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Abstract.

The heterotic superstring has been considered to be a candidate for a 
quantised unified theory of all physical interactions at high energies, including the 
unification of quantised gravity. The low energy phenomenology of such a theory is 
most easily described in terms of an effective quantum field theory, which describes 
the scattering of the massless modes of the string theory, as well as satisfying the 
anomaly freedom, supersymmetry, unitarity, etc. of the string theory. Previous 
attempts at the derivation of the low energy effective theory have concentrated on the 
bosonic sector of the action, and on the possible ambiguities in the dervivation of 
this action.

This thesis describes an attempt to derive the effective field theory including 
the fermionic sector of the theory, with the hope that the resulting action will 
demonstrate the supersymmetry of the heterotic superstring, as well as the anomaly 
freedom.

After an introduction to the construction of the free heterotic superstring, 
and the corresponding interacting string theory, two amplitudes are calculated. It is 
shown that these amplitudes naturally expand in a power series in the string 
parameter a'. The attempt at constructing a low energy theory which will reproduce 
these amplitudes order by order in this parameter will then be made.

The effective theory which has the same matter spectrum as the massless 
modes of the heterotic string is stated, and this free theory is quantised. The 
techniques of constrained quantisation are used to evaluate the propagators for the 
various fields of the theory. A comment will be made on the problems of 
quantisating higher derivative theories, and an ansatz will be made to avoid 
these problems.

The interacting field theory, which is uniquely determined by the Noether 
method is stated. It is noted that the required anomaly freedom of this action can 
only be included at the expense of supersymmetry, by the addition of a term of 
higher order in the parameter a'. The lowest order action thus derived is then used 
to construct the lowest order amplitudes in the a ' parameter, (that is 0(a'°)), which 
are compared with the corresponding string results. It is shown that the effective 
field theory gives the same amplitudes as the string theory.

The field theory is then extended in an attempt to match the next highest 
order amplitudes in the a' parameter, and also to retrieve the lost supersymmetry of 
the lowest order action. In this regard, known supersymmetric actions are used to 
construct the amplitudes at the appropriate level in the a ’ parameter, and these 
amplitudes are compared with the string results. These matching calculations are 
shown to fail implying that these actions do not correspond to the low energy



effective action for the heterotic string theory.
A more general action is constructed, subject to a guiding assumption that 

the action only contains the two-form form of the covariant derivative of the 
gravitino, and without regard to supersymmetry, which is then used to construct 
amplitudes which are compared to the string result. A match to the string amplitude 
is then found for specific values for the general coefficients introdced in this action. 
A comparison with the two actions previously used as trial low energy effective field 
theories is drawn, and the similarities and differences noted.

Finally some comments are made on the possibility of ambiguities which 
may be inherent in the procedure described in this thesis for deriving the low energy 
effective action. Some examples of field redefinitions which do not show the same 
properties as the field redefinitions used in the purely bosonic cases previously 
treated in the literature. The implications for the amplitude matching procedure are 
then noted. The conclusions of this work are then presented.
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"All the sanguine guesswork of youth is there, and the 
silliness; all the novelty of being alive and impressed 
by the urgency of tremendous trivialities."

Siegfried Sassoon,

Memoirs of a Fox-hunting Man.



Chanter Zero; 
General Introduction.

Section 0.1 The general motivation for string theories.

The recent history of theoretical physics has been characterised by a search 
for a fully self consistent, completely unified quantum mechanical theory of the 
Universe. It is required that a complete description of all known interactions in the 
Universe should arise naturally from such a theory. Thus it is expected that any 
complete theory of the Universe should contain gravity. Already the three other 
known forces of nature, the strong interaction, the weak interaction and 
electromagnetism have been partially unified by gauge theories. The so called 
"standard model"f1,2,3̂  of elementary particle interactions has been extremely 
successful in describing particle interactions at the energies currently available in 
particle accelerators. However this is hardly a unification at all, as it does not answer 
any of the questions that a reasonable candidate for a unified theory should. Some of 
its more serious problems include its inability to explain charge quantisation, an 
unusually high number of arbitrary constants which have to be fixed by experiment, 
there are still three separate coupling constants in the theory whose values are 
independent of each other to one loop in the perturbation expansion, the hierarchy 
problem, the fact that left and right handed components of the same spinor field are 
in different representations of the gauge group and the sheer arbitrariness of the 
Higgs mechanism.

A unified theory ought to have several properties, these being:

1) That there should be a natural explanation for the observed 
gauge symmetries of nature, these being with respect to the gauge group 
G=SU(3)<8>SU(2)®U(1). It might be that there is a group G' such that 
Gz>G', and that some spontaneous symmetry breaking takes place at low 
energy, via the Higgs mechanism for example^ breaking the group G' to 
the observed G.

2) There should be a natural explanation for the breaking scales 
involved in the theory, and that these should not introduce 
phenomenological defects of the form of proton decay etc.

3) That all matter fields should fall naturally into their correct 
representations of the observed gauge groups at a particular energy scale.
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4) Gravity should be contained in the theory in a natural way, and 
be consistently quantised.

5) There should be as few arbitrary parameters in the theory as 
possible, the most desireable theory having no arbitrary parameters at all.

However gravity still does not easily find a place in such a scheme. Until 
quite recently the major approaches to a unified theory of gravity have been field 
theoretical, looking at gauge theories as described above for example, and simply 
coupling these to field theories of gravity. The field theoretical approaches to gravity 
have the problem of ultra violet divergences and renormalisability in the perturbation 
expansion, and so a recent trend has been the investigation of possible 
perturbatively finite gravitational field theories.

This trend has included the development of higher dimensional gravity 
theories incorporating local supersymmetry, for example ten and eleven dimensional 
supergravity theories[5’6’7̂ . It was hoped that these theories would lead to a 
peturbatively finite, completely consistent quantum theory of gravity, which would 
lead to a complete description of all known interactions. The attainment of this 
complete description would have to be achieved through some compactification 
scheme, whereby the four-dimensions of space-time are singled out from the higher 
number of dimensions. The remaining dimensions are "compactified" using a 
scheme which not only ensures that these dimensions should not be observable at 
realistically low energies but which also provide the low energy matter fields and 
their interactions. Several such schemes have been proposed^8’9*10!, but are not 
successful in describing all known interactions, whilst also providing a 
perturbatively finite theory of gravity. The perturbatively divergent behaviour of 
these theories is due to the pointlike nature of the particles inolved, and the addition 
of finite-dimensional internal symmetries, though tending to reduce the problem, is 
not enough to cure it completely. It would therefore seem natural to define quanta 
with an internal linear degree of freedom which provides an infinite-dimensional 
internal symmetry t11]. In fact, the quanta of the theory can now be regarded as 
strings instead of point particles. As shall be discussed at length below, these string 
theories have higher dimensional gravity or supergravity theories as their low energy 
or massless sector limits, and can be seen to contain all of the advances mentioned 
above in a relatively simple formulation.

Most recently therefore, superstring theories have been regarded as being 
the most promising candidates for a complete, fundamental unified theory of the 
universe. In fact there are several string theories which can be regarded, to a greater 
or lesser extent, as possible unified theories of all known interactions, which are
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classified below.

Section 0.2 A Classification of String Theories.

The possible string theories can be classified as follows:

(1) The (open or closed) bosonic string, which is constructed in its 
critical space-time dimension of 26, but which only has bosonic space-time 
dimensions (i.e. there is no extension to superspace in the action for the 
string.) and so it does not contain spinor fields at the simple level. With the 
addition of Chan-Paton factors^12,13! it is possible to introduce a gauge 
group into the open bosonic string theory ,which has some constraints upon 
which groups are admissablet14̂ .

(2) The open Neveu-Schwarz-Ramond or spinning string^15!, 
which has such a superspace extension, is constructed in its critical 
space-time dimension of 10, and yields the open superstring when the 
Gliozzi-Scherk-Olivet16] projection conditions are imposed. Again it is 
possible to introduce a gauge group into this theory by the use of 
Chan-Paton factors. There are also constraints upon the gauge groups 
which are admitted in this theory. This theory has only one space-time 
supersymmetry when the projection conditions are imposed.

(3) The type I closed string which consists of the closed string 
sector of the open superstringt17!, (which exists due to locality of string 
interactions and unitarity of the theory). This theory has one 
supersymmetry, but no gauge sector, and is therefore limited 
phenomenologically. This theory will not be discussed further in this thesis.

(4) The type Ila closed superstring, formulated in ten dimensions, 
which has only closed strings but which has different chirality spinors 
defined on left and right movers. This theory has an N=2 supersymmetry, 
but since it is a closed string theory, there is no gauge sector admitted. This 
theory will not be discussed further in this work.

(5) The type lib closed superstring, again defined in ten 
dimensions, and which has the same chirality spinors defined on the left and 
right movers. The remarks made for the type Ila string apply here also.
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(6) The heterotic string^18’19!, which consists of the left moving 
sector of a bosonic string, and the right moving sector of a 
Neveu-Schwarz-Ramond string. This string theory is the most promising 
string for phenomenological studies as it has a gauge sector with tight 
constraints on the admissable gauge groups, as well as having only one 
space-time supersymmetry.

(7) Four dimensional string theories^20’21!. These strings are 
constructed by a generalisation of the fermionic construction of the heterotic 
string given in reference [18]. These string theories are particular examples 
of lower dimensional string theories that can be constructed in any 
dimension <10. These theories give the possibility of constructing unified 
theories directly in four dimensions. The four dimensional theories suffer 
from a lack of uniqueness, since there are a vast number of possible 
theories, corresponding to the large number of possible fermionic boundary 
conditions that can be chosen.

At this point it would be wise to define some of the terms used in the above 
classification. By Neveu-Schwarz-Ramond string^15! it is meant that the spinors are 
on the world sheet. The spinning string spinor fields defined on the world sheet give 
rise to two distinct sectors in the theory. These correspond to different boundary 
conditions for the spinor fields on the world sheet, where periodicity of spinor fields 
yields the Ram ond^ sector and antiperiodicity the Neveu-Schwarz^23! sector. By 
selecting half the spectrum of states from each of these sectors it is possible to obtain 
a supersymmetric spectrum of states. This is what is termed the 
Gliozzi-Scherk-Olive projection. The nature of these fields is clear when the string 
theory is regarded as a conformal field theory on the world sheet. The existence of a 
spacetime spinor field on the world sheet becomes clear when this interpretation is 
made which corresponds to the space-time spinor of the Green-Schwarz string[24]. 
The conformal field theory approach to strings is outlined in chapter one below.

Section 0.3 The Phenomenological Implications of String Models.

Several of these theories are phenomenologically interesting. The theory 
which has most promise is the heterotic string. As stated above, this theory is a 
"cross" between the bosonic string and the superstring. It would appear that there is 
an immediate contradiction here, in that the bosonic string has critical dimension of 
26, whereas the superstring has critical dimension 10. This difficulty is overcome by 
compactifying the extra 16 dimensions onto a 16-torus, and by considering the
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momenta in these dimensions to be the diagonal generators of a gauge group for the 
remaining 10 dimensional theory. An alternative way of looking at this is to consider 
the right moving spinors of the NSR string to be bosonised in some fashion and to 
give the Yang-Mills sector of the theory. The "conventional" gauge groups 
admissable in the heterotic string are, E8<8>Eg or S p in ^ y Z j, though other gauge 
groups have been constructed, for example the 0(16)®0(16) heterotic string.

At realistically low energies, string theories do not provide much in the way 
of useful physics, since string amplitudes contain contributions from massive modes 
which cannot be acheived at energies considerably lower than the Planck energy. 
Therefore it is postulated that interactions within the massless sector of the string 
theory form an effective field theory, which can be modelled by a suitable point 
particle field theory. Each of the string theories mentioned above has such a low 
energy effective field theory. In each case it is a gravity theory of some type, whose 
spectrum of fields corresponds to the massless sector of the string theory. This 
procedure involves matching string amplitudes for various processes involving 
massless external particles with those of a trial field theory. However the string 
amplitude generally involves terms which are of higher order in the string tension, T 
or the string parameter a'. The trial field theory must then be corrected to generate 
these terms calculated from the effective action. This procedure can be followed 
order by order in the parameter a', providing a complete low energy effective field 
theory. The effective field theory derived by this method can then be used in 
phenomenological studies, for example compactification schemes^.

Several compactification schemes have been proposed to make the transition 
from a full ten dimensional effective field theory to a "four plus six" spacetime. The 
first attempts at this used standard Kaluza-Klein techniques^25] developed for the 
higher dimensional supergravity theories which were being explored in the late 
1970's. These attempts failed due to the existence of various "ten into four won't 
go" no-go theorems^26]. The no-go theorems were circumvented by the addition of 
R2 type terms in the action, which allowed the compactification schemes to proceed. 
The search for a supersymmetric four dimensional theory however which has only 
one supersymmetry which remains unbroken, culminated in the discovery of 
Calabi-Yau compactification schemes^.

Other schemes have been developed which have had their individual 
successes and failures. These include coset space techniques, (symmetric and 
nonsymmetrict9]), and compactification of the string spacetime direct from its critical 
dimension to four dimensions plus a hypertorus in the manner of the original 
conception of the heterotic string^18]. Four dimensional string theories also exist, 
where the string is constructed in its critical dimension of four. This is achieved by 
the use of many extra fermionic fields on the string world sheet, which take up the
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place of the extra bosonic dimensions in the higher dimensional theories. These 
techniques in particular show a great deal of promise. However the most 
sophisticated way in which to proceed is to do string theory in a completely 
background independent formalism, and then solving an equation of motion for 
space-time. The major inspiration for this work coming from the techniques of 
statistical mechanics.

The next obvious step forward is to consider three dimensional field 
theories, with the intention being to consider the possibility of "membrane theories". 
These appear to have critical dimensions (bosonic and fermionic) which suggest that 
reduction of the dimension of the "world volume" leads to the equivalent reduction 
to the critical dimension of the space-time of the appropriate string theory. Although 
these theories show a great deal of promise, they and their consequences will not be 
discussed in this thesis.
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Chapter One:
The Heterotic String:

An introduction to the calculation
of amplitudes

Introduction.

This chapter will give an overview of superstring theory in general. The 
first section will outline the construction of the free heterotic string in ten dimensions 
as originally performed in reference [18]. The interacting string theory will be 
described in the following two sections. Section 1.2 will deal with the bosonic string 
theory, and Section 1.3 the NSR formt15̂ of the superstring. These will be dealt 
with using the conformal field theoretical approach to the quantisation of string 
theories, and where the techniques of BRST quantisation will be used extensively. 
The explicit details of these techniques can be found in references 
[11,27,28,29,30,31].

The final section will give an example of a string amplitude calculation using 
the techniques developed in the previous two sections. This amplitude will be used 
in subsequent chapters as the basis for amplitude matching calculations.

Section 1.1 The free heterotic string.

In this section the free heterotic superstring is constructed, the mass 
spectrum of the theory is obtained and the possible construction of other theories 
considered.

The heterotic string can be thought of in two distinct ways. The original 
formulation for this string theory, was in terms of the ten dimensional 
Green-Schwarz superstringt24], taking only the left moving sector, and "crossing" 
this with the right moving sector of the twenty-six dimensional bosonic string. The 
extra sixteen dimensions are compactified on a sixteen dimensional torus, on which 
the standard vertex operators transform as generators of a gauge group for the theory 
which is determined by the choice of normalisation for the lattice^18!. This approach 
allows the mass spectrum of the theory to be determined in a clear manner, however 
the theory is formulated in a specific space-time gauge, thus losing manifest 
covariance.

The more modem approach to string theory is by considering the standard 
NSR theory as a conformal field theory in two dimensions. The vertex operators can 
then be considered as conformal fields in the complete set of fields for the theory. 
(See Appendix One) This approach has the advantage of being manifestly space-time
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covariant, but the mass spectrum and supersymmetry become slightly obscure. To 
obtain the mass spectrum for the free theory the first approach will be used as in the 
original formulation of the heterotic string. The equivalence of this approach to the 
manifestly covariant approach can be seen in the formalism of Friedan, Martinec and 
Schenker where the ten dimensional spinor is introduced as an operator to 
interchange states between Neveu-Schwarz and Ramond sectors of the spinning 
string. This will be discussed more fully in the section dealing with the interacting 
heterotic string.

The free heterotic superstring is a theory of closed strings, and so the 
general solution of the wave equation in two dimensions (g ,t) can be written in the 
form,

O foa) = OjCc-ia) + O^x+ia) , (1.1.1)

(where O1 is some field on the string), where the boundary conditions are periodic, 
and the left moving and right moving solutions are not related by the boundary 
conditions. This means that the left and right moving sectors can be thought of as 
separate closed string theories, which give the full theory when their "tensor 
product" is taken, where the two separate theories can be quite distinct in character. 
In the case of the heterotic string these two sectors can be taken to be two distinct 
theories, where the left moving sector is taken to be the left moving sector of the 
bosonic string, and the right moving sector that of the superstring. The mass 
spectrum of the combined theory is thus given by the tensor product of the two mass 
spectra for the two theories. This product only occurs between modes at the same 
mass level, due to the constraint of a rigid shift in a , the world sheet space 
parameter.

The bosonic string is consistent in twenty-six dimensions and the 
superstring in ten-dimensions. The remaining sixteen dimensions of the left moving 
modes are compactified onto a sixteen dimensional manifold. The string action is 
given by,

S = fdxda/g g {9“X.9^X‘ + +i S y 'c ^ S  }

(1 .1 .2)

which is invariant under the supersymmetry transformations,
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S X ^ — ; SS = - L - y  y o r dX»e ,V P+ V P+

and applying the boundary conditions,

X ^(x,g ) =  X^(x,g + tc) ; S a (x,G) =  Sa (x,G+7t) ,

(|i = i,I; a  a spinor index in the space time dimension), and applying the constraint,

-3  ) X1 = 0 , 1 = 1,... ,16 ,T G

(which merely eliminates the right moving modes of the bosonic string in the extra 
sixteen dimensions), the solutions can be seen to be of the general form,

S“(z) = ^  S“ e"2iz , (1.1.3)
n= -oo

“ I
v * /  \ I I 1 • X 1 a n -2iz ... .X (z) = x + zp + - 1  > —  e , (1.1.4)

2 r, 0n * 0

where the general mode expansion has been made in terms of the complex variables,

z = G +  ix , Z =  G - ix ,

The quantisation of the X1 fields of this action is complicated by the 
appearance of a second class primary constraint132̂  and so the action must be 
quantised using Dirac brackets instead of the usual Poisson brackets. The quantum 
commutators of the modes are given by,

[ x1, p3] = i 513 , [ a 1 , a-* ] = [ a 1 , ] = n5 ,L ’ r J ’ L n ’ m J L n ’ m J n+m,0 ’
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[ “ i, > “ i, ] = 0 ’ (S“ > s£) = (Y+h)aP8n+m0 , (1.1.5) 

[«!>’ « ! ] =  n5„+m.o - [ x ' , pJ ] = i  iSIJ, (1.1.6)

where the extra factor of 1/2 in the [x!,pJ] commutator comes from the quantisation 
of the Dirac brackets.

The mass operator for the string is given by,

16
7 m2 = N + (N-l) + - 2 > ' ) 2 (1-1.7)
^  Z 1=1

where the normal ordered number operators N, N are given by the standard mode 
operators c^1 and ocj1. The condition that the zero point of the spacelike 
parametrisation of the string is arbitrary, gives another constraint on the number 
operators. The generator of a rigid displacement of the a-coordinate is given by the 
unitary operator,

16

2iA(N-N+l-i2/p1)2
U(A) = e w (1.1.8)

which can be shown to satisfy U(A)0(x,a)U(A)+ = 0 (t,ct+A), where O can be any 
operator of the first quantised string. Since the theory must be unchanged by such a 
displacement, then the operator must be equal to the identity operator, and so the 
condition that the origin of the world sheet is not specified gives the constraint,

16
n  = n - i + t V  (p1)2 O-1-9)

Z  1=1

which means that only modes at the same mass level of the two separate string 
theories can be taken in a tensor product state.

As stated above, the string states are given by the tensor products of the 
Fock space states of the left and right moving theories, l<j»L®l\|/>R where the states 
are constrained by equations (1.1.7-8) above. In the usual Fock space manner the 
right moving state is annihilated by the ocn\  Sna where n > 0. Because of S0, the 
zero mode of the fermion operator, the Fock space ground state must consist of a 
vector li>R and a fermion la>R, which are defined by the S0 operator to satisfy,
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Ia> = -5- (Y-S ) li>g m o7

(1.1.10)

where the la> and li> states satisfy the normalisation conditions,

< i I j > = 5y

this being due to the fact that since the canonical commutation relations are,

which are just the commutation relations of the SO(8) algebra, and where the li> and 
la> states form an ineducable representation of the S0 subalgebra.

The fact that the algebra (1.1.12) is satisfied is due to the fact that the 
fermion and boson creation and annihilation operators commute with the S0 
operator, and by the fact that the ordinary vacuum I0>R which exist in the old 
superstring formalism is a singlet which is clearly not supersymmetric, and is 
projected out by the GSO projections^16̂ .

where h is defined above, it follows that,

S (1.1.11)

where = ^ S q̂ 'S q, which can be seen to satisfy the relations,
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The left moving spectrum is generated from the Fock space vacuum I0>L 
which is annihilated by the otn\  a nI where n > 0. Again the state is annihilated by 
the number operator N, and also by the operator p1. This state in the bosonic string 
corresponds to a tachyon in the theory, but because of the condition given in 
equation (1.1.7) above, the first physical state must be N=l. So the theory is 
tachyon free. Furthermore the ground state of the heterotic string is massless and 
also the state transforms as either an 8 ®8 or or 8„®8. It should be noted—V —V —V —s —V —c
that the restriction to the right moving modes o^1 is made, thus ignoring the effects 
of the Yang-Mills sector of the string which is beyond the scope of this work. It can 
be seen by inspection of these tensor products that the spectrum of massless states 
correspond to those of N=l, D=10 supergravity.

Section 1.2 The interacting bosonic string as a conformal field theory.

The bosonic string action is given by,

s  = Jd 2̂ / g .  { +  r <2) + x }

( 1.2.1)

where the R(2) and X terms are added to give the most general Poincare invariant, 
reparametrisation invariant, renormalisable action in flat space^31!.

It is clear that this can be considered to be a conformal field theory in two 
dimensions. (See Appendix One for a summary of the techniques of conformal field 
theories in two dimensions.) The conformal symmetry must be gauged away before 
the functional integral can be evaluated, and this is done by imposing the conformal 
gauge,

g .b = e0liab a-2-2)

where rjab is a fixed reference metric on the world sheet. The remaining gauge fixed 
action is merely the action describing a set of d, (the space-time dimension), free 
fields. The solution to the equations of motion is as above for the free theory, and is 
given by the same mode expansion. The propagator is therefore of the form,

< X^z) Xv(w) > = - r fv ln(z-w) (1.2.3)

This clearly demonstrates that X^(z,z) is not a conformal quantum field as
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the correlation function increases with separation. The stress energy tensor can be 
seen to be of the form,

T(z) = - 1 : 3 X . 3 2X:  (1.2.4)

and can be shown to satisfy the operator product,

T(z) T(w) = d 4 + —2—  T(w) + 3T(w)
2(z-w) (z-w)2 (z' w)

(1.2.5)

which is equivalent to the algebra (A1.17) with c=d. The anomalous term, which 
corresponds to the Schwinger term in the central extension of the Virasoro algebra, 
can be seen as the term which is due to the fixing of the conformal gauge, that is, it 
describes the lack of invariance in the remaining fixed metric on the world sheet. 
However it should be noted that there is still an invariant subalgebra of Virasoro 
generators, i.e. L v  L0 ,L\ which correspond to a subalgebra SL(2), which 
corresponds to the remaining symmetry on the world sheet. This remaining 
symmetry is important in the evaluation of amplitudes, as it has to be gauged away 
before these amplitudes can be calculated. This can be done using Koba-Nielsen 
integrations, or more elegantly using the BRST invariance of vertex operators to 
eliminate complex contour integrations, as will be discussed below.

The conformal fields of the string theory are and eikX, which have 
conformal weights 1 and V2k2 respectively. The requirement that the second of these 
vertex terms must have conformal weight one implies that the momentum k2 must 
be 1/a'2. The construction of vertex operators for the massless sector of the theory 
merely corresponds to finding the correct combination of these conformal fields 
which transform in the correct manner to correspond with the conformal field 
required.

Because of the gauge fixing, a ghost action must be added to the theory to 
give the determinants for the gauge fixing,

Dg = a y )$ .d e tV 2detV.

where the ^z, and are the variables which define the infinitesimal variations 
orthogonal to the gauge slice, that is,
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8gK = V ^ z 8gH = Vl8§1

8g - = + V ,8 § V

The ghost action is written in terms of the ghost field c, and its conjugate b, 
which have conformal weight 1 and -2 respectively, and is,

1 f 2
Sgh = — I d z [ b 9 c + complex conjugate.]

71 J
( 1.2 .6)

which gives equations of motion for the ghost fields,

3c = 9b = 0 (1.2.7)

and correlation function,

< b c > = - — -— -  (1.2.8)
( z - w )

The stress energy tensor for the ghost fields is given by considering the 
variation of the covariant derivative of rank n tensors, under a traceless deformation 
of the metric,

6Vz = ^SgZIVi + i V i(8gIZ) (1.2.9)

and applying this to the action (1.2.1), to yield,

Tgh(z) = c3b +2 (3c) b (1.2.10)

Given the operator product (1.2.8) the operator product of the ghost field stress 
energy tensors is,

-13 2 1
T . (z) T . (w) = --------+ -------- T . (z) + -— - 3T . (z) + nonsingular terms.

gh '  ghV 7 . .4  . .2  8h (Z-W) 8h 6(z-w) (z-w) v '

( 1.2 . 11)

which demonstrates that the conformal anomaly vanishes in d=26. However it is 
more correct to use the gauge fixed form of the reparametrisation operator, T(z), in
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terms of the BRST algebra. The new operator is the BRST operator QBRST, 
constructed by the standard procedure of the Noether theorem. In terms of the 
conformal symmetry, the BRST current is given by,

which can be seen by the standard contour integral calculation and using the 
appropriate operator products given by the explicit form of the stress energy tensors, 
and the fundamental correlation functions for the fields.

Since the ghosts do not couple to the physical fields of the theory, as can be 
seen by simple inspection of the full action, then the Fock space of states can be 
written as a simple tensor product of the ordinary bosonic string Fock space states 
and the ghost Fock space states, for example,

where the extra ghost operator, c1? is needed for BRST invariance of the state. This 
can be seen simply by considering the canonical choice for the vacuum: the ghost 
vacuum should be SL(2) invariant, that is annihilated by L x ,L0, L v By noting the

jBRST(z) = c ( T(z) + 1  Tgh(z)) + J  a2c (1.2.12)

and so the BRST charge is defined to be,

BRST (1.2.13)

The BRST charge acts on the fields as follows;

 ̂Qbrst ’  ̂ f « • -Wst(w) ^(z),J 2m

where the contour is about z, so that,

[ Qbrst . x n = c z d2 XKBRST ’

< Qbrst , c ) = c d z cBRST ’

{ Q,BRST ’ zz> } = T + T .zz  1 zz gh zz (1.2.14)

I (n) ; p >x ® Cj I 0 >gh (1.2.15)
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conformal weight of the ghost fields, it can be seen that their mode expansions 
must be,

c(z> = X  c„ z "+1 ’ 'Xz) = X b„ z'"'2 d-2.16)
n n

and consequently, replacing these in the ghost stress-energy tensor, Tgh, it is 
possible to show that the vacuum must satisfy,

c „ | o > gh = °  > n s 2

bn 10 >gh = 0 , n > -1 (1.2.17)

which has the interesting conclusion that,

ci * 0 * 0

which implies that the ghost vacuum is not a highest weight representation of the b,c 
algebra, although it is chosen to be a highest weight representation of the Virasoro 
algebra. So, taking the Hamiltonian to be the full L0tot- operator, and noting the 
Qbrst algebra, it is possible to show that the lowest energy state is the vacuum 
given above in equation (1.2.15), such that,

L0tot- ( I 0 >x ® Cj I 0 >gh (1.2.18)

The adjoint of this vacuum is clearly,

( ci 10 >g(,)+ = gh< 0 1 c. jCq (1.2.19)

These extra ghost modes play a crucial part in the evaluation of amplitudes, since if 
Jd2zVphys (z) is a physical vertex then c(z)c(z)Vphys (z) is a QBRST combination, as 
can be seen by application of the BRST algebra. Hence the c operators of the ghost 
vacuum can be used in combinations with physical vertex operators, to soak up the 
background ghost charge, and to remove three of the integrations, since, because of 
the BRST invariance the location of the z's is unimportant. This allows three of the 
integrations to be removed from the amplitude calculation, and thus the remaining 
SL(2) invariance of the world sheet is gauge fixed.

The physical state condition on a general physical state lphys.>, is simply 
that it should satisfy,
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Q b r st   ̂ P ^ys. >  -  0 ( 1 .2 .2 0 )

where the mode expansion of QBRST shows that this is simply the restatement of the 
standard decoupling of the negative norm states by the condition,

Ln I phys. > = 0 , n > 0  (1.2.21)

give by the older operator approach to covariant quantisation of the bosonic string. 
Given some vertex operator corresponding to the emission of a physical conformal 
field from the world sheet, the BRST equivalent of the old operator requirement is 
that,

[ QbRST . V phyS. ] =  0  • O ' 2 ' 2 2 )

As an example the three point calculation of three massless vectors, (in the 
left moving sector) will be performed. The appropriate vertex operator for (left 
moving) vector emission is,

VB(k,£,z) = c(z) C9X( z) elk'X(z) (1.2.23)

which then gives the correlation function,

< ^B 2̂ 2’^2’z2  ̂ ^B 3̂ 3’^3’z3  ̂ >

(1.2.24)

which can be evaluated using the appropriate two point functions given by,

O X >l(zi)3Xv(z.)> = —̂-
J (z.-z.)v i r

n  ik.X(z.) M ^ ik.X(z)
O X  (z.) e >  = e J(z.-z.) v i y

ik.X(z.) ik.X(z.) k..k.« J<  e 1 e J >  = (z.-z.) (1.2.25)

for the bosonic fields, and, (with reference to the bosonisation described below),
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<  c(Z j) C(Z2) >  ~  ( Zj - Z2 ) ( 1 .2 .2 6 )

for the fermionic ghosts, to yield the following result, (ignoring all external 
constants);

A3 = { Cr k2C2-C3 + C2*^3^3' l̂ + ^3*^l^l*^2 + ^r^2^2*^3^3*^l ^

(1.2.27)

up to an external constant, which is irrelevant in any of the considerations of this 
thesis. Furthermore the hitherto suppressed constant a 1 has now been explicitly 
shown by inserting a factor 2a* in the last term of (1.2.27), in accord with the fact 
that a ’ = 1/2 is the conventional open string value. Let us envisage for the moment 
keeping such explicit a' when we form the closed string amplitudes from the tensor 
product of two open string amplitudes as in reference [33]; at this time we must 
make the replacement kopen strmg = 1/2 kclosed stnng which is equivalent to 
multiplying each factor of a' by 1/4 in the final closed string amplitude, interpreting 
the momenta as closed string momenta, and a' as the closed string a' which takes 
the value a'=2.

The same result can be achieved without showing a' explicitly by the 
following procedure:- i) calculate the two open string amplitudes without showing 
the open string a ' explicitly, (that is with a - 1/2); ii) form the closed string 
amplitude by taking the tensor product of the two open string amplitudes; iii) 
reinterpret the open string momenta in the resulting amplitude as closed string 
momenta without rescaling as above', iv) reinstate a' into the amplitude by inserting 
a'/2 for each factor of k2 equivalent to taking a'=2 for closed strings. Note that the 
powers of 1/4 that result from the rescaling the momenta as above are completely 
taken care of by the re-insertion of the a ’ parameter with the proper closed string 
value.

The procedure of the last paragraph will be followed in this thesis so that 
any re-insertion of the parameter a' will be done by inserting a factor a'/2 for every 
factor of k2 as on pages 29-31 below. This procedure is exactly as described in 
reference [33] and is completely consistent with the procedure carried out in the 
bosonic matching calculations of Gross and Sloan and Cai and Nunez^58!

This result has all the required symmetries. For example it is crossing 
symmetric, (i.e. it is symmetric with respect to l<->2,2<->3, etc..) This result can be 
"crossed" (i.e. the tensor product between this amplitude and some other) with itself 
to find the full bosonic string result, or it can be "crossed" with a corresponding 
superstring result to obtain the amplitude for a heterotic string process^33!. This
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seco n d  cou rse is  the on e that w ill  be fo llo w e d  b e lo w .

Section 1.3 The interacting closed superstring as conformal field theory.

In this section the conformal field theory techniques applied to the bosonic 
string will be applied to the spinning and, after applying the GSO projections, the 
superstring. The ghost algebra will be generalised and the calculation of amplitudes 
demonstrated. The section will end with the explicit calculation of a (right-moving) 
superstring amplitude. The next section will combine the techniques of this and the 
previous section to give the full four point heterotic superstring amplitude for the 
scattering of two massless fermionic states with two massless bosonic states.

The (right moving) spinning string action is given by,

s = J d24/g{ y g lb3ax ^ bx^ + i^ Y v â +

^XJb'lV).(3bX ^ jx b'tO }

(1.3.1)

which is invariant under the supersymmetry transformations,

Sgab = 2ieVCb) ’
SXa = 2 Va£ •
8X^ = ie y 1

W  = y ( d J P - { x B¥ L ) e  (1.3.2)

and is also reparametrisation invariant. This action is superconformally invariant and 
so the superconformal symmetry must be gauged away before the functional integral 
can be performed. The appropriate conformal gauge fixing is given by the relations,

gab = P Sab - Xa = r,? 

where the remaining gauge fixed theory is seen to be of the form,

ĝ.fixed. = J dM l  9aX"9\  ~ } (13.3)

which is free in the remaining fields! The other fields of the theory can be seen to
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decouple from the action. The remaining free fields can be combined into one free 
superfield,

X^(z,0) = X^z) + G .^(z) (1.3.4)

with the action,

^g.fixed = f d^d^i-DX^DX (1.3.5)J 2 n

where the D and D are the standard supercovariant derivatives.
Again, with reference to Appendix One, it can be seen that the methods of 

conformal field theory can be applied. The superconformal transformations are 
generated by the super-stress energy tensor,

T(z,e) = - i  DXMD2X (1.3.6)

whose Laurent coefficents satisfy the super-Virasoro algebra,

[Lm.L„] = (m-n) Lm+n + 1 6 (m3- m)8m+n 0 

{ Gm,G„ } =2Lra+n+i e (m2- I ) 5 m+n0 

[Lm.G „ ]= (f -n )G m+n (1.3.7)

because the super-stress-energy tensor satisfies the superconformal algebra, in the 
form of the operator product,

p 3 019 D9T(z9,09) 0 19
T(z1.01)T(z2 ,92) -  - S -  + - f  T(z2 ,92) + 2 2  z 2 + ^  32T(z2 ,62) + ...

12 12 12

(1.3.8)

where the £ is defined to be 3/2 times c, and z12 , 012 and the derivatives are defined 
in Appendix One.

The two point correlation function for the superfield Xm(z,0) is given by 
the standard path integral procedure[31] and gives,
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<  X^Cz^Gj) X V(Z2,0 2) >  =  - n ^ l o g  Z12 ( 1 .3 .9 )

(where z12 is defined in Appendix One.), which contains the seperate field operator 
products which will be needed in the evaluation of the super-amplitudes.

The correlations of the spin fields of the theory are also very important, as 
these fields occur in the definition of the fermionic vertices, due to the necessity for 
these vertices to transform under the symmetries of the string in a required fashion. 
It can be seen^30̂  that these correlations are completely specified by their 
transformation properties under the SO(9,l) current algebra generated by the global 
SO(9,l) symmetry of the string. (See Appendix One for a brief overview of this 
theory in general.) It is seen that the \|P fields of the string transform as conformal 
fields in a conformal theory given that the stress energy tensor,

f v(z) = \|^yv(z) (1.3.10)

defined in terms of the Noether currents of the symmetry, defines a conformal 
theory, the normal ordering of the expression being implicit. The spin field defined 
by the superconformal algebra must have non-zero operator product with this stress 
energy tensor, as can be seen by general conformal field theory techniques, 
(Appendix One), and so must also be a conformal field in this theory, and by 
inspection of the various operator products, it can be clearly seen that the spin field S 
must transform as a spinor under the Noether current. By the use of a trick typical of 
conformal field theories, it is possible to find the correlation functions for the 
various fields simply by their SO(9,l) properties. This is done fully in reference 
[30]. Summarising, the correlation functions for the \|/  ̂and S fields are,

y*(z) s a(w) = — s V )  + -  

(z-w) 2

Sa(z) s p(w) = - j —  8 p + — !—. ( I  f y > a  +

(z-w) 4 (z-w) 4

s aM v w )= - 4 i i v -
(z-w) 4

which are used in the evaluation of string amplitudes. The correlation functions 
involving the symmetry current j^v(z) are given simply by the SO(9,l) 
transformation properties of the particular fields in question.
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As in the bosonic case it is necessary to consider the ghost arising from the 
superconformal gauge fixing. As in the previous case these ghosts will give a ghost 
vacuum that is not self adjoint and so will give a means to eliminate the remaining 
SL(2) symmetry of the world sheet.

