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Preface

In this thesis, techniques are developed for 

the self-consistent derivation of systems of coupled 

ordinary differential equations which describe the

propagation of electromagnetic perturbations through 

inhomogeneously magnetized plasmas.

The Vlasov equation is used to model the

reaction of the distribution of the plasma particles 

to a high frequency electromagnetic perturbation, its 

use being justified, for the timescales under 

consideration, from kinetic theory. Then the current 

carried in the plasma is obtained from the perturbed 

distribution function, and inserted in Maxwell’s 

equations to give the wave equation.

The wave equation is first derived by Fourier 

transform techniques, for the case of a homogeneously 

magnetized plasma, and then derived as a set of 

differential equations for the case of an

inhomogeneous magnetic field. The consistently 

derived differential equations are applied to a 

simple example of an inhomogeneously magnetised 

plasma, and then the equations and their solutions 

are compared with those obtained from the ’reverse 

Fourier transform1 of the equations derived for the 

homogeneous case - a technique often used in the 

literature. While the comparison of results
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demonstrates the need for consistently derived 

equations, the derivation of the equations also 

reveals the limits of their validity. It is shown 

that while similar equations have been obtained 

before, they have been applied not only in their 

region of validity, but also well outside this 

region.

The technique used to obtain the consistent 

equations is successively generalised to describe 

short wavelength perturbations, anisotropic and 

inhomogeneous equilibrium particle distributions, and 

perturbations outside the plane formed by the 

magnetic field and its gradient.



Chapter 1 

Plasma Theory

1.1. The Single Particle Distribution Function.

To describe in complete detail all the 

properties of a plasma would require a description of 

the motion of each individual particle in the plasma. 

Since there are typically >10,? particles in plasma 

experiments, each one interacting with the others, 

this is not a practical approach to calculating 

plasma properties. Obviously some method for 

simplifying this set of equations is vital. One 

method that produces dramatic simplification is to 

ignore particle correlations and deal purely with the 

single particle distribution function f . This is 

the approach that leads to the Vlasov equation. 

Ignoring particle correlations is equivalent to 

saying that the probability of a particle being at 

position x at time t is unaffected by the presence of 

another particle in the immediate vicinity. In the 

statistical mechanics of neutral gases this 

approximation is often made for low density gases and 

is equivalent to ignoring the finite size of the gas 

molecules but, in a plasma, in addition to the finite 

size of the particles, there is also the long range



of the electrostatic field interactions to be

considered. However, the longer range interactions 

can be split into the ’self-consistent field’

obtained from the single particle distribution

function and a 'collision term' due to particle

correlations. This gives the Boltzmann equation.

C)f + a. erf -  \
^  &  Ut/C (1.1.1)

To proceed any further a model of the collision 

term is required. In general, the terms on the

r.h.s. of equation (1.1.1) would contain, in 

addition to the effects of particle correlations, the 

effects of source and sink terms. Such source and 

sink terms themselves often arise from collisional 

effects, for example a fusion reaction would appear 

as a source term in the fusion product distributions, 

and as a sink term in the fuel distributions. 

However, before expending any effort on modelling the 

effects of fusion reactions on the distribution 

functions, it should be noted that the central 

motivation for this research is the use of R.F. 

waves as an auxiliary method of plasma heating in 

present day experiments in an attempt to achieve 

thermonuclear fusion parameters. In these

experiments, the cross-section for nuclear fusion is 

far smaller than that for deflection. Therefore, in 

estimates of the size of the collision term in
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(1.1.1), fusion reactions can be ignored.

The first step is to assess the effects of the 

approximation that the r.h.s. collisional terms are 

insignificant compared to the terms on the l.h.s. 

This is done by using a physical model of the

collisions that take place in the plasma to estimate 

the collision term so that its size and dependence on 

the parameters of the plasma can be found. The 

dominant collisional effect on the plasma

distribution is the Coulomb collision (fig. 1.1);

the differential scattering cross-section for which 

is obtained in standard undergraduate textbooks 

(Goldstein,1980)

ly, - ¥il, e ] - C  cosec^/ej
** 'Z' (1.1.2)

where

b0 - +
U-ti | y,

Fig. 1.1 Path of particle 1 in the centre of 

mass frame
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This formula (1.1.2) however, suffers from the 

fact that it diverges in the 0->O limit. In atomic 

scattering the screening effects of the electrons 

around the nucleus give an upper bound on the impact 

parameter b, and therefore effectively a lower bound 

on 0. Fortunately a similar screening effect, due to 

the mobility of charged particles, exists in plasmas.

1.2. The Debye Length

The particles in moderate and low density 

plasmas in thermal equilibrium follow Boltzmann 

statistics
\̂ -e/KTe

(l’" a)V‘ (1.2.1) 

therefore the equilibrium distributions would have a 

Maxwellian velocity dependence.

-Wv/Tl
(1.2 .2)

Given only an electrostatic potential field I, the 

spatial dependence of the equilibria would be solely 

due to the I dependence
if. . if. d|
hx bi b* (1.2.3)

e.g. for a plasma consisting of ions and electrons
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7 ^  - ~P_ - fe.xp /cjj _ txp f-ef
U r l  V htr e t  1 K V£7/j C1.2.4)

If the potential $ is due to the Coulomb field of a

charged particle in the plasma, then the limit

if << I
KT (1.2.5)

is appropriate, i.e. the plasma particles have 

greater kinetic than potential energy. (The opposite 

limit would be more descriptive of an ionic bonded 

crystal.) Given this approximation, the solution for 

$ due to a charged particle in a plasma becomes

5  =_______  exp /’£_\
4rrC0r (1.2.6)

where the Debye length

\> -
U * e lj (1.2.7)

is the naturally arising screening length sought.

Using X0 as a cutoff or upper bound on the 

impact parameter b, a value for 0 ^  is obtained.

=■ Vz*.K (1.2 .8)
Therefore the average plasma particle is

simultaneously interacting with r\X̂> particles, and 

so if nX30 >>1 it is reasonable to suspect that the 

dominant collisional effects could be due to multiple 

small angle scattering rather than individual large 

angle scattering.

The average time for a tt/2 deflection due to an
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individual collision for a particle travelling with 

speed v is

To compare this with the integrated effects of 

multiple small angle scattering the mean square 

deflection per second is estimated and then the time 

for a deflection of unity is calculated, a deflection 

of unity corresponding roughly to a total scattering 

of Tr/2.

The case of electron scattering from ions is 

particularly simple because of the great disparity of 

mass between ions and electrons. This difference in 

mass allows the ions to be regarded as stationary and 

in the centre of mass frame. The integrated sum of 

deflections through angles less than W 2  is

and therefore the time for the electron to suffer a 

deflection of unity is

As was suspected, the ratio of the 2 different

1.3. Electron Scattering from Ions

t
(1.3 .2 )
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collision times

rs Snb^nv InCXp/tQ - 2 (n 'ko_j 
t *  r w i r t f  t j  ( 1 . 3 . 3 )

is large if the number of particles within the

screening distance is large, since from (1.2.7) we

have

n^o - K
(1.3.4)

and using (1.1.3) with raly.-vj1 replaced by the mean 

thermal value kT gives the result.

Xo - St\ £t>hT \  - Stt a X
b» £l (1.3.5)

If this limit is applicable then the collision term 

in equation (1.1.1) is best represented by a 

Fokker-Planck collision term.

1.4. Fokker-Planck

The Fokker-Planck collision term models the 

effects of large numbers of small collisions, by 

using the small size of velocity changes to justify a 

Taylor expansion of the collision operator. For this 

analysis it is assumed that there exists a function 

V(y,Ay.) which is the probability of a collision 

causing a change in velocity of A V to a particle that 

has a velocity y. Then the distribution function at
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time t+flt can be written in terms of the distribution 

at time t and the collision function.

( 1 . M . 1 )
Performing the aforementioned Taylor expansion gives 

t-ftt) - &v. 4(■£ 2 : —  
-» <Jv c>ve)v

(1.4.2)

usually written as

f

it

where

- - J_. f-f < ay>] + i _JL-( £ < ayay>]
1 (1.4.3)

< Q >  - _L j Q ^ (v, a v )  < ^ v
At j

(1.4.4)

Until an expression is substituted for V (v,ilv) 

the r.h.s. of equation (1.4.3) is as formal as the 

l.h.s. If the assumption is made that 2 particle 

correlations are the dominant effect, which is 

consistent with the reasoning of section 1.1 then the 

probability of collisions causing a change Av in the 

velocity of particle 1 is

iy.-Vil o (i y, -vj j -f (Vi)

SO

< AY. > Ay. 1 Y,-Vx

< ay. > '  J Ay. Ay.
(1.4.5)

which leads to

M.
i t

= e U Uo /t.)
In iy. Jn I 1 iv, <5y, > j
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r f
<ivz { ( y j  Gr(y'1 ) -  -(■ G/J I v,-\41

Itt'ftl (1.4.6)

for a 2 species plasma. This equation can now be

used to calculate collision times, as well as slowing

times and energy exchange times, given the

distribution functions fC v, ) and f(vz). If the

further assumption is made that the bulk of the

plasma is in a Maxwellian distribution

f (Vi) -- 0,
it** vT? (1.4.7)

then H(v 4) and G(v,) have the forms

n. e>~f v, 
mx vx Wi

6r (y ) - n/v, + \£ ] erf / \A ] - e\ lv, I \vrJ Jn
-V.Vv/t7-

(1.4.8)

where erf(x) is the error function

erf M  - JL_ I €■ 7 Jl^  , y
(1.4.9)

The distribution function for a test particle would 

be
{ ( O *  U v . - y W )

y = (1.4.9)

and so the collision time, which as before is the 

time for a deflection of unity, can be calculated 

from the v* moment of equation (1.4.6). The first 

Fokker-Planck term - usually referred to as the drag
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terra - does not contribute to particle deflection, 

which arises purely from the second term - the 

coefficient of diffusion. The deflection rate is

c)Û  - HeA U(Ap/bo) erf (x) ♦ 1 sL I ) j
<H  Itt 1 ** * J (1.4.10)

and so the deflection time is 

t° -- Jiji = Iff C  m.1(ff)
By inserting the values of mass and charge

corresponding to a test electron scattering from a 

thermal ion distribution, the estimate of the

collision time made in equation (1.3.2) can be 

verified.

t® = 2tt fe.V* (zkt)^C I —■ ■ ■ — - ■
Irv (_Ao/®a)

(1.4.12)

More importantly the collision times for 

ion-ion,electron-electron and ion-electron scattering 

can be calculated (Sanderson,1981). They are

t° -- In Cm!'1__________________
ne4 1„CX„/U X’l

t ° .. (n^ft0iC (1.4.14)

t ° -  U E  ^  t*;
'* 4 (1.4.15)

Using these results it is clear that for the 

evolution of distribution functions that are close to
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collisional equilibrium, the collision terras are

significant for tiraescales of order

lD __ Zn V  ffl> ( Z ^ ) 3*- 

el U A ‘/ 0  (1.4.16)

or greater. For the evolution of such distribution 

functions on much shorter timescales the collision 

term can be dropped. In particular, for a R.F. 

perturbation with frequency considerably greater than 

the collision frequency, the r.h.s. of the Boltzmann 

equation can be dropped, giving the Vlasov equation.

cl£ + + - o
it ix hv (1.4.17)

Thus for plasma parameters that satisfy the 

above criteria, the Vlasov equation is adequate to 

describe high frequency perturbations. The next

question is whether or not the R.F. heating 

experiments referred to in section 1.1 will satisfy 

the restrictions to distribution functions that are 

near thermal equilibrium with large numbers of 

particles within a Debye sphere, and to perturbations 

on timescales much shorter than the collision time.

- 11 -



1.5. Thermonuclear Fusion

In order to understand the need for auxiliary 

heating in these experiments, as well as the plasma 

parameters used, the ultimate objective - that of 

achieving first break-even and then ignition in a 

thermonuclear fusion reactor must be borne in mind.

For fusion reactions to occur, the particles to 

be fused must approach each other with enough kinetic 

energy to overcome the Coulomb repulsion of their 

like charged nuclei. For such reactions to occur

with high frequency the average thermal energy of the 

particles in the plasma must be at least of

comparable size to the required kinetic energy for 

fusion. This requires, for even the simplest fuel 

nuclei, those with only one proton in their nucleus, 

a temperature of around 100 million degrees

centigrade. Furthermore, in order for ignition to

occur the power production from nuclear reactions 

must balance the power losses from the plasma. These 

considerations lead to the Lawson criterion which can 

be expressed as

10 -3r\X Z 10 m 5
(1.5.1)

where X is the energy containment time. The 

extremely high temperature required for fusion rules 

out any material containment for the plasma and so
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research into controlled thermonuclear fusion has 

concentrated on inertial confinement and magnetic 

confinement.

1.6. Inertial Confinement

The philosophy behind inertial confinement is 

simple. Rather than try to contain the plasma, it is 

allowed to explode violently. The nuclear reaction 

only continues until the fireball has expanded 

sufficiently to cool below the required 10

This approach has the advantage of being well 

proven, as it is the method employed in the hydrogen 

bomb. However, for power production the violence of 

the explosion must be toned down. The problems of 

inertial confinement experiments stem from the 

necessarily very rapid reaction, which dictates that 

the size of the plasma must be very small. This 

restriction on size causes a tight restriction on 

which, if the Lawson criterion is to be satisfied, 

forces n to be of the order of 1000 times the solid 

density. The compression of the pellet of fuel to 

such high densities is usually performed by shining 

extremely powerful lasers on to the pellet surface to 

ablate an outer layer, the increased pressure in this 

region providing the large forces required to

- 13 -



compress the rest of the pellet. Similar schemes 

using electron beams or ion beams in place of the 

laser do exist. For the plasma to reach such high 

densities without requiring huge amounts of power, it 

must be compressed adiabatically. Therefore, far 

from requiring additional heating of the plasma by 

R.F. waves, the problems of the core of the pellet 

being heated before full compression is achieved, are 

significant. Since there is no requirement for R.F. 

heating in these experiments and since the 

assumptions made in sections 1.2 and 1.4 are not all 

strictly valid for such high densities, no attempt 

will be made to model electromagnetic perturbations 

for such systems in this thesis. Instead, attention 

will be focused on lower density plasmas.

1.7. Magnetic Confinement

The fact that hot plasmas, by definition, 

contain large numbers of free charges makes them 

excellent conductors. Therefore, from Maxwell's 

equations, it can be seen that an element of plasma 

will maintain an almost constant magnetic flux. This 

property implies that plasmas can be contained by 

magnetic fields.

In this approach to obtaining a Lawson product

- 14 -



20 . ̂
of 10 rvv 5 the energy confinement times are obviously 

far greater than those of inertial confinement 

experiments and so the required densities are 

considerably lower. This class of experiment is 

typically aimed at energy containment times of the 

order of 1s and therefore densities around 1 0 In 

these machines several methods are used to heat the 

plasma, these methods include ohmic heating, 

adiabatic compression, neutral beam injection, and 

R.F. heating.

Ohmic heating - in this simple and very successful 

heating method, the plasma is treated like the 

heating element of an electric fire. A large current 

is run through the plasma and resistive losses cause 

the plasma to be heated. This method is particularly 

suitable for devices such as tokamaks and reversed 

field pinches (r.f.p’s) which require large currents 

to flow in the plasma to produce part of the magnetic 

field used to contain the plasma. Unfortunately the 

conductivity of a plasma increases as T3/x which makes 

the use of ohmic heating at very high temperatures 

unattractive for tokamaks due to the very large 

current required. Since tokamaks require a toroidal 

magnetic field of greater magnitude than their 

poloidal field, a very large current flow in the 

plasma would require a very large current to flow in

- 15 -



the toroidal field coils. This would cause 

considerable engineering problems due to the very 

great forces that would arise between coils and the 

large cross-section required for coils to carry such 

large currents without prohibitory power losses. 

This problem, which does not arise in the case of 

r.f.p's, has led to the use of auxiliary heating in 

most present day tokamak experiments and a revival of 

interest in r.f.p’s.

Adiabatic Compression - in this method, the plasma is 

compressed rapidly enough to avoid major heat loss, 

i.e. on a timescale shorter than the energy 

confinement time T , but slowly enough to remain in 

thermal equilibrium, i.e. on a timescale longer than 

the collision time t°. Since the compression is 

adiabatic, this is a one shot heating method.

In a tokamak this is accomplished by moving the 

plasma inwards to a region of greater toroidal 

magnetic field. Since the plasma tries to conserve 

magnetic flux the minor radius of the plasma is 

reduced and this in combination with the reduction of 

the major radius leads to a greater reduction in 

Pi asma volume.

This process increases the plasma temperature 

as well as its density. However, unlike the case of 

inertial confinement the density cannot be increased

- 16 -



dramatically as this would destabilise the plasma. 

