
 
 
 
 
 
 
 

https://theses.gla.ac.uk/ 
 
 
 

 

Theses Digitisation: 

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ 

This is a digitised version of the original print thesis. 

 

 
 
 
 
 
 
 

Copyright and moral rights for this work are retained by the author 
 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 
 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 
 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 
 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 
 
 
 
 
 
 
 
 
 
 
 
 

 
Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


THE RESPONSES OF AUTONOMICALLY-INNERVATED SMOOTH MUSCLE 

TO NERVE STIMULATION AND TO 9URGS.

A thesis presented for the degree of 

Doctor of Philosophy 

in the University of Glasgow.

by

Kay Alison Wardie

Department of Pharmacology 

University of Glasgow 

September 1987



ProQuest Number: 10997373

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10997373

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



CONTENTS pq . No.

ACKNOWLEDGEMENTS • 1-ii

PUBLICATIONS iii

SUMMARY iv-vii

CHAPTER 1: INTRODUCTION 1-47

Foreword 1-2

I. Early theories on neurotransmission 3-9

II. Current views on the co-existence of ACh and NA 10-12

III. Non-adrenergic, non-cholinergic transmitters 13-36

IV. Co-existence of peptides with classical transmitters 37-42

V. Co-existence of ATP with classical transmitters 43-45

VI. Aims of thesis 46-47

CHAPTER 2: MATERIALS AND METHODS 48-62

I. Dissection of tissues 48-51

A. Mouse vas deferens 48

B. Rat anococcygeus muscle 48-49

C. Rat mesenteric bed preparation 49-50

D. Rat tail artery 50

E. Rabbit mesenteric artery 50-51

F. Rabbit ear artery 51

II. Apparatus and techniques 51-57

A. Contractile activity in the mouse vas deferens 51-52

B. Pressure recording in arteries 52-53

C.Intracellular electrical (and mechanical) recording 53-54

D. Electrical activity in response to locally applied agon­

ists 54-55

E. Radio-labelled transmitter release 55-57

III. Histochemical techniques 57-59

A. Light microscopy 57-59



B. Falck histochemistry 59

IV. Physiological solutions: changes in ionic composition 59-60

V. Criteria for cell penetration 60

VI. Measurement of systolic blood pressure in rats 61

VII. Drugs 61-62

VIII. Analysis of results 62

CHAPTER 3: RESULTS 63-83

I. Mouse vas deferens 63-71

A. Contractile responses to nerve stimulation, NA and ATP 63-64

B. Electrical activity in the mouse vas deferens 64-71

(i) Resting membrane characteristics 64

(ii) Evoked membrane activity 64-67

(iii) Putative transmitters 67-68

(iv) Effects of reserpine and 6-OHDA pre-treatment 68-69

(v) Effects of changing the external ionic environment on the 

excitatory responses to field stimulation: 69-71

Potassium 69

Sodium 70

Chloride 70

Calcium 70

Effects of TEA 70-71

II. Rabbit mesenteric artery 71-73

A. Contractile responses of the rabbit mesenteric bed prepar­

ation to field stimulation, NA and ATP 71-72

B. Electrical activity in the rabbit mesenteric artery 72-73

III. Rabbit ear artery 73-74

A. Contractile responses of the rabbit ear artery to field 

stimulation, NA and ATP 73

B. Electrical activity in the rabbit ear artery 74



IV. Rat anococcyqeus muscle 75-78

A. Simultaneous electrical and mechanical responses to field

and extrinsic nerve stimulation 75-77

B. Electrical responses to exogenous agonists 77-78

V. Hypertension 78-83

A. Pressor responses to field stimulation and exogenous agon­

ists 78-79

B. [■%] overflow following pre-incubation with [^H]-NA 80

C. [^H] overflow following pre-incubation with [^H]-aden

osine 80

D. Falck histochemistry 81-82

E. Light microscopy 82-83

CHAPTER 4: DISCUSSION 84-102

REFERENCES 103-126



ACKNOWLEDGEMENTS



I wish to express my gratitude to J.S. Gillespie, Professor of 

Pharmacology at the University of Glasgow, for the opportunity to carry 

out this project in his Department.

To Dr. T.C. Muir, Senior Lecturer in Pharmacology, I wish to 

express special words of thanks. His supervision, advice and patience 

during the past 3 years have been much appreciated. Many thanks also 

for the use of the computer in the preparation and printing of this 

thesis.

I am also grateful to various other members of staff and stu­

dents in the Department of Pharmacology, for their help and advice. 

Special thanks must go to Doctors F.C Boyle, T.C. Cunnane and S.P. Lim. 

I appreciate their assistance and the precious time they gave to help 

me.

To my fellow research students and friends, Christine Newlands, 

Lesley Russell, Karyn Forsyth and Anne Stirrat who helped make the 

trials of doing a PhD more enjoyable. I wish you all every success in 

your chosen careers.

I also wish to record my thanks to Mr. Trevor Clarke for his 

expertise in making the organ baths and Mr. John Craig for his techni­

cal assistance. Mrs. Marjory Wright for her valuable library and typ­

ing assistance and Mr John Dempster from Strathclyde University for his 

help with computer problems.
My thanks are due also to Mr. Ian Montgomery of the Electron- 

micrograph Unit in the Department of Physiology who gave freely of his 
time and advice with histochemical illustrations, Mr. Jim Sinclair of 

the Electronic workshop in the Department of Physiology for his help in 

making and fixing various pieces of electrical equipment and to the 

staff of Medical Illustration who coped admirably with all my demands.

Glasgow University Medical Faculty is gratefully acknowledged 

for their financial support throughout the course of my studies.



Finally, I wish to sincerely 

their help in the preparation of this 

unfailing moral and financial support.

thank my parents, not only for 

thesis, but also for their



PUBLICATIONS



Several aspects of the work described in this thesis have been 
published.

ALLCORN, R.J., CUNNANE, T.C., MUIR, T.C. & WARDLE, Kay A. (1985). Does 
contraction in the rabbit ear artery require excitatory junction 
potentials (e.j.p.s) and 'spikes'? J. Physiol., 362, 30P.

ALLCORN, R.J., CUNNANE, T.C., MUIR, T.C. & WARDLE, Kay A. (1985).
a,p-MeATP does not inhibit [̂ H]-noradrenaline release in the 
rabbit ear artery. Br. J. Pharmac., 85, 263P.

LIM, Siew Peng, MUIR, T.C. & WARDLE, Kay A. (1986). Are both trans­
mitters involved in contraction of the isolated superior mesen­
teric artery of the rabbit? J. Physiol., 378, 56P.

MUIR, T.C. & WARDLE, Kay A. (1987). Electrical and mechanical 
responses to nerve stimulation in the mouse vas deferens, evi­
dence for co-transmission. Br. J . Pharmac., 90, 132P.

CUNNANE, T.C., MUIR, T.C. & WARDLE, Kay A. (1987). Is co-transmission 
involved in the excitatory responses of the rat anococcygeus 
muscle? Br. J . Pharmac., 92, 39-46.

MUIR, T.C. & WARDLE, Kay A. (1987). The electrical and mechanical 
basis of co-transmission in some vascular and non-vascular smooth 
muscles. J . Auton. Pharmac., (submitted):



SUMMARY



1. The intracellular electrical and mechanical responses of the rabbit 

ear artery, the rabbit superior mesenteric artery and the mouse vas 

deferens were examined in response to field stimulation of intramural 

nerves and to drugs. Each tissue demonstrated co-transmission invol­

ving noradrenaline (NA) and adenosine 5 1-triphosphate (ATP), or a 

closely related nucleotide.

2. In the rabbit ear artery, the rabbit mesenteric artery and the 

mouse vas deferens the electrical response evoked by field stimulation 

consisted of excitatory junction potentials (e.j.p.s), which facili­

tated and summated to fire action potentials. These e.j.p.s were abol­

ished by a,(3-methylene ATP (a,|3MeATP, 1-10 x 10"%), suggesting that 

they were mediated by ATP. Only in the rabbit ear artery was there an 

additional electrical event mediated by NA. This took the form of a 

small, slow membrane depolarization which followed the e.j.p.s and 

which was antagonized by the a-adrenoceptor antagonists phentolamine (1 

x 10“^M) or prazosin (1 x 10”^M).

3. In each of these tissues, all electrical and mechanical responses 

to field stimulation were abolished by either tetrodotoxin (TTX, 1 x 

10“6M) or guanethidine (1 x 10"6M), suggesting that they were due to 

transmitters released from sympathetic nerves.

4. In the mouse vas deferens and rabbit mesenteric artery, both trans­

mitters (NA and ATP) played a role in the contractile response to 

field stimulation. In the rabbit ear artery, however, only NA appeared 

to mediate a contractile event.

5. Contractile responses to nerve-released ATP were accompanied by a

change in membrane potential. Na+ and K+ appeared to be the main ions
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underlying the e.j.p. and action potential. In contrast, contractile 

responses evoked by NA appeared to be mediated by both voltage- 

dependent and voltage-independent mechanisms, the relative contribution 

of each to the overall response varying from one tissue to another.

6. In the mouse vas deferens, exogenous application of ATP (1 x 10-4 -

1 x 10“^M) or its stable analogue, a,(3MeATP (1 x 10“^M) by pressure

ejection from a micro-pipette produced dose dependent depolarizations. 

NA (1 x 10“  ̂ - 1 x 10-^M), similarly applied produced no such change in 

membrane potential.

7. In the mouse vas deferens, local application of bradykinin (1-100 x

10_7M) produced small, slow membrane hyperpolarizations. VIP (1-100 x

10“7M), neuropeptide Y (1-100 x 10-7M), substance P (1-100 x 10”7M),

leu-enkephalin (1-100 x 10-7M), met-enkephalin (1-100 x 10_7M),

somatostatin (1-100 x 10“7M) and bombesin (1-100 x 10“7M), similarly

applied, each produced no significant change in membrane potential.

None of these peptides, it was concluded, appear to be the transmitter 

mediating the e.j.p.s in this tissue.

8. In the rat anococcygeus muscle, membrane potential changes recorded 

intracellularly following field (transmural) or extrinsic nerve stimu­

lation were indistinguishable. Single stimuli usually produced a slow 

depolarization; trains of pulses produced a fast e.j.p. initially, fol­
lowed by a slow depolarization similar to that produced by single 

pulses. The fast e.j.p.s, the slow depolarizations and the accompany­

ing contractions were abolished by the a-adrenoceptor antagonists phen- 

tolamine (1 x 10~6) or prazosin (1 x 10"7M), by TTX (1 x 10"6M), but 

were unaffected by a,(3MeATP (1 - 10 x 10"^M) .



9. Application of NA (1 x 10“® - 1 x 10“®M) by pressure ejection from 

a micro-pipette to the rat anococcygeus muscle depolarized the membrane 

and produced localized contractions, both of which were abolished by 

phentolamine (1 x 10“®M) or prazosin (1 x 10“7M).

10. Application of ATP (1 x 10“4 - 1 x 10“®M) by pressure ejection to 

the rat anococcygeus muscle produced small membrane depolarizations and 

localized contractions which were unaffected by phentolamine (1 x 

10”®M) or prazosin (1 x 10“7M), but abolished by a,(3MeATP (1 x 10“®M).

11. Results from experiments on the rat anococcygeus muscle show that 

field or extrinsinc nerve stimulation released only one excitatory 

transmitter, namely NA, although receptors for both NA and ATP are pre­

sent on this muscle and that there was no evidence for excitatory co­

transmission in this tissue.

12. The pressor responses of tail arteries and mesenteric bed prepara­

tions from spontaneously-hypertensive rats (SHR) to field stimulation 

exceeded those from age-matched normotensive (WKY) animals.

13. In each artery (tail and mesenteric), pressor responses to exoge­

nous catecholamines (NA and ADR) were potentiated in hypertensive (SHR) 

animals, whereas those to exogenous ATP were not.

14. In the tail artery and mesenteric bed preparations from sponta­

neously-hypertensive (SHR) and normotensive (WKY) rats, pressor 

responses were greatly reduced by the a-adrenoceptor antagonists phen­

tolamine (1 x 10“6M) or prazosin (1 x 10"7M), but were unaffected by 

a ,pMeATP (1 - 10 x 10"6M). ATP appeared, therefore, to play no role in 

the contractile response evoked by field stimulation in either artery



vii

in normotensive or hypertensive animals.

15. There was no significant difference in the [3H] overflow evoked by 

field stimulation in SHR and WKY tail arteries pre-loaded with either 

[3H]-NA or [3H]-adenosine. Thus, the increased vascular responsiveness 

of hypertensive rat tail arteries did not appear to involve an 

increased NA or ATP release.

16. The density of the adrenergic innervation in tail and superior 

mesenteric arteries from normotensive (WKY) and spontaneously- 

hypertensive (SHR) rats was examined using Falck histochemistry. In 

each artery, there was no significant difference in the density of 

the innervation between the 2 groups of animals, suggesting that the 

increased responsiveness of the arteries from hypertensive (SHR) ani­

mals could not be attributed to alterations in the density 6f adrener­

gic innervation.

17. It also appeared unlikely that the increased vascular reactivity 

of arteries from spontaneously-hypertensive (SHR) rats could be attrib­

uted to structural changes in the vascular smooth muscle. In both the 

tail and the superior mesenteric artery, the smooth muscle cells and 

endothelial layer from normotensive (WKY) and spontaneously- 

hypertensive (SHR) rats were indistinguishable. There was, however, 

the suggestion of an increased wall-to-lumen ratio in the arteries from 

hypertensive rats.

18. a,(3MeATP (3 x 10“6M) had no significant inhibitory effect on the 

[3H] release evoked by field stimulation in spontaneously-hypertensive 

(SHR) or normotensive (WKY) rat tail arteries pre-loaded with [3H]-NA, 

suggesting that a,pJMeATP has no inhibitory effects on transmitter 

release.



CHAPTER 1: INTRODUCTION
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FOREWORD

The view, commonly attributed to Dale, that each neurone contains 

only one neurotransmitter, has been a traditional concept in neuro­

biology for the past 50 years and has provided a framework for an 

understanding of peripheral neuro-effector systems and the action of 

drugs thereon.

More recently, a growing body of evidence has suggested that, in 

addition to the classical neurotransmitters, noradrenaline (NA) or ace­

tylcholine (ACh), many nerves release either a biologically-active 

purine or peptide (for reviews see Burnstock, 1972; 1979; 1981; 1986; 

Hokfelt et al., 1980a, d). Since these purines and peptides are syn­

thesized and stored within nerves, released during nerve activity and 

interact with specific post-synaptic receptors to produce a change in 

post-synaptic activity, they are, by at least one definition, neuro­

transmitters (Burnstock, 1976).

It is now recognised, that in many cases, a nerve can release 

more than one substance in response to stimulation (Burnstock, 1976; 

1982; 1985; 1986; Cuello, 1982; Osborne, 1983). This phenomenon of co­

transmission, in which each substance can be demonstrated to have a 

transmitter function, has led to a reconsideration of the one nerve-one 

transmitter hypothesis embodied in Dale's Principle. However, there 

are in fact two versions of the so-called Dale's Principle. The origi­

nal, put forward by Dale himself in 1935, proposed that a neurone con­

tained and released the same transmitter from each axon terminal (Dale, 

1935). The second version, a reinterpretation by Eccles, proposed that 

each neurone contained and secreted one, and only one neurotransmitter 

(Eccles et al., 1956). Ironically, the original definition, which 

implied a uniformity, rather than a singularity of transmitters 

released from each axon can be expanded to embrace the current concept



of co-transmission.

Since the number of neuronal systems in which co-transmission has 

been proposed to exist is continually increasing, the neurone of future 

years1 investigation may subsequently be shown to release several 

neurotransmitters. Indeed a neurone with only one putative neurotrans­

mitter may soon become an unusual finding.

The evidence for co-transmission, to follow, has come from work 

spanning the past three decades. Many of the earlier ideas on co­

transmission have, with the development of new experimental techniques, 

failed to be confirmed. However, having introduced the idea of the 

multiple transmitter neurone, these theories have freed future investi­

gators from the need to conform to a somewhat restrictive, though orig­

inally enlightened, view, and encouraged the development and expression 

of new ideas on peripheral neuroeffector transmission.
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I. EARLY THEORIES ON NEUROTRANSMISSION

One of the early indications that more than one substance could 

be involved in the transmission process, came from a series of histo- 

chemical experiments carried out by Koelle in 1955. Using a modifica­

tion of the thiocholine technique (Koelle & Friendenwald, 1949) as a 

means of locating ACh, tissues were stained for acetylcholinesterase 

(AChE), the enzyme involved in the hydrolysis of ACh. Fresh-frozen 

sections were incubated in a medium containing acetylthiocholine 

(AThCh), magnesium and copper glycinate. AThCh was hydrolysed by the 

tissue AChE and a white mercaptide salt precipitated at the site of 

enzymatic activity. This salt was subsequently converted into copper 

sulphide, which could be viewed microscopically (Koelle & Friendenwald, 

1949). Using this technique, the distribution of AChE in the cells of 

ciliary and stellate ganglia from cats, rabbits and rhesus monkeys was 

described. As expected, high concentrations of AChE were localized in 

the cholinergic neurones of all species. Surprisingly, however, vari­

able concentrations of the enzyme were also present in several adrener­

gic and sensory neurones (Koelle, 1955). To explain the presence of 

AChE in presumably non-cholinergic neurones, it was proposed that the 

terms 'cholinergic' and 'adrenergic' may define the predominant, but 

not necessarily the exclusive transmitter in a given neurone and that 

those neurones, containing intermediate concentrations of AChE might 

liberate both ACh and another transmitter (Koelle, 1955).

Using the same technique, Abrahams et al. (1957) carried out a 

histochemical survey of the distribution of AChE in the dog hypothal­

amus in an attempt to localize the cholinergic pathways involved in the

hypothalamic control of neurohypophyseal secretion. The only fibres

found in the area of the hypothalamico-hypophyseal tracts which 

stained for AChE, however, were those assumed to release the hormones



(vasopressin and oxytocin). In order to explain these observations, 

they proposed that impulses conducted along the hypothalamico- 

hypophyseal neurosecretory fibres first liberated ACh at their termi­

nals. This ACh then provided the stimulus for the subsequent liberation 

of oxytocin and vasopressin from the same nerve terminals.

This technique was used again a few years later (Koelle & Koelle, 

1959) to examine the AChE distribution in the cat superior cervical 

ganglion. Surprisingly, the AChE was confined, almost entirely, to 

pre-synaptic membranes, in contrast to the situation at the skeletal 

neuromuscular junction where the enzyme was located almost exclusively 

post-junctionally (Couteaux & Taxi, 1952). In view of the primary func­

tion of AChE, in the rapid destruction of ACh after its activation of 

post-junctional receptors, its location at the neuromuscular junction 

seemed much more strategically favourable than that at the superior 

cervical ganglion. The implication of these results was significant. 

If AChE indicated the presence of ACh, what was its pre-junctional 

role?

Thus two inconsistencies regarding the function of neuronal AChE, 

in terms of the traditional concept of cholinergic transmission were 

observed (Grundfest, 1957): First, the presence of varying concentra­

tions of AChE in, presumably, non-cholinergic neurones and secondly, 

the predominant localization of the enzyme in certain ganglia at pre-, 

rather than at post-synaptic sites.

By way of explanation, it was proposed (Koelle, 1961) that the 

ACh liberated by the nerve action potential, acted, initially on the 

same pre-synaptic terminal to liberate increased additional quanta of 

ACh. It was this additional, secondarily released ACh which acted post- 

synaptically to effect transmission. A similar mechanism was proposed 

for non-cholinergic neurones, where the initial liberation of ACh pro­

moted the release of another neurotransmitter from the same nerve end­



ings (Koelle, 1961). Thus, the pre-synaptic AChE served to hydrolyse 

the pre-synaptically acting ACh and ACh was present in non-cholinergic 

neurones as an intermediary in the release process.

A 2-step mechanism in both sympathetic and parasympathetic nerves 

was postulated also by Burn and Rand (1959) to explain several pharma­

cological inconsistencies in the traditional view of autonomic neuro­

transmission. Their work concerned mainly post-ganglionic sympathetic 

nerves, which, they proposed, contained both ACh and NA. The primary 

event following depolarization of the nerve terminal was not the 

release of NA, but of ACh. This ACh then caused an increased influx of 

calcium ions into the nerve terminal and, in turn, the release of NA 

from intraneuronal vesicles. This became known as the "cholinergic- 

link" hypothesis.

The evidence for this theory had several components (for reviews 

see Burn & Rand, 1965; Burn, 1966):

A. EXISTENCE OF CHOLINERGIC FIBRES

Both functional and histochemical evidence for the existence of 

ACh itself or of cholinergic fibres in sympathetic nerves was avail­

able. Stimulation of sympathetic post-ganglionic fibres liberated NA 

and ACh from the nerves supplying various tissues, for example, the 

mucous membrane of the dog buccal cavity and lips (Von Euler & Gaddum, 

1931), the hindleg of the dog and cat (Biilbring & Rand, 1935) and the 

accelerator nerves to the cat heart (Folkow et al., 1948).

Histochemical support for the 1cholinergic-link' hypothesis came, 

almost exclusively from experiments using the thiocholine technique 

(Koelle & Friendwald, 1949), where positive staining for AChE was 

observed in sympathetic ganglia (Koelle, 1955).
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B. THE APPARENT SIMILARITIES OF THE EFFECTS OF ACh, NICOTINE AND SYMPA­

THETIC NERVE STIMULATION

ACh, nicotine and sympathetic nerve stimulation each appeared to 

produce similar effects in several organs. For example, contraction of 

the piloerector muscles in the skin of the cat tail was produced by ACh 

(Briicke, 1935) and nicotine (Coon and Rothman, 1940). In these exper­

iments most of the hair, except for a few tufts, was removed from the 

cats tail and ACh or nicotine injected into the skin at the base of the 

tufts. Pilo-erection was observed. Normally, the pilomotor muscles 

contracted in response to sympathetic nerve stimulation, so it was 

assumed that ACh and nicotine were each acting on pre-synaptic nerve 

terminals to cause the release of NA which, in turn, caused piloerec- 

tion.

Other examples of sympathomimetic effects allegedly caused by ACh 

or nicotine included the relaxation of the isolated kitten intestine 

by nicotine (Ambache & Edwards, 1951), the acceleration of the isolated 

atria of the rabbit (Kottegoda, 1953a) and the constriction of the ves­

sels of the perfused rabbit ear artery (Kottegoda, 1953b).

C. THE EFFECT OF SUBSTANCES WHICH BLOCKED THE RELEASE OF NA

ACh and nicotine each block the release of NA from post­

ganglionic fibres. This was first demonstrated by Briicke (1935) for 

ACh in the pilomotor muscles of the cat tail. Small amounts of ACh 

caused piloerection, larger doses a transient piloerection and 

subsequent abolition of the response to sympathetic nerve stimulation. 

On the assumption that nerve impulses released only NA, Burn and Rand 

argued that there was no existing explanation for Briicke's observations 

in the cat tail. Since ACh caused little or no piloerection in a 

reserpinized cat (Burn & Rand, 1959), the release of NA, they claimed, 

was responsible for the piloerection observed. It was therefore argued 

that larger doses of ACh blocked the release of NA by desensitization



of pre-synaptic nicotinic receptors and that the normal release of NA 
was mediated by ACh.

D. ACTION OF THE HEMICHOLINIUMS

Hemicholiniums interfere with the transport of choline to intra­

neuronal sites and so prevent the synthesis of ACh (Macintosh et al., 

1956). The action is overcome by choline. Hemicholiniums (Brandon & 

Rand, 1961) abolished the splenic contractions to nerve stimulation, an 

action also reversed by choline. Since the splenic nerves were assumed 

to be noradrenergic, it was again argued that NA release was mediated 

by ACh.

E. ADRENERGIC NEURONE BLOCKING DRUGS

The adrenergic neurone blocking drugs bretylium and guanethidine, 

as well as high doses of ACh, blocked NA release from sympathetic 

nerves. These drugs, it was claimed (Burn & Rand, 1960), were active by 

virtue of their resemblance to ACh. As with ACh, each carries a large 

positive charge, bretylium on its quaternary nitrogen and guanethidine 

on its guanine group. It was therefore proposed that these adrenergic 

neurone blocking drugs desensitized the cholinergic component in the 

'cholinergic-link' hypothesis and thus prevented NA release.

F. ACTION OF ANTICHOLINESTERASES

If ACh acts as an intermediate in the release of NA, anticholi­

nesterases should increase the amount of NA released. This was 

subsequently claimed to be demonstrated in the rabbit ear artery, where 

vasoconstriction in response to nerve stimulation was potentiated by 

eserine (Burn & Rand, 1960).

Despite the plausibility of the evidence, the following objec­

tions were made to the hypothesis and have, with time, been sustained:-

A. NON-SPECIFICITY OF THE RESPONSES TO ACh AND NICOTINE

Just as ACh and nicotine played a major role in providing evi­



dence for the creation of the "cholinergic-link" hypothesis, further 

investigation of their effects were instrumental in its rejection. The 

effects of each lacked specificity. Thus, it was alleged (Ferry, 1963) 

that, in the cat spleen, close intra-arterial injection of ACh caused a 

vigorous antidromic spike discharge in post-ganglionic sympathetic 

splenic nerve fibres. This suggested that the sympathomimetic actions 

of ACh were indeed due to stimulation of sympathetic nerves. However 

the effects were non-specific, since a similar action of ACh was also 

observed in sensory nerves (Gray & Diamond, 1957), where no such trans­

mitter role for ACh had been proposed.

B. HISTOCHEMICAL EVIDENCE

Evidence for the 'cholinergic-link' hypothesis relied on the 

ability to locate AChE histochemically in sympathetic ganglia (Koelle, 

1955). Subsequent investigations however by other workers, (Sjokvist, 

1963; Hamberger et al., 1965) failed to confirm the presence of the

enzyme in post-ganglionic sympathetic neurones. Furthermore, AChE 

activity is now no longer regarded as the best indicator of cholinergic 

neurones. Choline acetylase, the enzyme involved in the synthesis of 

ACh, is now regarded as a better marker for cholinergic neurones. Thus 

many adrenergic neurones contain low or even moderate levels of AChE 

activity, but no measurable choline acetylase activity, and therefore 

no ACh (Buckley et al., 1967).

C. LACK OF POTENTIATING EFFECTS OF ANTICHOLINESTERASES

In the cat spleen, anticholinesterases, such as eserine, failed 

to prolong or potentiate the effects of splenic nerve stimulation or 

increase the amount of NA liberated (Blakeley et al., 1963), effects

which might have been anticipated in any ACh-mediated NA release.

Today the general consensus of opinion now fails to accept these 

early views of Koelle and Burn and Rand on the mechanisms of neuro­
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transmission. Notwithstanding, their proposals marked important mile­

stones in the evolution of the neurotransmitter theory. By putting 

forward these hypotheses they were in effect challenging existing views 

and prompting ideas upon which are based our current concepts of neuro­

transmission.
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II. CURRENT VIEWS ON THE CO-EXISTENCE OF ACETYLCHOLINE AND NORADRENA­
LINE

While Koelle and Burn and Rand proposed the release of two sub­

stances from a single nerve terminal in response to stimulation, only 

one, it was assumed, produced an effect post-junctionally. The first 

substance acted pre-synaptically, merely to cause the release of the 

second which then exerted the transmitter function. In other words, 

neurotransmission was a 2-step process which involved only one true 

ne ̂.retransmitter. Recent years has seen a modification of this view. 

The co-transmission theory, as presently understood, suggests that 2 

(or more) substances may be released simultaneously following nerve 

stimulation, and, in contrast to earlier views, that both substances 

may have a post-synaptic transmitter function.

