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SUMMARY

Helicopter flight control systems are often developed using low order linear
descriptions of the plant. Unfortunately, unmodelled high order dynamics, such
as those of the actuators and the main rotor, can have an adverse effect on
stability and cross couplings when the design is tested on the aircraft. Hence,
the flight controller may require tuning during commissioning trials in order to
yield a system with acceptable handling qualities.

As the sophistication of flight control systems is enhanced, the currently used
trial and error optimization techniques will lose effectiveness. Anticipating the
difficulties which will arise in the implementation of active control technology to
helicopters, a study has been made of systematic procedures for adjusting the
control system gains. The tuning processes which have been developed rely upon
the signal convolution method to generate sensitivity functions of the state
variables with respect to control system gains. State variable sensitivities allow
one to predict what effects changing a controller gain will have on the system
response. The beauty of the signal convolution method is that the sensitivity
information is generated without knowledge of the helicopter plant. Therefore, by
using data collected during flight trials, it is possible to calculate the sensitivity
functions with respect to the dynamics of the actual system plant, including the
unmodelled modes.

The sensitivity information is used by an adjustment algorithm which employs
Newton— Raphson techniques to predict how the system response will change with
a trial set of perturbations to the controller gains. For each set of perturbations,
an estimate is made of the modifed response which, in turn, is assigned a figure
of merit. The set of perturbation values which yields the best figure of merit is
then used to update the initial values of the control system gains. Since the
characteristics of the optimized system response are determined by the type of
figure of merit used in the adjustment algorithm, two distinct performance indices
have been evaluated during the study.

In model reference tuning, the Least Integral Error Square Performance
Index is calculated to provide the figure of merit for each projected system
response. The controller gains are altered to minimize the difference between
the response of the actual system and a desirable response which is generated by
a computer simulation model. However, in using a reference model, care must
be taken to ensure that the desirable response is consistent with a Level 1
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handling qualities rating so that pilots find the tuned system acceptable to fly.

In contrast, the Handling Qualities Performance Index allows system responses
to be compared explicitly in terms of whether or not they satisfy the handling
quality requirements. As these requirements form the starting point for many
control system designs, the use of the Handling Qualities Performance Index
should guarantee an improvement in system response. This new performance
index uniquely links the values of control system gains to the helicopter's handling
quality ratings.

Computer simulation has been used to validate both the application of the
signal convolution method to multivariable control systems and the ability of the
two performance indices to tune a helicopter's flight controller. The flight
control systems considered during these simulations were developed using modal
control theory and have been used with both linear and nonlinear representations
of the helicopter plant. The results of a real—time simulation have reinforced
the notion that the flight controller's structure and parameter values must be
determined with. respect to desirable flight handling qualities rather than purely on

the basis of mathematical control system design techniques.



CHAPTER 1: INTRODUCTION

1.1 ) Helicopter Operations

The helicopter's unique ability to hover efficiently has made it an invaluable
component of modern military operations and of civil tasks such as medical
evacuation, public transport, and search and rescue. While civil operators are
looking for increased safety, the military is primarily concerned with increased
performance and ease of operations. NATO countries are placing greater
emphasis on helicopters because of their mobility and fire— power [1].  Future
land battles will see battlefield helicopters used to engage armoured vehicles in
both the front line and rearward areas, with weapons ranging from missiles to
light cannons. Current senarios envisage three distinct phases in a typical
anti— armour operation [2]. High speed contour flight to and from the combat
zone will involve the aircraft flying at a fairly constant speed at a prescribed
height above ground level to avoid obstacles. Upon reaching the combat zone,
where concealment is of prime importance, pilots will use 'nap of the earth'
(NOE) flight to minimize exposure to enemy forces. Since the use of armour
for protection on helicopters limits their usable payloads, the main defensive tactic
employed must be to use trees, buildings and terrain features for concealment
[2],[3]. The third phase of the anti—armour mission is the hover which is
extensively used for target acquisition and weapons firing. Battlefield helicopters
are forced to fly as low as possible during all operations because of the lethality
of modern air defense systems.

The performance demands of military operations are most severe during
NOE flight and the emerging realm of air to air combat between opposing
helicopters.  Although air to air combat tactics are still being developed [4],
standard NOE manoeuvres are currently being wused to compare different
helicopters, and handling quality criteria are being developed with reference to
NOE manoeuvres. These standard manoeuvres are designed to test the aircraft's
ability to minimize exposure to threats when moving between two or more
concealed positions [5]. The ‘'slalom' involves moving laterally during forward
flight to take advantage of objects lining the intended flight path (Figure 1.1),
while the ‘dolphin' involves changing height to minimize the time spent above
objects blocking the flight path (Figure 1.2). Three manoeuvres which are
initiated and terminated in a hover are: the 'bob up/bob down', the ‘sidestep
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Figure 1.1: An idealized representation of the slalom manoeuvre.

Figure 1.2: An idealized representation of the dolphin manoeuvre.
— 2 -



unmask/ remask', and the ‘'dash/ quickstop'. The bob up/bob down is used for
weapons firing while the sidestep and dash are used to change the hover position
in a lateral and longitudinal sense with regard to the fuselage heading.

To maximize the effectiveness of NOE tactics, and hence the survivability of
the vehicle, the pilot must have tight control over the helicopter's motions.
Agility is the term used to describe how easily a helicopter makes the rapid and
precise changes of velocity necessary in aggressive manoeuvres [5].  Agility is
improved by increasing the amount of thrust available for manoeuvres and by
easing the control of this excess thrust for the pilot. Although agility depends on
the availability of excess rotor thrust, studies have shown that the authority which
a pilot has over the excess rotor thrust will have a far greater influence on the
precision of NOE manoeuvres [5]. Aggressive manoeuvring will require large and
rapid pilot inputs and thus the flight control system must have a bandwidth which
is commensurate with these inputs. Hence, NOE flight is motivating a drive

towards high bandwidth flight controllers.

1.2 ) Handling Qualities

Handling qualities describe the ease or difficulty with which a pilot can
perform manoeuvres and are of primary concern in the development of flight
control systems. To simply increase the thrust available for manoeuvring without
providing adequate means of controlling the excess power can increase the pilot's
workload. Indeed, one of the main objectives of flight controller design is to
yield a vehicle which is easier to fly. Improved handling qualities (control over
the excess rotor thrust) will reduce the pilot's workload in terms of flying the
aircraft, leading to greater mission effectiveness [2]. By improving the handling,
manoeuvres are flown at higher speeds, and closer to the ground and obstacles:
all of which results in a greater degree of concealment and increased survivability
[6].

If handling qualities are improved such that NOE flight can be carried out
at the minimum power speed (well above the currently used hover and taxi
speeds) many operational benefits will arise [2]. At the minimum power speed,
fuel consumption is reduced and power management is simplified because the
energy expended in keeping the aircraft airborne is at a minimum. Thus, the
excess thrust available for manoeuvring is at a maximum resulting in maximum
absolute agility. Handling qualities determine the usable agility — that which the
pilot will make use of during flight. Ideally, the ratio of usable to absolute
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agility will be increased to 1.0 which will yield a helicopter with ‘'carefree
manoeuvring'. Carefree manoeuvring exists when a pilot can fly the vehicle to
the edge of the flight envelope without losing control and without causing
excessive fatique damage to the aircraft [S]. The flight envelope is bounded by
the flight conditions beyond which the helicopter cannot remain airborne.
Therefore a helicopter possessing good handling qualities as measured by useable
agility will allow the safe use of more of the vehicle's performance in terms of

flight near to the edge of the flight envelope.

