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SUMMARY :

A rapid, sensitive and selective HPLC method for the quantitation of glutathione 

(GSH) at the cellular level was developed by the author. Glutathione is resolved 

isocratically by ion-pair high-performance liquid chromatography and detected by UV 

at 200 -  210 nm. The mobile phase consisted of an aqueous buffer of methanol 

containing 0.1 % tetrabutyl ammonium hydroxide adjusted to pH 3.5 by 10 % v/v 

orthophosphoric acid. This method is able to detect GSH in a small amount of cells 

and can be adapted for quantitative determination of biological thiols and some other 

cellular compounds of special interest such as amino acids at small tissue volumes.

The non invasive nuclear magnetic resonance ( NMR ) technique which was 

developed for this study ( *H spin echo NMR ) is capable of detecting certain small 

molecules and structural entities in intact tumour cells. This method is specific and 

selective, providing information on the concentration and conformation of such 

molecules as glutathione, phosphorylcholine, lactate, mobile triglyceride, acetyl 

choline etc in the living cells. The technique has the advantage that it is non-invasive, 

providing detailed structural information on individual species present in the cell 

matrix. It has been used in this case to study the rate of energy consumption 

following the activation of the glycolytic pathway with glucose. The signals and 

patterns observed have been used in a preliminary way to study changes in 

glutathione metabolism and in lactate production when challenged by therapeutic 

agents.

The effect of doxorubicin on the cellular biochemistry of Hela tumour cells using 

*H spin echo NMR of the intact and viable cell in conjunction with the dual wave 

length HPLC of cell lysate is reported here. Dose-related changes were observed in 

lactate and reduced glutathione concentration. Doxorubicin induces a time-dependent 

depletion of the cytosolic pool of glutathione and a change in the glycolytic pattern of
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the cells. The glutathione depletion could be partially reversed by controlled pre­

treatment of the cells with N-acetylcysteine and cysteine, the protection being linked 

to the intracellular concentration of the thiol. Glutathione was also measured in other 

doxorubicin-sensitive cells from small cell carcinoma of lung (GLC4  2 1 0 ), and the 

levels compared with those in cells with acquired resistance and a line of resistant 

non-small-cell adenocarcinoma of lung A549 ( alveolar type 2 ) . The effect of different 

doxorubicin concentrations on GSH was measured using the HPLC method which 

has been shown to correlate with the NMR studies in live cells.

*H spin echo NMR of the leukaemia cell line ( J i l l ) is also reported here for 

studying cellular glycolysis. The concentration o f cells in the NMR tube is high 

(approx. 109  cells in 0.4 ml) and as a result the available oxygen is restricted, making 

the NMR experiment a plausible in vitro tumour model in which kinetics in the living 

cell can be probed in a non-invasive manner. Treatment with pharmacological 

concentrations of doxorubicin produced immediate enhanced anaerobic glycolysis and 

eventual cell death.

Glutathione-S-transferase ( GST ) activity in the different lung tumour cells was 

linked with their content of glutathione and the effect of doxorubicin on such activity 

was studied as well.

High levels of lipid peroxidation were noticed in the two sensitive cell lines ( Hela 

and GLC4  2 1 0  [S] ) as doxorubicin readily passes into these cells and interacts with 

glutathione. N-acetylcysteine pre-treatment of Hela cells showed little protection from 

the effect o f doxorubicin.

The effect of doxorubicin on the viability of the different tumour cells was studied 

using MTT dye reduction by living but not dead cells. An increase in A549 sensitivity 

to doxorubicin was produced using Buthionine-S,R- Sulfuximine at a non-toxic 

concentration.

The inherent resistant of A549 tumour cells toward doxombicin was circumvented 

by using one of the antiarrythmic drugs ( amiodarone ) which trap the drug in the 

cells by decreasing its efflux. This was indicated by measuring intracellular
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doxorubicin and amiodarone after harvesting of the cells in two different ways 

(scraping and trypsinization). These results were confirmed by the HPLC 

measurement of GSH in these cells after amiodarone and doxorubicin treatment and 

by using a chemosensitivity assay.



INTRODUCTION
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1.1. Overview:

Carcinoma is a Greek word meaning crab ( Latin : Cancer). It was introduced by 

the Greek physician Galen who recognized that breast cancer had veins arising from 

the tumour, giving it the appearance of a crab ( B ett, 1957 ).
The oldest recorded case of malignancy in man was a tumour of a mandible which 

was discovered in Kenya by Leakey in 1932. It is estimated to be half to one million 

years old ( Stathopoulos, 1975 ). Evidence of many cancers, such as skull 

osteosarcoma, squamous papilloma of hand and ovarian cystadenoma have been 

observed in the mummified remains of ancient Egyptians ( Ghalioungui, 1984).
Later on the early Greeks were interested in the malignant nature and the 

anatomical distribution of various types of tumours, especially breast cancer. During 

that time Hippocrates and his school described the external manifestations of 

malignancy. Galen followed them from 130 -  202 A.D. His hypothesis about Cancer 

suggested that the body contained four humours responsible for health; blood, 

phlegm, choler ( yellow bile ) and melancholy ( black bile ). According to this 

hypothesis, people with predominantly black bile were more likely to develop 

tumours in their organs in which bile thickened and solidified ( Levitt et al.. 1979 ). 
This was the first suggestion of the possibility of carcinogenic substances. The first 

modem report of a carcinogenic substance was made by Percival Pott in 1760 when 

he discovered that chimney-sweeps had a very high risk of scrotal cancer due to 

exposure to cancer-causing oils in soot with which their clothes were impregnated 

(Williams, 1983). In 1912 Bayon produced cancer experimentally for the first time by 

injecting tar into rabbits ears and this led Kennaway in 1922 to make the first attempt 

to identify cancer producing compounds in coal tar ( Bett, 1957 ).
Cancer is an abnormal accumulation of cells originating from a single cell and 

transformed, such that growth and spread do not respond to normal growth 

mechanisms or regulatory systems within the body. The process by which the normal
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cells are transformed to tumour cells is called carcinogenesis. Many substances are 

thought to be carcinogenic. Some example of these are :-

(1) Chemicals , e.g. Cigarette smoke, Arsenic , Asbestos, Nickel, Chromium, 

Petroleum, Coke, Coal soot, Coal tar, Benzene, Wax, etc......

(2) Radiation , e.g. X-rays, Radioactivity and Ultraviolet rays (sun ) .

(3) Dietary factors , e.g. High fat and protein diet with low roughage.

(4) Viruses, e.g. Genital herpes virus and polyoma virus which cause salivary 

gland tumours.

( Benjamin, 1981 ; Pitot, 1981 ; Williams, 1983 ).

There are two types of tumour : benign, in which cells are encapsulated and do 

not invade or spread, and malignant in which cells have the capacity to invade and 

spread, i.e. metastasise. Metastatic spread involves normal tissues in addition to the 

tumour.

Tumour cells have special characteristics by which they differ from the normal, 

these include pleomorphism (changes in size and shape), increased mitosis and 

potential for direct invasion. They also have the ability to form clones and to continue 

growth and division in culture. Loss of growth control may be due to either alteration 

of the physical or chemical structure of the cell membrane, particularly of the 

glycoprotein components which make cells unresponsive to the normal growth 

limiting factors, to intracellular changes such as nuclear /  cytoplasmic size ratio, 

abnormalities during cell division causing unbalanced growth, or to deficient 

regulatory factors such as hormones e.g. tumours in post-menopausal patients may 

be related to low oestrogen levels during cell division ( Moore, 1975 ; Caiman etal., 

1980 ; Pitot, 1981)
Unlike normal cells in which growth is characterized by equal balance between 

cell division and death, there is in cancer tissue an inequality between the number of 

dividing and dead cells. Furthermore within the tumour bulk there are connective
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tissue elements, blood vessels and other cells such as lymphocytes and macrophages 

in addition to the tumour cells. These non-tumour tissues are important both for 

tumour growth and in cancer chemotherapy, as they help in nutrition and blood 

supply and also support the tumour tissues ( Souhami and Tobias, 1986).

1.1.1. Cell Cvcle and Tumour Growth :

The cell cycle is characterized by different phases of growth and reproduction of 

cell constituents (Figure 1). The principal phases in cancer cells do not differ from 

those of normal cells and involve replication and distribution of DNA among the 

progeny. Two important stages which occur during the cell cycle

(1) Interphase : Consisting of three specific parts or intervals.

a. Gao 1 ( G 11 : The interval between conclusion of mitosis and onset of S 

phase. During this interval RNA and protein synthesis occur and both 

accumulate in the cytoplasm.

b. S phase (synthesis phase) : In this phase DNA replication occurs ; protein 

synthesis in this phase is predominantly in the nucleus.

c. Gap 2 ( G2)  : The interval between the end of S phase and the onset of the 

next mitosis. In this interval cells complete their growth.

(2) M phase ( mitosis ) :

This phase involves four stages, the prophase, metaphase, anaphase and 

telophase. During these the nuclear membrane is broken up and the chromosomes
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condense, line up and sort themselves into two identical sets at either end of the cell. 

Later the cell divides into two daughter cells. The entire cell cycle takes about 10 -  24 

hours of which only one hour is required for mitosis.

In a mass of tumour cells we can see different phases of the cell cycle in different 

growth stages. This is important in cancer chemotherapy because some antineoplastic 

drugs act specifically against actively dividing cells. For this reason chemotherapy is 

more useful in the early stages of disease than in the later stages.

Tumour cells grown in culture show Gompertzian growth characteristics, i.e. 

rapid in the beginning, becoming slow due to decrease in nutrition ( Figure 2 ). In 

vivo the diagnosis of certain tumours may be helped using tumour markers, for 

example a patient with lung cancer may develop Cushing's syndrome due to secretion 

of ACTH and hence cortisol, or hyponatraemia due to increased antidiuretic hormone 

secretion. Monitoring of these markers can be important in case of follow up of 

patients, since a decrease in hormone levels may indicate a response to the therapy 

(Caiman et al. , 1980 ; Moore, 1975). A number of proteins, eg. Alpha fetoprotein 

and Carcinoembryonic antigen are also produced by certain malignant tissues and 

may be used to plot the progress or remission of disease.

1.1.2. Treatment of Cancer :

In an Egyptian Papyrus ( 3,000 to 2,500 B .C.) there is a record of eight cases of 

breast cancer which were treated by cauterization. Ancient Egyptian people tried to 

cure cancer using drugs, but with no recorded successes. No more substantial 

progress was made until 1900 when x-rays were used successfully for leukaemia and 

other cancers by inducing remission ( Bett, 1957 ). In a famous accident in World 

War n, a bomb from an American ship released Nitrogen mustard gas as it sank. The
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dead and the surviving sailors were found to have developed marked leucopaenia 

(Levitt et al.. 1979). It was surmised that this compound could be used to treat 

leukaemia, and by 1946 Nitrogen mustard had been introduced into clinical practice.

Previously the main methods for cancer treatment had been surgery and 

radiotherapy. In 1947 the antifolate aminopterin was used to treat leukaemia, 

followed by the production of methotrexate in 1949, 6 -mercaptopurine in 1952 and 

the anti tumour antibiotic actinomycin D in 1954 . From 1955 until the present 

numerous cytotoxic agents such as antimetabolites, alkylating agents and antitumour 

antibiotics with significant antitumour activities have been discovered ( Souhami and 

Tobias, 1986).

The main pharmacological characteristics of cytotoxic drugs in the treatment of 

malignant disease are the narrow therapeutic index, i.e. there is very narrow gap 

between an effective and a lethal dose, the very small doses required, the fact that 

they are often unstable, with a wide variety of metabolic pathways, and finally that 

most of them are effective only at certain stage of the cell cycle. The routes of 

cytotoxic drug administration are determined by their stability, solubility and toxic 

effect ( Caiman et al.. 1980 ).

1.1.3. Cancer Chemotherapy :

The anticancer drugs can be classified into five main groups with each group 

being subdivided into sub-groups of several drugs used for the treatment of different 

cancers. These groups are antimetabolites, alkylating agents, natural products, 

hormones and miscellaneous agents ( Table 1 ). The anticancer antibiotics are a sub­

group of the natural products which involve different cytotoxic agents ( Table 2 ).



Table 1:

Grouping of Anticancer Drugs :

Group Sub-group

I. Antimetabolites a). Nucleic acid antagonists.

1. Purine antagonists.

2. Pyrimidine antagonists.

b). Folic acid antagonists.

II. Alkylating agents a). Nitrogen mustards.

b). Nitrosourea.

III. Natural products a). Mitotic inhibitors 

(Vinca alkaloids)

b). Antitumour antibiotics.

c). Enzymes.

IV. Hormones a). Steroid hormones.

b). Polypeptide hormones.

c). Anti-oestrogens.

d). Anti-androgens.

V. Miscellaneous 

agents.

a). Platinum complexes.

b). Hydrazine derivatives.

c). Chelating agents.
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The anthracycline antibiotic doxorubicin is the most useful of these, because of its 

wide spectrum of activity which includes tumours of childhood, adult solid tumours 

and lymphomas. Small cell bronchogenic carcinoma, adenocarcinoma of the ovary 

and breast and soft tissue sarcomae have all been treated using this drug.
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1.2. DOXORUBICIN :

1.2.1. Discovery :

The antineoplastic agent doxorubicin ( DOX ) C 2 7  H2 9  O jj N also known as 

adriamycin, is one member of more than 500 of the anthracycline group of 

antibiotics. Arcamone et al.. ( 1969 ) first synthesized it from the fermentation 

process of the fungus Streptomvces peucetius var caesius. They described it as the 

14-hydroxyl derivative of the anthracycline antibiotic daunorubicin.

1.2.2. Structure and Chemistry :

The structure of doxorubicin is shown in figure 3. It has a molecular weight of 

579.9 daltons. The molecule is composed of three distinct sections which interact 

with each other. The first three rings comprise a substituted anthraquinone structure 

attached to a substituted cyclohexenyl ring forming a tetracycline ring structure. The 

remaining part of the molecule is the unusual amino sugar daunosamine which is 

attached to C7 of the cyclohexenyl ring through a p-glycosidic linkage.

The molecular structure of the anthraquinone nucleus indicates that the first and 

third ring structure of this molecule could be involved in most of its chemical 

activities due to the methoxy group at C4 of the first ring and the two hydroxyl 

groups on C6  and C ll of the third ring. Hydroxyl substitution may be of the most 

importance in the case of one electron reduction producing a semiquinone. The 

hydroxyl protons of the third ring form hydrogen bonds with the quinoid oxygen on
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Figure 3 : Molecular structure of doxorubicin
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the second ring. The molecular and electronic structure of the doxorubicin 

anthraquinone nucleus are changed by this hydroxyl substitution ( Gianni et al.. 

1983 ), ( see 1.2.3.4. ).

The fluorescence emission spectrum of doxorubicin peaks at 520 -  620 nm at the 

two excitation wave lengths, 253 and 485 nm. The ultraviolet spectrum maxima of 

doxorubicin in methanol are at 233, 253, 290, 477, 495, and 530 nm.

1.2.3. Biochemical Effects of Doxorubicin :

The quinone and hydroquinone moietes on adjacent ring structures in the 

doxorubicin molecule are available for a number of molecular interactions which may 

have biochemical and pharmacological relevance. Of interest and great importance is 

the ability of doxorubicin to interact with cellular macromolecules such as DNA and 

cellular membranes. Those and other activities are due to the special ability of 

doxorubicin molecules in biological systems to act as metal ion chelators, undergo 

redox cycling and act as bioalkylating agents.

1.2.3.1. DNA Interaction :

DiMarco and Arcamone, ( 1975 ) noticed that the doxorubicin chromophore 

concentrated in the nuclei and stained the chromosomes of cell cultures forming a 

DOX-DNA complex, with a number of changes in the physico-chemical properties of 

both reactants seen. The most important changes are the progressive hypochromicity 

and a bathochromic shift of doxorubicin ( Porumb, 1978 ). Due to intermolecular
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charge transfer between the base pairs and the quinone chromophore, a new 

absorption maximum at 505 nm appears (Figure 4), and there is also fluorescence 

quenching ( Figure 5 ) ( Manfait et al.. 1982 ). As a result, the doxorubicin 

chromophore is removed from solution and the hydroxyl and quinone groups of the 

two adjacent rings are not available for reaction ( Patel et al.. 1981).

For DNA the intercalation process decreases its sedimentation coefficient, 

increases its solution viscosity and its melting temperature and reduces its coiling 

properties ( DiMarco and Arcamone, 1975 ). The drug causes unwinding of 

supercoiled closed circular DNA ( Bauer and Vinograd, 1970).

1.2.3.1.1. DNA Intercalation Process ( Figure 6 ) :

Pigram et al.. ( 1972 ) suggested that the antibiotic chromophore is inserted 

between the adjacent base pairs with extensive reciprocal overlap. The amino sugar 

moiety sits in the major groove of DNA double helix with its charged amino group 

close to the second phosphate anion from the intercalation site. In (1980) Quigley et 

al., produced evidence that the location of daunosamine sugar was in the minor 

groove of the DNA double helix. Nakata and Hopfinger, (1980 a&b ) ;  Patel et al.. 

(1981) confirmed the orientation of the drug perpendicular to the plane of the base 

pairs with the location of sugar ring in the minor groove of double helix. They 

proposed that in the major groove intercalation the anthraquinone ring is nearly 

parallel to the base pairs.

Phillips and Roberts ( 1980 ) using NMR found that the two middle rings of the 

drug overlap with the adjacent base pairs of the DNA double helix, while the first ring 

projects through the intercalation site. The cyclohexenyl ring also protrudes out of the 

intercalation site but in the opposite direction to the first ring. These authors also
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proved that the major and minor groove models of intercalation differ only in the 

orientation of the cyclohexenyl ring to the hydrogen bond of the base pairs and the 

extent of the interaction between the charged amino sugar and the DNA phosphate 

group. Dorr and Alberts, ( 1982 ) said that in the intercalation process the amino 

sugar of doxorubicin interacts either with the nearest phosphate group, or with the 

one from the DNA nucleotide removed aside from the site of intercalation by the 

doxorubicin-chromophore, causing separation of stacked base and uncoiling of the 

DNA double helix. Moreover in the intercalation process the helix becomes bent, 

slightly elongated and stiffened at the site of doxorubicin intercalation ( Reinert, 

1983).

Stabilization of intercalation depends on the amino group of the daunosamine 

sugar and is decided by both the charge on amino sugar moiety and the position of the 

charged amino group ( Neidle, 1978 ; 1979 ). This was supported by the finding of 

DiMarco ( 1975 ) ;  Capranico et al.. ( 1989 ) that there are three interactions shared 

in the stabilization of drug-DNA complex. First, the electrostatic interaction between 

the protonated amino group of daunosamine and the ionized phosphate group of the 

base pairs. Second, the hydrogen bonds between the cyclohexenyl ring of the 

anthraquinone and the base pairs. Third, the intercalation processes represented by 

the weak hydrophobic stabilization between the intercalating molecule and the 

adjacent base pairs. While Manfait et al.. ( 1982 ) added that the phenolic groups of 

doxorubicin were also involved in drug-DNA intercalation interaction stabilisation.

The uptake of cytotoxic drugs that inhibit DNA function occurs throughout the 

regenerative cell cycle and reaches its maximum during DNA duplication, i.e. the 

maximum doxorubicin toxicity occurs during the S phase of the cell cycle ( Kim 

and Kim, 1972 ; Barranco et al.. 1973 ; Barranco, 1975 ; Kimler and Cheng, 1982). 

DiMarco, ( 1975 ) believed that in the case of tumours, the inhibition of nucleic acid 

synthesis in the intact cells prevents cell proliferation and provides the permanent 

antitumour activity of doxorubicin while inhibition of DNA synthesis in different 

mouse tissues occured within one hour of treatment ( Formelli et al.. 1978 ). Hixon
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et al.. ( 1981 ) showed that mitochondrial DNA synthesis is more sensitive to 

doxorubicin inhibition than that of the nucleus and suggested that this is one of the 

causes of its cardiotoxicity.

Ross and Smith, ( 1982 ) ;  Bellamy et al.. ( 1988 b) suggested that doxorubicin 

can easily produce single and double strand breaks in DNA in addition to DNA - 

protein cross-links, and these may decide the doxorubicin cytotoxicity. DNA repair is 

inhibited by a high intracellular concentration of this drug even when the external 

doxorubicin concentration is reduced by changing the medium. Durand and Olive, 

(1981) proposed that doxorubicin could easily produce significant inhibition of DNA 

synthesis but that significant DNA strand breakage was dose-dependent. They added 

that at low dose the intercalation prevented strands separation and inhibited DNA 

polymerase activity.

Graves and Krugh , ( 1983 ) found that doxorubicin was bound to DNA in a 

cooperative manner according to the ionic concentration, and that this binding 

enhanced its biological activity. This type of intercalation happened only with DNA of 

B-form because of the steric factors, B-DNA has a large radius compared with the 

other forms ( A-DNA, Z-DNA ). B-DNA is predominant in active genes, in contrast 

to the others which are found in the inactive regions ( Chen et al.. 1983 ).

Finally intercalation in vivo involves two further types of interaction : i) frame 

shift misincorporation ( mutation ) and ii) the production of single base substitution 

(Shearman and Loeb, 1983 ; Shearman et al.. 1983). The first one occurs as addition 

and deletion of nucleotides during DNA replication caused by the intercalator.

In an important human clinical study Unverferth et al.. ( 1983 ) observed that 

four hours of doxorubicin pretreatment induced contraction, segregation, and ring 

formation in the nucleoli of human endomyocardial cells. Clumping of chromatin was 

also seen in case of continued doxorubicin therapy as were morphologic signs of 

decreased RNA and Protein synthesis.
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I.2.3.2. Membrane Binding:

Doxorubicin has a high affinity of binding to cell membranes causing significant 

changes in their structure and functions ( Murphree et al.. 1976). This high affinity 

led Burke and Tritton ( 1985 ) to suggest that the cell membrane acts as a prime target 

site for the cytotoxic action of the drug, and the high affinity of doxorubicin for 

phospholipids suggests location in the lipid domains of biomembrane. This supported 

the idea of Manfait and Theophanides ( 1983 ) that cell death due to plasma 

membrane damage could be due to doxorubicin interaction with the cellular 

membrane protein and / or with the phospholipid domain. This binding plays an 

important role in one form of anticancer activity and also in the cardiotoxicity of this 

drug ( Tokes et al.. 1982 ; Tritton and Yee, 1982 ). The phospholipids cardiolipin 

and phosphatidyl serine provide the best membrane sites for doxorubicin binding 

(Gianni et al.. 1983). These two phospholipids differ from others by bearing a 

negative charge. Phosphatidyl serine has a single negatively charged carboxylic acid 

group, while cardiolipin has two negatively charged phosphate groups; doxorubicin 

is capable of binding to these negatively charged phospholipids via its protonated 

amino sugar group ( Goormaghtigh et al.. 1980 a&b ).

Henry et al.. ( 1985 ) suggested that in addition to the above mechanism there is 

binding of the embedded dihydro-anthraquinone moiety of the drug in the 

phospholipid bilayer of the membrane. Karczmar and Tritton, ( 1979 ) concluded that 

hydrophobic interaction dominates the interaction of uncharged membrane 

phospholipid, phosphatidyl choline, with doxorubicin. Therefore according to the 

above explanation, cardiolipin has greater affinity for doxorubicin than Phosphatidyl 

serine and that has special importance in the development of cardiotoxicity because 

cardiolipin ( the name is related to its cardiac localization ) is the major lipid 

component of inner mitochondrial membranes ( 2 0 % of the lipid component) which 

are mainly localized in the heart tissues. ( Tritton et al.. 1978 ). This phospholipid is 

important for mitochondrial function because most respiratory chain enzymes require
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it for their full activities. The interaction of doxorubicin with that phospholipid could 

therefore be one of multisite effects on that chain ( Goormaghtigh and Ruysschaert, 

1984). Moreover cardiolipin is normally a minor cell membrane component, but it is 

increased in some tumours upon malignant transformation which could explain the 

susceptibility of such tumour cells to doxorubicin ( Gianni et al.. 1983 ; 

Goormaghtigh et al.. 1980 a ), and could be the common site for both the antitumour 

activity and cardiotoxicity of doxorubicin. Schlager and Ohanian, (1979 a& b) 

produced evidence of the effect of doxorubicin on cardiolipin synthesis. They found 

that cardiolipin was lost from the cell membrane in doxorubicin pretreated cells and 

they were unable to resynthesize it. The loss leads to the impairment of membrane 

function. This was supported by the finding of Okano et al.. ( 1984 ) that 

doxorubicin produced about 50% inhibition in the phospholipid synthesis of cardiac 

cells in tissue culture. They found that Phosphatidyl choline was the most sensitive to 

inhibition followed by cardiolipin and this could alter membrane fluidity and function. 

In addition Jain , ( 1984 ) found that, as a result of lipid peroxidation, the 

organization of the phospholipids phosphatidyl choline and phosphatidyl 

ethanolamine in the membrane changed, leading to altered membrane fluidity and 

function and possible cell damage.

Two, groups, Tritton and Yee, ( 1982); Tritton et al.. ( 1983 ) and Tokes et al.. 

( 1982) concluded that doxorubicin could produce a cytotoxic effect at the level of the 

tumour cell membrane without the need to penetrate the cell. This work is supported 

by Wingard et al.. ( 1985 ) who used immobilized doxorubicin on cross-linked 

polyvinyl alcohol and found that cytotoxicity occurred under conditions of no 

detectable intracellular doxorubicin. Moreover they found that the immobilized 

doxorubicin was more lethal than free doxorubicin and they related that to the spacer 

arm between the immobilized drug and the support, in addition the linkage between 

doxorubicin and membrane allowing enough time for the drug to interact with the cell 

surface, producing changes in the membrane fluidity.



38

As already explained, doxorubicin membrane binding is due to ionic binding of 

the positively charged amino group of daunosamine sugar moiety and the negatively 

charged phospholipid. While movement of doxorubicin into the cells occurs passively 

as a simple diffusion transport of the unionized form through the membrane lipid 

(Dalmark and Storm, 1981 ; Dalmark and Hoffmann, 1983). It is clear that 

doxorubicin binds to the cell membranes when protonated, the pKa of sugar amino 

group moiety of doxorubicin is within the physiological range ( Dalmark, 1981 ; 

Dalmark and Storm, 1981 ). In addition the pH of tumour cells is somewhat low, 

about 6.3 compared with that of normal cells 7.2 -  7.4, and at low pH the unionized 

doxorubicin that passes into the cell can be easily protonated and reactivated ( Vaupel 

et al.. 1981 ). While the passage of doxorubicin across the normal cell membrane in 

both directions is governed by four factors: the pH of the cells ; the binding of the 

charged portion of doxorubicin to the cellular constituents; the amount of dimerization 

and complex compound formation ; and lastly the environmental temperature 

(Siegfried et al.. 1985). Moreover in the resistant tumour cells the efflux of 

doxorubicin is also regulated by an energy-dependent active transport mechanism 

(Supino et al.. 1988).

1.2.3.3. Metal Chelation :

Hydroxyquinone compounds such as doxorubicin are able to form stable metal 

complexes with a variety of metal ions ( Dabrowiak, 1980 ). Two complexes of 

doxorubicin are of special importance, these formed with copper and with iron. 

Mailer and Petering , ( 1976 ) ; Mikelens and Levinson, ( 1978 ) ; Phillips and 

Carlyle, ( 1981 ) state that copper can function in vivo as a cofactor for the binding 

of doxorubicin to DNA ; this requires the assumption that copper binds to the DNA 

phosphate on one side and to doxorubicin on the other.
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The doxorubicin-Fe3+ complex is more stable than other metal complexes 

because of the three charges on the ferric ion and can undergo redox cycling when 

physiological reducing agents ( such as reduced glutathione ) are present, forming 

superoxide, hydrogen peroxide and hydroxyl radical ( Myers et al.. 1982 ). In spite 

of the high stability of the doxorubicin-iron complex, the drug can intercalate between 

the DNA base pairs by releasing the iron. The free drug produces high antitumour 

activity by DNA destruction ( Beraldo et al.. 1985 ). Lipid peroxidation by 

doxorubicin is catalysed in the presence of ferrous ions, that facilitate free radical 

production ( Kappus et al.. 1980 ). Other binding processes between doxorubicin
9+  9+and DNA are facilitated in the presence of Cu or Fe and become more stable than 

any intercalative mode of binding ( Mikelens and Levinson, 1978 ). The iron - 

chelation site on doxorubicin is between the hydroxyl at Cl 1 and the carboxyl at C12 

(Muindi et al.. 1984 ; 1985 ), so the intact C ll  hydroxyl of doxorubicin and other 

anthracyclines is essential for iron binding and DNA damage.

