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SUMMARY

This study mainly deals with developing another approximate method for system 

reliability analysis and its applications to the continuous structures such as an assembly of 

stiffened cylindrical and rectangular sections used in Tension Leg Platform (TLP). 

Various methods developed for the structural system reliability analysis are reviewed

The developed system reliability method, called herein the "Extended Incremental 

Load Method", is an extended approach of the conventional incremental load method. It 

has been developed in order to extend its applicability to the system reliability analysis of 

a structure under multiple loadings. It directly uses existing component strength formulae 

in the system analysis and more realistically takes account of the post-ultimate (post- 

failure) behaviour of a failed component when assessing the system reliability and 

ultimate strength. This is an important merit of the method over other methods.

The method allows for load re-distribution during the development of elasto- 

plastic moments in large cross-sections under the action of axial and bending forces and 

in the presence of lateral hydrostatic and hydrodynamic pressure. The effects of shearing 

actions are ignored. A search is made for the most important failure modes to give the 

lowest system safety index.

In the method the modified safety margin equation, which has been proposed to 

use existing strength formulae for principle components of a floating offshore structure, 

is employed in which the strength modelling parameter is treated as a basic random 

variable in system reliability analysis as well as component reliability analysis and the 

concept of the first-order second moment method is adopted to obtain the resistance 

coefficients and the loading coefficients in the safety margin equation.

Details about deriving the safety margin equation by the proposed reliability 

method, calculation of the total load factor, the procedure of identifying the most

(ix)



important failure modes and flow vectors of principle component are described in the 

Appendices.

Applications to discrete structures are demonstrated to show the validity of the 

proposed method. The method has been applied to the Hutton TLP and two variants, 

TLP-A and TLP-B, which are modified models of the Hutton TLP and of the design 

using TLP Rule Case Committee type loading and improved strength models, under the 

design environmental loading conditions. Components and systems safety indices of the 

models, Hutton TLP, TLP-A and TLP-B, are illustrated with three dimensional collapse 

mechanisms figures. Reserve and reserve strength characteristics are derived for the 

design as built and for more economical and efficient variations of the design. The TLP 

form is shown to possess high redundancy and systems safety.

Sensitivity studies to changes in stochastic parameters of resistance and loading 

variables have been carried out. For this purpose the strength modelling parameter, yield 

stress and certain member sizes are selected as resistance variables, and effects of their 

mean values and/or coefficients of variation on the system, as well as on the component 

reliability index, have been investigated. The effects of mean bias and coefficient of 

variation of load effects, namely, static, quasi-static and dynamic component, on the the 

system as well as on the component reliability index have also been investigated. The 

results are discussed with regard to effects of various parameters on safety, with 

illustrating figures, from which the relative importance of random variables can be seen.

As an another important resistance variable, the post-ultimate behaviour of failed 

components has been taken account of in system reliability assessment, which should be 

the most important resistance variable affecting the system reliability and the effective 

residual strength of a structure. Some case studies have been carried out with the 

simplified non-linear model which has a form of piecewise multi-state (more than two 

states) and is characterised by the post-ultimate slope and the residual strength. The 

results are illustrated in figures and tables and discussion made about its effects on the
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system reliability level. The analysis, using two-state model which has only the residual 

strength characteristic, has also been carried out using the proposed approach of 

calculating the artificial force vector due the unloading effect of a failed component of 

which behaviour is not ductile. The results using multi-state model and two state model 

have been compared.

The results of sensitivity studies show the importance of coefficient of variation 

of the strength modelling parameter and post ultimate-behaviour as resistance variables, 

and the mean bias and coefficients of variation of static and dynamic load effect. Among 

resistance variables in the sensitivity studies, the COV of yield stress and certain 

geometric variables has relatively small influence on the resulting system reliability index. 

The post-ultimate behaviour has significant influence on the system safety and seems to 

be more influential than the strength modelling parameter and even loading variables. 

Hence, it should be considered in system reliability analysis using a more refined and 

realistic model.

The present sensitivity study is useful and important in assessing the parameters 

perturbation effects on the component and system reliability and the results can provide 

valuable information about the relative importance of random variables in the context of 

reliability analysis. Therefore, in order to provide the designer with useful criteria or 

information as an aid to decision making in the design stage, it is recommended that 

certain types of sensitivity studies to change in the stochastic parameters of resistance and 

loading variables, as illustrated, must be carried out.

A few basic ideas about reliability-based design are addressed and a simple 

procedure of evaluating the system safety level has been introduced. An attempt has been 

made of to link component and system safety to structural redundancy as an aid to choice 

of acceptable component and system safety levels in the design stage. The study indicates 

that some acceptable safety levels may well be lower than the present levels used in 

design. The basic concept of the reliability-based optimal design and optimal inspection 

and maintenance strategy are briefly described.
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The thesis ends with a summary of the present work drawn from the proposed 

approach for system reliability analysis and its application to continuous structures 

(TLPs) as well as discrete structures not only in the context of structural design (for 

minimum weight and/or cost) but also for in-service re-assessment purposes. Future 

research and extensions of the present work are recommended in the context of 

reliability-based limit state design.

(xii)



NOMENCLATURE

Afc : cross sectional area of component r^ or k

ajQ : utilisation ratio of component % utilised in the i th load increment

Agf : stiffener sectional area

At  : total sectional area

b, be , be' : flat panel width between stiffeners and its effective width 

and reduced effective width 

B : bias or breadth

Bjni : loading coefficient of the 1 th loading for the m th failure mode in the safety

margin equation 

bf, tf : width and thickness of flange

Ca : added mass coefficient

CD : drag coefficient

Cdl : equivalent linear drag coefficient

Cf : expected cost of failure

Cj : cost of inspection

C0 : initial cost

Cm : inertia coefficient (=  1 + Ca )

Cmk : resistance coefficients in the safety margin equation 

Cr : cost of repair

Cs : shape coefficient for wind force

Ct : total cost

CFO) : contribution factor of the 1 th loading case

D : diameter

E : elastic modulus

E ' : unloading rate or normalised post-ultimate slope of load-displacement curve

E* : effective tangential modulus of stiffened plating

Ej : tangential stiffness of element i

Fc : current force
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Fd

Fw

Fx

Fxu

Fy, FZ

fx(-) 

Fx(-) 

hw, tw

Hw

Ik

Kc

Mmin

Mu

Mx

My, Mz

Ni

Ndet

Nmax

^Limit

n

P

Pc

Pij

Pf

Pfj
(Pf)sys

Pk

: wave drift force 

: wind force 

: axial force

: ultimate axial compressive force 

: shear force in y- and z-direction 

: probability density function of random variable X 

: probability distribution function of random variable X 

: height and thickness of web 

: wave height

: moment of inertia of component % or k 

: buckling coefficient 

: element mass 

: added mass of element

: minimum required number of important failure modes to be identified 

: ultimate bending moment 

: torsional moment

: bending moment about y- and z-axis 

: number of failed components in a failure path 

: prescribed number to limit the number of interim modes 

of which determinants are to be checked

: maximum number of failed components in the interim failure mode 

for all possible modes

: the number to limit the number of interim modes to be considered 

: reserve strength ratio for system 

: radial pressure (MPa)

: collapse radial pressure

: joint probability of failure between mode i and j

: probability of failure

: failure probability of the j th failure mode

: probability of system failure

: load increment to fail the component, %
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p(l),

Ps

PS

(Ps)sys

Pu

Qk

R

r  ̂ork

Rk

Rr

Psys
RI

RDI

RSI

RDIp

S, se , Sg

Si

Tw

Up, Up

Ur

Ur

ur

«s. us 

V

VC

V*i

V XM

Vz

Vio

: the 1 th loading

: ratio of the structural proportional limit to yield stress 

: probability of survival 

: probability of system survival (reliability)

: ultimate axial compression 

: load effect of component k or rj- 

: radius of cylindrical component

: component number failed at the k th failure (or incremental) stage 

: resistance of component k or r^

: residual stress reduction factor 

: system resistance 

: redundancy index

: residual strength index or residual resistance factor (RIF)

: reserve strength index or reserve resistance factor (REF)

: (3-measure of residual strength of structural system 

: curved panel width between stringer, and its effective width 

and reduced effective width 

: feasible direction of variable X[

: wave period (sec)

: velocity and acceleration of water particle

: amplitude of relative velocity of water particle and structural element 

: square root of relative velocity variance of water particle 

and structural element

: relative velocity of water particle and structural element 

: velocity and acceleration of structural element 

: volume 

: current velocity 

: COV of random variable X{

: modelling uncertainty (COV) of strength modelling parameter 

: wind velocity at z m above sea level 

: wind velocity at 10 m above sea level
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w ' : non-dimensional lateral pressure

Xi : random variable

Xi : mean value of random variable Xj

x i* : design point of random variable Xj

XM : strength modelling parameter

XM : mean bias of strength modelling parameter

x Mk : strength modelling parameter of component k or %

Z : safety margin or section modulus

Z«1 : equivalent safety margin

Zl or Z : Batdorf length parameter

Zm : safety margin for the mth failure mode

Z'm : non-dimensional safety margin for the mth failure mode

Zp : plastic sectional modulus

Zs : Batdorf width parameter

°4 : sensitivity to random variable Xj

oqeq : equivalent sensitivity to random variable Xj

P : reliability index or plate slenderness

peq : equivalent reliability index

P° : allowable reliability index (target reliability index)

Pcomp : component reliability index

Pm: reliability index for the m th failure mode

Ppath : path reliability index

Psys : system reliability index

Psys,R : residual system reliability index

\ : partial safety factor for variable Xj

50 : initial deflection of plate

e : strain

£' : normalised strain

^et : prescribed small number used to judge the singularity of

the structural stiffness matrix
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X : wave direction (degree)

Cs : systematic error
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{a} : flow vector
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(f) : nodal force vector
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[H] : hydrostatic stiffness matrix

[K] : structural stiffness matrix
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CHAPTER 1 INTRODUCTION

1.1 General

In the context of structural design, a major goal is to achieve a balance between 

structural safety and cost in which the construction cost, maintenance costs and the costs 

increased as a consequence of failure are included, i.e., a minimum total cost design for a 

required overall safety level.

Since there are too many uncertainties in natural phenomena, man has tried to treat 

the uncertainties more rationally in structural design. There may be no "true" solution 

within the context of structural design. As Plinty the Elder said "The only thing that is 

certain is that nothing is certain". This means that since there are too many uncertainties 

and randomness in natural phenomena, the solution may be regarded as a product of 

uncertainties and/or randomness. Many efforts gave birth to the traditional safety factor 

concept, i.e., working stress design. In this context the design loads are usually 

unfactored and are close to the maximum probable loads which occur during the specified 

life time of a structure. The elastically computed stresses arising from these loads are 

limited to the allowable stress, which is usually a specified fraction of the yield stress. 

But, as has been well recognised, this approach cannot provide a balanced safety 

distribution within the entire structure, because the uncertainties in resistance, load and 

analysis cannot be treated rationally. This limitation has been overcome by using the 

concept of probability in design which enables one to treat the uncertainties more 

rationally.

As stated by Ellingwood and Galambost^, the development of probability-based 

limit state design has been motivated by a desire to quantify performance of structures 

and to treat uncertainties in loads, resistance and analysis in a more rational way.



The probability of failure or, alternatively, reliability index (safety index) is the 

quantitative measure of risk, or safety or serviceability and the basis for achieving 

uniform performance in probability-based limit state design. This probability has an 

absolute m e a n in g ^ ]  Mthe likelihood of occurrence of some pre-defined limit state" : it 

may be a serviceability limit state, e.g. excessive deflection or rotation, initial yielding, or 

an ultimate limit state, e.g., partial or total collapse, instability.The reliability is defined as 

the probability of non-failure and adequately performing the intended function of a 

structure, when operating under stated environmental conditions during the service life.

In contrast to working stress design, which is a deterministic approach, the 

reliability-based limit state design is a behaviour-oriented design method which requires 

specification writers and designers to consider explicitly the structural requirements for 

function and safety at service and extreme load levels. The probabilistic approach is 

suggested by the observation that many of the design variables exhibit statistical 

irregularity[1]. The conceptional framework for probability-based limit state design is 

provided by the classical theory of structural reliability which is based on full-distribution 

procedures. The trend to reliability-based codes is based upon important considerations 

arising from research and experience. These include^:

- the statistical nature and especially the randomness of design variables associated 

with both loading and strength.

- the recognition of the importance of a limit state approach to failure as distinct from 

a purely working stress approach.

- the acceptance that weight and cost benefits exist if we take advantage of improved 

knowledge and lower notional safety levels which to some extent have been based 

on past ignorance

- the advantage resulting from a more uniform reliability or safety throughout a 

structure and over a range of similar structures.

Errors which give rise to risk can be classified as follows:

Systematic errors : related to ignorance of real physical phenomena in the analysis



and design process, i.e. the unknown bias in analytical models used is 

a systematic error.

Random errors : associated with statistical variations. For example, maximum wave 

heights experienced by different platforms within a given area may vary widely 

due to inherent randomness of wave formation within a given storm or within 

storms experienced during the lifetime of the population of platforms, 

i.e. the randomness nature in strength and loading variables.

Gross error: human error or blunders which may result from mis-calculation or 

omissions by the designer, engineer, etc.

Reliability analysis is primarily concerned with systematic and random errors.

A particularly interesting use of reliability-based design procedure is that of tools 

to help decision making, and the advantages of reliability-based structural design 

procedure are[4,5]:

- it can treat the uncertainties or errors of all variabilities in strength and loading

in a more rational way, and thus provide a better framework for safety evaluation 

of a structure

- it tends to lead to a balanced design and allows the engineer to check the design

(or the code) against the influence of the stochastic parameters of resistance, loading 

variables, etc.

- it provides a logical framework for the choice between alternative solutions with a 

subjective acceptance of the estimated probabilities as degree of belief in the 

reliability of the structure.

In this we acknowledge the pioneering work on this subject by Pugsley for World 

War II a i r c r a f t ^ ]  # Structural reliability theory has been concerned with the rational 

treatment of uncertainties in structural engineering and with the methods for assessing the 

safety and serviceability of structures. This apparently contrasts with the traditional 

deterministic view of structural bahaviour where, for example, design calculations are 

carried out using fixed values of the variables.



The application of the reliability analysis concept to a structure was initiated in the 

field of aircraft, civil engineering structures and so ont^l, and it is widely applied in the 

marine, civil, electronic, electrical, aeronautical and nuclear fields. Structural reliability 

theory has grown rapidly during the last two decades and has evolved from academic 

research to practical applications, and becomes a design decision tool based on scientific 

methods rather than being a scientific theory^ . The object of its application to design is 

to give a uniform and consistent reliability within a structural system. Tremendous 

advances have been made in the area of structural reliability, theoretically and practically, 

and more recently in the incorporation of probabilistic concepts into codifiable design of 

marine and civil structures. Since the mid 1970's, the concept of the reliability analysis 

has been extensively applied to the design of marine structures^] and recent trends in 

developing a new design code is based on the reliability analysis^»8-10]. The existing 

codes are re-developed based on this concept.

Where there has been none or not much service experience for a structure, such as 

a tension leg platform (TLP), the reliability approach has been successfully a p p l i e d ^ ]  ^  

a suitable means of dealing with uncertainties and satisfying the designer and/or the 

owner that the structure will perform satisfactorily and is not over designed.

As offshore platform development moves into deeper and more hostile water, 

there is an increasing interest in having methods available for calculating the reliability of 

such structures. Most applications are, however, dealing with the reliability analysis of 

structural components. It has been recognised for many years that a more complete 

estimate of the reliability of a structure must include a structural system reliability 

analysis. Furthermore, it is needed to develop system "partial safety factors" to related 

component safety to system safety!**]. Possibilities of its application would then exist 

for[12]:

- 'tuning' new design concepts to calculated reliability levels in existing structures

- making more rational decisions in repair or upgrading situations

- developing improved guidelines for inspection and maintenance purposes.



In the case of statically determinant structures, it is sufficient and reasonable to 

estimate the reliability of the individual components of a structural system because the 

failure of any single component will result in the failure of the total structural system. 

However, in the case of statically indeterminant structures, this is not true because the 

remaining components will be able to sustain further external load because of load re­

distribution after any component fails. In other words, from the system's point of view, 

statically indeterminant structures may have much redundancy and hence the failure of the 

structural system always requires that more than one component failsCl-3,14^ Especially 

for a continuous structure, such as a floating offshore structure or ship's structure, there 

is considerable statical indeterminancy and hence mathematical r e d u n d a n c y ! 8 ’ * 5 , 1 6 ] a 

Hence, the concept of system reliability based design is desirable to give more uniform 

reliability and consistent safety within the overall structure, to achieve the optimal 

distribution of component strengths within a structure, and to take into account the 

structural redundancy in the design stage.

During the last decade the necessity for system reliability analysis has been 

emphasised, and many studies on this subject have been made for marine and civil 

structures. Some are concerned with sensitivity studies[*7-19], some with application to 

optimal structural design! 1 3 , 2 0 - 3 0 ]  t0 minimise the structural weight and/or the total cost 

within reliability constraints, some to find the optimum strategy of inspection and 

maintenance[3*- 3 3 ]  and some dealing with the gross error (blunder or human error) in 

the system reliability a n a l y s i s ! 3 4 - 3 7 ]  Most of them, however, are concerned with 

discrete structures such as a truss work or a jacket platform for which the possible failure 

modes can be identified relatively easily. In the case of a continuous structure, such as a 

TLP, it is not so simple and easy to identify the possible failure modes and to define the 

re-distribution of load effects due to the failure of any component.

Offshore structures are complex redundant systems which are generally made of 

members, elements or components connected together in a particular way. This implies 

that estimation of the reliability of an offshore structure is a very complicated task. The 

detailed modelling of all parts of a large structural system is generally not feasible and the



strengthening effects of nominally non-structural components are neglected or 

considerably simplified. In the context of system reliability analysis, it is usually assumed 

that a structure can be idealised in such a way that there is only a finite number of 

possible locations or nodes at which local failure can o c c u r [38].

Generally system failure is a series system of sub-parallel systems. A sub-parallel 

system consists of sub-series systems of component failure modes. The important tasks 

in the structural system reliability generally consists of three parts:

[1] Modelling the structure and defining the random variables

[2] Identification, description and enumeration of the failure modes of the structure

[3] Determination of failure probability or reliability indices of individual modes, 

and then evaluating the overall system reliability

Among these, the last two are probably more important in the system reliability analysis. 

Because there is a great number of possible failure modes in a practical structure, it is not 

practical to include all possible failure modes in evaluating the system reliability of 

complex structures. The modes which are expected to mainly contribute to the system 

failure must be taken into account in estimating the system reliability. These are often 

referred to as the most l i k e l y [39] or the most important or the most significant failure 

modest* 1 > 4 0 , 4 1 ] ^  0r the stochastically dominant failure m o d e s ! 4 2 - 4 4 ] > Hereafter these 

will be referred to as the most important failure modes. Identifying the most important 

failure modes usually takes a great portion of computational time in the system reliability 

analysis procedure. A major difficulty in the application of system reliability analysis to 

design is to find an efficient algorithm for identification of the most important failure 

modes in a complex structure!* * > * 3 , 2 2 ]  Application of system reliability analysis is a 

relatively new area. Extensive research, however, has been performed during the last 

decade and several methods have been developed. Among them approximate methods 

have been employed for this subject rather than analytical methods. This will be described 

in Section 1.3.

It is necessary to make a number of simplifications and assumptions not only to



the structure itself, but also to the strength and loading properties of the structural 

elements. These may be thought to be major limitations of the application of structural 

system reliability theory to practical design procedure. In spite of these limitations it is 

believed that reliability analysis of structural systems is a useful tool in decision making

in offshore engineering!^].

1.2 Literature Review

1.2.1 General Review

In the context of probability-based (or reliability-based) limit state structural 

design, three main features are developed: evaluation of the reliability and uncertainties, 

derivation of the strength formulae (or models), and incorporation of the two to produce 

the design code as a practical application to design.

The statistical nature of loading and strength was first recognised by the military 

aircraft industry. Pugsley and others pioneered the "hazard" approach to structural design 

for World War II aircraft in the U.K. Its practical application is attributed to Freudenthal 

who more than 40 years ago formulised a rational approach to the structural safety 

problem in the field of civil engineering. Since then an ever-increasing effort has been 

directed toward the application and development of the theory of probability and statistics 

in structural engineering. This has been greatly developed during the past two decades 

and a number of works have been reported and presented. References [5,13,14,45] are 

recently published as text books of the reliability method and its application.

As a review paper, the American Society of Civil Engineering Task Committee on 

Structural Safety [46] presented the state-of-the-art in this regard up to the early 1970's. 

In the Task Committee's final report on Safety, ASCE[47]t Freudenthal et al presented 

the general idea of the probability-based design, and also the necessity of system 

reliability was described. They proposed the approximate bound of series system 

("weakest-link" system). The elements relevant to the reliability analysis and its



applications to design of fixed jacket platforms have been integrated by the Committee on 

Reliability of Offshore Structures, ASCE[48]. The committee further discussed the 

benefits, advantages and difficulties of reliability-based design, and offered guidelines for 

future research.

M o s e s  [49] reviewed recent developments of probabilistic characteristics of 

uncertainties and application of reliability theory in the selection and optimisation of 

safety factors in which component safety model, code calibration, system reliability and 

progress in the implementation of a reliability-based API RP2A guideline for platform 

design, etc was discussed. Recently Stiansen and Thayamballi[50] reviewed the past 

developments with emphasis on marine structures.

1.2.2 Reliability Index

o First-Order Reliability Index:

In evaluating the reliability of a single failure mode (component reliability 

analysis) several reliability indices (which are first traced back to a debate on structural 

safety in the Institution of Structural Engineers in 1955[51]) are proposed as a measure of 

structural safety. Comell[52] first proposed the Mean Value First-Older Second Moment 

Reliability Method (MVFORM) in 1969, in which the reliability index is obtained as the 

ratio of mean safety margin to its standard deviation. Safety margin is defined as the 

difference between strength and load[2]. This reliability index has limitations. It is not 

invariant to different equivalent formulations of the same problem, errors are introduced 

with non-linear safety margin equations and the distributions of variables should be 

normal.

The first two limitations are avoided by using the, so called, Hasofer-Lind 

reliability index[53] (sometimes called geometric reliability index) which gives the 

reliability index which is invariant to different equivalent formulations and is defined as 

the shortest distance on the failure surface from its origin.



The last shortcoming has been removed by Rackwitz and F i e s s l e r t 5 4 ] > They 

presented an equivalent normal distribution for non-normal distributions and an iterative 

algorithm, called the "Rackwitz-Fiessler Algorithm", by incorporating the equivalent 

normal distribution concept, which is sometimes called the Advanced First-Order Second 

Moment Reliability Method (AFORM).

Hohenbicher and R a c k w i t z [ 5 5 ]  developed a general probability distribution 

transformation with which a complex problem involving non-normal, correlated random 

variables can be reduced to the simpler problem of determining the failure probability or 

reliability index in the uncorrelated standard normal vector space.

V e n e z i a n o t 5 6 ]  proposed an alternative reliability index which is more general and 

flexible with regard to updating when new information is gained and also consistent. But 

its philosophy and application is not simple.

D i t l e v s e n [ 5 7 ]  discussed some versions of the reliability index and further 

presented the generalised reliability index by which the problem of invariance in 

describing the limit state equation can be avoided. As an example, if g=0 is a safety 

margin , then g3 and g5 are also safety margins, but the three give different reliability 

indices. This problem of arbitrariness has been called the problem of dimension 

invariance.

These methods have been successfully applied to marine and civil structures. 

Detailed procedures are well presented in references [ 5 , 1 3 , 1 4 , 4 5 ] .  Among them the 

Rackwitz-Fiessler algorithm is one of the most popular because of its efficiency and 

simplicity. More recently Chen and L i n d t 5 8 ]  proposed an algorithm for evaluating more 

accurate reliability index by probability integration based on a three-parameter normal tail 

approximation to a non-normal distribution for each random variable. It was claimed that 

the algorithm was more efficient in that it was fast, gave smaller errors than the 

Rackwitz-Fiessler algorithm and did not require double precision computation.



Wu and W i r s c h i n g [ 5 9 ]  proposed an alternative algorithm which was an extension 

of the Rackwitz-Fiessler[54] Chen-Lind a lgorithm s^]. j 0 find an "optimum" 

equivalent normal distribution a weighting function is selected and a least-squares method 

is employed to fit a high quality three-parameter normal cumulative distribution function 

to a non-normal distribution function.

White and A y y u b t ^ O ]  introduced another approach called the "Reliability- 

Conditioned (RC) method" which found the most likely failure point on the failure 

surface and was intended to more consistently and accurately evaluate the required partial 

safety factors for a wide variety of limit state. It was claimed that the method overcame 

the shortcomings of the Mean Value and Advanced First-Order Reliability Method 

(MVFORM and AFORM) and extended the Level 3 method in a more useful form to 

handle general types of problems. They used their approach in the calibration of a design 

code format and in a fatigue problem in marine structures [61].

o Second-Order Reliability Index:

Higher approximations have been used to obtain a more accurate reliability index 

or failure probability, say, Second-Order Reliability Method, in which the limit state 

surface is approximated by a quadratic surface at the design point.

Gollwitzer and R a c k w i t z [ 6 2 ]  proposed a procedure of searching for the reliability 

index by using first-order reliability concepts together with quadratic optimisation with 

multiple non-linear constraints.

M a d s e n [63] proposed an extension of the first-order reliability method to a more 

accurate second-order reliability method for better approximations of failure probability.

Kiureghian et al[64] proposed a comparatively simple method for a second-order 

reliability approximation based on a point-fitted paraboloid approximation, that is, an 

approach to fit paraboloid to the limit state surface around the design point (point-fitted 

paraboloid approximation).
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T v e d t [ 6 5 ]  proposed the derivation of a three term approximation to the probability 

content outside the approximating quadratic surface.

1.2.3 System Reliability Method

As mentioned before, system reliability has received much interest and its 

necessity has been well recognised since the mid-1960's because there are a number of 

possible failure modes, even in a simple structure. A major benefit of incorporating 

system strength is the additional structural reserve strength often found due to design 

symmetry, multiple load conditions, fabrication requirements and design approximations. 

The development of system reliability methods has mainly been concentrated in two parts: 

how to formulate the limit state equation of the failure mode, and how to evaluate the 

probability of system failure. Once the limit state is defined the reliability index and/or 

probability of failure for each mode can be evaluated by using the various methods 

described before.

Practical development of the method was initiated by Moses[21] who proposed 

the incremental load method for formulating the limit state equation (system safety margin 

equation) in which Mean Value First-Order Second Moment Reliability Concept was 

incorporated to evaluate the system safety level. He used the method in the system 

analysis of truss and framework structures. The basic idea behind this method is that a 

structure is progressively "unzipped" as successive members or components reach their 

strength capacity until overall failure occurs[21,40] Later Moses extended the 

incremental load method to identify the most important or significant failure modes using 

the deterministic truncating criteria^ 11. This method is attractive in that it can allow for 

the post-ultimate behaviour of a failed component and component strength formula can be 

used during formation of the limit state equation together with the concept of utilised 

strength at each load increment stage. Recently this method has been incorporated in the 

cost and/or cost optimisation studies [22,23]#

After Moses presented the incremental load method, several useful system 

reliability method have been proposed in the past decade. Moses and R a s h e d i [ 6 6 ]
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presented an approach for identifying the important failure modes using the linear 

programming technique. They presented the results for the structure under multiple 

loading and having a more realistic post-ultimate behaviour than previously.

G o r m a n t 6 7 ]  presented an automatic generating procedure of failure mode 

equations based on the rigid-plasticity concept.

Murotsu et alf63] proposed a heuristic procedure of automatically identifying the 

stochastically dominant failure modes with probabilistic truncating criteria. They extended 

their proposed method to the system reliability analysis of two dimensional framework 

structures under combined axial force, bending moment and shear force based on plastic

failure criteria^].

Thoft-Christensen and S p r e s e n t ^ O ]  presented two formulations of the so called 

"p-unzipping" method for frame structures in which yielding failure was considered. 

Later T h o f t - C h r i s t e n s e n [ 3 2 ]  extended the method to take into account the various failure 

elements, such as failure due to yielding, buckling, fatigue, punching, etc, by which the 

system safety index at different failure levels was evaluated.

Ditlevsen and B j e r a g e r t ^ l ]  proposed another approach which was based on the 

lower and upper bound theorem of plasticity and an optimisation procedure was used in 

the identifying procedure. This method gave a reasonable upper bound of system failure 

probability.

Melchers and T a n g [ 4 4 , 7 2 ]  extended the incremental load method to truss 

structures with a more general member behaviour to derive the limit state expression and 

proposed an iterative approach, the so called "Truncated Enumeration Method (TEM)", to 

systematically determine the probabilistically most dominant failure modes through an 

exhaustive searching procedure. Chan and M e l c h e r s t 2 3 ]  applied the method to jacket 

platforms with realistic modelling of wave forces which takes account of their variation
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with the incident wave location as it passed through the structure. Emphasis was placed 

on semi-brittle components behaviour.

More recently Lee and F a u l k n e r t ^ l ]  have presented the "extended incremental 

load method". This extends the conventional incremental load method by M o s e s [21] to 

include structures under multiple loading conditions which has been a major limitation of 

the incremental load method. Moreover it can more realistically allow for the post-ultimate 

behaviour of a failed component which can now be characterised by the post-ultimate 

slope and the residual strength. Also, strength formula can be used in the limit state 

equation based on the utilised strengths of components failed at each incremental stage. 

This method has been successfully used in the reliability analysis of TLP structural 

systems and for their sensitivity s t u d i e s ^  9 , 7 4 ]

As a hybrid approach, Corotis et al[75,76] proposed the load space approach 

which was a combined form of the incremental load method to evaluate the system 

resistance and numerical integration techniques to estimate the system failure probability. 

Later they used this approach in cost optimisation problems of frame s t r u c t u r e ^ 7  >29] # 

Edwards et alt 12] presented a dual approach based on the Monte Carlo Importance 

Sampling procedure and failure mode analysis for offshore jacket platforms using the 

First-Order Second Moment Method.

All of the above mentioned methods look at the problem in terms of failure 

events. The complementary approach, or so called the "stable configuration or survival- 

set approach", was suggested by Bennett[77,78] Bennett and A n g [ 7 9 ] .  This was 

proposed as an alternative for system reliability analysis and it was claimed that it could 

predict upper bounds of system failure probabilities. But computational work is much 

more expensive than the methods mentioned earlier.

Since the exact evaluation of the system failure probability is difficult, several 

methods have been proposed to estimate the bounds of the probability. An early simple 

upper bound of a series system was given by Freudenthal et alt47]. C ornell^0]
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presented the simple bounds when correlation was assumed to be positive or negative, in 

which the upper bound was the same as that proposed by Freudenthal47] when 

correlation was assumed to be positive. If there are only a few dominant modes these 

bounds will give reasonable estimates.

For cases where failure modes are correlated with each other, narrow bounds 

were proposed by DitlevsenC8!]. V a n m a r c k e t 8 ^ ]  a n d  Murotsu et a l [ 6 8 , 6 9 ]  presented the 

corresponding upper bounds. More recently G u e n a r d f 3 9 ]  presented the bounding 

technique with the dominant failure modes and the incomplete interim modes.

Ang and Mat45] used the probabilistic network evaluation technique (PNET) to 

estimate the upper bound using a grouping technique. Chou et al$3] presented possible 

alternatives for a grouping technique by using the taxonomic analysis and Tichy and 

Vorlicek technique.

The concept of an equivalent safety margin of a single failure mode, which 

applies to a parallel system composing of failed components, was developed by 

Gollwitzer and R a c k  w i t  z[55] using first-order system reliability analysis. This is useful 

in calculating the probability of system failure of a large system.

These procedures have been successfully used in the system reliability analysis of 

marine and civil structures. Frangopolt84], Grimmelt and S c h u e l l e r [ 8 5 ]  a n d  

S c h u e l l e r t 8 6 ]  compared the various system reliability analysis methods with regard to 

their accuracy, capability and efficiency.

Bakert38] described some of the recent developments in structural reliability 

theory, and discussed their benefits and applications to fixed offshore structures.

Hohenbichler and Rackwitzt87] reported the first-order concept in reliability 

methods in system reliability analysis. Ditlevsen and Bjeragert7! presented a review 

paper concerning development within the field of structural reliability theory with
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particular attention to structural system reliability. An overall review of the system 

reliability methods in formulating a limit state equation and in evaluating the system 

failure probability is given in the report by Karamchandanit88]. He reviewed the current 

state-of-the-art in system reliability methods and their application to practical structures. 

The shortcomings and advantages of various methods were discussed with regard to their 

practical application and future potential.

1.2.4 Redundancy

For continuous structures, even discrete structures, it is difficult and practically 

impossible to quantify the degree of structural redundancy or indeterminancy. It is 

generally accepted that the structural redundancy for such structures can be expressed in 

terms of the reserve strength, which is defined as the strength (or resistance) beyond the 

design condition which the initial intact structure can sustain before progressive collapse 

develops as a structural system, and the residual strength, which is defined as the 

remaining strength of the structural system once a member (or component) has failed or 

been severely damaged as to be ineffective.

The concept of structural redundancy for offshore platforms was addressed by 

Marshall and Beat8^] and M a r s h a l l t ^ O ]  j n  terms of reserve strength. Lloyd and 

Clawsont^l] proposed the measures of structural redundancy, say reserve strength and 

residual strength, in terms of the reserve resistance factor (REF) and the residual 

resistance factor (RIF). They also introduced a member redundancy classification 

hierarchy for redundant structures. A member redundancy level ranges from zero for a 

member whose failure greatly affects the collapse of the structural system to five for a 

member whose failure has no effect on the collapse of the structural system. As a 

companion paper of reference [91], de Oliveira and Zimmer^15] also described the 

measures of structural redundancy termed as: redundancy index (RI), reserve strength 

index (RSI) and residual strength index (RDI), and a methodology for considering 

redundancy in the design stage for continuous structures. They proposed another index 

associated with serviceability termed as the allowable deflection index. The RSI and RDI 

have the same meanings as REF and RIF, respectively, of Lloyd and Clawsont9*]. From
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the studies if reference [ 8 9 ] ,  [ 9 0 ]  and [ 9 1 ] ,  it was shown that typical jacket platforms 

should be able to resist about two times the design environmental load. More recently the 

probabilistic measure of redundancy has been proposed by Feng and M o s e s t 2 2 ] } Paliou 

et alf92] Nodal et al[93] The definitions of these measures are detailed in Chapter 2.

The reserve strength and the residual strength are closely interrelated through the 

concept of damage tolerance of the structural system. Mistree first put forward this 

concept of damage tolerance in 1982[94] and illustrated its application to offshore 

s t r u c t u r e s ! ^ ]  # i t  has rapidly developed into a respectable reliability based discipline 

aimed at evaluating the importance of fatigue cracks in structural members and clearly can 

have considerable implications for inspection, repair and maintenance p o l i c i e s ^ ] .

1.2.5 Applications

o Ship Structures:

The basic idea was discussed at the International Ship Structures Congress 

(ISSC) in 1967t97]> The application of the reliability methods to the field of marine 

structures can be first seen in an early paper by Mansour and F a u l k n e r t 9 8 ]  who applied it 

to evaluating safety for longitudinal ship strength of a tanker and a naval frigate. Faulkner 

and S a d d e n f 9 9 ]  extended for five naval ships varying in length from 9 1 - 1 5 4  m. They 

compared the safety indices of their naval ships with those for pseudo-merchant ships 

designed by rule with the same length, and those for large merchant ships having a length 

range 158-328 m. F a u l k n e r ! 4 00] proposed a semi-probabilistic approach using a global 

partial safety factor linked to any required safety index.

Stiansen et a l t 1 0 1 ]  presented fundamental procedures for reliability analysis of 

ship structures and sample models in dealing with uncertainties in loading and strength of 

hull girders.

Aldwinckle and Pomeroy1102] presented the use of probabilistic approach in 

determining reliability and safety, and its application to design of ship's structure. They
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also discussed the potential benefits to the socio-economic side.

Up to the present, the probabilistic approach or reliability methods have been 

consistently applied to ship's structures to achieve more consistent safety, etc. More 

recently Akita[103] presented a method of predicting the failure probability of ultimate 

collapse in deck structure under wave induced extreme longitudinal bending moments by 

considering the successive collapse of weaker panels between longitudinals, in which 

initial distortions of the welded plates were taken into account.

Guedes Soares and M o a n ^ 4] presented an uncertainty analysis of extreme still 

water and wave load effects in ships with emphasis on the modelling uncertainty of the 

wave load, and derived a consistent set of load partial safety factors for ship structural 

rules for the first time.

M a n s o u r [ 1 0 5 , 1 0 6 ]  compared the evaluated reliability indices for 1 8  ships by three 

methods: Direct Integration, Mean Value and Advanced First-Order Second Moment 

Reliability Method. He recommended that more attention be given to the direct integration 

approach.

Thayamballi et alC1^  proposed a combined approach of a non-linear finite 

element technique with an Advanced First-Order Reliability Method using the Wu- 

Wirsching a l g o r i t h m ^ ]  in estimating the structural safety of three general cargo ship's 

hull girder under vertical bending, in which the ultimate longitudinal bending strength 

was calculated through a dynamic non-linear finite element technique. They also outlined 

both deterministic and probabilistic measurement of safety.

White and A y y u b [ 6 0 ]  compared the partial safety factors of 1 8  s h i p s t 1 ^ ]  b y  

their reliability conditioned algorithm with the first-order reliability method and the fully 

distribution method.
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o Offshore Structures:

The reliability method has been more extensively and actively adopted in the 

offshore engineering field, from developing efficient methods to developing the 

probability-based limit state design code format. In the past decade various useful codes 

have been developed based on the probabilistic c o n c e p t ^ ,  10,108] some are still

being developed.

Moses introduced guidelines for calibrating the existing code, API RP2A, based 

on the reliability a p p r o a c h  1109,110]} successively presented the Load and Resistance 

Factor Design (LRFD) code format for fixed offshore structures and reported its 

application to existing offshore structures. He also proposed that the system factor could 

be added in the design format[10>H].

Ellingwood and Galambostl] presented a procedure for selecting the load and 

resistance factors in design format and described the probability-based loading and 

resistance criteria which were suitable for the development of a practical design code 

format for buildings and the principles developed have some relevance for offshore use.

Beat 112] presented a simplified reliability-based formulation procedure for fixed 

jacket platforms to determine environmental design parameters such as design wave 

height, design seabed acceleration, design return period and design safety factor. In the 

design formula the safety factor is based on the expected failure cost was included. A 

simple empirical relationship between reliability and the reliability index was also 

proposed to make derivation easy, which gave reasonable reliability values over the range 

of reliability index from 1.6 - 3.6.

A model code for the reliability based design for the continuous hull structure of 

TLPs was developed through the co-operative work of research, a classification society 

and industry^]. The framework of strength formulae for stiffened cylinders has been 

well established in the aeronautical field. But it was not suitable for the principle 

components frequently appearing in a floating offshore structure, such as a semi-
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submersible and a tension leg platform!118]. a  special Conoco-ABS Rule Case 

Committee (RCC) was formed in 1982 to develop an appropriate non-mandatory design 

code for TLP structures. Tests for a realistic range of stiffened cylinders for fixed and 

floating offshore structure have been carried out at CBI industry and at the University of 

Glasgow. Useful strength formulae were reported, especially for the design of ring- 

stiffened and ring- and stringer-stiffened cylinders!1181. The TLP model code!9] 

recommended a component safety index of 3.0 for direct design using approved 

reliability algorithm, or 3.7 using tabulated partial safety factors.

Faulkner!8] , who was chairman of the committee, outlined the development of a 

state-of-the-art of the reliability based model code, the background of the RCC work and 

its main achievements, such as an interim loading model, greatly improved strength 

models, safety checking design code format, certain guiding principles for code 

calibration etc. He also emphasised that the inclusion of redundancy could have a
4

significant effect on design saving and reliability-based inspection and repair policy and 

decisions and these studies should be continued to achieve more economic benefits. By 

using some of these advances for the design of the Jolliet field TLWP in the Green 

Canyon Block in the Gulf of Mexico, about 30% saving of steel weight has been 

achieved. Further weight saving can be achieved by using these reliability concepts with 

better loading models.

In the case of TLPs or semi-submersibles, the primary structural components are 

generally constructed of thin stiffened plated structure having very large cylindrical or 

other type cross-sections, stiffened by means of longitudinal stiffeners and ring frames or 

transverse frames. Das and Frieze!114] presented reliability studies of a stringer-stiffened 

cylinder using a modified DnV strength model!115]. Safety indices under different 

loading conditions were investigated and a sensitivity study was carried out to indicate the 

influential parameters. Das and Faulkner!116] presented a sensitivity study to investigate 

the influence of random variables such as the strength modelling parameter, yield stress, 

shell thickness and radius of cylinder on the safety indices of ring stiffened cylinders and 

ring- and stringer-stiffened cylinders.
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Maes and Muir!117] investigated several design formats and examined the use of 

both partial load factors and specified exceedance probabilities for Canadian offshore use 

by varying the environmental loading conditions.

o Strength Modelling:

With regard to the strength formula reference [118] has compiled the various 

design codes and the relative accuracy of their predictions, when compared to available 

test results. It also reviewed the state-of-the-art knowledge in the field of buckling 

behaviour of offshore structure. More recently Warwick and Faulkner!119] reported a 

useful review paper for the strength formula of cylindrical components as used in fixed 

and floating offshore structures: unstiffened, ring-stiffened and ring- and stringer- 

stiffened cylinders. In their report, they discussed various strength models commonly 

used in design codes and compared these with reputable test data. They also 

recommended general and statistical requirements for a good strength models, and 

recommended strength formula for cylindrical components in offshore structure based on 

these criteria.

Strength formula for flat plated structure has been well established. For stiffened 

plates, Faulkner! ̂ 0 ]  presented the ultimate compressive strength of stiffened panels in a 

simple expression which was derived through an analytical methods conformed by test 

results. This has also been improved by using various numerical methods such as the 

finite element technique!171 -i24] a n d  the finite difference m e t h o d ! 1 7 5 ] .

For the ultimate bending strength of a hull girder or of rectangular sections, 

Lint175] presented a method for predicting the ultimate bending moment capacity of 

longitudinally stiffened hulls which was based on numerical analyses by the dynamic 

relaxation method, a kind of finite difference method, using the beam-column 

concept!176]. When bi-axial bending moments were coupled, Faulkner et al!177] 

proposed a circular interaction equation. When the structure was under combined axial 

compression and bi-axial bending moments, the present author!178] proposed an 

interaction equation for rectangular sections which was derived from a best fit numerical
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analysis of results with non-linear analyses using the beam-column concept. These 

strength formulae have been used in the reliability analysis of TLP structural 
systems!19,41,74] ̂

o System Reliability Analysis:

For the system reliability analysis of offshore structures a number of references 

concerned with fixed jacket platforms are a v a i l a b l e ! 1 7 >3 8 ' 4 0 > 4 8 >6 9 , 7 3 , 9 2 , 9 3 , 1 2 9 ] >

For floating offshore platforms, Murotsu et al!180] presented a system reliability 

assessment for the transverse strength of a semi-submersible platform subjected to 

extreme wave loads using the heuristic procedure together with the branch and bound 

method to select the probabilistically dominant failure modes. Their approach was based 

on plastic collapse analysis and the first-order reliability method was used to approximate 

the stochastic parameters of the wave induced loads.

Frieze!181] was concerned with the extension of the collapse analysis of a semi- 

submersible to approximately evaluate the load factor, and introduced the redundancy 

partial safety factor, which is equal to the inverse of the redundancy factor. Amdahl et 

aj[132] presented the progressive collapse analysis of a semi-submersible, subjected to a 

no damaged and a damaged condition due to an accident using an idealised structural unit 

method based on a plastic hinge method, from which the reserve strength index and 

residual strength index were derived. This is discussed in Chapter 3.

Lee and Faulkner!19,4i,74] presented an application of the "extended incremental 

load method" to TLP structural systems subjected to static, quasi-static and dynamic 

wave and motion induced hydrodynamic loads. TLP structures were modelled as three- 

dimensional frame structures and a modified safety margin equation was used to directly 

use the strength formulae developed for principle components.

The system reliability analysis of tendons in TLPs have been carried out by Pruce 

and Soong!188] and Guenard!8^].
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o Sensitivity Studies:

Sensitivity studies of component and system failure probability or reliability to 

changes in stochastic parameters and distribution types for design variables have also 

been done by several researchers to investigate the relative importance of design variables 

in the analysis with regard to their effects on safety. This type of study is of particular 

importance in reliability-based structural optimisation and in the calibration of design 

codes.

Baker and Ramachandran!184] presented the effects of mean and coefficient of 

variation of various parameters on the safety of a fixed jacket platform, such as wind 

speed, wave, current, yield stress, drag coefficient, added mass coefficient, marine 

growth and initial geometric imperfections.

Smith et al!185] showed the relative importance of strength modelling parameters, 

geometric properties, material properties and environmental loading variables on 

component reliability by varying their ratio of mean values and coefficients of variation to 

the characteristic values. They used the sensitivity results to obtain the optimum partial 

safety factors for the calibrations of various design codes.

For a frame structure Frangopol!17’18] carried out a sensitivity for the overall 

reliability of a structural system to changes in problem parameters such as correlation of 

resistance variables, that of loading variables, mean value of the load and the various 

methods of evaluating the system reliability.

Lee and F a u l k n e r ! 1 9] presented a sensitivity study for TLPs to changes in 

resistance variables such as strength modelling error and the post-ultimate behaviour of 

failed components.

o System Reliability-Based Design:

One major aim of the system reliability analysis should be to relate the member or 

component strength with the system strength. Moses!11] and Faulkner!186] suggested
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that the system factor (system partial safety factor), which represents the degree of 

redundancy of the structural system and is normally less than unity, could be added in the 

safety checking design format. Faulkner!186] suggested a simple procedure to predict the 

system factor as well as system reliability index given the first failed component reliability 

index and stochastic parameters associated with strength and loading. The basic idea of 

this procedure is to assume the probability density function of the system strength is 

achieved by shifting the probability density function of the component to the positive 

direction by multiplying its mean value by a reserve strength ratio, n (= mean system 

strength/mean component strength). Lee and F a u lk n e r !1 ^ ] then proposed a simple 

relationship for safe design:

to link acceptable component safety to the reserve strength of the system.

A number of works in which the reliability methods are incorporated with the 

deterministic optimisation theory (fixed safety factor concept) have been carried out to 

achieve greater economy and to provide a better basis for comparing different designs. 

Several formulations of linear or non-linear problems, constrained or unconstrained, are 

presented, in which the structural weight and the total cost, which includes the 

construction cost and cost of failure consequence, are usually taken as the objective 

function.

Moses and Stevensen!187] proposed the formulation of a reliability-based 

optimisation and procedure with total cost as an objective function. They used a gradient 

method with usable feasible directions. Moses!71] introduced the idea of reliability-based 

optimum design of a structure. Feng and Moses!77*78] addressed the system reliability- 

based design philosophy which minimises the structural cost and/or weight to satisfy a 

system reliability constraint. They used the incremental load method for identifying 

failure modes and computing the system reliability index by considering reserve and
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residual strengths of the structure, and they introduced optimal criteria associated with an 

iterative procedure!78].

Frangopol!75*76] presented an overview of the major concepts and methods used 

in reliability-based structural optimisation and proposed formulations related to multi- 

criteria optimisation subject to reliability constraints imposed at both serviceability and 

ultimate limit states.

Murotsu et al!^4*78] presented a component reliability-based optimisation for 

fixed offshore platforms to minimise the expected total cost which included the structural 

cost and the expected maintenance cost under constraints on the allowable failure 

probabilities of critical sections specified in the structure. They also recently presented the 

shape optimisation of truss structures to minimise the structural weight!81]].

Soltani and Corotis!7^] presented single and multi-objective formulations with 

objects such as cost of failure, initial cost, failure probability associated with collapse in 

various modes and failure probability associated with different levels of unserviceability, 

e.g., excessive deflection, inelastic behaviour, partial failure, using their load space 

system reliability approach.

Smith et alt185] reported the optimisation of partial safety factors in various 

design codes with the total cost as an objective function, and the average reliability of a 

structural component was taken as a constraint.

Generally, cost optimisation is preferred to weight optimisation in which the 

initial cost, failure cost and maintenance cost are included. Reference [13] by Thoft- 

Christensen and Murotsu and [138] by Murotsu introduced several recently developed 

formulations of optimisation problems coupled with reliability analysis, for the 

component and/or system.
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o Fatigue:

H a r b itz !1 8 ^] presented a general procedure for accurate probability of fatigue 

failure calculations based on the rule of Det norske Veritas for offshore structures!115] 

using an importance sampling technique.

Wirsching and Chen!146] described the problem of fatigue damage under variable 

amplitude stresses using the characteristic S-N curve and fracture mechanics models. 

They also proposed models for reliability assessment relative to fatigue and their 

applications.

White and Ayyub!61] used the so called reliability conditioned method for the 

fatigue problem of marine structures, and they provided an example.

o In-Service Re-Assessment:

The reliability analysis methods have been applied to in-service re-assessment 

which is coupled with achieving an optimum strategy for inspection and repair.

Sprensen and Thoft-Christensen!81 ] presented the strategy for offshore structures 

by minimising the total cost including inspection, repair and also their qualities under the 

allowable reliability constraints of various failure elements, such as failure due to fatigue, 

etc.

Madsen!87] presented a developed numerical technique for computing updated 

reliabilities and updated distributions for the basic variables, which was intended for use 

in decision making for existing structures and required the evaluation of parametric 

sensitivity factors for parallel systems.

Bea and Smith!88] proposed an optimum strategy of inspection and maintenance 

for fixed offshore platforms in-service with consideration of reliability.
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o Gross Errors:

Recently gross errors (blunders or human errors) is considered in evaluating 

reliability because most structural failures are due to human error!18*45]. Human errors 

have been more explicitly considered in the design and/or construction phases of a 

structure.

Lindt84] and Melchers and Harrington!85] introduced some models for human 

errors. Nowak and Carr!86] dealt with human errors in the selection of structural models 

and carried out their sensitivity analysis for various parameters of highway bridges, etc. 

They considered two types of errors in structural models: errors in realisation of the 

assumed model and incorrect selection of the model. Yamamoto and Ang!141! proposed 

a simple model for evaluating the significance of human errors on the reliability of the 

structure. They recommended that, in any case, data on human errors had to be 

continually accumulated. Nessiam and Jordan!147] proposed probabilistic models for the 

optimal level of human error control.

Melchers!148] briefly reviewed the principles by which human error information 

could be taken into account in reliability assessment, and described both empirical model 

and data for some types of human error which might arise in the design process.

Shiraishi!144] treated gross errors by using two-dimensional and fuzzy logic 

measures. Shiraishi and Furuta!145] presented an attempt to apply fuzzy set theory to the 

reliability analysis of damaged structures in which damaged states were represented in 

terms of fuzzy sets to define several linguistic variables. The probabilistic network 

evaluation technique was used and extended to treat the fuzzy quantities.

o Approach Coupled with Numerical Methods:

Numerical methods such as the finite element and boundary element methods 

have been coupled with system reliability analyses. The finite element method has been 

used to more explicitly consider the uncertainties in estimating the statistical parameters of 

load effects, such as stress, displacement and/or deformation, by taking into account
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variations in load, dimensions and material properties for a reliability study !146“148] 

Vanmarcke et alt148] presented a state-of-the-art review of stochastic finite element 

analysis and its formulations.

More recently Chryssanthopoulos et alt14^] presented an approach for combining 

the Level 2 reliability method with non-linear finite element analysis for stringer-stiffened 

cylinders subjected to axial compression, in which uncertainties in the initial 

displacements of curved panels and stringers were explicitly modelled.

Vilmann and Bjerager!150] used the boundary element method in Mindlin plate 

analysis to investigate the effects of certain uncertainties in geometric parameters.

1.3 Review of the Methods for Structural System Reliability Analysis

System reliability analysis methods can generally be divided into three categories, 

i.e., analytical methods, approximate methods and hybrid methods, which are combined 

forms of analytical methods or analytical and approximate methods. Theoretically, the 

analytical method may give the exact probability of system failure, but it can be applied to 

only quite simple idealised problems and therefore not to real structures. Hence 

approximate methods are usually used for system reliability analysis. The recent review 

by Karamchandani!88! on the current state-of-the-art methods to evaluate limit state 

system failure probability is valuable.

1.3.1 Analytical Methods

There are several analytical methods for formulating the failure events and 

evaluating the system reliability. These include Numerical integration, Monte-Carlo 

simulation, Stratified sampling, Latin Hypercube, Importance sampling, Reduced space 

approach and Response surface based approach. But most of these are limited in 

application to only idealised simple structures and may be computationally inefficient. 

The last three methods, however, appear to be the most promising methods in use
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today[88].

Among them, the importance sampling approach, which is a modified Monte- 

Carlo simulation, has been used by several researchers. For example, Edwards et al!17] 

applied the procedure to the system reliability analysis of a jacket platform. The important 

failure modes are obtained by Monte-Carlo simulation based on an importance sampling 

approach. The failure probabilities of these important modes are considered as decisive 

for the value of the system failure probability which is then evaluated by the Level 2 

method.

For component reliability analysis for fatigue, H a r b i t z ! 1 8 ^ ]  presented a general 

procedure based on the importance sampling approach. However, these methods are 

practically difficult when individually used for practical structural systems. But when 

combined with approximate methods, as will be discussed in Section 1.3.3, they can be 

more easily used in reasonably complex structural systems.

1.3.2 Approximate Methods

In this method there are generally two types of approach depending on the type of 

formulation. One is the approach to principly get the failure probability rather than the 

reliability (probability of survival) and the other one is the complementary or vice versa 

approach.

After Moses suggested the incremental load method!71], various approximate 

methods have been rapidly developed which originally stemmed from 

thist41,41.,42,70,71.,77]^ Approximate methods can be categorised into three: Failure 

Path Approach, Survival-Set Approach and Plasticity-Based Approach. These will be 

discussed in the following sections.

1.3.2.1 Failure Path Approach

The failure path approach generates the failure modes which are elements in the 

system failure event. There are generally two kinds of methods used to derive the failure
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equation or safety margin equation: Element Replacement Method (ERM) !47>70] and 

Incremental Load Method ( I L M ) H l » 2 1 » 4 0 , 4 1 , 7 4 ] e

o Element Replacement Method:

The failure equation can be defined in terms of the forces in components and the 

strengths of the components. In order to obtain the failure equation for any particular 

failure mode, the basic idea behind this method is that failed components are removed 

from the structure and each is replaced by the equivalent load, i.e. the post-failure 

strength of failed components. The equivalent load replacing the failed component i is 

r |jR i, where rjj is the post-failure strength factor which is the ratio between the post­

failure strength and the resistance of the component, and R[ is the resistance. For ductile 

behaviour , = 1.0, for brittle behaviour, T[̂  = 0.0 and for semi-brittle behaviour,

0 . 0  <  r i i  <  1 . 0  [Fig. 1 . 1  (a)].

o Incremental Load Method:

This method is based on the mean values of random variables in strength and 

load. The basic idea behind this method is that the structure collapses progressively in a 

pre-defined failure sequence as the load increases, from which a set of these load 

increments is obtained. These load increments are defined in terms of the strengths of 

failed components. The total load at a particular component failure stage is the sum of the 

load increments to that stage and it represents the system resistance which consequently 

can be expressed in terms of the strengths of failed components.

This method is easy to understand and the existing structural analysis program 

can be used with slight modification. Since, after a component fails, the change of force 

in a survival component is the sum due to the next load increments and due to the 

unloading force in the most recently failed component (load shedding effect by the failed 

component), this procedure can also be applied to the structure with brittle and/or semi- 

brittle component behaviour.
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1.3.2.2 Stable Configuration Approach

This approach!77! is based on looking at the problem in terms of sequences of 

which survival implies system survival, i.e., the complement of system failure. The 

survival modes (configurations) in which a structure may carry an applied load are 

examined to determine which survival modes are those which the structure is most likely 

to carry further applied load, i.e., which survival modes have the lowest probability of 

failure.The probability of system survival (reliability) is obtained from

(Ps)sys = P! E(Zi > 0) n  E(Z2 > 0) n  . . .  n  E(Zm > 0) ] (1.1)

and the probability of system failure is obtained from Eq.(1.2) as a complimentary event 

of the survival event.

(Pf)sys = 1 — (Ps)sys (1*2)

The survival modes are found through a heuristic process, in which less important modes 

are neglected. Neglecting the potential survival modes (stable configurations) will be 

conservative and an upper bound will be obtained to the probability of system failure.