The idea that autonomic neurotransmission involves the release of 

more than one substance from post-ganglionic nerve terminals becomes 

feasible when the development of the autonomic nervous system is 

examined from an embryological point of view. Neurones destined for 

all parts of the autonomic nervous system arise, it is believed (Wes­

ton, 1970), from a common origin - the neural crest. Certain of the 

neural crest cells migrate ventrally between the developing neural tube 

and the somite and remain there to form the sensory ganglia. Others 

continue to migrate ventrally and produce autonomic neurones in widely 

scattered locations, to form, for example, paravertebral, prevertebral 

and enteric ganglia (Weston, 1970). The final transmitter to be syn­

thesized is substantially influenced by the chemical environment sur­

rounding the nerves themselves during development (Weston, 1970; John-

ston et al., 1974; Noden, 1975; LeDouarin et al., 1975).

Much of the evidence for the view that neurones have the poten­

tial to manufacture more than one neurotransmitter and that this deci-
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sion is dependent on environmental factors has come from experiments 

using cell culture techniques. For example, when cells of the quail 

neural crest, normally destined to provide catecholamine-releasing 

cells of the adrenal medulla, were transplanted into the rostral

regions of chick embryos, they subsequently provided cells which 

migrated to the intestine to form the intrinsic gut plexuses and exhi­

bited cholinergic function (LeDouarin & Teillet, 1974; LeDouarin et 

al., 1975). Conversely, areas of the neural crest normally destined to 

become the cholinergic intrinsic gut plexuses, when placed in the mid­

region of the chick embryo, provided catecholamine-synthesizing neur­

ones for the adrenal medulla and sympathetic chain ganglia.

A similar effect has also been demonstrated in cultures of disso­

ciated rat sympathetic neurones (Bray, 1970; Mains & Patterson, 1973). 

When grown in the virtual absence of other cell types, these neurones 

developed the expected adrenergic properties, such as the ability to 

synthesize, store and release NA (Claude, 1973; Rees & Bunge, 1974; 

Patterson et al., 1975). In contrast, when co-cultured with appropri­

ate (see below) non-neuronal cells, the mixed neuronal cultures pro­

duced as much as a 1000-fold increase in ACh synthesis, compared with 

that from the neurones cultured alone (Patterson & Chun, 1974). Fur­

thermore, the ACh was secreted at functioning cholinergic synapses

(0'Lague et_al., 1974; 1975; Johnson et al., 1976; Nurse & O'Lague,

1975; Furchpan et al., 1976).

In addition, there is compelling evidence for the idea that, 

under certain conditions in vitro, a single sympathetic neurone may, at 

different times, release NA, ACh or a mixture of both transmitters 

(Hill et al., 1976; Patterson et al., 1975; Bunge et al., 1978). This 

was particularly well demonstrated in a series of electrophysiological 

studies on single, isolated, sympathetic neurones grown on heart cells 

previously dissociated from new-born rats (Furshpan et al., 1976).
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It was shown that some neurones inhibited, some excited, and others 

inhibited then excited the cardiac myocytes. There is pharmacological 

and electron microscopic evidence for the storage and secretion of ACh 

by the first group of neurones, catecholamines by the second, and both 

ACh and catecholamines by the third. It seemed likely that this repre­

sented a true reflection of the events that occurred in vivo during 

perinatal development (Hill & Hendry, 1977). On the basis of these 

results it appeared that a population of sympathetic cells having the 

potential to synthesize both ACh and NA was present at birth. These 

multi-potential cells require Nerve Growth Factor (NGF) to survive, to 

which they respond with an increased production of both choline acetyl- 

transferase and tyrosine hydroxylase, the enzymes that synthesize 

respectively ACh and NA. At this stage they have a viable amine uptake 

pump. In the presence of appropriate environmental factors (for review 

see Patterson, 1978) most of the cells appear to differentiate into 

either noradrenergic or cholinergic neurones. Those which differenti­

ate into cholinergic neurones gradually lose their ability to synthes­

ize tyrosine hydroxylase and to take up catecholamines and become unre­

sponsive to NGF. Those differentiating into noradrenergic neurones 

lose their ability to synthesize choline acetyltransferase. On the 

other hand, some neurones fail to become differentiated and retain 

their ability to synthesize, store and release both NA and ACh. Such 

neurones could provide the structural basis for our current view that 2 

or more substances may co-exist within neurones.

Thus, there is much evidence that, under certain .conditions, a 

developing neurone may release both NA and ACh. Much of this evidence 

has come from cell culture techniques. In vivo work, however, (Hill & 

Hendry, 1977) has demonstrated that such a multi-potential population 

of cells is present at birth, suggesting that such neurones are not 

merely an artifact of in vitro techniques.
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III. NON-ADRENERGIC, NON-CHOLINERGIC NEUROTRANSMITTERS

In the course of their experiments on isolated sympathetic neur­

ones, Furshpan et al. (1976) and Potter et al. (1986) observed a 

neuronally-evoked myocyte hyperpolarization which was atropine resis­

tant. Further work (Furshpan et al., 1986) revealed that this hyperpo- 

larization was purinergically mediated; it was antagonized by adenosine 

receptor blockers (8 -phenyltheophylline, theophylline,

7-(2-chloroethyl) theophylline) and was attenuated by an enzyme (adeno­

sine deaminase) that hydrolyses adenosine to pharmacologically inactive 

inosine. This led the authors to conclude that, in addition to NA and 

ACh co-release, many neurones also released a purine together with NA, 

ACh, or a combination of both classical transmitters.

This work presupposes the existence of transmitter substances 

distinct from the classical transmitters, NA and ACh. Increasing 

evidence suggests that these so-called non-adrenergic, non-cholinergic 

(NANC) transmitters, specifically purines and peptides, may be co­

released with either or both of the classical transmitters (Burnsock, 

1976; 1982; 1986; Hockfelt et al., 1977; 1980a; d; Cuello, 1982).

Before considering the merits of these substances as co­

transmitters, it is necessary to examine them as neurotransmitters in 

their own right, being synthesized, stored and released from distinct 

NANC neurones.

Evidence that the autonomic nervous system may release substances 

other than NA and ACh came as early as 1895 when it was shown that the 

contractile responses of the urinary bladder to parasympathetic (pel­

vic) nerve stimulation were antagonized only partially by the choliner­

gic antagonist atropine (Langley & Anderson, 1895). Such observations 

were not restricted to contractile response®. In both the stomach 

(Langley, 1898) and small intestine (Bayliss & Starling, 1899), inhibi­
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tory components of the vagus were discovered which were facilitated, 

rather than antagonized, by atropine and therefore could not be attrib­

uted to stimulation of cholinergic post-ganglionic fibres. At the time 

however, this atropine-resistance was 'explained away1 within the tra­

ditional existing concepts of cholinergic and adrenergic neurotransmis­

sion by suggesting it that arose because of the existence of a so- 

called 'peripheral mechanism' (McSwiney & Wadge, 1928) in which the 

peripheral tissue itself could determine the response to nerve stimula­

tion, irrespective of which division of the autonomic nervous system 

was being stimulated. If tone was low the tissue would contract and if 

high it would relax with either type of stimulation. Only in the 

intermediate tone range was there a distinctive difference between sym­

pathetic and parasympathetic nerve stimulation. Alternatively, atropi­

ne-resistance was attributed to stimulation of inhibitory sympathetic 

nerves in the vagus (Harrison & McSwiney, 1936) or, in the case of 

penile erection, to an access problem, because the ACh receptors in the 

small neuro-effector junction were inaccessible to exogenous antago­

nists (Dale & Gaddum, 1930).

The first conclusive pharmacological evidence for the existence 

of NANC fibres came with the advent of adrenergic neurone blocking 

drugs such as guanethidine. Together with atropine, to abolish the 

effects of parasympathetic nerve stimulation, this meant that both 

divisions of the autonomic nervous system could now be blocked. Since 

these neurone blocking drugs acted on the nerve endings they did not 

suffer from the difficulties in access attributed to atropine by Dale 

and Gaddum. Subsequently, the inhibitory responses to vagal stimula­

tion were shown to persist, while those to sympathetic nerve stimula­

tion were blocked, in the presence of the adrenergic neurone blocking 

agents alone (Burnstock et al., 1966) or in combination with a- and 

0-adrenoceptor antagonists (Bucknell & Whitney, 1964).
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NANC responses were not restricted to inhibitory nerves; they 

were also involved in contractile responses. In fact, the first tenta­

tive suggestions that all neurogenic responses could not be explained 

within the classical framework of autonomic neurotransmission were made 

in connection with a contractile event (Henderson & Roepke, 1934, 

1935). It was shown that in the dog urinary bladder the contractile 

response to parasympathetic nerve stimulation was mediated partly by 

ACh and partly by a non-cholinergic, atropine-resistant mechanism. 

Since this response was also unaffected by the a-adrenoceptor antago­

nist phentolamine (Ambache & Zar, 1970) it was proposed that it was 

mediated by an as yet unknown NANC neurotransmitter. In addition to 

the urinary bladder, contractile responses resistant to both adrenergic 

and cholinergic antagonists have been demonstrated in a variety of tis­

sues including the guinea-pig ileum (Ambache & Freeman, 1968; Bywater 

et al., 1981; Bauer & Kuriyama, 1982a), cat colon (Hulten & Jodal,

1969), chicken oesophagus (Hassan, 1969) and chick rectum (Bartlett & 

Hassan, 1971).

The mechanism underlying NANC responses was first investigated 

following the development of intracellular micro-electrode recording 

techniques. It was the mechanism underlying the inhibitory response 

which was first to be described. In the early 1960's, inhibitory junc­

tion potentials (i.j.p.s), resistant to both adrenergic and cholinergic 

blocking agents, but sensitive to tetrodotoxin (TTX), were recorded

intracellularly from the guinea-pig taenia coli in response to field 

stimulation (Burnstock et al., 1963; 1964; Bennett et al., 1966a;

Kuriyama et al., 1967). These intracellular recording techniques

demonstrated, for the first time, fundamental differences between the 

membrane inhibitory responses produced by NANC and adrenergic nerve 

stimulation. Thus, in the taenia coli, perivascular sympathetic nerve 

stimulation with single pulses produced no electrical or mechanical
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responses. Trains of pulses at low frequencies (below 5Hz) inhibited 

spontaneous spike activity and relaxed the muscle without a change in 

membrane potential. Only at higher stimulation frequencies was the 

relaxation accompanied by a hyperpolarization; this reached a maximum 

of some 16mV (Bennett et al., 1966a). In contrast, field stimulation 

of NANC nerves with a single pulse evoked an i.j.p. which could reach 

some 25mV and a relaxation (Bennett et al., 1966b). With trains of 

pulses, i.j.p.s summated to values of up to 30mV. While the maximum 

inhibitory response to sympathetic nerve stimulation was obtained above 

10Hz, that to NANC nerve stimulation reached a maximum below 10Hz (Ben­

nett et al., 1966a, b). Similar responses from so-called NANC nerves

have since been demonstrated in a variety of gastro-intestinal smooth 

mu'scle preparations including the guinea-pig stomach (Kuriyama et al.,

1970), the longitudinal muscle of the guinea-pig pig ileum (Kuriyama et 

al., 1967; Hidaka & Kuriyama, 1969), the guinea-pig and rabbit colon 

(Furness, 1969a, b) and also in other areas including the trachea 

(Coburn & Tomita, 1973), lung (Robinson et al., 1971), blood vessels 

(Hughes & Vane, 1967), and the accessory muscles of the reproductive 

system, namely the bovine retractor penis muscle (Klinge & Sjostrand, 

1974; Byrne & Muir, 1985), anococcygeus (Gillespie, 1972; Creed et al.,

1975) and rectococcygeus (King & Muir, 1981). There is now convincing 

evidence that in many of these tissues, including the taenia coli (Ben- 

nett et al., 1963; Tomita, 1972) and jejunum (Hidaka & Kuriyama, 1969) 

the mechanism underlying the i.j.p.s is a selective increase in K+ 

conductance.

Intracellular recording techniques have also been used to inves­

tigate the mechanisms underlying the contractile NANC responses in a 

variety of tissues including the urinary bladder (Ursillo, 1961; Creed 

et al., 1983), chicken rectum (Takewaki et al., 1977), guinea-pig ileum 

(Bywater et al., 1981; Bauer & Kuriyama, 1982b) and the circular muscle
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of the rabbit jejunum (Kitamura, 1978). In these tissues, NANC nerve 

stimulation evoked excitatory junction potentials (e.j.p.s) which were 

graded with stimulus strength and summated to fire action potentials. 

The latency of the e.j.p.s varied considerably, from 5-15ms in the 

chicken rectum (Takewaki et al., 1977) to 350-900ms in the guinea-pig 

ileum (Bauer & Kuriyama, 1982a). This may be due to differences in the 

distance between nerve varicosities and smooth muscle cells, different 

transmitters, or variations in post-synaptic mechanisms. Here the ionic 

basis for the NANC-mediated electrical response remains to be fully 

elucidated. In the guinea-pig ileum, e.j.p.s were enhanced by passive 

hyperpolarization of the membrane potential and had a reversal poten­

tial of -27mV (Bauer & Kuriyama, 1982b). This may be the equilibrium 

potential for one ion, eg Cl”, or the net reversal potential for a 

number of ions eg Na+ and K+.

Attempts have been made to obtain structural evidence for NANC 

nerves using electron microscopic techniques. This appeared to achieve 

some success following the report of 'large opaque vesicles' (LOV) in 

many NANC fibres. For example, in the toad lung, a tissue with a 

reported NANC innervation (Wood & Burnstock, 1967; Campbell, 1971) 

Robinson and co-workers observed a predominance of LOV in the nerve 

endings (Robinson et al., 1971). Furthermore, when the adrenergic 

nerves supplying the toad lung were destroyed with 6-hydroxydopamine 

(6 -OHDA), both the NANC inhibitory response to vagal stimulation and 

the profiles containing a predominance of LOV remained unchanged 

(Robinson et al., 1971). Similar profiles have also been reported in 

the guinea-pig myenteric plexus (Gabella, 1972), avian gizzard (Burn- 

stock, 1972), bovine retractor penis muscle (Eranko et al., 1976) and 

rat anococcygeus muscle (Gibbins & Haller, 1979), tissues all known to 

have an NANC innervation. It was thus proposed that the large opaque 

vesicles were the storage site for the NANC transmitter.
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While this proposal stimulated much interest in the ultrastruc­

ture of NANC fibres (see Gibbins & Haller, 1979; Gibbins, 1982), it has 

not been universally accepted. Thus, while large opaque vesicles exist 

in many tissues which show NANC responses, the incidence of their 

occurrence was no greater than in cholinergically-innervated tissues 

which lacked NANC responses. For example, the profile of the NANC 

nerves in the rabbit anococcygeus muscle, hepatic portal vein and the 

toad lung were similar to those of the cholinergic nerves in the atria 

of the rabbit, guinea-pig and toad (Gibbins, 1982). In other words, 

the type of response could not be related to the presence of a particu­

lar vesicle profile in the nerve endings. It is therefore clear that 

NANC autonomic nerves were not uniquely represented by a population of 

large opaque vesicles.

Although the absence of a unique profile has proved a disappoint­

ment in establishing the existence of NANC transmitters in nerves, it 

has not diminished attempts to identify the substance(s) involved. 

Five criteria are generally regarded as necessary for establishing a 

substance as a neurotransmitter (Eccles, 1964), namely, (a) synthesis 

and storage in nerve terminals; (b) release during nerve stimulation;

(c) post-junctional responses of exogenous transmitter which mimic

responses to nerve stimulation; (d) enzymes which inactivate the trans­

mitter and/or an uptake system for the transmitter or its metabolites; 

(e) drugs which produce parallel blocking or potentiating effects on 

the responses to both exogenous transmitter and nerve stimulation. 

With these criteria in mind, two main types of NANC transmitter sub­

stances have been proposed; (a) purines; predominantely ATP, which are 

released form 'purinergic nerves' and (b) peptides; a group including 

many biologically active polypeptides which are released from so-called 

'peptidergic nerves' (for reviews see Burnstock, 1979; 1981; 1986; Hok-

felt et al., 1977; 1980a, d).
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PURINERGIC NERVES

There is now considerable evidence to support the existence of 

purinergic nerves. The first suggestion that adenosine 51-triphosphate 

(ATP) or a related nucleotide may be involved in chemical transmission 

came much earlier from work on sensory nerve endings (Holton & Holton, 

1953; 1954). These workers proposed that such substances may partici­

pate in capillary dilatation. This possibility was further supported 

by the demonstration of ATP release from the perfused rabbit ear fol­

lowing antidromic stimulation of the sensory nerves (Holton, 1958).

A formidable case for ATP as the neurotransmitter in certain NANC 

nerves has been put forward by Burnstock (for review see Burnstock, 

1979; 1981; 1986). Each of the criteria set out for the establishment

of a substance as a neurotransmitter (see above) haS been considered;

(i) Presence in nerve fibres

The first step was to establish ATP's presence in nerves, 

although it was necessary to remember that ATP is present in all cells 

as an energy source and so its presence in storage vesicles within 

nerves does not automatically warrant its role as a putative transmit­

ter. Notwithstanding, adenine nucleotides have been detected following 

nerve stimulation by radiochemical techniques (Su et al., 1971; Su,

1975; Westfall et al., 1978). It has been claimed that tissues such as

the taenia coli (Su et al., 1971) and the vas deferens (Westfall et

al., 1978) of the guinea-pig and the thoracic aorta, ear artery and 

portal vein of the rabbit (Su, 1975), each of which produce NANC 

responses, can accumulate [3H]-adenosine and convert it into [3H]-ATP, 

which can then be released following electrical stimulation. This 

implied that the enzyme required for the conversion of adenosine into 

ATP occurred in the nerves and that the synthesis of ATP could be per­

formed in neuronal tissues. Both the [3H] release and the mechanical 

responses induced by electrical stimulation of the guinea-pig taenia
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coli (Su et al., 1971) vas deferens (Westfall et al., 1978) and rabbit 

vascular smooth muscles (Su, 1975) were abolished by TTX, suggesting 

that the tritiated purines were released form nerves.

The presence of ATP in nerves has also been shown microscopically 

by the use of the quinacrine technique. Quinacrine, it was claimed, 

bound to adenine nucleotides to produce a fluorescent complex (Irvin & 

Irvin, 1954) in both cell bodies and varicose fibres in Auerbach's 

plexus (Olson et al., 1976), urinary bladder (Burnstock et al., 1978c)

and anococcygeus muscle (Burnstock et al., 1978a). Furthermore, qui­

nacrine fluorescence in nerves was reduced by depolarization (Alund & 

Olson, 1979). These findings have been used as support for the view 

that quinacrine binds to a compound, presumably ATP, released by nerve 
activity.

(ii) Release by nerve stimulation

The first indication that ATP was released by nerve stimulation 

came from studies on the perfused stomach of the guinea-pig and toad. 

Stimulation of the vagus nerve of Auerbach's plexus in these tissues 

(Burnstock, 1970) produced the ATP breakdown products, adenosine and 

inosine in the perfusion fluid. Pre-incubation of the guinea-pig tae­

nia coli with [3H]-adenosine released [3H]-ATP in response to nerve 

stimulation and this release was inhibited by TTX (Su et al., 1971). 

More recently, the luciferin-luciferase luminescence technique has been 

used as a sensitive means of assaying ATP (Strehler & Totter, 1952). 

The principle behind this method is the interaction of ATP with syn­

thetic luciferin and with luciferase extracted from firefly tails, to 

produce luminescence. Using this technique, detection of ATP following 
field stimulation has been claimed in the guinea-pig taenia coli and 

urinary bladder and in the rabbit and rat anococcygeus muscles (Burn­

stock et al., 1978a, b, c). In each of these situations, the release

of ATP was associated with inhibitory responses in the effector.
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Because of its widespread occurrence and many functions, the pos­

sibility that ATP is not located within the nerve terminal, but arises 

from sources other than nerves has been considered. The nerve mem­

brane, for example, is itself a potential source of ATP, e.g. during 

the propagation of an action potential (Burnstock et al., 1978c). 

However, the amount of nucleotide collected during stimulation of NANC 

nerves was estimated to be some 1 0 0 0 -fold greater than that released as 

a direct result of activation of the axon membrane during impulse pro­

pagation. The problem of whether the ATP released comes secondarily 

from muscle rather than nerve terminals may also have been resolved. 

While a 2- to 6 -fold increase in ATP release from the guinea-pig taenia 

coli and urinary bladder occurred following activation of NANC nerves, 

no significant increase in ATP release occurred in response to direct 

muscle stimulation (Burnstock et al., 1978c).

(iii) Mimicry of nerve stimulation

One of the most important criteria in establishing a substance as 

a neurotransmitter is that the response to exogenous application of the 

substance should mimic that to NANC nerve stimulation.

Adenine nucleotides, particularly ATP, closely mimic both NANC 

nerve-mediated inhibitory and excitatory responses (Ambache & Zar, 

1970; Burnstock et al., 1970; 1972; Burnstock, 1972; 1979; 1981). In 

the case of the inhibitory response, the latency and duration of the 

relaxations produced by ATP are similar to those produced by nerve 

stimulation. This is particularly well demonstrated in gastrointesti­

nal smooth muscle, including the stomach, colon and ileum of the gui­

nea-pig and rabbit, the rat gastric fundus, duodenum and colon, the 

mouse duodenum and colon (Burnstock et al., 1970; Okwuasaba et al., 

1977; McKenzie'et al., 1977; Huizinga & Den Hertog, 1980) and the 

guniea-pig internal anal sphincter (Crema et al., 1983; Lim & Muir, 

1983). Characteristically, a rebound contraction also followed the
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inhibitory responses to both ATP and NANC nerve stimulation in these 
preparations.

Mimicry of NANC nerve-mediated responses by ATP is also observed 

in vascular smooth muscle. Both nerve stimulation and ATP produced 

vasodilation in the guinea-pig uterine artery (Bell, 1976), rabbit por­

tal vein (Hughes & Vane, 1967) and bull penile artery (Klinge & Sjos- 

trand, 1974).

Mimicry may extend not only to the mechanical events them^selves 

but to the underlying electrical mechanisms. The electrical basis of 

the relaxation produced by both NANC nerve stimulation and ATP is an 

increase in potassium conductance in the guinea-pig taenia coli (Axels- 

son & Holmberg, 1969; Tomita & Watanabe, 1973), ileum (Bauer & Kuriy­

ama, 1982b), stomach (Vladimirova & Shuba, 1978) and rabbit caecum 

(Small, 1974). In those tissues where the electrical response to NANC 

nerve stimulation is small, e.g. the anococcygeus muscle (Gillespie,

1982) and bovine retractor penis muscle (Byrne & Muir, 1984), that to 

ATP is also insignificant. These results may not prove that the NANC 

transmitter and ATP are identical, however, they demonstrate a close 

similarity between the two.

The ability of ATP to mimic NANC nerve-mediated mechanical excit­

atory responses has been observed in the guinea-pig urinary bladder 

(Ambache & Zar, 1970; Muir & Smart, 1983; MacKenzie & Burnstock, 1984), 

the chicken rectum (Bartlet & Hassan, 1971; Meldrum & Burnstock, 1985) 

and the guinea-pig ileum (Bauer & Kuriyama, 1982a). The responses to 

both NANC nerve stimulation and ATP consisted predominantly of a rapid 

phasic contraction which was not maintained despite continious stimula­

tion. Furthermore, in the guinea-pig urinary bladder (Burnstock et 

al., 1978c) ATP,produced contractions of a similar latency and rates of 

rise and decline to nerve stimulation.

(iv) Blockade of responses to NANC nerve stimulation and ATP
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Antagonists of putative transmitters should also be effective 

against the response to NANC nerve stimulation. Selective antagonists 

have however proved difficult to find, a fact which has been a major 

stumbling block in the universal acceptance of the 'purinergic nerve' 

hypothesis.

Furthermore, as with many other peripherally acting neurotrans­

mitters, it now seems likely that there is more than one type of purin- 

oceptor (Burnstock, 1978). Based on the rank order of potency of agon­

ists, purinergic receptors have been divided into 2 major types; 

P^-purinoceptors, which were more sensitive to adenosine and adenosine 

5'-monophosphate (AMP) than to ATP, and P2 _purinoceptors, which were 

more sensitive to ATP and adenosine 5 1-diphosphate (ADP). Furthermore, 

P^-receptor occupation was suggested to lead to changes in intracellu­

lar cyclic adenosine 5'-monophosphate (cAMP) levels. P2 _receptor 

occupation did not but in some cases evoked prostaglandin biosynthe­

sis .

Methylxanthines are claimed to be competitive antagonists at the 

P-ppurinoceptor, while P2 _purinoceptors were antagonized (though 

non-specifically) by quinidine, 2 -substituted imadazolines and 2 '2 -py- 

ridylisatogen (Burnstock, 1978). The ability of methylxanthines to 

block post-synaptic P^-purinoceptors in both vascular and non-vascular 

smooth muscle is well documented (see Burnstock, 1978). For example, 

both the vasodilatation in the brain (Oberdorster et al., 1975) and the 

vasoconstriction in the kidney (Osswald, 1975) produced by adenosine 

were antagonised by theophylline. Similarly in non-vascular smooth 

muscle, the relaxation of the trachea (Coleman, 1976) and ileum (Ally & 

Nakatsu, 1976) produced by adenosine were blocked by aminophylline and 

theophylline respectively.
However the ability of these compounds to block the responses to 

adenosine was greater than their ability to oppose those to NANC nerve
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stimulation. For example, theophylline antagonised the responses to 

adenosine, but not to NANC nerve stimulation in the rabbit duodenum 

(Small & Weston, 1979), thus undermining the use of such compounds in 

the investigation of the nature of receptors and as specific antago­

nists for the NANC transmitter.

Subsequently, biochemical, pharmacolgical and receptor binding 

studies have led to a proposed sub-division of the P^-purinoceptor into 

A^ and A2 receptors (Van Calker et al., 1979) or Rj[ and.Ra receptors 

(Londos et al., 1980). The R^ receptor, occupation of which inhibits 

adenylate cyclase, appears to be analogous to the A^ receptor and the 

Ra receptor, which activates adenylate cyclase, appears to be analogous 

to the A2 receptor (see Kennedy & Burnstock, 1984). Furthermore, the 

Ra or A2 receptor is more susceptible to 5'-carboxamide analogues of 

adenosine such as 5 1-N-ethylcarboxamide adenosine (NECA) and less 

responsive to N^-substituted analogues such as L-N^-phenylisopropyl 

adenosine (L-PIA), whereas the reverse is true for R^ or A^ receptors 

(Bruns et al., 1980).

Attempts to obtain specific P2 -purinoceptor antagonists have been 

even less successful. For example, the potential ATP antagonist, 

2-2'pyridylisatogen tosylate also blocked ACh and histamine receptors 

at similar concentrations (Burnstock et al., 1978a). In the taenia 

coli, this drug reduced the inhibitory effects of ATP, but not those of 

NANC nerve stimulation (Spedding et al., 1975). Imidazolines, such as 

phentolamine, in a concentration exceeding that required to block a-a- 

drenoceptors, also abolished the inhibitory response of the taenia coli 

to ATP, without antagonising that to field stimulation (Ambache et al., 

1977a). These results implied a lack of specificity of these compounds 

for the recep’-. irs utilized by both the neuronally-released transmit­

ters) and ATP.

Two recently developed substances have made important contribu­
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tions to the problem of blockade of ATP-mediated responses. Arylazido 

aminopropionyl ATP (ANAPP3 ; Hogaboom et al., 1980) was claimed to be a 

a specific P2-purinoceptor antagonist. Indeed, ANAPP3 abolished the 

contractile responses to ATP and NANC nerve stimulaion in the urinary 

bladder of the guinea-pig (Westfall et al., 1983) and cat (Thoebald,

1982) and in the guinea-pig vas deferens (Sneddon & Westfall, 1984). 