Since the density increase is restricted, the 

temperature increase is also restricted and so this 

method, while useful, is of limited scope.

Neutral Beam Injection - the object behind this 

system is to fire large numbers of highly energetic 

particles into the plasma. These particles will then 

heat the plasma by collisions with the plasma 

particles. The difficulties with this method of 

heating arise from the fact that in order to 

penetrate the confining magnetic fields, the injected 

particles must be neutral. In order for the heat 

deposition to take place near the centre of the 

plasma, the particles must remain neutral as they 

pass through the outer edges of the plasma. To 

reduce the ionisation cross-section for these 

particles, the injected particles must be given very 

large energies by ion accelerators and then 

neutralised before entering the containment device. 

However, particles with too large an energy would 

pass through the plasma without interacting and 

strike the vacuum vessel wall. Present day devices 

use positive ion, e.g. H+, beams which are then 

neutralised by collision with a gas target.

There are two major problems with this 

approach. First is the existence of other species in

- 17 -



the ion source, e.g. H and Ĥ " which on 

neutralisation, produce H neutrals with 1/2 and 1/3 

the correct energy. Second, the cross-section for 

re-ionisation of the beam decreases more slowly than 

the cross-section for neutralisation, as the beam 

energy increases. This gives an effective upper 

limit on the neutral beam energy of around 80-100 keV 

per nucleon. Both of these problems can be avoided 

by the use of negative ion beams instead of positive 

ion beams. Only one negative ion species exists, H , 

and since the extra electron is weakly bound, 

neutralisation can be achieved by ’photo-detachment' 

with a laser without the production of positive ions.

Radio Frequency Heating - the subject of this thesis. 

In this method radio waves are beamed into the plasma 

to accelerate particles within it. These particles 

then heat the rest of the plasma by collision.

The parameters of magnetically confined plasmas 

satisfy all of the assumptions made in sections 1.2 

and 1.4 : there are a large number of particles

within a Debye length and the unperturbed 

distributions are near equilibrium. Therefore the 

properties of perturbations applied to the plasma 

with periods much less than the most rapid collision 

times are described adequately by the Vlasov 

equation. As will be shown in the next chapter,
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magnetically confined plasmas have many resonances 

where an electromagnetic perturbation can couple 

strongly to particle motion. Under such conditions, 

power can be absorbed from an electromagnetic wave 

and so heat the plasma.
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Chapter 2 

Wave Propagation

2.1 Introduction

To model the propagation of an electromagnetic 

wave in a medium the following Maxwell equations are 

employed.

However, for a highly conducting medium like a 

plasma, the current density in the plasma must be 

obtained before equations (2.1.1) can be solved. The 

total electric current flowing in a plasma is simply 

the total of the currents carried by each species in 

the plasma. Since the current carried by a species 

is (charge of a particle) (number density) (average 

velocity) and the average velocity is the first 

velocity moment of the distribution function

all that are required now are the f as functions of 

the perturbing electric field.

V x E  -- - 18<)t

(2 . 1 .1)

(2 .1.2)

(2.1.3)
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2.2. Solving The Vlasov Equation.

In Chapter 1 it was shown that for timescales

less than the collision time, the behaviour of the 

distribution functions of the particles making up the 

plasma was adequately described by the Vlasov

equation. Recalling equation (1.4.17), it will be 

remembered that the acceleration term, a, contains, 

in addition to externally applied fields, the self 

consistent fields resulting from the distribution 

function f and so equation (1.4.17) is non-linear.

Assuming that only electric and magnetic fields are 

significant, and restricting attention to velocites 

well below the speed of light,

of + j/.^£ ■+ % ( § (f) + y xB(f)].b£ -z- o
bt rv\ hv (2.2.1)

Although there do exist exact solutions for 

this nonlinear system - (Abraham-Shrauner,1984)

(Lewis and Symon,1983) - many of the approaches used 

require the existence of an invariant Hamiltonian and 

therefore only produce undamped waves, which would 

not be suitable for heating a plasma (Leach,Lewis and 

Sarlet,1983) while others, based on the invariance of 

the one-dimensional Vlasov equation under 

infinitesimal Lie group transformations, can yield

damped sinusoidal electric fields, but not with fixed

frequency (Abraham-Shrauner,1984), which again limits

- 21 -



their use in the modelling of R.F. heating.

If only small perturbations to an equilibrium

plasma are considered, then equation (1.4.17) can be 

linearised, forming the system

V . <̂ fo + % (Ee + vx 6 j  • <& - o
bx M " 3?/ (2.2.2)

+ v.<^, ■+ (t0 •+'̂ *6e) = -cp (g,+v» 8,).̂ o
<k * <)v (2.2.3)

The most common approaches to calculating the

propagation of waves in magnetic confinement devices 

are based on the solutions of the Vlasov equation in 

a homogeneous magnetic field. In order to understand 

the strengths and weaknesses of such methods, the 

standard derivation for such a field profile is

performed below.

2.3. Constant B

Choosing a coordinate system with the z axis in 

the direction of the magnetic field and the

wave-vector of the perturbation lying in the x-z 

plane, equations (2.2.2) and (2.2.3) become

V. <K> + £ (\/*_8.) . - o
fa ** ** (2.3.1)

c)£, .+ V . <&_ * %  t v  *  6e )- (E , + Vx g , ) .

it ' i* " ist <" . isi (2.3.2)

Noticing that equation (2.3.1) is satisfied by any

- 22 -



function of vxz and va , the Maxwellian distribution

(1.2.2) is chosen for fe . This particular choice of 

equilibrium has the advantage of eliminating the 

Lorentz force term.

(v x 6  ) . ' o
^  (2.3.3)

The next step is to Fourier transform all of the 

perturbed quantities.

i-Cu/ - k.y) f  ■+ ojc I v/a - \/x M  ^  £ y k
iys. Jvj <vwTl (2.3.4)

A further simplification is obtained by changing to

cylindrical coordinates for the velocity space:

VA ■=■ c o s ^  Vy -  Sin

Vvj M  - V* - - Mi
dv* (2.3.5)

Therefore (2.3.4) can be written as 

<̂ i - i (oj- fcg\/T - ky vx costf)I,

- E* <-°s ̂  » Ev sin ]̂yt + Vi'J
m \/T uJc (2.3.6)

and so using the single valued nature of f, and the 

series expansion

= £  -j-Cb) ^ 4  

nx‘- (2.3.7)

with

Id s K* VI 
u/<. (2.3.8)
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f, can finally be expressed as 

r  s~ T  /■ i \ r -r- / \
f , = Z  JnU) e H  1(b)

ft WtrwvT1' J J

J ( Vu + (.£* -i£,,)e.l<r ) + Zi/2 £■*)
-cCuJ + iw<.-fc*vx)
e a /

(2.3.9)
This expression for f, can now be inserted in 

equation (2.1.3) to give the current density as a 

linear function of the perturbing electric field. 

This linear relationship is usually expressed by 

means of a conductivity tensor . Fortunately, only 

the +1,0 and -1 Fourier components of f, contribute 

to the conductivity tensor. This fact allows the 

double sum of equation (2.3.^) to be replaced by the 

single sum.

■ f  -- 3 A  Z   I_ _ _ _
jvw/1’ ft

ft., U )  V, (£,+ ;£,) + 2 T„Cb] vl Ei  + T„.,CO *  (.E.-iE,)]

+  0 ( 4 ‘ ^ . . .  j

Using the Bessel function identities

1^) + 3^Cb)
b

TB.,Cb) -J MlCb} -  2 7n'M

(2 .3.10)

(2.3.11)
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The conductivity tensor tf^can be written as

<AVU r.

v .v j m
b*

i v.xn j/(b)7„(b)
b

^  V. h JAb) 
b

f0<j,
uu+

-lyJnX'lblXiCb)
b

V  7;\b) 

i w J M X M

tviv/tTn(b) jr Cb)

^  T O
>

(2 .3 .1 2)
Performing the velocity integrals, and making 

use of relations between the Bessel function J(x) and 

the modified Bessel function I(x)=J(ix), can now be 

combined with Maxwell’s equations to form the tensor 

equation.
£ k ̂ (ic* (r) ■+ & + '-‘Z* < E - O

" te\jj
(2.3.13)

Lg* = y *  ^  e'A< u
e„w w  k,vT_

(y

f n ‘ 1 .  Z
Aw

nu r
2-A'i

\

i«(in-i.)z f c i ^ c w J z  xv:(i;-ijz' 
IX< . 2^

g L z ' AKi:-lJz'
V lA”*

I -Z
y

z (2.3.14)

Where A^, the argument of the modified Bessel 

functions, and T„ the argument of the plasma 

dispersion function are

2.K*.
ln - ui-t-nuJc. 

^2 . (2.3.15)
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Non-trivial solutions of (2.3.12) exist < = >  the 

determinant of the system equals zero. Setting the 

determinant equal to zero gives the dispersion 

relation.

Since solving a transcendental equation like 

the dispersion relation requires numerical 

techniques, most of the research done in this field 

concentrates on long wavelength solutions. If the 

wavenumber k, is small enough for the argument of the 

Bessel functions to be considerably smaller than 1 , 

then in the dielectric tensor they can be 

approximated with only the first few terms of their 

series expansions.

Therefore, for perturbations that vary slowly, 

i.e. changing significantly only over several Larmor 

orbits, the dispersion relation becomes a polynomial 

in K7X. The lowest order polynomial obtained by this 

method can be written as

" (2 .3 .16)

a, - i- *71 (z(t>z(t,))
uyl 2u/Kl'/T#.

a y  I  ( Z t J j - Z t t l j  

a3: I + Z  ZCT.) - ‘ )
** KS1/T- (2.3.17)

for large arguments the plasma dispersion functions
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can be approximated.

z(l,N Z(J,)= 
Û/-trU/e

M r

(2 .3 .17) becoming

(2.3.18)

a

^E_ UJ,
u/( w*-uO

(2.3.19)

Since there are now no thermal effects in the

equation, i.e. no dependence on vT , this limit is 

called cold plasma theory.

Another simplification can be achieved by 

noting that the plasma conductivity along the 

magnetic field is far greater than the conductivity 

perpendicular to the magnetic field and so the

electric field in the z direction tends to be 

suppressed. For a large number of cases this implies 

that only the electric fields perpendicular to the

magnetic field need be considered. Another way of 

considering this is that the determinant of the

dielectric tensor is dominated by the product of the 

determinant of the 3*3 minor with the 3>3 element, 

for a large range of frequencies and wave-vectors.
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So w and k that lie within this range and 

simultaneously give zero for the determinant of the

3.3 minor are good approximations to solutions of the 

full dispersion relation. Taking the elements of the

3.3 minor to first order in \ , the following 

dispersion relation is obtained.

-- O
(2.3.20)

8, - Z  ^  ( z a j  -ZCJ - m ) )
** 1 uj

g ^ Z  Z iZ :  [ZD JZ(3 j'3 (z(J,]^(J,)) - 11(1)]
2 u K2 \ZTtt

B . - - Z  W -  [ Z ( \ ) - 2 ( l ) + l \ l ( l ) - 2 (X,l))
3 " (2 .3 .21)

2.4. The Cyclotron Resonances

One interesting feature of the v2 integration 

is the existence of simple poles, which occur when 

the Doppler shifted wave frequency w - k 1v2 is an 

integer multiple of the cyclotron frequency of the 

species. These poles give rise to the imaginary part 

of the plasma dispersion function

Z.CX.) - Z e ' 1" ( +  i.Jrf e Z
» (2.4.1)

and can also cause significant cyclotron damping of

- 28 -



waves if large numbers of particles satisfy the 

resonance condition.

l> n  Z ( U  ^  ( 0(v /r !  vr -
(2.4.2)

Cyclotron damping has been successfully 

employed as an auxiliary form of plasma heating in 

several experiments e.g. JET,TFR,PLT. Part of the 

attraction of this particular type of R.F. heating 

is that in an equilibrium magnetic field which is a 

function of position, cyclotron damping will be 

significant only where uj-nujts k zvr . Therefore, by 

tuning the frequency of the wave launched into the 

plasma, the heating effect can be localised.

2.5. Inhomogeneous B0

In order to calculate the heating effects in a

magnetically confined plasma, it is necessary to

model the behaviour of the perturbation in an

inhomogeneous magnetic field. This in turn requires

that a differential equation be obtained. One method

that has been widely used is to take a dispersion

relation from the homogeneous case, replace the ki

with -d1 and then allow the coefficients of this 
a*1

differential equation to become functions of 

position. It is the last stage which invalidates the
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method, for while the differential equation obtained 

is perfectly valid for the homogeneous case, there is

no reason to expect it even to be of similar form for

the case of inhomogeneous fields. In fact, on the 

contrary, in the similar case of warm 

magnetohydrodynamic equations, it has been shown that 

the differential equations obtained consistently have 

singularities that do not appear in equations based 

on the homogeneous dispersion relation (Diver,1986).

Despite the flawed derivation of these

equations, they are still widely used in the

literature, the main interest of the authors being 

the method of solution of the differential equations 

thus formed.

Other writers, dissatisfied with these methods, 

particularly because of inconsistencies in the

expressions derived for power flows in the plasma, 

have attempted to obtain the differential equations 

more consistently; by use of variational techniques

(Colestock and Kashuba,1983) or by perturbation 

techniques (Swanson,1981). The first technique

suffers from its complexity and the resultant fact 

that some assumptions are made implicitly and their 

consequences ignored. The approach used is to take a 

variational integral

£*(*) -7*7x £(.*̂ ♦ ul!- + Lu/po Jclx <5 (x, x) £ (x)
(2.5.1)
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from which the wave equation

V  y \7X £  - o/" £_ - CoO|j0 g  . E  = O
c-1 (2.5.2)

can be derived, Fourier transform the fields and so 

recast the variational integral in k-space.

( f E (■*£). (!ixk*E_(k)* E (*) + Cuûo ( <Atc <y (k,k) E (£|
I n ’ ' c" ~ '  ^ |J = (2.'5 .3)

So far, the manipulations have been purely formal. 

The problem of the form of £(x,*x) and d’Ckjk) has not

been addressed. It is at this point that

approximations are made. The conductivity tensor, O', 

is obtained by using the method of characteristics to 

solve the perturbed Vlasov equation. The path of the 

characteristic is approximated by the unperturbed 

orbit of a single particle in a constant magnetic 

field. This is analogous to the choice of a drift 

free equilibrium made in Chapter 3 of this thesis. 

The critical assumption comes next: it is assumed

that when the conductivity tensor elements are

expanded as series in the Larmor radius, only zeroeth 

order terms need be included except for the harmonic 

resonance terms, which are taken to first order.

This finite Larmor radius expansion is only valid if 

the elements of Q are themselves slowly varying. If 

more terms had been included, it would have been 

noticed that higher derivatives of the resonances 

themselves appear in the coefficients of even the
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lowest order derivatives of the electric field. In 

Chapter 3» the restrictions imposed by the small 

Larmor orbit expansion are obtained explicitly. In 

Colestock and Kashuba 1983, the failure to identify 

these restrictions leads to the use of the equations 

obtained for k z values for which they would not 

appear to be valid.

The second approach (Swanson 1981) starts from 

the perturbed Vlasov equation
\

c)£k + -\z±co$4 - -2. Vj, (fn^ £* ♦ £0
— . --------  — :—  t - V- I ft

UJ< (2.5.4)

which is integrated at once.

ut

\Il(jos4 - lyjo (COS 4 E%+ 
U  vTx RU/, (2.5.5)

This integral equation is then solved using a 

perturbation expansion

f  - C ' * k \ C  ♦ k f f . *
VWc I ujJ (2 .5 .6 )

Again this is a small Larmor orbit expansion, and 

again the expansion is only carried to second order 

for the harmonic resonant term, and to zeroeth order 

in the rest. Because only the resonant term is 

expanded to second order, the equation produced is 

only valid locally. Finally, as in the variational 

technique, the restrictions on the gradients of the
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elements of O’, and therefore on the value of k 2 are 

not identified.

To deal with these shortcomings, a different 

approach is used in Chapter 3 and extended in later 

chapters to produce differential equations 

consistently from the Vlasov equation. This simple 

approach has the advantage that assumptions are made 

explicitly and so the resulting limits on validity of

the approach are also clear. The new equations and

their solutions are compared with those obtained by 

other methods for a simple case, and some more 

general conclusions made.

However, before discussing improved derivation 

techniques for the equations, a further major

difference between the behaviour of the constant Be 

case and that of a spatially dependent Be should be 

noted.

2.6. Mode Conversion

Possibly the most significant difference 

between the behaviour of o.d.e's with constant

coefficients and o.d.efs with coefficients that are 

functions of the independent variable, is that the 

latter may exhibit mode conversion. Swanson, in his 

review article (Swanson,1985), established that in
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the vicinity of a plasma resonance, further terms in 

the series expansions of the dielectric tensor would 

become significant. Moreover, since the order of the 

dispersion relation would be increased, he deduced 

that the additional solutions, or modes, introduced 

were evidence that mode conversion was involved in 

resolving the resonance.

