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ABSTRACT

Several species of thalassinid shrimp are found in the U.K., all of 

which construct burrows in muddy sediments of the intertidal or 

sublittoral. The most abundant species in Scottish west coast waters 

is the axiid Calocaris macandreae Bell, which burrows in soft mud from 

10 to several hundred metres water depth. Previous studies have 

indicated that oxygen availability within the burrows of other 

burrowing decapods is limited.

A study was made of Calocaris macandreae, in particular of the 

respiratory environment of the burrows, the behaviour associated with 

burrowing and of the respiratory physiology and metabolism of this 

species. In addition, literature information concerning other 

Thalassinidea was reviewed.

The structure and distribution of Calocaris burrows was investigated in 

the field using diving-based methods. Burrows were mapped and 

polyester resin-casts were made. Burrows constructed by Calocaris in 

sediment columns in laboratory aquaria were also examined. Oxygen 

tensions in burrows constructed by animals kept in laboratory aquaria 

were determined, and showed that respiratory conditions in burrows may 

be permanently and severely hypoxic, with oxygen tensions as low as 15 

Torr recorded in the deeper levels of a burrow. The range of burrow 

forms constructed by thalassinid species was reviewed with regard to 

possible functions of a burrow.

The behaviour patterns shown by Calocaris macandreae in laboratory 

burrows were analysed using video recordings. In general, Calocaris 

has a behavioural regime characterised by low levels of activity. 

Burrow irrigation by pleopod beating was infrequent and of short 

duration in ’normal' conditions, but increased during experimental



depletion of oxygen tension in the overlying water column.

The branchial morphology of seven thalassinid species (from the U.K.) 

were compared using scanning electron microscopy. A range of gill 

formulae and gill anatomy was observed, with a trend towards 

simplification of the gill formula and a phyllobranchiate gill 

structure in Upogebia and Callianassa. In addition, the surface area of 

the gills of Calocaris macandreae was determined to be relatively 

small compared to other, more active decapods.

In view of the hypoxic conditions encountered by Calocaris macandreae, 

an investigation of respiratory physiology in this species was made. 

Open and closed respirometry techniques showed that the rate of oxygen 

consumption by Calocaris is low compared to that of most other decapods 

(but similar to those recorded for other thalassinids). However, 

oxygen consumption is maintained at a constant rate even at very low 

oxygen tensions (the ' Pc' varied between 10 and 20 Torr). Measurement 

of heart and scaphognathite rates using an impedance technique showed 

that hyperventilation is a consistent response to environmental 

hypoxia, although there was no response of heart rate.

Comparative data from the literature suggest that adaptive responses of 

the haemolymph oxygen transport system may be a major component of 

adaptation to hypoxia in Crustacea. The respiratory pigment of 

Calocaris macandreae (and other thalassinids reported in the 

literature) has a larger molecular weight haemocyanin than those of 

other Crustacea (as determined by gel filtration), although the sub

unit molecular weight is similar. The concentration of haemocyanin in 

the haemolymph is comparatively low, resulting in a low oxygen carrying 

capacity (thought to be related to low activity levels).



The oxygen affinity of the haemocyanin was studied using a diffusion 

chamber system. The haemocyanin oxygen affinity is exceptionally high 

in Calocaris macandreae (P50 as low as 1.8 Torr under in vivo 

conditions), probably resulting in efficient oxygen transport to the 

tissues even in severe hypoxia. However, there is little evidence for 

modulation of oxygen affinity. The functional significance of 

modulation of haemocyanin oxygen affinity in Calocaris and other 

decapods is discussed.

A preliminary investigation of carbon dioxide transport and acid-base 

balance in the haemolymph was made. Although there is no evidence for 

acid-base fluctuation in the environment of Calocaris, there may be 

interactions of acid-base regulation with other respiratory processes 

(for example, hyperventilation in hypoxia).

The metabolic responses of Calocaris macandreae to prolonged hypoxia 

and anoxia were studied using enzymatic assays and high performance 

liquid chromatography. Calocaris is highly tolerant of anoxia (the 

LT^q was nearly 50 h) and accumulates L-lactate as the major end- 

product of anaerobic metabolism. Depletion of carbohydrate reserves 

during anoxia was not expected in this species (in contrast to most 

other decapods) and was not observed in experiments. Metabolic recovery 

of Calocaris from anoxia is relatively slow..

In conclusion, both comparative and functional approaches were used to 

interpret the ecological physiology of Calocaris macandreae. An 

integrated suite of behavioural, physiological and metabolic 

characteristics represent adaptation to low activity levels and to the 

hypoxic burrow environment.
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CHAPTER 1. INTRODUCTION 

LA. General introduction.
The interdependence of physiology and ecology have long been 

recognised. In a historical review of the development of ecological 

physiology, Jorgensen (1983) traced the development of both fields, and 

described the changing extent to which the value of integrating 

physiology with ecology has been recognised and achieved.

The development of animal physiology was historically the result of the 

use of animals as models for the study of human physiology. This 

approach developed into the discipline of comparative physiology, in 

which the aim is to derive an overview of fundamental physiological 

processes by investigating details of the particular physiology of 

species. This method has often emphasised similarities between species 

(e.g. Hill and Wyse, 1988). An alternative approach (adaptational 

physiology) is to examine the physiological mechanisms exhibited by 

animals living "where the environment seems to place insurmountable 

obstacles in their way" (Schmidt-Nielsen, 1979). This philosophy tends 

to exaggerate differences between species, and is prone to errors due 

to inadequate understanding of environmental constraints and selection 

pressures (the naive "adaptationist" concepts criticised by Gould and 

Lewontin, 1979).

Both comparative and adaptational physiology have, as a secondary aim, 

the elucidation of physiological evolution. Unfortunately,

evolutionary patterns in physiological function remain obscure despite 

recent advances in understanding of evolutionary mechanisms (largely 

resulting from palaeontological and phylogenetic evidence; exemplified 

by the work of Gould (e.g. 1980) and Schram (e.g. 1981) respectively).
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This is mainly because 'function' (as opposed to form) is not

represented in the fossil record, and is not amenable to the

quantitative analysis (cladistic, stochastic mosaical or otherwise) 

employed in the phylogenetic literature. Nevertheless, the importance 

of physiological function in evolution (and the influence of 

evolutionary history on current physiological characteristics) should 

be recognised.

An important theme in ecological physiology is the hierarchical system. 

Feibleman (1954) formulated a widely-quoted 'law of levels', "For an 

organisation at any given level, its mechanism lies at the level below 

and its purpose at the level above". Jorgensen (1983) interpreted this 

to mean "the use of physiology on problems whose purpose [function] is

at the level of ecology". This theme is extended below to include

characteristics at the ecological, behavioural, anatomical, 

physiological and metabolic levels of complexity.

Knowledge of ecological, behavioural and physiological processes in 

crustaceans (mainly decapods) has increased extremely rapidly since the 

review edited of Wolvekamp and Waterman (1960), largely as a result of 

developments in practical techniques. Much of the work on respiratory 

physiology in the late 1960's and early 1970’s (e.g. Johansen et al., 

1970; Ansell, 1973; Spaargaren, 1973) followed the methodological lead 

given by studies of fish physiology (Hoar and Randall, 1970). Oxygen 

consumption and respiratory functions (branchial ventilation, perfusion 

etc.) were studied in crabs and lobsters under different conditions. A 

more comparative approach developed later (reviewed by McMahon and 

Wilkens, 1983). There have been many comparative studies of 

haemocyanin characteristics in vitro since the work reviewed by Redmond 

(1955), see Chapter 5. In particular, in vitro modulation of

2



haemocyanin has received a great deal of attention (reviewed in Chapter 

5) although our understanding of in vivo function and the evolutionary 

significance of comparative differences is less developed. Finally, 

both comparative and functional studies of carbon dioxide transport and 

acid-base balance in decapod Crustacea are developing fields (Truchot, 

1983; Cameron, 1986).

Although not recognised explicitly, both comparative and adaptational 

approaches have been used in studies of decapod physiology, and it is 

probably a fair statement that understanding of ecological function has 

lagged behind that of physiological mechanism. However, there have 

been more integrated approaches to the ecological physiology of 

crustaceans of a few ecological/habitat categories: rock-pool decapods 

(Taylor, 1988), terrestrial and semi-terrestrial land crabs (Burggren 

and McMahon, 1988) and terrestrial amphipods (Friend and Richardson, 

1986; Spicer et al., 1987).

Many species of decapod crustacean are known to construct permanent or 

semi-permanent burrows (as opposed to burying) in soft sediments 

(Atkinson and Taylor, 1988; and reviews below), including 

astacids, nephropids, alpheids and brachyurans. Probably the most 

adapted, however, (and possibly the most ecologically important; see 

below) are the thalassinids (infraorder Thalassinidea (Crustacea, 

Decapoda)). Although the ecology of mud-burrowing decapods is now 

being studied (Atkinson and Taylor, 1988; and further references 

below), the physiology of this group is not well-known. In the burrows 

of aquatic decapods (including those of thalassinids), oxygen 

availability is often limited (Atkinson and Taylor, 1988); thus the 

respiratory physiology of thalassinids is of particular interest. The

3



aim of this study was to examine the physiological ecology and 

ecological physiology of thalassinids, using a holistic approach 

comparable to those used for the select crustacean groups cited above. 

The axiid thalassinid Calocaris macandreae Bell (Fig. 1.1) was selected 

for the experimental work of the thesis since it is abundant in the 

Clyde Sea Area (and can be caught comparatively easily); some aspects 

of its general biology are well known (see below); and it is of 

considerable ecological significance (Buchanan, 1963; Buchanan and 

Warwick, 1974; Smith, 1988; further references and discussion below). 

(Hereafter, 'Calocaris' in the text refers to Calocaris macandreae.)

Following the precedents set in the previous crustacean literature, the 

discussions below follow both comparative and adaptational themes. It 

is intended, however, that the limitations inherent in both approaches 

will be made clear in the general discussion (Chapter 7). The 

evolutionary context of the ecological physiology of thalassinids will 

also be considered.

4



FIG. 1.1 Calocaris macandreae in burrows in the laboratory. 

Carapace length approximately 18 mm.





1*2 Aims, and contents fil thesis.
1. To collate and review the literature concerned with the ecology 

(with particular emphasis on the ecology of burrowing in soft 

sediments) and respiratory physiology of the Thalassinidea (remainder 

of Chapter 1, and following chapters). In order to provide an overview 

of thalassinid biology, the systematics, basic ecology and U.K. 

distribution of the Thalassinidea, and megafaunal burrowing ecology are 

briefly reviewed below.

2. To study a range of behavioural, ecological, morphological, 

physiological and metabolic characteristics of a selected thalassinid 

species (Calocaris macandreae). The results of studies of the burrow 

ecology (Chapter 2), branchial morphology (Chapter 3), respiratory 

physiology (Chapter 4), respiratory gas transport (Chapter 5) and 

anaerobic metabolism (Chapter 6) of this species are presented below.

3. To relate the ecology and physiology of Calocaris macandreae and 

other thalassinids to the burrowing habit (with particular emphasis on 

respiratory characteristics).
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Lul Thalassinid svstematics
After more than a century of debate (see reviews of Borradaile, 1907; 

Caiman, 1909; Gurney, 1942), the status of the thalassinid group is now 

generally accepted as intermediate between order and family (i.e. 

Infraorder Thalassinidea Latreille, 1831; Superfamily Thalassinoidea 

Latreille, 1831). The thalassinids have affinities with both the 

anomolans (i.e. the Anomura of Borradaile without the thalassinids) and 

the astacids (Gurney, 1942; Schram, 1986). The classification of the 

thalassinids used here (with example genera) is that proposed by Bowman 

and Abele (1982):

Infraorder Thalassinidea Latreille, 1831

Superfamily Thalassinoidea Latreille, 1831

Family Axianassidae Schmitt, 1924; Axianassa

Axiidae Huxley 1879; Axius, Calocaris, Axiopsis, etc. 

Callianassidae Dana, 1852; Callianassa, etc.

Callianideidae Kossmann, 1880; Callianidea 

Laomediidae Borradaile 1903; Nausbonia, Jaxea, Laomedia 

Thalassinidae Latreille, 1831; Thalassina 

Upogebiidae Borradaile, 1903; Upogebia

The Axiidae is the largest and most diverse family in the Thalassinidea 

with at least 200 species (Saint-Laurent and Le Loueff, 1979), although 

the systematics of the family are so confused that an estimate of the 

number of genera is impossible. It has been noted by several recent 

authors (e.g. Saint Laurent, 1972, 1979; Poore and Griffin, 1979; 

Kens ley, 1980) that the taxonomy of the Axiidae is in urgent need of 

revision, especially with regard to generic status. The most complete 

description of the Axiidae is still the monograph of de Man (1925), 

although Poore and Griffin (1979) give a more recent catalogue of the

6



Australian species.

Borradaile (1903) classified the axiids into the following genera: 

Axius (subgenera Axius, Icoaaxiopsis, and Eiconaxius, Neaxius and 

Paraxius) , Axiopsis, Calocaris (subgenera Calocaris and Calastacus) and 

Scytoleptus. De Man (1925) subsequently simplified Axius into the 

subgenera Axius (Axius) (with pleurobranchs), and Axius (Neaxius) 

(without pleurobranchs). Borradaile's genus Axiopsis (redefined by 

Sakai, 1986) is now divided into the subgenera A. (Axiopsis) (type- 

species A. (A.) serratifrons A. Milne Edwards, re-defined by Kensley, 

1980) and A. (Paraxiopsis) (type-species A. (P.) brocki (de Man)).

Although de Man (1925) considered Calocaris, Calastacus and Axiopsis as 

subgenera of Axius, all three taxa are now usually recognised as 

distinct genera. Boesch and Smalley (1972) emphasised the similarities 

between Calastacus and Axiopsis (Axiopsis), while Calocaris and 

Calastacus were differentiated by Saint Laurent (1972). However, of 

the 11 species of Calastacus known in 1980, only 2 can be assigned to 

Calastacus as defined by Saint Laurent (Kensley and Gore, 1980). 

Clearly, taxonomic relationships within the major axiid groups Axius 

(Axius/Neaxius) and Axiopsis/Paraxiopsis/Calocaris/Calastacus remain 

confused. The position of Calocarides (Wollebaek, 1908) also remains 

unclear. The genus Coralaxius has affinities with the Axiopsis group 

but is distinctive in many characteristics (for example, the reduced 

branchial formula; Kensley and Gore, 1980). Similarly, Axiorygma is 

related to Axiopsis but has sexually dimorphic chelipeds, and no 

appendix masculina in the male (Kensley and Simmons, 1988). The 

genus Oxyrhynchaxius from Japan may be closely related (Sakai, 1986) to 

Calocaris/Calastacus.
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Hermaphroditism in axiids (see review below for Calocaris macandreae) 

is restricted to the Axiopsis/Paraxiopsis/Calocaris/Calastacus group. 

However, most descriptions are confined to external sexual 

characteristics such as the presence of male appendix masculina on 

pleopod 2, female gonopores on pereiopod 3 and the condition of the 

first pleopod. The presence of these characters within the Axiopsis 

group is reviewed by Kensley and Gore (1980).

The Callianassidae is another large family, with at least 150 (probably 

now close to 200) described species (Saint-Laurent and Le Loueff, 1979). 

Saint-Laurent (1973) divided the Callianassidae into two sub-families, 

Callianassinae (the genera Callianassa, Callichirus, Gourretia, 

Calliax, Anacalliax, Callianopsis, Calliapagurops and Ctenocheles) and 

Callianideinae (the single genus Callianidea). Later additions to the 

Callianassinae include the genera Paracalliax (Saint-Laurent, 1979), 

Glypterus (redefined as a distinct genus by Manning and Felder, 1986), 

Corallianassa (Manning, 1987) and Neocallichirus (Sakai, 1988). At 

present, therefore, there are 12 genera in the Calianassinae. Bowman 

and Abele (1982) have restored the family Callianideidae to contain 

Callianidea.

The Upogebiidae is usually considered monogeneric (Saint-Laurent and 

Le Loeuff (1979), although the genus Upogebia contains over 75 species. 

The Thalassinidae and Laomediidae are small, but generally recognised 

families with one and three genera respectively. The status of the 

Axianassidae is still unclear. However, pending a more complete 

revision of the Thalassinidea, the classification of Bowman and Abele 

(1982) is currently accepted.
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The phyletic relationships between the families of the Thalassinidea 

remain unclear. It is generally accepted that there is a greater 

similarity between the Axiidae and Callianassidae than between the 

remaining families (Saint Laurent, 1973). This hypothesis is supported 

by evidence from larval development patterns (Gurney, 1942) and 

branchial formulae (Burkenroad, 1981). Although Saint Laurent (1979) 

established the superfamily Axioidea (to include the Axiidae,

Callianideidae and Callianassidae), this classification has not been 

widely accepted (Manning, 1987).

The thalassinids are an ancient group within the decapod Crustacea, and 

are relatively well represented in the fossil record as a result of the 

burrowing habit (which is favourable to the probability of

fossilisation; Schram, 1982). The earliest decapod fossil discovered 

so far dates from the Lower Devonian (approximately 350 million years 

before present; Schram et al., 1978). Most of the major decapod 

families are present in the Jurassic (130 - 180 m.y.b.p.), implying

that major radiation occurred between 250 and 200 million years ago. 

The Thalassinidea are first represented as Jurassic fossils (Schram, 

1986). The axiid genera Etallonia, Magi la and Protaxius have been 

described from upper Jurassic deposits in Germany and England

(Glaessner, 1969). The axiid Schlueteria and the callianassid

Protocallianassa are more recent fossils from the upper Cretaceous

(Glaessner, 1969). The ancestral phylogeny of the thalassinids is 

also discussed by Burkenroad (1963), who speculates that the common 

axiid/callianassid ancestor had two pairs of chelae and a linea

thalassinica. Burkenroad also speculates that the thalassinids are

closely related to the glypheids (infraorder Palinura).
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1 A  Thalassinid Ecology

To some extent, the zoogeography of the thalassinids suggested by the 

literature reflects the distribution of marine laboratories throughout 

the world. The systematics of the thalassinids have been studied 

around the Soviet Union (Makarov, 1938); in the North-East Atlantic and 

Mediterranean (Balss, 1926; Gustafson, 1934; Poulsen, 1941; Holthuis

and Gottlieb, 1958; Saint-Laurent and Bozic, 1976); the North-West

Atlantic (Williams, 1984); the South-East Atlantic (Kensley, 1974; 

Saint-Laurent and Le Loeuff, 1979); the South-East Atlantic and

Caribbean (Biffar, 1971; Rodrigues, 1971; Kensley, 1980; Kensley and 

Gore, 1980); the east Pacific (Williams, 1986); Japan (Sakai, 1962, 

1967, 1969 etc; Ohshima, 1966); Australia (Poore and Griffin, 1979);

and New Zealand (Wear and Yaldwyn, 1966). Further references to the 

taxonomy of thalassinids from these areas, and from South America and 

the Indo-Pacific region, are given in the sources cited above

(particularly Saint-Laurent and Le Loeuff, 1979; Poore and Griffin, 

1979).

There is little information concerning the bathymetric distribution of

thalassinids. Almost all studies have used material collected from

intertidal and shallow sublittoral (0 - 100 m) locations, in which 

thalassinids appear to be almost ubiquitous wherever soft sediments 

occur. Within fjordic systems and in the Skagerrak, the vertical 

distribution of the thalassinids (especially axiids) extends to at 

least 1000 m (Poulsen, 1941; Soot-Ryen, 1955). The callianassid genus 

Ctenocheles has a deep water distribution (100 - 800 m: Holthuis,

1967). (There is an interesting similarity between the unusual shape

of the chelae of Ctenocheles and the deep water astacid 

Thaumastocheles.) Observations of burrows in the deep sea (e.g. Heezan 

and Hollister, 1971), which are probably due to astacid (nephropid or
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thaumastochelid) or thalassinid crustaceans, suggest that the burrowing 

habit extends to very deep water.

All thalassinids so far studied (with respect to their ecology) occupy 

a secretive habitat, either burrowing in soft sediments (by far the 

majority of species), apparently boring in soft rocks (noted in 

Upogebia deItaura; P.J. Schembri, pers. comm, to R.J.A. Atkinson), or 

boring and/or occupying crevices in sponges and scleractinian corals. 

The ecology and physiology of thalassinids which burrow in soft 

sediments are the major themes of this thesis. At least five species 

of Upogebia (Scott et al., 1987) and at least one axiid (Coralaxius 

abelei: Kensley and Gore, 1980) have been described from coral cavities 

and siliceous sponges. There appear to be some morphological 

adaptations in the Upogebia species to coral- boring, including possible 

boring glands in the second pereiopods (Scott et al., 1987).

JLJL British Thalassinids.
Nine species of the Infraorder Thalassinidea have been recorded 

from U.K. waters (Allen, 1967). Following more recent nomenclature 

these are:
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Family AXIIDAE Huxley
Genus Axius Leach

Axius stirhynchus Leach 
Genus Calocaris Bell

Calocaris macandreae Bell 
Genus Calocarides Wollebaek

Calocarides coronatus (Trybom) 
Family LAOMEDIIDAE Borradaile

Genus Jaxea Nardo
Jaxea noctuma Nardo 

Family CALLIANAS SIDAE Dana
Genus Callianassa Leach

Callianassa subterranea (Montagu) 
Callianassa tyrrbena (Petagna)

(= C. laticauda Otto 
= C. stebbingi Borradaile)

Family UPOGEBIIDAE Borradaile
Genus Upogebia Leach

Upogebia deltaura Leach 
Upogebia stellata (Montagu) 
Upogebia pusilla (Petagna)

(= U. littoralis (Risso))

Axius stirhynchus Leach occurs around Ireland (Selbie, 1914) in the 

Channel Islands (Sinel, 1906), along the south coast of England (Bell, 

1858; Norman and Scott, 1906; Plymouth Marine Fauna, 1957;) and on both 

coasts of the Severn Estuary (Boyden et al, 1977; pers. obs.) where it 

constructs burrows in muddy sediments underneath and between boulders. 

As part of the present study, after several days of searching, only one 

specimen of A. stirhynchus was collected on a shore composed of large 

granite boulders overlying mixed muddy sediment near Porlock Weir, 

Somerset. Burrows were apparently more common, however, and were 

present from approximately mid-tide level downwards. Attempts to flush 

animals out of burrows were unsuccessful, as were attempts to resin- 

cast the burrows since the casts could not be removed from underneath 

the boulders. The single specimen was taken back to Glasgow University 

where it constructed a burrow in soft mud consisting of a vertical 

shaft about 40cm long, with subsequent horizontal development. The 

animal survived for several months. Another specimen of A. stirhynchus 

from the Severn Estuary (Sully Island, near Cardiff) was kept in an
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aquarium where it constructed a U-shaped burrow 10cm deep (R.J.A.

Atkinson, pers. comm.)*

Axius stirhynchus has also been recorded subtidally from off the 

Norfolk coast (Hamond, 1971; Ellis and Baker, 1972); being collected in 

shrimp trawls in 1903, 1907, 1962 and 1971. Ellis and Baker (1972) 

kept two of the 1971 specimens for several months and reported the 

burrowing behaviour although the extent of burrow construction appears 

to have been limited by the conditions provided (sand underneath an 

irregularly shaped flint stone). They observed A. stirhynchus to line 

the burrow with soft brick pellets "balled with mucous secretions". No

behaviour of this kind was noted in the Porlock specimen although

burrow construction was more extensive.

Axius stirhynchus also occurs subtidally in the Clyde area although 

only one specimen has been captured (Allen, 1967). Larvae of A.

stirhynchus have been recorded in plankton samples from around the Isle 

of Man (Bruce et al, 1963). Since abbreviated larval development is 

typical of the Axiidae (Gurney, 1942) , this may imply the existence of 

unreported adult populations.

The distribution and ecology of Calocaris macandreae will be considered 

below. Calocarides coronatus is included in the British fauna (Allen, 

1967) but appears to occur mainly in colder waters. Balss (1926) gives 

Scandinavian and USSR records.

The laomediid Jaxea noctuma appears to be present only in scattered 

locations around the south and west U.K. and Ireland (Selbie, 1914)

although it is common in parts of the Adriatic (Pervesler and 

Dworschak, 1985). Rawlinson (1938) summarises the U.K. records of J.
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nocturna to that date, all of which consist of single or very few 

specimens. The recorded distribution of J. noctuma larvae suggests 

that the distribution includes the Firth of Clyde (see Allen, 1967), 

the Irish Sea and the English South coast. In 1949-50 several 

specimens were reported from the Irish Sea south-west of Sellafield in 

mud at 25m (Bruce et al, 1963).

Jaxea noctuma has recently been discovered burrowing in soft muds in 

Loch Sween, Argyll (Atkinson, 1987; pers. obs.) although its presence 

was previously suspected from plankton samples (Kerr, 1912). The 

burrows constructed by J. noctuma at this site were different in some 

respects from the Adriatic burrows characterised by Pervesler and 

Dworschak (1985), and varied between different sites within the loch. 

J. noctuma were observed on the sediment surface during a period of 

low light intensity. J. noctuma has been found in the stomach 

contents of whiting (Plymouth Marine Fauna, 1957), gurnard and witch 

(Allen 1967) and sea scorpion (J.A. Allen and R.J.A. Atkinson, pers. 

comm.).

Rawlinson (1938) kept a living specimen of Jaxea noctuma in the 

laboratory for almost 4 months, although she did not provide adequate 

conditions for burrow formation, and no significant feeding was 

observed. To date, no live specimens have been captured from the Loch 

Sween population, although in 1986 an animal was taken from Loch Creran 

(C.J. Smith, pers. comm.).

The taxonomy of Callianassa subterranea has been somewhat confused in 

the past (Selbie, 1914; Makarov, 1938) leading to further confusion in 

the ecological literature. C. subterranea was first described by
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Montagu (1808) burrowing in estuarine sand at a depth of nearly two 

feet. Bell (1858, quoting Thompson) records C. subterranea from fish 

stomach contents taken off County Down, Ireland. More recently C. 

subterranea has been recorded from the Plymouth area sublittoral and 

littoral, including Zostera beds (Plymouth Marine Fauna, 1957). In 

Brittany, a species of Callianassa is common in Zostera beds; (J.-P. 

Truchot, pers. comm.); this is most probably C. tyrrhena. Selbie

(1914) lists European records of C. tyrrhena (as C. stebbingi), and 

considers the occurrence of C. subterranea doubtful north of the

English south coast. Recent records, however, have been ascribed to C. 

subterranea (see Lutze, 1938; Saint-Laurent and Bozic, 1976).

It now seems likely that Callianassa subterranea is typically a 

sublittoral burrowing species (Lutze, 1938). C. subterranea is a 

fairly common component of the burrowing megafauna in several Scottish 

sea lochs and in the Clyde Sea Area (Farrow et al, 1979 (mounds); Nash 

et al, 1984; Atkinson, 1986). The burrow is highly characteristic with 

a vertical shaft (40-60 cm long) leading to a complex labyrinth of 

interconnecting tunnels (see also Chapter 2). The animal is rarely

trapped during resin casting (R.J.A. Atkinson, pers. comm.) and, to

date, attempts to catch specimens by coring, flushing burrows with a 

variety of solutions, and 'fishing’ (as described by de Vaugelas, 1985) 

have failed. A single specimen was caught during the present study, 

using an anchor dredge at 25 m depth near the Lion Rock, Isle of 

Cumbrae (Firth of Clyde). Another specimen of C. subterranea has been 

taken from close to the Garroch Head sludge dumping ground, by Craib 

core, and was maintained in sand (where it promptly burrowed out of 

sight) for several months (B.J. Bett, pers. comm.). In addition, a 

small specimen was present in a mud tank at Millport although this was 

not realised until the burrow had been resin-cast along with those of
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other species (R.J.A. Atkinson, pers. comm.).

Callianassa tyrrhena has been recorded from sandy mud around Lundy in 

the U.K. (Hoare and Wilson, 1976; Atkinson and Schembri, 1981). In 

addition, two right chelipeds of C. tyrrhena were taken from muddy sand 

around the Isle of Man, in 1912 and 1952 (Bruce et al, 1963). C.

tyrrhena is also present in intertidal locations around the Channel 

Islands, and is the most abundant thalassinid in the Robertson 

collection from that area (curated at Millport). However, this species 

is mainly found in the Mediterranean (Saint-Laurent and Bozic, 1976; 

Saint-Laurent and Le Loeuff, 1979; Dworschak, 1987).

Upogebia stellata and U. deItaura have often been confused (Selbie, 

1914). Although Montagu (1808) considered U. stellata to inhabit the 

subterraneous passages made by Solen vagina, U. stellata was recorded 

by Leach (quoted by Bell, 1853), burrowing on the coast of Plymouth 

Sound, "under the mud of which it makes long winding horizontal 

passages, often of a hundred feet or more in length". The Plymouth 

Marine Fauna (MBA, 1957) records U. stellata and U. deltaura co

occurring in some locations (e.g. extreme low water springs, Salcombe 

harbour) although in other areas only one species occurs. This source 

also records U. stellata taken in a lobster pot from Plymouth Sound, 

and an exceptional case of 186 specimens of U. deltaura cast ashore 

after a heavy gale. Both Upogebia species have been recorded from a 

variety of fish stomachs (skate, dogfish and cod: Bruce et al, 1963;

unnamed fish: Plymouth Marine Fauna, 1957; cod: Allen, 1967; Tunberg, 

1986). The distribution of U. stellata and U. deltaura is summarised 

by Eales (1931) as North, East and South coasts. Selbie (1914) has 

recorded U. deltaura (but not U. stellata) around the coast of Ireland.
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The ecology of U. deltaura burrowing in sandy sediments off Sweden has 

been studied by Tunberg (1986).

Allen (1967) includes Upogebia pusilla (= U. littoralis) in the British 

fauna, as it occurs rarely, on the south and south-east coasts of 

England. Makarov (1938) gives a distribution of the Black Sea, 

Adriatic, Mediterranean and Portuguese and SW French coasts, and states 

that the species is not found north of the English Channel. The 

species has been studied in the Adriatic by Ott et al (1976) and 

Dworschak (1981, 1983, 1987).

In conclusion, it is likely that thalassinids are much more common in 

U.K. waters than the distribution records would suggest. Most records 

are from intertidal habitats although it is possible that the main 

populations are sublittoral. The available evidence suggests that 

Axius stirhynchus, Jaxea noctuma and Callianassa subterranea all 

construct very deep burrows and are unlikely to be caught by dredges 

and grabs employed in normal benthic sampling. In addition, the 

Upogebia species may inhabit areas of coarser sediment (possibly mixed 

with, or adjacent to mud) or maerl which have been little studied

(Tunberg, 1986; R.J.A. Atkinson, pers.comm.).

Axius stirhynchus, Jaxea noctuma, Callianassa subterranea and C.

tyrrhena appear to be limited to southern and western coasts and 

sublittoral of the U.K., probably representing the northern limits of a 

Lusitanian distribution. In contrast Calocaris macandreae, Calocarides 

coronatus, Upogebia stellata and U. deltaura also occur on the 

northern and eastern coasts and are widely distributed throughout the 

North Sea, the Norwegian fjords, the Kattegat, Skagerrak, Jutland

Peninsula and along the German coast (Wollebaek, 1908; Balss, 1926;
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Gustafson, 1934; Poulsen, 1941). These distribution patterns are 

similar to those described for the U.K. brachyuran crab fauna (Ingle, 

1980). Ekman (1953) includes Calocaris (and other components of the 

Scottish deep mud community, e.g. the sea-pen Funiculina 

quadrangularis) in the relatively cold-water North Atlantic 

archibenthal fauna.

1*6 Calocaris macandreae

This species is almost certainly the most abundant thalassinid on the

continental shelf around the U.K.. It is found at densities of 10 - 30
. om over large areas of soft mud sediment (Chapter 2). Buchanan and 

Warwick (1974) calculated that Calocaris accounted for >90% of the 

benthic productivity of an area off the Northumberland coast. 

Calocaris is usually present at low densities in the shallow (within 

range of SCUBA-diving) areas of Scottish West coast sea-lochs (Chapter 

2, Nash et al., 1984; Atkinson, 1986; R.J.A. Atkinson, C.J. Smith and 

S.J. Anderson, unpub. obs.). However, in deeper areas of the West 

coast, high density populations are present.

Some aspects of the biology of Calocaris macandreae have been studied 

previously. This species is unusual (for a decapod crustacean) in that 

it is a protandrous hermaphrodite (Wollabaek, 1908; Runnstrom, 1925; 

Carlisle, 1960; Buchanan, 1963; Calderon-Perez, 1981). The development 

of the testes and ovaries has been described by Runnstrom (1925) and 

Buchanan (1963) : both testes and ovaries are present in 1-year-old

individuals and these grow at approximately equal rates for the first 3 

years of life. During the 4th year the testes degenerate, leaving the 

vas deferens filled with spermatophores. The ovaries continue to 

mature, and the first eggs are laid in January - February of year 5.
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Egg*laying is then biannual for the life of the individual (8 - 10

years in the Northumberland population: Buchanan, 1963). Calderon- 

Perez (1981) found that both development of the gonads, and life-span 

were shorter in the Irish Sea population. The reproductive behaviour of 

Calocaris has not been observed. Larval development is abbreviated 

(Bull, 1933; Gurney, 1942) and there is probably no significant pelagic 

phase (Buchanan, 1963).

The growth of the commensal ectoproct Triticella koreni on several 

crustaceans (mainly Calocaris and Nephrops norvegicus) was noted by 

Eggleston (1971). The degree of Triticella coverage has been used as 

an indicator of the moult cycle. Nematode parasites of Calocaris have 

been studied by Calderon-Perez (1986).

The only study of the physiology of Calocaris macandreae is that of 

Dries (1975) who measured the rate of oxygen consumption (see Chapter 

4).

1.7 Megafauna1 burrower communities.

The megafaunal burrower communities of the Clyde Sea Area have been 

reviewed by Atkinson (1986); a description which is also applicable to 

most of the Scottish west coast sea-lochs. The somewhat different 

communities found in Loch Sween are described by Atkinson (1987, 1989), 

including work which forms part of this thesis. In most areas of the 

North-Eastern Atlantic and Mediterranean which have been studied, the 

dominant megafaunal burrowers are crustaceans; around the U.K. the main 

species are the lobster Nephrops norvegicus; the crab Goneplax

rhomboides; the thalassinids Calocaris macandreae, Callianassa

subterranea, Jaxea noctuma (and possibly Upogebia stellata and U.
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deltaura) and the amphipod Maera loveni. The burrowing fish Cepola 

rubescens, Lumpenus lampretaeformis and Lesueurigobius freisii and the 

echiurid Maxmuelleria lankesteri may also be present. The large isopod 

Natatolana (= Cirolana) borealis may also construct burrows (T.D. 

Nickell, pers. comm.).

The burrow structures of most of the above species are now relatively 

well known (Chapman and Rice, 1971; Rice and Chapman, 1971; Rice and 

Johnstone, 1972; Atkinson, 1974a; Atkinson, 1976; Atkinson et al., 

1977; Chapman, 1980; Nash, 1980; Atkinson et al., 1982; Nash et al. , 

1984; Smith, 1988). However, very little is known of the ecology and 

physiology of most of the crustacean species (with the exception of 

Nephrops). There is a large (and increasing) literature concerning the 

ecology of Nephrops norvegicus, a species which is of important 

economic value (e.g. review of Chapman, 1980). A limited amount is 

known about the ecology and physiology of burrowing crabs such as 

Goneplax rhomboides (Rice and Chapman, 1971; Atkinson, 1974a, b; 1975; 

Taylor et al., 1985).
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CHAPTER 2. BURROWS, BURROWING BEHAVIOUR AND ECOLOGY OF CALOCARIS 

MACANDREAE 

2.1 INTRODUCTION

The experimental aims of the present study were to conduct an

integrated investigation which would consider the physiological ecology 

of Calocaris macandreae at several levels of complexity (viz. habitat 

and behavioural ecology, branchial anatomy, respiratory physiology and 

metabolism). In order to achieve this end, a knowledge of the

respiratory characteristics present in the burrow environment is

necessary in order to interpret physiological and metabolic responses 

to supposed respiratory stress (i.e. it is necessary to define the

environment, as a baseline for experimental manipulation).

The respiratory conditions within the burrow are a result of a dynamic

equilibrium of oxygen flux into the burrow (mainly by mass flow of

water) and oxygen uptake by the animal and burrow wall sediment. 

Oxygen flux into the burrow is therefore affected both by the physical 

structure of the burrow (i.e. morphology and characteristics of the 

surrounding sediment), and by behavioural responses of the animal (i.e. 

irrigation). Although a quantitative oxygen budget for the burrow was 

not constructed in the present study, the study was aimed at

elucidating some of the parameters which affect oxygen conditions

within the burrow (i.e. burrow morphology, and burrow effects on the 

surrounding sediment). The burrow structure of field populations of 

Calocaris has been described previously (Nash et al., 1984; Atkinson, 

1986), therefore little new work was necessary. This study concentrated 

on burrow development in the laboratory, and measurement of oxygen 

tensions within burrows. Aspects of the behaviour of Calocaris 

macandreae were also examined, with particular reference to effects on

21



respiratory conditions within the burrow.

The morphology of the burrows of thalassinids appears to be correlated 

with feeding strategy, categorised into three major groups by Suchanek 

(1985). The feeding strategy used by Calocaris has been studied 

previously (Buchanan, 1963; Calderon-Perez, 1981), with few firm

conclusions, a further study was therefore made.

Finally, an understanding of the basic biology of an animal is required 

in order to interpret the results of physiological studies. 

Behavioural activity patterns are an important influence on physiology 

and metabolism, as are other characteristics of crustacean biology 

(e.g. moult and reproductive cycles). Some aspects of the ecology of 

Calocaris macandreae are therefore considered below.
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2*2 MATERIALS M U  METHODS.

2*2.1, Ebysicp-chemical parameters the burrow environment.

The distribution of Calocaris macandreae populations was observed at 

several locations, in particular in Loch Riddon (Firth of Clyde; 

lat.55°56'N, long.5°ll’W), and in Loch Sween (Argyll; lat.56°2'N, 

long.5°36'W). These populations were all located within reasonable 

diving depth, at 20 - 30 metres (below chart datum), and all diving- 

based methods used standard SCUBA equipment. In collaboration with Dr 

R.J.A. Atkinson and Miss L.A. Calder, the megafaunal burrow openings 

at several sites in Loch Sween were mapped, using string grids (100 m X 

2 m) deployed on the sea bed. This work is reported in Atkinson (1989), 

and (in part) in this thesis. Further information on the population 

density of Calocaris macandreae in Loch Sween (taken from Atkinson, 

1989) was obtained from underwater TV videos (for methodology, see 

Atkinson, 1989). The population density of Calocaris was estimated from 

the density of burrow openings, by assigning each cluster of burrow 

openings to 1 individual. (N.B. in more dense thalassinid populations, 

clustering is not evident and assumptions of average number of openings 

per individual must be made.)

Polyester resin casts were made of burrows in the field using the 

method described by Atkinson and Chapman (1984). A shot-line (weighted 

either with concrete weights, or a 2m X 2m frame constructed from 

'dexion') was lowered to the sea-bed and the sediment allowed to settle 

or be removed by the current. Marker lines were then placed by divers, 

along the sea-bed to groups of burrows which were marked with flags 

placed in the sediment. Funnels (made from plastic cups and buckets) 

were placed around individual openings. In the boat, low viscosity 

polyester resin (Strand Glass 471PA LV or Trylon SP701PA) was mixed
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with catalyst (organic peroxide) to a final ratio of 1 - 27. (by

volume). Mixed resin was then taken to the sea bed and slowly poured

into the marked burrow openings. The resin was allowed to harden for 6 

18 hours before being gently removed from the sediment (the casts 

were easier to remove while still slightly flexible since they become 

brittle when fully set). In addition, the burrow casts in the

collection of R.J.A. Atkinson (mainly made by R.J.A.A., C.J. Chapman

and R.D.M. Nash) were examined.

The behavioural patterns and burrow respiratory conditions of Calocaris 

macandreae were investigated in the laboratory. Animals were caught 

from 50 - 70 m depth in Loch Striven, Firth of Clyde by trawling with a 

ring-dredge or weighted Agassiz trawl. They were introduced to narrow 

aquaria (50 X 15 X 75(depth) cm) which were filled with muddy sediment 

(taken from the Firth of Clyde) to a depth > 40cm. The sea water

temperature was between 8 and 12°C. All sediment tanks were allowed to

settle for at least 6 weeks before use, by which time the majority of

sediment compaction had taken place. An apparent redox potential

discontinuity (RPD) layer developed in most tanks (on the basis of

visual appearance) before burrowing took place. In two tanks, thin 

(<5mm) layers of pale-coloured sand were interspersed with the mud, to 

allow a crude visual estimate of the rate of bioturbation. Any 

Calocaris which had not initiated a burrow within 48 hours were removed 

and replaced.

All observations on burrow conditions and behaviour were made on 

'mature' burrows which had been established for a period of several 

months. One burrow was maintained by a single individual for over 2 

years although most burrows were destroyed by experiments. The length
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of time required for sediment settlement and burrow establishment was a 

limitation on the experiments which could be carried out during the 

project. In addition, it proved impossible to remove animals from 

burrows without damaging the burrow (see below for discussion); this 

factor also limited experimental design. On a few occasions animals 

died within burrows and other individuals were introduced. In general, 

this tactic was avoided for the following reasons:

1. The uncontrolled effects of a decaying Calocaris within the burrow.

2. The possible relationship between animal size and burrow diameter.

3. The possible behavioural effects of previous experience of the 

burrow.

4. The rapidity with which unoccupied burrows collapsed (possibly as a 

result of macrofaunal bioturbation).

The oxygen partial pressure (PO2 ) of the burrow water in laboratory 

aquaria was measured using two different methods. Initially, lengths of 

cannula tubing were pushed through the sediment into the burrow lumen, 

in regions of the burrow which were visible through the aquarium glass. 

