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Abs tract

Multicellular Tumour Spheroids (MTS) are a useful 

in vitro models of human cancer. Two cell lines - 

NB1-G and 1MR-32 - derived from two human 

neuroblastomas, were grown as MTS and were 

subjected to single, split and fractionated 
irradiation.

The NB1-G MTS line is radiosensitive, with low 

capacity for repair of sublethal damage, which 

indicated that NB1-G may be a suitable cell line to 

test the theoretical advantage of hyperfractionation.

The single dose response of 1MR-32 MTS, suggested 

that, intypically for neuroblastoma, 1MR-32 cells 

possessed a significant ’shoulder' on the cell 

survival curve.

Fractionated radiation regimes were designed to 

be theoretically isoeffective for damage to late 

responding normal tissues (calculated using the linear- 

quadratic mathematical model with g  = 3GY). The 

radiation responses of MTS were evaluated using the 

end-points of regrowth delay and 'proportion cured'

Regimens using smaller doses per fraction were 

found to be markedly more effective in causing damage 

to the NB1-G MTS, as assessed by either end-point.

The isoeffective regimens caused approximately 

equal damage to 1MR-32 soheroids also.

The findings were consistent with a substantial 

repair capacity for 1MR-32 MTS and implied that the 

well-known clinical heterogeneity of neuroblastoma 

might extend to its cellular radiobiology.

These experimental findings supoort the proposal that



hyperfractionation should be a therapeutically 

advantageous strategy in the treatment of tumours 

whose radiobiological properties are similar to those 

of the MTS neuroblastoma line NB1-G but not in the 

case of 1MR-32 MTS.
On the basis of these results, it seems plausible 

that hyperfractionation would not be a universally 

advantageous strategy, but one whose efficacy is 

likely to depend on being able to select aporopriate 

tumours for this form of treatment.
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Chapter 1

NEURQBL^LTQNA: THE CLINICAL PROBLEM 

Nature of Neuroblastoma

Neuroblastoma - Neuroblastoma Syrup a thi cum - 

originates from neural crest cells which normally 

give rise to sympathetic ganglia and the adrenal 

medulla. (1). It is the most primitive of the 

sympathetic nervous system tumours and is also 

the most common extracranial solid malignant 

tumour in childhood, which accounts forAICyc of 

paediatric cancers. (2, 3,4-, 5). Ihe tumours may 
occur anywhere from the superior cervical ganglia 

down the sympathetic chain to the bladder. The 

median age of diagnosis is 2-J years old and 9Ca 

of patients will be diagnosed within the first five 

years of life. (5).
Neuroblastoma is characterized by early 

dissemination and 7Cg of patients have tumour spread 

beyond the primary site at the time of diagnosis.

The sites of dissemination are the lymph nodes, bone 

marrow, bone, liver and skin, with the liver metastas 

mostly occuring in young infants ( <  6 months old) and 

the bone metastases more prevalent in older children.

(2,5).
Neuroblastomas often contain areas of differing 

degrees of maturation with the presence sometimes of 

fully mature ganglion cells.

Etiology of Neuroblastoma

The Etiology of Neuroblastoma is unknown, however, 

environmental factors are suggested by the fact that 

the tumour is uncommon in children in certain



geographical areas. (6).

It has been observed that there is a significantly 

reduced incidence of neuroblastoma in black children 

in tropical Africa in comparison with American black 

children, which suggests the presence of exogenous 

influences on the etiology. (2). In the United States 

of America it is less common in black children than 

in white children. (6).

In children with neuroblastoma, there seemed to 

be no association with immune deficiency syndrome 

or congenital defects. There is, however, an 

established link between neuroblastoma and foetal 

hydantoin syndrome i.e. women who took hydantoin 

anticonvulsants when pregnant. (3)»

Pathology of Neuroblastoma

Macroscopically, neuroblastoma appears encapsulated 

with poorly defined margins which infiltrate the 

surrounding tissue.

Microscopically, neuroblastoma is composed of small, 

round or slightly elongated cells with scant cytoplasm.

The first sign of differentiation is seen by the 

formation of rosette-like structures - a grouping of 

cells around a tangle of young nerve fibres, although 

these are not always present. (3,6).

Neuroblastoma cells have cytoplasmic structures 

consisting of neurofilaments, neurotubules and 

neurosecretory granules. The granules represent 

cytoplasmic accumulations of catecholamines. (3,6).

It is thought that coarse ultrastructural 

evaluation of undifferentiated neuroblastoma may have

prognostic value.



Clinical Manifestations.

The clinical manifestations of neuroblastoma 

often depend upon the location of the primary 

tumour. Neuroblastoma tumour tissue can occur 

anywhere that sympathetic neural tissue normally 

occurs. In more than 50% of cases, a primary 

tumour is found in the Retroperitoneal region which 

arises in the adrenal medulla or a sympathetic 

ganglion. (5).

In some tumours, there is extension through to 

the spine and children may present with signs of 

spinal cord comoression.

Late recognition of the intraspinal component 

has resulted in permanent paraplegia, which is 

unfortunate because patients with dumb-bell shaped 

neuroblastoma have a very good chance of survival. (3,5) 

Horner's Syndrome is the result of an involvement 

of the cervical sympathetic ganglion and is 

associated with enopthalmus, ptosis of the upoer 

eyelid, slight elevation of the lower lid and 

constriction of the pupil. (3)*

When neuroblastoma arises in the opthalmic 

sympathetic nerve, Heterochromia iridis - a difference 

in the colour between the two iridis - may result. (3,5) • 

A particular pattern of spread peculiar to neuroblastoma 

is the association of orbital and liver metastases.

Meningeal or Intercerebral metastases may occur 

but are rare. (6) .

Biochemical Features

Increased levels of Catecholamines and their 

metabolites are found in the urine o f > 9 0 %  of



neuroblastoma patients. This is thought to be due 

to their increased production or to their defective 

storage within the tumour cells. (6).

The most frequently assayed urinary catecholamines 

are Vanillymandelic Acid (VMA) and Homovanillic Acid 

(HVA).

VMA is elevated in the urine of 75 - 96% of 

neuroblastoma patients and an HVA elevation is found 

in 68 - 95%* (3,6). The VMA/EVA ratio has been 

shown to have prognostic significance with the most 

favourable outcome associated with VMA/HVA ratios 

greater than or equal to 1.5 (3). A patient 
occasionally shows no sign of increased catecholamines 

although a periodic assay of urinary VMA/HVA levels 

have proved to be a good prognostic test with good 

reliability (80 - 90%) (3).
The amount of HVA does not matter to prognosis, 

although the higher the level of VMA, the better the 

prognosis . (3)•

Increased levels of HVA and VMA have also been 

found in plasma. Plasma Carcinoembryonic Antigen(CEA) 

levels are increased in a number of malignant and non- 

malignant diseases. (3,6).

Ccmolement levels increase and fluctuate during the 

course of neuroblastoma, they often rise with 

recurrence but decrease if the disease becomes 

terminal. (3)•

Increased levels of Neuron-Specific-Enolase (NSE) 

have also been found in neuroblastoma tissue, although 

it is not neuroblastoma specific.

Gene Amnlification t -̂ has been demonstrated by



Kohl et al that there are two metaphase chromosome 

anomalies in many human neuroblastoma cell lines. (7)* 

These are long, non-banding homogeneously staining 

regions (HSR's) and small, paired chromatin bodies 

known as Double Minutes (DM’s). It is thought that 

the H S R ’s and DM's of human tumours are likely to be 

manifestations of amplified genee.

The amplification process is associated with the 

transposition of the sequences involved from the 

short arm of chromosome two to the long arm of 

chromosome one. The frequent occurrence of DM's 

and HSR's in neuroblastoma tumours and cell lines 

indicated that amplification was a general property. (7). 

Biedler et al speculated that the H S R ’s were in some 

way functionally involved in the excessive production 

of one or more proteins specific to the malignant 

neuronal cells. (8). Kohl et al suggested that the 

commonly amplified sequence was representative of a 

gene - N-MYC - whose production was necessary for the 

proliferation of neuroblastoma tumour cells. (7).

Erodeur et al have shown that N-MYC is amplified 

in >90°-^ of human neuroblastoma cell lines irrespective 

of the cytogenetic form of the amplified D N A . The 

amplification, however, is only found in 38% of primary 

tumours and the reasons for this are unknown. (9)*

It has been demonstrated by Gilbert et al that one 

or more genes on chromosome lp were involved in 

neuroblast transformation and that amplification of 

certain one genes contribute to the ability of a 

tumour to metastasize. (10).
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Staging and Diagnosis

The most widely used staging system for

neuroblastoma was devised by Evans et al in 1971.

(2,3,5,6).
Stage 1 tumour is confined to organ

or structure of origin.

Stage 11 tumour extending in continuity

beyond the organ or structure of 

origin but not crossing the 

midline. Regional lymph nodes 

may be involved.

Stage 111 tumour extending in continuity

beyond midline. Regional lymph 

nodes may be involved bilaterally.

Stage IV remote disease involving skeleton,

parenchymatous soft tissue or 

distant lymph node grouos.

Stage 1V-S otherwise classified as having

Stage 1 or 11 but with remote 

disease confined to one or more of 

the following sites - liver, skin 

or bone marrow.

Most patients with this stage are 

less than one year of age.

Suontaneous regression occurs. (2). 

There are biolosical differences between Stage IV

and 1V-S e.g. there are increased serum ferritin levels 

in Stage 1V_ but not Stage 1V-S . (2,3,6). Increased 

serum ferritin levels are associated with an 

unfavourable prognosis. (3).



Prognostic Factors.

The prognosis of neuroblastoma is affected by 

the following factors

(a ) Age of the patient at the time of diagnosis. 

Infants who remain free of neuroblastoma, for one year 

are usually cured but older children have been known 

to experience recurrences many years after initial 

diagnosis. (3) •

Children less than one year and older than six 

years do better than children between the ages of 

one and six.

Children older than six have a less aggressive 

disease and may live 5 years or longer before 

succumbing to their illness. (6).

(b ) Clinical stage at the time of diagnosis.

This is the single most important prognostic factor 

and together with the patient's age are the two 

independent variables which are of the greatest 

prognostic significance. (3,5,6).

Patients with Stages 1 and 11 generally have good 

prognosis. Few children with Stages 111 and IV 

neuroblastoma - regional or widespread metastatic 

disease - survive disease free for more than two years. 

For all stage of disease beyond localized, completely 

excised tumours, the infant of less than one year 

has a significantly better remission rate and survival 

rate than the older child of equivalent stage. (5)

(c ) Localization of Primary Tumour.

Children with abdominal primary tumours have the worst 

prognosis, and in this group, those with nonadrenal 

primaries have a better prognosis than
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those whose tumours originate from the adrenal glands.

(1,6).
(d) Lymphocyte Count

Spontaneous remission and maturation have been 

attributed to, in part, host immune defense 

mechanisms. (3,6). Lymphocytes of most patients 

cured of neuroblastoma and those which have active 

disease, have been known to inhibit the growth of 

neuroblastoma cells in tissue culture - a 

phenomenon not seen in lymphocytes from control 

subjects. This cytotoxicity appears to be mediated 

by T-cells. (3,6).

Other factors involved in the prognosis of neuro­

blastoma include site of metastases, lymph node 

involvement and the histological make-up of the 

tumour i.e. degree of differentiation. (1,5,6).

The presence of tumour in regional lymph nodes 

markedly alters the prognosis in these patients 

and they have a clinical course much the same as the 

child with more widely disseminated tumour. (5)*

Vaage et al summed up the most favourable prognostic 

circumstances:-

(1) tumour diagnosed within the first 

three months of life..

(2) tumour localized in cervicotheracic 

region.

(3) clinical Stage 1

(4) tumour histologically well differentiated

a n d (5) normalization of levels of post-operatively

excreted catecholamine derivatives (VMA and 

H V A ) (1) .
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Present Treatment Methods.