1.3 ) Active Control Technology

Modern flight control systems make use of ‘active control technology' (ACT)
for several reasons. By having a computer dynamically involved in flight control,
ACT systems promise to improve both the wusable and absolute agility of
helicopters [5]. The use of a computer allows raw dynamics of helicopters to be
modified such that the pilot is less aware of nonlinearities and cross— couplings.
Examples of helicopter nonlinearities are the hysteresis present in hydraulic
actuators and mechanical linkages and the rate limits on the motion of the
actuators. Although ACT will allow the removal of many mechanical parts used
for flight control, actuators will continue to be used to change the pitch on
individual rotor blades and hence the magnitude and direction of the main rotor's
thrust vector. Cross— couplings between longitudinal and lateral dynamics are
more severe on helicopters with hingeless as opposed to articulated rotors. While
increasing the absolute agility of helicopters, the dynamics of hingeless rotors can
increase the pilot's workload in manoeuvring the aircraft. Modern control
theories and techniques are required to design flight controliers which decoupie
system dynamics from the pilot's point of view. By implementing these control
laws with onboard computers, the vehicle is made easier to fly. Therefore, ACT
allows an increase in usable agility by improving the system's handling qualities.

On battlefield helicopters, one aim is to develop single pilot crewstations in
order to reduce training time, weight and costs. Present handling qualities are
such that the workload of flying, navigation, launching weapons, and keeping a
lookout for threats is excessive, even for a two man crew. Training time is
reduced with a single pilot crewstation because the need to develop teamwork
between the pilot and a copilot/gunner is eliminated.

Active control technology is being wused in two closely related areas to
achieve the single person crewstation objective. As noted previously, computers
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allow a tailoring of the raw vehicle dynamics to make the aircraft easier to fly.
At the' same time, ACT allows a complete redesign of the man— machine
interface in the cockpit. It is no longer necessary to have a collective lever
controlling the total rotor thrust and a large cyclic stick to provide the leverage
needed to tilt the rotor's thrust vector. Because pilot inputs are being fed
directly into a computer, it is possible to have small sidearm inceptors rather
than conventional controls [7]. Since these inceptors can be smaller, valuable
cockpit space is saved for other uses. In addition, displacements of these
inceptors can be interpreted in several ways. For example, with a traditional
cyclic stick the position of the stick specifies the position of the longitudinal and
lateral cyclic rotor blade actuators. The positions of these actuators, in turn,
determine the direction of the thrust vector and hence the steady state flight
condition. In contrast to this attitude demand system, sidearm controller
displacement can be interpreted as a demand for rates of change of aircraft
motion. In a rate demand system, the lateral position of a sidearm inceptor
might be proportional to a demanded roll rate. The flight computer will then
move the rotor blade actuators in order to achieve this roll rate demand. In this
way the pilot's inputs are related more directly to aircraft states of motion than
has been possible in the past. These inceptor characteristics can have a large
bearing on how pilots judge a helicopter's handling qualities on the
Cooper— Harper scale [7]. Other improvements to the man— machine interface
can be made by increasing the information displayed to the pilot on 'Head Up
Displays' (HUD). A HUD is a projection of the flight path/vehicle attitude
information on to either the glass canopy of the cockpit or on to the visor of
the pilot's helmet and allows the pilot to perform various functions while
continuing to look at the outside world.

In terms of absoiute agility, the use of ACT can be of benefit because the
speed of the natural modes of motion of the system can be increased. These
natural modes determine the stability of the helicopter and how quickly it will
respond to pilot inputs and disturbances, such as wind gusts.

In summary, ACT can be used to expand the usable flight envelope by
reducing cross— couplings, improving the man— machine interface, and increasing
agility. These advantages of ACT systems can be recorded as improved flight
handling qualities. Although the cost and weight motives behind the introduction
of ACT to helicopters are not as important as for fixed wing aircraft [5], full
authority manoeuvre demand flight control systems are essential for NOE

operations and the survivability of the battlefield helicopter.
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1.4 ) The Tuning Requirement

The need to tune fly by wire flight control systems on new helicopters
persists despite ACT due to current design techniques. Computer simulation of
the aircraft dynamics through the use of mathematical models is the basis of most
flight control system designs. Since the simulation models do not incorporate all
of the dynamics of the helicopter to be controlled, errors are introduced into the
design of the flight controller from a very early stage. Such errors are important
as they appear during real—time piloted flight simulations and test flights as
handling quality deficiencies.

Flight control systems are traditionally designed around eighth order, six
degree of freedom models of the helicopter fuselage dynamics. Models of this
type use the quasi— static rotor approximation in which the dynamics of the tip
path plane of the rotor blades are ignored [8]. Essentially, the blades are treated
collectively as a lifting disc, rather than looking at the flapping, lagging, and
feathering motions of the blades as they revolve about the rotor shaft axis. Since
the pitch on each blade is varied sinusoidally about a constant value during each
revolution for stability and control purposes on the actual aircraft, various
secondary blade motions tend to be excited. In addition to neglecting the
complex rotor motions, low order linear models also ignore actuator dynamics
which are responsible for considerable delays in system response.

When developing the high bandwidth flight controllers needed for NOE
operations, the natural resonances of the fuselage in flight are moved closer to
those of the main rotor. The interactions which result lead to compromises in
the system's static and dynamic stability. In a comprehensive study of the effects
of high order system dynamics on the bandwidth of helicopter flight controllers,
Chen and Hindson [9] showed that increasing roll rate and roil attitude feedback
caused the regressing flapping rotor mode of a CH47 helicopter to migrate
towards a right half plane =zero. As system bandwidth is extended by the
increasing feedback, the stability of the regressing flapping mode decreases.

The dynamics of the rotor, sensors, filters, and actuators have traditionally
been referred to as high order dynamics because the poles characterizing their
motion were well separated from the slower dynamics of the fuselage. Since high
order dynamics place restrictions on the gains which can be used in controllers,
they should be considered in all designs of high bandwidth flight systems.
Unfortunately, rotor models are notoriously inaccurate, particularly during
manoeuvres. In addition, the nonlinear actuator dynamics are commonly
represented by simple first order linear lags. The control engineer is presently
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faced with making a decision between using a simple, understandable model of
the fuselage dynamics, or a much more complex description which he knows to
be flawed. The danger in using the simpler model is that by neglecting high
order dynamics, the controller may cause instabilities when used with the actual
system thereby creating the need for tuning. Even if new flight control systems
are developed with the currently inaccurate descriptions of the rotor dynamics,
they will need to be optimized with regard to the actual system.

Although inaccuracies in mathematical descriptions of the helicopter are
responsible for most of the need for tuning, fixed wing experience indicates that
flying quality deficiencies will persist even with accurate models. Despite the use
of advanced control system design methods allowed by ACT, fixed wing aircraft
prototypes continue to suffer from problems with control sensitivity, pilot induced
oscillations, and sluggish responses. These continuing handling deficiencies have
been attributed to an over reliance on piloted flight simulation and a
communication gap which exists between handling quality engineers and control
system engineers [10]. Contrary to previously held beliefs that advances in flight
control would eliminate deficient handling qualities, there is evidence to indicate
that hardware and software capabilities are not being properly utilized because
handling quality criteria have not matured at a rate which will give direction to
control system design. As in most aspects of development, it is expected that
the helicopter community will follow its fixed wing counterpart in this respect,
and will suffer from similar problems in the future. If this is the case, the need
for tuning will be reinforced by the development of helicopters which have
handling quality deficiencies.

Tuning will be needed for ACT systems for two reasons. First, the presence
of unmodelled dynamics can be responsible for the instability of a system
employing a controller designed on the basis of low order linear descriptions.
The design of high bandwidth systems requires the use of accurate high bandwidth
models which are presently not available. Second, it is expected that control
concepts will continue to be developed without adequate regard to the handling
quality requirements. As the complexity of ACT flight controllers increases, the
use of trial and error tuning techniques will cease to be a viable proposition. In
the future, even the engineer responsible for the controller's design will find it
difficult to say with any accuracy that increasing or decreasing particular gains
will remove an undesirable response characteristic.