Burrow water was siphoned through the tubing until any sediment in the 

tubing had been cleared. Burrow water was then sampled with a syringe, 

or allowed to flow slowly past an oxygen electrode (Radiometer E5046) 

thermostatted at the appropriate water temperature. The main 

difficulty with this method of sampling was positioning the end of the 

tubing with sufficient accuracy, particularly in the deeper regions of 

the burrow. Oxygen electrodes were frequently calibrated, using a 

solution of sodium sulphite in 1% borax (PO2 = 0 Torr) and aerated sea 

water (PO2 = 155-160 Torr).

An alternative method used, was to drill holes directly through the 

plastic sides of the aquaria and glue hypodermic needles (gauge 21G) in
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place using rapid Araldite adhesive. In most cases satisfactory 

sealing of the needles could be managed despite the hydrostatic 

pressure present at depth in the burrow. Both methods of burrow water 

sampling involved some degree of disturbance to the animal and burrow 

structure. Usually the animal 'investigated' the tubing or needle end 

and occasionally managed to block it with sediment. In general, 

however, the placement of a water sampler did not result in major 

changes in the burrow structure or obvious changes in animal behaviour. 

No measurements of burrow water parameters were made for several days 

following placement. In all cases the volume of water removed from the 

burrow was as small as possible, in order to avoid flushing the burrow 

artificially. In long-term experiments in which water was siphoned 

past a PO2 electrode for several days, flow rates were < 10 ml.h *.

Two main patterns of PO2 measurement were attempted. In the first, the 

aim was to establish the gradient of PO2  throughout several complete 

burrows giving an estimate of the extremes of PO2 which may be

experienced by Calocaris. In addition, PO2 was measured from single 

points in a few burrows over time periods of several days, in order to 

assess the temporal variation in respiratory conditions within the 

burrow (i.e. whether respiratory conditions are 'steady-state' or

actively regulated).

An additional experiment was carried out in which the surface openings 

to a lab burrow were destroyed by stirring the aquarium sediment to a 

depth of 2 cm, resulting in a decline in the burrow water PO2 . The PO2

of the burrow water in the primary level was monitored until initial

values had recovered.

26



Measurement of burrow PC^'s in field burrows was also attempted- on 

several occasions. The method used was to introduce a length of 

cannula tubing down a burrow entrance as far as possible, and withdraw 

a sample (approximately 5 ml) into a syringe. The PO2 of these samples 

was then measured as soon as possible by a thermostatted PO2 electrode 

at the surface. This method was used successfully by Pullin et al. 

(1980) to measure PO2 within the burrows of the fish Cepola rubescens 

in the field. However, Calocaris burrows are considerably smaller, and 

more complex, than those of Cepola and despite considerable effort on a 

number of occasions in Loch Sween and at the Creag Isles (Lynn of 

Lorne), no satisfactory samples of burrow water from Calocaris burrows 

were obtained. The main problem lay in preventing contamination of the 

sample with sediment from the burrow walls: due to the high biological 

and chemical oxygen demands (B.O.D. and C.O.D.'s) of the sediment, any 

contamination would deplete the PO2 of the sample very rapidly.

A few measurements of the CO2 partial pressure (PCO2 ) were made on 

samples of burrow water taken from laboratory burrows. The method was 

similar to that used for single PO2 measurements except that a 

thermostatted PCO2 electrode (Radiometer E5037) connected to a 

Radiometer PHM 73 meter) was used. The meter was calibrated using sea 

water samples equilibrated to gas mixtures of known PCO2 , made using 

the Wosthoff precision gas mixing system (see Chapter 5).

Some physico-chemical properties of the sediment surrounding burrows 

were also investigated. Sediment samples were obtained from around 

field burrows by taking large cores, centred on a burrow openings. 

Cores were taken using lengths (50cm) of 25 cm diameter PVC drainpipe 

(area = 0.196 m ), and also using stainless steel Senckenberg box cores 

(area = 112.5 cm^) (Bouma, 1969), from depths of 15- 20 metres by
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diving at several sites in Loch Sween. The cores were positioned to 

include one or more burrow openings which appeared from size and 

configuration to belong to Calocaris macandreae. At the surface, the 

cores were sectioned and paired samples (2g) of sediment taken from 

areas of the section adjacent and distant to the burrow lumen. The 

sediment samples were immediately frozen.

Sediment samples were analysed for organic carbon content by wet 

chromic acid oxidation (Appendix 1), following the method of Walkley 

and Black (1934) as described by Buchanan (1984). This is a 

modification of the Schollenberger technique, in which the sample is 

digested with a chromic acid-sulphuric acid mixture and the excess of 

chromic acid not reduced by the sediment organic matter is titrated 

with a standard ferrous salt. Paired measurements were made of the 

redox potential (Eh) of the sediment adjacent and distant to the burrow 

at various depths in the core. A method similar to that described by 

Pearson and Stanley (1979) was used. The electrode (Russell pH Ltd.) 

was calibrated in a ferrocyanide-ferricyanide redox buffer (Zobell 

1946) between readings. Readings were taken with a standard 5 mm 

penetration of the electrode tip into the sediment. The electrode was 

mounted in a Palmer stand, since it was found that the redox potential 

varied considerably over small distances in the sediment.

A series of redox profiles (at a vertical interval of 10 mm) were also 

measured through sediment columns (containing burrows) in the 

laboratory. The electrode, mounted in a Palmer stand, was wound down 

directly through the tank sediment, as close to the tank wall as 

possible. This allowed the redox measurements to be related to the 

electrode position relative to a burrow. This procedure also avoided
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possible disturbance to the sediment as a result of coring, although an 

alternative source of error exists as the electrode may push a plug of 

sediment ahead of itself (J.B. Buchanan, pers. comm. to 

R.J.A. Atkinson).

2*2.2, Behavioural patterns of Calocaris macandreae within the burrow. 
The behavioural patterns shown by Calocaris were observed in 

individuals which had established burrows in laboratory aquaria as

described above. Only individuals which had been established for a

period of several months were used.

Closed-circuit TV recordings were made of Calocaris using a low-light 

sensitive video camera (National CCTV WV1350) connected to a time-lapse 

VHS video recorder (National 5031). This system allowed up to 48 hours 

of continuous recording to be made. The pan, tilt and focal length 

(zoom) of the camera could be remotely controlled to minimise 

disturbance to the animal during recording.

The behaviour patterns recorded were analysed in terms of functional

descriptions which were subjectively defined. The behavioural 

categories used were:

BURROWING: the animal shows behaviour obviously related to burrow

construction and maintenance (i.e. movement of sediment).

LOCOMOTORY: the animal shows locomotory behaviour which is not

obviously related to burrow maintenance. This often takes the form of 

consistently repeated 'patrolling1 of the burrow, and results in 

periods when the animal is out of sight. (N.B. some 1piston-action' 

irrigation of the burrow may result from this activity).

PREENING: the animal makes grooming movements involving mainly the

maxillipeds and 1st and 2nd pereiopods. (N.B. observations showed that
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berried individuals may spend > 75% of the time grooming the pleopods 

and eggs. Berried individuals were therefore not used in further 

experiments. It is possible that preening has been confused with 

feeding activity to some extent. Definite feeding behaviour (i.e. 

manipulation of food by the mouthparts, and ingestion) could not be 

observed at the magnifications used in video recording).

IRRIGATION: The animal beats the pleopods in a characteristic,

sustained manner. The uropods and telson are usually raised so that 

the abdomen assumes a horizontal posture.

STATIONARY: the animal makes no obvious movements.

The investigation of feeding behaviour in Calocaris required close 

examination of the animal, and was therefore based on visual 

observations from close to the aquarium wall, or video recordings using 

a longer focal length lens (with associated loss of field of view). 

Feeding time was therefore included in the 'stationary' or 'preening' 

categories described above.

There is a limitation to the approach outlined above in that the

behavioural patterns may only be recorded and categorised while the

animal is in a visible part of the burrow. The time during which 

recording is possible is not necessarily representative of the complete 

behavioural repertoire of the animal. Recordings were made of four

individuals for periods of 24 - 48 hours during which the animals were

visible for 60 - 75% of the time. Visual observations made while the 

animal was in parts of the burrow not visible to the camera, suggested 

that the video recordings represent as valid a sample of the total 

behaviour as was possible. It was felt that the alternatives, such as 

using very narrow tanks (forcing the burrow contruction to follow the
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tank sides) or using transparent artificial burrows, would not result 

in 'natural' behavioural responses.

The irrigatory activities of Calocaris in burrows were of particular 

interest. The position in the burrow, and the direction of irrigatory 

flow were noted during bouts of pleopod beating in 'normal' conditions. 

Some attempts were made to measure the rate of burrow water flow using 

thermistor probes (as used for bivalve ventilatory flow (Brand and 

Taylor, 1974), and for burrow irrigation by the burrowing crab Corystes 

cassivelaunus (Bridges, 1979) and the snake blenny Lumpenus 

lampretaefomis (Atkinson et al., 1987)). However, these proved 

susceptible to random fluctuations in water temperature and were not 

sufficiently sensitive to detect flow in this study. Further attempts 

were made to use tracer dyes (of various types), without success. The

movement of dyes within the water column and burrow suggest that the

rate of dye (and oxygen) diffusion may exceed that of active

irrigation.

The behavioural response of Calocaris to a decline in the PO2 of the 

water column was investigated by bubbling N2 gas through the tank 

water. Burrow PO2 was recorded at a burrow position in which the 

animal spent a relatively large amount of time. The behavioural

patterns of two individuals were analysed (as described above) in 

response to this experimental stress.

2.2.3. General BjQjggy^

During the course of this study, some observations on the general 

ecology of Calocaris macandreae in the Clyde Sea area were made. Since 

a regular sampling programme was not maintained, no attempt was made to 

record parameters such as carapace length, weight or catch size (which
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may possibly be related to population density) or to make systematic 

observations on the reproductive and moult-cycle status of the 

population. These aspects of the biology of Calocaris have already 

been studied by Buchanan (1963) and Calderon-Perez (1981) in 

Northumberland and Irish Sea waters.

The feeding ecology of Calocaris is the subject of some debate 

(Elmhirst, 1935; Buchanan, 1963; Calderon-Perez 1981). A brief effort 

to collect additional data on the diet of Calocaris was made by 

examining the gut contents of 20 individuals.



1.2L. RESULTS

2.3.1. Burrow distribution, structure and sediment effects.

A typical pattern of openings to burrows of Calocaris macandreae is 

shown in Fig. 2.1. Burrow openings take the form of circular holes in 

the sediment, leading to a short vertical shaft, as described by Nash 

et al (1984) and Atkinson (1986). The openings to Calocaris burrows 

often show a distinct pattern of groups of three, resulting from the 

mean number of openings/burrow and from the basic tripartite junction 

form of more complex burrows (described below). This pattern is shown 

in maps of megafaunal burrow openings at two sites in Loch Sween (Fig. 

2.2; for site locations see Fig. 2.3).

The population density of Calocaris macandreae and the presence of 

other megafaunal burrower species, estimated from the number of burrow 

openings, at 15 sites in upper Loch Sween is shown are Table 1. The 

site locations are shown in Fig. 2.3; sediment parameters measured at 

several sites are given in Appendix 2.

Calocaris macandreae occurred only at comparatively low densities in 

Loch Sween (see below) and was absent at many sites. Most of the 

benthic communities of upper Loch Sween were dominated by the burrows 

of the thalassinids Jaxea noctuma and Callianassa subterranea, and 

the echiurid Maxmuelleria lankesteri. The possible reasons for this 

unusual burrowing megafaunal community are discussed in greater detail 

by Atkinson (1987, 1989).

A few populations of Calocaris macandreae were found in very shallow

water, <10 m, during the course of the present study. In particular, a
. 2population with a burrow density of approximately 10 - 15 openings.m 

was found in a restricted area of Loch Dunvegan, Isle of Skye
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FIG. 2.1 Burrow openings of Calocaris macandreae in muddy 

sediment at approximately 80 m depth, Firth of Clyde. Scale 

bar 5 cm. (Photographed by Department of Agriculture and 

Fisheries for Scotland).





FIG. 2.2 Burrow distributions mapped by diving at site 7

(Achnamara Arm) and site 13 (Sailean Mhor) in Loch Sween.
2Each square is 1 m . Symbols are indicated in the key. The 

depths are c. 15 m and c. 19 m below chart datum 

respectively. Site locations are given in Fig. 2.3. (Taken 

from Atkinson, 1989).
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FIG. 2.3 Upper arms of Loch Sween showing the study sites 

(numbered solid circles). The dotted lines indicate Chart 

Datum, except in the case marked P where the dotted line 

delimits a sub-surface rock pinnacle (2.7 m below C.D.). 

For detailed bathymetric information refer to Admiralty Chart 

No. 2397. (Taken from Atkinson, 1986).
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9TABLE 2.1 Population densities (individuals. m ) of 

Calocaris macandreae, Nephrops norvegicus and 'mound- 

builders' (Callianassa subterranea, Jaxea noctuma and 

Maxmulleria lankesteri) at 15 sites in Loch Sween. (For site 

numbers refer to Fig. 2.3). Population density estimated 

from observations made by diving (taken from Atkinson, 1986) 

and 200 m x 1 m TV transects (taken from Atkinson, 1989).
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(lat.57° 38.0'N, long.6° 26.5'W), at a depth of 7-8 m. Another such
- 2population was found, with a much lower density (< 1 entrance.m ) at a 

depth of 7 m in the Achnamara arm of Loch Sween.

An example of a Calocaris macandreae burrow resin-cast is shown in 

Fig. 2.4. Although there was considerable variation in the precise 

morphology of burrow casts, there was a general pattern of burrow form 

that conformed to the description of Nash et al. (1984). Using the 

terminology of Frey (1973), the burrows consisted of a complex of 

vertical shafts and horizontal tunnels. Calocaris burrows take the 

form of a primary level of a complex of U-shaped tunnels, opening to 

the sediment surface via vertical shafts (Fig. 2.4, 2.5). The tunnels 

are connected by characteristic tripartite junctions. In most field 

burrows, a deeper secondary level of development was present, 

consisting of slightly wider tunnels connected to the primary level by 

vertical shafts. In the most developed burrow casts, circular galleries 

are present in the secondary level (Fig. 2.5F). Typically, the primary 

burrow horizon was located at a depth of 10 - 15 cm sediment depth, 

with secondary development at 20 - 25 cm. All shafts and tunnels were 

approximately circular in cross-section.

Well-developed mounds (cf. Callianassa subterranea, Jaxea noctuma or 

Maxmuelleria lankesteri) were never observed at the surface openings of 

Calocaris burrows although low mounds and piles of deposited sediment 

were sometimes present in close proximity to the openings.

The development of burrows by Calocaris in laboratory aquaria (Fig.

2.5A - D) usually followed the stereotyped pattern described by Nash et

al. (1984). The initial burrow constructed took the form of a simple

U-tunnel, constructed at the primary level. This was further
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FIG. 2.4 Resin cast of a burrow of Calocaris macandreae. 

Scale bar gradations in cm. (Burrow cast in collection of Dr 

R . J . A .  Atkinson, Millport).





elaborated by the addition of horizontal tunnels and shafts to surface 

openings, joined to the initial tunnel by a series of tripartite 

junctions. In most cases, one shaft of the original ' U' was abandoned 

and collapsed relatively quickly, so that the oldest structure in most 

laboratory burrows consisted of a 'W' formed from an original and a 

slightly later vertical shaft (Fig. 2.5D, E). Development of complex 

secondary burrow systems did not occur in the laboratory (over a 1 year 

time scale), although a few examples were noted of the V-shaped dip 

(Fig. 2.5D, 2.6, 2.7) which appears to precede secondary development in 

field burrow casts.

The few long-term (> 6 months to 2 years) burrows which were observed 

suggest that the development of burrow structure is a continual process 

(Fig 2.6). All parts of the burrow may be abandoned, while new shafts 

and tunnels are continually constructed. The result may be a large

increase (Fig. 2.6B) or decrease (Fig. 2.6A) in burrow complexity. 

Within the burrow, Calocaris carries out a large amount of sediment re

working and movement over short distances. This behaviour may be 

related to feeding activity involving the turn-over and renewal of the 

sediment lining the burrow, and will result in a large bioturbatory 

effect on the sediment surrounding the burrow.

A consistent observation was that non-maintained burrows (or parts of

burrows) collapsed relatively quickly. Abandoned tunnels, or burrows 

in which the resident Calocaris had died, usually collapsed completely 

within 4 - 8 weeks, although the re-establishment of a highly

stratified sediment with a well developed RPD usually took 

considerably longer (> 10 weeks; NB. this is longer than the time

required for newly settled sediment to stabilise). In Figure 2.7,
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FIG. 2.5 Stages in the development of burrows of Calocaris 

macandreae. A - E: successive stages in the development of a

single burrow in a laboratory aquarium. F: detail of

secondary development in a resin cast of a burrow from Loch 

Brollum, Outer Hebrides (burrow cast by C.J. Chapman, DAFS). 

(Scale bars: A - B 5 cm; C - E 10 cm; F 5 cm).
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FIG. 2.6 Changes in structure of the burrows of Calocaris 

macandreae in aquaria. A) Simplification of a burrow over 31 

days. B) Increase in complexity of a burrow over 28 days.

Burrow structure was inferred from parts of the burrow 

visible through the aquaria sides, and from the surface 

configuration of burrow openings. Collapsed burrows are 

shown as dashed lines. Aquarium width 50 cm.
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lighter-coloured areas of sediment (other than the surface oxygenated 

layer) correspond to the position of previous burrows. The relative 

instability of abandoned burrow structures may also contribute to the 

high rate of bioturbation which results from megafaunal burrowing.

The bioturbatory effect suggested by visual observations of sediment 

'patchiness' (due to the presence of areas of black, reduced sediment 

within the sediment column) was confirmed by observations of thin 

layers of sand positioned to act as markers of bioturbation. The 

break-down of a stable sediment stratification, indicated by a sharp 

redox potential discontinuity (RPD) layer (visible as an abrupt change 

in sediment colour and texture), was rapid in the proximity of a newly 

established burrow. Within several days of a burrow penetrating the 

RPD layer, a 'halo' of lighter-coloured sediment was visible around the 

burrow (Fig. 2.7). After several months of burrowing activity within a 

tank, the sediment column became a heterogeneous mixture of patches of 

light and dark (corresponding to oxygenated and reduced) mud. On the 

basis of visual observation through the tank walls, sediment 

heterogeneity was most pronounced on a scale of 1 - 5 cm. This scale 

may correspond to the effects of sequential burrow construction and 

collapse, although the effects of bioturbation by Calocaris were 

blurred by the high degree of macrofaunal (and presumably meiofaunal 

and microfloral) activity present. Similar effects were noted on the 

break-up of artificial sand strata in the sediment. However, in order 

to minimise the effects of layers of coarse sediment on the ability of 

Calocaris to burrow, the sand layers were made so thin ( 2 - 5  mm) that 

macrofaunal activity tended to mix the sand into the surrounding mud 

fairly rapidly (a few weeks).

Some measurements of redox potential and organic carbon content from
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FIG. 2.7 Photographs of sediment columns in previously

burrowed (A) and burrowed (B, C) sediment tanks.

'Oxygenated' sediment appears lighter in colour.
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sediment surrounding Calocaris burrows (and from control areas) at Loch 

Sween are given in Table 2:

TABLE 2.2: FIELD BURROW SEDIMENT PHYSICO-CHEMICAL PARAMETERS.
(in collaboration with L. A. Calder)

Sample description Redox.
<m V )

Z water Z org. C 

(dry wt)

C O N TR O L surface; site 9 (pinnacle) +74 36.6 2.18
20cm; t t f t +314 39.8 2.46
35cm; ft ft +94 40.4 3.12

C O N TR O L surface; site 3 ( L .  a Bhealaich) + 136 40.4 3.66
surface; ft f t +222 28.2 4.05

15cm; ft I f +88 35.1 3.80
15cm; ft ft +83 35.4 3.70

25cm; m ft +77 36.4 3.88
25cm; tt f t +81 38.3 3.65

surface; site 17 ( L .  a Bhealaich) +49 45.3 1.98

10cm burrow; ft tt + 128 52.8 1.98
10cm control; ft tt + 131 55.9 1.94

15cm burrow; ft tt +255 51.8 2.07
15cm control; ft ft + 140 62.0 0.80

5cm burrow; site 17 ( L .  a Bhealaich) + 130 49.8 2.02
5cm control; ft ft +73 50.4 1.95

15cm burrow; tt ft +90 40.5 2.25
15cm control; tt tt +81 49.7 2.04

The field samples from sites 9 and 3 in Loch Sween were taken in close 

proximity to Calocaris burrows, although the cores did not include any 

prominent burrow structures. At both sites the sediment column was well 

oxygenated, despite the very high organic carbon (chromic acid 

oxidation) content. These redox values are in close agreement with 

previous measurements at these sites (Atkinson, 1987), and probably 

reflect the high level of bioturbation which appears to be present.

The paired comparisons of burrow 'halo' sediment and sediment sampled
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further from the burrows at Loch Sween site 17 suggest that the burrow 

'halo' was not significantly more oxygenated than the surrounding 

sediment. Although sediment redox potential may not be directly 

related to oxygenation, the data suggest that the entire sediment 

column was relatively well oxygenated at least to a depth of 15 cm. 

Redox potential profiles measured through aquaria burrows (Table 3) 

followed a similar pattern, with no significant increase in redox 

potential in the burrow 'halo' relative to the surrounding sediment. 

Patchiness on the 1 - 5 cm scale was evident in most redox profiles 

from aquaria sediment columns, supporting the visual evidence described 

above.

TABLE 2.3: 

Depth

AQUARIUM BURROW REDOX PROFILES.

Burrow 1.
Redox potential Comments

Burrow 2.
Redox potential Comments

1cm water + AA1 mV +366 mV
Ocm + A52 1 +367 |
1 + 279 1 dark brown + 130 |
2 + 201 1 diatom film +70 1
3 + 109 1 +61 | mixed
A +8A 1 +55 I brown/grey
5 +7A 1 +65 | diatom film
6 +76 1 +31 |
7 +80 1 +A8 |
8 +85 1 grey + 55 |
8.5 1 +53 |
9 +93 1 + 5A |
9.5 +93 1 +53 | burrow halo
10 +98 1 +50 |
10.5 +95 1 burrow halo +60 |
11 + 100 1 +60 | burrow lumen
11.5 +98 1 +5A |
12.5 +90 1 burrow lumen +32 |
13 +89 1 +23 |
1A +69 1 burrow halo +30 | burrow halo
15 +67 1 + 25 |

Measurements of organic carbon contents of sediment samples from around

field burrows, show only a slight (non-significant) elevation in

carbon of sediment from the burrow walls. However, these samples were

all taken from primary levels of burrows (deepest = 15 cm) and it is
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possible that organic enrichment of the sediment surrounding the deeper 

parts of the burrow may occur.

2.3,2^ Buupy Respiratory Conditions.

Respiratory conditions in the burrows of Calocaris macandreae were 

characterised by the presence of a pronounced gradient of oxygen 

tension from normoxic conditions (PO2 = 150-160 Torr) at the burrow 

openings to severe hypoxia (PO2 = 2 0 - 4 0  Torr) in the deepest parts of 

burrows in aquaria.

There was a high degree of consistency between measurements of PO2 in 

burrows of similar morphology, in aquaria. Most burrows investigated 

contained water with a PO2  of < 40 Torr in the deepest levels, with a 

relatively uniform gradient of oxygen partial pressure between the 

surface and the deepest levels. Therefore, results from only one 

burrow are shown in schematic form in Fig. 2.8.

Long-term measurement of the PO2  of burrow water samples suggest that 

respiratory conditions at any one part of the burrow are likely to be 

relatively stable (Fig. 2.9). There was some evidence of variation and 

possibly regulation of PO2 in 4 of the 10 burrows investigated, with 

changes (usually declines) of up to 30 Torr occurring over 5 - 7 hours 

followed by a more rapid recovery. However, no evidence was obtained 

of any effects of regular irrigation by the animal. Apparent ’cycling’ 

of burrow PO2 shown in part of Fig. 2.9 (approximately the middle of 

the trace; period approximately 50 minutes) reflects animal locomotion, 

with associated water movement. No pleopod irrigatory behaviour was 

observed during this time.
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FIG. 2.8 Oxygen tensions (Torr) measured in a laboratory 

burrow of Calocaris macandreae. Burrow diameter

approximately 2 cm. The PO2 of the overlying water was 157 

Torr.
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FIG. 2.9 Recording of oxygen tension in a laboratory burrow 

of Calocaris macandreae over 7 hours. The catheter was placed 

approximately 15 cm from the nearest burrow opening. No 

pleopod irrigation was observed over the duration of the

recording.

FIG. 2.10 Recording of oxygen tension in a laboratory burrow 

of Calocaris macandreae in which the burrow openings were 

deliberately collapsed (see text for details).
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As discussed above, no reliable values of PO2 were obtained from field 

burrows.

Results from the experiment in which the burrow openings were 

deliberately collapsed are shown in Fig. 2.10. The burrow PO2 (measured 

at 10 cm burrow depth) declined steadily over approximately 2 hours, 

before recovering to initial values over the following 3 - A hours. 

Visual inspection of the burrow confirmed that the start of recovery 

corresponded to the re-establishment of the major burrow entrance.

PCO2 values proved difficult to measure reliably in burrow water 

samples, although the reasons for this are unclear. The few values 

which were obtained were in the range 0.2 - 0.3 Torr, not significantly 

different from air-equilibration values.

Behaviour patterns of Calocaris macandreae 

The relative times spent in various behavioural activities by an 

individual Calocaris in ’normal* conditions are shown in Fig. 2.11. 

These conditions were defined as normoxia in the overlying water 

column and a water temperature of 10-12°C. Behavioural patterns were 

recorded and analysed for three individuals; Fig. 2.11 shows means and 

standard deviations of five periods of observation (each 6 hours) on 

one individual. The behaviour patterns shown by all non-ovigerous 

individuals were similar.

The most common activity pattern shown by Calocaris in terms of 

relative time was the apparently stationary type (43%). Approximately 

equal amounts of time (15 - 20%) were spent in burrowing, preening and 

locomotory behaviour (Fig. 2.11). One egg-carrying individual was 

observed to devote up to 60% of its time preening the pleopods, to

40



FIG. 2.11 The relative time spent in various activities 

(defined in the text) by an individual Calocaris macandreae 

under 'normal' conditions in a laboratory burrow. Error bars 

show standard deviation calculated from five 6-hour video 

recordings.



I---- 1--1----- i--1----- 1--- 1-----1----1---------
o o o o o o m  co cm t-

(%) SAUBiey

ST
AT

IO
NA

RY
 

BU
RR

OW
IN

G 
PR

EE
NI

NG
 

IR
R

IG
A

TI
N

G



which the eggs are attached.

Comparatively little time (< 2% of each 6 hour period) was spent 

irrigating the burrow by pleopod beating in normal conditions (Fig 

2.11). However, this activity usually occurred as several short 

episodes of 5 - 20 pleopod beats interspersed with 5 - 30 s stationary 

or locomotory periods. While irrigating, the animal was usually 

positioned at a particular position (or one of only a few positions), 

often at a tripartite junction or at the bottom of an entrance shaft. 

Calocaris irrigates with all four pairs of unspecialised pleopods (the 

first pair are specialised reproductive appendages), beating in a 

metachronal rhythm. The telson is usually raised, allowing water flow 

to be directed backwards.

The attitude of an individual Calocaris during episodes of burrow 

irrigation is shown in Fig. 2.12. As expected, there was a significant 

tendency for the animal to face the burrow entrance and pump exterior 

water into the burrow (with burrow water presumably expelled through 

other burrow openings).

The contribution of the 'piston effect' of locomotory activity to 

burrow water exchange is difficult to assess. A rough estimate 

suggests that Calocaris occupies 50 - 75% of the cross-sectional area 

of the burrow, although this varies with varying burrow diameter at 

different parts of the burrow. In addition, movement of undisturbed 

Calocaris within burrows was usually slow (approximately 1 - 5 cm s )̂ 

so that water shunting in front of a moving animal may be negligible. 

However, fluctuations in burrow water PO2 (presumably due to mass flow 

of water) were evident in some traces (e.g. Fig. 2.9), and the most
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FIG. 2.12 Relative number of occasions on which an 

individual Calocaris macandreae was observed to irrigate the 

burrow resulting in water flow out of, and into, the nearest 

burrow opening. Observations were made during conditions of 

'normal' oxygen tension.
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likely cause is animal movement.

Disturbed Calocaris are capable of rapid and sustained movement by 

tailflicking. Crude experiments with animals in open tanks suggest 

that velocities of 10 - 20 cm,s * may be attained, and that the

tailflick reaction can be sustained for 8 - 1 0  minutes given a gross 

mechanical stimulus (NB. see also Chapter 7: Metabolic Adaptations).

Within burrows, spontaneous tailflicking was rarely if ever observed; 

and induced tailflicking was of short duration and distance and tended 

to cause damage to burrow walls. Although tailflicking may result in 

considerable movement of burrow water, it is unlikely to be of 

significant functional importance to burrow irrigation.

The behavioural response of Calocaris to induced environmental hypoxia 

is shown in Fig. 2.13. The incidence of irrigatory behaviour increased 

rapidly as surface water PO2 decreased below 50 Torr. Below a PO2 of 

approximately 20 Torr, the relative time spent irrigating decreased 

(eventually to zero) and the animals assumed a stationary, 'quiescent' 

behavioural pattern. It should be noted that these data were analysed 

in 10 minute periods and are therefore more variable than the 6 hour 

analyses described above.

No instances of Calocaris leaving the burrow as a result of 

environmental hypoxia were recorded. The only cases of animals leaving 

the burrow occurred during the initial stages of burrowing, and were of 

very short duration: 1 - 2 seconds. These cases involved animals

removing sediment spoil from the burrow. During the later stages of 

burrowing, sediment was very rarely deposited outside the burrow, 

although field burrows occasionally showed evidence of recent activity 

in proximity to the openings. It remains a possibility, however, that
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FIG 2.13 The relative time spent irrigating the burrow by 

an individual Calocaris macandreae during conditions of 

declining oxygen tension (measured in the overlying water 

column). The time course of oxygen depletion was 18 hours.
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animals may vacate the burrow during prolonged periods (> 24 hours) of 

enforced anoxia.

2.3,4. The General Biology Calocaris macandreae.

A few observations on the general ecology of Calocaris Macandreae are 

described below.

The stages of the moult cycle in Calocaris can easily be followed as a 

result of the growth of the polyzoan Triticella koreni on the cuticle 

(Eggleston, 1971). In the Loch Striven Calocaris population, 

approximately 80% of individuals in samples collected in May - August 

had Triticella growth. Recently moulted Calocaris were present in the 

population (as inferred from the condition of the exoskeleton) from 

mid-August - December. Egg-laying is apparently synchronised with 

moulting (Buchanan, 1963) and approximately 40% of individuals caught 

in November - January were berried. It therefore appears that the 

moult cycle in the Clyde population is similar to those observed in 

North and Irish Sea populations (Buchanan, 1963; Calderon-Perez, 1981). 

Although note was taken in all physiological experiments of the 

apparent stage in the moult/reproductive cycle of the experimental 

animal, no significant differences in physiological or metabolic 

parameters were observed (e.g. see Chapter 6).

The gut contents of 20 formalin-preserved Calocaris were examined. No 

identifiable remains were observed, although Buchanan's (1963) range of 

possible dietary remains was extended to include nematode spicules and 

dinoflagellate cysts (known to be common in sea-loch sediments; J. 

Lewis, pers. comm.). Several attempts were made to replicate the 

observations of Elmhirst (1935), Buchanan (1963) and Nash et. al.
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(1984), who noted scavenging of macrofaunal material, and its retrieval 

into the burrow. However, such behaviour was not observed in the 

present study.



ZJl discussion

2.4.1. Burrow Structure of Calocaris macandreae and other thalassinids. 

There is now a large amount of information (widely scattered in the 

geological, paleontological, ecological and taxonomic literature) 

concerning the burrow structures of thalassinids. Dworschak (1983) 

provided a review of most of the available literature to that date.

The burrow structure of Calocaris macandreae has been well described 

previously (Nash et al., 1984; Atkinson and Nash, 1985; Atkinson, 1986; 

Smith, 1988), together with the stereotyped developmental sequence 

observed in the laboratory (Nash et al., 1984). There appears to be 

some variation in structure (particularly with regard to complexity) 

between geographical locations. Smith (1988) reported a mean of 7 

openings per burrow cast from a comparatively dense population at the 

Creag Isles (Lynn of Lorne), in contrast to the previous report (Nash 

et al. , 1984) of 4.7 openings per burrow at sites in Loch Riddon (Firth 

of Clyde), Camas Nathais (Lynn of Lorne) and Loch Brollum (Outer 

Hebrides). It is possible that burrow complexity (number of openings) 

is related to sediment type (as is population density: see below).

The burrows (of mud-burrowing) Upogebia species are comparatively 

simple, essentially Y-shaped structures (species: U. pusilia, U.

pugettensis, U. major, U. affinis and possibly U. deltaura, with more 

limited data on U. africana, U. carinicauda and U. wuhsienweni). This 

also appears to be true of U. stellata, whose burrowing behaviour is 

under current investigation (L.A. Calder, pers. comm.).

The burrows of Callianassa species may be considerably more complex 

than those of Upogebia. In general, they consist of a long vertical 

shaft leading to a gallery complex at a relatively deep level (typified
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by C. acanthochirus: Shinn, 1968; C. kraussi: Forbes, 1973; C. pontica: 

Dworschak, 1983). The burrows of C. califomiensis, C. tyrrhena, C. 

pontica, C. mi rim and C. japonica have a structure in the form of an 

interconnecting network of shafts and tunnels (Swinbanks and Murray, 

1981; Ott et al., 1976; Dworschak, 1983; Rodrigues, 1966; Ohshima, 

1967). The burrows of C. subterranea from the North Sea have been 

reported to conform to a 'network' pattern (Schafer, 1972) although the 

structure of over 50 casts from Scottish west coast sea lochs is 

consistently that of a vertical shaft/gallery (Lutze, 1938; Hertweck 

and Reineck, 1966; Atkinson and Nash, 1985; Atkinson, 1987; Smith, 

1988; R.J.A. Atkinson, pers. comm.). The most probable explanation is 

that the cores that Schafer examined, intersected the gallery system. 

Another form of Callianassa burrow was suggested by Dworschak (1983) to 

comprise a simple, deep vertical shaft (C. major: Pohl, 1946; C.

guassetinga: Rodrigues, 1966) although it is possible that these may

represent incomplete casts of the shaft /gallery type.

The structure of burrows of the laomediid Jaxea noctuma is well 

described for an Adriatic population (Hohenegger and Pervesler, 1985; 

Pervesler and Dworschak, 1985). The burrow structure in a population 

in Loch Sween appears to show similarities to that in the Adriatic 

(Atkinson, 1987), although there is considerable variation. The 

Adriatic burrows are similar in form to the Callianassa ’network' 

pattern, while some burrows from Scottish populations are unbranched, 

spiral tunnels.

The structure and function of the large burrows of Thalassina anomola 

are not well understood, however, some aspects have been described by 

Sankolli (1963), Bennett (1968) and Berry (1972).
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There are few descriptions of axiid burrow structures in the literature 

(with the exception of Calocaris macandreae) . A good description of the 

burrows of an Indian Ocean Neaxius species (in calcareous lagoonal 

sediment) showed that several swollen chambers are linked in series by 

a succession of shafts (Farrow, 1971). Axiopsis (Axiopsis) 

serratifrons was confined to areas of coarse calcareous sands mixed 

with dead coral rubble and pieces of pavement rock in Belize; while in 

an aquarium, a pair of Axiopsis constructed a "branching burrow system" 

(Kensley, 1980). Incomplete casts of the burrows of Axiorygpta 

nethertoni were obtained from subtidal (>27 m) sand flats off Key Largo 

by Kensley and Simmons (1988), and consisted of 15 cm long vertical 

shafts usually blocked by coral or calcareous algal debris. The 

temperate/sub-arctic axiid Axius serratus usually constructs extremely 

deep, relatively simple burrows at high densities in polluted muds 

(Pemberton et al., 1976), although it is also present in (presumably) 

non-polluted areas of the Canadian shelf (Risk et al., 1978). A single 

specimen of Axius stirhynchus was observed to construct a branched 

burrow (apparently similar to that of Calocaris) in a mud-filled 

aquarium (S.J. Anderson, unpubl. obs.) although the burrow structure in 

the field habitat (gravelly mud between large granite boulders) could 

not be established. Another specimen was observed to construct a U- 

shaped burrow, with a third riser (R.J.A. Atkinson, pers. comm.).

In conclusion, there appears to be little correlation between taxonomic 

position and burrow structure in the Thalassinidea, with the exception 

of the comparatively uniform burrows of the upogebiids. Callianassids 

and axiids are found in a variety of substrate types from coral rubble 

to fluid muds. Burrows may be lined or unlined (see Dworschak, 1983 

for discussion), relatively permanent or highly dynamic in structure,
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and may be superficial in the substrate or up to 2.4 m (Tbalassina 

anomola: Sankolli, 1963) or even 3 m (Axius serratus: Pemberton et al. , 

1976) in depth. Burrow structure may also vary within species in 

response to sediment granulometry (Hertweck, 1972). The most likely

functional implications of burrow morphology relate to feeding strategy 

(see below).

2.4.2. Population density of Calocaris macandreae and other

thalassinids.

Estimates of population density obtained by diving observations,

television and photography and grab sampling all give reliable results

for megafaunal burrowers (Nash et al., 1984; Atkinson, 1989). Low
- 2population densities (<0.3 m ) of Calocaris macandreae were recorded 

at the shallow locations in Loch Sween in the present study, although 

greater densities were present in the deeper areas examined by TV

sledge (Atkinson, 1989). Atkinson (1986) reported densities of 0.8
- 2 . . . . . .14.0 m in the Clyde Sea area, with the higher densities in the deeper

- 2 •water. Calderon-Perez (1981) found densities of 12.7 m in the Irish

Sea around the Isle of Man. Calocaris population densities of up to 20
_ 2m have been reported m  deep water (80 m) off the Northumberland

. 2coast (Buchanan, 1963), while densities reach 27 m at 90 m in the 

Lynn of Lorne (C. Comely, pers. comm, in Nash et al., 1984). The 

density of Calocaris macandreae populations appears to vary with depth 

(Nash et al., 1984; Atkinson, 1986).

Reported population densities of thalassinids are often based on hole

counts, with account taken of the average opening:burrow and

burrow:occupant ratios. Reported densities vary widely; e.g. Jaxea
_ 2

noctuma up to 0.2 m (Pervesler and Dworschak, 1985); C. subterranea
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0.29 - 10 m"2 (Nash et al. , 1984; Atkinson, 1986); C. rathbunae 4:98

* 7.03 m'2 (Suchanek, 1983); U. deltaura 5 m'2 (Tunberg, 1986); Axius

o *2serratus 9 m"z (Pemberton et al. , 1976); C. japonica 20 m (Koike and

Mukai, 1983); C. tyrrhena up to 60 m'2 (Dworschak, 1987); U. pus ilia up

to 416 m'2 (Ott et al., 1976; Dworschak, 1981); C. califomiensis over

500 m’2 (Posey, 1986). Extremely high densities are located on

intertidal sand/mud flats (Ott et al. , 1976; Posey, 1986). Subtidal
- 2thalassinid population densities are usually lower than 10 m

The major non-stochastic factor which determines Calocaris macandreae 

population density may be the sediment granulometry (Buchanan, 1963; 

Nash et al. , 1984), in particular as it affects the sediment

cohesiveness which may in turn affect burrow stability. In general, 

Calocaris macandreae populations are confined to areas where the 

silt+clay fraction (particles < 62 urn) exceeds 20% of the sediment, and 

are most dense where silt+clay is above 50%. This is the case for most 

of upper Loch Sween, although a high density of Calocaris was found in 

a muddy sand (site 9; 69% sand, 13% silt and 18% clay: Atkinson, 1987). 

Further work (Atkinson, 1989) has shown that Calocaris macandreae is 

present in deeper water (> 25 m) throughout most of upper Loch Sween, 

in a more typical sediment habitat.

An alternative explanation for variation in the population density of 

Calocaris macandreae may involve interactions with other megafaunal 

burrower species (Smith, 1988), particularly Nephrops norvegicus which 

predate on Calocaris (Thomas and Davidson, 1962; Oakley, 1979; Bailey 

et al., 1986; Smith, 1988). However, Nephrops and Calocaris do coexist 

at high densities in the field (Chapman, 1979). Possible interference 

interactions (amensalisms) between the burrowing species present in 

Loch Sween require investigation.
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An interesting comparison of estimated increases in sediment surface

area due to megafaunal burrows is possible. Koike and Makai (1983)
- 2calculated the increase due to a standing stock of 20 m C. japonica 

to be 25%. Data from Dworschak (1981, 1983) suggest that a population 

density of U. pas ilia of 87 m results in an increase of only 3% 

(although at the population density recorded by Ott et al (1976) an 

increase of 16% can be calculated). Smith (1988) calculated average 

increases in surface area at four sites (due to total megafauna) to 

vary from 3.5 - 27.1%, with a maximum increase due to Calocaris

macandreae of 13.6%. The megafaunal densities at the sites of low 

burrow surface area were thought to be limited by external factors 

(disturbance, excessive organic enrichment). For both intertidal and 

subtidal areas, therefore, the maximum megafaunal burrow surface areas 

recorded are in the range 15 - 25 area%. Whether megafaunal burrower 

density is limited by intra- or interspecific competition for burrow 

structural characteristics (total burrow surface area, internal volume, 

occupied volume) or by other factors (organic carbon supply, sediment 

structural effects) would be an interesting subject for research. It 

is certainly intuitively apparent that callianassid shaft/gallery 

burrow structure has responded to a selection pressure to maximise the 

surface area/occupied volume ratio.

