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A bstract

High resolution measurements of inelastic electron scattering cross sections 

from the states in 15N (gas target of 99% 15N enrichment) up to 23.5 MeV ex­

citation have been performed at NIKHEF-K Amsterdam. The measurements 

were carried out at 70, 130, 300, and 430 MeV incident electron energy with an 

angular range from 40° to 98.5° covering a momentum transfer region between 

0.5 and 3.2 fm_1. The data of the present experiment together with the existing 

data  obtained at a scattering angle of 180° were used to obtain the longitudinal 

and transverse components of the form factors for most of the observed excita­

tions. The positive parity states are presented in this thesis while the negative 

parity states have been discussed in a Ph.D thesis by J.W . deVries at Utrecht 

University, The Netherlands (November 1987).

A model independent analysis was used to extract the transition charge den­

sity and reduced transition probability for most of the states below 1 2  MeV of 

excitations. The B (El) values are in an overall agreement with those measured 

by (7 , 7 ') and those calculated by the shell model.

The longitudinal and transverse form factors were compared with the pre­

dictions of a nuclear shell model calculation performed in a 3hu  space. The 

agreement with the shell model predictions was found to be generally satisfac­

tory. A much improved description of the longitudinal data for the low-lying 

octupole transitions is obtained by mixing contributions from a collective state.

A number of M4 transitions identified by this experiment are in agreement 

with those measured by the pion scattering experiment. The (e,e') data  were 

used to remove one of the two possible solutions of the spectroscopic amplitudes 

in the (7r , 7r') analysis.

A large number of states beyond 13 MeV of excitation were observed in this 

experiment. In the region beyond 18 MeV several new states were identified 

and width parameters for these states have been obtained.

Finally, in the giant resonance region on 15N the work of Ansaldo has been 

extended up to much higher momentum transfer.
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C hapter 1 

Introduction

O ur knowledge concerning the structure of nuclei has improved through the 

development of nuclear models. Very often, due to continuing improvements of 

the models, it was possible not only to reach a qualitative description of the 

observed phenomena, but also to account for them quantitatively. In the anal­

ysis of experimental nuclear data, the models may be classified as: macroscopic 

and microscopic according to the assumptions introduced.

Macroscopic models describe the nuclear system in terms of collective vari­

ables like the radius and the skin thickness of the charge distribution and can 

easily be used to fit the data to provide meaningful parameters such as the 

transition strength and the transition radius. The rotational and vibrational 

models are examples of commonly used macroscopic models. On the other hand 

in microscopic models the nucleus is described in terms of motion of individual 

particles. These are more fundamental descriptions of the nucleus and the nu­

clear shell model is an example of a widely used microscopic model which has 

been quite successful in explaining a large body of experimental data.

In the nuclear shell model it is assumed that each nucleon moves in a po­

tential tha t represents the average interaction with the other nucleons in the 

nucleus. The potential is generally assumed to be harmonic oscillator or Woods- 

Saxon type. The model predicts tha t nucleons occupy well defined angular mo­

m entum  states in a nucleus. A study of the charge density difference Ap(r) 

between 205T1 and 206Pb has provided clear evidence tha t the concept of a shell 

model wave function even in the centre of a heavy nucleus like lead is well 

founded [lj.
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Improvements in nuclear models depend on the availability of more sophis­

ticated data from nuclear reactions. In general, one studies different aspects of 

nuclear structure by performing experiments with different nuclear probes e.g. 

hadron scattering experiments are mostly sensitive to the nuclear surface while 

photon and electron beams interact with the full volume of the nucleus and 

hence require a knowledge of the distribution of nucleons in the nuclear interior 

as well.

Electron scattering has some special features tha t make it one of the best 

tools for nuclear-structure studies. The electron interacts with the nuclear 

charge and current distributions through the electromagnetic interaction, which 

is well known. Acting as a source of virtual photons, it provides a momentum 

transfer map of a specified nuclear excitation. The spatial transition charge, 

current, and magnetization densities can then be obtained from the momentum 

transfer (q) dependence of a nuclear transition in a manner which is relatively 

free from ambiguities of unknown reaction mechanisms. This makes electron 

scattering an ideal probe which enables one to test nuclear models.

Most electron scattering results, for a long time, were interpreted in terms 

of macroscopic models. These models have had considerable success, partly 

because most of the early data did not extend to high enough q to allow an 

extraction of the details of the nuclear interior. Further, in many cases strongly 

excited levels were studied, e.g. collective quadrupole and octupole transitions. 

Therefore the macroscopic model was able to describe the gross features of the 

measured transition charge density in terms of a surface peaked shape. Modern 

electron scattering facilities provide higher precision data which also extend 

to high enough q values and allow study of structures in the nuclear interior 

th a t cannot be described by macroscopic models. A microscopic treatm ent is 

necessary in order to understand the details of the new data.

In electron scattering both longitudinal and transverse components of the 

transition are excited and their comprehensive experimental measurement is 

highly desirable for tests of nuclear models. Unfortunately very few experiments 

to date have measured the longitudinal as well as the transverse components of 

the electron scattering cross section. This is because the longitudinal transitions
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in the spin zero ground state nuclei have in general extremely weak transverse 

components which are difficult to measure even with a 180° system where the 

sensitivity to transverse cross sections is a maximum. For non-zero ground 

state  spins, transitions generally involve several multipoles which are difficult 

to separate and a comparison with theoretical predictions becomes cumbersome.

The purpose of the present experiment was to provide accurate longitudinal 

and transverse cross sections of 15N states up to 25 MeV excitation energy and 

over a large range of momentum transfer. There are several reasons which 

make 15N an interesting nucleus to study. 15N has a ground state of J * = 

1 / 2 “ and longitudinal cross sections are determined by only one multipole. 

The transverse excitations include, in general, a magnetic and a transverse 

electric component. Thus both the longitudinal and transverse cross sections 

can be measured without too many multipoles crowding the measured data. 

Since there are only 15 nucleons in 15N, it is possible to perform shell model 

calculations without severe truncation of the model space. Thus it is felt tha t 

15 N provides a situation where a relatively rigorous comparisons between theory 

and experiment could be made.

This work is part of the bigger project for studying the p-shell nuclei by 

electron scattering. The cross sections for electron scattering from 15N were 

measured at NIKHEF-K in Amsterdam. A gas target was used and spectra 

up to 25 MeV excitation energy were recorded at forward angles covering a 

momentum transfer range 0.5 - 3.2 fm-1. The corresponding transverse cross 

sections were obtained previously at a scattering angle of 180° with the MIT- 

Bates electron scattering facility. The longitudinal and transverse parts of the 

cross sections could then be individually obtained from these experiments.

Previously, the 15N nucleus has been studied extensively both theoretically 

and experimentally by many authors using different techniques.

Theoretically, the properties of 15N levels were studied by several investiga­

tors [17], [8 ]. Detailed calculations were carried out by Lie and Engeland for 

levels below 12 MeV excitation energy in the framework of a weak coupling 

model. The positive parity states were taken to be admixtures of lp -2 h and 

3 p-4 h configurations with respect to an 16O core i.e. the particles were assumed
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to occupy the (2 s,Id) orbitals and the holes the p orbital. Recently another 

calculation was performed by Millener[18j. In this calculation the full 1 hu  and 

a truncated 3hu) model space was included. The truncation of the 3hu  ba­

sis is described in reference [19]. The recent shell model calculations provide 

more detailed descriptions of the nucleus and the weak coupling model can be 

considered an approximation of these calculations. For this reason, we shall 

concentrate on the interpretation of our data in relation to the predictions of 

the shell model calculations.

Electron scattering cross sections for 15 N have been measured in the past 

at several laboratories [2 0 ], [21], and [2 2 ]. The Stanford experiment [20] suffered 

from poor resolution (> 400 keV), but a more serious limitation of these data is 

th a t no longitudinal transverse separation was carried out. Since nuclear model 

calculations predict the longitudinal and transverse parts of the form factors 

separately, this seriously restricts the usefulness of these data for comparison 

with theory. The data on the inelastic scattering to the low-lying states ex­

tended to excitations up to 8  MeV and cross sections and angular distributions 

corresponding only to the doublet at 5.30 MeV, to the level at 6.3 MeV, and to 

the three unresolved levels at 7.16, 7.31, and 7.57 MeV were reported. Because 

of the use of a liquid NH3 target, the data suffer from an uncertain normaliza­

tion of the order of 20 % [2]. The Saskatoon experiment[2 1 ] was performed with 

a resolution of approximately 2 0 0  keV. The data were accumulated up to 9.5 

MeV excitation energy and momentum transfer values between 0 . 6  and 1 . 1  fm - 1  

were studied. The cross sections and angular distributions corresponding to the 

doublet at 5.3 MeV, to the two unresolved levels at 7.16 and 7.31 MeV, and to 

level at 7.57 MeV were obtained. The data of this experiment were analysed 

w ithout taking into account Coulomb distortion of the incident and scattered 

electrons, and it has been shown that such analysis can lead to errors in the 

resulting reduced transition probabilities. The previous Glasgow data[2 2 ] were 

accumulated up to 7 MeV excitation energies, and momentum transfers be­

tween 0.29 to 1.1 fm-1 . Cross section values corresponding only to the doublet 

at 5.3 MeV and to the level at 6.3 MeV were measured. Longitudinal transverse 

separations were performed and spectroscopic factors were extracted. None of
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the existing measurements are adequate for a detailed test of nuclear model and 

it was felt tha t new better data are needed to improve and extend the scope of 

comparison with the shell model for this im portant nucleus.

The 15N(7 , 7 ') reaction was used by Moreh et.al[3] to measure the ground- 

state radiative width of nine levels below 10.2 MeV. These levels are 3/27(6.32 

MeV), 3/2f(7 .32 MeV), l/2 f(8 .3 0  MeV), 3/2f(8.57 MeV), l/2^(9 .05  MeV), 

3/2^(9.15 MeV), 5/27(9.76 MeV), 3 / 2 3 (9 . 9 2  MeV), and 3/2^(10.07 MeV), see 

figure 1.1. The l/2^(8 .30  MeV) and the 3/2^"(8.57 MeV) levels were very 

weakly excited and hence for these states only a rough determination of the 

w idth was possible. The l/2 j'(5 .29  MeV) and 5/2f(5.27 MeV) levels were not 

observed in this experiment because their widths are below the sensitivity of 

the measurements. The results were compared with the predictions of several 

nuclear models and relatively good agreement was noted with a large basis shell 

model calculations without effective charges.

The nucleus 15N has also been studied extensively with strongly interacting 

probes. Generally, the information obtained from such reactions is not eas­

ily interpreted. However, inelastic scattering experiments with protons (p,p'), 

neutrons(n,n'), etc. have identified the energies and angular momenta of a 

large number of excited states. Particle and cluster transfer reactions are very 

successful in identifying levels of definite characteristic e.g. 14C(d,n)15N and 

14N (d,p)15N reactions populate states in 15N which have , respectively, 14C®p 

and 14N®n as the dominant structures. The single-particle transfer reactions 

provide nuclear spectroscopic factors which can be directly compared to the 

prediction of microscopic models and in general the results of such studies have 

supported the predictions of recent large basis shell model calculations[l8]. The 

single nucleon transfer reactions with the deuteron as incident particle, the 

range of angular momenta which can be transfered is limited. These reactions 

have been very successful in identifying states dominated by lp-2h configura­

tio n s^ ,5,6,7] with respect to an 160  core, e.g. Kretschmer et al. have been able 

to identify low-lying positive parity states up to 8.57 MeV in 15N via 14N(d,p)15N 

reaction.

In cluster transfer reactions instead of a single nucleon a multinucleon clus­
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ter, e.g., d, t , 3He and a , is transfered and are more sensitive to states with 

significant 2p-3h, 3p-4h configuration amplitudes. For example the 13C(o!,d)15N 

reaction has been studied by Yasue et al.[l 1 ] and many states dominated by 

2p~3h configurations have been identified. Because of the posibility of transfer- 

ing a large angular momentum the cluster transfer reactions have been used to 

identify many high spin states[l3,23,26,24,25]. For example Tserruya et. al[26] 

have identified high spin states in 15N via 12C(7Li,a)15N reaction.

Finally, a large number of levels were identified in the giant resonance re­

gion by Weller et al.[14] and Harakeh et al.[13] using the 14C(p,7 )15N reaction. 

Ansaldo et al.[l5] used electron scattering and obtained longitudinal transverse 

separation of the cross section in the giant resonance region.

The present thesis is restricted to the study of electroexcitation cross sections 

of positive parity states in 15N. The negative parity states are the subject of 

a Ph.D thesis by J.W . deVries[2 j. The positive parity states below 1 2  MeV 

excitation energy include the l / 2 + states at 5.29, 8.31, 9.05 and 11.44 MeV; the 

3 /2 + states at 7.31, 8.57, 10.07, 1 0 . 8  and 11.77 MeV; the 5 /2+  states at 5.27, 

7.15, 9.15 and 10.53 MeV; the 7 /2+ state at 7.57 MeV and the 9 /2 + state at 

10.69 MeV. The low energy excitation spectrum of 16N states is shown in figure 

1 .1 . A number of states were also observed in the higher excitation energy 

region. In chapter 2 , electron scattering formalism and theoretical models used 

in the analysis of the present data are discussed. The experimental set up, 

data  collection procedures and the extraction of cross sections are presented 

in chapter 3 . In chapter 4, the analysis of the experimental data to obtain 

spectroscopic information about 15N and a comparison with shell model results 

is discussed. Finally, chapter 5 contains the conclusions.
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, / 2+   " 3 / 2

3/2+ -----------------
' / 2 +  ----------------------------

7/ 2 +

S/*t 
S/2  +

3A

0  L  —   ' /  2"
15n

F i g u r e  1 .1 :  Positive and Negative Parity Levels up to IS M eV in N.

7



C hapter 2 

T heoretical Background

This chapter consists of two parts. In the first part a resume of the formulas 

used in inelastic electron scattering will be given. In the second part the various 

models th a t have been used to analyse the data are discussed.

2.1 E lectron Scattering Form alism
a

Electrons as/probe have a special place in the various methods of studying 

nuclear structure. This is because the interaction of electrons with nucleons, 

the electromagnetic interaction, is well understood. It can be easily and reliably 

related to nuclear charge, current, and magnetization distributions, as discussed 

later in this section. Unlike the processes involving real photons for which q 2 

=  uf2, in electron scattering experiments q 2 - oj2 > 0 , so tha t for a given state 

of excitation energy (a;), a range of momentum transfer q can be selected by 

varying the incident electron energy and/or the scattered electron angle. This 

is the key to the determination of nuclear transition densities as the density 

at a certain r is basically a Fourier transform of the cross section over a com­

plete range of q for the excitation of tha t state. The different contributions to 

the electron scattering process can be described conveniently in terms of Feyn­

man diagrams. Figure 2 .1 (a) represents the one photon exchange Plane Wave 

Born Approximation (PWBA). The remaining diagrams appear as corrections 

to  PWBA. The corrections to PWBA can be divided into two categories. First, 

the radiative corrections which result from the contributions of diagrams (b) - 

(g) in figure 2.1 and the target thickness effects. These effects are discussed in

8
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Figure 2.1: Feynman Diagrams for Electron Scattering Contributions
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subsec. 2.1.3. The second category is the effect arising from the distortion of 

the electron waves by the Coulomb field of the target nucleus (figure 2.1 (h),

(i)) and is discussed in subsec. 2.1.4.

2.1 .1  K in em atics

The interaction between the incoming electron and the target nucleus can 

be described by figure 2 .1 (a), where

, Kpf =  the initial and final electron 4-momenta, where
K pi = (iE,-,kj), K nf = (iE /,k /)

P m* > P**/ =  initial and final nucleus 4-momenta,

0  = the scattering angle of the electron, and

=  the transferred 4-momentum:

q2 = (K& - KM/) 2 =  q 2 - w2, where,

q  =  three-momentum transfer q= k , - k / 

w =  energy transfer

Note th a t in the above equation and in the following, the system of natural 

units is used, h = c =  1. This means tha t energy, momentum, and mass all 

have the same dimension. Usually the unit used is fm-1. The conversion factor 

from fm - 1  to MeV is: fm - 1  =  197.33 MeV.

Using the conservation laws for energy and momentum and neglecting the 

electron mass, one gets the following formulae:

ql =  iE iE f  sin2 (0 / 2 )
E , = ( E t - K j / r ,  (2.1)

where K =  E exc( 1 +  E exc/M ),

E exe =  the energy of the state to which the nucleus is excited,

M =  the mass of the nucleus, and

rj = the recoil factor
=  1 +  2  Ei sin2 (0/2)/M .
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2.1 .2  E lectron  S ca tter in g  C ross S ection

The derivation of the cross section for the scattering of high energy electrons 

from nuclei in PWBA can be found in several review articles [27,28]. It is usually 

w ritten in the following form :

% = S  i F"(q) i2 + tan2W2» ̂  (I #  w i2 +1 i2}' U=0  A=1
(2 .2)

Here <7m  is the M ott cross section given by :

Z 2a2 c o s 2 ( 0 / 2 )

=  4 £ ,W ( 0 /2 )  (2-3)

a  being the fine structure constant.

In the derivation of equation 2 .2 , one-photon exchange is assumed. Fur­

ther, apart from using plane waves for the incoming and outgoing electron, the 

approximations m e=0 and huj = Ei — E f  <C hcq have been made. The nu­

clear structure enters into the cross section only through the longitudinal form 

factor F c and the transverse form factors F E and F M. These form factors 

are functions of the momentum transfer q only. They can be related to the 

electromagnetic transition operators Tf, T™) as

(2-4)

1 F * [q) |2= Z*(2Jt + 1) !< J f  11 ^ (q) 11 Ji > | 2  (2'5)

1 |2= Z 2(2Ji + 1) !< Js 11 11 Ji > | 2  (2'6)

M*(q)  =  /  dzrjx(qr)YXllp(r) (2.7)

= 1 1  x jA(gr)Y?A1} • J ( r )  + q2 J  d3r{ jx(qr)Y^x l} ■ A(r) (2 .8 )

and

T?„(q) = J  f r & f r )  YJ»,} • J ( r )  +  /  d*r{V x j* (« r)Y ;„}  • AW (2 .9 )

where p(r), J ( r ) ,  and /t(r), are the nuclear charge, convection current, and 

magnetisation current density operators, respectively, j\(qr)  is the spherical

11



Bessel function of order A, is the spherical harmonic, and Y ^xi  is the vector 

spherical harmonic.

The m atrix elements of these operators, which appear in equations 2 . 4  to

2 . 6  are the reduced m atrix elements; these are related to the ordinary m atrix 

elements of the operators through the Wigner Eckart Theorem [32] viz.

<  J /M f  | | J M  > =  ( - 1 ) ' / - " /  (  J j  || M \  || >

The m atrix element between two nuclear states with angular momenta «/, and 

J f  must satisfy the rule

| Ji — Jf  |^r A fC | Ji -f- J j  | .

The operators have restrictions on the multipolarity and parity given by

M{  A >  0  ( t t )  =  ( - 1 ) A 

A > 1 (n) = ( - l ) x
T f  A > 1 ( t t )  =  ( - 1 ) A+1

Experimentally, the measurement of the cross section is a measurement of 

the sum of form factors where the momentum transfer q can be varied either 

through changing the incident energy or the scattering angle or both. The rela­

tive contribution of the transverse form factor to the total cross section differes 

in forward and in backward direction through the term  (1 / 2  -f tan 2 (0 / 2 )) in 

equation 2 .2 . Thus a measurement in forward and in backward directions at 

the same momentum transfer provides a means of separation of the longitudinal 

and transverse form factors. In this separation ideally, the backward measure­

ment is done at 180 degree, where the contributions from the longitudinal form 

factor is zero. We have used this method to calculate the longitudinal form 

factor, see chapter 3.
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2.1 .3  R ad ia tive  C orrections to  E lectron  S catter in g

In the analysis of an electron scattering experiment, necessary corrections 

due to radiation and ionization effects must be made. These effects may be 

grouped into the following categories :

(a) Radiation effects during the scattering by the nucleus.

(b) Straggling due to ionization effects.

(c) Emission of hard photon during scattering process.

These will be discussed briefly. A more extensive discussion can be obtained 

from [28].

a- The Schwinger Correction

While the electron scatters off a given nucleus, it will interact with the 

nuclear radiation field, emitting real and virtual photons. The Schwinger cor­

rection arises from the emission and reabsorption of virtual photons by the elec­

tron, and from the emission of soft, unresolved real photons. Figures 2.1(b-g) 

represents the Feynman diagrams corresponding to the Schwinger correction. 

