
http://theses.gla.ac.uk/77880/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given
A conditional CRISPR/Cas9 system gives novel insights into actin dynamics in Toxoplasma gondii

By

Johannes Felix Stortz
B.Sc., M.Sc.

Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy

School of Life Sciences
College of Medical, Veterinary & Life Science
Institute of Infection, Immunity & Inflammation
University of Glasgow
Abstract

Actin is a highly abundant structural protein in eukaryotes that is critical for several cellular processes. In the apicomplexan parasite *Toxoplasma gondii*, actin is critical for the completion of the lytic cycle and, thus, parasite survival. Only recently, actin structures were visualised in *Toxoplasma* by exploiting actin-chromobodies, revealing an extensive actin network within the parasitophorous vacuole (PV) (Periz et al. 2017). This network consists of intravacuolar filamentous structures that connect individual parasites within the PV. In addition, parasites possess a cytosolic actin centre (cAC) anterior to the nucleus.

The study presented here aimed at exploiting actin visualisation to investigate actin dynamics in unprecedented detail in vivo. For this purpose, I established a conditional CRISPR/Cas9 that allows for rapid and efficient gene disruption in *Toxoplasma*. Combining this system with the actin-chromobody technology granted detailed insights into the actin dynamics in intracellular parasites. I identified the actin depolymerisation factor (*TgADF*) as an important factor in the disassembly of the intravacuolar F-actin filaments prior to parasite egress from the host cell. Furthermore, this study revealed *TgFormin2* to be critical for maintaining the cAC. Since cAC loss severely impaired actin distribution and peripheral actin flow in intracellular parasites, I concluded that *TgFormin2* represents a major key player in mediating proper actin dynamics. *TgFormin2* also appeared to be important for apicoplast inheritance and positioning.

In summary, data presented in this thesis significantly contribute to the understanding of actin dynamics in *Toxoplasma*. Further insights into apicomplexan actin dynamics will be gained by exploiting the conditional CRISPR/Cas9 technology for phenotypic screening approaches.
Table of Contents

Abstract .. 2
Table of Contents ... 3
List of Tables .. 7
List of Figures .. 8
List of Supplement Material ... 11
Table of copyright permissions .. 12
Acknowledgements .. 13
Author’s Declaration ... 14
Publications arising from this work and collaborations ... 16
Conference Proceedings .. 16
Definitions/abbreviations ... 17

1 Introduction .. 21

1.1 Taxonomie .. 21
1.2 Health Impact of apicomplexan parasites .. 22
1.3 The life cycle of *Toxoplasma* .. 22
 1.3.1 Definitive host - sexual replication .. 23
 1.3.2 Environmental stage .. 24
 1.3.3 Intermediate host - asexual lytic cycle ... 25
1.4 The asexual lytic cycle of *Toxoplasma* tachyzoites: a closer look 25
 1.4.1 Tachyzoite structure .. 25
 1.4.1.1 The apicoplast .. 29
 1.4.2 Gliding motility ... 31
 1.4.3 Invasion ... 35
 1.4.4 Asexual replication .. 38
 1.4.5 Egress ... 39
1.5 Molecular Tools to dissect *Toxoplasma* biology .. 42
 1.5.1 The type II CRISPR/Cas9 system ... 43
1.6 Actin in eukaryotes ... 47
 1.6.1 Structure of actin monomers and filaments ... 47
 1.6.2 Function of Actin binding proteins (ABPs) ... 50
 1.6.2.1 Actin treadmilling ... 50
 1.6.2.2 Actin nucleation ... 52
1.7 Actin in *Toxoplasma* ... 56
 1.7.1 Actin binding proteins (ABPs) in *Toxoplasma* ... 60
1.8 Aims of this study .. 63
2 Materials and Methods

2.1 Equipment

2.2 Computer Software

2.3 Consumables, biological and chemical reagents

2.4 Kits

2.5 Buffers, solutions and media

2.6 Antibodies

2.7 Oligonucleotides

2.8 Plasmids

2.9 Cell strains

2.9.1 Bacteria strains and mammalian cell lines

2.9.2 Toxoplasma strains

2.10 Microbiology Methods

2.10.1 Liquid cultures and cryopreservation stocks of E. coli

2.10.2 Transformation of chemically competent E. coli

2.11 Molecular Biology Methods

2.11.1 Polymerase Chain Reaction (PCR)

2.11.2 Agarose Gel Electrophoresis (AGE)

2.11.3 DNA restriction

2.11.4 DNA purification

2.11.5 DNA ligation

2.11.6 Isolation of plasmid DNA from E. coli

2.11.7 Alcohol precipitation of plasmid DNA for Toxoplasma transfections

2.11.8 Isolation of genomic DNA (gDNA) from Toxoplasma

2.11.9 Sub-cloning of the split-Cas9 plasmids

2.11.10 Sub-cloning of gRNA plasmids

2.11.11 DNA sequencing

2.12 Biochemistry Methods

2.12.1 Indirect Immunofluorescence Analysis (IFA)

2.13 Cell Culture

2.13.1 Culturing host cells (HFFs) and Toxoplasma

2.13.2 Cryopreservation of Toxoplasma

2.13.3 Stable and transient transfections of Toxoplasma

2.13.4 Generation of the parental split-Cas9 (sCas9) strain

2.13.5 Generation of sCas9-sgRNA strains

2.13.6 Generation of RHsCas9-CbEmerald strain

2.13.7 Serial dilution of transfected Toxoplasma parasites

2.13.8 Induction of the split-Cas9 or DiCre system in Toxoplasma
2.13.9 Egress Assay .. 85
2.14 Microscopy .. 85
 2.14.1 Light microscopy .. 85
 2.14.2 Time-lapse video microscopy for Toxoplasma 86
2.15 Bioinformatics .. 86
 2.15.1 Design of gRNAs for Toxoplasma 86
 2.15.2 Kymograph analysis ... 88
 2.15.3 Skeletonization analysis 88

3 Establishment of a novel conditional CRISPR/Cas9 system for reliable gene disruption in Toxoplasma .. 89
 3.1 Proof of Principle I: Targeting Tggap40 with split-Cas9 91
 3.2 Proof of Principle II: Targeting Tgsag1 with split-Cas9 96
 3.3 Investigating the effect of split-Cas9 activation on Toxoplasma I: TgSAG1 complementation studies ... 98
 3.4 Investigating the effect of split-Cas9 activation on Toxoplasma II: Disruption of Tgsag1 in RH vs RHΔku80 parasites 103
 3.5 A case study: Disruption of TgMec17-mediated tubulin acetylation via the split-Cas9 and DiCre systems .. 104
 3.6 Summary and conclusions .. 109

4 Combining the split-Cas9 and actin-chromobody technology to investigate actin distribution and dynamics in Toxoplasma ... 112
 4.1 Disruption of Tgactin1 and Tgadf with the split-Cas9 system ... 113
 4.2 Investigating the impact of Tgadf disruption on actin filament dynamics 118
 4.2.1 Analysis of egress behaviour in conditional sCas9 mutants 118
 4.2.2 Impact of Tgadf disruption on filament disassembly upon egress .. 121
 4.3 Re-defining intracellular actin distribution and dynamics 125
 4.4 Summary and conclusions .. 132

5 Investigating the role of TgFormin2 within the intracellular actin network 135
 5.1 Localisation and function of TgFormin2 within the actin network of intracellular Toxoplasma .. 136
 5.2 Confirmation of TgFormin2 function with the DiCre system 144
 5.3 The role of the apicoplast in maintenance of actin dynamics 152
 5.4 The effect of the cytosolic actin centre on overall actin dynamics in intracellular Toxoplasma .. 154
 5.5 Summary, conclusions and on-going work 160

6 Discussion ... 164
 6.1 Application of CRISPR/Cas9 strategies in Toxoplasma 165
 6.2 Actin dynamics in Toxoplasma 171
 6.3 In vivo Functions of Formins in Toxoplasma 174
List of Tables

Table 0-1: Table of copyright permissions .. 12
Table 1-1: Depiction of selected actin binding proteins (ABPs) found in apicomplexan and eukaryotic genomes ... 60
Table 2-1: Equipment ... 65
Table 2-2: Computer software .. 66
Table 2-3: Biological and Chemical reagents .. 66
Table 2-4: Kits .. 67
Table 2-5: Buffers for DNA analysis ... 68
Table 2-6: Buffers and media for bacterial culture .. 68
Table 2-7: Buffers and media for Toxoplasma and mammalian cell culture 68
Table 2-8: Antibodies .. 69
Table 2-9: Oligonucleotides .. 70
Table 2-10: Plasmids ... 71
Table 2-11: Bacteria strains ... 72
Table 2-12: Mammalian cells ... 72
Table 2-13: Toxoplasma strains .. 72
Table 3-1: Phenotypic characterisation of the lines RHsCas9-sag1-3 clone1 and 2 ... 98
Table 3-2: Phenotypic characterisation of the lines RHsCas9-mec17-2 and RHsCas9-mec17-3 .. 107
Table 3-3: Prerequisites for DNA damage to occur in Toxoplasma upon split-Cas9 activation .. 109
List of Figures

Figure 1-1: The life cycle of *Toxoplasma gondii* ... 23
Figure 1-2: The Lytic cycle of *Toxoplasma* ... 26
Figure 1-3: Schematic of the *Toxoplasma* tachyzoite ultrastructure 27
Figure 1-4: Gliding motility in *Toxoplasma* tachyzoites ... 32
Figure 1-5: Cartoon depicting the involvement of the retrograde membrane flow (fountain-flow model) in *Toxoplasma* motility ... 35
Figure 1-6: The type II CRISPR/Cas9 system in prokaryotes .. 44
Figure 1-7: Schematic of the sgRNA-mediated gene specificity of the type II CRISPR/Cas9 system ... 46
Figure 1-8: Actin treadmilling in eukaryotes ... 49
Figure 1-9: The three types of actin nucleation factors in eukaryotes 53
Figure 1-10: Schematic of the actin network in Toxoplasma .. 63
Figure 2-1: Plasmid encoding the split-Cas9 N-terminus (split4 variant) 78
Figure 2-2: Plasmid encoding the split-Cas9 C-terminus (split4 variant) 79
Figure 2-3: Plasmid encoding sgRNAs ... 80
Figure 2-4: Plasmid encoding the actin-chromobody-Emerald .. 84
Figure 3-1: Schematic depicting the split-Cas9 system in *Toxoplasma* 91
Figure 3-2: Generation of RH-gap40sgRNA (RH-gap40), RHsplit-Cas9-gap40sgRNA (RHsCas9-gap40) and RHsplit-Cas9 (RHsCas9) parasites 92
Figure 3-3: IFA analysis and quantification of the gap40 phenotype observed in the strains RHsCas9-gap40, RH-gap40 and RHsCas9 upon Rapamycin treatment 94
Figure 3-4: Generation of strains RHsCas9-sag1sgRNA1 (RHsCas9-sag1-1), RHsCas9sag1sgRNA3 (RHsCas9-sag1-3), RHsCas9-mec17sgRNA2 (RHsCas9-mec17-2), RHsCas9-mec17sgRNA3 (RHsCas9-mec17-3) and RHsCas9-Δhx-sag1sgRNA1 (RHsCas9-Δhx-sag1-1) ... 95
Figure 3-5: IFA analysis and quantification of *Tgsag1* disruption with split-Cas9 97
Figure 3-6: Effect of split-Cas9 activation in parasites encoding an additional copy of the *sag1* gene ... 100
Figure 3-7: Effect of split-Cas9 activation in parasites encoding a lacZsgRNA 102
Figure 3-8: Disruption of *Tgsag1* in RH and RHΔku80 parasites 104
Figure 3-9: Effect of *Tgmecl7* gene function loss in DiCre and split-Cas9 parasites 106
Figure 3-10: *Mec17* gene excision with the DiCre system and analysis of clonal RHsCas9-mec17-KO lines ... 108
Figure 4-1: Disruption of *Tgactin1* and *Tgadf* in RHsplit-Cas9 parasites expressing actin-chromobody-Emerald (Cb-Em or Cb) ... 114
Figure 4-2: Disruption of *Tgsag1* in RHsplit-Cas9 parasites expressing actin-chromobody-Emerald (RHsCas9-Cb-sag1-3) ... 115
Figure 4-3: Confirmation of the strains RHsCas9-ActinChromobodyEmerald-sag1sgRNA3 (RHsCas9-Cb-sag1-3), RHsCas9-ActinChromobodyEmerald-actin1sgRNA (RHsCas9-Cb-actin1) and RHsCas9-ActinChromobodyEmerald-adfsgRNA (RHsCas9-Cb-adf) ... 117
Figure 4-4: Parasite egress after split-Cas9 mediated gene disruption 119
Figure 4-5: Depiction of egressed and intracellular RHsCas9-CbEm-sag1-3-wt and RHsCas9-CbEm-sag1-3-KO parasites after A23187 treatment ... 120
Figure 4-6: Effect of A23187 treatment on intravacuolar filamentous actin structures in RHsCas9-CbEm-sag1-3-ko and RHsCas9-adf-ko parasites compared to wt parasites ... 122
Figure 4-7: Depiction of egressed and intracellular RHsCas9-CbEm-adf-wt and RHsCas9-CbEm-adf-KO parasites after A23187 treatment .. 124
Figure 4-8: Actin distribution in intracellular RHsCas9-CbEm-actin1 wt and KO parasites along the middle axis .. 126
Figure 4-9: Actin distribution in intracellular RHsCas9-CbEm-adf wt and KO parasites along the middle axis .. 128
Figure 4-10: Live microscopy and skeletonisation analysis investigating the interaction of the cytoplasmic actin pool and peripheral actin in the RHsCas9-CbEm-adf-wt line .. 129
Figure 4-11: Actin distribution in intracellular RHsCas9-CbEm-actin1 wt and KO parasites along the horizontal axis .. 130
Figure 4-12: Kymograph analysis of peripheral actin flow in intracellular Toxoplasma parasites .. 131
Figure 5-1: Investigation of TgFormin2 (FRM2) localisation in Toxoplasma... 138
Figure 5-2: Confirmation of the strains RHsCas9-ActinChromobodyEmerald-DrpAsgRNA (RHsCas9-Cb-DrpA), RHsCas9-ActinChromobodyEmerald-formin2sgRNA (RHsCas9-Cb-formin2) and RHsCas9-ActinChromobody-Emerald-profilinsgRNA (RHsCas9-Cb-profilin) .. 140
Figure 5-3: Disruption of Tgformin2 in RHsplit-Cas9 parasites expressing actin-chromobody-Emerald (Cb-Em or Cb) .. 142
Figure 5-4: Disruption of Tgformin2 in RHsplit-Cas9 parasites expressing actin-chromobody-Emerald (Cb-Em or Cb) .. 143
Figure 5-5: Generation and verfication of the DiCre-formin2-YFPloxP strain ... 145
Figure 5-6: Effect of Tgformin2 (frm2) excision with the DiCre system on apicoplast segregation and position .. 147
Figure 5-7: IFA attempting detection of TgFormin2-YFP (TgFRM2-YFP) without α-YFP antibody .. 148
Figure 5-8: IFA depicting localisation of TgFormin-YFP in relation to the apicoplast in DiCre-frm2-YFPloxP parasites .. 149
Figure 5-9: Transient expression of the actin-chromobody-emerald (Cb-Emerald/CbEm) in DiCre-frm2-YFPloxP and DiCre-frm2-KO parasites .. 150
Figure 5-10: IFA depicting the effect of Tgformin2 depletion with the DiCre system on morphology and positioning of mitochondria and rhoptries .. 151
Figure 5-11: Disruption of TgDrpA in RHsplit-Cas9 parasites expressing actin-chromobody-Emerald (Cb-Em or Cb) .. 153
Figure 5-12: Actin distribution in intracellular RHsCas9-CbEm-formin2 wt and KO parasites along the middle axis .. 155
Figure 5-13: Live microscopy analysis investigating the interaction of the cytoplasmic actin pool and peripheral actin in the RHsCas9-CbEm-formin2-wt line .. 156
Figure 5-14: Skeletonisation analysis investigating actin distribution in RHsCas9-CbEm-formin2-wt and RHsCas9-CbEm-formin2-KO parasites .. 157
Figure 5-15: Kymograph analysis of peripheral actin flow in intracellular RHsCas9-CbEm-formin2-wt and KO parasites .. 159
Figure 6-1: Schematic depiction of the DNA damage bottle neck that a Toxoplasma population has to overcome after Cas9 activity ... 167
Figure 6-2: Schematic depicting a model for actin flow in extracellular (gliding) and intracellular Toxoplasma parasites .. 173
Figure 6-3: Disruption of TgProfelin in RHsplit-Cas9 parasites expressing actin-chromobody-Emerald (Cb-Em or Cb) .. 179
Figure 7-1: Kymograph analysis of peripheral actin flow in intracellular RHsCas9-CbEm-actin1-wt and KO parasites .. 181
Figure 7-2: Actin distribution and kymograph analysis in intracellular RH-GFP parasites ...183
Figure 7-3: Actin distribution and kymograph analysis in intracellular RHsCas9-CbEm-adj wt and KO parasites ..185
Figure 7-4: Actin distribution in intracellular RHsCas9-CbEm-formin2 wt and KO parasites along the middle axis ...186
Figure 7-5: Kymograph analysis of peripheral actin flow in intracellular RHsCas9-CbEm-formin2-wt and KO parasites...187
Figure 7-6 Sequencing of the formin2-HA and DiCre-formin2-YFPloxP lines confirming in-frame positioning of the HA and YFP-tag at the c-terminus188
List of Supplement Material

Movie V1, F-actin dynamics in RHsCas9-CbEm-adf-wt and RHsCas9-CbEm-KO parasites. Time-lapse movie showing Cb-Emerald signal. The movies were captured at a speed of 0.32s/frame. Scale bars are 5µm. Movies are depicted at 60fps. Time is shown as mm:ss.

Movie V2, F-actin dynamics in RHsCas9-CbEm-actin1-wt and RHsCas9-CbEm-actin1-KO parasites. Time-lapse movie showing Cb-Emerald signal. The movies were captured at a speed of 0.29s/frame. Scale bars are 5µm. Movies are depicted at 60fps. Time is shown as mm:ss.

Movie V3, Live microscopy of RH-GFP parasites. The movies were captured at a speed of 0.33s/frame. Scale bars are 5µm. Movies are depicted at 60fps. Time is shown as mm:ss.

Movie V4, F-actin dynamics in RHsCas9-CbEm-formin2-wt and RHsCas9-CbEm-formin2-KO parasites. Time-lapse movie showing Cb-Emerald signal. The movies were captured at a speed of 0.25s/frame. Scale bars are 5µm. Movies are depicted at 60fps. Time is shown as mm:ss.
Table of copyright permissions

Table 0-1: Table of copyright permissions

<table>
<thead>
<tr>
<th>Publisher</th>
<th>Journal</th>
<th>Article title</th>
<th>Authors</th>
<th>Figure No. in article</th>
<th>Figure No. in this thesis</th>
<th>Copyright License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Springer Nature</td>
<td>Nature Reviews Microbiology</td>
<td>Modulation of innate immunity by Toxoplasma gondii virulence effectors</td>
<td>Christopher A. Hunter, L. David Sibley</td>
<td>Figure 1</td>
<td>Figure 1-1</td>
<td>4638711134319</td>
</tr>
<tr>
<td>Annual Reviews</td>
<td>Annual Reviews of Microbiology</td>
<td>Lytic Cycle of Toxoplasma gondii: 15 Years Later</td>
<td>Ira J. Blader, Bradley I. Coleman, Chun-Ti Chen, and Marc-Jan Gubbels</td>
<td>Figure 1</td>
<td>Figure 1-2 and Figure 1-3</td>
<td>4638721038758</td>
</tr>
<tr>
<td>Springer Nature</td>
<td>Nature Reviews Microbiology</td>
<td>Gliding motility powers invasion and egress in Apicomplexa</td>
<td>Karine Frénal, Jean-François Dubremetz, Maryse Lebrun, Dominique Soldati-Favre</td>
<td>Figure 3</td>
<td>Figure 1-4</td>
<td>4638730100889</td>
</tr>
<tr>
<td>Annual Reviews</td>
<td>Annual Reviews of Biophysics</td>
<td>CRISPR–Cas9 Structures and Mechanisms</td>
<td>Fuguo Jiang, Jennifer A. Doudna</td>
<td>Figure 1</td>
<td>Figure 1-6</td>
<td>4638781404178</td>
</tr>
<tr>
<td>John Wiley and Sons</td>
<td>FEBS Journal</td>
<td>Genetic screens and functional genomics using CRISPR/Cas9 technology</td>
<td>Ella Hartenian, John G. Doench</td>
<td>Figure 1</td>
<td>Figure 1-7</td>
<td>4638770871847</td>
</tr>
<tr>
<td>Annual Reviews</td>
<td>Annual Reviews of Biochemistry</td>
<td>Mechanism and Function of Formins in the Control of Actin Assembly</td>
<td>Bruce L. Goode and Michael J. Eck</td>
<td>Figure 2</td>
<td>Figure 1-9</td>
<td>4638780103258</td>
</tr>
</tbody>
</table>
Acknowledgements

I would like to thank Prof Dr Markus Meissner for providing me with the opportunity to perform my PhD studies in his laboratory. Furthermore, I am grateful for his understanding, most valuable guidance and support during my stay in Glasgow.

My second supervisor, Prof Dr Andy Waters, I would like to thank for valuable advice and discussions during my project work.

I would like to express my appreciation to Dr Richard McCulloch and Dr Charles McSharry for stimulating discussions and their guidance during my thesis work.

Working in the Meissner laboratory was a very enjoyable experience. I would like to express my gratitude to all past and present members for generating such a pleasant and productive work environment. Specifically, I would like to mention Dr Elena Jimenez Ruiz, Dr Simon Gras, Dr Javier Periz, Matthew Gow and Janessa Grech with whom I collaborated on various projects. For his technical and administrative support, I would like to thank Dr Gurman Pall. Dana Aghabi I would like to thank for being an excellent student and for making teaching a fun experience.

Furthermore, it was a great experience to collaborate with Dr Sujaan Das and to benefit from his experience.

I feel lucky to have made great friends in Glasgow. I would like to say thank you to Carmen, Natalia, Helena and Mario for the good times and their selfless support in and outside the laboratory during rough times.

Stephen, Matthias and Markus I thank for their long standing friendship, no matter how far away from home I might be.

Last but not least, an unmeasurable amount of appreciation goes to my family. I would like to thank my parents, grandmother, sister and godmother for their never ending support. My academic journey would not have been possible without them.
Chapter 2

- The LacZ-sgRNA plasmid was generated by Marleen Büchler under the supervision of Dr Elena Jimenez-Ruiz.

- The formin2-sgRNA plasmid and the profilin-sgRNA plasmid were generated by Dana Aghabi under my supervision.

- The strains RHΔku80-TgFormin2-HA and RHΔku80-DiCre-loxP-frm2YFP-loxP were generated by Dr Mirko Singer, who also prepared genomic DNA from the strains for sequencing by Eurofins (Appendix Figure 7-6).

- The strains RHsCas9-Δhx-sag1-1-KO and RHsCas9-sag1KO-sag1* were generated by Matthew Gow.

- To generate the RHsCas9-Δhx, the hx gene was disrupted in the RHsCas9 by Matthew Gow.

- The strain RHsCas9-lacZsgRNA was generated by Marleen Büchler under the supervision of Dr Elena Jimenez-Ruiz.

- Dr Simon Gras performed initial transfection of the actin-chromobody-emerald plasmid and FACS sorting during the generation process for the RHsCas9-CbEmerald strain.
• The strains RHsCas9-CbEm-formin2 and RHsCas9-CbEm-profilin were generated with the technical help from Dana Aghabi.

• The strain RHΔku80-DiCre-Pfmc17loxP was generated during my Master thesis by me prior to my PhD studies (Stortz, 2014, Master thesis, Ruprecht-Karls-University Heidelberg, Germany).

Chapter 3

• Analytical PCR confirming integration of the sag1sgRNA1 plasmid into the genome of RHsCas9-Δhx parasites and genome sequencing for the clonal RHsCas9-Δhx-sag1-1-KO mutant were performed by Matthew Gow (Figure 3-4 B and C).

• TgSAG1 complementation experiments were performed by Matthew Gow (Figure 3-6).

• Transient disruption of Tgsag1 in RH and RHΔku80 parasites was performed and analysed by Dr Elena Jimenez-Ruiz (Figure 3-8).

Chapter 4

• Live microscopy for RHsCas9-CbEm-actin1-wt and RHsCas9-CbEm-actin1-KO was performed by Dr Mario Del Rosario. These videos were used for analysis in Figure 4-8 A and B, Figure 4-11 and Figure 4-12 A and D. See also Appendix Figure 7-1 and Supplement Movie V2.

Chapter 5

• Analytical PCR confirming integration of plasmid DNA into the Toxoplasma genome was performed by Dana Aghabi under my supervision (Figure 5-2).
Publications arising from this work and collaborations

Conference Proceedings

I presented data from my thesis at the following conferences and other local meetings:

Poster Presentations:
- **MPM meeting**, Woods Hole (USA) 2015
- **Toxo-14 meeting**, Tomar (Portugal) 2017
- **Gordon Conference**, Newport (USA) 2018

Oral Presentations:
- **Actin 2017 meeting**, Bristol (UK), 2017
- **ToxoUK Day**, London (UK), 2018
Definitions/abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aa</td>
<td>Amino acid</td>
</tr>
<tr>
<td>ACT1 or act1</td>
<td>Actin1</td>
</tr>
<tr>
<td>ADF or adf</td>
<td>Actin depolymerisation factor</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>AID</td>
<td>Auxin-inducible degron</td>
</tr>
<tr>
<td>AMA1</td>
<td>Apical membrane antigen 1</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>Arg</td>
<td>Arginine</td>
</tr>
<tr>
<td>At</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>a.u.</td>
<td>arbitrary units</td>
</tr>
<tr>
<td>αTAT1</td>
<td>alpha-tubulin acetyltransferase 1</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>BIPPO</td>
<td>5-Benzyl-3-isopropyl-1H-pyrazolo[4,3-\text{d}]pyrimidin-7(6H)-one</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>Ca<sup>2+</sup></td>
<td>Calcium</td>
</tr>
<tr>
<td>cAC</td>
<td>Cytosolic actin centre</td>
</tr>
<tr>
<td>Cas9</td>
<td>CRISPR associated protein 9</td>
</tr>
<tr>
<td>CAT</td>
<td>Chloramphenicol acetyltransferase</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>Cb</td>
<td>Chromobody</td>
</tr>
<tr>
<td>Cb-Em</td>
<td>Chromobody Emerald</td>
</tr>
<tr>
<td>CDPK</td>
<td>Calcium-dependent protein kinase</td>
</tr>
<tr>
<td>CIP</td>
<td>Calf intestinal phosphatase</td>
</tr>
<tr>
<td>C-terminal</td>
<td>Carboxyl terminal</td>
</tr>
<tr>
<td>CRISPR</td>
<td>Clustered Regularly Interspaced Short Palindromic Repeats</td>
</tr>
<tr>
<td>DD</td>
<td>Destabilisation domain</td>
</tr>
<tr>
<td>DHFR</td>
<td>Dihydrofolate reductase</td>
</tr>
<tr>
<td>DiCre</td>
<td>Dimerisable Cre</td>
</tr>
<tr>
<td>Dm</td>
<td>Drosophila melanogaster</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's Modified Eagle's Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>DN</td>
<td>Dominant negative</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>ds</td>
<td>Double-strand</td>
</tr>
<tr>
<td>DSB</td>
<td>Double-strand break</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxynucleotide 5’-triphosphate</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene diamine tetraacetic acid</td>
</tr>
<tr>
<td>Em</td>
<td>Emerald fluorescent protein</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>fw</td>
<td>Forward</td>
</tr>
<tr>
<td>FRM or frm</td>
<td>Formin or formin</td>
</tr>
<tr>
<td>g</td>
<td>Gram or Gravity (context dependent)</td>
</tr>
<tr>
<td>GAP</td>
<td>Glideosome associated protein</td>
</tr>
<tr>
<td>gDNA</td>
<td>Genomic deoxyribonucleic acid</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GOI</td>
<td>Gene of interest</td>
</tr>
<tr>
<td>GED</td>
<td>GTPase Effector Domain</td>
</tr>
<tr>
<td>GFP</td>
<td>Green Fluorescent Protein</td>
</tr>
<tr>
<td>GPI</td>
<td>Glycophosphatidylinositol</td>
</tr>
<tr>
<td>gRNA</td>
<td>Guide RNA</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosine triphosphate</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>H2O</td>
<td>Water</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-Hydroxyethyl)-piperazineethanesulphonic acid</td>
</tr>
<tr>
<td>HFF</td>
<td>Human foreskin fibroblast</td>
</tr>
<tr>
<td>Hs</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>Hx or hgxprt</td>
<td>Hypoxanthine-xanthine-guanine phosphoribosyl transferase</td>
</tr>
<tr>
<td>IAA</td>
<td>indole-3-acetic acid</td>
</tr>
<tr>
<td>IFA</td>
<td>Immunofluorescence analysis</td>
</tr>
<tr>
<td>IMC</td>
<td>Inner membrane complex</td>
</tr>
<tr>
<td>IPP</td>
<td>isopentenyl pyrophosphate</td>
</tr>
<tr>
<td>K</td>
<td>Lysine</td>
</tr>
<tr>
<td>kbp</td>
<td>Kilo base pair</td>
</tr>
<tr>
<td>KD</td>
<td>Knockdown</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>KO</td>
<td>Knockout</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>LoxP</td>
<td>Locus crossover in P1</td>
</tr>
<tr>
<td>Lys</td>
<td>Lysine</td>
</tr>
<tr>
<td>M</td>
<td>Molar or Methionine (amino acid)</td>
</tr>
<tr>
<td>MCS</td>
<td>Multiple cloning site</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>MIC</td>
<td>Micronemal protein</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>MJ</td>
<td>Moving Junction</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>Milimolar</td>
</tr>
<tr>
<td>MTOC</td>
<td>Microtubule organisation centre</td>
</tr>
<tr>
<td>MPA</td>
<td>Mycophenolic acid</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>MT</td>
<td>Microtubule</td>
</tr>
<tr>
<td>Myo</td>
<td>Myosin</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>NHEJ</td>
<td>Non-homologous end joining</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>N-terminal</td>
<td>Amino terminal</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frame</td>
</tr>
<tr>
<td>P. falciparum or Pf</td>
<td>Plasmodium falciparum</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyde</td>
</tr>
<tr>
<td>Pi</td>
<td>Inorganic phosphate</td>
</tr>
<tr>
<td>PM</td>
<td>Plasma membrane</td>
</tr>
<tr>
<td>POI</td>
<td>Protein of interest</td>
</tr>
<tr>
<td>PV</td>
<td>Parastitophorous vacuole</td>
</tr>
<tr>
<td>PVM</td>
<td>Parastitophorous vacuole membrane</td>
</tr>
<tr>
<td>r</td>
<td>Resistant</td>
</tr>
<tr>
<td>RB</td>
<td>Residual body</td>
</tr>
<tr>
<td>rev</td>
<td>Reverse</td>
</tr>
<tr>
<td>RFP</td>
<td>Red Fluorescent Protein</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RON</td>
<td>Rhopty neck protein</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per min</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
<tr>
<td>SAG1</td>
<td>Surface antigen 1</td>
</tr>
<tr>
<td>sCas9</td>
<td>Split-Cas9</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>sgRNA</td>
<td>Single-guide RNA</td>
</tr>
<tr>
<td>SOC</td>
<td>Super optimal broth with catabolite repression</td>
</tr>
<tr>
<td>ss</td>
<td>Single-strand</td>
</tr>
<tr>
<td>SSR</td>
<td>Site specific recombination</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>T. gondii or Tg</td>
<td>Toxoplasma gondii</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetate-EDTA</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-tetramethylethylene diamine</td>
</tr>
<tr>
<td>term</td>
<td>terminus</td>
</tr>
<tr>
<td>TM</td>
<td>Transmembrane</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris [hydroxymethyl] aminomethane</td>
</tr>
<tr>
<td>U</td>
<td>Unit</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated region</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>Volts</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume/volume percentage</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight/volume percentage</td>
</tr>
<tr>
<td>WHO</td>
<td>World health organisation</td>
</tr>
<tr>
<td>wt</td>
<td>Wild-type</td>
</tr>
<tr>
<td>Xan</td>
<td>Xanthosine monophosphate</td>
</tr>
<tr>
<td>X-Gal</td>
<td>5-bromo-4-chloro-3-indoyl-á-D-Galactopyranoside</td>
</tr>
<tr>
<td>YFP</td>
<td>Yellow fluorescent protein</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µl</td>
<td>Microliter</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>µM</td>
<td>Micromolar</td>
</tr>
</tbody>
</table>
1 Introduction

The single cell organism *Toxoplasma gondii* is an obligate intracellular parasite that can infect any nucleated cell in any warm-blooded animal, including humans. In this chapter, I will provide an introduction to the overall biology of this parasite. I will specifically highlight the function of the structural protein actin within the asexual lytic cycle of *Toxoplasma*. Furthermore, the recently developed molecular tool CRISPR/Cas9 will be reviewed.

1.1 Taxonomie

Toxoplasma gondii is the only species in the genus *Toxoplasma* and, therefore, will be simply referred to as *Toxoplasma* during this thesis. *Toxoplasma* is placed in the (Infra)Phylum of the Apicomplexa within the Coccidia subclass. Apicomplexans are characterised by the presence of an apical complex and a parasitic life style (LEVINE et al. 1980). It is important to note that *Plasmodium* species, the causative agent of malaria, also belong to the apicomplexan (infra)phylum (LEVINE et al. 1980). The (Infra)Phylum Apicomplexa contains about 6000 species, but a potential number of up to 10 million is estimated (Adl et al. 2007). Although all apicomplexan organisms are parasitic, there is evidence suggesting that their ancestor was living in a symbiotic relationship with corals (Moore et al. 2008; van Dooren and Striepen 2013).

The (infra)phylum Apicomplexa belongs to the superphylum of the Alveolata (Adl et al. 2012; Ruggiero et al. 2015; Adl et al. 2019). A common feature in Alveolata is a peripheral alveolar membrane system. This system contains of membrane sacs that are located directly underneath and outline the plasma membrane (Adl et al. 2019). This peripheral alveolar membrane system is referred to as IMC (Inner Membrane Complex) in Apicomplexa (Blader et al. 2015). Alveolata belong to the taxon “SAR” (Burki et al. 2007; Adl et al. 2012).
1.2 Health Impact of apicomplexan parasites

In total, *Plasmodium* was responsible for an estimated 219 million malaria cases globally, with an estimated 435,000 deaths in 2017 worldwide. Children under the age of 5 were most affected (World Health Organization: World Malaria Report 2018).

One third of the human population is infected with *Toxoplasma* (Blader et al. 2015). Most post-natal infections remain asymptomatic in healthy individuals. However, there are two situations when *Toxoplasma* infection can result in clinical disease: (1) When infected individuals become immunocompromised and (2) when an acute infection occurs in pregnant individuals since congenital infection can happen in the fetus (Blader et al. 2015). Effect of *Toxoplasma* infection on the unborn child can be dramatic, including spontaneous abortion, mental retardation (Black and Boothroyd 2000), deafness and retinal damage (Torrey and Yolken 2013). Toxoplasmic encephalitis was reported to be one of the most common AIDS-associated diseases of the central nervous system (Luft and Remington 1992). It shall also be mentioned that *Toxoplasma* infections can cause ocular disease (Torrey and Yolken 2013) and that the effect of *Toxoplasma* infection on host behaviour and mental health is under investigation (Tyebji et al. 2019).

1.3 The life cycle of *Toxoplasma*

The *Toxoplasma* life cycle (Figure 1-1) was first postulated by Frenkel and colleagues in 1970 (Frenkel, Dubey, and Miller 1970). The life cycle can be separated into three different stages: the sexual stage and the asexual stage, also known as lytic cycle. In between, there is an environmental stage when the parasite is transferred from its definitive host (sexual replication) to the intermediate host (asexual replication) (Robert-Gangneux and Dardé 2012). Noteworthy, *Toxoplasma* can be transmitted between different intermediate hosts orally, i.e. without having to complete the sexual cycle in cats. This remarkable feature of *Toxoplasma* biology was reported to be the driving force behind the clonal global expansion of *Toxoplasma* (Su et al. 2003). Throughout its life cycle *Toxoplasma* can occur in three infectious stages: rapidly dividing
tachyzoites, slow growing bradyzoites that can form tissue cysts and sporozoites which occur in oocysts that are shed by cat faeces (Torrey and Yolken 2013).

Figure 1-1: The life cycle of *Toxoplasma gondii*

The *Toxoplasma* life cycle is separated into the sexual, asexual and environmental stage. Sexual replication happens exclusively in feline species. Cats shed infective oocysts which are ingested by the intermediate host where asexual replication occurs. Asexual replication can occur in any warm-blooded animal (here depicted as mice, sheep or pig). Consumption of infected prey by the cat re-introduces *Toxoplasma* to its definite host. Humans can be infected with *Toxoplasma* when ingesting contaminated food or water. *Toxoplasma* poses a threat to immunocompromised individuals and embryos. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature Reviews Microbiology (Hunter and Sibley 2012) ©2012, License number: 4638711134319.

1.3.1 Definitive host - sexual replication

Sexual replication happens exclusively in feline species. The cat-exclusive occurrence of sexual replication was recently linked to a systemic excess of linoleic acid in felines (Di Genova et al. 2019). The excess of linoleic acid is
believed to be caused by the absence of delta-6-desaturase activity in cats (Rivers, Sinclair, and Crawford 1975; Sinclair, McLean, and Monger 1979). When the murine delta-6-desaturase was inhibited in mice that were fed a diet supplemented with linoleic acid, *Toxoplasma* was able to undergo sexual replication in mice (Di Genova et al. 2019). Cats can be infected by tachyzoites and bradyzoites (Dubey and Frenkel 1976; Dubey 2006). They can also be infected by oocysts (Dubey 2006). However, a higher number of oocysts than bradyzoites is required for establishing an infection that results in the cat shedding oocysts.

Upon oral uptake of a bradyzoite cyst by a cat, the cyst wall is destroyed by digestive enzymes. Free parasites enter epithelial cells of the small intestine (enterocytes) and replicate asexually. Eventually, merozoites are formed in schizonts, a process called schizogony. Schizogony is followed by sexual development, i.e. the formation of male and female gametocytes (gametogony). After fertilisation, an oocyst forms within an enterocyte. The oocyst is eventually released into the environment within the cat faeces (Robert-Gangneux and Dardé 2012).

1.3.2 Environmental stage

Outside the cat, sporozoites are formed within the oocyst. These sporulated oocysts can be taken up by the intermediate host through ingestion of contaminated food or water. Importantly, *Toxoplasma* undergoes meiotic reduction during sporozoite formation resulting in a haploid genome (Robert-Gangneux and Dardé 2012).