2.4.3. The effects of Calocaris macandreae burrows on sediment 

oxygenation.

The consequences of megafaunal burrowing activity on physical 

sedimentary processes, were categorised by Smith (1988) to include: 

direct interference (i.e. 'bulldozing’), particle mixing, resuspension, 

sedimentation, grain size alterations, compaction, detritus
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introduction, and oxygenation. Only oxygenation (and associated 

redox) effects were considered in the present study, since it was 

considered that oxygen conditions within the sediment might affect 

respiratory conditions within the burrow.

The results of the present study of burrows of Calocaris macandreae 

suggested that the effects on sediment oxygenation resulting from 

burrowing, may occur on two separate scales. Large-scale (i.e. >5-10

cm definition) oxygenation of the sediment column was observed to a 

depth of 15 cm in both field and laboratory systems, on the basis of 

redox potential (Eh) measurements compared with observations from non

burrowed areas (e.g. Pearson and Stanley, 1979). Effective control 

measurements for this type of study are difficult, however, since sites 

which are non-burrowed, but comparable in other respects, are limited. 

The 'control' cores used in this study probably represented heavily 

bioturbated sediment which did not contain a megafaunal burrow when 

sampled. Smith (1988) used control cores from sites without a major 

burrow for at least 1 m radius, finding no significant differences in 

mean redox potentials between these and cores taken through and around 

the burrows of Nephrops norvegicus (although variation was 

significantly greater in burrow cores).

Small-scale (< 1 cm definition) patterns of redox potential around the 

burrows of thalassinids have been investigated by Ott et al (1976), 

Dworschak (1983) and in the present study. Ott et al (1976) described 

redox potential profiles from sediment between burrows, and from burrow 

walls, of Upogebia pusilla (as U. litoralis) and Callianassa tyrrhena 

(= C. stebbingi) , both in aquaria and from an intertidal location. 

In all cases, they stated that burrow walls were more oxidised than 

sediment between burrows, with the oxidative effect more pronounced in
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aquarium systems. The latter difference was attributed to the 

decreased exchange of water across the sediment-water interface in 

aquaria (due to reduced wave action). The thickness of the oxygenated 

layer surrounding the burrows was approximately 10 mm. Ott et al (1976) 

also found that the vertical shafts of the burrows of U. pusilia were 

frequently packed with bundles of seagrass leaves in various stages of 

decomposition. The redox potential in one of these shafts was strongly 

reduced compared to the surrounding sediment. Dworschak (1983) has 

also described a similar increase in redox potential around the burrow 

walls of U. pusilia and also noted a distinctive colour difference 

between burrow wall and surrounding sediment.

The present study found that, in both field and aquarium systems, large 

differences in sediment Eh were present throughout the depth range 

measured, contributing to sediment heterogeneity ('patchiness') on the 

1 5 cm scale. A statistically significant difference could not be

demonstrated, however, in redox potential between paired measurements 

of burrow walls sediment and 'control' surrounding sediment.

The conclusions from both the field study of Smith (1988) and the 

present study are that megafaunal bioturbation in sublittoral systems 

produces a large scale oxygenation (see also Rhoads and Boyer, 1982; 

Flint and Kalke, 1986) and an increase in redox variation over a small 

scale. Highly localised Eh changes associated with the burrow 

structures are, however, less pronounced than in the intertidal studies 

described above. As noted above, interactions between bioturbators and 

sedimentary characteristics are not simple. In a mesocosm study, Smith 

(1988) found that introduction of an individual Nephrops aorvegicus 

apparently induced the formation of a distinct redox discontinuity
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layer (characteristic of non-bioturbated sediments: Pearson and

Stanley, 1979). The most likely reason for this observation was 

thought to be inhibition of macrofaunal density and bioturbation. An 

additional cautionary note is that sediment redox potential is not 

simply correlated with sediment oxygenation (J. Parkes, pers. comm. to 

R.J.A. Atkinson), as is usually assumed.

2.4.4. Burrow irrigation and respiratory conditions.

The findings of this study were that the water contained in the burrows 

of Calocaris macandreae was consistently and chronically hypoxic. 

Burrow water PC^'s varied from 150 - 170 Torr at the burrow openings to 

a minimum of 20 - 40 Torr in the deepest parts of the burrow. There 

was little evidence of regular irrigation, or of pronounced changes in 

oxygen availability with time. Values for burrow water PO2 for other 

thalassinid and burrowing species were reviewed by Atkinson and Taylor 

(1988); selected data are shown in Table 4:

TABLE 4: Oxygen tension in thalassinid and sublittoral decapod burrows.

Species Burrow oxygen Comments Reference
(Torr)

Nephrops norvegicus 
(Nephropid lobster) 
Goneplax rhomboides
(Brachyuran crab)

80-130 Laboratory studies A.C. Taylor
(unpub. obs.)

70-110 Laboratory studies A.C. Taylor
(unpub. obs.)

Callianassa japonica 19-70 Laboratory studies Koike and Mukai 
(1983)
Congleton (1974)Callianassa affinis 0.5-3

Callianassa
ca 1 i fomi ensi s 

Callianassa

21-47 Low/high tide 
respectively

15-25

Torres et al., 
(1977)
Thompson and 
Pritchard (1969) 
Felder (1979)

ca1iforniensis 
Callianassa jamaicense 0-119 Depending on

location
Upogebia major 45-64 Koike and Mukai 

(1983)
Thompson and 
Pritchard (1969) 

This study

Upogebia pugettensis 15

Calocaris macandreae 20-40 Laboratory studies
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There is a general trend for conditions within the burrows of

the intertidal species (all Callianassa and Upogebia species above),

measured during tidal emersion, to be severely hypoxic, when oxygen

exchange with the external environment is limited. Conditions within

these burrows during immersion are likely to be less extreme (e.g.

Torres et al., 1977), since most of these species are known to exhibit

irrigatory activity. The PO2 values measured in aquarium burrows of

species from similar (sublittoral) habitats to that of Calocaris are

moderately hypoxic. These burrows are larger, and less complex in

structure than Calocaris burrows, and water exchange rates are probably

greater. Alternatively, burrows of some species (notably Callianassa

subterranea) are likely to be even more restrictive of water flow, and
9of greater surface area (mean area 1556 cm : Smith, 1988). Burrows of 

these species may therefore contain more hypoxic water (N.B. active 

irrigation is presumed for C. subterranea on the basis of observations 

of ejected water ’plumes': R.J.A. Atkinson, pers. comm.; S.J. Anderson, 

pers. obs.).

Complete anoxia has not been recorded in the burrows of Calocaris 

macandreae, even under conditions of deliberate collapse of burrow 

openings. The increased irrigation activity response noted in Calocaris 

(and in C. califomiensis: Torres et al. , 1977; and C. jama 1 cense: 

Felder, 1979), under experimentally increased hypoxia would tend to 

ensure that anoxic conditions are avoided.

The irrigatory activity (expressed as % time) of Calocaris macandreae 

was observed to be comparatively low (< 2%) in conditions of 'normal1 

oxygen availability (i.e. normoxic overlying water column). In
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contrast, Torres et al (1977) measured a mean relative irrigatory time 

of 40 % in Callianassa californiensis, while Dworschak (1981) measured 

28% in Upogebia pusilla. The former study of C. califomiensis was 

conducted using an artificial burrow system (a glass tube; at a PO2 of 

155 Torr) and may therefore be of limited relevence to real burrow 

conditions. The study of Dworschak (1981) used aquarium burrow systems 

similar to those of the present study. However, U. pusilla is a filter- 

feeding species and 'irrigation' may therefore represent feeding 

activity in addition to its respiratory function. Also, intertidal 

species such as these may show increased burrow irrigation when 

oxygenated water is available (in order to compensate for reduced 

oxygen availability during emersion of the burrow openings at low 

tide).

It was not possible, in this study, to determine the volume of water 

exchanged between the burrow of Calocaris and the overlying water 

column. Net water flow could not be detected close to the burrow 

openings using thermistors (see above). An overflow apparatus was not 

thought suitable because of the low irrigatory activity of the species 

(and the presumed low volume). Dye release experiments gave 

inconclusive results. It is suggested that as Calocaris can be induced 

to increase irrigatory activity by exposure to hypoxia (see above), it 

might be possible to measure pleopod beat volume in an artificial 

burrow system and extrapolate to observed pleopod beat rates in the 

burrow. However, this was not attempted.

Tentative conclusions from this study are that loss of oxygen from the 

burrow to the surrounding sediment is probably substantial; and that 

the mechanisms of oxygen flux into the burrow may be complex (including 

passive diffusion, active irrigation, and possibly viscous
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entrainment). A more quantitative assessment of oxygen fluxes within 

the burrow system should be possible.

2.4.5 The functions of the burrow of Calocaris macandreae.

Possible functions of thalassinid burrows which have been postulated 

include protection from desiccation (in intertidal species); protection 

from predation; and a feeding function (MacGinitie and MacGinitie, 

1949). While it is likely that protection from desiccation and 

predation is an important function, the presence of such pronounced 

differences in species-specific burrow structure suggests that there is 

strong selection pressure for particular burrow architecture, which 

differs between species. Suchanek (1985) has suggested a 

classification of thalassinid (primarily Callianassa and Vpogebia 

spp.) feeding strategies, with associated types of burrow structure. 

Filter/suspension feeders (mostly Upogebia spp.) construct shallow, 

simple U- or Y-shaped burrows, and filter suspended particles from the 

'irrigatory' current. Detritus/deposit feeders construct temporary, 

deep, complex burrows, and feed on sorted sediment material. Large 

amounts of sorted spoil are produced and either plumed (resulting in 

mound-formation around the burrow opening) or deposited within the 

burrow. Seagrass/algae harvesters capture detrital vegetable material 

and store it within the burrow, possibly harvesting the subsequently 

enriched sediment. Their burrows are usually long, straight and deep.

Although the burrow morphology of Calocaris macandreae does not conform 

closely with any of Suchanek's Callianassa/Upogebia ecological 

categories, some aspects of the burrow morphology (in particular the 

constant re-structuring and burrowing activity) suggest that Calocaris 

may be categorised in the detritus/deposit feeding group. Calocaris
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differs from most deposit feeding callianassids in the lack of mound 

formation.

The feeding ecology of Calocaris macandreae has been the subject of 

some debate. Gut contents analysis (Buchanan, 1963; Calderon-Perez, 

1981; this study) suggests that indiscriminate sediment ingestion is 

the major dietary source. Behavioural observations during this study 

showed only sediment ingestion, although considerable sorting of 

sediment particles appeared to occur. There are several observations, 

however, of scavenging and burial of macrofaunal material (Elmhirst, 

1935; Buchanan, 1963; Nash et al., 1984), so that there is a strong 

possibility that 'gardening' of the burrow sediment occurs (although 

consumption of enriched sediment has not been observed). Organic carbon 

content values for Calocaris burrow wall sediment samples were not 

significantly greater than control samples (this study). Preliminary 

estimates of meiofaunal abundance around Calocaris burrows in situ did 

not suggest significant enrichment of burrow wall sediment (T.J. 

Ferrero and S.J.Anderson, unpub. obs.). Calderon-Perez (1981) has also 

suggested (largely on anatomical grounds) that filter-feeding may occur 

in Calocaris. Buchanan (1963) noted that the molar and incisor 

processes, and gastric mill were well-developed in Calocaris, implying 

that more substantial food items may be ingested.

A further type of feeding was described by Devine (1966) for the New 

Zealand species Callianassa filholi. Gut contents analysis suggested 

that diatoms (nearly all Chaetoceros armatus) which had settled onto 

the sediment were resuspended by a flicking action of the second 

pereiopod. The suspended material is filtered by the third maxilliped 

and ingested. Devine (1966) suggested that the burrow habitat enabled 

this fine organic material to be exploited in the turbid surf zone,
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since this feeding method requires still water. Observations on 

Calocaris macandreae suggested that sediment sorting and ingestion in 

this species does not involve resuspension, is similar to that 

described for Callianassa califomiensis by MacGinitie (1934), and does 

not involve the pereiopods.

Although the generalisations about the geographical distributions of 

thalassinid feeding types are oversimplified (for example the temperate 

C. subterranea has a characteristic deposit feeding burrow structure), 

the analysis of Suchanek (1985) probably has general validity for 

callianassids and upogebiids. Axius serratus and Neaxius sp. were 

included by Suchanek in the seagrass harvester category on the basis of 

an eelgrass lining to the burrow (Pemberton et al., 1976, and Farrow, 

1971, respectively). As discussed above, it appears that a variety of 

feeding strategies (scavenging and burial of carrion; and selective and 

non-selective deposit feeding) are available to Calocaris macandreae. 

Calderon-Perez (1981) suggests that predation and filter-feeding are 

also possible and might be used in an opportunistic manner (although 

neither Calderon-Perez, R.J.A. Atkinson (and co-workers), nor myself 

have observed these).

Protection from predation is undoubtedly provided by the burrows of 

Calocaris macandreae. All studies of Calocaris have suggested that the 

animals very rarely leave the burrows. Excursions are always brief (1 

5 s) and are only made in order to deposit burrow spoil. During 

observations from a submersible, Chapman et al (1970; cited in Nash et 

al. , 1984) observed that Calocaris forced to leave the burrow were

preyed on by Nephrops norvegicus; no Calocaris were observed to leave 

the burrow naturally.



Calocaris macandreae is an important prey species for the fish 

Glyptocephalus cynoglossus, Rhinanemus cimbrius and Galeus melastomus 

(Mattson, 1981). Armstrong (1980) estimated predation rates of

Calocaris by Trisopterus minutus equivalent to 2 - 3  individuals
- 9 -1m .year (Calderon-Perez, 1981), with considerably lower rates by 

Gadus morhua and Scyliorhinus caniculus. Predation rates by Nepbrops

norvegicus (Oakley, 1978) were calculated to amount to 2 - 9
- 9 - 1individuals m .year by Calderon-Perez (1981); a total predation rate

-2 -1for the Irish Sea population of 4 - 12 individuals m .year . This 

contrasts with the population model for the Northumberland coast of 

Buchanan (1963), which found almost no predation.

In conclusion, the causal factors which produce a selective advantage 

in the burrowing mode of life, and which determine burrow morphology, 

remain unclear,and are probably not simple. One factor which has 

historically been neglected in hypotheses of crustacean phylogeny (and 

even more so in physiology) is chance. Recently, Schram (e.g. 1982,

1983) has advanced the theory that stochastic processes are a major 

causal factor in crustacean phylogeny (so-called ’stochastic 

mosaicism'). Similarly, the details of burrow morphology may not have 

profound implications for gene selection in thalassinids. In fact, the 

conservative characteristics noted in the comparative morphology of 

mud-burrowing animals may result from the conservative nature of the 

behavioural mechanism (in turn, presumably of genetic origin) which 

controls burrow formation.

The behaviour patterns shown by Calocaris macandreae suggested a 

relatively sedentary mode of life (43% of total time spent apparently
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stationary). There is very little directly comparable information on 

crustacean activity patterns (in natural situations) in the literature. 

Diel emergence behaviour of the burrowing lobster Nepbrops norvegicus 

has been studied, particularly in relation to commercial trawling 

(Atkinson and Naylor, 1976; Oakley, 1979; Chapman and Howard, 1979). 

Emergence from the burrow occurs mainly at dawn and dusk. Atkinson and 

Naylor (1974) also suggested a high level of nocturnal activity in the 

burrow. The general conclusion is probably warranted that comparative 

activity levels are lower in thalassinids than in other crustaceans 

(and that this either results from, or is reflected in physiological 

parameters).

As discussed below, sedentary behaviour is reflected in many aspects of 

the respiratory physiology of Calocaris macandreae. The 'cause-and- 

effect' relationships between the selective pressures which have 

influenced behavioural patterns, respiratory physiology and metabolic 

adaptations are unclear. Presumably all the above characteristics 

developed together during the evolutionary history of the species. 

However, it is (at present) impossible to postulate a consistant 

evolutionary pathway for the thalassinids (to include Calocaris 

macandreae), based on known current species and fossil record. This 

approach has been useful in integrating studies of other 

taxonomic/ecological groups (for example, land invasion by the talitrid 

amphipods: Friend and Richardson, 1986; Spicer et al., 1987). It is

interesting to note here that the Thalassinidea are a comparatively 

ancient group (see above), as also is the burrowing mode of life within 

the Crustacea.

An additional conclusion from this study and those of others, such as 

Dworschak (1981), and Smith (1988) is the validation of the use of
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aquaria and mesocosm systems for the investigation of megafaunal 

ecology, behaviour and respiratory physiology. It appears that results 

obtained from these experimental systems are relevant to field 

conditions. In this respect, thalassinid shrimps are a particularly 

useful group in which to study the interactions between crustacean 

ecology and physiology since they occupy a defined, limited ecosystem 

which is amenable to replication and manipulation in the laboratory. 

The only problem is catching them!
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CHAPTER 3. BRANCHIAL MORPHOLOGY IN CALOCARIS MACANDREAE AND OTHER

THALASSINIDS.

The behavioural adaptations of Calocaris macandreae to the mud- 

burrowing niche, and the physical characteristics of the burrow 

environment were investigated in previous chapters. The remainder of 

this thesis will examine some aspects of the morphology, physiology and 

metabolism of Calocaris and other thalassinids in this context.

The anatomy and functional morphology of branchae in decapod 

crustaceans has been the subject of considerable attention. Decapod 

gills have been classified according to their relationship with the 

thoracic appendages (pleurobranchs, arthrobranchs and podobranchs 

defined below, following McLaughlin, 1983; in turn following Huxley,

1880). Such characteristics as the presence and type of branchae,

exopods and endopods of the maxillipeds and pereiopods (the 'gill- 

formula') have long been used as taxonomic features. In morphological 

terms, decapod gills have been classified as trichobranchs,

phyllobranchs and dendrobranchs (also described below), although

intermediate structural forms are found. The branchial morphology of 

the thalassinids is particularly interesting in this respect since they 

possess a gradation of gill types (as befits their uncertain taxonomic

position). The branchial morphology of a number of thalassinid species 

(all found around the U.K.) was therefore examined, using scanning 

electron and light microscopy.

The surface area of the gills of decapods has been found to be 

comparable to those of fish (cf. Hughes et al.f 1969 with Hughes and 

Morgan, 1973), and to be correlated with habitat and activity (Gray,
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1957). In view of the respiratory conditions encountered by 

thalassinids, the branchial surface area of Calocaris macandreae was 

estimated (together with preliminary estimates for Upogebia stellata 

and U. deltaura).

Finally, the detailed structure of the trichobranchs of Calocaris 

macandreae was examined, together with the overall morphology and 

ventilatory flow patterns of the branchial chamber, as a preliminary 

functional investigation of branchial morphology.
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3.2 MATERIALS AND METHODS.

Both fresh and preserved material were used for investigation of 

branchial structure. Fresh Calocaris macandreae (held in sea water) 

were killed by rapid cooling to 4° C (in a fridge). Preserved material

was stored in 5-10 % formal saline or alcohol.

3.2.1 Branchial morphology in Calocaris macandreae 2nd Pther
thalassinids.

The branchial morphologies of Calocaris and several other thalassinid 

species were examined using Scanning Electron Microscopy (SEM). The 

species examined were: Calocaris macandreae, Axius stirhynchus, Jaxea 

noctuma, Upogebia stellata, U. de It aura, Callianassa subterranea and 

Callianassa tyrrhena. A. stirhynchus was collected from an intertidal 

location in Pembrokeshire by P.G. Moore; the specimen of J. noctuma 

was obtained from Loch Creran by C.J. Smith. U. stellata and U.

deltaura were captured by dredging with a ring dredge in the Fairlie

Channel just offshore from the Lion Rock (Isle of Cumbrae, Firth of

Clyde). Specimens of both Callianassa species were obtained from the 

Robertson collection of the University Marine Biological Station, 

Millport. With the exceptions of Calocaris macandreae and U. stellata, 

only single, preserved specimens were available (the specimen of

Callianassa tyrrhena dated from 1951). The quality of the specimens 

had therefore (in some cases) deteriorated to some extent. However, 

the type (and in most cases number) of gills present could be

determined for each species.

The gills were described using the nomenclature of McLaughlin (1983). 

The term 'mastigobranch* is used here following the definition of

McLaughlin (1983) as "a small lamellar structure arising at the base of 

the epipod". The term has been used ambiguously (to mean the complete
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epipod, with an implied respiratory function) in previous literature 

(e.g. Caiman, 1909). The derivation of the mastigobranch, setobranch, 

podobranch and anterior arthrobranch from the original epipod is 

discussed by Gurney (1942). In addition, the terms 'epipod' and 

'endopod' are used (in preference to the earlier terms 'epipodite' and 

'endopodite').

Whole animal material was prepared by dissecting off the abdomen and 

branchiostegite and fixing, staining and coating the specimen using the 

SEM preparative protocol given in Appendix 3.

Scaphognathites from several individuals of Calocaris were examined 

using a dissecting microscope (magnification X25) with eyepiece 

graticule.

3.2.2 Gill Anatomy in Calocaris macandreae.

Individual gills were removed from fresh Calocaris and were prepared 

for SEM using the protocol presented in Appendix 3.

Several gills were also dehydrated in alcohol, stained with iron 

haemotoxylin and eosin, and sectioned for light microscopy. These 

sections were examined and photographed using both Wild dissecting and 

Leitz compound microscopes.

In addition, several gills were silver-stained using the method of 

Holliday (1988). The dissected gills were rinsed three times in 

deionised water and immersed in 0.5 7. AgNO^ for 30 seconds. The gills 

were then washed in deionised water a further three times and developed 

for 30 s in undiluted Kodak D-19 developer. This method stains areas 

of the gills which are highly chloride-permeable; AgCl forms in these
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areas and on developing, molecular silver (a black precipitate) is 

formed. The stained gills were examined and photographed using a Wild 

dissecting microscope fitted with an Olympus camera system.

3.2.3 Gill Formula in Calocaris macandreae.
During the course of gill surface area measurement, the gills of 

25 Calocaris were dissected. This allowed some assessment of variation 

in the gill formula (i.e. the number and type of gills on each 

appendage) in Calocaris.

3.2.4 Gill Surface Areas of Calocaris macandreae and Upoeebia stellata, 

After removal of the branchiostegite, individual gills were removed 

from fresh and preserved Calocaris and placed in sea water on a 

microscope slide. The following dimensions of the filamentous gills 

were measured (Fig. 3.1) using a dissecting microscope (magnifications 

X12 to X50; for terminology of gill structure see below):

(1) length of gill axial filament

(2) basal diameter of axial filament 

(n) number of filaments

(3) length and (4) diameter of all side filaments 

of one side of the gill.

The length and width of the lamellae of the podobranchs were also 

measured (Fig. 3.1).

The surface area of each of the filamentous gills was calculated 

assuming that the axial filament was conical and the side filaments 

were cylindrical in shape. As preliminary observations confirmed that 

the branchial areas on each side of several individuals were identical,
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FIG 3.1 The measurements used for calculation of gill 

surface area in Calocaris macandreae.

Trichobranchs: 1) length of gill axis. 2) basal width of gill 

axis. 3) length of each gill filament. 4) basal width of each 

gill filament. The number of gill filaments was also 

recorded.

Mastigobranchs: 5) length of mastigobranch. 6) maximum width 

of mastigobranch.
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only gills from the left side of specimens were measured. To allow 

comparison with data from the literature, gill areas are expressed as 

total gill area per g fresh body weight (’specific gill area', in 

mm2. g 1)•

The accuracy of the method described above was assessed using a 

'pictorial' method (Gray, 1957) in which the individual gills were 

drawn using a dissecting microscope fitted with a camera lucida, The 

gills were placed on a slide and flattened with a cover slip before 

drawing. The areas of the drawings were measured using a digitising pad 

and image analysis software (written by Dr. M. B. Burns), run on a BBC 

microcomputer. Gills from one side of two individuals were measured 

using both methods for comparison.

The gill areas of two specimens of Upogebia stellata were also 

determined. The gills of this species were measured using the direct 

method for filamentous gills outlined above, with account made for the 

observation that Upogebia gills have four rows of filaments. There 

are no podobranchs in Upogebia spp. (see below).

3.2.5 Gill Ventilation in Calocaris macandreae

The ventilatory patterns of the branchial chamber were examined by 

releasing dye from a Pasteur pipette at several locations close to the 

inhalant openings of an animal, and observing the flow patterns under a 

dissecting microscope. Several dyes were tried before satisfactory 

results were obtained using blue pen ink.
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2L1 RESULTS.

3.3.1 Branchial chamber morphology of thalassinid shrimps.

The general arrangements of the branchial chambers of seven thalassinid 

species found in the U.K. are shown in Figures 3 - 9 .  The gills are 

attached either to maxillipeds 2-3 and pereiopods 1-4, to the 

articulations between these appendages and the thoracic body wall, or 

to the body walls of each pleuron. The gills occupy most of the 

branchial chamber formed between the branchiostegite and the body wall. 

The gills are described following the nomenclature of McLaughlin 

(1983), as pleurobranchs (attached to the pleural wall of each somite), 

arthrobranchs (attached to the coxa of each thoracic appendage) and 

podobranchs (attached to the appendage-body wall articulation). 

McLaughlin (1983) also differentiates trichobranchs (rows of filaments 

attached to a gill axis) and phyllobranchs (pairs of gill platelets 

attached to an axis), although she notes that intermediate gill 

structures are typically found in the thalassinids. Mastigobranchs 

(branches of the podobranchs with a lamellar structure) are also 

present in the two axiid and the laomediid species.

Calocaris macandreae

In 25 specimens examined, the number and position of gills in Calocaris 

were found to be quite variable, with 30% of the animals examined 

lacking at least one gill. In particular, the gills on maxilliped 2 

and pereiopod 4 were liable to be absent and also showed greatest 

variation in size. The following gill formula was consistent with most 

specimens (see also discussion):

68



FIG. 3.2 Scanning electron micrograph of the left branchial 

chamber of Calocaris macandreae. Scale bar 5 mm.





FIG. 3.3 Scanning electron micrograph of the left branchial 

chamber of Axius stirhynchus. Scale bar 3 mm.





FIG. 3.4 Scanning electron micrograph of the left branchial 

chamber of Jaxea noctuma. Scale bar 5 mm.





FIG. 3.5 Scanning electron micrograph of the left branchial 

chamber of Upogebia stellata. Scale bar 5 mm.





FIG. 3.6 Scanning electron micrograph of the left branchial 

chamber of Upogebia deItaura. Scale bar 5 mm.





FIG. 3.7 Scanning electron micrograph of the left branchial 

chamber of Callianassa subterranea. Scale bar 5 mm.





FIG 3.8 Scanning electron micrograph of the left branchial 

chamber of Callianassa tyrrbena. Scale bar 5 mm.





maxilliped 
1 2 3 1

pereiopod 
2 3 4 5

pleurobranchs - - - - - - -
arthrobranchs - 2 2 2 2 2 -

podobranchs: mastigobranch 1 1 1 1 1 1 -
trichobranch 1 1 1 1 1 - -

As shown above, maxilliped 2 in each individual carried a branched 

podobranch (consisting of a mastigobranchiate branch (M) and a 

trichobranchiate branch (P)). Maxilliped 3 and pereiopods 1-3 each 

carried two trichobranchiate arthrobranchs (A1 and A2) and a branched 

podobranch. The two arthrobranchs were connected close to the point of 

attachment to the appendage. Pereiopod 4 usually had two arthrobranchs 

and a mastigobranchiate podobranch.

The trichobranchs in Calocaris consisted of two rows of paired 

filaments (approximately circular in cross-section) attached to the

gill axis (see Figs. 3, 16). Thus each trichobranch carried between 30 

- 60 filaments arranged in two rows.

The spatial arrangement of the gills within the branchial chamber in 

Calocaris was found to be highly consistent. The arthrobranchs

and trichobranchiate podobranch of each appendage were

positioned anterior to the mastigobranch , which was positioned with 

the lamellar surface facing forwards. This position is slightly 

disturbed in Figure 3, probably as a result of movement during the

preparation. In all fresh specimens, however, the arrangement 

described above was observed.

The scaphognathite in Calocaris (and the other species examined) is a 

lamellar structure, roughly rectangular in shape, situated at the

anterior end of the branchial chamber. It was positioned with the flat
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surface horizontal such that the pumping action occurred in the 

vertical plane. A fringe of setae along the distal edge of the 

scaphognathite presumably provides a seal against the branchiostegite. 

An additional line of setae was present along the midline of the 

scaphognathite.

Axius stirhvnchus: Fig. 3.3.

The branchial anatomy of Axius is distinctive amongst the U.K. 

thalassinids in that large, trichobranchiate pleurobranchs are present 

on pereiopods 2-4. This increases the number of trichobranchs to 4 on 

pereiopods 2-4, with a total of 18 (compared with 15 in Calocaris). In 

other respects the branchial anatomy appeared to be similar to that of 

Calocaris, with 2 arthrobranchs and a branched podobranch present on 

maxilliped 3 and pereiopods 1-4. The arrangement of the gills was also 

similar to that in Calocaris, with the mastigobranchs positioned 

posterior to each cluster of arthrobranchs. The gills present on 

maxillipeds 1 and 2 were obscured in the single specimen available. 

The gill formula (with bracketed data for maxillipeds 1 and 2 taken 

from Caiman, 1909 and Selbie, 1914) was:

maxi lliped pereiopod
('r' = rudimentary) 1 2 3 1 2 3 4 5

pleurobranchs (-) (-) - - 1 1 1 -
arthrobranchs (-) (r) 2 2 2 2 2 -
podobranchs: mastigobranch (1) (1) 1 1 1 1 1 -

trichobranch (-) (1) 1 1 1 1 1 -

Jaxea noctuma: Fig. 3.4.

The branchial formula of Jaxea was very similar to that of Calocaris, 

with 2 arthrobranchs and a podobranch (trichobranch + mastigobranch) 

present on maxilliped 3 and pereiopods 1-3. Pereiopod 4, however, 

carries only two arthrobranchs and a mastigobranch. The trichobranchs
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of Jaxea, however, are slightly different in structure, with two rows 

of flattened filaments arising from each trichobranch axis. The 

filaments remain rather narrow, so that the filament cross-section is 

approximately oval. The mastigobranchs on the single available 

specimen appear to be relatively smaller than those of Calocaris or 

Axius. The branchial formula (with bracketed data from Selbie, 1914) 

was:

maxilliped pereiopod
1 2 3 1 2 3 4 5

pleurobranchs (-) (-) - - - - -
arthrobranchs (-) (1) 2 2 2 2 2 -
podobranchs: mastigobranch (1) (1) 1 1 1 1 1 -

trichobranch (1) (1) 1 1 1 1 -

Upogebia stel lata: Fig. 3.S.

No pleurobranchs or podobranchs (including mastigobranchs) were 

observed in either species of Upogebia. Two trichobranchiate 

arthrobranchs were present on maxilliped 3 and pereiopods 1-4. Each 

trichobranch had four rows of filaments, approximately circular in 

cross-section. The gill formulae of Upogebia stellata, U. deltaura and 

the callianassid species were simpler than those of the axiid and 

laomediid species (bracketed data from Caiman, 1909):

pleurobranchs
arthrobranchs

maxilliped 
1 2 3 1

pereiopod 
2 3 4 5

-) - 
-) - 2
-) - 
-) -

2 2 2 2 -

- - -

Uix>£ebia deltaura: Fig. 3.6.

The branchial arrangement of U. deltaura appeared to be identical to 

that of U. stellata.
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Callianassa subterranea: Fig. 3.7.

Callianassa subterranea had the same simplified gill formula as the two 

Upogebia species:

maxilliped 
1 2 3 1

pereiopod 
2 3 4 5

*
* - 2 
*

2 2 2 2 -

* - . -

pleurobranchs
arthrobranchs

* Biffar (1971) states that no branchae are present on maxilliped 1 in 

the genus Callianassa.

The trichobranchs had a very different structure to those of the other 

thalassinids, however, being flattened to the extent of being 

intermediate in form between trichobranchiate and phyllobranchiate 

gills. Two rows of filaments/plates are present on each gill axis.

Callianassa tvrrhena: Fig. 3.8.

The branchial anatomy of Callianassa tyrrhena is similar to that of C. 

subterranea.

3.3.2 Gill Surface Area in Calocaris macandreae and UpQgekia Stellat3«

There was a consistent difference between the gill area estimates 

produced by the pictorial and direct measurement methods for Calocaris 

macandreae. Gill area estimates for one individual are given below:
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Table 3.1: Areas of each gill measured by two methods on a single
2Calocaris macandreae (mm ). A1, A2, M and P = anterior and posterior 

arthrobranchs, mastigobranch and podobranch respectively.

Max 2 Max 3 Per 1
A1 M P A1 A2 M P A1 A2 M P

'pictorial' 2.20 1.16 1.82 8.54 8.28 2.86 2.08 9.62 9.03 2.84 2.46

'direct' 7.70 1.20 2.20 18.2 17.8 2.71 6.10 20.2 18.2 2.13 7.50

difference 5.5 0.04 0.38 9.6 9.5 -0.2 4.0 10.6 9.2 -0.7 5.0

Per 2 Per 3 Per 4
A1 A2 M P A1 A2 H P A1 A2 M

'pictorial' 12.1 7.68 2.66 4.96 14.7 12.1 2.50 3.02 12.2 6.72 3.32

'direct' 25.3 20.5 2.17 8.30 32.2 26.1 1.60 4.70 25.5 14.4 1.92

difference 13.2 12.8 -0.5 3.3 17.5 14.0 -0.9 1.7 13.3 7.7

The areas of the trichobranchs, as measured by the pictorial method 

were significantly less (paired t-test, P<0.001) than those estimated 

by direct measurement. The gill areas as measured using the 

'pictorial* method had a mean value of 48 ± 13 % of the areas as 

estimated by direct measurement. The reasons for this observed 

discrepancy between the two methods are considered in the discussion 

below. However, the direct measurements are considered to be more 

accurate. There was no significant difference (paired t*test, 

0.05<P<0.1) between the areas estimated by both methods for the 

mastigobranchs.

The relationship between total gill area (measured directly) and fresh 

body weight of 14 specimens of Calocaris is presented in Fig. 3.9 

Within the size range 0.7 - 2.4 g (fresh weight) total gill area 

increased from approximately 240 to approximately 500 mm . There was 

little difference between fresh and preserved specimens. Specific gill
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2FIG. 3.9 The relationship between total gill area (mm ) and 

fresh body weight (g) in 14 Calocaris macandreae.

The equation of the calculated regression line is: 

y = 167.5 + 144.Ox (r = 0.98; P<0.001)
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area (s.g.a., i.e. total gill area / weight) decreased with size (Fig. 

3.10) in an apparently linear relationship:

s.g.a. = 420 - 97.weight (r=0.87; P<0.001).

oFor a 'standard' lg animal, calculated gill area is 323 mm .

The increase in gill area with animal size (fresh body weight) resulted 

from an increase in the number of trichobranch filaments (Fig. 3.11) in 

addition to an increase in the dimensions of all the gills (expressed 

as filament length in Fig. 3.12).

Fig. 3.13 shows the relative areas of the gills on each appendage. The 

largest gills were located in the centre and posterior of the branchial 

chamber, with the greatest relative area attached to pereiopod 3.

The gill areas of two Upogebia stellata (1.74 and 1.51 g) and a single 

specimen of Upogebia deltaura (5.49 g) were measured using the 'direct' 

method. In both species the gills are all trichobranchs, with four 

rows of filaments. The measured weight-specific areas were: U.

stellata: 332 m m ^ . g 356 mra^•-1; U. deltaura: 122 mm^.g

3.3.3 Detailed Gill Anatomy in Calocaris macandreae.

The two basic gill types found in Calocaris are trichobranchs (A1, A2 

and P) and mastigobranchs (M). Typical trichobranchs from Calocaris 

are shown in Fig. 3.14A, B. As described above, each gill consists of 

an axis with two rows of filaments arising in pairs. Transverse 

sections of Calocaris trichobranchs (from an animal of about 2 g) 

showed that the gill axis contains two obvious blood channels which 

probably serve as afferent and efferent vessels (Fig. 3.15A, B). In 

contrast, the filaments contain only a single blood vesse.1. These
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FIG. 3.10 The relationship between specific gill area 

(mm^.g *) and fresh body weight (g) in 14 Calocaris 

macandreae. The equation of the calculated regression line

is:

y = 420.0 - 97.lx (r = 0.87; P<0.001)
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FIG- 3.11 The relationship between total number of 

trichobranch filaments in the left branchial chambers and 

fresh body weight (g) in 14 Calocaris macandreae. The 

equation of the calculated regression line is: 

y = 267.3 + 39.2x (r = 0.63; P<0.05)
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FIG. 3.12 The relationship between length of the longest 

trichobranch filament on left pereiopod 3 (mm) and fresh body 

weight (g) in 14 Calocaris macandreae. The equation of the 

calculated regression line is: 

y = 2.39 + 0.74x (r = 0.48; P<0.1)
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FIG. 3.13 Percentage contribution to the total gill area of 

gills (on the left side) from each thoracic appendage in 

Calocaris macandreae (means and standard deviations 

calculated from 14 individuals).
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blood vessels are lined with a membrane, varying in thickness from 0.7 

to 2.7 pm. The external surfaces of both axis and filaments are 

bounded by an epithelial layer external to which was cuticle. The 

thickness of the filament cuticle varied from 1.2 -2.3 pm proximally to

0.8 - 1.2 pm at the distal end, as can be seen from longitudinal

sections (Fig. 3.15c). The axis cuticle also decreased in thickness 

distally but was more substantial, varying from 2.3 - 5.2 pm. As with 

other crustaceans, the branchial cuticle is continuous with the general 

body cuticle and is probably chitinous. Several cells were usually 

present between the epithelial layer and the internal blood vessel of a 

filament, resulting in the wide range of total diffusion distances 

measured (44 to 74 pm).

The mastigobranchs in Calocaris comprise a lamellar structure. The 

external cuticle is relatively thick (1.7 - 2.7 pm). An epithelial 

cellular layer enclosed a thick (2.3 - 3.2 pm) basement membrane and a 

further cuticular layer of 1.4 - 3.0 pm. The centre space of the 

mastigobranch is continuous with the haemolymph vessels of the coxa.

The light micrographs of intact Calocaris gills (Fig. 3.14A) show gills 

that have been stained with AgCl as described by Holliday (1988). This 

stain is supposed to preferentially stain the Cl-transporting ATP'ases 

of the branchial surface. Calocaris gills which were tested 

invariably stained uniformly even after considerable experimentation 

with different concentrations and exposure times of AgCl and developer. 

Similar results have been obtained with other species (J.I. Spicer, 

pers. comm.) and the usefulness of this technique may be open to 

question. However, the densely stained gills were very opaque and were 

more visible for light microscopy and photomicrography.
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FIG. 3.14 Trichobranchiate gills from Calocaris macandreae.

A) arthrobranchs stained with AgCl (see text for details). 

Scale bar 1 mm).

B) Scanning electron micrograph of part of an arthrobranch 

(Scale bar 1 mm). Note sediment trapped between filaments.





FIG. 3.15 Sections of trichobranchiate gills from Calocaris 

macandreae.

A) Transverse section of axis and several filaments. Note 2 

blood channels in the axis, but single channel in filaments. 

Scale bar 100 urn.

B) Transverse section of a single filament.

Scale bar 10 um.

C) Longitudinal section of a filament.

Scale bar 100 um.





3.3.4 Gill Ventilation.

The general pattern of water flow through the branchial chamber is 

presented in Fig. 3.16. The detailed flow pattern over the branchial 

surfaces could not be determined (see discussion below). Water flowed 

into the branchial chamber via several inhalant openings formed between 

the ventral edge of the branchiostegite, the ventro-lateral thoracic 

wall and the pereiopods. The ventilatory current then passed through 

the branchial chamber into the scaphognathite pumping chamber (the pre- 

branchial chamber) and was exhaled through an opening under the 

branchiostegite ventral to the antennae. The direction of ventilatory 

current flow was thus mainly in a postero-ventral to antero-dorsal 

direction.



FIG. 3.16 Directions of ventilatory water flow in Calocaris 

macandreae. Inhalent flow occurs equally into the openings 

formed between the branchiostegite and maxilliped 3 and 

pereiopods 1 * 5. Exhalent flow is directed dorsal to

maxilliped 2.
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2^1 DISCUSSION

3-.5.1 The branchial anatomy gl the Thalassinidea.

The branchial anatomy of the Thalassinidea has not attracted much 

attention in recent years, although several earlier authors compared 

(and usually tabulated) information on the distribution, type and basic 

structure of the gills. Borradaile (1903), Caiman (1909), Selbie 

(1914) and Gurney (1942) gave information regarding the gill formulae 

of a number of species. The gill formulae of the Laomediidae were 

discussed by Wear and Yaldwyn (1966) and Yaldwyn and Wear (1972). 

Biffar (1971) describes the branchial anatomy of Callianassa in his 

definition of the genus. The gill formulae of the U.K. thalassinid 

species have been tabulated (and inferred) from the references cited 

above and the present study in Table 3.2. Information concerning the 

branchial anatomy of the Axiidae is widely scattered in the taxonomic 

literature and is collated in Table 3.3.

There is close agreement between the branchial descriptions given by 

these authors, and those described in this study. With the exception 

of Calocaris macandreae, the gills present on maxillipeds 1 and 2 were 

obscured by the maxillipeds and were not examined, as this would have 

necessitated further dissection. Also, the presence or absence of 

rudimentary gills on maxillipeds 1 and 2, and on pereiopod 5 is liable 

to vary between individuals (see above for Calocaris macandreae). 