Bennett!78] applied this approach to the structure with brittle components, and 

Bennett and Ang!7^] for evaluating the reliability of structures whose component 

behaviours are a non-linear based on the combination of the imposed deformation 

approach!157].

However, for a given system the number of survival modes is usually much 

larger than that of the failure modes, and so, in this sense, the magnitude of the problem 

in the stable configuration approach is larger and its procedure for finding the survival 

modes is more complicated than the failure path approach. Above all, the evaluation of 

the probabilities of survival modes (parallel system of element survival events) is difficult 

and there is no guarantee that the sequences identified are the most important ones.
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1.3.2.3 Plasticity-Based Approach

This approach is based on the two plasticity theory with optimisation theory!71]; 

lower-bound theory and upper-bound theory of plasticity. Although this approach can be 

applied to a narrower class of structures than the failure path approach and the survival- 

set approach, i. e. only to the elasto-plastic structure, the advantage over other 

approximate methods is that it allows a more rigorous treatment of the probabilistic aspect 

of structural systems reliability. Results obtained for a simple structure showed that a 

lower bound was usually quite close to the true failure probability.

1.3.3 Hybrid Methods

Among the analytical methods, the reduced space approach and the response 

surface based approach have been combined with approximate methods to solve practical 

problems. In this thesis this type of approach is termed a hybrid method due to its 

combined nature of analytical methods and approximate methods.

References [29], [75], [76] and [153] used the incremental load method to obtain 

the system resistance in which non-linear structural analysis was employed and then the 

limit state is formed in the load space (or load effect space). The failure probability of this 

deterministic structure is then evaluated by integrating the joint distribution functions of 

loads over the failure region in the load space. This approach is usually called a load 

space approach or load effect approach.

In this method, since non-linear structural analysis is included in deriving the 

system resistance by varying the ratio of each loading, it seems to provide one possible 

way of more realistically taking into account the non-linearity for a reasonably complex 

structure. However, since in the system reliability analysis the structure analysis takes the 

main portion of computational time, even a simple structure may require considerable 

computational time. For this reason this method may be limited in its application to 

complex and large structures.

Another form of hybrid method can be the combined form of analytical methods.
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However, this also has limitation when applied to practical structures!^].

1.3.4 Limitations of the Approximate Methods

The analytical method has the major shortcoming that up to the present it cannot 

be applied to practical problems. The hybrid method has the possibility of more 

realistically taking into account non-linear behaviour than the other methods. The 

approximate method is, therefore, usually used to solve practical problems, but it has 

several limitations. The major one is, first of all, it is applicable only to highly idealised 

structures and loads. Non-linearity of component (or element) behaviour is assumed as a 

two-state model [Fig. 1.1(a)]. It is not possible to consider the non-linear interaction 

failure surfaces. Above all, different paths and strain reversal of failed components 

cannot be allowed for.

1.3.5 Discussion on the System Reliability Analysis Methods

As mentioned in Section 1.3.4, in spite of their limitations approximate methods 

are usually used to solve the practical problems. Among the approximate methods, the 

failure path approach is most popular. In this, since the paths which are less important are 

neglected, the result will be unconservative. Also, it generates the failure modes, not the 

survival modes as in the stable configuration approach. Considering that the number of 

survival modes is much larger than that of the failure modes, it is computationally more 

efficient. Above all, this approach can be applied to the structure with ductile, brittle and 

semi-brittle component behaviour, and is therefore more general than the plasticity-based 

approach. Because of this most work on system reliability analysis has been done by the 

failure path approach, say using the incremental load method (ILM)[11>19,21- 

23,40,41,44,72-74,154] the element replacement method (ERM)[*3,39,42,69, 

70,93,129,155,156].

Table 1.1 shows the comparison between these two typical failure path 

approaches, ELM and ERM. First of all, regarding the behaviour of failed components, in 

the ELM the behaviour of the failed component can follow the post-ultimate behaviour and 

therefore, deformation of failed components can be allowed for. Since in this method the

- 3 2 -



load factor up to the particular failure stage can be obtained, post-ultimate behaviour of 

failed components can be considered more realistically by using the multi-state non-linear 

model [Fig. 1.1(b)]. One major limitation of this method is that it is applicable only to a 

single loading pattern. In the ERM the failed components are removed from the structure 

and their strength is replaced by the equivalent forces acting on the structure. Hence, their 

deformations are restricted and the post-ultimate behaviour of the failed components may 

not be considered realistically. But the idealised model of the two-state model 

[Fig. 1.1 (a)], say, ductile, semi-brittle and brittle behaviour, can be used to represent the 

post-ultimate behaviour in a simple way.

However, its merit over the ILM is that it is applicable to multiple loading cases. 

Recently, however, the limitation of the ILM has been removed by L e e [ 1 5 4 ]  and Lee and 

F au lkner^!] by adopting the concept of a contribution factor which reflects the 

contribution from the utilised component strength for each loading case in the safety 

margin equation. This will be detailed in Section 2.4.1.

ductile
1.0

semi-brittle

britde

1.0

a
1.0

e]=i.o e'.

(b) Multi-State Model(a) Two-State Model 

Fig. 1 . 1  Typical Piecewise Simplified Models for Nonlinear Component Behaviour
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Table 1.1 Comparison between Conventional ELM and ERM

ELM ERM

Behaviour 

of failed 

components

Deformation of failed components 

can be allowed to follow the post- 

ultimate behaviour

Deformation of failed components 

are restricted. Failed component 

are removed and their strength is 

replaced by the equivalent force 

acting on the structure

Merit post-ultimate behaviour of failed 

components can be treated more 

realistically than the element 

replacement method

applicable to multi-loading cases

Limitation applicable only to single loading 

case

post-ultimate behaviour of failed 

components is idealised as a two- 

state model: ductile, semi-brittle 

and brittle

Use of

strength

formula

strength formula can be directly 

used for the system reliability 

as well as component reliability 

analysis

strength formula may be used for 

component checks only
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1.4 Aims of the Thesis

A major aim of the present study is to introduce a system reliability algorithm 

called the ’’Extended Incremental Load Method" which has been developed as an another 

approximate method. It takes the advantage of the conventional incremental load method 

over the element replacement method, and is applied to continuous structural systems, 

especially to floating offshore platforms, such as tension leg platforms or semi- 

submersibles.

The merits of the present method include:

[1] Although the method has been developed based on the conventional incremental 

load method, it has been extended so that it can be applied to structures under 

multiple loading conditions.

[2] The existing strength formulae for principle components in a structure are directly 

used and are incorporated into a modified safety margin equation which also include 

strength modelling parameters for components and these are treated as random 

variables. These strength formulae are used directly in the system

reliability analysis procedure.

[3] The proposed algorithm can in principle be used to evaluate the structural system 

strength and reliability under multiple loading conditions with semi-brittle 

components by modelling the non-linear behaviour into the piecewise multi-state 

model.

The method, together with the procedure for identifying the most important failure 

modes, has been applied to simple structural systems to illustrate the validity of the 

method. The application to TLP structural systems, which are modelled into three 

dimensional frames, continuous structural components can also be used for systems 

having ductile and semi-brittle components.

A study of the sensitivity of system reliability index and component reliability 

index to changes in statistical parameters in loading and resistance variables is aimed at
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showing the relative importance of variables with regard to their effects on the safety 

level. This provids certain useful information as an aid to decision-making in reliability- 

based design and re-assessment.

The study of the relation between safety and redundancy is aimed at helping to 

sensibly choose acceptable component and system safety levels in the design stage in the 

light of the reserve strength of the structural system.

1.5 Scope of the Thesis

The present work deals only with the time invariant reliability problem. The 

reliability with respect to failure throughout any anticipated lifetime of the structural 

system is evaluated. The effects of gross error in the design, fabrication and operational 

use of the structure are not considered.

Since failure may occur either in the actual members, as in trusses, or at localised 

high loaded zones, such as plastic hinges in rigid frames, the terminology of 

"components" will be used herein to refer to either.

Chapter 2 starts with introducing the basic definitions of the safety index and 

redundancy. The algorithms for evaluating the probability of failure and reliability index 

of a single failure mode and multiple failure modes is described. Details of the 

incremental load method and the element replacement method are presented. The 

developed present system reliability analysis method, the extended incremental load 

method, is detailed, together with the modified safety margin equation and the procedure 

for deriving the reduced element stiffness matrix. The existing procedure for identifying 

the most important failure modes is briefly reviewed and the present procedure is 

introduced. The application of the present method to simple structures is illustrated to 

show its validity for deriving the safety margin of a structure under multiple loading, and 

for identifying the important failure modes and the modified safety margin equation.
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Strength models of principle components used in floating offshore platforms 

employed in this study are presented in Chapter 3. The strength model for the rectangular 

section is detailed to illustrate the basis of the proposed model.

Chapter 4 is concerned with the environmental loading of floating platforms for 

the reliability analysis. Hydrodynamic analysis using the Morison type approach is 

detailed.

The application of the present method to TLP structural systems, as examples of 

continuous structures, are presented in Chapter 5. The Hutton TLP is chosen for this 

study as an existing TLP and its two variants, TLP-A and TLP-B, are introduced to 

compare the results of system reliability analysis depending on the principle component 

types in these structures. The results are summarised in various tables for comparison of 

each model, together with three dimensional collapse mechanisms of identified important 

failure modes. The results of the three TLP models from an efficiency point of view is 

discussed. Redundancy analysis is also made.

Sensitivity studies of system and component reliability indices to changes in 

statistical parameters in loading and resistance variables are presented in Chapter 6. This 

is one of the major problems in system reliability. The influence of strength modelling 

parameters, certain geometric properties and yield stress, of load effects and post-ultimate 

behaviour on the system and component safety level, are investigated. For this study the 

Hutton TLP and a variant, TLP-B, are chosen as TLP models to compare the influence of 

variables depending on the type of principle component, say, ring stiffened cylinder and 

ring- and stringer-stiffened cylinder. For the system reliability of a structure with semi- 

brittle behaviour a simplified three-state model of non-linear behaviour is used and results 

are compared with the two-state model for which the procedure of deriving the equivalent 

nodal force vector is detailed. The results of discrete structures using semi-brittle and/or 

brittle components reported by others are also discussed to illustrate the comparison with 

results for continuous structural systems.
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Chapter 7 deals with the correlation between structural safety and redundancy 

(reserve and residual strength). A simple procedure for predicting the relation of 

component and system safety to redundancy is introduced. From the study a couple of 

equations are suggested which may be helpful in selecting the allowable safety levels for 

economically efficiently design with adequate but not excessive safety. The basic concept 

of reliability-based optimal design is briefly described and one useful formulation is 

illustrated. System reliability-based design is discussed with the relevant terms and its 

anticipated difficulties. In-service re-assessment based on economic consideration is also 

discussed.

Chapter 8 reviews the present work in the context of the proposed method and 

system reliability analysis of discrete structures and of TLP structures and discusses the 

results for economically efficient design from the system's points of view. The results of 

sensitivity studies are summarised by placing emphasis on the economic importance of 

reducing the uncertainties associated with component strength modelling and with post- 

ultimate behaviour characteristics. The thesis ends by describing the main conclusions of 

the present work and recommendations for future research in the area of system reliability 

analysis and its application to design.

For easy understanding of the present approach four Appendices are added. 

Appendix A deals with an example illustrating the derivation of the safety margin for a 

portal frame under multiple loading by using the extended incremental load method with 

two type of equations. The calculation of the total load factor is illustrated in Appendix B. 

The procedure for identifying the most important failure modes in a simple truss structure 

is illustrated in Appendix C. Finally, in Appendix-D the derived flow vector of a finite 

element, when its one node has failed, is summarised for the principle components found 

in the TLP structure and for the beam element in the frame structure. They have been 

derived based on the strength formulae used in this study.
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CHAPTER 2 SYSTEM STRENGTH

2.1 Basic Definitions

2.1.1 Reliability Index

As a simple situation where strength, R, and load (or load effect), Q, are given, 

the probability of failure, Pf, is defined as the probability that the load exceeds the 

strength, i.e.:

Pf = P[R < Q] = P [ R - Q < 0 ]  (2.1)

and then the reliability, Ps, is defined as:

Ps = P[R> Q] = P[R -  Q > 0] = 1 -  P[R -  Q < 0] = 1 -  Pf (2.2)

Such a simple situation is called the fundamental case and is illustrated in Fig. 2.1. The 

probability of failure can be easily calculated from:

+ oowFr(x) fQ(x) dx (2.3.a)

or, alternatively,

+ oo

>f  =  J a - f q (x ))  fR(x) dx (2.3.b)

Close-form solutions for the integral in Eq.(2.3) only exist for special cases. If R and Q 

are independent and normally distributed, N(R, gr) and N(Q, c Q) , then the probability 

of failure can be exactly calculated. Let Z = R -  Q. Then Z is also a normal variable with
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mean and variance

Z = R - Q

Oz 2 =  a R2  + oq 2 (2 .4)

Therefore, the failure probability is given

Pf = P [ R - Q < 0 ]  = P [ Z < 0 ]

, 0 - Z s  ,
— { h i   1 -  I _

4 °

, 0 - Z v  ,  R - Q  v
= ® ( --------) = < & (  — r = = )  (2.5)

a  2 2
' / a R + a Q

The random variable, Z (= R -  Q) is called the safety margin, of which distribution is 

illustrated in Fig. 2.2, and the relation of its mean Z to its standard deviation c z  is called 

reliability index or safety index, p. That is defined by:

P = = (2.6)
2I 2 2

z  V a R + a CQ

Then it is seen from Eq.(2.5) that

Pf = O ( -  P) (2.7)

Its inverse form is

P = _  <D_1(Pf) (2.8)

where O (•) is the normal distribution function.

When coefficients of variation (COV) of random variables are given rather than 

standard deviations such that
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where VR and VQ are COV of R and Q. Additionally let 0 = R / £ ) ,  and then Eq.(2.8) 
becomes

p =
e - i

7(evD)2+v?R Q

in which 0 is referred to as the central safety factor.

(2 .10)

R or aq

r or q
Fig. 2.1 Fundamental Case

Z = R - Q

Fig. 2.2 Distribution of Safety Margin, Z and its Relation to Reliability Index (3



2 .1.2 Structural Redundancy

It has been much emphasised that the redundancy of a structure should be 

considered in design and system reliability analysis is important for verification of reserve 

and residual strength^]. The classic definition of structural redundancy is the number of 

additional members or support reactions in excess of those required to calculate member 

forces by static equilibrium. However, even for discrete structures, such as portal frames 

and fixed jacket space frames, redundancy is more usefully measured by the role played 

by individual members in the structural system. This then identifies and allows for the 

existence of weak link (series) members in an otherwise highly redundant (and mainly 

parallel) system. In principle, each member should be systematically removed and the 

consequences on the residual strength of the system assessed in terms of the load at 

which progressive collapse occurs. A hierarchy of member importance can then be 

established.

Structural redundancy is usually characterised by reserve and residual strength. In 

general, the reserve strength is defined as the ultimate strength which the structure can 

sustain beyond the specified ultimate state, and the residual strength as the ultimate 

strength when structure is damaged. It is characterised by the importance of individual 

components to the structural system strength, i.e., whether their failure causes a small, 

significant or total loss of strength. Redundancy usually allows the structure to tolerate 

possible understrength of components due to accidental damage, corrosion, fatigue, 

fabrication flaws, e tc ^ L

Statically indeterminate structures (redundant structure) will in general have 

redundancy against overall system failure. Even components designed according to 

design code show redundancy against total component failure beyond local failure 

conditions by virtue of moment distribution type redundancy from two possible

effectsH36]:

[1] cross-section or internal redundancy analogous to the plastic shape factor 

in beam bending

[2] the need generally for a mechanism of hinges to develop along the component 

before final collapse can occur.
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There may also be further reserve strength arising from simplifications often made even 

with comprehensive finite element modelling of the structure. Additional structural 

reserve strength can be found in design symmetry, multiple loading condition and 

fabrication requirements.

In general terms, and depending on the nature of the failure mechanism, a 

redundant structure offers a higher safety level than a non-redundant one, because there 

are a number of possible failure paths and failure of one of the components is not 

sufficient to trigger off the overall structural failure.

In the case of discrete structure the degree of redundancy can be known, but in 

the case of continuous structure it is practically impossible to think of the redundancy in 

terms of a degree of redundancy. The behaviour can then be largely described in terms of 

reserve strength and residual s t r e n g t h ^ ] .

The concept of structural redundancy is not easy to define in simple ways since it 

takes multiple forms and various factors affect it. Generally structural redundancy 

depends o n t^ l:

[1] the number of members and the topology or the way the member are laid out

[2] the strength of each member

[3] the joint or connections between members

[4 ] the types of loads considered

[5] the member behaviour, especially the post-ultimate behaviour

Several measures of structural redundancy have been p r o p o s e d ^ , 2 2 , 9 1,92] 

The reserve strength is given in terms of the reserve strength index (RSI)t15] (the reserve 

resistance factor: R E F^l]) and the residual strength in terms of the residual strength 

index (R D I)^ ]  (the residual resistance factor: R IF^l]). in this thesis the terms of RSI 

and RDI are used to express the reserve strength and the residual strength. They are 

defined as:
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_ Environmental Load at Collapse (undamaged)
Design Environmental Load

p p T_ Environmental Load at Collapse (damaged)
Environmental Load at Collapse (undamaged) ’

The reserve strength index is a measure of the intact structure to carry load in excess of 

the design load. The residual strength index characterises the ultimate strength in 

damaged condition relative to the one in undamaged condition. The definitions above 

indicate that reserve strength and residual strength are obviously interrelated through the 

concept of damage tolerance. A damage tolerant structure must have both reserve strength 

(to avoid failure) and residual strength (to minimise the consequence of fa ilu re)^ ], xhe 

damaged structure can be safe if its design satisfies the relation between RSI and RDI 

that[15,91]:

residual strengthRSI * RDI =  -----------------> l
design strength

For a consequence of member failure on the structural system, Lloyd and 

Clawson[91] have established a five point redundancy scale for structural members 

ranging from zero for members whose failure would lead to progressive collapse even for 

dead weight load conditions to four for a member whose failure has little effect on the 

design strength, but whose presence enhances the redundancy of nearby members, i.e., a 

normally lightly loaded member that provides an alternative load path when a nearby 

member fails. Categories 1 to 3 are for members whose failure leads to progressive 

collapse for a limited set of dead and live load conditions of increasing severity up to 

some (unspecified) multiple of the design environmental load. A sixth category (Level 5 

on the scale) is reserved for non-structural members whose failure has no bearing on the 

design strength.

The above expressions for the structural redundancy are deterministic. As a 

probabilistic measure for the redundancy of the structural system, Feng and Mosest22!
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proposed the following measure for a damaged structure based on the system reliability 

analysis.

Psys,R “ Min(Psys,Rj) (2.12)

where PsyS,Rj re êrs 10 the system reliability given that component i has failed. Hence, 

this quantity is defined as the system reliability given that any selected component has 

failed.

where psys is the reliability index of the system failure and Pcomp is the reliability index 

of any first component failure. Eq.(2.13) is a p measure of the conditional reliability of 

the system given a first component failure. It may be related to the residual strength 

index, RDI in Eq.(2.11). For a statically determinate system, Psys =  Pcomp and the 

difference is always zero. In the opposite extreme, for a system with very high 

redundancy psys would be much larger than Pcom p and the difference would be 

approximately equal to psys itself.

FriezePSl] introduced the redundancy factor based on the load factors associated 

with system failure (X ^ )  and component failure (X.comp), respectively defined as:

Nodal et al[93] proposed a P measure as a probabilistic measure of the 

redundancy for the structural system defined as:

(2.13)

X
RF = sys (2.14)

Xcomp

This may relate to the reserve strength index (RSI) in Eq.(2.11).
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When using the incremental load method the load factor, Xj, can be obtained, 

from which the mean load can be predicted up to the particular failure stage, j, i.e. when j 

components have failed. This can easily be extended to estimate the collapse load (in the 

mean sense)f41,154]< Then, the total load factor is defined as the ratio of the load when 

system collapse occurs to the mean applied load as:

[ System Collapse Load ] = X j  * [ Mean Applied Load ] (2.15.a)

or, alternatively,

* _ System Collapse Load
T Mean Applied Load

where X-p is referred to the total load factor [see Eq.(2.95)] when collapse occurs and is 

related to the reserve strength index (RSI) in Eq.(2.11)

For offshore platforms the well-designed jacket platforms in general can show the 

reserve strength index greater than 2.0^91], The X-bracing jacket platform usually 

provides more reserve and residual strength than the K-bracing jacket platform. This 

arises from the more widely understood space frame type redundancy associated with the 

concepts of system stability and determinancy. This has been studied for fixed jacket 

platforms in a safety context by Marshall and Bea$9] and Nodal et al[93].

In the case of a TLP there may be inherent redundancy at the sufficiently large 

cross section and at the joint of a member. The diagonal bracing would provide further 

reserve strength before total collapse of the whole structural system could occur. A 

preliminaiy study for TLP[136] shows that the reserve strength indices are unlikely to be 

less than 1.5 , and generally will be appreciably more than 2.0 in many practical designs. 

These are very large conservative biases so far ignored.

It is generally accepted that redundancy should be considered at the design stage
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to achieve more economic benefit. M osest^»^^] and F a u l k n e r £ 1 3 6 ]  recommended that 

a system factor which relates the component strength to system strength could be added 

in the safety checking equation. This will be further described in Section 5.2.

2.2 Computation of Probability of Failure and Reliability Index

2.2.1 Reliability Index of Single Failure Mode

In this study the Rackwitz-Fiessler a lg o r i t h m ^ ]  is used to calculate the reliability 

index and/or the probability of failure of a single failure mode, which is an extension of 

H a s o f e r - L i n d ^ ]  and  gives a reasonable estimate of the probability of failure. This 

algorithm is often called advanced first-order second reliability method (AFORM)

In general, the limit state equation (or safety margin or performance function or 

failure function) is of the form:

Z = g(y) = g( y i, Y2» • • •. yn ) (2*16)

where yi (i = 1,2 , . . . ,  n) are n reduced variables of basic design variables, xi (i = 1,2 , .  

. n) as basic independent random variables defined as:

x. -  x. 1 “ 1 (2.17)

where xi and a x. are mean and standard deviation of variable xj. Function, g, is some 

given non-linear function and describes the structural behaviour such that for g > 0 safe 

state is defined whereas g < 0 corresponding to failure, and failure state is given by g = 

0. Expand Eq.(2.16) in linear Taylor series which should equal zero, if the limit state 

criterion is fulfilled:
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where gq is partial derivative of function g with respect to y[ evaluated at the unknown 

point, y* = { yi*, y2*, . . . ,  yn* }• The problem is to find the point, y*, where (3 

becomes minimal. According to the first order reliability theory the limit state criterion is 

only fulfilled if the point lies on the failure surface. When such a point is found, the 

corresponding variable, x*, can be obtained from:

y* = ^ —«i (2-19)

where 04 is referred to as the sensitivity factor as defined in Eq.(2.21), which represent 

the relative importance of basic design variables. The point y* is usually obtained by the 

following iteration a l g o r i t h m ^ ] .

In general, at the (j+l)th iteration with the assumed point of yCJ) obtained at the jth 

iteration.

Step 1: Evaluate the partial derivatives gq(i) , i= l,2 ,.. . ,  n at the assumed point, 

y (j):

(j) _ dg((yCi)}) (2 .20)
.i dx.

Step 2: Evaluate the sensitivity factor for all yi, {a® ), given by:



Step 3: Calculate the new point for the next iteration:

yw > -  ( < y ® ) T « . » ) ) « » ------ ' - » ■  (2.22)VPv
Step 4: Calculate the reliability index:

p(j+l) = | y(j+l) | (2.23)

Step 5: Evaluate the design point:

X}(j+1) = JJ -  OjCi) p(i+l) o  (2.24)

Step 6 : Check the convergence:

„ ya +» _  y<n 2
Z ( ^ — A )
i=l y 

J i

and

r  EL_ s  e (2.25)
(J®

where e is a small number as tolerance.

The above procedure will be continued until convergence criteria are satisfied. 

The failure probability is:

Pf = P (g < 0 ) = O(-P) (2.26)
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For the non-normal variable, its mean and standard deviation in Eq.(2.17) are 

replaced by the equivalent mean and standard deviation obtained from the 
f o l i o  w i n g [ 5 4 , 1 5 7 ] :

*
x. - x .

X:

(2.27)

X. - X .  1 ~
~  <t> (  —1 n  ) = £.(**)/T  rr A; 1

X:
(2.28)

where xj* is the approximation point. F(-) and f(*) the distribution function and density 

function of the non-normal distribution, respectively, and <!>(•) and <!>(•) the normal 

distribution function and normal density function, respectively, which has the effect of 

equating the cumulative probabilities of the probability densities of the actual and 

approximating normal distributions at the design point xj* . The solution of Eqs.(2.27) 

and (2.28) is:

<|> t o - 1 { Fx(x.)}]
N  

G =Xi f (X .) X; r

M  *  ,  *
X. =  X. - G  0 - 1 { F (x . )  } —i i x, 1 x, i ' ' (2.29)

xjN and g x .n  are the mean and standard deviation of the equivalent distribution. 

This approximation may become more and more inaccurate if the original distribution 

becomes increasingly skewed. After the design point is obtained from Eq.(2.19), the 

central safety factor (CSF) for each variable can be determined as the ratio of the design 

point value of a variable to its mean value:



For design variables to which a strength model shows particular sensitivity, it is 

suggested that characteristic values rather than mean values should be used particularly in 

the design context. The partial safety factors appropriate for this thus relate the design and 

the characteristic values, and can be derived easily from the central factor since

xik = x i( l± k iV x.) (2.31)

where xy^ is the characteristic value of the variable, lq is a coefficient depending on the 

fractile represented by xy^ and Vx  ̂is COV of xp Minus sign is used for the resistance 

variable and plus sign for loading variable. From Eq.(2.30) the required partial safety 

factors, Yp is:

* 1 - a . p V  
i i

r i = x“  = 1+ k . Vik — 1 x.
1

(2.32)

When kj are zero, the partial safety factors equal to the central safety factors:

ri = 1 -  04 P VXi (2.33)

The above procedure computes the reliability index given the limit state equation 

and the associated statistical parameters of basic design variables. In code calibration the 

PSFs need to be determined for the target reliability index.The required PSFs on each of 

the basic design variables can also be computed following the above procedure by 

sustaining p as target reliability index, p°.

2.2.2 Probability of Multiple Failure Mode

2.2.2.1 General Concept

In system reliability analysis there can be two typical models: Series system and 

Parallel system. The Series system is the weakest link chain type model [Fig.2.3(a)J in

-51 -



which system failure occurs if any component fails, as in a statically determinate 

structure. The Parallel system is a fail-safe model [Fig.2.3(b)], as occurs in collapse of a 

statically indeterminate structure in which the system failure results only after several 

components reach their strength capacity. For practical application the reliability analysis 

is further complicated by the fact that most structures exhibit characteristics that are a 

combination of the Series systems and Parallel systems.

System failure is, in general, the union of each failure mode and a single failure 

mode is the intersection of the component failure of which the elements are possible 

failure modes. Any single failure mode is an interaction of the component failure. In more 

detail component failure is a union of component failure modes, for example, failure due 

to plasticity, local or global buckling, fatigue, etc, i.e. generally system failure is a series 

system of sub-parallel systems and each element consists of sub-series systems of 

component failure modes. The occurrence of any single mode results in the system
failure [13,14]

In a large complex system, such as an offshore platform, there are a great number 

of possible failure events when component failure events and system failure modes are 

combined to result in the whole system failure. However, it is not practically possible to 

consider all possible failure events from the components side and/or from the systems 

side , and hence, for practical purposes, assumptions may inevitably be introduced.

vz/ẑ /z/z/z/z/z/z/z/M
structure model

c

(a) Series System 

Fig. 2.3 System Modelling

structure model

(b) Parallel System

\
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When there are m possible modes, the different failure modes would have 

different limit state functions. The individual limit state function may be expressed as:

Zi = gi(x) = g( x i, X2 , . . . ,  xn ) (2.34)

and then the event of the occurrence of failure mode i is:

Ei = [Zi<0] (2.35)

Then the probability of system failure is the probability that any single mode occurs. That 

is:

m
(P.) = P(E U E , U . . .  U E ) = p ( U. , E.)v rsys 1 2 nr v i=l v

= f . . . |  f  (x., x0, . . .  ,x ) d x .d x -. .  .dx (2.36)J J xp x2, . .  .,x,j 1’ 2* tv 1 2  n
[E,U . . .  U E J

The safe event S[ is the complement of failure events, Ep That is:

Si = [Z i>0] (2.37)

The survival of system is the complement event of the system failure and hence 

the probability of system survival or the reliability is that none of the m possible failure 

modes occur. That is given by:

= P(S1 n S 2 n  "■ °  V  = p(  ° i = l  Si )

=  / - J   xn> d x i dx2 • • • dxn
[Sxn  . . .  n  S J

= ^ ^ P s y s (2.38)
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The basic numerical operation in general system reliability analysis is, therefore, 

the computation of probabilities of unions of interactions of componential failure domains 

in high-dimension random vector spaces. But the calculation of the probability of failure 

or safety of a system through Eq.(2.36) or (2.38) is generally difficult and approximate 

methods are almost always necessary. In this latter regard, bounds of the probability of 

system failure are useful.

2.2.2.2 Probability Bounds of Failure of Series System

As stated by V a n m a r c k e ^ ] ,  one 0f the most difficult questions in structural 

system reliability analysis is how to deal with the statistical dependence between mode 

failure events. It is, therefore, not surprising that research workers in structural reliability 

have tried to develop bounding methods that include modal correlations.

Various authors have developed several methods for determining failure 

probability of a structural system based on different assumptions and t e c h n i q u e s [ 8 4 - 8 6 ]  

F r a n g o p o l $ 4 ]  investigated the accuracy and reliability of various methods for the system 

reliability analysis of ductile systems with random independent strength acted on by 

random independent loads, i.e., to changes in strength and load correlations. Grimmeit 

and S c h u e l l e r [ 8 5 ]  compared various methods with respect to their results, capabilities and 

efficiencies through the benchmark study.

In this section simple bounds^S O ^ narrow bounds^ 1], Vanmarcke’s upper 

boundt82]> Ang and Ma’s upper bound[44] the method by Guenard[39] for 

approximately determining the probability of failure of series system, Eq.(2.36), are 

described. For simplicity, the probability of system failure, (Pf)sys is denoted as Pf.

o Simple Bounds:
The simple upper bound can be seen in reference [47] and is given by:

m

pf s ? pf.
(2.39)

i = l  i
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The simple bounds were proposed by C ornell^]. His upper bound is obtained based on 

the assumption that all the m failure modes are perfectly correlated, and the lower bound 

based on the assumption that all failure modes are statistically independent.

When all modes are positively correlated:

m m
max [ Pf , i = 1, m ] < P < l - T T ( i _ p  ) == ]T p (2.40)

1 i = l  i = i

where Pf. = P(Zj < 0 ) ,  i.e., the probability of failure of i th mode.

And when all modes are negatively correlated: 

m
pf > 1- I l ps (2-41)

i = l  i

where Ps. = P(Zj > 0 ) ,  i.e., the probability of survival of i th mode.

If there are only a few dominant modes, the bounds will be very close. However, 

if several modes fail with almost identical probabilities, modal correlation has to be taken 

into account. For this purpose some methods have been suggested, described as follows.

o Narrow Bounds:

In usual structural engineering the total failure probability is purposely made very 

small. This has the fortunate side-effect of making the bounds quite small in most cases. 

The bounds are given solely by the probability of the single-mode failure events E f , . . . ,  

Em and their pairwise intersections Ej n  E2 , . . . ,  Em-1 n  E m . In fact, the total failure 

event u . E. has a probability which is bounded as follows^ 11:
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Upper bound:

(2.42)

Lower bound:

m m i-l
k u ; , e , ) , p ( b , ) + 2  max [ 0, P(E.) -  I  P(Ej n  E ) ] (2.43)

i=2 j=l

Since 0 < P( Ej n  E j) < min [ P(Ej), P(Ej) ], it is always possible to determine a 

unique number p jj such that

where O (—pj, - P j ; pjj ) is the bivariate normal distribution function corresponding to 

zero means, unit variances and correlation coefficient p j j . The numbers pj and pj are the 

single-mode reliability indices of the i th and j th failure modes respectively, i.e., pj is 

defined by the identity P( E j) = O(-pj), and correspondingly for p j , P( E j) = <E>(-pp. 

The number pjj in (2.44) is called the correlation coefficient between the i th and j th 

failure mode. The bounds (2.42) and (2.43) almost coincide for all of these correlation 

coefficients not larger than about 0.5 - 0.6 provided the total reliability index

is larger than about 3.0. Without restrictions on the failure mode correlation coefficients 

very narrow bounds can be constructed on the basis of (2.42) and (2.43) through a 

particular method of conditional bounding. It requires no more than a single integration.

The bivariate normal distribution function, Pjj in Eq.(2.44) can be obtained from:

P( Ej n  E j) -  Pjj -  O (-pj, - p j ; pj j ) (2.44)

(2.45)
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pij
pij = ^C-Pj) ®(-Pj) + J <t>2(-Pi, - P j ; r ) dr (2.46)

0

where <J>2 is the two-dimensional normal density function given as:

4>2(x , y ; r ) = ------ - . e x p [  1— ~  ( x2 + y2 - 2rxy) ]  (2.47)
2* 7 1 - r 2 2(1 - 1 )

When given pj, pj and py , direct calculation of P(Ej n  Ej) can be avoided by 

using the inequalities:

when pjj > 0

<D (-Pi, - P j ; P ij) < «K-Pi) <K(-Pj, j) + 4>(—pj) <K-Pi, j) 

o  ( -P i ,-P j; P ij) > max( ®(-pj) <D(-pj, . ) ,  ®(-Pj) ® (-P j, j ) ) (2.48)

when pjj < 0

<*> (-pj, - p j ; P jj) < min{ 0 (-p j) <D(-pj , . ) ,  0 (-P j) <D(-Pj, .)} 

0 ( - p j , - p j ; p j j )  > 0 (2.49)

where

( P . - P .  p..)
= pj V  (2.50)

Narrow bounds are often referred to as Bi-modal bounds or Second-Order bounds.

o Vanmarcke's Upper Bound:

This upper bound is given by$21:
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m

Pf S Pf ,+ Z  pf min i-! P [ (Zj > 0) I (Z. < 0) ]
i=2 ‘ J

(2.51)

in which the conditional probability that mode j survives given that mode i occurs is 

approximated in terms of the absolute value of the coefficient of correlation between the 

failure modes i and j, Ip^jl, of the safety indices (3̂  and pj associated with these modes, 

and of the probability Pf  ̂= 0 ( p j) as :

P:
max [ —1—, p ]

/  Ip..I \
P ( Z . > 0 I Z . < 0 )  = l - 0 ( ---------- H-------- )  (2.52)

J 1 ocp.)

This upper bound sometimes gives a better estimate than that given by the upper bound of 

narrow bounds.

o Ang and Ma's Upper Bound:

Probabilistic network evaluation technique (PNET)[45] js usecj to estimate the 

upper bound as follows:

all

pf < 1 -  n  (1  -  Pf,group ) =  Z  max [ Pf group ] (2.53)
all groups

in which Pf,group probability of the "representative" event of a group of failure 

modes with high correlation. The probabilistic network evaluation technique (PNET) 

avoids calculating probabilities resulting from conditions leading to failure via a pair of 

failure modes. This method is based on the notion of demarcating correlation coefficient 

p0 assuming those failure modes with high correlation (py > p0) to be statistically 

independent. The failure modes must be arranged in decreasing order of their 

probabilities of occurrence, and in each group the mode with the highest probability of
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occurrence is chosen as the "representative" event of the group. Since the different 

groups are considered statistically independent, the overall probability of failure of the 

system is approximated by the right hand side of Eq.(2.53).

Recently Chou et al[83] presented possible alternatives for grouping technique by 

using the taxonomic (cluster) analysis [158] and Tichy and Vorlicek technique^ 59] # m 

the first alternative a complete linkage hierarchical clustering can be obtained on a given 

similarity matrix (the correlation matrix) and the most meaningful level of clustering can 

be obtained by comparing with a reference value, such as the demarcating correlation p0 . 

Although this technique still requires an arbitrary p0 value to define the dependency 

among failure modes, it embeds the consideration of mutual correlation during the 

formation of the cluster. In the second alternative, it eliminates using the arbitrary p0 

value, while the relationship among failure modes is embedded in the multi-variate 

correlation coefficient, which is the attractive point of the approach.

o Method by Guenard[39] :

If all possible failure modes are not included in the analysis then the result 

obtained is a lower bound on the probability of system failure, i.e. since some potential 

failure modes are ignored the true system failure probability will be larger. If, for any 

specific mode, all the component failures in the mode are not considered, i.e. an 

incomplete mode, then the probability of occurrence of the mode will be larger than the 

true value, and a system failure analysis including all such incomplete modes will result 

in an upper bound on the probability of system failure. Conceptually Pf is bounded as:

(Pf) from dominant modes < Pf < (Pf) from incomplete modes (2.54)

In the extreme case, the lower bound could be the probability of occurrence of 

any one particular complete sequence, and upper bound could be the probability that any 

component fails in the intact state, i.e. in each mode only the first component failure is 

considered and all further failures are ignored.
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2.2.23 Concept of Equivalent Safety Margin of a Single Failure Mode

Any single failure mode is defined as a parallel system of component failures 

[Section 2.2.2.1]. When a safety margin equation is given in the form of linear 

combination of loading and resistance variables [see Eq.(2.62) in Section 2.3], the 

equivalent failure probability and the corresponding equivalent reliability index of a 

failure mode can be calculated using the concept of the equivalent linear safety margin 

suggested by Gollwitzer and R ackw itz^l.

When k components, t\ , . . .  r^ have failed, let the j th failure mode be

expressed as

where Zj[ (i = 1, k) is the safety margin when component q  has failed. Omitting the sub­

index j for a moment, safety margin equations corresponding to failure modes can be 

written

where X | ( i = 1, 2 , . . . ,  n ) are n basic design variables, cq = ( cqj , cq2 , . . . ,  a in ) 

is a sensitivity vector for safety margin Zj and pj is the Hasofer-Lind reliability 

indexl^l],

A generalised reliability index pp for the parallel system is then given by:

Zj = ( Zji < 0 n  Zj2 < 0 n  . . .  n  Zjn < 0) (2.55)

n
(2.56)

Pp = -O-1 ( On ( -p : [ p ] ) ) (2.57)
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where,

P = ( Pi » ?2 »• • •» Pn )

[p] = [pjj]= [OiT cxj] is a correlation matrix between each safety margin.

The equivalent linear safety margin Zecl is now defined in such a way that the 

corresponding reliability index pe(l is equal to pp and it has the same sensitivity as the 

parallel system against changes in the basic variables Xj, i = 1 , 2 , . . n.

Let the vector X of random variables be increased by a small vector e = (e^, e2, • 

. . ,  en). The corresponding reliability index Pp( e) for the parallel system is then

n

Pp(e ) = - 1 >"1[ p { n i=1 ( X o ij(Xj + e.) + p .2 0 ) } ]
j=l

= —(t>1[ On(-p  -  [a] e ; [p]) ] (2.58)

where [a] = [oqj]

Let the equivalent linear safety margin Ze(l be given by:

Zf q = a f z . + o ^ Z 2 + . . .  + a * + |f »

X  + P ^  (2-59)
j=l

where a e(l = ( a i ecl, a 2ecl, • • • , a sensitivity vector and pe(l = Pp . By the

same increase e of the basic design variables the reliability index pecl( e) is:

peq( e) = <x>-l( <d (_peq. a eqx e) )

= pe(l + ae(lT e

= peQ + a ^ +  a 2ecl + . . .  + ake(l (2.60)
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It is seen from Eq.(2.60) and by putting Pp(0) = pe9.(0) that the sensitivity vector is 

given by:

, i = 1, 2 , . . . ,  n (2.61)

oqecl (i = 1, 2 , . . . ,  n) is evaluated approximately by numerical differentiation.

2.3 Failure Path Approaches

For many redundant ductile and semi-brittle systems ultimate structural collapse 

occurs only after several components simultaneously reach their maximum capacity. In 

such a case a general expression for the safety margin of any failure mode can be 

expressed in the form of linear combination of resistance and loading v a r i a b l e s ^ , 159] 

For the m th failure mode:

Zm  = safety margin of m th mode

Rjc = resistance of the component k (deterministic)

Pj = the 1 th loading acting on the structure

Cmk = resistance coefficient

Bml = loacl coefficient for Pj ,i.e. load effect due to unit value of load Pj

L

(2.62)
k=l 1=1

where,

(deterministic)
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j = number of failed components

L = number of loading cases

The first part of Eq.(2.62) will be called the resistance term and the second part 

the loading term. When the failure of j th component leads to the collapse of the structure, 

Cmj = 1.0. The following two sections deal with deriving the safety margin by the two 

typical types of failure path approaches: Incremental Load Method and Element 

Replacement Method.

2.3.1 Incremental Load Method

This method is based on the mean resistances of components and mean load, and 

the load at which collapse occurs is approximately equal to the mean system resistance. 

The variance of system resistance may be computed by first-order reliability concept.

The method calls for progressive "unzipping" a structure as successive 

components reach their capacity until overall failure occurs. The incremental loading 

algorithm can utilise existing structure analysis algorithm and leads to simultaneous 

evaluation of mean and variance of strength. The result of a single unzippng analysis is a 

failure mode whose strength or resistance is expressed as a linear combination of the 

strength of components which fail during the load incrementing process.

Consider the m th failure mode. For single load pattern, when j components rj, 

12, . . . ,  rj have failed and between each incremental stage the load is increased by 

increments P i, P2» • • •» Pj> then the utilisation equation is expressed ast11’21*40!

P

^ 2  ^ 1  *22 P.2

(2.63)
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where the element ajQ is referred to as the utilisation ratio and is defined as the proportion 

of strength of component k utilised in the i th load increment, which represents the 

relationship between component strength and load increment and may be a stress in some 

cases or even a more complex expression such as the interaction formula for combined 

loading. is the strength of the failed component, r^, and is the load increment to 

fail the component r^. In matrix form:

where matrix [a] is the utilisation matrix and is a triangular matrix of which all elements in 

the upper triangle are zero, and (Re ) and {P} are the resistance vector of which elements 

are the strength of failed components and the load increment vector respectively.

The load increment vector is obtained by solving Eq.(2.64)

System resistance, Rsys is expressed as the sum of the load increments prior to failure:

The system strength is then only a function of components which failed during the load 

incrementing process. The variance of the system resistance can be obtained by the first- 

order reliability concept with referring to Eq.(2.66). That is:

{Re) = [a] {P} (2.64)

{PJ = [P] ' 1 (Re ) (2.65)

(2.66)
k=l

where Cfc' is the sum of the k th column of [a] '1

(2.67)
i=k
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GRsys ■t ’ 2 2
c x <  

k=l k
+  2 ,  L  CiC k CTR.a RkP

i = k
ki (2.68)

where a R^ is the standard deviation of the strength of component rk and pki is the 

correlation between component rk and rp

The safety margin of the system is the difference between the system resistance 

and the loading.

k=l

Then, the reliability index pm of the m th failure mode is evaluated simply as

Pm = - O _ 1{ P ( Z m < 0 )} (2.70)

where O is the standard normal distribution function.

When Eq.(2.69) is rewritten normalising by the final resistance coefficient Cj', 

the coefficient of Rj becomes a unit, i.e.:

Cj = 1.0 (2.71. a)

and other coefficients become:

Ck = Ck7Cj\ k=l, 2 , ....,j-l (2.7l.b)

The coefficient of load P is 1.0/Cj. Since the utilisation matrix is a triangular matrix, Cj = 

1.0/ajj and the coefficient of load P becomes ajj, i.e. equal to the utilisation due to unit 

load of P. Hence, the loading term becomes:
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where Q simply denotes the loading term. Referring to Eqs.(2.71.a) - (2.71.c), the 

equation of the safety margin, therefore, can be rewritten as:

Zm = £  C, A (2.72)
k=l

where Cj = 1.0

For the system with components of semi-brittle or brittle behaviour the utilisation

where [B] is referred to as the "unloading matrix", which represents the unloading effects 

that failed components have on the remaining unfailed components in a structure and is 

also a triangular matrix of which all elements in the upper triangle are zero. When a 

component r^ has failed in a semi-brittle manner, the element B]q represents an increase 

in utilisation of an unfailed component q due to a unit reduction in strength of component 

r^. Let the residual strength parameter of component r^ be Tj  ̂[see Fig. 1.1.(a)], and the 

increase in utilisation of unfailed component q  due to the unloading of component r^ be 

S]q, then the element Bjq becomes

and the diagonal elements are unit, Bji (i = 1, j). For ductile systems there is no 

unloading process, so [B] = [I].

equation can be expressed as[44]:

[B] [Re] = [a] [P] (2.73)

B k i  (1  — TJk ) Ski (2.74)

The load increment vector is obtained from Eq.(2.73) as follows.



{P} = [a]~ l [B] {Re} (2.75)

The next procedures are the same as before.

2.3.2 Element Replacement Method

In this method after each componential failure, the structural stiffness is locally 

modified and the residual strength of failed components is accounted for by applying the 

artificial (or equivalent) nodal forces on the structure.

For illustration, consider a frame structure with n members and L loads applied to 

its nodes. Both ends of a member are expected to turn into hinges. Then, there are 2n 

possible hinges as components. The load effects of component k are written in the form:

where Pj (1 = 1, L ) are the applied loads and bjd the load effect coefficient of component 

k due to unit load of Pp When a fully plastic moment capacity, R^, is taken as the 

strength of component, k, the safety margin for this component is:

When j components r j ,  r2 , . . . ,  rj have failed, the stiffness matrices of the associated 

members are replaced by the reduced ones and their residual strengths are applied to the 

nodes as artificial nodal forces. Then the load effects of unfailed component, k, can be 

obtained as the sum of those due to applied loads and those due to the artificial nodal 

forces.

L

( k = 1, 2 , . .  . ,  2n ) (2.76)
1=1

^k -  &k “  ^k (2.77)

(2.78)
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where suffix (ri, r2 , . .  . , rj) denotes a set of failed components arranged in the 

sequence of failure, and bj ĵG) represent the load effect coefficient due to applied loads 

when stiffness matrices of components, r j, r2 , . . . ,  rj are replaced by the reduced ones. 

Consequently the safety margin of the unfailed component, k, is given by:

= Rk + i \ i Ri - X b® Pl (2.79)
i=l 1=1

When failure of components, r j, 12, . . . ,  rj results in the collapse of a structure, 

the reliability index of the mode is then given by:

P = _ ® -1{ P ( Z k ( r „ r2 f j ) < 0 ) ) (2.80)

2.4 Present Approach

Up to the present, one of the important limitations of the approximate method 

which should be overcome is that the post-ultimate behaviour of a component might not 

be able to be considered realistically. As is well recognised, the post-ultimate behaviour 

of the failed components can greatly influence the system reliability.

In this section, the present system reliability analysis method, called the extended 

incremental load method, is introduced, which is an extended approach to the 

conventional incremental load method^1 The basic idea of the present method is 

similar to the incremental load method. The present method primarily aims at extending 

the applicability of the conventional one to the multiple loading case, and also to more 

realistically taking into account the post-ultimate behaviour of the failed components, 

although not completely, using the concept of the load factor. The modified form of the 

safety margin equation is proposed to directly use the strength formulae in the system
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analysis and to account for the randomness nature of the strength modelling parameter. 

The derivation of the reduced element stiffness matrix is described.

As described in Section 1.3.5 [see Table 1.1], the applicability of the 

conventional incremental load method is restricted to a single load pattern [scaled by a 

random load variable]. Moses and R a sh e d i[b 6 ]  introduced its application to the multi­

loading case for the ductile system, but the extension to the multi-loading case is based on 

incrementing one load and keeping the rest fixed to their final value. However, this is not 

consistent, i.e. all loads are incremented proportionally till failure, therefore, the validity 

of the formulation is not clear.

Since in the incremental load method the load factor up to any particular failure 

stage can be obtained, this factor may be used to predict the deformation of the failed 

component, in a general sense, based on the mean value of the load. Hence, it can be said 

that the incremental load method has potential to more realistically take into account the 

post-ultimate strength than other methods do to solve the limitation as mentioned above. 

If the incremental load method can be applied to the multiple loading case, it has the 

potential to evaluate the system reliability of a structure with complex components, such 

as floating offshore structures in which the post-ultimate behaviour of a component plays 

quite an important role. As will be discussed later, another shortcoming of the 

conventional incremental load method is that it usually cannot generate the most important 

failure modes.

In the incremental load method the utilisation ratio generally represents the 

relationship between component strength and load increments and may be a stress in 

some cases or even a more complex expression, such as the interaction formula for 

combined loading. The existing strength formula, developed for the principle components 

of offshore structure, such as column and pontoon, can be used for this 

purposeful 13,118,119,128,160-162].
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2.4.1 Extended Incremental Load Method

The procedure which derives the safety margin equation for the multi-loading case 

is similar to that of the single loading case in Section 2.3.1. In the present method the 

contribution factor defined below for each loading is introduced. Let L loading act on a 

structure in which j components r\, T2 , . .  .>rj have failed. The utilisation equation for 

each loading may be expressed as Eq.(2.81) similar to the previous single loading case 

[see Eq.(2.63)]. For the 1 th loading:

r \1

K2

*

R.
J

i®li
a(1) a(1)21 22

*®Jl J2
■L®JJ

p :
j

0)

(2.81)

or simply

{Re) = [a®] (2-82)

In this equation the superscript (1) represents the term related to the 1 th loading case. 

After solving Eq.(2.82) for the load increment vector, (PC1)), summing up each column 

of [a(1)]“1, and normalising the coefficient by the final one gives the resistance 

coefficients for 1 th loading case. The resistance coefficient CfcO) corresponding to 

resistance Rfc of component % for 1 th loading case is:

,0)

i=l
) , k = 1 , 2 , . . . ,  j-1 (2.83.a)

and

C j®  = 1.0 (2.83.b)
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The index k (= 1, . . . ,  j) means the sequence of component failure.

The contribution of resistances of failed components for each loading case can be 

accounted for by introducing the contribution factor, CF. The contribution factor, CF0-) 

for the 1 th loading case is here defined as the relative proportion of utilisation of the j th 

component rj (the last failed component) for all loading cases. Then, resultant resistance 

coefficients for all loadings are obtained by summing up the resistance coefficients for 

each loading multiplied by the corresponding contribution factor, i.e., the resultant 

resistance term is expressed as the sum of contributions of resistance for each loading 

case to the system resistance.

L

Ck = X  CkD • Cf(0 • k = ! • 2.......... J '1 (2.84.a)
1=1

with the contribution factor, CFO) defined as:

Cp® _
a®
jj

t  1 a0) I
w  *

(2.84.b)

Hence, the resistance term in the equation of safety margin, i.e. system resistance, can be 

expressed as:

RSyS =: Cj Rq + C2  R2  + • • • + Cj Rj (2.85.a)

where Cj is unity.

Referring to Eq.(2.71.c), the loading term can be easily obtained as the sum of 

the product of the utilisation ratio, ayO) and load, PO).
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Q = - (  aj/Dpd) + ajj(2)p(2) + . . .  + ayOpd) ) (2.85.b)

where Q simply denotes the loading term. With Eq.(2.85.a) and (2.85.b), the equation of 

safety margin for the m th failure mode becomes:

Zm = RSy s -Q  = i Cn * Rk - X Bm, p(1) (2-86)
k=l 1=1

where Cmk and Bmi are resistance and loading coefficients for m th failure mode 

respectively, and Bmi = ajjd). This equation is the same as Eq.(2.1), except that the 

superscript appears in the loading term.

When using the incremental load method, summing up all elements of the inverse 

of utilisation matrix results in the load factor up to any particular failure stage. This 

concept can be extended to compute the load factor at any incremental stage and then to 

determine the strain of failed component in the mean sense under the multiple loading. In 

Eq.(2.81) an element of utilisation matrix is the utilised proportion of a component 

strength at a particular incremental stage due to unit load , pd) = 1.0. When the mean 

values of the applied loads are substituted the element of utilisation matrix represents the 

mean utilisation for each loading case. Hence, the total mean utilisation is simply the sum 

of the mean utilisation for each loading case.

Let • • • »^j» t>e mean l°ad factors corresponding to incremental

stages. Then, the utilisation equation for the mean load may be expressed as



or simply:

(Re) = [A] {A} (2.88)

where Ajq is the total mean utilisation given as:

\ i  = Z  e(0  (2.89)
i=l

and Pd) is the mean value of load pd). By inverting Eq.(2.88), the vector of the mean 

load factors for load increments can be obtained.

[X) = [A H  (Re) (2.90)

The deformation of already failed component q  ( i = 1, 2 ,. . .,j-l ) up to the 

previous stage are determined in the mean value sense. At the j th failure stage (the 

present failure stage) when component rj has failed, the mean load factor, Aj is calculated 

from Eq.(2.90). Let Aer.d) be the strain increment due to unit value of load pd) of 

component q , then the mean strain increment of the failed component q  becomes:

L
^ A e ® . £ (1), i = 1 , 2 , . .  .j-1 (2.91)
1=1

Since the load factor of the present stage is Xj, the mean strain increment of component q  

at the present stage becomes:

L
(Ae ). = X. T  Ae® P® (2.92)

>J J l=l *

Hence, the total strain up to the present stage is
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(erj)j = (6q)j-l + (Aerpj (2.93)

where (£q)j-i is the strain state of component q  up to the previous incremental stage. 

Strains of the components are normalised by the strain at the ultimate state, i.e.:

' ( Er. }j
(e r ). = — (2. 94) 

i J 8u

Referring to the normalised strain state calculated from Eq.(2.94), the strain state 

of each failed component up to the present incremental stage can be calculated and at this 

point the corresponding tangential stiffness (non-dimensional) of components can be 

obtained from the stress-strain curve. For example, in Fig. 1.1(b) the tangential stiffness 

of component q  is

E2* when )j' < e2

or

E3 1 when e2 < (£ q )j' < e3

or

E4 ' when 83 < (£ q ) j‘

The procedure described above may is one possible approach to more realistically 

consider the post-ultimate behaviour (post-failure behaviour) of a failed component even 

for the structure under multiple loading. Since the above procedure of determining the 

strain state of failed component is based on the mean load value and strain state of failed 

component is predicted at each incremental stage, i.e. at the failure stage of each 

component, when the tangential stiffness abruptly varies, e.g. from E ^ to £ 3 ', or from 

E3 ' to E4' in Fig. 1.1(b), its effect cannot be precisely taken into account because of the 

finite size of the strain increments. This is a small limitations of all piecewise linear 

procedure.
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If collapse of a structure occurs when j components q ,  r2 , . . . ,  rj have failed, 

the total load factor, Xj  is given as the sum of all load factors, i.e .:

(2.95) 
i=l

where elements of are calculated from Eq.(2.90). Since when using the interaction 

equation under the multiple load effects, the elements of utilisation matrix in Eq.(2.81) 

and the elements of total mean utilisation matrix in Eq.(2.87) are non-dimensional, 

represents the ratio of the load at collapse to the applied load.

2.4.2 Modified Safety Margin Equation

As described in the previous section, the utilisation ratio represents the utilised 

proportion of a component strength, and this can be obtained by using the complex 

strength formula. For a simple case, when there are only two random variables for 

component k, say, strength as a resistance variable and load effect, Q^, as a loading 

variable, the safety margin or limit state equation is given by [note: subscript k does not 

denote the characteristic value]:

Zk(XM,R ,Q ) = X Rk - Q k (2.96.a)
k

where X ^k is commonly known as the modelling parameter (or modelling error) for the 

strength of component k and defined as&h

x  _ actual behaviour ^  ^
M ”  predicted behaviour

which represents the subjective uncertainty of the strength model in the reliability 

analysis[8,13,163], Mean of is referred to as the bias, XM, and when there is 

sufficient data the random component of X ^  is usually referred to as the modelling
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uncertainty specified by its coefficient of variation, VXm> which should be no greater than 

13% for a good strength model[163]

Faulkner et altl 19,163] recommended the following statistical requirements 

related to the modelling error:

[1] The mean bias, X ^, should be close to unity and should be within about +5% 

to -5%

[2] The modelling uncertainty, VXm> should be kept as low as possible and overall 

value of about 13% should be achievable for ultimate strength equations for 

most components.

[3] XM should show low correlation with any basic design variables, that is, no 

skewness should be inherent in the strength model.