This correction involves the multiplication of the theoretical scattering cross 

section (do/dO)** by a correction factor e6* with 6a > 0 , so tha t the observed 

cross section measured under the peak out to some cut off energy A E  is

do(A E ) _  do .
d(l Kd n ’th

a compelete expression for 6S may be found in [29]

b- Landau Straggling

This effect is caused by the ionization straggling, in which the multiple 

small- energy losses come from atomic ionization[30] and cause a broadening of 

the peaks, and contributes a correction factor ( 1  - 6j) to the theoretical cross 

sections.

c- H ard-Photon Brem sstrahlung

This arises from the emission of a hard photon , k > A E  , during the 

scattering process (figures 2 . 1  (f),(g)) such tha t the energy of the electron is
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reduced below the cut off at energy A E  , so tha t it is not counted in the area 

under the peak. The area of a higher-energy excited level is determined by 

subtracting from the measured peak the radiation tail of the elastic peak and 

of all lower-lying excited levels.

The preceding effects give rise to two different type of corrections of exper­

imental spectrum  of scattered electrons which must be considered.

(1) Line shape correction

In order to correct the experimental spectrum for radiative corrections ( fig­

ures 2 . 1  (b - e)) , the simple way is to convolute the theoretical line shape 

function with the detector resolution function and the intrinsic nuclear excita­

tion function, and the resulting line shape is used to fit the measured data to 

obtain the experimental non-radiative cross section directly (see chapter 3)

(2) R adiative tail correction

The background tha t contributes to the inelastic spectrum (figures 2 . 1  (f),(g)) 

by the radiation tail of lower excited levels or of the elastic peak must be calcu­

lated and subtracted from the peaks. Figure 3.3 illustrates the inelastic peaks 

sitting on the top of the radiation tail of the elastic peak.

2.1 .4  C oulom b C orrection

The Coulomb field of the target nucleus causes the distortion of incoming 

and outgoing electron waves. For small Z nuclei where the distortion effects 

are not too large, the following simple method accounts for these effects satis­

factorily [28 j. The basis of this approach is that as the electron approaches the 

nucleus it is accelerated by the static nuclear Coulomb potential. This results an 

increase in the momentum transfered to the nucleus to an effective momentum 

transfer, qef f  ,

Q e f f  =  Q
Zahc

1 + f ( E)
Ei R eq _

where R eq = (5/3 ) 1/ 2 < r 2 > 1!2

By comparing the evaluated plane-wave Born approximation cross section with
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those calculated in the distorted-wave Born approximation, it was found that, 

for A =  1

f ( E )  = 0.139 +  5.02 x 10~SE  -  4.9 x 10~6E 2

and for A =  2,3

f {E)  =  0.169 +  6 . 1  x 10~3E  -  7.8 x 10~6E 2

This prescription was used for comparison of the data with theoretical calcula­

tions which were performed in PWBA.

2.2 N uclear Structure M odels

It was pointed out in section 2 . 1  tha t electron scattering form factors are 

Fourier Bessel transform of the corresponding nuclear transition density. In or­

der to extract the densities from the experimental data it is generally necessary 

to assume a form of the density and see if it provides a good description of the 

data. In the following, the models used in interpretation of the present data 

are discussed.

2.2 .1  M od el Independent A nalysis

The theoretical interpretation of electron scattering data, starting from first 

principles with a microscopic description of the nuclear charge and current 

distributions depends on the theoretical model for the approximation of the 

nuclear many body problem and the choice of the empirical two nucleon inter­

action potential. Up to now microscopic models are still too crude to match 

the experimentally quoted errors for cross sections, in particular for high mo­

mentum  transfers which reveal the nuclear structure in more detail. Further, 

the commonly used scheme for scattering data evaluation is model dependent 

in a more direct manner, whe/e phenomenological models are used which allow 

to define nuclear charge and current distributions by a snnaU set of param ­

eters.

In any of these cases, the experimental error information can only be trans­

ferred to the input-parameters of the model, but cannot be directly related
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Ye str i

to the nuclear charge and current distributions; at least not in a model inde­

pendent manner. Since any theoretical interpretation of the experimental data 

is, by definition model dependent, the meaning of a model independent analysis must be

:Ted to / m athem atical procedure of data reduction of experimental cross section infor- 
obtcun

m ation to/nuclear charge and current densities.

The Fourier-Bessel analysis has been used frequently and is quite successful 

in fitting (e,e') data. This method is based upon the expansion of the nuclear 

charge density, p(r), in terms of spherical Bessel functions. Thus the charge 

density for mu Hi pole is given by :

( T,ii A tlqx- lj x(ql~l r) r < R c 
p ( r ) =  (2 .10)

{ 0 r > R e

with q^Rbemg the fxth zero of the spherical Bessel function of order A [31] , 

and R c is the cut off radius chosen far enough outside the nucleus tha t this 

approximation is valid (we used R c =  7 /m ), see section 4.2.

The advantages of the Fourier-Bessel expansion are as follows: (a) the co­

efficients can be determined in a fairly uncorrelated way; (b) there is a direct 

correlation between the q range of the experimental data and the number of 

coefficients tha t are determined from these data. These two features can be 

seen in the PWBA approximation, where the form factor at q =  q^ is given by

Fa M  =  [^(2A +  1)\1/2R3J 2x+1(9„rM , .  (2-11)

Thus the coefficient A^ is determined by the form factor at If the data 

were taken only at exactly q^ and if the PWBA were completely accurate the 

coefficients could be determined in an uncorrelated way. The DWBA introduces 

some correlation between the coefficients A M as does the fact tha t the data are 

usually not taken at only these restricted values of q. It has been found that 

an experiment measuring the cross section up to qmax determines mainly those 

coefficients A^  for which qp < qmax■ Thus the number of terms determined 

by the experiment is given through the q range over which the cross section 

has been measured. This qualitative relation still holds if one uses DWBA.
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However, in this case the number of coefficients obtainable from the data, N , 

is determined such th a t is the closest to

9mL = 9ma,
. Zahc  

1 +  4/3
EiR eq J

(2 .12)

By using qeff  one includes approximately the distortion of the electron wave 

for which two effects are dominant: the attraction of the electron and the nucleus 

and the focusing of the electron wave.

The higher order A M coefficients for /a > N  can be determined because it has 

been observed tha t the measured form factors drop off very rapidly for momenta 

above about twice the Fermi momentum of the nucleon in the nucleus[31]. This 

has been observed on the 2+ level in 58Ni[36] and the 3“ [37] and 5“ levels in 

2°8pb[3 8 ]. We assume that in this region the form factor is zero with an error 

envelope given by the tangent to the maxima in the measured form factor at 

lower q.

One of the frequently occuring problems with the Fourier-Bessel analysis is 

th a t the resulting density has oscillations at radii which are more or less outside 

the nucleus. To avoid these oscillations a tail bias is usually applied: as a first 

step a desired shape given by p(r) oc e~ar was used. In addition a radius R\  

beyond which the transition density follows the above shape has to be chosen. 

R i=  4 fm has been used in the present analysis. Finally, one has to find a 

variance. This was done through a pseudo x 2 which is added to the x 2 and the 

total x 2 is then minimized with respect to all Fourier-Bessel amplitudes and 

with respect to a.

In chapter 4 the longitudinal form factors are analysed in a model indepen­

dent framework providing the transition charge densities and also the reduced 

transition probabilities.

2.2 .2  T he S ingle-P article  M odel

The single-particle model is a description of the nucleus where each nucleon 

is considered individually and is assumed to move nearly independently of all 

the other nucleons in an average potential U(r) due to the other nucleons.
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The most frequently used potentials are :

(1 ) The harmonic oscillator potential

Uho = -h w r2/b2 +  constant z

where u  is the angular frequency and b = (h/moj)1!2 is the characteristic length 

of the harmonic oscillator potential.

(2 ) The Woods-Saxon potential

Uws = - V 0f (r)  +  V30----- /( r )  < 1 • s >  +Vc( r ) i ( l  +  tz)
m pr 2

where f (r)  =  [ 1 +  exp(r - i20) /a ] - 1  , Ve is the Coulomb potential for a uni­

form spherical charge distribution, V0 is the central potential depth, V80 is the 

spin-orbit strength, and tz is the isospin of the nucleon(r2 =  1 for proton and - 1  

for neutron). The harmonic oscillator potential is frequently favoured because 

of the advantage th a t many mathematical operations can be performed analyt­

ically. An unrealistic feature is the fact tha t the harmonic oscillator potential 

goes to infinity when the distance from the origin r increases (see fig 2 .2 ). The 

Woods-Saxon well is more realistic but its use requires numerical methods of so­

lution. Furthermore, the correction for the center-of-mass motion can be made 

exactly only for the harmonic oscillator potential. For these practical reasons, 

most analysis is performed using harmonic oscillator wave functions .

S in g le -P a rtic le  M a tr ix  E lem en t

The electron operator is a one body operator and hence in the scattering pro­

cess state of only one nucleon is changed. For this reason, the m atrix elements 

of the single-particle multipole operators M{, T%, T™ required in equations 2.4 

- 2 . 6  reduce to simple m atrix elements between single-particle states.

The nuclear charge , current , and spin operators in the shell model are just 

sums of the operators for the individual nucleons [35]

p(r ) =  ' E # - r i)
j = i

j ( r )  =
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Figure 2.2: Harmonic Oscillator and Woods-Saxon Potentials
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where

e j  1 / ^ ( 1  “I" Tj z ) ^ p  T"  l / 2 ( l  — l / 2 ( l  +  TjzjfJ'p “f* l / 2 ( l  Tj'z ) l l n

ep =  1 , en =  0 , ftp = 2.79 and //„ =  —1.91

These operators are the single-particle operators whereas the initial and final 

states are many-particle states . However , the overall nuclear m atrix elements 

can be expressed as a summation of single nucleon m atrix elements :

< ^ f \ \ 0  | |  > = J 2 P a / 3 < < x \ \ d \ \ ( 3 >
a,/3

where a,/?  are single-particle states and the pap are coefficients , which give 

the contribution of each single-particle transition . For example, in the case 

of Coulomb multipole operators the reduced m atrix element may be given 

by [27,73]

< || M j(r)  || >

X

( _ 1  y + J + $  (  (2l '+l) (2l+l )(2 j '+l ) (2 j+l )(2J+l )^ V 2

< n't1 | j j ( q r) I > 

(2.13)

V j '  \ \ (  V J  I
j  I J 0 0 0

where
roo

< n’l' | j j (q r ) | nl >=  /  R n'i'{r)jL(qr)R„l (r)r dr. (2-14)
J o

R ni is the radial part of the wave functions. In the case of harmonic oscillator 

potential, the radial wave functions R ni are:

1/2

= ( [̂rfo + Z+ff ) G)exp H
l+-where L n_\ is the Laguerre polynomial defined by :

£ . ( , )  =  r (a +  P .+  l ). £ ! - ^ [ ^  exp(-z)}  
pK ] r(p + l) za dzp n

L l+h ( r_  
n—1 62 (2.15)

The Coulomb form factor may then be calculated using equation 2.4



Center o f M ass and Finite Size Corrections

Two corrections must be made before a form factor calculated from the shell 

model can be compared with experimental data. Firstly, since the operators 

and the wave functions upon which they operate assume that the nucleons are 

point particles, the finite size of the nucleons must be taking into account. This 

is accomplished by multiplying the calculated form factor by a single nucleon 

form factor / s n (<1)• In this work the Mainz-four-pole fit[34] is used.

a i ,..,4 =  0.312, 1.312, -0.709, and 0.085 , m K .i4 =  6.0, 15.02, 44.08, and 154.2 , 

and q is in fm — 1

Secondly, the shell model wave functions are calculated relative to an origin 

which is not the same as the center of mass of the nucleus. Thus the shell model 

form factor must be multiplied by a factor / c m (?)- For harmonic oscillator 

potential the factor has the form [27]

fcM(g) = exp [(qb)2/4A] 

where b is the oscillator param eter and A  is the nucleus mass number.

2.2 .3  T he Shell M odel

The single-particle model discussed in the previous subsection has been quite 

successful in predicting the level sequences for many odd-mass nuclei, and es­

pecially for those with nucleon numbers near major closed shells, e.g. 209Pb, 

but, it fails to predict many observed nuclear moments. Moreover, it cannot 

account for the fragmentation of the single-particle levels observed in the nuclei 

with several valence particle outside the shells. The shell model which is an 

extension of the single-particle model involves consideration of both its major 

assumptions, namely the independence of motion in a central potential, and the 

incomplete treatm ent of the residual interactions.

The Hamiltonian for the shell model is given by

A  A
Hsm = E l T< + U(n)) +  1 / 2  £  7 ( r , , )  (2.16)

i=l
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where the first term  represents the single-particle motion, and the second term  

describes the residual interaction. In the shell model calculations the attention 

is then concentrated on the potential energy shifts due to the residual interac­

tion Vij, and on the single-particle states tha t may be occupied by the particles 

between which the residual forces act; these states define the model space of 

the single-particle model. The procedure for the shell model calculations is to 

specify the nucleon configuration tha t may contribute to the wave function of 

a given level and then evaluate the m atrix elements of the assumed residual 

interaction between the states of the model space. Finally, using these ma­

trix  elements increased by single-particle terms and spin-orbit energies the full 

Hamiltonian m atrix is set up. From this the eigenvalues giving the energies 

of the states and the eigenvectors giving their wave functions are obtained by 

standard  methods. The eigenfunctions can then be used in the evaluation of 

nuclear moments and transition probabilities, etc.

More realistic calculations must introduce the repulsive core of the internu­

cleon force. When the residual interaction is set up in this way, so tha t the 

resulting Hamiltonian acting on a limited range of wave functions produces a 

result hoped to be equivalent to those of a full, unlimited calculations, it is 

said to be an effective interaction. Calculations using effective interactions and 

experimental single-particle energies can now be made on a very large scale, 

using several nucleons distributed between several single-particle levels.

It may be noted tha t in spite of the great successes of the shell model in the 

prediction of ground state spins and parities, magic numbers, etc, this model 

still has exhibited many limitations. For example, experimentally observed 

nuclear quadrupole moments are in most cases much larger than the shell model 

predictions; the transition probabilities of low-lying states exceed the single­

particle estimates; and typical rotational and vibrational band structures occur 

which are not easily accounted for in the shell model.

In order to compare the results of these theoretical calculations with the 

electron scattering data, electron scattering form factors were obtained from 

the shell model wave functions by using the density m atrix technique as follows: 

Any one particle operator, O, such as the electromagnetic transition operators
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M£, and T™, can be expanded

< %jjf | O | ipi > = Y ^ P « f < l 3 | 0 | a >  (2.17)
a , p

A A < (3 \ O \ a. > are the m atrix elements of 0  between the spherical harmonic

oscillator orbitals a  and /?, pap is known as the density matrix, and | > and

\%l)f > are the initial and final state wave functions respectively.
A  A A

Thus the m atrix elements of the operators, Mj[, TJ, and T™, evaluated be­

tween the wave functions produced by the extended shell model, can be built up 

from the m atrix elements of these operators, evaluated between single-particle 

states. For the Coulomb operator, these single-particle m atrix elements can 

be calculated from equation 2.13; the corresponding expressions for the m atrix 

elements of T{ and T™ can be found in [27].

Shell model calculations used in this analysis were performed in 3hu  space by 

Millener[12], and by the Utrecht group of Glaudemans[71]. These are discussed 

in more detail in chapter 4. The comparison between the present data and the 

shell model predictions are also presented in chapter 4.
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C hapter 3 

E xperim ental M ethod

The present experiment was carried out with the 500 MeV electron scat­

tering facility at the National Institute for Nuclear Physics and High Energy 

Physics (NIKHEF) in Amsterdam. A brief description of the experimental con­

ditions is given below. A more extensive description can be obtained from [40]. 

In this chapter the data reduction procedures leading to cross section values are 

also discussed.

3.1 B eam  Param eters

The electron beam produced by the Medium Energy Accelerator (MEA) is 

transported with the desired properties to the target through the beam handling 

system (AFBU). The beam handling system can be tuned in two modes,viz. 

Normal Mode (NM) and Dispersion Matching Mode (DMM). In NM the beam 

is brought to a non-dispersive point focus at the target. The resolution tha t can 

be obtaind in the spectrometer strongly depends on the energy spread in the 

beam, which can only be reduced by narrowing the energy-defining slit. This 

means th a t in order to obtain high resolution, a large part of the available beam 

power is lost in the slit system. In DMM the beam is dispersed at the target. 

When the dispersion on the target matches the dispersion of the spectrometer, 

the position of an electron in the focal plane only depends on the energy lost in 

scattering in the target and not on the energy of the electron in the beam. This 

means th a t the momentum resolution is independent of the momentum spread 

on the target, and all electrons which have lost a given amount of energy in
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the scattering process are focused at the same position in the focal plane of the 

spectrometer. As a result most of the available beam power can be used for the 

actual experiment. On tha t account NM was not used in these experiments.

Table 3.1: Beam  Parameters

energy range 70-430 [MeV]
peak current < 1 0 [mA)
repetition rate 250-300 [Hz]
pulse length 30-40 [ms]
average current <60 [mA]
energy spread on target <  3.10- 3 1a p/p]
intrinsic resolution 4.10" 5 [Ap/p]

The beam parameters obtained during the various runs for the present ex­

periment are listed in table 3.1.

3.2 T he Target

In the present experiment a room-tem perature gas target cell was con­

structed in the form of a thin walled cylinder, 40 mm in diameter and 50 mm in 

height and oriented with its axis of symmetry perpendicular to the scattering 

plane. The walls which were of thickness 40 /mu, consisted of a special alu­

minium alloy which maintains its high tensile strength at high tem peratures4 

W ith a maximum pressure of 4.5 atmospheres, the cell could stand average beam 

currents of up to 50-60 fiA. Besides the 15N target of which the specifications 

are given in table 3.2, three other targets were used under the same experimen­

tal conditions. A gas target cells filled with 4He or 1H provided cross section 

normalization while an empty cell was used to enable background subtraction. 

Energy calibration was achieved with a natural BN solid target.

The targets were mounted in the target ladder equipment capable of con­

taining eight standard frames. A chromium-doped aluminium oxide target was 

used for visual inspection of the beam spot with a TV camera. A thin platinum 

target enabled on-line tuning of the beam handling system and the optimization
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Table 3.2: Com position of the 15N  gas

Abundance : 15N » 96%
Impurities : 14N » 3.2%

160 « 0.5%
co2» 0.3%

of the quadrupole of the QDD spectrometer for optimal resolution.

3.3 The Spectrom eter

For the (e,e') experiments under consideration the high-resolution QDD 

spectrom eter[40] was used. The spectrometer consists of an entrance quadrupole(Q) 

in front of a solid angle defining slit and two dipoles. In a number of cases the 

large solid angle QDQ spectrometer at a more forward angle was also employed 

to monitor the product of the beam intensity and target thickness.

Table 3.3: M ain Parameters of QDD

Maximum particle momentum 600 [MeV/c]
Maximum field strength 1.43 [TJ
Deflecting angle of dipoles 2x75°
Momentum acceptance ±  5 [* ]
Angular acceptance (A<p,At?) ±  40 [mrad]
Solid angle AO 5.6 [msr]
Focussing conditions < x \ ‘& > , < y \ y > 0 [mrad/mm]

Angular magnification < i ) \ i } > ,< y \< p > -1.67,+0.87 [mrad/mm]
Resolution < 1 .1 0 ~ 4

Dispersion 6.78 [cm/%]
Focal plane angle 41°

The main parameters of the QDD spectrometer are listed in table 3.3. Both 

spectrometers are shown schematically in figure 3.1.

26



0099

QDD QDQ

S h ie ld in g S h ie ld in g

=/
FocalFocal p lane

S h ie ld in g  .Support Q -P o le

Multi pole

\ Q -P ole
Q -P ole

p |  p i  Target

11000

Figure 3.1: Lay-out of the two spectrometers setup, showing the rotatable plat­
forms,magnet configuration and shielding. Also indicated are the scattering 
chamber and slit systems. The beam enters perpendicular to the plane of draw­
ing. Measures are in mm.[40].
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3.4 D etection  System

The detection system of the QDD spectrometer consists of three multi-wire 

drift chambers(MWDC) and a set of five scintillators covering the focal plane 

backed by a Cerenkov counter as shown in figure 3.2. The drift chambers, 

the first of which (the Xl-chamber) coincides with the straight focal plane, are 

placed parallel to each other. The Xl-chamber determines the position of the 

electron trajectory in the dispersive direction, while in combination with the 

X2 -chamber the angle in the dispersive direction can be determined. The wires 

of the Y-chamber are placed at an angle of 26.5° with respect to tha t of the X l- 

chamber. W ith the y-chamber the distance of the electron trajectory from the 

symmetry plane can be determined and hence the angle in the reaction plane 

can be calculated. The angle with respect to the particle trajectory («  41°) 

together with the wire pitch (4mm) and the cathode-sense wire distance(4mm) 

ensures firing of at least two (double hit) and up to four wires (quadruple h it) . 

Distinction between double and triple events yields a spatial resolution of 2  mm. 

