2- 4 to2 co2 cos2 9)^ ] (3.4)± 2 p H. p n P “

and o o k, _ \ „ u r, cos2 0 sin 6 sin 0g(x,0) = 3 cos 0 ------- -2 X2(i - x'2)

+ (l+3x2) sin2 9 cos2 9 sin1* 9 ✓ „
x2 (1 - x2 ) ̂ x2 (1 - 4x2 )

Here is the plasma frequency, vg is the electron thermal

speed and 0=cos_1(kM/k) is the wave pitch angle. The upper sign

is taken in (3.3) and (3.4) if w > UTT, and the lower sign if
P H

g o  <  g o  . The thermal correction term in (3.3) is only valid if 
P H
o)+ is not close to «*> or 2 ^  (cf. Melrose 1980b): 

specifically, we require that

( g o +  - s g o r ) 2  »  2k2 v2 (3.6)
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where s = 1 or 2. The parameters used in this chapter are such 

that (3.6) is not always satisfied. However, in all cases the 

thermal correction is small and it therefore appears unlikely 

that the use of (3.3) will lead to grossly erroneous results.

At a given point in space f consists of a collisionally 

evolved nonthermal distribution plus a thermal background: the

thermal damping rate may be evaluated analytically, yielding

234 o +»2 (27r) e2 Ym = ,— v n £ Imk2 |k,, | v3 [(
S  =  - ° o

k , v •i e
OJr

k2 v2
) ]exp[- 2 k T ê

(3.7)

where = to-st^ is the Doppler shifted frequency and I is the

modified Bessel function of the first kind of order s

(Gradshteyn and Ryzhik 1980).

To evaluate the nonthermal part of y it is convenient to
2 2 tchange the variable of integration in (3.1) to v=(v(+v^)2 . This

yields

Y 8ir3e2 to k"
+00

NT ink"

-k„ 9v

k„

+  (1 -

r°°

dv J2
tO s

' 1-2-1 kii

2 ^kj^v(l-y )

“d
k 2 v2 3y D

y = kM v

(3.8)

where y =v,,/v. We take f to be given by the solution of the 

appropriate nonrelativistic Fokker-Planck equation, with only 

Coulomb interactions being taken into account. In the small 

pitch angle limit, the solution may be written in the form 

(Leach and Petrosian 1981)

f(x,v,a) = f [(vW; ) ^ ] — --- -— ^ —  exp
a2+£n( ) a +£n ( 1+ -jr) o

(3.9)
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where = 16 ire In Anx/m^ (InA being the Coulomb logarithm of 

the fast electrons), x is the distance along the field line from 

the point of injection, a is the electron pitch angle and aQ

is a constant. /[ is given explicitly by (Ginzburg and

Syrovatskii 1964)
, m \ * m

A = (-J. 'Z 2 ) “7T h e n
m mv2 (3.10)

where 2ifk is Planck’s constant. In practice it is sufficiently

accurate to take a constant value lnA=22. f and f^ in (3.9) have

the same dimensions and normalization as f in (3.1), so that
22irf(x,v,a)v dvada is the number of particles per unit volume 

with velocities in the range v to v+dv and pitch angles in the 

range a to ct +da . The injected distribution function is

assumed to be of the form
2 2

f(o,v,a) = f (v ) e a ao (3.11)o a~ o

A Gaussian pitch angle distribution was chosen by Leach and 

Petrosian for analytical convenience: it may be shown that the 

solution as x -*■ 00 is insensitive to the choice of injection 

profile, although the stability of the distribution depends 

quite critically on the value of the collimation parameter a0 

For example, suppose instead of (3.11) we take a step function 

pitch angle profile
2f(o,v,a) = f (v) — r , a < a

(3.12)
= 0 . a > a* o

Then, repeating the analysis of Leach and Petrosian, we obtain 

the result



which, for aQ <<l, tends to the solution (3.9) in the limit 
4 4vc »  v . The fact that very different injection profiles can

give rise to identical asymptotic solutions may be attributed to

the diffusive (i.e. entropy-increasing) character of collisional

pitch angle scattering.

It is convenient to express f()(v ) i-n terms of the total

injected flux of electrons (since this is one of the beam

parameters inferred from hard X-ray observations). Following

Knight and Sturrock (1977), we take the electrons to have an
- 2  -1injected energy flux spectrum of the form (electrons cm s 

keV"1)

F(E) = (6-1) F E 6-1 (E + E)“6 (3.14)o o o

where Fq , Eq and 6 are constants. Fq is the total injected flux 

of electrons and Eq is a characteristic energy above which F(E) 

becomes essentially a power law. At photon energies e >> Eq such 

electron beams injected into a thick target produce hard X-ray 

spectra with spectral index y =6 -1 (cf. (2.5)). Assuming that

a <<1, it then follows from (3.11) and (3.14) thato

f (v) = ----(6-1) F E S"1 IE + E)"6 (3.15)
o 2 TT v2 0 0 °

It is now possible to compute 3f/3v and 3f/9y , using the small 

angle approximation a2-2(l-p) in (3.9). The integrals in 

(3.8) may then be evaluated numerically. An assumption
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frequently made (e.g. Emslie and Vlahos 1980; Holman et al.1982)

is that a) >> 0) . This means that only one or two resonances H p
ever contribute to the summation in (3.8), and also means that 

the small argument expansion of the Bessel functions can be 

used. Although analytically convenient, this assumption is of 

questionable validity, even in the low corona. The ratio of gyro 

to plasma frequency is given by

^  = 3 x io2 B/n2 (3.16)
P

and observations suggest that this parameter could lie anywhere 

in the range 0.1 to about 10 (cf. Section 2.5). It is therefore 

of interest to investigate the dependence of the growth rate on 

the magnetic field, and in particular to explore the weak field 

regime.

Figure 3.1 shows the maximum growth rate (in k-space) as a 

function of wave pitch angle for various magnetic fields, and 

for typical beam and plasma parameters. The beam parameters used 

here were F^ = 1 0^ cm  ̂ s ^ = 20keV, <5 =4 and =5°. The 

contribution of thermal damping is taken into account, with

T=10^K and n=10^cm"3 . For definiteness, the column depth was
1 9 - 2  19 -2taken to be 2x10 cm" in Figure 3.1a and 4x10 cm in Figure

3.1b, although it should be emphasized that the following

remarks are valid throughout the unstable region of the corona.

The growth rate along the field is independent of the field

strength, since only the Cerenkov resonance (s=0) can make a

nonzero contribution. For < w the growth rate falls

monotonically with pitch angle, the angular range of the

instability in wave vector space having a minimum value when
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Figure 3.1(a) Growth rate of electron plasma waves (in units of 

the plasma frequency) as a function of wave pitch 

angle, for various magnetic fields in the range 

(100-500)G , at a column depth of 2x10^ cm 

The beam and plasma parameters are given in the 

text.
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Figure 3.1(b) As Figure 3.1(a) except at a column depth of
/ -2  4x10 cm .
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- to • This may be attributed to the normal Doppler resonance

s=+l, which corresponds to a resonant velocity v < v . Wavese
propagating at a finite angle to the field are consequently

heavily damped by the thermal electrons. When is increased

the growth rate actually falls off more rapidly with pitch

angle. Both the maximum growth rate and the angular range of the

instability rise rapidly at the onset of instability, but then

fall with increasing column depth, since the electron beam is

isotropized as it propagates down the corona. When <o >> <o , theH p
growth rate is almost isotropic and is non-monotonic. The curves

corresponding to B=500G reach a local maximum at 0 - 30 , and

thereafter fall monotonically. In this regime, only the Cerenkov

resonance makes an appreciable contribution to the growth rate,

since the distribution function is negligible at the velocities

corresponding to all the other resonances.

The above calculation neglects the effect of quasi-linear

interactions on the electron distribution when y > 0. This will,

however, tend to reduce both the growth rate and the angular

range of the instability, and it may be concluded that, whenever

to < to , the Langmuir waves produced by an electron beam are H p
always highly collimated (unless some additional nonlinear 

process is involved, such as induced scattering on ions).

3.3 Stability Boundary in Parameter Space

Figure 3.1 implies that a sufficient condition for

instability in the limit u>H < o> is that Y>0 when 9=0. Even in

the case to > to , it appears that the maximum growth rate occurs H p
along the field direction, at least for a wide range of
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parameters. From (3.8) it can be seen that the growth rate along 
the field is

Y. 8ir3e2 to
NT .2mk

#00

dv
w/k

(3.17)

y = i±_kv
2 2 2 ^where to = (w +3k v ) 2 . The nonthermal contribution to y must P ®

be evaluated numerically as before, while (3.7) indicates that 

the thermal contribution is given by

V  ex? < - - t - t > (3.18)T mk v 2k2 v2e e

i.e. the classic Landau damping result (Landau 1946).

The stability of our electron beam depends on six parameters 

- the plasma temperature T and density n, the beam flux Fq, the 

beam energy Eq, the injection angle aQ and the spectral index 

6 . For the sake of definiteness we concentrate on the three 

parameters which appear to be most critical for stability - n, 

aQ and Fq. Figure 3.2 shows the stability boundary in (n, ctQ ) 

space for two different values of Fq when, as before, T=10 K, 

EQ=20keV and 6=4. The total length of corona from the point of
qinjection was taken to be 3x10 cm in every case. Beyond a

10 -3certain density ( n >3x10 cm ) the maximum unstable value of

aQ increases with n. The reason for this is that instability

arises because of a positive slope in f(v) at v- v^: when the

column depth is sufficiently large, v » v  so that thermalc e
damping is small and instability is more likely to occur. The 

main conclusion to be drawn from these results is that the 

stability of the electron distribution depends crucially on the
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Figure 3.2(a) Stability boundary in (n,aQ) space with a total
19 -2 -1injected flux of 10 electrons cm s
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18 —2 —1 injected flux of 10 electrons cm s
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value of aQ . We require that a0 < 2 0 °  for significant wave 

generation to occur, unless the coronal density is extremely 

high.

3.4 Discussion

The results described above emphasize the fact that electron 

beam stability is an essentially three-dimensional problem. The 

apparently widely held assumption, that in practice a sufficient 

condition for Langmuir instability is the formation of a 

positive slope in f(v) along the streaming direction in velocity 

space, is incorrect. Whether electron distributions in the solar 

corona are in fact sufficiently collimated at injection to be 

Langmuir unstable is not clear. Leach and Petrosian (1983) and 

Leach et al. (1985) have shown that hard X-ray polarization and 

height structure observations are consistent with electron beams

injected with a narrow pitch angle profile (a >5°). Theo
existing data is, however, ambiguous, and it would be very 

useful to obtain, for example, more detailed height structure 

observations, such as those planned for the payload of MAX'91

(Dennis et al.1986). From the theoretical point of view, it is

not easy to see how a highly collimated electron beam could be

produced (cf. comments in Section 2.3). Our ignorance of the

nature of the acceleration process is, however, such that high

degrees of collimation cannot be ruled out. A conclusive

indicator of the presence of unstable electron beams would be

second harmonic plasma radiation, some evidence for which does 

indeed exist (see Section 2.5).

There are specific models of hard X-ray emission in which
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definite statements can be made regarding the stability of the 

electron distribution. In the trap-plus-precipitation model, 

described in Chapter 2, electrons initially confined in a 

coronal magnetic bottle are pitch angle scattered into the loss 

cone and escape, thus forming a ’beam' (Melrose and Brown 1976; 

MacKinnon 1987). But if the electron distribution inside the 

trap is isotropic, the escaping component will also be isotropic 

out to a =90° (Leach and Petrosian 1981) and, contrary to Emslie 

and Smith (1984), will therefore be stable. The observation of 

second harmonic plasma emission simultaneously with hard X-ray 

emission would therefore rule out such a model. In general, a 

downward-propagating electron beam will encounter a converging 

magnetic field which will tend to broaden the pitch angle 

distribution of electrons, thus making instability less likely 

to occur. Unfortunately, however, the analytic solution of the 

Fokker-Planck equation obtained by Leach and Petrosian cannot be 

generalized to allow for a magnetic field gradient, even in the 

perturbative limit of a slowly converging field.

In the dissipative thermal model proposed, inter alia, by

Vlahos and Papadopoulos (1979) the primary energy release leads

to impulsive heating of the upper part of a coronal loop, the

hot electrons being confined between regions of ion-acoustic

turbulence. Electrons with v M > 3vg escape to produce

thick-target hard X-ray emission at the footpoints of the loop.

Emslie and Vlahos (1980) parametrised the beam distribution

injected into the lower part of the loop by
-vf/2v'2

f(v„,v^) ^ e v„ C3.19)
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where v^ - 3v^ is the thermal speed in the upper part of the 

loop ( 108K ). In the small pitch angle limit (v^ - va ,

v,,̂  v), the boundary condition given by (3.19) again allows us 

to solve the Fokker-Planck equation using the method of Leach

Now, with the beam and plasma parameters assumed in Section 3.2, 

a positive slope first appears in the combined distribution at 

v — v - Sv^, which implies that ^ 1. Although our numerical 

results are not strictly valid in this case (because of the

that the injected distribution given by (3.19) is unlikely to 

satisfy the criteria for Langmuir instability. As with the trap 

model, one would therefore be inclined to reject the thermal 

model if a large flux of plasma microwave radiation were to be 

observed.