To clarify when and how the tuning process will be used, it is necessary to
consider the steps involved in the design and commissioning of a new flight
control system. Given the desired handling quality specifications for the design
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and a representation of the helicopter's plant in terms of force and moment
equations, the first task is to decide on a control strategy or control law which is
to be used to design the flight control system. Following the procedures which
are prescribed by the chosen control theory, a controller is developed and tested
on computer simulation models, both linear and nonlinear. These computer
simulations are used to validate the control theory implementation in terms of
very simple pre— programmed test inputs, such as pulses, steps, and doublets.
Once the performance is satisfactory in response to these inputs, the controller
will be used in a real—time piloted flight simulation which will test its
performance with regard to the pilot demands which it is likely to encounter on
the real aircraft. Real—time flight simulation allows an investigation of how the
pilot reacts with the controller. The results of testing at this stage will indicate
if there are inadequacies in terms of handling quality specifications, that is,
whether the pilot finds the dynamics of the controlled system easy or difficult to
use. It may be the case that the controller needs tuning at this stage just to
take into account the adaptive nature of the control inputs which a pilot will use.
It should be remembered that up to this stage, the controller is essentially having
to cope with the same plant dynamics which were modelled for the design.
Additional dynamics of the real— time simulation facility should be well above the
controller's bandwidth in order to prevent problems. Once difficulties with the
pilot— flight control system interfacing have been rectified, the controller will be
implemented on a test aircraft for flight trials. At this stage, handling quality
deficiencies which are attributable to unmodelled high order dynamics will become
apparent. A tuning process promises the most, in terms of improving a
controller's performance, at this jump from simulation models to the actual plant.

In the following, the word ‘tuning' will be wused in preference to
‘optimization' since the latter tends to be associated with procedures used during
controller design with simulation models. In contrast, the techniques which are
presented herein are directed at optimizing controller gains once the flight control
system is actually flying.

In developing tuning procedures for ACT systems, there are several attributes
which the method should possess. The first is that the tuning process should be
quantitative. It must be possible to show that increasing a particular controller
gain, o, by the amount Ar; will lead to an improvement in system response.
Furthermore, it must be possible to judge that one response is better than
another in precise terms, and this implies using a quantitative performance
measure to rate the relative merit of particular system responses. Trial and error
techniques suffer because controller parameters are being altered without prior
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knowledge of the effects of the changes on the system's response. With the
large number of adjustable gains in ACT systems, the costs of trial and error
tuning during inflight trials would be prohibitive. A systematic and quantitative
tuning algorithm will minimize the amount of inflight testing which is needed to
optimize controller settings.

The second aspect of the tuning process which must be considered is the
fact that precise knowledge of the dynamics of the actual plant will not be
available. This lack of knowledge creates the need for tuning in the first place,
and forces the tuning algorithm to base its optimization on information provided
by the response of the actual controlled system. If one considers the objective of
the tuning process to be that of nullifying the adverse effects of unmodelled high
order dynamics, then information concerning these effects must be available.
However, the only valid source of information concerning unmodelled dynamics is
the system response to pilot inputs. In other words, the tuning process must
work with the response of the actual system in order to gain the information
needed to decide how the controller's parameters should be adjusted.

Other desirable attributes are for the tuning process to work on nonlinear
systems and for the process to be capable of real—time implementation.
However, the tuning algorithm which has been developed relies upon sensitivity
functions to show how each control system parameter affects the system response.
With the constraints that inflight testing is to be minimized, and that knowledge
of the system plant is inaccurate, one is forced to wuse signal convolution
techniques to generate the sensitivities. Unfortunately, the multivariable
application of the signal convolution technique precludes a real—time
implementation and hard nonlinearities, such as actuator rate limits, must be
avoided.

The remaining seven chapters of this thesis present the theoretical basis for
the techniques which have been developed and the results which were obtained.
Although the tuning processes are generally applicable, they are presented with
regard to flight path controllers developed using modal control theory. The
design techniques used for these flight control systems are presented in Chapter 2.
Chapter 3 details the signal convolution method of calculating sensitivity functions
which provide the quantitative information lacking in trial and error tuning
methods.  Apart from the collection of flight trials data, the tuning process
consists of a parameter adjustment algorithm which projects how the controller's
gains should be changed in order to improve system performance. Chapter 4
presents the adjustment algorithm theory which makes use of either of the two
performance index measures of Chapter 5 and 6. Model reference tuning uses
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the Least Integral Error Square Performance Index (Chapter S5), while the
handling qualities tuning algorithm uses a performance index which is based on
quantitative handling quality requirements (Chapter 6). The results of a
real— time simulation of one of the flight path controllers of Chapter 2 are
presented in Chapter 7, helping to show how complex and important the
man— machine interface is to good handling qualities. The conclusions of Chapter
8 summarize the results which have been obtained during the current study and

propose future areas of research.



CHAPTER 2: HELICOPTER DYNAMICS AND FLIGHT CONTROL SYSTEM
DESIGN

2.1 ) Helicopter Dynamics

The equations of motion of the single rotor helicopter are derived by
summing the force and moment contributions of various structural components of
the helicopter system. The most important of these components are the main
rotor, the tail rotor, and the fuselage. The difficulties encountered in attempting
to model helicopters arise in two areas. First, the dynamics of the main rotor
are complex, particularly during transient manoeuvres, and in addition,
aerodynamic coupling is considerably more pronounced for helicopters than for
fixed wing aircraft. This increased level of coupling is a result of using the rotor
to generate both lift and control moments.

The coordinate system used to describe the single rotor helicopter system
throughout this thesis will be the body fixed axes of Padfield [11]. Figure 2.1
shows the x, y, and z axes of this coordinate system along with the X, Y, and Z
components of total force and the L, M, and N components of the total
moment. The derivation of forces and moments is given by Padfield [11] along
with the nonlinear equations of motion of the fuselage at the centre of gravity

(Equations 2.1).
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For flight control system design, it is a common and useful practice to use
linearized equations of motion to describe the vehicle's dynamics near a prescribed
operating point in the flight envelope. This representation of the aircraft lends
itself readily to physical interpretation. The need to reduce the equations of
motion into a form which is more easily interpreted is fully explained by Houston
and Horton [12]. The standard method of linearizing the equations of motion is
through the use of stability and control derivatives [13]. The nonlinear force and
moment equations are described as a Taylor series expansion about the desired
operating point in terms of the degrees of freedom of the aircraft. By truncating
each series to first order terms, a linear model of the system is derived. The
stability and control derivatives are the coefficients of the linear terms of this
Taylor series expansion. The truncated series of this linear representation can be

arranged into state space canonical form.

x(t) [Alx(t) + [Blu(t) Equation 2.2

z(t) [Clx(t) Equation 2.3

The stability and control derivatives are used to derive the elements of the
system matrix, {A], and the input distribution matrix, [B], respectively. Since the
development of a control law was not the primary objective of the project, the
helicopter plant used for design work did not include rotor dynamics and was
represented as a six degree of freedom, eighth order system.

The state vector, x(t), is made up of the eight rigid body states of the

fuselage.



u(t)
w(t)
q(t)
o(t) .
x(t) = v(t) Equation 2.4
p(t)
p(t)
| r(e) ]

Following standard practice, the yaw angle is not included as a state variable
because the heading on which an aircraft is flying does not affect its stability or
control. This can be deduced from the nonlinear equations of motion in which
heading or yaw angle, i, does not appear in the equations for the other states.
However, as will be shown, heading feedback may be necessary in terms of
providing decoupled spiral mode stability.

For single main rotor helicopters, the control input vector, u(t), is made up

of the four actuator blade angles.

90}3 - main rotor collective blade angle

915 - longitudinal cyclic blade angle
u(t) = elc - lateral cyclic blade angle

eOT ~ tail rotor collective blade angle

Equation 2.5

Traditionally, the pilot's collective lever is mechanically linked to the
collective actuator controlling total thrust, while his centre stick is linked to the
cyclic actuators controlling the direction of the thrust. The pedals are linked to
the tail rotor actuator which controls the tail rotor thrust used to counter the
torque of the main rotor. ACT is used to eliminate these traditional control
channels and replace them with with pilot inceptor demands for angular rates of
motion and linear velocities. This fundamental change in the man— machine
interface is the driving force behind current helicopter flight control research.

Equation 2.3 defines the system output vector, z(t), and the output matrix,
[C] for a general system. For the design of control laws in Section 2.2, it has
been assumed that the states of the helicopter are observable and hence the
output vector, z(t), is equivalenced to the state vector, x(t), by making the output
matrix, [C], equal to the eighth order identity matrix.