The mesurement of the drift times to the sense wires results in a fine-channel 

distribution of 16 channels per wire which corresponds to a spatial resolution 

of 0.25 mm. The processing time of an event is 300ns. During a beam burst a 

maximum of 128 events can be buffered.

In single-arm experiments, two data-taking modes exist : 

a- list mode : The full information per event is directly stored on tape. This 

allows off-line analysis of the data to improve the resolution, 

b- spectrum mode : The spectra of all chambers are directly accumulated and 

afterwards stored on disk.

3.5 D ata  collection

Spectra were taken in a number of data collection runs spread out over a 

period of two years. The measurements were made at incident energies 70, 

90, 130, 170, 300, and 430 MeV and scattering angles between 40° and 98.5°. 

This covers a range of effective momentum transfer from 0.4 / m - 1  up to 3.2 

f m ~ l (see table A l, appendix A, for energy-angle combinations). Some typical
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Figure 3.2: Lay-out of the focal plane detection system, showing the wire cham­
bers,scintillators and Cerenkov detectors. The Xl-chamber coincides with the 
focal plane[40].
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spectra are shown in figures 3.3 - 3.8.

The measurements complemented data obtained previously[46] at a scatter­

ing angle of 180° with the MIT-Bates electron scattering facility. The results 

of the 180° experiment allow the transverse parts of the cross sections to be 

subtracted from the present forward angle data. At each energy-angle com­

bination data were also obtained with the 4He or *H target for cross section 

normalization and with the empty target to enable background subtraction.

Before cross sections can be extracted from the raw data, a number of cor­

rections must be applied. These procedures are discussed below.

3.5 .1  S p ectru m  recon stru ction  from  list m ode d ata

As discussed in the previous chapter, two modes of data taking have been 

used : spectrum  mode and list mode. When a spectrum is recorded in list mode, 

it can be corrected later for two effects. The first correction is for kinematical 

broadening and is caused by the horizontal acceptance of the spectrometer. As 

a result of this acceptance there is a spread in recoil-shift in the spectrum  given 

by :

A E =  ( E i / M )  sin(0)A0

where,

Et- is the beam energy,

M is the mass of the target nucleus,

0 is the scattering angle, and

A0  is the horizontal acceptance of the spectrometer.

By reconstructing the trajectory of each electron through the spectrometer, 

the individual scattering angles can be calculated and thus the kinematical 

broadening can be corrected[41]. The second correction is for abberations in 

the spectrometer optics. By analysing a number of spectra with the computer 

program TESTKRAK[41] the coefficients describing the abberations can be 

optimized.

3.5 .2  D ead  tim e correction

Since the MWDC’s have a finite event-processing time, the chambers are
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not ready to accept a new event for a time Td after registering an event. As a 

consequence of this dead time a certain amount of counts is lost. An overall cor­

rection is performed by multiplying all fine-channel contents with a correction 

factor Cd :

Ct = ( 1 -  n M ) - 1

where,

Td is the average MWDC dead time :Td =  500 ns,

M is the instantaneous count rate :

A JT ^ tr
N brb

where,

N tr is the total number of triggers,

N b is the total number of beam bursts, and rb is the effective beam burst length.

3.5 .3  Efficiency correction

There are two kinds of efficiencies which must be considered: wire efficiency, 

representing the fluctuations in the relative detection efficiency of the wires in 

the Xl-cham ber ; fine-channel efficiency due to the unequal widths of the fine 

channels. Because of these efficiencies, not all counts are distributed correctly 

among the fine channels of a spectrum.

The correction depends on the kind of spectrum ( list mode or spectrum 

mode ) and on whether the detector stepping facility was used or not. This 

stepping implies a movement of the detector along the focal plane in 16 steps, 

covering the distance between two wires. During the recording of a spectrum, an 

equal charge is collected after every step of the detector, in tha t way smoothing 

out the differences in efficiency between the fine channels. In this case there is 

no need for a fine-channel efficiency correction.

In the case in which a spectrum has been recorded in spectrum mode without 

using the stepping facility, the efficiency correction consists of three operations. 

1 - Each fine-channel content is devided by its fine-channel efficiency, i.e. cor­

rection for the unequal widths of the fine-channels;
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2  - The correct fine-channel content is then interpolated on to the ideal fine- 

channel position;

3 - The 16 fine-channel contents of a particular wire are each divided by the 

efficiency of tha t wire.

3.5 .4  E nergy conversion

The scattered electron energy E f  determines its fine-channel position on the 

focal plane. The relation between the electron energy and fine-channel number 

is represented by the so called dispersion polynomial

E f  = r # ( l  +  di(n -  n0) +  d2(n -  nQ) 2 +  dz(n — n0)z +  d4(n — n 0)4) (3.1)

with :

T is the conversion factor between the spectrometer magnetic field and the 

electron energy [MeV/T]

B  is the magnetic field of the spectrometer [T] 

di,d2,ds,d4 are the coefficients of the polynomial 

n  — n 0 is the channel number relative to the central channel.

To determine the beam energy and the coefficients of the polynomial, the 

following energy-calibration procedure was pursued. First the peak positions of 

a number of well-known levels of 10B,n B,14N,15N, and 4He were substituted in 

equation 3.1 and by varying the incident electron energy, E i , n 0, and coefficients 

d\ through d4, a least square fit was made of the energies calculated in this 

way to the ones given by equation 2 .1 . A detailed description of the energy- 

calibration procedure can be found in [43]. The beam energies were determined 

with an accuracy of about 0.1% and are listed in table A.I.

3.5 .5  B in -sortin g

When several spectra have been recorded under the same experimental con­

ditions they have to be combined into one (bin-sorting). The bin-sorting pro­

cedure is performed as follows : a bin-width is chosen according to the actual 

resolution. This is because the energy channels or bins in the spectra are not 

equally wide due to the non-linearity of the dispersion polynomial. Next the
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spectra are sorted in bins, the content of each bin can be expressed by

n„ 4096 f \

A;=l ,= 1  ° i k

where,

n s is the number of sorted spectra,

Oijk is overlap of bin j  and fine channel i in spectrum k,

Sik is the width of (fine) channel i in spectrum k, and 

riik is content of (fine) channel i in spectrum k.

Finally, to each bin j  an error is assigned given by :

ATVy =  (A Nj)gtat +  A relNj

where (A N j)stat is the statistical error (AN j)stat = (Nj +  l ) 1/2. Here, one is 

added to Nj  to avoid the error being zero for bin content zero which may cause 

trouble in some fitting procedures and Arej is the estimated relative error. The 

relative error was estimated from line shape fitting procedures in which it can 

be adjusted to achieve a chi-square near the expectation value for the best fit.

3.5 .6  N orm aliza tion  o f sp ectrum

The sorted spectra are then normalized for unit collected charge and cor­

rected for energy width of the bins and the solid angle of the spectromrter.

Each bin in the spectrum must be normalized for collected charge, because 

its content is not necessarily composed of contributions from all fine spectra. 

As a consequence each bin may have collected a different charge on which its 

content has to be normalized.

To make the peak-hight in the spectrum independent of the energy-width 

used a normalization on tha t energy-width is performed.

Normalization on solid angle is only necessary in case the spectra tha t are 

to be sorted were recorded with different settings of the solid-angle defining slit 

of the spectrometer.

These three normalizations are combined in one factor :

n 8 4096

Qi =  £  £  ^ 9 . n . ei
jfe=l i = i
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where,

Oijk is overlap of bin j  and fine channel i in spectrum k , 

qk  is the collected charge in spectrum k ,

0 * is the solid angle of spectrum k, and 

£i is the energy width of the bin i.

The normalized bin-content and its error are given by :

= N j / Q j ,  A N )  =  A N j / Q j .

3.6 Lineshape fitting

The bin-sorted spectra are then line shape fitted to extract the experimental 

cross-sections. A lineshape fitting code ALLFIT [45] was used in fitting the

measured spectra. The total lineshape F(x), as a function of the electron energy

loss x, consists of a sum of contributions from individual peaks in the spectrum 

and a background function B ( x ) .

F ( x )  =  B ( x )  +  £  F ^ x )
je{peaks}

3.6 .1  F ittin g  function

The lineshape for each peak, Fj ( x ) ,  may be described as the convolution 

of a resolution function Rj, a radiative response function Ty, and an intrinsic 

nuclear excitation function Jy. A peak whose decay width is negligible may be 

described by R j  and 7y alone.

The resolution function used in this analysis can be described as an asym­

metric hypergausian function with tails, see equation B .l and figure B .l in 

appendix B. When the height of the lineshape on the low excitation energy or 

high excitation energy side of the peaks falls to the fraction ft or / r , respec­

tively, of the peak height h then the lineshape is described by the tails. The 

left tail is exponential while the right tail has two options. If the resolution 

function R  is convoluted with a theoretical radiative response function T , then 

the exponential form is used for the high excitation tail. If the convolution is 

treated as a single empirical function, then the inverse polynomial form is used 

for the high excitation tail.
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The theoretical radiative response function is evaluated following the work of 

[47] and [48]. The total radiative response function T {A E )  is the convolution of 

three contributions, the Schwinger distribution T Sch( A E ), the Bremsstrahlung 

distribution T B( A E ), and the Landau distribution T La(A E ).  The analytic form 

T (A E )  reproduces well the experimentally observed shape of the radiative tail.

It is sometimes convenient to express the convolution of R  and T  as a single 

empirical lineshape function. The chosen empirical lineshape function R  in 

equation B .l must smoothly join the radiative tail, with the central region of the 

lineshape. The empirical function used in this analysis is the same hypergausian 

function, equation B .l, as was in conjuction with the theoretical radiation tail, 

but with the right exponential tail replaced by an inverse polynomial. The 

param eter s ensures continuity at the match point x = p +  m r. Figure 3.3 

shows a fit to the elastic peak of 15N using empirical radiative tail.

When the decay width of a state is a significant fraction of the resolution 

width, as is generally the case for states above particle emission thresholds, the 

extracted cross section is sensitive to the form of the lineshape. In this work 

Lorentzian forms:

1 ( E )  = I N j* l(E-ET)-(E?-ET)y(E-ET)}2+(ry/2)2 i f E ^ E r
\  0  i f E  = E t

were used[42]. Tj  is FWHM of Ij, E is the j th peak resonance energy, and E t 

is the threshold energy.

3.6 .2  B ackground

Several contributionsto the residual background are included in addition to 

the radiative tail. The total background function is :

B(x) = B l (x) + B 2{x) (3.2)

where,

B\{x) = b0 +  b\x +  &2 £ 2 +  b$xs

Bi{x ) |  b2xl  -f b$x\ wuheve x l ^  ^  °

and t is the continuum threshold. For this analysis t was set to -10.9 MeV 

which is the 15N alpha decay threshold.
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3.6 .3  F ittin g  procedure

Because of the limitation of the computer code, the spectra had to be anal­

ysed in two parts. The first part contains all states of less than 13.6 MeV of 

excitation, and the other region includes all the states with excitation energies 

above 13.6 MeV.

(a) T h e  E exc < 13.6 M eV  reg ion

The lineshape parameters, asymmetry a, exponent 7 , and sometimes reso­

lution width oj (see equation B .l) for all peaks are first obtained from fitting 

the elastic peak region from -3 to 7 MeV and fixed at the values obtained.

The empirical radiative tails described in the previous section were used. 

For all the inelastic peaks the empirical tail param eter / r , ti ,  t 2 were fixed to 

the values obtained from the fit to the elastic peak.

15N has decay thresholds at 10.2 MeV (p decay), 10.83 MeV (n decay), and 

10.9 MeV (a  decay). After including the empty cell spectrum in the 15N fits, 

there remains significant 15N continuum strength above 10.9 MeV. However, in 

examining the entire data set, it is seen tha t this continuum possesses consid­

erable structure above about 10.9 MeV. For this reason, the threshold in the 

polynomial background (see equation 3.2) was set at 10.9 MeV. Below thresh­

old only the constant and linear terms in the background were varied with the 

quadratic and cubic terms set to zero. Above threshold generally the linear 

term  was adequate.

A typical electron scattering spectra observed in this region are displayed in 

figures 3.4, 3.5.

(a) T h e  E exc > 13.6 M eV  reg ion

Because of the overwhelming number of excitations observed in the spec­

tra , a special procedure was followed in the fitting procedure. First, the tails 

obtained from elastic and inelastic levels of the first part had to be fixed and 

extended to this region. Next, the levels in the spectra had to be identified. For 

this purpose a number of spectra covering a momentum transfer range from 1 

to 3 fin-1 , were used. In this set all excitations known from the literature [16] 

were assigned to peaks actually observed. The relative positions of peaks in 

a group with at least one strong peak were locked to each other. The excita-
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tion energies of peaks observed but not given by the literature was treated as 

free parameters. Table 3.4 summarizes the parameters of the peaks which were 

included in the analysis of this region, and correlates these peaks with states 

identified in the literature[16]. Finally, all spectra were fitted to determine the 

peak areas by using the same lineshape parameters as used in the first part. 

Figures 3.6, 3.7 and 3.8, display representative fitted 15N spectra in the region 

from 13.6 to 21.5 MeV.

3.7 N orm alization  of the Cross Section

As was mentioned in section 3.2, spectra of 4He and 4H were recorded along 

with the 15N measurements under the same experimental conditions. A hydro­

gen target was used at q-values above 2.3 fm - 1  because the elastic form factor 

for helium shows a minimum in tha t region. A comparison between the elastic 

scattering cross sections extracted from these spectra with those of [49] and 

[50] showed a disagreement between the cross sections determined from spectra 

taken with a large solid angle (5.6 msr) and those determined from measure­

ments with smaller solid angle (0.4,1 . 6  msr). This disagreement is attributed 

to the variation of the solid angle in the case of a gas target, as a function of 

the displacement of the scattering point from the centre of the target along the 

beam axis. An effective value for the large solid angle was determined (4.73 

msr) by fitting the cross section obtained from spectra recorded with the large 

slit to those measured with the smaller ones, and a normalization factors was 

calculated for all q-values concerned :

m  = [|j(9)W[;§(«)W
These factors have been used to correct the 15N cross section caused by the 

difference in the target thickness. The correction factors for 15N were calculated 

from the equation:
r ,  \ P H e , H  T He , H  POHe,H c (  \
/(«)« =  -~b------    f ( V

-r/v -L N  PON

where :

P  is the gas pressure in Pa,

T  is the gas tem perature in K,and
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po is the specific weight of the gas at Po,T0 in m g/cm 3, P0 =  101.325 kPa, To =  

273.15 K.

W ith these information the 15N elastic cross sections were corrected

[ > ) i r  =  m .  x

From the corrected cross sections the form factors were calculated as follows

By comparing the corrected elastic cross sections with those of Schutz[51], at 

low q-values(q < 0 . 6  fm-1), an overall normalization of 1 1  % was necessary. 

The origin of this normalization is still not clear.

The cross sections obtained above contain a mixture of longitudinal and 

transverse components [equation 2.2]. In order to extract the longitudinal cross 

sections, the transverse data obtained previously at a scattering angle of 180° 

at MIT were used. The 180° data interpolated [52] to match the q-values of the 

forward angle data points. (0.5 +  tan2(0/2)) times this interpolated value was 

then subtracted from the forward angle data to yield the longitudinal strength. 

This is listed in tables A in appendix A.
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Table 3.4: States in 15N

Selected states from compilation! 16] States included in this work

Ex (M eV)±(keV) 2 J n r(keV) E* (MeV) r(keV)
13.608±7 5< + ) 18±4 13.61 18

(13.612±10) (1+ ) 90
13.84±30 3+ 75 13.84 75
14.09±7 (9+, 7+) 22±6

14.10±30 3+ ~100 14.13 50
14.16±10 3( + ) 27±6
14.24±40 5+ 150 14.24 150
14.38±40 7+ 100 14.38 100
14.55±20 200±50 14.55 200
14.72±10 110±5 14.72 110
14.86±20 48±11 14.86 48

14.92 12±3 14.92 12
15.025±10 13±3 15.03 13
15.09±20 80±25 15.09 80

15.27 75
15.288±10 26±6
15.78±10 15.78 25
15.93±10 35±5 15.93 40

16.026±10 62±12
16.05 110

16.85±30 5 110±50 16.88 210
16.91 -3 5 0

(17.05) 17.05 125
17.37±40 -2 5 0 17.37 250
17.58±40 3+ 450±120 17.58 450
17.72±10 48±10 17.72 48
17.95±20 167 17.95 20
18.06±10 19±4
18.09±20 - 4 0 18.08 40
18.27±20 235±60 18.27 235

18.51 50
18.91±150 3+ +  1+ 750±70 18.94 710

19.36 100
19.5 3+ -4 0 0 19.5 50

19.72±40 19.72 50
19.80 75
19.95 125

20.12±50 20.12 100
20.5 3+ -4 0 0 20.5 450

21.05 300
21.1 50

21.82 -6 0 0 21.9 700
22.5 700

23.19±6 23.2 350
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C hapter 4 

R esu lts and D iscussion

4.1 Introduction

In chapter three the experimental measurement of the electron scattering 

cross sections and the determination of longitudinal and transverse form factors 

were discussed. The form factors for positive parity states of 15N with excitation 

energy less than 14 MeV which were measured in this experiment are tabulated 

in Appendix A (tables A .l through A.20). In addition the transverse electron 

scattering data for these states measured previously at MIT at the scattering 

angle of 180° are presented in Appendix A (tables A .2 1  through A.30) since 

these are not available elsewhere.

Form factors measured in electron scattering are Fourier transforms of corre­

sponding nuclear transition charge and current densities p and j. The transition 

densities represent changes in the charge, current, and magnetization distribu­

tions when the nucleus makes a transition to an excited state [31] and are de­

termined by the wave functions of both the ground state and the excited states 

of the nucleus. For elastic scattering, the longitudinal form factor is simply a 

transform  of the ground state charge distribution. In 15N the ground state spin 

is J* = and according to the angular momentum and parity considerations 

mentioned in section 2 .1 , for a given transition only one longitudinal multipole 

and in general two transverse multipoles contribute. The transition from l/2~  

ground state to a positive parity excited state of spin 7 /2+, for example, will 

have the multipoles Y  =  3“ and 4_ . Thus the 7 /2+ state will proceed via 

C3 , E3  and M4  transitions. For the l / 2 + excited states only one transverse
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multipole contibutes since in this case l / 2 + states will proceed via only C l and 

E l.

Electron scattering data may be used in two different ways to obtain nu­

clear structure information. One can choose a form of the transition density 

and extract spectroscopic parameters for the transition. With the extended 

m omentum transfer range of the present data, it is possible to carry out a 

model independent analysis which is characterized by a very large flexibility 

in the choice of parameters defining the transition densities. This results in 

somewhat larger errors on the extracted quantities but suffers only minimally 

by the prejudices inevitably introduced in the older methods, for example, the 

Tassie model[6 6 ], the Helm model[65J etc. when a well defined radial shape of 

the transition density was chosen.

A second way is to use the (e,e') data directly to test nuclear models. Again, 

because of the extended q range of the data, it is appropriate to compare the 

data  with the predictions of a microscopic model namely the shell model. The 

collective models in general are too restrictive in the way they define the tran ­

sition densities which is usually as derivatives of the ground state charge distri­

butions and are not expected to be able to provide a reasonable description of 

the data. Moreover, the strong transverse cross sections observed for 15N can 

only be predicted in a microscopic model.

In the following section the longitudinal form factors are analysed in a model- 

independent framework and provide the transition charge densities and reduced 

ground state transition probabilities. The comparison of the longitudinal and 

transverse form factors with those predicted by the shell model is discussed in 

section 4 .3 . In section 4.4 data for the Eexc > 13.6 MeV are presented.

4.2 M odel Independent A nalysis

The model-independent analysis was discussed in section 2 . 2  and was in­

troduced with the computer code FOUBES[3l]. The extracted spectroscopic 

information is listed in tables 4.1 and 4.2 with other experimental values ob­

tained previously. In the following, specific details of the analysis are discussed.

As we have noted in section 2.2, the cut-off radius has to be chosen large
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enough to ensure tha t only a negligible part of the total charge is outside tha t 

radius. However, too large a value of the cut-off radius introduces so much free­

dom in the choice of Fourier-Bessel coefficients tha t unphysical wiggles appear 

on the tail of the nuclear transition charge densities. To avoid these wiggles in 

the densities at large radii, a tail bias can be imposed as discussed in section 

2 .2 . The radius Ri =  4 fm has been used in this analysis beyond which the 

transition density follows such a bias in the form of a p(r) oc e~ar shape, where 

a  is a free param eter and determines the rate of fall of p(r) with increasing r. 

The cut-off radius beyond which all charge is zero has been chosen equal to 7.0 

fm for all states[2 ].