The oocyst wall consists of multiple layers (Ferguson, Hutchison, and Siim 1975; Speer, Clark, and Dubey 1998) and protects the sporozoites from the outer environment (Belli, Smith, and Ferguson 2006). It was reported that oocyst wall has similar properties to common plastic material, making it resistant to the outer environment and disinfectants (Dumetre et al. 2013). In the laboratory, oocysts can survive harsh conditions maintaining their infectiveness for hundreds of days, if not years (Dubey 1998; Yilmaz and Hopkins 1972). In the environment, oocysts were reported to remain infectious for over a year (Yilmaz
and Hopkins 1972; Frenkel, Ruiz, and Chinchilla 1975). Contamination of water supply with cat faeces can cause Toxoplasmosis outbreaks in the human population, as shown by a case study from Brazil (De Moura et al. 2006).

1.3.3 Intermediate host - asexual lytic cycle

Within the intermediate host, Toxoplasma replicates asexually. After oocyst uptake, the sporozoites break free and invade intestinal epithelial cells. Here, they differentiate into tachyzoites that can spread throughout the body (Robert-Gangneux and Dardé 2012). Tachyzoites can convert into bradyzoites. This stage forms cysts that can remain in the intermediate host for life (Robert-Gangneux and Dardé 2012). Upon transmission from one intermediate host to another or to the cat, bradyzoites break free from the cysts and establish a new infection (Robert-Gangneux and Dardé 2012).

1.4 The asexual lytic cycle of Toxoplasma tachyzoites: a closer look

The lytic cycle can be divided into several phases: gliding, host cell invasion, asexual replication and egress (Figure 1-2). In short, after gliding towards and invasion of a host cell, the parasite replicates within that cell and, eventually, egresses to infect another cell. Since experiments during this study were exclusively performed on asexually replicating tachyzoites, these steps will be described in more detail in the following sections. Also, the tachyzoite ultrastructure shall be introduced.

1.4.1 Tachyzoite structure

Tachyzoites show a crescent shape and are usually about 2µm in width and 6-8µm in length (Dubey, Lindsay, and Speer 1998; Joiner and Roos 2002). They possess many organelles typically found in eukaryotes, including a nucleus, a single interconnected endoplasmatic reticulum (ER) network, a single mitochondrion and a single Golgi apparatus (Figure 1-3) (Joiner and Roos 2002).
In addition, three distinct types of secretory organelles are present in *Toxoplasma*. These organelles are micronemes, rhoptries and dense granules (Dubey, Lindsay, and Speer 1998; Joiner and Roos 2002). Micronemes and rhoptries play important roles in gliding motility and, thus, host cell invasion and egress (please refer to sections 1.4.2., 1.4.3. and 1.4.5). The microneme secretion process is introduced in the context of parasite egress in section 1.4.5.

![Figure 1-2: The Lytic cycle of *Toxoplasma*](image)

Completion of the lytic cycle depends on several steps: gliding, host cell invasion, asexual replication and egress. After gliding towards and invasion of a host cell, the parasite replicates within that cell and, eventually, egresses to infect another cell. Republished with permission of Annual Reviews (Annual Reviews of Microbiology), from (Blader et al. 2015) © 2015; permission conveyed through Copyright Clearance Center, Inc. License number: 4638721038758.

Dense granules were found to be involved in the maturation of the parasitophorous vacuole (PV) (Mercier and Cesbron-Delauw 2015). For instance, the dense granule proteins GRA17 and 23 were suggested to mediate traffic of small molecules between the PV and the host cell (Gold et al. 2015). Additionally, dense granule proteins were reported to localise to the host cell
nucleus where they can impact host gene expression levels (Bougour et al. 2013; Braun et al. 2013). Micronemes and rhoptries are localised to the apical tip of the tachyzoite and are part of the apical complex, together with the apical polar ring (APR) and the conoid (Morrissette and Sibley 2002).

Figure 1-3: Schematic of the *Toxoplasma* tachyzoite ultrastructure
Tachyzoites possess a crescent shape and many organelles typically found in eukaryotes including a nucleus, a single interconnected endoplasmatic reticulum (ER) network, a single mitochondrion and a single Golgi apparatus. The tachyzoite body is outlined by the inner membrane complex (IMC) that sits just beneath the plasma membrane and on top of the subpellicular microtubules (not depicted). The conoid is located to the apical tip of the parasite together with micronemes, rhoptries and dense granules, the three types of secretory organelles found in tachyzoites. The apicoplast is a non-photosynthetic plastid organelle and crucial for parasite survival. Abbreviations: EC - endosome compartment; PLV - plant-like vacuole. Republished with permission of Annual Reviews (Annual Reviews of Microbiology), from (Blader et al. 2015) © 2015; permission conveyed through Copyright Clearance Center, Inc. License number: 4638721038758.

Together with microtubules, the conoid is part of the tachyzoite cytoskeleton. The conoid is a cone-like structure at the apical tip of tachyzoites and consists of tubulin (Nichols and Chiappino 1987; Hu, Roos, and Murray 2002). Notably, the
tubulins forming the conoid arrange into a polymer different from typical microtubules (Hu, Roos, and Murray 2002). Conoid extrusion is part of the host cell invasion process (Nichols, Chiappino, and O’Connor 1983; Werk 1985) and was reported to depend on calcium (Mondragon and Frixione 1996). Recently, the conoid protein hub 1 (CPH1) was identified (Long, Anthony, et al. 2017). This protein localises to the conoid and is critical for conoid integrity in extracellular parasites. CPH1 also appeared to be critical for parasite motility and invasion. In addition, three calmodulin (CaM)-like proteins localise to the conoid (Long, Brown, et al. 2017). Interestingly, these proteins appear to be involved in parasite invasion, egress and motility. However, CaMs 1-3 are dispensable for conoid extrusion. CaM 1 and 2 were originally localised to the conoid by Hu and co-workers (Hu et al. 2006).

Two constituents of the APR are known: RNG1 and RNG2 (Morrissette 2015). RNG1 localises to the APR (Tran et al. 2010). Since attempts to knock-out RNG1 failed, Tran and co-workers suggested RNG1 to be critical for parasite survival. Depletion of RNG2, which also localises to the APR, inhibits host cell invasion, motility and microneme secretion (Katris et al. 2014). Interestingly, Katris and colleagues could restore microneme secretion by stimulating RNG2 depleted parasites with calcium. This finding was interpreted as implication for a function of the apical complex in the regulatory pathways for microneme secretion. The APR also functions as a microtubule organisation centre (MTOC) from which 22 subpellicular microtubules originate (Nichols and Chiappino 1987). These microtubules span about two-thirds of the tachyzoite body and form a spiralled cage. In addition to the subpellicular microtubules, two intraconoid microtubules can be found spanning the inner lumen of the conoid (Nichols and Chiappino 1987; Hu, Roos, and Murray 2002; Morrissette 2015).

The tachyzoite body is outlined by the inner membrane complex (IMC) that sits just beneath the plasma membrane and on top of the subpellicular microtubules (Harding and Meissner 2014). The IMC is composed of flattened membrane sacs (alveoli) that lie directly underneath the plasma membrane. The alveoli are supported by the subpellicular network (SPN) (Harding and Meissner 2014). The SPN was initially characterised as an interwoven network of filaments that spans the whole tachyzoite body (Mann and Beckers 2001). The network is believed to be a membrane skeleton that confers cell shape and stability. The first SPN
components to be discovered were the intermediate filament-like proteins IMC1 and 2 (Mann and Beckers 2001). Since then, a large number of additional IMC proteins (e.g. IMC3-15, IMC17-24) has been described (Gubbels, Wieffer, and Striepen 2004; Hu et al. 2006; Anderson-White et al. 2011; Chen et al. 2015). It was reported that the IMC proteins show distinct spatiotemporal distribution patterns during the tachyzoite development (Anderson-White et al. 2011). For instance, IMC15 represents a marker for early daughter cell budding (Anderson-White et al. 2011). Loss of IMC15 can cause additional daughter buds to form within the mother cell (Dubey et al. 2017).

IMC suture components (ISCs) were identified to localise to the transverse and longitudinal alveolar sutures of the IMC (Chen et al. 2015). ISCs were proposed to be involved in the establishment and/or maintenance of the tachyzoite shape, as parasites lacking ISC3 display aberrant morphology (Chen et al. 2017). Also, disruption of ISC3 caused a loss of virulence in mice (Chen et al. 2017).

1.4.1.1 The apicoplast

The apicoplast, a non-photosynthetic plastid organelle, represents a crucial organelle in Toxoplasma tachyzoites. The understanding of apicoplast biology is crucial for the data presented in this thesis. Therefore, this organelle shall be introduced in more detail in this section.

The apicoplast was independently described in Toxoplasma in 1996 and 1997 (McFadden et al. 1996; Kohler et al. 1997). Both studies localised DNA from a 35kb extrachromosomal DNA circle, originally believed to represent mitochondrial DNA (McFadden and Yeh 2017), to a distinct organelle that was identified as the apicoplast. The complete sequence of the plastid-DNA in P. falciparum showed that the apicoplast lacks genes required for photosynthesis (Wilson et al. 1996).

The apicoplast is believed to be derived from a red algae by secondary endosymbiosis (Janouskovec et al. 2010). It was, however, controversially debated in the past whether the apicoplast originated from a red or a green algae (Wilson 1993; Williamson et al. 1994; Kohler et al. 1997; Funes et al. 2002; Cai et al. 2003; Waller et al. 2003; Coppin et al. 2005; Waller and Keeling 2006).
The puzzle was solved by the discovery of *Chromera velia*, a photosynthetic relative of the apicomplexan parasite lineage (Moore et al. 2008). *C. velia* is a single cell organism that lives in scleractinian corals. The plastid of *C. velia* is bound by four membranes and shares an origin with the apicoplast. Examination of the plastids in *C. velia* and CCMP3155, another photosynthetic alveolate closely related to apicomplexans, revealed that the apicoplast in apicomplexans is derived from a red algae (Janouskovec et al. 2010).

Apicoplast division is coordinated with nucleus replication (Striepen et al. 2000). Dividing and non-dividing apicoplasts are associated with the centrosome throughout the parasite life cycle (Striepen et al. 2000). It was reported that disruption of microtubule formation impacts apicoplast replication (Striepen et al. 2000). Proper actin dynamics are also critical for apicoplast replication and segregation (Andenmatten et al. 2013; Jacot, Daher, and Soldati-Favre 2013; Haase et al. 2015; Whitelaw et al. 2017). Disruption of actin dynamics results in vacuoles containing parasites devoid of the apicoplast. *TgMyoF* and *TgDrpA* represent additional key players in apicoplast division. *TgMyoF* was reported to be involved in centrosome positioning and apicoplast inheritance (Jacot, Daher, and Soldati-Favre 2013). The dynamin-related protein *TgDrpA* is critical for apicoplast fission (van Dooren et al. 2009). The enzyme ensures the cutting of the dividing apicoplast so that both daughter cells receive one single apicoplast.

The apicoplast is essential for parasite survival (Roos and Fichera 1997; He et al. 2001). It is important to note, however, that apicoplast loss does not immediately abolish *Toxoplasma* growth. Parasites usually die within the 2nd lytic cycle after apicoplast loss, a phenomenon referred to as the “delayed death phenotype” (Roos and Fichera 1997; He et al. 2001). Intriguingly, as long as one parasite within the vacuole possesses an apicoplast, the vacuole as a whole shows almost normal growth even in the 2nd lytic cycle (He et al. 2001). This shows that one single apicoplast can keep a whole vacuole of parasites alive.

The apicoplast hosts fatty acid synthesis via the FASII pathway (Waller et al. 1998; Ramakrishnan et al. 2012) and synthesis of isopentenyl pyrophosphate (IPP) which is a precursor of isoprenoids (Jomaa et al. 1999; Nair et al. 2011). It is further believed that the apicoplast is involved in the synthesis of iron sulphur clusters (Kumar et al. 2011; Gisselberg et al. 2013; Geoffrey Ian McFadden and
Yeh 2017) and haem synthesis (Sato et al. 2004; Dhanasekaran et al. 2004; Nagaraj et al. 2008, 2009; Goldberg and Sigala 2017). In Plasmodium, asexual blood stage parasites that are lacking the apicoplast can survive indefinitely when supplemented with exogenous IPP (Yeh and DeRisi 2011). This makes IPP synthesis the only essential apicoplast function in malaria blood stages. Lack of isoprenoid precursors was suggested to interfere with protein prenylation and cellular vesicle trafficking, resulting in the fragmentation of the digestive vacuole in parasites experiencing delayed death (Kennedy et al. 2019).

1.4.2 Gliding motility

Experiments with tachyzoites in 2D identified three distinct types of movement: circular gliding, upright twirling and helical rotation (Hakansson et al. 1999). More recently, tachyzoite gliding was analysed in a more biologically relevant 3D environment (Leung et al. 2014). These experiments revealed that tachyzoites move in irregular corkscrew-like trajectories. It was suggested that the different gliding styles that were observed in 2D reflect the different types of movement that are necessary to perform corkscrew-like trajectories in 3D (Leung et al. 2014; Frénal, Dubremetz, et al. 2017).

The key concept of apicomplexan motility is the gliding on a surface which requires cell-cell contact between gliding parasite and substrate (Figure 1-4). This presents a remarkable feature as parasites do not utilise ciliary or flagellar propulsion as is often the case in unicellular organisms. The exact mechanisms by which this type of forward movement is achieved are currently under investigation. One of the proposed models is the so-called actomyosin motor complex. This complex consists, among other factors, of the structural protein actin and MyosinA (MyoA). Another key player are the micronemes, a set of secretory organelles (Frénal, Dubremetz, et al. 2017).

In brief, the proposed mode of action of the actomyosin motor complex is depicted in the following (Frénal, Dubremetz, et al. 2017): The MyoA tail domain is linked to the IMC via MLC1 while the MyoA head interacts with actin filaments between the IMC and the parasite plasma membrane. This complex is kept in place by the gliding-associated proteins (GAPs), GAP40, GAP45 and GAP50. When
gliding is initiated, micronemes are exocytosed at the apical tip of the
tachyzoite and adhesion molecules are integrated into the parasite plasma
membrane. These adhesins span the plasma membrane and interact with
receptor molecules on the substrate surface outside the parasite. The actin
filaments are connected to adhesins via a glideosome-associated connector
(GAC). Overall, this molecular set up anchors the actin-myosin motor to the IMC
and, at the same time, the outside surface of the substrate. This allows MyoA-
mediated force generation by translocation of actin filaments alongside the
tachyzoite periphery towards the basal end of the parasite.

Figure 1-4: Gliding motility in *Toxoplasma* tachyzoites
Tachyzoite movement on a host cell plasma membrane (hPM) requires contact between
the gliding parasite and the substrate. Forward movement is achieved by the actomyosin
motor complex. This complex consists, among other factors, of the structural protein actin
and MyosinA (MyoA). Another key player are the micronemes, a set of secretory
organelles. MyoA is linked to the IMC and interacts with actin filaments between the IMC
and the parasite plasma membrane (pPM). When gliding is initiated, micronemes are exocytosed at the apical tip of the tachyzoite and adhesion molecules are integrated into the pPM. These adhesins span the pPM and interact with receptor molecules on the hPM. Forward movement is achieved by MyoA-mediated translocation of actin filaments alongside the tachyzoite periphery towards the basal end of the parasite. Abbreviations: IMC - inner membrane complex; pPM - parasite plasma membrane; hPM - host plasma membrane. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature Reviews Microbiology (Frénal, Dubremetz, et al. 2017) ©2017, License number: 4638730100889.

Numerous studies were conducted to support the current view of the actomyosin system and its components. Myosin A was reported to possess kinetic properties similar to myosins in muscle cells, thus explaining its capacity in generating force together with actin (Herm-Götz et al. 2002). The same study identified myosin light chain (MLC1) to bind MyoA (Herm-Götz et al. 2002). In addition, Myosin A was found to be essential for parasite gliding and invasion (Meissner, Schlüter, and Soldati 2002).

The gliding associated proteins GAP45 and 50 were identified and localised to the IMC (Gaskins et al. 2004). Subsequently, GAP40 was identified and GAP45 was further characterised to be essential for motility, egress and invasion (Frénal et al. 2010). Recently, GAC was proposed to connect the actomyosin complex with micronemal adhesins (Jacot et al. 2016). GAC appears to be critical for gliding, egress and invasion. Interestingly, experimental data suggest actin stabilising properties for GAC (Jacot et al. 2016). Noteworthy, experiments were performed on Plasmodium falciparum actin, not Toxoplasma actin.

Several adhesion molecules are known to function in Toxoplasma (Paing and Tolia 2014; Frénal, Dubremetz, et al. 2017). For instance, loss of the microneme protein MIC2 negatively impacted tachyzoite attachment to the host cell surface and reduced helical gliding movements in 2D assays (Huynh and Carruthers 2006).

In summary, these studies highlight the importance of this complex for the lytic cycle and overall parasite morphology. Nevertheless, it is still debated whether the actomyosin system is exclusively responsible for parasite gliding and invasion. Some of the proposed actomyosin motor complex components were suggested to be dispensable as clonal tachyzoite lines lacking the myoA or mic2 gene were able to survive (Andenmatten et al. 2013). Although lack of MIC2
impacted overall motility, clonal mic2 knock-out parasites were still able to perform gliding at the same maximum speed as wild-type parasites (Gras et al. 2017). Taken together, these observations could suggest an alternative gliding and invasion mechanism. Conditional depletions of other components of the actomyosin system support the existence of such an alternative system (Egarter et al. 2014; Whitelaw et al. 2017). Whitelaw and co-workers suggested a role for the actomyosin complex in surface attachment, rather than force generation during parasite gliding (Whitelaw et al. 2017). A recent study suggested retrograde membrane flow as a driving force for tachyzoite gliding motility (Gras et al. 2019). Gras and colleagues reported that extracellular parasites are capable of taking up exogenous material such as labelled lipids. After uptake, these lipids appear to be secreted again upon activation of gliding motility during attachment and invasion (Gras et al. 2019). Based on these findings, the authors proposed the existence of an endocytosis-secretion cycle in Toxoplasma. Furthermore, fluorescent microscopy and transmission electron microscopy (TEM) provide evidence that extracellular parasites are capable of endocytosing surface proteins (e.g. SAG1) (Gras et al. 2019). This observation indicates that membrane recycling occurs in Toxoplasma. Based on these findings, a retrograde membrane flow (fountain flow model) was suggested to be involved in movement generation in Toxoplasma (Figure 1-5). Bead translocation experiments indicated that the retrograde membrane flow occurs independently from the actomyosin motor complex (Whitelaw et al. 2017; Gras et al. 2019). It was further hypothesized that the membrane flow and the actomyosin motor complex might work together to enable parasite movement (Gras et al. 2019).
Figure 1-5: Cartoon depicting the involvement of the retrograde membrane flow (fountain-flow model) in *Toxoplasma* motility

The endocytic-secretory cycle (1-5) generates retrograde membrane flow and maintains membrane volume. Several steps occur during the endocytic-secretory cycle: (1) Secretion of secretory organelles, (2) retrograde membrane flow, (3) membrane recycling or (3') trail deposition and (4,5) trafficking of recycled lipids and secretory organelles back to the secretory organelles. Reprinted from PLOS Biology (Gras et al. 2019) under the Creative Commons Attribution 4.0 International License.

1.4.3 Invasion

Successful host cell invasion relies on (1) attachment to the host cell, (2) secretion of microneme content, (3) reorientation so that apical tip of tachyzoite faces the host cell, (4) rhoptry secretion and finally (5) motility-driven propulsion of the parasite into the host cell (Frénal, Dubremetz, et al. 2017).

It is important to note that the invasion process relies on parasite motility. To exploit the actomyosin system for host cell invasion, the parasite has to be firmly anchored to the host cell membrane. Tachyzoites achieve this by establishing a structure referred to as the moving junction (MJ). In brief, the MJ is formed by exocytosis of the micronemal protein AMA1 to the parasites
surface. In addition, rhoptry proteins including RON2 are secreted and inserted into the host cell surface, acting as a receptor for AMA1. AMA1 is linked to the actomyosin motor, thus allowing force transduction to propel the parasite into the host cell (Besteiro, Dubremetz, and Lebrun 2011; Frénal, Dubremetz, et al. 2017).

In *Toxoplasma*, AMA1 was reported to localise to the micronemes and to be secreted by extracellular tachyzoites, with calcium strongly increasing secretion (Donahue et al. 2000). AMA1 was first linked to invasion by Hehl and co-workers based on the reduction of parasite invasion after treatment with antiserum against AMA1 (Hehl et al. 2000). In addition, this study confirmed that AMA1 localises to the micronemes in intracellular parasites and that AMA1 is secreted by extracellular parasites. Conditional depletion of AMA1 strongly impaired tachyzoite invasion while overall motility appeared unaffected in a 2D gliding assay (Mital et al. 2005). This presented further evidence for AMA1 to be specifically involved in host cell invasion. AMA1 was also suggested to be involved in the rhoptry secretion process (Mital et al. 2005).

The rhoptry proteins RON2, 4, 5 and 8 are present at the MJ (Besteiro et al. 2009). While RON4, 5 and 8 were suggested to be exposed to the host cell cytoplasm (Besteiro et al. 2009), RON2 was proposed to be a transmembrane protein with parts of the protein being present on both sides of the host cell membrane (Lamarque et al. 2011). An interaction between RON2 and AMA1 was suggested by metabolic labelling and immunoprecipitation (Besteiro et al. 2009). This interaction was later supported *in vivo* on the surface of extracellular parasites amongst other binding assays (Lamarque et al. 2011).

Although the MJ junction model is based on numerous publications, the exact mechanism underlying *Toxoplasma* invasion is still controversially debated. For instance, AMA1 was suggested to play a critical role in attachment of the tachyzoite to the host cell surface, but to be dispensable for MJ formation (Giovannini et al. 2011; Bargieri et al. 2013). Strikingly, a clonal AMA1 null mutant was able to survive in culture displaying reduced host cell invasion (Bargieri et al. 2013). Although reduced in numbers, observed invasion events for this strain showed similar kinetics to wild-type parasites. Based on this, AMA1 was proposed to be involved in host cell attachment, but not directly in the
invasion process. Another study offered redundancy in AMA and RON proteins as possible explanation for the residual invasion in AMA1 null mutants (Lamarque et al. 2014). Specifically, AMA2 and AMA4 (together with RON2 L1) were suggested to functionally compensate in the absence of AMA1.

All in all, it would appear that many details of the tachyzoite invasion process remain to be elucidated. This becomes apparent with the description of a novel RON protein, RON4 L1 that appears to be a member of the AMA1/RON2/RON4/RON5/RON8 complex (Guérin et al. 2017). RON4 L1 faces the host cytoplasm of the MJ. RON4 L1 is not critical for parasite growth in culture. However, a slightly decreased virulence in mice was observed upon RON4 L1 depletion.

When invading the host cell, tachyzoites engulf themselves in a parasitophorous vacuole (PV). Once the parasite has fully entered the host, the PV is pinched off via a fission pore (Suss-Toby, Zimmerberg, and Ward 1996). This closes the PV and creates an extra compartment for the parasite to replicate. The PV is established by invagination of the host cell membrane so that most, if not all, of the PV membrane (PVM) is derived from the host (Suss-Toby, Zimmerberg, and Ward 1996). Importantly, host transmembrane proteins are excluded from the PVM at the MJ during invasion, rendering the PV nonfusogenic (Mordue et al. 1999; Clough and Frickel 2017). Thus, the PV avoids the host cell lysosomal system.

The PV creates a closed compartment for the parasite by presenting a physical barrier to the host cell cytoplasm. Nevertheless, the PVM allows for small molecule exchange between the PV and the host cell cytoplasm (Schwab, Beckers, and Joiner 1994; Gold et al. 2015), granting the parasites access to essential nutrients from the host. Noteworthy, the PVM is the structure that is recognized by the host immune system. This makes the PV a place of high host-parasite interaction. While the host employs mechanisms to kill *Toxoplasma*, the parasite combats these efforts to guarantee its own survival (Clough and Frickel 2017).
1.4.4 Asexual replication

Asexual replication of *Toxoplasma* tachyzoites within the PV happens via endodyogeny (Goldman, Carver, and Sulzer 1958; Sheffield and Melton 1968). In this mode of replication, two daughter cells bud within the mother cell, which is destroyed at the end of this process. The budding daughter cells IMCs are formed on the apical side from the maternal nucleus. The daughter cells take up organelles through their open basal end (Goldman, Carver, and Sulzer 1958; Sheffield and Melton 1968; Hu et al. 2002).

An extensive study by Nishi and colleagues provided a detailed timetable for daughter cell formation and organelle distribution (Nishi et al. 2008). When the daughter cells continue to grow, they first receive the divided Golgi and apicoplast. The nucleus, ER and the mitochondrion follow. Micronemes and rhoptries are synthesised *de novo* within the forming daughter cells. In total, this process takes about 6 hours to complete. Hence, every 6 hours, the parasite burden within a host cell doubles. As the daughter cells continue to enlarge, they eventually fill out the entire mother cell. At this point the maternal IMC disappears and the two daughter cells are engulfed by the maternal plasma membrane (Sheffield and Melton 1968). Photobleach and Photoactivation studies revealed that the daughter IMC is initially synthesised *de novo* and later supplemented with recycled maternal IMC (Ouologuem and Roos 2014). Noteworthy, Periz and co-workers recently reported that micronemes, in addition to being synthesized *de novo*, can also be recycled from the mother to the daughter cells (Periz et al. 2019).

The centrosome was identified as platform for daughter cell budding in replicating tachyzoites (Chen and Gubbels 2013). Together with the replication of the Golgi apparatus and the apicoplast, centrosome division is among the first observable steps of endodyogeny in *Toxoplasma* (Hu et al. 2002; Hartmann et al. 2006; Nishi et al. 2008). Two centrosomes become visible near the nucleus before the start of the daughter IMC budding. Centrosome division starts with the re-localisation of the centrosome from the apical site of the nucleus to the basal site of the nucleus. After division, the two centrosomes migrate back to their apical position (Hartmann et al. 2006). More in depth analysis revealed that the centrosome is made up of two cores, the inner and the outer core (Suvorova...
et al. 2015). Interestingly, the two cores seem to fulfil independent functions during endodyogeny. The outer core is critical for daughter cell budding, while the inner core is involved in nuclear division. It was reported that cells that lack the outer core components do not show any daughter buds, but are still capable of dividing the nucleus (Suvorova et al. 2015).

Within the PV, tachyzoites grow in a rosette-like organisation with individual parasites being attached to a common residual body with their basal end (Dubey, Lindsay, and Speer 1998; Muniz-Hernández et al. 2011). The residual body was suggested to be involved in establishing the rosette formation (Muniz-Hernández et al. 2011). Work published by Periz and co-workers suggested that vesicular trafficking occurs through the residual body between individual parasites (Periz et al. 2017). This finding was subsequently supported by experimental data from Frénal and co-workers indicating that the residual body connects the cytoplasm of all parasites within a vacuole, allowing for molecule transport between individual parasites (Frénal, Jacot, et al. 2017). The residual body also harbours acidocalcisomes which contain calcium (Attias, Miranda, and De Souza 2019). This observation gave rise to hypothesis that the residual body might be involved in the egress process in which Calcium-signalling is involved as a requirement for microneme secretion (Blader et al. 2015) (see section 1.4.5). Together, these findings indicate that the residual body fulfils specific functions during the asexual life cycle.

1.4.5 Egress

There are several reasons for tachyzoites to initiate egress from their host cell (Blader et al. 2015). For instance, the host cell immune response or damage to the host cell can trigger parasite egress. In the absence of abiotic factors impacting egress, a potential quorum sensing mechanism might initiate egress when a certain tachyzoite density is reached in the host cell (Blader et al. 2015).

As egress from the host cell relies on parasite mobility (gliding), microneme secretion is a critical requirement for this process (Blader et al. 2015). A complex network of multiple factors is believed to be involved in the process of microneme secretion (Bullen, Bisio, and Soldati-Favre 2019). Roughly, the model
suggests that, prior to microneme secretion, the signalling molecule inositol 1,4,5-triphosphate (IP₃) mediates calcium release from the ER. Elevated calcium levels activate calcium-dependent protein kinases (CDPKs), which are critical for microneme secretion. At the same time, the phospholipid Phosphatidic Acid (PA) is integrated into the parasite plasma membrane. PA is recognised by the acylated pleckstrin homology (PH) domain-containing protein (APH). APH is anchored to the microneme and acts as PA sensor, allowing for microneme exocytosis.

The critical role of calcium in *Toxoplasma* egress was first and described in 1982 (Endo, Sethi, and Piekarski 1982). CDPK1 is essential for calcium dependent microneme secretion (Lourido et al. 2010). The kinase was shown to play a significant role in gliding motility, invasion and egress. Interestingly, CDPK3 is dispensable for invasion, but required for egress and gliding motility (Lourido, Tang, and Sibley 2012). Noteworthy, microneme secretion appeared only dependent on CDPK3 when calcium was used to initiate secretion. In contrast to this, microneme exocytosis relies on CDPK1 regardless of the applied initiator substance (calcium or ethanol) (Lourido, Tang, and Sibley 2012). These data indicate that *Toxoplasma* utilises distinct signalling pathways for triggering microneme secretion. Another study confirmed the critical role for CDPK3 in calcium-mediated egress, but not invasion (McCoy et al. 2012). Interestingly, this study did not observe any impact of CDPK3 depletion on overall parasite motility. McCoy and colleagues further reported that CDPK3 depletion had no effect on microneme secretion in extracellular parasites (McCoy et al. 2012). This strengthens the view that CDPK3 is exclusively involved in egress of intracellular parasites. A forward screen also identified CDPK3 as important for rapid egress of intracellular parasites (Garrison et al. 2012). Gaji and colleagues reported phosphorylation of TgMyoA as function of TgCDPK3 during parasite egress (Gaji et al. 2015). TgCDPK3-dependent phosphorylation of TgMyoA appeared important for egress and motility as shown by 2D motility assays exploiting TgCDPK3 mutants and TgMyoA phosphorylation mutants.

APH was recently identified by Bullen and co-workers (Bullen et al. 2016). APH was localised to the micronemes and its depletion impaired parasite egress. Experiments performed by Bullen and colleagues suggested APH binding to PA. It was further reported that APH is highly selective for PA (Darvill et al. 2018).
Darvill and colleagues identified two major PA binding sites within the APH domain. This causes APH to bind to more than one PA molecule.

The involvement of IP3 in calcium release in Toxoplasma was suggested to be based on the negative impact of an IP3 receptor antagonist on microneme secretion, invasion and attachment (Lovett et al. 2002). Based on these findings the phosphoinositide-specific phospholipase (PLC) was suggested to be involved in IP3 synthesis. Indirect evidence for PLC involvement had previously been provided by a study showing that a PLC-inhibitor blocks parasite egress (Moudy, Manning, and Beckers 2001). PI-PLC was first characterised in Toxoplasma in 2006 (Fang, Marchesini, and Moreno 2006) and later described as critical to the lytic cycle (Bullen et al. 2016).

Calcium release does not only initiate motility for egress, but also the release of the perforin-like protein 1 (PLP1) (Kafsack et al. 2009). PLP1 was reported to be released from micronemes and to mediate pore formation in the PVM. Depletion of PLP1 heavily impaired the parasite ability to escape the PV. The lecithin:cholesterol acyltransferase (LCAT) is also involved in enabling parasite egress (Pszenny et al. 2016). Upon secretion from intracellular parasites, this dense granule enzyme localises to the lumen of the PV. Pszenny and co-workers proposed that the membrane-remodelling properties of LCAT could benefit the egress process by supporting parasite escape from the host cell. LCAT depleted parasites also depicted a slower growth rate and reduced virulence in mice. A follow-up study confirmed the involvement of LCAT in parasite egress, but failed to reproduce its importance for growth in culture and virulence in mice (Schultz and Carruthers 2018).

Overall, calcium-dependent motility plays a critical role in the completion of the lytic life cycle as it is crucial for invasion and egress. Distinct signalling pathways appear to exist in Toxoplasma for enabling calcium release in different scenarios.

The final stage of the lytic cycle is the differentiation of tachyzoites into bradyzoites residing in tissue cysts (White, Radke, and Radke 2014). Bradyzoites are very similar to tachyzoites in structure and tissue cysts can persist in a host for life (Dubey, Lindsay, and Speer 1998). It was proposed that bradyzoites are
non-replicative (Radke et al. 2003). However, more recent data suggested active endodyogeny to occur in bradyzoites (Watts et al. 2015).

1.5 Molecular Tools to dissect Toxoplasma biology

The haploid nature of the tachyzoite genome allows for genetically modification of genes with relative ease. Since the permanent loss of some genes is detrimental to the parasite, conditional systems are required to explore the function of these essential genes. In Toxoplasma, gene function can be conditionally controlled on the genomic level, the transcriptional level and the protein level (Meissner et al. 2007; Jiménez-Ruiz et al. 2014).

Gene transcription can be regulated with the tetracycline inducible transactivator system which was first exploited to describe the function of MyoA in Toxoplasma (Meissner, Schlüter, and Soldati 2002). In this system the transactivator TATi is constitutively expressed in tachyzoite parasites. The parasites were modified to encode for an additional copy of myoA (myoA-i) under the control of a so-called Tet-promoter. After the introduction of the extra myoA-i copy, the endogenous myoA gene was deleted. The Tet-promoter remains active only in the presence of TATi. Gene translation can be suppressed by adding anhydrotetracycline (ATc) which sequesters TATi, thus preventing its binding to the Tet-promoter. Due to the inactivity of the Tet-promoter, the myoA-i gene is not translated resulting in a gene knock-down. Further adaptation of the system by Sheiner and colleagues allows for direct replacement of the endogenous promoter of the gene of interest (GOI) with the Tet-promoter (Sheiner et al. 2011). This was achieved by generating a parental TATi-Δku80 line that allows for reliable promoter replacement by double homologous recombination. By exploiting the transactivator TRAD4, the transactivator system was also successfully used for studying essential Plasmodium genes (Pino et al. 2012).

Protein stability can be regulated by fusing the protein of interest to a destabilisation (ddFKBP) domain. The ddFKBP domain was shown to cause rapid protein degradation in mammalian cells (Banaszynski et al. 2006). The authors were able to prevent ddFKBP-mediated protein degradation by culturing the
cells with Shld-1, the ligand for ddFKBP, in a reversible fashion. This technology was adapted for *Toxoplasma* (Herm-Götz et al. 2007) and *Plasmodium* (Armstrong and Goldberg 2007). Another system that enables conditional protein degradation in *Toxoplasma* is the auxin-inducible degron (AID) system (Brown, Long, and Sibley 2017; Brown, Long, and Sibley 2018). The system was first described in yeast, chicken and mammalian cells (Nishimura et al. 2009). It has also found application in *Plasmodium falciparum* (Kreidenweiss, Hopkins, and Mordmüller 2013) and *Plasmodium berghei* (Philip and Waters 2015). In brief, the protein of interest (POI) is tagged with the AID sequence. Addition of auxin promotes binding of the E3 ubiquitin ligase TIR to AID, resulting in POI degradation. Since the auxin-dependent degradation machinery, including TIR, is derived from plants (Teale, Paponov, and Palme 2006; Leyser 2018), the E3 ubiquitin ligase TIR has to be expressed in the respective organism for the system to function (Kreidenweiss, Hopkins, and Mordmüller 2013; Philip and Waters 2015; K. M. Brown, Long, and Sibley 2017; K. Brown, Long, and Sibley 2018).

Conditional gene depletion (knock-out) via the DiCre system was made available in *Toxoplasma* in 2013 (Andenmatten et al. 2013). In this system, the Cre-recombinase is split into two subunits which are fused to the rapamycin binding domains FKBP and FRB. Both subunits are expressed in the parasite. The GOI is flanked with two loxP sites. Upon rapamycin treatment, these two DiCre domains are brought together and the recombinase resumes activity, excising the DNA sequence between the loxP sites. The use of an YFP reporter gene downstream the loxP site indicates successful excision of the target gene. The DiCre system was originally described in mammalian cells (Jullien et al. 2003) and in mice (Jullien et al. 2007).

1.5.1 The type II CRISPR/Cas9 system

The CRISPR/Cas9 system (CRISPR: clustered regularly interspaced short palindromic repeats) was recently introduced as a novel tool for genomic editing in various organisms. In this system, an endonuclease is guided by a guide RNA (gRNA) to the genomic DNA sequence complementary to the gRNA. The endonuclease then cleaves the double-stranded DNA (dsDNA) leading to gene
disruption by small insertions or deletions of nucleotides (Doudna and Charpentier 2014; Hartenian and Doench 2015; Jiang and Doudna 2017). The CRISPR-Cas9 system naturally occurs in prokaryotes where it acts as an adaptive immune system that protects the organism from foreign DNA, e.g. bacteriophages (Figure 1-6). DNA sequences encoding gRNAs are present in the prokaryotic genome as clustered regularly interspaced short palindromic repeats (CRISPRs) (Doudna and Charpentier 2014; Hartenian and Doench 2015; Jiang and Doudna 2017).

Figure 1-6: The type II CRISPR/Cas9 system in prokaryotes
The CRISPR-Cas9 system acts as an adaptive immune system that protects prokaryotes from foreign DNA, e.g. bacteriophages. The cas operon codes for the Cas9 endonuclease as well as additional Cas proteins. The CRISPR array contains the spacer sequences that are acquired from foreign DNA. Activity of the type II CRISPR/Cas9 system relies on the transcription of the CRISPR repeats. The spacers mature into CRISPR RNAs (crRNAs) and hybridise with the trans-activating crRNA (tracrRNA). This RNA hybrid molecule associated with the Cas9 endonuclease. The crRNA then guides the complex to its complementary DNA sequence which will be cut by Cas9. Importantly, a protospacer adjacent motif (PAM) is critical for DNA cleavage to occur. Republished with permission of Annual Reviews (Annual Reviews of Biophysics), from (Jiang and Doudna 2017) © 2017; permission conveyed through Copyright Clearance Center, Inc. License number: 4638781404178.
CRISPRs were first described in *E. coli* in 1987 as repeats of unknown function (Ishino et al. 1987). Subsequently, the term CRISPR was proposed (Jansen et al. 2002). Jansen and co-workers also reported the presence of CRISPR-associated (Cas) genes adjacent to the CRISPR loci. CRISPR systems are characterized based on, amongst other factors, their respective protein-coding Cas genes (Makarova et al. 2011; Makarova, Wolf, and Koonin 2018). They are categorized into two major classes consisting of six different types of CRISPR systems (types I - VI) (Makarova, Wolf, and Koonin 2018).

Activity of the type II CRISPR/Cas9 system relies on the transcription of palindromic repeats which, subsequently, get cut into individual CRISPR RNAs (crRNAs) (*Figure 1-6*). The hybridization of a crRNA with a so-called trans-activating crRNA (tracrRNA) is followed by the association of this RNA hybrid molecule to the Cas9 endonuclease. The crRNA then guides the complex to its complementary DNA sequence which will be cut by Cas9 (Doudna and Charpentier 2014; Hartenian and Doench 2015; Jiang and Doudna 2017).

Although the CRISPR system type II encodes for additional proteins, the Cas9 endonuclease was reported to be the only enzyme necessary for DNA cleavage (Sapranauskas et al. 2011). Two independent studies showed that Cas9 is an RNA-guided endonuclease (Gasiunas et al. 2012; Jinek et al. 2012). The RNA confers site-specific DNA cleavage as only DNA sequences complementary to the guide RNA are cleaved (Gasiunas et al. 2012; Jinek et al. 2012). Moreover, Jinek and co-workers succeeded in fusing the crRNA and tracrRNA to one chimeric RNA molecule (Jinek et al. 2012). This chimeric DNA together with Cas9 proved to be programmable for cleaving specific DNA sequences such as *gfp* (Jinek et al. 2012). The Cas9 enzyme possesses two nuclease domains, HCH and RuvC-like (Sapranauskas et al. 2011; Gasiunas et al. 2012; Jinek et al. 2012). Each of the two nuclease domains cleaves one of the two opposite DNA strands (*Figure 1-7*) (Gasiunas et al. 2012; Jinek et al. 2012).