There is therefore some disagreement, for example, on the presence of a 

rudimentary pleurobranch on pereiopod 5 of Axius stirhynchus, or the 

presence of a rudimentary arthrobranch on maxilliped 2 of Calocaris 

macandreae (this was observed on only 2 of the 25 specimens examined in 

this study; although Saint Laurent (1972) gives this character as 

present in Calocaris macandreae). Disagreements concerning the gills 

present on maxilliped 1 and pereiopod 3 of the laomediid genera Jaxea



TABLE 3.2 Branchial formulae taken from the literature, for 

the U.K. species of Thalassinidea. (M2 and M3: maxillipeds 2 

and 3; PI - P4: pereiopods 1-4).

M2 - 2nd maxilliped Po - podobranch
M3 - 3rd maxilliped A - arthrobranch
PI - 1st pereiopod PI - pleurobranch
P2 - 2nd pereiopod M - mastigobranch
P3 - 3rd pereiopod r - rudimentary
P4 - 4th pereiopod
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TABLE 3.3 Branchial formulae taken from the literature, 

axiid species. (M2 and M3: maxillipeds 2 and 3; PI 

pereiopods 1 - 4). Key as in Table 3.2.
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and Naushonia are discussed by Wear and Yaldwyn (1966) and Yaldwyn and 

Wear (1972).

Several trends are evident on comparison of the branchial 

formulae/anatomy of the thalassinid species described above:

1. Of the species examined in this study, pleurobranchs were 

present only in Axius stirhynchus. This is in accord with literature 

data for the axiids (Table 3.3), in which pleurobranchs are present 

only in the subgenera A. (Eiconaxius), A. (Iconaxiopsis) and A. 

(Paraxius), (as used by Gurney, 1942). These subgenera are now 

synonomous with A. (Axius). The subgenus A. (Neaxius) does not possess 

pleurobranchs (Borradaile, 1903; De Han, 1925). A review of the 

taxonomy of the axiids is given in Chapter 1.

Whether or not pleurobranchs should be regarded as a 'primitive' 

character (either within the Axiidae; or within the Decapoda) is 

unclear at present.

2. Mastigobranchs are present in Axius stirhynchus, Calocaris 

macandreae, and Jaxea noctuma. Mastigobranchs were present in the 

axiids and laomediids (Table 3.2), and in Thalassina which Borradaile 

(1903) examined, but not in the callianassids. Mastigobranchs are 

present in a variety of astacid decapods, e.g. Homarus, and crayfishes 

from the northern (but not the southern) hemisphere (Lochhead, 1950). 

Mastigobranchs are absent from pagurids (McLaughlin, 1980, 1983). In 

brachyuran crabs, the epipod structure and function is probably 

different to that of the mastigobranch (as defined by McLaughlin, 

1983). The function of mastigobranchs is discussed below.
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3. There is a pronounced trend towards simplification of the 

gill formula in more 'advanced' thalassinids (i.e. in Upogebia and 

Callianassa species.). Pleurobranchs are completely absent in 

upogebiid and callianassid species (Biffar, 1971; de Saint-Laurent, 

1973; Rodrigues, 1978) and podobranchs are rudimentary, if present. 

The total number of trichobranchs in Upogebia and Callianassa spp was 

10, compared to 15 in Jaxea and Calocaris, and 18 in Axius. Due to the 

differences in gill structure, however, the resultant gill area may be 

similar (see below). (NB the callianassid genus Callianidea is 

exceptional in possessing so-called branchial filaments on abdominal 

pleopods 2 - 5; e.g. Saint-Laurent, 1973.)

4. There is a trend towards a phyllobranchiate structure in the 

gills of Callianassa species and Jaxea noctuma, with flattening 

occurring to varying extents (Borradaile, 1903; Selbie, 1914; Biffar, 

1971; present study). The detailed anatomy of thalassinid 

' tricho/phyllobranchiate' gills has not been studied. The only 

detailed descriptions of trichobranchiate thalassinid gills are those 

of Drach (1930) on Upogebia pusilla, and the present study.

2L5.2 Xhfi. gill areas q£_ Calocaris macandreae a M  VpQgebia stellata.

Two methods of gill area measurement were used in this study, direct 

measurement (calculation based on solid geometry: i.e. the gills are 

considered to be constructed from cones and cylinders), and pictorial 

measurement (calculation based on plane geometry: i.e. two dimensional 

gills). For trichobranchous gills there was a consistent difference 

between the methods, with the pictorial method giving estimates of 

approximately half the area as obtained using the direct method.
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An estimate of the likely reasons for the discrepancy can be made.

Using the pictorial method, with the gill filaments assumed to be

approximate triangles, the estimated area (A) would be

A = 1/2 x length x width of the filament.
(= length x radius)

Using the direct method, and assuming the filaments to be cones, the

estimated area is

A = pi x slope length x radius of the filament.

Since the length and slope length of the filaments are approximately 

equal (i.e. the filaments are much longer than their width), the 

difference between the methods should be a factor of pi. In fact, due 

to flattening of the filaments before drawing in the pictorial method, 

the observed discrepancy is smaller than this. Of the two methods, the 

direct measurement method is probably more accurate. Scammell and 

Hughes (1982) have also used this method for filamentous gills.

The specific gill areas measured by the direct method in this study for
2 -1Calocaris macandreae were in the range 187 - 352 mm .g ; with gill 

areas for Upogebia stellata and U. deltaura approximately 344 and 122 

mm^.g* respectively.

The first quantitative measurements of gill areas in decapods were

those of Gray (1957), who examined the gills of sixteen species of

brachyuran crabs from a variety of habitats. The gill areas varied
0 - 1from an average of 325 mm .g m  the ocypodid Ocypode quadrata (as O.

2 -1albicans: a semi - terrestrial ghost crab) to 1367 mm .g in the

portunid Callinectes sapidus (the blue crab; an active, sublittoral 

crab capable of swimming considerable distances). Specific gill area 

was correlated with both habitat (decreasing with increasing



terrestrialisation) and metabolic activity (assessed on a subjective 

scale). The decrease in gill size in semi - terrestrial and terrestrial 

crabs is accompanied by the development of alternative gas exchange 

surfaces (e.g. Farrelly and Greenaway, 1987).

A similar correlation was noted by Scammell and Hughes (1982): "the

surface area of the gills being greater in those species which are

thought to have a more active mode of life". Values for specific gill

areas, interpolated for animals of approximately average weight for
2 -1each species, are given: Carcinus maenas: 777 mm .g ; Cancer pagurus:

2 -i . 7 - 1 .425 mm .g ; Corystes cassivelaunus: 460 mm .g , Maia squinado: 400
2 - i  7 - 1mm .g (all brachyurans) ; Pagurus bemhardus: 450 mm . g (anomuran) ;

- - 2 - 1  2 - 1  Astacus fluviatilis: 400 mm .g , Homarus gammarus: 170 mm .g ,
2 -1Nepbrops norvegicus: 160 mm .g (all macrurans). Further examples of

decapod gill areas are given by McMahon and Wilkens (1983): Cancer

2-1 • 7-1magister: 440 mm .g , Maia squinado: 490 mm .g . Bergmiller and
2 -1Bielawski (1970) found a specific gill area of 550 mm .g in Astacus 

leptodactylus. Although interspecific comparisons are limited due to 

the differences in size range (a large 1Homarus or Cancer being 1000- 

fold greater in weight than an average Calocaris macandreae) , it is 

evident that the range of weight-specific gill areas recorded in the 

thalassinids is comparatively low.

An additional observation is that those species with trichobranchiate 

gills (the macrurans above) tend to have smaller gill areas. It is 

most likely, however, that the low gill areas recorded in thalassinids 

relate to low rates of behavioural activity (Chapter 2) and hence to 

low oxygen uptake rates (see Chapter 4) and to the possession of a high 

affinity respiratory pigment (Chapter 5).
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3,5.3 Functional morphology of the gills of Calocaris macandreae.

The gills of decapods have multiple functions. They are the major site 

of respiratory exchange of oxygen and carbon dioxide (with resultant 

interactions with the acid-base balance of the haemolymph). In 

addition, the gills are a major location of active and passive ionic 

exchange with the environment, an aspect which will not be considered 

further here.

There are two main levels at which the morphology of the gills might 

exhibit adaptive responses to environmental, behavioural or metabolic 

selective pressures. There are obvious differences in the gross 

morphology and fine anatomy of decapod gills at all taxonomic levels. 

These presumably result in functional differences, e.g. in 

characteristics of gas diffusion and blood perfusion. Secondly, the 

respiratory function of the gills will be dependant on the ventilatory 

flow patterns (in turn dependant on morphological characteristics of 

the branchial chamber, and on physiological responses of scaphognathite 

activity to both external and internal stimuli).

Although the functional anatomy/morphology of phyllobranchiate gills 

(usually of brachyuran crabs) has been well studied (e.g. Hughes et 

al. , 1969; Taylor and Butler, 1978; and in relation to air-breathing,

Burggren and McMahon, 1988), there are few studies of the relationships 

between structure and function of trichobranchiate gills (Burggren et 

al., 1974) and only one previous study of thalassinid trichobranchs 

(those of Upogebia pusilla; Drach, 1930).

The functional anatomy of the trichobranchs of the crayfish Procambarus
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clarkii was studied by Burggren et al. (1974), building on the previous 

anatomical studies of Huxley (1880), Bock (1925 and Fisher (1972). The 

major anatomical factors which affect the efficiency of oxygen uptake 

at the gills are thought to be the blood-water diffusion distance, and 

the structure of the vascular system of the gills, controlling the 

perfusion pattern.

Burggren et al. (1974) found that although the podobranch filament 

epithelium thickness in Procambarus was 3.15 - 8.70 pm, this may be 

functionally reduced by the presence of plasma membrane folding in the 

epithelium, possibly resulting in a sinus system (this has been 

observed in Artemia salina, in which the diffusion distance is only 1-2 

um although the epithelial thickness is about 4 pm; Copeland, 1967). 

Additionally, the filament basement membrane may not represent a 

complete barrier to the movement of respiratory proteins (Fisher, 1972; 

Burggren et al., 1974). The observed total epithelial thickness in 

Calocaris macandreae (44-74 pm) was much greater than in the above 

species or in Astacus pallipes (Fisher, 1972). Plasma membrane folding 

of the type described by Copeland (1967) and Burggren et al. (1974) was 

not observed at the magnifications used. It therefore appears that the 

diffusion distances in the trichobranchs of Calocaris macandreae may be 

comparatively large. However, further study of the fine structural 

characteristics may modify these conclusions.

The gill filaments of the crayfish Astacus pallipes (Fisher, 1972), 

Procambarus clarkii (Burggren et al., 1974), and the thalassinid

Upogebia pusilla; (Drach, 1930) contain a relatively complex vascular 

system. In Procambarus, modification of oxygen uptake efficiency at the 

gills may be produced by separation of oxygenated/deoxygenated blood, 

modification of perfusion by blood shunting, and a partial
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countercurrent flow of blood and water (Burggren et al., 1974).

Calocaris macandreae appeared to possess a comparatively simple system, 

with a single blood channel and no septa, partitions etc. as described 

for other species. Clearly, the absence of these features may limit 

the efficiency of Calocaris gills compared to those of brachyuran crabs 

(Hughes et al., 1969) and fish (Randall, 1970).

The pattern of ventilatory flow of water over the gills has been 

described for a number of macruran species, e.g. Astacus fluviatilis 

(Huxley, 1880); Penaeus setiferus (Young, 1959); Procambarus clarkii 

(Burggren et al. , 1974); Nepbrops norvegicus (Scammell and Hughes,

1982). There is a general similarity in that water appears to enter 

the branchial chamber via openings between the pereiopods and exit 

anteriorly at the distal end of the scaphognathite. In more heavily 

calcified types (e.g. Homarus and .Astacus) there is a tendency for the 

inhalant flow to be primarily located at the posteroventral angle of 

the branchiostegite (Lochhead, 1950). In Calocaris macandreae, however, 

inhalant flow appears to occur equally between all pereiopods.

The ventilatory flow patterns of Nepbrops norvegicus and Procambarus 

clarkii have been described in detail (by Scammell and Hughes, 1982 and 

Burggren et al. , 1974 respectively), using the technique of replacing 

part of the branchiostegite with a transparent plastic mould. In 

Nepbrops, (Scammell and Hughes, 1982) the mastigobranchs divide each 

inhalant flow into two components: the main one "traverses the gill 

bases, passes across and through the proximal gill filaments, then 

distally as it meets the epipodite (= mastigobranch] of the next 

anterior group of gills. The subsidiary stream is directed distally 

immediately after entering the inhalant opening and passes through the
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podobranch filaments". In Procambarus, (Burggren et al., 1974) a

similar effect is produced by folds in the distal quarter of each 

podobranch. Although the ventilatory flow pattern in Calocaris was not 

observed (due to the small size) , it is reasonable to suppose that the 

mastigobranchs have a similar function.

Despite the several studies of functional morphology of 

phyllobranchiate gills in decapods which demonstrate that the 

morphology of these gills is comparable with that of fish, there are 

insufficient data in the literature to allow a functional comparison of 

the gill types found in the decapods (and particularly in the 

thalassinids). Assessments of gill efficiency, measured as % oxygen 

extraction, show that efficiency is similar at approximately 20 - 50%

in a variety of brachyuran (phyllobranchiate) and macruran 

(trichobranchiate) decapods during quiescent behaviour (McMahon and 

Wilkens, 1983). Extraction efficiency may be as much as 79% under 

stress (McMahon et al., 1974). If the practical difficulties related 

to their small size could be overcome, a comparison of gill efficiency 

in a range of thalassinid species including trichobranchiate axiids and 

(almost) phyllobranchiate callianassids would be instructive.
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CHAPTER 4. MECHANISMS OF OXYGEN UPTAKE IN CALOCARIS MACANDREAE.

*Lul INTRODUCTION.

In the first part of this thesis, the respiratory conditions present in 

the burrows of Calocaris macandreae and other thalassinid species were 

described. It was found that oxygen availability varied greatly in 

different regions of the burrow, and that permanent, severe hypoxia 

(<30 Torr) occurred in the deeper areas.

There are several approaches to assessing the efficiency of the 

respiratory physiology of animals. Metabolic rate under different 

environmental conditions may be measured using calorimetric techniques, 

or assuming metabolism to be entirely aerobic, by measurement of rates 

of oxygen uptake. This chapter investigates the ability of Calocaris 

macandreae to maintain oxygen uptake in hypoxic environments. Rates of 

oxygen uptake were measured using two methods: 'open respirometry', in 

which the animal was exposed to a constant flow of water of varying 

oxygen tension; and 'closed respirometry', in which the animal was 

enclosed in a limited volume of water and oxygen depletion results from 

the metabolism of the animal itself.

Aerobic respiration in decapod crustaceans, and other animals, may be 

considered as the sum of several unit processes (McMahon and Wilkens,

1983). In terms of oxygen uptake these include:

ventilation. the transport of oxygen from the environment to the 

respiratory exchange area;

oxygen uptake. from the environment across the respiratory exchange 

area;

perfusion. oxygen removal from the respiratory exchange area; 

transport. to the tissues by the haemolymph;
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metabolism, oxygen utilisation by the tissues.

The functional anatomy and morphology of the gills in Calocaris 

macandreae were investigated in the previous chapter. The physiological 

mechanisms of ventilation and perfusion in Calocaris are investigated 

in this chapter. The physiology of oxygen transport will be considered 

in Chapter 5. Finally, metabolic responses to failure of the 

respiratory system to maintain a sufficient supply of oxygen to the 

tissues during environmental anoxia, will be described in Chapter 6.
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4.2 M A T E R IA L S  A N D  M E T H O D S .

4.2.1 gates oxygen uptake in normoxia and hypoxia.

4.2.1.1 Open respirometry.
The rate of oxygen consumption by Calocaris macandreae in normoxic 

conditions was measured by open respirometry (animal size range 

approximately 0.2 to 2.5 g fresh weight). The experimental apparatus 

consisted of a constant level header tank, which supplied aerated 

natural sea water (salinity = 32 °/oo) at a constant rate to the 

respirometer chamber (Fig. 4.1). Initial experiments suggested that 

the optimum shape for the chamber was cylindrical, resulting in a 

consistent oxygen gradient within the chamber and to some extent 

resembling in shape the burrow habitat of the species. The 

respirometer chamber volume (i.e. the diameter and length of the 

perspex tube) was varied from 15 to 35 ml according to the size of the 

animal. Two identical chambers were set up, in order that control PO2  

values could be obtained.

The sea water outflows from both the respirometer and control chambers 

were led via narrow cannular tubing (of as short a length as possible) 

and a three-way valve, to an oxygen electrode (Radiometer E5046). The 

electrode was connected to a Strathkelvin Instruments PO2 meter, the 

output of which was recorded on a chart recorder. The complete 

apparatus was situated in a constant - temperature room at 10°C.

Each experimental run consisted of an electrode calibration with 

aerated seawater (as described in Chapter 2), followed by 30 minutes of 

control measurement. Control values were always within 1 Torr of 

aerated sea water values (155 - 160 Torr). The three-way valve was 

then switched so that water from the respirometer chamber flowed past

88



FIG. 4.1 Diagram of the open respirometer, 

explanation.
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the electrode at a rate between 0.8 and 1.5 ml. min The flow rate 

was measured by diverting the outflow from the electrode into a 

measuring cylinder for a measured time. The apparatus was adjusted so 

that control and respirometer sea water flow rates were similar. The 

experiment was then run for a period of 12 - 16 hours (usually

overnight) followed by another period of control PO2 measurement.

Rates of oxygen uptake were then calculated from the formula:

PO2 x alpha x Flow rate (ml.min"*)
MO2 = -— — --------------- ■--------------  pmol (^.g-1. h'1.

animal fresh weight (g) x 60

where PO2 = respirometer PO2  ■ control PO2 (Torr);

alpha = solubility coefficient of oxygen in sea water at 10°C 
= 1.39 pmol 02. ml'1. Torr'1.

4.2,1.2 filflSgA respirometry.

A closed respirometer was used in order to investigate the rates of 

oxygen consumption of Calocaris under conditions of declining oxygen 

tension. The closed respirometer apparatus (shown in Fig. 4.2) 

consisted of a perspex respirometer chamber containing an enclosed 

stirring bar, into which projected an oxygen electrode (Radiometer 

E5046) connected to a PC>2 meter (Strathkelvin Instruments) and a chart 

recorder. After initial experiments, a respirometer chamber volume of 

16 ml was found to allow experiments over a reasonable timescale 

(complete depletion of oxygen in approximately 12 hours). During 

initial experiments in which the respirometer chamber was immersed in a 

water bath, difficulties were experienced due to electrical 

interference from the water bath electronics. More satisfactory 

results were obtained by placing the apparatus in a temperature- 

controlled room maintained at 10 °C. Artificial sea water ('Tropic 

Marin’ made up in fresh deionised water) at a salinity of 32 °/oo was
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FIG. 4.2 Diagram of the closed respirometer, 

explanation.
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used for these experiments, in order to reduce background oxygen 

consumption by the microflora present in natural sea water (see later).

After electrode calibration with aerated water, each experimental run 

consisted of placing an animal in the respirometer and allowing a short 

settling time of approximately 30 minutes (settling times are discussed 

below, 4.4.1). The inflow and outflow taps were then closed and the 

animal allowed to deplete the oxygen within the chamber. The oxygen

partial pressure declined to 0 Torr over a period of 6 - 12 hours, and

a period of 2 - 6 hours of anoxia was usually measured. The rate of 

oxygen depletion (expressed as Torr. h"*) was then measured from the 

chart recording at various PC^'s. (Where MO2 varied rapidly, the 

instantaneous rate of oxygen depletion was measured by drawing tangents 

to the trace.) After each run the electrode calibration was checked to

ensure that no electrode drift had occurred during the experiment.

Several control experiments were run in which background respiration 

rates were measured. These rates were always low (<10% of the

experimental rates) and were subtracted from the results obtained

during experiments with animals. The cause of the background

respiration is unclear since the respirometers were sterilised (by

rinsing with 'Milton's fluid') between experiments and freshly-made 

artificial sea water was always used. The background respiration was 

distinct from the effects of electrode drift (which was very low) and a 

consistently high initial oxygen uptake rate when starting a run, which 

appeared to be an experimental artifact related to water flow within 

the respirometer chamber.
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The rate of oxygen consumption was calculated from:

ho2  =  ------------—

time

alpha x AP02 x  V

where: A p02 = change in oxygen partial pressure (Torr)

V = chamber volume (ml)

The true rate of oxygen consumption of the animal (M02) was then 

obtained by subtraction of the background rate.

Initial experiments were carried out in which longer settling times (up 

to 24 hours) were allowed. Several reports in the literature describe 

protracted settling periods during which oxygen uptake rates decline to 

a so-called "resting level" (see Discussion below). This response was 

never observed in Calocaris. Results from both open and closed 

respirometry suggest that the rate of oxygen uptake in Calocaris 

contained in respirometers is constant over a time period of <30 

minutes - >24 hours. Animals held in closed respirometers for longer 

than 24 hours suffered increased mortalityy possibly as a result of the 

accumulation of waste products. In addition, Calocaris always showed 

some degree of activity during experiments, usually in the form of 

continual walking and turning movements. Thus the results obtained from 

these experiments should be considered as oxygen uptake rates during 

’normal' rather than 'resting' levels of activity. This subject will 

be discussed in more detail below (see Discussion, 4.4.1).

2 Heart and scanhognathite rate measurements.

The heart and scaphognathite rates of Calocaris macandreae were 

recorded using an impedance technique similar to that used originally 

by Hoggarth and Trueman (1967) and modified by Spaargaren (1973) and 

Dyer and Uglow (1973). A small oscillating current (2pA; 25kHz) is 

induced between a fine wire electrode fixed to the animal and a larger
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reference electrode situated in the water of the holding tank. Any 

impedance change between the electrodes (due to heart or scaphognathite 

movements) produces a proportional voltage change which is amplified 

and recorded on a chart recorder.

The electrodes used to record scaphognathite movements were made from

fine (S.W.G. 44) shellac-coated copper wire, with the shellac removed 

from the last millimetre. The wire used was as fine as possible in 

order to allow the animal freedom of movement; this resulted in many 

breakages of the electrode wires. The wire was bent to form a hook 

which was placed under the anterior margin of the branchiostegite so 

that the bared end of the electrode was positioned close to the 

scaphognathite (Fig. 4.3). The heart electrode was similar (although 

with a slightly shorter hook) and was placed over the dorsal posterior 

edge of the cephalothorax to lie over the pericardium (Fig 4.3). The 

electrodes were fixed in place using cyano-acrylate adhesive

(Permabond) with the setting time accelerated to a few seconds using 

methyl methacrylate. The animals were quickly dried with a tissue 

before the electrodes were attached, and the total time of aerial 

exposure was as short as possible (under 1 minute). There were few

mortalities associated with the operation; some animals remained alive 

while connected to an impedance recorder for up to 10 days. A recovery 

time of at least 24 hours was allowed before any recordings were made.

The reference electrode consisted of either an aluminium sheet (10 cm x 

5 cm) or a piece of aluminium foil placed in the tank. Both electrodes 

were connected to a George Washington impedance pneumograph and pen 

recorder (Palmer Bioscience). Four channels were available for 

recording but no more than two electrodes were connected to any one
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Fig. 4.3 Diagram of the placement of impedance electrodes to 

record scaphognathite and heart rates. The scaphognathite 

electrode (SC) is hooked around the anterior edge of the 

branchiostegite. The heart electrode (H) is hooked over the 

dorsal posterior edge of the carapace. The reference 

electrode is placed in the sea water medium. All electrodes 

are connected to a George Washington impedance pneumograph. 

The electrodes are fixed in position with cyanoacrylate 

adhesive. See text for further details.
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animal. Recordings were made of single scaphognathite rates; both 

scaphognathites; heart rate only and heart and one scaphognathite. It 

was necessary to use animals weighing in excess of 1 g (fresh weight) 

since smaller animals were unduly restrained by the wires. Although 

some signal noise was generated by locomotory movement of the animals, 

in general the animals remained stationary over relatively long periods 

of time so that satisfactory recordings could be made. In the case of 

animals exposed to severe hypoxia and anoxia, complete cessation of 

locomotory behaviour was always observed.

After the electrodes had been attached, the animals were placed in 

small (2-5 1 capacity) aquaria for the duration of experiments.

Several attempts were made to record heart and scaphognathite rates 

from animals in burrows. Animals were, however, reluctant to enter 

burrows while connected to the recorder and in most cases the wires 

broke. Due to the difficulty of removing animals from the burrows 

subsequently (without destroying the burrow) and a shortage of empty 

burrows in the laboratory, these attempts were abandoned. Some results 

were obtained from animals positioned inside lengths of clear perspex 

tubing, within which the animals appeared to exhibit normal behaviour 

patterns such as preening and ventilatory pleopod movements.

Scaphognathite and heart rates were recorded from animals held under a 

variety of conditions. The chart recordings were analysed by counting 

the beats recorded over short time intervals (usually 1 minute) 

although continuous recordings were made over a period of several 

hours. In experiments in which both scaphognathites, or one 

scaphognathite and the heart rate were monitored, the traces were 

examined for evidence of unilateral scaphognathite pumping; phase 

linking of the scaphognathites; and correlation between heart and



scaphognathite rates. In addition, some high-speed recordings were 

made to investigate the form of the pump actions of the heart and 

scaphognathites.

Scaphognathite and heart rates were measured in animals exposed to a 

variety of respiratory conditions. Control experiments were conducted 

in which animals were held in normoxic conditions (in aerated sea 

water). Scaphognathite and heart responses were then investigated in 

conditions of gradually declining oxygen tension, and in conditions of 

extended anoxia (up to 12 hours). During these experiments, hypoxic 

conditions with controlled pH and PCO2 were produced by bubbling 

appropriate nitrogen/carbon dioxide mixtures through the water. pH and 

PCO2 were occasionally measured using the instruments described in 

Chapter 5. All experiments were carried out at 10°C.



4^2 RESULTS.

4.3.1 Oxygen consumption in normoxia.

The rates of weight - specific oxygen consumption in 19 specimens of 

Calocaris macandreae were determined using open respirometry. No

mortalities were recorded during the open respirometry experiments.
* -1 -1 Oxygen consumption (MO2 ) varied from a minimum of 0.28^imol.g .h m

an animal which had been stationary for a considerable time (probably >

12 hours) to 1.67 pmol.g ^.h * in another animal immediately after

being placed in the respirometer. MO2  did not change significantly in

any animal, over the duration of an experiment (correlation analysis).

%

The relationship between log MO2 and log fresh body weight (Fig. 4.4) 

was non-significant, although an inverse trend was observed. The lack 

of significance may be attributed to the relatively small size range 

of Calocaris which was studied. Many other studies of oxygen uptake 

in crustaceans (and other animals) which considered a sufficiently wide
I

size range have found that MO2  is proportional to a constant power 

function of body weight, according to the general equation:

MO2 = a.wt̂ '*.

Values of the ’a' and 'b' parameters derived from the present study for 

Calocaris macandreae are:

a = 0.74
b-1 = -0.33 

b = 0.67.
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4_JL2 Qxygen consumption in hvpoxia.

The rates of weight-specific oxygen consumption of five Calocaris under 

conditions of declining oxygen partial pressure, as measured by closed 

respirometry, are shown in Fig. 4.5. The elevated rates at P^'s 

130 - 155 Torr are likely to be due to disturbance of the animal.

These elevated rates were similar both in settled animals at the 

initiation of the experimental run (i.e. on stopping the water flow), 

and in animals which were placed in respirometers immediately prior to 

commencing the run. After 2 - 4  hours the chamber PO2  had decreased to 

130 Torr, and oxygen consumption rates recorded over the range 130 - 20 

Torr were in close agreement with rates recorded in normoxia by open 

respirometry. The mean rate of weight-specific oxygen consumption 

recorded in quiescent animals, using both methods (in the PO2  range 155 

20 Torr) was approximately 0.74 jmnol.g.h"*. (Note: this weight-

specific rate applies over the entire size range measured).

Oxygen consumption was strongly regulated over the environmental PO2

range 15 - 155 Torr in Calocaris macandreae. Fig. 4.5 shows no

significant decrease in MO2  from a rate of 0.74 pmol.g~^.h~^ until a

'critical' PO2  ('Pc') of 10 Torr was reached (t-tests, P>0.05). An

examination of individual MO2  curves, however, showed that individual

Pc's varied within the range 10 - 20 Torr. Below a PO2  of 10 Torr,
%

oxygen consumption decreased. At a PO2  of 5 Torr, MO2  was 

not significantly greater than zero (t-test, P>0.10).
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FIG. 4.4 The relationship between rate of oxygen consumption 

(MO2 ; jimol.g *.h"*) and fresh body weight (g) in Calocaris 

macandreae. The equation of the regression line is: 

l°g y = -0.33 log x - 0.13
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FIG. 4.5 The effect of declining oxygen tension (PC^; Torr) 

on the rate of oxygen consumption in Calocaris macandreae. 

Means and standard deviations from measurements on 5 

individuals are presented.
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^3^1 Branchial ventilation and heart rate in normoxia.

There was considerable variation in the pattern of branchial 

ventilation shown by individual Calocaris maintained in normoxic 

conditions (e.g. Figs. 4.6, 4.7, 4.10A). This apparent variation was 

due in part to differences in the position of the electrode and in the 

amplitude of the recorded beat. In most cases, periods of electrical 

noise were also recorded, which were due mainly to movement by the 

animal relative to the reference electrode. However, the continuing 

scaphognathite beat pattern could usually be observed superimposed on 

the larger fluctuations produced by movement of the animal (e.g. Figs. 

4.6, 4.7).

In all cases in which the rate of beating of both scaphognathites was 

measured, tight coupling of the two rates was observed (i.e. there was 

a constant ratio (usually = 1 )  between the beat rates). Fig. 4.6 shows 

a recording of right and left scaphognathites from an animal in 

normoxic conditions within a perspex tube 'burrow', 16 hours after

electrode attachment. The animal showed sporadic locomotory activity 

(reflected as periods of noise on the recording) and occasional brief 

decreases and pauses in scaphognathite activity. This animal had 

probably not completely recovered from the operation (since the 

ventilation rate is relatively high compared with 'fully recovered’ 

animals). However, Fig. 4.6 clearly shows that the rates of beating of 

both scaphognathites were nearly identical. In addition, decreases in 

rate and pausing occurred simultaneously in both scaphognathites. 

This was the case in all animals studied and very few observations of 

unilateral beating or pausing were made. (The stroke volume cannot be 

deduced from impedance recordings; the recorder amplification had been 

adjusted in Figs. 4.6 and 4.7 to give equal amplitudes and it is 

possible that the respiratory current flow is unequal.)



Fig. 4.6 Recordings of scaphognathite activity from an 

individual Calocaris macandreae in a perspex tube ’burrow' 

under normoxic conditions.

Lsc) Left scaphognathite.

Rsc) Right scaphognathite.

A) periods of locomotory activity, recorded as large
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Phase - linking of the two scaphognathites was generally not observed in 

Calocaris. Although beating of the two scaphognathites was coupled (as 

described above), there was very often a slight difference in the two 

rates. As a result, the two scaphognathites were usually at different 

points in the beat cycle, and there was usually slow drift between the 

two phases. This may suggest separation of the neural control of the 

two scaphognathites (see Discussion).

A recording of the scaphognathite rates of another individual

Calocaris is shown in Fig. 4.7. This animal was engaged in burrowing

activity on the sediment surface, interspersed with stationary periods 

of 30s to 1 minute. The upper (left-scaphognathite) trace was adjusted 

to show movement of the animal as large fluctuations (with 

scaphognathite beat superimposed), while the lower (right) trace shows 

only scaphognathite movements. There was a significant (t-test, 

P<0.05) increase in scaphognathite rate (from 8-10 to 40-60

beats.min’ )̂ during periods of burrowing activity.

Recordings of scaphognathite activity showed a distinctive beat-pattern 

(Fig. 4.8). At slow beat rates, each complete oscillation was followed 

by a stationary period (2.5s at a rate of 12 beats.min *). At higher 

rates the stationary period was reduced, until at a beat rate of 

approximately 100 beats.min * movement of the scaphognathite became

continuous. Direct observation of the scaphognathite in living animals 

through the branchiostegite (which is translucent in most animals) 

showed that the scaphognathite beat movement occurred in a vertical 

plane, with an approximately sinusoidal wave-form which moved from 

posterior to anterior. Thus the recorded traces conformed with the 

expected pattern of movement of the anterior end of the scaphognathite



FIG. 4.7 Recordings of scaphognathite activity from an

individual Calocaris macandreae engaged in burrowing activity 

on the sediment surface.

Lsc) Left scaphognathite. The trace has been adjusted to 

show burrowing activity as large oscillations.

Rsc) Right scaphognathite.





FIG. 4.8 Variations in the detailed beat pattern of the 

scaphognathite of Calocaris macandreae, at different

scaphognathite beat rates. The shape of the beat trace 

changes as the beat becomes continuous (for more explanation, 

see text).





(which is closest to the position of the electrode; Fig. 4.3).

Recordings made of the heart rate of Calocaris under normoxic 

conditions showed a rate which varied from 30 to 70 beats.min The

beat-pattern was complex, and was not tightly coupled to scaphognathite 

rates (Figs. 4.9, 4.10A).

Many individual Calocaris which were apparently in a settled condition 

in normoxia, showed periods of cardiac and ventilatory arrest (apnoea). 

These periods were generally of short duration, 10 - 30 seconds (e.g. 

Fig. 4.10A), but in some individuals periods of bilateral ventilatory 

pausing of up to 2 minutes were recorded. Periods of cardiac arrest 

were usually shorter (Figs. 4.9 and 4.10A). In general, individual 

animals showed either consistent coupling (e.g. Fig. 4.10A) or 

uncoupling (e.g. Fig 4.9) between periods of ventilatory pausing and 

cardiac arrest. No observations were made of periods of obvious 

reversal of the scaphognathite beat (similar to those which occur in 

many brachyuran crabs). These are most easily detected by pressure 

transducer recordings from the branchial chamber; it is possible that 

reversals in Calocaris were not detected by the impedance recordings 

used in this study, although reversals in crabs are usually easily 

detected on impedance recordings (A.C. Taylor, pers. comm.).

4.3,4 Branchial ventilation and heart rate in hypoxia.
The beat-patterns of the right scaphognathite and heart of an 

individual Calocaris, exposed to progressive hypoxia are shown in Fig. 

4.10. The mean beat rates of five individuals in similar conditions 

are shown in Figs. 4.11 and 4.12. The scaphognathite rate increased 

from a mean value of 27 beats.min"* at 155 Torr to a maximum rate of
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Fig. 4.9 Recordings of heart (H) and scaphognathite (SC) 

activity in an individual Calocaris macandreae under normoxic 

conditions. Note that scaphognathite and heart rates were not 

tightly coupled in this individual.





FIG. 4.10 Recordings of heart (H) and right scaphognathite 

(Rsc) in an individual Calocaris macandreae in conditions of 

declining oxygen tension. Hyperventilation is evident at 

P0 2 's of 56 and 12 Torr (relative to scaphognathite rates at 

145 Torr), however, there is no significant change in heart 

rate. Apnoea occurs at a PO2 of 2 Torr. Scale bar: 10

seconds (A 5 second high-speed recording is included in the 

12 Torr trace).
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110-160 beats.min  ̂at approximately 15 Torr. Belov this 'critical' 

PO2  (Pc) the scaphognathite rate decreased until nearly all animals 

showed ventilatory arrest when conditions became anoxic. The

increased scaphognathite rate resulted initially from a decrease in the 

frequency of pausing to produce continuous beating, followed by a large 

increase in the beat rate. The response shown in Fig. A.10 had an 

unusually abrupt ventilatory arrest at 2 Torr; most individuals showed 

a more complicated response with longer periods of arrest interspersed 

with rapid beating as the PO2  decreased from a Pc of 10 - 20 Torr to 

anoxia. Occasionally, animals maintained a ventilatory flow even at 

very low P0 2 's (< 1 Torr). All individuals studied, however, showed 

complete ventilatory arrest after 30 minutes of anoxia.

In contrast to the pronounced change in scaphognathite rates, no 

significant change in heart rate was recorded in any individual 

Calocaris exposed to hypoxia. Similarly, brief exposures to anoxia had 

no effect (Fig. 4.10; Fig. 4.12). During exposure to varying degrees 

of oxygen availability, heart rate was maintained at a mean rate of 52 

beats.min ^. In several experiments with different animals exposed to 

long periods of anoxia (12 - 24 hours), the heart rate was observed to 

be maintained (although occasionally at a slow rate, approximately 1 0  

beats.min ^).
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FIG. 4.11 The effect of declining oxygen tension (PO2 ; Torr) 

on scaphognathite rate (^sc) i-n Calocaris nacandreae. 

Different symbols represent 5 individuals. Time-course of 

oxygen depletion approximately 1 2  hours.
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FIG. 4.12 The effect of declining oxygen tension (PO2 *, Torr) 

on heart rate in Calocaris macandreae. Different

symbols represent 5 individuals. Time-course of oxygen

depletion approximately 1 2  hours.
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kJi. DISCUSSION

A.4.1 Comparative aspects sit oxveen uptake lot Calocaris macandreae.
%In this study, rates of oxygen consumption (MC^) of Calocaris

%
macandreae were measured using both open and closed respirometry. MO2  

was measured for animals thought to be in a 'normal' state of 

disturbance (see below), in normoxic conditions and in conditions of 

progressive hypoxia.

McMahon and Wilkens (1983) state that "oxygen uptake (consumption) is 

the most frequently used (and perhaps misused) parameter in crustacean 

respiratory physiology". There is a large literature concerning oxygen 

uptake rates by crustaceans (see review of Wolvekamp and Waterman, 

1960), characterised by inconsistency in methods and large variability 

even in reports for the same species under apparently similar 

conditions. McMahon and Wilkens (1983) suggest that the best approach 

to understanding oxygen consumption is to define the rate limits : the

basal rate, "that level of O2 uptake necessary for bodily maintenance 

under a particular set of environmental conditions that approximate the 

seasonal norm"; and the active rate "resulting from sustained maximal 

activity". The range of oxygen uptake rates thus defined is termed the 

"aerobic metabolic scope" (Bennet, 1978).

Probably the majority of studies of oxygen uptake in crustaceans 

(including this one) have used some form of closed respirometry, 

although the method has been repeatedly criticised. Tang (1933) and 

Kamler (1969) led the criticism of the simplest form of closed 

respirometry (the "Winkler bottle"). More recently, von Oertzen (1984) 

listed 4 categories of problems:



1. Disturbance of the animal during transfer to the bottle (this can 

be extended in more complex experimental systems, to include 

disturbance due to a change in water flow when starting a run).

2. Uncontrolled pH variation due to CO2 excretion during an 

experiment.

3. Uncontrolled variation in the effects of metabolic waste-product 

accumulation, due to variation in the biomass/volume ratio.

4. The absence of mixing leading to sub-optimal supply of oxygen to 

the animal.

Although criticism (4) is usually overcome in closed respirometers such 

as that used in this study (by including an enclosed stirring bar in 

the respirometer), the remaining criticisms are inherent in the design 

of closed respirometers. Open respirometers avoid these problems, 

although there are practical problems in detecting the small PO2  

differences necessary, and in ensuring adequate control conditions. In 

addition, the rate of data acquisition using open respirometry is 

usually slow in comparison with that made possible by using large 

numbers of closed bottle respirometers. In the present study, very 

similar rates of oxygen consumption were recorded using both methods of 

respirometry, suggesting that the methodological criticisms outlined 

above were not limiting (in addition, pH did not vary throughout the 

course of the closed respirometer experiments).

The Calocaris used in this study continued to show sporadic locomotory 

activity throughout the experiments (or until low PC^'s were reached in 

closed systems), and furthermore did not show a significant decrease in 

MO2 during 12 - 16 hours following disturbance. The physiological 

state of these animals therefore does not conform to either 'basal' or 

'active* according to the terminology of McMahon and Wilkens (1983) and
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has been defined here as 'normal'. Definitions of 'resting' or 

'standard' metabolism (e.g. Prosser, 1973) involve quantification of 

activity levels in animals, followed by extrapolation to 'zero 

activity'; while other studies have defined a physiological state 

according to a fixed recovery time from handling disturbance (e.g. 

'routine': 12h (Innes, 1985)).

Several studies have found that oxygen uptake of apparently inactive 

animals declines significantly for 24 - 48 hours following handling 

stress (e.g. McMahon et al., 1974; McMahon and Wilkens, 1975, 1977;

Butler et al., 1978; Taylor and Butler 1978). The relevance of long- 

running studies such as these to conditions in the natural habitat is 

probably limited; in addition the effects of starvation and 

confinement will become significant and species-specific.

In conclusion, lack of comparability in methods complicates the use of 

oxygen uptake data for inter-specific or inter-study comparison. The 

use of such comparisons in the present discussion will be confined to 

studies in which experimental conditions were similar to those used in 

this study, and were chosen to represent typical environmental 

conditions for the species in question. Also, only oxygen uptake rates 

measured under comparable activity states (e.g. "quiescent, bilateral 

ventilation"; "routine") will be compared. These comparisons must 

nevertheless be regarded with caution.

Values for rates of oxygen consumption by thalassinid species, taken 

from the literature, are tabulated below:
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TABLE 4.1 Literature data for rates of oxygen consumption in the 
Thalassinidea.

SPECIES
(umol.g .h ) (°C)

Temp Reference

Calocaris 
macandreae 

Callianassa
califomiensis 

Callianassa jamaicense 
Upogebia pugettensis 
Upogebia africana 
Upogebia stellata

**0.50
° * 7 5  , 0.80-1.16

2‘9*
2 7 * 4.5
0.90

5
10
10
10
25
10
20
10

Dries, 1975 
present study
Thompson and Pritchard, 1969 
Miller et al., 1976 
Felder, 1979
Thompson and Pritchard, 1969 
Hill, 1981 
present study

** re-calculated from authors' units 
re-calculated from author's units and data from 
Calderon-Perez (1981)

The lower oxygen uptake rates recorded in Calocaris macandreae by Dries 

(1975), compared to the present study, are probably due to the 

different temperatures used. Rates of oxygen consumption by Calocaris 

macandreae are comparatively similar to those of Callianassa species 

(recorded in studies conducted at 10°C); in the approximate range 0.5 - 

1.5 pmol.g ^.h Rates of oxygen consumption in Upogebia species are 

slightly higher, in the range 0.9 - 4.5 pmol.g"*.h’*. This may relate 

to the more oxygenated habitat of Upogebia, and the more active 

behavioural patterns shown (see previous chapters).