In conclusion, the requirements for an electron beam in the 

flaring solar corona to become Langmuir unstable are more 

stringent than appears to be generally realized. If thick-target 

hard X-ray emission is produced as the result of electron 

precipitation from either a coronal trap or a confined 

thermally-emitting region, Langmuir wave generation and hence 

plasma radiation are unlikely to occur.

and Petrosian. The result is identical to (3.9) except that ao
is now velocity dependent:

18v2e e (3.20)
(v“* +c c

velocity dependence of aQ ), it does appear from this argument
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CHAPTER 4

THE QUASI-LINEAR RELAXATION OF THICK TARGET 

ELECTRON BEAMS - ANALYTICAL MODEL

4.1 Introduction

Having discussed the conditions required for the Langmuir 

instability of an electron beam in the corona, we now consider 

the non-collisional evolution of such a beam and the associated 

growth of Langmuir waves. The quasi-linear equations, describing 

the coupled evolution of particles and waves, are in general 

very much more complicated than the Fokker-Planck equation 

describing the collisional degradation of a dilute beam. Even if 

one reduces the number of velocity dimensions to 2 (by assuming 

symmetry about the magnetic field), the equations are completely 

intractable analytically and in practice can only be solved 

numerically under rather restrictive conditions. For example, 

Hoyng et al. (1979) truncated their Legendre series expansion of 

the pitch angle distributions of the particles and waves at £>2, 

and thereby effectively decomposed each distribution into 2 one 

dimensional streams. Such a model is only appropriate when the 

electrons and Langmuir waves are close to isotropy, and would be 

expected to break down in the case of a highly anisotropic beam. 

Hoyng et al. neglected the magnetic field, which may play an 

important role in the quasi-linear dynamics of electron beams in 

the low corona, depending on the value of coH / (cf. Figure

3.1). Moghaddam-Taaheri et al. (1985) included the magnetic

field, but were only able to construct a tractable set of

equations by assuming .
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In order to progress both analytically and numerically

(without incurring very large computing costs), it is necessary

to construct a one dimensional model of the beam—plasma system.

Such a model has been developed by Grognard (1985) to describe

the propagation of a collisionless electron beam through an

unmagnetized plasma. Like Grognard, we will impose the condition

that electrons and Langmuir waves propagate along a given

direction (in our case the magnetic field direction) with no

pitch angle scattering. In general, such an assumption is of

course unphysical since electrons are scattered by both Coulomb

collisions and quasi-linear interactions. We have shown, in

Chapter 3, that an electron beam which is sufficiently

collimated at injection will become Langmuir unstable as Coulomb

collisions deplete the low velocity part of the distribution. If

instability occurs at all, it first appears at a point in space

where the electron distribution is still highly anisotropic. In

such cases, one would expect the one dimensional model to be a

reasonably accurate representation of the system, especially if

w < to so that the Langmuir instability has a narrow angular H ~ p
range.

In Section 4.2 we derive the equations of our one dimensional 

model from the general three dimensional equations for a 

magnetized plasma, including both quasi-linear and Coulomb 

interaction terms. Asymptotic analytical solutions are discussed 

in Section 4.3. In Section 4.4 we use an approximate method of 

incorporating quasi-linear relaxation into the collisional 

treatment of thick target beam evolution, in order to ascertain 

the effect of Langmuir wave generation on the form of the



electron distribution. The significance of the results obtained, 

and the limitations of the analytical approach, are discussed in 
Section 4.5.

4.2 The One Dimensional Quasi-Linear Equations

The evolution equations for the electrons and Langmuir waves 

may be written in the form

where f(x,v,t), as before, is the electron distribution and 

P(x,k,t) is the Langmuir wave spectrum. 'w1 and *cf denote 

quasi-linear and Coulomb interactions respectively. P is 

normalized such that

normalization of f is given by (3.2). In general, d/dt denotes

the total (i.e. advective) time derivative, which is given in

the case of (4.2) by (e.g. Davidson 1972)

= 1- + -_____~  • L_ (4.4)dt 3t 3k 3x 3x 3k

We shall only be considering waves propagating along the 

magnetic field, in which case w =( ̂  +3k2v^)2 and therefore

df
dt (4.1)

c

dP
dt (4.2)

c

d3k
/ P(x,k,t) -(27)3 = wp (£>0 (4.3)

where W is the energy density in Langmuir waves. The P



In this chapter we will consider, for simplicity, the case of a 

homogeneous atmosphere, in which n and T are independent of x, 

and therefore the wave refraction term (4.6) is identically 

zero. The presence of a density gradient may have important 

consequences for the level of langmuir waves: specifically, 

Langmuir waves may be taken out of resonance and subsequently 

Landau damped. This effect is discussed quantitatively in 

Chapter 7.

The rates of change of f and P due to quasi-linear 

interactions may be written in the form (Walters and Harris 

1968; Harris 1969)

(•|̂ ) = 47r2e2 I
+oo f

w

S CO.

X [P(kK— - ’ 1“  + k„ ) f(v) + mcof(v)] (4.7)—  v. 3v. 3v„ - —

a + y P (4.8)
w

where
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We have assumed plane-parallel geometry in coordinate space, 

with the magnetic field normal to the plane of stratification, 

so that there are no guiding centre drift terms. The parameters 

of our problem are such that instability occurs at comparitively 

low electron energies (E < lOOkeV), and therefore the 

nonrelativistic equations are valid. Langmuir waves only exist 

with wave vectors k < kp = 1/^. (4.8) therefore only applies 

for wave vectors in that range, and the volume of integration in 

(4.7) is the interior of the sphere of radius k^. ot and Y 

describe the spontaneous and stimulated emission of Langmuir 

waves respectively. Note that (4.10) is simply an alternative 

form of (3.1). In (4.7)-(4.10) we will assume w , which is 

only strictly valid for »  ojh and (kAD)2« l  (cf. (3.3)-3.5)).

The Fokker-Planck equation describing the effects of Coulomb 

interactions on the electron distribution may be written in the 

form

(11 )  = L - • (a + D . ) C4.ll)at c av - 8v

Summing over electron and proton species one obtains, in the

limit of a highly dilute suprathermal electron beam (Montgomery

and Tidman 1964, Section 7.4),

A = (4.12)
”  m2 v2

v2
D = -7 [ 2 (I - v v) — • (I ' 3 v v) 4 ] (4.13)= mz ------- v - --- v

4
where I is the unit tensor and K=2Tre £n A . Only the dominant

terms (i.e. those terms factored by Jin A ) have been retained. A 

circumflex is used to denote a unxt vector. In the case of an
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azimuthally symmetric f, (4.11) reduces to the Fokker-Planck 

equation used by Leach and Petrosian (1981) in the cold target 

limit v>>vg. We impose the condition that there is no pitch

angle scattering resulting from Coulomb collisions by setting

all the friction and diffusion coefficients equal to zero except 

for A and Dii mi
To complete the system of equations, we must also consider 

the collisional damping of Langmuir waves: this was neglected by 

Hoyng et al. (1979). It will be shown in this chapter and in

Chapter 5 that collisional damping is fundamentally important, 

because it limits the growth of Langmuir waves at the onset of 

instability. Assuming the electron distribution to be

predominantly thermal (i.e. assuming the beam to be sufficiently 

dilute) we can write

where the collisional damping ratev is given by (Ginzburg 1961)c

For coronal values of T and n,£n A lies in the range 17-20.o
Following Grognard (1985) we now impose the condition that

c
Y Pc (4.14)

o (4.15)

where

A o (4.16)

f = 6 (v ) 6 Cv ) f,,(v„) x y
P = (2t t)2 5(k ) 6(k ) P„ (k„) x y (4.18)

(4.17)
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where the parallel (i.e. magnetic field) direction is normal to 

the (x,y) plane. It is also convenient to introduce a new 

variable W(a)^/kM), differential in the phase velocity

= o)p/kn, such that 

d kM
P|i (kM) -—  = W(v ) dv27r 6

i*e « n „ 22 it v
p,« =  —  W(v.)V(J) 0) <P

W is normalized such that

(4.19)

W(V  dv*  = WD (4.20)V Fe
Integrating (4.1) over vx and v^, and (4.2) over kx and k^ then 

yields (using (4.7)-(4.15), and omitting the subscripts on f and 

v)
3f . 3f **“£ . 3 / "  v/ve '»p 3 3fTT + v-r—  =  ^ f; + — E • (v w ££)9t 9x m 9v in  3v 9v

v22 Kn . 9 f Ve . 9f. „
mz 9v v2 v 3̂ 9v (4.21)

3*. . 3 Ve . 3a, , , *n v/ve , * “p , 3fTT + --  -r—  = ezwz -------  f + — t-— vz W —  - v W9t v 9x P v n 9v yc

(4.22)

Neglecting collisional damping, (4.22) implies that wave growth 

will occur if 9f/gv > 0. This is in fact a necessary but 

insufficient condition for instability. In practice, a 

sufficient condition is that the beam velocity is large enough 

for the Penrose criterion to be satisfied (Penrose 1960; Krall 

and Trivelpiece 1973). In our case, a positive slope appears in 

f(v) at v > 4v , and under those conditions the distribution is 

certainly Penrose unstable. In general, there is a force term on
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the left hand side of (4.21), which may arise due to the 

electric field required to drive a reverse current. We will 

consider the importance of reverse current energy losses in 

Chapter 5. In the three dimensional case, there is also a force 

term arising from the convergence of the magnetic field. This 

results in pitch angle scattering with no energy loss, and 

therefore cannot be represented in a one dimensional model.

Neglecting collisional wave damping, one can easily show that

(4.21) and (4.22) have thermal equilibrium solutions in a 

homogeneous plasma

-v 2/2v 2
f(v) =  —r  e 6 (4.23)

(2ir) 2 ve
e2w v2 n £n v/v 

W(v) = ---^— -—  . ---- rr—  (4.24)TT VH

4.3 Asymptotic Solutions

The quasi-linear equations for a collisionless plasma have 

been studied extensively by many authors, and have been used to 

describe the propagation of electron streams producing type III 

bursts. Only in a few, highly idealized cases can analytical 

results be obtained, even in the one dimensional model. The 

asymptotic state of the electron distribution is generally 

assumed to be a plateau in velocity space, i.e. 3f/3v=0 over 

some finite range of v. Shapiro (1963) showed that a 

homogeneous, initially mono-energetic beam eventually loses two 

thirds of its energy to Langmuir waves. Grognard (1975) obtained 

self-similar asymptotic solutions of the inhomogeneous
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quasi-linear equations, and found that no more than one third of 

the particle energy could be transferred to waves. The 

discrepancy between these two results is hardly surprising since 

the assumption of self-similarity is only valid for certain 

special kinds of initial and boundary condition. In any event, 

it appears physically plausible for there to be an approximate 

equipartition of energy between electrons and Langmuir waves in 

the asymptotic state, provided Coulomb collisions can be 

neglected.

If thick target electron beams were to undergo quasi-linear 

relaxation on a collisionless timescale, a large fraction of the 

beam energy would therefore be dissipated in the form of 

Langmuir waves, and the efficiency of the thick target model 

would be further reduced. Vlahos and Papadopoulos (1979) claim 

that a beam with a large positive slope will be formed due to 

the precipitation of fast electrons from a thermally-emitting 

source region (cf. Sections 2.4 and 3.4). Such a beam would 

relax to a plateau distribution on a timescale determined by the 

linear growth rate (e.g. Tsytovich 1970a)

YW «  (— ) t-r-̂ -) a) (4.25)n A v, p

where n, is the beam density, v, is a typical beam velocity and b d
Av is the spread in v. . Assuming a typical thick target value b n

6 9 —3of n^ (10 - 10 cm ) and Av^ ~ v^, we find that is several

orders of magnitude greater than the collisional damping rate in 

the flaring corona, and quasi-linear relaxation would then 

proceed on a collisionless timescale. Vlahos and Papadopoulos
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state that the resulting asymptotic wavelevel is

i nK VU 4
—  “ Ts  ̂ (4.26)

n k B T 15 "

For sufficiently large vb , this implies that the energy density

of Langmuir waves is greater than the kinetic energy density in 
1 2the beam (~^.mnbvb). On the other hand, if we assume 

equipartition of energy between electrons and waves, the 

appropriate expression for a homogeneous beam is

_ E —  «  ( J l )  ( - £ . /  (.4 . 2 7 )

n k T n Ve
D

which is typically rather less than the wavelevel given by 

(4.26). Whichever expression is correct, it appears certain that 

the energy density of Langmuir waves produced by the 

collisionless relaxation of a thick target beam will be a 

substantial fraction of the thermal energy density. Vlahos and 

Papadopoulos use this conclusion to argue that the relaxed 

plasma will be strongly turbulent, and invoke nonlinear

stabilization mechanisms which allow the beam to reach the

chromosphere without giving up most of its energy to plasma

waves (see also Rowland and Vlahos 1984; Vlahos and Rowland

1985).