Therapy of neuroblastoma is often difficult to 

evaluate because of the tumours unpredictable course 

and the lack of uniform criteria for defining 

treatment response.
Before surgery, however, complete evaluation for 

metastatic disease should be carried out with 

computerized axial tomography (CAT) of the abdomen, 

liver scan and bone scan. Urinary catecholamine 

levels should be obtained.

Surgery

Where at all possible, total surgical removal of 

Stage 1̂ and 11 should be undertaken. The two years 

disease free survival of this group varies from 84?^ 

when complete resection is performed, to 63?i when 

only partial resection is possible. There is no 

evidence to suggest that further therapy improves 

survival even when macroscopic disease is left 

behind. (5,6).

The exact role of surgery in Stage 111 and IV 

tumours has yet to be defined, although it has been 

shown that there is no improvement in overall 

survival using debulking surgery for Stage IV patients.

When surgery is performed following other treatment, 

however, the survival period is longer than if no 

surgery was used. (6).

Radiation Treatment

Neuroblastoma is a radiosensitive tumour, but the 

exact role of radiation therapy in i t ’s treatment still 

remains to be defined.

Radiation therapy does not seem to benefit patients
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with Stage 1 and 11 disease, even when macroscopic 

tumour remains following surgery. (3,6).

It is normal to irradiate residual Stage 111 

tumour after surgery or even before to reduce tumour 

size. It is not known whether radiation improves 

survival in these cases. (3,6)

Radiation therapy clearly plays a role in the 

palliative treatment of patients with Stage IV 

disease. (6).

Chemotherapy

Chemotherapy is used for the majority of patients 

with disseminated neuroblastoma. The variety of 

drugs and drug combinations that have become available 

over the past 20 years have significantly increased 

the tumour response rate (3,6).

Combination chemotherapy with cyclophosphamide, 

vincristine and adriamycin in two and three drug 

combinations has not resulted in a definite increase 

in the complete remission rate.

Since cisplatin and VM-26 were added to 

cyclophosphamide and vincristine, however, there seems 

to have been a difference observed in recent years.

It has been concluded, therefore, that at the present 

there has been no confirmed increase in the median 

survival of children with metastatic neuroblastoma 

(Evans Stage 111 and IV) over the past 30 years. (11).

Carli et al looked at 26 different chemotherapeutic 

drugs used as single agents and found that only the 

6 named below achieved a clinical response in at least

20% of the patients.
Cyclophosphamide. Cis-platinum.
Vincristine. VM-26.
Adriamycin. Peptichemo. (5,6).
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There is some evidence that aggressive combination 

chemotherapy may improve the survival rate in older 

children and adults with metastatic disease.

Nitschke et al treated 33 children with Stage IV 

neuroblastoma with intensive chemotherapy. The 

drugs used were Cyclophosphamide, Vincristine, Papaverine 

and Trifluoro-methyl-2-deoxyridin. The therapeutic

value of the four drug combination was limited due 

to side-effects related to myelosuppression which 

resulted in severe complications. (12).

Voute et al used a four drug schedule of Vincristine, 

Prednisolone, Cycloohosphamide and Methotrexate.

Complete remissions were achieved but could not be 

maintained. (13).

Finklestein et al looked at 104 Stage IV 

neuroblastoma patients, using a triple drug regimen 

of Cyclophosphamide, Imidazole, Carboxamide and 

Vincristine, and a similar regimen plus Aariamycin.

They found no significant difference in the median 

survival observed in children with Stage IV 

metastatic neuroblastoma, although overall survival 

significantly improved. It was found that the 

children under one and older than six at the time 

of diagnosis, had >40°^ greater. chance of enjoying 

prolonged tumour-free survival. (14).

If systemic treatment is needed in certain stage 

Tv - S patients, gentle chemotherapy is often very 

successful. (2).



Late Fffects of Treatment 

Radiation Therapy

(a) Skeletal Effects.

Irradiation of growing bone reduces growth rate 

and causes early fusion of the epiphyses.

(b) Soft Tissue Effects.

Failure of muscle development.

(c) Endocrine Organ Effects.

Children treated in the early years were irradiated 

throughout the whole abdomen and so the girls' ovaries 

and the boys' testes received the total dose of 

radiation. Most of the children had complete ovarian/ 

testicular failure and required hormonal replacement 

for pubertal development to take place.

Children with neuroblastoma in the neck had their 

Thyroid Gland irradiated and the thyroid dysfunction 

that resulted was compensated with increased levels 

of thyroid stimulating hormone.

Chemotherapy

Since treatment with cytotoxic drugs is fairly 

recent, not much is known about the late effects of
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chemotherapy.
Limitations of Chemotherapy

The effectiveness of chemotherapy is compromised

when cells are not proliferating or when tumour
growth kinetics are almost zero, as seen in the necrotic

centre. Cells in less vascularised areas will only

be exposed to lower concentrations of the

chemotherapeutic agent. (. 4).

The response rates to drugs in children under two

years of age at diagnosis are usually as high as 60;i

but the cure rates may be lO'k to 25°i with

disseminated disease. (4).

Combination Therapy

Cue to the immediate enhancement of radiation by 
certain of the cytotoxic agents, one might expect

that there will be greater late effects although

there is only limited evidence of this. (2)

Neuroblastoma patients d o n ’t usually have both

treatments now.

Radiochemotherapeutic treatment of minimal
residual disease in neuroblastoma was studied by

Zucker et a l . (15)

In the low risk patients, the early and late

hazards of therapy were found to be higher than the

benefits and Zucker concluded that even

radiotherapy after partial removal and chemotherapy

in Stage 11 patients was questionable.

Proposals for New Treatment.

Due to the limited success in the treatment

of patients with disseminated neuroblastoma, several

new experimental aporoaches are being investigated.
This section will attempt to summarize what has been
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done.

Antibody Targeted Radiotherapy

A quick and accurate diagnosis of malignant 

disease is essential, in order that the appropriate 

treatment may commence without delay.

Most malignancies can be diagnosed from the 

clinical picture and the results from histopathological 

and cytological analysis, although neuroblastoma 

can be difficult to differentiate from other small 

blue round cell tumours. (16).

Monoclonal antibodies were proposed as 

good diagnostic and therapeutic tools in 1982 and 

have a high degree of tumour specificity - not absolute 

tumour specificity but orerational specificity - and 

availability. (16,17).

Antibodies which do exist are used for in vitro 

diagnosis of tumour type and in vivo detection of 

metastatic spread of tumour. (1?). If such 

antibodies can be radiolabelled without any loss of 

immunologic specificity, they may be able to deliver 

cytotoxic amounts of radiation, cytotoxic drugs or 

toxins to the tumour. (18,19).

In order to minimize normal tissue irradiation, 

target cell specificity and a high extraction 

co-efficient are necessary with any radionuclide.(18). 

Other factors influencing i t ’s applicability are 

tumour cell retention time and the rate of catabolized 

radionuclide. (18).

The choice of radionuclide for antibody mediated

radiotherapy is a difficult problem. Long range B - particle 
I 'i

emitters like I have been used so far but short range
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- particle emitters like At are under consideration.

I1’or short - range emitters, it is important that every 

cell he targeted which may not he possible with single 

antibodies due to reported antigenic heterogeneity in 

some tumours.

In order to overcome heterogeneity in antigen 
expression seen in neuroblastoma, it is necessary 
to use a panel of monoclonal antibodies and 
currently there are 11 different anti-neural 
antibodies in use to assist in the diagnosis of 
neuroblastoma. (16,17). Such heterogeneity could 
be due to the fact that cells blocked at different 
stages of maturation exnress different profiles of 
introcellular or cell membrane antigens. There is 
an occasional cross-reactivity, the mechanism for 
which is unknown. (16).

Kemshead et al used a panel of monoclonal 
antibodies to differentiate between leukaemia, 
lymphoblastic lymphoma and neuroblastoma. The panel 
of monoclonal antibodies offered a rapid and accurate 
adjunct to conventional techniques in the diagnosis 
of neuroblastoma. (16).

Cheung et al used 3 different monoclonal antibodies 
which were cytotoxic to neuroblastoma in the presence 
of complement. All identified neuroblastoma in 
patient specimens and, using indirect immunofluorescence, 
they could reproducibly detect <C.1/j tumour cells 
seeded in bone marrow cells. (19).

Studies using monoclonal antibodies conjugated with
12b 1b1low doses of either I or y 1 have demonstrated the 

possibility of targeting antibodies to primary and
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metastatic tumour sites in patients with neuroblastoma.

UJ13A is a monoclonal antibody which is known to 

bind to human neuroblastoma cells. Preclinical 
studies have demonstrated that radiolabelled UJ13A 

is taken up into human neuroblastoma xenografts 

established in nude mice, although no antibody 

uptake was recorded when experiments were repeated 

with an antibody known not to bind to human 

neuroblastoma. The levels of the radio-labelled 

antibody conjugate fell more rapidly in mouse blood 

and organs, than in tumour tissue. (17,20).

Before antibody-mediated radiotherapy can be 

used to i t ’s full capacity, certain objectives need 

to be achieved e.g. preservation of immunologic 

specificity after labelling, elimination of cross­

reactivity with normal tissue antigens and the use 

of monoclonal antibodies of human rether than murine 

origin. (18).

MIBG - Targeted Radiotherapy

The compound Meta-Iodobenzylguanidine (MIBG) is 

an analogue of a precursor of epinephrine and nor­

epinephrine and so had a strong affinity for the 

adrenal medulla and adrenergic storage vesicles.(17, 21).

MBG follows the metabolic pathway of norepinephrine 

and tissues which have reservoirs of hormone retain 

norepinephrine and norepinephrine-like compounds e.g.

M I B G .

Neuroblastoma tumour cells can synthesize and 

store catecholamines. (21,22).

Radio iodinated MIBG allows safe, non invasive, 

sensitive and specific scintigraphic location of



neuroblastoma tumour cells (22) and is useful in 

locating primary tumour as well as residual, recurrent 

or metastatic disease. (21).
In oatients with bone marrow metastases, systemic 

uptake may lead to a high dose being delivered to 

bone marrow stem cells. (21). Harvested bone marrow 

may be cleaned using specific antibodies and 

reinfused after therapy to circumvent the bone marrow 

toxicity.
The therapeutic possibilities afforded by ,3,I-MIEG 

may give a new role for radiotherapy in the treatment 

of children with neuroblastoma.

Total Body Irradiation and Bone Marrow Rescue

Some of the newer experimental approaches in the 

treatment of oatients with disseminated neuroblastoma 

include Total Body Irradiation (TBI), which is used 

as a systemic therapeutic agent.

Total Body Irradiation (TBI) with bone marrow 

rescue is being used increasingly in the management 

of children with first or second remission. (23).

TBI as a preparation for Bone Marrow Transplant (BMT) 

has three functions.

(1) Immune Suppression

This is essential for the graft to ’tak e ’

(2) Elimination of Malignant Cells from the body 

This seems to be more successful if the number of

tumour cells has been reduced by previous intensive 

treatments.

(3) Bone Marrow Ablation

There is some evidence that grafted bone marrow 

can only be successfully established if 'space' in 
the marrow cavity is made by a huge deletion of



haemopoietic elements by TBI. (23).
Wheldon et al looked at log cell kill after low 

and high dose TBI on human neuroblastoma cells 

in vitro. (2). They predicted that low dose TBI 

achieved only modest cell kill but high dose TBI 

with marrow rescue could reduce the number of 

clonogenic cells by a factor of 10 - 1(r ,

without severe side-effects.