In the Fourier Bessel analysis the A^ coefficients (see equation 2 .1 0 ) are de­

term ined mainly by the cross sections measured in the vicinity of qM, therefore 

only the coefficients A M for which q^ < qmax can be determined by an experi­

ment tha t measures cross sections up to a momentum transfer qmax. The data 

included in this analysis are extended to a maximum momentum transfer qmax 

< 3.2 fm -1 . Thus the data determine essentially 8  coefficients in the expan- 

sion(equation 2.10). Beyond the highest measured momentum transfer, it is 

necessary to assume a limiting behaviour for the form factor. This upper limit 

for the form factor squared was taken as Ae_B?[3lJ, where A and B are free 

param eters. The limit was enforced through the use of pseudodata as specified 

by[31]. We assume that in this region the form factor is zero with error bars 

given by the upper limit envelope and spaced by A q = l/3((jjv+i — qn ) beyond 

qeff  . Here N is the number of pseudodata points. For most of the levels 6YThQrtC
pseudodata points were needed. With this procedure 15 coefficients have been 

fitted.

The errors in the extracted transition charge densities reflect both the sta­

tistical A â ( r )  and the incompletness Ainc(r ) errors introduced by the two 

constraints namely the extrapolated high-q behaviour and the applied tail bias. 

Therefore the total error Aptot(r) ls:

A 2ptot(r) = A 2pstat{r) +  A 2/?tnc(r)

The variances A 2pstat(r) and A 2pinc(r) result from the errors in the measured
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and pseudo form factors A F- Xp AF pseud with

A W )  =  E A ̂ r ( ^ )
i=data \  i }

and

a v . w =  e
i=data X V f i  )

where F*xp(paeud) js the experimental (pseudo) form factor at q<.

The states included in this analysis are listed in tables 4 . 1  and 4 .2 . Figures 

4.1 through 4.14 show the measured longitudinal form factors with the FOUBES 

fit (solid line) for the 1 / 2 + states at 5.3, 8.31, 9.05 and 11.44 MeV, the 3 / 2 + 

states at 7.3, 8.57, 10.07, 1 0 .8 , and 11.77 MeV, the 5 / 2 + states at 5.27, 7.15, 

9.15, and 10.53 MeV, and the 7 /2+ state at 7.57 MeV. The data points displayed 

in these figures are the measured data recalculated for the maximum incident 

energy E max as follows:

Fr,e{Emax,qeU) = x Fm" , ( E exp,qef/)
* 2 \&exp  ? Qef f  )

F2 is the calculated form factor at the same energy as the original data from 

the fit. Fi is the calculated form factor at Emax. The extracted transition 

charge densities for these states are displayed in the lower portion of figures 4.1 

through 4.14. The error bands on the transition charge densities include both 

the statistical and incompleteness uncertainty contributions.

The large x2 values for states at 5.29, 11.44, 11.61, 1 0 .8 , and 5.27 are due to 

inconsistencies between data points. The large x2 values for the 5/2*" and 1 / 2 + 

levels are because these levels are the members of the doublet at 5.3 MeV which 

were resolved only by Iine-shape fitting. Most of the contribution to x 2 for the 

levels at 11.44 MeV comes from the data points at high q values, because the 

transverse component at these values are dominant. The doublet at 9.15 MeV 

consists of the unresolved pair of levels at 9.152(3/2 ) and 9.155(5/2+) MeV. 

According to the (7 , 7 ') measurements[3] the form factor at the maximum for 

3 / 2 ~ state is «  6  x 10- 5  and hence the contribution from this state is small. We 

assumed, therefore, the absence of the 3/2 member in the fit of this doublet. 

In extracting the transition densities for the 1/2+(9.05 MeV), 3/2+(7.3 MeV),
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3 /2 + (8.57 MeV), and 3 /2+(10.07 MeV), a lowest momentum transfer data point 

provided by (7 , 7 ') experiment^] was also included in the fits. The form factor 

of this data  point was calculated from the experimental B(E 1 ) value by using 

the equation

w = 1  fcl i2 .

The B(EL) values extracted from the FOUBES fits and their uncertainties 

together with results from other experiments are listed in tables 4 . 1  and 4 .2 . 

Some experiments provided only the reduced ground state transition widths T0. 

The B(EL) values for q — u  =  E exc/hc  are related to the reduced ground state 

transition widths T0 by:

1 L [(L +  1)!!] \  he J 2 J  +  1 1 ;

where, a = l/1 3 7  is the fine structure constant and ftc=197.3 MeV.fm. The un­

certainties in some of the extracted B (E L )  values are rather large. It should 

be noted th a t these transition probabilities B (E L )  are, for most levels, extrap­

olated quantities and do not represent the best available information from the 

experiment. The fact tha t some of the fitted data start at momentum transfer 

values not lower than 0 . 6  fm-1, introduces in the extrapolation to the photon 

points large uncertainties when analysed in a model independent framework. 

On the other hand the uncertainties in some of the B (E L )  values measured by 

(7 , 7 ') [3 ] are rather small because the B (E L )  value is deducible directly from 

the experimental data without any need of further assumptions.

It should be mentioned that the resulting B (E  1) values are in an overall 

agreement, within error, with those measured by (7 , 7 *) [3].

The B (E L )  values obtained from the theory[18] which are also displayed in 

the last column in tables 4 . 1  and 4.2 agree with the measured values for C l 

transitions but disagree with those for C3 transition. This will be discussed in 

the following sections.
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Table 4.1: B(E1) values for 15N

Ex
(MeV)

23* Present
e2 . / 2

x 2 Others
e2 . / 2

Theory
e2. f

5.29 i t 0.004(0.013) 9.0 0.007a
0.014(0.04)*

5.03E-05

8.31 5.02(ll)E-04 1 .1 4.99(3.3)E-04C 4.33E-04
9.05 1 3+ 1.625(0.3)E-03 1.5 1.55(0.25)E-03C 1.0E-03
11.44 i t 1.51(6.4)E-04 10.5
11.61 1 6+ 5.37(2.0)E-02 9.64
7.30 3f 6.11(0.58)E-03 2.3 5.3(0.4)E-03C

0.123(0.03)°
5.0e-03

8.57 3 t 1.66(0.9) E-03 1 . 2 7.45(7.4)E-03C 1.24E-03
10.07 3 t 1.46(0.16)E-02 4.5 1.2(0.07)E-02C 1.0E-02
1 0 . 8 31 5.05(7.7)E-04 5.2

11.77 35+ 1.33(0.32)E-02 3.4
° Reference [20]. 
* Reference [2 1 ], 
c Reference [3].

Table 4.2: B(E3) values for 15N

Ex
(MeV)

23* Present
e2 . / 6

x 2 Others
e2 . / 6

Theory

5.27 264.6(96.5) 18.7 189(6)°
293(20)*

160

7.155 51 1 2 .2 (1 .1 ) 0.43 7.1(8)* 0 . 1 2 2

9.15 53+ 67.8(8.5) 1.4 6 . 8

10.5 5 t 2.65(0.6) 1 . 8

12.5 5+ 53.6(13) 5.5
13.61 3.9(1.2) 2 . 0

7.57 7 i 203(13) 1.9 136(12)* 54
° Reference [20]. 
* Reference [21].
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4.3 Shell Morlpl

In the previous section the experimental longitudinal form factors were dis­

cussed in term s of a model independent analysis. These form factors and those 

m easured at 180° will now be compared with the predictions of the nuclear 

shell model. Shell model calculations used in this analysis were performed in 

a ( l + 3 )ftu; space for the positive parity states in 15N by Millener[1 2 ] and are 

the most extensive available at present. The ground state was confined to the 

p-shell, and the excited states were formed by promoting one or more nucleons 

into the sd-shell through the fp-shell. This allows the following configurations: 

s 1; p _2 (3 d)1; p _4 (sd)3; p _3 (s(j|)f)1; s-1;?-2^ ) 2. The effective interactions used 

were those of Cohen and Kurath[6 8 j for the p shell, of Kuo-Brown[69] for the 

sd shell, and of Millener and Kurath[70] for the particle-hole interaction. The 

Utrecht group of Glaudemans[71] has also carried out a shell model calculation 

in a 3hoj model space for 15N. The interactions used in this calculation are de­

rived from the Reid soft-core potential and the Sussex matrix elements. The 

results of this calculations are also compared with the data. The theoretical 

form factors were calculated in the P WBA. This approximation is adequate for a 

light nucleus like 15N (Za <  1) where the Coulomb distortion effects are small 

and can be accounted mainly by the construction of an effective momentum 

transfer as discussed in subsec. 2.1.4. Therefore, comparisons with experiment 

are made by plotting the experimental form factors vs qe/ /  and the calculated 

form factors vs q. The effective momentum transfer qe/ /  is given in subsec. 

2.1.4.

The radial wave functions required for the single nucleon transition densities 

were calculated both for the harmonic oscillator(HO) and Woods-Saxon (WS) 

potentials. In HO, the oscillator length parameter b =  1.7 fm was chosen to re­

produce the root mean square (r.m.s) charge radius of 2.611 fm for N obtained 

from an analysis of the elastic electron scattering cross sections measured in this 

experiment [2 ]. The WS potential parameters were those of Gamba et.al.[53]. 

Comparison between the HO and WS wave functions s h o w s  no appreciable 

difference, figure 4.26, and for reasons mentioned in subsec. 2 .2 .2 , we have used
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the HO wave function in our analysis.

Two corrections must be applied to the calculated form factors to convert 

them  into a representation appropriate for comparison with experimental form 

factors, see subsec. 2 .2 .2 . These corrections are accomplished by multiplying 

the form factors by factors corresponding to corrections for the center-of-mass 

motion of the nucleons and the finite size of the nucleon.

Generally the B(EL,o;) values and the longitudinal form factors obtained 

in the shell model calculations are too small compared with the experimental 

data. This is particularly true for the so called collective transitions. Conven­

tionally the discrepancy between the experimental and theoretical f o r m  factor 

is explained by the introduction of an additive effective charge defined as:

e =  et +  Se

where et- is the charge of the free nucleon( ep= l ,  en= 0 ) and Se is the effec­

tive charge. Some flexibility in the c h o i c e  of different values of Se for 

the neutron and the proton has been found to provide a better description of 

the experimental data. This approach was investigated by Brown et al.[55] for 

nuclei near leO and they found effective charges for the neutron Sn=0.34 and 

for proton £p= 0 .0 . For octupole transitions it has been found tha t the Sn tha t 

is bigger than  the 6P explained the experimental data very well[63], [64]. Mil- 

lener has suggested tha t the octupole transitions in 16N can be explained by 

6n=0.385, Sp=0.095[18]. The present data are extended to a high momentum 

transfer(q= 3 . 2  fm-1) and are useful for tests of these observations.

In the following subsections we investigate the electric dipole, octupole and 

M4 transitions in terms of the shell model predictions.

4.3 .1  E lectr ic  D ip o le  Transitions

Since 15N has a J 7r= l / 2 _ ground state, all the states of Jn= l /2 + or 3/2+ 

yield longitudinal C l scattering and transverse E l scattering. For the 3 /2+ 

excited states transverse M2  multipoles also contribute. The longitudinal form 

factors for these transitions were presented in the previous section in the frame 

work of a model independent analysis. Both longitudinal and transverse form 

factors are now compared with the shell model predictions.

67



These transitions include the l / 2 + states at 5.2,9, 8.31, 9.05, and 1 1 . 4 4  MeV 

and 3/2+ states at 7.30, 8.57, 10.07, 1 0 .8 , and 11.78 MeV. We first concentrate 

not on any individual level but on the general features of the experimental and 

theoretical form factors. The longitudinal and transverse form factors for these 

states are presented in figures 4.15 through 4.23 along with the shell model 

predictions of Millener(solid line) and Utrecht group(dashed line). We have 

chosen to present the calculations for all of these form factors using no effective 

charges in longitudinal component and using the free-nucleon orbital and spin 

g factors. These comparisons reveal several features: the theoretical longitu­

dinal form factor is always smaller than the data. The theoretical transverse 

form factor shows the opposite behaviour to the longitudinal one and is always 

larger than  the data. Further, both longitudinal and transverse theoretical form 

factors, generally, do not appear to have the correct shape to give a good de­

scription of the data. Finally, the theoretical form factor calculated by Millener 

provide a better description of the data than those calculated by the Utrecht 

group. Therefore, we will discuss the data in terms of Millener calculations.

In this first pass over our longitudinal and transverse form factors, we have 

examined the general aspects of the shell model predictions. We now turn  to 

detailed examinations of the individual form factors.

As we have mentioned previously in this section, the discrepancy between 

the experimental and theoretical form factor is conventionally explained by a 

constant additive effective charge. Two sets of effective charges have been used. 

These values are as follows: dep=6en=0.^'l for l / 2 + states and Sep=Sen=0.25 

for 3/2"*" states. For the transverse form factor case a downward normalisation 

factor of 1.6 has been used. These values are the optimum values tha t can be 

used to describe the data without invalidating the use of a constant effective 

charge. We will discuss first the longitudinal form factors in terms of the shell 

model predictions calculated with these effective charges and afterwards return 

to the transverse data.

The longitudinal data and shell model calculations for 1 / 2 + states at 5.3, 

8.31, 9.05, and 11.44 MeV are shown in figures 4.15 through 4.18 and the 

dot-dashed curves represent the shell model predictions. The most significant
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form factor associated with these levels is the first 1 / 2 + state at 5.29 MeV. 

The predicted C l form factor gives a good fit to these data, even though the 

experimental B (E l)(q = 0 ) value is very much larger than theory (see table 4 .1 ). 

The higher 1/2 levels have form factors which disagree in various ways with 

the predictions. In comparison to the theory, the longitudinal data for 8.31 and 

9.05 MeV levels are large while they are smaller for the 11.44 MeV level. The 

experimental B (E 1 ) values for these states are in overall agreement with theory 

and with those measured by (7 , 7 ')[3 ] (see table 4 .1 ).

The longitudinal data and the predictions for the 3 / 2 + states at 7.30, 8.57, 

10.07, 1 0 . 8  and 11.78 MeV are shown in figures 4.19 throgh 4.23. Again, the dot- 

dashed curves represent the shell model calculations. The predictions for the 

first two 3 /2 + states at 7.30 and 8.57 MeV are in reasonable agreement with the 

data. However, the experimental shapes for these states disagree with theory 

at larger values of momentum transfer. The data for the 3 /2+ level at 10.07 

MeV is in agreement with C l predictions at larger values of momentum transfer 

but the predicted strength in the vicinity of the maximum of the form factor is 

low. The C l predictions for the 3 /2+ states at 1 0 . 8  and 11.78 MeV are those 

calculated by Utrecht group since Millener calculations are not available. The 

form factors for these levels are different from the predictions. The experimental 

B (E 1 ) values for the 3 / 2 + states are in good agreement with theory and those 

measured by (7 , 7 *) [3] ( see table 4.1 ).

As we have mentioned previously at the beginning of this section tha t some 

flexibility in the prescription of different values of be for the neutron and the 

proton has been found to provide a better description of the experimental data. 

This approach has been used to explain the experimental C l form factors. For 

example, we present the data in figure 4.24 for l / 2 + level at 9.05 MeV with 

shell model prediction calculated by given be for proton and neutron as follows: 

Sep = 0.5, 6en = 1.1. Unfortunately, it was not possible to use a constant set 

for be which can describe the data.

In an attem pt to improve the comparison with the shell model a phenomeno­

logical approach was used. In this approach shell model wave functions were 

mixed with configurations which are outside of the model space considered by
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the shell model. Such configurations will in general be expected to have a q- 

dependence which is different from that of the shell model form factors. The 

shapes of C l form factors for these configurations are displayed along with the 

observed form factor for the 7.30-MeV level as an example in figure 4.25 and 

provide a very large variety of momentum transfer dependences. However, the 

shapes of these configurations are quite different from the observed C l form 

factors and it was not possible to explain the experimental C l form factors by 

reasonably small ad m ix tu re  am plitudes to  the shell model densities.

In the case of the transverse form factors, the comparison with the shell 

model predictions for l / 2 + and 3 /2+ states are displayed in figures 4.15 through 

4.23. A remakably good description of the experimental form factor for the 

3 /2 + level at 7.30 MeV is provided by the shell model calculations. For the

5.30-MeV state  the comparison with the shell model is somewhat less complete 

due to the contributions from the the 5 /2+ at 5.27 MeV which was not resolved 

in the 180° experiment. The transverse multipoles which are involved in these 

transitions are E l, E 3 , and M2 . The dominant contributions to the form factor 

are predicted to come from the E l form factor. No strong peaks are excited 

at 8.31 and 9.05 MeV. However, few data points are observed at low q for the

8.31-MeV level and E l prediction seems to work well. The other transverse 

f o r m  factors disagree in various ways with the shell model predictions but the 

overall agreement with the theoretical predictions is reasonably satisfactory.
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4.3 .2  E lectr ic  O ctupole Transitions

The octupole transitions in 15N are of particular interest for a combination 

of related reasons. In the simplest shell model, the 15N ground states is a single 

proton hole in a doubly closed lp  shell. Within the approximation of the 1 huj 

shell model, the configurations leading to the formation of positive parity states 

correspond to a single-particle in the 2 s-ld  shell coupled to two holes in the p- 

shell. In this picture the C3 transitions will then proceed via lp i / 2 or lp 3/ 2 

particle excitation to the lds / 2 or ld 3 / 2 orbital and will have a unique radial 

shape, see figure 4.26. The use of a 3Koj model-space is found to give little 

modification to the shape of the octupole transitions. In figure 4.26 the form 

factor for the 7 /2+ level at 7.57 MeV as calculated in the 3 hu  model-space(solid 

line) is compared with the experimental C3 form factor. Woods-Saxon wave 

functions do not change the q-dependence in any significant way and the use of 

harmonic-oscillator wave functions to define the radial shape of basis states is 

justified. Comparison between the form factors calculated with Woods-Saxon 

and th a t with harmonic-oscillator wave functions is also displayed in figure 4.26.

The octupole transitions discussed in this section are those for the first three 

5 /2 + states at 5.27, 7.15 and 9.15 MeV, and the 7/2+ state at 7.57 MeV. The 

5 /2 f , 5 /2 J  and 7/2J" states were measured previously by Dally et al.[20] and 

Kim et al[2 1 j. These data are displayed in figures 4.27 and 4.28 with the cor­

responding results measured in the present experiment. The Stanford data[2 0 ] 

suffer from poor resolution with FWHM of 700 keV and an uncertain normal­

ization of the order of 2 0 % due to use of a liquid ammonia target. The more 

serious lim itation of these data is that no longitudinal transverse separation 

was carried out which is particularly important for q > 2  fm 1 where the trans­

verse form factor has significant contributions. The data were analysed with 

the use of the independent particle shell model, and values of the nuclear transi­

tion probabilities were given, see table 4.2. The Saskatoon data[2l] include the 

doublet a t 5.3 MeV, the unresolved levels at 7.15 and 7.30 MeV, and the level 

at 7.57 MeV. Longitudinal transverse separation were performed but because of 

the poor statistics associated with the backward angle runs at low momentum 

transfers, only three data points of the transverse form factor were obtained.
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They a ttribu ted  the transverse form factors of the doublet at 5 . 3  MeV to M 2  

while this transverse should include a mixture of E l, M2  and E3 . The M 2  form 

factor calculated in the Helm model [65] is very different from that predicted by 

Millener s large-basis shell model calculation and must be viewed with caution. 

Again the transverse form factor at the unresolved levels at 7.15 and 7.3 MeV 

th a t would have contributions from E l, M2  and E3  multipoles was analysed as 

an M 2  form factor arising from the transition to the 7.15-MeV level. This is a 

very unreliable assumption. The resulting reduced transition probabilities were 

discussed in terms of the weak coupling models and neither level was reason­

ably accounted for by these models. The measured B(E) values may be found 

in table 4.2.

Comparison between the shell model predictions for the C3 transitions and 

the measured longitudinal form factors are presented in figures 4.29 and 4.30. It 

should be noted, here, that the doublet at 9.15 MeV consists of the unresolved 

pair of levels at 9.152 MeV(3/2~) and 9.155 MeV(5/2+). As we have mentioned 

in section 4.2, the 3 /2 “ transition strength is quite small according to the the 

(7 ,-7 ') experiment. We present in figure 4.30 the predicted C2  from factor cal­

culated by Utrecht shell model for the 3 /2“ level. We can see that the C2 

form factor has a minimum at the measured form factor peak confirming tha t 

the contribution from C2  form factor is small. The following observations are 

obvious from the comparison with the shell model predictions: the shell model 

form factor is always smaller than the experimental form factor, the shell model 

form factors do not have the correct q-dependence tending to be too broad rel­

ative to the experimental data and it is not possible to normalize the calculated 

curves by the same constant factor to obtain agreement with the experimental 

data thus invalidating the hypothesis of a constant effective charge. In fact 

the effective charge needed to reproduce the strength at the maximum of the 

form factors varies from 0 . 1  for the 5 / 2 + to ~  2 . 2  for 5 / 2 /  with other transi­

tions requiring intermediate values. The effective charge values are presented 

in table 4.4. In figures 4.29 and 4.30 the solid curves represent the shell model 

predictions with no effective charges, while the dashed curves are those with 

effective charges. It should be noted that the predicted C3 form factors with
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c h o se n

the effective charges/to reproduce the maximum of the experimental form 

factor can also be obtained by choosing different values for the effective charges 

for protons and neutrons. However, the neutron effective charge required is 

larger than  the proton effective charge. For example, for the 7 /2 f form factor, 

6en = 0.385, 8ep = 0.095 were required to reproduce the experimental strength. 