We will discuss strong turbulence quantitatively in Chapter 

6. In the meantime, we consider the question of whether or not 

wave generation is indeed likely to occur on a collisionless 

timescale. In the specific context of the dissipative thermal 

model, Smith and Brown (1980) pointed out that electrons
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escaping from the source region are decelerated by a 

thermoelectric field resulting from the turbulent conduction 

fronts which confine the bulk of the distribution. Consequently, 

the streaming electrons have an initially monotonic decreasing 

velocity distribution and can only become Langmuir unstable due 

to the effect of Coulomb collisions or (perhaps) velocity 

dispersion. We have already shown in Chapter 3 that collisional 

losses are unlikely to produce instability in the case of 

precipitation from a thermal source. Regardless of how a thick 

target beam is produced, it is reasonable to expect the electron 

distribution to be rapidly stabilized by quasi-linear 

interactions in the acceleration region (cf. Moghaddam-Taaheri 

et al. 1985).

If an electron beam is injected with a stable velocity 

distribution, the situation is fundamentally different from the 

one envisaged by Vlahos and Papadopoulos. Neglecting velocity 

dispersion, instability can only occur on a collisional 

timescale, and collisions therefore determine the subsequent 

evolution of the beam. The collisionless quasi-linear equations 

are consequently invalid, and the expression for the saturation 

wavelevel given by (4.27) is incorrect. Our problem is therefore 

qualitatively different from the type III problem, which 

involves the propagation of electron streams through a 

collisionless plasma.

If W(v) is much greater than the thermal level, we can to a 

first approximation neglect the spontaneous emission term in

(4.22). For the same reason, we can neglect the first term on 

the right hand side of (4.21), and also the diffusive term
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provided v>>v . In a steady state, the equations then reduce to

3 v2e 3w ^ wp 2 3f 
-7—  • T T  ^-E v  w - Y W (4.29)

If collisions produce 3f/3v>0 for some finite range of v, the 

Langmuir waves will react back on the electron distribution in 

such a way as to stabilize it. The terms on the right hand sides 

of (4.28) and (4.29) suggest that a quasi-homogeneous steady

state might exist, in which a positive slope in f(v) is

continously created by collisions, and continuously flattened by 

quasi-linear interactions. At the same time, the Langmuir waves 

are driven by the positive 9f/3v, and damped by collisions. 

Setting 3f/3x=3W/8x=0 in (4.28) and (4.29), we obtain the 

equilibrium solutions

y n -
f(v) = f — ^ ‘ - (4.30)

P ^  V

W(v) = —  f ~2 (1 ■ ( ~ ) 2) (4.31)Y m p v^ vc l

where f and v, are constants. The electron distribution is a 
P 1

plateau, modified by a small correction term. Note that 
„ „ y n , y
3-fo » = —   • i- ^ (2_) (4.32)3 £n v it cj vf oo n,P P b

which is typically <10”4 . can be identified as the velocity

at the lower edge of the plateau. Taking the velocity at the 

upper edge to be v2, the energy density in Langmuir waves is
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given by

W, W(v) dvP 'V 1 
K n  f

W
P y m ' c

v21 - £n (— ) (4.33)

It should be emphasized that this result is only accurate to at 

best an order of magnitude, and is an overestimate. We can 

justify setting the left hand side of (4.29) equal to zero on

small compared with the beam velocity v. The solution (4.30), 

which is determined only by (4.29), is therefore an accurate 

representation of the electron distribution. On the other hand, 

the neglect of 8f/8x in (4.28) is only justified for electron 

energies E < (KN) , where N is the column depth traversed by 

the beam. This is approximately the energy at which a positive 

slope forms in f(v) due to collisional losses, and therefore 

(4.31) is not valid throughout the plateau region in velocity 

space. We would expect the true solution to reach a maximum, and 

then fall off to zero at the upper edge of the plateau.

Nevertheless, (4.33) can be used to illustrate the

qualitative difference between wave generation by a thick target

beam and wave generation in a collisionless plasma. Putting f

=n,/v and assuming the factor in brackets is of order unity, we b

the grounds that the wave group velocity v

obtain

W
_E

n, v
«  c— ) (— ) (4.34)

n kB T n v.b
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This result was obtained by Zaitsev and Kaplan (1968) using a

rather different argument. It differs from (4.27) by a factor
3

(v /v ) , and in practice we find that instability occurs at v,e b b
- (4-10)v . (4.27) therefore overestimates the wavelevel bye J

between 2 and 3 orders of magnitude, which means that only a 

very small fraction of the beam energy is transferred to 

Langmuir waves.

Having derived an approximate expression for the asymptotic 

wavelevel, we can now estimate the rate at which Langmuir waves 

heat the plasma. The rate of energy deposition is given simply 

by
I = y W W c p

" J e  [ £ > *  . x . £ ,  ]
m L v i  v i  J

We can compare this with the collisional energy deposition rate 

due to the beam itself, which is given by

XB f, (v)b (“ )
d t c

dv (4.36)

where f, is the beam component of the electron distribution and b
(dE/dt) is the mean energy loss rate resulting from Coulomb c
collisions. For the purposes of the present discussion, it is 

sufficiently accurate to use the expression for (dE/dt) which 

is applicable to a fast electron in a cold, fully ionized 

hydrogen plasma (Trubnikov 1965)

(«) = - S p .  (4.37)at &c
(if we set W=0, this is simply the equation for the
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characteristics of (4.28)). If we now crudely approximate the 

beam distribution by

f, (v) = f , v_ < v < v„b p l 2
= 0 , otherwise

then we obtain from (4.36) the result

(4.38;

2 Kn f v
B - — — B. a >  (4.39)

which, apart from a factor of order unity, is the same as 

(4.35). Thus, although Langmuir waves contain a negligible 

fraction of the original beam energy, they heat the plasma at a 

rate which is comparable to that of the fast electrons. The 

reason for this is that waves are damped collisionally almost as 

fast as they are amplified by a positive slope in f(v). We will 

consider more quantitatively the relative contributions of beam 

and wave heating in Chapter 5.

4.4 The Evolution of the Electron Distribution With Depth

According to our one dimensional model, Langmuir instability 

occurs if there is a region of positive slope in the combined 

electron distribution, which is given by

f(x,v) = f (v) + f, (x,v) (4.40)O D

where fg is the (Maxwellian) distribution function of the 

background plasma, which we assume to be homogeneous and in a 

steady state, fg is given explicitly by (4.23). The assumption 

of a steady state requires that the electron and ion 

temperatures are equal, that the corona is in hydrostatic
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equilibrium, that heat is conducted away from the source region 

as rapidly as it is deposited by the beam (either directly, due 

to Coulomb collisions, or indirectly, via Langmuir wave damping 

or the ohmic dissipation of reverse currents), and that the beam 

itself is in a steady state (cf. Section 3.1). If the beam 

energy losses are predominantly collisional, the temperature is 

a very insensitive function of the injected electron flux
2s

( T^F q 7), and changes by no more than a factor of 2 along the 

length of a coronal loop (cf. Emslie 1985; Emslie and Smith 

1984). The fall in temperature towards the chromosphere may 

destabilize the beam (due to the beam component of f dominating 

over the background component at lower velocities), but this 

will be partly offset by the increasing density.

We use a mean collisional energy loss rate treatment to 

determine f^(x,v). Neglecting pitch angle scattering, the steady 

state electron flux distribution G(E) is given by the continuity 

equation

GCE) dE = F(E1;dE1 (4.41)

where F is the injected flux spectrum and E^ is the initial 

energy of an electron of energy E. We take the same form for F 

as in Chapter 3, viz (3.14). The beam velocity distribution is 

given in terms of G by

v f,(v) dv = G(E)dE (4.42)D

i.e.

f, (v) = m G(E)D

fb (v) = (4.43)
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To determine E^ from a prescribed E we require the mean

collisional energy loss rate. In our case, f, (v) is notb
negligible close to the thermal speed, and it is therefore 

necessary to evaluate (dE/dt) for a warm (finite temperature) 

plasma. For an electron beam in a fully ionized hydrogen plasma 

the appropriate expression is (see Appendix A)

" Kl^ V ( $(y) - 2y $'(y)) (4.44)
c

where $ is the error function and y=(E/k T)^ . For E»k_T,B B
(4.44) gives the cold target result (4.37), while for E+k^T, 

(dE/dt)c->» 0. It should be emphasized that (4.44) cannot describe 

the relaxation towards thermal equilibrium of a nonthermal 

distribution, since it does not include the effect of diffusion 

in velocity space (cf. (4.21)). It is, however, germane to the 

present discussion since the effect of a finite temperature is 

to inhibit the formation of a positive slope in f(v) close to 

the thermal speed.

Changing the independent variable in (4.44) from t to column

depth N, and writing^ (y) =$ (y)-2y$'(y), we obtain

§  = - M y )  14.45)

i.e.

fEl E dE r' ' MKN =   k C4.46)^  *[(E/kBT)2 ]
Je

The problem is then to determine E^, given E and N. In the cold 

target limit, (4.46) yields

E = (E2 + 2 KN)^ (4.47)
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In general, (4.46) may be solved for by iteration, using

(4.47) as an initial estimate. To evaluate f^Cv) we also require 

dE^/dE, which can be obtained by differentiating (4.46):

dEi E
dE Ei ip(y)j

(4.48)

where y. = (E./k T)^ .1 I B
Using the above equations we can evaluate f(v), neglecting 

quasi-linear interactions, for any prescribed set of parameters 

(Fq, Eq, 6 , T and n). Quasi-linear relaxation can be 

incorporated in the scheme in the following way: if a region of 

positive slope is produced in the combined distribution, it is 

immediately replaced by a plateau which conserves particle 

number. The three parameters which define the plateau are, as 

indicated schematically in Figure 4.1, v^, V2 and f^. These are 

(uniquely) defined by the condition that

fv 2
(f(v) - f ) dv = 0 (4.49)P

1

although there are three unknown parameters, only one of these 

is independent: they may all be readily determined numerically. 

The smoothed-out distribution function minus the background 

Maxwellian can then be taken to be the new F(E^), and the 

distribution function G(E) corresponding to the subsequent 

N-step can be evaluated as before. E^-E is thus the energy lost 

by an electron in a single N-step. If E^ lies in the plateau 

region then

m F(Ei) = f - f. [ v(E j) ] (4.50)1 p o
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f (v)

*P

Figure 4.1 The form of the combined electron distribution
giving rise to Langmuir instability. The plateau of 
the relaxed distribution is defined by the three 
parameters v^, and f .
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Otherwise, F(E^) is given by the function G(E) as evaluated in 

the previous step.

We can justify setting f(v)=f^ in the above procedure on the

grounds that the velocity-dependent correction term in (4.30) is

negligibly small. Once instability has occured, the distribution

evolves collisionally in a single N-step to a state in which

8f/8v is sufficiently large for quasi-linear interactions to

dominate, and we can then replace f(v) with the appropriate

asymptotic solution. It should be noted that the collisional

evolution described by (4.43) does not conserve particle number:

beam electrons are lost from the system, because the (constant

density) background plasma acts as a particle sink. The rate at

which electrons are lost in this way depends on the form of

f(v): the relaxation process transfers electrons to lower

velocities, where they decay collisionally more rapidly. In

order to realistically model the evolution of the beam it is

therefore necessary to ensure that the step size <5n is much less

than a collisional stopping distance: only then could the

results be expected to converge. This was found to be indeed the
2case. In fact convergence occured for 6N < 0.01E /2K. In 

practice it is also necessary to use a small step size in energy 

space, so that v^ and can be accurately determined.

In Figures 4.2 and 4.3 we present numerical computations of 

f(v) at two different points in the atmosphere, for two 

different values of the plasma density. The basic feature to 

note is that the quasi-linear plateau falls below the 

collisionally-evolved distribution as the beam propagates down 

the corona. This may be compared with an analytical result
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f (v)

10'“

5 7 8 94 6 2 3 4 5 610

Figure 4.2(a) Electron distribution function for the model

parameters Fq = 1 0 ^  electrons cm ^ s

Eq = 20keV, 6 = 4, T = 10^K and n = 1 0 ^  cm \  at
19 -2a column depth of 3x10 cm . The dotted line 

shows the plateau formed by quasi-linear
_ orelaxation (f is measured in electrons cm 

(cms-1)  ̂ and E is measured in keV).
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Figure 4.2(b) As Figure 4.2(a) except at a column depth of 10
-2cm
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11 -3Figure 4.3(a) As Figure 4.2(a) except with n = 10 cm , at 

column depth of 1 0 ^  cm
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10"'
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obtained by Hamilton and Petrosian (1986). These authors showed 

that (4.28) and (4.29) can be integrated over coordinate space 

to give

w(v> = [ f~coii(v> ■ f~(v) ] (4-51)

where a tilda denotes a quantity integrated from 0 to 00 with

respect to x, and ^coll^v  ̂ collisionally evolved

solution. The requirement that W(v)^.0 implies that

f -.-.(v) > f (v), for all v. It is not clear whether or not the coll
distributions shown in Figures 4.2 and 4.3 will satisfy this

condition, since it does not necessarily preclude

fc o n (v ) < f(v) at a single point in space. There does appear to

be a discrepancy between (4.51) and Figures 4.2a and 4.3a, in

which f -..(v) < f(v) at the lower edge of the plateau: this may coll
be due to the fact that (4.51) is only valid for a cold plasma, 

and does not take into account the complicated interaction of 

the beam with the Maxwellian background.