However, this antagonist failed to block the relaxant effects of both 

ATP and nerve stimulation in the guinea-pig stomach fundus strip (Frew 

& Lundy, 1982) and rabbit anococcygeus (Sneddon et al., 1982). This 

inability to block inhibitory, but not excitatory responses to ATP was 

also demonstrated with a,p-methylene ATP (a,pMeATP; Meldrum & Burn­

stock, 1983; Sneddon & Burnstock, 1984), a stable analogue of ATP, 

which acts by desensitizing P2 _purinoceptors (Kasakov & Burnstock,

1983). Clearly there are differences between P2 -purinoceptors mediat­

ing relaxation and those producing contraction.

Thus it is becoming apparent that the P2 ~purinoceptor also may 

not form a homogeneous group. Sub-division of the P2 -purinoceptor has 

been suggested on the basis of the action of apamin, a Ca^+-operated K+ 

channel antagonist, which non-specifically blocks some actions of ATP 

(Shuba & Vladimirova, 1980), or on anatomical locations (Su, 1981). 

More recently (for review see Burnstock & Kennedy, 1985), P2 receptors 

have been subdivided on the basis of the rank order of potency of 

structural analogues of ATP, Thus: Subtype 1 (p2x)' a^PMeATP, (3,|J

-methyleneATP > ATP = 2-methylthioATP at the P2-purinoceptor mediating 

contraction of the vas deferens and urinary bladder of the guinea-pig 

and rat; Subtype 2 (P2y)/ 2-methylthioATP »  ATP > a,0-methyleneATP, p,# 

-methyleneATP at the P2-purinoceptor mediating relaxation of the gui­

nea-pig taenia coli and rabbit portal vein. P2X~receptors are anatgo- 

niyjed by ANAPP3 and selectively desensitized by a,pmeATP, whereas 

P2 y-receptors show only weak antagonism with these drugs.



26

Thus, the actions of adenosine and ATP appear to be mediated via 

several sub-classes of purinoceptors. However, until selective antag­

onists of these receptors are developed, one of the main criteria for 

establishment of a substance as a neurotransmitter remains unfulfilled.

(v) Inactivation

The rapid recovery which follows both the excitatory and inhibi­

tory responses to NANC nerve stimulation suggests the presence of an 

effective inactivation mechanism for the transmitter. ATP is believed 

to be de-phosphorylated by ecto-ATPases and a 51-nucleotidase to adeno­

sine (see Maguire & Satchell, 1979), which is then inactivated by 

either deamination to inosine, or uptake into smooth muscle or neur­

ones. Form these observations, Burnstock (1972; 1979) proposed the

'purinergic nerve1 hypothesis, according to which, ATP is synthesized 

and stored in nerve terminals. Following its release and the activa­

tion of purinergic receptors on the post-synaptic membrane, ATP is rap­

idly broken down by a magnesium-activated ATPase and a 5'-nucleotidase 

to adenosine. Adenosine is then taken up into the nerve terminals by a 

high affinity uptake system, converted into ATP, and reincorporated 

into physiological stores. Any adenosine not taken up in this way is 

broken down by adenosine deaminase to inosine, which is pharmacologi­

cally inactive, cannot be taken up by nerves, and leaks into the circu­

lation.

Although this hypothesis of purinergic transmission was attrac­

tive it was not universally accepted. This was partly because other 

groups had difficulty in repeating some of the results, partly because 

some of the antagonists claimed to be selective for ATP were not so, 

but perhaps most of all because ATP's central role in cell metabolism 

made it difficult to prove its specific role as a neurotransmitter.

For example, while many of the preparations used by Burnstock et 

al. (1970) responded to ATP in a similar manner to NANC nerve stimula­
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tion, many more including the pig stomach (Ohga & Taneika, 1977), opos­

sum oesophageal sphincter (Daniel et al., 1979) and rat anococcygeus 

(Gillespie, 1972) did not. Furthermore, it was shown that the guinea- 

pig ileum (Weston, 1973a), taenia coli (Ambache et al., 1977a), urinary 

bladder (Ambache & Zar, 1970; Ambache et al., 1977b), rabbit duodenum 

(Weston, 1973b) and pig stomach (Ohga & Taneika, 1977) were all desen­

sitized to ATP while simultaneously retaining their response to NANC 

nerve stimulation.

Gillespie and his colleagues have shown that the anococcygeus 

muscle of cat, rabbit and rat receives, in addition to excitatory 

nerves, a NANC innervation (Creed & Gillespie, 1977; Creed et al., 

1977; Gillespie & McGrath, 1974; Gillespie & McKnight, 1978). Although 

these workers showed that ATP mimicked the NANC nerve-mediated inhibi­

tion of the anococcygeus in the cat and rabbit, they argued that it was 

unlikely to be the transmitter since it caused a contraction of the rat 

anococcygeus and the transmitter was likely to be the same in all 3 

species. However, it was subsequently demonstrated (Burnstock et al., 

1978a) that, in the presence of low concentrations of the prostaglandin 

synthesis inhibitor indomethacin, the ATP-induced contraction of the 

rat anococcygeus was converted to a relaxation. Since ATP induces pro­

staglandin synthesis (see Burnstock 1978a) it was argued that this 

could explain the anomalous result.

Several authors have raised objections about the low potency of 

ATP in some preparations supplied by NANC nerves. Work on the rat 

bladder (Brown et al., 1979) has suggested that rapid breakdown of ATP 

(which contracts the bladder) to AMP and adenosine (both of which relax 

the bladder) account for the low potency of exogenously applied ATP 

(Ambache et al., 1977a, b). This is supported by the finding that p, 

jj-methyleneATP, which is more resistant to degradation, is about 

100-fold more potent than ATP and precisely mimics the NANC nerve-
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mediated contractions.

Furthermore, objections have been raised against the proposed ATP 

antagonists (Burnstock, 1972), many of which, including theophylline 

and 2 ,2 1-pyridylisatogen, have since been shown to be non-specific 

(Small & Weston, 1979; Spedding et al., 1975).

Considering all this evidence, much of it conflicting, I am 

inclined to believe that there is good evidence for ATP as a neuro­

transmitter in some, but by no means all, NANC nerves. Clearly, how­

ever, many gaps in the literature must be filled before the 'purinergic 

nerve1 hypothesis can gain universal acceptance.

PEPTIDERGIC NERVES

The other major group of candidates for NANC neurotransmitters, 

particularly in the gut, are the neuropeptides. The term 'peptidergic 

neurone' was first proposed by Bargmann and co-workers in 1967 to 

describe those neurones in the hypothalamus involved in the secretion 

of peptide hormones. Since then a total of over 30 peptides, including 

substance P, neuropeptide Y, somatostatin, vasoactive intestinal poly­

peptide and bombesin have been proposed as neurotransmitters in both 

peripheral and central nervous systems (for reviews see Otsuka & Taka- 

hashi, 1977; Hokfelt et al., 1980a, d; Iversen 1983b).

Doubts have arisen not only about the need for so many peptide 

neurotransmitters, given that one excitatory and one inhibitory trans­
mitter should be sufficient to operate the nervous system, but also 

because classical transmitters have always been small molecules (molec­

ular weight ~ 200) whereas some of the peptides consist of up to 30 or 

more amino acids (molecular weight ~ 3000). Furthermore, the method of 

replenishment of peptide neurotransmitters in nerve endings seems to be 

different from that for the classical transmitters. For example, 

intraneuronal NA levels are kept constant by enzymatic synthesis in
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nerve endings and reuptake from the extraneuronal space. Peptides, on 

the other hand, are probably produced only on the ribosomes of the cell 

soma, possibly in the form of a larger precursor molecule, without 

local synthesis in nerve endings or uptake mechanisms (for review see 

Hockfelt, 1980a). The amount of peptide released is much smaller than 

those of classical transmitters, however, receptors may be activated at 

very low concentrations, a situation which may compensate for an 'inef­

ficient' replacement mechanism of released transmitter (for reviews see 

Hokfelt et al., 1980a, d; Iversen, 1983a).

Although many peptides have been proposed as neurotransmitters, 

only a few come anywhere near fulfilling the criteria (see abov^) 

required to establish a transmitter function.

(i) Presence in nerves

The presence of peptides in autonomic nerves has been shown by 

immunohistochemistry, radioimmunoassay and bioassay techniques.

Between 1975 and 1977, important new findings suggested that it 

was unlikely that all NANC nerves comprised a single population of 

neurones containing one transmitter. Systematic electron-microscopic 

studies (Cook & Burnstock, 1976) revealed up to nine morphologically- 

distinguishable neurones in the enteric plexus, including some nerve, 

profiles containing a complex mixture of vesicles, suggesting that they 

may contain more than transmitter. Using these techniques to localize 

biologically-active peptides, autonomic nerves containing enkephalin, 

substance P, vasoactive intestinal polypeptide (VIP), neurotensin, 

somatostatin, gastrin releasing peptide (GRP), neuropeptide Y 

(NPT)/pancreatic polypeptide (PP)/ bombesin (BN), cholecystokinin 

(CCK), calcitonin gene-related peptide (CGRP), and most recently gala- 

nin (GAL) have been described (Hockfelt et al., 1980a, d; Furness & 

Costa, 1981; Melander et al., 1985).

Of these, VIP and substance P immunoreactive fibres are particu­



larly abundant in autonomic ganglia and in Auerbachs' plexus. For 

example, the longitudinal muscle of the taenia coli is innervated by 

fibres which are immunoreactive to both VIP and substance P (Jessen et 

al., 1980). Nerve cell bodies containing VIP in the myenteric plexus 

project in an anal direction to supply the circular muscle coat of the 

intestinal wall (Furness & Costa, 1980) and may mediate the descending 

inhibitory pathways of the peristaltic reflex (Hirst & McKirdy, 1974; 

Costa & Furness, 1976). Furthermore, immunohistochemical, radioimmu­

noassay and bioassay techniques have each demonstrated the preferential 

distribution of substance P in spinal dorsal roots, as opposed to ven­

tral roots (Amin et al., 1954; Takahashi et al., 1974; Takahashi & 

Otsuka, 1975), leading these authors to propose that substance P is an 

excitatory transmitter in primary sensory neurones.

Studies combining light and electron microscopy with immunohisto- 

chemistry have indicated that large granular vesicles are a feature 

common to many peptidergic neurones (see Cuello, 1978). Such vesicles 

are now regarded as the storage site for peptide transmitters and form 

the structural evidence for peptidergic neurones.

(ii) Release by nerve stimulation

The release of VIP and substance P have each been demonstrated in 

vitro following nerve stimulation in several tissues. VIP was released 

into the venous outflow when NANC inhibitory nerves supplying the cat 

stomach were activated either reflexly (by distending the upper oesoph­

agus) or by electrical stimulation (Fahrenkrug et al., 1978b). Release 

was also observed in other NANC nerves innervating gastrointestinal 

smooth muscles, including the lower oesophageal sphincter (Goyal & 

Cobb, 1981), taenia coli (Fahrenkrug et al., 1978a) and small intestine 

(Fahrenkrug et al., 1978b), and also from enteric vasodilator nerves 

(Fahrenkrug et al., 1978b). These relults suggested that VIP could be 

the neurotransmitter released by NANC inhibitory nerves in these tis­
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sues.

Substance P, has beem claimed to be released by an action poten­

tial-dependent mechanism from intrinsic nerves in the intestine to con­

tract smooth muscle (Franco et al., 1979) and has been proposed as an 

excitatory neutotransmitter in the intestine (Furness & Costa, 1980). 

Again, substance P has been detected in the gastric antrum following 

vagal stimulation (Uvnas-Wallensten, 1978). Although these observa­

tions are in keeping with the view that substance P may have a trans­

mitter function, it should be noted that at least a proportion of the 

substance P released may be - ; _ ' < (Von Lem-

beck, 1953; Jessell & Iversen, 1977).

(iii) Mimicry of nerve stimulation

Certain polypeptides, including VIP and substance P mimic the 

responses to NANC nerve stimulation in some tissues. VIP is a powerful 

inhibitor of many smooth muscles including those of the alimentary 

tract (Furness & Costa, 1981), respiratory tract (Kitamura et al.,

1980) and the urogenital tract (Sjostrand et al., 1981).

The ability of close-arterial infusion of VIP to induce relax­

ation of the stomach (Eklund et al., 1979) and the concomitant release 

of VIP from the corpus-fundus of the stomach during vagal stimulation 

(Fahrenkrug et al., 1978a, b) strongly favoured VIP as the transmitter 

in this preparation. In the guinea-pig taenia coli however, the 

effects of exogenous VIP showed certain differences from the response 

to stimulation of NANC nerves. Nerve stimulation produced a response 

with a short latency which developed rapidly and was poorly maintained, 

whereas the response to VIP was slow in onset (10s or greater), slow to 

develop and persistent (Cocks & Burnstock, 1979). It could be argued 

that this was not sufficient evidence against VIP as a neurotransmit­

ter, since access to receptors is limited for exogenous VIP compared to 

nerve-released transmitter. However, apamin failed to block the hyper­
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polarization to VIP (Hills et al., 1983), but antagonised that to NANC 

nerve stimulation, suggesting that the ionic basis of the two responses 

differed.

In cat trachea, low concentrations on VIP (10“^^-10*”̂ ®M) relaxed 

the smooth muscle with no accompanying electrical change, unlike the 

response produced by inhibitory nerve stimulation. At higher concen­

trations (10“®M) however, VIP produced relaxations and accompanying 

hyperpolarisations (Ito & Takeda, 1982).

There is also evidence that VIP is released from enteric vasodi­

lator nerves and that infusion of VIP mimicked the effects of stimula­

tion of these nerves (Fahrenkrug et al., 1978a, b; Eklund et al., 

1979). Furthermore, the relaxations produced by both NANC nerve stimu­

lation and VIP in the cat lower oesophageal sphincter were signifi­

cantly reduced by VIP-antisera (Biancani et al., 1984), observations 

consistent with a view of VIP as a neurotransmitter at this site.

Substance P also mimicked NANC nerve-mediated contractions in 

certain intestinal smooth muscles (Franco et al., 1979). Longitudinal 

and circular muscles of the ileum, in which field stimulation of NANC 

nerves evoked e.j.p.s, were also depolarized by substance P. Moreover, 

the e.j.p.s were abolished during depolarization with substance P. 

These e^-v w  were not reversed by passive membrane hyperpolarization, 

suggesting that the^ and the substance P-evoked depolarizarion

shared the same ionic basis (Bauer & Kuriyama, 1982a). Substance P also 

mimicked the motor response in both the colon and rectum to pelvic 

nerve stimulation (Andersson et al., 1983) and the rat parotid gland 

(Gallacher, 1983).
There is evidence therefore, that certain peptides can mimic NANC 

nerve-mediated responses at some sites. At such sites, they may have a 

transmitter function, however evidence for this is incomplete.
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(iv) Blockade of responses to NANC nerve stimulation and peptides

Little success has been achieved with the development of peptide 

antagonists. This was probably due to the difficulties in obtaining 

pure preparations to identify their molecular structure. Apparently, 

the only means of antagonising the response to peptides is by desensi- 

tizating the receptors to the particular peptide under observation, or 

by using active anti-sera, where available. Blockade of the relaxation 

to both VIP and nerve stimulation by VIP-anti-serum has been demon­

strated in the opossum oesophageal sphincter (Goyal et al., 1980), 

rabbit internal anal sphincter (Biancani et al., 1983) and cat trachea 

(Ito & Takeda, 1982). The effects appeared to be specific, at least in 

the oesophageal sphincter, as the relaxation to isoprenaline was not 

blocked (Goyal et al., 1980). This encouraging work was slightly

overshadowed, however, by the observation by other workers (de Carle & 

Pye, 1982) that in human oesphageal and gastric muscles VIP-antiserum 

was ineffective in reducing the responses to NANC nerve stimulation 

while antagonising those to exogenous VIP.

Desensitization to the inhibitory effects of VIP on the cat 

trachea was accompanied by a marked reduction in the response to inhi­

bitory nerve stimulation (Ito & Takeda, 1982). These results suggested 

that the receptors occupied by exogenously added VIP and the neuronal- 

ly-released NANC transmitter were similar.

Several substances, including AMP, cystine di-p-napthylamide and 

trimethaphan camphorsulfonate have been reported to antagonize the 

actions of substance P on the guinea-pig ileum (Stern & Hykovic, 1961). 

Furthermore, baclofen (p-(4-chlorophenyl)-)(-aminobutYric acid) antago­

nized the depolarizing action of substance P on rat spinal motoneurones 

(Otsuka & Konishi, 1976). The depolarizing effects of 1-glutamate, 

another excitatory transmitter candidate (Graham et al., 1967), were 

also found to be reduced, but to a smaller extent (Otsuka & Konishi,
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1976). Since baclofen readily blocked the monosynaptic and polysynap­

tic reflexes, as well as the dorsal root potentials (Saito et al., 

1975; Otsuka & Konishi, 1976), it was proposed by these authors that 

baclofen blocked primary afferent transmission by antagonizing the 

transmitter action of substance P.

Clearly the proposed substance P antagonists comprise a mixed 

group of compounds, none of which appear to be specific. Until such a 

specific antagonist for substance P is found, this criteria will remain 

unfulfilled.

Recently, some progress has been made in producing a synthetic

analogue of substance P which has been claimed to possess receptor

antagonistic properties (Leander et al., 1981). The compound, [D-Pro^, 

D-Trp^'^]-substance P has been shown to antagonize the effects of 

substance P in the guinea-pig taenia coli and urinary bladder, and in 

the rabbit iris sphincter pupillae muscle (Leander et al., 1981). The 

antagonistic effect of the compound on the nerve mediated responses 

however was not convincing. It abolished the NANC mediated contrac­

tions in the iris sphincter pupillae muscle, but was ineffective in the 

guinea-pig urinary bladder (Leander et al., 1981). These results 

suggested that in the rabbit iris sphincter pupillae muscle, but not 

the guinea-pig urinary bladder, the neuronally released transmitter and 

applied substance P shared the same receptors.

(v) Inactivation

The rapid recovery which follows both the excitatory and inhibi­

tory responses to NANC nerve stimulation suggests the presence of an

efficient inactivation mechanism for the transmitter(s). In general, 

this takes the form of either enzymatic breakdown or reuptake into 

nerves and/or muscle.

There is little evidence for the inactivation of peptides follow­

ing their release from nerves. It has been suggested (Lee et al.,
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1981) that a 'substance P degrading enzyme1 exists, which inactivates 

the peptide by cleaving the phenylamine residues at positions 7 and 8 . 

This enzyme has a high degree of specificity and is therefore a promis­

ing candidate for a physiological inactivation mechanism. At present, 

there is no evidence for a rapid inactivation mechanism for the termi­

nation of the VIP response. Consistent with this is the ability to 

identify the presence of VIP in venous outflow following nerve stimula­

tion.

To date, no uptake mechanism has been reported for peptides (see 

Hokfelt et al., 1980a). This may be because peptides are probably 

produced only- in the ribosomes of the cell soma, possibly in the form 

of a large precursor molecule (Gainer et al., 1977) without local 

synthesis in nerve endings. Hence replacement of released peptides 

from a nerve ending is probably via axonal transport. The relaxation 

produced by VIP is persistent (Cocks & Burnstock, 1979) and so compa­

tible with the possibility of destruction by a peptidase with time, as 

opposed to rapid uptake, a theory which hardly strengthens its claims 

as a transmitter mediating the rapidly developing and short-lived inhi­

bition of smooth muscle.

Although there is much evidence for the presence of several bio­

logically active peptides in both central and peripheral nerve endings, 

few, if any, fulfil all the criteria required to establish a transmit­

ter function. The lack of specific antagonists or a rapid inactivating 

mechanism leaves large gaps in the peptidergic nerve hypothesis. Fur­

thermore, the abundant presence of substance P in sensory neurones also 

complicates matters.
Of all the peptides examined as neurotransmitters, VIP appears to 

be the most likely candidate, especially in the gastrointestinal tract. 

However, the observation that the response to VIP is slow in onset and 

long lasting does not fit well into the conventional pattern of action



of a neurot^ismitter. These observations and VIPs ability to circulate 

in the local blood supply without immediate destruction would seem 

indicative of a more regulatory role usually associated with a hormone. 

It could thus be argued that some of the responses to VIP suggest its 

role would be better described as part of the neuroendocrine system. 

The major effect of VIP is on vascular smooth muscle, where it produces 

a powerful vasodilatory effect, especially in the gut. In the gut, VIP
O  V'v e_S> G O '

particularly densely distributed in blood vessels and the epithelium 

of the mucosa. VIP also causes secretion in the gut (for review see 

Said, 1980). Considering these effects, VIP could still be a neuro­

transmitter as these are slower yet supportive to the tissues directly 

involved, e.g. increasing blood flow to an actively secreting epithe­

lium.

Clearly, there are many examples of non-adrenergic, non- 

cholinergic putative transmitters in the autonomic nervous system. 

There is however increasing evidence that, in addition to being present 

in separate neurones, many of these putative transmitter substances are 

stored together with the classical transmitters, either in the same, or 

in separate vesicles, and are co-released following stimulation of both 

sympathetic and parasympathetic nerves. The term 'co-existence' has 

been used to describe this symbiotic presence of 2 , or more, transmit­

ter substances in a single nerve terminal, the occurrence and possible 

physiological significance of which will be discussed in the following 

chapters.
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IV. CO-EXISTENCE OF PEPTIDES WITH CLASSICAL TRANSMITTERS

The idea that peptides may be co-released from autonomic nerves 

is not surprising, if one considers the early observation (Abrahams et 

al., 1957) of AChE staining and hence presumably ACh in the areas of

the hypothalamico-hypophyseal tract associated with release of oxytocin 

and vasopressin. However, the first clear evidence for the co-existence 

of biologically active peptides and classical transmitters came, not 

from neurones, but from endocrine cells (Pearce, 1969). Certain per­

ipheral endocrine cells, particularly those located in the gastro­

intestinal tract, were shown to contain both a biogenic amine, for 

example 5HT or histamine and a peptide hormone, such as substance P, 

somatostatin or neurotensin (Pearce, 1969). These cells were part of 

what Pearce termed the APUD (Amine content or Precursor Uptake and 

Decarboxylation) system. Since neurones have the same embryonic origin 

as endocrine cells, it was proposed that they also might contain both a 

peptide and an amine (Pearce, 1969). Indeed, a population of guinea- 

pig sympathetic ganglion cells was found subsequently to be somatosta- 

tin-immunoreactive (Hokfelt et al., 1977). Several other cases of

classical transmitter-peptide co-existence have been since reported in 

several tissues (see Table 1). From this table it is clear that co­

existence involving peptides occurs in both central and peripheral 

neurones and involves ACh, gamma-amino butyric acid (GABA) and 5HT as 

well as each of the three physiologically occurring catecholamines 

(noradrenaline, adrenaline and dopamine). Furthermore, co-existence 

does not refer to only 2 transmitter substances; 3 or more have been 

found in some neurones (Erichsen et al., 1982).
From table 1 it is clear that although the same peptides and 

classical transmitters can be observed in several systems, different 

combinations exist. For example, somatostatin may co-exist with NA in
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guinea-pig sympathetic post-ganglionic neurones (Hokfelt et al., 1977), 

with GABA in the cat thalamus (Oertel et al., 1983) and with ACh in the 

toad heart (Campbell et al., 1982). Alternatively, a particular clas­

sical transmitter is not necessarily always stored with the same pep­

tide. For example, NA may co-exist with somatostatin in the guinea- 

pig sympathetic ganglia (Hokfelt et al., 1977), with enkephalin in the 

rat superior cervical gangloin (Schultzberg et al., 1979) and with

neuropeptide Y, VIP and dynorphin in the guinea-pig uterine artery 

(Morris et al., 1985). As far as can be ascertained, there seems to be 

no restriction on the possible combinations of classical transmitters 

and peptides that may co-exist.

Evidence that a neurone may contain more than one neurotransmit­

ter has inevitably led to investigations concerning the packaging of 

the substances involved. In many tissues, the NANC transmitter sub­

stance appears to be stored in vesicles, separate from those holding 

the classical transmitter within the same nerve ending (Cook & Burn- 

stock, 1976). This separate storage system for co-existing transmit­

ters would appear to allow differential release of the co-transmitters 

at, for example, different impulse frequencies.

Much of the evidence to date for co-transmission involving pep­

tides and classical transmitters has come fTern immunohistochemical 

techniques in which positive staining for a given peptide has been 

demonstrated in an autonomic neurone. The fact that a substance exists 

in a nerve however, does not necessarily imply that it is a neuro­

transmitter; post-synaptic effects must also be demonstrated.

Such a functional role for peptides has been perhaps best 

demonstrated in the cat submandibular salivary gland (Lundberg & Hok­

felt, 1983). Here, parasympathetic nerves innervate both the blood 

vessels and the exocrine acinar elements (Garrett, 1974) and, upon 

stimulation, produce salivary secretion and an increased local blood
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flow. Immunohistochemical analysis (Lundberg, 1981) strongly suggested 

that these parasympathetic nerves contained a VIP-like peptide, in 

addition to ACh. Confirmation of these results came from experiments 

which showed that electrical stimulation increased the overflow of both 

ACh and VIP into the venous effluent of the gland (Lundberg et al.,

1982). Since both the secretion and the vasodilatation produced at low 

frequencies (2Hz) of nerve stimulation were potentiated by eserine and 

abolished by atropine, it appeared that ACh was a prerequisite not only 

for salivation but also for the increased blood flow observed at these 

frequencies. At higher (> 10Hz) frequencies, however, the vasodilata­

tion was atropine-resistant. This effect was attributed to VIP, a well 

known vasodilatator (Lundberg et al., 1982) which, although/did not 

cause salivation alone, potentiated the ACh-induced salivary secretion, 

by increasing blood flow.

One advantage of such a mechanism could be that the co­

transmitter is released in some demanding situations to enhance the 

action of the principal transmitter. This may occur in several ways:- 

by post-junctional enhancement of transmitter action, by pre-junctional 

enhancement of transmitter release or by a separate synergistic action 

on blood vessels which provides for the increased metabolic needs of 

the tissue (Burnstock, 1985). When the emergency is over, reduction of 

stimulus frequency by central control centres would reduce co­

transmitter release.

Another peptide for which a possible physiological function has 

been proposed is neuropeptide Y (NPY). This peptide was first isolated 

from brain tissue in 1982 (Tatemoto et al., 1982) and has since been 

identified, using immunohistochemical techniques, in both the adrenal 

medulla (Lundberg et al., 1986) and in a variety of sympathetic neur­

ones (Uddman et al., 1985; Morris et al., 1985). NPY is a potent

vasoconstrictor in cat pial arteries (Edvinson et al., 1984), cat
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salivary gland arteries (Lundberg & Tatemoto, 1982), guinea-pig uterine 

arteries (Morris et al., 1985) and rat tail arteries (Neild, 1987).

At low concentrations, NPY potentiates the contractile effects of each 

artery to exogenous NA and perivascular nerve stimulation. These 

observations have led to the suggestion that NPY may participate in the 

physiological control of artery diameter (Neild, 1987), and thus in 

vascular tone.

Co-transmission may also have a functional role in the central 

nervous system. For example, a group of dopaminergic neurones in the 

nucleus accumbens and tuberculum olfactorium in rat and man are 

believed to co-release CCK (Hokfelt et al., 1980c, d). These mesolim- 

bic dopaminergic systems have been associated with higher mental func­

tions and, according to the so-called 'dopamine hypothesis', distur­

bances of this system may represent one component in the pathogenesis 

of schizophrenia (Pearce et al., 1977). If CCK is co-released with 

dopamine, the peptide could also be involved in the aetiology and symp­

tomatology of schizophrenia. In fact, CCK has been shown to inhibit 

dopamine release in these regions of the brain (Hokfelt et al., 

1980b, c) and thus may act in vivo to regulate dopamine release. An 

imbalance between peptide and amine may exist in schizophrenia, whereu­

pon a loss or decrease in peptide would lead to an overactive dopamin­

ergic system (Matthyasse & Kety, 1975).