The predicted C3 form factor with these effective charges is shown with the 

experimental form factor in figure 4.31.

The major inadequacy of the shell model is the neglect of mixing with con­

figurations outside the restricted model space. However, significant extension 

of the shell model basis requires knowledge of many more two-body interaction 

m atrix elements and even if these were known the size of such a calculation 

would rapidily become prohibitive. Although the shell model description of the 

C3 transitions is not consistently good in terms of the predicted strength, from 

the comparisons it would appear that the model wave function is missing only 

a small contribution from configurations not included in the shell model space.

It is possible to utilize the experimental data to obtain some feeling for the 

reasons of this contribution by writing the physical transition density as follows:

Ptr(r) = PsM{r) +  ocpadd(r) (4.1)

Here a  is an adjustable parameter and padd(r) is the contribution from config­

urations which are outside of the model space considered by the shell model. 

Such configurations will in general be expected to have a q-dependence which 

is different from tha t of the shell model form factors. These configurations may 

be found in the diagram shown in figure 4.32 and the shapes are displayed in 

figure 4.33. The C3  form factor shapes for transitions which proceed via 2 s-> f, 

d—► 2 p and p —> g transitions are different from those of the shell model, while 

the form factor shape for the s—> f transition are similar to that of shell model. 

These configurations were mixed to the shell model form factors by varying a 

to reproduce the experimental form factor. With this model space it was not 

possible to give a description of all the octupole transitions. In figure 4.33 we 

present one of these attem pts for the 7/2 + state. While the mixing with the 

form factor produced by s-> f transition looks good when compared to the data,
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the value of a  needed is very large(« 2 ) and it is unresonable to assume that 

the shell model wave functions will require modification of such extent.

An alternative choice for padd{p) as that of a collective vibrational state, how­

ever, can provide an overall satisfactory agreement for all the four states with 

very significant improvements in both the shape and strength of the predicted 

form factors. This procedure has some theoretical [57,58] and experimental 

[56,22] justification even though the application to explain octupole transition 

data  in this way has not been attempted so far. However, the existence of low- 

lyhig octupole collective states is well established and considerable evidence for 

the existence of a giant octupole resonance(GOR) at an excitation energy of ~  

1 1 0 / A1/ 3 MeV [59] has accumulated in recent years.

The radial shape of the collective state to be used in equation 4.1 was chosen

as

Padd(r)  = Nrp'gs(r) (4.2)

where N  is adjusted to give the strength required by the sum rule[57] and p'g s{r) 

is the radial derivative of the ground state charge distribution of the nucleus 

which was obtained in this experiment[2] in terms of a Fourier-Bessel series

=  £ „  >Wb(?<.r) r < R e
(4.3)

=  0  r > R c

The values q^Rc gives the p,th zero of the spherical Bessel function: jo(9 a*^c)==0 , 

where, R c = 7 fm, is the cut-off radius (see section 4.2) and A^ are the Fourier- 

Bessel coefficients obtained from the analysis and are listed in table 4.3. The 

description of p add{T) h1 equation 4.2 was then used in equation 4.1 and a  was 

treated as an adjustable parameter for each transition studied. In Ps m {?)i 

no effective charges were used. The results are presented in table 4.4 and 

figures 4.34 and 4.35. The admixture is always such that the strength of the 

transition is enhanced. Considerable improvement in the q-dependence of all 

the transitions studied is observed for values of a which are needed to reproduce 

the experimentally observed form factor maxima.
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Table 4.3: Fourier Bessel coefficients for the ground state of 16N.

1 0 0 1 0 0  x A A u
1 2.549 0.003
2 5.063 0.017
3 2.984 0.019
4 -0.553 0.015
5 -1.59 0.03
6 -0.77 0.03
7 -0.23 0.05
8 -0.04 0.07

For the transverse form factors, the comparison with the shell model for 

the 5.27 MeV and 9.15 MeV, 5 /2+ states is somewhat less complete due to 

the contributions from the l / 2 + state at 5.30 MeV and the 3 / 2 “ state at 9.15 

MeV which were not resolved in the 180° experiment. The measured transverse 

form factors of the doublet at 5.30 MeV are shown in comparison with the 

shell model predictions in figure 4.15 and has been already discussed in the 

previous section. The transverse form factors of the doublet at 9.15 MeV are 

shown in comparison with the predictions of the corresponding states in figure 

4.36. The multipolarities which are involved in this transition are E3, M2 , 

M l, E 2 . The predicted transverse form factors for these transitions show the 

opposite behaviour with respect to other predicted transverse form factors which 

are always larger than the observed strength. The form factors of the 7.15 

MeV 5 /2 + and the 7.57 MeV 7/2+ states and the shell model predictions are 

presented in figure 4.37. The theoretical transverse form factor is dominated by 

E3 component in both states and a downward normalization by a factor of 1 . 6  

is required to obtain agreement with the measured strength. This observation 

is similar to th a t for the transverse transitions leading to the other states in 

15N[60] and 13C[72]. However, transverse transition in nuclei in the bottom  

half of the lp-shell, namely 7Li [1 0 ], 10'n B [11] are extremely well described by 

similar shell model calculations without the use of any normalization. At the 

present time, there is no theoretical model which can consistently explain these 

observations [60].
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Table 4.4: Collective state mixing parameters

Transitions Excitation Energy 
(MeV)

be a

5/2+ 5.27 0 . 1 0.004 ±  0.0004
5/2+ 7.15 2 . 2 0.006 ±  0.0006
7/2+ 7.57 0.27 0.013 ±  0.001
5/2+ 9.15 1 . 2 0.006 ±  0.0006
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curve represents the shell model prediction calculated with harmonic oscillator 
wave function while the dashed curve is that with Woods-Saxon wave function. 
The dot-dashed curve represents the CS form factor shape for the configuration.
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4.3 .3  M 4 T ransitions

The states tha t can be reached by M4 transitions are particularly inter­

esting for nuclei in the upper half of lp-shell since there is only one possible 

configuration for such a transition: [ ld 5/ 2 <8> l p ^  ]i~. Such a configuration is 

called stretched because the spin and orbital angular momentum transfer add 

together maximally i.e. the total angular momentum transfer A J is one unit 

greater than  the sum of the orbital angular momenta of the particle lp and hole 

lh, A J =  lp -f lh -f 1 . The total orbital angular momentum transfer AL is given 

by AL =  lp +  lh and therefore a spin transfer AS =  1 is required to meet the 

condition th a t A J =  AL +  AS[61]. Such states are interesting because the elec­

tron scattering form factor obtains contributions from only the magnetisation 

density while the convection currents do not contribute.

The electron scattering data measured at 180° have observed strongly ex­

cited states at 10.7, 12.5, 14.1, 2 0 . 1  and 23.2 MeV. The states at 10.7 and 

12.5 MeV have, previously, been identified as having J*’= 9 /2 + [16]. The cross 

sections for the states at 10.7, 12.5, 14.1, 17.2, 20.1 and 23.2 MeV have been 

measured recently with pion inelastic scattering by Morris et al.[61] and were 

found to contain significant M4  strength. For the M4 transitions in the p-shell 

nuclei, the [ ldg /2  <S> IP 3/2 ]4- matrix element is energetically favourable. If M4 

form factors from other particle-hole configurations were possible, the resultant 

M4  form factors would have shapes significantly different from the observed 

M4  shape as shown in figure 4.38. In this figure, the (ds/2 ,P3/2) configuration 

produces an M 4  form factor shape which is consistent with the experimental 

M4 shape for the 10.7 MeV state. We compare in figures 4.41 and 4.42 the M4 

form factor produced by such a configuration (solid lines) with the observed M4 

form factor data.

The experimental transverse form factors for the 7.57, 10.7, 12.5, 14.0, 2 0 . 1  

and 23.2 MeV states are now discussed in terms of the shell model predictions. 

The measured transverse form factor for the first 7/2 level at 7.57 MeV is 

shown in comparison with the predictions of the shell model in figure 4.37. 

The transverse components involved in this transition are E3 and M4. The 

theoretical transverse form factor is dominated by the E3 component. It agrees
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in shape w ith the experimental form factor and a downward normalization by 

a factor of 1 . 6  is required to obtain agreement with the measured strength. 

There is only 2.5% M4 strength predicted in this transition. The longitudinal 

form factor for this state is shown with the predicted C3  in figure 4.30 and has 

already been discussed in the previous section.

Since the 10.7 MeV 3 /2“ state lies very close to the 9 / 2 + level at 10.69 

MeV, see figure 1 .1 , this doublet would have a mixture of M4 , E5 , E 2  and 

M l multipoles. The measured and theoretical transverse form factors of this 

level are displayed in figure 4.39. It is clear that the predicted E2 , M l and 

E5 form factor strength are very small compared to that of M4 . Thereforewe 

a ttribu te  the observed transverse form factor at 10.7 MeV to M4  transition. 

However, there is some excess strength in the experimental form factor at q 

>  2.2 fm -1 . This feature is more pronounced for the other M4 transitions to 

higher lying excited states which are discussed below. The longitudinal form 

factor for this doublet include a mixture of C2  and C5 arising from the 3 /2 “ 

and 9 /2 + states respectively. The largest multipolarity which is consistent with 

the sd-shell model space is M4. Thus, C5 strength is expected to be small 

due to the lack of available configurations which can produce A J* = 5“ . We 

compare the longitudinal data to the corresponding calculated form factor in 

figure 4.40. We see tha t the predicted C5 is very small and is consistent with 

the experimental data which obviously receives its observed strength from the 

C2 form factor due to the excitation of the 3/2 state at 10.7 MeV.

The unresolved levels at 12.5 MeV 5/2+, 12.52 MeV 5/2+ and at 12.55 MeV 

9 /2 + include complicated mixtures of E3, M2, M4 and E5 multipoles. The shell 

model predictions of M4 and E5  strength are compared with the transverse 

form factor at 12.5 MeV in figure 4.41 and accounts for about 80% of the 

M4 strength observed in these levels. However, the experimental form factor 

is augmented by contributions from other neighbouring levels and a definite 

conclusion is difficult to draw from this comparison. The data for the levels 

at 14.0, 20.1, and 23.2 MeV have a form factor with M4 like q-dependence. 

The shell model predictions also show significant M4 strength m these states. 

These are displayed in figures 4.41 and 4.42. The large M4 strength observed
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in the obove transitions is in agreement with the results of the pion scattering 
experiment [61].

In a pion scattering experiment the ratios of the measured cross sections for 

7r and 7r scattering can be used to extract the isoscalar and isovector spectro­

scopic am plitudes Zo and Z\. The Zo and Zi amplitudes are defined to be the 

same as the one-body density-matrix element in a shell model calculation[62], 

which are equal to unity for a pure particle-hole transition. The corresponding 

proton and neutron spectroscopic amplitudes Zp and Zn are related to these by

*  _  (Zo -  Zx) 

rr _  {Zo +  Zi)
~  s /1

The values of Zo and Z\ may be obtained from the experimental cross sections 

by solving the following simultaneous equations [61]

Zi =  2 Z0 ±  2 s /N + , .
Zj = —2Zo ±  2v'JV" 1 J

Here N + and N~  are factors needed to normalize the calculated 7r+ and tt~

angular distributions in DWBA to the measured 7r+ and n~ angular distribu­

tions [61]. However, these equations yield two independent solutions for Zo and 

Zi. This ambiguity can often be resolved by comparing the pion results with 

those from electron scattering, since the transverse form factor is proportional 

to (Zi -  0.187Z0) [72], i.e.

Zi =  0.187^o ±  C, (4.5)

where C is the strength of the electron scattering form factor in units of the sin­

gle particle isovector form factor, Fma• The M4 form factor for the (d5/25P3/2)M4,Ar= 

m atrix element in the PWBA and with harmonic oscillator radial wave function,

is given by[73]

1 FMi[q] r =  (4-6)

where y =  (bq/2)2, 6=1.7 fm and fc M and fgN are the centre-of-mass and 

nucleon finite size terms and are found in section 2.2. By comparing the value
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at the maximum of the experimental M4 form factor with the form factor defined 

by equation 4.6 the values of C can be determined for the observed states. These 

are displayed in table 4.5 along with N ^  and N  values from the pion scattering 
experiment.

A graphical analysis of the combined (7r, 7rfJ and (g^J  data can now provide 

a useful way of obtaining unique set of Z0 and Zx values[61]. One plots the 

Zi and Z0 values as shown in figure 4.43 such that equation 4 . 5  provides two 

parallel lines with intercepts on the Zi axis equal to +C and -C. These lines 

which are labled (e,e') then represent allowed combinations of Zx and Z0 values. 

Similarly, pion scattering data gives two parallel lines (labeled cr+ /o DW) for 7r+ 

scattering with intercepts ± 2 y /N + and two parallel lines (labeled o ~ /o DW) for 

7r-  scattering with intercepts ±2y/N ~. The widths of the bands are due to the 

statistical errors in cr+ and o ~. In the absence of (e,e') data, the pion scattering 

data gives two acceptable solutions represented by the two points of intersec­

tions, X and Y on the figure. With the (e,e') data included for example for the 

10.7 MeV state, only solution X is consistent with all measurements; solution 

Y being obviously unrepresentative of the (e,e') data. Thus, it is possible to 

obtain unique value of spectroscopic amplitudes for a given M4 transition with 

the combined analysis. The results of such an analysis for the other states are 

shown in figures 4.43 and 4.44

The (e,e') data  for the state at 12.5 MeV is an upper limit for the M4 strength 

since the A T = 3 /2 , 5 / 2 + level at 12.52 MeV is expected to be strongly excited by 

an E 3  transition[18j. Therefore the second solution can be ruled out and the first 

solution is prefered for this level. For the 14-MeV level, the agreement between 

the am plitudes extracted from pion scattering and the (e,e) data favours the 

second solution. No strong peak is observed in the (e,e) spectrum for the 17.2- 

MeV level and the peak value of the form factor is estimated to be less than 

10% th a t for the 14.0-MeV state. For the 20.1 and 23.2 MeV states, there is 

good agreement between the second solution and (e,e) data.
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Table 4.5: Combined analysis of the (7r,7r') and (e,e') data

Eex
(MeV)

2y/N + 2 y /N - C

10.7 0.73±0.04 0.224±0.04 0.322±0.01

12.5 0.922±0.06 0.254±0.06 0.508±0.01

14.0 0.631±0.06 0.433±0.06 0.432±0.01

17.2 1.074±0.06 1.262±0.06 0.147±0.01

2 0 . 1 0.586±0.07 0.554±0.07 0.56±0.01

23.2 0.774±0.16 0.39±0.16 0.522±0.02
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Figure 4.38: Possible M4 form factors for different configurations calculated 
with harmonic oscillator wave function, b=l. 7 fm
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Figure 4.39: The 10.7 M eV  experimental transverse form factor with the shell
model predictions for different multipoles.
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and C5 shell model predictions.
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Figure 4.41: Transverse experimental and theoretical form factor for the levels 
at 12.5 and 1 4  Me V. The solid curves are the M4 form factor produced by the 
fas/2 , <k/2)  configuration. The dashed and doted curves are the M4 and E5 shell
model predictions, respetively.
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Figure 4.42: Transverse experimental and theoretical form factor for the levels 
at 20.1 and 2S.2 MeV. The solid curves are the M4 form factor produced by the 
64/2, d5/2)  configuration. The dashed curves are the M4 shell model predictions.
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a,ur vao»d isoscalar spectroscopic amplitudes. The intersec- 
labeled a +/ o DW ando+ /oDW represent the two solutions for 
f r y )  data. The lines labeled (e,e') correspond to the values

of Z0 and Z\ consistent with the electron scattering data.
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Figure 4.44: Isovector versus isoscalar spectroscopic amplitudes. The intersec­
tions of the bands labeled a +/o DW and o+/o DW represent the two solutions for 
Zo and Z x from the (n ,n ')  data. The lines labeled (e,e') correspond to the values 
of Zq and Z\ consistent with the electron scattering data.
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4*4 T he Eexc > 13.6 M eV region

In the present experiment the form factor of many states in the Eexc > 13.6 

MeV region are obtained. The experimental form factors for these states are 

presented in this section without comparison with theory since no theoretical 

calculations are available. All of the states below 13.6 MeV excitation have 

already been presented and discussed in this chapter except those at 11.61 

12.52, 12.93, 13.16, 13.39 and 13.6 MeV. The form factors for these states are 

displayed in figure 4.45 and 4.46. The longitudinal form factors for the states 

at 12.52 MeV are shown in figure 4.45. The transverse form factors are shown 

in figure 4.41 and compared with the shell model predictions in the previous 

section.

For excited states beyond 13 MeV the spin parity assignements are not very 

extensive. There are a number of l /2 ±, 3/2±, 5/2± states in this region and we 

do observe form factors which represent a wide variety of q-dependences. How­

ever, a detailed interpretation of these form factors requires more theoretical 

understanding and we have presented the form factors in figures 4.47 through 

4.58. In the region beyond 18 MeV we have identified several new states and 

obtained a width parameter for these. These results have been presented in 

table 3.4.

The giant resonance region (GR) of 15N has been studied previously by 

inelastic electron scattering[15] in a momentum transfer range 0.36 - 1.25 fm x. 

In the present experiment we have extended the work of Ansaldo et al.[15] up to 

much higher momentum transfer(3.2 fm-1). Following the work of Ansaldo, the 

longitudinal and transverse form factors for the states in the excitation energy 

region between 14 and 18.5 MeV were integerated. The momentum transfer 

dependence of the form factors for this region along with those of Ansaldo is 

shown in figure 4.59. There is good agreement between the two experiments. 

The solid and dashed lines represent the C l and C2 contributions calculated 

with the Helm model[65] with parameters R=2.58 fm and g—1.05 fm[l5]. It is 

clear th a t the excess strength in the q > 1 fm-1 region is observed suggesting 

th a t a higher multipolarity might be contributing in these excitations. The dot-
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dashed line represents the C3 contribution. The transverse form factor strength 

is displayed along with those of Ansaldo in figure 4.59. Again, the agreement 

between the two experiments is satisfactory.
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Figure 4 .45: The experimental form factors for the states at 11.61, 12.52 and

12.98 M eV.

112



For
m 

fa
ct

or
 

sq
ua

re
d

Figure 4.46:
18.6 M e V .

10~2 

10-3 

10“4 

10-s 

10"6 

10“7 

10~3 

10-4 

10-5 

10~6

10"7 

10"s 

10"4 

10-5 

10-6 

10-7 

10-8
0 0  1.0 2.0 3.0 4.0

<*'ff ( fm_1 )

The experimental form factors for the states at 18.16, 1S.S9 and

113

• • • ••

i

' I

I I  *

15N 
13.16 MeV

15 n 
13.39 MeV

• f

15 N 
13.6 MeV



"O<V
ro
cr(/)

uas
4 —

£Lio

1 -3 13.84 MeV

1 -4

1 -5

1 -6

1 -7

1-8

14.13 MeV1 -3

1-4

1-5

1-6

1-7

1-8

15 N

14.24 MeV
1 -4

1 -5

1-6

1 -7

,-8

4.03.02.01.00.0

qe// ( fm 1 )
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Figure 4.49:
15.OS M eV.
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Figure 4.50: The experimental form factors for the states at 15.09, 15.27 and

15.78  M eV.
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Figure 4.52:
17.58 M eV .
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Figure 4.54:
18.94 M eV .
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Figure 4.53:
18.08  M eV .
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Figure 4.55:
19.72  M eV .

10“2 

10“3 

10~4 

10-5 

10~6 

10-7 

IO"8 

IO"3 

10~4 

10~5 

IO-6 

10~7 

10-8 

IO"3 

IO"4 

IO"6 

IO"6 

10-7 

IO"8

The experimental form factors for the states at 19.36, 19.5 and

122

f*4 -

15 N 
19.36 MeV

r * i i

16 N 
19.5 MeV

• i  "
' !  i

15 N 
19.72 MeV

)



Fo
rm

 
fa

ct
or

 
sq

ua
re

d

Figure 4.56:
80.12  M e V.
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Figure 4.57:
20.1 M e V.
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Figure 4.58: The experimental form factors for the states at S1.9, 22.5 and

23.2  Me V.
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C hapter 5 

C onclusions
i

In this thesis, measurements of electron scattering form factors for many 

transitions in 15N have been presented. The measurements were carried out at 

70, 130, 300, and 430 MeV incident electron energy with an angular range from 

40° to 98.5° covering a momentum transfer region between 0.5 and 3.2 fm-1. 