According to the conclusion of Hibbs et al.. ( 1984 ) the iron requirement of 

rapidly dividing cells is very high. Iron depletion due to doxorubicin interaction will 

affect tumour growth and contribute to cytotoxicity. Although doxorubicin produces 

mitochodrial lipid peroxidation in the presence of NADH as a reducing agent and 

under the iron requirement ( Mimnaugh et al.. 1985 ), doxorubicin-iron complex can 

initiate lipid peroxidation directly without the need of exogenous reducing agents 

(Gutteridge, 1984).

I.2.3.4. Redox Behaviour and Free Radical Formation :

A second biochemical activity of doxorubicin, involved in both its antitumour 

activity and cardiotoxicity, is its redox behaviour leading to free radical production. 

Doxorubicin can easily undergo one electron reduction forming a semiquinone, and
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two electron reduction forming a dihydroquinone ( Figure 7).

One electron reduction of doxorubicin to the semiquinone can occur either 

spontaneously at physiological pH ( Pietronegro et al.. 1974 ), or is catalyzed by 

flavin centered oxidoreductases such as cytochrome P-450 reductase or xanthine 

oxidase ( equation 1) (Bachur et al.. 1977 ; Pan and Bachur, 1980 ; Pan et al.. 

1981).

NADPH + 2 Q Quinone reductase > NADP+ + 2 Q" +H + ( 1)

The semiquinone is aerobically reoxidized forming the parent molecule and the 

superoxide anion ( equation 2  ) which is not reactive by itself, but can undergo 

several reactions forming hydrogen peroxide ( equation 3 ), and hydroxyl radical by 

the reaction of hydrogen peroxide with the doxorubicin semiquinone ( equation 4 ) 

(Sawyer and Valentine, 1981 ; Rowley and Halliwell, 1982 ; Bates and Winterboum, 

1982 ; Kalyanaraman et al.. 1984).

Q + O2  ---------------> Q + O2  ( 2 )

2*02" + 2 H+ --------------- > 0 2  + H2 0 2  ( 3 )

Q' + H2 0 2 --------------> Q + HO" + OH ( 4 )

The two last reactions which involve the production of hydrogen peroxide and 

hydroxyl radical can occur spontanously and are accelerated by superoxide 

dismutase. The hydroxyl radical can also be produced from hydrogen peroxide via 

catalysis of the iron salts, ( equations 5, 6  ) ( Muindi et al.. 1985 ; Thomalley and 

Dodd, 1985 ).
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Fe3+-X + Q" ------ -------- > Fe2+-X + Q ( 5 )

Fe2+ -X  + H 20 2 ----------------- > Fe3+ -  X + H O ' + ' O H  ( 6 )

Gianni et al.. ( 1985 ) found that the doxorubicin - iron complex was not stable 

because of electron transfer from the drug to the iron forming a doxorubicin-free 

radical and ferrous ions ( Fe2+ ). This iron reacts with oxygen forming hydrogen 

peroxide or reacts with hydrogen peroxide forming hydroxyl radical. Thus, 

doxorubicin induced cellular injury can be due to either hydrogen peroxide production 

or hydrogen peroxide and superoxide mediated hydroxyl radical production under the 

catalytic activity of iron. Cellular injury can be established by the superoxide radical 

itself and also after secondary radical production ( Figure 8  ) ( Bulkley, 1987 ).

Normally there is a low free iron concentration in the cell and all of it seems to be 

chelated by doxorubicin itself ( Jones et al.. 1980 ). However Myers et al.. (1982) 

produced evidence that the doxorubicin-iron complex can catalyze hydroxyl radical 

production. The oxidizing agent hydrogen peroxide and the hydroxyl radical cause 

DNA strand cleavage and membrane lipid peroxidation ( Lown et al. , 1977 ; 

Fridovich , 1978 ; Mason , 1979 ; Yamauchi et al.. 1989 ). Sugioka et al. , ( 1981 ) 

concluded that lipid peroxidation is iron-drug complex dependent; in the absence of 

iron, the radicals produced do not cause lipid peroxidation. This is because of the low 

rate of hydroxyl radical production in the absence of the catalyst.

Hydroxyl radical has a short half life in the biological medium, and is active only 

near its formation site, thus localization of production of this radical near to the DNA 

is necessary for damage. This fact plays a critical role in doxorubicin cardiotoxicity 

(see 4.2) (Bachur et al.. 1977 ; Ogura et al.. 1979 ; Thayer, 1977).
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I.2.3.5. Bioalkvlation:

One-electron reduction of doxorubicin anaerobically produces the alkylating 

radical 7 -  deoxyaglycone and daunosamine ( Bachur et al.. 1977 ). This finding was 

supported by the work of Sinha et al.. ( 1984 ) that isolated rat liver nuclei in the 

presence of NADPH and under anaerobic condition produced doxorubicin- 

semiquinone free radicals which can alkylate nuclear DNA. Doxorubicin semiquinone 

can rearrange, the unpaired electron moving to carbon number 7 forming C7- 

aglycone radical and daunosamine ( Figure 9 ). These radical species derived from 

doxorubicin can easily alkylate cellular macromolecules such as DNA and protein or 

interact with themselves forming an aglycone dimer ( Sinha and Sik, 1980 ; Sinha 

and Gregory, 1981 ). Two electron reduction of doxorubicin produces C7-quinone 

methide which act also as an alkylating species ( Moore, 1977 ; Moore and Czemiak 

, 1981). Doxorubicin reduction and production of the C7-radical or quinone methide, 

with alkylation of DNA or protein, causes alterations in the stereochemistry of the 

sugar moiety and cyclohexenyl ring ( Malatesta et al.. 1984).

1.2.4. Doxorubicin Antitumour Activity :

In summary, the mechanisms of action of doxorubicin leading to inhibition of 

proliferation or cell death and its antitumour action are : i) effects related to DNA 

interaction; ii) effects related to membrane binding; iii) free radical formation ( Gianni 

et al.. 1983 ; Siegfried et al.. 1983 ).

In vitro the anticancer effect depends on the dose and time of exposure to the
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agent, while in vivo the situation is different due to processes of drug activation or 

inactivation and its half life, tumour extracellular environment, and drug diffusion 

between tumour cells, which depends on the tissue vascularization ( Tannock, 1968 ; 

Yesair et al.. 1980 ). Cancers are not homogeneous because of the different 

metabolic characteristics of different tissues of origin and biochemical heterogeneity 

(Fidler and Hart, 1982), however tumours differ in their ability to effect DNA repair 

(Erickson et al.. 1980) and in their superoxide dismutase, catalase, and glutathione 

peroxidase contents ( Marklund et al.. 1982).

Intercalation and / or binding of doxorubicin to DNA does not cause cell death by 

inhibiting DNA synthesis alone. Other cytotoxic effects of doxorubicin may be 

responsible in part, e.g. DNA damage, inhibition of polymerase and RNA synthesis 

(Momparler et al.. 1976 ; Schwartz and Kanter, 1981). Doxorubicin kills both 

dividing and non dividing cells, but has more activity against dividing ones 

(Barranco, 1975 ; Theiss et al.. 1977). Dividing cells are killed by the effects on 

DNA and RNA synthesis and non dividing cells as by inhibition of RNA synthesis 

alone ( Momparler et al.. 1976 ; Bachur et al.. 1978 ; Barranco, 1986 ). Killing of 

nondividing cells has special importance in tumour chemotherapy, because large 

fractions of solid tumour in vivo are composed of non dividing cells, however these 

cells accumulate less doxorubicin than dividing ones, and are less sensitive ( Durand 

and Olive, 1981 ; Bhuyan et al.. 1981).

There is evidence that tumour cells are more sensitive to doxorubicin when they 

are treated in an aerobic state than in the hypoxic condition ( Smith et al.. 1980 ; 

Tannock and Guttman, 1981 ; Bom and Eichholtz-Wirth, 1981 ), and that could be 

related to oxygen radical production. This may be another cause of lessened 

doxorubicin sensitivity in nondividing tumour cells, as the majority of cells in solid 

tumours in vivo are in a hypoxic state ( Dethlefsen, 1980). The greater killing effect 

on tumour cells in the presence of oxygen seems to be related to ATP production, 

since doxorubicin sensitivity has been shown to be increased as the intracellular ATP 

level increases ( Colofiore et al..l982 ). However Teicher et al.. ( 1981 ) ;  Kennedy
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et al., ( 1983 ) reported the opposite, that tumour cells are more sensitive to 

anthracyclines in hypoxic conditions in vivo. This contradiction seems to be due to 

the difference in tumour cell origin and possibly membrane integrity and emphasises 

the observed differences in response to doxorubicin of different tumours in vivo.

It has been observed that doxorubicin can kill tumour cells at a concentration 

which is less than that needed for inhibition of DNA synthesis ( Gianni etal.,1983 ). 

There are several possible mechanisms e.g. glutathione utilization or lipid 

peroxidation (see below).

1.2.5. Pharmacokinetics of Doxorubicin :

Knowledge of doxorubicin pharmacokinetics in man has established a basis for 

its distribution and localization in both healthy and malignant tissues in order to 

design a chemical control program against cancer in vivo. Doxorubicin is metabolised 

and cleared from the body through the redox pathway under the catalytic activity of 

the abundant cytoplasmic NADPH-dependent enzyme, aldo-keto reductase. This 

enzyme is widely distributed among different mammalian tissues ( Bachur et al.. 

1976 ).

1.2.5.1. Administration :

Doxorubicin cannot be administered orally because the acid pH of the stomach 

splits the glycosidic bond, resulting in an inactive aglycone ( Bachur et al.. 1976). 

The intravenous route is the preferred route for therapy in spite of its long terminal
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elimination half-life which is due to wide distribution into tissues such as heart 

(Calabresi and Parks, 1985). The incidence of cardiotoxicity has been shown to be 

lower in patients given the drug weekly in divided doses when there are lower peak 

plasma concentrations compared with an intravenous bolus every three weeks ( Dorr 

and Alberts, 1982 ). There are restrictions, due to local toxicity, when using different 

routes of drug administration, especially in the human. Intraperitoneal doxorubicin 

administration seems to be more effective in the treatment of certain types of 

neoplasm such as ovarian cancer ( Tobias and Griffiths, 1976). This may be due to 

delayed drug clearance, because of the large fluid volume using this route ( Dedrick 

et al.. 1978 ).

1.2.5.2 Distribution:

The vast array of tissue binding sites for doxorubicin ( 1.2.3.) causes prolonged 

antitumour activity after a single intravenous dose and minimises its plasma 

concentration ( Benjamin et al.. 1973 ; 1977 ). Doxorubicin pentrates rapidly into the 

heart, kidneys, lung, liver and spleen, but seems not to cross the blood-brain barrier 

(Calabresi and Parks, 1985). The therapeutic efficacy of doxorubicin when used 

systemically is decided by its penetration into sites of action, such as nuclei. The 

variation in the drug distribution between different organs and tissues in the same 

organism is related the density of nuclei per weight of tissue ( Terasaki et al.. 1984 ). 

There are also differences in doxorubicin concentration in different tumour tissues 

after treatment ( Ozols et al.. 1979 ), which are dependent on the route of drug 

administration. Cummings et al.. ( 1986 ) claimed that the long retention time of 

doxorubicin in different organs was due to the slow release of nuclear-bound drug 

from the tissues.



46

1.2.53. Metabolism :

Benjamin et al.. ( 1973 ; 1977 ) observed that doxorubicin is normally 

metabolised and cleared from the plasma after administration, with a mean elimination 

half-life of about 30 hours in the human ( rather long compared with other cytotoxic 

agents). Doxorubicin and its active metabolite doxorubicinol ( DOX-ol) are split by 

the activity of widely distributed microsomal glycosidases to inactive aglycones. 

These aglycones undergo demethylation and conjugation to sulphate or glucuronide 

esters and are excreted in the bile ( Bachur et al.. 1976 ; Cummings et al.. 1986 ). 

Weenen et al.. ( 1984 ) observed that there was a clear individual and species 

discrepancy in the case of doxorubicin metabolism. They related this to the specificity 

of the enzymes and the production of doxorubicin metabolites, especially alcohols, 

which are therapeutically active.

Six doxorubicin metabolites were separated from human plasma using thin layer 

chromatography ( Benjamin et al.. 1977 ); three aglycones and three other polar 

metabolites ( Figure 10 ). Doxorubicinol is the most active and both this metabolite 

and the parent drug could be reduced to inactive deoxyaglycone. Brenner et al.. 

(1985) were able to detect 7-deoxyaglycone in human plasma after doxorubicin 

administration, using thin layer and high performance liquid chromatography.

1.2.5.4. Excretion :

About 50% of doxorubicin and its metabolites are cleared in the urine, bile and 

feces within five days after intravenous administration. The remaining 50% seems to 

be retained by the body tissues ( Riggs et al.. 1977 ; Benjamin et al.. 1977 ). The 

polar metabolites appear in the urine in significant concentrations, in contrast to the 

small urinary concentration of aglycones, while significant amount of parent drug is 

excreted unchanged ( Calabresi and Parks, 1985 ).
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1.2.6. Doxorubicin Side Effects :

One of the most important problems in doxorubicin therapy is the development of 

side effects i.e. toxicity to normal tissues. Doxorubicin is toxic against normal 

proliferating tissues such as bone marrow, gastrointestinal epithelium ( presenting as 

stomatitis, nausea, vomiting and diarrhoea), hair follicles ( alopecia), skin (necrosis) 

and renal epithelium ( nephrotoxicity ). These effects are classified as acute 

doxorubicin toxicity. Doxorubicin also induces nephrotic syndrome, and dose 

dependent acute and chronic glomerular lesions ( Hall et al.. 1986 ), however the 

principle treatment-limiting side effect is cardiotoxicity ( Sikic et al.. 1985 ).

1.2.6.1. General Toxicity :

Doxorubicin toxicity involves impairment of several organ functions including 

heart and bone marrow. This happens shortly after treatment ( Bristow et al.. 1978 ). 

Doxorubicin induces suppression of bone marrow proliferative elements leading to 

leukopaenia ( Harris et al.. 1975 ).

Skin necrosis is one of the acute side effects that develops due to intradermal 

doxorubicin injection or its leakage subcutaneously in the perivascular space 

following intravenous injection. It begins as a small ulcer due to killing of some skin 

cells at the site of injection. The drug is then removed from the dead cells and taken 

up by those nearby and the lesion extends in width and depth and may reach to the 

bones or joints causing extravasation of the skin ( Gianni et al.. 1983 ; Averbuch 

ah, 1986).
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1.2.6.2. Cardiac Toxicity :

Doxorubicin accumulates rapidly in heart muscule and causes cardiotoxicity 

which may be acute or chronic according to the dose and duration of action. Lampidis 

et al.. (1981) observed nucleolar fragmentation which indicates a severe toxic effect. 

The full mechanism of the cardiotoxicity is not yet understood but is thought to be 

related to changes in membrane fluidity ( Goormaghtigh, et al.. 1980 a & b ).

1.2.6.2.1. Acute Cardiac Toxicity :

Symptoms depend on dose, the main symptoms are mild depression of 

myocardial function. Atrial or ventricular arrhythmias are seen within a few hours of 

doxorubicin treatment, which may develop due to a rise in plasma histamine or 

catecholamine concentration ( Unverferth et al.. 1982 ; Decorti et al.. 1989 ). 

Pericarditis and myocarditis have also been reported as symptoms of acute 

cardiomyopathy. These symptoms mainly develop in elderly patients and disrupt 

normal cardiac function ( Bristow et al.. 1978 ).

1.2.6.2.2. Chronic Cardiac Toxicity :

This type of toxicity is irreversible and dependent on the total doxorubicin dose, 

since the effects of the drug are cumulative ( Minow et al.. 1975 ). The main clinical 

signs of doxorubicin cardiomyopathy are biventricular failure, tachycardia, shortness 

of breath, distention of neck veins, hepatomegaly, cardiomegaly and pleural effusion 

( Von Hoff et al.. 1979 ). The development of congestive heart failure is dependent 

on cumulative dose. The dose rate of doxorubicin administration in which there is
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risk of the development of congestive heart failure is about 500 to 550 mg 

doxorubicin / m2  body surface area ( Belli and Piro, 1977 ; Minow et al.. 1977 ; 

Sallan and Clavell, 1984 ). The latency period and risk of developing heart failure 

varies depending on the general condition of the patient, including the age ; young 

adults are more tolerant to cumulative doses than the aged and small children (Von 

Hoff et al.. 1979 ; Brockmeier et al.. 1984 ; Sallan and Clavell, 1984). Another 

factor which facilitates development of congestive heart failure in doxorubicin 

treatment is previous mediastinal irradiation ( Belli and Piro, 1977 ; Billingham et al.. 

1977 ; Praga et_ah, 1979 ; Von Hoff etah, 1979).

Doxorubicin cardiomyopathy begins before the development of congestive heart 

failure and is most severe in the left ventricle and intraventricular septum and less so 

in the right ventricle and both atria ( Van Vleet et al.. 1980).

Microscopically, human myocardial tissues that develop chronic doxorubicin 

cardiomyopathy are characterised by vacuolar degeneration of the cardiac cells. This 

is due to distention and swelling of the sarcoplasmic reticulum with interstitial edema 

and myofibrillar lysis. The mitochondria remain intact and degenerate after the death 

of myocytes ( Suzuki et al.. 1979 ). Rahman et al.. ( 1982 ) described ultrastructural 

changes in the cardiac tissues of mice after doxorubicin administration, which 

included loss of myofibre elements, mitochondrial damage, swelling of sarcoplasmic 

reticulum, increased myeloid body accumulation and some nuclear abnormalities. 

Mitochondrial damage is due either to membrane lipid peroxidation, irreversible 

depletion of its proteins because of polymerase inhibition, or inhibition of coenzyme 

Q1 0  ( a key enzyme of oxidative phosphorylation ) ( Ferrero et al.. 1975 ; Folkers £t 

ah, 1977 ).

The mechanisms by which doxorubicin produces cardiomyopathy can not be 

separated from its biological activity as an antineoplastic agent. Cardiac mitochondria 

and sarcosomes form superoxide anion in the presence of doxorubicin ( Doroshow 

and Reeves , 1981 ). These are the most prominent sites for doxorubicin injury , and
9 ,

are also the intracellular organelles regulating Ca which is utilized by the contractile
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protein. Disrupted calcium regulation is related to the development of cardiomyopathy 

( Bachmann and Zbinden , 1979 ; Gianni et al.. 1983 ; Revis and Marusic , 1979 ). 

Jensen , ( 1986) suggested that in chronic doxorubicin cardiomyopathy the ability of
r\.

sarcoplasmic reticulum to sequester Ca is impaired, causing intracellular buildup of
9+this ion and cell death. Ca deficiency occurs only in the cells that are still

9-*-functional. There is impairment of Ca release from sarcoplasmic reticulum at the 

beginning of systole due to restriction on its gain during related diastole ( Jensen , 

1986 ).

Cardiac tissue contains little superoxide dismutase compared with others and this 

makes the heart more susceptible to superoxide radical injury ( Doroshow et al.. 

1979 ) ; cardiac tissues also have lower catalase activity than others ( Revis and 

Marusic , 1978 ). These enzymes and glutathione peroxidase are capable of disposing 

of hydrogen peroxide which is a product of superoxide dismutase activity. It was also 

noticed that within 24 hours of doxorubicin treatment glutathione peroxidase reached 

its nadir level in cardiac tissue, and took about five days to recover ( Revis and 

Marusic , 1978 ; Doroshow et al.. 1979 ).

Olson et al.. ( 1980 ) studying cardiac cells, noticed that doxorubicin caused an 

acute reduction in the reduced form of glutathione ( GSH ) and concluded that GSH 

may play an important role in the protection of the heart against doxorubicin 

cardiotoxicity. Fabregat et al.. (1984 ) suggested that doxorubicin cardiotoxicity is 

due to its interaction with the SH groups of certain enzymes. They also concluded 

that heart tissues contain low GSH level in comparison with others, nevertheless it is 

still the main SH-protecting compound in the cardiocytes. Heart tissues are therefore 

highly susceptible to radical injury by doxorubicin.

Finally, there is evidence that doxorubicin reaching the heart is metabolically 

reduced to doxorubicinol in cardiac tissues by the activity of reductase enzyme ( Von 

Wartburg and Wermuth, 1980). This metabolite was found to be associated with the 

cardiotoxicity of doxorubicin ( Tacca et al.. 1985 ).
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1.2.6.3. Lipid Peroxidation :

Doxorubicin induces lipid peroxidation, an oxygen-dependent deterioration of 

unsaturated fatty acids under the influence of free radicals such as superoxide and 

hydroxyl radicals. This is accompanied either by physiological processes such as 

changes in prostaglandin synthesis in aging, or pathological processes such as liver 

injury due to certain chemical agents ( Sevanian and Hochstein, 1985 ). Biologically 

three events must be considered at the level of the cell membrane as a result of lipid 

peroxidation. First is the impairment of membrane enzymes and loss of function. 

Second is inactivation of cell organelles due to attack of highly active free radicals 

produced. Third is the production of certain cytotoxic compounds such as aldehyde 

through membrane lipid peroxidation processes ( Esterbauer, 1982).

The first step in lipid peroxidation chain of unsaturated fatty acid in biological 

systems is the initiation of lipid radicals in the presence of free radicals ( such as 0 ~ 2  

and O H ) ( equation 1).

RH + Free radical----------------- > R* (1 )

The second step involves the combination of lipid radical with molecular oxygen 

forming lipid peroxy radical ( equation 2 ).

R + 0 2    ̂ R02  ( 2 )

This lipid peroxy radical can attack another unsaturated lipid molecule forming 

lipid hydroperoxide and a lipid radical which can initiate another reaction ( equation 

3).

*R02  + RH ■> ROOH + *R ( 3 )
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Lipid hydroperoxides are unstable and can be easily decomposed under the 

catalytic activity of metal ions such as iron, producing new lipid peroxy and alkoxy 

radicals which also can initiate another peroxidation chain ( equations 4 and 5 ).

Fe2+ + ROOH --- > 'RO + OH' + Fe3+ ( 4 )

Fe3+ + ROOH --- > R0 2  + H+ + Fe2+ ( 5 )

On the other hand ferrous ions can interact directly with the molecular oxygen 

forming hydroxyl radical or other reactive radicals ( equations 6 ,7  and 8  ).

Fe2+ + 0 2   > Fe3+ + 0 ' 2  ( 6 )

2*0~2  + 2 H+ ---------------- > H2 0 2  + 0 2  (7  )

H2 0 2  + Fe2+ ---------------- » 'OH + OH" + Fe3+ ( 8  )

These radicals can easily initiate lipid peroxidation in biological and non biological 

systems by abstraction of hydrogen atoms from unsaturated fatty acids ( equations 3 , 

9 , and 10 ).

RO + RH --------- > ROH + R ( 9 )

OH + RH ----------> H20  + R (10)

( Fridovich and Porter , 1981 ; Esterbauer, 1982 ; Gutteridge , 1984 ; Sevanian 

and Hochstein , 1985 ).

In these instances semiquinone radicals of doxorubicin can initiate lipid
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peroxidation by the radical species derived from semiquinone autoxidation such as 

superoxide, hydrogen peroxide and more likely hydroxyl radicals. All of these 

activated oxygen radicals are involved in membrane lipid peroxidation by 

doxorubicin, especially those lipids in the nuclear envelope. This occurs through the 

oxidation-reduction cycle mediated by membrane-bound NADPH: cytochrome P-450 

reductase which is abundantly available in the nuclear, microsomal and mitochondrial 

membranes ( Figure 11) ( Mimnaugh et al.. 1985 ).

Most peroxidation of lung microsomes seems to proceed non enzymatically while 

in liver the mechanisms are mainly enzymatic by alteration of protective agents against 

lipid peroxidation ( Sevanian et al.. 1982 ). Dietary vitamin E plays an important 

role in controlling lipid peroxidation of lung and liver microsomes ; lipid peroxidation 

in lung microsomes is less than that of the liver because vitamin E concentrations are 

higher in the lung ( Sevanian et al.. 1982 ). The endogenous antioxidant GSH 

inhibits radical activity ( Llesuy et al.. 1985 ; Mimnaugh et al.. 1985 ). But lipid 

peroxidation can also be inhibited by using exogenous agents which chelate metal 

cations. These results suggest that iron is intrinsically involved in the peroxidation of 

lipid ( equations 4 -  8  ) ( Kombrust and Mavis , 1980 ; Aust and Svingen , 1982 ).

Another finding is the impairment of Ca transport in doxorubicin treated mice 

(Llesuy et al.. 1985), and that was due to myocardial membrane lipid peroxidation 

which is occurs in the early development of cardiomyopathy.

In vitro and in vivo doxorubicin induces hepatic microsomal lipid peroxidation by 

stimulating NADPH dependent oxygen species. At the same time and as a result of 

that, doxorubicin produces impairment of the hepatic drug metabolism or hepatic drug 

monooxygenation due to compromise of both membranous and cytosolic enzymes 

such as cytochrome P-450 and glucose-6 -phosphate ( Mimnaugh et al.. 1981 ). 

Therefore more studies of doxorubicin and lipid peroxidation are required in order to 

improve the therapeutic efficacy and prevent or reduce related cardiotoxicity ( Myers 

et al.. 1977 ; Llesuy et al.. 1985 ).
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L2.6.3.1. Measurement of Lipid Peroxidation :

Methods for measurement of lipid peroxidation depend on determination of the 

decomposition products. The compound that gives most reproducible results for lipid 

peroxidation is malondialdehyde ( MDA ) which represents a common product of 

polyunsaturated fatty acid decomposition; it arises from fatty acid hydroperoxides 

during the processes of peroxidation.

Different techniques have been described for determination of MDA in tissues and 

biological fluids. Yagi et al.. (1968 ) were the first to produce an acceptable method 

which is still used nowadays. These methods are based on the reaction of MDA with 

thiobarbituric acid (TBA) forming a MDA-TBA adduct, which is measured 

spectrophotometrically or fluorometrically after its extraction into butanol ( Satoh, 

1978 ; Ledwozyw et al.. 1986).

HPLC methods for separation and fluorescence detection after MDA-TBA adduct 

formation have been described ( Bird et al.. 1983 ; Yu et al.. 1986 ; Therasse and 

Lemonnier , 1987 ) using reversed-phase. Wong et al.. ( 1987 ) adapted an HPLC 

method after acid hydrolysis for more sensitivity and reproducibility, but most 

methods of lipid peroxidation measurement are ultimately based on the Yagi method.

1.2.7. Minimizing of Doxorubicin Side Effects :

Several attempts have been made in the last few years to solve the problem of 

doxorubicin side effects and the interference with its antineoplastic activities. Legha 

et al.. (1982) reported that slow continuous intravenous infusion of doxorubicin will
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reduce its peak plasma levels thus reducing the amount of drug taken up by the 

cardiocytes but not by tumour cells. The end result is reduced acute cardiotoxicity and 

severity of nausea and vomiting. This result supported the idea of Bristow , (1982 ) 

that most of the acute cardiotoxicity is due to histamine , catecholamine and 

prostaglandin release such as occured following rapid drug administration. 

Raijmakers et al.. ( 1987 ) supported previous results and also proved that human 

bone marrow clonogenic cells when exposed to either low doxorubicin doses for a 

long time or large doses for a short time behaved as in vivo studies i.e. increased 

mortality in the second case.

Carnitine, a naturally occurring compound with high levels located in the heart 

tissues, plays a role in the long chain fatty acid transfer into heart mitochondrial 

matrix. There is evidence that this compound has a protective role against doxorubicin 

cardiomyopathy in mice and rats ( Alberts et al.. 1978 ; McFalls et al.. 1986).

Entrapment of doxorubicin in positively charged lipoprotein as shown by Rahman 

et al.. ( 1980 ; 1982 ) reduced acute and chronic cardiac damage in mice. This was 

due to reduction of the in vivo uptake of drug by cardiac tissues compared with the 

net doxorubicin and doxorubicin entrapped in negatively charged liposomes. This 

happened without any loss in the antitumour activity ( Rahman et al.. 1980 ; 1982 ). 

While Hynds ( 1986 ) reached the conclusion that entrapment of doxorubicin with the 

low density lipoprotein could increase therapeutic efficacy of this drug as a cytotoxic 

agent by increasing its pentration into the tumour since the tumour cell receptors were 

induced for this complex, and recently Jones et al.. ( 1989 ) found that incorporation 

of doxorubicin into controlled ion exchange microspheres can achieve significant 

concentration of the drug in the tumour tissue rather than the normal.