Representations of the helicopter plant have been supplied by the Royal
Aerospace Establishment (Bedford). The HELISTAB software package [11],[14]
generates a system matrix, [A], and an input distribution matrix, [B], given an

- 14 —



initial flight condition. These matrices are used in Equation 2.2 to represent the
helicopter plant for all of the control system design work described herein. The
stability and control derivatives calculated by HELISTAB are valid for limited
manoeuvres which do not require large and rapid movements [11]. Although the
HELISTAB package has been correlated with flight test data, it has been shown
that discrepancies exist at both ends of the flight envelope: at speeds below 50
knots, the impingement of the rotor downwash on the fuselage becomes
increasingly important; above 120 knots speed,. stall begins to appear on the
retreating blades. As neither of these phenomena are mathematically modelled by
HELISTAB, its use for design purposes is essentially restricted to the range of
speeds between 50 knots and 120 knots. Other anomalies which occur within this
range have been reported in the literature [11],[12]. Furthermore, the system
matrix, [A], and input distribution matrix, [B], are only valid over a limited
portion of the flight envelope because the elements of these matrices change with
flight condition — with forward speed, for example. This is a consequence of
the nonlinearity of the equations of motion. Because [A] and [B] are only locally
valid, the linearized model is a perturbation model and the nominal, unperturbed
values of the states and actuator blade angles will be zero.

In contrast, the HELISIM3 software package is a full envelope nonlinear
helicopter plant model. As such, the plant is described by the nonlinear
equations of motion (Equations 2.1). Although the nonlinear plant model
simulates the vehicle's dynamics with greater fidelity, it too suffers from
deficiencies because both models (HELISTAB and HELISIM3) were developed

from the same theoretical basis.

2.2 ) Flight Control Systems

An unaugmented helicopter presents the pilot with certain open loop modes.
In manoeuvring a helicopter, a pilot will input signals to his inceptors which will
excite these natural modes of motion. Through experience, the pilot will learn
how to excite these modes such that the aircraft responds in a desirable manner.
Since the raw plant dynamics of single rotor helicopters are highly coupled, flight
control systems attempt to change the nature of these open loop modes.

The helicopter which is being used as a basis in this study has six rigid
body modes. Because of the asymmetry of the single rotor helicopter, it is not
as easy to separate these rigid body modes into longitudinal and lateral modes as
is done for fixed wing aircraft. Nevertheless, the helicopter community classifies



the raw dynamics in a form consistent with fixed wing nomenclature. The
traditional longitudinal modes are the pitching mode and the phugoid mode. On
the helicopter of interest, the pitching motion is actually characterized by a fast
pitch and a slow pitch mode. These pitching modes describe the natural motions
of the helicopter in response to a perturbation in pitch from the trimmed value.
If these modes are stable, any deviations in pitch will decay. The phugoid is
a different type of motion which involves a periodic exchange of the kinetic
energy of forward flight and the potential energy of aircraft altitude. The three
classical lateral modes are referred to as: the roll; the spiral; and the Dutch roll
mode. The tendency of the helicopter to return to a level flight condition with
a perturbation in roll angle is described as the roll mode. The spiral mode is
an indication of the helicopter's predisposition to wander off its course (essentially
in a horizontal plane). The Dutch roll motion can be described as a complicated
- interchange of sideslip and rolling energy. If the aircraft is given an initial
sideslip as a result of a wind gust, for example, aerodynamic forces will be such
as to turn the aircraft into the flight path producing a differential lift across the
lifting surface whether it be a wing or a rotor. This differential lift will then
roll the aircraft towards the change in heading caused by the reduction in
sideslip, thus establishing an oscillation. These descriptions are only superficial
and the the modes vary from aircraft to aircraft. There are a number of texts
on the subject [15],[16],[17] which provide more in depth discussions of flight
dynamics.

In the past, the modes of helicopters were determined through the
aerodynamic and structural design. Following trends in the fixed wing
community, current practice is to design the raw plant for greater performance
and then to use flight control systems to tailor the system modes such that the
aircraft is stable. Present helicopters are difficult enough to fly: greater
performance without flight control systems would only serve to exhaust pilots at a
faster rate. The objective of all flight control systems is then to modify the
natural modes in order that they are more managable for the pilot. Flight
controllers attempt to improve the raw dynamics by relocating closed loop system
poles and zeros to desirable locations. Different control theories position these
poles and zeros according to different criteria, and at present, the most
commonly used theories are modal control, optimal control, and model following
techniques. '

Of these three linear control theories, modal control theory can be seen as
the most direct and visible method of pole—zero placement. This control
strategy has been used for flight control systems both in isolation [18] and as part



of a more sophisticated design criteria [19],[20],[21]. Modal control will be
described in detail in the following sections.

Optimal control or Linear Quadratic Gaussian (LQG) control involves the
formulation of a performance index, J, which, when minimized, yields a fairly
robust, if somewhat conservative, control system. The simplest form of optimal
control involves finding a control function u(t) (the plant input signal) which

minimizes the following performance index [22].

t
J =J [ 5Ty 1a1 x(0) + wTee) [RY u(e) | ae
0
Equation 2.6

Both control input activity as specified by u(t) and large system transients as
given by x(t) are penalized by minimizing the performance index in Equation 2.6.
The weighting matrices [Q] and [R] are generally diagonal and their nonzero
elements are assigned by the designer on the basis of his experience. This leads
to an iterative design process. The feedback matrix to be used to provide the
controlling action is then determined from the solution of a matrix Riccati
equation.

The main difficulty in the application of optimal control is that the use of
the performance index of Equation 2.6 obscures what is happening to the system's
poles and zeros. Although it may be argued that pole— zero locations are chosen
with regard to a control theory working at a higher level of abstraction, it must
be remembered that handling quality specifications (Chapter 6) are described
directly in terms of damping ratios and natural frequencies, which can be related
to pole positions with relative ease. Nevertheless, optimal control has been used
by Murphy and Narendra [23] to design a stability augmentation system for a
Sikorsky SH—3D Sea King in hover and by Miyajima [24] in a full envelope
stability and control augmentation system.

Model following controllers make use of a model of the helicopter's plant
dynamics as part of the control system. The essence of the method is that the
inputs of the helicopter plant are excited by the outputs of an inverse plant
model. The desired state vector which is input to the inverse model should be
reproduced by the aircraft state vector. Pilot inputs to the inverse model are
augmented by control signals derived from differences in the “desired and actual

state vectors. The method has been used on a Bell UH—1H [25] and a MBB
BO—105 [21].



Other, less commonly used control techniques include H—® control and
adaptive control. The motivation behind H— « control is that stability margins
can be guaranteed for the design model. The techniques used are designed to
provide a robust controller design. Adaptive control schemes, on the other hand,

modify control system parameters with respect to the flight condition [26],[27].

2.2.1 ) Modal Control Design Philosophy

The objective of modal control is to provide a means of controlling the
transient modes of a system. Modal control theory has rapidly evolved from
being a procedure for the placement of the eigenvalues of controllable system
modes to a design process which allows extensive tailoring of the system's
pole— zero locations. By allowing the designer some flexibility in the location of
the response zeros, it is possible to decouple the modes in terms of their
distribution among the state variables of the system. This fact makes modal
control particularly attractive for use in helicopter flight control systems where
coupling between the axes of motion can be severe. The argument for the use
of modal control theory in the helicopter context is further strengthened when
one considers the flight handling quality specifications for helicopters (see Chapter
6). As previously mentioned, the flight handling quality criteria dealing with
system transients are largely specified in terms of natural frequencies, damping
ratios and time constants which can be readily transformed into eigenvalues.
Thus, modal control theory will allow handling quality specifications to be an
integral component of the design process [18].

There are four concepts which are central to modal control theory. The
first of these is that state feedback or output feedback can be used to move piant
eigenvalues so that the closed loop system has a desirable rate of transient
response to perturbations [28]. Secondly, since the use of a feedback matrix in a
closed loop system gives the designer more degrees of freedom than he needs to
reassign the system eigenvalues, it is possible to use the feedback matrix to
partially assign system eigenvectors [29],[30],[31]. Third, by assigning a desirable
closed loop eigenvalue, the designer defines an assignable subspace in which the
closed loop eigenvectors must lie [32]. The fourth concept is that the difference
between desirable closed loop eigenvectors and those which are assignable can be
minimized in a least squares sense through the use of principal angles [33],[18].
These ideas will be explained in the following section which shows how modal
control theory has been applied to the single rotor helicopter by Parry and



Murray— Smith [18].