Bone marrow stem cell toxicity is frequently the 

dose-limiting factor with conventional cytotoxic 

drug and/or radiation therapy. (17,25,26). This 

can be overcome by using autologous or allogenic 

bone marrow rescue. Bone marrow contamination 

by metastases is often present at diagnosis which 

may limit the availability of uncontaminated marrow 

for haemopoietic reconstitution. (17,26,27).

Several techniques have been developed to ablate 

tumour cells from harvested bone marrow to be used 

for autologous bone marrow e .m . treatment of bone 

marrow with drugs or physical procedures relying 

on differential centrifugation.

Immunological procedures include coating malignant 

cells with antibody for opsonisation, treating bone 

marrow with antibody and complement or with 

antibodies to which either drugs or toxins have been 

attached. (17)•
The use of fluorescence activated cell sorting 

for cleansing tumour cells from bone marrow 

experimentally has produced good results but it is too 

slow. (17)•
Kemshead et al developed an alternative approach



to fluorescent sorting - the use of a Magnetic 

Separation procedure. (17,26,28).

This method removes neuroblastoma cells from 

bone marrow by means of monoclonal antibodies 

conjugated to magnetic polystyrene microspheres.

The separation of the cells is on the basis of their 

iron content and it is possible now to target 

microspheres (using Magnetite) to any type of cell 

using monoclonal antibodies. (17,26,28).

Using the magnetic separation device, it is 

possible to purge approximately 5 x 10^ bone marrow 

cells of at least 99.9% of tumour cells in 3 hours. (17).

This method is advantageous because it allows rapid 

estimation of tumour cell removal from the ’magnetic 

negative* fraction and testing and absorption of 

complement is not required. (26).

The indirect method of attaching beads to tumour 

cells using monoclonal antibodies and anti-mouse 

Immunoglobulin has several advantages over a direct 

system where microspheres are coated with monoclonal 

antibodies. It is more efficient and economical; 

the separation technique depletes tumour cells from 

bone marrow to a level of at least 1:1000 and 1:10000 

nucleated cells; the use of the technique for T-cell 

depletions from bone marrow to be used for allogenic 

transplantation is being investigated and the new 

beads require less anti-mouse Immunoglobulin to coat 

their surface. (26).

Kemshead et al looked at new M450 magnetic beads 
and discovered them to be more effective than the older 

K330 beads. (28). The new beads have hydroxyl groups
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on the surface, allowing monoclonal antibodies, 

anti-mouse immunoglobulin or other antibody 

binding molecules to be covalently linked to the 

surface of the microspheres.

Tumour cell contamination of harvested bone 

marrow from neuroblastoma patients for use in 

autologous marrow transplantation may adversely 

affect patient survival. It is still not known 

whether tumour cells which are re-infused are 

clonogenic and what numbers of viable cells would 

be necessary for re-establishment of the disease.

Reynolds et al looked at two methods for 

sensitive detection of neuroblastoma cells in 

bone marrow. (29). The first method was for use 

in model systems. The viable neuroblastoma cells 

were premarked with the LNA stain Koechst 333^2 (K34-2) 

and seeded into normal marrow for purging experiments.

The fluorescence of E3R2 stained cells, allowed 

detection of one E3E2 stained cell in one million 

marrow cells.

Counterstaining the mixture with trypan blue, 

reduced the E3E2 fluorescence in non-viable cells, 

therefore, limiting the detection to viable cells only.

The second method could be used in model systems 

or clinical bone marrow specimens. It relied on 

the specific staining of neuroblastoma cells with an 

antiserum to Neuron Specific Enolase (NSE) and/or with 

anti-neuroblastoma monoclonal antibodies. If the 

haemopoietic cells were removed from the marrow before 

staining i.e. enriching the neuroblastoma cells in the 

sample, it allowed detection of neuroblastoma cells at
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1:100,000 using NSE alone.

In spite of all the recent advances that have 

been made in chemotherapy and monoclonal antibodies, 

the therapy of neuroblastoma still remains 

unsatisfactory and in order to determine how treatment • 

would best be improved by the addition of 

radiotherapy which is believed to be an effective 

agent, further studies of the radiobiology of 

neuroblastoma are very important.
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Chapter 11 
Title

RADIOBIOLOGICAL CCNSITSRATIQMS

It has been known for a long time that 
reproduction is the most radiation sensitive 
activity of mammalion cells. (1,2,4).

Irradiation, at dose levels which have a high 
probability of reproductive sterilization, has no 
effect upon cellular metabolism or on the ability 
of specialised cells to synthesize tissue-specific 
proteins. Radiation sterilized cells with a few 
exceptions (e.g. some small lymphocytes, oocytes) 
stay physically and biochemically competent until 
cell division is attempted and cell death results.
This is an indication that radiation-induced 
functional impairment of tissue is mediated through 
the reproductive sterilization of proliferative 
cells. (2).

For most tissues, it is thought that physiological 
functional impairment is a direct result of the loss 
of reproductive integrity by the proliferative cells, 
especially the clonogenic cells of the tissue, 
concerned i.e. a failure of radiation-sterilized 
clonogenic cells to keep pace with the need to replace 
functional cells which are being lost from the tissue 
at a characteristic rate. The loss of this ability 
as a function of the radiation dose is described by 
the Dose Survival Curve.(3)-

The deposition of radiant energy and the infliction 
of radiochemical injury are random events. The dose- 
response relationship for cell killing is essentially
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exponential i.e. for a given dose increment, the 

same proportion. not the same number of cells is 
killed. (17).

The relationship between the radiation dose 

absorbed and the proportion of cells which 'survive' 

can be seen in a cell survival curve, which is a 

special form of dose-effect curve, and is based on 

viable cell counting i.e. the counting of 

colonies originating from single cells. The ability 

of a single cell to grow into a large colony is proof 

that it has retained it's reproductive integrity.

Mammalian cell survival curves are usually 

presented with dose plotted on the linear scale and 

surviving fractions on a logarithmic scale.

At low doses of radiation, there is an initial 

shoulder which becomes straight or almost straight at

high doses on the semi-logarithmic plot. The slope is

expressed in terms of the dose required to reduce 

the number of clonogenic cells by the factor of e , 

i.e. to 37% cf their previous value - called the 37% 

dose slope and is designated Do.

The extrapolation number - n - is found by 

extrapolating the straight portion of the survival

curve until it cuts the 'surviving fraction axis'.

The extrapolation number is important because it is 

a measure of the initial shoulder. (3)«

The intercept of the extrapolated curve with the 

1CC% survival level is called Dq - the quasithreshold 

dos e .

.Dq and n are interrelated because both are a 
measuie of shoulder size (Da is not a threshold but
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a mathematical term) (17).
3s the dose rote of irradiation is decreased, 

the efficiency of cell killing per Gray has been 
shown experimentally to decrease too, i.e. the 
’effective D0 ’ increases (17).

Models for estimating equal effects when 
different fractionation schedules are used, have 
been evolved to the stage of using reasonable dose- 
response curves to represent the biological effect 
of each fraction, plus a separate time factor.

There are three dose-resoonse formulae which are 
commonly used:

(1) The Linear Quadratic Model.
(2) The Multi-target Model (provided 

it has an initial siore 
superimposed i.e. 2 component 
slooe)

(3) The Repair - Misreoair Model (16)
The Linear Quadratic Model

The L-"' Model is very useful for describing the 
in vitro survival curves of human tumour cell lines.
It offers valid approximations for all clinically used 
doses, has only 2 parameters to be determined and is 
very easy to use in practical applications (16).

The L-Q Model assumes that the sterilization of 
clonogenic ’target cells' in the tissue during 
radiation is the cause of the observed effects. The 
target cells have a dose-response curve for 
clonogenic survival which is linear quadratic in dose (29).

From the evidence obtained from single hit killing 
by high LIT radiation, it wa3 suggested that the



inactivation of a cellular target, should only 

require the passing of one densely ionizing particle 

through the ENA double strand. This would mean 

that the ’high L E T ’ components of neutron 

irradiation would cause lethal lesions in direct 

proportion to the dose. The term attributed to this 

was ©<- thus making the^D portion of the equation.

With low LET radiation then, lesions would only 

accumulate as the square of the dose i.e. one lesion

requires energy deposition by 2 independent electrons 

within the target volume. The sublesions caused 

must interact to cause lethal lesions. This was 

termed BD^ in the equation.

The entire equation i s :-

Inf = - ( p< D + BD2 ) (13)

The Multitarget Model

The Multitarget, two component (TC) model 

requires 2 independent parameters - D0 and n.

It originates from the theory that a cell contains 

n targets - all alike - and if all are inactivated, 

the cell cannot proliferate. Hits are considered 

to be distributed randomly in uniformly irradiated 

homogenous cell populations. (17,18,30).

If, however, one of the targets is not 

inactivated, the cell is still capable of 

proliferation. (13)*
The Reoair/Misrepair Model

This hypothesis suggests that the surviving 

fraction of cells in a mutagen-treated population 

is proportional to the number of potentially lethal 

lesions that are not repaired (30).
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It is thought that, over a certain range of dose 

rate, physical or chemical lesions from statistically 

independent charged particle tracks do not interact.

So, only lesions from singly charged particle tracks 

need to be considered in the physical and chemical 

time domains. These lesions produce longer lived 

biological lesions, some of which are enzymatically 

repaired and some interact with other lesions.

The Model, therefore, has 2 parts

(1) deals with repair and/or interaction with other 

biological lesions and (2) deals with the 

production of biological lesions through evolution 

of the physical and then the chemical lesions. (31).

The cell survival models discussed so far, were 

designed on the assumption that a relatively 

insensitive region to a dose effect curve signifies 

the requirement for an accumulation of damaging events, 

if the end - point is to be achieved. It has been 

suggested that, if cells survive by the accumulation 

of damage, they must surely contain a repair mechanism 

which becomes less effective as the dose or the number 

of incipiently lethal lesions increases, until it 

ceases to operate. (13).

The initial slope of the dose-respcnse curve is of 

major importance because, at lower doses (2 Grays or 

less) repair processes are at their most efficient, 

so the ’initial’ slope represents the fullest 

expression of repair.
Two distinct mechanisms of cell killing are thought 

to produce a shouldered cell survival curve - one 

being single hit killing (a single lethal injory) and



the other being an accumulation of sufficient 

sublethal lesions whose interaction cause death. (17,18)

As the dose increases, presence of a shoulder on 

the survival curve of most mammation cells is an 

indication that the efficiency of cell killing per 

Gray increases (up to a certain limit depending upon 
cell type).

The manifestation of a shoulder on a survival curve 

was assumed to be evidence that radiation - induced 

damage must accumulate within the cell before a final 

event could prove lethal. The damage which was 

assumed - leaving the cell still viable - became known 

as ’sublethal damage’ and the recovery which restored 

the cells’ capacity to accumulate sublethal damage was 

known as the recovery (or repair of) sublethal damage. 

Repair of Sublethal Eamage/Elkind Recovery.

Sublethal damage can be repaired in a matter of hours 
unless additional sublethal damage is added e.g. from 
a second dose which will interact to produce lethal 
damage.

It was discovered, after X-rays started to get used 

clinically, that their biological effectiveness was 

usually lowered when low dose rates were used or when 

the total dose was delivered in fractions. It was the 

investigation into dose fractionation which helped 

the discovery of the sparing effect observed when a 

reduction in dose rate was employed. It was 

demonstrated that it was linked with the 

manifestation of shoulders in survival curves.(18). 

Elkind and Sutton completed a series of experiments 

on mamma'lion cells in which two sufficiently large
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radiation doses uere given, several hours apart.
The shoulder on the first survival curve was 
reproduced on the second survival curve. The first 
dose reduced survival to the terminal exponential 
region of the survival curve where all surviving cells 
coulc. be considered to have accumulated one less than 
the lethal number of hits. The full recovery of the 
shoulder on the second dose survival curves was an 
indication that all the sublethal damage had been 
repaired in the interval between the two doses 
(11,17,'4 )

The method employed for investigating Elkind 
Recovery involves the use of solit dose radiations and
measures the survival as a function of time between
two doses.