The prim ary reason of this project was to study the structure of the positive 

parity  states of the nucleus 15N. The formation of such states includes lp-2h 

an d /o r 3p-4h configurations and the amplitudes are sensitive to the particular 

choice of the effective interaction used in the shell model description.

The data  of the present experiment together with the existing data obtained 

at scattering angle of 180° were used to obtain the longitudinal and transverse 

components of the form factors for most of the observed excitations.

The experimental longitudinal form factors were used in a DWBA model 

independent analysis to extract the transition charge densities for most of the 

positive parity states below 12 MeV of excitations. The extracted reduced 

transition probabilities were compared with those measured by for the

dipole transitions. The B(EL) values for dipole transitions are found in general 

agreement with those measured by (7 ,"/).

The longitudinal and transverse form factors were compared with the pre­

dictions of a nuclear shell model calculation performed in a 3hu space. From 

this comparison, the following features have been revealed: the predicted form 

factor is always smaller than data although the experimental B(EL) values agree 

w ith theory for the C l transitions. The shell model calculations with additive 

effective charge of 6ep=6en=0.37 for l /2 + states and 6ep — Sen—0.25 for 3/2
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states are only able to reproduce the longitudinal form factors for 1/2+, 3/2+ 

and 3 / 2 A combination of effective charges for proton and neutron was also 

used. It was obvious that 6en > 6ep. For the 7/2+ level at 7.57 MeV <5en=0.385 

and 6ep=0.01 were required to reproduce the experimental form factor. This 

approach is also not able to describe all the data. The shell model predictions 

for some states were found completely different from the experiment. These 

states are the 1/2+ level at 8.31 MeV, the 3/2+ level at 10.8 MeV and the 3/2+ 

level at 11.78. Arbitrary extension of model space by mixing with configura­

tions which are outside of model space does not help too much. However, for 

the octupole transitions, a very satisfactory explanation is obtained by mixing 

contributions from a collective state. It is tempting to identify this state with 

the giant octupole transition. For the transverse form factors, the shapes are 

generally satisfactory compared to the data but strengths are mostly too large 

by a factor of 1.6.

The M4 transitions have been studied by Morris et al.[61] using ( i t ,  t t ') in 15N. 

The M4 transitions identified by this experiment were those at 10.7, 12.5, 14.1, 

17.2, 20.1, and 23.2 MeV. These states were excited in the present experiment 

except the one at 17.2 MeV. The (e,e') data were used to remove one of the 

two possible solutions of the spectroscopic amplitudes in the (7t , 7 t ' )  analysis and 

thus better identify the nature of these states.

A large number of states beyond 13 MeV of excitation were observed in this 

experiment and the form factors of these states have been obtained. In the 

region beyond 18 MeV several new states were identified and width parameters 

for these states have been given.

The giant resonance region of 15N has been studied with electron scattering 

by Ansaldo et al.[15j. The form factors of giant dipole and octupole resonances 

at low q(<  0.97 fm-1) were obtained. In our experiment we have extended the 

work of Ansaldo to much higher values of momentum transfer.

The resolution in the present experiment was one of the most serious limita­

tions. It is possible to improve resolution in (e,e') by using a thin solid target.

The high resolution coincidence (e,e'x) experiments provide an ideal probe

for identification of the overlapping levels in the giant resonance region and be-
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low. The x  refers to a suitable decay product such as a 7 -ray, proton, or alpha 

particle. The (e ^ ^ )  coincidence, in particular, can provide increased resolu­

tion over th a t obtained in inclusive electron scattering[74]. One example of a 

closely-lying doublet is of the t / 2 \  and 5/2^ states. Such levels can be resolved 

by (e,e'7 ), since the angular distribution for reaction with J = l / 2 + must be dif­

ferent from the angulardistribution function for the excitation of the 5 / 2 + state. 

The 9.152 MeV 3 /2 “ state lies very close to a 5/2+ level at 9.155 MeV so prac­

tical considerations would suggest that measurement of the electroexcitation of 

th a t level would be difficult. However, the 9.155 MeV level does not 7 -decay 

strongly to the ground state so the two levels may be resolvable with the (e,e'7 ) 

reaction. It should be noted that in the (e,e') experiments only two observables 

can in principle be extracted, F l, F%, and so any additional information from 

(e,e'7 ) studies will be a step forward in trying to analyse a given electromag­

netic transition into its underlying multipoles. Thus, it seems tha t the (e,e'7 ) 

reaction has great potential as a tool for nuclear structure studies.
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A p p en d ix  A  

D a ta  Tables

Table A -l list the 15N run parameters. Run numbers between 1 and 37 repre­

sent the param eters for the data measured at forward angles, $ < 98.5°(NIKHEF) 

Run numbers from 38 to 55 are those for data measured at scattering angle of 

180°(BATES). Tables A-2 through A-20 list total and longitudinal measured 

cross sections. The transverse form factors are listed in tables A-21 through 

A-30.

The total form factors were obtained from the measured cross sections ac­

cording to equation 2.2. The effective momentum transfer qe/ f  was calculated 

using the formula given in subsec. 2.1.4.
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Table A -l: 16N run parameters.

Run
No.

E0(MeV)
NIKHEF

Theta
Deg.

q
( f n r 1)

Run
No.

E0(MeV)
BATES

Theta
Deg.

q
(fm -1)

1 68.75 60.00 0.348 38 49.2 178.0 0.497
2 68.75 80.00 0.447 39 70.4 178.0 0.710
3 92.17 68.50 0.525 40 80.2 178.0 0.808
4 92.17 78.50 0.590 41 89.6 178.0 0.902
5 129.70 62.50 0.680 42 94.9 178.0 0.955
6 171.98 46.50 0.687 43 99.3 178.0 0.999
7 171.98 53.60 0.784 44 109.4 178.0 1.100
8 171.98 61.00 0.882 45 119.5 178.0 1.201
9 129.70 90.00 0.925 46 129.5 178.0 1.300
10 171.98 68.59 0.978 47 149.6 178.0 1.500
11 298.19 39.96 1.030 48 169.4 178.0 1.696
12 298.19 42.44 1.091 49 189.2 178.0 1.892
13 298.19 45.00 1.153 50 208.9 178.0 2.086
14 298.19 47.45 1.212 51 224.2 178.0 2.236
15 298.19 50.00 1.272 52 239.1 178.0 2.383
16 298.19 52.50 1.331 53 273.4 178.0 2.718
17 298.19 55.50 1.401 54 297.8 178.0 2.956
18 298.19 58.00 1.458 55 326.7 178.0 3.236
19 430.33 40.00 1.486
20 298.19 61.50 1.537
21 298.19 64.51 1.603
22 430.33 45.09 1.665
23 298.19 67.50 1.668
24 298.19 71.04 1.743
25 298.19 74.52 1.816
26 298.19 78.52 1.896
27 298.19 82.51 1.975
28 298.19 86.54 2.051
29 430.33 57.44 2.081
30 298.19 90.54 2.124
31 298.19 94.51 2.194
32 298.19 98.52 2.262
33 406.84 71.18 2.376
34 430.33 73.34 2.577
35 430.33 80.22 2.775
36 430.33 87.51 2.973
37 430.33 95.33 3.171 ----------------
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Table A-2: Form factors for (5.30 MeV).

Run <W/ a | F F  |2 Err | F F  |2 Err
No. (fm -1) [im2 /  st) Tot. (%) Long. (%)

4 0.587 1.145E-10 8.702E-05 24.46 6.152E-05 49.19
5 0.681 5.589E-11 2.848E-04 11.67 2.587E-04 13.25
6 0.690 6.219E-10 1.719E-04 13.20 1.509E-04 15.59
7 0.788 2.764E-09 3.147E-04 10.10 2.877E-04 11.10
8 0.886 5.527E-09 3.844E-04 4.93 3.519E-04 5.40
10 0.983 3.818E-08 5.336E-04 5.16 4.991E-04 5.55
11 1.024 3.687E-10 5.875E-04 7.23 5.645E-04 7.53
12 1.099 6.014E-10 6.610E-04 9.15 6.338E-04 9.55
13 1.161 4.438E-09 7.480E-04 3.87 7.176E-04 4.04
14 1.221 8.461E-09 1.187E-03 6.10 1.152E-03 6.29
15 1.282 3.965E-09 7.559E-04 4.30 7.137E-04 4.57
16 1.341 2.200E-09 1.370E-03 4.56 1.322E-03 4.73
17 1.411 9.133E-10 2.262E-04 4.32 1.767E-04 5.79
18 1.469 2.634E-09 1.132E-03 4.13 1.080E-03 4.34
20 1.548 8.456E-10 8.111E-04 4.65 7.517E-04 5.03
21 1.615 7.796E-11 7.911E-04 4.56 7.217E-04 5.02
23 1.680 1.401E-09 1.475E-03 3.61 1.399E-03 3.82
24 1.756 9.684E-09 7.459E-04 6.13 6.660E-04 6.89
25 1.829 1.350E-09 5.722E-04 4.62 4.938E-04 5.45
26 1.900 1.088E-13 4.258E-04 50.14 3.487E-04 61.26
27 1.989 4.524E-09 2.950E-04 12.28 2.184E-04 16.71
28 2.066 2.413E-10 2.670E-04 15.25 1.919E-04 21.31
29 2.096 3.479E-09 4.352E-04 15.50 3.939E-04 17.13
30 2.140 1.087E-13 1.730E-04 9.76 1.020E-04 17.10
31 2.211 3.781E-09 2.082E-04 19.71 1.432E-04 28.98
32 2.270 3.556E-09 6.656E-05 18.74 4.795E-06 295.25

34 2.595 2.774E-09 2.675E-05 48.37 1.049E-05 123.64
35 2.794 8.709E-09 1.499E-05 31.90 5.777E-06 83.37

36 2.994 8.677E-13 5.957E-06 330.28 8.543E-07 300.00

37 3.193 1.087E-13 3.085E-06 202.06 7.738E-08 300.00
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Table A-3: Form factors for (8.31 MeV)

Run
No.

<W/
(fm -1)

a
(fm2/st)

| F F  |2 Err
(%)

5 0.673 1.145E-10 4.286E-05 38.51
6 0.684 5.589E-11 3.831E-05 23.45
7 0.780 1.544E-10 3.337E-05 28.50
8 0.878 6.577E-11 6.009E-05 7.04
9 0.915 8.916E-15 1.688E-05 263.85
10 0.974 7.172E-11 7.848E-05 7.04
11 1.019 1.135E-10 9.291E-05 7.85
12 1.093 1.397E-10 1.292E-04 8.84
13 1.155 2.994E-07 1.197E-04 3.74
14 1.214 1.018E-07 1.643E-04 7.72
15 1.275 1.388E-06 1.427E-04 3.68
16 1.334 8.562E-07 1.510E-04 5.40
17 1.404 2.826E-07 1.350E-04 3.57
18 1.461 3.186E-09 1.263E-04 4.74
20 1.540 2.963E-07 1.182E-04 4.04
21 1.607 4.138E-09 1.025E-04 4.81
22 1.670 1.548E-07 9.187E-05 84.22
23 1.672 7.661E-07 1.041E-04 5.71
24 1.747 1.618E-12 7.339E-05 6.49
25 1.820 5.548E-11 5.375E-05 5.02
26 1.890 4.580E-07 3.676E-05 10.98
27 1.979 1.501E-07 2.515E-05 10.53
28 2.056 3.741E-07 1.637E-05 20.66
29 2.088 3.474E-12 9.247E-06 25.67
30 2.129 3.033E-07 6.292E-06 20.11
31 2.199 6.892E-07 1.266E-05 29.10
32 2.259 6.180E-07 2.564E-06 36.32
33 2.384 1.610E-08 1.238E-06 115.06
34 2.585 2.043E-07 5.040E-07 300.00
35 2.784 9.703E-09 9.796E-07 37.64
36 2.983 5.202E-08 8.666E-07 40.97
37 3.182 9.308E-07 6.930E-07 46.16
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Table A-4: Form factors for (9.05 MeV)

Run <W/ <T | F F  |2 Err
No. (fm -1) (fm2/,si) (%)

5 0.671 1.145E-10 3.338E-05 45.18
6 0.682 5.589E-11 3.180E-05 26.76
7 0.779 1.544E-10 4.895E-05 19.65
8 0.876 6.577E-11 4.808E-05 8.19
9 0.912 8.916E-15 5.711E-06 300.00
10 0.972 7.172E-11 5.602E-05 8.66
11 1.017 1.135E-10 6.634E-05 9.75
12 1.092 3.468E-11 8.716E-05 11.11
13 1.154 4.231E-15 8.528E-05 4.17
14 1.213 2.914E-11 1.243E-04 9.14
15 1.274 3.438E-07 1.063E-04 4.04
16 1.332 8.562E-07 1.157E-04 6.52
17 1.402 2.826E-07 1.009E-04 3.85
18 1.459 3.186E-09 1.116E-04 5.20
20 1.538 2.963E-07 1.126E-04 4.25
21 1.605 4.138E-09 8.789E-05 5.21
22 1.669 1.548E-07 9.227E-05 10.80
23 1.670 7.661E-07 8.646E-05 4.67
24 1.745 1.618E-12 7.131E-05 6.90
25 1.817 5.548E-11 7.201E-05 4.70
26 1.888 4.580E-07 5.883E-05 9.02
27 1.976 1.501E-07 5.117E-05 7.90
28 2.053 3.741E-07 4.008E-05 13.32
29 2.086 3.474E-12 2.671E-05 16.45
30 2.126 3.033E-07 3.696E-05 7.21
31 2.196 6.892E-07 3.727E-05 16.84
32 2.256 6.180E-07 2.213E-05 9.66
33 2.382 1.610E-08 1.490E-05 17.13
34 2.583 2.043E-07 7.231E-06 23.34
35 2.782 9.703E-09 2.822E-06 35.39
36 2.980 5.202E-08 1.725E-06 34.30
37 3.179 9.308E-07 1.446E-07 300.00
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Table A-5: Form factors for (11.44 MeV)

Run <W/ a | F F  |2 Err | F F  |2 Err
No. (fm-1) (fm2/st) Tot. (%) Long. (%)

5 0.664 1.145E-10 1.037E-05 126.57 3.886E-06 300.00
6 0.677 5.589E-11 1.157E-05 113.67 6.392E-06 206.06
7 0.773 1.544E-10 4.693E-05 29.06 4.065E-05 33.67
8 0.869 6.577E-11 2.893E-05 18.04 2.125E-05 25.84
9 0.903 8.916E-15 3.902E-05 130.57 2.502E-05 204.01
10 0.965 7.172E-11 5.128E-05 13.41 3.965E-05 18.48
11 1.013 1.135E-10 4.067E-05 20.32 3.049E-05 27.83
12 1.087 3.468E-11 8.790E-05 14.67 7.830E-05 16.70
13 1.149 4.231E-15 8.232E-05 4.99 7.191E-05 6.71
14 1.208 7.236E-12 1.105E-04 11.98 9.902E-05 13.69
15 1.268 6.526E-11 1.070E-04 4.56 9.447E-05 6.26
16 1.327 2.026E-13 9.729E-05 8.96 8.316E-05 11.22
17 1.396 7.469E-19 1.184E-04 4.06 1.018E-04 5.48
18 1.453 7.145E-11 1.192E-04 5.81 1.005E-04 7.29
20 1.532 2.842E-13 1.158E-04 4.63 9.553E-05 6.26
21 1.598 2.743E-11 9.393E-05 6.50 7.397E-05 9.76
22 1.664 6.740E-15 8.278E-05 11.29 6.888E-05 14.58
23 1.663 8.643E-12 8.970E-05 5.05 7.010E-05 9.79
24 1.738 6.405E-14 7.516E-05 9.61 5.426E-05 17.76
25 1.810 1.053E-10 5.796E-05 6.05 3.439E-05 23.72
26 1.880 2.099E-11 5.251E-05 16.18 2.598E-05 46.18
27 1.968 1.391E-14 4.465E-05 10.36 1.341E-05 69.25
28 2.044 2.282E-13 2.417E-05 136.75 1.000E-10 300.00
29 2.080 2.071E-10 2.339E-05 24.09 1.987E-06 300.00
30 2.117 3.537E-07 3.113E-05 12.22 1.000E-10 300.00
32 2.246 6.180E-07 1.849E-05 16.66 1.000E-10 300.00
33 2.375 1.610E-08 1.168E-05 25.81 4.186E-06 132.36
34 2.576 2.043E-07 3.616E-06 55.38 1.000E-10 300.00

135



Table A-6: Form factors for (11.61 MeV)

Run
No.

< l e f f

(fm -1)
o

(fm2/st)
| F F  |2 Err

(%)
5 0.664 1.145E-10 7.305E-04 6.49
6 0.677 5.589E-11 2.282E-04 18.84
7 0.772 1.544E-10 4.903E-05 87.65
8 0.869 6.577E-11 2.820E-05 52.88
10 0.964 8.916E-15 6.039E-11 300.00
11 1.013 7.172E-11 5.509E-05 37.40
12 1.087 1.135E-10 3.213E-13 300.00
13 1.149 3.468E-11 2.323E-20 0.00
14 1.208 4.231E-15 2.670E-05 101.61
15 1.268 7.236E-12 2.881E-09 300.00
16 1.326 6.526E-11 2.941E-05 59.32
17 1.396 2.026E-13 3.532E-20 0.00
18 1.453 7.469E-19 1.169E-05 101.43
20 1.531 7.145E-11 4.164E-09 300.00
21 1.598 2.842E-13 2.453E-05 44.64
23 1.662 2.743E-11 1.376E-05 62.28
24 1.737 6.740E-15 3.747E-05 32.97
25 1.809 8.643E-12 5.505E-05 15.20
26 1.879 6.405E-14 8.694E-05 16.76
27 1.968 1.053E-10 3.720E-05 27.02
28 2.044 2.099E-11 6.662E-05 25.03
29 2.080 1.391E-14 2.965E-05 43.29
30 2.117 2.282E-13 3.919E-05 19.91
31 2.187 5.142E-11 8.136E-05 29.67
32 2.246 1.579E-12 1.579E-05 44.18
34 2.575 3.556E-09 8.163E-06 51.84
35 2.773 2.774E-09 1.193E-06 218.40
36 2.971 8.709E-09 3.939E-06 43.85
37 3.169 8.677E-13 7.835E-09 300.00
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Table A-T: Form factors for §+ (7.30 MeV)

Run 9e// <7 | F F  |2 Err | F F  |2 Err
No. (fm -1) (fm2/st) Tot. (%) Long. (%)

5 0.676 1.145E-10 2.573E-04 8.39 2.556E-04 8.46
6 0.686 5.589E-11 2.563E-04 5.70 2.550E-04 5.74
7 0.783 1.544E-10 3.477E-04 5.09 3.456E-04 5.13
8 0.881 6.577E-11 3.429E-04 3.55 3.412E-04 3.59
9 0.919 8.916E-15 3.409E-04 15.56 3.391E-04 15.65
10 0.977 2.889E-10 4.325E-04 3.61 4.306E-04 3.64
11 1.020 4.387E-07 4.683E-04 3.92 4.666E-04 3.94
12 1.095 1.018E-09 5.595E-04 4.53 5.542E-04 4.58
13 1.158 2.994E-07 5.634E-04 3.16 5.575E-04 3.21
14 1.217 1.018E-07 6.803E-04 4.45 6.755E-04 4.50
15 1.277 1.388E-06 5.759E-04 3.13 5.688E-04 3.20
16 1.336 8.562E-07 5.493E-04 3.75 5.393E-04 3.84
17 1.406 2.826E-07 5.551E-04 3.19 5.409E-04 3.32
18 1.464 3.186E-09 4.840E-04 3.51 4.661E-04 3.70
20 1.543 2.963E-07 4.935E-04 3.23 4.709E-04 3.45
21 1.610 4.138E-09 4.080E-04 3.52 3.832E-04 3.85
22 1.672 1.548E-07 3.449E-04 9.02 3.256E-04 9.59
23 1.675 7.661E-07 3.014E-04 4.59 2.743E-04 5.21
24 1.750 1.618E-12 2.967E-04 3.98 2.663E-04 4.68
25 1.823 5.548E-11 2.360E-04 3.53 2.019E-04 4.72
26 1.894 4.580E-07 1.756E-04 5.29 1.373E-04 7.80
27 1.982 1.501E-07 1.337E-04 5.22 9.668E-05 9.32
28 2.059 3.741E-07 8.590E-05 8.41 5.186E-05 18.02
29 2.091 3.474E-12 7.210E-05 10.74 5.396E-05 15.63
30 2.133 3.033E-07 6.502E-05 5.54 3.333E-05 20.81
31 2.203 6.892E-07 4.536E-05 13.71 1.448E-05 57.33
32 2.263 6.180E-07 3.514E-05 7.56 5.277E-06 107.71
33 2.387 1.610E-08 1.855E-05 14.15 7.767E-06 37.62
34 2.588 2.043E-07 7.025E-06 18.35 1.316E-06 121.15
35 2.787 9.703E-09 4.223E-06 20.18 2.401E-06 48.88
36 2.987 5.202E-08 2.508E-06 24.29 2.423E-06 25.39
37 3.186 9.308E-07 1.433E-06 34.41 1.331E-06 37.84
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Table A-8: Form factors for (8.57 MeV)