The arguments proceed in an exactly analogous fashion to the bosonic case, 
except for the fact that there is now a ghost action in terms of a ghost superfield, and 
that the BRST algebra must be extended to include the full super-Virasoro algebra. 
The ghost algebra of this system is most conveniently handled in the case where all 
ghost fields are bosonised. In this case it is convenient to write,

j(z) = e 3z<t> (1.3.11a)

with the operator product,

<(>(z) <|>(w) = 8  In (z-w) (1.3.11b)

where j(z) is the ghost current which generates the BRST transformation in the ghost 
sector of the theory, and e is either + 1  or -1  depending on whether fermionic or 
bosonic ghosts are being bosonised. In this case, the current generates 
transformations of the fields e'q<t\ which can be represented in terms of the operator 
products,

-J-eq(q+Q) i 
T(z)e = [ 2 ] e q*

(z-w)2 W

\(7\ pq<1)(W) -  q 
JW e ” ( ^ )

and this can be seen to be described by the bosonic action,

(1.3.12)

which has equation of motion,

aza-<|) = i e Q /g R  (1.3.13)

The current anomaly which generates the ghost charge of the vacuum can be seen to
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be due to this term, when the stress-energy tensor is defined by the action in (j). With 
a specific choice of charges, the ghost system can be bosonised in this fashion, and 
for the superstring it is found that this is the easiest way to proceed.

The ghosts are bosonised as follows,

c(z) = e° b(z) = e~°

y(z) = e ^  p(z) = e ^  (1.3.14)

where the extra rj and ^ are fermionic fields introduced to retrieve the bosonic nature 
of the bosonic supersymmetric counterparts to the usual reparametrisation 
Fadeev-Popov ghosts. This is the case since the fields e ^  are always fermionic. In 
this relation appears one of the most important points of the entire theory. It should 
be noted that the £,0 mode is projected out by a derivative. This is essential for the 
construction of irreducable representations of the conformal algebra, since the 
mode makes any representation reducible. That is, every state in the ghost system, 
l<|» say, would have a degenerate partner in the representation given by q̂I<J», which 
transforms in exactly the same way under the current j(z).

The conformal field theory approach to the string requires that "vertex" 
operators be constructed such that they correspond to the conformal fields of the 
theory, and that therefore they transform in all the correct ways, have the correct 
ghost numbers, etc.. Clearly DX^(z,0) is a conformal field, as is elk X. So the 
obvious choice for the massless bosonic vertex is simply,

V(k,£,z) = C-DXe^Cz) (1.3.15)

which can be rewritten in the bosonised ghost algebra by going into the enlarged 
^-algebra (by including the ^  mode) and writing the bosonic vertex as,

VB(k,C,z) = [ Qb rst , f y *  C.x|/e‘k'X ] (1.3.16)

This will be useful later when the background ghost charge of the vacuum is 
considered, and amplitudes ate constructed.

The first choice for a covariant fermion vertex is determined by the 
consideration that the background charge of the vacuum should change by V2 thus 
interpolating between Neveu-Schwarz and Ramond ground states. A first guess 
would be,
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V  1/2(k ,u ,z )  =  u “ (k) e ^ S ^ z )  e * 'X<z) ( 1 .3 .1 7 )

where the subscript _1/2 denotes the ghost charge associated with the vertex and 
where the polarisation u^k) satisfies,

kua(k) = 0  , where k2 = 0  .

By taking the operator product of this vertex with the various currents 
which contribute to the full superconformal QBRST, it is possible to show that the 
operator products are nonsingular, and hence the vertex commutes with QBRST. This 
is not quite enough to describe fermion scattering of the string theory, since the 
background charge of 2 can only be cancelled by four of these operators. The 
solution is to invoke the degeneracy involved with the ^  mode.

In general all operators of the form [QBRST,0] are spurious, except when O 
is of the form £Vphys. These operators are not spurious because of the fact that the 

mode is not part of the algebra of bosonic ghosts, y, p. It is therefore possible to 
define a vertex with ghost charge l/2 by,

v i/2(k,u,z) = [Qb rst , 2 ^V 1/2(k,u,z) ] (1.3.18)

which has the explicit form,

V1/2(k,u,z) = u“(k) { e ^ d X ^  + i  (k.¥ ) / ]  ( Y ^ S 15

+ i e 3'w2TibSa } (1.3.19)

when the operator product of V_1/2 is taken with the full QBRST operator. In 
reference [27] this analysis is done fully and so the results will only be sketched 
here. This completes the list of all the vertex operators that will be needed to 
construct amplitudes in the final section.

Section 1.4 The construction of amplitudes.

In this section it is decribed how heterotic string amplitudes are constructed, 
and an example will be given. This particular example will be useful in a later 
chapter, when the amplitude matching procedure is considered.

A general string amplitude is given by a correlation function of the general
form,
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< V1 v 2 .... Vn >

where each of the vertex operators corresponds to a conformal field in an underlying 
conformal field theory. The techniques of conformal field theory have already been 
developed above in some detail, and so it is merely a case of applying these general 
techniques to the case of the particular vertex operators of the theory being 
considered. At first sight this would seem to be merely a matter of replacing the 
appropriate combinations of fields with their operator products; performing some 
rearrangement of momenta to bring it into a simpler form; and finally integrating 
over the complex variables on the world sheet. However there is a level of subtlety 
in this analysis which has to be observed. The ghost charge on the vacuum has to be 
soaked up in a consistent manner, so as to remove three of the integrations 
mentioned above. Also the fermionic correlations appear to be quite complex, and 
difficult to evaluate. This will in fact be seen to pose no real problem in the 
evaluation of the amplitude considered, (or indeed any amplitude for that matter). 
The amplitude considered will be that for the scattering of two fermionic sates with 
two massless bosonic states. The procedure will be to calculate the appropriate 
bosonic left moving amplitude and the corresponding right moving superstring 
amplitude. These will be "crossed" with each other to find the complete heterotic 
string amplitude.

i) The bosonic amplitude.

The full bosonic amplitude is given by the correlation function, defined by 
the product of vertex operators,

ik4.X ^ ik, .X ^ ik, .X ^ ik, .X.
< C 4 .3X(z4)e 4 C3.ax(z3)e 3 C2 .dX(z2)e 2 ^ . a x ^ e  1 >

(1.4.1)

which then can be evaluated using the standard techniques described above. The 
amplitude contribution is clearly given by simply multiplying out the various terms 
in each of the possible Wick contractions, with regard to the operator product 
expansions given above. This is tedious. It is easier to perform the Koba-Nielsen 
integrations implicitly as the calculation is performed, by making the choice,

Zj= 0 , z2= 1 , z4-> °° (1.4.2)

which allows the bosonic half of the amplitude to be written,
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A = (z,- 1) 3 V  ' { — A. + — 1—  A. + 4 -  A, + -----—-  A.+ A, }
3 3 l Z3 1 (z ,- l )  2 -z2 3 ( V 1 ) 2 4

(1.4.3)

where the individual Ai terms are given in the foim,

At = [ W A  + - W r k i t v k2

■ ^3'^2^1'k3^4'k2 + ^ ■ ^ \^T k \ ^ i ' k2 

^3'^ 1̂ 2'^3^4 '^ 1  + ^2'^i^3'k 1^4'k 2 + ^3'k2^2'k l^Vk3^4'k2 

+ Cj-k, C2'k4 Cr k2 ?4'k2 + ^3-kl ^2-k4 ^ f k3^4-k3 ]

A ,  = [ - ^ . c 2?J.k1c 1. k 3 - c 3. ; 1c 2.k4c 4.k2

+ ^ 2.k4^ 4.k2 + ^ 2^ 1 ]

+ S3-k4 C r M r M A  H ^ y , ]

and where A2 and A4 are related to A2 and A3 by the interchange of 1 and 2 indices 
respectively. The identity,

(k1 + k2 + k3 + k4)^ = 0 (1.4.4)

has been used to eliminate the leading order terms in certain of the expansions, 
which would otherwise appear infinite when the Koba-Nielsen gauge fixing is 
performed. It only remains to calculate the fermionic half of the amplitude, and to 
take the tensor product with the bosonic term (1.4.3), and then perform the 
remaining complex integrals.

ii] The fermionic amplitude.

The calculation follows the example calculation given in reference [27]. 
(There are some errors in this calculation which have been corrected in what

2 6



follows.) The appropriate correlation function for f-f-b-b scattering is given by,

< e '2<H3% . ( 3X(z4) + ^  w ) f * 4-x ^  ( d x { z j  + ^  w ) e lk3x x

x u“Sae'(1>/2eik2'X(z2) u ^ ySY[ax^(Zl) + j  ik1.\jn /]e<t>/2elkl'X>

(1.4.5)

where the vertex operators are the V1/2 and V 1/2 fermionic vertex operators (1.3.17) 
and (1.3.18) and the bosonic vertex operator VB (1.3.15) as given above. The 
fermionic vertices chosen have the correct neutral charge combination. The first 
ghost factor is introduced to cancel the vacuum charge. A ^-algebra manipulation 
based on the definition of the V1/2 vertex in terms of the QBRST operator can be used 
in addition to the conformal invariance of the theory to rewrite one of the bosonic 
vertices as the new vertex term,

C4-V e '^ e ^ 4 X(z4) (1.4.6)

which allows the direct evaluation of the amplitude by direct substitution of the 
appropriate operator product expansions. The individual operator products that are 
required are,

<e°(z4)ea(z2 )eCT(z1)>  = (z4- z3) (z2- z j  (z4- zx)

(1.4.7)

< e  <t>(z4)e'<,>(z2 )e’<t>(z1 )>  = (z4- z^)’1/2(z4- z ^ '^ z ^  z j 112

(1.4.8)

< V l(z4)S a(z 2)S p(z 1) >  =  (z4- z2) '1/2(z4- z1) '1/2( z2- Zj)-3^

(1.4.9)

< ]vX(z3) / ( z 4)S«(z2)S„(z1)>  = { ^ _ g ^ [v< ¥ \ z 4)Sa(z2)S„(z1)>
J V V  4'

+  T T ^ T T  ( / V) 1 < / ( z4 )s / z 2) s ( z , ) >
'  3" V  

1

■ j r h )  (yA ) l < V ( h ) ^ W > 1

3 1 (1.4.10)
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and the remaining operator product expansions are just the bosonic type mentioned 
above. This implies that the amplitude may be written in the form,

a f  =  ( z 3- 1) ’ S * * .

+ 7T7 [ - T M 3 k 3i4 U1+ T U2*3k 2 i4 UJ  }(Z ,-  1)

(1.4.11)

when the SL(2) gauge fixing is performed by the choice of z v and z4 above. This 
must now be "crossed" with the bosonic term given above in equation (1.4.3) and 
the remaining complex world sheet variables integrated over. The appropriate 
integrals are of the form,

d2z Iz fV rBzl = 71
r ( l-y )  r ( l-y )  r(-^±§- -1)

r ( ^ ) r ( | - ) r ( 2 -a± B )

J d 2Z z lzfAl 1 -zlB = J d 2z

r ( i - A ) r ( - | . ) r ( A ± I . )  

71 r ( A ) r ( | ) r ( i  -*±5-)

J d 2z z2lzl'All-z rB = J d 2z z2lzTAll-zfB

r (3 -A )n i- | - ) r (^ A -1 )  

r (A )n |- ) r (4 -A ± B )

(1.4.12)

which can be proved by straightforward techniques, and which can be substituted in 
the amplitude given above to yield the final answer. The full amplitude is therefore,

A.ot=rC3>K v W u i £ 3a\ 0( v  v -

T a1 + 2 a2 +_ilL_A 3 - —  A4 + —A5 1• L s(s_2 ) ^VPCT (u_2 ) PvPa t(t-2 ) ^vpa ts ^VP° s ^VP°J

p,
+ UBTfayP7TU ^ 3 a C ( k38+ k 18)-
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where the coefficients A1, A2 ,...,A5 are given by,

A n v p a  -  I  Tl v p Tl p o  +  k l p k 2 a k 3 p k 4 v  '  ^ p ^ W a  " k 2 a k 3 p T |v p

{  Tl^ p r l v o  +  k l o k 2 p k 3 v k 4 ^  " ^ p ^ ^ v a  " 1

and where A4 and A5 are large complicated functions of momenta, which will not 
actually be used in calculation below. However, for the sake of reference, these are,

and where A5 is minus A4 with (l<-»2) and (3<-»4) indices reversed. The 
Mandlestam variables are defined to be s = 2k1.k2, t = 2kr k3 and u = 2kr k4 since 
the external string modes are taken to be massless, i.e. k^ = 0. It should be noted 
that this definition is the same as that of Cai and Nunez, but differs by a sign to that 
of Gross and S lo an ^ , and Schwarzfl2]. The T(3) factor is given as a product of 
gamma functions, and contains the poles in the amplitude due to the massive modes 
of the theory,

This is the form of the amplitude which will be used in the amplitude matching 
calculations in the following chapters. This amplitude can be expanded trivially in 
powers of the string parameter a'. This is done by re-inserting the a ' parameter in 
the amplitude above, by noting its dimensionality, and the value chosen consistent 
with the closed string value of a - 2 , and then simply performing the appropriate

r (3)= n f ) r f o r c f )2 v2 '  2



Taylor expansions. Explicitly this means that every occurence of s,t or u must be 
multiplied by the dimensionful term a'/2, as in reference [33]. This yields a string 
amplitude completely consistent with the amplitudes listed in both of the papers in 
reference [58]. For example, the term,

^  i +  y  + ° (t2) } (1-4.14)

The r<3) term can be seen to expand in the form,

r<3> = - { i+ ± £ (3 )s tu  + . . . }

where £(3) denotes the Riemann zeta function, and so the appropriate 0(a '°) 
amplitude is,

A m P0-  U27  0^4" ^4a  {  J^IpvHpa ^Ipo^lvp +  ^Ipp^lvo 1

- UjT^lt^- ^ 3 )7  ui^3y { 7T TlpvHpa ^paHvp + "p "Hpp̂ va }

(1.4.15)

up to an irrelevant external constant, and the O(a') amplitude is,

AmPi = - ^j- { u UjY“(k 4- k 3)yyu4 - 1 u3YY(k4- k 3)y“u, } x 

x ^3y ^4a  ̂^pvHpa ^ ÎpaHvp + l̂pp l̂va)

(1.4.16)

where a' has been replaced at the last stage. As a trivial example of the application 
of the conformal field theory techniques, it can be seen that by omitting the bosonic 
vertex at the complex Z3 point, then the amplitude immediately trivialises to the form,

Af3 = u / UlC3M (1.4.17)

which can be "crossed" with (1.2.27), using the techniques of reference [33], (with 
particular regard to equation (1.3) of that reference), to give the three point f-f-b 
scattering amplitude in the form,
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A3 { klpr|^v + k ^ r ^  + k3^tivp + ® klpk2vk3̂  }

(1.4.18)

which will be used in conjunction with the four point amplitudes in the amplitude 
matching procedures carried out in the following chapters. It should be noted that the 
a ' used in expression (1.4.18) is the complete closed string value a'=2, as opposed 
to the open string value a'=l/2 used in the expression (1.2.27). The reason for this 
is explained in depth in reference [33] where it is shown generally how to construct 
any closed string amplitude from a tensor product of two open string amplitudes. In 
all of what follows the value of a ' will always be 2 , since only closed string 
expressions will be used henceforth. In all of the remaining chapters of this thesis 
the dimensionful parameter a ' will be suppressed, but when it is necessary to 
reintroduce it, for example to facilitate an amplitude matching to either the amplitude
(1.4.18) or the four point amplitudes (1.4.15) and (1.4.16), then it will be 
reintroduced by introducing the factor a'/2. This is the convention used from now 
on and will be adhered to throughout.
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Chapter Two:
Quantisation of The 

Free Effective Field Theory:
Evaluation of the Propagators

Introduction.

In this chapter the general principles of free Majorana-Weyl field theory will 
be developed, with special regard being paid to the extra constraints inherent in the 
quantisation of the effective field theory representing the heterotic string. Some care 
will be taken in the quantisation of the symmetric tensor field, and then the 
quantisation of both spin-1/2 and spin-3/2 fermion fields will be undertaken using 
the general Dirac approach to constrained quantisation. The final section will apply 
the same Dirac quantisation techniques to the quantisation of a higher derivative 
theory, and will be shown to be consistent with the path integral approach. The 
implication for the higher derivative propagator correcting terms will be discussed.

Section 2.1 The effective field theory for the heterotic string.

The free effective field theory for the string is determined by the spectrum of 
massless states determined by the equations of motion and symmetries of the string 
action. It can be shown that these states are (for the Spin32/Z2 case):-

State SOC8 ) Reo. Gauee ReD. Dee. of Frc

V 35 I 35

V 28 I 28

<!> 1 I 1

% 56, I 56
X 8 s I 8

\ 8 V adi. 8x496

X 8 s adi. 8x496

In all of what follows, only the 'gravitational' sector of the string will be 
considered. An action must now be constructed which is consistent with the global 
symmetries built into the string theory a priori. The procedure used is similar to that 
of Veltmanf34̂ and will provide the unique free field theory effective action for the 
string, up to a possible overall constant. Essentially the procedure is as follows: a 
general action is written down with some arbitrary coeficients, then these
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coefficients are fixed by the stipulation that the action must be gauge invariant under 
transformations of the form,

Sh|iv = ~  { EYnVv + £YvMV }

S V ^ Y ^ a h ^ e  (2 .1 .1 )

for example. It is extremely important to note that the restriction to the symmetric 
tensor h^v and the gravitino has been made, since these are the only fields that are 
considered in the amplitude calculations performed later in this thesis. It is possible 
to extend the discussion below to include all the fields from the massless spectrum 
of the string, but this only includes extra unnecessary detail and destroys what little 
clarity exists in the description of the quantisation of both the free and interacting 
theories, and the construction, eventually, of amplitudes. The action, in terms of 
these fields only, is then seen to be uniquely determined. Since the string contains 
several different states, both bosonic and fermionic, and since these are related by 
string supersymmetry, it is then possible to write down the unique effective field 
theory for the string, (again restricting to the same subset of fields). This action is,

(2.1.2)

where the consequences of the supersymmetry algebra and the necessity of its 
closure have been accounted for.

This free classical action can now be quantised. As mentioned in the 
introduction the fermionic part of the action will be quantised using the methods of 
constrained quantisation due to Dirac, and the actual quantisation and evaluation of 
propagators will be performed using standard, familiar, canonical techniques. In 
Appendix Two a description of the functional integral approach to the quantisation of 
the field theories with second class constraints will be outlined and the propagators 
evaluated below will be rederived using these methods to allow the calculation of the 
covariant form of the spin-3/2 propagator which is inaccessable to the methods used 
below, and to provide a useful check on the functional integral quantisation of 
theories with second class constraints^3̂ .

The higher derivative extensions to the free action described schematically in 
the final section and in the following chapters will also be taken into account in
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Appendix Two. The separate fields in the action (2.1.2) will be quantised in turn 
below. Only the symmetric tensor field will be quantised in the bosonic sector of the 
full action, since the remaining bosonic quantisations are either trivial, in the case of 
the <J) field, or use exactly similar techniques to those used in the quantisation of the 
graviton. Both fermionic fields will be quantised in turn: the spin-1/2 field as a 
simple introduction to the application of the Dirac constrained quantisation to 
Grassman variables, which will be needed in the final section, and the spin-3/2 as a 
demonstration of the full complexity of this technique when gauge degrees of 
freedom are included in the action.

Section 2.2: The graviton and dilatino propagators.

In this section, each of the propagators for the graviton, spin-1/2 and 
spin-3 /2  fields will be derived in turn using the usual canonical path to quantisation 
of defining the mapping from the classical theory to the quantum theory bŷ 35!,

ih { f , g  }D- >̂ - ( - l ) " ,n‘ g f  (A3.2.11)

and by finding a solution to the classical equations of motion which allows the 
mapping to the quantum algebra given by this equation. A well defined path then 
leads to the propagator for the free theory, which is what is required in the 
perturbative solution of scattering problems. However this standard definition of the 
quantisation condition must be modified when the theory is constrained. It is 
possible to solve the constraints and then to quantise in the remaining phase space 
which might be curved, and therefore requiring special geometrical techniques, but 
this is possible for only the simplest systems in general^36!. The alternative is to 
modify the definition of quantisation to include the constraints in the full flat phase 
space. This technique is the one originally developed by Dirac132! and Bergmann^37!, 
and is the approach followed here.

The first quantisation performed here will be that of the graviton. The 
quantisation procedure adopted will be a simple generalisation of the standard Fermi 
quantisation of the photon. The graviton action alone is,

*  =  - J  {  - J  d %  h MOt +  i  h Mp d \

- i h w apa V + l h pp d09 ° iv  1 (2 .2 .i)

and the appropriate covariant gauge fixing term is,
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¥ _ 1 f  u 3P:jct u^° u u a
g.fT  2 ^  I  PP " W  o

+  i h pP a 03 <,h |i l }  ( 2 . 2 . 2 )

yielding the full gauge fixed action in the form,

K ,  = \  ( j 3 0h<4 laoh(ia- I a |1hppa(lh<J<’ }

(2.2.3)

where the gauge parameter has been chosen to be £=2. This choice will be used 
throughout. (It should be noted that the covariant gauge choice made here cannot be 
simply generalised to the case of the spin-3/2 vector spinor field in the case of the 
gravitino; it is possible to show that such a quantisation procedure is inconsistent 
with the Dirac quantisation procedure used in the quantisation of the spin-1/2 dilatino 
field.) Following the path of canonical quantisation, the canonically conjugate 
momentum is defined to be,

8  ( d0 hpa )

= hP° - i l ) poh } (2.2.4)

(where h = 3nh = -d°h )• I tcan be seen that this can be written in the form,
r  r  rlv

(2.2.5)

which will be the most useful form for the momentum in what follows. The 
canonical quantisation condition is defined to be,

[h^v(20 , npa (y)] = - j  { t\p T]J - rfv ti J } §3(x - y)

(2 .2 .6)

at equal times. Equation (2.1.9) is used to get the quantisation in the somewhat more 
useable form,

GP°'a|5[htlv, h„p ] = - i 8 l p° 53(x - i )  (2.2.7)
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where,

pa,aP r pa 0g p|3 pa ag ^
G = [ t] i y p + rp*r| 0  - ry t| j

p°
l(iv = J  I ^ifr? + TlvTI? } (2-2.8)

The standard quantisation can proceed when this operator is inverted. The inversion 
is carried out using the standard set of projection operators for rank two symmetric 
tensors. These are listed in Appendix Two. Noting that rj = 0  + co (in therV r r*v
standard notation of Appendix Two) and the definitions for the projection operators 
it is possible to write (suppressing unnecessary indices),

which can be inverted using the standard multiplication algebra for these operators. 
(See Appendix Two for details of these calculations.) Defining an inverse,

(1) (2) (s) (co) (sco) (cos)
P = aP  + b P  + c P  + d P  + e P  + fP

it can be shown that GpCT,â .Pap = 1 pCT̂  , if the coefficients have the values, 
a = b = V2 and,

c = J -  d = i H )

e =

2 (0-1) 2 (0-1)

-  -J® f = - / e  
2 (6-1) 2 (6-1)

Consequently equations (2.2.6-7) are equivalent to,

[  t v  ,  h a p  ]  =  - !  8  5 9 ( x  -  y )  ( 2 . 2 . 9 )

where,

^ V . p o  ”  9 ^ l ^ v .p o  “ 9  /A  n  ^ l p a  ( 2 . 2 . 1 0 )2(0-1)

It is now a simple but tedious path to the propagator. This begins with the
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mode expansion solution to the equation of motion of the theory. This is explicitly of 
the form,

h^(x) = JdE { aw (k) $ \ k )  e** + a^(k) ^ ( k )  e'** }

(2 .2 .11)

where the polarisation tensors have been introduced, and which are chosen to satisfy 
the normalisation conditions,

ft) .a)

(X)

X (X) *(X) r  1 -j

( Cpv Ca p ) = I +  ^pP ^ va " ~ 7  ^ p  J
(X)

(2 .2 .12)

so that it can be seen that the mode coefficient algebra is of the form,

[ a(, / k ) . aftl)(k') ] = 0

[ aw (k ), â _.j(k’) ] = - (2nf k° 5U. 8 3(k - k')

(2.2.13)

The propagator now follows immediately from the definition,

Gh(x-x') = <  0 1 T( hpv(x) hpo(x ')) I 0 >  (2.2.14)

which yields, after some standard manipulations^38̂

*̂ĥ X_X ) = ^i { Îva Îvp ” ^pa 1 Gp(x-X )

(2.2.15)

where GF(x-x') is the standard Feynman propagator^39!,

1 f 10 p1**
fW = — 4 o  d k - ! —  (2-2-16)

(2 ic) J P + fe

This yields the form of the propagator that will be used in the amplitude 
calculations in the following chapters.
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The derivation of the graviton propagator above is a tedious but well known 
procedure. The derivations of the propagators for the two fermion fields in the 
gravitational sector of the theory are equally tedious and require more novel 
techniques than the graviton case given above. These propagators require the use of 
the sophisticated constrained quantisation techniques of Dirac^32! for their 
evaluation. The simplest case, and the one considered first, is that of the dilatino, or 
spin-1/2 field. The use of these techniques will be useful in the discussion of the 
higher derivative Lagrangians in the final section. As an example of these techniques 
a new form of the quantisation of the spin-1/2 field with the Weyl constraint will be 
presented. This is trivial, since the Weyl constraint is linear and can be solved before 
the quantisation, but nonetheless interesting in that the application of the technique 
shows all the features that will be required in the final section.

In this case the action is given by the Lagranian,

t = I x / ^ X  (2.2.17)

where the fields are Majorana-Weyl fermions. The definition of the Majorana 
conjugate spinor is as given in Appendix Three,

X = X Y  (A3.1.12)

and so the Lagrangian can be explicitlty written in the form,

l = j * . a ( 7 ° / ) abV b (2 .2 .!8 )

so that the canonically conjugate momentum can be defined in the standard way,

”» = ■ - ir <2-2-19)
8  (3  X )

where the rules of Grassman differentiation are used. (Note the al! derivatives with 
respect to Grassman variables will be taken from the left. For explicit details of the 
definition of Poisson brackets over a Grassman algebra see Appendix Three.) While 
relation (2.2.19) is a primary constraint in the notation of Diract32̂ , it is also second 
class, which means that the standard procedure of mapping from the classical 
Poisson brackets to the quantum commutators has to be modified. The fields are also 
defined to be Weyl spinors, that is they satisfy the constraint,
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yu X = X

which is another primary second class constraint. Using the y-matrix representation 
of Appendix Three, the y11 matrix can be written in the block form,

yn  =
( 0

A1 0)
(A3.1.11)

where AT = -A. The obvious, and standard procedure is to use a dotted spinor index 
notation so in what follows the spinor will be partitioned into two parts,

( a  iA

x (2) , 
V a J

(2.2.20)

where the X ^  corresponds to the undotted part of the spinor, Xa, and X ^  carries the 
dotted spinor index a, X&.

Using the standard dotted index notation described above it is possible to 
summarise the constraints as follows;

(i) a (i) 
<Pia = *a + K i = 1 ,2  a = a,a

i (1)
<P3a = Xa

a ®A . X.aa a (2 .2 .21)

where these are taken to be weakly zero, and can be shown to satisfy the Poisson 
bracket algebra,

{ <Pia ,<Pl b } = 2  8 ab { <Pia.<P3 b } = 8 ab

1 'Psb 1 = A a

(2.2.22)

It is trivial to show that there are no secondary constraints arising from these primary 
constraints since they are all second class constraints. It can be seen that the 
generalised Hamiltonian cannot generate any new constraints, but it will provide 
constraints on the general parameters introduced into the Hamiltonian by h an d ^ , 
which are introduced to include the effect of the constraints on the variational
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procedure of deriving the equations of motion. The Hamiltonian is never explicitly 
required in this work and so this aspect of the quantisation is never addressed. The 
matrix whose elements are the values of this algebra must be inverted and the Dirac 
bracket defined. The Dirac bracket is defined, ( in terms of general constraints <|)m 
and general functions of the dynamical variables f and g), to be the bracket given by 
the sum of the canonical Poisson bracket with an extra term defined by the inverse 
of the matrix of constraints, as follows,

{ f - g  } D = ( f >g ) - ( M m  } {  } - { <t>n » g }

(2.2.23)

which in the case of the spin-1 /2  field becomes,

{ ^  C } = - { C ,  <pk c } { <pkc, <pl d } 1 { <Pld . x f }

(2.2.24)

which can be shown to be explicitly,

{ ^ )- Xb) } D = - i [ ( 5 l 8 - ) ( 5 2 8 ai) ° ] X

f  8  . A  . 2 8  . 1cd c j cd < 4 5 db>
- A . , 8  . 2 A ^  

cd cd X

2 8  , - 2 A  -8  ._  cd cd cd_ 0

by evaluating the appropriate general Poisson brackets. Returning to the full index 
notation and multiplying out the matrices, it is possible to write,

{ }D = i ( 5W a i )  (2.2.25)

which enables the canonical quantisation to proceed. To do this the standard path is 
trodden as in the graviton case above. First the mode expansion solution of the Dirac 
equation of motion is found, subject to the constraints of the theory, then the mode 
coefficients are quantised. The normalisation of the c-number solutions is noted, 
from which the propagator will be seen to follow directly. Given that the equation of 
motion of the spin-1 /2  field is,
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y 1 x = o (2 .2 .26)

which can be seen by direct calculation from equation (2.2.17) above, then the mode 
expansion solution is,

K  = Jdk { aft)(k) u f  \k ) e'k'x + a(+X)(k) u‘W(k) e ikl< }

(2.2.27)

and the conjugate expansion is obviously,

Xa = Jdk { a(X)(k) ua(X>(k) e± x + a(\ }(k) u f  \k ) e'*'* }

(2.2.28)

where the standard measure (up to the definition of the metric sign) of reference [38] 
is used, and where a consistent choice for the normalisation of the c-number 
polarisation states is,

- (X )/ i  \  JO f t ’) / ,  1 ,  ou (k) f  u' '(k) = 2-8 k

uiW(k) u^(k) = i  {(1 + r11) M }ab (2.2.29)

The canonical quantisation condition is defined to be,

{  }  =  j t ( 1 + T U )Y ° ]ab S9(x - x ’)

(2.2.30)

at equal times, (where here and following the standard curled bracket is used to 
denote anticommutators), which forces the mode coefficient algebra to be,

{a(X)(k ), a ^ (k ’) } = i k° ( 2 k ) 9  6u , S9(k - k’)

{aa)(k ) ,a (r)(k') } = 0  (2.2.31)

The propagator is defined to b e ^ ,

G^(x-x') = <  0 1 T( ka(x) \ ( x ' ) ) I 0 >  (2.2.32)
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although it should be noted that the A (̂x') is just a constant matrix times the X field 
itself, which is different to the ordinary Dirac fermion case where the conjugate 
spinor is 'proportional' to the hermitian conjugate of the spinor. This has interesting 
consequences for the interacting field theory discussed in the next chapter. The 
propagator calculation is straightforward but tedious. The procedure is to expand
(2.1.32) in terms of the step function,

0 ( t - f )  =
1 t > t'

0  t < t*

and to work out each of the terms seperately. The first term can be written out in 
full, and gives,

(-) - W
<  0  I A,a(x) Xh(x') I 0  >  = < 0 \ X &(x)Xh (x') I 0  >

= jdk Jdk’ { <0l(aa)(k),aa ,)(k')JI0> uf*(k) u f 'V ’) ei(kl-k'x,) }

(2.2.33)

and using standard manipulations this can be written in terms of general invariant 
functionsExplicitly,

<  0 1 Xa(x) \ ( x ')  I 0 >  = - i  [(1  + Yu ) f  ] ab ^  G+(x - X')

(2.2.34)

and so, noting that the second term also gives,

<  0 1 Xb(x') Xa(x) 10 >  = - i  [(1  + y11) y* ] ab G_(x - X')

(2.2.35)

Summing these two contributions yields a propagator of the form,

Gj(x-x') = - i ( ( l +Y11) J  )ab Gp(x-x’) (2.2.36)

where GF(x-x') is the standard Feynman propagator, given by the definition,

GF(x - x') = 0(t - 1') G+(x - x') - 0(t' - 1) G.(x - x')
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The Fourier transformations of these propagators can now be calculated for 
use in the momenum representation Feynman rules. As stated above, this result is 
completly trivial in the sense that it is possible to solve the Weyl constraint at the 
beginning, before the definition of the Hamiltonian and the subsequent quantisation. 
This however does give the same result as the more sophisticated technique used 
here.

Section 2.2; The gravitino propagator.

The general procedure given in some depth for the graviton and dilatino 
must now be repeated for the case of the spin-3/2 field since it is also a 
Majorana-Weyl fermion field. This particular case is somewhat more complicated 
since the constraint algebra not only contains the Majorana and Weyl constraints as 
above, but also the gauge fixing conditions which do not trivially decouple from 
these constraints. As stated above the Weyl constraint can be solved at the 
Lagrangian stage simply adding a trivial (1+ y11) factor to the Lagrangian. This will 
only serve to increase the complexity of the algebra and will be left implicit from 
now on. The yn,s can be reintroduced by replacing y  by (l+Yn )\y/2 throughout.

The action for the free spin-3/2 field in ten dimensions i s ^ ,

* v = ? n / Vp3vVp (2.3.1)

from which it can be seen that the canonically conjugate momenta are defined to be,

7tJ = 0
<  - ( Ymn)ab ^  = 0 (2.3.2)

and thus the equation of motion is,

/ vp3vVp=0 (2.3.3)

The Majorana constraint comes out implicitly in the normal set of fermionic 
primary, second class constraints. The gauge symmetries of this action arise form 
primary first class constraints, which yield primary second class constraints when 
the gauge fixing conditions,

v S = °
7^  = 0 (2.3.4)
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are applied. It is also possible to use the transverse gauge fixing,

^ 0  = °

3Vm = 0 (2.3.5)

It should be noted that explicit covariance has been abandoned temporarily, though it 
can be shown that the final result will be fully covariant. The functional integral 
calculation carried out in Appendix Two is fully covariant, but only implicitly 
observes the full constraint algebra^41l  The full constrained quantisation procedure 
is extremely similar to the spin-1 /2  cae given above, and so will only be sketched 
here, since the propagator will not be evaluated in a form which will ever be used in 
this thesis. The complete set of primary constraints is given by (2.3.2) above. 
These generate secondary constraints;

*a = M  }

= {* !