Elkind and Sutton discovered that, as the time 
between doses was increased, survival increased until 
a maximum was reached after two hours recovery.
When the length of recovery interval was increased 
further, the survival fell to a minimum and then rose
to a olateau level. This was explained by taking
into account the partial synchrony imposed on a 
heterogeneous cell population after the first radiation 
dose. The cells which survived the first dose were 
those in the more resistant phases and the surviving 
population would be partially synchronized. (10,13 )

Bryant et al discovered that the speed of recovery 
in algal cells was dependent upon the partial pressure 
of oxygen i.e. Elkind recovery was an energy 

dependent process (13)
The actual nature of sublethal damage and it's
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repair are not yet fully understood. (19).

Repair can be suppressed by exposure of cells 

to metabolic inhibitors e.g. cyanide, severe 

hypoxia or cold, before and after irradiation.

So, the increased radio-resistance of hypoxic cells 

in vivo could be oartly offset, in fractionated 

treatment, by their reduced capacity for repair 

of sublethal damage. (17,20).

Elkind demonstrated that there was a close 

connection between radiation damage/repair and 

the normal synthetic processes of cells. (23).
It is generally accepted that one cannot associate 

all DNA damage e.g. all strand breaks, with cell 

killing and one cannot connect all DNA repair with 

cell repair.

Efficient strand rejoining occurs in cells which 

will stop dividing and eventually lyse, indicating 

that the enzymatic machinery of cells consists of 

small, multiple replicated molecules which are 

therefore not high in the hierarchy of radiation - 

sensitive targets. (22).

In conclusion then, it is thought that DNA damage 

is the primary cause of cell killing and repair of 

DNA damage is causally related'to cell repair.

The molecular and cellular damage/repair processes 

take place, in and around the replisome i.e. where 

DNA undergoes the sequential transition from a super 

helix of a single duplex to two superhelixes of 

replicated DNA. (22).
The imoortance of sublethal damage repair for 

radiotherapy is that, within certain limits, the total



dose required to achieve a certain level of cell 

killing increases as the number of dose fractions 
increases.

Lethal Damage

This type of damage is irrepairable, irreversible 
and leads to death.

Potentially Lethal Damage

This is radiation damage which could cause cell 

death under some post irradiation culture conditions 

but not in others e.g. nutritional deprivation, 

low temperatures and inhibition of protein synthesis 

by cycloheximide, all of which prevent the progress 

of cells through the division cycle (3,17)
Clinical Radioresistance

The extent of radiation damage observed in tissue 

is dependant upon several factors, including tissue 

responsiveness to radiation, and it is knov;n that 

there are multiple biological factors involved in 

clinical radioresponsiveness.

The operational definition of ’Tumour Radioresistan 

is: ’A tumour is clinically radioresistant if it

regrows within the irradiated region, regardless of 

it's rate of regression'. (6)

Causes of Clinical Radioresistance

Tumour Related Factors

(a) Lumber of clonogenic cells

A clonogenic cell is one which is capable of 

regenerating the tumour and must belong to the stem 

cell compartment or be capable of being recruited back 

into the pool. Since the killing of tumour cells is 

random, tumours with a large number of clonogens are
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more difficult to destroy thsn tumours with a 
few clonogens of similar radio-sensitivity. It is 
impossible to quantitate the number of clonogens in 
human tumours and so one cannot predict
radioresistance based on a large number of clonogens.(5)

IVhen a homogenous group of tumours are exposed 
to graded irradiation doses, a Tumour Control 
Probability curve (TCP) is produced, which implies 
that tumour populations are heterogeneous and sub 
populations of studied tumours vary in their 
'radioresistance'.(5).
(b ) Evpoxia

As solid tumours grow, the tumour vasculature 
often fails to keep up with the increase in the number 
of tumour cells. As cells become more than-^180 
microns distant from the nearest capillary, they become 
hyooxic (oxygen deficient) and die producing a 
necrotic centre in the tumour. Tumours do not have 
to be large and bulky or necrotic to contain hypoxic

For ionizing radiation, the oxygenation status 
of the cells is considered to be an important factor 
in determining response. Hypoxic cells are thought 
to be three times less sensitive than oxygenated cells 
to X-ray radiation.(3>17)

The shape of mammalion cell survival curves after 
exposure to X-rays in the presence and absence of 
oxygen is seen to be the same. The difference is the 
magnitude of the dose required to cause a given 
degree of biological damage. The ratio of hyooxic 
to aerated doses reauired to produce the same

to be :
ce11s .
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biological effect is the same at all survival 

levels and the ratio is known as the ’Oxygen 
Enhancement Ratio’. (3,17).

(c ) Tumour Kinetics

There have been many theories put forward to 

explain the Phenomenon of tumour recurrence, 

including rapidly proliferating tumours which can 

significantly repopulate during a conventional 

treatment regimen and slowly growing tumours 

which may be radioresistant due to poor 

redistribution throughout the division cycle during 

dose fractions, to quote only two.

(d ) Intrinsic Radioresistance

This is defined as ’cellular radioresistance’ 

manifested by asynchronous, well oxygenated 

populations of tumour cells in vitro. (6).

There are two kinds demonstrated:

(1) is associated with a large shoulder on a 

radiation cell survival curve indicating a capacity 

for 'Elkind type repair’, and (2) is associated 

with plateau phase cultures with clinical 

resistance which have an increased ability to repair 

Potentially Lethal Damage.

It is now agreed that the initial slope of a cell 

survival curve at 2 Gray and lower is the region 

of interest. (26,27,32). The ’final slopes' 

represented by Do refer to a minority of cells and 

are largely irrelevant in fractionated radiotherapy.

Since n and D 0are the currently used parameters 

and are calculated from the high dose portion of the 

graph, they cannot be used to define the low dose
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radiosensitivity in vitro of a cell line whose 

survival curve has an initial shoulder.

A single model free parameter, the mean 

activation dose - D - is the area under the survival 

curve and has been suggested for the characterization 

of human tumour cell line radiosensitivity at 
clinically relevant doses.

r depend- upon the initial portion of the in vitro

survival curve end it has been shown that the

parameters S p , D and (p{D + B D ^ ) are the most suitable
/

for the characterization of human cell radiosensitivity. 

(27,28).

Fertil and Malaise looked at in vitro survival 

curves (low dose portion only) at 2 Gray (S2) and 

established a correlation between S2 and the 

clinical radioresponsiveness of the group from which 

the tumours were derived. (5,26). This was confirmed 

by Deacon et al who demonstrated that 2 Gray was the 

optimum dose level to compare the biological data 

with clinical radioresponsiveness. (26).

The observed differences in in vitro 

radiosensitivity as a function of the histology of 

the tumour, argue strongly for the role of certain 

intracellular factors in clinical responsiveness (5,26).

Clinical responsiveness is known to be linked to 

the histology of the tumour and it is known that 

intrinsic radioresponsiveness varies from one 

histological cell type to another. (5,26,27,28).

Weichselbaum completed studies on radiosensitivity 

and radiation damage repair in human cell lines.

He discovered that some radio-incurable tumour produced
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cell lines which possessed the ability to repair 

potentially lethal damage in plateau phase 
cultures.

The cell lines found to be most efficient at 

potentially lethal damage repair had been derived 

from patients who had failed clinical radiation 

therapy. The surviving fraction following 

radiation could be a function of high D0/inherent 

radioresistance and/or the capacity to accumulate 

sublethal damage or recovery over a period of hours.

The maximum survival potential of a tumour cell, 

therefore, could be an important factor in clinical 

radiocurability. (9).

The more resistant types of human tumour e.g. 

gliomas do have significantly more intrinsic 

radioresistance to low doses than other types of 

tumour.(26,27,28).

Parshad et al completed experiments on the 

chromosomal radiosensitivity of 13 human tumours 

from diverse tissue origins and discovered that all 

the tumour cells displayed enhanced G2 chromosomal 

radiosensitivity, comnared to normal cells.(23).
The effect, therefore, which tumour 

radioresistance has on patient.survival is dependant 

upon the type of cancer present and the level of 

disease control.(6).

(2) Host Related Factors

(a) The Volume Effect
The complications in 'deep-seated’ tissues are 

dependant upon the volume irradiated, therefore, when 

large treatment volumes are needed to encompass known



or suspected disease, the clinical rsdioresistance 
of a tumour increases.
(b) Dose Limiting Normal Tissues.

The total biological dose of radiation given to 
a tumour is dependant upon the dose-limiting organ/ 
tissue within the treatment site and so, depending
upon the relevant normal tissue, a tumour might he said 
to he clinically more difficult to treat in one site than anot

(c ) Ps tho-ohys iological Factors.
These effect the tumour directly e.g. by 

increasing the number of hypoxic ceils in an anaemic 
state.
(d ) Host Defenses

T'-'is is unlikely to affect the clinical problem 
of radioresistance.
( f ) Technical Pact or.

These include error in dose delivery and 
geographical miss i.e. the need to encompass all the 
tumour.
Multiple Dose Fractions and Dose Survival Curves.

On a multifraction irradiation dose survival curve, 
after allowing for complete sublethal damage repair 
between doses, the slope will have an increasingly 
downward trend as the dose per.fraction decreases.

The dose oer fraction will eventually reach the 
zone where the majority of cell killing is due to 
single hit events and not the accumulation of 
sublethal damage. When the dose per fraction is 
small enough, the slope of the fractionated survival 
curve is determined by the single hit component of 
cell killing and this represents the limiting slope



43

irrespective of further fractionation (17).
Repair of subcellul^r injury, regeneration, cell 

cycle redistribution and reoxygena.tion all 

contribute to differentials in fractionated dose 

response between various normal tissues and tumours. 

Studies by Withers examined fractionated dose 

responses of the three generic tissues types: Acute/

Early responding normal tissue, Slowly/Late 
responding normal tissue and Tumour tissue . (7). 
Regeneration

When radiation treatment is continued over 
several weeks, surviving stem cell regeneration is 
the most important contributer to the differential 
sparing of early responding tissues relative to both 
slowly responding normal tissues and, most of all, 
tumour tissue.

The onset of regeneration depends upon the 
development rate and severity of injury which, in 
turn, is dependant upon tissue kinetics and, to 
a lesser extent, dose given. The latency in the 
onset of regeneration of the surviving cells is also 
important and may last from days to weeks 
depending upon the tissue e.g. G.I. Tract - within 
a few days and the skin - within 3-4 weeks (7,17).

It is believed that the target cells for late 

seouelae do not display significant regeneration 

throughout the course of a conventionally fractionated 

regimen.

Tumours can accelerate their growth rate due to 
cytocidal effects of radiotherapy. Relay between 
initial radiation and the onset of regrowth is
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probably due to the proliferation kinetics of the 

tumour clonogens and to a certain extent, the size 

and delivery pattern of the dose. The onset of 

regrowth is slower after a set of multiple fractions 

than after a large single dose of radiation.

Repair of Cellular Injury

Early responding normal tissue do not disolay 
as large a capacity for cellular repair than late 
responding normal tissue (7). Late responding 
normal tissues determine the tolerance doses which 
are dependant upon the late responding tissue in 
question and the volume irradiated. This could be 
attributable to the fact that target cells for late 
effects have the ability to repair more subletnal 
damage tnan the target cells in acutely res conning 
tis-^es (7,o).

TLn^'-'E ratio of the Linesr-Ouacratic model 
describes the susceptibility of tissues to single 
and multihit killing with late responding normal 
tissues responding as though they were more 
susceptible to multihit mechanisms. The B/°< ra tio 
is a measure of tissue sensitivity to changes in 
size of dose oer fraction. Late responding normal 
tissues are characterized by larger values of B/o( 
than acute responding normal tissues (8,17).