A slightly more satisfactory, and certainly 

more useful approach to establish the existence of 

mode conversion in inhomogeneous plasmas, is to 

change variables from the electric field to the 

eigenfunctions or modes of the o.d.e's. This 

transformation (Heading,1961) diagonalises the matrix 

of coefficients of the o.d.e's and generates an 

additional matrix of coefficients as is shown below 

for the case of a second order o.d.e.

U ,# - aC*) u 7 - b(x) u - O
(2 .6 .1)

Written as a system of first order o.d.e’s.

(2.6.2)
and then transformed

(2 .6 .3)
gives
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where c*. and are the eigenvalues of the system.

From this it can be seen that the coupling 

between the eigenfunctions or modes is due to the 

spatial variation of the eigenvalues and is inversely 

proportional to their difference. Thus it is 

observed that mode coupling is a consequence of the 

variation of the eigenvalues and is therefore 

non-existent in systems of o.d.e’s with constant 

coefficients. The connection with the ’mode 

conversion theorem' of Swanson is clearer when the 

dependence on the differences between eigenvalues is 

considered, as normally some of these differences are 

considerably reduced in the presence of resonances.

It can therefore be seen that in order to 

satisfactorily describe the effects of cyclotron 

heating on a plasma, not only must a theory include 

the properties of the incident wave and the impact of 

cyclotron harmonic damping, but also the phenomenon 

of mode conversion and the properties of the mode 

converted wave. Some of the difficulties that this 

poses are addressed in the next section.

Once a differential equation has been obtained, 

there are several methods of solution that have been 

proposed in the literature.



2.7. The Laplace Transform Technique

For this approach to be useful analytically, 

the coefficients of the differential equation must be 

constant or linear. Then the Laplace transform of 

the differential equation is itself a first order 

o.d.e. which can formally be solved (Ngan and 

Swanson,1977), (Gambier and Schmitt,1983). Taking 

their example fourth order equation

y"' + y“ + (xrz. -°
(2.7.1)

which transforms to the first order equation

( P̂ -lX2p + I) Y ' dY
(2 .7 .2)

with an almost trivial solution.

Thus the problem has now been reduced to finding the 

inverse transform of (2 .7 .3 )

One of the main weaknesses of the Laplace 

transform method is that the differential equations 

describing the perturbation in the actual plasma 

cannot, as a rule, be manipulated into the required 

form. However, the use of numerical methods raises 

the possibility of generalising the technique to 

equations with coefficients that are asymptotically 

linear in the independent variable (Swanson,197 8).
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If the equation is now written in the form

+ \*Ey" - gCz-y.y/,y"/y'1,j
(2.7 .**)

then an iteration technique can be employed treating 

the r.h.s. as a driving term and using a Green 

function formed from the solutions of the adjoint to 

the homogeneous equation, i.e. the adjoint of the 

equation formed by removing the r.h.s. of equation

(2.7.4). The iteration process will converge 

provided that the kernel of the integral equation is 

bounded. This method has been employed quite 

extensively (Stix and Swanson,1983), (Swanson,1985)

despite the increase in complexity over the original 

equation.

To understand the advantages of this method it 

is necessary to examine the nature of the solutions 

to the equations that are being considered. In the 

vicinity of a cyclotron harmonic resonance there are 

several solutions of the dispersion relation that 

satisfy k^v^ << 2 ovfc*. In addition to the solutions of 

the 'cold plasma1 dispersion relation, (2 .3 .1 7) there 

are the two almost purely electrostatic solutions 

that arise from the thermal corrections. These 

solutions, the Bernstein modes (Bernstein,1958), are 

wavelike on the high magnetic field side of the 

resonant region but become strongly evanescent on the 

low field side. The problem with direct numerical
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integration of these equations from one side of the 

resonant region to the other is the exponential

growth of one of the Bernstein solutions. Any

numerical error will tend to excite this mode, which

will then rapidly grow to dominate the solution. In 

the integral equation approach each growing 

exponential is multiplied by a decaying one in such a 

way as to avoid any numerical difficulties. This

approach requires that the homogeneous equations are 

already solved - not merely asymptotically as before, 

but for the entire region. In principle this is no 

easier than solving the original set of equations 

numerically. However there is a major advantage 

claimed for this method, in that consistency 

relations can be used to detect errors and a contour 

integration starter can be used to restart the 

differential equation solver, utilising the solutions 

of the Laplace transformed adjoint equation when the 

errors grow above a preset level.

2.8. Reduced Order Equations.

A different approach relies on reducing the 

order of the o.d.e. to second order (Cairns and

Lashmore-Davies, 1 983). This is valid locally if only 

two modes are coupled in the region. Reducing the
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order to second order produces considerable benefits 

not only for numerical solutions but also for 

analytic solutions. The analytic method is quotes 

below.

First the dispersion relation is reduced to a 

second order equation by factoring out the solutions 

that are not expected to be directly coupled in the 

region to be modelled.

Then the crossing point of the asymptotic forms of w 

and is identified (kofx=0 ), and w, and are

linearly expanded about this point.

Now substituting (2.8.2) in (2.8.1) and then 

splitting (2 .8 .1) into two parts determines the 

1wavenumbers1 k as functions of position.

Replacing k with -ig. gives two coupled first order

(2.8.1)

\jĵ - \jj +■ -f Ak. + 3 Ax

(2.8.2)

(2.8.3)
k - C ^ o - bv) x,

a
(2.8.4)

K-- ( K„-ax) ' JJa.
<■ rfX, (2.8.5)
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equations each describing a wave (H^and^).

±1 -l (fc.-fe. *)f, * i X , ^
A x  ( 2 . 8 . 6 )

<VHX -  i. (icc -  9.x) Vi = tX -iV ,

* (2.8.7)
The 1wavenumbers’ are not eigenvalues or solutions of 

the dispersion relation, and the discrepancy between 

the asymptotic form of the solutions and the local 

form of the equation gives rise to *), which later 

forms the basis of the coupling.

Obviously equation (2.8.1) can be split in many

ways. The choice of X,= X-j. = 2 made by Cairns and

Lashmore-Davies has the advantage that when k is

replaced by the sum W +  I ̂  is a constant. It

should be mentioned here that X and ^  are not modes

of the system in the sense of section 2.6 . In a

homogeneous plasma, equations (2 .8 .6 ) and (2 .8 .7 )

would become identical, would not individually

represent homogeneous solutions and would still be

coupled. It should perhaps also be noted that X and

Vvdo not obey the same second order o.d.e. unless

Is = 2 . in which case only one mode is being <x (■ 1
discussed.

Then, returning to a second order system, but 

this time a differential equation, by eliminating 

from equations (2 .8 .6 ) and (2.8.7), the 

transformation
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V, = ^xp( - Lbi b xx - xx 
^ a 4- f (2.8.8)

combined with the scaling

(2.8.9)
gives the Weber equation.

2
I _ O

(2 .8 .10)
The parabolic cylinder function \)JS) is a solution of

the Weber equation and, by comparing the asymptotic 

form of it with the asymptotic forms of X and , an

Since T is defined from (2 .8 .10), and I'KlV l^P 

is a constant, the mode conversion factor is 1 - T. 

Having obtained this expression for T, any equation 

that can be manipulated into the form of equation

(2.8.1) is of course also solved. Further, as the 

writers point out, many more complicated interactions 

can be broken down into individual coupling events. 

The drawbacks of this analytic method are twofold; 

first, it cannot, as it stands, be applied to 

equations which involve damping processes, and 

second, the identification of ^  and '(.as modes is not 

standard.

A further development of this method

expression for the transmission factor of is 

obtained.

(2 .8.11)
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(Lashmore-Davies et al,1987) treats only the fast 

inodes (those that would be obtained from the cold 

plasma equations) as of interest and ignores the 

other modes. The thermal terms from the dispersion 

relation are given k values calulated from the cold 

plasma equations and then treated as a local 

perturbation to the fast wave. The differential 

equation is obtained by replacing the c1k 1 in the 

dispersion relation with -cl_d\. For example,

(2 .3 .19) would give rise to the differential equation

<£¥  - w M  ^  + - a . - e j f
c U *  I  o . , *  6 ,  J ( 2 . 8 . 1 2 )

This method is probably inspired by (Cairns and 

Lashmore-Davies,1986) which attempted to identify ^ 

and ^  with the modes of section 2.6. In this paper, 

equation (2 .8 .1) was obtained by splitting the 

conductivity tensor into the parts that would give 

rise to the fast mode and a part that had a pole for 

x = x0.

^  ̂ O" r
x'*° (2.8.13)

The second part was then treated as a resonant

response in the plasma, approximating kxby its value

from the asymptotic or cold plasma expression for the

fast wave at the resonant layer. This process

identified X as the fast mode but did not identify 'K.

as a propagating mode.
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Since this derivation applied only to the case 

where the conductivity tensor had a pole, the desire 

to extend the theory to cases that did not have a 

pole in the conductivity tensor could lead to 

splitting the dispersion relation into fast wave and 

other terms rather than splitting the conductivity 

tensor.

This method has the obvious disadvantage, in

addition to the questionable method employed to

obtain a differential equation, that only the 

behaviour of the fast mode is modelled. Therefore, 

while transmission and reflection of the fast mode 

can be calculated, there is no information about how 

much of the power lost from the fast wave is mode 

converted to the slow wave and how much is simply 

lost to cyclotron damping. The one exception is in

the case of zero damping where all the power lost 

from the fast wave is assumed to be mode converted.

The stability of the transmission factor T to

such different treatments of the mode conversion 

phenomenon is quite remarkable. Furthermore, it will 

be shown in Chapter 3 that while the amount of mode 

conversion that occurs is very sensitive to the form 

of the o.d.e., the transmission factor for the fast 

wave is the same within numerical error for equations 

obtained rigorously and those obtained from the 

dispersion relation.
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Chapter 3 

The Differential Equation

3.1. Introduction

Most of the theoretical work on R.F. heating 

has been based on the ’inverse Fourier transform’ of 

the homogeneous dispersion relation. The

coefficients of the differential equation thus 

obtained are then allowed to become functions of 

position (Cairns and Lashmore-Davies, 1983,

Lashmore-Davies, Fuchs, Gauthier, Ram and Bers, 

1987). Unfortunately, since homogeneity is assumed 

before the dispersion relation is obtained by Fourier 

transform techniques, this method does not reproduce 

any of the terms arising from parameter gradients.

In this chapter the wave differential operator 

is obtained directly from the perturbed Vlasov 

equation in a systematic manner, and so includes self 

consistently the effects of parameter gradients as 

well as those of strong wave damping and linear mode 

conversion. The advantages of such a systematic 

approach are the ease with which it can be extended 

not only to the cases of anisotropic (Chapter 5) and 

inhomogeneous (Chapter 6 ) equilibrium distributions, 

but also to the case of finite (Chapter 7).
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Perhaps more importantly, this method allows the 

explicit determination of conditions on the parallel 

wavenumber and the magnetic field gradient for which 

such methods are valid.

From these equations it is shown that inclusion 

of the parameter gradient terms is important for 

accurate calculation of mode conversion from fast 

wave to ion Bernstein wave when propagating nearly 

perpendicular to the unperturbed magnetic field, 

although the dispersion relation based operator can 

be sufficient to describe transmission and reflection 

of the fast wave.

3.2. Method

The starting point for this method is the 

Vlasov equation. As in the case of wave propagation 

in a hot homogeneous plasma, the field quantities f,B 

and E are linearised and then the perturbed equation 

is Fourier transformed in z and t. But, unlike the 

homogeneous case, it is not Fourier transformed in x 

(which is chosen to be the direction of the 

inhomogeneity).

For clarity and to facilitate comparison with
other methods, the plasma equilibrium chosen here has
no associated electric field, and the equilibrium
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distribution function is taken to be Maxwellian with 

no particle drift. From equation (2.3.1) it can be 

seen that such a distribution must be spatially 

homogeneous. It should be emphasised that in this 

chapter the only equilibrium quantity that is a 

function of position is the magnetic field; 

temperatures and densities are constant.

i -u'jf, + vx + \jJc f _ vx j = j, £ .c)̂o
I h' <}y ( 3 2 1 )

Again, as in the case of a constant background 

magnetic field, the number of dependent variables can 

be further reduced by a change of velocity coordinate 

system to cylindrical coordinates.

So far the manipulations have been closely 

modelled on the standard procedures. However,the 

standard method for dealing with the x derivative is 

not useful: instead we first utilise the single

valued nature of f, , which implies that f, is 

periodic in </>t to write f, as a Fourier series in tff.

+■ i " V, e  cHi
^  ' T

2.
£** - £x * L̂ y 

2 (3.2.3)

(3.2.4)tv* -a®
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Then considering the coefficient of eun^ in (3.2.2)

L r A"i(Xw,* *.».,] * lh3.[P(E.L,*EXJ+REjnJdx nM/ ' ' 1
(3.2.5)

  ---73-=“T L  r UJ+ noJ,
2c k ^ r  (Xt  ̂ (3.2 .6)

(3.2.7)
These equations have the following important 

properties.

Just as in the homogeneous case (section 2.3), 

only the -1 and +1 Fourier components contribute 

directly to JK and Jy (and only the 0 component 

contributes directly to JE ), since only these 

components give rise to a non-zero value for the 

integral of the velocity moments of f, . The higher 

harmonics are of interest because of their coupling 

to the - 1,0 and +1 components.

Since the equilibrium distribution is isotropic 

in velocity space, it is <j) independent and so

+£”2^]
Vr" (3.2.8)

has only e l̂ ,e° and e~L̂  terms. Therefore only the 

-1,0 and +1 components are directly driven by the 

perturbing electric field, hence the Kronecker delta 

terms in (3.2.5). The other components are excited 

via the coupling to these fundamental components.

At each level the nth Fourier component is
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coupled only to the gradient of the (n+1)th and 

(n-1)th components.

3.3. The Tree Diagram

If all relevant quantities are slowly varying 

on the scale of a Larmor radius, i.e.

- which should be compared with the condition for the 

validity of a polynomial form of the homogeneous 

dispersion relation, which is

- then the tree diagram (figure 3 •1) can be used to 

give a perturbation expansion for the relevant 

components of f, in terms of the electric field and 

its derivatives and the equilibrium plasma parameters 

and their derivatives. The expressions obtained can 

be put into a more convenient form by using

to replace the products of An's with differences. 

Then, taking the first velocity moment of f, , J can 

be obtained. Since the relationship between E and J 

is linear, it can conveniently be expressed in the

(3*3.1)

(3-3.2)

(3-3.3)
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2nd. Order 0 tW order m  <L
UJc. dx

(Cold P lasm a te rm s )

A. 2£- v

An
A . . 2 M P

-  f.l

-  { l0

Figure 3.1 Tree Diagram showing the coupling 

between the Fourier components of f, with 

straight lines representing the operator d .
6x

form of a conductivity tensor O ’.

J  - ct.E 
(3-3-1*)

Finally the expressions for J can be 

incorporated with Maxwell1s equations in the usual 

manner to give a system of coupled o.d.e's which 

govern the spatial evolution of the perturbing 

electric field.

V *  V x  E  - £  - iCf .E - O
w l  0 5  ” (3.3.5)
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3.4. Restrictions

To truncate the order of the differential 

equation describing it, _E is required to be slowly 

varying - just as, in the homogeneous case in Chapter 

2 , the same condition was used to truncate the series 

expansions in kx.

In addition, since the differential operator 

also acts on the An, these too must be slowly 

varying. This is necessary in order to be able to 

truncate the expressions for the coefficients of the 

differential equation describing E.

Performing the velocity integrations first, the 

restriction can be written

For the Maxwellian equilibrium distribution already 

chosen, Z is the plasma dispersion function (2.4.1). 

In which case (3.4.1) becomes

For non-resonant terms this simply implies that 

Bc must be slowly varying;

_Vr J _ Zfo)
2vjc

| Z .  ( T « )
(3.4.1)

where

(3.4.2)

\  (l~ JnZCU) <-< | H Cjrv) |
(3.4.3)
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VT < < 1_|

^ g;
luJc,=s> (3.4.4)

More importantly, the resonant coefficients must also 

be slowly varying. Thus, if the wave enters a region 

where the effects of the u»^nuut harmonic resonance 

become significant, then, in order to truncate the 

parameter gradient terms, it is required that

vT^;
0dc (3.4.5)

If the magnetic scale length is L

\A, ____
W c  L  K 2.V t

<  <
(3.4.6)

The condition k^L >> n can perhaps be more 

clearly understood from the following argument.