Of relevance, the *Streptococcus pyogenes* type II Cas9 system requires a protospacer adjacent motif (PAM) for DNA cleavage to occur (Jinek et al. 2012). This PAM sequence is proximal to the target DNA sequence and its sequence is
NGG (Jinek et al. 2012). It was reported that Cas9 cleaves DNA three nucleotides upstream of the PAM sequence (Gasiunas et al. 2012; Jinek et al. 2012).

Figure 1-7: Schematic of the sgRNA-mediated gene specificity of the type II CRISPR/Cas9 system
Fusing of the crRNA and tracrRNA to one single guide RNA (sgRNA) via a linker sequence enables Cas9-mediated gene targeting. Each of the two Cas9 endonuclease domains, HCH and RuvC, cleaves one of the two opposite DNA strands. The protospacer adjacent motif (PAM) sequence is proximal to the target DNA sequence and, for the type II CRISPR/Cas9 system, its sequence is NGG. Cas9-mediated DNA cleavage occurs three nucleotides upstream of the PAM sequence. Reprinted by permission from John Wiley & Sons, Inc.: John Wiley and Sons, FEBS Journal (Hartenian and Doench 2015) ©2015. License number: 4638770871847.

Taken together, the type II CRISPR/Cas9 system presents a convenient application for gene modifications in other organisms. Only one recombinant enzyme together with one chimeric gRNA should be sufficient for gene disruption. Indeed, the type II CRISPR/Cas9 system was successfully applied for genome editing purposes in various organisms, including human cells (Jinek et al. 2013; Mali et al. 2013), woody plants (Fan et al. 2015), beetles (Gilles, Schinko, and Averof 2015) and rabbits (Yan et al. 2014). Furthermore, the CRISPR/Cas9 technology enables genome wide screens in mammalian cells (Shalem et al. 2014; Wang et al. 2014; Jiang et al. 2019; Korkmaz et al. 2019). In Toxoplasma, the CRISPR/Cas9 was shown to be effective for single target gene disruption and site-specific insertions (Shen et al. 2014; Sidik et al. 2014).

Various efforts have been made to exploit the CRISPR/Cas9 as conditional system (Zhou and Deiters 2016). For instance, different approaches exploiting the split-Cas9 concept have been reported in mammalian cells (Nihongaki et al. 2015; Truong et al. 2015; Wright et al. 2015; Zetsche, Volz, and Zhang 2015; Schmelas and Grimm 2018). For this concept, the Cas9 enzyme is split into its N- and C-terminus which allows for different ways of promoting sub-unit reunion. In two independent studies, the sub-units were linked to fusion proteins which can be induced to promote reunion of the N- and C-terminus, resulting in Cas9 activity. Nihongaki and co-workers exploited photo-inducible dimerization domains that promote Cas9 activity in response to blue light (Nihongaki et al. 2015). Zetsche and colleagues used the rapamycin-binding domains FRB and FKBP12 to enable conditional Cas9 activity (Zetsche, Volz, and Zhang 2015). In *Toxoplasma*, a conditional nuclear Cas9 fused to ddFKBP was described and applied to identify factors involved in the nuclear export of RNA (Serpeloni et al. 2016).

1.6 Actin in eukaryotes

1.6.1 Structure of actin monomers and filaments

The structural protein actin is highly abundant and conserved in eukaryotic cells (Baum et al. 2006; Pollard and Cooper 2009; Pollard 2016). Actin fulfils various critical functions within eukaryotic cells including cytokinesis, cargo trafficking and cellular motility (Pollard and Cooper 2009). In a eukaryotic cell, actin occurs in two different states, the globular (G-actin) and filamentous (F-actin) form (Baum et al. 2006; Pollard and Cooper 2009; Dominguez and Holmes 2011).

The atomic structure of monomeric G-actin was first described in 1990, revealing that the G-actin protein consists of 4 subdomains (Kabsch et al. 1990). G-actin binds ATP or ADP in the cleft between the subdomains 2 and 4 (Kabsch et al. 1990; Otterbein, Graceffa, and Dominguez 2001). It was reported that G-actin-ATP and G-actin-ADP show conformational differences in subdomain 2 (Otterbein, Graceffa, and Dominguez 2001; Graceffa and Dominguez 2003).
G-actin monomers can polymerise to form F-actin. Electron microscopy in 1963 proposed that F-actin consists of two actin strands that intertwine to form a right-handed helical filament (Hanson and Lowy 1963). More recently, the F-actin structure was described by cryo-electron microscopy (Fujii et al. 2010). Based on these data, it was suggested that the F-actin structure actually represents a single left-handed helix (Dominguez and Holmes 2011). Dominguez and Holmes argued that, since the twist per actin molecule is -166° (close to -180°), the F-actin filament structure only appears like two strands that slowly turn in a right-handed fashion. Hence, the F-actin structure can either be described as a two-start right-handed helix or a single-start left-handed helix.

One critical factor for the transition between G-actin and F-actin (actin treadmilling) is the hydrolysis of ATP (Figure 1-8) (Korn, Carlier, and Pantaloni 1987; Baum et al. 2006). The actin treadmilling cycle starts with the addition of G-actin-ATP to “barbed” (plus) end of the F-actin filament. During this polymerisation step, ATP is hydrolysed to ADP and inorganic phosphate (P_i). Hydrolysis of ATP results in stable F-actin filaments with bound ADP+P_i (F-actin-ADP-P_i). Slow release of P_i results in F-actin-ADP and destabilises the filament, resulting in the release of G-actin-ADP from the F-actin filament. In a growing F-actin strand, F-actin-ADP accumulates at the “pointed” (minus) end where the depolymerisation of G-actin-ADP occurs. Subsequently, ADP can be replaced with ATP, generating a new G-actin-ATP molecule. It was suggested that the addition of a new G-actin-ATP molecule to the F-actin barbed end causes a conformational change in the adjacent actin molecule (Murakami et al. 2010). Murakami and co-workers proposed this structural change to initiate ATP hydrolysis.

Of relevance, the amount of monomeric G-actin has to be above a certain threshold for polymerisation to occur. This threshold is referred to as the critical concentration. All G-actin monomers above this concentration are available for polymerisation (Pollard and Borisy 2003). Importantly, the critical concentration for polymerisation to happen at the barbed end is lower than the concentration needed to allow for polymerisation at the pointed end (Pollard and Borisy 2003; Pollard 2016). It should also be mentioned that the critical concentration needed for G-actin-ATP to polymerise was reported to be lower than the concentration required for G-actin-ADP (Cooke 1975; Pollard 1984). This means that actin
polymerisation is more likely to happen at the barbed end of an F-actin strand by attaching G-actin-ATP monomers.

Figure 1-8: Actin treadmilling in eukaryotes
F-actin filaments are dynamic structures that can undergo growth and shrinkage by addition or disassociation of actin monomers, respectively. The actin treadmilling cycle starts with the addition of G-actin-ATP to “barbed” (+) end of the F-actin filament. During this polymerisation step, ATP is hydrolysed to ADP and inorganic phosphate (P\(_i\)). Hydrolysis of ATP results in stable F-actin filaments with bound ADP+P\(_i\) (Actin-ADP-P\(_i\)). Slow release of P\(_i\) results in Actin-ADP and destabilises the filament, resulting in the release of Actin-ADP from the F-actin filament. In a growing F-actin strand, Actin-ADP accumulates at the “pointed” (-) end where the depolymerisation occurs. Subsequently, ADP can be replaced with ATP, generating a new Actin-ATP molecule. ADF/cofilin destabilizes F-actin filaments, thus increasing the amount of available G-actin monomers. ADF/cofilin binds to F-actin filaments and causes F-actin depolymerisation. While depolymerisation happens at the (-) end during the treadmilling process, F-actin filament elongation occurs at the (+) end. Profilin binds to Actin-ATP promoting actin polymerisation. Profilin also binds Actin-ADP increasing the exchange rate of actin-bound ADP for ATP (not depicted). Abbreviations: ATP - adenosine triphosphate; ADP - adenosine diphosphate; P - monophosphate. This figure was inspired by (Baum et al. 2006).

The first step of de novo F-actin filament formation is called actin nucleation. Actin nucleation refers to the formation of a new F-actin filament by the assembly of G-actin monomers (Pollard, Blanchoin, and Mullins 2000). Inevitably,
this process requires the formation of actin dimers and trimers, a process that is kinetically unfavourable (Sept and McCammon 2001; Deeks and Hussey 2005; Pollard 2016). From this point onwards however, G-actin monomer assembly to the actin trimer was proposed to occur with the same rate as G-actin polymerisation on existing F-actin filaments (Sept and McCammon 2001). It is therefore believed that the assembly of this trimer nucleus presents the critical step that has to be overcome for de novo F-actin formation (Sept and McCammon 2001; Deeks and Hussey 2005).

To efficiently control many of the kinetically unfavourable steps of actin dynamics, eukaryotic cells exploit a vast number of actin binding proteins (APBs) (Pollard 2016). For instance, these ABPs are involved in facilitating the transition between G-actin and F-actin (actin treadmilling) and de novo filament synthesis. Some of the eukaryotic key players involved in this process shall be briefly described in the following section.

1.6.2 Function of Actin binding proteins (ABPs)

1.6.2.1 Actin treadmilling

Several ABPs are involved in the actin treadmilling process, including the factors adf/cofilin and profilin (Figure 1-8). Proteins belonging to the ADF/cofilin family destabilize F-actin filaments, thus increasing the amount of available G-actin monomers (Moon and Drubin 1995). Initially, in vitro studies reported that cofilin binds to F-actin filaments (Nishida, Maekawa, and Sakai 1984) and causes F-actin depolymerisation (Yonezawa, Nishida, and Sakai 1985). The role of cofilin in F-actin turnover and depolymerisation was confirmed in vivo in yeast (Lappalainen and Drubin 1997). Cofilin mutants depicted increased numbers of actin patches within the cell indicating a role for cofilin in actin depolymerisation and turnover. In a comparative study, ADF was later shown to depolymerise F-actin filaments more potently than cofilin (Yeoh et al. 2002). Both proteins bind to F-actin with similar affinity and severe F-actin filaments with comparable potency. Cofilin and ADF have higher affinity to G-Actin-ADP than to G-Actin-ATP. Furthermore, ADF has a higher affinity to F-actin-ADP than
F-actin-ATP or F-actin-ADP-P_i, and increases the depolymerisation rate from the pointed end (Carlier et al. 1997).

Based on these results, a treadmilling model was proposed by Yeoh and co-workers in which ADF/cofilin bind to F-actin-ADP causing filament fragmentation at the pointed end (Yeoh et al. 2002). Disassembly of F-actin at the pointed end is followed by nucleotide exchange (G-actin-ADP to G-actin-ATP) and new filament formation. Recently, it was suggested that ADF/cofilin-mediated filament depolymerisation might also occur at the barbed end (Wioland et al. 2017). Maintaining actin treadmilling by F-actin severing and depolymerisation has physiological importance as coflin is critical for proper embryonic development in mice (Gurniak, Perlas, and Witke 2005). Furthermore lack of ADF function causes corneal defects in mice (Ikeda et al. 2003; Bellenchi et al. 2007). Co-depletion of coflin and ADF in mammalian cells leads to stress fiber accumulation affecting nuclear integrity (Kanellos et al. 2015).

While depolymerisation happens at the pointed end during the treadmilling process, F-actin filament elongation occurs at the barbed end. One of the proteins involved in mediating filament assembly is the polymerisation factor profilin which binds monomeric G-actin (Baum et al. 2006; Pollard 2016). A role for profilin in actin treadmilling was first suggested in 1977 (Carlsson et al. 1977), while its ability to promote actin polymerisation was proposed in 1993 (Pantaloni and Carlier 1993). It was further shown that profilin binds to G-actin-ATP and G-actin-ADP with similar affinity while drastically increasing the exchange rate of actin-bound ADP for ATP (Selden et al. 1999). Based on these findings, Selden and co-workers suggested that rapid profilin-mediated regeneration of the G-actin-ATP pool depicts a key step in actin treadmilling. This is because the maintenance of the G-actin-pool at a level above the critical concentration is necessary for continued actin assembly.

For F-actin elongation at the barbed end, profilin acts together with a protein called formin (see below). Together, profilin and formin can achieve a dramatic increase of F-actin elongation rates compared to the rates shown by actin alone or actin with only formin (Romero et al. 2004; Kovar et al. 2006). Another factor impacting F-actin filament dynamics are so-called capping proteins. These
proteins are able to bind to free barbed ends and prevent addition or removal of actin monomers (Edwards et al. 2014; Pollard 2016).

1.6.2.2 Actin nucleation

Since actin nucleation is kinetically unfavourable, eukaryotic cells exploit so-called nucleation factors to overcome the initial steps of de novo filament formation. Three different types of actin nucleators have been described: the Arp2/3 complex, the formin protein family and spire (Figure 1-9) (Goode and Eck 2007).

First described in 1994, the Arp2/3 complex consists of seven sub-units including the actin related proteins Arp2 and Arp3 (Machesky et al. 1994). The complex was shown to associate with the sides of F-actin filaments (Mullins, Stafford, and Pollard 1997) and to promote actin polymerisation (Welch, Iwamatsu, and Mitchison 1997). In brief, further research revealed that Arp2/3 causes the branching of novel daughter actin filaments from already existing mother filaments at an angle of 70° (Mullins, Heuser, and Pollard 1998). It was further proposed that the two actin related proteins of the complex (Arp2 and 3) act as the first subunits of the newly forming daughter filament (Volkmann et al. 2001; Rouiller et al. 2008). As a consequence, the arp2/3 complex is associated with the pointed end of F-actin filaments.

Due to the localisation of some of its components to the lamellipodia in stationary and motile cells, the Arp2/3 complex was suggested to be involved in lamellipodia protrusion (Welch et al. 1997). The function of Arp2/3-mediated actin network assembly in cell migration was confirmed in fibroblasts lacking a functional Arp2/3 complex (Suraneni et al. 2012). These cells were incapable of forming lamellipodia and showed a defect in performing directional migration.

Another type of actin nucleator, Spire, was identified in the fly Drosophila in 2005 (Quinlan et al. 2005). Quinlan and colleagues showed that spire is able to promote actin assembly in vitro. Spire possesses four WASP homology 2 (WH2) domains and all four domains are required for maximum nucleation potential (Quinlan et al. 2005). It was proposed that spire attracts four G-actin monomers (one to each WH2 domain) to create a nucleation complex (Quinlan et al. 2005).
Interestingly, it was suggested that spire and formins can interact with each other in a regulatory fashion during actin nucleation (Quinlan et al. 2007). A model was proposed in which spire recruits formin to the barbed end of F-actin causing fast formin-mediated filament growth (Montaville et al. 2014).

Figure 1-9: The three types of actin nucleation factors in eukaryotes
Since spontaneous actin nucleation is highly unfavourable, eukaryotic cells exploit nucleation factors to overcome the initial steps of de novo filament formation. The three different types of actin nucleators are the Arp2/3 complex, formins and spire. Formins form a dimer and stabilise actin dimers to initiate F-actin assembly. The formin dimer stays associated with the barbed end of the growing actin filament while promoting addition of G-actin. This mode of action is referred to as “processive capping”. A flexible linker between the two formin proteins enables repositioning of the dimer which is necessary when additional actin monomers are added to the barbed end. The Arp2/3 complex (together with WASp) mediates de novo filament polymerisation on already existing filaments at an angle of 70°. Spire possesses four WH2 domains and all four domains are required for maximum nucleation potential. Spire attracts four G-actin monomers (one to each WH2 domain) to create a nucleation complex. Dotted line arrows indicate the barbed end of the respective actin filament. Republished with permission of Annual Reviews (Annual Reviews of Biochemistry), from (Goode and Eck 2007) © 2007; permission conveyed through Copyright Clearance Center, Inc. License number: 4638780103258.
The actin nucleation mechanism of formins is of high importance for this thesis. Therefore, formin biology shall here be described in more detail. The first gene was introduced as a formin in 1990 (Woychik et al. 1990). Since then, many members of the formin family have been described in various organisms (Evangelista, Zigmond, and Boone 2003; Goode and Eck 2007). Members of the formin family were reported to nucleate actin and to mediate “processive capping” of F-actin filaments (Goode and Eck 2007; Courtemanche 2018). Formins share two domains, the formin homology domain 1 and 2 (FH1 and FH2) (Castrillon and Wasserman 1994; Wasserman 1998). The FH1 domain was reported to interact with profilin (Evangelista et al. 1997; Imamura et al. 1997), while the FH2 domain appeared critical for formin-mediated actin assembly (Sagot et al. 2002; Pruyne et al. 2002).

It was shown that formin is required for the assembly of F-actin cables in yeast (Feierbach and Chang 2001; Evangelista et al. 2002; Sagot, Klee, and Pellman 2002). This formin-mediated F-actin assembly requires profilin in vivo (Evangelista et al. 2002). In vitro experiments with a minimal form of the yeast formin Bni1 suggested that actin assembly can happen without profilin, but is enhanced in the presence of profilin (Sagot et al. 2002). Pring and colleagues proposed that Bni1 promotes actin nucleation by stabilising an actin dimer to allow for further actin assembly (Pring et al. 2003).

Based on in vitro data, Sagot and co-workers proposed that yeast formin Bni1 promotes formation of unbranched actin filaments, while Arp2/3 promotes the formation of branched actin filaments (Sagot et al. 2002). Interestingly, a minimal version of yeast Bni1 (Bni1pFH1FH2) localised to the barbed end of unbranched filaments in vitro as determined by electron microscopy (Pruyne et al. 2002). Association of the Bni1FH2 domain with the barbed end was further supported by its ability to promote actin filament assembly in the presence of capping proteins (Zigmond et al. 2003; Moseley et al. 2004). Barbed end protection from capping proteins was also reported for the FH1FH2 core of the mouse formin FRLα, indicating that barbed-end localisation is a universal formin trait (Harris, Li, and Higgs 2004).

The barbed end localisation of formins, together with their proposed (FH2-dependent) dimerization (Harris, Li, and Higgs 2004; Moseley et al. 2004; Xu et
al. 2004), gave rise to the “processive capping” model for formin-dependent actin nucleation and filament elongation. In this model, the formin dimer associates with the barbed end while promoting addition of G-actin to the growing F-actin strand. During filament elongation, formin repositions to maintain persistent association with the growing barbed end (Goode and Eck 2007; Courtemanche 2018). It is important to note that the exact structural mechanism of formin-mediated processive filament elongation at the growing barbed end is still under investigation (Paul and Pollard 2009; Thompson et al. 2013; Courtemanche 2018).

The model is supported by structural analyses of the formin dimer. The formin dimer was described as a stable, but flexible structure (Xu et al. 2004). Xu and colleagues proposed that a flexible link between the two formin proteins allows for repositioning of the dimer upon actin addition to the barbed end. Another study provided the crystal structure of the complex between the yeast BnipFH2 domain with actin (Otomo et al. 2005). The study suggests that the formin dimer can switch between two states, either promoting actin monomer addition to or promoting actin disassociation from the F-actin filament. Structural analysis by Otomo and co-workers also supports the model of formin enabling actin nucleation by stabilising an actin dimer that acts as nucleus for further actin assembly. More recently, continuous association of the mouse formin mDia1 to the growing actin filament was made visible by single-molecule fluorescence microscopy in real time (Breitsprecher et al. 2012). The same technology was later used to confirm the existence of a processive formin (AtFH14) in the plant Arabidopsis (Zhang et al. 2016).

Several cellular functions have been proposed for formins in various organisms (Evangelista, Zigmond, and Boone 2003). For example, it was shown that formins are required for the formation of the cytokinetic actin ring and the completion of cytokinesis in yeast (Tolliday, VerPlank, and Li 2002). In addition, plants lacking the formin AtFH5 were compromised in cytokinesis in the seed endosperm (Ingouff et al. 2005). In mice, the formin family member Fhod3 is critical for heart development in embryos (Kan-o et al. 2012) and postnatal juveniles (Ushijima et al. 2018).
1.7 Actin in *Toxoplasma*

Toxoplasma encodes actin on a single copy gene, *Tgact1* (*Tgact1*) (Dobrowolski, Niesman, and Sibley 1997). The *TgACT1* protein shares 93% sequence similarity with *Plasmodium falciparum* actin, but only about 80% with other eukaryotic actins (Dobrowolski, Niesman, and Sibley 1997; Baum et al. 2006). Initial studies assessing the physical state of actin in *Toxoplasma* used cell fractionation by centrifugation for separating F-actin from G-actin (Dobrowolski, Niesman, and Sibley 1997). This experimental set up failed to detect actin in the pellet fraction where F-actin is expected to accumulate. Dobrowolski and colleagues therefore suggested that actin is mainly present in its monomeric G-actin state in *Toxoplasma*.

In a comparative approach with recombinant actin in vitro, *Toxoplasma* actin formed shorter (ca. 0.1µm) and more unstable filaments than rabbit actin (ca. 2µm) (Sahoo et al. 2006). It was proposed that amino acid residues on the *Toxoplasma* actin monomer surface differ from conventional actin and that these differences contribute to filament instability (Sahoo et al. 2006; Skillman et al. 2011). In vitro, the critical concentration required for *Toxoplasma* actin to polymerise was proposed to be lower than for conventional actins, resulting in the understanding that *TgACT1* filaments possess a rapid assembly and turnover rate (Sahoo et al. 2006). Since stabilisation of *TgACT1* affected parasite gliding, the general instability of *TgACT1* filaments was suggested to be an adaptation that enables parasite motility (Skillman et al. 2011).

The concept of rapid apicomplexan F-actin turnover was supported by findings in the related apicomplexan parasite *Plasmodium falciparum* (Schmitz et al. 2005). *Plasmodium* actin1 (*PfACT1*) also formed shorter filaments (ca 0.1µm) when compared to rabbit actin (ca 3.5µm) in vitro. Another study reported inefficient filament assembly by recombinant *PfACT1* in vitro (Schüler, Mueller, and Matuschewski 2005). More recently, pyrene fluorescence assays suggested kinetics for *PfACT1* similar to canonical actin (Kumpula et al. 2017). Of relevance, the depolymerisation rate for *PfACT1* appeared faster than for canonical actins. Structural differences to canonical actins were proposed to cause the instability and, consequently, the short nature of *Plasmodium* F-actin (Vahokoski et al. 2014). Electron cryo-microscopy revealed differences in the
contact sites between PfACT1 molecules as reason for the filament instability (Pospich et al. 2017). Based on crystallography studies for PfACT1, it was reported that the conformation of the Arg178/Asp180-containing A-loop plays a key role in Plasmodium filament destabilisation (Kumpula et al. 2019). Within the PfACT1 molecule, for instance, the A-loop interacts with the Plasmodium-specific residue Lys(K)270, enabling a conformational stage that promotes actin filament fragmentation (Kumpula et al. 2019). When PfACT1 was mutated to a K270M variant, reflecting canonical actin and blocking interaction with the A-loop, longer actin filaments were formed in vitro (Kumpula et al. 2019). Noteworthy, Toxoplasma actin1-K270M mutants were found to increase polymerisation in comparison to wild-type TgACT1 (Skillman et al. 2011).

Actin sedimentation assays later questioned the existence of a critical concentration for actin polymerisation in Toxoplasma (Skillman et al. 2013). This was because the concentration of monomeric actin in the supernatant fraction continuously increased when more actin was used for polymerisation assay prior to centrifugation. In the case of actin polymerisation that depends on critical concentration, the concentration of monomeric actin in the supernatant should reach a plateau (representing the critical concentration) since all monomeric actin molecules above this threshold are assembled into actin filaments (Pollard and Borisy 2003). This was the case for yeast actin as shown by Skillman et al. (Skillman et al. 2013). Based on the results from the sedimentation assays, Skillman and co-worker proposed that an isodesmic model would be best suited to explain the observed TgACT1 kinetics (Skillman et al. 2013). According to this model, actin assembly and disassembly occur at the same rate. Thus, the kinetically unfavourable actin nucleation prior to filament elongation would not present a rate limiting step. It was argued by Skillman and colleagues that F-actin formation could therefore happen independently from nucleation-promoting factors. In addition, the model was applied to explain the previously reported presence of short and unstable actin filaments in Toxoplasma (Sahoo et al. 2006).

Actin sedimentation assays based on ultracentrifugation were later proposed to be unreliable for the determination of the critical concentration of apicomplexan actin (Kumpula et al. 2017). This is because the short length of apicomplexan actin filaments prevents their sedimentation. A method exploiting
pyrene-labelled actin was applied to measure the critical concentration for PfACT1 (ca. 0.1µM) in vitro (Kumpula et al. 2017). Kumpula and colleagues argued that PfACT1 shows similar kinetics to canonical actins with F-actin formation depending on nucleation. Crystallography studies recently suggested that unique structural features in the PfACT1 molecule promote filament destabilisation and, eventually, fragmentation (Kumpula et al. 2019).

It should be mentioned that a previous study by Olshina et al. suggested that PfACT1 might not be correctly folded by heterologous expression systems in vitro (Olshina et al. 2016). However, since the authors used in vitro cell free expression systems that differ from systems applied in other literature for PfACT1 expression (Schmitz et al. 2005; Schüler, Mueller, and Matuschewski 2005; Ignatev et al. 2012; Vahokoski et al. 2014; Kumpula et al. 2017, 2019), this general conclusion might have to be considered with caution.

As part of the actomyosin motor complex (Frénal, Dubremetz, et al. 2017), TgACT1 is highly important for all processes that require parasite motility. For instance, TgACT1 was reported to be essential for parasite egress from the host cell (Egarter et al. 2014; Whitelaw et al. 2017). TgACT1 was further reported to be important, but not essential, for parasite gliding (Egarter et al. 2014; Whitelaw et al. 2017). Although most parasites lost their ability to glide after TgACT1 depletion, a small number of tachyzoites remained able to glide at speeds similar to control parasites (Whitelaw et al. 2017). In addition, depletion of TgACT1 causes apicoplast loss in parasites (Andenmatten et al. 2013; Whitelaw et al. 2017). Also, dense granule trafficking appears to rely on actin and myosins (Heaslip, Nelson, and Warshaw 2016; Whitelaw et al. 2017).

Involvement of TgACT1 in host cell invasion (and motility) was first suggested in 1996 (Dobrowolski and Sibley 1996). Although Cre-Lox-mediated conditional depletion of TgACT1 rendered most parasites incapable of host cell invasion, some parasites (ca. 10-25%) were still able to invade (Egarter et al. 2014; Whitelaw et al. 2017). It was further reported that conditional TgACT1-depleted parasites were unable to establish strong attachment to surfaces (Whitelaw et al. 2017). Based on these findings, Whitelaw and co-workers suggested a role for the actomyosin complex in surface attachment, rather than force generation during the invasion process.
The suggestion that actual host cell penetration can occur in the absence of \(Tg\)ACT1 sparked controversy. Another study suggested that host cell invasion by \(Tg\)ACT1-depleted parasites is facilitated by residual actin after Cre-Lox gene excision (Drewry and Sibley 2015). In the context of this debate, potential cross-reactivity of the exploited antibodies against \(Tg\)ACT1 were discussed (Drewry and Sibley 2015; Whitelaw et al. 2017).

Overall, \(Tg\)ACT1 is essential for parasite survival since no clonal \(Tgact1 \) knock-out line could be generated so far (Andenmatten et al. 2013; Egarter et al. 2014). Interestingly, the intracellular replication rate in culture appears to be largely unaffected by \(Tg\)ACT1 depletion (Egarter et al. 2014; Periz et al. 2017). Noteworthy, however, depletion of \(Tg\)ACT1 causes asynchronous replication in \(Toxoplasma \) (Periz et al. 2017). In addition, parasites lack the typical rosette formation within the PV (Periz et al. 2017). Actin was also reported to be involved in residual body formation (Periz et al. 2017).

The recent visualisation of \(Toxoplasma \) actin via actin-chromobodies allowed for a more detailed investigation of actin function in intracellular parasites (Periz et al. 2017). Periz and colleagues reported that individual parasites are connected by a filamentous actin network. This network appeared to contribute to vesicular trafficking between individual parasites within the PV and IMC recycling (Periz et al. 2017). Disassembly and reassembly of these intravacuolar filaments occur during parasite replication (Periz et al. 2017). A follow-up study by Periz et al. proposed that F-actin facilitates recycling of maternal micronemes during daughter cell budding (Periz et al. 2019). Further exploitation of the chromobody technology suggested a novel function for actin in the host cell invasion process (Del Rosario et al. 2019). According to Del Rosario and colleagues, the parasite nucleus presents a major obstacle for efficient host cell entry. To allow for efficient nuclear entry, actin is thought to stabilise the junction and to push the parasite nucleus into the host cell (Del Rosario et al. 2019).
1.7.1 Actin binding proteins (ABPs) in *Toxoplasma*

Apicomplexan parasites, including *Toxoplasma* and *Plasmodium* species, possess a limited set of ABPs (Baum et al. 2006) (Table 1-1). For example, *Toxoplasma* encodes a single gene each for ADF and profilin, while three genes encode formins. As perspective, humans possess 5 *profilin* genes, 14 *adf/cofilin* genes and 16 *formin* genes (Baum et al. 2006). Strikingly, the nucleation factors spire (Baum et al. 2006) and Arp2/3 (Gordon and Sibley 2005) are missing in *Toxoplasma*, making formins the only known actin nucleator.

Table 1-1: Depiction of selected actin binding proteins (ABPs) found in apicomplexan and eukaryotic genomes

Please note that this table is not a complete list of ABPs present in the depicted genomes. Data presented in this table was reproduced from (Baum et al. 2006). Abbreviations: Pf – *Plasmodium falciparum*, Tg – *Toxoplasma gondii*, At – *Arabidopsis thaliana*, Dm – *Drosophila melanogaster*, Hs – *Homo sapiens*.

<table>
<thead>
<tr>
<th>Functional class</th>
<th>Protein domain</th>
<th>Number of proteins detected in the genome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pf</td>
</tr>
<tr>
<td>Monomer treadmilling</td>
<td>Profilin</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CAP</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cofilin</td>
<td>2</td>
</tr>
<tr>
<td>Nucleation</td>
<td>Formins (FH2)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Spire</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ARPC1/p41</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ARPC2/p34</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ARPC3/21</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ARPC4/p20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ARPC5/p16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>WAVE/WASp</td>
<td>0</td>
</tr>
<tr>
<td>Crosslinking / bundling</td>
<td>Coronin</td>
<td>1</td>
</tr>
</tbody>
</table>

TgADF was first described in 1997 as a single copy gene (Allen et al. 1997). Recombinant *TgADF* is capable of binding to G-actin and of depolymerising F-actin (Allen et al. 1997). *In vivo*, a cytosolic localisation was reported for *TgADF* by antibody staining and endogenous tagging (Allen et al. 1997; Mehta and Sibley 2011; Haase et al. 2015). Depletion of *TgADF* compromises host cell invasion, egress and overall gliding motility, making *TgADF* essential for the lytic replication cycle (Mehta and Sibley 2011).
In vitro sedimentation assays with rabbit actin suggested that *TgADF* does not stably associate with F-actin (Mehta and Sibley 2010). In the same study, *TgADF* also displayed a weaker severing activity than the canonical yeast cofilin and appeared to prevent F-actin assembly mainly by sequestering monomeric G-actin. According to structural analysis, *TgADF* has enhanced affinity for G-actin (Yadav et al. 2011). *In vivo*, lack of *TgADF* causes the accumulation of actin structures within the parasite (Mehta and Sibley 2011; Periz et al. 2017).

Initially, conditional depletion of *TgFormin1* with the TATi-system was applied to report that *TgFormin1* is not important for intracellular replication and not critical for egress (Daher et al. 2010). Instead, Daher and co-workers suggested *TgFormin1* to be involved in tachyzoite motility and host cell invasion. A follow-up publication confirmed *TgFormin1* importance for gliding and invasion, but also indicated a critical role in parasite egress (Tosetti et al. 2019). Plaque assays suggested that *TgFormin1* is essential for the completion of the asexual lytic cycle in culture (Tosetti et al. 2019).

By obtaining a clonal *TgFormin2-KO* line, Tosetti and colleagues showed that *TgFormin2* is not essential for the completion of the lytic cycle (Tosetti et al. 2019). However, the Formin2-KO strain was outgrown by wild-type parasites in growth competition assays. It should be mentioned that the Formin2-KO line was obtained by applying CRISPR/Cas9 to delete a large part of the open reading frame (ORF). *TgFormin2* is involved in intracellular replication as its deletion causes an increase in aberrant daughter cell orientation (Tosetti et al. 2019). *TgFormin1* and 2 were initially localised to the tachyzoite pellicle (Daher et al. 2010). Subsequent reports localised *TgFormin1* to the apical tip of the parasite and *TgFormin2* to the vicinity of the apicoplast (Jacot et al. 2016; Tosetti et al. 2019).

TgFormin3-KO tachyzoites do not depict any replication defects, making *TgFormin3* dispensable for the lytic cycle (Daher et al. 2012). Initially, *TgFormin3* was localised to the apical and the basal pole as well as around the mitochondrion (Daher et al. 2012). Later, *TgFormin3* localisation was re-defined to the basal pole and the residual body based on endogenous tagging (Tosetti et al. 2019). Asynchronous replication was observed in parasites lacking *TgFormin3* (Tosetti et al. 2019). In addition, recovery of fluorescence in bleaching
experiments was slower for \(Tg\text{Formin3-KO} \) parasites when compared to wild-type parasites. Tosetti and colleagues therefore suggested a role for \(Tg\text{Formin3} \) in cell-cell communication.

Evidence suggests the all three \(Toxoplasma \) Formins can nucleate actin \textit{in vitro}. The FH2 domains of \(Tg\text{Formin1 and 2} \) were reported to initiate nucleation of rabbit actin (Daher et al. 2010) and \(Toxoplasma \) actin (Skillman et al. 2012) \textit{in vitro}. The \(Tg\text{Formin3} \) FH2 domain also nucleates rabbit actin (Daher et al. 2012). Skillman and colleagues interpreted fluorescence microscopy data as indication for the promotion of short filament bundles by \(Tg\text{Formin1 and 2} \) (Skillman et al. 2012). Electron microscopy suggested that, \textit{in vitro}, \(Tg\text{Formin1} \) causes \(Tg\text{ACT1} \) to form an interconnected network, while \(Tg\text{Formin2} \) mediates the formation of straight actin filament bundles (Skillman et al. 2012).

Intriguingly, \(Tg\text{Formin-mediated} \) actin polymerisation was inhibited by \(Tg\text{Profilin} \) \textit{in vitro} (Skillman et al. 2012). These observations stand in direct contrast to observations made \textit{in vitro} with yeast Profilin, which was reported to enhance Formin-mediated F-actin assembly (Sagot et al. 2002). Co-immunoprecipitation with \(Tg\text{Formins} \) failed to precipitate \(Tg\text{Profilin} \) (Daher et al. 2010). This lack of interaction was further supported by isothermal titration calorimetry and crystal structure analysis (Kucera et al. 2010). Taken together, these observations made Skillman et al. suggest that the main function of \(Tg\text{Profilin} \) might be to sequester \(Tg\text{ACT1} \), rather than enhancing \(Tg\text{Formin2-mediated} \) F-actin assembly (Skillman et al. 2012).

\(Tg\text{Profilin} \) is critical for the completion of the lytic life cycle as depletion of \(Tg\text{Profilin} \) rendered parasite defective in gliding motility, invasion and host cell egress (Plattner et al. 2008). Intracellular replication was not affected by \(Tg\text{Profilin} \) loss.

The ABPs \(Tg\text{Formin2} \) (Jacot, Daher, and Soldati-Favre 2013; Tosetti et al. 2019), \(Tg\text{ADF} \) (Jacot, Daher, and Soldati-Favre 2013; Haase et al. 2015) and \(Tg\text{Profilin} \) (Jacot, Daher, and Soldati-Favre 2013) are involved in apicoplast segregation in \(Toxoplasma \) tachyzoites.
Figure 1-10: Schematic of the actin network in Toxoplasma
In intracellular tachyzoites, actin (green) forms a network that connects parasites within the parasitophorous vacuole. Individual parasites display actin accumulation in their apical region. The schematic is based on results published by Periz and co-workers (Periz et al. 2017).

1.8 Aims of this study

Although actin and its ABPs in Toxoplasma have been the focus of intense investigation, the overall conclusions were limited by the lack of a reliable method for actin visualisation. Because of this, the action of different ABPs on actin dynamics was mainly examined *in vitro*, making conclusion about their exact functions *in vivo* challenging.

The visualisation of actin structures in Toxoplasma was recently achieved by exploiting actin-chromobodies (Periz et al. 2017). These findings presented a major advancement in apicomplexan actin biology since actin visualisation had been a major obstacle. Classical antibody staining proved to be unreliable (Drewry & Sibley, 2015; Whitelaw et al., 2017) and other fluorogenic actin probes could not be expressed in Toxoplasma (Tardieux 2017; Periz et al. 2017). Expression of anti-actin-chromobodies in Toxoplasma revealed an extensive actin network that connects intracellular parasites within the parasitophorous vacuole (PV) (Figure 1-10) (Periz et al. 2017). In addition, Periz and colleagues identified a highly dynamic actin accumulation centre anterior to the nucleus in individual parasites.
Overcoming the challenge of actin visualisation opens the door to in-depth analysis of actin dynamics in vivo. In addition, the actin-chromobody could potentially be used for screening approaches aiming at the identification of novel ABPs. Since actin is critical for completion of the lytic cycle in Toxoplasma (Andenmatten et al. 2013; Egarter et al. 2014), a conditional gene disruption system might be advantageous for investigating potentially novel and essential actin dynamic factors.

Recently, a conditional type II CRISPR/Cas9 system (split-Cas9) was described in mammalian cells (Zetsche, Volz, and Zhang 2015). In this system, the Cas9 enzyme is split into two sub-units (N- and C-terminus) which are fused to a FKBP or FRB domain. Upon rapamycin treatment, the two sub-units are re-united and become active. In theory, this system should have phenotypic screening potential. A gRNA library could be transfected into parasites while the conditional nature of the split-Cas9 system would allow for controlled phenotype induction. In addition, this system should enable rapid targeting of known ABPs.

The novel ability to visualize F-actin in fixed or live Toxoplasma cells presents an exciting opportunity to further investigate actin dynamics in vivo in unprecedented detail. Combination of the split-Cas9 system and the actin-chromobody technology could potentially give, for the first time, insights into the exact functions of ABPs within the Toxoplasma actin network in vivo. Therefore, the overall aims of this study were defined as follows:

1) The split-Cas9 system shall be established in Toxoplasma to allow for reliable analysis of gene function.

2) Overall actin dynamics in Toxoplasma shall be investigated by combining the split-Cas9 and actin-chromobody technologies.

3) The specific role of ABPs in maintaining actin dynamics during the lytic cycle in Toxoplasma shall be addressed.