In Eq.(2.96.a), when a structure is under the multiple load effects, Rk can denote 

the reference strength of component k, e.g. ultimate axial compressive stress or ultimate 

radial pressure and Qk the corresponding load effect, e.g. axial compressive stress or 

radial pressure. Dividing both sides of Eq.(2.96.a) by the component strength gives the 

alternative same safety margin without loss of any physical meaning. That is:

z ; ( x M. R.Q > = x Mk - x  <2-9 6 b >

in which Qk/Rk implies the utilised proportion of component k as a loading variable in 

the safety margin. When using the Rackwitz-Fiessler algorithm!54], since the reliability 

index is invariant to the different limit state equations of the same problem, Eqs.(2.96.a) 

and (2.96.b) give the same reliability indices because of their same physical meanings.

In the case of multiple load effects, the safety margin for component k can be 

generally and conceptually expressed in the non-dimensional form as:

Zk({R), {Q}) = 1 -  G({R)k. (Q)l) (2.98.a)
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which is an interaction equation representing the failure surface [Fig. 2.4] and where 

{R)k denotes the resistance variable vector associated with the component strength, such 

as the geometric and material properties and {Q) j the loading variable vector associated 

with the load effects such as axial force and bending moments. As before, when the 

strength modelling parameter is introduced as another random variable, Eq.(2.98.a) can 

be rewritten as:

Zk(XM*{R}> {Q}) = x M k -  G({R}k, (Q)i) (2.98.b)

The mean bias of XMk implies that the failure surface is to be shifted from the surface 

given by Eq.(2.98.a), and its COV the perturbation of the failure surface around the 

shifted one. For illustration, Fig. 2.4 shows two-dimensional failure surface. The 

strength modelling parameter may have to be treated as a random variable in strength. 

Because it differs, depending on the strength formula for a particular component type, 

and for the same type of strength formula it can be updated as experimental data are 

accumulated. These effects can be reflected by use of Eq.(2.98.b). Guenard et al[148] 

proposed the same idea with mean bias of XM being hopefully close to unity and its 

probability density function representing the model uncertainty.

The reliability index is obtained from:

P = -  F(Xm, {R}, (Q)) < 0 ) (2.99)

O R I G I N A L  F A I L U R E  S U R F A C E  

Z = 1  - G ( { R } , { Q } )

S H I F T E D  F A I L U R E  S U R F A C E  

: Z  =  X m - G ( { R } , { Q } )

D I S T R I B U T I O N  O F  X M

Fig. 2.4 Two-Dimensional Failure Surface
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In order to use the strength form ula  for the present purpose, the safety m argin  

equation given by Eq.(2.86), or Eq.(2.62) can be modified as follow to consider the  

effect of change in strength modelling parameter in system reliability analysis. Separating 

the resistance term of component rj in Eq.(2.86), which is the last failed component, and 

considering that its coefficient is unity [see Eq.(2.71.a)]:

k=l 1=1

= Rj -  Qj (2.100)

where Qj is the load effect due to the already failed components, r j ,  r2 , . . rj_i and due 

to the loading acting on a structure:

1=1 k=l

When introducing the strength modelling parameter of component rj, XMj, Eq.(2.100) 

becomes [see Eq.(2.96.a)]:

Zm -  ^Mj Rj “  Qj

Dividing both sides of the above equation by Rj and re-substituting Eq.(2.101) can give 

the safety margin which has the same physical meaning as Eq.(2.86):

z '  = x Mm M. R. 
J J

R . p 0 )

- X  + > C — B (2.102)
“  M. mk R ml R.

J k=l j 1=1

Let {RJk and [Q)i be the resistance variable vector and the loading vector as before.
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Then the first summation term in Eq.(2.102) can be regarded as a function of {R}^, k=l, 

2 , . . . ,  j-1, and {R}j, and the second term as a function of {Q}j. Hence, with these the 

safety margin equation (2 .86) can be conceptually modified in the non-dimensional form. 

That is, from Eq.(2.102):

where the first summation term is the contribution of the strength of the already failed 

components to the system safety margin and the second term is that of the loadings. The 

denoted the strength modelling parameter of the j th component, rj (last failed 

component) and {R)j the design variables of component, rj , such as shell thickness, 

stiffener spacing, stiffener scantlings, yield stress, elastic modulus, etc. {R}^ denote the 

design variables of already failed components, r j, r2, . . . ,  r j.j and {Q}j the vector of 

load effects due to the 1 th loading. Function and Gj show that they are associated 

with the strength of component r^ and with the 1 th loading case, respectively.

Since the function G is the interaction equation under multiple load effects, the 

elements of utilisation matrix in Eq.(2.81) represent the utilised proportion of the 

strengths of failed components when structural collapse occurs. Hence it can be said that 

expression of the safety margin equation as Eq.(2.103) is a feasible way to use the 

existing strength formula developed for the principle components in the system reliability 

analysis of a structure under multiple load effects and to take into account uncertainties of 

basic variables in strength and loading without loss of any physical meaning, and one 

possible way to flexibly evaluate the system reliability when the strength models are 

updated as more experimental data for components are accumulated. Each function G^ or 

Gj of Eq.(2.103) can be treated as a random variable and then its mean and variance can 

be easily obtained using the concept of the First-Order Second Moment Method. Doing 

this effectively represents the uncertainties in design variables to the safety margin. Let 

{X} be a vector of the random variable representing the resistance and load effects, i.e.
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{X} -  [XM, {R}, {Q}]t , then the mean and the variance of function Gj (or G^) are 

obtained from:

a  = gk { x j ) (2.104.a)

(2.104.b)

where

{X} = the mean value vector of the random variable vector,

(X i,X 2, . . . , X j , .  . . )

a Xj = the standard deviation of a random variable, Xj

Pjj = the correlation coefficient between Xj and Xj

and the terms in the brackets of Eq.(2.104.b) represent the partial derivatives of the

function Gj({X}) evaluated at the mean values of random variables. Due to the complex

nature of the function Gj({X}), its derivatives have to be determined numerically.

The detailed procedure of deriving the safety margin equation for a structure 

under multiple loading by the proposed method in this study is illustrated in Appendix-A 

for a portal frame model. The comparison of the results by safety margin equation (2.86) 

and its modified form, Eq.(2.103) is presented in Section 2.6.

2.4.3 Reduced Element Stiffness Matrix

For the structure analysis the structure is generally modelled as a finite element 

type space frame and the load effects such as axial force and bending moment, are 

calculated using the beam theory. A typical beam element is shown in Fig. 2.5. Both 

nodes of an element in Fig. 2.5 are expected to fail in the plastic hinge type when the load 

effects or their combined effect reach their capacities.

One of the problems in the system reliability analysis is to derive the reduced
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stiffness matrix of an element after failure of its one or both nodes when the structure is 

under the multiple load effect. The strength formula Eq.(2.98.b) has usually the nonlinear 

interaction form, as described in section 1.3.4, and up to the present there is no way to 

consider the nonlinear interaction failure su rfa ce ^ ] . jn this study, the concept of 

plasticity flow theory is used to derive the reduced stiffness matrix using the strength 

formula, generally given as Eq.(2.98.b).

When an element remains in an elastic state, i.e. no node fails, the relation 

between the nodal displacement and the nodal force vectors, {u} and {f} is given by

where [Jcq] is the elastic stiffness matrix of an element.

Let {aj} and {aj} be the flow vectors for node i and j respectively, then the flow 

vector of an element is:

and components of the flow vector of a failed element are given as the partial derivatives 

of the interaction equation (failure surface or limit surface equation, Fig. 2.4) with respect 

to nodal force vector:

where Z is the interaction equation, i.e. the strength formula and f^' is the nodal force 

normalised by the ultimate strength corresponding to the associated load effects, e.g. the 

ultimate axial compressive stress or the ultimate bending moment when each load effect is

[k0] {u} = (f) (2.105)

(2.106)

dF dG (2.107)

dfic
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applied separately. The elements of flow vector are given as the partial derivatives of 

function G because the strength modelling parameter is not a function of nodal force.

The explicit form of the reduced stiffness matrix [kr] , when one or both nodes of 

an element have failed, is given as follows:

[1] When one node, i, has failed:

Using the above equations, the reduced stiffness matrix is obtained for each 

element and transformed with respect to the global co-ordinate system of structure. Then 

with this, the reduced total structural stiffness matrix is formed through the standard

the reduced element stiffness matrix. Flow vectors are derived based on the strength 

formula and hence differ from the component types. These are illustrated in Appendix D.

(2.108)

[2] When both nodes, i and j, have failed:

[kr] = [kol -  [H]t [G f1 [H] (2.109)

where

[Gij] = (ai)T [ko] (aj) [Hj] = {ai)T [kd

assembly procedure^ 6^1 The required international forces or stresses are calculated with

/ K L

y a

Fig. 2.5 Nodal Displacements and Nodal Forces of Beam Element
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2.5 Procedures of Identifying the Most Important Failure Modes

When a structure is treated as a system, its failure should be seen as progressive 

collapse, or as a mechanism of successive failures of some of its components. 

Identification of the failure modes is selecting the failure modes and one of the most 

important parts of the failure path approachCH’13,88] jn a complex structure such as 

offshore platforms, the number of potential failure modes is usually very large. 

However, it is not practical to consider all possible failure modes to evaluate the 

probability of system failure. But, as is well recognised, only a few are important and 

dominant in evaluating the probability of system failure. Hence, a searching technique 

has to be used to identify the most important failure modes which have high probability 

of occurrence, i.e. low reliability indices.

The reason that the modes identified through searching techniques are termed as 

the "most important or most significant failure modes" is that, for a small structure, 

identifying the probabilistically (stochastically) most dominant failure modes may be 

possible but, for a large and complex structural system, it should be impossible to 

identify those that are "truly" probabilistically the most dominant ones due to the 

assumptions inevitably involved in a particular technique. Hence, they should possibly be 

termed as the "most important or most significant failure modes".

At present there are several procedures of identifying the most important failure 

m o d e s [ 8 8 ] : Monte-Carlo simulation, Utilization ratio-based method, Marginal failure 

probability-based method, Truncated enumeration method and Branch and Bound 

method. These are described in this section.

2.5.1 Monte-Carlo Simulation!!2]

Failure modes generated by this method may not be the most important ones, and 

this method usually requires much computational time. Because of this the method may 

be neither practical nor efficient for the practical problems.
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2.5.2 Utilisation Ratio-Based Method

This procedure is based on the mean strengths of components and has been 

coupled with the incremental load method^!]. To identify the most important failure 

modes in this method the following deterministic criteria are used:

- component with the largest ratio of change of its utilisation is chosen 

as the best candidate for component failure.

- component for which the load factor is very large is ignored as a potential failure 

component.

- If two or more components have the same increase in utilisation ratio the one 

with the smallest load factor is a better candidate failure.

But the failure modes generated may not be the most important ones since, in 

identifying the failure modes, deterministic criteria mentioned above are used and the 

stochastic properties of random variables in resistance and load are not considered.

2.5.3 Marginal Failure Probability-Based m e th o d ^ ,42,43,165]

The idea of this method is that the candidate component chosen to fail is the one 

which has the highest marginal failure probability. A variation on this idea is that the 

candidate component chosen to fail is the one which is the last component of the 

failure path with the highest overall path failure probability rather than just the marginal 

probability of a component failure. Another variation of this method has been proposed in 

reference [165].

This procedure is divided into branching and bounding o p e r a t i o n s ^ ] .  The 

branching operation is to select a component so that stochastically dominant failure modes 

may be obtained and based on the criterion that joint probability to fail is to be 

maximised. The bounding operation is to select the modes to be discarded and evaluate 

the contributions of the resulting failure modes.

This method and its variations probably generate important failure modes, but the 

order of failure probabilities of generated modes may not be obtained in decreasing order
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of failure probabilities. It may be possible to overlook a mode in which the initial failure 

is less important but the latter failure is most important, i.e. more important failure modes 

may be ignored according to this procedure.

2.5.4 Truncated Enumeration M ethod^]

This procedure has been proposed to iteratively determine the probabilistically 

dominant failure modes. By this procedure the probabilistically dominant failure modes 

can be derived from successive systematic curtailment of the results which would be 

obtained by complete enumeration within the accuracy of the criteria used for curtailment. 

But using this probably requires tremendous computational time since all potential 

sequences have to be exhausted.

2.5.5 Branch and Bounding T e c h n i q u e ^ , 156]

This method is a probabilistic search technique which has been used in the system 

reliability to obtain the most likely occurring sequences. Failure modes can be obtained in 

decreasing order of failure probability.

In this method the first step is to investigate the probability that a failure will occur

in the intact structure. For each component r; the probability, Pp., that component q fails
J J J

in the intact structure is computed. Let component q  be the component with the highest 

probability of failure. Hence, the damaged state associated with component q  failed is the 

most likely to occur. Focus is now shifted to this damaged state. The next step is to 

investigate the probability of subsequent failures. The probability that a subsequent 

damaged state with component q  and rj (q *  rj) failed occurs is the probability of 

intersection of two events that component q  fails in the intact structure and component rj 

fails in a damaged structure with component q  failed. Once this has been calculated for all 

surviving components, the focus shifts to the currently most likely damaged state. This 

could be either a damaged state with just one component failed (q) or a damaged state 

with two failed components (q and rj). Subsequent failure in this most likely damaged 

state is investigated next. The procedure continues until the damaged state being focused
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on results in collapse. The sequence of failures leading to this damaged state may be the 

most likely failure mode. This can be guaranteed because of the "look-back" feature in 

this algorithm. This procedure can be continued to generate other important failure 

modes.

2.5.6 Present Procedure

The identifying procedure in Sections 2.5.3.-2.5.5 are based on the purely 

stochastic criteria to generate the stochastically most important failure modes, whereas the 

procedure in Section 2.5.2 is based on the purely deterministic criteria, and hence, the 

results are the deterministically important ones. But one should not overlook the 

deterministically important modes although they are not always identical with the 

stochastically most important failure m o d e s t  1661.

The present identifying procedure is primarily based on the stochastic criteria and 

aimed at reducing the computational time. The deterministic ones are also considered to 

identify the most important failure modes. The identifying procedure is composed of two 

procedures: Searching Procedure to select the most important failure modes and 

Discarding Procedure to discard the relatively less important modes in which similar 

deterministic criteria in reference [11] is employed [see Section 2.5.2].

[1] Searching Procedure 

o Searching Procedure -1:

At the first stage the failure probabilities of components failure are evaluated using 

the associated safety margins derived from results of structural analysis at the intact state. 

Then they are arranged in decreasing order of probability. As the first candidate 

component to fail, the component which has the highest probability of failure is chosen. 

When the component has failed, the stiffness matrix of the associated element is replaced 

by the reduced one [Section 2.4.3] and structural analysis is performed. Then the 

probabilities of failure of the remaining unfailed component are evaluated and arranged in 

the same way as before. Among these, the mode with the highest probability of failure is 

chosen (called PATH-A) as the best candidate interim mode. The last component of that
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path is herein termed as the "focus component".

Among possible modes which are at the first failure stage, a searching procedure 

is performed to check if there is any mode which contains the focus component and 

which path probability is higher than that of PATH-A. The idea behind this is based on 

the fact that, as the number of failed components increases, the path failure probability 

usually decreases. If there is a mode of which failure probability is higher than that of 

PATH-A, the mode having the highest overall failure probability is selected (called 

PATH-B).

When these procedures are continued, the number of failed components contained 

in particular modes is different. During the searching procedure the focus component is 

selected in the modes which have the larger number of failed components, i.e. the modes 

to which structural failure is more progressed. At the current searching procedure PATH- 

A is generally the one which has the highest path failure probability among the modes 

having the largest number of failed components, which is denoted herein as Nmax, i.e., 

Nmax is the largest value of the numbers of failed components among all possible interim 

modes identified up to the current process. The value of Nmax will be updated as the 

searching procedure is progressed.

PATH-B is the one which not only has the focus component as the last failed 

component, but also has the highest path failure probability among modes of which the 

number of failed components are less than Nmax. If there is one or several modes, the 

one having the highest probability of failure among them is selected as the best candidate 

mode and focus is shifted to the mode. When there is no mode like that, PATH-A is 

selected.

o Searching Procedure - 2:

After passing through Searching Procedure-1, another procedure is introduced to 

check if there is any mode which is at the lower failure stage than PATH-A, i.e., of 

which the number of failed components is less than Nmax has the higher path probability
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than that of the mode selected before (PATH-A or PATH-B). If there are one or several 

modes to satisfy these condition, the one having the highest probability of failure among 

them is selected and focus is shifted to the mode. Otherwise PATH-A (or PATH-B) is 

selected as the most important interim mode (the best candidate mode) up to the present 

searching procedure. After then, probability of failure of the next component to fail is 

calculated for remaining survival components.

These procedure will be continued until collapse of structure occurs, which is 

defined as the occurence of singularity in the structural stiffness matrix, i.e.

Det[K] = 0 (2.110)

where [K] is the total structural stiffness matrix at the current failure stage. Practically, 

the occurence of the structural collapse may be judged from

Det [ K ] of Current Failure State ^  111 \
Det [ K ] of Intact State ”  £det

where is the prescribed small number.

o Searching Procedure - 3:

In some cases the mode which is not selected as the best candidate interim mode 

can result in the structural collapse. Hence, one should check if such a mode exists 

among all the currently possible modes. But this causes a tremendous increase in 

computational time and a certain restriction may be necessary to save the computational 

time.

Let Nj be the number of failed components of mode i and N^et be the specified 

value to restrict the number of modes for determinant check. Then, the determinant check 

is restricted to the modes such that:
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D et[K .]

Det [K  ] “  £det V N  > N. and ( N , < N .)max 1 v det 1 7 (2 .112)

where Det [Kj] and Det [K0] are determinant of structural stiffness matrix for the i th 

failure mode and that of the intact structure. When N(jet = 1, then the determinant check 

is carried out for all interim modes. While = Nmax, the determinant check is 

ignored.

From the author's experience, in the cases of simple structures as illustrated in the 

next section, the computational time for the above procedures is not a problem. But in the 

case of a large structure, the computational time is so great that it might not be practical to 

pass through all of the above procedures, especially Procedure - 3. In order to reduce 

computational time the following discarding procedures are introduced.

[2] Discarding Procedure

This procedure is to discard the relatively less important interim modes during the 

searching procedure from the deterministic and/or probabilistic sense.

o Discarding Procedure -1:

Because the present method is based on the conventional incremental load 

method, deterministic discarding procedure can be carried out during formation of the 

utilisation matrix in such a way that the component having a very small utilisation or a 

very small change in the utilisation may be regarded as the less important one. Therefore, 

the associated mode may be discarded^ *3, i.e., at the first failure stage, when the 

utilisation of any component is less than a certain given value. The subsequent modes 

may be discarded or the interim mode of which the ratio of successive utilisation is very 

small, say, less than eutp may be discarded because the mode can be regarded as a 

deterministically less important one.
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o Discarding Procedure - 2:

When there are some interim modes progressed up to the specified failure stage 

(or level), searching procedure is restricted within the modes which satisfies the 

following conditions and others are discarded.

Let Ni be the number of failed components in mode i and Nl^  be an option 

variable which is used to discard the less important interim modes as below. During the 

searching procedure, when maximum of Nj for all interim modes is greater than NLimit, 

the mode i of which Nj is less than Nl^  is discarded based on the assumption that the 

mode may be less important than the modes such that NLimit < Np And so, the mode i 

such that NLimit < Nj is considered as a candidate mode in the searching procedure.

The above procedures, Searching Procedures and Discarding Procedures, are to 

be combined to generate the most important failure modes. Once a mode results in 

mechanism, the Discarding Procedure - 2 is applied and all procedures are to be 

continued to generate the next most important failure modes.

Every time the important failure mode is generated, the bounds of system failure 

probability (bounds of series system) are evaluated. According to the above identifying 

procedure failure modes are likely to be obtained in decreasing order of failure probability 

or, alternatively, in increasing order of corresponding reliability index, i.e.

Pf l > Pf2 > . . .  > Pfm > . . .  (2.113.a)

or

Pi < p2 < . . . .  < Pm < . . .  (2.113.b)

where Pfm and Pm are the failure probability and the corresponding reliability index of 

the m th mode. As the number of failure modes identified increases the bounds of 

probability of the system failure (Pf)sys 316 expected to increase monotonically. In other 

words, the corresponding bounds of the system reliability index pSyS is expected to
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monotonicaUy decrease in such a way that:

(Psys,lower)l > (Psys,lower)2 >• • •  > (Psys,lower)m > ••• (2.114.a)

and

(Psys,upper)l > (Psys,upper)2 >• • •  > (Psys,upper)m > ••• (2.114.b)

Using this concept the searching procedure is terminated if the following criteria are 

satisfied, or if there is no more modes to be considered:

^sys,loweAn-l ^sys,loweAn <

^sys,loweAn-l
< 8 (2.115.a)sys v J

and

(P J  1 “  (P J'sys,upperm-l Vfsys,upperm << e _  (2.115.b)
sys,upper^(P  J  , SySvrsys,upper m-1

where

(P sy sflower)m» (Psys,upper)m = lower 311(1 uPPer bound of system reliability index

corresponding to bounds of system failure 

probability up to the present searching stage.

(Psys,lower)m-l» (Psys,upper)m-1 = lower 311(1 uPPer bound of system reliability index

corresponding to bounds of system failure 

probability up to the previous searching stage. 

eSyS = prescribed small number for convergence checking of the system reliability

Sometimes it is possible for the identifying procedure to terminate just after
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generating the first two modes, when the conditions of Eq.(2.115) are satisfied, even 

though the modes to be followed can possibly affect the bounds of pSyS such that 

Eq.(2.115) is not satisfied. For illustration, let p^ and P2 be the path reliability indices of 

the first two modes and be closely correlated positively such that P12 = 1-0. When the 

first mode (Mode 1) is generated, bounds of pSyS are equal to p j, i.e.:

(Psys,lower)l = (Psys,upper)l = Pi (2.116)

When the second mode (Mode 2) is generated and p j «  P2 , then the joint probability 

between Mode 1 and Mode 2 are approximated from Eq.(2.46):

12

<t>2( - P i ,—p2 ; r ) d r = 4>(-p2) (2.117)

i.e. the joint probability is nearly the same as the probability of the second mode. For 

example, when p ^2 is 0.8 and 0.9, the reliability index p j2 corresponding to the joint 

probability, P12 for several combinations of p j and P2 are listed in Table 2.1.

Table 2.1 p12 = ( <b2(-Pl> -P 2 > P l2>

^ 1 2 0.80 0.85 0.90 0.95

P 2 ^ ^ 2.50 3.00 2.50 3.00 2.50 3.00 2.50 3.00

3.50 3.56 3.68 3.53 3.62 3.51 3.57 3.50 3.52

4.00 4.02 4.07 4.01 4.04 4.00 4.01 4.00 4.00

4.50 4.50 4.52 4.50 4.51 4.50 4.50 4.50 4.50

5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
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The upper and lower bounds may be approximated from the right hand side of 

Eqs.(2.42) and (2.43):

V  V  max
( Psys,upper = ^  P ÊP “  A j  j < i Pij 

i=l i=2

=  G C -p j) -  <&(-P2)

s ^ C - p j )  (2.118.a)

and

^Psys,lower = ^ P  +  E “ [ 0 ' Pij ]
i=2 j=l

= OC-pp (2.118.b)

Hence, the bounds of system reliability index are:

(Psys,lower)2 ~ (Psys,upper)2 -  P i ) )  -  Pi  (2.119)

i.e. Eq.(2.115) can be satisfied just after the second mode is generated and the searching 

procedure is terminated at this stage. In order to avoid this phenomena and to check if the 

failure modes followed the second mode effect on the bounds of PSyS, the minimum 

number of required failure modes can be specified. Let this be then convergence

check [Eq.(2.115)] is passed through when the number of identified failure modes, m, is 

greater than the minimum required number, i.e. when Mmjn < m.

The following summaries the parameters controlling the procedure of identifying 

the most important failure modes:
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edet • Prescribed small number used to judge the singularity of 

the structural stiffness matrix from Eq.(2.111).

Nmax : The maximum of the number of failed components for all possible 

interim modes.

N(jet : The number to limit the number of interim modes of which determinants 

are to be checked from Eq.(2.112)]. The determinant check is restricted 

to the interim mode of which Nj are greater than N^j- and less than Nmax.

; when N^et = 1, check determinants of all possible interim modes 

; when N(jet = Nmax, determinant check is not necessary.

Eyjj. : Prescribed small number used to discard the mode when the ratio of

two successively evaluated utilisations is less than given value for this. 

NLimit: The number to limit the number of interim modes to be considered 

as candidate ones in the searching procedure.

When number of failed components contained in any interim modes is 

less than the prescribed value for this parameter, the mode will be discarded, 

i.e. let Nj be the number of failed components in mode i. Then, 

when Nj < Nmax, the mode will be discarded.

Nmax is maximum of Nj for all interim modes. 

eSyS : Prescribed value used to check the convergence of 

bounds of system reliability indices [Eq.(2.115)]

Mmin : The required minimum number of important failure modes to be identified

Theoretically, when = 0.0, Ndet = 1, eutr = 0.0, NLimit =1, £SyS = 0.0 and 

Mmin »  1, all possible failure modes can be identified.

In evaluating the bounds of a failure mode (bounds of a parallel system) and the 

bounds of the system failure probability (bounds of a series system), the narrow bounds 

are calculated^].

The proposed identifying procedure may generate the most important failure from 

both the probabilistic and deterministic points of view. But, in fact, since specifying
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certain values of parameters such as N(jet» Nl^ ,  etc is inevitable for large and complex 

structural systems, the identified modes may not be the "truly" most important ones 

because the identified failure modes certainly depend on the parameters. Consequently, 

the system reliability must be dependent of the selected values of parameters. In spite of 

this the identified modes may be the "reasonably" most important ones. The present 

identifying procedure has a similar nature to the truncated enumeration method 

(TEM)[44J on one hand, and to the Branch and Bounding t e c h n i q u e ^ ]  0n the other 

hand. The present procedure of identifying the important failure modes is detailed in 

Appendix C with the plane truss model in Section 2.6.1.

2.6 Applications to Discrete Structures

Two simple structures are selected to show the validity of the proposed method of 

deriving the safety margin equation of a structure under multiple loading and the 

procedure of identifying the most important failure modes to evaluate the structural 

system reliability.

2.6.1 Plane Truss Model

The plane truss model in Fig. 2 .6^ 4 ] has 6 members as components and 

component failure is assumed to occur when the axial stress in a member reaches the 

yield stress. The same strength for compression and tension is assumed.

When both eutr used to discard the less important interim modes, eSyS in 

Eq.(2.115) and M j ^  »  1 in section 2.5.6 are small closing to zero, all possible failure 

modes can be generated. For a simple structure, like this model, prescribing the value of 

Edet> N(jet and NLimit k  meaningless. All possible failure modes of the truss example are 

illustrated in Table 2 .2 . The numbers in [ ] are path reliability indices ( P p a t h )  

corresponding to their probabilities of failure. As seen in the table, failure modes are 

identified in decreasing order of failure probability and even in this simple structure we 

see the number of possible failure modes is not small. The upper bound of system
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reliability index, pSyS does not vary after the second mode is generated. Among the 

possible modes when only the first four important failure modes are taken in evaluating 

the bounds of pSyS, neglecting the remaining 13 modes over-estimates the upper bound 

of pSyS by only 3.5%, which is the corresponding reliability index to the lower bound of 

the failure probability of system failure, (Pf)Sys,lower- This means that in practice only a 

few important failure modes are needed to estimate the bounds of the system reliability 

within reasonable level.

1219 mm

914 mm

comp. Rk Ak

1 ,2

3 ,4

5 ,6

36.708 

41.124

36.708

133.0

149.0

133.0

Ak = Cross sectional area (m2) Rk = Mean strength (= yielding axial force , kN)
E =206,000 MPa COVofRk = 0.1 COVofQ =0.2

Fig. 2.6 Truss M odelt^]

P (2) 

4 T<5)i
( l ) T

i m

comp. Ak Rk
1 ,2 4.0 3.58 0.075

3 ,4 4.0 4.77 0.101

5 ,6 4.0 4.77 0.101

7,8 4.0 3.58 0.075
U — 5m  5m  -> |

Ak = cross sectional area (m2) Ik = moment of inertia (m^)
mean yield stress = 276 MPa Rk = Mean strength ( = plastic bending moment, M N )
p(l) = 0.02 MN, P(2> = 0.04 MN
COY of Rk = 0.05 COY of PC) and P(2) = 0.3

Fig. 2.7 Frame M odelt^]
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Table 2.2 All Possible Failure Modes of Plane Truss Model

Mode

No.

failed

comp.
(Pf)path 

[Ppath ]

(Pf)sys,upper 

[Psys,lower!

(Pf)sys, lower 

[Psys,upper]

1 3 ,4 0.122 x 10"![ 2.25 ] 0.122 x lO' 1 2.25] 0.122 x 10_1[ 2.25]

2 4 ,3 0.122 x 10_1[ 2.25 ] 0.155 x lO' 1 2.16] 0.200 x 10_1[ 2.06]

3 3,1 0.580 x 10‘2[ 2.52 ] 0.155 x lO' 1 2.16] 0.223 x 10~1[ 2.01 ]

4 4 ,6 0.580 x 10~2[ 2.52 ] 0.155 x lO' 1 2.16] 0.246 x 10-1[ 1.97]

5 1,3 0.334 x 10'2[ 2.71 ] 0.155 x 10-1 2.16] 0.260 x 10-1 [ 1.94]

6 6 ,4 0.334 x 10'2[ 2.71 ] 0.155 x lO"1 2.16] 0.274 x 10" 1.92]

7 1 ,6 0.170 x 10‘2[ 2.93 ] 0.155 x 10"1 2.16] 0.281 x 10-![ 1.91 ]

8 6 ,1 0.170 x 10'2[ 2.93 ] 0.155 x 10' 1 2.16] 0.288 x lO-if 1.90]

9 3 ,2 0.225 x 10-3[ 3.51 ] 0.155 x lO' 1 2.16] 0.288 x lO-if 1.90]

10 4 ,5 0.225 x 10-3[ 3.51 ] 0.155 x lO' 1 2.16] 0.288 xlO -![ 1.90]

11 6 ,2 0.641 x 10_4[ 3.83 ] 0.155 x lO' 1 2.16] 0.288 x lO-if 1.90]

12 1,5 0.641 x lO ^ t 3.83 ] 0.155 x lO ' 1 2.16] 0.288 x lO-if 1.90]

13 2 ,3 0.199 x lO ^t 4.11 ] 0.155 x lO’1 2.16] 0.288 x lO-if 1.90]

14 5 ,4 0.199 x l0 -4 [ 4.11] 0.155 x 10-1 2.16] 0.288 x lO-if 1.90]

15 5 ,1 0.125 x 10“4[ 4.21 ] 0.155 x lO ' 1 2.16] 0.288 x 10-![ 1.90]

16 2 ,6 0.125 x l O ^ t  4.21 ] 0.155 x lO' 1 2.16] 0.288 x 10"1[ 1.90]

17 5 ,2 0.644 x 10“6[ 4.21 ] 0.155 x lO' 1 2.16] 0.288 x 10-H 1.90]

2 . 6 . 2  Plane Frame Model

The plane frame model in Fig. 2 .7H3] has 8 possible hinges as components. It is 

especially sensitive and has been frequently selected for evaluation of the system 

reliability and sensitivity a n a l y s i s [ ^ * ^ 2 , 7 6 , 1 6 5 ] > Component failure is assumed to occur 

when bending moment at a particular hinge reaches the plastic bending moment.

For this model the strength formula can be expressed in a simple form as
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Eq.(2.120) [refer to Eq.(2.98.b)]. For component k:

(2.120)

where is the plastic bending moment of component k as the strength and is the 

bending moment of component k due to loading as the load effect. is its modelling 

error which is assumed to be deterministic having a mean value of 1.0 for all 

components, and all resistance and loading terms in the safety margin equation (2.103) 

are assumed to be normal.

For the parameters controlling the procedure of identifying the most important 

failure modes, = 10-4, Ndet = Nmax, eutr = 10'3, esys = 10-3 and = 8 are 

given. The convergence condition is satisfied when 8 important modes are found. 

Fig.2.8 shows the failure states of the identified modes. Actually the number of all 

possible modes is very much larger. But, as seen in the figure, the reliability index of the 

8th mode is 3.29, and so the remaining neglected failure modes are expected to be greater 

than this value and are unlikely to have much influence on the evaluation of the system 

reliability.

The first mode for path 4-7-8-2 is considered to illustrate the safety margin in the 

form of Eq.(2.103). In the proposed identifying procedure when a mode of failure has 

the close correlation (correlation coefficient between two modes = 1.0) as another mode 

already identified, this new mode is not presented. For example the modes for path 7-4- 

8-2, 7-4-2, 7-8-4-2 and 4-7-2 have close correlations as the first mode for path 4-7-8-2 

and the safety margin equation of these five modes is the same as given by, in the form of 

the modified safety margin equation (2.103):

Z4-7-8-2 = Xm2 + 2.693 R’4 + 1.0 R’7 + 0.795 x 10 R'8

-  (0.715 x 10 “5 PC1)' + 2.667 P(2>')

= XM2 + 2.693 R*4 + 1.0 R'? -  2.667 P(2)‘ (2 .121)
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where Xm2 is the strength modelling parameter of component 2  with mean of unity and 

COV of 0.0 as assumed. R '7 and R 4 effectively represent the strength of components 7 

and 4 with mean of unity and COV of 0.071. PC1)' and P(2)' effectively represent the 

loading PW and P(2) with mean of unity and COV of 0.304. These COVs are obtained by 

using the first-order reliability concept.

Details of deriving the safety margin equation are presented in Appendix-A. As 

seen in Eq.(2.121), for this failure mode the horizontal load PO) and component 8 

theoretically do not move or participate in the failure when the associated mechanism 

forms. But due to computational truncation errors very small coefficients do appear in 

Eq.(2.121). However, their effects on the safety margin and the safety level can be seen 

to be negligible. From Eq.(2.121) component 8 does not contribute to the safety margin, 

i.e. without it a collapse mechanism can be formed which is path 4-7-2. This is one of the 

failure modes having the same correlation as the mode for path 4-7-8-2. This component 

8 at collapse is referred to as a non-active hinge, but before collapse it was being 

considered in the particular failure path being examined.

The results of the frame model are summarised in Table 2.3. The first three 

modes seem to be dominant in evaluating the bounds of Psys. As described in Section 

2.4.1, the total load factor, ^  , defined as Eq.(2.95), may represent the reserve strength. 

The A^'s , of the modes in Fig. 2.8 are also listed in Table 2.3. From the table it can be 

seen that within the identified modes the probabilistically most important mode is that for 

path 4-7-8-2, while the deterministically most important modes are the modes for path 4- 

8-7-1 and 8-4-7-1 although their path reliability indices (Ppath) 316 ab°ut 18 % greater 

than that of the mode for path 4-7-8-2 and A '̂s of the modes for path 4-8-7-1 and 8-4-7- 

1 are about 5 % less than that of the mode for path 4-7-8-2. Whereas the mode for path 

4-6-8-3 which has the highest Ppath has Xj  of about 15% greater than that of the mode 

for path 4-7-8-2. The first three modes result in the same mechanisms, but although their 

A^'s are same, they have different levels of Ppath- This can be also applied for the 5th 

and the 6th modes and may be due to the different redistribution of load effects according 

to the different failure sequences. From this point it can said that the deterministically
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important mode is not identical with the probabilistically important mode, i.e. the mode 

having the smallest 7^  does not give the lowest Ppath*

(1) 04-7-8-2= Z-46 (2) 08-4-7-2 = 2-49 (3) 04-8-7-2 = 2-56
(Pf = 0.703x10-2) (Pf  = 0.635x10-2) (Pf  = 0.526 x lO'2)

£  -L

(4) 04-6 -8-2 = 2-87 
(Pf = 0.207 x 10-2)

(5) 07-4-3 = 2.88 

(Pf = 0.201x10-2)

(6)  04-8-7-1 =  2.88 

(Pf = 0197x10-2)

n
(7) 08-4-7-1 = 2-90 

(Pf = 0.185x10-2)

(8) 04-6-8-3 =  3-29

(Pf = 0.507x10-3)

•  : active hinge 
O : non-active hinge

Fig. 2.8 Failure States of Important Failure Modes for Plane Frame Model
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Table 2.3 Summary of Results for Frame Model

Mode

No.

failure

path
Ppath

t(Pf)pathl

total load 

factor, X j
Psys,lower 

t(Pf)sys,upper!

Psys,upper 

t(Pf)sys, lower!

1 4-7-8-2 2.46 

[0.703 x 10'2]

1.76 2.46 

[0.703 x 10"2]

2.46 

[0.703 x lO'2]

2 8-4-7-2 2.49 

[0.635 x 10‘2]

1.76 2.22 

[0.134 x lO"1]

2.22 

[0.134 x 10'1]

3 4-8-7-2 2.56 

[0.526 x lO'2]

1.76 2.12 

[0.171 x 10-1]

2.15 

[0.157 x lO '1]

4 4-6-8-2 2.87 

[0.207 x 10-2]

1.89 2 .12 

[0.171 x lO"1]

2.15 

[0.157 x lO"1]

5 7-4-3 2.88 

[0.201 x 10' 2]

1.89 2.12 

[0.171 x 10"1]

2.15 

[0.157 x lO '1]

6 4-8-7-1 2.88 

[0.197 x 10"2]

1.67 2.10 

[0.178 x lO '1]

2.15 

[0.157 x lO"1]

7 8-4-7-1 2.90 

[0.185 x lO’2]

1.67 2.10 

[0.178 x lO '1]

2.15 

[0.157 x lO '1]

8 4-6-8-3 3.29 

[0.507 x lO"3]

2.02 2.10 

[0.178 x 10'1]

2.15 

[0.157 x 10"1]
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Table 2.4 shows comparison of the results when using safety margin equations 

(2.86) and (2.103). The proposed equation (2.103) usually gives a lower reliability index 

than Eq.(2.86), but the difference is less than 1% and can be ignored.

Table 2.4 Comparison between Two Safety Margin Equations for the Frame Model

Failure Modes 7-4-2 7-4-8-2 7-4-3 7-4-8-3 7-4-8-1

by Eq. (2.86) 2.48 2.48 2.88 2.88 2.91

by Eq. (2.103) 2.46 2.46 2.88 2.88 2.90

2.6.3 Discussion

The results of two simple structural models justify the validity and the 

applicability of the present system reliability method of deriving the safety margin 

equation and the procedure of identifying the most important failure modes to evaluate the 

structural system reliability to a structure under multiple loading.

It was shown that identifying a small number of the most important failure modes 

could give reasonable and acceptable bounds of (3SyS from a practical point of view. In 

general using Eq.(2.103) as the safety margin equation may give a different path 

reliability index (or path failure probability), and consequently give a different system 

reliability index. But it can be said that using Eq.(2.103) is one possible way of directly 

using the strength formula in system reliability analysis. In addition, referring to the 

relation between the path reliability index and the total load factor, it was found that the 

deterministically important mode was not identical with the probabilistically important 

mode. Further discussion of this point will be made in Section 5.4.4.
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CHAPTER 3 STRENGTH OF CONTINUOUS STRUCTURES

3.1 General

The principle components found in TLP or semi-submersible structures are ring- 

stiffened cylinders, ring- and stringer-stiffened cylinders and the rectangular box-girders 

as shown in Figs. 3.1 to 3.3. The experiences found in the structures indicated that, in 

general, under the given environmental condition the components were subjected to the 

combined action of axial force, bending moments, shear force and radial pressure due to 

hydrostatic and hydrodynamic actions and the primary load was axial compression.

In probability-based limit state design, it is necessary to use the strength models 

derived based on the limit state analysis. In this study strength models of cylindrical 

components, as in references [9] and [113], are used. The ultimate strength of axial 

compression and radial pressure is given. Interaction equations under the combined 

action of axial compression and radial pressure used in this study are presented. For 

rectangular box-girder the models proposed by the a u t h o r ^ 2^] ^  usecj for the ultimate 

strength of axial compression, bending and their combined action and have been derived 

based on numerical analysis. Details of numerical results and derivation of strength 

models are presented.

3.2 Ring-Stiffened Cylinder

3.2.1 Axial Compression

Since shell element is very sensitive to initial imperfection, such as initial 

deflection (shape imperfection), adopting the notion of "knock-down" factor is inevitable.
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R I N G  S T I F F E N E R

A X I A L

C O M P R E S S I O N

f t t t t t t R A D I A Lj j j | j j P R E S S U R E

J  Ring Stiffener

Fig. 3.1 Ring-Stiffened Cylinder

The mean ultimate compressive stress of ring-stiffened cylinder [Fig. 3.1], a xu is 

given in the form of DnV typeH 15],

°xu = (3-1)

where

y j 1 + K

° YX = /  —i  : slenderness parameter for the imperfect shell
* °e

oe = p a . : elastic buckling stress for the imperfect shell
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and Ge is the expected (mean) elastic buckling stress given by:

CTe = B Pn a i (3-2)

where B is a mean bias factor assessed from elastic test data which compensates for the 

lower bound nature of pn.given by:

B = 1.2 for > 1.0

= 1.0 + 0 . 2 ^  for ^  < 1.0

Xn
g Y

P n CTi

pn is the nominal or lower bound knock-down factor to allow for shape imperfections 

given by:

R

pn = 0.75 -  0.46 ( ^ l ) 0'4 + 0.001 Z ( 3 - - j L )  fo rZ S 2 0

= 0.35 -  0.0002 (—) for Z > 20
Vt '

Gj is the elastic buckling stress for a perfect shell given by:

a i a cr (3.3)

where C is the length dependent elastic shell buckling coefficient given as:

C = 1.0 for Z > 2.85

* L l  + £ z s I ^  + o.C = - 2 = 4  + i f z  = —4 — + 0.175 Z for Z <2.85
K4 ^3  Z - 2
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and Z is the Batdorf length parameter given by

L2 I 2
Z = —  yj 1 -  v , L = distance between ring frames

The value of Z of 2 . 8 5  divides the short and moderate length cylinder, is the classical 

buckling stress for a perfect thin cylinder from Donell's shell e q u a t i o n [ 1 6 7 , 1 6 8 ] #

2
__ K E a  = Kcr c 2

1 2 ( 1  -  V )
9 2 0 .4 )

where Kq is a buckling coefficient given by:

K = i i l z  s  0.702 Z (3.5)
c 2 n

By substituting Eq.(3.5) in Eq.(3.4) with Poissons ratio v of 0.3, a CT becomes:

a  = 0.605-Ip- (3.6)cr K.

3.2.2 Radial Pressure

The mean ultimate radial pressure, Pu. is approximately given by:

Pv  p
P = B P V ( 1 —0.5—  ) for - 4 ^ >  1.0

Y Pnn Y

p
= B 0.5 p f o r - 2 .  < 1 .0  (3.7)rm PY

where B is the mean bias factor of 1 . 1 7  to approximate the mean value of P u  and Prm is
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given by:

Pm
Pm, = ----, (3.8)

h” ' r s :
1 -  0.5

tGe

where pm is the von Mises hydrostatic elastic buckling pressure given by:

/ 1
0.919 E ( - )

Pm =  — ---------------  <3 -9>
- — -0 .6 3 6
y /R t

and a e is given as Eq.(3.3). Py is the pressure when hoop stress reaches yield:

PY = ----------- (3.10)
Y 1 - y G

where

Y =
A (1 -0 .5  v)

(A + twt ) [ l  +
2 t N

<x(A + y )

A is the effective area given by: as a function of stiffener area, A ^, and radius to centre 

of stiffener, Rst:

A = A , [ - L ]“  V
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and G is given by:

G =
_ 2 ( sinh cxL/2 cos aL/2 + cosh aL/2 sin aL /2 )

sinh cxL + sin aL

aL  =

=  1.0

= 1 .60-0 .37  aL  

=  0

1.285 L

N =

J r a

cosh aL  - cos aL

for aL < 1.6

for 1.6 < aL  < 4.4

for aL > 4.4

sinh aL  + sin aL  

= 0.5 aL  for aL  < 2.0

= 1.0 for aL  > 2.0

3.2.3 Combined Loading

The loading system of combined axial compression and radial pressure is most 

likely to occur in offshore structures. The interaction equation of the ring stiffened 

cylinder is given in a simple formll 13]:

„ p  _m n

[p - ]  + 1— ] = 1 (3-H)
°x u

where P is the radial pressure, Pu is the ultimate radial pressure given as Eq.(3.7) and a x 

is the total axial stress resulting from both axial load, pressure and bending moments. 

This can be conservatively assessed by multiplying the resultant term by (2/R) to convert 

them to equivalent axial compression at the appropriate part of the section. The total axial 

stress is , therefore, given by:
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where A7  is the total sectional area (= 27tRt), and My and Mz are bending moments about 

y- and z-axis, respectively. a xu is the ultimate axial compressive stress given as 

Eq.(3.1). In the above equation, m = 2 and n = 1 are used in this study.

When a cylinder is generally subjected to the combined action of axial 

compression, radial pressure and torsion, an alternative form of the interaction equation 

has been derived by Odland and F a u l k n e r t l ^ O ]  which was based on the Odland 
a p p r o a c h [ 1 6 9 ] } m(± has the following quadratic form:

where c Ex, o EQ and xE are the elastic buckling stress of imperfect shell for single actions 

given by:

and p's are shape knock-down factors. The corresponding reduced slenderness is 

defined by:

(3.13.a)

a Ex ~  Px a xcr a E9 -  Pe a ecr XE -  Px Tcr (3.13.b)

E0

(3.13.C)

a eff is the actual value of the effective stress according to the von Mises yield criterion 

defined as:



and gEx, ctE0 and xE are the elastic buckling stresses for each individual action, t is the 

shear stress due to torsion, gxo is axial stress given by:

°xo “  °x  ôr CTX“ ^
= 0 f o r c x < 0  (3.15)

and G0O is hoop stress due to radial pressure, P, given by:

g 0o =  - g 0 for g 0 £  0

= 0 for o 0 £  0 (3.16)

and

P R
a  = -----

e t

Later Frieze et altl70,171] proposed a modified form of Eq.(3.13) excluding the torsion 

term and adopting the knock-down factor for each action to account for the inelastic 

behaviour. That is:

_ G a  J2 r G _ 2
[ — —  + — ®2_] + [ _ S ]  = l  (3.17)

°xcr Pg V  °Y

where Gef f , gxo and G0O are defined as Eqs.(3.14) - (3.16). Gxcr is the critical elastic 

axial stress given as Eq.(3.4) and oqct the critical elastic hoop stress given by:

G = K K E ( I ) 2 (3.18)
°12(1 -  v2)

where Kc is the buckling coefficient given by:
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K = 1.038./Z for Z < 100 : moderate length cylinder

for Z > 100 : long cylinder

px and p0 are the elasto-plastic knock-down factors derived to best fit the test data. These 

are:

The quadratic interaction between yielding and elastic buckling may not always be 

applicable throughout the complete interaction range and it does not explicitly account for 

residual stress. However, Eq.(3.13) or (3.17) has a simple form with three advantages:

[1] The failure criterion approaches linear interaction for very slender structures

[2] It approaches the von Mises yield criterion for extremely stocky structure

[3] It can account for the effect of tensile stresses.

3.3 Ring- and Stringer-Stiffened Cylinder

3.3.1 Axial Compression

When ring- and stringer-stiffened cylinders [Fig. 3.2] are subjected to axial 

compression, the main collapse modes which may occur singly or in combination are:

[1] Local shell element buckling

[2] Interframe column buckling which is the stringer-shell buckling batween ring

- 0 . 5 1 8

Y

(3.19)
a.Y

frames
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[3] General instability, in which both stringers and ring frames buckle together

[4] local torsional buckling of stringers and/or ring frames

R I N G  S T I F F E N E R

S T R I N G E R

A X I A L

C O M P R E S S I O N

t tt ft ft R A D I A L

P R E S S U R E

wt

Fig. 3.2 Ring- and Stringer-Stiffened Cylinder

Curved Panel and Stringer

Local shell element buckling is excluded from collapse because generally for the cylinder 

with low slenderness ratio, s/t, in which s is the spacing of stringers, the initial post- 

buckling behaviour is stable as for rectangular plates as long as the stringers provide the 

straight boundaries. For the cylinder with higher slenderness ratios the post-buckling 

behaviour becomes very sensitive to geometric imperfection. However, this is essentially 

allowed for by the much lower knock-down factors which then apply.

In design the general instability is precluded by conservative proportioning of the 

ring frames, i.e. they are assumed to provide rigid pin supports. This assumption implies 

that the ring frames have sufficient in-plane bending rigidity so that they do not participate
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in the collapse process. Local buckling of stringer, i.e. tripping, can also be excluded by 

appropriately proportioning the stiffener size. Consequently the formulation 

recommended for a stringer-stiffened cylinder is equally applicable to ring- and stringer- 

stiffened cylinders.

There are generally three approaches in design formulation of stringer-stiffened 

cylinders subjected to axial compression: Column analysis ignoring curvature effect 

(DnV, 1977), Orthotropic curved shell and Discrete stiffener shell analysis allowing 

curvature (ECCS). The orthotropic shell approach works well for a shell with a densely 

spaced stringer, such as those found in aerospace structures, but may not be so suitable 

for marine structures in which stringers are less densely spaced. Model test data indicate 

that the discrete stiffener-shell analysis offers great promise and yet is much simpler than 

the orthotropic shell approach. The effective width type approach used to define the 

behaviour of a flat panel can, therefore, be adopted for stringer-stiffened curved 

p anels [9* H  3, 162]

Ultimate axial compressive stress a xu is given by:

N (A  + s  t)
a  = a .  s4— —  (3.20.a)

XU 1C ^

where N is the number of stringers, Ast denotes the actual sectional area of one stringer 

[Fig. 3.2]:

A-st = hw lv /+ bf if

Sg is the effective width defined below, t is shell thickness and A-p is the total sectional 

area including shell and stringers:

AT = 2 TtRt + NAst = N As (1 + y) (3.21)
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where As = s t : shell area between stringers and y = Ast /  As : area ratio of stringer to 

shell, s is the curved panel width between stringers:

2tcR
s = —  (3.22)

Using notation y, Eq.(3.20.a) is rewritten as:

G  = G. xu

( r + f )

1C (l+Y)
(3.20.b)

Gjc is the inelastic collapse stress derived using the Ostenfield-Bleich expression 

for tangent modulus and given by:

r Ps ( l - P s) n 
1 L 1

\ j /

for \|/> P C

for \ |/< p c (3.23)

in which ps is the ratio of the structural proportional limit to yield stress and a value of 

0.75 is recommended for stress-relieved structure, i.e. rj = 0.0 in which rj is the welding 

tension block parameter [see Fig. 2.4]. Otherwise ps = 0.5. \p is the imperfect elastic 

buckling parameter defined by:

\j/ = ^  (3.24)

where a^e is the elastic collapse stress composed of two parts as:

o ie = crc + a s (3.25)
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where a c and a s are simply the column (Euler) buckling stress of stringer and that of the 

thin shell buckling stress, which can be calculated separately as follow:

o Shell Buckling Stress:

The shell buckling stress, c s is given by:

a  = p r 0.605 i i (  — ) ]  (3.26)
S r S L R 1 + 7

in which the term in [ ] is the elastic critical stress of perfect shell, and ps the mean shell 

knock-down factor due to shape imperfection and a value of 0.75 is 

r e c o m m e n d e d [ 9 , 1 1 3 ] .  Reference [ 1 1 9 ]  recommends ps value of 0.5 which provides the 

best fit to test data when considering the inelastic model.

o Column Buckling Stress of Stringer:

The column buckling stress of stringer, a c is defined as:

2 Tn  E l
CT = ----------------------------------------------------------------------------------(3.27)

C [ (As + se t) L ]

where Ig' is the moment of inertia including the reduced effective width, se' defined by:

S = s ( M 1 ) r  for X > 0.53
e K x  1

= s for X < 0.53 (3.28)

with X defined by:

( 3 . 2 9 )
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which denotes the curved shell slenderness parameter. a e is the mean elastic buckling 

stress for imperfect curved panel given by:

cre = B pn aCT (3.30)

where gct is the elastic buckling stress of a perfect shell defined as:

2 3 z 2
o  = 0.904E [ — 1 [4  + — -1  for Z S 11.4

cr s 4 s
n

= 0.605 E [ 2- ] for Z >11.4 (3.31)R s

pn is the nominal or lower bound knock-down factor given by:

p = 1 -  0.019 Z1'25 + 0.0024 Z [ l  - - L - 1  for Z < 11.4n s sL 3 0 0 1 s

= 0.27+ ^ -  + —  +0.008 IT  [ l - — - ]  for 11.4<Z <70  Zs ^2 V s L 3001 s
s (3.32)

where Zg is the Batdorf width parameter defined by:

z  = £ / T v 2
S R tv

2
= 0.954 when v = 0.3 (3.33)

Rt

and B is the mean bias factor assessed from elastic test data and given as:
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B = 1.15 for X =n
Pr n cr

> 1

1 + 0.15 X for X < 1n n (3.34)

In Eqs.(3.31) and (3.32) the Zs value of 11.4 is taken to approximately represent the 

division between "narrow" and "wide" panels. The presence of Rr in Eq.(3.18) affects 

the reduced effective width by a factor of Rr. The reduction factor for stringer-stiffened 

cylinders can be derived from that of flat panels. For flat panels with width, b, and 

thickness, t, Rr is given as:

cr .  _ b .  _E
-  M - q  [£ ]  [ ^

= 1

for p > 1.0 

for p < 1.0 (3.35)

where

—  = -r———— : mean compressive residual stress

tj is the welding tension block parameter, bg/b is the ratio of the reduced effective width 

to plate width given by:

b.  2 1e -  (3.36)
b P p2

Ep/E is the plate tangent modulus ratio given by:
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T

E (1  + 0.25 X.4 )2

= 1

for X < J l  

for X > J l (3.37)

and p and X, are the slenderness parameters of plate and plate-stiffener combined column:

(3.38)

X = (3.39)

Since, for the simply supported plates, c CT is given as:

a  = 4cr
n  E | - t j 2

12(1- v 2)
(3.40)

From Eqs.(3.38) - (3.40) the relation between p and X is derived as:

(3.41)

where:

/ 3 ( I -

V
s  0.53 when v = 0.3 (3.42)
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Substituting Eq.(3.41) into Eq.(3.36):

be 2 C  C 1.05 0.28
(3.43)

Hence:

_b
b 1.05 X - 0.28

(3.44)
e

The inequality p > 1.0 leads to:

p = i .  > 1.0, hence equivalently X > 0.53 (3.45)

Therefore, replacing b and be by s and se\  the reduction factor for the stringer- 

stiffened shell can be obtained as:

in which X is defined as Eq.(3.29) and rj defined as:

T| = 4 .5 : for continuous structural fillet welding.

= 3.0 : for light fillet weld welding s or where shakeout is significant.

= 4.5 : for stress-relieved structure.

From the above equations the inelastic collapse stress Gjc can be calculated in Eq.(3.23).

R = l - [ - i 2 - ] [ --------  f [ --------af------- ] for X > 0.53
i - 2 n  1 + 0.25 X4 1.05 X -  0.28 
t ‘

= 1 for X < 0.53

(3.46)
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Finally, the effective width, se in Eq.(3.20) (not the reduced effective width, se') 

can be obtained from Eq.(3.43) by replacing b and be by s and se respectively, and given 

by:

1.05 0.28
] R for X > 0.53-* r pr e

S for X < 0.53 (3.47)e

where the reduced slenderness parameter, Xt  is:

(3.48)

The presence of Rr in Eq.(3.47) affects the behaviour of the stiffened shell in two 

ways, namely, the reduction of the proportional limit by Gr  and the effective width by a 

factor of Rr in Eq.(3.46) with replacing X by Xe given as Eq.(3.48). Therefore, 

substituting Gjc and se in Eq.(3.20.b) gives the ultimate axial compressive strength of 

stringer-stiffened cylinder.

3.3.2 Radial Pressure

The ultimate hoop stress due to radial pressure, Gqu is given by:

G = ----
0u t

(3.49)

Pu is the collapse pressure defined below:

f  z
PU = a Y [9 .7 2 8 - L - £ + 1.368 t2 f2 f3 ( - 1 + - L ) ]

s L L s
(3.50)
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where s is the curved panel width between stringers given as Eq.(3.22), Zp is the plastic 

section modulus given by:

1 r 9 2 (h +t)b-t-_
= 1 1 [ ( h + t ) 2 -  ( - l i )  + ■■ w ■ -f f ] (3.51)

and fj, f2 and are constants derived as:

f  = i  + [  1 i l j 1-75
1 1 35.06 R t

f  = 1 + [ — I —  JL ]3-50
2 1 30.55 R tJ

f3 = i + 2.65[ (3-52)

The constants f j ,  f2 and f3 are derived to give the best fit with test data which covered 

the following ranges:

190 < R/t <500 0.2 <IVR < 1.0

4 < Zg < 34 45 < ZL < 300

where Zl  is the Batdorf length parameter calculated from Eq.(3.33) with s = L.