In order for the resonance to be slowly 

varying, its width must be greater than the Larmor 

orbit of the species concerned. The frequency range 

of the resonance is finite due to Doppler broadening 

kjVT , and the physical width that this corresponds to 

is given by the equation

n
■ (3.4.7)

If the scale length for the variation of B0 is L then
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XJ - k t vx L
nuJo (3.4.8)

Therefore requiring that

w  1 » vT

implies that |k2L l>> Ink

To demonstrate the use of this formalism and 

the effect of including parameter gradient terms, a 

simple case is examined below.

3.5. Example

Mode conversion and damping at the first 

harmonic resonance with the ion cyclotron frequency.

The equilibrium chosen has two plasma species 

(ions and electrons), both described by homogeneous 

Maxwellian distribution functions, in a linearly 

increasing magnetic field.

The perturbation applied is a fast mode wave 

incident from the high field side of the mode 

conversion region. The fast mode corresponds to a 

solution of the cold plasma equations, whereas the 

mode converted wave (the ion Bernstein mode) arises 

from thermal effects.

With the assumptions made earlier in this
chapter, only terms up to second order in the
differential operator are needed to include the
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dominant effects of the first ion cyclotron harmonic 

resonance. To facilitate comparison both with 

methods based on the 3>3 minor of the homogeneous 

dielectric tensor and those based on the determinant 

of the same 3,3 minor or dispersion relation, only Ex 

and Ey equations are considered.

The system of equations obtained using the

methods described in sections 3.2 and 3*3 is

y.E" + v .E '  + y.g - o
(3.5.1)

where

a -a, - T  “£  ( ^ t e ^ Z 0 > 2 ( > a H a ) )ll, It £-_ w  |< }J UuJcl
ipeoei 11

Sp«.*.s ^  (3.5.2)

Vu '  'J ,.' V .j.' U13.%corr Vu  -- <JV\  c o r r  -- V

c o r r  r C £  f JSl f i a , ) - Z ( X ) ]
Sp̂ «  I 2. ^  J

/
IZ

(3.5.3)

W„= = cS  f Htx.)* ZC7,>J
UU Sp*x.«r

w,t . -UV, . . X  U W ' * M2. sp«,ct*f 1 *

(3.5.4)
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3.6. Comparison of Equations

Note that if the approximation

A _____
lc(u/'uO (3.6.1)

is made, and only the (A(-A - A () contribution to the

coefficient of the second derivative of E is

considered, then the resulting expression is simply

that obtained by Swanson (1981). Using our more

systematic approach it can be seen that the second

order pole from (A^-A^-A^) cancels exactly with that

from (A -A -A ) and so the same set of equations can-l O -|

be used with impunity in the vicinity of the 

fundamental resonance.

Similar equations have been obtained by Romero 

and Scharer (1987). However, the restriction on k2L 

is not identified in their paper and as a result the 

equations are used not only for k* values for which 

they are valid but also for kj. values where they 

would not appear to be justified.

The dominant terms in equation (3.5.1) have 

also been obtained from a variational technique 

(Colestock and Kashuba,1983), but again the 

restriction on k2L is not identified. In this case 

the critical point can be seen, in retrospect, to be 

their assumption that the elements of 0"(k,k ) are 

only first order in k . This is equivalent to the
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assumption that all quantities are slowly varying and 

therefore requires, as above, that |k^L| >>| n|. Again, 

as in the paper by Romero and Scharer, this failure 

leads to the use of the equations for IkjLl < 1 where

their use is not justified.

The coefficients of the even order derivatives 

are simply the homogeneous terms, c.f. Stix (1962).

3.7. Comparison of Results

These equations can be readily solved 

numerically as a complete set of linearly independent 

boundary value problems. On this occasion a finite 

diference scheme (Nag library routine D02GBF) based 

on PASVA3 (Pereyra, 1979) was used. The equations 

were integrated over a region extending from well 

below the resonance where the eigenvalues of the 

modes were well separated, to far enough above the 

resonance for the eigenvalues to be well separated 

once again. Over this region the fast mode’s 

eigenvalue changes only a little, so the integration 

is performed from where the ion Bernstein mode has a 

large (and real) eigenvalue to where it has a large 

(and imaginary) eigenvalue. (Where large in this 

context means relative to the fast mode's 

eigenvalue.) The integration is stopped before the
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Bernstein eigenvalue becomes large relative to U4/vT 

where the perturbed electric field would no longer be 

slowly varying. Since the Bernstein mode has a much 

shorter wavelength everywhere except in the mode 

conversion region, it has a much slower phase 

velocity, and so is often referred to as the slow 

mode. Then a linear combination of the solutions is 

formed, corresponding to a pure fast wave leaving on 

the low field side, yielding the results shown in 

figures 3*2 - 3.4. The graphs are of the electric

fields and have their horizontal scale normalized to 

the ion Larmor radius corresponding to the magnetic 

field at the origin, the origin being the position of 

the harmonic resonance. The vertical normalisation 

is to the amplitude of the incident fast wave. These 

graphs should be compared with those obtained by 

setting the explicit parameter gradient terms to 

zero, (figures 3*5 - 3.7).

3.8. Conclusions

The difference in the amount of mode conversion 

arising from the two different sets of equations is 

far more obvious in the graphs of Ex than in those of 

Ey because the mode converted wave is almost purely 

electrostatic. As can be seen from these graphs and
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Figure 3*2 E* and Ey plotted from 0.55m below 
the resonance to 0.8m above it. Be(0)=3T, 

L=4m, Te =Tj =5kev and nc =n§. =102° m”3.

Explicit parameter gradient terms included.
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-2 -

Figure 3.3 E* and plotted from 0.55m below

the resonance to 0.8m above it. Bo (0)=3T,
L=4m, Te =T- =5kev and ne =n-= 1010 m'3.
Explicit parameter gradient terms included.
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Ex

m

KZ = 10H

Figure 3.4 Ex and Ey plotted from 0.55m below 

the resonance to 0.8m above it. Bo (0)=3T, 

L=4m, Te sT. =5kev and nt =n; =10l°m*3.

Explicit parameter gradient terms included.

- 59 -



10) 150

i

Figure 3.5 E* and E^ plotted from 0.55m below

the resonance to 0.8m above it. Bt7(0)=3T, 

L=4m, T_ =T; =5kev and n =n. =10^ m’3.# « i t i
Explicit parameter gradient terms excluded.
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E x
4 -

2

A  A  A - A  A bJfini 1 1
J-vkJ V  ¥ V ' I

-2

V 5^  101 

r I
KZ = 7H*

Figure 3.6 Ex and Ey plotted from 0.55m below

the resonance to 0.8m above it. Bo(0)=3T,
L=4m, Te=T( =5kev and n, =n. =101G nf3.
Explicit parameter gradient terms excluded.
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KZ = 10M

Figure 3.7 Ex and Ey plotted from 0.55m below

the resonance to 0.8m above it. Bo(0)=3T,
L=4m, Tfc =T( =5kev and ne =n(- = 1010m"3.
Explicit parameter gradient terms excluded.
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Table 1 there is considerably more mode conversion 

when explicit parameter gradient terms are included.

Table 1.
Ey amplitudes

without explicit Bq terms with explicit B0' terms

K %  IT) | R | | Me | |T| |R| | Me |

10 24 2 0-2 0 6 23 5 0-1 2

7 19 0-2 1-3 18-4 0-1 41

5 16 7 01 1-6 16-2 0-2 4 9

It may seem rather strange that even when the 

parameter gradient terms are relatively small they 

can still make a considerable difference to the

amount of mode conversion that occurs; however this

should not be too surprising since the same

phenomenon is already implied by the different

properties of the two modes.

Note that in the homogeneous case the spatial 

evolution of E x and Ey is described by the same 

dispersion relation (2.3.20) whether written as a

polynomial in k* or replacing each ki with -d*.S*1

In the case of the fast mode which is a mixed 

electromagnetic and electrostatic mode, |EJ and lÊ | are 

comparable. Since the slow mode is almost purely 

electrostatic, it has (Ex| much greater than \EyU
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Therefore proceeding from a region where only the 

fast mode is excited to a region where both modes are 

excited, Ex and Ey must evolve differently, since Ex 

must excite far more of the short wavelength solution 

than E^ does. Thus to be consistent with the known 

properties of the two different modes, the 

differential equation describing E v must give rise to 

far more ’mode conversion’ than the equation 

describing E^.

The difference between the differential 

equations describing E^ and E^ is purely due to the 

parameter gradient terms; in the absence of such 

terms both and Ey are described by exactly the

same dispersion relation-based equation (3.8.1). It 

should also be pointed out that these parameter 

gradient terms can be made as small as desired (in 

the case of fixed non-zero ka) simply by increasing 

the scale lengths over which the parameters vary. 

Yet no matter how great the scale length, the ratio 

of mode conversion experienced by E* to that 

experienced by Ey must remain constant and large. It 

is also noteworthy that transmission and reflection 

coefficients must be very similar for Ex and E^, 

since the fast wave does not radically change its mix 

of transverse and longitudinal electric fields.

The ratio of E„/E^ can be shown to depend on 

the value of *kk’. Using the notation of (2.3.20),
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and ignoring the non-resonant thermal corrections for 

clarity, the constant B0 equations are

- v . ^ . t +  B lcx x ) a . W s - s J '  \ k * 1\ UJ1- I

\ i \

J

O

(3.8.2 )
where

B - UJP: Vtc Z < X )
w W ;  llw c;l (3.8.3)

From equation (3.8.2), the ratio of EX/EH is

. i ( -1
(3-8.4)

|> - I ________
I. uXn.-aJ

The fast wavefs nearly constant polarisation 

can therefore be traced back to its quasi-constant 

wavenumber; whereas the increasingly electrostatic 

nature of the Bernstein mode is due to its steadily 

increasing wavenumber.

If at this stage kj is replaced by -di, the 

equations formed will retain implicit parameter 

gradient terms, although explicit ones will not be 

included. These equations must reproduce the 

electrostatic nature of the Bernstein mode, although 

the actual amount of mode conversion will not be 

accurate. Applying this technique to equation 

(3.8.2) gives the following set of coupled o.d.e's.

( a , E x ' - B £ x" )  +  i ( a ^ - B E y " )  - o

- 65 -



-$£*') + (a.Ey - (6-£j-JlTy ) *  O

(3-8.5)

If Ex is eliminated from (3.8.5) then the 

differential equation for is obtained.

-sifiCa.raJ (^ V  +(2.8(01^^) - a,
y»* AxrU - ^ |  w

= °J (3-8.6)
If instead E^ is eliminated, the equation for Ex is 

obtained.

U>‘( f i t s ^ fiEV

v w 11 d x 1- -----------------------------------------0*z(g -c/\) - a, 5

(6̂-'0.-l)BEx - £:* “ O  (3.8.7)

The huge difference in the behaviour of the E and Ex
solutions can therefore be seen to be due to implicit 

gradient terms proportional to

A  B>
A* (3.8.8)

which is the only significant difference between the 

two equations in the vicinity of the resonance. 

Since it is precisely terms of the form of (3*8.8) 

that are ignored by reverse Fourier transform 

techniques, these techniques cannot accurately 

describe mode conversion.
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An intuitively reasonable interpretation of 

these results is that for a mode which undergoes a 

significant change in wavenumber during its 

propagation, the explicit parameter gradient terms 

are required for accurate calculation of wave 

amplitudes. Whereas, for modes that only undergo 

small changes in ’k*1 the parameter gradient terms 

are unimportant. It is worth emphasising that it is 

the cumulative change in wavenumber that (if this 

interpretation is valid) indicates whether or not the 

cumulative effect of parameter gradient terms are 

significant.

What is certain is that it is perfectly 

possible for parameter gradient terms to cause major 

differences in mode conversion factors without 

dramatically affecting transmission and reflection 

coefficients.
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Chapter 4 

Large Larmor Orbit Effects.

4.1. Introduction

In Chapter 3 it was established that it was 

possible to obtain, self consistently, a system of 

coupled o.d.e's which govern the spatial evolution of 

an electromagnetic wave propagating through a plasma 

in an inhomogeneous magnetic field. However, in 

order to obtain the equations several rather 

stringent restrictions were made. These restrictions 

concerned the form of the unperturbed plasma 

distribution function, the magnetic field profile, 

and the wavelengths and direction of propagation of 

the perturbation applied.

Many of the restrictions imposed had their

roots in the general application of the small Larmor

orbit expansion. In order to allow the wider use of 

the techniques of Chapter 3> it is desirable to relax 

these constraints wherever possible. In this chapter 

the constraint on the range of wavenumbers in the 

direction of the magnetic field gradient will be 

relaxed, allowing shorter wavelength modes to be 

modelled and also permitting the effects of

additional more energetic species, with their
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correspondingly greater Larmor radii, to be 

incorporated. The latter consideration being 

particularly relevant to the modelling of R.F. 

heating effects in fusion plasmas, where significant 

numbers of highly energetic alpha particles will be 

created.

Returning to the analogy of the homogeneous 

case (Chapter 2) it will be remembered that the 

restriction to a spatially slowly varying electric 

field was only necessary to force rapid convergence 

of the series expansions of the products of Bessel 

functions of kxvT /2u;t and that the same series 

expansions will eventually converge, no matter how 

rapidly varying the electric field is.

It would seem reasonable to carry this analogy 

further and investigate the possibility of a similar 

convergence of terms in the differential equation 

obtained in the case of an inhomogeneous equilibrium 

magnetic field.

4.2. The Infinite Tree

Retaining all of the constraints of Chapter 3 

except that of requiring E to be slowly varying, it 

can be seen that still only the -1,0 and 1 Fourier 

components contribute to the electric current, and
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only the -1,0 and 1 components are directly driven by 

the perturbing electric field. Therefore, the tree 

diagram approach is still valid in principle. 

Referring back to the tree diagram (figure 3.1), and 

bearing in mind the objective of investigating the 

possible convergence of the coefficients of the 

higher order derivatives of the electric field, the 

requirement for an expression for the contribution to 

f, from a general parallelogram region of the tree 

diagram becomes very obvious.

A m/Nnn 
' \

a l< \
\

Fig. 4.1

\
\

V
A t + n-

Fortunately such an expression can be obtained.

The parameter gradient free contribution from a

general parallelogram element of the mesh (figure

4.1) can be shown (appendix A) to be
\ 2m -l-n

S "L ft

where

ero> %
i - n + L - w  («v\-l )1 (m-fl)'.

LN/,
2 rv\-L-*\

(4.2.1)

(4.2.2)
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(4.2.3)

The first order parameter gradient terms from figure

4.1, i.e. the contribution to f from figure 4.1 of 

terms that are first order in the equilibrium 

magnetic field gradient, can be shown, using the same 

induction technique (appendix B), to be

Using the above expressions the contribution to 

f .f, and f, , of the derivatives of the ’driving’II' i o I -I
terms can be calculated.

(4.2.4)

where

j-n-t-L-w
tn-UCZm

(4.2.5)

(4.2.6)
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where

D, = H  P£. 0o= H  RE*
rwy,,

D_,= H P f +
(v'Vl (4.2.8)

and , the parallelogram operator (fig 4.1) is (to 

first order in dBe )

4.3. The Conductivity Tensor

Taking the first moments of the perturbed 

distribution function, the general expression for the 

conductivity tensor in a spatially dependent 

equilibrium magnetic field is found to be (to first 

order in magnetic field gradient)

.Species
a * 2 1 .  V . X  ( +  AO* ) ) . F— x— -  n\ J ^  v =  — ' =fW'O

(4.3.1)

£(m) =

ZlM /

1 Wi)
ilmtl

Z**

(4.3.2)
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ell»v\ -

IcLxj

l-uixl

A

6Lx, Mir
^iW&r d»w/i

F = diag(P,P,R)

Z/*-l 

£/ ;
(4.3.3) 

V = diag( Vj_, vx , Vj )

(4.3.4)
where

c- w - -  ( 5 r + C 1+s.;,5r;J/4

- CuH  - c(5.77 4

^ o « ] =

c25( H -  -^32H =  l(S”*x-s*0)h S,yv\°o

(4.3.5)

^u(m) - Kn Q / C H  

<Al3lm) " 1^13 M

^ z z W  ̂

Ji2l W  ~ 

M -

H  - m  ̂ 12 CM )

<i2i(rvt) n m C j i M  4

J23W  ' ^ ( 2 2 W +LAo t

J W H  5 ( ^ ' l ^ z W 4 ̂ w

(4.3.6)

r mrHrC
n+u (figure 4.2)
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S = Sl-l J

^  fc.) ‘- " • ' f e f fln--rv\  ̂ '

(figure 4.3)

L = ±
J (figure 4.4)

In order to clarify the methods used to obtain 

the elements of the conductivity tensor, the

derivation of one particular element will be examined 

in detail.