=  0

which can be seen to yield the secondary constraint,

(7”V n V ? = 0 (2.3.6)

which is the only secondary constraint. The complete set of constraints must be 
separated into the first and second classes. The complete set of first class constraints 
is given by,

<Pa = 3k*a - ( r V n V r  (2-3.7)

and the second class constraints are,

9ak = ^  + (Ykm)ab¥m (2.3.8)

The chosen gauge fixing conditions eliminate the gauge degrees of freedom defined
by the first class constraints. The construction of the Dirac brackets as in the
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spin-1 /2  case is very complicated, and not terribly illuminating at this stage, and so 
only the result will be stated. Choosing the transverse gauge of equation (2.3.5), the 
evaluation of the Dirac bracket of \y with itself is extremely tedious but 
straightforward, and yields^41!,

r . r (y +2 ri..) , § d.d.{<(x),v*')}DU = { -  V i V
¥ ‘V 2\ j>,b 9 / ( r * +2V a b i y , 

d(d-l) d(d-l)
(2.3.9)

which will now be used to give the mode coefficient quantisation. Again the mode 
expansion must be determined subject to the constraints given by the equations of 
motion and the gauge conditions. The mode expansion is easily seen to be of the 
general form,

V /x) = Jdk {a^k)u£(k) elkx + a£(k)u*x(k) e * * }

(2.3.10)

where the polarisation spinors must satisy the conditions,

i i f tk )  = kmu*(k) = Y"u£,(k) = u£(k) = 0 (2.3.11)

and the polarisation states satisfy the normalisation conditions'42̂

ujj(k)yvUp(k)T|MP = - 2 5 ^ k v (2.3.12)

where the projection operator is defined,

P..(k) = uf(k)u’‘(k)

which satisfies the usual projection operator rules. The solution for this in the four 
dimensional case is given in reference [42]. The mode coefficient algebra when 
quantisation is performed, is,

{ ax(k) , a^k ') } = { a+(k), a+(k’) } = 0

{ ax(k) , a£(k’) } = 5u .8(k - k’) (2.3.13)
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The propagator can now be found by straightforward manipulations, as in 
the case of the spin-1/2 field given above. The propagator is defined to be,

Gv(x - x’) = <  0 1 T ( v j ( x )  ? v (x ')) I 0 >  (2.3.14)

which can be evaluated by the standard methods used above. The mode expansion is 
inserted in the definition of the time ordered product, and the normalisation 
conditions used to obtain the standard invariant functions, similar to the integrals 
found in the definition of the spin-1/2 propagator above. Finally the propagator is 
found to be,

This form of the propagator can be seen to be very similar to the form derived using 
a covariant gauge choice in Appendix Two, when the projection operator of Das and 
Freedman^is used.

The covariant gauge choice is the most convenient for amplitude 
calculations, and so the propagator used in these calculations is,

which agrees with reference [43]. The higher derivative corrections to this are 
included also in Appendix Two. The subject of higher derivative quantisation will 
now be addressed.

Section 2.4: The higher derivative case.

This problem has been discussed in some detail by several authors 
Many of these attempts are not made in a language suitable for the work contained in 
the rest of this thesis. The problem of higher derivative quantisation will not be 
clarified completely by any work presented here, but the approach to the derivation 
of the propagators for higher derivative theories in general, which is used 
throughout this work, will be justified on the grounds that this approach is 
asymptotically correct in the limit when the parameter controlling the higher 
derivative parts of the action is chosen to makes these terms vanishingly small, and

(2.3.15)

T C ( k ) = - M  yvi t v 6 ( V k }
8 k k

(A2.3.14)
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provides some means of getting amplitudes for these theories. A simple example will 
be sufficient to outline all the problems of higher derivative quantisation, as well as 
giving some idea of how the problem is solved. Only a sketch of the calculation will 
be provided as a detailed treatment lies outside the scope of the work of this thesis.

The action that will be considered as the toy example will be the higher 
derivative Lagrangian for a massless scalar field, where the higher derivative 
correction is introduced with the dimensionful parameter r|. The action is,

and now the problem is how to construct an Hamiltonian and Poisson brackets with 
which to go over to a quantum theory. There are two well known approaches. The 
first approach, and the one which will be followed here, is due to reference [45]. 
The other approach is to separate the single variable (j) into two new variables, whose 
equations of motion are the separate differential operators in the product (2.4.1) and 
to quantise these. The problem with this method is to define the reverse change of 
variables from these two new variables to the original physical variable. The 
problems of this approach will not be addressed here.

The first approach deals with the introduction of a new, dummy, variable 
which allows the definition of the canonically conjugate momenta for the theory, and 
thus the simple definition of the Poisson brackets. Explicitly the new variable 
introduced is,

* = (dn<l>)2 + t\ & ^ ) 2 (2.4.1)

0  =  3 0(j) =  - 3°<j) (2.4.2)

which allows the canonically conjugate momenta to be defined,

n = ^ = - 2 )̂ = - 2 0  
5 < j>

I  = & L = -2t\Q 
50

(2.4.3)

and thus the Hamiltonian is seen to be,

OC = - 7i2 - (3J>)2 + L + 2tI (3m6)2 -11 (3m3n<|>)2

(2.4.4)

The definition of the 0 variable can be rewritten as a primary constraint,
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=  7t + 20 ~ 0 (2.4.5)

which is first class with itself, implying that there must be a secondary constraint 
generated by the relation,

®2 = {® 1 .X  }

= ^ + 2ti amanaman<t) - 2  ~ 0

(2.4.6)

which is second class with the primary constraint, and so there are no more 
secondary constraints. The constraint algebra is,

{ *!.«> ! } = { ® 2 .® 2 } = 0  

{ o , , o 2 } =  1 -  2 a ma m +  2 n  dmdmdnd"

(2.4.7)

where the Dirac delta functions are left implicit. (They may be reintroduced trivially). 
This algebra is trivial to invert, and is not demonstrated here. Thus the Dirac 
brackets for (j) and 7t are,

{ 4>(x),tc(x') }Dlt=t.= fdd lk ------ ------1—  ------e1- ( i " )
J (2rj k  +  2r| (k ) +  1)

(2.4.8)

which now allow the quantisation to be performed with respect to the quantisation 
condition of equation (A3.2.11). The standard procedure for field theories will be 
followed here. The general solution of the equation of motion for the § field can be 
seen to be,

d-i ioV

= f d d T { t ------11 —  J 6 ""  + (comPlex conJugate) }J 2(2k) “ k cok
(2.4.9)

where the ci^and ci  ̂coefficients are defined to be,
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C0k =  lkl , fflk =  ( lk l2 +  l ) I/2

where some obvious Dirac delta function manipulations have been performed. The 
quantisation of the mode coefficients can be attempted now. Immediately it is 
obvious that the time dependence of the commutator will not completely cancel out, 
as would be necessary to be consistent with the Dirac bracket definiton in (2.4.8) 
above, unless the quantum algebra separates completely. Unless this is the case, 
there will always be residual mixing terms which contain a factor of the form,

in this approach to the quantisation, indicating an inconsistency in the oscillator 
interpretation of the quantum field theory. Assuming the seperation of the two 
sectors of the algebra, i.e. the a and b oscillators commute with each other, allows 
the commutators to be solved and the propagator found. This is trivial to perform, 
and will not be made explicit here. It is shown in reference [44], (although they take 
no account of the Hamiltonian constraints in the quantisation) how this may be done.

How can the tedium of this procedure be avoided? The only reasonable way 
to get around this problem is simply to ignore it. The solution would seem to be to 
ignore the problems of the quantisation, and to simply equate the (Feynman) 
Green's function for the equation of motion, defined to be,

with the propagator, defined by the standard operator product which stems from the 
Wick expansion. This is the solution which is implicit in the functional integral 
approach of Appendix Two. This is also the approach adopted by most of the 
workers in the field at the present time, as is seen in references [58-61]. It would be 
reasonable to assume that the procedure followed above will generalise to the 
fermionic cases mentioned above, as well as to the graviton.

1+ e
CD,k

(2.4.10)
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Chapter Three.
The Interacting Field Theory I: 

The Lowest Order.

Introduction.

In this chapter the first aproximation to the full interacting field theory is 
stated and the corresponding interacting quantum theory is constructed. The unusual 
features of Majorana field theory are noted and their consequences derived. The 
procedure used will be that of standard canonical field theory. The interacting field 
theory can be constructed using the Noether method and can be seen to be simply the 
ten dimensional N=1 supergravity theory coupled to N=1 super Yang-Mills. This is 
just the modified non-abelian form of the action derived by dimensional reduction 
from N=l, d=ll supergravity in reference [6] to give the Einstein-Maxwell theory, 
derived in reference [7], where the addition of an extra Chem-Simons three form 
term co3Y is used as the non-abelian generalisation of the abelian coupling of the 
Maxwell field to the antisymmetric field a^v of reference [6], which maintains full 
gauge invariance and supersymmetry of the action. From now on this form of the 
action will be referred to as the Chapline-Manton action. This action is,

1  = ' J  eR' I e - j  e f 3/2 fapyfaPT - j  W  V

'  kT 6 e

+ ^ e f 3\ p r  { ? n / rafiY'Vv + 6 y V V - /2VnYaPxA  }

where,

f _ -\ 3Y
aPy ~  [aapy] ^apy

(ignoring both the Yang-Mills sector and the four fermi terms) where it should be 
noted that the action is supersymmetric with respect to the transformations, (again 
ignoring the Yang-Mills sector of the theory),

gen̂ = i g y nv  ̂ _ g ^ . J ^ L g ; ^

§ V  = ̂  <|>3/4 { eŷ Vv - eYvVn - ̂  e Y ^  }
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8Vt* = V '  T^32 ^  - 5 5“/ Y)eXyaPrX 

+ ^  { (V .T m n ^ e  + (X y^ey/""^ + 2 ( y ^ e  - 2 (Xe)yM + 4 ( y ^ m e )^ }

Unfortunately this action is anomalous. The Green-Schwarz anomaly cancellation 
mechanism^46] is further necessitated by the addition of the Lorentz Chem-Simons 
three form term of the form,

r.v*L — Jo I  p mn m nm 2  ma<v.ab<v.bm 1
ctpY I K[a3 “ yI ‘ 3 [a 3 WY] >

to the definition of the three form field strength,

GaPY = a[aaPY] + WoYpY'T“ aPY

which unfortunately breaks the supersymmetry of this action. The form of this 
Chem-Simons term in the effective action can be explicitly checked by an amplitude 
matching calculation as carried out in Appendix Five, and the amplitudes calculated 
from the string can be seen to agree with those calculated from the form of the action 
stated here when the y factor takes the value y = -1/4. The discussion of 
supersymmetry and how it can be retrieved will be discussed in the next chapter, 
when extensions to this Lagrangian will be discussed. This chapter will deal only 
with the lowest order action given above and will ignore any of the more 
sophisticated aspects of the symmetries of this Lagrangian. The quantum theory will 
be set up using a neat formalism for the Feynman rules which is facilitated by the 
choice of Majorana fermions, which greatly reduces the amount of calculating 
normally required with Majorana field theories^47]. Throughout the restriction will be 
made to the graviton and gravitino fields, though the generalisation of what follows 
to the remaining fields in the theory is similar in procedure to that used below, due to 
the tedious nature of the calculations.

Section 3.1: First Steps: The Canonical Approach.

The construction of the interacting field theory described below shall follow 
(slightly pedantically) the standard canonical approach138̂  The basis of all
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perturbative field theory is the S-matrix and the LSZ reduction procedure^48! dealing 
with the perturbative solution of scattering problems. This standard perturbative 
method of solution is well known, and consequently need not be described in depth 
here. It will only be necessary to state some fundamental things which will be 
needed throughout.

The whole limiting approach of the LSZ procedure is given by the formal
limit,

I out >  = S 11 in >  = S +1 in >

I in >  = S I out >  (3.1.1)

where S is the scattering operator which can be shown to be solved by,

S = lim U(t)
t —»+°o V 7

where in terms of the incoming free fields. The time evolution operator U(t,t') is 
defined to be,

t'
U(t’,t) = T exp { -i Jdt Jd9x 3C(x,t) } (3.1.2)

t

where 3C(x,t) is defined in terms of the free incoming fields,

tt(x,t) = 0C((|)in(x,t),7Cin(x,t), t )

and where,

U(t) = lim U(t,t’)
t '—»-oo

From the standard form of the LSZ reduction formula it can be seen that a scattering 
amplitude is defined by,
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< p 1,...,pn ou tlq1,...,qmin >

„-l/2.m+n f ,10 ,10 ,10 ,10= (iZ  ) Jd xr ..d xmd yr ..d yn x
m n

xexp{ i ^ q j . x . - i ^ P j . y .  } x
1 1

x KXi.. .KXmKyi.. .Ky <0IT(<Kyi). • -<|)(xm))IO>

(3.1.3)

for some general bosonic field <t>, where the K's are the free field equations of 
motion and where the factor Z is the standard normalisation factor relating the 
interpolating interacting Heisenberg fields <f> with the incoming free fields <J)in in the 
weak relation,

<t>(x) -> Z1/2(j).n(x) as x°—> - (3.1.4)

There also exists the analogous result for fermions,

< p '1,...,p ,„,p1,...,pm I q'1,...,q 'a,q1,...,qb>

..—-l^.n+a. .„-l/2.m+b f ,10 ,10 / • V'1 . . . i\= (iZ2 ) (-iZ2 ) Id xr ..d ybexp ( -1  2)q.y + q .y - p.x - p .X  )x

x u(pj) K .. .<0IT( {Tj/Cx’pxj/CxpvCy’j^Cyj)} )I0> ...Kv(qb)

(3.1.5)

for some general fermionic field \|/, and where the K's denote the fermionic kinetic 
operators, and primes denote anti particles in the incoming or outgoing states. These 
can be recast by substitution of the expansion,

G(xr ...,x2n) = £ ^ - J d 10y i...d10yp x
p = 0

X <  0 I T { ♦JX j)... 4>fa(x2n) Xint(yi) . . . I int(yp) } I 0 > (1)

(3.1.6)

where G(x1,...x2n) = <  0 IT(<J)(x1) ...<J>(x2n)l 0 > , and where the superscript (1) 
denotes the fact that when Wicks theorem is applied, only the connected terms are 
kept.

It should be noted at this point that the extended theory described in the
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following chapters will have higher derivative correction terms added to it, which 
will modify the propagators derived in the previous chapter. However it will be 
shown in the next chapter that these propagator corrections do not alter the 
fundamental structure of the LSZ procedure discussed above. It will be shown later 
how this pedantic approach can help in the discussion of possible field redefinitions 
in Chapter Six.

Using Wick's theorem allows the expansion of the various contributions to 
the amplitude into products of two point functions corresponding to connected 
Feynman diagrams. However at this point it should be noted that the Majorana 
definition of the fermions means that two point functions of the form,

G’ = <  0 I T( \ ) I 0 >  

are related by constant matrices to the standard propagator,

G = <  0 1 T( Xa Xb) I 0 >

= - i ( ( l + Y n )J)abGF(x -x ’) (2.2.36)

This means that there appears to be a considerable increase in the number of 
contributions to the amplitude since many of the fermion contractions which 
normally do not contribute in the Wick expansion, now do so. However if these are 
examined more closely, it can be seen that a remarkable simplification can be made. 
It is easiest to see this using a simplified form for a general Majorana fermionic 
action. Consider a toy interaction Lagrangian, defined in terms of the free 'in' fields,

=\ir. f\ir h. + \if. g \ir h. h. + q h. h. h.toy ” m t in m t ino r in in in -i m in in

(3.1.7)

where all unnecessary indices have been dropped, and all gamma matrices and
partial derivatives have been taken up into the internal f, g and q factors. This means
that the Green's function for \j7-\|/-h-h scattering in terms of these generic fields can 
be written in the form,

G(Xj x4) = <OIT(\j/tv 2h3h4exp {ijdy Xtoy(y) })I0>

(3.1.8)

which can be written in the form (suppressing the y-integrations for clarity),
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OO P
<0iT(vl¥2h3h4 £  1 .  Xtoy(y1)...X,oy(yp))l0><1)

p = o
(3.1.9)

which can be written out explicitly to lowest order in the expansion parameters, 
where a subscript i=l,...,4 denotes one of the external fields where the variable 
will be integrated over in the LSZ formulae (3.1.3) and (3.1.5) above, and where a 
superscript j= l,— denotes the internal vertex point which will be integrated over in 
the evaluation of the Green's function. Because of the (1) only connected terms will 
be kept. The derivation which will now be given will be for one of the simpler 
cases, but it can easily be modified for one of the more complex terms in the 
expansion, (the Bom terms for example). The case discussed will be for the simple 
point diagram,

which can be seen to originate from the g factor in the interaction Lagrangian above. 
The contribution to the Green's function due to this term can be written explicitly as 
(again suppressing the y-integrations for clarity),

<OU(y1v 2h3h4y 1gy1h1h1)IO> (3.1.10)

and now Wick's theorem can be applied. The Majorana nature of the Fermions 
means that there are now four distinct terms, as opposed to the normal two terms 
which would occur in a normal field theory containing Dirac fermions. These are 
explicitly (ignoring for the moment the somewhat superfluous graviton terms),

conxijijViyj/'g ¥ ')io>

= <OIT(¥ l v 1)IO>g<OIT(¥ V 2)IO>

- <OIT(¥2\j/1)IO>g<OIT(¥ 1¥ l )IO> (3.1.11)

w here the two new  factors are the con tractions < 0 I T ( \ j / 1\j/2 ) ,0^> and 

<OIT(y1\j71)IO> which are related to the standard propagators by the relations such
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a s ,

<OIT(y V 2)|0> = - y> <0|T(\|/2\j/1)l0>

= - 7° Gv(2,1) (3.1.12)

The extra matrices can be taken through the Green's function calculation and 
combined with the definition of the g factor to define a new g factor, g defined by 
the relation,

g = 7°gY  (3.1.13)

where the transpose refers to the transpose of gamma matrices with respect to the
spinor indices, and from which it can be seen that the two extra new product terms
can be included into the two standard terms by noting that,

G ^ l . i y y V  Gv(2,l) = G¥(2,l) g G ^ l .l )  

and so the Green's function can be written in the form,

■Gy(2,l) { g + g } Gv(l,l)  (3.1.14)

By redefining the vertex in the symmetrised form,

VagvJ h 'h1 = 1  { vgagvj, + ij/‘ yW V I  } h1 h1

= J  { + ¥bSVa 1 1,11,1 (3-1-15)

where it is noted that the a and b indices are introduced to keep track of the spinors 
in the calculation, it can be seen that the Green's function can be evaluated in terms 
of this new vertex factor by treating the fermions as ordinary Dirac fermions. So it is 
possible to see that the number of Feynman diagrams that have to be evaluated for 
Majorana fermions can be drastically reduced. In general it can be seen that pairs of 
Feynman diagrams combine to form 'symmetrised' vertices in this manner. In fact it 
is easiest to 'symmetrise' the Feynman vertices derived from the Lagrangian before 
calculating the amplitudes and then proceeding as in a normal field theory, which 
contains only Dirac fermions, but taking care to modify the Feynman combinatorial 
factors associated with each of the separate Feynman diagrams. This clearly depends
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on the weight convention chosen for the 'symmetrisation' of vertices.This is the 
procedure that will be adopted throughout this chapter, where the weight one 
convention has been adopted.

Section 3.2: The Fevnman vertex rules.

The Feynman rules for the Chapline-Manton Lagrangian can now be 
derived, noting that in general a 'weight one' convention will be chosen for the 
vertices, in that given an unsymmetrised (generalised) vertex term,

Vif ¥ 2(h3 + h3.h4 + . . . )  (3.2.1)

the symmetrised form of the vertex will be,

j  ( ? !  f  V2 - V2 f V, )•( h3 + h3.h4 + . . . )  (3.2.2)

where the f has the obvious spinor conjugate meaning as defined in Appendix Three 
and as shown above. The weight one convention is not universal throughout this 
work but the cases which do not observe this convention will be explicitly stated 
when they arise. The action written above is the full gauge covariant form of the 
action, derived using the Noether method on the linear action stated in the previous 
chapter. It is necessary to consider the symmetric tensor field used in the previous 
chapter as the quantum field, propagating in some background which is the same as 
the string. To proceed it is necessary to determine the form of the background field 
expansion used in the construction of the Feynman vertices involving gravitons. The 
correct form of this expansion is given by the definitions,

S/J.V ~' l̂fxv frjiv (exact), 

g =T| -h  +h hp + ... (3.2.3)

and for the vielbein,

+ -■i-hmn h ;  + ... 

e"m = 5"m- i h l  + | h Un hnm + ... (3.2.4)

which allow the expansion of all the terms in the action. The definition of the 
expansion of the vielbein is Lorentz symmetric, that is it is symmetric if it is
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transposed as a matrix with two Lorentz indices in the sense of equation (3.2.5b) 
below. This is due to a symmetric gauge choice for the vielbein, that is, a choice of 
tangent frame in which the vielbein is a symmetric matrix. It is then necesary to 
prove that there exists a transformation of the vielbein given by the Lorentz 
transformation L,

where the e' matrix is Lorentz symmetric. (By Lorentz symmetry it is meant,

where M is a matrix with two Lorentz indices.) If so, it is trivial to show that there 
must exist a Lorentz transformation matrix which satisfies the condition,

which is trivially possible in two dimensions. It is possible to show that this is also 
true in any dimension. The proof consists of the construction of a Lorentz 
transformation matrix L which satisfies (3.2.6). This proof begins by noting that the 
metric for the theory is defined by the relation,

t rn /y \irie  ̂= (Le ) ^ (3.2.5a)

(3.2.5b)

eT = rjLeLrf1 (3.2.6)

(3.2.7)

and there must exist an Lorentz matrix Lj which satisfies the relation,

L^gLj = diag(dp ...,dd) tj (3.2.8)

and so defining the diagonal matrices,

d =diag(dp ...,dd)

/d  =diagC /d^,...,/dJ)

- L  =  d i a g ( ^ —  , . . . ,  ) ( 3 .2 .9 )

the expression (3.2.8) can be rewritten,
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-p L je TTleL-L = 'n 
Vd ’7d

(3.2.10)

which implies by definition that the combination eL^Vd)'1 must be a Lorentz
transformation matrix. There must therefore be a Lorentz matrix L2 which is equal to
this combination above. This implies obviously,

e = L2y d r i1LjTi (3.2.11)

which can be rewritten in the new form,

e = L ^ L jT iL j/d  TV^Ti (3.2.12)

by exploiting the invertibility condition, and the Lorentz definition of the matrix L1?

T 1 - I t tLi = ti 1L1ti

The matrix L2L 1 is clearly Lorentz since both Lj and L2 are. Therefore it is now 
possible to write,

eT = (Ljti'L^TiLj/d ir'L jti)7

= Ti(LjTi‘1L^ii)L27 d Tf1Ljri(L1Ti'1L2r|)T|‘1

(3.2.13)

which is exactly what was required to be proved, by defining L = L ^ ^ L ^ r i  and 
comparing (3.2.13) with the definition (3.2.6).

It can be seen that the expansion of some of the terms in the nonlinear action 
to two or more gravitons will be extremely complicated, and some form of 
simplification is desireable in these higher order cases. To facilitate this a truncation 
procedure is used. For bosonic vertices this is based on the observation that any four 
point amplitude, in both string theory and field theory, can be expanded as a 
polynomial in the Mandlestam variables^51’58’591 s, t and u, which are defined in 
Appendix Three. It is possible to choose the highest order term in these variables 
and use this term only in matching procedures between the string theory and field 
theory. This is clearly necessary. It is also believed that the choice of matching to the 
highest order term is sufficient due to reasons of gauge invariance of the amplitude 
and unitarity of the amplitudes. No explicit proof of the sufficiency will be provided
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here, as no proof is known to the author. So only terms in the Feynman vertices 
which can contribute to the highest order terms in this polynomial expansion are 
kept, and all other terms are discarded. Essentially the procedure is as follows: since 
it can be seen that all momentum terms in the truncated amplitudes are taken up into 
terms of the form k^kj, (with the possible exception of one momentum left over in 
the case of fermionic variables: this case will be dealt with in detail later), then it 
can be deduced that the terms which give contributions to terms which contain 
contractions of the form kj.£j can be omitted when it comes to the construction of 
amplitudes for the matching procedure, since only the highest order terms are being 
considered. This reduces most of the vertices to a more manageable scale. It is now 
possible to derive only the parts of the Feynman vertices needed in the construction 
of these highest order terms in the amplitudes.

Calculation of Fevnman Vertices.

Since only \j7-\|/-h and \j/-\j/-h-h scattering processes will be examined in any 
detail in what follows, the restriction will be made to the vertices which can possibly 
contribute to these. It can be seen that the only contributions come from the 
sub-action,

I  = - y e R - l e \ j ^ / vpi)v \|/p (3.2.14)

each of whose terms will be treated in turn below. The bosonic vertex and fermionic 
vertices will be treated seperately. The fact that no other fields, for example the 
antisymmetric tensor, do not contribute to the scattering amplitude will be discussed 
in detail in the section dealing with the calculation of the amplitudes.

Bosonic Sector.

It can be noted that the two standard definitions of the Riemann tensor, 
given in terms of the Riemann-Christoffel conectiont49,50̂

r£„ = j  gp11 { dv &,n + gvn - g(iv } (A3.4.1)

and the spin connection^,

o*™ = 2 ev[m3 ^ e 'v] + 3[pepo]ew ep"e“  (A3.4.3)
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can be shown to satisfy,

R(1vV) = epmean Rtlvmn(o)) (3.2.15)

by a straightforward but tedious calculation. This implies that it is adequate to 
consider the simpler form of the Einstein-Hilbert action in terms of the 
Riemann-Christoffel connection when performing the background field expansion. 
Noting that the Riemann-Christoffel connection can be written,

(3.2.16)

and that,

= 1 + 1  tr(h) - i  tr(h2) + 1  (tr(h))2 + 0(h3)

(3.2.17)

it is possible to expand the Einstein-Hilbert lagrangian to three gravitons. This is a 
tedious procedure in full generality, and will be easier if the vertex is derived with 
some regard to the amplitude it will be used to calculate. By this it is meant that if the 
amplitude is that of three graviton scattering, for example,

then it is easier to evaluate the appropriate vertex using the equations of motion to 
simplify continuously as the vertex is expanded. It is also useful to invoke the 
amplitude truncation procedure as the vertex is being expanded, in conjunction with 
the simplifications mentioned above. It is easiest to see this procedure in action, and 
so the two three graviton vertices will be derived and the simplifying conditions 
which are applied will be done so explicitly. The amplitudes that will be calculated 
are h-h-h all on-shell (as an introductory excercise) and h-h-h with one graviton 
off-shell, which contributes to the \j/-\j/-h-h amplitude through diagrams of the form,
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This is the only place where the pure graviton coupling is needed. It can 
also be seen by inspection of the action that no other bosonic field couplings of the 
diagrammatic form,

need be considered. There are several reasons for this:

i) a -̂.field: There is no 0(a'°) a-h-h coupling as can be seen by examining 
the Chapline-Manton action. There does exist a \j/-\|/-a coupling at the 
0(a'°) level, which might give a contribution in O(a') diagrams. This point 
will be discussed in the next chapter, where it will be shown that there are 
again no a^v exchange diagrams.

ii) <|) field: From an inspection of the Einstein-Hilbert and Rarita-Schwinger 
parts of the full Chapline-Manton action, and by a consideration of the 
global scale covariance of the action, as detailed in reference [52], it can be 
seen that there are no h-h-<|> or \j7-\|/-<|) couplings at 0(a'°).There are 
therefore no dilaton exchange diagrams in the evaluation of 0(a'°) or O(a') 
amplitudes.

The first term to consider is the three graviton coupling where all the fields are on 
shell, and where truncation is inappropriate. In this case the free field equation of 
motion can be applied to all of the fields in the Feynman vertex; that is if the equation 
of motion should arise naturally acting on one of the fields of the vertex, then that 
term in the expansion can be discarded. The justification for this is simple to see by 
considering a vertex of the form,

vj/1 f(Y ,h ) \|/ ( 3 .2 .1 8 )
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which can be replaced in the Green's function in equation (3.2.14) and where this 
form can be replaced in the LSZ formula,

J d x ld y  eik-x u ( k ) t x< O IT (v(x)\j/(y )^y )I0>

where the Wick expansion has been implicitly performed with respect to an external 
fermion field, and the restriction to only the necessary fields for this discussion has 
been made. The propagator can be replaced in this expression to give the equation,

fdxfdy eik,x u(k)3xGv(x,y)9y (3.2.19)

and where the left derivative acting on the Green's function G^(x,y) gives,

? xGVJ/(x,y) = 8(x-y) (3.2.20)

the right derivative can then be applied in turn to give,

Jdy elkyu(k)^y

= fdy eik yu(k) I  =0 (3.2.21)

It can be seen from this derivation, which has been performed for the fermionic as 
opposed to bosonic case, which is completely analagous, that it is possible to ignore 
terms in the vertex which contain fields that are acted on by their appropriate kinetic 
operator, and which are connected to 'external' fields. This allows the final vertex to 
be written in the form,

i  { h V S A h p r l b V V a V }  (3.2.22)

which enables the final answer for the amplitude to be calculated, which is,

( C C  + C C >  V l a kla + (cyCl'C Perms of 1’2’3)

- J  ( C C  + C C ^ l p o V l a  + (CyCliC perms 0f U 3 )  1
(3.2.23a)
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It can be seen that this corresponds to the string amplitude up to an external constant. 
Using the techniques described in Chapter One, the string amplitude can be shown 
to be,

p a  a P

Cl C2 C3 .(ki0Tlpv + ^pTIva + x

x ^lp^aja + ^2a*Vp (3.2.23b)

These amplitudes will be used in the calculation of the y factor mentioned 
above described in some detail in Appendix Five. They will be used to determine 
the normalisation of the string amplitudes used in that calculation.

The first example of the use of the truncation procedure will be the 
calculation of the vertex,

which will be necessary in the amplitude calculations later in this chapter and in the 
next chapter also. The procedure is similar to that used above. The same expansion 
of the Lagrangian to three gravitons as used in the derivation of equation (3.2.22) is 
used, and in each term of the expansion each graviton is taken off shell in turn, (this 
term being denoted by the underlined h), and the truncation procedure applied to the 
remaining gravitons. This explicitly means eliminating all terms that contain an 
on-shell graviton contracted with any derivative as well as using the equation of 
motion when it occurs, for example,

would be eliminated, which can be shown to bring the vertex into the form,

( 3 .2 .2 4 )
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which is the form that will be used in the amplitude calculations below. The standard 
weight one convention has been broken here so as to agree with the work of 
reference [51]. It is now possible to consider the fermionic terms. It should be noted 
that this violation of the weight one convention is an isolated occurence.

iil Fermionic Vertices.

In this subsection the same procedures used in the bosonic vertices will be 
applied to the case of the Rarita-Schwinger action, when the background field 
expansion is applied to it, and the three point and four point vertices calculated.

The massless Rarita-Schwinger action is given by considerations of local 
gauge invariance as stated in Chapter Two and explicitly in references [40,43], and 
can be written in the general covariant form,

\ =  - J % / Vp 2 v v p

where it is assumed that the vy's are Majorana-Weyl and are quantised as in the 
previous chapter, and where the covariant derivative is given by the definition^501,

\  Vp = ^  Vp + r n Vp - (3.2.25)

and when replaced in the action term reduces to the form,

apVp^nVp+jYm YnVpV"" (3-2.26)

by the skewsymmetry of the gamma matrix factor, and where the definition of the 
spinor connection has been used. It should be noted that the gamma matrices are 
defined to satisfy the Clifford algebra,

{ Yp-Yv } =2gpV (A3.1.8)

which will be important in the background field expansion discussed below. As can 
be seen above, the spin connection Tp is defined to be,

rp= jYmYnWp"” (A3.4.14)

which is fully consistent with the use of the Riemann-Christoffel connection in the
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definition of the full covariant derivative defined above, and where the gamma 
matrices ym and yn are flat space gamma matrices which satisfy the flat space 
algebra,

{ Tm ’ Yn 1 = ^ T|mn

It should be noted that this definition of the covariant derivative of a 
gravitino field loses the rather nice 'formlike' geometric feel to the action, which has 
become increasingly popular recently. The notation of introducing an x-dependence 
to the gamma matrices will be used as a method of keeping track of the graviton 
expansion of the gamma matrices as in equations (3.2.28-29) below. The 
convention will be that a gamma matrix which has an explicit x-dependence will 
contain gravitons implicitly, as implied by the curved space form of the Clifford 
algebra, (A3.1.8), and no explicit x-dependence will imply that the background field 
expansion will have been performed on that particular gamma matrix. Thus it is 
possible to write out the full form of the action,

\  = ~ j  { %  / (x)Yv(x)/(x) 1) v\|fp - \jfp / (x) 3) v\|/p gvp

+ %  YVW  ̂  vVp “ %  Yp(x) 15 vVP }

(3.2.27)

As stated above, the introduction of the x-dependence of the gamma 
matrices is used to record the status of the gamma matrices with respect to the 
background field expansion, since by the right hand side of equation (A3.1.8) there 
must be gravitons associated with the gamma matrices. The symmetry of the 
Clifford algebra implies that the background field expansion of the gamma matrices 
is,

Y/x) = YM + jY mh " -^ Y mh > ;  + 0(h3) (3.2.28) 

and the obvious dual definition is therefore,

/(X ) = /  4 ^ ” h™ + 8 ^ h"m h" + 0(h3) (3'2'29)

which will be the most useful definition in what follows.
It is now possible to perform the background field expansion on the action
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as given in equation (3.2.24). All the necessary expansion definitions are given 
above.

As in the bosonic case it will be easier to apply a cumulative simplification 
procedure as a derivation proceeds. This will allow the selective 'pruning' of terms 
which vanish because of the gauge conditions or the equations of motion, or even 
the application of some truncation procedure. The truncation condition which can be 
seen to be the most convenient, and which is consistent with the bosonic truncation, 
will be a generalisation of the one used in the bosonic case above. This will be 
discussed in the section dealing with the construction of Feynman vertices for the 
evaluation of Bom type graphs. For the moment, however, it will be adequate to 
consider the equations of motion and gauge conditions. The gauge conditions used 
here are defined by the gauge fixing term,

V = i W / ^ V V p  (3.2.30)

which can be seen to be different to the conditions used in the canonical quantisation 
procedure. This is not a cause for worry due to the manifest gauge invariance of the 
theory, allowing an arbitrary choice of gauge to be made and the propagator used 
being modified accordingly as in reference [42]. The gauge choices used above will 
be the easiest for the calculation of Feynman diagrams later in this chapter.

The first vertex which will be calculated is the three point vertex which will 
be used in the calculation of the three point \j7-y-h scattering. In the case where all 
the fields in the vertex "connect" directly to external fields, in the manner of the LSZ 
formula, then it can be seen (by a tedious application of the LSZ formalism, as in the 
case of the graviton above) that all the fields in the vertex which are acted upon by 
their equations of motion, or by their gauge conditions, can be neglected. This 
allows great simplifications to be made. It is possible to eliminate all terms which 
contain contributions of the form,

andJ\|/

as well as all terms containing the terms,

y .\\f, \j?.y, d.\\/ and \j1%

It can be seen that the final form for the vertex is,
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J { f d p/  hP0 - VVfyVn hP0 - V Y fy > /h op }

(3.2.31a)

which can be recast in a more cyclically symmetric form,

\  {¥nY53 p 'A P<r + vY V pdpl^, + 9V ' / ’Vphop }

(3.2.31b)

by some partial integrations. The remaining vertices all require a discussion of the 
truncation procedure. The procedure used in the fermionic case is very similar to the 
procedure in the calculation of bosonic amplitudes. It should be noted that the spinor 
fields have dimension V2 and consequently there must always be one fewer 
momentum contribution to any fermionic amplitude containing two fermions as 
compared to a similar amplitude where the two fermions are replaced by bosonic 
fields. The y-y-h-h scattering amplitude will only have one free momentum 
contribution, as compared to h-h-h-h having two. So the expansion of the amplitude 
as a polynomial (of at best rational functions) of the Mandlestam variables is 
complicated. However it can always be seen that one momentum in any amplitude 
always occurs in a contraction of the form,

u...k ...u£C

which enables the truncation procedure to be modified. The convention is that all 
contributions to the amplitude that contain terms where a polarisation tensor or 
spinor contracts with either an associated or non-associated momentum are 
discarded. For example, the matching of the four point amplitude contribution,

^ ( V  * 3 ^  C V V s v

is discarded, since it does not contribute any more information than the highest order 
terms in the Mandlestam expansion. This truncation procedure will now be applied 
in the calculation of the remaining three point vertices. These are i) the graviton 
off-shell vertex, denoted diagrammatically by,
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which is used in the construction of diagrams of the form,

and ii) the y -y  off-shell vertices, where the y  and y  fields are taken off-shell 
separately, and where the technique of vertex symmetrisation is employed. These 
vertices are used in the construction of diagrams of the form,

Each of these vertices will be considered in turn, i) The graviton off-shell vertex is 
simplified greatly by the observation that both the \j/ and y  fields are on-shell and 
their equations of motion can be invoked to provide great simplifications. In fact it 
can be seen that the only remaining contributions from equation (3.2.27) are,

- \  { VtJ v00X ')'p  £ *  + j  Vp yvYmY„'/13[" hvml }

(3.2.32)

which can be simplified further by employing truncation on the y  and y  fields. The 
remaining contribution is,

j  { VpY'Sv V  - dv¥p f  V* } hnv (3.2.33)

which has been skewsymmetrised for the calculation of amplitudes in the next 
section, ii) The remaining term to consider is the \jTy off-shell vertex, which is the 
most difficult so far. The vertex contribution can be simplified most by first 
invoking the truncation procedure on the graviton contribution, as well as the 
equation of motion and gauge conditions. This gives a ’pre-vertex’ of the form,
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J { ( 2 V / / Y„Vm - V p/ym7n/  - VVnJnYVo 

- 4 VPY[nVm]) 3 \ m

+ 2 % Y Y f ’̂ pVoh^ + 2 \ j ^ / /  f9pVoh°s

- 2 V p'T^p'/hj1 - 2 v V 3 pVah°s + 4 Vp/SpVoh^ }

(3.2.34)

which can now be used to construct actual vertices by first symmetrising the vertex, 
and then choosing which of \jr or \|/ will be on-shell and applying the equations of 
motion, gauge conditions and truncation condition on it. When this is done the 
vertex takes the form,

J { j  Vpf/7°9p¥<! + 9°Vp /V o + ¥p /d p¥“ } -C
(3.2.35)

when \\f is taken to be off-shell, and where the other vertex for \jT off-shell is simply 
the conjugate,

~ J  { | - apV0 y ,/ f V p  + ? 0 'y“3<5¥p + 9 p ? a /V p  } C

(3.2.36)

There remains only one more vertex to consider. This is the four point 
vertex \j7-y-h-h, where all fields are on-shell, and where all reduction conditions can 
be freely applied to all fields. The Rarita-Schwinger action term can be expanded to 
two gravitons in the following manner,

Vp ( / VP(x))l2hX v P + ?P / Vp(* v)l2hVp

+ ¥ p ( r PW )lh(Sv)lhVp (3.2.37)

where it can be seen that each of these terms simplifies greatly after consideration of 
the equations of motion, gauge conditions and partial integration. Each term shall be 
considered in turn; each term will be examined in a little detail. The first term can be 
expanded to the form,
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V n /W / (x)f(x)apVo - Vp/(x)5pVi/agpo 

+ ? n / w a pV0g>” -% f(x)3pV<Jg,Ip (3.2.38)

where the two graviton fields must be taken out of the gamma matrices, which gives 
no contribution to the vertex, due to the truncation condition and the equations of 
motion. The second term can be expanded,

1 —Op . 1  n] i
4 V T Y m V M - j h  dph n + j h  3 hnp )

(3-2-39)

which gives the vertex contribution,

{ Jg WYmYnV<,hnm3ph^n + i \ j / PYmV„hnTI3mhrl(> }

(3.2.40)

It only remains to analyse the third, the most difficult and final term,

J  { VpY^X^X^XftmYnVo - Vp̂ xyYmYnVog'”

+ VpYP(x)YraY„V0gMO-¥gY,I(x)rmYnVog,lP } A  ”P

(3.2.41)

which reduces to the form,

{ - j  ¥pYPYPYnVmhp ̂  + J  V^YmYn/hp^ - I  V p fYmY„»ArP

1 —p <5 . O 1 — ,P P  1 ->n, m
+ 2-V  fYmYnVoh S + J  VpYnVmh )  3 hp

(3.2.42)

which is the contribution to the vertex. The total vertex contribution for the \j7-y-h-h 
vertex, obtained by summing all the contributions above is therefore,

-^ ■ v Y Y m Y n V o ^p N ” (3.2.43)
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which now must be symmetrised, and the overall action constant of -1/2 taken into 
account, to enable the construction of the \j7-\|/-h and \j7-\jf-h-h amplitudes. This will 
carried out in the next section.