3.3.3 Combined Loading

The same interaction equation (3.11) was proposed for the stringer-stiffened 

cylinder under the combined axial compression and radial p r e s s u r e ^  1 3 ] .  jt can be 

rewritten in terms of hoop stress instead of radial pressure:

_ <J _m _ O _n 
[ - 9 . ]  + [ _ L ]  = 1

0U XU

(3.53)
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where the hoop stress is calculated from

a
P R  

e t™

and the ultimate hoop stress can be calculated from Eq.(3.49) with the ultimate pressure 

calculated from Eqs.(3.50) - (3.52). DnVfUS] uses m = n = 2, and the TLP RCCtl 13] 

initially favoured m = 2 and n = 1 as for the ring-stiffened cylinder. The model code of 

TLP RCC^l presently uses a different form as follows expressed in terms of axial stress 

and hoop stress:

A more general form of interaction equation which can cover a wide range of load

Odland a p p r o a c h ^  69] b y  which a more convenient ^-parameter can be used for each

with test data. The derived procedure is illustrated as follows:

When g xo and Gq0 are both compressive stress components the Odland 

interaction equation (3.13.a) becomes:

(3.54)
a  a  a  a  a0U XU XU 0u XU

combinations has been proposed by Faulkner^ 61]} which is an extension based on the

individual load component instead of the DnV typeC 115] slenderness parameters. 

Recently Faulkner and W a r w i c k  162] published the correlation of the interaction model

[ — — + — — ]  + [

CT G  J2
(3.55)

CT,Y

Expanding and putting
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Define the ^-parameters for individual loading:

4-* =
XU

1+Jt
(3.57)

1+Jt

Substituting Eq.(3.56) into Eq.(3.55), we have:

r R 2 r 2 . / ( I  -  (I)2) (1 -  (j)2) n r R , 2
[— ] + R R [ — ^ --------   2-  - l ] + [_«.] = 1  (3.58)

K * 6 M e +e

where

The terms <f>x and <J>0 can easily be evaluated from the single load action models. This 

equation gives better correlation with test data than other models presently in use.

Comparisons and discussions for various strength models of ring-stiffened 

cylinders and ring- and stringer-stiffened cylinders presently used in various design 

codes are presented in reference [119].



3.4 Rectangular Box-Girder

Longitudinal frame systems are frequently found in the structural system of a 

rectangular box-girder such as a ship's hull girder and a TLP's pontoon (Fig. 3.3) 

because of its adequate way to resist compressive loads. As is well recognised, the 

performance of this type of structure, as that of other redundant structures, may be 

strongly affected by pre-ultimate loss of stiffness and post-ultimate load carrying capacity 

of structural components.

The present approach is based on the beam-column c o n c e p t  1 2 6 ]  i n  which the 

rectangular cross-section is modelled as the combination of structural members such as 

plates, stiffened panels and "hard comers". The stiffness of a member at any point in the 

strain range can be obtained from the results derived from a separate study. This is based 

on the assumption that failure of a member is not directly influenced by other members of 

the cross-section considering that except for the overall grillage collapse the ductile 

collapse of the girder is most probable due to progressive failure rather than a coincidence 

of failures of the structural members.

The ultimate strength of box-girder under axial, bending and their combined 

loading has close correlation with the compressive strength of stiffened panels. To derive 

the strength formula, a parametric study has been carried out within a wide range of 

several important parameters.

In the following sections, the pre- and post-ultimate behaviour of the rectangular 

box-girder will be presented. Strength formulae for stiffened panels and for axial 

compressive strength and bending strength of rectangular box-girders have been derived 

based on the numerical results of a parametric study. Finally, an interaction equation, 

when the structure is under combined axial compression and bi-axial bending, is 

proposed. They have also been derived based on the numerical results of a parametric 

study.
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Fig. 3.3 Rectangular Box-Girder

Flat Panel and Stiffener

3.4.1 Behaviour of a Rectangular Box-Giider

3.4.1.1 Beam-Column Concept

The main feature of the beam-column approach is that one isolated stiffener with 

an associated width of plate is considered to be representative of the whole panel 

behaviour using stress-strain curves to describe the plate contribution. This concept is 

much simpler than the well known rigorous numerical method, such as the finite element 

method.

o Plate Elements:

Much of a typical rectangular cross-section is formed by plate and it plays an 

important role in strength, particularly under compression. Loss of stiffness in the
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plating, which may be caused by buckling or premature yielding, leads to loss of 

performance of the cross-section.

Many parameters have an effect on the compressive strength of plate: aspect ratio, 

boundary condition, initial deflection, lateral pressure, weld induced residual stress and 

welding procedure. The influence of these parameters is discussed in reference [172]. 

Among them initial deflection and weld induced residual stress generally reduce the 

strength of plates with that same slenderness and hence affect the shape of their stress- 

strain curves.

Long plate buckling occurs in approximately a square half-wave. Various 

numerical and experimental work has shown that it is reasonable to assume the boundary 

condition in such a way that boundary condition of simply supported at loaded edges 

constrained to remain straight but free to move bodily in the plane of plate. The effect of 

lateral pressure can be approximated by introducing an equivalent initial deflection which 

may not be valid for slender plates due to membrane stress set up by the lateral lo a d t^ ]  

However, the effect of membrane stress in comparatively stocky plates , frequently found 

in a TLP structure, may be small and can therefore be neglected. This approximation is 

used in this study without much loss of accuracy.

The effect of weld induced residual stress on the shape of a stress-strain curve can 

be considered by using the simplified procedure as in reference [125]. It is assumed that 

the residual stress takes the idealised pattern, as shown in Fig. 3.4, where the uniformly 

distributed tension stress centered at the stiffener-plate weld with a width of 2r|t is 

equilibrated by a zone of uniformly distributed compressive residual stress with a width 

of (b -  2Tjt). T| is the welding tension block parameter as for the stringer-stiffened 

cylinder. From this assumed distribution the value of residual stress results from 

equilibrium as:



Therefore, in this study, slenderness and initial deflection of a plate are taken as 

fundamental parameters to derive the stress-strain curve of the particular residual stress 

free plate. The slenderness of the plate takes the form of that defined by Eq.(3.38) and 

the initial deflection the form of:

t
5

(3.60)
P

as proposed by Faulkner[174] The values of fundamental parameters of residual stress 

free standard plates in this study are listed in Table 3.1 and their stress-strain curves are 

shown in Fig. 3.5, which were derived by using the Ritz type approach^!)] Actually 

all curves are numerically given in the non-dimensional form, i.e. as a relation between 

non-dimensional stress, o' (= a av /  a Y) and non-dimensional strain, e' (= eav /  eY). The 

Aitken-Lagrangian interpolation method is used to obtain the stress-strain curves of the 

non-standard plates.

When the plate is subjected to tension, the behaviour is assumed to follow the 

material stress-strain curve and, to take into account the effect of residual stress, the 

following parabola equation is used:

o' = — -—  for 0 < £' < 1
l + o 'r

- e  + (2 + 4a ') e' -  1
=     for 1 < e' < 1 + 2a 1

4a ’ (1 + a  ’) rr v r '

= 1 for 1 + 2ar < e’ (3.61)
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Fig. 3.4 Idealised Residual Stress Distribution in Plate

Table 3.1 Slendernesses and Initial Deflection Parameters of Standard Plates

p 0.816 1.021 1.225 1.632 2.041

wt 20 25 30 40 50

S07 P 2 0.05 0.10 0.15 0.20 0.25 0.30

• 8
8q = —  : 8q = maximum deflection of plate, t = plate thickness
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(b) P =  1.021

Fig. 3.5 Stress-Strain Curves of Standard Plates
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Fig. 3.5 (continued)
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Fig. 3.5 (continued)

o Stiffened Panels:

As described before, the ultimate axial compression and bi-axial bending moment 

are primarily governed by the compressive strength of stiffened panels[120] The 

behaviour of stiffened panels under compressive loads is relatively complicated due to a 

large number of possible combinations of plate and stiffener geometry, boundary 

conditions and loading types. Therefore, it is very difficult to take account of all 

possible failure modes. The most probable failure modes of stiffened panels under 

compression are categorised as follows:

[1] Column-like failure of stiffener-plate combination

[2] Sideways tripping of the stiffener about its line of attachment to plate

[3] Overall grillage buckling involving bending of transversals

In practical structures the longitudinal stiffeners and associated plating between
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transversals are frequently involved in collapse. The first two are primary modes of 

failure, and stiffener sections are normally proportioned so that tripping does not occur 

until after collapse.

In the present study, in order to produce the load-end shortening curves of 

stiffened panels, an associated width of plate is assumed to be equal to the longitudinal 

stiffener spacing. The matrix displacement method is employed to solve the non-linear 

equilibrium equation for the elasto-plastic large deflection analysis of stiffened panels, for 

which the finite element used has a cubic displacement function for bending deformation 

in accordance with the Euler beam theory and a linear displacement function for in-plane 

deformation, respectively. The modelling of a stiffened panel is illustrated in Fig. 3.6. 

The model is double span to take into account the interaction effect between adjacent 

spans and the simply supported boundary condition is imposed at the position of 

transversal. The stiffener section is subdivided into several layers to allow the 

plastification of the section in the direction of depth as load increases. The plate is treated 

as a single layer and its stiffness at any point in the strain range can be obtained from the 

stress-strain curve derived from a separate study. This can consider the loss of stiffness 

due to plate buckling and plastification and can be applied to any element of beam- 

column. The stress-strain relation of each layer of stiffener follows the material 

behaviour. This modelling can allow in a simple way the analysis of stiffened panels with 

different material properties. For the sake of simplicity, the following assumptions are 

adopted in this study:

[1] Since the web depth of stiffener model is comparatively small, effect of shear 

deformation is neglected. But for the case of a deep girder it should probably be 

considered.

[2] Since most design stiffener sections are proportioned to limit the possibility of 

local instability, sideways tripping is assumed not to occur.

[3] Welding induced residual stresses in the stiffener are usually smaller than those in 

plates, and therefore, its effect can be neglected.
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Fig. 3.6 Beam-Column Model
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3.4.1.2 Formulation of Behaviour Under Combined Loading

When a rectangular section is subjected to combined loading of axial compression 

and bi-axial bending, as shown in Fig. 3.3, with the assumption that the effect of shear 

deformation is neglected, strain increment, As at any point (y,z) in the section is:

Ae = Aex + yA(j)z + zA(j)y (3.62)

where A ^  is increment of axial strain, and A<j)z and A(j)y are increments of curvatures due 

to bending about y- and z-axis, respectively, y and z are y- and z-co-ordinates relative to 

the instantaneous centroidal axis changes progressively as a result of local buckling and 

yielding parts of the cross-section. In Fig. 3.3 the direction of compressive force and 

bending moments is positive. According to Hooke's law the stress increment, Aa, at any 

point (y,z) in the section is:
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Aa = E*Aex + yE*A<j>z + zE*A<J)y (3.63)

where E* is the effective tangential modulus at (y, z) in the section, which is the slope of 

stress-strain curve of stiffened panel and can be easily obtained from the curve for a given 

strain point. Increments of axial compression, AFX and bending moments about y- and z- 

axis, AMy and AMZ are given as stress resultants by integrating the stress increment, 

Eq.(3.63) over the sectional area:

-jAFx = | Aa dA

=  J  E*dAAex + |  yE*dA A ^  + J  zE*dA A<J)y (3.64.a)

AM =  J  y Aa dA
A

=  J  yE dAAex + J  y ^  dAA<|>z +  J  yzE dAA<j>y (3.64.b)

■ sAMy = 1  z Aa dA 
A

=  J  zE dAAex + J  yzE dAA<J>z + J  zTH dAA<J>y (3.64.c)

Rewriting Eq.(3.64) in matrix form, the relation between increments of strain and stress 

resultants is obtained as:

AFj

AMz

AM

1
a m m

X z y

m I I
z z z yz

m I I
y j y yz y .

As

A<|>

A6
(3.65.a)
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or:

[c] = [K] {e} (3.65.b)

where:

a = mz J  yE dA m
y

J  zE dA
A A A

C o *  C o *  C *
I = I dA I = I z E dA I = I yzE dA

From Eq.(3.65) pre- and post-ultimate solution can be obtained by incrementing 

the strain terms, or the stress resultant term. In the latter case, solutions are obtained 

from:

3.4.1.3 Comparison of Numerical Results

Since there is no available test data under the combined loading, only the ultimate 

uni-axial bending moment by the present approach is compared with some test results. 

Three test models close to marine structure are selected: Model 2 and Model 4 by 

Dowling et a lH * ^  and Model 2 3  by R e c k l i n g f ^ 7 ] > All models were tested under pure 

bending. Details of material and geometric properties, and initial imperfections are listed 

in Table 3.2. They are modelled into plates, stiffened panels and "hard comers", as 

illustrated in Fig. 3 . 7 .

A case study for each model is listed in Table 3.3. Table 3.4 summaries the 

present numerical results in the form of ratio of numerically calculated ultimate bending 

moment to that by test. Numerical results by Dow et alt 178] and Lin[125] ^  aiso 

included for comparison. The agreement with test results is satisfactory, and the present 

numerical results show good agreement with others, as seen in Table 3.4. Dow et al's

{e} = [K ]-l {a} (3.66)
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results are slightly lower than the present ones, while the present predictions are closer to 

the test data than Lin’s results. Non-dimensional bending moment-curvature curves for 

Model 4 and 23 are plotted in Fig. 3.8.

Table 3.2 Details of Test Models 

(a) Model 2 by Dowling et al[176]

breadth (B ): 1219.2 mm height (H ): 914.4 mm tranverse spacing (L ): 787.4 mm
"\p ro p e rtie s

component's.

plate stiffener

t
m m

E

N /m m ^

a Y
N /m m 2

scantling
m m

E

N /n u r 2
GY 2 

N /m m

spacing
mm

compression
flange

4.86 208500 293 46 x 4.76 x 
15.87 x 4.76L

191500 276.2 243.8

tension
flange

4.86 208500 293 46 x 4.76 x 
15.87 x 4.76L

191500 276.2 243.8

web 3.37 216200 2119 46 x 4.76 x 
15.87 x 4.76L

191500 276.2 243.8

total sectional area 21551.6 mm2

elastic neutral axis from midplan of bottom plate 462.5 mm

plastic neutral axis from midplan of bottom plate 495.3 mm

moment of inertia Iz 3346.8 m2- mm2

plastic bending moment M ^ 2228.7 KN-m
t

compressive residual stress a r 0.176

initial plate deflection b/400

initial stiffener deflection
-L/1450

+L/2280
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Table 3.2 (continued)

(b) Model 4 by Dowling et alH76]

breadth (B ): 1219.2 mm height (H ): 914.4 mm tranverse spacing (L ): 787.4 mm
x Snroperties

component's.

plate stiffener

t
mm

E
N/mm^ GY 2 N/mm

scantling
mm

E
N/mir2 ° Y 2N/mm

spacing
mm

compression
flange

5.01 207000 221.0 46 x 4.76 x 
15.87 x 4.76L

199200 287.9 121.9

tension
flange

4.94 208700 2155 50.8 x 6.35 
FLAT

206200 303.8 121.9

web 4.94 214100 28G6 46 ,x 4.76 x 
15.87 x 4.76L

199200 287.9 98.4

114.3

total sectional area 29078.9 mm2

elastic neutral axis from midplan of bottom plate 465.3 mm

plastic neutral axis from midplan of bottom plate 505.7 mm

moment of inertia Iz 4237.6 m2-mm2

plastic bending moment 2597.0 KN-m
f

compressive residual stress a r 0.562

initial plate deflection b/800

initial stiffener deflection
-L/5l0

+L/510
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Table 3.2 (continued)

(c) Model 23 by R e c k l i n g [ 1 7 7 ]

breadth (B ): 600.0 mm height (H ): 400.0 mm tranverse spacing(L): 500.0 mm
^ p ro p e r t ie s  

components.

plate stiffener

t
mm

E
N/mm2 GY 2 N/mm

scantling
mm

E
N/mir2 ° Y 2N/mm

spacing
mm

compression
flange

2.5 210000 246.0 27.5 x 2.5 x 

20 x 2.5L

21 0 0 0 0 246.0 85.7

tension
flange

2.5 210000 246.0 27.5 x 2.5 x 
20 x 2.5L

2 1 0 0 0 0 246.0 85.7

web 2.5 21 0 0 0 0 246) 30 x 2.5 
FLAT

2 10000 256.0 100.0

total sectional area 6875.0 mm2

elastic neutral axis from midplan of bottom plate 198.75 mm

plastic neutral axis from midplan of bottom plate 198.75 mm

moment of inertia Iz 193.1 m2- mm2

plastic bending moment 266.3 KN-m
i

compressive residual stress a r 0 .2

initial plate deflection 0.25 t

initial stiffener deflection
-L/1000

+L/1000
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(c) Model 23 by 

Reckling

Fig. 3.7 Discretisation of Test M o d e l s ^  76,177]
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Table 3.3 Case Study for Three Test Models 

(a) Model 2 by Dowling et aL

Case 1 2 3 4

residual stresses in tension 
flange are included ?

N O Y E S N O Y E S

"hard comer" is fully 
effective ?

Y E S Y E S half
effective

half
effective

(b) Model 4 by Dowling et al.

Case 1 2 3 4 5 6

residual stresses in tension 
flange are included ? N O N O  N O Y E S  Y E S  Y E S

number of stiffened panels 
included in "hard comer" 0 1 2 0 1 2

note: "hard comers" are assumed to be fully effective in all cases

(c) Model 23 by Reckling

Case 1 2 3 4 5 6

residual stresses in tension 
flange are included ? Y E S Y E S  Y E S N O  N O N O

number of stiffened panels 
included in "hard comer" 0 1 2 0 1 2

note: "hand comers" are assumed to be fully effective in all cases
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Table 3.4 Comparison of Present Results with Test and Other Numerical Results

(a) Model 2 by Dowling et al.

Ultimate Bending Moment Ratio (Numerical Result /  Test Result)
Case

Author Dow et al. Lin

1 1.073 1.057 1.050
2 1.058 — —
3 0.982 1.003 —
4 0.966 —

(b) Model 4 by Dowling et al.

Ultimate Bending Moment Ratio (Numerical Result /  Test Result)
Case

Author Dow et al. Lin

1 1.013 — 1.059
2 1.038 0.942 —
3 1.061 1.003 —
4 0.981 1.047
5 1.015 — —

6 1.040 — —

(c) Model 23 by Reckling

Ultimate Bending Moment Ratio (Numerical Result/Test Result) 
Case ____________________________________________________

Author Dow et al. Lin

1 0.886 — —

2 0.940 0.953 0.935
3 0.972 0.993 0.942
4 0.899 _ —

5 0.948 — 0.934
6 0.974 — 0.941
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Fig. 3.8 Bending Moment-Curvature Curves
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3.4.2 Parametric Study

To derive the strength formula for rectangular box-girder a parametric study has 

been carried out by varying geometric properties. Fig 3.9 shows the typical rectangular 

section found in a TLP's pontoon. For simplicity, the round comers are replaced by 

straight lines. There are many parameters affecting the ultimate behaviour of the box- 

girder. Values of geometric properties for the parametric study are summarised in Table 

3.5. As is well recognised, the ultimate behaviour of a box-girder under axial 

compression, bending moments, or their combined loading, has close correlation with the 

compressive strength of stiffened panels from the experience of a ship's hull girder. The 

compressive strength of a stiffened panel is much affected by the slenderness of the 

stiffener-plate combination in the column sense and by the slenderness of associated 

plates which can represent the effects of buckling and plastification of a plate on the 

strength of a stiffened panel.

This study, therefore, mainly concentrated on varying geometric parameters, as 

seen in Table 3.5. Material properties were chosen suitable for a TLP's pontoon as 

practical values. The range of stiffener scantling was determined so that tripping did not 

occur and initial imperfections of plate and stiffener were given uniquely to be suitable for 

practical stmctures with reference to the tolerance recommended in various design 

codes! 115,179,180]. Results from 180 cases of stiffened panels and 240 cases of 

rectangular box-girder have been obtained.
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Table 3.5 Values of Parameters in the Parametric Study

aspect ratio of section 

longitudinal stiffener spacing 

aspect ratio of plate

B/H = 0.857, 0.75, 0.67, 0.60

b = 700, 800, 900, 1000 mm

LVb = 2.0, 2.5, 3.0, 3.5, 4.0

scantling (mm)

case component plate thickness 
t

stiffener
llyy X t̂ y X bp X tp

case 1 deck 26 325 x 13 x 150 x 25 T

side shell 28 350 x 14 x 150 x 25 T

bottom 30 375 x 15 x 150 x 25 T

case 2 deck 26 350 x 13 x 150 x 25 T

side shell 28 375 x 14 x 150 x 25 T

bottom 30 400 x 15 x 150 x 25 T

case 3 deck 26 375 x 13 x 150 x 25 T

side shell 28 400 x 14 x 150 x 25 T

bottom 30 425 x 15 x 150 x 25 T

lateral pressure 0.30 MPa at deck plating 0.35 MPa at side shell plating 

0.40 MPa at bottom plating

compressive residual stress ratio 

initial deflection of plate 

initial deflection of stiffener

CTr’ =  0 .2

50 = b /200  

8S1, 8S2 = + 0.015 L

elastic modulus 

yield stress

E = 210000 N /  mm2 

Gy = 350 N /m m 2

- 144-



1 1/1
D E C K

n  Y

S I D E

S H E L L

H A R D

C O R N E R

Fig. 3.9 Typical Rectangular Box-Girder Section

3.4.3 Compressive Strength of Stiffened Panels

As described previously, the ultimate behaviour of a box-girder is closely 

correlated with the compressive strength of stiffened panels. From the results of 

parametric study, the compressive strength parameter, <j), which is given by d u / a y  

where a u is the average stress when collapse occurs, was derived through regression 

analysis as a function of slenderness of plate-stiffener combined column, X, and plate 

slenderness, p, by considering the effect of lateral pressure, p is given as Eq.(3.38) and 

X is given alternative of Eq.(3.39) as:
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where r  is radius of gyration of stiffener-plate combined section given by:

■7i
In all calculations the width of plate was assumed to be fully effective. The parameter, <J>, 

was assumed to be:

<l> = fl(W )f2(X )f3 (P) (3.68)

f l  is a function of non-dimensional lateral pressure, w' defined as:

w’ = w
(3.69)

where w is a uniformly distributed lateral pressure (MPa). The function f2 (X) was 

determined so that it had to satisfy:

[1] f2 (X) = 1.0 for X = 0, and P = w’ = 0

[2] f2(X) = Euler curve = 1 /  X^ for X > XQ, and p = w’ = 0

The value of X0 was approximately determined so that it fitted best to test data when 

applying the regression analysis, i.e., minimise the COV of ratio, <j)e /  <|>p, where <j>e is the 

<j> value by test and <J)p by formula, and their mean was close to unity. The result is given 

by:
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o

= ( 1 + 0.04 ws)
1

f ( ^ ) i / l +0.15 P'

with function f(X) ( = 1 /  f2(^)) given:

f(X) = 1+  0.209 X2 + 0.156 X4 

= \2

(3.70.a)

for 0 < X <  1.59 

for 1.59 < X (3.70.b)

Table 3.6 compares the predicted compressive strength parameters by Eq.(3.70), 

(j)p  with the numerically calculated ones, <j)N . Fig. 3.10 illustrates the comparison between 

<J)N  and, <J)p . Mean and COY of ratio, <{>N /  <j>p  are 0.961 and 3.3%, respectively.

1.00
o : d a ta  point

0 . 7 5 -

0 . 5 0

0 . 7 5 1.000 . 5 0

Predicted Strength Parameter 
by Eq. (3.70)

Fig. 3.10 Comparison between (j)N and <J>p
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Table 3.6 Comparison of Compressive Strength Parameters: Prediction by Eq.(3.70), <j)p 
and Numerical Prediction, <J)N

L/b b X P w ' -©
-

2.0 700.0 0.136 1.099 0.621 0.910 0.894 1.018
2.0 700.0 0.127 1.099 0.621 0.913 0.895 1.020
2.0 700.0 0.119 1.099 0.621 0.915 0.895 1.022
2.5 700.0 0.170 1.099 0.621 0.896 0.892 1.004
2.5 700.0 0.159 1.099 0.621 0.900 0.893 1.008
2.5 700.0 0.149 1.099 0.621 0.903 0.894 1.011
3.0 700.0 0.204 1.099 0.621 0.883 0.890 0.992
3.0 700.0 0.190 1.099 0.621 0.889 0.891 0.998
3.0 700.0 0.179 1.099 0.621 0.893 0.892 1.001
3.5 700.0 0.238 1.099 0.621 0.869 0.887 0.980
3.5 700.0 0.222 1.099 0.621 0.877 0.888 0.987
3.5 700.0 0.208 1.099 0.621 0.883 0.890 0.993
4.0 700.0 0.272 1.099 0.621 0.856 0.883 0.969
4.0 700.0 0.254 1.099 0.621 0.863 0.885 0.975
4.0 700.0 0.238 1.099 0.621 0.871 0.887 0.982
2.0 800.0 0.161 1.256 0.811 0.853 0.866 0.985
2.0 800.0 0.150 1.256 0.811 0.856 0.867 d.987
2.0 800.0 0.140 1.256 0.811 0.860 0.867 0.991
2.5 800.0 0.201 1.256 0.811 0.840 0.863 0.973
2.5 800.0 0.187 1.256 0.811 0.845 0.865 0.977
2.5 800.0 0.175 1.256 0.811 0.849 0.865 0.981
3.0 800.0 0.241 1.256 0.811 0.827 0.860 0.962
3.0 800.0 0.225 1.256 0.811 0.834 0.862 0.968
3.0 800.0 0.210 1.256 0.811 0.839 0.863 0.972
3.5 800.0 0.281 1.256 0.811 0.813 0.856 0.950
3.5 800.0 0.262 1.256 0.811 0.820 0.858 0.956
3.5 800.0 0.245 1.256 0.811 0.827 0.860 0.962
4.0 800.0 0.321 1.256 0.811 0.800 0.851 0.940
4.0 800.0 0.299 1.256 0.811 0.807 0.854 0.945
4.0 800.0 0.280 1.256 0.811 0.815 0.856 0.952
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Table 3.6 (continued)

Ub b X P w ’ -e
-

2.0 900.0 0.186 1.413 1.027 0.812 0.836 0.971
2.0 900.0 0.174 1.413 1.027 0.816 0.837 0.975
2.0 900.0 0.162 1.413 1.027 0.820 0.838 0.979
2.5 900.0 0.233 1.413 1.027 0.798 0.833 0.958
2.5 900.0 0.217 1.413 1.027 0.804 0.834 0.964
2.5 900.0 0.203 1.413 1.027 0.809 0.835 0.969
3.0 900.0 0.279 1.413 1.027 0.781 0.828 0.943
3.0 900.0 0.260 1.413 1.027 0.789 0.830 0.950
3.0 900.0 0.244 1.413 1.027 0.796 0.832 0.957
3.5 900.0 0.326 1.413 1.027 0.765 0.823 0.930
3.5 900.0 0.304 1.413 1.027 0.773 0.826 0.936
3.5 900.0 0.284 1.413 1.027 0.781 0.828 0.943
4.0 900.0 0.373 1.413 1.027 0.747 0.816 0.915
4.0 900.0 0.347 1.413 1.027 0.758 0.820 0.924
4.0 900.0 0.325 1.413 1.027 0.768 0.823 0.933
2.0 1000.0 0.213 1.570 1.268 0.777 0.805 0.965
2.0 1000.0 0.198 1.570 1.268 0.783 0.806 0.971
2.0 1000.0 0.186 1.570 1.268 0.787 0.807 0.975
2.5 1000.0 0.266 1.570 1.268 0.755 0.801 0.943
2.5 1000.0 0.248 1.570 1.268 0.764 0.802 0.952
2.5 1000.0 0.232 1.570 1.268 0.770 0.804 0.958
3.0 1000.0 0.320 1.570 1.268 0.732 0.795 0.921
3.0 1000.0 0.298 1.570 1.268 0.743 0.797 0.932
3.0 1000.0 0.278 1.570 1.268 0.751 0.800 0.939
3.5 1000.0 0.373 1.570 1.268 0.711 0.788 0.902
3.5 1000.0 0.347 1.570 1.268 0.723 0.791 0.913
3.5 1000.0 0.325 1.570 1.268 0.734 0.794 0.924
4.0 1000.0 0.426 1.570 1.268 0.683 0.780 0.876
4.0 1000.0 0.397 1.570 1.268 0.700 0.784 0.892
4.0 1000.0 0.371 1.570 1.268 0.715 0.788 0.907

mean 0.961
COY 3.3%
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Several methods and formulae to predict the compressive strength parameter of 

stiffened panel have been proposed, which can be divided into three categories:

[1] Effective width approach : by Faulknert^O] and Carlsent^O]

[2] Single parameter, X formula : by Bjorhovde and Rondal and Maquoi

(see reference [181])

[3] Two parameter, X and p, formula: by Lin[125]

The proposed formula, Eq.(3.70) belongs to category 3. The methods and formulae by

others are briefly described as follows:

o Method by Faulkner:

This method is based on the Johnson-Ostenfeld type formulation together with the 

effective width approach for plate behaviour, in which the effects of initial deflection and 

residual stress can be considered. Since the strength formula of axial compression for the 

stringer-stiffened cylinder, described in Section 3.3.1, has been derived based on the 

same approach adopted for the stiffened flat panel, the situation is similar, except that the 

curvature effect of the curved panel is to be removed. The compressive strength 

parameter is given by:

a  a  A + b  t
= —  = —  = [  Ast ue ] (3.71)

„  n  L A , + b t  J
Oy Y St

where Ast is the sectional area of stiffener, and the edge stress a e (or effective stress) is 

governed by the compression collapse of the stiffener and its associated plating. Thus, 

for column collapse from Johnson's parabola replacing a e by ac gives:

a  = a  = a v  (1  -  0.25 X2 ) for X < J le c Y v ce c e 1'

= a  for X < J l  (3.72)cr ce ^
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where a cr is the Euler buckling stress and the reduced slenderness parameter, Xce, is 

given by:

and

A + b  t st e
(3.74)

where Lg is the reduced effective length and Ig the moment of inertia associated with the 

reduced effective width given by:

The effective width be of the plate relates to the slenderness as in Eq.(3.36). Due to the 

weld induced residual stress, the effective widths, be' and be , should be reduced by the 

factor Rr given by:

(3.76)
±-2xi 2P_1t

o Method by Carlsen:

This is based on the Perry-Robertson formulation, together with the effective 

width approach for the plate strength through parametric study by using the finite 

difference method. The compressive strength parameter, (j), is given by:
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(1 + y  + 5 ) - V ( l + Y + 5 ) 2 - 4 ?  

2 ?
(3.77)

where

A = sectional area of stiffener-plate combined section 

Z = section modulus 8g = stiffener initial deflection

When calculating a cr and Z, the plate is considered to be fully effective due to its small 

influence on the strength of the stiffened panel.

The stiffener initial deflection, 8S is always assumed to be 8S = 0.0015 L. But 

for plate induced collapse, account is taken for the shift of neutral axis due to loss of 

effectiveness of plate by modifying 8S as follows:

in which Ae is the effective sectional area calculated with the effective width, be. In the 

case of plate induced collapse, be, is given, similar to Eq.(3.36), by:

8 . = 0.0015 L + Z [ ^ r - - l  1 
S  p  A

(3.78)
e

be < 1.0
P P2

(3.79.a)
b

In the case of stiffener induced collapse:
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b
—  = 1 . 1 - 0 . 1  B < 1.0 
b (3.79.b)

o Single Parameter Formula:

Bjorhovde derived the following set of equation for the mean value of collapse 

strength based on test data and based on three assumptions: (1) the initial imperfection is 

the same as the buckled shape of a pinned end elastic column (2) the maximum value of 

the initial imperfection, i.e. L/1000, is approximately equal to the maximum permissible 

tolerance and (3) there is no-end restraint. The formulae is given by:

c
= —  = 1 . 0  for X< 0.15

a
y

= 1.035 -  0.202 X -  0.222 X2 for 0.15 < X S 1.0

= -0.111 + for i.o <2.S 2.0
X2

0 877
= 0.009 + — —  for 2.0 <A,<3.6

X2

for X > 3.6
(3.80)

in which X is the slenderness parameter associated with plate width and is calculated from 

Eq.(3.67). To avoid the operational complications arising from five different cases, 

Rondal and Maquoi (see reference [181]) suggested the following single equation to 

replace the last five equations for X > 0.15:

♦ = Y - V y 2 - 4^ . (3.81)
2X2

where Y = 0.956 + 0.293 X + X2
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o Two parameter formula:

Lin [125] derived the <j> equation based on the parametric study by using the

dynamic relaxation method in terms of the two slenderness parameters, X and p, such 

that it fitted best to numerical results. The plate width was considered to be fully effective 

when calculating the slenderness parameters as for the present proposed equation (3.70). 

The formula was assumed to have the form of:

Through a curve fitting method with numerical data for the stiffened panels, the 

coefficients, C i to C5 , were determined as follows:

The predictions of <j) by the proposed equation (3.70) are compared with test data 

by F a u l k n e r [ 1 8 2 ]  and by Home et altl81»184]^ Table 3.7 shows the comparisons with 

test data by Faulkner, and Tables 3.8-3.10 with test data by Home et al, in which <J>e's 

denotes the compressive strength parameters by test and <j>p's predicted values by the 

proposed equation. Figures in the tables are ratio of two <j> values, i.e., <t>e/<J>p.The 

predicted value of <j)p's by other methods and formulae are also included to compare the 

results by the present formula [Eq.(3.70)] with their results. Table 3.11 summaries the 

results of Tables 3.7 to 3.10.

The method by Faulkner, Eqs.(3.71) to (3.77), and the proposed equation (3.70) 

show good agreement with test data, and gives the mean value of the ratio (<j>e/<t>p) close 

to unity and low COV such that they are always less than 10% for all cases of test 

models. For all test models both methods give COVs of 7.2% and 7.8%, respectively. 

This implies that the two methods well satisfy the recommended requirements for

<{> =
1

(3.82.a)

C i = 0.960 C2 = 0.765 C3 = 0.176

C4  = 0.131 C5 = 1.046 (3.82.b)
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strength formula as mentioned in Section 2.4.2C119,163]^ The prediction by Carlsen's 

method almost always much underestimates the <j) values and shows higher COVs, except 

for stiffener induced collapse test models by Home et al., such that mean of the ratio 

(^e/^p) k  underestimated by 10 to 28% and COV's are around 10%, but less than 13% 

[see Section 2.4.2]. For all test models it gives a mean of the ratio, <j>e/<l>p , of 1.16 and 

COV about 12%. The prediction by Lin's formula, Eq.(3.82), shows a similar tendency 

to Carlsen's. While Rondal and Maquoi's formula, Eq.(3.81), [Bjorhovde's formula, 

Eq.(3.80) is similar to this] usually much over-estimates the strength and shows much 

fluctuation such that the mean of the ratio, <}>e/<j>p in some cases is lower by about 10 or 

18% and COVs usually greater than other prediction methods and formulae.

Comparisons of the predicted value, <j>p, with test results, <j)e, are plotted in Figs. 

3.11 to 3.15 for the above prediction methods and formula, except for Bjorhovde's 

because of its similar nature to Rondal and Maquoi's.

Comparison should be done with test data under the combined axial compression 

and lateral pressure. However, since there is only a very limited number of available test 

results, comparison cannot be done within a wide range. In this study a test series carried 

out by Smith[185] js selected. Comparison between <j)p by the proposed equation (3.70) 

with test results, <j)e, is listed in Table 3.12 and plotted in Fig. 3.16. The COV of the 

ratio, <|>e/<l>p» is relatively higher than those of the previous cases, but comparatively good 

agreements are obtained by the proposed equation.

In conclusion, the present formula, Eq.(3.70), in spite of its simplified nature, 

generally gives a satisfactory prediction of the compressive strengths of stiffened panels 

compared with the test results and those of other prediction methods and formulae. One 

shortcoming of the formula is that it cannot reflect the change in magnitudes of 

imperfections, such as residual stress and the initial deflection of plate and stiffener, 

because, in the present parametric study, the imperfections have been uniquely imposed. 

However, since the imperfection levels were appropriately selected to be suitable for the 

practical structures with reference to the tolerance recommended in various design codes,
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it can be said that the proposed formula has validity in the practical sense. Further 

comparisons should probably be carried out for the combined loading case of axial 

compression and lateral pressure.

The proposed formula, Eq.(3.70) is plotted in the form of <J>p - X curves when p 

= 0.0, 1.0, 1.5, 2.0, 2.5 and 3.0 in Fig. 3.17.



Table 3.7 Comparison of Predicted Compressive Parameter ((j)p) with Test Results (<|)e)

Tested by Faulkner[182]

Test

Model X P -e
-

Prediction Method (<j>e /<|>p)

Faulkner Carlsen Rondal Lin Present

PI 0.276 1.04 0.976 1.024 1.074 0.962 1.080 0.935

P2 0.303 2.01 0.733 0.978 1.031 0.953 0.983 1.055

P4 0.304 3.99 0.567 0.986 1.179 0.953 1.139 0.939

P5 0.534 0.99 0.824 0.923 1.032 0.870 1.000 1.057

P6 0.599 1.98 0.750 1.001 1.135 0.841 1.123 0.966

P8 0.622 4.16 0.515 0.984 1.224 0.831 1.190 0.927

P9 0.822 1.02 0.716 0.922 1.136 0.722 1.069 1.071

P10 0.897 1.97 0.660 1.031 1.218 0.676 1.207 0.949

P l l 0.973 3.03 0.494 1.018 1.226 0.727 1.145 0.982

P12 0.939 4.19 0.448 1.032 1.333 0.649 1.232 0.897

P13 0.411 1.02 0.988 1.063 1.201 0.917 1.137 0.905

P14 0.298 2.04 0.764 0.993 1.116 0.955 1.030 1.007

P15 0.335 2.96 0.569 1.016 1.067 0.943 0.940 1.127

P16 0.341 4.05 0.506 1.040 1.185 0.941 1.037 1.035

P17 0.796 0.98 0.822 0.991 1.314 0.738 1.195 0.952

P18 0.580 1.98 0.656 0.919 1.014 0.850 0.973 1.112

P19 0.691 3.09 0.563 1.149 1.242 0.796 1.103 1.003

P20 0.687 4.12 0.455 1.036 1.236 0.798 1.076 1.030

P21 1.242 1.03 0.696 1.121 1.715 0.467 1.561 0.788

P22 0.893 2.04 0.515 0.885 1.120 0.678 0.950 1.204

P23 1.024 3.04 0.491 1.178 1.454 0.595 1.183 0.948

P24 1.017 4.02 0.384 1.024 1.366 0.599 1.080 1.018
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Table 3.8 Comparison of Predicted Compressive Parameter (<{>p) with Test Results (<{>e)

Tested by Home et alU83,184]; Plate Induced Collapse

Test

Model X P

Prediction Method (<t>e /  <|>p)

Faulkner Carlsen Rondal Lin Present

1 0.44 1.70 0.79 0.950 1.041 0.871 1.039 1.010

8 0.43 1.72 0.85 1.023 1.115 0.934 1.118 0.938

11 0.45 1.70 0.79 0.962 1.045 0.875 1.043 1.008

12 0.44 1.70 0.79 0.950 1.041 0.871 1.039 1.010

13 0.45 1.69 0.75 0.912 0.991 0.831 0.988 1.063

14 0.44 1.70 0.83 0.996 1.092 0.915 1.091 0.962

A ll 0.53 2.84 0.55 0.969 1.007 0.631 0.948 1.142

A21 0.52 2.88 0.64 1.124 1.170 0.731 1.108 0.977

A12 0.53 2.86 0.56 1.000 1.048 0.643 0.970 1.117

A23 0.52 2.91 0.62 1.068 1.105 0.708 1.080 1.002

A22 0.51 2.83 0.56 0.990 1.007 0.637 0.956 1.130

PF2 0.73 0.87 0.78 0.931 1.023 1.006 1.061 1.051

PF5 0.79 0.90 0.79 1.002 1.114 1.066 1.132 1.003

PF11 0.79 0.88 0.72 0.948 1.050 0.971 1.029 1.104

SW1 0.85 1.70 0.71 1.083 1.253 1.007 1.197 0.955

SW3 0.85 1.70 0.71 1.081 1.245 1.007 1.197 0.955

SW5 0.85 1.70 0.64 0.976 1.104 0.908 1.079 1.059

SW7 0.85 1.70 0.69 1.076 1.235 0.978 1.163 0.982
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Table 3.9 Comparison of Predicted Compressive Parameter (<|>p) with Test Results (<j>e)

Tested by Home et alH83,184]: Stiffener Induced Collapse

Test

Model X P

Prediction Method (<|>e /  <t>p)

Faulkner Carlsen Rondal Lin Present

3 0.24 1.73 0.85 1.004 1.094 0.874 1.061 0.965

9 0.48 1.72 0.78 0.969 1.053 0.875 1.047 1.010

FS4 0.86 0.84 0.67 0.833 0.985 0.969 1.025 1.145

FS9 0.84 0.83 0.75 0.929 1.097 1.054 1.114 1.036

AS2 0.66 0.82 0.81 0.936 0.993 0.997 1.040 1.050

AF2 0.65 0.81 0.89 1.007 1.037 1.089 1.133 0.961

Table 3.10 Comparison of Predicted Compressive Parameter (<j)p) with Test Results (<j)e) 

Tested by Home et al[183,184]: Overall Collapse

Prediction Method (<j>e /  <|>p)

Test

Model X P ^e Faulkner Carlsen Rondal Lin Present

D ll 1.11 1.73 0.63 1.024 1.482 1.163 1.336 0.882

D21 1.04 1.62 0.57 0.858 1.264 0.975 1.118 1.055

D12 1.02 1.59 0.65 0.962 1.425 1.088 1.247 0.945

D22 1.07 1.67 0.60 0.911 1.366 1.060 1.217 0.969

E ll 1.17 2.92 0.47 1.111 1.205 0.928 1.243 0.893

E21 1.15 2.87 0.44 1.034 1.131 0.849 1.137 0.981

E12 1.17 2.92 0.48 1.134 1.230 0.948 1.270 0.874

E23 1.16 2.90 0.45 1.053 1.146 0.878 1.177 0.945
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Table 3 . 1 1  Summary of Comparison of Predicted Compressive Parameter (<|)p) with Test 

Results ((j>e) Tested by F a u l k n e r [ 1 8 2 ]  and by Home et a l [ 1 8 3 , 1 8 4 ]

: mean and COY of ratio, (jjgAjjp

Test Model

Prediction Method (<j)e /  <l>p)

Faulkner Carlsen Rondal Lin Present

all models tested by 

Faulkner (22 models)

1.014

[6.9%]

1.120

[12.9%]

0.826

[26.7%]

1.111

[11.6%]

0.996

[8.8%]

plate induced collapse 

models tested by Home et al. 

: Case 1 (18 models)

1.002

[5.9%]

1.094 

[7.4 %]

0.866

[15.7%]

1.069

[6.9%]

1.026

[6.1%]

stiffener induced collapse 

models tested by Home et al. 

: Case 2 (6 models)

0.946

[6.2%]

1.043

[4.2%]

0.976

[8.4%]

1.070

[3.7%]

1.028

[6.2%]

overall collapse models 

tested by Home et al.

: Case 3 (8 models)

1.011

[8.8%]

1.281

[9.5%]

0.986

[10.3%]

1.218

[5.5%]

0.943

[6.0%]

all models tested by Home 

et al. (32 models)

0.994

[7.2%]

1.131

[11.0%]

0.917

[14.5%]

1.106

[8.4%]

1.005

[6.9%]

all models tested by Faulkner 

and by Home et al.

(54 models)

1.002 

[7.2 %]

1.163

[12.4%]

0.880

[20.4%]

1.108

[9.9%]

1.001

[7.8%]
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Fig. 3.11 Comparison between <|>e and <J>p by Faulkner

§

CL,

%

CO : Faulkner 
□ : Horne Case 1
a : Horne Case 2
* : Home Case 3

1.0

Strength Parameter by Prediction 

Fig. 3.12 Comparison between <j)e and <j)p by Carlsen

- 161 -



•  : Faulkner
□ : Horne Case 1
a : Horne Case 2
♦ : Horne Case 3

-------
A /

• X  9 ^□jtY
• s

•  p  •
•  • •  •

•
•

•

0.2-

0.0 0.2 0 .4  0.6 0.8 1.0

Strength Parameter by Prediction

Fig. 3.13 Comparison between (J)e and (j)p by Rondal and Maquoi

£
£
>»x>

1
£Oh

I .
I
CO

0.0

•  : Faulkner
□ : Home Case 1
a : Horne Case 2
o : Horne Case 3

l 1 r
0.6  0.8 1.0

Strength Parameter by Prediction

Fig. 3.14 Comparison between <J>e and (J>p by Lin

-162-



•  : Faulkner
□ : Horne Case 1
a : Horne Case 2
o : Horne Case 3

0.8-

0.6-

0.4-

co
0.2-

0.0
0.20.0 0.4 0.6 0.8 1.0

Strength Parameter by Prediction 

Fig. 3.15 Comparison between (j>e and <J>p by Proposed Formula

Table 3.12 Comparison of Predicted Compressive Parameter (<j)p) by the Proposed 

Formula with Test Results (<}>e) Tested by S m i t h t ^ 5 ]

: under the Combined Axial Compression and Lateral Pressure

Test Model X P w' (psi) ♦e ^ e^ p

IB 0.23 2.72 15 0.73 1.177

2A 0.42 1.42 7 0.91 1.094

3A 0.70 1.68 3 0.69 0.945

4A 0.53 1.43 8 0.83 1.030

mean 1.062

COV 8.0%
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Fig. 3.17 Compressive Strength Curves of Stiffened Panels (lateral pressure = 0)
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In the following three sections strength formulae for ultimate compressive force, 

Fxu and for ultimate bending moment, Mu, are separately derived in terms of the 

compressive strength parameter, <|), of the stiffened panel through regression based on 

numerical results of the parametric study for the rectangular sections, as mentioned in 

Section 3.4.2. The interaction equation under the combined axial compression and bi­

axial bending moments will be introduced which has also been derived based on the 

numerical results of different levels of each loading.

3.4.4 Ultimate Compressive Strength

Taking into account the effect of "hard comer" the equilibrium concept gives the 

equation predicting the ultimate axial compressive strength, Fxu- That is derived as:

and <|)B, and <J>D are the compressive strength parameters, given as Eq.(3.70), of the 

stiffened panels in bottom, side shell and deck, respectively. Ys are the relative area ratio 

defined as:

where AT is the total sectional area, and AB, As and AD are areas of stiffener-plate 

combination in the bottom, one-side shell, and deck, respectively. The area of hard 

comer, AHC, is:

^xu “  Fy ( Yb + 7s + 7d ) (3.83)

where Fy is the fully plastic axial compression given by:

A

yB = Ab /  At for bottom

ys = As /  At for one-side shell

YD = AD /  At for deck

yHC = Ahc /  At  for " hard comer " (3.84)
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^HC -  AT -  ( Afi + 2AS + AD ) (3.85)

Eq.(3.83) implies that at the ultimate state the load allocated on the components in 

bottom, side shell, deck and hard comer are proportional to their load carrying capacities. 

In this study, "hard comer" is regarded as the portion of the section of which stress-strain 

relation was expected to follow the material behaviour.

Comparison of the ultimate compressive strengths predicted by Eq.(3.83) with 

numerically predicted ones are listed in Table 3.13 for 20 cases. They are plotted in Fig. 

3.18. Eq.(3.83) shows very close correlation with the numerical results.

1.00 o  : data point

0 . 7 5 -

0 . 5 0

1.000 . 7 50 . 5 0

(Fxu)p

Fig. 3.18 Comparison between Numerical and Predicted Ultimate Compressive Strength
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Table 3.13 Comparison of Ultimate Compressive Strengths:

by Eq.(3.83), (Fxu)p, and Numerically Calculated Ones, (FXU)N

( B/H = 0.857, stiffener case 1)

L/b b ( f x u ) n (Fxu)p ( F x u ) n  /  (Fxu)p

2.0 700.0 0.936 0.921 1.017

2.5 700.0 0.927 0.919 1.008

3.0 700.0 0.916 0.917 0.999

3.5 700.0 0.905 0.915 0.989

4.0 700.0 0.893 0.912 0.979

2.0 800.0 0.897 0.900 0.997

2.5 800.0 0.886 0.898 0.987

3.0 800.0 0.875 0.895 0.978

3.5 800.0 0.863 0.892 0.967

4.0 800.0 0.852 0.889 0.959

2.0 900.0 0.861 0.878 0.981

2.5 900.0 0.851 0.875 0.972

3.0 900.0 0.839 0.872 0.962

3.5 900.0 0.826 0.868 0.952

4.0 900.0 0.813 0.863 0.942

2.0 1000.0 0.831 0.855 0.972

2.5 1000.0 0.817 0.851 0.959

3.0 1000.0 0.800 0.847 0.944

3.5 1000.0 0.783 0.842 0.930

4.0 1000.0 0.765 0.836 0.916

mean 0.971

COV 2.6%
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3.4.5 Ultimate Bending Moment

Several strength formula estimating the ultimate bending moment for a ship's hull 

girder, including buckling, have been p ro p o se d ^ ,99,125,186-188]^ in the present 

study the strength formula for the ultimate bending moment has been derived based on 

the concept proposed by Faulkner and S addend] and the equation of systematic error 

was derived through the regression analysis to best fit its prediction to results of the 

parametric study.

As in reference [99], the ultimate bending moment, Mu (Myu or Mzu), is given

by:

Mu = Z c u ( l  + £s ) = Z a Yfav<|>(l + Cs ) (3.86)

where Z is the section modulus of the section associated with the bending about y- or z- 

axis [Fig. 3.3], £s is a systematic error to consider the margin between the moments at 

which compression collapse occurs in the weakest portion of the section, and the ultimate 

bending moment, <{>, is the compressive strength parameter defined as Eq.(3.70), and 

a Y,av is average yield stress of stiffener-plate combination. A systematic error was 

derived as a function of slendernesses, i.e. X and p, the slenderness of the stiffened panel 

and that of the associated plate at the weakest portion, and the area ratio between the 

compressive part and the web part of the section. It was assumed to have a form of:

(3.87.a)

where A \ and A2 are areas of compression flange and web. C i and C2  are coefficients, 

which have been derived through regression analysis as follows:

Ci = -  0.329 + 2.160 a.p -  4.041 X.2P

C2 = 0.423 -  1.657 Xp + 3.687 X2P (3.87.b)
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Tables 3.14(a) and (b) illustrate the numerical results under the ultimate bending 

moment about z-axis and y-axis respectively (16 cases for each direction), and also the 

systematic error calculated from the results. Comparison of the predicted systematic 

errors by Eq.(3.87) and the predicted ultimate bending moment predicted by Eq.(3.86) 

with numerically predicted ones are listed in Table 3.14(c), and plotted in Fig. 3.19(a) 

and (b), respectively. The predicted systematic error by Eq.(3.87) shows very close 

correlation with the numerical results such that mean of the ratio, (CsW(£s)p k  close to 

unity and its COV is 3.3 %. The predicted ultimate bending moments also show the same 

correlation except slightly lower mean of the ratio, (Mzu)N/(Mzu)p.

With Eqs.(3.83) and (3.86) the ultimate strength, when each loading is applied 

separately, can be obtained. The estimated ultimate bending moment by Eq.(3.86) is 

compared with the test results by Dowling et alH76] ^  by RecklingH77]} ^  with 

the numerically estimated ones discussed in Section 3.4.1.3. These are listed in Table 

3.15. The ultimate bending moment by Eq.(3.86) seems to be reasonably satisfactory.

Table 3.15 Comparison of Ultimate Bending Moments (Test /  Prediction)

Model r 1 r 1 V 2 A1 /A 2 Cs Eq.(3.86) Ratio*3

Model 2 0.646 1.893 0.723 1.938 0.060 0.989 1.019

Model 4 0.491 0.794 0.902 1.539 0.129 0.938 1.020

Model 23 0.465 1.173 0.865 1.806 0.162 0.963 1.055

*1 : slenderness of stiffened panel and plate for weakest portion of section 

*2 : compressive strength parameter predicted by Eq.(3.70)

*3 : ratio of the ultimate bending moment by test to that by Eq.(3.86)
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Table 3.14 Comparison of Ultimate Bending Moments: by Proposed Equation, (Mu)p 

and Numerically Calculated Ones, (MU)N when L/b = 4.0

(a) Numerical results of £s and

Case B/H b X P A i /A 2 ( Q n ( m z u ) n

1 0.857 700 0.238 1.099 0.871 0.761 0.251 0.904

2 0.857 800 0.280 1.256 0.815 0.761 0.283 0.870

3 0.857 900 0.325 1.413 0.768 0.762 0.316 0.842

4 0.857 1000 0.371 1.570 0.715 0.762 0.370 0.818

5 0.75 700 0.238 1.099 0.871 0.646 0.263 0.904

6 0.75 800 0.280 1.256 0.815 0.646 0.294 0.869

7 0.75 900 0.325 1.413 0.768 0.646 0.328 0.841

8 0.75 1000 0.371 1.570 0.715 0.647 0.381 0.816

9 0.67 700 0.238 1.099 0.871 0.561 0.273 0.903

10 0.67 800 0.280 1.256 0.815 0.561 0.305 0.868

11 0.67 900 0.325 1.413 0.768 0.562 0.338 0.840

12 0.67 1000 0.371 1.570 0.715 0.562 0.392 0.815

13 0.60 700 0.238 1.099 0.871 0.496 0.283 0.903

14 0.60 800 0.280 1.256 0.815 0.496 0.314 0.867

15 0.60 900 0.325 1.413 0.768 0.496 0.348 0.839

16 0.60 1000 0.371 1.570 0.715 0.497 0.401 0.813
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Table 3.14 (continued)

(b) Numerical results of £s and Myy

Case B/H b X P A1 /A 2 (Cs)n (Myu)N

17 0.857 700 0.227 1.021 0.892 1.216 0.167 0.922

18 0.857 800 0.267 1.166 0.836 1.216 0.199 0.891

19 0.857 900 0.310 1.312 0.788 1.216 0.227 0.862

20 0.857 1000 0.354 1.458 0.738 1.216 0.269 0.838

21 0.75 700 0.227 1.021 0.892 1.433 0.154 0.922

22 0.75 800 0.267 1.166 0.836 1.433 0.183 0.889

23 0.75 900 0.310 1.312 0.788 1.433 0.209 0.859

24 0.75 1000 0.354 1.458 0.738 1.433 0.252 0.835

25 0.67 700 0.227 1.021 0.892 1.650 0.143 0.921

26 0.67 800 0.267 1.166 0.836 1.650 0.170 0.887

27 0.67 900 0.310 1.312 0.788 1.650 0.196 0.857

28 0.67 1000 0.354 1.458 0.738 1.649 0.236 0.831

29 0.60 700 0.227 1.021 0.892 1.868 0.135 0.921

30 0.60 800 0.267 1.166 0.836 1.867 0.162 0.886

31 0.60 900 0.310 1.312 0.788 1.866 0.185 0.855

32 0.60 1000 0.354 1.458 0.738 1.866 0.220 0.827
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Table 3.14 (continued)

(c) Comparison

Case (Cs)n (Cs)c (Cs)N /(Cs)c (Mu)n (Mu)c (Mu)n/(Mu)c

1 0.887 0.251 0.236 1.065 0.904 0.909 0.994
2 0.856 0.283 0.266 1.064 0.870 0.902 0.965
3 0.823 0.316 0.303 1.044 0.842 0.894 0.943
4 0.788 0.370 0.348 1.065 0.818 0.887 0.922
5 0.887 0.263 0.257 1.023 0.904 0.916 0.987
6 0.856 0.294 0.286 1.030 0.869 0.907 0.958
7 0.823 0.328 0.324 1.012 0.841 0.899 0.936
8 0.788 0.381 0.372 1.024 0.816 0.894 0.913
9 0.887 0.273 0.277 0.987 0.903 0.922 0.979
10 0.856 0.305 0.304 1.001 0.868 0.912 0.952
11 0.823 0.338 0.343 0.984 0.840 0.904 0.929
12 0.788 0.392 0.396 0.991 0.815 0.901 0.905
13 0.887 0.283 0.296 0.956 0.903 0.928 0.972
14 0.856 0.314 0.321 0.977 0.867 0.916 0.947
15 0.823 0.348 0.361 0.963 0.839 0.908 0.924
16 0.788 0.401 0.417 0.960 0.813 0.907 0.897
17 0.897 0.167 0.170 0.981 0.922 0.930 0.991
18 0.869 0.199 0.201 0.987 0.891 0.928 0.960
19 0.838 0.227 0.234 0.968 0.862 0.922 0.935
20 0.805 0.269 0.266 1.011 0.838 0.912 0.918
21 0.897 0.154 0.154 1.004 0.922 0.927 0.995
22 0.869 0.183 0.186 0.984 0.889 0.926 0.960
23 0.838 0.209 0.219 0.955 0.859 0.921 0.933
24 0.805 0.252 0.249 1.012 0.835 0.909 0.918
25 0.897 0.143 0.140 1.022 0.921 0.924 0.997
26 0.869 0.170 0.174 0.981 0.887 0.924 0.959
27 0.838 0.196 0.207 0.951 0.857 0.919 0.932
28 0.805 0.236 0.235 1.002 0.831 0.907 0.917
29 0.897 0.135 0.129 1.045 0.921 0.922 0.999
30 0.869 0.162 0.164 0.986 0.886 0.923 0.960
31 0.838 0.185 0.197 0.940 0.855 0.918 0.931
32 0.805 0.220 0.224 0.982 0.827 0.905 0.913

mean
c o v

i : 0.999 
: 3.3%

mean
COV

i : 0.948 
: 3.1%
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Fig. 3.19 Comparison of Systematic Error and Ultimate Bending Moments
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Table 3.16 Details of a Typical Numerical Model

B = 9600.0 mm H= 12800.0 mm L = 2800.0 mm B/H = 0.75
\  properties lateral

pressure

MPa

plate stiffener

t
m m

E
N /m r a ^

Gy
N /m m ^

scantling
m m

E
N /m r r 2

Gy
N /m m 2

spacing
m m

D E C K 0.30 26 2 1 0 0 0 0 350.0 350 x 13 x 
150 x 25 T

2 1 0 0 0 0 350 800

B O T T O M 0.40 30 2 1 0 0 0 0 350.0 400 x 15 x 
150 x 25 T

2 1 0 0 0 0 350 800

S I D E

S H E L L

0.35 28 2 1 0 0 0 0 350.0 375 x 14 x 
150 x 25 T

2 1 0 0 0 0 350 800

total sectional area 1.6561 m2

elastic neutral axis from midplan of bottom plate 6.17 m

plastic neutral axis from midplan of bottom plate 6.01 m

moment of inertia about z-axis z 
about y-axis Iy

39.87 n4 

26.13 m4

fully plastic axial compression Fy 

plastic bending moment about z-axis Mzp

y-axis Myp

577.79 MN 

2563.47 MN-m 

2123.58 MN-m

nondimensional ultimate strength Fxu /  Fy 

when applied separately Mzu (+) /  Mzp

Mzu (-) /  Mzp 

M yu/Myp

0.867

0.877

0.905

0.896
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3.4.6 Combined Loading

In order to investigate the form of the interaction equation under the combined 

axial compression and bi-axial bending moments, numerical analysis has been carried out 

selecting a typical rectangular section [see Fig. 3.9]. Table 3.16 illustrates details of 

geometric and material parameters, initial deflections, etc. and the ultimate strengths, 

Fxu. and Myu for the typical numerical model. The data are similar to those found in 

the Hutton TLP. Since the section is not symmetric about z-axis, there is a difference 

between the ultimate bending moment for sagging condition (positive Mz) and for 

hogging condition (negative Mz).