The 3,3 element of the conductivity tensor 

represents the dependence of on E? and its

derivatives. By considering the ^ integral, it can

be seen that depends solely on flo. Examining the

ftc of the tree diagram (figure 3.1), it is clear that 

to lowest order in d , the coefficient of E, is qAnR.dx
Performing the velocity integrals gives

K^yr

which can be compared with (2.3.17)

o 33 = &L Y (D
(4.3*7)

Y(J„H 2 7n(5nz a ) - i )
(4.3.8)

\

\
\

Fig. 4.2
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The calculation of the derivative terms is 

particularly simple in this case, as all of them come 

from the diamond shaped elements - the G^  , figure

4.2, - of the tree diagram. For example the first

which can be compared with any standard textbook, and 

to the parameter gradient term

The first order corrections due to the 

equilibrium field gradient are easily calculated for 

diamond shaped elements of the tree diagram by 

symmetry arguments.

Consider a path through diamond from left to 

right (and if the route is not symmetric about the 

vertical diagonal, its image on reflection in the 

vertical diagonal). If m is the length of the sides 

of the diamond, then for any element A n on this path 

1 steps from the vertical diagonal, there are (m-1) 

differential operators acting on it, and (m+1) 

differential operators acting on its mirror image. 

Therefore, the 2An of the zeroth order expression, 

each multiplied by the same path elements, give rise 

to 2mA^ in the first order correction. This process

diamond element G00 gives rise to the first thermal

corrections to

/ w ckx
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can be repeated for every element in the diamond, 

with the result that the first order correction to 

the diamond is simply m times the derivative of the 

zeroth term. Am
A

\

A  /
\

/
\

V
\  >A-»

\
\ /
\/

Fig. 4.3

A similar simplification occurs for the sum of 

and G*. Since the sum of these two elements is 

symmetric about the vertical bisector, the first 

order correction is again m times the derivative of 

the zeroth order term.

A A*., /  \  /  >
> A., -  A.< /

N ' V /
' N /\ /  ' /V  V

Fig. 4.4

Clearly, such a symmetry does not exist in the
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case of the difference between G/" and G T h i sV-l -VI
asymmetry gives rise to the \>M term, whereas to zeroth 

order in parameter gradients, the difference between 

G* and G* is zero. In the case of homogeneous B0 , 

this cancellation causes = - CZi . In the

inhomogeneous case, the b* terms break this symmetry.

Note, if the An were not all slowly varying, 

i.e. if in the plasma being considered there existed 

an n for which

< ̂ z(Xl

was not satisfied, then restricting attention to only 

1st order terms in Bj would no longer be justified. 

Including higher order derivatives of the An would 

mean that, in addition to producing additional 

derivative terms, the parameter gradients would alter 

existing coefficients, dramatically complicating the 

algebra.

The importance of the restriction to slowly 

varying A n, which in turn requires the restrictions

(3.4.4) and (3.4.6) can now be appreciated, although 

the requirement Ik^L^lnl has not previously been 

realised in the literature.

Returning to the specific case of J2 , it can be 

seen that S0"J , the coefficient of the 2m th 

derivative of E 2, is calculated from the diamond 

shaped element of side m, G ™  (figure 4.2), of the
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tree diagram while the coefficient of the (2m-1)th 

derivative of Ez, calculated from the 1st order 

parameter gradient terms of the same element G<£ , is 

simply m times the derivative of S ^ .

4.4. Comparison With Homogeneous Case

Comparison of G with textbook treatments of 

the homogeneous case is facilitated by first using 

the following identities to tidy up the gradient 

independent terms (the cc- ).

SrvHi r Ah r m r m
+ J + J + Sn -| -i “’l-i -n (-i)V />«

(4.4.1)

a c - s , : i  - _ l _  l^T  £  ( c-o" n
rn'.Cm+O! \m 'tl*n/

(4.4.2)

\m+i + n/

(4.4.3)
vlrw-*1

i rvwunj( r w + O 1. \2uJ^ j n = ''m ' 1

(4.4.4)

The second step is to compare these expressions 

with the series expansions of the products of Bessel 

functions in the corresponding terms for the
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homogeneous case obtained in Chapter 2. Before this

comparison of the coefficients of k* with those of

-id can usefully be made the following identity 
dx

I m )
5 - 0  S l. ( r - s ) ! ( w + i ^ * S - r )! ( r r \ - n ) ! ( m + n ) l  [ r I

(4.4.5)

(appendix D) is used to order the homogeneous series 

in powers of k* .

Perhaps the simplest approach is to first 

consider the homogeneous expression for

z n  ^  c - O s + 1 1_ _ _ _
n x i -  f t ) -  r .  z :  $i (/hsH t[ (rut)4.  ̂15-d t - o

/ X \ ^  - 'T’ C-t)--------   .
^  (t ) = fro SUA*s)i(-»-«)'.Ĉ >'. (4.4.6)

Which, with

A ” fc~-y
^  (4.4.7)

and using (4.4.5) with r=m, gives the coefficient of 

Ank*m as

H f 1'" (Zmj! I y A ™
lp\-*)[(r»r,)\ (M i)i \_2uJ (4.4.8)

Then the homogeneous results of (2.3.11)

corresponding to (4.4.1) - (4.4.4) can be obtained 

easily.

Z .  Q l 2 V ( X ) - A n
n Xz
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(4.4.9)
i X  hT„(M <ATn M  A n 

n X JlX

- T T  c-»)w-n ( until) I Wr_fMnA
“ ■ r\ lzu/t / n *

(4.4.10)

r\ x

r V T  I-"1"'" ( Z(m»l) I A 1C
4l n {(no+Oi)1 v «<!*» ) [zû l ^

2_rM+
X

(4.4.11)

\2rwt t 2*** I; y  y c-*r-n (ẑ )\(yr_) * « ,
m 7T I (Vi*i-*" I U ^ U  Af\ maum+u; v ^ u  (4.4.12)

It can then be seen that the c terms are exactly 

those that would be obtained by taking the inverse 

Fourier transform of the series solutions for the 

homogeneous case.

It should be noted that the factorials in the 

denominators of the coefficients of the derivatives 

guarantee convergence of the series for all but 

pathological cases.

The expression for can be incorporated with 

Maxwell’s equations in the usual manner to give a 

system of coupled o.d.e’s which govern the spatial 

evolution of the perturbing electric field.

C z  V x V * E  ~ E  ~ o  E  -  o
” U u J  (4.4.13)
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4.5. Summary

This extension to the analysis of Chapter 3 has 

produced several benefits. First, all the results of 

the homogeneous case are recovered from this

analysis. This is, in the opinion of the author, 

quite compelling evidence for the validity of the 

formalism first developed in Chapter 3* Second, in 

addition to showing that the gradient free

coefficients of the differential equation converge 

like 1/n!, which is a consequence of the first 

benefit, it is also established that the gradient 

dependent terms similarly converge as 1/n!. This 

implies that for any physically reasonable 

electromagnetic perturbation of the plasma, provided 

that the restrictions on k^L and Lluc/ v t are not 

violated, a description based on a set of 3 finite 

order differential equations can be formed without 

inconsistencies.

There is, however, one major problem raised by 

this extension to rapidly varying electromagnetic 

perturbations or equivalently to include species with 

much larger Larmor orbits. If the value of the 

differential operator, _Vxd , when applied to the 

perturbing electric field is around 1 or 2, the order 

of the differential equations is only increased to 4 

or 6, but larger values of the operator rapidly lead
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to much higher order differential equations. The 

practical considerations of numerically solving such 

large systems of equations make this direct 

differential equation approach very unattractive. In 

Chapter 8 (future work) a possible approach to 

circumventing this problem is discussed.

p, in v.ueptc-r I naa ha a a 
it f > i n g ? : f f e c t 3 -  of t-aa pert ur 
la :n the Vlasov equation* wail a ab 
spat ;i - I i y Iv o r i a n t a I i ow o'; i ,:, t o 

d f  f e r e  wa a *  o p e  r  a t  a r  . w i  a a g 

ai 4 f i eg ta a a .  Its coef f  la.;, tnt a or tt- 
t h  a ■ <'I €■■■:...■ r  i c  : l e i a ,

. a c a  a- a.a i  c a a.a^ :■ b 11 a -. aw 

■.w • a w / w a  i > . a t  d ;‘a-a~ - a a a  - a .■ c 1 1 q?w

? ,-.a- r - ;.- r a ; r: - a- g iw-e :wv-; o r y  

a i W y a w s 1.,. a l a .  a, i  ah a n x a G i r  

' - j : ; .1 ww’. u^a  enuepenQ-eri

e : a a .  :;;a ; W  o a ;  pa v- f  -r we a a a r . L i e r  t o  C 

a. da.water Uh s;.: required x.n or

. v ■ aw .• i a a: ■ : - ■r- a a "" a a aaa J

: I  . o r  ; a aha  a . a v e car,, a a y  i i  a d r  l c <? i, 

i.e.. I :: o a a a a >, s a a r v c i  -a {if a no. a i d  j a  a
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Chapter 5 

Anisotropic Velocity Distributions

5.1. Introduction

So far, in this thesis, only the simplest 

possible equilibrium distribution function has been 

considered. The restriction to a completely 

isotropic f0 in Chapter 3 had the consequence of 

nullifying the effects of the perturbed magnetic 

field in the Vlasov equation, while the restriction 

to spatially invariant fQ allowed f0 to commute with 

the differential operator, with a corresponding 

simplification of the coefficients of the derivatives 

of the electric field.

A more detailed examination of the terms 

involved shows that these restrictions are far from 

vital, and that generalising the theory to include 

spatially dependent plasmas with anisotropic velocity 

distributions can be done independently of the 

generalisations performed earlier in Chapter 4. In 

this chapter the analysis required in order to apply 

the formalism of Chapter 3 and Chapter 4 to 

equilibria that have only cylindrical symmetry in 

velocity space is performed, and a particular example 

of such an equilibrium is investigated.
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5.2. Cylindrically Symmetric F

The motivation for extending the theory to 

include plasmas that have only cylindrical symmetry 

is due to the fact that most magnetic confinement 

devices have equilibria with their velocity 

distributions parallel to the magnetic field 

considerably different to their velocity distribution 

perpendicular to the magnetic field. Such

distributions are often set up deliberately due to 

the need (for confinement devices like the tokamak) 

for the plasma itself to carry a current along the 

externally applied field. Another source of 

anisotropic velocity distributions is the use of 

neutral beam injection as a plasma heating mechanism 

in tokamaks such as J.E.T. The fast ion velocity 

distribution produced by neutral beam injection is 

biased by the original injection velocity.

The effect on the Vlasov equation of changing 

to a f0 that only has cylindrical symmetry is that 

now

B ,. c)£q ^  o
(5 .2 .1)

Therefore the first step in modifying the 

theory of the preceeding chapters to include this 

class of equilibria is to express the perturbing 

magnetic field (B^) as a function of the perturbing
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electric field and its derivatives. Fortunately this 

is very simple using Faraday’s law..

Using the same Fourier transforms for z and t as were 

used in Chapter 3

therefore the Lorentz force term (5.2.1) becomes

Noting that once again only ftl, flo and f, are 

directly driven by the perturbing electric field and 

its derivative, and that, as always, only these three 

components of f( contribute to the flow of electric 

current, the only alteration to the tree diagram 

(figure 3*1) is in the form of the driving terms.

4B, - (5 .2 .2 )

(5.2.3)

j_f j (-vjkzE'a
VJ \

( vx kjEx + cvx ->• va kjEa ) . elf,
j  £)V ( 5 . 2 . 4 )

(5.2.5)

where
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Q-- xaR - v. Pa 1- -h

Replacing the old driving terms

Dk - J ± P E _

D0 - ^  net

(5 .2 .6 )

0. - PE+
mi/x (5.2.7)

with the new ones (5.2.5) can be seen to be 

equivalent to the mapping

P £ * ----- » (P + +

P E y —

K E ­ R B ,

Thus, the alteration to equation (4.2.7) is 

conveniently confined to a modification of the matrix 

F, which now has the form

\jj

O

0

0 a Q 4VJ
P -* Q 0lKJ

O R
(5.2 .8)

which of course reduces to the original F for fully 

isotropic fc since in that case Q is zero.

As was mentioned in the introduction, one of

- 86 -



the reasons for being interested in f (v ,v ) is the 

need for tokamak plasmas to carry electric currents 

along the toroidal magnetic field. However, such 

currents cause a twist in the magnetic field, which 

now has a dependence on 2 spatial variables, both of 

these effects causing considerable complications in 

the theory, beside which the effects of cylindrical 

symmetry pale by comparison.

In an attempt to be more self consistent, a 

current free example, the equilibrium induced by co 

and counter neutral beam injection, is considered, as 

this does not of itself imply a current in the 

plasma.

5.3. Fast Ions

In order to model the effects of Neutral Beam 

Injection on the plasma’s conductivity and so its 

wave propagation properties, the first step must be 

to obtain the unperturbed distribution function for 

the fast ions created from the injected neutral atoms 

by electron impact,

■+■ e  ----  ̂ le

ion impact

■— ■— > -tr H* + e.
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and charge exchange.

The fast ions can then be treated as an additional 

species in the plasma, and their contribution to the 

conductivity tensor calculated accordingly.

Fast-ion transport in a tokamak, in the

presence of collisions can be described by the

steady-state, drift kinetic equation (Cordey, 1976). 

Using Vj_/(2u»tL) << 1 (which is required for the

techniques of Chapters 3 and 4) and averaging over a 

magnetic flux surface, the equation can be written 

(Mudford, 1985)

Since a lot of new notation has been 

introduced, including changes in the velocity 

coordinate system, and bearing in mind the fact that 

interparticle collisions have been ignored since 

Chapter 1, it is perhaps helpful to consider the 

constituents of the drift kinetic equation 

individually, in terms of their physical effects.

The first term on the right-hand side of 

equation (5.3.1) is the velocity drag term which 

gives rise to the loss of energy of the fast ions.

+ ^ ( %  -^)K W
(5.3.1)
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The coefficient %  is simply the Spitzer slowing-down 

time,

(5.3.2)

which can be calculated in the same way as the

deflection times were calculated in section 1.4.

Using a test particle distribution (1.4.9) ô t
can be calculated from the first velocity moment of 

equation (1.4.6). Only the first term in the Fokker 

Planck equation - the drag term - contributes. The 

drag on the test particle due to thermal electrons 

gives

%  - 3ti%  C  i v ' /
ne.M„(VIO (5.3.3)

which is independent of U  . Performing the 

calculation for the drag due to thermal ions gives

X,'S(kons) ne> |n(A0/bo} (5.3.4)

Equating the ion and electron drag terms gives the

critical velocity

( X ^  (5.3.5)

at which energy is transferred equally to ions and 

electrons. It can be seen that both sources of drag

are included in the first term on the right hand side

of (5.3.1).
The second term represents the loss of fast
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ions by charge-exchange with neutral particles 

diffusing in from the edge regions of the plasma.

The penultimate term on the right-hand side of 

equation (5.3.1) models the pitch-angle scattering of 

the fast ions as they thermalise. Where ft is the 

cosine of the pitch angle.

% - \h=
U (5.3.6)

In section 1.4 it was shown that the scattering of 

ions from electrons, equation (1.4.15), was a much 

slower process than the scattering of ions from other 

ions, equation (1.4.13). Therefore only ion-ion 

scattering need be considered. From (1.4.13) the 

scattering time is

X - .  - 2tt L,1 m,* U*
nt** UCX.A.) (5.3.7)

and so

t ;  -- ul rs
u‘3 (5.3.8)

The final term in equation (5.3.1) represents 

the source of injected fast ions. Since the neutral 

atoms are injected almost monoenergetically, their 

energy dependence takes the form of a ^-function, and 

the pitch-angular spread of the beam is represented 

by the function K(fl). The source term for the fast 

ion distribution will have the same form if the 

collisions that ionise the injected neutrals do so
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without significantly altering their momentum. While 

this is true for electron impact ionisation, since in 

an individual collision between an electron and an 

atom the momentum of the nucleus is not significantly 

changed, it is not obvious that ion impact and charge 

exchange will conserve the form of the source 

function.

In deriving equation (5.3.1) it was assumed 

that trapped particle and energy diffusion effects 

can be neglected, in addition, in the calculations of 

collision times it was assumed that the test 

particles velocity was in the range

V; U  * < (5.3.9)

The solution of equation (5.3.1) can be readily 

obtained, since the equation is separable in u and 2, 

and the differential operator which depends on I is 

Legendre's equation. The distribution function, f, 

can be expressed as a sum of eigenfunctions of the 

form

OrvCO) M  w = i t
(5.3.10)

where the eigenfunctions are Legendre

polynomials with eigenvalues = n(n+1). The

functions an(u) are determined from the separated 

equation in u, with the boundary condition ao(u)=0 

when u=1. This boundary condition assumes that the
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effects of energy diffusion are negligible. The full 

solution of equation (5.3.1) can be written in the 

form

(u<il { = ^ 7  K n Pn »)^< l )  T -,j

(l) ̂  \) f O
 ̂ (5.3.11)

where
i

k. = in
n i j-i

k(S)Pn(«U*
(5.3.12)

For the source function to be correctly normalised S 

must be of the form S0 = n(/ 2 T i where n̂  is the 

fast-ion density input rate.