4) A medium-throughput screen aiming at identifying novel ABPs in Toxoplasma shall be initiated.
2 Materials and Methods

2.1 Equipment

<table>
<thead>
<tr>
<th>Applied Precision</th>
<th>DeltaVision® Core microscope</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD Biosciences</td>
<td>Syringes, Needles (23-25 gauge), FACS tubes with cell strainer cap</td>
</tr>
<tr>
<td>BioRad</td>
<td>Agarose gel electrophoreses equipment, UV transilluminator, SDS-PAGE system, Blotting apparatus (Transblot SD and Mini transblot electrophoretic transfer cell), gel documentation system, gene Pulser Xcell, Micropulser, S3e™ Cell sorter</td>
</tr>
<tr>
<td>BTX</td>
<td>Electroporation cuvettes and system (ElectroSquare Pore 830)</td>
</tr>
<tr>
<td>Eppendorf</td>
<td>Thermocycler (Mastercycler Epgradient), Thermomixer compact</td>
</tr>
<tr>
<td>Fished Scientific</td>
<td>Ultrasound water bath FB15047</td>
</tr>
<tr>
<td>Grant</td>
<td>Water bath</td>
</tr>
<tr>
<td>Heraeus Instruments</td>
<td>Incubator</td>
</tr>
<tr>
<td>KD scientific</td>
<td>Syringe pump</td>
</tr>
<tr>
<td>Kuehner</td>
<td>Shaking incubator (ISF-1-W)</td>
</tr>
<tr>
<td>Lonza</td>
<td>4D-Nucleofactor™X electroporation unit, Single 100 µl Nucleovette™</td>
</tr>
<tr>
<td>Milipore</td>
<td>MilliQ water deionising facility, 3 µm Millipore filters</td>
</tr>
<tr>
<td>Photometrics</td>
<td>CoolSNAP HQ2CCD camera</td>
</tr>
<tr>
<td>Sanyo</td>
<td>CO₂-incubator for tissue culture</td>
</tr>
<tr>
<td>Satorius</td>
<td>Analytical balances</td>
</tr>
<tr>
<td>Sciquip</td>
<td>Sigma 6K 15 centrifuge (1150 rotor and 12500 rotor)</td>
</tr>
<tr>
<td>StarLab</td>
<td>ErgoOne Single & Multi-Channel pipettes, StarPet Pro pipette controller</td>
</tr>
<tr>
<td>Stuart</td>
<td>Heat block, Roller mixer, Orbital Shaker</td>
</tr>
<tr>
<td>ThermoFisher scientific</td>
<td>CO₂-incubator for tissue culture, Nanodrop spectrophotometer, Centrifuge (sorvall legend XFR), Table top centrifuge Heraeus Pico 21, Tabletop cooling centrifuge Heraeus Fresco 21</td>
</tr>
<tr>
<td>Zeiss</td>
<td>Axioskop 2 (mot plus) fluorescence microscope with Axiocam MRm CCD camera, Primo Vert (light microscope), Axioverit 40 CFL fluorescence microscope with Axiocam ICC1, Axioverit A1 fluorescence microscope with Axiocam IMc1, ELYRA PS.1 Super-resolution microscope, sCMOS pco SIM camera, Plan Apochromat 63x lens</td>
</tr>
</tbody>
</table>
2.2 Computer Software

Table 2-2: Computer software

<table>
<thead>
<tr>
<th>Company</th>
<th>Reagents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adobe Systems Inc.</td>
<td>Adobe Acrobat Reader DC</td>
</tr>
<tr>
<td>Inkscape Project</td>
<td>Inkscape™: Open Source Scalable Vector Graphics Editor</td>
</tr>
<tr>
<td>AcaClone software</td>
<td>pDraw32</td>
</tr>
<tr>
<td>Applied Precision</td>
<td>SoftWoRx explorer and SoftWoRx suite</td>
</tr>
<tr>
<td>BioRad</td>
<td>ProSort™</td>
</tr>
<tr>
<td>Carl Zeiss Microscopy</td>
<td>Zen Black and Zen Blue</td>
</tr>
<tr>
<td>Microsoft Corporation</td>
<td>Windows 7, Microsoft Office 2010</td>
</tr>
<tr>
<td>National Institute for Biotechnology Information (NCBI)</td>
<td>Basic Local Alignment search tool (BLAST), Primer-BLAST</td>
</tr>
<tr>
<td>National Institute of Allergy and Infectious Diseases (NIAID)</td>
<td>ToxoDB (Kissing et al. 2003; Gajria et al. 2008)</td>
</tr>
<tr>
<td>National Institutes of Health (NIH)</td>
<td>ImageJ, Fiji (Schneider, Rasband, and Eliceiri 2012; Schindelin et al. 2012)</td>
</tr>
<tr>
<td>New England Biolabs (NEB)</td>
<td>NEB tools™: Double Digest Finder, Enzyme Finder, NEBCutter®, NEBBioCalculator®, Tm Calculator</td>
</tr>
<tr>
<td>Thermo Scientific</td>
<td>Thermo Scientific web tools: Tm Calculator</td>
</tr>
<tr>
<td>Mendeley Ltd.</td>
<td>Mendeley Desktop</td>
</tr>
<tr>
<td>University of Utah</td>
<td>ApE Plasmid Editor v2.0.53c Copyright© by M. Wayne Davies</td>
</tr>
<tr>
<td>University of Georgia</td>
<td>Eukaryotic Pathogen gRNA Design Tool (EuPaGDT) (Peng and Tarleton 2015)</td>
</tr>
</tbody>
</table>

2.3 Consumables, biological and chemical reagents

Table 2-3: Biological and Chemical reagents

<table>
<thead>
<tr>
<th>Company</th>
<th>Reagents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formedium</td>
<td>Tryptone, yeast extract</td>
</tr>
<tr>
<td>Life technologies</td>
<td>Phosphate buffered saline 1X (PBS), Trypsin/EDTA (0.05%), DNasel, Platinum Taq DNA Polymerase High Fidelity, NuPage SDS loading buffer and reducing agent, Sodium bicarbonate, Ultrapure agarose</td>
</tr>
<tr>
<td>Melford</td>
<td>Agar, ditriothreitol, IPTG, X-Gal</td>
</tr>
<tr>
<td>NEB</td>
<td>1kb DNA ladder, all Restriction enzymes and associated buffers, T4 DNA ligase, Taq polymerase,</td>
</tr>
<tr>
<td>Products</td>
<td>ENDER</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----</td>
</tr>
<tr>
<td>Phenix Research</td>
<td>Q5® high-fidelity DNA polymerase, Calf intestinal phosphatase (CIP)</td>
</tr>
</tbody>
</table>

2.4 Kits

Table 2-4: Kits

<table>
<thead>
<tr>
<th>Company</th>
<th>Kits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qiagen</td>
<td>Spin Mini-prep, Plasmid Midi-prep, PCR Purification MinElute, QIAquick gel extraction Kit, DNeasy blood and tissue Kit</td>
</tr>
<tr>
<td>Roche</td>
<td>High Pure PCR product purification Kit</td>
</tr>
<tr>
<td>New England Biolabs</td>
<td>Q5® Site-Directed Mutagenesis Kit</td>
</tr>
</tbody>
</table>
2.5 Buffers, solutions and media

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>50X TAE buffer</td>
<td>2M Tris, 05M Na2EDTA, 5.71% glacial acetic acid (v/v)</td>
</tr>
<tr>
<td>5X loading dye</td>
<td>15% Ficoll (v/v), 20 mM EDTA, 0.25% Bromophenol Blue in H2O</td>
</tr>
<tr>
<td>1kb plus DNA ladder</td>
<td>150 μl 1kb ladder (1 μg/μl), 300 μl 5X DNA loading buffer, 1050 μl H2O</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB medium</td>
<td>10 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl</td>
</tr>
<tr>
<td>LB agar</td>
<td>1.5% (w/v) agar in LB medium</td>
</tr>
<tr>
<td>SOB medium</td>
<td>2% tryptone (w/v), 0.5% yeast extract (w/v), 0.05% NaCl (w/v), 2.5 mM KCl, 10mM MgCl2</td>
</tr>
<tr>
<td>SOC medium</td>
<td>20 mM glucose in SOB medium</td>
</tr>
<tr>
<td>NYZ broth</td>
<td>5 g/l NaCl, 2 g/l MgSO4*7H2O, 5 g/l yeast extract, 10 g/l casein hydrolysate, pH adjusted to 7.5 with NaOH</td>
</tr>
<tr>
<td>Ampicillin (1000X)</td>
<td>100 mg/ml in H2O</td>
</tr>
<tr>
<td>IPTG (100 μl/petri dish)</td>
<td>100 mM IPTG in H2O</td>
</tr>
<tr>
<td>X-Gal (10 μl/Petri dish)</td>
<td>50 mg/ml in N,N-dimethylformamide</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMEM_COMPLETE</td>
<td>500 ml DMEM, 10 % FCS (v/v), 2 mM glutamine, 20 μg/ml gentamicin</td>
</tr>
<tr>
<td>DMEM Fluorobrite_COMPLETE</td>
<td>500 ml DMEM, 10 % FCS (v/v), 2 mM glutamine, 20 μg/ml gentamicin</td>
</tr>
<tr>
<td>2 x Freezing solution</td>
<td>25 % FCS (v/v), 10 % DMSO (v/v) in DMEM_COMPLETE</td>
</tr>
<tr>
<td>Electroporation buffer (Cytomix)</td>
<td>10 mM K2HPO4/KH2PO4, 25 mM HEPES, 2 mM EGTA pH 7.6, 120 mM KCl, 0.15 mM CaCl2, 5 mM MgCl2 with 5 mM KOH adjusted to pH 7.6, 3 mM ATP, 3 mM GSH</td>
</tr>
<tr>
<td>MPA (500X)</td>
<td>12.5 mg/ml in methanol</td>
</tr>
<tr>
<td>XAN (500X)</td>
<td>20 mg/ml, 1M KOH</td>
</tr>
<tr>
<td>Pyrimethamine (1000X)</td>
<td>1 mM in EtOH</td>
</tr>
<tr>
<td>Rapamycin (1000X)</td>
<td>50 μM in DMSO</td>
</tr>
<tr>
<td>FACS buffer</td>
<td>1 % FCS, 1 mM EDTA in PBS</td>
</tr>
<tr>
<td>PFA fixing solution</td>
<td>4 % PFA (w/v) in PBS</td>
</tr>
<tr>
<td>Permeabilisation solutions</td>
<td>0.2 % triton X-100 (v/v) in PBS</td>
</tr>
<tr>
<td>Blocking solution</td>
<td>% BSA (w/v) in permeabilisation solution</td>
</tr>
</tbody>
</table>
2.6 Antibodies

Table 2-8: Antibodies

Abbreviations: 1st - primary antibody, 2nd - secondary antibody.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Species of origin</th>
<th>Dilution IFA</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-gap40 (1<sup>st</sup>)</td>
<td>rabbit</td>
<td>1:250</td>
<td>Dr Dominique Soldati-Favre</td>
</tr>
<tr>
<td>anti-IMC1 (1<sup>st</sup>)</td>
<td>mouse</td>
<td>1:1000</td>
<td>Dr Gary Ward</td>
</tr>
<tr>
<td>anti-SAG1 (1<sup>st</sup>)</td>
<td>mouse</td>
<td>1:500</td>
<td>Dr Sebastian Lourido</td>
</tr>
<tr>
<td>anti-MIC8 (1<sup>st</sup>)</td>
<td>rabbit</td>
<td>1:500</td>
<td>Dr Markus Meissner</td>
</tr>
<tr>
<td>anti-K40acteylation (1<sup>st</sup>)</td>
<td>mouse</td>
<td>1:500</td>
<td>Sigma, cat# T6793</td>
</tr>
<tr>
<td>anti-gap45 (1<sup>st</sup>)</td>
<td>rabbit</td>
<td>1:2000</td>
<td>Dr Dominique Soldati-Favre</td>
</tr>
<tr>
<td>anti-HSP60 (apicoplast) (1<sup>st</sup>)</td>
<td>rabbit</td>
<td>1:2000</td>
<td>Dr Lilach Sheiner</td>
</tr>
<tr>
<td>anti-HA (1<sup>st</sup>)</td>
<td>rat</td>
<td>1:500</td>
<td>Roche, cat# 1187431001</td>
</tr>
<tr>
<td>anti-GFP/YFP (1<sup>st</sup>)</td>
<td>rabbit</td>
<td>1:500</td>
<td>Abcam, cat #ab6556</td>
</tr>
<tr>
<td>anti-Atrx1 (apicoplast) (1<sup>st</sup>)</td>
<td>mouse</td>
<td>1:500</td>
<td>Dr Lilach Sheiner</td>
</tr>
<tr>
<td>anti-G2Trx (apicoplast) (1<sup>st</sup>)</td>
<td>rabbit</td>
<td>1:500</td>
<td>Dr Lilach Sheiner</td>
</tr>
<tr>
<td>anti-TOM40 (1<sup>st</sup>)</td>
<td>rabbit</td>
<td>1:1000</td>
<td>Dr Lilach Sheiner</td>
</tr>
<tr>
<td>anti-Rop 2,4 T34A7 (1<sup>st</sup>)</td>
<td>mouse</td>
<td>1:500</td>
<td>Dr Jean-François Dubremetz</td>
</tr>
<tr>
<td>AlexaFluor594 anti-rabbit (2<sup>nd</sup>)</td>
<td>goat</td>
<td>1:3000</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>AlexaFluor488 anti-rabbit (2<sup>nd</sup>)</td>
<td>goat</td>
<td>1:3000</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>AlexaFluor594 anti-mouse (2<sup>nd</sup>)</td>
<td>goat</td>
<td>1:3000</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>AlexaFluor488 anti-mouse (2<sup>nd</sup>)</td>
<td>goat</td>
<td>1:3000</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>AlexaFluor594 anti-rat (2<sup>nd</sup>)</td>
<td>goat</td>
<td>1:3000</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>AlexaFluor488 anti-rat (2<sup>nd</sup>)</td>
<td>goat</td>
<td>1:3000</td>
<td>Life Technologies</td>
</tr>
</tbody>
</table>
2.7 Oligonucleotides

Table 2-9: Oligonucleotides

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Sequence (5<code> - 3</code>)</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>sCas9-C-term-split4-fw</td>
<td>GAATTCGaCAAATGGCCCCAAAGAAGAAGCG</td>
<td>1</td>
</tr>
<tr>
<td>sCas9-C-term-split4-rev</td>
<td>cTTAATTAACCTTTTCTTTTGGGTTGGCCGG</td>
<td>1</td>
</tr>
<tr>
<td>sCas9-N-term-split4-fw</td>
<td>GAATTCGaCAAATGCTAGATTTAGCTAGC</td>
<td>1</td>
</tr>
<tr>
<td>sCas9-N-term-split4-rev</td>
<td>CTTAATTAACCTTTGCTGATTCTTTC</td>
<td>1</td>
</tr>
<tr>
<td>Q5-universal-rev</td>
<td>AACTTGACATCCCCCATTTAC</td>
<td>1</td>
</tr>
<tr>
<td>sag1-sgRNA3-fw</td>
<td>GAATGTCGCAAGGTGCTCCTAGTTTTAGAGCTAGAAATAGC</td>
<td>1</td>
</tr>
<tr>
<td>mec17-sgRNA2-fw</td>
<td>GTGTCTTGCGACCTTTGCTGTGTGCCTAGCTGAAGATGACACCA</td>
<td>1</td>
</tr>
<tr>
<td>mec17-sgRNA3-fw</td>
<td>GCTCGGACATCCTCGCTGAGTGTGAGCTAGCTGAAGATGACACCA</td>
<td>1</td>
</tr>
<tr>
<td>actin1-sgRNA-fw</td>
<td>GTCCATTCGCCAAGCTAGTTTTAGAGCTAGAAATAGC</td>
<td>1</td>
</tr>
<tr>
<td>adf-sgRNA-fw</td>
<td>GAGATCGCGAGTGTGAGCTAGCTGAAGATGACACCA</td>
<td>1</td>
</tr>
<tr>
<td>formin2-sgRNA-fw</td>
<td>GTGTCTTGCGACCTTTGCTGTGTGCCTAGCTGAAGATGACACCA</td>
<td>1</td>
</tr>
<tr>
<td>profilin-sgRNA-fw</td>
<td>GCAATCCTCGGACCTTTGCTGTGTGCCTAGCTGAAGATGACACCA</td>
<td>1</td>
</tr>
<tr>
<td>drpA-sgRNA-fw</td>
<td>GTCCATTCGCCAAGCTAGTTTTAGAGCTAGAAATAGC</td>
<td>1</td>
</tr>
<tr>
<td>actin1-gRNA-cutside-fw</td>
<td>GGATGAGAAGTGAATGAGAAGTGAAGGATATGACCA</td>
<td>1</td>
</tr>
<tr>
<td>actin1-gRNA-cutside-rev</td>
<td>GGAAGTGGTGAGGCGGTATC</td>
<td>1</td>
</tr>
<tr>
<td>adf-gRNA-cutside-fw</td>
<td>GCTACGTGGAGGTGTGAGCTAGCTGAAGATGACACCA</td>
<td>1</td>
</tr>
<tr>
<td>adf-gRNA-cutside-rev</td>
<td>TTGACACTCAGCCAGCGACCA</td>
<td>1</td>
</tr>
<tr>
<td>formin2-gRNA-cutside-fw</td>
<td>CGCGATCGAAGCCGCTATCC</td>
<td>1</td>
</tr>
<tr>
<td>formin2-gRNA-cutside-rev</td>
<td>AGAGCTGGTGTGCTGCTAAC</td>
<td>1</td>
</tr>
<tr>
<td>mec17-gRNA-cutside-fw</td>
<td>cctataATGCATGAAGTGAATGAGAAGTGAAGGATATGACCA</td>
<td>1</td>
</tr>
<tr>
<td>mec17-gRNA-cutside-rev</td>
<td>GTCTTGAGTGTGAGCCACCA</td>
<td>1</td>
</tr>
<tr>
<td>DiCre-formin2-3`-fw</td>
<td>GGTTGGAGTTGCTCCCTCG</td>
<td>2</td>
</tr>
<tr>
<td>DiCre-formin2-3`-rev</td>
<td>ATCCCGTTCTCGAGGAGGAGC</td>
<td>2</td>
</tr>
<tr>
<td>DiCre-formin2-5`-loxP-fw</td>
<td>CACTTTTCTAGTATAGGATAACTTCG</td>
<td>2</td>
</tr>
<tr>
<td>DiCre-formin2-5`-rev</td>
<td>CCATTTTGCCTGTTCAAGTG</td>
<td>2</td>
</tr>
<tr>
<td>DiCre-formin2-excision-fw</td>
<td>TTCTCAATTTTACTGCTTACACG</td>
<td>2</td>
</tr>
<tr>
<td>pGEM-sequencing-fw</td>
<td>TGTAATACGACTCACTATAGGGC</td>
<td>3</td>
</tr>
<tr>
<td>Sequence Name</td>
<td>Sequence</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>pGEM-sequencing-rev</td>
<td>ATTAGGTTGACACTATAGAATACTC</td>
<td>3</td>
</tr>
<tr>
<td>C-term-Cas9_seq-fw1</td>
<td>TGGAGCTGCTGAAGCTGGAG</td>
<td>3</td>
</tr>
<tr>
<td>C-term-Cas9_seq-fw2</td>
<td>GACAGCCTGACCTTTAAAGAGG</td>
<td>3</td>
</tr>
<tr>
<td>C-term-Cas9_seq-fw3</td>
<td>GATGAAGAACTACTGGGC</td>
<td>3</td>
</tr>
<tr>
<td>C-term-Cas9_seq-fw4</td>
<td>CTCTGATCGAGACAACCGGC</td>
<td>2, 3</td>
</tr>
<tr>
<td>N-term-Cas9_seq-fw1</td>
<td>AGAAGTACCCCCACCATCTACC</td>
<td>3</td>
</tr>
<tr>
<td>N-term-Cas9_seq-fw2</td>
<td>ATAGTACGCCGACCTTTCTG</td>
<td>2, 3</td>
</tr>
</tbody>
</table>
| TUB8-sequencing-fw1 | GTTCTTGCAGGGAAAACACTACG | 3 |}

2.8 Plasmids

Table 2-10: Plasmids

Please note that the lacZ-sgRNA plasmid was generated by Marleen Büchler under the supervision of Dr Elena Jimenez-Ruiz. The formin2- and the profilin-sgRNA plasmids were created by Dana Aghabi under my supervision.

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>sgRNA-plasmids</td>
<td>pU6_sgRNA_dhfr_Amp</td>
</tr>
<tr>
<td>sCas9-N-term-split4</td>
<td>pTUB8_NES_N-terminus-Cas9-split4_FRB_HX_Amp</td>
</tr>
<tr>
<td>sCas9-C-term-split4</td>
<td>pTUB8_NLS_FKBP_C-terminus-Cas9-split4_NLS_Amp</td>
</tr>
<tr>
<td>Actin-chromobody-emerald</td>
<td>pDHFR_Actin-Chromobody_Emerald_Amp</td>
</tr>
</tbody>
</table>
2.9 Cell strains

2.9.1 Bacteria strains and mammalian cell lines

Table 2-11: Bacteria strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Competence</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH5α</td>
<td>Chemically competent</td>
<td>New England BioLabs</td>
</tr>
<tr>
<td>One Shot Top10</td>
<td>Chemically competent</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>XL-10 Gold</td>
<td>Chemically competent</td>
<td>Stratagene</td>
</tr>
</tbody>
</table>

Table 2-12: Mammalian cells

<table>
<thead>
<tr>
<th>Cells</th>
<th>Organism</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human foreskin fibroblasts (HFF), primary cell line</td>
<td>Homo sapiens</td>
<td>ATCC® SCRC-1041™</td>
</tr>
</tbody>
</table>

2.9.2 Toxoplasma strains

Table 2-13: Toxoplasma strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH</td>
<td>RHΔhx</td>
<td>(Donald et al. 1996)</td>
</tr>
<tr>
<td>RHΔku80</td>
<td>RHΔku80Δhx</td>
<td>(Fox et al. 2009; Huynh and Carruthers 2009)</td>
</tr>
<tr>
<td>RHΔku80-DiCre</td>
<td>RH_DiCre_T2A_Δku80Δhx_CAT</td>
<td>(Hunt et al. 2019)</td>
</tr>
<tr>
<td>RH_gap40</td>
<td>RH_gap40sgRNA_dhfr_Δhx</td>
<td>this study</td>
</tr>
<tr>
<td>RHsCas9-gap40</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_gap40sgRNA_dhfr_hx</td>
<td>this study</td>
</tr>
<tr>
<td>RHsCas9</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_hx</td>
<td>this study</td>
</tr>
<tr>
<td>RHsCas9-Δhx</td>
<td>RH_Cas9-N-Termius-split4-split-Cas9-C-Terminus-split4_Ahx</td>
<td>this study</td>
</tr>
<tr>
<td>RHsCas9-sag1-1</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_sag1sgRNA1_dhfr_hx</td>
<td>this study</td>
</tr>
<tr>
<td>RHsCas9-sag1-1-KO</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_sag1sgRNA1_dhfr_hx_sag1disrupted</td>
<td>this study</td>
</tr>
<tr>
<td>RHsCas9-Δhx-sag1-1-KO</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_sag1sgRNA1_dhfr_Δhx_sag1disrupted</td>
<td>Matthew Gow, unpublished</td>
</tr>
<tr>
<td>RHsCas9-sag1-1</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_sag1sgRNA1_dhfr_hx_sag1disrupted</td>
<td>Matthew Gow, unpublished</td>
</tr>
<tr>
<td>RHsCas9-sag1-1-KO</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_sag1sgRNA1_dhfr_Δhx_sag1disrupted</td>
<td>Matthew Gow, unpublished</td>
</tr>
<tr>
<td>RHsCas9-sag1-1</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_sag1sgRNA1_dhfr_hx_sag1disrupted</td>
<td>Matthew Gow, unpublished</td>
</tr>
<tr>
<td>RHsCas9-sag1-1-KO</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_sag1sgRNA1_dhfr_Δhx_sag1disrupted</td>
<td>Matthew Gow, unpublished</td>
</tr>
<tr>
<td>RHsCas9-sag1-1</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_sag1sgRNA1_dhfr_hx_sag1disrupted</td>
<td>Matthew Gow, unpublished</td>
</tr>
<tr>
<td>3</td>
<td>Terminus-split4_sag1sgRNA3_dhfr_Δhx</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>RHsCas9-sag1KO-sag1*</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_sag1sgRNA1_dhfr_hx_sag1disrupted_sag1* (sag1* represents a mutated sag1 gene variant)</td>
<td>Matthew Gow, unpublished</td>
</tr>
<tr>
<td>RHsCas9-lacZ</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_lacZsgRNA_dhfr_hx</td>
<td>Marleen Büchler and Dr Elena Jimenez-Ruiz, unpublished</td>
</tr>
<tr>
<td>RHsCas9-mec17-2</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_mec17sgRNA2_dhfr_Δhx</td>
<td>this study</td>
</tr>
<tr>
<td>RHsCas9-mec17-3</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_mec17sgRNA3_dhfr_Δhx</td>
<td>this study</td>
</tr>
<tr>
<td>RHΔku80-DiCre-Pfme17loxp</td>
<td>RHΔku80_DiCre_loxP-Pfme17-loxP_dhfr_hx</td>
<td>Stortz 2014, Master Thesis, Ruprecht-Karls University of Heidelberg</td>
</tr>
<tr>
<td>RHsCas9-CbEmerald</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_actin-chromobody-Emerald_dhfr_Δhx</td>
<td>this study, in collaboration with Dr Simon Gras</td>
</tr>
<tr>
<td>RHsCas9-CbEm-actin1</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_actin-chromobody-Emerald_actin1sgRNA_dhfr_Δhx</td>
<td>this study</td>
</tr>
<tr>
<td>RHsCas9-CbEm-adf</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_actin-chromobody-Emerald_adfsgRNA_dhfr_Δhx</td>
<td>this study</td>
</tr>
<tr>
<td>RHsCas9-CbEm-sag1-3</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_actin-chromobody-Emerald_sag1sgRNA3_dhfr_Δhx</td>
<td>this study</td>
</tr>
<tr>
<td>RHΔku80-TgFormin2-HA</td>
<td>RHΔku80_formin2_HA_Δhx</td>
<td>Dr Mirko Singer, (Stortz et al. 2019)</td>
</tr>
<tr>
<td>RHΔku80-DiCre-loxP-frm2YFP-loxP</td>
<td>RHΔku80_DiCre_loxP-formin2_YFP_loxP_Δhx</td>
<td>Dr Mirko Singer, (Stortz et al. 2019)</td>
</tr>
<tr>
<td>RHsCas9-CbEm-formin2</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_actin-chromobody-Emerald_formin2sgRNA_dhfr_Δhx</td>
<td>this study, in collaboration with Dana Aghabi</td>
</tr>
<tr>
<td>RHsCas9-CbEmprofilin</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_actin-chromobody-EmeraldprofilinsgRNA_dhfr_Δhx</td>
<td>this study, in collaboration with Dana Aghabi</td>
</tr>
<tr>
<td>RHsCas9-CbEm-DrpA</td>
<td>RH_Cas9-N-Termius-split4_split-Cas9-C-Terminus-split4_actin-chromobody-</td>
<td>this study</td>
</tr>
</tbody>
</table>
2.10 Microbiology Methods

2.10.1 Liquid cultures and cryopreservation stocks of *E. coli*

After a growth period of 14-17h on an agar plate, a single bacterial colony was picked and added to LB-medium containing ampicillin (100μg/ml). Liquid cultures were incubated at 37°C while shaking. Cryopreservation was achieved by mixing freshly grown *E. coli* liquid cultures with freezing media (LB-Medium containing 40% glycerol and 2% peptone) in a ratio 1:2. Cryostocks were stored at -80°C.

2.10.2 Transformation of chemically competent *E. coli*

For transformation purposes, chemically competent *E. coli* cells were defrosted on ice. After this, DNA was added to 25μl of bacterial suspension, followed by an incubation time of 45min on ice. The heat-shock was performed at 42°C for 30s. Subsequently, bacteria were again incubated in ice for 2min. The bacterial suspension was then spread on ampicillin-containing (100µg/ml) LB-agar plates (1.5 % (w/v) agar in LB medium) and incubated at 37°C for 14-17h.

When the pGEM®-T Easy vectors system (Promega) was used for transformation, the LB-agar plates were treated with IPTG and X-Gal prior to bacteria spreading. This allowed for blue/white colony screening.

2.11 Molecular Biology Methods

2.11.1 Polymerase Chain Reaction (PCR)

PCR was performed to amplify DNA fragments from various template DNAs. The PCR mix (25μl) contained the following reagents: template DNA, 2.5μl 10 x PCR reaction buffer, 0.5μl dNTPs (stock: 10mM, final: 0.2mM), 1μl forward primer (stock: 10pmol/μl, final: 0.4pmol/μl), 1μl reverse primer (stock:10pmol/μl,
final: 0.4pmol/µl) (for primers refer to Table 2-9), 0.1µl Platinum Taq DNA polymerase High-Fidelity (Invitrogen), 1 µl of the Q5® high-fidelity DNA polymerase or 0.125 Taq DNA polymerase (New England Biolabs) and water (Fisher Scientific, DNA grade). Platinum Taq DNA polymerase High Fidelity (Invitrogen) required addition of 1µl MgSO₄ (stock: 50mM, final: 2mM). If necessary, betaine solution (Sigma-Aldrich) was added (stock: 5M, final: 0.2M). The Q5 high CG enhancer was added to the reaction mix when the Q5® high-fidelity DNA polymerase was used. All Polymerases were used with their respective buffers as supplied by the manufacturer. High-fidelity Polymerases were exploited to avoid mutations during DNA fragment amplification. The Taq DNA Polymerase was used for analytical purposes.

PCR cycles were set to an initial denaturation at 95°C for 3-10min, followed by 30 repeats of denaturation (95°C, 30 sec), annealing (30 sec) and elongation. A final elongation step was performed for 5-10min. The annealing temperature depended on the melting temperature of the primers used. Elongation duration was calculated according to the size of the amplified DNA fragment. The temperature for the elongation steps was chosen based on the specific Tag polymerase requirements as described by the manufacturer.

2.11.2 Agarose Gel Electrophoresis (AGE)

To separate DNA fragments, agarose gel electrophoresis (AGE) was performed. Depending on the size range of DNA fragments gels containing 0.8-1.2% agarose in 1x TAE buffer were exploited. The DNA was visualized by UV light. For this purpose, gels were supplemented with 1/100 GelRed Nucleic Acid Stain (Phenix research products). A 6x loading dye was used for DNA loading onto the gel. DNA ladders were used to calculate the size of the DNA fragments.

2.11.3 DNA restriction

Restriction enzymes (New England BioLabs) and their respective buffers were used according to the manufacturer’s instructions. Duration of the restriction reaction was calculated depending on the DNA amount and the number of units
per ml (U/ml) of the enzyme stock. Usually, analytic restriction digests were performed in a total volume of 30µl for 1-4h, while preparative restriction digests were usually incubated overnight. When plasmid backbones were prepared for future sub-cloning by restriction digest, the reaction was treated with CIP (10U, New England BioLabs) at 37°C for 1h.

When larger amounts of DNA were digested, e.g. for *Toxoplasma* transfections, reactions were incubated for 14-17h in total volume of 100-120µl. To maximise restriction efficiency, the reactions were topped up with their respective enzymes after the initial 14-17h and incubated again for 1h.

2.11.4 DNA purification

DNA fragments were purified from PCR using either the *MinElute PCR Purification Kit* (Qiagen) or *High Pure PCR Product Purification Kit* (Roche). To extract DNA from an agarose gel, the *MinElute Gel Extraction Kit* (Qiagen) was exploited. The procedures were performed according to the manufacturer’s instructions. DNA was eluted in water (Fisher Scientific, DNA grade).

2.11.5 DNA ligation

For sub-cloning purposes, the T4-DNA-Ligase (New England BioLabs) was applied to ligate restricted DNA fragments. The ligation mix had a total volume of 10µl. The mix contained 1µl of T4-DNA-Ligase and 1µl of 10x T4-DNA ligase buffer (New England BioLabs). When DNA fragments were ligated into the pGEM®-T Easy vector (Promega), the ligation mix was set up according to the manufacturer’s instructions. Ligation reactions were incubated at 4°C for at least 12h.

2.11.6 Isolation of plasmid DNA from *E.coli*

Isolation of plasmid DNA from bacterial liquid cultures was performed according to the *QIAprep Spin Miniprep Kit* (Qiagen) or the *QIAGEN Plasmid Plus Midi Kit*
(Qiagen). To achieve maximum elusion efficiency, DNA was incubated with water (Fisher Scientific, DNA grade) at room temperature for 10min, followed by a centrifugation step of 3min at 13,000rpm.

Alternatively, the QIAprep Spin Miniprep Kit (Qiagen) was followed until the centrifugation step (10min, 13,000 rpm). Then, the supernatant was taken off and mixed with 100% Isoporopanol (ice-cold) in a ratio 1:1. The samples were stored at -80°C for at least 1h. To pellet the plasmid DNA, the mixture was centrifuged at 14,000rpm at 4°C. The DNA pellet was washed twice with 70% Ethanol. After this, the pellet was air dried and finally resuspended in 100µl water (Fisher Scientific, DNA grade).

2.11.7 Alcohol precipitation of plasmid DNA for Toxoplasma transfections

Toxoplasma transfection required DNA to be purified and concentrated via ethanol precipitation. To achieve this, DNA was mixed with 2.5 volume of ice-cold 100% ethanol and 1/10 NaAc (3M, pH5). This mix was incubated at -20°C for at least 14h. The DNA was subsequently pelleted for 60min at 4°C and maximum speed. After two washing steps with ice-cold 70% ethanol (centrifugation: 10min, 4°C, maximum speed), the supernatant was removed under sterile conditions. The DNA pellet was air dried for approximately 15-45min. Depending on the transfection system, the DNA was resuspended in cytomix (BioRad® system) or P3 buffer (Amaxa® system). DNA was stored until transfection at 4°C for up to 2 days or at -20°C until use.

2.11.8 Isolation of genomic DNA (gDNA) from Toxoplasma

To isolate genomic DNA from tachyzoites, the DNeasy Blood & Tissue Kit (Qiagen) was applied according to the manufacturer´s instructions. Prior to Kit application, freshly lysed tachyzoites (0.4-1ml) were pelleted by centrifuging at 6,000rpm for 10min. Genomic DNA was eluted in 100µl of water (Fisher Scientific, DNA grade) after an incubation time of 5-10min.
2.11.9 Sub-cloning of the split-Cas9 plasmids

The N and C-terminus of the Cas9 enzyme (split4 variant) (Figures 2-1 and 2-2) were amplified from the original plasmids provided by Zetsche and colleagues (Zetsche, Volz, and Zhang 2015) via PCR. The PCR amplicons were ligated into the pGEM®-T Easy vector and sequenced. Subsequently, the Cas9 N and C-terminus were cloned into a Toxoplasma expression vector via the restriction enzymes EcoRI and PacI. For the C-term-Cas9 vector, the hx selection marker was removed by restriction with ScaI. Correct positioning of the Cas9 N and C-terminus in the expression vector was confirmed by sequencing.

Figure 2-1: Plasmid encoding the split-Cas9 N-terminus (split4 variant)
The Cas9-N-terminus was expressed under the TUB8 promoter. The restriction site KpnI was used to linearize the plasmid for transfection. The plasmid codes for the hx selection marker.
Figure 2-2: Plasmid encoding the split-Cas9 C-terminus (split4 variant)
The Cas9-C-terminus was expressed under the TUB8 promoter. The restriction site KpnI was used to linearize the plasmid for transfection. Please note that this plasmid does not code for a selection marker.

2.11.10 Sub-cloning of gRNA plasmids

The Q5® Site-Directed Mutagenesis Kit (New England Biolabs) was used to insert gene-specific sgRNAs into the universal sgRNA plasmid (Figure 2-3) according to the manufacturer’s instructions. Importantly, a universal reverse primer was used together with a forward primer to which the whole sgRNA sequenced was attached (Table 2-9). All sgRNA-plasmids were sequenced to confirm proper sgRNA insertion and sequence.

2.11.11 DNA sequencing

Plasmid DNA was sequenced by Eurofins (GATC services, LightRun Tubes). DNA was prepared for sequencing in accordance with the company’s protocol.
Figure 2-3: Plasmid encoding sgRNAs
The sgRNA (gene-specific gRNA and tracrRNA) were expressed under a pU6 promoter. The selection marker is dhfr. The restriction site NotI was used to linearize the plasmid for transfection. This figure shows the gap40sgRNA plasmid as an example. All other gRNA plasmids possess the same sequence with the gene-specific gRNA being the only difference.

2.12 Biochemistry Methods

2.12.1 Indirect Immunofluorescence Analysis (IFA)

For IFA analysis, tachyzoites were grown in HFFs cells on glass coverslips until fixation with 4%PFA for 20min at RT. Samples were then washed with 1xPBS and, subsequently, permeabilised with 0.2% Triton X-100/1xPBS for 20min at RT. A 3%BSA (in 0.2% Triton X-100/1xPBS) solution was used for blocking purposes. Samples were incubated with the blocking solution for at least 20min at RT. Subsequently, primary antibodies (diluted in 3%BSA/0.2%TritonX-100/1xPBS) were applied to the sample for 60min at RT. After washing the samples with 1xPBS, the secondary antibodies were applied for 45-60min at RT. Another washing step with 1xPBS was performed prior to coverslip mounting with Dapi fluoromount G (Southern Biotech). To protect fluorescent proteins from bleaching, all steps were carried out in the dark. Please refer to Table 2-8 for a full list of primary and secondary antibodies.
2.13 Cell Culture

2.13.1 Culturing host cells (HFFs) and *Toxoplasma*

Human foreskin fibroblasts (HFFs) were cultured in DMEMcomplete at 37°C and 5%CO₂. HFFs are a primary cell line and were used until passage 25. *Toxoplasma* tachyzoites were grown on a HFF monolayer at 37°C and 5%CO₂ in DMEMcomplete. After complete lysis of the host cell monolayer, parasites were inoculated onto a fresh monolayer. Please refer to Table 2-13 for the complete list of *Toxoplasma* lines used in this study.

2.13.2 Cryopreservation of *Toxoplasma*

Cryopreservation was performed to enable long term storage of *Toxoplasma* lines. For this purpose, host cells containing large vacuoles of intracellular parasites were taken up in DMEM only and added to 2x freezing mix (pure DMEM, 25% FCS, 10% DMSO) in a ratio of 1:1. These stabilates were frozen at -80°C and, subsequently, stored in liquid nitrogen.

Cryopreserved parasites were thawed at 37°C and immediately inoculated onto a fresh HFF cells. The medium was changed every 48h until healthy parasites were detectable.

2.13.3 Stable and transient transfections of *Toxoplasma*

Stable transfections

In this study, freshly lysed *Toxoplasma* tachyzoites were transfected with the Bio-Rad® or the Amaza® system. For the Bio-Rad® electroporator, parasites were resuspended in 640µl cytomix together with 30µl ATP (100mM), 30µl GSH (100mM) and 100µl of linearized plasmid DNA (30-60µg). This mix was transferred into an electroporation cuvette. After electroporation (1700V, 2 pulses for 0.2s), parasites were inoculated on HFF cells. About 1ml of freshly
lysed parasites from a 6cm dish (total volume 4ml) were used for the Bio-Rad® electroporator.