(4.51) can be used to obtain an upper limit on the spatially

integrated wavelevel, since can ^e easily evaluated

from the injected flux distribution. Assuming fcon ( v ) >> f(v )» 

Hamilton and Petrosian show that

W E2 n v
 2--- ) (— ) (4.52)
n kB T Kn n Vo

where 1 mv? = E„ and n_ is the beam density at the point of 2 U U U
injection. If we assume that the length of the electron stream 

is of the order of the collisional stopping distance Eq /Kh , then
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(4.52) implies a spatially averaged wavelevel comparable to that

given by (4.34). It should be noted, however, that (4.51) is

only valid if the beam is stopped collisionally in the corona,

which will not be the case if the coronal column depth is less 
20 -2than about 10 cm . Furthermore, Figures 4.2 and 4.3 show that 

f(v) is not negligible compared with an(* therefore the

assumption >> f(v ) is probably not justified. Finally,

it should be emphasized that the beam density n^ at the point 

where wave generation starts is considerably less than the 

injected beam density n^, due to collisions having removed most 

of the low energy electrons.

4.5 Discussion

In this chapter we have constructed a one dimensional model 

of beam relaxation in a collision-dominated plasma, and 

progressed as far as possible using analytical techniques. The 

crude treatment of quasi-linear relaxation described in the 

previous section was essentially heuristic, based on physically 

plausible assumptions: we do not attempt to justify it

rigorously. The results appear to make reasonable sense, and can 

be used via (4.33) to obtain an order of magnitude estimate of 

the thick target wavelevel. In order to determine accurately, 

however, and to incorporate quasi-linear dynamics into the 

evolution of the electron beam in a rigorous way, a purely 

numerical approach is essential. One might criticize, for 

example, the assumption in Section 4.4 that quasi-linear 

interactions are neglected entirely when f(v) is stable, and 

’switched on1 abruptly at the onset of instability. Indeed,



Hoyng et al. (1979) claim that quasi-linear interactions 

maintain the stability of the distribution, and that

consequently the wave energy density is never more than a few

times the thermal level. This conclusion is based, however, on 

the assumption that the electron and wave distributions are 

never highly anisotropic, and may therefore be incorrect in the 

case of a highly collimated beam. Nevertheless it is desirable 

to solve numerically the full one dimensional quasi-linear 

equations (4.21) and (4.22), in order to assess the possible 

stabilizing influence of Langmuir waves on the particle 

distribution. The numerical approach also enables us to 

incorporate additional processes, such as reverse current energy 

losses, which cannot be handled analytically.

The relaxed electron distributions shown in Figures 4.2 and 

4.3 are sufficiently different from the collisionally evolved 

distributions to suggest that they might produce substantially 

different bremsstrahlung spectra, particularly if the

quasi-linear plateau extends into the tens of keV range. We will

assess quantitatively the effect of quasi-linear interactions on 

the hard X-ray spectrum in Chapter 5. We will also consider the 

effect of relaxation on the rate of collisional energy 

deposition.



CHAPTER 5

THE QUASI-LINEAR RELAXATION OF THICK TARGET 

ELECTRON BEAMS - NUMERICAL MODEL

5.1 Introduction

In this chapter we present numerical computations of the 

steady state thick target electron distribution and the Langmuir 

wavelevel, based on a finite difference computer code which is 

described in detail in Appendix B. In Section 5.4 we compute the 

energy deposition rate and hard X-ray signature of a relaxed 

beam, and compare the results with those obtained from a purely 

collisional model of beam relaxation. In Section 5.5 we discuss 

the extent to which the wavelevel is reduced by reverse current 

Ohmic losses. Using idealized assumptions, we estimate in 

Section 5.6 the flux of 2nd harmonic radiation produced by a 

Langmuir unstable thick target beam, and consider whether 

reverse drift microwave bursts might be consistent with a plasma 

radiation interpretation.

5.2 The Equations

It is convenient to introduce the dimensionless variables
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W = 2 n  XD
- T T Y -  ve (5 .4;

B

In a steady state, (4.21) and (4.22) then become (omitting 

tildas from dimensionless quantities)

9f 3_
9v9x

3 3W Jin v

Jin v
2tt v2 f + v W

3f Jin A
8v 2tt v" (f + - ~  )v av

v ax
2 i*. &n A

f + W —  - (— ) 2 ---- -2tr v 9v 9tt 2tt
9f W

(5.5)

(5.6)

where we have assumed that the background plasma is homogeneous, 

i.e. T and n are independent of x. It is essential to include 

the collisional diffusion term in (5.5), so that f retains a 

Maxwellian form as v ^ O  (as far as the numerical code is 

concerned, the distribution function is a single entity: there

is no distinction between the beam and the background). A 

simplification of (5.6) can be made if we assume that the waves 

are in local equilibrium with the electrons unless instability 

develops. That is, we set 9W/9x = 0 in (5.6) unless 9f/9v > 0. W 

is then given by

Jin v ^
 ---  f(x,v)

W (x,v) = ---77 V p 1 --------------  (5.7)
,2 *nAo 2 3f , ,
(9 ^  —  ' v 37 (x>v)

If the electron distribution is stable, spontaneous emission of 

waves almost exactly balances Landau damping (collisional 

damping is negligible unless there is instability), and the wave 

distribution evolves only slowly with depth. Mathematically, it
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is consistent to neglect 3W/3x in (5.6) while retaining 3f/3x in 

(5.5) for the reason given in Section 4.3, namely that the 

Langmuir waves propagate at a group velocity which is typically 

an order of magnitude less than the beam velocity. At the onset 

of instability, the wave distribution grows to a significant 

level in a relatively short distance and the full equation (5.6) 

must therefore be solved (cf. Hoyng et al. 1979). In order to 

acheive numerical stability, it is in fact convenient to retain 

dW/dx in (5.6) whenever the electron distribution is unstable.

To obtain a numerical solution we require boundary conditions 

in coordinate space and velocity space. The electron 

distribution at x=0 is given by

f(o,v) = f (v) + f, (o,v) (5.8)* o b *

where, as before, f^ is the distribution function of the

background plasma. In our dimensionless units,

f (v) = (2ir)2 n e V ^  (.5.9)o D

f^(0,v) is determined by the injected electron flux spectrum, 

which, once again, we assume to be a modified power law of the 

type invoked in Chapters 3 and 4. Using the relation

v 'f (o,v) dv = F(E)dE

we obtain, in dimensionless units,

f, (o ,v ) = 2tt v m (6-l) F E <5“1 (E + E)~6 (5.10)b e D o o o

The boundary condition at x=0 for the wave spectrum is



determined by the requirement that the waves are initially in 

equilibrium (since the particle distribution is stable). W(0,v) 

is therefore given by (5.7) with x=0.

The boundary conditions in velocity space are determined by

the physical requirements that f(x,v) should tend to a

Maxwellian distribution as v-^0 (so that the beam merges with

the background) and that f -*0 as v -> oo (so that f is

normalizable, has finite energy, and so on). In practice it is

convenient to take v=l (in units of v ) as the lower boundary in

velocity space, and an upper boundary v=vmax such that the

electron distribution is stable for all x at that velocity. The

value of vmax is arbitrary provided it is sufficiently large

that the distribution function is not significantly affected by

collisional losses at that velocity (the results presented ih

this chapter were obtained with vmax > 20). The simplest

boundary condition to take at v=l is that f is constant. This is

acceptable provided the plasma density is constant and the beam

density is much less than the plasma density (cf. comments in

Section 4.4). If we further prescribe f(x,v )=0 it followsr max
from (5.7) that W(x,l)=W(x,vmax)=0. This provides a complete set 

of boundary conditions which enable a numerical solution to be 

determined. A description of the numerical method is given in 

Appendix B.

In order to obtain a quantitative comparison with the 

standard collisional thick target model, it is also necessary to 

solve the one dimensional Fokker-Planck equation
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subject to the same boundary conditions as the full quasi-linear 

equations. A trivial modification of the numerical method is 

required to obtain the solution (see Appendix B).

5.3 The Electron and Langmuir Wave Distributions

The results presented in this section were obtained with the

following model parameters: T = 10^K, n = 1 0 ^  - 10** cm Fq
18 19 —2 —1= 1 0  - 10 electrons cm s , Eq = 20keV, 6 =4. The loop

length was taken to be 10*^cm: this is about a factor of 3

greater than the maximum observed length of a flaring coronal

loop, and was chosen to illustrate the effects of quasi-linear

relaxation on collisional energy deposition and bremsstrahlung

emission under the most extreme conditions.

Figures 5.1a and b show isometric plots of the solution of
10 -3the Fokker-Planck equation (5.11) with n = 10 cm and 

11 -3n = 10 cm respectively. In each case, the injected electron
19 -2 -1flux was taken to be 10 electrons cm s . The formation of a

positive slope in f(v) as x increases is clearly apparent. The

results can be verified analytically in the limit of large v:

for v » l  (the cold target approximation) (5.11) reduces to

8 f Jin A 8 , f ^v —  = —   r—  C-2-) (5.12)ax 2tt 8v  v^

which has general solution

f(x,v) = v2 H [(v4 + "■■ ■ x)^ ] (5.13)

where the function H is determined by the injected beam 

distribution. From (5.10) it follows that
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Figure 5.1(a) The solution of the Fokker-Planck equation (5.11)
10 -3with n = 10 cm . I n  dimensionless units, x 

runs from 0 up to 220.5 and v runs from 1 up to 

12.
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11 -3Figure 5.1(b) As Figure 5.1(a) except with n = 10 cm . x 

runs from 0 up to 2205 and v runs from 1 up to 

20.
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fU,v) = A ---- — ------
/ 14. 2 £11 A \ %(v*+ -----  x) ̂7T

where A = 27rv Lm(i-1)F ^(2/mv2)^ and ~  m(v v ) =En . The e D 0 0  e 2 o e 0
numerical solutions are found to be in almost exact agreement

2with (5.14) for large v: the discrepancy is of order 1/v , as

implied by the diffusion term in (5.11).

Figures 5.2 and 5.3 show the solutions of the quasi-linear 

equations (5.5) and (5.6). As we would expect, the regions of 

positive slope in Figure 5.1 have been replaced with plateaux in 

Figure 5.2 (cf. (4.32)). As x increases, the plateau height 

falls and the region in velocity space of unstable wave growth 

becomes wider. Outside the plateaux, Figures 5.1 and 5.2 are 

almost identical, showing that quasi-linear interactions have a 

completely negligible influence on the particle distribution 

except when instability occurs. Our results are in contrast with 

those of Hoyng et al. (1979), who found a quite negligible 

enhancement of the wave energy density above the thermal level 

(Hoyng et al. assumed model parameters and boundary conditions 

similar to those used in this chapter). In our case, the wave
g

distribution is amplified by a factor of around 10 in Figure

5.3a, and around 10^ in Figure 5.3b. In the case of a one

dimensional beam, we may therefore conclude that wave-particle 

interactions do not maintain the stability of the particle 

distribution. The probable reason for the discrepancy between 

our results and those of Hoyng et al. has been discussed in 

Chapter 4. Figures 5.1 and 5.2 are in good agreement with 

Figures 4.2 and 4.3, and thus vindicate the method used to infer

v2 + 0 o
2 £n A shx) (5.14)
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Figure 5.2 Electron distribution functions, allowing for

quasi-linear interactions. Except in the regions of 

the plateaux, the solutions are almost identical to 

those shown in Figure 5.1.
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( \ InlO -3(a ) n = 10 cm

W (XIO-*)

Figure 5.3 The Langmuir wave distributions corresponding to the 

particle distributions shown in Figure 5.2. The 

(x,v) grids are identical to those in Figures 5.1 

and 5.2.
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the relaxed state of the particle distribution which was 

described in Section 4.4.

The normalized wavelevel is given in terms of the

dimensionless wave spectrum by

The integral can be easily evaluated numerically for each space 

point from the results shown in Figure 5.3. Figures 5.4a and b 

show W /nk T as a function of x. In each case, the wavelevel

increases very rapidly at the onset of instability to a maximum 

value, and then falls off much more gradually. Substituting in

find that (4.33) overestimates the wavelevel by a factor of

between 3 and 10. This rather large discrepancy indicates the

necessity of performing a numerical calculation, if the

wavelevel is to be determined with acceptable accuracy.