5.4. The Fast Ion Conductivity

Now that an equilibrium distribution has been 

obtained, the analysis of Chapters 3 and 4 can be

repeated with the new driving terms obtained in 

section 5.2, the only further modifications being due 

to the use of spherical coordinates instead of

cylindrical coordinates for the velocity space. In 

these coordinates

p- i f  . i i f '
Jvj. Urtj U u  0
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R  = M  = >_f* + (irJU 4f)

Q  = v^R-v/jP * u-fcl)>l ^
do

An = u d - « M ^
i-i-k-iCTn-Ô J

(5.4.1)dO 
while

Tn - w*rm/c
k‘U'"j (5.4.2)

The velocity integrals are now complicated by 

the fact that they are no longer separable and so in 

principle the effects of the cyclotron resonances 

appear in both the and U integrals. A possible 

solution to this problem is to rewrite the velocity 

integrals

-a J uu

as

F. G do F.(o)
-1

flOflP-h) d)S
la. - 8  0

(5.4.3)

(5.4.4)

where

Fl - IL+l F.CJfJ PLC«) A*
(5.4.5)

and then use the following identity for Legendre

polynomials.
/1

x

PnMQrv>t*) n s m
(5.4.6)-I

This however raises the problem for resonances, 

defined by
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(5.4.7)
that part of the contour of the u integration runs

along the cut line -1 < b- < 1 for which is notu ^ u
properly defined. Customarily, the value of on

the cut line is defined as the average of the value

above and below the cut, but this would be analogous

to taking the Cauchy principal part of the resonant

integral. To include the contribution of the pole,

the contour must be deflected below the cut line.

The u integration then gives a cyclotron damping term

of itr times the residue at u = Trt . Displacing the

contour in this manner is consistent with the

displacement of contours used for Maxwellian

distribution functions to produce the well known

plasma dispersion function,

f**" - \hx ~r'z
l  =  Z J f f  «• I e ? A t  +  i n  eT  "
J I (5.4.8)

Although the u integral may have to be 

evaluated numerically, the coefficients of the 

o.d.e's can in principle be calculated and so the 

effect of this distribution function on wave 

propagation can be modelled.
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5.5. Parameter Problems

In obtaining equation (5.3*1) it was assumed 

that the fast ions formed only a small part of the 

equilibrium plasma. This assumption was made so that 

beam-beam collisions could be ignored, effectively 

linearising (5.3.1). Although some tokamak 

experiments have a large proportion of the plasma 

injected in this fashion, this does not necessarily 

imply that a large proportion of the plasma has a 

fast ion distribution. Only if the injection rate is 

high enough for the particles injected in a few 

collision times to form a significant fraction of the 

ion density will equation (5.3.1) become invalid.

The fact that the fast ion distribution only 

forms a small part of the plasma implies that, with 

the possible exceptions of fast ion resonances, the 

wave propagation will be similar to that of a plasma 

without fast ions. This has unfortunate consequences 

for the form of the o.d.e's, for parameters relevant 

to present day and future experiments.

The problem is that, while for thermal 

particles the small Larmor orbit approximation is

valid, the much larger orbits of the fast ions 

encompass too great a variation in the perturbing

field. For example, for the parameters used in

Chapter 3> which were based on those of JET,
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f a i t  u;aue

< K-xVr 
2oJc (5.5.1)

for thermal ions, however the neutral beam injection 

energy used for JET is l60keV, 32 times the energy of 

the particles included in the example. Therefore 

assuming that the perpendicular ’wavelength1 is not 

dramatically altered by the presence of fast ions

The slowly varying approximation is not valid 

for the fast ion distribution and so to model the 

effects of the fast ions accurately the extension to 

the theory made in Chapter 4 must be employed. This 

unfortunately implies that the order of the o.d.e’s 

obtained will be considerably greater and so will 

cause major difficulties for numerical solution 

techniques. Again, as in Chapter 4, the conclusion 

is that to solve such problems without making 

impractical demands for computing resources, the 

direct differential equation approach must be 

modified.

OSS <- ko.Uty ,
ft{ast tuave. 2 (5.5.2)



Chapter 6 - ~

Spatially Inhomogenous j P \cf ̂  ^ J-o
i,.

6.1. Introduction

The decision to deal first with only spatially 

homogeneous fQ was the result of two main

considerations: the first was that the effects of

explicit magnetic field gradient terms would be more 

easily identified if they were the only addition to 

the traditional equations; the second consideration 

was one of the inconsistency of a spatially

inhomogenous equilibrium distribution function that

was simultaneously isotropic in velocity space. The 

latter can be more clearly understood by examining 

the unperturbed Vlasov equation for an equilibrium 

distribution (2.3.1).

-i- %  ( y  * 8 0 ) .  
bx w  bv (2.3.1)

If the equilibrium is isotropic in velocity space

Vx6c- - o
() \/ (6.1 .1)

(which will be recognised as the same argument that

allowed the perturbing magnetic field to be ignored

in Chapter 2). The Vlasov equation therefore

requires such an equilibrium to be spatially
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homogeneous.

Looking more closely at the vxB0 term reveals 

that not only isotropic distributions but in fact any 

velocity distribution with cylindrical symmetry about 

the equilibrium magnetic field is required by the 

Vlasov equation to be spatially homogeneous. Since, 

using the same change of velocity variables that was 

used in the perturbed Vlasov equation, equation

(2.3.1) can be rewritten as

v . <5fo - uJ0
<}x_ (6.1 .2)

it is clear that only a dependent fc can have a

spatial dependence.

The problems raised by allowing f0 to vary with 

position are therefore twofold: the fact that fQ no

longer commutes with the differential operator and 

the requirement (for consistency) that fc no longer 

be cylindrically symmetric.

With regard to the former problem it should be 

noted that at no stage in the manipulations between 

equations (3,2,1) and (3,2,4) was it required that f 

was homogeneous and therefore equation (3,2,4) is 

still consistent for fe which are functions of x. In 

the case of a two species plasma this problem can 

therefore be circumvented in a particularly simple 

fashion. The requirement of charge neutrality for 

the plasma equilibrium implies that the distribution

- 98 -



functions of both species must have the same spatial 

dependence; therefore, simply by factoring the x 

dependence of the fo into a new E variable, the only 

alteration to the o.d.e’s describing the evolution of 

the perturbing electric field would be in the vacuum 

field terms. The new o.d.e’s could then be solved in 

the same way as before, with the real E simply 

obtained from the solution of the o.d.e's by dividing 

out the x dependence of the f0 .

S ■ i_(xcx1 V(v)
iv (6.1.3)

would be replaced by 

E . ^/(*)
(6.1.4)

the wave equation now being

c  v*vx ( ! _ \  - I  - e . I  - ©IX M/ X(*> ie.oj (6.1.5)

6.2. General Equilibrium

The second difficulty, that of the loss of 

cylindrical symmetry, causes greater problems. The 

first step in solving this problem is to express fe 

as a Fourier series in in the same way that f, was 

in Chapter 3, and with the same justification.
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U * 0  = £ ro« e- (6.2.1)Hi -o'5
Then, considering the coefficient of e clrt̂  in (6.1.2)

gives

V l ___
Jx V Z.

(6.2.2)
These equations, resulting as they do from the 

Vlasov equation, are necessary for an equilibrium 

distribution but not sufficient. For an equilibrium 

distribution to be valid on longer timescales, 

collisional effects would have to be considered. 

However, it is of some interest to examine what 

classes of fc satisfy the Vlasov equation and how 

these new f0 would modify the conductivity tensor.

The system of equations (6.2.2) clearly has an 

infinite number of solutions; however bearing in mind 

that each f0 introduces another tree of terms to the 

calculation of the conductivity tensor, it is 

reasonable to look first for finite Fourier series 

solutions of (6.2.2). The shortest possible series 

solution is the trivial one

C  = £.,„F (v. \ 0  (6>2>3)

The next simplest solution, and the simplest solution 

that is not spatially homogeneous, is

° |nl>1
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2c
X

too 3 (6.2.4)

Substituting (6.2.4) in (6.2.1) gives

■fo - F K V t)[va + I w U x )  (6.2.5)

The new factor will be recognised as one of the two 

Additional constants of the motion’

V, . (6.2 .6)
obtained from considerations of guiding centre motion 

(Krall and Trivelpiece, 1973). It might be hoped 

that new constants of the motion would be obtained by 

examining the next simplest series.

to* ^ ° >2-

f  = f•02. 1 O-Z. F
2-

*

C  -- - 4 F k > 2

(6.2.7)
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However, the solution given by substituting these in

(6 .2 .1)

can be recognised as a function of the previously 

obtained constants

and so (6.2.8) is merely a particular example of the 

fact that any function of the solutions of the Vlasov 

equation is also a solution.

Including constants of integration in (6.2.4) 

and (6.2.7) would be equivalent to adding multiples 

of the shorter series (6.2.3) and (6.2.4) 

respectively.

f V?- 1 ( V/j * ( ) J

r -4Vy
(6.2.9)

which is equivalent to (6.2.8) since

^  2 (6.2 .10)
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6.3. Current-Carrying Plasmas

Both (6.2.4) and (6.2.7) carry electric 

currents in the y direction, since both have fol = -f0., 

£ 0. This property allows the analysis of the case 

where the spatial dependence of Bc is due to currents 

flowing in the plasma.

d 1̂0 ~ ~

Ax (6.3.1)

Considering first (6.2.4), it is clear that this 

class of equilibrium implies a constant Jy and 

therefore a linear Be . Such a distribution would 

have been quite consistent with the magnetic field 

profile used in 3.5 . However (6.2.7) gives

£& -< e.
a** (6 .3 .2 )

and so is consistent with an exponentially varying or 

oscilliatory B0 .

Given the spatial dependence of B e, (6.3.1) 

gives f0H and fQ1, and these in turn give information 

about the number of terms in the Fourier series

(6.2.1) and those terms' spatial dependence. 

Relations between Bc and higher moments of f0 can also 

be found. For example, from (6.2.2) it can be seen 

that any solution of the unperturbed Vlasov equation 

obeys
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{

&x (6.3.3)
Therefore the rate of change of pressure exerted by 

the species in the x direction

r™ r  f*« - ^  6-4 J <Â  {v̂ %4)x
° ■> (6.3.*t)

is simply the current carried by the species times 

the total magnetic field.

<[£. - ' 8 0 7 a-
Jx (6.3.5)

If the spatial dependence of B0 is solely due to 

currents carried in the plasma, then summing over all 

the species in the plasma gives

Px + B 0 - conit.
l\Jo (6 .3 .6 )

Since the ratio of plasma pressure to magnetic 

pressure is very small for a tokamak, if the plasma 

obeyed (6.3.6) then even the slight increase in 

magnetic field modelled in Chapter 3 would expel all 

of the plasma. Fortunately, in a tokamak the main 

magnetic field component is a toroidal field

B 0 W  =
R (6.3.7)

which, being curl free, does not require a current in

the plasma. Therefore, for the tokamak inspired 

parameters of Chapter 3 the trivial equilibrium

(6.2.3) is more suitable than (6.2.4) or (6.2.7).
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6.4. The Wood Diagram

The effect that losing the cylindrical symmetry
of has on the perturbed Vlasov equation is the

following modification to the 'driving term1

civ

(  N 
Cos4

S lA 4  Of + I c o t 4

<W VL

J (6.4.1)

Since the individual tree diagrams for each Fourier 

component of f0 overlap because of the cos^ and sintf 
factors, it is more convenient to consider their sum 

as a wood diagram (figure 6.1) where

K  -- t a ,  -1 (' - ^

* i (Pn., - Pn-, * £  (Q~ -Q-) + 1  0 - - 4 °  £ )  f i

+ [2R.. + i \ w „ ] £ )  i &

It should be emphasised that Pn and Q n, are in no way 

related to the Legendre polynomials of the first and 

second kind used in Chapter 5, but are in fact the 

velocity derivatives of fon.

Pn- ^ R . On
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Q *  =  R 0  -  v a  P „

^r\ ' " (v'+,Hon»l (6.4.3)

In order to calculate Jf , and hence obtain the 

conductivity tensor, the 1, 0 and -1 components of f, 

are required. These components can be obtained from 

the general formula

(6.4.4)
c - y  y  &  o• i* ” — ' n 2S+n-L

l--c S '-O

where 1 is -he order of the coupling, i.e. the 

maximum order of the derivative of DxS+n.L arising from 

the action of (defined in Chapter 4).

a  a  a

A., >A.,Q
' A o  x  )A.Z .A.,a,
s / N> / 

/

f,

= ( 

« -f

to

l -t

Figure 6.1 - Wood diagram showing the effects 

of the additional driving terms on the Fourier 

components of f, .
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Note that since D15+/l.c has a contribution from 

curl E, the maximum order of the derivatives of E y 

and E, from G„n*s is 1+1.£ n iŜ-n-L

6.5. The Conductivity Tensor

Using (6.4.4) Jt can be obtained in terms of 

the Dn and their derivatives. Then, by splitting the 

Dn into E x, E^ and E£ terms the conductivity tensor 

can be obtained.

As an example, consider cr , which gives the 

dependency of J1X on Ex. J(X is
o» / 0,0
f i A*/;, U , +  0

-OP (6.5.1)

which, to first order in , is
dlx

l--o S--0 Je -•*-

( x s-1 x A-lAl' n )+ I -I 2S-1-1 -I 2S-I-L JLX J z5'l~L J (6.5.2)

Therefore Jy(Ex) can be obtained using (6.4.2).
o*’ O®

r ✓ IV*1

(6.5.3)
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where

57 [ pn*i + (.Qn« + On-.)'rr(1 'k*^ j Wn)
w  ' V±: w  (6.5.4)

and use has been made of the identity

T  n -
(6.5.5)

Using Leibnitz1 formula and rearranging the 

summations to obtain the coefficients of the 

derivatives of Ex gives
L + r

\J. \ \ A \ \/ 
Î 2  S+l-L  d xG " ~~ In’ (r) J- <1^ 5,i r;o L~ f 0—0 ■’o

+ T i U M  fc- + fc- J  
+ T-,51,-L ̂  fc" ) ] fcr (6.5 .6)

The rest of the elements of <J can be obtained in 

similar fashion.

The physical consequences on the conductivity 

of the plasma of allowing such general equilibria are 

the earlier appearance of cyclotron harmonic 

resonances in the coefficients of the o.d.e's. For 

example the u»=2u/c resonance did not contribute to 

the conductivity tensor in section 3*5. until the 

second application of the differential operator, but 

given a significant f0_,, the to =2u;t resonance is 

directly driven and so contributes to g after the 

first application of the differential operator. In
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general if f0_ft is significant, the uu = (n+1)tut 

resonance is directly driven and so appears in q 
after only n rather than 2n differential operators.

Although a fully general equilibrium causes a 

great increase in the complexity of the algebra, 

there are two cases where the algebra is still 

feasible.

If the f0ft and E are all slowly varying, then 

the wood diagram can be truncated at low 1, just as 

the tree diagram was truncated. Since the vertical 

^xtent of the wood diagram is also controlled by 1, 

only a few of the Dn would need to be considered. In 

such a case 1 should be chosen large enough to 

include any resonances (large An) or particularly 

large Dn.

A second case where the algebra would be 

tractible is when the equilibrium distribution 

function can be adequately modelled by a short 

Fourier series. If in addition, the fon or E are 

slowly varying, the algebra will only be slightly 

more tedious than it is for trivial fe (Chapter 4).
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6.6. Summary

In this chapter, and to a lesser extent in 

Chapter 5, the analysis necessary to extend the 

theory of Chapter 4 to handle any equilibrium 

velocity distribution has been carried out. With no 

symmetries required, equilibria with particle, 

momentum and heat drifts etc can be handled.

Even equilibria that vary rapidly on the scale 

of the species Larmor orbit can be analysed 

consistently. This is because the fon and their 

velocity derivatives appear only at the 'driving 

edge1 of the tree diagram. Therefore, just as the

factorials in Chapter 4 caused eventual convergence 

of the higher derivative terms for the case of

rapidly varying E, they will also cause convergence 

of the higher derivative terms for the case of

rapidly varying fG .

Unlike rapidly varying E, rapidly varying fc do 

not increase the order of the differential equation; 

however, they do increase the complexity of the 

coefficients of the o.d.e's quite dramatically.
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Chapter 7 

Finite k^.

7.1. Introduction

In the introduction to Chapter 3, the 

possibility of including the effects of a finite ky 

on the terms of the conductivity tensor was mentioned 

as one of the advantages of the formalism that was 

introduced in that chapter.