The Amaxa® system required the resuspension of parasites in 10µl (transfection in strips) or 50µl (transfection in cuvettes) P3 buffer. For strips, parasites were mixed with 10µl of linearized DNA in P3 buffer. For cuvettes, 50µl of linearized DNA in P3 buffer was added to the parasites. Between 20-35µg of DNA was used for Amaxa® transfections. 100µl (strips) or 200µl (cuvettes) of freshly lysed parasites from a 6cm dish (total volume 4ml) were used for Amaxa® transfections.

Selection for stable plasmid integration into the Toxoplasma genome was achieved by culturing transfected population with selection markers. In this study, parasites were selected with 25mg/ml MPA in combination with 40mg/ml XAN when parasites were selected for the hx gene (Donald et al. 1996). When selected for the dhfr resistance marker, parasites were treated with 1µM pyrimethamine (Donald and Roos 1993).

Transient transfections

For transient transfections, circular plasmid DNA was used. Apart from this, the same protocols as described for stable transfections were applied. Transiently transfected parasites were used for IFA analysis (refer to section 2.12.1) 24-72h after transfection.

2.13.4 Generation of the parental split-Cas9 (sCas9) strain

The Cas9 N and C-terminus plasmids (Figures 2-1 and 2-2) were co-transfected into RHΔhx parasites. Parasites were selected with 25mg/ml MPA in combination with 40mg/ml XAN for the hx gene (Donald et al. 1996). Prior to transfection, the plasmids had been linearized with the restriction enzyme KpnI (New England BioLabs). This restriction enzyme was added to the transfection mix prior to electroporation to allow for Restriction Enzyme Mediated Insertion (REMI) (Black et al. 1995). Clonal lines were obtained from this transfection by serial dilution.
Analytic PCR confirmed the presence of the Cas9 N and C-terminus in the parasite genome. Split-Cas9 activity was confirmed by transient transfection of RHsCas9 parasites with the gap40-sgRNA and subsequent induction with rapamycin.

2.13.5 Generation of sCas9-sgRNA strains

RHsCas9 or RHsCas9-CbEmerald parasites were transfected with linearized sgRNA-plasmids. sgRNA plasmids were linearized via the NotI restriction enzyme. NotI was also added to the transfection mix to enable Restriction Enzyme Mediated Insertion (REMI) (Black et al. 1995). Transfected parasites were cultured with 1μM pyrimethamine which selects for the dhfr resistance marker (Donald and Roos 1993). Presence of the sgRNA-plasmid in the parasite genome was verified via integration PCR.

2.13.6 Generation of RHsCas9-CbEmerald strain

The RHsCas9-CbEmerald strain was generated in collaboration with Dr Simon Gras. Initial transfection of the actin-chromobody-emerald plasmid (Figure 2-4) and enrichment of positive parasites via FACS sorting was performed by Dr Simon Gras. Subsequently, I isolated clonal RHsCas9-CbEmerald lines and tested them for split-Cas9 activity. For this purpose, I transfected parasites with the gap40-sgRNA in transient, induced with rapamycin and analysed split-Cas9 activity by quantifying vacuoles depicting a gap40 phenotype.

2.13.7 Serial dilution of transfected Toxoplasma parasites

Serial dilution was performed to isolate clonal parasite lines from the transfection pool after drug selection. For this purpose, parasites were serial diluted on 96 well plates and cultivated for 5-7 days in the presence of the respective selection marker under normal culturing conditions. Eventually, each well of the 96 well plates was examined for plaque formation. A single plaque
indicated a clonal parasite line. Clonal populations were subsequently cultured under normal conditions for further examination and experiments.

Figure 2-4: Plasmid encoding the actin-chromobody-Emerald
The actin-chromobody-emerald was expressed under the DHFR promoter. Please note that this plasmid does not code for a selection marker.

2.13.8 Induction of the split-Cas9 or DiCre system in *Toxoplasma*

Conditional split-Cas9 or DiCre mutants were obtained by adding 50nM rapamycin to the parental lines. Parasites were incubated for 1h (split-Cas9) or 4h (DiCre) at 37°C and 5% CO2 and then cultured as described above (refer to section 2.13.1). Alternatively, parasites were treated with 50nM rapamycin until fixation. To enrich RHsCas9-CbEm-actin1-KO mutants for time-lapse microscopy, these parasites were cultured in DMEMcomplete supplemented with 2.5% dextran sulphate at 24h after induction. This was done to inhibit re-invasion of wild-type parasites.

Successful gene targeting by the respective gRNAs was confirmed by sequencing the predicted DNA cleavage site after rapamycin induction. For this purpose, RHsCas9 parasites were induced for 1h with 50nM rapamycin. After 48h, gDNA
was isolated from induced parasites and the predicted DNA cleavage sites were amplified by PCR. After sub-cloning into the pGEM®-T Easy vector (Promega), the cleavage sites were sequenced. The disruption of Tgmec17 and Tgsag1 genes was confirmed in clonal knock-out populations. The obtained sequences were compared to the predicted wild type sequence (Tgadf, Tgactin1, Tgmec17 and Tgsag1) or to the non-induced strain (Tgformin2).

2.13.9 Egress Assay

Induced (50nM Rapamycin, 1h) and non-induced RHsCas9-CbEm parasites were grown for 48h. Egress was then induced by incubating parasites with 2µM A23187 for 5-8min under normal culturing conditions (refer to section 2.13.1). Subsequently, parasites were fixed with 4%PFA and IFA was performed as described above (refer to section 2.12.1).

2.14 Microscopy

2.14.1 Light microscopy

Fluorescent microscopy was performed on a DV Core microscope (AppliedPrecision, GE) attached to a CoolSNAP HQ2 CCD camera. Images were de-convolved with SoftWoRx Suite 2.0 (Applied Precision, GE). Images were processed with ImageJ (Schneider, Rasband, and Eliceiri 2012; Schindelin et al. 2012).

Super-resolution microscopy was conducted on an ELYRA PS.1 microscope (Zeiss). A Plan Apochromat 63×, 1.4 NA oil immersion lens was used together with a CoolSNAP HQ camera (Photometrics). Structure Illumination was achieved exploited ZEN Black software (Zeiss). Images were processed with ImageJ and Fiji (Schneider, Rasband, and Eliceiri 2012; Schindelin et al. 2012).
2.14.2 Time-lapse video microscopy for *Toxoplasma*

Conditional split-Cas9 strains were grown on fresh HFF cells for 72h as described above. Subsequently, parasites were mechanically lysed and inoculated on glass bottom dishes (MaTek) for another 24h. RH-GFP parasites were inoculated on glass bottom dishes (MaTek) for 24h. Prior to live microscopy, the DMEM complete culturing media was replaced with FluoroBrite DMEM media supplemented with 10% FBS, 2 mM L-glutamine and 25 mg/mL gentamycin. The dish was then transferred to the DV Core microscope (AppliedPrecision, GE) and maintained under standard culturing conditions (37°C, 5% CO₂). Images were taken at a speed of 10 frames per second using a 100x oil objective lens. Please note that the actual movie frame rate differs. Deconvolution was performed using SoftWoRx Suite 2.0 (Applied Precision, GE). Videos were processed with ImageJ and Fiji (Schneider, Rasband, and Eliceiri 2012; Schindelin et al. 2012).

2.15 Bioinformatics

2.15.1 Design of gRNAs for *Toxoplasma*

In this study, sgRNAs design was based on the available literature at the time. It was reported that a so-called seed sequence within the CRISPR/Cas9 target sequence is important for DNA cleavage. This seed sequence is located at the 3′ region of the protospacer, adjacent to the crucial PAM motif (Gorski, Vogel, and Doudna 2017).

Jinek and co-workers provided data indicating that mutations within the seed sequence close to the PAM can interfere with CRISPR/Cas9 mediated cutting (Jinek et al. 2012). Further studies revealed that single-nucleotide mismatches up to 11bp upstream of the PAM sequence prevent CRISPR/Cas9-activity in mammalian cells (Cong et al. 2013). Yet another study supported the concept of a seed sequence by showing that mutations within the 12 nucleotides upstream of the PAM stopped DNA cutting by CRISPR/Cas9 (Jiang et al. 2013). The same study, however, also pointed out that only certain nucleotide exchanges prevent cleavage, depending on their position in the seed sequence. Mutations are more likely to terminate Cas9-mediated DNA cutting when they take place closer to
the PAM (Jiang et al. 2013). Outside the seed sequence, a number of 8 consecutive mismatches at the position 13-20 upstream of the PAM sequence was required to render the Cas9 nuclease ineffective (Jinek et al. 2012).

It was proposed that, after PAM recognition and binding, the Cas9-gRNA complex scans the protospacer seed sequence for its gRNA complementarity (Sternberg et al. 2014; Jiang et al. 2015). Sternberg and colleagues suggested that mismatches within the seed sequence would cause Cas9 to abort further target sequence interrogation (Sternberg et al. 2014). Importantly, the PAM was shown to be critical for target DNA cleavage by the *Streptococcus pyogenes* type II Cas9 system (Jinek et al. 2012). Jinek and co-workers suggested that this is because the PAM is required for CRISPR/Cas9 binding to the target DNA. The PAM sequence is NGG (Jinek et al. 2012).

Based on these findings, it was proposed that the lack of a PAM sequence adjacent to a potential genomic off-target sequence should prevent Cas9-mediated DNA cleavage (Jiang et al. 2013; Sternberg et al. 2014). In the presence of a PAM sequence, Jiang and co-workers suggested that multiple mutations in the seed sequence could protect from nuclease activity (Jiang et al. 2013). In *Toxoplasma*, two mismatches within the seed sequence dramatically decreased the gRNA efficiency (Shen et al. 2014).

As described previously for the CRISPR/Cas9 system in *Toxoplasma*, sgRNAs were designed to have a length of 20 nucleotides (Shen et al. 2014; Sidik et al. 2014, 2016; Sidik, Huet, and Lourido 2018). In addition, a leading “G” was added to the 5’ end when the complementary sgRNA sequence did not naturally start with a “G” (Sidik et al. 2016; Sidik, Huet, and Lourido 2018).

The observed findings described above were taken into account to avoid off-target gene disruption by the sgRNA-Cas9 complex. A newly designed sgRNA was only considered suitable for specific gene targeting if potential off-target sequences (1) lacked a complete PAM and/or (2) had at least one mismatch within the seed sequence defined as the 11bp adjacent to the PAM and/or (3) showed at least 8 mismatches outside the seed sequence.

To ensure the application of these guidelines, a two-step process was applied for the purpose of sgRNA design. First, sgRNAs were designed exploiting the
Eukaryotic Pathogen gRNA Design Tool (EuPaGDT) (Peng and Tarleton 2015). Settings were chosen to reflect the guidelines described above. Only sgRNAs predicted to have no off targets were accepted. Secondly, the accepted sgRNAs were blasted against the *Toxoplasma* genome and the Cb-Emerald sequence (if present in the genome) using NCBI BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to manually check for potential off-targets.

2.15.2 Kymograph analysis

Colour-coded kymographs were generated by applying the ImageJ plugin “KymographClear” as described previously (Mangeol, Prevo, and Peterman 2016). In short, a track was defined on a maximum intensity image that was calculated from an image sequence (movie). A kymograph was then generated, depicting particle movement alongside the chosen track. Fourier filtering of the kymograph enables the distinction between forward-moving (red), backward-moving (green) and static (blue) particles.

Kymograph data was exported to the stand-alone software “KymographDirect” to generate time-averaged local intensity profiles (Mangeol, Prevo, and Peterman 2016). Intensity profiles depict Cb-Emerald or GFP intensity along the measured axis over the entire duration of the movie. Background corrections were performed for all imported kymographs.

2.15.3 Skeletonization analysis

Image sequences (movie) were skeletonized with the ImageJ plugin “Skeleton” (Schindelin et al. 2012). Prior to skeletonization, thresholding was performed on the movie stacks to create binary images. These binary images were then used for skeletonization. Skeletonized images in this study represent collapsed t-stacks.
3 Establishment of a novel conditional CRISPR/Cas9 system for reliable gene disruption in *Toxoplasma*

The overall aim of this thesis is to gain insights into actin factors and dynamics in the apicomplexan parasite *Toxoplasma gondii* by exploiting the recently introduced Chromobody technology for actin visualization (Periz et al. 2017). This endeavour will require the generation of several strains and, eventually, shall initiate a medium throughput screen to identify potentially novel actin binding proteins. Therefore, initial experiments of this study will focus on establishing a reliable and rapid CRISPR/Cas9-based methodology that allows investigation of genes on a screening scale.

Prior to this study, CRISPR/Cas9 systems had been established successfully for genome modification in *Toxoplasma*. Single target gene disruption and site-specific insertions were achieved (Shen et al. 2014; Sidik et al. 2014). CRISPR/Cas9 also enabled genome-wide screening leading to the discovery of novel fitness-conferring apicomplexan genes (Sidik et al. 2016; Sidik, Huet, and Lourido 2018). In addition, a conditional nuclear Cas9 fused to ddFKBP was introduced and applied to identify factors involved in the nuclear export of RNA (Serpeloni et al. 2016).

Despite significantly advancing the understanding of *Toxoplasma* biology, CRISPR/Cas9 systems are also associated with certain challenges. For instance, data suggest that constitutive or prolonged Cas9 expression negatively impacts parasite fitness (Sidik et al. 2016; Serpeloni et al. 2016; Markus et al. 2019). Transient Cas9 expression was suggested to cause aberrant mitochondria morphology (Lacombe et al. 2019). Furthermore, disruption of non-essential genes was reported to sometimes result in parasites displaying aberrant morphology (Serpeloni et al. 2016). Finally, the conditional Cas9-ddFKBP system appears to suffer from background activity leading to undesired disruption of the target gene in the parental strain (Dr Elena Jimenez-Ruiz, unpublished data).

Since actin is highly crucial for the lytic cycle of *Toxoplasma* (Andenmatten et al. 2013; Egarter et al. 2014), a conditional gene disruption system is advantageous for investigating potentially essential actin dynamic factors. Therefore, I aimed at further exploring the potential of conditional CRISPR/Cas9
systems in *Toxoplasma* research. To circumvent reported issues with previous systems, I chose to establish the conditional split-Cas9 system that had recently been described in mammalian cells (Zetsche, Volz, and Zhang 2015) (Figure 3-1). In this rapamycin-inducible system, the Cas9 enzyme is split into two sub-units (N- and C-terminus) which are fused to a FKBP or FRB domain. Split-Cas9 activity was reported to be tightly regulated due to spatial separation of the Cas9 N- and C-terminus which are linked to a nuclear localisation sequence (NLS) or nuclear export signal (NES). In addition, the re-assembled split-Cas9 enzyme possesses decreased nuclease activity compared to the wild-type Cas9 enzyme. This aspect might be beneficial for parasite tolerance towards prolonged Cas9 presence within the cell.

In this chapter, I will present results that illustrate split-Cas9 functionality and shed further light on the advantages and disadvantages of CRISPR/Cas9-based gene analysis in *Toxoplasma*.

![Diagram of the split-Cas9 system](image)
Figure 3-1: Schematic depicting the split-Cas9 system in *Toxoplasma*
Please see page 90 for the schematic. Parasites are expressing the two split-Cas9 sub-units together with a single-guide RNA (sgRNA). The system remains inactive in the absence of rapamycin. Activation of split-Cas9 by reassembly of the sub-units results in gene disruption due to insertion or deletion of nucleotides (INDELs).

3.1 Proof of Principle I: Targeting *Tgap40* with split-Cas9

To verify functionality of split-Cas9 in *Toxoplasma*, I chose to target the essential *Tgap40* gene (Harding et al. 2016). This decision was based on the severe and very distinguishable phenotype that is caused by loss of *Tgap40* gene function (Harding et al. 2016). In addition, *Tgap40* had previously been exploited as a successful proof of principle target for CRISPR/Cas9 systems (Serpeloni et al. 2016).

For this purpose, I decided to adapt the split 4 variant of the split-Cas9 system (Zetsche, Volz, and Zhang 2015). A parasite line coding for the two split-Cas9 sub-units (RHsCas9), a parasite expressing a gap40sgRNA (RH-gap40) and a line that encoded the two split-Cas9 units together with the gap40sgRNA (RHsCas9-gap40) were created (Figure 3-1 and 3-2). The gap40sgRNA plasmid and the split-Cas9 sub-units were randomly integrated into the parasite genome. Integration was confirmed by analytical PCR amplifying specific plasmid DNA sequences present in successfully transfected parasites, but not the parental strains (Figure 3-2).

Upon rapamycin treatment, a gap40 phenotype as described in the literature (Harding et al. 2016) was observed in up to 95% of RHsCas9-gap40 parasites, but not in RH-gap40 or RHsCas9 parasites (Figure 3-3). Induced RHsCas9-gap40 parasites showed a lack of *Tg*AP40 protein in IFA, indicating that the *Tgap40* gene was successfully disrupted by the split-Cas9 system (Figure 3-3 A). No difference in *Tgap40* gene disruption efficiency was detected when RHsCas9-gap40 parasites where treated with rapamycin for 1h or 48h (Figure 3-3 B). About 10% of non-induced RHsCas9-gap40 parasites displayed a partial gap40 phenotype, potentially hinting towards a certain degree of split-Cas9 background activity (Figure 3-3 A and B).
Figure 3-2: Generation of RH-gap40sgRNA (RH-gap40), RHsplit-Cas9-gap40sgRNA (RHsCas9-gap40) and RHsplit-Cas9 (RHsCas9) parasites
Figure 3-2 continued: (A) Plasmid coding for the gap40 single-guide gRNA (sgRNA). This plasmid was universally used for sgRNA expression in this thesis. Arrows indicate PCR amplicon for verification of plasmid integration (see (B)). (B) Analytical PCR confirming integration of sgRNA-plasmid into the parasite genome. (C) Plasmids coding for the N- and C-terminus of the Cas9 enzyme (split 4 variant). Arrows indicate PCR amplicon for verifying plasmid integration (see (D)). (D) Analytical PCR confirming integration of split-Cas9 plasmids into the genome of RH-gap40 parasites. (E) Analytical PCR confirming of integration of split-Cas9 plasmids into the RH parasites. If more than one clonal line was obtained, the one used for further experiments in this study is highlighted.

Interestingly, Cas9-mediated Tggap40 disruption impacts nuclear replication as nuclei appear to be heavily deformed and, potentially, not properly divided (Figure 3-3A). Depletion of Tggap40 was reported to have no effect on nuclear replication (Harding et al. 2016). Although data presented by Harding and colleagues would suggest some impact of Tggap40 loss on the morphology of single nuclei, nuclear division in general seems unaffected. Due to the detrimental effect of Tggap40 loss on the overall parasite fitness and morphology, it is difficult to finally conclude whether these observations represent a secondary effect of Tggap40 loss or a potential artefact caused by split-Cas9 expression or activity.

Since reports have been made about negative effects of Cas9 on Toxoplasma (Sidik et al. 2016; Serpeloni et al. 2016; Lacombe et al. 2019), I decided to further analyse the effect of (split-)Cas9 expression and activity on parasite fitness. I chose to target the genes Tgsag1 (refer to sections 3.2 - 3.4) and Tgmec17 (refer to section 3.5) with the split-Cas9 system. The major tachyzoite surface protein TgSAG1 is considered to be dispensable for parasite survival (Kim and Boothroyd 1995; Lekutis et al. 2001). TgMec17 acts as an α-tubulin acetyltransferase in Toxoplasma and was suggested to be important for nuclear division (Varberg et al. 2016). I hypothesized that these two genes could be exploited to further investigate the impact of Cas9-based systems on nuclear morphology and replication.
Figure 3-3: IFA analysis and quantification of the gap40 phenotype observed in the strains RHsCas9-gap40, RH-gap40 and RHsCas9 upon Rapamycin treatment

(A) IFA depicting the three phenotypes observed in this experiment: the gap40 phenotype with collapsed IMC and loss of GAP40 expression (top panel, asterisk); a partial gap40 phenotype where only parts of the vacuole show a collapsed IMC and loss of GAP40 signal (bottom panel); and wild type parasites with normal IMC and GAP40 localisation (top panel, arrow). Images show RHsCas9-gap40 parasites that were treated with 50nM rapamycin for 48h. Parasites were grown for a total of 48h and fixed with 4%PFA. IFA analysis was performed using α-GAP40 and α-IMC antibodies. Nuclei were stained with DAPI. Scale bars are 5µm. (B) Quantification of gap40 phenotypes in different strains 48h post inoculation (p.i.). Only parasites expressing both, the gap40sgRNA and the split-
Cas9 system, presented a gap40 phenotype after rapamycin treatment. Parasites were treated with rapamycin for 1h or the whole growth period of 48h as indicated. Data represents three independent experiments. For each condition 100 vacuoles were counted (total n=300).

Figure 3-4: Generation of strains RHsCas9-sag1sgRNA1 (RHsCas9-sag1-1), RHsCas9sag1sgRNA3 (RHsCas9-sag1-3), RHsCas9-mec17sgRNA2 (RHsCas9-mec17-2), RHsCas9-mec17sgRNA3 (RHsCas9-mec17-3) and RHsCas9-Δhx-sag1sgRNA1 (RHsCas9-Δhx-sag1-1)

(A) Analytical PCR confirming integration of indicated sgRNA-plasmids into the parasite genome. (B) Analytical PCR confirming integration of the sag1sgRNA1 plasmid into the genome of RHsCas9-Δhx parasites. For (A) and (B), integrated plasmids were amplified from the genome as described in Figure 3-2 A. (C) Genome sequencing performed for the clonal RHsCas9-Δhx-sag1-1-KO mutant. Green letters indicates sgRNA sequence. Red letters represent nucleotide insertion in the mutant strain, causing a frame shift and, thus, the functional knock-out of the Tgsag1 gene. The black arrow indicates the predicted cut side. Please note that data presented in parts (B) and (C) of this figure were generated by Mr Matthew Gow.
3.2 Proof of Principle II: Targeting Tgsag1 with split-Cas9

Since loss of Tgsag1 gene function is not linked to any detrimental effects in Toxoplasma (Kim and Boothroyd 1995; Lekutis et al. 2001), I argued that disruption of Tgsag1 with split-Cas9 should have no measureable effects on the morphology and behaviour of the parasite. To investigate this, split-Cas9 parasites were stably transfected with the sag1sgRNA1 to generate RHsCas9-sag1sgRNA1 (RHsCas9-sag1-1) parasites (Figure 3-4 A). When treated with rapamycin for 1h or 48h, RHsCas9-sag1-1 parasites lost their SAG1 signal in IFA, strongly suggesting Tgsag1 gene disruption (Figure 3-5 A). Strikingly, 54% (±6.1) and 52.3% (±2.1) of parasites showed aberrant nuclei and morphology in addition to TgSAG1 loss after 1h and 48h rapamycin induction time, respectively (Figure 3-5 A and B). This phenotype was only present in rapamycin-treated parasites expressing split-Cas9 together with the sag1sgRNA1. No impact on parasites morphology was observed in non-induced RHsCas9-sag1-1 parasites or RHsCas9 parasites (cultured with or without rapamycin present).

To further understand the occurrence of aberrant parasites, I induced RHsCas9-sag1-1 parasites for 1h with rapamycin and mechanically lysed the parasites after 48h of growth. These parasites were then inoculated again (without rapamycin) and fixed for IFA after 48h, thus representing the 2nd lytic cycle (2nd generation) of parasites after rapamycin induction. The number of parasites with aberrant nucleus and cellular morphology was comparable to the background seen in non-induced RHsCas-sag1-1 parasites (Figure 3-5 B). About 79% (±4.8) of 2nd generation parasites were TgSAG1 negative in IFA and displayed a normal nucleus and cell morphology.

A TgSAG1 negative clonal line (RHsCas9-sag1-1-KO) was created by inducing RHsCas9-sag1-1 parasites and, subsequently, cloning them out by serial dilution. These parasites displayed normal nuclear and cellular morphology while TgSAG1 could not be detected by IFA. In addition, another sgRNA targeting the Tgsag1 gene (sag1sgRNA3) was stably transfected into RHsCas9 parasites (Figure 3-4 A). This was done to exclude sgRNA off-targets as a reason for the detrimental effect on parasites appearance. The obtained clonal lines of RHsCas9-sag1-3 parasites displayed highly similar behaviour upon rapamycin treatment (Table 3-1).
Figure 3-5: IFA analysis and quantification of Tgsag1 disruption with split-Cas9

(A) IFA depicting the three phenotypes observed in this experiment: healthy vacuoles with SAG1 expression on the parasite surface (top and middle panel); healthy vacuoles lacking SAG1 expression (bottom panel, arrow); and parasites lacking SAG1 while displaying aberrant nuclei and cellular morphology (bottom panel, asterisk). Images show the strains RHsCas9 and RHsCas9-sag1-1. RHsCas9-sag1-1 parasites were treated with 50nM Rapamycin for 48h. Parasites were grown for a total of 48h and fixed with 4%PFA. IFA analysis was performed using α-SAG1 and α-MIC8 antibodies. Nuclei were stained with
DAPI. Scale bars are 5µm. (B) Quantification of the phenotypes 48h post inoculation (p.i.) as described in (A). Aberrant nuclei and cellular morphology was observed only when \textit{sag1} was disrupted (KO) by split-Cas9 activation. Abundance of non-healthy parasites was reduced to background levels when induced RHsCas9-\textit{sag1}-1 parasites were mechanically lysed, transferred onto fresh host cells and grown again for 48h in this second lytic cycle (total incubation of 96h). Parasites were treated with rapamycin for 1h or the whole growth period of 48h as indicated. Data represent three independent experiments. For each condition 100 vacuoles were counted (total n=300).

Table 3-1: Phenotypic characterisation of the lines RHsCas9-\textit{sag1}-3 clone1 and 2

Numbers were obtained by analysing IFA results. IFAs were conducted as described in Figure 3-5. The asterisk (*) indicates vacuoles that lack \textit{TgSAG1} signal and display aberrant nuclei and cellular morphology.

<table>
<thead>
<tr>
<th></th>
<th>Rapamycin</th>
<th>SAG1</th>
<th>lack of SAG1</th>
<th>lack of SAG1*</th>
<th># vacuoles</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHsCas9-\textit{sag1}-3 clone 1</td>
<td>50nM (1h)</td>
<td>7</td>
<td>31</td>
<td>62</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>50nM (48h)</td>
<td>4</td>
<td>35</td>
<td>61</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>none</td>
<td>99</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>RHsCas9-\textit{sag1}-3 clone 2</td>
<td>50nM (1h)</td>
<td>7</td>
<td>36</td>
<td>57</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>50nM (48h)</td>
<td>4</td>
<td>45</td>
<td>51</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>none</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Data obtained so far suggest that the observed abnormalities occur within the 1st lytic cycle after split-Cas9 activation. To the author’s knowledge no conditional \textit{Tgsag1} knock-out mutant has been described to this point. Therefore, three hypotheses might explain the phenomenon in question. For one, the affected nuclear and cellular morphology might represent a \textit{sag1}-specific phenotype that only half of the parasites lacking \textit{TgSAG1} are able to overcome. Another explanation could be that the double stranded break caused by split-Cas9 is causing the described effects. Finally, the sgRNA/split-Cas9 complex might cause the aberrant appearance independently of DNA cutting.

3.3 Investigating the effect of split-Cas9 activation on \textit{Toxoplasma} I: \textit{TgSAG1} complementation studies

To finally clarify what causes the aberrant appearance of the nucleus and overall cellular morphology in the 1st lytic cycle after split-Cas9 induction, a \textit{TgSAG1}
negative strain (RHsCas9-sag1-1-KO) was complemented with an additional Tgsag1* gene that was modified to prevent the sag1sgRNA1 from cutting (Figure 3-6 A). In addition, the mutated Tgsag1* gene was also introduced into TgSAG1 positive parasites (RHsCas9-sag1-1-wt) (Figure 3-6 A). Since both lines were generated in the RHsCas9-sag1-1 background, they expressed the split-Cas9 components and sag1sgRNA1.

The strain RHsCas9-sag1-1-sag1KO-sag1* should have no valid target for the sag1sgRNA as the endogenous gene had already been mutated due to previous split-Cas9 activation and the modified sag1 version was altered to prevent sgRNA recognition. RHsCas9-sag1-1-sag1wt-sag1* parasites still coded for the original version of the endogenous gene and, thus, presented one valid sag1sgRNA target.

To generate both strains, the hx gene in RHsCas9 parasites was disrupted to generate RHsCas9-Δhx parasites. These parasites were transfected with sag1sgRNA1 (Figure 3-4 B). Subsequently, the stable RHsCas9-Δhx-sag1-1 line was induced and cloned out to obtain a TgSAG1 negative clonal line (RHsCas9-Δhx-sag1-1-sag1KO). Disruption of the endogenous Tgsag1 gene was confirmed by sequencing (Figure 3-4 C) Re-generation of an hx deficient TgSAG1 negative line was necessary to allow insertion of the modified Tgsag1 gene resulting in the strain RHsCas9-Δhx-sag1-1-sag1KO-sag1*. As described above, this strain should not have any valid sag1sgRNA target. In both gene copies (Tgsag1 and Tgsag1*), the target site is mutated either due to previous Cas9-mediated cutting (endogenous Tgsag1) or due to design (Tgsag1*). The mutated Tgsag1* gene was also introduced into the non-induced RHsCas9-Δhx-sag1-1 strain, thus generating RHsCas9-Δhx-sag1-1-sag1wt-sag1* parasites. This strain encodes two Tgsag1 versions (sag1wt and sag1*) from which only the endogenous Tgsag1 should be cut by the sag1sgRNA1.
Figure 3-6: Effect of split-Cas9 activation in parasites encoding an additional copy of the *sag1* gene
(A) Schematic depiction of the strains sag1KO-sag1* and sag1wt-sag1*. Both strains were generated in the RHsCas9-sag1-1 background and, thus, express split-Cas9 and the sag1sgRNA1. The endogenous Tgsag1 gene in the sag1KO-sag1* line had been disrupted by prior split-Cas9 activation (refer to Figure 3-4 C). The endogenous Tgsag1 gene of sag1wt-sag1* is still intact. Both lines express an additional sag1 copy that has been modified as indicated to be resistant to sag1sgRNA1 recognition. (B) IFA depicting the impact of split-Cas9 activation on sag1KO-sag1* and sag1wt-sag1* parasites. Parasites were induced with 50nM rapamycin for 1h or in the absence of rapamycin. Parasites were grown for a total of 48h and fixed with 4%PFA. IFA analysis was performed using α-SAG1 and α-GAP45 antibodies. Nuclei were stained with DAPI. Scale bars are 5µm. (C) Quantification of vacuoles displaying aberrant nuclei and cellular morphology after split-Cas9 activation at 48h post inoculation. High abundance of vacuoles displaying aberrant nuclei and cellular morphology were observed upon rapamycin treatment only in the sag1wt-sag1* strain. Levels of aberrant parasites did not increase in sag1KO-sag1wt parasites compared to the non-induced population. Data represent three independent experiments. For each condition at least 100 vacuoles were counted (total n≥300). Please note that data shown in this figure were generated by Mr Matthew Gow.

When RHsCas9-Δhx-sag1-1-sag1KO-sag1* parasites were induced with rapamycin, parasites did not display any abnormalities and did not lose TgSAG1 on the surface (Figure 3-6 B and C). This confirms that the mutated copy of Tgsag1 (sag1*) cannot be cut by Cas9 and that TgSAG1 remains on the parasites surface. It also suggests that the sheer assembly of the sgRNA/split-Cas9 complex without having a valid target has no impact on parasites fitness. Split-Cas9 activation in parasites coding for the non-disrupted endogenous Tgsag1 gene and the mutated Tgsag1* gene (RHsCas9-Δhx-sag1-1-sag1wt-sag1*) caused the parasites to display the nuclear phenotype while still showing SAG1 on their surface (Figure 3-6 B and C).

In sum, this data indicate that aberrant nuclei and morphology in parasites do not represent a sag1-specific phenotype. This is because parasites still express TgSAG1 on their surface. Split-Cas9 is able to cut the endogenous copy of Tgsag1, but not the mutated version. If the aberrant phenotype was due to TgSAG1 loss on the surface, no phenotype should have been observed in RHsCas9-Δhx-sag1-1-sag1wt-sag1* parasites. Instead these results strongly indicate that the nuclear phenotype is most likely linked to Cas9-mediated DNA cutting since it only occurs in parasites after a double stranded break has been introduced into their genome by Cas9.
I confirmed this observation with RHsCas9-lacZsgRNA (RHsCas9-lacZ) parasites (Figure 3-7 A). The lacZsgRNA targets an exogenous sequence and, therefore, has no predicted target in the *Toxoplasma* genome. Upon split-Cas9 activation, no aberrant parasites were observed (Figure 3-7 B). The same results had been obtained previously for the ddFKBP-Cas9 system (Serpeloni et al. 2016). This suggests that the aberrant phenotype is caused by Cas9-mediated double-strand breaks (DSBs) in genomic DNA.

Figure 3-7: Effect of split-Cas9 activation in parasites encoding a lacZsgRNA
(A) Analytical PCR confirming integration of lacZsgRNA into the parasite genome. Integrated plasmids were amplified from the genome as described in Figure 3-2 A. (B) Quantification of vacuoles displaying aberrant nuclei and cellular morphology upon treatment with 50nM rapamycin for 48h. Parasites were fixed at 48h post inoculation.
Split-Cas9 activation did not cause aberrant nuclei or morphology in RHsCas9-lacZsgRNA (RHsCas9-lacZ) parasites. Data represents three independent experiments. For each condition at least 100 vacuoles were counted (total n=300). Please note that the RHsCas9-lacZsgRNA strains were generated by Marleen Büchler under the supervision from Dr Elena Jimenez-Ruiz. Experiments shown in this figure represents my own work.

3.4 Investigating the effect of split-Cas9 activation on *Toxoplasma* II: Disruption of *Tg*sg1 in RH vs RHΔku80 parasites

Since introduction of DNA DSBs appear to be required for the aberrant nuclei and morphology to emerge, I argued that the observed phenotype might be the consequence of un repaired DNA damage. To test this hypothesis, RHΔku80 parasites were transiently transfected with a plasmid coding for Cas9-YFP and the sag1sgRNA2. The RHΔku80 strain lacks the ku80 gene which has been reported to be important in non-homologous end joining (NHEJ), a process that allows eukaryotes to repair DSBs their genomes (Critchlow and Jackson 1998). I hypothesized that RHΔku80 parasites should not be able to repair the Cas9-mediated double strand break and display the aberrant phenotype as response to Cas9 activity. Indeed, 99.15% (±1.5) of transfected RHΔku80 parasites displayed the aberrant nuclei and morphology (Figure 3-8).

In comparison, 53.8% (±14%) of RH parasites appeared aberrant when transiently transfected with the Cas9-YFP-sag1sgRNA2 plasmid. 40.5% (±11.1) of RH parasites were *Tg*SAG1 negative and did not show any morphological defect (Figure 3-8). Thus, the RH strain showed very similar behaviour to the RHsCas9-sag1-1 strain upon split-Cas9 activation. This strongly indicates that the described aberrant effects are not split-Cas9 specific, but a general CRISPR/Cas9 phenomenon.

The fact that the lack of the *ku80* gene makes *Toxoplasma* more susceptible to displaying the aberrant phenotype indicates that proper DNA repair is vital for recovery from the effects of Cas9 activity. Hence, aberrant nuclei and morphology are most likely the result of parasites failing to repair the Cas9-mediated DNA damage.
RH and RHΔku80 parasites were transiently transfected with a Cas9-YFP-sag1sgRNA2 plasmid. Parasites were fixed 48h after transfection with 4%PFA and IFA analysis was performed to allow for subsequent quantification. Only parasites that had been transfected successfully were counted. Transfected parasites were identified by YFP signal (Cas9-YFP) in the nucleus or loss of SAG1. Data represents three independent experiments. Transfection efficiencies were 21.5% (±4.8) for RHΔku80 and 13.2% (±3.6) for RH parasites. Total n=129 (RHΔku80), total n=79 (RH). Please note that data shown in this figure were generated by Dr Elena Jimenez-Ruiz.

3.5 A case study: Disruption of TgMec17-mediated tubulin acetylation via the split-Cas9 and DiCre systems

In 2010, two research groups independently reported α-tubulin acetyltransferase 1 (Mec17, also named αTAT1) to specifically mediate α-tubulin acetylation at lysine (K) 40 in a variety of eukaryotic organisms (Akella et al. 2010; Shida et al. 2010). Recently, this enzyme was also described to be responsible for acetylation of lysine 40 of α-tubulin in Toxoplasma (Varberg et al., 2016). Varberg and co-workers further reported that acetylation of α-tubulin at the lysine 40 residue is essential for asexual replication in culture. Cas9-mediated disruption of Tg mec17 led to the lack of acetylation and to deformed and fragmented nuclei within the first generation of parasites after transient Cas9-mediated DNA cutting.
The phenotype described by Varberg and colleagues highly resembled the aberrant nuclei caused by Cas9-activity as described above. To clarify whether the nuclear replication phenotype was specific to Tgmec17 loss of function or caused by Cas9 activity, I decided to target the Tgmec17 gene with two independent conditional systems, namely the split-Cas9 system and the DiCre system (Andenmatten et al. 2013). For this purpose, the RHsCas9-mec17sgRNA2 (RHsCas9-mec17-2) line was generated (Figure 3-4 A). In addition, an RHΔku80-DiCre-Pfmc17loxP strain, that I had created prior to my thesis studies (Stortz 2014, Master thesis, Ruprecht-Karls-University of Heidelberg), was used for experiments. In this strain the endogenous Tgmec17 gene was replaced by the P. falciparum (Pf) mec17 orthologue flanked with loxP sites as described previously by Andenmatten et al. (Andenmatten et al. 2013). This was done because amplification of the full Tgmec17 cDNA was not possible.

After split-Cas9 activation with 50nM rapamycin for 48h, 40.3% (±12.7) of vacuoles showed a lack of acetylated α-tubulin at the lysine 40 residue without displaying any abnormalities (Figure 3-9). In some parasites (16% [±5.2]), the absence of α-tubulin acetylation was accompanied with aberrant nuclei and cell morphology. Highly similar results were obtained when parasites were induced for only 1h or when Tgmec17 was targeted with a different sgRNA (RHsCas9-mec17-3) (Table 3-2; Figure 3-4 A).

In addition, I induced RHsCas9-mec17-2 parasites and cloned them out by serial dilution to obtain five independent clonal lines. All lines lacked α-tubulin acetylation. In only two lines 1% of vacuoles showed morphological defects, while no abnormalities could be observed in the other lines (Figure 3-10 C). Exemplarily, the sgRNA region was sequenced for one of the clonal lines revealing a frame shift in the Tgmec17 gene (Figure 3-10 B).
Figure 3-9: Effect of Tgmec17 gene function loss in DiCre and split-Cas9 parasites
(A) IFA depicts α-tubulin acetylation at lysine (K) 40 (K40tubac) in RHsCas9-mec17-2 (wt) and RHsCas9-mec17-2-KO (KO) parasites. Acetylation of α-tubulin K40 was lost upon mec17 gene disruption. In some vacuoles, loss of acetylation was associated with aberrant nuclei and morphology (bottom panel). Other vacuoles appeared healthy (middle panel).
(panel). Parasites were incubated in the presence or absence of 50nM rapamycin for 48h. Parasites were then fixed with 4%PFA and stained with α-K40tubac and α-GAP45 by IFA. Nuclei were stained with DAPI. Scale bars are 5µm. (B) Quantification of parasites presenting aberrant nuclei and morphology after mec17 gene disruption in the RHsCas9-mec17-2 (RHsCas9-mec17) line and mec17 gene excision in RHΔku80-DiCre-Pfme17loxP (mec17loxP) parasites. While parasites lost α-tubulin acetylation after loss of mec17 gene function in both conditional systems, only split-Cas9 parasites showed aberrant nuclei and morphology. Parasites were grown with or without 50nM rapamycin as indicated. Cells were fixed 48h post inoculation (p.i.). Data represent three independent experiments. For each condition 100 vacuoles were counted (total n=300).