Section 3.3 The calculation of the amplitudes

The Feynman rules evaluated rather tediously in the previous two sections 
will now be used in conjunction with the propagators described in the previous 
chapter to construct the amplitudes described in the introduction above. This will be 
done using the techniques outlined in the general discussion of Majorana field theory 
given above in Section 3.1. The 'corrected' combinatorial factors for the individual 
Feynman diagrams will be used, and the diagrams calculated. These amplitudes can 
then be compared with the string theory answers calculated in Chapter One. The first 
amplitude is for the \j?-\|/-h three point amplitude, and which can be seen to be given 
by the Green's function,

< O IT (\j> 1v 2h3\j/1f V 1h 1) I O >  (3.3.1)

which yields the amplitude,

'  y  • { ^2^Ul ^3o  ̂ + 2̂v̂ PM- ) )

(3.3.2)

after the application of Wick's theorem. It can be seen that this is identical to the 
string answer derived in Chapter One up to an external constant. This amplitude will 
be used in the normalisation of the extended O(a') amplitudes calculated in the next 
few chapters.

The \j7-\|/-h-h four point amplitude is a little trickier to describe. It is given 
by the Green's function,

<01 TfT jfjV jh^exp (i Jd x  X ^ )) I0>  (3.3.3)

which expands to the sum,
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i <01 T(\|/1\j/2h3h4\j/1g1\(/1h1h1) I0>

- "*<01 T(\|/1\|/2h3h4{ \jf1f1\j/1h1 + h 1h1h1p1 }x

X { T j / V y V + h V h V 1 } I0>

(3.3.4)

where integrations etc. have been left implicit for clarity. Each of these 
terms expands to give a set of diagrams, which obey the rules described in Section 
3.1 above. The use of the rules yields the amplitude as a sum of contributions, 
denoted diagrammatically in Figure 3.1, each diagram of which can be constructed 
out of the Feynman rules given above. These amplitude contributions will be listed 
in turn. These individual contributions repeatedly use identities to be found in 
Appendix Three.

i) graviton exchange diagrams.

There is only one such diagram that need be calculated,

which gives amplitude contribution,

^3 (3.3.5)

All other diagrams of the same form come from interchange of indices.

ii) gravitino exchange diagrams.

Here again there is only one such term that needs to be considered,
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Figure 3.1: The Feynman graph scheme for the calculation 

of the W -h-h 0(a'°) amplitude.



which gives the amplitude contribution,

(3.3.6)

where again all the other diagrams of the same form come simply from interchange 
of indices and the application of the spinor conjugation rules.

iii) point diagrams.

Again there is only one contribution that need be considered. This is 
obviously,

which gives the amplitude contribution,

(3.3.7)

These separate contributions sum, with respect to the scheme given above, 
to give the amplitude,
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16 ^  s  U2^'"^4‘ l t 3^m UIo " s  “ 2^  4_ l  3^m Ulo  ^ 3  ^4r|

+ [ f  3>Alra4  % / ( *  4-1 3^ %  ] C C

+ [ *2nf<* 4-t 3>V% - U2/ ( l 4.13)A , J C C  }
(3.3.8)

where the insertion of the gamma matrix identity,

n mn = y  { YmYn+YnYm }

has been used. This is clearly allowed within the constraint of the truncation 
procedure. It can be seen furthermore that this amplitude is identical to the truncated 
string amplitude up to another overall constant. This amplitude will also be used to 
normalise the corresponding higher derivative extended amplitude, in the amplitude 
matching conditions used in the next two chapters.
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Chapter Four.
The Interacting Field Theory II:
The Extended Chapline-Manton 

Action and Sunersvmmptrv.

Introduction.

In this chapter the supersymmetry of the Chapline-Manton action will be 
partially regained by the addition of various higher derivative terms to the action and 
then the corresponding O(oc') contributions to the amplitudes will be calculated and 
these compared to the string O(a') amplitude terms. This will hopefully be able to 
single out one of the two candidate actions discussed below. There are two well 
known supersymmetric extensions to the Chapline-Manton action. These are the 
actions of reference [52], (hereafter known as the Romans and Warner action), and 
the action of reference [53], (henceforth known as the Han et al. action). Each of 
these will be treated in turn and their amplitudes compared with the string to try to 
determine which, if either, can be regarded as the low energy effective field theory 
limit of the string.

Each of these actions has its distinguishing characteristics, which will be 
discussed at some length. It is in fact postulated by the authors of reference [52] that 
there exists some form of singular field redefinition which relates the two actions. 
This matter will not be discussed at any length in this chapter, though the subject of 
field redefinitions in the context of these actions will be discussed in a later chapter.

The procedure of Romans and Warner^52] was to apply a Noether technique 
to the problem of deriving what the extra terms should be to correct the 
superymmetry of the Lagrangian. It is first noted that the addition of the Lorentz 
Chem-Simons three form term to the Chapline-Manton Lagrangian in the form given 
above in Chapter Three gives an anomaly when the supersymmetry transformations 
are applied to the action. The anomaly comes from two distinct areas: the addition of 
the Lorentz Chem-Simons three form to the supersymmetry transformations of the 
\|/ field and X field, and by the variation of the Lorentz Chem-Simons three form in 
the Gapy terms in the action itself. It is necessary to introduce a small correction to 
the a^v supersymmetry transformation,

8 V =-2/ 2 y (  (SM[p c o ™  }

to restore the Lorentz covariance of the supersymmetry variation of GaPy. Up to 
quadratic order in fermion fields the supersymmetry anomaly is easy to calculate and 

can be seen to be,
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5 X = - e Y { f 3V W ae \

♦ £

+ I i f - ^ R> poap}

It is now necessary to postulate a set of corrections to the action, and corrections to 
the supersymmetry transformations which will eliminate this anomaly. Romans and 
Warner attempt to achieve the much more modest goal of cancelling the second two 
of these anomalous terms. They do this by adding general terms to the action of the 
form, (only some illustrative examples are given here),

= 2 e # 3M{ ' | P'u-WR3 "a+  ’■Ar. 'P' 3  + I

« ] * b , R « , !

and by correcting the supersymmetry transformations, by the addition of terms of 
the form, (again only an example is shown),

8 NV = f W { c]/° e J )pRa(I + c2yp(le JDPR + c3e 2)pR }

and then by varying the corrected action under the new transformations to yield a set 
of constraints on the general coefficients introduced. (Note that the conversion to the 
notation of the rest of the thesis has been made in the expressions above). The 
supersymmetric action is thus found up to the aforementioned higher order fermion 
terms, (which, it must be stressed, cannot affect any of the amplitudes calculated 
below), and up to terms linear in the Gapy tensor, (which also do not affect the 
amplitude matching calculations below). It is found when the cancellation is 
performed that there need not be any corrections to the supersymmetry 
transformations except for the additions mentioned above. It is important to note that 
the Romans and Warner fermionic corrections to the action as shown above, are 
chosen to maintain manifest supercovariance of the variations of the action, where 
the complete skewsymmetrisation of the lower indices of the example term is 
enforced. As will be noted below, when the calculation of amplitudes is performed, 
it is seen that the Romans and Warner action has a particularly nice form, where the 
quadratics of Riemann tensors, Ricci tensors and curvature scalars enter in the 
Gauss Bonnet combination, and it is also found that there is no need to introduce
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any pure higher derivative gravitino or dilatino terms, which would violate the 
manifest unitarity of the action. This is not so for the Han et al. solution to the same 
problem: they are forced to include such terms to cancel 3) e type terms which arise

r4,

in their higher derivative variation.
The Han et al solution to the cancellation of the supersymmetry anomaly 

given above is very similar in outline, but very different in structure to the Romans 
and Warner attempt given above. The Han et al attempt is similar to that of Romans 
and Warner in that the same Noether technique is used with the same constraints 
placed on the proposed cancellation, that is only the second two terms of the 
anomaly will be cancelled, and that the higher order fermion terms will be ignored. 
There is, however, a major difference in the Han et al procedure, in the respect that 
instead of using a general set of correction terms in both the action and the 
supersymmetry transformations, (up to a level of generality specified in advance), a 
restricted set of additional terms are used in the Lagrangian, and an analogy is drawn 
to the better defined Yang-Mills case, where the action and supersymmetry 
transformations look quite similar to the supergravity transformations of Chapline 
and Manton under the identification,

V  <-> a\fb

F^v «

x' « V * : = 2 < V b \ V v]

The restriction of choosing only fermionic corrections to the action which maintain 
the manifest supercovariance in the same manner as Romans and Warner is now 
abandoned. This however means that a pure higher derivative gravitino term of the 
form,

I '  = e f 3/4 v V \ v ab

has to be introduced to cancel off the DMe terms which now arise due to the variation 

of the term of the form,

X" = -e  <t>'3/4 Vab Rpoab

which is introduced to cancel off the first of the last two terms in the supersymmetry 
anomaly above. The same procedure of varying the action and solving the resulting 
linear equations in the general coefficients can now be followed. Doing this yields an
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action, (see (4.2.1) below for a version of this action which is equivalent up to some 
four fermion terms due to the torsion induced by the fermion fields of the theory, 
and which does not contain the dilatino term which is necessary to cancel thethird 
term of the supersymmetry anomaly), which has not only a Riemann tensor squared 
without the Ricci tensor and curvature scalar combinations that make the graviton 
propagator manifestly unitary^54!, but also a pure higher derivative, propagator 
correcting term for the gravitino in the Lagrangian. This must raise doubts about the 
validity of considering this as a candidate for the low energy action for the heterotic 
string. This point will be considered again when the subject of field redefinitions are 
raised in Chapter Six. The question of whether these two actions are in fact identical 
up to field redefinitions will be considered at the same time. Each of these two 
actions will be examined in turn using the amplitude matching technique to determine 
whether they are possible candidates for the low energy effective action of the 
heterotic superstring.

Section 4.1; The Romans and Warner Supersvmmetric Action.

As can be seen above the Romans and Warner action is considerably more 
complicated than the Chapline-Manton action that it supercedes: it is clear that there 
are a considerable number of extra terms which have to been added to even partially 
retrieve the supersymmetry of the action. It must be emphasised that the action 
which results after the addition of these terms is not completely supersymmetric 
under the original supersymmetry transformations of Chapline and Manton. The 
Romans and Warner corrections to the gravitational sector of the corrected 
Chapline-Manton action are, (ignoring both the dilatino terms and quartic fermion 
terms, which will never contribute to any amplitudes which will be calculated 
below);

r = y [ - f e * \ / v“ { > C  - 2 R , ' \ pl + 1R 5° 5;, }

+ W T{VpaRMVP°-4RMv̂ V + R2 }]
(4.1.1)

and the full action is supersymmetric under the old Chapline-Manton supersymmetry 
transformations, except for the a^v field whose supersymmetry transformation must 
be modified by the addition of a term of the form,

8v=-2/2Y {(8co™ )a>™ n } (4.1.2)
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where 8 cô mn is the supersymmetry variation of the spin connection. The y factor is 
the same y factor as defined in the GapY term in the corrected Chapline-Manton 
action in the introduction to Chapter Three. This constant will be suppressed in all 
the calculations below, particularly those of the Feynman vertex factors. It will be 
reintroduced at the amplitude matching stage, as will the dimensionful a' constant 
from the string theory, which will be reintroduced with the closed string value of 
a ' = 2 to be consistent with the notation of Chapter One.

It is important to stress that only the correction terms to the action and 
supersymmetry transformations that are pertinent to the amplitude calculations which 
will be considered in the remainder of this chapter have been kept, the remaining 
terms having been neglected as they cannot contribute to the conclusions of the 
amplitude matching analysis. These amplitudes are as stated in Chapter Three above: 
the three point \j?-\|/-h amplitude, and the four point vj7-\y-h-h amplitude, where the 
amplitudes calculated will be of higher order in momenta than the amplitudes 
calculated in Chapter Three. The introduction of the higher derivative corrections 
allows the calculation of amplitudes which are higher order in momenta, and which 
suggest a classification scheme which is consistent with the string amplitude 
expansion discussed in chapter one. The dimensionful parameter a ' is introduced, 
and the amplitudes are denoted by their order in this parameter. For a suitable choice 
of value for a' it can be seen that it can be identified with the string parameter with 
the same name. The amplitudes which will be evaluated in this chapter will simply 
be the O(a') counterparts to the fermionic amplitudes calculated in Chapter Three.

The perturbation theory arguments used in Chapter Three can be directly 
modified to account for the extra higher order (in a!) terms in the background field 
expanded interaction Lagrangian. The only difference will be in the treatment of 
diagrams of the form,

where there will be extra diagrams due to the new vertices, which will modify the 
Feynman combinatoric factors in an amplitude calculation. The only thing that has to 
be done is the evaluation of the Feynman vertices required for the calculation of the
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amplitudes discussed above. This means that the O(a') vertices should be classified 
and evaluated. There is also the problem of the introduction of higher derivative 
terms of the form,

3

(4.1.3)

which naively might be thought to give higher derivative quadratic corrections to the 
graviton action that would introduce propagator correction terms. These extra poles 
in the propagator might be thought to violate the unitarity of the theory, but it has 
been shown that the combination given above does not correct the propagator^54], 
and consequently does not break the manifest unitarity of the theory. The possibility 
of general coefficients in the term (4.1.3) is discussed in Appendix Two, and will be 
required in the discussion of the Han et al. action in the next section. There are no 
pure higher derivative propagator correcting terms in the spin-3/2 sector of this 
action. Terms of higher derviative, propagator correcting, form exist however in the 
Han et al action. The procedure that has to be followed when these propagator 
correcting terms exist will be discussed in the section dealing with the Han et al. 
action.

The Feynman vertex factors should now be evaluated, and as in Chapter 
Three, this will be done with respect to the eventual amplitude calculations that will 
be performed. The first vertex that must be considered is the \j7-\|/-h vertex used in 
the calculation of the \j7-y-h amplitude. Here, as in Chapter Three, all the fields are 
on-shell and so the equations of motion and gauge conditions for the graviton and 
gravitino fields can be employed where appropriate. This will allow considerable 
simplifications in this case. The only term which can contribute to this vertex can be 
seen to be, setting the dilaton field to zero, (which will be done implicitly from now 
on),

- f  V , / V“ a av a] V p" (4.1.4)

since the other terms are functions of the Ricci tensor or curvature scalar, and cannot 
give any contribution due to the equations of motion of the graviton or the graviton 
gauge conditions. Explicitly the Riemann tensor expands to one graviton in the 

form,
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C \  =  - 2  3 [v3 la hj] +  0 ( h 2) ( 4 .1 .5 )

which can be shown to mean that the Ricci tensor can be written to one graviton in 
the form,

O h = O h  = - \  ( 3v3 V  - 3V3 V  - V V  + V  V  )

(4.1.6)

and the curvature scalar,

Rlh = Rvvlh = { 3v3vh /  - 3V3 \ V } (4.1.7)

Both of the terms above vanish when the graviton is on-shell because of the gauge 
condition and equation of motion of the graviton, and so the terms in the Lagrangian 
which depend on the Ricci tensor and the curvature scalar cannot contribute to any 
single graviton vertex where the graviton is on-shell. This observation will also be 
useful in the evaluation of four point \j?-\j/-h-h vertices below. Thus the \j7-y-h vertex 
is wholly from (4.1.4), leading to,

- § V [p/ V“3oVa ]--2 9 v3 \ P (4.1.8)

and the expansion of the fermionic term and subsequent application of gauge 
conditions, equations of motion and so on lead to the vertex in the form, where the y 
dependence from (4.1.1) has been reintroduced, and the a ' dependance has been 
introduced by inserting a factor of a '/2  to agree with the conventional (implicit) 
closed string value of a'=2, as discussed in Chapter One, and which agrees with the 
procedure developed in reference [33], (and agrees with the implicit convention of 
references [52,53,58]),

^ V 0/ d pVa3“3 V  (4.1.9)

from which the amplitude can be directly calculated to be,

i Y « ' % A a ^ p k l k 2 k 3  ( 4 - 1 . 1 0 )

This can now be compared to the string answer, where the normalisation is
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taken care of by the relative weight of the 0 (a'°) and O(a’) subamplitudes from the 
string calculation, and the absolute normalisation between the 0 (a'°) string and field 
theory amplitudes. That is, the relative weight of the 0 (a '° )  and O (a') 
subamplitudes of the field theory and string theory must be the same. This means 
that the Romans and Warner action receives its first check as a possible effective 
field theory of the string. The string amplitude after being normalised with respect to 
the 0(a'°) field theoretical amplitudes is, (see equations (1.4.18) and (3.3.2)),

" i_4"^2^U1̂3CT ^lp^2v ^

It can be seen that the amplitudes do indeed match, if y = -1/4. The results of 
Appendix Five show that y =±1/4, and so the three point matching is completely 
consistent with one of these values. The choice of the Riemann tensor chosen here 
agrees with references [6,7,52,53] and indeed with reference[6 8 ] and the Ricci 
tensor agrees with the definition used in references [6,7,43] which is consistent with 
the choice of sign of the Einstein-Hilbert action and supersymmetry. However it is 
possible that the ROmans and Warner and Han et al actions both define the Ricci 
tensor with a relative sign to the above. This negative sign problem will be discussed 
further in the section dealing with the Han et al action and the amplitude matching 
calculations carried out at that point. It will then be found that a three point match 
will exist, but for the value for the coefficient y = 1/4. The problem of the Ricci 
tensor redefinition will be dealt with in the final section of this chapter, and will be 
shown not to affect any of the conclusions drawn in the preceding sections.

It will be necessary to carry out a full four point amplitude matching 
calculation for the Romans and Warner action to see if the action can continue to 
match the four point O(a') amplitude (1.4.16) subject to the correct normalisation, 
and this is now done. As before the y and a ' coefficients will be suppressed 
throughout, since they only enter linearly in the final O(a’) amplitudes calculated at 
the end of this section. The first thing to do is to calculate the apropriate Feynman 
rules. The vertices that have to be evaluated are;

i) the h-h-h vertex, h off-shell,
ii) the \j7-\|/-h vertex, h off-shell,
iii) the vjr-y-h vertex, \j? or \j/ off-shell,
iv) the \jT-\|/-h-h vertex, all on-shell,

where the truncation procedure adopted in Chapter Three will be adopted in this 
chapter also. This will not prove useful at the moment, but will be seen to provide a
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great simplification in the case of the Han et al. action. It will be discussed later that 
these are the only vertices that need to be calculated, due to the truncation procedure. 
Each of the vertices above will be considered in turn. The first term to consider is the 
three graviton vertex.

ii the h-h-h vertex, h off-shell.

In this case it is necessary to expand the bosonic higher derivative term in
(4.1.1) to three gravitons. It is much simpler to do this in the higher derivative case 
than the lowest order action case given in Chapter Three above. This is because only 
the one and two graviton expansions of the Riemann tensor are required, as opposed 
to the full expansion to three gravitons in the case of the standard Einstein-Hilbert 
action. The appropriate expansions are as those in Chapter Three, particularly in 
equations (3.2.3-4), (3.2.16-17) and the definition of the Riemann tensor as in 
Appendix Three, and so it only remains to multiply these together in the appropriate 
combinations. The vertex is derived by taking each of the graviton fields off-shell in 
turn, and applying the standard simplification procedure. The standard truncation 
procedure can be applied, as well as applying the equations of motion and gauge 
conditions. Doing this gives a vertex of the form,

j  { j h ^  3 V h P 3 a3 vhpa - 2  hGVdahP̂ dadadvhp̂

- 9  h j1 3°3vhP 3a3vhpp + hpv 3M3ahaP3a3vhp° }

(4.1.11)

which will be the form used in the amplitude calculations below. The fermionic 
vertices can now be dealt with.

ii) the \j7-\i/-h vertex, h off-shell.

In this case each of the correction terms must be expanded to one graviton. 
Since the curvature scalar term is multiplied by the free gravitino Lagrangian it can 
be shown, by a simple application of the gravitino equations of motion, that this 
term can give no contribution. It is left only to consider the Riemann and Ricci 
tensor terms. The Riemann tensor term can be expanded to one graviton in the 
background field expansion,
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{ v Pr v OI+ * « r v Pl+ ^  V - i  >a*3V
(4.1.12)

where the only graviton can possibly come from the Riemann tensor, from the 
expansion (4.1.5). The equations of motion and gauge conditions can be applied, to 
the fermionic terms, leaving a term of the form,

(4.1.13)

at which point the truncation procedure may also be applied, eliminating the entire 
contribution. Hence the Riemann term does not contribute to this vertex. The Ricci 
tensor term is the only term which can possibly contribute to the vertex. Again the 
expansion of the term to one graviton is of the form,

3 { ¥ [/ V“ 90Va)R v ° 6 /} l!i (4.1.14)

where the skewsymmetrised fermion term can be expanded to the form,

{ ? p / V<\ ' t ' a) + VaV’V\ v al } RvP lk (4.1.15)

thence substituting the expansion for the Ricci tensor given above yields,

{ + } *

X -  J  {  d̂ dv h ° ^  -  9 ^ h ° v -  9 ° 3 v l i l ^  v  }

(4.1.16)

and the application of partial integration, the equations of motion of the gravitino 
field, the gravitino gauge conditions and the truncation procedure gives the vertex in 
the form,

• \  { V« W  } • ( 3  V * V  - A j f v  } (4.1 • 17)

which can be symmetrised to comply with the formalism developed in Chapter Three 
for the perturbative evaluation of amplitudes in a Majorana fermion field theory. The 
final vertex is therefore,
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\  { 9oV«yV  - yaYv9o¥“ } • { 9 % iT v - 3 V v  )

(4 .1 .1 8 )

The remaining three point vertex can be calculated.

iii) the y-y-h vertex, y  or w off-shell.

The only term which can possibly contribute to this vertex is the Riemann 
tensor term, because of the on-shell property of the graviton. The equations of 
motion of the gravitino cannot be applied in this case, but truncation is allowed on 
the graviton, and some simplification is facilitated by the observation that y  and y  
cannot both be off-shell simultaneously, which means that certain terms can be 
neglected. The full term is as in equation (4.1.8) above, and each of these three 
terms can be expanded in some detail. The first term is,

w O a ,  W \ p

= J ¥ p /Y T d a V < A 3 \P - J  ¥ p /

+ j  ¥pYv9 o ¥ a  3v3'5hap (4 .1 .1 9 )

The second term gives the contribution,

¥ < / V̂ (a¥ p] 9 v 9 \ P

(4 .1 .2 0 )

and finally the third term gives,

¥ c / Va9 [p¥oJ 9 v d \ P 

=  -  jV a V Y Y V9<t¥p dvd \ P + J  ¥ PYV̂ a¥p dvd \ P

- ± v Y d „ % dvd % P }  (4 .1 .2 1 )

where each of these terms has been simplified as much as possible using the 
conditions mentioned above. The vertex must now be symmetrised subject to the
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formalism developed in Chapter Three, and \j/ and \\f taken off-shell in turn, to give 
the vertices,

{ j  +j  <>0Vp/Vv - \  vP/yY^aVo

+ \  v Y ^ V p  - aa?pY V  } 3V9 \  P (4.1.22a)

for the \j/ field off-shell, and,

{ J  9<jVotYYWp + y  vY 3o¥p - J  d a V a fy Y Vp

+ J  30? py V  - y  ?% v30Vp } 9 y 9 \ P (4.1.2 2 b)

for the \|/ field, which is simply the conjugate of the \|/ off-shell vertex. The final 
vertex is a little more complicated than either of the cases demonstrated above.

ivl \j7-y-h-h vertex, all on-shell.

In this case all the fields are on-shell, and can be used in the iterative 
simplification procedure used above. It should be noted, in this case, that there is 
also the extra contribution from the Chem-Simons term which occurs in the 
Green-Schwarz modified form of the Chapline-Manton action, in the term,

where the Gapy term is defined to be, (continuing the suppresion of the y and a ' 
parameters),

• GaPy 1 Vp / " PYV Vv + 6 V W  } (4.1.23)

G a P y  “  (  ^ [ a a 3y] +  C 0 ) 3 a P y  " V ° Y p y  1  1 -2 4 )

and where the Lorentz Chem-Simons three form term is defined to be,

mn, % nm 2
-  -  CO m n CO n a  ( 0  a m  )  3 [a y] I

which gives a contribution to the \j/-\j/-h-h vertex from the term,
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- j  { R[ar  y  { % ^ + 6 i

which is of the correct order in the a ' expansion, and has the correct terms in the 
background field expansion. The case of the two graviton fermionic vertex is a little 
more complicated than the previous vertices discussed above, since the background 
field expansion of the gravitino part of some of the terms must be 
considered.However the fact that all fields are on-shell in this vertex provides a great 
simplifying observation: the Ricci tensor and curvature scalar can never contribute 
only a single graviton. The Ricci tensor and curvature scalar must contribute two 
gravitons in the expansion, if they contribute anything at all. Noting this and the 
observation used above that the curvature scalar term multiplies the free gravitino 
action, it can be seen easily that the curvature scalar term does not contribute to this 
vertex either. However the Ricci tensor term does contribute the term,

- 1  V |p /va »aVaJ { - 2 Rv° 5 /  } l2h (4.1.25) 

where the Ricci tensor is expanded to two gravitons,

where the superscript T denotes that as much simplification has been made using the 
observation that in any case where this expansion is used both fields will be on-shell 
and so the truncation convention, equations of motion and gauge conditions can be 
applied freely. Using the standard expansion of the fermionic part of the term, the 
contribution from (4.1.25) can be seen to be of the form,

?Yd<jVa { - J  - J  }

(4.1.27)

The Riemann tensor term will be expanded according to the scheme,

On
(4.1.28)

Each of these terms will be expanded in turn. The second term is the easiest to
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analyse, and so will be treated first. When the fermion term is expanded, this term 
gives,

- { VpY[V9(aV<l]i1rta + ? 07[v3[aVpln,‘,a + ? [Y 19lpV0] } - V PO|2 h

(4.1.29)

will require that the appropriate form of the Riemann tensor be expanded to two 
graviton fields. This is,

rG(W 2h =  ' J  { [ h° \ d\ n  ~ +  ]

+ j  [dahpP + ^phpa - 3Phap ].[aphya - 3^i°p - a°hpy]

- j  [ ^ \ P + dfipa - 5phay ]. [aphp° - aphap - aahpP] }

(4 .1 .3 0 )

which can be seen to give a contribution to the vertex in the form,

- { vYSpVo + 1  Vp-ZY V„ avh^a^iv,15

+  j ¥ p / 3 oV v 3 Phv'19phP  ̂ + i v V 9 p V o 9 Phnp9vh,la }

after a somewhat tedious calculation.
The remaining term requires that the fermionic part of the term be expanded 

subject to the rules developed in Chapter Three above, and where the standard 
simplifications are invoked. The first thing to calculate is the background field 
expansion of the fermionic term,

V ^ O O flo V a ]

= }  (  V p /^ C ^ ^ o V a ]  +  j ¥ p / V“7 m r n V \ ]m

( + cyclic perms, of p,a, and a ) }

(4 .1 .3 1 )

where each of these terms can be expanded in turn, with special regard to the 
expansion of the Riemann tensor to one graviton. This is again a tedious business
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which will not be written out in detail, but an example of this calculation will be 
given before the full final contribution is stated. It can be noted that all the terms that 
contain five gamma matrices vanish by truncation with respect to the derivatives 
apparent in the one graviton background field expansion of the Riemann tensor. This 
leaves only three terms to evaluate, all of which use similar expansion techniques. 
The sample term chosen is,

V p /Va« 3 [oy al av9 V

=  { V p /(x )Y v(x )y x(x )3 ta\|/a] - ¥ p / ( x ) 3 [ay a]g va

+ ?pYv(x)3(oV o / a } 3V3 \  P (4.1.32)

where the gamma matrices have been written using the explicit spacetime 
dependence notation used in the previous chapter. Using the expansion stated there, 
and the usual truncation conditions this can immediately be contracted down to the 
form,

{ - j ' V p f  Y Y 30Vahaa - J  V p 7 % v y a } 3V3 \ P

(4.1.33)

Calculating the other terms, and summing gives the contribution to the \|/-\j/-h-h 
vertex in the form from the mixed term,

{  -  j  ? p / Y Y 3 o V a h a a +  \  WaffYv 3 o V p  h “ a

- y  VpYv30Vah^a - jVaYv3nVphpP } 3V3 \ P

(4.1.34)

so the total vertex contribution from the Romans and Warner additions to the action 
is, after the standard simplifications,

{ - J  V p / v Y ^ c / a  + J  VaYYY^aVph01 a ' \  V a Y ^ a V p ^

- ¥V ^aV ahpa - jV Y ^aV ahp^ }
(4.1.35)
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This vertex excludes any contribution from the Lorentz Chem-Simons term, which 
will be considered shortly. Thus the proper symmetrised vertex is clearly seen to be,

{ - J  Vp/TfY9a¥ahaa + j  90V a fY /V p h “a 

- |-?aYa7Y3aVphaa + J  SpVp/yYVahaa 

- |V a y v9aVphMa + j 9 0¥ PYvVahMa

- y y V 3 a¥ ahap + i a o¥aYv/ h ap

- v Y S a V a C  + ^ S a¥aY V hpM }3va \ P

(4.1.36)

This only leaves the derivation of the y-y-h-h vertex contribution due to the 
Lorentz Chem-Simons term. This is simple to evaluate using the identity for on-shell 
gravitino fields which satisfy the standard y.y gauge condition,

¥ p / “PYVVv = 6 ¥ V v Y! + \jlM7a|irY  (4.1.37)

where an implicit external factor completely antisymmetric in the a,p,and y indices 
is assumed. This allows the vertex contribution to be written in the form,

f  { % - f / y Y  + VpyVT)“Y + 4 v W  } 3”3 p O n lV

(4.1.38)

which may be skewsymmetrised and added to the y-y-h-h vertex derived above, 
and can be seen to be of the form,

{ V pyY yV  - VpYVYV1 

+ 4 y W  - 4 V yV * } 3"9phmaanh7n

when symmetrised. It can be seen that the middle term of (4.1.38) has 
skewsymmetrised out completely.

It is possible to see that the term in (4.1.23) contains an 0(a'°) y-y-a 
vertex with the antisymmetric tensor field a taken to be off-shell, raising the
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possibility o f  an antisymmetric tensor exchange diagram contribution to \j7-\ff-h-h 

scattering. This cannot be the case, since symmetry considerations immediately 
imply that such a diagram can only contribute to terms which are neglected when the 
truncation procedure is applied. Explicitly this is very easy to see: it can be seen that 
the antisymmetric tensor propagator is of the form,

" \ iv ,a p ( k  ) =  ~ 2  ( ^ a ^ vp - 8  p5v a  ) 
k

which means that it is possible to rewrite all the parts of the diagram as a simple 
function which contains all the polarisation spinor dependence and k dependence, 
for example, f^u^U pk) for example, where it can be seen that,

f a f } ( U 2 , U l , k )  =  ‘  f p a ( u 2>u l ’k )

because of the form of the antisymmetric tensor propagator above. Now because of 
the truncation convention there are only two possible combinations which the a-h-h 
vertex can possibly take. (Only one of these arises from the G ^ G 01̂  term in the 
Lorentz Chem-Simons modified Chapline-Manton action, but the argument given 
below does not depend on the explicit form of the vertex.) These are,

and,

When these are replaced in the Green's function for the antisymmetric tensor 
exchange diagram, it can be shown that the Wick expansion yields either the term,

s_ /f + f ) r ^ r  
2  1 ocp +  (3or 3 4  *=>3

or the term,

q2 ar| p
( fotP + fpa^3 4̂ti

both of which vanish by the symmetry properties of the function fap.
By similar arguments to those given in Chapter Three it can be seen that 

there can be no spin-1 /2  exchange or dilatino exchange diagrams, due to the absence 
of the appropriate 0(a'°) Feynman rules from the original Chapline-Manton action.
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+ (3 and 4 interchanged)

Figure 4.1: The Feynman diagram scheme for the

calculation of the vj7 t|/-h-h 0 {x') amplitude,

Romans and Warner case.



This completes the list of vertices necessary for the calculation of the 
\j/-\j/-h-h, O(a') amplitude. This will now be performed. The amplitude will be 
calculated using similar techniques to those developed for the lowest order 
Lagrangian in Chapter Three. The only modification that needs to be incorporated is 
the observation that there are now two \jT-\|/-h vertices, with \j/ or y  off-shell, which 
will slightly modify the Feynman combinatorial factors. Diagrammatically it can be 
seen that there are now combinations of diagrams of the form,

which have to be included in the perturbative solution, where the dotted vertex 
denotes the O(a’) vertex. The amplitude is therefore evaluated according to the 
scheme given in Figure 4.1, which means that each of these diagrams has to be 
evaluated seperately. Each diagram will be treated in turn below.