Historically ky was ignored due to the use of 

homogeneous plasma dispersion relation techniques to 

obtain the terms in the conductivity tensor. Since 

in a homogeneous plasma there is only one preferred 

direction, that lying along the equilibrium magnetic 

field, the homogeneous system can be solved by 

choosing the coordinate system with the z axis along 

Bc , and the direction of wave propagation lying in 

the x-z plane. In effect the y axis was redundant 

and so only ky and k2 needed to be considered. This 

allowed a corresponding simplification of the algebra 

involved.

However, with the introduction of x dependency 

for B0 this cylindrical symmetry is lost. In the 

inhomogeneous system the dependency of B0 forms a 

second special direction. While the theory derived
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so far can describe a wave propagating in the plane 

formed by Bc and VBof it cannot, as it stands, 

describe waves outside this plane.

7.2. Vlasov Equation

Including a y variation in f, and then Fourier 

transforming the perturbed Vlasov equation in y,z and 

t gives

CUc a- +JL (E + . Ĉo
b$ J* m (7.2.1) <Jv

Following the procedure of Chapter 3 the k y is 

observed to cause a second coupling term between

(lfX- Aa <L (frui*fn-t) ̂  Ankw -f-AA0A
<)x 2. 2

(7.2.2)
The great similarity of the two coupling terms can 

now be exploited. Again, the tree diagram is useful, 

although now an asymmetry must be incorporated. 

Instead of all links representing

i
Ax (7.2.3)

those with positive slope represent

i_ -  k
i.XAr (7-2 -4)
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while those with negative slope represent

(7.2.5)
If in addition to the restrictions listed in 

Chapter 3, on the rate of variation with x of all 

quantities involved, attention is restricted to the 

case of small ky,

then a simple perturbation technique as used in 

Chapter 3 is valid.

It is significant, that while the gradient

independent terms are simply calculated, even for

perturbations that vary rapidly in the x and y 

directions, the result is not the trivial replacement 

of kI with k* + k* or equivalently replacing di with
*  J A x x

d! - ku1 . This can be shown by consideration of the 
dtx1
tree diagram elements. While the diamond elements

are clearly functions of k^ or of - dl, the offset

(7.2.6)

7.3. Homogeneous Case

elements
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are not. While the diamond elements have as many

connections with positive slope as with negative

slope (since there is no net 'height1 gained or lost 

between the ends on the diamond) the offset elements 

clearly do not have this symmetry (since by 

definition there is a net 'height' gain or loss).

Consider o.(m) , the gradient free kernel of the 

conductivity tensor (4.2.10). It can be seen that, 

while the 3,3 component of oXm), depending as it does 

only on the SD̂  terms, will be a function of 

k1 = ^xl + only, the other components of c(m) which 

also depend on offset elements will not have such a 

simple form.

It is very significant that the offset terms G_*

and G* are not functions merely of k^, since they

form the difference between the 1,1 and 2,2 

components of g(m). The physical need for a 

different dependence for these terms can be seen if

we consider a wave in the y-z plane. If the elements

of the conductivity tensor were functions of k^ only 

then they would be no different from those for a wave 

in the x-z plane. This would lead to a different 

dispersion relation for k* from the one obtained for

k * due to the difference between the cr„ term and the

term, with the obviously unphysical result that 

the propagation of a wave would depend on the



orientation of the axes chosen. It should be clear 

that the justification for 6U 4 <3Z1_ is that the x 

direction was picked before the conductivity tensor 

was calculated. The conductivity in the x direction 

differs from that in the y direction because of the 

wave.

The effect of the ku dependency on the IJ and
j

2,2 elements of the conductivity tensor can be 

expressed in a more convenient form, if the following 

manipulation is performed. This is particularly 

useful when standard textbook expressions are 

available for the k y = 0 case. By expressing G_"+G™ 

and Gw+G"'1 in terms of sums and differences of crn andI V  - H  11

Clt we obtain

(7.3.3b)

Also, using (7.3.1) and (7.3.2) (noting the fact that

H  + ' 2. C^n , 1̂ ) )
(7.3.3a)

(7.3.4)

Therefore (7.3.3) can be rewritten

(7.3.5a)
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X  C O C K ”" - t
rv\

(7.3.5b)
Then by considering the case of k^=0,

(̂ -u 4 -i) = 2- (.Cu (Xl,o  ̂' *°l) (7.3.6a)

Z  (A~, + $"") ^  = iCc-uCti.o)* ct2U i,o')') (7 .3 .6b)

Comparing the left-hand sides of (7*3.6) and (7.3.7)

(7.3.5a) - k-»VJh,T (.7.3.fc a) 

(7.3.5 k) - (.7. 5.U)
(7.3.7)

Therefore

Kh) = (7. 3.So.)*(7.3.Sk)

= cu (fci(o) + c^Ox.o)
kx1 (7.3.8)

while

c«U*,k;j)^ (7.3.5 b)-(7.3.5a)

-  Cu ( k x . o )  + c z l ( k x , o )

kx1 (7.3.9)

The form of these expressions could have been 

obtained more simply by rotating the conductivity 

tensor about the symmetry axis (B0) of the physical 

system.
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7.4. The Inhomogeneous Case

To understand the difficulties in calculating 

the high order derivatives in the inhomogeneous case 

now that there is this loss of symmetry between 

rising and falling operators, consider, once again, 

the 3,3 element of the conductivity tensor. The cold 

plasma term is of course unaltered, but now the 

modified element gives two new terms in addition 

to the parameter gradient term (4.3.10). The first 

modification,

is in principle not very different from the terms

obtained in Chapter 4. Such an antisymmetric term 

would have been expected, proportional to the 

antisymmetric ky coupling. However, in addition to 

producing symmetric coefficients of A t and A_( the old 

symmetry also allowed the cancellation of certain 

second order poles. This was an important property, 

referred to in section 6 of Chapter 3- The different 

nature of this second new term is particularly 

obvious in the example being considered, since the 

second order pole produced is the A0 or Landau 

damping term which cannot arise directly from 

differentiation of Ae with respect to x because A0 is 

not a function of x.
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The new term produced is best expressed as

(7-4.2)
where

- ujc'

(7.4.3)
While there is no difficulty in calculating the 

contribution of this term to the conductivity tensor, 

e.g. for a Maxwellian fe the velocity integral gives

the existence of such terms which do not fit the 

existing patterns established in Chapter 4 causes 

considerable difficulties.

Fortunately, the new terms arising from the 

introduction of can also be fitted into patterns 

of a similar nature to those obtained in Chapter 4. 

Once a general form for the magnetic field gradient 

terms had been found for the new terms, it could be 

used in a proof by induction, (appendix C) just as 

the simpler case (Chapter 4) was proved (appendix B). 

The full expression for the first order equilibrium 

magnetic field gradient term is

with

(7.4.5),
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2 ( * - i ) ( « - a )  C i j j  V ( ^ P " ’ LA (*&]' h +

UOv-L) * 2M M )  p ^ u ) - v C  0 \] Aj (̂ J

nCM-L-A)P^G)^[(^-M - (ia-kfe-^-»lAL:o)] % ( ^  (a)'^

C«-c)!t--Aj! (7i4>6)

Some of the terms in (7*4.6) could have been

predicted without resorting to appendix C. Of the

(m-n) operators (£̂  + k̂  ) and the (m-1) operators

(d - kM) only one is applied to an A . Therefore, 
<Vx

there is a common factor (row 6 of (7*4.6)) in all 

terms. Having extracted this factor, all remaining 

terms must contain either a J or a . Since the 

terms containing ^ a r e ’independent of ky, then they 

must be those obtained in Chapter 4 in order to 

satisfy (7*4.6) (4.2.5) as k^O. Thus we have the

form of rows 1 and 4 in (7*4.6).

Finally, since the A lk^ terms arise from 

products of A that fail to cancel, they must 

disappear if m=n or m=l. In both cases the 

parallelogram contracts into a line in which no Aj
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is repeated. Therefore the (m-n)(m-l) factor in row 

3 could also be predicted.

The existence of the general form for the 

element (figure 4.1) allows the results of this

chapter to be combined with those of Chapters 5 and 6 

including the effects of equilibria that do not 

have cylindrical symmetry, and which require Fourier 

components outside the ’normal1 range 1,0,-1 to 

describe the ’driving’ or zeroeth order terms of the 

tree diagram.

The only modification to the results of 

Chapters 5 and 6 necessary, is to include in the 

expression for curl B0 . This gives the new Lorentz 

force term
(  .

V * B, = _L
uj

—  ̂'j ^3 ̂ x ~ ^2 ~ ̂ 2̂.

^  * L V* ̂

Vxl<-Z.fx + 1 v* ‘ vi £l * V1
(7.4.7)

The resultant driving terms for a cylindrically 

symmetric velocity distribution are



which reduces to (5.2.S) for k̂  =0, while the n 

expression for the general driving term for a 

dependent velocity distribution is

ew

o * if\ rvvŷ

U K  Af
UJ

 ̂ Pn+I +  Rf\-i (Qa-k + ) + 77 ( -  I ) ̂ uu Vi. v. uj ;

£x +  ̂̂  P/VH Prt-I ^ [Qft+r Qyy., ) ""

T7 ( - I) - 2y\ f0n (£
Vl \ \JJ

\JJ

+•

tjSy ( Q m - Q nv, + VIe WCy) +
UJ

A ]E

which reduces to (6.4.2) for ky=0.

(7.4.9)

The effect of introducing k^ that would 

probably have greatest physical significance is the 

appearance of the harmonic resonances even in the 

lowe;st ^order coefficients of the differential 

equation. ‘ Such an effect would also arise if the 

equilibrium was not slowly varying.
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Chapter 8 

Future Work

8.1. Further Generalisation

In this thesis a formalism for obtaining a set 

of coupled o.d.e’s describing a wave in an 

inhomogeneous plasma has been developed. First for 

very restricted types of wave in the simplest 

possible equilibrium plasma in Chapter 3; then in 

Chapter 4 most of the restrictions on the wave were 

removed and in Chapters 5 and 6 the allowed 

equilibrium distributions were fully generalised; 

finally in Chapter 7 wave propagation outside the 

B0- V B 0 plane was modelled. By this stage the 

equations describing most perturbations of almost any 

plasma equilibrium can be written down - although 

solving these equations can become difficult (section 

8.5). There still remain perturbations for which the 

methods so far developed in this thesis are not yet 

sufficiently general to describe.

The most immediately desirable generalisation 

of the theory established in this thesis would be to 

remove the restriction to IkjLl >> |nj. This change 

would be particularly useful for two main reasons.
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8.2. Small Kz

First, this restriction is ’new1, arising 

clearly from the methods of Chapter 3, but missed by 

other less systematic approaches. As a result, some 

of the cases previously tackled less rigorously 

cannot be corrected until a way around this

restriction can be found. Although such cases form 

only a small part of the spectrum of k 2 used in 

experiments (since, for example, in a tokamak the 

restriction is equivalent to requiring that the 

toroidal mode number of the wave be greater than the 

number of the harmonic being excited) it is still

hardly satisfactory to knock other theories down for 

these cases without putting forward a better theory 

in their place. These cases would also be of 

considerable interest because of the increasing 

importance of mode conversion as k z is reduced. 

Since it is the amount of mode conversion obtained 

that is the biggest difference between the solutions 

of dispersion relation based equations and those of

consistently derived o.d.e’s, the cases where most

mode conversion occurs are probably those where 

consistency is most important, although one possible 

exception to this ’rule1 is considered below.
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8.3. Wave Propagation Perpendicular to B

The second main reason why it would be useful 

to remove the restriction to |kaL| >> (ni is that if all 

restrictions on k2 could be removed, it would allow 

accurate modelling of perpendicular wave propagation. 

Since this case is analysed using other techniques 

very frequently in the literature, a direct

comparison of equations and results for k 2 = 0 would 

be very interesting. Not least because mode 

conversion is very important in this case, where 

there is no cyclotron damping, and the differences in 

the results produced by including parameter gradient 

terms is, in the examples examined so far,

predominantly in the amount of mode conversion

obtained.

For the examples considered in this thesis the

transmission of the fast wave has been almost

completely unaltered by the inclusion of the 

parameter gradient terms, yet the amount of mode 

conversion is quite dramatically altered. However in 

the case of perpendicular wave propagation where 

there is no cyclotron damping, the mode conversion is 

simply calculated from the power lost from the fast 

wave. This poses the following question. Do the 

gradient terms alter the transmission of the fast 

wave significantly when they are sufficiently large
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or do they have no effect on the mode conversion 

factor when the resonance is sufficiently thin? It 

is by no means impossible that the case of purely 

perpendicular wave propagation is a limit in which 

the dispersion relation techniques might well be 

sufficient.

8.4. The Difficulties

The potential for progress in 8.2 is far from 

bleak: in effect the \n\ «  [kzL| restriction is similar

in type to

2uJc dk
< <  m

(8.4.1)

and so by dint of a considerable amount of algebra 

|ni ̂ |kzL| could quite possibly also be treated, with a 

similar convergence led by a factorial in the

denominator. The algebra involved would become 

considerably more complex if it was necessary to

consider higher spatial derivatives of the

equilibrium magnetic field B0 , since in such cases 

A*An is of a different form from An'Â  as now the 

former includes terms from higher derivatives of 80 

than the latter.

A . " A n
/ 2 

J h A n
X

+ 2 u/c" r\An
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(8.4.2)

On the bright side, this development would not, 

by itself, increase the order of the o.d.e’s to be 

solved, and should therefore not cause major problems 

for conventional numerical techniques, although the 

increase in complexity of the coefficients of the

o.d.e’s would impose a time penalty.

The potential for progress in the limiting case 

of 8.3 is, however, far less promising, for in this 

case the resonant A would have a pole, not in 

velocity space, but in physical space.

Far from forming a series that will eventually 

converge, the successive differentiation of A_n would 

lead to the coefficients of the o.d.e’s having 

essential singularities.

This limit would appear to be the breaking 

point of the techniques developed in this thesis. 

While there is good reason, on purely physical 

grounds, to assume that the electric and magnetic 

field perturbations will be well behaved, there is no 

corresponding reason for the coefficients of an

o.d.e. to behave.

A
(8.4.3)
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It would seem therefore that the case of kt =0 

must be dealt with using a very different approach.

8.5. A Twisted Magnetic Field

In most magnetic confinement devices, the 

magnetic field not only changes in intensity, but 

also in direction. For example, in the case of 

tokamaks and r.f.p's the different spatial dependence 

of the poloidal and toroidal components leads to the 

spatial dependence of the direction of the total 

magnetic field. Since the theoretical modelling of 

r.f. heating in tokamaks is a major objective of 

this research, it is clearly important to be able to 

include the effects of a twisted Bq.

Part of the motivation for Chapter 7 was that a 

prerequisite for modelling the effects of a twisted 

magnetic field is the ability to deal with finite ky. 

Clearly if the magnetic field rotates in the y-z 

plane through an angle 0, then the local values of k^ 

and kz are

ky = k^cosO + k^sin© k^ = k^cos© - kysin©

(8.5.1)

However, in addition to the gradient terms 

already obtained in Chapter 7, the spatial dependence 

of and of lT2 should also be accounted for. A
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further complication arises when the new Vlasov

equation is considered.

The form of the perturbed Vlasov equation was 

greatly simplified in earlier chapters by the choice

of a coordinate system with one axis parallel to the

magnetic field. This allowed the three velocity 

derivatives of f, to be replaced, first by two

- U U C V y - V x ^
^  <W \ K  (8.5.1)

and then, through the use of cylindrical coordinates

for velocity, one

U)c ( 'A* H  - Vx hi j *=■ - ̂
c)Vx <Wy I (8.5.2)

Such a choice of coordinates can now only be local, 

with the result that the global coordinate system now 

has a twist to follow the equilibrium magnetic field.

It can be seen that both of these effects are 

directly caused by the rate of twist of B0 .

80 - ( o ,  8 , 0 .1 , emCx)J

t a n  Q  - 8 S U ) / B j C x )

i ®  = go_(Vx_gJ
B.1 (8.5.3)

The second problem, the twist of the coordinate 

system, has already been tackled in MHD literature 

(Appert, Vaclavik and Villard, 1984) although the
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motivation was slightly different. In MHD the

advantage in using a local coordinate system or

’magnetic coordinates' (e(| parallel to B0, e n normal 

to the magnetic surface and e A = e^xe^) is that as in 

the slab model there is a high conductivity in the 

direction parallel to the magnetic field, and so the 

local electric field component parallel to Be is 

suppressed. Once again, this allows the set of 

equations to be reduced to the local 3,3 minor set,

i.e. only the perpendicular electric fields need be 

considered. This reduces the differential equations 

for the fluid model to only second order, just as the 

kinetic model equations were reduced to a fourth

order system in Chapter 3.