2.2.2 ) Modal Control Design Methods

As explained, the equations of motion for helicopters are linearized for
design purposes. Recall Equations 2.2 and 2.3 which give the state space
representation of the helicopter plant in terms of: the state vector, x; the control
vector, u; the output vector, z; the system matrix, [A]; the input distribution

matrix, [B]; and the output matrix, [C].

Ix-
I

[A]lx + [B]u Equation 2.2

z = [C]x Equation 2.3

In the above equations it is assumed that the rank of all three system
matrices: [A], [B], and [C], is full. That is, r([A])=n, r([B])=m, and r([C])= k.
When the output signal, z, is fed back through an mxk matrix [K] to

provide control, the control signal, u, is given by,

u=r - [K]z Equation 2.7

Where r is a reference control input. Substitution of Equations 2.3 and 2.7

into Equation 2.2 gives,

X = [ [A] - [B][K][C] ] x + [Blr Equation 2.8
If,
[Ac] = [A] - [B][K][C] Equation 2.9

Then Equation 2.8 reduces to,

X = [Aclx + [B]r Equation 2.10

The location of the poles are given by the eigenvalues of [A] for the open
loop system and by the eigenvalues of [A.] for the closed loop system.r The
eigenvalues of the closed loop system matrix, [A.], are a function of the feedback
matrix, [K]. Since the location of the poles determines the stability and rise
times of the system in response to perturbations, the use of the feedback matrix,



[K], allows the elimination of undesirable slower dynamics in the closed loop
system [31], thereby improving the vehicle's agility.

In their discussion of output feedback, Andry et. al. {33] have shown for the
system being considered, that with the states both controllable and observable, it
is possible to assign max(m,k) closed loop eigenvalues. Furthermore, max(m,k)
closed loop eigenvectors can be partially assigned with min(m,k) degrees of
freedom. This is a result of the mxk degrees of freedom provided by the
feedback matrix, {K].

) If it is advantageous for the system to have the desired
. eigenvalue/eigenvector pair (),rj), then the modal control problem can be

expressed as the need to find a real feedback matrix, [K], such that,

[ [A] - [B][K][C) ] poo= Ar Equation 2.11

When the closed loop eigenvalues are distinct from the open loop

eigenvalues, it is possible to rearrange Equation 2.11 into the form,

vo= | [A] - A (1) ]'1 [B] (K] [Cle, Equation 2.12

If the two sets of eigenvalues were not distinct, it would not be possible to
invert ([A]— \[I]) since it would be singular.

One of the major contributions to modal control theory was made by
Sinswat and Fallside [32] by defining an m dimensional vector my as,

m, = [K][C]li Equation 2.13

For a nonzero eigenvector, »;, it is possible to consider the vector m; as

arbitrary in m—space. Therefore, rewriting Equation 2.12 as,

r, = [ [A] - )\i[l] ]_1 [B]mi Equation 2.14

It becomes clear that the closed loop system eigenvector must lie in an m
dimensional subspace of the n dimensional system space. Parry and
Murray— Smith [18] state that the closed loop eigenvectors must be contained in
the subspace W(\;,[A],[B]) spanned by the columns of ([A]— M)~ 1[B]. Hence, the
assignable subspace for each eigenvector, pj, is a function of the input distribution
matrix, [B], the system matrix, [A], and the eigenvalue, \;, for that particular

eigenvector.



Assuming that the closed loop eigenvalues have been chosen (on the basis of
handling quality criteria), it is necessary to select an assignable eigenvector for
each of the system modes. While the eigenvalues determine the location of a
system's poles, the eigenvectors determine the locations of response zeros and
hence the response shape [33]. The amplitudes of the elements in an eigenvector
determine the strength of that particular mode on each of the system states. If
it is desirable to eliminate a mode on particular states, the elements of the
eigenvector corresponding to those states should then have amplitudes which are
much smaller than the amplitudes for the elements corresponding to the states on
which the mode is to be present. Ideally, the small amplitudes on the unwanted
states will be zero. It is therefore necessary to have a clear idea about how the
rigid body modes of the helicopter are to be distributed among the states before
system eigenvectors can be assigned.

In order to ease the pilot's workload, it is beneficial to decouple the
longitudinal and lateral dynamics as much as possible. To this end, desirable
subspaces are defined for each particular mode. For the helicopter flight control
systems discussed in the following sections the desirable subspaces are defined by

the basis vectors shown in Table 2.1 [18].

Table 2.1: The state distribution of the system modes.

Mode Subspace Eigenvector Elements

u w q 0 v P 7] r

Fast Pitch UI = [ 0 1 0 0 0 0 0 0
T r
Slow Pitch UZ = 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
. T |
Phugoid U3 = 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 |
T }
Roll U4 = 0 0 0 0 0 1 0 0
. T [
Spiral lJ5 = 0 0 0 0 0 0 1 0
Dutch Roll U-g = 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1




The choice of basis vectors for each subspace is not arbitrary since the
modes must be associated with their relevant rigid body states. Table 2.1 shows
that the fast pitch mode would ideally be confined to the vertical velocity state,
w, while the slow pitch and phugoid modes would be present on the forward
velocity, u, pitch rate, q, and pitch angle, ¢, states. The desired roll mode
would be found solely on the roll rate, p. The roll angle state, ¢, is the only
channel excited by the desired spiral mode. The Dutch roll mode would ideally
be found on the lateral velocity, v, and the yaw rate, r. Any eigenvectors which
are spanned by the above desirable subspaces, U, would eliminate coupling
between longitudinal and lateral states for that particular mode.

On the actual closed loop system, it is not possible to achieve the complete
decoupling of longitudinal and lateral states. It is therefore necessary to assign
the feedback gain elements so as to minimize the difference between the
assignable eigenvectors and those which are desired, thereby minimizing the
coupling between states. Principal angles measure the amount by which two
subspaces are inclined to each other [34]. The desired subspaces, Uj, are as
decoupled as ideal helicopter plant dynamics would allow. The assignable
subspaces, I, define the subspace over which the system eigenvectors, »;, may
reside. By choosing the eigenvector, pj, in the assignable subspace, TI'j, such that
the first principal angle, ©;1, between »; and the desired subspace, Ui, is
minimized, the amount of coupling in the system is also minimized. Parry and
Murray— Smith [18] demonstrate that the use of principal angles allows one to
measure the amount of mode coupling between states in addition to providing a
means of minimizing the coupling.

For the problem at hand, let the two subspaces, I'; and U;, have dimensions

such that,
n>p=dim (T;)2dim (V; ) =q21 Equation 2.15
By defining I'; and U as subspaces of the n dimensional unitary space EP,

the q principal angles, 6, between I'j and U are defined by Bjorck and Golub
[35] to be,

cos O,, = max max g_i.{ A% = gl:{ V. Equation 2.16
ik i-—i ik —ik
u, e, v, ey,
ii—-ii
” u. ”2 =1, || Vik ”2 = ] Equation 2.17



Where the uj and vj; are constrained by,

=0, v..v., =0, j=1,2,...,k-1 Equation 2.18

The set of vectors uj; and yjx are defined as the q principal vectors of the
pair of subspaces I'j and U;. The subset of principal vectors, uji, is the set of
assignable eigenvectors, p;j, which will minimize the coupling in the system.

An alternate approach to understanding the above is presented by Andry et.
al. [33]. If the desired subspace, Vj, is of one dimension, then the projection of
the desired eigenvector, VY, onto the assignable subspace T[T, finds the assignable
eigenvector, yj, which will minimize the coupling in the system. Consider Figure
2.2 which shows a two dimensional assignable subspace, TIj, and a one

dimensional desired subspace, U.

/ e

-

Figure 2.2: The projection of a desirable one dimensional subspace, Uj, onto an

assignable two dimensional subspace, I7j.