The first diagram will be the point diagram,

which can simply be evaluated by inspection of the appropriate vertex due to
(4.1.36) and (4.1.38). The amplitude contribution is,

+

g"~~2~ 2p' 4* la’ 3a^4|i_r g 2  2otl lpb3 a ^

1 (!°c p
+ 4 [ 2 % k 4 %  " 2 4 ^ 1 p  -* 3̂ ^ 4 a

1 r v 1 1
+ j [ t a 2ak 4UI '  u02 k 4UlaJ ^3 )

(4.1.39)
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due to the Romans and Warner terms, and

- I f  s_u •/*! v V r  mr
8  l  2  3> U1 ’ 3a ’ 4my

+ s [ u “k 3u{-uY2l 3u“ ] C 3a\ mY} (4.1.40)

due to the Lorentz Chem-Simons three form term. These will be symmetrised with 
respect to the 3 and 4 indices according to the scheme given above when the full 
amplitude is evaluated. At this stage it is possible to see that the amplitude can be 
split into the two distinct types of subamplitude: terms where the u and u polarisation 
spinor indices contract together, which will be called 's’-channel terms, and the 
remaining terms, which will be given the name ’t-u’-terms. It will be convenient to 
separate the amplitude into these two types of subamplitude when the comparison 
with the string amplitude for the same process is considered. The next easiest set of 
diagrams to consider is the set of graviton exchange diagrams,

which can be simply evaluated, and yield the amplitude contribution,

±  (u-t)u2 l 4u]oC3 \ n 5  (4.1.41)

which can be seen to give entirely ’s’-channel contributions in the notation used 
above. The gamma matrix algebra, equation (A3.1.8) can be used, in conjunction 
with the truncation procedure, to rewrite this amplitude contribution in the form,

i(t-u) { u’yV v  +

(4.1.42)

which corresponds more closely to the form in which the string amplitude occurs. 
The only diagrams that are left to calculate are the gravitino exchange 
diagrams, which are the most complicated to evaluate. It can be seen that as a 
consequence of the symmetrisation of vertices it is only necessary to consider one of 
the complete set of diagrams. The rest can be found simply by the spinor
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conjugation of the amplitude and relabelling of the polarisation states. The diagram 
calculated will be,

which requires the use of several gamma matrix identities. A list of these useful 
identities is presented in Appendix Three. The amplitude contribution can be split 
into four separate diagrams where each of these may be split into five sets of sums 
of three terms, each of which will be analysed in a little detail below. It is necessary 
only to consider one of the four diagrams, since the remaining diagrams can be 
derived by relabelling polarisation states, and using the spinor conjugation rules.

The analysis of this one diagram is done in a little detail since it will be 
shown below and in the next chapter, where more general action terms will be 
discussed, that the same types of amplitude contributions will arise on several 
occasions. It will therefore be useful to discuss these calculations once in a little 
detail for reference. The individual terms contained within this diagram are given by 
the multiplication of the five terms in the O(a') action with each of the three terms in 
the 0(a'°) vertex. Each of the O(a') terms will be treated in turn, where it will be 
multiplied into the full 0(a'°) vertex. The first of these terms is,

which can be seen to give zero contribution. (As an example of this type of 
calculation, this particular derivation will be included as Appendix Four) The next 
contribution is the term,

I  Vpy*yY 9 o¥ A 9 \ P (4-1 .43)

(4.1.44)

which by similar manipulations to the first term gives the contribution,
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T "  [ J  { 3oVaYV - VaTV3oV“ } • { d 'V 'v  - 3fXa^JlCTv } ]

-y - { jVp/yYAVa + J 3aVp/vv - J  Vp/YYA'I'o

+ y v ' r A v p  - j 30? pr V } 3V0\ P

y -  [ ^ { ^ V ^ V V v h p a - 2 hov9ahPM9“ao3vhp(1 

- 9 h<xM 0°3vhP 3 A hpP + hp„ 0P3ahaP3a3vhpa }]

Fig. 4.2a The three point O(a') vertices from the Romans and 

Warner action.
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Fig. 4.2b The four point O(a') vertex from the Romans

and Warner action, and the four point 0(a) vertex 

due to the Lorentz Chem-Simons term.
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Fig. 4.3 The summary of O(a') four point contributions to\j7-\|/-h-h

scattering from the Romans and Warner action. The full amplitude

is merely the sum of these diagrams: all factors have been absorbed

in the subamplitude contributions.



The next term is the second three gamma matrix term,

- \ Vp fy Y 5 o H 'A 3 \P (4.1.46)

which gives the contribution,

(4.1.47)

which is the same as the second term. The remaining two terms can be seen to be the 
same by partially integrating, and using the symmetry of the graviton, therefore it is 
necessary only to consider,

vV doV pdyS'V  (4.1.48)

which gives the final amplitude contribution,

i _ „ „ms„ P
g tU2pk 4Ulm̂ 3 ^4s f4-1-49)

Which completes the gravitino exchange diagram contributions.
All of these contributions sum to give the full contribution from the diagram 

in the form,

{ - C  C  + V 4 Ulm C  ^  }

(4.1.50)

The full amplitude can now be evaluated. It is useful at this point to 
summarise both the Feynman rules used, and the complete list of contributions listed 
diagrammatically with the correct combinatorial factors as used in Fig 4.1. These 
summaries are given in Figs. 4.2a,4.2b and 4.3 respectively. In Figs. 4.2a and 
4.2b a complete summary of the Feynman rules used in the calculation of the 
diagrams given in the scheme of Fig. 4.1. These have been skewsymmetrised as 
described in Chapter Three to take account of the Majorana constraint on the 
fermions in the derivation of the scattering amplitude. Fig. 4.3 gives a complete list 
of the diagrams calculated using these Feynman rules. It should be noted that the 
contributions listed next to each diagram correspond to the complete sum of ali 
diagrams of the same generic form, i.e. the amplitude contribution listed next to a 
diagram consists of the sum of all sub-amplitude contributions coming from

9 6



diagrams which have the same form. In the case of the gravitino exchange diagram 
this includes the sum of the diagrams where the ‘dot’ is on the lower vertex. The 
amplitude contribution listed in this figure also contain the combinatorial factors 
arising from the Wick expansion. The full amplitude is merely the sum of the terms 
listed in this figure, and where it can be seen that the y and a ' factors have been 
reintroduced.

Having evaluated the complete amplitude, it will be convenient to split the 
amplitude into the 's' and 't-u' parts described above for the purposes of comparison 
with the string. It is at this point that the y constant will be reintroduced, and the 
dimensionful parameter a ' introduced also, as in the three point case discussed 
above. The separate contributions are,

1 - i | (t -u))

- * V ,1’(lt4'k 3)'>'aU 1 ( i !  -1) > K sa ^rny
(4.1.51)

for the ’s’-channel terms, and,

{ [ % / ( *  4-k 3> V \ m( }  (u - S) )  - X  Ulp( i  (t - S) )  ]  ; 3amc 4,

+ [u 2p/ a 4- n 3)-A iim( | - u ) - u2m/ ( k 4-113)/ u lp( | t ) ] c 3a% (1p }

(4.1.52)

for the ’t-u'-channel terms. The comparison with the string requires the 
normalisation with respect to the 0 (a'°) amplitudes for string and field theory. 
Noting that the field theory 0(a'°) amplitude has an overall normalisation constant 
of i/16, then the relative normalisation of field theory amplitudes to string amplitudes 
is fixed. This implies that the field theory amplitude must equal the string amplitude 
in the normalised form,

" ^ { [ u  1 V Y(k 4-k 3 ) A ^  a

+ [u u^C k 4-k 3)yYu® - 1 u2yY(k 4-k 3)yotu1 ] C3yoC4ap

+ tu u2y“(k 4-k 3)YYuJ -tu2yY(k4-k3)A i  ] ^ 4 a p  1
(4.1.53)

taking into account the normalisation factor. The string amplitude also breaks up into

97



the separate 's'-channel and 't-u'-channel contributions mentioned above. The match 
for each of these sectors will be made separately.

i) The 's'-channel.

In this section equations (4.1.51) and appropriate sub terms of equation
(4.1.53) will be compared. This will be done by a simple subtraction. When this is 
done it is found that no match can occur for these terms. Explicitly the comparison 
therefore takes the form,

+ (4.1.54)

which can be seen clearly not to be consistent. The application of the identity,

s + 1 + u = 0

which derives from the kinematics of the theory, allows many of the terms which are 
derived to be transformed. This identity will be useful in the more general amplitude 
matching calculations carried out in the next chapter. For completeness the remaining 
't-u'-channel matching calculation will be carried out, and also shown to fail.

iil The 't-u’-channel.

This matching can be subdivided into two smaller matching conditions, by 
noticing that there are two distinct contraction schemes of indices which are not 
's'-channel, which take the generic forms,

u2/ ( W ? \ mC C  (4.1.55)

and the corresponding 'crossed' term,

V (W / uj £ a C  (4.1.56)

The same subtraction technique will be applied to the two subterms listed above. It 
must be noted that this is only one of two possible bases of comparison which are 
completely equivalent up to the truncation procedure. The alternative basis involves 
rewriting the amplitudes all in the form where the gamma matrices occur either as a 
completely skewsymmetrised product of three matrices, or as a single matrix. This
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basis will not be used or discussed further here. Doing the subtraction explicitly 
yields,

f ( u " s ) s " f r  (4-1-57)

for the first term, and,

( 4 J -58)

for the second 'crossed' term. It can be seen immediately that the subtraction does 
not give a null result: the Romans and Warner action can not correspond to the low 
energy effective action for the string. This is quite a remarkable result. It would not 
have been unreasonable to expect such a symmetric, 'geometrical' action to 
correspond to the low energy effective action for the string in some sense. This hope 
is shown to be groundless by the amplitude matching. There is the alternative 
supersymmetric action which may be a better choice for the low energy effective 
action for the string. This will now be considered.

Section 4.2: The Han. Kim. Koh and Tanii action.

This action is an alternative supersymmetrisation of the modified 
Chapline-Manton action of given in the introduction of Chapter Three. In this case 
the supersymmetry transformations of Chapline and Manton are kept without 
modification, and only the action is modified by the addition of higher derivative 
corrections. These are explicitly,

1  2  
r " 4 _  p c r u  ~  1 . ' 4 - ,  n PvP<*

X — y L 6  <|) Vr|T Y fû Vl P<* O ® ^ ^pvpc^[p- v] po 2 
3_

- 4 e <)> 4 a ' V ' i  a [Mv v] ] (4.2.1)

in the notation of Chapline and Manton, where special attention should be drawn to 
the second and third terms, (and where it should be noted that the third term has 
been rewritten by excluding the contribution of some of the torsion terms inherent in 
the definition of the spin connection by its equation of motion, since these only give 
four fermion couplings which are ignored throughout). (The y factor will be 
suppressed throughout this section as it was above, and will only be replaced, with 
the a ' factor at the very end, when the amplitude matching is performed. The a '
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factor will of course be reintroduced with the implicit value a ' = 2). These have the 
unique property of being propagator modifying higher derivative terms, (in the 
meaning of Chapter Two): that is, after the background expansion has been 
performed, these action terms give rise to the higher derivative terms,

r 2h = - J  { > v V W  -

- hvpa(1ava03<5hp% h v°a(1ava03phpM} + o ( h 3)

(4.2.2)

in the case of the graviton, and,

i  = - 2  { xj/Yap/ a pVv - y V v X v v  1 + 0(h)

(4.2.3)

in the case of the gravitino. Both of these can be seen to be quadratic in the fields, 
and hence contribute to the linear, free, part of the actions for the respective fields, 
and therefore modify the equations of motion and thus the quantisation and 
subsequent derivation of the propagators. This is extremely worrying, for these 
extra higher derivative corrections give extra unphysical poles in the propagators 
which may violate unitarity of the quantum theory. The cure for this worry is related 
to the field redefinition analysis of general field theories^55!. In particular the case of 
the first term is treated in more depth in references [51,56] which restricts the 
discussion to the case of the graviton field only. In this work field redefinition 
analysis is used to show that no matter what choice of generalised Gauss-Bonnet 
combination is chosen the theory will remain unitary. This conclusion is justified by 
direct calculation. The subject of field redefinition analysis, and its application to the 
low energy effective action of the heterotic superstring in particular will be taken up 
again later. For the moment only the two actions discussed above will be compared 
with the string and with each other.

The problem of the propagator corrections must be faced in the calculation 
of Feynman diagrams. The procedure is to note that in the momentum representation 
the propagators can be written in the generic form, (see Appendix Two),

P~ 2 f(k) 2 (4.2.4)
k ( 1 + e k  )

where the extra term in the denominator is directly due to the higher derivative
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corrections to the action, using the ansatz of Chapter Two. Since the k2 term in this 
factor is of order O(a'), then it makes sense to Taylor expand this factor in powers 
of a' and to truncate at the appropriate point in the expansion to keep only terms up 
to the power in a' for which amplitudes will be calculated. This is done to 0 (a '2) in 
Appendix Two. Graphically this can be represented in the form,

x v /\/\/\x  + >oj^ v/ \ x + xv)^vy\x

for the graviton propagator, and the corresponding expansion for the gravitino 
propagator is,

where each of the terms in the expansions are given in Appendix Two, and the 
appropriate terms for the propagators will be taken from there with the appropriate 
values taken for the various variables. The first order in a ' correction to the spin-3/2 
propagator is of the form,

v|iv(k) = 4i { - f f v 11

- i V v  + YvV + f f ^ - }
k

and the corresponding correction to the graviton propagator is of the form,

D|av,ap(k) = i { " 8 ( fyioc^p + )

+ 8 ( 5 ^acovp + 8 p̂C0va + 8 vp(ô a + SV(Xco^p)

+ "li-  ̂ ~ ^ aP ~ ^

"  \  t \  ’ °^v ^  ^ap “ Wap ) +  ̂^ v ^ ap

+ 3 ( 8 (iv®ap + ^otp°Vv ‘ ^ ®^vCOap  ̂ ^

This means that the Wick expansion is modified by the inclusion of extra
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O(a') diagrams of the form,

which give extra contributions to the amplitude. These amplitude contributions will 
be calculated below.

The only remaining parts needed for the amplitude calculation are the 
Feynman vertices. The procedure is completely similar to that presented in some 
detail in the case of the Romans and Warner action. The vertices required for 
calculation are the same type as the vertices derived above. Each of the vertices is 
calculated below. The only difference in technique needed in the evaluation of these 
terms to the techniques used in the Romans and Warner case, is in the background 
field expansion of the pure higher derivative gravitino action term,

_  3_

x ’w = ' 4 e * 4 { } (4-2-5>

which calls for the expansion of the space dependent gamma matrices, defined by 
the Clifford algebra (A3.1.8), and the spin connection to two gravitons. Each of the 
vertices will be treated in turn as in the Romans and Warner case above. The first 
term to be treated will be the three point \j7-\j/-h vertex with all fields on-shell. In this 
case, as above, all fields are on-shell. This allows the same simplifications as used 
above. This vertex has contributions only from the first and last terms in equation
(4.2.1), where the Riemann tensor term gives the contribution,

- 2 (4.2.6)

which is trivial to derive using the simplification techniques as developed above. It 
will be useful for the purposes of the more general terms that will be invoked in the 
next chapter to treat the second term in some detail, in each of the calculations 
below. The third term in (4.2.1) above gives a contribution to the \j7-y-h all on-shell 
vertex in the form,
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(4.2.7)

where partial integration and the equations of motion immediately imply that the first 
and third terms must vanish. This simplification is extremely useful on several 
occasions. Each of the remaining terms can be expanded using the definitions given 
in equations (3.2.3-4). Doing this term by term yields;

d«?PV V x A i 0  (4-2-8)

Thus the full \j7-\|/-h all on-shell vertex is,

- (4.2.9)

which allows an immediate calculation of the three point amplitude. As in the 
Romans and Warner case this is quite trivial to perform, and yields the amplitude,

- 1 7 a' u“/ u ^ 3 \ lMk2vk3o (4.2.10)

which can be compared to the O(a') three point string amplitude with due respect 
given to the normalisation of the amplitudes. In this case it can be seen that the string 
amplitude matches the field theory amplitude (4.2.10) if the parameter y takes the 
value y = 1/4. This is quite an interesting conclusion: the Romans and Warner 
matching required that the y parameter should take the value y = -1/4! This will 
have some important implications for any possibilities for a field redefinition which 
links the Romans and Warner and Han et al actions, since any field redefinition 
which links the two actions must change the dynamics of the theory.

The corresponding four point generalisation of this matching will be 
performed as in the Romans and Warner case, to see if this form of the 
supersymmetric Lagrangian can match the four point string amplitude at the O(a') 
level. An interesting result will be seen to result from the 's'-channel amplitude 
matching conditions from this action. This will also provide a useful starting point 
for the more general matching attempted in Chapter Five.

The h-h-h vertex, h off-shell.
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In this case the vertex is merely a subset of the terms evaluated for the 
Romans and Warner case. Since this is the case it is necessary only to state the 
required form for the vertex, which is,

- y  {y h ^ 3 °3 vhP - hov0ahPP0a3a3vhp̂

1 (4.2.H)

which will be used in the amplitudes calculated below.

ii) The \j7-y-h vertex, h off-shell.

There are only two terms in the Han et al. action which can possibly 
contribute to this vertex. These are the first and third terms in equation (4.2.1). The 
Riemann tensor term can be shown to give no contribution to this vertex, by a 
similar argument to the one employed in the Romans and Warner case. It only 
remains to discuss the pure gravitino higher derivative term. As in the case of the 
\j?-\|/-h vertex above, both \J7 and \\f are on-shell, and so the first and third terms in 
the general expansion do not contribute in this case either. Expanding the remaining 
second term with regard to the fact that the graviton field is off-shell, and employing 
the usual simplification methods and also the truncation procedure, it is possible to 
determine the vertex in the form,

j  vY 'SnV o^pll'v  (4.2.12)

which can be symmetrised to give the total vertex,

J  { (4.2.13)

It can be noted that this term can only give 's’-channel amplitude contributions. 

iiii The \j7-\i/-h vertex. w or y  off-shell.

In this case the calculation of the vertex contribution is very similar to the 
one carried out above, and so will only be stated here. Due to the symmetrisation 
procedure in the derivation of vertices where one of the gravitino fields is off-shell, 
it is only necessary to state one of the two possible vertices, since they are conjugate
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to each other with respect to the transposition of spinor indices. The convention 
chosen is that the \\f off-shell vertex is stated and the conjugate vertex is left implicit. 
The contribution to the vertex from the first of the terms added to the action in 
equation (4.2.1) above is,

2  { -  W n V V  - jV Y a n V v d p A /

- ap ¥ v /Y d [(/ h p]V } (4.2.14)

where the symmetrisation of the vertex has already been performed. It remains to 
discuss the background field expansion of the new term with respect to the 
truncation convention and the equations of motion and gauge conditions of the 
appropriate fields. The argument used in the cases where \jT and \j/ are on-shell 
cannot be applied in this case and so the first and third terms in the expansion
(4.2.7) above must be considered. As before each subterm will be considered in 
turn. This vertex expansion requires the 'building block' terms,

t  V ' 0] l  *h = i?mYnVIo3Inhp]ml (4.2.15)

and,

(4.2.16)

which will also be used in the evaluation of the graviton expansions of the pure 
gravitino term in (4.2.1) to two gravitons. Although there exists an expansion of 
these terms to two gravitons, these are never needed in the work described below. 
Continuing with the \j7-\|/-h vertex, taking the expansion (4.2.7) term by term;

a) The first term.

The first term can be expanded and simultaneously simplified by noting that 
the presence of the equation of motion implies that the \|/ field must be considered to 
be off-shell, allowing the usual simplification procedure to be applied to the \j7 field. 
This allows the contribution to the vertex to be written,
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2  { V r J 3 [pv 0] + 2 a V ,J a [pv 0) + 2 a V ]®3[pv <J]}

(4.2.17)

which can immediately be simplified to the form,

2 3 V / 3 p30VphPa (4.2.18)

b) The second term.

The second term is a little more complicated because it will involve the 
Riemann-Christoffel connection in the definition of the covariant derivative of the 
two form term. The condition used above for the first term, where the \j/ field is 
taken necessarily off-shell, cannot be applied. This term can be expanded to the 
form,

- 4  3[V  ( j/YmY„3[pVol3 \ m 

- ( aphx0 + a0hpx- a \ v ) / a [pv X]} (4.2.19)

which can be shown to simplify through the gauge condition of the graviton, or the 
truncation procedure to the term,

{ 2  3[W ® P - 2 3 P? V 3 [PVX13 \ J(1 }

(4.2.20)

which is interestingly symmetric.

c) The third term.

The third term is the easiest to analyse, where the TjTmust be taken off-shell 
by the same argument used in a) above, and which can expanded using partial 
integration and the building block term (4.2.16). This is,

V 'V V Y m Y nVo3nhpm (4.2.21)
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w h ich  truncates im m ed iate ly  to zero.

The total vertex is now derived by first symmetrising the vertex, then 
applying the equation of motion, as in the Romans and Warner case above. The total 
vertex contribution from the pure gravitino term is therefore,

+ a V -Z Y V p A o p  } (4.2.22)

which can be added to the vertex derived from the Riemann tensor term, (the first
term in the O(a’) action correction (4.2.1)), to give the full vertex. This is finally,

{ -  j  d p V v Y V ■3 vYdpM'v3PA av

+ a V A x V p A ^  } (4.2.23)

from which the conjugate vertex with \j7 off-shell can be found, and the amplitude 
contributions calculated.

iv) The \jMj/-h-h vertex, all on-shell.

In this case the Riemann tensor term can be seen to give the contribution,

{ -  j  v ^ y Y y ^ v A ^ ^ V  + 2  V s/^V vhS° V \ v

+ v V ^ n V v h ^ p d\ o  } (4.2.24)

by applying the standard arguments used above. The contribution from the Lorentz 
Chem-Simons anomaly cancelling term is identical to the contribution derived 
above. The new term gives a contribution according to the scheme,
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-4  { a V V v ^ j  K

= - 4 { [a V 1] l2iy V [pvOI+a[ V 1/ 3 M[a[p¥<J]] l2h

(4.2.25)

The argument used in the three point case can be applied to show that the first and 
second terms vanish. Each of the remaining terms will give a contribution when the 
appropriate expansions from above are replaced in the nonzero contributions. This is 
a long and somewat tedious task. Only the result need be stated here. The full vertex 
derived from (4.2.25) before symmetrisation, and after a little simplification, is,

- { - y ? ayY™yM9v¥(o9Vhp],19nhPm + axV p /rr'YPv loaphPlqaXhap 

- j  d V / YmY„3pVahmvaphvn } (4.2.26)

which can now be symmetrised and used in the calculation of the four point 
amplitude. All the necessary components for the calculation have been assembled. 
The amplitude can now be evaluated.

The amplitude calculation proceeds according to the sum of Feynman 
diagrams, which is found by a simple application of the modified form of the Wick 
expansion developed in Chapter Three, which isgiven in Figure 4.2. Each of these 
diagrams can be evaluated using the Feynman rules as above. As in Chapter Three 
and in the Romans and Warner case, the individual classes of diagrams will be dealt 
with in turn, and the full amplitude given at the end. The contribution from each 
class of diagrams is as follows;

The point diagram:

The point diagram contribution due only to the terms in the Han et al action, 
is given by considering the vertices (4.2.24) and (4.2.26). The vertex contribution 
(4.2.24) gives the amplitude contribution,
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Figure 4.4: The Feynman diagram scheme in the case of the calculation of 

the \j7-\j/-h-h O(a') amplitude with propagator corrections



{ i  ( u u j t  / ulv- 1 c2y 1 4/ u ln) c31\ 4pv4 * l iy  ^31 ^4 p

(4.2.27)

and the vertex contribution (4.2.26) gives the amplitude contribution,

These should be added to the Lorentz Chem-Simons contribution, to give the full 
point diagram contribution. The addition will not be performed explicitly here, and 
will be left to the calculation of the full amplitude.

The gravitino exchange diagrams:

The pure gravitino exchange diagram,

(4.2.28)

gives the amplitude contribution,

(4.2.29)

and the propagator correction diagram,
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gives the amplitude contribution,

i  ( -  ■ v  . " i . c c  i

(4.2.30)

which add together as in the diagram scheme, Fig. 4.4.

The graviton exchange diagram:

There are three diagrams which contribute in this sector. The first diagram 
has the O(oc') fermionic vertex given by equation (4.2.13),

and gives the amplitude contribution,

(4.2.31)

The second diagram to consider has the O(a') h-h-h vertex of equation (4.2.11),

and gives contribution,
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Fig. 4.5a The three point O(a’) Feynman rules from the 

Han et al. action.



t{  - j ' i 7r1'rY y 591j¥vhx,'903Mhpv + 2Ti7s/ a M\(fvhs03p/ h 0  
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Fig. 4.5b The four point O(a') Feynman rule and 

O(a') propagator corrections from the 

Han et al action.
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Fig. 4.6a The O(a') graviton exchange diagrams from 

the Han et al action.
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Fig. 4.6b The O(a') gravitino exchange diagrams, and point diagram 

from the Han et al action. (No Lorentz Chem-Simons 

contribution note.)



(u -t)  ( 4 .2 .3 2 )

and the final diagram is,

which gives the contribution,

(u-t) (4.2.33)

The full amplitude can now be derived. Several of these calculations can be 
considerably simplified where appropriate reference has been made to the similar 
calculations performed in the Romans and Warner case. As in the Romans and 
Warner case given above a summary of the Feynman rules derived above will be 
given. The complete list of three point Feynman rules is given in Fig. 4.5a and the 
four point Feynman rules and O(a') propagator corrections are listed in Fig. 4.5b. 
As in the Romans and Warner case the factors of y and a' have been reintroduced in 
these. The Feynman graphs are listed in Figs. 4.6a-b, where the same procedure 
used in the Romans and Warner case is used here: all amplitude contributions listed 
next to a diagram include the sum of all diagrams of that form, and the appropriate 
combinatorial factor from Fig. 4.4. The full amplitude will be given in the 
's'-channel and 't-u'-channel form used above. This will aid the comparison with 
the string and the Romans and Warner calculation. The y constant and the a ' 
parameter will now be replaced in the amplitudes. The 's'-channel matching can 
clearly be seen to be,

which can be rewritten in a slighlty neater form. When this is done the matching 
condition takes the form,

which can be seen to be true if and only if y — -1/4! So it can be seen that it is

^ [ ( u - t )  + i ( 2 t + s ) - | ] S ^ u  (4.2.34)

(2 y + 1) u - 2 yt - 2ys = 0 (4.2.35)

111



possible to have either a three point amplitude match, or, it is possible to get a four 
point 's'-channel match to the string from the Han et al action. It is now important to 
see if such a result extends to the 't-u'-channel also. Unfortunately it will not do so. 
It is quite interesting to note that the Hanet al amplitude matching result is somewhat 
'closer' than that of the Romans and Warner result! This raises doubts about the 
possibility of field redefinitions linking the two supersymmetric actions. This will be 
discussed more fully in a later chapter. The 't-u'-channel matchings will now be 
derived for completeness. The matching conditions can be seen to be simply,

for the crossed generic term (4.1.57). As mentioned above, it can be seen that the 
amplitude derived from the Han et al action cannot match the string amplitude for 
any value of the parameter y. The amplitude matching is however very close, which 
tends to suggest that the low energy effective action for the heterotic string must be 
quite similar to the Han et al action.

The question that must now be asked is what form the low energy effective 
action for the string can possibly take, and what supersymmetry transformation rules 
make it supersymmetric? The 's'-channel result above is quite tantalising and 
suggests that the final action may be quite similar to that of Han et al. This question 
will be partially answered in the next chapter: the derivation of the effective action 
will be attempted. The subject of supersymmetry of the effective action is left until a 
discussion of field redefinitions, and redundancy and ambiguities in the effective 
action.

Section 4.3: The Ricci tensor: Possible Ambiguities.

The Ricci tensor used in the work given above is defined as in Appendix 
Three by the contraction of the Riemann tensor in the form,

z M - u  (4.2.36)

for the standard generic term (4.1.56),

(4.2.37)

(A3.4.6)

or equivalently in the form,
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(4 .3 .1 )

However it is possible to use the definition,

(4.3.2)

which differs from the previous definition only by an overall negative sign. The 
action of Romans and Warner lists the curvature scalar as having a negative sign 
difference from that of Chapline-Manton when the conversion table as listed in their 
paper is used to convert between the two actions. (Han et al have the same problem 
as they use exactly the same notation of Romans and Warner). This means that their 
are two possible conclusions,

i) The negative sign multiplying the Einstein-Hilbert action in Romans and 
Warner is a typographical error, in which case the results given above for 
both the Romas and Warner and Han et al amplitude matchings are correct.

ii) Romans and Warner use the second definition of the Ricci tensor given 
above, and omit to mention this in their conversion table. In this case the 
Ricci tensor and curvature scalar terms in the O(a') part of the Romans and 
Warner action enter with the opposite sign, though the Riemann tensor 
terms stay the same. This implies that the amplitude matching for the 
Romans and Warner action will differ slightly from that given above. The 
Han et al results will be unaffected by a redefinition of the Ricci tensor, 
since the O(a') sector of the Han et al action does not depend on the Ricci 
tensor or curvature scalar. The changes to the Romans and Warner 
amplitude matching will be discussed now. It will be shown that the 
conclusions stand even though the details of the matching change slightly.

If the Ricci tensor is assumed to have the second form defined above in the 
action of Romans and Warner, then the only terms that vary under this redefinition 
are,

It is therefore only necessary to examine the Feynman diagrams that are affected by 
these terms in the action. It is immediately clear that the second of these two terms

(4.3.3)
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never contributes to the amplitude matching in any way, and so it only remains to 
examine the effect of the change of sign of the first term. The Ricci tensor term only 
contributes to the four point \}f-\j/-h-h Feynman vertex in the term,

(4.3.4)

and to the three point \j7-\|/-h vertex where the graviton h is taken off-shell,

'  \  {^M VYV - VaYv30 v “ } • { d ° d , / v - 3 % h °v }

(4.3.5)

where the Ricci tensor redefinition has been taken into account in the two 
expressions above. It is important to stress that no other vertices are affected in any 
way, (so the three point matching is not altered by a convenient sign for example) so 
the diagrams which do not use these vertices are unchanged. It can be seen that both 
these vertices contribute only to 's'-channel amplitude terms. This implies that the 
's'-channel matching condition must be modified, but that the 't-u'-channel matching 
conditions are unaffected. Since these are enough to demonstrate that the Romans 
and Warner action is unable to match the string amplitude even after taking into 
account the ambiguity of sign in the definition of the Ricci tensor, the changes due 
the redefinition will not be considered explicitly. The conclusion that the Romans 
and Warner action cannot be considered as the low energy effective action for the 
herterotic string is unchanged. It must be stressed most emphatically that the Han et 
al amplitude considered above will not change in any way under the Ricci tensor 
redefinition implying that the conclusion that the Han et al action cannot be 
considered as the low energy action for the string continues to hold. In the more 
general amplitude matching calculation that follows in the next chapter it is obvious 
by the way in which the action is constructed that the consideration of the particular 
definition of the Ricci tensor is irrelevant.
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Chanter Five.
The Interacting Field Theory III: 

The General Case.

Introduction,

This chapter extends the attempts of Chapter Four to derive the low energy 
effective action for the heterotic superstring to the O(a') order. This is done by 
constructing the most general action possible subject to the restriction that 
skewsymmetrisation of the terms of the form,

S [pVo] = 9[p Va] + 1  rmYn v ' ”hp] ml

will be assumed. This restriction will obviously limit the absolute generality of the 
action used to the standard types of supergravity type terms of references 
[43,52,53]. There will be no discussion of supersymmetry in this chapter due to the 
extreme complexity of the action used, though a general discussion of 
supersymmetry of such extended actions will be attempted in the context of field 
redefinition analysis. The general action developed below will be shown also to be 
inadequate as a low energy effective description of the string by the same argument 
of amplitude matching as in the previous two chapters.

Section 5.1: The most general Lagrangian and its Fevnman Rules.

In this section the most general possible action will be constructed, and the 
corresponding Feynman vertices evaluated. It should be noted that the approach that 
will be followed here is completely different in spirit to the Noether method 
technique which was used in references [52,53] in the two trial actions tested above 
by the amplitude matching procedure. In this chapter the action is found by a direct 
method completely ignoring any symmetries that the final action must have, 
particularly supersymmetry. It is assumed that the symmetry transformations that 
correspond to the supersymmetry, local Lorentz symmetry, general coordinate 
invariance, and so on, that leave the action invariant can be found later and shown to 
satisfy the appropriate algebraic conditions. The symmetry of the action is assumed 
to be assured by the symmetries of the string which generate the amplitudes that are 
matched. In the Noether methods used in the Romans and Warner and Han et al 
actions the symmetries are postulated a priori, and the actions derived from these by 
consistency arguments. Clearly the string may not generate these particular forms of
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the symmetry transformations in its low energy limit. It is in fact quite possible that 
the supersymmetry transformations, for example, that arise from the string in the 
low energy limit, (although these are more or less forced to be the same as those of 
the Chapline and Manton action at the 0(a'°) level due to the Noether method 
applied as in reference[70]), may be very complicated and non-geometrical at the 
O(a') level and above, the full string supersymmetry only being retrieved at the 
n —> °o limit of the 0 (a 'n) expansion. It is conceivable, though unpalatable, that the 
supersymmetry transformations may take a very un-geometrical form, including 
complicated higher derivative terms which maintain supercovariance only through 
pathological cancellations, which nevertheless close the supersymmetry algebra 
order bv order in the a ' expansion. Such a supposition may appear somewhat 
surprising, but it does not seem so when considered in the light of the comments of 
the section dealing with supersymmetry of the interacting superstring in reference 
[27], where it is noted that the interacting string supersymmetry transformations do 
not form a closing algebra, unless one works in all the string pictures 
simultaneously. The most that is claimed for the current algebra of supersymmetry 
transformations developed there is that they are suggestive of a full supersymmetry 
algebra. It is not clear how these transformations relate to the transformations of the 
low energy effective action.

The construction of the general action, its corresponding Feynman mles and 
the contruction of amplitudes in this chapter will proceed by observing the 
similarities of the action to the less general Romans and Warner or Han et al. 
actions. The first stage is to classify the various types of terms that can be added to 
the action subject to the constraint given above. This is simple to do. The terms that 
are chosen for the most general action are further restricted by the amplitude 
matchings that will be performed to fix the coefficients in the action, that is the 
general terms chosen will only be those that contribute to the amplitudes considered 
for the matching procedure. These amplitudes will be as in Chapter four above, that
is the \j7-\j/-h amplitude and \j/-\j/-h-h amplitude at O(a'). This means that only certain
types of terms need be considered. For example, since there is no 0(a'°) \j7-A,-h 
vertex with the X field off-shell, it will be unnecessary to consider any higher 
derivative terms of the generic form,

X y D y R  (5.1.1)

or of the form,

KXySlSiy (5.1.2)

since these can never contribute to the amplitude matchings. The arguments
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presented in Chapter Four to show that no antisymmetric propagator diagrams need 
be considered continue to hold in this case, and so no generalised antisymmetric 
tensor vertices need be considered, and so no action terms will be constructed.

The only types of terms which need to be considered for the amplitude 
matching calculations performed below are therefore easily classified into the sets of 
terms,

al Fermionic Terms.
i) \jryDy R^vpo : y = antisymmetric product of three gamma matrices.
ii) \J7yD\j/ R^vpo : y = single gamma matrix.
iii) R^° : y -  any product of gamma matrices.
iv) D\jyy3) D\j/ : y = single gamma matrix.
v) Dvj7y3) 3)\|/ : y -  antisymmetric product of three gamma matrices.

bl Bosonic Terms.
i)
ii) RpvRMV
iii) R2

most of which have been seen in the previous chapter in a less general way. Each of 
these classes of terms can be further subdivided into the most general set of possible 
terms. This will be done class by class. The bosonic class is already the most 
general. It remains only to consider the fermionic terms.

i) The most general set of terms containing a completely antisymmetrised 
product of three gamma matrices, and a Riemann tensor is highly restricted by the 
symmetries of the Riemann tensor, and although many terms can be written, only 
two of these terms are independent. These are;

Ki:-
v /'^ tv V .jR p a  (5-1-3)

K3 >

w pov v]RPr  (5 -L4)

where the underlined letter before the colon denotes the arbitrary coefficient that will 
be associated with the term throughout the calculation of the Feynman rules, 
calculation of the amplitudes, and finally the amplitude matching process. This 
notation will be used throughout. Each of these terms will give contributions to the
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Feynman rules described below.

ii) The same arguments using symmetry can be applied to the most general
set of terms containing a single gamma matrix and a Riemann tensor. In this case
there is only one independent term,

k 2 :-
_  u v p

MV/^vVpjRo (5.1.5)

which completes the terms containing the Riemann tensor.

iii) There are only two terms containing Ricci tensors and any number of 
gamma matrices which are independent, and which contribute to the amplitudes 
calculated later. These are of the form,

ii=-
v Y 3 > [vVp)RaP (5.1.6)

w-
(5.1.7)

which will give Feynman rules which will be seen to contribute to the 's'-channel of 
the matching.