Okamoto and Ogura, ( 1985 ) proved experimentally that doxorubicin-lipid 

peroxidation could be blocked using tocopherol, coenzyme Q and riboflavin 

analogues. This was supported by the finding of Hino et al.. ( 1985 ) that 

doxorubicin reduced FAD levels and glutathione reductase activity, but this recovered 

following the administration of riboflavin-butyrate. Coenzyme Q 1 0  increases time
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survival of mice treated by doxorubicin ( Shinozawa et al.. 1984).

The most important deleterious effect of doxorubicin on the heart is the 

destruction of free radical scavengers which can repair the DNA damage produced in 

vivo ( Potmesil et al.. 1984). In vitro and in vivo alpha-tocopherol ( vitamin E ) has 

been investigated by several authors, and can delay or lessen cardiac toxicity in 

animal models by prevention of destructive peroxidation ( Mimnaugh et al.. 1979 ; 

Wang et al.. 1980 ). Another radical scavenger N-acetylcysteine ( NAC ), a 

sulfhydryl compound, was found to minimize lethality in mice when administered pre 

doxorubicin ( Doroshow et al.. 1981 ). This compound does not interfere with the 

chemotherapeutic effect of doxorubicin, but reduces or prevents lipid peroxidation 

and acts as a hydroxyl radical scavenger (Doroshow et al.. 1981). Although NAC 

protects the heart against doxorubicin and lessens cardiotoxicity in dogs ( Herman et 

al., 1985 ), NAC did not alter the acute nuclear effects on cardiocytes (1.2.6.2.1) 

when given to doxorubicin treated patients ( Unverferth et al.. 1983 ).

1.2.8. Resistance of Tumours to Doxorubicin :

One of the major obstacles in current cancer chemotherapy is the ability of tumour 

cells to develop resistance against anticancer chemotherapeutic agents (Griswold et 

al., 1981; Kaye and Merry, 1985). Such resistance may be either natural or acquired 

and tumour bulk may involve different clones of cells which have different drug 

sensitivities ( Heppner et al.. 1978 ; Shapiro et al.. 1981 ). This heterogeneity of 

drug response may be due to :
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(1) Changes in rates of transport of drug into and out of the cell.

(2) Changes in the ability to activate or deactivate the drug.

(3) Gene amplification and high molecular weight membrane glycoprotein 

production.

(4) Variability in DNA repair mechanism induced by the drug.

(5) The presence of alternative biochemical pathways for drug-inhibited metabolic 

steps.

( Lepage et al.. 1964 ; Barranco et al.. 1972 ; Barranco et al.. 1975 ; Biedler

al., 1975 ; Schimke et al.. 1978 ; Riordan et al.. 1985 ; Croop et al.. 1988 ).

In the case of doxorubicin treatment, resistance occurs due to:

(1) Reduced doxorubicin uptake by the tumour cells.

(2) Intracellular biochemical modifications leading to reduced drug-induced DNA

damage.

(3) Increased drug degradation at a site other than tumour e.g liver.

(4) High drug efflux, with low intracellular accumulation and binding.

( Capranico et al.. 1986 ; Vrignaud et al.. 1986 ; Bellamy et al.. 1988 b ;

Supino et al.. 1988 ; Gigli et al.. 1989 ).

Continuous exposure of doxorubicin-sensitive tumours to increasing drug 

concentrations can cause them to develop a doxorubicin resistant phenotype. Due to 

development of resistance, modifications of doxorubicin action and changes in its 

intracellular accumulation and distribution compared with the wild strain have been 

observed ( Supino et al.. 1986 ; Twentyman et al.. 1987 ; Supino et al.. 1988 ).

There is evidence that some solid tumours have more than one clone of tumour 

cells and that the clones have a different DNA content ( Barlogie et al.. 1978 ; 

Barranco et al.. 1982 ). This was confirmed by the finding of Schumann et al.. 

(1978 ) that some of these clones are killed or inhibited by the chemotherapy , while 

others within the same tumour are not affected. The non-affected clones increase 

during the same interval producing resistant cells which predominate causing the 

death of the patient.
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Several studies have proved that plasma membranes of tumour cells resistant to 

doxorubicin contain a phosphorylated glycoprotein P-180. This glycoprotein is not 

detected in doxorubicin-sensitive cells ( Garman and Center, 1982 ; Garman et al.. 

1983 ; Center, 1983 ; 1985 ). The same authors claim that doxorubicin resistance 

depends on P-180 availability, and that the biological activity of this glycoprotein is 

highly regulated by phosphorylation. They noticed that P-180 becomes inactive when 

it is superphosphorylated using N-ethylmaleimide or the calmodulin inhibitor 

trifluoperazine ; cells revert to drug-sensitive phenotype and retain the drug. 

Capranico et al.. ( 1986 ) clamed that membrane alteration is the only mode of 

doxorubicin resistance in tumours. Marsh and Center ( 1985 ) said that three 

glycoproteins of 20, 180 and 220 kilodaltons ( P-20 ; P-180 and P-220 ) were 

phosphorylated in doxorubicin-resistant plasma membrane and are either absent or 

present in very low amounts in the membranes of sensitive cells. Hamada et al.. 

(1987) involved membrane glycoproteins P-170 -  P-180 in the overall activity of 

cellular resistance. These glycoproteins were highly phosphorylated in membranes of 

cells which had reverted to drug sensitivity.

Inaba et al.. ( 1979 ) suggested that doxorubicin efflux mechanisms in resistant 

tumour cells are energy dependent. This agrees with results showing that treatment of 

revertant or inherently doxorubicin-resistant tumours with metabolic inhibitors such 

as sodium azide ( an oxidative phosphorylation inhibitor) or verapamil ( a calcium 

channel blocker ) or cyclosporin A ( an immunosuppressive agent) have a potential 

clinical role in overcoming drug resistance in human and animal tumours by inhibiting 

doxorubicin efflux or by altering the biophysical properties of the plasma membrane 

( Tsuruo et al.. 1983 ; Rogan et al.. 1984 ; Kessel and Wilberding, 1985 ; Merry et 

al-, 1986 ; Twentyman et al.. 1987 ; Bellamy et al.. 1988 a ; Supino et al.. 1988 ; 

Cairo et al.. 1989 ; Huber et al.. 1989 ). In addition Merry et al. ( 1987 ) showed 

that verapamil inhibits doxorubicin efflux by increasing intracellular binding and this 

was confirmed by the finding of Hindenburg e tal. ( 1987 ) that verapamil displaces
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doxorubicin from hydrophobic into the hydrophilic cellular components, reducing 

doxorubicin release.

Capranico et al.. ( 1986 ) and Supino et al.. ( 1986 ; 1988 ) stated that even 

though doxorubicin resistance appears to be related to low drug uptake and retention, 

there is only a weak relationship between intracellular doxorubicin concentration and 

cytotoxicity ; they found a difference in intracellular doxorubicin distribution shortly 

after treatment and noticed that the nuclear / cytoplasmic ratio seemed higher in 

sensitive than resistant cells while the number of DNA breaks was fewer in resistant 

tumour cells. Finally Chauffert et al.. (1986 ; 1987 ) found that the antiarrhythmic 

drug amiodarone and its main metabolite desethylamiodarone were more efficient and 

less toxic than verapamil when used at their maximal tolerated levels in reversing 

inherent doxorubicin resistance in rat colon cancer cells. The mechanism by which 

amiodarone reverses doxorubicin resistance seems to be similar to that of verapamil 

as a calcium channel blocker, but this needs more study, especially in tumours from 

human sources.

The other problems which need to be resolved in cancer chemotherapy are the 

absence of methods for measurement in vitro of tumour susceptibility to 

chemotherapy, and the effect of drugs on the intermediary metabolism of tumour 

cells.

The standard method for assessing resistance and sensitivity is the measurement 

of viability following treatment in vitro. Some of the available methods are a) 

measuring isotopic precursor incorporated into protein of the viable cells e.g [3 H]- 

leucine and [3 5 S]-methionine ( Merry et al. 1984 ; 1987 ) b) Determination of 

clonogenicity in soft agarose after doxorubicin treatment ( Shoemaker et al.. 1983 ; 

Louie et al.. 1986) c) Tetrazolium based chemosensitivity assay ( Ware, 1985 ).

The rapid measurement of markers of cell resistance and changes in these markers 

when tumour cells are treated by drugs could form the basis for tumour classification. 

The most important markers in case of anthracycline resistance are intracellular 

glutathione ; glutathione-S-transferase ; membrane fluidity and membrane
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glycoprotein. At present there is no clear idea of the exact mechanism of development 

of natural and acquired resistance against doxorubicin chemotherapy and the 

advantages - disadvantages of each of these markers.

The glutathione-S-transferases ( GST ) are a complex group of isoenzymees, 

widely distributed in man and different animal species. They are involved in several 

biological functions, with a central role in the biotransformation and elimination of 

xenobiotics and toxic metabolites, forming GSH conjugates ( Stockman et al.. 1985 ; 

Beckett and Hayes, 1987 ). In man three major types have been identified ( basic, 

neutral and acidic ) subdivided on the bases of their isoelectric point ( Mannervik, 

1985 ; Beckett and Hayes, 1987 ).

Increased levels of GST have been used as an indicator of primary tumour 

development ( Shea et al.. 1988 ). Acidic GST has been shown to be increased in 

some resistant tumours ( Fairchild et al.. 1987 ; McQuaid et al.. 1989 ), although 

this is not an invariable finding ( Meijer et al.. 1987 ). GST is however regarded as a 

readily measurable marker of tumour resistance or sensitivity ( Smith et al.. 1989 ). 

There is positive relationship between GSH and GST activity in the resistant tumour 

cells ( Evans et al.. 1987 ). Thus evaluation of GST and GSH could be of use as 

preliminary markers, both for cancer development and as an indicator of resistance 

against some chemotherapeutic agents.
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Glutathione is one of the most prevalent non protein thiol compounds which is 

present in all cells, both prokaryotic and eukaryotic at concentrations up to 10 mM. It 

is a tripeptide containing the important biological and biochemical active thiol group 

(-SH). The main building blocks of GSH are the three amino acids glutamate, 

cysteine, and glycine ( y-glu-cys-gly ). Two peptide bonds, two carboxyl groups 

and one each of amino and thiol groups are the main characteristic features of GSH 

molecule ( Figure 12 ) ( Kosower, 1976 ; Arrick and Nathan, 1984 ). This low 

molecular weight ( 307.3 daltons ) molecule contains many hydrophilic groups and 

has high aqueous solubility.

1.3.1. Tissue Localization of GSH and Its Clinical Importance :

GSH is present at variable concentrations in all mammalian tissues, most plant 

tissues and bacteria. It is the most abundant thiol reducing agent in mammalian 

tissues. Generally eukaryotic cells contain two pools of GSH , a large cytoplasmic 

pool and a smaller mitochodrial one which is obligatory for cell survival ( Gaetjens £t 

al., 1984 ). Among body tissues, liver contains the highest GSH concentration, 

kidney contains about one third of the liver GSH while cardiac muscle contains only 

about one tenth of that in liver. In all aging body tissues GSH concentration decreases 

due to enhanced oxidation or decreased synthesis and increased utilization in the 

removal of peroxides and detoxification of foreign compounds ( Hazelton and Lang, 

1980). Depletion of the cytoplasmic pool in itself would not be expected to cause cell
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death except when there is subsequent drain of mitochodrial GSH which is derived 

from the cytoplasmic pool ( Meister, 1984 ). Tumour tissues contain different GSH 

levels, which have been reported as low, moderate and high ( Murray et al.. 1987 ). 

These levels and the activity of glutathione-S-transferase enzyme in different tumour 

tissues play a crucial role in moderating the toxicity of certain compounds ( Gianni et 

al., 1983 ; Evans et al.. 1987 ). Increased GSH levels may protect cells against the 

free radical products induced by doxorubicin ( Doroshow et al.. 1979).

1.3.2. GSH Metabolism and Functions :

Understanding of GSH function comes through demonstrating its intracellular 

metabolism which is catalysed by different enzymatic reactions ( Figure 13 ). During 

these reactions the amino acids required for GSH synthesis are transported and the 

molecule is synthesized and degraded and extracellular shifting take place. The most 

important functions of GSH are :

(1) Action as a cofactor for reduction of protein and other disulfide linkages.

(2) Reduction of ribonucleotide to deoxyribonucleotide, the precursor of DNA.

(3) Protection of cells against the effects of free radicals and reactive oxygen 

intermediates by which GSH is converted to GSSG in a reaction mediated by 

glutathione peroxidase.

2 GSH + 2 Rd' ----------- > GSSG + 2 Rd“ + 2 H+

Rd* = Free radical.

In addition GSH interferes with the inter-organ transport of certain amino acids 

and also has the ability to inactivate a number of compound such as certain drugs
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forming GSH conjugates. Moreover in some enzymatic reactions GSH acts as a 

coenzyme for their activities ( Meister, 1983 ; 1984).

GSH synthesis occurs intracellularly under the catalytic activity of two enzymes: 

y-glutamyl cysteine synthetase catalyses the reaction between the amino acids 

glutamate and cysteine forming the dipeptide y-glutamyl-cysteine. This dipeptide 

reacts with the aminoacid glycine under the catalytic activity of glutathione synthetase 

producing GSH. These two steps of GSH synthesis need expenditure of energy 

which comes from the cleavage of two molecules of adenosine triphosphate (ATP) 

forming adenosine diphosphate ( ADP) ( Snoke and Bloch, 1954 ; Meister , 1974).

Breakdown of GSH involves several different steps. The first step is catalysed by 

the membrane bound enzyme y-glutamyl transpeptidase. This is a glycoprotein that 

interacts with GSH and other similar compounds forming y-glutamyl moiety and 

cysteinylglycine. The y-glutamyl moiety interacts with amino acids forming y- 

glutamyl amino acids in which cysteine and some neutral amino acids such as glycine 

and methionine are the more active acceptors. The dipeptide cysteinylglycine is 

enzymatically split to cysteine and glycine ( Allison and Meister, 1981 ; Thompson 

and Meister, 1975 ). y-glutamyl transpeptidase also catalyses the hydrolysis of GSH 

to glutamate and cysteinylglycine and the latter is broken down by the activity of 

dipeptidase to its corresponding amino acids ( Meister, 1981). The free amino acids 

and y-glutamyl amino acids can be freely transported into the cells.

y-glutamyl cyclotransferase converts y-glutamyl amino acids to 5-oxoproline by 

cyclizing the glutamyl moiety of that compound leaving the corresponding free amino 

acids. 5-oxoproline is converted to glutamate under the catalytic activity of an 

intracellular enzyme 5-oxoprolinase in an ATP dependent reaction ( Seddon et al.. 

1984; VanDerWerf etal., 1971).

The enzyme glutathione-S-transferase catalyses the reaction between GSH and 

electrophilic exogenous and endogenous compounds forming related GSH 

conjugates. These compounds are removed from the cells, being used as a substrates 

for y-glutamyl transpeptidase which converts them to S-substituted cysteinyl-glycines
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( CYS [XJ-GLY ). These substances are then converted to glycine and S-substituted 

cysteine ( CYS [X ]) by the catalytic activity of dipeptidase which can accept the y- 

glutamyl moiety of GSH forming y-glutamyl-cysteinyl(X) ( Griffith et al.. 1981). 

Intracellular acetylation of CYS(X) leads to mercapturic acid ( N-acetyl-Cys [X] ) 

which is excreted in the urine and faeces.

GSH must be supplied from the cells continuously because there is no evidence 

that it is synthesized exogenously, so it must be transported out of the cells. This has 

a role in protection of cell membranes against oxidative damage by maintaining 

essential -SH groups ( Larsson et al.. 1983 ). GSH is converted to GSSG 

intracellularly either by the action of selenium-containing glutathione peroxidase or 

glutathione-S-transferase or transhydrogenase.These enzymes catalyze the reduction 

of oxygenated intermediates as H2 0 2  and superoxide radicals ( Fridovich, 1978 ). 

Through this pathway GSH can destroy the free radicals produced from high doses 

of irradiation and administration of oxydizing agents.

GSH is the main intracellular thiol compound involved in metabolic reactions 

which include protein synthesis and degradation, deoxyribose synthesis the precursor 

of DNA and cysteine reduction ( Griffith and Tate, 1980). The maintenance of a high 

intracellular ratio of GSH to GSSG is due to the activity of widely distributed 

flavoprotein glutathione reductase with NADPH as cofactor ( Meister and Anderson, 

1983 ).

Clinically, deficiency of certain enzymes that are responsible for GSH metabolism 

is associated with some human diseases. Examples are 5-oxoprolinuria, pyroglutamic 

aciduria, hemolytic anemia, myopathy and neuropathy all due to GSH synthetase 

deficiency ( Meister and Anderson, 1983 ). These diseases are associated with 

massive 5 -oxoproline excretion in the urine and elevation in both blood and 

cerebrospinal fluid levels causing severe metabolic acidosis, hemolysis and mental 

retardation ( Meister and Anderson, 1983 ; Meister, 1984). Because GSH synthesis 

is regulated by feedback inhibition, in cases of deficiency, y-glutamyl cysteine
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synthetase is released from inhibition, leading to accumulation of y-glutamyl cysteine 

in the body. This dipeptide is converted to 5-oxoproline and cysteine under the 

catalytic activity of y-glutamyl cyclotransferase causing some of above symptoms 

(Richman and Meister, 1975). Some patients also develop glutathionuria and excrete 

GSH and y-glutamyl cysteine in their urine due to y-glutamyl transpeptidase 

deficiency ( Meister and Anderson , 1983 ; Meister , 1984 ). Deficiencies in other 

enzymes of GSH metabolism do not lead to severe disorders.

1.3.3. Stimulation of GSH Synthesis :

The role of GSH in the protection of cells against free radicals, reactive oxygen 

intermediates and toxic compounds suggests that it might be beneficial to increase its 

intracellular levels. Although the feedback inhibition of y-glutamyl cysteine synthetase 

enzyme by GSH itself regulates its level in the cells, its intracellular levels also 

depend on the availability of its amino acids constituents. Therefore GSH synthesis 

can be improved in some cases by increasing the supply of substrates to y-glutamyl 

cysteine synthetase and glutathione synthetase. Cysteine plays an important role in 

controlling GSH synthesis and is derived mainly from dietary protein. This is in 

agreement with the finding of Issels and Nagele ( 1989 ) that the main cysteine moiety 

of newly synthesized GSH is derived from extacellular pool of cystine. Consequently 

increasing cysteine supply may also increase GSH synthesis, however this is not the 

ideal therapy because cysteine is rapidly metabolized ( Meister, 1983 ; 1984).

Thiazolidine is an intracellular cysteine delivery agent which is well transported 

and may help to improve GSH levels through enzymatic conversion to cysteine 

(Williamson et al.. 1982). Administration of y-glutamyl cysteine or its disulfide y-
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glutamyl cystine significantly increases GSH levels in kidney ( Anderson and 

Meister, 1983 ). But the best way of increasing GSH levels seems to be by using 

derivatives which are well transported into the cells. The most effective derivative for 

this purpose is glutathione monoethyl or methyl ester which is effectively transported 

after administration producing a significant increase in hepatic and renal GSH levels 

in mice ( Puri and Meister, 1983 ). It has also been reported that glutathione ester can 

protect human cultured cells against the lethal effects of irradiation by increasing 

intracellular GSH levels ( Wellner et al..l984 ). Certain chemical compounds and 

drugs can increase GSH levels, for instance phenobarbital increases hepatic GSH by 

about 30% after 48 hours of administration to rats ( Kaplowitz et al.. 1980 ). 

Cyclophosphamide at low doses increases mouse bone marrow GSH following an 

initial depletion ( Carmichael et al.. 1986). Diaminodiphenylsulfone and methylene 

blue increase GSH levels in rabbits and human red blood cells due to stimulation of 

its synthesis through activation of glutathione synthetase (Paniker and Beutler, 1972). 

N-acetyl cysteine spares GSH levels in mice ( Williamson et al.. 1982) and in Hela 

cells in tissue culture ( Al-Kabban et al.. 1988 ).

One of the important nutritional compounds is selenium which is a cofactor for 

most of cardiac glutathione peroxidase, acting as a free radical detoxification agent 

(Bachur et al.. 1979). This was confirmed by the results of Van Vleet and Ferrans, 

(1980) who used a mixture of selenium and vitamin E for controlling doxorubicin 

cardiomyopathy in rabbits.

In contrast to the effect of GSH synthesis enhancers there are some chemical 

compounds which inhibit its production. Prothionine sulfoximine ( Griffith et al.. 

1979 ) and buthionine sulfoximine (Griffith and Meister, 1979 ; Arrick et al.. 1982 ; 

Gaetjens et al.. 1984 ; Somfai-Relle et al.. 1984; Crook et al.. 1986 ; Russo et al.. 

1986 ; Jordan et al.. 1987 ; Lee et al.. 1987 ; Dusre et al.. 1989 ; Kable et al.. 

1989) are selective inhibitors of the enzyme y-glutamyl cysteine synthetase. 

Buthionine sulfoximine is considered as superior to all other depleting agents because 

of its specificity and lack of side effects. Another compound a-ethylmethionine
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sulfoximine ( Griffith and Meister, 1978 ) minimizes GSH synthesis due to its effect 

as a glutathione synthetase inhibitor, while l-chloro-2,4-dinitrobenzene ( CDNB ) 

(Arrick et al.. 1982) binds to GSH under the catalytic activity of endogenous 

enzyme glutathione-S-transferase leading to its depletion. Salicylates deplete hepatic 

GSH in rats by causing its leakage from hepatocytes into the blood ( Kaplowitz 

ah, 1980 ).

1.3.4. The Protective Role of GSH in Radio and Chemotherapy :

The biological and clinical importance of GSH is based on its protective role 

against chemical and radiation injury. Both radiation and redox active drugs have 

special relevance in cancer management. The antitumour activity of certain quinones 

such as doxorubicin is thought to be due to the oxidative effects of their redox cycle 

which end in hydroxyl radical production ( Bachur et al.. 1978 ; Thor et al.. 1982 ). 

The discovery that many tumour cells contain high GSH concentrations ( Biaglow et 

al*, 1983 ; Russo et ah. 1986) has prompted investigation into its role in cytotoxicity 

and resistance against antineoplastic agents such as doxorubicin ( Hamilton et al.. 

1985 ). GSH may protect cells against oxidative effects in different ways, including 

direct reaction with the parent quinones and their semiquinone radicals or by acting as 

a substrate of glutathione peroxidase to detoxify H2 0 2  or hydroperoxide formed as a 

result of lipid peroxidation ( Nickerson et ah. 1963 ).

An interesting approach is the experimental reduction of cellular levels of GSH 

prior to using cytotoxic drugs in cancer chemotherapy using these new compounds 

which selectively regulate intracellular GSH levels.

GSH provides substantial protection against radiation damage only at low oxygen
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tensions. Accordingly, and in order to increase the curative effects of radiotherapy, 

GSH concentration in the tumours requires to be reduced (Mitchell and Russo, 

1987). The GSH content of some human tumour cells can be high compared with 

normal cells and tumours from other sources ( Russo et al.. 1986 ). In these cases 

the GSH content of tumour tissues .could determine the clinical response to 

antitumour agents ( Jordan et al.. 1987 ). On the other hand in some tumours one of 

the important signs in cells resistant to the chemotherapy is the elevation of their GSH 

levels ( Suzukake et al.. 1982 ; Somfai-Relle et al.. 1984 ). Therefore sensitization 

of tumour cells to chemotherapeutic agents using GSH-depleting compounds could 

have a major role in cytotoxicity and the DNA damaging effects of chemotherapy 

(Arrick et al.. 1982 ; Crook et al.. 1986).

1.3.5. Measurement of GSH :

Due to the physiological activity of GSH and its ubiquity, it is desirable to be able 

to measure it in tissues with acceptable standards of specificity, accuracy and 

sensitivity. The design of such methods has been hampered by the chemical 

characteristics of GSH, in particular its auto-oxidable nature ; the amounts present in 

certain tissues require that assays should detect concentrations of the order of nmoles 

f[ in the presence of higher concentrations of related compounds. A number of reliable 

methods are available for assaying GSH in tissues with relatively high 

concentrations. Initially chemical methods based on the nitroprusside reaction 

(Hopkins, 1921), were developed for colorimetric measurement ( Owens and 

Belcher, 1965 ). But these methods, like the Ellman reaction used nowadays were
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not specific, and in some of them oxidation of GSH to GSSG occurred during 

sample preparation producing large errors in the measurement of both. Proof that the 

need for a good method to measure GSH has not been fully satisfied is the existence 

of a wide varety of techniques based on different principles to assay both the reduced 

and oxidized forms.

Spectrophotometry using Ellman’s reagent ( 5,5-dithio-bis [2-nitrobenzoic acid]) 

( DTNB) conjugation ( Ellman, 1959 ); fluorometry based on the conversion of thiol 

compounds to fluorescent derivatives using ( O-phthalaldehyde ) ( Cohn and Lyle, 

1966 ; Hissin and Hilf, 1976) and enzymatic methods based on the catalytic activities 

of glutathione-S-transferase or glutathione reductase enzymes ( Tietze, 1969 ; 

Wendell, 1970 ; Koivusalo and Uotila, 1974 ; Griffith, 1980 ; Davies et al.. 1984 ) 

have all been used. The enzymatic methods gave GSH and GSSG values which were 

consistently lower than those measured by Ellman method.

Thin layer chromatography using silica gel has been used for GSH separation 

(States and Segal, 1969) ; gel electrophoresis was used by (Klein and Robbins, 

1970) during different cycles of cell division. But the advent of more modem and 

sophisticated techniques for proteins, peptide and amino acid analysis has been 

provided with new tools like high performance liquid chromatography ( HPLC ) 

coupled to colorimetric detection by means of which it has been feasible to separate 

and quantitate GSH from cysteine and y-glutamyl cysteine. There are now several 

HPLC techniques which have been developed for GSH determination in small 

biological samples. Some of these involve precolumn derivatization of the thiol 

compounds with a fluorescent reagent such as monobromobimanes and monobromo- 

trimethyl-ammoniobimane and separation by using HPLC ( Fahey et al.. 1981 ; 

Newton et al.. 1981 ; Burton and Aheme, 1986 ).

Modification of the Ellman method coupled to derivatization of thiol compounds, 

using reversed phase HPLC has been used by Reeve and Kuhlenkamp, ( 1980 ) for 

GSH separation. But the most sensitive and specific method for measuring GSH and 

GSSG independently is the recycling post-column reaction on an anion exchange
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HPLC technique. By this method GSSG is separately determined after alkylation of 

the GSH using N-ethylmaleimide ( Alpert and Gilbert, 1985 ). HPLC with 

electrochemical detection is a sensitive procedure for detection of GSH , GSSG and 

other thiol compounds using dual gold mercury electrodes ( Lunte and Kissinger, 

1984 ; Stein et al.. 1986 ).

The main problem in all of the above methods is the time required for sample 

preparation and analysis, and the need for special equipments which are not widely 

available . In addition GSH measurement needs a simple, fast and accurate method to 

reduce the errors. In the present work a direct sensitive and rapid method for GSH 

assay designed by the author was used. It involves cationic ion-pair chromatography 

( HPLC ) followed by ultraviolet detection and is explained in detail in the materials 

and methods section. Better methods would allow changes to be detected in the intact 

tumour cells, and one method of studying intracellular components in intact cells is 

nuclear magnetic resonance ( NMR) spectroscopy.
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1.4. *H Spin Echo Nuclear Magnetic Resonance (NMR) :

*H spin echo NMR spectoscopy is a non-invasive probe which is now an 

acceptable method for the study of cellular metabolism in intact erythrocytes 

(Reglinski and Smith, 1986). Although NMR is less sensitive than other methods, it 

has other major advantages in that it can identify selective metabolic processes directly 

in the intact viable cell ( Brown and Campbell, 1980 ; McKay et al.. 1986 ; 

Rabenstein, et al.. 1985 ).

*H NMR has been shown to be very useful in monitoring low molecular weight 

metabolites in tissue fluids such as blood, plasma and urine. This includes measuring 

natural endogenous compounds and drugs. Using the same technique, metabolic 

abnormalities such as hyperglycaemia in cases of diabetes can be detected ( Lindon, 

1986), although this is obviously not the method of choice. Another important use of 

the NMR is to study membrane transport by indicating changes in signal strength of 

cellular components ( Reglinski and Smith, 1986 ). More recently spin echo NMR 

has been used in Hela cells ( Reglinski, et al.. 1987 ) to study intracellular 

glutathione and in leukaemic J - l l l  cells to detect lactate and study glycolysis, to 

follow the changes which occur on the addition of doxorubicin ( Reglinski, et al.. 