The expression in their paper is

rot rot E - ^  i • E
C (8.5.4)

where rot is a local form of curl, and the operator

AA ^r\A
Cz S0.rot80

rot* en rotneA

^ e; rot AeA

(8.5.5)

The first term in (8.5.5) is the cold plasma 

dielectric tensor in the local coordinates, while the 

second term clearly has its origins in the twist of 

the magnetic coordinates and is proportional to the 

twist of B0 .
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8.6. Partial Differential Equations

As was mentioned in Chapter 5, the magnetic 

field in confinement devices such as the tokamak is 

not only twisted, but also no longer depends on only 

one spatial variable. The perturbing fields are 

therefore described by partial differential equations 

(p.d.e's) rather than the o.d.e’s obtained in this 

thesis.

One method for retrieving a system of o.d.e’s 

from such a problem uses the periodicity of angular 

coordinates to justify expanding the field quantities 

as Fourier series in those coordinates. For example, 

in the case of a tokamak, if toroidal symmetry is 

assumed, then the perturbing fields obey a p.d.e. in 

0 (the poloidal angle) and r (the minor radius); this 

equation can then be tackled (Smithe. Colestock, 

Kashuba and Kammash, 1987) by expanding the fields as 

Fourier series in 0, just as f, was expanded in (j) in 

Chapter 3 to obtain a system of o.d.e’s from a p.d.e. 

(the Vlasov equation).

Of course, this technique gives rise to a large 

number of o.d.e’s which have to be solved 

simultaneously.
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8.7. Solving the Differential Equations

While most of this thesis has been devoted to 

obtaining the correct differential equations, a 

subject of equal importance is the problem of solving 

these equations. That the solutions of these systems 

will, in general, require the use of numerical 

techniques at some stage is fairly obvious; however 

the simple minded approach of loading the system into 

a standard differential equation solver, like that 

used in Chapter 3, will not always be adequate.

8.8. Reduced Order Differential Equations

In Chapter 4 and Chapter 5 the difficulties 

involved in solving the very large systems of 

equations that arise when

« f c l (8.8 .1)
is no longer true, were noted. To avoid these 

problems some method of reducing the order of the 

differential equations must be found. One way of 

achieving this objective was mentioned in Chapter 2 

(Cairns and Lashmore-Davies,1983). Despite doubts 

about the methods used to obtain the original 

equation, the basic strategy, that of only

.it 41
2û c cXx
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considering the modes that are coupled in the 

particular region of space being modelled, has much 

to recommend it. Although simply calculating the 

eigenvalues and their derivatives for a large system 

of o.d.e’s at all points on a spatial mesh would not 

be trivial, once these were known the coupling terms 

could be calculated. Even if it was not possible to 

split the plasma into regions of binary coupling,

i.e. regions where only the coupling terms between 

two of the modes are significant, it should still be 

possible to greatly reduce the number of equations 

being solved in any one region, with a corresponding 

saving in computer space.

Certainly it is true that numerically solving a 

very large system of o.d.e’s directly would be an 

inefficient method, particularly if only one or two 

of the solutions of the equations are of interest.

Further research into these methods might also 

clarify the robust nature of fast wave transmission 

coefficients. As was pointed out in Chapter 3, while 

the quantity of mode conversion produced by the 

consistently derived equations is dramatically 

different from that produced by equations from the 

homogeneous dispersion relation, the transmission 

factor for the fast wave for each case is practically 

identical. While this robustness was already 

evidenced by the variety of equations that have been
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used to give accurate values for fast wave 

transmission, it has perhaps not yet been 

satisfactorily explained, although a link between the 

cumulative change in the perpendicular wavenumber of 

a mode and the relative importance of parameter 

gradient terms in modelling the mode was suggested in 

the conclusions of Chapter 3.
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Appendix A.

tn j = rm-m (m-n>!(*w.)! {m.j J J
Clearly true for 2m-l-n=0

Assume true for 2m-l-n=r, then for 2m-l-n=r+1

tn
= 2 1  "C"0 J A l (2m-L-n-).( [(jn-*X*-j)-
j ̂ n+i--rM [ m -l) ! (/vi-n)* (rw-j)! (rn-L-n+j)!

(w-L^m-L'A +-j) j A j j 2**'

- A u /U-1 ‘ 21  ̂C2.yvt-L-*a-I ) /
(rv»-L.)i(/,o -n )! j -*+(.-#» (rv i- j) i (m - i-n + j) !

(2r*-L-n}(j-l) A j

Noting that the coefficient of AL inside 

summation is 0

S " = Z T  c-i)— 1 ____
r*-j Zm-l-h ) ( \ CA; - Al)

j=A+<--rv» Cjw-lJ \ (m-n). y jm-j ] 
j -fL

then using
C-l)m'J lrw-L-n

j-n+L-rw  y  rw -j
■= O

C - Z  H T l ' Zna-L-n ] / tV/u \ A
c rvi_j  '  Y ^^c .

the
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Appendix B.

£  ( f e *  0 >  * t  HTal] % W V' v *■ ' l2uJj

lAv-L-A-l /
[<1̂ -0 + ■2-Ĝ -i-)('«-'')]pjrG') * (.»-<-)( zm-t-n-i) h 1*1 (jjl Aj’/tî  y|

1- LK' J Vlu/J J

Clearly true for 2m-l-n=0

Assume true for 2m-l-n=r, then for 2m-l-n=r+1

tn
= AL .J-L*rww

( ct Aj /  Cv/j. \  -t- A ; /  LV^
V 2iA/tl V 2-lA.

C, - ( I ^ - L - n - z ) !  C-I)^ [W4
(rn-n)! YZwJ<

\Z w - L - n - L

(2m-L-A-»)2' + (r\-L-l)(2 ;̂ L-A-Q (rw-Lj(m-L-ia-»j) 
Z Z J

( Zfv\ -L-A-l) + (jA-L* \)Ui ~L~A**1 
Z Z

(rrw \)(fli- j)  + 

(Zrv\-L-n-i) [ (m-L\(jm-L-n+j) - ))

C3 ' £ (.2 rv\-L-n-i)(̂ ri(A-L-i)+ 2(m-L-i)(̂ n-n)] + (rv-L-i)(Zrvi-L-n-2.) 

(Ij-L-n -ijj [ n  (r\-L+t) +

2(.m-i.)frw-rt i)]+ h ,vt-L-rv-Z)Cn-Ln) Ui-twui] j +
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cL ~ f (.Zm-L-o-tl1 +  fin-L)(i;-L-n) + _l +
I 2 1 X J

((_m-u)Crv'-L_r‘-tj) - (j-L)̂ (rn-L)(MX-f'*j) + (m-nXrn-i)]

= ^  ClrvwL-n)1- + (AjxX2uLrn)jG-Lj(2^-L-n) - 

0 - U ) ( + ( n r 0 ^ k £ L )  ]

Cj_ — C j - L ) ^iw-L-n-iJ (im-L-np + Cn~t- )C2|-L-^i
L 2.___________ 2,______

5 "L c ^ o  

l A l Ay - / 1 Aj + j (A y - A l )
[2-̂c.l j-L (j-l)* Uu'cI

Therefore ^  Ci Al C^ Aj j x
Uu/CJ - L+n-*\

gives the required expression for the coefficients of 

all the A terms, except for the A term.

In addition it gives a contribution to the 

terms,
Iv\

2 -  C\ J f  tVu \ Aj - A u (2 _ rn -L -n - i)  f ( lM ~ L~n )* 4.
j -L+n-rv» \ 2.U/J j -l  ̂ Z  1 J

     — -

3 £ (2m'L-rt-/)[n(n-L)+ 2(m-L)(m-n) + n-2m] +

( 2 m-L-n-2)^ (A'LK2j-L-»rt) _ + z j ]  (w-LJ(M-L-n4j I

—  £ (im-L-n-l) £Vi(a-l)4 Z(m-L)(n̂ -h] +n-lw ■+ 2L J +

(n-L) Ui-L-n) + +i] } (m-r\)(rw-j) +
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( lm -L -n -01 (2m -L-n ) ( j - l )

C 3 = ( j-l)(2m-L-n)(lm-L-n-lj(n (a-l) + l(m-L)(m-n} J +

(j-i)(2m-L-rwf Q - l)( 2f-L-nl - Ci-L)6ri-Ll(zf-L4i]
1  1

+  ()-L)(2m-L-n)(Zm-L-n-i)[n-2m] 4- (j-L)(2m-L'n-i)t(2vn-Lm) 

- [j-L)(lm-L'n-2)| (2m-L-n)'2- ^ ( n-L)C2;-L-n) j +

L(2m-L-n-i] [(2m -L-n)(j-L) - ( 2m-L-n)2-  (/i-lKZ^L-a) j

4 (j - l ) (  2m -i-nl ( Zm-L-n-l)
2

-  (j-L )(z/y i-L -n)C 2m -L-A -l)(n (n-L) + 2- (m-L/(m-n)J

4  (j-l) (2 m-L-n4 )z(n-L)( 2j-L-n) ^  ( ̂ LlCZm-L-n)^
2 2

-  (1 4  1 )(2m-L4}-i)(Zm-L-n ) ( j -  l )

-  j (Lr^-'L-n-i) f ( 2 m - L - n f  ^  (n-L)(2j-L-_n) J
2 2.

■f L (  2m -L -n -1 j (2 m -L -n )  ( j  -<-)

4 ( j -l K 2m -l-a )(2m- L-n-2.)
2_

~ (j-L)(2m-L-n)(2no-L-n-i)(n(n-Lj + 2(m-L)(m-n)]

4  ( .\-l) (Zm-L-n4 lZ (a-l) (2jN-L-tn)
2

- j (2m-L-n.-1) £ (2m-L-n)'2- +  Cft~Lj (2j-l-n] J
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j * L C 3 ' - L (2-m-!■-»-■) [0-

c ,c3 l*(U l '
ẐuJ<

gives the exact A( term required.

<*\
j4L ZL c, f\Lc.3 f\j gives

j -  L-tft-w ZuJc-

1 (-^) r(nCA-L)+Z(m-c -̂n)] PLn (j) +
(m-c)\ (m-n)1, j-un-m 

*L

(n-L)Czm-L-n-i) (flj-Aj I lVA
2 J V-̂c-l

<A
-J" /ivl\ A;~Al (a-lXZj-l-a)]

j= n + L '^  V la 'o /  j - L  2 ^

J*l___________________________________________________

Therefore by cancelling the bottom term with the 

contribution from the AlA/ terms, and using

Z -Co) = pl>) Z -n:o) = Cui
j - n •+ C-n'X j - r\t W

+L

The expression for T* is recovered exactly.
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Appendix C.

+  U

m-t-i m-O-l

(i (î i i
( w k

C 5 £ j * t ai + “ I1vfeT *
lO w -O O w -n ) ^  ( i ^ V  +  Pl ” ( jJ  4-

vZut'J Zo/,

( (m- lK '̂A  ̂ + ( lm-L-AKZm-L-A-i) | H ™ Q ) Aj (Wt]
2 1 ' U v J

iZA'-L-n-1 / . v /
Iul)
\ 2 u / c

(P^(j), H"(j), SL:, T” defined in Chapter 4)

Expression for GL™ is true for 2m-l-n=0 

If true for 2m-l-n=r, then for 2m-l-n=r+1

already proven in Appendix A

T S - ^ ( T u rn - c ;  * £ ( s L: „ + sL.r;))

already proven in Appendix B.

Therefore need only show that

2r> ” fti.(Uu V C n  (SL„„ Su j ]
du
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c, = (Z.HI-L-n-3)! (-iH /
(m -l)! (m-n)i (rn-j)! (m-L-n+j)!

Cz - 4- 2 j-L-n-f + I j (,*-(_)(*-L-n+jJ-

^TkkL1 + 2 j -L -n t- l -  1 j( rw -n j(m -j)

P _
r (j-t)(2̂ -L-»v)(.2.rvi-L-A-<)(.2vw-L-n-2) f ~ + J

Therefore rv\
2 1  c, c, A / i w r'< 2 r‘j

j  - n+u-A' \.2u/<

gives the required expression for all the A- terms. 

(N.B. there is no A' term). In addition it gives a 

contribution to the (w±_\ term
\ t v J j

Z L  c, j ( 1*4 ) | IVl. | (Aj Al] (Zto-L-rt)£z*n-L-n-i)(2l'vl*l--irt-zJ
__________

Therefore
Al 2 1  c, C3 A / ILx/xV

j - n + c - m  U iM : *

gives the required expression for all Aj terms except 

A*. In addition it gives a contribution to the (gj 

term ^
. C{ y ^ ]  (Aj ( 2 m-L-A~2)(yv\-]) ( ) 2 (rw-l)(m-A)

^u/JUuJ \ J-L / 1

- 140 -



C , = (Lm-L-a-iK n ( Zm-C-a-1 j'2--.- (fw-L*lj(rv\-A)( Zj-L-n*fJ +

f n ( +  (m-l)(rv\'A-i)(Zj-L-n-t i) - Czm-L-^1) +■

C2jfHA-H-l)C2M-C-nrZ)(Zj.L-n»_<J J

“ (im-C-n-z)^ (j-l) n(Z fwl-n) (Zm'C'A-'] — n(2m-t-n ĴZ>vi-(.Hi-/j 

■+- (rw-L)(fw-'A)(_21̂-L-n-i)(zj-L-nj + (.rv\-c)(m-n)(.Zj-c-r\) +

(irw-t-nlf lm-l-'W)2(V-l-n) - Ij-l-nj 'J +
2 Z

( .Z o A -L -n -l)2 -  C ^ - t - ) (M -n )  -  ( Zrvi -L-n -Q(2nn- l -n-2) j + (ni-nj[/vt

4- t < w - 0 ( M - r t ) £ ( ^ - jK l j - L - n  + i ) -  ( .w -L -n « j)C lj-L-n-i) j J

=  (im-c-n-l) | Cj-t)[n(2yn-L-A)2U  ✓vt-C-rw) + (m-i)(m-n)(2/n-l-n-l] (ij-l-nj +■

( l / v i - C - A +■ Cm-L)Cm-r\) 2 (j-n) + (n-ij(iM-L j(m-n J 
2

" j t2^i-L-n)(2Aa-l-A-i) ■+ (.Lrw-L-nH)(2*A-l-n)J +

^ ( Z m - L - n - i ) _ CiOa-c)(.AA-n)jĵ ZCm-t.)(_rti-n) + +

(«n-L)(jm-*) £ 2^-l-n - C2j-(-n)z] j 

- (l/vv-U-t)£ Cj-l)[n(Z^4-nlH2*-l-nH) + (.rvv-LlCM-nK^-^te-^)

-4 (2m-L-AlC2>»v-C’n-t),‘ ( 2j-i-r\\ - j C2_/v̂-C-a-(ĵ 2>̂ v- )  j •*-
2 J

(fv\-L)(»vv-n) ̂  2 C)-*Kj'L) + CZ^-L-n)”1-2C*i-0&*-n)-£.j'L"n)ZJ j

- 141 -



C ^ -  Cj -  <-)( Z/vi-L-A - 1) ^ A (2 _ m -l-A ^ 4 - +

(2 m ~ L -n ) ( l m « L - n - i )  Cz i 'L - n )  -  j  {z^.L. A  +

2 J >

For j=l
^  - 2tw-L){w-r\)(lrn-L-/\-2)(fr\-j)(rvi-L'n+jl

Therefore
ALctc^AL /î

2u/cZ.u/(
gives the missing A* term.

For j£l J2 / w  /
Au 21 e,cv

j = n+u-m Uu/clV2̂ ]

 ̂ 1 1 J-fUL-'* £l-
2.Ai-L-n-i

; minus a term

j - n+L-f* 
*  L

c i J j ^  ̂ C Aj - A j  (2m -L -A j(2 /v i-L 'A -'i](2 /v i-L -n -2)

which cancels with the contribution from C2 , plus a

term _(̂
c, f j j (2AA-L'fl-z)( J(m-L-n+j) Z(m-6)(#vt-n

j»n+i.-m [ Z i ^ c l i Z u J ^ J V j-L /
which cancels with the contribution from C3.

Finally, the identities

m
Z  C O K m J - 2 1  C o i A ;  „„A X  2 h l: u i a
A+L.-AA - - - yd ' J-rUL-(V\ j-A*L-#n j-A-H.-r*

when applied to the underlined expression, give all

the (iŷ Y terms, completing the proof.
Zuj,
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Appendix D.

o + x r ' ' o - x r n .  (i+x)

/ \ p p l^ ‘*v<j tir \e  G inow iiv l Theore-W

1*

rv̂-n m+ n 2ô

... ~ ) x , £  ( r ) - * *  £ M * r

Compctrc/vcj c o e f f ic ie n ts  of" X r

M-n

S-o \ S

pa-n
C-|)_______________________   C-0 l.n

S-o S!(m-n-s)!(r-s)!(m+n-r+s)! (m-n)'.(Wr\)' 1 t'
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