Table 3-2: Phenotypic characterisation of the lines RHsCas9-mec17-2 and RHsCas9-mec17-3
Numbers were obtained by analysing IFA results. IFAs were conducted as described in Figure 3-9. The asterisk (*) indicates vacuoles that lack α-tubulin acetylation at lysine 40 (K40ac) and display aberrant nuclei and cellular morphology.

<table>
<thead>
<tr>
<th></th>
<th>Rapamycin</th>
<th>K40ac</th>
<th>lack of K40ac</th>
<th>lack of K40ac*</th>
<th># vacuoles</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHsCas9-mec17-2</td>
<td>50nM (1h)</td>
<td>38</td>
<td>45</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHsCas9-mec17-3</td>
<td>50nM (1h)</td>
<td>43</td>
<td>27</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50nM (48h)</td>
<td>42</td>
<td>29</td>
<td>29</td>
<td>100</td>
</tr>
<tr>
<td>none</td>
<td></td>
<td>98</td>
<td>2</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

With the DiCre system, excision of Pfme17 led to the loss of K40 acetylated α-tubulin in 98.2% (±0.29) of parasite vacuoles after 48h (Figure 3-9 B and Figure 3-10 A). Aberrant nuclei together with loss of acetylation were observed in 0.33% (±0.29). In the non-induced population, 3.33% of vacuoles (±1.6) lacked α-tubulin acetylation. Loss of acetylation and aberrant nuclei were observed in 0.33% (±0.58%). This shows that the level of aberrant nuclei was not elevated when α-tubulin acetylation was increasingly lacking in the parasite population (induced vs non-induced population). I therefore propose that aberrant nuclei do not represent a result of Pfme17 excision and the subsequent loss of acetylation.

All in all, Tgmec17 and Pfme17 appear to be responsible for microtubule acetylation at the lysine 40 residue of α-tubulin, as previously reported (Varberg et al. 2016). A nuclear replication phenotype, however, was only observed in some parasites when α-tubulin acetylation was disrupted with the split-Cas9 system. The discrepancy between the split-Cas9 and DiCre system regarding
nuclear integrity is most likely rooted in their different mode of actions. CRISPR/Cas9 induces a DSB in the genome and leaves the organisms DNA repair machinery to repair the damage (Doudna and Charpentier 2014). The Cre system recombines the organisms genomic DNA in the process of excising the target sequence, thus preserving genome integrity (Nagy 2000). Based on data presented in this chapter, I am proposing that the described replication defect is not caused by loss of microtubule acetylation, but rather represents the effect of Cas9-mediated DNA damage in the 1st lytic cycle of Toxoplasma parasites.

Figure 3-10: Mec17 gene excision with the DiCre system and analysis of clonal RHsCas9-mec17-KO lines
(A) IFA depicting α-tubulin acetylation at lysine 40 (K40tubac) in RH-DiCre-Pf mec17loxP (wt) and RH-DiCre-mec17-KO (KO) parasites. To achieve mec17 gene excision, parasites were incubated with 50nM rapamycin for 4h. Successful gene excision resulted in GFP expression
(lower panel). Loss of mec17 gene function resulted in parasites lacking α-tubulin acetylation. Parasites were grown for 48h and fixed with 4%PFA. Parasites were stained with α-K40tubac by IFA. Nuclei were stained with DAPI. Scale bars are 5µm. (B) Genome sequencing performed for the RHsCas9-mec17-2-KO line (clone 1). Green letters indicates sgRNA sequence. Red letters represent nucleotide insertion in the mutant strain, causing a frame shift and, thus, the functional knock-out of the mec17 gene. The black arrow indicates the predicted cut side. (C) Quantification of parasite vacuoles presenting aberrant nuclei and morphology in clonal RHsCas9-mec17-2-KO populations. Parasites were grown for 48h and fixed with 4%PFA. IFA analysis was performed to allow for quantification. For each clone, one experiment was conducted (n=100).

3.6 Summary and conclusions

In this chapter, the split-Cas9 system (Zetsche, Volz, and Zhang 2015) was introduced to the apicomplexan parasite *Toxoplasma*. The genes *Tggap40* (Harding et al. 2016), *Tgsag1* (Kim and Boothroyd 1995; Lekutis et al. 2001) and *Tgmec17* (Varberg et al. 2016) were targeted and previously described phenotypes were successfully reproduced. Interestingly, my data most strongly suggest that Cas9-mediated DSBs in the genome cause *Toxoplasma* to display a DNA damage phenotype. This phenotype features aberrant and fragmented nuclei as well as abnormal cell shape. Most likely, this phenotype occurs in parasites that fail to repair the DSB introduced by Cas9 activity. It became apparent that DNA damage only occurs when split-Cas9 was activated in the presence of a sgRNA targeting the parasite genome (Table 3-3).

Table 3-3: Prerequisites for DNA damage to occur in *Toxoplasma* upon split-Cas9 activation

Toxoplasma displays DNA damage at 48h post inoculation only when split-Cas9 is activated by Rapamycin in the presence of a sgRNA with an actual target sequence and the parasite genome.

<table>
<thead>
<tr>
<th>split-Cas9 (valid target)</th>
<th>sgRNA (no target)</th>
<th>rapamycin</th>
<th>DNA damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
A detrimental effect of Cas9 activity on *Toxoplasma* fitness had been suggested previously. Transient transfection of a Cas9-sag1sgRNA plasmid impacted parasite fitness as measured by plaque assay immediately after transfection (Sidik et al. 2014). The effect was observed in RH parasites and, to a greater extent, in RHΔku80 parasites. Sidik and co-workers hypothesised that DNA damage caused by Cas9 could be responsible for this decrease in fitness, especially in the RHΔku80 strain. Data presented in this chapter stands in strong agreement with this hypothesis. Unsurprisingly, the repair of DSB in the parasite genome appears to present the bottleneck for parasite recovery after CRISPR-Cas9 activity.

It was also shown that stabilisation of conditional ddFKBP-Cas9 for longer than 4h led to aberrant parasite morphology (Serpeloni et al. 2016). Constitutive expression of Cas9 in *Toxoplasma* could not be achieved, unless the enzyme was expressed together with a decoy sgRNA (Sidik et al. 2016). A fitness advantage was later reported for parasites expressing Cas9 together with a sgRNA versus parasites expressing only Cas9 (Markus et al. 2019). Cas9 toxicity was proposed to be caused by endogenous RNA mediating Cas9 activity (Sidik et al. 2016) and/or by secondary non-targeted Cas9 nuclease activity in the absence of any sgRNA (Markus et al. 2019). Markus and co-workers hypothesized that the co-expression of a sgRNA might sequester Cas9 enzymes, thus preventing undesired nuclease activity (Markus et al. 2019).

As hypothesized at the beginning of this chapter, this problem was not observed with the split-Cas9 system. Activation of the system over a period of 48h without sgRNA did not have any noticeable effects on parasite morphology. The activated split-Cas9 system is less efficient than the wild-type Cas9 enzyme at inducing nucleotide insertions or deletions at the specific target site (Zetsche, Volz, and Zhang 2015). This reduced efficiency of the split-Cas9 system might explain the apparent lack of toxicity when activated without genome targeting sgRNA. I concluded from this, that expression of a decoy sgRNA, as proposed previously for constitutive Cas9 expression (Sidik et al. 2016; Markus et al. 2019), is not necessary for the split-Cas9 system.
In the ddFKBP-Cas9 system, stable transfection of a sag1sgRNA caused accumulation of sag1-KO mutants in the parasite population without ddFKBP-Cas9 activation (Dr Elena Jimenez-Ruiz, unpublished data). This level of background activity is not present in the split-Cas9 system, suggesting tighter regulation by Cas9 sub-unit separation.

All in all, the split-Cas9 system is capable of reliably disrupting genes in *Toxoplasma*. The DNA damage caused by Cas9 activity is only apparent in the 1\(^{\text{st}}\) lytic cycle. I therefore argue that phenotypic analysis of split-Cas9 mutants is possible in the 2\(^{\text{nd}}\) lytic cycle. In addition, the obvious nature of the DNA damage allows for exclusion of this phenotype during analysis. It is of most importance to note, however, that the split-Cas9 system is not suitable for investigating nucleus replication or cell replication. Also, any experimental set up with the split-Cas9 system should include a control that allows for the estimation of how DNA damage affects the process that is being researched.

Published research strongly indicates that *Tgactin1*, although critical for completion of the lytic life cycle, is not essential for intracellular growth and replication (Andenmatten et al. 2013; Egarter et al. 2014; Periz et al. 2017; Whitelaw et al. 2017). Lack of *Tgactin1* affects vacuole organisation (Periz et al. 2017). However, effects on overall nuclear integrity or parasite morphology, as described here for the DNA damage, have not been reported. The same is true for the actin depolymerisation factor (*TgADF*) (Mehta and Sibley 2011; Haase et al. 2015; Periz et al. 2017). Therefore, the split-Cas9 system should be applicable for investigating actin-related phenotypes or for screening approaches aiming at identifying novel actin binding proteins. I argue that the clear nature of the DNA damage phenotype should allow for its exclusion from phenotypic analysis. Noteworthy, Lacombe and co-workers recently suggested a negative impact of transient Cas9 expression on mitochondria morphology (Lacombe et al. 2019). This finding indicates that Cas9 expression might affect additional cellular processes, a phenomenon that requires further investigation in the future. In sum, subsequent confirmation of the gene-specific phenotype with other conditional systems such as the DiCre system (Andenmatten et al. 2013) is recommended when applying (split-)Cas9-based strategies.
4 Combining the split-Cas9 and actin-chromobody technology to investigate actin distribution and dynamics in *Toxoplasma*

In the previous chapter, the split-Cas9 technology was established as molecular tool for targeted gene disruption in *Toxoplasma*. To investigate and visualize the impact of actin binding proteins on actin dynamics, combination of this conditional CRISPR/Cas9 system with the actin-chromobody technology presented the next step of this study.

Chromobodies are nanobodies which are derived from single-heavy chain antibodies found in Camels (Hamers-Casterman et al. 1993). These nanobodies can be fused to fluorescent proteins (Melak, Plessner, and Grosse 2017) and have been used to visualize actin filaments in a variety of organisms ranging from animal cells (Panza et al. 2015; Plessner et al. 2015) to plants (Rocchetti, Hawes, and Kriechbaumer 2014).

Expression of anti-actin-chromobodies in *Toxoplasma* revealed an extensive actin network consisting of (probably short) F-actin bundles in intracellular parasites (Periz et al. 2017). This network connects parasites within the parasitophorous vacuole (PV) via intravacuolar filaments. Parasites also possess a highly dynamic actin accumulation centre anterior to the nucleus (also referred to as cytosolic actin centre [cAC]). Periz and co-workers demonstrated that these structures depend on actin and the actin treadmilling machinery. Loss of *TgActin* caused intravacuolar, filamentous structures to disappear while depletion of *TgADF* abolished actin dynamics in the cytoplasm. Furthermore, absence of *TgADF* resulted in strong actin accumulation at the basal and (to a lesser extent) at the apical pole.

In the past, actin visualisation in *Toxoplasma* presented a challenge. Detection of actin with classical antibody staining was controversially discussed with regards to antibody specificity and background staining (Drewry & Sibley, 2015; Whitelaw et al., 2017). Other fluorogenic actin probes such as Lifeact (Riedl et al. 2008) could not be expressed in the parasite and, thus, were not useful in order to detect filamentous actin (F-actin) in *Toxoplasma* (Tardieux 2017; Periz et al. 2017).
The novel ability to visualize F-actin in fixed or live *Toxoplasma* cells presented an exciting opportunity to re-evaluate actin dynamics and to precisely dissect the function of known actin factors within this complex cytoskeletal network. In this chapter, I will demonstrate that different aspects of actin biology can be explored by combining split-Cas9 and the actin-chromobody technology in *Toxoplasma*.

4.1 Disruption of *Tgactin1* and *Tgadf* with the split-Cas9 system

To combine the split-Cas9 system with the chromobody technology, the actin-chromobody fused to the fluorescent protein EmeraldFP (Cb-Emerald) (Periz et al. 2017) was randomly integrated into the genome of RHsCas9-Δhx parasites. RHsCas9-CbEmerald parasites were enriched in the transfected population by flow cytometry. Subsequent serial dilution resulted in a clonal RHsCas9-Δhx-CbEmerald (referred to as RHsCas9-CbEmerald) line. This line displayed the actin network features previously described (Periz et al. 2017): long intravacuolar F-actin network and actin accumulation anterior to the nucleus (Figure 4.1 A and C, wt panels).

Next, I confirmed that the split-Cas9 system can be applied to investigate actin dynamics in *Toxoplasma*. For this purpose, an actin1sgRNA and adfsgRNA were transfected into the RHsCas9-CbEmerald to create the two lines RHsCas9-CbEmerald-actin1sgRNA and RHsCas9-CbEmerald-adfsgRNA (Figure 4-3 A). Upon disruption of *Tgactin1*, parasites lost their actin structures as previously described (Periz et al. 2017) (Figure 4-1 A and Figure 4-3 B). In the absence of intravacuolar filaments and the cytosolic actin accumulation centre, parasites showed ubiquitous Cb-Emerald distribution in the cytoplasm. This most likely represents diffusion of unbound Cb-Emerald throughout parasite lacking actin structures. Disruption of *Tgactin1* also resulted in apicoplast loss as previously described (Andenmatten et al. 2013; Egarter et al. 2014; Whitelaw et al. 2017). Of relevance, in non-induced parasites, apicoplasts localised to the actin accumulation centre in the cytosol (Figure 4-1 A, wt panels).
Figure 4-1: Disruption of *Tgactin1* and *Tgadf* in RHsplit-Cas9 parasites expressing actin-chromobody-Emerald (Cb-Em or Cb)
Figure 4-1 continued: (A) and (B) IFA depicting the effect of *Tgactin1* (RHsCas9-Cb-actin1) or *Tgadf* (RHsCas9-Cb-adf) disruption on the actin network (Cb-Emerald) and apicoplast segregation (HSP60). To achieve gene disruption (KO), parasites were incubated with 50nM rapamycin for 1h. Parasites were fixed after 48h. Apicoplasts were stained with α-HSP60 by IFA. Nuclei were stained with DAPI. Scale bars are 5µm. (C) Images depicting collapsed t-stacks obtained from live microscopy for RHsCas9-Cb-adf parasites. Parasites were grown in the presence of absence of 50nM rapamycin for 1h, followed by growth for another 72h. Parasites were then mechanically lysed and inoculated for 24h prior to live microscopy. Scale bars are 5µm. See also Supplement Movie V1.

Figure 4-2: Disruption of Tgsag1 in RHsplit-Cas9 parasites expressing actin-chromobody-Emerald (RHsCas9-Cb-sag1-3)

IFA depicts the effect of *Tgsag1* disruption on the actin network (Cb-Emerald). To achieve gene disruption (KO), parasites were incubated with 50nM rapamycin for 1h. Parasites were fixed after 48h and stained with α-SAG1 by IFA. Nuclei were stained with DAPI. Scale bars are 5µm.
In smaller vacuoles (Figure 4-1 C) (Supplement Movie V1), disruption of \textit{Tgadf} reproduced the published phenotype of actin accumulation at the basal and (to a lesser extent) at the apical pole together with loss of actin structures in the cytosol (Periz et al. 2017). Interestingly, the split-Cas9 system identified the accumulation of thick intravacuolar filaments as a characteristic feature of \textit{Tgadf} disruption in larger vacuoles (Figure 4-1 A and B). Actin was almost exclusively observed in these filamentous structures which can span the entirety of the vacuole (Figure 4-1 B). As reported previously, parasites displayed an apicoplast replication defect upon loss of \textit{TgADF} (Jacot, Daher, and Soldati-Favre 2013; Haase et al. 2015). Disruption of the \textit{Tgadf} and \textit{Tgactin1} genes upon split-Cas9 activation was confirmed by sequencing (Figure 4-3 C).

Finally, I wanted to exclude that Cas9-mediated gene disruption has a universal impact on the actin network by targeting the dispensable gene \textit{Tgsag1} (Kim and Boothroyd 1995; Lekutis et al. 2001). For this purpose, the RHsCas9-CbEmerald-sag1-3 strain was generated (Figure 4-3 A). Activation of split-Cas9 resulted in \textit{TgSAG1} loss on the parasite surface (Figure 4-2) strongly indicating \textit{Tgsag1} gene disruption. Loss of \textit{TgSAG1} did not affect overall actin distribution as parasites still displayed intravacuolar actin filaments and cytosolic actin accumulation.

In summary, the disruption of the genes \textit{Tgactin1}, \textit{Tgadf} and \textit{Tgsag1} showed that the split-Cas9 system can be applied to depict different actin network phenotypes. Previously reported phenotypes with the DiCre (Andenmatten et al. 2013) and TATi-1 (Meissner, Schlüter, and Soldati 2002) systems were successfully confirmed.
Figure 4-3: Confirmation of the strains RHsCas9-ActinChromobodyEmerald-sag1sgRNA3 (RHsCas9-Cb-sag1-3), RHsCas9-ActinChromobodyEmerald-actin1sgRNA (RHsCas9-Cb-actin1) and RHsCas9-ActinChromobodyEmerald-adfsgRNA (RHsCas9-Cb-adf)

(A) Analytical PCR confirming integration of indicated sgRNA-plasmids into the parasite genome. Integrated plasmids were amplified from the genome as described in Figure 3-2 A. If more than one clonal line was obtained, the one used for further experiments in this study is highlighted. (B) and (C) Sequencing performed on the sgRNA cut side of RHsCas9-Cb-actin1-KO and RHsCas9-Cb-adf-KO parasites. For this purpose, cultures were induced with 50nM rapamycin for 1h. Parasites were grown for 48h prior to gDNA collection. The sgRNA cut site was amplified by PCR. Amplicons (I-IV) were cloned into the pGEM vector and sequenced. Green letters indicate sgRNA sequence. Red letters
represent nucleotide insertion in the mutant strain, causing a frame shift and, thus, the functional disruption of the indicated gene. Black arrows indicate the predicted cut side.

4.2 Investigating the impact of *Tgadf* disruption on actin filament dynamics

Upon loss of *Tgadf* gene function, actin appears to accumulate mostly in thick intravacuolar filamentous structures. I hypothesised that this phenomenon could be explained by the previously suggested involvement of *TgADF* in actin filament turnover (Mehta and Sibley 2010, 2011). Loss of *TgADF* might prevent the depolymerisation of actin filaments and, thus, the re-introduction of actin monomers into the available actin pool in *Toxoplasma*. As consequence, the enrichment of filamentous actin structures depletes free monomeric actin from the overall actin pool that is required for maintaining sites of highly dynamic actin, i.e. the cytosol.

To test this idea, I was eager to address the impact of *TgADF* loss on the overall dynamics of filamentous actin structures in the parasites. One process that was associated with highly dynamic disassembly of F-actin structures was parasites egress (Periz et al. 2017). Upon the induction of egress with a calcium-ionophore, but prior to parasite movement, the large intravacuolar actin filaments were disassembled in a rapid fashion. I argued that, if *TgADF* is indeed responsible for actin turnover, actin filament disassembly should be diminished in sCas9-adf-KO parasites.

4.2.1 Analysis of egress behaviour in conditional sCas9 mutants

Before analysing the role of *TgADF* in F-actin disassembly upon egress, it was critical to determine whether the split-Cas9 system is suitable for analysis of this process. For this purpose, it had to be excluded that Cas9-mediated DNA damage, which can lead to aberrant nuclei and overall cell morphology (see chapter 3), diminishes the parasites ability to egress. The egress of sCas9-sag1-3-KO, sCas9-actin1-KO and sCas9-adf-KO parasites were measured and normalized to the respective non-induced wild-type lines (*Figure 4-4 A and B*). In addition,
abundance of DNA damage and the rate of gene disruption after split-Cas9 activation were measured for all strains (Figure 4-4 C).

Figure 4-4: Parasite egress after split-Cas9 mediated gene disruption (A) and (B) Induced (50nM rapamycin, 1h or 48h) and non-induced RHsCas9-CbEm parasites were grown for 48h. Egress was then induced by incubating parasites with 2μM A23187 for 5-8min. Egress percentage of the sCas9-KO parasites in (A) was normalized to the egress percentage of the respective sCas9-wt parasites depicted in (B). Egress percentage was obtained from three independent egress assays. Experiments were stopped for wt and KO populations at the same time, when the wt populations showed egress of about 80%. Time for egress in the individual wt vs KO experiments was as follows: sag1 – 8min, 8min, 8min; formin2 – 5min, 7min, 7min; adf – 8min, 8min, 5min; actin1 – 8min, 5min, 7min. For each condition 100 vacuoles were counted (total n=300).

(C) The table gives information about the overall induction rate and DNA damage in the respective parasite populations at 48h after rapamycin induction (50nM, 1h). Numbers were obtained from three independent experiments for each strain and condition. For each condition 100 vacuoles were counted (total n=300). For the formin2, adf and actin1 sCas9 strains, one biological repeat was performed with a rapamycin incubation time of 48h. For analysis of the RHsCas9-CbEm-formin2 strain, please refer to chapter 5.

Disruption of the non-essential Tgsag1 gene (Kim and Boothroyd 1995; Lekutis et al. 2001) caused DNA damage in 55.67% (±3.79) of parasites. In comparison with the wt parental line, however, egress was reduced by only 5% (±1.1) in sCas9-sag1-3KO parasites. IFA analysis confirmed that parasites were able to egress
despite displaying a DNA damage phenotype (Figure 4-5). In agreement with studies that reported Tgactin1 as critical for parasite egress (Egarter et al. 2014; Whitelaw et al. 2017), the sCas9-actin1-KO population showed an egress reduction of 80.8% (±5.4) at 48h post split-Cas9 activation. Disruption of Tgadf caused a reduction of egress by 47.5% (±6.1). This result can be seen as support for the previously reported egress phenotype for TgADF depletion (Mehta and Sibley 2011). Mehta and Sibley showed that TgADFcKO parasites were slower to egress due to impaired motility. In their experiments, not all TgADFcKO parasites managed to egress at the 5-8min mark post egress induction, the cut-off time I chose in my egress experiments. Together these data suggest that the split-Cas9 system is capable of reliably describing a wide range of egress phenotypes in parasites mutants.

Figure 4-5: Depiction of egressed and intracellular RHsCas9-CbEm-sag1-3-wt and RHsCas9-CbEm-sag1-3-KO parasites after A23187 treatment
For this experiment, induced (50nM rapamycin, 1h) and non-induced RHsCas9-CbEm-sag1 parasites were grown for 48h. Egress was then induced by incubating parasites with 2µM A23187 for 8min. After fixation with 4%PFA, parasites were stained for TgSAG1 by IFA. (A) Depiction of sag1-wt and sag1-KO parasites that remained intracellular after A23187 treatment. For sag1-KO parasites, the top panel shows a healthy vacuole while the bottom panel represents DNA damage (aberrant morphology). (B) Depiction of egressed sag1-wt and sag1-KO parasites. For sag1-KO parasites, healthy parasites are
depicted in the top panel. The bottom panel shows egressed sag1-KO parasites representing DNA damage (asterisks). Scale bars are 5µm.

4.2.2 Impact of \textit{Tgadf} disruption on filament disassembly upon egress

Next, the impact of \textit{Tgadf} disruption on disassembly of the large intravacuolar filaments upon parasite egress was investigated. To this end, the abundance of large filamentous actin structures before and after egress in wild-type and mutant parasites were compared to each other. Fixed assays revealed that in a growing wild-type population, 73.3% (RHsCas9-CbEm-sag1-3) and 83.3% (RHsCas9-CbEm-adf) show intravacuolar filaments (Figure 4-6 and Figure 4-7). After treatment with calcium-ionophore (2µM A23187), these filamentous actin structures usually could not be detected anymore in the proximity of freshly egressed parasites or within still intracellular vacuoles (Figure 4-6- and 4-7). This was true for the majority of sCas9-sag1-wt, sCas9-sag1-KO and sCas9-adf-wt parasites (Figure 4-6). In sCas9-sag1-wt parasites only 4.6% (egressed) and 22% (intracellular) of parasites displayed intravacuolar filaments after calcium-ionophore treatment. In the sCas9-sag1-ko population these numbers were 1.8% (egressed) and 8% (intracellular). For sCas9-adf-wt, 21% (egressed) and 40% (intracellular) of parasites showed large intravacuolar filaments or their remainders. In total, sCas9-sag1-wt and sCas9-sag1-KO parasites show a strong reduction of intravacuolar filaments from 73.3% down to 4.6% (wt) and 1.8% (KO) upon egress. In sCas9-adf-wt parasites they dropped from 83.3% to 21.3%. In striking contrast, the large majority of sCas9-adf-KO parasites still displayed large actin filaments throughout the vacuole and in close proximity to freshly egressed parasites (Figure 4-6 and 4-7). 79.3% of egressed parasites still showed large intravacuolar filaments. For intracellular parasites it was 94.4%.
Figure 4-6: Effect of A23187 treatment on intravacuolar filamentous actin structures in RHsCas9-CbEm-sag1-3-k0 and RHsCas9-adf-k0 parasites compared to wt parasites

This figure depicts the abundance of large intravacuolar filamentous actin structures in sag1-wt/KO (A) and adf-wt/KO (B) parasites after A23187 treatment for 5-8min or no treatment. See Figure 4-4 for overall egress rates and Figure 4-7 for representative
images. Analysis is based on three independent experiments. For RHsCas9-CbEm-sag1-3: no A23187/no Rapa: n=300; 2µM A23187/no Rapa: n=241 (egress), n=59 (intracellular); 2µM A23187/50nM Rapa: n=225 (egress), n=75 (intracellular). For RHsCas9-CbEm-adf: no A23187/no Rapa: n=300; 2µM A23187/no Rapa: n=230 (egress), n=70 (intracellular); 2µM A23187/50nM Rapa: n=121 (egress), n=179 (intracellular).

In summary, RHsCas9-sag1-wt/KO and RHsCas9-adf-wt parasites showed loss of actin filaments upon egress induction, while RHsCas9-adf-KO parasites show no reduction in these structures compared to the non-treated intracellular wild-type population. It would therefore appear that regulation of TgADF is critical for F-actin disassembly during parasite egress. Furthermore, disassembly of actin network seems to be associated with parasite egress, but not essential for this process to happen. In the past, actin sedimentation assays revealed that actin is more stable in parasites depleted of TgADF (Mehta and Sibley 2011). The here described phenotype in the RHsCas9-CbEm-adf-KO line visualized this previous finding within the parasite.
Figure 4-7: Depiction of egressed and intracellular RHsCas9-CbEm-ADF-wt and RHsCas9-CbEm-ADF-KO parasites after A23187 treatment

For this experiment, induced (50nM rapamycin, 1h) and non-induced RHsCas9-CbEm-ADF parasites were grown for 48h. Egress was then induced by incubating parasites with 2µM A23187 for 5-8min. After fixation with 4%PFA, parasites were stained for GAP45 by IFA. Images depict intracellular (A) and egressed (B) vacuoles with (+) or without (-) intravacuolar filamentous actin structures. See Figure 4-4 and 4-6 for corresponding numerical analysis. White arrows indicate the remains of intravacuolar filaments after parasite egress. Scale bars are 5µm.
4.3 Re-defining intracellular actin distribution and dynamics

After performing analysis on intravacuolar actin structures that manifest outside the parasite body, I aimed at re-visiting actin distribution and dynamics within the parasite. A highly dynamic cytosolic actin accumulation centre had been described by Periz and colleagues (Periz et al. 2017). However, no further analysis of actin distribution or dynamics was performed. To further explore actin dynamics I applied kymograph analysis as described by Mangeol and co-workers (Mangeol, Prevo, and Peterman 2016). For this purpose, live microscopy was performed on Cb-Emerald expressing parasites. I then conducted Kymograph analysis on the obtained movies to measure particle flow, representing actin flow alongside a chosen track. Fourier filtering allowed for the distinction between different flow directions. Furthermore, I used kymograph data for the generation of time-averaged local intensity profiles. These profiles depict Cb-Emerald intensity, i.e. actin distribution, in live parasites over the entire duration of the movie.

In wild-type parasites, time-averaged local intensity profiling showed the highest Cb-Emerald intensities at the two poles and anterior to the nucleus (Figure 4-8 A and Figure 4-9 A) (Supplement Movie V1 and V2) (Appendix Figure 7-3). Disruption of Tgactin1 resulted in the absence of any directed actin distribution (Figure 4-8 B) (Supplement Movie V2). Loss of Tgadf function led to strong actin accumulation at the basal end (Figure 4-9 B) (Supplement Movie V1) (Appendix Figure 7-3). Thus, intensity profiling confirmed numerically the phenotypes described for these genes by IFA (Figure 4-1). Of relevance, distribution of GFP throughout the parasites differed distinctively from the Cb-Emerald pattern (Figure 4-8 C) (Supplement Movie V3) (Appendix Figure 7-2). Time-lapsed video microscopy revealed that the cytosolic actin centre is highly dynamic and frequently interacts with the parasite periphery (Figure 4-10 B) (Supplement Movie V1). Wild-type parasites showed actin accumulation in the periphery as confirmed by intensity profile measurement and skeletonisation analysis (Figure 4-10A and Figure 4-11) (Supplement Movie V1 and V2).
Figure 4-8: Actin distribution in intracellular RHsCas9-CbEm-actin1 wt and KO parasites along the middle axis.
Figure 4-8 continued: (A) and (B) Time-averaged intensity profiling along the parasites middle axis in RHsCas9-CbEm-actin1-wt and RHsCas9-CbEm-actin1-KO parasites. Parasites were incubated with or without 50nM rapamycin for 1h. After a growth period of 72h, cultures were mechanically lysed and incubated on a fresh host cell monolayer for another 24h prior to live microscopy. (C) Time-averaged intensity profiling along the parasites middle axis for the RH-GFP line. Parasites were grown for 24h prior to live microscopy. At least 5 (actin1) or 10 (GFP) independent movies were produced and analysed for each condition. Movies are depicted as images representing collapsed t-stacks. Intensity profiles depict Cb-Emerald or GFP intensity along the measured axis (yellow line) over the entire duration of the movie. As polarity is difficult to define for RHsCas9-actin1-KO parasites, the start point of the measurement is indicated with an asterisk. The figure shows representative images. Scale bars are 5µm. See also Supplement Movies V2 and V3, as well as Appendix Figure 7-2. Please note that live microscopy for the RHsCas9-CbEm-actin strain was performed by Dr Mario Del Rosario.

Recently, a model of actin flux to the basal pole alongside the parasite periphery was proposed for extracellular Toxoplasma parasites (Tosetti et al. 2019). As the periphery presents a place of high actin abundance in intracellular parasites, I was eager to investigate actin flow at this location. Kymograph analysis on wild-type parasites showed trajectories representing Cb-Emerald particle flow to the apical and the basal pole (Figure 4-12 A and B) (Supplement Movie V1 and V2) (Appendix Figure 7-1 and 7-3). This finding demonstrates bi-directional actin flow alongside the lateral axis of intracellular parasites. Strikingly, upon Tgactin1 disruption, kymographs did not display any obvious particle tracks (Figure 4-12 A) (Supplement Movie V2) (Appendix Figure 7-1). This interpretation is supported by the strong resemblance of sCas9-actin1-KO kymographs to measurements performed on the movie background (Figure 4-12 D) (Supplement Movie V2) (Appendix Figure 7-1). Disruption of Tgadf caused kymographs to depict strong accumulation of static actin at the basal end (Figure 4-12 B) (Supplement Movie V1) (Appendix Figure 7-3). Measurements performed on RH-GFP parasites resulted in more diffuse and, thus, highly distinguishable kymographs when compared to wild-type Cb-Emerald kymographs (Figure 4-12 C) (Supplement Movie V3) (Appendix Figure 7-2). This strongly indicates that the kymograph analysis presented here is capable of specifically depicting actin dynamics.

Data suggest that intracellular Toxoplasma parasites possess four sites of major actin abundance. These sites are the two poles, the cytosolic region anterior to the nucleus and the periphery. Bi-directional actin flow appears to occur at the
Based on these findings, I am proposing that cytosolic actin flow connects these different sites of actin accumulation.

Figure 4-9: Actin distribution in intracellular RHsCas9-CbEm-adf wt and KO parasites along the middle axis

(A) and (B) Time-averaged intensity profiling along the parasites middle axis in RHsCas9-CbEm-adf-wt and RHsCas9-CbEm-adf-KO parasites. Parasites were incubated with or without 50nM rapamycin for 1h. After a growth period of 72h, cultures were mechanically lysed and incubated on a fresh host cell monolayer for another 24h prior to live microscopy. At least 10 independent movies were produced and analysed for each condition. Movies are depicted as images representing collapsed t-stacks. Intensity profiles depict Cb-Emerald intensity along the measured axis (yellow line) over the entire duration of the movie. The figure shows representative images. See also Supplement Movie V1 and Appendix Figure 7-3. Scale bars are 5µm.
Parasites were grown for 72h. Cultures were then mechanically lysed and incubated on a fresh host cell monolayer for another 24h prior to live microscopy. (A) Skeletonisation analysis (right panel) for the depicted Cb-Emerald movie (left panel). The movie is depicted as collapsed t-stacks. (B) Live microscopy depicting the contact of the cytoplasmic actin pool with peripheral actin (white arrows). At least 10 independent movies were produced and analysed. The figure shows representative images. Time is depicted as mm:ss. Scale bars are 5µm. See also Supplement Movie V1.
Figure 4-11: Actin distribution in intracellular RHsCas9-CbEm-actin1 wt and KO parasites along the horizontal axis.

(A) and (B) Time-averaged intensity profiling along the parasites horizontal axis in RHsCas9-CbEm-actin1-wt and RHsCas9-CbEm-actin1-KO parasites. Parasites were incubated with or without 50nM rapamycin for 1h. After a growth period of 72h, cultures were mechanically lysed and incubated on a fresh host cell monolayer for another 24h prior to live microscopy. Movies are depicted as images representing collapsed t-stacks. Intensity profiles depict Cb-Emerald intensity along the measured axis (yellow line) over the entire duration of the movie. The start point of each measurement is indicated with an asterisk. Scale bars are 5µm. See also Supplement Movie V2. Please note that live microscopy for the RHsCas9-CbEm-actin strain was performed by Dr Mario Del Rosario.
Figure 4-12: Kymograph analysis of peripheral actin flow in intracellular Toxoplasma parasites
Figure 4-12 continued: Kymograph analysis is shown for (A) RHsCas9-CbEm-actin1-wt/KO, (B) RHsCas9-CbEm-adf-wt/KO and (C) RH-GFP parasites. (D) Kymograph analysis was performed on the movie background for RHsCas9-CbEm-actin1-KO. Particle movement alongside the periphery is depicted via three colour-coded kymographs. Red tracks represent particles moving to the basal end, green tracks show particle flow to the apical end and blue depicts static particles. The yellow line represents the area of kymograph measurement. Particle movement was measured from the apical (A) to the basal pole (B). As polarity is difficult to define for sCas9-actin1-KO parasites, the start point of the flow measurement is indicated with an asterisk. The same is true for the background measurement. Parasites were incubated with or without 50nM rapamycin for 1h. After a growth period of 72h, cultures were mechanically lysed and incubated on a fresh host cell monolayer for another 24h prior to live microscopy. RH-GFP parasites were grown for 24h prior to live microscopy. Images represent videos as collapsed t-stacks. At least 5 (actin) or 10 (others) independent movies were produced and analysed for each depicted condition. The figure shows representative kymographs. Scale bars are 5µm. See also Supplement Movies V1, V2 and V3. Additional analysis can be found in Appendix Figures 7-1, 7-2 and 7-3. Please note that live microscopy for the RHsCas9-CbEm-actin strain was performed by Dr Mario Del Rosario.

4.4 Summary and conclusions

In this chapter, the split-Cas9 system was combined with the actin chromobody technology (Periz et al. 2017) to investigate the actin network in Toxoplasma. By doing so, I was able to re-produce previously reported effects on the intracellular actin network for the genes Tgactin1 and Tgadf (Periz et al. 2017). The impact of these genes on parasite egress was also investigated with the split-Cas9 system. My findings support previous publications for Tgactin1 (Egarter et al. 2014; Whitelaw et al. 2017) and Tgadf (Mehta and Sibley 2011). Taken together, these data suggest that phenotypical analysis is possible for actin factors despite the occurrence of DNA damage upon Cas9 activity.

Interestingly, the abundance of DNA damage within a population depended on the targeted gene. For example, the number of vacuoles displaying DNA damage after Tgadf disruption was twice as high as the number of vacuoles after Tgactin1 targeting. It would therefore appear that some genomic loci are more challenging to repair than others. When applying split-Cas9 for phenotypic characterisation, it remains crucial to include proper controls such as the RHsCas9-sag1 strain. Furthermore, one has to determine the applicability of the split-Cas9 system for each assay individually.
Due to successful confirmation of known actin phenotypes, I argued that the split-Cas9 system should be suitable for a phenotypical screening approach, aiming at identifying potentially novel actin binding proteins. While a CRISPR/Cas9-based screening approach previously addressed overall parasite fitness (Sidik et al. 2016), a screen allowing for immediate insights into actin dynamics or other well discriminated phenotypes would present a powerful tool for future phenotypic screens. Therefore a medium throughput screen was initiated during my PhD studies (refer to chapter 5, section 5.5).

Disruption of Tgadf abolished intravacuolar filament disassembly upon parasite egress. In other organisms, ADF activity depends on its phosphorylation status (Mizuno 2013). ADF activity is inhibited by LIM kinase-dependent phosphorylation (Arber et al. 1998; Yang et al. 1998). The SSH phosphatase can mediate ADF dephosphorylation, thus leading to its re-activation (Niwa et al. 2002). It was also reported that SSH phosphatases can decrease LIM kinase activity by dephosphorylating the kinase itself (Soosairajah et al. 2005). Applying these findings to Toxoplasma biology, one could speculate that a calcium-dependent pathway might exist that mediates dephosphorylation of TgADF prior to egress. Activation of TgADF located to the large filamentous structures might explain their disassembly within seconds, as shown by Periz and co-workers (Periz et al. 2017). More experiments would have to be conducted to support this hypothesis.

Importantly, filament disassembly does not appear to be critical for successful parasite egress. I am therefore proposing that the disassembly process might serve the purpose of recycling actin by reintroducing monomeric actin to the cytosolic actin pool. Since actin was shown to be critical for parasite egress (Egarter et al. 2014; Whitelaw et al. 2017), increasing the overall actin concentration within the parasite might increase the chance for successful egress and subsequent host cell invasion.