There is no experimental evidence to suggest that 

tumour cells are capable of more recair of sublethal 

demange than normal cells, although some studies 

have shown that, due to hypoxia or low levels of 

cyclic AMP, tumour cells may have a reduced repair

capacity (10).



Repair of sublethal damage due to dose 
fracticnation should spare tumour cells to about 
the same extent as acutely responding normal 
tissues, but to a lesser extent than it spares 
slowly responding normal tissues.
Reoxygenation

Reoxygenation is not a factor in the response 
of acute or late responding normal tissues, although 
reoxygenation during a radiation treatment course, 
sensitizes the hvpoxic fraction of tumour cells (10).

Although the mechanism of reoxygenation is not 
fully understood, several factors may Play a part:
(1) feath of some of the tumour cell population 
will result in a reduction in oxygen consumption and 
the dead cells’ removal could reduce the average 
intercapillary distance.
(2) Loss of tumour substance may help to improve 
blood flow due to a reduction in tissue tension and
(3) an increase in vascularization may occur (3,11). 

Reoxygenation can account for the success of
fractionated radiotherapy relative only to single­
dose treatment. It cannot account for a 
favourable differential between normal and neoplastic 
tissue responses since normal tissues are usually 
well oxygenated (10).
Redistribution

The effect of redistribution is to reduce the 
probability that surviving cells will be in 
resistant phases of the cell cycle at times of 
subsequent doses of radiation (17).

The effect is difficult to assess in early
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responding normal tissues because it is overshadowed 
by the protective effect of regeneration.

The target cells for late sequelae are slow 
to oroliferate and so undergo little cell cycle 
redistribution during a multifractionation regimen. 
Late resoonding normal tissues are less sensitized 
by redistribution which, therefore, results in less 
severe late reactions for a given level of tumour 
control.

It is likely, but unoroven, that both normal and 
malignant proliferative tissues may self sensitize 
themselves by redistribution during clinical 
mult if r,;- ct ion regimens in a manner similar to the 
sensitization of tumours by reoxygenation. This 
would cause an increase in the therapeutic ratio 
obtained with dose fractionation by allowing the 
tumour clonogen population to ’ self-sensitize' itself 
in the absence of a similar effect in slowly 
resocndinm cells whose depletion leads to late injury.

There are two detectable phases through which 
a cell passes during a division cycle - mitosis, 
which is visible microscopically, and DNA synthesis 
which is detected by the uptake of radioisotope 
labeled DNA precursors. Between mitosis (M) and 
DBA synthesis (S) there is a gap (Gq) and after DNA 
synthesis, before the next mitosis, a second gap (Gp). 

(10,12,25).
Sinclair and Morton irradiated Chinese hamster 

cells at different cell cycle phases. They found 
that the most sensitive cells were in mitosis (M) or 

at the Gq:S ohase with the most resistant cells at the



late o ohas e and in the 'middle’ of the long Gq phases. 
(10,12) .

Slowly proliferating cells may stay in a 
radioresistant phase post irradiation but rapidly 
proliferating cells will redistribute themselves into 
more sensitive phases in time for subsequent dose 
f ra ct i ons.
Kmcer:" ractionation

//itners defined Hyoerf ra ct iona tion as the division 
of radiation treatment into smaller them conventional 
coses oer fraction without a h-'-yaae in the overall 
treatment duration. (7).

The aim of Kycerfrsctionation is to increase 
the therapeutic differential between late responding 
normal tissues and tumour tissues. Acute responses 
’would be expected to parallel tumour responses and 
so, if slowly responding tissues are treated to their 
t ole ranee by increasing the dose sufficiently, a cute 
normal tissue responses should be increased in parallel 
with an improvement in tumour control probability.

The rationale behind Hyperfraction-tion is that 
due to a larger repair capacity of sublethal injury, 
slowly responding tissues are spared more by reducing 
the dose per fraction, than are tumours. (7,14,15)*

The responses of acute responding normal tissues 
are increased, although they can be tolerated with 
good nursing care, and, if this is not possible, then 
an extension of the overall time would have to be 
introduced.

If cell cycle redistribution restored the surviving 
proliferative cells to the starting - more
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radiosensitive asynchronous state, then it would 
be more effective, in it’s sensitizing influence, 
if the doses per fraction were smaller and the 
fractionation intervals were more frequent. (7,14-)* 

Since reduction occurs in all cycling cell, no 
therapeutic gain will occur relative to normal 
epithelial cells which determine acute reactions.(14)• 

When the radiation dose is fractionated, 
sublethal injury is reoaired over a period of hours.
In low dose regions of cell survival curves, the 
majority of cell hilling is the result of single 
hits. The accumulation of sublethal injury has 
a low probability of causing cell death because the 
number of lethal lesions per cell is usually less 
than the lethal number (14,17).
Dose oer Fraction

The exact dose-response relationships for late 
responding normal tissues have not been measured 
over a dose range of 1-2 Gray. The dose range of 
the initial exponential region of cell survival 
curves is also uncertain.(21).

The biologic equivalence sought in the 
conventional and hyperfractionated regimens is in 
late - not acute - effects. Increased acute effects 
mav make it difficult to mive the acoropriate dose 
for eouivalent late effecos in exactly the same 
overall treataent time.

'fith hieher fractional doses, which reduce 
survival beyond the initial exponential region of 
a survival curve, accumulation of subietoal injury
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subletna 1 da/cage after every larger fraction 'Tieans 
that extra dose has to be delivered in the next 
fraction to bring the average number of sublethal 
lesions per surviving cell back to the lethal 
threshold. Therefore, the total dose reouired 
to produce the same effect is increased when the 
number of fractions in this size range is increased. 
(12,14,17)•

Experimental studies have suggested that a basic 
difference exists between the survival curves of 
the target cells determining acute and late normal 
tissue effects. A difference which causes late 
resoonses to be more critically affected by changes 
in dose fractionstion.(14).

A well known clinical manifestation of this 
difference when changing to fractionation regimens 
with fewer, larger doses ^er fraction is the 
observation of large increases in late effect incidences 
with little or no change in acute effects. (12,14).

It is suggested that Hyperfractionation is 
advantageous, in that, when late damage is the 
limiting factor, it allows higher total doses to be 
given in a larger number of smaller fractions than 
usual.
Fractionation Interval

It is thought that sublethal damage repair in 
acutely responding normal tissues is achieved in 

3 hours.(7).
This may not be true for late effects tissues or 

for all acute effect ones. An ideal fractionation 
interval should be at least 6 hours to ensure tnat



suble oHdl repair is complete in the dose limiting 
19-1e nesoonding normal tissues • If repair is 
complete in acutely responding tissues (including the 
tumour) but not in the late resnonding normal 
tissue, the influence of the most important 
rationale for Hyperfractionation - fifferential 
Repair - is lost, or at least reduced.

The overall treatment time should be the same 
in Kyperfractionated and conventional treatment, 
although there are advantages and disadvantages 
to crolonsstion of treatment time.

The disadvantages are:
(1) the tumour cells have more time to proliferate 
therefore nahing ultimate cure less likely and
(2) it is inconvenient for the oatient and it is 
exn--ns ive .

The advantages are:
(1) it scares the acute reactions since compensatory 
proliferation in skin or mucosa accelerates at
2-3 weeks after starting an irradiation course,
(2) it permits adequate reoxyvenation to occur in 
tumours before the end of the treatment*

.(14,15).

Potential Thereceutic Gain.
The increase in tolerance dose for slowly 

responding late effects tissues has not been 

experimentally determined for doses of <T2.6 Gray for 

lung and this has produced inconsistant data.

If tumours show the same fractionation response 

as acutely responding normal tissues, the escalation
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is the do^e required fop an isoeffect (eoual fanour 
uOntrol probability) determined by using ano^/B ratio 
of 10 Gray would be -?87,

that is 2n x 1.08 Gy = n x 2 Gy.
So, if late effect tissues can tolerate a 15-257

increase in dose, when n fractions of 2 Gy are
replaced by 2n fractions, then the therapeutic gain
would lie between

1.15 = 1.065 and 1.2 5 = 1.16
1.08 1.08

ecuivslent to 2:0 increase in tumour effective dose 
of 6.5 - 16"- for the same tolerance dose in late 
responding tissues. (7 ).

The gain would be further increased if, the greater 
number of fractionation intervals and smaller doses 
per fraction, resulted in a greater response due 
to cell cvcle redistribution, with no change in 
slowly developing normal tissue responses.

The impact of Therapeutic Gain Factors of I.C65 - 
1.16 on Tumour Control Probability would depend upon 
the steepness of Tumour Control Probability curves.

In conclusion then, it is generally agreed that 
malignant tumours have a lesser repair capacity for 
sublethal damage and have faster proliferation kinetics 
than normal tissues, under steady state conditions.

Deacon et al, Fertil and Kalaise and Weichselbaum 
have suggested that, due to the vast diversity in 
the radiobiology of human tumour cells - with respect 
to fintrinsic radiosensitivity’ and ’post irradiation 
damage repair1, Hypsi’fractiona.ted treatment regimens may 
not be suitable for every malignant tumour type.
(9, 5,26,28) .
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It is therefore desirable to complete 
experimental studies on individual tumours wherever 
pos s ible.
Hyoerfractionation and Neuroblastoma

Wheldon et al suggested that neuroblastoma may 
be a suitable candidate for Hyperfractionation, 
although this has not, so far, been attempted 
clinically (33). The radiobiological rationale 
for Eyperfractionation in Neuroblastoma is based 
mainly on single dose cell capacity for the repair 
of sublethal damage as discovered by Wheldon et al (32). 
The extension, therefore, of the investigation to 
include solit-dose ana fractionated irradiation would 
aooear to be the next step.
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Chapter 111

THE TUMOUR SPHEROID MODEL

Cellular aggregates of animal cells have been 

used in developmental biology and experimental 

cancer research for several decades. As long ago 

as 1944, Holtfreter described a method he used 

to generate stable, spherical aggregates of 

embryonic cells. (1).

In 1959, Pabrowska - Piaskowska examined the 

'histo-formative capacities’ of cell aggregates 

of C3H mammary tumour and vaginal epithelioma 

cells, and discovered that there was a remarkable 

structural similarity between tumour cell aggregates 

and the original tumour tissue. (2).

In 1967, McAllister et al described a pronounced 

similarity between the cytological characteristics 

of the primary tumours, the respective colonies 

and the tumours induced by in vivo implantation 

of the cultured cells. It was also reported that 

the almost spherical colonies consisted of a 

central, necrotic area, surrounded by a run of 

viable cells with interspersed, degenerated forms. (3) 

Sutherland et al were the first to study the 

responses of cell aggregates to radiation therapy 

using Chinese Hamster V79 lung cells. It was 

because of their almost perfect spherical shape that 

the aggregates were called ’multi-cell spheroids’ or 

’multicellular spheroids’. (4,5)•
It was noted that the cellular aggregates bore 

a close resemblance to nodular structures observed 

in C3H mouse mammary carcinomas. These experiments



showed that a multi-component survival curve was 

generated when mammalian cells in the form of Lulti- 

cellular Tumour Spheroids (MTS) were irradiated.

The curve was seen to be similar to that reoorted 

for solid animal tumours and several types of human 

tumours and so multicellular tumour spheroids 

were henceforth considered as in vitro models for 

examining the basic biological properties of cancer 

cells in vivo (4,5).

Characteristics of hulticellular Tumour Spheroids. 

Growth of spheroids

The volume growth kinetics of IiTS are known to 

be similar to that of solid tumours. There are 

3 phases of spheroidal growth which are distinguishable 

The first phase is the initiation phase and is 

characterized by the aggregation of single cells to 

form small clumrs and t^en a period of geometric, 

exponential growth until the spheroid diameter is 

between 5C - 2CC un. (6,7,2).
At this point, the cell cycle distribution changes 

within the spheroid, resulting in an accumulation 

of resting cells at the centre of the spheroid and 

a sequestering of the proliferating cells at the

periphery. (8).
As the MTS increases in size, more diffusion 

gradients of nutrients and catabolites set in and 

it becomes a 2 layered solid, with an outer, well- 

nourished and proliferative 'crust1 and an inner, 

deprived and non-proliferative mantle . (6).