1988b) and to confirm the effect of doxorubicin on the cellular biochemistry of Hela 

cells ( Al-Kabban, et al.. 1988 ).

As an analytical technique it can be quantitative ( Rabenstein, et al.. 1985 ), but is 

more effective in conjunction with HPLC where the selectivity of NMR and it’s 

sensitivity to molecular conformational changes in the intact and viable cells can be 

supported by the quantitative in vitro HPLC method.
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(1) The development of a simple method ( HPLC following direct injection of 

cell lysates ) for estimation of intracellular GSH in human tumour cells will allow 

investigation of the differences in basal levels in sensitive and resistant cell lines and 

effects of doxorubicin treatment on this.

(2) Examination of GSH levels in intact tumour cells using NMR in a manner 

which excludes the effect of disruption on that compound should demonstrate similar 

differences between resistant and sensitive tumour cell lines and a similar effect of 

doxorubicin.

(3) Sensitive cell lines can be protected from the toxic effects of anthracycline by 

protecting their GSH content using NAC or cysteine.

(4) Reduction of GSH in the heterogenic resistant tumour cells using buthionine 

sulfoximine will increase their sensitivity to doxorubicin.

(5) Treatment of heterogenic resistant tumour cells with amiodarone could 

increase intracellular retention of doxorubicin, and reduce the protective effect of high 

intracellular GSH.



II. MATERIALS AND METHODS



73

2.1. Materials :

Suppliers of materials used in the following experimental section are detailed 

below. All other reagents and solvents were of AnalaR grade, BDH, Poole, Dorset, 

England. Doxorubicin was a generous gift from Farmitalia Carlo Erba Italy. 

Daunorubicin hydrochloride was from May and Baker Ltd., Dagenham England. 

Amiodarone hydrochloride and fluphenazine were from Labaz: Sanofi U.K. Ltd., 

Floats Road, Wythenshawe, Manchester, M23 9NF.

Materials

Buthionine-S ,R-Sulfoximine 
( BSO)

1 -Chloro-2,4-dinitrobenzene 
( CDNB)

Cysteine chloride

Deuterium oxide D20  ( gold label) 

EMIT free drug level filters

Foetal bovine serum ( FBS )

Suppliers

Sigma Chemical Co.Ltd.,
Poole, England.

Sigma

Aldrich Chemical Co. Englabd.

i t  i t

Syva ( U .K .) Ltd., Maidenhead, 
Berks, England.

Gibco ( U .K .) Ltd., Scotland and 
Northumbria Biological Ltd., 
Cramlington, Northumberland, 
England.
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Materials

Glutathione GSH ( reduced form)

Glutathione-S-Transferase 
( GST) from human placenta

HPLC Apex Octadecyl 5|i,
25 cm column

L-Glutamine solution (100X) 

Methanol ( HPLC grade)

Micro well plates 96 U 

Millipore filters

MTT [ 3- ( 4,5-Dimethylthiazol- 
2 -yl )-2 ,5 -diphenyltetrazolium 
bromide : Thiazolyl blue ]

N-acetylcysteine

ODS Hypersil 5|i

Penicillin-Streptomycin solution 

Phosphate buffer saline ( PBS )

Suppliers

Sigma

t t

Jones Chromatography (U.K.) Ltd. 
Midglamorgan, CF8  8 AU (Wales).

Gibco

Rathbum Chemicals Ltd., 
Walkerbum, Scotland.

Nunclon, Denmark.

Millipore, S.A. Molsheins 
France.

Sigma

i t

Shandon Southern Products (U.K.) 
Ltd., England WA7 IRR.

Gibco

t t

Resorcinol Sigma
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Materials

IX RPM I1640 medium with 
20 mM hepes buffer

1XRPMI1640 (Dutch modification) medium 
with 20 mM hepes buffer, lg  /I Sodium 
bicarbonate and 6.4 g A Sodium chloride.

Sodium bicarbonate 7.5% solution

Tetrabutyl ammonium dihydrogen phosphate

40% Tetrabutyl ammonium hydroxide

1,1,3,3-Tetraethoxy propane 
( Malondialdehyde tetraethyl acetal)

Thiobarbituric acid

Tissue culture flasks

Tissue culture multiwell plate 
96 Flat bottomed wells

Tris buffer

Trypsin

Suppliers

Flow Laboratories, Irvine 
Scotland.

it II

i i  II

Sigma

II

i i

i f

Nunclon

Flow Laboratories 

Sigma

Flow Laboratories

Water ( HPLC grade) Rathbum
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2.2. Tumour Cell Lines :

Hela tumour cells were taken from stock held in liquid nitrogen in our 

laboratory. A549 an alveolar type II cell adenocarcinoma of lung ( CCL 185 ) 

normally resistant to doxorubicin was from American type culture, Rockville 

Maryland. J 111 human leukaemia cell line was supplied by Flow laboratories. These 

three cell lines were grown as monolayers in tissue culture flasks.

GLC 4  2 1 0  a small cell carcinoma of lung sensitive to doxorubicin, and GLC 4  

2 1 0  a small cell carcinoma of lung showing acquired resistance to doxorubicin 

originated from the Department of Medical Oncology, University of Groningen, 

Holland. These were grown in suspension. The three lung tumour cell lines were 

obtained through the department of Medical Oncology, Glasgow University.

2.3. Culturing :

2.3.1. Tissue Culture Medium and Feeding :

Hela and J i l l  cell lines were grown on 1XRPMI 1640 ( Dutch modification ) 

medium with 20 mM HEPES buffer, lg /1 sodium bicarbonate and 6.4 g /1 sodium 

chloride. A549 and GLC4  2 1 0  cells ( sensitive ) were grown on 1XRPMI 1640 with 

20 mM HEPES buffer. GLC4  2 1 0  cells ( resistant) were grown on the same medium 

with the addition of 0.9 nmol /I doxorubicin to obtain acquired resistance to 

doxorubicin.
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2.3.2. Cell Culture :

Hela cells, A549 and J i l l  were grown routinely as monolayers in F 1 2 0  flasks 

containing enriched RPM I1640 medium supplemented with 20 mM HEPES buffer, 

lg  /1 sodium bicarbonate and with or without 6.4 g /1 sodium chloride, 10% v/v fetal 

bovine serum (FBS) , 1% v/v L-glutamine ( 200 mM ) and 1% Penicillin- 

Streptomycin antibiotic solution (10000IU / ml, 10000 fig / ml respectively).

GLC4  2 1 0 , sensitive and resistant, were grown in a suspension in F 1 2 0  flasks 

containing enriched RPMI 1640 medium as described above except that doxorubicin 

was added in a concentration of 0.9 nmol /I continuously to induce resistance. Cells
o

were grown at 37 C for 3 -  4 days with replacement of the medium at the middle of 

growing interval. J i l l  cells were grown at 37°C in a 5% CO2  atmosphere.

2.3.3. Detachment of Cells from Culture Flasks :

Hela, A549 and J i l l  cells were detached from culture flasks using 0.25% trypsin 

in calcium and magnesium free phosphate buffered saline ( PBS ). After removing the 

medium, the cells were soaked in trypsin solution for 30 seconds. The trypsin
o

solution was aspirated and the flasks sealed and incubated at 37 C until the cells had 

detached from the surface of the flasks, this usually required 15 - 20 minutes, after 

which the cells were harvested using culture medium prior to counting cell density 

using a haemocytometer or Coulter counter. In the case of GLC4  2 1 0  cells there was 

no need to use trypsin because they were grown in suspension ; centrifugation of the 

suspensions was adequate for harvesting.
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2.4 . Development of a High Performance Liquid 
Chromatographic (HPLC) Assay for 
Glutathione Measurement :

A specific new HPLC method for glutathione measurement in cell lysates was 

developed using simple equipement ( Figure 14), which can be adapted to measure 

other cellular components.

2.4.1. Apparatus :

The HPLC analysis of cell lysates was carried out on a 250 x 4.6 mm ( i.d. ) 

column supplied packed with Apex Octadecyl Silica (5  (I) with a guard column of 5 

x 4.6 mm ( i.d .) slurry packed in our laboratory with ODS Hypersil ( 5 J i).

Manual injection was made via a Rheodyne 7125 injection valve ( Scotlab 

Instrumentation Ltd., Law, by Carluke, Scotland ) with a 20 |il loop, and using a 

single piston reciprocating pump model 302 with a manometric module model 802 

from Gilson, 72 Rue Gambetta B.P. 45, 95400 Villiers. L.E. Bel, France.

UV detection was carried out using a Waters 490 multi wavelength detector 

(Waters Associates, England) at 200 and 210 nm, (0.02 and 0.01 AUFS 

respectively) in the case of Hela cells, and at 205 and 210 nm, ( 0.01 and 0,02 AUFS 

respectively) in the case of the other three cell lines ( A549 and GLC4  210 [S and R ]), 

since this gave a better specificity. Recording was carried out using a CR6525 double 

pen recorder ( JJ Lloyd Instruments Ltd., Southampton S03 6 HP England).



Figure 
14 

: Photograph 
of the 

instrum
ent used 

in 
the 

HPLC 
assay.
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2.4.2. Initial Development of the HPLC Method :

The above apparatus was used first for the detection of standard and cellular GSH 

at different UV wavelengths. Normal distilled water, HPLC grade methanol and 

water in addition to the AnalaR grade methanol were investigated as an eluting 

solvent. In all cases solvent polarity was decided by changing the ratio of methanol to 

water to obtain good resolution. Tetrabutyl ammonium hydroxide and tetrabutyl 

ammonium dihydrogen phosphate, as ion-pairs were added to the methanol /  water, 

and buffers of a range of pHs were also investigated.

2.4.2.1. The Effect of Ion-Pairing :

This experiment was carried out using aqueous standards, on reverse phase using 

initially methanol: water only without ion-pair. To the appropriate mobile phase two 

different cations were added ( Tetrabutyl ammonium hydroxide or Tetrabutyl 

ammonium dihydrogen phosphate). The first was found the best for glutathione 

separation, and different concentrations ( 0.05 -  0.2 % ) were added to the HPLC 

buffer in order to get the best resolution.

2.4.2.2. The Effect of pH on the Resolution of Glutathione from 

Different Intracellular Componants:

This experiment was carried out using 10 % v/v orthophosphoric acid to control 

the pH of the HPLC buffer over the range of 2.5 -  8  in order to achieve on the best 

resolution. Hela cell lysate was used in this experiment with HPLC buffer as 

described above.
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2A.2.3. Final Development of the HPLC Method :

Elution was isocratic, the eluant being Methanol: Water : 40% w/w Tetrabutyl 

ammonium hydroxide (100 : 899 : 1) for Hela cells and (75 : 924 : 1 ) for the other 

three cell lines. These conditions resolved a component which interfered with the 

internal standard peak. The pH was adjusted retrospectively to 3.5 by the addition of 

10% v/v Orthophosphoric acid. Elution was at ambient temperature at a flow rate of 2 

ml /  minute in case of Hela cells and 1.5 ml /  minute in case of the other lines for the 

reason stated above.

2.4.3. Linearity:

The linearity of the method was studied by injecting onto the HPLC system 20 |il 

of a glutathione solution prepared in mobile phase containing 11.4 jimol /1 resorcinol 

as internal standard over the concentration range 0  - 1 . 2  fig on column ( 0 - 6 0  mg / 1  

standard) (0  -  194.4 (imol /1).

2.4.4. Precision :

Precision of chromatography was assessed by determining glutathione dissolved 

in mobile phase ( n = 21) at a concentration of 20 mg /1 (0.4 p,g on column ) ( 65.1 

jimol /  1 ) and glutathione from Hela cells using same cell suspension for each 

injection ( n = 10 ) after lysing in mobile phase as 6.25 x 109  cells /1 ( 1.25 x 105  

cells on column).
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2.4.5. Sensitivity:

The sensitivity of detection of GSH was determined by finding the lowest 

concentration which would give rise to a peak with a height equal to 2  x base line 

noise level.

2.4.6. Glutathione Standard Curve :

In this experiment serial dilutions of a glutathione solution were made using 

HPLC buffer containing 11.4 fimol / 1 resorcinol as internal standard. 20 |il of 

glutathione ( final concentration 8.1 -  194.4 jimol /1 )  were injected onto the HPLC 

system. The standard curve was plotted for glutathione : resorcinol peak height vs. 

glutathione concentration.

2.5. Growth Experiment :

This experiment was carried out using the four cell lines Hela, A549, and GLC4  

2 1 0  ( resistant [R] and sensitive [S] to doxorubicin) to examine the baseline behavior 

of these cells in culture. One F25 flask of each line was harvested as described in 

(2.3.3.) and counted using a haemocytometer. Cells were diluted using culture 

medium to give 2 x 104  cells /  ml in the case of Hela and A549 cells, and 3 x 104  and 

4 x 104  cells /  ml in the case of GLC4  2 1 0  ( S ) and GLC4  2 1 0  ( R ) respectively.
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Sixteen F25 flasks were set up for each cell line with 5 ml of cell suspension in 

normal tissue culture medium in each. Cells were incubated at 37 °C and paired flasks 

of each cell line were removed for counting at 24 hour intervals for eight days, at the 

end of which growth curves were plotted for the mean values of each pair of flasks.

2.6. Exposure of Cells to Doxorubicin :

In these experiments the four cell lines ( Hela, A549 and GLC4  2 1 0  [S and R ]) 

were included. Different doxorubicin concentrations were used for each line. The 

experiments were run as described in figure 15.

2.6.1. Hela Cell Line :

Seven F25 flasks were prepared, each containing 7.3 x 106  cells in 5 ml of culture 

medium. One was used as a control and the other six were treated with doxorubicin at 

concentrations of 0.6 -  6.0 nmol / 106  cells respectively. After 12 hours the cells 

were harvested and centrifuged at 1500 rpm for 10 minutes, washed twice with PBS 

and centrifuged each time. Cells were lysed by the addition of 0.4 ml of HPLC buffer 

containing 11.4 pmol /1 resorcinol as internal standard and using an Ultrasonic probe 

( MSE 150 Watt Ultasonic Disintegrator MK2 MSE Scientific Instruments, Manor 

Royal, England). The lysate was filtered by centrifuging at 2500 rpm through EMIT 

free drug level filters designed for the ultrafiltration of plasma. Twenty (il of filtrate, 

equivalent to approximately 3.63 x 105  cells were injected directly onto the HPLC



TISSUE CULTURE

INCUBATE FOR 12 
HOURS AT 37°C

HARVEST THE CELLS, WASH TWICE USING PBS AND LYSE 
IN A MINIMUM AMOUNT OF HPLC BUFFER CONTAINING 

INTERNAL STANDARD USING AN ULTRASONIC PROBE

SEED CELLS IN CULTURE FLASKS AT CERTAIN 
CONCENTRATION AND TREAT THEM WITH DIFFERENT 
DOXORUBICIN CONCENTRATIONS ( ONE PER FLASK ) 

LEAVING A CONTROL.

FILTER AND INJECT ONTO THE HPLC SYSTEM. SEPARATE 
USING CATIONIC ION-PAIR CHROMATOGRAPHY WITH UV 

DETECTION AT 205 AND 210 nm.

Figure 15 : Protocol for measuring the effect of doxorubicin on 

the glutathione content of the cells in tissue culture.
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column. GSH standards, prepared in mobile phase containing resorcinol internal 

standard were run to calibrate the system.

2.6.2. A549 Alveolar Type II Cells ( Adenocarcinoma of Lung ) :

Six F25 flasks were prepared each containing 2 x 106 cells in 5 ml of culture 

medium. One was used as control and the other five were treated with doxorubicin at 

concentrations from 4.3-68.8 nmol / 106 cells respectively. The other steps of the 

experiment were completed as described in ( 2 .6 .1 .)  except that the cells were lysed 

in 0.3 ml of HPLC buffer containing internal standard resorcinol ( 11.4 pmol / 1). 

The 20 |ll sample of filtrate which was injected into the HPLC system was equivalent 

to approximately 1.33 x 104 cells.

2.6.3. GLC/| 210 Small Cell Carcinoma of Lung 
(  Sensitive to Doxorubicin ) :

Six universal tubes were prepared each containing 7.8 x 106  cells suspended in 5 

ml of culture medium. They were treated as described in 2.6.2. except that the 

doxorubicin concentrations were from 1.1 — 17.6 nmol /  10^ cells respectively. Cells 

were lysed using 0.4 ml HPLC buffer containing internal standard resorcinol ( 11.4 

pmol /1 ) . The 20 pi sample of filtrate was equivalent to approximately 3.9 x 105  

cells.
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2.6.4. GLC/| 210 Small Cell Carcinoma of Lung
( Resistant to Doxorubicin ) :

These cells were grown under the stress of doxorubicin in order to induce 

resistance as explained ( 2.3.2. ). For this experiment six universal tubes were 

prepared as in 2.6.3., each tube containing 6.9 x 10  ̂cells in 5 ml of their normal 

culture medium. The rest of the experiment was as described in 2.6.3., except that the 

doxorubicin concentrations were from 1.25 -  20 nmol / 106  cells respectively. The 20 

pi sample of filtrate was equivalent to approximately 3.45 x 106  cells.

2.7. Effect of the Added Thiols on Cellular Glutathione :

2.7.1. Effect of N-acetvlcvsteine ( NAC 1 on Hela Tumour Cells 
Treated with Doxorubicin :

In this experiment seven F25 flasks were prepared, each containing 3.5 x 106  

cells in 5 ml of culture medium. Five flasks were treated with doxorubicin (5 nmol / 

10^ cells ) four of them had been already pretreated for one hour with NAC at 

concentrations of 0.35 -  2.80 pmol / 106  cells respectively. Two flasks were used as 

controls, one with and one without NAC (0.35 pmol /  l(P cells). Twelve hours later 

the cells were harvested and analysed as described ( 2.6.1. ). The 20 p.1 sample of 

filtrate injected was equivalent to 1.75 x 105  cells.
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2.7.2. Effect of Cysteine on Hela Tumour Cells Treated with 

Doxorubicin :

This experiment was carried out as described in 2.7.1. except that the 

concentration of doxorubicin was 4 nmol /  106  cells and cysteine (1.2 -  4.8 pmol / 

106  cells) was used in stead of NAC.
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2.8. Spin Echo NMR Spectroscopy :

The NMR method used in this study is well documented for erythrocyte 

biochemistry ( Raben stein 1978 ; Raben stein and Nakashima, 1979 ; Brown and 

Campbell, 1980 ). A Bruker WM 250 MHz spectrmeter was used to record all 

spectra. Spin echo NMR spectra were obtained using a Hahn spin echo pulse 

sequence (90° — t — 180° — t ) with a delay time ( t ) of 60 ms, the sequence creates a 

time delay ( 2 t ) between signal generation and accumulation. Samples were 

maintained at 20°C during data collection and the data from 2000 complete pulse 

sequences were accumulated for each Fourier transform. Cellular systems can be 

considered loosely to consist of two types of NMR active components; large 

molecules ( e.g., membranes, proteins and nucleic acids ) and small or mobile 

molecules ( e.g., cytosolic metabolites and substrates ). The relaxation times of these 

two categories differ; large molecules, by virtue of cross relaxation, have short 

relaxation times whereas small molecules have substantially larger values. The delay 

time ( t = 60 ms ) used ( as an ideal value for GSH ) is sufficient to allow the 

polarisation signal from the large molecules to relax back to equilibrium and thus be 

absent from the spectrum. The small molecules, as a direct consequence of their 

longer signal life, still provide a resonance line in the NMR spectrum on completion 

of the pulse sequence. The spectra obtained have modulated signals, which precludes 

the use of signal integration and hence quantitation, but the peak heights do reflect the 

relative ratios of metabolites. Thus the introduction of a suitable reference compound 

or the identification of an invariant naturally-occuring species allows the 

determination of the relative change in concentration of individual metabolites. 

Chemical changes at specific sites within molecules can still be observed. An example 

of this behaviour is the change in resonance intensity observed in the g2  - 

methylene resonance in glutathione on oxidation ( Brown et al.. 1977 ). Species may
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be removed from the NMR spectrum by two mechanisms. They can be metabolised 

(degraded) or can interact with the cell macrostructure. The latter depends on the 

molecule, the change in relaxation time means that the signals from the interacted or 

bound molecules are filtered from the spectrum ( Reglinski et al.. 1988 a ). when the 

instrument is tuned to intracellular water, molecules which leak from dead or dying 

cells into the surrounding medium show a reduction in signal of around 2 0 %.

All spectra were recorded by Dr J. Reglinski, Department of Pure and Applied 

Chemistry, Strathclyde University.

2.8.1. Hela Cells :

2.8.1.1. Sample Preparation for NMR Studies :

Cells were harvested from culture flasks as described in 2.3.3., washed twice in a 

minimum amount of physiological saline 2 H20  / NaCl (0.154 M ) to remove excess 

medium and provide a deuterium lock for the NMR spectrometer. It has been reported 

that excessive washing of the Hela cells with physiological saline causes cell lysis 

(Levine, 1960). The cells were transferred to a previously autoclaved 5 mm NMR 

tube with a small amount of saline ( 2 H20  / NaCl 0.154 M ) to produce a suspension 

of 80 % packed cells. The average sample size was approximately 109  cells in 0.4 ml 

saline.

2.8.1.2. Study of Glvcolvsis :

Study of cellular metabolism by NMR depends on the ability to maintain cell 

viability. For these initial experiment it was decided to suspend the cells solely in 

2 H2 0  saline and to estimate the viability under these conditions. This test is quite 

stringent for cells in which much more complex nutrient media are usually used to 

increase life time but it does give a conservative estimate for the time scale in which



experiments can be done with viable cells. In this instance cell viability was checked 

after harvesting by resuspending them in sterile physiological saline at 0.5 x 106  cells 

in 3 ml. To 200 pi of this suspension was added 200 pi of trypan blue solution. The 

percentage of living cells which did not stain was counted using a haemocytometer. 

Cells were found to remain viable in physiological saline for at least 5 hours ( > 90 % 

viability) at room temperature.

Glucose was added to the cells while they were in the NMR tube at a 

concentration of 2 mg (11 pmol) /  109  cells. The NMR spectra for both glucose and 

lactate were recorded at zero time and 1 0  hours after the addition of glucose.

2.8.1.3. Exposure of Hela Tumour Cells to Doxorubicin :

Cells were prepared as described in (2.8.1.1.) and maintained at 20°C during the 

experiment. In all cases an initial reference spectrum of the culture under study was 

recorded prior to the addition of glucose 0.3 mg (1.66 pmoles ) and doxorubicin ( 30 

and 300 nmol / 109  cells). A control experiment was conducted with no doxorubicin 

present.

2.8.1.4. Effect of NAC on Hela Cells Treated with Doxorubicin
as shown bv lactate measurement:

This experiment was carried out as described in 2.8.1.3. except that NAC was 

added to the cells in the NMR tube at a nontoxic concentration ( 2 pmol /109  cells ) 

prior to the addition of doxorubicin ( 300 nmol / 109  cells ). The protective 

mechanism of NAC was shown by lactate profial and NAC reduction.
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2.8.1.5.Transport of Amino Acids into the Cells :

Hela cells were used in this study. The NMR samples were prepared as described 

( 2.8.1.1. ) . Glycine 1.18 mg, cysteine chloride 1.55 mg and glutamate 2.05 mg 

(15.9, 9.6, and 13.5 pinoles) respectively were added as concentrated solutions (20 

pi) to the cells in the NMR tube. An initial reference spectrum was recorded, and the 

mixture was treated with doxorubicin (30 nmol / 109  cells). The NMR spectra were 

recorded at one and two hours time intervals.

2.8.2. Leukaemia J i l l  Cells :

2.8.2.1. Sample Preparation for NMR Study :

In the case of J 111 cells various culture media were used. A simple saline 

solution as above was used initially to profile the cells and identify the resonances 

arising from the cytosol rather than the culture medium. For the metabolic studies, 10

ml of the RPMI 1640 solution was freeze dried and re-dissolved in 10 ml of 2 H2 0.

This solution was further diluted with physiological saline ( 2 H20  /  NaCl, 0.154 mol 

/  1 ) (1 to 10) to produce 10% RPMI in 2 H 2 0 . This procedure ensured the 

homogeneity and integrity of the culture medium. Doxorubicin was added at a 

concentration of 30 nmol / 109  cells in a final volume of 0.5 ml 100 % 2 H20  RPMI 

1640 medium.
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2.8.2.2. Study of Glvcolvsis :

In this experiment cellular glycolysis was followed using human leukaemia J ill  

cells in the presence of doxorubicin ( 30 nmol / 109  cells ) after the addition of 

glucose (5 .5  pmoles ). Cellular glycolysis was indicated by increased lactate 

production after administration of doxorubicin.

2.9. Glutathione-S-Transferase (GST) activity assay :

GST activity was measured in sensitive and resistant lung tumour cell lines of 

high, moderate and low glutathione content (A549, GLC4  2 1 0  [S] and GLC4  2 1 0  [R]) 

respectively, using a kinetic method on an Encore centrifugal analyser, (see 2.9.1.). 

The effect of doxorubicin pretreatment on GST activity was also measured. This 

assay was modified from that of Dr G. Beckett, Department of Biochemistry, Royal 

Infirmary, Edinburgh ( personal communication). The aim of this assay is to find the 

relationship between glutathione content in different tumour cells and GST activity 

and also to estimate the GST activity in doxombicin-resistant and sensitive tumours.

2.9.1. Reagents Preparation and Assay procedure :

The assay buffer consisted of 100 mmol / 1 sodium phosphate buffer pH 6.5 . 

Starting reagent was prepared by dissolving 13 mg of l-chloro-2,4-dinitrobenzene
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(CDNB) in 7.5 ml ethanol, made up to 60 ml using warm ( 37°C ) assay buffer to 

give a final concentration of 1.1 mmol / 1. Glutathione solution was prepared by 

dissolving 26 mg of reduced glutathione in 8  ml assay buffer to give a final 

concentration of 10.6 mmol / 1. Standard GST from human placenta was prepared 

and run in the same manner.

The absorbance of GST was measured using an Encore Chemistry System 

(Baker corporation) connected to a CENTRIFICHEM system Pipettor 1000 ( 100, 

Cascad Drive Allentown, Pennsylvania 18001), programmed as follows

Temperature 37°C

Test Code 74

Test Name GST

Wavelength " 340 nm

Mode C

Time (for blank) 20 sec

Mix time 1.6 sec

Linearity 0.01

Concentration factor 2

Ti 25 sec

Tw 5 sec

Rate time 10 sec

Abnormal absorbance limit 3.50

Tf 300 sec

Sample volume ( cells lysate) 

Diluent ( assay buffer) 

Starting reagent ( CDNB ) 

Second reagent ( GSH)

5 pi 

15 pi 

240 pi 

50 pi
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2.9.2. Sample preparation for the Assay :

Two F25 flasks were prepared for each cell line, one as a control containing cells 

in 1 0  ml of culture medium only and the other containing the same number of cells (4  

x 106, 10 x 106, and 8 . 8  x 106  cells for A549, GLC4  210 ( S ) and ( R ) respectively) 

in 10 ml of doxorubicin-containing medium ( 3.5 pmol /1). Twenty four hours later 

the cells were harvested and lysed as described in 2.3.3. and 2.6.1. after dissolving 

in 0.3 ml of assay buffer. Cell lysates were centrifuged at 2500 rpm to obtain the 

supernatant for the GST assay. The GST activity was corrected according to the cell 

number in the different cell lines used.

2.9.3. GST Standard Curve :

A GST standard curve was prepared using human placental enzyme. Stock 

solution was prepared with 10 enzyme units per ml of assay buffer. Four different 

GST concentrations ( 0.125, 0.25, 0.5, andl.O units /  m l) were prepared from the 

stock using same assay buffer. A standard curve was plotted for A absorbance vs. 

GST concentration.
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2.10. Measurement of Lipid Peroxidation Due to 
Doxorubicin Treatment :

This assay was carried out on the two sensitive cell lines, one with a high 

glutathione concentration ( Hela) and the other with a low glutathione concentration 

(GLC4  2 1 0  [S ]). Cells were grown and prepared as described ( 2.3.2.) and (2.3.3.). 

This assay was as described by Ledwozyw et al.. ( 1986 ) and is based on the 

measurement of malondialdehyde ( MDA ) as a product of lipid peroxidation due to 

the decomposition of cell membrane unsaturated fatty acid caused by the oxygen ffee- 

radicals (1.2.6.3.) produced by doxorubicin metabolism.