Using Eq.(3.65) and by varying the relative incremental rate of Aex, A<j>z and 

A<J)y in the equation, two cases of numerical study have been performed to determine the 

form of the expected interaction equation.

Case 1 : Numerical analysis to investigate the relation between Mz and My

i.e the relation of bi-axial bending 

Case 2 : Numerical analysis to investigate the relation between Fx

and bending moment, Mz and/or My 

i.e. combined axial compression and bending moment

The numerical results for Case 1 are listed in Table 3.17, and based on these data 

an interaction equation under bi-axial bending moments has been derived as:

yu zu

And, for Case 2 numerical results are listed in Table 3.18 when My = 0 and Table 3.19 

when Mz = 0. Based on these data the relation between axial compression and bending 

moment has been derived as:
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where M is Mz or My. Combining Eqs.(3.88.a) and (3.88.b), the interaction equation 

under the combined axial compression and bi-axial bending moments is given by:

(3.89)
XU yu zu

When hull girder is under the bi-axial bending moments, circular formula was 

proposed by Faulkner et a lt^7 ]

The predicted ultimate strength by proposed Eq.(3.89) and by the circular formula 

Eq.(3.90) are compared with the numerical results of Case 1, as illustrated in Table 3.17 

and Fig. 3.20. As far as the present numerical results are concerned, Eq.(3.89) gives a 

mean value closer to unity and a lower COV than Eq.(3.90). As can be seen in Fig. 3.20, 

the circular formula slightly over-estimates the limit state. Hence, it can be said that 

Eq.(3.89) better represents the limit state than Eq.(3.90). Comparison between the 

predictions by Eq.(3.92) and the numerical results of Case 2 are summarised in Tables 

3.18 and 3.19 and shown in Figs. 3.21 and 3.22. The agreement with numerical results 

is satisfactory.

Further calculations have been carried out when the rectangular box-girder is 

under the combined axial compression and bi-axial bending loading condition. The 

numerical results can be seen in Table 3.20 with the predictions by Eq.(3.89). It can be 

seen that the proposed strength formula well represents the limit state close to numerical 

results as for the previous cases.

(3.90)
zu yu



Since there is no available test data for a rectangular box-girder under the 

combined loading condition, the proposed strength formula can not be compared. The 

interaction equation, Eq.(3.89), under the combined axial compression and bi-axial 

bending moments is plotted to demonstrate the shape changes of limit surface to various 

different loading levels. Fig 3.23(a) shows the relation between and My/MyU

when Fx/Fxu are 0.0, 0.25, 0.50, 0.75, and Fig. 3.23(b) the relation between Fx/Fxu 

and Mz/Mzu when My/MyU are 0.0, 0.25, 0.50, 0.75. In Fig. 3.23(a) there seems to be 

no shape change of the failure surface for bi-axial bending and it is shown that, as axial 

compression increases, the interaction effect between axial compression and bending on 

the limit state becomes more and more apparent, although axial compression was 

increased at the same rate. In Fig. 3.23(b) it can be seen that as the bending moment, My, 

increases, the shape change of the failure surface between axial compression, Fx, and 

bending moment, Mz, becomes apparent and the interaction effect is more significant than 

in Fig. 3.23(a). The shapes of failure surface between Fx and My are the same as Fig. 

3.23 (b).
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Table 3.17 Comparison of Eqs.(3.89) and (3.90) with Numerical Results of Case 1

Under Bi-Axial Bending: M z/M ^ vs My/My^ when Fx/Fxu = 0

No. Mz/Mzu M y / M y y Eq.(3.89) Eq.(3.90)

1 1.000 0.000 1.000 1.000

2 0.969 0.202 1.002 0.959

3 0.883 0.397 0.978 0.879

4 0.743 0.576 0.914 0.781

5 0.607 0.714 0.907 0.771

6 0.479 0.828 0.959 0.837

7 0.332 0.925 1.012 0.932

8 0.177 0.982 1.022 0.989

9 0.000 1.000 1.000 1.000

10 -  0.174 0.985 1.032 1.000

11 -  0.329 0.937 1.052 0.975

12 -  0.476 0.844 0.999 0.881

13 -  0.609 0.726 0.944 0.807

14 -  0.750 0.582 0.948 0.813

15 -  0.888 0.400 0.999 0.899

16 -  0.970 0.204 1.007 0.965

17 -  1.000 0.000 1.000 1.000

Mean 0.987 0.911

COV 3.9% 8.9%
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Table 3.18 Comparison of Eq.(3.89) with Numerical Results of Case 2

Under the Combined Axial Compression and Bending Moment

: Fx/Fxu vs Mz/Mm  when My/Myu = 0

No Fx/Fxu Mz/Mzu Eq.(3.89) No Fx/Fxu Mz/Mzu Eq.(3.89)

1 0.000 1.000 1.000 16 0.991 -  0.179 0.993

2 0.068 0.976 0.986 17 0.979 -  0.310 0.994

3 0.150 0.957 1.003 18 0.937 -  0.487 1.012

4 0.272 0.908 0.978 18 0.819 -  0.671 1.057

5 0.437 0.859 1.015 20 0.626 -  0.808 1.090

6 0.570 0.814 1.047 21 0.398 -  0.899 1.079

7 0.651 0.774 1.049 22 0.200 -0 .9 4 4 1.053

8 0.763 0.704 1.046 23 0.154 -  0.961 1.021

9 0.826 0.647 1.035 24 0.000 -  1.000 1.000

10 0.901 0.540 1.010

11 0.934 0.475 1.003

12 0.956 0.401 0.993

13 0.974 0.306 0.988

14 0.986 0.178 0.988

15 1.000 0.000 1.000

Mean 1.018

COV 3.0%
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Table 3.19 Comparison of Eq.(3.89) with Numerical Results Under the Combined Axial

Compression and Bending Moment: Fx/Fxu vs My/Myu when -  0

No Fx/Fxu Mz/Mzu Eq.(3.89) No Fx/FXu Mz/Mzu Eq.(3.89)

1 0.000 1.000 1.000 6 0.823 0.660 0.955

2 0.130 0.941 1.071 7 0.930 0.494 0.991

3 0.239 0.895 1.099 8 0.962 0.308 1.024

4 0.432 0.848 1.016 9 0.978 0.178 1.020

5 0.645 0.771 0.964 10 1.000 0.000 1.000

Mean 1.014

COV 4.1%

N U M E R I C A L  R E S U L T  
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Fig. 3.20 Interaction Curves Between Bi-Axial Bending: Mz/Mm  vs My/Myu
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Table 3.20 Comparison of Eq.(3.89) with Numerical Results Under the Combined Axial

Compression and Bi-Axial Bending Moment

No Fx/Fxu ^ z /^ z u My/Myu Eq.(3.89)

1 0.914 0.105 0.482 0.996

2 0.864 0.305 0.445 0.987

3 0.836 0.386 0.420 0.988

4 0.720 0.603 0.336 1.024

5 0.633 0.552 0.454 0.975

6 0.579 0.508 0.553 0.988

7 0.458 0.788 0.221 0.965

8 0.385 0.730 0.380 0.937

9 0.287 0.568 0.637 0.936

10 0.129 0.822 0.390 0.915

Mean 0.970

COV 3.0%
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Fig.3.23 Interaction Curves
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CHAPTER 4 LOADING FOR TLP STRUCTURES

4.1 Definitions

The system reliability analysis of a floating offshore structure generally consists 

of two main parts. The first one is estimating the environmental loadings acting on the 

structure during its life time and load effects and the second one is the reliability analysis, 

component and/or system reliability, using the appropriate algorithm.

In the context of structural design, estimating the environmental loads and their 

effects should be most important. For a TLP structure, when it is exposed to 

environmental conditions, external forces arise from various environmental phenomena, 

such as wave, wind, current, water pressure, gravity and interactions between structure 

and environmental phenomena. Since there are a number of uncertainties in 

environmental loading, loading model and load effects should be treated stochastically, 

and there should be more degree of uncertainty with loading than with strength because 

of more unknown factors affecting loads. Because of this in most design, the higher 

uncertainties associated with loading are usually reflected by imposing a higher value of 

COV. But in some cases this may he somewhat more on the conservative side.

In the aspect of platform response to environmental influences, a TLP structure as 

a semi-submersible is distinctively different from other platforms in that the platform is 

free to move with waves in the horizontal direction but restrained to a great extent in the 

vertical direction. Because of these characteristics a TLP's response generally shows 

dominance in a frequency range away from the equilibrium state of a typical wave 

spectrum and significant response at the low frequency range of wave spectrum.

As seen in Fig. 4.1, a TLP structure resembles a semi-submersible except in its 

mooring system and foundation structure. The mooring systems in a semi-submersible
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are the conventional catenary system which offers the restoring forces in a horizontal 

direction, but their stiffness in the vertical direction is negligible. The mooring systems 

for a TLP are usually vertical and often referred to as "tendons" (or tethers). These 

tendons are pre-tensioned by the excess buoyancy provided by the platform and have 

such high stiffness in the vertical direction that natural periods of heave, roll and pitch are 

limited to 2 to 4 sec. The restoring forces in the horizontal direction are provided by the 

horizontal component of pre-tension in tendons in the offset position. These components 

are usually small, and thus the natural periods for sway, surge and yaw are in the order 

of 100 sec. Comparison of natural periods for a TLP structure with those for a semi- 

submersible are shown in Fig. 4.2. It can be seen that a good TLP design attempts to 

keep natural periods for heave and pitch on the low side.

Environmental loading can be divided into 3 c a t e g o r i e s ^ , 189]: static, quasi-static 

and dynamic component. They are simultaneously acting on the structure as external 

forces and then their load effects are calculated by modelling the overall TLP structure 

into a space frame type finite element model. Fig. 4.1 also shows the environmental 

loading acting on a TLP structure.

4.2 Load Components

4.2.1 Static Loading

Static load, which is expected not to vary significantly in time, includes weight of 

structure, weight of permanent ballast and permanently installed equipment, machinery 

with liquids at operating levels and external hydrostatic pressure effects in calm sea 

conditions, calculated on the basis of a datum reference level such as the mean sea level. 

Additionally water level should be considered. TLP responses are strongly dependent 

upon water level which also determines the pre-tension in tendon systems (initial 

tension). The pre-tension affects horizontal restoring forces and thus determines the 

horizontal offset of the platform. Further, the pre-tension influences the dynamic 

response characteristics of the platform. These loads usually have the form of the
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distributed load or of the concentrated load.

W E I G H T  O F  S T R U C T U R E

W I N D

W A V E

C U R R E N T

T I D E

P R E T E N S I O N  O F  

T E N D O N  S Y S T E M S

B U O Y A N C T

F O R C E

Fig. 4.1 TLP and Environmental Loading
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HEAVE 
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Fig. 4.2 System Natural Periods Comparison of TLP and Semi-Submersible
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4.2.2 Quasi-Static Loading

Load that is non-oscillatory in nature yet not purely static is termed as a quasi­

static load. Quasi-static load includes the load due to wind, current, wave drift and quasi­

static motion. In this study wave drift force is not considered, but it can be estimated by 

using the Maruo's formulaH^O]. por the worst condition, directions of wind and current 

are assumed to be always the same as wave direction. Estimating wind and current 

induced load is followed to reference [9].

o Wind Load:

Wind load acts normal to flat surface or normal to the axis of members not 

having flat surface exposed to air and can be calculated from Eq.(4.1) [Fig. 4.3]:

F = i p C V 2 A s i n a  (4.1)w 2 a s z

where

Fw  = wind load (N) pa = density of air (= 1.203 kg/m^)
Cs = shape coefficient 

=1.5 for beam

= 1.5 for sides of deck structure 

= 0.6 for cylindrical sections 

= 1.0 for overall projected area of platform 

V jo = wind velocity at 10 m above sea level (m/sec)

Vz = wind velocity at z above sea level (m/sec) given by:

A = projected area on a plane normal to the direction of the considered force 

a  = angle between wind direction and the axis coincident with the center line 

of the member (radian)
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W I N D

Fig. 4.3 Wind Load 

o Current Load:

For the force on submerged parts of the structure due to current alone, only the 

wind induced component is considered and the direction is assumed to be coincident with 

the wind direction. This is reasonable to do since the overall current loads and the 

platform response due to the forces are insigificant compared to the first order wave 

induced forces. The current profile is assumed to be linear between the waterline and the 

baseline of the platform. The following equation may be used for calculating the current 

force, Fc , per unit length:

Aq = projected area (m^)

Another important load for TLP is that due to the quasi-static motion which 

represents an offset and setdown from the initial position due to the action of quasi-static 

loads. The quasi-static offset from the initial vertical position of the platform [Fig. 4.3] 

may be determined approximately by solving the following equation when wave drift 

force is included^. 189];

(4.2)

where:

Fq = current load per unit length (N/m) p = water density

CD = drag coefficient [see Table 4.1] V = current velocity (m/sec)
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( [H] + [T ]) {XiJ = (F w + Fc + Fd ) (4.3)

where X[ is the motion in the i th mode and [H] and [T] denote the restoring matrix 

defined in the next section due to the hydrostatic force and the elastic force of the tendon 

system, respectively. Fw , Fc  and FD are force vectors due to wind, current and wave 

drift, respectively.

CENTRE OF HEEL ANGLE
GRAVITY (EXAGGERATED: IT IS

SET DOWN VERY AMSLL)
WIND FORCE

CURRENT

Fig. 4 . 4  Quasi-Static Offset

4 . 2 . 3  Hydrodynamic Loading

Possible methods for estimating the hydrodynamic load due to wave and motion 

of the structure are the Morison type approach, 2 -  or 3-dimensional diffraction theory and 

methods combining the different m e t h o d s [ 1 8 9 , 1 9 1 - 2 0 1 ]  j j j g  tw0 methods are 

computationally more expensive than the Morison type approach, which is adequate for 

the present study. As a modified approach of the Morison's is averaging the wave 

gradient, velocity and acceleration across the member cross-section and the results are 

closer to those by the 3-dimensional diffraction theory. The combining method is 

computing the fluid properties by 2- or 3-dimensional diffraction theory and adding a
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term which represents the viscous drag f o r c e d 9 8 ] ,  t l p  R C C [ 9 ]  recommends that 

hydrodynamic loading should be estimated by 2- or 3-dimensional diffraction theory. 

However, when the important wave lengths are large compared to the typical cross- 

sectional dimension of members of the structure, the Morison type approach may lead to 

results of acceptable accuracy.

Various non-linear phenomena are generally involved in motion analysis of the 

TLP. The typical non-linear effects are viscous drag force which are non-linear functions 

of the fluid velocity, large platform motion and wave amplitude effects, and non-linear 

forces of the mooring s y s t e m [ ^ 9 , 1 9 6 ] # ^  t h e  case 0f a T L P ,  it appears that the system 

is only weakly non-linear insofar as the global response is concerned. The hydrodynamic 

loading can be estimated by using the hydro-elasticity c o n c e p t [ 1 9 9 , 2 0 2 ] > but here the 

structure is assumed to be sufficiently rigid. In this study the Morison type approach is 

adopted to estimate the hydrodynamic loading in which the drag, inertia, Froud-Krylov 

and appropriately distributed diffraction forces are included. The non-linear drag force 

term is replaced by the equivalent linear drag force t e r m !  1 9 3 , 1 9 4 ]  a n d  Airy's linear wave 

theory is employed. The linear equation of motion is derived for a floating platform 

according to the Morison approach.

4.2.3.1 Linear Equation of Motion

The force action on an infinitesimal element of length, dl, due to wave is given 

by[191]:

where p = water density

Up, up = velocity and acceleration of water particle 

A, D = cross sectional area and diameter of the element 

Cm * Cd = inertia and drag coefficient
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To distinguish between the contributions of the actual displaced mass per unit length, pA, 

and the added mass, (Cj^ - 1 )  pA, Eq.(4.4) can be rewritten as:

dp(t) = { I  CppDiyip + (CM -  l)pAUp + pAup ) dl (4.5)

Following the discussion by C h a k r a b a r t i l 2 0 4 ]  on a paper by Malhotra and P e n z i e n t ^ 3 ]  

it can be shown that the revised form of Morison's equation to allow for structural motion 

is:

dp(t) = { j  CDpD IUp-usl (up-u s) + (CM-l)p A  (up-u s) + pAup ) dl (4.6)

where us and us are velocity and acceleration of structural element. The total force acting 

on an element of length L is given by:

P(t) = J  { I  CppD lup-u sl (up-u s) + (CM-l)p A  (Up-up + pAUp) dl (4.7)

By the Newton’s second law:

mu =p(t)
L L L

= J I  CdP ° 'V * * ' (UP-Us) d l + J  (Cm-D pa  (up-"s) ^  +  J  pAuP 
0 0 0

L L L

=  J I V 0  '“p-^s1 W  dl +  I  (CM-1 )p A u p dl +  J  (C M -1)pAus dl 
0 0 0

L

=  J  pAup dl (4.8)
0

where m is the mass of an element. If velocities and accelerations of water particle and
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structural element are uniform over an element having values at mass centre, Eq.(4.8) 

becomes:

+ pAhip (4.9)

This can be rewritten as:

mu ) + C pVu -  C pVu + pVuJ ar p ar s r p (4.10)

where

Ca = added mass coefficient (=  Cm  -  1)

An = projected area of an element normal to the direction of water particle 

V = volume of displacement of an element (= Al)

The quadratic drag force term may be replaced by an equivalent linear drag force:

where Cj>l is an equivalent linear drag coefficient. Replacing the quadratic drag force 

term by an equivalent linear drag force term, Eq.(4.10) becomes:

(4.11)

mu = i  pC™ A u (u -u  ) + C pVu -  C pVu + pVu 
s 2  DL n r P s a P a s P

(4.12)

or, rewriting

(4.13)
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where ma (= Ca p V) is the added mass and ur (= Up -  us) is the relative velocity 

between water particle and structural element. By inserting the restoring force term the 

equation of motion is given by:

(m+ma)u +  -  pCDLA u ru. + kus = f(t) (4.14)

where f(t) is the exciting force defined as the right hand side of Eq.(4.13). Hence, the 

total external force acting on an element due to wave and structural motion is given by:

f  = -  (m+m )u + m u + — pCL, A u (u -u  ) e v a' s a p 2 DL n rv p s7 (4.15)

By transforming the equation of motion (4.14) to the global co-ordinate of which origin 

is located at the centre of gravity [Fig. 4.4] and assembling it for all elements, the 

equation of motion is given by:

[M] {us} + [B] {us} + [K] {us} = {F(t)} (4.16)

where {F(t)} is the exciting force vector., and [M ], [B] and [K] are mass, damping and 

restoring matrices respectively given as follows. Mass matrix is composed of the 

structural mass matrix and the added mass matrix. That is:

[M] = [Ms] + [Ma] (4.17)

The structural mass matrix is given by:

[Ms] =

M 0 0 0

M O O  

M 0

sym I44 *45 *46 

l 55 *56

66

(4.18)
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where M is the mass of the structure, Ijj is the mass moment of inertia in the j th mode, 

and Ijk is the product of inertia between the j and k th modes.

The added mass matrix is given by:

[Ma] =

A 11 0

22

sym

0 0
A 15 A 1 6

0
A 2 4

0
A 2 6

A 3 3 A 3 4 A 3 5
0

A 4 4
0

A 5 5

A 4 6

A 5 6

66

(4.19)

Note that Aj^ ( for j *  k ) are the added mass cross-coupling coefficients for th k th mode 

coupled into the j th mode of motion, so that, for example, A 15 is the added mass 

coefficient for pitch coupled into surge.

The linear damping matrix is given by:

[B] =

B n  0 0  B .5 B 16

B 2 2  0  B 2 4  0  B 2 6

B 3 3  B 3 4  B 3 5  °

sym
B 4 4  °  B 4 6

B 5 5  B 5 6

B66

(4.20)

The stiffness matrix [K] can be obtained by summing up the hydrostatic restoring 

coefficients, [H] and the stiffness matrix due to the tendon system, [T] in the case of 

TLP, i.e.:
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[K] = [H] + [T] (4.21)

while in the case of a semi-submersible, only the hydrostatic restoring coefficients are 

included. The hydrostatic stiffness matrix [H] is given by:

[H] =

0 0 0 0 0

0 0 0 0

H 33 H 34 H 35

sym H 44 H45

H 55

(4.22)

For the elements on the waterline with cross sectional area Aj each element of the matrix 

in Eq.(4.22) is given as follow:

n

H33 = EpS^1
i=l 
n

=  = H.
i=l
n

H35 =  £  P g A. X. = H,
i=l

n

H45 =  £  P g A i X i Y i =  H54
i=l

H 44 =  X [ P g A i ^  +  IA ]
i=l

H55 = X [ PgAi ^  + IA ] (4.23)

where
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Xi,Yi = co-ordinate of centre of area element i

IA = moment of inertia of area element about its axis through its own centre, 

n = number of area elements on the water line

In the case of a TLP, the pre-tension of the tendon system plays an important role 

in restoring force in all motions. The tendon stiffness matrix with respect to the centre of 

gravity of the structure is given by [205];

[T] =

T 0 11

22

sym

0 0 T
15

T
16

0 T
2 4

0 T
2 6

T
3 3

T
3 4

T
3 5

0

T
4 4

0

T
5 5

0

0

(4.24)

66

The elements of [T] are:

Tn = T i/L  T3 4  = Kt x(Yt - Y g)

t 15= Tj /  L x (Z j -  Zq) T3 5  = Kt x (X t-X q )

T j6 = - Tj /  L x (Y t -  Yg ) T44 = KT x(YT - Y G)2 + Tj/L (Z r - Z G)2

T24 = -T i /L x ( Z r - Z G) T55= Kt x (XT -  Xg)2 + T;/L (Zf -  Zq)2

T26 = -T i /L x (X T - X G) T6 6 = Kt x (XT -  Xq)2 + Tj/L (Yt  -  YG)2

T33 = Kt (4.25)

where:

Ti = initial tension of unit tendon system

K-p = tendon stiffness

X q , Yg  , Zq = co-ordinate of the centre of gravity 

XT , YT , Zp = tendon top co-ordinate
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The equivalent linear drag coefficient C^l may be related to the exact quadratic 

coefficient by an optimisation procedure in which Cp>L is selected in such a way that the 

mean square error between the linear and quadratic estimates of the drag force is 

minimised. For regular wave and platform motion:

where Ur is the amplitude of the oscillatory resultant normal velocity, and for random 

wave and platform motion:

where Ur is the root mean square (RMS) value of the randomly varying resultant normal 

velocity or the square root of the relative velocity variance.

In both cases, Cql is seen to depend upon the relative velocity between the water 

particle velocity and the structural element velocity. The solution, in this case, must 

therefore involve an iterative procedure which is repeated until the error is within an 

acceptable bound. For most realistic platform configuration, the convergence is quite 

rapid since the viscous force is only a small part of the total force system on the platform. 

Convergence check is based on:

(4.27)

Up - us < e (4.28)

for regular wave and platform motion, and

V a r [ u p - u s ] = Cj.2 ^  e

(4.29)

for random wave and platform motion.
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The main difficulty with the application of Morison's equation lies in the proper 

choice of Cq and Cm from a wide range of published data. Although these coefficients 

can be shown to vary systematically with other parameters, such as Reynold's number,

residual uncertainty. In this study, CD and C m  are given as Table 4 .1 ^ 0 6 ]^

4.2.3.2 Equivalent Spring System

Restoring forces due to hydrostatic stiffness and due to the tendon system are 

replaced by equivalent spring constants at the appropriate position as shown in Fig. 4.6. 

The equivalent spring constants, Kx, . . . , K5 in Fig. 4.6 are obtained from the 

following equilibrium equations:

Keulegan-Carpenter number and relative r o u g h n e s s [ 1 9 3 , 1 9 4 ] j there js still considerable

4

4 ( K 2 + K3 ) + n ( K 1 + K3 ) =

n 4 4

i=l j=l j=l
n 4 4

(4.30)

where

K45 etc : the restoring coefficient

j = l ~4 : for comer column i = l~n : for mid-column

n = number of mid-column Xj, Yj, Zj : co-ordinate of spring
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Fig. 4.5 Coordinate System

G : centre of gravity
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Fig. 4.5 Equivalent Spring System
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Table 4 .1  Added Mass and Drag C o e f f i c i e n t l 2 0 6 ]

(1) Added Mass Coefficient 

Cylindrical member: Ca = 1.0 

Rectangular box, sides b and d, b parallel to flow

Ca = tc/4 Kl (d/b) and KL is given by

Kl  = 1 /  {1 + (d/L)2} with L = length of member ( L > d )

(2) Drag Coefficient

Cylindrical member: Cq = 0.7 KL 

Rectangular box, sides b and d, side d facing flow 

with comer radius r (0  < r d /2 ) :

Axis of a member is normal to flow, and Kl , Kr and Kb are given by:

CD = 2.0KL Kr Kb

Kl = 0.5 + 0.1 L/d 

=  1.0

for L/d < 5  

for L /d>5

Kb = 1.0

= ( 8 -  b /d ) /  6 

= 0.5

for b/d < 2 

for 2 < b/d <5  

for b/d >5

Kr = 1.0

= (4 .3 - 1 3  r /d ) /3  

= 0.35

for r/d < 0.10 

for 0.10 < b/d <0.25 

for r/d >0.25
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CHAPTER 5 RELIABILITY STUDIES FOR TLP STRUCTURES

5.1 General

During the last two decades the concept of a tension leg platform (TLP) attracted 

attention as a platform for use in deep water production. Today it is considered to be one 

of the most promising deepwater platforms of the offshore industry. For water depths 

beyond 1500 m, this concept is especially desirable because of its economical feasibility 

in that, due to tendons and less deck/hull area, the TLP is not at all cost-sensitive to the 

increasing water depth and, in addition, the floating part of the structure can be 

transferred to another site after depletion. The TLP can also be used in earthquake zones 

since the tendon system is flexible since the transmission of motion to the main structure 

can be avoided. The TLP concept is relatively new and possesses many complex and 

challenging deepwater design features. To design an economically viable and safe TLP 

requires extensive pre-engineering work to study various tasks specific to the 
structure[205,207]#

The basic concept of a TLP is to impose excessive buoyancy and hence, in still 

water weights of structure itself, equipment installed, etc. and the pre-tension of tendons 

are balanced with buoyancy. Because of this, as described in the previous chapter, the 

characteristics of the platform response to environmental influences is distinctively 

different from other compliant ones, such as semi-submersibles and articulated towers, as 

well as fixed ones in that the platform is free to move with wave, wind or current in the 

horizontal direction. Its motion in the vertical direction is restrained to a great extent and 

is likely to be that of an inverted vertical column.

There are two examples. One is operated in the Hutton field in the North sea (the 

Hutton TLP in Fig. 5.1) which is the first TLP in the world, and the other is under 

construction and will be installed in the Jolliet Field Green Canyon block in the Gulf of
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Mexico (the Jolliet TLP in Fig. 5.2). Even though the TLP is developed for deep water, 

there is a natural trend to try deep water concepts in shallow waters, of which the Hutton 

TLP is an example.

The structural system of a TLP is one of the typical continuous structures and its 

main structural components, such as columns, bracing, pontoons and decks, have high 

redundancy, especially around their joints which are designed to adequately transfer load 

effects between principle structural components. Since like other compliant platforms it is 

very sensitive to weight, the development of the TLP may depend on reducing its weight 

while still retaining the appropriate, efficient s t r e n g t h  [207,208] #

The Hutton TLP has 6 columns of ring stiffened cylinder and pontoons of 

rectangular box girder. The Jolliet TLP has 4 columns and pontoons of ring- and 

stringer-stiffened cylinder (orthogonally stiffened cylinder). The structural test result 

verified that orthogonally stiffened cylinders were more efficient than ring-stiffened 

cylinders for loadings similar to those found in TLPs. Similar experience could be found 

in ship design and therefore much reduction of structural weight can be achieved. In the 

design of the Jolliet TLP about 30% reduction of structural weight was achieved using 

orthogonally stiffened c y l i n d e r s  [ ^ > 9 , 2 0 7 , 2 0 9 ]  ^able 5 . 1  shows the comparison of these 

two TLPs, Hutton and J o l l i e t P 0 9 ] .
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Fig. 5.1 Hutton TLP

o All columns :
ring-stiffened cylinders

o All pontoons:
rectangular box-girders
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o All columns 
ring- and stringer- 
stiffened cylinders

o All pontoons: 
ring- and stringer- 
stiffened cylinders

Fig. 5.2 Jolliet TLP
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Table 5.1 Comparison between the Hutton TLP and the Jolliet TLPI209]

Field

Recovered reserves: oil 

: gas

Peak capacity : oil 

: gas

No. of wells 

On stream date

Location 

Water depth 

Design wave height

Platform configurations 

Operating displacement 

Operating draft 

No. of tendons 

Initial tension of tendon 

Riser pre-tension 

Weight of structure 

Columns: comer column

: mid column

Pontoons

Hutton TLP 

190 mn bbls

110,000 b/day 

21

Aug. 1984

147 m

30.4 m

61,536 tons 

32 m 

16

11,330 tons 

1,350 tons 

48,035 tons 

4 x ring stiffened 

cylinder

2 x ring stiffened 

cylinder 

rectangular box 

girder

Jolliet TLP

40 mn bbls

2.1 bn w?

35.000 b/day

1.4 mn m^ /day 

16

Sept. 1989

536 m

22.0 m

16.700 tons 

24 m

12

4,900 tons 

1100 tons

10.700 tons

4 x ring- and stringer- 

stiffened cylinder

ring- and stringer- 

stiffened cylinder
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For structural analysis, TLP structures are modelled into the finite element type 

space frame, as illustrated in Figs. 5.7 and 5.10. The boundary conditions are imposed to 

minimise restraining of the structures. The load effects, such as axial forces and bending 

moments, are calculated based on the Euler beam theory. In the system reliability 

analysis, the following assumptions are made:

[1] Failure is assumed to occur under combined actions of axial loads and bending 

moment, therefore, the effects of shear and torsion are ignored.

[2] Failure is restricted to the main structural system and hence failure of the tendon 

system is not considered.

[3] Component failure is restricted to the components of columns and pontoons. 

Deck structure is not included

[4] Joints are assumed to be sufficiently stiff so that they can transfer forces to each 

other, therefore, the components around the joints do not fail.

[5] Three categories of loading, namely, static, quasi-static and dynamic, 

give the same load effects.

[6] All random variables are assumed to be statistically independent.

[7] Gross error is not explicitly considered.

[8] Problem is time invariant.

A computer program has been developed based on the present approach described 

in Section 2.4 for the system reliability analysis of structure under the multiple loading 

condition, especially for the floating offshore structures such as TLPs and semi- 

submersibles. The program can cover from estimation of the environmental loading to the 

reliability assessment. Fig. 5.3 briefly shows the general flow of the developed computer 

program which is composed of 3 major parts:

[1] Estimating the three categories of environmental loading and transferring loads 

into equivalent nodal forces

[2] Structural analysis

[3] Reliability analysis

Reliability analysis consists of evaluating the reliability indices (and probabilities
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of failure) of components and systems level. For the system reliability analysis, the safety 

margin is derived according to the present method described in Section 2.4. The 

procedure of identifying the most important failure modes is followed as illustrated in 

Section 2.5.6, through which the probabilistically most important ones may be found 

which may also be the deterministically important ones When generating the failure 

mode, the bounds of the probability of system failure are calculated, and finally, will be 

averaged to give the system reliability level of the structure.

RELIABILITY ANALYSIS

structural analysis

component reliability analysis

STRUCTURAL DATA

calculation of each load component

ENVIRONMENTAL DATA

identifying the important failure 
modes

calculation of the equivalent nodal 
forces for structural analysis

evaluation of bounds of probability 
of system failure

ESTIMATION OF THE 
ENVIRONMENTAL LOADING:

o static load 
o quasi-static load 
o dynamic load

Fig. 5.3 General Flow of the Computer Program
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5.2 Uncertainty Modelling

Treating uncertainties in strengths and loads is the major merit and advantage of 

the reliability-based limit state design process over the conventional working stress-based 

design process. Uncertainties arise from various reasons and can be divided into two 

categories, say, objective and subjective uncertainty. Objective uncertainty is due to 

inherent variability concerned with the random nature of physical phenomena. This 

uncertainty can be described by representing the physical quantities as random variables, 

e.g. thickness and radius of cylinder, yield stress, elastic modulus, etc., or random 

processes wherever time variations are important. This uncertainty can be assessed by 

applying classical statistical methods. Typical coefficients of variation are usually less 

than 10 %.

Subjective uncertainty is mainly due to limitations of mathematical models for 

strength and load in use for design, the analysis estimating loads and their effects, neglect 

of certain physical variables, human error (gross error) etc. This uncertainty usually has 

more effect on the safety level of a structure than the objective one has. It can also be 

statistically treated by using a certain type of model but the uncertainty will be included in 

doing that itself.

5.2.1 Uncertainties in Design Variables

The design variables are usually taken as geometric and material properties of a 

structural component associated with its strength, e.g. for the ring- and stringer-stiffened 

cylinders, shell thickness and radius of cylinder, spacing of ring frames and scantlings of 

stringer and ring frame, and elastic modulus and yield stress. Imperfection will normally 

show significant variability, especially for cylindrical members. Chryssanthopoulos et 

alt 149] included geometric imperfections in their reliability study but the statistical data 

for imperfections are not yet well established. Therefore, one would usually assume 

imperfection equal to the tolerance specified in design codes and therefore, they can be 

treated as deterministic variables.
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Uncertainties of design variables are inherent and therefore objective. They arise 

from the fabrication process of material and can be characterised by their means, 

coefficients of variation (COVs) and distribution types.

In design yield stress must be the most important and influential basic variable in 

strength. COV for yield stress reportedly ranges between 5 %  and 1 0 % .  An extensive 

study by Baker found it to vary between 6% and COV for elastic modulus is

smaller than that for yield stress and sensitivity to this was negligible and hence this 

parameter is sometimes treated as a constant. In the present study COVs of 8% for yield 

stress and 4% for elastic modulus are t a k e n [ 9 , 1 1 3 ] # Uncertainties of geometric 

parameters are usually smaller than that for yield stress. For this study COVs are taken as 

4% but the height and breadth of the rectangular section [Fig. 3.3] are treated as 

constants. It is generally accepted that distributions of variables in strength should be log­

normal and most geometric parameters can be represented by normal distributions. 

Uncertainty modelling for design variables of principle components in a TLP structure are 

listed in Table 5.2. They are used in this study. Strength modelling should be an 

important strength variable. This will be shown in the next section.

Table 5.3 Uncertainties of Design Variables

Cylindrical Component

design variable COV(%) distribution type

radius of cylinder 4.0 normal
thickness of shell 4.0 normal
scantlings of stringer and ring frame 4.0 normal
spacing of ring frame 4.0 normal
yield stress 8.0 log-normal

elastic modulus 4.0 log-normal
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Table 5.2 (continued)

Rectangular Section

design variable COV(%) distribution type

breadth and height of section 0.0 —

thickness of plate 4.0 normal

scantlings of stiffener 4.0 normal

spacing of transverse frame 4.0 normal

yield stress 8.0 log-normal

elastic modulus 4.0 log-normal

5.3.2 Modelling Uncertainties

So that the reliability analysis can serve as a decision-making tool in the practice 

of structural design, it is necessary to include elements for subjective assessment of 

modelling uncertainty information in the reliability model itself. This type of uncertainty 

is concerned with the way of describing loads and then evaluating their effects and 

describing strength capacity. It principly arises from the fact that the predicted values of 

loads and strength will be different from those realised in practice. The difference will 

show a random and, perhaps, systematic variation.

The uncertainty introduced into the process of predicting loads and strength as a 

result of this is usually termed as the modelling uncertainty and is due to two main 

sources:

[1] The number of basic physical variables has been limited to a finite number 

leaving out a possible infinite set of parameters that in the model idealisation 

process have been judged to be of secondary or negligible importance for the 

problem in hand. The neglected certain physical variables can act as generators of
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a background noise.

[2] The limitations of mathematical functions predicting load and strength, apart from 

the inherent uncertainty of themselves in their own evaluations, may incorrectly 

model the behaviour of a structure. This is due to simplification of the functions 

in use and to lack of knowledge about the detailed interplay between the 

considered variables.

Structural analysis itself may have an effect upon the actual value of load effects but 

uncertainty due to this is negligible in comparison to the other two.

Although modelling uncertainties can be and should be assessed by using 

classical statistical methods, their final resolution requires appreciable engineering 

judgement. Modelling uncertainty is, therefore, essentially a subjective one and in 

principle can be reduced by improved m o d e l l i n g [ 1 6 3 ] >

Modelling uncertainty should be quantified using data from model tests and/or full 

scale tests wherever possible. The most convenient way to quantify this uncertainty is 

introducing the modelling parameter (or modelling error) defined as Eq.(2.97) which is 

the ratio of actual or experienced behaviour to predicted behaviour by mathematical 

model. This parameter was first proposed by Ang and C o r n e l l^ ] .

o Strength Model:

In the present reliability study, the modelling parameter for strength has been 

incorporated in the safety margin equation (limit state function) as by the modified safety 

margin equation [Eq.(2.103)]. The uncertainty of strength modelling parameter is 

characterised by its mean bias, XM, coefficient of variation, VXm and distribution type. 

Xm and VxM can vary depending on the form of strength formula which implies that the 

evaluated safety level can be much affected by the strength formula itself and differ from 

the strength model used in the analysis. They also depend on the situation since, as more 

test data are accumulated, they can be updated. This implies that it can be easily expected 

that the mean and COV of safety margin and, consequently, the evaluated safety level,

-211 -



will be very sensitive to change in the mean bias and especially to change in the COV of 

strength modelling parameter due to its position within the safety margin Eq.(2.103).

In this study the distribution of strength modelling parameter is assumed to be 

log-normal rather than normal as taken by TLP RCC[9]. This is based on the fact that 

among the design variables in Section 5.2.1 yield stress may be supposed to mainly 

contribute to strength and, hence, on the strength model in use. Table 5.3 shows the 

mean biases (XM) and COVs (VxM) of strength models for the principle components of a 

TLP structure under combined loading^ 19] use(} ^  present study.

The values of XM and VXm for ring-stiffened cylinders may be acceptable levels. 

For ring- and stringer-stiffened cylinder, when Eq.(3.53) is used, VXm is taken as the 

maximum required level as recommended by Faulkner et atf* 19,163]. when Eq.(3.58) is 

used for ring- and stringer-stiffened cylinder, the values of XM and VXm are taken as the 

recently revised onesfl 19], In this study Eq.(3.11) for ring-stiffened cylinders and 

Eq.(3.53) for ring- and stringer-stiffened cylinders have been consistently used to 

compare the evaluated system safety levels of structures having different types of 

principle components. Eq.(3.58) has also been used to show the results when using the 

different strength models for the same component type.

As described in Section 3.4.6, there is no available test data for rectangular box- 

girder under the combined loading condition of axial compression and bi-axial bending. 

Since its failure is very closely correlated with the failure of a stiffened panel in the 

weakest portion in the sec tio n tl^ ], mean bias and COV of the strength modelling 

parameter is postulated, based on this fact, but its COV is raised to 10% to account for 

the uncertainty in this fact itself.

o Loading Model:

It is usually expected that the degree of uncertainty with load model is higher than 

that with strength model. This arises from the fact that there must be more unknown 

factors affecting loads and their effects. In practice, it is generally not possible to obtain
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the parameters of the probability distribution of the actual load. Instead design 

environmental loads are directly derived from specified design environmental conditions 

such as design wave height, design wind speed, etc. and then, mean bias, COVs and 

distribution type are imposed on it.

When each type of loading has been calculated it will be transferred into the 

equivalent nodal force vector acting on nodes for structural analysis and then load effects 

such as axial forces and bending moments will be calculated. Static load effect is usually 

modelled as normal distribution with relatively small COV. Quasi-static component is 

modelled as normal distribution but with higher COV. Static and quasi-static load effects 

are sometimes modelled as log-normal d i s t r i b u t i o n s [ 4 3 ] .

Referring to the uncertainties in dynamic load effect, when using the extreme 

value analysis with significant wave heights as proposed by Chen et al[189]5 the inherent 

uncertainties stemming from the extreme value probability density function resulting from 

the order statistic analysis is found to be less than 10%. However, such uncertainties are 

likely overwhelmed by the largely subjective uncertainties, the quantification of which 

relies mostly on design experience. The best estimation indicates that such uncertainties 

may contribute about 25% to COV of the dynamic load e f f e c t [ 1 8 9 ]  T h u s  COV of 

dynamic component was chosen to be 3 0 % .  When estimating the dynamic load effect it is 

based on a single design wave with 100 years return period wave height, the uncertainty 

will be reduced, say 10%, but the magnitude of load effects is much greater than those 

estimated by the extreme value analysis [see Fig. 5.4]. Regarding the distribution type, 

various approaches for defining the different extreme load types and Gumbel (Type I), 

Weibull have been s u g g e s t e d ^  9 4 , 2 1 0 ]

In this study, the dynamic load effects are estimated based on a single design 

wave and the distribution of all types of load effects is assumed to be log-normal. Their 

COVs are chosen to be 10%, 20% and 10% for static, quasi-static and dynamic 

component, respectively. Table 5.4 shows uncertainty modelling of load effects chosen 

for the present reliability study.
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From the discussions in this section the distribution types of the resistance and 

loading coefficients in the safety margin equation Eq.(2.103) are given to be log-normal.

Table 5.3 Strength Modelling Uncertainties: Mean Bias (XM) and COV (VxM)

principle component interaction equation X M VYXM

ring stiffened cylinder Eq.(3.11) 0.99 10%

ring- and stringer-stiffened cylinder Eq.(3.53)

Eq.(3.58)

0.99

1.052

13% 

11.9 %

Rectangular Box Girder Eq.(3.89) 1.00 10%

Table 5.4 Uncertainty Modelling for Load Effects

load effect component mean bias COV distribution type

static 1.0 10% log-normal

quasi-static* 1.0 20% log-normal

dynamic 1.0 for axial load effect 

1.2 for other load effects

10% log-normal

* : load effect due to wave drift force is not considered
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R E S I S T A N C E

D E S I G N  W A V E  L O A D

E X T R E M E  V A L U E

Fig. 5.4 Two Types of Distribution of Dynamic Load Effect

5.3 TLP Models for Reliability Studies

In this study, three TLP models are selected for the system reliability analysis of 

continuous structures. One of the TLP models is the Hutton TLPt^ll], Fig. 5.1 shows 

the co-ordinate system for motion analysis. Principle characteristics are listed in Table

5.5. The space frame model of the Hutton TLP for structure analysis is illustrated in Fig.

5.5, in which the structural system is composed of 55 nodal points and 62 beam 

elements. In system reliability analysis, since structure analysis is to be repeated many 

times and requires much computational time, the number of nodal points and elements are 

reduced in this study. Geometric and material data for the structure analysis are listed in 

Table 5.6.

Two variants of the Hutton TLP are chosen for comparison of the reliability of 

structures having different component types, i.e. the ring stiffened cylinder and the ring- 

and stringer-stiffened cylinder. One is called herein, 'TLP-A1, shown in Fig.5.6, which 

is the variant TLP model by replacing the comer columns of the Hutton TLP by ring- and 

stringer-stiffened cylinders designed according to TLP RCC model code[9]. Weight of 

one comer column has been reduced by 25% compared to that of the Hutton TLP. The 

space frame model is the same as that of the Hutton TLP [Fig. 5.5]. Its geometric and
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material data for structure analysis are listed in Table 5.7.

The other TLP model, called here 'TLP-B', is chosen as shown in Fig. 5.7, 

which is the variant model by simply removing the mid-columns from TLP-A and hence 

has 4 comer columns of ring- and stringer-stiffened cylinders of which geometric and 

material properties are the same as those of TLP-A. This model is similar to the Jolliet 

TLP [Fig. 5.2] except for structural types of pontoons (Pontoons of Jolliet TLP are ring- 

and stringer-stiffened cylinders). Adjusted principle characteristics of TLP-B is listed in 

Table 5.8. For the mooring system the initial tension of a tendon unit has been reduced 

by about 356 tons on the assumption that tendon weight and riser tension retain the same 

level as those of the Hutton TLP. Its space frame model is illustrated in Fig. 5.8 and 

geometric and material data are listed in Table 5.9.

Two variants are chosen to compare the efficiency of the structure, one having a 

ring stiffened cylinder and the other having a ring- and stringer-stiffened cylinder from 

the system's side. The two variants have the same overall structural dimension as the 

Hutton TLP. Table 5.10 summaries the three TLP models.

In the space frame models both nodes of each beam element can fail in the form of 

plastic hinges. The hinges are herein termed as components. When there are N elements 

in a structure the number of possible components is 2N. Component numbers are 

imposed in such a way that for element i the numbers are 2i-l and 2i for node i and j, 

respectively [Fig. 2.5]. From assumptions in Section 5.1 it can be supposed that the 

components of elements representing joint part and elements of deck structure will not 

turn into hinges. When any node is shared by more than two elements and they are co- 

linear, only one component is considered as a candidate hinge and the others are not 

considered. This way the actual number of possible components (hinges) is 36 for the 

Hutton TLP and TLP-A [Fig. 5.5] and 24 for TLP-B [Fig. 5.8].
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Table 5.5 Principal Characteristics of the Hutton TLP[211]

Water Depth : 147.0 m

LENGTH Between column centers : 78.00 m

Overall : 95.76 m

BREADTH Between column centers : 74.00 m

Overall : 91.76 m

HEIGHT Keel to main deck : 57.70 m

Main deck to weather deck : 11.25 m

DRAFT Operating : 32.00 m at L.A.T.

COLUMN 4 Comer Columns : 17.76 m Dia.

2 Mid-Columns : 14.50 m Dia

PONTOON Height : 10.86 m

Width : 8.06 m

Comer radius : 1.50 m

WEIGHT TLP Weight : 48,035 tons

Tendon Weight : 850 tons

INITIAL TENSION Riser : 1,321 tons

Tendon (at L.A.T.) : 11,330 tons

Displacement ( at L.A.T.) : 61,536 tons
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Fig. 5.5 Space Frame Model for the Hutton TLP (and TLP-A)
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WAVE

column

column number 

pontoon

xv - plan

Component 61 

xz - plan

vz - plan 

Fig. 5.6 TLP-A

o Comer columns : 
ring- and stringer- 
stiffened cylinders

o Mid-columns :
ring-stiffened cylinders

o All pontoons:
rectangular box-girders
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Table 5.6 Geometric and Material Data of the Hutton TLP 

Geometric Data

Component Scantlings (m)

Pontoons bottom : thickness = 0.030 frame spacing = 0.750 

stiffener = 0.425 x 0.015 x 0.150 x 0.025 T 

side shell : thickness = 0.028 frame spacing = 0.750 

stiffener = 0.400 x 0.014 x 0.150 x 0.025 T 

deck : thickness = 0.026 frame spacing = 0.750 

stiffener = 0.375 x 0.013 x 0.150 x 0.025 T

Comer Column upper part : thickness of shell 

ring frame spacing 

ring stiffener 

lower part : thickness of shell 

ring frame spacing 

ring stiffener

= 0.030 

= 1.035

= 0.525 x 0.022 x 0.225 x 0.025 T 

= 0.0365 

= 1.035

= 0.525 x 0.025 x 0.250 x 0.030 T

Mid-Column upper part : thickness of shell 

ring frame spacing 

ring stiffener 

lower part : thickness of shell 

ring frame spacing 

ring stiffener

= 0.029 

= 1.035

= 0.400 x 0.020 x 0.225 x 0.020 T 

= 0.029 

= 1.035

= 0.450 x 0.022 x 0.225 x 0.025 T

Material Data

Mean of Elastic Modulus : 200,000 MN/m?

Mean of Yield Stress : 391 MN/m^
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Table 5.7 Geometric and Material Data of TLP-A

Geometric Data

Component Scantlings (m)

Pontoons same as for the Hutton TLP [Table 5.7]

Comer Column upper part : no. of stringers = 60

thickness of shell = 0.020

stringers = 0.250 x 0.013 x 0.190 x 0.019 T

ring frame spacing = 2.200

ring stiffener = 0.425 x 0.022 x 0.225 x 0.025 T

lower part : no. of stringers = 60

thickness of shell = 0.025

stringers = 0.300 x 0.015 x 0.190 x 0.019 T

ring frame spacing = 2.200

ring stiffener = 0.525 x 0.025 x 0.250 x 0.030 T

Mid-Column upper part : thickness of shell = 0.029

ring frame spacing = 1.035

ring stiffener = 0.400 x 0.020 x 0.225 x 0.020 T

lower part : thickness of shell = 0.029

ring frame spacing = 1.035

ring stiffener = 0.450 x 0.022 x 0.225 x 0.025 T

Material Data

Mean of Elastic Modulus : 200,000 MN/m^

Mean of Yield Stress : 391 MN/m^
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Fig. 5.7 TLP-B
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ring- and stringer- 
stiffened cylinders

o All pontoons:
rectangular box-girders
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Fig. 5.8 Space Frame Model for TLP-B
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Table 5.8 Principal Characteristics of TLP-B

Water Depth : 147.0 m

LENGTH Between column centers : 78.00 m

Overall : 95.76 m

BREADTH Between column centers : 74.00 m

Overall : 91.76 m

HEIGHT Keel to main deck : 57.70 m

Main deck to weather deck : 11.25 m

DRAFT Operating : 32.00 m at L.A.T.

COLUMN 4 Comers : 17.76 m Dia.

PONTOON Height : 10.86 m

Width : 8.06 m

Comer radius : 1.50 m

WEIGHT TLP Weight : 40,259 tons

Tendon Weight : 850 tons

INITIAL TENSION Riser : 1,321 tons

Tendon (at L.A.T.) : 10,974 tons

Displacement ( at L. A .T.) : 53,403 tons
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Table 5.9 Geometric and Material Data of TLP-B

Geometric Data

Component Scantlings (m)

Pontoons same as for the Hutton TLP [Table 5.7]

Comer Column upper part : no. of stringers = 60

thickness of shell = 0.020

stringers = 0.250 x 0.013 x 0.190 x 0.019 T

ring frame spacing = 2.200

ring stiffener = 0.425 x 0.022 x 0.225 x 0.025 T

lower part : no. of stringers = 60

thickness of shell = 0.025

stringers = 0.300 x 0.015 x 0.190 x 0.019 T

ring frame spacing = 2.200

ring stiffener = 0.525 x 0.025 x 0.250 x 0.030 T

Material Data

Mean of Elastic Modulus : 200,000 MN/rn^

Mean of Yield Stress : 391 MN/m^
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Table 5.10 Three TLP Models

model descriptions of structural configuration

Hutton TLP - 6 columns : 4 x comer column of ring stiffened cylinder 

2 x mid-column of ring stiffened cylinder

TLP-A - 6 columns : 4 x comer column of ring- and stringer-stiffened cylinder

2 x mid-column of ring stiffened cylinder

- 4 comer columns of ring stiffened cylinder in Hutton TLP are replaced

by ring- and stringer-stiffened cylinders*

TLP-B - 4 comer columns of ring- and stringer-stiffened cylinder

- 2 mid-columns of ring stiffened cylinder in TLP-A are removed,

or 4 comer columns of ring stiffened cylinders in Hutton TLP are 

replaced by ring- and stringer-stiffened cylinders* and 2 mid-columns 

are removed.

* : Structural weight ratio of one ring- and stringer-stiffened cylinder to

the original ring stiffened cylinder is about 0.75. 

note : All models have the same overall dimensions

5.4 Reliability Analysis of TLP Models

System reliability analysis of the three TLP models has been carried out under the 

same design environmental condition for the Hutton TLP as seen in Table 5.11 [212] by 

using the developed computer program [Section 5.1]. Ductile behaviour is assumed for 

the post-ultimate behaviour of failed components. Three wave directions, %, are 

considered throughout the analysis, say % = 0,45 and 90 deg[9>189]#
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5.4.1 The Hutton TLP

Fig. 5.9 illustrates RAOs of surge and heave motions by using the Morison type 

approach described in Section 4.2.3, when wave directions are 0°, 45° and 9 0 ° ,  and 

comparisons with those by the diffraction t h e o r y H 8 9 ] # As can be seen in the figure the 

Morison type approach offers reasonable results compared to those by the diffraction 

theory. Surge and heave force RAOs for three wave directions are plotted in Fig. 5 . 1 0 .

System reliability analysis of the Hutton TLP has been performed when the 

structure is under design environmental loading condition [Table 5.11]. Values of 

parameters controlling the procedure of identifying the important failure modes mentioned 

in Section 2.5.6 are given in Table 5.12.

With the values of control parameters of Table 5.12, four failure modes have been 

generated for all wave directions. Reliability indices, probability of failure of the 

identified important failure modes and bounds of system reliability (PSyS,lower ^

Psys,upper) 311(1 probability of system failure ((Pf)SyS,lower 3(1(1 (pf)sys,upper)’ “  ^  

results of system analysis, are listed in Tables 5.13, 5.14 and 5.15 for % = 0 ° ,  45° and 

90°, respectively. Figures in [ ] are the probabilities of failure. In general, the failure 

modes have been identified in increasing order of path reliability indices, Ppath (°r ^  

decreasing order of path probability of failure, Pf) except for the case of % = 9 0 ° .  There 

seems to be no difference between the upper and lower bound of system reliability 

indices (and of the probabilities of system failure) and the first identified mode seems to 

dominate the bounds for all wave direction.