A representative sample of oxygen uptake rates reported in the 

literature for a range of brachyuran and macruran decapods, was 

tabulated by McMahon and Wilkens (1983). In summarised form (with 

units converted to pmol.g ^.h ^), these reports include:
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TABLE 4.2 Literature data for rates of oxygen consumption in brachyuran 
and macruran decapods.

BRACHYURA

Cancer magister 
Cancer productus 
Carcinus maenas

2.04-3.66
1.62
1.20-1.32

McMahon et al. (1979) 
McMahon and Wilkens (1977) 
Taylor (1976)
Mangum and Weiland (1975) 
Burnett (1979)

Callinectes sapidus 
Libinia emarginata

2.82
3.00

MACRURA

Homarus americanus 
Homarus gammarus 
Pacifastacus leniusculus 
Orconectes rusticus

1.32
1.02

1.92-7.62
0.90

McMahon and Wilkens (1977) 
Butler et al. (1978) 
Rutledge (1981)
Wilkes and McMahon (1982)

Thus oxygen uptake rates measured in a variety of non-thalassinid

consumption rates in the thalassinids Calocaris macandreae and 

Callianassa species are comparatively lower; this may be of potential 

functional significance (see below). In contrast, oxygen uptake rates 

measured in Upogebia species are within the range documented for non

burrowing, 'typical' decapods. The greater metabolic rates of Upogebia 

species are possibly correlated with the less hypoxic burrows and more 

active lifestyle (i.e. a filter-feeding strategy: see Chapter 2).

The ability of decapod crustaceans (and other invertebrates) to 

maintain oxygen consumption at a constant rate, over a wide range of 

oxygen partial pressures, has been the subject of much research 

(reviewed by e.g. Wolvekamp and Waterman, 1960; Mangum and van Winkle, 

1973; Herreid, 1980). Initial reports suggested that regulatory 

abilities in crustaceans were limited (Wolvekamp and Waterman, 1960), 

for reasons largely related to gill and blood performance. More recent 

reviewers, however, have concluded that the majority of malacostracan 

crustaceans have considerable ability to maintain routine or quiescent

decapod crustaceans are in the range 0.9 - 3.0 pmol.g ^ . h O x y g e n
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levels of oxygen consumption, in the face of environmental oxygen 

depletion (Taylor and Butler, 1979; McMahon and Wilkens, 1983).

Historically, animals have been classified into two categories based on 

MO2 regulatory ability: 'oxyregulators' vs. 'oxyconformers'. This 

approach has since been repeatedly criticised as an oversimplification 

(e.g. Mangum and van Winkle, 1973: "an inherently futile attempt to 

force a continuously varying quantitative phenomonen into a simple 

verbal dichotomy"). In addition, regulatory ability is greatly 

influenced by many variables (Herreid, 1980; McMahon and Wilkens,

1983). Most recent authors have described regulatory ability simply in 

terms of the 'critical point' (Pc; defined above), usually quoted as a 

range measured on a number of individual animals.

Values for the Pc reported for burrowing decapods have been listed by 

Atkinson and Taylor (1988): 10-25 Torr in the thalassinids Callianassa 

califomiensis (Thompson and Pritchard, 1969; Miller et al., 1976; 

Torres et al., 1977) and Callianassa jamaicense (Felder, 1979); and 45- 

50 Torr in Upogebia pugettensis (Thompson and Pritchard, 1969). Pc's 

of 20-40 Torr have been recorded for the burrowing crab Goneplax

rbomboides (A.C. Taylor, unpubl. obs.); and 40 Torr in Nephrops

norvegicus (Hagerman and Uglow, 1985). These data compare with Pc

values measured in Calocaris macandreae, which varied individually 

between 10 - 20 Torr. In general, Pc values in burrowing decapods, and 

particularly in the thalassinids Calocaris macandreae and Callianassa 

species are lower than in decapods from 'normal' marine environments 

(e.g. 130 Torr in Ebalia tuberosa: Schembri, 1979; 60-80 Torr in Cancer 

pagurus: Bradford and Taylor, 1981).
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4 ..4.2 Fhys illogical mechanisms of oxyregulation in Calocaris 

macandreae.

Between 1970 and 1982, a great deal of research was conducted, aimed 

towards elucidation of the respiratory features and mechanisms of 

decapod crustaceans. This allowed McMahon and Wilkens (1983) to review 

the interactions of ventilation, perfusion and oxygen uptake in 

large decapods, in some detail. Since this review, relatively little 

new information has been reported, although recent research is 

beginning to consider neural and hormonal control of ventilation and 

perfusion in more detail.

The mechanisms of regulation of oxygen uptake in decapods are similar 

whether the stress results from activity or hypoxia (McMahon and 

Wilkens, 1983). Regulatory processes may include ventilation (oxygen 

supply to the respiratory surface); perfusion (maintenance of a 

favourable oxygen diffusion gradient); oxygen transport in the 

haemolymph (considered in the next chapter); and oxygen utilisation 

rates at the tissues.

In decapods, hyperventilation (increased frequency of scaphognathite 

pumping and resultant increased ventilatory flow) is a frequent 

response to environmental hypoxia, presumably related to regulation of 

oxygen uptake. Hyperventilation has been recorded in Homarus gammarus 

(Butler et al., 1978; McMahon et al., 1978); Homarus americanus 

(McMahon and Wilkens, 1975); Cancer productus (McMahon and Wilkens, 

1977); Callinectes sapidus (Batterton and Cameron, 1978); Libinia 

emarginata and Ocypode quadrata (Burnett, 1979); Cancer pagurus 

(Bradford and Taylor, 1981; Burnett and Bridges, 1981); 

Austropotamobius pallipes (Wheatly and Taylor, 1981); Palaemon elegans 

(Morris and Taylor, 1985); Carcinus maenas (Arudpragasam and Naylor,
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1964; Taylor et al., 1973; A.C. Taylor, 1976) and the thalassinids 

Callianassa califomiensis and C. affinis (Farley and Case, 1968). The 

hyperventilatory pattern observed in Calocaris macandreae was 

unremarkable, except for the low critical PO2  at which hyperventilation 

ceased in declining oxygen tensions.

The reasons for cessation of the hyperventilatory response when 

environmental PO2 decreases below the Pc, are thought to be related to 

the high energy demand of increased ventilatory pumping (Hughes and 

Shelton, 1962; Bradford and Taylor, 1981). The mechanical work and 

energetic costs of scaphognathite pumping have been investigated in the 

shore crab, Carcinus maenas (Wilkens et al., 1984), showing that the 

cost of ventilation for resting crabs is equivalent to 30% of total

m o2.

Coupling between the Pc's observed in oxygen uptake and ventilation 

rate was oberved in Calocaris, as in most other species studied. The 

maximum rates of scaphognathite pumping achieved, may be limited by 

mechanical factors in addition to energetic costs (McMahon and Wilkens, 

1983). An additional interaction which is frequently observed is that 

between the hyperventilation response and acid-base balance in the 

haemolymph: hypoxia-induced hyperventilation often results in a

pronounced alkalosis (e.g. Truchot, 1976; McMahon et al., 1978; Sinha 

and Dejours, 1980; see Chapter 5).

The neural control of scaphognathite function has been reviewed by 

McMahon and Wilkens (1983). Several crustaceans show a similar pattern 

of bilateral coordination between scaphognathites, in which periods of 

phase constancy alternate with periods of drift in relative frequency. 

This pattern is thought to demonstrate independence of the pattern
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generators (Wilkens and Young, 1975; Young and Coyer, 1979). The 

synchronising mechanism is not well understood, although communication 

may occur at the motor neuron level (Wilkens and Young, 1975; 

Pilkington and MacFarlane, 1978).

The cardiovascular response to environmental hypoxia in decapods is not 

so consistent as that of the ventilatory system. Many species which 

are not strong oxyregulators (e.g. Austropotamobius pallipes: Wheatly

and Taylor, 1981; Homarus gammarus: McMahon, Butler and Taylor, 1978) 

show a progressive bradycardia in declining oxygen tensions. Other 

species which exhibit more ability to regulate oxygen consumption (e.g. 

Palaemon elegans: Morris and Taylor, 1985; Calocaris macandreae:

present study) show little if any response in heart rate. The

cardiovascular system is more complex than the respiratory pumps,

however, since changes in heart stroke volume may occur (McMahon and

Wilkens, 1977) which are not measured using impedance techniques

(Depledge, 1979). Measurements of perfusion rates based on the Fick 

principle (e.g. Taylor, 1976; Bradford and Taylor, 1981) suggest that 

cardiac output remains independant of PO2 above the Pc.

In normoxic conditions, some individual Calocaris macandreae exhibit 

pausing in both respiratory ventilation and blood circulation (usually 

tightly coupled). Similar pausing patterns have been described in many 

decapods, although pausing in brachyuran crabs generally occurs less 

frequently but for longer periods (5 - 20 minutes: Bridges, 1976;

McMahon and Wilkens, 1977; Bradford and Taylor, 1981; Taylor, 1984). 

The adaptive advantages of respiratory pausing are probably related to 

energetic costs: during bilateral ventilation (and normal perfusion) in 

normoxic conditions, the respiratory pigment remains almost fully
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saturated on return to the gills, and acts as a venous reserve during 

pauses. The full capabilities of the respiratory/cardiovascular 

systems are reserved for periods of activity or hypoxic stress (e.g. 

Burnett and Bridges, 1981).

Calocaris macandreae exhibited a somewhat unusual physiological 

response in that the heart rate (and presumably the haemolymph 

circulation) was maintained even after several hours of anoxia, during 

which time the venous reserve is almost certainly depleted and the 

blood ceases to deliver oxygen to the tissues. It is possible that 

this response (or non-response) is related to the accumulation of 

metabolic end-products (e.g. L-lactate) in the haemolymph, since 

maximum lactate concentrations appeared to be in equilibrium in tissue 

and blood during anoxia (see Chapter 6 ). In the absence of blood 

circulation, localised lactate accumulation in the tissues and 

haemolymph might limit the anaerobic capability of the animal. A 

circulated, mixed haemolymph might represent a larger 'sink* for 

metabolic end-products (and may also minimise localised acid-base 

disturbances). An alternative explanation for the maintenance of blood 

flow may be that the neural PO2 detector in decapods appears to be 

located in the vascular system. A maintained circulation might allow a 

rapid response to improved environmental conditions during recovery 

from hypoxia (A.C. Taylor, pers. comm.)

4.4.3 Respiratory physiology in Calocaris macandreae. in relation In the 

burrow environment.

As discussed above, there appears to be a correlation between both low 

oxygen consumption rates and low Pc (i.e. well-developed regulatory 

ability), and burrowing behaviour in decapod crustaceans. Both these 

characteristics of the respiratory physiology are usually interpreted
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as being of obvious benefit to burrowing animals, in view of the 

conditions of restricted oxygen availability often prevalent within the 

burrow (see previous chapter). An alternative reason for a low oxygen 

consumption rate (low metabolic rate) might be a low level of 

behavioural activity, as observed in Calocaris. Other factors such as 

longevity and moult cycles are almost certainly involved, and should be 

accounted for when interspecific comparisons are made.

( * *
The aerobic metabolic scope (= ’active' MO2 rates / 'quiescent*

has been measured in only a few decapod species (McMahon and Wilkens,

1983), but appears to be generally in the range 4 - 5  fold at 8-10°C.

Results obtained in this study suggest that the aerobic scope in

Calocaris aaacandreae may be approximately 2 - 3  fold (maximal rates

recorded were 1.4 - 2.8 pmol.g *.h’*),. It may be, therefore, that the

low activity rates observed in Calocaris are imposed by

respiratory/metabolic limitations. Meaningful comparisons are

especially difficult due to the paucity of comparative, quantitative

data concerning activity patterns of decapods in natural conditions

(most authors being content to label species as "sluggish", "active"

etc.).

Although the oxygen consumption rates observed in Calocaris ioacandreae 

were comparatively low, it is evident that regulation of oxygen 

consumption during periods of hypoxia was highly efficient. The main 

regulatory mechanism appears to be modification of the respiratory 

ventilatory rate (coupled with a highly efficient blood pigment; see 

Chapter 5). In terms of the unit processes outlined in the 

Introduction; ventilation -> uptake -> perfusion -> transport -> 

metabolism; the evidence is that physiological oxyregulation occurs
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mainly by modulation of the ventilation and transport processes.

Calocaris demonstrates a respiratory system which is well adapted to

maintaining a low rate of oxygen consumption in the variable, hypoxic 

conditions of the burrow; in contrast to most other decapods which are 

adapted to long periods of inactivity interspersed with short periods 

of activity during which there is a large metabolic oxygen demand.

In conclusion, it appears likely that characteristics of the

respiratory physiology of Calocaris macandreae and of other

thalassinids may reflect an adaptation to:

1. The respiratory conditions within the burrow, i.e. the severe 

spatial gradient of oxygen availability.

2. The activity regime possible within the burrow: a consistent, low

level of activity, made possible by the high degree of protection from

predation and self-sufficiency with regard to food supply etc., 

afforded by the burrow. There is little requirement for a high aerobic 

scope, as found in 'active' decapods.

These interactions between environment, ecology, behaviour and

physiology will be considered further in later chapters.
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CHAPTER 5. RESPIRATORY PROPERTIES OF THE HAEMOLYMPH OF CALOCARIS

MACANDREAE 

5^1 INTRODUCTION.

The fourth physiological process in the unit process scheme of 

respiration outlined by McMahon and Wilkens (1983; see also 

introductions to previous chapters), was respiratory gas transport 

between the gills and tissues. This chapter investigates the oxygen 

and carbon dioxide transporting properties of the haemolymph of 

Calocaris macandreae, both in vitro and in vivo.

The physiological characteristics of respiratory gas transport in 

decapod crustaceans are strongly influenced by the possession of a 

respiratory pigment, haemocyanin. The structure of the haemocyanin 

molecule is known to vary between species, mainly as a result of 

variation of the aggregation state (i.e. the number of polypeptide sub

units contained in each native molecule; reviewed by Mangum, 1983a). 

The haemocyanins of thalassinids have been recognised for their 

exceptionally high molecular weight since the work of Svedberg (1933), 

who examined haemocyanins from a large number of species from different 

phyla (including Calocaris macandreae), using ultracentrifugation 

techniques. More recent work (e.g. Miller and van Holde, 1981a, b) has 

shown that large native haemocyanin molecules (eikositetramers, 

composed of 24 monomer subunits) are also present in other thalassinid 

species. The structure of Calocaris haemocyanin was investigated using 

gel electrophoresis to estimate monomer molecular weight, and gel 

filtration to determine the size of the native molecule.

The oxygen transporting properties of crustacean haemocyanins have been 

the subject of recent intensive research, in particular following the
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introduction of diffusion chamber techniques (used to construct in 

vitro dissociation curves). It is now evident that the oxygen affinity 

of crustacean haemocyanins is affected (modulated) by a number of 

physical factors (e.g. calcium concentration, temperature) and organic 

'modulators'(e.g. L-lactate, urate), and that 'fine-tuning' of oxygen 

transporting properties of the haemolymph may be a response to changing 

external and internal conditions. However, the relations between 

characteristics measured in vitro and the in vivo function of the 

vascular oxygen transport system are not completely understood. This 

problem is particularly evident in studies of small animals, since it 

is usually not possible to measure haemolymph PO2 in vivo. The 

characteristics of Calocaris haemocyanin were studied in vitro and 

related to in vivo function, and ecological factors, as far as was 

possible within the constraints of animal size and practical 

techniques.

The ionic composition of the haemolymph was determined, since many of 

the techniques used required physiological saline solutions (as a 

dialysis medium, gel filtration buffer etc.). In addition, the 

magnesium concentration of the haemolymph has been linked to the 

activity patterns of different species (Robertson, 1949, 1960).

Finally, a brief study was made of the carbon dioxide transporting 

properties and acid-base status of the haemolymph. Knowledge of these 

areas of crustacean physiology is rapidly increasing, and it is 

becoming apparent that both CO2 transport/excretion and acid-base 

regulation may have important interactions with respiratory processes.
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X3. MATERIALS A M  METHODS.

5.2.1 Ionic composition of the haemolymph.

Haemolymph samples from Calocaris macandreae were taken from the 

pericardium of freshly caught animals. Approximately 100 ul was 

obtained from each animal (mean fresh weight approximately 1 g). 

Samples were usually centrifuged (lOOOOg; 5 minutes) to remove cellular 

debris and frozen at -20°C. Pooled samples were thoroughly mixed prior 

to centrifugation and frozen at -20°C in aliquots of 0.5 or 1.0 ml.

• +  • +  O j. # O iSodium (Na ), potassium (K ), calcium (Ca ), magnesium (Mg ) and 

chloride (Cl ) concentrations were measured in several pooled 

haemolymph samples, sampled on a number of dates.

Initially, all ionic concentrations were measured by atomic absorption

spectrophotometry (AAS) using a Pye SP90 spectrophotometer. Later, 
2+ 2+only Ca and Mg were measured by AAS (using a Pye Unicam PU9200).

Samples were diluted using Millipore quality distilled water (dilution
o+ ,factors were 121 and 363 for Ca and Mg respectively). Diluted 

2+samples for Ca determination included 17. LaCl m  order to reduce 

interference (Whiteside and Milner, 1984).

Na+ and K+ determinations were carried out by flame spectrophotometry 

(Corning Flame Photometer 410) using dilution factors of 6171 (Na+) and 

121 (K+). Cl concentrations were measured in undiluted haemolymph

using 20 ul samples and a chloride titrator (Jenway PCLM3).
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5.2.2 P*ygen sacryigg sagacity oL She baemglypph.
The total oxygen carrying capacity (cC^) of haemolymph containing a 

respiratory pigment is equal to the oxygen bound to the pigment

(cHcy®2̂  plus the physically dissolved oxygen fraction. Three

different methods were used to estimate the oxygen carrying capacities 

of Calocaris haemolymph and haemocyanin. Since haemocyanins bind one 

oxygen molecule for every two copper atoms, it is possible to estimate 

c H C Y ® 2  by determination of the Cu concentration of the haemolymph. 

c H C Y ® 2  can also b e  estimated from the protein concentration of the 

haemolymph, with the assumptions that 1 .) all protein = haemocyanin

2.) of protein = 24.3 (this study, 5.3.2)

3.) the functional sub-unit molecular weight

= 75 000k (Mangum, 1983a).

In addition CO2 can be determined directly using the method of Tucker 

(1967): this uses KCN to displace bound O2 from the pigment (see

below). The amount of physically dissolved oxygen can be calculated

from the solubility coefficient of oxygen in sea water at the 

appropriate temperature, or can be measured directly (in sea water) 

using Tucker's method.

Copper concentrations of the haemolymph were determined by Atomic 

Absorption Spectrophotometry (AAS), using a Pye Unicam PU9200. At the 

dilution level necessary for Cu determination in haemolymph (100-fold), 

there was a large 'flare' due to sodium. Standard Cu solutions 

(Spectrosol C11NO3 ; BDH) were therefore diluted using both Millipore 

quality distilled water and Ringer solutions with appropriate NaCl, 

KC1, MgCl2 and CaC^ concentrations. There was little difference 

between standard curves constructed with distilled water and Ringer- 

diluted standards. The absorbances of 12 haemolymph samples at 335 nm
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vere measured using a Pye Unicam 8700 spectrophotometer, after 100- 

fold dilution in deionised water. The extinction coefficient (*^ 3 3 5 ) 

of the haemolymph copper was then calculated from the regression 

equation.

The protein concentration of haemolymph samples from 15 individuals was

measured by the Coomassie blue method (Read and Northcote, 1981). The
.  . 17Lprotein extinction coefficient (E 280^ was t^en calculated from 

absorbances of undiluted haemolymph at 280 nm.

Tucker's (1967) method gives a direct measurement of the total oxygen 

content of a haemolymph sample. The method used was that given by 

Bridges (1979). A 1% solution of KCN was degassed and placed in a small 

(approx. 350 pi) thermostatted chamber at 30°C (an elevated temperature 

was used to produce a faster electrode response). The KCN displaced 

bound oxygen from the haemocyanin, as dissolved oxygen. An oxygen 

electrode (Radiometer E5046), connected to an oxygen meter (Radiometer 

PHM73) and chart recorder, measured PO2  within the cell. The contents 

of the chamber were mixed by a small magnetic stirrer. The increase in 

PO2 was measured following the injection of haemolymph samples ( 1 0  - 2 0  

pi). The cC>2 of the original sample can be calculated as:

P02 * a CN * chamber volume . 1 0 0
c 0 2  = --------------------------------

sample volume . 760
where ,

a CN = solubility coefficient for oxygen in KCN 
(= 0.0261 vo1 % at 30°C);

and,
chamber volume - sample volume

PO2 = PCO2 (final) - PC>2 (initial) . -----------------------------
chamber volume

CO2 and cHCY® 2  va^ues are usually reported in the literature using 

units of vo1 % (= ml. 100 ml*) or mmol.l*. The latter units are used

here.
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5,2.3 Xhfi. subunit composition &£. the haemocyanin.

The molecular weights of the monomer sub-units and native haemocyanin 

of Calocaris macandreae were estimated using two different methods.

Sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis (PAGE) 

was used to estimate the molecular weight of the haemocyanin monomers 

under reducing conditions. For comparative purposes, haemolymph 

samples from Calocaris macandreae, the galatheid squat lobster Munida 

rugosa, the lobster Nephrops norvegicus, and the brachyuran crabs 

Carcinus maenas and Liocarcinus puber were resolved on a 5 - 25% (w/v) 

gradient acrylamide gel (Pharmacia GE 2/4 LS), with a constant current 

(35 mA), variable voltage (100V initial - 300V maximum) supply for 

approximately 4 hours. Gels were fixed using 10% acetic acid, 28% 

methanol and 1 % glycerol, stained with Coomassie blue and vacuum dried.

The use of gradient gels (as above) allows rapid determination of 

unknown molecular weights, since good separation is achieved over a 

wide molecular weight range. However, non-gradient gels provide better 

separation of proteins of similar weight, if an appropriate gel is 

chosen. Therefore, more accurate results were obtained for the 

haemocyanin of Calocaris macandreae using a 7.5 % (w/v) gel as follows: 

The sample was diluted to produce a range of dilutions with a sample 

buffer containing 0.0625 mol.l 1 Tris-HCl (pH 6 .8 ), 2% SDS, 59% 2-

mercaptoethanol, 10% glycerol and 0.002% bromophenol blue. The diluted 

sample was then heated to 90^ C for 10 minutes. Samples were then 

loaded onto a 3.75 % stacking gel, and were resolved in a 7.5 % gel

(1.5 x 160 x 120 mm) at 8  mA. gel ’ 1 overnight. The gels were stained 

with Coomassie blue. The following molecular weight markers were run 

in the outside tracks (bovine albumin: Mr = 6 6 k; glyceraldehyde 3-

phosphate dehydrogenase: 36k; carbonic anhydrase: 29k; trypsinogen:
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24k; trypsin inhibitor: 20.1k; alphalactalbumin: 14.2k.). N.B. all 

molecular weights are given in ’Daltons', however, the term 'Daltons' 

is not consistently used in the literature and does not strictly apply 

to values of Mr).

The molecular weight of the native molecule was estimated using 

Sephacryl S400 high resolution gel filtration. Haemolymph samples 

(lml) were applied to a sephacryl (Pharmacia) column and eluted with an 

appropriate physiological saline, at a flow rate of 1 ml.min*. 1 ml 

fractions were collected using a fraction collector. The Cu 

concentration of each fraction was measured using AAS, in order to 

positively identify the haemocyanin-containing fractions. The column 

was calibrated using blue dextran (Mr = approximately 2000 kdaltons), 

alpha macroglobulin (725k) and apoferritin (443k).

5-*2A  Oxygen affinity of the haemocyanin.

Oxygen dissociation curves were constructed for Calocaris macandreae 

haemocyanin using a modification of the diffusion chamber originally 

described by Sick and Gersonde (1967). The system used is shown in 

Fig. 5.1. Blood samples from several animals were pooled, and the 

carrying capacity and ionic composition determined as described above. 

The L-lactate concentrations of these samples were determined using the 

method outlined in Chapter 6  and detailed in Appendix 4, since lactate 

is known to be a modulator of haemocyanin oxygen affinity in some 

species (Truchot, 1980; Mangum, 1983a; Bridges et al., 1984).

The technique used measured the relative oxygen saturation of a 

haemolymph smear ( 2  - 1 0  p.1) placed on a microscope slide within the 

diffusion chamber. The basis of the method is that changes in the
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FIG. 5.1 Diagram of the Diffusion Chamber. The haemolymph 

smear is supported on a glass slide. Gas mixtures of known 

composition are produced by the Wosthoff pumps, humidified 

and passed over the haemolymph smear. The absorption of the 

haemolymph smear at 335 nm is measured by an Oriel 3090 

pulsed-beam spectrophotometer. Temperature is accurately 

controlled by a water bath.
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absorbance of oxygenated haemocyanin (at 335 nm) are measured while.the 

haemolymph sample is successively equilibrated to several oxygen 

tensions. A precision gas mixing system (H. Wosthoff, two type 2M301 in 

serial) supplied a gas mixture of known PO2 and PCO2 which was bubbled 

through a humidifier tube and passed over the haemolymph smear. The 

absorbance of the smear at 335nm was measured by a pulsed beam 

spectrophotometer (Oriel Scentific 3090). The spectrophotometer beam 

was directed through the haemolymph sample by two fibre optics. The 

temperature of the diffusion chamber was controlled by a circulating 

water bath.

For each curve, the relative saturation (S) of the haemolymph was 

measured at 5 - 8  different PC^'s; while pH was controlled by the PCO2  

of the gas mixture. Another sample was tonometered in a Radiometer 

BMS II Mk2 haemolymph micro system with the same gas mixture. At 

approximately 50% saturation, the pH of this sample was measured, 

using the microcapillary pH electrode of the BMS 2, connected to a 

Corning ion analyser 255.

Oxygen dissociation curves were constructed by plotting PO2  against S. 

The resulting sigmoid dissociation curves indicate the relative oxygen 

affinity (since a high affinity haemolymph is saturated at a lower 

PO2 ). The conventional quantitative parameter of oxygen affinity is 

the P50 (i.e. PO2 for 50% saturation) which can be estimated from the 

x-intercept of the Hill plot (log PO2  against log S/l-S). The slope of 

the Hill plot (N50) is a measure of the pigment cooperativity, 

resulting from interaction between the haemocyanin subunits.

The dependence of haemocyanin oxygen affinity on pH (the Bohr effect) 

is quantified as the ’ b’ value of the regression equation of log P50
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plotted against pH. In this study, pH was controlled by PCO2 alone, 

since most previous studies of crustacean haemocyanins have found that 

the specific effect of CO2 is negligible. The alternative method is to 

use an exogenous buffer system (e.g. Tris maleate or Tris HC1); it was 

felt that the addition of exogenous buffers might introduce variations 

in the haemocyanin environment, and should be avoided where possible.

The effects of temperature on oxygen affinity of Calocaris haemocyanin 

were investigated by constructing oxygen dissociation curves in the pH 

range 7.2 - 8.2 at temperatures of 5, 10, 15 and 20°C. The change in 

enthalpy ( AH) during oxygenation at different temperatures was 

calculated from the Van't Hoff equation in the form:

log ( A P50)
H = -2.303 x R x ------------

l/(Tl - T2)

where R = gas constant;
Ti 2  = absolute temperature.

Modulation by L-lactate was investigated by varying the L-lactate 

concentration of the haemolymph sample. This was done using two 

methods:

1. Addition of a small volume (lOul in 500}il) of concentrated L-lactate 

(in buffered physiological saline); to give final concentrations of 5, 

10, 20 and 40 mmol.l

2. Dialysis of haemolymph samples (0.5 ml; pH 8.25; 4°C; 16 hours) 

against buffered physiological salines containing several 

concentrations of L-lactate to give final concentrations (in the 

haemolymph) of 5 and 10 mmol.l _1. The exogenous buffer used was 

Tris-HCl (10 mmol.l'1).
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Oxygen dissociation curves were constructed in the pH range 7.6 - ,8.2 

for each treatment. Control samples were prepared by addition of 0 

mmol.l * lactate, and dialysis against a saline without L-lactate.

5.2,5 Caiboa difljdde transport in the haemolymph.
A brief investigation of the CO2 transporting properties of Calocaris 

haemolymph was made. In vitro carbon dioxide dissociation curves were 

constructed using a Radiometer BMS II blood micro system to tonometer 

haemolymph samples against precision gas mixtures of varying PCO2 . The 

Haldane effect was quantified by comparing 0 and 10% air-equilibrated 

samples (corresponding to 0  and 1 0 0 % oxygen saturation of the

haemocyanin). The Haldane effect is defined as the difference in total

CO2 concentration between oxygenated and deoxygenated haemolymph at a 

specific PCC>2 (usually chosen to give a pH similar to in vivo values), 

and is quantified in functional terms as ACCO 2 /CO2 (Truchot, 1976b).

The total CO2 concentrations (cCC^ = CO2 + HCO3 ’ + COg) of the 

tonometered samples were measured using the method of Cameron (1971); 

described below. In addition, the pH of each tonometered sample was 

measured. All measurements were made at 10°C.

The method of Cameron (1971) for the determination of CCO2 was used as

follows. A PCO2 electrode (Radiometer E5037) connected to a Radiometer 

PHM73 meter) measured PCO2 in a thermostatted, stirred cell (volume 365 

ul), filled with 0.01 M HC1. The equilibrium of the carbonate/ 

bicarbonate/carbon dioxide system is dependant on pH, such that the 

bicarbonate/carbonate contained in an injected haemolymph sample 

(volume 15 jil) was displaced as CO2 • The resultant increase in PCO2  

was detected by the electrode and recorded on a chart recorder. The 

system was calibrated using 12 mmol.l  ̂NaHCO-^.
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CO2 dissocation curves (similar to O2 curves except that the curves are 

hyperbolic rather than sigmoid) were plotted as CCO2 against the PCO2  

of the equlibration gas mixture. The capacitance coefficient, » is 

defined as the ratio of the increment of CO2  concentration to the 

increment of CO2 partial pressure ( =  cCC^/APCC^; Piiper et al., 

1971; Truchot, 1976b). therefore measures the steepness of the CO2  

dissociation curve within the physiological PCO2  range (0 - 4 Torr).

PCO2 is difficult to measure directly in aquatic animals, since low 

partial pressures are usually present (as a result of the high 

solubility and large diffusion coefficient of CO2 in water). Direct

measurement is made more difficult still, by the small sample volumes

which can be obtained from Calocaris. Therefore no direct measurements 

were made; instead in vivo PCO2 was calculated from in vivo pH and 

CCO2  as follows:

Measurement of pH and CCO2  of haemolymph samples equilibrated to known 

PCO2 in vitro (as above) allowed calculation of pK' from the modified 

Henderson-Hasselbalch equation:

cCC>2 - a.PCC>2  

pK' = pH - log( _______________   )
pco2

where Oi = solubility coefficient of CC>2 , taken from the
nomogram of Truchot (1976a) at appropriate
temperature and 32 °/oo; (= 0.058 mmol.l Torr 
at 10°C).

In vivo PCO2 may then be calculated by substitution of appropriate in 

vitro pK’ values, with measured in vivo values for cCC> 2 and pH in the 

same equation.

[HCO3 ] can be estimated from the approximation:

{HCO3] = cC02 - a:.pcc>2
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since [CO3 ] (and probably carbamates) are usually negligible at 

physiological pH values (Truchot, 1983). A diagram of [HCO3 ] vs. pH is 

a useful graphical representation of acid-base status within a system. 

A true Davenport diagram also includes PCO2  isopleths calculated from 

an in vitro Astrup titration (i.e. measurement of pH and [HCO3 ] in 

samples tonometered at several known PCC^'s). These have been omitted 

in the present study, since insufficient data were collected for their 

calculation. However, a non-bicarbonate buffer line (i.e. buffering 

probably due to ionisable protein groups) can be plotted from in vitro 

data. Acid-base perturbations due to respiratory effects (i.e. changes 

in PCO2 ) are represented as movement along the non-bicarbonate buffer 

line; metabolic effects result in deviations from the line (ideally 

along PCO2  isopleths).

5.2*6 la YIYQ measurements.

The following measurements were made of in vivo haemolymph 

parameters relevent to O2  and CO2  transport in Calocaris macandreae: 

pH, L-lactate concentration and cC0 2 - CCO2 and pH determinations were 

made as described above, using post-branchial haemolymph samples ( 1 0  

20 pi) taken anaerobically from the pericardium using a Hamilton 

syringe. The assay used for L-lactate determination is described in 

Chapter 6  and Appendix 4.

Some attempts were made to determine in vivo PC>2 values for post- 

branchial haemolymph. However, it proved impossible to obtain samples 

of sufficient volume for injection into a PO2 cell (Radiometer) without 

introducing air bubbles. The in vivo function of the haemocyanin is 

difficult to interpret if in vivo PO2 is unknown, since the relative 

contributions of dissolved and pigment - bound oxygen cannot be
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calculated.

A preliminary examination of oxygen transport in hypoxic conditions was 

made, using only CO2 measurements. The cC^'s of post-branchial 

haemolymph samples ( 1 0  pi), taken from animals exposed to varying 

degrees of environmental hypoxia, were measured (as above). Further 

samples from the same animals were then tonometered against air, and 

maximum oxygen carrying capacity (cinax®2) measured. The total 

haemolymph saturation (Stota^), including both bound and dissolved 

fractions, was then calculated as:

Stotal = c 0 2 / cmax° 2  *

Further explanation of the rationale of this experiment is given in the 

Discussion.
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5.3 RESULTS.

5.3.1 Ionic, composition ni the haemolymph.
* 2+ 2+  ^The concentrations of Ca , Mg , Na , K and Cl measured m  pooled

haemolymph samples from animals taken on four dates (from the Loch

Striven population) are given in Table 5.1:

TABLE 5.1: Blood ionic concentrations in Calocaris macandreae 
(mmol. 1 ).

date Ca2+ Mg2+ Na+ K* Cl"

29/1/87 9.2 45.4 402 11.4 479
18/9 and 8/10/87 (pooled) 7.6 48.8 415 14.1 433
8/12/87 8.4 52.9 480 8 . 0 -
10/1/89 1 2 . 1 47.2 414 8.5 481

Replicate determinations indicated that the approximate accuracy of the 

measurements are: Ca2+, Mg2+, K+: +0.1; Na+ , Cl": +5 mmol.l"*. There 

is evidence, therefore, of some variation in pooled haemolymph sample 

ionic concentrations. Variation between individuals was not measured, 

due to the limited volume of haemolymph that could be obtained from 

each Calocaris.

5.5.2 Oxygen carrying capacity of the haemolymph.
The absorbance coefficients of copper (at approximately 335 nm) and 

protein (at approximately 280 nm) were calculated from data for 

absorbance of diluted haemolymph samples, and the concentrations of 

copper (measured by AAS) and protein (measured by the Coomassie blue 

method). Since absorption was measured by scanning between 250 - 450

nm, the maximum absorbance in each peak was used (the peak wavelength 

differed by approximately 1 - 2 nm between individuals). Fig. 5.2A, B 

shows individual variation in the measured parameters. Values for the 

absorbance coefficients (calculated for 1 % solutions, 1 cm path length) 

were: E3 3 5  = 1702

E280 = 24 03
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FIG. 5.2 A) The relationship between optical density at 335

nm and copper concentration (measured by Atomic Absorption

Spectrophotometry) in haemolymph samples (diluted 100-fold)

from individual Calocaris macandreae. The equation of the

regression line is:
y = 0.0177 + 1.72x (r = 0.95; P<0.001) ,

B) The relationship between optical density at 280 

nm and protein concentration (measured by the Coomassie Blue 

method) in haemolymph samples (diluted 1 0 0 -fold) from 

individual Calocaris macandreae. The equation of the 

regression line is:

y = -0.0177 + 0.0258x (r = 0.98; P<0.001)
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The CO2 and calculated Cjĵ y®2 t îe haemolymph of 19 individual 

Calocaris measured by the Tucker method are shown in Table 5.2. Values 

for cHCY®2 calculated from Cu (measured by AAS) and protein 

concentrations (measured by UVS) for the same samples are also shown. 

Copper concentrations of the haemolymph varied from 0.02 to 0.075 

mg.ml’*; total protein content was 7 - 24 mg.ml’*.

TABLE 5.2: Oxygen carrying capacities of haemolymph and haemocyanin of 
Calocaris macandreae, measured by the Tucker cell and from copper and 
protein concentrations. CO2 and Cggy^ un*ts are mmol.1

animal cO/ calculated calculated calculated
cHCY°2 cHCY°2 cHCY°2(Tucker) (Protein) (Copper)

1 0.50 0 . 2 2 0.46
2 0.57 0.29 0.44 0.37
3 0.38 0 . 1 0 0.19 0.15
4 0.52 0.24 0.39 0.32
5 0.58 0.30 0.36 0.24
6 0.62 0.34 - -

7 0 . 6 6 0.38 0.58 0.50
8 0.51 0.23 0.37 0.31
9 0.53 0.25 0.43 0.31

1 0 0.41 0.13 0.28 0.19
1 1 0.46 0.18 0.40 0.27
1 2 0.49 0 . 2 1 0.35 0.31
13 0.69 0.41 0.65 0.57
14 0.65 0.37 0.64 0.58
15 0.58 0.30 0.47 0.42
16 0.61 0.33 0.59 0.52
17 0.50 0 . 2 2 0.32 0.27
18 0.37 0.09 0.25 0 . 2 1

19 0.37 0.09 0.24 0.23

The relationships between cHCY^2 (calculated from Tucker cell 

measurements), and the concentrations of Cu (measured by AAS) and 

protein (measured by UVS), are shown in Fig. 5.3. There was a 

significant positive correlation between cjĵ y0 2  and both Cu 

concentration (r = 0.90; P<0.001) and protein concentration (r = 0.94;

P<0.001). There was no significant difference between the two 

regression lines (covariance analysis). In addition neither regression

127



FIG. 5.3 The relationships between oxygen carrying capacity 

(cHCY O2 , mmol.l**) calculated from concentrations of copper 

and protein in the haemolymph, and measured directly using 

the method of Tucker (1969). The equations of the regression 

lines are:

protein: y = 0.097 + 1.28x (r = 0.94; P<0.001) 

copper: y = 0.053 + 1.18x (r = 0.90; P<0.001)
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slope was significantly different from 1 (t-test, P>0.1).

The mean haemolymph CO2 of animals sampled on this date (12/4/89) was 

0.52 +. 0.10 (standard deviation) mmol.l Mean c0 2 's of samples from 

at least 10 animals collected on three separate occasions were: 0.53 

mmol.l' 1 (29/1/87, n=12); 0.77 mmol.l' 1 (18/9/87, n=10); 0.49 mmol.l' 1  

(4/12/87, n=15). There was little evidence of seasonal variation in the 

oxygen carrying capacity of Calocaris macandreae haemolymph.

5.3.3 Sub-unit structure the haemocyanin. A photocopy of the 

vacuum-dried SDS-PAGE gel used for the comparative study is shown in 

Fig. 5.4A. The banding patterns of the resolved proteins from each 

species were similar, with 4 major bands present, (approximate 

molecular weights of between 37k and 47k).

The 7.5% SDS-PAGE gel used for the more accurate determination of the 

monomer molecular weights of Calocaris haemocyanin, is shown in Fig. 

5.4B. Four major protein bands were present, with molecular weights 

estimated from the calibration presented in Fig. 5.5 of between 100 and 

240k.

The concentrations of copper in the fractions collected from sephacryl 

gel filtration of the native haemocyanin, are shown in Fig. 5.6A. When 

plotted on the regressed calibration line of the column (Fig. 5.6B), 

the calculated molecular weight (Hr) of the molecule was approximately 

1650k.
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FIG. 5.4 SDS-PAGE gels of haemocyanin.

A) Serial 10-fold dilutions of haemolymph samples from 

Calocaris atacandreae run on a 7.5% homogenous gel. Standards 

(with molecular weights shown) were run in the right hand 

track.

B) Haemolymph samples from Calocaris macandreae (Cm), 

Nephrops norvegicus (Nn), Muni da rugosa (Mr), Carcinus maenas 

(Cm') and Liocarcinus puber (Lp), run on a 5 - 25% gradient 

gel. Standards (with molecular weights shown) were run in the 

left and right hand tracks.
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FIG. 5.5 Calibration graphs for the SDS-PAGE gels presented 

in Fig. 5.4. Relative distance is measured from an arbitrary 

origin.
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FIG. 5.6 Results from high resolution gel filtration (on a 

Sephacryl S400 column) of Calocaris macandreae haemocyanin.

A) Copper concentrations measured by absorption at 335 nm of 

fractions collected at 1 minute intervals. Absorption was 

measured relative to a distilled water blank. Haemocyanin 

was present in fractions 19 - 23 (this was confirmed by 

protein absorbance measured at 280 nm).

B) Calibration of the column, using blue dextran (Mr = 

2000k), alpha macroglobulin (Mr = 725k) and apoferritin (Mr = 

443k). The calculated haemocyanin Mr was 1650k.
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S«3.4 Oxygen affinity and modulation of the haemocyanin.

A family of oxygen dissociation curves, measured on neat (i.e. 

untreated, undialysed) Calocaris haemolymph at 10°C is shown in Fig.