2.10.1 Cell Preparation and Treatment:

MDA was measured after doxorubicin treatment. For each of the above cell lines 

seven x 3  ml batches of the same concentration of cells were prepared, as 1 0 7  cells / 

flask in case of Hela cells and 7 x 107  cells /  flask in case of GLC4  2 1 0  (S), one batch 

for use as a control and the other six for treatment with doxorubicin at a final
o

concentration of 10 pmol /1. Cells were incubated at 37 C and one batch of each cell 

line was removed at intervals for MDA measurement. Cells were pelleted by 

centrifugation at 1500 rpm for 10 minutes, washed using PBS buffer, pH 7.4 and 

recentrifuged. The cells were lysed in 0.5 ml of buffer as described (2.6.1.).
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2.10.2. Malondialdehvde Measurement:

MDA was measured using the thiobarbituric acid reaction by mixing cell lysate 

with 2.5 ml of 1.22 M tri-chloroacetic acid in 0.6 M HC1 and allowing to stand for 15 

minutes, after which 1.5 ml of thiobarbituric acid solution was added to each mixture 

( Thiobarbituric acid solution was prepared by dissolving 500 mg of this acid in 6  ml 

1 M NaOH then adding 69 ml H2 0 ). The mixture was then heated for 30 minutes in 

a boiling water bath, and after cooling 4 ml of n-butanol was added. The mixture was 

shaken vigorously for 3 minutes and then centrifuged at 1500 rpm for 10 minutes. 

The absorbance of the organic layer was measured using a Unicam SP 1800 

Ultraviolet Spectrophotometer ( Pye Unicam ) at 515, 532, and 555 nm for cell 

extracts, an Allen correction was made after subtracting the control reading.

ACOrr = A332 _ (A515+A555 )
2

A blank was prepared in the same manner for each experiment and standard MDA 

was run at the same time. Standard curves for different MDA solutions were prepared 

using PBS pH 7.4 at a final concentrations ( 0.142 -  4.54 pmol /1 )  and the curves 

were plotted for MDA concentration vs. absorbance.

2.10. 3. Effect of NAC on Hela Cells Treated with Doxorubicin :

This experiment was performed to confirm whether NAC can reduce lipid 

peroxidation caused by doxorubicin. In this assay cells were pretreated with NAC at 

0.7 pmole / 106  cells ( as effective non toxic concentration ) ( 2.7.1.) leaving a 

control. The rest of the experiment including cell preparation is as described in

2.10.1.; the MDA was estimated in Hela cells as in 2.10.2.
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2.11. Tetrazolium Based Chemosensitivity Assay :

This protocol was designed to determine cell viability using a colorimetric 

microtiter technique. The technique can be used to measure the activity of compounds 

which are cytotoxic or cytostatic to the cells ( Ware, 1985 ). In this assay the effect of 

different doxorubicin concentrations on sensitive and resistant cells was examined. 

Cells were plated at low density and exposed to doxorubicin at different 

concentrations. The drug was then removed and the cells allowed to recover and pass 

through two to three cell doubling times. The surviving cell numbers were then 

determined by the ability of live but not dead cells to reduce the tetrazolium dye 

(MTT).

2.11.1. Determination of Optimum MTT Concentration :

The assay relies on a linear relationship between cell number and MTT formazin 

production during the incubation period. Four of the above cell lines described in 2.2. 

were used in this experiment. The adherent cells ( Hela and A549) were plated out at 

a constant number per well i.e. 5x10^ cells / ml ( 1 0 0 0  cells per well in 2 0 0  jil of
o

culture medium) in a 96 flat bottomed well plates. Cells were incubated at 37 C under 

2 % C 0 2  for 24 hours . The next day the medium was replaced by fresh and 50 |il 

aliquots of 10 different MTT solutions ( 0.5 -  5.0 mg / ml prepared in PBS ) were 

added to the plate wells, one concentration to each row leaving the first and last rows
o

as blank. Plates were wrapped in tinfoil and incubated at 37 C under 2 % C 0 2  for 

four hours, after which the medium was removed from the wells and the insoluble 

MTT formazan and crystals were dissolved in 200 JJ.1 DMSO and 25 p.1 of 0.1 M, 

tris-buffer pH 9.5 to dissolve the non-dissolved dye. The plates were read using Bio-
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Rad ELISA plate reader at an absorbance of 570 nm ( Bio-Rad Laboratories Ltd. 

Watford Business Park, Watford, Herts. WD1 8RP, England).

The non-adherent cells ( GLC4 210 [S] and [R]) were plated out at 2 x 104 cells /  

ml ( 3000 cells per well in 150 p,l of culture medium ) in 96 round bottomed well 

plates. The MTT concentrations were added at the same time and treated as in the case 

of adherent cells except that the plates were centrifuged at 1000 rpm for 10 minutes 

before removing the medium in order to pellet the cells ( Figure 16 ). Curves were 

plotted of MTT absorbance (mean of six) vs. MTT concentrations. The concentration 

which gave the maximum absorbance without being toxic to the cells was used.

2.11.2. Chemosensitivity of Adherent Cells ( Hela and A549 ) :

o
Cells were plated as described in 2.11.1. and incubated at 37 C under 2 % C02 

for three days to allow attachment and growth. Doxorubicin was added with fresh 

tissue culture medium after removal of the old medium. Eight different doxorubicin 

concentrations ( 8.4 nmol / 1 -  1075 nmol / 1) were used, one concentration per three 

wells with three wells at each end as a control. The first and last rows contained
o

culture medium only as blanks for the plate reader. Cells were incubated at 37 C 

under 2 % C 02 for 24 hours in the presence of doxorubicin. They were fed with 

fresh culture medium after removing the old doxorubicin-containing medium, then 

again on each of the next two days which was a recovery period for the cells. On the 

last day of the assay the cells were fed with the usual culture medium, and 50 p.1 of 

optimised MTT solution was added to each well. The experiment then continued as in

2.11.1. and figure 17. Graphs were plotted of absorbance ( mean of three ) vs. 

doxorubicin concentration.



TISSUE CULTURE

CELLS IN SUSPENSION CELLS IN MONOLAYER

SEED CELLS IN 96 
ROUND BOTTOM PLATES 

AT 3000 CELLS PER 
WELL IN 150 pL 

CULTURE MEDIUM + 50 
pL OF ONE OF 10 
DIFFERENT MTT 

CONCENTRATIONS 
(ONE CONCENTRATION 

PER ROW LEAVING 
FIRST & LAST ROWS AS 
BLANK) INCUBATE IN 
THE DARK FOR FOUR 

HOURS AT 37°C UNDER 
2% C02

I

SEED CELLS IN 96 FLAT 
BOTTOM PLATES AT 1000 

CELLS PER WELL IN 200 (iL 
CULTURE MEDIUM, INCUBATE 
FOR 24 HOURS AT 37°C UNDER 

2% C02

SPIN THE PLATES, 
REPLACE MEDIUM & 

MTT BY 150 (iL DMSO + 
25 |i.L TRIS-BUFFER pH

9.5, MEASURE MTT 
ABSORBANCE USING 

BIO-RAD PLATE READER 
AT 570 nm

REPLACE OLD MEDIUM BY 
FRESH + 50 pL OF ONE OF 10 

DIFFERENT MTT 
CONCENTRATIONS ( ONE 

CONCENTRATION PER ROW OF 
WELLS LEAVING FIRST & LAST 

ROWS AS BLANK ) 
INCUBATE IN THE DARK FOR 
FOUR HOURS AT 37°C UNDER 

2% C02

I
REPLACE MEDIUM & MTT BY 

200 pL DMSO + 25 pL 
TRIS-BUFFER pH 9.5, 

MEASURE MTT ABSORBANCE 
USING BIO-RAD PLATE 

READER AT 570 nm

Figure 16 : Determination of the optimum MTT absorbance in 

different cell lines.



Chemosensitivity assay of cells grown as monolayer

SEED CELLS IN 96 FLAT BOTTOM PLATES AT 1000 CELLS 
PER WELL IN 200 |iL CULTURE MEDIUM

INCUBATE FOR 72 HOURS 
AT 37°C UNDER 2% C 02

CHANGE OLD MEDIUM FOR FRESH + 50 (iL OF MTT 
SOLUTION ( CONCENTRATION AS DETERMINED IN 

THE PRELIMINARY EXPERIMENT )

INCUBATE FOR FOUR 
HOURS AT 37°C UNDER 2% 

C 02 IN THE DARK

REPLACE MEDIUM & MTT BY 200 |iL DMSO + 25 pL 
TRIS-BUFFER pH 9.5,

MEASURE MTT ABSORBANCE USING BIO-RAD PLATE 
READER AT 570 nm

INCUBATE FOR 24 HOURS 
AT 37°C UNDER 2% C02

INCUBATE FOR 48 HOURS 
AT 37°C UNDER 2% C02

MONOLAYER OF CELLS

REPLACE OLD MEDIUM BY DOXORUBICIN-CONTAINING 
MEDIUM AT DIFFERENT CONCENTRATIONS, LEAVING

CONTROL

REPLACE DOXORUBICIN-CONTAINING MEDIUM BY FRESH 
MEDIUM. REPEAT EACH DAY FOR THE NEXT TWO DAYS

Figure 17 : Protocol for chemosensitivity assay used in the 

testing of drug effect against cells in monolayer.
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2.11.3. Chemosensitivity Assay of Non-adherent Cells 
( G L q  2 1 0  rSl and TR11 :

Cells were subcultured three days prior to use and in the case of GLC4  2 1 0  

resistant cells grown in a doxorubicin-containing medium, the drug was removed at 

this stage. Cells were plated as described in 2.11.1. at 3 x 104  cells /  ml as ( 3000 

cells per well in 100 pi of culture medium). Doxorubicin was added at the same time 

in another 1 0 0  |il of medium to give the same final concentrations used in 2 .1 1 .2 . in 

the case of the sensitive line and ten different concentrations (8.4 nmol /I -  4.3 pmol 

/1 ) in the case of the aquired resistance line, three wells for each concentration. Other 

conditions were as described in 2 .1 1 .2 . except that the plates were centrifuged before 

feeding and the MTT formazine crystals were dissolved in 150 pi of DMSO ( Figure 

18 ). The graphs were plotted as in 2.11.2.

2.12. Effect of Buthionine Sulfoximine (BSO) 
Pretreatment on the Resistance of A549 
Cells to Doxorubicin :

Following a preliminary experiment in which the plated cells were treated with 

different BSO concentrations to decide the best non-toxic dose by measuring MTT 

absorbance after six hours, two 96 flat-bottomed well plates were used in this 

experiment, plated as described (2.11.1.). Three days later, and after removing the 

old medium, one plate was treated with B SO-containing medium at a concentration of 

2 mM ( as effective non-toxic concentration ) in 200 pi ordinary medium. One row 

of wells was left as a control using BSO free medium. The other plate was fed as
o

before using fresh medium. Plates were incubated at 37 C under 2 % C 0 2  . Six hours



Chemosensitivity assay for cells grown in suspension :

INCUBATE FOR 72 
HOURS AT 37°C UNDER 

2% C02

INCUBATE FOR 48 HOURS 
AT 37°C UNDER 2% C02

SPIN THE PLATES & CHANGE MEDIUM TO 150 |iL FRESH + 
50 fiL OF MTT SOLUTION ( CONCENTRATION 

AS DETERMINED IN THE PRELIMINARY EXPERIMENT )
INCUBATE FOR FOUR 

HOURS AT 37°C UNDER 2% 
C 02 IN THE DARK

SPIN THE PLATES, REPLACE MEDIUM & MTT BY 150 [iL 
DMSO + 25 [iL TRIS-BUFFER pH 9.5,

MEASURE MTT ABSORBANCE USING BIO-RAD PLATE 
READER AT 570 nm

SUSPENSION OF CELLS

INCUBATE FOR 24 HOURS 
AT 37°C UNDER 2% C02

SUBCULTURE INTO STANDARD MEDIUM

SPIN THE PLATE, REPLACE MEDIUM AND DRUG BY FRESH 
MEDIUM REPEAT EACH DAY FOR THE NEXT TWO DAYS

SEED CELLS IN 96 ROUND BOTTOM PLATES AT 3000 CELLS 
PER WELL IN 100 [iL CULTURE MEDIUM + 100 [iL 

DOXORUBICIN-CONTAINING MEDIUM AT DIFFERENT 
CONCENTRATIONS.

Figure 18 : Protocol for the chemosensitivity assay used in testing 

drug effects against cells grown in suspension.
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later 50 |J.l of doxorubicin-containing medium was added at six different 

concentrations, one concentration per six wells to give a final concentrations of (1.72 

-  55.2 nmol /1 )  leaving one row with BSO on the first plate and one with medium 

only on the first and second plates. Plates were incubated again for 90 minutes with 

the drugs. The medium was exchanged for drug-free medium three times in the next 

three days. On the final day the MTT absorbance was measured as described in 

2.11.2. and figure 19. Graphs were plotted for doxorubicin concentrations vs. MTT 

absorbance.

2.13. Enhancement of Doxorubicin Cytotoxicity Using 
Amiodarone :

The A549 cells used in this assay were resistant to doxorubicin and had a high 

intracellular glutathione concentration. The effect o f amiodarone in enhancing the 

sensitivity of these cells to doxorubicin was studied by observing the increased 

glutathione utilization in these cells compared with control cells both doxorubicin- 

treated and untreated. Amiodarone and doxorubicin uptake was also compared as was 

sensitivity to doxorubicin after amiodarone pretreatment.

A preliminary qualitative experiment was carried out using the same cell number 

(108) of A5 4 9  and GLC4 210 ( S ) strain in order to examine the penetration of 

doxorubicin into resistant and sensitive tumour cells by treating them with the same 

drug concentration in two separate test tubes. One hour later the doxorubicin- 

containing medium was removed by centrifugation at 1500 rpm for 10 minutes and its 

concentration in the two cell lines was examined by viewing the fluorescence emitted 

by doxorubicin under excitation at 366 nm.



Depletion of glutathione using buthionine-S-R-sulfoximine (BSO)

MONOLAYER OF CELLS

i

SEED CELLS IN DUPLICATE IN 96 FLATE BOTTOM PLATES 
AT 1000 CELLS PER WELL IN 200 |xL CULTURE MEDIUM

\ INCUBATE FOR 72 HOURS AT 37°C 
UNDER 2% C02

REPLACE MEDIUM BY 
FRESH

REPLACE MEDIUM BY 
BSO-CONTAINING MEDIUM 

( 2 m M )  LEAVING CONTROL

INCUBATE FOR 6 HOURS 
AT 37°C UNDER 2% C02

ADD DOXORUBICIN AS ONE C 
WELLS LEAVI

ONCENTRATION PER ROW OF 
NG CONTROLS

-j

INCUBATE FOR 90 MINUTES 
AT 37°C UNDER 2% C02

REPLACE DRUG-CONTAINING 
EACH DAY FOI

MEDIUM BY FRESH MEDIUM 
t THREE DAYS

1

INCUBATE FOR 72 HOURS 
AT 37°C UNDER 2% C02

CHANGE MEDIUM FOR FRESH + 50 pL OF MTT SOLUTION 
( CONCENTRATION AS DETERMINED IN FIGURE 16 )

INCUBATE FOR 4 HOURS AT 
37°C UNDER 2% C 02 IN THE 

DARK

REPLACE MEDIUM & MTT BY 200 pL DMSO + 25 pL 
TRIS-BUFFER pH 9.5, MEASURE MTT ABSORBANCE USING 

BIO-RAD PLATE READER AT 570 nM

Figure 19: Method of assaying the effect of GSH depletion using BSO 

on doxorubicin chemosensitivity of cells in monolayer.
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2.13.1. Cell Treatment and Preparation :

Sixteen F25 flasks were prepared, each containing 1 x 106  A549 cells in 10 ml 

culture medium. Four days later, the medium was removed from twelve flasks and 

replaced by 5 ml of fresh medium containing amiodarone; the other four flasks were 

used as controls, their medium being replaced by fresh medium free of amiodarone. 

Amiodarone was used at four different concentrations ( 2 - 8  pmol /1 ), three flasks 

for each concentration. One hour later the amiodarone-containing medium and the 

controls medium were replaced by doxorubicin-containing medium at a concentration 

of 5 pmol /1 after first washing the cells and the flasks with warm fresh medium. One 

of the control flasks was left with doxorubicin-free medium as a control for 

glutathione measurement. Three hours later the doxorubicin-containing medium was 

removed and cells were washed rapidly three times using iced PBS, 10 ml for each 

wash , for detail see figure 2 0 .

For measurement of doxorubicin and amiodarone uptake the cells were harvested 

in two different ways. First by adding 5 ml of trypsin solution ( 0.25 % in PBS ) to
o

each flask, and leaving the cells in contact for 15 minutes at 37 C. Second by 

scraping the cells in 5 ml of iced PBS using a disposable cell scraper ( Costar, 205 

Broadway, Cambridge, MA 02139, U.S.A. ). For glutathione measurement cells 

were harvested and GSH was measured as described in sections 2.3.3. and 2.6.1.

2.13.2. Doxorubicin and Amiodarone Measurement:

4.5 ml of cell suspension from each flask in 2.13.1. were used for the estimation 

of doxorubicin and amiodarone uptake. Cells were disrupted using an ultrasonic 

probe as described in 2 .6 . 1 . and the extraction of the drugs from the lysate was



TISSUE CULTURE

SUBCULTURE INTO SUFFICENT STANDARD MEDIUM AT 
THE SAME CONCENTRATION IN CULTURE FLASKS.

INCUBATE FOR FOUR 
DAYS AT 37°C

REPLACE THE MEDIUM BY 5 ML OF FRESH 
AMIODARONE-CONTAINING MEDIUM LEAVING FOUR 

FLASKS AS CONTROLS WITH THEIR MEDIUM REPLACED 
BY AMIODARONE FREE MEDIUM.

INCUBATE FOR ONE HOUR 
AT 37°C

REPLACE THE AMIODARONE-CONTAINING MEDIUM BY 
DOXORUBICIN-CONTAINING MEDIUM IN ALL OF THE 

FLASKS EXCEPT ONE FOR THE CONTROL OF GSH 
MEASUREMENT.

INCUBATE FOR THREE 
HOURS AT 37°C

REMOVE THE MEDIUM, WASH THE CELLS THREE TIMES 
USING ICED PBS BUFFER.

HARVEST BY TRYPSINIZATION OR 
SCRAPING ( SEE TEXT ) AND 

MEASURE GSH.

Figure 20 : Cell preparation for the assay of amiodarone induced 

cell sensitivity in A549 resistant cells.
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carried out as described by Cummings and McArdle, ( 1986 ). Briefly, cell 

homogenates were treated with 0.9 ml of silver nitrate solution ( 33 % w/v ) and 

mixed for 10 minutes in order to release doxorubicin from the DNA and to precipitate 

protein ( Schwartz, 1973 ). 100 pi of methanol containing 17.73 pmol /  1 

daunorubicin and 91.43 pmol / 1 fluphenazine as internal standards, first for 

doxorubicin and second for amiodarone, were added to each tube. The homogenate 

was extracted with 10 ml of chloroform : propan-2-ol ( 2 : 1 )  for 30 minutes, 

followed by centrifugation at 2 0 0 0  rpm for 1 0  minutes at which three distinct phases 

separated. The lower organic layer was transferred to a clean test tube and evaporated 

to dryness using a vacuum evaporator ( Buchler Vortex-Evaporator, U.K. ). The 

residue was dissolved in 1 0 0  pi of methanol and 2 0  pi of it were injected onto the 

HPLC system for doxorubicin measurement and 50 pi onto the HPLC system for 

amiodarone measurement ( Figure 21 ). Standard samples of doxorubicin and 

amiodarone were prepared in the same manner and injected onto the columns at the 

same time. Standard curves of doxorubicin and amiodarone were prepared by making 

serial dilutions of both of them in the related HPLC buffer containing 17.73 pmol A 

daunorubicin and 91.43 pmol A fluphenazine as internal standard respectively.

2.13.2.1. Doxorubicin measurement:

These were carried out as described by Watson et al.. ( 1985 ) with some 

modifications. The system consisted of a single piston reciprocating pump ( Gilson 

model 302 ) with a manometric module 802 as described ( 2.4.1. ) . The LC - FL 

fluorescence detector was fitted with a 450 nm excitation interference filter and a 

composite emission filter formed from two sharp cut off filters with minimum 

absorbances at 528 and 650 nm giving a minimum absorbance at 555 nm ( Pye 

Unicam Ltd., Cambridge, U .K .). This was used with a CR 6525 double pen chart



CELLS LYSED USING AN 
ULTRASONIC PROBE

CELL SUSPENSION FROM FIGURE (20) 
TRANSFERRED INTO CONICAL TEST 

TUBES

THE ORGANIC LAYER IN EACH TEST TUBE EVAPORATED 
TO DRYNESS & THE RESIDUE DISSOLVED IN 100 pi

METHANOL.

0.9 ML SILVER NITRATE SOLUTION ( 33% W/V ) ADDED TO 
EACH TEST TUBE, MIXED VIGOROUSLY FOR 10 MINUTES

50 til INJECTED INTO 
THE HPLC SYSTEM 
FOR AMIODARONE. 

ELUANT- 0.06 % (W/V) 
AMMONIUM 

PERCHLORATE IN 
METHANOL, USING 

NORMAL PHASE 
COLUMN & UV 

DETECTION AT 240 
nm.

20 til INJECTED INTO THE HPLC 
SYSTEM FOR DOX. 

MEASUREMENT. ELUTE WITH 
ACETONITRILE : 10 mM 

PHOSPHORIC ACID : 6 mM 
BRIJ-35 ( 40 : 58.2 : 1.2 ), USING 

REVERSE PHASE COLUMN & 
FLUORECENT DETECTION AT A 

SHARP CUT OFF FILTER OF 
MINIMUM ABSORBANCE AT 555 
nm & EXCITATION AT 450 nm.

100 Jill OF METHANOL CONTAINING 17.73 pM 
DAUNORUBICIN & 91.43 pM FLUPHENAZINE ADDED AS 

INTERNAL STANDARDS, DRUGS THEN EXTRACTED INTO 
10 m l OF CHLOROFORM : PROPAN-2-OL (2 : 1) FOR 30 

MINUTES & CENTRIFUGED FOR 10 MINUTES AT 2000 rpm .

Figure 21 : Extraction and measurement of doxorubicin and 

amiodarone.
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recorder described ( 2.4.1.). The column used for doxorubicin detection was 250 x

4.6 mm ( i.d. ) stainless steel supplied packed with Apex Octadecyl ( 5 ji ) from 

Jones Chromatography.

Manual injection was made via a Rheodyne 7125 injection valve ( Scodab) with a 

20 p.1 loop. The initial chromatographic eluant consisted of acetonitrile : 10 mM 

phosphoric acid : 6  mM Brij-35 ( non-ionic surfactant) (40 : 58.2 : 1.2 ), filtered, 

degassed and run at a flow rate of 1 . 8  ml /  minute.

2.13.2.2. Amiodarone Measurement:

This was carried out as described by Storey et al.. ( 1982 ). Briefly the 

equipment was similar to that for doxorubicin measurement except that detection was 

by a single wavelength LC-UV detector ( Pye Unicam ) set at 240 nm and 0.08 

AUFS, with a single-pen chart recorder (Chessel Ltd., Worthing, Sussex, England). 

Separation was on a 250 x 4.6 mm ( i.d. ) stainless steel column supplied packed 

with Hypersil silica ( 5 JJ.) from HPLC Technology, ( Burke Electronics Ltd., 4 Park 

Gardens, Glasgow G3 7 YE ). Injection was as in the case of doxorubicin. Elution 

was isocratic ; the eluant was 0.06 % ( w/v ) ammonium perchlorate in methanol, at 

flow rate of 2  ml per minute.
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2.14. Chemosensitivity Assay of A549 Cells Following 
Amiodarone pretreatment :

This assay was carried out as described in 2.11.2. and figure 17. 200 |il per 

well of amiodarone-containing medium were added to the wells at four different 

concentrations ( 2 - 8  |iM ), as one concentration per six wells. One hour later 

amiodarone-containing medium was replaced by doxorubicin-containing medium at a 

concentration of 100 nM ( 200 |il per w ell). Two controls free from amiodarone 

were used, one with doxorubicin-containing medium at the same concentration as 

above and the other with fresh medium only, six wells for each control. Three hours 

later the doxorubicin-containing medium was replaced by fresh medium and the 

experiment continued as in ( 2 .1 1 .2 .).



III. RESULTS
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3.1. Development of HPLC Method for GSH 
measurement:

Separation of endogenous compounds at the cellular level at different 

concentrations without interference is not simple. For GSH the best HPLC buffer 

was found to be water : methanol: tetrabutyl ammonium hydroxide. Figure 22 gives 

a clear idea of the best resolution using cationic ion-pair chromatography for GSH 

separation rather than reverse phase partition on which GSH is unretained. Figure 23 

shows the resolution of different cellular components using tetrabutyl ammonium 

hydroxide and tetrabutyl ammonium dihydrogen phosphate as cation pairs, and the 

reliability of using the first of these for the best resolution and absorbance. HPLC 

grade water and methanol improve the baseline, by reducing noise seen in figure 24 

due to the absorbance of impurities in AnalaR grade solvents. Comparison of figure 

23 and figure 24 indicates the improvement in signal to noise ratio when using HPLC 

grade water and methanol ( Figure 23 ) rather than AnalaR grade methanol and 

distilled water ( Figure 24).

The optimum tetrabutyl ammonium hydroxide concentration was found to be 0.1 

% which gave high resolution of the GSH from other cellular components and good 

separation. The best capacity ratio ( k' ) can be reached at this concentration of 

tetrabutyl ammonium hydroxide when other variable are fixed ( Figure 25 ). 

Adjustment of the HPLC buffer pH to 3.5 using 10% v / v orthophosphoric acid was 

also found to increase resolution giving a value of 3.5 with k' 7.75. At pH 8  the 

resolution was 2.9 and k' was 6.1 ( Figures 26 and 27 ). Resorcinol was chosen as 

the internal standard as it is soluble in the HPLC buffer and does not co-elute with 

other cellular constituents, it also shows good absorbance in the UV range.

Ultrasonic lysis was found to be the best method for treatment of cells releasing 

their components in a more reproducible manner than other methods of lysis such as



Figure 22 : HPLC chromatograms of standard GSH with the intema 

standard resorcinol measured at 200 nm ; a) no ion-pai 

used ; b) 0.1 % tetrabutyl ammonium hydroxide.



Chromatograms of cell lysate obtained from Hela cells 

using the final HPLC method showing resolution of 

components with two different ion-pairs. a) Tetrabutyl 

ammonium dihydrogen phosphate ( 0.1 % ) ; b) Tetrabutyl 

ammonium hydroxide ( 0.05 % ).
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point is a mean of five different readings, using 
standard GSH. Bars = standard error.
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freezing and thawing. The lysate was found to be stable at — 20° C for more than 12 

hours. Figures 28 — 31 show HPLC analysis of cell lysates by this method of the 

four cell lines used in these studies in which the differences in glutathione content of 

these different cells appears clear. Figure 32 shows the standard GSH separation 

using the same method.

3.1.1. Linearity :

The standard curve for glutathione was found to be linear over the range 0 -1 .2  

jig on column sample weight (0 -3 .9  nmoles) ( Figure 33).

3.1.2. Sensitivity:

The limit of sensitivity for standard glutathione measured by this method using 

HPLC buffer as a diluent was found to be 1 mg /  1 ( 20 ng on column = 65 

picomoles ) (=  3.25 |imol /1).

3.1.3. Precision :

The precision studies using aqueous standards of glutathione or Hela tumour cells 

are summarised in table 3. All coefficients of variation and standard deviations are 

below two percent.
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Figure 28 : HPLC chromatogram of cell lysate from Hela cells using 

the final HPLC method measured at 200 nm.
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Figure 29 : HPLC chromatogram of cell lysate from A549 cells using 

the final HPLC method.
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Figure 30 : HPLC chromatogram of cell lysate from GLC4 210 (S) cells 

using the final HPLC method.
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Figure 31 : HPLC chromatogram of cell lysate from GLC4  2 1 0  (R) 

cells using the final HPLC method.
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HPLC chromatogram of standard GSH with the intern 

standard resorcinol measured at 205 and 2 1 0  nm.
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Figure 33 : Standard curve for glutathione as measured by 
HPLC. Each point is the mean of duplicate 
measurements.



Table 3 :

Precision studies on glutathione standard ( n = 21 ) and glutathione 

from Hela cells ( n = 10).