The principal vector, uj, is simply the projection of the desired subspace, U,
onto Ij. Although principal angles give a direct measure of the inclination
between subspaces, the solution of the problem from the viewpoint of projections
allows one to see that this method of eigenvector assignment reduces coupling in
a least squares sense. This follows from the fact that minimizing the first
principal angle between the assignable and desired eigenvectors brings these
vectors as close to each other as possible for a least squares solution [33].

The calculation of principal angles, 6;, and principal vectors, ujg, is most
accurately accomplished using singular values. Bjorck and Golub [35] give the
following theorem relating the singular value decomposition (SVD) of a matrix to



the principal angles and principal vectors of the two subspaces used to form the

matrix.

Assume that the columns of [Qr;] and [Qu);] form unitary bases for two

subspaces of a unitary space E". Put

;] = roriltrouil.

and let the SVD of this pxq matrix be

[Mi] = [Y,'][Ci][ZiJH » [Cf] = diag [ i1 %i20 0 %ig ]

where [Y;JH[Y;] = [Z;JH[z;) = [z;)/Z;]H = [14]. If we assume that
o 1é0i2>_...éaiq, then the principal angles and principal vectors associated

with this pair of subspaces are given by

cos O, = 0 ([M.]), [U.] = [0 JIY ], [V,] = [Q,][Z;]

For the applications discussed here, [Qpj] is a unitary basis for I'j and [Qyy
is a unitary basis for V. Klema and Laub [36] show that the singular values of
the matrix, [M;], are the positive square roots of the eigenvalues of the matrix,
[Mi]T[Mi]. The assignable eigenvectors, pj, of the system are given by the
orthonormal eigenvector of [Mi][Mi]T corresponding to the largest singular value
oj1, for each of the i pairs of desirable and assignable subspaces.

At this stage, the eigenvalues have been chosen on the grounds of giving the
system acceptable rates of transient response and the eigenvectors have been
selected in order to minimize the coupling in the system. The only task
rerhaining in the design of the modal controller is the calculation of the feedback
gains which will yield the designed eigenvalue/eigenvector pair (XA;z;).  Recall

Equation 2.11,

[ [A] - [B][K][C] ] L= N, Equation 2.11

Restating Equation 2.11 in terms of the kxk diagonal eigenvalue matrix, [A],
and the nxk eigenvector matrix, [V], one derives Equation 2.19. Modified Jordan

canonical form is used for [A] and [V] when there are multiple eigenvalues.



[A] - [B][K]I[C] ] [V] = [V][A] Equation 2.19

Rearrangement gives,

[B][K][C][V] = [ [A][V] - [V][A] ] Equation 2.20

Solving for the feedback matrix, [K], yields,

(K] = [B] [ [A][V] - [V][A] ] [ [C][V] ]'1 Equation 2.21

The psuedo—inverse of the input distribution matrix, [B]T, is found from

calculating the matrix product,

[B]T = [ [B]T[B] ]"1[81T Equation 2.22

Modal control techniques have been used in the design of two flight control

systems which will be discussed in the following sections.

2.2.3 ) The Parry Modal Controller

A flight control system using modal control theory as discussed above has
been developed by Parry and Murray— Smith [18]. The structure of the controller
consists of a feedback matrix which provides the desired eigenstructure assignment
and an input precompensator matrix which is designed to decouple the pilot
inputs as much as possible. The flight control system is shown in Figure 2.3 for

a linear time invariant system plant.

R(s) ——»f [P] (B] -{1] » X(s)

‘.___
[Kp] ([e—

Figure 2.3: The structure of the Parry Modal Controller.



The equations governing the above system are a straightforward extension of

the modal control equations (Equations 2.2 and 2.7).

X = [A]x + [Blu Equation 2.2

u= [P]r - [Kp]z Equation 2.23

An implicit assumption concerning the structure of the controller in Figure
2.3 is that all states are observable. Since full state feedback is used, there is
no need for an output matrix in the above system since it would merely be the
identity matrix. From the theory presented by Andry et. al. [33], it will be
possible to arbitarily reassign all 8 eigenvalues and 4 degrees of freedom for each
of the 8 eigenvectors using full state feedback. The closed loop equation

governing the system is,

X = [ [A] - [B][Kp] ] x + [B][P] r Equation 2.24

The design of the controller was carried out for a flight condition of 80.0
knots forward speed. This speed was chosen because future military helicopters
will need to perform NOE manoeuvres at relatively high velocities. In addition,
it was hoped that selecting a design point in the middle of the forward flight
envelope would minimize the amount of gain scheduling which would be
necessary. As the elements of [A] and [B] migrate, the gains of the feedback
matrix, [K], will need to change if the system eigenvalues and eigenvectors are to
remain constant.

At 80.0 knots level flight, the open loop eigenvalues and eigenvectors for an
eighth order representation of the helicopter are given in Table 2.2. The
uncontrolled aircraft has several undesirable characteristics. = Examination of the
open loop eigenvalues shows that the phugoid mode is unstable with a time to
double amplitude of 5.2 seconds and a frequency of 0.060 Hz. [18]. The second
adverse characteristic is the light damping of the Dutch roll mode.  Although
stable, Dutch roll oscillations do not decay rapidly. In terms of the eigenvectors,
mode coupling between longitudinal and lateral states is high. The fast pitch
mode is strong on the vertical velocity, w, and the lateral velocity, v. The
phugoid mode is spread out across the three linear velocities, u, w, and v. The
roll mode shows coupling between lateral velocity, v, roll rate, p, and vertical
velocity, w. The spiral mode is present on u, v, and . The open loop
eigenvectors show a considerable degree of coupling between the longitudinal and

lateral dynamics.



Table 2.2: The open loop system eigenvalues and eigenvectors.

Mode Fast Slow Phugiod Roll Spiral Dutch
Pitch Pitch Roll
Eigenvalue -3.199 -0.0406 0.134 -10.54 -0.031 -0.654
+j0.376 +j2.255
Eigenvector

u 0.0382 -.5837 0.8070 0.0138 -.3917 -.0002
+j0.0000 j.0046

w 0.9591 0.8088 0.2617 0.3015 -.0057 -.0109
$j0.495 ¥j.0166

q -.0168 0.0025 0.0033 -.0177 -.0010 0.0003
¥j0.0028 ¥j.0002

0 0.0052 -.0059 -.0039 0.0015 0.0000 -.0004%
¥j0.0100 ¥j.0001

v 0.2797 0.0703 0.1076 0.8879 0.9106 0.9996
¥j0.1518 +j.0000

P 0.0118 0.0056 -.0002 0.3394 -.0046 -.0049
¥j0.0021 +j.0015

© -0.004 -.0137 -.0051 -.0323 0.1283 0.0011
¥j0.0011 +j.0018

r 0.0057 -.0031 -.0019 0.0630 0.0299 0.0039
¥j0.0003 ¥j.0l64

The choice of eigenvalues for the closed loop system is often a compromise
between decreasing coupling and increasing the rate of response [18]. By plotting
the wvariation of the first principal angle, ©q;, for each mode versus the
corresponding eigenvalue, );, it is possible to choose the eigenvalues, \j, with
relative ease. Once the eigenvalues, \j, have been assigned, the closed loop
eigenvectors which yield minimal coupling are calculated. @ The results of this
procedure are displayed in Table 2.3. The closed loop eigenstructure is much
better behaved than its open loop counterpart. All of the eigenvalues, except the
spiral mode, are stable and the oscillations of the phugoid and Dutch roll modes
are much more heavily damped. The spiral mode eigenvalue was placed at 0.00
in order to minimize coupling. Coupling on the spiral mode is particularly strong
because the heading angle, ¢, is not used for stability augmentation. Tests have
shown that spiral mode coupling can be greatly decreased if ¢ is fed back to
provide stability. However, the wuse of y for stability augmentation causes
difficulties when a pilot wishes to execute a turn. The most efficient means of
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turning a helicopter is by rolling the aircraft into a turn and flight controllers are

designed acknowledging this fact. Because the pilot's roll command affects

heading indirectly, a sophisticated turn coordination controller would be required if
heading angle, , is the feedback

divergence is slow, it is well within a pilot's ability to control.

part of signal. Since the spiral mode

Therefore, the
spiral

mode eigenvalue of 0.00 was The closed

eigenvectors show a great improvement in the decoupling of longitudinal and

lateral dynamics.

deemed acceptable. loop

The modes are confined to the desired states. This is borne

out by the first principal angle for each mode — the values are small.