5.7. The L-lactate concentration in this haemolymph sample was 3.1 

mmol.l Oxygen dissociation curves represent relative affinity by 

position along the x-axis. Fig. 5.7 shows a family of curves, measured 

at a variety of pH's, as controlled by the PCO2  of the gas mixture. It 

is evident that an increase in pH resulted in an increase in oxygen 

affinity, i.e. a positive Bohr effect was present.

Some of the data are shown in the form of a Hill plot, with regression 

lines fitted by the method of least-squares to data between 25 and 75% 

saturation (Fig. 5.8; only 4 curves are shown for clarity). This type 

of plot allows a more accurate calculation of oxygen affinity (log P50 

= x-intercept) and cooperativity (n50 = slope) for each curve. A Bohr 

plot of the complete data set (Fig. 5.9) represents oxygen affinity as 

position relative to the y-axis; and quantifies the Bohr factor as the 

’b’value of the regression equation of log P50 plotted against pH.

The oxygen affinity of Calocaris haemocyanin under physiological 

conditions is high (e.g. P50 = 1.7 Torr at pH 7.69 and 10°C; Figs.

5.7, 5.8). Values of haemocyanin cooperativity (n50) were in the range 

2.38 to 3.65, but did not vary with pH (Fig. 5.10). There was a small 

but significant Bohr effect ( P* = Alog P50 /ApH; = -0.58) under 

these conditions.

The effects of temperature (in the range 5 - 20°C) on the oxygen

affinity of Calocaris haemocyanin are shown in Fig. 5.11. 

Significant modulation of both oxygen affinity and the Bohr effect

129



FIG. 5.7 Oxygen dissociation curves for untreated haemolymph 

of Calocaris macandreae. The curves were constructed at 10®C 

and the pH of the haemolymph was altered by adjusting the 

proportion of CO2 in the gas mixtures with which the 

haemolymph was equilibrated.
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FIG. 5.8 A Hill plot of four oxygen dissociation curves of 

the haemolymph of Calocaris macandreae. The curves were 

constructed at 10^C and the pH of the haemolymph was altered 

by adjusting the proportion of CO2 in the gas mixtures with 

which the haemolymph was equilibrated.
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FIG- 5.9 The relationship between oxygen affinity (P50) and 

pH in the haemolymph of Calocaris macandreae. P50 was 

calculated from the Hill plot (measured at 10®C) and the pH 

of the haemolymph was altered by adjusting the proportion of 

C( > 2 in the gas mixtures with which the haemolymph was 

equilibrated.
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FIG. 5.10 The relationship between cooperativity (n50) and 

pH in the haemolymph of Calocaris macandreae. n50 was 

calculated from the Hill plot (measured at 10^C) and the pH 

of the haemolymph was altered by adjusting the proportion of 

CO2 in the gas mixtures with which the haemolymph was 

equilibrated.
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shown by the haemocyanin was measured.

There was a relatively large decrease in oxygen affinity with 

increased temperature; P50 decreased from 1.38 Torr at 5°C to 6.17 

Torr at 20°C (both at pH 7.6). Covariance analysis also showed a 

significant effect of temperature on the Bohr shift, which decreased 

from -0.71 ± 0.05 (S.D.) at 5°C, to -.0.23+ 0.03 at 20°C. There was a 

particularly large effect of temperature, on both oxygen affinity and 

the Bohr effect, between 10 and 15°C. The change in enthalpy, A h , 
(resulting from oxygenation) was -75.6 kJ mol’* between 5°C and 15°C at 

pH 7.6.

J-cModulation of oxygen transport by Calocaris haemocyanin dueL-lactate 

could not be demonstrated in vitro (Fig. 5.12). Two methods of varying 

the lactate concentration of the sample were used (addition of a 

concentrated lactate solution, and dialysis against a lactate- 

containing Ringer) as described above. Neither experimental method 

resulted in significant modulation of oxygen affinity or Bohr effect, 

within physiological concentrations of lactate (up to 2 0  mmol.l"*; 

covariance analysis). This finding was unlikely to be due to 

methodological problems, as was demonstrated by a preliminary 

experiment using haemolymph from Carcinus maenas, which produced a 

lactate effect of significant magnitude using both methods. Also, the 

lack of effect of dialysis suggests that no dialysable ’unidentified 

factors' were present.

There was no evidence of modulation of haemocyanin cooperativity by any 

of the factors measured (pH, temperature, lactate or urate 

concentration).
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FIG. 5.11 The effects of temperature and pH on oxygen 

affinity (P50) of the haemolymph of Calocaris macandreae. 

The pH of the haemolymph was altered by adjusting the 

proportion of CO2  in the gas mixtures with which the 

haemolymph was equilibrated. There are significant effects 

of temperature on both oxygen affinity (P50) and Bohr shift 

(slope).
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FIG. 5.12 The effects of L-lactate concentration on oxygen 

affinity (P50) of the haemolymph of Calocaris macandreae. 

The pH of the haemolymph was altered by adjusting the 

proportion of CO2 in the gas mixtures with which the 

haemolymph was equilibrated. L-lactate concentration was 

altered by addition (diamond symbols) or dialysis (square 

symbols). However, there were no significant effects of L- 

lactate on oxygen affinity (P50) or Bohr shift (slope) of the 

haemocyanin.
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5.3.5 Carbon dioxide transporting properties of the haemolymph.

The relationship between PCO2 and pH in Calocaris haemolymph is shown 

in Fig. 5.13, as determined by in vitro Astrup titration. There was a 

significant difference (covariance analysis; P<0.05) between the pH of 

oxygenated and deoxygenated haemolymph at constant PCO2 . This is due to 

the Haldane effect and is quantified below.

CC> 2 equilibrium curves were constructed using haemolymph samples 

tonometered at several PC02's (Fig 5.14). The curves were of 

hyperbolic form with an initially large CO2 capacitance coefficient, 

jg , at PCC^'s < 3 Torr ( j(3 = 0.91 mmol.1*.Torr * and 0.85 

mmol.l *.Torr * between 1 - 2 Torr in deoxygenated and oxygenated

haemolymph respectively). The CO2  capacitance coefficient decreased to 

lower values at PC0 2 's of 3 - 8  Torr. The absolute CO2 concentration 

values within physiological PCO2 values (usually < 3 Torr, see below) 

were comparatively low, at approximately 2.5 and 2.0 mmol.l"* at a PCO2  

of 2 Torr in deoxygenated and oxygenated haemolymph respectively.

The functional Haldane coefficient (= AcCX^ /cC^) was also 

comparatively low. For example at physiological values of approximately 

pH 7.8 and PCO2  2 Torr, the Haldane coefficient = 0.57.

pK' values (calculated from the Henderson-Hasselbalch equation, 

described above) varied within the pH range measured (Fig 5.15). 

Calculated pK' in deoxygenated haemolymph decreased from 6.54 at pH 

7.99 to 6.37 at pH 7.61, but increased below pH 7.6 to 6.53 at pH 7.44. 

A similar pattern was evident in oxygenated haemolymph (pK' =6.76 at 

pH 7.99; 6.46 at pH 7.61; 6.58 at pH 7.44); although pK' values were 

consistently higher in oxygenated haemolymph.
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FIG. 5.13 The relationship between carbon dioxide tension 

(pCC^) and pH in oxygenated and deoxygenated haemolymph of 

Calocaris macandreae equilibrated to varying PCO2 at 10°C. 

The difference between oxygenated and deoxygenated regression 

lines (the Haldane effect) was significant (P<0.|Q).





FIG. 5.14 Carbon dioxide capacity curves for oxygenated and 

deoxygenated haemolymph of Calocaris macandreae. The curves 

were constructed at 10°C. The difference between oxygenated 

and deoxygenated curves is a measure of the Haldane effect 

(see text for further details).
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FIG. 5.15 The relationship between pK' and pH in oxygenated 

and deoxygenated haemolymph of Calocaris macandreae at 10°C. 

The pH of the haemolymph was altered by adjusting the 

proportion of CO2  in the gas mixtures with which the 

haemolymph was equilibrated.
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HCO^ concentrations calculated from measured CCO2 at known PCO2 values 

(as described above), plotted against pH in a form similar to a 

Davenport diagram, are shown in Fig. 5.16. The non-bicarbonate buffer 

values (indicated by the slope of the fitted regression line) were 

similar in oxygenated and deoxygenated haemolymph, at approximately 

-2.4 mmol.l * pH unit

5.3.6 I n  v i v o  function of the haemocvanin.
The in vivo haemolymph concentrations of L-lactate measured under 

varying conditions of oxygen availability, in Calocaris macandreae are 

described in detail below (Chapter 6 ).

As previously stated, in vivo PO2 could not be determined for 

Calocaris. A number of determinations of in vivo CO2 (i.e. the total 

oxygen carried by the haemolymph) were made from post-branchial 

haemolymph samples. The cmax02 further samples from the same 

animals were also measured (after equilibration with air). The 

haemolymph saturation (Stota )̂ was then calculated as:

in vivo cC>2

^total — c Oo max 2

Due to the technical difficulties in obtaining haemolymph samples, only 

a few replicate determinations could be made. The in vivo CO2  of 3 

animals kept in normoxic conditions varied between 0.33 and 0.45 (mean

0.40) mmol.l * (Fig 5.17A). At an environmental PO2 of 51 Torr, in vivo 

CO2 was maintained at similar values. In severe hypoxia, however, in 

vivo cC>2 declined (at 18 Torr: the mean value was 0.26 mmol.l 8  

Torr: 0.15 mmol.l 3 Torr: 0.11 mmol.l )̂. In Fig. 5.17A, the mean

value for calculated for these samples is also shown. The value
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FIG. 5.16 The relationship between calculated bicarbonate 

concentrations (HCO3 ) and pH in oxygenated haemolymph of 

Calocaris nacandreae at 10°C. The pH of the haemolymph was 

altered by adjusting the proportion of CO2 in the gas 

mixtures with which the haemolymph was equilibrated. The 

solid points numbered 1 - 4  are in vivo measurements (see 

text, section 5.3.6).
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of in vivo CO2 decreased below the calculated mean chcy® 2  at 

environmental P02's below approximately 20 Torr.

Haemolymph saturation (Stotaj) showed a similar pattern (Fig. 5.17B).

The mean value measured in normoxic conditions was 0.82, but decreased

in hypoxic conditions:

P02 (Torr) mean Stotal (S.D.)

158 0.82 0.18
51 0.77 0.01
18 0.56 0.15

8  0.24 0.03
3 0.26 0.14

In vivo pH was measured in post-branchial haemolymph samples taken from 

a number of quiescent, normoxic animals. The mean post-branchial pH 

was 7.72 (+. 0.09 S.D. , n=12) . Due to the difficulty of measuring both 

cC02 and pH in the small haemolymph volume available from one animal, a 

limited number of measurements of acid-base status were made. 

Successful measurements could be obtained from only 4 animals:

cC02 pH calc. PC02

(mmol.l ) (Torr)

1 . 2.91 7.71 2.67
2 . 2.53 7.79 1.95
3. 2 . 2 2 7.68 2.18
4. 3.40 7.80 2.56

When plotted on the [HCO^] vs. pH diagram (Fig. 5.16), these recorded 

values are all close to the calculated in vitro non-bicarbonate buffer 

line. However, this does not necessarily imply that the (X^/HCO^ 

reaction is in equilibrium in the haemolymph, since equilibrium 

conditions will be attained during measurement in the cell (Cameron, 

1986). The mean calculated in vivo PC02 was 2.34 (+.0.33 S.D.) Torr.
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FIG. 5.17 The relationships between in vivo measurements of 

oxygen transport and environmental oxygen tension (PO2 ) in 

the haemolymph of Calocaris macandreae.

A) Oxygen content of the haemolymph (CO2 ) in conditions of 

declining oxygen tension.

B) Haemolymph oxygen saturation (Stotaj) in conditions of 

declining oxygen tension. See text for further details.
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ZA  DISCUSSION

Ionic composition of the haemolymph.
The concentrations of the major haemolymph ions, with the exception of 

magnesium, were similar to values recorded in other decapods 

(Robertson, 1960; Mantel and Farmer, 1983). Magnesium, however, was 

present at concentrations considerably greater than has been recorded 

in nearly all other decapod species (and was very similar to the 

concentration in the medium). Miller and van Holde (1974) measured a 

value of 48 (+, 3) mmol.l  ̂ in the haemolymph of Callianassa

califomiensis, almost identical to those found in Calocaris.

Robertson (1949, 1953, 1960) has noted that relatively "unresponsive"

species (e.g. the crabs Lithodes maia, Hyas aranetis and Dromia vulgaris
2+have comparatively high Mg concentrations (80% of sea water values), 

wheseas more "active" species have much lower concentrations (typically 

less than 50%). He also stated that the Ca/Mg ratio is low. The 

functional basis of this relationship is thought to be related to an 

anaesthetic effect on the neuromuscular junction. Although several 

exceptions to this general correlation have now been described, the 

outline presented by Robertson is still valid (Mantel and Farmer, 

1983).

2+The presence of high Mg concentrations (and low Ca/Mg ratios of 0.16

to 0.26, compared with 0.19 - 0.31 in the spider crabs and 0.39 - 2.0

in other decapods; Robertson, 1960), is in accord with the hypothesis

that Calocaris macandreae (and Callianassa califomiensis) are sluggish

species, adapted to a low level of activity. However, the presence of 
2 +high Mg concentrations may also be related to the aggregation state 

of the haemocyanin in thalassinids (eikositetraraer), which is dependent
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on a high concentration of divalent cations (van Holde et al. , 1977;

Miller and van Holde, 1981; Mangum, 1983a).

5 ,4 . 2  Measurement fii haemocvanin concentration

As pointed out in the methods and results sections, the oxygen carrying 

capacity of the haemocyanin estimated from three

different measurements:

1. From direct measurement of the haemolymph carrying capacity, by 

subtraction of the calculated (or measured in sea water) physically 

dissolved fraction.

2. From the haemolymph copper concentration (assuming all copper

present is associated with haemocyanin; and that haemocyanin copper 

binds oxygen in the ratio 2 :1 ).

3. From the haemolymph protein concentration (assuming all protein is 

haemocyanin; and that the functional monomer molecular weight, i.e. 

protein weight to bind 1 mole oxygen, is 75k).

Although copper concentration may be measured using AAS, and protein 

using dye-binding spectrophotometric assays (Coomassie blue or Lowry 

methods), the simplest assay procedures are spectrophotometric 

measurement of absorbance at 335 and 280 nm respectively. These latter 

methods require the use of extinction coefficients, either taken from 

the literature (Nickerson and van Holde, 1971) or previously estimated. 

The extinction coefficient (E*^) at 280 nm estimated by the present 

study for Calocaris haemocyanin (24.03), is greater than those quoted 

by Nickerson and van Holde for other decapods (e.g. 14.2 for Carcinus 

maenas). Similarly, the calculated £ * ^ 3 3 5  was iar greater (1702) than 

that quoted for Carcinus by Nickerson and van Holde (2.33); although 

several workers have found this figure to be open to question when used 

as a simple extinction coefficient (A.C. Taylor, J.I. Spicer, pers.
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comm). It should be noted that the value of Nickerson and van Holde was 

calculated by subtraction of absorbance values for deoxygenated 

haemolymph from values for oxygenated haemolymph.

Evidence that these coefficients are accurate for Calocaris is provided 

by the close agreement between the calculated and measured (by the

Tucker method) values for Cjjcy*̂ * reasons f°r interspecific
• 17differences in these values are unclear. In the case of E 280’

absorbance is due to the peptide bond, so that the only relevant factor

is the average amino acid molecular weight (i.e. the amino acid

composition of the haemocyanin). However, interspecific comparisons of

the amino acid sequence of the polypeptide units of haemocyanin do not

appear to have been made (Mangum, 1983a).

The close agreement which was noted between three methods of estimating 

cHCY^2 *s 8 °°d evidence that the basic assumptions were valid. The

monomer (or mole-binding) molecular weight predicted from these data is 

close to 75k (a value similar to that measured by SDS-PAGE, see below).

The haemocyanin concentrations measured during this study were at the

low end of the range recorded for decapods (1.0 - 3.5 ml.100ml*:

Mangum, 1983a). Total oxygen carrying capacities measured at 

environmental temperature (10° C) in Calocaris had a mean value of 0.52 

mmol.l * (=1.16 ml.100ml *). The largest oxygen carrying capacities

recorded in decapods are from terrestrial and semi - terrestrial crabs 

(Burggren and McMahon, 1981; Burnett, 1979), although Miller et al 

(1976) calculated a value for Callianassa califomiensis of 3.4 

ml.100ml * on the basis of protein concentration. Although Calocaris 

had very little non-haemocyanin protein (the regression line intercepts
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of Fig. 5.3 are close to the origin), this may not be true of • C. 

califoraiensis.

5,4.3 Structure fif. the haemocyanin.
The 'native' haemocyanins of the thalassinid species Calocaris 

macandreae (Svedberg, 1933), Callianassa califoraiensis (Roxby et al., 

1974), Callianassa gigas (Miller et al.t 1977) and Upogebia pugettens is 

(Miller et al., 1977) have all been reported as eikositetramers (i.e. 

aggregates of 24 monomers). (N.B. the latter three papers refer to a 

hexamer aggregate as the 'monomer': see Mangum (1983a) for

clarification.) In most other decapods, hexamers and dodecamers are 

the major fractions. Gel filtration of Calocaris haemocyanin (present 

study) produced a haemocyanin fraction with an estimated relative 

molecular weight (Mr) of 1650k, corresponding to a multiple of 22

monomer units (assuming a monomer molecular weight of 75kd; but see 

below).

SDS-PAGE slab gels resolved the haemolymph proteins into 4 bands for 

all the species studied. Previous studies of decapod haemolymph 

proteins have resolved between 2 and 7 separate bands ascribed to 

haemocyanin, with up to 3 additional bands of non-respiratory protein 

(e.g. Markl et al., 1979; review of Mangum, 1983a). These subunits are 

usually similar in size, between 67 - 90k. Resolution of haemocyanins 

using PAGE over a wider molecular weight range often produces protein

bands thought to represent dimers, hexamers and larger oligomers (e.g.

Rochu et al., 1978; Jeffrey, 1979). However, dissociation of

haemocyanin is frequently not quantitative (Markl et al., 1979). This 

is apparently the case in the present study, since the estimated Mr of 

'native haemocyanin' is not a simple multiple of the supposed monomer
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Mr. Neither are the larger proteins resolved by SDS-PAGE multiples of 

the smaller 'monomers'. The difficulty of estimating molecular weights 

of these proteins was noted by Mangum (1983a). The heterogeneity 

observed in the protein monomers probably results largely from 

variation in the associated carbohydrate and lipid moieties, as peptide 

sequences suggest that the protein chains are relatively conservative 

(e.g. van den Berg et ai., 1977). The functional significance of 

subunit heterogeneity is unclear (see Mangum, 1983a for discussion).

5.4.4 Oxygen transport in the haemolymph.

5.A.4.1 Comparative aspects.

The haemolymph of Calocaris macandreae contains a high molecular weight 

haemocyanin, as described above. A major function of the haemolymph is 

the transport of oxygen from the gills to the respiring tissues. The 

presence of a respiratory pigment increases the efficiency of transport 

since the total solubility of oxygen in the haemolymph is increased by 

the binding of oxygen to the pigment. The transport of carbon dioxide 

may also be enhanced, since the Haldane effect may link oxygen and CO2  

loading and unloading. An additional respiratory function of the 

haemolymph is to act as a venous reserve during periods when tissue 

oxygen demand exceeds oxygen uptake at the gills (e.g. respiratory 

pauses, exercise). Furthermore, the haemolymph compartment has an 

important role in acid-base regulation. The physiological functions of 

the haemolymph are affected by several physical characteristics of the 

pigment, which can be investigated in vitro: the concentration of

pigment (carrying capacity); the oxygen affinity and cooperativity of 

the pigment; and the modulation characteristics of the pigment (by a 

variety of modulators).
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The oxygen affinity (expressed as P50) of Calocaris macandreae 

haemocyanin under simulated in vivo conditions was approximately 1 . 6  

Torr. The oxygen affinities of haemocyanins from 39 decapod species 

were reviewed and tabulated by Mangum (1983a). P50 values varied

between 5.5 and 25 Torr; in Panulirus argus (Redmond, 1968) and 

Liocarcinus puber (Truchot, 1971) respectively. More recent data for 

decapod oxygen affinities include P50 values for Palaemon elegans (3.6 

Torr: Morris et al. , 1985); Atelecyclus rotundatus (5.6 Torr), Goneplax. 

rhomboides (4.1 Torr), Liocarcinus depurator (24.3 Torr: Taylor et al.,

1985); Galatbea strigosa (12.6 Torr), Pa gurus bembardus (23 Torr), 

Corystes cassivelaunus (3.1 Torr), Nepbrops norvegicus (11.5 Torr: 

Bridges, 1986); Holtbuisana transversa (2.6-11.5 Torr: Morris et al., 

1988); and Munida rugosa (approximately 35 Torr: K. Zainal, pers.

comm.). Of these species, the burrowing/burying crabs A. rotundatus, 

G. rhomboides, C. cassivelaunus and the burrowing lobster N. norvegicus 

have comparatively low P50's of 3.1 - 11.5 Torr.

There have been few studies of the oxygen affinity of thalassinid 

haemolymph, despite the unusual haemocyanin molecular weight known 

since Svedberg's (1933) report for Calocaris. Miller and van Holde 

(1981) reported a P50 of 6.0 Torr (at pH 8.0; 10°C; exogenous buffer 

Tris-HCl) in Callianassa califomiensis. A similarly high affinity was 

reported for the relatively large, tropical mud-lobster Tbalassina

anomola (Mangum, 1982: P50 =6.0 Torr; pH 7.50; 25°C; exogenous buffer 

Tris Maleate).

The cooperativity of crustacean haemocyanins is highly conservative, 

between 2.1 and 4.5 (see the review of Mangum, 1983a). The

cooperativity of Calocaris macandreae haemocyanin under simulated

physiological conditions was within this range, and was not modulated
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by any of the factors studied. Several recent reports, however, have 

suggested that n50 values of crustacean haemocyanins may be affected by 

freezing (Morris, 1988; Spicer and McMahon, in prep.). The haemolymph 

samples used in this study were frozen for up to several weeks.

The oxygen affinities of the haemocyanins of thalassinids and other 

burrowing decapods are consistently lower than those of decapods from 

normoxic habitats (references above), as would be expected on the basis 

of environmental oxygen availability (see Chapter 2). However, the 

adaptability of crustacean haemocyanins appears to be limited in 

comparison with annelid and vertebrate pigments, primarily haemoglobins 

(Mangum, 1983a). In these taxa, the most reliable correlate with 

oxygen affinity is the design of the cardiovascular and gas exchange 

systems, rather than environmental factors (Johansen and Lenfant, 1972; 

Mangum, 1976).

Exogenous factors known to affect haemocyanin oxygen affinity in 

decapod crustaceans include temperature, salinity (as it affects the 

haemolymph ionic concentrations), and carbon dioxide concentration (as 

it affects in vivo PCO2 and pH). The main endogenous effects which may 

have functional significance in short-term responses are the Bohr 

effect (pH); the lactate and urate effects; and probably hormonal 

effects (possibly mediated by dopamine; Morris, 1988). Exogenous 

effects on haemocyanin oxygen affinity have been reviewed by Mangum 

(1983a), with particular emphasis on temperature. In many species, 

unloading of oxygen at the tissues may be limited at low temperatures 

since the oxygen affinity increases (compounded by an additional Bohr 

effect due to a temperature - induced increase in haemolymph pH: Cameron,

1986). However, it is known that partial temperature-acclimation of
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oxygen affinity may serve to minimise these maladaptive effects (e.g. 

Rutledge, 1981; Mauro and Mangum, 1982).

The change in enthalpy concomitant with oxygenation is a measure of the 

sensitivity of the pigment to temperature. Calocaris macandreae 

haemocyanin is highly temperature-sens it ive, with a A h  of -75.6 

kJ.mol Values of A h  in crustacean haemocyanins vary widely, from 

-5 kJ.mol* in Nephrops norvegicus (Bridges, 1986) and -7 kJ.mol* in 

Goneplax rhomboides (Taylor et al. , 1985), to -130 kJ.mol" 1 in Cancer 

borealis (Mauro and Mangum, 1982). A h in the thalassinid Callianassa 

califomiensis was -42 kJ.mol 1 (Miller and van Holde, 1981; re

calculated by Bridges, 1986). There is some evidence that A h is 

inversely correlated with the magnitude of fluctuations in 

environmental temperature experienced by different species (Jokumsen 

and Weber, 1982). However, there does not appear to be a simple 

correlation of A h  with the burrowing habitat (Bridges, 1986).

The Bohr effect is present in all decapod haemocyanins so far studied, 

with a magnitude of between approximately -0.13 (Holthuisana

transversal Morris et al. , 1988) and -1.5 (e.g. Carcinus maenas: Taylor 

and Butler, 1978; although Truchot, 1971, 1973 reports -0.62). The 

quantitative value of the Bohr effect in Calocaris macandreae was close 

to average (-0.58; see also Table 5.3, below).

The presence of a dialysable modulator of haemocyanin oxygen affinity 

was first reported by Truchot (1971), who later identified L-lactate as 

a modulator in Carcinus maenas (Truchot, 1980). The lactate effect 

has since been reported from a wide variety of crustaceans (e.g. 

Callinectes sapidus: Booth et al., 1982; Cancer magister: Graham et

al., 1983; Palaemon elegans: Bridges et al. , 1984; Homarus gammarus:
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Bouchet and Truchot, 1985; Ocypode saratan: Morris and Bridges, 1985; 

and Austropotamobius pallipes: Morris et al., 1986). However, a

lactate effect could not be demonstrated in Coenobita clypeatus Morris 

and Bridges (1986), nor in Holtbuisana transversa (Morris et al.,

1988). Similarly, the lactate effect was absent in Procambarus clarkii 

(Mangum, 1983b). In the thalassinid Callianassa califoraiensis, a large 

effect of dialysis, which cannot be attributed to L-lactate, is present 

(Mangum, 1983a, 1983b). The magnitude of the lactate effect measured in

several species is given in Table 5.3:

TABLE 5.3: Lacate and Bohr effects measured in a variety of decapod
crustaceans.

Species Lactate Effect Bohr Effect Ref.
logP50/ log[lactate (mM)] logP50/ log pH

Callianassa califomiensis 0 -1.3 (1 ,2 )
Calocaris macandreae 0 -0.58 (3)
Coenobita clypeatus 0 -0.396 (4)
Holtbuisana transversa 0 -0.13 (5)
Carcinus maenas -0.096 -0.62 (6 )
Homarus gammarus -0.16 -1 . 1 (7)
Ocypode saratan -0 .16 to -0 ..24 -0.67 (8 )
Gone pi ax rhomboides -0 .18 to -0 .. 2 0 -0.62 (9)
Cancer pa gurus -0 .. 2 1 to -0 ..24 -1 . 0 (6 )
Cancer magister -0 ..25 to -0 ..29 - (1 0 )
Liocarcinus depurator -0 ..29 to -0 ..39 -1.40 (9)
Atelecyclus rotunda tus -0 ..33 to -0 ..44 -0.92 (9)
Palaemon elegans -0 ..56 to -0 ..63 -1 . 1  to -1 . 2 (1 1 )

although -1.7 is given by Morris et al., (1985)

References: (1) Mangum (1983b); (2) Miller and van Holde (1981);
(3) present study; (4) Morris and Bridges (1986); (5) Morris et al., 
(1988); (6 ) Truchot (1980); (7) Bouchet and Truchot (1985); (8 ) Morris 
and Bridges (1985); (9) Taylor et al. , 1985; (10) Graham et al.,
(1983); (11) Bridges etal., (1984).

The relationship between the Bohr effect and the lactate effect is 

unclear, although there are functional reasons for a correlation 

(Mangum, 1983c; see below). The present study could demonstrate no 

significant modulation of the haemocyanin of Calocaris macandreae by L-
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lactate, under physiological conditions. This result is corroborated by 

the lack of any effect of dialysis, suggesting that dialysable organic 

modulators are not present in haemolymph samples. It remains possible 

that a modulating factor (or factors) such as urate was present at low 

concentrations in the haemolymph samples (so that dialysis did not 

result in a significant change in concentration). In a preliminary 

experiment, addition of urate to a final concentration of 2 0  mmol.l * 

had no effect on oxygen affinity of Calocaris haemolymph.

Modulation by urate (a product of purine catabolism) was described by 

Morris et al. (1985), and reviewed by Bridges and Morris (1986). Urate 

has also been demonstrated to accumulate in vivo to effective (in 

vitro) concentrations as a result of hypoxic, or other stress (Lallier 

et al. , 1987; see below). Modulation of haemocyanin by small, non-

dialysable compounds has been demonstrated (e.g. Rutledge, 1981; Mauro 

and Mangum, 1982). The possibility that haemocyanin may also be 

modulated in vivo by secreted neurohormones has been suggested (Morris, 

1988).

5.4.4.2 Functional Aspects.

There are two major aspects of the respiratory function of haemocyanin 

in decapod crustaceans which may be considered. The efficiency of the 

oxygen transport system can be assessed using a variety of functional 

indices, such as equilibration efficiencies (Mangum, 1983a) or 

figurative models (e.g. Taylor et al., 1985; Bridges, 1986). Secondly, 

the functional modulation of haemocyanin in vivo may be assessed.

In order to relate the in vitro characteristics of the haemocyanin to 

the function of the oxygen transport system in vivo, several 

parameters must be measured in vivo. These include the PC^'s of the
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inhalant water, and of the pre-branchial and post-branchial haemolymph. 

In addition, where appropriate it is necessary to ensure that potential 

modulating factors (e.g. temperature, pH, and inorganic ion, lactate 

and urate concentrations) were similar in in vitro experiments. In the 

present study of Calocaris macandreae, the determined in vivo 

parameters were limited to temperature, pH, inorganic ion and lactate 

concentrations, and inhalant and post-branchial

In either quantitative or figurative assessments of oxygen transport in 

steady-state conditions, the main variables which may be compared are 

the relative contributions to total oxygen transport of dissolved and 

pigment-bound oxygen, and the efficiencies of equilibration at the 

gills and the tissues (E^C^ and E^C^ respectively, defined by Mangum, 

1983a). Unfortunately, steady-state conditions are exceptional (and 

difficult to apply even in experimental systems) and the performance of 

transport systems must be considered during changes in motor activity, 

environmental oxygen availability, and respiratory performance (e.g. 

due to respiratory pausing). In such conditions the total amount of 

oxygen delivered to the tissues is not necessarily equal to the amount 

taken up at the gills, and the function of the venous reserve becomes 

important.

The efficiency of equilibration of haemocyanin at the gills in decapods 

is usually high, approximately 40 - 90% (Mangum, 1983a; e.g. 63% in 

Carcinus maenas: Taylor, 1977; 62% in Callinectes sapidus: Mangum and 

Weiland, 1975), but may decrease during strenuous activity (to 27% in 

Callinectes). Although the quantitative parameter Ej^^ cannot be 

calculated for Calocaris in the present study (since pre-branchial PO2  

is unknown), the relatively large values of ^total measured in
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Calocaris under normoxic conditions suggests that oxygen loading- at 

the gill is effective.

The equilibrium efficiency at the haemolymph*tissue interface is often 

lower (Mangum, 1983a; e.g. 33% in Carcinus aoaenas: Taylor, 1977). A 

low efficiency of oxygen unloading at the tissues implies that

haemocyanin-bound oxygen acts as a venous reserve. The relative 

amounts of oxygen transported as physically dissolved, and bound

oxygen, together with the amount retained as bound oxygen in pre- 

branchial haemolymph (the venous reserve) can also be shown

figuratively (e.g. Taylor et al., 1985; Bridges, 1986). Typical pre- 

branchial/post-branchial differences in PO2  in crustaceans vary within 

a wide range: 10 - 80 Torr (Mangum, 1983a). As a result of the very 

high oxygen affinity of the haemocyanin of Calocaris, the pigment is 

unlikely to unload oxygen to the tissues except in conditions when the 

tissue PO2  becomes very low (e.g. environmental hypoxia, or during a 

high level of motor activity). The venous reserve will be large, and 

of adaptive benefit at low environmental PO2  (see below). In the larger 

thalassinid Callianassa califomiensis, Miller et al (1976) found 

little difference between pre-branchial and post-branchial CO2 (both of 

which were large), suggesting that oxygen unloading from the

haemocyanin at the tissues is limited (in quiescent animals). This was 

true in both normoxic and hypoxic (50 Torr) conditions.

Modulation of haemocyanin oxygen affinity may increase the efficiency 

of oxygen transport to the tissues, particularly during respiratory 

stress, when haemocyanin modulation represents an adaptive response to 

short-term perturbations in respiratory performance. Modulation may be 

beneficial as a response to environmental change (e.g. hypoxia), or to 

counteract the maladaptive effects of other physiological processes
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(for example the Bohr effect resulting from respiratory alkalosis 

during environmental hypoxia). Modulation may be distinguished from 

perturbation (which is not necessarily adaptive) by both exogenous and 

endogenous factors, e.g. temperature, haemolymph pH (Mangum, 1983a).

Modulation of any physiological function requires a gradient in the 

concentration or magnitude of the modulating parameter, which may be 

either spatial or temporal. There appear to be few examples of spatial 

modulation between the gills and tissues in crustaceans. Pre/post- 

branchial pH differences in resting decapods are usually less than 0.03 

units (Truchot, 1983), resulting in a P50 of approximately 0.85 to 

1.05 Torr. There is little evidence at present that spatial modulation 

by organic factors is functionally significant in decapods. Albert and 

Ellington (1985) measured pre-branchial concentrations of L-lactate in 

the crab Meaippe mercenarxa that are 1 0  mmol.l * greater than post- 

branchial values. However, the magnitude of the lactate effect in this 

species is unknown. Spatial modulation by organic modulators (mainly 

organic phosphates) in vertebrate systems may be more significant, 

since the respiratory pigment is usually intracellular.

The functional significance of the Bohr effect is unclear at present. 

Morris et al. (1985) consider that the large Bohr effect in Palaemon 

elegans may be beneficial in hypoxic, hypercapnic conditions (e.g. 

intertidal rock pools at night) since a decrease in pH will facilitate 

oxygen unloading at the tissues. An alternative view is that the Bohr 

effect is maladaptive in hypoxic situations (e.g. Mangum, 1983c) since 

oxygen loading at the gills is significantly reduced by metabolic 

acidosis (neglecting the opposing effect of lactate) . In most decapod 

species which have been studied, the short-term response to
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environmental hypoxia is hyperventilation, accompanied by respiratory 

alkalosis in the haemolymph (e.g. Truchot, 1975; Dejours and 

Beekenkamp, 1977; McMahon et al., 1978; Sinha and Dejours, 1980; 

Dejours and Armand, 1980; DeFur et al., 1980). If the pre/post-

branchial difference in pH is maintained at a negligible level, an

increase in oxygen affinity due to the Bohr effect would result in 

increased loading at the gills but decreased unloading at the tissues. 

Only if the pre/post-branchial ApH is significant (as in exercised 

Callinectes sapidus: Mangum and Wei land, 1975) is the Bohr effect

clearly adaptive. The true significance of the Bohr effect may be

related to the physiological function of the Haldane effect in CO2

transport, since both effects are aspects of the same process (release 

of Bohr protons during oxygenation of the haemocyanin).

The adaptive function of the lactate effect is usually interpreted as 

serving to minimise the maladaptive effects of the Bohr effect during 

conditions of lactate production and acidosis (e.g. Mangum, 1983c). 

These conditions are not usually prevalent during the initial stages of 

environmental hypoxia, but are more typical of functional hypoxia (i.e. 

motor activity; e.g. Booth et al.t 1982). An additional function may 

be to facilitate unloading of the venous reserve when oxygen uptake 

ceases and lactate is being accumulated. Recent studies of the time- 

course of acid-base balance and modulator concentrations during 

environmental hypoxia suggest that lactate does not increase until very 

low PC^'s are reached (e.g. Lallier et al., 1987; present study).

However, since the effect of lactate on haemocyanin oxygen affinity is 

usually exponential over the physiological range (Bridges and Morris,

1986) , the lactate effect may operate even at the onset of lactate 

accumulation.
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Urate may be more likely to act as a true modulator of haemocyanin 

oxygen affinity during environmental hypoxia. Urate has been shown to 

accumulate during moderate hypoxia in two species which also show a 

urate effect on haemocyanin oxygen affinity (Carcinus maenas: Lallier

et al. , 1987; Hemigrapsus nudus: Morris et al. , 1988). At present,

however, it is difficult to interpret the significance of in vitro 

urate modulation.

Although the acid-base status in Calocaris macandreae during 

environmental hypoxia was not studied, the presence of a pronounced 

hyperventilation response (see Chapter 4) suggests that the Bohr effect 

may increase loading at the gills during moderate hypoxia (PO2 above 1 0  

Torr). At these P0 2 's, lactate is not produced, so a compensatory 

metabolic acidosis is unlikely. At below 5 Torr,

hyperventilation is reduced, and lactate is accumulated in the 

haemolymph. A metabolic acidosis (unopposed by a lactate effect) in 

these conditions would facilitate unloading at the tissues, and 

exploitation of the venous reserve.

Direct measurement of the oxygen content of post-branchial haemolymph 

in conditions of declining oxygen tension supports the view that 

regulatory mechanisms operate to maintain oxygen uptake. Both measured 

CO2 and calculated were maintained at values close to those

observed in normoxic conditions, at an environmental PO2 of 51 Torr, 

before declining. In contrast, Miller et al (1976) found that CO2 in 

Callianassa califomiensis decreased from 1.A8 ml. 100 ml * (0.66

mmol.l )̂ at 160 Torr to 0.83 ml. 100ml  ̂ (0.37 mmol.l )̂ at 50 Torr. 

Although the relative proportions of dissolved and bound oxygen cannot 

be estimated, the CO2 does not drop below the value at which
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haemocyanin unloading definitely occurs (i.e. below the mean cHCY^2 ^’ 

until a PC> 2 of approximately 20 Torr (i.e. around the Pc). However, the 

rate of oxygen delivery to the tissues is not simply correlated with 

post-branchial cC^, but with the pre/post-branchial CO2 difference.

In general terms, the pattern of CO2  decrease during progressive 

hypoxia might be expected to conform with one of three models (Fig. 

5.18). If in vivo PO2  (post- or pre-branchial) is not regulated, then 

initially, CO2  would decline in proportion to environmental PO2 (as the 

dissolved component decreases). In more severe hypoxia an internal PO2  

is reached (related to the haemocyanin P50 and n50) at which the 

haemocyanin begins to unload (Pc'', Fig. 5.18A). In this case the 

pattern is biphasic. In contrast, if in vivo PO2 is regulated (by 

changes in ventilation, perfusion etc.) then a triphasic pattern is 

produced, since CO2 is initially regulated until a critical 

environmental PO2  (Pc', Fig 5.18B). Finally, if the values of Pc' and 

Pc'' are similar, a biphasic pattern is produced in which in vivo CO2  

is regulated even in relatively severe hypoxia (Fig. 5.18C). Note that 

this model does not indicate changes in oxygen delivery rates 

(dependant on ^ut *n relati-ve changes in amounts of haemolymph

oxygen. In order to determine delivery rates, this analysis could be 

extended to indicate both pre- and post-branchial cC^'s (Fig. 5.18D).

The results obtained in the present study are not sufficiently detailed 

to resolve which model category could be applied to Calocaris 

macandreae. Further work in this area would therefore be of interest. 

Nevertheless, it is suggested that this type of approach may be 

usefully applied to small animals (in which PO2 cannot be measured), in 

which it is difficult to interpret in vitro characteristics of 

haemocyanin function using the quantitative and figurative models
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FIG. 5.18 Models of oxygen transport in declining oxygen 

tension in the medium (PO2 )•

A) In vivo PO2 is not regulated; haemocyanin-bound oxygen is 

unloaded below Pc'1.

B) In vivo PO2 is regulated above Pc’ ; haemocyanin-bound 

oxygen is unloaded below Pc''.

C) In vivo PO2  is regulated at all external P 0 2 s a^ove 

Pc* ' .

D) The amount of oxygen delivered to the tissues can be 

calculated (hatched area) from the pre-branchial/post - 

branchial PO2  difference. Note that the respective positions 

of Pc* and Pc* 'may differ in pre- and post-branchial 

haemolymph. See text for further details.
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reviewed above.

In summary, the oxygen transport system of Calocaris macandreae appears 

to be adapted to maintain a comparatively low rate of oxygen delivery 

to the tissues, in conditions of prolonged hypoxia, and possibly even 

during occasional brief anoxic periods. In normoxic and probably 

moderately hypoxic (down to 10 - 20 Torr) conditions, the high affinity 

of the haemocyanin results in effective oxygen loading at the gills. A 

large proportion of the oxygen delivered at the tissues will probably 

come from physical solution, and the relative venous reserve will be 

maintained at a high level. In very severely hypoxic conditions (2 

10 Torr) hyperventilation ceases and the venous reserve may be unloaded 

as a result of the Bohr effect.

A speculative calculation of the duration of the utilisation of the 

venous reserve during environmental or functional anoxia is possible. 

With the assumptions that haemolymph volume = 150 pl.g * (estimated 

from the average sample volume from individual Calocaris: probably an 

underestimate), measured values of in vivo cC^ (0.4 mmol.l *) and 

of tissue oxygen consumption (0.75 jimol.g *.h *), it appears that the 

venous reserve may suffice for approximately 1 . 6  minutes of anoxia. 

During long-term anoxia (more than 6  hours; PO2 < 2 Torr), it is shown 

in the next chapter that anaerobic metabolic pathways are utilised, and 

lactate is accumulated.
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1.4..5 Carbon dioxide transport and acid-base balance.