G S H  S O U R C E
M A S S  U N I T  

O R  C E L L S  / L

M O L A R  UNIT 
O R  N U M B E R  
O F  C E L L S  
I N J E C T E D

P R E C I S I O N
( %  )

S T A N D A R D

G S H
20  m g  / L

6.51 x 10  ‘ 5 

M O L A R
± 1 .8 9

C E L L S
6 .2 5  x 10  9 

C E L L S  / L

1 .2 5  x  10  5 

C E L L S
±  0 . 9 5
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3.1.4. Identification of Peaks Other than GSH in Cell Lysate :

A number of the larger peaks in the lysate chromatograms were collected, freeze 

dried and reconstituted in salt free loading buffer pH 2.1 ( 42 g citric acid, 200 ml 

methanol and 5 ml thiodiglycol 25% v/v in deionized water ). These were then 

analysed using a specific amino acid HPLC method with post-column ninhydrin 

detection. The amino acids, glycine, glutamine, leucine, alanine, arginine and 

phenylalanine were identified. No consistent changes were found in these peaks after 

doxorubicin treatment and the separation was not optimised for these. Confirmation 

of identities using mass spectrometry was not successful due to the high phosphate 

concentrations in the freeze dried material. Since these findings were not central to the 

study, no further attempts were made to quantitate the amino acids.

3.2. Growth Experiment :

The growth curves for the four cell lines, Hela, A549, GLC4  2 1 0  ( S and R ) are 

unremarkable and are shown in figure 34.

3.3. Effects of Exposure to Doxorubicin :

3.3.1. Hela Tumour Cells :

In this experiment the effect of doxorubicin exposure on Hela tumour cell lysates 

as measured by HPLC ( Figure 28 ) showed a rapid dose-related depletion of the
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Figure 34 : Growth behaviour of A Hela ; x A549 ; o GLC4  2 1 0  

(S ); ♦ GLC4  2 1 0  (R). Cell numbers were measured 
using a haemocytometer. Each point is the mean of 
duplicate counts.
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cytosolic glutathione pool. The basal glutathione concentration of Hela tumour cells 

was found to be 14-15  nmol /  10  ̂cells as a result of two different experiments. The 

depletion of glutathione was up to 85% of the control value after 12 hours exposure 

using doxorubicin at 6 nmol /  10  ̂cells ( Figure 35 ). The result of this experiment 

indicates that Hela tumour cells have high intracellular glutathione concentrations but 

are highly sensitive to doxorubicin.

3.3.2. A549 ( Resistant) Cells :

The result of this experiment shows that these cells also contain high glutathione 

levels as measured by HPLC ( Figure 29 ). The basal glutathione concentration of 

A549 tumour cells was found to be 14.2 -1 5  nmol / 106 cells which is about the same 

as Hela cells as measured in two different experiments. However in this case 

reduction of the cytosolic glutathione pool was minimal even with high doxorubicin 

doses reaching 68.8 nmol /  106 cells ( Figure 36). Glutathione depletion using high 

doxorubicin doses in this tumour was about 50% of the control value after 12 hours 

exposure. The result of this experiment suggests that the high GSH content in A549 

tumour cells may be related to their resistance to doxorubicin.

3.3.3. GLC/j 2 1 0  Sensitive Tumour Cells :

These cells contain little glutathione as measured by HPLC ( Figure 30 ). The 

basal glutathione concentration of this type of tumour cell was found to be 1.1 -  1.3 

nmol /  106 cells when measured in two different experiments. However these cells
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Figure 35 : Effect of doxorubicin on the GSH concentration of 
Hela cells as measured by HPLC after 12 h exposure. 
The two curves are from duplicate experiments.
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A549 cells as measured by HPLC after 12 h exposure. 
The two curves are from duplicate experiments.
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are very sensitive to the doxorubicin effect and exposure to this drug resulted in a 

rapid depletion of the small cytosolic glutathione pool. The depletion of glutathione 

was up to 64% of the control value after 12 hours of exposure using doxorubicin at 

17.6 nmol /  1Q6 cells ( Figure 37 ).

3.3.4. GLC/j 2 1 0  Resistant tumour Cells :

In this tumour, with acquired resistance to doxorubicin, the cells have a low level 

of glutathione as measured by HPLC ( Figure 31 ). The basal glutathione 

concentration of these resistant tumour cells was found to be 0.7 -  0.8 nmol /  106 

cells when measured in two different experiments. Doxorubicin exposure did not lead 

to measurable depletion of the cytosolic glutathione pool; depletion of glutathione 

was around 5% of the control value after 12 hours of exposure using doxorubicin at 

20 nmol /  106 cells ( Figure 38 ).

3.4. Effect of Thiols on Cellular Glutathione :

3.4.1. Effect of N-acetvlcvsteine on Hela Tumour Cells 

Treated with Doxorubicin :

In this experiment treatment of Hela tumour cells with N-acetylcysteine one hour 

prior to treatment with the previously effective doxorubicin dose of 5 nmol / 1 0 6  cells 

was found to offer a protective mechanism against the drug effect as shown by 

measuring glutathione using HPLC. The most effective N-acetylcysteine
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Figure 37 : Effect of doxorubicin on the GSH concentration of 
GLC4  2 1 0  (S) cells as measured by HPLC after 12 h 
exposure. The two curves are from duplicate 
experiments.
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concentration was 1.4 |imol /10^ cells above which NAC became toxic ( Figure 39 ). 

Using N-acetylcysteine at 1.4 |imol / 106 cells maintained the cytosolic glutathione 

pool at 87.7 -  89.5 % of the control value in the presence of doxorubicin, while 

treatment with doxorubicin alone reduced it to 53 -  62 % of the basal values. There 

was therefore a 27.5 -  34.7 % reduction in glutathione consumption by pretreatment 

with a non toxic concentration of NAC.

3.4.2. Effect of Cysteine on Hela Tumour Cells Treated 
with Doxorubicin :

As in ( 3.4.1.) pre-treatment of Hela tumour cells with cysteine under the same 

conditions also minimized the effect of doxorubicin on glutathione as measured by 

HPLC. Cysteine seems to be non-toxic to the cells and increased the cytosolic pool of 

glutathione by the same amount at each of the three doses used ( Figure 40), with the 

plateau level being reached at the lowest cysteine concentration used. These cysteine 

concentrations maintained the cytosolic glutathione pool at 85.3 % of the control 

value, use of doxorubicin alone reduced the GSH pool to 75 % of the basal level. So, 

there was a 10.3 % improvement in intracellular glutathione using cysteine 

pretreatment.



16 1

_C0
15
o

CDO

o
Ec
X
CO
0

0 .0  0 .5  1 .0  1.5 2 .0  2 .5  3 .0

NAC (prnol /106 cells)

Figure 39 : Effect of 1 h pretreatment with N-acetylcysteine on 
the GSH content of Hela cells treated with 
doxorubicin ( 5 nmol per 106  cells ) as measured by 
HPLC after 12 h exposure. The two curves are from 
duplicate experiments.



_£/)
a5o

CO
o

o
Ec

CO

14

13

12

11

10
41 2 3 50

Cysteine ( nmol /10 ce lls )

Figure 40 : Effect of 1 h pretreatment with cysteine on the GSH 
content of Hela cells treated with doxorubicin 
( 4 nmol per 106  cells) as measured by HPLC after 
1 2  h exposure.



109

3.5. *H Spin Echo NMR Spectroscopy:

3.5.1. Hela Cells :

The normal FT NMR spectra obtained from the Hela cells are shown in figure 41 

in which trace (a) shows the normal resonance arising from large molecules such as 

cell membranes, proteins and other macromolecules.

Applying the spin echo pulse sequence filters the large molecules from the 

spectrum by virtue of their shorter relaxation times. Thus, figure 41 ( b -  e ) represent 

the spin echo spectra of the small resonant cytosolic components of Hela tumour 

cells. Since the technique relies on relaxation times a series of spectra are shown (T2 

= 30 to 70 ms ). Some of the molecules with a short delay time (T2) are edited from 

the spectrum ( i.e. Protein and membranes ).

The resonance in figure 42 have been assigned on the basis of reported 

information by Klein and Robbins ( 1970 ) ; Righetti et al.. ( 1971 ) and by the 

procedure of standard addition to the cells. According to this glycine can be easily 

observed at T2 = 30 ms, glutathione and triglyceride are observed to the exclusion of 

other cellular components because of their intense resonances, due to the glycyl 

methylene of glutathione and the methyl and methylene resonances of triglyceride.

This study using a non-invasive real time method also detects phosphorylcholine, 

phosphorylcreatine and lactate in the cells. These compounds appeared as prominent 

species in the *H spin echo NMR. These peak assignments are made on the basis of 

standard addition to the whole-cell spin echo NMR and on the basis of the direct 

comparison with NMR studies previously reported ( Evans and Kaplan, 1977 ; 

Mountford et al.. 1982 ; Evanochko et al.. 1984 ; May et al.. 1986 ). However, 

certain differences were observed between cell types.
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T2 = 60 ms; and (e) T2 = 70 ms. Each spectrum consists 

of 1000 scans on a total sample size of 109 cells / 0.4 ml 

2H2 0 /NaCl (0.154 M). All spectra were recorded at 20°C.
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3.5.1.1. Study of Glvcolvsis :

Study of cellular metabolism by NMR methods depends on the ability to maintain

cell viability. Cells were found to be viable for > 5 hours when suspended in

unsupplemented 2H20 saline. Because the non-invasive real time NMR method is

capable of detecting intracellular lactate ( Figure 42), it is possible to study anaerobic

glycolysis by the cells as a measure of the energy requirements of the cells. Added

glucose [ 2.0 mg (11 pmoles) /  0.4 ml packed cells ] appears as an asymmetric

doublet at 8 5.0 in the spectra ( Figure 43 ). The doublet arises as a result of the two

glucose anomers (a and (3). The upfield line is assigned to the a  anomer ( Nicholson

et al.. 1984 ). The Hela cells have a definite preference for the a  anomer, behavior
13previously reported by Ugurbil et al.. ( 1978 ) in C NMR experiments with micro­

organisms. Using the signals from a-glucose and lactate the glycolytic process can be 

monitored as a function of time ( Figure 44 ), the rate of cellular uptake of the sugar 

and production of lactate can be clearly seen to be linked considering the basic 

stoichiometry of lactate production, ( equation 1).

Glucose-----------» 2Lactate (1 )

The pulse sequence used to obtain spin echo NMR spectra modulates the 

intensities of the various lines. Thus signal intensities in the spectra, while still 

reflecting the individual species concentrations, are no longer reliable for direct 

comparison without prior calibration. Standard mixtures of glucose and lactate 

(lithium salt, monohydrate) were used. The intensities of the important lines were 

measured in the normal FT NMR experiment ( ratio 2 : 3.04, glucose : lactate ) 

compared with those obtained in the spin echo for the same sample ( ratio 2 : 4.21 

glucose: lactate).
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3.5.1.2. Exposure of Hela Tumour Cells to Doxorubicin :

The spin echo NMR detected a rapid dose-related depletion of the cytosolic 

glutathione pool. This NMR study shows comparable, but qualitative results ( Figure 

45 and 46) to the HPLC method ( Figure 35 ), however changes can be conclusively 

assigned to cellular activity in the intact cell by doxorubicin. The single control used 

(doxorubicin absent) clearly shows no change in cytosolic glutathione. The result of 

this experiment indicates that the effect of doxorubicin on the glutathione pool takes 

two forms. At high doses the glutathione depletes rapidly ( t1/2 = 30 minutes ); lower 

doxorubicin doses depleted the glutathione pool with a t1/2 of 4 hours ( Figure 46), 

with the added feature of a lag phase.

Treatment of Hela cells with different doxorubicin concentrations ( 30 and 300 

nmol / 109 cells ) gives us clear evidence of glycolysis through lactate production 

(Figure 47 ). Inspection of figures 46 and 47 indicate that the maximum rate of 

glycolysis as reflected in lactate production occures at 3 -  4 hours respectively at high 

and low doxorubicin doses at which point glutathione depletion is about 60 % and 25 

% respectively.

3.5.1.3. Effect of NAC on Hela Cells Treated with Doxorubicin as 
Shown bv Lactate Measurement:

Addition of NAC to Hela tumour cells increases the cytosolic pool of thiol 

offering a protective mechanism as indicated by extension of the lactate lag phase 

which is coincident with the time required to deplete the larger cytosolic small thiol 

concentration ( Figure 48 ). Thus NAC presence offers a protective mechanism 

against lactate stress from high doxorubicin doses ; stress is not observed until 

intracellular NAC falls to insignificant levels.
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3.5.1.4. Transport of Amino Acids into the Cells :

This experiment examined the treatment of Hela tumour cells with the individual 

components of glutathione ( glutamate, cysteine and glycine) in the presence of a low 

doxorubicin dose, in order to eliminate the lack of precursor as a cause of reduced 

synthesis of glutathione. The nature of the instrument tuning creates an experimental 

framework in which the machine is more sensitive to the intracellular rather than the 

extracellular environment. Thus as a species crosses the membrane from a less 

sensitive to a more sensitive domain a small increase in the resonance intensity is to 

be expected ( Brown and Campbell, 1980 ). Glycine showed the simplest 

characteristics, passing across the cell membrane barrier into the cytosol. Glutamate 

also crossed the membrane, but is a substrate for intermediary metabolism in the cell 

and is consumed post transport giving a reduction in its resonance intensity. Cysteine 

shows a late fall after transport cross the cellular membrane. The lactate profile in this 

experiment showed no stress when compared with unprotected cells exposed to the 

same concentration of doxorubicin ( Figure 49 ).

3.5.2. Leukemia J-lll Cells :

As shown in 3.5.1. an initial profile of the cellular metabolites which can be 

observed by the spin echo method was required. Spectra ( Figure 50) were collected 

using cells suspended in a simple physiological saline solution ( 2H20 /  NaCl, 0.154 

mol /I ). The comparison with standard FT NMR spectra where the bulk of the 

resonances arise from the cell membrane is shown. There is considerable contribution 

to the spectrum in the lactate region arising from methyl- and methylene resonances of 

the lipids and proteins. Applying the Hahn spin echo pulse sequence simplifies the 

spectrum to just four lines identified as arising from phosphorylcholine,
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phosphorylcreatine, lactate and mobile triglyceride. These peak assignments are made 

on the basis of direct comparison with NMR studies as in ( 3.5.1.), on the intact and 

viable Friend leukaemia cell line ( Agris and Campbell, 1982 ) and lysate from the 

RIF tumour line ( Evanochko et al.. 1984 ) as well as the known chemistry of this 

type of cell ( Iyer, 1959 ). From these limited cell types it would seem that the species 

shown in figure 50 are the major NMR-active constituents in the cytosol of cancer 

cells. However, certain differences are observed between cell types.

The leukemia cell line was found to be non-viable within the time scale required 

for the metabolic studies using NMR at 250 MHz. The cells aggregated and severely 

reduced the signal which could be obtained, therefore a more complete medium, 

2H20  / RPM I1640 or 2H20  /  NaCl 10% RPMI (10% RPM I) was used.

3.5.2.1. Study of Glycolysis :

Simple glycolysis was followed in the 10% RPMI. A typical spectrum is shown 

in figure 50 c where the contribution of the medium [ mainly arginine (a) and 

glutamine (g) ] is indicated. The lactate signals ( Figure 51) indicate an initial aerobic 

phase during which the lactate resonance diminishes, followed by an anaerobic phase 

once the cells have utilised the available oxygen in the medium in which the lactate 

signal steadily increases.

In the presence of doxorubicin ( 30 (imoles ) in 100% RPMI 1640 medium, there 

is a marked difference in glycolytic behavior. No aerobic phase can be seen within the 

time resolution ( 30 min ) of the NMR experiment. The culture rapidly turns to 

anaerobic glycolysis to provide energy to combat the chemical stress of doxorubicin 

which involves free radical generation. Then the culture is rendered inert after 2 h at 

which time there is considerable difference in the amount of lactate generated by the 

culture.
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3.6. Glutathione-S-Transferase Activity Assay :

The standard curve for GST concentrations ( Figure 52 ) indicated that it was 

linear over the range of ( 0 -  1 ) enzyme unit /  m l; each point was a mean of three 

different readings.

The results of this assay are summarized in table 4 which shows the GST A 

activity of standard human placental enzyme as one unit of the enzyme activity /  ml 

(one international unit = 1 fimol of substrate converted per minute = 0.06 nkatal) and 

the related activities in the three tumour cells A549 and GLC4 210 ( S ) and ( R ). The 

table also shows the GST activity of these cells after 24 hours pretreatment with 

doxorubicin at which point there is no much difference in responce between different 

tumour cell line. Each reading in the table is a mean of three different measurements 

of the same sample. The table shows that there is a difference in the basal enzyme 

activity in these three lines. A549 showed high GST activity, twice that of the other 

two cell lines.

GST activity in A549 tumour cells after treatment with doxorubicin seemed to be 

unaffected ( Figure 53 ) even after eight hours of treatment with 3.5 |imol H 

doxorubicin ; there was no clear difference between treated and related control.
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3.7. Measurement of Lipid Peroxidation 
Due to Doxorubicin Treatment :

The Malondialdehyde standard curve is shown in figure 54, and as described 

above (2.10.) these experiments were designed to measure MDA as a product of 

membrane lipid peroxidation caused by doxorubicin free radical production. The time 

course of MDA production following incorporation of doxorubicin into Hela tumour 

and GLC4  2 1 0  ( S ) cells is shown in figure 55 and 56. This resulted in the 

peroxidation of the membrane lipids as indicated by the increasing amounts of 

malondialdehyde produced with time of exposure to the drug. The addition of 10 

|imol f\ doxorubicin to the cell suspension increased the malondialdehyde level by 78 

pmol /  106  cells over the control values in the case of Hela cells and 64 pmol /  106  

cells in the case of GLC4  2 1 0  ( S ) cells after five hours of exposure.

Treatment of Hela cells with N-acetylcysteine one hour prior to the addition of 

doxorubicin ( 1 0  fimol / I ) did not result in any decrease of malondialdehyde within 

the first hour of the treatment, but in subsequent hours there was a slight reduction in 

the malondialdehyde measurement compared with cells treated with doxorubicin alone 

( Figure 55 ). NAC appeared to offer significant protection against doxorubicin- 

induced lipid peroxidation ( P < 0.05, two way ANOVA).
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3.8. Tetrazolium Based Chemosensitivity Assay of 
Doxorubicin in Different Human Tumours :

The optimum concentrations of MTT used for the chemosensitivity assay were 

initially determined as 5 mg /  ml for both A549 and Hela cell, and 3 mg /  ml for GLC4  

cells ( both sensitive and resistant) ( Figure 57 ).

The measurement of cell kill by different doxorubicin concentrations showed the 

expected effects of these concentrations, with the sensitive cells (Hela and GLC4  [S]) 

releasing the dye to a greater extent than the resistant lines ( A549 and GLC4  [R]).

Table 5 shown the results of a drug sensitivity assay which indicates that the 

LD 5 0  for the four cell lines Hela, A549, GLC4  210 ( S ) and ( R ) were 50, 80 , 30 -  

45 and 100 -  250 nmol /1  respectively. Duplicate determinations were carried out for 

each cell line in these assays and the mean of three absorbance reading ±  standard 

errors were calculated in each case ( Figures 58 -  61).

Statistical analysis of these data was carried out using Dunnett's test ( 1955 ) 

which is used for comparing several treatments with controls. The results showed 

significant ( P < 0.01 ) differences in growth inhibition between the controls and 

treated cells, although the concentration of doxorubicin required was different for 

each cell line.
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3.9. Effect of BSO Pretreatment on the Resistance 
of A549 Cell to Doxorubicin :

Figure 62 shows the effect of six hours pre-treatment of A549 resistant cells with 

BSO at a non-toxic concentration ( 2 mmol /1 )  as compared with cells treated with 

doxorubicin alone ( control cells were grown in medium alone ). Table 6  shows the 

difference in the growth inhibition ( % )  with the doxorubicin alone and doxorubicin 

plus 2 mmol /1 BSO for each drug concentration used in this assay. 2 mmol /1 BSO 

was found to be the best concentration, being both non toxic and giving statistically 

significant enhancement of doxorubicin toxicity. Therefore a dose-dependent effect of 

doxorubicin against the cells is enabled by the non-toxic BSO concentration used. 

Pretreatment with 0.2 mmol /1 BSO gave no increase in the sensitivity of these cell 

lines, i.e. statistically non significant enhancement of doxorubicin cytotoxicity ( P > 

0.05 ) at the highest drug concentration ( 55.2 nmol / I ).

Duplicate determinations were carried out in all cases and the mean of six 

absorbances ± standard error were calculated. Statistical analyses of these data was 

carried out using Students t -test. There was no significant difference from control at 

the three lowest doxorubicin concentrations, however cells pretreated with BSO 2 

mmol l\ showed a significant increase in sensitivity at all doxorubicin concentrations 

used ( P < 0.01).
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3.10. Enhancement of Doxorubicin Cytotoxicity using 
Amiodarone :

Circumvention of doxorubicin resistance in human non small cell lung carcinoma 

A 549 was induced by one hour pretreatment of the cells with four different 

amiodarone concentrations ( 2 - 8  |imol /  1). Amiodarone enhances the effect of 

doxorubicin on GSH in this type of tumour, since there was no cytotoxic effect when 

amiodarone used alone at 10 pmol /I ( Chauffert et al.. 1987 ). The effect of 

doxorubicin in these experiments was assayed by measuring both intracellular 

doxorubicin and glutathione. Intracellular amiodarone concentration were also 

measured.

3.10.1. Drug Uptake Assay :

3.10.1.1. Qualitative Assay:

The result of a preliminary experiment in which the penetration of doxorubicin 

was examined in GLC4  2 1 0  ( S ) and A549 is shown in figure 63. The penetration of 

doxorubicin into GLC4  2 1 0  (S ) was clearly greater than for A549 as indicated by the 

higher fluorescence observed in the sensitive cells.
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3.10.1.2. Quantitative Assay:

In this assay the uptake of doxorubicin and amiodarone by the cells after two 

different methods of harvesting ( Trypsinisation and scraping ) was measured in 

order to determine whether trypsin caused leakage of drugs from the cells during 

harvesting. The results of the doxorubicin uptake experiment for A549 cells are 

shown in figure 64. Both free and DNA-bound doxorubicin are estimated in 

picomoles in this experiment. The general shapes of the curves in the two cases are 

typical and the plateau value of the doxorubicin % uptake in relation to the 

amiodarone concentration was reached at 2 pmol /l. Figure 65 shows the % uptake of 

amiodarone by the same cells related to its extracellular concentration following two 

methods of harvesting. The plateau level was reached at an extracellular amiodarone 

concentration of 2 pmol /l. Table 7 summarises the data obtained in the drug uptake 

experiments and the differences in doxorubicin concentrations at the different 

amiodarone concentration used. This table allows a comparison of the effect of the 

two methods of cells harvesting. These data indicate that an extracellular amiodarone 

concentration of 2  pmol /I is sufficient to increase intracellular doxorubicin 

accumulation in this type of tumour cell and may be able to induce cell sensitivity to 

the doxorubicin, but becomes more marked at 6  pmol /I and there may be a dose 

dependent trend for GSH depletion. Standard curves for doxorubicin and amiodarone 

are shown in figures 6 6  and 67. Typical chromatograms for doxorubicin and 

amiodarone as extracted from the cells are shown in figures 6 8  and 69. There was no 

statistical difference betwween the two methods of collection in the case of 

doxorubicin while in the case of amiodarone there was a significant difference ( P < 

0.05 ) using pair-difference t-test.
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3.10.2. Glutathione Content of A549 Cells Treated with both 

Doxorubicin and Amiodarone :

As shown in Table 7 the glutathione content of A549 cells treated with 

doxorubicin fell as the concentration of amiodarone in the cellular environment 

increased up to 8  pmol / 1. Glutathione depletion, compared with the control, was 

12% for cells treated with 5 pmol /1 doxorubicin and 62.8 % for cells also treated 

with amiodarone ( 8  pmol / l ) ( Figure 70 ). Comparison of cellular glutathione with 

the intracellular doxorubicin and amiodarone indicated that at maximum depletion 

intracellular doxorubicin was 12.5 % of the extracellular concentration ( Figure 71) 

and amiodarone was 11 % of the extracellular concentration ( Figure 72).
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3.11. Chemosensitivity Assay of A 5 4 9  cells 
Following Amiodarone Pretreatment :

Figure 73 shows the result of one hour pretreatment of A549 cells with four 

different amiodarone concentrations on the sensitivity to doxorubicin. The four 

amiodarone concentrations used in this assay were found to enhance the sensitivity of 

A549 cell proportionately, as measured by MTT absorbance, compared with the 

controls and doxorubicin treated cells. The plateau value was reached with the first 

amiodarone concentration used ( 2  pmol / 1 ).

In this experiment the mean of four absorbance reading of four different wells of 

the same cell concentrations ± standard error were calculated. Statistical analyses was 

carried out using t -test, and the results were found to be significant ( P < 0.01 ) 

indicating that amiodarone can increase cell kill when used along with doxorubicin.
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4.1. Glutathione Measurement :

The importance of GSH in cancer chemotherapy and radiotherapy comes from its 

critical role in cellular defence against oxidative stress ( Arrick and Nathan, 1984 ; 

Jordan et al., 1987 ). Thus the ability of GSH to antagonise the effect of cellular 

injury due to drugs and carcinogens such as quinone antibiotics has led many to use 

this tripeptide as a tool for controlling redox behavior due to these agents ( Meister 

and Anderson, 1983 ; Murray et al.. 1987 ). Modulation of cellular GSH levels is 

effective in improving the therapeutic efficacy of such antibiotic drugs especially 

when dealing with resistant tumours. In this situation, a reliable analytical method for 

GSH measurement is needed.

A study of methods for GSH determination suggests that such analyses are not 

always satisfactory. In early work, total nonprotein thiols were determined ( Owens 

and Belcher, 1965 ; Cohn and Lyle, 1966 ; Wendell, 1970 ), methods used 

depending on the reaction of chemicals such as Ellman's reagent or o-phthaldehyde, 

however the reaction with primary amines producing the same sensitive conjugates 

(Benson and Hare, 1975). Since the enzymatic methods ( Tietze, 1969 ; Koivusalo 

and Uotila, 1974 ; Davies et al.. 1984 ) were convenient to determine total 

glutathione, estimation of oxidized glutathione generally required that reduced GSH 

be especially sequestered with N-ethylmaleimide or 2-vinylpyridine. HPLC methods 

(Fahey et al.. 1981 ; Newton et al., 1981) were developed for GSH separation 

including recycling post column reaction ( Reeve and Kuhlenkamp, 1980 ; Alpert 

and Gilbert, 1985 ; Burton and Aherne, 1986 ), however the detection required 

derivatization of thiols with fluorescent reagents. Amperomeric methods which 

involve electrochemical detector ( Lunte and Kissinger, 1984 ; Stein et al.. 1986) or 

coupled with coulometric detection ( Harvey et al.. 1989 ) were not easy due to the 

difficulty in the preparring and maintaining the electrodes and the cost of using such
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equipments. Although there is no doubt about the sensitivity of these methods, they 

require time for sample preparation which may give problems with reproduciblity of 

results especially when dealing with the cell lysates.

4.1.1. Development of an HPLC Method for GSH 
Measurement :

In this work, the procedure described in section 2.4. gives direct measurement of 

GSH in the samples using cationic ion-pair HPLC. This method offers several 

features which are of some importance.

The time required is very short allowing reduced interference by disulphide and 

some cellular proteins which give inaccurate measurement ( Harding, 1970 ). The 

time needed for sample preparation in this method ( from cell lysis to injection into the 

HPLC system ) can be reduced to a few minutes, and the complete measurement of 

GSH, including sample preparation, can be achieved within one hour when other 

lysate peaks are neglected. Where storage was required the stability of GSH in cell 

lysates was found to be more than half a day when kept in liquid nitrogen.

Another important advantage is the low cost, since no chemicals are involved in 

sample preparation or for derivatization. The sensitivity and accuracy of this 

procedure are adequate for quantitation of glutathione in small batches of cells.

Homogenization of cell samples may interfere with the resulting recovery (Meister 

and Anderson, 1983). Ultrasonic lysis of cells gave better recovery than freezing and 

thawing when examined using this method, perhaps due to the higher proportion of 

cells broken. This method was found to have acceptable sensitivity ( = 65 picomoles
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on column ) and precision (±1.89 % and ± 0.95 %) with the added advantage of 

rapidity when compared with the others ; where Harvey et al.. ( 1989 ) quoted a best 

precision of = ± 5 %.