Much of the evidence for ATP as a co-transmitter (see next sec­

tion) has come from experiments using electrophysiological techniques. 

Such evidence is sparse for peptides, though a few examples do exist. 

In bullfrog sympathetic ganglia, ACh is the neurotransmitter contained 

in preganglionic fibres (Jan & Jan, 1983). Three types of synaptic 

responses are mediated by ACh; (a) a fast excitatory post-synaptic 

potential (EPSP), (b) a slow EPSP and (c) a slow inhibitory post- 

synaptic potential (IPSP). In addition, a fourth synaptic potential
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has been identified (Nishi & Koketsu, 1968). This response, termed the 

late slow EPSP, lasts for several seconds, and is not mediated by ACh. 

New evidence now suggests that this late slow EPSP is mediated by a 

peptide transmitter which resembles mammalian lutenizing hormone- 

releasing hormone (LHRH) (Jan & Jan, 1983). LHRH has been identified 

in sympathetic ganglia using immunohistochemical techniques (Jan et 

al., 1979) and is released into the extracellular medium following

pre-ganglionic stimulation (Jan et al., 1979). The most convincing

evidence so far has come from electrophysiological experiments, in 

which the late slow EPSP was mimicked by local application of LHRH to 

the surface of the sympathetic neurone, via a brief pressure pulse (Jan 

& Jan, 1982; Jan et al., 1980; Katayama & Nishi, 1982). The LHRH- 

induced depolarization resembled the late slow EPSP in several ways; 

(a) both were associated with similar conductance changes, (b) their 

amplitudes varied in parallel as the membrane potential was shifted 

over a wide range, suggesting similar ionic mechanisms were involved, 

(c) both responses increased the excitibility of the neurone, (d) both 

responses were blocked by LHRH antagonists. Together this evidence 

suggests that LHRH is co-released with ACh from nerve terminals in the 

bullfrog sympathetic ganglia and interacts with post-synaptic receptors 

to produce a late slow EPSP.

A mammalian counterpart for the late slow EPSP observed in 

amphibian ganglia was first reported in the guinea-pig inferior mesen­

teric ganglia (Neild, 1978). Pharmacological analysis of the response 

has led to the suggestion that it is mediated by substance P (Dun & 

Karczmar, 1979); when applied locally, substance P produced a depolar­

ization similar to that elicited by repetitive hypogastric nerve stimu­

lation. Furthermore, following desensitization by continious applica­

tion of substance P, pre-synaptic stimulation failed to elicit the late 

slow EPSP.



Clearly there are several examples of the co-existence of pep­

tides and classical transmitters in a variety of neurones, both periph­

erally and centrally. Much of the evidence to date comes solely from 

localization of the peptide in neurones using immunohistochemical tech­

niques, but the few examples where a physiological function is apparent 

gives credibility to the idea of peptides as co-transmitters.
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V. CO-EXISTENCE OF ATP WITH CLASSICAL TRANSMITTERS

As with the peptides, the first evidence that purines co-existed 

with classical transmitters did not come from neurones. Relatively 

large amounts of ATP were demonstrated, first in adrenal medullary gra­

nules (Hillarp et al., 1955), and a few years later, in nerve granules 

(Schiimann, 1958). Following the observation that ATP facilitated cate­

cholamine uptake into both adrenal medullary granules (Kirshner, 1962; 

Carlsson et al., 1962; 1963) and adrenergic nerve terminals (Euler & 

Lishajko, 1963; Stjarne, 1964), it was suggested by these workers that 

the nucleotide acted in vivo as an energy source, for the re-uptake of 

catecholamines following stimulation-induced release.

The first evidence that ATP may, in addition to being an energy 

source, act together with other substances to augment their effects 

came again from work on the adrenal chromaffin cells (Douglas & Pois- 

ner, 1966; Douglas, 1968; Stevens et al., 1972). Evidence was pre­

sented that the cat adrenal gland could accumulate and phosphorylate 

[^H]-adenosine, and that stimulation of the gland with carbachol 

resulted in the appearance of [3H]-ATP in the perfusate solution. This 

ATP, it was proposed (Van Dyke et al., 1977) acted locally within the 

medulla as a 'co-agonist' along with the simultaneously released cate­

cholamines, acting either directly on receptors, or indirectly via 

transformation into cyclic nucleotides.

Extension of this ancillary role of the nucleotide to neuronal 

function was first proposed by Su following the demonstration that 

stimulation of periarterial adrenergic nerves in the guinea-pig taenia 

coli released tritium from tissues pre-incubated with [3HJ-adenosine 

(Su et al,. 1971) . This effect was abolished by the adrenergic neur­

one blocking drug guanethidine, indicating release of the purine from 

adrenergic, rather than purinergic nerves.



44

Support from investigations in other tissues soon followed. ATP, 

it was claimed, was co-released with NA from the sympathetic nerves 

supplying the cat nictitating membrane (Langer & Pinto, 1976), guinea- 

pig vas deferens (Westfall et al., 1978; Fedan et al., 1981), rabbit 

aorta and portal vein (Su, 1975; 1978), rabbit ear artery (Head et al., 

1977), and dog basilar artery (Muramatsu et al., 1981). Having estab­

lished that ATP could be released following stimulation of many sympa­

thetic nerves, it was necessary to demonstrate a functional role for 

the nucleotide before it could be accepted as a neurotransmitter.

It is perhaps in the rodent vas deferens that the functional sig­

nificance of the co-existence of purines and classical transmitters is 

most fully understood and where a functional role for each transmitter 

is apparent. The biphasic nature of the contractile response of the 

rodent vas deferens to field stimulation and the inability of a-adreno- 

ceptor antagonists to abolish the contraction, led to the suggestion 

that nerve stimulation may release two transmitter substances (Swedin, 

1971; Ambache & Zar, 1971). In the vas deferens, field stimulation 

produced a biphasic contractile response, comprising an initial rapid 

twitch, followed by a slower, tonic contraction which lasts throughout 

the stimulation period (McGrath, 1978). The initial rapid twitch con­

traction appeared to be mediated by ATP. It was mimicked by exogenous 

ATP and blocked by the P2 -purinoceptor antagonist arylazido aminopro- 

pionyl ATP (ANAPP3 ) (Fedan et al., 1981; Sneddon & Westfall, 1984) and 

by desensitization of the P2 ~purinoceptor by a, (3-methylene ATP 

(a,0MeATP) (Meldrum & Burnstock, 1983). The twitch phase was unaf­

fected by a-adrenoceptor antagonists, or by NA depletion with reser- 

pine. On the other hand, the slower phase of the contraction was

mimicked by NA, and blocked by a-adrenoceptor antagonists (Sneddon & 

Westfall, 1984; Sneddon & Burnstock, 1984). Both phases were blocked 

by guanethidine or chemical sympathectomy using 6 -OHDA, indicating that
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both transmitters were released from adrenergic nerves, rather than 

separate adrenergic and purinergic nerves (Sneddon & Westfall, 1984; 

Sneddon & Burnstock, 1984).

Co-existence of ATP with NA has not been restricted to non- 

vascular smooth muscle. ATP release has been demonstrated from sympa­

thetic nerves innervating, for example, the rabbit ear artery (Head et

al., 1977), aorta and portal vein (Su, 1978) and dog basilar artery

(Muramatsu et al., 1981).

Evidence for ATP as a co-transmitter has also been demonstrated in 

noradrenergic nerves. The nucleotide is stored together with ACh in 

the synaptic terminals of nerves supplying the electric organ of 

torpedo rays (Bohan et al., 1973); ATP is released together with ACh 

from phrenic nerves in the rat diaphragm (Silinsky & Hubbard, 1973; 

Silinsky, 1975) and is a strong contender for the NANC transmitter in

the guinea-pig urinary bladder (MacKenzie et al., 1982).
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VI. AIMS OF THESIS

Notwithstanding the widespread occurrence and many functions of 

adenine nucleotides, their biochemical and physiological role has, 

until recently, been restricted to that of a modulator of metabolism
r

and in the storage of neurotj(knsmitters (e.g. noradrenaline).

More recently, evidence from studies of the autonomic nervous sys­

tem makes it clear that adenine nucleotides, particularly ATP, may have 

a more direct role to play in neurotransmission, as transmitters in 

their own right. Confirmation of this view would have far reaching 

consequences for medical science in two important directions:-

(i) It would necessitate a revision of the classical view of transmis­

sion in the autonomic nervous system, from one comprising two antago­

nistic, sympathetic and parasympathetic components, each releasing but 

one transmitter, to a more complex view which recognises, in addition, 

non-adrenergic, non-cholinergic transmitters and co-transmitters in 

effector control.

(ii) Significance for medicine. Just as the modification of noradren­

ergic and cholinergic transmitter activity has provided a most useful 

source of clinically-active drugs, the application of a similar 

approach to the manipulation of co-transmitter control, assuming the 

availability of selective antagonists, would result in the development 

of a new range of potentially clinically-useful drugs.
In these considerations, establishment of the mechanism by which 

ATP acts is of paramount importance. This thesis is an attempt to con­

tribute in this respect. In particular it sought, by the use of intra­

cellular micro-electrode recording techniques, to analyse the effects 

of co-transmitters and to correlate their electrical and the mechanical 

responses to nerve stimulation in a variety of tissues. This approach 

has been particularly successful in other situations involving NANC



inhibitory nerves (e.g. in the taenia coli, see Bennett et al., 1966a, 

b) in elucidating transmitter mechanisms. Indeed, evidence for its 

successful application to the problem of co-transmission already exists

in both vascular (Cheung, 1982; 1984; Suzuki et al., 1984; Suzuki &

Kou, 1983) and non-vascular (Sneddon & Westfall, 1984; Burnstock & 

Sneddon, 1984) smooth muscle.

The work described in this thesis was intended to broaden the
vx.

application of micro-electrode technics to co-transmission in a vari­

ety of vascular and non-vascular tissues^ including the mouse vas defer­

ens, rat anococcygeus muscle, rat tail and mesenteric arteries, rabbit 

ear and mesenteric arteries.
^•©v

The thesis also aimed to examine one potential'clinical r o l e c o ­

transmission - i.e. the proposed role of ATP released • as a co­

transmitter in hypertension (see Vidal et al., 1986). Such a role,

were it to be proven, would contribute not only to our understanding of 

the underlying mechanism of the disease but also to its treatment.



CHAPTER 2: MATERIALS AND METHODS
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In this investigation, several smooth muscle preparations, both 

vascular and non-vascular, were examined.

All tissues were removed as quickly as possible and transferred 

to a petri dish containing oxygenated Krebs solution. Connective tissue 

was then removed with the aid of a dissecting microscope and tissues 

prepared, as described below, for either mechanical, intracellular 

electrical or radio-chemical recording. All tissues were left to 

equilibrate for at least 30min before starting each experiment and all 

antagonists were left in contact with the tissues for at least 2 0min 

before their effects were investigated.

I. DISSECTION OF TISSUES

A. MOUSE VAS DEFERENS

Porton strain male mice (30-40g) were killed by a blow to the 

head and subsequent exsanguination. The abdominal cavity was opened by 

a midline incision and the testicles pushed out of the scrotum. Hold­

ing the epididymus with forceps, the connection with the vas was sev­

ered and a thread tied round this end of the tissue. It was then pos­

sible to dissect the p r e p a r a t i o n  free of connective tissue and fat, 

before severing the organ at the prostatic end.

In tissues in which hypogastric nerve stimulation was to be 

employed, a large area of surrounding connective tissue was dissected 

out along with the vas. The preparation was then transferred to a 

perti dish and the extrinsic (hypogastric) nerves identified and 

ligated under microscopic control.

B. RAT ANOCOCCYGEUS MUSCLE
Adult male albino Wistar strain rats (200-300g) were killed by a 

blow to the head and subsequent exsanguination. Tissues were dissec­
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ted out according to the method of Gillespie, (1972); the abdomen was 

opened along the midline and the intestines removed to one side. The 

bladder, urethra, vasa deferentia, seminal vesicles and testicles were 

removed, exposing the descending colon to the point where it passed 

into the pelvic cavity. The pubic symphysis was split taking care to 

avoid damaging the ventral bar of the anococcygeus muscle which lies 

over the colon in this area. The two cut ends of the pubic arch were 

forced apart exposing the contents of the pubic cavity. The anococcy­

geus muscles were then seen emerging from under the colon and joining 

together on it's ventral surface. When the colon was cut at the level 

of the pubic brim and the pelvic portion pulled ventrally, the full 

length of the anococcygeus muscles became visible. The connective tis­

sue surrounding the muscles was removed and a thread attached to the 

tendons at the rostral end. The tendons were then severed and tissues 

removed by dissecting the anococcygeus away from the colon and cutting 

through the ventral bar.

In some experiments, the extrinsic nerves innervating the ano­

coccygeus (the genito-femoral and perineal branches of the pudendal 

nerves) were dissected out and stimulated according to the method of 

McKirdy & Muir, (1978); the anococcygeus muscles, together with a 

large area of surrounding connective tissue, were removed and trans­

ferred to a petri dish. With the aid of a dissecting microscope, the 

sheath of connective tissue surrounding the anococcygeus was carefully 

split and pinned out to reveal the nerve branches innervating the tis­

sue. The genito-femoral and perineal nerves were then each identified 

and ligated, ready for stimulation.

C. RAT MESENTERIC BED PREPARATION
Age-matched (12-18 weeks) male albino Wistar Kyoto (WKY) and 

spontaneously hypertensive (SHR) rats (200-250g) were killed by a blow



50

to the head and subsequent exsanguination. Tissues were dissected out 

according to the method of McGregor# (1965); the abdomen was opened and 
the pancreatico-duodenal# ileo-colic and colic branches of the superior 

mesenteric artery were tied off. The dorsal aorta was then ligated and 

cut a few mm posteriorly from it's junction with the superior mesen­

teric artery. The latter was then isolated by cutting around the 

intestinal borders of the mesentery. The whole preparation was then 

removed to a petri dish# cannulated at the junction with the aorta and 

transferred to a horizontal organ bath.

D. RAT TAIL ARTERY

Rats (SHR and WKY) were killed as previously described. The tail 

was severed from the body# the cornified epithelium removed and a 3 - 4 

cm length of artery dissected out from the proximal end of the tail 

(Holman & Surprenant, 1980). Arteries were then transferred to a petri 

dish, cleared of connective tissue and cannulated with the tip of the 

cannula pointing away fv.~;m the body.

E. RABBIT MESENTERIC ARTERY

Male New Zealand rabbits (2-2.5kg) were killed with an overdose 

of C02 . Mesenteric bed preparations were dissected out in a similar 

way to that described for the rat (McGregor, 1965). The abdomen was 

opened by a midline incision. The superior mesenteric artery was then 

ligated and severed at it's junction with the aorta. The whole mesen­

teric bed preparation# comprising the superior mesenteric artery and 

attached branches, was then removed by cutting around the intestinal 

border and transferred to a horizontal organ bath. The mesenteric bed 

was then perfused with Krebs solution by means of a cannula inserted 

into the superior mesenteric artery. In experiments in which the 

responses of the superior mesenteric artery alone were investigated# 

all branches of the artery comprising the mesenteric bed were tied off
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then cut. The superior mesenteric artery was then either cannulated to 

measure mechanical activity, or left uncannulated in experiments where 

intracellular electrical activity was investigated.

F. RABBIT EAR ARTERY

Rabbits were killed as previously described and the central ear 

artery dissected out using a method similar to that first described by 

De la Lande & Rand, (1965). The ears were removed and stripped of 

their skin and attached fur. The central ear artery was identified at 

the base of the ear and a ligature placed around it, ready for cannula- 

tion. The nerve and vein which run parallel to the artery were separ­

ated off. The artery was then cannulated and a 3-4cm long section dis­

sected free from the cartilagenous base of the ear and transferred to a 

horizontal organ bath.

II. APPARATUS AND TECHNIQUES

A. CONTRACTILE ACTIVITY IN THE MOUSE VAS DEFERENS

To measure contractile responses, both vasa were removed and each 

mounted in a heated (36 ± 0.5°C) organ bath (5ml) and bubbled with 95% 

02 , 5% C02 in physiological Krebs solution. The tubing carrying the 

Kr-ibs and the organ baths were surrounded by a jacket containing water 

at 42 ± 0.5°C, pumped by a modified Tempette (TE7) pump to maintain the 

temperature constant at the desired level.
The vas deferens was passed through a pair of chlorided Ag/AgCl 

ring electrodes (O.D. 2mm). The prostatic end of the muscle was fixed 

and the epidydimal end attached, via a thread, to a force displacement 

transducer (Grass FT03C) for monitoring tension. Tissues were stimu­

lated using a Devices isolated stimulator (0.5ms, supramaximal voltage, 

5-20Hz) and contractile activity displayed on a Linseis potentiometric
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recorder. Contractile responses were recorded also in response to 

exogenous agonists; noradrenaline (NA) and adenosine-5'-triphosphate 

(ATP). These drugs were added to the bath in volumes of 0.1-0.3ml from 

graduated syringes. Mixing occurred rapidly due to the bubbling gas 

mixture. Agonists were kept in contact with the tissue for 30s. The 

baths were emptied from below and filled from above by gravity. Drugs 

were washed out by emptying and filling the bath 3 times and 5min were 

allowed between addition of each drug. Where one drug was required to 

be present throughout the experiment, it was added to the reservoir to 

give the final concentration required.

B. PRESSURE RECORDING IN ARTERIES

Following dissection and cannulation, rat tail artery and mesen­

teric bed preparations and rabbit ear artery and mesenteric bed prepa-
G.Cv.cN ^

rations werej^quickly transferred to a horizontal organ bath (4ml for 

tail and ear arteries, 10ml for mesenteric bed preparations). Tissues 
were perfused using a Watson-Marlow pump at a rate of 4mlmin“  ̂ with 

oxygenated Krebs solution at 36 ± 0.5°C. Emptying of the bath, via 2 

outlets, was carried out by suction. The polythene tubing containing 

the Krebs solution (O.D. 2mm) was surrounded by an outer tube (O.D. 

10mm) containing liquid paraffin at 40 ± 0.5°C, pumped by a modified 

Tempette (TE7) pump to maintain the temperature constant at the desired 

level.
Changes in perfusion pressure were measured on a Bell and Howell 

(4-327-L221) pressure transducer and recorded on a Linseis potentiomet- 

ric recorder.
Pressure changes were recorded in response to field stimulation 

(0.5ms, supramaximal voltage, l-50Hz) using chlorided Ag/AgCl ring 

electrodes (O.D. 2mm) and bolus injections (0.1-0.3ml) of exogenous 

agonists, injected through pressure tubing proximal to the cannula.
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Antagonists were added to the reservoir to give the final concentration 

required and were allowed to perfuse the tissues for at least 20min 

before their effects were investigated.

C. INTRACELLULAR ELECTRICAL (AND SIMULTANEOUS MECHANICAL) RECORDING

The electrical, and in some cases, simultaneous mechanical res­

ponses of the mouse vas deferens, rat anococcygeus muscle, rabbit 

mesenteric artery and rabbit ear artery to nerve stimulation and to 

drugs were investigated using conventional microelectrode recording 

techniques in vitro.

The apparatus (Fig. 1) consisted of an organ bath (5cm x 1cm x 

lcm) cut from a perspex block (5cm x 11cm x 2cm), Ag/AgCl ring elec­

trodes (O.D. 2mm), capillary glass micro-electrodes, a Ag/AgCl plated 

indifferent electrode, D.C. preamplifier, dual beam oscilloscope, 

voltmeter, transducer, isolated stimulator and gated pulse generator, 

U.V. oscillograph and tape recorder.

In order to minimise the mechanical vibrations generated in and 

around the laboratory, the organ bath was bolted to two non-conduction 

bakelite pillars which were fastened to a steel plate (2 0 0kg) on a 

table mounted on Mufflite (K-150) anti-vibration dampers. The bath was 

continually perfused (6mlmin-^), via 2 inlets, with Krebs solution at 

36 ± 0.5°C. Emptying of the bath, via 2 outlets, was carried out by 

suction. The polythene tubing (O.D. 2mm) containing the Krebs solution 

was surrounded by an outer tube (O.D. 10mm) containing liquid paraffin 

at 40 ± 0.5°C, pumped by a modified Tempette (TE7) pump to maintain the 

temperature constant at the desired level.
To record simultaneous electrical and mechanical activity in the 

mouse vas deferens and rat anococcygeus muscle, one end of the tissue 

was attached, via a thread, to an isometric force displacement trans­

ducer (Grass FT03C) and the other end, passed through bipolar Ag/AgCl



Fig. 1: Organ bath for combined intracellular electrical and mechani­
cal recordings. The bath comprised a central trough (5cm x 1cm x 1cm) 
set in a perspex block (5cm x 11cm x 2cm). The block was drilled to 
accept stainless steel inlet tubes (diameter 2mm) for Krebs solution 
and outlets for drainage (not shown). One end of the muscle was pinned 
onto the Sylgard base of the trough and intracellular recordings made 
from the pinned area. The free end of each tissue was passed through a 
set of Ag/AgCl ring electrodes (O.D. 2mm) and attached, via a thread, 
to a force displacement transducer. Membrane potential changes were 
recorded using conventional glass microelectrodes in response to field 
stimulation and exogenous agonists, applied locally from a micropipette 
linked to a pressure-controlled ejection device (Picospritzer II). The 
bath was perfused with oxygenated pre-heated Krebs solution (36 ±
0.5°C) via 2 inlets by gravity flow. The polythene tubing (diameter 
2mm) containing the Krebs solution was surrounded by an outer tube 
(diameter 10mm) containing liquid paraffin (at 40 ± 0.5°C) pumped from 
a thermostatically-controlled Tempette pump.
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ring electrodes (O.D. 2mm and 2iran apart, mounted in Araldite) and 

pinned to the Sylgard (Dow Corning) base of the bath. Field stimula­

tion was carried out by means of an isolated stimulator (Bell digital 

stimulator, Mk 3, 0.01-0.5ms, supramaximal voltage).

Intracellular electrical recordings were made with capillary 

glass micro-electrodes (Clark, GC 150-10; 20-40MQ) filled with 3M KCl. 

The micro-electrode was connected to a unity gain high impedance 

(101 0Q) D.C. preamplifier (W.P.I. M4A) via a Ag\AgCl half-cell attached 

to a probe, matched and calibrated for the amplifier used. The indif­

ferent Ag/AgCl plated electrode was fixed to the wall of the bath and 

held in the bath solution. Electrical signals, passed via the pream­

plifier, were displayed on one channel of a storage oscilloscope (Tek­

tronix 5103N) and monitored on a digital voltmeter (Fairchild M53).

The electrical and mechanical signals were recorded permanently on an

instrumentation tape recorder (Racal Store 4DE, band width 313-40kHz) 

and U.V. oscillograph (EMI SE3006).

A slightly modified system was used to record simultaneous elec­

trical and mechanical activity in the rabbit superior mesenteric artery 

(Fig. 2). Two wires were inserted into the lumen of the artery. One

was fixed to the Sylgard base of the horizontal organ bath and the

other was attached, via a thread, to a force displacement transducer 

(Grass FT03C). An initial tension of lg was applied and tissues left 

to equilibrate for 30min. Intracellular electrical activity was then 

recorded in the conventional way.
In the rabbit ear artery, electrical activity was recorded alone, 

the tissues being pinned out firmly to the base of the bath.

D. ELECTRICAL ACTIVITY IN RESPONSE TO LOCALLY APPLIED AGONISTS

In both the mouse vas deferens and rat anococcygeus muscles, 

membrane potential changes were recorded also in response to exogenous



Fig. 2: A slightly modified arrangement was used to record simulta­
neous intracellular electrical and mechanical activity in the rabbit 
superior mesenteric artery. Tissues were pinned out on the Sylgard 
base of a horizontal organ bath. Stimulation and intracellular elec­
trical recordings were carried out as previously described. To record 
mechanical activity 2 wires were inserted into the lumen of the artery. 
One was fixed to the base of the bath, while the other was attached, 
via a thread, to a force displacement transducer.
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agonists, applied locally from a pressure-controlled ejection device

(Picospritzer II, General Valve Corp. N.J., U.S.A. See fig. 1).

Tissues were dissected out as previously described and pinned out 

on the Sylgard base of a horizontal organ bath. Cells were impaled 

using conventional glass micro-electrodes. The drugs, dissolved in 

Krebs solution (containing, in the case of NA, ascorbic acid, 6 x 

10 JM, to prevent oxidation) were applied from ordinary micro-pipettes 

which had their tips broken back under microscopic control to l-2 [im.

Four factors controlled the amount of drug reaching the recording 

electrode from the Picospritzer;

1. The diameter of the pipette tip; to ensure uniformity, the tip was

broken back under microscopic control to l-2 pm.

2. The distance of the pipette tip from the recording site; this was 

kept to within 1mm, as measured with an eyepiece micrometer.

3. The ejection pressure; this was kept to between 40-50p.s.i.

4. The duration of ejection (l-200ms); this was varied as indicated in 

the text.

E. RADIO-LABELLED TRANSMITTER RELEASE

As an alternative means of measuring transmitter release, the 

transmitter pool of the nerves of the rat tail artery (SHR and WKY) 

were labelled radio-chemically and the overflow from each tissue ana­

lysed for radio-activity. In this investigation, the term 'overflow' 

is defined as the amount of neurotransmitter which escaped the uptake 

processes and was collected from the tissue (Fig. 3).

Tail arteries were dissected out as previously described, then 

incubated in Krebs solution (37°C) containing (a) [3H]-noradrenaline

(20|iCiml“1, 2 x 10"6M NA for 60min) or (b) [3H]-adenosine (lOOpCiml"1,

3 x 10“6M adenosine for 60min). Tissues were oxygenated throughout the 

loading period.



Fig. 3: Apparatus for measuring [3H] overflow. Each artery, loaded
with either [3H]-NA or [3H]-adenosine, was suspended by a thread 
through a set of bipolar Ag/AgCl ring electrodes. The muscles were 
then transferred to a heated water jacket (37 ± 0.5°C) and superfused 
with oxygenated Krebs solution at a constant rate of 2.5mlmin‘" . The 
polythene tubing (diameter 2mm) containing the Krebs solution was sur­
rounded by an outer tube (diameter 10mm) containing water at 42 ± 0.5°C 
pumped from a thermostatically-controlled Tempette pump. Samples of 
the perfusate were collected in vials positioned underneath the tis­
sues.
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Following the loading period, tissues were pulled through a pair 

of bipolar Ag/AgCl ring electrodes (O.D. 2mm) and superfused with 

oxygenated Krebs solution. The Krebs solution was pumped through poly­

thene tubing (O.D. 2mm) using a Watson-Marlow (Type 22) flow inducer. 

The tubing was surrounded by an outer jacket (O.D. 10mm) containing 

water (42 ± 0.5°C) pumped by a Tempette (TE7) pump. The polythene tub­

ing was positioned to allow superfusion of the preparations with Krebs 

solution at a constant rate of 2 .5mlmin”^. 2min samples of superfusate 

were collected in vials placed under the tissues.

Tail arteries incubated with [3H]-NA (20pCiml-1) were superfused 

throughout each experiment with Krebs solution containing desmethyli- 

^wpramine (DMI, 1 x 10“% )  and normetanephrine (NMN, 1 x 10“% )  to 

inhibit neuronal and extraneuronal uptake of NA respectively and pro­

pranolol (1 x 10“% )  to block any effects of (3-adrenoceptors.

It is believed (Westfall et al., 1978), that in the guinea-pig 

vas deferens, contraction of the muscle per se, contributes to the 

release of ATP. Accordingly, to prevent muscle contraction, tail
*3 — 1arteries incubated with [ H]-adenosine (100n.Ciml x) were superfused

with Krebs solution containing prazosin (5 x 10”% )  and diltiazem (3 x 

1 0 ”%), at concentrations previously determined to virtually abolish 

all contractile activity.