Run <W/ <7 | F F  |2 Err | F F  |2 Err
No. (fm -1) (fm2/,s£) Tot. (%) Long. (%)

5 0.672 1.145E-10 7.054E-05 22.70 4.694E-05 34.13
6 0.683 5.589E-11 6.750E-05 14.12 4.941E-05 19.32
7 0.780 1.544E-10 3.864E-05 24.45 2.362E-05 40.48
8 0.877 6.577E-11 4.748E-05 8.27 3.081E-05 14.46
10 0.973 7.172E-11 4.638E-05 10.05 2.674E-05 18.29
11 1.018 1.135E-10 5.341E-05 11.35 3.947E-05 15.73
12 1.093 3.468E-11 5.786E-05 14.79 4.226E-05 20.40
13 1.155 1.704E-14 4.581E-05 5.33 3.028E-05 8.87
14 1.214 1.018E-07 5.373E-05 15.23 3.889E-05 21.32
15 1.275 1.388E-06 4.196E-05 5.86 2.879E-05 9.59
16 1.333 8.562E-07 3.978E-05 11.46 2.798E-05 16.95
17 1.403 2.826E-07 2.955E-05 6.04 1.879E-05 12.92
18 1.460 3.186E-09 3.337E-05 9.47 2.353E-05 15.78
20 1.539 2.963E-07 1.951E-05 10.20 1.053E-05 28.65
21 1.606 4.138E-09 2.188E-05 10.99 1.283E-05 26.18
22 1.670 1.548E-07 1.519E-05 22.93 8.699E-06 44.68
23 1.671 7.661E-07 1.908E-05 9.31 9.952E-06 30.22
24 1.746 1.618E-12 1.204E-05 21.08 3.339E-06 108.37
25 1.819 5.548E-11 5.919E-06 20.51 1.000E-10 300.00
26 1.889 4.580E-07 5.628E-06 42.33 1.000E-10 300.00
27 1.978 1.501E-07 3.656E-06 40.75 1.000E-10 300.00
28 2.055 3.741E-07 3.163E-06 71.92 1.000E-10 300.00
29 2.088 3.474E-12 3.251E-06 55.73 1.000E-10 300.00
30 2.128 3.033E-07 1.064E-06 87.36 1.000E-10 300.00
31 2.198 6.892E-07 2.819E-06 85.80 1.000E-10 300.00
32 2.258 6.180E-07 2.085E-06 39.42 1.000E-10 300.00
33 2.384 1.610E-08 2.019E-06 73.50 1.000E-10 300.00
34 2.585 2.043E-07 4.006E-07 114.02 1.000E-10 300.00

35 2.783 9.703E-09 5.442E-07 56.42 5.433E-07 56.51
36 2.982 5.202E-08 2.496E-12 300.00 1.000E-10 105.25

37 3.181 9.308E-07 8.454E-11 300.00 1.000E-10 300.00
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Table A-9: Form factors for §* (10.07 MeV)

Run <w/ G | F F  |2 Err
No. (fm -1) (fm2/s t) (%)

3 0.507 1.145E-10 1.195E-04 9.30
4 0.570 5.589E-11 1.280E-04 9.89
5 0.668 1.544E-10 2.574E-04 4.95
6 0.680 6.577E-11 1.708E-04 6.99
7 0.776 8.916E-15 2.097E-04 6.53
8 0.873 7.172E-11 1.488E-04 4.41
9 0.908 1.135E-10 1.941E-04 19.14
10 0.969 3.468E-11 1.531E-04 4.94
11 1.015 4.231E-15 1.795E-04 5.50
12 1.090 7.236E-12 1.594E-04 7.92
13 1.152 6.526E-11 1.478E-04 3.60
14 1.211 2.026E-13 1.856E-04 7.35
15 1.271 7.469E-19 1.328E-04 3.76
16 1.330 7.145E-11 1.280E-04 5.90
17 1.400 2.842E-13 9.592E-05 3.81
18 1.457 1.105E-10 8.907E-05 5.46
20 1.535 2.173E-07 7.118E-05 4.77
21 1.602 7.661E-07 5.842E-05 6.04
22 1.667 1.618E-12 5.347E-05 11.73
23 1.667 5.548E-11 4.356E-05 5.59
24 1.742 4.580E-07 3.043E-05 10.35
25 1.814 1.501E-07 2.606E-05 6.97
26 1.884 3.741E-07 1.718E-05 18.06
27 1.973 3.474E-12 1.266E-05 16.07
28 2.049 3.033E-07 8.247E-06 36.36
29 2.084 6.892E-07 6.878E-06 36.84
30 2.123 6.180E-07 5.583E-06 22.32
31 2.192 1.610E-08 4.192E-06 72.29
32 2.252 2.043E-07 3.361E-06 31.25
33 2.379 9.703E-09 2.838E-06 55.79
34 2.580 5.202E-08 1.658E-06 58.74
35 2.778 9.308E-07 6.324E-07 86.59
36 2.977 3.534E-07 9.173E-07 41.97
37 3.175 2.546E-07 5.481E-07 79.48
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Table A-10: Form factors for |*  (10.8 MeV)

Run <W/ a | F F  |2 Err
No. (fm-1 (fm2! st) {%)

3 0.505 1.145E-10 2.979E-05 28.87
5 0.666 5.589E-11 1.008E-04 10.02
6 0.678 1.544E-10 3.404E-06 218.54
7 0.774 6.577E-11 3.723E-09 300.00
8 0.871 8.916E-15 7.464E-07 300.00
9 0.906 7.172E-11 1.732E-05 209.83
10 0.967 1.135E-10 4.136E-18 300.00
11 1.014 3.468E-11 2.358E-05 22.95
12 1.089 4.231E-15 1.983E-05 36.32
13 1.151 7.236E-12 1.969E-05 10.75
14 1.209 6.526E-11 1.921E-05 38.51
15 1.270 2.026E-13 2.769E-05 8.78
16 1.328 7.469E-19 1.697E-05 31.28
17 1.398 7.145E-11 1.983E-05 9.52
18 1.455 2.842E-13 2.977E-05 13.01
20 1.533 2.743E-11 2.262E-05 11.63
21 1.600 6.740E-15 2.325E-05 13.29
22 1.665 8.643E-12 6.104E-06 85.30
23 1.665 6.405E-14 1.591E-05 14.40
24 1.740 1.053E-10 2.588E-05 14.86
25 1.812 8.454E-11 1.590E-05 12.86
26 1.882 6.906E-08 1.059E-05 39.23
27 1.970 3.741E-07 9.176E-06 30.44
28 2.047 3.474E-12 1.085E-05 45.98
29 2.082 3.033E-07 2.987E-09 300.00
30 2.120 6.892E-07 6.808E-06 28.33
31 2.190 6.180E-07 4.478E-06 123.37
32 2.249 1.610E-08 6.119E-06 29.36
33 2.377 2.043E-07 4.531E-06 55.01
34 2.578 9.703E-09 3.383E-06 45.33
35 2.776 5.202E-08 2.376E-06 44.10
36 2.974 9.308E-07 1.043E-07 300.00
37 3.173 3.534E-07 4.194E-07 151.01
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Table A -ll:  Form factors for (11.78 MeV)

Run < l e f f a | F F  |2 Err
No. (fm -1) (fm2/st) (%)

5 0.663 1.145E-10 7.113E-05 20.09
6 0.676 5.589E-11 1.219E-04 13.48
7 0.772 1.544E-10 1.341E-04 12.17
8 0.868 6.577E-11 1.080E-04 6.64
9 0.902 8.916E-15 1.257E-04 46.77
10 0.964 7.172E-11 1.222E-04 7.53
11 1.012 1.135E-10 1.112E-04 10.48
12 1.087 3.468E-11 1.509E-04 11.21
13 1.149 4.231E-15 1.254E-04 4.57
14 1.207 7.236E-12 1.233E-04 13.01
15 1.268 6.526E-11 1.015E-04 5.33
16 1.326 2.026E-13 1.087E-04 10.36
17 1.395 7.469E-19 7.833E-05 5.64
18 1.452 7.145E-11 9.819E-05 8.11
20 1.531 2.842E-13 8.864E-05 6.15
21 1.597 2.743E-11 5.793E-05 9.90
22 1.663 6.740E-15 5.220E-05 25.84
23 1.662 8.643E-12 4.887E-05 7.79
24 1.737 6.405E-14 4.961E-05 12.40
25 1.809 1.053E-10 3.996E-05 8.90
26 1.879 2.099E-11 1.894E-05 33.49
27 1.967 1.391E-14 2.499E-05 18.66
28 2.043 2.282E-13 2.819E-05 28.33
29 2.080 5.142E-11 1.452E-05 50.42
30 2.116 3.921E-13 2.046E-05 15.50
31 2.186 2.821E-10 3.300E-07 300.00
32 2.245 2.706E-07 2.252E-05 14.27
33 2.374 1.610E-08 1.269E-05 29.14
34 2.575 2.043E-07 3.282E-06 83.79
35 2.773 9.703E-09 5.310E-06 48.34
36 2.971 5.202E-08 3.332E-11 300.00
37 3.169 9.308E-07 1.399E-06 108.99
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Table A-12: Form factors for |*  (13.39 MeV)

Run <b// <7 | F F  |2 Err
No. (fm '1) (fm2 /  st) (%)

5 0.659 1.145E-10 1.618E-04 9.41
6 0.673 5.589E-11 7.179E-05 19.64
7 0.768 1.544E-10 8.840E-05 21.01
8 0.864 6.577E-11 4.702E-05 12.50
10 0.959 8.916E-15 5.427E-05 13.42
11 1.010 7.172E-11 5.444E-05 15.68
12 1.084 1.135E-10 3.844E-05 29.94
13 1.145 3.468E-11 4.664E-05 6.96
14 1.204 4.231E-15 4.217E-05 26.97
15 1.264 7.236E-12 3.389E-05 9.42
16 1.322 6.526E-11 5.272E-05 18.32
17 1.391 2.026E-13 3.029E-05 10.89
18 1.448 7.469E-19 2.494E-05 23.72
21 1.593 7.145E-11 1.971E-05 23.78
23 1.657 2.842E-13 9.229E-06 34.47
24 1.732 2.743E-11 1.174E-05 300.00
25 1.804 6.740E-15 1.377E-05 21.54
26 1.874 8.643E-12 1.288E-05 85.82
27 1.962 6.405E-14 1.124E-05 28.72
28 2.037 1.053E-10 9.933E-08 300.00
29 2.076 2.099E-11 1.057E-05 74.92
30 2.110 1.391E-14 2.197E-06 139.46
31 2.180 2.282E-13 1.075E-05 83.18
32 2.239 5.142E-11 6.375E-06 45.64
34 2.570 3.921E-13 5.307E-11 300.00
35 2.767 7.003E-11 8.156E-07 298.66
36 2.965 4.704E-13 1.670E-08 300.00
37 3.163 1.961E-11 3.509E-09 300.00
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Table A-13: Form factors for |*  (5.27 MeV)

Run <W/ a | F F  |2 Err | F F  |2 Err
No. (fm-1) (fm2/st) Tot. (%) Long. (%)
4 0.589 1.145E-10 1.845E-04 11.04 1.616E-04 19.67
5 0.684 2.251E-10 2.752E-04 11.26 2.523E-04 13.16
6 0.692 8.068E-06 3.072E-04 8.02 2.887E-04 9.08
7 0.790 4.333E-07 7.292E-04 5.35 7.035E-04 5.58
8 0.889 1.942E-06 7.588E-04 3.69 7.269E-04 3.86
9 0.930 6.921E-06 1.492E-03 5.37 1.435E-03 5.59
10 0.986 4.387E-07 1.056E-03 3.73 1.021E-03 3.87
11 1.025 1.018E-09 1.259E-03 4.39 1.236E-03 4.47
12 1.100 2.994E-07 1.568E-03 4.90 1.541E-03 4.99
13 1.163 1.018E-07 1.593E-03 3.26 1.562E-03 3.33
14 1.222 1.388E-06 1.388E-03 5.49 1.353E-03 5.63
15 1.283 8.562E-07 1.868E-03 3.25 1.826E-03 3.33
16 1.343 2.826E-07 1.106E-03 5.15 1.058E-03 5.39
17 1.413 3.186E-09 2.492E-03 3.13 2.441E-03 3.19
18 1.471 2.963E-07 1.344E-03 3.88 1.291E-03 4.04
20 1.550 4.138E-09 1.748E-03 3.44 1.689E-03 3.57
21 1.617 1.548E-07 1.415E-03 3.64 1.349E-03 3.83
22 1.676 7.661E-07 2.010E-03 8.65 1.957E-03 8.89
23 1.683 1.618E-12 5.045E-04 6.10 4.301E-04 7.21
24 1.759 5.548E-11 1.001E-03 5.04 9.213E-04 5.50
25 1.831 4.580E-07 8.269E-04 3.93 7.486E-04 4.39
26 1.903 1.501E-07 6.331E-04 33.82 5.563E-04 38.50
27 1.992 3.741E-07 5.424E-04 7.40 4.670E-04 8.66
28 2.069 3.474E-12 3.608E-04 11.65 2.869E-04 14.72
29 2.095 3.033E-07 1.046E-04 54.88 6.355E-05 90.40
30 2.143 6.892E-07 3.087E-04 6.29 2.376E-04 8.35
31 2.213 6.180E-07 1.210E-04 33.11 5.514E-05 73.34
32 2.273 1.610E-08 1.617E-04 8.82 1.003E-04 15.65

33 2.393 2.043E-07 1.508E-04 8.86 1.230E-04 10.97

34 2.594 9.703E-09 1.597E-05 71.58 1.000E-10 300.00

35 2.793 5.202E-08 1.948E-11 300.00 1.000E-10 300.00
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Table A-14: Form factors for |*  (7.15 MeV)

Run 9e// o | F F  |2 Err | F F  |2 Err
No. 1I- (fm2/st) Tot. (%) Long. (%)

5 0.679 1.145E-10 3.791E-05 42.16 3.771E-05 42.39
6 0.688 5.589E-11 1.645E-05 54.61 1.602E-05 56.12
7 0.785 1.544E-10 2.764E-05 35.83 2.405E-05 41.33
8 0.884 6.577E-11 5.260E-05 8.04 4.489E-05 9.97
9 0.923 3.591E-14 1.687E-08 300.00 1.000E-10 300.00
10 0.980 6.921E-06 6.970E-05 7.83 6.001E-05 9.37
11 1.022 4.387E-07 7.993E-05 8.96 7.519E-05 9.65
12 1.097 1.018E-09 9.259E-05 11.03 8.530E-05 12.04
13 1.159 2.994E-07 9.919E-05 3.98 9.094E-05 4.72
14 1.218 1.018E-07 1.328E-04 8.84 1.242E-04 9.70
15 1.279 1.388E-06 1.141E-04 3.93 1.022E-04 4.98
16 1.338 8.562E-07 1.317E-04 5.94 1.177E-04 6.93
17 1.408 2.826E-07 1.251E-04 3.65 1.110E-04 4.69
18 1.466 3.186E-09 1.241E-04 4.84 1.099E-04 5.99
20 1.545 2.963E-07 1.230E-04 4.03 1.090E-04 5.27
21 1.612 4.138E-09 1.164E-04 4.61 1.032E-04 5.97
22 1.672 1.548E-07 1.113E-04 9.95 1.024E-04 11.03
23 1.677 7.661E-07 1.037E-04 4.12 9.125E-05 5.81
24 1.753 1.618E-12 9.508E-05 5.77 8.360E-05 7.75
25 1.826 5.548E-11 8.563E-05 4.29 7.501E-05 7.15
26 1.896 4.580E-07 6.850E-05 7.83 5.887E-05 11.81
27 1.985 1.501E-07 6.174E-05 6.77 5.230E-05 11.97
28 2.062 3.741E-07 4.797E-05 11.11 3.852E-05 18.65
29 2.090 3.474E-12 3.301E-05 14.00 2.773E-05 19.34
30 2.136 3.033E-07 3.110E-05 7.38 2.222E-05 24.49
31 2.206 6.892E-07 1.955E-05 21.82 1.211E-05 54.09
32 2.266 6.180E-07 1.720E-05 10.31 1.093E-05 48.53

33 2.388 1.610E-08 9.277E-06 21.10 6.321E-06 46.88

34 2.588 2.043E-07 2.299E-06 31.09 1.221E-07 300.00

35 2.787 9.703E-09 4.945E-07 79.32 1.000E-10 300.00

36 2.986 5.202E-08 2.201E-07 105.50 7.843E-08 300.00

37 3.185 9.308E-07 1.782E-10 300.00 1.000E-10 300.00
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Table A-15: Form factors for (9.15 MeV)

Run <W/ a | F F  |2 Err | F F  |2 Err
No. (fm "1) (fm2/s£) Tot. {%) Long. (%)

3 0.513 1.145E-10 3.313E-06 257.38 1.000E-10 300.00
4 0.576 5.589E-11 5.363E-05 20.79 3.172E-05 35.31
5 0.673 1.544E-10 8.628E-05 19.18 7.164E-05 23.15
6 0.684 6.577E-11 1.129E-04 9.48 1.015E-04 10.58
7 0.781 8.916E-15 1.509E-04 8.26 1.397E-04 8.97
8 0.878 7.172E-11 1.532E-04 4.43 1.401E-04 5.02
9 0.915 1.135E-10 1.705E-04 28.65 1.467E-04 33.37
10 0.974 3.468E-11 2.011E-04 4.52 1.856E-04 4.98
11 1.018 4.231E-15 2.412E-04 5.18 2.285E-04 5.51
12 1.093 7.236E-12 3.070E-04 5.99 2.884E-04 6.45
13 1.155 2.628E-10 2.978E-04 3.37 2.781E-04 3.76
14 1.214 1.028E-06 3.256E-04 6.16 3.058E-04 6.63
15 1.275 2.826E-07 3.198E-04 3.37 2.999E-04 3.73
16 1.334 3.186E-09 3.563E-04 4.61 3.351E-04 4.98
17 1.404 2.963E-07 3.439E-04 3.34 3.194E-04 3.69
18 1.461 4.138E-09 3.117E-04 4.03 2.841E-04 4.51
20 1.540 1.548E-07 3.365E-04 3.47 3.045E-04 3.92
21 1.606 7.661E-07 2.766E-04 3.93 2.408E-04 4.65
22 1.668 1.618E-12 2.823E-04 9.52 2.541E-04 10.61
23 1.671 5.548E-11 2.643E-04 3.65 2.244E-04 4.48
24 1.747 4.580E-07 2.242E-04 4.70 1.811E-04 6.08
25 1.819 1.501E-07 2.012E-04 3.80 1.564E-04 5.42
26 1.890 3.741E-07 1.562E-04 6.42 1.094E-04 9.93
27 1.979 3.474E-12 1.363E-04 6.00 8.972E-05 10.17
28 2.055 3.033E-07 1.059E-04 9.25 5.992E-05 17.52
29 2.085 6.892E-07 7.542E-05 12.40 4.998E-05 19.16
30 2.129 6.180E-07 8.337E-05 5.72 4.029E-05 15.50

31 2.199 1.610E-08 6.595E-05 14.75 2.877E-05 37.84

32 2.258 2.043E-07 4.574E-05 7.89 1.238E-05 52.16

33 2.382 9.703E-09 2.840E-05 15.41 9.877E-06 46.54

34 2.582 5.202E-08 7.271E-06 37.57 1.000E-10 300.00

35 2.780 9.308E-07 5.184E-06 34.23 1.000E-10 300.00

36 2.979 3.534E-07 7.311E-07 94.12 3.061E-07 264.21

37 3.178 2.546E-07 1.304E-06 62.16 7.926E-07 120.93
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Table A-16: Form factors for |*  (10.53 MeV)

Run
No.