There are several other terms which are independent of these two, but which 
do not contribute to any of the amplitudes considered below.

iv) There is only one term which explicitly contains only higher covariant 
derivative combinations of the gravitino fields and a single gamma matrix. This is,

L:-

(s .i-8)

which provides a propagator correcting term in the background field expansion zero 

graviton limit.

v) There is only one term which explicitly contains only higher covariant 
derivative combinations of the gravitino fields and an antisymmetrised product of
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three gamma matrices. This is,

L':-

j>[y v a\ a [(iVo]gvp (5.1.9)

which is also propagator correcting in the background field expansion limit. The first 
of these last two terms has appeared in the Han et al. action, but the second is an 
entirely new term. This completes the list of the terms which comprise the general 
higher derivative action which may be compared with the string. This means that the 
most general action, subject to the constraint mentioned above, is of the form,

r  = e<|>'3/4 {X [RMvpy Vp°- 4y RpvRpv + z R2 ]

(5.1.10)

where it should be emphasised that only the terms which contribute to the amplitudes 
considered below are kept. The procedure is now as follows: the Feynman rules 
will be calculated, then the appropriate amplitudes will be evaluated using them. The 
standard comparison to the string will then be made.

The Feynman rules are calculated by the same tedious and laborious 
methods used in the previous two chapters. First the propagators need to be 
calculated, then the Feynman vertices need to be derived subject to the rules 
developed in Chapter Three.

il The Propagators.

The propagators are simply the generalisation of the form of the propagators 
derived subject to the assumption introduced in Chapter Two and applied in Chapter 
Four. The general propagators are derived in Appendix Two. The graviton 
propagator is of the general form,
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D = 2L { _2 p ^ ^ ______ ______Hv.ap ,2 ‘ L îv,ap /< ni2 _ ^v,aP
(l+ 8 k x(l-y))

+ M

((0 -1) - 8 k2x((l-y)+e(y-z))) ^V’aP

. 2  ((8 -2 ) - 16k x((l-y)+e(y-z))) p«o) 

((0 -1) - 8 k2x((l-y)+0 (y-z))) ^

+ 2 ye
((0 -1) - 8 k x((l-y)+0 (y-z)))

(see) (ces)
(P  +Pv ^v,apT rnv,ap) }

(5-l . ll)

using the standard projection operators used in Appendix Two), which can be 
Taylor expanded to give the 0(a'°) and O(oc') terms, which will be used in the 
calculation of amplitudes. The 0(a'°) must be the same as the propagator derived by 
pure canonical means in Chapter Two. This is, (in the notation of Appendix Two),

Dnv,ocp = {*W>vp + ^ p 8 va - i  }

(2.2.15)

which can be seen to occur in the standard O(a') diagrams,

The O(a') propagator correction for the graviton gives rise to extra diagrams which 
must be considered, for example,

The O(a') propagator correction is given by the standard Taylor expansion and is,

12 0



0) r 
DHv,«P = 1 I 1 6 x(1-y )(V 5 vP+ 8 nP8 va)

- 16x(l-y)(8^acovp+ 8 p̂C0va+ SvpC0)ia+ 8 vacô p)

" ~g~ x^"yX8 nv" cô v)(8 ap- >̂ap)

+ j  x(( 1 -y)+9(y-z)) [ I (8 ^ -  % v)(8 ap- coap)

+ 9 °Vvwap + 3 ($nvcoap+ 8ap°Vv_ 2C0̂ vC0ap)] }

(5.1.12)

which can be seen to be extremely complicated. The next higher order correction, the 
0 (a '2) one is very much more complicated, and is given in Appendix Two. The 
great complexity of these terms is negated somewhat by the truncation convention
chosen for the calculation of four point diagrams. It can be seen that most of the
terms in the propagator corrections vanish trivially by the truncation procedure, as 
will be demonstrated later.

The complete gravitino propagator derived from the generalised action of 
equation (5.1.10) is of the form,

Y _ f_______ 1_______p̂ /2  1___________pl/2
aH,v " 2 1 2 t1*''’ 2 llu.v

k (2 + (8L-4L’)k ) (2(0-1) - (8 L+4L'(0-l))k ) ^

+ @ -9  + (8 L+ 4L'(0-l))k2) 1/2

(2(0-1) -(8L+4L'(8-l))k2) 22m,v

+ _________ & __________ (pl /2  - p1/2 ) )
2 12u,v 21u,v' J

(2(0-1) - (8 L+ 4L'(0-l))k ) * *

(5.1.13)

which is derived explicitly in Appendix Two. This can be expanded as in the 
graviton case by a Taylor expansion. The Taylor expansion of the gravitino case is 
similar to that of the graviton. As in the case of graviton, the 0(a'°) uncorrected 
propagator is simply the standard propagator, calculated by standard canonical 
manipulations, which in the covariant gauge is,
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and where the O(a') correction to this is,

68 ) 
64 k2 *

- j  ( V v  + 7nkv) } (5.1.(5.1.15)

which can be seen to explicitly vanish only for the trivial choice of parameters, i.e. 
L = L' = 0. That is the action is only manifestly unitary when neither of the 
propagator correcting terms exist in the action. This is quite different to the case of 
the graviton, where the choice of the Gauss-Bonnet combination produces a 
manifestly unitary theory^51,54!.

Again as in the graviton case, this new propagator generates extra diagrams 
from the Wick expansion, which must be evaluated. These are of the form,

The complete set of diagrams that have to be considered is now, as for the Han et al 
action given in Figure 4.4. All that remains to be derived before these diagrams can 
be evaluated are the Feynman vertices. The techniques used in these calculations 
have all been developed in the previous chapters, and so a recapitulation is 
unnecessary. The appropriate vertices will therefore be stated rather than derived. 
The calculation of the various diagrams can then be performed.

The Feynman vertices will be listed in a systematic way. First the three 
point vertex where all fields are on shell, which allows the three point calculation to
be performed will be stated. For the four point amplitude a set of vertices are
needed, which are;

i) the h-h-h vertex, h off-shell,
ii) the \{7-\|/-h vertex, h off-shell,
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iii) the y-y-h vertex, y  or y  off-shell,
iv) the y-y-h-h vertex, all on-shell.

which will be simply stated below. Some of the terms in the extended action are 
extremely difficult to expand. Most of these have been examined previously for the 
individual cases of the Romans and Warner, and Han et al. Lagrangians. The 
arbitrary coefficients will keep account of the individual terms in the action. The 
vertices will all be symmetrised according to the rules developed in Chapter Three, 
and will thus be ready simply to construct the Feynman diagrams and finally the 
amplitude. It may be the case that it will be simpler to write the vertices in parts, 
corresponding to individual terms in the extended action. It will be obvious when 
this occurs.

i) h-h-h vertex, h off-shell.

This vertex is given by identical arguments as used in the previous chapters. 
The vertex is,

x { ( j  -3y+3z)h^dcdvhP\ d vhpa + (-l+2y-3z)h^aahPV \ 3 vhpp

- (5+4y)h0|ia°avhP 3c3vhpp + (4y-3z)hpv9P3ah0P3a3vhp° }

(5.1.16)

which can be seen to correspond to the vertices derived from the Han et al. and 
Romans and Warner Lagrangians when suitable values for the coefficients x,y and z 
are chosen. For example the Han et al form of the vertex clearly corresponds to the 
choice x = - y/2, y = z = 0. (Note the factor y has been included here even though it 
was suppressed for the sake of clarity in the derivations of Chapter Four).

iii \j/-y-h vertex, h off-shell.

There are several contributions to this vertex from different sectors of the 
action. It will be desirable in this instance to separate the various contributions for 
clarity. The vertex due to the terms given by the Ricci tensor terms given by the 

coefficients lj and I2 is,

- f O i + y  { ?Y 5 p ¥ v -^ p ¥ v fv v H A > P

(5.1.17)
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and the similar contribution due to the pure gravitino terms denoted by the 
coefficients L and L' is,

O p -  { a V V V p V o  - 9,9p?0rva V  }hv“

(5.1.18)

which sum to give the full vertex, since these are the only contributions 
to the vertex.

iii) \j7-\j/-h vertex. \j7 or y  off-shell.

This vertex comes only from the Lagrangian terms denoted by the 
coefficients Kj, 1̂ , k3, L and L'. The vertex due to the k coefficients is,

{  '  J ( K i +  2 k 3 ^  +  j  k ,  YY9T\|/vaaavhpM

- i  (K,+ K2+ 2Kj) v (17D9v\(rtaoa V T + 1  (k,+ k2+ 2k3) x j^ /a ^ a V h p  }

(5.1.19)

and that due to the L and L' terms is,

L:-

l  { - a V Y ^ o V p C + ^ v Y S p V ^ V v

- a V Y V A * }  (5.1.2°)

L ':-

L' { - r a V A Y Y p V v h p m + 9Vv V v p9v9Phpm

+ ^ a'Nv A V p } (5.1.21)

which give the full \j7-\|/-h vertex for \j/ off-shell on addition.

iv) \j7-\|/-h-h vertex, all on-shell.
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This vertex has contributions from most sectors of the theory. It will be 
desirable to split them up for the sake of clarity. The kv k ,̂ k3 contribution is of the 
form,

*v-

Y  (  V Y Y /I h^VXp + hpx9a9Vĥ  +1 3vhp*90h  ̂]

- VpY^Vv [ - j 9 0hXV9phxP + y 3phvXaoh ^  ]

+ yVpYPy 5f 9 v V / t309 \ P } (5.1.22)

k2:-

y  ( v s/3vVphsoapavh /  + i x j / Y a ^ v h ^ a ^ h ^ }

(5.1.23)
K3:-

k3 { \  V°/3pVv [ h^Sp^hno + 2 hcn^p^h'1'' ]

+ j ? Y ) Y d vv phtT9aa ' V  } (5.1.24)

The L and L’ contribution is, 
L:-

-  J  {  a V / Y m Y n V p 3 \ m 9 o h  p  -  / Y m Y n V x a " h p m 9 n h  p

+ ydV/YmYn9aVphpn3"h'lm }

(5.1.25)
L':-

Y  i  ? m Y „ a v V x 9 n h a m 3 Vh a X  + j  3 P ? Y Y m Y n 3 p V v h m11a Th n n  

+ 1  9V Y nYPYqV[p9qhv]PaThnv }

(5.1.26)

where the vertex contributions have not been explicitly symmetrised for the sake of
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X  { -  y ( « ! +  k 2 +  2 k 3) - L + L ’ } a V y ' a ^ a V

X  { -(L 4L) - } ( V f d pVv - 9pVVY V v ) d t f f 1 h j1

X  1 (K‘+2^ 3 + L) V|iy > * V  + x v Y Y A 'M o d 'V

(2L-L')  p.. -.v, P (ki+k2+2 k3 ' 4 L +8L) p -t-v,
+ ■■■— -ypy a va y Ta hp + — — -— ^ ------------ v Y  avv ta 3 h,

+ (k1+k2+2k3-2L-L')_ y P w V , }

X ” { ( j - 3 y +3z) hppaaavhpaa0avhpa+ (2y -3z -i)hovaahpt‘aaa0avhpp 

- (5 + 4y) h«VaVhP do<MVa + (4Y' 3z) hpv^a11"*aVa“hp0 }

Fig. 5.1a The O(a') three point Feynman vertices used in the calculation 

of O(a’) amplitudes.



X  {VpY’dvV’ [(x + x + K3 ■ T } hW^ X p

+ OK1+y 2K3) h1ttl]

+

+ X X ? / Y ' Y d v V X V ' V

+ x ^ Y  y v v ^ x ^ V

+ (3Lg2L) VpYmYn^V^^xYohp

+ -L gL) 3Vy*Y„Ym9oVphMlianhnm

(2L-3L) -vO—P u xiii m-x i X
— g - ^ - 9  V  Y YmYnV ^  30hp

+ 2 i l b l  Tj? ̂  y 53pVphn5a0aph?n}

X  { 16x(i-y )[ (5Po5vd "*■ ^p^va) “ (^ a® vp ^p®va "*■ ^va®^p ^vp^|ia)1 

r \ A ^ \ r \ ^
" ~ x( l-y)'(S^v ■ °W -(8ap“ ^ap)

+ j ( x  ( ( i -y ) + 9(y-z) ) [  ^-(8pV- <»Vv)(8ap - toap)

+ ^ ®a0®Vv + 3 ( ^pvWap + 8apWpv _ 2 ^Vv^ap)] 1

a ’i (2L-L ) { - | j - V 11 + p i  Yp - |(Y Mkv + Yvkv) + }

-a ' iL’ {- ^ - r ipvll - p i  Yp + ^  + Ypkv)}
Jv

Fig. 5.1b The four point O(a') Feynman rule and

propagator corrections. (Note the four point

Feynman rule has not been skewsymmetrisedfor simplicity).



simplicity and clarity. Finally the lj and 12 contribution is,

V phn4a 0 9 PhT1̂  ( 5 .1 .2 7 )

All of the contributions given above add to the contribution from the Lorentz 
Chem-Simons three form term, equation (4.1.38) to give the full vertex factor. The 
complete set of Feynman vertices used are summarised in Figure 5.1a and b. These 
Feynman factors include the a ’ factors omitted throughout in the discussion above. 
The figures also include the Feynman propagator corrections. The calculation of the 
amplitude is now merely a matter of multiplying these various factors together in the 
momentum representation in the manner of the formalism developed in Chapter 
Three. This is carried out in the next section.

Section 5.2; The amplitude calculation and amplitude matching.

In this section the full, general, amplitude for the y-y-h  and \|/-\{r-h-h 
scattering processes are calculated. The amplitudes thus derived are then used in the 
amplitude matching procedure, to try to determine values for the general coefficients 
introduce into the general action. The three point matching will give a single relation 
in five of the arbitrary coefficients introduced in the action above. Clearly this is not 
enough to determine these coefficients on its own. The same coefficients arise in the 
four point matching, and so the three and four point matchings together may fix 
some of the coefficients in the general action. A consideration of the four point 
action is very similar to the specific cases dealt with in Chapter Four above. This 
will again be seen to separate into the 's'-channel and 't-u'-channel subterms used in 
the matching conditions in Chapter Four. The 's'-channel will be seen to give a 
possible match to the string for a particular set of values for the L' and y coefficients 
in the general action given above. This can then be used in the 't-u' matching 
conditions. The 't-u'-channel matching conditions will be seen to reduce to a set of 
three linear simultaneous equations which can be solved. When the three point 
matching condition is reintroduced, however, there is an extra constraint on the 
general coefficients of the action. This means that the variables are overconstrained, 
and it would therefore require a remarkable coincidence for this system to be 
soluble. It can in fact be noted as an aside that two of the general cofficients always 
occur in the combination k x + k 2 and consequently only count as one degree of 
freedom in the matching. It transpires that a solution is in fact possible, and still 
leaves some ambiguity in the leading order terms in the effective action! This 
statement will now be proved using the standard amplitude matching procedure. The
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conclusions of this analysis will be discussed at the end of the chapter and in a little 
more detail in Chapter Six.

The first amplitude to consider is obviously the three point amplitude 
\j/-\j/-h. The appropriate contributions come from the terms whose coefficients are 
Kj, k2, k3, L and L'. All other terms have vanishing contribution to this amplitude. 
The amplitude is,

- tf i { - 1  ( k ,+  K2+ 2 k3) - L + L' } UjV'u* ^ > lpk2vk3.

(5.2.1)

which can now be compared to the string subject to the normalisation condition used 
in Chapter Four. This implies that the matching condition is,

- i (K j  +K2 + 2K3) -L  + L’ = - i  (5.2.2)

which will be the first of five constraints in these variables. The four point amplitude 
will contribute the remaining matching conditions discussed above. The four point 
\jT-\|/-h-h amplitude will be evaluated according to the Feynman diagram scheme, 
given in Figure 4.4. Each of the classes of diagrams will be evaluated in turn. 
Obviously all of the terms considered above in the general action contribute to this 
amplitude. It will be shown that the coefficients discussed in the three point case will 
be the overconstrained coefficients, and all the others will be completely 
underconstrained. Each of the diagrams will be treated in turn,

i) The 'point1 diagram.

The amplitude contribution due to this diagram is most easily analysed by 
splitting the amplitude contributions into the separate contributions due to the 
individual subamplitudes quoted above. The amplitude contribution due to the k  

terms is,

f (K .+K.+2 K J r _ ^  P
{ ---------  [(2u-t)u2̂ 4 Ulp" (■2t_U)U2p^4UlpJ^3 ^4n

+ ±  [(KjU -2K3t)u2/ k 4f u lm- (K,t -2K3u)u2mf k / V k 3rm<;4/  }

(5.2.3)

The contribution due to the L and L’ terms is of the form,
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L:-

{ -  j  [ ^ y i 4A Ip - f  ulp]c3qaw

+ 32 ^ 2^ "^  4^"Ula  '  ®2a^nk 4^mUT i  ̂ 3 ^4v )

(5.2.4)
L':-

{ 1  [ J S2mlt3Ua -  i G2Xk 3Ulm]^3amC X

+ ^  [ f y j t j W V  V n ^ Y m u j C C  

+ ~16 t i 02 ^ 4rPu iv - y V p ^ ' i X  pC „

'1 6  [ 2 S2Ynk" V l v - f G2v^4Vn<  ] ^ pC „ }
(5.2.5)

and the remaining contribution from the lj and 12 terms is,

(1,+ L) T r\̂
 32“ u2k 4ui^ 3  (5 -2 -6)

These contributions add to the standard Lorentz Chem-Simons contribution of 
equation (4.1.40), to give the full contribution. This will not be stated for the sake of 
simplicity. The contribution to the amplitude from this diagram can be seen to split 
up in an interesting way. It can be seen that the Kj, k2, k3 coefficients which appear 
in the three point matching only give contributions to the 't-u'-channel 
subamplitudes, where the lj and 12 coefficients only contribute to the 's'-channel. 
The L and L' give contributions to both sectors of the amplitude. This will be seen to 
be a common feature of the amplitude contributions in general. When considering 
the relative number of coefficients which contribute to each of these sectors, this 
would normally signify a distinction between the leading order terms and the 
nonleading order terms in the action, in the limited sense of the field redefinition 
analyses carried out in the bosonic matchings of references [51,56-61].

iii The graviton exchange diagrams.
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The diagrams that have to be considered in this sector are,

+

and the higher order propagator term,

which include the higher order graviton propagator correction discussed above. 
Inspection of the various fermionic vertices required reveals that all of these 
diagrams are 's'-channel. The contribution from these diagrams is especially simple 
to calculate, given the vertices above and the truncation convention, and can be 
shown to be,

JL  [2 (L- L') - 12x - (lf  y  } u > 4ulpC3^ ( u  - 1)

(5.2.7)

which completes the 's'-channel contributions to the amplitude. It is interesting to 
note that all y and z dependence has vanished from the amplitude. This may be 
constued to be due to invariance of the amplitude under field redefinitions. This 
point will be discusssed further in Chapter Six. All remaining diagrams will 
contribute only to the 't-u'-channel.

iiri Gravitino exchange diagrams.

The only diagrams that need to be considered in the case of the gravitino 

exchange diagrams are,
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and

where the appropriate symmetrisations can be derived as in Chapters Three and Four 
by relabelling polarisation states, and using the Majorana spinor conjugation. These 
diagrams are most easily evaluated by using the toolbox of terms developed in 
Chapter Four. Doing this gives the first diagrammatic contribution in the form,

k :-

{ - T 6 (K1+K 2+2K 3) [ t n 2pk 4Ulm-u 5 2mlt4Ul | } ] C X s P

+ ~ k  (3K1+ K2+ 2K3} ^  "2/ *  ̂ Ulm- * 32m̂ k 4/ UJ  S * V  1
(5.2.8)

L:-

f  - - | u 2v/ k / u lmC3amC4pV }

(5.2.9)

L ':-

f  ( % * = » *  m V C V  * ■ v  . " I - C X . ' )
(5.2.10)

all of whose contributions are dependent only on the k 1? k 2 , k 3 , L and L' 
coefficients as expected. The second diagram yields the two terms,

i (2L- L') f (t + 2s)_ ~  . r "y •*
 8 ----------- I  4  2 m ' 4 ‘ l m ’ 3a ’ 4 a

,ms^ M--  il r msr H 1 
U2m 4Ulm^3 ^4s J

+ ^ 32MV,k 4 A lm?3;'C4a (5-2-H)

13 0



ia'x(l+2y) ( u . t ) ^  4. J  3)uip^ ^

- { - - - ( u - t )  4- i  3^1p^3^4r(^

Fig. 5.2a Summary of the graviton exchange Feynman 

O(a') diagrams for the general case.



| f { 4 <K I +  K2 +  2 lS  - L '> t* M  4- 4  3>Ul m- «  *2J  4 - 4  3 ) " J C C

- [[(3Kj+ k2 + 2k3+ 8L - 2L')u +2L's]. u2v/ ( 4  4- i  3) /u lm

- [(3Kj+ k2 + 2k3+ 8L - 2L')t +2L's]. u2m/ ( J  4- i  3) / u lv ^

+ 4L [tu2vy>(il 4- i , ) / Ulm - uu2n/ ( i  4- ll 3)fulv ];3amc4p }

X  ( i I  < m a J C  c

- [ t 4- i  3)uim - u u2m^ 4" ^ 3̂ Ulp. -I ̂ 3 ^4s ^

M-
- { t 4- i  3>^ lm  - U 4* 4  3 ^ ^  } ?3a \ a

Fig. 5.2b The gravitino exchange diagrams used in the evaluation 

of the O(a') \j7-y-h-h amplitude in the most general 

case considered.



which depends only on L and L'.
These diagrams, in addition to the others described above, can be summed 

according to the symmetrisation and combinatorics of the scheme given in Figure 
4.4. As in Chapter four the various contributions from individual types of diagrams 
will be summarised. The graviton exchange diagrams are listed in Figure 5.2a, the 
gravitino exchange diagrams are listed in Figure 5.3b and the point diagrams 
(excluding the Lorentz Chem-Simons contribution from Chapter Four) are listed in 
Figure 5.2c. As in the summaries given in Chapter Four the complete amplitude is 
merely the sum of these individual terms listed in these figures, and the contribution 
from the Lorentz Chem-Simons term given in Figure 4.3, since all the various 
factors have been taken into account, including the trivial reintroduction of the a ' 
factor as in the previous chapters. This gives the final amplitude which can be 
matched with the string to attempt to fix the arbitrary coefficients. This is done in the 
following section. Due to the vast complexity of the amplitude and the lack of 
necessity of seeing it complete, the full field theory amplitude will not be listed: 
rather the individual classes of sub terms within the amplitude will be matched 
separately. This is now done.

Section 5.3: The amplitude matching and its consequences.

As mentioned above in this section the amplitude matching is performed and 
an attempt will be made to solve the resulting linear simultaneous equations. The 
string answer is given by equation (4.1.53), which has already been normalised 
subject to the O(oc’°) matching condition. Splitting the full trial effective field theory 
amplitude into the 's' and 't-u'-channels, allows a direct matching to be made as 
done for the Romans and Warner, and Han et al. actions in Chapter Four. This will 
be done below, where the sectors will be examined in turn.

a) The 's'-channel.

This is the easiest of the matching conditions to analyse. There will turn out 
to be two conditions in the matching process as usual. The matching condition is 
simply determined by comparing the sum of the diagrams given in Figure 5.2a, the 
’s'-channel parts of the point diagram contribution of Figure 5.2c and the Lorentz 
Chem-Simons term contribution given in Figure 4.3, with the 's'-channel sector of 
the string amplitude given in equation (1.4.16), and can be seen to give the 
condition,
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{ [  (2(K j+  k2+  2K3)(2u-t) +  4L'u) u2p(4  4- 4  3)u lp

- (2(K j+  k 2+  2K3)(2t -u) +  4 L 't) u2p(4  4- 4  3)u 1(X \  9

[  (KjU - 2K3t ) u2p/ (4  4- 4 3) / u lm - (K ,t - 2 k3u ) u2mf ( 4  4- 4  3) / u lp ] c 3rm c.

+  (2L - 3 L ')[ t u ^ / ( 4  4- 4  3)yX  - «  v q(4  4- 4  3> / u ;  ] ; 3qp^ 0

- [((s+ 2 i)L  +  (s-3t)L ') 5 ^ / ( 4  4- 4

- ((s+ 2u )L  +  (s-3u)L ’) u^yq(4  4- 4  3) f  u ,p ]  S3qoC4p

- (lj+  y  (u - t ) U2(4  4- 4  3)u lp£ 3 C4t)^ }

Fig. 5.2c The point diagram for the calculation of the O(a’) 

\j?-\j/-h-h amplitude in the most general case.



- ^ {  -£[2(L-L')-12x](u-t) + ys

+ (s + 2t)L + (s-3t)L' } = - ^ - u  (5.3.1a)

which can be rewritten in the somewhat more illuminating form,

{ ( -  j  - (2L - 6 x))u + (2L - 6 x)t + 7s } = 0

(5.3.1b)

which can be seen to be soluble by the choice y = -1/4 and L’ = 0, which is the 
same as the Han et al case. However, the possibility of a full match to the string 
amplitude remains in this case, due to the increased generality of the action used, and 
so the 't-u'-channel matching must now be addressed. It can be seen that the 
combination L - 3x occurs in the matching condition, leaving the 't-u’-channel 
matching conditions to solve for both L and x. This is now carried out. It will be 
hoped that the choice L' = 0 will be consistent in these matching conditions. In fact 
it will be shown that this is the case.

b) The 't-u'-channel matching.

As in Chapter Four, it will be convenient to subdivide these amplitude
contribution into two further subclasses. Using the standard trick of introducing
gamma matrices into the amplitude produces the "standard" term matching condition 
in the form,

{ i g l  [ _2 ( Kj+ k2+ 2k3 - L')t - ((3 x^4- k2+ 2k3 +8 L - 2L')u + 2L's)

, ia'(L'- 2L) r (2s+t) , t 1 iL 'a 't ^ >7a's
8 1 4 2 J " 32 16

+ (2(kj+ V  2K3).(2u-t) + 4L'u) + 2 (k,u - 2 k3i)] } s - i g - u

(5.3.2a)

which is interesting, in that the combination (k1 + k2 + 2 k3) appears, which is the 
same as in the three point matching. This matching can be split into the usual two 
Mandlestam independent matching conditions,

5k12 + 6k3 + 6 L + 4L’ = - 2 ( - i  + y)
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and,

k 12 +  6 k 3 +  2 L  - 4L' =  -2  y ( 5 .3 .2 b )

where the combination k 1 2  = Kj + k 2 . The same must now be done for the 
"crossed" term denoted genericaly by amplitude terms of the form (4.1.56). The 
amplitude matching condition for this term is,

{ ^  [-2(k,+ k 2 +  2k3- L')t + 4Lt ] + ia  (Lj 62L)t 

+ ^  [2(k,+ k2+ 2K3).(2u-t) + 4L'u]

L323L')U <5'3'3a)

which again can be rewritten in the Mandlestam variable independent form,

2L + 7L’ = 2 (y + I )

and,

2k12 + 4k3 + 2L - L’ = -2y (5.3.3b)

which gives the final two matching conditions. This set of linear simultaneous 
equations can now be analysed. Immediately it is clear that the combination 
(Kj + k2) is the only combination of these two variables which appears in any 
of the matching conditions. Henceforth this comination will be replaced by 
the coefficient k 12 in all the matching conditions. Immediately it is clear that the first 
of the last pair of matching conditions can be used to eliminate L from the remaining 
matching conditions. When this is done the matching conditions can be seen to be of 
the form;

5k12 + 6k3 - 17L' = 4 ( - I - 2 y )

k12+ 6 k3 -11L' = 2 ( - i - 2 y )

2k12+ 4 k3 - 8L' = 2 ( - i - 2 y )  (5.3.4)

and,

133



" 2 K12 " K3 '  L  + L  ~ ( 5 .2 .2 )

where (5.2.2) is the three point amplitude matching condition. For consistency with 
the 's'-channel matching, y must take the value y = -1/4. When this value is 
substituted into the matching conditions above, it can be seen that the equations may 
be solved to give the values, k 12  =  k 3 = L' = 0, which implies L = 1/4, which 
is consistent with (5.2.2) the three point matching result. This is remarkable in that a 
solution exists for the complete set of equations which overconstrain the variables in 
question.

Finally it can be seen from the's'-channel matching condition, 
(5.3.1b), that,

which implies that the coefficient x takes the value x = 1/8, which is completly 
consistent with the analyses of Cai and Nunez, and also Gross and S lo an ^ . This 
implies that the O(a') part of the effective action for the heterotic string takes the 
form,

which can be seen to be very similar to the Han et al action when the y factor in that 
action takes the value -1/4, and when the lj, 12, y, and z coefficients are set to zero. 
It should be noted that there is a remaining ambiguity in the leading order terms 
denoted by the Kj and coefficients, where this is given by the 6 coefficient. The 
Han et al action would have required k^-1/2 and k3=-1/4, which is impossible.

It is also interesting that the choice of the Gauss-Bonnet form is left open by 
the amplitude matching procedure, which suggests that possibly the field redefinition 
analysis used previously in a purely bosonic context might continue to be a useful 
tool in fermionic actions. This is examined in the next and final chapter.

2L - 6x = y (5.3.5)

t '  = e f 3/4{ i [ R , v py VPa- 4 y R , y V + ZR2 ]

+ 8 ( \j/(l/ <rtJ)tv\|/T) + ŷ YvS1 V 1) RPVpo

+ RaP + RpV

(5.3.6)
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C hapter Six;
Eield Redefinitions. Supersvmmetrv 

and Conclusions.

Introduction.

In this chapter, some of the topics mentioned, but not covered, in previous 
chapters will be addressed. These topics include the discussion of field redefinition 
analysis and a brief discussion of supersymmetry in this context. The final section 
will give a summary of the work in this thesis, and the conclusions that can 
be drawn from it.

The field redefinition analysis will be covered in some depth, although the 
practicality of certain calculations will preclude a complete description. Section 6.1 
will deal with field redefinitions and supersymmetry. Section 6.2 will contain the 
conclusions of the work contained in this thesis.

The subject of field redefinition analysis as applied to the bosonic sector of 
the low energy effective action for the heterotic string has been extensively examined 
in the literature^59,60,63,64,65,66} but the subject of the extension of these arguments 
to the fermionic sector of the low energy effective action has not been addressed as 
fully. Some comments are presented here to suggest that the arguments used do not 
extend simply to the general fermionic action. The consideration of supersymmetry 
must play some part in the generalisation of the field redefinition analysis, since 
there already exist two quite separate actions which are supersymmetric up to the 
same level of generality, (though neither action is completely supersymmetric, they 
are each supersymmetric up to terms dependent on the antisymmetric tensor field as 
discussed in Chapter Four), but which have been demonstrated in Chapter Four to 
give different scattering amplitudes for the same scattering process. They are quite 
distinct dynamically, and clearly cannot be related by the naive types of field 
redefinition used in the purely bosonic case. However the role of supersymmetry 
will not be discussed in any depth below. Some simple examples of field 
redefinitions will be presented to demonstrate that a more subtle approach must be 
adopted in any field redefiniton analysis.

The results of this analysis in conjunction with the results of Chapters Four 
and Five will be tied together in the final section when the conclusions of the work 
described in this thesis will be presented.

Section 6.1: Field Redefinitions: some comments.

This section deals with the extension of the traditional approach to field
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redefinitions in the context of the fermionic sector of the heterotic string effective 
action. This approach derived originally from the work discussed in reference [63] 
with respect to the analysis of the nonrenormalisability and divergences of the 
background field expansion approach to the quantisation of gravity theories. The 
technique has lately been extensively applied to the particular case of the full bosonic 
sector of the effective field theory of the heterotic string in references [60,64,65] 
amongst many others. The field redefinition analysis of the pure gravitational sector 
of the theory will used as an example of the technique. The validity of the techniques 
as applied in the references mentioned above when the quantum theory is 
considered^66! will not be discussed. The connection between the essentially 
classical field redefinitions performed in the example presented, and the extreme 
complexity of the corresponding quantum field redefinition is unclear. The naive 
general principles outlined in the example presented, will then be applied in a 
completely similar fashion to the fermionic sector of the action. The method outlined 
will be shown to give somewhat ambiguous results which will seem to suggest that 
the standard approach to field redefinitions as used in bosonic field theories is not 
trivially extendable to the case of fermionc actions. It will be shown that the field 
redefinition analysis is probably not consistent with the results of Chapter Five in 
that certain field redefinitions will be shown to vary coefficients in the action which 
have been absolutely fixed by the amplitude matching, but it will not be shown 
whether this result can be strengthened to demonstrate that the field redefinition 
analysis is indeed not consistent with the amplitude calculations carried out above. It 
will require a great deal of work to decide whether the field redefinition analysis is a 
useful tool in the fermionic field theory case or whether the methods used 
succesfully in the bosonic case do not extend to the case of fermionic actions. This 
work is beyond the scope of this thesis.

The starting point for the field redefinition analysis is the consideration of 
the types of field redefinitions that need to be considered. Since the natural 
expansion parameter for string effective theories is the ex' constant, the restriction to 
field redefinitions of the form,

§ - » <j> + k a'92<j> (6.1.1)

(where <j) is some general field), can be made, which can be seen to highlight only 
the ambiguities in the O(a') parts of the action, as required. The field considered is 
the graviton, so the action that will be considered is the most general possible action 
up to the a ' order, any terms higher in a ’ being ignored. (This analysis has been 
performed up to O(ot'^) level to the authors knowledge^!, and probably higher.) 

The action is,
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*  =  - i  f% R  +  x  y r g  {  R w o RMVp° -  4 y R pvRPV+  zR 2 }

The most general possible O(ot) field redefinition of the metric tensor g v, with 
respect to the various symmetries of the theory, is the redefinition,

This redefinition must be replaced in the action above, and the new action derived. 
This is trivial to do using Bianchi identities, tensorial symmetries etc., and yields the 
modified action,

It is immediately obvious that only the Ricci tensor and curvature scalar terms vary 
under this redefinition. This implies that these two terms in the action are ambiguous 
with respect to field redefinitions, and consequently can never contribute to any 
physical amplitude, and therefore no amplitude matching procedure. This means that 
the amplitude matching procedure, as discussed in the previous chapters, can never 
determine the coefficients of these particular terms in the action.

The relation of this field redefinition analysis has been investigated, in 
references [51,56], in the context of the bosonic sector of the theory, by explicitly 
showing the exact, (and miraculous), cancellation of these ambiguous coefficients 
in an amplitude calculation. The generalisation of this technique to the case of 
fermions is obvious. The same techniques will be applied to the various fields in the 
complete action and the ambiguous coefficients determined.

The obvious starting point for any examination of this type is a toy model 
which has the practical advantage of demonstrating all the features that would be 
apparent in the full theory, without the concomitant complexity. The restriction 
chosen will be to the graviton field in the form of the vierbein, em̂ , and the spin-3/2 
field \j/u. Since the field variations are of the order O(a'), and only the O(a')

r
variations of the action are needed, then the only action terms that need to be

gnv~* g^v + + b2gHVR (6.1.2)

f g  R + x f g  { RpvpoRpVp°- 4y'RpvRPV+ z'R2 }

(6.1.3a)

where the modified coefficients y' and z' can be written in the form,

(6.1.3b)
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considered in the variation are the ones of order 0(a'°), that is the order below the 
variations looked for. Any terms that arise from the variation procedure can then be 
compared to the O(a') terms used in Chapter Five.

The first problem of this work immediately presents itself when the most 
general field redefinitions must be found. The question of what guiding principles 
must be used in their selection? How does one ensure the supersymmetry of the 
lowest order action, and also the anomaly freedom, gauge invariance, etc.. These 
problems will be dealt with below.

If the field redefinition is written in the form,

(6.1.4a)

and since the varied Lagrangian is clearly given by,

X(<» ->  X(4>') = *'(♦) (6.1.4b)

under such a transformation, then if the supersymmetry transformations can be 
written formally,

= fi”  (e»V) ’ 5¥^ = f2 / e’V) (6.1.5a)

then the transformed variations,

6e,” =fi” (el,v l) , S y ^ f ^ e W i O  (6.1.5b)

can be seen to leave the new action invariant, because of the definition of the varied 
Lagrangian. The invariance of the action under these new supersymmetry 
transformations is manifest due to the supersymmetry of the "old" theory. The 
subject of O(a') corrections to the supersymmetry transformations has been 
extensively examined1671. The closure of the supersymmetry algebra is also 
manifest, since although the equations of motion are used to enforce the closure of 
the algebra, the new equations of motion obtained after the field variation must 
ensure closure due to the form invariance of the action under the transformation 

(6.1.4a-b).
The only remaining problem is maintaining anomaly freedom of the 

quantum theory. This is not a problem by the nature of the field redefinition 
theorem, where quantum S-matrix amplitudes are unaffected by the variations of the 
fields that are chosen, and so the amplitudes which could display the anomalous
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behaviour must all reflect the anomaly freedom of the initial Lagrangian, and so must 
all be anomaly free. Thus if the initial Lagrangian is anomaly free, then the final 
varied Lagrangian must also be anomaly free.