Following a predetermined washout period of 2h, after which time 

[3H] release had reached a steady level, tissues incubated in [3H]-NA 

were stimulated (0.5ms, supramaximal voltage) with 200 pulses at 5, 10 

and 20Hz and those incubated with [3H]-adenosine were stimulated

(0.5ms, supramaximal voltage) with 500 pulses at 10, 20 and 30Hz.

0 .5ml aliquots of the tissue superfusate were added to a scin­

tillation mixture (5ml of Ecoscint, National Diagnostics) containing 

toluene : triton-X : scintol-2 (12.33 : 6.67 : 1, V : V : V) and the

amount of [3H] measured with a scintillation counter (Packard Tri-Carb
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2000 CA). The amount of [*%], in counts per min (CPM) was corrected 

for the efficiency of the counter (approximately 90%) and expressed as 

the fractional release of [*̂ H], i.e. the overflow evoked by stimula­

tion, as a fraction of the total in the tissue at that time. This was 

determined after dissolving the tissue at the end of the experiment in 

Soluene-350 (2ml, United Technologies Packard) and counting an aliquot 

of the sample.

III. HISTOCHEMICAL TECHNIQUES

The microscopic structure of several tissues was examined using 

the following techniques:

A. LIGHT MICROSCOPY

Sections of the tail artery and mesenteric bed preparation from 

both normotensive (WKY) and spontaneously hypertensive (SHR) rats were 

fixed and processed using the following solutions and methods.

(i) Fixatives
The fixative solutions used were those of Sabitini et al., 1963. 

Primary fixative

1M sodium cacodylate 10ml

Distilled water 70ml

25% glutaraldehyde 8ml (E.M. grade)

Sucrose 1.7g

1M calcium chloride 0.1ml
Adjust to pH 7.2, bring to 100ml with distilled water.

Buffer wash
1M sodium cacodylate 10ml

Distilled water 80ml

Sucrose 5.9g
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Adjust to pH 7.2, bring to 100ml with distilled water.
Post fixative

1M sodium cacodylate 10ml

Distilled water 50ml

Sucrose 5.1g

Adjust to pH 7.2, bring to 100ml with distilled water.

Buffer 3 parts

4% Osmium tetroxide 1 part

(ii) Method

The artery samples were pinned out on small blocks of Sylgard 

(Dow Corning) and processed using the following schedule.

1. Primary fixative. 3hr

2. Buffer wash. 3 x 20min

3. Post fixative. 2hr

4. Buffer wash. Rinse

5. Dehydrate slowly using graded alcohol or acetone.

6. Propylene oxide as intermediate solvent.

7. Propylene oxide\Araldite. Overnight

8. Fresh unpolymerised resin. 3-4 days

9. Embed in flat embedding trays and polymerize at 60°C.

(iii) Staining
l(jm sections were mounted on gelatine\chrome alum subbed slides 

then stained using the following technique (Ito & Winchester, 1963). 

Toluidine blue\Pyronin Y

Sodium borate (Borax) 0.8g

Distilled water 100ml

Dissolve, then add in order;

Toluidine blue 0.8g

Pyronin Y 0.2g

Dissolve, then filter into a stock bottle.



59

Stain sections at room temperature until the desired depth of

staining is obtained. Wash in running tap water, air dry and mount in 

immersion oil or synthetic mounting medium.

The stained sections were then examined using a Leitz Ortholux 

microscope and photographed with an Orthomat camera, positioned on top 

of the microscope.

B. LOCALIZATION OF CATECHOLAMINES BY FALCK HISTOCHEMISTRY

The adrenergic innervation of the mouse vas deferens and rat

tail and mesenteric arteries was visualised by the histo-fluorescence 

technique of Falck et al., 1962. Catecholamines were condensed by

exposure to formaldehyde vapour, thereby producing flurophores of iso­

quinoline which absorb light at 410nm and emit light at 480nm.

Small sections of the tissues were frozen in isopentane, itself 

cooled by liquid nitrogen. Frozen tissues were transferred to a free­

ze-drier (Pearse Speedivac) and held at -40°C for 24h under a partial 

vacume (O.Oltorr). Tissues were thereafter exposed to paraformaldehyde 

at 80°C in an oven for lh, then returned to the freeze drier to be 

impregnated in wax in vacuo at 56°C. Following wax impregnation, 

transverse sections were cut and mounted in liquid paraffin for immedi­

ate examination.
Sections were examined under ultraviolet light using a Leitz

Ortholux microscope fitted with a K530 and a blue-green BG12 narrow 

band filter. Pictures were taken with an Orthomat camera which was

positioned on top of the microscope.

IV. PHYSIOLOGICAL SOLUTIONS ; CHANGES IN IONIC COMPOSITION

Krebs solution, with the following composition (mM) was used 

throughout the investigation;
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NaCl; 111.8, NaHC03; 25.0, NaHP04; 1.13, KC1; 4.7, CaCl2; 2.7, 
MgCl2; 1.3, glucose; 11.0, pH 7.4.

When the ionic composition of the Krebs solution was modified, 

isotonicity was maintained by substituting, or reducing the concentra­

tion of another appropriate ion. In K+-free or low K+ Krebs, KCl was 

wholly or partly replaced with NaCl. In solutions containing an 

increased concentration of K+, an equivalent reduction in the concen­

tration of NaCl was made. Low Cl Krebs was obtained by replacing NaCl 

with Na benzenesulphonate. Na+-deficient solutions were prepared by 

substituting NaCl with choline chloride, the other ions remaining 

unchanged. Ca2+ was removed by replacing CaCl2 with MgCl2. The pH of 

the Krebs solution was maintained at 7.4 by gassing with a mixture of 
95% 02 and 5% C02 .

V. CRITERIA FOR CELL PENETRATION
I*

A cell was accepted for electrophysiological investigation pro­

vided the following criteria were satisfied;

(a) the penetration was sharp and the membrane potential stable, vary­

ing by not more than 2mV.

(b) excitatory junction potentials were observed in response to nerve 

stimulation.

(c) the voltage measured prior to penetration was restored following 

withdrawal of the microelectrode.

VI. MEASUREMENT OF SYSTOLIC BLOOD PRESSURE IN RATS

Systolic blood pressure was measured in conscious animals, warmed 

at 37°C for 15min. Readings were made without anaesthesia by means of
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inflation of a tail cuff and a piezo-electric crystal detector con­

nected to a blood pressure recorder (W & W Electronics, Basel, Swit­
zerland).

VII. DRUGS

The following drugs were used: 

a, p-methylene adenosine 5 '-triphosphate lithium salt (a , f-JMeATP, Sigma), 

adenosine hemi-sulphate (Sigma), adenosine 5'-monophosphate (AMP, 

Sigma), adenosine 5 1-diphosphate (ADP, Sigma), adenosine 5'-triphos­

phate disodium salt (ATP, Sigma), 2,51,8-[3H]-adenosine (Amersham 

International, 40-60Cimmol”-1-) ,6)adrenaline hydrogen tartrate (BDH), 

(-)-ascorbic acid (Koch-Light), atropine sulphate (Sigma), bombesin 

(Sigma), bradykinin triacetate salt (Signa), clonidine hydrochloride 

(Boehringer), cremophor EL (Sigma), desmethylimipramine hydrochloride 

(Ciba), diltiazem HC1 (Sigma), guanethidine monosulphate (Ciba), 5-hy- 

droxydopamine hydrochloride (Sigma), 6-hydroxydopamine hydrobromide 

(Sigma), idazoxan hydrochloride (RX781094, Reckitt & Colman), leu- 

enkephalin (Serva), lidocaine hydrochloride (Sigma), met-enkephalin 

(Serva), neuropeptide Y (porcine sequence, Sigma), nifedipine (Pfizer),

(-)-noradrenaline bitartrate (Koch-Light), (-)-7,8-[3H]-noradrenaline 

(Amersham International, 8-14Cimmol"1), (±)-normetanephrine hydrochlo­

ride (Sigma), phentolamine mesylate (Ciba), (±)-prazosin hydrochloride 

(Pfizer), (±)-propranolol hydrochloride (Sigma), reserpine (Sigma), 

somatostatin (Sigma), substance P (Sigma), tetraethylammonium bromide 

(TEA, Sigma), tetrodotoxin (TTX, Sigma), vasoactive intestinal polypep­

tide (porcine VIP, Sigma), yohimbine hydrochloride (Sigma).
TTX and reserpine were expressed as the concentration of the 

base; all other concentrations in the text refer to the salt.

With the following exceptions, drugs were dissolved initially in



0.9% NaCl to give a stock solution, which was then diluted with Krebs 

to give the desired final concentration, Concentrations in the text 
refer to those in the bath unless otherwise stated. Nifedipine was 

dissolved under sodium illumination in the minimum amount of cremophor 

necessary, then diluted with Krebs. Solutions containing nifedipine 

were protected from the light. Reserpine was dissolved in glacial 

acetic acid (0.3ml, 17.5M) and diluted with distilled water. Solutions 

containing only glacial acetic acid and distilled water served as con­

trols. 6-hydroxydopamine was dissolved by sonication in 0.9% saline 

containing ascorbic acid (5.7 x 10”%), kept at 4°C on ice and bubbled 

with C>2 -free N2 for at least 30min prior to use. Solutions containing 

only ascorbic acid served as controls. (-)-7,8-[%]-noradrenaline 

supplied in 0.02M acetic acid : ethanol (9 : 1, V : V) was resuspended 

in distilled water, containing ascorbic acid (5.7 x 10“% )  to prevent 

breakdown of catecholamines. 2,51,8[%]-adenosine, supplied in an 

aqueous ethanol solution (50%), was resuspended in distilled water.

VIII. ANALYSIS OF RESULTS

Results were expressed as the mean ± standard error of mean 

(s.e.m.) of a number (n) of observations. Students t-tests were used 

to test for significance between means. A t-value of p < 0.05 was

taken as being significant, Vo



CHAPTER 3: RESULTS
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I. MOUSE VAS DEFERENS

A. CONTRACTILE RESPONSES TO NERVE STIMULATION, NA AND ATP

In the mouse vas deferens, field stimulation (0.5ms, supramaximal 

voltage) with trains (> 25) of pulses at frequencies greater than 5Hz, 

produced a biphasic contractile response, comprising an initial rapid 

twitch followed by a slower tonic contraction (Fig. 4). The a-adreno- 

ceptor antagonist phentolamine (1 x 10"6M) selectively abolished the 

second phase of the neurogenic response, suggesting that it was medi­

ated by NA, leaving the initial rapid twitch unaffected, or in some 

cases, as shown in Fig. 4, potentiated, a,(3MeATP (1 x 10“6M), on the 

other hand, selectively antagonised the initial phase, suggesting that 

it was mediated by ATP, or a closely related nucleotide. Both drugs, 

together, abolished all contractile activity to field stimulation.

If the biphasic contractile response in the mouse vas deferens is 

mediated by the two transmitters NA and ATP, then exogenous application 

of these substances should mimic, in time course, the respective phases 

of the neurogenic response. The mean time courses of the contractile 

responses of the mouse vas deferens to field stimulation (0.3ms, supra­

maximal voltage, 10Hz for 30s), exogenously-applied ATP (1 x 10“4M) and 

NA (1 x 10“5M) are shown in figures 5 and 6. The frequency of stimula­

tion and doses of agonists used were based on results from preliminary 

experiments in which complete stimulus-response curves were obtained. 

The frequency of stimulation used was pre-determined to give a clear 

biphasic response. Doses of NA and ATP were chosen to be in the middle 

of the dose-response curve, so that any reduction or enhancement would 

be obvious. The contraction produced by ATP (1 x 10 4M, Fig. 6B) was 

rapid in onset, but declined quickly, even though the drug was still in 

contact with the tissue and resembled in time course the initial phase 

of the neurogenic response (Fig. 5). The contraction produced by NA (1
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Fig. 4 ; The contractile responses of the mouse vas deferens to field 
stimulation (0.5ms, supramaximal voltage, 100 pulses at 10Hz). The 
response was biphasic, comprising an initial rapid twitch, followed by 
a slower tonic contraction. The first phase was antagonized by 
a,pMeATP (1 , x 10"6M), suggesting it was mediated by ATP, or a closely 
related nucleotide and the second phase, by phentolamine (1 M),
suggesting that it was mediated by NA. Both drugs, together,^abolished 
all contractile responses to field stimulation.



Fig. 5: The mean time course of the contractile response (expressed as
a % of the maximum in each tissue) of the mouse vas deferens to field 
stimulation (0.3ms, supramaximal voltage, 10Hz applied for 30s) alone 
and in the presence of prazosin (1 x 10”% )  or a,(3MeATP (1 x 10”%). 
Each point represents the mean (± s.e.m.) % of the maximum response in 
a number (n) of tissues, measured Is after stimulation commenced and at 
3s intervals thereafter. In the control situation (left hand graph), 
the contractile response was biphasic, comprising an initial rapid 
twitch followed by a slower tonic contraction which lasted throughout 
the stimulation period. a,(SMeATP selectively antagonised the initial 
twitch, indicating that it was mediated by ATP; prazosin selectively 
antagonised the second phase, suggesting that it was mediated by NA.
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Fig. 6: The mean time course of the contractile response (expressed as
a % of the maximum in each tissue) of the mouse vas deferens to exoge­
nously added NA (1 x 10“^M, A.) and ATP (1 x 10”^M, B.). Both drugs 
were applied for 30s. Each point represents the mean (± s.e.m.) % of
the maximum response in a number (n) of tissues, Is after addition of 
the drug to the bath and at 3s intervals thereafter. The rapid tran­
sient response to the purine resembled, in time course, the initial 
phase of the neurogenic response (c.f. Fig. 5), whereas the slower 
response to the catecholamine more closely resembled the second phase 
of the neurogenic contraction. Contractile response to NA and ATP were 
selectively antagonized by prazosin (1 x 10“^M) and a,(3MeATP (1 x 
10“6M) respectively.
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—5x 10 M, Fig. 6A), on the other hand, was slower in onset and more 

prolonged, more closely resembling the second phase of the neurogenic 
response (Fig. 5). Contractions to exogenously added NA and ATP were 

selectively abolished by prazosin (1 x 10~7M) and a , fiMeATP (1 x 10_6M) 
respectively (Fig. 6).

B. ELECTRICAL ACTIVITY IN THE MOUSE VAS DEFERENS

(i) Resting membrane characteristics

Upon setting up, lg of stretch was applied to the tissue. The

resulting tone decreased slightly over a 30min equilibration period to 

a value of around 0.7g, which was then maintained throughout the exper­

iment .

The resting membrane potential ranged from -55 to -86mV, (mean 

-73.6 ± 0.4mV, n=224). Spontaneous excitatory junction potentials

(e.j.p.s), with a mean amplitude of 7.3 ± 0.8mV (n=38) were observed in 

about 90% of all cells impaled and were taken as an indication of a 

successful penetration. Spontaneous e.j.p.s were unaccompanied by

mechanical contractions.

(ii) Evoked membrane activity
Field stimulation (0.01ms, supramaximal voltage, single pulses,

ss, or trains of pusles at l-10Hz) produced e.j.p.s, which readily 

facilitated to fire action potentials and were accompanied by mechani­

cal contractions (Fig. 7). The mean amplitude of an e.j.p. evoked by a 

single stimulus was 17.9 ± 0.7mV, n=110 with a duration of around 100ms 

(mean 91.6 ± 1.8ms, n=103). Figure 8 shows the time course of the 

electrical response to a single stimulus on an extended time scale. 

The rate of rise of the e.j.p. was very rapid and even single pulses 

were sufficient to depolarize the membrane to the threshold required to



Figj:>___7: The effects of prazosin alone (1 x 10”7M, B.) and in the
presence of a,0MeATP (1 x 10“°M, C.), compared with control (A.) on 
the simultaneous electrical (upper trace in each panel) and mechanical 
responses of the mouse vas deferens to field stimulation (0.01ms, 
supramaximal voltage). Prazosin potentiated the e.j.p.s and reduced 
the mechanical contractions. The additional presence of a,(3MeATP abol­
ished all residual electrical and mechanical activity. Electrical 
recordings were made form the same cell.
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initiate a propagating action potential.

The a-adrenoceptor antagonist prazosin (1 x 10~7M) slightly, but
significantly (p < 0.05) potentiated the e.j.p.s and action potentials 

and reduced, but did not abolish, the mechanical contractions. The 

additional presence of a ,(3MeATP (1 x 10"6M) abolished the e.j.p.s, 

action potentials and the residual mechanical activity (Fig. 7). 

Clearly, field stimulation of the mouse vas deferens released 2 trans­

mitter substances - NA and ATP (or a closely related nucleotide). Both 

transmitters were involved in the mechanical response, but only ATP 

appeared to mediate an electrical event.

The mean effects of prazosin (1 x 10”7M) alone and with a,(3MeATP 

(1 x 10“^M) on the average amplitude of the summated e.j.p. are shown 

in figure 9. The potentiating effects of prazosin were more pronounced 

at low frequencies (< 4Hz) of nerve stimulation, suggesting a pre- 

synaptic mechanism of action. a,pMeATP virtually abolished all elec­

trical activity.

The origin of the transmitter substances was investigated using 

tetrodotoxin (TTX, 1 x 10"6M, Fig 10) and lignocaine (1 x 10~3M, Fig. 

11) each of which selectively prevent the increase in sodium permeabil­

ity constituting the rising phase of the action potential and hence 

block nerve conduction. Both drugs abolished the electrical and 

mechanical activity in response to field stimulation (0.01ms, supramax­

imal voltage), suggesting that all responses were mediated by neuron- 

ally-released substances. The adrenergic neurone blocking drug gua- 

nethidine (1 x 10~^M, Fig. 12) also abolished the e.j.p.s, action 

potentials and the mechanical contractions evoked by field stimulation 
(0.01ms, supramaximal voltage), suggesting that both transmitters (NA 

and ATP) were released from noradrenergic, rather than from separate 

noradrenergic and purinergic nerves, confirming the presence of co­

transmission in this tissue.



A. Control

-61mV

I----1
50ms

-71mV

ss
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Fig. 8 : The effects of a,pMeATP (2 x 10"6M) on an e.j.p. evoked by a
single stimulus (0.01ms, supramaximal voltage) in the mouse vas defer­
ens. Note that even a single pulse was sufficient to generate a propa­
gating action potential, which was abolished by a,pMeATP, suggesting 
that it was mediated by ATP, or a closely related nucleotide.
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Fig; 11: The effects of lignocaine (1 x 1(T3M) on the electrical
(upper trace in each panel) and mechanical responses of the mouse vas 
deferens to field stimulation (0.01ms, supramaximal voltage). The 
local anaesthetic abolished all electrical and mechanical activity, an 
effect reversible on washing. Electrical recordings were made from the 
same cell.
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The possibility that field stimulation may have been facilitating 

transmitter release by depolarizing those terminal varicosities already 
invaded by the action potential (Stjarne, 1977) was investigated using 

extrinsic nerve stimulation. When the extrinsic hypogastric nerve 

innervating the mouse vas deferens was dissected out and stimulated 

(0.1ms, supramaximal voltage) an identical electrical picture emerged 

(Fig. 13), the e.j.p.s and action potentials being potentiated slightly 

by prazosin (1 x 10”7M) and abolished by a,pMeATP (2 x 10"6M). Thus, 

field stimulation, at the parameters used, appeared to be specific and 

did not facilitate transmitter release.

In some tissues, for example the rat tail (Cheung, 1982; 1984

and rabbit ear (Suzuki & Kou, 1983; Suzuki et al., 1984) arteries,

where the same co-transmitters are apparently involved, the e.j.p.s 

were followed by a small, slow noradrenergic depolarization. Attempts 

to demonstrate such a response in the mouse vas deferens, were it pre­

sent, by enhancing the amount of NA in the synaptic cleft were made 

using the noradrenaline uptake blockers normetanephrine (NMN, 1 x 

10”%) and desemthylimipramine (DMI, 1 x 10”%). (Fig. 14). These 

drugs potentiated the mechanical response to field stimulation (0.01ms, 

supramaximal voltage), but failed to reveal any noradrenergic component 

in the electrical response. The mechanical contractions produced by 

nerve-released NA were therefore mediated by a voltage-independent 

mechanism.
The ability of the a-adrenoceptor antagonists prazosin (1 x 

10"7M) and phentolamine (1 x 10'6M) to potentiate both the e.j.p.s 

(Figs. 7 & 9) and the initial phase of the contractile response (Fig.

4) suggested the presence of pre-synaptic a-adrenoceptors controlling 

ATP release. This observation was confirmed (Fig. 15) by the ability 

of the a2.-adrenoceptor agonist clonidine (1 x 10 7M) to abolish the 

eO-P.s, an effect reversed by the additional presence of yohimbine (1



Fig. 13: The effects of prazosin (1 x 10~7M, B.) alone and in the
presence of a,pMeATP (2 x 10"%, C.), compared with control (A.), on 
the electrical responses of the mouse vas deferens to hypogastric nerve 
stimulation (0.01ms, supramaximal voltage). The e.j.p.s appeared simi­
lar to those produced by field stimulation in both their amplitude and 
response to antagonists. They were potentiated slightly by prazosin and 
abolished by a ,pMeATP. Electrical recordings were made from 3 separate 
cells.
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Fig. 15: The effects of clonidine (1 x 10"7M, B.) alone and in the 
presence of yohimbine (1 x 10""7M, C.), compared with control (A.), on 
the electrical (upper trace in each panel) and mechanical responses of 
the mouse vas deferens to field stimulation (0.01ms, supramaximal vol­
tage). Clonidine abolished the e.j.p.s, an effect reversed by yohim­
bine, suggesting the presence of pre-synaptic c^-adrenoceptors con­
trolling the release of ATP. Mechanical contractions were potentiated 
by yohimbine, probably due to the blockade of pre-synaptic c^-adreno- 
ceptors controlling NA release. Electrical recordings were made from 
3 separate cells.
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— 7x 10 'M), an antagonist at these receptors.

(iii) Putative transmitters

If the e.j.p.s are mediated by ATP, then local application of the 

nucleotide should produce dose-dependent depolarizations.

ATP (1-10 x 10“% ,  Fig. 16A), applied exogenously (40p.s.i., tip 

diameter 1 x 10”% ,  l-50ms) to a small area of the mouse vas deferens, 

produced a dose-dependent depolarization with a rapid rate of rise and 

a relatively short duration, closely resembling the neurogenic 

response. Desensitization occurred rapidly. As with the evoked 

e.j.p»s, the depolarizations produced by exogenous ATP were abolished 

by a ,0MeATP (1 x 10"6M). NA (1-10 x 10~4M, Fig. 16C) similarly applied 

produced no such change in membrane potential, though localized mechan­

ical contractions could be seen microscopically.

Neither adenosine (1 x 10”%), AMP (1 x 10“% )  or ADP (1 x 10“% )  

produced any significant change in membrane potential when applied 

locally from a micropipette (40p.s.i., tip diameters 1-2 x 10“% ,  

l-200ms, Fig. 17), suggesting that the effects observed with ATP were 

due to the nucleotide itself, rather than to one of it's breakdown 

products. This idea was supported by the observation of dose-dependent 

depolarizations to local application of the stable analogue of ATP, 

a ,(3MeATP (1 x 10“% ,  40p. s. i. , tip diameter 1 x 10“% ,  l-10ms, Fig.

17A). a ,f3MeATP was some 1000 times more potent than ATP at producing 

membrane depolarizations.
Several biologically-active peptides were also investigated as 

putative transmitters in the mouse vas deferens. Bradykinin (1-100 x 

10“%), at high doses, produced a small slow membrane hyperpolariza­

tion. Vasoactive intestinal polypeptide (VIP, 1-100 x 10 %), neuro­

peptide Y (NPY, 1-100 x 10“%), substance P (1-100 x 10“%), somatosta­

tin (1-100 x 10“%), leu-enkephalin (leu-enk, 1-100 x 10“%), met-



Fig. 16: Intracellularly-recorded membrane potential responses of the
mouse vas deferens to micro-application of ATP (1 x 10“% ,  A.) and NA 
(1 x 10“% ,  C.) for increasing periods of time (5-100ms). Micro­
pipette tip diameters 1-2 x 10“°m and ejection pressure 40p.s.i. 
Locally-applied ATP produced a dose-dependent rapid depolarization 
which was abolished by a,@MeATP (1 x 10”% ,  B.). NA similarly applied 
produced no such change in membrane potential. A. and B. were recorded 
from the same cell and C. from another cell in the same preparation.
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Fig. 1 7 : Intracellularly-recorded membrane potential responses of the
mouse vas deferens to micro-application of a,0MeATP (1 x 10“% ,  A.)/ 
adenosine 5'-diphosphate (ADP, 1 x 10”% ,  B.), adenosine 5 '-monophos­
phate (AMP, 1 x 10”% ,  C.) and adenosine (1 x 10“% ,  D.) for increasing 
periods of time (3-200ms). Micro-pipette tip diameters were 1-2 x 
10”6m and ejection pressure 40p.s.i. Only a,0MeATP produced any change 
in membrane potential, suggesting that the transmitter mediating the 
e.j.p.s was a purine nucleotide, most likely ATP. Electrical record­
ings were made from 4 separate cells.
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enkephalin (met-enk, 1-100 x 10-7M) and bombesin (1-100 x 10~7M) each 

produced no change in membrane potential when applied locally from a 
micro-pipette (40p.s.i., l-200ms, tip diameters 1-2 x 1 0“^m, Figs. 18 & 

19).

(iv) Effects of reserpine and 6-OHDA pre-treatment

The NA content of nerve endings in the guinea-pig vas deferens is

reduced by 90% in animals pre-treated with a single dose of reserpine 

(lmgkg- ,̂ 24h prior to the experiment, Westfall et al., 1975). The 

effects of reserpine pre-treatment (lmgkg-  ̂ for 3 days) on the electri­

cal and mechanical responses of the mouse vas deferens to field stimu­

lation (0.01ms, supramaximal voltage) are shown in figure 20. E.j.p.s 

and small mechanical contractions were observed. The first few e.j.p.s 

in a train were smaller than those from untreated animals (perhaps sug­

gesting an excessive dose of reserpine, depleting ATP in addition to 

NA), but they facilitated to control size (approximately 40mV); as with 

the e.j.p.s from untreated animals, they were potentiated by prazosin 

(1 x 10~7M) and abolished by a,(3MeATP (3 x 10“^M). Residual mechanical 

contractions were unaffected by prazosin (1 x 10”7M) but abolished by 

a,(3MeATP (1 x 10“^M). The effectiveness of reserpine pre-treatment was 

examined using Falck histochemistry (Fig. 21). The virtual absence of 

fluorescence in treated animals compared with controls suggested that 

the e.j.p.s and residual mechanical contractions were mediated by a 

non-adrenergic transmitter, presumably ATP.

When the adrenergic nerves innervating the vas deferens were 

destroyed by 6-OHDA pre-treatment (150mgkg-1 on day 1, 250mgkg“1 on day 

2, sacrificed on day 3), all electrical and mechanical activity to 

field stimulation (0.1ms, supramaximal voltage) was abolished (Fig. 

22). This suggested that both transmitters were released from nora­

drenergic nerves, rather than from separate noradrenergic and puriner-



Fig. 18: Intracellularly-recorded membrane potential responses of the
mouse vas deferens to micro-application of bradykinin (1 x 10“% ,  A.),
vasoactive intestinal polypeptide (VIP, 1 x 10”% ,  B.), neuropeptide Y 
(NPY, 1 x 10”% ,  C.) and substance P (1 x 10”% ,  D.) for increasing
periods of time (10-200ms). Micro-pipette tip diameters were 1-2 x 
10”6m and ejection pressures 40p.s.i. Bradykinin, at high concentra­
tions (1 x 10”%), produced small slow hyperpolarizations, while the 
other peptides were ineffective in producing any change in membrane 
peotntial. Electrical recordings were made from 4 separate cells.