The results are summarised in Table 5.16. The average system reliability index is 

the value corresponding to the average of lower and upper bounds of probability of 

system failure. As far as the present computational results are concerned, when % = 45°, 

i.e., under quartering sea, the system reliability is lowest followed by that for following 

sea. The system reliability indices for % = 0 °  and % = 9 0 °  are about 4% and by 8.4% 

greater than that for % = 45°, respectively. The total average reliability index is calculated
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according to the total average probability of system failure given that the same probability 

of occurrence is imposed for each wave direction. The total average of system failure 

probability is 0.602 x 10" ̂  and the corresponding average reliability index is 6.44.

Table 5.17 illustrates the reliability index and probability of failure of the first 

failed component in any identified mode and those of the component of Column 2 located 

just above pontoon, i.e. bottom bay of Column 2 which is designated here Component 

61 [shaded part in Fig. 5.1 and see also Fig. 5.5].

Location of failed components and collapse modes of the identified failure modes 

is shown in Figs. 5.11 and 5.12 for % = 0°, in Figs. 5.13 and 5.14 for % = 45° and in 

Figs. 5.16 and 5.17 for % = 90°. As can be seen in the figures, the critical components 

are those of columns located around joints rather than those of pontoons, especially for % 

= 0°. For the case of % = 0°, many components in Section A-l of Fig. 5.5 have failed. 

This may be due to the re-distribution of load effects arising from failure of the first failed 

component. That is, Component 64 and subsequently failed components have more 

influence on the components in Section A-l rather than on the components in other 

sections. Similar distribution of failed components can be applied for the case of % = 90° 

in Section B-3, whereas for the case of % = 45° failed components are more scattered. 

Generally, it can be found that failed components gather in the section where the first 

failed component is.

In Figs. 5.11, 5.13 and 5.15, Ppath represents the path reliability index and Xq 

the total load factor calculated from Eq.(2.95) when structural failure occurs [Section 

2.4.1]. Xq. is the ratio of the load at collapse to the applied mean load (design load) as can 

be seen in Eqs.(2.15.a) and (2.15.b) and may be related to the reserve strength index in 

Eq.(2.11) [Section 2.1.2]. From the figures of collapse modes Xj  varies from 1.87 for 

Mode-2 when % = 0°, to 4.13 for Mode-3 when % -  45°, and their average is 2.63, i.e. 

the Hutton TLP can sustain about 2.6 times the design load in the average sense.

From the above results, the values of Xj  shows that the Hutton TLP seems to
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possess high reserve strength, and considering that because structural collapse is 

approximately judged from Eq.(2.111) rather than from Eq.(2.110), the failure states are 

not the complete collapse ones, X^'s of the actual structure may be greater than the 

calculated values. The values of path reliability indices and system ones compared to 

those of components also imply considerable residual strength of the structure in the 

probabilistic sense. Further discussion about this will be given in Section 5.4.4.

Table 5.11 Design Environmental Condition for the Hutton T L P [212]

Wind

1 minute mean wind velocity at 10 m elevation 

wind gradient variation with elevation 

according to the equation in section 4.2.2

Vi0 = 44.0 m/sec

Waves

(1) Regular design waves: wave height

period

Hw = 30.3 m 

Tw = 14.6 -18.5 sec

(2) Irregular waves: significant wave height Hz = 16.6 m 

average zero-crossing period Tz = 13.9 sec

Current

5 minute mean velocity at 10 m depth Vc = 0.85 m/sec

Water Level

Range between HDWL and LDWL 2.9 m
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Table 5.12 Values of Control Parameters in the Identifying Procedure

parameter value description

edet 1.0 x 10-8 used to judge the singularity of the structural stiffness matrix 
[Eq.(2.111)]

Ndet Nmax used to check the determinants of interim modes, and Nmax is 
maximum of the number of failed components contained in 
any mode for all possible interim modes [Eq.(2.112)]

^ t r 1.0 x lO -4 used to discard the mode when the ratio of two successively 
evaluated utilisations is less than this given value

6 used to limit the number of candidate interim modes

esys 1.0 x 10-2 used to check the convergence of bounds of system reliability 
indices [Eq.(2.115)]

Mmin 4 the required minimum number of failure modes to be identified

Table 5.13 Identified Important Failure Modes of the Hutton TLP for % = 0°

mode no. failed components Ppath KPf)pathl

Mode-1 64, 85, 61, 72, 56, 80, 88, 77, 69, 93 6.55 [ 0.288 x 10*10 ]

Mode-2 64, 85, 61, 72, 56, 80, 88, 77, 69, 53 7.12 [ 0.563 x 10-12 ]

Mode-3 64, 85, 61, 72, 56, 80, 88, 77, 69, 46 7.66 [ 0.971 x 10-14 ]

Mode-4 64, 85, 61, 72, 56, 80, 88, 77, 69, 86 7.82 [ 0.272 x 10‘14 )

Bounds of pSyS and (Pf)Sys :

Psys,lower (Pf)sys,upper = 6.55 and 0.294 x 10"^

Psys,upper (Pf)sys,lower = 6-55 0.294 x 10~10
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Table 5.14 Identified Important Failure Modes of the Hutton TLP for % = 45°

mode no. failed components Ppath [(Pf)pathl

Mode-1 61 ,93 ,85 , 69, 64, 53,72, 3 ,14  6.31 [ 0.137 x 10'9 ]

Mode-2 6 1 ,9 3 ,8 5 ,6 9 ,6 4 ,5 3 ,7 2 ,3 ,3 8 ,7 7  6.71 [ 0.984 x 10’11 ]

Mode-3 6 1 ,9 3 ,8 5 ,6 9 ,6 4 ,5 3 ,7 2 ,3 ,3 8 ,4  7.24 [ 0.225 x lO '12 ]

Mode-4 6 1 ,9 3 ,8 5 ,6 9 ,6 4 ,5 3 ,7 2 ,3 ,3 8 ,8 8  7.31 [ 0.137 x 10‘12 ]

Bounds of PSyS and (Pf)sys:

Psys,lower (Pf)sys,upper = 6.30 and 0.147 x 10"9

Psys,upper (Pf)sys, lower = 6.30 and 0.147 x 10"9

Table 5.15 Identified Important Failure Modes of the Hutton TLP for % = 90°

mode no. failed components Ppath [(Pf)pathl

Mode-1 6 4 ,7 7 ,5 6 ,6 9 ,3 8 ,6 1 ,4 3 ,4 6 ,5 3  6.84 [ 0.411 x 10-U ]

Mode-2 64, 77, 56, 69, 38, 61, 43, 46, 85 8.28 [ 0.603 x lO '16 ]

Mode-3 6 4 ,7 7 ,5 6 ,6 9 ,3 8 ,6 1 ,4 3 ,4 6 ,9 3  8.51 [ 0.819 x 10'17 ]

Mode-4 6 4 ,7 7 ,5 6 ,6 9 ,3 8 ,6 1 ,4 3 ,5 3 ,3 5  6.98 [ 0.151 x 10’11 ]

Bounds of PSyS and (Pf)sys :

Psys,lower (Pf)sys,upper = 6.83 and 0.411 x 10-^

Psys,upper (Pf)sys,lower = 6.83 and 0.411 x 10 ^
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Table 5.16 Summary of System Reliability Analysis of the Hutton TLP

X Psys,lower 

[ (Pf)sys,upper 1

Psys,upper 

[ (pf)sys,lower 1

average psys 

[average (Pf)sys ]

0 6.55 6.55 6.55

[ 0.294 x 10-10 ] [ 0.294 x lO-M ] [ 0.294 x 10-10 ]

45 6.30 6.30 6.30

[0 .147x10-9] [ 0.147 x 10-9 ] [ 0.147 x 10-9 ]

90 6.83 6.83 6.83

[ 0.411 x lO '1 1 ] [ 0.411 x 10-1! ] [ 0.411 x lO -11]

Total Average of psys 

(pf)sys

= 6.44

= 0.602 x 10-10

Table 5.17 Component Reliability Index and Probability of Failure

for the Hutton TLP

X first failed component Component 61

0 2.14 [ 0.163 x lO '1 ] 3.78 [ 0.790x10-4]

45 5.31 [0 .549x10-7] 5.31 [ 0.549 x lO’7 ]

90 5.36 [ 0.415 x 10-7 ] 6.39 [ 0.810 x 10-10 ]
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5.4.2. TLP-A

A system reliability analysis of TLP-A has been performed under the same design 

environmental condition as that for the Hutton TLP as in Table 5.11. From geometric 

data for the Hutton TLP in Table 5.6 and for TLP-A in Table 5.7 the structural weight 

ratio of one comer column of TLP-A to that of the Hutton TLP is about 0.75, for which 

ring frames are included. The structural weight and its distribution of comer column for 

this model differ from those for the Hutton TLP but their influence on the loading can be 

neglected, i.e. three categories of the environmental loading are supposed to be the same 

as those of the Hutton TLP for system reliability analysis of this model.

The interaction equation given as Eq.(3.53) has been used for the components of 

comer columns and Eq.(3.11) for the components of mid-columns as for the Hutton 

TLP. The same values of parameters controlling the procedure of identifying the 

important failure modes as for the Hutton TLP as in Table 5.12. Four failure modes have 

been generated for each wave direction as the case of the Hutton TLP. The analysis 

results are presented in Tables 5.18, 5.19 and 5.20 for each wave direction in the same 

manner as for the Hutton TLP: path reliability indices, probabilities of failure and bounds 

of system reliability index and/or bounds of system failure probability. The failure modes 

have generally been found in increasing order of path reliability index (in decreasing 

order of failure probability), except for the case of % = 90°. There seems to be no 

difference between bounds of pSyS and (Pf)sys f°r all wave directions as for the Hutton 

TLP.

The results are re-summarised in Table 5.21 with the total average of probability 

of system failure and corresponding average system reliability index calculated under the 

same assumption as described in the previous section. From Table 5.21, when % = 0°, 

i.e., under following sea, Psys l°wer other two cases of wave directions 

differently from the case of the Hutton TLP of which pSyS for % = 45° was lowest. The 

average value of pSyS of 6.26 is about 2.8% lower than that of the Hutton TLP. This is 

due to the comparatively high value of (Pf)sys (lower pSyS) when % = 0°. But the 

difference between pSys's of TLP-A and the Hutton TLP is negligibly small in spite of
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there being less structural material. The average pSyS for % = 45° and 90° are about 

8.2% and 10% greater than that for % = 0°, respectively. Table 5.22 illustrates the 

reliability indices of the first failed components in the failure modes and of Component 

61, shaded part in Fig. 5.6 [see also Fig. 5.5].

Fig. 5.17 shows the structural failure states and Fig. 5.18 the collapse modes 

when % = 0°. A set of Figs. 5.19 and 5.20 show them in the same manner when % = 45° 

and a set of Figs. 5.21 and 5.22 when % = 90°. The critical components are mostly those 

of columns. As in the case of the Hutton TLP, subsequently failed components following 

the first failed one lie in the section where the first failed one lies.

As shown in Figs. 5.17, 5.19 and 5.21, the total load factors, Xj  varies from 

2.13 for Mode-2 when % -  45°, to 4.05 for Mode-3 when % = 90°, and average of X^s 

is 2.82. This is about 7.2% greater than that of the Hutton TLP.

From the results of TLP-A, one can see that TLP-A also possesses considerable 

reserve strength, and comparison of PSyS in Table 5.21 and Ppath ^  Table 5.22 implies 

that the model also possesses appreciable residual strength like the Hutton TLP. A higher 

average value of A^'s compared to that of the Hutton TLP implies that the structures 

having ring- and stringer-stiffened cylinders can more efficiently sustain the 

environmental loading than the structure having ring-stiffened cylinders.



Table 5.18 Identified Important Failure Modes of TLP-A for % = 0°

mode no. failed components Ppath [(Pf)patfJ

Mode-1 85, 64, 61, 72, 53, 69, 77, 3, 4 6.10 [0 .550x10-9]

Mode-2 85, 64, 61, 72, 53, 69, 77, 3, 46 6.69 [ 0.112 xlO-W]

Mode-3 85, 64, 61, 72, 53, 69, 77, 3, 14 6.69 [ 0.109 x lO-M ]

Mode-4 85, 64, 61, 72, 53, 69, 77, 3, 35 6.90 [ 0.264 xlO"11]

Bounds of Psys (Pf)sys :
Psys,lower ^  (Pf)sys,upper = 6.09 and 

Psys,upper (Pf)sys,lower = 6.09 and

0.575 x 10-9 

0.575 x 10-9

Table 5.19 Identified Important Failure Modes of TLP-A for % = 45°

mode no. failed components Ppath KPf)pathl

Mode-1 61, 69, 53, 64. 72, 77, 56, 80, 85, 88 7.21 [ 0.291 x lO"12 ]

Mode-2 61, 69, 53, 64. 72, 77, 56, 80, 85, 93 7.21 [ 0.291 x lO'12 ]

Mode-3 61, 69, 53, 64. 72, 77, 56, 80, 85, 62 7.72 [ 0.574 x 10"14 ]

Mode-4 61, 69, 53, 64. 72, 77, 56, 80, 85, 70 7.89 [ 0.148 xlO '1 4 ]

Bounds of Psys (Pf)sys *

Psys,lower ^  (Pf)sys,upper = 7.20 and 

Psys,upper (Pf)sys,lower = 7.20 and

0.299 x 10-12 

0.299 x 10“12
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Table 5.20 Identified Important Failure Modes of TLP-A for % = 90°

mode no. failed components Ppath KPf)pathl

Mode-1 64, 77, 69, 61, 53, 93, 35, 43 6.69 [0 .112x lO '10 ]

Mode-2 64, 77, 69, 61, 53, 93, 35, 56 8.08 [ 0.342x lO '1 5 ]

Mode-3 64, 77, 69, 61, 53, 93, 35, 44 8.34 [ 0.388x10-16]

Mode-4 64,77, 69, 6 1 ,5 3 ,9 3 ,3 5 ,4 6 7.93 [ 0.115 x 10'14 ]

Bounds of Psys and (Pf)sys *

Psys,lower (Pf)sys,upper = 6.69 and 0.112 x 1 0 "^

Psys,upper (Pf)sys,lower = 6.69 and 0.112 x 10



Table 5.21 Summary of System Reliability Analysis of TLP-A

X Psys,lower 

[ (Pf^sys,upper J

Psys,upper 

[ (Pf)sys,lower 1

average Psys 

[average (Pf)sys ]

0 6.09 6.09 6.09

[ 0.575 x 10-9 j [ 0.575 x 10-9 ] [ 0.575 x 10-9 ]

45 7.20 7.20 7.20

[ 0.299 x 10"12 ] [ 0.299 x lO"12 ] [ 0.299 x lO '12 ]

90 6.69 6.69 6.69

[ 0.112 x lO '1*)] [ 0.112 xlO"1 0 ] [ 0.112 x lO '1**]

Total Average of Psys = 6.26

(Pf^sys = 0.195 x 10-9

Table 5.22 Component Reliability Index and Probability of Failure for TLP-A

X first failed component Component 61

0 1.25 [ 0.105 ] 3.37 [ 0.373 x 10'3 ]

45 4.61 [0 .200x lO"5 ] 4.61 [ 0.200 x 10-5 ]

90 5.28 [ 0.654 x 10‘7 ] 5.54 [ 0.156 x 10-7 ]
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5.4.3 TLP-B

As described in Section 5.3, TLP-B is a variant of the Hutton TLP modelled by 

by removing the mid-columns and replacing comer columns with ring- and stringer- 

stiffened cylinders or removing the two mid-columns in TLP-A [see Table 5.10]. The 

model has four comer columns and its overall structural dimensions are the same as for 

the Hutton TLP and TLP-A but the structural weight and its distribution are different 

from those of the other models and, consequently, the distribution of load and load 

effects is different from the previous TLP models.

Figs. 5.23 and 5.24 show the RAOs of surge and heave motion and forces when 

wave direction is 0°, 45° and 90°. TLP-B shows similar motion characteristics to the 

Hutton TLP.

The strength formula given as Eq.(3.53) has been used for the components of 

columns. The same values of control parameters for the procedure of identifying the 

important failure modes are used as for the previous TLP models [Table 5.12]. Four 

failure modes have been found for all wave directions as in the case of the previous 

models. The results of system reliability analysis for this model are presented in Tables 

5.23, 5.24 and 5.25 when wave direction is 0°, 45° and 90°, respectively. Failure 

modes for all wave directions have been generated in increasing order of path reliability 

index (in decreasing order of failure probability). As for the Hutton TLP and TLP-A, no 

differences can be seen between bounds of pSyS and (Pf)sys and it can be seen that the 

bounds are dominated by the first failure mode.

Table 5.26 shows the summarised results together with the total average value of 

(Pf)sys corresponding psys. When % = 0°, average psys is lowest as for TLP-A but 

average of PSys» when % = 45°, is followed. The average Psys* when % = 45° and when 

X = 90° are about 5.3% and 8.1% greater than pSyS when % = 0°. The total average pSyS 

is 6.91. That is, TLP-B shows about 7.3% and 10.3% higher pSyS than the Hutton TLP 

and TLP-A, respectively, in spite of there being much less structural material.
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When considering only column weight, the structural weight of TLP-B has been 

reduced by about 43.7% and 31.4% compared to the designs of the Hutton TLP and 

TLP-A, respectively. When equipment installed in mid-columns of the Hutton TLP and 

TLP-A is installed in comer columns of TLP-B, including their weight and effect on 

loading and load effects, this causes the scantlings to increase, e.g. increase of shell 

thickness and hence, the weight difference between TLP-B and the other TLPs may, of 

course, be reduced. But these considerations may not be expected to cause the structural 

weight to appreciably increase and, hence, the weight differences of TLP-B against the 

Hutton TLP and TLP-B, say, 43.7% and 31.4% may not be reduced. The experience 

from the Jolliet TLP indirectly supports this comment. Even the case that the expected 

increase of structural weight is accounted for, the actual weight can be saved by perhaps 

at least 40% comparing the design of TLP-B with the design of the Hutton TLP. This can 

be supported by the higher value of average (3SyS of TLP-B than that of the Hutton TLP.

Table 5.27 illustrates the reliability indices of the first failed component in the 

failure modes and of the component located at the same position as in the Hutton TLP and 

TLP-A. The component is designated Component 45 [shaded part in Fig. 5.7 and see 

also Fig. 5.8]. Structural failure states and collapse modes for all identified failure modes 

are shown in Figs. 5.25 to 5.30 in the same manner as for the Hutton TLP and TLP-A. 

Critical components are mainly those of columns but relatively more components of 

pontoons have failed compared to the previous two TLP models. For this model 

varies from 2.21 for Mode-1, when % = 90° to 4.23 for Mode-4 when % = 90°, and their 

average is 2.96. This is about 12.5% greater than that of the Hutton TLP, of which 

average of A^'s was 2.63, and about 5% than that of TLP-A, of which average of ^p's 

was 2.82. This also denotes that the ring- and stringer-stiffened cylinder can more 

efficiently resist external load than the ring-stiffened cylinder.

For comparison of the system reliability indices when using the different strength 

models, Eq.(3.58) proposed by F au lkner^  1] is chosen for the components of columns. 

The same values of parameters controlling the procedure of identifying the important 

failure modes are used except that the required minimum number of failure modes to be
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identified is given as 2, i.e., M j ^  = 2. The results of TLP-B when using Eq.(3.58) are 

summarised in Table 5.28 and Table 5.29 illustrates comparisons of systems and 

components reliability indices with the results when using Eq.(3.53) (or alternatively 

Eq.(3.11)).

As is expected, the strength model given by Eq.(3.58) gives a somewhat different 

level of system and component reliability. The average PSyS has been increased by about 

1.3%, 12.2% and 26.6% for each wave direction, and component reliability indices by 

about 18.5% to 71.1% depending on component number and wave direction. The total 

average PSyS is about 1.6% greater than that when using Eq.(3.53). From Table 5.29, 

XT varies from 2.29 for Mode-2 when % = 45°, to 3.48 for Mode-2 when % -  90°. 

When XT's of only the first two modes for each wave direction are taken, using 

Eq.(3.53) gives the average Xj  of 2.74 for TLP-B [Figs. 5.26, 5.28 and 5.30] and 2.43 

for the Hutton TLP [ Figs. 5.12, 5.14 and 5.16], whereas using Eq.(3.58) gives the 

average X j  of 2.76 which has increased by about 0.7% and 13.5% compared to the 

averages for TLP-B and for the Hutton TLP, respectively, when using Eq.(3.53). This 

comparison implies that TLP-B could provide a weight saving of more than 40 to 45% 

compared to the Hutton TLP design if columns of TLP-B were designed according to the 

strength model given by Eq.(3.57).

The comparison of reliabilities for the different strength models shows that using 

a more improved strength model must be the way to achieve appreciable weight saving 

with retaining the required level of reliability. The position of strength modelling 

parameter within the safety margin equation (2.103) means that reducing the uncertainties 

in strength model must be important. The results of system analysis and discussions 

about this point will be presented in the next chapter.
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Table 5.23 Identified Important Failure Modes of TLP-B for % = 0°

mode no. failed components Ppath t(Pf)path3

Mode-1 48, 61, 53, 37, 45, 3, 64, 56 6.77 [ 0.640 xlO -11]

Mode-2 48, 61,53, 37, 45, 3, 64, 11 7.74 [ 0.515 x 10‘ 14 ]

Mode-3 48, 61, 53, 37, 45, 3, 64, 46 8.02 [ 0.528 x 10-!5 ]

Mode-4 48, 61, 53, 37, 45, 3, 64, 22 8.06 [ 0.396 x 10-!5 ]

bounds of Psys (Pf)sys •

Psys,lower (Pf)sys,upper = 

Psys,upper (Pf)sys,lower =

6.77 and 0.640 x 10' 9

6.77 and 0.640 x 10"9

Table 5.24 Identified Important Failure Modes of TLP-B for % = 45°

mode no. failed components Ppath t(Pf)path]

Mode-1 40, 48, 37, 61, 45, 3, 64, 56 7.14 [ 0.464 x 10' 12  ]

Mode-2 40, 48, 37, 61, 45, 3, 64, 46 7.46 [ 0.445 x 10"13 ]

Mode-3 40, 48, 37, 61, 45, 3, 64, 38 7.95 [ 0.931 xlO -1̂ ]

Mode-4 40, 48, 37, 61, 45, 3, 64, 54 7.99 [ 0.662 x lO*^ ]

bounds of Psys ^  (Pf)sys •

Psys,lower ^  (Pf)sys,upper = 

Psys,upper (Pf)sys, lower =

7.13 and 0.510 x 10' 12

7.13 and 0.510 x 10’ 12
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Table 5.25 Identified Important Failure Modes of TLP-B for % = 90°

mode no. failed components Ppath KPf)pathl

Mode-1 37, 53, 14, 45, 61, 30, 64, 56 7.37 [ 0.888 x 10"13 ]

Mode-2 37, 53, 14, 45, 61, 30, 64, 40 7.49 [ 0.342 x 10-13 ]

Mode-3 37, 53, 14, 45, 61, 30, 64, 48 8.24 [ 0.900 x lO-1^ ]

Mode-4 37, 53, 14, 45, 61, 30, 64, 27 8.49 [ 0.101 x lO-1^ ]

bounds of psys and (Pf)sys :

Psys,lower (Pf)sys,upper = 7.32 and 0.123 x 10"12

Psys,upper (Pf)sys,lower = 7.32 and 0.123 x 10'12.

Table 5.26 Summary of System Reliability Analysis of TLP-B

X Psys,lower 
1 (^f)sys,upper 1

Psys,upper 
[ (Pf)sys,lower 1

average psys 

[average (Pf)sys ]

0 6.77 6.77 6.77
[ 0.640 x 10'11 ] [ 0.640 x lO '11 ] [0.640x10-11]

45 7.13 7.13 7.13
[ 0.510 x lO '12] [ 0.510 x lO '12 ] [ 0.510 x 10-12 ]

90 7.32 7.32 7.32

[ 0.123 x lO '12] [ 0.123 x 10-12 ] [ 0.123 x 10-12 ]

Total Average of psys 

(Pf)sys

= 6.91
= 0.234x10-11
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Table 5.27 Component Reliability Index and Probability of Failure for TLP-B

X first failed component Component 45

0 3.14 [ 0.853 x lO-3 ] 3.75 [ 0.874x10-4]
45 3.05 [ 0.113 x 10-2 ] 3.79 [ 0.747 xlO"4 ]

90 4.91 [ 0.454 x 10-6 ] 4.89 [ 0.506 x 10-6 ]

Table 5.28 Results of TLP-B When Using Strength Model, Eq.(3.58)

(1) X = 0°

mode no. failed components Ppath t(Pf)path] Xp

Mode-1 40, 45, 48, 64, 37, 61, 3 6.86 [ 0.341 xlO "11] 2.35

Mode-2 40, 45, 48, 64, 37, 61, 6 7.75 [ 0.470 x 10-14 ] 2.82

Psys,lower (Pf)sys,upper -  6.86 and 0.345 x 10‘H

Psys,upper (Pf)sys,lower = 6.86 and 0.345 x 10~H

(2) X = 45°

mode no. failed components Ppath KPf)pathl Xp

Mode-1

Mode-2

Mode-3

56, 37, 45, 40, 48, 61, 53 

56, 37, 45, 40, 48, 61, 64, 53 

56, 37, 45, 40, 48, 61, 64, 3

8.30 [ 0.532 x l0 - ! 6 ]  

8.00 [ 0.619 x 10-!5 ] 

9.63 [0 .310x lO '2 1 ]

2.30

2.29

2.40

Psys,lower (Pf)sys,upper ~ 7.99 and 0.645 x 10 1** 

Psys,upper (Pf)sys,lower = 8.00 and 0.637 x 10 ^
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Table 5.28 (continued)

(3) x  = 900

mode no. failed components Ppath KPf)pathl Xp

Mode-1 56, 48, 61, 53, 45, 37, 54 9.31 [0 .635x10-20] 3.33

Mode-2 56, 48, 61, 53, 45, 37, 46 9.39 [ 0.305 x 10-2 0 ] 3.48

Psys,lower (Pf)sys,upper = 9.27 and 0.940 x 10"20

Psys,upper (Pf)sys,lower = 9.27 and 0.940 x 10"20

Table 5.29 Comparisons of Reliability Indices for Different Strength Models

system reliability indices component reliability indices

Eq.(3.53) Eq.(3.58)

X Eq.(3.53) Eq.(3.58) first failed 
component

Component
45

first failed 
component

Component
45

0 6.77 6.86 3.14 357 4.90 5.54

45 7.13 8.00 3.05 3.79 5.22 5.59

90 7.32 9.27 4.91 4.89 5.82 6.68

total average of pSyS = 6.91 by Eq.(3.53) 

= 7.02 by Eq.(3.58)
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5.4.4 Comparison and Discussion of the Reliability Study Results

From Table 5.16 for the Hutton TLP, 5.21 for TLP-A and 5.26 TLP-B, results 

of three TLP models are compared in Table 5.30. The Hutton TLP and TLP-A show 

nearly the same level of system safety (average Psys of TLP-A is about 3% lower than 

that of the Hutton TLP), whereas the system safety of TLP-B is 7.3% greater than that of 

the Hutton TLP. The lower value of TLP-A may be due to the fact that the components 

on the mid-columns of the ring-stiffened cylinder have a higher chance of failing than 

other components and, therefore, the load acting on the components is re-distributed 

earlier on to the other components. The higher value of TLP-B may be due to the fact that 

the load level acting on this structure is lower than the other two models and the load re­

distribution of the failed components on the mid-columns is removed, i.e. in the cases of 

the Hutton TLP and TLP-A, the load acting on the failed components on the mid­

columns, which has a higher probability of failing, is re-distributed to the remaining 

components of the comer columns and pontoons, and this may cause a lower reliability 

index than that of TLP-B. But in the case of TLP-B, this re-distribution effect does not 

occur. This might be the main reason that TLP-B shows a higher system reliability index 

in spite of there being much less structural material. From the results it can be said that 

the orthogonally stiffened cylinder is more efficient and reliable from both the system's 

and component's point of view and hence more weight saving can be achieved, say at 

least 40% compared to the Hutton TLP as designed.

The total load factors (Xj) and the path reliability indices (Ppath) °f d1166 TLP 

models [see figures for collapse modes in the previous three sections] are summarised in 

Table 5.31, and the relation between and Ppath of three TLP models is plotted in 

Fig.5 .31. As described in Section 2.1.2, is related to the reserve strength of a 

structure. The average values of Xj's of 2.63,2.82 and 2.96 for the Hutton TLP, TLP-A 

and TLP-B imply appreciable reserve strength of the TLP structural system. Based on 

these values, TLP-B seems to possesses more reserve strength than the other two TLPs 

in such a way that its average Xj. is about 12.5% and 5% greater than those of the Hutton 

TLP and TLP-A, respectively, in spite of there being much less structural material. From 

Table 5.31 and Fig. 5.31, it can be seen that as Ppath increases, X^ usually increases,
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although the higher Ppath does not always have the higher load factor.

When we choose the p measure, RDIp given by Eq.(2.13), which is related to 

the residual strength, as a measure of the probabilistic structural redundancy, it can be 

easily calculated as illustrated in Table 5.32 for three TLP models. When calculating the p 

measure from Eq.(2.13), P c o m p  is that of the first failed component in any failure mode 

and psys is the path reliability index, P p a t h  of the mode.

The Hutton TLP and TLP-A show higher RDIp's for % = 0° because of small 

PCOmp s » whereas TLP-B for % = 45°. RDIp's of TLP-B are more uniform and their 

average is greater than those of the Hutton TLP and TLP-A. The averages of RDIp's for 

TLP-A and TLP-B are 22%  and 27%  greater than that of the Hutton TLP, respectively.

These comparisons and discussions also show that the structure having ring- and 

stringer-stiffened cylinders is more efficient than the structure having ring-stiffened 

cylinders in the light of residual strength as well as in the light of reserve strength.

As mentioned before, with regard to the relation between the total load factor and 

the path reliability index, the higher Ppath does not always have the higher Â .. This 

implies that the deterministically important mode is not identical with the probabilistically 

important mode as was also found for the simple frame model in Section 2.6.2. As can 

be seen in Table 5.31, the deterministically most important modes are:

Mode-2 with A^ = 1.87, when % = 0° for the Hutton TLP 

Mode-2 with ^  = 2.13 , when % = 45° for TLP-A 

Mode-1 with A^ = 2 .21 , when % = 90° for TLP-B

whereas the probabilistically most important ones are:

Mode-1 with ppath = 6.31, when % = 0° for the Hutton TLP 

Mode-1 with Ppath = 6T0, when % = 0°, for TLP-A 

Mode-1 with Ppath = 6.77, when % = 0° for TLP-B
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In the case of the Hutton TLP the ratio of Ppa^  of the deterministically most important 

mode to that of the probabilistically most important one is 1.128, and for the two variants 

the ratios are 1.182 for TLP-A and 1.089 for TLP-B. The ratios of XT of the 

deterministically most important mode to that of the probabilistically most important one 

is 0.609 for the Hutton TLP, and for two variants 0.737 and 0.863, respectively, i.e. in 

the case of the Hutton TLP, the deterministically most important mode has 12.8% higher 

Ppath dian that of the probabilistically most important one, while 39.1% lower X^, and in 

the case of two variants, 18.2% and 8.9% higher ppath and 26.3% and 13.7% lower Xj, 

respectively.

Table 5.30 Comparison of psys for Three TLP Models

X Hutton TLP TLP-A TLP-B

0 6.55 [ 0.293x10-10] 6.09 [ 0 .575x10-9] 6.77 [ 0.640 x 10-H ]

45 6.30 [0 .147x10-9] 7.20 [ 0.299x10-12] 7.13 [0 .510x10-12]

90 7.32 [0.411 x 10-! 1 ] 6.69 [0 .112x10-1°] 7.32 [ 0.123 x 10-12 ]

Total

Average

[ 6.44 ]

[ 0.602 x lO ’10 ]

[ 6.26 ]

[ 0.195 x 10-9 ]

[6 .91 ]

[0 .234x10-11]

note: Figure in [ ] is the probability of failure.
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Table 5.31 P p ^  vs X^ for Three TLP Models

X mode Hutton TLP TLP-A TLP-B

no. Ppath h: Ppath Ppath X.’p

0 1 6.55 2.13 6.10p  2.89 6.77p  2.56

2 7.12 1.87d 6.69 2.43 7.74 3.55

3 7.66 2.29 6.70 2.67 8.02 2.93

4 7.82 2.15 6.90 2.27 8.06 3.56

45 1 6.31p  3.07 7.21 2.32 7.14 2.62

2 6.71 2.53 7.21 2.13d 7.46 2.82

3 7.24 4.13 7.72 3.17 7.95 2.72

4 7.31 2.48 7.89 3.39 7.99 3.02

90 1 6.84 2.63 6.69 3.22 7.37 2.21d

2 8.28 2.38 8.08 2.34 7.49 2.69

3 8.52 2.48 8.34 4.05 8.24 2.61

4 6.98 3.48 7.93 3.00 8.49 4.23

average X/p: 2.63 2.82 2.96

D: deterministically most important mode 

P: probabilistically most important mode
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Table 5.32 p Measure of Structural Redundancy (RDIp) for Three TLP Models

(1) Hutton TLP

X mode Hutton TLP TLP-A TLP-B

no. Pcomp Psys RDIp Pcomp Psys RDIp Pcomp Psys RDIp

0 1 2.14 6.55 0.67 1.25 6.10 0.78 3.14 6.77 0.54

2 2.14 7.12 0.70 1.25 6.69 0.81 3.14 7.74 0.59

3 2.14 7.66 0.72 1.25 6.70 0.81 3.14 8.02 0.61

4 2.14 7.82 0.73 1.25 6.90 0.82 3.14 8.06 0.61

45 1 5.31 6.31 0.16 4.61 7.21 0.36 3.05 7.14 0.57

2 5.31 6.71 0.21 4.61 7.21 0.36 3.05 7.46 0.59

3 5.31 7.24 0.27 4.61 7.72 0.40 3.05 7.95 0.62

4 5.31 7.31 0.27 4.61 7.89 0.42 3.05 7.99 0.62

90 1 5.36 6.84 0.22 5.28 6.69 0.21 4.91 7.37 0.33

2 5.36 8.28 0.35 5.28 8.08 0.35 4.91 7.49 0.34

3 5.36 8.52 0.37 5.28 8.34 0.37 4.91 8.24 0.40

4 5.36 6.98 0.23 5.28 7.93 0.33 4.91 8.49 0.42

min. 0.16 min. 0.21 min. 0.33

max. 0.73 max. 0.82 max. 0.62

average. 0.41 average. 0.50 average. 0.52
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A similar situation can be found from the results of the system analysis by others. 

For example, Murotsu et al proposed, so called, the central load factor (or central limit 

load factor or central safety factor) for considering the deterministically dominant modes 

of structural failure to the probabilistically dominant m o d e s ^ O ,^ ] .  por the m the 

failure mode the central load factor, Xq j ? is given as:

and rm is the number of failed components contained in the mode. The numerator means 

the sum of the mean load effects and the denominator the sum of the resistance of the 

components in the mode.

Fig. 5.32 shows a three-bay frame s t r u c t u r e ^  55] ^  pjg 5 33 transverse 

structure of a semi-submersiblell^O] 0f which structural and loading data are given as 

Table 5.33. Fig. 5.34 shows the collapse modes for the three-bay frame structure and 

Fig. 5.35 for the transverse structure of the semi-submersible. Table 5.34 illustrates the 

values of the central load factors obtained from Eq.(5.1) for the three-bay frame structure 

and the transverse structure of the semi-submersible. Ppath's ^  plotted against ^ c lf 's  

as shown in Fig. 5.36. For the three-bay frame structure the deterministically most 

important failure mode is Mode 13 with =1*72. On the contrary, the failure modes 

having the lowest Ppath ^  Mode 1 and 4 with Ppath = 2.91. For the transverse structure 

of the semi-submersible, the deterministically most important mode is Mode C-l with 

XQLF =1-53, whereas the the probabilistically most important one is Mode A-l with

These results also indicate that the deterministically dominant failure mode is not

rm

(5.1)

1=1

where Rjc and P(l) are the mean values of resistance of component k and of the 1 th load

Ppath -5*58.
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identical to the probabilistically dominant failure modes and for this reason the load factor 

may not be proportional to the level of path reliability index.

P l r p PR b R b Rb tR c R c & O & O

1LI
M- - 2 L - - - ► M- - -  2 L - - ►H - - - 2 L - - - H L j L

L = 5 m  P i= 5 0 k N  P2  = P3 = P4  = 40 kN 

R5 = 101.2 kN m Rc = 75kN m

Fig. 5.32 Three-Bay Frame S t r u c t u r e t^ 5 ]

n r

0

s
O' L

•
J

15.75 11.25 11.25 15.75

tuillll

JTTT5

©J1 : e l e m e n t  end no.  
Q) : node,  no

load  no.

9 . 8

Fig. 5.33 Transverse Structure of Semi-Submersiblet1
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Table 5.33 Data for Semi-Submersible^O]

(1) Postulated Extreme Sea-State and Morison's Coefficient

significant wave height Hs = 13 m duration of sea-state T = 3600 sec.
wave period Tw = 3.55 H0-559 sec.
mass coefficient mean = Cm =0.8, COV = Vca = 30%

drag coefficient mean = Q j =0.8, COV = V^a = 30%

correlation coefficient between Cm and Q j pCx/fC = ~ 0.9

(2) Stmctural Data

member element end 
no

cross-sec
area

Api (m2)

moment of 
inertia 
Ii (m4)

reference
strength

R i

length of rigid 
body (m) 

si s2

column 

( D = 9  m )

l ,  2 , 7 ,  8  

3 - 6 , 9 - 1 2 0 . 4 8 0 4 4 . 8 6 4 4 9 3 . 6

4 . 9  —

deck 1 3 ,  1 4

1 5 -1 8

1 9 , 2 0

0 .1 9 3 1 0 . 0 9 8 5 4 1 . 3 6

4 . 5  —  

_  4 . 5

diagonal 
brace 

( D = 1 .6 3  m )

2 9 ,  ( 3 0 )

3 1 - 3 6 ,3 7 - ( 4 2 )

4 3 , 4 4

0 . 1 5 5 4 0 . 5 0 9 9 2 7 .6 5

4 . 5  _  

_  4 . 5

horizontal 2 1 ,2 2  

brace 2 3 - ( 2 6 )  

( D = 2 .9 8  m )  2 7 ,2 8

0 .1 4 0 4 0 .1 5 5 8 4 7 . 4 8

4 . 5  —

—  4 . 5

Reference strength Rf = plastic bending moment
Elastic modulus E = 210 GPa
Yield stress a Y : mean = 360 MPa, COV = 8%
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Fig. 5.35 Collapse Modes for S e m i - S u b m e r s i b l e t  *  30]

C-l C-2
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Table 5.34 Central Load Factors Calculated from Eq.(5.1)

(1) Three-Bay Frame Structureless]

mode no. Ppath ^CLF mode no. Ppath ^CLF

1 2.91p 1.89 8 4.92 2.06

2 3.33 2.02 9 4.65 2.01

3 3.33 2.02 10 4.41 1.78

4 2.91p 1.89 11 4.19 1.74

5 3.33 2.02 12 5.05 1.90

6 4.62 2.40 13 4.67 1.72°

7 3.89 1.84

average of X.QLP = 1.95

(2) Semi-Submersible[130]

mode no. P ^CLF mode no. P ^CLF

A-l 5.58p 1.55 C-l 6.32 1.53d

A-2 7.46 1.65 C-2 7.44 1.65

B-l 8.48 2.15

B-2 9.60 2.05

average °f^CLF = 1.76

D : deterministically most important mode 

P : probabilistically most important mode
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Fig. 5.36 Central Load Factor vs

Two load factors, ^  given as Eq.(2.95) and X,CLp as Eq.(5.1), have different 

definitions from each other, i.e., the total load factor, Xj in Eq.(2.95) can represent the 

ratio of the collapse load to the mean applied load as mentioned in Section 2.1.2. This 

was given by:

. _  System Collapse Load (2 15 b)
^  Mean Applied Load

while the central load factor XCLF in Eq.(5.1) can represent the ratio of the mean strength 

for system to the mean applied load:

_  Mean Strength for System 
lC L F  “* Mean Applied Load

Although two load factors are derived from the different definitions, their actual meanings
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are similar, that is, both factors are related to reserve strength and can represent the 

system safety factors.

Calculation of the load factors from Eqs.(2.95) and (5.1) is illustrated in 

Appendix-B for the simple frame model.

5.4.5 System Reliability to Changes in Control Parameters of Identifying Procedure

The number of important failure modes to be identified and, consequently, the 

system reliability to be evaluated should be affected by the various parameters controlling 

the procedure of identifying the important failure modes [Section 2.5.6 and also refer to 

Table 5.12].

eSyS and Mmin may affect the number of failure modes. Decreasing eSyS and 

increasing can lead the identifying procedure to find a great number of failure 

modes to be identified. Increasing can reduce the number of possible interim modes. 

Ndet of closer to unity can lead the procedure so that the identified important failure 

modes closer to true solution are to be generated. However, as mentioned in Section 

2.5.6, this requires very expensive computational cost. The parameter, Nl^  can reduce 

the number of possible interim modes as e ^ ,  when searching procedure has progressed 

to a certain stage. At the same time, the parameter can affect the quality of the generated 

failure modes and, consequently, the evaluated system reliability. The parameter, 

should be one of the most influential ones affecting the evaluated system reliability 

because the occurrence of a structural collapse is approximately judged from Eq.(2.111) 

for a large and complex system. Hence, the parameter has close relation to the number of 

failed components in any failure mode in such a way that as its value decreases, more 

components will participate in the associated collapse mechanism and vice versa.

In this section the effects of the values of NLjmjt and e^et upon the system 

reliability level (PSyS) are investigated. For this some computations have been carried out 

to changes in their values.
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o Effect of NLimit:

Two typical values of NLimit are chosen to investigate its effect upon the system 

reliability level, namely, Nl^  = 6 and 1 with retaining values of other parameters as the 

same values shown in Table 5.12. When Nr.imit = 1, the identifying procedure is nearly 

the same as that of the marginal failure probability-based method proposed by Murotsu et 

alt41! [Section 2.5.3]. Table 5.35 illustrates comparison between the results of two cases 

for the three TLP models. In the case of the Hutton TLP and TLP-A, using Ni.imir of 1 

gives the average PSyS of about 3% and 0.5% lower than using NLimit of 6, respectively, 

but the differences are negligibly small. While in the case of TLP-B, when Nl^  = 1, 

the average pSyS of about 11% higher than when Nl^  = 1 has been obtained. Based on 

these results, when Nl^  = 1, the Hutton TLP and TLP-A have nearly the same pSyS 

(the difference of the average pSyS between two TLP models is 0.5%), while TLP-B has 

pSys about 22.7% greater than the other TLP models. However, the results may be far 

from the true solution.

Table 5.35 pSyS to Change in NLimit Value

Hutton TLP TLP-A TLP-B
X

^ L i m i t =  ^  ^ L i m i t  =  1 ^ L i m i t  ^  ^ L i m i t  1 ^ L i m i t  ^  ^ L i m i t  ^

0 6.55 6.70 6.09 6.04 6.77 7.58

45 6.30 6.08 7.20 7.86 7.13 7.67

90 6.83 6.88 6.69 6.68 7.32 8.36

total
average 6.44 6.25 6.26 6.22 6.91 7.67

o Effect of :

When the structural collapse is judged from Eq.(2.111), it can be easily supposed 

that the number of failed components and, consequently, the system reliability, depends 

on the selected value of e ^ .  In order to investigate the relation between pSyS and e ^ ,
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two more cases of e^Qt values, say e^et = 10~6 and 10'10, are selected in addition to 

= 10“̂ . The system reliability index is evaluated when wave direction, % is 0° only. For 

the Hutton TLP and TLP-B, pSyS are plotted against to Log1()e(jet as shown in Fig. 5.37.

As is expected, change of pSyS is very much sensitive to the selected value of 

edet- ^  case Hutton TLP, when = 10~6, pSyg has decreased by about 19% 

and when = 10“ 10, increased by about 15% compared to PSyS when 8^et = 10“8 in 

Table 5.12. In the case of TLP-B, when = 10"6, psys has decreased by about 16% 

and when = 10" 10, increased by about 12% compared to pSyS when = 10“8. 

The average number of failed components contained in the failure modes is listed in 

Table 5.36.

9
Psys Hutton TLP 

TLP-B

7

5

3

1
- 5-67891011

k°£ioedet

Fig. 5.37 PsyS vs
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Table 5.36 Average Number of Failed Components vs e jet

edet 10-6

001o 10-10

Hutton TLP 9 10 12

TLP-B 6 s 9

5.5 Discussion

This chapter has mainly stressed the system reliability studies of the Hutton TLP 

and its two variants. As far as the present numerical results are concerned, the two 

variants were found to be more efficient than the Hutton TLP. TLP-B especially showed 

higher pSyS than the other TLP models in spite of there being much less structural 

weight. The comparison of its design to the design of the Hutton TLP indicated that the 

design of at least 40% weight saving could perhaps be achieved. In general, it can be said 

that under the environmental loading condition found in TLPs, the structure having the 

ring- and stringer-stiffened cylinders is more efficient than the structure having the ring- 

stiffened cylinders from the system's point of view as well as from the component's 

point of view. Since the post-ultimate behaviour of any failed component was assumed to 

be ductile, the actual PSyS's may be expected to be lower than the evaluated ones in 

Section 5.4. For the same structure, PSyS of the structure with components of brittle 

behaviour is usually less than the structure with components of ductile behaviour. PSyS, 

under the assumption that all components are brittle behaviour, is likely the lower bound 

of the system reliability. Further investigation and discussion about the effect of the post- 

ultimate behaviour of components will be given in Section 6.4.

The relation between the total load factor (XT) and the path reliability index 

(Ppath) of the three TLP models indicated that the deterministically most important failure 

mode was not identical with the probabilistically most important one. A similar situation
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could be found from the results of others as illustrated in Section 5.4.4. Because of this, 

the identifying procedure based on utilisation ratio could not perhaps provide the 

probabilistically important failure modes.

With regard to the structural redundancy of TLPs, it was shown that TLP 

structural systems possessed appreciable reserve (in the deterministic sense) and residual 

strength (in the probabilistic sense) as can be seen from the total load factors in Table 

5.31, which are related to the reserve strength, and the p measure of structural residual 

strength (RDIp) in Table 5.32. The average was obtained as 2.63 for the Hutton TLP, 

2.82 for TLP-A and 2.96 for TLP-B. These seem to be higher than the expected value by 

F a u l k n e r [ 8 J 3 6 ] > wh0 stated that the reserve strength index (RSI) given as Eq.(2.11) 

would be greater than 2. Lloyd and Clawson [91] also stated that well-designed platforms 

could resist greater than twice design environmental load without collapse.

The reliability study for the transverse structure of a semi-submersible by 

Murotsu et alt 130] showed somewhat less reserve strength than the present TLP 

structures (the average load factor was 1.76). Amdahl et alt132] presented the results of 

reserve and residual strength for the Aker H3.2 type 8 column semi-submersible shown 

in Fig. 5.38 through the non-linear structural analysis using the idealised structural unit 

method (ISUM) in which non-linear geometric and material behaviour was included. A 

typical collapse mode is illustrated in Fig. 5.39 and numerical results are listed in Table 

5.37. In contrast to Murotsu et alt^O]^ it is shown that the semi-submersible of Amdahl 

et a l t  1^2] possesses more reserve strength than Murotsu et al and also considerable 

residual strength.
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Fig. 5.38 Semi-Submersible Model of Amdahl et alt132]

-  Elomopti removed 
& Mudroom

Fig. 5.39 Collapse Mode of Semi-Submersible of Amdahl et alt132]

Table 5.37 Numerical Results for Semi-Submersible by Amdahl et a lt^2 ]

Case Condition
First
yield

Load factor 
at collapse

Reserve
strength
factor

Residual
strength
factor

1 Undamaged 1.28 3.76 3.76 —

2 Explosion mud room 
Elements removed

0.18 1.86 — 0.49

3 Explosion mud room 
Reduced capacity

1.1 3.45 — 0.92

4 Explosion main leg 1.0 3.08 — 0.82



From the above discussions it can be drawn that floating platforms, especially 

TLPs, may possess considerable reserve and residual strength. As mentioned in Section 

2.1.2, the structural redundancy is dependent upon various factors and hence, further 

study is required in this area.

The investigation into the relation between pSyS and control parameters of 

identifying procedure for generation the important failure modes, namely, Nl^  and 

edet» showed that the pSyS to be evaluated was very sensitive to their selected values. In 

order to obtain a reasonable level of system reliability, the appropriate values of control 

parameters must perhaps be determined by accumulating experience from the application 

of the methods for system reliability analysis to real structures. Additionally, the 

parameter values should be consistently kept throughout the system reliability analysis to 

provide reasonable information for the comparison of different structures and for a 

sensitivity study to investigate the effect of various variables affecting the pSyS (and 

Pcomp)-The sensitivity study will be shown in the next chapter.



CHAPTER 6 SENSITIVITY STUDIES

6.1 Introduction

A sensitivity study to changes in stochastic parameters (mean and COV) and 

distribution types of design variables must precede the optimisation p r o c e d u r e ^  3 5  ] ? 

it is an important and valuable task in the light of that:

- it can provide useful information about the relative importance of design variables 

with regard to their effects on safety and then, the variable which is comparatively 

less important and influential on safety can be treated as a deterministic one.

- it can provide the designer with useful information to intelligently modify 

structures.

- it can illustrate the accuracy needed in describing the structural data required in 

probabilistic computations which is a major goal in limit state design.

Here the sensitivity study is mainly concerned with the effect on system safety to 

changes in stochastic parameters, namely, mean and COV, of design variables and the 

effect of post-ultimate behaviour of failed components. Results will be shown in the 

relevant figures representing the relation of the system reliability index to stochastic 

parameters. Their effects on the component safety will also be illustrated as a by-product 

for comparison with their effects on the system reliability.

For the present puipose the Hutton TLP has been chosen as an existing TLP and 

TLP-B as its variant to compare the safety level of the structures having different types of 

principle component, i.e. ring-stiffened cylinder (the Hutton TLP) and ring- and stringer- 

stiffened cylinder (TLP-B).

Design variables are divided into two groups: resistance variables and loading 

variables. There must be many variables (or factors) affecting the safety level of a
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structure. For the present sensitivity study, selecting the important variables, which are 

supposed to have comparatively much influence on safety level, has been determined 

with reference to results of component reliability analysis by others[H4,116,155,213].

As a resistance variable, the strength modelling parameter (XM) must be one of 

the most important and influential variables with regard to their effect on safety, as can be 

expected from its important position within the safety margin equation [Eq.(2.103)1. 

Yield stress (aY) is known to be more influential than the elastic modulus (E). The elastic 

modulus usually has comparatively small influence on safety and sometimes is treated as 

a deterministic variable. The influence of geometric properties is also comparatively small 

because of their small COV. But for a cylindrical member results of component reliability 

analysis by Das et alt 114,116] indicated that radius and thickness of cylinder could be 

influential on safety. As it has been well recognised, the post-ultimate behaviour of failed 

components is one of the major factors which affect the system reliability and determine 

the residual strength of a structural system. When any particular component, of which 

post-ultimate behaviour is not ductile, its failure can greatly affect the re-distribution of 

load effects of other components and structural stiffness. Further discussion on this will 

be shown in Section 6.4.

Loading variables are known to be more influential on safety than resistance ones 

mainly because of their position within the safety margin equation and their high CO Vs. 

The effect of changes in mean bias and COV of three category load effects (dynamic, 

static and quasi-static) on system and component safety have been investigated.

A range of the design variables selected for the present sensitivity study are listed 

in Table 6.1 except parameters for the post-ultimate behaviour [see Section 6.4]. 

Throughout the numerical analysis the system reliability index is the total average one 

corresponding to the total average probability of system failure as described in Chapter 5. 

The component reliability index is always referred to that of the component of column 2 

located just above pontoon, when % =0 deg. The component is designated as Component 

61 for the Hutton TLP [Fig. 5.1] and Component 45 for TLP-B [Fig.5.9]. The same
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values of control parameters in the procedure of identifying the important failure modes 

are consistently used as shown in Table 5.13.

Table 6.1 Ranges of Variables for the Sensitivity Study

[1] Strength modelling parameter (XM)

mean bias (XM) : 0.90, 0.95, 0.99, 1.05, 1.10

COV (VXm:%) : 5.0, 7.5, 10.0, 13.0, 15.0, 17.5, 20.0

[2] Yield stress (aY)

COV (%) : 4.0, 8.0, 12.0

[3] Radius and thickness of cylinder (R and t)

COV (%)

[4] Mean bias of load effect

dynamic component 

static component 

quasi-static component

[5] COV bias of load effect (%)

dynamic component 

static component 

quasi-static component 

* : for TLP-B only

2.0, 4.0, 6.0, 8.0

0.6*, 0.8, 1.0, 1.2 

0.6, 0.8, 1.0 

0.0, 0.8, 1.0

5.0, 10.0, 15.0, 20.0, 25.0, 30.0 

5.0*, 10.0, 15.0,

10.0, 20.0, 30.0

5.0*, 10.0, 15.0, 20.0, 25.0*, 30.0*

6.2 Influence of Resistance Variables

6.2.1 Strength Modelling Parameter

As proposed in Section 2.4, the safety margin equation is given as Eq.(2.103) in 

the modified form of Eq.(2.86). As mentioned before, the strength modelling parameter 

plays a major role as a resistance variable and may have much influence on the system
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resistance and consequently, the system reliability.

As mentioned in Chapter 1, the incremental load method can be easily applied to 

evaluating the system safety for the sensitivity study when the failure paths are pre­

defined. In order to investigate the influence of mean bias, Xm and modelling 

uncertainty, V xM (COV of bias) on the system reliability, the failure modes already 

identified when Xm and VxM have the values of the standard case [Table 5.3] are used to 

evaluate the system safety level when they have different values. X u  and V y „  of 

cylindrical components only are to be varied. The identified failure paths are listed in 

Tables 5.13 - 5.15 for the Hutton TLP and Tables 5.23 - 5.25 for TLP-B.

When Xm and VxM have different values from the standard case, the failure 

sequences of the important failure modes to be identified differ, of course, and hence, 

there is a difference between the evaluated system reliability indices when the pre-defined 

paths are followed and when the probabilistic searching procedure is passed through. The 

difference may be expected to be small and therefore can be neglected at least for the 

purpose of sensivitivity studies. For example, Table 6.2 compares the system reliability 

index ( P s y s )  of the Hutton TLP by the two procedures which show nearly the same 

tendencies.

As listed in Table 6.1, five cases of mean bias, Xm and seven cases of modelling 

uncertainty, VxM by varying them within the practical range including the standard case 

[Table 5.3] have been carried out for the Hutton TLP and TLP-B. Fig. 6.1 shows the 

relation between Psys and XM, and Fig. 6.2 the relation between Psys and VXm for the 

Hutton TLP. Figs. 6.3 and 6.4 are for TLP-B. The relation of P c o m p  to XM and VXm 

are illustrated in Figs. 6.5 to 6.8, respectively, in the same way.

As can be seen in Figs. 6.1 to 6.4, psys is more sensitive to VxM than to Xm for 

both TLP models. When VxM is small, say less than 7.5%, there is no change of psys to 

XM. The effect of X m on psys becomes significant when VXm is greater than 10%. 

Pcomp is also sensitive to the change in both Xm VxM as illustrated in Figs. 6.5 to
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6.8. It can be seen that PCOmp both TLP models is more sensitive to change in both 

XM and VXm than psys and varies linearly to change in XM. The effect of XM on P c o m p  

is significant within the low range of VXm differently from its effect on psys.

Figs. 6.9 to 6.12 show comparisons of psys and P c o m p  to change in Xj^ when 

VXm has the value of standard case (=10% for the Hutton TLP, =13% for TLP-B) and in 

V X m  when X ^  has the value of standard case (=0.99 for two TLPs).

Even though the effects of XM and VXm on psys and P c o m p  may differ 

depending on several factors, e.g. the structural configurations, the component types of 

the structure, etc, from the results it can be drawn that regardless of structural 

configuration or component types, developing the strength formula having low modelling 

uncertainty may be one of the easiest ways to raise the system safety and, therefore, to 

achieve the weight saving with retaining the same level of psys.

The sensitivity factors of P s y s  and P c o m p  to changes in XM and V xM are 

calculated to show the relative importance between XM and VXm, which are regarded as 

random variables. The sensitivity factors can be calculated from Eq.(6.1)[5] using the 

slopes of curves in Figs. 6.9 to 6.12, where {X)={X1, X2) ={Xm, VXm) and slopes 

are evaluated at the standard values of XM and VXm [see Table 5.3].

where X = (X i, X2) =standard value of XM and VXm as in Table 5.3 and P is Psys or

The calculated sensitivity factors are listed in Table 6.3, in which and a 2 are 

sensitivity factors of reliability index (psys or P c o m p )  to XM and VXm, respectively. 