Table 2.3: The closed loop system eigenvalues, eigenvectors and principal angles.

Mode Fast Slow Phugoid | Roll Spiral Dutch
Pitch Pitch Roll
Eigenvalue | -4.000 | -2.000 -3.000 | -11.00 | 0.0000 | -6.000
£j1.732 £j3.465
Eigenvector
u -.0031 | 0.9963 0.9825 | -.0005 | -.0000 [ -.0001
#j0.0000 7j.0001
w 0.9999 | -.0000 0.0000 | 0.0000 | 0.0001 -.0000
+3j0.0000 ¥j0.000
q -.0001 | -.0768 -.1405 | 0.0007 | -.0076 | -.0004
+j0.1108 $j0.000
] 0.0036 | 0.0384 0.0511 | 0.0000 | 0.0008 | -.0000
7j0.0074 +j.0000
v -.0000 | 0.0000 0.0000 { 0.0034 | 0.0001 | 0.9986
¥j0.0000 $j.0001
p 0.0000 | -.0001 -.0001 | 0.9952 | -.0050 | -.0000
+j0.0000 +j.0000
@ -.0000 | 0.0001 0.0001 -.0904 | 0.9728 | -.0000
¥j0.0001 +j.0000
r 0.0001 | -.0024 -.0042 | -.0382 | 0.2316 | 0.0451
+j0.0040 7j0.287
Principal |  gg13¢( 0.1355°| 0.3332° | 5.634° | 13.40° |0.0284°
Angles




The feedback matrix, [Kp], is then calculated using Equation 2.21

The design of the precompensator matrix, [P], shown in Figure 2.3, is based
on the rows of the input distribution matrix, [B], corresponding to the 4 states
which are to be controlled directly from the pilot's inceptors. The philosophy
behind the distribution of the pilot inputs was: the collective lever would
command changes in vertical velocity, the longitudinal inceptor would command
changes in forward velocity, the lateral inceptor would command roll rates, and
the pedals would command changes in lateral velocity.

The first step in the design of the precompensator, [P], was the creation of
a matrix, [B{], containing the appropriate rows of the input distribution matrix,

[B], as given by Equation 2.25.

[Bl] N

By defining the precompensator matrix, [P], as the inverse of [B1] (Equation

[B] Equation 2.25

O OO
QOO+
[e=NeNeNe)
[eNeoNeNe]
O OO
(ol N eNe]
[eNeoNeNo]
[eNeoNeNe]

2.26), the rows of the pilot—controlled states of the modified input distribution
matrix, [B.], (Equation 2.27) approxifnate the identity matrix [18].

(P] = [By}-1! Equation 2.26
[Bc] = [Bl[P] Equation 2.27

With this precompensator design, the pilot inputs are fed through the system
to the outputs of the input distribution matrix, [B], where they act as a reference
signal for the system plant loop of the integrators and system matrix, [A]. Since
the precompensator matrix, [P], is external to the feedback loop, its design has
no effect on the system eigenstructure.

For implementation as a computer simulation model, an important change
was made to the structure as shown in Figure 2.3, The inputs to the input
distribution matrix correspond to the outputs of the swash plate actuators. These
actuators have dynamics of their own which are conveniently modelled as first
order delays with time constant 7. Thus, the simulation model of the modal

controller of Parry and Murray-Smith has the structure shown in Figure 2.4.



R(s) o+ - + — X(s)
- [P] = » (B s>

[A] (&

[Kp] ""—

Figure 2.4: The structure of the Parry Modal Controller as implemented for

computer simulation.

The simulated state responses to a step input of full amplitude 1.0 (standard
test amplitude) on the vertical inceptor are shown in Figure 2.5. This input will
be used to move between two steady state vertical velocities.  The 0.25 ft/s
change in vertical velocity, w, is made rapidly with a small amount of overshoot.
Although the amplitudes of the responses are small, it can be seen that coupling
is minimal in terms of pitch, roll and yaw. The pitching response, 6, is less
than 0.005 radians, while the longitudinal and lateral velocities change by 0.07
ft/s and 0.03 ft/s respectively.

Figure 2.6 shows the simulated state responses to a step input of amplitude
1.0 on the longitudinal inceptor. The resulting change in forward velocity, u,
only begins to occur after a delay of 0.5 seconds from the application of the
input. The nature of this response is due to the slower phugoid and slow pitch
modes which are excited during the manoeuvre. Transients in vertical velocity,
w, are approximately half the amplitude of the forward velocity, u, change.
However, coupling to the lateral states is minimal.

A doublet input with pulses of standard 1.0 second duration on the lateral
(roll) inceptor generates the simulated responses of Figure 2.7. The input is
tracked successfully by the system roll rate, p, as expected by the roll eigenvalue
of —11.00. However, the yaw rate, r, is far from smooth, with the higher
harmonics of the input showing through in the response.

A step input on the pedals (lateral velocity inceptor) generates a sideslip as
shown in Figure 2.8. The system response is confined to the forward velocity, u,
the lateral velociy, v, and the yaw rate, r, channels. Once again, it can be seen
that coupling is minimal.

The Parry Modal Controller has also been used to control a nonlinear
HELISIM3 plant. The system responses to vertical, longitudinal, roll, and lateral

(pedal) inceptor inputs are shown in Figures 2.9 to 2.12 respectively. In
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response to steps on the vertical and longitudinal inceptors (Figures 2.9 and 2.10),
the system shows a lightly damped oscillation. The combination of rotor and
actuator dynamics moves the phugoid eigenvalue from —3.0%j1.7 to —1.7%j5.5.
The delay in forward velocity response is again in evidence in Figure 2.10.
Figure 2.11 shows once more that the yaw rate in response to a roll command
doublet is not consistent with a steady turn. Another problem which arises with
the inclusion of rotor dynamics concerns the stability of the spiral mode which
has migrated to 0.001. The roll angle, ¢, and yaw rate, r, in Figure 2.12 show
that the spiral mode is unstable.

The responses of the Parry Modal Controller as shown by Figures 2.5—2.12
are encouraging. Although problems exist, coupling between longitudinal and
lateral states is minimal. Stability has been enhanced, but as reported by other
authors [9], high order dynamics can adversely affect stability: the phugoid and
spiral modes in this example. Vertical, roll, and lateral responses are quick, but
the delay in the longitudinal response will probably be unacceptable for pilots.
In addition the yaw rate response to roll inputs is far from desirable. For these
reasons, it is concluded that although the Parry Modal Controller is effective in
stabilizing the system, some sort of command augmentation would greatly facilitate
control. Command augmentation could also be designed to yield desirable levels
of response; the Parry Modal Controller, as presented here, does not have

enough input authority due to a lack of scaling of the precompensator matrix.

2.2.4 ) An Acceleration Demand Flight Path Controller

In an attempt to provide the command augmentation lacking with the Parry
Modal Controller, an acceleration demand flight path controller was developed
during preparations for a real—time flight simulation trial (Chapter 7). There
were three constraints which were imposed on the structure of the new Flight
Path Controller. First, the flight control system was to be based on
eigenstructure assignment in a similar manner to the original Parry Modal
Controller design. Second, the pilot inputs were required to pass through an
integrator before they were input to the actuators. By passing the inputs through
an integrator, it would be possible for the pilot to employ a pulse width
modulation control strategy. Changes in steady state velocities would be
proportional to the amplitude of inceptor displacements and the length of time
that the displacement was present. It was hoped that this control strategy would
allow sidearm controllers to be used on all input channels since these inceptors



have advantages over conventional helicopter controls [37].  Finally, the Flight
Path Controller should regulate the quantities demanded by the pilot. In this
case, the pilot input demands are for: vertical acceleration, w; forward
acceleration, u; roll rate, p; and lateral acceleration, Vv, in earth fixed axes. As
will be demonstrated in the following, the structure was built up in a rather

heuristic manner. Nevertheless, the results of computer simulation tests are good.