There are two major processes involving carbon dioxide in the 

haemolymph of animals: the transport and excretion of C( > 2 produced by 

aerobic respiration, and the regulation of acid-base balance in the 

extracellular and intracellular compartments. Understanding of the 

operation of both these processes in crustaceans is developing very 

rapidly. However, the technical difficulties of measurement in small 

animals (such as Calocaris macandreae) still limits the investigation 

of CO2 transport and acid-base balance in vivo.

CO2 dissociation curves have been constructed in vitro for a number of 

crustacean species since the original description of Truchot (1976b) 

for Carcinus maenas. In all cases, the curves have a similar form to 

those found in the present study, with initially large capacitance 

coefficients over the physiological PCO2  range. Maximum total CO2  

concentrations have been found to vary from 2  to 1 0  mmol. 1 ’1. The 

conclusions of Truchot (1976b) that CO2  curves were highly variable 

between individuals (depending particularly on the moult cycle and 

associated changes in haemolymph protein concentration) have been 

verified. The presence and magnitude of the Haldane effect have also 

been studied (e.g. Truchot, 1976b; Randall and Wood, 1981; Taylor et 

al., 1985).

The presence of a Haldane effect suggests that oxygen loading of the 

haemocyanin will be linked to carbon dioxide unloading (and vice 

versa). The Haldane effect probably results from dissociation of Bohr 

protons from the haemocyanin on oxygenation, and is quantitatively 

linked to the Bohr effect (Wyman, 1948). The physiological 

significance of the Haldane effect is related to the relative values of 

the Haldane effect and the oxygen carrying capacity (i.e. the ratio
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A  CC^/cjjqy^’ Truchot, 1976b), which is comparable in Calocaris with 

literature values (e.g. 0.5 molCC^. molC^ Carcinus maenas: Truchot,

1976b). Due to the small partial pressure gradient between pre- and 

post-branchial haemolymph, the Haldane effect probably has an important 

role in in vivo CO2 transport (Truchot, 1976b, 1983; Taylor et al., 

1985).

There are few direct measurements of in vivo PCO2  even from relatively 

large decapods, due to the low PCO2  values present, and the difficulty 

of obtaining anaerobic samples of sufficient volume. Most studies have 

measured CCO2  and pH values in vivo, and pK' values in vitro. PCO2 is 

then calculated from the Henderson-Hasselbalch equation assuming that 

the bicarbonate system is at equilibrium in the haemolymph. However, 

carbonic anhydrase (CA) is absent from the haemolymph of decapods 

(Aldridge and Cameron, 1979; Randall and Wood, 1981; Henry and Cameron, 

1982; McMahon et al., 1984), although it is present in the gills (see 

below). The non-catalysed hydration/dehydration rate constants for the 

CO2 /HCO3 /CO3 equilibrium are low (Edsall, 1969). There is evidence 

from comparisons of calculated and measured PCO2  in vivo (Defur et al. , 

1980), and from studies of the time-course of equilibration of sampled 

haemolymph (Cameron, 1986), that disequilibrium conditions are present 

throughout most of the circulation. These studies are supported by 

model calculations (Aldridge and Cameron, 1979; Cameron, 1986). Model 

calculations are tentative, however, since haemolymph residence times 

in various parts of the circulation remain largely unknown (Truchot, 

1983; Cameron, 1986).

The functions of carbonic anhydrase in the gills of decapods have been 

the subject of debate (Aldridge and Cameron, 1979; Burnett et al. ,

152



1981; McMahon and Burnett, 1981; Henry and Cameron, 1983; McMahon , et 

al. , 1984; Burnett et al., 1985). Various treatments of animals with

CA inhibitors (usually acetazolamide) have demonstrated that CA is 

involved in both respiratory excretion of CO2 (by dehydration of HCO3  

to molecular CO2 , which is permeable) and ionic regulation (by 

hydration of CO2 to HCO^" and H+ , to supply counterions for Cl* and Na+ 

uptake). Recently, Henry (1988) has proved that the dehydration and 

hydration reactions catalysed by CA are functionally separated, and 

occur in the gill epithelial membrane and cytoplasm respectively.

Cameron (1986) has suggested that in normoxic conditions, the gills of 

decapod crustaceans are hyperventilated with respect to CC^. Evidence 

for this theory is provided by model calculations of CO2 parameters in 

water and haemolymph at the gills, and by the apparently excessive CO2  

capacity rate ratio (i.e. the CO2  capacity of the volumes of water and 

haemolymph flowing over/through the gills). The model calculations, 

however, rely on the assumptions of equlibrium conditions in both water 

and haemolymph, and on the presence of perfect countercurrent exchange. 

Both of these assumptions must be regarded with caution at present. 

There is evidence that the gills are not hyperventilated, since 

hyperoxia and hyperventilation consistently result in respiratory 

acidosis (Truchot, 1983).

The major parameters which contribute to the regulation of haemolymph 

pH are the total weak acid activity, PCO2 and the strong ion difference 

(SID) (Stewart, 1978). The weak acid buffering of crustacean 

haemolymph is due mainly to the proteins present (Truchot, 1983) and is 

usually constant during short term perturbations of acid-base balance 

(which occur, for example, due to hypoxia, hypercapnia, ventilatory 

changes, air exposure and exercise). The amount of buffering due to
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weak acids is usually termed "non-bicarbonate buffering" and• is

represented by the regression line of a Davenport diagram (see above).

Bicarbonate buffering results from changes in the relative
2 -concentrations of CO2 , HCO^ and CO^ and is, therefore, a function of 

PCO2 and the pK' value of the haemolymph. Changes in acid-base balance 

resulting from bicarbonate buffering (i.e. respiratory compensation) 

result in changes in pH and HCO3 ’ concentration along the non

bicarbonate buffer line. The influence of SID on acid-base balance 

(metabolic compensation) is shown as movement of the buffer line 

relative to the HCO3  concentration axis of a Davenport diagram. SID is 

defined as the activity difference between anions and cations which do 

not change their dissociation in the physiological pH range, and is 

extremely difficult to measure directly due to formation of weak

complex ions (Heisler, 1986). However, factors which contribute to
• •  • + + 9 + ? +changes in SID include the major haemolymph 1 0 ns (Na , K , Ca , Mg ,

2 -Cl and SO^ ) and metabolic acids such as L-lactate.

Although there is some interspecific variation, the acid-base responses 

of crustaceans to several types of stress are relatively stereotyped 

(see review of Truchot, 1983). As described in Chapter 2, hypercapnia 

was not observed in the burrows of Calocaris macandreae although high 

PC0 2 's have been observed in the burrows of fish (Lumpenus 

lampretaeformis and Cepola rubescens: Atkinson et al., 1987).

Probably the most frequent sources of acid-base disturbance in 

Calocaris result from regulation of oxygen uptake. For example, 

respiratory acid-base disturbance results from hyperventilation in 

hypoxia; metabolic metabolic disturbances may be due to SID variations 

(e.g. metabolic L-lactate production).

Although Cameron (1986) disputes the point, by far the majority of
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studies of acid-base balance during respiratory hyperventilation have

noted a respiratory alkalosis, i.e. CC>2 excretion rates are increased,

HCO^ concentration decreases and pH increases (references cited

above). Hypoxia-induced metabolic alkalosis may also occur (Truchot,

1975; McMahon et al., 1978). The response to hypoxia-induced alkalosis

is variable; metabolic compensation (probably release of bicarbonate)

occurs in Carcinus maenas (Truchot, 1975; Johnson and Uglow, 1987) but

not in Astacus (Dejours and Beekenkamp, 1977). Metabolic compensation

(i.e. SID variation) may be achieved by alterations in organic acid

production, carbonate mobilisation or by ionic exchange mechanisms at

the antennary gland and gills (Truchot, 1983). Several studies have

shown that carbonate mobilisation occurs. Carbonate concentrations may

be increased by uptake from the medium (suggested by decreases in the

counterion Cl : Hagerman and Uglow, 1981, 1982; Johnson and Uglow,

1987), or by mobilisation of carbonate from the hepatopancreas and
2+exoskeleton (suggested by increased Ca concentration: e.g. Defur et 

al., 1980; Henry et al., 1981; Truchot, 1983; Johnson and Uglow, 1987). 

Cameron (1985) found that the proton sink in compensation of 

hypercapnic acidosis in Callinectes sapidus was external sea water. The 

quantitative importance of the contribution of carapace carbonate was 

small. Acidosis may also result from production of lactate during 

anaerobiosis.

The measured CCO2 and pH, and calculated PCO2 , HCO3 and non

bicarbonate buffer slope values obtained for Calocaris macandreae in 

the present study are all within the ranges previously determined for 

decapod crustaceans (references above). The acid-base responses of 

Calocaris to perturbations resulting from respiratory processes are 

unknown, but may represent a limiting factor in regulation of oxygen 

uptake, and therefore merit further attention.
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CHAPTER 6. ENERGY METABOLISM DURING ANOXIA IN CALOCARIS MACANDREAE,

^ 1  INTRODUCTION
The major theme of this thesis has been to examine the behavioural, 

morphological and physiological mechanisms by which Calocaris 

macandreae maintains oxygen uptake in the hypoxic environment of the 

burrow. It has been shown that the environmental 'critical oxygen 

tension' below which oxygen uptake rates cannot be maintained 

corresponds to the oxygen tension at which several of these mechanisms 

break down (i.e. 10 -20 Torr). However, several studies have shown 

that thalassinids (especially Callianassa species) can survive extended 

periods of anoxia, 50 - 60 hours at 10°C (Felder, 1979; Mukai and 

Koike, 1984; Zebe, 1982; see below).

Following early studies of anaerobic metabolism in vertebrates, it has 

been established that L-lactate is an end-product of carbohydrate 

catabolism in many animals. In the 1940's, however, von Brand 

discovered that volatile fatty acids were accumulated in endoparasitic 

nematodes. In the last 20 years, a good understanding of the general 

characteristics of anaerobic metabolism in several phyla has 

developed. In particular, it is now recognised that a variety of end- 

products of anaerobic metabolism may be accumulated in different 

animals. For example, alanine, propionate and succinate are 

accumulated in annelids and bivalve molluscs (Gade, 1980; de Zwaan and 

Zurburg, 1981) whereas the major end-product accumulated by the

sipunculid worm Sipunculus nudus is octopine (Portner et al., 1984).

In decapod crustaceans, however, the only metabolic end-product 

accumulated during anoxia is L-lactate (e.g. Teal and Carey, 1967; 

Pritchard and Eddy, 1979; Gade, 1984; Albert and Ellington, 1985; 

Taylor and Spicer, 1987).

156



The accumulation of lactate, and depletion of carbohydrate reserves 

during environmental anoxia have been studied in the thalassinids 

Callianassa califoraiensis and Upogebia pugettens is (Hawkins, 1970; 

Pritchard and Eddy, 1979; Zebe, 1982). Metabolic responses to anoxia 

in Calocaris macandreae were therefore studied in order to provide 

comparative data, and as one aspect of an integrated study of the 

respiratory ecology and physiology of this species.

To provide background information to the metabolic studies, the rate of 

mortality of Calocaris in anoxic conditions was estimated. The rates of 

depletion of carbohydrate reserves, and accumulation of metabolic end- 

products (L-lactate), during exposure to anoxia were estimated. The 

time course of changes in metabolite concentrations during recovery 

from anoxic exposure was also investigated. In order to confirm that 

L-lactate was the major end-product of anaerobic carbohydrate 

catabolism (as reported for other crustaceans, see below), the 

concentrations of a range of organic acids were compared using High 

Performance Liquid Chromatography (HPLC) before and after anoxic 

exposure. Finally, as a preliminary investigation of the biochemical 

basis of comparative differences in anaerobic metabolism, the 

activities of lactate dehydrogenase (LDH) in tissues of Calocaris were 

measured.
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6.2 MATERIALS AND METHODS.

6.2.1 Effects &£ anoxia and subsequent recovery.

Calocaris macandreae (fresh weight range from 1.5 to 2.5g) were caught 

in the Firth of Clyde using a ring-dredge between July and September 

1988. As this period included the moulting period for this Calocaris 

population, both pre- and post-moult animals were used in experiments. 

The results obtained from both sets of animals were compared. Animals 

were maintained in aquaria at 10°C for several days before experiments 

were carried out.

During each experimental exposure to anoxia, 10-25 animals were placed 

in an enclosed aquarium (5 1 volume) containing fresh sea water in a 

temperature-controlled room at 10°C. Gas mixtures containing N2 , CO2  

and air were supplied by a needle-valve gas mixing system and bubbled 

through the water at a rate of 500 ml.min” .̂ An oxygen electrode 

connected to a Strathkelvin meter was inserted into the experimental 

water, in which the PO2 was continuously monitored. Initially, pH and 

PCO2 were also measured until it was found that these did not change 

significantly during the experiments. A PO2 of < 2 Torr was reached 1 

hour after commencing the experiment. Control individuals were 

maintained under normoxic conditions in separate aquaria. When 

appropriate, at the end of the experimental anoxic period, animals were 

gently transferred to aquaria containing aerated sea water for the 

duration of the recovery period.

In one experiment, the survival of Calocaris macandreae in prolonged 

anoxia was examined by exposing 18 individuals to anoxia. The animals 

were examined at regular intervals (until all had died) and classed as 

dead when no movement could be detected after gentle prodding. 

Cumulative survival curves could then be constructed.
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Due to the limited availability of Calocaris, several experiments were 

carried out to investigate the metabolic consequences of anoxia 

exposure, and the results combined. In each case several sampling 

times were duplicated to ensure the compatibility of the data. Two 

groups of experiments were carried out: initially the animals were 

exposed to anoxia for 18 hours, then allowed to recover for 48 hours in 

normoxic conditions. Subsequently, it became apparent that Calocaris 

could survive far longer than 18 hours in total anoxia and experiments 

were carried out to investigate the effects of extended anoxia 

exposure.

Animals to be sampled for tissue metabolites were gently removed from 

the experimental aquarium, blotted dry and quickly frozen in liquid N2  

before being stored at -20°C. Animals sampled for haemolymph 

metabolites were removed and blotted dry. The haemolymph sample was 

quickly removed from the pericardium with a 1 ml plastic syringe and 

frozen at -20°C. Due to the small volume of the haemolymph samples 

(approximately lOOjil) it was necessary to combine haemolymph from two 

individual animals to provide sufficient material for biochemical 

assays.

6.2.2 Analytical methods.

Total tissue extracts were prepared by grinding the frozen animals into 

a fine powder using a pestle and mortar containing liquid 

Following evaporation of the N2 , a weighed amount (approximately 50 mg) 

of the frozen powder was suspended in 500 pi of 0.3 mol.l  ̂ perchloric 

acid (PCA). After centrifugation at 10,000Xg for 10 min, the 

supernatant was removed and a further 500 pi PCA wash of the
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homogenised tissue was taken. The two washes were combined .and 

neutralised by the addition of 4 mmol.l  ̂ K2 CO3 . After further 

centrifugation (10,000Xg for 10 min) the supernatant was removed and 

stored at -20°C.

Initial experiments showed that due to the low protein concentration of 

Calocaris haemolymph, deproteinization of haemolymph samples with PCA 

was unnecessary. Therefore in subsequent experiments, haemolymph 

samples were simply centrifuged to remove haemocytes and cellular 

debris (10,000Xg for 5 min).

The concentration of L-lactate in the haemolymph and tissue extracts

was measured using the method of Gutmann and Wahlefeld (1974) with the

modifications suggested by Graham et al. (1983). This method follows

the production of NADH concomitant with the conversion of L-lactate to

pyruvate by lactate dehydrogenase (LDH). EDTA was added to the assay
2+to prevent interference with the reaction end-point caused by Cu ions 

present in the haemolymph (Engel and Jones, 1978). Details of this 

assay are given in Appendix 4.

The concentration of D-glucose in the haemolymph was assayed using an 

enzymatic method (Slein, 1965) in which hexokinase catalyses the 

production of glucose-6 -phosphate (G6 P), which is further oxidised by 

G6 P dehydrogenase with the proportional conversion of NADP to NADPH. 

The increase in NADPH is determined spectrophotometrically or 

spectrofluorimetrically. Details are given in Appendix 5.

An anthrone method (Carrol et al. , 1956) was used for the determination 

of total hexose/pentose sugars (i.e. total glycogen + oligosaccharides 

+ monosaccharides). This method uses acid hydrolysis to break all
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glycosidic bonds and dehydrate the resulting glucosyl units to furfural 

and its derivitives. These react with anthrone (10 keto-9,10

dihydroanthracene) to form a complex which is assayed 

spectrophotometrically. This assay is described in Appendix 6 .

After initial experiments had shown the presence of high levels of 

carbohydrates in the haemolymph, and in order to confirm the nature of 

the carbohydrates present in the tissues, haemolymph and tissue samples 

from several individuals were assayed for glycogen and 

oligo/monosaccharide components separately. Glycogen was precipitated 

from the samples using ethanol, as described in Appendix 6 .

&JL3. Effects of exposure to hvpoxia.

In order to investigate the range of hypoxia over which anaerobiosis is 

initiated, groups of Calocaris were exposed to various degrees of 

hypoxia using the experimental system described above. The animals 

were sampled after 24 hours exposure to sea water equilibrated to 0, 

2.7, 6.7, 10.0, 20.0 and 157 Torr (+. 0.3 Torr). Total tissue lactate

was assayed, and results expressed as the total-tissue lactate 

concentration present after 24 hours exposure.

6.2.4 HPLC Analysis.

Changes in organic acid metabolites during anoxia were investigated 

using High Performance Liquid Chromatography (HPLC). Animals exposed 

to control conditions and 24 hours anoxia, were immersed in liquid 

nitrogen and homogenised as described above. Most of the frozen 

homogenate (approximately 1.5 g) was suspended in 1 ml PCA and 

centrifuged at 10,000Xg for 2 minutes. 200pl of supernatant was then 

added to 40 jul 18N sulphuric acid (HPLC grade), 1 ml di-ethyl ether and
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0.12 g NaCl in an Eppendorf tube. After mixing for 1 minute, the 

mixture was centrifuged, transferred to another tube (using a glass 

pipette), 100 ul 0.1N NaOH was added and the mixture was mixed and 

centrifuged again. The ether was then removed with a Pasteur pipette, 

and the extract was allowed to stand for 15 minutes (to allow residual 

ether to evaporate) before being injected into the HPLC column.

The samples were then eluted by isocratic HPLC using a Polypore H 

column at 70°C, with 0.01 m o l . l a s  the mobile phase. Organic 

acids were detected by absorbance at 210 nm. The standards used (in 

order of retention time) were tartrate, malate, malonate, pyruvate, 

succinate, ketobutyrate, oxaloacetate, D-lactate, L-lactate, fumarate, 

formate, ketoisocaproate, acetate, hydroxybutyrate, propionate, 

isobutyrate, butyrate, hydroxyisocaproate, isovalerate, methylbutyrate, 

n-valerate, methylvalerate and n-caproate.

6.2.5 Lactate dehydrogenase activity.

The activity of L-lactate dehydrogenase (LDH; EC 1.1.1.28) in several 

tissues of a single Calocaris macandreae was examined.

Samples of abdominal muscle tissue and gill tissue were dissected from 

an individual which had been sacrificed by rapid chilling in a 4°C 

fridge. 50 - 100 mg of tissue was immediately weighed into 1ml cold 

Tris buffer (also containing 10 }il mercaptoethanol + 1 jil 0.1% Triton) 

and homogenised in a 3 ml homogeniser. Triton was used to ensure 

complete homolysis of all cells; mercaptoethanol was present to 

denature protein disulphide bonds. The homogenate was washed into a 

microcentrifuge tube and centrifuged (10.000X g for 5 mins).
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The assay mixture comprised:

Tris buffer (100 mmol.l' 1 Tris-HCl, pH 7.5)

KCN (2 mmol.l*) to inhibit NADH oxidation by mitochondrial 
cytochromes

mercaptoethanol (1 / 1 0  absolute)

NADH (0 - 0.5 mmol.l'1)

pyruvate ( 0 - 4  mmol.l"1)

The sample size was 50 jul in a total reaction mixture of 1060 jul.

The reaction was followed at 340 nm for 2 minutes using the rate mode 

of a Phillips PU8700 spectrophotometer. Within this time-scale the 

reaction was linear. Km and Vmax values for the LDH present in the 

extracts were estimated using Lineweaver-Burke plots. Total activity 

was calculated from Vmax assuming the extinction coefficient of NADH to 

be 6 . 2  x 1 0  ̂ l.mol"1 .cm’1.
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RESULTS
6.3.1 Mortality in anoxia■

A cumulative mortality curve for 18 Calocaris maintained under anoxic 

conditions is shown in Fig. 6.1. Mortality remains low for 

approximately 25 hours before rapidly increasing. The LT^q was 43 

hours. Animals maintained in control conditions showed a low mortality 

(< 10 % over 50 hours).

6.3.2 HPLC analysis.

The only organic acid detected which changed significantly in 

concentration after 25 hours anoxia, was L-lactate (Fig. 6.2). The 

traces shown in Fig. 6.2 have been selected to show clearly the 

observed changes in lactate concentration. Only one other peak could 

be detected, with a retention time of 13.58 minutes. The identity of 

this peak is unclear, since it does not co-elute with any of the 

standards used. This peak was smaller in the samples from animals 

exposed to anoxia and would therefore appear not to represent an 

accumulated end product of anaerobic metabolism.

6JL3. Effects StL anpxia on. tissue and haemolymph metabolites.

6.3.3.1 Metabolite concentrations in control conditions.

Total tissue carbohydrate concentrations of individual Calocaris in 

normoxic control conditions varied between 35.0 to 116.3 umol.g * 

(glucosyl units; fresh weight) with a mean value of 97.3 +. 38.9 (S.D.). 

Haemolymph carbohydrate concentrations varied from 8.3 to 10.3 with a 

mean of 9.4 +. 1.1 mmol.l Glycogen comprised approximately 87% of 

the total tissue carbohydrate, and approximately 73% of the haemolymph 

carbohydrate. The remaining fractions probably represent mono- and 

oligosaccharides.
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FIG. 6.1 Cumulative mortality (%) recorded during exposure 

of Calocaris macandreae to anoxia. The experiment was 

carried out at 10°C.
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FIG. 6.2 HPLC traces of resolved organic acids from 

Calocaris macandreae exposed to A) normoxic conditions; B) 24 

hours anoxia. L-lactate increased significantly in 3 

replicates (t-test, P<0.001). The identity of the peak at RT 

13.6 minutes is unknown. The y-axis scale is arbitrary.



solvent front
9 0  _

8 0  _

7 0  _

6 0  _

5 0  _
L - l a c t a t e

u n i d e n t i f i e d4 0  _

3 0  _

20 _

0 _

0.00 i 0 . 0 0 20.00

solvent front
9 0  _

L - l a c t a t e8 0  _

70 _

60 _

40 _

un identif ied20 _

20 .00

Retention time (minutes)



Tissue L-lactate concentrations in normoxic conditions varied from <0.5 

to 3.4 (mean 2.2 ± 1.6) pmol.g *. Control concentrations of haemolymph 

lactate were 0.9 to 3.4 (mean 1.9 ± 1.3) mmol.l *.

D-glucose was present in the haemolymph in concentrations ranging from

0.15 to 0.19 (mean 0.17 + 0.02) mmol.l"*.

No significant differences in control or experimental metabolite 

concentrations were noted between pre- and post-moult individuals.

6.3^3.2 Metabolite concentrations during anoxia
There was no significant change (t-test, P>0.1) in carbohydrate 

concentration in either total tissue samples (Fig. 6.3) or haemolymph

samples (Fig. 6.4), from animals maintained for 36 hours in anoxia.

Tissue lactate concentrations showed no significant increase (P>0.1) 

during the initial 8  hours of anoxia, but increased significantly 

(P<0.001) after 8  to 36 hours. The maximum mean lactate concentration 

after this time was 30.2 ± 1.6 pmol.g * (Fig. 6.5). The rate of tissue 

lactate accumulation from 8  to 36 hours anoxia was approximately linear 

(correlation coefficient, r = 0.985). The highest individual tissue 

lactate concentration recorded was 32.0 pmol.g *.

Haemolymph lactate concentrations similarly showed no increase over the 

initial ( 6  hour) period of anoxia (Fig. 6 .6 ) but increased 

significantly (P<0.001) to a maximum of 40.2 ±1.9 mmol.l * after 36 

hours.

There was a pronounced hyperglycaemic reaction in the haemolymph,
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FIG. 6.3 Concentrations of carbohydrate (measured by the 

anthrone method) in the tissues of Calocaris macandreae 

during 36 hours anoxia. Values are means + S.D..
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ô
r

o
CO

o
CM

(*IM qsajj. 6 '|0Uirl) eiejpAqoqjeo enssu

Tim
e 

(h
)



FIG. 6.4 Concentrations of carbohydrate (measured by the 

anthrone method) in the haemolymph of Calocaris nacandreae 

during 36 hours anoxia. Values are means + S.D..
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FIG. 6.5 Changes in the concentration of L-lactate 

tissues of Calocaris macandreae during 36 hours 

Values are means + S.D..

in the 

anoxia.
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FIG. 6 . 6  Changes in the concentration of L-lactate in the 

haemolymph of Calocaris macandreae during 36 hours anoxia. 

Values are means +. S.D..
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FIG. 6.7 Changes in the concentration of D-glucose in the 

haemolymph of Calocaris macandreae during 36 hours anoxia. 

Values are means + S.D..
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resulting in glucose concentrations increasing significantly (P<0.001) 

to 2.83 ± 1.15 mmol.lafter 18 hours of anoxia (Fig. 6.7). This

appeared to be the maximum response, however, since the glucose 

concentration did not change significantly (P>0 .1 ) during a further 18 

hours of anoxia.

6.3.3.3 Metabolite concentrations during recovery from anoxia.

Figures 6 . 8  and 6.9 show no significant (P>0.1) changes in tissue and 

haemolymph carbohydrate concentrations during exposure to 18 hours 

anoxia and subsequent 48 hours recovery in normoxic conditions.

Tissue lactate concentrations recovered from a value of 10.8 + 1.5

p m o l . g (18 hours anoxia) to values similar to controls after 48 hours 

(Fig. 6.10). Initial recovery of haemolymph lactate concentrations was 

more rapid with a 40% decrease (12.9 +.1.5 to 7.8 ± 0.5 mmol.l *)

during the first hour. The subsequent recovery occurred more slowly 

with concentrations reaching control values (P>0.1) after about 40 

hours (Fig. 6.11).

There was a dramatic decrease in glucose concentration in the 

haemolymph during the first hour of recovery, when the glucose 

concentration decreased by 6 8 % to 0.84 ± 0.14 mmol.l  ̂ (Fig. 6.12). 

Recovery to values not significantly different from controls had 

occurred within 24 hours in normoxic water.

6.3.4 Lactate accumulation during anoxia.

The total-tissue lactate concentration after 24 hours of exposure to 

various degrees of hypoxia is shown in Fig. 6.13. There was no 

significant increase in lactate when PO2 decreased from normoxic levels
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FIG. 6.8 Changes in the concentration of carbohydrate

(measured by the anthrone method) in the tissues of Calocaris 

macandreae during 18 hours anoxia followed by 48 hours 

recovery in normoxic conditions. Values are means +. S.D..
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FIG. 6.9 Changes in the concentration of carbohydrate 

(measured by the anthrone method) in the haemolymph of 

Calocaris atacandreae during 18 hours anoxia followed by 48 

hours recovery in normoxic conditions. Values are means ± 

S.D..
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FIG. 6.10 Changes in the concentration of L-lactate in the 

tissues of Calocaris macandreae during 18 hours anoxia 

followed by 48 hours recovery in normoxic conditions. Values 

are means + S.D..
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(jm qs0ĵ _B 'louirl) ejeioei-i enssii

Tim
e 

(h
)



FIG. 6.11 Changes in the concentration of L-lactate in the 

haemolymph of Calocaris macandreae during 18 hours anoxia 

followed by 48 hours recovery in normoxic conditions. Values 

are means + S.D..
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FIG. 6.11 Changes in the concentration of D-glucose in the 

haemolymph of Calocaris macandreae during 18 hours anoxia 

followed by 48 hours recovery in normoxic conditions. Values 

are means + S.D..
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to 6.7 Torr. Below this PO2 , lactate increased significantly (t-test, 

P<0.001). However, the lactate concentration was significantly less at 

2.7 Torr (6.82 jimol.g’*) than at 0 Torr (19.85 jimol.g *).

6.3.5 Lactate dehydrogenase activity.

The effects of substrate concentration on LDH activity of abdominal 

muscle homogenate are shown as a Lineweaver-Burke plot in Fig. 6.14.

values for pyruvate and NADH are 0.50 and 0.19 mmol.l 

respectively. ^max can be estimated from Fig. 6.14 to be 43.8 

umol.min’^ . g ( f r e s h  weight) (= 43.8 units.g**). No LDH activity 

could be detected in homogenates of gill tissue.
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FIG. 6.13 The relationship between lactate accumulation 

(over 24 hours) and environmental oxygen tension in Calocaris 

macandreae. See text for experimental details.
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FIG. 6.11+ Lineweaver-Burke plot of the relationship between 

substrate concentration and rate of NADH oxidation by lactate 

dehydrogenase in homogenised abdominal muscle of Calocaris 

macandreae. The equations of the regression lines are:

pyruvate: y = 1.43 + 0.61x (r = 1.00; P<0.001)

NADH: y= 1.29 + 0.29x (r = 0.95; P<0.01)

Calculated Vmax =43.8 jumol.min *.g *.

values for pyruvate and NADH are 0.50 and 0.19 mmol.l  ̂

respectively.
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L A  discussion

6«4.1 Comparative aspects qL. anaerobic metabolism in Calocaris 

macandreae.

6AAA Survival in anoxia.
The survival time of Calocaris macandreae (expressed as LT^q) was 

determined to be 43 hours at 10°C, although individual animals survived 

for up to 49.5 hours. Previously reported survival times in anoxia of 

Callianassa califomiensis are 138 and 52 - 60 hours (Thompson and 

Pritchard, 1969 and Zebe, 1982 respectively). The survival of 

Callianassa jamaicense in anoxia was estimated at 80 hours (Felder,

1979); while C. japonica was studied by Mukai and Koike (1984: maximum

survival < 63 hours; LT^q 40 h) . There are very few comparative data 

for other decapods in the literature, although the LT^q for Carcinus 

maenas is much shorter, at approximately 14 h (A.D. Hill, unpub. obs.).

b-A* 1.2 Anaerobic EetaboliSB in Calocaris macandreae and other

thalassinids.

Only two previous studies of anaerobic metabolism in thalassinid 

species have been published (Pritchard and Eddy, 1979; Zebe, 1982), in 

addition to an unpublished MS thesis (Hawkins 1970). All three studies 

have considered the American species Callianassa calif omiensis and 

Upogebia pugettensis. There is, however, a larger literature concerning 

anaerobiosis in brachyuran crabs and to a lesser extent other decapods. 

Both environmental (i.e. resulting from environmental anoxia or 

hypoxia) and functional (i.e. resulting from exercise beyond the 

capacity of the aerobic system) anaerobiosis have been extensively 

studied.

Pritchard and Eddy (1979) measured haemolymph L-lactate and tissue 

glycogen concentrations in Callianassa calif omiensis and Upogebia
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pugettensis during exposure to 20 hours anoxia. Hawkins (1970) measured 

the same metabolites in C. calif omiensis together with haemolymph 

glucose concentration (over a time period of 30 hours). Zebe (1982) 

measured a variety of tissue metabolite concentrations (including 

glycogen, lactate and glucose) during 24 hours exposure to anoxia in 

both species. In the present study, lactate and glycogen 

concentrations were measured in the tissue and haemolymph of Calocaris 

macandreae, together with the concentration of haemolymph glucose, 

during 36 hours of anoxia, and 18 hours of anoxia followed by 48 hours 

of recovery in normoxic conditions.

The pattern of total tissue lactate accumulation during 24 hours anoxia 

described by Zebe (1982) in Callianassa calif omiensis is very similar 

to that found in Calocaris. However, the rate of accumulation was 

slightly lower (0.7 jimol.g*.h calculated from Zebe’s data) in C. 

calif omiensis. The final (24 hour) lactate concentration in C. 

calif omiensis was 16.8 jimol.g-1 compared with 19.85 jimol.g* in 

Calocaris. In contrast, the rate of lactate accumulation in Upogebia 

pugettensis was considerably higher (1.52 jimol.g * .h"* over 24 hours) 

resulting in a final concentration of 36.4 pmol.g Zebe (1982) also 

quotes individual lactate values after "maximum periods of anoxia" 

(presumably 24 hours) of 20 and 50-60 jumol.g  ̂ in C. calif omiensis and 

U. pugettensis respectively. Most studies of lactate accumulation in 

decapods have found an approximately linear increase during anoxia. 

From Zebe's values for lactate accumulation rate and survival time in 

C. califomiensis, the final lactate concentration after lethal 

exposure to anoxia would be approximately 35-40 pmol.g The mean 

tissue lactate levels accumulated during a near-lethal exposure to 

anoxia in all three thalassinid species would then be very similar (C.
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calif omiensis 35-40 pmol.g ’* /60 h; V. pugettensis 35 Jimol. g * /24 ' h ; 

Calocaris 30 jimol.g’* / 36 h) .

The accumulation of lactate in the haemolymph of C. calif omiensis and 

U. pugettensis during exposure to anoxia has been measured by Havkins 

(1970) and by Pritchard and Eddy (1979). The results given by these 

authors have been re-calculated from the authors’ original units (i.e. 

mg lactate/ 1 0 0  ml haemolymph) to mmol.l "*, in order to allow 

comparison with results from this study. Hawkins found that haemolymph 

lactate concentration increased linearly over 30 hours to a final value

of 30.3 mmol.l"* in C. calif omiensis, although Pritchard and Eddy

reported a lower rate of accumulation, with concentrations of only 5.5 

mmol.l * in the same species after 2 0  hours (compared with 18.8 

mmol.l * interpolated from Hawkins' data). Pritchard and Eddy also

measured haemolymph lactate concentration in U. pugettensis and

reported higher values of 39.2 mmol.l* after 20 hours. These values 

compare to interpolated levels of 17 mmol.l * / 20 h and 32 mmol.l* / 

30 h in Calocaris macandreae. Thus the rate of haemolymph lactate 

accumulation in Calocaris appears very similar to that obtained by 

Hawkins for C. calif omiensis, but intermediate between those recorded 

for C. calif omiensis and U. pugettensis by Pritchard and Eddy. These 

comparisons are summarised in the following table:

TABLE 6.1: Rates of accumulation of L-lactate (mmol.l *.h *) in the
haemolymphs of Calocaris macandreae, Callianassa calif omiensis and 
Upogebia pugettensis.

Species | 2 0 h 
1

30h

Calocaris (present study) | 0.85 1.06
Callianassa (Hawkins 1970) | 0.94 1 . 0 1

Callianassa (Pritchard and Eddy 1979) | 0.28 -
Upogebia (Pritchard and Eddy 1979) | 1.96 -
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There is no evidence from the study of Hawkins (1970), or from .the 

present study, for a saturation effect of haemolymph lactate as was 

found by Pritchard and Eddy (1979) in C. calif omiensis. This effect 

has been found in other decapods (Palaemon elegans and P. serratus: 

Taylor and Spicer, 1987; Carcinus maenas and Nephrops norvegicus: A.D.

Hill, pers.comm.). In addition, there is no consistent 'lethal limit' 

concentration of lactate in the haemolymph, as was apparent in total 

tissue lactate between the three species (above).

Both Hawkins (1970) and Pritchard and Eddy (1979) found considerable 

individual variation in tissue glycogen concentrations in C. 

calif omiensis and U. pugettensis, and had some difficulty in 

demonstrating glycogen utilisation during anoxia. Pritchard and Eddy 

concluded that "there is no net utilization of glycogen under short

term anoxic conditions", although Hawkins had previously found 

significant glycogen depletion in C. calif omiensis hepatopancreas and 

chela muscle after 31 hours anoxia. Zebe (1982) also found utilisation 

of total tissue glycogen although he used very small samples (n = 4)

and gave no indication of individual variation. The present study 

failed to demonstrate any significant change in tissue or haemolymph 

carbohydrate during anoxia or recovery. This can be partly attributed 

to the large variation in glycogen concentration measured in different 

individuals.

Zebe (1982) found that total tissue D-glucose increased from 0.25 to

0.64 jumol.g-1 in C. calif omiensis and 0.29 to 1.39 in U. pugettensis 

after 12 hours exposure to anoxia. There was a subsequent decrease 

during the following 12 hours. In Calocaris, concentrations of D- 

glucose in the tissue were below the reliable limits of 

spectrophotometric assay (i.e. < 0.5 pmol.g *). There was a
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hyperglycaemic response in the haemolymph, however, which was very

similar to the pattern of hyperglycaemia found by Hawkins (1970) in C. 

calif omiensis. Hawkins found a significant increase over 13 hours of

anoxia to a maximum value of 2.36 mmol.l’*, with no subsequent increase 

after 30 hours (although his results are based on only two sampling 

times). A similar increase in haemolymph glucose concentrations was 

found in Calocaris, with an initial accumulation of 2.83 mmol.l * after 

18 hours not followed by a further increase (over 36 hours). All the 

studies also recorded a large individual variation in haemolymph

glucose concentrations and this appears to be typical of crustacean 

haemolymph (e.g. Dean and Vernberg, 1965; Telford, 1968; Taylor and 

Spicer, 1987).

The only previous study of metabolic recovery from anoxic stress in a 

thalassinid species is Hawkins (1970), for C. calif omiensis. Both 

haemolymph lactate and glucose concentrations show different recovery 

patterns in C. calif omiensis from those observed in Calocaris, 

although the concentrations were similar during anoxic exposure.

Lactate concentrations in C. calif omiensis showed a non-significant 

increase during the first 1.5 hours of recovery followed by a slow 

decrease, without reaching control levels after 1 0  hours (the limit of 

Hawkins' study). In contrast, there was a rapid (39.9%) recovery of 

lactate concentrations in Calocaris over the first hour, with lactate 

reaching control concentrations after c.40 hours. An almost linear 

recovery of haemolymph glucose concentrations in C. calif omiensis 

takes place over approximately 10 hours, whereas recovery in Calocaris 

is very rapid, being 70% complete within 1 hour. In both species, 

however, recovery of haemolymph metabolites is essentially complete 

within a recovery time period only slightly longer than the anoxic
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exposure. This is in contrast to recovery of total tissue lactate 

concentrations in Calocaris, which is not complete until over 2.5 times 

the anoxic period.

The overall pattern of anaerobic metabolism in Calocaris macandreae 

therefore appears consistent with the limited existing data for other 

thalassinid species. There is close similarity between the results of 

the present study and those of Hawkins (1970) and Zebe (1982) for C. 

calif omiensis, in terms both of the concentrations and the rates of 

accumulation/ depletion of metabolites (with the possible exception of 

glycogen depletion). If the results of Pritchard and Eddy (1979) are 

accepted, however, they would indicate that C. calif omiensis has a 

considerably greater capacity for anaerobiosis. Both Pritchard and 

Eddy, and Zebe found much less anaerobic ability in Upogebia 

pugettensis than in either Callianassa calif omiensis or Calocaris. 

These results will be discussed in terms of functional and ecological 

significance below.

6.4.1.3 Comparison with other decapod Crustaceans.

There are several studies which have investigated environmental 

anaerobiosis in decapod Crustacea. These studies have measured total 

tissue metabolites (Teal and Carey, 1967; Spotts, 1983); haemolymph

metabolites (Burke, 1979; Bridges and Brand, 1980; Mauro and Malecha, 

1984; Lowery and Tate, 1986; van Aardt and Wolmarans, 1987); or both 

(Gade, 1984; Albert and Ellington, 1985; Taylor and Spicer, 1987).

The following table summarises data taken from the literature, for 

concentrations and rates of accumulation of lactate in the tissue and 

haemolymph of several crustacean species. Although experimental 

procedures (particularly temperatures) varied between examples, there
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is general consistency between the results. It should be noted that 

tissue lactate concentration may be measured in dissected tissues 

(Gade, 1984; Albert and Ellington, 1985) or in homogenised total tissue 

(Teal and Carey, 1967; Zebe, 1982; Spotts, 1983; Taylor and Spicer, 

1987; present study). Although lactate concentrations in dissected 

tissues are likely to be greater than in homogenised total tissue, the 

results of these two methods appear to be comparable.

TABLE 6.2: Maximum concentrations and rates of accumulation of L-
lactate in the tissues and haemolymphs of selected decapod Crustacea.