From Table 6.3 it can be seen that P s y s  and P c o m p  of both TLPs are much more

a i = 1,2 (6.1)

'comp*
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sensitive to VXm than to XM. Pcomp is more sensitive to XM than pSyS.

These results confirm that the modelling uncertainty of the strength formula is 

relatively more important than the mean bias and much more influential not only on the 

system reliability but also on the component reliability which is the usual basis for most 

designs. Therefore, as pointed out in references [119] and [163] it is required to have to 

keep VXm as low as possible to gain a higher level of PSyS and Pcomp with keeping XM 

close to unity.

Table 6.2 Comparison of pSyS by Two Procedures : Hutton TUP

G£m  ’ v Xm) (0.90, 0.10) (1.05, 0.10) (0.99, 0.05) (0.99, 0.15)

procedure following the 

pie-defined failure modes 5.96 6.18 6.74 5.18

probabilistic searching 

procedure

6.12 5.73 6.80 5.33

Table 6.3 Sensitivity Factors of pSyS and Pcomp to Changes in X^ and VXm

sensitivity

factor

Psys Pcomp

Hutton TLP TLP-B Hutton TLP TLP-B

a ifor X M 0.077 0.173 0.332 0.300

« 2  for Vxm -0.997 -0.985 -0.943 -0.954
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6.2.2 Material and Geometric Properties

According to the results of component reliability analysis in references yield stress 

(ay) and radius and thickness of the cylinder (R and t) are important variables affecting 

the component reliability.

Figs. 6.13 and 6.14 show the pSyS and Pcom p to change in COV of a y , 

respectively, for the Hutton TLP and TLP-B. Both TLPs show nearly the same 

tendencies of changes of PSyS and PCOm p t0 COV of a y  and R and t, and two reliability 

indices are not sensitive.

The effect of a y  is such that, in the case of the Hutton TLP, the difference of 

pSys between when COV of a y  is 8% and when 4 and 12% are about ±3%, whereas in 

the case of TLP-B, the difference is less than 1%. The difference of P c o m p  lies between 

+ 1% for the Hutton TLP and ± 5 %  for TLP-B. The effect of R and t of cylindrical 

components on P c o m p  is small, as can be seen in Fig. 6.16. COV of 2 and 6% of R and t 

gives the difference of within + 3% compared to P c o m p  when the COV is 4% and COV 

of 8 %  gives about 6 %  lower P c o m p .  Meanwhile their effects on p Sy S are somewhat 

greater than on P c o m p  in such a way that for the Hutton TLP, p S y S has increased by 

about 5 and 10% when the COV is 6 and 8%, respectively, and for TLP-B, it has 

decreased by about 9% when the COV is 8%.

Fig. 6.17 shows comparison between the effect of COV of a y  and that of COV 

of R and t upon pSyS for the Hutton TLP and Fig. 6.18 upon Pcomp- Figs. 6.19 and 

6.20 for TLP-B. The figures show that R and t are more influential on resistance and 

safety than Gy. But, this may be due to the fact that COV of R and t were given as the 

same value and their effects were probably more reflected in the form of combined action 

on safety COV of Gy. PCOmp was *ess sensitive to change in COV's of R and t than

Psys-
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6.3 Influence of Loading Variables

6.3.1 Mean Bias of Load Effect

To investigate the influence of mean bias of load effects system analysis has been 

carried out with three postulated cases for mean bias of predicted load effects as listed in 

Table 6.1.

Results for the Hutton TLP are shown in Figs. 6.21 and 6.22 relating the 

reliability index to mean bias of load effect. Mean bias has more influence on Pcomp 

PSyS.Two reliability indices are more sensitive to mean bias of static component than to 

dynamic and quasi-static components. When mean bias of static component is 0.6 and

0.8, pSyS has increased by about 8% and 6%, respectively and PCOmp by about 25% and 

53%, respectively. Meanwhile, when mean bias of dynamic component is 0.8, pSyS and 

Pcomp have increased by about 4% and 20%, respectively. With regard to the effect of 

quasi-static component, when its mean bias is 0.0, i.e. when there is no quasi-static 

component, both reliability indices are increased by about 8%. This implies that safety is 

not sensitive to mean bias of quasi-static component.

The results for TLP-B are illustrated as Figs. 6.23 and 6.24, where one more 

case is added when mean bias of dynamic component is 0.6. For this model Pcomp 

shows more sensitivity to mean biases of load effects than PSyS. Static component is 

most influential upon both reliability indices followed by dynamic component. Regarding 

the influence of dynamic component on safety, when its mean bias is 0.6, 0.8 and 1.0, 

PSyS has increased by about 17%, 6% and 1%, respectively, and Pcomp by about 16%, 

9% and 2%, respectively. Meanwhile the influence of static component is such that the 

mean bias of 0.6 and 0.8 give about 18% and 10% higher pSyS, respectively. When only 

static and dynamic component are acting, pSyS has increased by about 10% to pSyS of 

about 7.6 and Pcomp by about 4% to Pcomp of 4.0.

To illustrate the comparison of effects of mean biases of load effects upon safety 

between two TLP models, results are re-drawn as shown in Fig. 6.25 for PSyS and in
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Fig. 6.26 for Pcomp- Fig- 6.25 TLP-B shows more sensitivity to changes in static and 

dynamic components than the Hutton TLP. Two models show nearly the same changes 

to quasi-static component.

As far as the present results are concerned, it can be drawn that the mean bias of 

load effect give much influence upon the safety, system level as well as component level, 

and static component is most influential followed by dynamic component, and quasi­

static component is relatively less influential than the other two load effects.
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6.3.2 Coefficient of Variation of Load Effect

According to the results for component safety by o t h e r s [ H 4 , 1 1 6 , 1 3 5 , 2 1 3 ]  

coefficients of variation of load effects were shown to affect the safety level. To 

investigate the influence of COV of load effects upon safety, system and component 

level, several case studies have been carried out by varying COV values for static, 

dynamic and quasi-static components: three cases for static component, six cases for 

dynamic component and three cases for quasi-static component as shown in Table 6 . 1 .

The results can be seen in Figs. 6.27 to 6.32 plotted in the same way as before. 

As is expected, it can be found in Fig. 6.27 that the effect of COV of dynamic component 

upon pSyS becomes significant as the COV increases. For the Hutton TLP increase of the 

COV to 20%, 25% and 30% results in decrease of pSyS by about 15%, 25% and 30%, 

respectively compared to when the COV is 10% and for TLP-B by about 18%, 32% and 

40%, respectively. With regard to its effect on Pcomp, in the case of the Hutton TLP, 

when the COV is 20,25 and 30%, PCOmp *s ab°ut 13, 21 and 28% less than that when 

the COV is 10%. The change of TLP-B's Pcomp to the COV is relatively small. When 

the COV is 30%, PCOmp ^  ab°ut 8% less than that when the COV is 10%.

From Figs. 6.29 and 6.30 effect of static component upon two reliability indices 

is shown to be greater than that of dynamic component. Pcomp of the Hutton TLP and 

TLP-B varies in nearly the same manner, whereas PSyS of the Hutton TLP varies within 

a wider range than that of TLP-B. For the Hutton TLP, when COV of static component 

has increased to 15% and 20%, pSyS has dropped down by about 20% and 32%, 

respectively and for TLP-B by about 12% and 18%, respectively. The effect of quasi­

static component on safety, as can be seen in Figs. 6.31 and 6.32, is comparatively small 

compared to those of static and dynamic components and particularly its effect on Pcomp-

To compare the effects of changes in CO Vs of three types of load effects, the 

results are re-drawn in Figs. 6.32 and 6.34 for the Hutton TLP and in Figs.6.35 and 

6.36 for TLP-B. In the case of TLP-B, three more cases of changes in static component,

i.e. when the COV is 5%, 25% and 30%, are added to show more extensively its effect
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upon safety but the two cases of 25% and 30% are unlikely to be practical in TLP 

structures. From Fig. 6.35 it can be shown that in the case of TLP-B, when COV of 

static component is 5%, psys has decreased by about 12%, and Pcomp by about 7%. 

Meanwhile, when the COV is 25 and 30%, psys is about 32% and 40% less than psys 

when the COV is 10%, respectively. Pcomp has decreased by about 28% and 35%, 

respectively.

Conclusively speaking, the effects of three types of load effects upon the safety, 

as far as present results are concerned, it was shown that static load effect (mean bias and 

COV) was most influential on the system reliability index as well as component reliability 

index followed by the dynamic load effect. This may be due to the greater magnitude of 

static component acting on components than that of dynamic component. But considering 

the practically more degree of uncertainty in dynamic component than in static 

component, it can be said that dynamic component may be the more important loading 

variable. Quasi-static component was found to be relatively less influential than the other 

two components. This is probably due to its relative less magnitude than the other two 

components and negligence of the load due to wave drifting. However, its effects on the 

system safety may not be significant. Additionally, when quasi-static load effect of any 

particular component is of the same order as static or dynamic load effects, PCOmp may 

be sensitive to quasi-static load effect from the component's side. But the situation may 

not always be applied for the system reliability because when any component has failed, 

there occurs the load effect re-distribution of failed components and it may change the 

magnitude of load effects on the other components, i.e. the influence of the component 

on the system reliability (or probability of system failure), on which is acting the same 

order of quasi-static component as static or dynamic component, can be overwhelmed by 

the other components of which static and dynamic load effects are greater than the quasi­

static component and has higher probability of failing after one or more components have 

failed.
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6.4 Influence of Post-Ultimate Behaviour

It has been well recognised that the post-ultimate behaviour after failure of any 

component can greatly influence the load effects re-distribution of survival components 

and the structural stiffness. It also affects the residual strength of a structural system. The 

non-linearity of a failed component is usually modelled as a two-state behaviour as in 

Fig. 6.37(a). At present there is no adequate algorithm which is able to accurately include 

this non-linearity in sufficient generality in the system reliability analysis.

Corotis et. a l J 2 7 , 2 8 , 7 4 ]  proposed the load (or load effect) space formulation to 

evaluate the system safety of frame structure through non-linear structural analysis in 

which the incremental load method was used to evaluate the system resistance. A load 

space approach was adopted to obtain the failure probability by numerical integration. 

Hohenbichler and R a c k w i t z f l 5 2 ]  proposed the imposed deformation approach. 

B en n e tt^ ] proposed the method based on the imposed deformation approach and the 

stable configuration approach[77]. These have allowed the reliability of a more general 

structure to be evaluated. However, these approaches have limitations to be applied to the 

practical structures. The method proposed by Corotis et al requires the non-linear 

structural analysis and the method by Bennett finds the stable configuration of a structure 

(survival modes) rather than failure modes. The structural analysis usually takes a great 

portion of computational time in system reliability analysis, two approaches may not be 

suitable for a large and complex practical structure such as fixed and floating platforms.

As described in Chapter 1, the simple two-state model in Fig. 6.37(a) give a 

reasonable solution in some cases, but in solving most structural problems a better post- 

ultimate (or post-failure) behaviour is required. For this purpose the incremental load 

method is adequate because it can more realistically allow for the post-ultimate behaviour 

than the element replacement method [see Table 1.1].

Moses and R a s h e d [6 6 ]  used a two-state model with no residual strength which

- 3 2 4 -



could represent the work softening. Melchers et al[72,73] use(j a three state model [see 

Fig.6.44] which could represent the work softening and work hardening after component 

failure. Both used a plane truss structure in which only axial load effects in members 

were considered using the incremental load method. When load effects are combined it 

must be a very complicated problem to involve the post-ultimate behaviour in system 

reliability analysis of real structures with a more realistic post-ultimate behaviour model.

6.4.1 Simplified Model of Non-Linear Behaviour

6.4.1.1 Three-State model

In this study, use is made of the idea using the concept of mean load factor that 

can be obtained when structural failure has progressed up to any particular failure stage to 

predict the strain state and the stiffness of an element which contains a failed component.

The three-state model, shown in Fig. 6.38(a), is employed to account for the 

post-ultimate behaviour in system reliability analysis. In Fig. 6.38(a) o' and e’ are the 

stress and strain normalised by the ultimate state (Sy), i.e. e' = e /  eu and o' = o  /  a u in 

which o  and e is the actual stress and strain. Hence, at point A, (s', g')a  = (1.0,1.0). E' 

= E t /  E represents the post-ultimate slope (non-dimensional) which is related to the work 

softening (or work hardening) tangential stiffness, rj is the residual strength parameter 

which is the ratio of residual strength to the ultimate strength. In modelling component 

load end-shortening the following assumptions are adopted:

[1] A three-state model is assumed to represent the load end-shortening behaviour, 

as Fig. 6.38 (a): when an element is in the intact state the behaviour is assumed 

to be elastic (line OA).; when one or both nodes of a finite element fail, they are 

assumed to follow the line AB.; beyond B, zero stiffness is assumed with 

residual strength represented by the parameter, T|.

[2] Axial load effect is assumed to be dominant and the same behaviour is assumed 

for all actions (in the normalised form by their ultimate state), e.g., for bending 

action its behaviour is the same as that for axial action by replacing s' and cf 

by the associated bending moment and the associated curvature.

[31 The behaviour of the critical portion of the cross-section is assumed to represent
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the behaviour of the whole cross-section.

When Ef and rj are given, the coordinate of point B in Fig. 6.38 (a) are:

( e \ o - ) B = ( H g i i + i . n )  (6.2)
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Fig. 6.37 Two-State Model for Non-linear Behaviour
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6.4.1.2 Two-State model

When using the simple two-state model shown in Fig. 6.37 (a), the equivalent 

nodal forces (or artificial nodal forces) due to the unloading process of a failed 

component of which post-ultimate behaviour is not ductile, i.e. semi-ductile or ductile (r| 

< 1.0) act as external forces. Calculation of the equivalent nodal force can be obtained 

with the strength formula used in system reliability analysis. The calculating procedure 

suggested herein is similar to that proposed by Murotsu et alt 13,69]. The equivalent force 

vector can be given as the following equations:

[1] when node i in any particular element fails [see Fig. 2.5]

R: [k ] {a}
(f.) = — !—2-------- (6.3.a)

i eq t
{a)T[koH a )

where {fileq is the equivalent force vector acting on the node i of the element, the force 

acting on node j is naturally zero, i.e. [fj)eq = {0} and hence the force vector action on 

the element is {fjgq = [ [f^eq [0] ]T.

[2] when both nodes, i and j, fail

Ri
{f)eq = [H]T(Gr1̂ R‘|  (6.3 .b)

where { f )e q  is the equivalent force vector acting on nodes i and j of the element. In the 

above equations Rj and Rj are the reference strength of a component considered, {a} is 

the flow vector given by Eqs.(2.106) and (2.107), and [H] and [G] are given below 

Eq.(2.109).

The equivalent forces given as Eq.(6.3) are equivalent to the forces against which 

the associated element resists. Therefore, the artificial nodal force actually applied on the
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nodal points is obtained by multiplying the residual strength parameter, T|, as a fraction of 

the ultimate strength of the e lem ental;

Applied Artificial Nodal Force = (1 - r j )  x {f}eq (6.4)

In the present approach, because the strength formula (interaction equation) is 

directly used to obtain the utilisation ratio and hence, to obtain the resistance coefficient 

and loading coefficient, the artificial force vector can be calculated with the given strength 

formula. For illustration, Fig. 6.37(b) shows the two dimensional failure surface. The 

force corresponding to point A in Fig. 6.37(b) acting on any failed component is 

proportionally increased until point A reaches point B. This approach is based on the 

assumption that the forces are proportionally increased until the limit state is reached. 

After then, the artificial forces are applied in the worst direction by checking the 

magnitude of the force vector of each type of loading. The artificial force vector to be 

applied is obtained from Eq.(6.4) in the usual way.

The load effects due to this artificial force vector are calculated, and then from the 

interaction equation used in the analysis, the elements of the unloading matrix, [B] in 

Eq.(2.73) for other survival components are calculated, of which elements also represent 

the utilised strength of survival components.

6.4.2 Application to TLP

In practice the value of E' and rj of an element will depend on the geometric and 

material properties, e.g. R/t, s/t, etc in the case of a cylindrical component, stiffener 

spacing, yield stress, etc., on the initial imperfections due to welding, such as initial 

stress and deflection and on the component types, i.e. the ring-stiffened cylinder, the 

ring- and stringer-stiffened cylinder or the rectangular box-girder. When the two-state 

model [Fig. 6.37 (a)] is used, it is usually assumed that no other component fails during 

the unloading process. When the multi-state model [more than two states as Fig. 6.38 

(a)] is used, this assumption is eliminated. But the failure tree increases both in depth 

(i.e. more events in a failure mode) and in width (i.e. a broader tree).
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In this study TLP-B is chosen to investigate the effect of the post-ultimate 

behaviour on the system safety. Four cases of behaviour, as shown in Fig. 6.38(b), have 

been carried out. Values of their E' and r| are listed in Table 6.4.

For illustration, the results when % = 0 deg, are also summarised in Table 6.4 

with the result of ductile behaviour. As it is expected, the system reliability indices of 

Case 1 to Case 4 are been reduced by about 8%, 12%, 31% and 38%, respectively, 

compared with that of the ductile behaviour. Even Case 1 which is very close to ductile 

behaviour (E1 = -0.05, ri = 0.925) shows a significant reduction of PSyS. This may be 

due to the combined effect of E' and T|. The post-ultimate slope, E', may give the effect 

of reducing the structural stiffness as well as load effect re-distribution of survival 

components and T| may give the effect of load re-distribution.

The post-ultimate behaviour can affect the residual strength of a structural system. 

When Component 48 which is located at the bottom bay of Column 2 [see Fig. 5.7] has 

failed, of which reliability index (PCOmp) was 3-14 [see Table 5.32], the consequence of 

the component failure can be assessed by using the p-measure of residual strength, 

RDIp, given by Eq.(2.13). For example, when component behaviour follows the 

behaviour of Case 4, the lowest path reliability index is Ppath = 4.21. From Eq.(2.13) 

RDIp is (4.21 - 3.14) /  4.16 = 0.25 and this value is more than 50% less than that of the 

ductile behaviour of which RDIp was 0.54 [see the 1st row in Table 5.32], i.e. system 

residual strength of Case 4 has been very much reduced. For Cases 1 to 3 p-measure is:

RDIp = 0.49 for Case 1 RDIp = 0.33 for Case 3

RDIp = 0.47 for Case 2

These values of RDIp imply that the post-ultimate behaviour of failed components give 

much influence upon the residual strength of the structural system. pSyS in Table 6.4 

(the 3rd column) is plotted against the residual strength parameter, as shown in Fig. 

6.40. In the figure pSyS when % = 45 and 90 deg. and the total average pSyS are also 

included. For the behaviour of Cases 1 to 4, the total average pSyS is decreased by about 

12%, 18%, 32% and 40%, respectively, compared with that of the ductile system.
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When using the two-state model in Fig.6.37(a) the results for the semi-brittle 

system Cases 1 to 4 in Table 6.4 are also summarised in the same table when % = 0 deg. 

pSyS of the system with the two-state model is always less than that of the system with 

the three-state model. Fig. 6.41 show the relation between pSyS and T| in which the 

results when % = 45 and 90 deg and the total average PSyS are also included. Results for 

three more cases when rj = 0.40, 0.225 and 0.0 are included in the same figure to more 

extensively show the effect of the components residual strength. When Component 48 

has failed, the p-measures of semi-brittle systems with the two-state model are:

RDIp = 0.43 for Case 1 RDIp = 0.05 for Case 3

RDIp = 0.25 for Case 2 RDIp = 0.00 for Case 4

which are less than those with the three-state model. For TLP-B, when cylindrical 

components follow the bahaviour of Case 4, there is no residual strength, i.e. the failure 

of Component 48 results in the failure of the entire structure.

The total average pSyS is re-drawn against t| in Fig. 6.42. It can be seen that 

when the residual strength parameter is less than about 0.5, the change of pSyS to the 

parameter is negligibly small and its effect becomes significant as the parameter is closer 

to unity.

Table 6.4 Case Study of the Semi-brittle Systems

case ( E1, R )

P sys (% == 0 deg.)

three-state model two-state model

ductile ( 0.0 ,1.0 ) 6.77 6.77

SM* - case 1 (-0.05,0.925) 6.20 5.51

SM* - case 2 (-0.10,0.85 ) 5.93 4.19

SM* - case 3 (-0.20,0.70 ) 4.66 3.30

SM* - case 4 (-0.30,0.55 ) 4.21 3.14

SM* : semi-brittle system
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To illustrate the change of pSyS to the post-ultimate behaviour for a discrete 

structure the plane truss structure shown in Fig. 6 . 4 3  by Melchers and T a n g [ 7 2 ]  j s  

selected. They used the three-state model in Fig. 6 . 4 3  (b) for the non-linear behaviour of 

a member. Their results are illustrated in Table 6.6 using the present notations.

Case 3 is ductile behaviour and Case 10 brittle behaviour. The difference between 

two extreme cases is about 18%. The truss structure shows less change of pSyS to T| and 

the post-ultimate slope than the present TLP model.

As an another example of discrete structure, the two-dimensional tower model 

(fixed platform model) of Chan and M e l c h e r s ^ ]  is selected, as shown in Fig. 6.45. The 

model was modified from the spatial truss tower studied by B j e r a g e r [ 2 1 4 ] ,  They 

assumed that the member behaviour was described by the two-state model [Fig. 6.37(a)] 

and the wave was a sinusoidal pattern of which the length was 350 m. The wave height
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was the only uncertain parameter. They carried out a system reliability analysis for the 

model by varying the wave position relative to the structure [designated 0 in Fig. 6.45]. 

Table 6.7 shows their results [refer to the reference for numerical data about wave loads 

and member resistance]. It is evident that the unloading effect of a non-ductile system is 

significant for this structure in such a way that from ductile system to brittle system, 

bounds of pSyS is lowered by about 32% and 40%.

R x = 6 0 ,  R 2  =  6 ,  R 3  =  3 2 ,  R 4  =  1 4 , R 5  =  1 0 , =  2 0

0 6  =  1 2 , Q 5  =  4  V R  =  0 .1 5 ,  V Q l  =  0 .3  V q 2  =  0 .2

Fig. 6.43 Two-degree Redundant Truss[72]

1.0

f1.0 e

Fig. 6.44 Post-Ultimate
Behaviour Model of 
Melcherst72]

Table 6.6 System Bounds for Non-linear Members of Truss M o d e l[72].

case E ' bounds for pSyS case E ’ bounds for pSyS

1 0.2 1.0 3.78 - 3.83 6 0.1 0.75 3.31 - 3.37
2 0.1 1.0 3.66 - 3.76 7 0.0 0.75 2.65 - 2.73
3 0.0 1.0 3.08 - 3.10 8 -0.1 0.75 2.50 - 2.62
4 -0.1 1.0 2.92 - 2.99 9 0.0 0.5 2.53 - 2.55
5 -0.2 1.0 2.74 - 2.81 10 0.0 0.0 2.54 - 2.54
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Fig. 6.45 Two-dimensional Truss Tower

Table 6.7 Bounds of PSyS 

: Truss Tower

B Bounds of PSyS

1.0 1.49 1.47

0.9 1.14 1.00

0.75 1.05 0.86

0.5 1.03 0.86

0.0 1.02 0.88

From the results of the present study and others, it was shown that changing the 

component behaviour from ductile to semi-brittle or brittle has a significant effect on the 

structural system reliability and residual strength of the TLP. The significant influence of 

the post-ultimate behaviour on system safety can also be seen from the works about 

discrete structures as illustrated.

At present there are no similar result for continuous structures. But the present 

findings confirm that the post-ultimate behaviour of failed components give much 

influence upon the system safety and upon residual strength of a structural system, 

continuous or discrete, and should be taken into account in assessing the system safety. 

This implies the necessity and the importance of realistic component behaviour 

modelling.

6.5 Discussion

In this Chapter a sensitivity study for TLP structural systems has been
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investigated by placing emphasis on investigating the influence of stochastic parameters 

of the important design variables in strength and loading, say mean and COV, on system 

safety as well as component safety: the strength modelling parameter (X^), geometric 

properties (R and t of cylindrical component), material property (gy) and load effects. 

The post-ultimate behaviour of failed components on system safety level has also been 

investigated.

The strength modelling parameter (or error), represented by its mean bias, 

Xm  and the coefficient of variation (modelling uncertainty), VxM was found to have 

much influence on the system reliability and the component reliability (PSyS and Pcomp)- 

The main reason for this is due to its important position within the safety margin equation 

(2.103) and, hence, its effect upon strength and safety. It was shown that the modelling 

uncertainty (VxM) is much more influential not only on the system reliability but also on 

the component reliability than the mean bias (XM).

Apart from the effect of the strength modelling parameter on pSyS and Pcomp the 

modified safety margin equation given as Eq.(2.103) can flexibly allow the different 

strength models in system reliability assessment. In the extreme case, when any particular 

strength model has been developed based on the lower bound of strength, X ^  naturally 

becomes much greater than unity [mean bias is the ratio of actual strength to predicted 

strength, see Eq.(2.97)]. Hence, the failure surface is much shifted away from the 

original one [see Fig. 2.4] and, consequently, a higher pSyS and Pcomp can be obtained 

under the same load effects. In the opposite extreme case vice versa. But as seen from the 

results in Section 6.2.1, when Vvw has a low value, say, less than about 7.5%, there is 

no change of pSyS to Xj^. As recommended in references [119] and [163], in order to 

achieve the economic benefit in the design VXm should, therefore, be kept as low as 

possible with the mean bias being kept close to unity from both the systems side and 

from the components side.

From the results in Section 6.2.2, it was found that R and t were more influential 

on resistance and safety than o Y. But, as described there, this may be due to the fact that
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since the same COV values were given for R and t, their effect on strength and safety was 

perhaps more reflected in the form of combined action than the effect of COV of Gy. 

Pcomp was shown to be less sensitive to change in COV's of R and t than psys.

With regard to the influence of three types of load effects on safety, say, static, 

dynamic and quasi-static load effects, from the results in Section 6.3 it was shown that 

static load effect (both its mean bias and COV) was most influential on the system 

reliability index as well as component reliability index followed by the dynamic load 

effect. Quasi-static component was found to be relatively less influential than the other 

two components. This may be due to the greater magnitude of static and dynamic 

component acting on components than the magnitude of quasi-static component. 

Neglecting the wave drifting induced force may be another reason. But it may not have 

much influence on safety. Considering that, in practice, dynamic component the more 

degree of uncertainty than static component, dynamic component can have more influence 

upon safety than static component. This implies that COVs of load effects must be an 

important factor. The effect of quasi-static component on Psys seemed to be 

overwhelmed by static and dynamic components from the system's point of view 

although quasi-static load effect of any particular component can be greater than static or 

dynamic load effects.

As is expected, the post-ultimate behaviour of failed components, which was 

characterised by post-ultimate slope (E‘) and residual strength (rj), very much affects the 

safety level and residual strength of a structural system. It may have more influence on 

the safety of a structural system than the strength modelling parameter and loading 

variables. It can, therefore, be said that the post-ultimate behaviour of failed components 

should be accounted for in assessing the system safety and residual strength with a more 

refined and realistic model.

Residual strength of a structural system depends on several factors, such as non­

linear behaviour of a component, especially the post-ultimate behaviour, structural 

configuration, loading types acting on a structure, etc. Component behaviour itself
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depends on factors such as component type, type of loading acting on a component, 

component strength, etc. With regard to its effects on safety of structures with different 

component types, from the test experiences, the ring- and stringer-stiffened cylinder 

shows closer to the ductile behaviour and less sensitive to the initial imperfections than 

the ring stiffened cylinder. The behaviour of the stringer-stiffened cylinder may be 

modelled as the three-state model [Fig. 6.38(a)], whereas the behaviour of ring-stiffened 

cylinder (and unstiffened cylinder) may be modelled as the two-state model [Fig. 6.37(a)] 

or Melchers1 model [Fig. 6.44]. Therefore, the actual TLP structure will be expected to 

be more efficient and reliable when using the ring- and stringer-stiffened cylinder rather 

than the ring-stiffened cylinder from the system's point of view.

As far as the present sensitivity results are concerned, because of the influence of 

resistance variables upon the safety, psys as well as Pcomp, the strength modelling 

parameter is an important resistance variable affecting the system resistance and, 

consequently, the safety level. This is mainly due to its position within the safety margin 

[Eq.(2.103)] as mentioned before. Its effect was shown to be greater than those of 

geometric and material properties. The modelling uncertainty, VxM, rather than the mean 

bias, Xm , is more influential on both psys and Pcomp.

The post-ultimate behaviour seems to be more influential and important than the 

strength modelling parameter from the systems side. It must be the most important 

resistance variable and a key factor to determine the residual strength of a structural 

system. Hence, it should be considered in the analysis using a more refined and realistic 

model and a more extensive study, including model and/or full scale test about this area, 

is required. Loading variables have a great influence on the reliability because of the 

uncertainties with these variables. From this point it can be drawn that dynamic load 

effect may be most influential.

The sensitivity study shown in this chapter is useful in assessing the parameters 

perturbation effects on the component and system reliability index, and the results, such 

as the relation of the reliability index to variables and sensitivity factors, can provide
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useful information about the relative importance of design variables in the context of 

reliability-based design. Finally, in order to provide the designer with a useful criteria or 

information as an aid to decision making in the design stage, it can be recommended that 

certain type of sensitivity studies, as illustrated in this chapter, must be useful to 

intelligently modify the structural design.



CHAPTER 7 RELIABILITY-BASED DESIGN

7.1 Design Code Format

In reliability-based design we seek to obtain uniform or consistent reliabilities 

over the range of potential utilisation. In conventional design practice there is a single

approach it is possible to derive partial safety factors (PSFs) for use in safety check

little, if any, reference to statistical properties beyond those necessary for defining the 

more important variables such as nominal yield stress etc. This safety checking format 

with PSFs can allow for flexibility since they can reflect the overall uncertainties in 

loading and strength as well as the overall target reliability index.

In its simplest form the safety check equation can be written as:

which essentially relate nominal or characteristic values of extreme load effects and 

ultimate strength, R^, of the structural component. The Ys are the partial safety factors 

which reflect the uncertainties in load, y^, in as built strength, ym, and also the nature of 

the structure and the seriousness of the consequences of failure, yc, which is linked to 

socio-economic factors.

API Recommended Practice which dominates the design of offshore platforms in 

the U.S. uses the Load and Resistance Factor Design (LRFD) format^ 1QI. In this format 

a safety check equation is of the form:

safety factor in the safety check equation whereas, on the basis of the Level n  reliability

equations. This provides the basis of the Level I method for use in design which makes

(7.1)
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(7.2)

where Rj is the nominal strength, the nominal loading, <j>̂ respective strength factor of 

the nominal loading and y^ load factor. System factor, <j)Sy S is also added in the partial 

safety equation to represent the system consequences of a component failure and would 

be greater than unity. However, in the present LRFD format ([>Sy S is taken as unity.

The actual form of safety check equation adopted by the TLP RCC in the model 

code for structural design of TLPst^] js somewhat more complex than Eqs.(7.1) and

(7.2) and checking for component safety is generally done with a three term interaction 

equation.

where subscripts s, q and d refer to static, quasi-static and dynamic load effect 

components and B is a systematic modelling or bias factor for the dynamic component. 

Subscripts i = 1, 2, and 3 refer to the equivalent or resolved axial, shear and pressure 

load and resistance effects, ys, Yq and y^ are partial safety factors for load effects and are 

greater than unity. ym accounts for uncertainties in the material properties, the ŷ 's are 

modelling uncertainties for the three strength components, and ji is an interaction 

exponent for each of these three strength components. <j)Sy S is the system factor normally 

less than unity but which is taken as unity for the present TLP model code. yc for socio­

economic consequences of failure has been omitted because the more rational approach of 

selecting the target reliability index from a minimisation of total costs is preferred. This in 

turn would lead to an adjustment of all the PSFst^6]>

(7.3)
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7.2 Significance for Design

7.2.1 Redundancy Considerations

An efficient structure is one which does not fail, has adequate but not excessive 

safety and which minimises cost. Inevitably cost is very closely linked to safety factors 

(reliability index), especially in structures whose scantlings are governed by ultimate 

strength considerations. So aiming at the lower safety envelope of accepted past designs 

has considerable merit. Reliability-based design is aimed at achieving designs in which 

reliability is uniformly distributed. But the present component reliability-based design 

approach cannot always give uniform distribution of reliability over the entire structure 

and in some cases the design can be such that failure of any single component causes the 

structure to catastrophically collapse as a total system. This may be due to lack of 

redundancy and lack of knowledge about the re-distribution of load effects after failure of 

any component. These facts have perhaps stimulated the need to introduce system 

reliability into design.

System performance has been recognised as a part of structural design thinking. 

A major benefit from incorporating the system capacity into design is the additional 

structural reserve strength often found due to design symmetry, multiple load conditions, 

fabrication requirements and design approximations. These additional margins should be 

examined in assessing the reliability against extreme load and accident conditions.

Specifications in recent years recommend the designer to provide redundancy. 

Additional members can also raise the degree of structural redundancy. Hence, in the 

context of system reliability-based design, one should consider structural redundancy 

characterised as by reserve strength and residual strength.

For ultimate strength collapse a four legged jacket structure which has horizontal 

chords and single diagonal or K bracings is statically determinate and has very little 

residual strength when a bracing member is severely damaged or removed. The only 

source of residual strength is from secondary bending at the ends of the remaining braces
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or the portal action of the vertical members. X braced systems are much more redundant 

and have high reserve strengths. Their residual strengths will generally also be high but 

this will be depend on the column slenderness of the compression braces and will be low 

for slender columns. Multi-leg systems will be stronger still in those planes where three 

or more legs occur. Then, the choice as to whether the diagonal braces are all oriented in 

the same direction or are opposed at their connections with the legs has to be made[36] 

the former generally being preferred if the worst environmental loading is likely to come 

from one predominant direction. If the braces are then designed to be mostly in tension 

then their fatigue design at node joints would be more important than if they are mostly in 

compression. In the latter case low column slenderness and high punching static strength 

at the node are desirable. Reserve strength ratios (n) in most fixed jacket structures are 

sometimes less than 2.0 but probably average around 2.5. A reserve strength index for 

well-designed floating offshore structures is recommended to be about 2.0[91].

7.2.2 Relation between Safety and Redundancy

The system factor (often called system partial safety factor), $SyS, has close 

correlation with structural redundancy because the redundancy should play a major role in 

choosing the value of <j)Sy S and can represent the system consequences of a component or 

member failure.

As M osestll’HO] and F a u l k n e r ^ *  136] stated, the system factor should perhaps 

be incorporated in the safety check equation and should be examined alongside the more 

logical (in principle) use of a system reliability index, pSyS , to derive all the PSFs as the 

best way of including safety and redundancy considerations in the design process. When 

using the safety check equation given as Eq.(7.2), <J)Sy S is normally greater than unity 

while, when using the safety check equation given as Eq.(7.3), <j)Sy S is normally less 

than unity which is, however, taken as unity in the present codes in use.

Faulkner[136] proposed a simple procedure of calculating the system factor, 

^sys’ assumption that the distributions of component strength (or resistance) and 

lifetime load effect are normal. With this assumption the reliability index is defined in
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terms of the central safety factor as Eq.(2.10).

When reliability index, p, is given, the central safety factor is obtained by solving 

Eq.(2.10) as:

e = f ( p , v R, v Q) = .
i  + -v /i -  ( i  -  P2v r ) ( l -  P2Vq) 

( i - p 2v R)
(7.4)

When the sign before the root is negative, Eq.(7.4) gives a trivial solution. From 

Eq.(7.4) the central safety factor for component, 0comp, and system, 0SyS, is obtained 

as given pcomp and Psys*

®comp = f( Pcomp- VRcomp’ VQ } for comPonent
e sys = f( Psys- v Rsys- VQ ) for system (7.5)

in which Pcomp and are component reliability index and COV of component

resistance, and pSyS and Vrs system reliability index and COV of system resistance. 

Then, assuming the mean values are characteristic values, it follows that an acceptable 

multiplicative resistance partial safety factor, (J)R, is defined by:

*

<5>R = ^  = 1 -  P “ R V R ™

where R* is the "design point" value for maximum probability of failure and a R is the 

representative sensitivity parameter given as:



If the central safety factor for system, 0 S y S ,  is defined as being n times that for a

component, i.e., 0SyS = n 0comp , the system reliability index, pSyS , can be evaluated

from Eq.(2.10) with replacing 0 by 0 S y S - The representative sensitivity parameter,

a R , and resistance partial safety factor, <j)R , can be obtained from Eqs.(7.7) and 
s y s  s y s

(7.6), respectively. An approximation to the system factor, <t>sys’ t0 use a design 

based on component failure can be estimated from:

For the ranges of n = 1.05 to 3.0 and Pcomp = 0.1 to 5.0, when typical values of

of Pcomp and n to pSyS and <j)SyS, respectively.

The total load factor, 7^, is defined as the ratio of the system collapse load to the 

design load. Let Fcomp be the ratio of a component failure load to the design load. The 

parameter, n, is defined as the ratio of the mean system collapse load to the mean 

component collapse load. Thus:

and n is referred to as the reserve strength ratio for system (or reserve strength factor).

Consider the case when R and Q are lognormal. Then, In R and In Q are normal

c o m p c o m p  c o m p

(7.8)

Vq = 0.2 and VRcomp = = 0.15 are assumed, Figs. 7.1 and 7.2 show the relation

(7.9)n
F

c o m p

with means, XR and Xq , and standard deviations, £R and £q, given byi~>,45]:

V  -  ln ®‘ 2 ’

Cr = In (1 + V^) ,

XQ =

C* = l n ( l  + V*) (7.10)
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The safety margin, Z = R -  Q, is equivalent to a non-dimensional form:

z = | - i = e - i  (7.11)

where 0 is the central safety factor and also a lognormal variate with parameters:

X = X ^ —X^  = In  2--------  (7.12.a)
9  K  Q  , » 2

r ^  l
2

1+ V Q

^  = Cr + Cq = In (1 + v | )  (1+ V^) (7.12.b)

Therefore, In 0 is also normal with mean, A.e , and standard deviation, £0. Then, the 

corresponding reliability index to Eq.(7.11) is given by:

X
6 =  - 2. (7.13)

%

Assume the same value of V R  and V q  for component and system as the case when R  and 

Q are normal. Then,

C e  = C e  ( 7 . i 4 . a )
s y s  c o m p

If the central safety factor for the system, 0SyS, is defined as n times that for a 

component, 0comp> as before, the parameter A,0 for system, XQ , is expressed from 

Eq.(7.12.a) as:
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a nfix  = In *2*------- =  In--------comP.

1 + V Q 1 + V Q

= Inn + X  (7.14.b)
0

c o m p

With Eqs.(7.14) Eq.(7.13) gives the system reliability index as:

X  Inn + X
3 = =------------ !£2EE = + 3 (7.15)
r s y s  T T L c o m p  v

0 0 ^0 
s y s  s y s

That is, pSyS is ( In n /  £e) greater than PComp- Eq.(7.15) is the relation between the 

reserve strength for system and component and system safety. From this equation the 

probabilististic measure of residual strength, RDIp, given by Eq.(2.13) can easily be 

derived as:

RDI = i? "  ■ (7.16)
^ 8  ^ c o r n p

This shows the relation between the residual strength and the reserve strength for system 

to component safety. RDIp is inversely proportional to component safety index.

In order to evaluate the system factor from Eq.(7.8), <J)SyS, Rcomp RSyS are 

assumed to have means of Ecomp ^ d  fisys ^ d  COV of V r , and Q is assumed to have 

mean of unity and COV of V q.

For the same ranges of n and Pcomp ^d with the same values of V r  and V q  as  

before Figs. 7.3 and 7.4 show the relation of n and Pcomp t0 Psys ^ d  <t>sys>
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respectively. Comparing Figs. 7.3 and 7.4 with Figs. 7.1 and 7.2, it can be seen that 

lognormal distributions of R and Q give higher pSyS and especially, <j>SyS than for normal 

distributions. Moreover <j)SyS has a very different tendency from that of <j)SyS for normal 

distributions such that <J)SyS increases as Pcomp increases with lognormal distributions, 

whereas it decreases when R and Q are normal. Within practical ranges of n = 1.5 to 3.0 

and and Pcomp °f 2.0 to 5.0 Table 7.1 illustrates pSyS and <j)SyS when R and Q are 

assumed normal and lognormal.

The above approximations have merit, because of their simplicity, that the relation 

of component and system safety to redundancy can easily be predicted for a structure in 

the initial design stage. However, the system factors should probably be determined from 

a more rigorous system analysis for the intact and/or a damaged model of the structure. 

One reflects the reserve strength, while the other the residual strength.
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Table 7.1 PSyS and ^sys Pcomp

(1) when R and Q are normal

Pcomp

n = 1.5 n = 2.0 n = 2.5 n = 3.0

Psys ^sys Psys ^sys Psys ^sys Psys ^sys

2.0 3.46 0.71 4.28 0.53 4.78 0.41 5.12 0.34
2.5 3.86 0.69 4.59 0.51 5.03 0.40 5.32 0.32

3.0 4.23 0.67 4.87 0.49 5.25 0.38 5.51 0.31
3.5 4.58 0.66 5.14 0.48 5.46 0.37 5.68 0.30
4.0 4.93 0.64 5.39 0.47 5.66 0.36 5.84 0.29
4.5 5.26 0.64 5.64 0.46 5.86 0.36 6.00 0.29
5.0 5.59 0.63 5.88 0.46 6.04 0.36 6.15 0.29

(2) when R and Q are lognormal

n = 1.5 n = 2.0 n = 2.5 n = 3.0

Pcomp
Psys ^sys Psys ^sys Psys ^sys Psys ^sys

2.0 3.64 0.89 4.80 0.84 5.70 0.82 6.43 0.80
2.5 4.14 0.90 5.30 0.86 6.20 0.83 6.93 0.82
3.0 4.64 0.92 5.80 0.88 6.70 0.85 7.43 0.84

3.5 5.14 0.93 6.30 0.89 7.20 0.87 7.93 0.86
4.0 5.64 0.94 6.80 0.91 7.70 0.89 8.43 0.88

4.5 6.14 0.96 7.30 0.93 8.20 0.91 8.93 0.90

5.0 6.64 0.98 7.80 0.95 8.70 0.94 9.43 0.93
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7.2.3 Acceptable Safety Levels

In design we should recognise that rational safety levels must pay some regard to 

the definition of safety as applied in judicial proceedings. This pertains to collapse of the 

overall structural system when the economic and human consequences become 

significant. Nevertheless by tradition and for convenience, specifications have to be 

prepared which deal with components, beams, columns, connections and so on. 

Recognising also that formal prescribed notional safety has very little if any correlation 

with actuarial safety for most structures the way would seem open to:

(a) Progressively lower component notional safety levels, especially as our 

knowledge of loading and response steadily improves.

(b) Introduce system safety in design on a consistent basis which recognises the 

hierarchical type of structure and components being considered, the degree of 

residual strength and reserve strength present, and a start should now be made to 

formalise in design codes.

(c) Develop a rational relation between component and system safety. A non- 

redundant structure would need a higher safety margin than a redundant one to 

achieve the same acceptable level of damage tolerance.

Of course it will always be important to ensure that with the lowering of component 

safety the probability of fatigue or overload damage in service is kept to an acceptable 

level mainly to reduce the need for repair costs. Nevertheless, from (a) there could be 

significant scope for cost and weight savings.

If one examines present practice, Table 7.2 attempts to give the present relation 

between average component safety indices and reserve strength ratio, n, beyond first 

component failure for a variety of steel structures^]., in which the present three TLPs 

are included. Some of the values are judgements to aid discussion. Pcomp of the present 

TLPs are taken as the averages for three wave directions. Calculation of their n is 

illustrated in Table 7.3.

It would seem that with the exception of Naval ships there is already a rough
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correlation between low Pcomp and high n (and even higher Xq*) and it would seem there 

is merit in pursuing such studies. They might lead ultimately, for example, to relations 

for use in designs asH9]:

Pcomp + n — (7.17)

In the discussion of reference [19] a lower value of 4.5 was suggested by Frieze for the 

right hand side, and certainly the inequality was suggested as an upper limit. From 

Eq.(7.5) or (7.15) we can obtain the reserve strength ratio, n, given that Pcomp and 

Psys* That is:

(1) when R and Q are normal, from Eq.(7.5)

f« W vR -V
n = --------   22EE------- (7.18)

f(P , V„ , V . )  
v r s y s  R  Q 7J s y s

function f  is evalusted from Eq.(7.4).

(2) when R and Q are lognormal, from Eq.(7.15) 

n = Exp[^0(PSyS —Pcomp)! (7.19)

When pSyS is 4.0 to 6.0, n values by Eq(7.18) and (7.19) are plotted against 

Pcomp 95 show11111 Pig* 7.5, in which the points corresponding to various structures of 

Table 7.2 and Eq.(7.17) are also included. Comparison of Eq.(7.19) to (7.18) shows 

that lognormal distributions of R and Q may give more realistic predictions for 

comparison with n than normal distributions especially for the higher pSyS values. By 

reference to Eq.(7.17) in Fig. 7.5 semi-submersibles and the North Sea TLP seem to be 

overdesigned. For floating offshore structures, if the allowable pSyS (P°SyS) is 

provisionally chosen to be not greater than 6 .0 , well-designed structures possibly lie
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within the region determined the inequality equation, (7.17) and the following equation 

derived from Eq.(7.19):

8 + —  < R° (= say 6.0) (7.20)r comp *> *sys '  J v '

The thick solid line in Fig. 7.5 represents the boundary determined by Eqs.(7.17) and

(7.20).

In order to show the relation of component safety to residual strength, the 

probabilistic measure, RDIp, given by Eq.(7.16) is plotted against PCOmp Fig- 7.6 

taking typical n value of 1.5 and 1.7 with the positions of various steel structures taken 

from Table 7.2. From the figure offshore structures possess higher residual strength 

indices than naval ships, bridges and merchant ships. Nevertheless this latter group give 

good service performance and therefore the concept of residual strength may be less 

meaningful in continuous structures than for discrete ones. It is notable that the predicted 

RDIp’s of three TLPs by Eq.(7.16), say 0.38, 0.53 and 0.58 for the Hutton TLP, TLP- 

A and TLP-B, respectively, are close to the average values found in Table 5.32, which 

were derived from the results of a system reliability analysis. Of course, RDIp is very 

dependent upon post-ultimate behaviour (as was found in Section 6.4) which needs to be 

better defined and validated for continuous structures. The above illustrations and 

discussions are to show the relation of component and system reliability to redundancy.

Table 7.4 is an attempt to show the system factor, <J>SyS, for three TLP models 

which are derived when VR = 0.15 and V q  = 0.20, and when VR =VxM and V q  has 

been obtained using FORM with the safety margin equations of the identified failure 

modes [see Section 5.4.1 to 5.4.3]. In the latter case it can be seen that <j>Sy S is decreased 

by about 0.1 compared to the former case. From a careful consideration of this the author 

would propose that <|>Sy S of 0.85 or 0.90 might be used for the design of the design of 

TLP structures.
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The use of n, the system strength to component strength ratio, is preferred rather 

than the more popular reserve strength factor, >.T[19]. This is because Xj  inevitably 

contains the safety factor of the most critical component within it and therefore would 

cloud the "high - low" relationship which Table 7.2 seems to establish. The choice of 

pSys would then follows naturally from such studies. Alternatively, a system factor, 

^sys» cou^  be aPplied in component design as recommended by M osest^’^^3  and by
Faulkner[8>136]

The inequality sign in Eqs.(7.17) and (7.19) recognises that some acceptable 

safety levels may very well be lower than these limits, and also the passage of time would 

naturally require safety levels to reduce in a rational code. Moreover, it recognises that 

perhaps the most rational safety level should really be chosen on economic grounds 

unless massive human life were really at risk - as they are in aircraft.

Table 7.2 Component Safety and Subsequent System Redundancy 

(average values only)

Structure Component category

P

System
n

category

Fixed Platforms 2.3 low 1.7 high

Buildings 3.0 - 3.5 average 1.5 average

Bridges 3.7 average <1.2 low

4.8 high <1.2 low

Merchant Ships 3.5 - 4.0 average <1.2 low

Semi-Submersibles >4.0 high >1.5 average

North Sea TLP >4.5 high 1.5 average

Naval Ships 2.2 low <1.2 low

Present TLPs 
TLP-A 
TLP-B

3.7 1
3.7 J

average 1.6] 
1.7 ;

average 
to high
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Table 7.3 Illustration of Calculating Reserve Strength Ratio, n, for Three TLP Models

X

Hutton TLP TLP-A TLP-B

A/p Fcomp n A/p Fcomp n A/p Fcomp n

00 2.13 1.32 1.61 2.89 1.18 2.45 2.56 1.63 1.57

1.87 1.32 1.42 2.43 1.18 2.06 3.55 1.63 2.18

2.29 1.32 1.73 2.67 1.18 2.26 2.93 1.63 1.80

2.15 1.32 1.63 2.27 1.18 1.92 3.56 1.63 2.18

45° 3.07 2.02 1.52 2.32 2.08 1.12 2.62 1.61 1.63

2.53 2.02 1.25 2.13 2.08 1.02 2.82 1.61 1.75

4.13 2.02 2.04 3.17 2.08 1.52 2.72 1.61 1.69

2.48 2.02 1.23 3.39 2.08 1.63 3.02 1.61 1.88

90° 2.63 1.99 1.32 3.22 2.26 1.42 2.21 2.10 1.10

2.38 1.99 1.20 2.34 2.26 1.04 2.69 2.10 1.34

2.48 1.99 1.25 4.05 2.26 1.79 2.61 2.10 1.30

3.48 1.99 1.75 3.00 2.26 1.33 4.23 2.10 2.10

average n: 1.50 1.63 1.71
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Table 7.4 (j)SyS of Three TLP Models

TLP model VR = 0.15, VQ = 0.20 Vr =VXm, Vq  by FORM

Hutton TLP 0.95 0.86

TLP-A 0.92 0.82

TLP-B 0.91 0.81

7.3 Reliability-Based Optimal Design

In the context of reliability-based structural design, the optimum design is to 

distribute the material within the entire structure to obtain a harmonised design having the 

minimum weight or cost within a prescribed acceptable safety level. This is not the place 

to go into the detail of reliability-based optimal design. A general idea may be helpful. 

Development of models for reliability-based optimisation apparently initiated from 

F o r s e l l [ 2 6 ]  who formulated the optimisation problem as minimisation of total cost. Hilton 

and F e i g e n [ 2 1 5 ]  were foe first to propose a reliability-based weight minimisation 

formulation. During the last two decades reliability-based optimum design has been 

developed in conjunction with the classical deterministic optimisation formulation. It has 

been proposed for some time that a more rational criterion for structural design is that 

safety be represented by reliability or alternatively by the probability of failure and that the 

reliability constraints should be included in re-design and optimisation procedure to 

achieve lower weight and/or cost [21-28,112,137] jn fojs sense the optimisation 

problem is probabilistic and not deterministic.

Deterministic optimum design procedures have enjoyed their popularity. But In 

some cases, with regard to the safety of structure, the optimum design may not be a safe 

one. For example, Das and F r ie z e !  * *4] found that designs optimised on a weight basis 

were not the most reliable. They compared the reliabilities of stringer-stiffened cylinders
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as designed based on reliability and with deterministically optimised designs on a weight 

basis. Table 7.5 illustrates their results. It is shown that the minimum weight designs are 

much less reliable than the reliability-based designs.

The general idea of optimisation is to minimise (or maximise) the objective 

function subjected to reliability (or probability of failure) constraints. The possible 

objective function may be structural weight, total cost, in which the cost due to failure is 

often included, probability of unserviceability and utility function. Structural weight or 

total cost is usually taken as an objective function just as for deterministic optimisation. 

For the sake of economy of any particular structure, the total cost is naturally more 

preferable as the objective in the optimisation formulation than structural weight, because 

this can be implicitly accounted for in the cost optimisation procedure. The total cost may 

include the initial construction cost, maintenance cost and the cost arising from the 

consequence of structural failure. For this purpose, several formulation procedures have 

been p r o p o s e d ^ , 2 6 , 1 3 8 ]  fo recent years, system reliability methods have been applied 

to the optimum design of the structural s y s t e m t ^ l - 3 3 ]  to finding the optimum 

strategy of inspection and repair of a s t r u c t u r e ^  0 - 3 2 ]  Although its application is at the 

early developing stage and still has many difficulties, it has potential applications, 

especially in the offshore engineering field.

Table 7.5 Comparison of Reliability Index Between Reliability-Based Design 

and DeterministicMinimum Weight D e s i g n  [114] .  pCQmp [Pf]

COV of axial compressive force 10% 20%

reliability-based design (non-optimum) 2.62 [4.4 x 10-3] 1.75 [4.0 x 10-2]

minimum weight design 1.84 [3.8 x 10-2) 1.18 [0.119]
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In the reliability-based optimisation, the design variables to be optimised are:

- size of members, e.g., for cylindrical components, cylinder radius (R) and 

thickness (t), stiffener scantlings (hw, tw,bf, tf), number of stiffeners (N), 

spacing of ring frames (L)

- geometric layout of component

- material to be used

- structural topology

The design variables are herein signified as X j , i = 1 to n. Consider the optimisation 

problem to minimise the total cost subject to reliability constraints and to design 

requirements specified in any particular design code as sub-constraints. The problem is:

Find X[ such that minimise the total cost given by:

In Eq.(7.21), G f is the expected total cost in present worth terms, C0 the initial cost 

(e.g., sum of all costs associated with design and construction), Cf the expected cost of 

failure in which inspection and repair cost, re-construction cost, compensation cost, cost 

due to social consequences, etc. and Pf is the risk, i.e. the probability of failure in 

appropriate annual or life time values. In Eq.(7.22) p is the reliability index to be 

evaluated and may be a component reliability index or system reliability index, and p° is 

its allowable value, i.e. target component reliability index or some target system reliability

f(X0 = CT = Co(Xi) + Cf * Pf(Xi) (7.21)

subject to reliability constraints:

P < po (7.22)

and

(7.23)
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index. The total cost and reliability index are functions of design variables. In Eq.(7.23), 

X ij and Xj u are lower and upper bounds of the design variables specified in a design 

code or by the designer.

A  sensitivity study of the design v a r i a b l e s t ^ 5 ]  selection of the target 

reliability index[136] for the component or system level, must precede the optimisation 

procedure so the important variables to optimise are identified.

An illustration of total cost as a function of Pf is shown in Fig. 7.7. Increased 

initial cost results in a decreased risk and a reduction in the cost of failure, Cf * Pf in 

Eq.(7.21), and vice versa. An optimum design is reached when an increase of initial cost 

is balanced by a reduction in expected cost of failure times the probability of failure.

Cost T O T A L  C O S T  ( C f )

I N I T I A L  C O S T  ( C o )

F A I L U R E  C O S T  ( C f )

O P T I M U M  P.

Fig. 7.7 Total Cost, Initial Cost and Failure Cost vs Risk

Reliability-based optimisation studies using Eqs. (7.21) to (7.23) are generally a 

constrained non-linear problems. Since the design goal is to achieve the minimum total 

cost (or weight) and maximum safety, a more general problem can be the multi-objective 

optimisation oneP9,138,216] with multiple constraints, in which a preference solution, 

e.g., to maximise the decision makers utilities, is chosen from the so-called Pareto 

optimum set. This can also include design requirements specified in any particular design 

code as constraints.
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The deterministic optimisation methods which are linear and non-linear 

programming t e c h n i q u e s [ 2 1 7 - 2 1 9 ]  ^  ajso g e n e r a p y  suitable for solving reliability-based 

optimisation problems including constrained formulation problems. Most experience has 

been gained using the method of feasible directions. This method solves the constrained 

problem as a sequence of useable feasible steps in the design spaced 37,220], jt may also 

be effectively solved by using Sequential Linear Programming (SLP). SLP uses a (Linear 

Programming (LP) algorithm sequentially in such a way that in the limit the successive 

solutions of the LP problems converge with those of non-linear p r o g r a m m i n g ! ^ ] .  The 

original programming problem can be reduced to the linearised problem by linearising the 

non-linear objective function and constraints via the first-order Taylor series expansion. 

Many other solution methods, such as penalty function method, dynamic programming 

m e t h o d [ 2 0 ]  and stochastic programming m e t h o d ^ ^ l ]  have been used for solving 

reliability-based optimisation problems. Recently more sophisticated methods (e.g., 

generalised reduced gradient method, robust feasible direction method) have been used. 

More discussion about solution methods can be found in various text books, e.g. 

references [217] to[219].

The following algorithmic procedure based on the method of feasible directions 

can be used to obtain the optimum solution with reliability constraints [see Fig. 7.8].