It would be useful to establish a scaling law between the

wavelevel and the injected electron flux. Unfortunately, the

range of unstable wavenumbers depends on several other

parameters, notably the plasma temperature and density, in a

nontrivial way, and therfore no simple scaling law exists. It

appears, however, that the maximum wavelevel rises faster than

linearly as the injected flux is increased. For example, if we

prescribe the same parameters as those used to obtain Figure
18 —2 —15.4a except that F_ = 10 cm s , we find that W /nk T <r 0 p B v

_54x10 . Note that a high beam flux implies a high steady state

temperature (cf. Section 4.4), which tends to inhibit wave

n kfi T

WP W(v)dv 15.15)

P B

(4.33) the numerically determined values of f , v. and v~, wep 1 2
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Figure 5.4 Normalized wavelevel as a function of x, obtained by 

integrating over the wave spectra shown in Figure 

5.3. Note how rapidly the wavelevel rises at the 

onset of instability.
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generation. It appears unlikely that, for any set of realistic 

and consistent parameters, the wavelevel produced by a steady 

state beam is much greater than that shown in Figure 5.4a.

5.4 Energy Deposition and Bremsstrahlung Emission
_3The energy deposited by the beam in the plasma (ergs cm 

s due to collisional losses is given by (4.36). It is 

appropriate to use the expression (4.44) for the collisional 

energy loss rate: (4.36) can then be written in the form

K nI =   w
B irm X2 v2 p D e

fb (x, /2y) (5.16)
y

yo

where Yq - 1 is the value of y at which ip =0 and f^ is the

(dimensionless) beam component of f(v). There is clearly a

problem in determining f^, since only the total distribution

function is known a priori. Our numerical results show that f(v)

relaxes very quickly to a Maxwellian distribution in the

vicinity of v=ve > the same temperature but a higher density

than the background plasma at the point of injection. This rapid
-3relaxation may be attributed to the v dependence of the

collision frequency. By fitting a Maxwellian to the first few

solution points (v^ve), and extrapolating this fit to the rest

of the distribution, the beam component of f(v) can be

determined empirically.

Figures 5.5a and b show the total energy deposition rates 1^

corresponding to the distribution functions shown in Figure 5.1

(broken line) and Figure 5.2 (solid line), the latter including

the contribution of collisional wave damping, ITT = v W (cf.W c p
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(a) n = 10 10 cm -3

io‘

100 12080 140 160 180 200 220604020

Figure 5.5 Energy deposition rates corresponding to the

distribution functions shown in Figure 5.1 (broken

lines) and Figure 5.2 (solid lines). The latter

include the contribution of collisional wave
-3 -1damping, y £ W (1^ is measured in ergs cm s ).
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Section 4.3). It can be seen that Langmuir wave generation makes 

very little difference to the total heating rate: in each case, 

I_ is enhanced by no more than 8%. I is slightly reduced as the1 D

result of quasi-linear relaxation, but this is more than offset

by collisional wave damping. After the onset of instability, we

find that 1^ is a substantial fraction of the total heating

rate: this is consistent with the approximate analytical results

obtained in Section 4.3.

The collisionless quasi-linear equations satisfy the second

law of thermodynamics, in the sense that the entropy of the

particle-wave system is a monotonic increasing function of time

(Harris 1969). It is therefore not surprising that the plasma

should relax towards thermal equilibrium more rapidly when

quasi-linear interactions are taken into account. What is

perhaps surprising is that the presence of Langmuir waves should

bring about such a small increase in the total heating rate. In

view of the sensitive temperature dependence of the conductive 
7/2flux (F ~T ), we may conclude that the effect of Langmuir wave 

generation on the mean steady state temperature is completely 

negligible.

We now consider the X-ray signature of a relaxed thick target

beam. Neglecting directivity effects, the volume integrated
- 2 -1bremsstrahlung flux observed at the earth (photons cm s 

keV *■) is given by
.00

e
nQCe,E) G(x,E)dE t5.17)
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where, as in Section 4.4, G(x,E) denotes the electron flux 

spectrum, Q(e,E) is the bremsstrahlung cross-section 

differential in photon energy, £ is photon energy, A is the 

area of the (plane parallel) beam and L is the length of the 

coronal loop, d denotes the astronomical unit. Following Brown 

(1971) we adopt the nonrelativistic Bethe-Heitler formula 

(Heitler 1954)

^ e’ E) = f  a r :  T i
■1 + A  - e/E '
,1 - A  ~  e/E ,

(5.18)

where a is the fine structure constant and r is the classicale
electron radius. Putting y=E/e, (5.17) may then be written in a 

form convenient for numerical computation:

1(e) =
Q C2 2 a o nzA
47T2 d 2 (1) £ P

r* .00

dx dy £n 1 + /1-1/y
ll - A-l/y J

Jo J1

ftx,/2y)

(5.19)
g

where Qq = and £ is now the dimensionless length of the

loop. If f(x,v) were determined by Coulomb collisions alone,

(5.19) could be inverted analytically in the limit £-k° to yield 

the injected electron flux in terms of 1(e) (cf. Section 2.4 and 

Brown 1971).

The X-ray spectra corresponding to the distribution functions 

shown in Figure 5.1 (broken line) and Figure 5.2 (solid line)

are shown in Figures 5.6a and b. In each case the beam area was
17 2 19 -2taken to be 3x10 cm : combined with Fq = 10 electrons cm

1 36 "1s” , this gives a total injected flux of 3x10 electrons s ,

which is a typical thick target value (e.g. Brown 1976). The

bremsstrahlung flux is reduced by quasi-linear interactions in
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(a) n = 1 0 10 cm ^

r2

Figure 5.6 Volume integrated bremsstrahlung spectra

corresponding to the distribution functions shown in

Figure 5.1 (broken lines) and Figure 5.2 (solid
—2 -1 -1lines) (dJ/de is measured in photons cm s keV

and e is measured in keV).
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an energy range corresponding roughly to the velocity plateau in

the electron distribution, but the reduction is never more than
10 -3about 4% in the case of n = 10 cm , and <12% in the case of 

11 -3n = 10 cm It may therefore be inferred that wave-particle 

interactions have an observationally negligible effect on the 

X-ray spectrum. The fact that qualitatively different electron 

distributions can produce almost identical photon spectra may be 

attributed to the well-known 'filtering1 property of the 

Bethe-Heitler cross-section, which also means that the solution 

f of the integral equation (5.19) is extremely sensitive to 

small perturbations in the function 1(e) (Brown 1975; Craig

1979).

5.5 Reverse Current Losses

Reverse currents can be incorporated into the kinetic 

treatment of beam relaxation by writing (4.1) in the form

v.|i - -  E M  ) + (||) (5.20)8x m — dv w c

Assuming that current neutralization has taken place (cf. Brown 

and Bingham 1984), the steady state form of Ohm's law can be 

written in the form

E = n = - n = - n [- e / fb (v)v d3 v ] (5.21)

where is the current carried by the beam, is the reverse

current and n is the plasma resistivity. As before, is

the beam component of f(v). Repeating the procedure described in 

Section 4.2, (5.20) can be reduced to the one dimensional form



The effect of the reverse current term in (5.22) is to reduce 

the energy of every beam electron by an amount

This tends to suppress Langmuir wave generation, because it 

results in a more rapid thermalization of the beam distribution. 

The fact that AE is independent of velocity means that, unlike 

collisional losses, reverse current Ohmic losses cannot produce 

a positive slope in f(v).

We assume the classical expression for the resistivity of a 

fully ionized hydrogen plasma (Spitzer 1962)

This is valid provided the beam is sufficiently dilute (cf. 

(4.14)—(4.16)), and provided the plasma is stable to the 

generation of ion-acoustic waves: the presence of ion-acoustic 

turbulence enhances the effective collision frequency, leading 

to an anomalous resistivity which may exceed the classical value 

by a large factor. However, ion-acoustic instability can only 

occur when the electron temperature is much greater than the ion

,x
AE e | E (x')| dx'

o

i.e
,x

q(xf)dxf f (xf,v')vf dv' (5.23)
o

o (5.24)
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temperature (e.g. Melrose 1986). Our assumed steady state 

requires the electron and ion temperatures to be equal (cf. 

Section 4.4), and under those conditions ion-acoustic waves are 

strongly Landau damped. We are therefore justified in assuming 

the resistivity to be classical (Langmuir waves do not 

significantly affect the resistivity of the plasma, because they 

have a suprathermal phase velocity and therefore can only 

interact with electrons in the tail of the distribution).

The appropriate dimensionless form of (5.22) is

3f
v ^  - a fb ( v ', d v ' H

o
= 3_

3v £n v + v W + I • |1) 1 (5.25)3v 2ir r  v 3v27T v 2

where a = n 2 e /(2 (k T) )jtnAn. To obtain a numerical solutionB u
of (5.25) we impose the same velocity space boundary conditions 

as before, i.e. f is prescribed to be constant at v=l and equal 

to zero at v=vmax* Strictly speaking, this is incorrect, since 

the requirement of current neutrality means that the Maxwellian 

component of f has a drift velocity given by

in the notation of Section 4.3. The fact that both v, and n,b b
vary with depth means that the numerical code cannot be easily 

modified to allow for the finite drift velocity of the 

background plasma, which tends to favour Langmuir wave 

generation by increasing the range of velocities over which f(v) 

has a positive slope. We believe, however, that this is a
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secondary effect which may be neglected. It was pointed out in 

Section 4.4 that the beam density at the onset of instability is 

a small fraction of the injected beam density, and in practice 

we find that is invariably much less than vg when wave

generation takes place.

f^(v) in (5.25) can be determined for each space point using 

the method described in Section 5.4. It is then quite 

straightforward to generalize the numerical method to include 

the reverse current term (see Appendix B).

Figures 5.7a and b show the normalized wavelevel, for the two 

cases considered earlier, when reverse current energy losses are 

taken into account. The broken lines indicate the wavelevel when 

reverse currents are neglected. As expected, the most 

significant difference occurs in the low density case n=10^
_3cm , the peak wavelevel being reduced by about 40%. In the case 

11 -3of n=10 cm , the wavelevel is reduced by no more than 10%. We 

have seen that the Langmuir wavelevel is maximized when a 

relatively high flux of electrons is injected into a relatively 

low density plasma. However, this is also the regime in which 

reverse current losses are most important, and reverse currents 

therefore play an important role in limiting the maximum 

wavelevel which can be produced by a thick target beam.

5.6 2nd Harmonic Plasma Radiation

There are several possible mechanisms for generating 

fundamental and 2nd harmonic plasma radiation. The process 

considered by Emslie and Smith (1984) is

£ + £' + Y (5.27)
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(a) n = 1 0 ^  cm ^
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Figure 5.7 Normalized wavelevel as a function of x, allowing

for reverse current energy losses (solid lines). For 

comparison, the curves in Figure 5.4 are also shown 

(broken lines).
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where & , &' denote Langmuir wave quanta and y denotes a photon 

with a frequency (required by energy conservation) of about 

2u)p . If it is assumed that the Langmuir waves are distributed 

isotropically, a simple analytical expression for the microwave 

flux density due to this process may be obtained in terms of the 

wave energy density W^. If we further assume that the radiation 

is optically thick, the width of the spectrum being determined 

by the finite spread in the Langmuir wave spectrum rather than 

by density inhomogeneities, then it can be shown that the

appropriate expression for the flux density at the earth (ergs
-2  _  -1  - 1. .cm Hz s ) is

v4
S = 2 x lo'3 \----  W e‘T (5.28)v d^ v cz a) pe P

(Emslie and Smith 1984) where t is the optical depth resulting

from absorption by overlying material and v^ is the minimum

phase velocity in the Langmuir wave spectrum. Now at the peak of
-2 -3the solid curve in Figure 5.7a we have =« 10 ergs cm and v^

17 2?4ve . Taking A = 3x10 cm as before and x - 0.5 (assuming that 

only free-free absorption occurs), we find that

S = 15000 s.f.u. (5.29)v

at v - 2v - 2GHz. This compares with a typical observed flux at 
P

this frequency of less than 1000 s.f.u. in large events (Wiehl 

et al. 1985). The flux density predicted by (5.28) is not 

strongly model-dependent: for example, in the case of n = 1 0 ^
_3cm , we find that =; 6000 s.f.u. when the other parameters are 

held constant. If, on the other hand, we prescribe the same
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36 —Itotal injection rate of electrons (3x10 s ) over an area of

1 8 ?  10 — 33x10 cm and n = 10 cm , we obtain - 7000 s.f.u.. These

estimates of the microwave flux density are comparable to those

found by Emslie and Smith (1984).

Can the reverse drift decimetric and microwave bursts of Benz 

et al. (1983) and Stahli and Benz (1987) be interpreted in terms 

of the mechanism described above? One of the events recorded by 

Benz et al. (their Figure 3) has a peak flux density of about 

3000 s.f.u., and shows a discernible drift towards higher

frequency with time. The bandwidth Am/to , however, is around 

0.01, whereas the predicted bandwidth of second harmonic 

emission is given by (e.g. Melrose 1980b)

a 6 6 v2
—  = — y  —  = * 0.2 (5.30)“ v2 k v2

where Ak is the spread of wave numbers in the Langmuir wave 

spectrum, k is a typical wave number, and we have assumed Ak= k. 

It therefore appears unlikely that this particular event can be 

interpreted in terms of the coalescence mechanism (5.27), unless 

Ak «  k. The average bandwidth of the decimetric blips recorded 

by Benz et al. is around 0.03, which is still too narrow.