Fig. 19: Intracellularly-recorded membrane potential responses of the
mouse vas deferens to micro-application of somatostatin (1 x 10”% ,
A.), leu-enkephalin (leu-enk, 1 x 10”% ,  B.)r met-enkephalin (met- 
enk, 1 x 10"%, C.) and bombesin (1 x 10"%, D. ) for increasing periods 
of time (10-200ms). Micro-pipette tip diameters were 1-2 x 10”6m and 
ejection pressures 40p.s.i. Each peptide was ineffective in producing 
any change in membrane potential. Electrical recordings were made from 
4 separate cells.
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Fig. 20: The effects of prazosin (1 x 10“7M, B.) alone and in the
presence of a ,(BMeATP (3 x 10“6M, C.), compared with control (A.), on 
the simultaneous electrical (upper trace in each panel) and mechanical 
responses to field stimulation (0.01ms, supramaximal voltage) of a vas 
deferens frqm a mouse pre-treated with reserpine (lmgkg-1 for 3 days). 
E.j.p.s and small mechanical contractions persisted following reserpine 
pre-treatment. These electrical and mechanical responses were unaf­
fected by prazosin, but abolished by a,|3MeATP, suggesting that they 
were purinergically mediated. Electrical recordings were made from 3 
separate cells.
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Fig. 21: The effects of reserpine pre-treatment (lmgkg-  ̂ i.p. for 3
days) on the catecholamine content of the mouse vas deferens, deter­
mined by histofluorescence (Falck et al., 1962). A. Fluorescence
(magnification x 75) of catecholamine-containing neurones in the vas 
deferens from control mice (pre-treated with the d;v^g vehicle, acetic 
acid solution). B. The absence of fluorescence (magnification x 75), 
indicating the depletion of tissue catecholamines by reserpine pre­
treatment .
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Fig. 22: Intracellularly-recorded electrical (upper trace in A.)
and mechanical (A. only) responses of the mouse vas deferens to 
field stimulation (0.1ms, supramaximal voltage, A.) and exoge­
nously added ATP (1 x 10”% )  in the absence (B.) and presence 
(C.) of a.pMeATP (1 x 10”% )  following 6-OHDA pre-treatment 
(150mgkg”* on day 1, 250mgkg”  ̂ on day 2, sacrificed on day 3). 
ATP was applied locally from a micro-pipette by pressure ejection 
(tip diameter 1 x 10”% ,  40p.s.i., 5-100ms). Following 6-OHDA 
pre-treatment, field stimulation produced no electrical or 
mechanical activity, suggesting that both transmitters were 
released from noradrenergic nerves. Locally-applied ATP still 
produced membrane depolarizations which were sensitive to 
a,|3MeATP. B. ana C. were recorded from the same cell and A. from 
another cell in the same tissue.
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gic nerves - a case of co-transmission.

Furthermore, locally applied ATP (1 x 10'3M) still produced 

a ,pMeATP (1 x 10“% ) -sensitive depolarizations in vasa from 6-OHDA 

pre-treated mice (Fig. 22), thus ruling out the possibility that 

exogenously-added ATP was acting pre-synaptically to release NA, which 

in turn produced the e.j.p.s. The effectiveness of 6-OHDA pre­

treatment was again confirmed using Falck histochemistry.

(v) Effects of changing the external ionic environment on the excit­

atory responses to field stimulation

(a) Potassium

A reduction in [K+]Q, from 4.7 x 10“%  (control) to 2.35 x 10”% ,  

hyperpolarized the membrane potential from -73.6 ± 0.4mV to -94.2 ± 

0.8mV (mean ± s.e.m., n=224 and 17 respectively). E.j.p.s and action 

potentials were potentiated, but there was little effect on the con­

tractile responses to field stimulation (0.01ms, supramaximal voltage, 

Fig. 23). Complete removal of [K+]0 (Fig.24) hyperpolarized and so 

destabilised the membrane potential (-84.1 ± 1.84mV, n=12), making an 

accurate evaluation of Em difficult and induced spontaneous electrical 

activity. The electrical responses produced by field stimulation 

(0.01ms, supramaximal voltage) were reduced in amplitude but prolonged 

in duration, suggesting that K+ may be involved in the repolarizing 

phase of the action potential. The accompanying mechanical contrac­

tions were greatly reduced.

A doubling in [K+]0 (to 9.4 x 10“% )  depolarized the membrane 

potential from -73.6 ± 0.4mV to -61.0 ± 1.6mV (mean ± s.e.m., n=224 and 

10 respectively), potentiated the mechanical contractions and reduced 

the amplitude of the e.j.p.s (Fig. 25).
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Fig. 23: Therxn x,.x effects of halving the [K ]Q to 2.35 x 10 M on the
electrical (upper trace in each panel) and mechanical activity evoked 
by field stimulation (0.01ms, supramaximal voltage) in the mouse vas 
deferens. Halfing the [K+ ]0 hyperpolarized the membrane potential, 
potentiated the amplitude°of the e.j.p.s but had
contractile events. Electrical recordings were made from the same 
cell.
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Fig. 24: The effects of complete removal of the [K+]Q on the
electrical (upper trace in each panel) and mechanical activity evoked 
by field stimulation (0.01ms, supramaximal voltage) in the mouse vas 
deferens. Complete removal of [K+]Q hyperpolarized the membrane 
potential and induced spontaneous electrical activity. The e.j.p.s 
were reduced in amplitude but prolonged in duration. The accompanying 
mechanical contractions were greatly reduced. Electrical recordings 
were made from the same cell.



I

A. Control

■**
»

SS 5 at lllz

B. 2K +

• •
SS 5 at 1Hz

5 at 2Hz 5 at 3Hz 5 at 4Hz 5 at 5Hz

i-̂ 6mV
-56mV

]50mg

2s
5at2Hz 5at3Hz 5at^Hz 5 at 5Hz

Fig. 25: The effects of doubling the [K+]0 to 9.4 x 10“^M on the
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by field stimulation (0.01ms, supramaximal voltage) in the mouse vas 
deferens. Doubling [K+]0 depolarized the membrane potential, reduced 
the amplitude of the e.j.p.s and potentiated the mechanical contrac­
tions. Electrical recordings were made from the same cell.



(b) Sodium

[Na+]0-deficient Krebs solution was made by replacing NaCl with 

fxCl. A reduction in [Na+]Q from 144 x 10“%  (control) to 104.5 x
_ q10 M depolarized the membrane potential from -73.6 ± 0.4mV to -55.1 ±

1.47mV (mean ± s.e.m., n=224 and 18 respectively) and reduced the 

amplitude of the e.j.p.s and action potentials evoked by field stimula­

tion (0.01ms, supramaximal voltage). A further reduction in [Na+]0 to 

75 x 10“%  (Fig. 26) progressively depolarized the membrane potential 

(-49.1 ± 1.36mV, n=22) and virtually abolished the e.j.p.s, suggesting 

the Na+ was involved in the e.j.p.s and action potentials in this tis­

sue. Mechanical contractions to field stimulation were potentiated by 

a reduction in the [Na+ ]0 , probably due to the depolarization of the 

membrane.

(c) Chloride

Complete removal of [Cl”]0 slightly depolarized the membrane 

potential from -73.6 ± 0.4mV to -61.8 ± 1.6mV (n=224 and 14 respec­

tively, Fig. 27). The first e.j.p. in each train was unaffected, but 

subsequent e.j.p.s were reduced in amplitude, reaching a plateau, but 

not being abolished. Contractile responses to field stimulation 

(0.01ms, supramaxamal voltage) were reduced by about 50%.

(d) Calcium

In the absence of [Ca2+]0 , both electrical and mechanical 

responses to field stimulation (0.01ms, supramaximal voltage) were 

reduced and eventually abolished (after 15-20min) presumably due to the 

inhibition of transmitter release (Fig. 28).

(e) Effects of tetraethylammonium (TEA)

The effects of TEA, which blocks certain K+ channels (Imaizumi &
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electrical (upper trace in each panel) and mechanical activity 
evoked by field stimulation (0.01ms, supramaximal voltage) in the 
mouse vas deferens. Cl removal depolarized the membrane poten­
tial. The first e.j.p. in a train of 5 was unaffected, but 
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presumably due to the Ca2+-dependence of transmitter release. Electri­
cal recordings were made form the same cell.
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Fig. 29; The effects of tetraethylammonium (TEA, 2 x 10~3M) on the 
electrical (upper trace in each panel) and mechanical responses to 
field stimulation (0.01ms, supramaximal voltage) in the mouse vas 
deferens. TEA depolarised the membrane potential, increased the ampli­
tude and prolonged the duration of the e.j.p.s and potentiated the con­
tractile responses. Electrical recordings were made from, the same, 
cell.
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Watenabe, 1981), was investigated as a further indication of K+ invol­

vement in the e.j.p. and action potential in the mouse vas deferens.

TEA (2 x 10“% )  depolarized the membrane potential from -73.6 ±

0.4mV to -61.3 ± 1.6mV (n=224 and 12 respectively, Fig. 29). The

e.j.p.s and action potentials were potentiated in amplitude and pro­

longed in duration, suggesting that an increase in K+ permeability 

underlies the repolarizing phase of the action potential. Contractile 

responses to field stimulation (0.01ms, supramaximal voltage) were 

greatly potentiated, presumably due to the depolarizing action of TEA.

II. RABBIT MESENTERIC ARTERY

A. CONTRACTILE RESPONSES TO FIELD STIMULATION, NA AND ATP

The isolated rabbit mesenteric bed preparation was perfused, via 

the superior mesenteric artery, at a constant rate of 4mlmin“1. Under 

these conditions, the basal perfusion pressure, as measured at the end 

of a 30min equilibration period, was 23.4 ± 0.5mmHg (n=27).

Electrical field stimulation of the superior mesenteric artery 

(0.5ms, supramaximal voltage, 100 pulses at l-50Hz, Figs. 30 & 31), NA 

(0.1-0.3ml bolus injections of 1 x 10”^ -1 x 10“%  NA, Fig. 32) and ATP 

(0.1-0.3ml bolus injections of 1 x 10“  ̂ -1 x 10“%  ATP, Fig. 33) each 

produced a vasoconstriction. The maximal response to NA exceeded that 

to either ATP or field stimulation.

The a-adrenoceptor antagonists phentolamine (1-10 x 10“% )  and 

prazosin (1-10 x 10“% )  each depressed the pressor responses to field 

stimulation by about 80% (Fig. 30), shifted the dose-response curve to 

NA to the right (Fig. 32), but left that to ATP unaffected (Fig. 33). 

a ,(3MeATP (1-10 x 10“%), on the other hand, depressed the pressor 

responses to field stimulation by about 30% (Fig. 31), shifted the 

dose-response curve to ATP to the right (Fig. 33), but left that to NA
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Fig. 30: The effects of increasing frequency on the mean pressor
responses, expressed as a % of the maximum control in each tissue, of 
the perfused isolated rabbit mesenteric bed preparation of field stimu­
lation (0.5ms, supramaximal voltage, 100 pulses at l-50Hz) via the 
superior mesenteric artery. Each graph shows the mean (± s.e.m.) of a 
number (n) of observations. The a-adrenoceptor antagonist phentolamine 
(5 x 10”°M) reduced the pressor responses by around 80% and the resid­
ual contractions were abolished by the additional presence of a ,0MeATP 
(1 x 10"6M).
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Fig. 31: The effects of increasing frequency on the mean pressor
responses, expressed as a % of the maximum control in each tissue, of 
the perfused isolated rabbit mesenteric bed preparation to field stimu­
lation (0.5ms, supramaximal voltage, 100 pulses at l-50Hz) via the 
superior mesenteric artery. Each graph shows the mean (± s.e.m.) of a 
number (n) of observations. The P2-receptor antagonist a,pMeATP (1.x 
10"6M) reduced the pressor responses by around 30% and the residual 
contractions were abolished by the additional presence of the a-blocker 
prazosin (1 x 10“^M).
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Fig. 32: The mean pressor responses, expressed as a % of the maximum
control in each tissue, of the perfused isolated rabbit mesenteric bed 
preparation to bolus injections (0.1 - 0.3ml) of NA ( 1 x 10“6 - 1 x 
10”^M), injected vid the superior mesenteric artery. Each graph shows 
the mean (± s.e.m.) of a number (n) of observations. a,(3MeATP (1 x
10“^M) potentiated (* p < 0.05, ** p < 0.02) the pressor responses, 
probably due to a depolarizing action of the drug, whereas prazosin (1 
x 10”^M) shifted the dose-response curve to the right.
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Fig. 33; The mean pressor responses, expressed as a % of the maximum 
control in each tissue, of the perfused isolated mesenteric bed prepa­
ration to bolus injections (0.1 - 0.3ml) of ATP (1 x 10“^ - 1 x 10“^M), 
injected via the superior mesenteric artery. Each graph shows the mean 
(± s.e.m.) of a number (n) of observations. Pressor responses were 
unaffected by prazosin (1 x 1Q“^M), but antagonized by a,|3MeATP (1 x 
10"6M).
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either unaffected or slightly potentiated (Fig. 32). a ,(3MeATP (1 x 

10~6M) together with either prazosin (1 x 1(T7M) or phentolamine (1 x
— fi10 M) abolished all pressor responses to field stimulation (Figs 30 & 

31). From these results it was concluded that both NA and ATP played a 

role in the contractile response of the rabbit mesenteric bed prepara­

tion to field,stimulation.

B. ELECTRICAL ACTIVITY IN THE RABBIT SUPERIOR MESENTERIC ARTERY

The mean resting membrane potential of the rabbit superior mesen­

teric artery, as measured using conventional glass micro-electrodes was 

-68.7 ± l.OmV, n=39. Spontaneous e.j.p.s were rarely observed.

Field stimulation (0.1ms, supramaximal voltage, l-10Hz) of the 

superior mesenteric artery produced e.j.p.s which facilitated and sum- 

mated to fire action potentials (Fig. 34).

When intracellular electrical and mechanical activity in response 

to field stimulation (0.1ms, supramaximal voltage, 5-100Hz) were 

recorded simultaneously (Figs. 35 & 36), the e.j.p.s and action poten­

tials were seen to be accompanied by contractile events. The a-adre- 

noceptor antagonist phentolamine (1-10 x 10”^M) had no effect on the 

electrical activity and reduced, but did not abolish, the mechanical 

contractions. The e.j.p.s, action potentials and the residual mechani­

cal responses were abolished by the additional presence of a,0MeATP (1 

x 10“6M, Fig. 35). When the order of drug addition was reversed (Fig. 

36) a similar picture emerged. a,(3MeATP (1 x 10“^M) abolished all 

electrical activity, but only reduced the mechanical contractions. 

Addition of the a-blocker phentolamine (1 x 10-6M) abolished all resid­

ual contractile events.
These results suggested that, in the rabbit mesenteric artery, 

two transmitters (NA and ATP) played a role in the contractile response
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r-68mV 

78mV 

50mg

5 at 20Hz 10 at 50Hz
2s

C. Phentolamine (10-6 ) and a,0,MeATP (10-6M) r-40mV

50mV

50mg

10 at 20Hz 20 at 50Hz 40 at 100Hz 2S

Fig. 35: The intracellular electrical (upper trace in each panel) and
mechanical responses of the rabbit superior mesenteric artery to field 
stimulation (0.1ms, supramaximal voltage, l-100Hz), In the control 
situation (A.), field stimulation produced e.j.p.s and action poten­
tials which were accompanied by mechanical contractions. Note impale­
ment of cell lost after 2nd stimulus. The a-adrenoceptor antagonist 
phentolamine (1 x 10”% ,  B.) had no effect on the electrical events, 
but reduced the mechanical contractions. All residual electrical and 
mechanical activity was abolished, leaving only stimulus artifacts, by 
the additional presence of a,{3MeATP (1 x 10“% ,  C.). Electrical
recordings were made from 3 separate cells.



Fig. 36: The intracellular electrical (lower trace in each panel) and
mechanical responses of the rabbit superior mesenteric artery to field 
stimulation (0.1ms, supramaximal voltage, 5-10Hz). In the control 
situation (A.), field stimulation produced e.j.p.s and action poten­
tials which were accompanied by mechanical contractions. a,|3MeATP (1 x 
10”% ,  B.) abolished the e.j.p.s and action potentials, leaving only 
stimulus artifacts, and reduced the mechanical contractions. Note 
impalement of the cell was lost after the 2nd stimulus, regained, then 
lost again after the 3rd stimulus. Residual mechanical activity was 
abolished by the additional presence of the a-blocker phentolamine (1 x 
10“% ,  C.). Electrical recordings were made from 3 separate cells.
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to field stimulation, but only ATP seemed to mediate the electrical 

event* Sine© all electrical activity was abolished by guanethidine (1 x 
10“% )  and TTX (1 x 10“%), it appeared that both transmitters were 

being released from noradrenergic nerves and that the rabbit mesenteric 

artery exhibits co-transmission.

III. RABBIT EAR ARTERY

A. CONTRACTILE RESPONSES TO FIELD STIMULATION, NA AND ATP

The isolated rabbit central ear artery was perfused at a constant 

rate of 4mlmin"^. Under these conditions, the basal perfusion pres­

sure, as measured at the end of a 30min equilibration period, was 16.3 

± 0.4mmHg, n=25.

Electrical field stimulation (0.5ms, supramaximal voltage,

50 pulses at l-50Hz, Figs. 37 & 38), NA (0.05-0.2ml bolus injections of

1 x 10”6 -1 x 10“%  NA, Fig 39) and ATP (0.05-0.4ml bolus injections of

1 x 10“%  ATP, Fig 40) each elicited a vasoconstriction. The maximal 

response to NA exceeded that to either ATP or field stimulation.

The a-adrenoceptor antagonists phentolamine (1-10 x 10“% )  and

prazosin (1-10 x 10“% )  greatly reduced the pressor responses to both 

field stimulation (Fig. 37) and exogenous NA (Fig. 39), while leaving 

those to exogenous ATP unaffected. a,(3MeATP (1-10 x 10”%), at a dose 

which abolished the pressor responses to exogenous ATP (Fig. 40), 

alone, potentiated the pressor responses to field stimulation (Fig. 38) 

and in the presence of a-adrenoceptor antagonists (Fig. 37) failed to 

further reduce the residual vasoconstrictions. Pressor responses 

resistant to both prazosin (1 x 10“% )  or phentolamine (1 x 10“% )  ahd 

a ,pMeATP (1 x 10“% )  were abolished by TTX (1 x 10“%).
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Fig. 37: The effects of increasing frequency on the mean pressor
response, expressed as a % of the maximum control in each tissue, of 
the perfused rabbit central ear artery to field stimulation (0.5ms, • 
supramaximal voltage, 50 pulses at l-50Hz). Each graph shows the mean 
(± s.e.m.) of a number, (n), of observations. The a-adrenoceptor
antagonist prazosin (1 x 10“^M) reduced the pressor responses by around 
80%, the residual contractions being unaffected by the additional pres­
ence of a,0MeATP (1 x 10”^M).
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Fig. 38: The effects of increasing frequency on the mean pressor 
response, expressed as a % of the maximum control in each tissue, of 
the perfused rabbit, central ear artery to field stimulation (0.5ms, 
supramaximal voltage, 50 pulses at l-50Hz). Each graph shows the mean 
(± s.e.m.) of a number, (n), of observations. The pressor responses to 
field stimulation were potentiated (** p < 0.02) by a,(3MeATP (1 x 
K T 6M), probably due to the depolarizing action of the drug and antago­
nized by the additional presence of the a-adrenoceptor antagonist phen­
tolamine (5 x 10"%).
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Fig. 39: The mean pressor responses, expressed as■a % of the maximum
control in each tissue, of the perfused rabbit central ear artery to 
bolus injections (0.05-0.2ml) of N£ (1 x 10“^ - 1 x 10”5m ). Each graph 
shows the mean (± s.e.m.) of a number, (n), of observations. The dose- 
response curve to NA was shifted to the right by . the a-adrenoceptor 
antagonist prazosin (1 x 10“^M).
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Fig. 40: The mean pressor responses, expressed as a % of the maximum
control in each tissue, of the perfused rabbit central ear artery to 
bolus injections (0.05-0.4ml) of ATP (1 x 10”%). Each graph shows the 
mean (± s.e.m.) of a number, (n), of observations. The dose-response 
curve to ATP was shifted to the right following P2-purinoceptor depo­
larization with a ,pMeATP (1 x 10“%).
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B . ELECTRICAL ACTIVITY IN THE RABBIT EAR ARTERY

The mean resting membrane potential of the rabbit central ear 

artery, as measured using conventional glass micro-electrodes was -71.3 

± 0.8mV, n=65. Spontaneous e.j.p.s were absent.

The electrical response to field stimulation (0.01-0.1ms, supra­

maximal voltage, l-10Hz) of the rabbit central ear artery was comprised

of e.j.p.s, which facilitated and summated to fire action potentials, 

followed by a small, slow membrane depolarization lasting some 5-15s 

(Fig. 41).

The a-adrenoceptor antagonists prazosin (1 x 10"7M) and phentola­

mine (1 x 10"6M) each selectively abolished the slow depolarization,

suggesting that it was mediated by NA, but left the e.j.p.s and action 

potentials unaffected (Fig. 41B). P2_purinoceptor desensitization with 

a,pMeATP (1-10 x 10_6M), on the other hand, abolished the e.j.p.s and 

action potentials, suggesting that they were mediated by ATP, or a 

closely related nucleotide, but left the slow depolarization unaffected 

(Fig. 41C).

Therefore, in the rabbit central ear artery it appeared that 

both transmitters (NA and ATP) played a role in the electrical response 

to field stimulation, while only NA seemed to mediate a contractile 

event. All electrical and mechanical activity was abolished by the 

adrenergic neurone blocking drug guanethidine (1 x 10 ^M) and by TTX (1 

x 10"6M), suggesting that both transmitters were released from sympa­

thetic nerves, confirming that this tissue exhibits co-transmission.
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Fig. 41: The intracellular electrical responses of the rabbit central
ear artery to field stimulation (0.03ms, supramaximal voltage, 2-7Hz). 
The control response (A.) was comprised of e.j.p.s, which facilitated 
to fire action potentials, followed by a small slow membrane depolar­
ization. The a-adrenoceptor antagonist phentolamine (1 x 10"6M, B.)
selectively abolished the slow depolarization, suggesting that it was 
mediated by NA, whereas a ,(BMeATP (1 x 10“6M, C.) selectively abolished 
the e.j.p.s, suggesting that they were mediated by ATP.
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IV. RAT ANOCOCCYGEUS MUSCLE

A. SIMULTANEOUS ELECTRICAL AND MECHANICAL RESPONSES TO FIELD AND 

EXTRINSIC NERVE STIMULATION

Following the setting up of the preparation, the muscle was 

stretched to a tension of 0.75-1.0g. Tension decayed over a 30min 

equilibration period, to a lower value (approximately 0.5g) which was 

maintained throughout the course of the experiment. Under these con­

ditions, the muscle was electrically quiescent. The resting membrane 

potential ranged from -53 to -76mV, with a mean of -63.7 ± 0.4mV, 

n=170.

Both field and extrinsic nerve stimulation (0.01-0.5ms, 5-70V) 

evoked a membrane depolarization and contraction, the amplitude and 

nature of the depolarization depending on the stimulation parameters 

used (Fig. 41*). Following single stimuli, by either method, a small 

slow membrane depolarization, measured as the time between 10 and 90% 

of the maximum voltage, with a latency of several hundred ms and a 

duration of several s was always recorded. This event, hereafter 

termed the 'slow depolarization' frequently appeared to follow the 

start of the mechanical event. Short trains (2-5) of pulses at 5 or 

10Hz, delivered by field or extrinsic nerve stimulation, initially pro­

duced a 'fast e.j.p.' (rate of rise 14.9 ± 0.9mVsec”-*-, n=49) with a

latency of less than 100ms and a duration of under Is, followed by a 

slow depolarization, similar to that obtained to single pulses (Fig. 

41*). The fast e.j.p. always preceded the onset of the contraction. 

The rates of rise of the slow depolarization and the fast e.j.p.s var­

ied with frequency and stimulus strength. This probably reflected 

facilitation of transmitter release, a feature characteristic of this 

muscle .(Creed et al., 1975). The mean (± s.e.m.) rate of rise of the 

slow depolarization measured under identical parameters of stimulation



Fig. 4l': The effects of increasing stimulus strength on the simulta­
neously-recorded electrical (upper trace in each panel) and mechanical 
responses of the rat anococcygeus muscle to field stimulation of sympa­
thetic nerves. Each panel shows, following the stimulus artefact, the 
responses to submaximal stimuli (A., B., single stimuli, ?s, 0.2ms, 20V 
(left hand side) and 0.3ms, 30V; C., D., two stimuli at 5Hz, 0.1ms, 7V 
(left hand side) ans 0.1ms, 12V).

The electrical response to single stimuli was a slow depolariza­
tion. Following trains of pulses, a biphasic response was obtained. 
This consisted of an initial fast e.j.p. and a slow depolarization, the 
amplitude of each depending on stimulus strength. Electrical record­
ings were obtained from the same cell.
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(1 pulse, 0.2ms, 20V) was 0.6 ± O.OemVsec"1, n=12.

In 3 out of 22 tissues, fast e.j.p.s were absent and only slow 

depolarizations were evoked by either field or extrinsic nerve stimu­

lation, even with longer trains of pulses (10) at supramaximal voltage 

(70V). Conversely, in 2 out of 22 tissues, supramaximal field of 

extrinsic nerve stimulation, using single pulses, produced small 

(3-4mV) fast e.j.p.s, followed by a slow depolarization.

Both the fast e.j.p.s and the slow depolarizations were recorded 

in cells throughout the muscle, irrespective of their location, in 

response to field or extrinsic nerve stimulation. The electrical and 

mechanical responses to simultaneous stimulation of both the genito­

femoral and perineal nerves were larger than those obtained to stimu­

lation of each nerve separately (Fig. 42).

The electrical responses produced by extrinsic nerve stimulation 

and those to field stimulation were apparently identical. The fast 

e.j.p.s, slow depolarizations and contractions produced by field (Fig. 

43) or extrinsic nerve stimulation (Fig 44) were abolished by the a-a- 

drenoceptor antagonists phentolamine (1 x 10”% )  or prazosin (1 x 

10“%), or by TTX (1 x 10”%). The stable analogue of ATP, a,(3MeATP 

(1-10 x 10”% )  depolarized the membrane potential, but had no signifi­

cant inhibitory effect on either the fast e.j.p., the slow depolariza­

tion or the contractions produced by either field (Fig. 43) or extrin­

sic nerve stimulation (Fig. 44). Mechanical contractions were 

frequently seen to be potentiated by a , 0MeATP, probably due to the 

depolarizing action of the drug.

The absence of a depolarization to nerve stimulation which was 

resistant to a-adrenoceptor antagonists contrasts with events pre­

viously . reported in this tissue (Byrne & Large, 1984). To substantiate 

the present findings, experimental conditions were selected to optimise 

the possibility of demonstrating such e.j.p.s, were they present (Fig.