TISSUE
Species Maximum conc. _ **Rate Reference

Macrobrachium rosenbergii 5.32/4 1.29 Spotts, 1983
Menippe mercenaria 16-20/12 1.5 Albert and Ellington, 1985
Orconectes limosus 19.3/12 1.5 Gade, 1984
Palaemon elegans 16.7/3 3.97 Taylor and Spicer, 1987
Palaemon serratus 9.6/1 5.6 tt

Uca pugnax 40/25 2 . 2 Teal and Carey, 1967

THALASSINIDS
Upogebia pugettensis 6.4/24 1.52 Zebe (1982)
Callianassa califomiensis? 16.8/24 0.7 ft

Calocaris aiacandreae 30.2/36 0.9 Present study

HAEMOLYMPH
Species Maximum conc. Rate** Reference

Corystes cassivelaunus 8.63/5 1.73 Bridges and Brand, 1980
Galatbea strigosa 7.13/5 1.46 ft

Macrobrachium rosenbergii 1 2 / 2 5.85 Mauro and Malecha, 1984
Orconectes limosus 60/16 3.75 Gade, 1984
Menippe mercenaria 30-50/12 3.33 Albert and Ellington, 1985
Potamon varreni (aerial) 34.78/6 5.7 van Aardt and Wolmarans,1987
Palaemon elegans 13/4 2.98 Taylor and Spicer, 1987
Palaemon serratus 6.93/1 6.35 ft

THALASSINIDS
Upogebia pugettensis 39.2/20 1.96 Pritchard and Eddy (1979)
Callianassa califomiensis 30.3/30 0.94 Hawkins (1970)
Calocaris macandreae 40.18/36 0.85 Present study

maximum recorded mean value / experimental period (pmol.g- 1  

rate of increase (pmol.g (fresh wt.).h or mmol.l .h ) 
(nb. takes account of initial concentrations)
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The rates of tissue lactate accumulation during environmental 

anaerobiosis (i.e. in anoxia or severe hypoxia, below the Pc) varied 

from 1.29 to 5.6 jimol.g'^.h * in non-thalassinid decapods. The maximum 

lactate concentration recorded (not necessarily the maximum produced) 

was between 9.6 and 20 u m o l . g Callianassa califomiensis and 

Calocaris atacandreae are characterised by slow rates of accumulation of 

lactate, and high final concentrations. However, lactate accumulation 

rates and final concentrations in Upogebia pugettensis are similar to 

those recorded in non-thalassinids. A similar comparison is evident if 

haemolymph lactate is considered. It should be noted, however, that 

most of the species studied have been selected because of their 

ecological tolerance of hypoxic/anoxic environments; thus Menippe 

mercenaria and Orconectes limosus probably represent the known adaptive 

limits of the brachyuran crabs and astacid crayfish respectively, and 

both occupy habitats which experience regular hypoxic events (Albert 

and Ellington, 1985; Gade, 1984). Possibly the only crustacean species 

so far studied which does not experience environmental oxygen 

depletion, is Palaemon serratus (Taylor and Spicer, 1987); this species 

shows a rapid accumulation of lactate and a low maximum concentration 

on death.

Glycogen depletion has been demonstrated in several crustacean species 

during environmental anaerobiosis; e.g. Uca pugnax (Teal and Carey, 

1967); Callianassa califomiensis (Hawkins, 1970; Zebe, 1982); Upogebia 

pugettensis (Zebe, 1982); Orconectes limosus (Gade, 1984); Palaemon 

elegans and P. serratus (Taylor and Spicer, 1987). The functional 

significance of glycogen depletion will be discussed below.

Although haemolymph glucose has been measured under resting conditions 

in a few crustacean species (McWhinnie and Sailer, 1960; Dean and
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Vernberg, 1965; Telford, 1968; Hawkins, 1970; Taylor and Spicer, 1987), 

the effects of anoxic stress on haemolymph glucose levels have only 

been recorded in Palaemon elegans and P. serratus (Taylor and Spicer, 

1987). Hyperglycaemia also seems to be a general stress response in 

Crustacea (Telford, 1968; Johnson and Uglow, 1985).

6*4.2 Functional aspects &L anaerobic metabolism in Calocaris 

macandreae.

6.4.2.1 Compartmenta 1 isation Qf_ metabolites.

Relatively few studies of anaerobic metabolism in decapods have 

considered the distribution of metabolites in the body compartments. 

Metabolic intermediates and end-products may be localised in any of 

several body compartments: in particular in the intracellular,

extracellular and haemolymph compartments. In addition, metabolites 

may be localised in particular tissues. Albert and Ellington (1985) 

have measured lactate concentrations in excised tissue samples from the 

stone crab Menippe mercenaria during severe hypoxia. Although lactate 

concentrations varied between heart, leg socket muscle and cheliped 

closer muscle the relative increases in concentration during 1 2  hours 

hypoxia were similar (15.43 - 18.75%).

Albert and Ellington (1985) also measured lactate levels in pre- and 

postbranchial haemolymph, finding a 1 0  mmol.l  ̂ greater concentration 

in prebranchial samples which was ascribed to haemolymph flow patterns. 

The functional significance of a pre/post-branchial lactate gradient to 

haemocyanin oxygen unloading is unknown in Menippe, although a gradient 

of this magnitude might be expected to favour oxygen delivery to the 

tissues in other species (see Chapter 5).
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A comparison of total tissue and haemolymph L-lactate concentrations, is 

possible for only a few species at present; Palaemon elegans and P. 

serratus (Taylor and Spicer, 1987); Callianassa califomiensis and 

Upogebia pugettensis (Pritchard and Eddy, 1979; Zebe, 1982) and 

Calocaris macandreae (present study) although a comparison of muscle 

and haemolymph lactate is also possible in Orconectes limosus (Gade, 

1984) and Menippe mercenaria (Albert and Ellington, 1985).

Assuming that the haemolymph volume in a lg Calocaris is 150ul (Chapter 

5), the following distribution of lactate can be calculated during 36 

hours anoxia:

TABLE 6.3: Calculated amounts (}snol) of L-lactate in haemolymph and
tissue of Calocaris macandreae during environmental anoxia.

Time 
0  hours 
6 
12 
18 
36

total tissue - calculated haemolymph 
calculated haemolymph / total tissue

It is evident that the proportion of L-lactate present in the

haemolymph increased from approximately 1 0 % of the total lactate pool

during normoxia, to a maximum of 2 0 % in anoxia.

The relative concentrations of lactate in the tissues and haemolymph 

can be compared if a tissue concentration of 1 pmol.g * is assumed to 

be equivalent to a concentration of 1 mmol.l  ̂ in the fluid 

compartments of the tissue (as apparently assumed by Gade, 1984 and

Albert and Ellington, 1985). During normoxic conditions, the 

concentrations of lactate in Calocaris haemolymph and tissue are

Haemolymph
0.29 umol
0.30
0.87
1.93
6.03

*Tissues 
1.87 umol 
2.70 
6.03 
8.91 
24.15

% Haemolymph ** 
13.4 
10.0 
12.6 
17.8 
20.0
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similar (1.91 and 2.16 mmol.l * respectively) probably reflecting 

equilibrium conditions although the distribution will also be dependant 

on membrane potentials (Albert and Ellington, 1985) and possibly active 

transport (a lactate-hydronium symport is present in mammals: Johnson

et al. , 1980). During anoxia, however, the increase in the

concentration of lactate in the haemolymph was greater than the 

equivalent increase in tissue concentration (40.2 and 30.2 mmol.l’* 

respectively).

Compartmentalisation of the lactate pool is reflected in the increase 

in the contribution of the haemolymph lactate pool calculated above. A 

similar gradient between the tissues and haemolymph has been noted by 

Gade (1984) and Albert and Ellington (1985). However, tissue and 

haemolymph concentrations are apparently similar in Palaemon elegans 

and P. serratus (Taylor and Spicer, 1987) and in Upogebia pugettensis 

(Hawkins, 1970; Zebe, 1982). In contrast, Phillips et al. (1977) 

report greater lactate concentrations in muscle than haemolymph in the 

freshwater (astacid) yabbie Cberax destructor.

The high concentration of lactate in the haemolymph has been 

interpreted by Gade (1984) as serving to enhance lactate (and ATP) 

production by channelling the end product of the equilibrium reaction 

catalysed by lactate dehydrogenase out of the cellular compartment. He 

also notes that the relative Km values of LDH for lactate (38 mmol.l *: 

Urban, 1969) and pyruvate (0.055 mmol.l *; although this study found

0.5 mmol.l * in Calocaris) are such that high lactate levels can be 

tolerated before the reaction is shifted to lactate oxidation. Other 

functional effects of high haemolymph lactate concentrations may be 

related to the modulation of haemocyanin oxygen affinity by lactate
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(see Chapter 5), or to a direct toxicity effect resulting from high

intracellular lactate concentrations. In addition, the accumulation of

lactate in the haemolymph is an important component of the metabolic

acidosis often noted during environmental hypoxia in crustaceans

(Truchot, 1983), and may be functional in opposing the respiratory

alkalosis which results from hyperventilation. Gade (1984) and Albert

and Ellington (1985) noted that haemolymph lactate might be buffered in

vivo by mobilisation of skeletal CaCC^ and complex formation between

cations and lactate. Albert and Ellington in fact noted an increase in 
2+ 2+Ca and Hg levels during hypoxia. This subject was considered in 

more detail in the previous chapter.

The total amount of carbohydrate present in the haemolymph comprises 

approximately 1.5 pmols (assuming a haemolymph volume of 150 pi), or 

approximately 1.5% of the total carbohydrate pool. As described above, 

glycogen comprised 73% of this carbohydrate. Glycogen is probably 

present in the haemocytes (Johnston and Spencer Davies, 1972). The 

remainder of the haemolymph carbohydrate may comprise monosaccharides 

and oligosaccharides in solution.

A large increase in haemolymph glucose has been noted as a response to 

anoxia and other stresses in several crustacean species (see above). 

In Calocaris, 18 hours exposure to anoxia resulted in a 16-fold

increase in haemolymph glucose concentration. For a lg (150pl 

haemolymph volume) animal the resultant 0.42 umols glucose comprises 

less than 0.5% of the total animal carbohydrate but approximately 30% 

of haemolymph carbohydrate (compared with 1.6% in normoxia). The 

slight (non-significant) increase in total haemolymph carbohydrate (of 

about the same magnitude over the same time course) may imply 

hydrolysis of tissue glycogen to haemolymph glucose. The source of
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haemolymph glucose is unclear with at least two possibilities suggested 

in the literature. Hydrolysis of glycogen to glucose and resynthesis 

of glycogen from free haemolymph oligosaccharides has been suggested 

(Meenakshi and Scheer 1961; Scheer and Meenakshi 1961). Hydrolysis of 

haemolymph oligosaccharides to glucose is an alternative source. In 

either case no utilisation of carbohydrate reserves can be detected in 

Calocaris or would be expected from the relative amounts involved. The 

functional significance of anoxic hyperglycaemia is presumably related 

to the Pasteur effect (see below).

fr.,4.2«2 Bfiplfifcjpn fil carbohydrate reserves.
Teal and Carey (1967) suggested that a ratio of lactate formation to 

glycogen (glucosyl unit) utilisation (L:G ratio) of approximately 2 

would indicate that glycogen and lactate were the sole substrate and 

end-product respectively of anaerobic energy metabolism. This 

hypothesis assumes that two lactate molecules are produced per glucosyl 

unit derived from glycogen, and that alternative metabolites would 

perturb the ratio. Taylor and Spicer (1987) found ratios of 

approximately 2 in Palaemon elegans and P. serratus. Similarly, Zebe 

(1982) measured ratios of exactly 2 in Callianassa and 1.93 in 

Upogebia. However, Hawkins (1970) found a ratio of 0.63 in 

Callianassa. Gade (1984) also concluded that glycogen was the sole 

substrate in Orconectes limosus, although in dissected muscle tissue 

L:G was about 0.4.

In the case of Calocaris total lactate production was 30.18 pmol.g * 

over 36 hours, whereas no significant change could be demonstrated in 

total carbohydrate from concentrations of 70-100 +. 20-40 pmol.g

This is not surprising in view of the expected glycogen depletion of 15
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pmol.g In conclusion, the consensus view is that anaerobiosis in

crustaceans utilises glycogen as the sole substrate (A.D. Hill, pers. 

comm.) and this study provides no evidence to the contrary.

jL.4.2,3 End-products q1 anaerobiosis.

There have been very few studies of changes in a variety of 

carbohydrate metabolites during anoxia. The development of HPLC has 

allowed measurement of the concentration of a large range of organic 

compounds (for example 23 in the present study) in a single small 

sample. However, there have been few applications of this technique to 

studies of crustacean metabolism. Although van Aardt and Wolmarans 

(1987) used gas chromatography, they measured only L- and D-lactate and 

succinate. The anaerobic metabolism of Carcinus maenas has recently 

been studied using HPLC (A.D. Hill, pers. comm.).

There is little doubt that L-lactate is the main end-product 

accumulated during anoxia in decapod Crustacea (see references above). 

However, it is interesting to note that D-lactate is accumulated during 

hypoxia in the horseshoe crab Limulus polyphemus (Long and Kaplan, 

1968; Carlsson and Gade, 1986; Gade et al. , 1986). Succinate and

alanine are minor end-products in the isopod Cirolana (=Natatolana) 

borealis (de Zwaan and Skjoldal, 1979). This contrasts with the 

situation in molluscs, polychaetes and sipunculids, some species of 

which are known to accumulate other compounds (see Introduction). The 

possible advantages to lactate are discussed by Fields (1983).

6 .4.2.4 Comparison of aerobic and anaerobic metabolism.

The main functional result of anaerobic fermentation of glycogen to 

lactate, or aerobic oxidation of glycogen to CO2 , in any animal is the 

production of ATP. From the results of this study it is possible to
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compare the rate of ATP production in Calocaris in normoxic and anoxic 

environmental conditions. It should be noted, however, that the 

analysis is simplistic, in particular regarding the assumption that 

carbohydrate catabolism is the sole source of ATP.

The mean rate of oxygen consumption of a quiescent lg Calocaris in 

normoxia is 0.75 pmol (^.h * (Chapter A). Aerobic catabolism via the 

Krebs cycle utilises 6  molecules of oxygen and produces 39 ATP 

molecules per glucosyl unit (G1P): the resultant rate of ATP production 

in Calocaris is therefore 4.88 jamol.h"*.

During environmental anaerobiosis a lg Calocaris produces about 30.18 

umol of lactate in 36 hours i.e. 0.84 jimol.h This corresponds to a 

glycolytic flux of 0.42 jimol.hand an ATP production of 1.26 pmol.h’* 

(3 ATP per glucose unit).

Calocaris shows a distinct behavioural response to anoxia, with an 

almost complete cessation of the locomotory behaviour shown under 

normoxic conditions (Chapter 2, and personal observations of animals 

held in tanks). Animals in burrows show a cessation in the burrow 

irrigatory behaviour displayed during hypoxia (Chapter 2). 

Scaphognathite function also ceases during anoxia (Chapter 3) although 

the heart continues to beat. Thus a 3-fold decrease in energy demand 

seems plausible especially if anabolic demands are also decreased. 

Behavioural responses to hypoxia and anoxia have been reported in other 

Crustacea (avoidance: Carcinus maenas (Taylor and Butler, 1973);

Austropotamobius pallipes (Wheatly and Taylor, 1980); Palaemon elegans 

(Taylor and Spicer, 1987); lethargy: e.g. Callianassa californiensis 

(Thompson and Pritchard, 1969; Hawkins, 1970); Carcinus maenas (A.D.
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Hill, pers. comm.)).

The Pasteur effect has been defined by Storey (1985) as "the effect of 

oxygen deprivation in increasing the rate of carbohydrate uptake and 

catabolism". The Pasteur effect has been demonstrated in a variety of 

unicellular organisms, in locust flight muscle (Ford and Candy, 1972) 

and in isolated muscle tissues (Lowry et al. , 1964; Ramaiah, 1974) and 

is thought to reflect the increased demand for glycolytic substrate as 

a result of the lower efficiency of anaerobic catabolism. Many 

facultative anaerobes do not show a Pasteur effect presumably because 

the metabolic rate is greatly depressed (De Zwaan and Wijsman, 1976; 

Ebberink and De Zwaan, 1980; Gade, 1983; Storey, 1985).

A comparison of calculated rates of glycolytic flux in Calocaris shows 

that during normoxia, 0.125 jimol.g’*.h~* glucosyl units are catabolised 

compared with 0.49 pmol.g~*.h"^ during anaerobiosis. This 4-fold 

Pasteur effect is comparable with those found in the studies cited 

above. The functional significance of this response is unclear in view 

of the lack of demonstrable depletion of carbohydrate reserves during 

anaerobiosis in Calocaris.

6 .4.2.5 Recovery from anaerobiosis in Calocaris.

Recovery from a period of anoxia has been studied in the crustaceans 

Callianassa califomiensis (Hawkins, 1970; see above); Corystes 

cassivelaunus, Atelecyclus rotundatus, Nepbrops norvegicus, Carcinus 

maenas, Homarus gammarus and Galathea strigosa (Bridges and Brand,

1980); Orconectes limosus (Gade, 1984); Macrobracbium rosenbergii 

(Mauro and Malecha, 1984); Menippe mercenaria (Albert and Ellington, 

1985); Palaemon elegans and P. serratus (Taylor and Spicer, 1987) and a 

variety of other invertebrates (Ellington, 1983). In all cases,
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recovery of lactate concentrations (haemolymph or tissue) was

relatively slow when compared with the duration of the original stress.

Ellington (1983) has identified two basic processes which occur during 

recovery: recharging of phosphagen and ATP pools (fairly fast); and

disposal of accumulated end products by excretion, oxidation or

metabolic conversion (fairly slow). Since the status of the phosphagen 

and adenylate pools were not measured in the present study, this aspect 

of recovery will not be considered. In addition to the above 

processes, recovery of metabolic intermediates (specifically glucose) 

to control values might be expected to reflect recovery.

Although recovery of the haemolymph lactate pool is initially rapid in 

Calocaris after 18 hours anoxia, complete recovery requires at least 48 

hours. In contrast, tissue lactate recovery occurs at an apparently 

steady rate over the same time period. Similar responses are evident 

in other crustacean species which have been studied, although the

relationship between tissue and haemolymph lactate is somewhat varied 

(Gade, 1984, Albert and Ellington, 1985). Taylor and Spicer (1987) 

found that recovery in Palaemon elegans was relatively rapid, recovery 

from 6 hours of hypoxia being complete within 6 hours, whereas in P. 

serratus complete recovery required longer than 1 2  hours.

The metabolic fate of lactate is at present unclear but it appears 

likely that lactate is slowly reconverted to glycogen via 

gluconeogenesis (Phillips et al. , 1977). Sites suggested for this 

process are the midgut gland (Munday and Poat, 1971), gills (Thabrew et 

al., 1971) and haemocytes (Johnston et al. , 1971). This subject is 

under study in Carcinus maenas (A.D. Hill, pers.comm.). Although

184



excretion of lactate has been recorded in a few crustaceans (Natatolana 

(as Cirolana) borealis: De Zwaan and Skjoldal, 1979; Upogebia

pugettensis: Zebe, 1982), no lactate excretion was detected in

Calocaris macandreae.

6 .4.2. 6  The initiation of anaerobiosis in Calocaris.

It was shown above that significant quantities of L-lactate are 

produced in Calocaris macandreae only at PC^'s less than 2 Torr (well 

below the Pc). This is in contrast to the patterns observed in 

Palaemon elegans (Taylor and Spicer, 1987), and Carcinus maenas 

(Lallier et al., 1987) in which lactate is accumulated at higher PC^'s 

(10 - 30 and 10 Torr respectively). The significance of this

observation is unclear since the responses of animals may vary greatly 

in different experimental systems (J. I. Spicer, pers.comm.). In the 

experiment described above, the apparent time-lag between presumed

cessation of ventilation and oxygen uptake (at 10 - 20 Torr) and the

initiation of lactate accumulation, exceeded the calculated time for 

which the venous reserve could supply oxygen to the tissues (see 

Chapter 5).

6 A . 2.1 Lactate Dehydrogenase Activity.

Lactate dehydrogenase activities were measured in Callianassa 

califomiensis and Upogebia pugettensis by Pritchard and Eddy (1979). 

Maximum rates of pyruvate reduction in chela muscle (C. calif omiensis) 

and abdominal muscle (U. pugettensis) were 52 and 40 umol.min ^.g  ̂

respectively. LDH activities in the gills of C. calif omiensis and U. 

pugettensis were much lower than muscle activities, as was found for 

Calocaris macandreae. There are few data in the literature for other 

crustacean species, although LDH activity in several bivalve molluscs 

has been estimated (Hamraen, 1969).
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In theory, the characteristics of the LDH found in different species 

should be related to the patterns of lactate accumulation observed 

during anaerobiosis. In practice, the situation is considerably more 

complex. The sites of lactate production remain unclear, so that LDH 

activities measured in isolated tissue homogenates are not 

representative of the whole animal system. The rates and substrate 

affinities of LDH are different for the alternative reaction directions 

(i.e. pyruvate reduction and lactate oxidation). Although the ratio of 

maximal activity in each direction has been proposed as an index of the 

tendancy to form lactate (Hammen, 1969), there are methodological 

problems since reaction rates are dependant on many variables (e.g. 

pH), in vivo values of which may vary. Finally, the lactate/pyruvate 

equilibrium cannot be considered as independant of other metabolic 

processes which involve pyruvate, NAD and NADH (R.H.C. Strang, pers. 

comm.).

6 .A.3 Ecological considerations.

The thalassinids Callianassa calif omiensis and Calocaris macandreae 

are amongst the most tolerant crustaceans of environmental anoxia so 

far studied. In general, the greater ability of thalassinids to 

survive anoxic events results from quantitative rather than qualitative 

metabolic and behavioural adaptive differences (i.e. the physiological 

mechanisms are similar).

As was pointed out above, most of the crustacean species so far studied 

in this context have been selected because of preconceived ideas about 

their anaerobic ability, based mainly on ecological observations. Thus 

the subject species have inhabited rockpool/intertidal habitats (e.g.
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Carcinus maenas, Palaemon elegans, Menippe mercenaria); stagnant 

freshwater (Macrobrachium rosenbergii, Orconectes limosus) or mud- 

burrows (thalassinids, Nephrops norvegicus, Uca pugnax). A review of 

metabolic adaptation in relation to habitat in crustaceans is therefore 

biased by a lack of studies on ’normoxia-adapted' species.

Although conditions within the burrows constructed by mud-burrowing 

thalassinids (discussed in Chapter 2) are frequently severely hypoxic, 

completely anoxic conditions appear to be experienced only rarely. 

Intertidal thalassinids are likely to experience severe hypoxia on a 

regular tidal basis, while subtidal species (such as Calocaris 

macandreae) may experience chronic hypoxia in the 20 - AO Torr range. 

The results of this study indicate that Calocaris will rarely, if ever, 

experience complete anoxia. Any anoxic events are likely to be of short 

duration (a few hours) before burrow oxygen exchange is re-established.

In view of the oxygen regimes likely to be experienced, the adaptive 

responses shown by Calocaris and other thalassinids seem appropriate. 

There do not appear to be fundamental differences between the metabolic 

mechanisms of anoxia tolerance shown by thalassinids and other 

decapods, i.e. lactate is accumulated (arid presumably an oxygen debt is 

repaid during recovery, although this was not demonstrated). As with 

many of the physiological characteristics of these animals, the 

significant aspect is probably a low metabolic rate during both aerobic 

and anaerobic periods. This results in a low rate of lactate 

accumulation, and a long survival in the absence of oxygen. As was 

pointed out previously, speculations concerning adaptive significance 

require data (or at least hypotheses) in two areas: the nature of the 

selective pressures which are presumed to act, and the evolutionary 

history of the species in question. With regard to thalassinid 

metabolism, neither of these fields is sufficiently developed.
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CHAPTER 7. GENERAL DISCUSSION.

The experimental results presented in this thesis include data for 

physiological characteristics (which may represent adaptive responses) 

at several levels of biological complexity (the 'hierarchical levels' 

of Feibleman, 1954). Some general data on the biology and ecology of 

megafaunal burrower communities in Loch Sween, and Calocaris macandreae 

in particular, were generated (i.e. population structure, burrow 

morphology). In addition, the ecology of mud-burrowing in thalassinids 

was reviewed, with reference to those aspects which affect burrow 

structure and behaviour and hence respiratory conditions (feeding 

strategy, predation, spatial competition etc.). These aspects provide 

background to the general theme of the thesis (ecological and 

respiratory physiology) and will not be considered further.

The physiological ecology of Calocaris macandreae was studied in 

Chapter 2. It was concluded that oxygen availability in the burrow was 

limited, and that a pronounced gradient of oxygen tension was always 

present (this is also true of other thalassinids). Under 'normal' 

conditions, Calocaris spends relatively little time actively irrigating 

the burrow (in contrast to previous data for other thalassinids). 

When the PO2  of the overlying water column is experimentally reduced, 

however, burrow irrigation is increased. The results of this study 

indicate that complete anoxia is a rare event in Calocaris burrows 

under 'normal' conditions. There is now evidence, however, that severe 

hypoxia may occur in the water column overlying field populations in 

the Clyde Sea Area (Clyde River Purification Board, unpublished data). 

The effect of this on burrow conditions is at present unknown, but is 

clearly likely to result in even greater severity of hypoxia in the 

burrows of Calocaris.

188



A more comparative approach was taken in the investigation of branchial 

morphology (Chapter 3) , since living animals were not required (or 

available) for most of the work. There are pronounced differences in 

the branchial morphologies of different thalassinids, with a trend 

towards simplification of the gill formulae, and towards a 

phyllobranchiate condition, in the laomediid, upogebiid and 

callianassid families. Although there are a few references in the 

literature which note thalassinid gill structure, these trends have not 

previously been studied using a consistant, comparative approach. 

Unfortunately, the functional implications of these differences remain 

unclear, since the efficiency of the primary role of the gills

(presumed to be the extraction of oxygen from the medium to the

haemolymph) cannot be studied directly in these small animals. An

additional structural characteristic of thalassinid gills (at least 

those of Calocaris macandreae, Upogebia stellata and U. de It aura) 

appears to be a small surface area (in comparison with other decapods). 

It was speculated that gill surface area in decapods may be more 

correlated with endogenous behavioural activity rates (low in 

thalassinids) than with exogenous environmental factors.

A mainly functional approach to respiratory physiology was made in 

Chapter 4. The rate of oxygen uptake in Calocaris macandreae was found 

to be maintained at a constant, low, level throughout a wide range of 

external oxygen tensions. These characteristics were related to the 

burrowing lifestyle of Calocaris. The main physiological mechanisms 

resulting in this ability are thought to be a pronounced

hyperventilatory response, and the extremely high oxygen affinity of 

the respiratory pigment, haemocyanin. Since most decapods show a 

similar hyperventilation when exposed to hypoxia, but considerably less 

ability to maintain oxygen uptake, the characteristics of the



haemocyanin were examined in some detail.

The interpretation of in vivo physiological function of the 

haemocyanin in Crustacea, requires detailed in vivo data. Functional 

studies are therefore severely limited in thalassinids by technical 

difficulties (resulting from small animal size). As a result, the 

present study was essentially limited to a comparative investigation of 

quantitative physiological parameters of the respiratory pigment and 

haemolymph. The main features of Calocaris noted were:

1. The concentration of haemocyanin in the haemolymph is low, resulting 

in low carrying capacities for oxygen and carbon dioxide. It is 

postulated that haemocyanin concentration is related to the amount of 

oxygen consumed (in turn to behavioural characteristics), rather than 

environmental conditions of oxygen availability. (N.B. The presumed 

adaptation to a sluggish lifestyle is also correlated with a 

comparatively low Ca/Mg ratio.)

2. The structure of the haemocyanin molecule in thalassinids is 

comparatively unusual. The results of the present study confirm that 

Calocaris conforms to the general pattern previously noted for 

thalassinids (i.e. an eikositetramer aggregation state).

3. The oxygen affinity of the haemocyanin is extremely high (favouring 

maintenance of oxygen uptake from the medium, even under hypoxia), but 

modulatory potential is limited.

The limited data in the literature suggest that these characteristics 

are common to other thalassinids which have been studied. The oxygen 

affinity of the pigment is probably related to environmental 

conditions, however, it is argued (in contrast to much of the previous 

literature) that modulation of haemocyanin oxygen affinity in decapod
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crustaceans is either maladaptive, or adaptive to endogenous 

(behavioural) factors. In vivo function of the oxygen transport can 

only be interpreted for Calocaris macandreae by speculation. The 

relationships between structural and functional characteristics of 

thalassinid haemocyanin remain unclear.

A final comparative study of the physiological characteristics of 

Calocaris macandreae was made at the metabolic level, viz. energy 

metabolism during anoxia. In common with Callianassa califomiensis, 

Calocaris has a pronounced ability to tolerate anoxia (LT5 0  

approximately four-fold greater than most decapods). However, the 

mechanisms by which this tolerance is achieved appear to be similar to 

those in other Crustacea (and vertebrates); thus L-lactate is the sole 

end-product, and is accumulated rather than excreted.

Both the comparative and functional (adaptational) approaches utilised 

above have limitations. The parameters which are directly measured by 

comparative ecological and physiological techniques (e.g. 'Pc' and 

haemocyanin P50) have neither direct nor simple relationships with the 

functional processes which (presumably) are the subject of selection 

(at the genetic level) and evolutionary change. Neither are they 

simply associated with single structural characteristics (or single 

genetic alleles; although some parameters, e.g. P50, may be relatively 

simply related to protein structures, in turn dependant on nucleic acid 

base sequences). Therefore, the usefulness of interspecific comparisons 

to an overall understanding of biological systems (ecosystems, species 

or physiological processes) is limited by the difficulties in relating 

parameters studied at different hierarchical levels (i.e. it is 

impossible to relate 'mechanism' , 'organisation' and 'purpose' as 

proposed by Feibleman, 1954).
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Most recent studies of respiratory physiology in Crustacea have at 

least attempted to draw adaptational conclusions. In the present 

study, it has been proposed that the major adaptive response to the 

hypoxic burrow environment has been the adoption of a sedentary 

behavioural regime. This has allowed a variety of structural and 

physiological responses (low gill area, low rates of oxygen 

consumption, low haemocyanin concentration (i.e. oxygen carrying 

capacity), low rates of lactate accumulation in anoxia etc.). It should 

be noted that the actual causal selective pressure which must be 

assumed for these responses to make adaptive sense, is energy (or 

resource) economy. The most pronounced physiological parameter which 

is directly adaptive to low oxygen availability, is the high oxygen 

affinity of the haemolymph. As noted several times above, however, it 

is impossible to conclude which characteristic (burrowing or sedentary 

behaviour, or physiological process) was the primary causal factor.

In the recent development of crustacean physiology, there have been 

difficulties in producing consistent adaptational interpretations of 

some physiological characteristics. For example, it might be expected 

that animals which regularly experience hypoxia would have 

comparatively greater gill surface areas; this does not appear to be 

the case. Problems (and inconsistent interpretations) are particularly 

apparent in recent developments in understanding of haemocyanin 

characteristics in vitro and function in vivo (see Chapter 5). Although 

there appears to be a general (comparative physiological) correlation 

between environmental conditions and haemocyanin oxygen affinity, the 

interpretation of functional modulation of affinity is difficult. It 

is clear that the Bohr shift is maladaptive in many circumstances 

(Mangum, 1983c).
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The major assumptions (fallacies) inherent in a purely adaptational 

interpretation of function are outlined by Gould and Lewontin (1979). 

They make two fundamental objections:

1. The approach depends on atomisation of an organism (or physiological 

function) into independent 'traits' (or unitary processes). This 

neglects the interactions which are always present (for example, 

between osmotic balance, oxygen uptake, carbon dioxide excretion, acid- 

base balance etc.). "Organisms are integrated entities" (Gould and 

Lewontin, 1979).

2. "Natural selection [is] the main, but not the exclusive means of 

modification" (Darwin, 1872). Alternative explanations to immediate 

adaptation for patterns of form, function and behaviour are reviewed by 

Gould and Lewontin (1979). In the context of the present study, many 

physiological characteristics (in particular, of haemocyanin) have been 

interpreted as adaptive responses to environmental selective pressures. 

Gould and Lewontin (1979) describe the mechansims by which traits can 

result from no adaptation and no selection at all; no adaptation and no 

selection of the trait in question; decoupling of adaptation and 

selection; adaptation and selection but no selective basis for 

differences among adaptations; and secondary adaptation of pre-selected 

traits.

Gould and Lewontin advocate an alternative approach to interpretation 

of form and function, which may be applied at all hierarchical levels 

of ecology, anatomy and physiology. They state that "organisms must be 

analysed as integrated wholes, with Bauplane so constrained by phyletic 

heritage, pathways of development and general architecture that the 

constraints themselves become more interesting and more important in 

delimiting pathways of change than the selective force that may mediate
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change when it occurs". The term 'Bauplan' used here (and also in the 

recent phylogenetic literature, see discussion of Schram, 1983) means 

the basic structural plan of an organism as constrained by evolutionary 

history and species - specific ontogeny.

If the levels of constraint imposed on a species' Bauplan are extended 

to include ecological and physiological factors, this approach could be 

a useful method of interpreting the ecological physiology of 

thalassinid Crustacea. If, as suggested by the experimental evidence 

and literature reviews above, the burrowing habit and low level of 

behavioural activity are correlated with many physiological 

characteristics of thalassinids (low gill areas, low rates of oxygen 

consumption, low haemocyanin concentration, low rates of lactate 

accumulation during anaerobic metabolism etc.), then a pluralistic 

(holistic) view of thalassinid (and Calocaris macandreae) biology is 

necessary. The thalassinid Bauplan would then include constraints 

resulting from the physiological ecology of burrowing, and the 

evolutionary history of physiological functions in ancestral 

thalassinids. As a particular example, the function of haemocyanins in 

thalassinids and other decapods should be interpreted taking into 

account the constraints imposed by phyletic heritage and concurrent 

physiological processes. It is hoped that the present study has 

established an ecological physiology Bauplan for Calocaris macandreae 

(and more generally, thalassinids) to which future studies may be 

related.
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APPENDIX 1. METHOD FOR THE DETERMINATION OF ORGANIC CARBON CONTENT . OF 

SEDIMENT.

This method is taken from Buchanan (1984) and follows that of Walkley 

and Black (1934). The sediment sample is digested with a chromic acid- 

sulphuric acid mixture and the excess of chromic acid not reduced by 

the organic matter is titrated with a ferrous salt.

REAGENTS.

N Potassium dichromate: dissolve 49.04 g of reagent grade in

water and dilute to 1 litre.

not less than 96% with 1.25 g of silver 

sulphate added for every 100 ml of acid. (The 

silver sulphate removes the interference of

chlorides.) 

at least 85%.

dissolve 0.5 g diphenylamine in 20 ml water and 

add 1 0 0  ml of concentrated sulphuric acid, 

dissolve 278 g of reagent grade FeSO^.VHyO in 

water, add 15 ml of concentrated sulphuric acid 

and dilute to 1 litre. Standardise by

titrating against 10.5 ml potassium dichromate 

(as described below).

The sediment sample was ground to pass a 0.5 mm seive. A weighed 

quantity of sediment (c. 5 g) was placed in a 500 ml conical flask, 10 

ml of N potassium dichromate and 20 ml of conc. sulphuric acid were 

added. After shaking for one minute, the flask was placed in a boiling

water bath for 30 minutes. The flask was cooled, then 200 ml water, 10

ml phosphoric acid and 1 ml diphenylamine (indicator solution) were 

added. The mixture was titrated with ferrous sulphate until the
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Sulphuric acid:

Phosphoric acid: 

Diphenylamine:

N Ferrous sulphate:



solution turned green (since this occurs with no warning, an excess of 

dichromate was restored by adding 0.5 ml potassium dichromate, and the 

titration completed drop by drop).

The amount of organic carbon (chromic oxidation value) is given by the 

expression:

VI - V2
------- x 0.003 x 1 0 0

W

where VI equals the volume of normal potassium dichromate (10.5 ml), V2 

equals the volume of ferrous sulphate in ml, W equals the amount of 

sediment taken.
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APPENDIX 2. SELECTED PHYSICO-CHEMICAL DATA FOR UPPER LOCH SWEEN.

(TAKEN FROM ATKINSON, 1987)

Table A2.1 Organic carbon, chromic oxidation values for sites in Loch 

Sween.

SITE Organic C (Z)

depth in sediment 
Homogenised surface 5cm 10cm 20cm 30cm 40cm 
top 10cm

1 9.675
2 6.650
3 4.875 4.425 4.125 4.275 3.975 3.975 4.200
4 5.025
5 6.075 6.225 5.925
7 4.650
9 2.700
10 3.900
11 4.350
13 3.150
14 4.725
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FIG. A2.1 Cumulative probablity curves illustrating the 

particle size distributions of upper Loch Sween sediments. 

Md - median particle diameter (* - > 8  phi = <3.9 Jim) .
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APPENDIX 3. PROTOCOL FOR SCANNING ELECTRON MICROSCOPE PREPARATIONS.

Specimens which were used for Scanning Electron Microscopy (S.E.M.) 

were either fresh or had been preserved in 5 % formalin in sea water.

Specimens were prepared for S.E.M. as follows:

1. Glutaraldehyde/Sodium cacodylate/sea water fixative.....1 h;

2. Sodium cacodylate/sea water rinse 3 x 10 min;

3. 1 % Osmium tetroxide stain 1 h;

4. Distilled water rinse..............................3 x 10 min;

5. 0.5 % Uranyl acetate........................... 30 min (dark);

6 . Acetone series dehydration: 30 % acetone...............15 min;
50 %  15 min;
70 %  15 min;
90 %  15 min;

Analar absolute acetone.......... 2 x 20 min;
dried Analar absolute acetone.............. 20 mift;

Specimens were then critical point dried in liquid carbon dioxide. The 

dried specimens were mounted on stubs using quick-drying conductive 

silver paint and gold-coated using a sputter-coater (750V; 25mA; 8

min) .

The specimens were observed and photographed using a 

Phillips microscope.
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APPENDIX 4. METHOD FOR L-LACTATE DETERMINATION.

This method is used by A.D. Hill (pers. comm., based on that of Gutmann 

and Wahlefeld (1974) and can be used on both tissue and blood samples. 

L-lactate is oxidised to pyruvate in a reaction catalysed by lactic 

dehydrogenase (EC.1.1.1.28). It is assumed that the formation of NADH 

is proportional to the amount of L-lactate present in the sample. 

REAGENTS.

Glycine-hydrazine buffer: 3.75 g of glycine, 0.75g of EDTA and 2.0 ml

of hydrazine hydrate were mixed with 98 ml

of distilled water. The pH was adjusted to

9.0, using NaOH (1 M).

Lactic acid The following standards were used: 2 mM,

ImM, 0.5 mM and 0.25 mM (38.4 mg/200 ml = 2 

mM) .

NAD* 26.5 mg.ml" 1 (40 mM) .

LDH Dilution of 1 in 2 (i.e. 600 U.mg 1

protein).

PROCEDURE.

The following reagents were mixed in a 1.5 ml Eppendorf tube:

Glycine-Hydrazine buffer: 1000 pi 

NAD*: 50 pi

sample/standard: 50 pi

LDH: 5 pi

The reaction mixture was mixed thoroughly and incubated in a water bath 

at 37°C for 2 hours. The absorbance at 340 nm was then measured. 

Blanks were run by substituting 50 pi of distilled water for the 

sample. Sample concentrations were interpolated from a calibration 

curve constructed using the standards stated above.
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APPENDIX 5. METHOD FOR D-GLUCOSE DETERMINATION.

This method (adapted by A.d. Hill from that of Slein, 1965) involves a 

two-step reaction using the enzymes hexokinase (EC 2.7.1.1) and 

glucose-6 -phosphate dehydrogenase (EC.1.1.149). The hexokinase 

catalyses the oxidation of glucose-6 -phosphate (G6 P) to 6 - 

phosphogluconate. The method assumes that the formation of NADPH is 

proportional to the amount of G6 P and D-glucose present.

REAGENTS.

Tris buffer: 2.42 g of Tris and 0.240 g of magnesium sulphate (100 mM

and 10 mM respectively) were added to 200 ml of

distilled water. The pH was adjusted to 7.4, using HC1 

(5 mM).

D-glucose: The following standards were used: 1 mM, 0.5 mM, 0.25 mM

and 0.1 mM (18 mg/100 ml = 1 mM) .

Hexokinase: A dilution of 1 in 25 (i.e. 180 U.mg’ 1 protein).

G6 P-DH: A dilution of 1 in 25 (i.e. 300 U.mg’ 1 protein).

ATP: 121 mg/10 ml (22 mM).

NADP*: 168 mg/10 ml (22 mM).

The following reagents were added to a 1.5 ml semi-micro cuvette:

Tris buffer 700 pi
ATP 100 pi
NADP* 100 pi
sample 1 0 0  pi
G6 P-DH 10 pi
Hexokinase 10 pi

The absorbance at 340 nm was measured before either enzyme was added

(El); 5 minutes after the addition of G6 P-DH (E2); and 5 minutes after

the further addition of hexokinase (E3). Then,

E2 - El = change proportional to the concentration of G6 P present in 

the sample

E3 - E2 = change proportional to the concentration of D-glucose present 

in the sample.
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APPENDIX 6. METHOD FOR THE DETERMINATION OF TOTAL HEXOSE/PENTOSE 

SUGARS (THE 'ANTHRONE METHOD').

This method (adapted by A.D. Hill from that of Carroll et al, 1956) 

involves the acid hydrolysis of glycosidic bonds to give monosaccharide 

units, using anthrone reagent. These in turn are hydrated to furfural 

and its derivitives. The furfural reacts with anthrone (10-keto-9,10- 

dihydro -anthracene) to give a blue-green complex, which is assayed 

spectrophotometrically at 620 nm.

REAGENTS.

Anthrone reagent: 72 ml of concentrated sulphuric acid was added

(carefully!) to 28 ml distilled water. 50 mg of 

anthrone was then dissolved into the 72% ^SO^,

allowed to cool and stored at 4°C (for a

maximum of 7 days).

D-glucose/Glycogen: The following standards were run: 5 mM, 2.5 mM, 1

mM and 0.5 mM (90 mg/100 ml and 81 mg / 100 ml =

5 mM for D-glucose and glycogen respectively).

1 ml of anthrone reagent and 50 ul of sample were added to a 5 ml test- 

tube, mixed well and incubated in a boiling water bath for 1 0  minutes.

The tubes were then cooled on ice for 10 minutes and the absorbance

measured at 620 nm (compared to a reagent blank).

Glycogen and oligo-/mono-saccharide fractions of haemolymph samples 

were separated as follows: 100 p.1 of haemolymph was added to 500 pi of

absolute ethanol and stored on ice for 2 hours. The precipitated

glycogen was then centrifuged down ( 1 0  minutes at 1 0 ,0 0 0 g), the 

supernatant removed, and the pellet re-suspended in another 500 ul

ethanol. After further centrifuging, the two supernatants were pooled 

and the pellet re-suspended in PCA. The pooled supernatant (oligo- 

/monosaccharides) and the re-suspended pellet (glycogen) were then 

assayed as above.
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