This leads to a progressive diminution of the

growth fraction and to a second phase of growth,



characterized by a linear expansion of the spheroid 
diameter with time. (8).

luring the second phase, the cell cycle 

distrioution starts to alter, towards an 

increasing accumulation of non—nroliferating cells 
in central regions of the spheroids. (9).

At a later stage, which is line characteristic, 

the ATS develops a central ’necrotic' core which 

continues to increase proportionally as the overall 

size increased. Central necrotic cells are 

observed occasionally at A-200 jim diameter and 

are clearly evident at JCC jam. (A).

Eventually the ATS, like solid tumours in vivo, 

are heterogeneous cellular masses with three layers 

- the outer, proliferative crust, the middle, viable 

but non-proliferative mantle and a central, necrotic 

core. (6).

Sutherland et al suggested that the fraction of 

cells in the intermediate zone increased as the

spheroid grew, which accounted for the reduction in

the growth fraction. (90 •
At later times of plateau and senescence, cell 

shedding of the ATS and cell packing in the 

interior may be appreciable.
These do not significantly affect the growth rate

during the initial and linear growth phases because 

if this were the case, then the growth rate would be

less than linear. (6).
In clinical oncology, it seems likely that the 

pattern of linear increase in diameter with time might 

also apply to 1 micrometastases' in vivo.i iu the period
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before the development of intratumoural blood supply.

When this occurs, the diffusion of metabolites and 

catabolites is no longer solely through 

the external surface of the solid aggregate and 
different conditions apply. (6).

As the spheroids enlarge further, their growth 

progressively slows down and the MTS reach a 
maximum diameter. (8).

Spheroids v:hose maximum diameter has been 

achieved, can be maintained in culture for several 

weeks with practically no increase in their volume, 

irrespective of however often the medium is 

replenished.

Folkman et al demonstrated that the same 

saturation in volume growth was obtained when 

spheroids were implanted into animals in such a way 

that vascularization of the implant, from the host, 

was prevented. (1C).

Landry et al developed a growth model for 

soheroids v/hich took into account parameters such 

as cell size, cell doubling time snd cell shedding 

r at e . (8).
Yuhas et al demonstrated a correlation (for 3 murine 

cell lines) between tumour growth rate and spheroid 

growth rate, while no such correlation could be 

demonstrated between tumours and standard monolayers. (^d) 

Structure of Spheroids
Yuhas and Li looked at 7 different tumour lines 

and discovered that the outer, proliferative crust had 

a constant thickness which was characteristic for each ^

cell line.



They discovered that, if the cell cycle times 

were the same, the tumour lines with the thick, 

proliferative crust grew faster than those with 

the thin, proliferative layers. (12).

Conger and Ziskin demonstrated that the 

mantle maintained a constant thickness and so 

the entire ’viable’ rim had a constant thickness as 

the diameter increased over the full range of 

linear growth. (6). Their findings that crust 

thickness was line specific and different for 

different cell lines supported the findings of 

Yuhas and Li.

Since the nutrient and oxygen concentration of 

the medium at the MTS surface is constant and if 

the metabolic rate is constant with time, it follows 

that a gradient of nutrients in, and catabolites 

out, will be established within the MTS.

If there is a nutrition or catabolite threshold 

level at which proliferation ceases, then it is 

easy to see why the proliferative crust thickness 

is constant.

Freyer and Sutherland completed experiments in 

dissociating EMT6/R0 MTS to produce 8 subpopulations 

of cells originating from a varying depth within 

the spheroid. (9).
The cells located further into the spheroid 

(50 - 100 Jim) usually remained viable and were 

capable of forming colonies. They were smaller 

in size than outer cells and no longer incorporated 

•̂ H - thymidine into their DNA. The cells were not 

incapable of such incorporation but were dormant.



The cells located further than 100 from the 

spheroid surface were also arrested in their cell 

cyclQ progression, but, in addition, many of their 

inner region cells had a reduced viability and 

a markedly reduced ability to form colonies.

The cells located nearest the necrotic centre were 

apparently not far from cell death and lysis. (9).

It has been outlined previously that spheroids 

possess a histological structure similar to that 

of solid tumours as regards the distribution of 

vital and necrotic areas. This is also, at least 

partly true for the extracellular matrix.

Nederman et al identified similar matrix 

components such as giycosaminoglycans or collagen 

in tumour spheroids and their respective tumours. (13).

when the spheroid cells were grown as monolayers, 

the amount of synthesizing matrix materials appeared 

to be reduced or even absent.

This is an illustration that the degree of 

structural and functional differentiation in the 

primary tumour may be retained in spheroids rather 

than in monolayer cultures. (14).
Many recent publications on multicellular 

spheroids are concerned with the simulation of various 

tumour therapies, since the in vivo response of 

cancer cells to treatment may be reproduced in 

soheroids more closely than in conventional monolayer 

cultures .
Contact Resistance

The reaction of multicellular spheroids to ionizing 
radiation has been investigated most intensively and

O'l vo



one of the most interesting observations is the 

finding that some cells grown as spheroids are more 

resistant to ionizing radiation than the same cells 

grown as monolayer under otherwise similar 

conditions. (15). Sutherland and Durand 

suggested that this provided one possible mechanism 

for tumour radioresistance in vivo (16).

The 'contact effect’ or ’contact resistance’ is 

poorly understood. However, it has been suggested 

that it may be correlated with the occurrence of 

gap junctions and, with some restrictions, of 

electrical coupling between cells. (17).

The activity of adenylate cyclase in coupled 

cells cultured in vitro as multicellular tumour 

soheroids falls to a level much lower than under 

any other culture conditions. (18).

Variations in CAMP, which are capable of 

modulating the oermeability of gap junctions, can 

modify contact resistance.

Changes in Ca^+ and H + ion concentrations, can 

also alter the permeability of gap junctions. (17).

Although the molecular mechanism of the contact 

effect is still unknown, it has been hypothesized 

that the radiocurability of tumour cells may be 

enhanced by manipulation of CAMP, H + or Ca^ + ions, 

using aporopriate drugs. (17).
The local eradication of a tumour in vivo by 

irradiation is influenced directly by the 

radiosensitivity of the cell population, the number 

of viable cells in the tumour at the time of treatment, 

cellular hypoxia, radiation quality, dose and dose
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rate.

Other factors which may influence observed tumour 

responses are host—tumour interactions (immunological 

or other} effects of the radiation on the vascular 

supply and the number of ‘surviving’ cells 

required to regrow and thus re-establish the tumour. 
Use of Snd-roints

A variety of techniques have been developed 

to quantify the effects of ionizing radiation on 

tumour cells. Eurand examined the use of a variety 

of end-points which could be intercompared when using 

MTS as an in vitro tumour model system. (19). The 

end-pcints examined included growth delay and 'cure'.

Growth delay is conventionally defined as the 

time taken for the median volume of each individual 

MTS to reach some multiple of its original volume 

(e.g. X1C) .

Multicellular tumour spheroids are considered to 

have been 'cured' i.e. all the clonogeric sterilized, 

if they fail to regrow - with regrowth defined as 

reaching some multiple of their volume - by some 

specified time. (e.g. one month).

Regrowth curves may theoretically allow 

estimation of cell curvival in situ as long as the 

surviving cells' growth continues as in the 

un-irradiated case. If this is the case, then 

regrowth curves may be interpreted as simple 

displacements of the control growth curve, with the 

displacement providing a measure of the magnitude 

of cell kill assumed to have taken place. 

Extrapolation of the regrowth curve to zero time



yields an estimate (VE ) of the 'effective volume' 

from which the sphenoid appoars to have regrown, 

ihis is to s a y , it represents the volume of viable 

cells following treatment. The ratio Ve  to the 

measured volume Vq (which represents the volume of 

all the cells initially present) provides a 

measure of the cellular surviving fraction (S) 

immediately following treatment. (20). Some 

pitfalls in this type of analysis have recently been 
pointed out by Moore et al. (21).

Experimental Radiotherapy of Tumour Spheroids

Rofstad et al studied the radiation response of 

MTS initiated from a human melanoma xenograft using 

cell survival growth delay and spheroid cure as end­

points. (22)

The relationship between these end-points was 

analysed and the radiation response of the spheroids 

was compared with the parent xenograft.

The L'o values calculated from spheroid cure curves 

were similar to t^.ose of the cell curvival curves 

measured in soft agar.

The specific growth delays, as well as the To 

values, calculated from cure curves were similar 

for spheroids and tumours, when the data for the 

latter was corrected for the presence of hypoxic 

cells.
Rofstad et al used 5 melanoma cell lines and 

discovered that the cell survival curves for cells 

irradiated after disaggregation of the spheroid were 

equal to those previously reported for cells from 

disaggregated tumours of the same melanomas. That



is to say, that the cellular radiosensitivity was 

the same whether the cells were grown as spheroids 

in 1 iquid — overlay culture or as solid tumours in vivo 

i.e. Contact resistance was not seen for those cell 

lines. (23).

Evans et al set up experiments to determine 

whether a parallelism existed between the clinical 

behaviours of specific human tumour types - 

neuroblastoma and melanoma - and the biological 

behaviour of the same tumour types grown as MTS. (24). 

The growth delay data correlated with the clinical 

response of the tumours.

Evans et al concluded that MTS provided an in vitro 

tumour model system which was amenable to the study 

of common radio-biological end-points including cure, 

regression and cell-survival which was likely to be 

of clinical relevance.

Although neuroblastoma is a clinically 

radioresnonsive neoola.sm, it is fatal in three out 

of every four cases, due to it’s pattern of early 

dissemination. (25).
Micrometastases are often present at the time of 

diagnosis and because tumour spheroids in vitro 

are considered to be an appropriate model for 

avascular micrometastases in vivo, it would seem 

appropriate to use tumour spheroids as an in vitro 

model for the treatment of neuroblastoma with T.B.l.



Materials and Methods 

Origin of NB1-G

NB1-G cell line was obtained by growth in 

monolayer culture of cells released by enzymatic 

disaggregation of a human tumour xenograft 

originated from tumour fragments obtained by 

surgical excision of a stage IV abdominal 

neuroblastoma in a 2 year old boy.

In culture, NB1-G cells synthesize catecholamines, 

have neurosecretory granules visible by electron 

micros cony and an aberrant but identifiable human 

karyotype. In situ DNA hybridization studies have 

revealed the presence of multiple copies of the 

human oncogene N-MYC (1).

Origin of 1MR-52

1KR-32 was obtained from a Stage IV abdom'.nal mass 

in a 13 month old boy and was mechanically 

disaggregated and set down in flasks i.e. a primary 

culture.

1MR-32 is an established cell line (1967), it is 

hyoerdioloid and consists of a mixed culture of at 

least 2 morphologically distinct cell types.

The catecholamine synthesis of E-IR - 32 is not 

known. Heurosecretary granules have not been reported.

The second cell type are found in minute numbers 

and are relatively large, well-spread fibroblast like 

cells. (2) The cell line shows several features 

characteristic of human neuroblastoma including the 

existence of chromosomal Homogeneously Staining Regions



(HSRs) and an amnlified cooy number of the human 
proto-oncogene N-MYC (3).

Monolayer Culture.

NB1-G and 1MR32 cells were plated into 75 cm2 

flasks containing 20 mis of medium (MEM) with foetal 

calf serum (10%) at a concentration of 5 x 105 cells. 