The action that will be varied is simply the action quantised in Chapters Two 
and Three,

1 = '  I eR '  I®  (3.2.14)

Rather than considering the most general set of possible field redefinitions of the 
fields in this action, which can be seen to be quite a large set of terms when the 
gamma matrices are taken into account, only certain redefinitions will be considered. 
The fermionic form of the field redefinition theorem will be shown to be more 
complicated than its bosonic counterpart: it will be shown that it is possible to vary 
what are termed leading order t e r m s i n  the action, and consequently vary the 
physical amplitudes in contradiction with the results found in the bosonic case. The 
starting point of the field redefinition will be to find how the variation of the field 
produces a variation of the Lagrangian. The standard way of doing this is to 
consider the variation of the Lagrangian,

=  (6 .1 .6 )
L M 8dJ>

which allows the variation of the Lagrangian to be calculated most simply. All that 
need be done is to multiply the equation of motion into the field variation to get the 
variation of the action. The simplest way to proceed is to consider the simplest field 
equation for the action given above. This is the equation of motion for the gravitino 
field, which is, (noting the rules of Grassman Lagrangian dynamics stated in 
Appendix Three),

v / vpi v = 0 (6.1.7)

which may now be multiplied into any of the field variations of the gravitino 
field. The example variations that will be considered are;

Vp Vp = VP + fP(e>V)
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w h ere  f p(e ,\|/)  tak es the fo llo w in g  three form s,

i) S¥p = Yv̂ [v^x]Vp (6.1.8a)

ii) 8¥p = YvXi)pi)[v¥X] (6.1.8b)

iii) S¥p=Ypv¥°R^Vpa (6.1.8c)

iv) Syp = 5)a5)[p¥ a] (6.1.8d)

which will be seen to give variations of some of those terms in the action which do 
not cancel completely from the amplitude, and will not vary some terms in the action 
which will demonstrate that the Romans and Warner action and Han et al action 
cannot be field redefined into each other since there exists a term, (the term denoted 
by the coefficient L in the most general action chosen in Chapter Five which exists in 
the Han et al action but not in the Romans and Warner action), which does not vary 
under these, or any, field redefinitions. Such a field redefinition would be necessary 
for the Noether method to be able to give a unique supersymmetric Lagrangian at the 
O(a') level.

i) The first variation.

The first variation is of the form,

6Vp = YvXDvS x\|/p (6.1.8a)

which can be rewritten in the more interesting form,

8Vp = A al)Rv-“V p  (6.1.9)

The gamma matrix products can be simplified using the identities stated in Appendix 

Three, to give,

YvX7aP = ( yV  - gvX)(YtV  - gaP) 

which allows the field variation to be rewritten in the form,
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= Yv ( ^  + * ap-Y“^  + / g ml)Rv̂ Vp

= 2 YvYaRVaVp

= 2R»|/p (6.1.10)

where the symmetries of the Riemann tensor have been observed. This gives a 
variation in the Lagrangian of the form,

8 t = 2 \ j l M/ vp4)vVpR (6.1.11)

which is dependent only on the curvature scalar. The curvature scalar terms in the 
most general action can be seen to give no contributions to the amplitudes as 
calculated above, so it can be seen so far that the field redefinition theorem appears 
to be consistent with the bosonic field redefinitions: the physical amplitudes will 
remain unchanged with respect to such a variation. The remaining three redefinitions 
will give variations which do not agree at the naive level with this conclusion.

ii) The second variation.

The second variation will be seen to be much less trivial, and consequently 
much more interesting than the first variation. The second variation is of the form,

ii) 8Yp = y ix4>pJ>[T)V y (6.1.8b)

which gives a variation of the Lagrangian of the form,

51 = (6.1.12)

Again the gamma matrix identities can be applied to simplify this expression. The 
identity needed is quite complicated, and is,
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y ivp7y = / vp̂ + / vpg,i^ . / ' y  4 + / pig v̂

which can be seen now to give terms in the Lagrangian variation which are 
dependent on Riemann tensors. The full variation due to this term can be seen to be 
of the form,

8X = 3

+ 2 + 4

which can be seen to contain variations of leading order terms denoted by the 
coefficients i ^ ,  k 3 and L', though not the leading order terms denoted by K j  or L. 
This is clearly inconsistent with the amplitude matching results presented in Chapter 
Five above, since these coefficients are all completely determined by an amplitude 
matching and since these coefficients all appear explicitly in the amplitude: the 
physical amplitude varies under this variation.

There is also a Ricci tensor term denoted by lv  though this is consistent 
with the amplitude matching result given in Chapter Five above, since this 
coefficient is left arbitrary under the amplitude matching.

iii) The third variation.

The third variation is quite trivial to analyse compared to the last example, 
and is of the form,

« V p = T ( 6-L8c)

which might be expected to produce terms dependent on Riemann tensors in a 
similar fashion to the second variation. The variation of the Lagrangian is clearly 

seen to be,
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8 1  =  ( 6 .1 .1 4 )

which requires the gamma matrix identity of equation (6.1.13) again. As in the 
second case above, when the gamma matrix identity (6.1.13) is substituted it can be 
shown that the Kj, \ĉ  and k3 terms all vary. It is clear that neither L or L' enter in 
this case. This variation must therefore alter physical amplitudes. This particular case 
will not be discussed any further.

ivl The fourth variation.

The fourth variation takes the form,

iv) 8yp = 3 aJi[pYa] (6.1.8d)

which can be substituted into the usual equation (6.1.6) to give a variation of the 
Lagrangian of the form,

5Z = - g“P3 [p? ri/ V' X 3 (pVa] + ? V Pn®[pValRavll4

VM/ V" \ V a]R“ '’v + V5Yv2[pVo]RaVP5

+ curvature scalar and Ricci terms. (6.1.15)

(where the curvature scalar and Ricci tensor terms have been suppressed since they 
are obviously not of leading order and so need not be considered for the purposes of 
this section). This variation can be seen to give a variation of the physical amplitude 
as in the case of the second variation above. In this case all the fermionic leading 
order coefficients except one vary. The exception is the coefficient L, which is quite 
an interesting observation, as will be discussed below.

This variation of the \|/p field has been included since it can be seen that this 
is the only term which can ‘generate’ the L term from the Rarita-Schwinger action by 
the variation of the term,

v Y  a PVP

which would give exactly the O(a') action variation required. As is obvious from 
(6.1.15) above there is no L type term generated. (It can also be seen that the second
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variation might give a term of the required form. This cannot occur without the 
introduction of extra terms which do not occur in the most general basis of O(ot') 
action correction terms chosen for the action in Chapter Five. When these spurious 
terms are eliminated by rewriting them in the basis chosen in Chapter Five they can 
be shown to completely eliminate all terms of the L type leaving only the terms 
shown above.) It can be seen that there are no variations of the \jr field which can 
generate an L type term in the variation of the action. This immediately implies that 
the Noether method does not give a unique O(ct') corrected supersymmetric 
Lagrangian since there exists a term in the Han et al action which cannot be created 
by field redefinitions from the Romans and Warner action.

The field variations shown above can all be shown, with the exception of 
the first variation, to give variations of the physical amplitudes calculeted in Chapter 
Five. The question remains: what principle must be invoked to ‘select’ field 
variations so that they give a suitable generalisation of the bosonic field redefinition 
theorem discussed above? Is it possible to use a linear combination of all the 
variations listed above so as to provide miraculous cancellations of all the variations 
of the leading order type terms? If so, what principle underlies such a choice? Are 
the field variations which generate leading order variations somehow disallowed for 
some reason? These questions will not be discussed here, but it would appear that 
the best line of attack on these problems would be to find some parallel to the link 
between renormalisation and field redefinitions in the manner of reference [63]. This 
line of thought will not be pursued here.

Section 6.2: Summary of Conclusions.

This section presents a summary of the conclusions of the work performed 
in this thesis. The purpose of the amplitude matching procedure followed in 
Chapters Three to Five was to attempt to find some fermionic correction terms to the 
already well known O(a') correction terms[58’59,60,] to the Lorentz-Chem-Simons 
modified Chapline-Manton Lagrangian as low energy limit to the heterotic 
superstring. For each of the three actions used as trial actions in the amplitude 
matching procedure, two separate matchings are performed: a three point matching, 
and a four point matching. The three point matching for the Romans and Warner 
terms confirmed the result of references [68,69], and the Han et al. action is shown 
to fail at this level. When this calculation is extended to the four point matching, it is 
shown that neither the Romans and Warner, nor Han et al actions are completely 
capable of matching string amplitudes, though the Han et al action can be seen to 
give a much closer match than the Romans and Warner action. It is important to note 
that the two amplitudes are different in terms of the dynamics of the theories.
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The work of Chapter Five used a general form of the O(a') action 
consisting of a complete set of O(ot') terms with undetermined coefficients. The 
same amplitudes as calculated for the two actions found by the Noether method were 
derived, and the amplitude matching to the string performed. This enabled certain of 
the coefficients in the general action to be fixed absolutely, others to be fixed up to a 
linear dependence, and other coefficients were shown either not to appear in the 
ampltiude at all, or to completely cancel out. The terms which cannot be matched by 
such an amplitude matching procedure are called the non-leading order terms and in 
the case of the y and z coefficients these coefficients are the ones that vary under a 
bosonic field redefinition, and so are postulated not to ever occur in physical 
amplitudes by the field redefinition theorem. The \x and \  coefficients may also be 
related to some fermionic extension of the field redefinition theorem as discussed 
above. If this is the case then these coefficients also never contrtibute to physical 
amplitudes. More interestingly there are two terms in the effeitve action which are 
determined only up to a linear combination: i.e. the Kj and 1̂  terms. The restriction 
that arises from the amplitude matching is simply that k1 = - k2 and that neither Kj 
and K2 are determined separately. This is quite an unprecedented result since nothing 
like it appears in the bosonic sector of this theory. Naively it would appear that from 
the field redefinitions Kj and can be varied independently suggesting that they are 
non-leading order terms, but the amplitude matching suggests that only the 
combination of these terms as given in Chapter Five is of non-leading order. It is 
postulated but not discussed that perhaps supersymmetry may play a role in the 
determination of some of the remaining ambiguities in the action. This question will 
now be addressed in a somewhat speculative manner, as the work described does 
not fit in with the main thrust work described in the previous chapters of this thesis, 
where the main goal was the construction of part of the fermionic sector of the low 
energy effective action for the heterotic string.

The previous section in this chapter demonstrated that there appears to be no 
field redefinition which links the Romans and Warner action to the Han et al action 
of the form which is usually considered, and to which the discussion was restricted 
above, implying that the two actions considered cannot be considered as two 
degenerate forms of the same action. It is clear that although the two actions 
discussed in Chapter Four were derived by the same Noether type of technique, and 
they are both supersymmetric with respect to the same supersymmetry 
transformations, (up to one small difference which cannot be detected in the 
amplitude matching calculations used above since it is dependent on the 
antisymmetric tensor field which is shown not to contribute to the amplitudes 
considered above) the actions are completely different dynamically as the amplitudes 
calculated in that chapter show. It must be concluded that the Noether method must
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give nonunique actions which depend on the trial terms used to cancel the 
supersymmetry anomaly generated by the inclusion of the Lorentz-Chem-Simons 
three form term. For example the Romans and Warner action and the Han et al action 
start with completely different sets of terms to try and cancel the same anomaly, each 
term given its own arbitrary coefficient which is fixed by the Noether method as 
applied to that action. It can be seen by examining the action used in Chapter Five, 
which is the most general action of its type, that the Noether method can be 
generalised further than either of these two references. It would therefore seem 
probable that the rather limited results of the two trial actions used in Chapter Four 
would generalise to give an action from the Noether method which would still 
contain some arbitrariness in the coefficients used in the action. It can be seen from 
the final result obtained from the amplitude matchings of Chapter Five still contains 
5 as an arbitrary parameter in what are usually regarded as leading order terms in the 
action. This arbitrariness would not affect the supersymmetry of the action since the 
Noether method would provide constraints on the variation of the general 
coefficients in the action, and the general coefficients introduced in the 
supersymmetry variations (as in the Romans and Warner action), which would 
ensure the preservation of supersymmetry. Moreover, each of these actions given by 
a supersymmetric choice in this parameter space can be expected to be dynamically 
distinct from any others given by a different choice of the parameters.

So summarising: it can be surmised that the Noether method may be used, 
as in the construction of the Romans and Warner and Han et al actions, to generate a 
set of at least two, (but probably more), dynamically nondegenerate actions, 
(obviously at least the Romans and Warner and Han et al actions), which are all 
forced to be supersymmetric by the definition of the method, but which all give quite 
distinct physical amplitudes for the same physical processes. It must be hoped that 
the low energy effective action for the heterotic superstring is given by one of these 
actions. This is quite hopeful because it can be seen that the final action found by 
amplitude matching is almost, but not quite identical to the Han et al action. It would 
be interesting, but exteremely difficult, to perform the most general Noether type 
calculation using an action of the form of (5.1.10). It would also be interesting, and 
somewhat more practicable, to try to show by the same techniques that the action 
found by amplitude matching in Chapter Five can be shown to be supersymmetric at 
least for some choice of the remaining arbitrary parameters. Neither of these 
calculations will be performed in this thesis.
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Appendix One:
Two Dimensional Conformal 

Field Theories.

This appendix contains a review of the conformal field theoretical 
techniques used in the calculation of string amplitudes, as given in Chapter One. It is 
a resume of the work of references [11,27-31] which will be of use in the discussion 
of string theory amplitude calculations.

In discussing two dimensional conformal field theories, it is possible to 
consider a general action of the form;

S = f d°4 L , (A 1.1)

where L is the Lagrangian, which is some functional of the physical fields in the 
theory. The theory is said to have a conformal symmetry if the action is invariant 
under transformations of the form;

a = 1,...., D , (A 1.2a)

or more generally reparametrisations of the form,

, (A1.2b)

such that the metric transforms as,

gab©  Sa'b’W  = P ©  Sab • (A1-2C>

The condition for such a conformal symmetry is that the trace of the stress 

energy tensor should vanish,

T t©  = 0 , (A1.3)

where it should be noted that this condition is true for any number of dimensions. In 
the case where we have two space-time dimensions, the coordinates may be 
parametrised using complex coordinates of the form,
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(A  1 .4a)

and where the complex derivatives may also be defined by,

The fields of the theory define a complete set of fields {Aj(0)}, where the 
completeness axiom is defined to mean that the fields satisfy the operator product 
algebra, where any product of fields can be represented by a linear sum of other 
fields in the algebra; that is, it is possible to write the operator product expansions,

where this operator algebra satisfies the bootstrap conditions: in a general correlation 
function, the complete operator expansion is associative.

At this point it should be noted that the complete set of possible conformal 
transformations of the type (A1.2a-2c) form a group G. If a complex parametrisation 
is chosen, then G is the group of all transformations of the form,

such that z, z, are analytic and antianalytic respectively. Furthermore, it can be 
shown that the stress energy tensor also satisfies the analyticity requirement, i.e.,

Thus it is easily seen that the group may be naturally decomposed into two parts,

A.© Aj(0) = ^ | d © A k(0) , (A1.5)
k

z-»£(z) , Z - >  C(z) ,

T(z) = T n - T 22 + 2 iTi2 , T(z)=Tn -T 2 2 -2iT 12 ,

where,

3- T(z) = 0 , 3 T(z) = 0 . (A1.6)
Z Z

g  = r® r  , (A 1.7)
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corresponding to the analytic and antianalytic parts respectively. By considering an 
infintesimal conformal transformation of the form, (noting that from now on, only 
the analytic half of the theory is considered),

z - » z + e(z) , (A1.8)

and expanding this in a Laurent expansion,

oo

e(z) = ^ e n zn+1 , (A 1.9)
n= -oo

it is possible to see that the generators of T are given by,

1» = z ”+1^  ’ n s Z  ■ (A110)

where these generators satisfy the commutation relations,

[ln>l j  = (n-m)l„+m . (A l.ll)

The central extension of this algebra, (which will be discussed below), 
forms the Virasoro algebra. The full Virasoro algebra reappears when conformal 
reparametrisations are discussed in conjunction with the full quantum theory.

By generalising the usual argument found in the Lagrangian formulation of 
field theories, it can be seen that the stress energy tensor T(z) generates conformal 
reparametrisations of the fields of the theory. So it helps to define an infinitesimal 
operator to generate these reparametrisations by writing,

T£ =  J d z e ( z ) T ( z )  , (A 1 .1 2 )

c0

(where C0 is a contour about the origin), for the generator of the specific conformal 
reparametrisation £, so that the conformal variation of the (now quantum) field 
Aj(Q, is, (where the contour is now about the point Q,
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C  5£ AJ( 0 >  = C  [T , AJ( 0 1 >

= j  dze(z)< T (z)A .(Q >  . (A1.13)

This generalises to the case of any correlation function of the fields in the complete 
set, where this can be written,

X  <  Ai A >  5e\ ^ >  a  (?n) >
k = i

+ J d \  3aeb(4) <  T b(^) X >  = 0  , where X = <  A. f t , ) ... A . ^ )  >

-— (A1.14)

The stress energy tensor also varies with respect to these conformal 
reparametrisations, and it is possible to write down the most general possible 
variation of the tensor, with respect to these reparametrisations,

"V "V  ̂ ^3

8 ET(z) = e(z)^-T(z) + 2 ^ T ( z )  + J2 C~ J  ■ (A1.15)
dz

where c is an arbitrary parameter of the theory, and can be regarded as its parameter. 
Now, this relation may be rewritten,

[ T , T(z) ] = e(z) T'(z) + 2e’(z) T(z) + -L  c em(z) , (A1.16)
e  1 Z

where the dash denotes differentiation with respect to z, which gives the Virasoro 

algebra,

[ L , L m] = (n-m )L+m + ^ c ( n 3-n)5n+n%0 . (A1.17)

where the Laurent expansion of the stress energy tensor is assumed to be,
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oo

T(z) = £  Ln z' " ' 2 . (A1.18)
n=-oo

It is useful to note at this point that the generators Lq, L j, and Lj generate 
a subalgebra of SL(2,C), which will be used to factor out some of the integrations 
on the world sheet. A suitable definition of the Hamiltonian of the theory is given by 
the generators of local dilations,

H = L0 + L0 . (Al .19)

The vacuum of the field theory is defined to be the ground state of this 
Hamiltonian, and since the stress energy tensor T(z) is required not to be singular at 
z = 0 , and to be regular as z -» 0 0  in the parametrisation,

z = e(T+io) , i  = e<T-io) . (A 1.20)

the vacuum satisfies the conditions,

L I0> = 0 , n > -1 ,n ’ ’

<01 L = 0 , n < 1 . (A1.21)n

The most important structures in the algebra of fields that have been 
developed so far, are the generalised Ward identities. These identities give the 
relationships between the fields in the complete set (Aj(0)} which are needed for the 
evaluaton of any correlation function of the specific theory under examination. Since 
the algebra of fields {Aj(0 )} is complete, it is possible to expand the variation of a 
particular field linearly in terms of derivatives of the infinitesimal conformal 
reparametrisation and other fields in the algebra. This can be explicitly written in the 
form,

V j  k

5 A.(z)= X  B ^ i - e f e )  , (A 1.22) 
e J t o  J 9zk

where the fields B- are members of the complete set. Now, noting in general that the 
k*- derivative of any function f(z) at the point £ can be written,
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f°°(C)=ki [ dz f<z>
■ j  9™ _xk+lc 2™ (C-z)

(A1.23)

and that the Laurent expansion of the stress energy tensor is given by 
equation (A1.18), the expansion (A1.14) can be written,

which is the generalised Ward identity for the complete set of fields chosen for the 
theory. By considering simple translations and scalings, it is possible to see that,

where A■ is the anomalous scaling dimension of the field Aj(z). Furthermore, by 
noting that the anomalous conformal dimension of e(z) is -1 , it can be seen that the 
fields have dimensions given by,

and since any physically realistic theory has fields which transform with anomalous 
conformal dimension A- > 0, then it can be seen that Vj is finite and satisfies the 
inequality Vj < Aj + 1 .

It can also be seen that the spectrum of dimensions of fields in the theory 
considered, consists of an infinite set of series of integer spacing,

where A is the minimum dimension of each series. This is equivalent to saying thatn
the decomposition (A1.22) does not continue to fields of anomalous
dimension A ’ such that A ' - 1 < 0 , for every possible field in the complete setn n
{Aj(0)}. This implies the existence of a field <|>n for each field A- in the complete set,

<  T(z) A (z )  A (z ) >
1 1 N

B(' 1)(z) = ^ Aj(z) , B<0)(z) = Aj A.(z) , (A1.25)

(A 1.26)

(A 1.27)
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such that the field <j)n has anomalous scaling dimension A . The field <b with
n t  n

dimension An, now called a primary field, can be seen to transform under a general 
infinitesimal conformal transformation with variation,

8 £(l>„(z) = e(z) ^ $ n(z) + A n ^ lj,„(z) . (A1.28)

Thus it can be seen that in the case of a primary correlation function, (that is a 
correlation function consiting of the primary fields defined above), the generalised 
Ward identity can be written,

f  A.  1 8  i
<  T(z) <b (z .) .... (tvTz.,) >  = /  f   — + -------—-  } .> V  1 ' ^  N ' Lj I 2 ( z - z .)  dz. J

1=1 (Z -Z j)  v V l

<(j)1(z1)....(|)N(zN) >  , (A1.29)

which can be applied in the simple case of N=l. Doing this and applying the 
operator product expansion it is possible to write,

T(z)$n(0  = X ( z - 0 ' 2+kO 0  , (A1.30)
k=0

where the <j>n̂ ( 0  are called the secondary fields of the theory. These secondary 
fields may themselves vary with respect to conformal reparametrisations and so it 
can be shown that,

(J>; \ z )  = e(z) f n \ z )  + (An+ k) e'(z) (J)n (z)

»j+i
[ l _ e ( z ) ] ^ ( z )

1=1

k+1

(WOT
d z

1 + 1
;k+i

1 2  (k-2 )l L azk+i
[ - — -e(z)] <t>n(z) , (A1.31)

where this can written in terms of the general Ward identity, as above in 

equation (A 1.29),

T (0  4>„(-k)(z) = ......  etc- •
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More secondary fields are obtained from this relation and the procedure can 
be repeated for these fields. This means that for any primary field <|)n there exists a 
conformal family denoted by [<j)n]. In fact it is simple to see that the complete set of 
conformal fields {Aj(0 )} must decompose into a direct sum of all the conformal 
families,

{A (0)} = © ft ] . (A1.32)
n

Explicitly the derivation of the secondary fields, given a specific primary 
field can be summarised neatly by writing,

L k(z)= [ d C - 5 % -  . (A1.33a)
c, (z-0

and,

<t>(nkl "kN,(z) = L k|(z ).... L kN(z) <t»n(z) . (A1.33b)

So, it can be seen that any secondary field can be written as a function of the primary 
field which generates the conformal family of which it is a member. It is now 
possible to consider the evaluation of general correlation functions. From (A1.33) 
and (A 1.30), it can be shown that any general correlation function can be written in 
the form,

<  T(Cj).... T(CM) (K^Zj).... <DN(zN) >  . (A1.34)

which can be expanded by repeated application of the generalised Ward identity, 
giving a sum of differential operators acting on the 'primary’ correlator.

For example consider the simple case,

(-k ... -IQ
<  4>n 1.......  (z) ♦1(z1) .... <|>n(Zn) >

= L ^ (z .z .) ... L_ki(z,z.) <  <i>n(z) <l)1(z1) .... >  , (A1.35)
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where the differential operators are given by,

N

L-kp(z,zi)= X  (

All of the above is derived for a general action of indeterminate form. It is possible 
to consider actions which have an internal symmetry, either global or local. (The 
case of string theory is an example where the action has a global SO(l,D-l) 
symmetry.). Consider an action with an internal symmetry, of the form given in 
(A l.l) with Lagrangian of the form,

where |i,v are the indices of the internal symmetry and dz is the world sheet 
derivative with respect to time. The action is defined to satisfy the condition of 
invariance under transformations of the form,

where Q(z) and £2(z) are arbitrary G valued matrices, G being the group of 
symmetry transformations. Noether's theorem implies that there are an infinite 
number of conserved currents on the world sheet. These are easily seen to be 
analytic (antianalytic) by similar considerations to those of equation (A1.6), and it is 
also true that these symmetry currents generate transformations of the fields with 
respect to the group G. So it is possible to write,

where the t^ are the generators of the symmetry group G, and consequently satisfy 
the Lie algebra, [t^,tv] = f^vp tp , f^vp being the structure constants of the group G, 

and where Jp may be written,

L = L(XP, 3 Xv)T (A 1.37)

(A1.38)

J = , J = Jv tv

3_j  = o , a , J = o
z  z

(A1.39a)

(A1.39b)

J^ = Jp (z) , Jv = Jv (z) , (A1.39c)
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due to equation (A1.39b). Under infinitesimal tranformations,

ft(z) = I + co(z) = I + < / (z) P  , (A1.40a)

0(z) = I + cD(z) = I + G^(z)t^ , (A 1.40b)

it can be seen that the currents transform in the manner,

8 ^ J(z) = [co(z), J(z)] + i  k co'(z) , 

8 -  l(z) = Tcofz). JfzVl + 1  k co(z) (A1.41)

which will give a Kac-Moody algebra, when the operator algebra is constructed 
later. (The restriction to the analytic part is now made, leaving the antianalytic part 
implicit. The properties of the antianalytic half of the theory are directly analagous 
to the analytic part.).

The generator of the symmetry transformations can be written in direct 
analogy to the generator for conformal reparametrisations, given by (A 1.12) and 
(Al. 13). Explicitly the transformation takes the form,

where the quantum mechanical vacuum expectation is implied. The J fields 
transform under group transformations and conformal reparametrisations as follows,

8  A.(Q = [ dz J^(z) co (̂z) A.(£), (A1.42)
CO J J  J

C,

8 eJp(z) = e (z )iL jp(z)H-^U(z)Jp(z) - 

8  Jp(z) = r ' f  cov(z) Jp(z) + I > 4 « ^ z) >to Z d z

(A 1.43a)

(A 1.43 b)

which may be rewritten in terms of the operator product expansions,

T(z)J^(C) (A 1.44a)
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where all regular terms at z -> £ are omitted. The equations (A1.44a-b) define the 
Kac-Moody algebra which was mentioned above and also the coupling of this to the 
Virasoro algebra given in equation (A 1.17), as may be explicitly written,

[>  , r  ] = fW  Jp + I k n 8 t*v8n m-* m+n 2 i

[L , ] = -m ,L n mJ n+m ’

m+n,0 (A 1.45 a)

(A 1.45b)

and where the structure constants are those of the symmetry group. (The Laurent 
expansion of the J^(z) field is given by,

the conformal dimension being -1). It can now be seen that the primary fields of the 
theory transform under the symmetry analogously to the way they transform under 
conformal reparametrisations, that is,

where t^  is a G valued matrix which forms a representation of the group G. It can 
now be seen that the argument which led to the invocation of secondary fields in the 
algebra of conformal fields can be generalised to the case of the internal 
symmetry. The fields thus generated can be seen to decompose into families 
generated by the operator product algebra acting on some primary field of the theory. 
This means that now any general correlation function can be written in terms of the 
stress energy tensor, the symmetry current and the new primary fields. Thus it can 
be seen that it is possible to write any correlation function in the form,

(A1.45c)

Jf(Qt(z) = - ! - ^ (z )
(C-z)

(A 1.46)

<T(z1)...T(zM) A z ,1) - j V N) f ll(C,)-1'ip(Sp)> ■ (A1-47>



and by repeated application of the operator product algebra, and the variation rules 
for the fields, as given in equations (A1.44a-b) and (A1.46) for the symmetry 
group, and by using the generalised Ward identity for the conformal 
reparametrisations repeatedly.

In fact the symmetry group gives rise to a 'generalisation' of the generalised 
Ward identities, of the form,

jjLl
<  J“( 0  ^(Zj) ... V V  >  = X  ^ -  <  ♦!<*!> -  w  >

j=l
J (A1.48)

so that any correlation function can be expressed as a sum of products of differential 
operators acting on the primary correlation function.

If the theory contains fermions, then there exists a specific representation of 
the symmetry currents, which generate the Kac-Moody algebra, that is, it is possible 
to write the symmetry current in terms of fermionic bilinears, that is, the normal 
fermionic currents of the theory. (In the case of world sheet supersymmetric string 
theory, there is a manifest SO(l,D-l) symmetry and then the symmetry currents can 
take the form,

J^v(z) = yV ( z) > (A 1.49)

where the normal ordered product is assumed to be taken. (In the NSR string 
theory, the two point correlation function for the world sheet fermions is,

<  y*(z) i|/v(0  >  = i f ' ’ —  + •••• (A 1.50)
(z-0

where the finite corrections depend on the world sheet topology and include the 
symmetry current, which must be regular at all points. The normal ordering merely 
subtracts the singular term.). It can also be seen that the stress energy tensor 
constructed from the symmetry current by writing,

T(z) = —  :J(z) J(z): , (A 1.51)
2k

where k is a parameter of the theory, which is dependant on the previous two
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parameters c and k, as well as the normalisation of the structure constants of the 
symmetry group. It can be seen that this stress energy tensor gives the same operator 
product algebra when the relation (A 1.44b) is used. This is known as the Sugawara 
construction. This will be used in the string theory to define the correct vacuum of 
the theory, and to show that the vacuum is not self adjoint, in the ghost sector. The 
same construction will be used in the evaluation of superstring amplitudes, since the 
symmetry current arising from the world sheet fermions appears in the bosonic 
superstring vertex. The techniques involved are described in the section dealing with 
string theory, as a particular example of conformal field theories in two dimensions.

The techniques of superconformal field theory in two dimensions are 
similar, but have an interesting generalisation of the Virasoro algebra. These 
techniques are very important in the construction of superstring theories, and so it 
will be productive to generalise the techniques outlined above to the superconformal 
case.

The easiest way to generalise to the superconformal case is to extend the 
world sheet into superspace, and to construct superconformal superfields. Many of 
the techniques can then simply be generalised from the bosonic case. The important 
point is to generalise the results of complex analysis to the complex superspace case. 
It can be seen that Cauchy's theorem, Taylor's theorem and contour integration have 
analogues in complex superspace. Defining Grassman differentiation and integration 
by the usual rules,

and supposing that a function f(z,\|/) can be defined, then it is possible to state that,

so that the definitions of the integration and differentiation can be applied 
consistently to this.Defining the complex superderivatives in the usual manner,

by which it can be seen that the supersymmetry algebra in two dimensions has the

f(z,y) = f„(z) + yf,(z)

D =de + 03z , D = d_ + ea_ (A1.52)

form,
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° 2 = dz ° 2 = d- (A1.53)

means that the results of the bosonic theory above can be almost directly applied 
with only a little modification. A little care must be taken in the definition of the 
coordinates used in the Laurent expansion of the various fields of the theory. The 
most convenient way of writing this is to use the coordinate definitions to denote 
displacements of the coordinates of superspace,

Z 12 = Zi - Z2 - 0 i0 2 , 0 12 = e i - 0 2 (A 1.54)

so that the superspace derivatives can be written in the form,

D lz 12 = ® 2Z12 = ®12

D l0 1 2 = D 2e i2 = 1  (A1.55)

Infinitesimal reparametrisations of the superspace variables are most easily 
accomplished by generalising the infinitesimal vector field used to parametrise 
general field reparametrisations, as in standard differential geometry, to a superfield 
parameter V(z,0) = v0 + 0 Vj, such that,

8 z = V - 080

80=i-DV
2

where these transformations act on conformal superfields <|)(z,0 ) of superconformal 
weight h,

8(|)= { va + i(DV)D +h0V) }<t> (A1.56)

(which can be shown by general geometrical considerations). Again it can be shown 
that the generator of the superconformal transformations is the super stress-energy 
tensor, which generates superconformal transformations of the local superfields of 
the theory, and so the operator product which generates (A1.56) above is defined by 
the standard contour integral technique applied to the superspace case, in the form,
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which yields the appropriate operator product,

(A1.58)

and the operator product of the super stress-energy tensor is,

which generates the superconformal algebra with central extension given by the 
parameter^. This is done in strict analogy to the derivation sketched above.

The Laurent coefficients given by expanding the super stress-energy tensor 
as above, (noting the stress energy operator product expansion above), must satisfy 
the generalisation of the Virasorso algebra given above. The Laurent expansion is of 
the form,

which is just the super-Virasoro algebra^.
It can now be seen that there are two distinct sectors of the Fock space 

generated by the operators in this algebra, because of the fermionic sector of the 
conformal superfields. The fermions in such a superfield can be double valued; that

(A1.59)

n m

(A 1.60)

and so the algebra becomes,

[ Ln ' Lm 1 = (n'm) Ln+m + T £ fr3'") 8, 

< Gn * Gm 1 =2Lm+n+I £(n2‘ 4 )6-r

[ L„>GnJ  = 4 n ' m ) G ”™

n+m,0



is, it is possible to write,

<MZ) = +<l>,(e2’"z) (A1.62a)

21,

<f>f<z) = - ^ 2mz) (A1.62b)

These sectors are the Neveu-Schwarzl23! and Ramond122' sectors of the 
theory respectively. From inspection of the mode expansion it can be seen that the 
Gn in the algebra have integer n in the Ramond sector corresponding to periodic 
boundary condition, and half-integer n in the antiperiodic Neveu-Schwarz sector. 
Each of these sectors is seperately supersymmetric in two dimensions, and the 
expression of closure of the supersymmetry algebra can be seen by a generalisation 
of the argument which shows that L v L0, Informs an SL(2) subalgebra of the full 
Virasoro algebra, in the bosonic case, which corresponds to the local Lorentz 
symmetry of the two dimensional manifold on which the fields are defined. The 
condition is that, in the Neveu-Schwarz sector,

G2 . 1/2 = L 1 (A1.63)

(which can be seen by the mode expansion corresponding to the 
super-reparametrisation of a general conformal field given the definition of the 
super-Virasoro algebra given above), and in the Ramond sector,

Go = Lo - ^ £ (AL64>

where the ground state preserves supersymmetry if there exists a vacuum state such 
that,

G20 = 0 (A1.65)

The vacuum is the lowest energy state, which is also a conformal singlet, 
i.e. h=0. This is clearly in the Neveu-Schwarz sector. This must be the case as 
two-dimensional supersymmetry will be broken in the Ramond sector, unless 
G02=0. Thus the Ramond ground state has h=!/16c, where 6  is nonzero. As before 
the conformal superfields create the set of Highest weight states in the 
Neveu-Schwarz sector, which are defined to be annihilated by all of the lowering
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operators in the algebra. However this procedure does not exhaust all the possible 
states in the theory, since this approach does not create fields in the Ramond sector, 
which is obvious due to the invariance of the boundary conditions of the fermion 
fields created by this process. The answer is to introduce a new field into the theory 
which is called a spin field, which has a double valued operator product with 
Neveu-Schwarz fields to 'simulate' the Ramond boundary conditions of the 
superfields, so that the Laurent expansion of fermions in the Ramond sector have the 
correct, double valued form. The operator product of such a spin field chosen to 
satisfy the constraint of supersymmetry of the theory1 is of the form,

T(z,e) S (0  ~ i ------!— -S (0  (A1.66)
( z - C )

This completes the set of tools required for the transition to string theory 
proper. This is examined in some detail in Chapter One, where these techniques are 
applied to the specific case of the calculation of string amplitudes.
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Appendix Two. 
lh £  Propagators of the extended 

Chapline-Manton action.

Section A2.1 The graviton propagator.