2.2.4.1 ) Acceleration Demand Flight Path Controller Theory

The structure of the Acceleration Demand Flight Path Controller results from
the pilot input strategy which is to be employed during flight. Since one of the
design aims was to regulate the linear accelerations and the roll rate, it was
apparent that a feedback loop in addition to the stability augmentation loop of
the Parry Modal Controller would be required. This command augmentation
feedback loop would allow a regulator structure to be applied to the acceleration
demands and, at the same time, allow the integration of pilot inputs to be
carried out as part of a closed loop. Open loop integrators are undesirable for
aircraft flight controllers because they are more prone to saturation and must be
zeroed before the aircraft takes off. Prior to the summing junction of the
command regulator, the pilot inputs would be converted from inceptor
displacements to earth axis acceleration demands by the diagonal pilot input gain
matrix, [G], and then into body axis demands by the conversion matrix, [7].
The following diagram shows the control structure which was implemented as the

Flight Path Controller.

K] e
(A] e
R(s) E(s)
N N T
- [c1 H In] SHEE (] SEETIEN
- +

+
+
[£] #———
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Figure 2.13: The Structure of the Flight Path Controller.




In the above, the feedback distribution matrix, [£{], is used to select the
particular quantities from the acceleration vector, Y(s), which are to be compared

with the pilot inputs in the body axes coordinate system.

Equation 2.28

e

—

i
[eNeN el
oo o+
[eNeNeNe
[eNeoNeNe)
= O OO
[oNeNeNe
O OO
[oNeNeNe

The conversion matrix, [7n], is a matrix containing the appropriate Euler
angle relationships to map the pilot's earth axes demands onto the body axes of

the vehicle. If the earth axes demand vector is,

\'NE Earth axis vertical acceleration
ilE Earth axis forward acceleration
Pp ~ | Roll rate

\'/E Earth axis lateral acceleration

Equation 2.29

Then, with the body axis demand vector defined as,

v'vB Body axis vertical acceleration
up Body axis forward acceleration
~ | Roll rate
Pg
\'/B Body axis lateral acceleration
J L p

Equation 2.30

The conversion matrix is defined by,

L] [ .

B YE

it i

B . [ n ] E Equation 2.31
Pg Pp

VB \. VE

The elements of the conversion matrix, [#], are given by Tomlinson [38] to

be,




cosé cosy

sinp siné cosy
- cosyp siny

(n] =
0

cosyp sinf cosy
+ sing siny

Where 6 = pitch attitude
¢ = roll angle
¥ = heading angle

cosd siny

sinp sinf siny
+ cosyp cosy

0

cosp sinf siny
- sinp cosy

-siné

sinp cos#

0

cosp cosf

Equation 2.32

The equations governing the Flight Path Controller of Figure 2.13 are,

E(s) = [7][G] R(s) - [§] X(s)

¥(s) = [A] X(s) + [BIL[P] E(s) - [B[K] X(s)

X(s) = T X(s)

Equation 2.33

Equation 2.34

Equation 2.35

Rearranging Equation 2.35 and substituting Equations 2.33 and 2.34 for E(s)

and Y(s), the resulting equation for the velocity state vector, X(s), is,

x(s) = { s[1] - [A] + (BI[K] + [BI(PI(£] | ™% (BIL(PI(nIIG] R(s)

Equation 2.36

The closed loop transfer function matrix for the Flight Path Controller is

given by,

W(s)] = | 1] - 1Al + (B1K] + (B1IPILE) |70 (B1ECRIInICG)

Equation 2.37




At this point, it is worth considering the characteristic equation for the

Flight Path Controller, which is given by,
e(s) = s[I] - [A] + [B][K]} + [B][P][%] Equation 2.38

By equating the Flight Path Controller's characteristic polynomial to the
characteristic polynomial for the Parry Modal Controller, it is possible to ensure

that the Flight Path Controller retains the same eigenstructure assignment.

s{I] - [A] + [B][K] + [B][P][£] = s[I] - [A] + [B][Kp]
Equation 2.39
Equation 2.39 can be simplified to yield,

[Kp]l = [K] + [P][£] Equation 2.40

p!

To solve Equation 2.40, a second expression for the feedback matrix, [K],
and the precompensator matrix, [P], must be found. This second equation can
be deduced by using the final value theorem to define the desired steady state
accelerations of the system to the pilot inputs.

The final value theorem is,

lim [ycey] = 1im s[y(s)] Equation 2.41
to>w s-0

It should be noted that [y(t)] is the 8x4 matrix made up of the four
acceleration vectors, y(t), which result from each of the four pilot inceptors being
individually excited by a unit step input. Using Equations 2.35 and 2.36 from

above, the following simplifications can be made,

lim [y(¢)] = lim SZ[X(S)] Equation 2.42
t- s-0

-1

lim [y(e)] = lim &° { s[1] - [A] + [B][K] + [B][P][£] }
t>00 s-0

X [B]]si[P][n][G] [R(s)] Equation 2.43

As stated, the pilot input matrix, [R(s)], is a diagonal matrix representing a

unit step on each of the four pilot inceptors,




[R(s)] = = [I] | Equation 2.44

ni

Where [I] is the identity matrix. Further simplification of Equation 2.43 gives,

Hm y(e)) = lim §2 { s(1] - [A] + [B][K] + [B][P][{] }'1
t 00 s-0

X [B]é[P][n][C] i— Equation 2.45

lim [y(e)] = lim { s(I] - [A] + [B][K] + [B][P][¢] }‘1

t -0 s-0
X [B][P][7n][G] Equation 2.46

Lim (ycey) = { - (] + (B)IK] + [BI[PY(E] |71 [BI(PI(ni(C]

[ )

Equation 2.47

Remembering that the desired steady state accelerations are given by the

diagonal pilot input gain matrix, [G], in steady state,

lim [£]1[y(t)] = [G] Equation 2.48
t -0

And therefore,

[G] = [&] { - [A] + [B][K] + [B][P][£] }_1 [B][P][7][G]

Equation 2.49

Rearranging gives,

1 -t { - a1+ eI+ (BICPIEE) |7 (B

Equation 2.50

P17 = tmitel { - 1Al + (Bl + (BICPIEED [T (B
Equation 2.51

Recalling Equation 2.40, it is possible to solve for the elements of the

precompensator matrix, [P], in terms of the elements of the feedback matrix of




the Parry Modal Controller, [Kp].

[P] ~ = [n][¢] { - [A] + [B][Kp] }_1 [B] Equation 2.52

Substitution of the resulting precompensator matrix into Equation 2.40, allows

the feedback matrix for the Flight Path Controller, [K], to be determined.
(K] = [Kp] - [P]{£] Equation 2.53

As stated above, the pilot input gain matrix, [G], is diagonal. The gains
are chosen to yield reasonable rates of acceleration. The lateral inceptor gain
controlling roll rate amplitude had to be set through trial and error because of a
poor transmittance of roll command inputs to the lateral cyclic actuator. Part of
the problem is that the command augmentation loop feedback signal is based on
roll angle, o, rather than on roll rate, p. Since the lateral cyclic actuator has a
weak authority over roll angle, ¢, in comparison to roll rate, p, the energy of
the pilot's roll comand is ineffective in terms of generating a roll rate.

Although the eigenstructure of the Parry Modal Controller was used as a
basis for the design of the Flight Path Controller, two of the deficiencies of the
former were rectified by relocating the closed loop phugoid and spiral mode
eigenvalues. Phugoid oscillations were controlled by reducing the gain such that
the phugoid eigenvalue was designed as —1.0+j0.58. As will be seen in the
results of the following section, phugoid oscillations are absent. Indeed, the
inclusion of rotor and actuator dynamics only pushes the location of this pole to
—1.0£j0.57. Spiral mode divergence was eliminated by relocating the designed,
closed loop pole from 0.0 to —0.25.

The vaiues for all elements of the control matrices of the Flight Path

Controller, for a design point of 80.0 knots level flight are listed in Appendix 1.

2.2.4.2 ) Acceleration Demand Flight Path Controller Simulation Results

The Flight Path Controller h