Fig. 42: Simultaneously-recorded electrical (upper trace in each
panel) and mechanical responses of the rat anococcygeus muscle to 
extrinsic nerve stimulation (left hand column, 3 pulses at 10Hz, 0.3ms, 
20V; right hand column, single stimuli, 0.3ms, 30V); A. Perineal and 
gefiito-femoral nerves together, B. genito-femoral, and C. perineal 
nerves alone. As with field stimulation (Fig. 41), trains of pulses 
produced a biphasic response; an initial fast e.j.p. followed by a 
slower depolarization whereas single stimuli produced only a slow 
depolarization. Electrical recordings were obtained from the same 
cell.
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F i c  4 3 :  The effects o f  a,pMeATP alone (1 x 10 M, B.) and in the
presence of phentolamine (Phent, 1 x 10'6M, C.), compared with control 
( A ) on the simultaneously-recorded electrical (upper trace in each 
panel) and mechanical responses of the rat “ -occyegus musc e ^ t o ^
^^the^^chanica^contractions were unaffected by a, pMeATP but were 
abolished by phentolamine, suggesting that they were noradrenergically 
mediated. Electrical recordings were made from 3 separate cells in the
same tissue.
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Fig. 44: The effects of a,(3MeATP alone (1 x 10“% ,  B.) and in the
presence of phentolamine (Phent, 1 x 10“% ,  C.), compared with control 
(A.), on the simultaneously-recorded electrical (upper trace in each 
panel) and mechanical responses of the rat anococcygeus muscle to stim­
ulation of the genito-femoral and perineal nerves (2 stimuli at 10Hz, 
A. 0.3ms, 20V, B. 0.3ms, 15V, C. 0.3m, 50V). The control response to
extrinsic nerve stimulation showed a fast e.j.p., a slow depolarization 
and a mechanical contraction. a , (3MeATP enhanced the mechanical 
response and reduced, but did not abolish, the electrical responses. 
The enhancement of the mechanical effects were presumably due to the 
ability of a ,pMeATP to depolarize the membrane. The fast e.j.p., the 
slow depolarization and the contractions were abolished by phentola­
mine, suggesting that they were noradrenergically mediated. Electrical 
recordings were made from 3 separate cells in the same preparation.
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45).

In addition to th© ct’padrenoceptor antagonist prazosin (1 x 

10 7M), idazoxan (1 x 10 7M), which blocks pre-synaptic o^-adrenocep- 

tors and thus the feedback inhibition on transmitter release, and 

nifedipine (1 x 10 8M) at a dose which prevented muscle contraction 

without affecting synaptic potentials (Blakeley et al., 1981) were 

used. Under these conditions, no post-synaptic depolarization was 

found, even at high intensity stimulation parameters (5 pulses, 50Hz, 

0.01ms, 70V, Fig. 45). These results therefore confirm the absence of 

non-adrenergic e.j.p.s in the rat anococcygeus muscle.

B. ELECTRICAL RESPONSES TO EXOGENOUS AGONISTS

Pressure application of NA (1 x 10-8 -1 x 10“6M, 40p.s.i.,

l-50ms) produced a depolarization and a localized contraction which 

extended some l-2mm around the point of application. The characteris­

tics of the membrane potential change varied with the amount of NA 

added (Fig. 46). Low (1 x 10~8-1 x 10“7M) concentrations of NA produced 

a slow depolarization with a rate of rise of approximately lmVsec-  ̂

(mean 1.45 ± 0.17mVsec“-*-, n=8) and a duration of several seconds.

Higher (1 x 10-7-l x 10_8M) concentrations produced a more rapid

depolarization (mean rate of rise 14.31 ± 1. lOmVsec"-^, n=12), with a

duration of l-2s. Both the fast and slow depolarizations were abolished 

by phentolamine (1 x 1CT6M) or prazosin (1 x 10"7M, Fig. 47), but were 

unaffected by a,(3MeATP (1-10 x 10”8M).

ATP (1-10 x 10_4M, 40p.s.i., l-200ms) also produced small mem­

brane depolarization and localized contactions when added exogenously

(Fig. 48). The depolarizations were unaffected by phentolamine (1 x 

10~6M) or prazosin (1 x 10"7M), but were abolished by a ,pMeATP (1 x 

10"6M). The rate of rise of the depolarization produced by ATP was 

graded with the concentration applied (mean 3.8 ± 0.5mVsec n=12);
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Fig. 45: The effects of prazosin (Praz, 1 x 10"'M), idazoxan (Idaz, 1
x 10"'M) and nifedipine (Nif, 1 x 10"°M) on the electrical (upper trace 
in each panel) and mechanical responses of the rat anococcygeus muscle 
to field stimulation (A. 3 pulses at 20Hz, 0.01‘ms, 50V; B. 5 pulses at 
50Hz, 0.01ms, 70V). In the control situation (A.), Field stimulation 
produced a fast e.j.p., a slow depolarizarion and an accompanying 
mechanical , contraction. In the presence of prazosin, idazoxan and 
nifedipine (B.) the electrical and mechanical responses were abolished, 
and only a stimulus artefact remained, even when the number of pulses 
and the stimulus strengths were increased. This confirms the exclusive 
noradrenergic nature of the evoked e.j.p. Electrical recordings were 
obtained from the same cell.
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the depr-tarization appeared uniform and there was no evidence of fast 
and slow components, as seen with NA.

Several biologically active peptides were also investigated as 

putative transmitters in the rat anococcygeus muscle. Bradykinin 

(1-100 x 10"7M), VIP (1-100 x 10“7M), NPY (1-100 x 10"7M), substance P 

(1-100 x 10-7M), somatostatin (1-100 x 10-7M), leu-enkephalin (1-100 x 

10"7M), met-enkephalin (1-100 x 10“7M) and bombesin (1-100 x 10_7M) 

each produced no change in membrane potential when applied locally form 

a micro-pipette (40p.s.i., l-200ms, tip diameter 1-2 x 10_6m). Thus it 

seems unlikely that any of these peptides act as neurotransmitters by a 

voltage-dependent mechanism in the rat anococcygeus muscle. It does 

not, however, rule out the possibility that they act by a voltage-inde­

pendent mechanism.

V. HYPERTENSION

The possibility that ATP may play a role in the development or 

maintenance of hypertension (Vidal et al., 1986) was investigated in 

tail artery and mesenteric bed preparations from age-matched normoten- 

sive (WKY) and spontaneously-hypertensive (SHR) rats.

That the animals were hypertensive was confirmed by measuring 

their systolic blood pressure in vivo by means of an inflated tail cuff 

(see Materials & Methods). The mean systolic blood pressure in WKY 

rats was 128 ± 2.5mmHg, n=18, while that in SHR rats was 233 ± 3.3mmHg, 

n=12.

A. PRESSOR RESPONSES TO FIELD STIMULATION AND EXOGENOUS AGONISTS

At the flow rate used (Aimin'1), the resting perfusion pressures 

for both SHR and WKY rat preparations were not significantly different. 

They ranged from 25-30mmHg for tail arteries and 25-35mmHg for the
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mesenteric bed preparations.

In tail artery and mesenteric bed preparations from both WKY and 

SHR rats, periarterial field stimulation (0.5ms, supramaximal voltage, 

200 pulses at l-50Hz) and injections (0.1-0.3ml) of NA (1 x 10“5 -1 x 

10"3M), ADR (1 x 10-6 -1 x 10_4M) and ATP (1 x 10“4 -1 x 10"2M) each 

produced a vasoconstriction and an increase in perfusion pressure 

(Figs. 49-52). The order of potency of agonists was ADR > NA > ATP. 

Pressor responses to either exogenous ADR or NA exceeded those elicited 

by field stimulation. All pressor responses to periarterial field 

stimulation were abolished by guanethidine (1 x 10“6M) and TTX (1 x 

10 M) and were assumed to be due to transmitters released from sympa­

thetic nerves.

The pressor responses to field stimulation (Figs. 49 & 50), NA 

(Figs. 51 & 52) and ADR (Figs. 51 & 52) in both tail (Figs 49 & 51) and 

mesenteric bed preparations (Figs. 50 & 52) from SHR rats were signi­

ficantly (p < 0.05) greater than those from age-matched WKY animals. 

In contrast, the responses of both tail and mesenteric arteries to 

exogenous ATP in normo- and hypertensive rats did not differ signifi­

cantly (Figs. 51 & 52).

In arteries from both WKY and SHR rats, a,(3MeATP (1 x 10-^M) 

produced a short-lasting pressor response and subsequently inhibited 

the pressor responses to exogenous ATP (1 x 10 4 -1 x 10 2M) by about 

70%. However, this and higher (< 15 x 10“6M) concentrations of

a,0MeATP had no significant inhibitory effect on the pressor responses 

to field stimulation of tail arteries (Fig. 53) or mesenteric bed pre­

parations (Fig. 54) in either SHR or WKY rats. Addition of the a-a- 

drenoceptor antagonists phentolamine (2 x 10 ^M) or prazosin (1 x 

10-^M) virtually abolished all pressor responses to both field stimu­

lation (Figs 53 & 54) and exogenously added catecholamines (NA & ADR).
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Fig. 49: The effects of increasing frequency on the mean pressor
responses (mmHg) of tail arteries from normotensive (WKY, •) and spon- 
taneously-hypertensive (SHR, o) rats to field stimulation (0.5ms, 
supramaximal voltage, 200 pulses at l-50Hz). Each graph shows the mean 
(± s.e.m.) of a number (n) of observations. The pressor responses of 
SHR arteries were significantly (* p < 0.05) greater than those from 
age-matched WKY animals at each frequency of stimulation.
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Fig. 50: The effects of increasing frequency on the mean pressor
responses (mmHg) of mesenteric bed preparations from normotensive (WKY, 
•) and spontaneously-hypertensive (SHR, o) rats to field stimulation 
(0.5ms, supramaximal voltage, 200 pulses at l-50Hz). Each graph shows 
the mean (± s.e.m.) of a number (n) of observations. The pressor 
responses of SHR arteries were significantly (* p < 0.05) greater than 
those from age-matched WKY animals at all frequencies above 1Hz.



Fig. 51: The mean pressor responses (mmHg) of tail arteries from
normotensive (WKY, •) and spontaneously-hypertensive (SHR, o) rats to 
injections (0.1 - 0.3ml) of noradrenaline (NA, 1 x 10”® 1 x 10“%,
A.), adrenaline (ADR, 1 x 10”̂  - 1 x 10”4M, B.) and adenosine 5'-triph- 
osphate (ATP, 1 x 10”4 - 1 x 10"2M, C.). Each graph shows the mean (± 
s.e.m.) of a number (n) of observations. The pressor responses to NA 
and ADR, but not those to ATP, were significantly (* p < 0.05) greater 
in arteries from SHR than from WKY animals.
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Fig. 52: The mean pressor responses (mmHg) of mesenteric bed prepara­
tions from normotensive (WKY, •) and spontaneously-hypertensive (SHR, 
o) rats to injections (0.1 - 0.3ml) of noradrenaline (NA, 1 x 10 - 1
x 10"3M, A.), adrenaline (ADR, 1 x 10"6 - 1 x 10“4M, B.) and adenosine 
5 ’-triphosphate (ATP, 1 x 10“4 - 1 x 10"2M, C.). Each graph shows the 
mean (± s.e.m.) of a number (n) of observations. The pressor responses 
to NA and ADR, but not those to ATP, were significantly (* p < 0.05) 
greater in mesenteric bed preparations from SHR than from WKY animals.
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Fig. 53: The effects of a,(3MeATP (1 x 10“% )  alone and in the presence
of prazosin (1 x 10~7M) on the mean pressor responses (mmHg) of tail 
arteries from normotensive (WKY, •, B.) and spontaneously-hypertensive 
(SHR, o, A.) rats to field stimulation (0.5ms, supramaximal voltage, 
200 pulses at l-50Hz). Each graph show the mean (± s.e.m.) of a number 
(n) of observations, a ,pMeATP had no significant inhibitory effect on1 
the pressor activity of arteries from either SHR or WKY rats. The 
additional presence of prazosin virtually abolished all pressor 
responses, suggesting that they were mediated by NA.
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Eig. 54: The effects of a ,pMeATP (1 x 10"6M) alone and in the presence
of prazosin (1 x 10“7M) on the mean pressor responses (mmHg) of mesen­
teric bed preparations from normotensive (WKY, •, B.) and spontaneous- 
ly-hypertensive (SHR, o, A.) rats to field stimulation (0.5ms, supra­
maximal voltage, 200 pulses at l-50Hz). Each graph show the mean (± 
s.e.m.) of a number (n) of observations. a,(3MeATP had no significant 
inhibitory effect on the pressor activity of mesenteric bed prepara­
tions from either SHR or WKY rats. The additional presence of prazosin 
virtually abolished all pressor responses, suggesting that they were 
mediated by NA.
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B. [3H] o v e r f l o w f o l l o w i n g p r e-i n c ubat ion w i t h [3H]-NA

In both SHR and WKY tail arteries, the [3H] overflow, i.e. the 

amount of transmitter which escaped the uptake process and was col­

lected from the tissue, declined exponentially with time, a steady 

state level being reached after approximately 2h. Subsequent electri­

cal field stimulation (0.5ms, supramaximal voltage, 200 pulses at 5, 10 

and 20Hz) produced a TTX (1 x 10-%1)-sensitive increase in overflow of 

[3H] into the superfusate. There was no significant difference in the 

[3H] overflow from SHR and WKY rats (Fig. 55). Exposure to a ,(3MeATP (3 

x 10 for 30min) had no significant inhibitory effect on the stimula­

tion-evoked overflow of [3H] from either group of animals (Fig. 56), so 

eliminating the possibility that a,|3MeATP had any pre-synaptic effects 

on transmitter release.

C. [3H] OVERFLOW FOLLOWING PRE-INCUBATION WITH [3H]-ADENOSINE

In contrast to the [3H] overflow from tissues pre-incubated with 

[3H]-NA, which was almost exclusively neuronal in origin, much of the 

[3H] released from tissues pre-incubated with [3H]-adenosine came 

directly from the smooth muscle, presumably due to a squeezing effect 

(Westfall et al., 1978). To abolish this 'squeezing' effect, muscle 

contractions were abolished by diltiazem (3 x 10"6M) and prazosin (5 x 

10_7M), which were added to the Krebs solution throughout the exper­

iments .
Following a 2h wash-out period, field stimulation (0.5ms, supra­

maximal voltage, 500 pulses at 10, 20 and 30Hz) of SHR and WKY tail 

arteries each produced small, but significant, TTX (1 x 10 ^)-sensitive 

increases in [3H] overflow in tissues pre-incubated with 

[ ] -adenosine. There was no significant difference, however, in [ H] 

overflow between SHR and WKY rats (Fig. 57).
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Fief. 55: The mean fractional release of [^H] from tail arteries from
normotensive (WKY, •) and spontaneously-hypertensive (SHR, o) rats, 
pre-incubated with [^H]-NA (25jiCiml"^, 2 x 10“®M NA), in response to 
field stimulation (0.5ms, supramaximal voltage, 200 pulses at 5, 10 and 
20Hz, *) of intramural nerves. Each graph shows the mean (± s.e.m.) of 
a number (n) of observations (n = 6 for WKY, 5 for SHR). NA uptake 
blockers normetanephrine (NMN, 1 x 10~SM) and desmethylimipramine (DMI, 
1 x 10“6M) were present throughout. There was no significant differ­
ence between the [^H] overflow following field stimulation in either 
group of animals.



Fig. 56: The effects of a ,(SMeATP (3 x 10"%, 4- ) on the mean frac­
tional release of [3H] from tail arteries from normotensive (WKY, top 
graph) and spontaneously-hypertensive (SHR) rats, pre-incubated with 
[3H]-NA (25pCiml“1, 2 x 10"% NA) in response to field stimulation 
(0.5ms, supramaximal voltage, 200 pulses at 5,10 and 20Hz, *) of 
intramural nerves. Each graph shows the mean (± s.e.m.) of a number 
(n) of observations (n = 6  for WKY, 5 for SHR). NA uptake blockers 
normetanephrine (NMN, 1 x 10“% )  and desmethylimipramine (DMI, 1 x 
10“% )  were present throughout. a,(3MeATP had no significant inhibitory 
effect on the [3H] overflow evoked by field stimulation in either group 
of animals.
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Fig. 57: The mean fractional release of [%] from tail arteries from
normotensive (WKY, •) and spontaneously-hypertensive (SHR, o) rats, 
pre-incubated with [ % ] -adenosine (100|iCiml“ ,̂ 1 x 10”%  adenosine), in 
response to field stimulation (0.5ms, supramaximal voltage, 500 pulses 
at 10, 20 and 30Hz, *) of intramural nerves. Each graph shows the mean 
(± s.e.m.) of a number (n) of observations (n = 8 for WKY, 7 for SHR). 
Muscle contractions were abolished with prazosin (5 x 10”% )  and dil- 
tiazem (3 x 10”% )  which were present throughout. Increases in [%] 
overflow following field stimulation were small and there was no sig­
nificant difference between the two groups of animals.
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D. LIGHT MICROSCOPY

The possibility that structural changes in the vascular smooth 

muscle could have contributed to the increased vascular reactivity in 

arteries from spontaneously-hypertensive rats was investigated using 

light microscopy. Following toluidine blue\pyronin Y staining of 

freshly-dissected tissues (see Materials & Methods), the tail and supe­

rior mesenteric arteries from WKY and SHR rats were examined microscop­
ically and photographed.

The tail artery is a typical example of a 'distributing1 or 'mus­

cular' artery. The tunica media in vessels from both normotensive 

(WKY) and spontaneously-hypertensive (SHR) rats consisted of smooth 

muscle cells, interspersed with elastin and collagen fibres (Fig. 58). 

Although the two groups of arteries appeared very similar, close 

inspection revealed small differences. Compared with those from WKY 

rats, the smooth muscle cells in the SHR tail artery had a slightly 

more crenolated appearance, perhaps reflecting the increased total per­

ipheral resistance observed in vivo.

In these arteries, the inner tunica intima layer consisted of a 

single layer of endothelial cells, resting on a thin internal elastic 

lamina membrane. This membrane appeared convoluted. The endothelium

closely conformed to the irregularities in the internal elastic lamina

and sent processes through the fenestrations to establish myoendothe- 

lial junctions with the innermost smooth muscle cells on the tunica 
media. There were no obvious differences in the endothelium from nor-

VL.
motj^sive and hypertensive rat tail arteries.

When the tail arteries were perfused a'„, a constant rate 

(4mlmin- )̂ with oxygenated physiological saline solution, substantial

changes were seen in the preparations (Fig. 59). The lumen of the

arteries were greatly enlarged. The convoluted internal elastic lamina 

was stretched and straightened and some 60-70% of the endothelial cells



Fig. 58: Transverse sections of the tail artery from a normotensive
(WKY, A.) and from a spontaneously-hypertensive (SHR, B.) rat. The 
tunica media of the vessels consisted mainly of smooth muscle cells, 
interspersed with elastin and collagen fibres. Both arteries looked 
very similar, however close inspection revealed that the smooth muscle 
cells in the SHR artery had a slightly more crenolated appearance. A 
layer of endothelial cells surrounded the lumen of each artery. Ove­
rall magnification x 400.



Fig. 59: Transverse sections of a tail artery from a normotensive
(WKY) rat before (A. and C.) and after (B. and D.) perfusion with phy­
siological saline solution (4mlmin“* for lh). Perfusion greatly 
stretched the lumen of the artery and removed much of the endothelium. 
Overall magnification in A. and B. x 100 and in C. and D. x 250.
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were missing. It appeared, on some occasions, that when a ,(JMeATP (2 x 

10 6M) was added to the perfusing solution, the damage to the artery 

was greater\more rapid. This may have been due to the vasoconstrictor 

effects of the drug, with resultant increases in perfusion pressure 

shedding off more endothelial cells, however more experiments would 

have had to be carried out before this observation could be confirmed. 

The degree of damage appeared similar in arteries from normotensive and 

hypertensive rats. Since all arteries were similarly perfused in the 

end organ experiments, it seems unlikely that any of the effects 

observed with field stimulation or exogenous agonists could have been 

attributed to endothelium-derived factors.

In contrast to the tail artery, the superior mesenteric artery is 

an 'elastic' or 'conducting' vessel (Fig. 60). The wall-to-lumen ratio 

was relatively small, with the rounded shape of the vessel being poorly 

maintained in vitro. Mesenteric arteries from SHR and WKY rats were 

indistinguishable. The tunica media of these arteries consisted of a 

thin layer of endothelial cells, separated from the internal elastic 

lamina by loose connective tissue. The general appearance of the 

tunica intima was less convoluted than in the muscular (tail) artery 

and the endothelial layer was less complete. The tunica media of the 

superior mesenteric artery had a striated appearance, composed of elas­

tic membranes or sheets arranged concentrically, the spaces in between 

occupied with smooth muscle cells.

E. FALCK HISTOCHEMISTRY
The adrenergic innervation of the tail and superior mesenteric 

arteries from SHR and WKY rats was examined using Falck histochemistry, 

to see if the increased vascular reactivity observed in hypertensive 

animals could be attributed to alterations in the density of the adren 

ergic nerves.



Fig. 60: Transverse sections of the superior mesenteric artery from a
normotensive (WKY, A.) and from a spontaneously-hypertensive (SHR, B. ) 
rat. Both arteries appeared similar. The tunica media had a striated 
appearance, composed of elastic membranes or sheets arranged concentri­
cally, the spaces in between occupied by smooth muscle cells. A layer 
of endothelial cells surrounded the lumen of each artery. Overall mag­
nification x 250.
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Fig. 61 shows superior mesenteric arteries from a normotensive 

(WKY) and a spontaneously-hypertensive (SHR) rat. Very few adrenergic 

nerves were seen to innervate the superior mesenteric artery (c.f. tail 

artery, Fig. 62), an observation reflected in the relatively small 

pressor responses evoked by field stimulation. There appeared to be no 

differences in the density of the adrenergic innervation between the 

two groups of animals. The density of the adrenergic nerves appeared 

greater in the small branch arteries comprising the mesenteric bed (see 

Fig. 61A.). The superior mesenteric artery had a striated appearance, 

with the fluorescent bands representing elastin tissue.

In the rat tail artery from both normotensive (WKY) and sponta­

neously-hypertensive (SHR) rats, the adrenergic innervation was again 

restricted to the adventitial-medial border (Fig. 62). General obser­

vations from several artery sections showed no difference in the den­

sity of the adrenergic innervation between the two groups of animals, 

however, there may be a suggestion of an increased wall-to-lumen ratio 

in the hypertensive arteries, although no quantitative measurements 

were made. Further investigation would be required before this sugges­

tion could be confirmed.



Fig. 61: The catecholamine fluorescence, demonstrated by Falck histo­
chemistry, of the superior mesenteric artery from a normotensive (WKY, 
A.) and a spontaneously-hypertensive (SHR, B.) rat. The adrenergic 
innervation was sparse and restricted to the adventitial-medial bor­
der, though appeared similar in both groups of animals. The innerva­
tion was much more dense in the small branch artery seen in A. The 
striated bands of fluorescence throughout the wall of the arteries were 
due to elastin auto-fluorescence. Overall magnification in A. x 50 and 
in B. x 100.



Fig 62: The catecholamine fluorescence, determined by Falck histochem­
istry, of the tail artery from a normotensive (WKY, A.) and a sponta­
neously-hypertensive (SHR, B.) rat. The adrenergic innervation was 
restricted to the adventitial-medial border and appeared similar in 
both groups of animals. Overall magnification x 100.



CHAPTER 4: DISCUSSION
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Compared with those of some 50 years ago, current views on auto­

nomic neurotransmission differ in two quite fundamental ways. First,

there has been a virtual explosion in the number of substances proposed

as transmitters. In addition to the classical transmitters, NA and

ACh, many substances are now believed to be synthesized, stored and 

released from nerves. These include GABA, 5HT, purines and peptides, 

and each may have a potential neurotransmitter function. Secondly, in 

addition to containing different biologically-active compounds, the 

transmission process itself may, in contrast to the classical one ner­

ve-one transmitter view (Dale, 1935), involve more than one transmitter 

substance. This latter observation has led directly to the current con­

cept of co-transmission.

The development of the idea of co-transmission, from the advent 

of histochemical techniques which enabled transmitter substances to be 

visualized, to the definitive illustration of their presence in the 

work of Furshpan et al. (1976; 1986) using cell culture techniques, has 

implied that the genetic information available for producing all trans­

mitter-type molecules is available in every nerve cell and that each 

neurone may utilize more than one transmitter and thus exhibit co­

transmission .
In spite of the widespread reported occurrence of co­

transmission, there has been some controversy surrounding the cited 

evidence. Much of this dispute has centred around the question as to 

whether co-transmission itself, or merely co-existence or co-release, 

is involved. This has led to the need for a clearer understanding of 

what is meant by these terms. It is generally conceded that the term 

'co-transmission1 refers to the action of two or more transmitters, 

simultaneously released from the same neurone, on a single target cell. 

'Co-existence' and 'co-release', on the other hand, refer to the ana­

tomical co-localization and release, respectively, of 2 or more trans­
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mitter substances together from one neurone. Co-existence and co­

release are each a necessary, but by themselves an insufficient condi­

tion for co-transmission.

Not surprisingly, many of the examples of co-transmitter neurones 

fail to fulfil these criteria. For example, in the cat submandibular 

salivary gland, ACh and VIP have been proposed to act as co­

transmitters following their simultaneous release from the sphenopala­

tine nerves (Lundberg et al., 1980). A more recent study, however, 

(Hakanson et al., 1982) has shown that; under normal conditions, sphe­

nopalatine neurones are normally either VIP-immunoreactive or rich in 

AChE (indicating the presence of ACh); only after treatment with col­

chicine did all neurones contain both markers. Thus, since co-storage 

is a necessary requirement for co-transmission, the cat submandibular 

salivary gland fails to fulfil the criteria necessary for establishing 

co-transmission. Furthermore, although NA and NPY are demonstrably co­

released from sympathetic nerves innervating the rat vas deferens, they 

still failed to qualify as co-transmitters since they act on different 

target cells - NA acts post-synaptically as a true neurotransmitter, 

whereas NPY mediates its effects pre-synaptically (Lundberg & Stjarne,

1984) .
Inherent in the discussion of the foregoing results is the need 

to establish whether or not co-transmission truly exists. Clearly any 

experimental contribution to co-transmission must satisfy the criteria 

of the definition i.e. both substances, following their simultaneous 

release from a single nerve ending, must act on the same target cell. 

It was with this problem in mind that intracellular micro-electrode 

recording was selected as the experimental technique. This allows, not 

only the measurement of transmitter release, but also of the transmit­

ter effect on target cells.
Among the most interesting facets of proposed co-transmitter
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activity is the challenge to examine the electrical and mechanical con­

tribution of the individual transmitters to the overall neurogenic 
response.

The work outlined in this thesis has provided strong evidence for 

co-transmission involving NA and ATP (or a closely related nucleotide) 

in several vascular and non-vascular smooth muscles. The existence of 

co-trans£ssion is supported by several experimental observations. 

First, there is little doubt that the origin of each transmitter sub­

stance was neuronal, since all electrical and mechanical responses to 

field stimulation were abolished by TTX and lignocaine, which selec- 

tively block the increase in sodium permeability underlying the nerve 

action potential and by Ca2+-removal from the physiological saline 

solution, which prevents transmitter release from nerves. Additional 

confirmation that the substances released were neuronal in origin was 

the finding that in both the mouse vas deferens and the rat anococcy- 

geus muscle the responses to extrinsic nerve stimulation were indistin­

guishable from those evoked by field stimulation, thus ruling out the 

possibility that any of the observed effects following field stimula­

tion were due to artifacts of the method of stimulation employed. Fur­

thermore, there was no evidence to support the claim (Stjarne, 1977; 

Alberts et al., 1981) that field stimulation facilitated transmitter 

release, or liberated substances directly from the nerves, other than 

by action potential propagation in pre-terminal axons.
That these transmitters were contained in the same neurone was 

implied by the ability of guanethidine and 6 —OHDA to each abolish the 

entire neuronal response. This confirms that both transmitters were 

co-released from the same nerve ending, rather than from separate nora 

drenergic and purinergic nerves. In the mouse vas deferens, the obser­

vation that both electrical and mechanical responses persisted follow­

ing reserpine pre-treatment strongly suggested that all of the
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responses to sympathetic nerve stimulation could not be attributed to 

NA and that two different substances were involved in the transmission 
process.