Stahli and Benz (1987) give only upper and lower limits for 

the bandwidth of the microwave bursts they describe: they find

that Am / a) may lie anywhere in the range 0.05-0.5, which is 

certainly consistent with (5.30). It was pointed out, however, 

in Section 2.5, that the typical flux density of the events 

recorded by Stahli and Benz is very much less than that 

predicted by Emslie and Smith. There are several possible
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reasons for this. In the first place, there is no evidence that

the drifting microwave bursts coincided with significant fluxes

of hard X-ray emission. The injected electron fluxes producing
36these events may therefore have been much less than the 3x10

s  ̂ assumed in this chapter. Secondly, the 2nd harmonic

microwaves may be significantly attenuated because of

gyroresonance absorption. For this to be effective, it is

necessary for a harmonic of the gyrofrequency to be

approximately equal to 2^ over a distance which is much less
P

than the gyroresonance absorption length corresponding to that 

harmonic (Emslie and Smith 1984; Hamilton and Petrosian 1987). 

In practice this requires coronal magnetic fields to be in 

excess of about 300G. Although field strengths of this order 

have been inferred from microwave observations (cf. Section 

2.5), it is not yet possible to gauge accurately the 

effectiveness of gyroresonance absorption since there are no 

direct methods of deducing the structure of the magnetic field 

in a flaring coronal loop (cf. comments in Section 2.1).

It was pointed out earlier that (5.28) is only valid if the 

Langmuir wave spectrum is isotropic. Streaming instabilities 

produce Langmuir waves which are collimated in the direction of 

the beam, the degree of collimation depending on the ratio of 

gyro to plasma frequency (cf. Chapter 3). The requirement of 

momentum conservation means that the coalescence of two Langmuir 

waves can only occur if they are propagating in almost opposite 

directions, and therefore the primary spectrum of waves excited 

by an unstable beam cannot produce a significant flux of plasma 

radiation. The second harmonic emission observed in type III
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bursts is usually explained by invoking either a secondary 

population of Langmuir waves (propagating in the 

counterstreaming direction) or soliton collapse (Goldman et al.

1980). The latter process requires the Langmuir waves to be 

strongly turbulent: we will discuss the question of whether this 

condition is likely to be satisfied in Chapter 6. An initially 

highly collimated distribution of Langmuir waves may be 

isotropized because of induced scattering on ions (also known as 

'nonlinear Landau damping1 - see, e.g., Melrose 1986). This is 

the mechanism invoked by Emslie and Smith (1984) to justify 

their assumption of isotropic Langmuir waves (see also Smith 

1977). They show that, under certain idealized conditions (e.g. 

a monochromatic primary wave spectrum), the growth rate for 

waves in the anti-parallel direction can exceed the collisional 

damping rate by several orders of magnitude. They claim that 

isotropization would then rapidly occur (in about 20 e-folds), 

without quantitatively justifying this statement. In Chapter 7 

we discuss how induced scattering on ions might be included in 

the one dimensional model of beam relaxation, in the realistic 

case of an extended primary wave spectrum.
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CHAPTER 6 

TIME DEPENDENT EFFECTS

6.1 Introduction

In Chapters 4 and 5 we treated the problem of Langmuir wave 

generation by a steady state thick target beam. We now relax the 

assumption of a steady state and consider the collisional and 

quasi-linear evolution of a time dependent beam. There are 

essentially two reasons for such a generalization. In the first 

place, there is no guarantee that, in the absence of nonlinear 

saturation mechanisms, a steady state wavelevel can ever be 

reached from physically realistic initial conditions. Indeed,

Wentzel (1984) and LaRosa (1987) have proposed a model for the 

propagation of type III beams which requires nonlinear 

saturation to occur in a narrow region at the head of the beam. 

LaRosa claims that, without such saturation, the Langmuir waves 

would grow indefinitely. The proposed reason for this (LaRosa, 

private communication) is that beam electrons can enter a region 

of Langmuir turbulence with a positive slope, without having 

been affected by the waves, which are consequently amplified to 

a higher level. This can occur because the wave group velocity

is very much less than the beam velocity. It is widely believed

that the quasi-linear theory alone cannot explain the observed 

stability of type III streams, which enables them to propagate

out as far as the earth, and that nonlinear processes must

therefore be responsible for beam stabilization (see, for

example, the review by Goldman, 1983). In the case of a

collisionless inhomogeneous beam, it thus appears that a
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quasi-linear steady state may not exist. Although we have argued 

(in Section 4.3) that the collision-dominated case is 

fundamentally different, the failure of quasi-linear theory to 

fully account for the observed properties of type III streams 

leads us to question the validity of our steady state model.

The second reason for performing a time dependent calculation 

concerns the shortest timescales observed in hard X-ray light 

curves. It was pointed out in Section 1.6 that a significant 

fraction of hard X-ray bursts exhibit fluctuations on timescales 

of between 100ms and Is, and that there is some evidence 

(although this is controversial) of individual spikes with 

e-folding times as short as 20ms. Such timescales are comparable 

to, or shorter than, the transit time of a fast electron along a 

coronal loop. In such circumstances, time-of-flight effects are 

important, and a positive slope in f(v) may arise because of the 

finite velocity dispersion of the fast electrons. If this 

Overtaking instability1 occurs on a collisionless timescale, we 

would expect a large fraction of the beam energy to be 

transferred to Langmuir waves (cf. Section 4.3), and the 

wavelevel produced by a given beam flux would therefore be much 

greater than that predicted by a steady state calculation.

In Section 6.2 we discuss the problem of solving numerically 

the time dependent quasi-linear equations. Computations of the 

normalized wavelevel under various conditions are presented in 

Section 6.3. In the light of these results, we discuss in 

Section 6.4 the validity of the quasi-linear theory as a means 

of describing the propagation of thick target electron beams.
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6.2 The Time Dependent Quasi-Linear Equations

The equations requiring numerical solution are (4.21) and 

(4.22). As before, we assume the Langmuir waves to be in 

equilibrium with the particle distribution except when 

instability occurs. In the stable regime, W is therefore given 

by
&n v/v

e2o)2  — f (x,v,t)
WU.v.t) =  E---------- ---------- (6.1)

y -  v 9f/3vc n

When 9f/9v>0, both 9W/9t and 9W/9x are retained in (4.22). We 

also assume the plasma temperature and density to be constant in 

both time and space.

At x=0 we assume the beam component of f to be separable in 

velocity and time

fb (o,v,t) = £(t) <J>(v) (6.2)

where <f> is taken to be the modified power law assumed in 

previous chapters:

<f>(v) = m F E 6-1 (6-1) (E + E)"6 (6.3)oo o o

Fqq is now the total (i.e. time integrated) number of electrons 

injected per unit area. For reasons which will become apparent, 

S must be a smoothly-varying (i.e. continuous) function of time. 

A suitable choice is a Gaussian profile of the form 
1 -t2/x2£(t) = — —  e 1 (6.4)

/iT x

where x is the injection timescale, and the normalization factor
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is chosen such that

,.+ 00

dt dv f (o,v,t) v = F C6.5)b ooo

The wave distribution is given at the boundary by (6.1), with 

x=0 .

The boundary condition (6.1) applies on a semi-infinite 

interval t £[tg» 00)> where tg<0 * We assume that the system has 

evolved collisionally up to t^tg1 this dictates our choice of 

initial condition. Retaining only the collisional friction term 

on the right hand side of (4.21), we obtain

+ v |-) f « ^  i_ (f ) (6 ,6 )9t 9x m2 3 v v2

the general solution of which may be written in the form
2

f, (x , v , t) = ~ 2 H(v',t') (6.7)D y  r

where
u 8 Kn xv, = ° r  (6.8)

m

t' = t - — Ei [qv4 + 8Kn__x )^ . v3 ] (6.9)
6Kn m2

(cf. Craig et al. 1985). H is determined by the requirement that 

(6.7) should be consistent with (6.2). This leads to the initial 

condition

fK (x,v,t ) = 7 ^  * e“tf /j2 m F E 6-1 (E + e ')"6K' > » ~ J t t t TT r oo O O

(6.10)

2where E '= l/2mv' and t' is evaluated at t=tg» tg is chosen to
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be sufficiently large that the combined distribution function 

f(v) is stable for all x 6[0,°° ) at t=tQ* The initial wave 

distribution is then given by (6.1) with t=tQ.

A few comments are appropriate regarding the choice of the 

injection profile, £(t). One might attempt to model the

impulsive injection of an electron beam by setting £(t) = S(t).

The velocity dependence of t ', however, means that 9f/3v

contains the derivative of £, and therefore such an injection

profile would lead to an infinite growth or damping rate of 

Langmuir waves. This would also be true if £(t) were set equal 

to a step function. In either case, a singularity would appear 

in the initial conditions, which would be impossible to handle 

numerically. When attempting to model microinstabilities such 

as Langmuir wave generation, it is therefore essential to 

prescribe an injection rate which is a smoothly varying function 

of time. If we crudely represent our injection profile by

- t 2 / T 2 - c lf(o,v,t) = e v (6.11)

then, neglecting both collisions and quasi-linear interactions,

ct -(t-x/v)2/x2 -a , .f(x,v,t) = e v (6.12)

and it can be easily shown that the condition for 9f/9v>0 is 

that

t < ^ - 1 .  t 2 |  (6.13)v 2 x

Now significant wave generation only occurs at a point in space

and time where f is non-negligible. This will be the case if
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(6.14)

Combining (6.13) with (6.14), and assuming a/2 to be of order

unity, it is clear that the overtaking instability will be

important if x < L/v, where L is the length of the loop. 
9

Assuming L=3xl0 cm and v=c/3, we may therefore predict 

significantly different results from the steady state case if 

the injection timescale is as short as 100ms (cf. Heyvaerts

1981).

Our numerical method is a straightforward generalization of 

that used in the steady state case (see Appendix B). The 

equations are solved as before in dimensionless form, with the

dimensionless time variable defined to be
0)

t = ---- E  t (6.15)
2 a X 3

A boundary value approach is used, the code stepping forward in

space rather than time. The velocity space boundary conditions

are the same as before, i.e. f is set equal to a constant (in

space and time) at the thermal speed, and equal to zero at

v=v . This creates a problem, in that the initial beam max
distribution given by (6.10) is clearly spatially dependent, and 

may therefore give rise to an unphysically large time derivative 

close to v=vg (see Appendix B). To ensure numerical stability, 

we introduce a modified beam distribution at the boundary and at

t=t0 :

fb = o , v * 3
_ q (6.16)

K  - e v ' e  f b  » v  » 6
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where 3>1 (in units of v ) and ct determines the rate at which f,e b
approaches f^. a and 3 must be chosen such that the combined 

distribution remains stable (i.e. monotonic decreasing) at x=0 

Vt and at t=tg V x * ^as the attractive property that it is 

differentiable to all orders in v, provided f^ is.

6.3 Numerical Results

The beam and plasma parameters were chosen in such a way that 

a direct comparison could be made with the results of the 

previous chapter. Thus, for example, the total beam flux Fqq was

set equal to a value which corresponds to a peak (instantaneous)
19 -2 -1injection rate of 10 electrons cm s . Figures 6.1-6.3 show

the normalized wavelevel as a function of space and time. In
10 -3each case, n = 10 cm , Eq = 20keV and 5=4. The loop length
9was taken to be 3x10 cm. It should be pointed out that the 

numerical results presented in this chapter are necessarily less 

accurate than those of Chapter 5: to maintain the same degree of 

accuracy with an extra (time) dimension is simply not possible 

with the available computing facilities. However, the numerical 

truncation error is quite acceptable when one considers the 

other approximations in the model (in particular the assumption 

of one dimensional geometry).

Figure 6.1 shows the wavelevel produced by a relatively long 

pulse of electrons (T=ls). Such a pulse would produce a hard 

X-ray burst with an e-folding time approximately equal to the 

injection time (cf. Section 2.4). The temperature is 10^K. At
9x=3xl0 cm, the Langmuir waves closely mimic the injection 

profile, rising and falling on a similar timescale. There is no
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(x|04)n kBT

10 -

- 4

3x10X

Figure 6.1 Normalized wavelevel as a function of space and

time, with a peak (instantaneous) injected flux of
19 -2 -1 710 electrons cm s , T = 10 K and t = Is. The

other beam and plasma parameters are given in the

text (x is in cm and t is in seconds). The peak
-3wavelevel is 1.5x10
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discernible drift of the wavelevel with time. The maximum value

of Wp/nkgT is only slightly greater than that obtained in the

steady state case (cf. Figure 5.4a): there is no indication of

the wavelevel growing indefinitely with time, which LaRosa

(1987) has claimed is an inevitable feature of the quasi-linear

evolution of type III streams. The fact that the wavelevel

remains well-behaved is presumably due to two factors. In the

first place, the electron beam driving the instability is

’switched off1 after a finite time, and the waves are then

strongly Landau damped. Secondly, the injection time is

sufficiently long that the overtaking instability is unlikely to

be important, and the net growth rate remains small because of

collisional damping. We may therefore conclude that a

quasi-linear steady state does indeed exist, at least when the

beam electrons are injected on a timescale of > Is.