Step 1 Specify the target reliability index, p°, and select the design variables and set

their initial values, X0j. The initial values of design variables can be 

determined according to the design code in use for the design of the structure 

considered under the given structural configuration and the design 

environmental conditions. A reliability-based design code would 

be preferred.

Step 2 Change the design variables in the objective function gradient direction

Step 3 Evaluate the reliability index, p (components or systems level), and

check if the reliability constraint is satisfied. If yes, go to Step 4, 

otherwise go back to Step 2.
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Step 4 Check that the design requirements of the code are satisfied. If satisfied, go to 

Step 5, otherwise, change the design variables to satisfy these constraints and 

go to Step 2

Steps 2 to 4 are to be continued until reliability constraints and design requirements are 

satisfied.

Step 5 A move is made in the direction which continues to reduce the objective 

function without violating the reliability constraints, i.e. find a vector of 

feasible direction, {s} for design variables such that it satisfies 

the following relations:

V{R(Xj)}T {s} > 0 V{f(Xi)}T {sj < 0

where V (R(Xj)} is the normal vector to the reliability constraint, V{f(Xj)} 

the normal vector to the object function and[s) the vector of direction 

in which the move should be made.

Step 6 Find a feasible point, X{ such that X[ = XqJ + a  Sj in which a  is a constant

to be determined to satisfy IlXj -  X0ill > e. e is the prescribed small number.

Step 7 Check convergence of the solution. If the solution satisfies

V f 
IV fl

< e

then the point is optimum, otherwise go to Step 2.

This procedure continues until the optimum is reached, or when the movement in 

the feasible directions produces no decrease in the objective function. Because the 

optimum point may be a local minimum, the design procedure should be started from a 

number of different initial points. A high degree of confidence in the optimum solution is 

achieved when (nearly) the same design point, or at least points with almost equal 

objective function, are determined from several starting points. The above procedure is
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shown in Fig. 7.9.

A more ambitious task is to incorporate structural redundancy with system 

reliability-based design, the reserve strength can be reflected by the system reliability 

index, pSyS of the structure in the intact condition, and the residual strength by the 

residual system reliability index, pSyS R, of the structure in the damaged condition. 

Psyg r  is the system reliability index given that any critical component has failed [see text 

at Eq.(2.12)]. In general, the system reliability-based optimisation problem is to find 

design variables to minimise the total costs given by Eq.(7.21) or minimum structural 

weight subject to the reliability constraints. The constraints might well include

p > p°
' c o m p  ' c o m p

P > P°
' s y s  ' s y s

Psys,R > C , R  <7-24)

where P°comp» P°sys ^  P°sys,R specified target reliability of component and 

of the system when the structure is intact and damaged. Solving this problem must be 

very complicated for practical structures.

CONTOURS OF CONSTANT 
WEIGHT

INITIAL POINT

UNACCEPTABLE
DESIGN
REGION

(PTIMUM

RELIABILITY i P t )  
~  CONSTRAINT

Fig. 7.8 Design Space with Reliability Constraint
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Change X i: Xi = ^  +A Xoi

Evaluate p ( X i )

Specify P 

Select Xi andsetXoi

N O
 ►

VfN O

IVfl

Y E S

STOP

Calculate R and f

Find a feasible direction, {s}

Change design variables:
Xi + a  s i as X i for the next iteration

Fig. 7.9 Procedure of Reliability-Based Optimisation

Design requirements 
'-'-^are satisfied
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7.4 In-service Reassessment

Another application of the system reliability methods is to find the optimum 

inspection and maintenance strategy[31-33]t por offshore platforms it is important to 

make in-place inspections so that structural damage or structural degradation is repaired to 

ensure safety and thereby not only protect investment but also prevent pollution of the 

environment and loss of life. Inspection and maintenance strategies used today are based 

on experience rather than rationality. Still this does not imply that they are not adequate. 

However, it should be noted that the total cost for inspection and repair is generally high 

and must therefore be maintained as an economic level. Thus, it seems rational to try to 

use the recently developed system reliability methods to improve these strategies.

The strategies are the non-prescriptive engineering approach to the re-qualification 

of existing platforms and in recent years have been incorporated with the deterministic 

optimum theories. The objective is to find the optimum strategy such that inspection and 

repair costs are minimum subjected to the reliability constraints. The strategy is 

sometimes referred to as AIM (Assessment, Inspection and M a i n t e n a n c e ) ^ ] .  Let the 

cost of inspection be Q  and the cost of repair C r . Then, the total costs for inspection and 

repair is simply:

Q r = Q  + Cr (7.25)

The cost Cj depends on the quality and number of the inspections. The optimisation 

variables are the time interval between inspections and the quality of the inspections and 

repairs.

The inspection cost is usually both very expensive and difficult to implement. It is 

important to stress that it is usually much better to design the platform in such a way that 

sufficient safety, but not excessive, is ensured during the lifetime of the structure than to 

rely on repair when needed. Therefore, a more general problem of system reliability- 

based optimisation is to find the design which minimises the expected total cost which
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includes all costs during the lifetime of the structure subjected to system and component 

reliability constraints. Recently, an attempt at this was made of by Spresen and Thoft- 

Christensen[31].

7.4 Discussion

The simple procedures introduced in Section 7.1 may be helpful to roughly 

predict the system safety level and structural reserve and residual strengths, and also to 

choose an acceptable safety level in the design stage. Levels of safety vary quite widely 

depending on structural type and behaviour of component in a structure, especially on the 

post-ultimate behaviour of a failed component. It has been suggested that they may 

sensibly be linked to the reserve strength ratio for the system, n, and component strength, 

as given by Eqs.(7.17) and (7.20). It should be pointed out that first generation semi- 

submersibles and TLP structures would appear to be significantly overdesigned in the 

light of the present studies [see Fig. 7.5]. Therefore, acceptable safety levels may be 

lowered than those used in present design, and this would also appear to be justified in 

the light of service experience.

Reliability-based optimisation is still at an early development stage because of its 

complex nature in applying it to practical problems. The difficulties are:

[1] As is well-known, there are various methods for handling the uncertainties in 

similar structural design situations, e.g. first-order second moment methods, 

fiill-distribution methods and combined methods of these two. Even the reliability 

index to be evaluated differs in various methods [see references in Section 1.2.2]. 

Lacking a single method, individuals are likely to adopt separate strategies for 

handling the uncertainties in their particular problems. This affords the possibility 

of non-uniform reliability levels in a similar structural design situation [26].

[2] There are diverging options on many basic issues, from the very definition of 

reliability-based optimisation, including the definition of the optimum solution, 

the objective function and the constraints, to its application in structural design
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practice^].

Particular difficulties, with regard to the system-based design are:

[3] it is not an overstatement to say that any single method for system reliability 

analysis cannot claim to have a significant advantage over others and the 

identified important failure modes and the evaluated system reliability level can 

differ for various algorithms and can be far from "true" solutions for practical 

structures.

[4] There are many factors affecting the system reliability whose effects are not yet 

clearly known to us. As a typical example, the post-ultimate behaviour including 

the residual strength characteristics of component under the multiple load effects.

[5] System reliability analysis itself is computationally very expensive work.

[6] Selecting the target system reliability indices, PSyS° and PSySjR°, must precede 

system reliability-based optimum design.

Hence, it is not likely that a fully automatic optimum design procedure can yet be 

obtained. However, these difficulties do not always lie on the pessimistic side. System 

reliability methods have matured and efforts to apply them to the design practice have 

already been started in such a way that the system factor (system partial safety factor) 

which could be added in the safety check format, as can be found in API LRFD (Load 

and Resistance Factor Design) format, Eq.(7.2), and TLP RCC (Rule Case Committee) 

format, Eq.(7.3). This system factor, <j)SyS can and should be obtained through the 

system reliability analysis. It may differ depending on the structure, component type, 

load combination, etc. But, it is taken as unity in the present code formats. It is 

advantageous to have an interactive system so that it is possible manually to make 

decisions and thereby to intelligently modify the design. It seems to be reasonable to use 

expert system techniques for this purpose.

The use of system reliability methods in decision making for existing platforms is 

in progress. Such decisions may concern extended life time, planning for inspection, 

repair or demolition. Achieving an optimal strategy for inspection and repair based on
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system reliability considerations is a relatively new area with potential applications in the 

offshore engineering field. Rational practical application, however, requires further 

research, and investigation e.g. into deterioration of platforms.

In conclusion, in spite of there being many unsolved problems, considering that 

structural design problems are substantially probabilistic, reliability-based design 

procedures should perhaps be incorporated with optimisation techniques to achieve the 

design for minimum cost (or weight) for a given safety level. This must be an attracting 

area to develop with many potential applications, especially in offshore engineering.



CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Review of the Work

This thesis has been mainly concerned with the system reliability analysis of 

continuous structures, and especially, TLP structural systems. Various methods and 

procedures for identifying the important failure modes developed for structural system 

reliability analysis were reviewed. The proposed method, called herein the "Extended 

Incremental Load Method", was introduced as another approximate method which an 

extended the conventional incremental load method. This extension included system 

analysis of structures under multiple loading together with a proposed modified non- 

dimensional safety margin equation (2.103) which allows the use of strength models in 

system analysis. The method has been successfully applied to discrete structures and 

continuous structures such as TLP structural systems. A sensitivity study to changes in 

statistical parameters of the design variables in strength and in loading has been carried 

out to show their relative importance with regard to their effects on safety at component 

and system levels. Reliability-based design was briefly described. From this the 

following conclusions can be drawn:

o Method Used:

The proposed method for system reliability analysis, together with the modified 

safety margin equation (2.103), is a new method in that:

- The method can be applied to the structure under multiple loading.

- The method can directly use strength models generally given in the form of 

interaction equations under combined load effects and hence, the method can 

allow for the use of different strength models in the system analysis for the same 

structure.

- The strength modelling parameter can be incorporated into the safety margin 

equation proposed herein which has a non-dimensional form. Doing this can
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represent the randomness of the failure surfaces of components and also flexibly to 

reflect the effect on safety of changes in the statistical parameters of the strength 

models used in the analysis, in particular to their mean biases and modelling 

uncertainties (COV). In this way, the derived system reliability can be re-evaluated 

when its mean bias and COV have changed as test data are progressively 

accumulated.

- The method can more realistically allow for the post-ultimate behaviour of failed 

components by using the multi-state linearised model 

for non-linear behaviour.

The method has been coupled with the procedure for identifying the most 

important failure modes in which several control parameters were used to reduce the 

computational time when applied to a large and complex structure. In the present 

approach, a computer program has been developed which can cover the estimation of 

environmental loadings and their effects on strength and reliability, at systems level as 

well as at components level, especially for floating offshore platforms.

o Applications to Discrete Structures:

The validity of the present method and the modified safety margin equation 

together with the identifying procedure was illustrated by applying the present approach 

to discrete structures. Failure modes were obtained in increasing order of reliability and 

the proposed safety margin equation gave reasonable results compared with those from 

the conventional equation [Eq.(2.86)].

o Applications to TLP Structures:

To illustrate application to a continuous structure, the method has been 

successfully applied to a TLP structural system. The Hutton TLP was chosen as an 

existing TLP model which has 6 columns of ring-stiffened cylinders and pontoons of 

rectangular box girders. Its two variants, TLP-A and TLP-B, were chosen to compare the 

system reliability with different types of principle components, i.e. ring- and stringer- 

stiffened cylinder against the Hutton TLP, and different structural configurations. TLP-A
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was modelled by replacing the four comer columns of the Hutton TLP by ring- and 

stringer-stiffened cylinders whose design followed the TLP RCC design code and whose 

structural weight was about 25% less than the original ring-stiffened cylinder. TLP-B 

was modelled by removing the two mid-columns of TLP-A. When considering only the 

weights of columns, the structural weight of TLP-A and TLP-B were about 18% and 

43.7% less than that for the Hutton TLP, respectively.

From the results of the system reliability analyses for these three TLP models it 

was found that TLP-A showed nearly the same level of system safety as the Hutton TLP 

(average pSyS of TLP-A is about 3% lower), whereas TLP-B showed a significantly 

higher level of system safety with average pSyS 7.3% and 10.4% greater than those of 

the Hutton TLP and TLP-A respectively. The higher system safety level of TLP-B is 

surprising and may be due to the quite different first failure load and the pattern of load 

effect re-distributions of the failed components from the pattern for the other two TLP 

models. That is, in the cases of the Hutton TLP and TLP-A, the mid-columns 

components have a higher probability of failing than the other components (comer 

columns and pontoons). When any component of the mid-columns fails its load is re­

distributed to the remaining components. This appears to cause the Hutton TLP and TLP- 

A to have a lower level of system safety than TLP-B in which the re-distribution effect 

arising from the failed component of the mid-columns does not occur. This might be the 

main reason that TLP-B shows a higher system reliability index in spite of there being 

much less structural material. This difficult point requires further investigation.

When using the incremental load method, one can obtain the total load factor (Xj) 

when structural collapse occurs. The factor is the ratio of collapse load to mean applied 

design load and is related to the reserve strength of a structural system. The average Xj  

values are 2.63, 2.82 and 2.96 for the Hutton TLP, TLP-A and TLP-B, respectively. 

This implies, perhaps surprisingly to some, that TLP structural systems possess 

considerable reserve strength in the deterministic sense. The values of RDIp (a measure 

of the probabilistic structural redundancy) which appear in Section 5.4.3, and which are 

related to the residual strengths, also show the appreciable residual strength of TLP
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structural systems. From the redundancy analysis, it was found that the deterministically 

most important failure mode was not identical to the probabilistically most important 

failure mode as it was found from the simple frame structure in Section 2.6.2 and from 

the results of others.

Comparing the redundancy measure for the three TLP models it was seen that 

TLP-B also possessed a higher reserve strength and residual strength than the Hutton 

TLP and TLP-A. Hence, it could be said that the structure having ring- and stringer- 

stiffened cylinders could more efficiently resist the external load and possessed more 

reserve strength and residual strength than the structure having ring-stiffened cylinders. 

Therefore, compared to the design of the Hutton TLP, a design with at least 40% weight 

saving in the columns could perhaps be achieved using the ring- and stringer-stiffened 

cylinders as principle components rather than using ring-stiffened alone.

As was shown in Section 5.4.3, using different strength models in the analysis 

gave different levels of system safety. The model given by Eq.(3.58) gave a higher 

system reliability index than Eq.(3.53). This indicated that further weight saving must be 

possible with the more advanced strength models.

o Sensitivity Study:

A sensitivity study for TLP structural systems has been earned out to investigate 

the influence of the mean and the COV of the important parameters and variables in 

strength and loading upon the system reliability as well as component reliability. These 

were the component strength modelling parameter (or error, XM), geometric properties 

(R and t : radius and thickness of cylindrical components), material property (cty ) ^  

load effects. The influence of the post-ultimate behaviour of failed components on the 

system reliability and residual strength was also investigated.

The component strength modelling parameter represented by its mean bias (XM) 

and the coefficient of variation (modelling uncertainty, VxM) was found to greatly affect 

the system reliability (PSyS) as well as the component reliability (Pcomp)- In physical
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terms this is explained by the much higher mean values of strength terms to loading terms 

so that for any given COV a much higher spread occurs in strength distribution than for 

loading. It was found that this was mainly due to its important position within the safety 

margin equation (2.103) proposed in this study and, consequently, its effect upon 

strength and safety. It was also shown that the modelling uncertainty was much more 

influential, not only on the system reliability, but also on the component reliability than 

the mean bias. Therefore, the modelling uncertainties (randomness) of strength models 

should be kept as low as possible with the mean bias also being kept close to unity to 

achieve economic benefit in the design from the viewpoint of both the system and the 

component.

As resistance variables, the material and geometric properties showed 

comparatively less effect than the strength modelling parameter.

With regard to the influence of static, dynamic and quasi-static load effects, it was 

found from the results in Section 6.3 that static load effects (both its mean bias and COV) 

was most influential on the system reliability index as well as component reliability index 

followed by the dynamic load effects. The effect of the quasi-static load component was 

found to be relatively less influential. It was found that this was mainly due to the 

comparatively greater magnitudes of static and dynamic load components acting on the 

structure than that of the quasi-static component. Neglecting wave drift induced forces 

might be another reason, but its effect upon safety is not expected to be significant. 

Considering the much greater degree of random uncertainty with the dynamic component 

than with the static component, the dynamic component can in some applications have 

more effect on the safety. Hence, it can be said that the CO Vs of load effects may be a 

more important factor affecting safety than mean biases in many designs.

The post-ultimate behaviour of a failed component was modelled into the 

simplified linearised model, namely, the three-state model, which was characterised by 

post-ultimate slope (E') and residual strength parameter (rj). As was expected, it was 

shown that the post-ultimate behaviour of failed components had much influence upon
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the safety level and residual strength of a structural system. Its effect upon safety was 

greater than those of the strength modelling parameter and loading variables. Comparison 

of the results using the three-state model against the two-state model showed that as 

expected the three-state model gave higher system reliability indices for the same residual 

strength parameter, rj. This arises from the effect of the post-ultimate slope on the pattern 

of load effects re-distribution. The post-ultimate behaviour of a failed component should 

therefore be accounted for in assessing the system safety and residual strength with a 

more refined and realistic model, perhaps achieved initially with a wider choice of E1 and

The sensitivity study as presented here is important in that it provides useful 

information about the relative importance of design variables. Consequently, such 

information must be helpful to the designer in intelligently modifying the design. One 

important point to be stressed from the sensitivity study is that the control parameters 

used in the identifying procedure should be consistently kept throughout the numerical 

analysis because they can greatly affect the failure probability of the structural system 

and, consequently, the system reliability index to be evaluated.

o Reliability-Based Design Design:

An attempt has been made to show the correlation between structural safety and 

redundancy for use in design. The present relation between the average component safety 

indices and the reserve strength ratio for the system for a variety of steel structures shows 

a rough correlation between low component safety and high reserve strength. Although 

the need for system safety is well recognised in judicial proceedings when structural 

catastrophes occurs, most emphasis in design is placed on component safety. To link the 

two a design correlation between Pcomp and n, for example, as given by Eq.(7.17) is put 

forward for consideration. The author suggests that the boundary determined by 

Eqs.(7.17) and (7.20) be considered as a criterion to achieve balanced designs with 

adequate safety and redundancy.

It was also found that the first generation semi-submersibles and TLP structures
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were significantly overdesigned in the light of the present studies. It might be suggested 

that pSyS could be chosen as 6.0 for floating offshore structures. With regard to the 

distribution type of resistance and loading variable, as pointed out in Section 7.2 (e.g., 

see Fig. 7.5), their lognormal distribution seems to better represent the uncertainties 

associated with resistance and loading and gives more realistic predictions of the safety 

level than the normal distribution, especially for higher levels of safety.

Within the context of the reliability-based limit-state design, the major goal should 

be to achieve reliability-based optimum design. Although no results about this subject 

were presented, the algorithmic procedure illustrated in Section 7.3 is applicable to obtain 

the optimum solution. Additionally, since structural design problems are generally non- 

deterministic it follows that engineering optimum design should cope with uncertainties. 

It is not an overstatement to affirm that reliability-based design procedures incorporated 

with optimisation techniques must be the best way to achieve the harmonised design for 

minimum cost (or weight) within any prescribed safety level. This must be a promising 

area with potential applications, especially for offshore engineering design.

8.2 Main Conclusions

The proposed method for system reliability analysis, together with the modified 

safety margin equation and the procedure of identifying the most important failure modes, 

can be used in assessing the system reliabilities under multiple loading conditions, of 

floating or fixed offshore platforms or other types of structures, and whose components 

behaviour is a ductile, brittle or two-state unloading manner. Developed strength models 

for principle components of the structure can be directly used with the method in the 

system analysis.

Incorporating the strength modelling parameter with the proposed modified form 

of safety margin equation, given by Eq.(2.103), can flexibly allow for the use of 

different strength models regardless of the magnitude of their mean biases and random
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uncertainties, and can effectively reflect the change of system safety level when strength 

models are updated as more experimental data are available.

A sensitivity study of structural reliability, at the system level and component 

level, to design variables must precede the optimisation procedure for several reasons, 

e.g. to investigate the relative importance of design variables with regard to their effect on 

safety. The outcome is at the same time useful when modifying the design as an aid to 

decision making. The post-ultimate behaviour of failed components must be accounted 

for in the system reliability analysis with a more realistic model to provide the designer 

with insight into the effective residual strength of structural systems.

The study to attempt to link the structural safety to redundancy recognises the 

acceptability of relatively low component safety when there is appreciable reserve 

strength, as in most jacket structures, and vice versa. It would seem that there is a merit 

in pursuing such studies and perhaps refining Fig. 7.5. For example, for TLP structures 

the component safety index can then be lowered to about 3.0 with a corresponding 

system safety index of about 6.0 , and the combination may then be acceptable.

Since the reliability method is the best way to treat the uncertainties in load and 

strength in a more rational way, the optimisation procedure should be on the basis of 

system reliability to achieve the design of minimum cost for a given safety level. 

However, this subject is at an early stage in development and there has not been much 

work reported. Its application to practical structures, including obtaining the optimum 

strategy for inspection and repair, has many problems still to be solved. In spite of this, 

the application of system reliability analysis to design code development based on reserve 

strength and residual strength, strategies for inspection and quality assurance and 

optimum balance between life-cycle costs and expected risk loss, must be an important 

future task.
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8.3 Recommendations for Future Research

System reliability analysis and its application to design is a relatively new area and 

has several problems still to be solved before it can be seriously introduced into general 

design practice. Nevertheless, its application to design and to re-assessment of existing 

structures is undoubtfully the best way towards achieving a balanced design for economy 

and safety within the entire structure, especially in the offshore engineering field. The 

following areas are recommended for more research on the subject and as a future 

extension of the present work in the future:

[1] System reliability method :

It is necessary to develop a more efficient method for system reliability analysis 

which should be applicable to a wider range of real structure with general component 

behaviour, together with the procedure for more efficiently identifying the 

probabilistically most important failure modes. This can be achieved by refining the 

available methods to ensure their validity by comparing the results, e.g. load factors of 

the pre-defined failure modes, to the results of model tests (or wherever possible large 

scale test) and/or to the results of rigorous non-linear structural analysis (deterministic). 

This would provide cross check between system reliability methods and results from 

model tests or more rigorous non-linear analysis.

An important area closely linked to the development or refinement of the system 

reliability analysis method is to derive the explicit form of the post-ultimate behaviour of 

principle components in a structure, especially the post-ultimate behaviour. For this, it 

may be more reasonable to derive more realistic multi-state post-ultimate models, since it 

is impractical to consider the material and geometric non-linearity through the rigorous 

non-linear structural analysis in the system reliability analysis of real offshore structures.

[2 ] Assessment of residual system reliability (Psys,R.):

This is necessary to ensure the structure survives in the damaged state. For this, 

formulation of the strength models of components for the damaged state is an important
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area to be undertaken..

[3] Fatigue consideration:

The real problem involves deterioration of the component strengths due to 

environmental actions. Deterioration arises from combinations of temperature and 

humidity, but the most serious deterioration is closely related to fluctuating loading acting 

on the structural components. This can cause fatigue failure of components in a structure 

and may result in the catastrophic collapse of the entire structure. Therefore, fatigue 

problems should be considered in the system reliability analysis. One way of 

incorporating the safety margin equation is to progressively reduce the mean bias of 

strength modelling parameter, i.e. progressively shift the failure surface in the direction 

of its origin.

[4] Code development and calibration:

The design code to be developed and calibrated should be able to reflect the 

consequence of failure of any component, and the reserve strength and residual strength 

of the structural system. Adding the system factor (or system partial safety factor) in the 

safety check format must be an attractive way of doing that. The safety factor must be 

obtained through rigorous system reliability analysis. Alternatively, the assessment of 

system reliability may be carried out at the design stage. For this, it is necessary to gain 

experience of the reliability assessment by applying the developed methods or algorithms 

to real structures.

[5] System reliability-based optimum design:

The optimisation procedure should be based on reliability, more generally system 

reliability as well as component reliability wherever possible. The total cost is preferable 

than weight as an objective function which may include the initial cost, expected cost of 

failure and costs of inspection and repair. An important sub-part of this ambitious subject 

is to obtain the optimum strategy of inspection.

The pre-solved problem, to obtain the optimum design for practical structure, is to
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select the target system reliability with acceptable level, when a structure is intact or 

damaged condition ( P°SyS or P°sys,R)-

[6] Consideration of gross error

Most structural failure is due to gross error (human error) and therefore it is very 

desirable to explicitly account for this error in reliability assessment with a realistic 

model.

[7] Marine growth

When an offshore structure is in-service, marine growth effects on the loading 

acting on the submerged part of the structure and the distribution of load effects, and 

hence on the safety level of the structure. This may also be considered in the reliability 

assessment with a realistic model.

Finally, as a fundamental but important area in the context of reliability-based 

design, effort should be made towards the development of more advanced strength 

models which must be derived based on the limit-state analysis and have modelling 

uncertainty as low as possible. A parallel effort toward achieving more realistic three- 

dimensional wave, current and wind loading models for design is also needed.

8.4 Closing Remarks

Because of many assumptions adopted herein and the uncertainty with the method 

itself, the results of the present reliability study may not be the "true" solution, but a 

reasonable solution. Some of the gaps have been pointed out in these conclusions, but 

those that are judged to be most important are emphasised here:

- It has not been proved absolutely that the procedure developed for identifying 

the most important failure modes will always identify kinematically admissible 

failure mechanisms.



- The post-ultimate strength of structural components appears to be a very crucial 

parameter in systems reliability, and this requires to be more fully addressed. Its 

associated modelling uncertainty and the systems modelling uncertainty are, again, 

important parameters that need further consideration.

- The very strong dependence of the reliability index on the post-ultimate strength, 

shown in Chapter 6, is emphasised. The implication of this Chapter is that 

following collapse of critical components if their residual strengths are less than 

75% of their ultimate strength they may not contribute significantly to the load- 

carrying capacity of the system.

- The effects of boundary condition mode of unloading following attainment of 

ultimate load, etc, of component response in a real structure, in contrast to 

experimentally observed response under idealised laboratory conditions needs to be 

highlighted. They could be important factors given the sensitivity of the reliability 

index to the post-ultimate response of important components.

- Some of these factors would require careful experiments to validate modelled 

behaviour, including ideally the sequence of failure under idealised multiple loads. 

Such experiments, of course, would be very expensive to conduct, but they are 

nevertheless important to consider if system analysis is to be used for continuous 

spatially distributed structures.

- It is emphasised that the reliability index corresponds to the life of the structure and 

not to an annual reliability.

Finally, the author would like to close this thesis with the hope that it may provide 

one comer stone of system reliability analysis and its application to the design of practical 

structures in the future. System reliability analysis is intended more to provide useful 

information as criteria for decision making in the design stages and in-service 

assessment.
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APPENDIX A EXAMPLE OF DERIVATION OF THE SAFETY 

MARGIN EQUATION

A plane frame in Fig. 2.7 of Section 2.6.2 is taken as a structural model to 

illustrate the present procedure for deriving the safety margin equation for the structure 

under the multiple loading condition. The safety margin of one important failure mode for 

path 4-7-8-2 [see Section 2.6.2] in the structure will be derived in the form of Eqs.(2.86) 

and (2.103):

Zm = i C„ * Rk- X Bnll p(1) (2.86)
k=l 1=1

4 4  L
Zm = XM + X  Gk « R >k’ -  X  GXC{Q>r {R)i> (2.1-03)

j k=l 1=1

A.l Safety Margin in the form of Eq.(2.86)

The utilisation matrices for loading P(l) and P(2) of the failure mode for path 4- 

7-8-2 and their inverses are given as in Table A.1 in which the element of the utilisation 

matrix is the bending moment of each component. Firstly, consider the interim path, 4-7- 

8 . Each utilisation matrix is rewritten as follows from Table A.1 (a).

[for p(l)) [for P<2)]

‘ 0.0013
I 4

1.5631

0.9982 0.9996
7

0.9369 2.5000

1.4971 -1.4977 2.4973 I 8 0.4670 1.2460 3.7460
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The contribution factor for each loading case is calculated as below:

for P ( l ) : CF(!) = 2.4973 /  (2.4973 + 3.7460) = 0.4

for P(2) : CF(2) = 3.7460 /  (2.4973 + 3.7460 ) = 0.6 (A-l)

From Table A. 1(b), the inverse of each matrix is:

[for P(l)]

7 4 8

' 746.91 

-745.90 1.0004

-0.4033 -0.6000 0.4004

[for P(2)]

7 4 8

‘ 0.6398 

-0.2398 0.4000

0.210E-05 -0.1331 0.2670

For loading P(*), the resistance terms are obtained in the following procedure.

By summing up the elements in each column,

0.6067 R4  + 0.4004 R7 + 0.4004 Rg (A-2)

is obtained and normalising by the coefficient of the last failed component, i.e. coefficient 

of Rg, (A-2) becomes

1.5152 R4  + 1.0000 R7 + 1.0000 Rg (A-3)

By multiplying the contribution factor, CFO) = 0.4, the resistance terms for load P(l) are 

obtained as:

0.6061 R4  + 0.4000 R7 + 0.4000 Rg (A-4)
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Similarly for load P(2), the resistance terms are obtained as follows:

Sum the elements in each column of the inverse matrix:

0.4000 R4  + 0.2670 R7 + 0.2670 Rg (A-5)

Normalising by the coefficient of the last failed component:

1.4981 R4 + 1.0000 R7 + 1.0000 Rg (A-6)

and multiplying by the contribution factor, CF(2) = 0.6 gives the resistance terms for 

load P@):

0.8989 R4  + 0.6000 R7 + 0.6000 Rg (A-7)

Sum of (A-4) and (A-7) results in the resistance terms of the safety margin for the interim 

path 4-7-8.

1.5050 R4  + 1.0000 R7 + 1.0000 Rg (A-8)

Loading terms are easily obtained from the utilisation matrices of path 4-7-8:

-  ( 2.4973 PC1) + 3.7460 P(2) ) (A-9)

Combining (A-8) and (A-9) gives the safety margin equation of path 4-7-8:

Z7_4_g = 1.5050 R4  + 1.0000 R7 + 1.0000 Rg

-  ( 2.4973 P(!) + 3.7460 P<2) ) (A-10)

The corresponding reliability index of path 4-7-8 is p4_7_g = 2.07.
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This path does not result in the collapse of the structure. When component 2 has 

failed, the collapse occurs. The resistance and loading terms are obtained in the same way 

as before. The safety margin of the mode for path 4-7-8-2 can be derived through the 

following procedure:

[1] Contribution factor of each loading case is calculated as:

for PC1) : CF(!) = 0.270 x 10'4  /  ( 0.270 x 10 '4 + 5.0002 ) = 0.540 x 10‘5 

for P(2) : CF(2) = 5.0002 /  ( 0.270 x 10-4  + 5.0000 )

= 0.9999946 (A -ll)

[2] Sum of the elements in each column of the inverse matrices: 

for P(!) : 75201 R4  + 37282 R7 + 0.17797 Rg + 37282 R j

for P(2) : 0.4000 R4  + 0.2000 R7 + 0.596 x 10"7 Rg + 0.2000 R2

[3] Normalising the coefficients by that of component 2:

for PC1) : 2.0171 R4 + 1.0000 R7 + 0.477 x 10~5 Rg + 1.0000 R2 

for P(2) : 2.0000 R4  + 1.0000 R7 + 0.298 x 10~6 Rg + 1.0000 R2

[4] Multiplying by the contribution factors:

for P(!) : 0.109 x 10-4  R4  + 0.540 x 10"5 R7 + 0.258 x 10' 10 Rg

+ 0.540 x 10' 5 R2 (A-12)

for P<2) : 2.0000 R4  + 1.0000 R7 + 0.298 x 10"6 Rg + 1.0000 R2 (A-13)

Comparing (A-12) with (A-13), the resistance term for load P(l) can be neglected. This 

can also be seen from the contribution factors in Eq.(A-ll). Therefore, the resistance 

terms of the safety margin equation for the path 4-7-8-2 is

2.0000 R4  + 1.0000 R7 + 0.298 x 10-6 Rg + 1.0000 R2  (A-14)

- 4 0 8 -



Loading terms of path 4-7-8-2 from the utilisation matrix are:

-  (0.268 x 10-4 P(!) + 5.0002 P(2) ) (A-15)

The resultant safety margin equation of path 4-7-8-2 is obtained by combining (A-14) and 

(A-15):

Z 4.7.8.2 = 1.0000 R2 + 2.0000 R4  + 1.0000 R j  + 0.298 x 10' 6 Rg 

-  0.268 x 10-4  P(l) -  5.0002 P(2)

= 1.0000 R2 + 2.0000 R4  + 1.0000 R7 -  5.0002 P(2) (A-16)

As seen in this equation the strength of component 8 and load P(l) do not affect 

the safety margin as random variables. Hence, although the resultant path is 4-7-8-2, the 

component 8 does participate in the collapse mechanism. This type of hinge is referred to 

as a non-active hinge and the others are referred to as active hinges [see Fig.2.8]. But at 

the interim failure stage, i.e. path 4-7-8, component 8 is an active hinge and load p(l) 

also plays the role of a random variable.

The modes for path 7-4-8-2, 7-4-2, 7-8-4-2 and 4-7-2 have the same safety 

margin as Eq.(A-16). The corresponding reliability of path 4-7-8-2 is P4_7_g_2 = 2.48. 

This equation is exactly the same as that derived by the element replacement method (see 

Table 7.2.4 of reference [13]).
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Table A.1 Utilisation Matrix of Frame Model and its Inverse for Path 4-7-8-2 
in Terms of Bending Moment

(a) Utilisation Matrix 
[for p ( l ) ] :

r4 0.0013

7 0.9982 0.9996

8 1.4971 1.4977 2.4973

I2 -1.0009 -0.9996 0.149E-04 0.268E-04

[for P(2)]:

I 4
1.5631

7 0.9369 2.5000

8 0.4670 1.2460 3.7460

2 0.9369 2.5000 5.0002 5.0002

(b) Inverse of the Utilisation Matrix 
[forPC1) ] :

7 4 8

[for P@)]:

746.91

-745.90 1.0004

-0.4033 -0.6000 0.4004

75200. 37282. -0.2225 37282.

7 4 8 2

0.6398

-0.2398 0.4000

0.210E-05 -0.1331 0.2670

0.284E-06 -0.0669 -0.2670 1.9999
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A.2 Safety Margin in the form of Eq.(2.103)

The procedure of deriving the safety margin in form of Eq.(2.103) is the same as 

in the previous section, except that the elements of the utilisation matrix represent the 

utilised proportion of component strengths and not any physical quantity, say, bending 

moments.

Consider the same mode for path 4-7-8-2 as in the previous section. The elements 

of the utilisation matrix in Table A.l are bending moments. Let them be denoted as S]q (̂ ) 

which is the bending moment of component k at the i th incremental stage due to the unit 

load of pO). When using Eq.(2.103), the elements of the utilisation matrix are the utilised 

strengths at any incremental stage and are calculated from the given strength formula. In 

the model considered, the strength modelling is given as Eq.(2.120) [Section 2.6.2]:

QkZ J  XM, {R}, (Q) ) = ^  (2.120)

where k is referred to as the component number. The function G in Eq.(2.98.b) [Section 

2.4.2] is Qk /  Rfc. Then, the element of the utilisation matrix is modified such that it 

represents the mean utilised proportion of the component strength. Qk in the above 

equation is the actual value of bending moment applied on component k due to mean 

load, i.e. Qk = Ski^) * PW. Hence, the elements of the utilisation matrices in Table A.1

(a) are recalculated by the following equation :

£  = ^ - E 0) (A-17)

where Rk denotes the mean strength of component k and P(0 the mean value of PC), k 

denotes the failed component numbers, i.e. k = 4, 7, 8 and 2 when i = 1, 2, 3 and 4 

respectively. The mean values are given as [see Fig. 2.7]:
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R2 = 0.075

R4  = 0.101

P(l) = 0.02

P(!) = 0.04

R7 = 0.075 

Rg = 0.075

By applying Eq.(A-17) to all elements of the utilisation matrices in Table A.1 (a), the new 

utilisation matrices and their inverses are given in Table A.2.

The contribution factor of each loading case is calculated as:

for P(l) : CF(1) = 0.715 x 10‘5 / (  0.715 x 10' 5 + 2.6667 )

= 0.268 x 10-5 = 0.0 

for P<2) : CF(2) = 2.6667 /  (0.715 x 10' 5 + 2.6667 )

= 1.0 -  0.268 x IO-5 = 1.0

As mentioned in the previous section, the contribution factor for load P(l) is so small that 

the resistance and loading coefficients associated with the load can be neglected. Hence, 

the load case is not considered. As before, the safety margin is derived as follow:

[1] Sum of the elements in each column of inverse matrices:

1.0100 R4 ' + 0.3750 R7 ' + 0.298 x 10' 6 Rg' + 0.3750 R2 '

[2] Normalising the coefficients by that of component 2:

2.6933 R4  + 1.0000 R7’ + 0.795 x 10‘6 Rg' + 1.0000 R2 ' (A-18)

[3] Loading terms are:

-  ( 0.715 x 10-5 PC1)' + 2.6667 P<2)' ) (A-19)

By combining (A-18) and (A-19) the safety margin equation of path 4-7-8-2 is given as:
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Z 4 - 7 - 8 - 2  = 1-0000 R2  + 2.6933 R4 ' + 1.0000 R7 ' + 0.795 x 10‘6 Rg'

-  ( 0.715 x IO-5 P(!)' + 2.6667 P(2)’ )

= 1.0000 R2 ' + 2.6933 R4 ' + 1.0000 R7' -  2.6667 P(2)’

(A-20)

in which Rk effectively represents the strength of component k such that the coefficient 

of Rk denotes the term associated with component k.

According to Eq.(2.103) the resistance term of the last failed component in the 

path is replaced by its strength modelling parameter, i.e. R2 is replaced by XM2. Hence, 

the safety margin is finally given by:

Z4_7_g_2 = XM2 + 2.6933 R4 + 1.0000 R7’ -  2.6667 P(2)' (A-21)

In the above equation, each term shows that it is associated with the random variable in 

strength and load, i.e. each term is treated as a random variable and its coefficient denotes 

the mean value of each term, e.g. 2.0000 in the second term is the mean value of the 

term, 2.0000 R4 , because the equation has been derived based on the mean utilisation 

matrix for each loading case. The corresponding coefficient of variation can be calculated 

using the first-order reliability concept. The following describes how to calculate COV's 

of associated terms as random variables.

Eq.(A-21) can be deduced from Eq.(A-16) without any loss of physical meaning. 

Normalising all terms in Eq.(A-16) by the final term results in:

R 0 R .  R _  p ( 2 )
Z = 1.0000 ( - ! )  + 2.0000 (_ i)  + 1.0000 ( - 4  -  5.0002 (— ) 

2 2 2 2
(A-22)

Each term in this equation can be regarded as a random function and its mean and COV 

are calculated by the first-order reliability method. For this, consider a simple function:
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G(X,Y) = C -  y (A-23)

in which C is a constant and X and Y are random variables with mean and standard 

deviation of (X, crx ) and (Y, c Y). The mean of function G is obtained from 

Eq.(2.104.a):

G(X, Y) = C -  =  (A-24)

The variance is obtained from Eq.(2.104.b):

= (A, 5) 
X

Let Vx  and VY be COVs of X and Y. Putting crx  = Vx  X and c Y = VY Y in the above 

equation:

°G = + t Vx  + Vx i 2 (A-26)

Hence, the COV of the function G is given b y :

VG = j  = V ^  + VY (A' 27>

Using Eq.(A-24) and (A-27) the mean and COV of each term in Eq.(A-22) can easily be 

calculated. Except the first term (which will be replaced by the strength modelling 

parameter) they are given by:

- 4 1 4 -



Mean COV

2.0000 *R 4 / R 2 = 2.6933 0.0707

1.0000 * R7 /  R2 = 1.0000 0.0707

5.0002 * P(2) /  R2 = 2.6667 0.3041

And, let us introduce another set of variables defined as:

R2 = R2/R2 R4' = R4/R2 R7' = R7/R2 P(2)’ = P(2)/R 2

which merely represent the relationship with terms in Eq.(A-22). Eq.(A-22) can be 

rewritten as:

Z4_7_g_2  = 1.0000 R2 + 2.6933 R4* + 1.0000 R7 -  2.6667 P(2)'

(A-28)

i.e. the coefficients are the mean value of random functions and R2  etc indicates that they 

are associated with the first term, etc. of which means and COV's are given as unity and 

zero so as not to disturb the safety margin equation.

Replacing the first term by its strength modelling parameter, Eq.(A-28) becomes

Z4 .7.8.2  = Xm2 + 2.6933 R4  + 1.0000 R7 ' -  2.6667 P(2)' (A-29)

This is the same as Eq.(A-21). It can, therefore, be said that Eq.(A-21) is equivalent to 

Eq.(A-16) and can replace Eq.(A-16) without loss of any physical meaning. Eq.(A-21) 

gives the path reliability index of p4_7_8_2 = 2.46, which is 1.2% less than than Eq(A- 

16).
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Table A.2 Utilisation Matrix of Frame Model and its Inverse for Path 4-7-8~2 
in Terms of Utilised Strength

(a) Utilisation Matrix 
[for P ( l) ] :

4 0.265E-03

7 0.2662 0.2666

8 0.3992 0.3994 0.6659

2 -0.2669 -0.2666 0.397E-05 0.715E-05

[for P(2) ] :

4 0.6190

7 0.4996 1.3333

8 0.2490 0.6645 1.9978

2 0.4997 1.3333 2.6667 2.6667

(b) Inverse of the Utilisation Matrix 
[for PC1) ] :

7 4 8 2

3771.9

-3766.8 3.7516

-2.0366 -2.2500 1.5017

0.380E+06 0.140E+06 -0.8342 0.140E+06

[for P@)]:

1.6154

-0.6054 0.7500

0.549E-05 -0.2495 0.5006

0.568E-06-0.1255 -0.5006 0.3750
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APPENDIX B EXAMPLE OF CALCULATING 

TOTAL LOAD FACTOR

Calculation of the total load factor described in Section 2.4.1 is illustrated for the 

frame model chosen in Appendix-A.

Since the elements of the utilisation matrices in Table A.2(a) are mean utilised 

strengths, the sum of the two utilisation matrices result in the total mean utilisation matrix 

as:

0.6193

0.7659 1.6000

0.6483 1.0639 2.6637

0.2328 1.0677 2.6667 2.6667

and its inverse is:

[A]"1 =

1.6147

-0.7730

-0.0842

0.2525

0.6251

-0.2497

-0.0004

0.3754

-0.3754 0.3750

As described in section 2.4.1, the total load factor for a failure mode can be 

obtained as the sum of all load factois calculated from Eq.(2.90). For the mode of path 7- 

4-8-2, Xj (i = 1,4) are calculated as:

Xj =1.6147 

X3 =0.0415

X2  =-0.1479 

X4  =0.2517
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where subscript i = 1, . . ,  4 indicates the incremental stage. With these Eq.(2.95) gives 

the total load factor:

Xp ŷ d X.
i=l

= 1.6147-0.1479 + 0.0415 + 0.2517 = 1.76 (B-l)

The central load factor, ^ clf can be calculated from Eq.(5.1) with the safety 

margin equation, (A-16) or (A-21). When using Eq.(A-16), the mean values of random 

variables are to be substituted, whereas they are already included in Eq.(A-21). For the 

mode considered, is obtained from Eq.(5.1) with Eq.(A-21). That is:

XM +2.6933 + 1.0000 

W  = -  2 -  2,6667-----------  = ^  (S '2)

where Xm 2 is the mean bias of the strength modelling parameter of component 2  and 

equals 1.0 [Section 2.6.2]. For this example the two factors have the same value.
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APPENDIX C EXAMPLE OF IDENTIFICATION OF 

THE IMPORTANT FAILURE MODES

The plane truss model in Fig. 2.6 of Section 2.6.1 is selected to show the present 

procedure for identifying the most important failure modes given that eSyS = 0.03 and 

eutr = 10"^ [Section 2.5.6]. For this simple structure, specifying the values of e(je t , 

Mmin> Nmax etc. may be meaningless. The following, together with Fig. C .l, describes 

the identifying procedures.

[a] At first, probabilities of failure for components are evaluated, as seen in Fig. C.l (a). 

Components 3 and 4 have the highest probabilities, and component 3 is selected as a 

focus component. This is PATH-A as denoted in Section 2.5.6. Because of the 

comparatively small utilisation of Components 2 and 5, the subsequent modes following 

these components are discarded.

[b] When component 3 has failed, Nmax = 2 and the possible failure paths of which Nj 

= Nmax are 3-1, 3-2, 3-4, 3-5 and 3-6, but path 3-5 and 3-6 are discarded during the 

formation procedure of the utilisation matrix. Among the remaining paths, path 3-4 has 

the highest value of failure probability of which Nf = Nmax and is PATH-A [Fig.

C.l(b)]. Then, focus is shifted to the path of Component 4 where its Nj < Nmax . This is 

PATH-B as denoted in Section 2.5.6. Hereafter, the discarded paths do not appear in the 

figure.

[c] In Fig.C.l(c), when Component 4 has failed, the paths of which Nj = Nmax and at 

the same time have the highest failure probability, are 3-4 and 4-3. When path 3-4 has 

been selected as the best candidate path (PATH-A), the focus component is No.4, but 

among the other paths there is no path which has component 4 (as the last failed 

component) and at the same time of which Nj < Nmax , i.e. Nj = 1 because Nmax = 2, 

and so, structural analysis is performed with failed components 3 and 4. The path leads 

to collapse and becomes the most important failure mode and the path is closed. The
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bounds of pSyS are simply its path reliability index:

(Psys,lower)l -  (Psys,upper) 1 -  2.25 (C-l)

[d] Among the remaining paths which are neither closed nor discarded, path 4-3 has the 

highest probability of failure and focus component is No.3. Since there is no path which 

has component 3 (as the last failed component) and of which Nj < Nmax , i.e. Nj = 1 

because Nmax = 2, path 4-3 path is selected. Structural analysis, since Components 4 

and 3 have failed, shows that this path also leads to collapse. Hence, path 4-3 becomes 

the second most important failure mode [Fig. C.l(d)]. With two identified failure modes, 

the bounds of pSyS are calculated as:

(Psys,lower)2 = 2.16

(Psys,upper)2 = 2.25 (C-2)

At this stage the convergence check is carried out with Eqs.(C-l) and (C-2). 

From Eq.(2.113) with m = 2:

for lower bound of p : -  = 0.040 > 0.03sys 2.25

for upper bound of psys : 2 5 ' ^  = >

i.e. convergence criteria are not satisfied.

[e] From Fig. C.l(d) we can see that component 1 becomes the next focus component, 

and path 3-1 is selected. There is a path which has component 1 and of which Nj < 

Nmax-t3* ^  2th row in Fig. C.l(d)]. When component 1 has failed, there are two paths 

having the highest probability of failure as seen in Fig. C.l(e). They are paths 3-1 and 

4-6.
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[f] When path 3-1 is selected as the best candidate path, this path also results in structural 

collapse, and becomes the third most important path [Fig. 0.1(f)]. The bounds of pSyS 

are calculated as with m = 3:

(Psys,lower)2 = 2.16

(Psys,upper)2 = 2.25 (C-3)

Convergence checking is carried out again with Eqs.(C-2) and (C-3). Eq.(2.113) gives:

for lower bound of p : = 0.000 < 0.03sys 2.16

for upper bound of psys : —  ̂  = 0.024 < 0.03

i.e. both Eqs.(2.113.a) and (2.113.b) are satisfied. Therefore, the searching procedure is 

terminated at this stage.

If eSyS < 0.02, the procedure will continue. Then, the next path to be selected 

must be path 4-6 and focus is shifted to Component 6.
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3̂) ( 0.268x 10' ) 

^ 7 ^ ( 0 . 2 6 8  x  1 0*  1 )  

( 7 )  ( 0 . 6 0 0  x  1 0 ’ 2 )  

Q ( 0 . 6 0 0  x  1 0 '  2 )  

( 0 . 2 6 4  x  1 0  ‘  4 )
* * *

• ' V ;  ( 0 .2 6 4  x  1 0  )

(a) Modes following Component 2 
and 5 are discarded. Focus 
component is Component 3

^  (0.122 x 10’ 1 )
-  2

( 0 5 8 0  x  1 0  )

Q ( 0 . 2 2 5  x  1 0 " 3 )

©  ( 0 .2 6 8  x  lo" 1 )

Q ( 0 . 6 0 0  x  1 0 ’  2 )

Q  ( 0 . 6 0 0  x  10  " 2 )

- 4
f 2  1 ( 0 .2 6 4  x  1 0  )\ /

- 4
^  5  Jl ( 0 . 2 6 4  x  1 0  )

(b) Paths 3-5 and 3-6 are discarded 
during formation procedure of the 
utilisation matrix. Focus component 
is Component 4

0 - 1
( 0 .1 2 2  x  10  )

( 7 ^ ( 0 5 8 0  x  10  ‘  2 )

©  ( 0 .2 2 5  x  1 0 ’ 3 )

<
©  ( 0 .1 2 2  x  10  1 )

©  ( 0 5 8 0  x  1 0  2 )  

Q ( 0 . 2 2 5 x 10 ’ 3) 

( T ) ( 0 . 6 0 0  x  1 0 ’  2 )

^ 5 ^ ( 0 .6 0 0  x  10  2 )

i* 2 ^ ,  ( 0 .2 6 4  x  1 0  ‘  4 )

-  4
/  5  1 ( 0 . 2 6 4 x  1 0  )

(c) Path 3-4 is selected and it leads 
to collapse. Focus component, 
is Component 3

- 1
y  [ T ]  (0 -1 2 2  x  1 0  )

© x ~ ©  ( 0 5 8 0  x  1 0  2  )  

X Q ( 0 . 2 2 5 x  1 0  ' 3 )

^  [ T ]  ( 0 . 1 2 2  x I O ' 1 )

© V “© ( ° 5 8(>x 10' >
_  X D  ( 0 .2 2 5  x  1 0  3 )  

©  ( 0 . 6 0 0  x  1 0 " 2 )

©( 0 .6 0 0  x  10  )

f i \ ( 0 .2 6 4  X  1 0  ’  4 )\ i
-  4

I 5  * ( 0 .2 6 4  x  1 0  )% *

(d) Path 4-3 leads to collapse. Conver­
gence criteria are not satisfied. 
Focus component is Component 1

Fig. C.l Failure Path Search Procedure of Plane Truss Model (eSyS = 0.03)
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<Q ]  (0.122 X  10 ) pT] (0.122 x 10 )
©  (0.580 x 10 2 ) © £ - □  (0.580 x 10 2 )
Q ( 0 .2 2 5  x 10 3 ) n Q ( 0.225 x 10* 3 )

-  1 .   -  1(0.122 x 10 ) / [ * ] (0*122 X 10 }©  (0580 x 10 2 ) © “V ©  (0.580 x 10* 2 )Q ( 0 .2 2 5  x 10 * 3) \ Q ( 0 . 2 2 5  x 10" 3 )
. 0 ( 0 . 3 3 4 x 1 0  ) _  / ©  (0.334x 10 2 )

© £ -  ( f )  (°170 x 10 2 ) © < -  (6^ (0 .170  x 10 2 )
\ / Y 4 *4' ^  _4

* 5 * (0 .6 4 1  X  1 0  )  V ; ( 0 . 6 4 1  x  1 0 "  )

.  - 2 .  ^  - 2
. 6 0 0  x  1 0  )©  ( 0 . 6 0 0 x  1 0 *  )  0 ( 0

f  2  \  ( 0 . 2 6 4  x  1 0  )  .;Y  \  ( 0 . 2 6 4  x  1 0  ’  4 )* * i # n *
- 4 v ;  . 4

{ 5  ; ( 0 . 2 6 4  x  1 0  )  { 5  ; ( 0 . 2 6 4  x  1 0  )

(e) Path 3-1 is selected. (f) Path 3-1 leads to the collapse
and searching procedure is 
terminated because convergence 
criteria are satisfied

O  : c o m p o n e n t  n u m b e r  

’ }  : d is c a r d e d  m o d e
* 4*

 : o ld  b r a n c h

(  ) :  p r o b a b il i ty  o f  fa i lu r e

Fig. C.l (continued)

O  : f o c u s  c o m p o n e n t  

|  J : id e n t i f i e d  m o d e  

“ “  : n e w  b r a n c h
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APPENDIX - D FLOW VECTORS OF PRINCIPLE COMPONENTS

This section deals with the derivation of flow vectors of different types of 

components using their strength formulae as the failure surface equation according to 

Section 2.4.3. For illustration, the flow vectors have been derived when the component 

located at node i has failed [Fig. 2.5]., i.e., in Eq.(2.106) {aj} = 0.

D.l Simple beam element

The failure surface equation (strength formula) given as Eq.(2.120) can be 

rewritten omitting the strength modelling parameter:

Since Qk and Rfc are the bending moment and the plastic bending moment about the z- 

axis of component k, MZk and Myfc, the function G of Eq.(2.107) has the form of:

M
G = M,

= f6 (D-2)
Rk

From Eq.(2.107) the elements of the flow vector {aj} are obtained as:

a* = a2 = a3 = 84 = = 0.0

(D-3)
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D.2 Cylindrical Components

o Ring- and Stringer-Stiffened Cylinder:

[1] when the failure surface equation is given by Eq.(3.58)

- R - 2  . 2  .  _R_2
[_L] + r  r  [ _ v  i  9 _ - i ]  + [_0 ] = 1  (3.58)

9 f .x ‘ 0

Function G is the term on the left hand side of this equation. Using the following 

notations:

Rx / = a x /  a xu = CTx

R0/<t>0 = ^0/^0u =a0 CD"4)

function G can be rewritten in terms of g x ' and G q ' as:

G = (<TX)2 + 2 a V  J (1-«|>2 ) ( 1 - * 2 ) + (ae)2 (D-5)

The axial stress is the resultant one due to the pure axial compression, a xa, in which the 

effect of hydrostatic pressure is included and the effect of the bi-axial bending moment, 

My and Mz, and can be expressed as:

G  G
XU XU

= a  a + y j  (My)2 + (Mz)2 (D-6)

where A and R are the sectional area and the radius of cylinder, and Gx a " , My" and Mz"
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are defined as:

2 2 
ii rr ,| — M „ — MM O " D v 11 P 7

o  = - S .  . M = —  , M = —  (D-7)
113 a  y Act z A aXU XU XU

Hence, G becomes the function of a xa" , My" and Mz", which corresponds to f^ , fg' 

and fs', respectively. Rewriting Eq.(D-6) in terms of , fg' and f^':

I f

° X  -  f l  + ^ / ( f 6)2 + (f5)2 (D-8)

Considering that

dG . dG dG da
^  = —r- and —p = — :— r  (D-9)

d f k  d f k  d a x  d f k

the elements of the flow vector are obtained as follows:

a i = p

a5 = P

y f f .5> + <V

a6 = F

and 3-2 = a3 = 84 = 0.0

n2 n2
5) + (f6)

(D-10)
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where

F  = i L  = 2a + 2> / ( l - £ ( l - $  -  o ' ( y e) 
da

X

[2] When the failure surface equation is given by Eq.(3.53) 

With m = 2 and n = 1, the Eq.(3.53) is:

_ a  _m _G _n
[ - 2 . ]  + [_JL] = 1 (3.53)
a a

0 u  X U

Since the first term is associated with the radial pressure and has nothing to do with the 

nodal force vector, the function G is:

G = = <TX = f1+V (f6>2 + (f5)2 (D'11)
X U

Hence, the elements of the flow vector are given by:

aj = 1.0

2  2

H -  '*
V (fi )2+(f/

and a2 = ^  = -  0.0 (D-12)
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o Ring-Stiffened Cylinder:

When the strength model of Ring-stiffened cylinder is given as Eq.(3.11), the 

elements of flow vector are given as Eq.(D-12).

D.3 Rectangular Box-Girder

The failure surface equation is given by Eq.(3.89):

(3.89)
X U y u zu

and function G can be rewritten as Eq.(D-13) putting

F
X

M M
IM 5

y u zu

G = fj + [ (f6)''8 + (f5)18 ]
2

(D-13)

Hence, the elements of the flow vector are given by:

ax = 1.0

and a2 = a3 = a4 = 0.0 (D-14)



Thus, when the component at node i has failed, the flow vector is:

{a} =
V

(0}
(D-15)

When components at both nodes have failed, the flow vector can be obtained 

from the above procedure. Once the flow vector is determined, the reduced element 

stiffness matrix is evaluated from Eq.(2.108) when one node has failed, or from 

Eq.(2.109) when both nodes have failed. Due to the complex nature of the above 

procedure, especially in the case of cylindrical components and components of 

rectangular section, the flow vector and the reduced element stiffness matrix has to be 

determined numerically.
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