The highest resolution of GSH was achieved at a buffer pH of 3.5 using 

orthophosphoric acid and was used routinely even though the low pH and high 

phosphate concentrations may reduce column life by degrading the silica. This effect 

can be minimised using a guard column of the same packing material as the analytical 

column. The resolution found at the above pH could be related to the carboxyl group 

( -COOH ) in the glutathione molecule, the pKa values of which are 2.12 and 3.51 

(Rabenstein and Fairhurst, 1975). Therefore separation of glutathione by this HPLC 

method was related to the degree of ionisation at pH 3.5. The mechanism of GSH 

seperation is the formation of ion-pairs between the negatively charged GSH 

molecules and the tetrabutyl ammonium hydroxide cations. The ion pairs are non­

polar due to the large tetrabutyl groups, and are retained on the non-polar stationary 

phase.

The capacity ratio ( k' = 7.75 ) which showed the best resolution for GSH in this 

method was reached at a concentration of 0 . 1  % of tetrabutyl ammonium hydroxide. 

At lower concentrations the number of analyte ions exceeds that of the ion-pair 

allowing elution of non ion-paired glutathione. At concentrations above 0.1 % of 

tetrabutyl ammonium hydroxide, miscellar ion-pairs are formed which are not 

retained ( Watson et al.. 1985 ). When the same sample was eluted in the absence of 

ion-pair, GSH was unretained due to its high polarity ( Knox et al.. 1978 ).

The use of HPLC grade methanol and water improved the base-line by reducing 

noise at the lower wavelength used ( 200 nm and 0.01 AUFS ), while degassing the 

HPLC buffer was also useful in reducing noise at such a low UV wavelength.

Resorcinol was chosen as internal standard since it did not interfere with the 

peaks due to endogenous compounds. In addition it had high solubility and stability 

in the lysing buffer used, and high absorbance in the UV { Ec (274) = 923 A.U. and 

E0  ( 220 ) = 2329.7 A.U. }.
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The resulting method, as developed, allowed the precise quantitation (=  ± 2 % ) 

of GSH by direct injection of rapidly lysed cell homogenates, minimizing oxidative 

changes. This method can be adapted for measuring other cellular components 

including GSSG, GSH precursors and a variety of different amino acids, but this 

was not priority. Certain amino acids such as glycine, leucine, alanine, glutamine, 

arginine and phenylalanine have been identified as unretained or unresolved from 

each other during the preliminary experiments, this needs some additional work to 

obtain better resolution.

4.1.2 . *H Spin Echo NMR as a Comparison Study to 
HPLC for Glutathione Analysis in Hela Cells :

Due to the instability of the active intermediates and of GSH itself, the analyses 

described above using cell homogenates are open to criticism. Ideally it would be 

better to study the effects of doxorubicin on GSH in the intact cell. JH spin echo 

NMR, detects signals arising from protons allowing the study of a wide range of 

intracellular compounds with higher sensitivity than 13C and 3lp ; it is also suitable 

for membrane transport studies ( Brown and Campbell, 1980 ; Agris and Campbell, 

1982). This non invasive method is capable of detecting glutathione as well as some 

other compounds of intermediary metabolism. Assignments have been made by the 

procedure of standard addition to the cells. The disadvantage of this method, as 

noticed by Brown and Campbell ( 1980 ), is the resolution problem ( i.e. many
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resonances occur in a narrow range ), but as it is clear from figure 42 there is much 

information with good resonances available from the protons of several intracellular 

molecules which are well resolved. Another disadvantage of using NMR technique 

alone is the low sensitivity due to the sample size requirement ( 1 0 8  to 1 0 9  cells ) and 

the fact that, even with a calibration, results are at best semi-quantitative. The 

combination of HPLC and NMR allaws the best information for both techniques to be 

used together to study glutathione metabolism.

Reduced glutathione ( GSH ) is one of the cellular components that can be 

measured without any interference using this technique ( Figure 42 ). Thus NMR 

provided a good opportunity to study in a non invasive manner the effects of 

doxorubicin and to compare the results with those from HPLC.

4.2. Effect of Doxorubicin Treatment on GSH in 
Sensitive and Resistant Human Tumour Cells 
Using HPLC :

The problem in the use of the promising antitumour antibiotic doxorubicin, a drug 

with wide pharmacological activity, is the production of a cumulative, dose- 

dependent form of cardiac toxicity which can be life threatening. This particular 

obstacle is thought to be due to the effect of free radical intermediate generation from 

quinone metabolism in the myocardium and oxygen consumption which can alter 

Ca2+ transport by cardiac sarcoplasmic reticulum ( Doroshow, 1983 ; Harris and 

Doroshow, 1985 ).
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The precise mechanism and the efficacy of thiol-containing scavengers such as 

glutathione in preventing damage to the Ca2+ pump is confirmed by their ability to 

inhibit free radical related oxidation induced cardiac toxicity ( Thomalley and Dodd, 

1985 ). Thiol compounds also detoxify radicals such as the potent oxidizing species

the hydroxyl radical ( OH ) generated by doxorubicin metabolism in heart 

myocardium and leading to membrane lipid peroxidation ( Thomalley and Dodd, 

1985 ; Russo et al.. 1986 ; Thomas and Girotti, 1989 ).

Normal mammalian tissues contain variable glutathione concentrations ranging 

from those just adequate for cell survival (0.1 mmol /1 )  ( Kosower, 1976 ) to high 

concentrations (10 mmol / 1) in tissues such as liver ( Doroshow et al.. 1979 ). It 

has been suggested that in the case of breast tissue, elevation of such thiol-containing 

compounds of the apocrine epithelium indicate pre-neoplasmic changes ; in tumour 

tissues glutathione concentrations often are higher than those of the normal tissues 

(Murray et al.. 1987).

This section was concerned with the study of glutathione concentration and the 

effect o f doxorubicin at different concentrations in four different human tumour cell 

lines as models of sensitive and resistant tumours in order to understand the exact 

situation of glutathione in the neoplastic tissues and its importance in case of cancer 

chemotherapy. The results reported here, using a method for estimation of glutathione 

which is unaffected by artifacts due to cell disruption, indicates that the basal 

glutathione concentration in the four different cancer cells ( Hela, A549, GLC4  2 1 0  [S] 

and [R] ) differed from one another, being high in Hela cells and in inherently 

resistant cells ( A549 ) as compared with GLC4  2 1 0 , either the initially sensitive line or 

those with acquired resistant cells. These findings are in agreement with those of 

Meister, ( 1983 ) who used an enzymatic method and Murray et al.. ( 1987 ), both of 

whom demonstrated that tumours may be found with low, moderate and high 

intracellular glutathione concentrations. Their statements that certain tumours may 

have glutathione concentrations close to the minimum required for cell survival are 

confirmed by my findings in GLC4  2 1 0  ( R ) in which there was a very low level of
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glutathione which was unaffected even by high doxorubicin concentrations. This may 

be the minimum requirement for survival in cells grown under the stress of 

doxorubicin and which have acquired resistance to this drug. Cytoplasmic glutathione 

may be depleted with only the vital mitochondrial pool remaining; there is evidence 

that cells will not die until this pool is depleted ( Gaetjens et al.. 1984). Cells which 

adapt themselves to doxorubicin following long term treatment at low drug 

concentrations ( Kaye and Merry, 1985 ), are not affected by this drug and their 

minimum glutathione content seems also not to be affected due to continous 

stimulation of new GSH synthesis as explained by Meijer et al.. ( 1987 ).

Of the two species of tumour cells sensitive to doxorubicin, one, ( H ela) showed 

a high glutathione content and the other a low content of glutathione ( GLC4  2 1 0  [S]). 

In both of them glutathione was reduced after doxorubicin treatment. Responses 

similar to this have been reported, using HPLC, for the hepatic glutathione levels in 

rats using the GSH lowering drug azathioprine ( Kaplowitz, 1977 ) and DL- 

buthionine-S-R-sulfoximine as a selective irreversible inhibitor of y-glutamyl cysteine 

synthetase ( Somfai-Relle et al.. 1984 ; Crook et al.. 1986 ; Kable et al.. 1989 ). 

Glutathione depletion seems to be increased with doxorubicin dose, perhaps due to 

increased cellular penetration of the drug, with the intracellular metabolism of the 

drug to the active radicals mentioned in section 1.2.3.4.

The other two tumour cell lines, resistant to doxorubicin, showed very different 

results. One ( GLC4  2 1 0  [R]), which developed resistance after continuous growth at 

low doxorubicin doses, had very low glutathione levels. The glutathione in this cell 

line was reduced through the culturing procedure in the prescence of doxorubicin 

(Meijer et al.. 1987), as these cells were reverted from GLC4  2 1 0  (S) cells. The 

resulting minimal level of glutathione was necessary for cell survival which was 

reduced only at a very high drug concentrations. The other resistant tumour line 

(A549), inherently resistant to doxorubicin, had a high glutathione content which has 

been suggested as contributing to their resistance ( Arrick and Nathan, 1984 ;
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Hamilton et al.. 1985 ; Russo and Mitchell, 1985 ). This glutathione is not reduced 

by low doxorubicin concentrations, however high concentrations are effective due to 

increased penetration into the cells ( Gigli et al.. 1989 ). BSO as a selective inhibitor 

of GSH, by inhibiting y-glutamyl cysteine synthetase, could be adjunct to therapy 

with doxorubicin ( see 1.3.3. and 4.8.).

The effect of doxorubicin on glutathione reduction in the different tumour cell 

lines used showed that, in case of A549 tumour cells a doxorubicin concentration was 

required which was about eleven times that necessary for Hela cells, and four times 

more than required for GLC4  2 1 0  (S) cells. The minimal reduction of glutathione in 

case of GLC4  2 1 0  ( R ) and A549 cells even at the higher doxorubicin concentrations 

used may be either due to the low penetrability of doxorubicin into these cells (Kessel 

and Wilberding, 1985 ; Supino et al.. 1988 ) because of the changes in membrane 

structure, or that doxombicin, having penetrated the cells is exported by an enhanced 

efflux mechanism diminishing the opportunity for metabolism and oxidative radical 

attack on its intracellular targets (Kaye and Merry, 1985 ; Vrignaud et al.. 1986). 

This explanation is quite plausible in the case of A549 cells in which very little 

doxorubicin appears to be retained by the cells. Moreover these cells contain high 

glutathione concentrations which can easily detoxify doxorubicin intermediates and 

free radicals formed resulting from this drug metabolism. This finding was confirmed 

by Supino et al.. ( 1986 ) and Merry et al.. ( 1987 ) that different mechanisms have 

to be responsible for drug resistance.

The same doxorubicin concentrations which were effective in the case of sensitive 

cells gave no clear effects on A549 cells, however in case of sensitive tumours ( Hela 

and GLC4  2 1 0  [ S ] ) doxorubicin seems to cross the cellular membrane and be 

metabolized to the active intermediate, utilizing most of the available glutathione.
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4.3. Effect of Doxorubicin on Hela cells Glutathione 
Content using NMR :

The NMR method used detected a rapid dose-related depletion of the cytosolic 

glutathione pool, confirming the HPLC results. Although the NMR measurements are 

only semiquantitative, the changes observed in the NMR experiments can be 

conclusively assigned to cellular activity in the intact cells by doxorubicin. The effect 

of doxorubicin on the glutathione pool took two forms. At high doses the depletion 

was very rapid suggesting that glutathione is acting as a primary sink for doxorubicin 

free radicals ; cellular stress as indicated by an increase in lactate did not occur till this 

primary defence had gone. This is consistent with the recent report that glutathione 

levels may correlate with the cellular resistance to doxorubicin ( Romine and Kessel, 

1986). The lower doxorubicin doses depleted the glutathione pool in a slow manner 

with the added feature of a lag phase. Such findings may be explained either as slow 

intracellular accumulation of doxorubicin ( Gigli et al.. 1989 ) or that the response to 

doxorubicin free radicals initiation is not observed until sufficient free radicals have 

been generated to deplete the final 1 0 % of glutathione ( mitochodrial component) 

essential for cell survival ( Gaetjens et al.. 1984 ).

In order to eliminate the lack of precursors as a cause of reduced synthesis of 

glutathione, Hela tumour cells were treated with the primary constituents of 

glutathione while they were in the NMR tube in the presence of low doxorubicin 

concentrations. The three amino acids glycine, glutamate and cysteine showed simple 

transport characteristics, passing across the cell membrane barrier into the cytosol. 

Glycine passed most rapidly and completely and accumulated intracellularly, 

confirming the findings of Righetti et al.. (1971 ). Glutamate and cysteine showed a 

fall after entry which may be due to metabolism and synthesis into glutathione ( Issels 

and Nagele, 1989 ). However reduction of the resonance intensity of cysteine could 

also be due to its function as free radical scavenger due to the abundant electrons on
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its -SH group, since Doroshow et al.. (1981) concluded that non-protein sulfhydryl 

content of several organs increased after L-cysteine administration.

4.4 . Studies of Glycolysis in Hela and Jill Human 
Leukaemia Cell Lines :

Study of cellular metabolism by NMR methods depends on the ability to maintain 

cell viability while the experiment is running. Hela tumour cells were found to be 

viable in simple physiological saline solution ( 2 H 2 0  /  NaCl, 0.154 mol /  1) for 

periods long enough to study the doxorubicin and inhibition effects. This 

environment is quite stringent for cells in that much more complex nutrient media are 

usually used to increase life time but it does give a time scale in which experiments 

can be carried out with viable cells. Leukaemia cells J ill were found to be non-viable 

within the time scale required for metabolic studies in the above medium using NMR 

at 250 MHz. The cells aggregated, and this severely reduced the signals which could 

be obtained. Therefore in this case a more complete medium, 2 H20  / RPM I1640 and 

2 H20  / NaCl 10% RPMI 1640 was used.

During cellular carcinogenesis and due to the changes of enzyme patterns, 

glycolytic capacity of malignant cells in both aerobic and anaerobic conditions is 

increased in order to meet the energy requirements for enhanced nucleic acid and 

phospholipid synthesis ( Kallinowski et al.. 1988 ). At the advanced tumour stage in 

vivo glucose uptake is expected to be reduced due to the restriction in the blood flow, 

however Kallinowski et al.. ( 1987 ) concluded that in case of the hypoxic tumours 

glycolytic rate increased with size so long as glucose supply was maintained.
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Cancer cells, which may be poorly oxygenated, derive the bulk of their 

biochemical energy from the production of lactate rather than the complete 

degradation of glucose via the tricarboxylic acid cycle ; consequently the kinetics of 

lactate production can be used to assess the hypoxic stress of the cells in the culture or 

tumour following glucose addition since a direct relationship between glucose 

consumption and lactate production has been found ( Reglinski et al.. 1987 ; 

Kallinowski et al.. 1988 ). The sugar is metabolized efficiently to produce a variety 

of products, dominant amongst which is lactate. In vitro this lactate mainly arises 

from the a  anomer of the glucose ( Ugurbil et al.. 1978 ). The results shown above 

indicate that the rate of cellular uptake of sugar and production of lactate can be seen 

to be linked in Hela cells with the lag phase in lactate production during the maximum 

rate of uptake of glucose. In the absence of added glucose the lactate profile in 

untreated Hela cells is flat over a period of 8  hours.

In the case of leukaemia ( Jl 1 1 ) cells the lactate profile indicates an initial aerobic 

phase during which the lactate resonance diminishes, followed by an anaerobic phase 

once the cells have utilised the available oxygen in the medium, in which the lactate 

signal steadily increases. This is similar to what was observed for Hela cells where a 

short aerobic period was evident as a lag phase in the glycolysis plot.

In Hela cells in the presence of doxorubicin there was a marked difference in 

glycolytic behavior, with a clear relationship between glutathione concentration and 

rate of glycolysis. The maximum rate of glycolysis did not seem to occur until after 

depletion of glutathione to a low level ( Figures 46 and 47 ) (T = 3h). This seems to 

confirm that glutathione is the main oxygen radical scavenger in the cells, since at the 

maximum glutathione reduction level the anaerobic state was established. This may be 

due to the abundance of free radical and intermediates of doxorubicin metabolism 

after GSH depletion, acting as oxygen utelising agents, converting cells to anaerobic 

state at which the maximum rate of glycolysis took place ( Al-Kabban et al.. 1988 ; 

Kallinowski et al.. 1988 ). These findings could be confirmed by the fact that the
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lactate profile in cysteine-treated cells exposed to doxorubicin showed no stress when 

compared with unprotected cells ( Figures 47 and 49 ) ; cysteine being a thiol- 

containing compound which protects against doxorubicin free-radicals produced.

In the case of leukaemia cells, no aerobic phase was seen in the presence of 

doxorubicin and the culture rapidly turned to anaerobic metabolism. This may be due 

to the fact that this type of cell contains a minimum ( almost undetectable) amount of 

glutathione. Doxorubicin is thus reduced to its active metabolite consuming the 

available oxygen in the NMR tube turning the culture directly to the anaerobic state 

(Yoda end., 1986).

4 . 5 .  Protection of Cellular G lutathione from Doxorubicin  

Effects by N-acetylcysteine and Cysteine :

A method of increasing cellular glutathione levels might be beneficial in protecting 

cells against active radical intermediates. Accordingly treatment of Hela tumour cells 

with cysteine or NAC one hour prior to a previously effective dose of doxorubicin 

was investigated, and resulted in a decreased effect on the cellular glutathione. This is 

thought to be due to the activity of these thiol-containing compounds in concert with 

glutathione as radical scavengers ( due to the availability of electrons on the sulphur 

molecules ) or that NAC could be deacetylated to yield cysteine as a GSH precursor 

or acting as a delivery system for cystine sulphur from the medium outside the cells 

which then converted to cysteine ( Issels et al.. 1988 ) . NAC was seen to protect 

against high doxorubicin doses with lactate stress not observed until intracellular
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NAC concentrations fell to insignificant levels. This finding compares with the 

glycolysis study in which the maximum rate of lactate production did not occur until 

after depletion of glutathione to a very low level. NAC mimics the protective role of 

glutathione, but has the advantage of direct penetration into cells, increasing the thiol 

concentration. Similar responses have been reported using NAC or cysteine to protect 

rats against the side effects of cyclophosphamide without interference with its 

antitumour activity (Berrigan et al.. 1982).

NAC at low concentrations shows no interference with the therapeutic efficacy of 

doxorubicin, however this study indicates that such thiol-containing compounds 

could be toxic to the cells when used at high concentrations. GSH depletion in this 

experiment could be due to increased cell death ( see section 3.8.). The experiment 

reported here indicated that 1.4 (imol NAC / 106  cells seems to be the best non toxic 

effective concentration for protection of Hela cells.

In the case of cysteine the protective action was confirmed by the amino acid 

transport experiment using NMR and the finding of Issels and Nagele, ( 1989 ) in 

which cysteine was found to pass across the cell membrane, showing a later fall 

which could be due either to its synthesis into glutathione or metabolism following 

action as a free radical scavenger in its own right as a thiol containing compound 

(Doroshow et al.. 1981). Meister (1984 ) showed that glutathione may be increased 

by cysteine supply and recently Issels and Nagele, ( 1989 ) added that the cysteine 

moiety of newly synthesised glutathione is derived from the extracellular pool of 

cystine.

The plateau level of glutathione was reached with a single dose of cysteine, 

confirming the direct and easy penetration of cysteine into the ce ll; excess cysteine 

may be metabolized and excreted ( Meister, 1983 ). For activity as a glutathione 

precursor it must be present at similar concentrations to the other two amino acids 

(glycine and glutamate) and given in a combination with them.
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4.6. GST Relationship to the Intracellular GSH Level :

Glutathione-S-transferase ( G S T ) has a major role in catalysing the conjugation 

of reduced glutathione with a wide spectrum of electrophiles ( Ketterer et al.. 1982; 

Mannervik, 1985 ) of which doxorubicin may be one. Hence it might be expected that 

cells with a high GSH content may also have high GST activity (Evans et al.. 1987). 

The results here indicate that there is relationship between the glutathione content of 

different lung tumour cells and their GST activity which is mainly o f the acidic type 

(Beckett and Hayes, 1987). Glutathione content in the three cell lines used was in the 

order A549 > GLC4  210 (S) > GLC4  210 (R) ; the GST activity was high in the cells 

of high GSH content (A549) compared with the other two cell lines of lower GSH 

content ( GLC4  210 [S and R ] ) .  Similar findings were reported by Scott and Wright 

(1980) who suggested that GST activity may be elevated in case of inherent elevation 

of glutathione content such as was detected in A549 cells. Recently Smith et al.. 

(1989) concluded that certain GST classes could be elevated and take part in the 

resistance of tumour toward cancer chemotherapy.

Twenty four hours pretreatment of these cells with effective doxorubicin 

concentrations gave no clear reduction in the GST activity. A reduction would be 

expected due to the reduction in cell numbers as a result of doxorubicin-induced cell 

killing as shown in section ( 3.8. ). These results, although only few in number 

suggest that GST has a high degree of stability and is membrane-bound. The fall in 

GSH in the detoxification process of doxorubicin whould therefore seen to be 

unrelated to any change in GST activity. It therefore seems that although some 

authors have related GST to the level of cell resistance or sensitivity to 1,3-Bis (2- 

chloroethyl )-l-nitosourea ( BCNU ) and nitrogen mustard ( Evans et al.. 1987 ; 

Smith et al.. 1989 ), it is not a useful marker for examining the effect of doxorubicin 

on cells in vitro. This is in agreement with Meijer et al.. ( 1987 ) that there was no 

detected changes in GST activity due to developement of acquired resistance in 

GLC4 -Adr line to doxorubicin.
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4.7. Lipid Peroxidation Induced by Doxorubicin :

As a biological term lipid peroxidation refers to the destructive effect on the 

normal living tissue caused by active oxygen radicals. Transformation of normal 

tissue into malignant cells can render them less susceptable to peroxidation 

(Dormandy, 1988). Accordingly there might be a role in cancer eradication for the 

induction of lipid peroxidation in cancer cells ( Thomas and Girotti, 1989 ). Free 

radicals transform the unsaturated lipid into lipid radicals of high activity ending in 

lipid peroxy-radical ( see 1.2.6.3 ). Doxorubicin has been found to establish this sort 

of reaction as one of its mechanisms of tissue damages ( Mimnaugh et al.. 1985 ; 

Niki, 1987 ).

Although thiobarbituric acid reaction is not the ideal method for lipid peroxidation 

measurement in different sample origins due to the lack of specificity, it is still widely 

used in both laboratory animal and human sudies. It gives broad brush information 

about the induction of lipid peroxidation when the results compared with controls. 

The thiobarbituric acid reaction with other substances, such as saturated aldehydes, 

may be not important in in vitro studies, but must be recognized when dealing with 

patient speciments ( Knight et al.. 1988 ).

In this study two sensitive tumour cell lines were chosen (Hela and GLC4  2 1 0  

[S]) treated with an effective doxorubicin concentration. MDA was measured as an 

indicator of lipid peroxidation induced by doxorubicin free radicals. The two lines 

showed high activity of doxorubicin on the unsaturated fatty acids of the cellular 

membrane as indicated by increased MDA accumulation. In these two cell lines there 

is high doxorubicin retention and fast GSH utilization ( 3.3.1. and 3.3.3. ), and that 

are the main reasons for lipid peroxidation ( Thomas and Girotti, 1989 ). Llesuy sL 

al., ( 1985 ) have shown that there seems to be a direct relationship between lipid 

peroxidation and intracellular doxorubicin concentration.
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The use of N-acetylcysteine to circumvent lipid peroxidation produced support for 

the activity of such a thiol-containing compound as an antioxidant agent when added 

prior to the cytotoxic drug. It seems to have no effect within the first hour of 

administration, but subsequently produced some protective effect against doxorubicin 

by minimizing lipid peroxidation. A similar finding has been noticed by Myers et al.. 

( 1977 ) who found that lipid peroxidation as measured by MDA could be blocked by 

tocopherol, reducing the cardiotoxicity of doxorubicin in mice. Accordingly 

combination of these results with these described in section 3.4.1. may indicate 

potential benefits in using NAC as a protective agent to guard normal heart tissue 

against the side effects of doxorubicin. Doroshow et al.. ( 1981 ) found that 

treatment of experimental animals with pharmacological doses of N-acetylcysteine, 

selectively rescued heart tissue but not others from the toxicity of doxorubicin as 

detected by lipid peroxidation. They postulated that NAC can break the free radical 

chain reaction by acting as a hydroxyl radical scavenger, enhancing the ability of heart 

muscle to withstand doxorubicin exposure.

4.8 Chemosensitivity Measurements of Doxorubicin in 
different Tumours of Human Source and Effect of 
BSO Pretreatment:

The MTT experiments were carried out using the standard protocol of 
103  cells treated over 24 h. These indicate relative resistance, but MTT uptake 
measured cell metabolism rather than time viability. The Trypan blue experiments, 
(Appendix) showed adequate viability for HeLa and A549 lines at Doxorubicin 
concentrations of the same order as those used for the HPLC experiments.

The results of the chemosensitivity assay for the four cell lines gives baseline data 

about the behavior of these human tumours when treated with doxorubicin. The two 

sensitive cell lines ( Hela and GLC4  2 1 0  [S] ) showed a major reduction in dye 

absorbance with a reduction in viability proportional to drug concentration. Viability 

was reduced 2 0  and 6  times respectively when compared with controls at the highest 

doxorubicin concentration used ( 1075 nM ), however in the case of the acquired
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resistance line ( GLC4  2 1 0  [R ]) the viability was reduced by only 2.5 times that of 

the control. For inherently resistant cells (A549), for which the viability of the basal 

non treated cells was high compared with the others ( twice that of Hela and more 

than four times that of the other two lines ), the reduction in viability at the above 

doxorubicin concentration was about 8  times that of the related control. These results 

indicate that for each cell line the resistance to doxorubicin and its activity are 

dependent on the drug concentration outside the cells ( Bellamy et al.. 1988 b ) and 

that may desided the intracellular incorporation and distribution. Similar behavior was 

described by Vrignaud et al.. ( 1986) who measured cloning efficiency.

Resistance of tumour cells toward doxorubicin could at least in part be developed 

due to the difference in the capabilities of DNA repair ( Meijer et al.. 1987 ; Bellamy 

et al.. 1988 b) by the catalytic activity of ATP-dependent enzyme DNA topoisomerase 

II. DNA intercalation is necessary but not sufficient for the antitumour activity of 

doxorubicin, this drug induces protein-linked DNA breaks in a mechanism 

independent of radical production in the presence of DNA topoisomerase II, but not 

in the absence of this enzyme ( Tewey et al.. 1984 ). Therefore in resistant tumours, 

increasing ability of DNA repair may be explained by genetic reduction of DNA 

topoisomerase II production preventing DNA-DOX complex formation.

The results here paralleled the effect of different doxorubicin concentrations on 

measured GSH. The LD5 0  of doxorubicin in these four cell lines differed, in the 

order GLC4  2 1 0  (R) > A549 > Hela > GLC4  2 1 0  (S). The fact that the cells with 

acquired resistance showed the highest LD5 0  while having a lower GSH 

concentration than the others could be explained as being due to increased synthesis 

of membrane glycoproteins P-170 -  P-180, resulting in increased doxorubicin efflux 

( Garman and Center, 1982 ). In the case of A549 cells, doxorubicin resistance could 

be due both to membrane glycoproteins (P-170 -  P-180) induction and also to the 

high glutathione content ( Suzukake et al.. 1982 ; Arrick and Nathan, 1984 ; 

Hamilton et al.. 1985 ; Russo et al.. 1986 ; Dusre et al.. 1989 ). Certainly the 

viability of these two cell lines is only slightly affected by doxorubicin when
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compared with the two sensitive lines. The high level of resistance shown by GLC4  

2 1 0  (R) cells compared with A549 agrees with the findings of Shen et al.. ( 1986 ) 

that cells with induced resistance are more resistant than wild type tumour cells to 

certain cytotoxic drugs.

The high GSH concentration in Hela cells can be rapidly reduced after treatment 

with doxorubicin confirming high penetration and accumulation of the drug in this 

type of cell, as in GLC4  2 1 0  (S) cells with low GSH concentrations. It is suggested 

that in the case of sensitive cells there are little or no P-170 -  P-180 glycoproteins to 

facilitate the efflux of doxorubicin. Therefore there is enough time for the drug be 

metabolised and react with GSH. The remaining doxorubicin intermediate could be 

intercalated with the DNA base pairs after GSH depletion, inducing cell killing (see 

1.2.3.1.1.). It is interesting that in case of GLC4  2 1 0  (S) cells with a low GSH 

content, the effect much more severe than in Hela cells of high GSH content. These 

results would confirm other findings ( Russo et al.. 1986 ; Jordan et al.. 1987 ), that 

glutathione is protective against cytotoxic agents.