The flasks were then incubated at 37°C in an 

atmosohere of 5% CO2 at 100% humidity.
Spheroid Culture

Monolayer cultures of NB1-G and 1MR-32 were 

trypsinized, cell suspensions were obtained and, 

using the »agar-underlay' method, were seeded to 

initiate MTS production. (4) In each 25 cm2 flask, 

base-coated with 1% Noble-agar, 10^ cells were seeded 

into 5 mis of medium (MEM) containing 10% foetal calf 

serum. Incubation took place in a humid atmosuhere 

(100%) at 37% with 5% CO2 content. After 2 - 3  

days, the Spheroids were large enough to be 

individually ’harvested' with a Pasteur pipette.

The spheroids selected those with a diameter of-*■ 250 JJ'A 
- were transferred individually to agar coated wells of 

24 well test plates (Linbro). The plates were 

incubated as described and 0.5 mis of medium was added 

weekly to each well.

Determination of Spheroid Growth Curves.
Using an automated image analysis scanning system 

(see Twentyman 1982), thrice weekly measurements of 

the cross-sectional area of the individual MTS were 

used to determine the growth of MTS. (5)*

It was assumed that the MTS were spherical and their 

cross-sectional measurements were converted to



estimates of volume. By plotting the median volume 

value for each MTS against each day of measurement 

for each experimental group, spheroid growth curves 
were obtained.

Irradiation Procedures

The MTS were placed in test-plates for the 

irradiations which were carried out using a Co^C 

treatment unit. The dose rate was approximately 

1 Gy/min and to ensure the maximum deposition of 

energy per well, a perspex ’build-up' was used. (, I c- 

Single Dose Studies

The single dose studies were carried out to 

evaluate the simple cose radiosensitivity of NB1-G 

and 1MR-3? spheroids as assessed by the growth delay 

end-point. The doses ranged from 50 cGy to 300 cGs 

increasing in %C c.Gv instalments.

Split Bose Studies

The Split-dose Studies were carried out to 

determine the split-dose ra.diosensitivity of BB1-G 

and 1MR-32 spheroids using the growth delay end. point.

The dose range was between. 2 x 25 cGy and 2 x 100 

c G y with the time interval between the two doses at 

6 hours.
The snlit-dose method was employed to investigate 

whether NB1-G and 1MR-32 spheroids we re capable of 

repairing sublethal damage.



Fractionated Treatment Regimens

Using the linear-quadratic model (with q  = 3 G,-) 

a series of treatment regimens were designed which 

were calculated to be isoeffective for late responding 
normal tissues (see Appendix).

NB1-G

Two sets of regimes were used on two separate 

occasions. One set of regimens (A) was calculated 

to be late - responsive - isoeffective to a single 

dose treatment of 2.3 Gy. The other set (B) was late- 

resDonsive - isoeffective to a single dose treatment 

of 4 Gy.

Each set of regimes consisted of five isoeffective 

schedules ranging from one to eight treatment fractions 

The two sets of regimes may be regarded as 

corresponding to two different 'effect levels'

(A £E 1 ^ 2.5 Gy, B E  1 x 4 Gy) for damage to late 

responding normal tissues. Table 1 contains all the 

details of the schedules.

1MR-32
The treatment regime was designed to be 'late- 

responsive - isoeffective' to a single dose of 2.5 Gy. 

Five different isoeffective regimes were used, ranging 

from one to eight treatment fractions. These are 

summarized in Table 2.
It was considered necessary to have an inter­

fraction interval of at least 6 hours and so the split 

and fractionated doses were given twice daily.

Estimation of Growth Delay
Using the MTS median growth curves, the growth



delay value for each experimental group was 
determined.

Estimation of Cell Survival from Regrowth Curves 

If it is assumed that regrowth delay is mostly 

due to cell sterilization, and that irradiation has 

little effect on the growth kinetics of the 

surviving cells, then by back extrapolating the 

regrowth curves to zero time, an estimation can be 

made of median cell survival. (see o Ibl )

).
'Proportion c u r e d '

MTS.were considered to have been 'cured'

(i.e. all the clonogenic cells sterilized) if they 

failed to regrow (defined as reaching at least 3 X 

original volume) by 1 month following treatment.

In prsctice there was a clear demarcation between 

regrowing and non regrowing MTS at the time. The 

'proportion cured' was then evaluated as the fraction 

of non-growing MTS relative to the total number of 

MTS originally present in the treatment group.



TA-LE 1

Normal tissue 
effect level

Fraction 
Numb e r

Dose/
Fractionation

(Gy)
Total 
time 
(bays)

Total
dose
(Gy)

A 1 2.50 0 2.502 1.52 0.25 3.044/** 0.89 1.25 3.566 0.63 2.25 3.788 0.49 3.25 3.92
B 1 4.00 0 4.002 2.53 0.25 5.064 1.54 1.25 6.166 1.13 2.25 6.788 0.90 3.25 7.20

TAELE 2

Treatment 
s chedule

Fra ction 
Number

Dose/
Fractionation

(Gy)

Total 
time 
(days)

Total
dose
(Gy)

A 1 4.00 0 4.00

B 2 2.53 0.25 5.06

C 4 1.54 1.25 6.16

D 6 1.13 2.25 6.78

E 8 0.90 3.25 7.20 j 
ti
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rIS CUSS 1 ON OF RESULTS.

NB1-G Single Dose Irradiation 

Spheroid Growth Curves

The UB1-G MTS in test plates were irradiated 

with a single dose of 50, 100, 150, 2C0, 250, 300 
or 350 cG -■ •

In fig.l it can be seen that the unirradiated 

spheroids grew exponentially with doubling times 

of^-2.5 days until a diameter of 800 - 1,000 ̂ JM was 

reached after which growth slowed with a progressive 

lengthening of the doubling time.

Irradiated spheroids exhibited either a static 

phase, or a regression phase (dose dependant) which 

was followed by a recovery of the growth curve to 

a pattern similar to that for unirradiated spheroids.

The exponential portions of the regrowth curves 

were, to a reasonable approximation, parallel to 

each other and to the corresponding portion of the 

control growth curve.

Very few spheroids failed to regrow following 

irradiation in the dose range used (50 - 330 c G v )  

so that no ’cure correction' was necessary to the 

growth date.

Growth Delay
It can be seen from the growth delay curve in fig.2 

that, after an initial region of shallow slope, the 

curve steepens as the dose is increased.

NB1-G Split Dose Irradiation

Spheroid growth curves
The NB1-G MTS in test plates were irradiated with
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a split dose of 2 x 25, 2 x 50, 2 x 75 or 2 x 100 cGv .
/

In fig.3 the control growth curve follows a 

characteristically exponential form (volume doubling 

time■*'2 - 3 days) until a diameter of >-800 - 1,000^JM 
after which growth slows progressively.

Growth curves for irradiated MTS displayed a static 

or regression phase before resumption of growth with 

growth curves becoming parallel to those of controls.

The lateral displacement of irradiated from control 

curves is seen to increase progressively with dose.
Growth Belay

Growth delay as a function of total dose is 

graphed in fig.4 and it can be seen that there is an 

initial region of shallow slope which steepens as the 
dose is increased, tlhen the growth delay curves for single 

and split dose (fig 2 & 4) are compared, it can be seen 

^ that there is no significant difference between the 

2 curves, indicating no sparing effect of dose 

fractionation as evaluated in terms of growth delay.

Cell Survival Curves

Fig.5 shows derived cell survival curves for both 

the single and split dose experiments whose growth 

delay curves are graphed in fig.2 and 4.

As may be seen, both survival curves are nearly 

exponential in form with little evidence for 

quadratic curvature, and with only small shoulders 

apparent. There is also little indication for a 

biphasic break in the curves as would occur if a 

significant proportion of the clonogenic cells of 

the spheroid were hypoxic.

The split dose data is consistent with negligible



capacity for the accumulation of sublethal damao-e. 

No significant repair capacity has been found for 

NB1-G human neuroblastoma MTS subjected to 2 doses 

of radiation in the total dose range 50 — 350 <G'
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riSCTmSIOM OF RESULTS

1MR-52 Single Pose Irradiation 

Spheroid Growth Curves

The MTS in test plates were irradiated with 9 

single dose of 50, 100, 150, 200, 250, 300 .oGy.

Fig.6 is representative of the growth curves 

obtained for control and irradiated MTS.

The control growth curve displays a characteristic 

exponential growth pattern, until a volume of 800 JJK 

- 1,000 JJK per spheroid is reached. Thereafter, 

growth slows with increasing size. The growth 

curves for the irradiated MTS show a progressively 

perturbed pattern as the dose is increased. At 

higher doses, a static or regressive phase is 

observed, before growth is resumed, usually 

becoming parallel to the control curve.

Growth Pelsv

A 3 can be seen from fig. 7 the growth delay curves 

have an initial region of shallow slope which then 

steepens with increasing dose. Each separate 

symbol is representative of a separate experiment to 

ensure the reproducibility of the results.

Survival Curves
The survival curves calculated from fig.7 are 

graphed on fig.8. Each symbol on the graph 

corresponds to the same symbol on the Growth Pelay 

Curves . As can be seen, the calculated survival 

curve appears to have an initial shoulder - and then 

became approximately linear as the dose is increased.
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1MR-52 Split Lose Irradiation 

Spheroid Growth Curves

The MTS in test olates were irradiated with 

split doses of 25, 50, 75 and ICO cGj with a 6 hour 

interval between the two irradiations.

Fig.9 demonstrates the growth curves obtained 

from the control and irradiated MTS. The control 

growth curve displays a characteristic growth 

pattern until a volume of 800yUM - 1, 000 JJM per 

spheroid is reached. The growth rate then slows, 

with increasing size. The lateral displacement 

of irradiated from control curves is seen to increase 

progressively with dose.

Growth relay
, lv * -

The growth''curves obtained from two experiments are 

graphed on fig.10 The two symbols represent two 

separate experiments.

Survival Curves
The survival curves are graphed on fig.11. The 

two survival curves appear to indicate the presence 

of a shoulder which would imply that 1MR-32 spheroids 

has an a.bility to accumulate and repair sublethal 

d a m a g e .



NBI-G Hyperfractionation.
Spheroid Growth Curves

hedian regrowth curves following treatment are only 

available for all treatment groups in the case of 

regimes, late-effect equivalent at effect level 

A ( 1 1  x 2.5 G y ) At effect level B ( =  1 x 4- Gv) the 

high values of 'proportion cured' mode definition of 

median regrowth curves impossible in most cases, 

results for effect level A are nresented in fig.i2 

This shows a progressive lateral displacement of 

regrowth curves with increasing total dose, the 

doses delivered by the fractionation regimes 

indicated (See Table 1) In most cases, the regrowth 

curves returned to become parallel to the control 

curve ‘ .

(6).
Growth Belay

B i g . s h o w s  (for regimes at effect level A) the 

increase in regrowth celay as a function of total 

cose delivered by the various regimes. (See Table 1) 

Regrowrth delay is seen to have a distinct dose-respons 

relationship, with upward curvature.

B i g . 14- displays the regrowth delay curve for 

irradiated RTS as a function of fraction size.

(Bata available for level A regimes only). This 

delay obtained decreases with increasing fraction size

Survival Gurves
The regrowth curves (at effect level a) generally 

showed a return to parallelism with control growth 

curves and therefore satisfied the condition for
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for estimation of cell survival in situ by back- 

extrapolation of regrowth curves. Fig.15 shows

estimated cell survival as a function of total dose- 

delivered by various regimes. (See Table 1). As can 

be seen, the responses of NB1-G MTS were dependant 
upon the total dose given.

Fig.16, shows the estimated cell survival as 

a function of fraction size and it can be seen that 

as the fraction size increased, the log cell kill 
decreased.

Proportion Cured.