Results from the foregoing experiments clearly support the idea 

that neuronally-released substances acted as co-transmitters. Each 

transmitter substance evoked post-synaptic effects which could be 

mimicked by exogenous agonists and blocked by antagonists.

The transmitters involved in the neurogenic response were a cate­

cholamine (NA) and a purine nucleotide (most likely ATP). Several 

observations point towards this conclusion. For example, in the mouse 

vas deferens, the initial rapid twitch contraction was antagonized by 

a,pMeATP, suggesting that it was mediated by ATP, whereas the slower 

tonic contraction was selectively abolished by a-adrenoceptor antago­

nists, suggesting that it was mediated by NA. Exogenously added NA and 

ATP each mimicked faithfully the time course of the respective tonic 

and phasic components of the neurogenic response. This ability of ATP 

to mimic the nerve-mediated response was also extended to electrical 

events, where local application of the nucleotide evoked membrane depo­

larizations with characteristics similar to the e.j.p.s produced by 

nerve stimulation. These effects of exogenous ATP could be demon­

strated in vasa in which the adrenergic nerves had been destroyed with 

6 -OHDA, thus eliminating the possibility of a pre-synaptic depolarizing 

action of ATP in transmitter release.
Experimental evidence supporting the idea of ATP as a neurotrans­

mitter has relied heavily on the use of one drug - cx,pMeATP. That this 

drug is specific for purinoceptors is of utmost importance in the eval­

uation of the experimental results. There have been claims, however, 

that a ,pMeATP may be non-specific. It has been proposed that it could 

antagonize the e.j.p.s irrespective of whether they are mediated by NA 

or ATP (Byrne & Large, 1986) or that it may have channel blocking acti­
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vity, in a manner similar to apamin (Kotecha & Neild, 1987). No evi­

dence to support these suggestions was obtained from the present inves­

tigation. In the rat anococcygeus muscle, a ,(3MeATP failed to inhibit 

either the electrical or mechanical responses to neuronally-released or 

exogenously-added NA. Taken together with the observation that 

a,pMeATP did not reduce transmitter release in either the rabbit ear 

(Allcorn et al., 1985) or rat tail artery (this thesis), the present 

results suggest that this drug is indeed specific for purinoceptors and 

does not modify post-synaptic effects of NA, thus warranting its use in 
the study of purinoceptor pharmacology.

While both NA and ATP evoked post-synaptic effects in a variety 

of autonomically innervated smooth muscles, the contribution of each 

transmitter to the electrical and mechanical activity varies from one 

tissue to another.

With regard to the mechanism of action of the co-transmitters, it 

is clear from the present results that ATP mediates its post-synaptic 

effects via a voltage-dependent mechanism. The e.j.p.s evoked by sympa­

thetic nerve stimulation were selectively blocked by a,pMeATP, a drug 

which blocks P2 -purinoceptors by desensitization (Kasakov & Burnstock, 

1983) and mimicked by local application of ATP. In both the mouse vas 

deferens and the rabbit mesenteric artery the functional significance 

of this purinergic electrical event was clear - the e.j.p.s were part 

of the mechanism underlying a component of the contractile response to 

field stimulation. A similar voltage-dependent, purinergically- 

mediated contractile response has also been reported by other workers 

in the mesenteric artery of the rabbit (Kiigelgen & Starke, 1985) and 

dog (Muramatsu, 1986) and in the rabbit saphenous (Burnstock & Warland, 

1987) and central ear (Kennedy et al. , 1986) arteries. In the present 

study in the rabbit ear artery, no evidence could be found for a purin- 

ergic component in the contractile response, although ATP-mediated
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e.j.p.s were seen. This result was disappointing; however, it is pos­

sible that the purinergic component of the contractile response could 

have been 'missed' due to the parameters of stimulation used. Thus, it 

has been reported (Kennedy et al., 1986) that, in the rabbit ear

artery, the relative contribution of each co-transmitter (NA and ATP) 

to the neurogenic contraction is highly dependent of the parameters of 

stimulation employed, with short (Is) bursts of stimuli at low frequen­

cies (2-5Hz) favouring the prazosin-resistant (purinergic) component of 
the response.

There is also more direct support for the view that ATP acts as a 

neurotransmitter from recent electrophysiological experiments. The 

nature of the ATP-mediated depolarization, in ionic terms, has been 

mapped following work on dispersed cells using the patch clamp tech­

nique. Using this technique on cells from the rabbit ear artery (a 

tissue in which ATP has been proposed to act as a co-transmitter), Ben- 

ham et al. (1987) have demonstrated that externally-applied ATP evoked 

membrane depolarizations which were associated with cationic-selective 

conductance changes, allowing monovalent and divalent cations to pass 

across the membrane. Such a selective membrane permeability change is 

consistent with the idea of a receptor-operated ion channel, activated 

by ATP.
More recently, such an ion channel has infact been reported in 

the rabbit ear artery. Benham & Tsien (1987) have proposed a novel

receptor-operated Ca^+-permeable channel activated by ATP. This chan­

nel is directly operated by ligands, independently of second messengers

and its activation may lead to the increased [Ca^ needed to trigger 

the contractile response. The existence of such an ion channel would

strongly favour the suggestion that ATP mediates its effects by a spe

cific receptor-operated mechanism.
Taken together with the present results, it was concluded that,
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in many tissues, field stimulation of intramural nerves evokes an ATP 

mediated, voltage-dependent contractile response -important evidence 

that the purine nucleotide has a transmitter function.

The nature of the purinergic receptor mediating these effects 

appeared to be of the P2 variety. This suggestion was based on several 

observations. First, all electrical and mechanical responses to exoge­

nously added and neuronally-released ATP were abolished by a,pMeATP, a 

drug reported to specifically block P2 _purinoceptors, while having no 

effect on P-ppurinoceptors (Kasakov & Burnstock, 1983). Secondly, in 

the mouse vas deferens, the rank order of potency of adenine nucleot­

ides in evoking membrane depolarizations was a, (3MeATP << ATP << ADP < 

AMP < adenosine. Such a rank order of potency is consistent with the 

idea of a P2-receptor mediated response (Burnstock, 1972; 1979). The

observation that the stable analogue of ATP, a,pMeATP, was most potent 

at producing membrane depolarizations strongly suggests that the 

observed effects were mediated by ATP itself, rather than one of its 

breakdown products (e.g. adenosine), and that the receptor involved was 

of the P2 variety. No attempts were made to further classify the 

receptors into the P2x or P2y variety (c.f. Burnstock & Kennedy, 1985) 

since it was felt that such sub-division would be only speculative 

until such times as specific receptor antagonists are developed.

In spite of the activity of ATP in the tissues examined, it is 

clear that the major contractile response to field stimulation is medi­

ated by NA. In each tissue, field stimulation evoked a contractile 

response in the presence of a,(3MeATP, suggesting that NA can evoke con­

tractions independently of the presence of ATP. Unlike the contrac­

tions evoked by ATP, however, those evoked by NA appeared to be medi­

ated largely by a voltage-independent mechanism. Only in the rabbit 

ear artery was there any evidence for an electrical event mediated by 

NA. This took the form of a small, slow membrane depolarization which
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followed the purinergically-mediated e.j.p.s. Such responses, which 

have previously been reported in several other arteries, including the 

guinea-pig uterine (Bell, 1969), mesenteric (Spedden, 1964) and the rat 

tail arteries (Cheung, 1982; 1984) have been proposed as the mechanism 

underlying the noradrenergic contraction in these tissues. The slow 

time course, small amplitude and graded nature of the depolarization 

could best be explained by diffusion of NA, which escapes the uptake 

processes, to extra-junctional receptors, a notion supported by the 

finding that a higher stimulation strength was required to elicit the 

slow depolarization than to obtain the e.j.p. (Cheung, 1982).

It would appear, in fact, (see Bolton & Large, 1986) that, with 

NA, a wide spectrum of electrical events accompanies the mechanical 

contraction. This ranges' from phentolamine-sensitive, fast e.j.p.s 

(e.g. in the rat anococcygeus) through slow depolarizations (e.g. in 

the rabbit ear artery) to completely voltage-independent mechanisms 

(mouse vas deferens and rabbit mesenteric artery). Where voltage 

dependent mechanisms op^erate, tension is most likely generated via the 

activation of specific voltage-operated Ca^+ channels, whereas, where 

no change in membrane potential is observed, tension is generated by 

the activation of receptor-operated Ca^+ channels.

In the present investigation, no evidence could be found for any 

electrical accompaniment to the noradrenergic contraction in either the 

mouse vas deferens or the rabbit mesenteric artery, even in the pres­

ence of the NA uptake blockers NMN and DMI. Furthermore, locally 

applied NA, in contrast to ATP, failed to evoke any change in membrane 

potential. Although the recording techniques employed may not have 

been sensitive enough to detect the small changes in membrane potential 

which might occur, the most likely explanation is that, in the mouse 

vas deferens and rabbit mesenteric artery, NA mediates its contractile 

effects via a voltage-independent mechanism. The exact nature of this



92

mechanism was not investigated; however, in the absence of any alter­

ation in membrane potential, changes in membrane phosphatidylinositol 

turnover may operate. Interestingly, in the rabbit mesenteric artery, 

where noradrenergically-mediated vasoconstrictions were unaccompanied 

by any change in membrane potential, exogenous NA enhanced the break­

down of phosphatidyl inositol 4,5-bisphosphate (PIP2), an effect inhi­

bited by prazosin (Hashimoto et al., 1986), suggesting that biochemical 

changes may mediate at least part of the noradrenergic vasoconstriction 
in this tissue.

It was thus concluded that, with NA, a dual mechanism seems to 

operate in the generation of tension in smooth muscles, such that vol­

tage-dependent and independent mechanisms co-exist, the relative con­

tribution of each to the overall response varying from one tissue to 

another.

Although the co-transmission hypothesis is attractive in explain­

ing these results several alternative theories have been proposed. For 

example, it has been suggested (Von Euler & Hedqvist, 1975) that, in 

the guinea-pig vas deferens, K+ ions, released from the adrenergic 

axons during the recovery phase of the action potential, increase 

extracellular K+ concentration and directly depolarize the muscle 

membrane, thus producing the apparent nonadrenergic component of excit­

atory transmission in this tissue. K+ itself, would not satisfy the 

criteria of a neurotransmitter, since it has no synthesis, no storage 

vesicles, no breakdown mechanism and no post-synaptic receptors. Fur­

thermore, although this theory cannot be ruled out, it seems unlikely 

in view of the specific antagonistic effects of a,0MeATP on purinergic 

responses.
alternative interpretation of transmission in the mouse vas 

deferens from that proposed in the present study has been suggested by 

Stjarne & Astrand (1985). Using radiochemical and mechanical record-
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ing, it was proposed that both transmitters, acting in concert, were 

involved in the neurogenic response, the "diphasic" nature of which 

was an inherent feature of the tissue and could be triggered by NA, ATP 

or other, different drugs. This view of Stjarne and Astrand does not 

contradict the co-transmission hypothesis, but it makes the need for a 

second transmitter unlikely. From the present investigation, there was 

no evidence to support their suggestion. Here, there was a clear indi­

cation that each transmitter (NA and ATP) contributed a single compo­

nent of the response and there was no evidence to support the idea that

the tissue itself determined the "diphasic" nature of the contrac­
tion.

Nor is it likely that the effects of the nucleotide could be 

attributed to a relatively non-specific increase in membrane conduc­

tance arising from an ATP-induced permeabilization (first demonstrated 

in mast cells by Dahlquist, 1974; Bennett et al., 1981). The depolar­

izations evoked by both exogenously-added ATP and neuronally-released 

transmitter appeared to be receptor-mediated, since they were selec­

tively antagonized by a,(3MeATP. In addition, the idea of a non­

specific membrane permeabilization by ATP is also questioned by the 

results from preliminary experiments involving alterations in the 

external ionic concentration, which strongly suggested the selective 

involvement of Na+ and K+ ions in the membrane depolarization.

The main alternative explanation to the co-transmission hypothe­

sis has come by way of explaining the existence of a-adrenoceptor 

antagonist resistant responses to sympathetic nerve stimulation on the 

basis of y-receptors, an idea first proposed by Hirst & Neild (1981). 

According to this hypothesis, neuronally-released NA acts on a popula­

tion of junctional receptors on the smooth muscle, called ^-receptors, 

to depolarize the membrane and produce e.j.p.s which are resistant to 

a-adrenoceptor antagonists. Support for the hypothetical ^-adrenocep-
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tor was obtained from experiments demonstrating the ability of iontoph- 

oretically-applied NA to evoke membrane depolarizations in the guinea- 

pig mesenteric arterioles (Hirst & Neild, 1981) and rat basilar artery 

(Hirst et al., 1982; Byrne & Large, 1986). In addition to the ^-adre­

noceptor, there are a-adrenoceptors, located extra-junctionally. These 

are sensitive to a-adrenoceptor antagonists and interaction with NA 

leads to contractions without any change in the membrane potential.

Several objections have been raised against the ^-receptor 

hypothesis. For example, the results which form the backbone of the 

^-receptor hypothesis have not proved to be easily reproducible. 

Indeed, only a few groups of workers have been able to provide any evi­

dence for them (Hirst & Neild, 1981; Hirst et al., 1982; Byrne et 

al., 1985; Byrne & Large, 1986). Furthermore, this evidence has been 

restricted to a few blood vessels and does not extend to the many other 

tissues known to produce a-adrenoceptor antagonist-resistant responses.

In the present study no evidence could be found to support the 

existence of ^-receptors. Two main objections to this theory have 

been raised. First, in the mouse vas deferens, locally applied NA, in 

contrast to ATP, produced no significant change in membrane potential. 

Similar observations have been reported in the guinea-pig vas deferens 

(Sneddon & Westfall, 1984), rabbit ear artery (Suzuki et al. , 1984; 

Suzuki, 1985) and rabbit and guinea-pig mesenteric arteries (Ishikawa,

1985).
Secondly, the i -receptor hypothesis assumes that the effects 

evoked by sympathetic nerve stimulation are attributed to one neuro­

transmitter acting on two distinct sets of receptors. The most con­

vincing evidence against the idea that only one transmitter substance 

is involved in the transmission process has come from experiments using 

reserpine to deplete the tissue content of catecholamines. If the 

e.j.p.s were mediated by NA acting on ^-receptors, they should be
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abolished by reserpine pre-treatment. Such an effect, however, was not 

observed. When the NA content of the nerves innervating the mouse vas 

deferens was depleted with reserpine pre-treatment e.j.p.s and small 

residual contractions persisted. Both were abolished by a ,(3MeATP, sug­
gesting that they were mediated by ATP.

It may be argued, of course, that locally applied NA did not pro­

duce membrane depolarizations because the receptors are located only in 

the tight junction between the nerve and muscle, whereas ATP can depo­

larize since its receptors are more widespread at extra-junctional

sites. Such an idea, however, seems unlikely since, in the rat anococ- 

cygeus muscle, exogenous NA can evoke both slow and fast membrane depo­

larizations, the latter presumably mediated via junctional receptors. 

Furthermore, antagonists readily block the neuronally-evoked e.j.p.s, 

which are mediated by transmitter acting on junctional receptors.

Assuming agonists and antagonists alike have similar access to these

receptors, it seems unlikely that the inability of NA to evoke a mem­

brane depolarization could be due to an access problem.

Taken together, these results do not preclude the existence of 

^-receptors, but make the possibility that neurotransmission involves 

only one transmitter unlikely.

There is clear evidence that co-transmissicTn, as defined above, 

occurs in experimental situations. On the other hand, evidence for the 

phenomenon in vivo is, at present sparse, although there are strong 

suggestions that it will eventually be shown to occur (see Campbell, 

1987). The physiological consequences of co-transmission in vivo are

likely to be considerable and already some possibilities as to what

they may be have emerged.
One of the more obvious consequences of co-transmission is the

increased complexity which it brings to the organization of the nervous 

system. Before the advent of co-transmission, the nervous system
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apparently relied on a relatively few integrative processes, such as 

spatial or temporal summation, facilitation and fatigue. The existence 

of many additional transmitters, co-released from a single neurone has 

added a new order of complexity to the function of the nervous system, 

with interactions occurring between individual transmitters at both 
pre-and post-synaptic sites.

As a result of this increased complexity, it has been necessary 

to re-classify neurones, since it is clear that the existing classical 

organization is impracticable. Not surprisingly, this up-dated classi­

fication has attempted to organize cholinergic and noradrenergic neur­

ones on the basis of the presence of the purine or peptide co-existing 

with the classical transmitter. For example, the cholinergic neurones 

of the submucous plexus in guinea-pig ileum can be divided into three 

subtypes: ACh-substance P; ACh-NPY-SOM-cholecystokinin; and ACh without 

known peptides (Furness et al., 1984). Attempts at classification on 

the basis of ancillary transmitters, however, have proved cumbersome 

and unwieldy.

As an alternative, it has been proposed (Campbell, 1987) that 

neurones exhibiting co-transmission may be conveniently grouped accord­

ing to the function they subserve; indeed, natural groupings of trans­

mitters appear to exist. For example, the parasympathetic vasodilator 

innervation of salivary glands operates by ACh-VIP co-transmission in 

the cat (Lundberg, 1981), dog (Shimizu & Taira, 1979) and rat (Bloom et 

al., 1979), but in the rabbit it seems to be purely cholinergic (Morley 

et al. , 1966; Edvinsson et al., 1980). This has led to the interesting 

suggestion (see Campbell, 1987) that the target organ may influence the 

co-transmitters released by the nerve. Thus, although a neurone may 

contain the genetic information required to synthesize many transmitter 

molecules, it is the target organ which, by determining transmitter 

function, has overall control on gene expression and hence of the co­
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transmitters released. This implies that there will be some situations 

in which a second transmitter may not be released, simply because the 

target organ has no function for it. This is a possible explanation 

for the results obtained in the rat anococcygeus, where all electrical 

and mechanical activity evoked by field stimulation was abolished by 

prazosin or phentolamine, suggesti<> 3 that neurotransmission was purely 

noradrenergic. No evidence was obtained from the present investiga­

tion, to support the suggestion (Byrne & Large, 1984), of a fast 

e.j.p., resistant to a-adrenoceptor antagonists, and hence the partici­

pation of a purine nucleotide in the membrane response to field stimu­
lation in this tissue.

Thus, the present results disagree with those of Byrne and Large 

(1984). The experimental conditions and, in particular, the tempera­

ture at which the work was carried out, may have been responsible. The 

purinergically-mediated e.j.p. observed by Byrne & Large at room tem­

perature may have been absent from our studies at 36°C due to the rapid 

hydrolysis of the nucleotide at these temperatures (Cunnane, personal 

communication). However, the fact that room temperature is an artifi­

cial condition for the muscle, raises the possibility that the source 

of the ATP mediating the e.j.p. may have been non-neuronal and, in 

fact, an artifact of the experimental conditions. >

Although no evidence could be found for co-transmission in the 

rat anococcygeus muscle, two distinct types of noradrenergically- 

mediated membrane events were observed in the present investigation. 

The presence of a two component e.j.p. may indicate some degree of com­

plexity in the transmission process. Alternatively, it may simply 

reflect differences in the release of the transmitter or its access to 

receptor sites. It is unlikely that the fast e.j.p. is an enhanced or 

facilitated slow depolarization, since both the fast and slow membrane 

changes could be obtained in response to a single stimulus. Except to
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establish their common transmitter origin, the function of each compo­

nent of the depolarization was not investigated. There is, therefore, 

no evidence to deny the proposal (Byrne & Large, 1984) that the 

smaller, slow depolarization - the most common response to a single 

stimulus -arises from the asynchronous release of transmitter, while 

the larger, faster e.j.p.s are the product of a synchronised release of 
transmitter following trains of stimuli.

Perhaps the most obvious question which must be addressed follow­

ing the advent of co-transmission is that of the physiological signifi­

cance of this process. Several possible roles have been proposed. In 

many of the tissues examined, both NA and ATP clearly played a physiol- 

oical role in the contractile response to nerve stimulation. In the 

case of, for example, the rabbit ear artery, where ATP, co-released 

with NA from sympathetic nerves, could be demonstrated to produce only 

electrical effects post-junctionally, with no accompanying mechanical 

contractions, the possibility exists that ATP may act as a neuro­

modulator. Thus, if co-transmission occurs, the 'modulatory' transmit­

ter may have the sole function of regulating the effects of the 'major' 

transmitter, and have no effect at all if released alone. In the rab­

bit ear artery, where no functional role for ATP was observed in the 

contractile response to field stimulation, such a-modulatory role may 

exist. In this tissue, pressor responses to field stimulation were 

significantly potentiated by a ,pMeATP. Such an observation may suggest 

that ATP reduces the sensitivity of a-adrenoceptors, an effect reversed 

by a,(3MeATP. Such a mechanism may operate in vivo, whereupon ATP down- 

regulates the sensitivity of the a-adrenoceptors, thus preventing 

desensitization to NA. Alternatively, the potentiating effects of 

a,0MeATP may simply reflect the depolarizing actions of the drug, 

bringing more of the nerve fibres nearer to the threshold for firing.

Evidence suggesting transmission by a major transmitter and a
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modulatory substance is already availably in other tissues. The sali­

vation caused by parasympathetic nerve stimulation in cats is fully 

blocked by atropine (Heidenhain, 1872) and transmission has been 

regarded as simply cholinergic. However, treatment with VIP antiserum 

reduced the secretory response, suggesting partial mediation by VIP 

(Lundberg et al., 1981), but VIP alone does not cause secretion (Bloom 

& Edwards, 1980). It emerged that VIP increased the secretory response 

to ACh (Lundberg et al., 1982), perhaps by increasing the affinity of 

muscarinic receptors for ACh (Lundberg & Hokfelt, 1983). Thus it seems 

that the role of VIP in the salivary ACh-VIP co-transmission is to 

facilitate the effects of ACh.

ATP may also act as a co-ordinator of muscle contraction. For 

example, in blood vessels, the adrenergic innervation is restricted to 

the adventitial-medial border. ATP, released as a co-transmitter from 

these nerves, may initiate a propagating action potential, which then 

spreads throughout the muscle wall, producing a co-ordinated contrac­

tion.

Since there are clearly many possible physiological consequences 

of co-transmission, the likelihood exists that these may also manifest 

themselves in pathological conditions. Indeed, such an idea has 

already been proposed (Vidal et al., 1986) according to which ATP,

co-released with NA from sympathetic nerves, may play a role in the 

development and/or maintenance of hypertension.

The pressor response elicited by periarterial nerve stimulation 

of arteries from hypertensive (SHR) rats exceeded those from age- 

matched normotensive (WKY) animals (Ekas & Lokhandwala, 1981; Vidal et: 

al., 1986). This increased vascular reactivity in SHR may result from

alterations in pre- and/or post-synaptic activity.
Pre-synaptically, increased sympathetic nerve activity originat­

ing from the central cardiovascular centres has been implicated in the
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development and maintenance of spontaneous hypertension (Juskevich et 

al., 1978; Saave^dra et al., 1978; Takeda & Bunag, 1978). Alterna­

tively, local changes at the level of the post-ganglionic sympathetic 

neurone, resulting in an increased transmitter release, have also been 

suggested (for review see Westfall & Meldrum, 1985).

Post-synaptically, increased vascular reactivity has been attrib­

uted to an increased receptor sensitivity in SHR arteries (Haeusler & 

Haefely, 1970; Lais & Brody, 1978; Ekas & Lokhandwala, 1981) as a 

result of structural changes in the wall-to-lumen ratio and/or factors 

beyond the vasculature membrane leading to possible changes in the 

excitation-contraction coupling mechanism.

Results from the present study in both rat tail arteries and

mesenteric bed preparations re-affirmed the increased vascular reacti­

vity in hypertensive rats. Since pressor responses to exogenous cate­

cholamines (NA and ADR) were also potentiated in the arteries from SHR 

animals, alterations in the post-synaptic a-adrenoceptors appeared to 

be involved in the expression of the hypertensive state. The possibil­

ity that an additional pre-synaptic mechanism may exist in the tail

arteries seems unlikely, since there was no significant difference in 

the evoked [3H] overflow in SHR and WKY arteries pre-loaded with 

[3H]-NA. Thus it seems unlikely that the increased pressor responses 

evoked by field stimulation in tail arteries from SHR rats was due to 

an increased NA release.
More recently, it has been suggested (Vidal et al., 1986) that 

ATP, released as a co-transmitter from sympathetic nerves, may account 

for the increased neurogenic pressor responses in hypertensive rats. 

Thus, it was claimed (Vidal et al., 1986), that a component of the 

contractile response in hypertensive, but not age—matched normotensive, 

rat tail arteries, was mediated by ATP. Blockade of this component

using a ,(3MeATP reduced the pressor responses of hypertensive arteries
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to a level comparable to those from normotensive rats. The present 

work in both tail arteries and mesenteric bed preparations, however, 

failed to confirm this suggestion. In each artery, a,(3MeATP, at a dose 

which virtually abolished the pressor responses to exogenous ATP, had 

no significant inhibitory effect on tPje pressor response evoked by 

field stimulation in either SHR or WKY rats. Neurogenic vasoconstric- 

tions were greatly reduced by a-adrenoceptor antagonists, suggesting 

that in both normotensive and hypertensive rats, they were mediated by 

NA and that there was no evidence for the involvement of ATP in the 
hypertensive state.

This lack of involvement of ATP in hypertension is supported by 

the observation that, while pressor responses to exogenous catechola­

mines were potentiated in arteries from SHR rats, those to adenine 

nucleotides were not. Furthermore, the possibility that ATP release 

was greater in hypertensive arteries also seems unlikely, since there 

was no significant difference between the evoked [3H] overflow in SHR 

and WKY rat tail arteries pre-loaded with [^H]-adenosine.

The possibility that the increased neurogenic pressor responses 

in hypertensive rats may have been due to structural changes in the 

smooth muscle of the artery wall is also unlikely. In both tail and 

mesenteric arteries, no obvious differences in either the smooth muscle 

cells, the endothelium or the density of the adrenergic innervation was 

observed in arteries from normotensive and hypertensive rats. There 

was a suggestion, however, of an increased wall-to-lumen ratio in 

arteries from hypertensive rats, although more accurate studies would 

have to be carried out for this to be confirmed.
It was concluded, therefore, that the increased vascular reacti­

vity observed in hypertensive rats was mainly due to post-synaptic 

changes at the level of the a.-adrenoceptor, with perhaps an additional 

contribution of structural changes in the wall of the blood vessel,
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resulting in the generation of more smooth muscle. There was no evi­

dence to support the idea (Vidal et al., 1986) that ATP plays a patho­

logical role in the hypertensive state.

The idea, that a neurone acts via one transmitter substance, has 

dominated our thinking on neurotransmission since its inception by Dale 

(1935) to the 1970's. This idea may now have to be expanded to embrace 

the phenomenon of co-transmission, in which two or more transmitter 

substances, released simultaneously from the same neurone, act on a 

single target cell to effect transmission. This does not imply any 

rejection of Dale's principle. It merely reflects the increase in the 

state of current knowledge. Inherent in Dale's view was the idea that 

a neurone released the same, single, transmitter from each of its axon 

terminals. Today, while recognising the value of this concept, for 

there remain many synapses where neurotransmission involves only one 

substance, modification is necessary to include the idea of the mul­

tiple transmitter neurone. For the physiologist, the concept of co­

transmission has added a new order of complexity to the function of the 

nervous system, with interactions occurring between transmitters at 

both pre- and post-synaptic sites. For the pharmacologist, the concept 

of co-transmission is of particular importance for the development of 

novel strategies in the design of new neuro-pharmacological agents. It 

is becoming obvious that many of the shortcomings of currently used 

drugs are due to the actions of previously unknown co-transmitters and 

that superior therapeutic regimes will soon be developed by the manipu­

lation of co-transmitter systems.
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