Figure 6.2 shows the wavelevel produced by a shorter pulse of

electrons (x=100ms). As before, T = 10^K. In this case, W /nk TP B
rapidly rises to a maximum value which is about a factor of 4

9greater than the peak wavelevel in Figure 5.4a. At x=3xl0 cm, 

the Langmuir wave ’burst* is noticeably smeared out in time, 

because of the velocity dispersion of the resonant electrons. 

The e-folding time is still of the order of 100ms, however. It 

can be clearly seen that the peak wavelevel drifts in the 

space-time plane. This could give rise to a reverse drift 

microwave burst of the type observed by Stahli and Benz (1987). 

The drift rate is given by

~  - 1.4 x 1010c m s ^dt (6.17)
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(xlO3)nkBT

Figure 6.2 As Figure 6.1 except with t = 0.1s. The peak
-3wavelevel is 5.2x10
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which corresponds to an electron energy of around 50keV.

Figure 6.3 shows the result of injecting the same pulse of

electrons into a cooler plasma (T=5xlO^K). The peak wavelevel is
_2increased by another factor of 2, to 1.3x10 . This may be

attributed to the fact that the Maxwellian part of the 

distribution falls off more rapidly with v, and therefore the 

range of unstable wave numbers is greater.

6.4 Discussion

We now consider the question of whether the Langmuir waves 

excited by a thick target electron beam are likely to be 

strongly turbulent. Langmuir waves give rise to an electrostatic 

pressure force, analogous to radiation pressure, which drives 

electrons away from regions of high wave turbulence. If this 

'ponderomotive' force is strong enough, the wave energy density 

becomes increasingly localized and the plasma is then 

modulationally unstable. This is the meaning of the phrase 

’strong turbulence'. It is frequently stated (e.g. Sudan 1984; 

LaRosa 1987) that the threshold wavelevel for strong turbulence 

is given by

_ ! e _  > U k  V 2 „  ( 6 . 1 8 )

where, as before, Ak is the spread of wave numbers in the 

spectrum, Av is the corresponding spread in phase velocities, 

and v is an average resonant beam velocity (Av and v are in 

units of ve)* (6.18) can be derived in a heuristic manner by 

equating the ponderomotive force to the pressure gradient force,
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Wp 
nkB T (x 10s)

0-4

3x100-4X

Figure 6.3 As Figure 6.2 except with T = 5x1O^K. The peak
-2wavelevel is 1.3x10
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and finding the wavelevel at which the dispersive properties of 

the plasma are affected by the presence of Langmuir turbulence 

(Sudan 1984). Implicit in this derivation is the assumption that 

the plasma is quasi-neutral, i.e. the ions respond to the 

electron density modulations in such a way as to maintain charge 

neutrality. If this condition is not satisfied (i.e. if the ion 

plasma period is comparable to or longer than the period of the 

modulation), then the modulational instability will only occur 

if the ponderomotive force can overcome both the electron 

pressure force and the electrostatic restoring force resulting 

from charge separation. (6.18) therefore represents a necessary, 

but possibly insufficient condition for strong turbulence.

It should be pointed out that strong turbulence criteria 

other than (6.18) have been derived by various authors. For 

example, Zakharov (1972) found that the modulational instability 

occurs if

s t r  J ( k V 2
D

while Tsytovich (1970b) obtained the result 

W
-E— - > 12 (k An )2 (6.20)n kg T D

The exact threshold condition for strong turbulence remains 

controversial. It is clear, however, that (6.18) represents a 

minimal requirement: reversing the inequality yields a

sufficient condition for the validity of the weak turbulence 

(i.e. quasi-linear) theory.
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In the steady state problem, the weak turbulence condition is
10 -3invariably satisfied. In the low density case (n = 10 cm ),

— 9 /we find that Av2/v4 -10 while W /nk T < 8x10 , when reversep B
current energy losses are taken into account (cf. Figure 5.7a).

11 —3 —3When n = 10 cm , it turns out that A v ^ v 1* - 8x10 while

W /nk T < 4x10 We may conclude that a thick target electronP B ~
beam which is stable at the point of injection, and which is 

injected over a period t  > Is, does not give rise to a 

modulational instability. In the case of a short injection time 

( T = 0.1s), the situation is less clear-cut. When T=10^K, we
o ii “3find that Av /v - 8x10 at the time of maximum Langmuir

_ 3turbulence, while W^/nkgT < 5x10 . The corresponding figures

for T=5xlO^K are Av2/v1+ - 5x10 ^ and W /nk T < 1.3x10 In theP B ~
latter case it appears that the plasma may indeed be strongly 

turbulent. Several qualifying remarks are necessary, however. 

Our numerical results are such that the inequality (6.19) is 

never satisfied, and therefore the weak turbulence theory 

remains valid if the true threshold for modulational instability 

is given by (6.19) or (6.20) rather than (6.18). Furthermore, in 

our time dependent calculation we have neglected reverse current 

energy losses, which may reduce the wavelevel by as much as a 

factor of 2 (cf. Section 5.5). It is, in any case, not

consistent to prescribe an instantaneous electron flux as high
19 -2 -1as 10 electrons cm s and a steady state temperature as low

as 5xlO^K (cf. remarks in Section 4.4). In practice the plasma

would rapidly heat up to a temperature in excess of 10^K, thus

inhibiting wave growth. Finally, it should be emphasized that

our use of a one dimensional model must inevitably result in an



overestimate of the wavelevel (cf. Chapter 3). On balance, it 

therefore seems reasonable to conclude that thick target 

electron beams are unlikely to be strongly turbulent, and that 

the propagation of such beams can be adequately described using 

the quasi-linear theory. Contrary to the claims of Vlahos and 

Papadopoulos (1979), it thus appears that nonlinear processes do 

not play any significant role in thick target beam evolution 

(cf. remarks in Section 4.3).

One consequence of the above conclusion is that the radiation 

mechanism proposed by Goldman et al. (1980) (i.e. soliton

collapse) is unlikely to be relevant to our problem. However, 

even on the basis of the weak turbulence theory, the results of 

this chapter imply a flux of plasma microwave radiation which is 

as much as a factor of 10 greater than that given by (5.29). If 

the radiation calculation of Emslie and Smith (1984) is valid, 

there is thus a very large discrepancy between theory and 

observations (assuming gyroreonance absorption to be 

ineffective). We have already argued, however, that (5.28) may 

significantly overestimate the microwave flux because it is 

based on the unproved assumption of isotropic Langmuir waves. 

Although a quantitative prediction of the radiation flux density 

may be difficult, our numerical results do appear to be 

consistent with the timescales and frequency drift rates 

observed by Stahli and Benz (1987).
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CHAPTER 7 

FUTURE WORK

7.1 Introduction

In this thesis we have investigated the problem of Langmuir 

wave generation by thick target electron beams using an 

idealized mathematical model. We have shown that a sufficiently 

collimated electron beam, injected into the low corona, will 

become unstable because of collisional degradation. The 

resulting level of Langmuir turbulence, however, constitutes 

only a small fraction of the beam energy and has a quite 

negligible effect on both the thick target hard X-ray signature 

and the rate of energy deposition. Furthermore, the wavelevel is 

unlikely to be sufficiently high to excite the modulational 

instability. It may, however, produce an observable flux of 2nd 

harmonic plasma radiation, the detection of which could be used 

to establish useful constraints on beam parameters and flare 

models.

We now discuss two ways of extending the work described in 

previous chapters, relaxing the assumptions made so far. In 

Section 7.2 we consider the propagation of a thick target 

electron beam through an inhomogeneous plasma, using a simple 

steady state model of the corona. It was pointed out in Section

5.6 that the flux density of 2nd harmonic radiation produced by 

an electron beam depends crucially on the angular distribution 

of the Langmuir waves, and that scattering on thermal ions may 

produce a near-isotropic wave spectrum from an initially 

collimated one. In Section 7.3 we show how this process could be
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incorporated into the one dimensional model developed in 

Chapters 4 and 5.

7.2 Density Inhomogeneities

Changes in the plasma density have the effect of shifting 

Langmuir waves out of resonance with the electrons which 

originally excited them. The waves are then Landau damped, and 

the particle distribution can develop a positive slope in 

velocity space without undergoing quasi-linear relaxation. 

Muschietti et al. (1985) have invoked such a stabilization 

mechanism to explain in situ observations of electron streams 

and Langmuir waves associated with type III bursts (Lin et al. 

1981b). They proposed that stochastic large-scale density 

variations are responsible for removing Langmuir waves from 

resonance, and that this process can be represented by a pitch 

angle diffusion term in the evolution equation for the waves.

Density fluctuations of the kind envisaged by Muschietti et 

al. may well be present in the low corona, thus preventing 

Langmuir waves from reaching the levels predicted in Chapters 5 

and 6. Suppose, on the other hand, that there is only a slow, 

hydrostatic density gradient. In this case, the waves evolve 

according to the equations of geometric optics, which are simply 

the characteristics of (4.2) in the absence of wave-particle 

interactions:

x 9m
9k (7.1)

k 9m
9x

(7.21
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(cf. Melrose, 1980a) where w +3k^v^)2. In one dimension, weP e
can write (7.2) in the form

£  = - [ (.2 + 3k2 v2 )% ]dt 9x p e

2H (7.3)

where H =[d£nn/dx] 1 is the density scale height. A Langmuir 

wave quantum is therefore taken out of resonance ( Ak ~k ) in a 

time

2Hk 2H , ,
at = = -  (7-4)p

Quasi-linear relaxation will then be suppressed if

At y - At y < 1 (7.5)c

assuming that the wave growth rate is approximately equal to the 

collisional damping rate (cf. Section 4.3). From (4.15), (7.4)

and (7.5) we obtain the inequality

E > E e 3 x lo"16 ^ keV (7.6)
~ C rp3

If the energy of the resonant particles is above this value 

Langmuir waves will be taken out of resonance before they can be 

amplified to an appreciable level.

To estimate H, we require an atmospheric model. Suppose the 

corona is in hydrostatic and thermal equilibrium: then,

neglecting beam heating and radiative losses, we can write (e.g. 

Priest 1982)
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dP
dx m n g P

f-(T/2 f,-0dx dx

(7.7)

(7.8)

where P=2nkgT is the pressure, m^ is the proton mass and g

(assumed constant) is acceleration due to gravity. (7.8) is a 

simple energy equation, expressing conservation of thermal 

conductive flux. For simplicity, we assume the loop to be

vertical. Using the boundary condition that T=0 at x=L (the

bottom of the loop), we can easily show that (7.7) and (7.8)

have solutions
2/

T = T (1 - x/L) 7 (7.9)

-^7
n = nQ (1 - x/L) exp [- 1  • {(i - X/L ) 7- X}] (7.10)

g

where H = 2k T /m g is the gravitational scale height at the g B o P
top of the loop (the singularity in n can be avoided by allowing 

T to be nonzero at x=L). Putting Tq = 10^K gives H = 6xl0^cm, 

which is more than an order of magnitude greater than the loop 

length L. It is clear from (7.10) that gravity is therefore 

unimportant, and to a good approximation the pressure is 

constant along the loop. Note that T and n have only a weak 

dependence on x except when x-L, as we would expect in a 

realistic coronal model (cf. Priest 1982). From (7.10) we obtain

U-1 - d £n n 1 , . \“^7 2 2 .
H - s r = H - (1 - X/L) + 7 T w ) - 7 L  (7-n )g

9 10 7for x<<L. Assuming L > 10 cm, n > 10 cm and T < 10 K, we find
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that E > 30keV. c ~
In view of the results obtained in the time dependent case, 

it appears from this that the changes in density may indeed play 

a significant role in reducing the wavelevel. The above argument 

is rather crude, however, and a rigorous analysis, involving the 

solution of the full inhomogeneous quasi-linear equations, 

should be carried out. In dimensionless form, the appropriate 

steady state equations are

3f _ d &n A = 3__ 
V 3x V dx 3v

Jin v P . „ 3f
tTA- f + vW 37

+ (f + I  .!£ )2ir v2 v 3v (7.12)

3 ,3w „ d £n B, . 1 d Jin n 3 r ?
—  (T W --  ) + —      * -r—  W)v 3x dx 2 dx 3v

Jlnv 2 TT3f \-r-—  f + vz W - r  ( — )2tr v 3v 9tr
% Jin A

2 tt
W (7.13)

3 3where A = 2irve^D and B = v^p/kgT. Using a specific atmospheric 

model (such as the one described above), the numerical code 

could in principle be generalized to incorporate the additional 

terms in (7.12) and (7.13). There is an important qualitative 

difference, however, between (7.13) and (5.6) which complicates 

the problem of obtaining a numerical solution: the wave

refraction term depends on 3W/3v, and so there is an explicit 

coupling between adjacent values of W in the velocity grid. It 

can be seen from Figure 5.3 that W rises and falls rapidly in 

velocity space, and in fact when instability first appears we 

find that |3W/3v| is extremely large at the edges of the 

quasi-linear plateau. The interface between the stable and
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unstable regions of velocity space is rather analogous to a 

shock front in fluid mechanics, and it creates similar numerical 

problems (see, e.g., Richtmeyer and Morton, 1967). Attempts 

carried out so far by the present author to obtain a stable 

numerical solution of (7.12) and (7.13), using a simple finite 

difference algorithm, have failed whenever a realistic density 

gradient is prescribed. Specifically, it is found that rapidly 

growing oscillations appear in the wave spectrum shortly after 

the onset of instability, at which point the total wavelevel is 

only a small fraction of its value in the homogeneous case. This 

may be due simply to numerical instability, or it may perhaps 

indicate a real physical effect. Further work on this problem is 

clearly desirable, although in order to progress it may be 

necessary to resort to completely different numerical methods 

from those which were used successfully in the homogeneous case.