Because of the importance of glutathione in the protection of cells against free 

radical formation due to certain cytotoxic agents such as doxorubicin, depletion of 

intracellular GSH in order to increase the sensitivity of the resistant cells is 

theoretically a valid method of therapy ( Arrick et al.. 1982 ; Russo et al.. 1986; Lee 

et al.. 1987 ; Jordan et al.. 1987 ). The experiments carried out above on a human 

lung tumour cell lines, showed that when GSH was depleted with sub-toxic BSO 

concentrations in A549 cells 6  hours prior to exposure to doxorubicin, cell resistance 

was reduced. This finding confirms that viability and intracellular glutathione 

depletion are linked, and support the recent study of Dusre et al.. ( 1989 ) who found 

that toxicity of doxorubicin could be enhanced by an increase of 'OH formation as an 

indirect activity of BSO by decreasing GSH level. It is therefore possible that there 

may be potential benefits of agents such as BSO as adjuncts to therapy with 

doxorubicin.
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4.9. Enhancement of Doxorubicin Cytotoxicity 
Using Amiodarone :

In all of the reported cases of doxorubicin resistance enhancement of active drug 

efflux is a major problem, in addition to the low penetration and distribution which is 

effected by the hydrophobic / hydrophilic ( membrane / cytoplasmic ) properties 

(Hindenburg et al.. 1987). Several trials have been carried out to overcome this 

problem, using calcium channel blockers such as verapamil and norverapamil. 

Although the exact mechanism of the use of calcium channel blockers to overcome 

cellular resistance is not yet understood, Merry et al.. ( 1987 ; 1989 ) indicated that 

these antiarrythmic drugs can increase the ratio of bound to unbound doxorubicin. 

This is consistent with the above finding of Hindenburg et al.. ( 1987 ) that these 

agents are able to displace drug from the hydrophobic into the hydrophilic 

compartment of the cell ( drug within the hydrophilic componant is less available than 

lipid associated drug), therefore doxorubicin ditribution is expected to be increased.

In this study another antiarrythmic drug, amiodarone, was used to circumvent 

doxorubicin resistance in the inherently resistant human cell line A549. The resistance 

of these cells to doxorubicin can be reverted by verapamil, associated with increased 

intracellular doxorubicin accumulation ( Merry et al.. 1987 ), and I also observed 

drug accumulation and its effect on the already high glutathione content of these cells. 

The ability of calcium channel blockers to restore the sensitivity of doxorubicin- 

resistant tumours is then due to blockage of enhanced drug efflux and alteration of 

drug distribution ( Bellamy et al.. 1988 a ) followed by enhanced DNA damage 

(Cairo et al.. 1989).

The overall mechanism of action of amiodarone appears to be the same as that of 

the calcium channel blocker verapamil. Although amiodarone has never been reported 

as a calcium channel blocking agent, its antiarrhythmic effect could be similar to that 

of the (3-blocking agent ( Chauffert et al.. 1986 ). These drugs may also act through
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the superphosphorylation of plasma membrane glycoprotein P-170 -  P-180, thus 

blocking the exodus of doxorubicin. The increased cytotoxicity of doxorubicin after 

amiodarone treatment can thus be explained as due to intracellular doxorubicin 

accumulation, distribution and binding to its target.

For drug estimation the cells were harvested in two different ways, trypsinization 

and scraping, in order to exclude drug release from protein binding during incubation 

with trypsin. Cells were left in the trypsin solution and drugs extracted after lysing 

cells in the same buffer. The results showed no difference in doxorubicin retention 

between the two methods of harvesting at all amiodarone concentrations used. There 

is no leakage in doxorubicin during incubation with trypsin (1 5  minutes ). 

Doxorubicin retention was increased at all amiodarone concentrations used to 

circumvent resistance, 2 |iM amiodarone being an acceptable concentration for 

increasing doxorubicin uptake in such type of tumour cells. Similar work has been 

performed by Merry et al.. ( 1986 ) to circumvent human glioma cells using 

verapamil. Recently Merry et al.. (1987 ; 1989) found that 6 . 6  fiM is the best 

concentration of verapamil at which there is no interference with the therapeutic 

effecacy of doxorubicin with significant decrease of cellular resistance at P < 0.05 of 

A549 and Murine tumour cells toward doxorubicin. In this study 2 (iM of amiodarone 

gave a highly significant ( P < 0.01 ) reduction in resistance of A549 tumour cells to 

doxorubicin. Chauffert et al.. ( 1986 ; 1987 ) reported that amiodarone, a relatively 

non toxic anti arrhythmic agent is able to restore sensitivity to anthracyclines in 

naturally resistant rat colon cancer by enhancing cytotoxic effects in the same manner 

as verapamil but more effectively. This difference in activity should be related to the 

drug half-life which is short in the case of verapamil ( 5 hours ) as compared with that 

of amiodarone (25 ± 12 days ). This may offer the chance of amiodarone being more 

effective than verapamil, in addition to which the effect is achieved in vivo at plasma 

amiodarone concentrations which are similar to those obtained when using it as an 

anti-arrhythmic agent ( Chauffert et al. 1986).

Penetration of amiodarone itself seems to be proportional to its extracellular
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concentration, and levels were found to be higher in cells harvested by scraping. This 

could be due to its high efflux and adherence to flask walls during the incubation time 

with trypsin buffer leading to losses during harvesting. Another explanation could be 

competition between doxorubicin and amiodarone for efflux transport systems during 

the incubation. Such an interaction has been shown for verapamil ( Kessel and 

Wilberding 1984 ) formed the bases of one of the hypothesis about the action of such 

agents in increasing intracellular doxorubicin levels. The same authors added that 

verapamil promotes anthracycline acumulation via competition for exodus. When 

cells were harvested by scraping in frozen solution of PBS there was little chance and 

time for leakage and, since cells were directly lysed and extracted, less release from 

protein binding occurred.

At low amiodarone concentrations (2  jiM ) the percent amiodarone retained was 

higher than at the other extracellular concentrations, possibly due to limitation in the 

membrane intake binding sites which may be saturated at the high amiodarone 

concentrations, independent of sites concerned with transport of the drugs out of the 

cells. Center (1985) has postulated that membrane glycoprotein P-180 acts as a 

channel which is capable of bringing about the efflux of a variety of compounds ; the 

activity of this channel could be modulated by channel blockers due to 

superphosphorylation of this protein. This could also explain the differences in 

doxorubicin penetration and accumulation at high amiodarone concentrations ; as a 

result of increasing of superphosphorylation of high molecular weight glycoproteins 

at high amiodarone concentrations these channels could be blocked completely and 

doxorubicin retained in the cells.

As it is known that intracellular GSH is increased in some forms of anthracycline 

resistance, and in these cells reduction of GSH, renders them sensitive ( Hamilton et 

al., 1985 ), it would seem that the high concentration of GSH in A549 tumour cells is 

an indication of their resistance to doxorubicin. Measurement of GSH in A549 cells 

after amiodarone and doxorubicin treatment gives strong support for the mode of 

action of amiodarone against resistance toward doxorubicin. Furthermore
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combination of the results of drug accumulation and GSH metabolism in the same 

experiment gives an indication of the resensitising of such cells to anthracycline, 

confirming the finding of others such as Hamada et al.. ( 1987 ) and Chauffert et 

al., (1987 ). In this experiment GSH showed a sharp reduction which was related to 

the intracellular doxorubicin and the intra- as well as extra- cellular amiodarone 

(Table7); the reduction in GSH content was minimal in cells treated with doxorubicin 

alone.

The cytotoxicity of doxorubicin with or without amiodarone as shown by cellular 

viability as MTT absorbance give a further confirmation for the above results, 

showing that amiodarone enhances cell killing by doxorubicin. This result showed 

that induction of cell killing is a function of time and extracellular doxorubicin 

concentration ( Gigli et al.. 1989 ) after blocking of drug efflux using amiodarone. 

The plateau level of cell killing was reached at a concentration of 2 pM amiodarone, 

indicating that A549 tumour cells can be sensitised toward doxorubicin at this 

concentration.
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4.10. C onclusion  :

The combination of HPLC and *H spin echo NMR for analysis of cell 

composition and analyte identities is valuable, both because they provide 

complementary information in some cases and because the NMR technique has the 

advantage that chemical processes in the living cell can be maintained in situ. The 

techniques have different sampling requirements since large cell numbers are required 

for NMR whilst HPLC is more sensitive. This combination of methods allows 

monitoring of intact cell metabolism and more complete investigation of different 

cellular components.

The HPLC method developed here is specific for GSH measurement and is of a 

good sensitivity and precision. It is also fast compared with others, which makes it 

possible to use it for the measurement of glutathione for clinical purposes ( Meister, 

1983 ). The method also measures other cellular components some of which are 

amino acids that absorb in the low UV wave length.

The *H spin echo NMR method is clearly a very powerful one in that it enables 

specific metabolites to be monitored in the living cell without the need for the addition 

of probe molecules or high energy sources which can alter the chemical processes. It 

is therefore ideal as a model system for the studying the action of drug and natural 

product uptake by the whole cell.

My results confirm, using the reliable and compatible HPLC and NMR methods, 

that the rapid and significant effect of doxorubicin on intracellular glutathione 

concentration in intact cultured cells is not an artifact of cell disruption. The initial 

response of the cell to free radical attack is expressed directly through the glutathione 

system, there is, after a lag, a dose-related rise in anaerobic glycolysis, 

supplementation with small thiols delays the onset of this effect. Pretreatment with 

cysteine or N-acetylcysteine can avert radical damage and the protection is related to 

the intracellular thiol concentration, but may also involve radical quenching at the lipid
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bilayer, minimizing lipid peroxidation.

The lactate signal in spin echo NMR can be used to monitor glycolysis in intact 

and viable cancer cells and the increased stress in the living cell caused by the widly 

used drug, doxorubicin. The culture density in the NMR tube is necessarily high, and 

it is therefore a reasonable model for solid tumours, where the cells are also of a high 

density and are served by a restricted flow of nutrients and oxygen. Such cells 

eventually rely heavily on anaerobic glycolysis and finally become necrotic. The 

NMR method is a reasonable in vitro model for the assessment of potential 

therapeutic agents which are expected to have an effect on cellular energetic in 

tumour.

The results of viability studies in the different tumour cell lines used confirm the 

result of non-artefactural intracellular glutathione depletion, and both studies 

illuminate the mode of action of BSO in reducing the high GSH content of resistant 

cells. Glutathione-S-transferase activity in these different tumour cells gave clear 

evidence of its use as a good marker for doxorubicin resistant tumours, but not as an 

indicator of the effect of doxorubicin. The application of these methods to the study 

of known tumour lines showing resistance, sensitivity and acquired resistance to 

doxorubicin further confirms the importance of glutathione concentration in resistance 

to doxorubicin and the potential benefits of agents such as BSO as adjuncts to therapy 

with doxorubicin.

The association of amiodarone with doxorubicin could be useful in therapeutic 

trials of tumour resistance to doxorubicin, as it is effective at non-toxic 

concentrations. This agent, which is effective in reversing tumour resistance toward 

doxorubicin without interference with the therapeutic efficacy of such drug and is also 

used in human medicine in its own right, could be an excellent adjunct to therapy with 

doxorubicin. The overall studies mentioned here indicate that doxorubicin, one of the 

best chemotherapeutic agents in use, may have its unwanted side effects controlled. 

N-acetylcysteine, cysteine and amiodarone can be used safely in vivo in the 

concentrations mentioned through this work and may improve doxorubicin
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chemotherapy used alone or possibly in combination, since they work in different 

ways. More work especially on the clinical side, is needed to confirm the continuing 

potential of this drug in control of cancer.

4.11. Future Work :

For the continuity of this work some areas need to be extended. In particular the 

relationship of tumour resistance to membrane fluidity which has already been 

addressed using NMR technique. The enhancement or maintenance of intracellular 

GSH levels using substances other than NAC and cysteine has also to be further 

explained. For example the use of oxothiazolidine as a cysteine delevery agent in 

combination with BSO as a GSH reducing compound and with amiodarone. 

Glutathione monomethyl or methyl esters are also worthy of study using this model 

since they are rapidly taken up into the cell.

The findings on lipid peroxidation in this thesis are at a basic level only. This 

effect of doxorubicin needs to be examined more carefuly, using methods other than 

MDA. Suggestion are diene conjugate species and lipid hydroperoxidation.

In conclusion, a model now exists for the detailed study of the effect of a number 

of antineoplastic drugs and co-factors on both GSH metabolism and the integrity of 

the cell membrane. The extension of these studies, and their possible transfer to the in 

vivo situation offers an exciting field for further work.
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Appendix to Results 

Viability Studies

Viability studies using Trypan blue were carried out using HeLa and A549 

cells grown as described in 2.6.1 and 2.6.2 and treated with Doxorubicin at 

18 nmol/106 cells (4 (imol/1) for 12 h. The control and doxorubicin-treated 

flasks were sampled at intervals, the samples stained with Trypan blue and 

the numbers of viable cells counted. The viability of treated A549 cells at 12 

hrs was shown to be 78% (Fig 74) and of HeLa at 5 hrs 98% (Fig 75).
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Figure 74 : Viability of Hela cells treated with Doxorubicin 

over a  period of 5 h, Doxorubicin concentration 

-3.6 nmol /106 cells. The two curves are from 

duplicate experiments.
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S u m m arv

G lu ta th ione was m easured in doxoru b ic in -sen sitiv e  cells 

from  sm all cell carcinom a of lung (GLC 4  210), and the levels 

compared with those of cells with acquired resistance and a line of 

resistan t non-sm all-cell adenocarcinom a A549 (A lveolar type 2). 

The effect of different doxorubicin concentrations on glutathione 

were m easured by HPLC. The effect of doxorubicin on the 

v iability  of the cell lines was studied using th iazole blue dye 

reduction. An increase in A549 sensitivity to doxorubicin was 

produced using buthionine-S,R-sulfoxim ine at a non toxic dose.



In tro d u c tio n

M easurem ent of increased  in trace llu la r concen tra tions of 

g lu tath ione (GSH) in many types of cancer cells have been 

docum ented ( 1 ), furtherm ore in certain tum ours (eg skin, liver, 

colon) some carcinogens have been shown to lead to an increase in 

GSH as well as y-glutamyl transpeptidase levels . These changes 

have been suggested as m arkers for neoplastic  change ( 1 ,2 ). 

Intracellular GSH concentrations may determ ine the sensitivity of 

tum our to certain chem otherapeutic agents and irradiation, since 

GSH can scavenge reactive oxygen interm ediates and free radicals 

(3,4). Thus cells with low GSH levels may be more sensitive and 

susceptible to chem otherapy and cells with high GSH levels may 

be protected.

The usefu lness of cy to toxic drugs in the trea tm en t of 

d iffe ren t type of cancer has been lim ited  by the frequen t 

developm ent of drug resistance. Much work has been done in 

identifying the possible mechanism of this resistance; it is now 

widely accepted that doxorubicin (DOX) resistance in cancer cells is 

due to an enhanced outward flux of DOX (5,6). Garman et al (7) 

showed that DOX resistance is related to changes in the structure 

of the m em brane, both alterations in m em brane fluidity  and the 

synthesis of a membrane glycoprotein which transports DOX out of 

the cells. GSH plays an important role in cellular resistance, and 

resis tance  can be reversed  by its depletion  w hich may be 

achieved either by reducing the supply of precursors for synthesis 

(glutamate, cysteine and glycine) or by using specific inhibitors of 

synthetic enzymes ( 8 ). B uthionine-S ,R -sulfoxim ine (BSO) is a 

potent and selective agent which acts by inhibition of y -  glutam yl 

cysteine synthetase. Tumour cells treated with BSO have been



show n to have low er GSH co n cen tra tio n s  and in c reased  

susceptibility  to cytolysis by reactive oxygen interm ediates (1,9- 

13).

The problem  with g lu tath ione m easurem ents in cultured 

cells is the possible oxidation of in tracellu lar GSH during cell 

disruption and subsequent enzym atic or colorim etric estim ations. 

The HPLC method used in these studies employs direct injection of 

rapidly disrupted cells in to a non-oxidising environm ent in the 

HPLC eluant' which is gassed with helium. The m ethod gives 

results which are com parable with those obtained in intact cells 

using NMR estimation of reduced glutathione (14).

In this study we measured the GSH level using HPLC in three 

human lung tumour lines, one sensitive and two resistant to DOX. 

One of the resistan t lines showed inherent resistance, the other 

acquired resistance  on exposure to sublethal concentrations of 

DOX. The effect of DOX on the viability of these 3 cell lines and 

the effect of BSO on resistance were studied.



M aterials and M ethods 

Reagents and Chemicals

Doxorubicin, HPLC and tissue culture reagents and chemicals

were as reported earlier (14) and from the same sources, except

that RPMIX1 1640 culture medium with 20 mmol/1 Hepes buffer 

and 0 .9M  sodium  b ica rb o n a te  w ere o b ta in ed  from  F low  

L aboratories (UK). B uth ionine-S ,R -sulfoxim ine and M TT dye 

(3 -[4 ,5 -d im e th y l- th ia z o l-2 -y l] -2 ,5 -d ip h e n y lte tra z o liu m  brom ide: 

thiazolyl blue) were obtained from Sigma Chemical Co. Ltd, Poole, 

England. Phosphate buffered saline (PBS) was obtained from  

Gibco (UK) Ltd, Scotland.

Tissue Culture

Three cell lines were used in this study, Alveolar type 2 cells 

from an adenocarcinom a of lung (A549) resistant to doxorubicin,

were obtained from Am erican type culture, Rockville, M aryland, 

ATCC, CCL 185. A549 cells were routinely grown as a monolayer

in cu ltu re  flasks con ta in ing  enriched  RMP1 1640 m edium  

supplem ented  with 20 mM H epes buffer, 1 mM sodium  

bicarbonate, 10%(v/v) fetal bovine serum (Gibco,UK,Ltd.) and 2  

mM L- glutamine (14).

G L C 4  210 cells originating from a small cell carcinom a of 

lung sensitive to DOX were obtained from the D epartm ent of 

M edical Oncology, U niversity of Gronigen, H olland through the 

D epartm en t of M edical O ncology, U n iv e rsity  of G lasgow . 

Resistance was induced in this cell line by growing continuously in 

DOX-containing RPM1 1640 at a concentration of 900 pmol/1.

G L C 4  210 cells were grown in suspension in the medium as 

above, with addition of 900 pmol/1 DOX to induce resistance.



6

HPLC

HPLC was carried out as previously reported (14) except 

that the ra tio  of m ethano l/w ater/40%  te trab u ty l am m onium  

hydroxide was (75:924:1) and the flow rate was 1 ml/min. Since 

the results obtained by this method have been shown to correlate 

with those measured in intact cells using *H spin echo proton NMR, 

they are no t su b jec t to a rte fac tu a l changes d u ring  cell 

d is ru p tio n (1 4 ).

Effect of doxorubicin on GSH concentrations

Six F25 flasks (each containing 2 x 106  A549 cells in 5 ml 

cu ltu re  m edium ) were p repared . Six U niversal tubes w ere

prepared for the GLC 4  210 resistant (R) and sensitive (S) lines,

each tube containing between 7 x 106  and 8  x 106  cells in 5 ml of 

medium. One flask of A549 and one tube from each of GLC4  210 

sensitive and resistant lines were used as control and the other 

five were treated with DOX at concentrations from 4.3-69, 1.1-18

and 1.2-20 nm ol/10 6  cells respectively. The rest of experim ental 

procedure has been described in detail (14).

Chem osensitiv itv  Assay

The assay depends on the ability of living cells to reduce the 

tetrazolium  dye MTT to the blue coloured form azin (15). For 

d e te rm in a tio n  of the optim um  M TT co n cen tra tio n  fo r the

different cell lines, A549 was plated at 24 h prior to the assay at 5

x 103 cells/ml (1000 cells per well in 200 ul of culture medium) in 

96 well m icrotitre plates (Flow Laboratories) and incubated at 

37°C under 2% CO 2 . The other two cell lines were plated out on 

the day of assay at 3 x 104  cells/ml (4,500 cells per well in 150 ul 

of culture medium) in 96 round-bottomed well plates.



Ten different MTT concentrations (0.5-5 g/1) were prepared 

in PBS and 50 ul added to each well, one concentration per row of 

wells after replacing the old medium by fresh in the cases of 

A549. Plates were wrapped in tinfoil and incubated at 37°C and 

2% CO 2  for 4h. M TT-containing medium was removed from the 

GLC4 210 cell pellet after spinning the plates at 6 0 0  g . MTT 

formazin crystals were dissolved in 2 0 0  ul dimethyl sulphoxide in 

the case of A549, and 150 ul in the case of GLC4  210, then Tris- 

buffer pH 9.5 (25 ul) was added to dissolve the non-dissolved 

MTT. The MTT absorbance was measured using an ELISA plate 

reader at an absorbance of 570 nm (Biorad Laboratories, W atford, 

Herts, England).

The effect of different DOX concentrations on these 3 cell 

lines was measured by plating the cells as above. Different DOX 

concentrations were used in fresh medium, one concentration per 

3 wells (8.4 nmol/1 - 8 . 6  umol/1). A 549 cells were plated 3 days 

prior to the Dox-exposure, GLC4  210 (S) and (R) were subcultured 

in F75 flasks 3 days prior to the assay and DOX was removed from 

G L C 4  resistance in this subculture in order not to interfere with 

the assay.

The cells were left in contact with DOX for 24 h and the 

medium was then replaced. The medium was changed again once 

during the next two days. On the last day the medium was again 

exchanged for fresh and 50 ul of MTT added. The viability was 

assayed as described above. Chemosensitivity assays were carried 

out in duplicate for each cell line.
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E ffect of B u th ion ine-S .R -su lfox im ine p re trea tm en t on A549 

resistance to Doxorubicin

Two 96-w ell plates were plated with A549 as described 

above. T hree days la ter one p late was treated  with BSO-

containing m edium  (2 uM in 200 ul) after rem oving the old 

medium, leaving one row as control. At the same time medium in 

all wells on the other plate was replaced by fresh. Plates were

incubated at 37°C and 2% CO 2 . Six hours later 50 ul of DOX- 

containing medium at six different concentrations was added to 

the wells in six different rows (one concentration per row of 

wells), to give final concentrations of 1.7- 55.2 nmol/1, leaving 

one row with BSO only as control in the first plate and medium 

only contro ls in both firs t and second plates. P lates were 

incubated for 90 min with DOX, then the drug was removed, the

medium replaced and the experim ent completed as before.
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R esults

Concentration effect of doxorubicin

The mean basal GSH concentrations in the 3 lung cell lines 

(measured in duplicate) were 14.6, 1.2 and 0.75 nm ol/10 6  cells 

for A549, GLC 4  210 ((S) to DOX) and GLC4  210 ((R) to DOX) 

respectively . There was no significant difference betw een the 

duplicated experiments. The effect of DOX on these cells differed 

qualitatively. The GSH concentration in resistant GLC 4  cells was 

m inim ally affected by DOX even at high concentrations, whereas 

there was a rapid and significant reduction in the sensitive cells. 

The change in GSH concentration in those cells with resistance 

induced by DOX fell into an intermediate category (Fig 1).

The observed falls in GSH concentrations in the 3 cell lines 

were very d ifferen t. The A549 line has high in itia l GSH 

concentrations of the order of 10 times those of the GLC4  (S) cells, 

and although GSH fell in both lines in a dose-related manner when 

treated with DOX, the residual concentration in the resistant cells 

was still above the basal concentration for the sensitive line, even 

after treatment with 4 times the concentration of DOX. The GLC4  

cells (R) had basal levels of GSH which were approximately half of 

those of the sensitive cells but which was unaffected by DOX. 

These data suggest a different mechanism of resistance in the two 

cell lines.

C hem osensitivitv assav:

The optim um  co n cen tra tio n s  of M TT used fo r the 

chem osensitivity assays ( The concentration at which maximum 

colour developm ent was obtained from untreated cells) , were 

initially determ ined as 5 g/1 for A549 cells and 3 mg/1 for GLC4 

((S) and (R)) (Fig 2).



The measurement of cell kill by different DOX concentrations 

showed the expected effects of different DOX concentrations with 

the sensitive cells releasing the dye to a greater extent than the 

resistant lines (p<0.01, Dunnetts test). The LD 5 0  of DOX in these 3 

cell lines was found to be about 100, 55 nmol/1 and 2 umol / 1  for 

A549, GLC4  (S) and GLC4  (R) respectively (Fig 3 a,b). This indicates 

that GLC 4  (R) is 20 times more resistant than A549.

Effect of BSO on the prevention of A549 cell resistance:

Six hour pre-treatment of A549 cells with BSO at a non-toxic 

concentration ( 2  umol/1 ) increased the sensitivity of these cells to 

DOX (Fig 4) when m easured using the chem osensitivity  assay. 

Comparison of cells treated with DOX alone, and those pretreated 

with BSO showed a highly significant increase in sensitivity at all 

concentrations used (P<0.01, t-test). There was no significant 

difference between control and treated cells at the 3 low est DOX 

concentrations, however in the presence of BSO the viability was 

significantly reduced at all DOX concentrations.



D iscussion

The results reported in this study, using a m ethod which is 

unaffected by artefacts due to cell disruption, ind icate  that the

GSH content in three different lung cancer cells differ from one to 

another, and is high in inherently resistant cells (A549) compared 

with initially sensitive lines. These findings are in agreem ent with 

M eister et al (3) who showed, using an enzym atic m ethod, that

tum ours may be found with low, m oderate and high in tracellu lar 

GSH concentrations. Depletion of GSH to that contained in the 

m itochondrial pool is consistent with viability (12). These data 

are not at variance with our results as cells grown under the

stress of DOX to acquire resistance may deplete the cytoplasmic 

GSH with only the vital m itochondrial pool rem aining. There is 

evidence that cells will not die until this pool is depleted ( 1 2 ).

A549 DOX resistant cells have a high GSH content which

probably contributes to their resistance (4,8,16,17). Certainly the 

viability of this cell line is only slightly affected by DOX compared 

with GLC 4  210 (S) which contained moderate levels of GSH that are 

reduced by DOX. Our results would confirm other findings (11,18), 

that GSH is protective against cytotoxic agents.

The resu lts  of the chem osensitiv ity  assay para lle led  the 

e ffec t on m easured  GSH co n cen tra tio n s  of d iffe ren t DOX 

concentrations. The LD 5 0  of these three cell lines to DOX, differ, in 

the order GLC 4  210(R) > A549 > GLC4  410(S). The fact that the 

cells with acquired resistance show the highest LD 5 0  while having 

a lower intracellular GSH concentration than A 549 cells is due to 

increased P glycoprotein that results in increased DOX efflux (7). 

Because of the importance of GSH in the protection of cells against 

free radical form ation caused by certain cytotoxic agents as DOX,



depletion of intracellular GSH in order to increase the sensitivity 

of resistant cells is a valid method of therapy (9,11, 18, 19). The 

high level of resistance shown by GLC4  210(R) cells compared with 

A 549 agrees with the findings of Shen et al (20) that induced 

resistant cells are more resistant than wild type tum our cells to 

certain cytotoxic drugs.

Our results, carried out on a human lung tum our cell line 

(549), showed that depletion of GSH with BSO 6  h prior to 

exposure to DOX resulted in decreased resistance.

The results obtained in this study confirm  that viability  and 

n o n-arte fac tua l in trace llu lar GSH depletion , are linked . The 

application of these methods to the study of known lung tumour 

lines show ing resistance, sensitiv ity  and acquired resistance  to 

DOX further confirm s the im portance of GSH concentration in 

resistance to DOX and the potential benefits of agents such as BSO 

as adjuncts to therapy with DOX.
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FIGURE LEGENDS 

Figure 1

Effect of DOX treatm ent on the intracellular GSH content of the 

three cell lines (each experiment in duplicate).

a) O A 549

A GLC 4  210 (S)

X GLC 4  210 (R)

b) A GLC 4  210 (S)

X  GLC 4  210 (R)

Figure 2

D eterm ination  of the optim um  concentration  of M TT fo r the 

m easurem ent of viability in the 3 cell lines.

O A 5 4 9

X GLC4  (S)

A GLCa (R)

Figure 3

Effect of DOX in the viability of cell lines

a) A 549

b) O GLC 4  210 (S)

A GLC4 210 (R)

Bars = standard error
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Figure 4

The effect of BSO on the viability of A549 cells treated with DOX 

0  treated with DOX alone

A pretreated with BSO

Bars = standard error

+ - non significant (p > 0.05)

* - p < 0.05

** p < 0.01
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