Overall actin distribution was re-defined for intracellular parasites by performing live microscopy and kymograph analysis. I identified four actin accumulation sites: the apical and basal end, the cytosolic region anterior to the nucleus and the periphery. In addition, bi-directional actin flow appears to connect these actin polymerisation centres with each other. Based on live microscopy presented in this chapter, I was hypothesising that the cytosolic actin
polymerisation centre is fuelling the lateral actin flow. To gather supporting evidence for this theory, I wanted to focus on identifying the actin factors responsible for this highly dynamic actin site.
5 Investigating the role of TgFormin2 within the intracellular actin network

In chapter 4, I redefined actin distribution in intracellular Toxoplasma parasites. The split-Cas9 system successfully reproduced previously reported actin phenotypes for the genes Tgactin1 and Tgadf. In addition, four major actin accumulation sites were described: the two poles, the cytosolic region anterior to the nucleus and the periphery. The cytosolic actin centre (cAC) showed a highly dynamic nature and frequently interacted with the parasite periphery. Based on these observations, I hypothesised that the cAC is critical for the lateral actin flow in intracellular Toxoplasma parasites.

To explore this hypothesis, it was critical to identify the actin binding protein responsible for maintaining the cAC. I argued that rapid actin nucleation and polymerisation must be mediating the highly dynamic nature of this distinct actin site. The Toxoplasma genome codes for a limited set of actin binding proteins (Baum et al. 2006). For example, Toxoplasma lacks key components of the Arp2/3 actin nucleation complex (Gordon and Sibley 2005), which is a major contributor to actin polymerisation in other eukaryotes (Gould and Machesky 1999; Pollard and Beltzner 2002; Pollard 2007, 2016). Therefore, I reasoned that the remaining actin nucleation factors present in Toxoplasma, namely TgFormin1-3 (Baum et al. 2006; Gupta, Thyagarajan, and Sahasrabuddhe 2015), could be involved in maintaining the cAC.

The FH2 domains of TgFormin1 and 2 were reported to initiate nucleation of rabbit actin (Daher et al. 2010) and Toxoplasma actin (Skillman et al. 2012) in vitro. Initially, TgFormin1 and 2 were localised to the parasite periphery (Daher et al. 2010). A more recent study mentions that endogenously-tagged TgFormin1 accumulates at the apical tip of the parasite, while endogenously-tagged TgFormin2 locates to the vicinity of the apicoplast (Jacot et al. 2016). No experimental evidence was provided to support this claim for TgFormin2. The TgFormin3 FH2 domain also nucleates rabbit actin and the enzyme was localised to the apical and the basal pole as well as around the mitochondrion (Daher et al. 2012). Overall, the localisation to the vicinity of the apicoplast made TgFormin2 the prime candidate for mediating the cytosolic actin centre. I
followed this line of reasoning as the apicoplast frequently co-localised with the cytosolic actin centre anterior to the nucleus (Figure 4-1 A, wt panels).

It shall be mentioned that investigating the function of actin nucleation factors in vivo addresses a relevant conundrum of *Toxoplasma* actin biology. Although nucleation activity was shown for *Tg*Formins in vitro (Daher et al. 2010, 2012; Skillman et al. 2012), an isodesmic polymerisation model was proposed as underlying mechanisms for actin filament formation in *Toxoplasma* (Skillman et al. 2013). According to this model, actin filaments assemble in a nucleation-independent fashion rendering nucleation factors unnecessary. It was further suggested that polymerisation and depolymerisation rate of actin filaments happen at equal rates. The model was applied to explain the previously reported presence of short and unstable actin filaments in *Toxoplasma* (Sahoo et al. 2006). It was recently proposed that *Plasmodium* actin kinetics behave similar to canonical actin in vitro (Kumpula et al. 2017). The observation that the depolymerisation rate for *Pf*ACT1 appeared faster than for canonical actins (Kumpula et al. 2017) was later explained by unique structural features in the *Pf*ACT1 molecule, promoting filament destabilisation and, consequently, depolymerisation (Kumpula et al. 2019).

In this chapter, the tools established in chapter 4 will be used to investigate the function of the actin nucleation factor *Tg*Formin2 within the complex actin network of *Toxoplasma*. I will demonstrate that the actin-chromobody technology presents a powerful tool for addressing actin dynamics in their natural environment, the parasite itself.

5.1 Localisation and function of *Tg*Formin2 within the actin network of intracellular *Toxoplasma*

Literature available during the process of data generation for this thesis made conflicting reports regarding *Tg*Formin2 localisation. According to one study, *Tg*Formin2 accumulated mainly to the periphery for *Toxoplasma* (Daher et al. 2010), while another reported the enzyme in close proximity to the apicoplast (Jacot et al. 2016). To clarify *Tg*Formin2 localisation, *Tg*Formin2 was endogenously-tagged with a c-terminal HA-tag (Figure 5-1 A). Correct
integration of the HA-tag into the parasite genome was confirmed by analytic PCR (Figure 5-1 B) and sequencing (Appendix Figure 7-6 A). In intracellular parasites, TgFormin2-HA accumulated in close proximity to the apicoplast (Figure 5-1 C and D). Transient expression of the actin-chromobody in TgFormin2-HA parasites revealed that TgFormin2 co-localises with cytosolic sites of actin accumulation (Figure 5-1-E).

To explore TgFormin2 function, I generated the RHsCas9-CbEmerald-formin2 strain which expressed a formin2-sgRNA together with the split-Cas9 system and the actin-chromobody. Analytic PCR confirmed integration of the sgRNA-plasmid into the parasite genome (Figure 5-2 A). Upon disruption of Tgformin2, 68% (±6.6) of parasites lost the cytosolic actin centre (cAC) at 48h post split-Cas9 activation (1st lytic cycle) (Figure 5-3A and Figure 5-4 B). The untreated control population showed a baseline for cAC loss of 1.3% (±1.2). The disruption of Tgformin2 did not affect intravacuolar filament formation (Figure 5-3).
Figure 5-1: Investigation of TgFormin2 (FRM2) localisation in Toxoplasma

(A) Cartoon depicting the insertion of an HA-tag at the 3’end of the Tgformin2 (frm2) gene. Arrows indicate primers used for analytic PCRs shown in (B). (B) Analytical PCR
confirming integration of the HA-tag into the parasite genome at the c-terminus of \textit{Tgformin2 (frm2)}. The recognition sites of the colour-coded primers (arrows) are shown in (A). (C) IFA depicting \textit{TgFRM2-HA} localisation in \textit{Toxoplasma}. Parasites were grown for 24h and fixed with 4\%PFA prior to IFA. Samples were stained with α-G2Trx (apicoplast) and α-HA (\textit{TgFRM2-HA}). (D) Super-resolution microscopy confirming \textit{TgFRM2-HA} localisation. Parasites were treated as described in (C). (E) Position of \textit{TgFRM2-HA} within the actin network in intracellular \textit{Toxoplasma} parasites. Samples were transiently transfected with the Cb-Emerald plasmid, inoculated for 48h and fixed with 4\%PFA. Parasites were stained with α-HA (\textit{TgFRM2-HA}) by IFA. The figure shows representative images. Nuclei were stained with DAPI. All scale bars are 5μm. Please note that the \textit{TgFRM2-HA} strain was generated by Dr Mirko Singer. Experiments shown in this figure represent my own work.

\textit{Tgformin2} disrupted parasites lacking the cAC anterior to the nucleus displayed an apicoplast segregation phenotype (Figure 5-3). Two types of phenotypes were observed. Some vacuoles contained parasites simply being devoid of apicoplasts (Figure 5-3 A, middle panel). In other vacuoles, the lack of apicoplasts within the parasites was associated with the accumulation of apicoplast material to distinct locations within the vacuole (Figure 5-3 A and B). Most likely, apicoplasts accumulated outside the parasite bodies, i.e. the residual body or bodies, as \textit{Tgformin2} disrupted parasites often egressed without containing an apicoplast (Figure 5-4 A). The apicoplasts were left behind outside the parasites upon egress. Of relevance, overall egress was not significantly affected by \textit{Tgformin2} disruption (Figure 4-4 A and B).

Quantification of the apicoplast phenotype in parasites lacking the cAC was performed to provide a more detailed overview. After 48h post Cas9 activation (1st lytic cycle), 59.7\% (±5) of vacuoles depicted parasites devoid of the apicoplast without accumulation of apicoplast material to a specific location (Figure 5-4 C). Accumulation of apicoplasts in the residual body was observed in 31.7\% (±5.7) of vacuoles. In the 2nd lytic cycle (96h), apicoplast mislocalisation to the residual body was detected in 75\% (±4.4) of vacuoles, while 24\% (±5.3) of vacuoles contained parasites lacking the apicoplast without noticeable relocation to the residual body. In the non-treated control population, 11\% (±1) (1st lytic cycle) and 12.3\% (±1.6) (2nd lytic cycle) of vacuoles contained parasites lacking the apicoplast. Accumulation of apicoplasts within residual bodies of vacuoles was never observed in the control populations. Noteworthy, only vacuoles without any signs of DNA damage were included in the phenotypic
analysis (Figure 4-4 C). Disruption of the Tgformin2 gene was confirmed by sequencing at 48h post induction (Figure 5-2 B).

Figure 5-2: Confirmation of the strains RHsCas9-ActinChromobodyEmerald-DrpAsgRNA (RHsCas9-Cb-DrpA), RHsCas9-ActinChromobodyEmerald-formin2sgRNA (RHsCas9-Cb-formin2) and RHsCas9-ActinChromobody-Emerald-profilinsgRNA (RHsCas9-Cb-profilin) (A) Analytical PCR confirming integration of indicated sgRNA-plasmids into the parasite genome. Integrated plasmids were amplified from the genome as described in Figure 3-2.
A. (B) Sequencing performed on the sgRNA cut side of RHsCas9-Cb-formin2-KO. For this purpose, cultures were induced with 50nM rapamycin for 1h. Parasites were grown for 48h prior to gDNA collection. The sgRNA cut site was amplified by PCR. Amplicons (I, II) were cloned into the pGEM vector and sequenced. Green letters indicates sgRNA sequence. Red letters represent nucleotide insertion in the mutant strain, causing a frame shift and, thus, the functional knock-out of the indicated gene. Black arrows indicate the predicted cut side. Please note that the analytical PCR (A) was performed by Dana Aghabi under my supervision.

In summary, data presented here strongly indicate that the nucleation factor TgFormin2 is critical for maintaining the cytosolic actin centre (cAC) in intracellular parasites. TgFormin2 localisation to the vicinity of the apicoplast and to actin accumulation centres supports this finding. The previously reported TgFormin2 localisation by Jacot and co-workers (Jacot et al. 2016) was confirmed. TgFormin2 driven actin nucleation appears to be essential for apicoplast inheritance. The process of apicoplast inheritance had been linked to TgFormin2 previously by overexpressing the TgFormin2 FH2 domain in Toxoplasma (Jacot, Daher, and Soldati-Favre 2013). Most interestingly, conditional disruption of Tgformin2 with the split-Cas9 system caused the apicoplast mislocalisation to the residual body. The importance of actin dynamics on apicoplast inheritance is well documented in Toxoplasma (Andenmatten et al. 2013; Jacot, Daher, and Soldati-Favre 2013; Haase et al. 2015; Whitelaw et al. 2017). However, massive accumulation of apicoplast material outside the parasite upon Tgformin2 disruption presents a unique feature among actin-related apicoplast phenotypes.
Figure 5-3: Disruption of Tgformin2 in RHsplit-Cas9 parasites expressing actin-chromobody-Emerald (Cb-Em or Cb)
Figure 5-3 continued: IFA depicts the effect of \textit{Tgformin2} (RHsCas9-Cb-formin2) disruption on the actin network (Cb-Emerald) and apicoplast segregation (HSP60). \textit{Tgformin2}-wt parasites showed normal apicoplast numbers and localisation (normal), while \textit{Tgformin2}-KO parasites depicted apicoplast loss (loss) or the accumulation of apicoplast material in the residual body (RB) (in RB). Quantification of these phenotypes can be found in Figure 5-4. (A) To achieve gene disruption (KO), parasites were incubated with 50nM rapamycin for 1h. Parasites were fixed after 48h with 4%PFA (1st lytic cycle). (B) Parasites were treated with 50nM rapamycin for 1h (KO). Parasites were grown for 48h, mechanically lysed and inoculated again for another 48h prior to fixing with 4%PFA (2nd lytic cycle). Apicoplasts were stained with α-HSP60 by IFA. Nuclei were stained with DAPI. Scale bars are 5µm.

Figure 5-4: Disruption of \textit{Tgformin2} in RHsplit-Cas9 parasites expressing actin-chromobody-Emerald (Cb-Em or Cb)
(A) IFA depicting natural egress of RHsCas9-CbEm-formin2-KO parasites. To achieve gene disruption (KO), parasites were incubated with 50nM rapamycin for 1h. Parasites were fixed after 48h with 4%PFA and stained with α-HSP60 (apicoplast) by IFA. Scale bar is 5µm. (B) Quantification of IFA depicted in Figure 5-3 A. The graph quantifies the loss of the cytosolic actin centre (cAC) anterior to the nucleus in rapamycin-treated (50nM) and untreated populations of the RHsCas9-CbEm-formin2 strain. For this experiment, parasites were stained by IFA after 48h of growth (see Figure 5-3 A). (C) Quantification of the different apicoplast phenotypes depicted in the IFAs in Figure 5-3 A and B. RHsCas9-CbEm-formin2-wt parasites showing the natural cytosolic actin centre (cAC) anterior to the nucleus were compared to RHsCas9-CbEm-formin2-KO parasites lacking the cAC. For both conditions, parasites of the 1st and the 2nd lytic cycle were investigated. Parasites were treated as described in Figure 5-3 A and B. Quantifications presented in (B) and (C) were obtained from three independent experiments for each condition. For each condition 100 vacuoles were counted (total n=300).

5.2 Confirmation of TgFormin2 function with the DiCre system

The effect of Tgformin2 disruption with split-Cas9 presented a complete novelty with regards to actin dynamics in intracellular parasites. To ensure that the DNA damage observed in some parasites after split-Cas9 activation (see chapter 3) did not cause the observed phenotype, I decided to validate the function of TgFormin2 using the DiCre system (Andenmatten et al. 2013) as an independent conditional approach. Due to its mode of action, the DiCre system allows gene excision without causing a double-stranded DNA break. As demonstrated for TgMec17 (see chapter 3, Figure 3-9 and Figure 3-10), no underlying effects are to be expected upon gene excision.

For this purpose, the Tgformin2 gene was flanked with two loxP sites and, at the same time, c-terminally-tagged with yfp to generate the DiCre-formin2-YFPloxP strain (Figure 5-5 A). Genome modifications and gene excision upon DiCre activation via rapamycin were confirmed via analytic PCRs (Figure 5-5 B). Sequencing analysis revealed in-frame integration of the yfp-tag into the genome (Appendix Figure 7-6 B).
Figure 5-5: Generation and verification of the DiCre-formin2-YFPloxP strain

(A) Cartoon depicting the strategy of flanking the *Tgformin2* gene with two loxP sites and, at the same time, inserting a YFP-tag at the 3′ end of the gene. Upon rapamycin
treatment, the endogenous Tgformin2 locus is excised. Arrows indicate primers used for analytic PCRs shown in (B). (B) Analytical PCR confirming integration of the loxP sites and the YFP-tag into the parasite genome. PCRs 1 and 2 confirm 5' and 3' integration, respectively. To confirm the excision of the Tgformin2 (frm2) gene upon rapamycin treatment, parasites were inoculated with (+) or without (-) 50nM rapamycin. Samples of gDNA were collected after 48h. Excision of Tgfrm2 was confirmed by PCR 4. The amplification of the 3' integration product in PCR 3 indicates incomplete gene excision in the rapamycin-induced frm2-YFPloxP population. The recognition sites of the colour-coded primers (arrows) are shown in (A). Please note that the DiCre-formin2-YFPloxP strain was generated by Dr Mirko Singer. Experiments shown in this figure represents my own work.

Localisation of TgFormin2 to the vicinity of the apicoplast was confirmed by detecting TgFormin2-YFP with an anti-YFP antibody (Figure 5-6 A, top panel). Interestingly, the YFP signal was not detectable without antibody use (Figure 5-7), probably suggesting low expression levels for TgFormin2. Closer examination revealed that 30% of TgFormin2-YFP signal partially overlaps with the apicoplast (Figure 5-8). In other cases, TgFormin2 was found adjacent to the apicoplast with (58%) or without (12%) being in contact with the apicoplast periphery. Taken together, this quantification suggests that TgFormin2 preferentially accumulates in close proximity to the apicoplast in intracellular parasites.

Rapamycin treatment resulted in loss of TgFormin2-YFP in 35.7% (±3.8%) of parasites as determined by IFA (Figure 5-6 A). The same two types of apicoplast phenotypes as for the split-Cas9 system (Figure 5-3 and Figure 5-4) were observed upon excision of Tgformin2-YFP with the DiCre system (Figure 5-6). In 23.3% (±3.8) of vacuoles, some parasites were devoid of the apicoplast without accumulation of apicoplast material to a specific location within the vacuole (Figure 5-6 A and B). Lack of apicoplasts within the parasites was associated with the accumulation of apicoplast material to the residual body in 41.3% (±3.1) of vacuoles. In the untreated control population, 1% (±0) of parasites showed an apicoplast segregation phenotype. No apicoplast material was detectable in the residual body in the control population. In addition, TgFormin2-YFP excision resulted in loss of the cAC anterior to the nucleus when parasites were transiently transfected with the actin-chromobody-emerald (Figure 5-9).
Figure 5-6: Effect of Tgformin2 (frm2) excision with the DiCre system on apicoplast segregation and position
Figure 5-6 continued: (A) IFA depicting apicoplast fate in DiCre-frm2-YFPloxP and DiCre-frm2-KO parasites. DiCre-frm2-YFPloxP parasites showed normal apicoplast numbers and localisation (normal). The DiCre-frm2-KO population depicted normal apicoplast numbers (normal), apicoplast loss (loss) or the accumulation of apicoplast material in the residual body (RB) (in RB). DiCre-frm2-YFPloxP and DiCre-frm2-KO parasites were grown for 48h without or with 50nM rapamycin, respectively. After fixation with 4%PFA, apicoplasts were stained with α-Atrx-1 and Formin2-YFP was detected with α-YFP by IFA. Nuclei were stained with DAPI. Scale bars are 5µm. (B) Quantification of apicoplast phenotypes observed in IFA as presented in (A). Numbers were obtained from three independent experiments for each condition. For each condition 100 vacuoles were counted (total n=300).

![Image](image_url)

Figure 5-7: IFA attempting detection of TgFormin2-YFP (TgFRM2-YFP) without α-YFP antibody
DiCre-frm2-YFPloxP and DiCre-frm2-KO parasites were grown for 72h without or with 50nM rapamycin, respectively. After fixation with 4%PFA, apicoplasts were stained with α-HSP60 by IFA. Nuclei were stained with DAPI. The YFP channel shows background fluorescence. In the DiCre-frm2-YFPloxP population, YFP-tagged TgFRM2 was not detectable in the absence of an YFP-antibody. The figure shows representative images. Scale bars are 5µm.
I was also interested in examining whether actin dynamics mediated by TgFormin2 were involved in the replication and localisation of other organelles. While parasites displayed the characteristic apicoplast phenotypes after TgFormin2-YFP excision, parasites did not show any defect in mitochondria replication and morphology (Figure 5-10 A). Some rhoptry material accumulated in the residual body upon Tgformin2 loss (Figure 5-10 B). However, further studies will have to be conducted to elucidate the role of actin dynamics in rhoptry biogenesis and overall morphology.

In summary, the DiCre system confirmed TgFormin2 function in intracellular Toxoplasma parasites. Localisation studies with YFP-tagged TgFormin2 stressed the close proximity between the nucleation factor and the apicoplast in intracellular parasites. I decided to further investigate this phenomenon in the next section.

![Figure 5-8: IFA depicting localisation of TgFormin-YFP in relation to the apicoplast in DiCre-frm2-YFPloxP parasites](image)

Parasites were grown for 48h and fixed with 4%PFA. Apicoplasts were stained with α-Atrx-1 and TgFormin2-YFP was detected with α-YFP. Three different types of positioning were identified for TgFormin2-YFP. In 30% of parasites, TgFormin2 and the apicoplast partially co-localise (1). In 58% of parasites, there is overlap in the periphery of TgFormin2 accumulation site and the apicoplast (2). Other parasites (12%) show TgFormin2 in close proximity to the apicoplast without signal overlap (3). Quantification is based on n=142
parasites from 22 independent vacuoles. This figure shows representative images. Scale bar is 5µm.

Figure 5-9: Transient expression of the actin-chromobody-emerald (CbEmerald/CbEm) in DiCre-frm2-YFPl oxP and DiCre-frm2-KO parasites

Parasites were transiently transfected with the Cb-Emerald plasmid. Subsequently, the samples were grown with or without 50nM Rapamycin and fixed after 48h or 72h with 4%PFA. Apicoplasts were stained with α-HSP60 by IFA. Nuclei were stained with DAPI. The figure shows representative images. Scale bars are 5µm.
Figure 5-10: IFA depicting the effect of *Tgformin2* depletion with the DiCre system on morphology and positioning of mitochondria and rhoptries (A) and (B) Parasites were grown with or without 50nM Rapamycin for 48h and fixed with 4%PFA. Apicoplasts were stained with α-HSP60 or α-Atrx1 by IFA. Rhoptries were visualized with α-Rop2,4. Mitochondria were stained with α-TOM40. Nuclei were stained with DAPI. The figure shows representative images. Scale bars are 5µm.
5.3 The role of the apicoplast in maintenance of actin dynamics

Bioinformatic studies performed by Dr Jonathan Wilkes at the Wellcome Centre for Integrative Parasitology (Glasgow, UK) revealed that TgFormin2 contains a PTEN-C2-like domain (Stortz et al. 2019). The PTEN-C2 domain was reported to be involved in membrane recruitment (Das, Dixon, and Cho 2003). Interestingly, the PTEN domain mediates localisation of formin homology 5 (FH5) to the chloroplast in rice (Zhang et al. 2011). Since most TgFormin2 appeared to be in contact with the apicoplast (Figure 5-8), I hypothesised that the apicoplast might act as an anchoring point for TgFormin2. This would mean that the apicoplast would not only be important for correct TgFormin2 localisation, but, indirectly, also for maintaining the cAC. I argued that the role of the apicoplast in TgFormin2 recruitment and cAC maintenance could easily be addressed by depleting the apicoplast from parasites.

To deplete Toxoplasma parasites of the apicoplast, the gene TgdrpA was disrupted with the split-Cas9 system. TgDrpA had been described previously as critical for the apicoplast segregation process by mediating apicoplast fission (van Dooren et al. 2009). Conditional expression of a dominant negative TgDrpA mutant rendered the parasites unable to segregate their apicoplasts. This resulted in apicoplast loss in parasites during intracellular growth. I argued that the disruption of TgdrpA presented a reliable tool for assessing the impact of the apicoplast loss on the cAC anterior to the nucleus.

For this purpose, I introduced the drpAsgRNA into the RHsCas9-CbEm parental strain to generate the line RHsCas9-CbEm-drpAsgRNA. Integration of the drpAsgRNA was confirmed by analytical PCR (Figure 5-2 A). Disruption of TgDrpA via split-Cas9 resulted in parasites devoid of the apicoplast (Figure 5-11). In addition, apicoplasts appeared elongated, most likely due to the lack of apicoplast fission in the absence of functional TgDrpA (van Dooren et al. 2009). Interestingly, parasites lacking an apicoplast still displayed the cAC anterior to the nucleus showing that the apicoplast is not essential for cAC maintenance. Conditional disruption of TgFormin2 function via the split-Cas9 or the DiCre system caused the cAC to disappear (Figure 5-3 and Figure 5-8), suggesting that there are no compensatory functions for maintaining the cAC in Toxoplasma.
Hence, the presence of the cAC indirectly suggests correct TgFormin2 localisation and function in the absence of an apicoplast. It was recently reported that TgFormin2 co-localises with the Golgi apparatus in non-dividing parasites and that depletion of the apicoplast does not impact TgFormin2 localisation (Tosetti et al. 2019). These findings make an exclusive role for the apicoplast in TgFormin2 recruitment in non-dividing parasites highly unlikely.

The function of the PTEN-C2 domain remains to be elucidated. One could speculate that the PTEN-C2-like domain mediates TgFormin2 localisation and traffic to the apical region of the parasites independent from the apicoplast. I am further hypothesising that this domain might be involved in re-located TgFormin2 to the edges of the dividing apicoplast (Tosetti et al. 2019). Further investigation is required to determine the biological relevance of the PTEN-C2-like domain.

Figure 5-11: Disruption of TgDrpA in RHsplit-Cas9 parasites expressing actin-chromobody-Emerald (Cb-Em or Cb)*

IF A depicts the effect of TgDrpA (RHsCas9-Cb-DrpA) disruption on the actin network (Cb-Emerald) and apicoplast segregation (HSP60). To achieve gene disruption (KO), parasites were incubated with 50nM rapamycin for 1h. Parasites were fixed after 48h with 4%PFA. Apicoplasts were stained with α-HSP60 by IFA. Nuclei were stained with DAPI. The figure shows representative images. Scale bars are 5µm.
5.4 The effect of the cytosolic actin centre on overall actin dynamics in intracellular *Toxoplasma*

Two independent systems identified *Tg*Formin2 as nucleation factor critical for maintaining the cytosolic actin centre (cAC) anterior to the nucleus. Upon loss *Tg*Formin2 function, the cAC, but not the intravacuolar filaments, is lost in intracellular parasites (Figure 5-3 and Figure 5-9). This phenotype was described by IFA and confirmed by time-averaged local intensity profiling (Figure 5-12 and Appendix Figure 7-4) (Supplement Movie V4).

To analyse the effect of cAC loss on actin distribution and dynamics within parasites, I performed live microscopy on RHsCas9-CbEm-formin2-wt and RHsCas9-CbEm-formin2-KO parasites. Non-treated RHsCas9-CbEm-formin2-wt parasites displayed a highly dynamic cytosolic actin centre (cAC) that interacted with the parasite periphery (Figure 5-13) (Supplement Movie V4). Collapsed t-stack images and skeletonisation analysis confirmed that actin accumulated at four accumulation sites: the two poles, the cytosolic actin centre (cAC) anterior to the nucleus and the parasite periphery (Figure 5-14) (Supplement Movie V4). Upon *Tg*formin2 disruption, parasites lost the cAC (Figure 5-14) (Supplement Movie V4). In addition the actin signal in the periphery appeared strongly reduced. Actin polymerisation outside the parasite bodies, i.e. the residual body was not affected. Actin accumulation was still detectable at the apical tip in some parasites.

Kymograph analysis in *formin2*-wt parasites showed particle trajectories to the apical and basal pole indicating bi-directional actin flow along the periphery (Figure 5-15 and Appendix Figure 7-5) (Supplement Movie V4). Kymographs of RH-sCas9-CbEm-*formin2*-KO parasites appeared overall more diffuse, although some tracks could still be observed. This is most likely due to residual actin in the periphery and perhaps due to actin polymerisation mediated by *Tg*Formin1 located at the apical tip (Jacot et al. 2016).

In summary, these data indicate that the *Tg*Formin2-mediated cytosolic actin centre (cAC) majorly contributes to actin distribution and dynamics within intracellular parasites. Upon cAC loss, actin abundance was highly reduced in the parasite periphery. Peripheral actin flow also appeared affected, with
kymographs showing less clear trajectories. This strongly indicates that the highly dynamic cAC does indeed fuel lateral, bi-directional actin flow in intracellular *Toxoplasma*. In conclusion, actin nucleation mediated by *TgFormin2* appears to be required for the maintenance of intracellular actin dynamics.

Figure 5-12: Actin distribution in intracellular RHsCas9-CbEm-formin2 wt and KO parasites along the middle axis

(A) and (B) Time-averaged intensity profiling along the parasites middle axis in RHsCas9-CbEm-formin2-wt and RHsCas9-CbEm-formin2-KO parasites. Parasites were incubated with or without 50nM rapamycin for 1h. After a growth period of 72h, cultures were mechanically lysed and incubated on a fresh host cell monolayer for another 24h prior to live microscopy. At least 10 independent movies were produced and analysed for each condition. Movies are depicted as images representing collapsed t-stacks. Intensity profiles depict Cb-Emerald intensity along the measured axis (yellow line) over the entire duration of the movie. The figure shows representative images. Scale bars are 5µm. Please see also Appendix Figure 7-4 and Supplement Movie V4.
Figure 5-13: Live microscopy analysis investigating the interaction of the cytoplasmic actin pool and peripheral actin in the RHsCas9-CbEm-formin2-wt line
Parasites were grown for 72h. Cultures were then mechanically lysed and incubated on a fresh host cell monolayer for another 24h prior to live microscopy. Images depict the contact of the cytoplasmic actin pool with peripheral actin (white arrows). At least 10 independent movies were produced and analysed. The figure shows representative images. Time is depicted as mm:ss. Scale bars are 5µm. Please see also Supplement Movie V4.
Figure 5-14: Skeletonisation analysis investigating actin distribution in RHsCas9-CbEm-formin2-wt and RHsCas9-CbEm-formin2-KO parasites
(A) and (B) RHsCas9-CbEm-formin2-wt parasites were cultured under normal conditions. RHsCas9-CbEm-formin2-KO parasites were treated with 50nM rapamycin for 1h. After a growth period of 72h, cultures were mechanically lysed and incubated on a fresh host cell monolayer for another 24h prior to live microscopy. Movies are shown with their respective skeletonisation analyses. Movies are depicted as collapsed t-stacks. At least 10 independent movies were produced and analysed for each depicted condition. The figure shows representative movies and skeletonisation. Scale bars are 5µm. Please see also Supplement Movie V4.
Figure 5-15: Kymograph analysis of peripheral actin flow in intracellular RHsCas9-CbEm-formin2-wt and KO parasites
Particle movement alongside the periphery is depicted via three colour-coded kymographs. Red tracks represent particles moving to the basal end, green tracks show particle flow to the apical end and blue depicts static particles. The yellow line represents the area of kymograph measurement. Particle movement was measured from the apical (A) to the basal pole (B). Parasites were incubated with or without 50nM rapamycin for 1h. After a growth period of 72h, cultures were mechanically lysed and incubated on a fresh host cell monolayer for another 24h prior to live microscopy. Images represent videos as collapsed t-stacks. At least 10 independent movies were produced and analysed for each depicted condition. The figure shows representative kymographs. Scale bars are 5µm. Please see also Appendix Figure 7-5 and Supplement Movie V4.

5.5 Summary, conclusions and on-going work

In this chapter, I addressed TgFormin2 localisation and function within the Toxoplasma actin network. TgFormin2 was important for apicoplast inheritance and positioning as well as the maintenance of the cytosolic actin centre (cAC) anterior to the nucleus. The cAC appeared critical for overall actin distribution and flow in intracellular parasites, indicating that actin dynamics within intracellular parasites pre-dominantly depend on TgFormin2-driven actin nucleation.

Most recently, during writing of this thesis, Tosetti and co-workers published their investigation of the three actin nucleation factors in Toxoplasma, namely TgFormin1, 2 and 3 (Tosetti et al. 2019). According to this study, TgFormin3 localises to the basal pole and the residual body mediating actin nucleation outside the parasite body during intracellular growth. Actin nucleation by TgFormin1 does not majorly contribute to intracellular actin dynamics. Instead, TgFormin1 was reported to be critical for motility, invasion and egress of extracellular parasites. Results presented by Tosetti and colleagues regarding TgFormin2 stand in strong agreement with data presented here. It can be concluded that TgFormins fulfil non-overlapping roles during different stages of the asexual lytic cycle in Toxoplasma.

TgFormin1-mediated actin nucleation was described to be critical for maintaining actin flow in extracellular parasites (Tosetti et al. 2019). According to live microscopy studies of moving and non-moving extracellular parasites, actin appears to accumulate at the basal end of the parasite, indicating actin flow from the apical to the basal pole. Tosetti and co-workers suggest that actin
translocation to the basal pole happens along the parasite periphery (Tosetti et al. 2019). This peripheral flow seems to be MyosinA-dependent and, thus, to be mediated by the actomyosin system (Tosetti et al. 2019). Data presented here provide experimental evidence that the parasite periphery represents a site of increased actin abundance during intracellular growth. Actin flow appears bi-directional alongside the periphery in intracellular parasites and is fuelled by TgFormin2-mediated actin polymerisation in the cytosolic region anterior to the nucleus. It remains to be elucidated whether intracellular actin flow happens in a MyosinA-dependent fashion.

During the process of the submitting this thesis, Hunt and co-workers reported TgCAP to be critical for maintaining the cAC (Hunt et al. 2019). This finding potentially indicates an interaction between TgCAP and TgFormin2. In Plasmodium, PfCAP was found to be capable of exchanging ADP to ATP on rabbit actin monomers in vitro (Makkonen et al. 2013). Exploring the nature of the potential interaction between TgCAP and TgFormin2 presents an exciting opportunity for future research efforts.

Previously, actin polymerisation in Toxoplasma had been proposed to occur in an isodesmic fashion (Skillman et al. 2013). The model was applied to explain the previously reported presence of short and unstable actin filaments in Toxoplasma (Sahoo et al. 2006). Both studies were based on in vitro experiments with recombinant Toxoplasma actin. The model was also used to explain the limited set of actin nucleation factors (Baum et al. 2006), most prominently the lack of the Arps2/3 complex (Gordon and Sibley 2005), as the isodesmic model suggested nucleation-independent actin polymerisation (Skillman et al. 2013).

The recent observation of a filamentous actin network in vivo (Periz et al. 2017) was the first direct experimental evidence to indicate the presence of actin factors that would allow for the formation of long filamentous actin structures in Toxoplasma. Data presented here and by others (Tosetti et al. 2019) clearly show that actin nucleation factors play a critical role in maintaining actin structures and dynamics in vivo. In combination, these data sets strongly indicate that Toxoplasma actin polymerisation relies heavily on actin nucleation factors. This raises the question about the relevance of the isodesmic polymerisation model (Skillman et al. 2013) for actin dynamics in vivo. It is
important to note that data presented here do not directly disprove the isodesmic model for actin polymerisation. However, the functional requirement for such a unique polymerisation mechanism for eukaryotic actin still needs to be defined in vivo.

The split-Cas9 system was capable of accurately describing the features unique to TgFormin2 loss of function. This was clearly demonstrated by the reproduction of the phenotypic characteristics with the DiCre system (this study) and with a clonal Tgformin2 knock-out line (Tosetti et al. 2019). Upon rapamycin induction, the split-Cas9 system achieved a higher rate of Tgformin2 loss of function (68% ±6.6) than the DiCre system (35.7% ±3.8%). I am speculating that the long DNA sequence between the two loxP sites (ca. 19,000bps) might act as a physical hindrance to Cre-recombinase functionality. The distance between the two loxP sites might be too large for the Cre-recombinase to act at its full potential. During the course of this thesis, numerous phenotypes were reproduced with the split-Cas9 system. In addition, the system was also capable of reliably investigating the biological novelty of the Formin2 phenotype. I therefore propose this system as a reliable tool for the investigation of actin dynamics in intracellular Toxoplasma.

I reasoned that the split-Cas9 system was well suited for the purpose of screening for novel actin factors. The system can be exploited for phenotypic screening due to its inducible nature. Phenotypic screening capacity presents a novelty in Toxoplasma research since the use of constitutively expressed Cas9 can only be used for measuring overall parasite fitness (Sidik et al. 2016). I was therefore eager to initiate a medium throughput phenotypical screening approach for novel apicomplexan actin factors. At the same time, this approach also aimed at addressing the impact on apicoplast replication. Apicoplast replication is linked to actin dynamics (Andenmatten et al. 2013; Jacot, Daher, and Soldati-Favre 2013; Haase et al. 2015; Whitelaw et al. 2017) and could therefore act as valuable indicator for overall actin function within the parasite.

For this purpose, I designed a library consisting of sgRNAs targeting about 320 apicomplexan-specific genes in total. The selected genes did not code for any signal peptide since I suspected actin binding proteins to be cytosolic. The screen was performed by Janessa Grech and Dr Elena Jimenez-Ruiz at the LMU
Munich (Germany). About 20 gene candidates were identified with a potential role in apicoplast biology and/or actin network dynamics. Careful validation of these candidates is subject to on-going research at the moment.
6 Discussion

Actin is a highly abundant structural protein in eukaryotes that is critical for several cellular processes, including cytokinesis, cargo trafficking and cellular motility (Baum et al. 2006; Pollard and Cooper 2009). In Toxoplasma biology, the investigation of actin dynamics and functions presents a major research focus. Actin plays a key function in parasite egress, motility and invasion (Dobrowolski and Sibley 1996; Drewry and Sibley 2015; Egarter et al. 2014; Whitelaw et al. 2017). Actin was also reported to be involved in apicoplast inheritance (Andenmatten et al. 2013; Whitelaw et al. 2017) and dense granule trafficking (Heaslip, Nelson, and Warshaw 2016; Whitelaw et al. 2017). Overall, actin is critical for the completion of the lytic cycle and, thus, parasite survival (Andenmatten et al. 2013; Egarter et al. 2014). Of relevance, despite numerous functions of actin during the lytic cycle, intracellular morphology and replication rate in culture appear to be largely unaffected by the lack of actin (Egarter et al. 2014; Periz et al. 2017). Noteworthy, depletion of TgACT1 results in asynchronous replication (Periz et al. 2017).

Recently, actin structures were successfully visualised by exploiting actin-chromobodies in Toxoplasma, revealing an extensive actin network within the parasitophorous vacuole (PV) (Periz et al. 2017). This network connects individual parasites with each other and appears important for vesicle trafficking between individual parasites within the PV (Periz et al. 2017). In addition, highly dynamic actin structures accumulate anterior to the nucleus in individual parasites (Periz et al. 2017). This thesis aimed at exploiting actin visualisation to investigate actin dynamics in vivo in unprecedented detail. For this purpose, the actin-chromobody was combined with the split-Cas9 technology (Zetsche, Volz, and Zhang 2015) to enable rapid gene disruption in Toxoplasma.

In this study, I established the split-Cas9 system as a conditional tool for gene disruption in Toxoplasma (refer to chapters 3, 4 and 5). Despite the appearance of DNA damage-related phenotypes immediately after split-Cas9 activation, the system is capable of efficiently disrupting genes of interest. However, the gene-specific phenotype must be distinguishable from the unspecific DNA damage phenotype to avoid misinterpretation of results. Gene-specific phenotypes were reproduced for a variety of genes, including Tggap40 (Harding et al. 2016).
(chapter 3), Tgmec17 (Varberg et al. 2016) (chapter 3) and TgdrpA (van Dooren et al. 2009) (chapter 5). Importantly, combination of the split-Cas9 system with the actin-chromobody technology reproduced the previously reported actin network phenotypes for the genes Tgactin1 and Tgadf (Periz et al. 2017) (chapter 4). Furthermore, Tgadf gene disruption strongly indicated that TgADF presents an important factor in the disassembly of the intravacuolar F-actin filaments prior to parasite egress from the host cell.