<W/
(fm"1)

<7

(fm2/s t)
| F F  |2 Err

(%)
3 0.508 1.145E-10 4.140E-05 21.68
5 0.669 5.589E-11 9.689E-05 9.91
6 0.681 1.544E-10 1.930E-05 41.53
7 0.777 6.577E-11 1.860E-05 45.93
8 0.875 8.916E-15 1.473E-20 0.00
9 0.910 7.172E-11 3.779E-05 97.62
11 1.016 3.468E-11 2.315E-05 22.27
12 1.090 4.231E-15 3.013E-05 23.91
13 1.153 7.236E-12 2.531E-05 7.75
14 1.211 6.526E-11 2.613E-05 26.03
15 1.272 2.026E-13 3.720E-05 6.27
16 1.331 7.469E-19 4.228E-05 11.51
17 1.400 7.145E-11 2.788E-05 6.38
18 1.457 2.842E-13 3.621E-05 9.00
20 1.536 2.743E-11 4.104E-05 6.23
21 1.603 6.740E-15 3.787E-05 7.44
22 1.665 8.643E-12 2.652E-05 16.39
23 1.667 2.580E-13 3.621E-05 6.18
24 1.743 1.253E-07 3.699E-05 9.11
25 1.815 4.580E-07 3.220E-05 6.30
26 1.885 1.501E-07 2.670E-05 13.27
27 1.974 3.741E-07 2.235E-05 11.03
28 2.050 3.474E-12 2.133E-05 18.16
29 2.082 3.033E-07 1.612E-05 19.80
30 2.124 6.892E-07 1.774E-05 10.12
31 2.194 6.180E-07 1.045E-09 300.00
32 2.253 1.610E-08 1.270E-05 12.46
33 2.378 2.043E-07 4.703E-06 40.26
34 2.577 9.703E-09 9.081E-07 125.71
35 2.776 5.202E-08 8.735E-13 300.00
36 2.974 9.308E-07 8.514E-08 300.00
37 3.172 3.534E-07 1.280E-09 300.00
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Table A -17: Form factors for the 12.52-MeV level

Run %eff a | F F  |2 Err | F F  |2 Err
No. (fm -1) (fm2 /st) Tot. (%) Long. (%)

5 0.663 1.145E-10 2.438E-04 7.25 1.980E-04 4.90
6 0.677 5.589E-11 1.516E-04 141.45 1.137E-04 7.10
7 0.773 1.544E-10 1.921E-04 12.00 1.358E-04 6.90
8 0.869 6.577E-11 1.579E-04 8.16 8.115E-05 7.91
9 0.902 8.916E-15 3.026E-04 18.94 1.588E-04 9.77
10 0.964 7.172E-11 2.323E-04 6.56 1.265E-04 7.23
11 1.012 1.135E-10 2.449E-04 8.27 1.631E-04 6.32
12 1.087 3.468E-11 2.920E-04 15.71 1.830E-04 8.47
13 1.148 4.231E-15 2.978E-04 4.09 1.764E-04 5.54
14 1.207 7.236E-12 3.461E-04 10.60 2.124E-04 8.38
15 1.267 6.526E-11 3.539E-04 3.87 2.064E-04 5.43
16 1.326 2.026E-13 3.595E-04 5.35 2.005E-04 6.81
17 1.395 7.469E-19 3.742E-04 3.44 2.024E-04 5.67
18 1.452 7.145E-11 3.915E-04 4.68 2.082E-04 6.65
20 1.531 2.842E-13 3.916E-04 3.57 1.930E-04 6.51
21 1.597 2.743E-11 3.914E-04 4.09 1.805E-04 7.62
22 1.661 6.740E-15 2.923E-04 9.39 1.328E-04 15.30
23 1.662 8.643E-12 3.853E-04 3.54 1.608E-04 8.18
24 1.737 6.405E-14 3.843E-04 4.20 1.511E-04 10.03
25 1.809 1.053E-10 3.710E-04 3.74 1.326E-04 11.03
26 1.879 2.099E-11 3.391E-04 5.08 9.475E-05 18.16
27 1.967 1.391E-14 2.969E-04 4.80 5.357E-05 28.40
28 2.043 2.282E-13 2.724E-04 6.03 3.059E-05 53.26
29 2.077 5.142E-11 1.822E-04 9.33 4.877E-05 28.09
30 2.116 3.921E-13 2.659E-04 4.28 3.127E-05 41.92
31 2.186 7.003E-11 2.329E-04 8.09 1.119E-05 152.55
32 2.245 4.704E-13 1.941E-04 5.26 1.000E-10 300.00

33 2.371 1.961E-11 1.046E-04 9.92 2.466E-05 32.20

34 2.571 6.346E-11 3.100E-05 11.08 1.000E-10 300.00

35 2.769 4.109E-11 1.126E-05 11.17 1.000E-10 300.00

36 2.967 2.565E-15 1.099E-05 300.00 9.145E-06 25.32

37 3.165 2.985E-13 7.729E-06 16.29 5.513E-06 46.23
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Table A-18: Form factors for | + (13.61 MeV)

Run
No.

< l e f f

(fm -1)
o

(fm2/s£)
| F F  |2 Err

(%)
5 0.660 1.145E-10 6.174E-05 20.17
6 0.675 5.589E-11 2.808E-05 63.07
7 0.770 1.544E-10 4.654E-05 29.79
8 0.866 6.577E-11 2.406E-05 21.89
10 0.961 8.916E-15 1.597E-05 39.48
11 1.010 7.172E-11 3.313E-05 34.55
12 1.085 1.135E-10 2.146E-05 51.50
13 1.146 3.468E-11 1.946E-05 16.81
14 1.205 4.231E-15 2.338E-05 52.03
15 1.265 7.236E-12 1.502E-05 21.97
16 1.324 6.526E-11 2.189E-05 35.57
17 1.393 2.026E-13 1.215E-05 72.43
18 1.450 7.469E-19 1.281E-05 37.66
21 1.594 7.145E-11 1.113E-05 37.64
23 1.659 2.842E-13 1.096E-05 77.29
24 1.733 2.743E-11 6.187E-06 200.82
25 1.805 6.740E-15 3.531E-06 300.00
26 1.875 8.643E-12 1.003E-03 247.41
27 1.963 6.405E-14 5.405E-06 88.87
28 2.039 1.053E-10 1.602E-06 300.00
29 2.074 2.099E-11 1.473E-08 300.00
30 2.112 1.391E-14 3.515E-06 300.00
31 2.182 2.282E-13 3.810E-06 266.70
32 2.241 5.142E-11 5.937E-07 300.00
34 2.568 3.921E-13 6.087E-07 300.00
35 2.766 7.003E-11 2.341E-09 300.00
36 2.963 4.704E-13 4.786E-11 300.00
37 3.161 1.961E-11 3.509E-07 300.00

148



Table A -19: Form factors for (7.57 MeV)

Run <b// <j | F F  |2 Err | F F  |2 Err
No. (fm -1) (fm2/st) Tot. (%) Long. (%)

5 0.677 1.145E-10 2.822E-04 7.85 2.758E-04 8.04
6 0.687 5.589E-11 2.638E-04 5.61 2.586E-04 5.73
7 0.784 1.544E-10 5.726E-04 4.18 5.630E-04 4.25
8 0.882 6.577E-11 6.223E-04 3.30 6.008E-04 3.43
9 0.921 8.916E-15 7.651E-04 7.94 7.184E-04 8.48
10 0.979 7.172E-11 8.964E-04 3.25 8.657E-04 3.38
11 1.021 4.571E-10 1.075E-03 3.38 1.052E-03 3.46
12 1.096 1.018E-09 1.357E-03 3.66 1.322E-03 3.76
13 1.158 2.994E-07 1.409E-03 3.09 1.369E-03 3.18
14 1.218 1.018E-07 1.727E-03 3.68 1.683E-03 3.78
15 1.278 1.388E-06 1.672E-03 3.03 1.620E-03 3.13
16 1.337 8.562E-07 1.681E-03 3.29 1.622E-03 3.41
17 1.407 2.826E-07 1.784E-03 3.13 1.723E-03 3.24
18 1.465 3.186E-09 1.693E-03 3.19 1.630E-03 3.32
20 1.544 2.963E-07 1.754E-03 3.05 1.687E-03 3.18
21 1.611 4.138E-09 1.545E-03 3.20 1.473E-03 3.37
22 1.671 1.548E-07 1.416E-03 8.69 1.361E-03 9.04
23 1.676 7.661E-07 1.448E-03 3.16 1.370E-03 3.35
24 1.752 1.618E-12 1.255E-03 3.27 1.177E-03 3.51
25 1.824 5.548E-11 1.057E-03 3.20 9.865E-04 3.46
26 1.895 4.580E-07 8.299E-04 3.72 7.664E-04 4.09
27 1.984 1.501E-07 6.726E-04 3.77 6.088E-04 4.27
28 2.061 3.741E-07 5.055E-04 4.62 4.395E-04 5.49
29 2.089 3.474E-12 4.447E-04 8.88 4.073E-04 9.72
30 2.134 3.033E-07 3.840E-04 3.87 3.200E-04 4.99
31 2.205 6.892E-07 2.704E-04 6.51 2.146E-04 8.57
32 2.264 6.180E-07 1.908E-04 4.81 1.418E-04 7.30
33 2.386 1.610E-08 1.282E-04 9.02 1.064E-04 10.94
34 2.587 2.043E-07 3.199E-05 11.00 1.775E-05 20.53
35 2.785 9.703E-09 8.850E-06 14.36 6.645E-07 218.86
36 2.984 5.202E-08 3.121E-06 21.55 1.704E-06 92.03
37 3.183 9.308E-07 2.268E-06 26.53 5.631E-07 300.00
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Table A-20: Form factors for §* (10.69 MeV)

Run <fc// cr | F F  |2 Err | F F  |2 Err
No. (fm-1) (fm2/s£) Tot. (%) Long. {%)

3 0.508 1.145E-10 6.322E-05 15.04 6.745E-05 20.98
5 0.669 5.589E-11 1.412E-04 7.41 1.311E-04 8.01
6 0.681 1.544E-10 7.298E-05 12.45 6.416E-05 14.17
7 0.777 6.577E-11 9.085E-05 11.13 7.386E-05 14.86
8 0.874 8.916E-15 6.217E-05 6.62 3.778E-05 15.29
9 0.909 7.172E-11 1.352E-04 27.22 8.927E-05 41.64
10 0.970 1.135E-10 8.761E-05 6.46 4.819E-05 14.64
11 1.016 3.468E-11 1.337E-04 6.28 9.908E-05 9.58
12 1.090 4.231E-15 1.673E-04 7.52 1.258E-04 10.16
13 1.152 7.236E-12 1.635E-04 3.55 1.179E-04 5.54
14 1.211 6.526E-11 2.202E-04 6.78 1.705E-04 9.07
15 1.272 2.026E-13 1.902E-04 3.52 1.361E-04 6.18
16 1.330 7.469E-19 1.883E-04 5.26 1.287E-04 8.71
17 1.400 7.145E-11 1.975E-04 3.43 1.302E-04 6.23
18 1.457 2.842E-13 1.851E-04 4.33 1.107E-04 7.99
20 1.536 2.743E-11 1.983E-04 3.65 1.169E-04 6.84
21 1.602 6.740E-15 1.791E-04 4.17 9.481E-05 8.84
22 1.665 8.643E-12 1.590E-04 9.65 9.678E-05 16.16
23 1.667 6.405E-14 1.779E-04 3.74 9.033E-05 8.73
24 1.742 4.241E-10 1.594E-04 4.85 7.030E-05 13.71
25 1.814 6.053E-07 1.484E-04 3.87 5.931E-05 16.56
26 1.885 1.501E-07 1.454E-04 5.93 5.629E-05 24.07
27 1.973 3.741E-07 1.146E-04 5.70 1.932E-05 56.25
28 2.050 3.474E-12 1.097E-04 8.06 7.774E-06 140.94
29 2.081 3.033E-07 8.006E-05 10.94 2.168E-05 42.72
30 2.123 6.892E-07 9.059E-05 5.20 1.000E-10 300.00
31 2.193 6.180E-07 8.894E-05 10.81 1.000E-10 300.00
32 2.252 1.610E-08 6.782E-05 6.33 1.000E-10 300.00
33 2.377 2.043E-07 3.250E-05 12.38 1.232E-06 300.00
35 2.775 5.202E-08 7.078E-06 20.59 1.000E-10 300.00
36 2.973 9.308E-07 2.962E-06 26.26 1.000E-10 300.00
37 3.172 3.534E-07 2.104E-06 54.74 1.000E-10 300.00
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Table A-21: Transverse form factors for (5.30 MeV)

Run.
No.

<b//
(fm -1)

| F F  |2 
Trans.

Err.
m

38 0.510 1.484E-05 175.20
40 0.824 3.730E-05 6.00
41 0.919 3.800E-05 5.00
42 0.971 3.570E-05 9.00
43 1.015 3.680E-05 6.00
44 1.117 4.390E-05 6.00
45 1.216 5.060E-05 7.00
46 1.317 6.440E-05 6.00
47 1.516 6.670E-05 6.00
48 1.713 8.180E-05 5.00
49 1.908 6.500E-05 7.00
50 2.104 4.980E-05 5.00
51 2.254 3.410E-05 11.00
52 2.401 2.660E-05 6.00
53 2.737 8.840E-06 6.00
54 2.974 3.680E-06 9.00
55 3.262 1.100E-06 20.00

Table A-22: Transverse form factors for (11.44 M eV)

Run. <W/ | F F  |2 Err.
No. (fm -1) Trans. (%)
39 0.693 7.760E-06 15.00
42 0.939 9.690E-06 25.01
43 0.983 1.660E-05 18.00
44 1.086 1.460E-05 23.00
46 1.286 1.800E-05 27.00
47 1.485 2.460E-05 10.00
48 1.684 2.000E-05 30.00
49 1.877 2.310E-05 32.00
50 2.073 2.680E-05 18.00
51 2.224 1.840E-05 21.00
52 2.370 7.000E-06 66.00
53 2.706 4.510E-06 35.01
54 2.944 1.020E-06 38.00
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Table A-23: Transverse form factors for §* (7.30 MeV)

Run.
No.

<b//
(fm -1)

| F F  |2 
Trans.

Err.
(%)

38 0.494 1.739E-06 109.26
39 0.715 2.040E-06 33.00
40 0.814 3.160E-06 50.00
41 0.908 1.160E-06 100.00
42 0.962 1.950E-06 62.00
43 1.005 2.320E-06 68.02
44 1.107 9.960E-06 16.00
45 1.206 6.860E-06 58.99
46 1.307 1.220E-05 25.00
47 1.506 2.600E-05 15.00
48 1.703 2.930E-05 13.00
49 1.898 3.350E-05 14.00
50 2.094 2.180E-05 19.00
51 2.244 1.670E-05 17.00
52 2.391 1.000E-05 11.00
53 2.728 1.760E-06 41.00
54 2.964 5.600E-07 83.00
55 3.250 6.000E-08 100.00

Table A-24: Transverse form factors for §* (8.57 M eV)

Run.
No.

<b//
(fm -1)

| F F  |2 
Trans.

Err.
(%)

39 0.708 2.400E-05 5.00
40 0.807 1.730E-05 14.00
41 0.902 2.110E-05 12.00
42 0.954 2.000E-05 7.00
43 0.998 2.200E-05 10.00
44 1.100 2.440E-05 6.00
45 1.199 2.150E-05 9.00
46 1.301 1.650E-05 10.00
47 1.499 1.070E-05 25.00
48 1.696 9.400E-06 27.00
49 1.892 5.370E-06 48.99
53 2.721 2.110E-07 24.00
55 3.250 7.000E-10 10.00
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Table A-25: Transverse form factors for |*  (10.07 MeV).

Run. <b// | F F  |2 Err.
No. 11

Trans. (%)
39 0.700 1.933E-05 7.00
40 0.798 2.889E-05 13.00
42 0.946 1.974E-05 8.00
43 0.990 1.082E-05 35.00
44 1.090 1.730E-05 17.00
46 1.293 7.440E-06 70.00
47 1.492 9.110E-06 24.00

Table A -26: Transverse form factors for |*  (7.15 M eV)

Run.
No.

9c//
(fm -1)

| F F  |2 
Trans.

Err.
(%)

39 0.716 2.220E-06 31.00
40 0.814 6.400E-06 22.00
41 0.909 1.070E-05 18.00
42 0.962 1.070E-05 12.00
43 1.005 7.250E-06 26.00
44 1.107 1.220E-05 13.00
45 1.206 1.240E-05 31.00
46 1.308 1.910E-05 16.00
47 1.507 1.710E-05 20.00
48 1.704 1.220E-05 27.00
49 1.899 8.050E-06 48.00
50 2.094 6.480E-06 52.01
51 2.245 3.490E-06 80.00
53 2.728 1.430E-06 45.00
54 2.965 3.700E-07 100.00
55 3.250 1.000E-07 100.00
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Table A-27: Transverse form factors for the 9.15-MeV level

Run.
No.

9e//
(fm"1)

| F F  |2 
Trans.

Err.
(%)

39 0.706 1.606E-05 9.00
40 0.804 1.412E-05 13.00
41 0.898 1.600E-05 15.00
42 0.951 1.498E-05 9.00
43 0.995 1.860E-05 13.00
44 1.097 3.000E-05 15.00
46 1.298 2.720E-05 15.00
47 1.496 3.640E-05 8.00
48 1.693 4.326E-05 7.00
49 1.889 4.037E-05 9.00
50 2.085 3.140E-05 8.00
51 2.235 1.830E-05 17.00
52 2.381 1.830E-05 7.00
53 2.717 6.880E-06 9.00
54 2.955 1.900E-06 23.00
55 3.250 3.000E-07 100.00

Table A-28: Transverse form factors for the 12.52-M eV level

Run.
No.

<!*//
(fm"1)

| F F  |2 
Trans.

Err.
(%)

39 0.687 5.890E-05 4.00
40 0.786 7.880E-05 4.00
42 0.934 1.020E-04 4.00
43 0.977 1.170E-04 4.00
44 1.079 1.680E-04 4.00
46 1.280 2.100E-04 4.00
47 1.479 2.310E-04 4.00
48 1.676 2.380E-04 4.00
49 1.872 2.110E-04 5.00
50 2.063 1.670E-04 4.00
51 2.218 1.200E-04 5.00
52 2.364 7.860E-05 4.00
53 2.701 2.520E-05 8.00
54 2.938 8.490E-06 7.00
55 3.250 1.300E-06 100.00
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Table A-29: Transverse form factors for (7.57 MeV)

Run.
No.

<W/
(fm"1)

| F F  |2 
Trans.

Err.
(%)

38 0.494 2.070E-06 96.62
39 0.713 8.700E-06 9.00
40 0.812 1.500E-05 12.00
41 0.907 3.120E-05 10.00
42 0.960 3.080E-05 6.00
43 1.003 3.550E-05 7.00
44 1.105 5.790E-05 5.00
45 1.204 6.210E-05 6.00
46 1.306 7.940E-05 4.00
47 1.505 7.750E-05 6.00
48 1.702 8.290E-05 5.00
49 1.897 5.300E-05 9.00
50 2.093 4.620E-05 9.00
51 2.243 2.740E-05 10.00
52 2.389 2.090E-05 6.00
53 2.725 7.700E-06 8.00
54 2.963 3.380E-06 14.00
55 3.250 1.000E-06 100.00

Table A-30: Transverse form factors for (10.69 M eV)

Run.
No.

<W/
(fm"1)

| F F  |2 
Trans.

Err.
m

39 0.697 1.530E-05 8.00
40 0.796 2.520E-05 29.00
42 0.943 3.280E-05 6.00
43 0.987 5.290E-05 15.00
44 1.089 6.460E-05 5.00
46 1.290 7.710E-05 10.00
47 1.489 9.600E-05 4.00
48 1.686 9.190E-05 5.00
49 1.881 7.660E-05 12.00
50 2.077 7.288E-05 5.00
51 2.228 4.920E-05 9.00
52 2.374 3.020E-05 6.00
53 2.710 9.360E-06 17.00
54 2.947 2.750E-06 16.00
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A p p en d ix  B  

F ittin g  Function

The resolution function used in the lineshape analysis can be described as 

an asymmetric hypergausian function with tails. This is given in formula B .l 

and illustrated in figure B .l. The subscripts r and 1 on the parameters, assume 

th a t the data  is ploted such tha t the kinematic variable x(excitation energy) 

increases to the right.

Fj ( x )  — h X  e x p { — | ( x — p ) / (k x wj) |7} p  — rrn < x  < p

=  f ix  exp{— | (x — p)/ (k  x wr) I'*} p < x < p +  m r (^-1)

=  h x w { t i / ( x  — p — m r — s)}  x > p  +  m,R

where ,

wi — u>(l — a)

wr = 1 +  a)

k =  0 .25(ln2)~1̂

m r%i — k x  wTil [ - l n ( f r>i)

5 =  - t x x w / f r ; aYe

The free param eters, some of which^illustrated in figure B .l, are given below:

h = peak height (counts/(MeV x p, C))

p = peak position (-MeV)

w = 0.5(iur +  wi) =  width(FWHM) (MeV)

a =  (wr -  wi)/(wr +  wi) = asymmetry

'■y =  exponent (determines the flatness of the top)

f r — relative m atch amplitude to hyperbolic part

t\  =  fall-off of hyperbolic part.
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Figure B .l: The f it  function and its parameters used in the fitting procedure[67].
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