The extended Chapline-Manton action described in Chapter Two has 
various correction terms which can give corrections to the propagators derived in the 
background field expansion approach to the quantisation of the theory, as discussed 
in Chapter Two. For the graviton, these terms take the form,

xe<|>-3/4( R(lvpaR,lvpo - 4y RpvRpv + z R2) (A2.1.1)

where the background field expansion is defined by,

§LLV ~  T lu V  ^L IV  ’

g^v = r T  - ĥ v + h^ h  ̂+ ... (3.2.3)

m cm 1 , m 1 , « , me =8 + —h - — h 1 h -I-... 
n 2  8  ^ n

ep =5*1 - 4 h p +|-h'1 htl+. . .  (3.2.4)
m m 2  m 8 m n

in which case the Riemann tensor takes the form,

r °  = . ! {  ( 3 3  h °-3 3 °h  - 3 3  h° + 33°h ) 
afty 2 Y a P Y P01 P a Y P Y“

+ 3  [ -h011 ( 30 h + 3  h -3  h )]
y p ria a Pn n aP

-3  [ - h ^ O  h +3 h -3  h )]
P '  y Tl “  a ’l aY

4 ( 3Yha + a« h^ - 3 Ph« . )(3php + 3phP ' 3 a V

(A2.1.2)

The lowest order action in the expansion parameter, cl , defined to be,
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- I e R

can be expanded, by noting that,

e = det (e” ) = 1 + 1  tr(h) - 1  tr(h2) + 1  (tr(h) )2 + 0 (h3)

(3.2.17)

and, noting that the contraction of the curvature scalar is of the form,

R = RMV ^ V  (A3.4.7)

it can be seen that the full 0 (a’°) term bilinear in gravitons is,

- I e R  = - I { h  + I h ^ a ° a  h
2 2 4 o na 2 p aa

- i h v ap3 h ° + ih '* 3 i>a h° } (2.1.5)2 p v a 4 p p a J

This term must now be added to the correction term bilinear in gravitons 
derived from the correction term (A2.1.1) above. The appropriate term is given by 
the expression,

x ( R »*H hR ,vpolh - 4y R H hR j h + z RlhRlh )

(A2.1.3)

which can be evaluated using the background expansion of the Riemann tensor, and 
thus yields,

0P0 0(50

x { ( 1-y)h [ — 2- (8Ma8 vP + 8 ^ 8 V“)] h
pv 2 a P

0p0
. 2 (l-y) h [  e. ( +  8 ^ a vd“ + 8 ^ 3 “ + S’W )] h

v pv 4  a P

+ (l-2 y+z) [ 3 W J »  1 ha?

- (y-z) h [3pa a 0a (8 t*v8 “P)]h
pv p a ap
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9pa+ 2 (y-z) h [ — a. ( ^0003 + gctpgngv h 1 Pv z a(3
( A 2 .1 .4 )

The full term bilinear in the gravitons is given by the sum of the terms 
(2.1.5) and (A2.1.4) above. To evaluate the propagator the terms bilinear in the 
appropriate field can be written in the momentum representation for maximum 
convenience, and suitably symmetrised with respect to the fields being considered, 
as has already been performed above. When this is done the kinetic matrix obtained 
must be inverted. This will yield the appropriate propagator for the field. In general 
it can be seen that a singular matrix must be inverted. However this is not possible 
without the usual gauge fixing term. The gauge chosen here is the standard 
transverse gauge given by the general gauge fixing term,

(A2.1.5)

where the gauge fixing term is the full term needed for the derivation of all the 
propagators described below. It should be noted that the gauge chosen is only 
meaningful in the "linearised" theory described throughout this work. The more 
general form of this gauge is important in the consideration of the complete general 
action used in the field redefinition analysis of Chapter Six. The discussion of this 
point is left to that chapter and will not affect the analysis given here. In what 
follows the gauge parameter \  will be chosen to have the value ^ = 2 , in which case 
the lowest order propagator given by first term in the Taylor expansion of the 
propagator about the origin with respect to k2 has an extremely simple form. Adding 
the gauge fixing term can be seen to give the kinetic matrix term which should be 
inverted. To do this it is convenient to follow the standard procedure of defining a 
set of projection operators for rank two symmetric tensors. It is most convenient to 
work in the momentum representation of field theories in these calculations. The 
most convenient representation will be chosen for the context of the calculation being 
performed. A specific choice of projection operators i s ^ ;

Projection operator

p(2) (k) = — (0  0  + 0  o0  ) - — 0  0  npv.aP ' 2 get v3 pP va 0 pv aP
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p(1) R(k) = 4 (9  «  + 0 nto +0 co +0 co )v̂.ocP 2 na vP (J.P va va jiP vP jaa

p (s) ( k ) = I e  e
|iv,aP q (av aP

P(0J) (k) = CO CO^v,ap |iv aP

(sto) 1

PHV,aP̂ k  ̂= *Vv°>ap

(cos) 1
PHv,ap(k) = ~j=■ ° V 0ap (A2.1.7)

where, 0 ^v = 5^v - co^v and cô v = k^kv/k2, and where the parameter 0  

denotes the trace of 0 ^v, and where 0  = d-1 , d being the space-time dimension, (in 
this case ten). The kinetic matrix must be rewritten in terrms of these projection 
operators, and is consequently of the form,

V(°Vv,aP = V(V « P  + V<1Vv,«p (A2.1.8) 

where the separate terms are,

(A2.1.9)

and,

( A 2 .1 .1 0 )
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The projection operators satisfy the multiplication algebra given in Figure 
A2.1. The algebra is simple to check using the orthogonality relations,

0nv0vp = 0pp » Gpv^vp1̂  , %v0vp#=O ’ “ pv^vp = ^pp
(A2.1.11)

are satisfied. It is possible to define the identity,

1 ^  =  O k) +  O k) +  C a P (k) +  O

(A2.1.12)

and so a unique inverse can be found which satisfies the relation,

D n(k) V o (k) = 1 = V (k) D (k)
pv,aP ap.pa pv.pcr pv.aP aP,pa

To do this a general term is written for the inverse,

D (k) = —  ( aP(i) (k) + bP<2) „(k) + cP(s) (k)
pv,ap ^2 pv,ap pv,aP pv,ap

+ dP(m) (k) + eP<s0>) (k) + fP<<os) (k))
pv,aP pv.ap pv,ap

(A2.1.13)

and the product with the kinetic matrix taken. The identity can then be applied and 
the equation of coefficents used to determine the general coefficients for the 
propagator. The conditions are that the coefficients must satisfy;

a = - §

1 -2
b = --------- :------- = -------- 5-------

— + 4 k x(l-y) 1 + 8 k x(l-y)
2

f /e  d
2 4  21,

f { (9' 1)^— - 4 k2x ((l-y)+9(y-z)) } + ^ -  = 0  
24 24
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Figure A2.1 The Projection Operator Algebra for Rank Two 

Symmetric Tensor Operators.



c / °  ~ f - = 0
24 2 ^

c |  (e-i^-e 4k2x ((1_y)+0(y.z))} +£/e_ = i
2s 2 ^

(A2.1.14a)

which are uniquely soluable and yield; a, b as above, and,

c =
((0 -1) - 8 k2x((l-y)+6 (y-z)))

d _ _2 ((0 - l ) ^ - 0  - 8 fo2x((l-y)+0 (y-z))) 

((0 -1) - 8 k2x((l-y)+0 (y-z)))

f _________ 2 / 0e = f = -------------—___________
((0 -1) - 8k2x((l-y)+0 (y-z)))

(A2.1.14b)

The graviton propagator can now be written in terms of the projection 
operators, in the form of equation (A2.1.13) above. The propagator is not terribly 
useful in this form. In general since only the low energy behaviour of the effective 
theory is of interest, i.e.

, 2  1k «  —
a'

then the propagator can be expanded using the binomial theorem, (the Taylor 
expansion by any other name) in powers of k2, which is equivalent to expanding in 
orders of a '. From now on the gauge parameter is chosen to have value ^=2. 
Noting that the denominators can be expanded,

 !--------- = 1 - 8 k2x(l-y) +. . .
( 1  + 8k2x(l-y))

___________ 1  1 t 8 k2x((l-y)+0 (y-z)) [

((0 -1 ) - 8 k2x((l-y)+0 (y-z))) (0 -1) (0 -1 )2

( A 2 .1 .1 5 )
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the propagator takes the form,

Duv«R(k) = D(°) n + DW +Hv.apv / ^v ap t  u  Jay>ap + ...

( A 2 .1 .1 6 )

where the lowest order propagator term is just the usual spin-2  propagator, in 
the momentum representation,

D(0) ( k ) = - l { 8  8 +8 8 - i -8  8 )
k ^  va ^ nv ap

(2.2.15)

and the O(a') correction is,

D lv a B  = ( ' 6  x ( i-y ) .(  5 8  + 8  8  JKv»a P îa vP vP

- 1 6  x ( l-y )  ( 5 co + 8 co + 8  co + 8 co )
|aa vP jip va va nP vP na

- ~ x ( l - y ) ( 8  -CO ) ( 8  -CO Q)
9 pv fxv ap a p '

+ ix ( ( l -y )  + 9(y-z))[i(8 -co ) (8 - co )
2 9 [iv [iv aP aP

+  9 co co + 3 ( 8  co + 8 co -2 c o  co ) ] }
|jv ap (av aP ap jrv ^v ap

(A 2.1 .17)

It is also possible to calculate the higher order corrections. This is not 
necessary for the work performed above. The projection operators have been 
expanded into their components, thus writing the propagators in a somewhat more 
useful form. These can now be used in the calculation of amplitudes. The 
propagators are left in their most general form here, and the truncation convention is 
only applied when explicit calculations are performed.

Section A2.2 The antisymmetric tensor propagator.

The procedure developed for the graviton can be generalised to the case of 
the antisymmetric tensor field, where the projection operators for the rank two 
antisymmetric tensor are defined with the same notation as above, to be,
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Projection operators

O k ) 4 ( V % - V v a >

2 1
u v a R ^ ^ T ^ 03 03 o ' ®  n® ) p v , a p  2  p a  v p  p p  Va

Da\
P R(k)=(0 CO - 9 c o  )

P v .a P  |j,oc v p  p P  v a

.(00
^ Q 0 0  = ( co 0  -co 0  ) (A2 2  1 'l

p v , a p  p a  Vp p P  v a ;

These projection operators span the four dimensional space of rank two 
antisymmetric tensors, and satisfy the multiplication algebra given by the table,

X p 1 P2 p(°0 p 0(O

P 1 p 1 0 0 0

P2 0 P2 0 0

p <00
0 0

p(O0 p(O0

p 0(O
0 0

p 0co p 0O)

The identity of the algebra is defined to be,

1 =p‘ „(k) + i ( P “e no + p810 (k)) + P2 (k)
p v ,a P  p v .a P  2 p v .a P  p v .a p  p v ,a P

(A2.2.2)

The kinetic term for the antisymmetric tensor field is given by the term,

- 2. e <b‘3/4 9 a 8 [“aW (A2.2.3)
4  [ a  Py]

in the extended action. (Note: there are no higher derivative additions to this term 
which are purely bilinear in the a^v field.) This expands to give the non gauge fixed
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kinetic term,

A 4 f V 3 V ,  +  2 V a / a’ }  (A 2 .2 .4 )

The corresponding gauge fixing term is as given above, and can be seen to give the 
gauge fixed kinetic term, (written in terms of the projection operators),

k2

V = T V W < *  (A2-2-5)

where the propagator has the simplest form when the gauge parameter has the value 
5  = 1 , which is the choice implicitly made above.

The projection operators satisfy the multiplication algebra given above, and 
so the inverse can be found by application of the method used above in the graviton 
case. The inverse is trivially,

A 0(k ) = \ l  „ (A2.2.6)fiv.aP 2̂ iiv.aP '

written in terms of the identity relation. This can then be expanded into the explicit 
form used in calculations,

A „(k) = — ( 8  8 - 8 . 8  ) (A2.2.7)|iv,aP ^2 na vp ^  va

which is the form required in the amplitude matching procedure. In fact this 
propagator is only included for the sake of completeness as it has been demonstrated 
above that this propagator will not ever be needed in any of the calculations 
described elsewhere in this thesis.

Section A2.3 The _spitk3/2 propagator.

It is now time to consider the trickiest of the propagators to derive. The 
extended Chapline-Manton action has two terms which can give corrections to the 

propagator for the spin-3/2 field;

4  L e  f 3/4 a ' V V a p \ V v] (A 2 .3 .1 )
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and,

4 L' e f 3/4 a  (A2.3.2)

It will be shown that the combination of these with 2L=L’ gives no 
correcting contribution to the propagator. Doing the background field expansion as 
usual,

Vab = 2 9 [aVb] + V0dtah”bJ + i V q V V

(A2.3.3)

and noting that to zeroth order in the graviton field the action terms take the form,

4l  a1 V 1!  d[av b]=- 2l  ( saba2 - aaa V b

(A2.3.4)

and,

4V  = '  V ' V 3.* . (A2.3.5)

As usual, it is necessary to define the projection operators for the particular 
field under consideration. A suitable choice is[431;

p > ) = v - £ w *

(P^(k)Vv = ^r«V?v 

(P ^(k ))^  = <V»v (A2.3.6)

which satisfy the multiplication algebra,
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(p IijVv (P ’kPvp =  5 IJ5jk (P 'n ^ p  (A 2 .3 .7 )

which can be summarised in the table given in Figure A2.2. The identity of the 
algebra is defined to be,

The gauge fixing is the usual Rarita-Schwinger gauge fixing,

(A2.3.9)

which gives the kinetic term when the gauge parameter is chosen to be i\=l, 

4 ^ { ( 2  + (4 L-2 L^ ) ^ ( k) . (P > )Vv

+ Ve ( (p’f(k) - pjfoc) ^  + ((2-8) + ( ^ u T k V ® ® ) ^  } i  V v

(A2.3.10)

where the action terms have been expanded using the identity I, and the derivatives 
and gamma metrices have been rewritten in terms of the projection operator terms y

r

and cô , and these have been collected into projection operators. It should be noted 
that the kinetic matrix has been written in a form that does not display the 
symmetries which one might expect. In fact the symmetries are still present, though 
in a much more convoluted manner than in either of the cases discussed above. It 
can be seen that the terms of order k2 in the kinetic term, which are the terms which 
will give the unphysical poles in the full propagator are always multiplied by the 
coefficient 2L-L’. This implies that there is a manifestly unitary combination of these 
terms when 2L-L' = 0.

This kinetic term may now be inverted by using the projection operator 
algebra. The propagator is of the general form, (suppressing indices on the 
projection operators),

(A 2 .3 .1 1 )
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Figure A2.2 The Projection Operator Algebra For The Evaluation 

of The Gravitino Propagator.



where the symmetries are again obscured within the notation. The condition that 
VxY = I  means that the general coefficients should satisfy the following set of linear 
equations;

(2 + (8 L+ 4L'(0-l)k2) 

(2-0+(8L+4L'(6-l))k2)b - /© e = 1 

/ 0 b - e  = O 

(2-0+ (8L+4L’(0-l))k2) d -/0  c = 0

/© d - c = 1 (A2.3.12a)

which are uniquely soluble and can be seen to give, (where a is given above),

b =   — r(2(0-1)- Pk )

d = ^ i _____
(2(0-1) - Pk )

e = —(2(0-1) - Pk )

(2-0 + Pk2)
c = --------------T(2(0-1) - Pk )

P = (8 L + 4L’(0-1)) (A2.3.12b)

where the usual low energy expansion is given by the binomial expansion, as for the 
graviton above. This yields the propagator in the form (which manifestly displays all 
the required symmetries),

YM (k) = Y ( \ v(k) + Y<»M>v(k) + Y < \v(k) + ...
( A 2 .3 .1 3 )

where,
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Y(0) (k )= —  { y j y  - 6  ( r| i  - 2  ) }
* 8 k2 ^  k2

( A 2 .3 .1 4 )

which is just the usual spin-3/2 propagator in d-dimensions, and,

O k> = [-2i (2 L-L') ( - f f v 1 + ^ lH + f f  ̂
k

g ( YjĴ v "*■ Yv̂ |o. ) }

32 vv 64 ,v 1,1 64

- { ( Y ^  + yJ ^ )  }] (A2.3.15)

is the O(a') correction term. The 0 (a '2) propagator correction term is superfluous 
to the work carried out in this thesis and is not presented here.

Section A2.4 The dilatino propagator.

The dilatino propagator is corrected by the addition of the term,

Meij)'3/4D l f  D Da\  (A2.4.1)a- p.

which can be seen to give a term of the form,

- M ̂  d * d l  (A2.4.2)

which can be seen to correct the kinetic matrix,

- j X A  (1 + 2M92)X (A2.4.3)

and can thus be seen to lead trivially to the propagator in the form,

- i
A(k) = —----------- --  (A2.4.4)

k (1 + 2Mk )
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This calculation, with that of the antisymmetric tensor field has been 
included merely for the sake of completeness, and has no bearing on any of the other 
work carried out in this thesis.

177



Appendix Three: 
Notations and Conventions.

Section A3.1 The Gamma Matrix Algebra.

In this section the gamma matrix algebra inplicitly used throughout all of the 
work described in this thesis is constructed, and some gamma matrix identities are 
stated.

The flat space Minkowski metric used throughout is ri = diag( -1,1,.. .,1).
riV

This leads neatly to the definition of the gamma matrix algebra. The gamma matrices 
in ten dimensions are 32x32 complex valued matrices. Given that there exists a 
consistent Majorana-Weyl spinor representation, then a completely real (or 
imaginary) representation for the gamma matrices must exist. These are constructed 
as follows. First the Pauli matrices are defined to be,

a i =

(A3.1.1)

and the gamma matrices are constructed out of tensor products of these. First define 
the 4x4 gamma matrices,

'or* o -r ' i o '
, a, = 9 (J-j -

JO, 2 JO, ’ 3 T—H 1O

r° = i®i a2 , r 1 = i® a3
2 3r  = a ^ c j j  , r  = cj3©g 1 (A3.1.2)

and where the T5 matrix is defined to be,

5 0 1 2  3r  i* i r (A3.1.3)

which can then be used in the standard Gliozzi-Scherk-Olive gamma matrix 
definitions^161. Supposing that the uppercase latin indices run from zero to three, the 
ten dimensional gamma matrix represention is defined as,

= r 11® I. ® a ,

y3+1 = r 5 ®
0 p\

(A3.1.4)
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w h ere  the and p'j ( i= l ,2 ,3 )  are d e fin e d  to b e,

T"|0 , _ ,5
Pl = P l = r  - P2 = P 2 = r

 ̂ _ r ° r 5p~ — - p~ — F F ( A 3 .1 .5 )

and where the remaining matrices are defined by,

6+jr  = I.®4 (A3.1.6)

where ^  (j=l,2,3) is defined to be,

(A3.1.7)

where this set of gamma matrices satisfies all the necessary properties of the 
Clifford algebra. Explicitly,

(A3.1.8)

and each of the gamma matrices satisfies,

(y°)2 = - i . (y>2 = i

(lf°)T = - 7° . (f)T = y  (A3.1.9)

Finally the y11 matrix is defined to be,

(A3.1.10)

which can be seen to be of the block form,

Y11 =

I4®p3^

^ P s 0 ,
( A 3 .1 .1 1 )
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This can be seen to be a completely real representation of the gamma 
matrices and hence is Majorana. The spinors are defined to be Majorana spinors, and 
therefore satisfy the Majorana condition,

\j/ = \j/TC , where \J7 = \j/+y° (A3.1.12)

and where C is the charge conjugation matrix which is defined to satisfy,

which is solved by choosing C = y°, and where it can now be seen that the spinors 
are real^62̂  This gamma matrix representation is the one that is used in the fermion 
quantisation of Chapter Two.

There are some useful gamma matrix identities that will be useful 
throughout this thesis. These are presented below;

U Y o .y J  = 4  V a lU  

V% = d

= - (d-2)Yp

t y \ y ^  = - (d2 - 6 d -4  )7p (A3.1.13)

These identities, as well as some others which occur less frequently, are used 
constantly throughout this work.

Section A3.2 Grassman Hamiltonian Mechanics.

The discussion of fermion quantisation necessitates the discussion of the 
definition of generalised Poisson brackets for Grassman variables and of 
Hamiltonian techniques for Grassman variables in general. The Grassman algebra 
can be separated into two subspaces, the even and odd subspaces. Elements from 
the even subspace are taken to be commuting and those from the odd subspace
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anticommuting. It is possible to formalise this to a great ex tent135!.
Consider a set of Grassmann variables, (from which the Lagrangian and 

Hamiltonian wil be constructed later), denoted by qa. The corresponding velocities 
will be needed later, but these need not be considered at the moment. It will be 
asumed that any function f(qa) can be shown to be in either the even or odd 
subspaces. It is then possible to associate a number nf (= 0 or 1 depending on 
whether f is in the even or odd subspaces, respectively) to any such function, and 
where it is now possible to write,

fg  = ( - l)n,"8g f  (A3.2.1)

For a discussion of the Lagrangian and Hamiltonian dynamics of 
Grassmann variables it will be necessary to consider derivatives with respect to these 
variables. The problem of the anticommuting nature of the odd Grassmann variables 
is now apparent. Care will need to be taken in the definition of these derivatives. It is 
possible to define two different derivatives with respect to grassman variables. 
These are left differentiation, defined by considering the differential,

5f = JL (A3.2.2a)

and right differentiation, given by,

Stf df8 f = 8 qa aqa
R

(A3.2.2b)

It can be seen that these are related by the equation,

3f
= - ( - ! )

JL
dq«

(A3.2.3)

In all the work described in this thesis the Grassman derivatives are always taken to 
be left derivatives.

The Lagrangian can now be constructed. Given a Lagrangian L = L(qa,qa), 
the Euler Lagrange equations of motion are as usual,

d _ { a ^ _ ]  = 3L_ (A3.2.4)
dt 3q« ^qa
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T h e can o n ica lly  con jugate m om entum  is  d efin ed  to  be,

p“ = ^ -  (A3.2.5)
d^a

and so it is possible to define the Hamiltonian,

H = paqa - L (A3.2.6)

The variation of the Hamiltonian can now be taken in analogy to the standard case,

8H = 5pa qa + p“ 8qa - 8qa - 8qa
dqa dqa

= -qa 8p“ - i ^ 5 q a (A3.2.7)

revealing that the Hamiltonian equations of motion are,

4 ,  = - ^ 5 -  > P“ = - ^ L (A 32-8)dp dqa

where both of the Hamiltonian equations of motion have minus signs. It is now 
simple to see how the Poisson brackets should be constructed. The Poisson bracket 
is defined to be,

1 ’ S i  { ’ 9qa9pa 1 J 9qa9pa
(A3.2.9)

which clearly gives the Hamiltonian equations of motion in the form required by 
taking { qa , H } and { pa , H }. This form of the Poisson brackets clearly satisfies 
the normal set of Poisson bracket identities, generalised to the Grassmann case;

{ f > g } = - ( - i ) n,ns{ g >f }

{ f , g  + h } = ( f , g  } + { f , h }

{ f , gh  } = ( - l ) f"8 g { f , h }  + { f . g  } h

(A3.2.10a)
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as well as the Jacobi identity,

( - l ) " *  { f , { g , h } } + ( -1)V (  { g , { h , f } } + ( -1)V ‘ { h , { f , g } } = 0

(A3.2.10b)

The quantisation of Fermionic theories now follows by following the usual 
quantisation prescription,

which is the course followed in Chapter Two. The usual Dirac methods^32! can be 
generalised to the Grassman case also. These Grassmann Dirac brackets are used in 
Chapter Two.

Section A3.3 The Invariant Functions.

The work carried out in Chapter Two requires the use of the various 
definitions for the invariant functions, and the relations between th e m ^ . It is 
necessary to make some preliminary definitions. The step function is defined to be,

i n  { f , g  } (A3 .2 .11)

" 1 , x° > 0

0 (x) = < j  , x° = 0

, 0  , x° < 0

(A3.3. la)

e(x) = 2 0 (x) - 1 (A3.3. lb)

which can be seen to satisfy the relations,

0 2(x) = 0 (x) , 0 (x)0 (-x) = 0

0(x) + 0(-x) = 1, (20(x) - l )2 = 1 (A3.3.2)

The Dirac delta function and its derivaives are defined to be,
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[d x  f (x )  5 (x )  =  f (0 )

fdx f(x) 8 '(x) = - f(0 )

f  J n) n (n)Idx f(x) 5 (x) = (-1) f (0) (A3.3.3)

where f is some general function, chosen to be suitably smooth; that is, 
differentiable to the required degree.

The various invariant functions can all be represented by the general form,

from which all the specific delta functions can be seen to follow by choosing specific 
contours for the evaluation of the integral. The Green's functions of some 
relevance to the work contained in this thesis will be treated in turn below. The 
identities relating these invariant functions will be stated at the end.

i) The Retarded and Advanced Fevnman Green's Functions.

The retarded Feynman Green's function is evaluated using the CFr contour 
given in Figure A3.1. This Green's function can be identified with the propagator of 
the harmonic oscillator, and therefore with the propagator of most quantum 
systems. The integral can be written in the more usual form,

from which it can be seen that there exists an analogous advanced propagator, 
evaluated using the CFa contour as in Figure A3.1, or the term -ie is added to the 
denominator of (A3.3.5) above, instead of ie.

ii) The Positive and Negative Green's Functions.

These Green's functions only use a contour about the positive and negative 
valued poles respectively, as demonstrated by the C+ and C contours in 
Figure A3.1. These are the most useful of the invariant functions required in the 
quantisation of invariant wave equations. They satisfy a useful identity stated below.

,p ,
(A3.3.4)

,p ,
(A3.3.5)
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Fa

Figure A3.1. The contours necessary for the evaluation of the 

invariant functions, and the quantum propagators.



These Green's functions can be rewritten in rather more natural and useful 
forms. The most useful form of these integrals is,

r P
G±(x) = ±i |  d k 1 ( 1 ± E(k)) 8 (k - m2) e‘k x 

(2tc)P
(A3.3.6 )

which will be seen to be the form which arises most naturally in the quantisations 
given in Chapter Two. There are other Green’s functions which will not be needed, 
and consequently will not be discussed here.

These various Green's functions are related by the identities,

GFr(x) = 0(x) G+(x) - 6 (-x) G_(x)

GFa(x) = 6 (x) G_(x) - 0(-x) G+(x) (A3.3.7)

which allow the transition from the quantised mode coefficients to the propagators. 

Section A3.4: The Riemann Tensor.

The definition used throughout for the Riemann tensor can be written in two 
distinct, but physically equivalent ways. Both of the definitions given below can be 
shown to be equivalent in the background field expansion used throughout in this 
work. One definition will prove to be the most useful however; the definition given 
in terms of the Riemann Christoffel connection, defined to bê 49’50̂

= j  g1” 1 { 9agnp+ 9pgon- 3ngpo } (A3.4.1)

The definition of the Riemann tensor in this case i s ^ ,

R aPy(r ) = { '  V a p  + ^a/V p '  ^ap^fcy }
(A3.4.2)

This definition is adequate in the case of purely bosonic theories, but is inadeqate in 
the case where spinors are included in the theory. In this case the 
Riemann-Christoffel connection is inadequate to maintain the covariance of the 
theory. The spin connection coFmn has to be defined. The appropriate definition 

is!50!,
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The definition of the Riemann tensor is now defined to be,

R mn _  3  ,A mn mn , , A m t,A n ,A m t,A n
[4.V ®vt ” v

(A3.4.4)

which can be shown to be completely equivalent to the definition (A3.4.2). This 
equivalence takes the form,

RMr ( « ) e Pme°n = V PV )  (A3.4.5)

The choice of which definition to use clearly depends on the convenience of use in 
any partcular situation.

The Ricci tensor is defined to be,

R^v = R^va (A3.4.6)

and the curvature scalar is defined to be,

R = gPVV  (A3.4.7)

which can now be used in the definition of the Einstein-Hilbert action. The action for 
free gravitational fields is,

A = f d dx / ^ R  (A3.4.8)

from which the free field equations of motion immediately follow^49’501,

RpV = 0 (A3.4.9)

This result generalises to the full Einstein equations of motion,

R p v - y g^ R = Tklv (A3.4.10)

Where T is the stress energy tensor for any other fields that are coupled to gravity
r

in the generalised form of action (A3.4.8).



The covariant derivatives of both covariant and contravariant vectors should 
now be defined. The covariant derivative of a covariant vector is,

*V<Pv = fyPv - (A 3 .4 .11 )

and the covariant derivative of a contravariant derivative is defined to be,

V v = ^ 9 v + r^cpa (A3.4.12)

The covariant derivative of a spinor now presents some problems which must be 
dealt with using some care. It is required that a special spinor connection Tp be 
defined such that the covariant derivative of a spinor can be defined^50!,

3)̂ \j/ = + Tp\|/ (A3.4.13)

where the spinor connection can be shown to satisfy the definition,

r p = jYmY„Mpmn (A 3 .4 .14 )

The covariant derivative of a vector spinor, that is a spinor that transforms 
as a vector rather than as a scalar under local Lorentz transformations, can now be 
shown to be,

= 9pVv + J  YmYnVv®™ • rivV ll (A 3'4 '15)

with the corresponding definition for a contravariant vector spinor. Normally y  is 
treated as a spinor valued one form, and the two form is given by the 
skewsymmetrisation of (A3.4.15) above, in which case the Riemann Christoffel 
connection does not contribute.
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Appendix Four, 
Sample Calculation.

This short appendix contains the sample calculation of the gravitino 
exchange diagram mentioned in Section 4.1 of Chapter Four. This involves only the 
first term in the O(a') vertex, contracted with the entire 0(a°) vertex. This will be 
explicitly shown to vanish. The O(a') term that will be used is,

- j 9 MVvf7PYnVt,9<J9 \ V (A4.1)

and the 0(a'°) vertex is given by equation (3.2.36). This is,

• J  { y  d p V o Y V A v C  + VaTf“9°M vC

+ d p ¥ o /v X °  } (3.2.36)

The propagator is as given in Appendix Two, and is,

Y™(k) = - L .  { YvltYp-  6  ( V *  1
8 k  k

(A2.3.14)

The contribution to the amplitude is thus given by the contraction of these 
three together,

4 1  ( l ^ / W b s d t , +  t ju  - - f  (ku+ k 3s) ( k l n +  k 3 n ) ( i t  1+  k 3) ) ] x

4  t f t ulm k2ti(k2r + k4r)k4ok /i ;3amC4pv

+ ^ l m  ^2n^ls^4ak4 ^3a ^4p

+ 1 ,Ulm V k2r+ k 4 A a kA 3 S\ p V} 1

(A4.2)

which must now be simplified by the application of some of the identities listed in 
Appendix Three, and by the explicit use of the truncation procedure. The first term 
can be seen to simplify to the form,

65 ,+ k3) - 6 (-W* 1+ l3> )]<V ̂ i T ^ a V
(A4.3)
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the second term yields,

6 4 t {  U2 v ^ 4 ^ Y  [ ^ i ^ Y t i  +  ^k 3 n ^ l +  ^ 3 ^ ^ 1 0 1 2  ^3a ^4p )

(A4.4)

and finally the third term gives,

5 4 f  { ^ 2 v ^ 4 ^  [ Y s (^ i+ ^3)Yn ■6 'nST1(k 1+ k 3)](k 2+ k 4)ulmy  £4p }

(A4.5)

which can be seen to vanish on the application of the identity,

y V M ti = (d'4 ) V  + 4V  (A 4.6)

The first and second terms must be added together. Doing this gives the final answer 
for the contribution to the amplitude,

J _ f . I 6 t i n  k W u  e mc v + ^ - u  k V*y*u c mi v )6 4  I 4  2v 4Y Y ^ im^3a S4p +  2  2v 4Y • lm^3a ^4p J

(A4.7)

(using the identities of equation (A3.1.13)), which can be seen to be zero. This is 
the result that was promised in Chapter Four. Although many of the intermediate 
detail steps have been left out, it can immediately be appreciated that the complexity 
of these calculations would be overwhelming if it were not for the truncation 
procedure discussed in Chapter Three.
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Appendix Five 
Amplitude Matching Determination 

of the Coefficient y

Introduction

In this Appendix the matching calculations for the parameter y used in 
Chapters Three, Four and Five will be exhibited. This entails the construction of 
three separate matching calculations, none of which will be explained in any depth in 
this Appendix as it would not be too illuminating to include too detailed a summary. 
The parameter will be shown to take the form of y=±l/4, but preferably of the form 
7 =1/4 . The procedure for calculating the value of y from the string is quite simple 
and requires that only three quite simple three point amplitude matchings be 
performed.

The procedure is that first the bosonic string amplitude for the heterotic 
string is constructed, and the overall normalisation to the 0 (a'°) bosonic amplitude 
for three graviton scattering is found. This serves as the absolute normalisation for 
the string amplitude. It is known that the string polarisation tensor obtained by the 
tensor product of two vectors, one from the bosonic string and one from the 
fermionic string can be expanded as follows,

CMv = ^ v  + e C  + <P V ^  (A5-1)

(where the superscripts refer to h - the graviton, a - the antisymmetric tensor field, 
and (J) - the dilaton fied. In all that follows the h superscript will be omitted in 
consistency with what appears in the rest of this thesis: the appearance of a 
propagating antisymmetric tensor field occurs only in this appendix, and so no 
ambiguity will arise. When the full tensor £ is used the fact will be noted, and when 
£ is used to denote a graviton polarisation tensor no note will be made.) It can be 
seen that it still remains to find the relative normalisation constant e from a second 
0 (a'°) amplitude matching, this time matching the a-a-h scattering amplitude from 
the field theory with the term from the string, before it is possible to calculate the 
possible values for the coefficient y. This will enable the value of e2 to be found, 
unfortunately leaving the value of 8 ambiguous with respect to a sign. This sign 
ambiguity will persist up to the amplitude matching which will allow the calculation 
of y which will then be seen to be either y=l/4 or y=-l/4. However it has been 
shown in Chapter Five that only one of these values, that is y = -1/4, can be seen to 
give a full four point amplitude match to the string theory. (If y=l/4 is chosen it can
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be shown that no matching exists at all, and so this value must be discarded.)
It should be noted that the string constant a ’ is taken to have value a'=2 

throughout, which is completely consistent with the procedure of reference [33] and 
with the calculations of Chapter One. The first two matching calculations do not 
involve the a' parameter at all.

As discussed above the first amplitude matching calculaiton that must be 
performed will be used to determine the absolute overall normalisation for the 
bosonic string amplitude, which can be seen to be of the form,

by a trivial application of the techniques described in Chapter One and also in 
reference [33]. It should be noted tht the tensors in the above are the full tensors as 
in (A5.1) above. This amplitude can now be ‘normalised’ by deriving the three 
graviton scattering amplitude from the Chapline Manton action and comparing this 
with the three graviton term derived from (A5.2) using relation (A5.1). The string 
amplitude prediction for a-a-h scattering can now be derived from (A5.2) using 
(A5.1). This can be seen to contain a factor of e2 which can be fixed by comparison 
with the calculation of the same a-a-h amplitude from the Chapline-Manton action. 
This normalisation procedure will now be carried out.

The three graviton scattering amplitude due to the Chapline-Manton action 
can be derived immediately from the vertex factor (3.2.23a), which can be compared 
with the string answer, (3.2.23b) to yield the overall normalising factor of -i/4. This 
means that the string prediction for the 0 (a'°) a-a-h scattering amplitude is 
therefore,

The field theory amplitude for the same process is simply derived by expanding the 
action term, (using the notation of Chapter Three),

po r
C2 ^3 1 tp^va+ 2v^oP 3a^pv J *

‘ t ^lcJVp + + + ' J
(A5.2)

i r 2 apo 
"4  I £ 1̂ ^2 ^3 ( la^Pv + ^p^va + ^v^cp)*

(A5.3)

(A5.4)
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employing the methods explained in detail above, and by using the one graviton 
expansion of the metric. (Note: no truncation will be performed here for the same 
reasons that it is not used in the three point fermionic amplitude calculations). This 
implies that the amplitude is of the form,

using the standard techniques developed in Chapter Three.
It can be seen obviously that the e coefficient must satisfy e2 = 2, implying 

that e = ±V2 . This ambiguity in the sign will persist to the final matching to 
determine y, which can be derived from the O(a') a-h-h amplitude matching derived 
directly from the appearance of the Lorentz-Chem-Simons term in the G2 term in the 
action. It should be noted that the a' parameter will be kept in explicitly throughout 
this calculation in contrast to the procedure adopted in the main text above. The 
appropriate vertex for the matching to determine y comes from the term,

which must be compared with the string result. This is now done. From (A5.2) and 
(A5.I), and using the value for e derived above, the string amplitude for a-h-h 
scattering can be seen to be,

(where the ± denotes the sign of e) which immediately implies that the parameter y

+ C C V( V W . Y> < }  (A5.5)

which eventually yields an amplitude of the form,

yot'/r
2

(A5.7)

(A5.8)
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takes the values y = ±1/4, when e = ±V2 . As discussed above, only the y = -1/4 
can be seen to give an amplitude match to the string in Chapter Five. As discussed 
both there and in Chapter Six, this gives results completely consistent with both 
Gross and Sloan, and Cai and Nunez[58].
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