7.3 Induced and Spontaneous Scattering on Ions

The induced and spontaneous scattering of Langmuir waves on 

thermal ions can be represented by two additional terms in the 

evolution equation for the waves. It is convenient to separate 

the wave distribution into two components, W and W r, propagating 

in opposite directions: omitting electron-wave interaction

terms, we can then write

M  +  1
3t v ■r—  = a(Wf, W, v) + y(Wf, v)WdX (7.14)

8W'+ 3 
81 v ~  = a(W,W',v') + y(W,v')Wv f 8x ’

(7.15)
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where y and a are the coefficients of induced and spontaneous 

scattering and v '>0 is the modulus of the phase velocity in the 

counterstreaming direction. Assuming equal electron and ion 

temperatures, the appropriate expressions for y and a in one 

dimension are (Tsytovich and Shapiro 1965; Grognard 1985)

w [- I  A  (1,- b 2 Jdv'

1 .%

m

m

8 m v

16tr 2tt V  ' v*+e

C 7.16)

W'tv')-W(v) r 9 ,mD w l  lv2n .1  i------------- e x p [  -  - ( - £ ) ( _ -  __) ] d vl . i 8 m v v
—  ~  e

(7.17)
” r+ —v ' v

where the electron mass is now denoted by m^. The scattering 

rates in (7.15) can be obtained by interchanging the primed and 

unprimed quantities in (7.16) and (7.17).

It is clear that in general the interaction between the two 

populations of Langmuir waves is rather complicated, and that 

little progress can be made analytically. Note that y can be a 

growth rate in some parts of the wave spectrum, and a damping 

rate in others. The counterstreaming Langmuir waves peak at a 

phase velocity which is displaced from that of the primary wave 

spectrum by an amount

Av 2 me ^ -2
v = I  (̂ T} v “ 1,6 x 1° V (7.18)

P
(Zheleznyakov and Zaitsev 1970). For typical beam velocities, 

this implies that Av/v < 0.1, whereas the numerical results of 

Chapters 5 and 6 show that the waves have a bandwidth which is 

close to unity. The induced scattering growth rate used by
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Emslie and Smith (1984) is based on the assumption of 

monochromatic Langmuir waves, which is only valid if the phase 

velocity shift Av/v is large compared with the bandwidth (Smith 

1977). In our case, that condition is clearly not satisfied and 

the finite bandwidth of the primary wave spectrum must be taken 

into account.

In order to determine the extent to which Langmuir waves are 

scattered into the counterstreaming direction (thus satisfying 

the kinematic conditions required for 2nd harmonic radiation to 

be produced), the quasi-linear equations should be solved 

numerically as before, with the additional terms in (7.14) and 

(7.15) being taken into account. Collisional and Landau damping 

of counterstreaming waves should also be included in the 

calculation. Several authors (e.g Smith and Fung 1971; Grognard 

1985) have carried out numerical simulations of induced and 

spontaneous scattering in the case of a homogeneous

collisionless beam, and the results appear to indicate an 

asymptotic state in which the energy density of waves

propagating in the backward direction is approximately equal to 

that of waves propagating in the forward direction. However,

such calculations may be of little relevance to the realistic 

case of an inhomogeneous beam in a collision-dominated plasma 

(cf. Grognard 1985).
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APPENDIX A

THE COLLISIONAL ENERGY 1QSS RATE OF AN ELECTRON 

IN A WARM TARGET

Consider an electron propagating through a fully ionized

plasma with velocity v, undergoing a collision with a field 

electron. The field electrons have a Maxwellian distribution of 

velocities, density n and temperature T. The impact parameter 

giving a large deflection angle is much less than the mean

separation of the field particles, so that only binary

interactions need to be considered. Let Av,, and Av^ be the 

changes in the parallel and perpendicular velocity components 

resulting from the collision (the parallel direction being

defined by v). Then the energy gained by the electron is given 

by

AE = j  m [(v + Av,,)2 + A v 2 - v 2 ]

1 2= j  m [av„ + av2 + 2v av„ ] (A.l)

The energy loss rate associated with such collisions is 

therefore given by

JT7 1
-rr - < A E > = 7r m [ <  Av̂ ,, > + < Av^ > + 2v < AvM > ] (A. 2)at 2 J.

where the brackets <> denote the average increase of a quantity 

per unit time. The diffusion coefficients < Av^ >, < Av2 > and 

< Av„ > were originally evaluated by Chandrasekhar (1942) in the 

context of stellar dynamics. Applying his results to the present 

problem yields
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< Av > =

< Av„ > =

< Av2 > =

4K 
m kB T

4K 
m2 v

4K 
ml v

n GCy)

n GCy)

n C $ (y) - G(y))

(A.3) 

(A. 4) 

(A. 5)

where y=(E/kJT)^,

$(y) -t2 e dt (A.6)

is the error function and

GCy) = -—  ( $ (y) - y $'(y)) 
2 y2

(A. 7)

Substituting (A.3), (A.4) and (A.5) into (A.2) yields

dE
dt

i.e.
dE
dt

—  ($ (y) - 4y2 GCy)) mv j j j

|r n v [ $(y) - 2y $'(y) ]£j (A. 8)
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APPENDIX B 

NUMERICAL METHOD

Our numerical technique is closely based on that described by

Grognard (1985). In order to write the discretised equations in

a compact form, we introduce the finite difference operators 9^

and 9 . such that 
J

at f. = _i+i— ! ( }
3 3 Av

f. - f. .
a: f, = _J n L
j J 4v

where f^ = f(v^), f being an arbitrary function of velocity, and 

v is the (constant) finite difference step in velocity space. A 

similar notation is used to denote finite differences in 

coordinate space and time.

B.l The Steady State Problem

We consider first the steady state equations, (5.5) and 

(5.6). The evolution equation for the electrons can be 

discretised in the form

9t.f^ = 9. [(«. . + + (v. W* + —i)3t f^3\1 J J J+1 J + 1 3 +l J 3 vj 3 J+1

(2 S j S m-1 ; 1 S i $ n-1) (B.3)

2 2 where a. = £n v. /2ttv . and 8* =£nA/2irv.. The phase space grid J J J J J
contains n coordinate points and m velocity points, fj is given 

by the boundary condition (5.10). (B.3) can be written in the 

tri-diagonal matrix form
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-A. f1;*1 + Cl + A. + B.) ri+1 - B. f**1 = C. (B.4)J J-l J J J J J“1 J

where
Ax TTi  Cv. . W. . .J a 2 l“l l“l v. ,J Avzv. J J i-l

J
A. = Cv. , W* . + (B.5)

B. = - ^L- (v . W* + - i  ) (B.6)
^ Av2v  ̂  ̂ VjJ

= f* [ 1 - — —  (a. + 6.) 1 J j L A v v _ J J J

+ [ 177 (V i + <V ] (B-7)Av v. J

Ax being the finite difference step in coordinate space. (B.4) 

is solved for fj  ̂in terms of fj, Wj by setting

f*+1 = E. f**1 + F. (1 s j $ m-1) CB.8)J J J+l J

It can then be easily shown (Roache 1972, Appendix A) that, for

j*2,
B.

E. =-- J----------------  (B. 9)
1 + B. + A. Cl - E. . )J J J-l

J

A. F . . + C.
F. = ---- J ^ ------- 3------- CB.10)
J 1 + B. + A. (1 - E. .) J J J-l

Using the lower velocity space boundary condition at v=l 

( f^+*= )» 1* can seen from (B.8) with j=l that E^=0 and

Fj=f^. and F^ for j>2 are then given by (B.9) and (B.10).

Finally, using the upper velocity space boundary condition
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( f1+'*'= f1 =0 ), can be obtained from (B.8). The boundarym m J
conditions are such that a sufficient condition for f 1+  ̂ to be

j
positive definite is that A , B and C . are all positive. This

j J J
requires that fijW1 > 0 and also that 

j 3

Av v.
Ax <

i.e.

*  f £ r  Av CB- n )
In the stable regime (3f/3v < 0), the wavelevel is then given

by the discretised form of (5.7):

fi+l . v. a. f.
w. = -J-J--- 1— -r-rr (1 S j S m-1) (B. 12)J -v  - „2 ,+ .1+1Y - v . 3 . f.C J J J

^ - 1  1
where y = (2/9ir)2An A /2ir. W. is given by (B.12), with f .c  ̂ 0 J J
replacing ^j+ *̂ *n t îe unstable regime (3f/3v > 0), is

obtained from the finite difference equation

—  3? = a. v. f^+  ̂ + (v.2 3t f^+  ̂ - y ) (B.13)Vj l J  J J J J J J J c

i.e.
v? Ax . ., v. Ax

w*+1 = w* (l + —  at f*+1 - -J-—  y )J J 3 j 2 3 'c

a . v2: Ax . - 
+   fj (1 $ j S m-1) (B.14)

W1+1 is prescribed to be zero, m
(5.11) (the Fokker-Planck equation) can also be written in 

the form of (B.4). The coefficients are identical, except that

W* = 0 and a.= 0, and the same method of solution can be used.
3 3

In this case, an analytical solution exists for large v, which
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can be used to test the accuracy of the code (see Section 5.3).

B.2 Reverse Currents

The integral in (5.25) is evaluated for each space point 

using the quadrature approximation

b. =l
00 m

f Cx.,v') d v Z  f 1 w. Av (B.15)b i . b. 2
3 1 Jo

where the weights w^ are those appropriate to Simpson's rule

(note that in this case m should strictly be odd). (5.25) can

then be approximated by the finite difference equation

v. at f t  - a b. at f *  = at f ta .  , + e. J  f t  , 
j  j. j  i  j  j +i  j  L j +i  j+ i  j + i

. 3 • " i 1
+ (v. wt + — 1 ) at ft* (b . 16)J J vj 3 J+l J

which can be solved for ft  ̂ by the same method as before,
3

except that

C. = f t  [ l  - (a. + 3. + a b.) 1
3 J L 2 2 2 1 2

+ f t , i | Ca. + 3. . + a b.) ] (B.17)
j+1 L Av v - J+1 J+1 i  J

The sufficient condition for f1*'*' to be positive definite is now
j

Ax £ ' V  aA+~7 r (B. 18)Jin A + 2ir a b.l

B.3 The Time Dependent Problem

The discrete form of the time dependent evolution equation 

for the electrons is
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f* + V. at f \  =  9 7 r . + 3. ,) f* .jk j 1 jk j I j+1 j+1 j+lkk i

+ (v. wt + — i ) at 1
j  j k  V j  j  J + l k  J

(B.19)

(2 $ j $ m-1 ; 1 £ i £ n-1 ; 2 £ k < I )

We use a boundary value approach, integrating forward in space 

rather than time. (B.19) can be written in the form

- A. f*+* + (1 + A. + B.) f**1 - B. f ^ J  = C. CB.20)J J'lk J J jk j j+lk j

where A. and B . are given by (B.5) and (B.6) (with wt, replacing 
3 3

W 1̂ ), and C . is now given by
J J

C • =3 Jk

+ £j+ik

1 - j (a. + B. )]Av v. j j J

—  (a. . + 3 . , )] - —  3' ft (B. 21)Av Vj j + 1 j+1 J Vj k jk

The system (B.20) can be solved for f tt^ in terms of ft,, W t,Jk Jk
yk>l, by the same method as that used in the steady state case.

We again impose the velocity space boundary condition

f tt̂ " = f t, . Close to the thermal speed, f relaxes rapidly to a jk jk
Maxwellian distribution (cf. Section 5.4), and is thereafter

maintained at an essentially constant level. The initial beam

distribution given by (6.10), however, is spatially dependent:

f^(x,v,tQ ) becomes negligibly small at v ~ ve f°r sufficiently

large x. We therefore have the possibility of f.3- »  forj2 jl
small j and i»l. This would give rise to an unphysically large 

time derivative, 8^ f.* , which in turn may result in Ĉ, becoming 

negative. To avoid the consequent risk of numerical instabilty,



we therefore introduce the modified beam distribution (6.16) at 

t=tQ. The boundary condition given by (6.2) is modified in a 

similar way, although this is not actually necessary for 

numerical stability.

In the stable regime, wtt1 is given by

. v. a. ftt1
W* = — I J 1 , k > 1 (B. 22)
Jk Y - v? at f ^ 1 c j 3 Jk

which also defines the boundary and initial conditions for W. In 

the unstable regime,
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