The actin-chromobody enabled live microscopy and kymograph analysis investigating actin dynamics in intracellular parasites. By doing so, I re-defined four actin accumulation sites in intracellular Toxoplasma parasites: the apical and basal end, the cytosolic region anterior to the nucleus (cAC) and the periphery (chapter 4). These actin polymerisation centres appeared to be connected by bi-directional actin flow along side the parasite periphery. The split-Cas9 system revealed TgFormin2 as critical for maintaining the cAC (chapter 5). Since cAc loss severely affected actin distribution and peripheral actin flow, I concluded that actin dynamics within intracellular parasites predominantly depend on TgFormin2-driven actin nucleation. Furthermore, TgFormin2 appeared to be important for apicoplast inheritance and positioning (chapter 5). The split-Cas9-mediated TgFormin2 phenotype was confirmed by excising the Tgformin2 gene with the DiCre system. Results for TgFormin2 obtained in this study stand in strong agreement with observations made by Tosetti and co-workers (Tosetti et al. 2019).

6.1 Application of CRISPR/Cas9 strategies in Toxoplasma

The type II CRISPR/Cas9 system was successfully applied for genome editing in various organisms, including human cells (Jinek et al. 2013; Mali et al. 2013), woody plants (Fan et al. 2015), beetles (Gilles, Schinko, and Averof 2015) and rabbits (Yan et al. 2014). CRISPR/Cas9 has also positively impacted genome modification efforts in trypanosomatids (Lander and Chiurillo 2019). In Toxoplasma, CRISPR/Cas9 was shown to be effective for single target gene disruption and site-specific insertions (Shen et al. 2014; Sidik et al. 2014). Nevertheless, phenotypic analysis based on CRISPR/Cas9 faces challenges in Toxoplasma.
Several studies reported that prolonged or constitutive Cas9 expression can negatively impact \textit{Toxoplasma} morphology and/or fitness (Serpeloni et al. 2016; Sidik et al. 2016; Markus et al. 2019). This challenge was overcome by expressing Cas9 together with a sgRNA (Sidik et al. 2016). It was argued that Cas9 toxicity is caused by endogenous RNA mediating Cas9 activity (Sidik et al. 2016) and/or by secondary non-targeted Cas9 nuclease activity in the absence of any sgRNA (Markus et al. 2019). It was suggested that co-expression of a sgRNA might sequester Cas9 enzymes, thus preventing undesired nuclease activity (Markus et al. 2019). Interestingly, in contrast to the conditional ddFKBP-Cas9 system (Serpeloni et al. 2016), prolonged split-Cas9 activation did not result in aberrant parasite morphology. Most likely, this is because of the reduced efficiency of split-Cas9 in comparison to the wild-type Cas9 enzyme (Zetsche, Volz, and Zhang 2015). Despite its reduced efficiency, the split-Cas9 system still achieved high gene disruption rates of over 95% in induced populations. Potentially, less efficient Cas9 variants could be constitutively expressed in \textit{Toxoplasma} without the need for a decoy sgRNA.

A previous report indicates a negative impact of transiently transfected of Cas9-sgRNA plasmid on parasite fitness as measured by plaque assay immediately after transfection (Sidik et al. 2014). The effect was observed in RH parasites and, to a greater extent, in RHΔku80 parasites. Sidik and co-workers hypothesised that DNA damage caused by Cas9 could be responsible for this decrease in fitness, especially in the RHΔku80 strain. Data presented here shows that DNA damage presents a universal outcome of Cas9 activity and strongly impacts parasite and nuclear morphology. Therefore, in agreement with the hypothesis proposed by Sidik and co-workers (Sidik et al. 2014), I conclude that the repair of the Cas9-mediated DSB presents a bottleneck for parasite recovery (Figure 6-1).

Because of this, my data urge caution when phenotypic analysis is performed immediately after Cas9 activity. For instance, it was suggested that \textit{TgMec17} is important for parasite replication based on transient Cas9 experiments (Varberg et al. 2016). However, the proposed impact of \textit{TgMec17} depletion on nuclear replication was only reproducible with the split-Cas9 system, but not with the DiCre system. I am therefore proposing that replication defect is not \textit{TgMec17}
specific, but rather represents the effect of Cas9-mediated DNA damage in the 1st lytic cycle of parasites.

Figure 6-1: Schematic depiction of the DNA damage bottle neck that a \textit{Toxoplasma} population has to overcome after Cas9 activity

Cas9-mediated double-stranded DNA breaks cause a DNA damage phenotype within the 1st lytic cycle after Cas9 activity. The DNA damage phenotype is lost in the 2nd lytic cycle, most likely due to the incapability of DNA damage parasites to re-invade. The schematic exemplarily depicts the results obtained for the \textit{Tg}sag1 gene during this study. Parasites expressing \textit{Tg}SAG1 on their surface are outlined in red. Parasites lacking \textit{Tg}SAG1 are shown without red outline.

Independent disruptions of the same gene usually produced similar levels of DNA damage abundance. Interestingly, however, the overall abundance of DNA damage within the 1st generation of a population can vary strongly when different genes are targeted by Cas9. For example, disruption of \textit{sag1} caused a DNA phenotype in 55.67\% (±3.79) of parasites, while the number for \textit{actin1} disruption was only 30\% (±2.65). Potentially, different genomic loci are more accessible to the DNA repair machinery. Transcriptional pressure might also
impact the rate of successful DSB repair. Whether these speculation hold true, however, remains to be elucidated.

In mammalian cells, the usual DNA repair outcome after Cas9-mediated DNA cleavage was reported to be insertions or deletions (indels) of maximal 20bp (Koike-Yusa et al. 2014; Tan et al. 2015; van Overbeek et al. 2016). However, Kosicki and co-workers showed that large deletions ranging from 250bp to 6kb can occur after Cas9 mediated DNA cleavage (Kosicki, Tomberg, and Bradley 2018). The indels observed for the targeted genes in my study (Tgsag1, Tgmec17, Tgactin1, Tgadf and Tgformin2) support previous reports in mammalian cells. While most indels are short insertions or deletions, Cas9-mediated cleavage of the formin2 gene resulted in a large deletion (over 150bp) at the targeted locus. My findings stand also in agreement with previous reports in Toxoplasma. While smaller indels seem to appear more frequently in this organism (Shen et al. 2014; Sidik et al. 2014; Serpeloni et al. 2016), larger insertions over 100bp have been reported (Sidik et al. 2014). Overall, it would appear that Toxoplasma tends to show similar DNA repair outcomes to mammalian cells.

In the context of CRISPR/Cas9-mediated genome targeting in mammalian cells, it has been reported that a variety of additional on-target DNA modifications, including inversions, can occur outside the cut site (Kosicki, Tomberg, and Bradley 2018). It would therefore appear that the CRISPR/Cas9 system has the potential to cause substantial genome rearrangements with unpredictable impact on the organism. Whether this is also true for Toxoplasma remains unclear. However, due to the similar DNA repair behaviour so far, it seems likely that similar events could also occur. In addition to the DNA damage phenotype, this possibility presents another reason to evaluate phenotypes thoroughly when applying CRISPR/Cas9.

Nevertheless, I argue that a conditional CRISPR/Cas9 system might be more robust with regards to proper phenotype depiction than, for example, clonal lines. In an induced split-Cas9 Toxoplasma population, different genomic modifications (indels) will be responsible for target gene disruption in different parasites. Since large genome rearrangements do not present the majority of DNA repair events (Kosicki, Tomberg, and Bradley 2018), truthful phenotypic
description should be possible by quantitative analysis of the entire induced population. A high induction rate as described for the split-Cas9 system is certainly beneficial in this endeavour.

At this point it should be mentioned that target sites in the human genome appear to be repaired in a non-random fashion (van Overbeek et al. 2016; Chakrabarti et al. 2019). This means that certain type of indels preferentially occur at a given target site after DNA repair. A large scale study investigating over 1,000 target sites in the human genome, however, reported that not all target sites display highly preferred indels (Chakrabarti et al. 2019). While some target sites appear to possess one preferred sequence alteration, other sites lack a clear preference with DNA repair resulting in various indels. Target sites of the induced split-Cas9 populations for the genes Tgadfs, Tgactin1 and Tgformin2 showed different indels after gene disruption. I therefore propose that these populations should display their respective phenotype due to a variety of indels making the phenotypic analyses more robust. For Tgmec17 and Tgsag1, several gRNAs were applied for target gene disruption. This presents another way to increase the number of indels and minimize the chance of incorrect phenotypic analysis due to on-target genome rearrangements.

The CRISPR/Cas9 technology enables genome wide screens in mammalian cells (Shalem et al. 2014; Wang et al. 2014; Jiang et al. 2019; Korkmaz et al. 2019). In Toxoplasma, a genome-wide CRISPR/Cas9 screen identified novel fitness-conferring genes (Sidik et al. 2016; Sidik, Huet, and Lourido 2018). The relevance of this screen for the overall scientific advancement in apicomplexan biology cannot be overstated. Nevertheless, the application of a constitutively expressed Cas9 enzyme allowed only for the assessment of overall parasite fitness. This leaves phenotypic screens to be achieved in the future. Due to its conditional nature, the split-Cas9 system is generally well suited for such an approach. While the underlying Cas9-mediated DNA damage limits its application, I argue that the split-Cas9 system is capable of supporting a phenotypic screen for novel actin factors.

First of all, research strongly indicates that Tgactin1, although critical for completion of the lytic life cycle, is not essential for intracellular growth and replication (Andenmatten et al. 2013; Egarter et al. 2014; Periz et al. 2017;
Whitelaw et al. 2017). In agreement with this, detrimental effects on nuclear integrity or parasite morphology, as described here for the DNA damage phenotype, have not been reported. The same is true for the actin depolymerisation factor (TgADF) (Mehta and Sibley 2011; Haase et al. 2015; Periz et al. 2017).

Secondly, this thesis shows that the split-Cas9 system was able to reproduce previously published actin phenotypes with the actin-chromobody for the genes Tgactin1 and Tgadf (Periz et al. 2017). In addition, the split-Cas9 enabled phenotypic description resulting from the disruption of the Tgformin2 gene. The validity of the described characteristics was confirmed by DiCre system (Andenmatten et al. 2013) and by an independent study (Tosetti et al. 2019). It should also be mentioned that the various actin phenotypes are easily distinguished, indicating that Cas9 activity does not interfere with the true nature of the phenotype. A medium-throughput screen is on-going at the moment, aiming at identifying novel actin binding proteins.

In summary, split-Cas9 extends the molecular toolbox that researchers have at their disposal for exploring Toxoplasma biology. Since the successful repair of Cas9-mediated DSB presents a significant obstacle, some parasites display a DNA damage phenotype after split-Cas9 activation. This limits the potential applications for this system. For instance, the system is not suitable for investigating nuclear or cellular replication. However, other biological questions addressing actin and apicoplast biology can be addressed applying this technology. In this context, vacuoles displaying an obvious DNA damage phenotype can easily be excluded from the analysis. Although the split-Cas9 system can be utilised for targeted gene characterisation approaches, I am hypothesising that the technique is most powerful in the context of phenotypic screening.

Due to the Cas9 mode of action, DSBs within genome cannot be avoided when aiming at gene control on the genetic level. One alternative approach, however, that would circumvent the challenges caused by DNA damage in Toxoplasma is the use of RNA-cleaving CRISPR/Cas systems. RNA cleavage would control gene expression on the transcriptional level. Type II CRISPR/Cas9 system from Streptococcus pyogenes can be programmed to target and cleave ssRNA
(O’Connell et al. 2014). It can also be exploited to target RNA nucleases to RNA molecules (Batra et al. 2017). In addition, Cas9 enzymes from other species were reported to target RNA as well as type III and VI CRISPR/Cas systems (Wang et al. 2019).

In the type VI CRISPR/Cas13a system, a single crRNA is sufficient to promote Cas13a-mediated ssRNA cleavage (Abudayyeh et al. 2016). However, Abudayyeh and colleagues observed collateral cleavage of standby RNAs upon Cas13a-mediated target RNA cleavage. It was suggested that this phenomenon is responsible for the observed growth rate inhibition in bacteria expressing RFP, Cas13a and a RFP-targeting crRNA (Abudayyeh et al. 2016). Intriguingly, when Cas13a was expressed in mammalian and plant cells for targeted transcript knockdown, no signs of collateral RNA cleavage were observed (Abudayyeh et al. 2017). Collateral RNA cleavage was also reported for Cas13b (Smargon et al. 2017) and Cas13d nucleases (Konermann et al. 2018).

The fact that Cas13 can be targeted to RNA molecules by only one crRNA (Abudayyeh et al. 2016) should make expression of all necessary components achievable in Toxoplasma. Of course, the potential for collateral RNA cleavage would have to be addressed carefully. Nevertheless, exploiting CRISPR/Cas system for transcriptome modification in Toxoplasma presents an exciting outlook.

6.2 Actin dynamics in Toxoplasma

Visualisation of the *in vivo* actin network in *Toxoplasma* (Periz et al. 2017) can be considered a milestone in apicomplexan biology. Initial experiments performed by Periz and colleagues revealed that individual parasites are connected by a filamentous actin network. Vesicular trafficking between individual parasites within the PV was proposed to occur along actin filaments (Periz et al. 2017). The actin network appears dynamic with intravacuolar filaments being dis- and reassembled during parasite replication (Periz et al. 2017). In addition, highly dynamic actin structures accumulate anterior to the nucleus in individual parasites (Periz et al. 2017).
Time-lapse microscopy was used in this thesis to further define actin dynamics in intracellular parasites. Actin accumulates at the apical and basal end of the parasite, the cytosolic region anterior to the nucleus and the periphery. Intriguingly, the cytosolic actin centre (cAC) anterior to the nucleus is highly dynamic and frequently interacts with peripheral actin. Overall, actin accumulation sites seem to be connected by bi-directional actin flow along the parasite periphery, as shown by kymograph analysis. I would therefore argue that intracellular parasites possess a dynamically connected actin network that spans their whole body (Figure 6-2). While filamentous actin structures enable vesicle trafficking between individual parasites (Periz et al. 2017), the intracellular actin network might mediate cargo transport within parasites.

For instance, dense granule trafficking was reported to rely on actin and TgMyoF (Heaslip, Nelson, and Warshaw 2016; Whitelaw et al. 2017). Unsurprisingly, the distribution pattern of TgMyoF in intracellular parasites (Jacot, Daher, and Soldati-Favre 2013; Tosetti et al. 2019) appears similar to the actin distribution described by Periz et al. (Periz et al. 2017) and this thesis. TgMyoF is present in the same region as the cytosolic actin centre (cAC), localising to the area of the acploplast and TgFormin2 (Jacot, Daher, and Soldati-Favre 2013; Tosetti et al. 2019). In addition, TgMyoF can be found in the parasite periphery (Jacot, Daher, and Soldati-Favre 2013; Tosetti et al. 2019).

Peripheral, bi-directional actin flow was also observed in resting extracellular parasites (Del Rosario et al. 2019). Interestingly, this actin flow did not depend on MyoA, a core component of the acto-myosin motor complex (Frénal, Dubremetz, et al. 2017). Whether bi-directional actin flow in intracellular parasites is MyoA independent remains to be seen. Other myosins could be responsible for peripheral actin translocation in intra- and extracellular parasites. TgMyoG was reported to localise to the parasite periphery (Frénal, Jacot, et al. 2017), while TgMyoL showed a ubiquitous distribution throughout the cytoplasm (Frénal, Jacot, et al. 2017). Hence, both myosins could represent reasonable candidates for maintaining the actin flow. Due to its similar distribution pattern to actin (Jacot, Daher, and Soldati-Favre 2013; Tosetti et al. 2019), the same is true for TgMyoF. Interestingly, actin translocation appears MyoA dependent upon calcium stimulation (Del Rosario et al. 2019; Tosetti et al. 2019). This might indicate that different signalling pathways in Toxoplasma
exploit different cellular factors to mediate actin translocation. In addition, the reportedly fast turnover of apicomplexan filaments (Sahoo et al. 2006; Skillman et al. 2011; Kumpula et al. 2017, 2019) might also contribute to directed actin translocation.

Actin flow in Toxoplasma

![Diagram of actin flow in extracellular and intracellular Toxoplasma parasites](image)

Figure 6-2: Schematic depicting a model for actin flow in extracellular (gliding) and intracellular Toxoplasma parasites

Actin accumulates at the basal pole of extracellular parasites due to a TgFormin1-mediated actin flow. In intracellular parasites, the cytosolic actin centre (cAC) anterior to the nucleus fuels the bi-directional actin flow. TgFormins2 promotes cAC dynamics and is, thus, mainly responsible for maintaining actin dynamics in individual, intracellular parasites. Actin accumulation at the apical and basal pole in intracellular parasites is most likely supported by the other TgFormins. TgFormin1 and 3 were found to localise to the apical and the basal pole, respectively. Reprinted from eLife (Stortz et al. 2019) under the Creative Commons Attribution 4.0 International License.
6.3 *In vivo* Functions of Formins in *Toxoplasma*

In vivo actin dynamics differ substantially from what can be observed *in vitro* (Pollard 2016). To efficiently control all aspects of actin assembly and disassembly, eukaryotic cells exploit a vast number of actin binding proteins (ABPs) (Pollard 2016). Processes that are heavily controlled by ABPs include *de novo* actin filament synthesis and actin treadmilling. In comparison to other eukaryotes, apicomplexan parasites encode for a limited set of ABPs (Baum et al. 2006). Strikingly, Formins are the only known actin nucleators in *Toxoplasma* and *Plasmodium* as spire (Baum et al. 2006) and the Arp2/3 complex (Gordon and Sibley 2005) are absent.

This thesis and a recent report by Tosetti and colleagues (Tosetti et al. 2019) elucidate the non-overlapping functions of *Tg*Formins *in vivo*. Strikingly, actin flow appears to depend on different Formins in extracellular and intracellular *Toxoplasma* parasites (Figure 6-2). Actin translocation to the basal end was reported to power motility in extracellular parasites and depends on *Tg*Formin1 (Tosetti et al. 2019). In intracellular parasites, however, peripheral actin flow and overall actin distribution within individual parasites appear to be mainly mediated by *Tg*Formin2 as described in this thesis. A similar function was reported for *Pf*Formin2 in intracellular *Plasmodium falciparum* blood stages (Stortz et al. 2019). Actin structures within the PV, but outside individual parasites, rely on *Tg*Formin3 (Tosetti et al. 2019).

Noteworthy, it was reported that resting extracellular parasites depict similar actin distribution to intracellular parasites, including bi-directional actin flow in the periphery (Del Rosario et al. 2019). Gliding motility appears to promote and require rearrangements of overall actin flow in a MyoA-dependent fashion (Del Rosario et al. 2019; Tosetti et al. 2019). This is supported by two independent studies that observed actin accumulation at the poles in extracellular parasites upon motility induction (Del Rosario et al. 2019; Tosetti et al. 2019).

In summary, *Tg*Formin2 and 3 act mainly during intracellular growth, while *Tg*Formin1 is crucial for gliding in extracellular parasites. I am hypothesising that *Toxoplasma* employs distinct mechanisms when directing actin flow during a resting or moving state. The exact molecular nature of these mechanisms, especially for intracellular parasites, will be the focus of future studies.
Proper actin dynamics are crucial for apicoplast replication and inheritance in *Toxoplasma* as depletion of actin causes apicoplast loss (Andenmatten et al. 2013; Whitelaw et al. 2017). The ABPs *Tg*Formin2 (Jacot, Daher, and Soldati-Favre 2013; Tosetti et al. 2019), *Tg*ADF (Jacot, Daher, and Soldati-Favre 2013; Haase et al. 2015) and *Tg*Profilin (Jacot, Daher, and Soldati-Favre 2013) are critical for apicoplast segregation as they maintain actin dynamics. It was suggested that *Tg*MyoF and *Tg*Formin2 act together to mediate proper apicoplast inheritance (Tosetti et al. 2019). A comparative study investigating the role of Formin2 in apicoplast inheritance in *Toxoplasma* and *Plasmodium* proposed that MyoF pulls the replicating apicoplast into the newly forming daughter cells along Formin2-mediated actin cables (Stortz et al. 2019).

Interestingly, *Tg*Formin2 knock-out lines are viable in culture (Tosetti et al. 2019). In *Tg*Formin2 knock-out populations, about 40% of parasites show normal apicoplast segregation while 60% of vacuoles show at least partial apicoplast loss (Tosetti et al. 2019). I made highly similar observations when excising *Tg*Formin2 conditionally via the DiCre system. Unsurprisingly, about 90% of parasites lacking the cAC after split-Cas9-mediated *Tg*formin2 disruption showed impaired apicoplast inheritance with up to 75% of vacuoles showing apicoplasts mislocalised to the residual body. This solidifies the current understanding that apicoplast segregation and correct positioning depends on *Tg*Formin2-mediated actin polymerisation. As mentioned above, the importance of actin dynamics on apicoplast inheritance is well documented in *Toxoplasma* (Andenmatten et al. 2013; Jacot, Daher, and Soldati-Favre 2013; Haase et al. 2015; Whitelaw et al. 2017). Nevertheless, the massive and most prominent accumulation of apicoplast material in the residual body presents a characteristic feature of the *Tg*Formin2 phenotype. As of now, it remains unclear when and how the apicoplast mislocalise to the residual body during parasite replication. Potentially, the lack of *Tg*Formin2-promoted actin filaments renders the parasites unable to pull the apicoplast into the newly forming daughter cells via *Tg*MyoF. As a result, apicoplast accumulate outside of the parasite, i.e. the residual body. Live microscopy investigating parasite and apicoplast replication in *Tg*Formin2 depleted parasites (over several rounds of replication) should present a suitable method to address this question in the future.
In parasites lacking the apicoplast, the cAC was still present indicating a normal localisation and function of TgFormin2. This hypothesis is supported by findings showing localisation of TgFormin2 to the apical region of parasites lacking the apicoplast (Tosetti et al. 2019). Furthermore, Tosetti and colleagues reported co-localisation of TgFormin2 and the Golgi apparatus. Collectively, these observations might indicate anchorage of TgFormin2 to the Golgi apparatus or to both, the apicoplast and the Golgi apparatus. Based on IFA data presented by Tosetti and co-workers, it might be reasonable to assume that the close proximity of TgFormin2 and the apicoplast in non-dividing parasites could be the result of the close proximity between the Golgi and the apicoplast. Further experiments will be required to fully determine the nature of TgFormin2 localisation in dividing and non-dividing parasites.

Based on the results from in vitro sedimentation assays, actin polymerisation was proposed to occur in an isodesmic fashion with actin polymerisation occurring independently from a critical concentration in Toxoplasma (Skillman et al. 2013). According to this model, actin assembly and disassembly happen at the same rate. Thus, the kinetically unfavourable actin nucleation prior to filament elongation would not present a rate limiting step. It was argued by Skillman and colleagues that F-actin formation could therefore happen independently from nucleation-promoting factors. In addition, the model was applied to explain the previously reported presence of short and unstable actin filaments in Toxoplasma (Sahoo et al. 2006).

Kumpula and co-workers challenged the reliability of actin sedimentation assays for analysing apicomplexan actin kinetics (Kumpula et al. 2017). They argued that the short length of apicomplexan actin oligomers could prevent their sedimentation. Pyrene fluorescence assays suggested kinetics for PfACT1 similar to canonical actin with F-actin formation depending on nucleation (Kumpula et al. 2017). Of relevance, the same study revealed that PfACT1 has a higher depolymerisation rate than canonical actin. Subsequently, crystallography studies revealed that unique structural features in the PfACT1 molecule promote filament destabilisation and, eventually, depolymerisation (Kumpula et al. 2019). For instance, within the PfACT1 molecule, the interaction between the A-loop and the Plasmodium-specific residue Lys270 enables a conformational stage that promotes actin filament fragmentation (Kumpula et al. 2019). Collectively,
these data indicate that the instability of apicomplexan F-actin can be explained by structural features not found in canonical actin.

Originally, the isodemsic model was believed to offer an explanation for the limited set of actin nucleation factors (Baum et al. 2006), most prominently the lack of the Arp2/3 complex (Gordon and Sibley 2005). However, findings presented by myself and Tosetti et al. (Tosetti et al. 2019) clearly show the critical function of TgFormins in maintaining actin dynamics. Very similar observation have been made in Plasmodium (Stortz et al. 2019). Collectively, these data support canonical actin kinetics depending on nucleation in the apicomplexan Plasmodium and Toxoplasma parasites. At this point of time, all in vitro and in vivo observations can be explained by the canonical understanding of actin dynamics. Although the isodesmic model (Skillman et al. 2013) has not been disproven directly, it does not offer exclusive explanations for any of the published actin-related phenotypes in vivo (Periz et al. 2017; Whitelaw et al. 2017; Del Rosario et al. 2019; Stortz et al. 2019; Tosetti et al. 2019).

6.4 In vivo Functions of TgADF in Toxoplasma

Periz and colleagues presented time-lapse microscopy depicting rapid disassembly of intravacuolar actin filaments prior to parasite egress in a calcium dependent manner (Periz et al. 2017). Follow-up experiments performed here indicated that the actin depolymerisation factor (TgADF) is important for intravacuolar filament disassembly prior to parasite egress.

TgADF displays a ubiquitous distribution throughout the parasite cytoplasm (Allen et al. 1997; Mehta and Sibley 2011; Haase et al. 2015). The inducible nature of the filament disassembly prior to egress (Periz et al. 2017) might suggest a signalling cascade as underlying activation mechanism. This would require a controlled activation of TgADF activity to enable rapid and site-specific actin filament disassembly. In other organisms, ADF activity depends on its phosphorylation status (Mizuno 2013). ADF activity is inhibited by LIM kinase-dependent phosphorylation (Arber et al. 1998; Yang et al. 1998). The SSH phosphatase can mediate ADF dephosphorylation, thus leading to its re-activation (Niwa et al. 2002). I therefore speculate that a calcium-dependent
pathway might exist that mediates TgADF activation prior to egress by modulating the enzyme’s phosphorylation status. Studies with TgADF phosphorylation mutants might be able to provide clarification about the exact underlying mechanism.

Interestingly, *in vitro* sedimentation assays with rabbit actin suggested that TgADF does not stably associate with F-actin (Mehta and Sibley 2010). In the same study, TgADF also displayed a weaker severing activity than the canonical yeast cofilin and appeared to prevent F-actin assembly mainly by sequestering monomeric G-actin. Of relevance, the severing activity was measured on rabbit actin for both enzymes. The observation that TgADF appears responsible for the rapid breakdown of already existing filaments *in vivo* would suggest that TgADF-mediated filament severing has relevance for actin dynamics. It was proposed that amino acid residues on the *Toxoplasma* actin monomer surface differ from conventional actin and that these differences contribute to filament instability (Sahoo et al. 2006; Skillman et al. 2011). Potentially, the weaker severing activity of TgADF is sufficient to mediate filament breakdown due to the more instable nature of *Toxoplasma* F-actin. The intravacuolar network was also reported to dis- and reassemble when intracellular parasites replicate (Periz et al. 2017). It is reasonable to hypothesis that TgADF might also be involved in mediating the network disassembly during replication.

Noteworthy, filament disassembly is not an essential requirement for successful parasite egress. Potentially, the disassembly process might serve the purpose of recycling actin by reintroducing monomeric actin to the cytosolic actin pool. Actin was shown to be critical for parasite egress (Egarter et al. 2014; Whitelaw et al. 2017). Therefore, increasing the overall actin concentration within the parasite might benefit successful egress. Overall, experiments performed on TgADF and TgFormin2 emphasize that the actin-chromobody technology (Periz et al. 2017) is a powerful tool for investigating relevant actin processes *in vivo*.
6.5 Outlook on TgProfilin function and concluding remarks

This study sets a solid foundation for future projects exploring actin kinetics in *Toxoplasma*. Unsurprisingly, *TgFormin2* and *TgADF* appear to be key players in maintaining actin dynamics in *Toxoplasma*. The *in vivo* function of *TgProfilin* within the actin network, however, still requires investigation. *In vitro* assays suggest fundamental differences in the mode of action between *Toxoplasma* and yeast Profilin. *TgProfilin* inhibits *TgFormin*-mediated actin polymerisation (Skillman et al. 2012) while yeast Profilin enhances Formin-mediated F-actin assembly (Sagot et al. 2002). In yeast, Profilin is required for Formin-mediated formation of actin cables *in vitro* (Evangelista et al. 2002).

![Figure 6-3: Disruption of TgProfilin in RHsplit-Cas9 parasites expressing actin-chromobody-Emerald (Cb-Em or Cb)](image)

IFA depicts the effect of *TgProfilin* (RHsCas9-Cb-Profilin) disruption on the actin network (Cb-Emerald). To achieve gene disruption, parasites were incubated with 50nM rapamycin for 1h. Parasites were fixed after 48h with 4%PFA. The figure shows representative images. Scale bars are 5µm. White arrows exemplarily indicate circular actin structures. Analytical PCR was performed to confirm the integration of the profilin-sgRNA-plasmid into the parasite genome (Figure 5-2).
Preliminary data suggest that split-Cas9-mediated Tgprofilin disruption does not abolish TgFormin-mediated actin polymerisation in *Toxoplasma* (Figure 6-3). It would seem that intravacuolar filaments can appear more prominent after TgProfilin disruption. In addition, some parasites show circular actin structures that appear predominantly around the nucleus. Collectively, appearance of more prominent actin structures could suggest that the loss of TgProfilin increases actin polymerisation. Circular actin structures around the nucleus might represent increased TgFormin2-mediated actin polymerisation abolishing the dynamic nature of the cAC anterior to the nucleus. These *in vivo* observations would support a role for TgProfilin in actin sequestering as proposed *in vitro* by Skillman and colleagues (Skillman et al. 2012). TgProfilin might regulate actin filament formation by limiting the G-actin pool available for filament assembly. Future experiments will be performed to validate these preliminary findings and to further characterise TgProfilin function *in vivo*.

In conclusion, the actin-chromobody technology initiated a new era of actin research in apicomplexan parasites. With the obstacle of actin visualisation overcome in *Toxoplasma* (Periz et al. 2017) and *Plasmodium* (Stortz et al. 2019), actin studies *in vivo* now present an exciting opportunity to expand our knowledge on this abundant structural protein. The first steps were made in this endeavour by investigating the *in vivo* functions of Formins in apicomplexans (Stortz et al. 2019; Tosetti et al. 2019) and TgCAP in *Toxoplasma* (Hunt et al. 2019). Moreover, novel functions for actin during host cell invasion (Del Rosario et al. 2019) and organelle recycling during intracellular replication (Periz et al. 2019). To identify novel ABPs in *Toxoplasma*, screening approaches exploiting the split-Cas9 system are currently on-going in the Meissner laboratory (LMU Munich).

The data presented in this thesis significantly contributed to our understanding of actin dynamics in *Toxoplasma*. Kymograph analysis gave detailed insights into overall actin dynamics in intracellular parasites. Furthermore, the ABPs TgADF and TgFormin2 were investigated for their function within the actin network *in vivo*. The split-Cas9 system will allow for phenotypic screening to further unravel the mechanics underlying actin dynamics in *Toxoplasma*.
Figure 7-1: Kymograph analysis of peripheral actin flow in intracellular RHsCas9-CbEm-actin1-wt and KO parasites

(A) Kymograph analysis RHsCas9-CbEm-actin1-wt (sCas9-actin1-wt) and RHsCas9-CbEm-actin1-KO (sCas9-actin1-KO). (B) Kymograph analysis RHsCas9-CbEm-actin1-KO (sCas9-actin1-KO) and movie background. Particle movement alongside the periphery or the movie background is depicted via three colour-coded kymographs. Red tracks represent particles moving to the basal end, green tracks show particle flow to the apical end and blue depicts static particles. The yellow line represents the area of kymograph...
measurement. Particle movement was measured from the apical (A) to the basal pole (B). As polarity is difficult to define for sCas9-actin1-KO parasites, the start point of the flow measurement is indicated with an asterisk. The same is true for the background measurement. Parasites were incubated with or without 50nM rapamycin for 1h. After a growth period of 72h, cultures were mechanically lysed and incubated on a fresh host cell monolayer for another 24h prior to live microscopy. Images represent videos as collapsed t-stacks. At least 5 independent movies were produced and analysed for each depicted condition. The figure shows representative kymographs. Scale bars are 5µm. Please see also Figure 4-12 and Supplement Movie V2. Please note that live microscopy for the RHsCas9-CbEm-actin strain was performed by Dr Mario Del Rosario.
Figure 7-2: Actin distribution and kymograph analysis in intracellular RH-GFP parasites
Figure 7-2 continued: (A) Time-averaged intensity profiling along the parasites middle axis in RH-GFP parasites. Intensity profiles depict Cb-Emerald intensity along the measured axis (yellow line) over the entire duration of the movie. (B) Particle movement alongside the periphery is depicted via three colour-coded kymographs. Red tracks represent particles moving to the basal end, green tracks show particle flow to the apical end and blue depicts static particles. The yellow line represents the area of kymograph measurement. Particle movement was measured from the apical (A) to the basal pole (B). For all analyses, RH-GFP parasites were grown for 24h prior to live microscopy. At least 10 independent movies were produced and analysed for each condition. Movies are depicted as images representing collapsed t-stacks. The figure shows representative images. Scale bars are 5µm. Please see also Figure 4-8 and Figure 4-12 and Supplement Movie V3.
Figure 7-3: Actin distribution and kymograph analysis in intracellular RHsCas9-CbEm-adf wt and KO parasites

(A) Time-averaged intensity profiling along the parasites middle axis in RHsCas9-CbEm-adf-wt and RHsCas9-CbEm-adf-KO parasites. Intensity profiles depict Cb-Emerald intensity along the measured axis (yellow line) over the entire duration of the movie. (B) Particle movement alongside the periphery is depicted via three colour-coded
kymographs. Red tracks represent particles moving to the basal end, green tracks show particle flow to the apical end and blue depicts static particles. The yellow line represents the area of kymograph measurement. Particle movement was measured from the apical (A) to the basal pole (B). For all analyses, parasites were incubated with or without 50nM rapamycin for 1h. After a growth period of 72h, cultures were mechanically lysed and incubated on a fresh host cell monolayer for another 24h prior to live microscopy. At least 10 independent movies were produced and analysed for each condition. Movies are depicted as images representing collapsed t-stacks. The figure shows representative images. Scale bars are 5µm. Please see also Figure 4-9 and Figure 4-12 and Supplement Movie V1.

Figure 7-4: Actin distribution in intracellular RHsCas9-CbEm-formin2 wt and KO parasites along the middle axis (A) and (B) Time-averaged intensity profiling along the parasites middle axis in RHsCas9-CbEm-formin2-wt and RHsCas9-CbEm-formin2-KO parasites. Parasites were incubated with or without 50nM rapamycin for 1h. After a growth period of 72h, cultures were mechanically lysed and incubated on a fresh host cell monolayer for another 24h prior to live microscopy. At least 10 independent movies were produced and analysed for each condition. Movies are depicted as images representing collapsed t-stacks. Intensity profiles depict Cb-Emerald intensity along the measured axis (yellow line) over the entire duration of the movie. The figure shows representative images. Scale bars are 5µm. Please see also Figure 5-12 and Supplement Movie V4.
Figure 7-5: Kymograph analysis of peripheral actin flow in intracellular RHsCas9-CbEm-formin2-wt and KO parasites
Particle movement alongside the periphery is depicted via three colour-coded kymographs. Red tracks represent particles moving to the basal end, green tracks show particle flow to the apical end and blue depicts static particles. The yellow line represents the area of kymograph measurement. Particle movement was measured from the apical (A) to the basal pole (B). Parasites were incubated with or without 50nM rapamycin for 1h. After a growth period of 72h, cultures were mechanically lysed and incubated on a fresh host cell monolayer for another 24h prior to live microscopy. Images represent videos as collapsed t-stacks. At least 10 independent movies were produced and analysed for each depicted condition. The figure shows representative kymographs. Scale bars are 5µm. Please see also Figure 5-15 and Supplement Movie V4.
Figure 7-6 Sequencing of the formin2-HA and DiCre-formin2-YFPloxP lines confirming in-frame positioning of the HA and YFP-tag at the c-terminus
The top rows show the predicted DNA sequence in case of in-frame tag positioning for the lines formin2-HA (A) and DiCre-formin2-YFPloxP (B). The bottom row depicts the actual DNA sequence present in the two lines. Noteworthy, the nucleotide substitution in the linker sequence of the formin2-HA line (A) does not change the amino acid sequence. Colour coding: yellow: linker sequence, red: stop codon, orange: loxP sequence, green: 3xHA tag (A) or YFP tag (B), blue: Tgformin2 sequence. Sequencing was performed by Eurofins (GATC services, LightRun Tubes). Please note that preparations for sequencing were performed by Dr Mirko Singer.
8 Bibliography

Bargieri, Daniel Y., Nicole Andenmatten, Vanessa Lagal, Sabine Thiberge, Jamie A. Whitelaw, Isabelle Tardieux, Markus Meissner, and Robert Ménard. 2013.

Black, Michael, Frank Seeber, Dominique Soldati, Kami Kim, and John C. Boothroyd. 1995. “Restriction Enzyme-Mediated Integration Elevates

https://doi.org/10.1128/ec.00357-08.

https://doi.org/10.1038/nrmicro.2017.86.

https://doi.org/10.1038/ncomms15710.

https://doi.org/10.1126/science.167.3919.893.

https://doi.org/10.1038/nature09372.

https://doi.org/10.1126/science.1076003.

Gilles, Aanna F., Johannes B. Schinko, and Michalis Averof. 2015. “Efficient

Guérin, Amandine, Hiba El Hajj, Diana Penarete-Vargas, Sébastien Besteiro, and

Harding, Clare R., Saskia Egarter, Matthew Gow, Elena Jiménez-Ruiz, David J. P. Ferguson, and Markus Meissner. 2016. “Gliding Associated Proteins Play

Hehl, Adrian B., Christine Lekutis, Michael E. Grigg, Peter J. Bradley, Jean François Dubremetz, Eduardo Ortega-Barria, and John C. Boothroyd. 2000. “Toxoplasma Gondii Homologue of Plasmodium Apical Membrane Antigen 1

Jullien, Nicolas, Isabelle Goddard, Samia Selmi-Ruby, Jean Luc Fina, Harold Cremer, and Jean Paul Herman. 2007. “Conditional Transgenesis Using

Malaria Parasite Plasmodium Falciparum Is Caused by Disruption of Prenylation-Dependent Intracellular Trafficking.” *PLOS Biology* 17 (7): e3000376. https://doi.org/10.1371/journal.pbio.3000376.

Polymerization Depends on Nucleation.” *Scientific Reports* 7: 12137. https://doi.org/10.1038/s41598-017-11330-w.

Leung, Jacqueline M., Mark A. Rould, Christoph Konradt, Christopher A. Hunter,

https://doi.org/10.1074/jbc.M202553200.

https://doi.org/10.1093/clinids/15.2.211.

https://doi.org/10.1083/jcb.127.1.107.

https://doi.org/10.1074/jbc.M112.435719.

https://doi.org/10.1126/science.1232033.

Sheiner, Lilach, Jessica L. Demerly, Nicole Poulsen, Wandy L. Beatty, Olivier

Stortz, Johannes Felix, Mario del Rosario, Mirko Singer, Jonathan M. Wilkes,

Tardieux, Isabelle. 2017. “Actin Nanobodies Uncover the Mystery of Actin

https://doi.org/10.1038/346850a0.

https://doi.org/10.1073/pnas.1501698112.

https://doi.org/10.1186/2045-9769-3-12.

https://doi.org/10.1038/31735.

https://doi.org/10.1371/journal.pbio.1001138.