In this case, results are available for both 

effect levels A and B. In fig.17, ’proportion cured’ 

has been plotted as a function of total dose 

delivered on the various regimes. (See Table 1)

Fig.18 displays ’proportion cured’ for irradiated 

MTS as a function of fraction size, for regimes 

administered at effect levels A and B.

1MR-52 Hyperfractionation 

Spheroid Growth Curves
~i 1 ■■ ■ -  - -

Fig.19 shows growth curves for control and 

irradiated MTS. The control growth curves, exhibit 

a characteristic exponential growth pattern, until 

a volume of 800JJM - l,000yUM per spheroid is reached. 

Thereafter growth slows with increasing size. The 

growth curves for the irradiated MTS shows an 

increasingly disturbed pattern as the dose is increased. 

At higher doses, a static or regressive phase is 

observed, before growth is resumed, usually becoming

parallel to the control curve.
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Growth relay

The growth delay curves for two separate 

experiments are graohed in fig.20 as a function of 

the total dose given on the various regimes. Fig.21 

shows the two growth delay curves graohed as a 

function of fraction size. Since the treatment 

regimes were calculated to be isoeffective for late- 

responding normal tissue, the lack of any obvious dose- 

deoendance implies that the regimes appear to be 

isoeffective for loR-32 spheroids also.

Survival Curves

The surviving fraction for each exoerimental group, 

as a function of total dose, as calculated from back - 

extraoolation of regrowth curves is graohed on fig.22. 

The surviving fraction as a function of fraction size 

is graohed on f i g.23 and they similarly show little 

deoendance on total dose and fraction size respectively. 

Proportion Cured.

Fig.24, shows proportion cured (Pc) graphed as 

a function of total dose and f i g.25 shows proportion 

cured graohed as a function of fraction size. It 

would apoear from both graphs that the 1MR-32 spneroids 

were about equally affected by the alternative 

schedules. This implies that.IMR—32 spheroids 

responded similarly to each of the different regimens 

chosen to be isoeffective for late responding normal 

tis sues.



DISC~TPSION AND CONCLUSIONS

In principle, clonogenic survival curves may be 

deduced from tumour regrowth data by extrapolation 

of regrowth curves to zero time. Previously, these 

deductions have been attempted to obtain ’in situ’ 

survival curves for experimental tumours irradiated 

in v i v o , but, the analysis in that situation is 

complicated by the existance of the tumour bed 

effect, possible immunological responses, tumour 

infiltration by host cells, the limited proliferation 

potential of ’doomed cells’ and the difficulty of 

obtaining accurate measurements of the regrowing 

tumour over an adequate range of sizes. (1).

The problem in spheroids is simpler, in that, the 

tumour bed effect, and host cell and immunological 

effects, are necessarily absent in vitro. It is 

feasible to make observations over a wide range of 

sizes and - at least in the present spheroid lines - 

doomed cell proliferation evidently does not sub­

stantially influence growth.

When looking at the survival curve for single dose 

irradiation of NB1-G spheroids, it can be seen that 

it is nearly exponential in form, with little 

evidence for quadratic curvature, and with only a 

small shoulder apparent. There is also little 

indication for a biphasic break in the curves, which 

would occur if a significant proportion of the 

clonogenic cells of the spheroid were hypoxic.

It can be interpreted that the derived survival curve



is representing the radiosensitivity of a well- 

oxygenated. neuroblastoma line, which has little 

capacity for accumulation of sublethal damage. Due 

to the fact that the cells were irradiated as spheroids 

the response includes any contribution made by 

’contact resistance’ and may be representative of 

the radio-sensitivities of similarly sized 

micrometastases in viv o .

The results indicate that NB1-G cells grown as 

spheroids are quite radiosensitive, being less 

resistant than the majority of mammalian cell lines 

grown in monolayer culture. (2,3).

The NB1-G spheroids have a Dq value of 17 cG'y 

which is about average for human neuroblastoma 

cell lines whose radiosensitivity in cultre has been 

reported. (4)•

These results are broadly consistent with other 

reports which indicate that neuroblastoma cells 

in vitro, are relatively radiosensitive and may have 

little or no capacity for cellular repair. (4,5).

Several studies, however, have appeared on the 

single dose radiosensitivity of human neuroblastoma 

cells in monolayer (4,5,6) or as MTS (5,7,8).

They reveal a significant heterogeneity in the 

Ija vitro radiosensitivity of human neuroblastoma cells 

with Do values ranging from 66 - 155 cGy.
Single dose irradiation studies on 1MR-32 spheroids 

imply a significant shoulder on the underlying cell 

survival curve. The Dq value obtained is close to 

1 Gray, which is larger than is seen for the majority 

of human neuroblastoma cell lines whose
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radiosensitivity in culture has been reported. (9)•

The results reported here are consistent with the 

interpretation that 1MR—32 cells grown as spheroids 

possess a significant capacity for repair of sub- 
lethal damage.

Division of a radiation dose in the range 150 - 

350 'cGy into two equal fractions spaced 6 hours apart 

seemed to render that NB1-G spheroids more sensitive 

to radiation than those exposed to single doses.

This result could be explained in terms of cellular 

redistribution throughput the mitotic cycle but is 

within experimental uncertanties in the data. There 

has been no evidence found for any substantial 

interfraction repair capacity of these MTS. (10)

It has been proposed that a systematic difference 

may exist in the repair capacities of tumour cells 

and target cells in normal tissues and that a 

therapeutic advantage might result from the use of 

small doses per fraction (Hyperfractionation) by which 

normal tissues should be preferentially spared. (11,12)

No significant repair capacity was found for NB1-G 

spheroids subjected to one or two doses of radiation 

in the total dose rang 50 - 330 cGy. which could be 

taken as providing a radiobiological rationale for the 

use of hyperfractionated treatment schedules in the 

adjuvant radiotherapy of neuroblastoma for which the 

target micrometastases may have similar 

radiobiological properties to MTS in vitro.

The split dose irradiation response of the 1MR-32 

spheroids appears to indicate the presence of a 

shoulder, which implies that 1MR-32 spheroids had an



ability to accumulate and repair sublethal damage.

The fact that 1MR-32 cells grown as spheroids possess 

a significant capacity for repair of sub-lethal 

damage which leads to relatively inefficient cell 

killing when radiation is given as multiple small 

fractions. The role of other factors 

(e . g . redistribution, repopulation, reoxygenation) 

cannot be excluded, however.

The use of hyperfractionated radiotherapy on 

NE1-G spheroids was designed to test the hypothesis 

of an exploitable difference in the radiobiological 

properties of neuroblastoma MTS relative to late 

responding normal tissues. The treatment regimes, at 

each effect level were calculated to be equivalent in 

their effects on late-responding normal tissues.

If NB1-G MTS haathe same properties as these normal 

tissues, the regimes should also have been equivalent 

on their effects on the MTS.

By each end-point, radiation damage to NB1-G MTS 

increased with total dose, regardless of how it was 

delivered. Since higher doses could be delivered by 

using smaller fractions (i . e . utilizing the high 

tolerance to small fractions of late-responding normal 

tissues) regimes using smaller fractions were more 

effective. This can be seen in fig.13 for effect 

level A and fig.17 for effect levels A and B, where 

regrowth delay and 'proportion cured' are plotted as 

functions of fraction size. The growth delay data 

was not available for effect level B because at the 

higher effect level, there were too many cures for 

definition of growth delay.



In general, these results support the superior 

effectiveness of hyperfractionation used to treat 

tumours whose cells have low capacity for repair of 
sublethal damage.

As can be seen from fig.16, there is a lateral 

displacement of the 'proportion cured' versus dose 

curves for effect levels A and B. Without this, 

the upper curve would have been a smooth continuation 

of the lower. The effect is small and is readily 

explained by the (accidental) difference in spheroid 

sizes in the two separate experiments.

However, each experiment considered independently 

yields the same conclusion, viz increasing 

proportion cured with increasing total dose.

When taken together, the NB1-G results provide 

encouragement that hyperfractionstion should be 

a useful strategy in the radiation therapy of at 

least some human tumours.

The results obtained from the use of hyperfraction­

ated radiation on 1MR-32 spheroids differed to those 

obtained from the NB1-G spheroids. When the 1MR-32 

cells were grown as spheroids, they seemed to possess 

a significant capacity for the accumulation and 

repair of sub-lethal damage. This leads to 

relatively inefficient cell killing when radiation is 

given as multiple small fractions although the role 

of other factors such as redistribution, 

repopulation and regeneration cannot be excluded.

The experiments on 1MR—32 neuroblastoma cells grown 

as MTS, suggest that the MTS respond to changes in 

fraction size in the same way as would be anticipated



for Iste-responding normal tissues.

By each end-point, radiation damage to 1MR-32 MTS 

did not appear to increase or decrease with increasing 
dose .

Although higher doses can be delivered by using 

smaller fractions, regimes using smaller fractions 

did not appear to be any more effective than regimes 

using larger fractions. This can be seen in fig.20

When the 'proportion cured' data was plotted as 

a function of fraction size, it was apparent that 

fraction size did not have any effect upon the 

proportion of 1MR-32 spheroids which were cured.

Each experiment, when looked at individually 

provides the same conclusion - the radiation regimes 

calculated to be isoeffective for late-responding 

normal tissues were also isoeffective in the treatment 

of 1MR-32 spheroids.

The clinical implication of these results is that, 

should some micrometastases behave similarly to 

1KR-32 spheroids, the use of multiple small fractions 

(hyperfractionation) would not necessarily result in 

a therapeutic advantage.

It should be noted that the results do not imply 

any disadvantage of hyperfractionation, only that all 

regimens with the same effect on late-resoonding 

normal tissues would have similar effects on the 

tumour. 1MR-32 may, however, be untypical of 

neuroblastoma cell lines in this respect.
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OVERALL CONCLUSION

It seems plausible, on the basis of these results, 

that hyperfractionation would not be a universally 

advantageous strategy, but one whose efficacy is 

likely to depend on being able to select appropriate 

tumours for this form of treatment.

Further work is necessary to establish the 

generality of the excected advantage of 

hyperfractionation, even in laboratory models.

o\
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APPENDIX

In calculating total doses to make alternative 

fractionation regimes isoeffective for damage to late- 

responding normal tissues, the linear-quadratic model 

was utilized. This model assumes that gross effects 

of radiation are attributable to the sterilization of 

clonogenic 'target cells' in the tissue, whose

sterilization is responsible for the observed effects.

The target cells have a dose-response curve for 

clonogenic survival which is linear-auadratic in dose. 

The level of effect, denoted E, will also then be 

quadratic in dose, and proportional to number of 

treatments.

Viz E = N (cK d + pd2 ) (1)

Where d is dose Der fraction, N the number of

treatments given and ^  and p are parameters

characteristic of the tissue concerned. Two treatments 

utilizing different fractionation regimes (Ni, d*, ) and 

(Nt2, d 2 ) will be isoeffective for damage to that tissue

if their effects (Eq and E2) are the same.

Viz for equivalence,

Nq (o<dq + Bdq )• = N2 ( d2 + pd2 ) (2)

dividing through by p gives

Ni (g  d]_ + d22) = N2 d2 + df) (3)
The fraction size for regime 2 such that N2 fractions 

will have the same effect as regime 1 is given by the 

solution of the quadratic equation in d2 i.e.

—  <=< +  / / c k  )'+ + 4N| /c< dq + d̂ Fj
d2 = B J ( B /  Na. V B_____________________ (4)

2



Hence doses on different regimes can be calculated 

to give equivalent effects on a tissue if itsck_ ratio 

is known. Values of the e s t i m a t e d ^  ratio for 

various normal tissues have recently been collated by 

Withers et al (7) and by Fowler (8) (See Materials 

references). Most late-responding tissues are found 

to have an ratio dose to 3 GY. Equation (4) with
F

3 GY, was used to calculate doses isoeffective for
P
damage to late-responding normal tissues. These 

regimes are specified in Tables 1 and 2.


